Date: 2019-12-25 22:20:24 CET, cola version: 1.3.2
Document is loading...
All available functions which can be applied to this res_list
object:
res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#> On a matrix with 21342 rows and 50 columns.
#> Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#> Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#> Number of partitions are tried for k = 2, 3, 4, 5, 6.
#> Performed in total 30000 partitions by row resampling.
#>
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#> [1] "cola_report" "collect_classes" "collect_plots" "collect_stats"
#> [5] "colnames" "functional_enrichment" "get_anno_col" "get_anno"
#> [9] "get_classes" "get_matrix" "get_membership" "get_stats"
#> [13] "is_best_k" "is_stable_k" "ncol" "nrow"
#> [17] "rownames" "show" "suggest_best_k" "test_to_known_factors"
#> [21] "top_rows_heatmap" "top_rows_overlap"
#>
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]
The call of run_all_consensus_partition_methods()
was:
#> run_all_consensus_partition_methods(data = mat, mc.cores = 4, anno = anno)
Dimension of the input matrix:
mat = get_matrix(res_list)
dim(mat)
#> [1] 21342 50
The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.
library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_list),
col = get_anno_col(res_list)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
mc.cores = 4)
Folowing table shows the best k
(number of partitions) for each combination
of top-value methods and partition methods. Clicking on the method name in
the table goes to the section for a single combination of methods.
The cola vignette explains the definition of the metrics used for determining the best number of partitions.
suggest_best_k(res_list)
The best k | 1-PAC | Mean silhouette | Concordance | Optional k | ||
---|---|---|---|---|---|---|
SD:skmeans | 2 | 1.000 | 1.000 | 1.000 | ** | |
SD:pam | 4 | 1.000 | 0.979 | 0.990 | ** | 2,3 |
SD:NMF | 3 | 1.000 | 0.974 | 0.991 | ** | 2 |
CV:hclust | 2 | 1.000 | 0.961 | 0.982 | ** | |
CV:pam | 3 | 1.000 | 0.975 | 0.990 | ** | 2 |
MAD:hclust | 2 | 1.000 | 0.970 | 0.987 | ** | |
MAD:kmeans | 3 | 1.000 | 0.986 | 0.987 | ** | |
MAD:pam | 4 | 1.000 | 0.994 | 0.997 | ** | 2,3 |
MAD:NMF | 3 | 1.000 | 0.965 | 0.986 | ** | 2 |
ATC:kmeans | 3 | 1.000 | 0.992 | 0.991 | ** | |
ATC:skmeans | 3 | 1.000 | 0.981 | 0.992 | ** | 2 |
ATC:pam | 3 | 1.000 | 1.000 | 1.000 | ** | 2 |
ATC:mclust | 2 | 1.000 | 0.991 | 0.995 | ** | |
ATC:NMF | 3 | 1.000 | 0.951 | 0.981 | ** | |
CV:kmeans | 3 | 0.944 | 0.959 | 0.961 | * | |
SD:kmeans | 3 | 0.943 | 0.956 | 0.959 | * | |
MAD:skmeans | 3 | 0.939 | 0.949 | 0.978 | * | 2 |
CV:NMF | 4 | 0.923 | 0.920 | 0.954 | * | 2,3 |
ATC:hclust | 5 | 0.915 | 0.893 | 0.939 | * | 2,3 |
SD:hclust | 3 | 0.908 | 0.910 | 0.960 | * | 2 |
CV:skmeans | 3 | 0.856 | 0.838 | 0.938 | ||
CV:mclust | 3 | 0.811 | 0.856 | 0.935 | ||
MAD:mclust | 5 | 0.704 | 0.795 | 0.878 | ||
SD:mclust | 3 | 0.622 | 0.826 | 0.913 |
**: 1-PAC > 0.95, *: 1-PAC > 0.9
Cumulative distribution function curves of consensus matrix for all methods.
collect_plots(res_list, fun = plot_ecdf)
Consensus heatmaps for all methods. (What is a consensus heatmap?)
collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)
Membership heatmaps for all methods. (What is a membership heatmap?)
collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)
Signature heatmaps for all methods. (What is a signature heatmap?)
Note in following heatmaps, rows are scaled.
collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)
The statistics used for measuring the stability of consensus partitioning. (How are they defined?)
get_stats(res_list, k = 2)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 2 1.000 0.983 0.992 0.386 0.607 0.607
#> CV:NMF 2 1.000 0.990 0.995 0.393 0.607 0.607
#> MAD:NMF 2 1.000 0.980 0.991 0.391 0.607 0.607
#> ATC:NMF 2 0.486 0.796 0.893 0.452 0.556 0.556
#> SD:skmeans 2 1.000 1.000 1.000 0.471 0.530 0.530
#> CV:skmeans 2 0.735 0.842 0.927 0.461 0.519 0.519
#> MAD:skmeans 2 1.000 0.976 0.991 0.477 0.519 0.519
#> ATC:skmeans 2 1.000 0.979 0.986 0.474 0.519 0.519
#> SD:mclust 2 0.458 0.482 0.775 0.456 0.503 0.503
#> CV:mclust 2 0.499 0.882 0.913 0.450 0.519 0.519
#> MAD:mclust 2 0.689 0.818 0.912 0.358 0.726 0.726
#> ATC:mclust 2 1.000 0.991 0.995 0.468 0.530 0.530
#> SD:kmeans 2 0.426 0.768 0.829 0.356 0.650 0.650
#> CV:kmeans 2 0.362 0.843 0.823 0.363 0.650 0.650
#> MAD:kmeans 2 0.393 0.280 0.614 0.364 0.556 0.556
#> ATC:kmeans 2 0.486 0.772 0.854 0.333 0.556 0.556
#> SD:pam 2 1.000 1.000 1.000 0.351 0.650 0.650
#> CV:pam 2 1.000 1.000 1.000 0.351 0.650 0.650
#> MAD:pam 2 1.000 1.000 1.000 0.351 0.650 0.650
#> ATC:pam 2 1.000 1.000 1.000 0.327 0.673 0.673
#> SD:hclust 2 1.000 0.999 1.000 0.351 0.650 0.650
#> CV:hclust 2 1.000 0.961 0.982 0.334 0.673 0.673
#> MAD:hclust 2 1.000 0.970 0.987 0.344 0.650 0.650
#> ATC:hclust 2 1.000 1.000 1.000 0.216 0.784 0.784
get_stats(res_list, k = 3)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 3 1.000 0.974 0.991 0.499 0.731 0.588
#> CV:NMF 3 0.968 0.948 0.979 0.514 0.718 0.566
#> MAD:NMF 3 1.000 0.965 0.986 0.489 0.731 0.588
#> ATC:NMF 3 1.000 0.951 0.981 0.326 0.591 0.406
#> SD:skmeans 3 0.825 0.913 0.961 0.354 0.746 0.557
#> CV:skmeans 3 0.856 0.838 0.938 0.433 0.726 0.518
#> MAD:skmeans 3 0.939 0.949 0.978 0.353 0.754 0.561
#> ATC:skmeans 3 1.000 0.981 0.992 0.318 0.784 0.610
#> SD:mclust 3 0.622 0.826 0.913 0.336 0.603 0.376
#> CV:mclust 3 0.811 0.856 0.935 0.389 0.760 0.574
#> MAD:mclust 3 0.423 0.594 0.783 0.619 0.653 0.522
#> ATC:mclust 3 0.771 0.813 0.919 0.263 0.776 0.610
#> SD:kmeans 3 0.943 0.956 0.959 0.492 0.764 0.651
#> CV:kmeans 3 0.944 0.959 0.961 0.498 0.764 0.651
#> MAD:kmeans 3 1.000 0.986 0.987 0.523 0.616 0.445
#> ATC:kmeans 3 1.000 0.992 0.991 0.553 0.919 0.856
#> SD:pam 3 1.000 0.999 1.000 0.575 0.798 0.688
#> CV:pam 3 1.000 0.975 0.990 0.601 0.798 0.688
#> MAD:pam 3 1.000 1.000 1.000 0.576 0.798 0.688
#> ATC:pam 3 1.000 1.000 1.000 0.508 0.833 0.753
#> SD:hclust 3 0.908 0.910 0.960 0.559 0.838 0.751
#> CV:hclust 3 0.690 0.847 0.899 0.726 0.740 0.613
#> MAD:hclust 3 0.835 0.864 0.944 0.583 0.838 0.751
#> ATC:hclust 3 1.000 0.999 1.000 1.369 0.704 0.622
get_stats(res_list, k = 4)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 4 0.876 0.913 0.950 0.2138 0.882 0.726
#> CV:NMF 4 0.923 0.920 0.954 0.2296 0.838 0.616
#> MAD:NMF 4 0.793 0.852 0.913 0.2486 0.837 0.620
#> ATC:NMF 4 0.737 0.751 0.841 0.1698 0.864 0.692
#> SD:skmeans 4 0.802 0.843 0.892 0.1763 0.789 0.484
#> CV:skmeans 4 0.757 0.746 0.878 0.1360 0.776 0.451
#> MAD:skmeans 4 0.798 0.741 0.898 0.1612 0.797 0.494
#> ATC:skmeans 4 0.738 0.591 0.814 0.1768 0.932 0.820
#> SD:mclust 4 0.784 0.887 0.920 0.0839 0.864 0.691
#> CV:mclust 4 0.773 0.807 0.898 0.0629 0.909 0.776
#> MAD:mclust 4 0.607 0.748 0.862 0.1984 0.716 0.396
#> ATC:mclust 4 0.661 0.690 0.854 0.0894 0.848 0.664
#> SD:kmeans 4 0.708 0.767 0.871 0.2925 0.909 0.803
#> CV:kmeans 4 0.716 0.790 0.866 0.2598 0.909 0.803
#> MAD:kmeans 4 0.700 0.712 0.808 0.2712 0.804 0.560
#> ATC:kmeans 4 0.645 0.543 0.742 0.2998 0.778 0.542
#> SD:pam 4 1.000 0.979 0.990 0.1658 0.912 0.803
#> CV:pam 4 0.876 0.965 0.974 0.1616 0.912 0.803
#> MAD:pam 4 1.000 0.994 0.997 0.1284 0.931 0.847
#> ATC:pam 4 0.804 0.922 0.954 0.1605 0.948 0.897
#> SD:hclust 4 0.765 0.844 0.902 0.2747 0.812 0.615
#> CV:hclust 4 0.728 0.852 0.936 0.1630 0.890 0.739
#> MAD:hclust 4 0.771 0.826 0.909 0.2694 0.800 0.594
#> ATC:hclust 4 0.881 0.859 0.943 0.2575 0.905 0.806
get_stats(res_list, k = 5)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 5 0.747 0.721 0.849 0.1135 0.900 0.686
#> CV:NMF 5 0.767 0.650 0.840 0.0614 0.904 0.664
#> MAD:NMF 5 0.765 0.743 0.861 0.0860 0.929 0.743
#> ATC:NMF 5 0.785 0.890 0.923 0.0940 0.897 0.690
#> SD:skmeans 5 0.846 0.815 0.904 0.0711 0.949 0.797
#> CV:skmeans 5 0.802 0.782 0.886 0.0700 0.933 0.738
#> MAD:skmeans 5 0.824 0.741 0.879 0.0727 0.872 0.550
#> ATC:skmeans 5 0.794 0.529 0.744 0.0757 0.864 0.589
#> SD:mclust 5 0.664 0.702 0.838 0.1410 0.819 0.537
#> CV:mclust 5 0.745 0.799 0.885 0.1234 0.845 0.591
#> MAD:mclust 5 0.704 0.795 0.878 0.0964 0.935 0.777
#> ATC:mclust 5 0.695 0.677 0.849 0.1334 0.883 0.686
#> SD:kmeans 5 0.698 0.780 0.848 0.1082 0.853 0.606
#> CV:kmeans 5 0.772 0.804 0.883 0.1189 0.853 0.606
#> MAD:kmeans 5 0.754 0.735 0.860 0.0996 0.951 0.814
#> ATC:kmeans 5 0.632 0.774 0.803 0.1125 0.795 0.420
#> SD:pam 5 0.780 0.743 0.890 0.1341 0.925 0.791
#> CV:pam 5 0.764 0.734 0.879 0.1246 0.910 0.750
#> MAD:pam 5 0.851 0.872 0.943 0.1083 0.939 0.838
#> ATC:pam 5 0.831 0.948 0.972 0.2292 0.843 0.655
#> SD:hclust 5 0.831 0.875 0.923 0.0426 0.980 0.935
#> CV:hclust 5 0.778 0.786 0.869 0.1027 0.971 0.908
#> MAD:hclust 5 0.808 0.885 0.910 0.0567 0.975 0.916
#> ATC:hclust 5 0.915 0.893 0.939 0.0485 0.913 0.780
get_stats(res_list, k = 6)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 6 0.716 0.567 0.758 0.0521 0.885 0.554
#> CV:NMF 6 0.742 0.618 0.784 0.0592 0.892 0.554
#> MAD:NMF 6 0.746 0.521 0.747 0.0449 0.949 0.768
#> ATC:NMF 6 0.761 0.741 0.858 0.0315 0.987 0.943
#> SD:skmeans 6 0.841 0.753 0.808 0.0393 0.980 0.903
#> CV:skmeans 6 0.818 0.705 0.807 0.0389 0.968 0.842
#> MAD:skmeans 6 0.824 0.639 0.824 0.0387 0.928 0.668
#> ATC:skmeans 6 0.878 0.849 0.915 0.0483 0.924 0.674
#> SD:mclust 6 0.695 0.567 0.740 0.0526 0.855 0.470
#> CV:mclust 6 0.762 0.815 0.860 0.0766 0.894 0.605
#> MAD:mclust 6 0.693 0.664 0.806 0.0653 0.927 0.696
#> ATC:mclust 6 0.862 0.819 0.895 0.0592 0.916 0.715
#> SD:kmeans 6 0.773 0.661 0.825 0.0633 0.974 0.884
#> CV:kmeans 6 0.793 0.717 0.819 0.0629 0.939 0.756
#> MAD:kmeans 6 0.797 0.644 0.813 0.0522 0.943 0.759
#> ATC:kmeans 6 0.726 0.801 0.870 0.0678 0.958 0.826
#> SD:pam 6 0.797 0.800 0.863 0.0758 0.930 0.760
#> CV:pam 6 0.805 0.712 0.842 0.0679 0.913 0.706
#> MAD:pam 6 0.896 0.837 0.938 0.0740 0.910 0.736
#> ATC:pam 6 0.811 0.942 0.965 0.0123 0.993 0.978
#> SD:hclust 6 0.787 0.811 0.889 0.0424 0.996 0.985
#> CV:hclust 6 0.763 0.712 0.838 0.0390 0.969 0.896
#> MAD:hclust 6 0.785 0.809 0.873 0.0485 0.996 0.985
#> ATC:hclust 6 0.848 0.821 0.916 0.0826 0.946 0.828
Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.
collect_stats(res_list, k = 2)
collect_stats(res_list, k = 3)
collect_stats(res_list, k = 4)
collect_stats(res_list, k = 5)
collect_stats(res_list, k = 6)
Collect partitions from all methods:
collect_classes(res_list, k = 2)
collect_classes(res_list, k = 3)
collect_classes(res_list, k = 4)
collect_classes(res_list, k = 5)
collect_classes(res_list, k = 6)
Overlap of top rows from different top-row methods:
top_rows_overlap(res_list, top_n = 1000, method = "euler")
top_rows_overlap(res_list, top_n = 2000, method = "euler")
top_rows_overlap(res_list, top_n = 3000, method = "euler")
top_rows_overlap(res_list, top_n = 4000, method = "euler")
top_rows_overlap(res_list, top_n = 5000, method = "euler")
Also visualize the correspondance of rankings between different top-row methods:
top_rows_overlap(res_list, top_n = 1000, method = "correspondance")
top_rows_overlap(res_list, top_n = 2000, method = "correspondance")
top_rows_overlap(res_list, top_n = 3000, method = "correspondance")
top_rows_overlap(res_list, top_n = 4000, method = "correspondance")
top_rows_overlap(res_list, top_n = 5000, method = "correspondance")
Heatmaps of the top rows:
top_rows_heatmap(res_list, top_n = 1000)
top_rows_heatmap(res_list, top_n = 2000)
top_rows_heatmap(res_list, top_n = 3000)
top_rows_heatmap(res_list, top_n = 4000)
top_rows_heatmap(res_list, top_n = 5000)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res_list, k = 2)
#> n tissue(p) k
#> SD:NMF 50 0.394 2
#> CV:NMF 50 0.394 2
#> MAD:NMF 50 0.394 2
#> ATC:NMF 47 0.391 2
#> SD:skmeans 50 0.394 2
#> CV:skmeans 48 0.392 2
#> MAD:skmeans 49 0.393 2
#> ATC:skmeans 50 0.394 2
#> SD:mclust 30 0.414 2
#> CV:mclust 50 0.394 2
#> MAD:mclust 48 0.392 2
#> ATC:mclust 50 0.394 2
#> SD:kmeans 44 0.387 2
#> CV:kmeans 50 0.394 2
#> MAD:kmeans 0 NA 2
#> ATC:kmeans 41 0.383 2
#> SD:pam 50 0.394 2
#> CV:pam 50 0.394 2
#> MAD:pam 50 0.394 2
#> ATC:pam 50 0.394 2
#> SD:hclust 50 0.394 2
#> CV:hclust 49 0.393 2
#> MAD:hclust 50 0.394 2
#> ATC:hclust 50 0.394 2
test_to_known_factors(res_list, k = 3)
#> n tissue(p) k
#> SD:NMF 49 0.368 3
#> CV:NMF 48 0.423 3
#> MAD:NMF 49 0.368 3
#> ATC:NMF 49 0.368 3
#> SD:skmeans 49 0.449 3
#> CV:skmeans 45 0.447 3
#> MAD:skmeans 49 0.449 3
#> ATC:skmeans 50 0.370 3
#> SD:mclust 47 0.440 3
#> CV:mclust 47 0.437 3
#> MAD:mclust 37 0.413 3
#> ATC:mclust 45 0.421 3
#> SD:kmeans 49 0.368 3
#> CV:kmeans 50 0.370 3
#> MAD:kmeans 50 0.370 3
#> ATC:kmeans 50 0.370 3
#> SD:pam 50 0.370 3
#> CV:pam 49 0.368 3
#> MAD:pam 50 0.370 3
#> ATC:pam 50 0.370 3
#> SD:hclust 47 0.366 3
#> CV:hclust 48 0.367 3
#> MAD:hclust 46 0.364 3
#> ATC:hclust 50 0.370 3
test_to_known_factors(res_list, k = 4)
#> n tissue(p) k
#> SD:NMF 49 0.464 4
#> CV:NMF 49 0.436 4
#> MAD:NMF 48 0.430 4
#> ATC:NMF 46 0.412 4
#> SD:skmeans 49 0.348 4
#> CV:skmeans 40 0.406 4
#> MAD:skmeans 40 0.406 4
#> ATC:skmeans 33 0.397 4
#> SD:mclust 50 0.511 4
#> CV:mclust 47 0.504 4
#> MAD:mclust 44 0.411 4
#> ATC:mclust 37 0.413 4
#> SD:kmeans 41 0.407 4
#> CV:kmeans 49 0.509 4
#> MAD:kmeans 39 0.405 4
#> ATC:kmeans 33 0.316 4
#> SD:pam 50 0.512 4
#> CV:pam 50 0.512 4
#> MAD:pam 50 0.560 4
#> ATC:pam 50 0.349 4
#> SD:hclust 49 0.432 4
#> CV:hclust 48 0.509 4
#> MAD:hclust 48 0.437 4
#> ATC:hclust 44 0.339 4
test_to_known_factors(res_list, k = 5)
#> n tissue(p) k
#> SD:NMF 43 0.436 5
#> CV:NMF 38 0.486 5
#> MAD:NMF 42 0.422 5
#> ATC:NMF 50 0.479 5
#> SD:skmeans 45 0.471 5
#> CV:skmeans 43 0.463 5
#> MAD:skmeans 42 0.459 5
#> ATC:skmeans 28 0.400 5
#> SD:mclust 42 0.494 5
#> CV:mclust 47 0.512 5
#> MAD:mclust 50 0.536 5
#> ATC:mclust 39 0.521 5
#> SD:kmeans 45 0.483 5
#> CV:kmeans 45 0.483 5
#> MAD:kmeans 41 0.517 5
#> ATC:kmeans 47 0.404 5
#> SD:pam 43 0.451 5
#> CV:pam 42 0.457 5
#> MAD:pam 47 0.503 5
#> ATC:pam 50 0.331 5
#> SD:hclust 50 0.473 5
#> CV:hclust 47 0.464 5
#> MAD:hclust 50 0.473 5
#> ATC:hclust 47 0.326 5
test_to_known_factors(res_list, k = 6)
#> n tissue(p) k
#> SD:NMF 30 0.445 6
#> CV:NMF 35 0.418 6
#> MAD:NMF 31 0.474 6
#> ATC:NMF 43 0.493 6
#> SD:skmeans 44 0.440 6
#> CV:skmeans 35 0.435 6
#> MAD:skmeans 36 0.455 6
#> ATC:skmeans 48 0.399 6
#> SD:mclust 34 0.461 6
#> CV:mclust 46 0.477 6
#> MAD:mclust 36 0.472 6
#> ATC:mclust 44 0.495 6
#> SD:kmeans 38 0.472 6
#> CV:kmeans 43 0.487 6
#> MAD:kmeans 38 0.509 6
#> ATC:kmeans 46 0.474 6
#> SD:pam 49 0.439 6
#> CV:pam 41 0.448 6
#> MAD:pam 46 0.465 6
#> ATC:pam 50 0.315 6
#> SD:hclust 48 0.466 6
#> CV:hclust 42 0.448 6
#> MAD:hclust 47 0.463 6
#> ATC:hclust 44 0.401 6
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21342 rows and 50 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.999 1.000 0.3512 0.650 0.650
#> 3 3 0.908 0.910 0.960 0.5593 0.838 0.751
#> 4 4 0.765 0.844 0.902 0.2747 0.812 0.615
#> 5 5 0.831 0.875 0.923 0.0426 0.980 0.935
#> 6 6 0.787 0.811 0.889 0.0424 0.996 0.985
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2
There is also optional best \(k\) = 2 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM28735 1 0.000 1.000 1.000 0.000
#> GSM28736 1 0.000 1.000 1.000 0.000
#> GSM28737 1 0.000 1.000 1.000 0.000
#> GSM11249 1 0.000 1.000 1.000 0.000
#> GSM28745 2 0.000 1.000 0.000 1.000
#> GSM11244 2 0.000 1.000 0.000 1.000
#> GSM28748 2 0.000 1.000 0.000 1.000
#> GSM11266 2 0.000 1.000 0.000 1.000
#> GSM28730 2 0.000 1.000 0.000 1.000
#> GSM11253 2 0.000 1.000 0.000 1.000
#> GSM11254 2 0.000 1.000 0.000 1.000
#> GSM11260 2 0.000 1.000 0.000 1.000
#> GSM28733 2 0.000 1.000 0.000 1.000
#> GSM11265 1 0.000 1.000 1.000 0.000
#> GSM28739 1 0.000 1.000 1.000 0.000
#> GSM11243 1 0.000 1.000 1.000 0.000
#> GSM28740 1 0.000 1.000 1.000 0.000
#> GSM11259 1 0.000 1.000 1.000 0.000
#> GSM28726 1 0.000 1.000 1.000 0.000
#> GSM28743 1 0.000 1.000 1.000 0.000
#> GSM11256 1 0.000 1.000 1.000 0.000
#> GSM11262 1 0.000 1.000 1.000 0.000
#> GSM28724 1 0.000 1.000 1.000 0.000
#> GSM28725 1 0.000 1.000 1.000 0.000
#> GSM11263 1 0.000 1.000 1.000 0.000
#> GSM11267 1 0.000 1.000 1.000 0.000
#> GSM28744 1 0.000 1.000 1.000 0.000
#> GSM28734 1 0.000 1.000 1.000 0.000
#> GSM28747 1 0.000 1.000 1.000 0.000
#> GSM11257 1 0.000 1.000 1.000 0.000
#> GSM11252 1 0.000 1.000 1.000 0.000
#> GSM11264 1 0.000 1.000 1.000 0.000
#> GSM11247 1 0.000 1.000 1.000 0.000
#> GSM11258 1 0.000 1.000 1.000 0.000
#> GSM28728 1 0.000 1.000 1.000 0.000
#> GSM28746 1 0.000 1.000 1.000 0.000
#> GSM28738 1 0.000 1.000 1.000 0.000
#> GSM28741 2 0.000 1.000 0.000 1.000
#> GSM28729 1 0.000 1.000 1.000 0.000
#> GSM28742 1 0.000 1.000 1.000 0.000
#> GSM11250 2 0.000 1.000 0.000 1.000
#> GSM11245 1 0.000 1.000 1.000 0.000
#> GSM11246 1 0.000 1.000 1.000 0.000
#> GSM11261 1 0.118 0.984 0.984 0.016
#> GSM11248 1 0.000 1.000 1.000 0.000
#> GSM28732 1 0.000 1.000 1.000 0.000
#> GSM11255 1 0.000 1.000 1.000 0.000
#> GSM28731 1 0.000 1.000 1.000 0.000
#> GSM28727 1 0.000 1.000 1.000 0.000
#> GSM11251 1 0.000 1.000 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM28735 1 0.000 0.935 1.000 0.000 0.000
#> GSM28736 1 0.000 0.935 1.000 0.000 0.000
#> GSM28737 1 0.000 0.935 1.000 0.000 0.000
#> GSM11249 1 0.611 0.440 0.604 0.000 0.396
#> GSM28745 2 0.000 1.000 0.000 1.000 0.000
#> GSM11244 2 0.000 1.000 0.000 1.000 0.000
#> GSM28748 2 0.000 1.000 0.000 1.000 0.000
#> GSM11266 2 0.000 1.000 0.000 1.000 0.000
#> GSM28730 2 0.000 1.000 0.000 1.000 0.000
#> GSM11253 2 0.000 1.000 0.000 1.000 0.000
#> GSM11254 2 0.000 1.000 0.000 1.000 0.000
#> GSM11260 2 0.000 1.000 0.000 1.000 0.000
#> GSM28733 2 0.000 1.000 0.000 1.000 0.000
#> GSM11265 1 0.000 0.935 1.000 0.000 0.000
#> GSM28739 1 0.000 0.935 1.000 0.000 0.000
#> GSM11243 3 0.000 1.000 0.000 0.000 1.000
#> GSM28740 1 0.000 0.935 1.000 0.000 0.000
#> GSM11259 1 0.000 0.935 1.000 0.000 0.000
#> GSM28726 1 0.000 0.935 1.000 0.000 0.000
#> GSM28743 1 0.000 0.935 1.000 0.000 0.000
#> GSM11256 1 0.000 0.935 1.000 0.000 0.000
#> GSM11262 1 0.000 0.935 1.000 0.000 0.000
#> GSM28724 1 0.000 0.935 1.000 0.000 0.000
#> GSM28725 3 0.000 1.000 0.000 0.000 1.000
#> GSM11263 3 0.000 1.000 0.000 0.000 1.000
#> GSM11267 3 0.000 1.000 0.000 0.000 1.000
#> GSM28744 1 0.000 0.935 1.000 0.000 0.000
#> GSM28734 1 0.000 0.935 1.000 0.000 0.000
#> GSM28747 1 0.000 0.935 1.000 0.000 0.000
#> GSM11257 1 0.000 0.935 1.000 0.000 0.000
#> GSM11252 1 0.518 0.682 0.744 0.000 0.256
#> GSM11264 3 0.000 1.000 0.000 0.000 1.000
#> GSM11247 3 0.000 1.000 0.000 0.000 1.000
#> GSM11258 1 0.000 0.935 1.000 0.000 0.000
#> GSM28728 1 0.000 0.935 1.000 0.000 0.000
#> GSM28746 1 0.000 0.935 1.000 0.000 0.000
#> GSM28738 1 0.000 0.935 1.000 0.000 0.000
#> GSM28741 2 0.000 1.000 0.000 1.000 0.000
#> GSM28729 1 0.000 0.935 1.000 0.000 0.000
#> GSM28742 1 0.000 0.935 1.000 0.000 0.000
#> GSM11250 2 0.000 1.000 0.000 1.000 0.000
#> GSM11245 1 0.518 0.682 0.744 0.000 0.256
#> GSM11246 1 0.000 0.935 1.000 0.000 0.000
#> GSM11261 1 0.688 0.330 0.556 0.016 0.428
#> GSM11248 1 0.611 0.440 0.604 0.000 0.396
#> GSM28732 1 0.000 0.935 1.000 0.000 0.000
#> GSM11255 1 0.506 0.698 0.756 0.000 0.244
#> GSM28731 1 0.000 0.935 1.000 0.000 0.000
#> GSM28727 1 0.000 0.935 1.000 0.000 0.000
#> GSM11251 1 0.000 0.935 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM28735 1 0.0000 0.874 1.000 0.000 0.000 0.000
#> GSM28736 1 0.0000 0.874 1.000 0.000 0.000 0.000
#> GSM28737 1 0.4103 0.749 0.744 0.000 0.000 0.256
#> GSM11249 4 0.4843 0.576 0.000 0.000 0.396 0.604
#> GSM28745 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11244 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM28748 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11266 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM28730 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11253 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11254 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11260 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM28733 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11265 1 0.4103 0.749 0.744 0.000 0.000 0.256
#> GSM28739 1 0.4103 0.749 0.744 0.000 0.000 0.256
#> GSM11243 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM28740 1 0.4103 0.749 0.744 0.000 0.000 0.256
#> GSM11259 1 0.0000 0.874 1.000 0.000 0.000 0.000
#> GSM28726 1 0.0000 0.874 1.000 0.000 0.000 0.000
#> GSM28743 1 0.4103 0.749 0.744 0.000 0.000 0.256
#> GSM11256 4 0.0000 0.683 0.000 0.000 0.000 1.000
#> GSM11262 1 0.4103 0.749 0.744 0.000 0.000 0.256
#> GSM28724 1 0.0469 0.874 0.988 0.000 0.000 0.012
#> GSM28725 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM11263 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM11267 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM28744 4 0.0000 0.683 0.000 0.000 0.000 1.000
#> GSM28734 4 0.0000 0.683 0.000 0.000 0.000 1.000
#> GSM28747 1 0.0469 0.874 0.988 0.000 0.000 0.012
#> GSM11257 1 0.0336 0.874 0.992 0.000 0.000 0.008
#> GSM11252 4 0.6698 0.649 0.140 0.000 0.256 0.604
#> GSM11264 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM11247 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM11258 4 0.0000 0.683 0.000 0.000 0.000 1.000
#> GSM28728 1 0.0000 0.874 1.000 0.000 0.000 0.000
#> GSM28746 1 0.4304 0.699 0.716 0.000 0.000 0.284
#> GSM28738 1 0.0000 0.874 1.000 0.000 0.000 0.000
#> GSM28741 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM28729 1 0.1792 0.859 0.932 0.000 0.000 0.068
#> GSM28742 1 0.0000 0.874 1.000 0.000 0.000 0.000
#> GSM11250 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11245 4 0.6698 0.649 0.140 0.000 0.256 0.604
#> GSM11246 1 0.4103 0.749 0.744 0.000 0.000 0.256
#> GSM11261 4 0.6165 0.521 0.024 0.016 0.428 0.532
#> GSM11248 4 0.4843 0.576 0.000 0.000 0.396 0.604
#> GSM28732 1 0.0817 0.872 0.976 0.000 0.000 0.024
#> GSM11255 4 0.7694 0.481 0.308 0.000 0.244 0.448
#> GSM28731 1 0.1940 0.856 0.924 0.000 0.000 0.076
#> GSM28727 1 0.0000 0.874 1.000 0.000 0.000 0.000
#> GSM11251 1 0.0000 0.874 1.000 0.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM28735 1 0.0000 0.862 1.000 0.000 0.000 0.00 0.000
#> GSM28736 1 0.0000 0.862 1.000 0.000 0.000 0.00 0.000
#> GSM28737 1 0.3661 0.732 0.724 0.000 0.000 0.00 0.276
#> GSM11249 5 0.3106 0.763 0.000 0.000 0.140 0.02 0.840
#> GSM28745 2 0.0000 1.000 0.000 1.000 0.000 0.00 0.000
#> GSM11244 2 0.0000 1.000 0.000 1.000 0.000 0.00 0.000
#> GSM28748 2 0.0000 1.000 0.000 1.000 0.000 0.00 0.000
#> GSM11266 2 0.0000 1.000 0.000 1.000 0.000 0.00 0.000
#> GSM28730 2 0.0000 1.000 0.000 1.000 0.000 0.00 0.000
#> GSM11253 2 0.0000 1.000 0.000 1.000 0.000 0.00 0.000
#> GSM11254 2 0.0000 1.000 0.000 1.000 0.000 0.00 0.000
#> GSM11260 2 0.0000 1.000 0.000 1.000 0.000 0.00 0.000
#> GSM28733 2 0.0000 1.000 0.000 1.000 0.000 0.00 0.000
#> GSM11265 1 0.3661 0.732 0.724 0.000 0.000 0.00 0.276
#> GSM28739 1 0.3661 0.732 0.724 0.000 0.000 0.00 0.276
#> GSM11243 3 0.2471 0.891 0.000 0.000 0.864 0.00 0.136
#> GSM28740 1 0.3661 0.732 0.724 0.000 0.000 0.00 0.276
#> GSM11259 1 0.0000 0.862 1.000 0.000 0.000 0.00 0.000
#> GSM28726 1 0.0000 0.862 1.000 0.000 0.000 0.00 0.000
#> GSM28743 1 0.3661 0.732 0.724 0.000 0.000 0.00 0.276
#> GSM11256 4 0.0000 1.000 0.000 0.000 0.000 1.00 0.000
#> GSM11262 1 0.3661 0.732 0.724 0.000 0.000 0.00 0.276
#> GSM28724 1 0.0404 0.863 0.988 0.000 0.000 0.00 0.012
#> GSM28725 3 0.0000 0.947 0.000 0.000 1.000 0.00 0.000
#> GSM11263 3 0.0000 0.947 0.000 0.000 1.000 0.00 0.000
#> GSM11267 3 0.0000 0.947 0.000 0.000 1.000 0.00 0.000
#> GSM28744 4 0.0000 1.000 0.000 0.000 0.000 1.00 0.000
#> GSM28734 4 0.0000 1.000 0.000 0.000 0.000 1.00 0.000
#> GSM28747 1 0.0404 0.864 0.988 0.000 0.000 0.00 0.012
#> GSM11257 1 0.0794 0.862 0.972 0.000 0.000 0.00 0.028
#> GSM11252 5 0.3106 0.805 0.140 0.000 0.000 0.02 0.840
#> GSM11264 3 0.0000 0.947 0.000 0.000 1.000 0.00 0.000
#> GSM11247 3 0.2471 0.891 0.000 0.000 0.864 0.00 0.136
#> GSM11258 4 0.0000 1.000 0.000 0.000 0.000 1.00 0.000
#> GSM28728 1 0.0000 0.862 1.000 0.000 0.000 0.00 0.000
#> GSM28746 1 0.4157 0.697 0.716 0.000 0.000 0.02 0.264
#> GSM28738 1 0.0609 0.862 0.980 0.000 0.000 0.00 0.020
#> GSM28741 2 0.0000 1.000 0.000 1.000 0.000 0.00 0.000
#> GSM28729 1 0.1851 0.845 0.912 0.000 0.000 0.00 0.088
#> GSM28742 1 0.0000 0.862 1.000 0.000 0.000 0.00 0.000
#> GSM11250 2 0.0000 1.000 0.000 1.000 0.000 0.00 0.000
#> GSM11245 5 0.3106 0.805 0.140 0.000 0.000 0.02 0.840
#> GSM11246 1 0.3661 0.732 0.724 0.000 0.000 0.00 0.276
#> GSM11261 5 0.2815 0.729 0.024 0.012 0.044 0.02 0.900
#> GSM11248 5 0.3106 0.763 0.000 0.000 0.140 0.02 0.840
#> GSM28732 1 0.0703 0.862 0.976 0.000 0.000 0.00 0.024
#> GSM11255 5 0.3730 0.613 0.288 0.000 0.000 0.00 0.712
#> GSM28731 1 0.1965 0.842 0.904 0.000 0.000 0.00 0.096
#> GSM28727 1 0.0000 0.862 1.000 0.000 0.000 0.00 0.000
#> GSM11251 1 0.0000 0.862 1.000 0.000 0.000 0.00 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM28735 1 0.0291 0.802 0.992 0 0.000 0 0.004 0.004
#> GSM28736 1 0.0291 0.802 0.992 0 0.000 0 0.004 0.004
#> GSM28737 1 0.3717 0.687 0.616 0 0.000 0 0.384 0.000
#> GSM11249 6 0.2219 0.600 0.000 0 0.136 0 0.000 0.864
#> GSM28745 2 0.0000 1.000 0.000 1 0.000 0 0.000 0.000
#> GSM11244 2 0.0000 1.000 0.000 1 0.000 0 0.000 0.000
#> GSM28748 2 0.0000 1.000 0.000 1 0.000 0 0.000 0.000
#> GSM11266 2 0.0000 1.000 0.000 1 0.000 0 0.000 0.000
#> GSM28730 2 0.0000 1.000 0.000 1 0.000 0 0.000 0.000
#> GSM11253 2 0.0000 1.000 0.000 1 0.000 0 0.000 0.000
#> GSM11254 2 0.0000 1.000 0.000 1 0.000 0 0.000 0.000
#> GSM11260 2 0.0000 1.000 0.000 1 0.000 0 0.000 0.000
#> GSM28733 2 0.0000 1.000 0.000 1 0.000 0 0.000 0.000
#> GSM11265 1 0.3717 0.687 0.616 0 0.000 0 0.384 0.000
#> GSM28739 1 0.3717 0.687 0.616 0 0.000 0 0.384 0.000
#> GSM11243 3 0.2814 0.822 0.000 0 0.820 0 0.172 0.008
#> GSM28740 1 0.3717 0.687 0.616 0 0.000 0 0.384 0.000
#> GSM11259 1 0.0865 0.811 0.964 0 0.000 0 0.036 0.000
#> GSM28726 1 0.0291 0.802 0.992 0 0.000 0 0.004 0.004
#> GSM28743 1 0.3717 0.687 0.616 0 0.000 0 0.384 0.000
#> GSM11256 4 0.0000 1.000 0.000 0 0.000 1 0.000 0.000
#> GSM11262 1 0.3717 0.687 0.616 0 0.000 0 0.384 0.000
#> GSM28724 1 0.0914 0.806 0.968 0 0.000 0 0.016 0.016
#> GSM28725 3 0.0000 0.919 0.000 0 1.000 0 0.000 0.000
#> GSM11263 3 0.0000 0.919 0.000 0 1.000 0 0.000 0.000
#> GSM11267 3 0.0000 0.919 0.000 0 1.000 0 0.000 0.000
#> GSM28744 4 0.0000 1.000 0.000 0 0.000 1 0.000 0.000
#> GSM28734 4 0.0000 1.000 0.000 0 0.000 1 0.000 0.000
#> GSM28747 1 0.0937 0.812 0.960 0 0.000 0 0.040 0.000
#> GSM11257 1 0.3435 0.675 0.804 0 0.000 0 0.060 0.136
#> GSM11252 6 0.2260 0.682 0.140 0 0.000 0 0.000 0.860
#> GSM11264 3 0.0000 0.919 0.000 0 1.000 0 0.000 0.000
#> GSM11247 3 0.2814 0.822 0.000 0 0.820 0 0.172 0.008
#> GSM11258 4 0.0000 1.000 0.000 0 0.000 1 0.000 0.000
#> GSM28728 1 0.0603 0.806 0.980 0 0.000 0 0.016 0.004
#> GSM28746 1 0.4890 0.660 0.660 0 0.000 0 0.180 0.160
#> GSM28738 1 0.3354 0.678 0.812 0 0.000 0 0.060 0.128
#> GSM28741 2 0.0000 1.000 0.000 1 0.000 0 0.000 0.000
#> GSM28729 1 0.2558 0.790 0.840 0 0.000 0 0.156 0.004
#> GSM28742 1 0.0291 0.802 0.992 0 0.000 0 0.004 0.004
#> GSM11250 2 0.0000 1.000 0.000 1 0.000 0 0.000 0.000
#> GSM11245 6 0.2260 0.682 0.140 0 0.000 0 0.000 0.860
#> GSM11246 1 0.3717 0.687 0.616 0 0.000 0 0.384 0.000
#> GSM11261 5 0.2823 0.000 0.000 0 0.000 0 0.796 0.204
#> GSM11248 6 0.2219 0.600 0.000 0 0.136 0 0.000 0.864
#> GSM28732 1 0.1501 0.810 0.924 0 0.000 0 0.076 0.000
#> GSM11255 6 0.5134 0.388 0.228 0 0.000 0 0.152 0.620
#> GSM28731 1 0.2778 0.786 0.824 0 0.000 0 0.168 0.008
#> GSM28727 1 0.0713 0.810 0.972 0 0.000 0 0.028 0.000
#> GSM11251 1 0.0713 0.810 0.972 0 0.000 0 0.028 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n tissue(p) k
#> SD:hclust 50 0.394 2
#> SD:hclust 47 0.366 3
#> SD:hclust 49 0.432 4
#> SD:hclust 50 0.473 5
#> SD:hclust 48 0.466 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21342 rows and 50 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.426 0.768 0.829 0.3563 0.650 0.650
#> 3 3 0.943 0.956 0.959 0.4921 0.764 0.651
#> 4 4 0.708 0.767 0.871 0.2925 0.909 0.803
#> 5 5 0.698 0.780 0.848 0.1082 0.853 0.606
#> 6 6 0.773 0.661 0.825 0.0633 0.974 0.884
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM28735 1 0.939 0.820 0.644 0.356
#> GSM28736 1 0.939 0.820 0.644 0.356
#> GSM28737 1 0.939 0.820 0.644 0.356
#> GSM11249 1 0.000 0.520 1.000 0.000
#> GSM28745 2 0.000 0.975 0.000 1.000
#> GSM11244 2 0.000 0.975 0.000 1.000
#> GSM28748 2 0.000 0.975 0.000 1.000
#> GSM11266 2 0.000 0.975 0.000 1.000
#> GSM28730 2 0.000 0.975 0.000 1.000
#> GSM11253 2 0.000 0.975 0.000 1.000
#> GSM11254 2 0.000 0.975 0.000 1.000
#> GSM11260 2 0.000 0.975 0.000 1.000
#> GSM28733 2 0.000 0.975 0.000 1.000
#> GSM11265 1 0.939 0.820 0.644 0.356
#> GSM28739 1 0.939 0.820 0.644 0.356
#> GSM11243 1 0.680 0.308 0.820 0.180
#> GSM28740 1 0.939 0.820 0.644 0.356
#> GSM11259 1 0.939 0.820 0.644 0.356
#> GSM28726 1 0.939 0.820 0.644 0.356
#> GSM28743 1 0.939 0.820 0.644 0.356
#> GSM11256 1 0.855 0.793 0.720 0.280
#> GSM11262 1 0.939 0.820 0.644 0.356
#> GSM28724 1 0.939 0.820 0.644 0.356
#> GSM28725 1 0.680 0.308 0.820 0.180
#> GSM11263 1 0.680 0.308 0.820 0.180
#> GSM11267 1 0.680 0.308 0.820 0.180
#> GSM28744 1 0.855 0.793 0.720 0.280
#> GSM28734 1 0.855 0.793 0.720 0.280
#> GSM28747 1 0.939 0.820 0.644 0.356
#> GSM11257 1 0.917 0.813 0.668 0.332
#> GSM11252 1 0.866 0.798 0.712 0.288
#> GSM11264 1 0.680 0.308 0.820 0.180
#> GSM11247 1 0.680 0.308 0.820 0.180
#> GSM11258 1 0.855 0.793 0.720 0.280
#> GSM28728 1 0.939 0.820 0.644 0.356
#> GSM28746 1 0.881 0.802 0.700 0.300
#> GSM28738 1 0.939 0.820 0.644 0.356
#> GSM28741 2 0.605 0.703 0.148 0.852
#> GSM28729 1 0.939 0.820 0.644 0.356
#> GSM28742 1 0.939 0.820 0.644 0.356
#> GSM11250 2 0.000 0.975 0.000 1.000
#> GSM11245 1 0.866 0.798 0.712 0.288
#> GSM11246 1 0.939 0.820 0.644 0.356
#> GSM11261 1 0.971 0.655 0.600 0.400
#> GSM11248 1 0.000 0.520 1.000 0.000
#> GSM28732 1 0.939 0.820 0.644 0.356
#> GSM11255 1 0.866 0.798 0.712 0.288
#> GSM28731 1 0.939 0.820 0.644 0.356
#> GSM28727 1 0.939 0.820 0.644 0.356
#> GSM11251 1 0.939 0.820 0.644 0.356
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM28735 1 0.0237 0.967 0.996 0.000 0.004
#> GSM28736 1 0.0237 0.967 0.996 0.000 0.004
#> GSM28737 1 0.0237 0.967 0.996 0.000 0.004
#> GSM11249 3 0.2261 0.994 0.068 0.000 0.932
#> GSM28745 2 0.1860 1.000 0.052 0.948 0.000
#> GSM11244 2 0.1860 1.000 0.052 0.948 0.000
#> GSM28748 2 0.1860 1.000 0.052 0.948 0.000
#> GSM11266 2 0.1860 1.000 0.052 0.948 0.000
#> GSM28730 2 0.1860 1.000 0.052 0.948 0.000
#> GSM11253 2 0.1860 1.000 0.052 0.948 0.000
#> GSM11254 2 0.1860 1.000 0.052 0.948 0.000
#> GSM11260 2 0.1860 1.000 0.052 0.948 0.000
#> GSM28733 2 0.1860 1.000 0.052 0.948 0.000
#> GSM11265 1 0.0237 0.967 0.996 0.000 0.004
#> GSM28739 1 0.0237 0.967 0.996 0.000 0.004
#> GSM11243 3 0.2749 0.994 0.064 0.012 0.924
#> GSM28740 1 0.0237 0.967 0.996 0.000 0.004
#> GSM11259 1 0.0237 0.967 0.996 0.000 0.004
#> GSM28726 1 0.0237 0.967 0.996 0.000 0.004
#> GSM28743 1 0.0237 0.967 0.996 0.000 0.004
#> GSM11256 1 0.3875 0.886 0.888 0.044 0.068
#> GSM11262 1 0.0237 0.967 0.996 0.000 0.004
#> GSM28724 1 0.0000 0.967 1.000 0.000 0.000
#> GSM28725 3 0.2400 0.997 0.064 0.004 0.932
#> GSM11263 3 0.2400 0.997 0.064 0.004 0.932
#> GSM11267 3 0.2400 0.997 0.064 0.004 0.932
#> GSM28744 1 0.3875 0.886 0.888 0.044 0.068
#> GSM28734 1 0.3780 0.887 0.892 0.044 0.064
#> GSM28747 1 0.0000 0.967 1.000 0.000 0.000
#> GSM11257 1 0.0237 0.967 0.996 0.000 0.004
#> GSM11252 1 0.0000 0.967 1.000 0.000 0.000
#> GSM11264 3 0.2400 0.997 0.064 0.004 0.932
#> GSM11247 3 0.2749 0.994 0.064 0.012 0.924
#> GSM11258 1 0.3780 0.887 0.892 0.044 0.064
#> GSM28728 1 0.0237 0.967 0.996 0.000 0.004
#> GSM28746 1 0.0000 0.967 1.000 0.000 0.000
#> GSM28738 1 0.0237 0.967 0.996 0.000 0.004
#> GSM28741 1 0.6398 0.234 0.580 0.416 0.004
#> GSM28729 1 0.0237 0.967 0.996 0.000 0.004
#> GSM28742 1 0.0237 0.967 0.996 0.000 0.004
#> GSM11250 2 0.1860 1.000 0.052 0.948 0.000
#> GSM11245 1 0.0000 0.967 1.000 0.000 0.000
#> GSM11246 1 0.0237 0.967 0.996 0.000 0.004
#> GSM11261 1 0.1999 0.929 0.952 0.012 0.036
#> GSM11248 3 0.2261 0.994 0.068 0.000 0.932
#> GSM28732 1 0.0237 0.967 0.996 0.000 0.004
#> GSM11255 1 0.0000 0.967 1.000 0.000 0.000
#> GSM28731 1 0.0000 0.967 1.000 0.000 0.000
#> GSM28727 1 0.0000 0.967 1.000 0.000 0.000
#> GSM11251 1 0.0000 0.967 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM28735 1 0.0817 0.723 0.976 0.000 0.000 0.024
#> GSM28736 1 0.1302 0.715 0.956 0.000 0.000 0.044
#> GSM28737 1 0.4356 0.627 0.708 0.000 0.000 0.292
#> GSM11249 3 0.1940 0.927 0.000 0.000 0.924 0.076
#> GSM28745 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11244 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM28748 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11266 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM28730 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11253 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11254 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11260 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM28733 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11265 1 0.4972 0.444 0.544 0.000 0.000 0.456
#> GSM28739 1 0.4972 0.444 0.544 0.000 0.000 0.456
#> GSM11243 3 0.1474 0.950 0.000 0.000 0.948 0.052
#> GSM28740 1 0.4972 0.444 0.544 0.000 0.000 0.456
#> GSM11259 1 0.0000 0.728 1.000 0.000 0.000 0.000
#> GSM28726 1 0.1302 0.715 0.956 0.000 0.000 0.044
#> GSM28743 1 0.4972 0.444 0.544 0.000 0.000 0.456
#> GSM11256 4 0.3123 0.916 0.156 0.000 0.000 0.844
#> GSM11262 1 0.4972 0.444 0.544 0.000 0.000 0.456
#> GSM28724 1 0.0707 0.731 0.980 0.000 0.000 0.020
#> GSM28725 3 0.0000 0.966 0.000 0.000 1.000 0.000
#> GSM11263 3 0.0000 0.966 0.000 0.000 1.000 0.000
#> GSM11267 3 0.0000 0.966 0.000 0.000 1.000 0.000
#> GSM28744 4 0.3123 0.916 0.156 0.000 0.000 0.844
#> GSM28734 4 0.2469 0.911 0.108 0.000 0.000 0.892
#> GSM28747 1 0.2345 0.721 0.900 0.000 0.000 0.100
#> GSM11257 1 0.3172 0.667 0.840 0.000 0.000 0.160
#> GSM11252 1 0.4830 0.501 0.608 0.000 0.000 0.392
#> GSM11264 3 0.0000 0.966 0.000 0.000 1.000 0.000
#> GSM11247 3 0.1474 0.950 0.000 0.000 0.948 0.052
#> GSM11258 4 0.1637 0.857 0.060 0.000 0.000 0.940
#> GSM28728 1 0.0188 0.728 0.996 0.000 0.000 0.004
#> GSM28746 1 0.4164 0.648 0.736 0.000 0.000 0.264
#> GSM28738 1 0.1302 0.715 0.956 0.000 0.000 0.044
#> GSM28741 1 0.4343 0.439 0.732 0.264 0.000 0.004
#> GSM28729 1 0.1211 0.717 0.960 0.000 0.000 0.040
#> GSM28742 1 0.1302 0.715 0.956 0.000 0.000 0.044
#> GSM11250 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11245 1 0.4877 0.480 0.592 0.000 0.000 0.408
#> GSM11246 1 0.4955 0.463 0.556 0.000 0.000 0.444
#> GSM11261 1 0.6194 0.436 0.644 0.000 0.096 0.260
#> GSM11248 3 0.1940 0.927 0.000 0.000 0.924 0.076
#> GSM28732 1 0.0188 0.729 0.996 0.000 0.000 0.004
#> GSM11255 1 0.4855 0.517 0.600 0.000 0.000 0.400
#> GSM28731 1 0.1557 0.729 0.944 0.000 0.000 0.056
#> GSM28727 1 0.1557 0.729 0.944 0.000 0.000 0.056
#> GSM11251 1 0.1557 0.729 0.944 0.000 0.000 0.056
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM28735 5 0.0798 0.773 0.008 0.000 0.000 0.016 0.976
#> GSM28736 5 0.0798 0.773 0.008 0.000 0.000 0.016 0.976
#> GSM28737 1 0.3752 0.744 0.708 0.000 0.000 0.000 0.292
#> GSM11249 3 0.4035 0.753 0.060 0.000 0.784 0.156 0.000
#> GSM28745 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM28748 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM11266 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM11265 1 0.3427 0.862 0.796 0.000 0.000 0.012 0.192
#> GSM28739 1 0.3427 0.862 0.796 0.000 0.000 0.012 0.192
#> GSM11243 3 0.3704 0.815 0.092 0.000 0.820 0.088 0.000
#> GSM28740 1 0.3427 0.862 0.796 0.000 0.000 0.012 0.192
#> GSM11259 5 0.1124 0.771 0.036 0.000 0.000 0.004 0.960
#> GSM28726 5 0.0798 0.773 0.008 0.000 0.000 0.016 0.976
#> GSM28743 1 0.3427 0.862 0.796 0.000 0.000 0.012 0.192
#> GSM11256 4 0.3193 0.953 0.132 0.000 0.000 0.840 0.028
#> GSM11262 1 0.3427 0.862 0.796 0.000 0.000 0.012 0.192
#> GSM28724 5 0.1965 0.763 0.052 0.000 0.000 0.024 0.924
#> GSM28725 3 0.0000 0.885 0.000 0.000 1.000 0.000 0.000
#> GSM11263 3 0.0000 0.885 0.000 0.000 1.000 0.000 0.000
#> GSM11267 3 0.0000 0.885 0.000 0.000 1.000 0.000 0.000
#> GSM28744 4 0.3193 0.953 0.132 0.000 0.000 0.840 0.028
#> GSM28734 4 0.3106 0.952 0.140 0.000 0.000 0.840 0.020
#> GSM28747 5 0.4283 0.294 0.348 0.000 0.000 0.008 0.644
#> GSM11257 5 0.3825 0.660 0.060 0.000 0.000 0.136 0.804
#> GSM11252 1 0.6034 0.579 0.572 0.000 0.000 0.172 0.256
#> GSM11264 3 0.0000 0.885 0.000 0.000 1.000 0.000 0.000
#> GSM11247 3 0.3704 0.815 0.092 0.000 0.820 0.088 0.000
#> GSM11258 4 0.3642 0.871 0.232 0.000 0.000 0.760 0.008
#> GSM28728 5 0.0898 0.774 0.020 0.000 0.000 0.008 0.972
#> GSM28746 5 0.6085 -0.187 0.404 0.000 0.000 0.124 0.472
#> GSM28738 5 0.1549 0.752 0.040 0.000 0.000 0.016 0.944
#> GSM28741 5 0.4271 0.597 0.024 0.180 0.000 0.024 0.772
#> GSM28729 5 0.1281 0.774 0.032 0.000 0.000 0.012 0.956
#> GSM28742 5 0.0807 0.773 0.012 0.000 0.000 0.012 0.976
#> GSM11250 2 0.0579 0.986 0.008 0.984 0.000 0.008 0.000
#> GSM11245 1 0.6023 0.581 0.576 0.000 0.000 0.176 0.248
#> GSM11246 1 0.3177 0.851 0.792 0.000 0.000 0.000 0.208
#> GSM11261 5 0.6107 0.431 0.144 0.000 0.012 0.244 0.600
#> GSM11248 3 0.4159 0.746 0.068 0.000 0.776 0.156 0.000
#> GSM28732 5 0.1282 0.769 0.044 0.000 0.000 0.004 0.952
#> GSM11255 1 0.4087 0.769 0.756 0.000 0.000 0.036 0.208
#> GSM28731 5 0.4387 0.293 0.348 0.000 0.000 0.012 0.640
#> GSM28727 5 0.3671 0.555 0.236 0.000 0.000 0.008 0.756
#> GSM11251 5 0.4003 0.455 0.288 0.000 0.000 0.008 0.704
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM28735 5 0.2213 0.6170 0.008 0.000 0.000 0.004 0.888 0.100
#> GSM28736 5 0.2213 0.6170 0.008 0.000 0.000 0.004 0.888 0.100
#> GSM28737 1 0.1610 0.7443 0.916 0.000 0.000 0.000 0.084 0.000
#> GSM11249 3 0.5560 0.5159 0.056 0.000 0.588 0.056 0.000 0.300
#> GSM28745 2 0.0000 0.9965 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.9965 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28748 2 0.0146 0.9939 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM11266 2 0.0000 0.9965 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 0.9965 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.9965 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.9965 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.9965 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.9965 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11265 1 0.1531 0.7577 0.928 0.000 0.000 0.004 0.068 0.000
#> GSM28739 1 0.1531 0.7577 0.928 0.000 0.000 0.004 0.068 0.000
#> GSM11243 3 0.3582 0.6944 0.000 0.000 0.732 0.016 0.000 0.252
#> GSM28740 1 0.1531 0.7577 0.928 0.000 0.000 0.004 0.068 0.000
#> GSM11259 5 0.2003 0.6314 0.044 0.000 0.000 0.000 0.912 0.044
#> GSM28726 5 0.2791 0.6108 0.008 0.000 0.000 0.016 0.852 0.124
#> GSM28743 1 0.1531 0.7577 0.928 0.000 0.000 0.004 0.068 0.000
#> GSM11256 4 0.1219 0.9697 0.048 0.000 0.000 0.948 0.004 0.000
#> GSM11262 1 0.1531 0.7577 0.928 0.000 0.000 0.004 0.068 0.000
#> GSM28724 5 0.4171 0.4022 0.040 0.000 0.000 0.008 0.716 0.236
#> GSM28725 3 0.0000 0.8022 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11263 3 0.0000 0.8022 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11267 3 0.0000 0.8022 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM28744 4 0.1219 0.9697 0.048 0.000 0.000 0.948 0.004 0.000
#> GSM28734 4 0.1219 0.9697 0.048 0.000 0.000 0.948 0.004 0.000
#> GSM28747 5 0.4637 0.2022 0.308 0.000 0.000 0.000 0.628 0.064
#> GSM11257 5 0.5166 0.0718 0.012 0.000 0.000 0.060 0.528 0.400
#> GSM11252 1 0.6233 0.0838 0.460 0.000 0.000 0.044 0.120 0.376
#> GSM11264 3 0.0000 0.8022 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11247 3 0.3582 0.6944 0.000 0.000 0.732 0.016 0.000 0.252
#> GSM11258 4 0.2048 0.9082 0.120 0.000 0.000 0.880 0.000 0.000
#> GSM28728 5 0.2070 0.6100 0.008 0.000 0.000 0.000 0.892 0.100
#> GSM28746 6 0.6666 0.1726 0.304 0.000 0.000 0.028 0.324 0.344
#> GSM28738 5 0.4138 0.4206 0.012 0.000 0.000 0.012 0.664 0.312
#> GSM28741 5 0.4802 0.4119 0.008 0.132 0.000 0.016 0.724 0.120
#> GSM28729 5 0.3030 0.5905 0.008 0.000 0.000 0.008 0.816 0.168
#> GSM28742 5 0.2658 0.6176 0.008 0.000 0.000 0.016 0.864 0.112
#> GSM11250 2 0.0964 0.9718 0.004 0.968 0.000 0.012 0.000 0.016
#> GSM11245 1 0.6299 0.0885 0.460 0.000 0.000 0.052 0.116 0.372
#> GSM11246 1 0.1556 0.7492 0.920 0.000 0.000 0.000 0.080 0.000
#> GSM11261 6 0.5034 0.1775 0.004 0.000 0.000 0.080 0.328 0.588
#> GSM11248 3 0.5575 0.5112 0.056 0.000 0.584 0.056 0.000 0.304
#> GSM28732 5 0.2190 0.6251 0.040 0.000 0.000 0.000 0.900 0.060
#> GSM11255 1 0.5119 0.2444 0.552 0.000 0.000 0.008 0.068 0.372
#> GSM28731 5 0.5169 0.1772 0.292 0.000 0.000 0.000 0.588 0.120
#> GSM28727 5 0.2573 0.5750 0.132 0.000 0.000 0.004 0.856 0.008
#> GSM11251 5 0.3329 0.4365 0.236 0.000 0.000 0.004 0.756 0.004
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n tissue(p) k
#> SD:kmeans 44 0.387 2
#> SD:kmeans 49 0.368 3
#> SD:kmeans 41 0.407 4
#> SD:kmeans 45 0.483 5
#> SD:kmeans 38 0.472 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21342 rows and 50 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4708 0.530 0.530
#> 3 3 0.825 0.913 0.961 0.3542 0.746 0.557
#> 4 4 0.802 0.843 0.892 0.1763 0.789 0.484
#> 5 5 0.846 0.815 0.904 0.0711 0.949 0.797
#> 6 6 0.841 0.753 0.808 0.0393 0.980 0.903
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM28735 1 0.0000 1.000 1.000 0.000
#> GSM28736 1 0.0376 0.996 0.996 0.004
#> GSM28737 1 0.0000 1.000 1.000 0.000
#> GSM11249 1 0.0000 1.000 1.000 0.000
#> GSM28745 2 0.0000 1.000 0.000 1.000
#> GSM11244 2 0.0000 1.000 0.000 1.000
#> GSM28748 2 0.0000 1.000 0.000 1.000
#> GSM11266 2 0.0000 1.000 0.000 1.000
#> GSM28730 2 0.0000 1.000 0.000 1.000
#> GSM11253 2 0.0000 1.000 0.000 1.000
#> GSM11254 2 0.0000 1.000 0.000 1.000
#> GSM11260 2 0.0000 1.000 0.000 1.000
#> GSM28733 2 0.0000 1.000 0.000 1.000
#> GSM11265 1 0.0000 1.000 1.000 0.000
#> GSM28739 1 0.0000 1.000 1.000 0.000
#> GSM11243 2 0.0000 1.000 0.000 1.000
#> GSM28740 1 0.0000 1.000 1.000 0.000
#> GSM11259 1 0.0000 1.000 1.000 0.000
#> GSM28726 1 0.0000 1.000 1.000 0.000
#> GSM28743 1 0.0000 1.000 1.000 0.000
#> GSM11256 1 0.0000 1.000 1.000 0.000
#> GSM11262 1 0.0000 1.000 1.000 0.000
#> GSM28724 1 0.0000 1.000 1.000 0.000
#> GSM28725 2 0.0000 1.000 0.000 1.000
#> GSM11263 2 0.0000 1.000 0.000 1.000
#> GSM11267 2 0.0000 1.000 0.000 1.000
#> GSM28744 1 0.0000 1.000 1.000 0.000
#> GSM28734 1 0.0000 1.000 1.000 0.000
#> GSM28747 1 0.0000 1.000 1.000 0.000
#> GSM11257 1 0.0000 1.000 1.000 0.000
#> GSM11252 1 0.0000 1.000 1.000 0.000
#> GSM11264 2 0.0000 1.000 0.000 1.000
#> GSM11247 2 0.0000 1.000 0.000 1.000
#> GSM11258 1 0.0000 1.000 1.000 0.000
#> GSM28728 1 0.0000 1.000 1.000 0.000
#> GSM28746 1 0.0000 1.000 1.000 0.000
#> GSM28738 1 0.0000 1.000 1.000 0.000
#> GSM28741 2 0.0000 1.000 0.000 1.000
#> GSM28729 1 0.0000 1.000 1.000 0.000
#> GSM28742 1 0.0000 1.000 1.000 0.000
#> GSM11250 2 0.0000 1.000 0.000 1.000
#> GSM11245 1 0.0000 1.000 1.000 0.000
#> GSM11246 1 0.0000 1.000 1.000 0.000
#> GSM11261 2 0.0000 1.000 0.000 1.000
#> GSM11248 1 0.0000 1.000 1.000 0.000
#> GSM28732 1 0.0000 1.000 1.000 0.000
#> GSM11255 1 0.0000 1.000 1.000 0.000
#> GSM28731 1 0.0000 1.000 1.000 0.000
#> GSM28727 1 0.0000 1.000 1.000 0.000
#> GSM11251 1 0.0000 1.000 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM28735 1 0.0000 0.951 1.000 0.000 0.000
#> GSM28736 2 0.0747 0.980 0.016 0.984 0.000
#> GSM28737 1 0.0000 0.951 1.000 0.000 0.000
#> GSM11249 3 0.0000 0.915 0.000 0.000 1.000
#> GSM28745 2 0.0000 0.998 0.000 1.000 0.000
#> GSM11244 2 0.0000 0.998 0.000 1.000 0.000
#> GSM28748 2 0.0000 0.998 0.000 1.000 0.000
#> GSM11266 2 0.0000 0.998 0.000 1.000 0.000
#> GSM28730 2 0.0000 0.998 0.000 1.000 0.000
#> GSM11253 2 0.0000 0.998 0.000 1.000 0.000
#> GSM11254 2 0.0000 0.998 0.000 1.000 0.000
#> GSM11260 2 0.0000 0.998 0.000 1.000 0.000
#> GSM28733 2 0.0000 0.998 0.000 1.000 0.000
#> GSM11265 1 0.0000 0.951 1.000 0.000 0.000
#> GSM28739 1 0.0000 0.951 1.000 0.000 0.000
#> GSM11243 3 0.0000 0.915 0.000 0.000 1.000
#> GSM28740 1 0.0000 0.951 1.000 0.000 0.000
#> GSM11259 1 0.0000 0.951 1.000 0.000 0.000
#> GSM28726 1 0.4235 0.783 0.824 0.176 0.000
#> GSM28743 1 0.0000 0.951 1.000 0.000 0.000
#> GSM11256 3 0.4931 0.727 0.232 0.000 0.768
#> GSM11262 1 0.0000 0.951 1.000 0.000 0.000
#> GSM28724 1 0.4654 0.733 0.792 0.000 0.208
#> GSM28725 3 0.0000 0.915 0.000 0.000 1.000
#> GSM11263 3 0.0000 0.915 0.000 0.000 1.000
#> GSM11267 3 0.0000 0.915 0.000 0.000 1.000
#> GSM28744 3 0.4931 0.727 0.232 0.000 0.768
#> GSM28734 3 0.1753 0.888 0.048 0.000 0.952
#> GSM28747 1 0.0000 0.951 1.000 0.000 0.000
#> GSM11257 1 0.3116 0.856 0.892 0.000 0.108
#> GSM11252 1 0.5785 0.454 0.668 0.000 0.332
#> GSM11264 3 0.0000 0.915 0.000 0.000 1.000
#> GSM11247 3 0.0000 0.915 0.000 0.000 1.000
#> GSM11258 1 0.0000 0.951 1.000 0.000 0.000
#> GSM28728 1 0.0000 0.951 1.000 0.000 0.000
#> GSM28746 1 0.1964 0.906 0.944 0.000 0.056
#> GSM28738 1 0.0747 0.939 0.984 0.016 0.000
#> GSM28741 2 0.0000 0.998 0.000 1.000 0.000
#> GSM28729 1 0.0000 0.951 1.000 0.000 0.000
#> GSM28742 1 0.4121 0.793 0.832 0.168 0.000
#> GSM11250 2 0.0000 0.998 0.000 1.000 0.000
#> GSM11245 3 0.5835 0.535 0.340 0.000 0.660
#> GSM11246 1 0.0000 0.951 1.000 0.000 0.000
#> GSM11261 3 0.0000 0.915 0.000 0.000 1.000
#> GSM11248 3 0.0000 0.915 0.000 0.000 1.000
#> GSM28732 1 0.0000 0.951 1.000 0.000 0.000
#> GSM11255 1 0.0000 0.951 1.000 0.000 0.000
#> GSM28731 1 0.0000 0.951 1.000 0.000 0.000
#> GSM28727 1 0.0000 0.951 1.000 0.000 0.000
#> GSM11251 1 0.0000 0.951 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM28735 1 0.0469 0.770 0.988 0.000 0.000 0.012
#> GSM28736 1 0.1004 0.753 0.972 0.024 0.000 0.004
#> GSM28737 4 0.1389 0.846 0.048 0.000 0.000 0.952
#> GSM11249 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM28745 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11244 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM28748 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11266 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM28730 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11253 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11254 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11260 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM28733 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11265 4 0.0921 0.858 0.028 0.000 0.000 0.972
#> GSM28739 4 0.0921 0.858 0.028 0.000 0.000 0.972
#> GSM11243 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM28740 4 0.0921 0.858 0.028 0.000 0.000 0.972
#> GSM11259 1 0.4072 0.742 0.748 0.000 0.000 0.252
#> GSM28726 1 0.0779 0.776 0.980 0.004 0.000 0.016
#> GSM28743 4 0.0921 0.858 0.028 0.000 0.000 0.972
#> GSM11256 4 0.5206 0.577 0.308 0.000 0.024 0.668
#> GSM11262 4 0.0921 0.858 0.028 0.000 0.000 0.972
#> GSM28724 1 0.6614 0.553 0.548 0.000 0.092 0.360
#> GSM28725 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM11263 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM11267 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM28744 4 0.5161 0.587 0.300 0.000 0.024 0.676
#> GSM28734 4 0.5964 0.613 0.208 0.000 0.108 0.684
#> GSM28747 1 0.4776 0.594 0.624 0.000 0.000 0.376
#> GSM11257 1 0.5149 0.291 0.648 0.000 0.016 0.336
#> GSM11252 4 0.3933 0.653 0.200 0.000 0.008 0.792
#> GSM11264 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM11247 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM11258 4 0.1211 0.832 0.040 0.000 0.000 0.960
#> GSM28728 1 0.1716 0.781 0.936 0.000 0.000 0.064
#> GSM28746 4 0.2805 0.791 0.100 0.000 0.012 0.888
#> GSM28738 1 0.0336 0.763 0.992 0.000 0.000 0.008
#> GSM28741 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM28729 1 0.1118 0.780 0.964 0.000 0.000 0.036
#> GSM28742 1 0.0707 0.777 0.980 0.000 0.000 0.020
#> GSM11250 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11245 4 0.4364 0.749 0.092 0.000 0.092 0.816
#> GSM11246 4 0.0921 0.858 0.028 0.000 0.000 0.972
#> GSM11261 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM11248 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> GSM28732 1 0.4103 0.740 0.744 0.000 0.000 0.256
#> GSM11255 4 0.0592 0.855 0.016 0.000 0.000 0.984
#> GSM28731 1 0.4356 0.712 0.708 0.000 0.000 0.292
#> GSM28727 1 0.4222 0.729 0.728 0.000 0.000 0.272
#> GSM11251 1 0.4222 0.729 0.728 0.000 0.000 0.272
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM28735 5 0.1952 0.769 0.004 0.000 0.000 0.084 0.912
#> GSM28736 5 0.1892 0.768 0.000 0.004 0.000 0.080 0.916
#> GSM28737 1 0.0162 0.824 0.996 0.000 0.000 0.000 0.004
#> GSM11249 3 0.0794 0.973 0.000 0.000 0.972 0.028 0.000
#> GSM28745 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM28748 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM11266 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM11265 1 0.0000 0.826 1.000 0.000 0.000 0.000 0.000
#> GSM28739 1 0.0000 0.826 1.000 0.000 0.000 0.000 0.000
#> GSM11243 3 0.0000 0.994 0.000 0.000 1.000 0.000 0.000
#> GSM28740 1 0.0000 0.826 1.000 0.000 0.000 0.000 0.000
#> GSM11259 5 0.2329 0.786 0.124 0.000 0.000 0.000 0.876
#> GSM28726 5 0.1197 0.780 0.000 0.000 0.000 0.048 0.952
#> GSM28743 1 0.0000 0.826 1.000 0.000 0.000 0.000 0.000
#> GSM11256 4 0.0290 0.879 0.008 0.000 0.000 0.992 0.000
#> GSM11262 1 0.0000 0.826 1.000 0.000 0.000 0.000 0.000
#> GSM28724 5 0.7145 0.399 0.212 0.000 0.040 0.248 0.500
#> GSM28725 3 0.0000 0.994 0.000 0.000 1.000 0.000 0.000
#> GSM11263 3 0.0000 0.994 0.000 0.000 1.000 0.000 0.000
#> GSM11267 3 0.0000 0.994 0.000 0.000 1.000 0.000 0.000
#> GSM28744 4 0.0290 0.879 0.008 0.000 0.000 0.992 0.000
#> GSM28734 4 0.0794 0.870 0.028 0.000 0.000 0.972 0.000
#> GSM28747 5 0.4781 0.387 0.428 0.000 0.000 0.020 0.552
#> GSM11257 4 0.2011 0.827 0.004 0.000 0.000 0.908 0.088
#> GSM11252 1 0.6144 0.286 0.496 0.000 0.008 0.392 0.104
#> GSM11264 3 0.0000 0.994 0.000 0.000 1.000 0.000 0.000
#> GSM11247 3 0.0000 0.994 0.000 0.000 1.000 0.000 0.000
#> GSM11258 4 0.3837 0.525 0.308 0.000 0.000 0.692 0.000
#> GSM28728 5 0.1579 0.790 0.032 0.000 0.000 0.024 0.944
#> GSM28746 1 0.6092 0.167 0.464 0.000 0.000 0.412 0.124
#> GSM28738 5 0.3210 0.650 0.000 0.000 0.000 0.212 0.788
#> GSM28741 2 0.0162 0.995 0.000 0.996 0.000 0.000 0.004
#> GSM28729 5 0.1082 0.786 0.008 0.000 0.000 0.028 0.964
#> GSM28742 5 0.1121 0.780 0.000 0.000 0.000 0.044 0.956
#> GSM11250 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM11245 1 0.6245 0.255 0.496 0.000 0.048 0.408 0.048
#> GSM11246 1 0.0162 0.824 0.996 0.000 0.000 0.000 0.004
#> GSM11261 3 0.0162 0.991 0.000 0.000 0.996 0.004 0.000
#> GSM11248 3 0.0510 0.983 0.000 0.000 0.984 0.016 0.000
#> GSM28732 5 0.2338 0.787 0.112 0.000 0.000 0.004 0.884
#> GSM11255 1 0.2522 0.769 0.896 0.000 0.004 0.076 0.024
#> GSM28731 5 0.4430 0.534 0.360 0.000 0.000 0.012 0.628
#> GSM28727 5 0.3210 0.736 0.212 0.000 0.000 0.000 0.788
#> GSM11251 5 0.3707 0.670 0.284 0.000 0.000 0.000 0.716
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM28735 5 0.3978 0.551 0.000 0.000 0.000 0.032 0.700 0.268
#> GSM28736 5 0.4060 0.547 0.000 0.000 0.000 0.032 0.684 0.284
#> GSM28737 1 0.0000 0.910 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM11249 3 0.3279 0.783 0.000 0.000 0.796 0.028 0.000 0.176
#> GSM28745 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28748 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11266 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11265 1 0.0000 0.910 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM28739 1 0.0000 0.910 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM11243 3 0.0000 0.950 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM28740 1 0.0000 0.910 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM11259 5 0.3308 0.606 0.072 0.000 0.000 0.004 0.828 0.096
#> GSM28726 5 0.3482 0.569 0.000 0.000 0.000 0.000 0.684 0.316
#> GSM28743 1 0.0146 0.908 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM11256 4 0.0146 0.818 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM11262 1 0.0146 0.908 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM28724 5 0.7454 0.223 0.108 0.000 0.040 0.140 0.480 0.232
#> GSM28725 3 0.0000 0.950 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11263 3 0.0000 0.950 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11267 3 0.0000 0.950 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM28744 4 0.0146 0.818 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM28734 4 0.0291 0.815 0.004 0.000 0.000 0.992 0.000 0.004
#> GSM28747 5 0.5572 0.332 0.288 0.000 0.000 0.004 0.552 0.156
#> GSM11257 4 0.4092 0.584 0.004 0.000 0.000 0.740 0.060 0.196
#> GSM11252 6 0.6347 0.651 0.224 0.000 0.004 0.264 0.020 0.488
#> GSM11264 3 0.0000 0.950 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11247 3 0.0000 0.950 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11258 4 0.2941 0.561 0.220 0.000 0.000 0.780 0.000 0.000
#> GSM28728 5 0.3919 0.598 0.016 0.000 0.008 0.004 0.728 0.244
#> GSM28746 6 0.7522 0.290 0.224 0.000 0.000 0.232 0.176 0.368
#> GSM28738 5 0.5259 0.468 0.000 0.000 0.000 0.096 0.468 0.436
#> GSM28741 2 0.0520 0.983 0.000 0.984 0.000 0.000 0.008 0.008
#> GSM28729 5 0.3944 0.519 0.000 0.000 0.000 0.004 0.568 0.428
#> GSM28742 5 0.3578 0.565 0.000 0.000 0.000 0.000 0.660 0.340
#> GSM11250 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11245 6 0.6425 0.646 0.208 0.000 0.008 0.280 0.020 0.484
#> GSM11246 1 0.0146 0.906 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM11261 3 0.0146 0.947 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM11248 3 0.2932 0.809 0.000 0.000 0.820 0.016 0.000 0.164
#> GSM28732 5 0.3727 0.552 0.040 0.000 0.000 0.004 0.768 0.188
#> GSM11255 1 0.4868 -0.115 0.548 0.000 0.000 0.044 0.008 0.400
#> GSM28731 5 0.5837 0.384 0.212 0.000 0.000 0.008 0.536 0.244
#> GSM28727 5 0.3279 0.564 0.176 0.000 0.000 0.000 0.796 0.028
#> GSM11251 5 0.3695 0.519 0.244 0.000 0.000 0.000 0.732 0.024
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n tissue(p) k
#> SD:skmeans 50 0.394 2
#> SD:skmeans 49 0.449 3
#> SD:skmeans 49 0.348 4
#> SD:skmeans 45 0.471 5
#> SD:skmeans 44 0.440 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21342 rows and 50 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 4.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.3509 0.650 0.650
#> 3 3 1.000 0.999 1.000 0.5752 0.798 0.688
#> 4 4 1.000 0.979 0.990 0.1658 0.912 0.803
#> 5 5 0.780 0.743 0.890 0.1341 0.925 0.791
#> 6 6 0.797 0.800 0.863 0.0758 0.930 0.760
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3
There is also optional best \(k\) = 2 3 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM28735 1 0 1 1 0
#> GSM28736 1 0 1 1 0
#> GSM28737 1 0 1 1 0
#> GSM11249 1 0 1 1 0
#> GSM28745 2 0 1 0 1
#> GSM11244 2 0 1 0 1
#> GSM28748 2 0 1 0 1
#> GSM11266 2 0 1 0 1
#> GSM28730 2 0 1 0 1
#> GSM11253 2 0 1 0 1
#> GSM11254 2 0 1 0 1
#> GSM11260 2 0 1 0 1
#> GSM28733 2 0 1 0 1
#> GSM11265 1 0 1 1 0
#> GSM28739 1 0 1 1 0
#> GSM11243 1 0 1 1 0
#> GSM28740 1 0 1 1 0
#> GSM11259 1 0 1 1 0
#> GSM28726 1 0 1 1 0
#> GSM28743 1 0 1 1 0
#> GSM11256 1 0 1 1 0
#> GSM11262 1 0 1 1 0
#> GSM28724 1 0 1 1 0
#> GSM28725 1 0 1 1 0
#> GSM11263 1 0 1 1 0
#> GSM11267 1 0 1 1 0
#> GSM28744 1 0 1 1 0
#> GSM28734 1 0 1 1 0
#> GSM28747 1 0 1 1 0
#> GSM11257 1 0 1 1 0
#> GSM11252 1 0 1 1 0
#> GSM11264 1 0 1 1 0
#> GSM11247 1 0 1 1 0
#> GSM11258 1 0 1 1 0
#> GSM28728 1 0 1 1 0
#> GSM28746 1 0 1 1 0
#> GSM28738 1 0 1 1 0
#> GSM28741 2 0 1 0 1
#> GSM28729 1 0 1 1 0
#> GSM28742 1 0 1 1 0
#> GSM11250 2 0 1 0 1
#> GSM11245 1 0 1 1 0
#> GSM11246 1 0 1 1 0
#> GSM11261 1 0 1 1 0
#> GSM11248 1 0 1 1 0
#> GSM28732 1 0 1 1 0
#> GSM11255 1 0 1 1 0
#> GSM28731 1 0 1 1 0
#> GSM28727 1 0 1 1 0
#> GSM11251 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM28735 1 0.000 1.000 1.000 0 0.000
#> GSM28736 1 0.000 1.000 1.000 0 0.000
#> GSM28737 1 0.000 1.000 1.000 0 0.000
#> GSM11249 3 0.000 0.995 0.000 0 1.000
#> GSM28745 2 0.000 1.000 0.000 1 0.000
#> GSM11244 2 0.000 1.000 0.000 1 0.000
#> GSM28748 2 0.000 1.000 0.000 1 0.000
#> GSM11266 2 0.000 1.000 0.000 1 0.000
#> GSM28730 2 0.000 1.000 0.000 1 0.000
#> GSM11253 2 0.000 1.000 0.000 1 0.000
#> GSM11254 2 0.000 1.000 0.000 1 0.000
#> GSM11260 2 0.000 1.000 0.000 1 0.000
#> GSM28733 2 0.000 1.000 0.000 1 0.000
#> GSM11265 1 0.000 1.000 1.000 0 0.000
#> GSM28739 1 0.000 1.000 1.000 0 0.000
#> GSM11243 3 0.000 0.995 0.000 0 1.000
#> GSM28740 1 0.000 1.000 1.000 0 0.000
#> GSM11259 1 0.000 1.000 1.000 0 0.000
#> GSM28726 1 0.000 1.000 1.000 0 0.000
#> GSM28743 1 0.000 1.000 1.000 0 0.000
#> GSM11256 1 0.000 1.000 1.000 0 0.000
#> GSM11262 1 0.000 1.000 1.000 0 0.000
#> GSM28724 1 0.000 1.000 1.000 0 0.000
#> GSM28725 3 0.000 0.995 0.000 0 1.000
#> GSM11263 3 0.000 0.995 0.000 0 1.000
#> GSM11267 3 0.000 0.995 0.000 0 1.000
#> GSM28744 1 0.000 1.000 1.000 0 0.000
#> GSM28734 1 0.000 1.000 1.000 0 0.000
#> GSM28747 1 0.000 1.000 1.000 0 0.000
#> GSM11257 1 0.000 1.000 1.000 0 0.000
#> GSM11252 1 0.000 1.000 1.000 0 0.000
#> GSM11264 3 0.000 0.995 0.000 0 1.000
#> GSM11247 3 0.000 0.995 0.000 0 1.000
#> GSM11258 1 0.000 1.000 1.000 0 0.000
#> GSM28728 1 0.000 1.000 1.000 0 0.000
#> GSM28746 1 0.000 1.000 1.000 0 0.000
#> GSM28738 1 0.000 1.000 1.000 0 0.000
#> GSM28741 2 0.000 1.000 0.000 1 0.000
#> GSM28729 1 0.000 1.000 1.000 0 0.000
#> GSM28742 1 0.000 1.000 1.000 0 0.000
#> GSM11250 2 0.000 1.000 0.000 1 0.000
#> GSM11245 1 0.000 1.000 1.000 0 0.000
#> GSM11246 1 0.000 1.000 1.000 0 0.000
#> GSM11261 1 0.000 1.000 1.000 0 0.000
#> GSM11248 3 0.103 0.965 0.024 0 0.976
#> GSM28732 1 0.000 1.000 1.000 0 0.000
#> GSM11255 1 0.000 1.000 1.000 0 0.000
#> GSM28731 1 0.000 1.000 1.000 0 0.000
#> GSM28727 1 0.000 1.000 1.000 0 0.000
#> GSM11251 1 0.000 1.000 1.000 0 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM28735 1 0.0592 0.982 0.984 0 0.000 0.016
#> GSM28736 1 0.0707 0.980 0.980 0 0.000 0.020
#> GSM28737 1 0.0000 0.987 1.000 0 0.000 0.000
#> GSM11249 3 0.0707 0.972 0.000 0 0.980 0.020
#> GSM28745 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM11244 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM28748 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM11266 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM28730 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM11253 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM11254 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM11260 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM28733 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM11265 1 0.0000 0.987 1.000 0 0.000 0.000
#> GSM28739 1 0.0000 0.987 1.000 0 0.000 0.000
#> GSM11243 3 0.0000 0.987 0.000 0 1.000 0.000
#> GSM28740 1 0.0000 0.987 1.000 0 0.000 0.000
#> GSM11259 1 0.0000 0.987 1.000 0 0.000 0.000
#> GSM28726 1 0.0336 0.985 0.992 0 0.000 0.008
#> GSM28743 1 0.0000 0.987 1.000 0 0.000 0.000
#> GSM11256 4 0.0000 0.955 0.000 0 0.000 1.000
#> GSM11262 1 0.0000 0.987 1.000 0 0.000 0.000
#> GSM28724 1 0.0000 0.987 1.000 0 0.000 0.000
#> GSM28725 3 0.0000 0.987 0.000 0 1.000 0.000
#> GSM11263 3 0.0000 0.987 0.000 0 1.000 0.000
#> GSM11267 3 0.0000 0.987 0.000 0 1.000 0.000
#> GSM28744 4 0.0188 0.958 0.004 0 0.000 0.996
#> GSM28734 4 0.0188 0.958 0.004 0 0.000 0.996
#> GSM28747 1 0.0336 0.985 0.992 0 0.000 0.008
#> GSM11257 1 0.3486 0.781 0.812 0 0.000 0.188
#> GSM11252 1 0.0707 0.980 0.980 0 0.000 0.020
#> GSM11264 3 0.0000 0.987 0.000 0 1.000 0.000
#> GSM11247 3 0.0000 0.987 0.000 0 1.000 0.000
#> GSM11258 4 0.2081 0.880 0.084 0 0.000 0.916
#> GSM28728 1 0.0000 0.987 1.000 0 0.000 0.000
#> GSM28746 1 0.0592 0.982 0.984 0 0.000 0.016
#> GSM28738 1 0.0000 0.987 1.000 0 0.000 0.000
#> GSM28741 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM28729 1 0.0336 0.985 0.992 0 0.000 0.008
#> GSM28742 1 0.0707 0.980 0.980 0 0.000 0.020
#> GSM11250 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM11245 1 0.0707 0.980 0.980 0 0.000 0.020
#> GSM11246 1 0.0000 0.987 1.000 0 0.000 0.000
#> GSM11261 1 0.0336 0.985 0.992 0 0.000 0.008
#> GSM11248 3 0.1624 0.935 0.028 0 0.952 0.020
#> GSM28732 1 0.0707 0.980 0.980 0 0.000 0.020
#> GSM11255 1 0.0188 0.986 0.996 0 0.000 0.004
#> GSM28731 1 0.0000 0.987 1.000 0 0.000 0.000
#> GSM28727 1 0.0000 0.987 1.000 0 0.000 0.000
#> GSM11251 1 0.0000 0.987 1.000 0 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM28735 1 0.366 0.5898 0.724 0.00 0.000 0.000 0.276
#> GSM28736 5 0.228 0.5566 0.120 0.00 0.000 0.000 0.880
#> GSM28737 1 0.000 0.7982 1.000 0.00 0.000 0.000 0.000
#> GSM11249 3 0.426 0.4887 0.000 0.00 0.564 0.000 0.436
#> GSM28745 2 0.000 0.9621 0.000 1.00 0.000 0.000 0.000
#> GSM11244 2 0.000 0.9621 0.000 1.00 0.000 0.000 0.000
#> GSM28748 2 0.000 0.9621 0.000 1.00 0.000 0.000 0.000
#> GSM11266 2 0.000 0.9621 0.000 1.00 0.000 0.000 0.000
#> GSM28730 2 0.000 0.9621 0.000 1.00 0.000 0.000 0.000
#> GSM11253 2 0.000 0.9621 0.000 1.00 0.000 0.000 0.000
#> GSM11254 2 0.000 0.9621 0.000 1.00 0.000 0.000 0.000
#> GSM11260 2 0.000 0.9621 0.000 1.00 0.000 0.000 0.000
#> GSM28733 2 0.000 0.9621 0.000 1.00 0.000 0.000 0.000
#> GSM11265 1 0.000 0.7982 1.000 0.00 0.000 0.000 0.000
#> GSM28739 1 0.000 0.7982 1.000 0.00 0.000 0.000 0.000
#> GSM11243 3 0.000 0.8616 0.000 0.00 1.000 0.000 0.000
#> GSM28740 1 0.000 0.7982 1.000 0.00 0.000 0.000 0.000
#> GSM11259 1 0.233 0.7706 0.876 0.00 0.000 0.000 0.124
#> GSM28726 5 0.410 0.4669 0.372 0.00 0.000 0.000 0.628
#> GSM28743 1 0.000 0.7982 1.000 0.00 0.000 0.000 0.000
#> GSM11256 4 0.000 0.9508 0.000 0.00 0.000 1.000 0.000
#> GSM11262 1 0.000 0.7982 1.000 0.00 0.000 0.000 0.000
#> GSM28724 1 0.191 0.7897 0.908 0.00 0.000 0.000 0.092
#> GSM28725 3 0.000 0.8616 0.000 0.00 1.000 0.000 0.000
#> GSM11263 3 0.000 0.8616 0.000 0.00 1.000 0.000 0.000
#> GSM11267 3 0.000 0.8616 0.000 0.00 1.000 0.000 0.000
#> GSM28744 4 0.000 0.9508 0.000 0.00 0.000 1.000 0.000
#> GSM28734 4 0.000 0.9508 0.000 0.00 0.000 1.000 0.000
#> GSM28747 1 0.252 0.7649 0.860 0.00 0.000 0.000 0.140
#> GSM11257 5 0.499 0.0490 0.416 0.00 0.000 0.032 0.552
#> GSM11252 1 0.430 -0.0821 0.524 0.00 0.000 0.000 0.476
#> GSM11264 3 0.000 0.8616 0.000 0.00 1.000 0.000 0.000
#> GSM11247 3 0.000 0.8616 0.000 0.00 1.000 0.000 0.000
#> GSM11258 4 0.223 0.8403 0.116 0.00 0.000 0.884 0.000
#> GSM28728 1 0.104 0.8038 0.960 0.00 0.000 0.000 0.040
#> GSM28746 1 0.297 0.5945 0.816 0.00 0.000 0.000 0.184
#> GSM28738 1 0.273 0.7447 0.840 0.00 0.000 0.000 0.160
#> GSM28741 2 0.413 0.5246 0.000 0.62 0.000 0.000 0.380
#> GSM28729 1 0.218 0.7859 0.888 0.00 0.000 0.000 0.112
#> GSM28742 5 0.337 0.6403 0.232 0.00 0.000 0.000 0.768
#> GSM11250 2 0.000 0.9621 0.000 1.00 0.000 0.000 0.000
#> GSM11245 1 0.429 -0.0740 0.540 0.00 0.000 0.000 0.460
#> GSM11246 1 0.104 0.8038 0.960 0.00 0.000 0.000 0.040
#> GSM11261 1 0.088 0.7901 0.968 0.00 0.000 0.000 0.032
#> GSM11248 3 0.440 0.4815 0.004 0.00 0.560 0.000 0.436
#> GSM28732 1 0.377 0.5271 0.704 0.00 0.000 0.000 0.296
#> GSM11255 1 0.324 0.4918 0.784 0.00 0.000 0.000 0.216
#> GSM28731 1 0.104 0.8038 0.960 0.00 0.000 0.000 0.040
#> GSM28727 1 0.238 0.7701 0.872 0.00 0.000 0.000 0.128
#> GSM11251 1 0.233 0.7706 0.876 0.00 0.000 0.000 0.124
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM28735 1 0.2491 0.534 0.836 0.000 0.000 0.000 0.164 0.000
#> GSM28736 5 0.3927 0.899 0.344 0.000 0.000 0.000 0.644 0.012
#> GSM28737 1 0.3446 0.716 0.692 0.000 0.000 0.000 0.308 0.000
#> GSM11249 6 0.0790 0.856 0.000 0.000 0.032 0.000 0.000 0.968
#> GSM28745 2 0.0000 0.949 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.949 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28748 2 0.0000 0.949 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11266 2 0.0000 0.949 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 0.949 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.949 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.949 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.949 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.949 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11265 1 0.3446 0.716 0.692 0.000 0.000 0.000 0.308 0.000
#> GSM28739 1 0.3446 0.716 0.692 0.000 0.000 0.000 0.308 0.000
#> GSM11243 3 0.0458 0.988 0.000 0.000 0.984 0.000 0.000 0.016
#> GSM28740 1 0.3446 0.716 0.692 0.000 0.000 0.000 0.308 0.000
#> GSM11259 1 0.0146 0.737 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM28726 5 0.3634 0.899 0.356 0.000 0.000 0.000 0.644 0.000
#> GSM28743 1 0.3446 0.716 0.692 0.000 0.000 0.000 0.308 0.000
#> GSM11256 4 0.0000 0.865 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM11262 1 0.3446 0.716 0.692 0.000 0.000 0.000 0.308 0.000
#> GSM28724 1 0.1967 0.753 0.904 0.000 0.000 0.000 0.084 0.012
#> GSM28725 3 0.0000 0.994 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11263 3 0.0000 0.994 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11267 3 0.0000 0.994 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM28744 4 0.0000 0.865 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM28734 4 0.0000 0.865 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM28747 1 0.0146 0.737 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM11257 6 0.3511 0.691 0.148 0.000 0.000 0.004 0.048 0.800
#> GSM11252 6 0.0790 0.867 0.032 0.000 0.000 0.000 0.000 0.968
#> GSM11264 3 0.0000 0.994 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11247 3 0.0458 0.988 0.000 0.000 0.984 0.000 0.000 0.016
#> GSM11258 4 0.4265 0.570 0.040 0.000 0.000 0.660 0.300 0.000
#> GSM28728 1 0.0000 0.739 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM28746 1 0.5449 0.602 0.572 0.000 0.000 0.000 0.240 0.188
#> GSM28738 1 0.2968 0.521 0.816 0.000 0.000 0.000 0.168 0.016
#> GSM28741 2 0.4702 0.104 0.044 0.496 0.000 0.000 0.460 0.000
#> GSM28729 1 0.0692 0.738 0.976 0.000 0.000 0.000 0.004 0.020
#> GSM28742 5 0.5624 0.805 0.356 0.000 0.000 0.000 0.488 0.156
#> GSM11250 2 0.0000 0.949 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11245 6 0.0790 0.867 0.032 0.000 0.000 0.000 0.000 0.968
#> GSM11246 1 0.2135 0.752 0.872 0.000 0.000 0.000 0.128 0.000
#> GSM11261 1 0.4653 0.664 0.684 0.000 0.000 0.000 0.120 0.196
#> GSM11248 6 0.0790 0.856 0.000 0.000 0.032 0.000 0.000 0.968
#> GSM28732 1 0.2854 0.602 0.792 0.000 0.000 0.000 0.000 0.208
#> GSM11255 6 0.2941 0.643 0.220 0.000 0.000 0.000 0.000 0.780
#> GSM28731 1 0.0363 0.741 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM28727 1 0.0146 0.737 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM11251 1 0.0146 0.737 0.996 0.000 0.000 0.000 0.004 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n tissue(p) k
#> SD:pam 50 0.394 2
#> SD:pam 50 0.370 3
#> SD:pam 50 0.512 4
#> SD:pam 43 0.451 5
#> SD:pam 49 0.439 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21342 rows and 50 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.458 0.482 0.775 0.4558 0.503 0.503
#> 3 3 0.622 0.826 0.913 0.3358 0.603 0.376
#> 4 4 0.784 0.887 0.920 0.0839 0.864 0.691
#> 5 5 0.664 0.702 0.838 0.1410 0.819 0.537
#> 6 6 0.695 0.567 0.740 0.0526 0.855 0.470
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM28735 2 0.983 -0.523 0.424 0.576
#> GSM28736 2 0.595 0.220 0.144 0.856
#> GSM28737 1 0.988 0.761 0.564 0.436
#> GSM11249 1 0.000 0.376 1.000 0.000
#> GSM28745 2 0.975 0.571 0.408 0.592
#> GSM11244 2 0.975 0.571 0.408 0.592
#> GSM28748 2 0.975 0.571 0.408 0.592
#> GSM11266 2 0.975 0.571 0.408 0.592
#> GSM28730 2 0.975 0.571 0.408 0.592
#> GSM11253 2 0.975 0.571 0.408 0.592
#> GSM11254 2 0.975 0.571 0.408 0.592
#> GSM11260 2 0.975 0.571 0.408 0.592
#> GSM28733 2 0.975 0.571 0.408 0.592
#> GSM11265 1 0.988 0.761 0.564 0.436
#> GSM28739 1 0.988 0.761 0.564 0.436
#> GSM11243 1 0.000 0.376 1.000 0.000
#> GSM28740 1 0.988 0.761 0.564 0.436
#> GSM11259 1 0.988 0.761 0.564 0.436
#> GSM28726 2 0.985 -0.531 0.428 0.572
#> GSM28743 1 0.988 0.761 0.564 0.436
#> GSM11256 2 0.714 0.273 0.196 0.804
#> GSM11262 1 0.988 0.761 0.564 0.436
#> GSM28724 1 0.988 0.761 0.564 0.436
#> GSM28725 1 0.000 0.376 1.000 0.000
#> GSM11263 1 0.000 0.376 1.000 0.000
#> GSM11267 1 0.000 0.376 1.000 0.000
#> GSM28744 2 0.714 0.273 0.196 0.804
#> GSM28734 2 0.714 0.273 0.196 0.804
#> GSM28747 1 0.988 0.761 0.564 0.436
#> GSM11257 2 0.722 0.196 0.200 0.800
#> GSM11252 1 0.988 0.761 0.564 0.436
#> GSM11264 1 0.000 0.376 1.000 0.000
#> GSM11247 1 0.000 0.376 1.000 0.000
#> GSM11258 2 0.706 0.268 0.192 0.808
#> GSM28728 1 0.988 0.761 0.564 0.436
#> GSM28746 1 0.988 0.761 0.564 0.436
#> GSM28738 2 0.988 -0.547 0.436 0.564
#> GSM28741 2 0.416 0.418 0.084 0.916
#> GSM28729 1 0.988 0.761 0.564 0.436
#> GSM28742 2 0.993 -0.581 0.452 0.548
#> GSM11250 2 0.975 0.571 0.408 0.592
#> GSM11245 1 0.988 0.761 0.564 0.436
#> GSM11246 1 0.988 0.761 0.564 0.436
#> GSM11261 1 0.402 0.427 0.920 0.080
#> GSM11248 1 0.000 0.376 1.000 0.000
#> GSM28732 1 0.988 0.761 0.564 0.436
#> GSM11255 1 0.988 0.761 0.564 0.436
#> GSM28731 1 0.988 0.761 0.564 0.436
#> GSM28727 1 0.988 0.761 0.564 0.436
#> GSM11251 1 0.988 0.761 0.564 0.436
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM28735 1 0.547 0.8132 0.800 0.040 0.160
#> GSM28736 1 0.614 0.7414 0.748 0.040 0.212
#> GSM28737 1 0.000 0.9123 1.000 0.000 0.000
#> GSM11249 3 0.196 0.8407 0.056 0.000 0.944
#> GSM28745 2 0.000 0.9394 0.000 1.000 0.000
#> GSM11244 2 0.000 0.9394 0.000 1.000 0.000
#> GSM28748 2 0.656 0.1652 0.008 0.576 0.416
#> GSM11266 2 0.000 0.9394 0.000 1.000 0.000
#> GSM28730 2 0.000 0.9394 0.000 1.000 0.000
#> GSM11253 2 0.000 0.9394 0.000 1.000 0.000
#> GSM11254 2 0.000 0.9394 0.000 1.000 0.000
#> GSM11260 2 0.000 0.9394 0.000 1.000 0.000
#> GSM28733 2 0.000 0.9394 0.000 1.000 0.000
#> GSM11265 1 0.000 0.9123 1.000 0.000 0.000
#> GSM28739 1 0.000 0.9123 1.000 0.000 0.000
#> GSM11243 3 0.000 0.8265 0.000 0.000 1.000
#> GSM28740 1 0.000 0.9123 1.000 0.000 0.000
#> GSM11259 1 0.000 0.9123 1.000 0.000 0.000
#> GSM28726 1 0.575 0.7894 0.780 0.040 0.180
#> GSM28743 1 0.000 0.9123 1.000 0.000 0.000
#> GSM11256 3 0.355 0.8262 0.132 0.000 0.868
#> GSM11262 1 0.000 0.9123 1.000 0.000 0.000
#> GSM28724 1 0.400 0.8385 0.840 0.000 0.160
#> GSM28725 3 0.000 0.8265 0.000 0.000 1.000
#> GSM11263 3 0.000 0.8265 0.000 0.000 1.000
#> GSM11267 3 0.000 0.8265 0.000 0.000 1.000
#> GSM28744 3 0.355 0.8262 0.132 0.000 0.868
#> GSM28734 3 0.355 0.8262 0.132 0.000 0.868
#> GSM28747 1 0.000 0.9123 1.000 0.000 0.000
#> GSM11257 3 0.525 0.6661 0.264 0.000 0.736
#> GSM11252 1 0.388 0.8452 0.848 0.000 0.152
#> GSM11264 3 0.000 0.8265 0.000 0.000 1.000
#> GSM11247 3 0.000 0.8265 0.000 0.000 1.000
#> GSM11258 3 0.355 0.8262 0.132 0.000 0.868
#> GSM28728 1 0.400 0.8385 0.840 0.000 0.160
#> GSM28746 1 0.000 0.9123 1.000 0.000 0.000
#> GSM28738 1 0.400 0.8385 0.840 0.000 0.160
#> GSM28741 3 0.927 0.0857 0.416 0.156 0.428
#> GSM28729 1 0.348 0.8591 0.872 0.000 0.128
#> GSM28742 1 0.400 0.8385 0.840 0.000 0.160
#> GSM11250 3 0.974 0.1895 0.236 0.336 0.428
#> GSM11245 1 0.435 0.8120 0.816 0.000 0.184
#> GSM11246 1 0.000 0.9123 1.000 0.000 0.000
#> GSM11261 3 0.277 0.8385 0.080 0.004 0.916
#> GSM11248 3 0.196 0.8407 0.056 0.000 0.944
#> GSM28732 1 0.000 0.9123 1.000 0.000 0.000
#> GSM11255 1 0.000 0.9123 1.000 0.000 0.000
#> GSM28731 1 0.000 0.9123 1.000 0.000 0.000
#> GSM28727 1 0.000 0.9123 1.000 0.000 0.000
#> GSM11251 1 0.000 0.9123 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM28735 1 0.3933 0.821 0.792 0.008 0.000 0.200
#> GSM28736 1 0.4260 0.819 0.792 0.008 0.012 0.188
#> GSM28737 1 0.0707 0.876 0.980 0.000 0.000 0.020
#> GSM11249 3 0.2670 0.877 0.052 0.000 0.908 0.040
#> GSM28745 2 0.0000 0.965 0.000 1.000 0.000 0.000
#> GSM11244 2 0.0000 0.965 0.000 1.000 0.000 0.000
#> GSM28748 2 0.1767 0.915 0.000 0.944 0.012 0.044
#> GSM11266 2 0.0000 0.965 0.000 1.000 0.000 0.000
#> GSM28730 2 0.0000 0.965 0.000 1.000 0.000 0.000
#> GSM11253 2 0.0000 0.965 0.000 1.000 0.000 0.000
#> GSM11254 2 0.0000 0.965 0.000 1.000 0.000 0.000
#> GSM11260 2 0.0000 0.965 0.000 1.000 0.000 0.000
#> GSM28733 2 0.0000 0.965 0.000 1.000 0.000 0.000
#> GSM11265 1 0.1716 0.868 0.936 0.000 0.000 0.064
#> GSM28739 1 0.2149 0.860 0.912 0.000 0.000 0.088
#> GSM11243 3 0.0000 0.961 0.000 0.000 1.000 0.000
#> GSM28740 1 0.2281 0.852 0.904 0.000 0.000 0.096
#> GSM11259 1 0.0000 0.874 1.000 0.000 0.000 0.000
#> GSM28726 1 0.3933 0.821 0.792 0.008 0.000 0.200
#> GSM28743 1 0.2216 0.853 0.908 0.000 0.000 0.092
#> GSM11256 4 0.0817 0.990 0.000 0.000 0.024 0.976
#> GSM11262 1 0.2408 0.849 0.896 0.000 0.000 0.104
#> GSM28724 1 0.4059 0.839 0.788 0.000 0.012 0.200
#> GSM28725 3 0.0000 0.961 0.000 0.000 1.000 0.000
#> GSM11263 3 0.0000 0.961 0.000 0.000 1.000 0.000
#> GSM11267 3 0.0000 0.961 0.000 0.000 1.000 0.000
#> GSM28744 4 0.0817 0.990 0.000 0.000 0.024 0.976
#> GSM28734 4 0.0817 0.990 0.000 0.000 0.024 0.976
#> GSM28747 1 0.0469 0.875 0.988 0.000 0.000 0.012
#> GSM11257 1 0.4456 0.784 0.716 0.000 0.004 0.280
#> GSM11252 1 0.2542 0.878 0.904 0.000 0.012 0.084
#> GSM11264 3 0.0000 0.961 0.000 0.000 1.000 0.000
#> GSM11247 3 0.0000 0.961 0.000 0.000 1.000 0.000
#> GSM11258 4 0.0804 0.972 0.008 0.000 0.012 0.980
#> GSM28728 1 0.3962 0.841 0.820 0.000 0.028 0.152
#> GSM28746 1 0.1302 0.876 0.956 0.000 0.000 0.044
#> GSM28738 1 0.3528 0.829 0.808 0.000 0.000 0.192
#> GSM28741 1 0.7223 0.609 0.592 0.172 0.012 0.224
#> GSM28729 1 0.3718 0.838 0.820 0.000 0.012 0.168
#> GSM28742 1 0.3444 0.834 0.816 0.000 0.000 0.184
#> GSM11250 2 0.3937 0.703 0.000 0.800 0.012 0.188
#> GSM11245 1 0.2676 0.878 0.896 0.000 0.012 0.092
#> GSM11246 1 0.1211 0.874 0.960 0.000 0.000 0.040
#> GSM11261 1 0.5558 0.723 0.712 0.000 0.208 0.080
#> GSM11248 3 0.2751 0.871 0.056 0.000 0.904 0.040
#> GSM28732 1 0.2741 0.867 0.892 0.000 0.012 0.096
#> GSM11255 1 0.1211 0.877 0.960 0.000 0.000 0.040
#> GSM28731 1 0.0000 0.874 1.000 0.000 0.000 0.000
#> GSM28727 1 0.0000 0.874 1.000 0.000 0.000 0.000
#> GSM11251 1 0.0000 0.874 1.000 0.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM28735 5 0.3395 0.6950 0.236 0.000 0.000 0.000 0.764
#> GSM28736 5 0.3210 0.6997 0.212 0.000 0.000 0.000 0.788
#> GSM28737 1 0.1478 0.7878 0.936 0.000 0.000 0.000 0.064
#> GSM11249 3 0.4941 0.5696 0.044 0.000 0.628 0.000 0.328
#> GSM28745 2 0.0000 0.9334 0.000 1.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.9334 0.000 1.000 0.000 0.000 0.000
#> GSM28748 2 0.4455 0.2838 0.000 0.588 0.008 0.000 0.404
#> GSM11266 2 0.0000 0.9334 0.000 1.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 0.9334 0.000 1.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.9334 0.000 1.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.9334 0.000 1.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.9334 0.000 1.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.9334 0.000 1.000 0.000 0.000 0.000
#> GSM11265 1 0.2782 0.7603 0.880 0.000 0.000 0.048 0.072
#> GSM28739 1 0.3359 0.7486 0.840 0.000 0.000 0.052 0.108
#> GSM11243 3 0.0000 0.8667 0.000 0.000 1.000 0.000 0.000
#> GSM28740 1 0.3375 0.7376 0.840 0.000 0.000 0.056 0.104
#> GSM11259 1 0.1732 0.7691 0.920 0.000 0.000 0.000 0.080
#> GSM28726 5 0.3242 0.6996 0.216 0.000 0.000 0.000 0.784
#> GSM28743 1 0.3375 0.7376 0.840 0.000 0.000 0.056 0.104
#> GSM11256 4 0.0162 0.9976 0.000 0.000 0.000 0.996 0.004
#> GSM11262 1 0.4088 0.6927 0.776 0.000 0.000 0.056 0.168
#> GSM28724 1 0.4481 -0.0325 0.576 0.000 0.008 0.000 0.416
#> GSM28725 3 0.0000 0.8667 0.000 0.000 1.000 0.000 0.000
#> GSM11263 3 0.0000 0.8667 0.000 0.000 1.000 0.000 0.000
#> GSM11267 3 0.0000 0.8667 0.000 0.000 1.000 0.000 0.000
#> GSM28744 4 0.0162 0.9976 0.000 0.000 0.000 0.996 0.004
#> GSM28734 4 0.0290 0.9953 0.000 0.000 0.000 0.992 0.008
#> GSM28747 1 0.1965 0.7627 0.904 0.000 0.000 0.000 0.096
#> GSM11257 5 0.2561 0.6579 0.144 0.000 0.000 0.000 0.856
#> GSM11252 5 0.4126 0.6137 0.380 0.000 0.000 0.000 0.620
#> GSM11264 3 0.0000 0.8667 0.000 0.000 1.000 0.000 0.000
#> GSM11247 3 0.0000 0.8667 0.000 0.000 1.000 0.000 0.000
#> GSM11258 5 0.4074 0.3487 0.000 0.000 0.000 0.364 0.636
#> GSM28728 5 0.4559 0.4016 0.480 0.000 0.008 0.000 0.512
#> GSM28746 1 0.2813 0.6761 0.832 0.000 0.000 0.000 0.168
#> GSM28738 5 0.4268 0.4943 0.444 0.000 0.000 0.000 0.556
#> GSM28741 5 0.4412 0.6376 0.080 0.164 0.000 0.000 0.756
#> GSM28729 1 0.4533 -0.2676 0.544 0.000 0.008 0.000 0.448
#> GSM28742 5 0.4552 0.4351 0.468 0.000 0.008 0.000 0.524
#> GSM11250 5 0.4201 0.3765 0.000 0.328 0.008 0.000 0.664
#> GSM11245 5 0.4030 0.6360 0.352 0.000 0.000 0.000 0.648
#> GSM11246 1 0.0510 0.7848 0.984 0.000 0.000 0.000 0.016
#> GSM11261 5 0.4022 0.5624 0.104 0.000 0.100 0.000 0.796
#> GSM11248 3 0.5131 0.5171 0.048 0.000 0.588 0.000 0.364
#> GSM28732 1 0.2077 0.7538 0.908 0.000 0.008 0.000 0.084
#> GSM11255 1 0.3395 0.5497 0.764 0.000 0.000 0.000 0.236
#> GSM28731 1 0.0794 0.7824 0.972 0.000 0.000 0.000 0.028
#> GSM28727 1 0.1270 0.7767 0.948 0.000 0.000 0.000 0.052
#> GSM11251 1 0.1270 0.7767 0.948 0.000 0.000 0.000 0.052
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM28735 5 0.5390 0.01841 0.128 0.000 0.000 0.000 0.532 0.340
#> GSM28736 6 0.6076 0.14876 0.272 0.000 0.000 0.000 0.344 0.384
#> GSM28737 1 0.3699 0.75862 0.660 0.000 0.000 0.000 0.336 0.004
#> GSM11249 6 0.5071 0.00371 0.056 0.000 0.376 0.000 0.012 0.556
#> GSM28745 2 0.0000 0.91824 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.91824 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28748 2 0.2764 0.80315 0.000 0.864 0.028 0.000 0.008 0.100
#> GSM11266 2 0.0000 0.91824 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 0.91824 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.91824 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.91824 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.91824 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.91824 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11265 1 0.3628 0.77633 0.720 0.000 0.000 0.008 0.268 0.004
#> GSM28739 1 0.4416 0.64211 0.600 0.000 0.000 0.020 0.372 0.008
#> GSM11243 3 0.1267 0.94072 0.000 0.000 0.940 0.000 0.000 0.060
#> GSM28740 1 0.4592 0.77010 0.668 0.000 0.000 0.020 0.276 0.036
#> GSM11259 1 0.3838 0.67319 0.552 0.000 0.000 0.000 0.448 0.000
#> GSM28726 5 0.6197 -0.29706 0.268 0.000 0.000 0.004 0.376 0.352
#> GSM28743 1 0.4509 0.77032 0.684 0.000 0.000 0.020 0.260 0.036
#> GSM11256 4 0.0260 0.81110 0.008 0.000 0.000 0.992 0.000 0.000
#> GSM11262 1 0.4158 0.71564 0.740 0.000 0.000 0.020 0.204 0.036
#> GSM28724 5 0.3569 0.46274 0.164 0.000 0.008 0.000 0.792 0.036
#> GSM28725 3 0.0000 0.97118 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11263 3 0.0000 0.97118 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11267 3 0.0000 0.97118 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM28744 4 0.0260 0.81110 0.008 0.000 0.000 0.992 0.000 0.000
#> GSM28734 4 0.0146 0.80725 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM28747 1 0.3309 0.73017 0.720 0.000 0.000 0.000 0.280 0.000
#> GSM11257 6 0.5925 -0.07159 0.236 0.000 0.000 0.000 0.308 0.456
#> GSM11252 5 0.4970 0.42859 0.224 0.000 0.004 0.000 0.652 0.120
#> GSM11264 3 0.0000 0.97118 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11247 3 0.1267 0.94072 0.000 0.000 0.940 0.000 0.000 0.060
#> GSM11258 4 0.5576 0.22108 0.012 0.000 0.000 0.512 0.104 0.372
#> GSM28728 5 0.0858 0.51599 0.028 0.000 0.000 0.000 0.968 0.004
#> GSM28746 5 0.4921 -0.16417 0.436 0.000 0.000 0.004 0.508 0.052
#> GSM28738 5 0.1501 0.51337 0.000 0.000 0.000 0.000 0.924 0.076
#> GSM28741 6 0.7292 0.24929 0.256 0.116 0.004 0.000 0.200 0.424
#> GSM28729 5 0.1363 0.50975 0.028 0.000 0.004 0.004 0.952 0.012
#> GSM28742 5 0.1204 0.51759 0.000 0.000 0.000 0.000 0.944 0.056
#> GSM11250 2 0.6212 0.02246 0.064 0.440 0.004 0.000 0.072 0.420
#> GSM11245 5 0.5350 0.41714 0.228 0.000 0.016 0.000 0.628 0.128
#> GSM11246 1 0.3468 0.77381 0.712 0.000 0.000 0.000 0.284 0.004
#> GSM11261 6 0.6154 0.27211 0.024 0.000 0.212 0.004 0.216 0.544
#> GSM11248 6 0.5074 0.04469 0.060 0.000 0.356 0.000 0.012 0.572
#> GSM28732 5 0.4411 -0.38997 0.356 0.000 0.028 0.004 0.612 0.000
#> GSM11255 5 0.4905 -0.12081 0.420 0.000 0.000 0.004 0.524 0.052
#> GSM28731 1 0.3823 0.72757 0.564 0.000 0.000 0.000 0.436 0.000
#> GSM28727 1 0.3866 0.66257 0.516 0.000 0.000 0.000 0.484 0.000
#> GSM11251 1 0.3857 0.68038 0.532 0.000 0.000 0.000 0.468 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n tissue(p) k
#> SD:mclust 30 0.414 2
#> SD:mclust 47 0.440 3
#> SD:mclust 50 0.511 4
#> SD:mclust 42 0.494 5
#> SD:mclust 34 0.461 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21342 rows and 50 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.983 0.992 0.3858 0.607 0.607
#> 3 3 1.000 0.974 0.991 0.4994 0.731 0.588
#> 4 4 0.876 0.913 0.950 0.2138 0.882 0.726
#> 5 5 0.747 0.721 0.849 0.1135 0.900 0.686
#> 6 6 0.716 0.567 0.758 0.0521 0.885 0.554
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2
There is also optional best \(k\) = 2 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM28735 1 0.0000 0.999 1.000 0.000
#> GSM28736 2 0.5178 0.866 0.116 0.884
#> GSM28737 1 0.0000 0.999 1.000 0.000
#> GSM11249 1 0.0000 0.999 1.000 0.000
#> GSM28745 2 0.0000 0.969 0.000 1.000
#> GSM11244 2 0.0000 0.969 0.000 1.000
#> GSM28748 2 0.0000 0.969 0.000 1.000
#> GSM11266 2 0.0000 0.969 0.000 1.000
#> GSM28730 2 0.0000 0.969 0.000 1.000
#> GSM11253 2 0.0000 0.969 0.000 1.000
#> GSM11254 2 0.0000 0.969 0.000 1.000
#> GSM11260 2 0.0000 0.969 0.000 1.000
#> GSM28733 2 0.0000 0.969 0.000 1.000
#> GSM11265 1 0.0000 0.999 1.000 0.000
#> GSM28739 1 0.0000 0.999 1.000 0.000
#> GSM11243 1 0.0000 0.999 1.000 0.000
#> GSM28740 1 0.0000 0.999 1.000 0.000
#> GSM11259 1 0.0000 0.999 1.000 0.000
#> GSM28726 2 0.8267 0.663 0.260 0.740
#> GSM28743 1 0.0000 0.999 1.000 0.000
#> GSM11256 1 0.0000 0.999 1.000 0.000
#> GSM11262 1 0.0000 0.999 1.000 0.000
#> GSM28724 1 0.0000 0.999 1.000 0.000
#> GSM28725 1 0.0000 0.999 1.000 0.000
#> GSM11263 1 0.0000 0.999 1.000 0.000
#> GSM11267 1 0.0000 0.999 1.000 0.000
#> GSM28744 1 0.0000 0.999 1.000 0.000
#> GSM28734 1 0.0000 0.999 1.000 0.000
#> GSM28747 1 0.0000 0.999 1.000 0.000
#> GSM11257 1 0.0000 0.999 1.000 0.000
#> GSM11252 1 0.0000 0.999 1.000 0.000
#> GSM11264 1 0.0000 0.999 1.000 0.000
#> GSM11247 1 0.0000 0.999 1.000 0.000
#> GSM11258 1 0.0000 0.999 1.000 0.000
#> GSM28728 1 0.0000 0.999 1.000 0.000
#> GSM28746 1 0.0000 0.999 1.000 0.000
#> GSM28738 1 0.0000 0.999 1.000 0.000
#> GSM28741 2 0.0000 0.969 0.000 1.000
#> GSM28729 1 0.0000 0.999 1.000 0.000
#> GSM28742 1 0.1184 0.983 0.984 0.016
#> GSM11250 2 0.0000 0.969 0.000 1.000
#> GSM11245 1 0.0000 0.999 1.000 0.000
#> GSM11246 1 0.0000 0.999 1.000 0.000
#> GSM11261 1 0.0376 0.996 0.996 0.004
#> GSM11248 1 0.0000 0.999 1.000 0.000
#> GSM28732 1 0.0000 0.999 1.000 0.000
#> GSM11255 1 0.0000 0.999 1.000 0.000
#> GSM28731 1 0.0000 0.999 1.000 0.000
#> GSM28727 1 0.0000 0.999 1.000 0.000
#> GSM11251 1 0.0000 0.999 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM28735 1 0.0000 0.984 1.000 0.000 0.000
#> GSM28736 1 0.0747 0.969 0.984 0.016 0.000
#> GSM28737 1 0.0000 0.984 1.000 0.000 0.000
#> GSM11249 3 0.0000 1.000 0.000 0.000 1.000
#> GSM28745 2 0.0000 0.999 0.000 1.000 0.000
#> GSM11244 2 0.0000 0.999 0.000 1.000 0.000
#> GSM28748 2 0.0000 0.999 0.000 1.000 0.000
#> GSM11266 2 0.0000 0.999 0.000 1.000 0.000
#> GSM28730 2 0.0000 0.999 0.000 1.000 0.000
#> GSM11253 2 0.0000 0.999 0.000 1.000 0.000
#> GSM11254 2 0.0000 0.999 0.000 1.000 0.000
#> GSM11260 2 0.0000 0.999 0.000 1.000 0.000
#> GSM28733 2 0.0000 0.999 0.000 1.000 0.000
#> GSM11265 1 0.0000 0.984 1.000 0.000 0.000
#> GSM28739 1 0.0000 0.984 1.000 0.000 0.000
#> GSM11243 3 0.0000 1.000 0.000 0.000 1.000
#> GSM28740 1 0.0000 0.984 1.000 0.000 0.000
#> GSM11259 1 0.0000 0.984 1.000 0.000 0.000
#> GSM28726 1 0.0237 0.980 0.996 0.004 0.000
#> GSM28743 1 0.0000 0.984 1.000 0.000 0.000
#> GSM11256 1 0.0000 0.984 1.000 0.000 0.000
#> GSM11262 1 0.0000 0.984 1.000 0.000 0.000
#> GSM28724 1 0.0000 0.984 1.000 0.000 0.000
#> GSM28725 3 0.0000 1.000 0.000 0.000 1.000
#> GSM11263 3 0.0000 1.000 0.000 0.000 1.000
#> GSM11267 3 0.0000 1.000 0.000 0.000 1.000
#> GSM28744 1 0.0000 0.984 1.000 0.000 0.000
#> GSM28734 1 0.6252 0.203 0.556 0.000 0.444
#> GSM28747 1 0.0000 0.984 1.000 0.000 0.000
#> GSM11257 1 0.0000 0.984 1.000 0.000 0.000
#> GSM11252 1 0.0000 0.984 1.000 0.000 0.000
#> GSM11264 3 0.0000 1.000 0.000 0.000 1.000
#> GSM11247 3 0.0000 1.000 0.000 0.000 1.000
#> GSM11258 1 0.0000 0.984 1.000 0.000 0.000
#> GSM28728 1 0.0000 0.984 1.000 0.000 0.000
#> GSM28746 1 0.0000 0.984 1.000 0.000 0.000
#> GSM28738 1 0.0000 0.984 1.000 0.000 0.000
#> GSM28741 2 0.0237 0.994 0.004 0.996 0.000
#> GSM28729 1 0.0000 0.984 1.000 0.000 0.000
#> GSM28742 1 0.0000 0.984 1.000 0.000 0.000
#> GSM11250 2 0.0000 0.999 0.000 1.000 0.000
#> GSM11245 1 0.0000 0.984 1.000 0.000 0.000
#> GSM11246 1 0.0000 0.984 1.000 0.000 0.000
#> GSM11261 3 0.0000 1.000 0.000 0.000 1.000
#> GSM11248 3 0.0000 1.000 0.000 0.000 1.000
#> GSM28732 1 0.0000 0.984 1.000 0.000 0.000
#> GSM11255 1 0.0000 0.984 1.000 0.000 0.000
#> GSM28731 1 0.0000 0.984 1.000 0.000 0.000
#> GSM28727 1 0.0000 0.984 1.000 0.000 0.000
#> GSM11251 1 0.0000 0.984 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM28735 1 0.4804 0.450 0.616 0.000 0.000 0.384
#> GSM28736 4 0.7001 0.547 0.180 0.244 0.000 0.576
#> GSM28737 1 0.0188 0.919 0.996 0.000 0.000 0.004
#> GSM11249 3 0.0188 0.990 0.000 0.000 0.996 0.004
#> GSM28745 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11244 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM28748 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11266 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM28730 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11253 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11254 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11260 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM28733 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11265 1 0.0336 0.918 0.992 0.000 0.000 0.008
#> GSM28739 1 0.0469 0.916 0.988 0.000 0.000 0.012
#> GSM11243 3 0.0707 0.982 0.000 0.000 0.980 0.020
#> GSM28740 1 0.0469 0.919 0.988 0.000 0.000 0.012
#> GSM11259 1 0.0469 0.917 0.988 0.000 0.000 0.012
#> GSM28726 1 0.4677 0.768 0.776 0.048 0.000 0.176
#> GSM28743 1 0.0592 0.919 0.984 0.000 0.000 0.016
#> GSM11256 4 0.1004 0.902 0.024 0.000 0.004 0.972
#> GSM11262 1 0.0817 0.915 0.976 0.000 0.000 0.024
#> GSM28724 1 0.0817 0.913 0.976 0.000 0.000 0.024
#> GSM28725 3 0.0000 0.992 0.000 0.000 1.000 0.000
#> GSM11263 3 0.0000 0.992 0.000 0.000 1.000 0.000
#> GSM11267 3 0.0000 0.992 0.000 0.000 1.000 0.000
#> GSM28744 4 0.1004 0.902 0.024 0.000 0.004 0.972
#> GSM28734 4 0.1004 0.885 0.004 0.000 0.024 0.972
#> GSM28747 1 0.0817 0.915 0.976 0.000 0.000 0.024
#> GSM11257 4 0.1389 0.899 0.048 0.000 0.000 0.952
#> GSM11252 1 0.3123 0.829 0.844 0.000 0.000 0.156
#> GSM11264 3 0.0000 0.992 0.000 0.000 1.000 0.000
#> GSM11247 3 0.1151 0.972 0.008 0.000 0.968 0.024
#> GSM11258 4 0.1557 0.895 0.056 0.000 0.000 0.944
#> GSM28728 1 0.0817 0.913 0.976 0.000 0.000 0.024
#> GSM28746 1 0.2469 0.860 0.892 0.000 0.000 0.108
#> GSM28738 1 0.4008 0.719 0.756 0.000 0.000 0.244
#> GSM28741 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM28729 1 0.2408 0.877 0.896 0.000 0.000 0.104
#> GSM28742 1 0.3726 0.778 0.788 0.000 0.000 0.212
#> GSM11250 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11245 1 0.3668 0.794 0.808 0.000 0.004 0.188
#> GSM11246 1 0.0188 0.918 0.996 0.000 0.000 0.004
#> GSM11261 3 0.0336 0.989 0.000 0.000 0.992 0.008
#> GSM11248 3 0.0188 0.990 0.000 0.000 0.996 0.004
#> GSM28732 1 0.0592 0.918 0.984 0.000 0.000 0.016
#> GSM11255 1 0.0592 0.918 0.984 0.000 0.000 0.016
#> GSM28731 1 0.0336 0.918 0.992 0.000 0.000 0.008
#> GSM28727 1 0.0188 0.919 0.996 0.000 0.000 0.004
#> GSM11251 1 0.0188 0.919 0.996 0.000 0.000 0.004
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM28735 1 0.5443 0.230 0.604 0.000 0.000 0.312 0.084
#> GSM28736 4 0.7304 0.427 0.228 0.160 0.000 0.528 0.084
#> GSM28737 1 0.3086 0.712 0.816 0.000 0.000 0.004 0.180
#> GSM11249 3 0.1717 0.901 0.004 0.000 0.936 0.008 0.052
#> GSM28745 2 0.0000 0.997 0.000 1.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.997 0.000 1.000 0.000 0.000 0.000
#> GSM28748 2 0.0000 0.997 0.000 1.000 0.000 0.000 0.000
#> GSM11266 2 0.0000 0.997 0.000 1.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 0.997 0.000 1.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.997 0.000 1.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.997 0.000 1.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.997 0.000 1.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.997 0.000 1.000 0.000 0.000 0.000
#> GSM11265 1 0.3109 0.698 0.800 0.000 0.000 0.000 0.200
#> GSM28739 1 0.3366 0.680 0.768 0.000 0.000 0.000 0.232
#> GSM11243 3 0.3774 0.616 0.000 0.000 0.704 0.000 0.296
#> GSM28740 1 0.3242 0.691 0.784 0.000 0.000 0.000 0.216
#> GSM11259 5 0.4283 0.354 0.456 0.000 0.000 0.000 0.544
#> GSM28726 1 0.5284 -0.236 0.532 0.004 0.000 0.040 0.424
#> GSM28743 1 0.3171 0.704 0.816 0.000 0.000 0.008 0.176
#> GSM11256 4 0.0451 0.856 0.004 0.000 0.000 0.988 0.008
#> GSM11262 1 0.3209 0.702 0.812 0.000 0.000 0.008 0.180
#> GSM28724 5 0.4504 0.349 0.428 0.000 0.008 0.000 0.564
#> GSM28725 3 0.0609 0.923 0.000 0.000 0.980 0.000 0.020
#> GSM11263 3 0.0162 0.926 0.000 0.000 0.996 0.000 0.004
#> GSM11267 3 0.0162 0.926 0.000 0.000 0.996 0.000 0.004
#> GSM28744 4 0.0324 0.856 0.004 0.000 0.000 0.992 0.004
#> GSM28734 4 0.0613 0.852 0.004 0.000 0.008 0.984 0.004
#> GSM28747 1 0.1831 0.687 0.920 0.000 0.000 0.004 0.076
#> GSM11257 4 0.2628 0.814 0.028 0.000 0.000 0.884 0.088
#> GSM11252 1 0.3187 0.667 0.864 0.000 0.012 0.036 0.088
#> GSM11264 3 0.0000 0.926 0.000 0.000 1.000 0.000 0.000
#> GSM11247 5 0.4302 -0.259 0.000 0.000 0.480 0.000 0.520
#> GSM11258 4 0.2685 0.792 0.092 0.000 0.000 0.880 0.028
#> GSM28728 5 0.2806 0.600 0.152 0.000 0.004 0.000 0.844
#> GSM28746 1 0.3521 0.636 0.820 0.000 0.000 0.040 0.140
#> GSM28738 5 0.3555 0.624 0.124 0.000 0.000 0.052 0.824
#> GSM28741 2 0.0771 0.969 0.020 0.976 0.000 0.000 0.004
#> GSM28729 5 0.3612 0.636 0.228 0.000 0.000 0.008 0.764
#> GSM28742 5 0.4467 0.567 0.344 0.000 0.000 0.016 0.640
#> GSM11250 2 0.0000 0.997 0.000 1.000 0.000 0.000 0.000
#> GSM11245 1 0.4160 0.617 0.816 0.000 0.064 0.036 0.084
#> GSM11246 1 0.2852 0.712 0.828 0.000 0.000 0.000 0.172
#> GSM11261 3 0.1478 0.900 0.000 0.000 0.936 0.000 0.064
#> GSM11248 3 0.1341 0.906 0.000 0.000 0.944 0.000 0.056
#> GSM28732 1 0.2929 0.585 0.820 0.000 0.000 0.000 0.180
#> GSM11255 1 0.2707 0.683 0.860 0.000 0.000 0.008 0.132
#> GSM28731 1 0.3895 0.417 0.680 0.000 0.000 0.000 0.320
#> GSM28727 1 0.1270 0.699 0.948 0.000 0.000 0.000 0.052
#> GSM11251 1 0.2280 0.719 0.880 0.000 0.000 0.000 0.120
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM28735 5 0.6999 0.3005 0.256 0.000 0.000 0.172 0.460 0.112
#> GSM28736 5 0.7272 0.0449 0.092 0.108 0.000 0.356 0.412 0.032
#> GSM28737 1 0.1572 0.7490 0.936 0.000 0.000 0.000 0.028 0.036
#> GSM11249 3 0.3079 0.6947 0.004 0.000 0.844 0.000 0.056 0.096
#> GSM28745 2 0.0000 0.9898 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.9898 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28748 2 0.0000 0.9898 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11266 2 0.0000 0.9898 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 0.9898 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.9898 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.9898 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.9898 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.9898 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11265 1 0.1471 0.7403 0.932 0.000 0.000 0.000 0.004 0.064
#> GSM28739 1 0.2320 0.6847 0.864 0.000 0.000 0.000 0.004 0.132
#> GSM11243 3 0.4555 0.2396 0.028 0.000 0.548 0.000 0.004 0.420
#> GSM28740 1 0.1327 0.7429 0.936 0.000 0.000 0.000 0.000 0.064
#> GSM11259 5 0.6018 0.1164 0.256 0.000 0.000 0.000 0.420 0.324
#> GSM28726 5 0.4319 0.3779 0.168 0.000 0.000 0.000 0.724 0.108
#> GSM28743 1 0.1391 0.7517 0.944 0.000 0.000 0.000 0.016 0.040
#> GSM11256 4 0.0000 0.8582 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM11262 1 0.1760 0.7480 0.928 0.000 0.000 0.004 0.020 0.048
#> GSM28724 6 0.5907 0.3053 0.236 0.000 0.016 0.000 0.200 0.548
#> GSM28725 3 0.1387 0.7582 0.000 0.000 0.932 0.000 0.000 0.068
#> GSM11263 3 0.0865 0.7694 0.000 0.000 0.964 0.000 0.000 0.036
#> GSM11267 3 0.0291 0.7720 0.000 0.000 0.992 0.000 0.004 0.004
#> GSM28744 4 0.0000 0.8582 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM28734 4 0.0260 0.8568 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM28747 5 0.4594 -0.0246 0.480 0.000 0.000 0.000 0.484 0.036
#> GSM11257 4 0.4361 0.5949 0.016 0.000 0.000 0.692 0.260 0.032
#> GSM11252 5 0.6440 0.1524 0.396 0.000 0.060 0.000 0.424 0.120
#> GSM11264 3 0.0603 0.7724 0.000 0.000 0.980 0.000 0.016 0.004
#> GSM11247 6 0.5223 -0.0485 0.052 0.000 0.364 0.000 0.024 0.560
#> GSM11258 4 0.3017 0.7170 0.164 0.000 0.000 0.816 0.000 0.020
#> GSM28728 6 0.5036 0.3176 0.140 0.000 0.000 0.000 0.228 0.632
#> GSM28746 1 0.5717 -0.0102 0.492 0.000 0.000 0.012 0.376 0.120
#> GSM28738 5 0.5377 -0.2027 0.084 0.000 0.000 0.008 0.464 0.444
#> GSM28741 2 0.1753 0.8903 0.000 0.912 0.000 0.000 0.084 0.004
#> GSM28729 5 0.4953 -0.0345 0.056 0.000 0.008 0.000 0.572 0.364
#> GSM28742 5 0.2912 0.2802 0.040 0.000 0.000 0.000 0.844 0.116
#> GSM11250 2 0.0000 0.9898 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11245 5 0.6982 0.2099 0.324 0.000 0.128 0.000 0.424 0.124
#> GSM11246 1 0.1049 0.7523 0.960 0.000 0.000 0.000 0.032 0.008
#> GSM11261 3 0.4525 0.4853 0.008 0.000 0.664 0.004 0.036 0.288
#> GSM11248 3 0.4140 0.6020 0.000 0.000 0.744 0.000 0.152 0.104
#> GSM28732 5 0.4597 0.3527 0.276 0.000 0.000 0.000 0.652 0.072
#> GSM11255 5 0.6271 0.1973 0.384 0.000 0.036 0.000 0.440 0.140
#> GSM28731 5 0.5940 0.2954 0.332 0.000 0.000 0.000 0.440 0.228
#> GSM28727 1 0.4283 0.2019 0.592 0.000 0.000 0.000 0.384 0.024
#> GSM11251 1 0.3287 0.5598 0.768 0.000 0.000 0.000 0.220 0.012
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n tissue(p) k
#> SD:NMF 50 0.394 2
#> SD:NMF 49 0.368 3
#> SD:NMF 49 0.464 4
#> SD:NMF 43 0.436 5
#> SD:NMF 30 0.445 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21342 rows and 50 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.961 0.982 0.334 0.673 0.673
#> 3 3 0.690 0.847 0.899 0.726 0.740 0.613
#> 4 4 0.728 0.852 0.936 0.163 0.890 0.739
#> 5 5 0.778 0.786 0.869 0.103 0.971 0.908
#> 6 6 0.763 0.712 0.838 0.039 0.969 0.896
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM28735 1 0.0376 0.981 0.996 0.004
#> GSM28736 1 0.0376 0.981 0.996 0.004
#> GSM28737 1 0.0000 0.984 1.000 0.000
#> GSM11249 1 0.0938 0.979 0.988 0.012
#> GSM28745 2 0.0938 0.979 0.012 0.988
#> GSM11244 2 0.0938 0.979 0.012 0.988
#> GSM28748 2 0.0938 0.979 0.012 0.988
#> GSM11266 2 0.0938 0.979 0.012 0.988
#> GSM28730 2 0.0938 0.979 0.012 0.988
#> GSM11253 2 0.0938 0.979 0.012 0.988
#> GSM11254 2 0.0938 0.979 0.012 0.988
#> GSM11260 2 0.0938 0.979 0.012 0.988
#> GSM28733 2 0.0938 0.979 0.012 0.988
#> GSM11265 1 0.0000 0.984 1.000 0.000
#> GSM28739 1 0.0000 0.984 1.000 0.000
#> GSM11243 1 0.0938 0.979 0.988 0.012
#> GSM28740 1 0.0000 0.984 1.000 0.000
#> GSM11259 1 0.0000 0.984 1.000 0.000
#> GSM28726 1 0.0000 0.984 1.000 0.000
#> GSM28743 1 0.0000 0.984 1.000 0.000
#> GSM11256 1 0.0000 0.984 1.000 0.000
#> GSM11262 1 0.0000 0.984 1.000 0.000
#> GSM28724 1 0.0000 0.984 1.000 0.000
#> GSM28725 1 0.0938 0.979 0.988 0.012
#> GSM11263 1 0.0938 0.979 0.988 0.012
#> GSM11267 1 0.0938 0.979 0.988 0.012
#> GSM28744 1 0.0000 0.984 1.000 0.000
#> GSM28734 1 0.0000 0.984 1.000 0.000
#> GSM28747 1 0.0000 0.984 1.000 0.000
#> GSM11257 1 0.0000 0.984 1.000 0.000
#> GSM11252 1 0.0938 0.979 0.988 0.012
#> GSM11264 1 0.0938 0.979 0.988 0.012
#> GSM11247 1 0.0938 0.979 0.988 0.012
#> GSM11258 1 0.0000 0.984 1.000 0.000
#> GSM28728 1 0.0000 0.984 1.000 0.000
#> GSM28746 1 0.0000 0.984 1.000 0.000
#> GSM28738 1 0.0000 0.984 1.000 0.000
#> GSM28741 1 0.9896 0.167 0.560 0.440
#> GSM28729 1 0.0000 0.984 1.000 0.000
#> GSM28742 1 0.0000 0.984 1.000 0.000
#> GSM11250 2 0.7056 0.771 0.192 0.808
#> GSM11245 1 0.0938 0.979 0.988 0.012
#> GSM11246 1 0.0000 0.984 1.000 0.000
#> GSM11261 1 0.2236 0.960 0.964 0.036
#> GSM11248 1 0.0938 0.979 0.988 0.012
#> GSM28732 1 0.0000 0.984 1.000 0.000
#> GSM11255 1 0.0000 0.984 1.000 0.000
#> GSM28731 1 0.0000 0.984 1.000 0.000
#> GSM28727 1 0.0000 0.984 1.000 0.000
#> GSM11251 1 0.0000 0.984 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM28735 1 0.0237 0.903 0.996 0.004 0.000
#> GSM28736 1 0.0237 0.903 0.996 0.004 0.000
#> GSM28737 1 0.2537 0.873 0.920 0.000 0.080
#> GSM11249 3 0.3267 0.892 0.116 0.000 0.884
#> GSM28745 2 0.0000 0.972 0.000 1.000 0.000
#> GSM11244 2 0.0000 0.972 0.000 1.000 0.000
#> GSM28748 2 0.0000 0.972 0.000 1.000 0.000
#> GSM11266 2 0.0000 0.972 0.000 1.000 0.000
#> GSM28730 2 0.0000 0.972 0.000 1.000 0.000
#> GSM11253 2 0.0000 0.972 0.000 1.000 0.000
#> GSM11254 2 0.0000 0.972 0.000 1.000 0.000
#> GSM11260 2 0.0000 0.972 0.000 1.000 0.000
#> GSM28733 2 0.0000 0.972 0.000 1.000 0.000
#> GSM11265 1 0.2537 0.873 0.920 0.000 0.080
#> GSM28739 1 0.2537 0.873 0.920 0.000 0.080
#> GSM11243 3 0.2878 0.896 0.096 0.000 0.904
#> GSM28740 1 0.2537 0.873 0.920 0.000 0.080
#> GSM11259 1 0.0000 0.904 1.000 0.000 0.000
#> GSM28726 1 0.0000 0.904 1.000 0.000 0.000
#> GSM28743 1 0.2537 0.873 0.920 0.000 0.080
#> GSM11256 1 0.2878 0.834 0.904 0.000 0.096
#> GSM11262 1 0.2537 0.873 0.920 0.000 0.080
#> GSM28724 1 0.0000 0.904 1.000 0.000 0.000
#> GSM28725 3 0.2878 0.896 0.096 0.000 0.904
#> GSM11263 3 0.2878 0.896 0.096 0.000 0.904
#> GSM11267 3 0.2878 0.896 0.096 0.000 0.904
#> GSM28744 1 0.2878 0.834 0.904 0.000 0.096
#> GSM28734 1 0.2878 0.834 0.904 0.000 0.096
#> GSM28747 1 0.0000 0.904 1.000 0.000 0.000
#> GSM11257 1 0.1163 0.898 0.972 0.000 0.028
#> GSM11252 3 0.5859 0.653 0.344 0.000 0.656
#> GSM11264 3 0.2878 0.896 0.096 0.000 0.904
#> GSM11247 3 0.2878 0.896 0.096 0.000 0.904
#> GSM11258 1 0.2878 0.834 0.904 0.000 0.096
#> GSM28728 1 0.0237 0.903 0.996 0.000 0.004
#> GSM28746 1 0.4346 0.740 0.816 0.000 0.184
#> GSM28738 1 0.0237 0.903 0.996 0.000 0.004
#> GSM28741 1 0.6267 0.130 0.548 0.452 0.000
#> GSM28729 1 0.1411 0.895 0.964 0.000 0.036
#> GSM28742 1 0.0000 0.904 1.000 0.000 0.000
#> GSM11250 2 0.4291 0.717 0.180 0.820 0.000
#> GSM11245 3 0.5859 0.653 0.344 0.000 0.656
#> GSM11246 1 0.2448 0.875 0.924 0.000 0.076
#> GSM11261 3 0.6512 0.709 0.300 0.024 0.676
#> GSM11248 3 0.3267 0.892 0.116 0.000 0.884
#> GSM28732 1 0.0000 0.904 1.000 0.000 0.000
#> GSM11255 1 0.6286 -0.121 0.536 0.000 0.464
#> GSM28731 1 0.1031 0.899 0.976 0.000 0.024
#> GSM28727 1 0.0000 0.904 1.000 0.000 0.000
#> GSM11251 1 0.0000 0.904 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM28735 1 0.0188 0.9110 0.996 0.004 0.000 0.000
#> GSM28736 1 0.0188 0.9110 0.996 0.004 0.000 0.000
#> GSM28737 1 0.2773 0.8698 0.880 0.000 0.116 0.004
#> GSM11249 3 0.1209 0.8143 0.032 0.000 0.964 0.004
#> GSM28745 2 0.0000 0.9679 0.000 1.000 0.000 0.000
#> GSM11244 2 0.0000 0.9679 0.000 1.000 0.000 0.000
#> GSM28748 2 0.0000 0.9679 0.000 1.000 0.000 0.000
#> GSM11266 2 0.0000 0.9679 0.000 1.000 0.000 0.000
#> GSM28730 2 0.0000 0.9679 0.000 1.000 0.000 0.000
#> GSM11253 2 0.0000 0.9679 0.000 1.000 0.000 0.000
#> GSM11254 2 0.0000 0.9679 0.000 1.000 0.000 0.000
#> GSM11260 2 0.0000 0.9679 0.000 1.000 0.000 0.000
#> GSM28733 2 0.0000 0.9679 0.000 1.000 0.000 0.000
#> GSM11265 1 0.2773 0.8698 0.880 0.000 0.116 0.004
#> GSM28739 1 0.2773 0.8698 0.880 0.000 0.116 0.004
#> GSM11243 3 0.0000 0.8183 0.000 0.000 1.000 0.000
#> GSM28740 1 0.2773 0.8698 0.880 0.000 0.116 0.004
#> GSM11259 1 0.0000 0.9128 1.000 0.000 0.000 0.000
#> GSM28726 1 0.0000 0.9128 1.000 0.000 0.000 0.000
#> GSM28743 1 0.2773 0.8698 0.880 0.000 0.116 0.004
#> GSM11256 4 0.0000 1.0000 0.000 0.000 0.000 1.000
#> GSM11262 1 0.2773 0.8698 0.880 0.000 0.116 0.004
#> GSM28724 1 0.0000 0.9128 1.000 0.000 0.000 0.000
#> GSM28725 3 0.0000 0.8183 0.000 0.000 1.000 0.000
#> GSM11263 3 0.0000 0.8183 0.000 0.000 1.000 0.000
#> GSM11267 3 0.0000 0.8183 0.000 0.000 1.000 0.000
#> GSM28744 4 0.0000 1.0000 0.000 0.000 0.000 1.000
#> GSM28734 4 0.0000 1.0000 0.000 0.000 0.000 1.000
#> GSM28747 1 0.0000 0.9128 1.000 0.000 0.000 0.000
#> GSM11257 1 0.1118 0.9044 0.964 0.000 0.036 0.000
#> GSM11252 3 0.4313 0.6718 0.260 0.000 0.736 0.004
#> GSM11264 3 0.0000 0.8183 0.000 0.000 1.000 0.000
#> GSM11247 3 0.0000 0.8183 0.000 0.000 1.000 0.000
#> GSM11258 4 0.0000 1.0000 0.000 0.000 0.000 1.000
#> GSM28728 1 0.0188 0.9129 0.996 0.000 0.004 0.000
#> GSM28746 1 0.4155 0.6892 0.756 0.000 0.240 0.004
#> GSM28738 1 0.0188 0.9129 0.996 0.000 0.004 0.000
#> GSM28741 1 0.4967 0.0945 0.548 0.452 0.000 0.000
#> GSM28729 1 0.1557 0.9000 0.944 0.000 0.056 0.000
#> GSM28742 1 0.0000 0.9128 1.000 0.000 0.000 0.000
#> GSM11250 2 0.3400 0.6923 0.180 0.820 0.000 0.000
#> GSM11245 3 0.4313 0.6718 0.260 0.000 0.736 0.004
#> GSM11246 1 0.2714 0.8722 0.884 0.000 0.112 0.004
#> GSM11261 3 0.4607 0.6988 0.204 0.024 0.768 0.004
#> GSM11248 3 0.1209 0.8143 0.032 0.000 0.964 0.004
#> GSM28732 1 0.0000 0.9128 1.000 0.000 0.000 0.000
#> GSM11255 3 0.5165 0.0824 0.484 0.000 0.512 0.004
#> GSM28731 1 0.1118 0.9068 0.964 0.000 0.036 0.000
#> GSM28727 1 0.0000 0.9128 1.000 0.000 0.000 0.000
#> GSM11251 1 0.0000 0.9128 1.000 0.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM28735 1 0.1792 0.756 0.916 0.000 0.000 0 0.084
#> GSM28736 1 0.1792 0.756 0.916 0.000 0.000 0 0.084
#> GSM28737 1 0.4135 0.615 0.656 0.000 0.004 0 0.340
#> GSM11249 5 0.3913 0.586 0.000 0.000 0.324 0 0.676
#> GSM28745 2 0.0000 0.973 0.000 1.000 0.000 0 0.000
#> GSM11244 2 0.0000 0.973 0.000 1.000 0.000 0 0.000
#> GSM28748 2 0.0000 0.973 0.000 1.000 0.000 0 0.000
#> GSM11266 2 0.0000 0.973 0.000 1.000 0.000 0 0.000
#> GSM28730 2 0.0000 0.973 0.000 1.000 0.000 0 0.000
#> GSM11253 2 0.0000 0.973 0.000 1.000 0.000 0 0.000
#> GSM11254 2 0.0000 0.973 0.000 1.000 0.000 0 0.000
#> GSM11260 2 0.0000 0.973 0.000 1.000 0.000 0 0.000
#> GSM28733 2 0.0000 0.973 0.000 1.000 0.000 0 0.000
#> GSM11265 1 0.4135 0.615 0.656 0.000 0.004 0 0.340
#> GSM28739 1 0.4135 0.615 0.656 0.000 0.004 0 0.340
#> GSM11243 3 0.0609 0.982 0.000 0.000 0.980 0 0.020
#> GSM28740 1 0.4135 0.615 0.656 0.000 0.004 0 0.340
#> GSM11259 1 0.0609 0.785 0.980 0.000 0.000 0 0.020
#> GSM28726 1 0.1732 0.760 0.920 0.000 0.000 0 0.080
#> GSM28743 1 0.4135 0.615 0.656 0.000 0.004 0 0.340
#> GSM11256 4 0.0000 1.000 0.000 0.000 0.000 1 0.000
#> GSM11262 1 0.4135 0.615 0.656 0.000 0.004 0 0.340
#> GSM28724 1 0.0404 0.786 0.988 0.000 0.000 0 0.012
#> GSM28725 3 0.0000 0.991 0.000 0.000 1.000 0 0.000
#> GSM11263 3 0.0000 0.991 0.000 0.000 1.000 0 0.000
#> GSM11267 3 0.0000 0.991 0.000 0.000 1.000 0 0.000
#> GSM28744 4 0.0000 1.000 0.000 0.000 0.000 1 0.000
#> GSM28734 4 0.0000 1.000 0.000 0.000 0.000 1 0.000
#> GSM28747 1 0.0880 0.785 0.968 0.000 0.000 0 0.032
#> GSM11257 1 0.2358 0.761 0.888 0.000 0.008 0 0.104
#> GSM11252 5 0.3336 0.739 0.060 0.000 0.096 0 0.844
#> GSM11264 3 0.0000 0.991 0.000 0.000 1.000 0 0.000
#> GSM11247 3 0.0609 0.982 0.000 0.000 0.980 0 0.020
#> GSM11258 4 0.0000 1.000 0.000 0.000 0.000 1 0.000
#> GSM28728 1 0.0404 0.785 0.988 0.000 0.000 0 0.012
#> GSM28746 1 0.5143 0.394 0.532 0.000 0.040 0 0.428
#> GSM28738 1 0.1965 0.761 0.904 0.000 0.000 0 0.096
#> GSM28741 1 0.5736 -0.101 0.468 0.448 0.000 0 0.084
#> GSM28729 1 0.2424 0.761 0.868 0.000 0.000 0 0.132
#> GSM28742 1 0.1732 0.760 0.920 0.000 0.000 0 0.080
#> GSM11250 2 0.3171 0.733 0.176 0.816 0.000 0 0.008
#> GSM11245 5 0.3336 0.739 0.060 0.000 0.096 0 0.844
#> GSM11246 1 0.4101 0.622 0.664 0.000 0.004 0 0.332
#> GSM11261 5 0.4185 0.622 0.024 0.008 0.216 0 0.752
#> GSM11248 5 0.3913 0.586 0.000 0.000 0.324 0 0.676
#> GSM28732 1 0.0794 0.785 0.972 0.000 0.000 0 0.028
#> GSM11255 5 0.4350 0.431 0.268 0.000 0.028 0 0.704
#> GSM28731 1 0.1732 0.774 0.920 0.000 0.000 0 0.080
#> GSM28727 1 0.1043 0.785 0.960 0.000 0.000 0 0.040
#> GSM11251 1 0.1043 0.785 0.960 0.000 0.000 0 0.040
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM28735 1 0.2912 0.683 0.816 0.000 0.000 0 0.172 0.012
#> GSM28736 1 0.2912 0.683 0.816 0.000 0.000 0 0.172 0.012
#> GSM28737 1 0.4915 0.608 0.652 0.000 0.000 0 0.140 0.208
#> GSM11249 6 0.3201 0.358 0.000 0.000 0.208 0 0.012 0.780
#> GSM28745 2 0.0000 0.903 0.000 1.000 0.000 0 0.000 0.000
#> GSM11244 2 0.0000 0.903 0.000 1.000 0.000 0 0.000 0.000
#> GSM28748 2 0.0000 0.903 0.000 1.000 0.000 0 0.000 0.000
#> GSM11266 2 0.0000 0.903 0.000 1.000 0.000 0 0.000 0.000
#> GSM28730 2 0.0000 0.903 0.000 1.000 0.000 0 0.000 0.000
#> GSM11253 2 0.0000 0.903 0.000 1.000 0.000 0 0.000 0.000
#> GSM11254 2 0.0000 0.903 0.000 1.000 0.000 0 0.000 0.000
#> GSM11260 2 0.0000 0.903 0.000 1.000 0.000 0 0.000 0.000
#> GSM28733 2 0.0000 0.903 0.000 1.000 0.000 0 0.000 0.000
#> GSM11265 1 0.4915 0.608 0.652 0.000 0.000 0 0.140 0.208
#> GSM28739 1 0.4915 0.608 0.652 0.000 0.000 0 0.140 0.208
#> GSM11243 3 0.0972 0.961 0.000 0.000 0.964 0 0.028 0.008
#> GSM28740 1 0.4915 0.608 0.652 0.000 0.000 0 0.140 0.208
#> GSM11259 1 0.0146 0.751 0.996 0.000 0.000 0 0.004 0.000
#> GSM28726 1 0.2527 0.692 0.832 0.000 0.000 0 0.168 0.000
#> GSM28743 1 0.4915 0.608 0.652 0.000 0.000 0 0.140 0.208
#> GSM11256 4 0.0000 1.000 0.000 0.000 0.000 1 0.000 0.000
#> GSM11262 1 0.4915 0.608 0.652 0.000 0.000 0 0.140 0.208
#> GSM28724 1 0.0935 0.751 0.964 0.000 0.000 0 0.032 0.004
#> GSM28725 3 0.0000 0.981 0.000 0.000 1.000 0 0.000 0.000
#> GSM11263 3 0.0000 0.981 0.000 0.000 1.000 0 0.000 0.000
#> GSM11267 3 0.0000 0.981 0.000 0.000 1.000 0 0.000 0.000
#> GSM28744 4 0.0000 1.000 0.000 0.000 0.000 1 0.000 0.000
#> GSM28734 4 0.0000 1.000 0.000 0.000 0.000 1 0.000 0.000
#> GSM28747 1 0.0547 0.750 0.980 0.000 0.000 0 0.020 0.000
#> GSM11257 1 0.4461 0.411 0.564 0.000 0.000 0 0.404 0.032
#> GSM11252 6 0.1327 0.501 0.064 0.000 0.000 0 0.000 0.936
#> GSM11264 3 0.0000 0.981 0.000 0.000 1.000 0 0.000 0.000
#> GSM11247 3 0.0972 0.961 0.000 0.000 0.964 0 0.028 0.008
#> GSM11258 4 0.0000 1.000 0.000 0.000 0.000 1 0.000 0.000
#> GSM28728 1 0.1204 0.752 0.944 0.000 0.000 0 0.056 0.000
#> GSM28746 1 0.4660 0.355 0.540 0.000 0.000 0 0.044 0.416
#> GSM28738 1 0.3833 0.411 0.556 0.000 0.000 0 0.444 0.000
#> GSM28741 2 0.5886 0.123 0.400 0.448 0.000 0 0.140 0.012
#> GSM28729 1 0.2883 0.726 0.788 0.000 0.000 0 0.212 0.000
#> GSM28742 1 0.2527 0.692 0.832 0.000 0.000 0 0.168 0.000
#> GSM11250 2 0.3300 0.695 0.148 0.816 0.000 0 0.024 0.012
#> GSM11245 6 0.1327 0.501 0.064 0.000 0.000 0 0.000 0.936
#> GSM11246 1 0.4855 0.613 0.660 0.000 0.000 0 0.136 0.204
#> GSM11261 5 0.6340 0.000 0.024 0.000 0.188 0 0.420 0.368
#> GSM11248 6 0.3201 0.358 0.000 0.000 0.208 0 0.012 0.780
#> GSM28732 1 0.0146 0.752 0.996 0.000 0.000 0 0.004 0.000
#> GSM11255 6 0.5103 0.171 0.268 0.000 0.000 0 0.124 0.608
#> GSM28731 1 0.1501 0.742 0.924 0.000 0.000 0 0.076 0.000
#> GSM28727 1 0.0547 0.750 0.980 0.000 0.000 0 0.020 0.000
#> GSM11251 1 0.0547 0.750 0.980 0.000 0.000 0 0.020 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n tissue(p) k
#> CV:hclust 49 0.393 2
#> CV:hclust 48 0.367 3
#> CV:hclust 48 0.509 4
#> CV:hclust 47 0.464 5
#> CV:hclust 42 0.448 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21342 rows and 50 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.362 0.843 0.823 0.3625 0.650 0.650
#> 3 3 0.944 0.959 0.961 0.4982 0.764 0.651
#> 4 4 0.716 0.790 0.866 0.2598 0.909 0.803
#> 5 5 0.772 0.804 0.883 0.1189 0.853 0.606
#> 6 6 0.793 0.717 0.819 0.0629 0.939 0.756
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM28735 1 0.6048 0.848 0.852 0.148
#> GSM28736 1 0.6048 0.848 0.852 0.148
#> GSM28737 1 0.6048 0.848 0.852 0.148
#> GSM11249 1 0.6438 0.704 0.836 0.164
#> GSM28745 2 0.6438 0.989 0.164 0.836
#> GSM11244 2 0.6438 0.989 0.164 0.836
#> GSM28748 2 0.6438 0.989 0.164 0.836
#> GSM11266 2 0.6438 0.989 0.164 0.836
#> GSM28730 2 0.6438 0.989 0.164 0.836
#> GSM11253 2 0.6438 0.989 0.164 0.836
#> GSM11254 2 0.6438 0.989 0.164 0.836
#> GSM11260 2 0.6438 0.989 0.164 0.836
#> GSM28733 2 0.6438 0.989 0.164 0.836
#> GSM11265 1 0.6048 0.848 0.852 0.148
#> GSM28739 1 0.6048 0.848 0.852 0.148
#> GSM11243 1 0.7674 0.664 0.776 0.224
#> GSM28740 1 0.6048 0.848 0.852 0.148
#> GSM11259 1 0.6048 0.848 0.852 0.148
#> GSM28726 1 0.6048 0.848 0.852 0.148
#> GSM28743 1 0.6048 0.848 0.852 0.148
#> GSM11256 1 0.0376 0.818 0.996 0.004
#> GSM11262 1 0.6048 0.848 0.852 0.148
#> GSM28724 1 0.6048 0.848 0.852 0.148
#> GSM28725 1 0.7674 0.664 0.776 0.224
#> GSM11263 1 0.7674 0.664 0.776 0.224
#> GSM11267 1 0.7674 0.664 0.776 0.224
#> GSM28744 1 0.0376 0.818 0.996 0.004
#> GSM28734 1 0.2603 0.795 0.956 0.044
#> GSM28747 1 0.6048 0.848 0.852 0.148
#> GSM11257 1 0.3431 0.835 0.936 0.064
#> GSM11252 1 0.0000 0.820 1.000 0.000
#> GSM11264 1 0.7674 0.664 0.776 0.224
#> GSM11247 1 0.7674 0.664 0.776 0.224
#> GSM11258 1 0.0376 0.818 0.996 0.004
#> GSM28728 1 0.6048 0.848 0.852 0.148
#> GSM28746 1 0.1414 0.825 0.980 0.020
#> GSM28738 1 0.6048 0.848 0.852 0.148
#> GSM28741 2 0.7950 0.884 0.240 0.760
#> GSM28729 1 0.6048 0.848 0.852 0.148
#> GSM28742 1 0.6048 0.848 0.852 0.148
#> GSM11250 2 0.6438 0.989 0.164 0.836
#> GSM11245 1 0.0376 0.818 0.996 0.004
#> GSM11246 1 0.6048 0.848 0.852 0.148
#> GSM11261 1 0.4298 0.792 0.912 0.088
#> GSM11248 1 0.6438 0.704 0.836 0.164
#> GSM28732 1 0.6048 0.848 0.852 0.148
#> GSM11255 1 0.0000 0.820 1.000 0.000
#> GSM28731 1 0.6048 0.848 0.852 0.148
#> GSM28727 1 0.6048 0.848 0.852 0.148
#> GSM11251 1 0.6048 0.848 0.852 0.148
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM28735 1 0.0000 0.961 1.000 0.000 0.000
#> GSM28736 1 0.0000 0.961 1.000 0.000 0.000
#> GSM28737 1 0.0237 0.960 0.996 0.000 0.004
#> GSM11249 3 0.0892 1.000 0.020 0.000 0.980
#> GSM28745 2 0.1753 1.000 0.048 0.952 0.000
#> GSM11244 2 0.1753 1.000 0.048 0.952 0.000
#> GSM28748 2 0.1753 1.000 0.048 0.952 0.000
#> GSM11266 2 0.1753 1.000 0.048 0.952 0.000
#> GSM28730 2 0.1753 1.000 0.048 0.952 0.000
#> GSM11253 2 0.1753 1.000 0.048 0.952 0.000
#> GSM11254 2 0.1753 1.000 0.048 0.952 0.000
#> GSM11260 2 0.1753 1.000 0.048 0.952 0.000
#> GSM28733 2 0.1753 1.000 0.048 0.952 0.000
#> GSM11265 1 0.1289 0.956 0.968 0.000 0.032
#> GSM28739 1 0.1289 0.956 0.968 0.000 0.032
#> GSM11243 3 0.0892 1.000 0.020 0.000 0.980
#> GSM28740 1 0.1289 0.956 0.968 0.000 0.032
#> GSM11259 1 0.0000 0.961 1.000 0.000 0.000
#> GSM28726 1 0.0000 0.961 1.000 0.000 0.000
#> GSM28743 1 0.1289 0.956 0.968 0.000 0.032
#> GSM11256 1 0.3692 0.910 0.896 0.048 0.056
#> GSM11262 1 0.1289 0.956 0.968 0.000 0.032
#> GSM28724 1 0.0000 0.961 1.000 0.000 0.000
#> GSM28725 3 0.0892 1.000 0.020 0.000 0.980
#> GSM11263 3 0.0892 1.000 0.020 0.000 0.980
#> GSM11267 3 0.0892 1.000 0.020 0.000 0.980
#> GSM28744 1 0.3589 0.912 0.900 0.048 0.052
#> GSM28734 1 0.5435 0.829 0.808 0.048 0.144
#> GSM28747 1 0.0000 0.961 1.000 0.000 0.000
#> GSM11257 1 0.1453 0.948 0.968 0.024 0.008
#> GSM11252 1 0.1411 0.953 0.964 0.000 0.036
#> GSM11264 3 0.0892 1.000 0.020 0.000 0.980
#> GSM11247 3 0.0892 1.000 0.020 0.000 0.980
#> GSM11258 1 0.3983 0.908 0.884 0.048 0.068
#> GSM28728 1 0.0000 0.961 1.000 0.000 0.000
#> GSM28746 1 0.1529 0.951 0.960 0.000 0.040
#> GSM28738 1 0.1015 0.954 0.980 0.012 0.008
#> GSM28741 1 0.3267 0.861 0.884 0.116 0.000
#> GSM28729 1 0.0000 0.961 1.000 0.000 0.000
#> GSM28742 1 0.0000 0.961 1.000 0.000 0.000
#> GSM11250 2 0.1753 1.000 0.048 0.952 0.000
#> GSM11245 1 0.1529 0.951 0.960 0.000 0.040
#> GSM11246 1 0.0747 0.959 0.984 0.000 0.016
#> GSM11261 1 0.5497 0.635 0.708 0.000 0.292
#> GSM11248 3 0.0892 1.000 0.020 0.000 0.980
#> GSM28732 1 0.0000 0.961 1.000 0.000 0.000
#> GSM11255 1 0.1529 0.951 0.960 0.000 0.040
#> GSM28731 1 0.0000 0.961 1.000 0.000 0.000
#> GSM28727 1 0.0000 0.961 1.000 0.000 0.000
#> GSM11251 1 0.0237 0.960 0.996 0.000 0.004
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM28735 1 0.2011 0.727 0.920 0.000 0.000 0.080
#> GSM28736 1 0.3311 0.666 0.828 0.000 0.000 0.172
#> GSM28737 1 0.4401 0.659 0.724 0.000 0.004 0.272
#> GSM11249 3 0.2164 0.932 0.004 0.004 0.924 0.068
#> GSM28745 2 0.0336 1.000 0.008 0.992 0.000 0.000
#> GSM11244 2 0.0336 1.000 0.008 0.992 0.000 0.000
#> GSM28748 2 0.0336 1.000 0.008 0.992 0.000 0.000
#> GSM11266 2 0.0336 1.000 0.008 0.992 0.000 0.000
#> GSM28730 2 0.0336 1.000 0.008 0.992 0.000 0.000
#> GSM11253 2 0.0336 1.000 0.008 0.992 0.000 0.000
#> GSM11254 2 0.0336 1.000 0.008 0.992 0.000 0.000
#> GSM11260 2 0.0336 1.000 0.008 0.992 0.000 0.000
#> GSM28733 2 0.0336 1.000 0.008 0.992 0.000 0.000
#> GSM11265 1 0.4608 0.634 0.692 0.000 0.004 0.304
#> GSM28739 1 0.4608 0.634 0.692 0.000 0.004 0.304
#> GSM11243 3 0.0895 0.968 0.004 0.000 0.976 0.020
#> GSM28740 1 0.4608 0.634 0.692 0.000 0.004 0.304
#> GSM11259 1 0.0336 0.753 0.992 0.000 0.000 0.008
#> GSM28726 1 0.3311 0.666 0.828 0.000 0.000 0.172
#> GSM28743 1 0.4608 0.634 0.692 0.000 0.004 0.304
#> GSM11256 4 0.3626 0.743 0.184 0.000 0.004 0.812
#> GSM11262 1 0.4608 0.634 0.692 0.000 0.004 0.304
#> GSM28724 1 0.0336 0.753 0.992 0.000 0.000 0.008
#> GSM28725 3 0.0188 0.973 0.004 0.000 0.996 0.000
#> GSM11263 3 0.0188 0.973 0.004 0.000 0.996 0.000
#> GSM11267 3 0.0376 0.973 0.004 0.004 0.992 0.000
#> GSM28744 4 0.1978 0.862 0.068 0.000 0.004 0.928
#> GSM28734 4 0.1833 0.850 0.024 0.000 0.032 0.944
#> GSM28747 1 0.0921 0.754 0.972 0.000 0.000 0.028
#> GSM11257 1 0.4122 0.585 0.760 0.004 0.000 0.236
#> GSM11252 1 0.4401 0.640 0.724 0.000 0.004 0.272
#> GSM11264 3 0.0376 0.973 0.004 0.004 0.992 0.000
#> GSM11247 3 0.0895 0.968 0.004 0.000 0.976 0.020
#> GSM11258 4 0.2345 0.785 0.100 0.000 0.000 0.900
#> GSM28728 1 0.1716 0.735 0.936 0.000 0.000 0.064
#> GSM28746 1 0.3208 0.722 0.848 0.000 0.004 0.148
#> GSM28738 1 0.4018 0.598 0.772 0.004 0.000 0.224
#> GSM28741 1 0.3198 0.701 0.880 0.080 0.000 0.040
#> GSM28729 1 0.3024 0.686 0.852 0.000 0.000 0.148
#> GSM28742 1 0.3311 0.666 0.828 0.000 0.000 0.172
#> GSM11250 2 0.0336 1.000 0.008 0.992 0.000 0.000
#> GSM11245 1 0.4655 0.602 0.684 0.000 0.004 0.312
#> GSM11246 1 0.4584 0.637 0.696 0.000 0.004 0.300
#> GSM11261 1 0.6627 0.144 0.504 0.000 0.412 0.084
#> GSM11248 3 0.2088 0.936 0.004 0.004 0.928 0.064
#> GSM28732 1 0.0188 0.754 0.996 0.000 0.000 0.004
#> GSM11255 1 0.4313 0.664 0.736 0.000 0.004 0.260
#> GSM28731 1 0.0817 0.754 0.976 0.000 0.000 0.024
#> GSM28727 1 0.0000 0.754 1.000 0.000 0.000 0.000
#> GSM11251 1 0.0188 0.754 0.996 0.000 0.004 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM28735 5 0.1195 0.7849 0.028 0.000 0.000 0.012 0.960
#> GSM28736 5 0.0771 0.7802 0.004 0.000 0.000 0.020 0.976
#> GSM28737 1 0.3093 0.8858 0.824 0.000 0.000 0.008 0.168
#> GSM11249 3 0.3612 0.8399 0.100 0.000 0.832 0.064 0.004
#> GSM28745 2 0.0000 1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM28748 2 0.0000 1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM11266 2 0.0000 1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM11265 1 0.3123 0.8901 0.828 0.000 0.000 0.012 0.160
#> GSM28739 1 0.3123 0.8901 0.828 0.000 0.000 0.012 0.160
#> GSM11243 3 0.1907 0.9099 0.044 0.000 0.928 0.028 0.000
#> GSM28740 1 0.3123 0.8901 0.828 0.000 0.000 0.012 0.160
#> GSM11259 5 0.1732 0.7735 0.080 0.000 0.000 0.000 0.920
#> GSM28726 5 0.0771 0.7802 0.004 0.000 0.000 0.020 0.976
#> GSM28743 1 0.3123 0.8901 0.828 0.000 0.000 0.012 0.160
#> GSM11256 4 0.1211 0.9800 0.016 0.000 0.000 0.960 0.024
#> GSM11262 1 0.3123 0.8901 0.828 0.000 0.000 0.012 0.160
#> GSM28724 5 0.2011 0.7747 0.088 0.000 0.000 0.004 0.908
#> GSM28725 3 0.0000 0.9313 0.000 0.000 1.000 0.000 0.000
#> GSM11263 3 0.0404 0.9300 0.012 0.000 0.988 0.000 0.000
#> GSM11267 3 0.0162 0.9312 0.000 0.000 0.996 0.004 0.000
#> GSM28744 4 0.1211 0.9889 0.024 0.000 0.000 0.960 0.016
#> GSM28734 4 0.1211 0.9889 0.024 0.000 0.000 0.960 0.016
#> GSM28747 5 0.4227 0.1409 0.420 0.000 0.000 0.000 0.580
#> GSM11257 5 0.1522 0.7581 0.012 0.000 0.000 0.044 0.944
#> GSM11252 1 0.4728 0.6548 0.700 0.000 0.000 0.060 0.240
#> GSM11264 3 0.0162 0.9312 0.000 0.000 0.996 0.004 0.000
#> GSM11247 3 0.2139 0.9038 0.052 0.000 0.916 0.032 0.000
#> GSM11258 4 0.1364 0.9790 0.036 0.000 0.000 0.952 0.012
#> GSM28728 5 0.1768 0.7801 0.072 0.000 0.000 0.004 0.924
#> GSM28746 5 0.4446 -0.0207 0.476 0.000 0.000 0.004 0.520
#> GSM28738 5 0.1444 0.7597 0.012 0.000 0.000 0.040 0.948
#> GSM28741 5 0.1455 0.7846 0.032 0.008 0.000 0.008 0.952
#> GSM28729 5 0.0798 0.7775 0.016 0.000 0.000 0.008 0.976
#> GSM28742 5 0.0798 0.7790 0.008 0.000 0.000 0.016 0.976
#> GSM11250 2 0.0000 1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM11245 1 0.4701 0.6608 0.704 0.000 0.000 0.060 0.236
#> GSM11246 1 0.3163 0.8886 0.824 0.000 0.000 0.012 0.164
#> GSM11261 5 0.6536 0.0134 0.088 0.000 0.392 0.036 0.484
#> GSM11248 3 0.3547 0.8437 0.100 0.000 0.836 0.060 0.004
#> GSM28732 5 0.1792 0.7703 0.084 0.000 0.000 0.000 0.916
#> GSM11255 1 0.3109 0.7479 0.800 0.000 0.000 0.000 0.200
#> GSM28731 5 0.4235 0.1423 0.424 0.000 0.000 0.000 0.576
#> GSM28727 5 0.2690 0.7096 0.156 0.000 0.000 0.000 0.844
#> GSM11251 5 0.3837 0.4649 0.308 0.000 0.000 0.000 0.692
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM28735 5 0.0458 0.6830 0.016 0.000 0.000 0.000 0.984 NA
#> GSM28736 5 0.1590 0.6786 0.008 0.000 0.000 0.008 0.936 NA
#> GSM28737 1 0.0458 0.7036 0.984 0.000 0.000 0.000 0.016 NA
#> GSM11249 3 0.3986 0.7496 0.012 0.000 0.748 0.036 0.000 NA
#> GSM28745 2 0.0260 0.9959 0.000 0.992 0.000 0.000 0.000 NA
#> GSM11244 2 0.0000 0.9972 0.000 1.000 0.000 0.000 0.000 NA
#> GSM28748 2 0.0146 0.9970 0.000 0.996 0.000 0.000 0.000 NA
#> GSM11266 2 0.0000 0.9972 0.000 1.000 0.000 0.000 0.000 NA
#> GSM28730 2 0.0260 0.9959 0.000 0.992 0.000 0.000 0.000 NA
#> GSM11253 2 0.0146 0.9970 0.000 0.996 0.000 0.000 0.000 NA
#> GSM11254 2 0.0000 0.9972 0.000 1.000 0.000 0.000 0.000 NA
#> GSM11260 2 0.0260 0.9959 0.000 0.992 0.000 0.000 0.000 NA
#> GSM28733 2 0.0000 0.9972 0.000 1.000 0.000 0.000 0.000 NA
#> GSM11265 1 0.0748 0.7026 0.976 0.000 0.000 0.004 0.016 NA
#> GSM28739 1 0.0748 0.7026 0.976 0.000 0.000 0.004 0.016 NA
#> GSM11243 3 0.2302 0.8473 0.000 0.000 0.872 0.008 0.000 NA
#> GSM28740 1 0.0603 0.7033 0.980 0.000 0.000 0.004 0.016 NA
#> GSM11259 5 0.4535 0.6220 0.152 0.000 0.000 0.000 0.704 NA
#> GSM28726 5 0.3133 0.6486 0.008 0.000 0.000 0.008 0.804 NA
#> GSM28743 1 0.0862 0.7025 0.972 0.000 0.000 0.004 0.016 NA
#> GSM11256 4 0.0725 0.9829 0.012 0.000 0.000 0.976 0.000 NA
#> GSM11262 1 0.0862 0.7025 0.972 0.000 0.000 0.004 0.016 NA
#> GSM28724 5 0.5156 0.5658 0.164 0.000 0.000 0.000 0.620 NA
#> GSM28725 3 0.0000 0.8928 0.000 0.000 1.000 0.000 0.000 NA
#> GSM11263 3 0.0000 0.8928 0.000 0.000 1.000 0.000 0.000 NA
#> GSM11267 3 0.0000 0.8928 0.000 0.000 1.000 0.000 0.000 NA
#> GSM28744 4 0.0260 0.9856 0.008 0.000 0.000 0.992 0.000 NA
#> GSM28734 4 0.0520 0.9845 0.008 0.000 0.000 0.984 0.000 NA
#> GSM28747 1 0.5954 0.0174 0.408 0.000 0.000 0.000 0.372 NA
#> GSM11257 5 0.4635 0.5559 0.008 0.000 0.000 0.024 0.488 NA
#> GSM11252 1 0.5961 0.4687 0.456 0.000 0.000 0.036 0.096 NA
#> GSM11264 3 0.0000 0.8928 0.000 0.000 1.000 0.000 0.000 NA
#> GSM11247 3 0.2346 0.8452 0.000 0.000 0.868 0.008 0.000 NA
#> GSM11258 4 0.0713 0.9765 0.028 0.000 0.000 0.972 0.000 NA
#> GSM28728 5 0.4261 0.6472 0.112 0.000 0.000 0.000 0.732 NA
#> GSM28746 1 0.6149 0.1944 0.380 0.000 0.000 0.004 0.244 NA
#> GSM28738 5 0.4362 0.5768 0.004 0.000 0.000 0.020 0.584 NA
#> GSM28741 5 0.1074 0.6776 0.012 0.000 0.000 0.000 0.960 NA
#> GSM28729 5 0.4321 0.6229 0.012 0.000 0.000 0.008 0.580 NA
#> GSM28742 5 0.3023 0.6479 0.004 0.000 0.000 0.008 0.808 NA
#> GSM11250 2 0.0000 0.9972 0.000 1.000 0.000 0.000 0.000 NA
#> GSM11245 1 0.5961 0.4687 0.456 0.000 0.000 0.036 0.096 NA
#> GSM11246 1 0.0458 0.7036 0.984 0.000 0.000 0.000 0.016 NA
#> GSM11261 5 0.6840 0.1910 0.040 0.000 0.252 0.004 0.404 NA
#> GSM11248 3 0.4015 0.7464 0.012 0.000 0.744 0.036 0.000 NA
#> GSM28732 5 0.5170 0.5213 0.176 0.000 0.000 0.000 0.620 NA
#> GSM11255 1 0.4388 0.5438 0.572 0.000 0.000 0.000 0.028 NA
#> GSM28731 1 0.6051 -0.0274 0.384 0.000 0.000 0.000 0.360 NA
#> GSM28727 5 0.4358 0.5862 0.196 0.000 0.000 0.000 0.712 NA
#> GSM11251 5 0.5083 0.3888 0.320 0.000 0.000 0.000 0.580 NA
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n tissue(p) k
#> CV:kmeans 50 0.394 2
#> CV:kmeans 50 0.370 3
#> CV:kmeans 49 0.509 4
#> CV:kmeans 45 0.483 5
#> CV:kmeans 43 0.487 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21342 rows and 50 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.735 0.842 0.927 0.4614 0.519 0.519
#> 3 3 0.856 0.838 0.938 0.4334 0.726 0.518
#> 4 4 0.757 0.746 0.878 0.1360 0.776 0.451
#> 5 5 0.802 0.782 0.886 0.0700 0.933 0.738
#> 6 6 0.818 0.705 0.807 0.0389 0.968 0.842
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM28735 1 0.224 0.921 0.964 0.036
#> GSM28736 2 0.871 0.523 0.292 0.708
#> GSM28737 1 0.000 0.958 1.000 0.000
#> GSM11249 1 0.000 0.958 1.000 0.000
#> GSM28745 2 0.000 0.836 0.000 1.000
#> GSM11244 2 0.000 0.836 0.000 1.000
#> GSM28748 2 0.000 0.836 0.000 1.000
#> GSM11266 2 0.000 0.836 0.000 1.000
#> GSM28730 2 0.000 0.836 0.000 1.000
#> GSM11253 2 0.000 0.836 0.000 1.000
#> GSM11254 2 0.000 0.836 0.000 1.000
#> GSM11260 2 0.000 0.836 0.000 1.000
#> GSM28733 2 0.000 0.836 0.000 1.000
#> GSM11265 1 0.000 0.958 1.000 0.000
#> GSM28739 1 0.000 0.958 1.000 0.000
#> GSM11243 2 0.955 0.571 0.376 0.624
#> GSM28740 1 0.000 0.958 1.000 0.000
#> GSM11259 1 0.000 0.958 1.000 0.000
#> GSM28726 1 0.958 0.358 0.620 0.380
#> GSM28743 1 0.000 0.958 1.000 0.000
#> GSM11256 1 0.000 0.958 1.000 0.000
#> GSM11262 1 0.000 0.958 1.000 0.000
#> GSM28724 1 0.000 0.958 1.000 0.000
#> GSM28725 2 0.955 0.571 0.376 0.624
#> GSM11263 2 0.955 0.571 0.376 0.624
#> GSM11267 2 0.961 0.556 0.384 0.616
#> GSM28744 1 0.000 0.958 1.000 0.000
#> GSM28734 1 0.000 0.958 1.000 0.000
#> GSM28747 1 0.000 0.958 1.000 0.000
#> GSM11257 1 0.000 0.958 1.000 0.000
#> GSM11252 1 0.000 0.958 1.000 0.000
#> GSM11264 2 0.955 0.571 0.376 0.624
#> GSM11247 2 0.955 0.571 0.376 0.624
#> GSM11258 1 0.000 0.958 1.000 0.000
#> GSM28728 1 0.000 0.958 1.000 0.000
#> GSM28746 1 0.000 0.958 1.000 0.000
#> GSM28738 1 0.973 0.301 0.596 0.404
#> GSM28741 2 0.000 0.836 0.000 1.000
#> GSM28729 1 0.000 0.958 1.000 0.000
#> GSM28742 1 0.730 0.696 0.796 0.204
#> GSM11250 2 0.000 0.836 0.000 1.000
#> GSM11245 1 0.000 0.958 1.000 0.000
#> GSM11246 1 0.000 0.958 1.000 0.000
#> GSM11261 2 0.388 0.805 0.076 0.924
#> GSM11248 1 0.000 0.958 1.000 0.000
#> GSM28732 1 0.000 0.958 1.000 0.000
#> GSM11255 1 0.000 0.958 1.000 0.000
#> GSM28731 1 0.000 0.958 1.000 0.000
#> GSM28727 1 0.000 0.958 1.000 0.000
#> GSM11251 1 0.000 0.958 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM28735 1 0.0000 0.8944 1.000 0.000 0.000
#> GSM28736 2 0.0000 0.9875 0.000 1.000 0.000
#> GSM28737 1 0.0000 0.8944 1.000 0.000 0.000
#> GSM11249 3 0.0000 0.9275 0.000 0.000 1.000
#> GSM28745 2 0.0000 0.9875 0.000 1.000 0.000
#> GSM11244 2 0.0000 0.9875 0.000 1.000 0.000
#> GSM28748 2 0.0000 0.9875 0.000 1.000 0.000
#> GSM11266 2 0.0000 0.9875 0.000 1.000 0.000
#> GSM28730 2 0.0000 0.9875 0.000 1.000 0.000
#> GSM11253 2 0.0000 0.9875 0.000 1.000 0.000
#> GSM11254 2 0.0000 0.9875 0.000 1.000 0.000
#> GSM11260 2 0.0000 0.9875 0.000 1.000 0.000
#> GSM28733 2 0.0000 0.9875 0.000 1.000 0.000
#> GSM11265 1 0.0000 0.8944 1.000 0.000 0.000
#> GSM28739 1 0.0000 0.8944 1.000 0.000 0.000
#> GSM11243 3 0.0000 0.9275 0.000 0.000 1.000
#> GSM28740 1 0.0000 0.8944 1.000 0.000 0.000
#> GSM11259 1 0.0000 0.8944 1.000 0.000 0.000
#> GSM28726 2 0.3551 0.8384 0.132 0.868 0.000
#> GSM28743 1 0.0000 0.8944 1.000 0.000 0.000
#> GSM11256 3 0.0747 0.9207 0.016 0.000 0.984
#> GSM11262 1 0.0000 0.8944 1.000 0.000 0.000
#> GSM28724 1 0.0000 0.8944 1.000 0.000 0.000
#> GSM28725 3 0.0000 0.9275 0.000 0.000 1.000
#> GSM11263 3 0.0000 0.9275 0.000 0.000 1.000
#> GSM11267 3 0.0000 0.9275 0.000 0.000 1.000
#> GSM28744 3 0.1964 0.8898 0.056 0.000 0.944
#> GSM28734 3 0.0747 0.9207 0.016 0.000 0.984
#> GSM28747 1 0.0000 0.8944 1.000 0.000 0.000
#> GSM11257 3 0.5397 0.5787 0.280 0.000 0.720
#> GSM11252 1 0.6180 0.2528 0.584 0.000 0.416
#> GSM11264 3 0.0000 0.9275 0.000 0.000 1.000
#> GSM11247 3 0.0000 0.9275 0.000 0.000 1.000
#> GSM11258 1 0.5948 0.4028 0.640 0.000 0.360
#> GSM28728 1 0.0000 0.8944 1.000 0.000 0.000
#> GSM28746 1 0.4654 0.6777 0.792 0.000 0.208
#> GSM28738 1 0.9857 0.0571 0.404 0.336 0.260
#> GSM28741 2 0.0000 0.9875 0.000 1.000 0.000
#> GSM28729 1 0.0000 0.8944 1.000 0.000 0.000
#> GSM28742 1 0.6299 0.0478 0.524 0.476 0.000
#> GSM11250 2 0.0000 0.9875 0.000 1.000 0.000
#> GSM11245 3 0.6286 0.0752 0.464 0.000 0.536
#> GSM11246 1 0.0000 0.8944 1.000 0.000 0.000
#> GSM11261 3 0.0000 0.9275 0.000 0.000 1.000
#> GSM11248 3 0.0000 0.9275 0.000 0.000 1.000
#> GSM28732 1 0.0000 0.8944 1.000 0.000 0.000
#> GSM11255 1 0.2261 0.8384 0.932 0.000 0.068
#> GSM28731 1 0.0000 0.8944 1.000 0.000 0.000
#> GSM28727 1 0.0000 0.8944 1.000 0.000 0.000
#> GSM11251 1 0.0000 0.8944 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM28735 1 0.0817 0.6374 0.976 0.000 0.000 0.024
#> GSM28736 1 0.3837 0.4586 0.776 0.224 0.000 0.000
#> GSM28737 4 0.0188 0.8693 0.004 0.000 0.000 0.996
#> GSM11249 3 0.0000 0.9597 0.000 0.000 1.000 0.000
#> GSM28745 2 0.0000 1.0000 0.000 1.000 0.000 0.000
#> GSM11244 2 0.0000 1.0000 0.000 1.000 0.000 0.000
#> GSM28748 2 0.0000 1.0000 0.000 1.000 0.000 0.000
#> GSM11266 2 0.0000 1.0000 0.000 1.000 0.000 0.000
#> GSM28730 2 0.0000 1.0000 0.000 1.000 0.000 0.000
#> GSM11253 2 0.0000 1.0000 0.000 1.000 0.000 0.000
#> GSM11254 2 0.0000 1.0000 0.000 1.000 0.000 0.000
#> GSM11260 2 0.0000 1.0000 0.000 1.000 0.000 0.000
#> GSM28733 2 0.0000 1.0000 0.000 1.000 0.000 0.000
#> GSM11265 4 0.0000 0.8723 0.000 0.000 0.000 1.000
#> GSM28739 4 0.0000 0.8723 0.000 0.000 0.000 1.000
#> GSM11243 3 0.0000 0.9597 0.000 0.000 1.000 0.000
#> GSM28740 4 0.0000 0.8723 0.000 0.000 0.000 1.000
#> GSM11259 1 0.4925 0.4281 0.572 0.000 0.000 0.428
#> GSM28726 1 0.0188 0.6377 0.996 0.000 0.000 0.004
#> GSM28743 4 0.0000 0.8723 0.000 0.000 0.000 1.000
#> GSM11256 1 0.6865 -0.0340 0.524 0.000 0.364 0.112
#> GSM11262 4 0.0000 0.8723 0.000 0.000 0.000 1.000
#> GSM28724 1 0.4992 0.3528 0.524 0.000 0.000 0.476
#> GSM28725 3 0.0000 0.9597 0.000 0.000 1.000 0.000
#> GSM11263 3 0.0000 0.9597 0.000 0.000 1.000 0.000
#> GSM11267 3 0.0000 0.9597 0.000 0.000 1.000 0.000
#> GSM28744 1 0.6602 0.0312 0.484 0.000 0.080 0.436
#> GSM28734 3 0.6719 0.5287 0.204 0.000 0.616 0.180
#> GSM28747 1 0.4998 0.3280 0.512 0.000 0.000 0.488
#> GSM11257 1 0.2060 0.6108 0.932 0.000 0.052 0.016
#> GSM11252 4 0.4776 0.6549 0.016 0.000 0.272 0.712
#> GSM11264 3 0.0000 0.9597 0.000 0.000 1.000 0.000
#> GSM11247 3 0.0000 0.9597 0.000 0.000 1.000 0.000
#> GSM11258 4 0.1022 0.8456 0.032 0.000 0.000 0.968
#> GSM28728 1 0.2814 0.6133 0.868 0.000 0.000 0.132
#> GSM28746 4 0.5613 0.6302 0.120 0.000 0.156 0.724
#> GSM28738 1 0.0188 0.6355 0.996 0.004 0.000 0.000
#> GSM28741 2 0.0000 1.0000 0.000 1.000 0.000 0.000
#> GSM28729 1 0.0188 0.6377 0.996 0.000 0.000 0.004
#> GSM28742 1 0.0188 0.6377 0.996 0.000 0.000 0.004
#> GSM11250 2 0.0000 1.0000 0.000 1.000 0.000 0.000
#> GSM11245 4 0.4819 0.5631 0.004 0.000 0.344 0.652
#> GSM11246 4 0.0000 0.8723 0.000 0.000 0.000 1.000
#> GSM11261 3 0.0000 0.9597 0.000 0.000 1.000 0.000
#> GSM11248 3 0.0000 0.9597 0.000 0.000 1.000 0.000
#> GSM28732 1 0.4941 0.4197 0.564 0.000 0.000 0.436
#> GSM11255 4 0.2944 0.7943 0.004 0.000 0.128 0.868
#> GSM28731 1 0.4994 0.3462 0.520 0.000 0.000 0.480
#> GSM28727 1 0.4955 0.4095 0.556 0.000 0.000 0.444
#> GSM11251 1 0.4955 0.4095 0.556 0.000 0.000 0.444
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM28735 5 0.2773 0.6905 0.020 0.000 0.000 0.112 0.868
#> GSM28736 5 0.5413 0.4875 0.000 0.172 0.000 0.164 0.664
#> GSM28737 1 0.0162 0.8518 0.996 0.000 0.000 0.000 0.004
#> GSM11249 3 0.2439 0.8447 0.000 0.000 0.876 0.120 0.004
#> GSM28745 2 0.0000 0.9991 0.000 1.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.9991 0.000 1.000 0.000 0.000 0.000
#> GSM28748 2 0.0000 0.9991 0.000 1.000 0.000 0.000 0.000
#> GSM11266 2 0.0000 0.9991 0.000 1.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 0.9991 0.000 1.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.9991 0.000 1.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.9991 0.000 1.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.9991 0.000 1.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.9991 0.000 1.000 0.000 0.000 0.000
#> GSM11265 1 0.0000 0.8548 1.000 0.000 0.000 0.000 0.000
#> GSM28739 1 0.0000 0.8548 1.000 0.000 0.000 0.000 0.000
#> GSM11243 3 0.0000 0.9804 0.000 0.000 1.000 0.000 0.000
#> GSM28740 1 0.0000 0.8548 1.000 0.000 0.000 0.000 0.000
#> GSM11259 5 0.2605 0.7314 0.148 0.000 0.000 0.000 0.852
#> GSM28726 5 0.2583 0.6753 0.000 0.004 0.000 0.132 0.864
#> GSM28743 1 0.0000 0.8548 1.000 0.000 0.000 0.000 0.000
#> GSM11256 4 0.0000 0.7837 0.000 0.000 0.000 1.000 0.000
#> GSM11262 1 0.0000 0.8548 1.000 0.000 0.000 0.000 0.000
#> GSM28724 5 0.6053 0.5269 0.292 0.000 0.004 0.136 0.568
#> GSM28725 3 0.0000 0.9804 0.000 0.000 1.000 0.000 0.000
#> GSM11263 3 0.0000 0.9804 0.000 0.000 1.000 0.000 0.000
#> GSM11267 3 0.0000 0.9804 0.000 0.000 1.000 0.000 0.000
#> GSM28744 4 0.0162 0.7854 0.004 0.000 0.000 0.996 0.000
#> GSM28734 4 0.2300 0.7567 0.024 0.000 0.072 0.904 0.000
#> GSM28747 5 0.4957 0.3565 0.444 0.000 0.000 0.028 0.528
#> GSM11257 4 0.1671 0.7395 0.000 0.000 0.000 0.924 0.076
#> GSM11252 1 0.6775 0.3056 0.528 0.000 0.104 0.316 0.052
#> GSM11264 3 0.0000 0.9804 0.000 0.000 1.000 0.000 0.000
#> GSM11247 3 0.0000 0.9804 0.000 0.000 1.000 0.000 0.000
#> GSM11258 4 0.3242 0.6376 0.216 0.000 0.000 0.784 0.000
#> GSM28728 5 0.2464 0.7303 0.096 0.000 0.000 0.016 0.888
#> GSM28746 4 0.6614 -0.0518 0.416 0.000 0.012 0.424 0.148
#> GSM28738 5 0.4101 0.4159 0.000 0.000 0.000 0.372 0.628
#> GSM28741 2 0.0290 0.9913 0.000 0.992 0.000 0.000 0.008
#> GSM28729 5 0.2338 0.6870 0.004 0.000 0.000 0.112 0.884
#> GSM28742 5 0.2280 0.6825 0.000 0.000 0.000 0.120 0.880
#> GSM11250 2 0.0000 0.9991 0.000 1.000 0.000 0.000 0.000
#> GSM11245 1 0.6938 0.2285 0.492 0.000 0.148 0.324 0.036
#> GSM11246 1 0.0162 0.8526 0.996 0.000 0.000 0.000 0.004
#> GSM11261 3 0.0290 0.9747 0.000 0.000 0.992 0.008 0.000
#> GSM11248 3 0.0324 0.9758 0.000 0.000 0.992 0.004 0.004
#> GSM28732 5 0.2848 0.7286 0.156 0.000 0.000 0.004 0.840
#> GSM11255 1 0.4195 0.7202 0.812 0.000 0.056 0.096 0.036
#> GSM28731 5 0.4288 0.4847 0.384 0.000 0.000 0.004 0.612
#> GSM28727 5 0.3305 0.7065 0.224 0.000 0.000 0.000 0.776
#> GSM11251 5 0.3586 0.6777 0.264 0.000 0.000 0.000 0.736
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM28735 5 0.4514 0.456 0.008 0.000 0.000 0.044 0.660 0.288
#> GSM28736 5 0.5695 0.381 0.000 0.076 0.000 0.044 0.564 0.316
#> GSM28737 1 0.0405 0.889 0.988 0.000 0.000 0.000 0.008 0.004
#> GSM11249 3 0.3977 0.725 0.000 0.000 0.760 0.096 0.000 0.144
#> GSM28745 2 0.0000 0.997 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.997 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28748 2 0.0000 0.997 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11266 2 0.0000 0.997 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 0.997 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.997 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.997 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.997 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.997 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11265 1 0.0000 0.893 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM28739 1 0.0000 0.893 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM11243 3 0.0146 0.939 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM28740 1 0.0000 0.893 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM11259 5 0.2775 0.555 0.104 0.000 0.000 0.000 0.856 0.040
#> GSM28726 5 0.4401 0.356 0.000 0.000 0.000 0.024 0.512 0.464
#> GSM28743 1 0.0458 0.888 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM11256 4 0.0260 0.860 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM11262 1 0.0458 0.888 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM28724 5 0.5551 0.414 0.160 0.000 0.000 0.044 0.648 0.148
#> GSM28725 3 0.0000 0.940 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11263 3 0.0000 0.940 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11267 3 0.0000 0.940 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM28744 4 0.0146 0.861 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM28734 4 0.0622 0.849 0.000 0.000 0.008 0.980 0.000 0.012
#> GSM28747 5 0.5595 0.322 0.268 0.000 0.000 0.000 0.540 0.192
#> GSM11257 4 0.3641 0.654 0.000 0.000 0.000 0.748 0.028 0.224
#> GSM11252 6 0.7479 0.445 0.248 0.000 0.056 0.196 0.052 0.448
#> GSM11264 3 0.0000 0.940 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11247 3 0.0146 0.939 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM11258 4 0.2300 0.730 0.144 0.000 0.000 0.856 0.000 0.000
#> GSM28728 5 0.3431 0.547 0.056 0.000 0.008 0.016 0.840 0.080
#> GSM28746 6 0.7766 0.286 0.244 0.000 0.008 0.272 0.156 0.320
#> GSM28738 6 0.5763 -0.343 0.000 0.000 0.000 0.180 0.356 0.464
#> GSM28741 2 0.0914 0.967 0.000 0.968 0.000 0.000 0.016 0.016
#> GSM28729 5 0.4830 0.279 0.004 0.000 0.000 0.044 0.496 0.456
#> GSM28742 5 0.4331 0.358 0.000 0.000 0.000 0.020 0.516 0.464
#> GSM11250 2 0.0000 0.997 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11245 6 0.7536 0.449 0.240 0.000 0.068 0.196 0.048 0.448
#> GSM11246 1 0.0547 0.880 0.980 0.000 0.000 0.000 0.020 0.000
#> GSM11261 3 0.1180 0.917 0.000 0.004 0.960 0.024 0.008 0.004
#> GSM11248 3 0.2983 0.812 0.000 0.000 0.832 0.032 0.000 0.136
#> GSM28732 5 0.3983 0.466 0.056 0.000 0.000 0.000 0.736 0.208
#> GSM11255 1 0.5802 -0.193 0.472 0.000 0.012 0.060 0.028 0.428
#> GSM28731 5 0.5991 0.282 0.260 0.000 0.000 0.004 0.480 0.256
#> GSM28727 5 0.3772 0.536 0.160 0.000 0.000 0.000 0.772 0.068
#> GSM11251 5 0.4135 0.468 0.300 0.000 0.000 0.000 0.668 0.032
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n tissue(p) k
#> CV:skmeans 48 0.392 2
#> CV:skmeans 45 0.447 3
#> CV:skmeans 40 0.406 4
#> CV:skmeans 43 0.463 5
#> CV:skmeans 35 0.435 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21342 rows and 50 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.3511 0.650 0.650
#> 3 3 1.000 0.975 0.990 0.6008 0.798 0.688
#> 4 4 0.876 0.965 0.974 0.1616 0.912 0.803
#> 5 5 0.764 0.734 0.879 0.1246 0.910 0.750
#> 6 6 0.805 0.712 0.842 0.0679 0.913 0.706
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2
There is also optional best \(k\) = 2 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM28735 1 0.0000 1.000 1.000 0.000
#> GSM28736 1 0.0938 0.988 0.988 0.012
#> GSM28737 1 0.0000 1.000 1.000 0.000
#> GSM11249 1 0.0000 1.000 1.000 0.000
#> GSM28745 2 0.0000 1.000 0.000 1.000
#> GSM11244 2 0.0000 1.000 0.000 1.000
#> GSM28748 2 0.0000 1.000 0.000 1.000
#> GSM11266 2 0.0000 1.000 0.000 1.000
#> GSM28730 2 0.0000 1.000 0.000 1.000
#> GSM11253 2 0.0000 1.000 0.000 1.000
#> GSM11254 2 0.0000 1.000 0.000 1.000
#> GSM11260 2 0.0000 1.000 0.000 1.000
#> GSM28733 2 0.0000 1.000 0.000 1.000
#> GSM11265 1 0.0000 1.000 1.000 0.000
#> GSM28739 1 0.0000 1.000 1.000 0.000
#> GSM11243 1 0.0000 1.000 1.000 0.000
#> GSM28740 1 0.0000 1.000 1.000 0.000
#> GSM11259 1 0.0000 1.000 1.000 0.000
#> GSM28726 1 0.0000 1.000 1.000 0.000
#> GSM28743 1 0.0000 1.000 1.000 0.000
#> GSM11256 1 0.0000 1.000 1.000 0.000
#> GSM11262 1 0.0000 1.000 1.000 0.000
#> GSM28724 1 0.0000 1.000 1.000 0.000
#> GSM28725 1 0.0000 1.000 1.000 0.000
#> GSM11263 1 0.0000 1.000 1.000 0.000
#> GSM11267 1 0.0000 1.000 1.000 0.000
#> GSM28744 1 0.0000 1.000 1.000 0.000
#> GSM28734 1 0.0000 1.000 1.000 0.000
#> GSM28747 1 0.0000 1.000 1.000 0.000
#> GSM11257 1 0.0000 1.000 1.000 0.000
#> GSM11252 1 0.0000 1.000 1.000 0.000
#> GSM11264 1 0.0000 1.000 1.000 0.000
#> GSM11247 1 0.0000 1.000 1.000 0.000
#> GSM11258 1 0.0000 1.000 1.000 0.000
#> GSM28728 1 0.0000 1.000 1.000 0.000
#> GSM28746 1 0.0000 1.000 1.000 0.000
#> GSM28738 1 0.0000 1.000 1.000 0.000
#> GSM28741 2 0.0000 1.000 0.000 1.000
#> GSM28729 1 0.0000 1.000 1.000 0.000
#> GSM28742 1 0.0000 1.000 1.000 0.000
#> GSM11250 2 0.0000 1.000 0.000 1.000
#> GSM11245 1 0.0000 1.000 1.000 0.000
#> GSM11246 1 0.0000 1.000 1.000 0.000
#> GSM11261 1 0.0000 1.000 1.000 0.000
#> GSM11248 1 0.0000 1.000 1.000 0.000
#> GSM28732 1 0.0000 1.000 1.000 0.000
#> GSM11255 1 0.0000 1.000 1.000 0.000
#> GSM28731 1 0.0000 1.000 1.000 0.000
#> GSM28727 1 0.0000 1.000 1.000 0.000
#> GSM11251 1 0.0000 1.000 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM28735 1 0.0000 0.982 1.000 0.000 0.000
#> GSM28736 1 0.0592 0.972 0.988 0.012 0.000
#> GSM28737 1 0.0000 0.982 1.000 0.000 0.000
#> GSM11249 3 0.0000 1.000 0.000 0.000 1.000
#> GSM28745 2 0.0000 1.000 0.000 1.000 0.000
#> GSM11244 2 0.0000 1.000 0.000 1.000 0.000
#> GSM28748 2 0.0000 1.000 0.000 1.000 0.000
#> GSM11266 2 0.0000 1.000 0.000 1.000 0.000
#> GSM28730 2 0.0000 1.000 0.000 1.000 0.000
#> GSM11253 2 0.0000 1.000 0.000 1.000 0.000
#> GSM11254 2 0.0000 1.000 0.000 1.000 0.000
#> GSM11260 2 0.0000 1.000 0.000 1.000 0.000
#> GSM28733 2 0.0000 1.000 0.000 1.000 0.000
#> GSM11265 1 0.0000 0.982 1.000 0.000 0.000
#> GSM28739 1 0.0000 0.982 1.000 0.000 0.000
#> GSM11243 3 0.0000 1.000 0.000 0.000 1.000
#> GSM28740 1 0.0000 0.982 1.000 0.000 0.000
#> GSM11259 1 0.0000 0.982 1.000 0.000 0.000
#> GSM28726 1 0.0000 0.982 1.000 0.000 0.000
#> GSM28743 1 0.0000 0.982 1.000 0.000 0.000
#> GSM11256 1 0.3412 0.854 0.876 0.000 0.124
#> GSM11262 1 0.0000 0.982 1.000 0.000 0.000
#> GSM28724 1 0.0000 0.982 1.000 0.000 0.000
#> GSM28725 3 0.0000 1.000 0.000 0.000 1.000
#> GSM11263 3 0.0000 1.000 0.000 0.000 1.000
#> GSM11267 3 0.0000 1.000 0.000 0.000 1.000
#> GSM28744 1 0.0000 0.982 1.000 0.000 0.000
#> GSM28734 1 0.5988 0.434 0.632 0.000 0.368
#> GSM28747 1 0.0000 0.982 1.000 0.000 0.000
#> GSM11257 1 0.0000 0.982 1.000 0.000 0.000
#> GSM11252 1 0.0237 0.980 0.996 0.000 0.004
#> GSM11264 3 0.0000 1.000 0.000 0.000 1.000
#> GSM11247 3 0.0000 1.000 0.000 0.000 1.000
#> GSM11258 1 0.0237 0.980 0.996 0.000 0.004
#> GSM28728 1 0.0000 0.982 1.000 0.000 0.000
#> GSM28746 1 0.0237 0.980 0.996 0.000 0.004
#> GSM28738 1 0.0000 0.982 1.000 0.000 0.000
#> GSM28741 2 0.0000 1.000 0.000 1.000 0.000
#> GSM28729 1 0.0000 0.982 1.000 0.000 0.000
#> GSM28742 1 0.0000 0.982 1.000 0.000 0.000
#> GSM11250 2 0.0000 1.000 0.000 1.000 0.000
#> GSM11245 1 0.0237 0.980 0.996 0.000 0.004
#> GSM11246 1 0.0000 0.982 1.000 0.000 0.000
#> GSM11261 1 0.0000 0.982 1.000 0.000 0.000
#> GSM11248 3 0.0000 1.000 0.000 0.000 1.000
#> GSM28732 1 0.0000 0.982 1.000 0.000 0.000
#> GSM11255 1 0.0237 0.980 0.996 0.000 0.004
#> GSM28731 1 0.0000 0.982 1.000 0.000 0.000
#> GSM28727 1 0.0000 0.982 1.000 0.000 0.000
#> GSM11251 1 0.0000 0.982 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM28735 1 0.0000 0.955 1.000 0.000 0.000 0.000
#> GSM28736 1 0.0469 0.948 0.988 0.012 0.000 0.000
#> GSM28737 1 0.2408 0.931 0.896 0.000 0.000 0.104
#> GSM11249 3 0.1557 0.941 0.000 0.000 0.944 0.056
#> GSM28745 2 0.0000 0.997 0.000 1.000 0.000 0.000
#> GSM11244 2 0.0000 0.997 0.000 1.000 0.000 0.000
#> GSM28748 2 0.0000 0.997 0.000 1.000 0.000 0.000
#> GSM11266 2 0.0000 0.997 0.000 1.000 0.000 0.000
#> GSM28730 2 0.0000 0.997 0.000 1.000 0.000 0.000
#> GSM11253 2 0.0000 0.997 0.000 1.000 0.000 0.000
#> GSM11254 2 0.0000 0.997 0.000 1.000 0.000 0.000
#> GSM11260 2 0.0000 0.997 0.000 1.000 0.000 0.000
#> GSM28733 2 0.0000 0.997 0.000 1.000 0.000 0.000
#> GSM11265 1 0.2469 0.929 0.892 0.000 0.000 0.108
#> GSM28739 1 0.2469 0.929 0.892 0.000 0.000 0.108
#> GSM11243 3 0.0000 0.992 0.000 0.000 1.000 0.000
#> GSM28740 1 0.2469 0.929 0.892 0.000 0.000 0.108
#> GSM11259 1 0.0000 0.955 1.000 0.000 0.000 0.000
#> GSM28726 1 0.0000 0.955 1.000 0.000 0.000 0.000
#> GSM28743 1 0.2469 0.929 0.892 0.000 0.000 0.108
#> GSM11256 4 0.0336 0.989 0.008 0.000 0.000 0.992
#> GSM11262 1 0.2469 0.929 0.892 0.000 0.000 0.108
#> GSM28724 1 0.1940 0.940 0.924 0.000 0.000 0.076
#> GSM28725 3 0.0000 0.992 0.000 0.000 1.000 0.000
#> GSM11263 3 0.0000 0.992 0.000 0.000 1.000 0.000
#> GSM11267 3 0.0000 0.992 0.000 0.000 1.000 0.000
#> GSM28744 4 0.0336 0.989 0.008 0.000 0.000 0.992
#> GSM28734 4 0.0592 0.979 0.000 0.000 0.016 0.984
#> GSM28747 1 0.0469 0.954 0.988 0.000 0.000 0.012
#> GSM11257 1 0.0592 0.952 0.984 0.000 0.000 0.016
#> GSM11252 1 0.1940 0.940 0.924 0.000 0.000 0.076
#> GSM11264 3 0.0000 0.992 0.000 0.000 1.000 0.000
#> GSM11247 3 0.0000 0.992 0.000 0.000 1.000 0.000
#> GSM11258 4 0.0000 0.985 0.000 0.000 0.000 1.000
#> GSM28728 1 0.0000 0.955 1.000 0.000 0.000 0.000
#> GSM28746 1 0.0336 0.954 0.992 0.000 0.000 0.008
#> GSM28738 1 0.0000 0.955 1.000 0.000 0.000 0.000
#> GSM28741 2 0.0817 0.968 0.024 0.976 0.000 0.000
#> GSM28729 1 0.0000 0.955 1.000 0.000 0.000 0.000
#> GSM28742 1 0.0000 0.955 1.000 0.000 0.000 0.000
#> GSM11250 2 0.0000 0.997 0.000 1.000 0.000 0.000
#> GSM11245 1 0.2469 0.929 0.892 0.000 0.000 0.108
#> GSM11246 1 0.0336 0.954 0.992 0.000 0.000 0.008
#> GSM11261 1 0.2593 0.929 0.892 0.000 0.004 0.104
#> GSM11248 3 0.0000 0.992 0.000 0.000 1.000 0.000
#> GSM28732 1 0.0000 0.955 1.000 0.000 0.000 0.000
#> GSM11255 1 0.2345 0.932 0.900 0.000 0.000 0.100
#> GSM28731 1 0.0000 0.955 1.000 0.000 0.000 0.000
#> GSM28727 1 0.0000 0.955 1.000 0.000 0.000 0.000
#> GSM11251 1 0.0000 0.955 1.000 0.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM28735 1 0.4273 0.137 0.552 0.00 0.000 0.000 0.448
#> GSM28736 5 0.3684 0.678 0.280 0.00 0.000 0.000 0.720
#> GSM28737 1 0.0566 0.654 0.984 0.00 0.000 0.004 0.012
#> GSM11249 3 0.3210 0.873 0.008 0.00 0.860 0.040 0.092
#> GSM28745 2 0.0000 0.987 0.000 1.00 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.987 0.000 1.00 0.000 0.000 0.000
#> GSM28748 2 0.0000 0.987 0.000 1.00 0.000 0.000 0.000
#> GSM11266 2 0.0000 0.987 0.000 1.00 0.000 0.000 0.000
#> GSM28730 2 0.0000 0.987 0.000 1.00 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.987 0.000 1.00 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.987 0.000 1.00 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.987 0.000 1.00 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.987 0.000 1.00 0.000 0.000 0.000
#> GSM11265 1 0.0290 0.650 0.992 0.00 0.000 0.008 0.000
#> GSM28739 1 0.0290 0.650 0.992 0.00 0.000 0.008 0.000
#> GSM11243 3 0.0000 0.966 0.000 0.00 1.000 0.000 0.000
#> GSM28740 1 0.0290 0.650 0.992 0.00 0.000 0.008 0.000
#> GSM11259 1 0.4138 0.337 0.616 0.00 0.000 0.000 0.384
#> GSM28726 5 0.4030 0.591 0.352 0.00 0.000 0.000 0.648
#> GSM28743 1 0.0290 0.650 0.992 0.00 0.000 0.008 0.000
#> GSM11256 4 0.0000 0.994 0.000 0.00 0.000 1.000 0.000
#> GSM11262 1 0.0290 0.650 0.992 0.00 0.000 0.008 0.000
#> GSM28724 1 0.3586 0.499 0.736 0.00 0.000 0.000 0.264
#> GSM28725 3 0.0000 0.966 0.000 0.00 1.000 0.000 0.000
#> GSM11263 3 0.0000 0.966 0.000 0.00 1.000 0.000 0.000
#> GSM11267 3 0.0000 0.966 0.000 0.00 1.000 0.000 0.000
#> GSM28744 4 0.0000 0.994 0.000 0.00 0.000 1.000 0.000
#> GSM28734 4 0.0000 0.994 0.000 0.00 0.000 1.000 0.000
#> GSM28747 1 0.4150 0.332 0.612 0.00 0.000 0.000 0.388
#> GSM11257 5 0.3612 0.527 0.268 0.00 0.000 0.000 0.732
#> GSM11252 1 0.3796 0.448 0.700 0.00 0.000 0.000 0.300
#> GSM11264 3 0.0000 0.966 0.000 0.00 1.000 0.000 0.000
#> GSM11247 3 0.0000 0.966 0.000 0.00 1.000 0.000 0.000
#> GSM11258 4 0.0510 0.981 0.016 0.00 0.000 0.984 0.000
#> GSM28728 1 0.3534 0.552 0.744 0.00 0.000 0.000 0.256
#> GSM28746 1 0.1270 0.655 0.948 0.00 0.000 0.000 0.052
#> GSM28738 5 0.3561 0.577 0.260 0.00 0.000 0.000 0.740
#> GSM28741 2 0.2280 0.860 0.000 0.88 0.000 0.000 0.120
#> GSM28729 1 0.4101 0.363 0.628 0.00 0.000 0.000 0.372
#> GSM28742 5 0.3661 0.670 0.276 0.00 0.000 0.000 0.724
#> GSM11250 2 0.0000 0.987 0.000 1.00 0.000 0.000 0.000
#> GSM11245 1 0.2561 0.564 0.856 0.00 0.000 0.000 0.144
#> GSM11246 1 0.1544 0.655 0.932 0.00 0.000 0.000 0.068
#> GSM11261 1 0.2171 0.631 0.912 0.00 0.064 0.000 0.024
#> GSM11248 3 0.2193 0.900 0.008 0.00 0.900 0.000 0.092
#> GSM28732 1 0.3707 0.517 0.716 0.00 0.000 0.000 0.284
#> GSM11255 1 0.1478 0.587 0.936 0.00 0.000 0.000 0.064
#> GSM28731 1 0.3534 0.552 0.744 0.00 0.000 0.000 0.256
#> GSM28727 1 0.4161 0.321 0.608 0.00 0.000 0.000 0.392
#> GSM11251 1 0.4138 0.337 0.616 0.00 0.000 0.000 0.384
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM28735 1 0.3318 0.2807 0.796 0.000 0.000 0.000 0.172 0.032
#> GSM28736 5 0.3747 0.9030 0.396 0.000 0.000 0.000 0.604 0.000
#> GSM28737 1 0.3706 0.6320 0.620 0.000 0.000 0.000 0.380 0.000
#> GSM11249 6 0.3647 0.3261 0.000 0.000 0.360 0.000 0.000 0.640
#> GSM28745 2 0.0000 0.9897 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.9897 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28748 2 0.0000 0.9897 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11266 2 0.0000 0.9897 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 0.9897 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.9897 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.9897 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.9897 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.9897 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11265 1 0.3727 0.6289 0.612 0.000 0.000 0.000 0.388 0.000
#> GSM28739 1 0.3727 0.6289 0.612 0.000 0.000 0.000 0.388 0.000
#> GSM11243 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM28740 1 0.3727 0.6289 0.612 0.000 0.000 0.000 0.388 0.000
#> GSM11259 1 0.0000 0.6078 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM28726 5 0.3747 0.9030 0.396 0.000 0.000 0.000 0.604 0.000
#> GSM28743 1 0.3727 0.6289 0.612 0.000 0.000 0.000 0.388 0.000
#> GSM11256 4 0.0000 0.9900 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM11262 1 0.3727 0.6289 0.612 0.000 0.000 0.000 0.388 0.000
#> GSM28724 1 0.2402 0.6560 0.856 0.000 0.000 0.000 0.140 0.004
#> GSM28725 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11263 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11267 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM28744 4 0.0000 0.9900 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM28734 4 0.0000 0.9900 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM28747 1 0.0146 0.6060 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM11257 6 0.1757 0.2770 0.076 0.000 0.000 0.000 0.008 0.916
#> GSM11252 6 0.3620 0.4913 0.352 0.000 0.000 0.000 0.000 0.648
#> GSM11264 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11247 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11258 4 0.0632 0.9699 0.000 0.000 0.000 0.976 0.024 0.000
#> GSM28728 1 0.0000 0.6078 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM28746 1 0.5137 0.5677 0.596 0.000 0.000 0.000 0.284 0.120
#> GSM28738 1 0.5818 -0.6398 0.456 0.000 0.000 0.000 0.192 0.352
#> GSM28741 2 0.2046 0.8879 0.060 0.908 0.000 0.000 0.032 0.000
#> GSM28729 1 0.1088 0.5651 0.960 0.000 0.000 0.000 0.024 0.016
#> GSM28742 5 0.5759 0.7792 0.392 0.000 0.000 0.000 0.436 0.172
#> GSM11250 2 0.0000 0.9897 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11245 6 0.3620 0.4913 0.352 0.000 0.000 0.000 0.000 0.648
#> GSM11246 1 0.3531 0.6434 0.672 0.000 0.000 0.000 0.328 0.000
#> GSM11261 1 0.5363 0.5379 0.608 0.000 0.196 0.000 0.192 0.004
#> GSM11248 6 0.3620 0.3384 0.000 0.000 0.352 0.000 0.000 0.648
#> GSM28732 1 0.3789 0.0867 0.584 0.000 0.000 0.000 0.000 0.416
#> GSM11255 6 0.3847 0.2465 0.456 0.000 0.000 0.000 0.000 0.544
#> GSM28731 1 0.0000 0.6078 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM28727 1 0.0363 0.6013 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM11251 1 0.0000 0.6078 1.000 0.000 0.000 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n tissue(p) k
#> CV:pam 50 0.394 2
#> CV:pam 49 0.368 3
#> CV:pam 50 0.512 4
#> CV:pam 42 0.457 5
#> CV:pam 41 0.448 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21342 rows and 50 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.499 0.882 0.913 0.4503 0.519 0.519
#> 3 3 0.811 0.856 0.935 0.3889 0.760 0.574
#> 4 4 0.773 0.807 0.898 0.0629 0.909 0.776
#> 5 5 0.745 0.799 0.885 0.1234 0.845 0.591
#> 6 6 0.762 0.815 0.860 0.0766 0.894 0.605
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM28735 1 0.2778 0.935 0.952 0.048
#> GSM28736 1 0.5178 0.886 0.884 0.116
#> GSM28737 1 0.0000 0.951 1.000 0.000
#> GSM11249 2 0.8909 0.770 0.308 0.692
#> GSM28745 2 0.1843 0.834 0.028 0.972
#> GSM11244 2 0.1843 0.834 0.028 0.972
#> GSM28748 2 0.1843 0.834 0.028 0.972
#> GSM11266 2 0.1843 0.834 0.028 0.972
#> GSM28730 2 0.1843 0.834 0.028 0.972
#> GSM11253 2 0.1843 0.834 0.028 0.972
#> GSM11254 2 0.1843 0.834 0.028 0.972
#> GSM11260 2 0.1843 0.834 0.028 0.972
#> GSM28733 2 0.1843 0.834 0.028 0.972
#> GSM11265 1 0.0000 0.951 1.000 0.000
#> GSM28739 1 0.0000 0.951 1.000 0.000
#> GSM11243 2 0.8909 0.770 0.308 0.692
#> GSM28740 1 0.0000 0.951 1.000 0.000
#> GSM11259 1 0.0000 0.951 1.000 0.000
#> GSM28726 1 0.4939 0.894 0.892 0.108
#> GSM28743 1 0.0000 0.951 1.000 0.000
#> GSM11256 1 0.6048 0.879 0.852 0.148
#> GSM11262 1 0.1633 0.943 0.976 0.024
#> GSM28724 1 0.0000 0.951 1.000 0.000
#> GSM28725 2 0.8909 0.770 0.308 0.692
#> GSM11263 2 0.8909 0.770 0.308 0.692
#> GSM11267 2 0.8909 0.770 0.308 0.692
#> GSM28744 1 0.6048 0.879 0.852 0.148
#> GSM28734 1 0.6048 0.879 0.852 0.148
#> GSM28747 1 0.0000 0.951 1.000 0.000
#> GSM11257 1 0.5294 0.887 0.880 0.120
#> GSM11252 1 0.0376 0.948 0.996 0.004
#> GSM11264 2 0.8909 0.770 0.308 0.692
#> GSM11247 2 0.8909 0.770 0.308 0.692
#> GSM11258 1 0.6048 0.879 0.852 0.148
#> GSM28728 1 0.0000 0.951 1.000 0.000
#> GSM28746 1 0.0376 0.948 0.996 0.004
#> GSM28738 1 0.2778 0.935 0.952 0.048
#> GSM28741 1 0.5629 0.877 0.868 0.132
#> GSM28729 1 0.2778 0.935 0.952 0.048
#> GSM28742 1 0.2778 0.935 0.952 0.048
#> GSM11250 2 0.1843 0.834 0.028 0.972
#> GSM11245 1 0.0376 0.948 0.996 0.004
#> GSM11246 1 0.0000 0.951 1.000 0.000
#> GSM11261 2 0.8909 0.770 0.308 0.692
#> GSM11248 2 0.8909 0.770 0.308 0.692
#> GSM28732 1 0.0000 0.951 1.000 0.000
#> GSM11255 1 0.0000 0.951 1.000 0.000
#> GSM28731 1 0.0000 0.951 1.000 0.000
#> GSM28727 1 0.0000 0.951 1.000 0.000
#> GSM11251 1 0.0000 0.951 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM28735 1 0.280 0.894 0.908 0.000 0.092
#> GSM28736 1 0.611 0.391 0.604 0.000 0.396
#> GSM28737 1 0.000 0.933 1.000 0.000 0.000
#> GSM11249 3 0.129 0.936 0.032 0.000 0.968
#> GSM28745 2 0.000 0.884 0.000 1.000 0.000
#> GSM11244 2 0.000 0.884 0.000 1.000 0.000
#> GSM28748 2 0.630 0.133 0.000 0.524 0.476
#> GSM11266 2 0.000 0.884 0.000 1.000 0.000
#> GSM28730 2 0.000 0.884 0.000 1.000 0.000
#> GSM11253 2 0.000 0.884 0.000 1.000 0.000
#> GSM11254 2 0.000 0.884 0.000 1.000 0.000
#> GSM11260 2 0.000 0.884 0.000 1.000 0.000
#> GSM28733 2 0.000 0.884 0.000 1.000 0.000
#> GSM11265 1 0.000 0.933 1.000 0.000 0.000
#> GSM28739 1 0.000 0.933 1.000 0.000 0.000
#> GSM11243 3 0.000 0.929 0.000 0.000 1.000
#> GSM28740 1 0.000 0.933 1.000 0.000 0.000
#> GSM11259 1 0.000 0.933 1.000 0.000 0.000
#> GSM28726 1 0.382 0.847 0.852 0.000 0.148
#> GSM28743 1 0.000 0.933 1.000 0.000 0.000
#> GSM11256 3 0.129 0.936 0.032 0.000 0.968
#> GSM11262 1 0.000 0.933 1.000 0.000 0.000
#> GSM28724 1 0.280 0.894 0.908 0.000 0.092
#> GSM28725 3 0.000 0.929 0.000 0.000 1.000
#> GSM11263 3 0.000 0.929 0.000 0.000 1.000
#> GSM11267 3 0.000 0.929 0.000 0.000 1.000
#> GSM28744 3 0.129 0.936 0.032 0.000 0.968
#> GSM28734 3 0.129 0.936 0.032 0.000 0.968
#> GSM28747 1 0.000 0.933 1.000 0.000 0.000
#> GSM11257 3 0.455 0.732 0.200 0.000 0.800
#> GSM11252 1 0.129 0.923 0.968 0.000 0.032
#> GSM11264 3 0.000 0.929 0.000 0.000 1.000
#> GSM11247 3 0.000 0.929 0.000 0.000 1.000
#> GSM11258 3 0.153 0.929 0.040 0.000 0.960
#> GSM28728 1 0.271 0.896 0.912 0.000 0.088
#> GSM28746 1 0.186 0.913 0.948 0.000 0.052
#> GSM28738 1 0.581 0.521 0.664 0.000 0.336
#> GSM28741 3 0.810 0.568 0.200 0.152 0.648
#> GSM28729 1 0.271 0.896 0.912 0.000 0.088
#> GSM28742 1 0.280 0.894 0.908 0.000 0.092
#> GSM11250 2 0.630 0.133 0.000 0.524 0.476
#> GSM11245 1 0.153 0.920 0.960 0.000 0.040
#> GSM11246 1 0.000 0.933 1.000 0.000 0.000
#> GSM11261 3 0.129 0.936 0.032 0.000 0.968
#> GSM11248 3 0.129 0.936 0.032 0.000 0.968
#> GSM28732 1 0.000 0.933 1.000 0.000 0.000
#> GSM11255 1 0.141 0.922 0.964 0.000 0.036
#> GSM28731 1 0.000 0.933 1.000 0.000 0.000
#> GSM28727 1 0.000 0.933 1.000 0.000 0.000
#> GSM11251 1 0.000 0.933 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM28735 1 0.2081 0.7624 0.916 0.000 0.000 0.084
#> GSM28736 1 0.2216 0.7551 0.908 0.000 0.000 0.092
#> GSM28737 1 0.3266 0.8174 0.832 0.000 0.000 0.168
#> GSM11249 3 0.1452 0.8751 0.036 0.000 0.956 0.008
#> GSM28745 2 0.0000 0.9742 0.000 1.000 0.000 0.000
#> GSM11244 2 0.0000 0.9742 0.000 1.000 0.000 0.000
#> GSM28748 2 0.0779 0.9541 0.016 0.980 0.000 0.004
#> GSM11266 2 0.0000 0.9742 0.000 1.000 0.000 0.000
#> GSM28730 2 0.0000 0.9742 0.000 1.000 0.000 0.000
#> GSM11253 2 0.0000 0.9742 0.000 1.000 0.000 0.000
#> GSM11254 2 0.0000 0.9742 0.000 1.000 0.000 0.000
#> GSM11260 2 0.0000 0.9742 0.000 1.000 0.000 0.000
#> GSM28733 2 0.0000 0.9742 0.000 1.000 0.000 0.000
#> GSM11265 1 0.3444 0.8096 0.816 0.000 0.000 0.184
#> GSM28739 1 0.3444 0.8096 0.816 0.000 0.000 0.184
#> GSM11243 3 0.0000 0.8973 0.000 0.000 1.000 0.000
#> GSM28740 1 0.3444 0.8096 0.816 0.000 0.000 0.184
#> GSM11259 1 0.3266 0.8174 0.832 0.000 0.000 0.168
#> GSM28726 1 0.2216 0.7551 0.908 0.000 0.000 0.092
#> GSM28743 1 0.3444 0.8096 0.816 0.000 0.000 0.184
#> GSM11256 4 0.3444 0.8831 0.184 0.000 0.000 0.816
#> GSM11262 1 0.3356 0.8138 0.824 0.000 0.000 0.176
#> GSM28724 1 0.1940 0.7672 0.924 0.000 0.000 0.076
#> GSM28725 3 0.0000 0.8973 0.000 0.000 1.000 0.000
#> GSM11263 3 0.0000 0.8973 0.000 0.000 1.000 0.000
#> GSM11267 3 0.0000 0.8973 0.000 0.000 1.000 0.000
#> GSM28744 4 0.3444 0.8831 0.184 0.000 0.000 0.816
#> GSM28734 4 0.3444 0.8831 0.184 0.000 0.000 0.816
#> GSM28747 1 0.3266 0.8174 0.832 0.000 0.000 0.168
#> GSM11257 1 0.4072 0.4862 0.748 0.000 0.000 0.252
#> GSM11252 1 0.0469 0.7959 0.988 0.000 0.000 0.012
#> GSM11264 3 0.0000 0.8973 0.000 0.000 1.000 0.000
#> GSM11247 3 0.0707 0.8901 0.020 0.000 0.980 0.000
#> GSM11258 4 0.4830 0.6156 0.392 0.000 0.000 0.608
#> GSM28728 1 0.2081 0.7624 0.916 0.000 0.000 0.084
#> GSM28746 1 0.0336 0.7974 0.992 0.000 0.000 0.008
#> GSM28738 1 0.2081 0.7624 0.916 0.000 0.000 0.084
#> GSM28741 1 0.6532 0.0533 0.572 0.336 0.000 0.092
#> GSM28729 1 0.2081 0.7624 0.916 0.000 0.000 0.084
#> GSM28742 1 0.2081 0.7624 0.916 0.000 0.000 0.084
#> GSM11250 2 0.3447 0.7627 0.128 0.852 0.000 0.020
#> GSM11245 1 0.0592 0.7945 0.984 0.000 0.000 0.016
#> GSM11246 1 0.3444 0.8096 0.816 0.000 0.000 0.184
#> GSM11261 3 0.5721 0.0995 0.412 0.008 0.564 0.016
#> GSM11248 3 0.1978 0.8430 0.068 0.000 0.928 0.004
#> GSM28732 1 0.3266 0.8174 0.832 0.000 0.000 0.168
#> GSM11255 1 0.0188 0.7981 0.996 0.000 0.000 0.004
#> GSM28731 1 0.3266 0.8174 0.832 0.000 0.000 0.168
#> GSM28727 1 0.3266 0.8174 0.832 0.000 0.000 0.168
#> GSM11251 1 0.3266 0.8174 0.832 0.000 0.000 0.168
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM28735 5 0.3876 0.798 0.316 0.000 0.000 0.000 0.684
#> GSM28736 5 0.2690 0.837 0.156 0.000 0.000 0.000 0.844
#> GSM28737 1 0.0290 0.761 0.992 0.000 0.000 0.000 0.008
#> GSM11249 3 0.0703 0.970 0.000 0.000 0.976 0.000 0.024
#> GSM28745 2 0.0000 0.979 0.000 1.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.979 0.000 1.000 0.000 0.000 0.000
#> GSM28748 2 0.0000 0.979 0.000 1.000 0.000 0.000 0.000
#> GSM11266 2 0.0000 0.979 0.000 1.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 0.979 0.000 1.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.979 0.000 1.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.979 0.000 1.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.979 0.000 1.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.979 0.000 1.000 0.000 0.000 0.000
#> GSM11265 1 0.2690 0.696 0.844 0.000 0.000 0.000 0.156
#> GSM28739 1 0.2690 0.696 0.844 0.000 0.000 0.000 0.156
#> GSM11243 3 0.0000 0.990 0.000 0.000 1.000 0.000 0.000
#> GSM28740 1 0.2773 0.693 0.836 0.000 0.000 0.000 0.164
#> GSM11259 1 0.0162 0.762 0.996 0.000 0.000 0.000 0.004
#> GSM28726 5 0.2690 0.837 0.156 0.000 0.000 0.000 0.844
#> GSM28743 1 0.2773 0.693 0.836 0.000 0.000 0.000 0.164
#> GSM11256 4 0.0000 1.000 0.000 0.000 0.000 1.000 0.000
#> GSM11262 1 0.1478 0.726 0.936 0.000 0.000 0.000 0.064
#> GSM28724 1 0.4292 0.460 0.704 0.000 0.024 0.000 0.272
#> GSM28725 3 0.0000 0.990 0.000 0.000 1.000 0.000 0.000
#> GSM11263 3 0.0000 0.990 0.000 0.000 1.000 0.000 0.000
#> GSM11267 3 0.0000 0.990 0.000 0.000 1.000 0.000 0.000
#> GSM28744 4 0.0000 1.000 0.000 0.000 0.000 1.000 0.000
#> GSM28734 4 0.0000 1.000 0.000 0.000 0.000 1.000 0.000
#> GSM28747 1 0.0162 0.762 0.996 0.000 0.000 0.000 0.004
#> GSM11257 5 0.3388 0.841 0.200 0.000 0.000 0.008 0.792
#> GSM11252 1 0.3534 0.520 0.744 0.000 0.000 0.000 0.256
#> GSM11264 3 0.0000 0.990 0.000 0.000 1.000 0.000 0.000
#> GSM11247 3 0.0000 0.990 0.000 0.000 1.000 0.000 0.000
#> GSM11258 1 0.6263 0.160 0.532 0.000 0.000 0.192 0.276
#> GSM28728 1 0.4734 0.106 0.604 0.000 0.024 0.000 0.372
#> GSM28746 1 0.3480 0.533 0.752 0.000 0.000 0.000 0.248
#> GSM28738 5 0.3876 0.799 0.316 0.000 0.000 0.000 0.684
#> GSM28741 5 0.2690 0.837 0.156 0.000 0.000 0.000 0.844
#> GSM28729 5 0.4235 0.583 0.424 0.000 0.000 0.000 0.576
#> GSM28742 5 0.3949 0.779 0.332 0.000 0.000 0.000 0.668
#> GSM11250 2 0.2471 0.801 0.000 0.864 0.000 0.000 0.136
#> GSM11245 1 0.3534 0.520 0.744 0.000 0.000 0.000 0.256
#> GSM11246 1 0.2690 0.696 0.844 0.000 0.000 0.000 0.156
#> GSM11261 5 0.4617 0.786 0.148 0.000 0.108 0.000 0.744
#> GSM11248 3 0.0703 0.970 0.000 0.000 0.976 0.000 0.024
#> GSM28732 1 0.0162 0.762 0.996 0.000 0.000 0.000 0.004
#> GSM11255 1 0.3480 0.531 0.752 0.000 0.000 0.000 0.248
#> GSM28731 1 0.0000 0.762 1.000 0.000 0.000 0.000 0.000
#> GSM28727 1 0.0162 0.762 0.996 0.000 0.000 0.000 0.004
#> GSM11251 1 0.0000 0.762 1.000 0.000 0.000 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM28735 5 0.2743 0.669 0.164 0.000 0.000 0.000 0.828 0.008
#> GSM28736 5 0.0000 0.641 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM28737 1 0.0717 0.893 0.976 0.000 0.000 0.000 0.016 0.008
#> GSM11249 3 0.2527 0.859 0.000 0.000 0.832 0.000 0.000 0.168
#> GSM28745 2 0.0000 0.967 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.967 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28748 2 0.0622 0.953 0.000 0.980 0.000 0.000 0.008 0.012
#> GSM11266 2 0.0000 0.967 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 0.967 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.967 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.967 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.967 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.967 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11265 1 0.2491 0.850 0.836 0.000 0.000 0.000 0.000 0.164
#> GSM28739 1 0.2562 0.844 0.828 0.000 0.000 0.000 0.000 0.172
#> GSM11243 3 0.0000 0.957 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM28740 1 0.2593 0.853 0.844 0.000 0.000 0.000 0.008 0.148
#> GSM11259 1 0.0806 0.891 0.972 0.000 0.000 0.000 0.020 0.008
#> GSM28726 5 0.0000 0.641 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM28743 1 0.2706 0.845 0.832 0.000 0.000 0.000 0.008 0.160
#> GSM11256 4 0.0000 1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM11262 1 0.1918 0.839 0.904 0.000 0.000 0.000 0.088 0.008
#> GSM28724 5 0.5561 0.335 0.308 0.000 0.000 0.000 0.528 0.164
#> GSM28725 3 0.0000 0.957 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11263 3 0.0000 0.957 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11267 3 0.0000 0.957 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM28744 4 0.0000 1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM28734 4 0.0000 1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM28747 1 0.0692 0.891 0.976 0.000 0.000 0.000 0.020 0.004
#> GSM11257 5 0.3714 0.628 0.052 0.000 0.000 0.024 0.808 0.116
#> GSM11252 6 0.4915 0.889 0.188 0.000 0.000 0.000 0.156 0.656
#> GSM11264 3 0.0000 0.957 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11247 3 0.0000 0.957 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11258 5 0.7074 0.128 0.108 0.000 0.000 0.188 0.440 0.264
#> GSM28728 5 0.5670 0.359 0.296 0.000 0.000 0.000 0.516 0.188
#> GSM28746 6 0.4915 0.889 0.188 0.000 0.000 0.000 0.156 0.656
#> GSM28738 5 0.2743 0.670 0.164 0.000 0.000 0.000 0.828 0.008
#> GSM28741 5 0.0713 0.631 0.000 0.000 0.000 0.000 0.972 0.028
#> GSM28729 5 0.4585 0.545 0.284 0.000 0.000 0.000 0.648 0.068
#> GSM28742 5 0.2664 0.658 0.184 0.000 0.000 0.000 0.816 0.000
#> GSM11250 2 0.3543 0.683 0.000 0.768 0.000 0.000 0.200 0.032
#> GSM11245 6 0.4910 0.888 0.192 0.000 0.000 0.000 0.152 0.656
#> GSM11246 1 0.2416 0.850 0.844 0.000 0.000 0.000 0.000 0.156
#> GSM11261 5 0.5485 0.337 0.020 0.000 0.076 0.000 0.516 0.388
#> GSM11248 3 0.2454 0.865 0.000 0.000 0.840 0.000 0.000 0.160
#> GSM28732 1 0.0937 0.873 0.960 0.000 0.000 0.000 0.040 0.000
#> GSM11255 6 0.5027 0.705 0.304 0.000 0.000 0.000 0.100 0.596
#> GSM28731 1 0.0603 0.892 0.980 0.000 0.000 0.000 0.016 0.004
#> GSM28727 1 0.0717 0.892 0.976 0.000 0.000 0.000 0.016 0.008
#> GSM11251 1 0.0717 0.892 0.976 0.000 0.000 0.000 0.016 0.008
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n tissue(p) k
#> CV:mclust 50 0.394 2
#> CV:mclust 47 0.437 3
#> CV:mclust 47 0.504 4
#> CV:mclust 47 0.512 5
#> CV:mclust 46 0.477 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21342 rows and 50 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 4.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.990 0.995 0.3933 0.607 0.607
#> 3 3 0.968 0.948 0.979 0.5141 0.718 0.566
#> 4 4 0.923 0.920 0.954 0.2296 0.838 0.616
#> 5 5 0.767 0.650 0.840 0.0614 0.904 0.664
#> 6 6 0.742 0.618 0.784 0.0592 0.892 0.554
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3
There is also optional best \(k\) = 2 3 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM28735 1 0.0000 0.996 1.000 0.000
#> GSM28736 2 0.2043 0.965 0.032 0.968
#> GSM28737 1 0.0000 0.996 1.000 0.000
#> GSM11249 1 0.0000 0.996 1.000 0.000
#> GSM28745 2 0.0000 0.991 0.000 1.000
#> GSM11244 2 0.0000 0.991 0.000 1.000
#> GSM28748 2 0.0000 0.991 0.000 1.000
#> GSM11266 2 0.0000 0.991 0.000 1.000
#> GSM28730 2 0.0000 0.991 0.000 1.000
#> GSM11253 2 0.0000 0.991 0.000 1.000
#> GSM11254 2 0.0000 0.991 0.000 1.000
#> GSM11260 2 0.0000 0.991 0.000 1.000
#> GSM28733 2 0.0000 0.991 0.000 1.000
#> GSM11265 1 0.0000 0.996 1.000 0.000
#> GSM28739 1 0.0000 0.996 1.000 0.000
#> GSM11243 1 0.0000 0.996 1.000 0.000
#> GSM28740 1 0.0000 0.996 1.000 0.000
#> GSM11259 1 0.0000 0.996 1.000 0.000
#> GSM28726 2 0.4022 0.916 0.080 0.920
#> GSM28743 1 0.0000 0.996 1.000 0.000
#> GSM11256 1 0.0000 0.996 1.000 0.000
#> GSM11262 1 0.0000 0.996 1.000 0.000
#> GSM28724 1 0.0000 0.996 1.000 0.000
#> GSM28725 1 0.0000 0.996 1.000 0.000
#> GSM11263 1 0.0000 0.996 1.000 0.000
#> GSM11267 1 0.0000 0.996 1.000 0.000
#> GSM28744 1 0.0000 0.996 1.000 0.000
#> GSM28734 1 0.0000 0.996 1.000 0.000
#> GSM28747 1 0.0000 0.996 1.000 0.000
#> GSM11257 1 0.0000 0.996 1.000 0.000
#> GSM11252 1 0.0000 0.996 1.000 0.000
#> GSM11264 1 0.0000 0.996 1.000 0.000
#> GSM11247 1 0.0000 0.996 1.000 0.000
#> GSM11258 1 0.0000 0.996 1.000 0.000
#> GSM28728 1 0.0000 0.996 1.000 0.000
#> GSM28746 1 0.0000 0.996 1.000 0.000
#> GSM28738 1 0.4431 0.899 0.908 0.092
#> GSM28741 2 0.0000 0.991 0.000 1.000
#> GSM28729 1 0.0000 0.996 1.000 0.000
#> GSM28742 1 0.1633 0.974 0.976 0.024
#> GSM11250 2 0.0000 0.991 0.000 1.000
#> GSM11245 1 0.0000 0.996 1.000 0.000
#> GSM11246 1 0.0000 0.996 1.000 0.000
#> GSM11261 1 0.0938 0.986 0.988 0.012
#> GSM11248 1 0.0000 0.996 1.000 0.000
#> GSM28732 1 0.0000 0.996 1.000 0.000
#> GSM11255 1 0.0000 0.996 1.000 0.000
#> GSM28731 1 0.0000 0.996 1.000 0.000
#> GSM28727 1 0.0000 0.996 1.000 0.000
#> GSM11251 1 0.0000 0.996 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM28735 1 0.0000 0.969 1.000 0.000 0.000
#> GSM28736 1 0.5882 0.478 0.652 0.348 0.000
#> GSM28737 1 0.0000 0.969 1.000 0.000 0.000
#> GSM11249 3 0.0000 0.971 0.000 0.000 1.000
#> GSM28745 2 0.0000 0.998 0.000 1.000 0.000
#> GSM11244 2 0.0000 0.998 0.000 1.000 0.000
#> GSM28748 2 0.0000 0.998 0.000 1.000 0.000
#> GSM11266 2 0.0000 0.998 0.000 1.000 0.000
#> GSM28730 2 0.0000 0.998 0.000 1.000 0.000
#> GSM11253 2 0.0000 0.998 0.000 1.000 0.000
#> GSM11254 2 0.0000 0.998 0.000 1.000 0.000
#> GSM11260 2 0.0000 0.998 0.000 1.000 0.000
#> GSM28733 2 0.0000 0.998 0.000 1.000 0.000
#> GSM11265 1 0.0000 0.969 1.000 0.000 0.000
#> GSM28739 1 0.0000 0.969 1.000 0.000 0.000
#> GSM11243 3 0.0000 0.971 0.000 0.000 1.000
#> GSM28740 1 0.0000 0.969 1.000 0.000 0.000
#> GSM11259 1 0.0000 0.969 1.000 0.000 0.000
#> GSM28726 1 0.0000 0.969 1.000 0.000 0.000
#> GSM28743 1 0.0000 0.969 1.000 0.000 0.000
#> GSM11256 1 0.5859 0.476 0.656 0.000 0.344
#> GSM11262 1 0.0000 0.969 1.000 0.000 0.000
#> GSM28724 1 0.0000 0.969 1.000 0.000 0.000
#> GSM28725 3 0.0000 0.971 0.000 0.000 1.000
#> GSM11263 3 0.0000 0.971 0.000 0.000 1.000
#> GSM11267 3 0.0000 0.971 0.000 0.000 1.000
#> GSM28744 1 0.0000 0.969 1.000 0.000 0.000
#> GSM28734 3 0.4399 0.732 0.188 0.000 0.812
#> GSM28747 1 0.0000 0.969 1.000 0.000 0.000
#> GSM11257 1 0.0000 0.969 1.000 0.000 0.000
#> GSM11252 1 0.0237 0.967 0.996 0.000 0.004
#> GSM11264 3 0.0000 0.971 0.000 0.000 1.000
#> GSM11247 3 0.0000 0.971 0.000 0.000 1.000
#> GSM11258 1 0.0237 0.967 0.996 0.000 0.004
#> GSM28728 1 0.0000 0.969 1.000 0.000 0.000
#> GSM28746 1 0.0747 0.957 0.984 0.000 0.016
#> GSM28738 1 0.0000 0.969 1.000 0.000 0.000
#> GSM28741 2 0.0747 0.978 0.016 0.984 0.000
#> GSM28729 1 0.0000 0.969 1.000 0.000 0.000
#> GSM28742 1 0.0000 0.969 1.000 0.000 0.000
#> GSM11250 2 0.0000 0.998 0.000 1.000 0.000
#> GSM11245 1 0.3267 0.855 0.884 0.000 0.116
#> GSM11246 1 0.0000 0.969 1.000 0.000 0.000
#> GSM11261 3 0.0237 0.968 0.000 0.004 0.996
#> GSM11248 3 0.0000 0.971 0.000 0.000 1.000
#> GSM28732 1 0.0000 0.969 1.000 0.000 0.000
#> GSM11255 1 0.0237 0.967 0.996 0.000 0.004
#> GSM28731 1 0.0000 0.969 1.000 0.000 0.000
#> GSM28727 1 0.0000 0.969 1.000 0.000 0.000
#> GSM11251 1 0.0000 0.969 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM28735 4 0.4843 0.422 0.396 0.000 0.000 0.604
#> GSM28736 4 0.2775 0.840 0.020 0.084 0.000 0.896
#> GSM28737 1 0.0336 0.942 0.992 0.000 0.000 0.008
#> GSM11249 3 0.0188 0.993 0.000 0.000 0.996 0.004
#> GSM28745 2 0.0000 0.999 0.000 1.000 0.000 0.000
#> GSM11244 2 0.0000 0.999 0.000 1.000 0.000 0.000
#> GSM28748 2 0.0188 0.997 0.000 0.996 0.000 0.004
#> GSM11266 2 0.0188 0.997 0.000 0.996 0.000 0.004
#> GSM28730 2 0.0000 0.999 0.000 1.000 0.000 0.000
#> GSM11253 2 0.0000 0.999 0.000 1.000 0.000 0.000
#> GSM11254 2 0.0000 0.999 0.000 1.000 0.000 0.000
#> GSM11260 2 0.0000 0.999 0.000 1.000 0.000 0.000
#> GSM28733 2 0.0000 0.999 0.000 1.000 0.000 0.000
#> GSM11265 1 0.0336 0.942 0.992 0.000 0.000 0.008
#> GSM28739 1 0.0336 0.942 0.992 0.000 0.000 0.008
#> GSM11243 3 0.0524 0.989 0.004 0.000 0.988 0.008
#> GSM28740 1 0.0336 0.942 0.992 0.000 0.000 0.008
#> GSM11259 1 0.1389 0.926 0.952 0.000 0.000 0.048
#> GSM28726 4 0.2300 0.874 0.064 0.016 0.000 0.920
#> GSM28743 1 0.0592 0.939 0.984 0.000 0.000 0.016
#> GSM11256 4 0.1004 0.876 0.024 0.000 0.004 0.972
#> GSM11262 1 0.0592 0.939 0.984 0.000 0.000 0.016
#> GSM28724 1 0.0817 0.941 0.976 0.000 0.000 0.024
#> GSM28725 3 0.0000 0.995 0.000 0.000 1.000 0.000
#> GSM11263 3 0.0000 0.995 0.000 0.000 1.000 0.000
#> GSM11267 3 0.0000 0.995 0.000 0.000 1.000 0.000
#> GSM28744 4 0.1302 0.876 0.044 0.000 0.000 0.956
#> GSM28734 4 0.1767 0.858 0.012 0.000 0.044 0.944
#> GSM28747 1 0.0336 0.942 0.992 0.000 0.000 0.008
#> GSM11257 4 0.0817 0.876 0.024 0.000 0.000 0.976
#> GSM11252 1 0.2300 0.910 0.924 0.000 0.028 0.048
#> GSM11264 3 0.0000 0.995 0.000 0.000 1.000 0.000
#> GSM11247 3 0.0895 0.981 0.004 0.000 0.976 0.020
#> GSM11258 1 0.4608 0.559 0.692 0.000 0.004 0.304
#> GSM28728 1 0.1389 0.925 0.952 0.000 0.000 0.048
#> GSM28746 1 0.3863 0.812 0.828 0.000 0.028 0.144
#> GSM28738 4 0.3142 0.838 0.132 0.008 0.000 0.860
#> GSM28741 2 0.0376 0.993 0.004 0.992 0.000 0.004
#> GSM28729 4 0.3975 0.738 0.240 0.000 0.000 0.760
#> GSM28742 4 0.0707 0.874 0.020 0.000 0.000 0.980
#> GSM11250 2 0.0000 0.999 0.000 1.000 0.000 0.000
#> GSM11245 1 0.4678 0.690 0.744 0.000 0.232 0.024
#> GSM11246 1 0.0188 0.942 0.996 0.000 0.000 0.004
#> GSM11261 3 0.0188 0.993 0.004 0.000 0.996 0.000
#> GSM11248 3 0.0000 0.995 0.000 0.000 1.000 0.000
#> GSM28732 1 0.0707 0.940 0.980 0.000 0.000 0.020
#> GSM11255 1 0.0779 0.940 0.980 0.000 0.016 0.004
#> GSM28731 1 0.0707 0.940 0.980 0.000 0.000 0.020
#> GSM28727 1 0.0336 0.942 0.992 0.000 0.000 0.008
#> GSM11251 1 0.0336 0.942 0.992 0.000 0.000 0.008
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM28735 5 0.5223 -0.0985 0.444 0.000 0.000 0.044 0.512
#> GSM28736 5 0.6021 -0.0706 0.004 0.124 0.000 0.312 0.560
#> GSM28737 1 0.1478 0.6705 0.936 0.000 0.000 0.000 0.064
#> GSM11249 3 0.0798 0.8937 0.008 0.000 0.976 0.016 0.000
#> GSM28745 2 0.0000 0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM28748 2 0.0000 0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM11266 2 0.0000 0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM11265 1 0.0162 0.6618 0.996 0.000 0.000 0.004 0.000
#> GSM28739 1 0.0000 0.6632 1.000 0.000 0.000 0.000 0.000
#> GSM11243 3 0.1628 0.8732 0.000 0.000 0.936 0.008 0.056
#> GSM28740 1 0.0290 0.6604 0.992 0.000 0.000 0.008 0.000
#> GSM11259 5 0.4268 -0.0988 0.444 0.000 0.000 0.000 0.556
#> GSM28726 5 0.3779 0.5893 0.124 0.004 0.000 0.056 0.816
#> GSM28743 1 0.0609 0.6532 0.980 0.000 0.000 0.020 0.000
#> GSM11256 4 0.1430 0.7365 0.004 0.000 0.000 0.944 0.052
#> GSM11262 1 0.0963 0.6407 0.964 0.000 0.000 0.036 0.000
#> GSM28724 1 0.4597 0.3702 0.564 0.000 0.000 0.012 0.424
#> GSM28725 3 0.0162 0.9018 0.000 0.000 0.996 0.004 0.000
#> GSM11263 3 0.0000 0.9021 0.000 0.000 1.000 0.000 0.000
#> GSM11267 3 0.0162 0.9017 0.000 0.000 0.996 0.004 0.000
#> GSM28744 4 0.0865 0.7446 0.004 0.000 0.000 0.972 0.024
#> GSM28734 4 0.1725 0.7379 0.044 0.000 0.000 0.936 0.020
#> GSM28747 1 0.4015 0.5096 0.652 0.000 0.000 0.000 0.348
#> GSM11257 4 0.4294 0.2701 0.000 0.000 0.000 0.532 0.468
#> GSM11252 1 0.4920 0.5792 0.756 0.000 0.036 0.072 0.136
#> GSM11264 3 0.0000 0.9021 0.000 0.000 1.000 0.000 0.000
#> GSM11247 3 0.2563 0.8188 0.000 0.000 0.872 0.008 0.120
#> GSM11258 4 0.4161 0.4370 0.392 0.000 0.000 0.608 0.000
#> GSM28728 5 0.4449 0.2129 0.352 0.000 0.004 0.008 0.636
#> GSM28746 1 0.4874 0.4279 0.588 0.000 0.016 0.008 0.388
#> GSM28738 5 0.1282 0.5439 0.000 0.000 0.004 0.044 0.952
#> GSM28741 2 0.2338 0.8362 0.000 0.884 0.000 0.004 0.112
#> GSM28729 5 0.2362 0.6103 0.076 0.000 0.000 0.024 0.900
#> GSM28742 5 0.1041 0.5603 0.004 0.000 0.000 0.032 0.964
#> GSM11250 2 0.0000 0.9848 0.000 1.000 0.000 0.000 0.000
#> GSM11245 3 0.6169 0.1616 0.444 0.000 0.464 0.064 0.028
#> GSM11246 1 0.1478 0.6705 0.936 0.000 0.000 0.000 0.064
#> GSM11261 3 0.0693 0.8975 0.000 0.000 0.980 0.008 0.012
#> GSM11248 3 0.0404 0.8995 0.000 0.000 0.988 0.012 0.000
#> GSM28732 1 0.4307 0.1672 0.500 0.000 0.000 0.000 0.500
#> GSM11255 1 0.3670 0.6272 0.792 0.000 0.008 0.012 0.188
#> GSM28731 1 0.4304 0.2136 0.516 0.000 0.000 0.000 0.484
#> GSM28727 1 0.4210 0.4088 0.588 0.000 0.000 0.000 0.412
#> GSM11251 1 0.3796 0.5422 0.700 0.000 0.000 0.000 0.300
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM28735 6 0.4853 0.5113 0.156 0.000 0.000 0.020 0.120 0.704
#> GSM28736 6 0.7106 0.0599 0.008 0.068 0.000 0.232 0.260 0.432
#> GSM28737 1 0.1196 0.7390 0.952 0.000 0.000 0.000 0.008 0.040
#> GSM11249 3 0.2982 0.7740 0.012 0.000 0.828 0.000 0.008 0.152
#> GSM28745 2 0.0000 0.9557 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.9557 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28748 2 0.0000 0.9557 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11266 2 0.0000 0.9557 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 0.9557 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.9557 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.9557 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.9557 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.9557 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11265 1 0.0146 0.7520 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM28739 1 0.0891 0.7367 0.968 0.000 0.008 0.000 0.000 0.024
#> GSM11243 3 0.3336 0.7946 0.016 0.000 0.808 0.000 0.016 0.160
#> GSM28740 1 0.0000 0.7524 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM11259 6 0.5760 0.4226 0.224 0.000 0.000 0.000 0.268 0.508
#> GSM28726 5 0.5741 0.2799 0.160 0.000 0.000 0.028 0.600 0.212
#> GSM28743 1 0.0972 0.7479 0.964 0.000 0.000 0.008 0.000 0.028
#> GSM11256 4 0.0458 0.8423 0.000 0.000 0.000 0.984 0.016 0.000
#> GSM11262 1 0.0820 0.7436 0.972 0.000 0.000 0.016 0.000 0.012
#> GSM28724 6 0.5073 0.4843 0.220 0.000 0.016 0.000 0.104 0.660
#> GSM28725 3 0.0603 0.8464 0.000 0.000 0.980 0.000 0.004 0.016
#> GSM11263 3 0.0000 0.8469 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11267 3 0.0363 0.8454 0.000 0.000 0.988 0.000 0.000 0.012
#> GSM28744 4 0.0146 0.8512 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM28734 4 0.0547 0.8512 0.020 0.000 0.000 0.980 0.000 0.000
#> GSM28747 6 0.4847 0.4331 0.340 0.000 0.000 0.000 0.072 0.588
#> GSM11257 5 0.4265 0.1001 0.004 0.000 0.000 0.384 0.596 0.016
#> GSM11252 6 0.5817 0.1603 0.300 0.000 0.080 0.004 0.044 0.572
#> GSM11264 3 0.1719 0.8375 0.000 0.000 0.924 0.000 0.060 0.016
#> GSM11247 3 0.4278 0.7329 0.020 0.000 0.716 0.000 0.032 0.232
#> GSM11258 4 0.3446 0.5811 0.308 0.000 0.000 0.692 0.000 0.000
#> GSM28728 6 0.6077 0.2233 0.248 0.000 0.004 0.000 0.300 0.448
#> GSM28746 1 0.6193 -0.1301 0.472 0.000 0.004 0.008 0.224 0.292
#> GSM28738 5 0.0665 0.5685 0.008 0.000 0.000 0.004 0.980 0.008
#> GSM28741 2 0.4211 0.3513 0.004 0.616 0.000 0.000 0.016 0.364
#> GSM28729 5 0.3013 0.5685 0.068 0.000 0.000 0.000 0.844 0.088
#> GSM28742 5 0.2482 0.5459 0.000 0.000 0.000 0.004 0.848 0.148
#> GSM11250 2 0.0000 0.9557 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11245 6 0.6502 0.1704 0.208 0.000 0.256 0.004 0.036 0.496
#> GSM11246 1 0.1049 0.7416 0.960 0.000 0.000 0.000 0.008 0.032
#> GSM11261 3 0.3803 0.7137 0.020 0.000 0.724 0.000 0.004 0.252
#> GSM11248 3 0.3963 0.7257 0.008 0.000 0.756 0.000 0.048 0.188
#> GSM28732 6 0.5276 0.4934 0.208 0.000 0.000 0.000 0.188 0.604
#> GSM11255 1 0.6586 0.0285 0.420 0.000 0.056 0.000 0.152 0.372
#> GSM28731 5 0.5759 -0.0132 0.392 0.000 0.000 0.000 0.436 0.172
#> GSM28727 6 0.5276 0.5030 0.312 0.000 0.000 0.000 0.124 0.564
#> GSM11251 1 0.4843 0.1244 0.616 0.000 0.000 0.000 0.084 0.300
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n tissue(p) k
#> CV:NMF 50 0.394 2
#> CV:NMF 48 0.423 3
#> CV:NMF 49 0.436 4
#> CV:NMF 38 0.486 5
#> CV:NMF 35 0.418 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21342 rows and 50 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.970 0.987 0.3439 0.650 0.650
#> 3 3 0.835 0.864 0.944 0.5830 0.838 0.751
#> 4 4 0.771 0.826 0.909 0.2694 0.800 0.594
#> 5 5 0.808 0.885 0.910 0.0567 0.975 0.916
#> 6 6 0.785 0.809 0.873 0.0485 0.996 0.985
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM28735 1 0.163 0.972 0.976 0.024
#> GSM28736 1 0.163 0.972 0.976 0.024
#> GSM28737 1 0.000 0.994 1.000 0.000
#> GSM11249 1 0.000 0.994 1.000 0.000
#> GSM28745 2 0.000 0.953 0.000 1.000
#> GSM11244 2 0.000 0.953 0.000 1.000
#> GSM28748 2 0.000 0.953 0.000 1.000
#> GSM11266 2 0.000 0.953 0.000 1.000
#> GSM28730 2 0.000 0.953 0.000 1.000
#> GSM11253 2 0.000 0.953 0.000 1.000
#> GSM11254 2 0.000 0.953 0.000 1.000
#> GSM11260 2 0.000 0.953 0.000 1.000
#> GSM28733 2 0.000 0.953 0.000 1.000
#> GSM11265 1 0.000 0.994 1.000 0.000
#> GSM28739 1 0.000 0.994 1.000 0.000
#> GSM11243 1 0.000 0.994 1.000 0.000
#> GSM28740 1 0.000 0.994 1.000 0.000
#> GSM11259 1 0.000 0.994 1.000 0.000
#> GSM28726 1 0.000 0.994 1.000 0.000
#> GSM28743 1 0.000 0.994 1.000 0.000
#> GSM11256 1 0.000 0.994 1.000 0.000
#> GSM11262 1 0.000 0.994 1.000 0.000
#> GSM28724 1 0.000 0.994 1.000 0.000
#> GSM28725 1 0.000 0.994 1.000 0.000
#> GSM11263 1 0.000 0.994 1.000 0.000
#> GSM11267 1 0.000 0.994 1.000 0.000
#> GSM28744 1 0.000 0.994 1.000 0.000
#> GSM28734 1 0.000 0.994 1.000 0.000
#> GSM28747 1 0.000 0.994 1.000 0.000
#> GSM11257 1 0.000 0.994 1.000 0.000
#> GSM11252 1 0.000 0.994 1.000 0.000
#> GSM11264 1 0.000 0.994 1.000 0.000
#> GSM11247 1 0.000 0.994 1.000 0.000
#> GSM11258 1 0.000 0.994 1.000 0.000
#> GSM28728 1 0.000 0.994 1.000 0.000
#> GSM28746 1 0.000 0.994 1.000 0.000
#> GSM28738 1 0.000 0.994 1.000 0.000
#> GSM28741 2 0.913 0.528 0.328 0.672
#> GSM28729 1 0.000 0.994 1.000 0.000
#> GSM28742 1 0.000 0.994 1.000 0.000
#> GSM11250 2 0.574 0.833 0.136 0.864
#> GSM11245 1 0.000 0.994 1.000 0.000
#> GSM11246 1 0.000 0.994 1.000 0.000
#> GSM11261 1 0.615 0.812 0.848 0.152
#> GSM11248 1 0.000 0.994 1.000 0.000
#> GSM28732 1 0.000 0.994 1.000 0.000
#> GSM11255 1 0.000 0.994 1.000 0.000
#> GSM28731 1 0.000 0.994 1.000 0.000
#> GSM28727 1 0.000 0.994 1.000 0.000
#> GSM11251 1 0.000 0.994 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM28735 1 0.103 0.904 0.976 0.024 0.000
#> GSM28736 1 0.103 0.904 0.976 0.024 0.000
#> GSM28737 1 0.000 0.923 1.000 0.000 0.000
#> GSM11249 1 0.608 0.458 0.612 0.000 0.388
#> GSM28745 2 0.000 0.928 0.000 1.000 0.000
#> GSM11244 2 0.000 0.928 0.000 1.000 0.000
#> GSM28748 2 0.000 0.928 0.000 1.000 0.000
#> GSM11266 2 0.000 0.928 0.000 1.000 0.000
#> GSM28730 2 0.000 0.928 0.000 1.000 0.000
#> GSM11253 2 0.000 0.928 0.000 1.000 0.000
#> GSM11254 2 0.000 0.928 0.000 1.000 0.000
#> GSM11260 2 0.000 0.928 0.000 1.000 0.000
#> GSM28733 2 0.000 0.928 0.000 1.000 0.000
#> GSM11265 1 0.000 0.923 1.000 0.000 0.000
#> GSM28739 1 0.000 0.923 1.000 0.000 0.000
#> GSM11243 3 0.000 1.000 0.000 0.000 1.000
#> GSM28740 1 0.000 0.923 1.000 0.000 0.000
#> GSM11259 1 0.000 0.923 1.000 0.000 0.000
#> GSM28726 1 0.000 0.923 1.000 0.000 0.000
#> GSM28743 1 0.000 0.923 1.000 0.000 0.000
#> GSM11256 1 0.000 0.923 1.000 0.000 0.000
#> GSM11262 1 0.000 0.923 1.000 0.000 0.000
#> GSM28724 1 0.000 0.923 1.000 0.000 0.000
#> GSM28725 3 0.000 1.000 0.000 0.000 1.000
#> GSM11263 3 0.000 1.000 0.000 0.000 1.000
#> GSM11267 3 0.000 1.000 0.000 0.000 1.000
#> GSM28744 1 0.000 0.923 1.000 0.000 0.000
#> GSM28734 1 0.000 0.923 1.000 0.000 0.000
#> GSM28747 1 0.000 0.923 1.000 0.000 0.000
#> GSM11257 1 0.000 0.923 1.000 0.000 0.000
#> GSM11252 1 0.586 0.540 0.656 0.000 0.344
#> GSM11264 3 0.000 1.000 0.000 0.000 1.000
#> GSM11247 3 0.000 1.000 0.000 0.000 1.000
#> GSM11258 1 0.000 0.923 1.000 0.000 0.000
#> GSM28728 1 0.000 0.923 1.000 0.000 0.000
#> GSM28746 1 0.000 0.923 1.000 0.000 0.000
#> GSM28738 1 0.000 0.923 1.000 0.000 0.000
#> GSM28741 2 0.576 0.475 0.328 0.672 0.000
#> GSM28729 1 0.000 0.923 1.000 0.000 0.000
#> GSM28742 1 0.000 0.923 1.000 0.000 0.000
#> GSM11250 2 0.362 0.766 0.136 0.864 0.000
#> GSM11245 1 0.586 0.540 0.656 0.000 0.344
#> GSM11246 1 0.000 0.923 1.000 0.000 0.000
#> GSM11261 1 0.919 0.149 0.468 0.152 0.380
#> GSM11248 1 0.608 0.458 0.612 0.000 0.388
#> GSM28732 1 0.000 0.923 1.000 0.000 0.000
#> GSM11255 1 0.559 0.602 0.696 0.000 0.304
#> GSM28731 1 0.000 0.923 1.000 0.000 0.000
#> GSM28727 1 0.000 0.923 1.000 0.000 0.000
#> GSM11251 1 0.000 0.923 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM28735 1 0.1406 0.923 0.960 0.024 0.000 0.016
#> GSM28736 1 0.1406 0.923 0.960 0.024 0.000 0.016
#> GSM28737 1 0.2469 0.911 0.892 0.000 0.000 0.108
#> GSM11249 4 0.4817 0.562 0.000 0.000 0.388 0.612
#> GSM28745 2 0.0000 0.938 0.000 1.000 0.000 0.000
#> GSM11244 2 0.0000 0.938 0.000 1.000 0.000 0.000
#> GSM28748 2 0.0000 0.938 0.000 1.000 0.000 0.000
#> GSM11266 2 0.0000 0.938 0.000 1.000 0.000 0.000
#> GSM28730 2 0.0000 0.938 0.000 1.000 0.000 0.000
#> GSM11253 2 0.0000 0.938 0.000 1.000 0.000 0.000
#> GSM11254 2 0.0000 0.938 0.000 1.000 0.000 0.000
#> GSM11260 2 0.0000 0.938 0.000 1.000 0.000 0.000
#> GSM28733 2 0.0000 0.938 0.000 1.000 0.000 0.000
#> GSM11265 1 0.2469 0.911 0.892 0.000 0.000 0.108
#> GSM28739 1 0.2469 0.911 0.892 0.000 0.000 0.108
#> GSM11243 3 0.0000 0.870 0.000 0.000 1.000 0.000
#> GSM28740 1 0.2469 0.911 0.892 0.000 0.000 0.108
#> GSM11259 1 0.0000 0.940 1.000 0.000 0.000 0.000
#> GSM28726 1 0.0592 0.936 0.984 0.000 0.000 0.016
#> GSM28743 1 0.2469 0.911 0.892 0.000 0.000 0.108
#> GSM11256 4 0.1302 0.658 0.044 0.000 0.000 0.956
#> GSM11262 1 0.2469 0.911 0.892 0.000 0.000 0.108
#> GSM28724 1 0.0000 0.940 1.000 0.000 0.000 0.000
#> GSM28725 3 0.0000 0.870 0.000 0.000 1.000 0.000
#> GSM11263 3 0.0000 0.870 0.000 0.000 1.000 0.000
#> GSM11267 3 0.0000 0.870 0.000 0.000 1.000 0.000
#> GSM28744 4 0.1302 0.658 0.044 0.000 0.000 0.956
#> GSM28734 4 0.0592 0.658 0.016 0.000 0.000 0.984
#> GSM28747 1 0.1118 0.937 0.964 0.000 0.000 0.036
#> GSM11257 1 0.0336 0.939 0.992 0.000 0.000 0.008
#> GSM11252 4 0.5807 0.606 0.044 0.000 0.344 0.612
#> GSM11264 3 0.0000 0.870 0.000 0.000 1.000 0.000
#> GSM11247 3 0.0000 0.870 0.000 0.000 1.000 0.000
#> GSM11258 4 0.2281 0.633 0.096 0.000 0.000 0.904
#> GSM28728 1 0.0592 0.936 0.984 0.000 0.000 0.016
#> GSM28746 1 0.3356 0.842 0.824 0.000 0.000 0.176
#> GSM28738 1 0.0336 0.939 0.992 0.000 0.000 0.008
#> GSM28741 2 0.5026 0.535 0.312 0.672 0.000 0.016
#> GSM28729 1 0.1118 0.940 0.964 0.000 0.000 0.036
#> GSM28742 1 0.0592 0.936 0.984 0.000 0.000 0.016
#> GSM11250 2 0.3224 0.795 0.120 0.864 0.000 0.016
#> GSM11245 4 0.5807 0.606 0.044 0.000 0.344 0.612
#> GSM11246 1 0.2469 0.911 0.892 0.000 0.000 0.108
#> GSM11261 3 0.8994 -0.373 0.096 0.152 0.380 0.372
#> GSM11248 4 0.4817 0.562 0.000 0.000 0.388 0.612
#> GSM28732 1 0.0336 0.941 0.992 0.000 0.000 0.008
#> GSM11255 4 0.7359 0.477 0.188 0.000 0.304 0.508
#> GSM28731 1 0.1389 0.934 0.952 0.000 0.000 0.048
#> GSM28727 1 0.0000 0.940 1.000 0.000 0.000 0.000
#> GSM11251 1 0.0000 0.940 1.000 0.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM28735 1 0.2674 0.838 0.868 0.000 0.000 0.120 0.012
#> GSM28736 1 0.2674 0.838 0.868 0.000 0.000 0.120 0.012
#> GSM28737 1 0.3255 0.881 0.848 0.000 0.000 0.052 0.100
#> GSM11249 5 0.1043 0.815 0.000 0.000 0.040 0.000 0.960
#> GSM28745 2 0.0000 0.943 0.000 1.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.943 0.000 1.000 0.000 0.000 0.000
#> GSM28748 2 0.0000 0.943 0.000 1.000 0.000 0.000 0.000
#> GSM11266 2 0.0000 0.943 0.000 1.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 0.943 0.000 1.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.943 0.000 1.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.943 0.000 1.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.943 0.000 1.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.943 0.000 1.000 0.000 0.000 0.000
#> GSM11265 1 0.3255 0.881 0.848 0.000 0.000 0.052 0.100
#> GSM28739 1 0.3255 0.881 0.848 0.000 0.000 0.052 0.100
#> GSM11243 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> GSM28740 1 0.3255 0.881 0.848 0.000 0.000 0.052 0.100
#> GSM11259 1 0.0290 0.907 0.992 0.000 0.000 0.008 0.000
#> GSM28726 1 0.1774 0.893 0.932 0.000 0.000 0.052 0.016
#> GSM28743 1 0.3255 0.881 0.848 0.000 0.000 0.052 0.100
#> GSM11256 4 0.3093 0.899 0.008 0.000 0.000 0.824 0.168
#> GSM11262 1 0.3255 0.881 0.848 0.000 0.000 0.052 0.100
#> GSM28724 1 0.0963 0.902 0.964 0.000 0.000 0.036 0.000
#> GSM28725 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> GSM11263 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> GSM11267 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> GSM28744 4 0.3093 0.899 0.008 0.000 0.000 0.824 0.168
#> GSM28734 4 0.3231 0.888 0.004 0.000 0.000 0.800 0.196
#> GSM28747 1 0.1493 0.909 0.948 0.000 0.000 0.024 0.028
#> GSM11257 1 0.1469 0.909 0.948 0.000 0.000 0.036 0.016
#> GSM11252 5 0.1997 0.832 0.040 0.000 0.036 0.000 0.924
#> GSM11264 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> GSM11247 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> GSM11258 4 0.4763 0.736 0.076 0.000 0.000 0.712 0.212
#> GSM28728 1 0.1809 0.886 0.928 0.000 0.000 0.060 0.012
#> GSM28746 1 0.3861 0.845 0.804 0.000 0.000 0.068 0.128
#> GSM28738 1 0.1469 0.909 0.948 0.000 0.000 0.036 0.016
#> GSM28741 2 0.5727 0.543 0.220 0.648 0.000 0.120 0.012
#> GSM28729 1 0.2645 0.903 0.888 0.000 0.000 0.068 0.044
#> GSM28742 1 0.1774 0.893 0.932 0.000 0.000 0.052 0.016
#> GSM11250 2 0.3556 0.806 0.044 0.840 0.000 0.104 0.012
#> GSM11245 5 0.1997 0.832 0.040 0.000 0.036 0.000 0.924
#> GSM11246 1 0.3255 0.881 0.848 0.000 0.000 0.052 0.100
#> GSM11261 5 0.6150 0.618 0.040 0.128 0.040 0.092 0.700
#> GSM11248 5 0.1043 0.815 0.000 0.000 0.040 0.000 0.960
#> GSM28732 1 0.0912 0.910 0.972 0.000 0.000 0.016 0.012
#> GSM11255 5 0.4036 0.651 0.132 0.000 0.012 0.052 0.804
#> GSM28731 1 0.2520 0.901 0.896 0.000 0.000 0.056 0.048
#> GSM28727 1 0.0404 0.906 0.988 0.000 0.000 0.012 0.000
#> GSM11251 1 0.0404 0.906 0.988 0.000 0.000 0.012 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM28735 1 0.3101 0.674 0.756 0.000 0.000 0.000 0.244 0.000
#> GSM28736 1 0.3101 0.674 0.756 0.000 0.000 0.000 0.244 0.000
#> GSM28737 1 0.3337 0.773 0.736 0.000 0.000 0.000 0.260 0.004
#> GSM11249 6 0.0291 0.764 0.000 0.000 0.004 0.004 0.000 0.992
#> GSM28745 2 0.0000 0.939 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.939 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28748 2 0.0000 0.939 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11266 2 0.0000 0.939 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 0.939 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.939 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.939 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.939 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.939 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11265 1 0.3337 0.773 0.736 0.000 0.000 0.000 0.260 0.004
#> GSM28739 1 0.3337 0.773 0.736 0.000 0.000 0.000 0.260 0.004
#> GSM11243 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM28740 1 0.3337 0.773 0.736 0.000 0.000 0.000 0.260 0.004
#> GSM11259 1 0.0146 0.813 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM28726 1 0.2668 0.754 0.828 0.000 0.000 0.000 0.168 0.004
#> GSM28743 1 0.3337 0.773 0.736 0.000 0.000 0.000 0.260 0.004
#> GSM11256 4 0.0260 0.893 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM11262 1 0.3337 0.773 0.736 0.000 0.000 0.000 0.260 0.004
#> GSM28724 1 0.1556 0.809 0.920 0.000 0.000 0.000 0.080 0.000
#> GSM28725 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11263 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11267 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM28744 4 0.0260 0.893 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM28734 4 0.1257 0.886 0.000 0.000 0.000 0.952 0.020 0.028
#> GSM28747 1 0.1714 0.817 0.908 0.000 0.000 0.000 0.092 0.000
#> GSM11257 1 0.3230 0.771 0.776 0.000 0.000 0.012 0.212 0.000
#> GSM11252 6 0.1226 0.793 0.040 0.000 0.000 0.004 0.004 0.952
#> GSM11264 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11247 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11258 4 0.3572 0.730 0.060 0.000 0.000 0.820 0.100 0.020
#> GSM28728 1 0.2416 0.756 0.844 0.000 0.000 0.000 0.156 0.000
#> GSM28746 1 0.4619 0.751 0.712 0.000 0.000 0.056 0.204 0.028
#> GSM28738 1 0.3230 0.771 0.776 0.000 0.000 0.012 0.212 0.000
#> GSM28741 2 0.4969 0.473 0.156 0.648 0.000 0.000 0.196 0.000
#> GSM28729 1 0.3398 0.782 0.768 0.000 0.000 0.012 0.216 0.004
#> GSM28742 1 0.2668 0.754 0.828 0.000 0.000 0.000 0.168 0.004
#> GSM11250 2 0.2558 0.782 0.004 0.840 0.000 0.000 0.156 0.000
#> GSM11245 6 0.1226 0.793 0.040 0.000 0.000 0.004 0.004 0.952
#> GSM11246 1 0.3337 0.773 0.736 0.000 0.000 0.000 0.260 0.004
#> GSM11261 5 0.5304 0.000 0.024 0.044 0.004 0.000 0.536 0.392
#> GSM11248 6 0.0291 0.764 0.000 0.000 0.004 0.004 0.000 0.992
#> GSM28732 1 0.1411 0.818 0.936 0.000 0.000 0.004 0.060 0.000
#> GSM11255 6 0.4272 0.433 0.080 0.000 0.000 0.012 0.160 0.748
#> GSM28731 1 0.2982 0.806 0.820 0.000 0.000 0.012 0.164 0.004
#> GSM28727 1 0.0260 0.812 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM11251 1 0.0260 0.812 0.992 0.000 0.000 0.000 0.008 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n tissue(p) k
#> MAD:hclust 50 0.394 2
#> MAD:hclust 46 0.364 3
#> MAD:hclust 48 0.437 4
#> MAD:hclust 50 0.473 5
#> MAD:hclust 47 0.463 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21342 rows and 50 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.393 0.280 0.614 0.3639 0.556 0.556
#> 3 3 1.000 0.986 0.987 0.5228 0.616 0.445
#> 4 4 0.700 0.712 0.808 0.2712 0.804 0.560
#> 5 5 0.754 0.735 0.860 0.0996 0.951 0.814
#> 6 6 0.797 0.644 0.813 0.0522 0.943 0.759
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM28735 2 0.980 0.3074 0.416 0.584
#> GSM28736 2 0.980 0.3074 0.416 0.584
#> GSM28737 2 0.980 0.3074 0.416 0.584
#> GSM11249 1 0.760 0.4468 0.780 0.220
#> GSM28745 2 0.760 0.2347 0.220 0.780
#> GSM11244 2 0.760 0.2347 0.220 0.780
#> GSM28748 2 0.760 0.2347 0.220 0.780
#> GSM11266 2 0.760 0.2347 0.220 0.780
#> GSM28730 2 0.760 0.2347 0.220 0.780
#> GSM11253 2 0.760 0.2347 0.220 0.780
#> GSM11254 2 0.760 0.2347 0.220 0.780
#> GSM11260 2 0.760 0.2347 0.220 0.780
#> GSM28733 2 0.760 0.2347 0.220 0.780
#> GSM11265 2 0.980 0.3074 0.416 0.584
#> GSM28739 2 0.980 0.3074 0.416 0.584
#> GSM11243 1 0.000 0.4942 1.000 0.000
#> GSM28740 2 0.980 0.3074 0.416 0.584
#> GSM11259 2 0.980 0.3074 0.416 0.584
#> GSM28726 2 0.980 0.3074 0.416 0.584
#> GSM28743 2 0.980 0.3074 0.416 0.584
#> GSM11256 1 1.000 0.0780 0.504 0.496
#> GSM11262 2 0.980 0.3074 0.416 0.584
#> GSM28724 2 0.980 0.3074 0.416 0.584
#> GSM28725 1 0.000 0.4942 1.000 0.000
#> GSM11263 1 0.000 0.4942 1.000 0.000
#> GSM11267 1 0.000 0.4942 1.000 0.000
#> GSM28744 1 1.000 0.0780 0.504 0.496
#> GSM28734 1 0.996 0.1598 0.536 0.464
#> GSM28747 2 0.980 0.3074 0.416 0.584
#> GSM11257 2 0.980 0.3074 0.416 0.584
#> GSM11252 1 1.000 0.0945 0.508 0.492
#> GSM11264 1 0.000 0.4942 1.000 0.000
#> GSM11247 1 0.000 0.4942 1.000 0.000
#> GSM11258 1 1.000 0.0572 0.500 0.500
#> GSM28728 2 0.980 0.3074 0.416 0.584
#> GSM28746 2 1.000 -0.0733 0.488 0.512
#> GSM28738 2 0.980 0.3074 0.416 0.584
#> GSM28741 2 0.184 0.2095 0.028 0.972
#> GSM28729 2 0.980 0.3074 0.416 0.584
#> GSM28742 2 0.980 0.3074 0.416 0.584
#> GSM11250 2 0.760 0.2347 0.220 0.780
#> GSM11245 1 1.000 0.0945 0.508 0.492
#> GSM11246 2 0.980 0.3074 0.416 0.584
#> GSM11261 1 0.833 0.2249 0.736 0.264
#> GSM11248 1 0.760 0.4468 0.780 0.220
#> GSM28732 2 0.980 0.3074 0.416 0.584
#> GSM11255 1 1.000 0.0945 0.508 0.492
#> GSM28731 2 0.980 0.3074 0.416 0.584
#> GSM28727 2 0.980 0.3074 0.416 0.584
#> GSM11251 2 0.980 0.3074 0.416 0.584
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM28735 1 0.0000 0.990 1.000 0.000 0.000
#> GSM28736 1 0.0000 0.990 1.000 0.000 0.000
#> GSM28737 1 0.0000 0.990 1.000 0.000 0.000
#> GSM11249 3 0.0237 0.990 0.004 0.000 0.996
#> GSM28745 2 0.0892 1.000 0.020 0.980 0.000
#> GSM11244 2 0.0892 1.000 0.020 0.980 0.000
#> GSM28748 2 0.0892 1.000 0.020 0.980 0.000
#> GSM11266 2 0.0892 1.000 0.020 0.980 0.000
#> GSM28730 2 0.0892 1.000 0.020 0.980 0.000
#> GSM11253 2 0.0892 1.000 0.020 0.980 0.000
#> GSM11254 2 0.0892 1.000 0.020 0.980 0.000
#> GSM11260 2 0.0892 1.000 0.020 0.980 0.000
#> GSM28733 2 0.0892 1.000 0.020 0.980 0.000
#> GSM11265 1 0.0237 0.989 0.996 0.000 0.004
#> GSM28739 1 0.0237 0.989 0.996 0.000 0.004
#> GSM11243 3 0.0829 0.989 0.004 0.012 0.984
#> GSM28740 1 0.0237 0.989 0.996 0.000 0.004
#> GSM11259 1 0.0000 0.990 1.000 0.000 0.000
#> GSM28726 1 0.0000 0.990 1.000 0.000 0.000
#> GSM28743 1 0.0237 0.989 0.996 0.000 0.004
#> GSM11256 1 0.1015 0.980 0.980 0.012 0.008
#> GSM11262 1 0.0237 0.989 0.996 0.000 0.004
#> GSM28724 1 0.0000 0.990 1.000 0.000 0.000
#> GSM28725 3 0.0475 0.991 0.004 0.004 0.992
#> GSM11263 3 0.0475 0.991 0.004 0.004 0.992
#> GSM11267 3 0.0475 0.991 0.004 0.004 0.992
#> GSM28744 1 0.1015 0.980 0.980 0.012 0.008
#> GSM28734 1 0.1015 0.980 0.980 0.012 0.008
#> GSM28747 1 0.0000 0.990 1.000 0.000 0.000
#> GSM11257 1 0.0237 0.988 0.996 0.000 0.004
#> GSM11252 1 0.0237 0.989 0.996 0.000 0.004
#> GSM11264 3 0.0475 0.991 0.004 0.004 0.992
#> GSM11247 3 0.0829 0.989 0.004 0.012 0.984
#> GSM11258 1 0.1015 0.980 0.980 0.012 0.008
#> GSM28728 1 0.0000 0.990 1.000 0.000 0.000
#> GSM28746 1 0.0237 0.989 0.996 0.000 0.004
#> GSM28738 1 0.0237 0.988 0.996 0.000 0.004
#> GSM28741 1 0.4399 0.764 0.812 0.188 0.000
#> GSM28729 1 0.0000 0.990 1.000 0.000 0.000
#> GSM28742 1 0.0000 0.990 1.000 0.000 0.000
#> GSM11250 2 0.0892 1.000 0.020 0.980 0.000
#> GSM11245 1 0.0237 0.989 0.996 0.000 0.004
#> GSM11246 1 0.0237 0.989 0.996 0.000 0.004
#> GSM11261 3 0.1999 0.952 0.036 0.012 0.952
#> GSM11248 3 0.0237 0.990 0.004 0.000 0.996
#> GSM28732 1 0.0000 0.990 1.000 0.000 0.000
#> GSM11255 1 0.0237 0.989 0.996 0.000 0.004
#> GSM28731 1 0.0000 0.990 1.000 0.000 0.000
#> GSM28727 1 0.0000 0.990 1.000 0.000 0.000
#> GSM11251 1 0.0000 0.990 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM28735 1 0.0592 0.807 0.984 0.000 0.000 0.016
#> GSM28736 1 0.0592 0.807 0.984 0.000 0.000 0.016
#> GSM28737 4 0.4972 0.504 0.456 0.000 0.000 0.544
#> GSM11249 3 0.2868 0.858 0.000 0.000 0.864 0.136
#> GSM28745 2 0.0336 1.000 0.008 0.992 0.000 0.000
#> GSM11244 2 0.0336 1.000 0.008 0.992 0.000 0.000
#> GSM28748 2 0.0336 1.000 0.008 0.992 0.000 0.000
#> GSM11266 2 0.0336 1.000 0.008 0.992 0.000 0.000
#> GSM28730 2 0.0336 1.000 0.008 0.992 0.000 0.000
#> GSM11253 2 0.0336 1.000 0.008 0.992 0.000 0.000
#> GSM11254 2 0.0336 1.000 0.008 0.992 0.000 0.000
#> GSM11260 2 0.0336 1.000 0.008 0.992 0.000 0.000
#> GSM28733 2 0.0336 1.000 0.008 0.992 0.000 0.000
#> GSM11265 4 0.4916 0.567 0.424 0.000 0.000 0.576
#> GSM28739 4 0.4916 0.567 0.424 0.000 0.000 0.576
#> GSM11243 3 0.1635 0.901 0.000 0.008 0.948 0.044
#> GSM28740 4 0.4916 0.567 0.424 0.000 0.000 0.576
#> GSM11259 1 0.1867 0.779 0.928 0.000 0.000 0.072
#> GSM28726 1 0.0000 0.816 1.000 0.000 0.000 0.000
#> GSM28743 4 0.4916 0.567 0.424 0.000 0.000 0.576
#> GSM11256 4 0.4998 0.065 0.488 0.000 0.000 0.512
#> GSM11262 4 0.4916 0.567 0.424 0.000 0.000 0.576
#> GSM28724 1 0.1557 0.793 0.944 0.000 0.000 0.056
#> GSM28725 3 0.0188 0.910 0.000 0.004 0.996 0.000
#> GSM11263 3 0.0000 0.910 0.000 0.000 1.000 0.000
#> GSM11267 3 0.0000 0.910 0.000 0.000 1.000 0.000
#> GSM28744 4 0.4998 0.065 0.488 0.000 0.000 0.512
#> GSM28734 4 0.4431 0.289 0.304 0.000 0.000 0.696
#> GSM28747 1 0.4250 0.396 0.724 0.000 0.000 0.276
#> GSM11257 1 0.2216 0.710 0.908 0.000 0.000 0.092
#> GSM11252 4 0.4888 0.434 0.412 0.000 0.000 0.588
#> GSM11264 3 0.0000 0.910 0.000 0.000 1.000 0.000
#> GSM11247 3 0.1635 0.901 0.000 0.008 0.948 0.044
#> GSM11258 4 0.1389 0.448 0.048 0.000 0.000 0.952
#> GSM28728 1 0.0000 0.816 1.000 0.000 0.000 0.000
#> GSM28746 4 0.4999 0.384 0.492 0.000 0.000 0.508
#> GSM28738 1 0.0592 0.804 0.984 0.000 0.000 0.016
#> GSM28741 1 0.0707 0.802 0.980 0.020 0.000 0.000
#> GSM28729 1 0.0000 0.816 1.000 0.000 0.000 0.000
#> GSM28742 1 0.0000 0.816 1.000 0.000 0.000 0.000
#> GSM11250 2 0.0336 1.000 0.008 0.992 0.000 0.000
#> GSM11245 4 0.4888 0.434 0.412 0.000 0.000 0.588
#> GSM11246 4 0.4916 0.567 0.424 0.000 0.000 0.576
#> GSM11261 3 0.7041 0.515 0.304 0.004 0.560 0.132
#> GSM11248 3 0.2868 0.858 0.000 0.000 0.864 0.136
#> GSM28732 1 0.1637 0.789 0.940 0.000 0.000 0.060
#> GSM11255 4 0.4406 0.560 0.300 0.000 0.000 0.700
#> GSM28731 1 0.4103 0.454 0.744 0.000 0.000 0.256
#> GSM28727 1 0.4008 0.484 0.756 0.000 0.000 0.244
#> GSM11251 1 0.4134 0.448 0.740 0.000 0.000 0.260
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM28735 5 0.1270 0.776 0.000 0.000 0.000 0.052 0.948
#> GSM28736 5 0.1270 0.776 0.000 0.000 0.000 0.052 0.948
#> GSM28737 1 0.2516 0.785 0.860 0.000 0.000 0.000 0.140
#> GSM11249 3 0.4272 0.714 0.052 0.000 0.752 0.196 0.000
#> GSM28745 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM28748 2 0.0290 0.993 0.000 0.992 0.000 0.008 0.000
#> GSM11266 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM11265 1 0.2377 0.794 0.872 0.000 0.000 0.000 0.128
#> GSM28739 1 0.2377 0.794 0.872 0.000 0.000 0.000 0.128
#> GSM11243 3 0.2304 0.867 0.044 0.000 0.908 0.048 0.000
#> GSM28740 1 0.2377 0.794 0.872 0.000 0.000 0.000 0.128
#> GSM11259 5 0.0955 0.778 0.028 0.000 0.000 0.004 0.968
#> GSM28726 5 0.0794 0.783 0.000 0.000 0.000 0.028 0.972
#> GSM28743 1 0.2377 0.794 0.872 0.000 0.000 0.000 0.128
#> GSM11256 4 0.2228 0.974 0.040 0.000 0.000 0.912 0.048
#> GSM11262 1 0.2377 0.794 0.872 0.000 0.000 0.000 0.128
#> GSM28724 5 0.1124 0.777 0.036 0.000 0.000 0.004 0.960
#> GSM28725 3 0.0000 0.897 0.000 0.000 1.000 0.000 0.000
#> GSM11263 3 0.0000 0.897 0.000 0.000 1.000 0.000 0.000
#> GSM11267 3 0.0000 0.897 0.000 0.000 1.000 0.000 0.000
#> GSM28744 4 0.2228 0.974 0.040 0.000 0.000 0.912 0.048
#> GSM28734 4 0.2300 0.947 0.072 0.000 0.000 0.904 0.024
#> GSM28747 5 0.4367 0.207 0.416 0.000 0.000 0.004 0.580
#> GSM11257 5 0.3885 0.631 0.040 0.000 0.000 0.176 0.784
#> GSM11252 1 0.5989 0.364 0.536 0.000 0.000 0.336 0.128
#> GSM11264 3 0.0000 0.897 0.000 0.000 1.000 0.000 0.000
#> GSM11247 3 0.2376 0.865 0.044 0.000 0.904 0.052 0.000
#> GSM11258 1 0.4287 -0.100 0.540 0.000 0.000 0.460 0.000
#> GSM28728 5 0.0404 0.784 0.012 0.000 0.000 0.000 0.988
#> GSM28746 1 0.6492 0.303 0.456 0.000 0.000 0.196 0.348
#> GSM28738 5 0.1661 0.770 0.036 0.000 0.000 0.024 0.940
#> GSM28741 5 0.0794 0.782 0.000 0.000 0.000 0.028 0.972
#> GSM28729 5 0.0693 0.784 0.012 0.000 0.000 0.008 0.980
#> GSM28742 5 0.0865 0.783 0.004 0.000 0.000 0.024 0.972
#> GSM11250 2 0.0290 0.993 0.000 0.992 0.000 0.008 0.000
#> GSM11245 1 0.5989 0.364 0.536 0.000 0.000 0.336 0.128
#> GSM11246 1 0.2377 0.794 0.872 0.000 0.000 0.000 0.128
#> GSM11261 5 0.7443 -0.179 0.084 0.000 0.364 0.124 0.428
#> GSM11248 3 0.4337 0.710 0.056 0.000 0.748 0.196 0.000
#> GSM28732 5 0.0955 0.778 0.028 0.000 0.000 0.004 0.968
#> GSM11255 1 0.3055 0.706 0.864 0.000 0.000 0.072 0.064
#> GSM28731 5 0.4310 0.261 0.392 0.000 0.000 0.004 0.604
#> GSM28727 5 0.4505 0.270 0.384 0.000 0.000 0.012 0.604
#> GSM11251 5 0.4574 0.218 0.412 0.000 0.000 0.012 0.576
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM28735 5 0.2074 0.6341 0.004 0.000 0.000 0.048 0.912 0.036
#> GSM28736 5 0.2074 0.6341 0.004 0.000 0.000 0.048 0.912 0.036
#> GSM28737 1 0.0632 0.7564 0.976 0.000 0.000 0.000 0.024 0.000
#> GSM11249 3 0.5937 0.3508 0.012 0.000 0.520 0.188 0.000 0.280
#> GSM28745 2 0.0000 0.9956 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11244 2 0.0260 0.9956 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM28748 2 0.0146 0.9940 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM11266 2 0.0260 0.9956 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM28730 2 0.0000 0.9956 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.9956 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11254 2 0.0260 0.9956 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM11260 2 0.0000 0.9956 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28733 2 0.0260 0.9956 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM11265 1 0.0632 0.7564 0.976 0.000 0.000 0.000 0.024 0.000
#> GSM28739 1 0.0632 0.7564 0.976 0.000 0.000 0.000 0.024 0.000
#> GSM11243 3 0.2595 0.7334 0.000 0.000 0.836 0.004 0.000 0.160
#> GSM28740 1 0.0632 0.7564 0.976 0.000 0.000 0.000 0.024 0.000
#> GSM11259 5 0.3512 0.6735 0.032 0.000 0.000 0.000 0.772 0.196
#> GSM28726 5 0.1464 0.6558 0.004 0.000 0.000 0.016 0.944 0.036
#> GSM28743 1 0.0632 0.7564 0.976 0.000 0.000 0.000 0.024 0.000
#> GSM11256 4 0.0790 0.9521 0.000 0.000 0.000 0.968 0.032 0.000
#> GSM11262 1 0.0632 0.7564 0.976 0.000 0.000 0.000 0.024 0.000
#> GSM28724 5 0.4093 0.6442 0.024 0.000 0.000 0.004 0.680 0.292
#> GSM28725 3 0.0000 0.7953 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11263 3 0.0000 0.7953 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11267 3 0.0000 0.7953 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM28744 4 0.0790 0.9521 0.000 0.000 0.000 0.968 0.032 0.000
#> GSM28734 4 0.1370 0.9017 0.012 0.000 0.000 0.948 0.004 0.036
#> GSM28747 1 0.5945 -0.3526 0.392 0.000 0.000 0.000 0.392 0.216
#> GSM11257 5 0.5232 0.5010 0.008 0.000 0.000 0.072 0.508 0.412
#> GSM11252 6 0.6612 0.4186 0.304 0.000 0.000 0.252 0.032 0.412
#> GSM11264 3 0.0000 0.7953 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11247 3 0.2772 0.7223 0.000 0.000 0.816 0.004 0.000 0.180
#> GSM11258 1 0.3852 0.1776 0.612 0.000 0.000 0.384 0.000 0.004
#> GSM28728 5 0.3109 0.6711 0.004 0.000 0.000 0.000 0.772 0.224
#> GSM28746 6 0.7030 0.0288 0.304 0.000 0.000 0.072 0.236 0.388
#> GSM28738 5 0.4337 0.5921 0.008 0.000 0.000 0.016 0.604 0.372
#> GSM28741 5 0.0951 0.6569 0.004 0.000 0.000 0.008 0.968 0.020
#> GSM28729 5 0.3628 0.6589 0.004 0.000 0.000 0.008 0.720 0.268
#> GSM28742 5 0.1320 0.6558 0.000 0.000 0.000 0.016 0.948 0.036
#> GSM11250 2 0.0363 0.9940 0.000 0.988 0.000 0.000 0.000 0.012
#> GSM11245 6 0.6612 0.4186 0.304 0.000 0.000 0.252 0.032 0.412
#> GSM11246 1 0.0632 0.7564 0.976 0.000 0.000 0.000 0.024 0.000
#> GSM11261 6 0.6616 0.0462 0.008 0.000 0.156 0.048 0.300 0.488
#> GSM11248 3 0.5988 0.3227 0.012 0.000 0.504 0.188 0.000 0.296
#> GSM28732 5 0.3394 0.6637 0.012 0.000 0.000 0.000 0.752 0.236
#> GSM11255 1 0.5031 -0.1837 0.528 0.000 0.000 0.064 0.004 0.404
#> GSM28731 5 0.6006 0.2122 0.316 0.000 0.000 0.000 0.428 0.256
#> GSM28727 5 0.5159 0.2385 0.380 0.000 0.000 0.000 0.528 0.092
#> GSM11251 5 0.5123 0.2009 0.408 0.000 0.000 0.000 0.508 0.084
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n tissue(p) k
#> MAD:kmeans 0 NA 2
#> MAD:kmeans 50 0.370 3
#> MAD:kmeans 39 0.405 4
#> MAD:kmeans 41 0.517 5
#> MAD:kmeans 38 0.509 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21342 rows and 50 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.976 0.991 0.4768 0.519 0.519
#> 3 3 0.939 0.949 0.978 0.3534 0.754 0.561
#> 4 4 0.798 0.741 0.898 0.1612 0.797 0.494
#> 5 5 0.824 0.741 0.879 0.0727 0.872 0.550
#> 6 6 0.824 0.639 0.824 0.0387 0.928 0.668
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2
There is also optional best \(k\) = 2 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM28735 1 0.000 1.000 1.000 0.000
#> GSM28736 2 0.987 0.239 0.432 0.568
#> GSM28737 1 0.000 1.000 1.000 0.000
#> GSM11249 1 0.000 1.000 1.000 0.000
#> GSM28745 2 0.000 0.976 0.000 1.000
#> GSM11244 2 0.000 0.976 0.000 1.000
#> GSM28748 2 0.000 0.976 0.000 1.000
#> GSM11266 2 0.000 0.976 0.000 1.000
#> GSM28730 2 0.000 0.976 0.000 1.000
#> GSM11253 2 0.000 0.976 0.000 1.000
#> GSM11254 2 0.000 0.976 0.000 1.000
#> GSM11260 2 0.000 0.976 0.000 1.000
#> GSM28733 2 0.000 0.976 0.000 1.000
#> GSM11265 1 0.000 1.000 1.000 0.000
#> GSM28739 1 0.000 1.000 1.000 0.000
#> GSM11243 2 0.000 0.976 0.000 1.000
#> GSM28740 1 0.000 1.000 1.000 0.000
#> GSM11259 1 0.000 1.000 1.000 0.000
#> GSM28726 1 0.000 1.000 1.000 0.000
#> GSM28743 1 0.000 1.000 1.000 0.000
#> GSM11256 1 0.000 1.000 1.000 0.000
#> GSM11262 1 0.000 1.000 1.000 0.000
#> GSM28724 1 0.000 1.000 1.000 0.000
#> GSM28725 2 0.000 0.976 0.000 1.000
#> GSM11263 2 0.000 0.976 0.000 1.000
#> GSM11267 2 0.000 0.976 0.000 1.000
#> GSM28744 1 0.000 1.000 1.000 0.000
#> GSM28734 1 0.000 1.000 1.000 0.000
#> GSM28747 1 0.000 1.000 1.000 0.000
#> GSM11257 1 0.000 1.000 1.000 0.000
#> GSM11252 1 0.000 1.000 1.000 0.000
#> GSM11264 2 0.000 0.976 0.000 1.000
#> GSM11247 2 0.000 0.976 0.000 1.000
#> GSM11258 1 0.000 1.000 1.000 0.000
#> GSM28728 1 0.000 1.000 1.000 0.000
#> GSM28746 1 0.000 1.000 1.000 0.000
#> GSM28738 1 0.000 1.000 1.000 0.000
#> GSM28741 2 0.000 0.976 0.000 1.000
#> GSM28729 1 0.000 1.000 1.000 0.000
#> GSM28742 1 0.000 1.000 1.000 0.000
#> GSM11250 2 0.000 0.976 0.000 1.000
#> GSM11245 1 0.000 1.000 1.000 0.000
#> GSM11246 1 0.000 1.000 1.000 0.000
#> GSM11261 2 0.000 0.976 0.000 1.000
#> GSM11248 1 0.000 1.000 1.000 0.000
#> GSM28732 1 0.000 1.000 1.000 0.000
#> GSM11255 1 0.000 1.000 1.000 0.000
#> GSM28731 1 0.000 1.000 1.000 0.000
#> GSM28727 1 0.000 1.000 1.000 0.000
#> GSM11251 1 0.000 1.000 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM28735 1 0.0000 0.978 1.000 0.000 0.000
#> GSM28736 2 0.0424 0.990 0.008 0.992 0.000
#> GSM28737 1 0.0000 0.978 1.000 0.000 0.000
#> GSM11249 3 0.0000 0.943 0.000 0.000 1.000
#> GSM28745 2 0.0000 0.999 0.000 1.000 0.000
#> GSM11244 2 0.0000 0.999 0.000 1.000 0.000
#> GSM28748 2 0.0000 0.999 0.000 1.000 0.000
#> GSM11266 2 0.0000 0.999 0.000 1.000 0.000
#> GSM28730 2 0.0000 0.999 0.000 1.000 0.000
#> GSM11253 2 0.0000 0.999 0.000 1.000 0.000
#> GSM11254 2 0.0000 0.999 0.000 1.000 0.000
#> GSM11260 2 0.0000 0.999 0.000 1.000 0.000
#> GSM28733 2 0.0000 0.999 0.000 1.000 0.000
#> GSM11265 1 0.0000 0.978 1.000 0.000 0.000
#> GSM28739 1 0.0000 0.978 1.000 0.000 0.000
#> GSM11243 3 0.0000 0.943 0.000 0.000 1.000
#> GSM28740 1 0.0000 0.978 1.000 0.000 0.000
#> GSM11259 1 0.0000 0.978 1.000 0.000 0.000
#> GSM28726 1 0.4399 0.778 0.812 0.188 0.000
#> GSM28743 1 0.0000 0.978 1.000 0.000 0.000
#> GSM11256 3 0.1643 0.920 0.044 0.000 0.956
#> GSM11262 1 0.0000 0.978 1.000 0.000 0.000
#> GSM28724 1 0.0000 0.978 1.000 0.000 0.000
#> GSM28725 3 0.0000 0.943 0.000 0.000 1.000
#> GSM11263 3 0.0000 0.943 0.000 0.000 1.000
#> GSM11267 3 0.0000 0.943 0.000 0.000 1.000
#> GSM28744 3 0.1643 0.920 0.044 0.000 0.956
#> GSM28734 3 0.0747 0.936 0.016 0.000 0.984
#> GSM28747 1 0.0000 0.978 1.000 0.000 0.000
#> GSM11257 1 0.0000 0.978 1.000 0.000 0.000
#> GSM11252 3 0.6111 0.389 0.396 0.000 0.604
#> GSM11264 3 0.0000 0.943 0.000 0.000 1.000
#> GSM11247 3 0.0000 0.943 0.000 0.000 1.000
#> GSM11258 1 0.0000 0.978 1.000 0.000 0.000
#> GSM28728 1 0.3038 0.875 0.896 0.000 0.104
#> GSM28746 1 0.0000 0.978 1.000 0.000 0.000
#> GSM28738 1 0.0000 0.978 1.000 0.000 0.000
#> GSM28741 2 0.0000 0.999 0.000 1.000 0.000
#> GSM28729 1 0.0000 0.978 1.000 0.000 0.000
#> GSM28742 1 0.4399 0.778 0.812 0.188 0.000
#> GSM11250 2 0.0000 0.999 0.000 1.000 0.000
#> GSM11245 3 0.3551 0.835 0.132 0.000 0.868
#> GSM11246 1 0.0000 0.978 1.000 0.000 0.000
#> GSM11261 3 0.0000 0.943 0.000 0.000 1.000
#> GSM11248 3 0.0000 0.943 0.000 0.000 1.000
#> GSM28732 1 0.0000 0.978 1.000 0.000 0.000
#> GSM11255 1 0.0237 0.974 0.996 0.000 0.004
#> GSM28731 1 0.0000 0.978 1.000 0.000 0.000
#> GSM28727 1 0.0000 0.978 1.000 0.000 0.000
#> GSM11251 1 0.0000 0.978 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM28735 4 0.0188 0.76383 0.004 0.000 0.000 0.996
#> GSM28736 4 0.1716 0.72884 0.000 0.064 0.000 0.936
#> GSM28737 1 0.0188 0.78501 0.996 0.000 0.000 0.004
#> GSM11249 3 0.0000 0.93862 0.000 0.000 1.000 0.000
#> GSM28745 2 0.0000 1.00000 0.000 1.000 0.000 0.000
#> GSM11244 2 0.0000 1.00000 0.000 1.000 0.000 0.000
#> GSM28748 2 0.0000 1.00000 0.000 1.000 0.000 0.000
#> GSM11266 2 0.0000 1.00000 0.000 1.000 0.000 0.000
#> GSM28730 2 0.0000 1.00000 0.000 1.000 0.000 0.000
#> GSM11253 2 0.0000 1.00000 0.000 1.000 0.000 0.000
#> GSM11254 2 0.0000 1.00000 0.000 1.000 0.000 0.000
#> GSM11260 2 0.0000 1.00000 0.000 1.000 0.000 0.000
#> GSM28733 2 0.0000 1.00000 0.000 1.000 0.000 0.000
#> GSM11265 1 0.0000 0.78616 1.000 0.000 0.000 0.000
#> GSM28739 1 0.0000 0.78616 1.000 0.000 0.000 0.000
#> GSM11243 3 0.0000 0.93862 0.000 0.000 1.000 0.000
#> GSM28740 1 0.0000 0.78616 1.000 0.000 0.000 0.000
#> GSM11259 4 0.4941 -0.00528 0.436 0.000 0.000 0.564
#> GSM28726 4 0.0336 0.76395 0.008 0.000 0.000 0.992
#> GSM28743 1 0.0000 0.78616 1.000 0.000 0.000 0.000
#> GSM11256 4 0.5855 0.35848 0.356 0.000 0.044 0.600
#> GSM11262 1 0.0000 0.78616 1.000 0.000 0.000 0.000
#> GSM28724 1 0.4994 0.17789 0.520 0.000 0.000 0.480
#> GSM28725 3 0.0000 0.93862 0.000 0.000 1.000 0.000
#> GSM11263 3 0.0000 0.93862 0.000 0.000 1.000 0.000
#> GSM11267 3 0.0000 0.93862 0.000 0.000 1.000 0.000
#> GSM28744 4 0.5943 0.34816 0.360 0.000 0.048 0.592
#> GSM28734 3 0.7240 0.17919 0.400 0.000 0.456 0.144
#> GSM28747 1 0.4661 0.44798 0.652 0.000 0.000 0.348
#> GSM11257 4 0.3801 0.59441 0.220 0.000 0.000 0.780
#> GSM11252 1 0.2737 0.72045 0.888 0.000 0.104 0.008
#> GSM11264 3 0.0000 0.93862 0.000 0.000 1.000 0.000
#> GSM11247 3 0.0000 0.93862 0.000 0.000 1.000 0.000
#> GSM11258 1 0.0188 0.78404 0.996 0.000 0.000 0.004
#> GSM28728 4 0.1406 0.75320 0.024 0.000 0.016 0.960
#> GSM28746 1 0.2216 0.73615 0.908 0.000 0.000 0.092
#> GSM28738 4 0.0188 0.76367 0.004 0.000 0.000 0.996
#> GSM28741 2 0.0000 1.00000 0.000 1.000 0.000 0.000
#> GSM28729 4 0.0336 0.76395 0.008 0.000 0.000 0.992
#> GSM28742 4 0.0188 0.76383 0.004 0.000 0.000 0.996
#> GSM11250 2 0.0000 1.00000 0.000 1.000 0.000 0.000
#> GSM11245 1 0.3972 0.61402 0.788 0.000 0.204 0.008
#> GSM11246 1 0.0000 0.78616 1.000 0.000 0.000 0.000
#> GSM11261 3 0.0000 0.93862 0.000 0.000 1.000 0.000
#> GSM11248 3 0.0000 0.93862 0.000 0.000 1.000 0.000
#> GSM28732 4 0.4817 0.15653 0.388 0.000 0.000 0.612
#> GSM11255 1 0.0188 0.78404 0.996 0.000 0.000 0.004
#> GSM28731 1 0.4916 0.31987 0.576 0.000 0.000 0.424
#> GSM28727 1 0.4961 0.27008 0.552 0.000 0.000 0.448
#> GSM11251 1 0.4948 0.28828 0.560 0.000 0.000 0.440
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM28735 5 0.3336 0.5598 0.000 0.000 0.000 0.228 0.772
#> GSM28736 5 0.4325 0.5272 0.000 0.044 0.000 0.220 0.736
#> GSM28737 1 0.0404 0.7932 0.988 0.000 0.000 0.000 0.012
#> GSM11249 3 0.1608 0.9282 0.000 0.000 0.928 0.072 0.000
#> GSM28745 2 0.0000 0.9983 0.000 1.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.9983 0.000 1.000 0.000 0.000 0.000
#> GSM28748 2 0.0000 0.9983 0.000 1.000 0.000 0.000 0.000
#> GSM11266 2 0.0000 0.9983 0.000 1.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 0.9983 0.000 1.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.9983 0.000 1.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.9983 0.000 1.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.9983 0.000 1.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.9983 0.000 1.000 0.000 0.000 0.000
#> GSM11265 1 0.0000 0.7997 1.000 0.000 0.000 0.000 0.000
#> GSM28739 1 0.0000 0.7997 1.000 0.000 0.000 0.000 0.000
#> GSM11243 3 0.0000 0.9846 0.000 0.000 1.000 0.000 0.000
#> GSM28740 1 0.0000 0.7997 1.000 0.000 0.000 0.000 0.000
#> GSM11259 5 0.3430 0.6428 0.220 0.000 0.000 0.004 0.776
#> GSM28726 5 0.1768 0.6702 0.000 0.004 0.000 0.072 0.924
#> GSM28743 1 0.0000 0.7997 1.000 0.000 0.000 0.000 0.000
#> GSM11256 4 0.0324 0.7601 0.004 0.000 0.000 0.992 0.004
#> GSM11262 1 0.0000 0.7997 1.000 0.000 0.000 0.000 0.000
#> GSM28724 5 0.5862 0.4219 0.344 0.000 0.000 0.112 0.544
#> GSM28725 3 0.0000 0.9846 0.000 0.000 1.000 0.000 0.000
#> GSM11263 3 0.0000 0.9846 0.000 0.000 1.000 0.000 0.000
#> GSM11267 3 0.0000 0.9846 0.000 0.000 1.000 0.000 0.000
#> GSM28744 4 0.0324 0.7601 0.004 0.000 0.000 0.992 0.004
#> GSM28734 4 0.1377 0.7569 0.020 0.000 0.020 0.956 0.004
#> GSM28747 1 0.5022 0.1675 0.620 0.000 0.000 0.048 0.332
#> GSM11257 4 0.4822 0.5478 0.076 0.000 0.000 0.704 0.220
#> GSM11252 4 0.4618 0.4809 0.344 0.000 0.016 0.636 0.004
#> GSM11264 3 0.0000 0.9846 0.000 0.000 1.000 0.000 0.000
#> GSM11247 3 0.0000 0.9846 0.000 0.000 1.000 0.000 0.000
#> GSM11258 1 0.4256 0.0222 0.564 0.000 0.000 0.436 0.000
#> GSM28728 5 0.2568 0.6915 0.048 0.000 0.016 0.032 0.904
#> GSM28746 1 0.6262 0.1626 0.504 0.000 0.000 0.332 0.164
#> GSM28738 5 0.2813 0.6123 0.000 0.000 0.000 0.168 0.832
#> GSM28741 2 0.0510 0.9832 0.000 0.984 0.000 0.000 0.016
#> GSM28729 5 0.1043 0.6794 0.000 0.000 0.000 0.040 0.960
#> GSM28742 5 0.1544 0.6718 0.000 0.000 0.000 0.068 0.932
#> GSM11250 2 0.0000 0.9983 0.000 1.000 0.000 0.000 0.000
#> GSM11245 4 0.4882 0.5020 0.328 0.000 0.032 0.636 0.004
#> GSM11246 1 0.0162 0.7979 0.996 0.000 0.000 0.000 0.004
#> GSM11261 3 0.0000 0.9846 0.000 0.000 1.000 0.000 0.000
#> GSM11248 3 0.1197 0.9512 0.000 0.000 0.952 0.048 0.000
#> GSM28732 5 0.2843 0.6880 0.144 0.000 0.000 0.008 0.848
#> GSM11255 1 0.3579 0.5013 0.756 0.000 0.000 0.240 0.004
#> GSM28731 5 0.4882 0.3128 0.444 0.000 0.000 0.024 0.532
#> GSM28727 5 0.4283 0.3418 0.456 0.000 0.000 0.000 0.544
#> GSM11251 5 0.4306 0.2581 0.492 0.000 0.000 0.000 0.508
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM28735 5 0.3707 0.6111 0.000 0.000 0.000 0.136 0.784 0.080
#> GSM28736 5 0.3856 0.6159 0.000 0.012 0.000 0.132 0.788 0.068
#> GSM28737 1 0.0405 0.7072 0.988 0.000 0.000 0.000 0.004 0.008
#> GSM11249 3 0.3920 0.7520 0.000 0.000 0.768 0.112 0.000 0.120
#> GSM28745 2 0.0000 0.9932 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.9932 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28748 2 0.0000 0.9932 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11266 2 0.0000 0.9932 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 0.9932 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.9932 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.9932 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.9932 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.9932 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11265 1 0.0000 0.7144 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM28739 1 0.0000 0.7144 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM11243 3 0.0000 0.9434 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM28740 1 0.0000 0.7144 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM11259 6 0.5349 0.5044 0.144 0.000 0.000 0.004 0.256 0.596
#> GSM28726 5 0.1075 0.6316 0.000 0.000 0.000 0.000 0.952 0.048
#> GSM28743 1 0.0000 0.7144 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM11256 4 0.0891 0.6576 0.000 0.000 0.000 0.968 0.024 0.008
#> GSM11262 1 0.0000 0.7144 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM28724 6 0.6228 0.4794 0.188 0.000 0.000 0.076 0.156 0.580
#> GSM28725 3 0.0000 0.9434 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11263 3 0.0000 0.9434 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11267 3 0.0000 0.9434 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM28744 4 0.0622 0.6648 0.000 0.000 0.000 0.980 0.012 0.008
#> GSM28734 4 0.0436 0.6669 0.000 0.000 0.004 0.988 0.004 0.004
#> GSM28747 1 0.6301 -0.1298 0.436 0.000 0.000 0.048 0.120 0.396
#> GSM11257 4 0.6035 0.2373 0.020 0.000 0.000 0.528 0.188 0.264
#> GSM11252 4 0.6105 0.4902 0.200 0.000 0.008 0.488 0.004 0.300
#> GSM11264 3 0.0000 0.9434 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11247 3 0.0000 0.9434 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11258 1 0.3872 0.1927 0.604 0.000 0.000 0.392 0.000 0.004
#> GSM28728 6 0.5418 0.2721 0.024 0.000 0.012 0.048 0.336 0.580
#> GSM28746 6 0.6602 0.1634 0.316 0.000 0.000 0.264 0.028 0.392
#> GSM28738 5 0.5386 -0.0110 0.000 0.000 0.000 0.116 0.496 0.388
#> GSM28741 2 0.1563 0.9285 0.000 0.932 0.000 0.000 0.056 0.012
#> GSM28729 6 0.4250 -0.0516 0.000 0.000 0.000 0.016 0.456 0.528
#> GSM28742 5 0.1714 0.6105 0.000 0.000 0.000 0.000 0.908 0.092
#> GSM11250 2 0.0000 0.9932 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11245 4 0.6320 0.4971 0.180 0.000 0.024 0.488 0.004 0.304
#> GSM11246 1 0.0000 0.7144 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM11261 3 0.0405 0.9359 0.000 0.000 0.988 0.004 0.000 0.008
#> GSM11248 3 0.3552 0.7893 0.000 0.000 0.800 0.084 0.000 0.116
#> GSM28732 6 0.4544 0.4532 0.056 0.000 0.000 0.004 0.280 0.660
#> GSM11255 1 0.5067 0.2925 0.612 0.000 0.000 0.120 0.000 0.268
#> GSM28731 6 0.4947 0.5056 0.244 0.000 0.000 0.000 0.120 0.636
#> GSM28727 1 0.6219 -0.2713 0.372 0.000 0.000 0.004 0.284 0.340
#> GSM11251 1 0.5949 -0.1211 0.452 0.000 0.000 0.000 0.248 0.300
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n tissue(p) k
#> MAD:skmeans 49 0.393 2
#> MAD:skmeans 49 0.449 3
#> MAD:skmeans 40 0.406 4
#> MAD:skmeans 42 0.459 5
#> MAD:skmeans 36 0.455 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21342 rows and 50 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 4.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.351 0.650 0.650
#> 3 3 1.000 1.000 1.000 0.576 0.798 0.688
#> 4 4 1.000 0.994 0.997 0.128 0.931 0.847
#> 5 5 0.851 0.872 0.943 0.108 0.939 0.838
#> 6 6 0.896 0.837 0.938 0.074 0.910 0.736
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3
There is also optional best \(k\) = 2 3 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM28735 1 0 1 1 0
#> GSM28736 1 0 1 1 0
#> GSM28737 1 0 1 1 0
#> GSM11249 1 0 1 1 0
#> GSM28745 2 0 1 0 1
#> GSM11244 2 0 1 0 1
#> GSM28748 2 0 1 0 1
#> GSM11266 2 0 1 0 1
#> GSM28730 2 0 1 0 1
#> GSM11253 2 0 1 0 1
#> GSM11254 2 0 1 0 1
#> GSM11260 2 0 1 0 1
#> GSM28733 2 0 1 0 1
#> GSM11265 1 0 1 1 0
#> GSM28739 1 0 1 1 0
#> GSM11243 1 0 1 1 0
#> GSM28740 1 0 1 1 0
#> GSM11259 1 0 1 1 0
#> GSM28726 1 0 1 1 0
#> GSM28743 1 0 1 1 0
#> GSM11256 1 0 1 1 0
#> GSM11262 1 0 1 1 0
#> GSM28724 1 0 1 1 0
#> GSM28725 1 0 1 1 0
#> GSM11263 1 0 1 1 0
#> GSM11267 1 0 1 1 0
#> GSM28744 1 0 1 1 0
#> GSM28734 1 0 1 1 0
#> GSM28747 1 0 1 1 0
#> GSM11257 1 0 1 1 0
#> GSM11252 1 0 1 1 0
#> GSM11264 1 0 1 1 0
#> GSM11247 1 0 1 1 0
#> GSM11258 1 0 1 1 0
#> GSM28728 1 0 1 1 0
#> GSM28746 1 0 1 1 0
#> GSM28738 1 0 1 1 0
#> GSM28741 2 0 1 0 1
#> GSM28729 1 0 1 1 0
#> GSM28742 1 0 1 1 0
#> GSM11250 2 0 1 0 1
#> GSM11245 1 0 1 1 0
#> GSM11246 1 0 1 1 0
#> GSM11261 1 0 1 1 0
#> GSM11248 1 0 1 1 0
#> GSM28732 1 0 1 1 0
#> GSM11255 1 0 1 1 0
#> GSM28731 1 0 1 1 0
#> GSM28727 1 0 1 1 0
#> GSM11251 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM28735 1 0 1 1 0 0
#> GSM28736 1 0 1 1 0 0
#> GSM28737 1 0 1 1 0 0
#> GSM11249 3 0 1 0 0 1
#> GSM28745 2 0 1 0 1 0
#> GSM11244 2 0 1 0 1 0
#> GSM28748 2 0 1 0 1 0
#> GSM11266 2 0 1 0 1 0
#> GSM28730 2 0 1 0 1 0
#> GSM11253 2 0 1 0 1 0
#> GSM11254 2 0 1 0 1 0
#> GSM11260 2 0 1 0 1 0
#> GSM28733 2 0 1 0 1 0
#> GSM11265 1 0 1 1 0 0
#> GSM28739 1 0 1 1 0 0
#> GSM11243 3 0 1 0 0 1
#> GSM28740 1 0 1 1 0 0
#> GSM11259 1 0 1 1 0 0
#> GSM28726 1 0 1 1 0 0
#> GSM28743 1 0 1 1 0 0
#> GSM11256 1 0 1 1 0 0
#> GSM11262 1 0 1 1 0 0
#> GSM28724 1 0 1 1 0 0
#> GSM28725 3 0 1 0 0 1
#> GSM11263 3 0 1 0 0 1
#> GSM11267 3 0 1 0 0 1
#> GSM28744 1 0 1 1 0 0
#> GSM28734 1 0 1 1 0 0
#> GSM28747 1 0 1 1 0 0
#> GSM11257 1 0 1 1 0 0
#> GSM11252 1 0 1 1 0 0
#> GSM11264 3 0 1 0 0 1
#> GSM11247 3 0 1 0 0 1
#> GSM11258 1 0 1 1 0 0
#> GSM28728 1 0 1 1 0 0
#> GSM28746 1 0 1 1 0 0
#> GSM28738 1 0 1 1 0 0
#> GSM28741 2 0 1 0 1 0
#> GSM28729 1 0 1 1 0 0
#> GSM28742 1 0 1 1 0 0
#> GSM11250 2 0 1 0 1 0
#> GSM11245 1 0 1 1 0 0
#> GSM11246 1 0 1 1 0 0
#> GSM11261 1 0 1 1 0 0
#> GSM11248 3 0 1 0 0 1
#> GSM28732 1 0 1 1 0 0
#> GSM11255 1 0 1 1 0 0
#> GSM28731 1 0 1 1 0 0
#> GSM28727 1 0 1 1 0 0
#> GSM11251 1 0 1 1 0 0
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM28735 1 0.000 0.995 1.000 0 0 0.000
#> GSM28736 1 0.000 0.995 1.000 0 0 0.000
#> GSM28737 1 0.000 0.995 1.000 0 0 0.000
#> GSM11249 3 0.000 1.000 0.000 0 1 0.000
#> GSM28745 2 0.000 1.000 0.000 1 0 0.000
#> GSM11244 2 0.000 1.000 0.000 1 0 0.000
#> GSM28748 2 0.000 1.000 0.000 1 0 0.000
#> GSM11266 2 0.000 1.000 0.000 1 0 0.000
#> GSM28730 2 0.000 1.000 0.000 1 0 0.000
#> GSM11253 2 0.000 1.000 0.000 1 0 0.000
#> GSM11254 2 0.000 1.000 0.000 1 0 0.000
#> GSM11260 2 0.000 1.000 0.000 1 0 0.000
#> GSM28733 2 0.000 1.000 0.000 1 0 0.000
#> GSM11265 1 0.000 0.995 1.000 0 0 0.000
#> GSM28739 1 0.000 0.995 1.000 0 0 0.000
#> GSM11243 3 0.000 1.000 0.000 0 1 0.000
#> GSM28740 1 0.000 0.995 1.000 0 0 0.000
#> GSM11259 1 0.000 0.995 1.000 0 0 0.000
#> GSM28726 1 0.000 0.995 1.000 0 0 0.000
#> GSM28743 1 0.000 0.995 1.000 0 0 0.000
#> GSM11256 4 0.000 1.000 0.000 0 0 1.000
#> GSM11262 1 0.000 0.995 1.000 0 0 0.000
#> GSM28724 1 0.000 0.995 1.000 0 0 0.000
#> GSM28725 3 0.000 1.000 0.000 0 1 0.000
#> GSM11263 3 0.000 1.000 0.000 0 1 0.000
#> GSM11267 3 0.000 1.000 0.000 0 1 0.000
#> GSM28744 4 0.000 1.000 0.000 0 0 1.000
#> GSM28734 4 0.000 1.000 0.000 0 0 1.000
#> GSM28747 1 0.000 0.995 1.000 0 0 0.000
#> GSM11257 1 0.000 0.995 1.000 0 0 0.000
#> GSM11252 1 0.000 0.995 1.000 0 0 0.000
#> GSM11264 3 0.000 1.000 0.000 0 1 0.000
#> GSM11247 3 0.000 1.000 0.000 0 1 0.000
#> GSM11258 1 0.276 0.853 0.872 0 0 0.128
#> GSM28728 1 0.000 0.995 1.000 0 0 0.000
#> GSM28746 1 0.000 0.995 1.000 0 0 0.000
#> GSM28738 1 0.000 0.995 1.000 0 0 0.000
#> GSM28741 2 0.000 1.000 0.000 1 0 0.000
#> GSM28729 1 0.000 0.995 1.000 0 0 0.000
#> GSM28742 1 0.000 0.995 1.000 0 0 0.000
#> GSM11250 2 0.000 1.000 0.000 1 0 0.000
#> GSM11245 1 0.000 0.995 1.000 0 0 0.000
#> GSM11246 1 0.000 0.995 1.000 0 0 0.000
#> GSM11261 1 0.000 0.995 1.000 0 0 0.000
#> GSM11248 3 0.000 1.000 0.000 0 1 0.000
#> GSM28732 1 0.000 0.995 1.000 0 0 0.000
#> GSM11255 1 0.000 0.995 1.000 0 0 0.000
#> GSM28731 1 0.000 0.995 1.000 0 0 0.000
#> GSM28727 1 0.000 0.995 1.000 0 0 0.000
#> GSM11251 1 0.000 0.995 1.000 0 0 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM28735 1 0.4219 -0.136 0.584 0.000 0.00 0.000 0.416
#> GSM28736 5 0.3074 0.705 0.196 0.000 0.00 0.000 0.804
#> GSM28737 1 0.0000 0.925 1.000 0.000 0.00 0.000 0.000
#> GSM11249 3 0.2516 0.870 0.000 0.000 0.86 0.000 0.140
#> GSM28745 2 0.0000 0.958 0.000 1.000 0.00 0.000 0.000
#> GSM11244 2 0.0000 0.958 0.000 1.000 0.00 0.000 0.000
#> GSM28748 2 0.0000 0.958 0.000 1.000 0.00 0.000 0.000
#> GSM11266 2 0.0000 0.958 0.000 1.000 0.00 0.000 0.000
#> GSM28730 2 0.0000 0.958 0.000 1.000 0.00 0.000 0.000
#> GSM11253 2 0.0000 0.958 0.000 1.000 0.00 0.000 0.000
#> GSM11254 2 0.0000 0.958 0.000 1.000 0.00 0.000 0.000
#> GSM11260 2 0.0000 0.958 0.000 1.000 0.00 0.000 0.000
#> GSM28733 2 0.0000 0.958 0.000 1.000 0.00 0.000 0.000
#> GSM11265 1 0.0000 0.925 1.000 0.000 0.00 0.000 0.000
#> GSM28739 1 0.0000 0.925 1.000 0.000 0.00 0.000 0.000
#> GSM11243 3 0.0000 0.959 0.000 0.000 1.00 0.000 0.000
#> GSM28740 1 0.0000 0.925 1.000 0.000 0.00 0.000 0.000
#> GSM11259 1 0.0609 0.913 0.980 0.000 0.00 0.000 0.020
#> GSM28726 5 0.3074 0.705 0.196 0.000 0.00 0.000 0.804
#> GSM28743 1 0.0000 0.925 1.000 0.000 0.00 0.000 0.000
#> GSM11256 4 0.0000 1.000 0.000 0.000 0.00 1.000 0.000
#> GSM11262 1 0.0000 0.925 1.000 0.000 0.00 0.000 0.000
#> GSM28724 1 0.0000 0.925 1.000 0.000 0.00 0.000 0.000
#> GSM28725 3 0.0000 0.959 0.000 0.000 1.00 0.000 0.000
#> GSM11263 3 0.0000 0.959 0.000 0.000 1.00 0.000 0.000
#> GSM11267 3 0.0000 0.959 0.000 0.000 1.00 0.000 0.000
#> GSM28744 4 0.0000 1.000 0.000 0.000 0.00 1.000 0.000
#> GSM28734 4 0.0000 1.000 0.000 0.000 0.00 1.000 0.000
#> GSM28747 1 0.0000 0.925 1.000 0.000 0.00 0.000 0.000
#> GSM11257 1 0.2813 0.774 0.832 0.000 0.00 0.000 0.168
#> GSM11252 1 0.2516 0.790 0.860 0.000 0.00 0.000 0.140
#> GSM11264 3 0.0000 0.959 0.000 0.000 1.00 0.000 0.000
#> GSM11247 3 0.0000 0.959 0.000 0.000 1.00 0.000 0.000
#> GSM11258 1 0.2377 0.794 0.872 0.000 0.00 0.128 0.000
#> GSM28728 1 0.0000 0.925 1.000 0.000 0.00 0.000 0.000
#> GSM28746 1 0.0000 0.925 1.000 0.000 0.00 0.000 0.000
#> GSM28738 1 0.1732 0.863 0.920 0.000 0.00 0.000 0.080
#> GSM28741 2 0.4201 0.425 0.000 0.592 0.00 0.000 0.408
#> GSM28729 1 0.0510 0.916 0.984 0.000 0.00 0.000 0.016
#> GSM28742 5 0.4305 0.387 0.488 0.000 0.00 0.000 0.512
#> GSM11250 2 0.0000 0.958 0.000 1.000 0.00 0.000 0.000
#> GSM11245 1 0.2516 0.790 0.860 0.000 0.00 0.000 0.140
#> GSM11246 1 0.0000 0.925 1.000 0.000 0.00 0.000 0.000
#> GSM11261 1 0.0000 0.925 1.000 0.000 0.00 0.000 0.000
#> GSM11248 3 0.2516 0.870 0.000 0.000 0.86 0.000 0.140
#> GSM28732 1 0.0000 0.925 1.000 0.000 0.00 0.000 0.000
#> GSM11255 1 0.2329 0.809 0.876 0.000 0.00 0.000 0.124
#> GSM28731 1 0.0000 0.925 1.000 0.000 0.00 0.000 0.000
#> GSM28727 1 0.0609 0.913 0.980 0.000 0.00 0.000 0.020
#> GSM11251 1 0.0609 0.913 0.980 0.000 0.00 0.000 0.020
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM28735 5 0.3864 0.326 0.480 0.00 0.000 0.000 0.520 0.000
#> GSM28736 5 0.2491 0.682 0.164 0.00 0.000 0.000 0.836 0.000
#> GSM28737 1 0.0000 0.885 1.000 0.00 0.000 0.000 0.000 0.000
#> GSM11249 6 0.0458 0.978 0.000 0.00 0.016 0.000 0.000 0.984
#> GSM28745 2 0.0000 0.964 0.000 1.00 0.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.964 0.000 1.00 0.000 0.000 0.000 0.000
#> GSM28748 2 0.0000 0.964 0.000 1.00 0.000 0.000 0.000 0.000
#> GSM11266 2 0.0000 0.964 0.000 1.00 0.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 0.964 0.000 1.00 0.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.964 0.000 1.00 0.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.964 0.000 1.00 0.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.964 0.000 1.00 0.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.964 0.000 1.00 0.000 0.000 0.000 0.000
#> GSM11265 1 0.0000 0.885 1.000 0.00 0.000 0.000 0.000 0.000
#> GSM28739 1 0.0000 0.885 1.000 0.00 0.000 0.000 0.000 0.000
#> GSM11243 3 0.0000 1.000 0.000 0.00 1.000 0.000 0.000 0.000
#> GSM28740 1 0.0000 0.885 1.000 0.00 0.000 0.000 0.000 0.000
#> GSM11259 1 0.0000 0.885 1.000 0.00 0.000 0.000 0.000 0.000
#> GSM28726 5 0.2491 0.682 0.164 0.00 0.000 0.000 0.836 0.000
#> GSM28743 1 0.0000 0.885 1.000 0.00 0.000 0.000 0.000 0.000
#> GSM11256 4 0.0000 1.000 0.000 0.00 0.000 1.000 0.000 0.000
#> GSM11262 1 0.0000 0.885 1.000 0.00 0.000 0.000 0.000 0.000
#> GSM28724 1 0.0000 0.885 1.000 0.00 0.000 0.000 0.000 0.000
#> GSM28725 3 0.0000 1.000 0.000 0.00 1.000 0.000 0.000 0.000
#> GSM11263 3 0.0000 1.000 0.000 0.00 1.000 0.000 0.000 0.000
#> GSM11267 3 0.0000 1.000 0.000 0.00 1.000 0.000 0.000 0.000
#> GSM28744 4 0.0000 1.000 0.000 0.00 0.000 1.000 0.000 0.000
#> GSM28734 4 0.0000 1.000 0.000 0.00 0.000 1.000 0.000 0.000
#> GSM28747 1 0.0146 0.882 0.996 0.00 0.000 0.000 0.000 0.004
#> GSM11257 1 0.5723 -0.119 0.428 0.00 0.000 0.000 0.164 0.408
#> GSM11252 6 0.0458 0.978 0.016 0.00 0.000 0.000 0.000 0.984
#> GSM11264 3 0.0000 1.000 0.000 0.00 1.000 0.000 0.000 0.000
#> GSM11247 3 0.0000 1.000 0.000 0.00 1.000 0.000 0.000 0.000
#> GSM11258 1 0.2135 0.740 0.872 0.00 0.000 0.128 0.000 0.000
#> GSM28728 1 0.0000 0.885 1.000 0.00 0.000 0.000 0.000 0.000
#> GSM28746 1 0.0000 0.885 1.000 0.00 0.000 0.000 0.000 0.000
#> GSM28738 1 0.3003 0.666 0.812 0.00 0.000 0.000 0.172 0.016
#> GSM28741 2 0.3647 0.515 0.000 0.64 0.000 0.000 0.360 0.000
#> GSM28729 1 0.0146 0.881 0.996 0.00 0.000 0.000 0.004 0.000
#> GSM28742 1 0.5984 -0.430 0.420 0.00 0.000 0.000 0.344 0.236
#> GSM11250 2 0.0000 0.964 0.000 1.00 0.000 0.000 0.000 0.000
#> GSM11245 6 0.0458 0.978 0.016 0.00 0.000 0.000 0.000 0.984
#> GSM11246 1 0.0000 0.885 1.000 0.00 0.000 0.000 0.000 0.000
#> GSM11261 1 0.0000 0.885 1.000 0.00 0.000 0.000 0.000 0.000
#> GSM11248 6 0.0458 0.978 0.000 0.00 0.016 0.000 0.000 0.984
#> GSM28732 1 0.0458 0.871 0.984 0.00 0.000 0.000 0.000 0.016
#> GSM11255 1 0.3607 0.354 0.652 0.00 0.000 0.000 0.000 0.348
#> GSM28731 1 0.0000 0.885 1.000 0.00 0.000 0.000 0.000 0.000
#> GSM28727 1 0.0000 0.885 1.000 0.00 0.000 0.000 0.000 0.000
#> GSM11251 1 0.0000 0.885 1.000 0.00 0.000 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n tissue(p) k
#> MAD:pam 50 0.394 2
#> MAD:pam 50 0.370 3
#> MAD:pam 50 0.560 4
#> MAD:pam 47 0.503 5
#> MAD:pam 46 0.465 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21342 rows and 50 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 5.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.689 0.818 0.912 0.3577 0.726 0.726
#> 3 3 0.423 0.594 0.783 0.6193 0.653 0.522
#> 4 4 0.607 0.748 0.862 0.1984 0.716 0.396
#> 5 5 0.704 0.795 0.878 0.0964 0.935 0.777
#> 6 6 0.693 0.664 0.806 0.0653 0.927 0.696
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 5
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM28735 1 0.0672 0.878 0.992 0.008
#> GSM28736 1 0.0672 0.878 0.992 0.008
#> GSM28737 1 0.0000 0.880 1.000 0.000
#> GSM11249 1 0.9580 0.531 0.620 0.380
#> GSM28745 2 0.0000 1.000 0.000 1.000
#> GSM11244 2 0.0000 1.000 0.000 1.000
#> GSM28748 1 0.9866 0.438 0.568 0.432
#> GSM11266 2 0.0000 1.000 0.000 1.000
#> GSM28730 2 0.0000 1.000 0.000 1.000
#> GSM11253 2 0.0000 1.000 0.000 1.000
#> GSM11254 2 0.0000 1.000 0.000 1.000
#> GSM11260 2 0.0000 1.000 0.000 1.000
#> GSM28733 2 0.0000 1.000 0.000 1.000
#> GSM11265 1 0.0000 0.880 1.000 0.000
#> GSM28739 1 0.0000 0.880 1.000 0.000
#> GSM11243 1 0.9580 0.531 0.620 0.380
#> GSM28740 1 0.0000 0.880 1.000 0.000
#> GSM11259 1 0.0000 0.880 1.000 0.000
#> GSM28726 1 0.0672 0.878 0.992 0.008
#> GSM28743 1 0.0000 0.880 1.000 0.000
#> GSM11256 1 0.0672 0.878 0.992 0.008
#> GSM11262 1 0.0000 0.880 1.000 0.000
#> GSM28724 1 0.0000 0.880 1.000 0.000
#> GSM28725 1 0.9580 0.531 0.620 0.380
#> GSM11263 1 0.9580 0.531 0.620 0.380
#> GSM11267 1 0.9580 0.531 0.620 0.380
#> GSM28744 1 0.0672 0.878 0.992 0.008
#> GSM28734 1 0.0672 0.878 0.992 0.008
#> GSM28747 1 0.0000 0.880 1.000 0.000
#> GSM11257 1 0.0672 0.878 0.992 0.008
#> GSM11252 1 0.0000 0.880 1.000 0.000
#> GSM11264 1 0.9580 0.531 0.620 0.380
#> GSM11247 1 0.9580 0.531 0.620 0.380
#> GSM11258 1 0.0672 0.878 0.992 0.008
#> GSM28728 1 0.0000 0.880 1.000 0.000
#> GSM28746 1 0.0000 0.880 1.000 0.000
#> GSM28738 1 0.0672 0.878 0.992 0.008
#> GSM28741 1 0.2603 0.858 0.956 0.044
#> GSM28729 1 0.0672 0.878 0.992 0.008
#> GSM28742 1 0.0672 0.878 0.992 0.008
#> GSM11250 1 0.9866 0.438 0.568 0.432
#> GSM11245 1 0.0000 0.880 1.000 0.000
#> GSM11246 1 0.0000 0.880 1.000 0.000
#> GSM11261 1 0.9580 0.531 0.620 0.380
#> GSM11248 1 0.9580 0.531 0.620 0.380
#> GSM28732 1 0.0000 0.880 1.000 0.000
#> GSM11255 1 0.0000 0.880 1.000 0.000
#> GSM28731 1 0.0000 0.880 1.000 0.000
#> GSM28727 1 0.0000 0.880 1.000 0.000
#> GSM11251 1 0.0000 0.880 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM28735 1 0.671 0.206682 0.572 0.012 0.416
#> GSM28736 1 0.844 -0.000943 0.492 0.088 0.420
#> GSM28737 1 0.369 0.651192 0.860 0.000 0.140
#> GSM11249 3 0.432 0.672722 0.112 0.028 0.860
#> GSM28745 2 0.000 1.000000 0.000 1.000 0.000
#> GSM11244 2 0.000 1.000000 0.000 1.000 0.000
#> GSM28748 3 0.912 0.554874 0.220 0.232 0.548
#> GSM11266 2 0.000 1.000000 0.000 1.000 0.000
#> GSM28730 2 0.000 1.000000 0.000 1.000 0.000
#> GSM11253 2 0.000 1.000000 0.000 1.000 0.000
#> GSM11254 2 0.000 1.000000 0.000 1.000 0.000
#> GSM11260 2 0.000 1.000000 0.000 1.000 0.000
#> GSM28733 2 0.000 1.000000 0.000 1.000 0.000
#> GSM11265 1 0.312 0.637739 0.892 0.000 0.108
#> GSM28739 1 0.312 0.637739 0.892 0.000 0.108
#> GSM11243 3 0.116 0.670475 0.000 0.028 0.972
#> GSM28740 1 0.312 0.637739 0.892 0.000 0.108
#> GSM11259 1 0.186 0.673796 0.948 0.000 0.052
#> GSM28726 1 0.802 0.088182 0.520 0.064 0.416
#> GSM28743 1 0.312 0.637739 0.892 0.000 0.108
#> GSM11256 3 0.618 0.407432 0.416 0.000 0.584
#> GSM11262 1 0.312 0.637739 0.892 0.000 0.108
#> GSM28724 1 0.593 0.387487 0.644 0.000 0.356
#> GSM28725 3 0.116 0.670475 0.000 0.028 0.972
#> GSM11263 3 0.116 0.670475 0.000 0.028 0.972
#> GSM11267 3 0.116 0.670475 0.000 0.028 0.972
#> GSM28744 3 0.618 0.407432 0.416 0.000 0.584
#> GSM28734 3 0.562 0.539454 0.308 0.000 0.692
#> GSM28747 1 0.175 0.673902 0.952 0.000 0.048
#> GSM11257 3 0.628 0.263884 0.460 0.000 0.540
#> GSM11252 1 0.540 0.500203 0.720 0.000 0.280
#> GSM11264 3 0.116 0.670475 0.000 0.028 0.972
#> GSM11247 3 0.116 0.670475 0.000 0.028 0.972
#> GSM11258 3 0.623 0.276924 0.436 0.000 0.564
#> GSM28728 1 0.620 0.209360 0.576 0.000 0.424
#> GSM28746 1 0.280 0.666039 0.908 0.000 0.092
#> GSM28738 1 0.709 0.185610 0.560 0.024 0.416
#> GSM28741 3 0.849 0.519225 0.312 0.116 0.572
#> GSM28729 1 0.670 0.218073 0.576 0.012 0.412
#> GSM28742 1 0.709 0.185610 0.560 0.024 0.416
#> GSM11250 3 0.912 0.554874 0.220 0.232 0.548
#> GSM11245 1 0.601 0.428681 0.628 0.000 0.372
#> GSM11246 1 0.312 0.637739 0.892 0.000 0.108
#> GSM11261 3 0.585 0.635731 0.216 0.028 0.756
#> GSM11248 3 0.580 0.638721 0.212 0.028 0.760
#> GSM28732 1 0.424 0.612947 0.824 0.000 0.176
#> GSM11255 1 0.369 0.659181 0.860 0.000 0.140
#> GSM28731 1 0.186 0.673796 0.948 0.000 0.052
#> GSM28727 1 0.175 0.673902 0.952 0.000 0.048
#> GSM11251 1 0.164 0.673177 0.956 0.000 0.044
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM28735 4 0.3172 0.8222 0.160 0.000 0.000 0.840
#> GSM28736 4 0.3172 0.8222 0.160 0.000 0.000 0.840
#> GSM28737 1 0.3074 0.8666 0.848 0.000 0.000 0.152
#> GSM11249 3 0.4730 0.4983 0.000 0.000 0.636 0.364
#> GSM28745 2 0.0000 0.9129 0.000 1.000 0.000 0.000
#> GSM11244 2 0.0000 0.9129 0.000 1.000 0.000 0.000
#> GSM28748 2 0.5000 -0.1765 0.000 0.504 0.000 0.496
#> GSM11266 2 0.0000 0.9129 0.000 1.000 0.000 0.000
#> GSM28730 2 0.0000 0.9129 0.000 1.000 0.000 0.000
#> GSM11253 2 0.0000 0.9129 0.000 1.000 0.000 0.000
#> GSM11254 2 0.0000 0.9129 0.000 1.000 0.000 0.000
#> GSM11260 2 0.0000 0.9129 0.000 1.000 0.000 0.000
#> GSM28733 2 0.0000 0.9129 0.000 1.000 0.000 0.000
#> GSM11265 1 0.0000 0.8715 1.000 0.000 0.000 0.000
#> GSM28739 1 0.1211 0.8590 0.960 0.000 0.000 0.040
#> GSM11243 3 0.0000 0.7991 0.000 0.000 1.000 0.000
#> GSM28740 1 0.0000 0.8715 1.000 0.000 0.000 0.000
#> GSM11259 1 0.3356 0.8411 0.824 0.000 0.000 0.176
#> GSM28726 4 0.3400 0.8135 0.180 0.000 0.000 0.820
#> GSM28743 1 0.0000 0.8715 1.000 0.000 0.000 0.000
#> GSM11256 4 0.1929 0.7210 0.024 0.000 0.036 0.940
#> GSM11262 1 0.0000 0.8715 1.000 0.000 0.000 0.000
#> GSM28724 4 0.3172 0.8222 0.160 0.000 0.000 0.840
#> GSM28725 3 0.0000 0.7991 0.000 0.000 1.000 0.000
#> GSM11263 3 0.0000 0.7991 0.000 0.000 1.000 0.000
#> GSM11267 3 0.0000 0.7991 0.000 0.000 1.000 0.000
#> GSM28744 4 0.2032 0.7196 0.028 0.000 0.036 0.936
#> GSM28734 4 0.2124 0.7169 0.028 0.000 0.040 0.932
#> GSM28747 1 0.3172 0.8643 0.840 0.000 0.000 0.160
#> GSM11257 4 0.1302 0.7599 0.044 0.000 0.000 0.956
#> GSM11252 4 0.3494 0.8174 0.172 0.000 0.004 0.824
#> GSM11264 3 0.0000 0.7991 0.000 0.000 1.000 0.000
#> GSM11247 3 0.4304 0.6097 0.000 0.000 0.716 0.284
#> GSM11258 4 0.4746 0.3652 0.368 0.000 0.000 0.632
#> GSM28728 4 0.3172 0.8222 0.160 0.000 0.000 0.840
#> GSM28746 4 0.4356 0.7003 0.292 0.000 0.000 0.708
#> GSM28738 4 0.3172 0.8222 0.160 0.000 0.000 0.840
#> GSM28741 4 0.4883 0.5806 0.016 0.288 0.000 0.696
#> GSM28729 4 0.3172 0.8222 0.160 0.000 0.000 0.840
#> GSM28742 4 0.3172 0.8222 0.160 0.000 0.000 0.840
#> GSM11250 4 0.5000 0.0582 0.000 0.496 0.000 0.504
#> GSM11245 4 0.3494 0.8182 0.172 0.000 0.004 0.824
#> GSM11246 1 0.0707 0.8767 0.980 0.000 0.000 0.020
#> GSM11261 4 0.6263 0.0656 0.016 0.028 0.436 0.520
#> GSM11248 3 0.4817 0.4384 0.000 0.000 0.612 0.388
#> GSM28732 4 0.4250 0.6929 0.276 0.000 0.000 0.724
#> GSM11255 4 0.4228 0.7781 0.232 0.000 0.008 0.760
#> GSM28731 1 0.3172 0.8643 0.840 0.000 0.000 0.160
#> GSM28727 1 0.3172 0.8643 0.840 0.000 0.000 0.160
#> GSM11251 1 0.3172 0.8643 0.840 0.000 0.000 0.160
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM28735 5 0.1341 0.748 0.000 0.000 0.000 0.056 0.944
#> GSM28736 5 0.0510 0.759 0.000 0.000 0.000 0.016 0.984
#> GSM28737 1 0.4021 0.775 0.780 0.000 0.000 0.052 0.168
#> GSM11249 3 0.4297 0.718 0.000 0.000 0.764 0.164 0.072
#> GSM28745 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM28748 5 0.5334 0.529 0.000 0.244 0.000 0.104 0.652
#> GSM11266 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM11265 1 0.0000 0.807 1.000 0.000 0.000 0.000 0.000
#> GSM28739 1 0.0000 0.807 1.000 0.000 0.000 0.000 0.000
#> GSM11243 3 0.0000 0.917 0.000 0.000 1.000 0.000 0.000
#> GSM28740 1 0.0000 0.807 1.000 0.000 0.000 0.000 0.000
#> GSM11259 1 0.4014 0.751 0.728 0.000 0.000 0.016 0.256
#> GSM28726 5 0.0703 0.764 0.000 0.000 0.000 0.024 0.976
#> GSM28743 1 0.0000 0.807 1.000 0.000 0.000 0.000 0.000
#> GSM11256 4 0.3752 0.844 0.000 0.000 0.000 0.708 0.292
#> GSM11262 1 0.0000 0.807 1.000 0.000 0.000 0.000 0.000
#> GSM28724 5 0.2875 0.750 0.052 0.000 0.008 0.056 0.884
#> GSM28725 3 0.0000 0.917 0.000 0.000 1.000 0.000 0.000
#> GSM11263 3 0.0000 0.917 0.000 0.000 1.000 0.000 0.000
#> GSM11267 3 0.0000 0.917 0.000 0.000 1.000 0.000 0.000
#> GSM28744 4 0.3684 0.854 0.000 0.000 0.000 0.720 0.280
#> GSM28734 4 0.2329 0.725 0.000 0.000 0.000 0.876 0.124
#> GSM28747 1 0.3934 0.767 0.740 0.000 0.000 0.016 0.244
#> GSM11257 5 0.0000 0.762 0.000 0.000 0.000 0.000 1.000
#> GSM11252 5 0.5527 0.632 0.156 0.000 0.004 0.176 0.664
#> GSM11264 3 0.0000 0.917 0.000 0.000 1.000 0.000 0.000
#> GSM11247 3 0.0162 0.916 0.000 0.000 0.996 0.004 0.000
#> GSM11258 5 0.4905 0.616 0.256 0.000 0.016 0.036 0.692
#> GSM28728 5 0.0613 0.763 0.004 0.000 0.004 0.008 0.984
#> GSM28746 5 0.5940 0.581 0.200 0.000 0.004 0.184 0.612
#> GSM28738 5 0.1341 0.748 0.000 0.000 0.000 0.056 0.944
#> GSM28741 5 0.2482 0.748 0.000 0.024 0.000 0.084 0.892
#> GSM28729 5 0.1341 0.748 0.000 0.000 0.000 0.056 0.944
#> GSM28742 5 0.1270 0.750 0.000 0.000 0.000 0.052 0.948
#> GSM11250 5 0.5045 0.594 0.000 0.196 0.000 0.108 0.696
#> GSM11245 5 0.5523 0.644 0.124 0.000 0.008 0.200 0.668
#> GSM11246 1 0.0162 0.806 0.996 0.000 0.000 0.004 0.000
#> GSM11261 5 0.4480 0.645 0.000 0.004 0.044 0.220 0.732
#> GSM11248 3 0.4479 0.695 0.000 0.000 0.744 0.184 0.072
#> GSM28732 5 0.3421 0.654 0.164 0.000 0.004 0.016 0.816
#> GSM11255 5 0.6445 0.562 0.188 0.000 0.020 0.212 0.580
#> GSM28731 1 0.3934 0.767 0.740 0.000 0.000 0.016 0.244
#> GSM28727 1 0.3906 0.770 0.744 0.000 0.000 0.016 0.240
#> GSM11251 1 0.3906 0.770 0.744 0.000 0.000 0.016 0.240
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM28735 5 0.0260 0.6973 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM28736 5 0.1829 0.6763 0.000 0.000 0.000 0.024 0.920 0.056
#> GSM28737 1 0.3028 0.8315 0.848 0.000 0.000 0.008 0.104 0.040
#> GSM11249 3 0.4987 0.4953 0.000 0.000 0.584 0.016 0.048 0.352
#> GSM28745 2 0.0000 0.9994 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.9994 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28748 6 0.7242 0.2387 0.000 0.252 0.000 0.112 0.232 0.404
#> GSM11266 2 0.0146 0.9956 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM28730 2 0.0000 0.9994 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.9994 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.9994 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.9994 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.9994 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11265 1 0.0000 0.8418 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM28739 1 0.0260 0.8389 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM11243 3 0.0146 0.8485 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM28740 1 0.0000 0.8418 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM11259 1 0.4466 0.7968 0.736 0.000 0.000 0.060 0.176 0.028
#> GSM28726 5 0.2908 0.6263 0.000 0.000 0.000 0.048 0.848 0.104
#> GSM28743 1 0.0000 0.8418 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM11256 4 0.3587 0.7964 0.000 0.000 0.000 0.772 0.188 0.040
#> GSM11262 1 0.0000 0.8418 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM28724 6 0.5612 0.1458 0.116 0.000 0.000 0.012 0.340 0.532
#> GSM28725 3 0.0000 0.8494 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11263 3 0.0000 0.8494 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11267 3 0.0000 0.8494 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM28744 4 0.3344 0.8268 0.000 0.000 0.000 0.804 0.152 0.044
#> GSM28734 4 0.2980 0.6893 0.000 0.000 0.000 0.808 0.012 0.180
#> GSM28747 1 0.4334 0.8139 0.752 0.000 0.000 0.060 0.160 0.028
#> GSM11257 5 0.1531 0.6870 0.004 0.000 0.000 0.000 0.928 0.068
#> GSM11252 6 0.6177 0.2160 0.092 0.000 0.000 0.056 0.404 0.448
#> GSM11264 3 0.0000 0.8494 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11247 3 0.1267 0.8238 0.000 0.000 0.940 0.000 0.000 0.060
#> GSM11258 5 0.6266 -0.1355 0.260 0.000 0.008 0.000 0.392 0.340
#> GSM28728 5 0.5240 0.2073 0.076 0.000 0.000 0.016 0.588 0.320
#> GSM28746 6 0.6306 0.2981 0.140 0.000 0.000 0.060 0.264 0.536
#> GSM28738 5 0.0508 0.6962 0.000 0.000 0.000 0.004 0.984 0.012
#> GSM28741 6 0.6079 0.0599 0.000 0.024 0.000 0.136 0.408 0.432
#> GSM28729 5 0.0935 0.6966 0.000 0.000 0.000 0.004 0.964 0.032
#> GSM28742 5 0.0508 0.6970 0.000 0.000 0.000 0.004 0.984 0.012
#> GSM11250 6 0.7136 0.2396 0.000 0.196 0.000 0.116 0.252 0.436
#> GSM11245 6 0.6263 0.2723 0.088 0.000 0.000 0.072 0.356 0.484
#> GSM11246 1 0.0405 0.8424 0.988 0.000 0.000 0.000 0.004 0.008
#> GSM11261 6 0.4912 0.3197 0.000 0.000 0.112 0.016 0.184 0.688
#> GSM11248 3 0.5208 0.3608 0.000 0.000 0.500 0.020 0.048 0.432
#> GSM28732 5 0.5701 0.0240 0.148 0.000 0.000 0.004 0.492 0.356
#> GSM11255 6 0.5959 0.3557 0.144 0.000 0.008 0.056 0.164 0.628
#> GSM28731 1 0.4334 0.8139 0.752 0.000 0.000 0.060 0.160 0.028
#> GSM28727 1 0.4334 0.8139 0.752 0.000 0.000 0.060 0.160 0.028
#> GSM11251 1 0.4334 0.8139 0.752 0.000 0.000 0.060 0.160 0.028
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n tissue(p) k
#> MAD:mclust 48 0.392 2
#> MAD:mclust 37 0.413 3
#> MAD:mclust 44 0.411 4
#> MAD:mclust 50 0.536 5
#> MAD:mclust 36 0.472 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21342 rows and 50 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.980 0.991 0.3906 0.607 0.607
#> 3 3 1.000 0.965 0.986 0.4890 0.731 0.588
#> 4 4 0.793 0.852 0.913 0.2486 0.837 0.620
#> 5 5 0.765 0.743 0.861 0.0860 0.929 0.743
#> 6 6 0.746 0.521 0.747 0.0449 0.949 0.768
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2
There is also optional best \(k\) = 2 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM28735 1 0.0376 0.992 0.996 0.004
#> GSM28736 2 0.3114 0.930 0.056 0.944
#> GSM28737 1 0.0000 0.995 1.000 0.000
#> GSM11249 1 0.0000 0.995 1.000 0.000
#> GSM28745 2 0.0000 0.976 0.000 1.000
#> GSM11244 2 0.0000 0.976 0.000 1.000
#> GSM28748 2 0.0000 0.976 0.000 1.000
#> GSM11266 2 0.0000 0.976 0.000 1.000
#> GSM28730 2 0.0000 0.976 0.000 1.000
#> GSM11253 2 0.0000 0.976 0.000 1.000
#> GSM11254 2 0.0000 0.976 0.000 1.000
#> GSM11260 2 0.0000 0.976 0.000 1.000
#> GSM28733 2 0.0000 0.976 0.000 1.000
#> GSM11265 1 0.0000 0.995 1.000 0.000
#> GSM28739 1 0.0000 0.995 1.000 0.000
#> GSM11243 1 0.0000 0.995 1.000 0.000
#> GSM28740 1 0.0000 0.995 1.000 0.000
#> GSM11259 1 0.0000 0.995 1.000 0.000
#> GSM28726 2 0.7674 0.715 0.224 0.776
#> GSM28743 1 0.0000 0.995 1.000 0.000
#> GSM11256 1 0.0000 0.995 1.000 0.000
#> GSM11262 1 0.0000 0.995 1.000 0.000
#> GSM28724 1 0.0000 0.995 1.000 0.000
#> GSM28725 1 0.0000 0.995 1.000 0.000
#> GSM11263 1 0.0000 0.995 1.000 0.000
#> GSM11267 1 0.0000 0.995 1.000 0.000
#> GSM28744 1 0.0000 0.995 1.000 0.000
#> GSM28734 1 0.0000 0.995 1.000 0.000
#> GSM28747 1 0.0000 0.995 1.000 0.000
#> GSM11257 1 0.0000 0.995 1.000 0.000
#> GSM11252 1 0.0000 0.995 1.000 0.000
#> GSM11264 1 0.0000 0.995 1.000 0.000
#> GSM11247 1 0.0376 0.992 0.996 0.004
#> GSM11258 1 0.0000 0.995 1.000 0.000
#> GSM28728 1 0.0000 0.995 1.000 0.000
#> GSM28746 1 0.0000 0.995 1.000 0.000
#> GSM28738 1 0.0938 0.985 0.988 0.012
#> GSM28741 2 0.0000 0.976 0.000 1.000
#> GSM28729 1 0.0376 0.992 0.996 0.004
#> GSM28742 1 0.2423 0.957 0.960 0.040
#> GSM11250 2 0.0000 0.976 0.000 1.000
#> GSM11245 1 0.0000 0.995 1.000 0.000
#> GSM11246 1 0.0000 0.995 1.000 0.000
#> GSM11261 1 0.5178 0.868 0.884 0.116
#> GSM11248 1 0.0000 0.995 1.000 0.000
#> GSM28732 1 0.0000 0.995 1.000 0.000
#> GSM11255 1 0.0000 0.995 1.000 0.000
#> GSM28731 1 0.0000 0.995 1.000 0.000
#> GSM28727 1 0.0000 0.995 1.000 0.000
#> GSM11251 1 0.0000 0.995 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM28735 1 0.0000 0.976 1.000 0.000 0.000
#> GSM28736 1 0.4931 0.696 0.768 0.232 0.000
#> GSM28737 1 0.0000 0.976 1.000 0.000 0.000
#> GSM11249 3 0.0000 1.000 0.000 0.000 1.000
#> GSM28745 2 0.0000 1.000 0.000 1.000 0.000
#> GSM11244 2 0.0000 1.000 0.000 1.000 0.000
#> GSM28748 2 0.0000 1.000 0.000 1.000 0.000
#> GSM11266 2 0.0000 1.000 0.000 1.000 0.000
#> GSM28730 2 0.0000 1.000 0.000 1.000 0.000
#> GSM11253 2 0.0000 1.000 0.000 1.000 0.000
#> GSM11254 2 0.0000 1.000 0.000 1.000 0.000
#> GSM11260 2 0.0000 1.000 0.000 1.000 0.000
#> GSM28733 2 0.0000 1.000 0.000 1.000 0.000
#> GSM11265 1 0.0000 0.976 1.000 0.000 0.000
#> GSM28739 1 0.0000 0.976 1.000 0.000 0.000
#> GSM11243 3 0.0000 1.000 0.000 0.000 1.000
#> GSM28740 1 0.0000 0.976 1.000 0.000 0.000
#> GSM11259 1 0.0000 0.976 1.000 0.000 0.000
#> GSM28726 1 0.0237 0.973 0.996 0.004 0.000
#> GSM28743 1 0.0000 0.976 1.000 0.000 0.000
#> GSM11256 1 0.0000 0.976 1.000 0.000 0.000
#> GSM11262 1 0.0000 0.976 1.000 0.000 0.000
#> GSM28724 1 0.0000 0.976 1.000 0.000 0.000
#> GSM28725 3 0.0000 1.000 0.000 0.000 1.000
#> GSM11263 3 0.0000 1.000 0.000 0.000 1.000
#> GSM11267 3 0.0000 1.000 0.000 0.000 1.000
#> GSM28744 1 0.0000 0.976 1.000 0.000 0.000
#> GSM28734 1 0.6215 0.262 0.572 0.000 0.428
#> GSM28747 1 0.0000 0.976 1.000 0.000 0.000
#> GSM11257 1 0.0000 0.976 1.000 0.000 0.000
#> GSM11252 1 0.0000 0.976 1.000 0.000 0.000
#> GSM11264 3 0.0000 1.000 0.000 0.000 1.000
#> GSM11247 3 0.0000 1.000 0.000 0.000 1.000
#> GSM11258 1 0.0000 0.976 1.000 0.000 0.000
#> GSM28728 1 0.0000 0.976 1.000 0.000 0.000
#> GSM28746 1 0.0000 0.976 1.000 0.000 0.000
#> GSM28738 1 0.0000 0.976 1.000 0.000 0.000
#> GSM28741 2 0.0000 1.000 0.000 1.000 0.000
#> GSM28729 1 0.0000 0.976 1.000 0.000 0.000
#> GSM28742 1 0.0000 0.976 1.000 0.000 0.000
#> GSM11250 2 0.0000 1.000 0.000 1.000 0.000
#> GSM11245 1 0.0424 0.970 0.992 0.000 0.008
#> GSM11246 1 0.0000 0.976 1.000 0.000 0.000
#> GSM11261 3 0.0000 1.000 0.000 0.000 1.000
#> GSM11248 3 0.0000 1.000 0.000 0.000 1.000
#> GSM28732 1 0.0000 0.976 1.000 0.000 0.000
#> GSM11255 1 0.0592 0.966 0.988 0.000 0.012
#> GSM28731 1 0.0000 0.976 1.000 0.000 0.000
#> GSM28727 1 0.0000 0.976 1.000 0.000 0.000
#> GSM11251 1 0.0000 0.976 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM28735 4 0.3649 0.746 0.204 0.000 0.000 0.796
#> GSM28736 4 0.4711 0.692 0.064 0.152 0.000 0.784
#> GSM28737 1 0.0188 0.890 0.996 0.000 0.000 0.004
#> GSM11249 3 0.0336 0.972 0.000 0.000 0.992 0.008
#> GSM28745 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11244 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM28748 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11266 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM28730 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11253 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11254 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11260 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM28733 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11265 1 0.0336 0.888 0.992 0.000 0.000 0.008
#> GSM28739 1 0.0469 0.888 0.988 0.000 0.000 0.012
#> GSM11243 3 0.1867 0.931 0.000 0.000 0.928 0.072
#> GSM28740 1 0.0336 0.889 0.992 0.000 0.000 0.008
#> GSM11259 1 0.1716 0.865 0.936 0.000 0.000 0.064
#> GSM28726 4 0.5055 0.610 0.368 0.008 0.000 0.624
#> GSM28743 1 0.0469 0.889 0.988 0.000 0.000 0.012
#> GSM11256 4 0.2401 0.760 0.092 0.000 0.004 0.904
#> GSM11262 1 0.0921 0.885 0.972 0.000 0.000 0.028
#> GSM28724 1 0.1576 0.876 0.948 0.000 0.004 0.048
#> GSM28725 3 0.0000 0.974 0.000 0.000 1.000 0.000
#> GSM11263 3 0.0000 0.974 0.000 0.000 1.000 0.000
#> GSM11267 3 0.0188 0.974 0.000 0.000 0.996 0.004
#> GSM28744 4 0.3052 0.758 0.136 0.000 0.004 0.860
#> GSM28734 4 0.3962 0.680 0.044 0.000 0.124 0.832
#> GSM28747 1 0.1557 0.869 0.944 0.000 0.000 0.056
#> GSM11257 4 0.3219 0.762 0.164 0.000 0.000 0.836
#> GSM11252 1 0.4477 0.517 0.688 0.000 0.000 0.312
#> GSM11264 3 0.0000 0.974 0.000 0.000 1.000 0.000
#> GSM11247 3 0.2647 0.889 0.000 0.000 0.880 0.120
#> GSM11258 1 0.4585 0.458 0.668 0.000 0.000 0.332
#> GSM28728 1 0.3626 0.707 0.812 0.000 0.004 0.184
#> GSM28746 1 0.2469 0.824 0.892 0.000 0.000 0.108
#> GSM28738 4 0.4761 0.549 0.372 0.000 0.000 0.628
#> GSM28741 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM28729 4 0.4713 0.571 0.360 0.000 0.000 0.640
#> GSM28742 4 0.4103 0.687 0.256 0.000 0.000 0.744
#> GSM11250 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM11245 1 0.5577 0.431 0.636 0.000 0.036 0.328
#> GSM11246 1 0.0000 0.890 1.000 0.000 0.000 0.000
#> GSM11261 3 0.0336 0.972 0.000 0.000 0.992 0.008
#> GSM11248 3 0.0188 0.974 0.000 0.000 0.996 0.004
#> GSM28732 1 0.2081 0.850 0.916 0.000 0.000 0.084
#> GSM11255 1 0.1284 0.886 0.964 0.000 0.012 0.024
#> GSM28731 1 0.0817 0.886 0.976 0.000 0.000 0.024
#> GSM28727 1 0.0707 0.888 0.980 0.000 0.000 0.020
#> GSM11251 1 0.0469 0.890 0.988 0.000 0.000 0.012
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM28735 4 0.4548 0.7740 0.120 0.000 0.000 0.752 0.128
#> GSM28736 4 0.5568 0.7701 0.060 0.096 0.000 0.716 0.128
#> GSM28737 1 0.1043 0.7620 0.960 0.000 0.000 0.000 0.040
#> GSM11249 3 0.3005 0.8042 0.020 0.000 0.880 0.068 0.032
#> GSM28745 2 0.0000 0.9981 0.000 1.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.9981 0.000 1.000 0.000 0.000 0.000
#> GSM28748 2 0.0000 0.9981 0.000 1.000 0.000 0.000 0.000
#> GSM11266 2 0.0000 0.9981 0.000 1.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 0.9981 0.000 1.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.9981 0.000 1.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.9981 0.000 1.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.9981 0.000 1.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.9981 0.000 1.000 0.000 0.000 0.000
#> GSM11265 1 0.0404 0.7653 0.988 0.000 0.000 0.000 0.012
#> GSM28739 1 0.0290 0.7652 0.992 0.000 0.000 0.000 0.008
#> GSM11243 3 0.3534 0.7110 0.000 0.000 0.744 0.000 0.256
#> GSM28740 1 0.0609 0.7616 0.980 0.000 0.000 0.020 0.000
#> GSM11259 5 0.4437 0.2428 0.464 0.000 0.000 0.004 0.532
#> GSM28726 5 0.6153 0.4689 0.208 0.000 0.000 0.232 0.560
#> GSM28743 1 0.1638 0.7465 0.932 0.000 0.000 0.064 0.004
#> GSM11256 4 0.1608 0.8611 0.000 0.000 0.000 0.928 0.072
#> GSM11262 1 0.1608 0.7446 0.928 0.000 0.000 0.072 0.000
#> GSM28724 1 0.4552 -0.0516 0.524 0.000 0.008 0.000 0.468
#> GSM28725 3 0.0880 0.8704 0.000 0.000 0.968 0.000 0.032
#> GSM11263 3 0.0404 0.8733 0.000 0.000 0.988 0.000 0.012
#> GSM11267 3 0.0162 0.8711 0.000 0.000 0.996 0.000 0.004
#> GSM28744 4 0.1121 0.8624 0.000 0.000 0.000 0.956 0.044
#> GSM28734 4 0.0794 0.8210 0.028 0.000 0.000 0.972 0.000
#> GSM28747 1 0.2824 0.7363 0.864 0.000 0.000 0.020 0.116
#> GSM11257 4 0.3011 0.8375 0.016 0.000 0.000 0.844 0.140
#> GSM11252 1 0.5350 0.5671 0.664 0.000 0.028 0.264 0.044
#> GSM11264 3 0.0162 0.8728 0.000 0.000 0.996 0.000 0.004
#> GSM11247 3 0.4307 0.3030 0.000 0.000 0.504 0.000 0.496
#> GSM11258 1 0.5111 0.4068 0.588 0.000 0.012 0.376 0.024
#> GSM28728 5 0.3010 0.6664 0.172 0.000 0.004 0.000 0.824
#> GSM28746 1 0.4495 0.6114 0.736 0.000 0.000 0.064 0.200
#> GSM28738 5 0.2879 0.6466 0.032 0.000 0.000 0.100 0.868
#> GSM28741 2 0.0510 0.9808 0.000 0.984 0.000 0.000 0.016
#> GSM28729 5 0.3116 0.6754 0.064 0.000 0.000 0.076 0.860
#> GSM28742 5 0.3165 0.6385 0.036 0.000 0.000 0.116 0.848
#> GSM11250 2 0.0000 0.9981 0.000 1.000 0.000 0.000 0.000
#> GSM11245 1 0.6421 0.4820 0.592 0.000 0.104 0.260 0.044
#> GSM11246 1 0.1043 0.7620 0.960 0.000 0.000 0.000 0.040
#> GSM11261 3 0.1270 0.8648 0.000 0.000 0.948 0.000 0.052
#> GSM11248 3 0.1911 0.8450 0.004 0.000 0.932 0.028 0.036
#> GSM28732 5 0.4299 0.4220 0.388 0.000 0.000 0.004 0.608
#> GSM11255 1 0.4187 0.6468 0.764 0.000 0.008 0.032 0.196
#> GSM28731 1 0.4238 0.3050 0.628 0.000 0.000 0.004 0.368
#> GSM28727 1 0.2358 0.7393 0.888 0.000 0.000 0.008 0.104
#> GSM11251 1 0.1732 0.7468 0.920 0.000 0.000 0.000 0.080
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM28735 4 0.6603 0.1908 0.136 0.000 0.000 0.440 0.068 0.356
#> GSM28736 4 0.6413 0.4114 0.080 0.028 0.000 0.552 0.056 0.284
#> GSM28737 1 0.0806 0.6333 0.972 0.000 0.000 0.000 0.020 0.008
#> GSM11249 3 0.3790 0.6045 0.004 0.000 0.716 0.016 0.000 0.264
#> GSM28745 2 0.0000 0.9726 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.9726 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28748 2 0.0000 0.9726 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11266 2 0.0000 0.9726 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 0.9726 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.9726 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.9726 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.9726 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.9726 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11265 1 0.0632 0.6319 0.976 0.000 0.000 0.000 0.000 0.024
#> GSM28739 1 0.1549 0.6188 0.936 0.000 0.000 0.000 0.020 0.044
#> GSM11243 3 0.4700 0.5814 0.000 0.000 0.636 0.000 0.288 0.076
#> GSM28740 1 0.0777 0.6320 0.972 0.000 0.000 0.004 0.000 0.024
#> GSM11259 5 0.6058 -0.0244 0.324 0.000 0.000 0.000 0.404 0.272
#> GSM28726 6 0.6656 -0.2320 0.164 0.004 0.000 0.048 0.344 0.440
#> GSM28743 1 0.1265 0.6238 0.948 0.000 0.000 0.008 0.000 0.044
#> GSM11256 4 0.0260 0.7061 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM11262 1 0.1196 0.6259 0.952 0.000 0.000 0.008 0.000 0.040
#> GSM28724 5 0.6787 0.0172 0.308 0.000 0.028 0.004 0.344 0.316
#> GSM28725 3 0.0935 0.7567 0.000 0.000 0.964 0.000 0.032 0.004
#> GSM11263 3 0.0000 0.7601 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11267 3 0.1267 0.7517 0.000 0.000 0.940 0.000 0.000 0.060
#> GSM28744 4 0.0000 0.7064 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM28734 4 0.0909 0.6973 0.020 0.000 0.000 0.968 0.000 0.012
#> GSM28747 1 0.4925 0.0477 0.512 0.000 0.000 0.000 0.064 0.424
#> GSM11257 4 0.4756 0.5534 0.024 0.000 0.000 0.720 0.124 0.132
#> GSM11252 6 0.5802 0.2303 0.348 0.000 0.068 0.052 0.000 0.532
#> GSM11264 3 0.1007 0.7582 0.000 0.000 0.956 0.000 0.000 0.044
#> GSM11247 3 0.5145 0.3834 0.000 0.000 0.484 0.000 0.432 0.084
#> GSM11258 1 0.4591 -0.0321 0.500 0.000 0.000 0.464 0.000 0.036
#> GSM28728 5 0.3789 0.3730 0.112 0.000 0.024 0.000 0.804 0.060
#> GSM28746 1 0.6485 0.2582 0.560 0.000 0.000 0.112 0.152 0.176
#> GSM28738 5 0.4382 0.4072 0.064 0.000 0.000 0.024 0.744 0.168
#> GSM28741 2 0.3558 0.6614 0.000 0.760 0.000 0.000 0.028 0.212
#> GSM28729 5 0.4449 0.3713 0.036 0.000 0.000 0.016 0.684 0.264
#> GSM28742 5 0.4764 0.2729 0.020 0.000 0.000 0.020 0.540 0.420
#> GSM11250 2 0.0000 0.9726 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11245 6 0.6718 0.2842 0.256 0.000 0.160 0.088 0.000 0.496
#> GSM11246 1 0.0622 0.6341 0.980 0.000 0.000 0.000 0.008 0.012
#> GSM11261 3 0.4418 0.6355 0.000 0.000 0.728 0.004 0.128 0.140
#> GSM11248 3 0.3499 0.5792 0.000 0.000 0.680 0.000 0.000 0.320
#> GSM28732 6 0.5802 -0.2004 0.180 0.000 0.000 0.000 0.400 0.420
#> GSM11255 1 0.6369 -0.1706 0.436 0.000 0.040 0.000 0.148 0.376
#> GSM28731 1 0.5654 -0.0992 0.444 0.000 0.000 0.000 0.404 0.152
#> GSM28727 1 0.4859 0.1978 0.584 0.000 0.000 0.000 0.072 0.344
#> GSM11251 1 0.3279 0.5021 0.796 0.000 0.000 0.000 0.028 0.176
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n tissue(p) k
#> MAD:NMF 50 0.394 2
#> MAD:NMF 49 0.368 3
#> MAD:NMF 48 0.430 4
#> MAD:NMF 42 0.422 5
#> MAD:NMF 31 0.474 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21342 rows and 50 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 5.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.2163 0.784 0.784
#> 3 3 1.000 0.999 1.000 1.3695 0.704 0.622
#> 4 4 0.881 0.859 0.943 0.2575 0.905 0.806
#> 5 5 0.915 0.893 0.939 0.0485 0.913 0.780
#> 6 6 0.848 0.821 0.916 0.0826 0.946 0.828
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 3
There is also optional best \(k\) = 2 3 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM28735 1 0 1 1 0
#> GSM28736 1 0 1 1 0
#> GSM28737 1 0 1 1 0
#> GSM11249 1 0 1 1 0
#> GSM28745 1 0 1 1 0
#> GSM11244 1 0 1 1 0
#> GSM28748 1 0 1 1 0
#> GSM11266 1 0 1 1 0
#> GSM28730 1 0 1 1 0
#> GSM11253 1 0 1 1 0
#> GSM11254 1 0 1 1 0
#> GSM11260 1 0 1 1 0
#> GSM28733 1 0 1 1 0
#> GSM11265 1 0 1 1 0
#> GSM28739 1 0 1 1 0
#> GSM11243 2 0 1 0 1
#> GSM28740 1 0 1 1 0
#> GSM11259 1 0 1 1 0
#> GSM28726 1 0 1 1 0
#> GSM28743 1 0 1 1 0
#> GSM11256 1 0 1 1 0
#> GSM11262 1 0 1 1 0
#> GSM28724 1 0 1 1 0
#> GSM28725 2 0 1 0 1
#> GSM11263 2 0 1 0 1
#> GSM11267 2 0 1 0 1
#> GSM28744 1 0 1 1 0
#> GSM28734 1 0 1 1 0
#> GSM28747 1 0 1 1 0
#> GSM11257 1 0 1 1 0
#> GSM11252 1 0 1 1 0
#> GSM11264 2 0 1 0 1
#> GSM11247 2 0 1 0 1
#> GSM11258 1 0 1 1 0
#> GSM28728 1 0 1 1 0
#> GSM28746 1 0 1 1 0
#> GSM28738 1 0 1 1 0
#> GSM28741 1 0 1 1 0
#> GSM28729 1 0 1 1 0
#> GSM28742 1 0 1 1 0
#> GSM11250 1 0 1 1 0
#> GSM11245 1 0 1 1 0
#> GSM11246 1 0 1 1 0
#> GSM11261 1 0 1 1 0
#> GSM11248 1 0 1 1 0
#> GSM28732 1 0 1 1 0
#> GSM11255 1 0 1 1 0
#> GSM28731 1 0 1 1 0
#> GSM28727 1 0 1 1 0
#> GSM11251 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM28735 1 0.0237 0.996 0.996 0.004 0
#> GSM28736 1 0.0237 0.996 0.996 0.004 0
#> GSM28737 1 0.0000 0.999 1.000 0.000 0
#> GSM11249 1 0.0000 0.999 1.000 0.000 0
#> GSM28745 2 0.0000 1.000 0.000 1.000 0
#> GSM11244 2 0.0000 1.000 0.000 1.000 0
#> GSM28748 2 0.0000 1.000 0.000 1.000 0
#> GSM11266 2 0.0000 1.000 0.000 1.000 0
#> GSM28730 2 0.0000 1.000 0.000 1.000 0
#> GSM11253 2 0.0000 1.000 0.000 1.000 0
#> GSM11254 2 0.0000 1.000 0.000 1.000 0
#> GSM11260 2 0.0000 1.000 0.000 1.000 0
#> GSM28733 2 0.0000 1.000 0.000 1.000 0
#> GSM11265 1 0.0000 0.999 1.000 0.000 0
#> GSM28739 1 0.0000 0.999 1.000 0.000 0
#> GSM11243 3 0.0000 1.000 0.000 0.000 1
#> GSM28740 1 0.0000 0.999 1.000 0.000 0
#> GSM11259 1 0.0000 0.999 1.000 0.000 0
#> GSM28726 1 0.0237 0.996 0.996 0.004 0
#> GSM28743 1 0.0000 0.999 1.000 0.000 0
#> GSM11256 1 0.0000 0.999 1.000 0.000 0
#> GSM11262 1 0.0000 0.999 1.000 0.000 0
#> GSM28724 1 0.0000 0.999 1.000 0.000 0
#> GSM28725 3 0.0000 1.000 0.000 0.000 1
#> GSM11263 3 0.0000 1.000 0.000 0.000 1
#> GSM11267 3 0.0000 1.000 0.000 0.000 1
#> GSM28744 1 0.0000 0.999 1.000 0.000 0
#> GSM28734 1 0.0000 0.999 1.000 0.000 0
#> GSM28747 1 0.0000 0.999 1.000 0.000 0
#> GSM11257 1 0.0000 0.999 1.000 0.000 0
#> GSM11252 1 0.0000 0.999 1.000 0.000 0
#> GSM11264 3 0.0000 1.000 0.000 0.000 1
#> GSM11247 3 0.0000 1.000 0.000 0.000 1
#> GSM11258 1 0.0000 0.999 1.000 0.000 0
#> GSM28728 1 0.0000 0.999 1.000 0.000 0
#> GSM28746 1 0.0000 0.999 1.000 0.000 0
#> GSM28738 1 0.0000 0.999 1.000 0.000 0
#> GSM28741 2 0.0000 1.000 0.000 1.000 0
#> GSM28729 1 0.0000 0.999 1.000 0.000 0
#> GSM28742 1 0.0237 0.996 0.996 0.004 0
#> GSM11250 2 0.0000 1.000 0.000 1.000 0
#> GSM11245 1 0.0000 0.999 1.000 0.000 0
#> GSM11246 1 0.0000 0.999 1.000 0.000 0
#> GSM11261 1 0.0000 0.999 1.000 0.000 0
#> GSM11248 1 0.0000 0.999 1.000 0.000 0
#> GSM28732 1 0.0000 0.999 1.000 0.000 0
#> GSM11255 1 0.0000 0.999 1.000 0.000 0
#> GSM28731 1 0.0000 0.999 1.000 0.000 0
#> GSM28727 1 0.0000 0.999 1.000 0.000 0
#> GSM11251 1 0.0000 0.999 1.000 0.000 0
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM28735 1 0.4905 0.420 0.632 0.004 0 0.364
#> GSM28736 1 0.4905 0.420 0.632 0.004 0 0.364
#> GSM28737 1 0.0336 0.893 0.992 0.000 0 0.008
#> GSM11249 4 0.0707 0.875 0.020 0.000 0 0.980
#> GSM28745 2 0.0000 1.000 0.000 1.000 0 0.000
#> GSM11244 2 0.0000 1.000 0.000 1.000 0 0.000
#> GSM28748 2 0.0000 1.000 0.000 1.000 0 0.000
#> GSM11266 2 0.0000 1.000 0.000 1.000 0 0.000
#> GSM28730 2 0.0000 1.000 0.000 1.000 0 0.000
#> GSM11253 2 0.0000 1.000 0.000 1.000 0 0.000
#> GSM11254 2 0.0000 1.000 0.000 1.000 0 0.000
#> GSM11260 2 0.0000 1.000 0.000 1.000 0 0.000
#> GSM28733 2 0.0000 1.000 0.000 1.000 0 0.000
#> GSM11265 1 0.0000 0.894 1.000 0.000 0 0.000
#> GSM28739 1 0.0000 0.894 1.000 0.000 0 0.000
#> GSM11243 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM28740 1 0.0000 0.894 1.000 0.000 0 0.000
#> GSM11259 1 0.0336 0.893 0.992 0.000 0 0.008
#> GSM28726 1 0.4905 0.420 0.632 0.004 0 0.364
#> GSM28743 1 0.0336 0.893 0.992 0.000 0 0.008
#> GSM11256 1 0.0707 0.888 0.980 0.000 0 0.020
#> GSM11262 1 0.0336 0.893 0.992 0.000 0 0.008
#> GSM28724 1 0.0000 0.894 1.000 0.000 0 0.000
#> GSM28725 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM11263 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM11267 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM28744 1 0.4817 0.319 0.612 0.000 0 0.388
#> GSM28734 1 0.4925 0.224 0.572 0.000 0 0.428
#> GSM28747 1 0.0000 0.894 1.000 0.000 0 0.000
#> GSM11257 1 0.0707 0.888 0.980 0.000 0 0.020
#> GSM11252 1 0.1474 0.863 0.948 0.000 0 0.052
#> GSM11264 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM11247 3 0.0000 1.000 0.000 0.000 1 0.000
#> GSM11258 1 0.0000 0.894 1.000 0.000 0 0.000
#> GSM28728 1 0.0336 0.893 0.992 0.000 0 0.008
#> GSM28746 1 0.0000 0.894 1.000 0.000 0 0.000
#> GSM28738 1 0.0707 0.888 0.980 0.000 0 0.020
#> GSM28741 2 0.0000 1.000 0.000 1.000 0 0.000
#> GSM28729 1 0.0469 0.892 0.988 0.000 0 0.012
#> GSM28742 4 0.4088 0.652 0.232 0.004 0 0.764
#> GSM11250 2 0.0000 1.000 0.000 1.000 0 0.000
#> GSM11245 1 0.1474 0.863 0.948 0.000 0 0.052
#> GSM11246 1 0.0000 0.894 1.000 0.000 0 0.000
#> GSM11261 4 0.0707 0.875 0.020 0.000 0 0.980
#> GSM11248 4 0.0707 0.875 0.020 0.000 0 0.980
#> GSM28732 1 0.4730 0.425 0.636 0.000 0 0.364
#> GSM11255 1 0.1474 0.863 0.948 0.000 0 0.052
#> GSM28731 1 0.0469 0.892 0.988 0.000 0 0.012
#> GSM28727 1 0.0000 0.894 1.000 0.000 0 0.000
#> GSM11251 1 0.0000 0.894 1.000 0.000 0 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM28735 5 0.4249 0.823 0.432 0.000 0 0.000 0.568
#> GSM28736 5 0.4249 0.823 0.432 0.000 0 0.000 0.568
#> GSM28737 1 0.0703 0.915 0.976 0.000 0 0.000 0.024
#> GSM11249 4 0.0162 0.990 0.004 0.000 0 0.996 0.000
#> GSM28745 2 0.0000 0.999 0.000 1.000 0 0.000 0.000
#> GSM11244 2 0.0000 0.999 0.000 1.000 0 0.000 0.000
#> GSM28748 2 0.0000 0.999 0.000 1.000 0 0.000 0.000
#> GSM11266 2 0.0000 0.999 0.000 1.000 0 0.000 0.000
#> GSM28730 2 0.0000 0.999 0.000 1.000 0 0.000 0.000
#> GSM11253 2 0.0000 0.999 0.000 1.000 0 0.000 0.000
#> GSM11254 2 0.0000 0.999 0.000 1.000 0 0.000 0.000
#> GSM11260 2 0.0000 0.999 0.000 1.000 0 0.000 0.000
#> GSM28733 2 0.0000 0.999 0.000 1.000 0 0.000 0.000
#> GSM11265 1 0.0000 0.917 1.000 0.000 0 0.000 0.000
#> GSM28739 1 0.0000 0.917 1.000 0.000 0 0.000 0.000
#> GSM11243 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM28740 1 0.0000 0.917 1.000 0.000 0 0.000 0.000
#> GSM11259 1 0.0703 0.915 0.976 0.000 0 0.000 0.024
#> GSM28726 5 0.4249 0.823 0.432 0.000 0 0.000 0.568
#> GSM28743 1 0.0703 0.915 0.976 0.000 0 0.000 0.024
#> GSM11256 1 0.1041 0.909 0.964 0.000 0 0.004 0.032
#> GSM11262 1 0.0703 0.915 0.976 0.000 0 0.000 0.024
#> GSM28724 1 0.0000 0.917 1.000 0.000 0 0.000 0.000
#> GSM28725 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM11263 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM11267 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM28744 1 0.4436 0.225 0.596 0.000 0 0.396 0.008
#> GSM28734 1 0.4256 0.164 0.564 0.000 0 0.436 0.000
#> GSM28747 1 0.0000 0.917 1.000 0.000 0 0.000 0.000
#> GSM11257 1 0.1041 0.909 0.964 0.000 0 0.004 0.032
#> GSM11252 1 0.1270 0.872 0.948 0.000 0 0.052 0.000
#> GSM11264 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM11247 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> GSM11258 1 0.0000 0.917 1.000 0.000 0 0.000 0.000
#> GSM28728 1 0.0703 0.915 0.976 0.000 0 0.000 0.024
#> GSM28746 1 0.0000 0.917 1.000 0.000 0 0.000 0.000
#> GSM28738 1 0.1041 0.909 0.964 0.000 0 0.004 0.032
#> GSM28741 2 0.0162 0.996 0.000 0.996 0 0.000 0.004
#> GSM28729 1 0.0865 0.914 0.972 0.000 0 0.004 0.024
#> GSM28742 5 0.0880 0.112 0.032 0.000 0 0.000 0.968
#> GSM11250 2 0.0162 0.996 0.000 0.996 0 0.000 0.004
#> GSM11245 1 0.1270 0.872 0.948 0.000 0 0.052 0.000
#> GSM11246 1 0.0000 0.917 1.000 0.000 0 0.000 0.000
#> GSM11261 4 0.0865 0.981 0.004 0.000 0 0.972 0.024
#> GSM11248 4 0.0162 0.990 0.004 0.000 0 0.996 0.000
#> GSM28732 5 0.4256 0.817 0.436 0.000 0 0.000 0.564
#> GSM11255 1 0.1270 0.872 0.948 0.000 0 0.052 0.000
#> GSM28731 1 0.0865 0.914 0.972 0.000 0 0.004 0.024
#> GSM28727 1 0.0000 0.917 1.000 0.000 0 0.000 0.000
#> GSM11251 1 0.0000 0.917 1.000 0.000 0 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM28735 5 0.3817 0.818 0.432 0.000 0.000 0.000 0.568 0.000
#> GSM28736 5 0.3817 0.818 0.432 0.000 0.000 0.000 0.568 0.000
#> GSM28737 1 0.1007 0.846 0.956 0.000 0.000 0.044 0.000 0.000
#> GSM11249 6 0.0000 0.987 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM28745 2 0.0000 0.999 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.999 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28748 2 0.0000 0.999 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11266 2 0.0000 0.999 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 0.999 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.999 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.999 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.999 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.999 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11265 1 0.0000 0.863 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM28739 1 0.0000 0.863 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM11243 3 0.0260 0.995 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM28740 1 0.0000 0.863 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM11259 1 0.1007 0.846 0.956 0.000 0.000 0.044 0.000 0.000
#> GSM28726 5 0.3817 0.818 0.432 0.000 0.000 0.000 0.568 0.000
#> GSM28743 1 0.0632 0.856 0.976 0.000 0.000 0.024 0.000 0.000
#> GSM11256 4 0.3868 -0.142 0.496 0.000 0.000 0.504 0.000 0.000
#> GSM11262 1 0.0632 0.856 0.976 0.000 0.000 0.024 0.000 0.000
#> GSM28724 1 0.0000 0.863 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM28725 3 0.0000 0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11263 3 0.0000 0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11267 3 0.0000 0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM28744 1 0.4886 0.189 0.540 0.000 0.000 0.064 0.000 0.396
#> GSM28734 1 0.3823 0.240 0.564 0.000 0.000 0.000 0.000 0.436
#> GSM28747 1 0.0000 0.863 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM11257 4 0.0146 0.491 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM11252 1 0.1141 0.837 0.948 0.000 0.000 0.000 0.000 0.052
#> GSM11264 3 0.0000 0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11247 3 0.0260 0.995 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM11258 1 0.0000 0.863 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM28728 1 0.3101 0.631 0.756 0.000 0.000 0.244 0.000 0.000
#> GSM28746 1 0.0000 0.863 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM28738 4 0.0146 0.491 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM28741 2 0.0146 0.996 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM28729 1 0.3101 0.630 0.756 0.000 0.000 0.244 0.000 0.000
#> GSM28742 5 0.0260 0.140 0.008 0.000 0.000 0.000 0.992 0.000
#> GSM11250 2 0.0146 0.996 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM11245 1 0.1141 0.837 0.948 0.000 0.000 0.000 0.000 0.052
#> GSM11246 1 0.0000 0.863 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM11261 6 0.0777 0.974 0.000 0.000 0.000 0.004 0.024 0.972
#> GSM11248 6 0.0000 0.987 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM28732 5 0.3823 0.812 0.436 0.000 0.000 0.000 0.564 0.000
#> GSM11255 1 0.1141 0.837 0.948 0.000 0.000 0.000 0.000 0.052
#> GSM28731 1 0.3050 0.642 0.764 0.000 0.000 0.236 0.000 0.000
#> GSM28727 1 0.0000 0.863 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM11251 1 0.0000 0.863 1.000 0.000 0.000 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n tissue(p) k
#> ATC:hclust 50 0.394 2
#> ATC:hclust 50 0.370 3
#> ATC:hclust 44 0.339 4
#> ATC:hclust 47 0.326 5
#> ATC:hclust 44 0.401 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21342 rows and 50 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.486 0.772 0.854 0.3326 0.556 0.556
#> 3 3 1.000 0.992 0.991 0.5526 0.919 0.856
#> 4 4 0.645 0.543 0.742 0.2998 0.778 0.542
#> 5 5 0.632 0.774 0.803 0.1125 0.795 0.420
#> 6 6 0.726 0.801 0.870 0.0678 0.958 0.826
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM28735 1 0.000 0.9423 1.000 0.000
#> GSM28736 1 0.000 0.9423 1.000 0.000
#> GSM28737 1 0.000 0.9423 1.000 0.000
#> GSM11249 1 0.983 -0.0178 0.576 0.424
#> GSM28745 2 0.983 0.6380 0.424 0.576
#> GSM11244 2 0.983 0.6380 0.424 0.576
#> GSM28748 2 0.983 0.6380 0.424 0.576
#> GSM11266 2 0.983 0.6380 0.424 0.576
#> GSM28730 2 0.983 0.6380 0.424 0.576
#> GSM11253 2 0.983 0.6380 0.424 0.576
#> GSM11254 2 0.983 0.6380 0.424 0.576
#> GSM11260 2 0.983 0.6380 0.424 0.576
#> GSM28733 2 0.983 0.6380 0.424 0.576
#> GSM11265 1 0.000 0.9423 1.000 0.000
#> GSM28739 1 0.000 0.9423 1.000 0.000
#> GSM11243 2 0.925 0.4511 0.340 0.660
#> GSM28740 1 0.000 0.9423 1.000 0.000
#> GSM11259 1 0.000 0.9423 1.000 0.000
#> GSM28726 1 0.000 0.9423 1.000 0.000
#> GSM28743 1 0.000 0.9423 1.000 0.000
#> GSM11256 1 0.000 0.9423 1.000 0.000
#> GSM11262 1 0.000 0.9423 1.000 0.000
#> GSM28724 1 0.000 0.9423 1.000 0.000
#> GSM28725 2 0.925 0.4511 0.340 0.660
#> GSM11263 2 0.925 0.4511 0.340 0.660
#> GSM11267 2 0.925 0.4511 0.340 0.660
#> GSM28744 1 0.000 0.9423 1.000 0.000
#> GSM28734 1 0.000 0.9423 1.000 0.000
#> GSM28747 1 0.000 0.9423 1.000 0.000
#> GSM11257 1 0.000 0.9423 1.000 0.000
#> GSM11252 1 0.000 0.9423 1.000 0.000
#> GSM11264 2 0.925 0.4511 0.340 0.660
#> GSM11247 2 0.925 0.4511 0.340 0.660
#> GSM11258 1 0.000 0.9423 1.000 0.000
#> GSM28728 1 0.000 0.9423 1.000 0.000
#> GSM28746 1 0.000 0.9423 1.000 0.000
#> GSM28738 1 0.000 0.9423 1.000 0.000
#> GSM28741 1 0.925 -0.0040 0.660 0.340
#> GSM28729 1 0.000 0.9423 1.000 0.000
#> GSM28742 1 0.327 0.8386 0.940 0.060
#> GSM11250 2 0.983 0.6380 0.424 0.576
#> GSM11245 1 0.000 0.9423 1.000 0.000
#> GSM11246 1 0.000 0.9423 1.000 0.000
#> GSM11261 1 0.760 0.4195 0.780 0.220
#> GSM11248 1 0.000 0.9423 1.000 0.000
#> GSM28732 1 0.000 0.9423 1.000 0.000
#> GSM11255 1 0.000 0.9423 1.000 0.000
#> GSM28731 1 0.000 0.9423 1.000 0.000
#> GSM28727 1 0.000 0.9423 1.000 0.000
#> GSM11251 1 0.000 0.9423 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM28735 1 0.0237 0.993 0.996 0.000 0.004
#> GSM28736 1 0.0237 0.993 0.996 0.000 0.004
#> GSM28737 1 0.0000 0.994 1.000 0.000 0.000
#> GSM11249 3 0.1163 0.961 0.028 0.000 0.972
#> GSM28745 2 0.0237 0.999 0.004 0.996 0.000
#> GSM11244 2 0.0237 0.999 0.004 0.996 0.000
#> GSM28748 2 0.0475 0.996 0.004 0.992 0.004
#> GSM11266 2 0.0237 0.999 0.004 0.996 0.000
#> GSM28730 2 0.0237 0.999 0.004 0.996 0.000
#> GSM11253 2 0.0237 0.999 0.004 0.996 0.000
#> GSM11254 2 0.0237 0.999 0.004 0.996 0.000
#> GSM11260 2 0.0237 0.999 0.004 0.996 0.000
#> GSM28733 2 0.0237 0.999 0.004 0.996 0.000
#> GSM11265 1 0.0000 0.994 1.000 0.000 0.000
#> GSM28739 1 0.0000 0.994 1.000 0.000 0.000
#> GSM11243 3 0.1267 0.993 0.004 0.024 0.972
#> GSM28740 1 0.0000 0.994 1.000 0.000 0.000
#> GSM11259 1 0.0237 0.993 0.996 0.000 0.004
#> GSM28726 1 0.0237 0.993 0.996 0.000 0.004
#> GSM28743 1 0.0000 0.994 1.000 0.000 0.000
#> GSM11256 1 0.1129 0.978 0.976 0.004 0.020
#> GSM11262 1 0.0000 0.994 1.000 0.000 0.000
#> GSM28724 1 0.0000 0.994 1.000 0.000 0.000
#> GSM28725 3 0.1267 0.993 0.004 0.024 0.972
#> GSM11263 3 0.1267 0.993 0.004 0.024 0.972
#> GSM11267 3 0.1267 0.993 0.004 0.024 0.972
#> GSM28744 1 0.0000 0.994 1.000 0.000 0.000
#> GSM28734 1 0.0000 0.994 1.000 0.000 0.000
#> GSM28747 1 0.0237 0.993 0.996 0.000 0.004
#> GSM11257 1 0.1129 0.978 0.976 0.004 0.020
#> GSM11252 1 0.0000 0.994 1.000 0.000 0.000
#> GSM11264 3 0.1267 0.993 0.004 0.024 0.972
#> GSM11247 3 0.1267 0.993 0.004 0.024 0.972
#> GSM11258 1 0.0000 0.994 1.000 0.000 0.000
#> GSM28728 1 0.0000 0.994 1.000 0.000 0.000
#> GSM28746 1 0.0000 0.994 1.000 0.000 0.000
#> GSM28738 1 0.1129 0.978 0.976 0.004 0.020
#> GSM28741 1 0.2384 0.935 0.936 0.056 0.008
#> GSM28729 1 0.0000 0.994 1.000 0.000 0.000
#> GSM28742 1 0.0237 0.993 0.996 0.000 0.004
#> GSM11250 2 0.0661 0.993 0.004 0.988 0.008
#> GSM11245 1 0.0000 0.994 1.000 0.000 0.000
#> GSM11246 1 0.0000 0.994 1.000 0.000 0.000
#> GSM11261 1 0.0892 0.978 0.980 0.020 0.000
#> GSM11248 1 0.0000 0.994 1.000 0.000 0.000
#> GSM28732 1 0.0237 0.993 0.996 0.000 0.004
#> GSM11255 1 0.0000 0.994 1.000 0.000 0.000
#> GSM28731 1 0.0000 0.994 1.000 0.000 0.000
#> GSM28727 1 0.0237 0.993 0.996 0.000 0.004
#> GSM11251 1 0.0237 0.993 0.996 0.000 0.004
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM28735 1 0.4431 0.3686 0.696 0.000 0.000 0.304
#> GSM28736 1 0.4431 0.3686 0.696 0.000 0.000 0.304
#> GSM28737 1 0.4981 0.6396 0.536 0.000 0.000 0.464
#> GSM11249 3 0.5678 0.4534 0.024 0.000 0.524 0.452
#> GSM28745 2 0.0000 0.9955 0.000 1.000 0.000 0.000
#> GSM11244 2 0.0000 0.9955 0.000 1.000 0.000 0.000
#> GSM28748 2 0.0707 0.9838 0.020 0.980 0.000 0.000
#> GSM11266 2 0.0000 0.9955 0.000 1.000 0.000 0.000
#> GSM28730 2 0.0000 0.9955 0.000 1.000 0.000 0.000
#> GSM11253 2 0.0000 0.9955 0.000 1.000 0.000 0.000
#> GSM11254 2 0.0000 0.9955 0.000 1.000 0.000 0.000
#> GSM11260 2 0.0000 0.9955 0.000 1.000 0.000 0.000
#> GSM28733 2 0.0000 0.9955 0.000 1.000 0.000 0.000
#> GSM11265 4 0.3569 0.3177 0.196 0.000 0.000 0.804
#> GSM28739 4 0.3569 0.3177 0.196 0.000 0.000 0.804
#> GSM11243 3 0.1042 0.9144 0.020 0.008 0.972 0.000
#> GSM28740 1 0.4981 0.6269 0.536 0.000 0.000 0.464
#> GSM11259 1 0.4981 0.6386 0.536 0.000 0.000 0.464
#> GSM28726 1 0.4431 0.3686 0.696 0.000 0.000 0.304
#> GSM28743 1 0.4994 0.6228 0.520 0.000 0.000 0.480
#> GSM11256 1 0.4456 0.5119 0.716 0.000 0.004 0.280
#> GSM11262 1 0.4994 0.6228 0.520 0.000 0.000 0.480
#> GSM28724 4 0.4961 -0.5118 0.448 0.000 0.000 0.552
#> GSM28725 3 0.0336 0.9183 0.000 0.008 0.992 0.000
#> GSM11263 3 0.0336 0.9183 0.000 0.008 0.992 0.000
#> GSM11267 3 0.0336 0.9183 0.000 0.008 0.992 0.000
#> GSM28744 4 0.2011 0.4797 0.080 0.000 0.000 0.920
#> GSM28734 4 0.0817 0.5108 0.024 0.000 0.000 0.976
#> GSM28747 4 0.4972 -0.5190 0.456 0.000 0.000 0.544
#> GSM11257 1 0.4567 0.5105 0.716 0.000 0.008 0.276
#> GSM11252 4 0.0188 0.5164 0.004 0.000 0.000 0.996
#> GSM11264 3 0.0336 0.9183 0.000 0.008 0.992 0.000
#> GSM11247 3 0.1042 0.9144 0.020 0.008 0.972 0.000
#> GSM11258 4 0.4713 -0.0794 0.360 0.000 0.000 0.640
#> GSM28728 1 0.4972 0.6303 0.544 0.000 0.000 0.456
#> GSM28746 4 0.4277 0.0923 0.280 0.000 0.000 0.720
#> GSM28738 1 0.4567 0.5105 0.716 0.000 0.008 0.276
#> GSM28741 1 0.4663 0.3393 0.716 0.012 0.000 0.272
#> GSM28729 1 0.4967 0.6298 0.548 0.000 0.000 0.452
#> GSM28742 4 0.4134 0.3604 0.260 0.000 0.000 0.740
#> GSM11250 2 0.0921 0.9772 0.028 0.972 0.000 0.000
#> GSM11245 4 0.0188 0.5164 0.004 0.000 0.000 0.996
#> GSM11246 4 0.4961 -0.5118 0.448 0.000 0.000 0.552
#> GSM11261 4 0.4228 0.3651 0.232 0.008 0.000 0.760
#> GSM11248 4 0.1118 0.5047 0.036 0.000 0.000 0.964
#> GSM28732 4 0.4907 0.2450 0.420 0.000 0.000 0.580
#> GSM11255 4 0.0000 0.5160 0.000 0.000 0.000 1.000
#> GSM28731 1 0.4941 0.6382 0.564 0.000 0.000 0.436
#> GSM28727 4 0.4981 -0.5364 0.464 0.000 0.000 0.536
#> GSM11251 1 0.4981 0.6386 0.536 0.000 0.000 0.464
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM28735 5 0.4356 0.843 0.340 0.000 0.00 0.012 0.648
#> GSM28736 5 0.4367 0.825 0.372 0.000 0.00 0.008 0.620
#> GSM28737 1 0.0324 0.725 0.992 0.000 0.00 0.004 0.004
#> GSM11249 4 0.3318 0.576 0.000 0.000 0.18 0.808 0.012
#> GSM28745 2 0.0162 0.978 0.000 0.996 0.00 0.004 0.000
#> GSM11244 2 0.0000 0.979 0.000 1.000 0.00 0.000 0.000
#> GSM28748 2 0.2569 0.917 0.000 0.892 0.00 0.040 0.068
#> GSM11266 2 0.0000 0.979 0.000 1.000 0.00 0.000 0.000
#> GSM28730 2 0.0162 0.978 0.000 0.996 0.00 0.004 0.000
#> GSM11253 2 0.0000 0.979 0.000 1.000 0.00 0.000 0.000
#> GSM11254 2 0.0000 0.979 0.000 1.000 0.00 0.000 0.000
#> GSM11260 2 0.0000 0.979 0.000 1.000 0.00 0.000 0.000
#> GSM28733 2 0.0000 0.979 0.000 1.000 0.00 0.000 0.000
#> GSM11265 1 0.5102 0.549 0.696 0.000 0.00 0.176 0.128
#> GSM28739 1 0.5064 0.528 0.680 0.000 0.00 0.232 0.088
#> GSM11243 3 0.1661 0.965 0.000 0.000 0.94 0.024 0.036
#> GSM28740 1 0.0162 0.728 0.996 0.000 0.00 0.004 0.000
#> GSM11259 1 0.1638 0.716 0.932 0.000 0.00 0.004 0.064
#> GSM28726 5 0.4283 0.845 0.348 0.000 0.00 0.008 0.644
#> GSM28743 1 0.0566 0.730 0.984 0.000 0.00 0.004 0.012
#> GSM11256 1 0.5238 0.442 0.652 0.000 0.00 0.088 0.260
#> GSM11262 1 0.0324 0.727 0.992 0.000 0.00 0.004 0.004
#> GSM28724 1 0.3409 0.682 0.836 0.000 0.00 0.052 0.112
#> GSM28725 3 0.0000 0.983 0.000 0.000 1.00 0.000 0.000
#> GSM11263 3 0.0000 0.983 0.000 0.000 1.00 0.000 0.000
#> GSM11267 3 0.0000 0.983 0.000 0.000 1.00 0.000 0.000
#> GSM28744 4 0.5195 0.745 0.216 0.000 0.00 0.676 0.108
#> GSM28734 4 0.3074 0.821 0.196 0.000 0.00 0.804 0.000
#> GSM28747 1 0.3318 0.617 0.800 0.000 0.00 0.008 0.192
#> GSM11257 1 0.5758 0.376 0.600 0.000 0.00 0.132 0.268
#> GSM11252 4 0.4847 0.793 0.240 0.000 0.00 0.692 0.068
#> GSM11264 3 0.0000 0.983 0.000 0.000 1.00 0.000 0.000
#> GSM11247 3 0.1661 0.965 0.000 0.000 0.94 0.024 0.036
#> GSM11258 1 0.3769 0.635 0.788 0.000 0.00 0.180 0.032
#> GSM28728 1 0.3991 0.651 0.780 0.000 0.00 0.048 0.172
#> GSM28746 1 0.4335 0.622 0.760 0.000 0.00 0.168 0.072
#> GSM28738 1 0.5758 0.376 0.600 0.000 0.00 0.132 0.268
#> GSM28741 5 0.4949 0.782 0.296 0.004 0.00 0.044 0.656
#> GSM28729 1 0.3882 0.651 0.788 0.000 0.00 0.044 0.168
#> GSM28742 5 0.5555 0.568 0.140 0.000 0.00 0.220 0.640
#> GSM11250 2 0.2554 0.916 0.000 0.892 0.00 0.036 0.072
#> GSM11245 4 0.4847 0.793 0.240 0.000 0.00 0.692 0.068
#> GSM11246 1 0.3413 0.676 0.832 0.000 0.00 0.044 0.124
#> GSM11261 4 0.3565 0.631 0.024 0.000 0.00 0.800 0.176
#> GSM11248 4 0.3074 0.821 0.196 0.000 0.00 0.804 0.000
#> GSM28732 5 0.5002 0.830 0.312 0.000 0.00 0.052 0.636
#> GSM11255 4 0.4465 0.818 0.204 0.000 0.00 0.736 0.060
#> GSM28731 1 0.2139 0.689 0.916 0.000 0.00 0.032 0.052
#> GSM28727 1 0.3246 0.623 0.808 0.000 0.00 0.008 0.184
#> GSM11251 1 0.1043 0.721 0.960 0.000 0.00 0.000 0.040
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM28735 5 0.2848 0.87723 0.176 0.000 0.000 0.000 0.816 0.008
#> GSM28736 5 0.2913 0.87406 0.180 0.000 0.000 0.004 0.812 0.004
#> GSM28737 1 0.1471 0.74985 0.932 0.000 0.000 0.064 0.004 0.000
#> GSM11249 6 0.1832 0.78553 0.000 0.000 0.032 0.032 0.008 0.928
#> GSM28745 2 0.0291 0.95072 0.000 0.992 0.000 0.004 0.000 0.004
#> GSM11244 2 0.0000 0.95307 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28748 2 0.4128 0.80178 0.000 0.764 0.000 0.164 0.044 0.028
#> GSM11266 2 0.0000 0.95307 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28730 2 0.0717 0.94392 0.000 0.976 0.000 0.016 0.000 0.008
#> GSM11253 2 0.0000 0.95307 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.95307 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.95307 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.95307 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11265 1 0.3225 0.74428 0.828 0.000 0.000 0.000 0.080 0.092
#> GSM28739 1 0.3439 0.72780 0.808 0.000 0.000 0.000 0.072 0.120
#> GSM11243 3 0.2537 0.91802 0.000 0.000 0.872 0.096 0.032 0.000
#> GSM28740 1 0.0937 0.76843 0.960 0.000 0.000 0.040 0.000 0.000
#> GSM11259 1 0.1434 0.75909 0.940 0.000 0.000 0.048 0.012 0.000
#> GSM28726 5 0.2320 0.87368 0.132 0.000 0.000 0.000 0.864 0.004
#> GSM28743 1 0.0603 0.77815 0.980 0.000 0.000 0.016 0.000 0.004
#> GSM11256 4 0.4470 0.94165 0.268 0.000 0.000 0.680 0.036 0.016
#> GSM11262 1 0.1267 0.75581 0.940 0.000 0.000 0.060 0.000 0.000
#> GSM28724 1 0.2106 0.78468 0.904 0.000 0.000 0.000 0.064 0.032
#> GSM28725 3 0.0000 0.96000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11263 3 0.0000 0.96000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11267 3 0.0000 0.96000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM28744 6 0.6320 0.48201 0.116 0.000 0.000 0.216 0.100 0.568
#> GSM28734 6 0.0972 0.83096 0.028 0.000 0.000 0.000 0.008 0.964
#> GSM28747 1 0.2112 0.77728 0.896 0.000 0.000 0.000 0.088 0.016
#> GSM11257 4 0.3831 0.97131 0.268 0.000 0.000 0.712 0.012 0.008
#> GSM11252 6 0.3608 0.78059 0.148 0.000 0.000 0.000 0.064 0.788
#> GSM11264 3 0.0000 0.96000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11247 3 0.2537 0.91802 0.000 0.000 0.872 0.096 0.032 0.000
#> GSM11258 1 0.2587 0.74913 0.868 0.000 0.000 0.004 0.020 0.108
#> GSM28728 1 0.6202 -0.00471 0.508 0.000 0.000 0.256 0.212 0.024
#> GSM28746 1 0.3206 0.74453 0.828 0.000 0.000 0.000 0.068 0.104
#> GSM28738 4 0.3831 0.97131 0.268 0.000 0.000 0.712 0.012 0.008
#> GSM28741 5 0.4785 0.73038 0.120 0.000 0.000 0.148 0.712 0.020
#> GSM28729 1 0.6217 -0.01617 0.504 0.000 0.000 0.260 0.212 0.024
#> GSM28742 5 0.2333 0.80875 0.040 0.000 0.000 0.004 0.896 0.060
#> GSM11250 2 0.3930 0.80916 0.000 0.780 0.000 0.148 0.056 0.016
#> GSM11245 6 0.3608 0.78059 0.148 0.000 0.000 0.000 0.064 0.788
#> GSM11246 1 0.2066 0.78357 0.904 0.000 0.000 0.000 0.072 0.024
#> GSM11261 6 0.1606 0.79912 0.004 0.000 0.000 0.008 0.056 0.932
#> GSM11248 6 0.0858 0.82834 0.028 0.000 0.000 0.004 0.000 0.968
#> GSM28732 5 0.3102 0.86890 0.156 0.000 0.000 0.000 0.816 0.028
#> GSM11255 6 0.2786 0.82035 0.084 0.000 0.000 0.000 0.056 0.860
#> GSM28731 1 0.3834 0.47399 0.748 0.000 0.000 0.216 0.028 0.008
#> GSM28727 1 0.1812 0.77998 0.912 0.000 0.000 0.000 0.080 0.008
#> GSM11251 1 0.0935 0.77155 0.964 0.000 0.000 0.032 0.004 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n tissue(p) k
#> ATC:kmeans 41 0.383 2
#> ATC:kmeans 50 0.370 3
#> ATC:kmeans 33 0.316 4
#> ATC:kmeans 47 0.404 5
#> ATC:kmeans 46 0.474 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21342 rows and 50 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.979 0.986 0.4743 0.519 0.519
#> 3 3 1.000 0.981 0.992 0.3176 0.784 0.610
#> 4 4 0.738 0.591 0.814 0.1768 0.932 0.820
#> 5 5 0.794 0.529 0.744 0.0757 0.864 0.589
#> 6 6 0.878 0.849 0.915 0.0483 0.924 0.674
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2
There is also optional best \(k\) = 2 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM28735 1 0.000 0.996 1.000 0.000
#> GSM28736 1 0.184 0.969 0.972 0.028
#> GSM28737 1 0.000 0.996 1.000 0.000
#> GSM11249 1 0.000 0.996 1.000 0.000
#> GSM28745 2 0.000 0.967 0.000 1.000
#> GSM11244 2 0.000 0.967 0.000 1.000
#> GSM28748 2 0.000 0.967 0.000 1.000
#> GSM11266 2 0.000 0.967 0.000 1.000
#> GSM28730 2 0.000 0.967 0.000 1.000
#> GSM11253 2 0.000 0.967 0.000 1.000
#> GSM11254 2 0.000 0.967 0.000 1.000
#> GSM11260 2 0.000 0.967 0.000 1.000
#> GSM28733 2 0.000 0.967 0.000 1.000
#> GSM11265 1 0.000 0.996 1.000 0.000
#> GSM28739 1 0.000 0.996 1.000 0.000
#> GSM11243 2 0.416 0.941 0.084 0.916
#> GSM28740 1 0.000 0.996 1.000 0.000
#> GSM11259 1 0.000 0.996 1.000 0.000
#> GSM28726 1 0.443 0.902 0.908 0.092
#> GSM28743 1 0.000 0.996 1.000 0.000
#> GSM11256 1 0.000 0.996 1.000 0.000
#> GSM11262 1 0.000 0.996 1.000 0.000
#> GSM28724 1 0.000 0.996 1.000 0.000
#> GSM28725 2 0.416 0.941 0.084 0.916
#> GSM11263 2 0.416 0.941 0.084 0.916
#> GSM11267 2 0.416 0.941 0.084 0.916
#> GSM28744 1 0.000 0.996 1.000 0.000
#> GSM28734 1 0.000 0.996 1.000 0.000
#> GSM28747 1 0.000 0.996 1.000 0.000
#> GSM11257 1 0.000 0.996 1.000 0.000
#> GSM11252 1 0.000 0.996 1.000 0.000
#> GSM11264 2 0.416 0.941 0.084 0.916
#> GSM11247 2 0.416 0.941 0.084 0.916
#> GSM11258 1 0.000 0.996 1.000 0.000
#> GSM28728 1 0.000 0.996 1.000 0.000
#> GSM28746 1 0.000 0.996 1.000 0.000
#> GSM28738 1 0.000 0.996 1.000 0.000
#> GSM28741 2 0.000 0.967 0.000 1.000
#> GSM28729 1 0.000 0.996 1.000 0.000
#> GSM28742 2 0.278 0.956 0.048 0.952
#> GSM11250 2 0.000 0.967 0.000 1.000
#> GSM11245 1 0.000 0.996 1.000 0.000
#> GSM11246 1 0.000 0.996 1.000 0.000
#> GSM11261 2 0.278 0.956 0.048 0.952
#> GSM11248 1 0.000 0.996 1.000 0.000
#> GSM28732 1 0.000 0.996 1.000 0.000
#> GSM11255 1 0.000 0.996 1.000 0.000
#> GSM28731 1 0.000 0.996 1.000 0.000
#> GSM28727 1 0.000 0.996 1.000 0.000
#> GSM11251 1 0.000 0.996 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM28735 1 0.000 0.996 1.000 0.000 0.000
#> GSM28736 1 0.000 0.996 1.000 0.000 0.000
#> GSM28737 1 0.000 0.996 1.000 0.000 0.000
#> GSM11249 3 0.000 0.997 0.000 0.000 1.000
#> GSM28745 2 0.000 0.969 0.000 1.000 0.000
#> GSM11244 2 0.000 0.969 0.000 1.000 0.000
#> GSM28748 2 0.000 0.969 0.000 1.000 0.000
#> GSM11266 2 0.000 0.969 0.000 1.000 0.000
#> GSM28730 2 0.000 0.969 0.000 1.000 0.000
#> GSM11253 2 0.000 0.969 0.000 1.000 0.000
#> GSM11254 2 0.000 0.969 0.000 1.000 0.000
#> GSM11260 2 0.000 0.969 0.000 1.000 0.000
#> GSM28733 2 0.000 0.969 0.000 1.000 0.000
#> GSM11265 1 0.000 0.996 1.000 0.000 0.000
#> GSM28739 1 0.000 0.996 1.000 0.000 0.000
#> GSM11243 3 0.000 0.997 0.000 0.000 1.000
#> GSM28740 1 0.000 0.996 1.000 0.000 0.000
#> GSM11259 1 0.000 0.996 1.000 0.000 0.000
#> GSM28726 2 0.529 0.632 0.268 0.732 0.000
#> GSM28743 1 0.000 0.996 1.000 0.000 0.000
#> GSM11256 1 0.000 0.996 1.000 0.000 0.000
#> GSM11262 1 0.000 0.996 1.000 0.000 0.000
#> GSM28724 1 0.000 0.996 1.000 0.000 0.000
#> GSM28725 3 0.000 0.997 0.000 0.000 1.000
#> GSM11263 3 0.000 0.997 0.000 0.000 1.000
#> GSM11267 3 0.000 0.997 0.000 0.000 1.000
#> GSM28744 1 0.000 0.996 1.000 0.000 0.000
#> GSM28734 3 0.000 0.997 0.000 0.000 1.000
#> GSM28747 1 0.000 0.996 1.000 0.000 0.000
#> GSM11257 1 0.000 0.996 1.000 0.000 0.000
#> GSM11252 1 0.164 0.956 0.956 0.000 0.044
#> GSM11264 3 0.000 0.997 0.000 0.000 1.000
#> GSM11247 3 0.000 0.997 0.000 0.000 1.000
#> GSM11258 1 0.000 0.996 1.000 0.000 0.000
#> GSM28728 1 0.000 0.996 1.000 0.000 0.000
#> GSM28746 1 0.000 0.996 1.000 0.000 0.000
#> GSM28738 1 0.000 0.996 1.000 0.000 0.000
#> GSM28741 2 0.000 0.969 0.000 1.000 0.000
#> GSM28729 1 0.000 0.996 1.000 0.000 0.000
#> GSM28742 3 0.116 0.970 0.000 0.028 0.972
#> GSM11250 2 0.000 0.969 0.000 1.000 0.000
#> GSM11245 1 0.164 0.956 0.956 0.000 0.044
#> GSM11246 1 0.000 0.996 1.000 0.000 0.000
#> GSM11261 3 0.000 0.997 0.000 0.000 1.000
#> GSM11248 3 0.000 0.997 0.000 0.000 1.000
#> GSM28732 1 0.000 0.996 1.000 0.000 0.000
#> GSM11255 3 0.000 0.997 0.000 0.000 1.000
#> GSM28731 1 0.000 0.996 1.000 0.000 0.000
#> GSM28727 1 0.000 0.996 1.000 0.000 0.000
#> GSM11251 1 0.000 0.996 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM28735 4 0.4331 0.71220 0.288 0.000 0.000 0.712
#> GSM28736 4 0.4331 0.71220 0.288 0.000 0.000 0.712
#> GSM28737 1 0.3123 0.45285 0.844 0.000 0.000 0.156
#> GSM11249 3 0.0188 0.86619 0.000 0.000 0.996 0.004
#> GSM28745 2 0.0000 1.00000 0.000 1.000 0.000 0.000
#> GSM11244 2 0.0000 1.00000 0.000 1.000 0.000 0.000
#> GSM28748 2 0.0000 1.00000 0.000 1.000 0.000 0.000
#> GSM11266 2 0.0000 1.00000 0.000 1.000 0.000 0.000
#> GSM28730 2 0.0000 1.00000 0.000 1.000 0.000 0.000
#> GSM11253 2 0.0000 1.00000 0.000 1.000 0.000 0.000
#> GSM11254 2 0.0000 1.00000 0.000 1.000 0.000 0.000
#> GSM11260 2 0.0000 1.00000 0.000 1.000 0.000 0.000
#> GSM28733 2 0.0000 1.00000 0.000 1.000 0.000 0.000
#> GSM11265 1 0.4304 0.44529 0.716 0.000 0.000 0.284
#> GSM28739 1 0.4304 0.44529 0.716 0.000 0.000 0.284
#> GSM11243 3 0.0000 0.86765 0.000 0.000 1.000 0.000
#> GSM28740 1 0.2149 0.51061 0.912 0.000 0.000 0.088
#> GSM11259 1 0.3907 0.35032 0.768 0.000 0.000 0.232
#> GSM28726 4 0.5990 0.66746 0.284 0.072 0.000 0.644
#> GSM28743 1 0.0336 0.54025 0.992 0.000 0.000 0.008
#> GSM11256 1 0.4888 -0.04750 0.588 0.000 0.000 0.412
#> GSM11262 1 0.2216 0.50816 0.908 0.000 0.000 0.092
#> GSM28724 1 0.0469 0.54162 0.988 0.000 0.000 0.012
#> GSM28725 3 0.0000 0.86765 0.000 0.000 1.000 0.000
#> GSM11263 3 0.0000 0.86765 0.000 0.000 1.000 0.000
#> GSM11267 3 0.0000 0.86765 0.000 0.000 1.000 0.000
#> GSM28744 4 0.4222 0.02909 0.272 0.000 0.000 0.728
#> GSM28734 3 0.6750 0.55273 0.128 0.000 0.584 0.288
#> GSM28747 1 0.0336 0.54157 0.992 0.000 0.000 0.008
#> GSM11257 1 0.4790 0.05263 0.620 0.000 0.000 0.380
#> GSM11252 1 0.6307 0.36346 0.620 0.000 0.092 0.288
#> GSM11264 3 0.0000 0.86765 0.000 0.000 1.000 0.000
#> GSM11247 3 0.0000 0.86765 0.000 0.000 1.000 0.000
#> GSM11258 1 0.4304 0.44529 0.716 0.000 0.000 0.284
#> GSM28728 1 0.4961 -0.16530 0.552 0.000 0.000 0.448
#> GSM28746 1 0.4304 0.44529 0.716 0.000 0.000 0.284
#> GSM28738 1 0.4843 0.00515 0.604 0.000 0.000 0.396
#> GSM28741 2 0.0000 1.00000 0.000 1.000 0.000 0.000
#> GSM28729 1 0.4961 -0.16530 0.552 0.000 0.000 0.448
#> GSM28742 3 0.4800 0.51818 0.000 0.004 0.656 0.340
#> GSM11250 2 0.0000 1.00000 0.000 1.000 0.000 0.000
#> GSM11245 1 0.6307 0.36346 0.620 0.000 0.092 0.288
#> GSM11246 1 0.1716 0.52714 0.936 0.000 0.000 0.064
#> GSM11261 3 0.0000 0.86765 0.000 0.000 1.000 0.000
#> GSM11248 3 0.3764 0.73593 0.000 0.000 0.784 0.216
#> GSM28732 1 0.4985 -0.14567 0.532 0.000 0.000 0.468
#> GSM11255 3 0.6835 0.54268 0.136 0.000 0.576 0.288
#> GSM28731 1 0.4746 0.08338 0.632 0.000 0.000 0.368
#> GSM28727 1 0.0000 0.54133 1.000 0.000 0.000 0.000
#> GSM11251 1 0.2814 0.47625 0.868 0.000 0.000 0.132
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM28735 5 0.4774 0.4489 0.028 0.000 0.360 0.000 0.612
#> GSM28736 5 0.4774 0.4541 0.028 0.000 0.360 0.000 0.612
#> GSM28737 1 0.0609 0.6451 0.980 0.000 0.000 0.000 0.020
#> GSM11249 4 0.4291 -0.5667 0.000 0.000 0.464 0.536 0.000
#> GSM28745 2 0.0000 1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM28748 2 0.0000 1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM11266 2 0.0000 1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM11265 1 0.4403 0.2924 0.560 0.000 0.000 0.436 0.004
#> GSM28739 1 0.4268 0.2850 0.556 0.000 0.000 0.444 0.000
#> GSM11243 3 0.4060 0.8110 0.000 0.000 0.640 0.360 0.000
#> GSM28740 1 0.0404 0.6495 0.988 0.000 0.000 0.000 0.012
#> GSM11259 1 0.2068 0.5872 0.904 0.000 0.004 0.000 0.092
#> GSM28726 5 0.5616 0.4374 0.040 0.024 0.360 0.000 0.576
#> GSM28743 1 0.1478 0.6684 0.936 0.000 0.000 0.064 0.000
#> GSM11256 5 0.4557 0.0349 0.476 0.000 0.000 0.008 0.516
#> GSM11262 1 0.0693 0.6569 0.980 0.000 0.000 0.012 0.008
#> GSM28724 1 0.1671 0.6689 0.924 0.000 0.000 0.076 0.000
#> GSM28725 3 0.4060 0.8110 0.000 0.000 0.640 0.360 0.000
#> GSM11263 3 0.4060 0.8110 0.000 0.000 0.640 0.360 0.000
#> GSM11267 3 0.4060 0.8110 0.000 0.000 0.640 0.360 0.000
#> GSM28744 5 0.5992 0.0446 0.112 0.000 0.000 0.416 0.472
#> GSM28734 4 0.0324 0.4821 0.004 0.000 0.004 0.992 0.000
#> GSM28747 1 0.3099 0.6510 0.848 0.000 0.000 0.124 0.028
#> GSM11257 1 0.4304 -0.1161 0.516 0.000 0.000 0.000 0.484
#> GSM11252 4 0.4232 0.2212 0.312 0.000 0.000 0.676 0.012
#> GSM11264 3 0.4060 0.8110 0.000 0.000 0.640 0.360 0.000
#> GSM11247 3 0.4060 0.8110 0.000 0.000 0.640 0.360 0.000
#> GSM11258 1 0.4262 0.2927 0.560 0.000 0.000 0.440 0.000
#> GSM28728 5 0.4622 0.1079 0.440 0.000 0.000 0.012 0.548
#> GSM28746 1 0.4410 0.2905 0.556 0.000 0.000 0.440 0.004
#> GSM28738 1 0.4307 -0.1436 0.504 0.000 0.000 0.000 0.496
#> GSM28741 2 0.0000 1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM28729 5 0.4617 0.1139 0.436 0.000 0.000 0.012 0.552
#> GSM28742 3 0.4294 -0.3896 0.000 0.000 0.532 0.000 0.468
#> GSM11250 2 0.0000 1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM11245 4 0.4127 0.2266 0.312 0.000 0.000 0.680 0.008
#> GSM11246 1 0.3011 0.6482 0.844 0.000 0.000 0.140 0.016
#> GSM11261 3 0.4060 0.8110 0.000 0.000 0.640 0.360 0.000
#> GSM11248 4 0.3636 -0.0639 0.000 0.000 0.272 0.728 0.000
#> GSM28732 5 0.5912 0.4240 0.088 0.000 0.360 0.008 0.544
#> GSM11255 4 0.0290 0.4879 0.008 0.000 0.000 0.992 0.000
#> GSM28731 1 0.4297 -0.0934 0.528 0.000 0.000 0.000 0.472
#> GSM28727 1 0.2511 0.6619 0.892 0.000 0.000 0.080 0.028
#> GSM11251 1 0.0510 0.6516 0.984 0.000 0.000 0.000 0.016
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM28735 5 0.1262 0.938 0.016 0 0.000 0.020 0.956 0.008
#> GSM28736 5 0.2425 0.892 0.012 0 0.000 0.100 0.880 0.008
#> GSM28737 1 0.2378 0.766 0.848 0 0.000 0.152 0.000 0.000
#> GSM11249 3 0.3695 0.330 0.000 0 0.624 0.000 0.000 0.376
#> GSM28745 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0.000
#> GSM28748 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0.000
#> GSM11266 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0.000
#> GSM11265 1 0.3665 0.611 0.696 0 0.000 0.004 0.004 0.296
#> GSM28739 1 0.3756 0.545 0.644 0 0.000 0.004 0.000 0.352
#> GSM11243 3 0.0000 0.939 0.000 0 1.000 0.000 0.000 0.000
#> GSM28740 1 0.2191 0.793 0.876 0 0.000 0.120 0.000 0.004
#> GSM11259 1 0.3023 0.693 0.784 0 0.000 0.212 0.004 0.000
#> GSM28726 5 0.0622 0.936 0.000 0 0.000 0.012 0.980 0.008
#> GSM28743 1 0.1141 0.817 0.948 0 0.000 0.052 0.000 0.000
#> GSM11256 4 0.0713 0.878 0.028 0 0.000 0.972 0.000 0.000
#> GSM11262 1 0.1663 0.808 0.912 0 0.000 0.088 0.000 0.000
#> GSM28724 1 0.1461 0.820 0.940 0 0.000 0.044 0.000 0.016
#> GSM28725 3 0.0000 0.939 0.000 0 1.000 0.000 0.000 0.000
#> GSM11263 3 0.0000 0.939 0.000 0 1.000 0.000 0.000 0.000
#> GSM11267 3 0.0000 0.939 0.000 0 1.000 0.000 0.000 0.000
#> GSM28744 4 0.3468 0.548 0.000 0 0.000 0.712 0.004 0.284
#> GSM28734 6 0.1138 0.884 0.012 0 0.024 0.004 0.000 0.960
#> GSM28747 1 0.1251 0.815 0.956 0 0.000 0.012 0.008 0.024
#> GSM11257 4 0.1970 0.868 0.092 0 0.000 0.900 0.000 0.008
#> GSM11252 6 0.0777 0.887 0.024 0 0.004 0.000 0.000 0.972
#> GSM11264 3 0.0000 0.939 0.000 0 1.000 0.000 0.000 0.000
#> GSM11247 3 0.0000 0.939 0.000 0 1.000 0.000 0.000 0.000
#> GSM11258 1 0.4264 0.578 0.636 0 0.000 0.032 0.000 0.332
#> GSM28728 4 0.1421 0.871 0.028 0 0.000 0.944 0.028 0.000
#> GSM28746 1 0.3861 0.543 0.640 0 0.000 0.008 0.000 0.352
#> GSM28738 4 0.1812 0.874 0.080 0 0.000 0.912 0.000 0.008
#> GSM28741 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0.000
#> GSM28729 4 0.1572 0.873 0.036 0 0.000 0.936 0.028 0.000
#> GSM28742 5 0.1409 0.923 0.000 0 0.032 0.012 0.948 0.008
#> GSM11250 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0.000
#> GSM11245 6 0.0777 0.887 0.024 0 0.004 0.000 0.000 0.972
#> GSM11246 1 0.1194 0.812 0.956 0 0.000 0.008 0.004 0.032
#> GSM11261 3 0.0146 0.936 0.000 0 0.996 0.000 0.000 0.004
#> GSM11248 6 0.3601 0.471 0.000 0 0.312 0.004 0.000 0.684
#> GSM28732 5 0.2002 0.924 0.040 0 0.000 0.012 0.920 0.028
#> GSM11255 6 0.0914 0.889 0.016 0 0.016 0.000 0.000 0.968
#> GSM28731 4 0.2527 0.800 0.168 0 0.000 0.832 0.000 0.000
#> GSM28727 1 0.1092 0.814 0.960 0 0.000 0.020 0.020 0.000
#> GSM11251 1 0.2020 0.802 0.896 0 0.000 0.096 0.008 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n tissue(p) k
#> ATC:skmeans 50 0.394 2
#> ATC:skmeans 50 0.370 3
#> ATC:skmeans 33 0.397 4
#> ATC:skmeans 28 0.400 5
#> ATC:skmeans 48 0.399 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21342 rows and 50 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.3272 0.673 0.673
#> 3 3 1.000 1.000 1.000 0.5084 0.833 0.753
#> 4 4 0.804 0.922 0.954 0.1605 0.948 0.897
#> 5 5 0.831 0.948 0.972 0.2292 0.843 0.655
#> 6 6 0.811 0.942 0.965 0.0123 0.993 0.978
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2
There is also optional best \(k\) = 2 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM28735 1 0 1 1 0
#> GSM28736 1 0 1 1 0
#> GSM28737 1 0 1 1 0
#> GSM11249 1 0 1 1 0
#> GSM28745 2 0 1 0 1
#> GSM11244 2 0 1 0 1
#> GSM28748 2 0 1 0 1
#> GSM11266 2 0 1 0 1
#> GSM28730 2 0 1 0 1
#> GSM11253 2 0 1 0 1
#> GSM11254 2 0 1 0 1
#> GSM11260 2 0 1 0 1
#> GSM28733 2 0 1 0 1
#> GSM11265 1 0 1 1 0
#> GSM28739 1 0 1 1 0
#> GSM11243 1 0 1 1 0
#> GSM28740 1 0 1 1 0
#> GSM11259 1 0 1 1 0
#> GSM28726 1 0 1 1 0
#> GSM28743 1 0 1 1 0
#> GSM11256 1 0 1 1 0
#> GSM11262 1 0 1 1 0
#> GSM28724 1 0 1 1 0
#> GSM28725 1 0 1 1 0
#> GSM11263 1 0 1 1 0
#> GSM11267 1 0 1 1 0
#> GSM28744 1 0 1 1 0
#> GSM28734 1 0 1 1 0
#> GSM28747 1 0 1 1 0
#> GSM11257 1 0 1 1 0
#> GSM11252 1 0 1 1 0
#> GSM11264 1 0 1 1 0
#> GSM11247 1 0 1 1 0
#> GSM11258 1 0 1 1 0
#> GSM28728 1 0 1 1 0
#> GSM28746 1 0 1 1 0
#> GSM28738 1 0 1 1 0
#> GSM28741 1 0 1 1 0
#> GSM28729 1 0 1 1 0
#> GSM28742 1 0 1 1 0
#> GSM11250 2 0 1 0 1
#> GSM11245 1 0 1 1 0
#> GSM11246 1 0 1 1 0
#> GSM11261 1 0 1 1 0
#> GSM11248 1 0 1 1 0
#> GSM28732 1 0 1 1 0
#> GSM11255 1 0 1 1 0
#> GSM28731 1 0 1 1 0
#> GSM28727 1 0 1 1 0
#> GSM11251 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM28735 1 0 1 1 0 0
#> GSM28736 1 0 1 1 0 0
#> GSM28737 1 0 1 1 0 0
#> GSM11249 1 0 1 1 0 0
#> GSM28745 2 0 1 0 1 0
#> GSM11244 2 0 1 0 1 0
#> GSM28748 2 0 1 0 1 0
#> GSM11266 2 0 1 0 1 0
#> GSM28730 2 0 1 0 1 0
#> GSM11253 2 0 1 0 1 0
#> GSM11254 2 0 1 0 1 0
#> GSM11260 2 0 1 0 1 0
#> GSM28733 2 0 1 0 1 0
#> GSM11265 1 0 1 1 0 0
#> GSM28739 1 0 1 1 0 0
#> GSM11243 3 0 1 0 0 1
#> GSM28740 1 0 1 1 0 0
#> GSM11259 1 0 1 1 0 0
#> GSM28726 1 0 1 1 0 0
#> GSM28743 1 0 1 1 0 0
#> GSM11256 1 0 1 1 0 0
#> GSM11262 1 0 1 1 0 0
#> GSM28724 1 0 1 1 0 0
#> GSM28725 3 0 1 0 0 1
#> GSM11263 3 0 1 0 0 1
#> GSM11267 3 0 1 0 0 1
#> GSM28744 1 0 1 1 0 0
#> GSM28734 1 0 1 1 0 0
#> GSM28747 1 0 1 1 0 0
#> GSM11257 1 0 1 1 0 0
#> GSM11252 1 0 1 1 0 0
#> GSM11264 3 0 1 0 0 1
#> GSM11247 3 0 1 0 0 1
#> GSM11258 1 0 1 1 0 0
#> GSM28728 1 0 1 1 0 0
#> GSM28746 1 0 1 1 0 0
#> GSM28738 1 0 1 1 0 0
#> GSM28741 1 0 1 1 0 0
#> GSM28729 1 0 1 1 0 0
#> GSM28742 1 0 1 1 0 0
#> GSM11250 2 0 1 0 1 0
#> GSM11245 1 0 1 1 0 0
#> GSM11246 1 0 1 1 0 0
#> GSM11261 1 0 1 1 0 0
#> GSM11248 1 0 1 1 0 0
#> GSM28732 1 0 1 1 0 0
#> GSM11255 1 0 1 1 0 0
#> GSM28731 1 0 1 1 0 0
#> GSM28727 1 0 1 1 0 0
#> GSM11251 1 0 1 1 0 0
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM28735 1 0.0000 0.923 1.000 0 0.000 0.000
#> GSM28736 1 0.0000 0.923 1.000 0 0.000 0.000
#> GSM28737 1 0.0000 0.923 1.000 0 0.000 0.000
#> GSM11249 1 0.3907 0.745 0.768 0 0.000 0.232
#> GSM28745 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM11244 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM28748 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM11266 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM28730 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM11253 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM11254 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM11260 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM28733 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM11265 1 0.0000 0.923 1.000 0 0.000 0.000
#> GSM28739 1 0.0000 0.923 1.000 0 0.000 0.000
#> GSM11243 3 0.0000 0.997 0.000 0 1.000 0.000
#> GSM28740 1 0.0000 0.923 1.000 0 0.000 0.000
#> GSM11259 1 0.0000 0.923 1.000 0 0.000 0.000
#> GSM28726 1 0.0000 0.923 1.000 0 0.000 0.000
#> GSM28743 1 0.0000 0.923 1.000 0 0.000 0.000
#> GSM11256 1 0.0000 0.923 1.000 0 0.000 0.000
#> GSM11262 1 0.0000 0.923 1.000 0 0.000 0.000
#> GSM28724 1 0.0000 0.923 1.000 0 0.000 0.000
#> GSM28725 3 0.0000 0.997 0.000 0 1.000 0.000
#> GSM11263 3 0.0000 0.997 0.000 0 1.000 0.000
#> GSM11267 3 0.0000 0.997 0.000 0 1.000 0.000
#> GSM28744 1 0.0000 0.923 1.000 0 0.000 0.000
#> GSM28734 1 0.3907 0.745 0.768 0 0.000 0.232
#> GSM28747 1 0.0000 0.923 1.000 0 0.000 0.000
#> GSM11257 4 0.3907 1.000 0.232 0 0.000 0.768
#> GSM11252 1 0.3907 0.745 0.768 0 0.000 0.232
#> GSM11264 3 0.0000 0.997 0.000 0 1.000 0.000
#> GSM11247 3 0.0469 0.985 0.000 0 0.988 0.012
#> GSM11258 1 0.0000 0.923 1.000 0 0.000 0.000
#> GSM28728 1 0.0000 0.923 1.000 0 0.000 0.000
#> GSM28746 1 0.0000 0.923 1.000 0 0.000 0.000
#> GSM28738 4 0.3907 1.000 0.232 0 0.000 0.768
#> GSM28741 1 0.0000 0.923 1.000 0 0.000 0.000
#> GSM28729 1 0.0000 0.923 1.000 0 0.000 0.000
#> GSM28742 1 0.3907 0.745 0.768 0 0.000 0.232
#> GSM11250 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM11245 1 0.3837 0.752 0.776 0 0.000 0.224
#> GSM11246 1 0.0000 0.923 1.000 0 0.000 0.000
#> GSM11261 1 0.3907 0.745 0.768 0 0.000 0.232
#> GSM11248 1 0.3907 0.745 0.768 0 0.000 0.232
#> GSM28732 1 0.0000 0.923 1.000 0 0.000 0.000
#> GSM11255 1 0.3907 0.745 0.768 0 0.000 0.232
#> GSM28731 1 0.0000 0.923 1.000 0 0.000 0.000
#> GSM28727 1 0.0000 0.923 1.000 0 0.000 0.000
#> GSM11251 1 0.0000 0.923 1.000 0 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM28735 1 0.000 0.966 1.000 0 0.00 0.000 0
#> GSM28736 1 0.000 0.966 1.000 0 0.00 0.000 0
#> GSM28737 1 0.202 0.914 0.900 0 0.00 0.100 0
#> GSM11249 4 0.000 0.871 0.000 0 0.00 1.000 0
#> GSM28745 2 0.000 1.000 0.000 1 0.00 0.000 0
#> GSM11244 2 0.000 1.000 0.000 1 0.00 0.000 0
#> GSM28748 2 0.000 1.000 0.000 1 0.00 0.000 0
#> GSM11266 2 0.000 1.000 0.000 1 0.00 0.000 0
#> GSM28730 2 0.000 1.000 0.000 1 0.00 0.000 0
#> GSM11253 2 0.000 1.000 0.000 1 0.00 0.000 0
#> GSM11254 2 0.000 1.000 0.000 1 0.00 0.000 0
#> GSM11260 2 0.000 1.000 0.000 1 0.00 0.000 0
#> GSM28733 2 0.000 1.000 0.000 1 0.00 0.000 0
#> GSM11265 1 0.000 0.966 1.000 0 0.00 0.000 0
#> GSM28739 1 0.202 0.914 0.900 0 0.00 0.100 0
#> GSM11243 3 0.000 0.940 0.000 0 1.00 0.000 0
#> GSM28740 1 0.202 0.914 0.900 0 0.00 0.100 0
#> GSM11259 1 0.000 0.966 1.000 0 0.00 0.000 0
#> GSM28726 1 0.000 0.966 1.000 0 0.00 0.000 0
#> GSM28743 1 0.000 0.966 1.000 0 0.00 0.000 0
#> GSM11256 1 0.202 0.914 0.900 0 0.00 0.100 0
#> GSM11262 1 0.202 0.914 0.900 0 0.00 0.100 0
#> GSM28724 1 0.000 0.966 1.000 0 0.00 0.000 0
#> GSM28725 3 0.000 0.940 0.000 0 1.00 0.000 0
#> GSM11263 3 0.000 0.940 0.000 0 1.00 0.000 0
#> GSM11267 3 0.000 0.940 0.000 0 1.00 0.000 0
#> GSM28744 1 0.029 0.962 0.992 0 0.00 0.008 0
#> GSM28734 4 0.000 0.871 0.000 0 0.00 1.000 0
#> GSM28747 1 0.000 0.966 1.000 0 0.00 0.000 0
#> GSM11257 5 0.000 1.000 0.000 0 0.00 0.000 1
#> GSM11252 4 0.202 0.916 0.100 0 0.00 0.900 0
#> GSM11264 3 0.000 0.940 0.000 0 1.00 0.000 0
#> GSM11247 3 0.327 0.675 0.000 0 0.78 0.220 0
#> GSM11258 1 0.202 0.914 0.900 0 0.00 0.100 0
#> GSM28728 1 0.000 0.966 1.000 0 0.00 0.000 0
#> GSM28746 1 0.191 0.918 0.908 0 0.00 0.092 0
#> GSM28738 5 0.000 1.000 0.000 0 0.00 0.000 1
#> GSM28741 1 0.000 0.966 1.000 0 0.00 0.000 0
#> GSM28729 1 0.000 0.966 1.000 0 0.00 0.000 0
#> GSM28742 4 0.207 0.914 0.104 0 0.00 0.896 0
#> GSM11250 2 0.000 1.000 0.000 1 0.00 0.000 0
#> GSM11245 4 0.213 0.910 0.108 0 0.00 0.892 0
#> GSM11246 1 0.000 0.966 1.000 0 0.00 0.000 0
#> GSM11261 4 0.179 0.916 0.084 0 0.00 0.916 0
#> GSM11248 4 0.000 0.871 0.000 0 0.00 1.000 0
#> GSM28732 1 0.000 0.966 1.000 0 0.00 0.000 0
#> GSM11255 4 0.202 0.916 0.100 0 0.00 0.900 0
#> GSM28731 1 0.000 0.966 1.000 0 0.00 0.000 0
#> GSM28727 1 0.000 0.966 1.000 0 0.00 0.000 0
#> GSM11251 1 0.000 0.966 1.000 0 0.00 0.000 0
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM28735 1 0.0260 0.948 0.992 0 0.000 0.008 0 0.000
#> GSM28736 1 0.0260 0.948 0.992 0 0.000 0.008 0 0.000
#> GSM28737 1 0.2260 0.875 0.860 0 0.000 0.000 0 0.140
#> GSM11249 6 0.0000 0.819 0.000 0 0.000 0.000 0 1.000
#> GSM28745 2 0.0000 1.000 0.000 1 0.000 0.000 0 0.000
#> GSM11244 2 0.0000 1.000 0.000 1 0.000 0.000 0 0.000
#> GSM28748 2 0.0000 1.000 0.000 1 0.000 0.000 0 0.000
#> GSM11266 2 0.0000 1.000 0.000 1 0.000 0.000 0 0.000
#> GSM28730 2 0.0000 1.000 0.000 1 0.000 0.000 0 0.000
#> GSM11253 2 0.0000 1.000 0.000 1 0.000 0.000 0 0.000
#> GSM11254 2 0.0000 1.000 0.000 1 0.000 0.000 0 0.000
#> GSM11260 2 0.0000 1.000 0.000 1 0.000 0.000 0 0.000
#> GSM28733 2 0.0000 1.000 0.000 1 0.000 0.000 0 0.000
#> GSM11265 1 0.0000 0.950 1.000 0 0.000 0.000 0 0.000
#> GSM28739 1 0.2260 0.875 0.860 0 0.000 0.000 0 0.140
#> GSM11243 4 0.0260 1.000 0.000 0 0.008 0.992 0 0.000
#> GSM28740 1 0.2260 0.875 0.860 0 0.000 0.000 0 0.140
#> GSM11259 1 0.0000 0.950 1.000 0 0.000 0.000 0 0.000
#> GSM28726 1 0.0260 0.948 0.992 0 0.000 0.008 0 0.000
#> GSM28743 1 0.0000 0.950 1.000 0 0.000 0.000 0 0.000
#> GSM11256 1 0.2402 0.874 0.856 0 0.000 0.004 0 0.140
#> GSM11262 1 0.2260 0.875 0.860 0 0.000 0.000 0 0.140
#> GSM28724 1 0.0000 0.950 1.000 0 0.000 0.000 0 0.000
#> GSM28725 3 0.0000 1.000 0.000 0 1.000 0.000 0 0.000
#> GSM11263 3 0.0000 1.000 0.000 0 1.000 0.000 0 0.000
#> GSM11267 3 0.0000 1.000 0.000 0 1.000 0.000 0 0.000
#> GSM28744 1 0.0363 0.946 0.988 0 0.000 0.000 0 0.012
#> GSM28734 6 0.0146 0.819 0.004 0 0.000 0.000 0 0.996
#> GSM28747 1 0.0146 0.949 0.996 0 0.000 0.004 0 0.000
#> GSM11257 5 0.0000 1.000 0.000 0 0.000 0.000 1 0.000
#> GSM11252 6 0.2260 0.880 0.140 0 0.000 0.000 0 0.860
#> GSM11264 3 0.0000 1.000 0.000 0 1.000 0.000 0 0.000
#> GSM11247 4 0.0260 1.000 0.000 0 0.008 0.992 0 0.000
#> GSM11258 1 0.2260 0.875 0.860 0 0.000 0.000 0 0.140
#> GSM28728 1 0.0000 0.950 1.000 0 0.000 0.000 0 0.000
#> GSM28746 1 0.2178 0.881 0.868 0 0.000 0.000 0 0.132
#> GSM28738 5 0.0000 1.000 0.000 0 0.000 0.000 1 0.000
#> GSM28741 1 0.0260 0.948 0.992 0 0.000 0.008 0 0.000
#> GSM28729 1 0.0000 0.950 1.000 0 0.000 0.000 0 0.000
#> GSM28742 6 0.2442 0.876 0.144 0 0.000 0.004 0 0.852
#> GSM11250 2 0.0000 1.000 0.000 1 0.000 0.000 0 0.000
#> GSM11245 6 0.2340 0.874 0.148 0 0.000 0.000 0 0.852
#> GSM11246 1 0.0000 0.950 1.000 0 0.000 0.000 0 0.000
#> GSM11261 6 0.1910 0.879 0.108 0 0.000 0.000 0 0.892
#> GSM11248 6 0.0000 0.819 0.000 0 0.000 0.000 0 1.000
#> GSM28732 1 0.0146 0.949 0.996 0 0.000 0.004 0 0.000
#> GSM11255 6 0.2260 0.880 0.140 0 0.000 0.000 0 0.860
#> GSM28731 1 0.0000 0.950 1.000 0 0.000 0.000 0 0.000
#> GSM28727 1 0.0000 0.950 1.000 0 0.000 0.000 0 0.000
#> GSM11251 1 0.0000 0.950 1.000 0 0.000 0.000 0 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n tissue(p) k
#> ATC:pam 50 0.394 2
#> ATC:pam 50 0.370 3
#> ATC:pam 50 0.349 4
#> ATC:pam 50 0.331 5
#> ATC:pam 50 0.315 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21342 rows and 50 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.991 0.995 0.4678 0.530 0.530
#> 3 3 0.771 0.813 0.919 0.2633 0.776 0.610
#> 4 4 0.661 0.690 0.854 0.0894 0.848 0.664
#> 5 5 0.695 0.677 0.849 0.1334 0.883 0.686
#> 6 6 0.862 0.819 0.895 0.0592 0.916 0.715
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM28735 1 0.0000 0.999 1.000 0.000
#> GSM28736 1 0.0672 0.992 0.992 0.008
#> GSM28737 1 0.0000 0.999 1.000 0.000
#> GSM11249 1 0.0000 0.999 1.000 0.000
#> GSM28745 2 0.0000 0.986 0.000 1.000
#> GSM11244 2 0.0000 0.986 0.000 1.000
#> GSM28748 2 0.0000 0.986 0.000 1.000
#> GSM11266 2 0.0000 0.986 0.000 1.000
#> GSM28730 2 0.0000 0.986 0.000 1.000
#> GSM11253 2 0.0000 0.986 0.000 1.000
#> GSM11254 2 0.0000 0.986 0.000 1.000
#> GSM11260 2 0.0000 0.986 0.000 1.000
#> GSM28733 2 0.0000 0.986 0.000 1.000
#> GSM11265 1 0.0000 0.999 1.000 0.000
#> GSM28739 1 0.0000 0.999 1.000 0.000
#> GSM11243 2 0.0672 0.984 0.008 0.992
#> GSM28740 1 0.0000 0.999 1.000 0.000
#> GSM11259 1 0.0000 0.999 1.000 0.000
#> GSM28726 1 0.0672 0.992 0.992 0.008
#> GSM28743 1 0.0000 0.999 1.000 0.000
#> GSM11256 1 0.0000 0.999 1.000 0.000
#> GSM11262 1 0.0000 0.999 1.000 0.000
#> GSM28724 1 0.0000 0.999 1.000 0.000
#> GSM28725 2 0.0672 0.984 0.008 0.992
#> GSM11263 2 0.0672 0.984 0.008 0.992
#> GSM11267 2 0.0672 0.984 0.008 0.992
#> GSM28744 1 0.0000 0.999 1.000 0.000
#> GSM28734 1 0.0000 0.999 1.000 0.000
#> GSM28747 1 0.0000 0.999 1.000 0.000
#> GSM11257 1 0.0000 0.999 1.000 0.000
#> GSM11252 1 0.0000 0.999 1.000 0.000
#> GSM11264 2 0.0672 0.984 0.008 0.992
#> GSM11247 2 0.0672 0.984 0.008 0.992
#> GSM11258 1 0.0000 0.999 1.000 0.000
#> GSM28728 1 0.0000 0.999 1.000 0.000
#> GSM28746 1 0.0000 0.999 1.000 0.000
#> GSM28738 1 0.0000 0.999 1.000 0.000
#> GSM28741 2 0.4562 0.902 0.096 0.904
#> GSM28729 1 0.0000 0.999 1.000 0.000
#> GSM28742 1 0.0000 0.999 1.000 0.000
#> GSM11250 2 0.0000 0.986 0.000 1.000
#> GSM11245 1 0.0000 0.999 1.000 0.000
#> GSM11246 1 0.0000 0.999 1.000 0.000
#> GSM11261 2 0.4562 0.902 0.096 0.904
#> GSM11248 1 0.0000 0.999 1.000 0.000
#> GSM28732 1 0.0000 0.999 1.000 0.000
#> GSM11255 1 0.0000 0.999 1.000 0.000
#> GSM28731 1 0.0000 0.999 1.000 0.000
#> GSM28727 1 0.0000 0.999 1.000 0.000
#> GSM11251 1 0.0000 0.999 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM28735 1 0.0829 0.9188 0.984 0.004 0.012
#> GSM28736 1 0.5746 0.6740 0.780 0.180 0.040
#> GSM28737 1 0.0000 0.9274 1.000 0.000 0.000
#> GSM11249 3 0.5785 0.6502 0.332 0.000 0.668
#> GSM28745 2 0.0000 0.9506 0.000 1.000 0.000
#> GSM11244 2 0.0000 0.9506 0.000 1.000 0.000
#> GSM28748 2 0.0237 0.9491 0.000 0.996 0.004
#> GSM11266 2 0.0237 0.9491 0.000 0.996 0.004
#> GSM28730 2 0.0000 0.9506 0.000 1.000 0.000
#> GSM11253 2 0.0000 0.9506 0.000 1.000 0.000
#> GSM11254 2 0.0000 0.9506 0.000 1.000 0.000
#> GSM11260 2 0.0000 0.9506 0.000 1.000 0.000
#> GSM28733 2 0.0000 0.9506 0.000 1.000 0.000
#> GSM11265 1 0.0000 0.9274 1.000 0.000 0.000
#> GSM28739 1 0.0000 0.9274 1.000 0.000 0.000
#> GSM11243 3 0.3752 0.6029 0.000 0.144 0.856
#> GSM28740 1 0.0000 0.9274 1.000 0.000 0.000
#> GSM11259 1 0.0000 0.9274 1.000 0.000 0.000
#> GSM28726 1 0.6603 0.4433 0.648 0.020 0.332
#> GSM28743 1 0.0000 0.9274 1.000 0.000 0.000
#> GSM11256 3 0.6280 0.4188 0.460 0.000 0.540
#> GSM11262 1 0.0000 0.9274 1.000 0.000 0.000
#> GSM28724 1 0.0592 0.9203 0.988 0.000 0.012
#> GSM28725 3 0.0000 0.7039 0.000 0.000 1.000
#> GSM11263 3 0.0000 0.7039 0.000 0.000 1.000
#> GSM11267 3 0.0000 0.7039 0.000 0.000 1.000
#> GSM28744 1 0.0892 0.9132 0.980 0.000 0.020
#> GSM28734 1 0.0000 0.9274 1.000 0.000 0.000
#> GSM28747 1 0.0000 0.9274 1.000 0.000 0.000
#> GSM11257 3 0.5882 0.6343 0.348 0.000 0.652
#> GSM11252 1 0.0000 0.9274 1.000 0.000 0.000
#> GSM11264 3 0.0000 0.7039 0.000 0.000 1.000
#> GSM11247 3 0.3879 0.5939 0.000 0.152 0.848
#> GSM11258 1 0.0000 0.9274 1.000 0.000 0.000
#> GSM28728 1 0.0592 0.9203 0.988 0.000 0.012
#> GSM28746 1 0.0000 0.9274 1.000 0.000 0.000
#> GSM28738 3 0.5882 0.6343 0.348 0.000 0.652
#> GSM28741 2 0.5760 0.4422 0.328 0.672 0.000
#> GSM28729 1 0.0592 0.9203 0.988 0.000 0.012
#> GSM28742 1 0.6057 0.4519 0.656 0.004 0.340
#> GSM11250 2 0.0237 0.9491 0.000 0.996 0.004
#> GSM11245 1 0.0000 0.9274 1.000 0.000 0.000
#> GSM11246 1 0.0000 0.9274 1.000 0.000 0.000
#> GSM11261 1 0.9792 -0.0732 0.408 0.240 0.352
#> GSM11248 3 0.5810 0.6472 0.336 0.000 0.664
#> GSM28732 1 0.0829 0.9188 0.984 0.004 0.012
#> GSM11255 1 0.0000 0.9274 1.000 0.000 0.000
#> GSM28731 1 0.0000 0.9274 1.000 0.000 0.000
#> GSM28727 1 0.0000 0.9274 1.000 0.000 0.000
#> GSM11251 1 0.0000 0.9274 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM28735 1 0.4804 0.196 0.616 0.000 0.000 0.384
#> GSM28736 1 0.4964 0.180 0.616 0.004 0.000 0.380
#> GSM28737 1 0.0188 0.821 0.996 0.000 0.000 0.004
#> GSM11249 1 0.7513 -0.336 0.492 0.000 0.224 0.284
#> GSM28745 2 0.0188 0.915 0.000 0.996 0.000 0.004
#> GSM11244 2 0.0000 0.915 0.000 1.000 0.000 0.000
#> GSM28748 2 0.4663 0.637 0.000 0.716 0.012 0.272
#> GSM11266 2 0.0592 0.910 0.000 0.984 0.000 0.016
#> GSM28730 2 0.0188 0.915 0.000 0.996 0.000 0.004
#> GSM11253 2 0.0000 0.915 0.000 1.000 0.000 0.000
#> GSM11254 2 0.0000 0.915 0.000 1.000 0.000 0.000
#> GSM11260 2 0.0000 0.915 0.000 1.000 0.000 0.000
#> GSM28733 2 0.0469 0.910 0.000 0.988 0.000 0.012
#> GSM11265 1 0.1211 0.809 0.960 0.000 0.000 0.040
#> GSM28739 1 0.0000 0.822 1.000 0.000 0.000 0.000
#> GSM11243 3 0.2676 0.871 0.000 0.012 0.896 0.092
#> GSM28740 1 0.0000 0.822 1.000 0.000 0.000 0.000
#> GSM11259 1 0.0000 0.822 1.000 0.000 0.000 0.000
#> GSM28726 4 0.7909 0.312 0.420 0.080 0.060 0.440
#> GSM28743 1 0.0000 0.822 1.000 0.000 0.000 0.000
#> GSM11256 4 0.6091 0.473 0.344 0.000 0.060 0.596
#> GSM11262 1 0.0188 0.821 0.996 0.000 0.000 0.004
#> GSM28724 1 0.2973 0.695 0.856 0.000 0.000 0.144
#> GSM28725 3 0.0000 0.929 0.000 0.000 1.000 0.000
#> GSM11263 3 0.0000 0.929 0.000 0.000 1.000 0.000
#> GSM11267 3 0.0000 0.929 0.000 0.000 1.000 0.000
#> GSM28744 1 0.0672 0.817 0.984 0.000 0.008 0.008
#> GSM28734 1 0.3400 0.554 0.820 0.000 0.000 0.180
#> GSM28747 1 0.1389 0.798 0.952 0.000 0.000 0.048
#> GSM11257 4 0.6037 0.499 0.304 0.000 0.068 0.628
#> GSM11252 1 0.0188 0.821 0.996 0.000 0.000 0.004
#> GSM11264 3 0.0000 0.929 0.000 0.000 1.000 0.000
#> GSM11247 3 0.3937 0.759 0.000 0.012 0.800 0.188
#> GSM11258 1 0.1557 0.789 0.944 0.000 0.000 0.056
#> GSM28728 1 0.1716 0.785 0.936 0.000 0.000 0.064
#> GSM28746 1 0.0000 0.822 1.000 0.000 0.000 0.000
#> GSM28738 4 0.6016 0.498 0.300 0.000 0.068 0.632
#> GSM28741 4 0.8351 0.429 0.300 0.268 0.020 0.412
#> GSM28729 1 0.2011 0.768 0.920 0.000 0.000 0.080
#> GSM28742 4 0.8176 0.475 0.344 0.048 0.132 0.476
#> GSM11250 2 0.6600 0.445 0.084 0.620 0.012 0.284
#> GSM11245 1 0.0188 0.821 0.996 0.000 0.000 0.004
#> GSM11246 1 0.0469 0.819 0.988 0.000 0.000 0.012
#> GSM11261 4 0.8087 0.471 0.320 0.012 0.236 0.432
#> GSM11248 1 0.5925 0.101 0.648 0.000 0.068 0.284
#> GSM28732 1 0.4916 0.095 0.576 0.000 0.000 0.424
#> GSM11255 1 0.2530 0.690 0.888 0.000 0.000 0.112
#> GSM28731 1 0.0188 0.821 0.996 0.000 0.000 0.004
#> GSM28727 1 0.1557 0.794 0.944 0.000 0.000 0.056
#> GSM11251 1 0.0469 0.819 0.988 0.000 0.000 0.012
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM28735 5 0.6638 0.2769 0.320 0.000 0.000 0.240 0.440
#> GSM28736 1 0.6677 0.2097 0.540 0.000 0.020 0.244 0.196
#> GSM28737 1 0.0290 0.8478 0.992 0.000 0.000 0.000 0.008
#> GSM11249 4 0.6605 0.4137 0.252 0.000 0.000 0.460 0.288
#> GSM28745 2 0.0000 0.9485 0.000 1.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.9485 0.000 1.000 0.000 0.000 0.000
#> GSM28748 2 0.4657 0.4554 0.000 0.668 0.000 0.036 0.296
#> GSM11266 2 0.0000 0.9485 0.000 1.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 0.9485 0.000 1.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.9485 0.000 1.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.9485 0.000 1.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.9485 0.000 1.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.9485 0.000 1.000 0.000 0.000 0.000
#> GSM11265 1 0.5568 0.3083 0.596 0.000 0.000 0.096 0.308
#> GSM28739 1 0.0000 0.8480 1.000 0.000 0.000 0.000 0.000
#> GSM11243 3 0.4843 0.6800 0.000 0.000 0.660 0.048 0.292
#> GSM28740 1 0.0290 0.8475 0.992 0.000 0.000 0.008 0.000
#> GSM11259 1 0.0404 0.8466 0.988 0.000 0.000 0.000 0.012
#> GSM28726 5 0.4173 0.3921 0.300 0.012 0.000 0.000 0.688
#> GSM28743 1 0.0162 0.8484 0.996 0.000 0.000 0.000 0.004
#> GSM11256 4 0.0290 0.6508 0.008 0.000 0.000 0.992 0.000
#> GSM11262 1 0.0162 0.8484 0.996 0.000 0.000 0.000 0.004
#> GSM28724 1 0.3635 0.6291 0.748 0.000 0.000 0.248 0.004
#> GSM28725 3 0.0000 0.7919 0.000 0.000 1.000 0.000 0.000
#> GSM11263 3 0.0000 0.7919 0.000 0.000 1.000 0.000 0.000
#> GSM11267 3 0.0000 0.7919 0.000 0.000 1.000 0.000 0.000
#> GSM28744 1 0.0955 0.8339 0.968 0.000 0.000 0.028 0.004
#> GSM28734 1 0.3039 0.6519 0.836 0.000 0.000 0.012 0.152
#> GSM28747 1 0.3684 0.5205 0.720 0.000 0.000 0.000 0.280
#> GSM11257 4 0.0000 0.6542 0.000 0.000 0.000 1.000 0.000
#> GSM11252 1 0.0000 0.8480 1.000 0.000 0.000 0.000 0.000
#> GSM11264 3 0.0000 0.7919 0.000 0.000 1.000 0.000 0.000
#> GSM11247 3 0.4843 0.6800 0.000 0.000 0.660 0.048 0.292
#> GSM11258 1 0.3274 0.6643 0.780 0.000 0.000 0.220 0.000
#> GSM28728 1 0.2629 0.7562 0.860 0.000 0.000 0.136 0.004
#> GSM28746 1 0.0162 0.8482 0.996 0.000 0.000 0.004 0.000
#> GSM28738 4 0.0000 0.6542 0.000 0.000 0.000 1.000 0.000
#> GSM28741 5 0.6124 0.0927 0.052 0.344 0.004 0.036 0.564
#> GSM28729 1 0.3689 0.6220 0.740 0.000 0.000 0.256 0.004
#> GSM28742 5 0.2790 0.2038 0.052 0.000 0.000 0.068 0.880
#> GSM11250 5 0.5096 -0.1842 0.000 0.444 0.000 0.036 0.520
#> GSM11245 1 0.0000 0.8480 1.000 0.000 0.000 0.000 0.000
#> GSM11246 1 0.0162 0.8475 0.996 0.000 0.000 0.000 0.004
#> GSM11261 3 0.5772 0.6165 0.000 0.028 0.580 0.048 0.344
#> GSM11248 4 0.6975 0.4229 0.236 0.000 0.016 0.460 0.288
#> GSM28732 5 0.6275 0.3528 0.300 0.000 0.000 0.180 0.520
#> GSM11255 1 0.0000 0.8480 1.000 0.000 0.000 0.000 0.000
#> GSM28731 1 0.0162 0.8484 0.996 0.000 0.000 0.000 0.004
#> GSM28727 1 0.3730 0.5107 0.712 0.000 0.000 0.000 0.288
#> GSM11251 1 0.0290 0.8479 0.992 0.000 0.000 0.000 0.008
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM28735 5 0.2890 0.803 0.108 0.000 0.000 0.020 0.856 0.016
#> GSM28736 1 0.2445 0.902 0.896 0.000 0.000 0.020 0.056 0.028
#> GSM28737 1 0.0260 0.947 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM11249 6 0.3915 0.278 0.004 0.000 0.000 0.412 0.000 0.584
#> GSM28745 2 0.0000 0.899 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.899 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28748 2 0.4838 0.477 0.000 0.564 0.000 0.000 0.064 0.372
#> GSM11266 2 0.0000 0.899 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28730 2 0.0000 0.899 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11253 2 0.0000 0.899 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11254 2 0.0000 0.899 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.899 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.899 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11265 5 0.2696 0.828 0.116 0.000 0.000 0.000 0.856 0.028
#> GSM28739 1 0.0993 0.943 0.964 0.000 0.000 0.000 0.012 0.024
#> GSM11243 3 0.2378 0.846 0.000 0.000 0.848 0.000 0.000 0.152
#> GSM28740 1 0.0790 0.941 0.968 0.000 0.000 0.000 0.000 0.032
#> GSM11259 1 0.0806 0.946 0.972 0.000 0.000 0.000 0.008 0.020
#> GSM28726 5 0.2364 0.824 0.072 0.000 0.004 0.000 0.892 0.032
#> GSM28743 1 0.0146 0.948 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM11256 4 0.0458 0.974 0.016 0.000 0.000 0.984 0.000 0.000
#> GSM11262 1 0.0692 0.945 0.976 0.000 0.000 0.000 0.004 0.020
#> GSM28724 1 0.1851 0.928 0.928 0.000 0.000 0.012 0.024 0.036
#> GSM28725 3 0.0000 0.929 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11263 3 0.0000 0.929 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11267 3 0.0000 0.929 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM28744 1 0.4045 0.540 0.648 0.000 0.000 0.008 0.008 0.336
#> GSM28734 1 0.1866 0.902 0.908 0.000 0.000 0.000 0.008 0.084
#> GSM28747 5 0.2624 0.821 0.124 0.000 0.000 0.000 0.856 0.020
#> GSM11257 4 0.0363 0.978 0.012 0.000 0.000 0.988 0.000 0.000
#> GSM11252 1 0.0806 0.945 0.972 0.000 0.000 0.000 0.008 0.020
#> GSM11264 3 0.0000 0.929 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11247 3 0.2378 0.846 0.000 0.000 0.848 0.000 0.000 0.152
#> GSM11258 1 0.1049 0.940 0.960 0.000 0.000 0.008 0.000 0.032
#> GSM28728 1 0.1821 0.929 0.928 0.000 0.000 0.008 0.024 0.040
#> GSM28746 1 0.0000 0.947 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM28738 4 0.0000 0.964 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM28741 5 0.5466 0.117 0.008 0.072 0.004 0.004 0.520 0.392
#> GSM28729 1 0.1966 0.924 0.924 0.000 0.000 0.024 0.024 0.028
#> GSM28742 5 0.2651 0.736 0.028 0.000 0.000 0.000 0.860 0.112
#> GSM11250 2 0.5009 0.436 0.000 0.536 0.000 0.000 0.076 0.388
#> GSM11245 1 0.0806 0.945 0.972 0.000 0.000 0.000 0.008 0.020
#> GSM11246 1 0.0146 0.948 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM11261 6 0.7074 -0.175 0.112 0.000 0.132 0.004 0.344 0.408
#> GSM11248 6 0.3915 0.278 0.004 0.000 0.000 0.412 0.000 0.584
#> GSM28732 5 0.1732 0.827 0.072 0.000 0.000 0.004 0.920 0.004
#> GSM11255 1 0.1265 0.934 0.948 0.000 0.000 0.000 0.008 0.044
#> GSM28731 1 0.0790 0.941 0.968 0.000 0.000 0.000 0.000 0.032
#> GSM28727 5 0.2398 0.833 0.104 0.000 0.000 0.000 0.876 0.020
#> GSM11251 1 0.0405 0.947 0.988 0.000 0.000 0.000 0.008 0.004
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n tissue(p) k
#> ATC:mclust 50 0.394 2
#> ATC:mclust 45 0.421 3
#> ATC:mclust 37 0.413 4
#> ATC:mclust 39 0.521 5
#> ATC:mclust 44 0.495 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21342 rows and 50 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.486 0.796 0.893 0.4524 0.556 0.556
#> 3 3 1.000 0.951 0.981 0.3255 0.591 0.406
#> 4 4 0.737 0.751 0.841 0.1698 0.864 0.692
#> 5 5 0.785 0.890 0.923 0.0940 0.897 0.690
#> 6 6 0.761 0.741 0.858 0.0315 0.987 0.943
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM28735 2 0.4690 0.837 0.100 0.900
#> GSM28736 2 0.0000 0.844 0.000 1.000
#> GSM28737 2 0.1633 0.845 0.024 0.976
#> GSM11249 1 0.0000 0.940 1.000 0.000
#> GSM28745 2 0.0376 0.844 0.004 0.996
#> GSM11244 2 0.0376 0.844 0.004 0.996
#> GSM28748 2 0.0376 0.844 0.004 0.996
#> GSM11266 2 0.0376 0.844 0.004 0.996
#> GSM28730 2 0.0376 0.844 0.004 0.996
#> GSM11253 2 0.0376 0.844 0.004 0.996
#> GSM11254 2 0.0376 0.844 0.004 0.996
#> GSM11260 2 0.0376 0.844 0.004 0.996
#> GSM28733 2 0.0376 0.844 0.004 0.996
#> GSM11265 2 1.0000 0.277 0.496 0.504
#> GSM28739 1 0.8081 0.554 0.752 0.248
#> GSM11243 1 0.0000 0.940 1.000 0.000
#> GSM28740 2 0.8608 0.720 0.284 0.716
#> GSM11259 2 0.0938 0.845 0.012 0.988
#> GSM28726 2 0.0000 0.844 0.000 1.000
#> GSM28743 2 0.8443 0.732 0.272 0.728
#> GSM11256 2 0.8267 0.743 0.260 0.740
#> GSM11262 2 0.4161 0.839 0.084 0.916
#> GSM28724 2 0.8608 0.720 0.284 0.716
#> GSM28725 1 0.0000 0.940 1.000 0.000
#> GSM11263 1 0.0000 0.940 1.000 0.000
#> GSM11267 1 0.0000 0.940 1.000 0.000
#> GSM28744 1 0.0376 0.939 0.996 0.004
#> GSM28734 1 0.0376 0.939 0.996 0.004
#> GSM28747 2 0.7139 0.793 0.196 0.804
#> GSM11257 2 0.5408 0.831 0.124 0.876
#> GSM11252 1 0.0376 0.939 0.996 0.004
#> GSM11264 1 0.0000 0.940 1.000 0.000
#> GSM11247 1 0.0000 0.940 1.000 0.000
#> GSM11258 1 0.9850 -0.056 0.572 0.428
#> GSM28728 2 0.9358 0.626 0.352 0.648
#> GSM28746 2 0.9491 0.598 0.368 0.632
#> GSM28738 2 0.0000 0.844 0.000 1.000
#> GSM28741 2 0.0376 0.844 0.004 0.996
#> GSM28729 2 0.5946 0.822 0.144 0.856
#> GSM28742 2 0.9998 0.294 0.492 0.508
#> GSM11250 2 0.0376 0.844 0.004 0.996
#> GSM11245 1 0.0376 0.939 0.996 0.004
#> GSM11246 2 0.8909 0.691 0.308 0.692
#> GSM11261 1 0.0000 0.940 1.000 0.000
#> GSM11248 1 0.0376 0.939 0.996 0.004
#> GSM28732 2 0.9170 0.658 0.332 0.668
#> GSM11255 1 0.0376 0.939 0.996 0.004
#> GSM28731 2 0.6973 0.798 0.188 0.812
#> GSM28727 2 0.5737 0.826 0.136 0.864
#> GSM11251 2 0.5059 0.834 0.112 0.888
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM28735 1 0.000 0.9669 1.000 0.000 0.000
#> GSM28736 1 0.000 0.9669 1.000 0.000 0.000
#> GSM28737 1 0.000 0.9669 1.000 0.000 0.000
#> GSM11249 3 0.000 0.9946 0.000 0.000 1.000
#> GSM28745 2 0.000 1.0000 0.000 1.000 0.000
#> GSM11244 2 0.000 1.0000 0.000 1.000 0.000
#> GSM28748 2 0.000 1.0000 0.000 1.000 0.000
#> GSM11266 2 0.000 1.0000 0.000 1.000 0.000
#> GSM28730 2 0.000 1.0000 0.000 1.000 0.000
#> GSM11253 2 0.000 1.0000 0.000 1.000 0.000
#> GSM11254 2 0.000 1.0000 0.000 1.000 0.000
#> GSM11260 2 0.000 1.0000 0.000 1.000 0.000
#> GSM28733 2 0.000 1.0000 0.000 1.000 0.000
#> GSM11265 1 0.000 0.9669 1.000 0.000 0.000
#> GSM28739 1 0.000 0.9669 1.000 0.000 0.000
#> GSM11243 3 0.000 0.9946 0.000 0.000 1.000
#> GSM28740 1 0.000 0.9669 1.000 0.000 0.000
#> GSM11259 1 0.000 0.9669 1.000 0.000 0.000
#> GSM28726 1 0.553 0.5824 0.704 0.296 0.000
#> GSM28743 1 0.000 0.9669 1.000 0.000 0.000
#> GSM11256 1 0.000 0.9669 1.000 0.000 0.000
#> GSM11262 1 0.000 0.9669 1.000 0.000 0.000
#> GSM28724 1 0.000 0.9669 1.000 0.000 0.000
#> GSM28725 3 0.000 0.9946 0.000 0.000 1.000
#> GSM11263 3 0.000 0.9946 0.000 0.000 1.000
#> GSM11267 3 0.000 0.9946 0.000 0.000 1.000
#> GSM28744 1 0.000 0.9669 1.000 0.000 0.000
#> GSM28734 1 0.630 0.0853 0.516 0.000 0.484
#> GSM28747 1 0.000 0.9669 1.000 0.000 0.000
#> GSM11257 1 0.000 0.9669 1.000 0.000 0.000
#> GSM11252 1 0.000 0.9669 1.000 0.000 0.000
#> GSM11264 3 0.000 0.9946 0.000 0.000 1.000
#> GSM11247 3 0.000 0.9946 0.000 0.000 1.000
#> GSM11258 1 0.000 0.9669 1.000 0.000 0.000
#> GSM28728 1 0.000 0.9669 1.000 0.000 0.000
#> GSM28746 1 0.000 0.9669 1.000 0.000 0.000
#> GSM28738 1 0.000 0.9669 1.000 0.000 0.000
#> GSM28741 2 0.000 1.0000 0.000 1.000 0.000
#> GSM28729 1 0.000 0.9669 1.000 0.000 0.000
#> GSM28742 3 0.215 0.9493 0.016 0.036 0.948
#> GSM11250 2 0.000 1.0000 0.000 1.000 0.000
#> GSM11245 1 0.000 0.9669 1.000 0.000 0.000
#> GSM11246 1 0.000 0.9669 1.000 0.000 0.000
#> GSM11261 3 0.000 0.9946 0.000 0.000 1.000
#> GSM11248 3 0.000 0.9946 0.000 0.000 1.000
#> GSM28732 1 0.000 0.9669 1.000 0.000 0.000
#> GSM11255 1 0.355 0.8325 0.868 0.000 0.132
#> GSM28731 1 0.000 0.9669 1.000 0.000 0.000
#> GSM28727 1 0.000 0.9669 1.000 0.000 0.000
#> GSM11251 1 0.000 0.9669 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM28735 1 0.4647 0.58478 0.704 0.000 0.008 0.288
#> GSM28736 1 0.3074 0.66765 0.848 0.000 0.000 0.152
#> GSM28737 1 0.3942 0.39808 0.764 0.000 0.000 0.236
#> GSM11249 3 0.1022 0.96225 0.000 0.000 0.968 0.032
#> GSM28745 2 0.0000 0.99690 0.000 1.000 0.000 0.000
#> GSM11244 2 0.0000 0.99690 0.000 1.000 0.000 0.000
#> GSM28748 2 0.0000 0.99690 0.000 1.000 0.000 0.000
#> GSM11266 2 0.0000 0.99690 0.000 1.000 0.000 0.000
#> GSM28730 2 0.0000 0.99690 0.000 1.000 0.000 0.000
#> GSM11253 2 0.0000 0.99690 0.000 1.000 0.000 0.000
#> GSM11254 2 0.0000 0.99690 0.000 1.000 0.000 0.000
#> GSM11260 2 0.0000 0.99690 0.000 1.000 0.000 0.000
#> GSM28733 2 0.0000 0.99690 0.000 1.000 0.000 0.000
#> GSM11265 1 0.1474 0.68501 0.948 0.000 0.000 0.052
#> GSM28739 1 0.1389 0.66061 0.952 0.000 0.000 0.048
#> GSM11243 3 0.0592 0.96605 0.000 0.000 0.984 0.016
#> GSM28740 1 0.4661 -0.03666 0.652 0.000 0.000 0.348
#> GSM11259 1 0.0000 0.68081 1.000 0.000 0.000 0.000
#> GSM28726 1 0.4304 0.59304 0.716 0.000 0.000 0.284
#> GSM28743 1 0.3219 0.54332 0.836 0.000 0.000 0.164
#> GSM11256 4 0.4661 0.90656 0.348 0.000 0.000 0.652
#> GSM11262 1 0.4164 0.31808 0.736 0.000 0.000 0.264
#> GSM28724 1 0.3024 0.56616 0.852 0.000 0.000 0.148
#> GSM28725 3 0.0188 0.96860 0.000 0.000 0.996 0.004
#> GSM11263 3 0.0592 0.96751 0.000 0.000 0.984 0.016
#> GSM11267 3 0.0188 0.96860 0.000 0.000 0.996 0.004
#> GSM28744 4 0.5167 0.67931 0.488 0.000 0.004 0.508
#> GSM28734 3 0.2676 0.85652 0.092 0.000 0.896 0.012
#> GSM28747 1 0.4072 0.61749 0.748 0.000 0.000 0.252
#> GSM11257 4 0.4624 0.90805 0.340 0.000 0.000 0.660
#> GSM11252 1 0.3401 0.56187 0.840 0.000 0.008 0.152
#> GSM11264 3 0.0592 0.96751 0.000 0.000 0.984 0.016
#> GSM11247 3 0.0707 0.96485 0.000 0.000 0.980 0.020
#> GSM11258 1 0.4624 0.00668 0.660 0.000 0.000 0.340
#> GSM28728 1 0.3942 0.62719 0.764 0.000 0.000 0.236
#> GSM28746 1 0.3444 0.50957 0.816 0.000 0.000 0.184
#> GSM28738 4 0.4781 0.90491 0.336 0.004 0.000 0.660
#> GSM28741 2 0.1042 0.97279 0.008 0.972 0.000 0.020
#> GSM28729 1 0.3074 0.67193 0.848 0.000 0.000 0.152
#> GSM28742 1 0.5878 0.51075 0.632 0.000 0.056 0.312
#> GSM11250 2 0.0188 0.99408 0.000 0.996 0.000 0.004
#> GSM11245 1 0.1488 0.67722 0.956 0.000 0.012 0.032
#> GSM11246 1 0.0592 0.68333 0.984 0.000 0.000 0.016
#> GSM11261 3 0.0336 0.96851 0.000 0.000 0.992 0.008
#> GSM11248 3 0.2081 0.93084 0.000 0.000 0.916 0.084
#> GSM28732 1 0.5344 0.55117 0.668 0.000 0.032 0.300
#> GSM11255 1 0.3335 0.62909 0.860 0.000 0.120 0.020
#> GSM28731 1 0.2011 0.63785 0.920 0.000 0.000 0.080
#> GSM28727 1 0.3486 0.65320 0.812 0.000 0.000 0.188
#> GSM11251 1 0.1022 0.66984 0.968 0.000 0.000 0.032
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM28735 5 0.1628 0.923 0.056 0.000 0.000 0.008 0.936
#> GSM28736 5 0.3106 0.853 0.140 0.000 0.000 0.020 0.840
#> GSM28737 1 0.0865 0.888 0.972 0.000 0.000 0.024 0.004
#> GSM11249 3 0.0290 0.913 0.000 0.000 0.992 0.000 0.008
#> GSM28745 2 0.0000 0.993 0.000 1.000 0.000 0.000 0.000
#> GSM11244 2 0.0162 0.993 0.000 0.996 0.000 0.004 0.000
#> GSM28748 2 0.0000 0.993 0.000 1.000 0.000 0.000 0.000
#> GSM11266 2 0.0290 0.992 0.000 0.992 0.000 0.008 0.000
#> GSM28730 2 0.0000 0.993 0.000 1.000 0.000 0.000 0.000
#> GSM11253 2 0.0404 0.987 0.000 0.988 0.000 0.012 0.000
#> GSM11254 2 0.0000 0.993 0.000 1.000 0.000 0.000 0.000
#> GSM11260 2 0.0000 0.993 0.000 1.000 0.000 0.000 0.000
#> GSM28733 2 0.0290 0.992 0.000 0.992 0.000 0.008 0.000
#> GSM11265 1 0.1830 0.891 0.924 0.000 0.000 0.008 0.068
#> GSM28739 1 0.0290 0.893 0.992 0.000 0.000 0.000 0.008
#> GSM11243 3 0.1430 0.886 0.000 0.000 0.944 0.004 0.052
#> GSM28740 1 0.0963 0.880 0.964 0.000 0.000 0.036 0.000
#> GSM11259 1 0.3353 0.811 0.796 0.000 0.000 0.008 0.196
#> GSM28726 5 0.1670 0.922 0.052 0.000 0.000 0.012 0.936
#> GSM28743 1 0.0693 0.891 0.980 0.000 0.000 0.008 0.012
#> GSM11256 4 0.3123 0.881 0.160 0.000 0.000 0.828 0.012
#> GSM11262 1 0.0912 0.884 0.972 0.000 0.000 0.016 0.012
#> GSM28724 1 0.1195 0.887 0.960 0.000 0.000 0.028 0.012
#> GSM28725 3 0.0290 0.913 0.000 0.000 0.992 0.008 0.000
#> GSM11263 3 0.0000 0.913 0.000 0.000 1.000 0.000 0.000
#> GSM11267 3 0.0162 0.913 0.000 0.000 0.996 0.004 0.000
#> GSM28744 4 0.4136 0.703 0.048 0.000 0.000 0.764 0.188
#> GSM28734 3 0.3759 0.646 0.220 0.000 0.764 0.000 0.016
#> GSM28747 1 0.4026 0.748 0.736 0.000 0.000 0.020 0.244
#> GSM11257 4 0.2424 0.897 0.132 0.000 0.000 0.868 0.000
#> GSM11252 1 0.0579 0.893 0.984 0.000 0.000 0.008 0.008
#> GSM11264 3 0.0000 0.913 0.000 0.000 1.000 0.000 0.000
#> GSM11247 3 0.4016 0.634 0.000 0.000 0.716 0.012 0.272
#> GSM11258 1 0.0912 0.883 0.972 0.000 0.000 0.016 0.012
#> GSM28728 5 0.3410 0.871 0.092 0.000 0.000 0.068 0.840
#> GSM28746 1 0.0566 0.889 0.984 0.000 0.000 0.012 0.004
#> GSM28738 4 0.2389 0.891 0.116 0.004 0.000 0.880 0.000
#> GSM28741 2 0.1116 0.973 0.004 0.964 0.000 0.028 0.004
#> GSM28729 5 0.3339 0.875 0.112 0.000 0.000 0.048 0.840
#> GSM28742 5 0.1267 0.894 0.024 0.000 0.004 0.012 0.960
#> GSM11250 2 0.0404 0.991 0.000 0.988 0.000 0.012 0.000
#> GSM11245 1 0.1768 0.890 0.924 0.000 0.004 0.000 0.072
#> GSM11246 1 0.2605 0.858 0.852 0.000 0.000 0.000 0.148
#> GSM11261 3 0.0451 0.912 0.004 0.000 0.988 0.000 0.008
#> GSM11248 3 0.2140 0.875 0.040 0.000 0.924 0.024 0.012
#> GSM28732 5 0.1270 0.921 0.052 0.000 0.000 0.000 0.948
#> GSM11255 1 0.4064 0.804 0.792 0.000 0.116 0.000 0.092
#> GSM28731 1 0.2813 0.874 0.868 0.000 0.000 0.024 0.108
#> GSM28727 1 0.3906 0.759 0.744 0.000 0.000 0.016 0.240
#> GSM11251 1 0.3061 0.858 0.844 0.000 0.000 0.020 0.136
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM28735 5 0.2647 0.7206 0.088 0.000 0.000 0.016 0.876 0.020
#> GSM28736 5 0.4726 0.6319 0.140 0.000 0.000 0.100 0.728 0.032
#> GSM28737 1 0.1226 0.8525 0.952 0.000 0.000 0.040 0.004 0.004
#> GSM11249 3 0.0767 0.7969 0.000 0.000 0.976 0.008 0.004 0.012
#> GSM28745 2 0.0000 0.9915 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11244 2 0.0000 0.9915 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28748 2 0.0146 0.9906 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM11266 2 0.0146 0.9905 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM28730 2 0.0146 0.9908 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM11253 2 0.0260 0.9891 0.000 0.992 0.000 0.008 0.000 0.000
#> GSM11254 2 0.0146 0.9908 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM11260 2 0.0000 0.9915 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM28733 2 0.0000 0.9915 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM11265 1 0.1333 0.8506 0.944 0.000 0.000 0.000 0.048 0.008
#> GSM28739 1 0.1194 0.8533 0.956 0.000 0.000 0.032 0.008 0.004
#> GSM11243 3 0.3619 0.4330 0.000 0.000 0.744 0.000 0.024 0.232
#> GSM28740 1 0.1462 0.8470 0.936 0.000 0.000 0.056 0.000 0.008
#> GSM11259 1 0.3539 0.7384 0.768 0.000 0.000 0.008 0.208 0.016
#> GSM28726 5 0.2088 0.7140 0.068 0.000 0.000 0.000 0.904 0.028
#> GSM28743 1 0.1511 0.8490 0.940 0.000 0.000 0.012 0.004 0.044
#> GSM11256 4 0.2492 0.5661 0.100 0.000 0.000 0.876 0.004 0.020
#> GSM11262 1 0.1777 0.8476 0.928 0.000 0.000 0.024 0.004 0.044
#> GSM28724 1 0.2755 0.8100 0.844 0.000 0.000 0.004 0.012 0.140
#> GSM28725 3 0.0146 0.8006 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM11263 3 0.0000 0.8020 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11267 3 0.0000 0.8020 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM28744 4 0.4513 0.4425 0.032 0.000 0.000 0.732 0.180 0.056
#> GSM28734 3 0.5794 0.3037 0.244 0.000 0.580 0.156 0.004 0.016
#> GSM28747 1 0.3646 0.7605 0.776 0.000 0.000 0.000 0.172 0.052
#> GSM11257 4 0.4165 0.6597 0.036 0.000 0.000 0.672 0.000 0.292
#> GSM11252 1 0.1439 0.8562 0.952 0.000 0.012 0.012 0.016 0.008
#> GSM11264 3 0.0000 0.8020 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM11247 6 0.5787 0.1381 0.000 0.000 0.424 0.012 0.124 0.440
#> GSM11258 1 0.2501 0.8112 0.872 0.000 0.000 0.108 0.004 0.016
#> GSM28728 6 0.6107 0.0558 0.044 0.000 0.000 0.128 0.292 0.536
#> GSM28746 1 0.2102 0.8369 0.908 0.000 0.000 0.068 0.012 0.012
#> GSM28738 4 0.4047 0.6585 0.028 0.000 0.000 0.676 0.000 0.296
#> GSM28741 2 0.1684 0.9429 0.008 0.940 0.000 0.008 0.016 0.028
#> GSM28729 5 0.6956 0.0370 0.064 0.000 0.000 0.352 0.360 0.224
#> GSM28742 5 0.1668 0.6109 0.008 0.000 0.000 0.004 0.928 0.060
#> GSM11250 2 0.0291 0.9887 0.000 0.992 0.000 0.004 0.000 0.004
#> GSM11245 1 0.2315 0.8462 0.892 0.000 0.000 0.016 0.084 0.008
#> GSM11246 1 0.1918 0.8381 0.904 0.000 0.000 0.000 0.088 0.008
#> GSM11261 3 0.0748 0.7968 0.000 0.000 0.976 0.004 0.004 0.016
#> GSM11248 3 0.5052 0.4230 0.064 0.000 0.640 0.276 0.004 0.016
#> GSM28732 5 0.3009 0.7073 0.112 0.000 0.000 0.004 0.844 0.040
#> GSM11255 1 0.4404 0.7118 0.732 0.000 0.172 0.004 0.088 0.004
#> GSM28731 1 0.4696 0.5635 0.660 0.000 0.000 0.276 0.048 0.016
#> GSM28727 1 0.4327 0.6310 0.688 0.000 0.000 0.004 0.260 0.048
#> GSM11251 1 0.3351 0.8070 0.832 0.000 0.000 0.016 0.104 0.048
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n tissue(p) k
#> ATC:NMF 47 0.391 2
#> ATC:NMF 49 0.368 3
#> ATC:NMF 46 0.412 4
#> ATC:NMF 50 0.479 5
#> ATC:NMF 43 0.493 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#>
#> Matrix products: default
#> BLAS: /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#>
#> locale:
#> [1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C LC_TIME=en_GB.UTF-8
#> [4] LC_COLLATE=en_GB.UTF-8 LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_GB.UTF-8
#> [7] LC_PAPER=en_GB.UTF-8 LC_NAME=C LC_ADDRESS=C
#> [10] LC_TELEPHONE=C LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] grid stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] genefilter_1.66.0 ComplexHeatmap_2.3.1 markdown_1.1 knitr_1.26
#> [5] GetoptLong_0.1.7 cola_1.3.2
#>
#> loaded via a namespace (and not attached):
#> [1] circlize_0.4.8 shape_1.4.4 xfun_0.11 slam_0.1-46
#> [5] lattice_0.20-38 splines_3.6.0 colorspace_1.4-1 vctrs_0.2.0
#> [9] stats4_3.6.0 blob_1.2.0 XML_3.98-1.20 survival_2.44-1.1
#> [13] rlang_0.4.2 pillar_1.4.2 DBI_1.0.0 BiocGenerics_0.30.0
#> [17] bit64_0.9-7 RColorBrewer_1.1-2 matrixStats_0.55.0 stringr_1.4.0
#> [21] GlobalOptions_0.1.1 evaluate_0.14 memoise_1.1.0 Biobase_2.44.0
#> [25] IRanges_2.18.3 parallel_3.6.0 AnnotationDbi_1.46.1 highr_0.8
#> [29] Rcpp_1.0.3 xtable_1.8-4 backports_1.1.5 S4Vectors_0.22.1
#> [33] annotate_1.62.0 skmeans_0.2-11 bit_1.1-14 microbenchmark_1.4-7
#> [37] brew_1.0-6 impute_1.58.0 rjson_0.2.20 png_0.1-7
#> [41] digest_0.6.23 stringi_1.4.3 polyclip_1.10-0 clue_0.3-57
#> [45] tools_3.6.0 bitops_1.0-6 magrittr_1.5 eulerr_6.0.0
#> [49] RCurl_1.95-4.12 RSQLite_2.1.4 tibble_2.1.3 cluster_2.1.0
#> [53] crayon_1.3.4 pkgconfig_2.0.3 zeallot_0.1.0 Matrix_1.2-17
#> [57] xml2_1.2.2 httr_1.4.1 R6_2.4.1 mclust_5.4.5
#> [61] compiler_3.6.0