cola Report for GDS5232

Date: 2019-12-25 22:06:21 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 16230 rows and 50 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4, anno = anno)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 16230    50

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_list), 
    col = get_anno_col(res_list)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
SD:pam 2 1.000 0.974 0.981 **
SD:mclust 2 1.000 0.979 0.985 **
CV:pam 2 1.000 0.978 0.984 **
CV:mclust 2 1.000 0.987 0.994 **
ATC:pam 3 1.000 0.994 0.997 ** 2
MAD:skmeans 2 0.924 0.911 0.968 *
ATC:skmeans 3 0.908 0.946 0.975 * 2
ATC:hclust 3 0.786 0.825 0.922
SD:skmeans 3 0.769 0.879 0.923
CV:skmeans 3 0.746 0.874 0.918
MAD:pam 4 0.737 0.784 0.901
ATC:kmeans 4 0.698 0.887 0.928
CV:hclust 5 0.578 0.528 0.734
ATC:mclust 3 0.575 0.797 0.882
MAD:NMF 3 0.574 0.697 0.862
ATC:NMF 3 0.519 0.764 0.864
SD:NMF 3 0.435 0.684 0.826
CV:kmeans 3 0.434 0.751 0.865
MAD:mclust 3 0.434 0.853 0.899
CV:NMF 3 0.427 0.717 0.836
MAD:kmeans 3 0.424 0.587 0.796
MAD:hclust 3 0.401 0.757 0.838
SD:kmeans 3 0.401 0.745 0.841
SD:hclust 3 0.307 0.548 0.717

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.768           0.873       0.944          0.350 0.673   0.673
#> CV:NMF      2 0.660           0.847       0.934          0.358 0.673   0.673
#> MAD:NMF     2 0.660           0.810       0.928          0.399 0.628   0.628
#> ATC:NMF     2 0.799           0.896       0.958          0.372 0.628   0.628
#> SD:skmeans  2 0.697           0.804       0.922          0.501 0.497   0.497
#> CV:skmeans  2 0.635           0.804       0.918          0.504 0.493   0.493
#> MAD:skmeans 2 0.924           0.911       0.968          0.509 0.491   0.491
#> ATC:skmeans 2 1.000           0.987       0.994          0.440 0.556   0.556
#> SD:mclust   2 1.000           0.979       0.985          0.166 0.850   0.850
#> CV:mclust   2 1.000           0.987       0.994          0.161 0.850   0.850
#> MAD:mclust  2 0.495           0.897       0.921          0.222 0.850   0.850
#> ATC:mclust  2 0.549           0.682       0.883          0.286 0.754   0.754
#> SD:kmeans   2 0.732           0.865       0.930          0.289 0.784   0.784
#> CV:kmeans   2 0.740           0.885       0.939          0.283 0.784   0.784
#> MAD:kmeans  2 0.536           0.828       0.893          0.379 0.571   0.571
#> ATC:kmeans  2 0.878           0.887       0.957          0.251 0.784   0.784
#> SD:pam      2 1.000           0.974       0.981          0.171 0.850   0.850
#> CV:pam      2 1.000           0.978       0.984          0.168 0.850   0.850
#> MAD:pam     2 0.251           0.767       0.818          0.290 0.850   0.850
#> ATC:pam     2 1.000           1.000       1.000          0.184 0.816   0.816
#> SD:hclust   2 0.729           0.860       0.938          0.300 0.699   0.699
#> CV:hclust   2 0.731           0.824       0.929          0.275 0.726   0.726
#> MAD:hclust  2 0.735           0.903       0.951          0.374 0.607   0.607
#> ATC:hclust  2 0.707           0.852       0.922          0.277 0.650   0.650
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.435           0.684       0.826          0.824 0.651   0.496
#> CV:NMF      3 0.427           0.717       0.836          0.781 0.651   0.494
#> MAD:NMF     3 0.574           0.697       0.862          0.645 0.615   0.428
#> ATC:NMF     3 0.519           0.764       0.864          0.569 0.743   0.611
#> SD:skmeans  3 0.769           0.879       0.923          0.354 0.715   0.483
#> CV:skmeans  3 0.746           0.874       0.918          0.345 0.713   0.478
#> MAD:skmeans 3 0.779           0.894       0.935          0.332 0.712   0.475
#> ATC:skmeans 3 0.908           0.946       0.975          0.448 0.762   0.589
#> SD:mclust   3 0.372           0.608       0.829          2.191 0.598   0.526
#> CV:mclust   3 0.361           0.730       0.860          2.332 0.620   0.553
#> MAD:mclust  3 0.434           0.853       0.899          1.348 0.650   0.588
#> ATC:mclust  3 0.575           0.797       0.882          0.757 0.742   0.667
#> SD:kmeans   3 0.401           0.745       0.841          1.046 0.575   0.478
#> CV:kmeans   3 0.434           0.751       0.865          1.068 0.565   0.469
#> MAD:kmeans  3 0.424           0.587       0.796          0.645 0.651   0.462
#> ATC:kmeans  3 0.622           0.884       0.926          0.789 0.771   0.712
#> SD:pam      3 0.453           0.698       0.865          2.362 0.569   0.493
#> CV:pam      3 0.531           0.731       0.890          2.446 0.571   0.496
#> MAD:pam     3 0.562           0.799       0.900          1.013 0.571   0.496
#> ATC:pam     3 1.000           0.994       0.997          0.899 0.829   0.792
#> SD:hclust   3 0.307           0.548       0.717          0.938 0.662   0.516
#> CV:hclust   3 0.266           0.242       0.632          1.059 0.733   0.648
#> MAD:hclust  3 0.401           0.757       0.838          0.720 0.721   0.540
#> ATC:hclust  3 0.786           0.825       0.922          0.657 0.905   0.857
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.523           0.630       0.812          0.155 0.744   0.420
#> CV:NMF      4 0.519           0.615       0.808          0.155 0.717   0.376
#> MAD:NMF     4 0.477           0.465       0.700          0.138 0.807   0.499
#> ATC:NMF     4 0.594           0.737       0.856          0.197 0.835   0.646
#> SD:skmeans  4 0.619           0.595       0.778          0.115 0.857   0.593
#> CV:skmeans  4 0.603           0.496       0.715          0.116 0.818   0.507
#> MAD:skmeans 4 0.625           0.549       0.774          0.117 0.936   0.804
#> ATC:skmeans 4 0.609           0.592       0.760          0.147 0.905   0.751
#> SD:mclust   4 0.491           0.691       0.828          0.240 0.760   0.525
#> CV:mclust   4 0.522           0.654       0.823          0.223 0.750   0.521
#> MAD:mclust  4 0.509           0.668       0.790          0.260 0.791   0.594
#> ATC:mclust  4 0.423           0.632       0.789          0.263 0.767   0.583
#> SD:kmeans   4 0.597           0.727       0.834          0.204 0.789   0.538
#> CV:kmeans   4 0.620           0.634       0.831          0.219 0.807   0.567
#> MAD:kmeans  4 0.561           0.685       0.787          0.157 0.776   0.493
#> ATC:kmeans  4 0.698           0.887       0.928          0.439 0.724   0.538
#> SD:pam      4 0.767           0.821       0.919          0.248 0.794   0.544
#> CV:pam      4 0.747           0.857       0.922          0.231 0.738   0.457
#> MAD:pam     4 0.737           0.784       0.901          0.228 0.718   0.426
#> ATC:pam     4 0.524           0.872       0.895          0.785 0.713   0.562
#> SD:hclust   4 0.438           0.542       0.679          0.214 0.864   0.664
#> CV:hclust   4 0.442           0.514       0.699          0.249 0.637   0.382
#> MAD:hclust  4 0.515           0.567       0.752          0.145 0.943   0.826
#> ATC:hclust  4 0.467           0.628       0.779          0.223 0.923   0.868
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.588           0.562       0.742         0.0798 0.868   0.560
#> CV:NMF      5 0.636           0.676       0.783         0.0815 0.838   0.492
#> MAD:NMF     5 0.572           0.427       0.632         0.0733 0.812   0.403
#> ATC:NMF     5 0.717           0.632       0.794         0.1064 0.862   0.607
#> SD:skmeans  5 0.615           0.523       0.735         0.0675 0.889   0.592
#> CV:skmeans  5 0.614           0.563       0.742         0.0672 0.836   0.445
#> MAD:skmeans 5 0.624           0.521       0.725         0.0636 0.871   0.560
#> ATC:skmeans 5 0.637           0.512       0.701         0.0728 0.887   0.645
#> SD:mclust   5 0.574           0.539       0.688         0.1133 0.856   0.619
#> CV:mclust   5 0.593           0.648       0.783         0.1181 0.847   0.607
#> MAD:mclust  5 0.609           0.551       0.773         0.1253 0.840   0.589
#> ATC:mclust  5 0.702           0.804       0.885         0.0987 0.960   0.888
#> SD:kmeans   5 0.612           0.594       0.768         0.0917 0.869   0.585
#> CV:kmeans   5 0.631           0.595       0.772         0.0900 0.838   0.511
#> MAD:kmeans  5 0.646           0.627       0.736         0.0858 0.874   0.592
#> ATC:kmeans  5 0.606           0.555       0.691         0.1507 0.796   0.477
#> SD:pam      5 0.675           0.673       0.859         0.0501 0.960   0.858
#> CV:pam      5 0.638           0.610       0.817         0.0583 0.978   0.922
#> MAD:pam     5 0.691           0.641       0.849         0.0628 0.916   0.720
#> ATC:pam     5 0.580           0.752       0.848         0.1948 0.851   0.601
#> SD:hclust   5 0.573           0.453       0.699         0.0858 0.843   0.561
#> CV:hclust   5 0.578           0.528       0.734         0.0779 0.838   0.532
#> MAD:hclust  5 0.570           0.645       0.743         0.0551 0.907   0.685
#> ATC:hclust  5 0.513           0.593       0.789         0.2229 0.782   0.591
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.719           0.683       0.811         0.0471 0.882   0.520
#> CV:NMF      6 0.703           0.671       0.814         0.0479 0.901   0.580
#> MAD:NMF     6 0.711           0.671       0.818         0.0437 0.865   0.454
#> ATC:NMF     6 0.734           0.760       0.850         0.0467 0.892   0.590
#> SD:skmeans  6 0.652           0.448       0.643         0.0411 0.920   0.636
#> CV:skmeans  6 0.648           0.443       0.681         0.0403 0.922   0.634
#> MAD:skmeans 6 0.636           0.461       0.679         0.0413 0.906   0.580
#> ATC:skmeans 6 0.696           0.622       0.773         0.0503 0.901   0.602
#> SD:mclust   6 0.623           0.573       0.726         0.0745 0.876   0.640
#> CV:mclust   6 0.634           0.575       0.793         0.0767 0.881   0.623
#> MAD:mclust  6 0.648           0.520       0.751         0.0666 0.863   0.584
#> ATC:mclust  6 0.725           0.683       0.846         0.1295 0.768   0.393
#> SD:kmeans   6 0.735           0.680       0.795         0.0540 0.919   0.663
#> CV:kmeans   6 0.725           0.669       0.785         0.0539 0.914   0.650
#> MAD:kmeans  6 0.760           0.735       0.806         0.0481 0.936   0.720
#> ATC:kmeans  6 0.638           0.515       0.666         0.0764 0.956   0.825
#> SD:pam      6 0.692           0.627       0.790         0.0485 0.926   0.715
#> CV:pam      6 0.704           0.685       0.830         0.0510 0.912   0.683
#> MAD:pam     6 0.724           0.646       0.824         0.0531 0.939   0.753
#> ATC:pam     6 0.656           0.738       0.858         0.0483 0.956   0.818
#> SD:hclust   6 0.611           0.402       0.667         0.0505 0.918   0.701
#> CV:hclust   6 0.614           0.524       0.728         0.0623 0.938   0.755
#> MAD:hclust  6 0.642           0.684       0.780         0.0487 0.963   0.838
#> ATC:hclust  6 0.602           0.384       0.657         0.0918 0.800   0.479

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Test to known annotations

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res_list, k = 2)
#>              n age(p) gender(p) tissue(p) k
#> SD:NMF      48 1.0000     1.000  7.18e-05 2
#> CV:NMF      45 1.0000     1.000  1.33e-04 2
#> MAD:NMF     44 0.9738     0.765  1.19e-03 2
#> ATC:NMF     47 0.9357     1.000  1.55e-03 2
#> SD:skmeans  41 0.6152     0.508  4.91e-02 2
#> CV:skmeans  49 0.8652     0.710  8.98e-02 2
#> MAD:skmeans 47 0.6104     0.935  8.82e-02 2
#> ATC:skmeans 50 0.6009     0.779  1.31e-02 2
#> SD:mclust   50 0.0825     0.785  9.94e-10 2
#> CV:mclust   50 0.0825     0.785  9.94e-10 2
#> MAD:mclust  50 0.0825     0.785  9.94e-10 2
#> ATC:mclust  44 0.0949     0.884  1.06e-08 2
#> SD:kmeans   50 0.5182     0.318  1.27e-06 2
#> CV:kmeans   50 0.5182     0.318  1.27e-06 2
#> MAD:kmeans  50 0.8044     0.576  8.89e-03 2
#> ATC:kmeans  45 0.2673     0.557  3.52e-07 2
#> SD:pam      50 0.0825     0.785  9.94e-10 2
#> CV:pam      50 0.0825     0.785  9.94e-10 2
#> MAD:pam     50 0.0825     0.785  9.94e-10 2
#> ATC:pam     50 0.2564     0.506  7.18e-08 2
#> SD:hclust   47 0.9434     1.000  2.81e-04 2
#> CV:hclust   45 0.6191     0.488  4.84e-06 2
#> MAD:hclust  48 1.0000     0.401  2.57e-03 2
#> ATC:hclust  49 0.8173     1.000  1.14e-03 2
test_to_known_factors(res_list, k = 3)
#>              n age(p) gender(p) tissue(p) k
#> SD:NMF      42 0.6146     0.708  3.02e-04 3
#> CV:NMF      45 0.7149     0.781  1.54e-04 3
#> MAD:NMF     42 0.6713     0.266  3.02e-04 3
#> ATC:NMF     48 0.7066     0.528  2.82e-06 3
#> SD:skmeans  49 0.6541     0.129  1.12e-02 3
#> CV:skmeans  50 0.7704     0.110  9.86e-03 3
#> MAD:skmeans 49 0.6541     0.129  1.12e-02 3
#> ATC:skmeans 49 0.9911     0.918  2.40e-03 3
#> SD:mclust   40 0.0171     0.188  2.06e-09 3
#> CV:mclust   45 0.0308     0.141  1.69e-10 3
#> MAD:mclust  50 0.0175     0.112  1.39e-11 3
#> ATC:mclust  48 0.0243     0.461  3.78e-11 3
#> SD:kmeans   46 0.0181     0.603  1.03e-10 3
#> CV:kmeans   46 0.0181     0.603  1.03e-10 3
#> MAD:kmeans  33 0.0904     0.246  6.83e-08 3
#> ATC:kmeans  50 0.0343     0.582  1.39e-11 3
#> SD:pam      43 0.0785     0.412  4.60e-10 3
#> CV:pam      40 0.0754     0.243  2.06e-09 3
#> MAD:pam     47 0.0813     0.310  6.22e-11 3
#> ATC:pam     50 0.0713     0.392  1.39e-11 3
#> SD:hclust   36 0.7380     0.431  1.17e-03 3
#> CV:hclust   12 1.0000     0.480  4.80e-01 3
#> MAD:hclust  48 0.9194     0.107  1.44e-03 3
#> ATC:hclust  48 0.0461     0.703  3.78e-11 3
test_to_known_factors(res_list, k = 4)
#>              n age(p) gender(p) tissue(p) k
#> SD:NMF      38 0.1610    0.4551  2.83e-08 4
#> CV:NMF      38 0.1610    0.4551  2.83e-08 4
#> MAD:NMF     30 0.6161    0.5363  5.35e-03 4
#> ATC:NMF     44 0.1415    0.5962  1.70e-07 4
#> SD:skmeans  36 0.9652    0.4959  6.01e-03 4
#> CV:skmeans  31 0.8981    0.1125  3.93e-02 4
#> MAD:skmeans 30 0.6184    0.4476  1.53e-01 4
#> ATC:skmeans 38 0.6900    0.8881  3.52e-02 4
#> SD:mclust   43 0.0437    0.1085  2.46e-09 4
#> CV:mclust   40 0.0291    0.1314  1.07e-08 4
#> MAD:mclust  40 0.0509    0.2833  1.07e-08 4
#> ATC:mclust  40 0.1333    0.7661  1.07e-08 4
#> SD:kmeans   47 0.0615    0.5885  3.48e-10 4
#> CV:kmeans   40 0.0902    0.1719  1.07e-08 4
#> MAD:kmeans  46 0.0430    0.3932  5.67e-10 4
#> ATC:kmeans  49 0.1171    0.7422  1.30e-10 4
#> SD:pam      47 0.0952    0.7265  3.48e-10 4
#> CV:pam      48 0.1188    0.6290  2.13e-10 4
#> MAD:pam     45 0.1837    0.6420  9.25e-10 4
#> ATC:pam     50 0.0959    0.5770  7.99e-11 4
#> SD:hclust   34 0.0558    0.0934  1.98e-07 4
#> CV:hclust   29 0.1387    0.3145  2.24e-06 4
#> MAD:hclust  36 0.9870    0.4105  2.93e-02 4
#> ATC:hclust  40 0.0907    0.3657  2.06e-09 4
test_to_known_factors(res_list, k = 5)
#>              n age(p) gender(p) tissue(p) k
#> SD:NMF      34 0.1669     0.373  7.45e-07 5
#> CV:NMF      45 0.1628     0.406  3.98e-09 5
#> MAD:NMF     21 0.6848     0.561  6.27e-03 5
#> ATC:NMF     38 0.2908     0.473  6.17e-06 5
#> SD:skmeans  31 0.9126     0.754  2.41e-02 5
#> CV:skmeans  37 0.9972     0.703  7.45e-03 5
#> MAD:skmeans 33 0.8706     0.668  1.64e-02 5
#> ATC:skmeans 34 0.4176     0.640  6.23e-02 5
#> SD:mclust   34 0.0328     0.505  1.98e-07 5
#> CV:mclust   38 0.0298     0.277  2.83e-08 5
#> MAD:mclust  34 0.0338     0.188  7.45e-07 5
#> ATC:mclust  48 0.1731     0.263  9.44e-10 5
#> SD:kmeans   34 0.0559     0.518  7.45e-07 5
#> CV:kmeans   35 0.0607     0.527  4.65e-07 5
#> MAD:kmeans  39 0.0408     0.568  6.97e-08 5
#> ATC:kmeans  31 0.0640     0.591  8.50e-07 5
#> SD:pam      38 0.0657     0.790  2.83e-08 5
#> CV:pam      32 0.0992     0.563  1.13e-07 5
#> MAD:pam     36 0.0303     0.672  2.89e-07 5
#> ATC:pam     46 0.0681     0.666  2.46e-09 5
#> SD:hclust   26 0.0495     0.438  9.54e-06 5
#> CV:hclust   33 0.0436     0.170  3.22e-07 5
#> MAD:hclust  40 0.0625     0.188  4.33e-08 5
#> ATC:hclust  37 0.1255     0.478  1.80e-07 5
test_to_known_factors(res_list, k = 6)
#>              n age(p) gender(p) tissue(p) k
#> SD:NMF      42 0.2260     0.673  5.89e-08 6
#> CV:NMF      42 0.2205     0.522  5.89e-08 6
#> MAD:NMF     42 0.2205     0.832  5.89e-08 6
#> ATC:NMF     47 0.5455     0.263  6.80e-07 6
#> SD:skmeans  19 0.5531     0.203  1.30e-02 6
#> CV:skmeans  26 0.5380     0.338  7.57e-03 6
#> MAD:skmeans 31 0.6083     0.347  7.61e-03 6
#> ATC:skmeans 39 0.3753     0.799  4.01e-03 6
#> SD:mclust   38 0.1228     0.232  1.12e-07 6
#> CV:mclust   34 0.1949     0.324  2.38e-06 6
#> MAD:mclust  28 0.1362     0.387  3.64e-05 6
#> ATC:mclust  40 0.2699     0.692  1.49e-07 6
#> SD:kmeans   40 0.1125     0.341  1.49e-07 6
#> CV:kmeans   39 0.0906     0.533  2.37e-07 6
#> MAD:kmeans  44 0.1118     0.457  2.32e-08 6
#> ATC:kmeans  24 0.0463     0.582  2.50e-05 6
#> SD:pam      34 0.0275     0.431  7.45e-07 6
#> CV:pam      42 0.0290     0.916  5.89e-08 6
#> MAD:pam     37 0.0711     0.771  5.99e-07 6
#> ATC:pam     45 0.2028     0.507  1.45e-08 6
#> SD:hclust   22 0.0985     0.318  2.00e-04 6
#> CV:hclust   30 0.1084     0.100  1.47e-05 6
#> MAD:hclust  41 0.0904     0.119  9.38e-08 6
#> ATC:hclust  24 0.0857     0.308  7.99e-05 6

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16230 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.729           0.860       0.938         0.3000 0.699   0.699
#> 3 3 0.307           0.548       0.717         0.9376 0.662   0.516
#> 4 4 0.438           0.542       0.679         0.2140 0.864   0.664
#> 5 5 0.573           0.453       0.699         0.0858 0.843   0.561
#> 6 6 0.611           0.402       0.667         0.0505 0.918   0.701

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM615919     2  0.0000      0.947 0.000 1.000
#> GSM615921     2  0.0000      0.947 0.000 1.000
#> GSM615922     2  0.9358      0.356 0.352 0.648
#> GSM615925     2  0.0000      0.947 0.000 1.000
#> GSM615926     1  0.8555      0.743 0.720 0.280
#> GSM615933     2  0.0000      0.947 0.000 1.000
#> GSM615939     2  0.0000      0.947 0.000 1.000
#> GSM615941     2  0.9710      0.197 0.400 0.600
#> GSM615944     1  0.8555      0.743 0.720 0.280
#> GSM615945     2  0.0000      0.947 0.000 1.000
#> GSM615947     2  0.0000      0.947 0.000 1.000
#> GSM615948     2  0.9491      0.307 0.368 0.632
#> GSM615951     2  0.1184      0.936 0.016 0.984
#> GSM615918     2  0.0000      0.947 0.000 1.000
#> GSM615927     2  0.0000      0.947 0.000 1.000
#> GSM615929     2  0.1843      0.925 0.028 0.972
#> GSM615931     2  0.0000      0.947 0.000 1.000
#> GSM615937     2  0.0000      0.947 0.000 1.000
#> GSM615938     2  0.0000      0.947 0.000 1.000
#> GSM615940     2  0.0000      0.947 0.000 1.000
#> GSM615946     2  0.0000      0.947 0.000 1.000
#> GSM615952     2  0.1184      0.936 0.016 0.984
#> GSM615953     2  0.0376      0.944 0.004 0.996
#> GSM615955     1  0.7528      0.796 0.784 0.216
#> GSM721722     1  0.7528      0.796 0.784 0.216
#> GSM721723     2  0.0000      0.947 0.000 1.000
#> GSM721724     2  0.0000      0.947 0.000 1.000
#> GSM615917     2  0.0000      0.947 0.000 1.000
#> GSM615920     1  0.9491      0.594 0.632 0.368
#> GSM615923     2  0.0000      0.947 0.000 1.000
#> GSM615928     2  0.0000      0.947 0.000 1.000
#> GSM615934     2  0.8207      0.590 0.256 0.744
#> GSM615950     2  0.0000      0.947 0.000 1.000
#> GSM615954     2  0.0000      0.947 0.000 1.000
#> GSM615956     2  0.0376      0.944 0.004 0.996
#> GSM615958     1  0.0000      0.810 1.000 0.000
#> GSM615924     2  0.0000      0.947 0.000 1.000
#> GSM615930     2  0.0000      0.947 0.000 1.000
#> GSM615932     2  0.0000      0.947 0.000 1.000
#> GSM615935     2  0.0000      0.947 0.000 1.000
#> GSM615936     2  0.1843      0.925 0.028 0.972
#> GSM615942     2  0.7528      0.670 0.216 0.784
#> GSM615943     2  0.0000      0.947 0.000 1.000
#> GSM615949     2  0.2236      0.917 0.036 0.964
#> GSM615957     2  0.0000      0.947 0.000 1.000
#> GSM721720     2  0.0000      0.947 0.000 1.000
#> GSM721721     2  0.0000      0.947 0.000 1.000
#> GSM615959     1  0.0000      0.810 1.000 0.000
#> GSM615960     1  0.0000      0.810 1.000 0.000
#> GSM615961     1  0.0000      0.810 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM615919     2  0.4291     0.5188 0.000 0.820 0.180
#> GSM615921     2  0.6274     0.2554 0.000 0.544 0.456
#> GSM615922     3  0.9387     0.1048 0.272 0.220 0.508
#> GSM615925     2  0.1411     0.6153 0.000 0.964 0.036
#> GSM615926     1  0.8120     0.7765 0.640 0.224 0.136
#> GSM615933     2  0.5016     0.6669 0.000 0.760 0.240
#> GSM615939     3  0.5678     0.5751 0.000 0.316 0.684
#> GSM615941     3  0.9679    -0.1138 0.320 0.232 0.448
#> GSM615944     1  0.8120     0.7765 0.640 0.224 0.136
#> GSM615945     2  0.4931     0.6728 0.000 0.768 0.232
#> GSM615947     3  0.4399     0.5672 0.000 0.188 0.812
#> GSM615948     3  0.9472     0.0503 0.288 0.220 0.492
#> GSM615951     3  0.6200     0.5708 0.012 0.312 0.676
#> GSM615918     2  0.0424     0.6179 0.000 0.992 0.008
#> GSM615927     2  0.2448     0.6465 0.000 0.924 0.076
#> GSM615929     3  0.6280     0.3140 0.000 0.460 0.540
#> GSM615931     2  0.4654     0.6714 0.000 0.792 0.208
#> GSM615937     2  0.6274     0.4747 0.000 0.544 0.456
#> GSM615938     3  0.3879     0.5273 0.000 0.152 0.848
#> GSM615940     3  0.5497     0.5866 0.000 0.292 0.708
#> GSM615946     3  0.5706     0.5673 0.000 0.320 0.680
#> GSM615952     3  0.6200     0.5708 0.012 0.312 0.676
#> GSM615953     3  0.5873     0.5597 0.004 0.312 0.684
#> GSM615955     1  0.7388     0.8136 0.704 0.160 0.136
#> GSM721722     1  0.7388     0.8136 0.704 0.160 0.136
#> GSM721723     3  0.4974     0.3551 0.000 0.236 0.764
#> GSM721724     3  0.5431     0.5883 0.000 0.284 0.716
#> GSM615917     2  0.1163     0.6235 0.000 0.972 0.028
#> GSM615920     1  0.8491     0.7044 0.572 0.312 0.116
#> GSM615923     2  0.6045     0.4362 0.000 0.620 0.380
#> GSM615928     2  0.5650     0.3590 0.000 0.688 0.312
#> GSM615934     3  0.9249     0.2875 0.180 0.312 0.508
#> GSM615950     2  0.6274     0.4747 0.000 0.544 0.456
#> GSM615954     2  0.5098     0.6684 0.000 0.752 0.248
#> GSM615956     3  0.5873     0.5597 0.004 0.312 0.684
#> GSM615958     1  0.0000     0.8071 1.000 0.000 0.000
#> GSM615924     2  0.3752     0.5660 0.000 0.856 0.144
#> GSM615930     2  0.4750     0.6734 0.000 0.784 0.216
#> GSM615932     3  0.3816     0.5308 0.000 0.148 0.852
#> GSM615935     3  0.3816     0.5308 0.000 0.148 0.852
#> GSM615936     3  0.5254     0.5840 0.000 0.264 0.736
#> GSM615942     3  0.7585     0.4884 0.180 0.132 0.688
#> GSM615943     2  0.5098     0.6671 0.000 0.752 0.248
#> GSM615949     3  0.5365     0.5817 0.004 0.252 0.744
#> GSM615957     3  0.3752     0.5211 0.000 0.144 0.856
#> GSM721720     3  0.4974     0.3551 0.000 0.236 0.764
#> GSM721721     2  0.6045     0.4362 0.000 0.620 0.380
#> GSM615959     1  0.0000     0.8071 1.000 0.000 0.000
#> GSM615960     1  0.0000     0.8071 1.000 0.000 0.000
#> GSM615961     1  0.0000     0.8071 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM615919     4  0.9864      0.297 0.260 0.272 0.172 0.296
#> GSM615921     2  0.9557     -0.163 0.296 0.316 0.112 0.276
#> GSM615922     3  0.6239      0.390 0.028 0.420 0.536 0.016
#> GSM615925     4  0.8071      0.570 0.192 0.068 0.168 0.572
#> GSM615926     3  0.1940      0.575 0.000 0.076 0.924 0.000
#> GSM615933     4  0.1022      0.690 0.000 0.032 0.000 0.968
#> GSM615939     2  0.2684      0.653 0.016 0.912 0.012 0.060
#> GSM615941     3  0.5954      0.500 0.028 0.356 0.604 0.012
#> GSM615944     3  0.1940      0.575 0.000 0.076 0.924 0.000
#> GSM615945     4  0.0469      0.691 0.000 0.012 0.000 0.988
#> GSM615947     2  0.3907      0.625 0.140 0.828 0.000 0.032
#> GSM615948     3  0.6207      0.425 0.028 0.404 0.552 0.016
#> GSM615951     2  0.4557      0.656 0.056 0.828 0.028 0.088
#> GSM615918     4  0.7244      0.592 0.180 0.032 0.160 0.628
#> GSM615927     4  0.6154      0.629 0.156 0.012 0.128 0.704
#> GSM615929     2  0.7851      0.392 0.100 0.608 0.176 0.116
#> GSM615931     4  0.1305      0.694 0.004 0.036 0.000 0.960
#> GSM615937     4  0.6071      0.512 0.172 0.144 0.000 0.684
#> GSM615938     2  0.4590      0.603 0.148 0.792 0.000 0.060
#> GSM615940     2  0.4093      0.618 0.028 0.852 0.040 0.080
#> GSM615946     2  0.2911      0.656 0.016 0.900 0.012 0.072
#> GSM615952     2  0.4557      0.656 0.056 0.828 0.028 0.088
#> GSM615953     2  0.4430      0.659 0.056 0.828 0.016 0.100
#> GSM615955     3  0.1284      0.469 0.012 0.024 0.964 0.000
#> GSM721722     3  0.1284      0.469 0.012 0.024 0.964 0.000
#> GSM721723     2  0.7434      0.372 0.256 0.512 0.000 0.232
#> GSM721724     2  0.3652      0.626 0.028 0.876 0.040 0.056
#> GSM615917     4  0.7836      0.585 0.180 0.064 0.160 0.596
#> GSM615920     3  0.4287      0.490 0.012 0.072 0.836 0.080
#> GSM615923     4  0.7112      0.408 0.128 0.300 0.008 0.564
#> GSM615928     2  0.9442     -0.203 0.216 0.344 0.112 0.328
#> GSM615934     2  0.6838     -0.231 0.028 0.496 0.432 0.044
#> GSM615950     4  0.6071      0.512 0.172 0.144 0.000 0.684
#> GSM615954     4  0.2797      0.676 0.020 0.060 0.012 0.908
#> GSM615956     2  0.4372      0.659 0.056 0.828 0.012 0.104
#> GSM615958     1  0.4981      1.000 0.536 0.000 0.464 0.000
#> GSM615924     4  0.9734      0.390 0.220 0.248 0.172 0.360
#> GSM615930     4  0.1109      0.694 0.004 0.028 0.000 0.968
#> GSM615932     2  0.5770      0.590 0.148 0.712 0.000 0.140
#> GSM615935     2  0.5770      0.590 0.148 0.712 0.000 0.140
#> GSM615936     2  0.4649      0.596 0.028 0.824 0.068 0.080
#> GSM615942     2  0.5832      0.320 0.028 0.676 0.272 0.024
#> GSM615943     4  0.0779      0.686 0.004 0.016 0.000 0.980
#> GSM615949     2  0.4716      0.585 0.028 0.820 0.084 0.068
#> GSM615957     2  0.6245      0.552 0.244 0.648 0.000 0.108
#> GSM721720     2  0.7434      0.372 0.256 0.512 0.000 0.232
#> GSM721721     4  0.7112      0.408 0.128 0.300 0.008 0.564
#> GSM615959     1  0.4981      1.000 0.536 0.000 0.464 0.000
#> GSM615960     1  0.4981      1.000 0.536 0.000 0.464 0.000
#> GSM615961     1  0.4981      1.000 0.536 0.000 0.464 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM615919     4  0.5195      0.375 0.000 0.348 0.028 0.608 0.016
#> GSM615921     4  0.6174      0.324 0.000 0.264 0.048 0.612 0.076
#> GSM615922     3  0.4489      0.422 0.000 0.420 0.572 0.008 0.000
#> GSM615925     4  0.6024     -0.056 0.000 0.056 0.028 0.516 0.400
#> GSM615926     3  0.3058      0.708 0.096 0.044 0.860 0.000 0.000
#> GSM615933     5  0.0955      0.728 0.000 0.028 0.000 0.004 0.968
#> GSM615939     2  0.2351      0.579 0.000 0.896 0.016 0.088 0.000
#> GSM615941     3  0.4166      0.536 0.000 0.348 0.648 0.004 0.000
#> GSM615944     3  0.3058      0.708 0.096 0.044 0.860 0.000 0.000
#> GSM615945     5  0.0162      0.731 0.000 0.004 0.000 0.000 0.996
#> GSM615947     2  0.4538      0.485 0.000 0.692 0.016 0.280 0.012
#> GSM615948     3  0.4455      0.452 0.000 0.404 0.588 0.008 0.000
#> GSM615951     2  0.4386      0.524 0.000 0.788 0.116 0.080 0.016
#> GSM615918     5  0.5313      0.147 0.000 0.012 0.028 0.444 0.516
#> GSM615927     5  0.4948      0.313 0.000 0.008 0.024 0.356 0.612
#> GSM615929     2  0.5283      0.296 0.000 0.676 0.084 0.232 0.008
#> GSM615931     5  0.1106      0.726 0.000 0.012 0.000 0.024 0.964
#> GSM615937     5  0.5886      0.476 0.004 0.056 0.036 0.272 0.632
#> GSM615938     2  0.5459      0.435 0.004 0.624 0.012 0.312 0.048
#> GSM615940     2  0.2060      0.565 0.000 0.924 0.052 0.016 0.008
#> GSM615946     2  0.2747      0.577 0.000 0.884 0.016 0.088 0.012
#> GSM615952     2  0.4386      0.524 0.000 0.788 0.116 0.080 0.016
#> GSM615953     2  0.4663      0.518 0.004 0.784 0.104 0.080 0.028
#> GSM615955     3  0.3093      0.655 0.168 0.008 0.824 0.000 0.000
#> GSM721722     3  0.3093      0.655 0.168 0.008 0.824 0.000 0.000
#> GSM721723     4  0.7915     -0.108 0.004 0.316 0.100 0.420 0.160
#> GSM721724     2  0.1549      0.569 0.000 0.944 0.040 0.016 0.000
#> GSM615917     4  0.6013     -0.153 0.000 0.052 0.028 0.476 0.444
#> GSM615920     3  0.5185      0.642 0.088 0.040 0.760 0.100 0.012
#> GSM615923     2  0.7123     -0.313 0.000 0.364 0.012 0.332 0.292
#> GSM615928     4  0.6506      0.316 0.000 0.388 0.040 0.492 0.080
#> GSM615934     2  0.4723     -0.243 0.000 0.536 0.448 0.016 0.000
#> GSM615950     5  0.5886      0.476 0.004 0.056 0.036 0.272 0.632
#> GSM615954     5  0.3841      0.668 0.004 0.048 0.048 0.056 0.844
#> GSM615956     2  0.4612      0.518 0.004 0.788 0.100 0.080 0.028
#> GSM615958     1  0.0290      1.000 0.992 0.000 0.008 0.000 0.000
#> GSM615924     4  0.6205      0.414 0.000 0.292 0.028 0.584 0.096
#> GSM615930     5  0.0671      0.730 0.000 0.004 0.000 0.016 0.980
#> GSM615932     2  0.6494      0.384 0.004 0.540 0.012 0.304 0.140
#> GSM615935     2  0.6494      0.384 0.004 0.540 0.012 0.304 0.140
#> GSM615936     2  0.2414      0.561 0.000 0.900 0.080 0.012 0.008
#> GSM615942     2  0.4560      0.297 0.000 0.672 0.304 0.016 0.008
#> GSM615943     5  0.0671      0.731 0.000 0.004 0.000 0.016 0.980
#> GSM615949     2  0.2748      0.557 0.000 0.880 0.096 0.016 0.008
#> GSM615957     2  0.6929      0.238 0.004 0.452 0.100 0.400 0.044
#> GSM721720     4  0.7915     -0.108 0.004 0.316 0.100 0.420 0.160
#> GSM721721     2  0.7123     -0.313 0.000 0.364 0.012 0.332 0.292
#> GSM615959     1  0.0290      1.000 0.992 0.000 0.008 0.000 0.000
#> GSM615960     1  0.0290      1.000 0.992 0.000 0.008 0.000 0.000
#> GSM615961     1  0.0290      1.000 0.992 0.000 0.008 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM615919     4  0.6061     0.2382 0.000 0.328 0.000 0.492 0.160 0.020
#> GSM615921     4  0.7541     0.1139 0.000 0.200 0.000 0.344 0.176 0.280
#> GSM615922     3  0.3810     0.4251 0.000 0.428 0.572 0.000 0.000 0.000
#> GSM615925     4  0.1934     0.2924 0.000 0.040 0.000 0.916 0.044 0.000
#> GSM615926     3  0.0000     0.7302 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM615933     5  0.4732     0.9378 0.000 0.020 0.000 0.476 0.488 0.016
#> GSM615939     2  0.3910     0.6101 0.000 0.792 0.008 0.004 0.096 0.100
#> GSM615941     3  0.3620     0.5356 0.000 0.352 0.648 0.000 0.000 0.000
#> GSM615944     3  0.0000     0.7302 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM615945     5  0.3862     0.9540 0.000 0.000 0.000 0.476 0.524 0.000
#> GSM615947     2  0.5133     0.5059 0.000 0.592 0.000 0.000 0.292 0.116
#> GSM615948     3  0.3782     0.4540 0.000 0.412 0.588 0.000 0.000 0.000
#> GSM615951     2  0.5673     0.4951 0.000 0.604 0.068 0.012 0.036 0.280
#> GSM615918     4  0.0790     0.1355 0.000 0.000 0.000 0.968 0.032 0.000
#> GSM615927     4  0.2402    -0.0682 0.000 0.004 0.000 0.856 0.140 0.000
#> GSM615929     2  0.4585     0.4197 0.000 0.724 0.036 0.188 0.052 0.000
#> GSM615931     4  0.3866    -0.9175 0.000 0.000 0.000 0.516 0.484 0.000
#> GSM615937     6  0.5859     0.0950 0.000 0.000 0.000 0.232 0.288 0.480
#> GSM615938     2  0.5499     0.4483 0.000 0.512 0.000 0.000 0.348 0.140
#> GSM615940     2  0.0260     0.5895 0.000 0.992 0.008 0.000 0.000 0.000
#> GSM615946     2  0.4047     0.6083 0.000 0.780 0.008 0.004 0.108 0.100
#> GSM615952     2  0.5673     0.4951 0.000 0.604 0.068 0.012 0.036 0.280
#> GSM615953     2  0.5674     0.4927 0.000 0.608 0.048 0.016 0.048 0.280
#> GSM615955     3  0.1444     0.6994 0.072 0.000 0.928 0.000 0.000 0.000
#> GSM721722     3  0.1444     0.6994 0.072 0.000 0.928 0.000 0.000 0.000
#> GSM721723     6  0.0146     0.6107 0.000 0.000 0.000 0.000 0.004 0.996
#> GSM721724     2  0.1542     0.6016 0.000 0.936 0.008 0.000 0.004 0.052
#> GSM615917     4  0.0937     0.2547 0.000 0.040 0.000 0.960 0.000 0.000
#> GSM615920     3  0.2350     0.6724 0.000 0.000 0.888 0.076 0.036 0.000
#> GSM615923     2  0.7665    -0.1962 0.000 0.316 0.000 0.216 0.252 0.216
#> GSM615928     4  0.7252     0.1505 0.000 0.316 0.000 0.384 0.164 0.136
#> GSM615934     2  0.3915    -0.1743 0.000 0.584 0.412 0.000 0.004 0.000
#> GSM615950     6  0.5881     0.0849 0.000 0.000 0.000 0.232 0.296 0.472
#> GSM615954     4  0.6536    -0.5531 0.000 0.004 0.020 0.416 0.324 0.236
#> GSM615956     2  0.5556     0.4939 0.000 0.616 0.040 0.016 0.048 0.280
#> GSM615958     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM615924     4  0.5409     0.3259 0.000 0.284 0.000 0.584 0.124 0.008
#> GSM615930     4  0.3869    -0.9382 0.000 0.000 0.000 0.500 0.500 0.000
#> GSM615932     2  0.5071     0.4010 0.000 0.480 0.000 0.000 0.444 0.076
#> GSM615935     2  0.5071     0.4010 0.000 0.480 0.000 0.000 0.444 0.076
#> GSM615936     2  0.1082     0.5766 0.000 0.956 0.040 0.000 0.004 0.000
#> GSM615942     2  0.3390     0.2641 0.000 0.704 0.296 0.000 0.000 0.000
#> GSM615943     5  0.3982     0.9525 0.000 0.000 0.000 0.460 0.536 0.004
#> GSM615949     2  0.1219     0.5690 0.000 0.948 0.048 0.000 0.004 0.000
#> GSM615957     6  0.2651     0.4489 0.000 0.112 0.000 0.000 0.028 0.860
#> GSM721720     6  0.0146     0.6107 0.000 0.000 0.000 0.000 0.004 0.996
#> GSM721721     2  0.7665    -0.1962 0.000 0.316 0.000 0.216 0.252 0.216
#> GSM615959     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM615960     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM615961     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n age(p) gender(p) tissue(p) k
#> SD:hclust 47 0.9434    1.0000  2.81e-04 2
#> SD:hclust 36 0.7380    0.4310  1.17e-03 3
#> SD:hclust 34 0.0558    0.0934  1.98e-07 4
#> SD:hclust 26 0.0495    0.4376  9.54e-06 5
#> SD:hclust 22 0.0985    0.3179  2.00e-04 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16230 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.732           0.865       0.930         0.2894 0.784   0.784
#> 3 3 0.401           0.745       0.841         1.0462 0.575   0.478
#> 4 4 0.597           0.727       0.834         0.2039 0.789   0.538
#> 5 5 0.612           0.594       0.768         0.0917 0.869   0.585
#> 6 6 0.735           0.680       0.795         0.0540 0.919   0.663

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM615919     2  0.1414      0.915 0.020 0.980
#> GSM615921     2  0.0376      0.915 0.004 0.996
#> GSM615922     2  0.9087      0.608 0.324 0.676
#> GSM615925     2  0.1414      0.913 0.020 0.980
#> GSM615926     2  0.9248      0.603 0.340 0.660
#> GSM615933     2  0.0672      0.915 0.008 0.992
#> GSM615939     2  0.0376      0.915 0.004 0.996
#> GSM615941     2  0.9044      0.609 0.320 0.680
#> GSM615944     2  0.9427      0.544 0.360 0.640
#> GSM615945     2  0.1414      0.913 0.020 0.980
#> GSM615947     2  0.0376      0.915 0.004 0.996
#> GSM615948     2  0.9044      0.609 0.320 0.680
#> GSM615951     2  0.9044      0.609 0.320 0.680
#> GSM615918     2  0.1414      0.913 0.020 0.980
#> GSM615927     2  0.1414      0.913 0.020 0.980
#> GSM615929     2  0.0376      0.915 0.004 0.996
#> GSM615931     2  0.1414      0.913 0.020 0.980
#> GSM615937     2  0.1414      0.913 0.020 0.980
#> GSM615938     2  0.0000      0.915 0.000 1.000
#> GSM615940     2  0.0376      0.915 0.004 0.996
#> GSM615946     2  0.0376      0.915 0.004 0.996
#> GSM615952     2  0.9044      0.609 0.320 0.680
#> GSM615953     2  0.0000      0.915 0.000 1.000
#> GSM615955     1  0.3114      0.953 0.944 0.056
#> GSM721722     1  0.2948      0.954 0.948 0.052
#> GSM721723     2  0.0000      0.915 0.000 1.000
#> GSM721724     2  0.0376      0.915 0.004 0.996
#> GSM615917     2  0.1414      0.913 0.020 0.980
#> GSM615920     2  0.7219      0.772 0.200 0.800
#> GSM615923     2  0.1414      0.913 0.020 0.980
#> GSM615928     2  0.1184      0.915 0.016 0.984
#> GSM615934     2  0.7056      0.769 0.192 0.808
#> GSM615950     2  0.1414      0.913 0.020 0.980
#> GSM615954     2  0.1414      0.913 0.020 0.980
#> GSM615956     2  0.0376      0.915 0.004 0.996
#> GSM615958     1  0.0376      0.978 0.996 0.004
#> GSM615924     2  0.1414      0.913 0.020 0.980
#> GSM615930     2  0.1414      0.913 0.020 0.980
#> GSM615932     2  0.0000      0.915 0.000 1.000
#> GSM615935     2  0.0000      0.915 0.000 1.000
#> GSM615936     2  0.0376      0.915 0.004 0.996
#> GSM615942     2  0.9044      0.609 0.320 0.680
#> GSM615943     2  0.1414      0.913 0.020 0.980
#> GSM615949     2  0.0376      0.915 0.004 0.996
#> GSM615957     2  0.0376      0.915 0.004 0.996
#> GSM721720     2  0.0000      0.915 0.000 1.000
#> GSM721721     2  0.1184      0.915 0.016 0.984
#> GSM615959     1  0.0376      0.978 0.996 0.004
#> GSM615960     1  0.0376      0.978 0.996 0.004
#> GSM615961     1  0.0376      0.978 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM615919     2  0.5591      0.689 0.000 0.696 0.304
#> GSM615921     2  0.5254      0.659 0.000 0.736 0.264
#> GSM615922     3  0.3267      0.832 0.116 0.000 0.884
#> GSM615925     2  0.4555      0.745 0.000 0.800 0.200
#> GSM615926     3  0.7382      0.628 0.116 0.184 0.700
#> GSM615933     2  0.1643      0.780 0.000 0.956 0.044
#> GSM615939     3  0.1411      0.837 0.000 0.036 0.964
#> GSM615941     3  0.3267      0.832 0.116 0.000 0.884
#> GSM615944     3  0.3267      0.832 0.116 0.000 0.884
#> GSM615945     2  0.0592      0.777 0.000 0.988 0.012
#> GSM615947     3  0.1860      0.827 0.000 0.052 0.948
#> GSM615948     3  0.3267      0.832 0.116 0.000 0.884
#> GSM615951     3  0.3267      0.832 0.116 0.000 0.884
#> GSM615918     2  0.4605      0.742 0.000 0.796 0.204
#> GSM615927     2  0.0000      0.772 0.000 1.000 0.000
#> GSM615929     3  0.0747      0.837 0.000 0.016 0.984
#> GSM615931     2  0.4605      0.751 0.000 0.796 0.204
#> GSM615937     2  0.0592      0.777 0.000 0.988 0.012
#> GSM615938     2  0.5327      0.655 0.000 0.728 0.272
#> GSM615940     3  0.1163      0.839 0.000 0.028 0.972
#> GSM615946     3  0.3941      0.683 0.000 0.156 0.844
#> GSM615952     3  0.3267      0.832 0.116 0.000 0.884
#> GSM615953     2  0.6308      0.219 0.000 0.508 0.492
#> GSM615955     3  0.6235      0.329 0.436 0.000 0.564
#> GSM721722     3  0.5621      0.595 0.308 0.000 0.692
#> GSM721723     2  0.5327      0.655 0.000 0.728 0.272
#> GSM721724     3  0.1411      0.837 0.000 0.036 0.964
#> GSM615917     2  0.4555      0.745 0.000 0.800 0.200
#> GSM615920     2  0.6443      0.666 0.040 0.720 0.240
#> GSM615923     2  0.1529      0.777 0.000 0.960 0.040
#> GSM615928     2  0.4452      0.751 0.000 0.808 0.192
#> GSM615934     3  0.3028      0.829 0.032 0.048 0.920
#> GSM615950     2  0.0592      0.777 0.000 0.988 0.012
#> GSM615954     2  0.0592      0.777 0.000 0.988 0.012
#> GSM615956     3  0.1411      0.837 0.000 0.036 0.964
#> GSM615958     1  0.0000      1.000 1.000 0.000 0.000
#> GSM615924     2  0.3879      0.766 0.000 0.848 0.152
#> GSM615930     2  0.0000      0.772 0.000 1.000 0.000
#> GSM615932     2  0.5327      0.655 0.000 0.728 0.272
#> GSM615935     2  0.6291      0.237 0.000 0.532 0.468
#> GSM615936     3  0.1163      0.839 0.000 0.028 0.972
#> GSM615942     3  0.3267      0.832 0.116 0.000 0.884
#> GSM615943     2  0.0592      0.777 0.000 0.988 0.012
#> GSM615949     3  0.1163      0.839 0.000 0.028 0.972
#> GSM615957     3  0.5882      0.372 0.000 0.348 0.652
#> GSM721720     2  0.5327      0.655 0.000 0.728 0.272
#> GSM721721     2  0.5058      0.709 0.000 0.756 0.244
#> GSM615959     1  0.0000      1.000 1.000 0.000 0.000
#> GSM615960     1  0.0000      1.000 1.000 0.000 0.000
#> GSM615961     1  0.0000      1.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM615919     4  0.6779      0.179 0.016 0.336 0.072 0.576
#> GSM615921     2  0.3400      0.620 0.000 0.820 0.000 0.180
#> GSM615922     3  0.0000      0.892 0.000 0.000 1.000 0.000
#> GSM615925     4  0.0592      0.767 0.000 0.000 0.016 0.984
#> GSM615926     3  0.0592      0.884 0.000 0.000 0.984 0.016
#> GSM615933     4  0.3257      0.776 0.004 0.152 0.000 0.844
#> GSM615939     2  0.6849      0.513 0.016 0.540 0.376 0.068
#> GSM615941     3  0.0000      0.892 0.000 0.000 1.000 0.000
#> GSM615944     3  0.0000      0.892 0.000 0.000 1.000 0.000
#> GSM615945     4  0.3945      0.760 0.004 0.216 0.000 0.780
#> GSM615947     2  0.6419      0.649 0.016 0.640 0.276 0.068
#> GSM615948     3  0.0000      0.892 0.000 0.000 1.000 0.000
#> GSM615951     3  0.0000      0.892 0.000 0.000 1.000 0.000
#> GSM615918     4  0.1398      0.766 0.000 0.004 0.040 0.956
#> GSM615927     4  0.2081      0.773 0.000 0.084 0.000 0.916
#> GSM615929     3  0.5457      0.630 0.016 0.028 0.708 0.248
#> GSM615931     4  0.4370      0.779 0.004 0.148 0.040 0.808
#> GSM615937     4  0.5268      0.606 0.008 0.452 0.000 0.540
#> GSM615938     2  0.1118      0.665 0.000 0.964 0.000 0.036
#> GSM615940     3  0.6973     -0.225 0.016 0.408 0.504 0.072
#> GSM615946     2  0.7145      0.618 0.016 0.580 0.288 0.116
#> GSM615952     3  0.0000      0.892 0.000 0.000 1.000 0.000
#> GSM615953     2  0.6123      0.722 0.016 0.712 0.152 0.120
#> GSM615955     3  0.1118      0.862 0.036 0.000 0.964 0.000
#> GSM721722     3  0.0779      0.882 0.004 0.000 0.980 0.016
#> GSM721723     2  0.0804      0.667 0.012 0.980 0.000 0.008
#> GSM721724     2  0.6875      0.533 0.016 0.548 0.364 0.072
#> GSM615917     4  0.0592      0.767 0.000 0.000 0.016 0.984
#> GSM615920     4  0.4761      0.396 0.000 0.000 0.372 0.628
#> GSM615923     4  0.4619      0.769 0.016 0.188 0.016 0.780
#> GSM615928     4  0.3331      0.745 0.016 0.040 0.056 0.888
#> GSM615934     3  0.2060      0.850 0.016 0.000 0.932 0.052
#> GSM615950     4  0.5257      0.607 0.008 0.444 0.000 0.548
#> GSM615954     4  0.4800      0.695 0.004 0.340 0.000 0.656
#> GSM615956     2  0.6853      0.572 0.016 0.568 0.340 0.076
#> GSM615958     1  0.1022      0.999 0.968 0.000 0.032 0.000
#> GSM615924     4  0.1993      0.768 0.016 0.024 0.016 0.944
#> GSM615930     4  0.3870      0.763 0.004 0.208 0.000 0.788
#> GSM615932     2  0.1211      0.662 0.000 0.960 0.000 0.040
#> GSM615935     2  0.4139      0.733 0.000 0.816 0.144 0.040
#> GSM615936     3  0.4049      0.778 0.016 0.064 0.852 0.068
#> GSM615942     3  0.0000      0.892 0.000 0.000 1.000 0.000
#> GSM615943     4  0.4699      0.700 0.004 0.320 0.000 0.676
#> GSM615949     3  0.4049      0.778 0.016 0.064 0.852 0.068
#> GSM615957     2  0.4034      0.723 0.012 0.804 0.180 0.004
#> GSM721720     2  0.0804      0.667 0.012 0.980 0.000 0.008
#> GSM721721     4  0.3896      0.720 0.016 0.056 0.068 0.860
#> GSM615959     1  0.1209      0.999 0.964 0.004 0.032 0.000
#> GSM615960     1  0.1022      0.999 0.968 0.000 0.032 0.000
#> GSM615961     1  0.1209      0.999 0.964 0.004 0.032 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM615919     4  0.5801     0.4063 0.000 0.272 0.008 0.612 0.108
#> GSM615921     2  0.5073     0.5766 0.000 0.688 0.000 0.100 0.212
#> GSM615922     3  0.0290     0.9254 0.000 0.000 0.992 0.000 0.008
#> GSM615925     4  0.0290     0.5488 0.000 0.008 0.000 0.992 0.000
#> GSM615926     3  0.0727     0.9214 0.000 0.004 0.980 0.004 0.012
#> GSM615933     4  0.6071     0.0658 0.004 0.140 0.000 0.568 0.288
#> GSM615939     2  0.4004     0.7295 0.000 0.792 0.164 0.032 0.012
#> GSM615941     3  0.0000     0.9256 0.000 0.000 1.000 0.000 0.000
#> GSM615944     3  0.0451     0.9244 0.000 0.000 0.988 0.004 0.008
#> GSM615945     4  0.6337    -0.0484 0.004 0.164 0.000 0.524 0.308
#> GSM615947     2  0.3860     0.7376 0.000 0.808 0.148 0.028 0.016
#> GSM615948     3  0.0290     0.9252 0.000 0.000 0.992 0.000 0.008
#> GSM615951     3  0.0693     0.9226 0.000 0.012 0.980 0.000 0.008
#> GSM615918     4  0.0451     0.5450 0.000 0.000 0.008 0.988 0.004
#> GSM615927     4  0.2871     0.4726 0.000 0.088 0.000 0.872 0.040
#> GSM615929     4  0.6847     0.2740 0.000 0.204 0.272 0.504 0.020
#> GSM615931     4  0.6068     0.0978 0.004 0.112 0.008 0.588 0.288
#> GSM615937     5  0.4010     0.5895 0.000 0.072 0.000 0.136 0.792
#> GSM615938     2  0.3509     0.5924 0.008 0.792 0.000 0.004 0.196
#> GSM615940     2  0.4816     0.6779 0.000 0.724 0.216 0.032 0.028
#> GSM615946     2  0.3400     0.7156 0.000 0.848 0.076 0.072 0.004
#> GSM615952     3  0.0693     0.9226 0.000 0.012 0.980 0.000 0.008
#> GSM615953     2  0.3474     0.6588 0.000 0.856 0.024 0.052 0.068
#> GSM615955     3  0.0854     0.9186 0.008 0.000 0.976 0.004 0.012
#> GSM721722     3  0.0613     0.9229 0.000 0.004 0.984 0.004 0.008
#> GSM721723     5  0.3596     0.4411 0.016 0.200 0.000 0.000 0.784
#> GSM721724     2  0.4004     0.7295 0.000 0.792 0.164 0.032 0.012
#> GSM615917     4  0.0290     0.5488 0.000 0.008 0.000 0.992 0.000
#> GSM615920     4  0.4759     0.3002 0.000 0.012 0.380 0.600 0.008
#> GSM615923     4  0.5896    -0.0238 0.000 0.100 0.000 0.452 0.448
#> GSM615928     4  0.4649     0.5076 0.000 0.160 0.008 0.752 0.080
#> GSM615934     3  0.3126     0.7944 0.000 0.088 0.868 0.028 0.016
#> GSM615950     5  0.4238     0.5893 0.000 0.088 0.000 0.136 0.776
#> GSM615954     5  0.6135     0.3763 0.004 0.128 0.000 0.336 0.532
#> GSM615956     2  0.3396     0.7365 0.000 0.832 0.136 0.028 0.004
#> GSM615958     1  0.0794     0.9896 0.972 0.000 0.028 0.000 0.000
#> GSM615924     4  0.2879     0.5403 0.000 0.100 0.000 0.868 0.032
#> GSM615930     4  0.6006     0.0377 0.004 0.124 0.000 0.564 0.308
#> GSM615932     2  0.3439     0.5910 0.008 0.800 0.000 0.004 0.188
#> GSM615935     2  0.3717     0.5978 0.008 0.792 0.008 0.004 0.188
#> GSM615936     2  0.5530     0.2522 0.000 0.528 0.420 0.032 0.020
#> GSM615942     3  0.0566     0.9233 0.000 0.004 0.984 0.000 0.012
#> GSM615943     5  0.6550     0.2439 0.004 0.172 0.000 0.388 0.436
#> GSM615949     3  0.5470     0.1382 0.000 0.388 0.560 0.032 0.020
#> GSM615957     2  0.5403     0.5275 0.016 0.580 0.036 0.000 0.368
#> GSM721720     5  0.3596     0.4411 0.016 0.200 0.000 0.000 0.784
#> GSM721721     4  0.5288     0.4792 0.000 0.176 0.008 0.696 0.120
#> GSM615959     1  0.1560     0.9896 0.948 0.000 0.028 0.004 0.020
#> GSM615960     1  0.0794     0.9896 0.972 0.000 0.028 0.000 0.000
#> GSM615961     1  0.1560     0.9896 0.948 0.000 0.028 0.004 0.020

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette   p1    p2    p3    p4    p5    p6
#> GSM615919     4  0.3073     0.6191 0.00 0.164 0.000 0.816 0.004 0.016
#> GSM615921     2  0.5298     0.4766 0.00 0.644 0.000 0.124 0.020 0.212
#> GSM615922     3  0.0862     0.9265 0.00 0.008 0.972 0.016 0.000 0.004
#> GSM615925     4  0.3938     0.5667 0.00 0.000 0.000 0.660 0.324 0.016
#> GSM615926     3  0.2000     0.9102 0.00 0.000 0.916 0.032 0.004 0.048
#> GSM615933     5  0.1686     0.8547 0.00 0.012 0.000 0.064 0.924 0.000
#> GSM615939     2  0.2868     0.7317 0.00 0.852 0.032 0.112 0.000 0.004
#> GSM615941     3  0.0260     0.9280 0.00 0.008 0.992 0.000 0.000 0.000
#> GSM615944     3  0.1777     0.9131 0.00 0.000 0.928 0.024 0.004 0.044
#> GSM615945     5  0.0806     0.8662 0.00 0.008 0.000 0.020 0.972 0.000
#> GSM615947     2  0.1788     0.7329 0.00 0.928 0.028 0.040 0.000 0.004
#> GSM615948     3  0.0665     0.9276 0.00 0.008 0.980 0.008 0.000 0.004
#> GSM615951     3  0.1882     0.9076 0.00 0.028 0.928 0.024 0.000 0.020
#> GSM615918     4  0.4034     0.5634 0.00 0.000 0.000 0.652 0.328 0.020
#> GSM615927     4  0.4128     0.3007 0.00 0.004 0.000 0.500 0.492 0.004
#> GSM615929     4  0.4349     0.4901 0.00 0.208 0.084 0.708 0.000 0.000
#> GSM615931     5  0.1674     0.8610 0.00 0.004 0.000 0.068 0.924 0.004
#> GSM615937     6  0.5174     0.2692 0.00 0.016 0.000 0.052 0.420 0.512
#> GSM615938     2  0.4533     0.5567 0.00 0.740 0.000 0.032 0.072 0.156
#> GSM615940     2  0.4519     0.6923 0.00 0.736 0.092 0.152 0.000 0.020
#> GSM615946     2  0.2062     0.7330 0.00 0.900 0.004 0.088 0.000 0.008
#> GSM615952     3  0.1962     0.9059 0.00 0.028 0.924 0.028 0.000 0.020
#> GSM615953     2  0.3299     0.6798 0.00 0.848 0.000 0.040 0.060 0.052
#> GSM615955     3  0.1857     0.9121 0.00 0.000 0.924 0.028 0.004 0.044
#> GSM721722     3  0.1777     0.9131 0.00 0.000 0.928 0.024 0.004 0.044
#> GSM721723     6  0.2812     0.6030 0.00 0.072 0.000 0.016 0.040 0.872
#> GSM721724     2  0.3424     0.7258 0.00 0.816 0.032 0.136 0.000 0.016
#> GSM615917     4  0.3888     0.5756 0.00 0.000 0.000 0.672 0.312 0.016
#> GSM615920     4  0.5187     0.3687 0.00 0.004 0.332 0.588 0.012 0.064
#> GSM615923     4  0.6323     0.0833 0.00 0.020 0.000 0.448 0.216 0.316
#> GSM615928     4  0.3140     0.6590 0.00 0.072 0.004 0.852 0.064 0.008
#> GSM615934     3  0.3603     0.7585 0.00 0.072 0.808 0.112 0.000 0.008
#> GSM615950     6  0.5178     0.2641 0.00 0.016 0.000 0.052 0.424 0.508
#> GSM615954     5  0.3957     0.4779 0.00 0.020 0.000 0.008 0.712 0.260
#> GSM615956     2  0.2907     0.7319 0.00 0.860 0.016 0.096 0.000 0.028
#> GSM615958     1  0.1198     0.9810 0.96 0.004 0.000 0.012 0.004 0.020
#> GSM615924     4  0.3351     0.6467 0.00 0.028 0.000 0.800 0.168 0.004
#> GSM615930     5  0.1471     0.8645 0.00 0.004 0.000 0.064 0.932 0.000
#> GSM615932     2  0.4780     0.5403 0.00 0.712 0.000 0.032 0.076 0.180
#> GSM615935     2  0.5037     0.5487 0.00 0.696 0.000 0.048 0.076 0.180
#> GSM615936     2  0.4934     0.6534 0.00 0.696 0.152 0.132 0.000 0.020
#> GSM615942     3  0.0964     0.9247 0.00 0.012 0.968 0.016 0.000 0.004
#> GSM615943     5  0.1180     0.8373 0.00 0.012 0.000 0.016 0.960 0.012
#> GSM615949     2  0.6092     0.4075 0.00 0.492 0.320 0.168 0.000 0.020
#> GSM615957     6  0.4435    -0.1001 0.00 0.400 0.004 0.016 0.004 0.576
#> GSM721720     6  0.2812     0.6030 0.00 0.072 0.000 0.016 0.040 0.872
#> GSM721721     4  0.3081     0.6473 0.00 0.100 0.004 0.852 0.032 0.012
#> GSM615959     1  0.0000     0.9810 1.00 0.000 0.000 0.000 0.000 0.000
#> GSM615960     1  0.1198     0.9810 0.96 0.004 0.000 0.012 0.004 0.020
#> GSM615961     1  0.0000     0.9810 1.00 0.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n age(p) gender(p) tissue(p) k
#> SD:kmeans 50 0.5182     0.318  1.27e-06 2
#> SD:kmeans 46 0.0181     0.603  1.03e-10 3
#> SD:kmeans 47 0.0615     0.589  3.48e-10 4
#> SD:kmeans 34 0.0559     0.518  7.45e-07 5
#> SD:kmeans 40 0.1125     0.341  1.49e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16230 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.697           0.804       0.922         0.5011 0.497   0.497
#> 3 3 0.769           0.879       0.923         0.3543 0.715   0.483
#> 4 4 0.619           0.595       0.778         0.1147 0.857   0.593
#> 5 5 0.615           0.523       0.735         0.0675 0.889   0.592
#> 6 6 0.652           0.448       0.643         0.0411 0.920   0.636

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM615919     2  0.0938      0.904 0.012 0.988
#> GSM615921     2  0.0000      0.912 0.000 1.000
#> GSM615922     1  0.0000      0.892 1.000 0.000
#> GSM615925     2  0.9460      0.429 0.364 0.636
#> GSM615926     1  0.0000      0.892 1.000 0.000
#> GSM615933     2  0.0000      0.912 0.000 1.000
#> GSM615939     1  0.9580      0.453 0.620 0.380
#> GSM615941     1  0.0000      0.892 1.000 0.000
#> GSM615944     1  0.0000      0.892 1.000 0.000
#> GSM615945     2  0.0000      0.912 0.000 1.000
#> GSM615947     2  0.9850      0.109 0.428 0.572
#> GSM615948     1  0.0000      0.892 1.000 0.000
#> GSM615951     1  0.0000      0.892 1.000 0.000
#> GSM615918     2  0.9580      0.397 0.380 0.620
#> GSM615927     2  0.0000      0.912 0.000 1.000
#> GSM615929     1  0.0000      0.892 1.000 0.000
#> GSM615931     2  0.2423      0.884 0.040 0.960
#> GSM615937     2  0.0000      0.912 0.000 1.000
#> GSM615938     2  0.0000      0.912 0.000 1.000
#> GSM615940     1  0.9580      0.453 0.620 0.380
#> GSM615946     2  0.0000      0.912 0.000 1.000
#> GSM615952     1  0.0000      0.892 1.000 0.000
#> GSM615953     2  0.0000      0.912 0.000 1.000
#> GSM615955     1  0.0000      0.892 1.000 0.000
#> GSM721722     1  0.0000      0.892 1.000 0.000
#> GSM721723     2  0.0000      0.912 0.000 1.000
#> GSM721724     1  0.9608      0.444 0.616 0.384
#> GSM615917     2  0.8555      0.581 0.280 0.720
#> GSM615920     1  0.2778      0.850 0.952 0.048
#> GSM615923     2  0.0000      0.912 0.000 1.000
#> GSM615928     2  0.0000      0.912 0.000 1.000
#> GSM615934     1  0.0000      0.892 1.000 0.000
#> GSM615950     2  0.0000      0.912 0.000 1.000
#> GSM615954     2  0.0000      0.912 0.000 1.000
#> GSM615956     2  0.9087      0.445 0.324 0.676
#> GSM615958     1  0.0000      0.892 1.000 0.000
#> GSM615924     2  0.0000      0.912 0.000 1.000
#> GSM615930     2  0.0000      0.912 0.000 1.000
#> GSM615932     2  0.0000      0.912 0.000 1.000
#> GSM615935     2  0.0000      0.912 0.000 1.000
#> GSM615936     1  0.9552      0.461 0.624 0.376
#> GSM615942     1  0.0000      0.892 1.000 0.000
#> GSM615943     2  0.0000      0.912 0.000 1.000
#> GSM615949     1  0.9393      0.493 0.644 0.356
#> GSM615957     2  0.3114      0.867 0.056 0.944
#> GSM721720     2  0.0000      0.912 0.000 1.000
#> GSM721721     2  0.4815      0.817 0.104 0.896
#> GSM615959     1  0.0000      0.892 1.000 0.000
#> GSM615960     1  0.0000      0.892 1.000 0.000
#> GSM615961     1  0.0000      0.892 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM615919     1  0.6518      0.304 0.512 0.484 0.004
#> GSM615921     2  0.4750      0.845 0.216 0.784 0.000
#> GSM615922     3  0.0424      0.977 0.000 0.008 0.992
#> GSM615925     1  0.3983      0.843 0.852 0.144 0.004
#> GSM615926     3  0.0000      0.978 0.000 0.000 1.000
#> GSM615933     1  0.0237      0.895 0.996 0.004 0.000
#> GSM615939     2  0.0000      0.858 0.000 1.000 0.000
#> GSM615941     3  0.0424      0.977 0.000 0.008 0.992
#> GSM615944     3  0.0237      0.978 0.000 0.004 0.996
#> GSM615945     1  0.0000      0.895 1.000 0.000 0.000
#> GSM615947     2  0.2878      0.864 0.096 0.904 0.000
#> GSM615948     3  0.0747      0.974 0.000 0.016 0.984
#> GSM615951     3  0.0592      0.976 0.000 0.012 0.988
#> GSM615918     1  0.4095      0.853 0.880 0.064 0.056
#> GSM615927     1  0.0000      0.895 1.000 0.000 0.000
#> GSM615929     2  0.4277      0.743 0.016 0.852 0.132
#> GSM615931     1  0.0000      0.895 1.000 0.000 0.000
#> GSM615937     1  0.0000      0.895 1.000 0.000 0.000
#> GSM615938     2  0.4654      0.849 0.208 0.792 0.000
#> GSM615940     2  0.0000      0.858 0.000 1.000 0.000
#> GSM615946     2  0.0000      0.858 0.000 1.000 0.000
#> GSM615952     3  0.0892      0.971 0.000 0.020 0.980
#> GSM615953     2  0.4555      0.853 0.200 0.800 0.000
#> GSM615955     3  0.0237      0.978 0.000 0.004 0.996
#> GSM721722     3  0.0000      0.978 0.000 0.000 1.000
#> GSM721723     2  0.4887      0.835 0.228 0.772 0.000
#> GSM721724     2  0.0000      0.858 0.000 1.000 0.000
#> GSM615917     1  0.3983      0.843 0.852 0.144 0.004
#> GSM615920     3  0.1289      0.954 0.032 0.000 0.968
#> GSM615923     1  0.0237      0.895 0.996 0.004 0.000
#> GSM615928     1  0.4605      0.799 0.796 0.204 0.000
#> GSM615934     3  0.4605      0.768 0.000 0.204 0.796
#> GSM615950     1  0.0000      0.895 1.000 0.000 0.000
#> GSM615954     1  0.0237      0.893 0.996 0.004 0.000
#> GSM615956     2  0.0000      0.858 0.000 1.000 0.000
#> GSM615958     3  0.0000      0.978 0.000 0.000 1.000
#> GSM615924     1  0.4291      0.818 0.820 0.180 0.000
#> GSM615930     1  0.0000      0.895 1.000 0.000 0.000
#> GSM615932     2  0.4605      0.851 0.204 0.796 0.000
#> GSM615935     2  0.4555      0.853 0.200 0.800 0.000
#> GSM615936     2  0.0424      0.859 0.008 0.992 0.000
#> GSM615942     3  0.1163      0.966 0.000 0.028 0.972
#> GSM615943     1  0.0000      0.895 1.000 0.000 0.000
#> GSM615949     2  0.0592      0.852 0.000 0.988 0.012
#> GSM615957     2  0.4555      0.853 0.200 0.800 0.000
#> GSM721720     2  0.5254      0.798 0.264 0.736 0.000
#> GSM721721     1  0.4654      0.796 0.792 0.208 0.000
#> GSM615959     3  0.0000      0.978 0.000 0.000 1.000
#> GSM615960     3  0.0000      0.978 0.000 0.000 1.000
#> GSM615961     3  0.0000      0.978 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM615919     3  0.8300     -0.159 0.024 0.316 0.436 0.224
#> GSM615921     2  0.3894      0.670 0.000 0.844 0.088 0.068
#> GSM615922     3  0.5308      0.121 0.452 0.004 0.540 0.004
#> GSM615925     4  0.4121      0.705 0.020 0.000 0.184 0.796
#> GSM615926     1  0.1716      0.878 0.936 0.000 0.064 0.000
#> GSM615933     4  0.2408      0.765 0.000 0.104 0.000 0.896
#> GSM615939     2  0.4888      0.433 0.000 0.588 0.412 0.000
#> GSM615941     3  0.5550      0.190 0.428 0.020 0.552 0.000
#> GSM615944     1  0.2408      0.852 0.896 0.000 0.104 0.000
#> GSM615945     4  0.1940      0.768 0.000 0.076 0.000 0.924
#> GSM615947     2  0.3311      0.680 0.000 0.828 0.172 0.000
#> GSM615948     3  0.5598      0.211 0.416 0.016 0.564 0.004
#> GSM615951     1  0.4868      0.675 0.748 0.040 0.212 0.000
#> GSM615918     4  0.3969      0.709 0.016 0.000 0.180 0.804
#> GSM615927     4  0.3208      0.728 0.000 0.004 0.148 0.848
#> GSM615929     3  0.4120      0.412 0.040 0.032 0.852 0.076
#> GSM615931     4  0.1792      0.768 0.000 0.068 0.000 0.932
#> GSM615937     4  0.5311      0.597 0.000 0.328 0.024 0.648
#> GSM615938     2  0.1661      0.724 0.000 0.944 0.004 0.052
#> GSM615940     3  0.4500      0.207 0.000 0.316 0.684 0.000
#> GSM615946     2  0.4522      0.562 0.000 0.680 0.320 0.000
#> GSM615952     1  0.4636      0.718 0.772 0.040 0.188 0.000
#> GSM615953     2  0.0188      0.743 0.000 0.996 0.004 0.000
#> GSM615955     1  0.1211      0.889 0.960 0.000 0.040 0.000
#> GSM721722     1  0.1022      0.891 0.968 0.000 0.032 0.000
#> GSM721723     2  0.3862      0.627 0.000 0.824 0.024 0.152
#> GSM721724     2  0.4933      0.395 0.000 0.568 0.432 0.000
#> GSM615917     4  0.4012      0.707 0.016 0.000 0.184 0.800
#> GSM615920     1  0.3485      0.723 0.856 0.000 0.116 0.028
#> GSM615923     4  0.4756      0.727 0.000 0.176 0.052 0.772
#> GSM615928     4  0.5112      0.455 0.000 0.004 0.436 0.560
#> GSM615934     3  0.4267      0.467 0.216 0.008 0.772 0.004
#> GSM615950     4  0.5193      0.605 0.000 0.324 0.020 0.656
#> GSM615954     4  0.5208      0.620 0.012 0.288 0.012 0.688
#> GSM615956     2  0.4454      0.574 0.000 0.692 0.308 0.000
#> GSM615958     1  0.0000      0.891 1.000 0.000 0.000 0.000
#> GSM615924     4  0.4164      0.668 0.000 0.000 0.264 0.736
#> GSM615930     4  0.1867      0.768 0.000 0.072 0.000 0.928
#> GSM615932     2  0.1209      0.736 0.000 0.964 0.004 0.032
#> GSM615935     2  0.1305      0.743 0.000 0.960 0.036 0.004
#> GSM615936     3  0.4343      0.330 0.004 0.264 0.732 0.000
#> GSM615942     3  0.6090      0.258 0.384 0.052 0.564 0.000
#> GSM615943     4  0.3539      0.735 0.000 0.176 0.004 0.820
#> GSM615949     3  0.3528      0.403 0.000 0.192 0.808 0.000
#> GSM615957     2  0.1302      0.739 0.000 0.956 0.044 0.000
#> GSM721720     2  0.4348      0.560 0.000 0.780 0.024 0.196
#> GSM721721     3  0.5503     -0.384 0.000 0.016 0.516 0.468
#> GSM615959     1  0.0000      0.891 1.000 0.000 0.000 0.000
#> GSM615960     1  0.0000      0.891 1.000 0.000 0.000 0.000
#> GSM615961     1  0.0000      0.891 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM615919     4  0.7415    0.25470 0.008 0.288 0.040 0.476 0.188
#> GSM615921     2  0.6233    0.56553 0.000 0.572 0.012 0.140 0.276
#> GSM615922     3  0.2488    0.72231 0.124 0.000 0.872 0.000 0.004
#> GSM615925     4  0.0162    0.50460 0.004 0.000 0.000 0.996 0.000
#> GSM615926     1  0.3741    0.68858 0.732 0.000 0.264 0.000 0.004
#> GSM615933     4  0.5624    0.03227 0.000 0.044 0.016 0.532 0.408
#> GSM615939     2  0.3141    0.61972 0.000 0.832 0.152 0.000 0.016
#> GSM615941     3  0.2660    0.72635 0.128 0.008 0.864 0.000 0.000
#> GSM615944     1  0.3612    0.70107 0.732 0.000 0.268 0.000 0.000
#> GSM615945     4  0.5076    0.00509 0.000 0.012 0.016 0.528 0.444
#> GSM615947     2  0.3647    0.73927 0.000 0.816 0.052 0.000 0.132
#> GSM615948     3  0.2563    0.73198 0.120 0.008 0.872 0.000 0.000
#> GSM615951     1  0.5599    0.46689 0.568 0.048 0.368 0.000 0.016
#> GSM615918     4  0.0613    0.50249 0.004 0.000 0.004 0.984 0.008
#> GSM615927     4  0.2389    0.44401 0.000 0.000 0.004 0.880 0.116
#> GSM615929     4  0.7485   -0.07987 0.016 0.188 0.380 0.392 0.024
#> GSM615931     4  0.5190    0.03861 0.000 0.008 0.028 0.540 0.424
#> GSM615937     5  0.2681    0.58936 0.000 0.012 0.004 0.108 0.876
#> GSM615938     2  0.4178    0.69250 0.000 0.696 0.008 0.004 0.292
#> GSM615940     3  0.5321    0.19674 0.000 0.472 0.484 0.004 0.040
#> GSM615946     2  0.2248    0.69135 0.000 0.900 0.088 0.000 0.012
#> GSM615952     1  0.6135    0.44567 0.544 0.060 0.360 0.000 0.036
#> GSM615953     2  0.4847    0.69340 0.000 0.704 0.044 0.012 0.240
#> GSM615955     1  0.1671    0.80220 0.924 0.000 0.076 0.000 0.000
#> GSM721722     1  0.2891    0.76986 0.824 0.000 0.176 0.000 0.000
#> GSM721723     5  0.4442    0.16548 0.000 0.304 0.016 0.004 0.676
#> GSM721724     2  0.3732    0.57032 0.000 0.792 0.176 0.000 0.032
#> GSM615917     4  0.0162    0.50460 0.004 0.000 0.000 0.996 0.000
#> GSM615920     1  0.3146    0.71897 0.844 0.000 0.028 0.128 0.000
#> GSM615923     5  0.5098    0.16096 0.000 0.020 0.012 0.404 0.564
#> GSM615928     4  0.6524    0.39431 0.000 0.108 0.104 0.636 0.152
#> GSM615934     3  0.2804    0.73798 0.056 0.048 0.888 0.000 0.008
#> GSM615950     5  0.2733    0.59072 0.000 0.012 0.004 0.112 0.872
#> GSM615954     5  0.4876    0.48485 0.004 0.036 0.020 0.216 0.724
#> GSM615956     2  0.2193    0.71322 0.000 0.912 0.060 0.000 0.028
#> GSM615958     1  0.0000    0.80836 1.000 0.000 0.000 0.000 0.000
#> GSM615924     4  0.3997    0.46095 0.000 0.068 0.020 0.820 0.092
#> GSM615930     4  0.4865    0.01486 0.000 0.004 0.016 0.536 0.444
#> GSM615932     2  0.3838    0.70869 0.000 0.716 0.004 0.000 0.280
#> GSM615935     2  0.4088    0.70925 0.000 0.712 0.008 0.004 0.276
#> GSM615936     3  0.5201    0.45965 0.000 0.344 0.608 0.008 0.040
#> GSM615942     3  0.2664    0.74219 0.092 0.020 0.884 0.000 0.004
#> GSM615943     5  0.5080    0.18087 0.000 0.012 0.020 0.396 0.572
#> GSM615949     3  0.3516    0.69127 0.000 0.164 0.812 0.004 0.020
#> GSM615957     2  0.4380    0.68278 0.000 0.676 0.020 0.000 0.304
#> GSM721720     5  0.4089    0.32848 0.000 0.244 0.016 0.004 0.736
#> GSM721721     4  0.7097    0.33317 0.000 0.148 0.080 0.556 0.216
#> GSM615959     1  0.0000    0.80836 1.000 0.000 0.000 0.000 0.000
#> GSM615960     1  0.0000    0.80836 1.000 0.000 0.000 0.000 0.000
#> GSM615961     1  0.0000    0.80836 1.000 0.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM615919     4  0.6010     0.5057 0.000 0.084 0.000 0.564 0.072 0.280
#> GSM615921     2  0.7142     0.3407 0.000 0.456 0.000 0.160 0.224 0.160
#> GSM615922     3  0.1716     0.8319 0.036 0.000 0.932 0.004 0.000 0.028
#> GSM615925     4  0.0363     0.6303 0.000 0.000 0.000 0.988 0.012 0.000
#> GSM615926     1  0.4661     0.4945 0.600 0.008 0.360 0.004 0.000 0.028
#> GSM615933     5  0.6877     0.3961 0.000 0.068 0.004 0.364 0.404 0.160
#> GSM615939     6  0.4405     0.1402 0.000 0.472 0.024 0.000 0.000 0.504
#> GSM615941     3  0.1370     0.8296 0.036 0.004 0.948 0.000 0.000 0.012
#> GSM615944     1  0.4183     0.3384 0.508 0.000 0.480 0.000 0.000 0.012
#> GSM615945     5  0.6261     0.4392 0.000 0.036 0.004 0.360 0.476 0.124
#> GSM615947     2  0.5345     0.0994 0.000 0.552 0.016 0.000 0.076 0.356
#> GSM615948     3  0.1793     0.8428 0.032 0.000 0.928 0.000 0.004 0.036
#> GSM615951     1  0.7261     0.2392 0.408 0.144 0.308 0.000 0.004 0.136
#> GSM615918     4  0.1196     0.6025 0.000 0.000 0.000 0.952 0.040 0.008
#> GSM615927     4  0.4904     0.2947 0.000 0.024 0.004 0.712 0.156 0.104
#> GSM615929     4  0.6760     0.2690 0.000 0.064 0.192 0.452 0.000 0.292
#> GSM615931     5  0.6067     0.3796 0.000 0.012 0.012 0.428 0.428 0.120
#> GSM615937     5  0.2186     0.4460 0.000 0.056 0.000 0.024 0.908 0.012
#> GSM615938     2  0.5683     0.4439 0.000 0.552 0.004 0.000 0.228 0.216
#> GSM615940     6  0.5579     0.4258 0.000 0.192 0.264 0.000 0.000 0.544
#> GSM615946     2  0.4229    -0.2208 0.000 0.548 0.016 0.000 0.000 0.436
#> GSM615952     1  0.7797     0.2354 0.364 0.232 0.256 0.000 0.020 0.128
#> GSM615953     2  0.4261     0.3634 0.004 0.760 0.008 0.000 0.104 0.124
#> GSM615955     1  0.2302     0.6960 0.872 0.000 0.120 0.000 0.000 0.008
#> GSM721722     1  0.3852     0.5758 0.664 0.000 0.324 0.000 0.000 0.012
#> GSM721723     5  0.4881    -0.0566 0.000 0.336 0.000 0.000 0.588 0.076
#> GSM721724     6  0.4879     0.3134 0.000 0.356 0.052 0.000 0.008 0.584
#> GSM615917     4  0.0725     0.6355 0.000 0.000 0.000 0.976 0.012 0.012
#> GSM615920     1  0.4639     0.6316 0.760 0.008 0.092 0.112 0.012 0.016
#> GSM615923     5  0.5412     0.0588 0.000 0.008 0.004 0.308 0.580 0.100
#> GSM615928     4  0.6003     0.6013 0.000 0.012 0.044 0.616 0.132 0.196
#> GSM615934     3  0.3046     0.7810 0.028 0.008 0.848 0.004 0.000 0.112
#> GSM615950     5  0.2147     0.4656 0.000 0.044 0.000 0.032 0.912 0.012
#> GSM615954     5  0.5804     0.4961 0.008 0.140 0.000 0.136 0.652 0.064
#> GSM615956     2  0.3445     0.0806 0.000 0.732 0.000 0.000 0.008 0.260
#> GSM615958     1  0.0000     0.7187 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM615924     4  0.3881     0.6485 0.000 0.020 0.008 0.808 0.064 0.100
#> GSM615930     5  0.5955     0.4230 0.000 0.020 0.004 0.392 0.472 0.112
#> GSM615932     2  0.5193     0.4671 0.000 0.632 0.004 0.000 0.200 0.164
#> GSM615935     2  0.5613     0.4407 0.000 0.608 0.012 0.004 0.180 0.196
#> GSM615936     6  0.6330     0.3071 0.004 0.244 0.268 0.008 0.004 0.472
#> GSM615942     3  0.2034     0.8272 0.024 0.004 0.912 0.000 0.000 0.060
#> GSM615943     5  0.5929     0.4922 0.000 0.036 0.004 0.260 0.580 0.120
#> GSM615949     3  0.4818     0.2980 0.000 0.040 0.600 0.004 0.008 0.348
#> GSM615957     2  0.4859     0.3994 0.000 0.656 0.008 0.000 0.252 0.084
#> GSM721720     5  0.4604     0.0276 0.000 0.300 0.000 0.000 0.636 0.064
#> GSM721721     4  0.5899     0.5517 0.000 0.000 0.028 0.556 0.140 0.276
#> GSM615959     1  0.0000     0.7187 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM615960     1  0.0000     0.7187 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM615961     1  0.0000     0.7187 1.000 0.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n age(p) gender(p) tissue(p) k
#> SD:skmeans 41  0.615     0.508   0.04914 2
#> SD:skmeans 49  0.654     0.129   0.01120 3
#> SD:skmeans 36  0.965     0.496   0.00601 4
#> SD:skmeans 31  0.913     0.754   0.02413 5
#> SD:skmeans 19  0.553     0.203   0.01300 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16230 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.974       0.981         0.1708 0.850   0.850
#> 3 3 0.453           0.698       0.865         2.3623 0.569   0.493
#> 4 4 0.767           0.821       0.919         0.2479 0.794   0.544
#> 5 5 0.675           0.673       0.859         0.0501 0.960   0.858
#> 6 6 0.692           0.627       0.790         0.0485 0.926   0.715

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM615919     2  0.0938      0.981 0.012 0.988
#> GSM615921     2  0.0000      0.980 0.000 1.000
#> GSM615922     2  0.1633      0.980 0.024 0.976
#> GSM615925     2  0.0000      0.980 0.000 1.000
#> GSM615926     2  0.1633      0.980 0.024 0.976
#> GSM615933     2  0.0000      0.980 0.000 1.000
#> GSM615939     2  0.1633      0.980 0.024 0.976
#> GSM615941     2  0.1633      0.980 0.024 0.976
#> GSM615944     2  0.1633      0.980 0.024 0.976
#> GSM615945     2  0.0000      0.980 0.000 1.000
#> GSM615947     2  0.1414      0.981 0.020 0.980
#> GSM615948     2  0.1633      0.980 0.024 0.976
#> GSM615951     2  0.1633      0.980 0.024 0.976
#> GSM615918     2  0.0672      0.981 0.008 0.992
#> GSM615927     2  0.0000      0.980 0.000 1.000
#> GSM615929     2  0.1633      0.980 0.024 0.976
#> GSM615931     2  0.0376      0.981 0.004 0.996
#> GSM615937     2  0.0000      0.980 0.000 1.000
#> GSM615938     2  0.0000      0.980 0.000 1.000
#> GSM615940     2  0.1633      0.980 0.024 0.976
#> GSM615946     2  0.1633      0.980 0.024 0.976
#> GSM615952     2  0.1633      0.980 0.024 0.976
#> GSM615953     2  0.1184      0.981 0.016 0.984
#> GSM615955     2  0.8016      0.713 0.244 0.756
#> GSM721722     2  0.6438      0.831 0.164 0.836
#> GSM721723     2  0.0000      0.980 0.000 1.000
#> GSM721724     2  0.1633      0.980 0.024 0.976
#> GSM615917     2  0.0000      0.980 0.000 1.000
#> GSM615920     2  0.1633      0.980 0.024 0.976
#> GSM615923     2  0.0000      0.980 0.000 1.000
#> GSM615928     2  0.1414      0.981 0.020 0.980
#> GSM615934     2  0.1633      0.980 0.024 0.976
#> GSM615950     2  0.0000      0.980 0.000 1.000
#> GSM615954     2  0.0000      0.980 0.000 1.000
#> GSM615956     2  0.1633      0.980 0.024 0.976
#> GSM615958     1  0.0000      1.000 1.000 0.000
#> GSM615924     2  0.0000      0.980 0.000 1.000
#> GSM615930     2  0.0000      0.980 0.000 1.000
#> GSM615932     2  0.0000      0.980 0.000 1.000
#> GSM615935     2  0.0000      0.980 0.000 1.000
#> GSM615936     2  0.1414      0.981 0.020 0.980
#> GSM615942     2  0.1633      0.980 0.024 0.976
#> GSM615943     2  0.0000      0.980 0.000 1.000
#> GSM615949     2  0.1633      0.980 0.024 0.976
#> GSM615957     2  0.0672      0.981 0.008 0.992
#> GSM721720     2  0.0672      0.981 0.008 0.992
#> GSM721721     2  0.0376      0.981 0.004 0.996
#> GSM615959     1  0.0000      1.000 1.000 0.000
#> GSM615960     1  0.0000      1.000 1.000 0.000
#> GSM615961     1  0.0000      1.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM615919     2  0.6126      0.376 0.000 0.600 0.400
#> GSM615921     2  0.0237      0.703 0.000 0.996 0.004
#> GSM615922     3  0.0000      0.879 0.000 0.000 1.000
#> GSM615925     3  0.5905      0.432 0.000 0.352 0.648
#> GSM615926     3  0.0000      0.879 0.000 0.000 1.000
#> GSM615933     2  0.0000      0.702 0.000 1.000 0.000
#> GSM615939     2  0.6215      0.414 0.000 0.572 0.428
#> GSM615941     3  0.0000      0.879 0.000 0.000 1.000
#> GSM615944     3  0.0000      0.879 0.000 0.000 1.000
#> GSM615945     2  0.4974      0.596 0.000 0.764 0.236
#> GSM615947     2  0.5948      0.521 0.000 0.640 0.360
#> GSM615948     3  0.0000      0.879 0.000 0.000 1.000
#> GSM615951     3  0.0237      0.876 0.000 0.004 0.996
#> GSM615918     3  0.3941      0.741 0.000 0.156 0.844
#> GSM615927     2  0.5178      0.575 0.000 0.744 0.256
#> GSM615929     3  0.0000      0.879 0.000 0.000 1.000
#> GSM615931     3  0.4702      0.664 0.000 0.212 0.788
#> GSM615937     2  0.5291      0.560 0.000 0.732 0.268
#> GSM615938     2  0.0000      0.702 0.000 1.000 0.000
#> GSM615940     3  0.0424      0.874 0.000 0.008 0.992
#> GSM615946     2  0.5926      0.520 0.000 0.644 0.356
#> GSM615952     2  0.6026      0.501 0.000 0.624 0.376
#> GSM615953     2  0.0000      0.702 0.000 1.000 0.000
#> GSM615955     3  0.0747      0.870 0.016 0.000 0.984
#> GSM721722     3  0.0000      0.879 0.000 0.000 1.000
#> GSM721723     2  0.0000      0.702 0.000 1.000 0.000
#> GSM721724     2  0.6180      0.441 0.000 0.584 0.416
#> GSM615917     2  0.6215      0.221 0.000 0.572 0.428
#> GSM615920     3  0.0237      0.877 0.000 0.004 0.996
#> GSM615923     3  0.5621      0.515 0.000 0.308 0.692
#> GSM615928     3  0.4121      0.729 0.000 0.168 0.832
#> GSM615934     3  0.0000      0.879 0.000 0.000 1.000
#> GSM615950     2  0.6260      0.144 0.000 0.552 0.448
#> GSM615954     2  0.0000      0.702 0.000 1.000 0.000
#> GSM615956     2  0.5926      0.520 0.000 0.644 0.356
#> GSM615958     1  0.0000      1.000 1.000 0.000 0.000
#> GSM615924     3  0.6026      0.390 0.000 0.376 0.624
#> GSM615930     2  0.4974      0.596 0.000 0.764 0.236
#> GSM615932     2  0.0000      0.702 0.000 1.000 0.000
#> GSM615935     2  0.0000      0.702 0.000 1.000 0.000
#> GSM615936     3  0.4452      0.680 0.000 0.192 0.808
#> GSM615942     3  0.0000      0.879 0.000 0.000 1.000
#> GSM615943     2  0.4796      0.611 0.000 0.780 0.220
#> GSM615949     3  0.0000      0.879 0.000 0.000 1.000
#> GSM615957     2  0.1031      0.701 0.000 0.976 0.024
#> GSM721720     2  0.3941      0.661 0.000 0.844 0.156
#> GSM721721     3  0.0237      0.877 0.000 0.004 0.996
#> GSM615959     1  0.0000      1.000 1.000 0.000 0.000
#> GSM615960     1  0.0000      1.000 1.000 0.000 0.000
#> GSM615961     1  0.0000      1.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette p1    p2    p3    p4
#> GSM615919     2  0.3893      0.699  0 0.796 0.008 0.196
#> GSM615921     4  0.4961      0.148  0 0.448 0.000 0.552
#> GSM615922     3  0.0000      0.938  0 0.000 1.000 0.000
#> GSM615925     4  0.2281      0.798  0 0.000 0.096 0.904
#> GSM615926     3  0.0000      0.938  0 0.000 1.000 0.000
#> GSM615933     4  0.0000      0.823  0 0.000 0.000 1.000
#> GSM615939     2  0.0336      0.885  0 0.992 0.008 0.000
#> GSM615941     3  0.0000      0.938  0 0.000 1.000 0.000
#> GSM615944     3  0.0000      0.938  0 0.000 1.000 0.000
#> GSM615945     4  0.0000      0.823  0 0.000 0.000 1.000
#> GSM615947     2  0.0336      0.885  0 0.992 0.008 0.000
#> GSM615948     3  0.0000      0.938  0 0.000 1.000 0.000
#> GSM615951     3  0.1022      0.918  0 0.032 0.968 0.000
#> GSM615918     4  0.4454      0.593  0 0.000 0.308 0.692
#> GSM615927     4  0.0000      0.823  0 0.000 0.000 1.000
#> GSM615929     3  0.2647      0.837  0 0.120 0.880 0.000
#> GSM615931     3  0.4855      0.356  0 0.000 0.600 0.400
#> GSM615937     4  0.1022      0.822  0 0.000 0.032 0.968
#> GSM615938     2  0.2081      0.860  0 0.916 0.000 0.084
#> GSM615940     3  0.2216      0.874  0 0.092 0.908 0.000
#> GSM615946     2  0.0336      0.885  0 0.992 0.008 0.000
#> GSM615952     2  0.3610      0.700  0 0.800 0.200 0.000
#> GSM615953     2  0.1211      0.886  0 0.960 0.000 0.040
#> GSM615955     3  0.0000      0.938  0 0.000 1.000 0.000
#> GSM721722     3  0.0000      0.938  0 0.000 1.000 0.000
#> GSM721723     2  0.1302      0.883  0 0.956 0.000 0.044
#> GSM721724     2  0.0336      0.885  0 0.992 0.008 0.000
#> GSM615917     4  0.1637      0.815  0 0.000 0.060 0.940
#> GSM615920     3  0.0000      0.938  0 0.000 1.000 0.000
#> GSM615923     3  0.3837      0.689  0 0.000 0.776 0.224
#> GSM615928     4  0.5905      0.673  0 0.156 0.144 0.700
#> GSM615934     3  0.0000      0.938  0 0.000 1.000 0.000
#> GSM615950     4  0.4382      0.517  0 0.000 0.296 0.704
#> GSM615954     2  0.3172      0.791  0 0.840 0.000 0.160
#> GSM615956     2  0.0336      0.885  0 0.992 0.008 0.000
#> GSM615958     1  0.0000      1.000  1 0.000 0.000 0.000
#> GSM615924     4  0.4685      0.732  0 0.156 0.060 0.784
#> GSM615930     4  0.0000      0.823  0 0.000 0.000 1.000
#> GSM615932     2  0.4941      0.256  0 0.564 0.000 0.436
#> GSM615935     4  0.2281      0.769  0 0.096 0.000 0.904
#> GSM615936     3  0.1970      0.890  0 0.008 0.932 0.060
#> GSM615942     3  0.0000      0.938  0 0.000 1.000 0.000
#> GSM615943     4  0.0000      0.823  0 0.000 0.000 1.000
#> GSM615949     3  0.0000      0.938  0 0.000 1.000 0.000
#> GSM615957     2  0.0921      0.887  0 0.972 0.000 0.028
#> GSM721720     2  0.0921      0.887  0 0.972 0.000 0.028
#> GSM721721     3  0.0000      0.938  0 0.000 1.000 0.000
#> GSM615959     1  0.0000      1.000  1 0.000 0.000 0.000
#> GSM615960     1  0.0000      1.000  1 0.000 0.000 0.000
#> GSM615961     1  0.0000      1.000  1 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1    p2    p3    p4    p5
#> GSM615919     2  0.4305      0.469  0 0.748 0.000 0.200 0.052
#> GSM615921     4  0.4380      0.301  0 0.376 0.000 0.616 0.008
#> GSM615922     3  0.0000      0.922  0 0.000 1.000 0.000 0.000
#> GSM615925     4  0.2054      0.762  0 0.000 0.028 0.920 0.052
#> GSM615926     3  0.0000      0.922  0 0.000 1.000 0.000 0.000
#> GSM615933     4  0.0162      0.773  0 0.000 0.000 0.996 0.004
#> GSM615939     2  0.0000      0.649  0 1.000 0.000 0.000 0.000
#> GSM615941     3  0.0000      0.922  0 0.000 1.000 0.000 0.000
#> GSM615944     3  0.0000      0.922  0 0.000 1.000 0.000 0.000
#> GSM615945     4  0.0162      0.773  0 0.000 0.000 0.996 0.004
#> GSM615947     2  0.0000      0.649  0 1.000 0.000 0.000 0.000
#> GSM615948     3  0.0000      0.922  0 0.000 1.000 0.000 0.000
#> GSM615951     3  0.0865      0.905  0 0.024 0.972 0.000 0.004
#> GSM615918     4  0.4575      0.543  0 0.000 0.236 0.712 0.052
#> GSM615927     4  0.0000      0.772  0 0.000 0.000 1.000 0.000
#> GSM615929     3  0.2970      0.776  0 0.168 0.828 0.004 0.000
#> GSM615931     3  0.4415      0.383  0 0.000 0.604 0.388 0.008
#> GSM615937     4  0.4620      0.481  0 0.000 0.028 0.652 0.320
#> GSM615938     2  0.2127      0.607  0 0.892 0.000 0.108 0.000
#> GSM615940     3  0.2605      0.808  0 0.148 0.852 0.000 0.000
#> GSM615946     2  0.0000      0.649  0 1.000 0.000 0.000 0.000
#> GSM615952     2  0.6422      0.110  0 0.488 0.316 0.000 0.196
#> GSM615953     2  0.5567      0.419  0 0.644 0.000 0.160 0.196
#> GSM615955     3  0.0000      0.922  0 0.000 1.000 0.000 0.000
#> GSM721722     3  0.0000      0.922  0 0.000 1.000 0.000 0.000
#> GSM721723     5  0.3305      0.393  0 0.224 0.000 0.000 0.776
#> GSM721724     2  0.0000      0.649  0 1.000 0.000 0.000 0.000
#> GSM615917     4  0.1430      0.767  0 0.000 0.004 0.944 0.052
#> GSM615920     3  0.0000      0.922  0 0.000 1.000 0.000 0.000
#> GSM615923     3  0.4772      0.619  0 0.004 0.720 0.208 0.068
#> GSM615928     4  0.4901      0.592  0 0.116 0.168 0.716 0.000
#> GSM615934     3  0.0000      0.922  0 0.000 1.000 0.000 0.000
#> GSM615950     5  0.6664     -0.123  0 0.008 0.172 0.408 0.412
#> GSM615954     2  0.6319      0.243  0 0.520 0.000 0.284 0.196
#> GSM615956     2  0.3074      0.520  0 0.804 0.000 0.000 0.196
#> GSM615958     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM615924     4  0.3664      0.698  0 0.120 0.052 0.824 0.004
#> GSM615930     4  0.3508      0.588  0 0.000 0.000 0.748 0.252
#> GSM615932     2  0.4126      0.284  0 0.620 0.000 0.380 0.000
#> GSM615935     4  0.4134      0.556  0 0.044 0.000 0.760 0.196
#> GSM615936     3  0.3278      0.829  0 0.024 0.868 0.052 0.056
#> GSM615942     3  0.0000      0.922  0 0.000 1.000 0.000 0.000
#> GSM615943     4  0.0162      0.773  0 0.000 0.000 0.996 0.004
#> GSM615949     3  0.0162      0.921  0 0.004 0.996 0.000 0.000
#> GSM615957     5  0.4291     -0.099  0 0.464 0.000 0.000 0.536
#> GSM721720     5  0.1270      0.457  0 0.052 0.000 0.000 0.948
#> GSM721721     3  0.0162      0.921  0 0.004 0.996 0.000 0.000
#> GSM615959     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM615960     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM615961     1  0.0000      1.000  1 0.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1    p2    p3    p4    p5    p6
#> GSM615919     2  0.5560    0.41705  0 0.612 0.000 0.084 0.044 0.260
#> GSM615921     4  0.4927    0.07758  0 0.056 0.000 0.540 0.004 0.400
#> GSM615922     3  0.0000    0.90595  0 0.000 1.000 0.000 0.000 0.000
#> GSM615925     4  0.3683    0.53579  0 0.192 0.000 0.764 0.044 0.000
#> GSM615926     3  0.0000    0.90595  0 0.000 1.000 0.000 0.000 0.000
#> GSM615933     4  0.0000    0.55478  0 0.000 0.000 1.000 0.000 0.000
#> GSM615939     2  0.3833    0.72444  0 0.556 0.000 0.000 0.000 0.444
#> GSM615941     3  0.0000    0.90595  0 0.000 1.000 0.000 0.000 0.000
#> GSM615944     3  0.0000    0.90595  0 0.000 1.000 0.000 0.000 0.000
#> GSM615945     4  0.0146    0.55300  0 0.000 0.000 0.996 0.004 0.000
#> GSM615947     2  0.3823    0.72474  0 0.564 0.000 0.000 0.000 0.436
#> GSM615948     3  0.0000    0.90595  0 0.000 1.000 0.000 0.000 0.000
#> GSM615951     3  0.2871    0.80534  0 0.004 0.804 0.000 0.000 0.192
#> GSM615918     4  0.6201    0.41860  0 0.192 0.212 0.552 0.044 0.000
#> GSM615927     4  0.0146    0.55562  0 0.004 0.000 0.996 0.000 0.000
#> GSM615929     3  0.3088    0.80680  0 0.172 0.808 0.000 0.000 0.020
#> GSM615931     4  0.3986    0.00641  0 0.000 0.464 0.532 0.000 0.004
#> GSM615937     5  0.4159    0.48379  0 0.000 0.004 0.252 0.704 0.040
#> GSM615938     2  0.5479    0.61622  0 0.472 0.000 0.108 0.004 0.416
#> GSM615940     3  0.3210    0.81137  0 0.168 0.804 0.000 0.000 0.028
#> GSM615946     2  0.3833    0.72444  0 0.556 0.000 0.000 0.000 0.444
#> GSM615952     6  0.2278    0.53257  0 0.004 0.128 0.000 0.000 0.868
#> GSM615953     6  0.1219    0.58203  0 0.004 0.000 0.048 0.000 0.948
#> GSM615955     3  0.2632    0.82499  0 0.004 0.832 0.000 0.000 0.164
#> GSM721722     3  0.0000    0.90595  0 0.000 1.000 0.000 0.000 0.000
#> GSM721723     5  0.5836   -0.11189  0 0.188 0.000 0.000 0.420 0.392
#> GSM721724     2  0.3756    0.70769  0 0.600 0.000 0.000 0.000 0.400
#> GSM615917     4  0.3773    0.53323  0 0.204 0.000 0.752 0.044 0.000
#> GSM615920     3  0.0000    0.90595  0 0.000 1.000 0.000 0.000 0.000
#> GSM615923     3  0.5733    0.52132  0 0.064 0.616 0.088 0.232 0.000
#> GSM615928     4  0.5948    0.40127  0 0.132 0.272 0.560 0.000 0.036
#> GSM615934     3  0.0000    0.90595  0 0.000 1.000 0.000 0.000 0.000
#> GSM615950     5  0.3828    0.43190  0 0.000 0.000 0.440 0.560 0.000
#> GSM615954     6  0.3337    0.41158  0 0.000 0.000 0.260 0.004 0.736
#> GSM615956     6  0.2219    0.43272  0 0.136 0.000 0.000 0.000 0.864
#> GSM615958     1  0.0000    1.00000  1 0.000 0.000 0.000 0.000 0.000
#> GSM615924     4  0.5516    0.45213  0 0.132 0.212 0.628 0.000 0.028
#> GSM615930     5  0.3857    0.40045  0 0.000 0.000 0.468 0.532 0.000
#> GSM615932     2  0.6047    0.33092  0 0.412 0.000 0.316 0.000 0.272
#> GSM615935     4  0.3833    0.13921  0 0.008 0.000 0.648 0.000 0.344
#> GSM615936     3  0.4288    0.73508  0 0.064 0.716 0.004 0.000 0.216
#> GSM615942     3  0.0000    0.90595  0 0.000 1.000 0.000 0.000 0.000
#> GSM615943     4  0.0146    0.55300  0 0.000 0.000 0.996 0.004 0.000
#> GSM615949     3  0.1267    0.88639  0 0.060 0.940 0.000 0.000 0.000
#> GSM615957     6  0.4834    0.43057  0 0.120 0.000 0.000 0.224 0.656
#> GSM721720     5  0.4299    0.31812  0 0.188 0.000 0.000 0.720 0.092
#> GSM721721     3  0.1556    0.87921  0 0.080 0.920 0.000 0.000 0.000
#> GSM615959     1  0.0000    1.00000  1 0.000 0.000 0.000 0.000 0.000
#> GSM615960     1  0.0000    1.00000  1 0.000 0.000 0.000 0.000 0.000
#> GSM615961     1  0.0000    1.00000  1 0.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n age(p) gender(p) tissue(p) k
#> SD:pam 50 0.0825     0.785  9.94e-10 2
#> SD:pam 43 0.0785     0.412  4.60e-10 3
#> SD:pam 47 0.0952     0.727  3.48e-10 4
#> SD:pam 38 0.0657     0.790  2.83e-08 5
#> SD:pam 34 0.0275     0.431  7.45e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16230 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.979       0.985         0.1665 0.850   0.850
#> 3 3 0.372           0.608       0.829         2.1909 0.598   0.526
#> 4 4 0.491           0.691       0.828         0.2400 0.760   0.525
#> 5 5 0.574           0.539       0.688         0.1133 0.856   0.619
#> 6 6 0.623           0.573       0.726         0.0745 0.876   0.640

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM615919     2   0.141      0.984 0.020 0.980
#> GSM615921     2   0.000      0.984 0.000 1.000
#> GSM615922     2   0.141      0.984 0.020 0.980
#> GSM615925     2   0.000      0.984 0.000 1.000
#> GSM615926     2   0.141      0.984 0.020 0.980
#> GSM615933     2   0.000      0.984 0.000 1.000
#> GSM615939     2   0.141      0.984 0.020 0.980
#> GSM615941     2   0.141      0.984 0.020 0.980
#> GSM615944     2   0.141      0.984 0.020 0.980
#> GSM615945     2   0.000      0.984 0.000 1.000
#> GSM615947     2   0.141      0.984 0.020 0.980
#> GSM615948     2   0.141      0.984 0.020 0.980
#> GSM615951     2   0.141      0.984 0.020 0.980
#> GSM615918     2   0.000      0.984 0.000 1.000
#> GSM615927     2   0.000      0.984 0.000 1.000
#> GSM615929     2   0.141      0.984 0.020 0.980
#> GSM615931     2   0.000      0.984 0.000 1.000
#> GSM615937     2   0.000      0.984 0.000 1.000
#> GSM615938     2   0.000      0.984 0.000 1.000
#> GSM615940     2   0.141      0.984 0.020 0.980
#> GSM615946     2   0.141      0.984 0.020 0.980
#> GSM615952     2   0.141      0.984 0.020 0.980
#> GSM615953     2   0.000      0.984 0.000 1.000
#> GSM615955     2   0.625      0.840 0.156 0.844
#> GSM721722     2   0.615      0.845 0.152 0.848
#> GSM721723     2   0.000      0.984 0.000 1.000
#> GSM721724     2   0.141      0.984 0.020 0.980
#> GSM615917     2   0.000      0.984 0.000 1.000
#> GSM615920     2   0.141      0.984 0.020 0.980
#> GSM615923     2   0.000      0.984 0.000 1.000
#> GSM615928     2   0.141      0.984 0.020 0.980
#> GSM615934     2   0.141      0.984 0.020 0.980
#> GSM615950     2   0.000      0.984 0.000 1.000
#> GSM615954     2   0.000      0.984 0.000 1.000
#> GSM615956     2   0.141      0.984 0.020 0.980
#> GSM615958     1   0.000      1.000 1.000 0.000
#> GSM615924     2   0.000      0.984 0.000 1.000
#> GSM615930     2   0.000      0.984 0.000 1.000
#> GSM615932     2   0.000      0.984 0.000 1.000
#> GSM615935     2   0.000      0.984 0.000 1.000
#> GSM615936     2   0.141      0.984 0.020 0.980
#> GSM615942     2   0.141      0.984 0.020 0.980
#> GSM615943     2   0.000      0.984 0.000 1.000
#> GSM615949     2   0.141      0.984 0.020 0.980
#> GSM615957     2   0.000      0.984 0.000 1.000
#> GSM721720     2   0.000      0.984 0.000 1.000
#> GSM721721     2   0.141      0.984 0.020 0.980
#> GSM615959     1   0.000      1.000 1.000 0.000
#> GSM615960     1   0.000      1.000 1.000 0.000
#> GSM615961     1   0.000      1.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette p1    p2    p3
#> GSM615919     3  0.2165     0.7727  0 0.064 0.936
#> GSM615921     3  0.6235    -0.0263  0 0.436 0.564
#> GSM615922     3  0.1163     0.7720  0 0.028 0.972
#> GSM615925     3  0.5706     0.4550  0 0.320 0.680
#> GSM615926     3  0.2066     0.7697  0 0.060 0.940
#> GSM615933     2  0.6274    -0.1108  0 0.544 0.456
#> GSM615939     3  0.4702     0.6010  0 0.212 0.788
#> GSM615941     3  0.1031     0.7691  0 0.024 0.976
#> GSM615944     3  0.1163     0.7678  0 0.028 0.972
#> GSM615945     2  0.2711     0.5894  0 0.912 0.088
#> GSM615947     3  0.5138     0.5631  0 0.252 0.748
#> GSM615948     3  0.1031     0.7727  0 0.024 0.976
#> GSM615951     3  0.1163     0.7678  0 0.028 0.972
#> GSM615918     3  0.5706     0.4550  0 0.320 0.680
#> GSM615927     2  0.5497     0.3379  0 0.708 0.292
#> GSM615929     3  0.1289     0.7708  0 0.032 0.968
#> GSM615931     3  0.6192     0.3458  0 0.420 0.580
#> GSM615937     2  0.1411     0.6098  0 0.964 0.036
#> GSM615938     2  0.5465     0.6299  0 0.712 0.288
#> GSM615940     3  0.2625     0.7505  0 0.084 0.916
#> GSM615946     3  0.4931     0.5853  0 0.232 0.768
#> GSM615952     3  0.3551     0.6837  0 0.132 0.868
#> GSM615953     2  0.5529     0.6237  0 0.704 0.296
#> GSM615955     3  0.1163     0.7678  0 0.028 0.972
#> GSM721722     3  0.1163     0.7678  0 0.028 0.972
#> GSM721723     2  0.5465     0.6299  0 0.712 0.288
#> GSM721724     3  0.4750     0.5941  0 0.216 0.784
#> GSM615917     3  0.5706     0.4550  0 0.320 0.680
#> GSM615920     3  0.2448     0.7674  0 0.076 0.924
#> GSM615923     2  0.6286    -0.1219  0 0.536 0.464
#> GSM615928     3  0.5291     0.6181  0 0.268 0.732
#> GSM615934     3  0.1289     0.7708  0 0.032 0.968
#> GSM615950     2  0.0592     0.5883  0 0.988 0.012
#> GSM615954     2  0.5016     0.6345  0 0.760 0.240
#> GSM615956     3  0.6140     0.1466  0 0.404 0.596
#> GSM615958     1  0.0000     1.0000  1 0.000 0.000
#> GSM615924     2  0.6299    -0.1678  0 0.524 0.476
#> GSM615930     2  0.1860     0.5995  0 0.948 0.052
#> GSM615932     2  0.5465     0.6299  0 0.712 0.288
#> GSM615935     2  0.5650     0.6164  0 0.688 0.312
#> GSM615936     3  0.3192     0.7266  0 0.112 0.888
#> GSM615942     3  0.0000     0.7712  0 0.000 1.000
#> GSM615943     2  0.0424     0.5880  0 0.992 0.008
#> GSM615949     3  0.3038     0.7554  0 0.104 0.896
#> GSM615957     2  0.5560     0.6195  0 0.700 0.300
#> GSM721720     2  0.5465     0.6299  0 0.712 0.288
#> GSM721721     3  0.2959     0.7622  0 0.100 0.900
#> GSM615959     1  0.0000     1.0000  1 0.000 0.000
#> GSM615960     1  0.0000     1.0000  1 0.000 0.000
#> GSM615961     1  0.0000     1.0000  1 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette p1    p2    p3    p4
#> GSM615919     3  0.4382    0.75451  0 0.000 0.704 0.296
#> GSM615921     2  0.5427    0.11711  0 0.568 0.416 0.016
#> GSM615922     3  0.3764    0.81329  0 0.000 0.784 0.216
#> GSM615925     4  0.2216    0.61149  0 0.000 0.092 0.908
#> GSM615926     3  0.3801    0.81317  0 0.000 0.780 0.220
#> GSM615933     4  0.6373    0.65977  0 0.216 0.136 0.648
#> GSM615939     3  0.0779    0.85163  0 0.004 0.980 0.016
#> GSM615941     3  0.0469    0.85116  0 0.000 0.988 0.012
#> GSM615944     3  0.0707    0.84532  0 0.000 0.980 0.020
#> GSM615945     4  0.4889    0.53075  0 0.360 0.004 0.636
#> GSM615947     3  0.0804    0.85173  0 0.008 0.980 0.012
#> GSM615948     3  0.2704    0.84422  0 0.000 0.876 0.124
#> GSM615951     3  0.0707    0.84532  0 0.000 0.980 0.020
#> GSM615918     4  0.0592    0.59407  0 0.000 0.016 0.984
#> GSM615927     4  0.5724    0.67286  0 0.144 0.140 0.716
#> GSM615929     3  0.4008    0.79884  0 0.000 0.756 0.244
#> GSM615931     4  0.4992    0.65909  0 0.096 0.132 0.772
#> GSM615937     2  0.4843    0.01251  0 0.604 0.000 0.396
#> GSM615938     2  0.0000    0.71835  0 1.000 0.000 0.000
#> GSM615940     3  0.0592    0.85118  0 0.000 0.984 0.016
#> GSM615946     3  0.4214    0.72662  0 0.204 0.780 0.016
#> GSM615952     3  0.1059    0.84445  0 0.012 0.972 0.016
#> GSM615953     3  0.4907    0.34456  0 0.420 0.580 0.000
#> GSM615955     3  0.0707    0.84532  0 0.000 0.980 0.020
#> GSM721722     3  0.0707    0.84532  0 0.000 0.980 0.020
#> GSM721723     2  0.0000    0.71835  0 1.000 0.000 0.000
#> GSM721724     3  0.3743    0.77267  0 0.160 0.824 0.016
#> GSM615917     4  0.0592    0.59407  0 0.000 0.016 0.984
#> GSM615920     3  0.4277    0.77171  0 0.000 0.720 0.280
#> GSM615923     4  0.6492    0.65365  0 0.220 0.144 0.636
#> GSM615928     4  0.6290    0.26642  0 0.068 0.364 0.568
#> GSM615934     3  0.3764    0.81408  0 0.000 0.784 0.216
#> GSM615950     2  0.4855   -0.00184  0 0.600 0.000 0.400
#> GSM615954     4  0.5119    0.38356  0 0.440 0.004 0.556
#> GSM615956     3  0.4331    0.61917  0 0.288 0.712 0.000
#> GSM615958     1  0.0000    1.00000  1 0.000 0.000 0.000
#> GSM615924     4  0.6330    0.66208  0 0.200 0.144 0.656
#> GSM615930     4  0.4776    0.50527  0 0.376 0.000 0.624
#> GSM615932     2  0.0000    0.71835  0 1.000 0.000 0.000
#> GSM615935     2  0.0524    0.71318  0 0.988 0.008 0.004
#> GSM615936     3  0.2142    0.84104  0 0.056 0.928 0.016
#> GSM615942     3  0.1302    0.85380  0 0.000 0.956 0.044
#> GSM615943     4  0.4866    0.46488  0 0.404 0.000 0.596
#> GSM615949     3  0.3529    0.83492  0 0.012 0.836 0.152
#> GSM615957     2  0.3356    0.57100  0 0.824 0.176 0.000
#> GSM721720     2  0.0000    0.71835  0 1.000 0.000 0.000
#> GSM721721     3  0.4382    0.75439  0 0.000 0.704 0.296
#> GSM615959     1  0.0000    1.00000  1 0.000 0.000 0.000
#> GSM615960     1  0.0000    1.00000  1 0.000 0.000 0.000
#> GSM615961     1  0.0000    1.00000  1 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1    p2    p3    p4    p5
#> GSM615919     3  0.5288      0.264  0 0.000 0.544 0.404 0.052
#> GSM615921     3  0.7135      0.175  0 0.140 0.568 0.184 0.108
#> GSM615922     3  0.5049      0.618  0 0.296 0.644 0.060 0.000
#> GSM615925     4  0.4201      0.781  0 0.000 0.008 0.664 0.328
#> GSM615926     3  0.6191      0.543  0 0.204 0.552 0.244 0.000
#> GSM615933     5  0.4873      0.166  0 0.000 0.044 0.312 0.644
#> GSM615939     3  0.1082      0.676  0 0.008 0.964 0.028 0.000
#> GSM615941     3  0.3039      0.662  0 0.192 0.808 0.000 0.000
#> GSM615944     3  0.4268      0.573  0 0.344 0.648 0.008 0.000
#> GSM615945     5  0.2193      0.665  0 0.008 0.000 0.092 0.900
#> GSM615947     3  0.2198      0.678  0 0.048 0.920 0.012 0.020
#> GSM615948     3  0.4594      0.634  0 0.284 0.680 0.036 0.000
#> GSM615951     3  0.3274      0.652  0 0.220 0.780 0.000 0.000
#> GSM615918     4  0.4165      0.783  0 0.000 0.008 0.672 0.320
#> GSM615927     4  0.4420      0.706  0 0.000 0.004 0.548 0.448
#> GSM615929     3  0.6229      0.487  0 0.192 0.540 0.268 0.000
#> GSM615931     4  0.4420      0.636  0 0.000 0.004 0.548 0.448
#> GSM615937     5  0.3317      0.628  0 0.044 0.000 0.116 0.840
#> GSM615938     2  0.6810      0.363  0 0.352 0.000 0.300 0.348
#> GSM615940     3  0.0898      0.678  0 0.008 0.972 0.020 0.000
#> GSM615946     3  0.2251      0.662  0 0.008 0.916 0.024 0.052
#> GSM615952     3  0.3171      0.661  0 0.176 0.816 0.000 0.008
#> GSM615953     3  0.6451      0.371  0 0.160 0.632 0.064 0.144
#> GSM615955     2  0.4306     -0.488  0 0.508 0.492 0.000 0.000
#> GSM721722     2  0.4306     -0.488  0 0.508 0.492 0.000 0.000
#> GSM721723     2  0.6810      0.364  0 0.356 0.000 0.300 0.344
#> GSM721724     3  0.1393      0.676  0 0.008 0.956 0.024 0.012
#> GSM615917     4  0.4165      0.783  0 0.000 0.008 0.672 0.320
#> GSM615920     3  0.7524      0.329  0 0.140 0.440 0.336 0.084
#> GSM615923     5  0.3807      0.503  0 0.008 0.012 0.204 0.776
#> GSM615928     4  0.6203      0.455  0 0.000 0.268 0.544 0.188
#> GSM615934     3  0.5104      0.621  0 0.284 0.648 0.068 0.000
#> GSM615950     5  0.2824      0.647  0 0.020 0.000 0.116 0.864
#> GSM615954     5  0.3872      0.600  0 0.116 0.060 0.008 0.816
#> GSM615956     3  0.1498      0.678  0 0.016 0.952 0.008 0.024
#> GSM615958     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM615924     4  0.4403      0.700  0 0.000 0.004 0.560 0.436
#> GSM615930     5  0.2077      0.673  0 0.008 0.000 0.084 0.908
#> GSM615932     2  0.6810      0.363  0 0.352 0.000 0.300 0.348
#> GSM615935     2  0.8364      0.332  0 0.324 0.240 0.292 0.144
#> GSM615936     3  0.0671      0.682  0 0.016 0.980 0.000 0.004
#> GSM615942     3  0.3845      0.663  0 0.208 0.768 0.024 0.000
#> GSM615943     5  0.0798      0.700  0 0.008 0.000 0.016 0.976
#> GSM615949     3  0.2585      0.685  0 0.036 0.896 0.064 0.004
#> GSM615957     3  0.8012     -0.187  0 0.260 0.428 0.180 0.132
#> GSM721720     2  0.6810      0.364  0 0.356 0.000 0.300 0.344
#> GSM721721     3  0.5762      0.235  0 0.004 0.532 0.384 0.080
#> GSM615959     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM615960     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM615961     1  0.0000      1.000  1 0.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1    p2 p3    p4    p5    p6
#> GSM615919     4  0.6090    0.18546  0 0.312 NA 0.488 0.016 0.000
#> GSM615921     2  0.7692    0.26058  0 0.444 NA 0.056 0.084 0.240
#> GSM615922     2  0.4094    0.52919  0 0.712 NA 0.020 0.016 0.000
#> GSM615925     4  0.0632    0.65876  0 0.024 NA 0.976 0.000 0.000
#> GSM615926     2  0.4150    0.29027  0 0.652 NA 0.320 0.000 0.000
#> GSM615933     4  0.4024    0.00228  0 0.004 NA 0.592 0.400 0.000
#> GSM615939     2  0.3607    0.61784  0 0.652 NA 0.000 0.000 0.000
#> GSM615941     2  0.0363    0.63683  0 0.988 NA 0.000 0.000 0.000
#> GSM615944     2  0.3489    0.50390  0 0.708 NA 0.000 0.004 0.000
#> GSM615945     5  0.3053    0.75682  0 0.000 NA 0.168 0.812 0.020
#> GSM615947     2  0.3989    0.62623  0 0.716 NA 0.000 0.008 0.024
#> GSM615948     2  0.3780    0.55993  0 0.760 NA 0.020 0.016 0.000
#> GSM615951     2  0.0935    0.63488  0 0.964 NA 0.000 0.000 0.004
#> GSM615918     4  0.0632    0.65876  0 0.024 NA 0.976 0.000 0.000
#> GSM615927     4  0.2902    0.55966  0 0.000 NA 0.800 0.196 0.000
#> GSM615929     2  0.6037    0.26656  0 0.444 NA 0.220 0.004 0.000
#> GSM615931     4  0.3440    0.50156  0 0.028 NA 0.776 0.196 0.000
#> GSM615937     5  0.2623    0.74231  0 0.000 NA 0.016 0.852 0.132
#> GSM615938     6  0.2006    0.79370  0 0.000 NA 0.000 0.104 0.892
#> GSM615940     2  0.3592    0.61962  0 0.656 NA 0.000 0.000 0.000
#> GSM615946     2  0.4170    0.61406  0 0.644 NA 0.012 0.004 0.004
#> GSM615952     2  0.3352    0.63369  0 0.812 NA 0.000 0.008 0.032
#> GSM615953     2  0.6722    0.08434  0 0.396 NA 0.008 0.036 0.376
#> GSM615955     2  0.4344    0.36566  0 0.556 NA 0.000 0.016 0.004
#> GSM721722     2  0.4344    0.36566  0 0.556 NA 0.000 0.016 0.004
#> GSM721723     6  0.0632    0.79066  0 0.000 NA 0.000 0.024 0.976
#> GSM721724     2  0.3607    0.61784  0 0.652 NA 0.000 0.000 0.000
#> GSM615917     4  0.0632    0.65876  0 0.024 NA 0.976 0.000 0.000
#> GSM615920     2  0.4471   -0.05977  0 0.500 NA 0.472 0.000 0.000
#> GSM615923     5  0.4525    0.26997  0 0.008 NA 0.448 0.528 0.012
#> GSM615928     4  0.5390    0.55580  0 0.156 NA 0.664 0.040 0.000
#> GSM615934     2  0.4052    0.53099  0 0.708 NA 0.020 0.012 0.000
#> GSM615950     5  0.1913    0.74802  0 0.000 NA 0.012 0.908 0.080
#> GSM615954     5  0.5556    0.57654  0 0.040 NA 0.088 0.632 0.236
#> GSM615956     2  0.4244    0.62153  0 0.680 NA 0.000 0.004 0.036
#> GSM615958     1  0.0000    1.00000  1 0.000 NA 0.000 0.000 0.000
#> GSM615924     4  0.2996    0.59518  0 0.016 NA 0.832 0.144 0.000
#> GSM615930     5  0.3017    0.75991  0 0.000 NA 0.164 0.816 0.020
#> GSM615932     6  0.2003    0.78930  0 0.000 NA 0.000 0.116 0.884
#> GSM615935     6  0.4054    0.74743  0 0.060 NA 0.000 0.104 0.792
#> GSM615936     2  0.3448    0.63507  0 0.716 NA 0.000 0.004 0.000
#> GSM615942     2  0.2415    0.62457  0 0.888 NA 0.016 0.012 0.000
#> GSM615943     5  0.2776    0.78388  0 0.000 NA 0.088 0.860 0.052
#> GSM615949     2  0.3376    0.63893  0 0.764 NA 0.016 0.000 0.000
#> GSM615957     6  0.5488    0.20614  0 0.296 NA 0.000 0.008 0.568
#> GSM721720     6  0.0632    0.79314  0 0.000 NA 0.000 0.024 0.976
#> GSM721721     4  0.5612    0.29342  0 0.304 NA 0.548 0.008 0.000
#> GSM615959     1  0.0000    1.00000  1 0.000 NA 0.000 0.000 0.000
#> GSM615960     1  0.0000    1.00000  1 0.000 NA 0.000 0.000 0.000
#> GSM615961     1  0.0000    1.00000  1 0.000 NA 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n age(p) gender(p) tissue(p) k
#> SD:mclust 50 0.0825     0.785  9.94e-10 2
#> SD:mclust 40 0.0171     0.188  2.06e-09 3
#> SD:mclust 43 0.0437     0.109  2.46e-09 4
#> SD:mclust 34 0.0328     0.505  1.98e-07 5
#> SD:mclust 38 0.1228     0.232  1.12e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16230 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.768           0.873       0.944         0.3499 0.673   0.673
#> 3 3 0.435           0.684       0.826         0.8236 0.651   0.496
#> 4 4 0.523           0.630       0.812         0.1550 0.744   0.420
#> 5 5 0.588           0.562       0.742         0.0798 0.868   0.560
#> 6 6 0.719           0.683       0.811         0.0471 0.882   0.520

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM615919     2   0.000      0.942 0.000 1.000
#> GSM615921     2   0.000      0.942 0.000 1.000
#> GSM615922     2   0.921      0.533 0.336 0.664
#> GSM615925     2   0.373      0.894 0.072 0.928
#> GSM615926     1   0.000      0.912 1.000 0.000
#> GSM615933     2   0.000      0.942 0.000 1.000
#> GSM615939     2   0.000      0.942 0.000 1.000
#> GSM615941     2   0.844      0.660 0.272 0.728
#> GSM615944     1   0.000      0.912 1.000 0.000
#> GSM615945     2   0.000      0.942 0.000 1.000
#> GSM615947     2   0.000      0.942 0.000 1.000
#> GSM615948     2   0.866      0.628 0.288 0.712
#> GSM615951     1   0.917      0.452 0.668 0.332
#> GSM615918     2   0.541      0.851 0.124 0.876
#> GSM615927     2   0.000      0.942 0.000 1.000
#> GSM615929     2   0.358      0.897 0.068 0.932
#> GSM615931     2   0.000      0.942 0.000 1.000
#> GSM615937     2   0.000      0.942 0.000 1.000
#> GSM615938     2   0.000      0.942 0.000 1.000
#> GSM615940     2   0.000      0.942 0.000 1.000
#> GSM615946     2   0.000      0.942 0.000 1.000
#> GSM615952     2   0.781      0.701 0.232 0.768
#> GSM615953     2   0.000      0.942 0.000 1.000
#> GSM615955     1   0.000      0.912 1.000 0.000
#> GSM721722     1   0.000      0.912 1.000 0.000
#> GSM721723     2   0.000      0.942 0.000 1.000
#> GSM721724     2   0.000      0.942 0.000 1.000
#> GSM615917     2   0.000      0.942 0.000 1.000
#> GSM615920     1   0.966      0.353 0.608 0.392
#> GSM615923     2   0.000      0.942 0.000 1.000
#> GSM615928     2   0.000      0.942 0.000 1.000
#> GSM615934     2   0.795      0.705 0.240 0.760
#> GSM615950     2   0.000      0.942 0.000 1.000
#> GSM615954     2   0.000      0.942 0.000 1.000
#> GSM615956     2   0.000      0.942 0.000 1.000
#> GSM615958     1   0.000      0.912 1.000 0.000
#> GSM615924     2   0.000      0.942 0.000 1.000
#> GSM615930     2   0.000      0.942 0.000 1.000
#> GSM615932     2   0.000      0.942 0.000 1.000
#> GSM615935     2   0.000      0.942 0.000 1.000
#> GSM615936     2   0.000      0.942 0.000 1.000
#> GSM615942     2   0.886      0.599 0.304 0.696
#> GSM615943     2   0.000      0.942 0.000 1.000
#> GSM615949     2   0.242      0.916 0.040 0.960
#> GSM615957     2   0.000      0.942 0.000 1.000
#> GSM721720     2   0.000      0.942 0.000 1.000
#> GSM721721     2   0.456      0.874 0.096 0.904
#> GSM615959     1   0.000      0.912 1.000 0.000
#> GSM615960     1   0.000      0.912 1.000 0.000
#> GSM615961     1   0.000      0.912 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM615919     2  0.5678      0.339 0.000 0.684 0.316
#> GSM615921     2  0.6295      0.227 0.000 0.528 0.472
#> GSM615922     3  0.8271      0.549 0.212 0.156 0.632
#> GSM615925     2  0.1525      0.809 0.004 0.964 0.032
#> GSM615926     1  0.5897      0.755 0.792 0.132 0.076
#> GSM615933     2  0.0000      0.829 0.000 1.000 0.000
#> GSM615939     3  0.4605      0.734 0.000 0.204 0.796
#> GSM615941     3  0.5500      0.705 0.084 0.100 0.816
#> GSM615944     1  0.1964      0.895 0.944 0.000 0.056
#> GSM615945     2  0.3752      0.799 0.000 0.856 0.144
#> GSM615947     3  0.1964      0.720 0.000 0.056 0.944
#> GSM615948     3  0.7766      0.597 0.176 0.148 0.676
#> GSM615951     3  0.5810      0.433 0.336 0.000 0.664
#> GSM615918     2  0.1878      0.797 0.004 0.952 0.044
#> GSM615927     2  0.3038      0.817 0.000 0.896 0.104
#> GSM615929     3  0.6527      0.456 0.008 0.404 0.588
#> GSM615931     2  0.0000      0.829 0.000 1.000 0.000
#> GSM615937     2  0.4514      0.790 0.012 0.832 0.156
#> GSM615938     3  0.6168      0.133 0.000 0.412 0.588
#> GSM615940     3  0.4605      0.734 0.000 0.204 0.796
#> GSM615946     3  0.4887      0.732 0.000 0.228 0.772
#> GSM615952     3  0.2860      0.707 0.084 0.004 0.912
#> GSM615953     3  0.3192      0.698 0.000 0.112 0.888
#> GSM615955     1  0.2356      0.890 0.928 0.000 0.072
#> GSM721722     1  0.2448      0.888 0.924 0.000 0.076
#> GSM721723     3  0.4346      0.630 0.000 0.184 0.816
#> GSM721724     3  0.4605      0.734 0.000 0.204 0.796
#> GSM615917     2  0.0592      0.824 0.000 0.988 0.012
#> GSM615920     1  0.5517      0.630 0.728 0.268 0.004
#> GSM615923     2  0.0000      0.829 0.000 1.000 0.000
#> GSM615928     2  0.0892      0.817 0.000 0.980 0.020
#> GSM615934     3  0.8616      0.549 0.148 0.264 0.588
#> GSM615950     2  0.3879      0.794 0.000 0.848 0.152
#> GSM615954     2  0.4110      0.794 0.004 0.844 0.152
#> GSM615956     3  0.3619      0.735 0.000 0.136 0.864
#> GSM615958     1  0.0000      0.910 1.000 0.000 0.000
#> GSM615924     2  0.0000      0.829 0.000 1.000 0.000
#> GSM615930     2  0.2448      0.824 0.000 0.924 0.076
#> GSM615932     3  0.6305     -0.147 0.000 0.484 0.516
#> GSM615935     3  0.3412      0.692 0.000 0.124 0.876
#> GSM615936     3  0.3412      0.741 0.000 0.124 0.876
#> GSM615942     3  0.7572      0.598 0.184 0.128 0.688
#> GSM615943     2  0.3879      0.794 0.000 0.848 0.152
#> GSM615949     3  0.4002      0.722 0.000 0.160 0.840
#> GSM615957     3  0.2448      0.712 0.000 0.076 0.924
#> GSM721720     3  0.6140      0.156 0.000 0.404 0.596
#> GSM721721     2  0.5560      0.459 0.000 0.700 0.300
#> GSM615959     1  0.0000      0.910 1.000 0.000 0.000
#> GSM615960     1  0.0000      0.910 1.000 0.000 0.000
#> GSM615961     1  0.0000      0.910 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM615919     3  0.7593      0.254 0.000 0.236 0.476 0.288
#> GSM615921     2  0.3695      0.742 0.000 0.828 0.016 0.156
#> GSM615922     3  0.1022      0.733 0.000 0.000 0.968 0.032
#> GSM615925     4  0.2530      0.748 0.000 0.000 0.112 0.888
#> GSM615926     3  0.3754      0.684 0.064 0.000 0.852 0.084
#> GSM615933     4  0.2450      0.767 0.000 0.072 0.016 0.912
#> GSM615939     3  0.3837      0.646 0.000 0.224 0.776 0.000
#> GSM615941     3  0.2882      0.727 0.024 0.084 0.892 0.000
#> GSM615944     3  0.5112      0.127 0.436 0.004 0.560 0.000
#> GSM615945     4  0.2610      0.757 0.000 0.088 0.012 0.900
#> GSM615947     2  0.2921      0.728 0.000 0.860 0.140 0.000
#> GSM615948     3  0.1211      0.740 0.000 0.040 0.960 0.000
#> GSM615951     3  0.7121      0.326 0.292 0.164 0.544 0.000
#> GSM615918     4  0.1867      0.754 0.000 0.000 0.072 0.928
#> GSM615927     4  0.1151      0.769 0.000 0.008 0.024 0.968
#> GSM615929     3  0.2999      0.683 0.000 0.004 0.864 0.132
#> GSM615931     4  0.2596      0.769 0.000 0.068 0.024 0.908
#> GSM615937     2  0.5582      0.285 0.032 0.620 0.000 0.348
#> GSM615938     2  0.1940      0.773 0.000 0.924 0.000 0.076
#> GSM615940     3  0.3873      0.639 0.000 0.228 0.772 0.000
#> GSM615946     2  0.4560      0.549 0.000 0.700 0.296 0.004
#> GSM615952     2  0.4906      0.700 0.084 0.776 0.140 0.000
#> GSM615953     2  0.2007      0.788 0.004 0.940 0.020 0.036
#> GSM615955     1  0.5016      0.230 0.600 0.004 0.396 0.000
#> GSM721722     3  0.4331      0.477 0.288 0.000 0.712 0.000
#> GSM721723     2  0.1118      0.786 0.000 0.964 0.000 0.036
#> GSM721724     2  0.4916      0.230 0.000 0.576 0.424 0.000
#> GSM615917     4  0.3024      0.718 0.000 0.000 0.148 0.852
#> GSM615920     4  0.5957      0.199 0.420 0.000 0.040 0.540
#> GSM615923     4  0.5314      0.710 0.000 0.108 0.144 0.748
#> GSM615928     4  0.5352      0.295 0.000 0.016 0.388 0.596
#> GSM615934     3  0.0707      0.736 0.000 0.000 0.980 0.020
#> GSM615950     4  0.4830      0.352 0.000 0.392 0.000 0.608
#> GSM615954     4  0.5837      0.236 0.036 0.400 0.000 0.564
#> GSM615956     2  0.2011      0.770 0.000 0.920 0.080 0.000
#> GSM615958     1  0.0000      0.880 1.000 0.000 0.000 0.000
#> GSM615924     4  0.3356      0.689 0.000 0.000 0.176 0.824
#> GSM615930     4  0.2048      0.768 0.000 0.064 0.008 0.928
#> GSM615932     2  0.3710      0.688 0.000 0.804 0.004 0.192
#> GSM615935     2  0.4974      0.645 0.000 0.736 0.040 0.224
#> GSM615936     3  0.4632      0.546 0.000 0.308 0.688 0.004
#> GSM615942     3  0.1398      0.740 0.004 0.040 0.956 0.000
#> GSM615943     4  0.3088      0.730 0.000 0.128 0.008 0.864
#> GSM615949     3  0.1022      0.742 0.000 0.032 0.968 0.000
#> GSM615957     2  0.1557      0.778 0.000 0.944 0.056 0.000
#> GSM721720     2  0.1637      0.778 0.000 0.940 0.000 0.060
#> GSM721721     3  0.4746      0.465 0.000 0.008 0.688 0.304
#> GSM615959     1  0.0000      0.880 1.000 0.000 0.000 0.000
#> GSM615960     1  0.0000      0.880 1.000 0.000 0.000 0.000
#> GSM615961     1  0.0000      0.880 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM615919     4  0.5021     0.5647 0.000 0.100 0.172 0.720 0.008
#> GSM615921     2  0.1569     0.6940 0.000 0.948 0.008 0.032 0.012
#> GSM615922     3  0.1341     0.7068 0.000 0.000 0.944 0.056 0.000
#> GSM615925     4  0.3642     0.4555 0.000 0.000 0.008 0.760 0.232
#> GSM615926     3  0.2674     0.6759 0.012 0.000 0.868 0.120 0.000
#> GSM615933     5  0.3424     0.7215 0.000 0.000 0.000 0.240 0.760
#> GSM615939     3  0.7907     0.3560 0.000 0.164 0.468 0.204 0.164
#> GSM615941     3  0.2015     0.6975 0.036 0.020 0.932 0.008 0.004
#> GSM615944     3  0.3461     0.5487 0.224 0.000 0.772 0.000 0.004
#> GSM615945     5  0.3210     0.7314 0.000 0.000 0.000 0.212 0.788
#> GSM615947     2  0.5805     0.6432 0.000 0.640 0.160 0.008 0.192
#> GSM615948     3  0.1121     0.7085 0.000 0.000 0.956 0.044 0.000
#> GSM615951     3  0.5795     0.3317 0.344 0.016 0.580 0.004 0.056
#> GSM615918     4  0.3607     0.4183 0.000 0.000 0.004 0.752 0.244
#> GSM615927     5  0.3876     0.6492 0.000 0.000 0.000 0.316 0.684
#> GSM615929     4  0.4270     0.3727 0.000 0.004 0.336 0.656 0.004
#> GSM615931     5  0.3579     0.7282 0.000 0.000 0.004 0.240 0.756
#> GSM615937     2  0.7089    -0.0497 0.000 0.492 0.148 0.048 0.312
#> GSM615938     2  0.3681     0.7113 0.000 0.820 0.036 0.008 0.136
#> GSM615940     3  0.7166     0.4660 0.000 0.076 0.536 0.144 0.244
#> GSM615946     2  0.6895     0.5861 0.000 0.568 0.172 0.056 0.204
#> GSM615952     3  0.7549     0.1711 0.232 0.316 0.404 0.000 0.048
#> GSM615953     2  0.6676     0.5630 0.104 0.492 0.028 0.004 0.372
#> GSM615955     1  0.4304    -0.1696 0.516 0.000 0.484 0.000 0.000
#> GSM721722     3  0.3806     0.6620 0.104 0.000 0.812 0.084 0.000
#> GSM721723     2  0.0771     0.6836 0.000 0.976 0.000 0.004 0.020
#> GSM721724     2  0.6799     0.4003 0.000 0.536 0.292 0.128 0.044
#> GSM615917     4  0.3086     0.5167 0.000 0.000 0.004 0.816 0.180
#> GSM615920     4  0.6389     0.4174 0.272 0.000 0.036 0.584 0.108
#> GSM615923     4  0.6222     0.4306 0.000 0.284 0.036 0.592 0.088
#> GSM615928     4  0.3870     0.6310 0.000 0.028 0.132 0.816 0.024
#> GSM615934     3  0.3521     0.6303 0.000 0.000 0.764 0.232 0.004
#> GSM615950     5  0.5624     0.3394 0.000 0.420 0.004 0.064 0.512
#> GSM615954     5  0.7377     0.2752 0.104 0.392 0.000 0.092 0.412
#> GSM615956     2  0.5221     0.7040 0.000 0.716 0.072 0.028 0.184
#> GSM615958     1  0.0566     0.8408 0.984 0.000 0.012 0.004 0.000
#> GSM615924     4  0.3558     0.5766 0.000 0.004 0.036 0.824 0.136
#> GSM615930     5  0.3707     0.7046 0.000 0.000 0.000 0.284 0.716
#> GSM615932     2  0.4961     0.6196 0.000 0.596 0.028 0.004 0.372
#> GSM615935     5  0.2305     0.4273 0.000 0.092 0.012 0.000 0.896
#> GSM615936     3  0.5129     0.5025 0.004 0.024 0.624 0.012 0.336
#> GSM615942     3  0.1869     0.7090 0.012 0.000 0.936 0.036 0.016
#> GSM615943     5  0.3461     0.7333 0.000 0.004 0.000 0.224 0.772
#> GSM615949     3  0.3883     0.6356 0.000 0.004 0.764 0.216 0.016
#> GSM615957     2  0.0912     0.6924 0.000 0.972 0.016 0.000 0.012
#> GSM721720     2  0.1281     0.6722 0.000 0.956 0.000 0.012 0.032
#> GSM721721     4  0.3910     0.4962 0.000 0.008 0.272 0.720 0.000
#> GSM615959     1  0.0566     0.8408 0.984 0.000 0.012 0.004 0.000
#> GSM615960     1  0.0404     0.8392 0.988 0.000 0.012 0.000 0.000
#> GSM615961     1  0.0451     0.8386 0.988 0.000 0.008 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM615919     4  0.1370     0.7180 0.000 0.036 0.004 0.948 0.000 0.012
#> GSM615921     6  0.5545     0.0441 0.000 0.396 0.000 0.136 0.000 0.468
#> GSM615922     3  0.1010     0.8066 0.000 0.000 0.960 0.036 0.000 0.004
#> GSM615925     4  0.3887     0.6083 0.000 0.000 0.008 0.632 0.360 0.000
#> GSM615926     3  0.1204     0.8043 0.000 0.004 0.960 0.016 0.004 0.016
#> GSM615933     5  0.1950     0.8928 0.000 0.064 0.000 0.024 0.912 0.000
#> GSM615939     2  0.3031     0.6555 0.000 0.844 0.044 0.108 0.000 0.004
#> GSM615941     3  0.0146     0.8074 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM615944     3  0.0798     0.8045 0.012 0.004 0.976 0.004 0.004 0.000
#> GSM615945     5  0.0508     0.9296 0.000 0.012 0.000 0.004 0.984 0.000
#> GSM615947     2  0.1483     0.6733 0.000 0.944 0.008 0.012 0.000 0.036
#> GSM615948     3  0.0603     0.8084 0.000 0.000 0.980 0.016 0.000 0.004
#> GSM615951     3  0.3609     0.7036 0.180 0.012 0.788 0.004 0.004 0.012
#> GSM615918     4  0.4225     0.6147 0.004 0.000 0.012 0.628 0.352 0.004
#> GSM615927     5  0.2179     0.8885 0.000 0.036 0.000 0.064 0.900 0.000
#> GSM615929     4  0.2138     0.7039 0.000 0.052 0.036 0.908 0.004 0.000
#> GSM615931     5  0.1655     0.9107 0.000 0.004 0.012 0.032 0.940 0.012
#> GSM615937     6  0.3786     0.6554 0.000 0.004 0.172 0.000 0.052 0.772
#> GSM615938     2  0.4504     0.4183 0.000 0.652 0.000 0.004 0.048 0.296
#> GSM615940     2  0.5301     0.1996 0.000 0.552 0.368 0.028 0.052 0.000
#> GSM615946     2  0.2840     0.6676 0.000 0.872 0.008 0.080 0.008 0.032
#> GSM615952     3  0.6736     0.2083 0.224 0.044 0.456 0.004 0.000 0.272
#> GSM615953     2  0.4687     0.6033 0.120 0.704 0.000 0.000 0.168 0.008
#> GSM615955     3  0.3756     0.4162 0.400 0.000 0.600 0.000 0.000 0.000
#> GSM721722     3  0.2362     0.7901 0.016 0.012 0.892 0.080 0.000 0.000
#> GSM721723     6  0.0935     0.7341 0.000 0.032 0.004 0.000 0.000 0.964
#> GSM721724     2  0.7141     0.3317 0.000 0.456 0.224 0.156 0.000 0.164
#> GSM615917     4  0.3512     0.6986 0.000 0.000 0.008 0.720 0.272 0.000
#> GSM615920     4  0.6624     0.5760 0.200 0.000 0.064 0.556 0.164 0.016
#> GSM615923     6  0.4206     0.6166 0.000 0.000 0.004 0.212 0.060 0.724
#> GSM615928     4  0.3802     0.6961 0.000 0.000 0.012 0.788 0.056 0.144
#> GSM615934     3  0.4087     0.6545 0.000 0.036 0.688 0.276 0.000 0.000
#> GSM615950     6  0.2191     0.7271 0.000 0.004 0.000 0.000 0.120 0.876
#> GSM615954     6  0.3972     0.4945 0.012 0.004 0.000 0.000 0.320 0.664
#> GSM615956     2  0.2699     0.6389 0.008 0.856 0.000 0.012 0.000 0.124
#> GSM615958     1  0.0790     0.9950 0.968 0.000 0.032 0.000 0.000 0.000
#> GSM615924     4  0.3281     0.7345 0.000 0.000 0.004 0.784 0.200 0.012
#> GSM615930     5  0.1245     0.9193 0.000 0.000 0.000 0.032 0.952 0.016
#> GSM615932     2  0.2146     0.6652 0.000 0.880 0.000 0.000 0.116 0.004
#> GSM615935     2  0.3971     0.2187 0.000 0.548 0.000 0.000 0.448 0.004
#> GSM615936     3  0.4455     0.5916 0.000 0.128 0.712 0.000 0.160 0.000
#> GSM615942     3  0.0260     0.8075 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM615943     5  0.0862     0.9276 0.000 0.008 0.000 0.004 0.972 0.016
#> GSM615949     3  0.4426     0.6389 0.000 0.028 0.664 0.296 0.008 0.004
#> GSM615957     6  0.2070     0.6958 0.000 0.100 0.008 0.000 0.000 0.892
#> GSM721720     6  0.0692     0.7371 0.004 0.020 0.000 0.000 0.000 0.976
#> GSM721721     4  0.1849     0.7146 0.000 0.032 0.008 0.932 0.008 0.020
#> GSM615959     1  0.0713     0.9983 0.972 0.000 0.028 0.000 0.000 0.000
#> GSM615960     1  0.0713     0.9983 0.972 0.000 0.028 0.000 0.000 0.000
#> GSM615961     1  0.0713     0.9983 0.972 0.000 0.028 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n age(p) gender(p) tissue(p) k
#> SD:NMF 48  1.000     1.000  7.18e-05 2
#> SD:NMF 42  0.615     0.708  3.02e-04 3
#> SD:NMF 38  0.161     0.455  2.83e-08 4
#> SD:NMF 34  0.167     0.373  7.45e-07 5
#> SD:NMF 42  0.226     0.673  5.89e-08 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16230 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.731           0.824       0.929         0.2745 0.726   0.726
#> 3 3 0.266           0.242       0.632         1.0594 0.733   0.648
#> 4 4 0.442           0.514       0.699         0.2491 0.637   0.382
#> 5 5 0.578           0.528       0.734         0.0779 0.838   0.532
#> 6 6 0.614           0.524       0.728         0.0623 0.938   0.755

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM615919     2  0.1184      0.932 0.016 0.984
#> GSM615921     2  0.0000      0.937 0.000 1.000
#> GSM615922     2  0.8443      0.536 0.272 0.728
#> GSM615925     2  0.0672      0.935 0.008 0.992
#> GSM615926     1  0.9909      0.413 0.556 0.444
#> GSM615933     2  0.0000      0.937 0.000 1.000
#> GSM615939     2  0.0938      0.933 0.012 0.988
#> GSM615941     2  0.9393      0.308 0.356 0.644
#> GSM615944     1  0.9850      0.446 0.572 0.428
#> GSM615945     2  0.0000      0.937 0.000 1.000
#> GSM615947     2  0.0938      0.934 0.012 0.988
#> GSM615948     2  0.8955      0.432 0.312 0.688
#> GSM615951     2  0.1843      0.921 0.028 0.972
#> GSM615918     2  0.0672      0.935 0.008 0.992
#> GSM615927     2  0.0672      0.935 0.008 0.992
#> GSM615929     2  0.0938      0.933 0.012 0.988
#> GSM615931     2  0.0000      0.937 0.000 1.000
#> GSM615937     2  0.0000      0.937 0.000 1.000
#> GSM615938     2  0.0000      0.937 0.000 1.000
#> GSM615940     2  0.1184      0.932 0.016 0.984
#> GSM615946     2  0.0672      0.935 0.008 0.992
#> GSM615952     2  0.1843      0.921 0.028 0.972
#> GSM615953     2  0.1633      0.925 0.024 0.976
#> GSM615955     1  0.9170      0.617 0.668 0.332
#> GSM721722     1  0.9170      0.617 0.668 0.332
#> GSM721723     2  0.0000      0.937 0.000 1.000
#> GSM721724     2  0.1184      0.932 0.016 0.984
#> GSM615917     2  0.0672      0.935 0.008 0.992
#> GSM615920     2  0.9970     -0.218 0.468 0.532
#> GSM615923     2  0.0000      0.937 0.000 1.000
#> GSM615928     2  0.0000      0.937 0.000 1.000
#> GSM615934     2  0.7883      0.611 0.236 0.764
#> GSM615950     2  0.0000      0.937 0.000 1.000
#> GSM615954     2  0.0000      0.937 0.000 1.000
#> GSM615956     2  0.1633      0.925 0.024 0.976
#> GSM615958     1  0.0000      0.748 1.000 0.000
#> GSM615924     2  0.0672      0.935 0.008 0.992
#> GSM615930     2  0.0000      0.937 0.000 1.000
#> GSM615932     2  0.0000      0.937 0.000 1.000
#> GSM615935     2  0.0000      0.937 0.000 1.000
#> GSM615936     2  0.1414      0.930 0.020 0.980
#> GSM615942     2  0.5294      0.819 0.120 0.880
#> GSM615943     2  0.0000      0.937 0.000 1.000
#> GSM615949     2  0.1184      0.932 0.016 0.984
#> GSM615957     2  0.0000      0.937 0.000 1.000
#> GSM721720     2  0.0000      0.937 0.000 1.000
#> GSM721721     2  0.0000      0.937 0.000 1.000
#> GSM615959     1  0.0000      0.748 1.000 0.000
#> GSM615960     1  0.0000      0.748 1.000 0.000
#> GSM615961     1  0.0000      0.748 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM615919     2  0.7433    0.33960 0.072 0.660 0.268
#> GSM615921     2  0.8173   -0.03656 0.300 0.600 0.100
#> GSM615922     3  0.8714    0.33243 0.156 0.264 0.580
#> GSM615925     2  0.6662    0.35343 0.052 0.716 0.232
#> GSM615926     3  0.3267    0.64432 0.000 0.116 0.884
#> GSM615933     2  0.1163    0.35852 0.028 0.972 0.000
#> GSM615939     2  0.7607    0.04326 0.280 0.644 0.076
#> GSM615941     3  0.7585    0.48743 0.132 0.180 0.688
#> GSM615944     3  0.2878    0.65064 0.000 0.096 0.904
#> GSM615945     2  0.1163    0.35852 0.028 0.972 0.000
#> GSM615947     2  0.7063   -0.77129 0.464 0.516 0.020
#> GSM615948     3  0.8300    0.40748 0.136 0.244 0.620
#> GSM615951     2  0.7267    0.00562 0.268 0.668 0.064
#> GSM615918     2  0.6796    0.34987 0.056 0.708 0.236
#> GSM615927     2  0.6940    0.34869 0.068 0.708 0.224
#> GSM615929     2  0.9162    0.14343 0.268 0.536 0.196
#> GSM615931     2  0.1015    0.37259 0.012 0.980 0.008
#> GSM615937     2  0.5465   -0.24560 0.288 0.712 0.000
#> GSM615938     1  0.6299    1.00000 0.524 0.476 0.000
#> GSM615940     2  0.8318    0.04837 0.284 0.600 0.116
#> GSM615946     2  0.7528    0.04258 0.280 0.648 0.072
#> GSM615952     2  0.7267    0.00562 0.268 0.668 0.064
#> GSM615953     2  0.7157   -0.01846 0.276 0.668 0.056
#> GSM615955     3  0.0000    0.66663 0.000 0.000 1.000
#> GSM721722     3  0.0000    0.66663 0.000 0.000 1.000
#> GSM721723     2  0.6215   -0.68122 0.428 0.572 0.000
#> GSM721724     2  0.8318    0.04837 0.284 0.600 0.116
#> GSM615917     2  0.6796    0.34987 0.056 0.708 0.236
#> GSM615920     3  0.5406    0.55995 0.012 0.224 0.764
#> GSM615923     2  0.1905    0.36669 0.028 0.956 0.016
#> GSM615928     2  0.6693    0.31189 0.148 0.748 0.104
#> GSM615934     3  0.8941    0.25185 0.156 0.300 0.544
#> GSM615950     2  0.5363   -0.21966 0.276 0.724 0.000
#> GSM615954     2  0.1411    0.35331 0.036 0.964 0.000
#> GSM615956     2  0.7157   -0.01846 0.276 0.668 0.056
#> GSM615958     3  0.6192    0.59796 0.420 0.000 0.580
#> GSM615924     2  0.6559    0.34828 0.040 0.708 0.252
#> GSM615930     2  0.0592    0.36839 0.012 0.988 0.000
#> GSM615932     1  0.6299    1.00000 0.524 0.476 0.000
#> GSM615935     1  0.6299    1.00000 0.524 0.476 0.000
#> GSM615936     2  0.8318    0.05255 0.284 0.600 0.116
#> GSM615942     2  0.9394   -0.04215 0.268 0.508 0.224
#> GSM615943     2  0.2448    0.29881 0.076 0.924 0.000
#> GSM615949     2  0.8378    0.05445 0.284 0.596 0.120
#> GSM615957     2  0.6309   -0.92287 0.500 0.500 0.000
#> GSM721720     2  0.6215   -0.68122 0.428 0.572 0.000
#> GSM721721     2  0.1774    0.36930 0.024 0.960 0.016
#> GSM615959     3  0.6192    0.59796 0.420 0.000 0.580
#> GSM615960     3  0.6192    0.59796 0.420 0.000 0.580
#> GSM615961     3  0.6192    0.59796 0.420 0.000 0.580

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM615919     3  0.5364    -0.0749 0.000 0.028 0.652 0.320
#> GSM615921     2  0.7520     0.1839 0.000 0.496 0.252 0.252
#> GSM615922     3  0.6319     0.4275 0.056 0.224 0.684 0.036
#> GSM615925     4  0.5268     0.3421 0.000 0.008 0.452 0.540
#> GSM615926     3  0.5832     0.4418 0.312 0.004 0.640 0.044
#> GSM615933     4  0.0657     0.6860 0.000 0.012 0.004 0.984
#> GSM615939     2  0.5592     0.6563 0.000 0.656 0.300 0.044
#> GSM615941     3  0.6503     0.5168 0.104 0.180 0.688 0.028
#> GSM615944     3  0.5675     0.4305 0.320 0.008 0.644 0.028
#> GSM615945     4  0.0524     0.6852 0.000 0.008 0.004 0.988
#> GSM615947     2  0.2198     0.6366 0.000 0.920 0.072 0.008
#> GSM615948     3  0.6389     0.4781 0.072 0.200 0.692 0.036
#> GSM615951     2  0.6695     0.6544 0.012 0.648 0.208 0.132
#> GSM615918     4  0.4898     0.3820 0.000 0.000 0.416 0.584
#> GSM615927     4  0.5099     0.4090 0.000 0.008 0.380 0.612
#> GSM615929     2  0.6265     0.4928 0.000 0.500 0.444 0.056
#> GSM615931     4  0.1576     0.6816 0.000 0.004 0.048 0.948
#> GSM615937     4  0.5290     0.3962 0.000 0.404 0.012 0.584
#> GSM615938     2  0.0657     0.6104 0.000 0.984 0.004 0.012
#> GSM615940     2  0.5478     0.6397 0.000 0.628 0.344 0.028
#> GSM615946     2  0.5697     0.6566 0.000 0.656 0.292 0.052
#> GSM615952     2  0.6695     0.6544 0.012 0.648 0.208 0.132
#> GSM615953     2  0.6658     0.6522 0.008 0.648 0.192 0.152
#> GSM615955     3  0.5203     0.2650 0.416 0.008 0.576 0.000
#> GSM721722     3  0.5203     0.2650 0.416 0.008 0.576 0.000
#> GSM721723     2  0.5090     0.2024 0.000 0.660 0.016 0.324
#> GSM721724     2  0.5478     0.6397 0.000 0.628 0.344 0.028
#> GSM615917     4  0.5151     0.3333 0.000 0.004 0.464 0.532
#> GSM615920     3  0.7256     0.4275 0.288 0.012 0.564 0.136
#> GSM615923     4  0.5228     0.5421 0.000 0.036 0.268 0.696
#> GSM615928     3  0.7881    -0.2061 0.000 0.320 0.384 0.296
#> GSM615934     3  0.5309     0.3646 0.024 0.228 0.728 0.020
#> GSM615950     4  0.5256     0.4104 0.000 0.392 0.012 0.596
#> GSM615954     4  0.2224     0.6668 0.000 0.040 0.032 0.928
#> GSM615956     2  0.6650     0.6543 0.008 0.648 0.196 0.148
#> GSM615958     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM615924     3  0.5398    -0.2252 0.000 0.016 0.580 0.404
#> GSM615930     4  0.1042     0.6861 0.000 0.008 0.020 0.972
#> GSM615932     2  0.1004     0.6131 0.000 0.972 0.004 0.024
#> GSM615935     2  0.1004     0.6131 0.000 0.972 0.004 0.024
#> GSM615936     2  0.5548     0.6431 0.000 0.628 0.340 0.032
#> GSM615942     2  0.6690     0.5509 0.052 0.596 0.324 0.028
#> GSM615943     4  0.1824     0.6721 0.000 0.060 0.004 0.936
#> GSM615949     2  0.5599     0.6328 0.000 0.616 0.352 0.032
#> GSM615957     2  0.3105     0.5510 0.000 0.868 0.012 0.120
#> GSM721720     2  0.5090     0.2024 0.000 0.660 0.016 0.324
#> GSM721721     4  0.5169     0.5404 0.000 0.032 0.272 0.696
#> GSM615959     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM615960     1  0.0000     1.0000 1.000 0.000 0.000 0.000
#> GSM615961     1  0.0000     1.0000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM615919     4   0.554     0.5687 0.008 0.284 0.016 0.644 0.048
#> GSM615921     2   0.753     0.1410 0.020 0.400 0.012 0.292 0.276
#> GSM615922     3   0.430     0.4738 0.000 0.388 0.608 0.004 0.000
#> GSM615925     4   0.273     0.7693 0.000 0.076 0.008 0.888 0.028
#> GSM615926     3   0.193     0.7336 0.004 0.052 0.928 0.016 0.000
#> GSM615933     5   0.565     0.4089 0.012 0.008 0.036 0.400 0.544
#> GSM615939     2   0.197     0.6889 0.008 0.936 0.032 0.012 0.012
#> GSM615941     3   0.361     0.6427 0.000 0.268 0.732 0.000 0.000
#> GSM615944     3   0.163     0.7322 0.008 0.056 0.936 0.000 0.000
#> GSM615945     5   0.554     0.4086 0.012 0.004 0.036 0.400 0.548
#> GSM615947     2   0.413     0.5913 0.008 0.720 0.008 0.000 0.264
#> GSM615948     3   0.412     0.5715 0.000 0.336 0.660 0.004 0.000
#> GSM615951     2   0.528     0.6561 0.024 0.760 0.112 0.056 0.048
#> GSM615918     4   0.130     0.7183 0.000 0.012 0.008 0.960 0.020
#> GSM615927     4   0.254     0.6406 0.000 0.008 0.028 0.900 0.064
#> GSM615929     2   0.369     0.6050 0.000 0.816 0.060 0.124 0.000
#> GSM615931     5   0.536     0.3109 0.012 0.012 0.012 0.476 0.488
#> GSM615937     5   0.260     0.4524 0.000 0.040 0.004 0.060 0.896
#> GSM615938     2   0.440     0.5254 0.008 0.648 0.000 0.004 0.340
#> GSM615940     2   0.141     0.6778 0.000 0.940 0.060 0.000 0.000
#> GSM615946     2   0.209     0.6901 0.008 0.932 0.028 0.020 0.012
#> GSM615952     2   0.528     0.6561 0.024 0.760 0.112 0.056 0.048
#> GSM615953     2   0.542     0.6551 0.024 0.752 0.108 0.068 0.048
#> GSM615955     3   0.319     0.6758 0.112 0.040 0.848 0.000 0.000
#> GSM721722     3   0.319     0.6758 0.112 0.040 0.848 0.000 0.000
#> GSM721723     5   0.443     0.1981 0.020 0.264 0.008 0.000 0.708
#> GSM721724     2   0.141     0.6778 0.000 0.940 0.060 0.000 0.000
#> GSM615917     4   0.249     0.7711 0.000 0.072 0.008 0.900 0.020
#> GSM615920     3   0.481     0.5636 0.004 0.048 0.732 0.204 0.012
#> GSM615923     5   0.728    -0.0237 0.008 0.248 0.012 0.344 0.388
#> GSM615928     2   0.663     0.0989 0.020 0.536 0.012 0.328 0.104
#> GSM615934     2   0.445    -0.3832 0.000 0.500 0.496 0.004 0.000
#> GSM615950     5   0.277     0.4562 0.000 0.044 0.000 0.076 0.880
#> GSM615954     5   0.644     0.4175 0.012 0.032 0.068 0.328 0.560
#> GSM615956     2   0.536     0.6573 0.024 0.756 0.108 0.064 0.048
#> GSM615958     1   0.134     1.0000 0.944 0.000 0.056 0.000 0.000
#> GSM615924     4   0.408     0.6780 0.008 0.204 0.008 0.768 0.012
#> GSM615930     5   0.575     0.4032 0.012 0.016 0.032 0.392 0.548
#> GSM615932     2   0.473     0.5287 0.008 0.648 0.004 0.012 0.328
#> GSM615935     2   0.473     0.5287 0.008 0.648 0.004 0.012 0.328
#> GSM615936     2   0.170     0.6824 0.000 0.932 0.060 0.008 0.000
#> GSM615942     2   0.351     0.5634 0.000 0.748 0.252 0.000 0.000
#> GSM615943     5   0.540     0.4300 0.012 0.004 0.036 0.348 0.600
#> GSM615949     2   0.170     0.6739 0.000 0.928 0.068 0.004 0.000
#> GSM615957     5   0.508    -0.3584 0.020 0.472 0.008 0.000 0.500
#> GSM721720     5   0.443     0.1981 0.020 0.264 0.008 0.000 0.708
#> GSM721721     5   0.729    -0.0284 0.008 0.252 0.012 0.344 0.384
#> GSM615959     1   0.134     1.0000 0.944 0.000 0.056 0.000 0.000
#> GSM615960     1   0.134     1.0000 0.944 0.000 0.056 0.000 0.000
#> GSM615961     1   0.134     1.0000 0.944 0.000 0.056 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM615919     4  0.3314   0.511389 0.000 0.256 0.000 0.740 0.004 0.000
#> GSM615921     4  0.6873   0.000732 0.000 0.232 0.004 0.420 0.048 0.296
#> GSM615922     3  0.4066   0.464774 0.000 0.392 0.596 0.012 0.000 0.000
#> GSM615925     4  0.4563   0.532220 0.000 0.056 0.000 0.628 0.316 0.000
#> GSM615926     3  0.1059   0.744507 0.000 0.016 0.964 0.016 0.004 0.000
#> GSM615933     5  0.0146   0.623101 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM615939     2  0.3947   0.611207 0.000 0.756 0.016 0.032 0.000 0.196
#> GSM615941     3  0.3151   0.643545 0.000 0.252 0.748 0.000 0.000 0.000
#> GSM615944     3  0.0603   0.743552 0.004 0.016 0.980 0.000 0.000 0.000
#> GSM615945     5  0.0000   0.623855 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM615947     2  0.5999   0.437750 0.000 0.516 0.020 0.160 0.000 0.304
#> GSM615948     3  0.3804   0.556849 0.000 0.336 0.656 0.008 0.000 0.000
#> GSM615951     2  0.5970   0.499636 0.000 0.604 0.108 0.076 0.000 0.212
#> GSM615918     4  0.3881   0.442473 0.000 0.004 0.000 0.600 0.396 0.000
#> GSM615927     4  0.3995   0.346575 0.000 0.004 0.000 0.516 0.480 0.000
#> GSM615929     2  0.2961   0.506145 0.000 0.840 0.020 0.132 0.008 0.000
#> GSM615931     5  0.2100   0.546951 0.000 0.004 0.000 0.112 0.884 0.000
#> GSM615937     5  0.4384   0.065959 0.000 0.000 0.004 0.016 0.520 0.460
#> GSM615938     2  0.6555   0.357624 0.000 0.436 0.020 0.188 0.012 0.344
#> GSM615940     2  0.0837   0.628995 0.000 0.972 0.020 0.004 0.000 0.004
#> GSM615946     2  0.4117   0.610988 0.000 0.748 0.016 0.044 0.000 0.192
#> GSM615952     2  0.5970   0.499636 0.000 0.604 0.108 0.076 0.000 0.212
#> GSM615953     2  0.6203   0.495602 0.000 0.604 0.088 0.076 0.016 0.216
#> GSM615955     3  0.2266   0.701009 0.108 0.012 0.880 0.000 0.000 0.000
#> GSM721722     3  0.2266   0.701009 0.108 0.012 0.880 0.000 0.000 0.000
#> GSM721723     6  0.3073   0.789660 0.000 0.016 0.000 0.008 0.152 0.824
#> GSM721724     2  0.0837   0.628995 0.000 0.972 0.020 0.004 0.000 0.004
#> GSM615917     4  0.4476   0.535078 0.000 0.052 0.000 0.640 0.308 0.000
#> GSM615920     3  0.3651   0.565181 0.000 0.008 0.752 0.224 0.016 0.000
#> GSM615923     5  0.6844   0.033036 0.000 0.208 0.000 0.324 0.408 0.060
#> GSM615928     4  0.6605   0.235617 0.000 0.376 0.000 0.396 0.044 0.184
#> GSM615934     2  0.4169  -0.318258 0.000 0.532 0.456 0.012 0.000 0.000
#> GSM615950     5  0.5255   0.163933 0.000 0.000 0.012 0.072 0.544 0.372
#> GSM615954     5  0.5279   0.474861 0.000 0.020 0.040 0.072 0.700 0.168
#> GSM615956     2  0.6156   0.498895 0.000 0.608 0.088 0.072 0.016 0.216
#> GSM615958     1  0.0000   1.000000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM615924     4  0.4506   0.541701 0.000 0.176 0.000 0.704 0.120 0.000
#> GSM615930     5  0.0508   0.621173 0.000 0.004 0.000 0.012 0.984 0.000
#> GSM615932     2  0.6828   0.362264 0.000 0.432 0.020 0.192 0.028 0.328
#> GSM615935     2  0.6828   0.362264 0.000 0.432 0.020 0.192 0.028 0.328
#> GSM615936     2  0.1409   0.630603 0.000 0.948 0.032 0.012 0.000 0.008
#> GSM615942     2  0.3240   0.494162 0.000 0.752 0.244 0.004 0.000 0.000
#> GSM615943     5  0.1297   0.624604 0.000 0.000 0.000 0.012 0.948 0.040
#> GSM615949     2  0.0993   0.623784 0.000 0.964 0.024 0.012 0.000 0.000
#> GSM615957     6  0.2814   0.612201 0.000 0.172 0.000 0.008 0.000 0.820
#> GSM721720     6  0.3073   0.789660 0.000 0.016 0.000 0.008 0.152 0.824
#> GSM721721     5  0.6854   0.027896 0.000 0.212 0.000 0.320 0.408 0.060
#> GSM615959     1  0.0000   1.000000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM615960     1  0.0000   1.000000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM615961     1  0.0000   1.000000 1.000 0.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n age(p) gender(p) tissue(p) k
#> CV:hclust 45 0.6191     0.488  4.84e-06 2
#> CV:hclust 12 1.0000     0.480  4.80e-01 3
#> CV:hclust 29 0.1387     0.315  2.24e-06 4
#> CV:hclust 33 0.0436     0.170  3.22e-07 5
#> CV:hclust 30 0.1084     0.100  1.47e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16230 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.740           0.885       0.939         0.2833 0.784   0.784
#> 3 3 0.434           0.751       0.865         1.0684 0.565   0.469
#> 4 4 0.620           0.634       0.831         0.2191 0.807   0.567
#> 5 5 0.631           0.595       0.772         0.0900 0.838   0.511
#> 6 6 0.725           0.669       0.785         0.0539 0.914   0.650

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM615919     2  0.0672      0.927 0.008 0.992
#> GSM615921     2  0.0000      0.927 0.000 1.000
#> GSM615922     2  0.8813      0.647 0.300 0.700
#> GSM615925     2  0.1414      0.925 0.020 0.980
#> GSM615926     2  0.9000      0.642 0.316 0.684
#> GSM615933     2  0.1184      0.925 0.016 0.984
#> GSM615939     2  0.0672      0.926 0.008 0.992
#> GSM615941     2  0.8813      0.647 0.300 0.700
#> GSM615944     2  0.9129      0.601 0.328 0.672
#> GSM615945     2  0.1184      0.925 0.016 0.984
#> GSM615947     2  0.0000      0.927 0.000 1.000
#> GSM615948     2  0.8813      0.647 0.300 0.700
#> GSM615951     2  0.8813      0.647 0.300 0.700
#> GSM615918     2  0.1414      0.925 0.020 0.980
#> GSM615927     2  0.1184      0.925 0.016 0.984
#> GSM615929     2  0.0672      0.926 0.008 0.992
#> GSM615931     2  0.1414      0.925 0.020 0.980
#> GSM615937     2  0.1184      0.925 0.016 0.984
#> GSM615938     2  0.0000      0.927 0.000 1.000
#> GSM615940     2  0.0672      0.926 0.008 0.992
#> GSM615946     2  0.0000      0.927 0.000 1.000
#> GSM615952     2  0.8813      0.647 0.300 0.700
#> GSM615953     2  0.0000      0.927 0.000 1.000
#> GSM615955     1  0.1633      0.981 0.976 0.024
#> GSM721722     1  0.1633      0.981 0.976 0.024
#> GSM721723     2  0.0000      0.927 0.000 1.000
#> GSM721724     2  0.0672      0.926 0.008 0.992
#> GSM615917     2  0.1184      0.925 0.016 0.984
#> GSM615920     2  0.2603      0.915 0.044 0.956
#> GSM615923     2  0.1184      0.925 0.016 0.984
#> GSM615928     2  0.0672      0.927 0.008 0.992
#> GSM615934     2  0.6623      0.794 0.172 0.828
#> GSM615950     2  0.1184      0.925 0.016 0.984
#> GSM615954     2  0.1184      0.925 0.016 0.984
#> GSM615956     2  0.0672      0.926 0.008 0.992
#> GSM615958     1  0.0000      0.991 1.000 0.000
#> GSM615924     2  0.1184      0.925 0.016 0.984
#> GSM615930     2  0.1184      0.925 0.016 0.984
#> GSM615932     2  0.0000      0.927 0.000 1.000
#> GSM615935     2  0.0000      0.927 0.000 1.000
#> GSM615936     2  0.0672      0.926 0.008 0.992
#> GSM615942     2  0.8813      0.647 0.300 0.700
#> GSM615943     2  0.1184      0.925 0.016 0.984
#> GSM615949     2  0.0672      0.926 0.008 0.992
#> GSM615957     2  0.0000      0.927 0.000 1.000
#> GSM721720     2  0.0000      0.927 0.000 1.000
#> GSM721721     2  0.0938      0.926 0.012 0.988
#> GSM615959     1  0.0000      0.991 1.000 0.000
#> GSM615960     1  0.0000      0.991 1.000 0.000
#> GSM615961     1  0.0000      0.991 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM615919     2  0.5706      0.660 0.000 0.680 0.320
#> GSM615921     2  0.5058      0.676 0.000 0.756 0.244
#> GSM615922     3  0.2902      0.813 0.064 0.016 0.920
#> GSM615925     2  0.4178      0.785 0.000 0.828 0.172
#> GSM615926     3  0.6537      0.632 0.064 0.196 0.740
#> GSM615933     2  0.1163      0.821 0.000 0.972 0.028
#> GSM615939     3  0.1643      0.822 0.000 0.044 0.956
#> GSM615941     3  0.2902      0.816 0.064 0.016 0.920
#> GSM615944     3  0.2845      0.812 0.068 0.012 0.920
#> GSM615945     2  0.0892      0.820 0.000 0.980 0.020
#> GSM615947     3  0.1860      0.819 0.000 0.052 0.948
#> GSM615948     3  0.2902      0.816 0.064 0.016 0.920
#> GSM615951     3  0.2902      0.816 0.064 0.016 0.920
#> GSM615918     2  0.4178      0.785 0.000 0.828 0.172
#> GSM615927     2  0.0237      0.812 0.000 0.996 0.004
#> GSM615929     3  0.1753      0.817 0.000 0.048 0.952
#> GSM615931     2  0.4062      0.797 0.000 0.836 0.164
#> GSM615937     2  0.1129      0.818 0.004 0.976 0.020
#> GSM615938     2  0.5098      0.672 0.000 0.752 0.248
#> GSM615940     3  0.1643      0.822 0.000 0.044 0.956
#> GSM615946     3  0.4399      0.666 0.000 0.188 0.812
#> GSM615952     3  0.2301      0.815 0.060 0.004 0.936
#> GSM615953     3  0.6168      0.280 0.000 0.412 0.588
#> GSM615955     3  0.6079      0.368 0.388 0.000 0.612
#> GSM721722     3  0.5553      0.578 0.272 0.004 0.724
#> GSM721723     2  0.5365      0.672 0.004 0.744 0.252
#> GSM721724     3  0.1643      0.822 0.000 0.044 0.956
#> GSM615917     2  0.4178      0.785 0.000 0.828 0.172
#> GSM615920     2  0.5884      0.664 0.012 0.716 0.272
#> GSM615923     2  0.1964      0.822 0.000 0.944 0.056
#> GSM615928     2  0.4452      0.773 0.000 0.808 0.192
#> GSM615934     3  0.2903      0.817 0.048 0.028 0.924
#> GSM615950     2  0.1129      0.818 0.004 0.976 0.020
#> GSM615954     2  0.0892      0.820 0.000 0.980 0.020
#> GSM615956     3  0.1753      0.820 0.000 0.048 0.952
#> GSM615958     1  0.0237      1.000 0.996 0.000 0.004
#> GSM615924     2  0.3752      0.802 0.000 0.856 0.144
#> GSM615930     2  0.0000      0.813 0.000 1.000 0.000
#> GSM615932     2  0.5098      0.672 0.000 0.752 0.248
#> GSM615935     3  0.6291      0.130 0.000 0.468 0.532
#> GSM615936     3  0.1964      0.823 0.000 0.056 0.944
#> GSM615942     3  0.2902      0.816 0.064 0.016 0.920
#> GSM615943     2  0.0892      0.820 0.000 0.980 0.020
#> GSM615949     3  0.1860      0.824 0.000 0.052 0.948
#> GSM615957     3  0.6330      0.333 0.004 0.396 0.600
#> GSM721720     2  0.5365      0.672 0.004 0.744 0.252
#> GSM721721     2  0.5431      0.677 0.000 0.716 0.284
#> GSM615959     1  0.0237      1.000 0.996 0.000 0.004
#> GSM615960     1  0.0237      1.000 0.996 0.000 0.004
#> GSM615961     1  0.0237      1.000 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM615919     4  0.4549     0.6384 0.000 0.100 0.096 0.804
#> GSM615921     2  0.4040     0.5258 0.000 0.752 0.000 0.248
#> GSM615922     3  0.0592     0.8182 0.016 0.000 0.984 0.000
#> GSM615925     4  0.0817     0.7689 0.000 0.000 0.024 0.976
#> GSM615926     3  0.1369     0.8103 0.016 0.004 0.964 0.016
#> GSM615933     4  0.3982     0.6906 0.000 0.220 0.004 0.776
#> GSM615939     3  0.6376     0.2977 0.000 0.396 0.536 0.068
#> GSM615941     3  0.0592     0.8182 0.016 0.000 0.984 0.000
#> GSM615944     3  0.0592     0.8182 0.016 0.000 0.984 0.000
#> GSM615945     4  0.4456     0.6395 0.000 0.280 0.004 0.716
#> GSM615947     2  0.6354    -0.0449 0.000 0.520 0.416 0.064
#> GSM615948     3  0.0592     0.8182 0.016 0.000 0.984 0.000
#> GSM615951     3  0.0779     0.8174 0.016 0.004 0.980 0.000
#> GSM615918     4  0.0817     0.7689 0.000 0.000 0.024 0.976
#> GSM615927     4  0.1978     0.7563 0.000 0.068 0.004 0.928
#> GSM615929     3  0.4883     0.5673 0.000 0.016 0.696 0.288
#> GSM615931     4  0.4019     0.7126 0.000 0.196 0.012 0.792
#> GSM615937     2  0.5334    -0.1356 0.008 0.588 0.004 0.400
#> GSM615938     2  0.1209     0.6922 0.000 0.964 0.004 0.032
#> GSM615940     3  0.6276     0.3343 0.000 0.380 0.556 0.064
#> GSM615946     2  0.7148     0.0881 0.000 0.496 0.364 0.140
#> GSM615952     3  0.0927     0.8159 0.016 0.008 0.976 0.000
#> GSM615953     2  0.3697     0.6617 0.000 0.852 0.048 0.100
#> GSM615955     3  0.1474     0.7954 0.052 0.000 0.948 0.000
#> GSM721722     3  0.1484     0.8093 0.020 0.004 0.960 0.016
#> GSM721723     2  0.0804     0.6871 0.008 0.980 0.000 0.012
#> GSM721724     3  0.6400     0.2709 0.000 0.408 0.524 0.068
#> GSM615917     4  0.0707     0.7678 0.000 0.000 0.020 0.980
#> GSM615920     4  0.4053     0.6176 0.000 0.004 0.228 0.768
#> GSM615923     4  0.3335     0.7537 0.000 0.128 0.016 0.856
#> GSM615928     4  0.2521     0.7517 0.000 0.024 0.064 0.912
#> GSM615934     3  0.1637     0.7905 0.000 0.000 0.940 0.060
#> GSM615950     2  0.5375    -0.1532 0.008 0.572 0.004 0.416
#> GSM615954     4  0.4994     0.2988 0.000 0.480 0.000 0.520
#> GSM615956     3  0.6392     0.1565 0.000 0.452 0.484 0.064
#> GSM615958     1  0.0336     1.0000 0.992 0.000 0.008 0.000
#> GSM615924     4  0.1411     0.7675 0.000 0.020 0.020 0.960
#> GSM615930     4  0.4283     0.6652 0.000 0.256 0.004 0.740
#> GSM615932     2  0.1209     0.6922 0.000 0.964 0.004 0.032
#> GSM615935     2  0.2214     0.6942 0.000 0.928 0.044 0.028
#> GSM615936     3  0.3081     0.7678 0.000 0.048 0.888 0.064
#> GSM615942     3  0.0592     0.8182 0.016 0.000 0.984 0.000
#> GSM615943     4  0.5163     0.2861 0.000 0.480 0.004 0.516
#> GSM615949     3  0.3081     0.7678 0.000 0.048 0.888 0.064
#> GSM615957     2  0.3450     0.6093 0.008 0.836 0.156 0.000
#> GSM721720     2  0.0804     0.6871 0.008 0.980 0.000 0.012
#> GSM721721     4  0.2741     0.7230 0.000 0.012 0.096 0.892
#> GSM615959     1  0.0336     1.0000 0.992 0.000 0.008 0.000
#> GSM615960     1  0.0336     1.0000 0.992 0.000 0.008 0.000
#> GSM615961     1  0.0336     1.0000 0.992 0.000 0.008 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM615919     4  0.4993     0.5036 0.000 0.224 0.020 0.708 0.048
#> GSM615921     2  0.5680     0.4821 0.000 0.620 0.000 0.140 0.240
#> GSM615922     3  0.0162     0.9219 0.000 0.004 0.996 0.000 0.000
#> GSM615925     4  0.0451     0.5958 0.000 0.000 0.008 0.988 0.004
#> GSM615926     3  0.1117     0.9032 0.000 0.000 0.964 0.020 0.016
#> GSM615933     4  0.6316    -0.0915 0.004 0.136 0.000 0.464 0.396
#> GSM615939     2  0.3909     0.6971 0.000 0.760 0.216 0.024 0.000
#> GSM615941     3  0.0290     0.9224 0.000 0.008 0.992 0.000 0.000
#> GSM615944     3  0.0510     0.9173 0.000 0.000 0.984 0.000 0.016
#> GSM615945     4  0.6302    -0.1403 0.004 0.132 0.000 0.444 0.420
#> GSM615947     2  0.4164     0.7080 0.000 0.764 0.200 0.024 0.012
#> GSM615948     3  0.0290     0.9224 0.000 0.008 0.992 0.000 0.000
#> GSM615951     3  0.0510     0.9205 0.000 0.016 0.984 0.000 0.000
#> GSM615918     4  0.0451     0.5958 0.000 0.000 0.008 0.988 0.004
#> GSM615927     4  0.3181     0.5156 0.000 0.072 0.000 0.856 0.072
#> GSM615929     4  0.6287     0.2858 0.000 0.240 0.224 0.536 0.000
#> GSM615931     4  0.6105    -0.0173 0.004 0.096 0.004 0.500 0.396
#> GSM615937     5  0.1478     0.6458 0.000 0.000 0.000 0.064 0.936
#> GSM615938     2  0.3906     0.5023 0.000 0.704 0.000 0.004 0.292
#> GSM615940     2  0.4058     0.6781 0.000 0.740 0.236 0.024 0.000
#> GSM615946     2  0.3788     0.6808 0.000 0.820 0.104 0.072 0.004
#> GSM615952     3  0.0609     0.9193 0.000 0.020 0.980 0.000 0.000
#> GSM615953     2  0.4474     0.5824 0.000 0.780 0.024 0.056 0.140
#> GSM615955     3  0.0912     0.9112 0.012 0.000 0.972 0.000 0.016
#> GSM721722     3  0.0798     0.9133 0.000 0.000 0.976 0.008 0.016
#> GSM721723     5  0.3963     0.5000 0.008 0.256 0.000 0.004 0.732
#> GSM721724     2  0.3909     0.6971 0.000 0.760 0.216 0.024 0.000
#> GSM615917     4  0.0451     0.5958 0.000 0.000 0.008 0.988 0.004
#> GSM615920     4  0.4359     0.4357 0.000 0.004 0.288 0.692 0.016
#> GSM615923     4  0.5382     0.2847 0.000 0.072 0.000 0.592 0.336
#> GSM615928     4  0.3818     0.5671 0.000 0.144 0.016 0.812 0.028
#> GSM615934     3  0.2625     0.7947 0.000 0.108 0.876 0.016 0.000
#> GSM615950     5  0.2632     0.6434 0.000 0.040 0.000 0.072 0.888
#> GSM615954     5  0.5316     0.4533 0.004 0.084 0.000 0.256 0.656
#> GSM615956     2  0.3916     0.7097 0.000 0.780 0.188 0.028 0.004
#> GSM615958     1  0.1012     0.9913 0.968 0.000 0.012 0.000 0.020
#> GSM615924     4  0.1768     0.5941 0.000 0.072 0.004 0.924 0.000
#> GSM615930     4  0.6191    -0.0725 0.004 0.120 0.000 0.476 0.400
#> GSM615932     2  0.3906     0.5023 0.000 0.704 0.000 0.004 0.292
#> GSM615935     2  0.4039     0.5146 0.000 0.720 0.008 0.004 0.268
#> GSM615936     2  0.4855     0.2988 0.000 0.552 0.424 0.024 0.000
#> GSM615942     3  0.0290     0.9224 0.000 0.008 0.992 0.000 0.000
#> GSM615943     5  0.6094     0.3154 0.004 0.132 0.000 0.312 0.552
#> GSM615949     3  0.4817     0.1179 0.000 0.404 0.572 0.024 0.000
#> GSM615957     2  0.5232     0.3839 0.008 0.580 0.036 0.000 0.376
#> GSM721720     5  0.3963     0.5000 0.008 0.256 0.000 0.004 0.732
#> GSM721721     4  0.4677     0.5388 0.000 0.184 0.020 0.748 0.048
#> GSM615959     1  0.0404     0.9913 0.988 0.000 0.012 0.000 0.000
#> GSM615960     1  0.1012     0.9913 0.968 0.000 0.012 0.000 0.020
#> GSM615961     1  0.0404     0.9913 0.988 0.000 0.012 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM615919     4  0.3037      0.686 0.000 0.160 0.000 0.820 0.004 0.016
#> GSM615921     2  0.6808      0.173 0.000 0.496 0.000 0.172 0.100 0.232
#> GSM615922     3  0.0891      0.920 0.000 0.024 0.968 0.000 0.000 0.008
#> GSM615925     4  0.3300      0.692 0.000 0.016 0.000 0.812 0.156 0.016
#> GSM615926     3  0.1563      0.904 0.000 0.000 0.932 0.012 0.000 0.056
#> GSM615933     5  0.2300      0.729 0.000 0.000 0.000 0.144 0.856 0.000
#> GSM615939     2  0.2251      0.679 0.000 0.904 0.052 0.036 0.008 0.000
#> GSM615941     3  0.0777      0.921 0.000 0.024 0.972 0.000 0.000 0.004
#> GSM615944     3  0.1524      0.903 0.000 0.000 0.932 0.008 0.000 0.060
#> GSM615945     5  0.2135      0.734 0.000 0.000 0.000 0.128 0.872 0.000
#> GSM615947     2  0.1608      0.678 0.000 0.940 0.036 0.016 0.004 0.004
#> GSM615948     3  0.0972      0.919 0.000 0.028 0.964 0.000 0.000 0.008
#> GSM615951     3  0.2460      0.891 0.000 0.064 0.896 0.004 0.016 0.020
#> GSM615918     4  0.3263      0.693 0.000 0.016 0.000 0.816 0.152 0.016
#> GSM615927     4  0.3741      0.502 0.000 0.000 0.000 0.672 0.320 0.008
#> GSM615929     4  0.5252      0.420 0.000 0.312 0.068 0.600 0.016 0.004
#> GSM615931     5  0.2882      0.698 0.000 0.000 0.000 0.180 0.812 0.008
#> GSM615937     5  0.4722      0.171 0.000 0.012 0.000 0.024 0.484 0.480
#> GSM615938     2  0.5450      0.349 0.000 0.612 0.000 0.012 0.156 0.220
#> GSM615940     2  0.4345      0.632 0.000 0.776 0.120 0.068 0.020 0.016
#> GSM615946     2  0.2224      0.673 0.000 0.912 0.004 0.036 0.036 0.012
#> GSM615952     3  0.2460      0.891 0.000 0.064 0.896 0.004 0.016 0.020
#> GSM615953     2  0.4008      0.587 0.000 0.792 0.000 0.028 0.092 0.088
#> GSM615955     3  0.2037      0.898 0.000 0.008 0.916 0.008 0.008 0.060
#> GSM721722     3  0.1781      0.901 0.000 0.000 0.924 0.008 0.008 0.060
#> GSM721723     6  0.3219      0.714 0.000 0.064 0.000 0.020 0.068 0.848
#> GSM721724     2  0.2703      0.675 0.000 0.876 0.052 0.064 0.008 0.000
#> GSM615917     4  0.3300      0.692 0.000 0.016 0.000 0.812 0.156 0.016
#> GSM615920     4  0.5754      0.483 0.000 0.020 0.292 0.592 0.028 0.068
#> GSM615923     4  0.5431      0.357 0.000 0.024 0.000 0.628 0.120 0.228
#> GSM615928     4  0.2308      0.718 0.000 0.076 0.000 0.896 0.016 0.012
#> GSM615934     3  0.3336      0.783 0.000 0.132 0.824 0.032 0.004 0.008
#> GSM615950     5  0.4842      0.243 0.000 0.016 0.000 0.028 0.524 0.432
#> GSM615954     5  0.4373      0.572 0.000 0.008 0.000 0.044 0.688 0.260
#> GSM615956     2  0.2715      0.670 0.000 0.892 0.024 0.028 0.016 0.040
#> GSM615958     1  0.1655      0.971 0.940 0.004 0.000 0.012 0.012 0.032
#> GSM615924     4  0.2221      0.720 0.000 0.032 0.000 0.896 0.072 0.000
#> GSM615930     5  0.2491      0.719 0.000 0.000 0.000 0.164 0.836 0.000
#> GSM615932     2  0.5597      0.328 0.000 0.584 0.000 0.012 0.156 0.248
#> GSM615935     2  0.5690      0.342 0.000 0.580 0.000 0.016 0.160 0.244
#> GSM615936     2  0.4317      0.614 0.000 0.768 0.152 0.040 0.024 0.016
#> GSM615942     3  0.1413      0.916 0.000 0.036 0.948 0.004 0.004 0.008
#> GSM615943     5  0.1564      0.704 0.000 0.000 0.000 0.040 0.936 0.024
#> GSM615949     2  0.5504      0.369 0.000 0.572 0.336 0.060 0.020 0.012
#> GSM615957     6  0.3942      0.280 0.000 0.368 0.000 0.004 0.004 0.624
#> GSM721720     6  0.3219      0.714 0.000 0.064 0.000 0.020 0.068 0.848
#> GSM721721     4  0.2877      0.696 0.000 0.124 0.000 0.848 0.008 0.020
#> GSM615959     1  0.0000      0.972 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM615960     1  0.1553      0.972 0.944 0.004 0.000 0.008 0.012 0.032
#> GSM615961     1  0.0000      0.972 1.000 0.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n age(p) gender(p) tissue(p) k
#> CV:kmeans 50 0.5182     0.318  1.27e-06 2
#> CV:kmeans 46 0.0181     0.603  1.03e-10 3
#> CV:kmeans 40 0.0902     0.172  1.07e-08 4
#> CV:kmeans 35 0.0607     0.527  4.65e-07 5
#> CV:kmeans 39 0.0906     0.533  2.37e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16230 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.635           0.804       0.918         0.5042 0.493   0.493
#> 3 3 0.746           0.874       0.918         0.3450 0.713   0.478
#> 4 4 0.603           0.496       0.715         0.1164 0.818   0.507
#> 5 5 0.614           0.563       0.742         0.0672 0.836   0.445
#> 6 6 0.648           0.443       0.681         0.0403 0.922   0.634

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM615919     2   0.706      0.724 0.192 0.808
#> GSM615921     2   0.000      0.912 0.000 1.000
#> GSM615922     1   0.000      0.880 1.000 0.000
#> GSM615925     2   0.913      0.523 0.328 0.672
#> GSM615926     1   0.000      0.880 1.000 0.000
#> GSM615933     2   0.000      0.912 0.000 1.000
#> GSM615939     1   0.913      0.591 0.672 0.328
#> GSM615941     1   0.000      0.880 1.000 0.000
#> GSM615944     1   0.000      0.880 1.000 0.000
#> GSM615945     2   0.000      0.912 0.000 1.000
#> GSM615947     2   0.998     -0.114 0.472 0.528
#> GSM615948     1   0.000      0.880 1.000 0.000
#> GSM615951     1   0.000      0.880 1.000 0.000
#> GSM615918     2   0.913      0.523 0.328 0.672
#> GSM615927     2   0.000      0.912 0.000 1.000
#> GSM615929     1   0.000      0.880 1.000 0.000
#> GSM615931     2   0.141      0.898 0.020 0.980
#> GSM615937     2   0.000      0.912 0.000 1.000
#> GSM615938     2   0.000      0.912 0.000 1.000
#> GSM615940     1   0.913      0.591 0.672 0.328
#> GSM615946     2   0.000      0.912 0.000 1.000
#> GSM615952     1   0.000      0.880 1.000 0.000
#> GSM615953     2   0.000      0.912 0.000 1.000
#> GSM615955     1   0.000      0.880 1.000 0.000
#> GSM721722     1   0.000      0.880 1.000 0.000
#> GSM721723     2   0.000      0.912 0.000 1.000
#> GSM721724     1   0.913      0.591 0.672 0.328
#> GSM615917     2   0.876      0.577 0.296 0.704
#> GSM615920     1   0.767      0.624 0.776 0.224
#> GSM615923     2   0.000      0.912 0.000 1.000
#> GSM615928     2   0.000      0.912 0.000 1.000
#> GSM615934     1   0.000      0.880 1.000 0.000
#> GSM615950     2   0.000      0.912 0.000 1.000
#> GSM615954     2   0.000      0.912 0.000 1.000
#> GSM615956     1   0.946      0.526 0.636 0.364
#> GSM615958     1   0.000      0.880 1.000 0.000
#> GSM615924     2   0.000      0.912 0.000 1.000
#> GSM615930     2   0.000      0.912 0.000 1.000
#> GSM615932     2   0.000      0.912 0.000 1.000
#> GSM615935     2   0.000      0.912 0.000 1.000
#> GSM615936     1   0.913      0.591 0.672 0.328
#> GSM615942     1   0.000      0.880 1.000 0.000
#> GSM615943     2   0.000      0.912 0.000 1.000
#> GSM615949     1   0.913      0.591 0.672 0.328
#> GSM615957     2   0.430      0.831 0.088 0.912
#> GSM721720     2   0.000      0.912 0.000 1.000
#> GSM721721     2   0.634      0.738 0.160 0.840
#> GSM615959     1   0.000      0.880 1.000 0.000
#> GSM615960     1   0.000      0.880 1.000 0.000
#> GSM615961     1   0.000      0.880 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM615919     1  0.6008      0.589 0.628 0.372 0.000
#> GSM615921     2  0.5058      0.816 0.244 0.756 0.000
#> GSM615922     3  0.0424      0.970 0.000 0.008 0.992
#> GSM615925     1  0.3686      0.859 0.860 0.140 0.000
#> GSM615926     3  0.0000      0.971 0.000 0.000 1.000
#> GSM615933     1  0.1031      0.896 0.976 0.024 0.000
#> GSM615939     2  0.0000      0.844 0.000 1.000 0.000
#> GSM615941     3  0.1163      0.963 0.000 0.028 0.972
#> GSM615944     3  0.0000      0.971 0.000 0.000 1.000
#> GSM615945     1  0.0000      0.897 1.000 0.000 0.000
#> GSM615947     2  0.3412      0.849 0.124 0.876 0.000
#> GSM615948     3  0.1031      0.965 0.000 0.024 0.976
#> GSM615951     3  0.1031      0.965 0.000 0.024 0.976
#> GSM615918     1  0.3755      0.866 0.872 0.120 0.008
#> GSM615927     1  0.0000      0.897 1.000 0.000 0.000
#> GSM615929     2  0.6297      0.628 0.060 0.756 0.184
#> GSM615931     1  0.1031      0.896 0.976 0.024 0.000
#> GSM615937     1  0.0000      0.897 1.000 0.000 0.000
#> GSM615938     2  0.4654      0.839 0.208 0.792 0.000
#> GSM615940     2  0.0000      0.844 0.000 1.000 0.000
#> GSM615946     2  0.0000      0.844 0.000 1.000 0.000
#> GSM615952     3  0.1163      0.963 0.000 0.028 0.972
#> GSM615953     2  0.4605      0.840 0.204 0.796 0.000
#> GSM615955     3  0.0000      0.971 0.000 0.000 1.000
#> GSM721722     3  0.0000      0.971 0.000 0.000 1.000
#> GSM721723     2  0.5327      0.789 0.272 0.728 0.000
#> GSM721724     2  0.0000      0.844 0.000 1.000 0.000
#> GSM615917     1  0.3686      0.859 0.860 0.140 0.000
#> GSM615920     3  0.2066      0.923 0.060 0.000 0.940
#> GSM615923     1  0.0237      0.897 0.996 0.004 0.000
#> GSM615928     1  0.4555      0.814 0.800 0.200 0.000
#> GSM615934     3  0.4654      0.763 0.000 0.208 0.792
#> GSM615950     1  0.0000      0.897 1.000 0.000 0.000
#> GSM615954     1  0.0747      0.887 0.984 0.016 0.000
#> GSM615956     2  0.0000      0.844 0.000 1.000 0.000
#> GSM615958     3  0.0000      0.971 0.000 0.000 1.000
#> GSM615924     1  0.4235      0.834 0.824 0.176 0.000
#> GSM615930     1  0.0000      0.897 1.000 0.000 0.000
#> GSM615932     2  0.4702      0.837 0.212 0.788 0.000
#> GSM615935     2  0.4605      0.840 0.204 0.796 0.000
#> GSM615936     2  0.0829      0.844 0.004 0.984 0.012
#> GSM615942     3  0.2066      0.939 0.000 0.060 0.940
#> GSM615943     1  0.0000      0.897 1.000 0.000 0.000
#> GSM615949     2  0.0592      0.839 0.000 0.988 0.012
#> GSM615957     2  0.4555      0.841 0.200 0.800 0.000
#> GSM721720     2  0.5650      0.739 0.312 0.688 0.000
#> GSM721721     1  0.4654      0.808 0.792 0.208 0.000
#> GSM615959     3  0.0000      0.971 0.000 0.000 1.000
#> GSM615960     3  0.0000      0.971 0.000 0.000 1.000
#> GSM615961     3  0.0000      0.971 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM615919     4  0.7524     0.3804 0.028 0.168 0.216 0.588
#> GSM615921     2  0.6184     0.4373 0.000 0.664 0.120 0.216
#> GSM615922     1  0.5290     0.2708 0.516 0.000 0.476 0.008
#> GSM615925     4  0.0817     0.7263 0.024 0.000 0.000 0.976
#> GSM615926     1  0.1302     0.8217 0.956 0.000 0.044 0.000
#> GSM615933     4  0.4655     0.5959 0.000 0.312 0.004 0.684
#> GSM615939     3  0.3907     0.4889 0.000 0.232 0.768 0.000
#> GSM615941     1  0.4996     0.2501 0.516 0.000 0.484 0.000
#> GSM615944     1  0.2281     0.8064 0.904 0.000 0.096 0.000
#> GSM615945     4  0.4819     0.5550 0.000 0.344 0.004 0.652
#> GSM615947     2  0.5000    -0.0243 0.000 0.500 0.500 0.000
#> GSM615948     3  0.5165    -0.2986 0.484 0.004 0.512 0.000
#> GSM615951     1  0.4353     0.6996 0.756 0.012 0.232 0.000
#> GSM615918     4  0.0817     0.7263 0.024 0.000 0.000 0.976
#> GSM615927     4  0.1474     0.7281 0.000 0.052 0.000 0.948
#> GSM615929     3  0.6006     0.2758 0.036 0.012 0.624 0.328
#> GSM615931     4  0.4632     0.6015 0.000 0.308 0.004 0.688
#> GSM615937     2  0.4624     0.0615 0.000 0.660 0.000 0.340
#> GSM615938     2  0.3668     0.5583 0.000 0.808 0.188 0.004
#> GSM615940     3  0.2345     0.5707 0.000 0.100 0.900 0.000
#> GSM615946     3  0.4564     0.3523 0.000 0.328 0.672 0.000
#> GSM615952     1  0.4267     0.7340 0.788 0.024 0.188 0.000
#> GSM615953     2  0.4040     0.5195 0.000 0.752 0.248 0.000
#> GSM615955     1  0.1557     0.8180 0.944 0.000 0.056 0.000
#> GSM721722     1  0.1118     0.8229 0.964 0.000 0.036 0.000
#> GSM721723     2  0.1724     0.5823 0.000 0.948 0.032 0.020
#> GSM721724     3  0.3873     0.4943 0.000 0.228 0.772 0.000
#> GSM615917     4  0.0817     0.7263 0.024 0.000 0.000 0.976
#> GSM615920     1  0.3583     0.6636 0.816 0.004 0.000 0.180
#> GSM615923     4  0.4509     0.6319 0.000 0.288 0.004 0.708
#> GSM615928     4  0.4701     0.6422 0.000 0.056 0.164 0.780
#> GSM615934     3  0.4560     0.2231 0.296 0.000 0.700 0.004
#> GSM615950     2  0.4679     0.0328 0.000 0.648 0.000 0.352
#> GSM615954     2  0.5062     0.1744 0.020 0.680 0.000 0.300
#> GSM615956     3  0.4843     0.2255 0.000 0.396 0.604 0.000
#> GSM615958     1  0.0707     0.8189 0.980 0.000 0.000 0.020
#> GSM615924     4  0.1706     0.7283 0.000 0.036 0.016 0.948
#> GSM615930     4  0.4477     0.6003 0.000 0.312 0.000 0.688
#> GSM615932     2  0.3801     0.5428 0.000 0.780 0.220 0.000
#> GSM615935     2  0.4304     0.4841 0.000 0.716 0.284 0.000
#> GSM615936     3  0.2011     0.5751 0.000 0.080 0.920 0.000
#> GSM615942     3  0.4925    -0.1587 0.428 0.000 0.572 0.000
#> GSM615943     2  0.4999    -0.3001 0.000 0.508 0.000 0.492
#> GSM615949     3  0.0712     0.5769 0.004 0.008 0.984 0.004
#> GSM615957     2  0.4331     0.4551 0.000 0.712 0.288 0.000
#> GSM721720     2  0.1406     0.5778 0.000 0.960 0.016 0.024
#> GSM721721     4  0.5744     0.5448 0.000 0.068 0.256 0.676
#> GSM615959     1  0.0707     0.8189 0.980 0.000 0.000 0.020
#> GSM615960     1  0.0707     0.8189 0.980 0.000 0.000 0.020
#> GSM615961     1  0.0707     0.8189 0.980 0.000 0.000 0.020

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM615919     4   0.416     0.5994 0.032 0.068 0.048 0.832 0.020
#> GSM615921     2   0.608     0.4749 0.000 0.580 0.008 0.280 0.132
#> GSM615922     3   0.291     0.6653 0.136 0.004 0.852 0.008 0.000
#> GSM615925     4   0.428     0.6492 0.028 0.000 0.000 0.716 0.256
#> GSM615926     1   0.425     0.6608 0.688 0.000 0.296 0.016 0.000
#> GSM615933     5   0.414     0.5900 0.000 0.036 0.004 0.196 0.764
#> GSM615939     2   0.571     0.3089 0.000 0.592 0.292 0.116 0.000
#> GSM615941     3   0.281     0.6610 0.152 0.004 0.844 0.000 0.000
#> GSM615944     1   0.391     0.6456 0.676 0.000 0.324 0.000 0.000
#> GSM615945     5   0.265     0.6704 0.000 0.000 0.000 0.152 0.848
#> GSM615947     2   0.322     0.5848 0.000 0.844 0.128 0.024 0.004
#> GSM615948     3   0.254     0.6837 0.128 0.004 0.868 0.000 0.000
#> GSM615951     1   0.615     0.4422 0.544 0.100 0.344 0.008 0.004
#> GSM615918     4   0.451     0.6505 0.032 0.000 0.004 0.708 0.256
#> GSM615927     4   0.426     0.3943 0.000 0.000 0.000 0.560 0.440
#> GSM615929     4   0.603     0.3959 0.024 0.100 0.236 0.636 0.004
#> GSM615931     5   0.338     0.6384 0.000 0.000 0.016 0.176 0.808
#> GSM615937     5   0.525     0.5383 0.000 0.180 0.016 0.096 0.708
#> GSM615938     2   0.438     0.6113 0.000 0.744 0.012 0.028 0.216
#> GSM615940     3   0.587     0.2241 0.000 0.364 0.528 0.108 0.000
#> GSM615946     2   0.531     0.4877 0.000 0.696 0.164 0.132 0.008
#> GSM615952     1   0.678     0.4517 0.532 0.160 0.284 0.008 0.016
#> GSM615953     2   0.395     0.6356 0.000 0.804 0.040 0.012 0.144
#> GSM615955     1   0.247     0.7637 0.864 0.000 0.136 0.000 0.000
#> GSM721722     1   0.311     0.7437 0.800 0.000 0.200 0.000 0.000
#> GSM721723     2   0.637     0.2340 0.000 0.516 0.016 0.116 0.352
#> GSM721724     2   0.607     0.1769 0.000 0.524 0.340 0.136 0.000
#> GSM615917     4   0.433     0.6524 0.032 0.000 0.000 0.716 0.252
#> GSM615920     1   0.417     0.6789 0.788 0.000 0.072 0.136 0.004
#> GSM615923     4   0.564    -0.1163 0.000 0.048 0.012 0.484 0.456
#> GSM615928     4   0.281     0.6547 0.000 0.004 0.048 0.884 0.064
#> GSM615934     3   0.237     0.6980 0.056 0.000 0.904 0.040 0.000
#> GSM615950     5   0.483     0.5690 0.000 0.168 0.008 0.088 0.736
#> GSM615954     5   0.408     0.6255 0.012 0.144 0.008 0.032 0.804
#> GSM615956     2   0.470     0.5253 0.000 0.764 0.100 0.120 0.016
#> GSM615958     1   0.000     0.7832 1.000 0.000 0.000 0.000 0.000
#> GSM615924     4   0.318     0.6575 0.000 0.000 0.000 0.792 0.208
#> GSM615930     5   0.273     0.6667 0.000 0.000 0.000 0.160 0.840
#> GSM615932     2   0.408     0.6192 0.000 0.760 0.016 0.012 0.212
#> GSM615935     2   0.390     0.6326 0.000 0.768 0.028 0.000 0.204
#> GSM615936     3   0.635     0.2899 0.008 0.364 0.536 0.056 0.036
#> GSM615942     3   0.257     0.6943 0.104 0.016 0.880 0.000 0.000
#> GSM615943     5   0.259     0.6950 0.000 0.056 0.000 0.052 0.892
#> GSM615949     3   0.421     0.6032 0.000 0.144 0.776 0.080 0.000
#> GSM615957     2   0.354     0.6313 0.000 0.840 0.020 0.028 0.112
#> GSM721720     2   0.643     0.0539 0.000 0.448 0.016 0.112 0.424
#> GSM721721     4   0.302     0.6259 0.008 0.016 0.068 0.884 0.024
#> GSM615959     1   0.000     0.7832 1.000 0.000 0.000 0.000 0.000
#> GSM615960     1   0.000     0.7832 1.000 0.000 0.000 0.000 0.000
#> GSM615961     1   0.000     0.7832 1.000 0.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM615919     4  0.3178    0.62969 0.000 0.092 0.012 0.844 0.000 0.052
#> GSM615921     6  0.6710    0.06633 0.000 0.328 0.008 0.220 0.028 0.416
#> GSM615922     3  0.2296    0.82115 0.052 0.008 0.908 0.012 0.000 0.020
#> GSM615925     4  0.3713    0.59891 0.000 0.000 0.004 0.704 0.284 0.008
#> GSM615926     1  0.5048    0.36712 0.536 0.000 0.412 0.028 0.008 0.016
#> GSM615933     5  0.3239    0.61828 0.000 0.080 0.004 0.028 0.852 0.036
#> GSM615939     2  0.3529    0.52358 0.000 0.816 0.088 0.088 0.000 0.008
#> GSM615941     3  0.2432    0.80744 0.072 0.016 0.892 0.000 0.000 0.020
#> GSM615944     1  0.4517    0.31585 0.512 0.004 0.464 0.004 0.000 0.016
#> GSM615945     5  0.0964    0.66273 0.000 0.004 0.000 0.012 0.968 0.016
#> GSM615947     2  0.3562    0.44473 0.000 0.784 0.028 0.008 0.000 0.180
#> GSM615948     3  0.2008    0.83192 0.040 0.032 0.920 0.004 0.000 0.004
#> GSM615951     1  0.7458    0.29673 0.436 0.104 0.284 0.012 0.008 0.156
#> GSM615918     4  0.3565    0.58416 0.000 0.000 0.004 0.692 0.304 0.000
#> GSM615927     5  0.4429   -0.21139 0.000 0.000 0.000 0.424 0.548 0.028
#> GSM615929     4  0.6344    0.38164 0.008 0.164 0.204 0.576 0.004 0.044
#> GSM615931     5  0.2402    0.62108 0.000 0.000 0.032 0.060 0.896 0.012
#> GSM615937     6  0.4617   -0.13889 0.000 0.008 0.000 0.024 0.444 0.524
#> GSM615938     2  0.5499    0.07897 0.000 0.528 0.004 0.000 0.124 0.344
#> GSM615940     2  0.6337    0.19252 0.000 0.508 0.324 0.104 0.004 0.060
#> GSM615946     2  0.3870    0.50143 0.000 0.816 0.012 0.080 0.024 0.068
#> GSM615952     1  0.7955    0.27979 0.380 0.124 0.228 0.012 0.016 0.240
#> GSM615953     6  0.6048   -0.05482 0.004 0.428 0.020 0.012 0.084 0.452
#> GSM615955     1  0.2624    0.68333 0.856 0.000 0.124 0.000 0.000 0.020
#> GSM721722     1  0.3534    0.61964 0.740 0.000 0.244 0.000 0.000 0.016
#> GSM721723     6  0.3624    0.50120 0.000 0.060 0.000 0.016 0.112 0.812
#> GSM721724     2  0.4922    0.49927 0.000 0.712 0.140 0.112 0.000 0.036
#> GSM615917     4  0.3244    0.61292 0.000 0.000 0.000 0.732 0.268 0.000
#> GSM615920     1  0.5356    0.48801 0.656 0.008 0.068 0.240 0.012 0.016
#> GSM615923     4  0.6695   -0.11596 0.000 0.016 0.008 0.348 0.312 0.316
#> GSM615928     4  0.5120    0.62312 0.000 0.036 0.020 0.724 0.112 0.108
#> GSM615934     3  0.3235    0.79458 0.016 0.056 0.864 0.044 0.004 0.016
#> GSM615950     5  0.4913    0.00694 0.000 0.012 0.004 0.028 0.496 0.460
#> GSM615954     5  0.5251    0.21712 0.008 0.036 0.012 0.008 0.564 0.372
#> GSM615956     2  0.4821    0.37537 0.000 0.716 0.024 0.044 0.020 0.196
#> GSM615958     1  0.0000    0.71054 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM615924     4  0.3874    0.62868 0.000 0.012 0.000 0.752 0.208 0.028
#> GSM615930     5  0.1765    0.64844 0.000 0.000 0.000 0.052 0.924 0.024
#> GSM615932     2  0.5593    0.10946 0.000 0.524 0.000 0.004 0.140 0.332
#> GSM615935     2  0.6272    0.07379 0.000 0.468 0.008 0.016 0.164 0.344
#> GSM615936     2  0.6773    0.18875 0.000 0.512 0.300 0.056 0.040 0.092
#> GSM615942     3  0.2739    0.81865 0.044 0.036 0.888 0.008 0.000 0.024
#> GSM615943     5  0.2544    0.57761 0.000 0.004 0.004 0.000 0.852 0.140
#> GSM615949     3  0.5505    0.44663 0.000 0.252 0.620 0.088 0.000 0.040
#> GSM615957     6  0.4303    0.21235 0.000 0.316 0.008 0.012 0.008 0.656
#> GSM721720     6  0.3771    0.45153 0.000 0.032 0.000 0.020 0.164 0.784
#> GSM721721     4  0.4214    0.61968 0.000 0.056 0.040 0.800 0.020 0.084
#> GSM615959     1  0.0000    0.71054 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM615960     1  0.0000    0.71054 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM615961     1  0.0000    0.71054 1.000 0.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n age(p) gender(p) tissue(p) k
#> CV:skmeans 49  0.865     0.710   0.08985 2
#> CV:skmeans 50  0.770     0.110   0.00986 3
#> CV:skmeans 31  0.898     0.112   0.03930 4
#> CV:skmeans 37  0.997     0.703   0.00745 5
#> CV:skmeans 26  0.538     0.338   0.00757 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16230 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.978       0.984         0.1680 0.850   0.850
#> 3 3 0.531           0.731       0.890         2.4463 0.571   0.496
#> 4 4 0.747           0.857       0.922         0.2312 0.738   0.457
#> 5 5 0.638           0.610       0.817         0.0583 0.978   0.922
#> 6 6 0.704           0.685       0.830         0.0510 0.912   0.683

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM615919     2  0.0672      0.984 0.008 0.992
#> GSM615921     2  0.0672      0.983 0.008 0.992
#> GSM615922     2  0.0938      0.984 0.012 0.988
#> GSM615925     2  0.0672      0.983 0.008 0.992
#> GSM615926     2  0.0938      0.984 0.012 0.988
#> GSM615933     2  0.0672      0.983 0.008 0.992
#> GSM615939     2  0.0938      0.984 0.012 0.988
#> GSM615941     2  0.0938      0.984 0.012 0.988
#> GSM615944     2  0.0938      0.984 0.012 0.988
#> GSM615945     2  0.0672      0.983 0.008 0.992
#> GSM615947     2  0.0672      0.985 0.008 0.992
#> GSM615948     2  0.0938      0.984 0.012 0.988
#> GSM615951     2  0.0938      0.984 0.012 0.988
#> GSM615918     2  0.0376      0.985 0.004 0.996
#> GSM615927     2  0.0672      0.983 0.008 0.992
#> GSM615929     2  0.0938      0.984 0.012 0.988
#> GSM615931     2  0.0672      0.985 0.008 0.992
#> GSM615937     2  0.0672      0.983 0.008 0.992
#> GSM615938     2  0.0672      0.983 0.008 0.992
#> GSM615940     2  0.0672      0.985 0.008 0.992
#> GSM615946     2  0.0672      0.985 0.008 0.992
#> GSM615952     2  0.0672      0.985 0.008 0.992
#> GSM615953     2  0.0938      0.984 0.012 0.988
#> GSM615955     2  0.7139      0.772 0.196 0.804
#> GSM721722     2  0.6148      0.833 0.152 0.848
#> GSM721723     2  0.0938      0.984 0.012 0.988
#> GSM721724     2  0.0672      0.985 0.008 0.992
#> GSM615917     2  0.0672      0.983 0.008 0.992
#> GSM615920     2  0.0672      0.984 0.008 0.992
#> GSM615923     2  0.0672      0.984 0.008 0.992
#> GSM615928     2  0.0672      0.984 0.008 0.992
#> GSM615934     2  0.0938      0.984 0.012 0.988
#> GSM615950     2  0.0672      0.983 0.008 0.992
#> GSM615954     2  0.0672      0.983 0.008 0.992
#> GSM615956     2  0.0672      0.985 0.008 0.992
#> GSM615958     1  0.0672      1.000 0.992 0.008
#> GSM615924     2  0.0672      0.983 0.008 0.992
#> GSM615930     2  0.0672      0.983 0.008 0.992
#> GSM615932     2  0.0672      0.983 0.008 0.992
#> GSM615935     2  0.0672      0.983 0.008 0.992
#> GSM615936     2  0.0672      0.985 0.008 0.992
#> GSM615942     2  0.0938      0.984 0.012 0.988
#> GSM615943     2  0.0672      0.983 0.008 0.992
#> GSM615949     2  0.0938      0.984 0.012 0.988
#> GSM615957     2  0.0938      0.984 0.012 0.988
#> GSM721720     2  0.0938      0.984 0.012 0.988
#> GSM721721     2  0.0672      0.984 0.008 0.992
#> GSM615959     1  0.0672      1.000 0.992 0.008
#> GSM615960     1  0.0672      1.000 0.992 0.008
#> GSM615961     1  0.0672      1.000 0.992 0.008

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM615919     3  0.5138      0.665 0.000 0.252 0.748
#> GSM615921     2  0.0747      0.823 0.000 0.984 0.016
#> GSM615922     3  0.0000      0.847 0.000 0.000 1.000
#> GSM615925     3  0.6062      0.422 0.000 0.384 0.616
#> GSM615926     3  0.0000      0.847 0.000 0.000 1.000
#> GSM615933     2  0.0237      0.829 0.000 0.996 0.004
#> GSM615939     3  0.5882      0.353 0.000 0.348 0.652
#> GSM615941     3  0.0000      0.847 0.000 0.000 1.000
#> GSM615944     3  0.0000      0.847 0.000 0.000 1.000
#> GSM615945     2  0.0237      0.829 0.000 0.996 0.004
#> GSM615947     3  0.6305     -0.136 0.000 0.484 0.516
#> GSM615948     3  0.0000      0.847 0.000 0.000 1.000
#> GSM615951     3  0.3267      0.767 0.000 0.116 0.884
#> GSM615918     3  0.4842      0.685 0.000 0.224 0.776
#> GSM615927     2  0.0237      0.829 0.000 0.996 0.004
#> GSM615929     3  0.0000      0.847 0.000 0.000 1.000
#> GSM615931     3  0.4399      0.737 0.000 0.188 0.812
#> GSM615937     2  0.0237      0.829 0.000 0.996 0.004
#> GSM615938     2  0.0000      0.829 0.000 1.000 0.000
#> GSM615940     3  0.0237      0.846 0.000 0.004 0.996
#> GSM615946     2  0.6045      0.436 0.000 0.620 0.380
#> GSM615952     2  0.6045      0.436 0.000 0.620 0.380
#> GSM615953     2  0.0424      0.828 0.000 0.992 0.008
#> GSM615955     3  0.1031      0.836 0.024 0.000 0.976
#> GSM721722     3  0.0000      0.847 0.000 0.000 1.000
#> GSM721723     2  0.0424      0.828 0.000 0.992 0.008
#> GSM721724     2  0.6192      0.355 0.000 0.580 0.420
#> GSM615917     2  0.5926      0.305 0.000 0.644 0.356
#> GSM615920     3  0.0237      0.846 0.000 0.004 0.996
#> GSM615923     3  0.5178      0.635 0.000 0.256 0.744
#> GSM615928     3  0.4346      0.727 0.000 0.184 0.816
#> GSM615934     3  0.0000      0.847 0.000 0.000 1.000
#> GSM615950     2  0.5859      0.345 0.000 0.656 0.344
#> GSM615954     2  0.0000      0.829 0.000 1.000 0.000
#> GSM615956     2  0.6045      0.436 0.000 0.620 0.380
#> GSM615958     1  0.0000      1.000 1.000 0.000 0.000
#> GSM615924     3  0.5926      0.477 0.000 0.356 0.644
#> GSM615930     2  0.0237      0.829 0.000 0.996 0.004
#> GSM615932     2  0.0000      0.829 0.000 1.000 0.000
#> GSM615935     2  0.0000      0.829 0.000 1.000 0.000
#> GSM615936     3  0.3116      0.779 0.000 0.108 0.892
#> GSM615942     3  0.0000      0.847 0.000 0.000 1.000
#> GSM615943     2  0.0000      0.829 0.000 1.000 0.000
#> GSM615949     3  0.0000      0.847 0.000 0.000 1.000
#> GSM615957     2  0.1163      0.818 0.000 0.972 0.028
#> GSM721720     2  0.4504      0.687 0.000 0.804 0.196
#> GSM721721     3  0.0424      0.845 0.000 0.008 0.992
#> GSM615959     1  0.0000      1.000 1.000 0.000 0.000
#> GSM615960     1  0.0000      1.000 1.000 0.000 0.000
#> GSM615961     1  0.0000      1.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM615919     4  0.5869      0.359 0.000 0.360 0.044 0.596
#> GSM615921     4  0.2944      0.824 0.000 0.128 0.004 0.868
#> GSM615922     3  0.0000      0.942 0.000 0.000 1.000 0.000
#> GSM615925     4  0.0000      0.799 0.000 0.000 0.000 1.000
#> GSM615926     3  0.0000      0.942 0.000 0.000 1.000 0.000
#> GSM615933     4  0.2408      0.829 0.000 0.104 0.000 0.896
#> GSM615939     2  0.1716      0.917 0.000 0.936 0.064 0.000
#> GSM615941     3  0.0000      0.942 0.000 0.000 1.000 0.000
#> GSM615944     3  0.0000      0.942 0.000 0.000 1.000 0.000
#> GSM615945     4  0.2408      0.829 0.000 0.104 0.000 0.896
#> GSM615947     2  0.1557      0.917 0.000 0.944 0.056 0.000
#> GSM615948     3  0.0000      0.942 0.000 0.000 1.000 0.000
#> GSM615951     3  0.3074      0.801 0.000 0.152 0.848 0.000
#> GSM615918     4  0.3444      0.687 0.000 0.000 0.184 0.816
#> GSM615927     4  0.1118      0.817 0.000 0.036 0.000 0.964
#> GSM615929     3  0.0336      0.938 0.000 0.008 0.992 0.000
#> GSM615931     3  0.5093      0.412 0.000 0.012 0.640 0.348
#> GSM615937     4  0.2704      0.827 0.000 0.124 0.000 0.876
#> GSM615938     2  0.3024      0.804 0.000 0.852 0.000 0.148
#> GSM615940     3  0.1792      0.893 0.000 0.068 0.932 0.000
#> GSM615946     2  0.0469      0.953 0.000 0.988 0.012 0.000
#> GSM615952     2  0.0707      0.952 0.000 0.980 0.020 0.000
#> GSM615953     2  0.0469      0.950 0.000 0.988 0.000 0.012
#> GSM615955     3  0.0817      0.928 0.024 0.000 0.976 0.000
#> GSM721722     3  0.0000      0.942 0.000 0.000 1.000 0.000
#> GSM721723     2  0.0592      0.947 0.000 0.984 0.000 0.016
#> GSM721724     2  0.1118      0.940 0.000 0.964 0.036 0.000
#> GSM615917     4  0.0000      0.799 0.000 0.000 0.000 1.000
#> GSM615920     3  0.0000      0.942 0.000 0.000 1.000 0.000
#> GSM615923     3  0.3400      0.752 0.000 0.000 0.820 0.180
#> GSM615928     4  0.5694      0.663 0.000 0.080 0.224 0.696
#> GSM615934     3  0.0000      0.942 0.000 0.000 1.000 0.000
#> GSM615950     4  0.4792      0.547 0.000 0.008 0.312 0.680
#> GSM615954     2  0.1474      0.924 0.000 0.948 0.000 0.052
#> GSM615956     2  0.0469      0.953 0.000 0.988 0.012 0.000
#> GSM615958     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM615924     4  0.5277      0.732 0.000 0.116 0.132 0.752
#> GSM615930     4  0.1474      0.822 0.000 0.052 0.000 0.948
#> GSM615932     4  0.4730      0.507 0.000 0.364 0.000 0.636
#> GSM615935     4  0.2868      0.817 0.000 0.136 0.000 0.864
#> GSM615936     3  0.1389      0.908 0.000 0.048 0.952 0.000
#> GSM615942     3  0.0000      0.942 0.000 0.000 1.000 0.000
#> GSM615943     4  0.2408      0.829 0.000 0.104 0.000 0.896
#> GSM615949     3  0.0000      0.942 0.000 0.000 1.000 0.000
#> GSM615957     2  0.0188      0.950 0.000 0.996 0.000 0.004
#> GSM721720     2  0.0469      0.952 0.000 0.988 0.012 0.000
#> GSM721721     3  0.0000      0.942 0.000 0.000 1.000 0.000
#> GSM615959     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM615960     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM615961     1  0.0000      1.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette   p1    p2    p3    p4    p5
#> GSM615919     4  0.5221      0.283 0.00 0.400 0.000 0.552 0.048
#> GSM615921     4  0.3003      0.693 0.00 0.188 0.000 0.812 0.000
#> GSM615922     3  0.0000      0.923 0.00 0.000 1.000 0.000 0.000
#> GSM615925     4  0.1197      0.730 0.00 0.000 0.000 0.952 0.048
#> GSM615926     3  0.0000      0.923 0.00 0.000 1.000 0.000 0.000
#> GSM615933     4  0.1478      0.734 0.00 0.064 0.000 0.936 0.000
#> GSM615939     2  0.4273      0.370 0.00 0.552 0.000 0.000 0.448
#> GSM615941     3  0.0000      0.923 0.00 0.000 1.000 0.000 0.000
#> GSM615944     3  0.0000      0.923 0.00 0.000 1.000 0.000 0.000
#> GSM615945     4  0.1478      0.734 0.00 0.064 0.000 0.936 0.000
#> GSM615947     2  0.4273      0.370 0.00 0.552 0.000 0.000 0.448
#> GSM615948     3  0.0000      0.923 0.00 0.000 1.000 0.000 0.000
#> GSM615951     3  0.2929      0.773 0.00 0.180 0.820 0.000 0.000
#> GSM615918     4  0.4136      0.630 0.00 0.000 0.188 0.764 0.048
#> GSM615927     4  0.0162      0.733 0.00 0.004 0.000 0.996 0.000
#> GSM615929     3  0.2660      0.834 0.00 0.128 0.864 0.008 0.000
#> GSM615931     3  0.4537      0.315 0.00 0.012 0.592 0.396 0.000
#> GSM615937     4  0.6711      0.467 0.00 0.156 0.044 0.576 0.224
#> GSM615938     5  0.6130     -0.487 0.00 0.424 0.000 0.128 0.448
#> GSM615940     3  0.2377      0.842 0.00 0.128 0.872 0.000 0.000
#> GSM615946     2  0.4273      0.370 0.00 0.552 0.000 0.000 0.448
#> GSM615952     2  0.2813      0.112 0.00 0.832 0.168 0.000 0.000
#> GSM615953     2  0.1732      0.217 0.00 0.920 0.000 0.080 0.000
#> GSM615955     3  0.0609      0.915 0.02 0.000 0.980 0.000 0.000
#> GSM721722     3  0.0000      0.923 0.00 0.000 1.000 0.000 0.000
#> GSM721723     5  0.4307      0.304 0.00 0.500 0.000 0.000 0.500
#> GSM721724     2  0.4273      0.370 0.00 0.552 0.000 0.000 0.448
#> GSM615917     4  0.1197      0.730 0.00 0.000 0.000 0.952 0.048
#> GSM615920     3  0.0290      0.920 0.00 0.000 0.992 0.008 0.000
#> GSM615923     3  0.2891      0.748 0.00 0.000 0.824 0.176 0.000
#> GSM615928     4  0.5073      0.603 0.00 0.100 0.212 0.688 0.000
#> GSM615934     3  0.0000      0.923 0.00 0.000 1.000 0.000 0.000
#> GSM615950     4  0.6348      0.450 0.00 0.052 0.240 0.612 0.096
#> GSM615954     2  0.2966      0.101 0.00 0.816 0.000 0.184 0.000
#> GSM615956     2  0.0000      0.248 0.00 1.000 0.000 0.000 0.000
#> GSM615958     1  0.0000      1.000 1.00 0.000 0.000 0.000 0.000
#> GSM615924     4  0.4411      0.670 0.00 0.116 0.120 0.764 0.000
#> GSM615930     4  0.1430      0.733 0.00 0.052 0.000 0.944 0.004
#> GSM615932     4  0.5736      0.111 0.00 0.084 0.000 0.468 0.448
#> GSM615935     4  0.4273      0.214 0.00 0.448 0.000 0.552 0.000
#> GSM615936     3  0.2424      0.844 0.00 0.132 0.868 0.000 0.000
#> GSM615942     3  0.0000      0.923 0.00 0.000 1.000 0.000 0.000
#> GSM615943     4  0.1478      0.734 0.00 0.064 0.000 0.936 0.000
#> GSM615949     3  0.0162      0.922 0.00 0.004 0.996 0.000 0.000
#> GSM615957     2  0.4201     -0.453 0.00 0.592 0.000 0.000 0.408
#> GSM721720     5  0.4746      0.309 0.00 0.480 0.016 0.000 0.504
#> GSM721721     3  0.0162      0.922 0.00 0.004 0.996 0.000 0.000
#> GSM615959     1  0.0000      1.000 1.00 0.000 0.000 0.000 0.000
#> GSM615960     1  0.0000      1.000 1.00 0.000 0.000 0.000 0.000
#> GSM615961     1  0.0000      1.000 1.00 0.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM615919     4  0.4100     0.1963 0.000 0.388 0.000 0.600 0.008 0.004
#> GSM615921     4  0.5213     0.5238 0.000 0.076 0.016 0.700 0.036 0.172
#> GSM615922     3  0.0000     0.8797 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM615925     4  0.0000     0.6582 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM615926     3  0.0000     0.8797 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM615933     4  0.2883     0.6511 0.000 0.000 0.000 0.788 0.212 0.000
#> GSM615939     2  0.0146     0.8443 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM615941     3  0.0000     0.8797 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM615944     3  0.0000     0.8797 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM615945     4  0.2912     0.6492 0.000 0.000 0.000 0.784 0.216 0.000
#> GSM615947     2  0.0000     0.8442 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM615948     3  0.0000     0.8797 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM615951     3  0.4361     0.5877 0.000 0.044 0.648 0.000 0.000 0.308
#> GSM615918     4  0.2562     0.5660 0.000 0.000 0.172 0.828 0.000 0.000
#> GSM615927     4  0.2883     0.6511 0.000 0.000 0.000 0.788 0.212 0.000
#> GSM615929     3  0.2340     0.8092 0.000 0.148 0.852 0.000 0.000 0.000
#> GSM615931     3  0.6208     0.0206 0.000 0.000 0.468 0.304 0.212 0.016
#> GSM615937     5  0.4721     0.4727 0.000 0.000 0.000 0.116 0.672 0.212
#> GSM615938     2  0.3178     0.7423 0.000 0.844 0.000 0.092 0.052 0.012
#> GSM615940     3  0.3386     0.7646 0.000 0.188 0.788 0.000 0.008 0.016
#> GSM615946     2  0.0146     0.8443 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM615952     6  0.3374     0.6521 0.000 0.208 0.020 0.000 0.000 0.772
#> GSM615953     6  0.3190     0.6577 0.000 0.220 0.000 0.008 0.000 0.772
#> GSM615955     3  0.2838     0.7819 0.004 0.000 0.808 0.000 0.000 0.188
#> GSM721722     3  0.0000     0.8797 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM721723     6  0.2823     0.4719 0.000 0.000 0.000 0.000 0.204 0.796
#> GSM721724     2  0.0260     0.8415 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM615917     4  0.0146     0.6579 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM615920     3  0.0000     0.8797 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM615923     3  0.4201     0.6882 0.000 0.008 0.756 0.104 0.132 0.000
#> GSM615928     4  0.5497     0.4865 0.000 0.084 0.272 0.612 0.004 0.028
#> GSM615934     3  0.0000     0.8797 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM615950     5  0.2854     0.5668 0.000 0.000 0.000 0.208 0.792 0.000
#> GSM615954     6  0.5656     0.5334 0.000 0.200 0.000 0.204 0.012 0.584
#> GSM615956     6  0.3351     0.6389 0.000 0.288 0.000 0.000 0.000 0.712
#> GSM615958     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM615924     4  0.4608     0.5495 0.000 0.100 0.220 0.680 0.000 0.000
#> GSM615930     5  0.3126     0.5322 0.000 0.000 0.000 0.248 0.752 0.000
#> GSM615932     2  0.4627     0.3972 0.000 0.620 0.000 0.336 0.028 0.016
#> GSM615935     6  0.4514     0.2754 0.000 0.000 0.000 0.372 0.040 0.588
#> GSM615936     3  0.3841     0.6988 0.000 0.028 0.716 0.000 0.000 0.256
#> GSM615942     3  0.0000     0.8797 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM615943     4  0.2941     0.6464 0.000 0.000 0.000 0.780 0.220 0.000
#> GSM615949     3  0.0713     0.8713 0.000 0.028 0.972 0.000 0.000 0.000
#> GSM615957     6  0.3377     0.5068 0.000 0.028 0.000 0.000 0.188 0.784
#> GSM721720     5  0.3765     0.2100 0.000 0.000 0.000 0.000 0.596 0.404
#> GSM721721     3  0.1230     0.8676 0.000 0.028 0.956 0.008 0.008 0.000
#> GSM615959     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM615960     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM615961     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n age(p) gender(p) tissue(p) k
#> CV:pam 50 0.0825     0.785  9.94e-10 2
#> CV:pam 40 0.0754     0.243  2.06e-09 3
#> CV:pam 48 0.1188     0.629  2.13e-10 4
#> CV:pam 32 0.0992     0.563  1.13e-07 5
#> CV:pam 42 0.0290     0.916  5.89e-08 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16230 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.987       0.994         0.1607 0.850   0.850
#> 3 3 0.361           0.730       0.860         2.3321 0.620   0.553
#> 4 4 0.522           0.654       0.823         0.2233 0.750   0.521
#> 5 5 0.593           0.648       0.783         0.1181 0.847   0.607
#> 6 6 0.634           0.575       0.793         0.0767 0.881   0.623

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM615919     2  0.0000      0.993 0.000 1.000
#> GSM615921     2  0.0000      0.993 0.000 1.000
#> GSM615922     2  0.0000      0.993 0.000 1.000
#> GSM615925     2  0.0000      0.993 0.000 1.000
#> GSM615926     2  0.0000      0.993 0.000 1.000
#> GSM615933     2  0.0000      0.993 0.000 1.000
#> GSM615939     2  0.0000      0.993 0.000 1.000
#> GSM615941     2  0.0000      0.993 0.000 1.000
#> GSM615944     2  0.0376      0.990 0.004 0.996
#> GSM615945     2  0.0000      0.993 0.000 1.000
#> GSM615947     2  0.0000      0.993 0.000 1.000
#> GSM615948     2  0.0000      0.993 0.000 1.000
#> GSM615951     2  0.0000      0.993 0.000 1.000
#> GSM615918     2  0.0376      0.990 0.004 0.996
#> GSM615927     2  0.0000      0.993 0.000 1.000
#> GSM615929     2  0.0000      0.993 0.000 1.000
#> GSM615931     2  0.0000      0.993 0.000 1.000
#> GSM615937     2  0.0000      0.993 0.000 1.000
#> GSM615938     2  0.0000      0.993 0.000 1.000
#> GSM615940     2  0.0000      0.993 0.000 1.000
#> GSM615946     2  0.0000      0.993 0.000 1.000
#> GSM615952     2  0.0000      0.993 0.000 1.000
#> GSM615953     2  0.0000      0.993 0.000 1.000
#> GSM615955     2  0.7299      0.749 0.204 0.796
#> GSM721722     2  0.3733      0.921 0.072 0.928
#> GSM721723     2  0.0376      0.990 0.004 0.996
#> GSM721724     2  0.0000      0.993 0.000 1.000
#> GSM615917     2  0.0000      0.993 0.000 1.000
#> GSM615920     2  0.0000      0.993 0.000 1.000
#> GSM615923     2  0.0000      0.993 0.000 1.000
#> GSM615928     2  0.0000      0.993 0.000 1.000
#> GSM615934     2  0.0000      0.993 0.000 1.000
#> GSM615950     2  0.0000      0.993 0.000 1.000
#> GSM615954     2  0.0376      0.990 0.004 0.996
#> GSM615956     2  0.0000      0.993 0.000 1.000
#> GSM615958     1  0.0000      1.000 1.000 0.000
#> GSM615924     2  0.0000      0.993 0.000 1.000
#> GSM615930     2  0.0000      0.993 0.000 1.000
#> GSM615932     2  0.0000      0.993 0.000 1.000
#> GSM615935     2  0.0000      0.993 0.000 1.000
#> GSM615936     2  0.0000      0.993 0.000 1.000
#> GSM615942     2  0.0000      0.993 0.000 1.000
#> GSM615943     2  0.0000      0.993 0.000 1.000
#> GSM615949     2  0.0000      0.993 0.000 1.000
#> GSM615957     2  0.0376      0.990 0.004 0.996
#> GSM721720     2  0.0376      0.990 0.004 0.996
#> GSM721721     2  0.0000      0.993 0.000 1.000
#> GSM615959     1  0.0000      1.000 1.000 0.000
#> GSM615960     1  0.0000      1.000 1.000 0.000
#> GSM615961     1  0.0000      1.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM615919     3  0.3192     0.7751 0.000 0.112 0.888
#> GSM615921     2  0.6235     0.1654 0.000 0.564 0.436
#> GSM615922     3  0.0592     0.7987 0.000 0.012 0.988
#> GSM615925     3  0.5363     0.6533 0.000 0.276 0.724
#> GSM615926     3  0.0592     0.7987 0.000 0.012 0.988
#> GSM615933     3  0.6305     0.3678 0.000 0.484 0.516
#> GSM615939     3  0.3619     0.7654 0.000 0.136 0.864
#> GSM615941     3  0.0237     0.7979 0.000 0.004 0.996
#> GSM615944     3  0.0237     0.7979 0.000 0.004 0.996
#> GSM615945     2  0.3816     0.7101 0.000 0.852 0.148
#> GSM615947     3  0.4702     0.6956 0.000 0.212 0.788
#> GSM615948     3  0.0237     0.7984 0.000 0.004 0.996
#> GSM615951     3  0.0237     0.7979 0.000 0.004 0.996
#> GSM615918     3  0.5363     0.6533 0.000 0.276 0.724
#> GSM615927     2  0.6126     0.0566 0.000 0.600 0.400
#> GSM615929     3  0.0892     0.7993 0.000 0.020 0.980
#> GSM615931     3  0.6267     0.4393 0.000 0.452 0.548
#> GSM615937     2  0.0747     0.8012 0.000 0.984 0.016
#> GSM615938     2  0.2878     0.8392 0.000 0.904 0.096
#> GSM615940     3  0.3340     0.7744 0.000 0.120 0.880
#> GSM615946     3  0.4002     0.7558 0.000 0.160 0.840
#> GSM615952     3  0.4178     0.6668 0.000 0.172 0.828
#> GSM615953     2  0.3192     0.8309 0.000 0.888 0.112
#> GSM615955     3  0.0475     0.7972 0.004 0.004 0.992
#> GSM721722     3  0.0237     0.7979 0.000 0.004 0.996
#> GSM721723     2  0.2878     0.8392 0.000 0.904 0.096
#> GSM721724     3  0.3619     0.7654 0.000 0.136 0.864
#> GSM615917     3  0.5363     0.6533 0.000 0.276 0.724
#> GSM615920     3  0.4605     0.7113 0.000 0.204 0.796
#> GSM615923     3  0.6168     0.5318 0.000 0.412 0.588
#> GSM615928     3  0.5529     0.6793 0.000 0.296 0.704
#> GSM615934     3  0.0592     0.7987 0.000 0.012 0.988
#> GSM615950     2  0.0237     0.7908 0.000 0.996 0.004
#> GSM615954     2  0.2448     0.8350 0.000 0.924 0.076
#> GSM615956     3  0.6026     0.3533 0.000 0.376 0.624
#> GSM615958     1  0.0000     1.0000 1.000 0.000 0.000
#> GSM615924     3  0.6140     0.5427 0.000 0.404 0.596
#> GSM615930     2  0.4121     0.6822 0.000 0.832 0.168
#> GSM615932     2  0.2878     0.8392 0.000 0.904 0.096
#> GSM615935     2  0.2959     0.8372 0.000 0.900 0.100
#> GSM615936     3  0.3482     0.7701 0.000 0.128 0.872
#> GSM615942     3  0.0000     0.7978 0.000 0.000 1.000
#> GSM615943     2  0.0237     0.7908 0.000 0.996 0.004
#> GSM615949     3  0.3192     0.7813 0.000 0.112 0.888
#> GSM615957     2  0.4399     0.7483 0.000 0.812 0.188
#> GSM721720     2  0.2878     0.8392 0.000 0.904 0.096
#> GSM721721     3  0.3816     0.7727 0.000 0.148 0.852
#> GSM615959     1  0.0000     1.0000 1.000 0.000 0.000
#> GSM615960     1  0.0000     1.0000 1.000 0.000 0.000
#> GSM615961     1  0.0000     1.0000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette p1    p2    p3    p4
#> GSM615919     3  0.4746      0.523  0 0.000 0.632 0.368
#> GSM615921     2  0.7458     -0.136  0 0.444 0.380 0.176
#> GSM615922     3  0.3266      0.788  0 0.000 0.832 0.168
#> GSM615925     4  0.3649      0.557  0 0.000 0.204 0.796
#> GSM615926     3  0.3356      0.796  0 0.000 0.824 0.176
#> GSM615933     4  0.6993      0.584  0 0.260 0.168 0.572
#> GSM615939     3  0.0000      0.859  0 0.000 1.000 0.000
#> GSM615941     3  0.0000      0.859  0 0.000 1.000 0.000
#> GSM615944     3  0.0921      0.852  0 0.000 0.972 0.028
#> GSM615945     4  0.5329      0.370  0 0.420 0.012 0.568
#> GSM615947     3  0.0000      0.859  0 0.000 1.000 0.000
#> GSM615948     3  0.0817      0.855  0 0.000 0.976 0.024
#> GSM615951     3  0.0921      0.852  0 0.000 0.972 0.028
#> GSM615918     4  0.0921      0.503  0 0.000 0.028 0.972
#> GSM615927     4  0.6663      0.623  0 0.144 0.244 0.612
#> GSM615929     3  0.3444      0.777  0 0.000 0.816 0.184
#> GSM615931     4  0.6917      0.621  0 0.200 0.208 0.592
#> GSM615937     2  0.4713      0.147  0 0.640 0.000 0.360
#> GSM615938     2  0.0000      0.742  0 1.000 0.000 0.000
#> GSM615940     3  0.0000      0.859  0 0.000 1.000 0.000
#> GSM615946     3  0.2973      0.748  0 0.144 0.856 0.000
#> GSM615952     3  0.1004      0.852  0 0.004 0.972 0.024
#> GSM615953     3  0.5088      0.266  0 0.424 0.572 0.004
#> GSM615955     3  0.0921      0.852  0 0.000 0.972 0.028
#> GSM721722     3  0.1022      0.853  0 0.000 0.968 0.032
#> GSM721723     2  0.0000      0.742  0 1.000 0.000 0.000
#> GSM721724     3  0.0188      0.859  0 0.004 0.996 0.000
#> GSM615917     4  0.0921      0.503  0 0.000 0.028 0.972
#> GSM615920     3  0.4977      0.292  0 0.000 0.540 0.460
#> GSM615923     4  0.7001      0.617  0 0.180 0.244 0.576
#> GSM615928     4  0.6371      0.212  0 0.064 0.428 0.508
#> GSM615934     3  0.3123      0.795  0 0.000 0.844 0.156
#> GSM615950     2  0.4713      0.147  0 0.640 0.000 0.360
#> GSM615954     4  0.4999      0.223  0 0.492 0.000 0.508
#> GSM615956     3  0.4164      0.589  0 0.264 0.736 0.000
#> GSM615958     1  0.0000      1.000  1 0.000 0.000 0.000
#> GSM615924     4  0.6621      0.623  0 0.140 0.244 0.616
#> GSM615930     4  0.5427      0.376  0 0.416 0.016 0.568
#> GSM615932     2  0.0000      0.742  0 1.000 0.000 0.000
#> GSM615935     2  0.0336      0.738  0 0.992 0.008 0.000
#> GSM615936     3  0.0188      0.859  0 0.004 0.996 0.000
#> GSM615942     3  0.0000      0.859  0 0.000 1.000 0.000
#> GSM615943     4  0.4998      0.234  0 0.488 0.000 0.512
#> GSM615949     3  0.0592      0.857  0 0.000 0.984 0.016
#> GSM615957     2  0.1792      0.685  0 0.932 0.068 0.000
#> GSM721720     2  0.0000      0.742  0 1.000 0.000 0.000
#> GSM721721     3  0.4643      0.565  0 0.000 0.656 0.344
#> GSM615959     1  0.0000      1.000  1 0.000 0.000 0.000
#> GSM615960     1  0.0000      1.000  1 0.000 0.000 0.000
#> GSM615961     1  0.0000      1.000  1 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1 p2    p3    p4    p5
#> GSM615919     4  0.4736      0.331 0.000 NA 0.404 0.576 0.000
#> GSM615921     3  0.6345      0.445 0.048 NA 0.604 0.076 0.268
#> GSM615922     3  0.3656      0.765 0.000 NA 0.800 0.032 0.000
#> GSM615925     4  0.0290      0.696 0.000 NA 0.008 0.992 0.000
#> GSM615926     3  0.4525      0.640 0.000 NA 0.724 0.220 0.000
#> GSM615933     4  0.5040      0.377 0.000 NA 0.056 0.680 0.256
#> GSM615939     3  0.0798      0.827 0.000 NA 0.976 0.008 0.000
#> GSM615941     3  0.2179      0.819 0.000 NA 0.896 0.004 0.000
#> GSM615944     3  0.3274      0.774 0.000 NA 0.780 0.000 0.000
#> GSM615945     5  0.4508      0.321 0.000 NA 0.000 0.332 0.648
#> GSM615947     3  0.1965      0.822 0.000 NA 0.924 0.000 0.052
#> GSM615948     3  0.2331      0.811 0.000 NA 0.900 0.020 0.000
#> GSM615951     3  0.3086      0.790 0.000 NA 0.816 0.004 0.000
#> GSM615918     4  0.0290      0.696 0.000 NA 0.008 0.992 0.000
#> GSM615927     4  0.1815      0.687 0.000 NA 0.016 0.940 0.024
#> GSM615929     3  0.5549      0.531 0.000 NA 0.632 0.244 0.000
#> GSM615931     4  0.3779      0.494 0.000 NA 0.024 0.776 0.200
#> GSM615937     5  0.2674      0.537 0.004 NA 0.000 0.140 0.856
#> GSM615938     5  0.4182      0.589 0.400 NA 0.000 0.000 0.600
#> GSM615940     3  0.0798      0.827 0.000 NA 0.976 0.008 0.000
#> GSM615946     3  0.1211      0.825 0.000 NA 0.960 0.000 0.024
#> GSM615952     3  0.3758      0.786 0.004 NA 0.816 0.000 0.052
#> GSM615953     3  0.6260      0.444 0.120 NA 0.608 0.016 0.248
#> GSM615955     3  0.4227      0.623 0.000 NA 0.580 0.000 0.000
#> GSM721722     3  0.4227      0.623 0.000 NA 0.580 0.000 0.000
#> GSM721723     5  0.4171      0.590 0.396 NA 0.000 0.000 0.604
#> GSM721724     3  0.0798      0.826 0.000 NA 0.976 0.000 0.008
#> GSM615917     4  0.0290      0.696 0.000 NA 0.008 0.992 0.000
#> GSM615920     4  0.4430      0.584 0.000 NA 0.256 0.708 0.000
#> GSM615923     4  0.4865      0.310 0.000 NA 0.032 0.640 0.324
#> GSM615928     4  0.4048      0.625 0.000 NA 0.208 0.764 0.012
#> GSM615934     3  0.3535      0.767 0.000 NA 0.808 0.028 0.000
#> GSM615950     5  0.2516      0.536 0.000 NA 0.000 0.140 0.860
#> GSM615954     5  0.5846      0.499 0.112 NA 0.004 0.228 0.644
#> GSM615956     3  0.1997      0.826 0.016 NA 0.932 0.000 0.028
#> GSM615958     1  0.4182      1.000 0.600 NA 0.000 0.000 0.000
#> GSM615924     4  0.1012      0.695 0.000 NA 0.020 0.968 0.012
#> GSM615930     5  0.4540      0.309 0.000 NA 0.000 0.340 0.640
#> GSM615932     5  0.4171      0.590 0.396 NA 0.000 0.000 0.604
#> GSM615935     5  0.5542      0.538 0.396 NA 0.072 0.000 0.532
#> GSM615936     3  0.1483      0.827 0.000 NA 0.952 0.012 0.008
#> GSM615942     3  0.1485      0.824 0.000 NA 0.948 0.020 0.000
#> GSM615943     5  0.3779      0.450 0.000 NA 0.000 0.236 0.752
#> GSM615949     3  0.1299      0.824 0.000 NA 0.960 0.012 0.008
#> GSM615957     5  0.6756      0.118 0.264 NA 0.364 0.000 0.372
#> GSM721720     5  0.4171      0.590 0.396 NA 0.000 0.000 0.604
#> GSM721721     4  0.5106      0.315 0.000 NA 0.400 0.564 0.004
#> GSM615959     1  0.4182      1.000 0.600 NA 0.000 0.000 0.000
#> GSM615960     1  0.4182      1.000 0.600 NA 0.000 0.000 0.000
#> GSM615961     1  0.4182      1.000 0.600 NA 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1    p2    p3    p4    p5    p6
#> GSM615919     4  0.4264     0.3857  0 0.376 0.008 0.604 0.012 0.000
#> GSM615921     2  0.6132     0.1728  0 0.568 0.000 0.056 0.140 0.236
#> GSM615922     2  0.4234     0.4073  0 0.608 0.372 0.016 0.004 0.000
#> GSM615925     4  0.0000     0.6320  0 0.000 0.000 1.000 0.000 0.000
#> GSM615926     4  0.6298    -0.2338  0 0.340 0.276 0.376 0.008 0.000
#> GSM615933     4  0.4037     0.0487  0 0.000 0.000 0.608 0.380 0.012
#> GSM615939     2  0.0146     0.6713  0 0.996 0.000 0.000 0.004 0.000
#> GSM615941     2  0.3915     0.4533  0 0.696 0.284 0.008 0.012 0.000
#> GSM615944     3  0.4313    -0.0327  0 0.480 0.504 0.004 0.012 0.000
#> GSM615945     5  0.3483     0.7389  0 0.000 0.000 0.236 0.748 0.016
#> GSM615947     2  0.3376     0.5866  0 0.844 0.080 0.004 0.028 0.044
#> GSM615948     2  0.3895     0.4987  0 0.696 0.284 0.016 0.004 0.000
#> GSM615951     2  0.4115     0.2833  0 0.624 0.360 0.004 0.012 0.000
#> GSM615918     4  0.0260     0.6315  0 0.000 0.000 0.992 0.000 0.008
#> GSM615927     4  0.2358     0.5933  0 0.000 0.000 0.876 0.108 0.016
#> GSM615929     2  0.6116     0.0907  0 0.464 0.288 0.240 0.008 0.000
#> GSM615931     4  0.3171     0.4271  0 0.000 0.000 0.784 0.204 0.012
#> GSM615937     5  0.2431     0.7713  0 0.000 0.000 0.008 0.860 0.132
#> GSM615938     6  0.2135     0.8000  0 0.000 0.000 0.000 0.128 0.872
#> GSM615940     2  0.0146     0.6719  0 0.996 0.000 0.004 0.000 0.000
#> GSM615946     2  0.0806     0.6679  0 0.972 0.000 0.008 0.020 0.000
#> GSM615952     2  0.4253     0.5288  0 0.776 0.124 0.008 0.020 0.072
#> GSM615953     6  0.5520     0.4076  0 0.272 0.048 0.016 0.040 0.624
#> GSM615955     3  0.2454     0.7083  0 0.160 0.840 0.000 0.000 0.000
#> GSM721722     3  0.2454     0.7083  0 0.160 0.840 0.000 0.000 0.000
#> GSM721723     6  0.0790     0.7910  0 0.000 0.000 0.000 0.032 0.968
#> GSM721724     2  0.0260     0.6717  0 0.992 0.000 0.000 0.008 0.000
#> GSM615917     4  0.0260     0.6315  0 0.000 0.000 0.992 0.000 0.008
#> GSM615920     4  0.5280     0.4387  0 0.200 0.104 0.668 0.016 0.012
#> GSM615923     4  0.4234    -0.0315  0 0.012 0.000 0.576 0.408 0.004
#> GSM615928     4  0.3290     0.5909  0 0.208 0.000 0.776 0.016 0.000
#> GSM615934     2  0.4211     0.4143  0 0.616 0.364 0.016 0.004 0.000
#> GSM615950     5  0.1858     0.7734  0 0.000 0.000 0.004 0.904 0.092
#> GSM615954     5  0.3947     0.7911  0 0.000 0.000 0.100 0.764 0.136
#> GSM615956     2  0.2001     0.6559  0 0.924 0.032 0.004 0.012 0.028
#> GSM615958     1  0.0000     1.0000  1 0.000 0.000 0.000 0.000 0.000
#> GSM615924     4  0.1826     0.6251  0 0.020 0.000 0.924 0.052 0.004
#> GSM615930     5  0.3420     0.7338  0 0.000 0.000 0.240 0.748 0.012
#> GSM615932     6  0.2135     0.7996  0 0.000 0.000 0.000 0.128 0.872
#> GSM615935     6  0.2357     0.8013  0 0.012 0.000 0.000 0.116 0.872
#> GSM615936     2  0.1370     0.6641  0 0.948 0.036 0.004 0.012 0.000
#> GSM615942     2  0.3558     0.5031  0 0.736 0.248 0.016 0.000 0.000
#> GSM615943     5  0.2985     0.8265  0 0.000 0.000 0.100 0.844 0.056
#> GSM615949     2  0.1483     0.6680  0 0.944 0.036 0.012 0.008 0.000
#> GSM615957     6  0.3076     0.5772  0 0.240 0.000 0.000 0.000 0.760
#> GSM721720     6  0.1141     0.7888  0 0.000 0.000 0.000 0.052 0.948
#> GSM721721     4  0.4102     0.4303  0 0.356 0.004 0.628 0.012 0.000
#> GSM615959     1  0.0000     1.0000  1 0.000 0.000 0.000 0.000 0.000
#> GSM615960     1  0.0000     1.0000  1 0.000 0.000 0.000 0.000 0.000
#> GSM615961     1  0.0000     1.0000  1 0.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n age(p) gender(p) tissue(p) k
#> CV:mclust 50 0.0825     0.785  9.94e-10 2
#> CV:mclust 45 0.0308     0.141  1.69e-10 3
#> CV:mclust 40 0.0291     0.131  1.07e-08 4
#> CV:mclust 38 0.0298     0.277  2.83e-08 5
#> CV:mclust 34 0.1949     0.324  2.38e-06 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16230 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.660           0.847       0.934         0.3581 0.673   0.673
#> 3 3 0.427           0.717       0.836         0.7807 0.651   0.494
#> 4 4 0.519           0.615       0.808         0.1553 0.717   0.376
#> 5 5 0.636           0.676       0.783         0.0815 0.838   0.492
#> 6 6 0.703           0.671       0.814         0.0479 0.901   0.580

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM615919     2  0.0000      0.928 0.000 1.000
#> GSM615921     2  0.0000      0.928 0.000 1.000
#> GSM615922     2  0.9460      0.477 0.364 0.636
#> GSM615925     2  0.4939      0.852 0.108 0.892
#> GSM615926     1  0.0938      0.898 0.988 0.012
#> GSM615933     2  0.0000      0.928 0.000 1.000
#> GSM615939     2  0.0000      0.928 0.000 1.000
#> GSM615941     2  0.9393      0.498 0.356 0.644
#> GSM615944     1  0.0000      0.906 1.000 0.000
#> GSM615945     2  0.0000      0.928 0.000 1.000
#> GSM615947     2  0.0000      0.928 0.000 1.000
#> GSM615948     2  0.9323      0.512 0.348 0.652
#> GSM615951     1  0.9170      0.435 0.668 0.332
#> GSM615918     2  0.7950      0.702 0.240 0.760
#> GSM615927     2  0.0000      0.928 0.000 1.000
#> GSM615929     2  0.4939      0.852 0.108 0.892
#> GSM615931     2  0.0376      0.926 0.004 0.996
#> GSM615937     2  0.0000      0.928 0.000 1.000
#> GSM615938     2  0.0000      0.928 0.000 1.000
#> GSM615940     2  0.0376      0.926 0.004 0.996
#> GSM615946     2  0.0000      0.928 0.000 1.000
#> GSM615952     2  0.7376      0.738 0.208 0.792
#> GSM615953     2  0.0000      0.928 0.000 1.000
#> GSM615955     1  0.0000      0.906 1.000 0.000
#> GSM721722     1  0.0000      0.906 1.000 0.000
#> GSM721723     2  0.0000      0.928 0.000 1.000
#> GSM721724     2  0.0000      0.928 0.000 1.000
#> GSM615917     2  0.0000      0.928 0.000 1.000
#> GSM615920     1  0.9815      0.276 0.580 0.420
#> GSM615923     2  0.0000      0.928 0.000 1.000
#> GSM615928     2  0.0000      0.928 0.000 1.000
#> GSM615934     2  0.8267      0.669 0.260 0.740
#> GSM615950     2  0.0000      0.928 0.000 1.000
#> GSM615954     2  0.0000      0.928 0.000 1.000
#> GSM615956     2  0.0000      0.928 0.000 1.000
#> GSM615958     1  0.0000      0.906 1.000 0.000
#> GSM615924     2  0.0000      0.928 0.000 1.000
#> GSM615930     2  0.0000      0.928 0.000 1.000
#> GSM615932     2  0.0000      0.928 0.000 1.000
#> GSM615935     2  0.0000      0.928 0.000 1.000
#> GSM615936     2  0.0000      0.928 0.000 1.000
#> GSM615942     2  0.9522      0.458 0.372 0.628
#> GSM615943     2  0.0000      0.928 0.000 1.000
#> GSM615949     2  0.3274      0.889 0.060 0.940
#> GSM615957     2  0.0000      0.928 0.000 1.000
#> GSM721720     2  0.0000      0.928 0.000 1.000
#> GSM721721     2  0.4939      0.852 0.108 0.892
#> GSM615959     1  0.0000      0.906 1.000 0.000
#> GSM615960     1  0.0000      0.906 1.000 0.000
#> GSM615961     1  0.0000      0.906 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM615919     2  0.5529      0.730 0.000 0.704 0.296
#> GSM615921     2  0.5016      0.579 0.000 0.760 0.240
#> GSM615922     3  0.4452      0.630 0.192 0.000 0.808
#> GSM615925     2  0.4346      0.793 0.000 0.816 0.184
#> GSM615926     1  0.5070      0.715 0.772 0.004 0.224
#> GSM615933     2  0.4062      0.804 0.000 0.836 0.164
#> GSM615939     3  0.1753      0.777 0.000 0.048 0.952
#> GSM615941     3  0.3412      0.717 0.124 0.000 0.876
#> GSM615944     1  0.3038      0.848 0.896 0.000 0.104
#> GSM615945     2  0.0000      0.788 0.000 1.000 0.000
#> GSM615947     3  0.4796      0.722 0.000 0.220 0.780
#> GSM615948     3  0.4235      0.650 0.176 0.000 0.824
#> GSM615951     3  0.5882      0.450 0.348 0.000 0.652
#> GSM615918     2  0.4968      0.784 0.012 0.800 0.188
#> GSM615927     2  0.1163      0.799 0.000 0.972 0.028
#> GSM615929     3  0.6445      0.374 0.020 0.308 0.672
#> GSM615931     2  0.4121      0.803 0.000 0.832 0.168
#> GSM615937     2  0.3295      0.737 0.008 0.896 0.096
#> GSM615938     2  0.5968      0.295 0.000 0.636 0.364
#> GSM615940     3  0.1753      0.777 0.000 0.048 0.952
#> GSM615946     3  0.2625      0.766 0.000 0.084 0.916
#> GSM615952     3  0.6222      0.711 0.092 0.132 0.776
#> GSM615953     3  0.5291      0.687 0.000 0.268 0.732
#> GSM615955     1  0.3752      0.818 0.856 0.000 0.144
#> GSM721722     1  0.2165      0.871 0.936 0.000 0.064
#> GSM721723     3  0.6299      0.256 0.000 0.476 0.524
#> GSM721724     3  0.1753      0.777 0.000 0.048 0.952
#> GSM615917     2  0.4121      0.803 0.000 0.832 0.168
#> GSM615920     1  0.6445      0.530 0.672 0.308 0.020
#> GSM615923     2  0.4062      0.804 0.000 0.836 0.164
#> GSM615928     2  0.4121      0.803 0.000 0.832 0.168
#> GSM615934     3  0.5965      0.646 0.108 0.100 0.792
#> GSM615950     2  0.0237      0.788 0.000 0.996 0.004
#> GSM615954     2  0.1399      0.779 0.028 0.968 0.004
#> GSM615956     3  0.3482      0.769 0.000 0.128 0.872
#> GSM615958     1  0.0000      0.883 1.000 0.000 0.000
#> GSM615924     2  0.4121      0.803 0.000 0.832 0.168
#> GSM615930     2  0.1753      0.803 0.000 0.952 0.048
#> GSM615932     2  0.5216      0.545 0.000 0.740 0.260
#> GSM615935     3  0.5497      0.668 0.000 0.292 0.708
#> GSM615936     3  0.3116      0.775 0.000 0.108 0.892
#> GSM615942     3  0.4399      0.646 0.188 0.000 0.812
#> GSM615943     2  0.0000      0.788 0.000 1.000 0.000
#> GSM615949     3  0.0747      0.771 0.000 0.016 0.984
#> GSM615957     3  0.4842      0.719 0.000 0.224 0.776
#> GSM721720     2  0.5529      0.478 0.000 0.704 0.296
#> GSM721721     2  0.5178      0.753 0.000 0.744 0.256
#> GSM615959     1  0.0000      0.883 1.000 0.000 0.000
#> GSM615960     1  0.0000      0.883 1.000 0.000 0.000
#> GSM615961     1  0.0000      0.883 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM615919     3  0.6688    0.04165 0.008 0.064 0.464 0.464
#> GSM615921     2  0.4406    0.72447 0.000 0.780 0.028 0.192
#> GSM615922     3  0.1576    0.69208 0.000 0.004 0.948 0.048
#> GSM615925     4  0.1940    0.74257 0.000 0.000 0.076 0.924
#> GSM615926     3  0.4030    0.64180 0.072 0.000 0.836 0.092
#> GSM615933     4  0.3208    0.74221 0.000 0.148 0.004 0.848
#> GSM615939     3  0.3311    0.65340 0.000 0.172 0.828 0.000
#> GSM615941     3  0.1867    0.69773 0.000 0.072 0.928 0.000
#> GSM615944     3  0.4961    0.00479 0.448 0.000 0.552 0.000
#> GSM615945     4  0.3494    0.72678 0.000 0.172 0.004 0.824
#> GSM615947     2  0.3400    0.71419 0.000 0.820 0.180 0.000
#> GSM615948     3  0.0895    0.69958 0.000 0.020 0.976 0.004
#> GSM615951     3  0.7607    0.00252 0.388 0.200 0.412 0.000
#> GSM615918     4  0.1576    0.75064 0.004 0.000 0.048 0.948
#> GSM615927     4  0.1109    0.76520 0.000 0.028 0.004 0.968
#> GSM615929     3  0.3528    0.62634 0.000 0.000 0.808 0.192
#> GSM615931     4  0.2530    0.76214 0.000 0.100 0.004 0.896
#> GSM615937     2  0.4853    0.54450 0.036 0.744 0.000 0.220
#> GSM615938     2  0.2401    0.79029 0.000 0.904 0.004 0.092
#> GSM615940     3  0.3975    0.59366 0.000 0.240 0.760 0.000
#> GSM615946     2  0.5300    0.26584 0.000 0.580 0.408 0.012
#> GSM615952     2  0.5063    0.71247 0.108 0.768 0.124 0.000
#> GSM615953     2  0.1004    0.81477 0.024 0.972 0.000 0.004
#> GSM615955     1  0.4543    0.48954 0.676 0.000 0.324 0.000
#> GSM721722     3  0.4769    0.39401 0.308 0.000 0.684 0.008
#> GSM721723     2  0.0779    0.81386 0.000 0.980 0.004 0.016
#> GSM721724     3  0.4992    0.02672 0.000 0.476 0.524 0.000
#> GSM615917     4  0.1978    0.74299 0.004 0.000 0.068 0.928
#> GSM615920     4  0.5254    0.44818 0.300 0.000 0.028 0.672
#> GSM615923     4  0.5690    0.68573 0.000 0.116 0.168 0.716
#> GSM615928     4  0.5075    0.32164 0.000 0.012 0.344 0.644
#> GSM615934     3  0.1635    0.69314 0.000 0.008 0.948 0.044
#> GSM615950     4  0.4898    0.36262 0.000 0.416 0.000 0.584
#> GSM615954     4  0.6887    0.08184 0.104 0.444 0.000 0.452
#> GSM615956     2  0.2345    0.78369 0.000 0.900 0.100 0.000
#> GSM615958     1  0.0188    0.90506 0.996 0.000 0.004 0.000
#> GSM615924     4  0.3450    0.67077 0.000 0.008 0.156 0.836
#> GSM615930     4  0.2530    0.76219 0.000 0.100 0.004 0.896
#> GSM615932     2  0.2589    0.77120 0.000 0.884 0.000 0.116
#> GSM615935     2  0.4281    0.70824 0.000 0.792 0.028 0.180
#> GSM615936     3  0.4792    0.50660 0.000 0.312 0.680 0.008
#> GSM615942     3  0.1209    0.70082 0.000 0.032 0.964 0.004
#> GSM615943     4  0.3831    0.69976 0.000 0.204 0.004 0.792
#> GSM615949     3  0.2255    0.70370 0.000 0.068 0.920 0.012
#> GSM615957     2  0.2125    0.79852 0.004 0.920 0.076 0.000
#> GSM721720     2  0.1305    0.80832 0.000 0.960 0.004 0.036
#> GSM721721     3  0.4837    0.43818 0.000 0.004 0.648 0.348
#> GSM615959     1  0.0000    0.90450 1.000 0.000 0.000 0.000
#> GSM615960     1  0.0188    0.90506 0.996 0.000 0.004 0.000
#> GSM615961     1  0.0000    0.90450 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM615919     4  0.3651      0.696 0.000 0.028 0.160 0.808 0.004
#> GSM615921     2  0.3250      0.742 0.000 0.820 0.004 0.168 0.008
#> GSM615922     3  0.1697      0.775 0.000 0.000 0.932 0.060 0.008
#> GSM615925     4  0.4419      0.684 0.000 0.000 0.020 0.668 0.312
#> GSM615926     3  0.2177      0.762 0.008 0.000 0.908 0.080 0.004
#> GSM615933     5  0.1026      0.719 0.000 0.004 0.004 0.024 0.968
#> GSM615939     3  0.6380      0.476 0.000 0.272 0.556 0.160 0.012
#> GSM615941     3  0.1306      0.775 0.016 0.016 0.960 0.008 0.000
#> GSM615944     3  0.3123      0.685 0.184 0.000 0.812 0.004 0.000
#> GSM615945     5  0.0162      0.725 0.000 0.000 0.004 0.000 0.996
#> GSM615947     2  0.1952      0.761 0.000 0.912 0.084 0.000 0.004
#> GSM615948     3  0.1124      0.777 0.000 0.004 0.960 0.036 0.000
#> GSM615951     3  0.5119      0.551 0.304 0.020 0.652 0.016 0.008
#> GSM615918     4  0.4440      0.652 0.004 0.000 0.012 0.660 0.324
#> GSM615927     5  0.2629      0.615 0.000 0.000 0.004 0.136 0.860
#> GSM615929     4  0.3906      0.526 0.000 0.004 0.292 0.704 0.000
#> GSM615931     5  0.1444      0.712 0.000 0.000 0.012 0.040 0.948
#> GSM615937     5  0.8215      0.251 0.020 0.288 0.092 0.172 0.428
#> GSM615938     2  0.2830      0.751 0.000 0.884 0.016 0.020 0.080
#> GSM615940     3  0.6844      0.565 0.000 0.208 0.584 0.136 0.072
#> GSM615946     2  0.5113      0.697 0.000 0.752 0.092 0.104 0.052
#> GSM615952     2  0.7594      0.323 0.260 0.456 0.216 0.068 0.000
#> GSM615953     2  0.5394      0.679 0.092 0.736 0.024 0.016 0.132
#> GSM615955     3  0.4227      0.395 0.420 0.000 0.580 0.000 0.000
#> GSM721722     3  0.3119      0.757 0.072 0.000 0.860 0.068 0.000
#> GSM721723     2  0.3151      0.738 0.000 0.836 0.000 0.144 0.020
#> GSM721724     2  0.5464      0.586 0.000 0.648 0.224 0.128 0.000
#> GSM615917     4  0.3884      0.695 0.000 0.000 0.004 0.708 0.288
#> GSM615920     4  0.6318      0.641 0.080 0.000 0.076 0.632 0.212
#> GSM615923     4  0.4951      0.609 0.000 0.092 0.020 0.744 0.144
#> GSM615928     4  0.3738      0.726 0.000 0.012 0.092 0.832 0.064
#> GSM615934     3  0.3456      0.713 0.000 0.000 0.800 0.184 0.016
#> GSM615950     5  0.5546      0.574 0.000 0.172 0.000 0.180 0.648
#> GSM615954     5  0.7849      0.281 0.304 0.184 0.000 0.096 0.416
#> GSM615956     2  0.2665      0.767 0.000 0.900 0.032 0.048 0.020
#> GSM615958     1  0.0703      0.989 0.976 0.000 0.024 0.000 0.000
#> GSM615924     4  0.4132      0.715 0.000 0.000 0.020 0.720 0.260
#> GSM615930     5  0.2305      0.680 0.000 0.012 0.000 0.092 0.896
#> GSM615932     2  0.4210      0.668 0.000 0.772 0.028 0.016 0.184
#> GSM615935     5  0.4628      0.512 0.000 0.240 0.032 0.012 0.716
#> GSM615936     3  0.6075      0.515 0.000 0.160 0.612 0.012 0.216
#> GSM615942     3  0.0727      0.778 0.004 0.000 0.980 0.012 0.004
#> GSM615943     5  0.0324      0.726 0.000 0.004 0.000 0.004 0.992
#> GSM615949     3  0.4198      0.708 0.000 0.008 0.776 0.172 0.044
#> GSM615957     2  0.2911      0.748 0.000 0.852 0.008 0.136 0.004
#> GSM721720     2  0.3531      0.729 0.000 0.816 0.000 0.148 0.036
#> GSM721721     4  0.3231      0.668 0.000 0.004 0.196 0.800 0.000
#> GSM615959     1  0.0404      0.992 0.988 0.000 0.012 0.000 0.000
#> GSM615960     1  0.0609      0.992 0.980 0.000 0.020 0.000 0.000
#> GSM615961     1  0.0404      0.992 0.988 0.000 0.012 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM615919     4  0.1973     0.7900 0.004 0.064 0.004 0.916 0.000 0.012
#> GSM615921     2  0.5189     0.1134 0.000 0.468 0.000 0.088 0.000 0.444
#> GSM615922     3  0.0951     0.8269 0.000 0.004 0.968 0.020 0.000 0.008
#> GSM615925     4  0.3133     0.7761 0.008 0.000 0.000 0.780 0.212 0.000
#> GSM615926     3  0.1716     0.8169 0.000 0.004 0.932 0.028 0.000 0.036
#> GSM615933     5  0.1219     0.8285 0.000 0.048 0.000 0.004 0.948 0.000
#> GSM615939     2  0.2748     0.6570 0.000 0.848 0.128 0.024 0.000 0.000
#> GSM615941     3  0.0146     0.8252 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM615944     3  0.0810     0.8220 0.008 0.004 0.976 0.004 0.000 0.008
#> GSM615945     5  0.0508     0.8397 0.000 0.012 0.004 0.000 0.984 0.000
#> GSM615947     2  0.1769     0.6814 0.000 0.924 0.012 0.000 0.004 0.060
#> GSM615948     3  0.1003     0.8256 0.000 0.000 0.964 0.020 0.000 0.016
#> GSM615951     3  0.4618     0.6561 0.208 0.044 0.720 0.008 0.004 0.016
#> GSM615918     4  0.3073     0.7761 0.000 0.000 0.000 0.788 0.204 0.008
#> GSM615927     5  0.2658     0.7767 0.000 0.036 0.000 0.100 0.864 0.000
#> GSM615929     4  0.2674     0.7568 0.000 0.076 0.032 0.880 0.004 0.008
#> GSM615931     5  0.1806     0.8218 0.000 0.000 0.008 0.044 0.928 0.020
#> GSM615937     6  0.3496     0.6645 0.000 0.004 0.132 0.004 0.048 0.812
#> GSM615938     2  0.4079     0.6033 0.000 0.744 0.000 0.000 0.084 0.172
#> GSM615940     2  0.4919     0.0695 0.000 0.528 0.424 0.008 0.036 0.004
#> GSM615946     2  0.2450     0.6820 0.000 0.896 0.000 0.048 0.040 0.016
#> GSM615952     6  0.6789     0.0488 0.280 0.032 0.296 0.004 0.000 0.388
#> GSM615953     2  0.4866     0.5796 0.140 0.704 0.000 0.000 0.136 0.020
#> GSM615955     3  0.4251     0.1794 0.468 0.004 0.520 0.004 0.000 0.004
#> GSM721722     3  0.2295     0.8053 0.004 0.016 0.900 0.072 0.000 0.008
#> GSM721723     6  0.1461     0.6797 0.016 0.044 0.000 0.000 0.000 0.940
#> GSM721724     2  0.6335     0.3001 0.000 0.500 0.312 0.052 0.000 0.136
#> GSM615917     4  0.2416     0.8099 0.000 0.000 0.000 0.844 0.156 0.000
#> GSM615920     4  0.6302     0.6515 0.136 0.000 0.116 0.624 0.104 0.020
#> GSM615923     6  0.4836     0.3813 0.000 0.004 0.004 0.332 0.052 0.608
#> GSM615928     4  0.3424     0.7338 0.000 0.000 0.004 0.796 0.032 0.168
#> GSM615934     3  0.4226     0.6921 0.000 0.052 0.724 0.216 0.000 0.008
#> GSM615950     6  0.3134     0.6673 0.000 0.000 0.000 0.024 0.168 0.808
#> GSM615954     6  0.5570     0.4432 0.136 0.004 0.000 0.004 0.292 0.564
#> GSM615956     2  0.2703     0.6607 0.016 0.860 0.000 0.000 0.008 0.116
#> GSM615958     1  0.0937     0.9943 0.960 0.000 0.040 0.000 0.000 0.000
#> GSM615924     4  0.2389     0.8193 0.000 0.000 0.000 0.864 0.128 0.008
#> GSM615930     5  0.1989     0.8124 0.000 0.000 0.004 0.052 0.916 0.028
#> GSM615932     2  0.2933     0.5761 0.000 0.796 0.000 0.000 0.200 0.004
#> GSM615935     5  0.3847     0.0864 0.000 0.456 0.000 0.000 0.544 0.000
#> GSM615936     3  0.4637     0.5548 0.000 0.088 0.684 0.000 0.224 0.004
#> GSM615942     3  0.0146     0.8250 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM615943     5  0.0458     0.8363 0.000 0.000 0.000 0.000 0.984 0.016
#> GSM615949     3  0.4548     0.6922 0.000 0.052 0.720 0.204 0.004 0.020
#> GSM615957     6  0.2053     0.6360 0.000 0.108 0.004 0.000 0.000 0.888
#> GSM721720     6  0.0622     0.6909 0.000 0.012 0.000 0.008 0.000 0.980
#> GSM721721     4  0.2449     0.7804 0.000 0.056 0.024 0.896 0.000 0.024
#> GSM615959     1  0.1010     0.9943 0.960 0.000 0.036 0.004 0.000 0.000
#> GSM615960     1  0.0937     0.9943 0.960 0.000 0.040 0.000 0.000 0.000
#> GSM615961     1  0.1010     0.9943 0.960 0.000 0.036 0.004 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n age(p) gender(p) tissue(p) k
#> CV:NMF 45  1.000     1.000  1.33e-04 2
#> CV:NMF 45  0.715     0.781  1.54e-04 3
#> CV:NMF 38  0.161     0.455  2.83e-08 4
#> CV:NMF 45  0.163     0.406  3.98e-09 5
#> CV:NMF 42  0.220     0.522  5.89e-08 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16230 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.735           0.903       0.951         0.3736 0.607   0.607
#> 3 3 0.401           0.757       0.838         0.7201 0.721   0.540
#> 4 4 0.515           0.567       0.752         0.1450 0.943   0.826
#> 5 5 0.570           0.645       0.743         0.0551 0.907   0.685
#> 6 6 0.642           0.684       0.780         0.0487 0.963   0.838

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM615919     2  0.0672      0.968 0.008 0.992
#> GSM615921     2  0.0376      0.969 0.004 0.996
#> GSM615922     1  0.6247      0.830 0.844 0.156
#> GSM615925     2  0.0672      0.968 0.008 0.992
#> GSM615926     1  0.4815      0.862 0.896 0.104
#> GSM615933     2  0.0000      0.970 0.000 1.000
#> GSM615939     2  0.0000      0.970 0.000 1.000
#> GSM615941     1  0.5294      0.854 0.880 0.120
#> GSM615944     1  0.2236      0.878 0.964 0.036
#> GSM615945     2  0.0000      0.970 0.000 1.000
#> GSM615947     2  0.0376      0.969 0.004 0.996
#> GSM615948     1  0.9460      0.531 0.636 0.364
#> GSM615951     2  0.4939      0.869 0.108 0.892
#> GSM615918     2  0.0672      0.968 0.008 0.992
#> GSM615927     2  0.0672      0.968 0.008 0.992
#> GSM615929     2  0.2236      0.945 0.036 0.964
#> GSM615931     2  0.0000      0.970 0.000 1.000
#> GSM615937     2  0.0000      0.970 0.000 1.000
#> GSM615938     2  0.0000      0.970 0.000 1.000
#> GSM615940     2  0.0672      0.968 0.008 0.992
#> GSM615946     2  0.0000      0.970 0.000 1.000
#> GSM615952     2  0.4939      0.869 0.108 0.892
#> GSM615953     2  0.1843      0.953 0.028 0.972
#> GSM615955     1  0.2236      0.878 0.964 0.036
#> GSM721722     1  0.2236      0.878 0.964 0.036
#> GSM721723     2  0.0000      0.970 0.000 1.000
#> GSM721724     2  0.0000      0.970 0.000 1.000
#> GSM615917     2  0.0672      0.968 0.008 0.992
#> GSM615920     1  0.9815      0.386 0.580 0.420
#> GSM615923     2  0.0000      0.970 0.000 1.000
#> GSM615928     2  0.0376      0.969 0.004 0.996
#> GSM615934     1  0.8016      0.745 0.756 0.244
#> GSM615950     2  0.0000      0.970 0.000 1.000
#> GSM615954     2  0.0000      0.970 0.000 1.000
#> GSM615956     2  0.0672      0.968 0.008 0.992
#> GSM615958     1  0.0000      0.868 1.000 0.000
#> GSM615924     2  0.0672      0.968 0.008 0.992
#> GSM615930     2  0.0000      0.970 0.000 1.000
#> GSM615932     2  0.0000      0.970 0.000 1.000
#> GSM615935     2  0.0000      0.970 0.000 1.000
#> GSM615936     2  0.3274      0.924 0.060 0.940
#> GSM615942     2  0.9129      0.459 0.328 0.672
#> GSM615943     2  0.0000      0.970 0.000 1.000
#> GSM615949     2  0.7299      0.718 0.204 0.796
#> GSM615957     2  0.0000      0.970 0.000 1.000
#> GSM721720     2  0.0000      0.970 0.000 1.000
#> GSM721721     2  0.0000      0.970 0.000 1.000
#> GSM615959     1  0.0000      0.868 1.000 0.000
#> GSM615960     1  0.0000      0.868 1.000 0.000
#> GSM615961     1  0.0000      0.868 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM615919     3  0.1529      0.830 0.000 0.040 0.960
#> GSM615921     3  0.5948      0.566 0.000 0.360 0.640
#> GSM615922     1  0.4779      0.821 0.840 0.036 0.124
#> GSM615925     3  0.0424      0.832 0.000 0.008 0.992
#> GSM615926     1  0.3116      0.851 0.892 0.000 0.108
#> GSM615933     3  0.3116      0.828 0.000 0.108 0.892
#> GSM615939     2  0.4931      0.772 0.000 0.768 0.232
#> GSM615941     1  0.3966      0.846 0.876 0.024 0.100
#> GSM615944     1  0.1529      0.868 0.960 0.000 0.040
#> GSM615945     3  0.3038      0.830 0.000 0.104 0.896
#> GSM615947     2  0.3715      0.789 0.004 0.868 0.128
#> GSM615948     1  0.8153      0.520 0.632 0.240 0.128
#> GSM615951     2  0.7108      0.769 0.100 0.716 0.184
#> GSM615918     3  0.0000      0.830 0.000 0.000 1.000
#> GSM615927     3  0.0000      0.830 0.000 0.000 1.000
#> GSM615929     3  0.4995      0.711 0.032 0.144 0.824
#> GSM615931     3  0.3686      0.808 0.000 0.140 0.860
#> GSM615937     3  0.6215      0.533 0.000 0.428 0.572
#> GSM615938     2  0.1163      0.750 0.000 0.972 0.028
#> GSM615940     2  0.5404      0.774 0.004 0.740 0.256
#> GSM615946     2  0.5138      0.760 0.000 0.748 0.252
#> GSM615952     2  0.7108      0.769 0.100 0.716 0.184
#> GSM615953     2  0.5503      0.794 0.020 0.772 0.208
#> GSM615955     1  0.1529      0.868 0.960 0.000 0.040
#> GSM721722     1  0.1529      0.868 0.960 0.000 0.040
#> GSM721723     2  0.3686      0.669 0.000 0.860 0.140
#> GSM721724     2  0.5024      0.778 0.004 0.776 0.220
#> GSM615917     3  0.0424      0.832 0.000 0.008 0.992
#> GSM615920     1  0.6421      0.373 0.572 0.004 0.424
#> GSM615923     3  0.3116      0.834 0.000 0.108 0.892
#> GSM615928     3  0.1860      0.829 0.000 0.052 0.948
#> GSM615934     1  0.5967      0.732 0.752 0.032 0.216
#> GSM615950     3  0.6215      0.533 0.000 0.428 0.572
#> GSM615954     3  0.5591      0.690 0.000 0.304 0.696
#> GSM615956     2  0.5291      0.766 0.000 0.732 0.268
#> GSM615958     1  0.0747      0.857 0.984 0.016 0.000
#> GSM615924     3  0.1031      0.833 0.000 0.024 0.976
#> GSM615930     3  0.3038      0.830 0.000 0.104 0.896
#> GSM615932     2  0.0892      0.751 0.000 0.980 0.020
#> GSM615935     2  0.0892      0.751 0.000 0.980 0.020
#> GSM615936     2  0.6742      0.767 0.052 0.708 0.240
#> GSM615942     2  0.8646      0.435 0.320 0.556 0.124
#> GSM615943     3  0.4931      0.752 0.000 0.232 0.768
#> GSM615949     2  0.9026      0.604 0.196 0.556 0.248
#> GSM615957     2  0.1860      0.739 0.000 0.948 0.052
#> GSM721720     2  0.3686      0.669 0.000 0.860 0.140
#> GSM721721     3  0.3116      0.834 0.000 0.108 0.892
#> GSM615959     1  0.0747      0.857 0.984 0.016 0.000
#> GSM615960     1  0.0747      0.857 0.984 0.016 0.000
#> GSM615961     1  0.0747      0.857 0.984 0.016 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM615919     1  0.6745    0.73465 0.612 0.212 0.000 0.176
#> GSM615921     1  0.5816    0.36532 0.708 0.148 0.000 0.144
#> GSM615922     3  0.4058    0.81890 0.028 0.116 0.840 0.016
#> GSM615925     4  0.5937   -0.15049 0.472 0.036 0.000 0.492
#> GSM615926     3  0.3103    0.84672 0.016 0.076 0.892 0.016
#> GSM615933     4  0.1913    0.52686 0.020 0.040 0.000 0.940
#> GSM615939     2  0.2198    0.71881 0.008 0.920 0.000 0.072
#> GSM615941     3  0.3367    0.84130 0.020 0.092 0.876 0.012
#> GSM615944     3  0.1211    0.86116 0.000 0.040 0.960 0.000
#> GSM615945     4  0.1022    0.53244 0.000 0.032 0.000 0.968
#> GSM615947     2  0.4245    0.72375 0.116 0.820 0.000 0.064
#> GSM615948     3  0.6086    0.53818 0.028 0.316 0.632 0.024
#> GSM615951     2  0.2989    0.70687 0.012 0.884 0.100 0.004
#> GSM615918     4  0.4955    0.00899 0.444 0.000 0.000 0.556
#> GSM615927     4  0.5097    0.03797 0.428 0.004 0.000 0.568
#> GSM615929     1  0.7803    0.63318 0.512 0.328 0.032 0.128
#> GSM615931     4  0.2198    0.51239 0.008 0.072 0.000 0.920
#> GSM615937     4  0.5436    0.38339 0.356 0.024 0.000 0.620
#> GSM615938     2  0.5664    0.68359 0.228 0.696 0.000 0.076
#> GSM615940     2  0.1443    0.71200 0.028 0.960 0.008 0.004
#> GSM615946     2  0.2742    0.70872 0.024 0.900 0.000 0.076
#> GSM615952     2  0.2989    0.70687 0.012 0.884 0.100 0.004
#> GSM615953     2  0.3025    0.73377 0.060 0.900 0.016 0.024
#> GSM615955     3  0.1118    0.86144 0.000 0.036 0.964 0.000
#> GSM721722     3  0.1118    0.86144 0.000 0.036 0.964 0.000
#> GSM721723     2  0.7442    0.48691 0.368 0.456 0.000 0.176
#> GSM721724     2  0.2884    0.71633 0.028 0.900 0.004 0.068
#> GSM615917     4  0.5859   -0.14595 0.472 0.032 0.000 0.496
#> GSM615920     3  0.8155    0.41345 0.140 0.088 0.572 0.200
#> GSM615923     4  0.7261   -0.13761 0.268 0.196 0.000 0.536
#> GSM615928     1  0.6946    0.73475 0.588 0.212 0.000 0.200
#> GSM615934     3  0.5179    0.73647 0.028 0.192 0.756 0.024
#> GSM615950     4  0.5436    0.38339 0.356 0.024 0.000 0.620
#> GSM615954     4  0.4781    0.45818 0.212 0.036 0.000 0.752
#> GSM615956     2  0.0672    0.71792 0.008 0.984 0.000 0.008
#> GSM615958     3  0.1489    0.84623 0.044 0.000 0.952 0.004
#> GSM615924     1  0.7080    0.67903 0.568 0.196 0.000 0.236
#> GSM615930     4  0.1022    0.53244 0.000 0.032 0.000 0.968
#> GSM615932     2  0.5664    0.67647 0.228 0.696 0.000 0.076
#> GSM615935     2  0.5664    0.67647 0.228 0.696 0.000 0.076
#> GSM615936     2  0.2353    0.71077 0.008 0.924 0.056 0.012
#> GSM615942     2  0.6197    0.41192 0.028 0.624 0.320 0.028
#> GSM615943     4  0.3749    0.50735 0.128 0.032 0.000 0.840
#> GSM615949     2  0.5446    0.54841 0.028 0.740 0.200 0.032
#> GSM615957     2  0.6478    0.60419 0.336 0.576 0.000 0.088
#> GSM721720     2  0.7442    0.48691 0.368 0.456 0.000 0.176
#> GSM721721     4  0.7261   -0.13761 0.268 0.196 0.000 0.536
#> GSM615959     3  0.1489    0.84623 0.044 0.000 0.952 0.004
#> GSM615960     3  0.1489    0.84623 0.044 0.000 0.952 0.004
#> GSM615961     3  0.1489    0.84623 0.044 0.000 0.952 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM615919     4   0.280      0.650 0.000 0.140 0.008 0.852 0.000
#> GSM615921     4   0.632      0.459 0.128 0.144 0.000 0.652 0.076
#> GSM615922     3   0.269      0.741 0.004 0.052 0.896 0.044 0.004
#> GSM615925     4   0.358      0.570 0.000 0.008 0.000 0.768 0.224
#> GSM615926     3   0.171      0.748 0.004 0.016 0.940 0.040 0.000
#> GSM615933     5   0.325      0.692 0.000 0.008 0.000 0.184 0.808
#> GSM615939     2   0.234      0.726 0.032 0.904 0.000 0.064 0.000
#> GSM615941     3   0.184      0.752 0.000 0.032 0.932 0.036 0.000
#> GSM615944     3   0.051      0.706 0.016 0.000 0.984 0.000 0.000
#> GSM615945     5   0.277      0.708 0.000 0.000 0.000 0.164 0.836
#> GSM615947     2   0.340      0.726 0.064 0.868 0.008 0.028 0.032
#> GSM615948     3   0.500      0.505 0.004 0.256 0.688 0.044 0.008
#> GSM615951     2   0.383      0.708 0.020 0.812 0.144 0.024 0.000
#> GSM615918     4   0.377      0.488 0.000 0.000 0.000 0.704 0.296
#> GSM615927     4   0.405      0.448 0.000 0.004 0.000 0.676 0.320
#> GSM615929     4   0.517      0.544 0.004 0.276 0.036 0.668 0.016
#> GSM615931     5   0.403      0.671 0.000 0.048 0.000 0.176 0.776
#> GSM615937     5   0.558      0.560 0.236 0.076 0.000 0.024 0.664
#> GSM615938     2   0.484      0.677 0.084 0.764 0.000 0.032 0.120
#> GSM615940     2   0.285      0.729 0.012 0.888 0.048 0.052 0.000
#> GSM615946     2   0.299      0.717 0.032 0.876 0.000 0.080 0.012
#> GSM615952     2   0.383      0.708 0.020 0.812 0.144 0.024 0.000
#> GSM615953     2   0.380      0.739 0.020 0.852 0.056 0.024 0.048
#> GSM615955     3   0.088      0.693 0.032 0.000 0.968 0.000 0.000
#> GSM721722     3   0.088      0.693 0.032 0.000 0.968 0.000 0.000
#> GSM721723     2   0.705      0.321 0.384 0.416 0.000 0.028 0.172
#> GSM721724     2   0.249      0.727 0.032 0.904 0.008 0.056 0.000
#> GSM615917     4   0.346      0.570 0.000 0.004 0.000 0.772 0.224
#> GSM615920     3   0.620      0.383 0.004 0.024 0.620 0.236 0.116
#> GSM615923     4   0.723      0.414 0.040 0.164 0.008 0.508 0.280
#> GSM615928     4   0.325      0.651 0.000 0.136 0.008 0.840 0.016
#> GSM615934     3   0.410      0.660 0.004 0.112 0.804 0.076 0.004
#> GSM615950     5   0.547      0.566 0.220 0.076 0.000 0.024 0.680
#> GSM615954     5   0.545      0.636 0.148 0.076 0.000 0.056 0.720
#> GSM615956     2   0.309      0.730 0.020 0.876 0.036 0.068 0.000
#> GSM615958     1   0.418      1.000 0.600 0.000 0.400 0.000 0.000
#> GSM615924     4   0.385      0.661 0.000 0.120 0.008 0.816 0.056
#> GSM615930     5   0.277      0.708 0.000 0.000 0.000 0.164 0.836
#> GSM615932     2   0.532      0.644 0.052 0.696 0.000 0.036 0.216
#> GSM615935     2   0.532      0.644 0.052 0.696 0.000 0.036 0.216
#> GSM615936     2   0.361      0.726 0.012 0.844 0.096 0.044 0.004
#> GSM615942     2   0.561      0.357 0.004 0.564 0.376 0.044 0.012
#> GSM615943     5   0.164      0.706 0.004 0.008 0.000 0.048 0.940
#> GSM615949     2   0.537      0.534 0.004 0.672 0.248 0.064 0.012
#> GSM615957     2   0.615      0.494 0.372 0.528 0.000 0.024 0.076
#> GSM721720     2   0.705      0.321 0.384 0.416 0.000 0.028 0.172
#> GSM721721     4   0.723      0.414 0.040 0.164 0.008 0.508 0.280
#> GSM615959     1   0.418      1.000 0.600 0.000 0.400 0.000 0.000
#> GSM615960     1   0.418      1.000 0.600 0.000 0.400 0.000 0.000
#> GSM615961     1   0.418      1.000 0.600 0.000 0.400 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM615919     4  0.2509      0.650 0.000 0.088 0.036 0.876 0.000 0.000
#> GSM615921     4  0.5375      0.433 0.004 0.076 0.000 0.668 0.052 0.200
#> GSM615922     3  0.1268      0.818 0.000 0.036 0.952 0.008 0.004 0.000
#> GSM615925     4  0.3445      0.587 0.000 0.008 0.000 0.732 0.260 0.000
#> GSM615926     3  0.0622      0.825 0.012 0.000 0.980 0.008 0.000 0.000
#> GSM615933     5  0.1970      0.694 0.000 0.008 0.000 0.092 0.900 0.000
#> GSM615939     2  0.3658      0.752 0.004 0.816 0.012 0.072 0.000 0.096
#> GSM615941     3  0.0603      0.827 0.004 0.016 0.980 0.000 0.000 0.000
#> GSM615944     3  0.1444      0.809 0.072 0.000 0.928 0.000 0.000 0.000
#> GSM615945     5  0.1444      0.710 0.000 0.000 0.000 0.072 0.928 0.000
#> GSM615947     2  0.4445      0.714 0.040 0.784 0.008 0.032 0.020 0.116
#> GSM615948     3  0.3710      0.583 0.000 0.240 0.740 0.008 0.008 0.004
#> GSM615951     2  0.3833      0.745 0.000 0.800 0.116 0.024 0.000 0.060
#> GSM615918     4  0.3717      0.446 0.000 0.000 0.000 0.616 0.384 0.000
#> GSM615927     4  0.3907      0.403 0.000 0.004 0.000 0.588 0.408 0.000
#> GSM615929     4  0.4741      0.517 0.000 0.252 0.060 0.672 0.016 0.000
#> GSM615931     5  0.2789      0.681 0.000 0.044 0.000 0.088 0.864 0.004
#> GSM615937     5  0.4669      0.304 0.020 0.008 0.000 0.004 0.532 0.436
#> GSM615938     2  0.5589      0.633 0.064 0.696 0.000 0.032 0.076 0.132
#> GSM615940     2  0.2230      0.771 0.000 0.904 0.016 0.064 0.000 0.016
#> GSM615946     2  0.4067      0.747 0.004 0.800 0.012 0.088 0.012 0.084
#> GSM615952     2  0.3833      0.745 0.000 0.800 0.116 0.024 0.000 0.060
#> GSM615953     2  0.3673      0.758 0.012 0.844 0.028 0.024 0.024 0.068
#> GSM615955     3  0.1910      0.791 0.108 0.000 0.892 0.000 0.000 0.000
#> GSM721722     3  0.1910      0.791 0.108 0.000 0.892 0.000 0.000 0.000
#> GSM721723     6  0.0632      0.901 0.000 0.000 0.000 0.000 0.024 0.976
#> GSM721724     2  0.3565      0.751 0.000 0.816 0.012 0.072 0.000 0.100
#> GSM615917     4  0.3337      0.587 0.000 0.004 0.000 0.736 0.260 0.000
#> GSM615920     3  0.5247      0.457 0.012 0.008 0.660 0.204 0.116 0.000
#> GSM615923     4  0.6818      0.442 0.000 0.072 0.032 0.536 0.252 0.108
#> GSM615928     4  0.2851      0.651 0.000 0.080 0.036 0.868 0.016 0.000
#> GSM615934     3  0.2866      0.764 0.000 0.084 0.860 0.052 0.004 0.000
#> GSM615950     5  0.5054      0.326 0.028 0.016 0.000 0.008 0.532 0.416
#> GSM615954     5  0.4765      0.553 0.024 0.028 0.000 0.012 0.680 0.256
#> GSM615956     2  0.3327      0.765 0.004 0.844 0.016 0.076 0.000 0.060
#> GSM615958     1  0.1387      1.000 0.932 0.000 0.068 0.000 0.000 0.000
#> GSM615924     4  0.3390      0.668 0.000 0.072 0.032 0.840 0.056 0.000
#> GSM615930     5  0.1444      0.710 0.000 0.000 0.000 0.072 0.928 0.000
#> GSM615932     2  0.5415      0.618 0.068 0.692 0.000 0.036 0.172 0.032
#> GSM615935     2  0.5415      0.618 0.068 0.692 0.000 0.036 0.172 0.032
#> GSM615936     2  0.3220      0.768 0.000 0.856 0.068 0.040 0.004 0.032
#> GSM615942     2  0.4334      0.422 0.000 0.588 0.392 0.004 0.012 0.004
#> GSM615943     5  0.1705      0.697 0.024 0.016 0.000 0.008 0.940 0.012
#> GSM615949     2  0.4543      0.595 0.000 0.684 0.260 0.040 0.012 0.004
#> GSM615957     6  0.2053      0.809 0.000 0.108 0.000 0.004 0.000 0.888
#> GSM721720     6  0.0632      0.901 0.000 0.000 0.000 0.000 0.024 0.976
#> GSM721721     4  0.6818      0.442 0.000 0.072 0.032 0.536 0.252 0.108
#> GSM615959     1  0.1387      1.000 0.932 0.000 0.068 0.000 0.000 0.000
#> GSM615960     1  0.1387      1.000 0.932 0.000 0.068 0.000 0.000 0.000
#> GSM615961     1  0.1387      1.000 0.932 0.000 0.068 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n age(p) gender(p) tissue(p) k
#> MAD:hclust 48 1.0000     0.401  2.57e-03 2
#> MAD:hclust 48 0.9194     0.107  1.44e-03 3
#> MAD:hclust 36 0.9870     0.410  2.93e-02 4
#> MAD:hclust 40 0.0625     0.188  4.33e-08 5
#> MAD:hclust 41 0.0904     0.119  9.38e-08 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16230 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.536           0.828       0.893         0.3793 0.571   0.571
#> 3 3 0.424           0.587       0.796         0.6454 0.651   0.462
#> 4 4 0.561           0.685       0.787         0.1565 0.776   0.493
#> 5 5 0.646           0.627       0.736         0.0858 0.874   0.592
#> 6 6 0.760           0.735       0.806         0.0481 0.936   0.720

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM615919     2  0.0000      0.922 0.000 1.000
#> GSM615921     2  0.1843      0.919 0.028 0.972
#> GSM615922     1  0.9522      0.673 0.628 0.372
#> GSM615925     2  0.1184      0.921 0.016 0.984
#> GSM615926     1  0.9552      0.653 0.624 0.376
#> GSM615933     2  0.0672      0.922 0.008 0.992
#> GSM615939     2  0.6712      0.785 0.176 0.824
#> GSM615941     1  0.9460      0.676 0.636 0.364
#> GSM615944     1  0.5059      0.739 0.888 0.112
#> GSM615945     2  0.1184      0.921 0.016 0.984
#> GSM615947     2  0.4690      0.868 0.100 0.900
#> GSM615948     1  0.9460      0.676 0.636 0.364
#> GSM615951     1  0.9460      0.676 0.636 0.364
#> GSM615918     2  0.1184      0.921 0.016 0.984
#> GSM615927     2  0.1184      0.921 0.016 0.984
#> GSM615929     2  0.6712      0.775 0.176 0.824
#> GSM615931     2  0.1184      0.921 0.016 0.984
#> GSM615937     2  0.1184      0.921 0.016 0.984
#> GSM615938     2  0.1843      0.919 0.028 0.972
#> GSM615940     2  0.6712      0.785 0.176 0.824
#> GSM615946     2  0.1843      0.919 0.028 0.972
#> GSM615952     1  0.9460      0.676 0.636 0.364
#> GSM615953     2  0.1843      0.919 0.028 0.972
#> GSM615955     1  0.1184      0.730 0.984 0.016
#> GSM721722     1  0.1633      0.732 0.976 0.024
#> GSM721723     2  0.1843      0.919 0.028 0.972
#> GSM721724     2  0.6712      0.785 0.176 0.824
#> GSM615917     2  0.1184      0.921 0.016 0.984
#> GSM615920     2  0.8016      0.618 0.244 0.756
#> GSM615923     2  0.1184      0.921 0.016 0.984
#> GSM615928     2  0.0000      0.922 0.000 1.000
#> GSM615934     1  0.9686      0.629 0.604 0.396
#> GSM615950     2  0.1184      0.921 0.016 0.984
#> GSM615954     2  0.1184      0.921 0.016 0.984
#> GSM615956     2  0.3584      0.898 0.068 0.932
#> GSM615958     1  0.1843      0.731 0.972 0.028
#> GSM615924     2  0.1184      0.921 0.016 0.984
#> GSM615930     2  0.1184      0.921 0.016 0.984
#> GSM615932     2  0.1843      0.919 0.028 0.972
#> GSM615935     2  0.1843      0.919 0.028 0.972
#> GSM615936     2  0.6712      0.785 0.176 0.824
#> GSM615942     1  0.9460      0.676 0.636 0.364
#> GSM615943     2  0.1184      0.921 0.016 0.984
#> GSM615949     2  0.7139      0.753 0.196 0.804
#> GSM615957     2  0.2043      0.917 0.032 0.968
#> GSM721720     2  0.1843      0.919 0.028 0.972
#> GSM721721     2  0.3733      0.878 0.072 0.928
#> GSM615959     1  0.1843      0.731 0.972 0.028
#> GSM615960     1  0.1843      0.731 0.972 0.028
#> GSM615961     1  0.1843      0.731 0.972 0.028

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM615919     2  0.6062      0.629 0.000 0.616 0.384
#> GSM615921     2  0.6483      0.351 0.004 0.544 0.452
#> GSM615922     3  0.6881      0.275 0.388 0.020 0.592
#> GSM615925     2  0.4062      0.780 0.000 0.836 0.164
#> GSM615926     3  0.8936      0.025 0.388 0.128 0.484
#> GSM615933     2  0.3686      0.785 0.000 0.860 0.140
#> GSM615939     3  0.0475      0.683 0.004 0.004 0.992
#> GSM615941     3  0.6126      0.281 0.400 0.000 0.600
#> GSM615944     1  0.6215      0.253 0.572 0.000 0.428
#> GSM615945     2  0.0892      0.776 0.000 0.980 0.020
#> GSM615947     3  0.1031      0.676 0.000 0.024 0.976
#> GSM615948     3  0.6079      0.305 0.388 0.000 0.612
#> GSM615951     3  0.6126      0.281 0.400 0.000 0.600
#> GSM615918     2  0.4062      0.780 0.000 0.836 0.164
#> GSM615927     2  0.1529      0.780 0.000 0.960 0.040
#> GSM615929     3  0.0424      0.682 0.008 0.000 0.992
#> GSM615931     2  0.3941      0.782 0.000 0.844 0.156
#> GSM615937     2  0.0661      0.768 0.004 0.988 0.008
#> GSM615938     2  0.6330      0.393 0.004 0.600 0.396
#> GSM615940     3  0.0475      0.683 0.004 0.004 0.992
#> GSM615946     3  0.2261      0.642 0.000 0.068 0.932
#> GSM615952     3  0.6095      0.298 0.392 0.000 0.608
#> GSM615953     3  0.4178      0.515 0.000 0.172 0.828
#> GSM615955     1  0.5882      0.473 0.652 0.000 0.348
#> GSM721722     1  0.5926      0.460 0.644 0.000 0.356
#> GSM721723     2  0.6442      0.350 0.004 0.564 0.432
#> GSM721724     3  0.0829      0.681 0.004 0.012 0.984
#> GSM615917     2  0.4062      0.780 0.000 0.836 0.164
#> GSM615920     2  0.6247      0.721 0.044 0.744 0.212
#> GSM615923     2  0.3816      0.785 0.000 0.852 0.148
#> GSM615928     2  0.5016      0.744 0.000 0.760 0.240
#> GSM615934     3  0.6161      0.436 0.272 0.020 0.708
#> GSM615950     2  0.0661      0.768 0.004 0.988 0.008
#> GSM615954     2  0.0237      0.771 0.000 0.996 0.004
#> GSM615956     3  0.0983      0.679 0.004 0.016 0.980
#> GSM615958     1  0.0237      0.735 0.996 0.004 0.000
#> GSM615924     2  0.4452      0.772 0.000 0.808 0.192
#> GSM615930     2  0.0892      0.776 0.000 0.980 0.020
#> GSM615932     2  0.6330      0.393 0.004 0.600 0.396
#> GSM615935     3  0.6104      0.358 0.004 0.348 0.648
#> GSM615936     3  0.0475      0.683 0.004 0.004 0.992
#> GSM615942     3  0.6126      0.281 0.400 0.000 0.600
#> GSM615943     2  0.0237      0.769 0.004 0.996 0.000
#> GSM615949     3  0.0983      0.681 0.016 0.004 0.980
#> GSM615957     3  0.5201      0.528 0.004 0.236 0.760
#> GSM721720     2  0.6442      0.350 0.004 0.564 0.432
#> GSM721721     2  0.5291      0.723 0.000 0.732 0.268
#> GSM615959     1  0.0237      0.735 0.996 0.004 0.000
#> GSM615960     1  0.0237      0.735 0.996 0.004 0.000
#> GSM615961     1  0.0237      0.735 0.996 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM615919     4  0.7432      0.393 0.108 0.200 0.064 0.628
#> GSM615921     2  0.3808      0.627 0.012 0.812 0.000 0.176
#> GSM615922     3  0.0188      0.791 0.000 0.000 0.996 0.004
#> GSM615925     4  0.0376      0.763 0.000 0.004 0.004 0.992
#> GSM615926     3  0.0188      0.791 0.000 0.000 0.996 0.004
#> GSM615933     4  0.4305      0.767 0.044 0.136 0.004 0.816
#> GSM615939     2  0.7803      0.579 0.084 0.548 0.300 0.068
#> GSM615941     3  0.0188      0.790 0.000 0.004 0.996 0.000
#> GSM615944     3  0.1940      0.718 0.076 0.000 0.924 0.000
#> GSM615945     4  0.5176      0.748 0.056 0.192 0.004 0.748
#> GSM615947     2  0.7692      0.599 0.080 0.564 0.288 0.068
#> GSM615948     3  0.0376      0.790 0.004 0.000 0.992 0.004
#> GSM615951     3  0.0188      0.790 0.000 0.004 0.996 0.000
#> GSM615918     4  0.0188      0.763 0.000 0.000 0.004 0.996
#> GSM615927     4  0.2021      0.765 0.012 0.056 0.000 0.932
#> GSM615929     3  0.8060      0.362 0.088 0.080 0.524 0.308
#> GSM615931     4  0.4356      0.767 0.044 0.140 0.004 0.812
#> GSM615937     4  0.7129      0.534 0.112 0.424 0.004 0.460
#> GSM615938     2  0.0188      0.663 0.000 0.996 0.000 0.004
#> GSM615940     3  0.7989     -0.104 0.084 0.356 0.492 0.068
#> GSM615946     2  0.7480      0.645 0.084 0.612 0.232 0.072
#> GSM615952     3  0.0188      0.790 0.000 0.004 0.996 0.000
#> GSM615953     2  0.6990      0.675 0.068 0.668 0.180 0.084
#> GSM615955     3  0.2216      0.700 0.092 0.000 0.908 0.000
#> GSM721722     3  0.2149      0.706 0.088 0.000 0.912 0.000
#> GSM721723     2  0.2546      0.603 0.092 0.900 0.000 0.008
#> GSM721724     2  0.7803      0.579 0.084 0.548 0.300 0.068
#> GSM615917     4  0.0188      0.763 0.000 0.000 0.004 0.996
#> GSM615920     4  0.4472      0.613 0.020 0.000 0.220 0.760
#> GSM615923     4  0.4931      0.757 0.092 0.132 0.000 0.776
#> GSM615928     4  0.3796      0.695 0.096 0.000 0.056 0.848
#> GSM615934     3  0.3903      0.712 0.080 0.000 0.844 0.076
#> GSM615950     4  0.7129      0.534 0.112 0.424 0.004 0.460
#> GSM615954     4  0.6381      0.689 0.088 0.280 0.004 0.628
#> GSM615956     2  0.7748      0.596 0.084 0.560 0.288 0.068
#> GSM615958     1  0.3870      0.998 0.788 0.004 0.208 0.000
#> GSM615924     4  0.1398      0.754 0.040 0.000 0.004 0.956
#> GSM615930     4  0.5176      0.748 0.056 0.192 0.004 0.748
#> GSM615932     2  0.0376      0.662 0.004 0.992 0.000 0.004
#> GSM615935     2  0.3072      0.703 0.004 0.868 0.124 0.004
#> GSM615936     3  0.6913      0.485 0.084 0.172 0.676 0.068
#> GSM615942     3  0.0000      0.790 0.000 0.000 1.000 0.000
#> GSM615943     4  0.6077      0.702 0.076 0.260 0.004 0.660
#> GSM615949     3  0.6957      0.518 0.088 0.136 0.684 0.092
#> GSM615957     2  0.4303      0.681 0.020 0.792 0.184 0.004
#> GSM721720     2  0.2546      0.603 0.092 0.900 0.000 0.008
#> GSM721721     4  0.4914      0.675 0.108 0.024 0.064 0.804
#> GSM615959     1  0.3688      0.998 0.792 0.000 0.208 0.000
#> GSM615960     1  0.3870      0.998 0.788 0.004 0.208 0.000
#> GSM615961     1  0.3688      0.998 0.792 0.000 0.208 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM615919     4  0.2736    0.49888 0.000 0.068 0.024 0.892 0.016
#> GSM615921     2  0.4141    0.51744 0.024 0.728 0.000 0.248 0.000
#> GSM615922     3  0.0290    0.89079 0.000 0.000 0.992 0.008 0.000
#> GSM615925     4  0.4403    0.55241 0.000 0.000 0.004 0.560 0.436
#> GSM615926     3  0.1043    0.87781 0.000 0.000 0.960 0.040 0.000
#> GSM615933     5  0.3722    0.53899 0.000 0.040 0.004 0.144 0.812
#> GSM615939     2  0.5769    0.68776 0.012 0.644 0.124 0.220 0.000
#> GSM615941     3  0.0162    0.89350 0.000 0.004 0.996 0.000 0.000
#> GSM615944     3  0.1710    0.86189 0.040 0.000 0.940 0.016 0.004
#> GSM615945     5  0.3689    0.55650 0.000 0.048 0.004 0.128 0.820
#> GSM615947     2  0.5453    0.69918 0.012 0.680 0.108 0.200 0.000
#> GSM615948     3  0.0162    0.89350 0.000 0.004 0.996 0.000 0.000
#> GSM615951     3  0.0451    0.89233 0.000 0.008 0.988 0.000 0.004
#> GSM615918     4  0.4397    0.55537 0.000 0.000 0.004 0.564 0.432
#> GSM615927     4  0.4450    0.46840 0.000 0.004 0.000 0.508 0.488
#> GSM615929     4  0.5084    0.45575 0.012 0.040 0.204 0.724 0.020
#> GSM615931     5  0.3847    0.52864 0.000 0.040 0.004 0.156 0.800
#> GSM615937     5  0.6991    0.46442 0.060 0.192 0.004 0.168 0.576
#> GSM615938     2  0.1408    0.64058 0.000 0.948 0.000 0.008 0.044
#> GSM615940     2  0.6403    0.63171 0.016 0.576 0.184 0.224 0.000
#> GSM615946     2  0.5084    0.69244 0.012 0.712 0.052 0.216 0.008
#> GSM615952     3  0.0451    0.89233 0.000 0.008 0.988 0.000 0.004
#> GSM615953     2  0.4924    0.68549 0.012 0.760 0.016 0.140 0.072
#> GSM615955     3  0.2022    0.85760 0.048 0.004 0.928 0.016 0.004
#> GSM721722     3  0.1862    0.85578 0.048 0.000 0.932 0.016 0.004
#> GSM721723     2  0.7483   -0.00343 0.068 0.468 0.000 0.180 0.284
#> GSM721724     2  0.5837    0.68829 0.016 0.644 0.124 0.216 0.000
#> GSM615917     4  0.4397    0.55537 0.000 0.000 0.004 0.564 0.432
#> GSM615920     4  0.5932    0.44288 0.000 0.000 0.308 0.560 0.132
#> GSM615923     5  0.5637    0.10824 0.032 0.024 0.000 0.448 0.496
#> GSM615928     4  0.3621    0.60203 0.000 0.000 0.020 0.788 0.192
#> GSM615934     3  0.3129    0.73958 0.008 0.004 0.832 0.156 0.000
#> GSM615950     5  0.6963    0.46646 0.060 0.188 0.004 0.168 0.580
#> GSM615954     5  0.3695    0.56609 0.016 0.052 0.000 0.096 0.836
#> GSM615956     2  0.5855    0.69312 0.012 0.656 0.112 0.212 0.008
#> GSM615958     1  0.1851    0.99338 0.912 0.000 0.088 0.000 0.000
#> GSM615924     4  0.3949    0.59809 0.000 0.000 0.000 0.668 0.332
#> GSM615930     5  0.3663    0.55436 0.000 0.044 0.004 0.132 0.820
#> GSM615932     2  0.2141    0.63561 0.004 0.916 0.000 0.016 0.064
#> GSM615935     2  0.2262    0.63925 0.004 0.912 0.004 0.012 0.068
#> GSM615936     2  0.6972    0.32499 0.012 0.404 0.360 0.224 0.000
#> GSM615942     3  0.0162    0.89350 0.000 0.004 0.996 0.000 0.000
#> GSM615943     5  0.1662    0.59340 0.000 0.056 0.004 0.004 0.936
#> GSM615949     3  0.6734    0.01076 0.012 0.260 0.504 0.224 0.000
#> GSM615957     2  0.3884    0.63691 0.036 0.848 0.052 0.048 0.016
#> GSM721720     2  0.7483   -0.00343 0.068 0.468 0.000 0.180 0.284
#> GSM721721     4  0.2619    0.54542 0.004 0.004 0.024 0.896 0.072
#> GSM615959     1  0.2351    0.99338 0.896 0.000 0.088 0.016 0.000
#> GSM615960     1  0.1851    0.99338 0.912 0.000 0.088 0.000 0.000
#> GSM615961     1  0.2351    0.99338 0.896 0.000 0.088 0.016 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM615919     4  0.4655     0.6914 0.008 0.204 0.000 0.716 0.052 0.020
#> GSM615921     2  0.7225     0.4463 0.012 0.508 0.004 0.172 0.156 0.148
#> GSM615922     3  0.1152     0.9246 0.000 0.000 0.952 0.004 0.044 0.000
#> GSM615925     4  0.1010     0.7044 0.000 0.000 0.004 0.960 0.036 0.000
#> GSM615926     3  0.1643     0.9171 0.000 0.000 0.924 0.008 0.068 0.000
#> GSM615933     5  0.6368     0.9525 0.000 0.016 0.000 0.272 0.428 0.284
#> GSM615939     2  0.1124     0.7519 0.000 0.956 0.036 0.000 0.008 0.000
#> GSM615941     3  0.0260     0.9373 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM615944     3  0.0820     0.9317 0.016 0.000 0.972 0.000 0.012 0.000
#> GSM615945     5  0.6370     0.9620 0.000 0.016 0.000 0.260 0.424 0.300
#> GSM615947     2  0.1933     0.7580 0.000 0.920 0.032 0.004 0.044 0.000
#> GSM615948     3  0.0665     0.9378 0.000 0.008 0.980 0.004 0.008 0.000
#> GSM615951     3  0.1265     0.9259 0.000 0.008 0.948 0.000 0.044 0.000
#> GSM615918     4  0.1493     0.6994 0.000 0.000 0.004 0.936 0.056 0.004
#> GSM615927     4  0.3187     0.4878 0.000 0.004 0.000 0.796 0.188 0.012
#> GSM615929     4  0.5878     0.6023 0.008 0.272 0.040 0.588 0.092 0.000
#> GSM615931     5  0.6383     0.9452 0.000 0.016 0.000 0.268 0.420 0.296
#> GSM615937     6  0.0547     0.5649 0.000 0.000 0.000 0.020 0.000 0.980
#> GSM615938     2  0.4981     0.6351 0.004 0.668 0.000 0.004 0.204 0.120
#> GSM615940     2  0.3314     0.7181 0.004 0.820 0.048 0.000 0.128 0.000
#> GSM615946     2  0.1659     0.7543 0.004 0.940 0.012 0.004 0.036 0.004
#> GSM615952     3  0.1367     0.9234 0.000 0.012 0.944 0.000 0.044 0.000
#> GSM615953     2  0.3571     0.7326 0.000 0.788 0.008 0.008 0.180 0.016
#> GSM615955     3  0.1003     0.9309 0.016 0.000 0.964 0.000 0.020 0.000
#> GSM721722     3  0.1003     0.9309 0.016 0.000 0.964 0.000 0.020 0.000
#> GSM721723     6  0.4893     0.5909 0.028 0.060 0.004 0.000 0.216 0.692
#> GSM721724     2  0.1938     0.7453 0.004 0.920 0.036 0.000 0.040 0.000
#> GSM615917     4  0.1082     0.7044 0.000 0.000 0.004 0.956 0.040 0.000
#> GSM615920     4  0.4507     0.5853 0.000 0.012 0.236 0.696 0.056 0.000
#> GSM615923     6  0.5323     0.1278 0.004 0.048 0.000 0.416 0.020 0.512
#> GSM615928     4  0.4223     0.7309 0.008 0.128 0.000 0.772 0.080 0.012
#> GSM615934     3  0.4364     0.7072 0.004 0.156 0.752 0.016 0.072 0.000
#> GSM615950     6  0.0547     0.5649 0.000 0.000 0.000 0.020 0.000 0.980
#> GSM615954     6  0.4526    -0.0919 0.000 0.000 0.000 0.116 0.184 0.700
#> GSM615956     2  0.2392     0.7577 0.000 0.896 0.032 0.004 0.064 0.004
#> GSM615958     1  0.1007     0.9887 0.956 0.000 0.044 0.000 0.000 0.000
#> GSM615924     4  0.2095     0.7464 0.000 0.076 0.004 0.904 0.016 0.000
#> GSM615930     5  0.6381     0.9621 0.000 0.016 0.000 0.264 0.420 0.300
#> GSM615932     2  0.5152     0.6302 0.004 0.640 0.000 0.004 0.232 0.120
#> GSM615935     2  0.5388     0.6294 0.004 0.592 0.000 0.004 0.280 0.120
#> GSM615936     2  0.3546     0.7110 0.004 0.808 0.076 0.000 0.112 0.000
#> GSM615942     3  0.0909     0.9341 0.000 0.012 0.968 0.000 0.020 0.000
#> GSM615943     5  0.6296     0.9090 0.000 0.016 0.000 0.216 0.424 0.344
#> GSM615949     2  0.5788     0.4605 0.004 0.584 0.252 0.020 0.140 0.000
#> GSM615957     2  0.6879     0.3474 0.028 0.420 0.016 0.000 0.300 0.236
#> GSM721720     6  0.4893     0.5909 0.028 0.060 0.004 0.000 0.216 0.692
#> GSM721721     4  0.5221     0.6892 0.008 0.152 0.000 0.704 0.080 0.056
#> GSM615959     1  0.1633     0.9887 0.932 0.000 0.044 0.000 0.024 0.000
#> GSM615960     1  0.1007     0.9887 0.956 0.000 0.044 0.000 0.000 0.000
#> GSM615961     1  0.1633     0.9887 0.932 0.000 0.044 0.000 0.024 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n age(p) gender(p) tissue(p) k
#> MAD:kmeans 50 0.8044     0.576  8.89e-03 2
#> MAD:kmeans 33 0.0904     0.246  6.83e-08 3
#> MAD:kmeans 46 0.0430     0.393  5.67e-10 4
#> MAD:kmeans 39 0.0408     0.568  6.97e-08 5
#> MAD:kmeans 44 0.1118     0.457  2.32e-08 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16230 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.924           0.911       0.968         0.5091 0.491   0.491
#> 3 3 0.779           0.894       0.935         0.3315 0.712   0.475
#> 4 4 0.625           0.549       0.774         0.1169 0.936   0.804
#> 5 5 0.624           0.521       0.725         0.0636 0.871   0.560
#> 6 6 0.636           0.461       0.679         0.0413 0.906   0.580

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM615919     2  0.0000     0.9704 0.000 1.000
#> GSM615921     2  0.0000     0.9704 0.000 1.000
#> GSM615922     1  0.0000     0.9571 1.000 0.000
#> GSM615925     2  0.0376     0.9674 0.004 0.996
#> GSM615926     1  0.0000     0.9571 1.000 0.000
#> GSM615933     2  0.0000     0.9704 0.000 1.000
#> GSM615939     1  0.0376     0.9555 0.996 0.004
#> GSM615941     1  0.0000     0.9571 1.000 0.000
#> GSM615944     1  0.0000     0.9571 1.000 0.000
#> GSM615945     2  0.0000     0.9704 0.000 1.000
#> GSM615947     1  0.4690     0.8623 0.900 0.100
#> GSM615948     1  0.0000     0.9571 1.000 0.000
#> GSM615951     1  0.0000     0.9571 1.000 0.000
#> GSM615918     2  0.0376     0.9674 0.004 0.996
#> GSM615927     2  0.0000     0.9704 0.000 1.000
#> GSM615929     1  0.0938     0.9487 0.988 0.012
#> GSM615931     2  0.0000     0.9704 0.000 1.000
#> GSM615937     2  0.0000     0.9704 0.000 1.000
#> GSM615938     2  0.0000     0.9704 0.000 1.000
#> GSM615940     1  0.0376     0.9555 0.996 0.004
#> GSM615946     2  0.0000     0.9704 0.000 1.000
#> GSM615952     1  0.0000     0.9571 1.000 0.000
#> GSM615953     2  0.0000     0.9704 0.000 1.000
#> GSM615955     1  0.0000     0.9571 1.000 0.000
#> GSM721722     1  0.0000     0.9571 1.000 0.000
#> GSM721723     2  0.0000     0.9704 0.000 1.000
#> GSM721724     1  0.0376     0.9555 0.996 0.004
#> GSM615917     2  0.0376     0.9674 0.004 0.996
#> GSM615920     1  0.9909     0.1757 0.556 0.444
#> GSM615923     2  0.0000     0.9704 0.000 1.000
#> GSM615928     2  0.0000     0.9704 0.000 1.000
#> GSM615934     1  0.0000     0.9571 1.000 0.000
#> GSM615950     2  0.0000     0.9704 0.000 1.000
#> GSM615954     2  0.0000     0.9704 0.000 1.000
#> GSM615956     1  0.9358     0.4395 0.648 0.352
#> GSM615958     1  0.0000     0.9571 1.000 0.000
#> GSM615924     2  0.0000     0.9704 0.000 1.000
#> GSM615930     2  0.0000     0.9704 0.000 1.000
#> GSM615932     2  0.0000     0.9704 0.000 1.000
#> GSM615935     2  0.0000     0.9704 0.000 1.000
#> GSM615936     1  0.0376     0.9555 0.996 0.004
#> GSM615942     1  0.0000     0.9571 1.000 0.000
#> GSM615943     2  0.0000     0.9704 0.000 1.000
#> GSM615949     1  0.0376     0.9555 0.996 0.004
#> GSM615957     2  0.9996    -0.0226 0.488 0.512
#> GSM721720     2  0.0000     0.9704 0.000 1.000
#> GSM721721     2  0.6973     0.7444 0.188 0.812
#> GSM615959     1  0.0000     0.9571 1.000 0.000
#> GSM615960     1  0.0000     0.9571 1.000 0.000
#> GSM615961     1  0.0000     0.9571 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM615919     1  0.6280      0.316 0.540 0.460 0.000
#> GSM615921     2  0.4504      0.850 0.196 0.804 0.000
#> GSM615922     3  0.0000      0.985 0.000 0.000 1.000
#> GSM615925     1  0.1643      0.915 0.956 0.044 0.000
#> GSM615926     3  0.0000      0.985 0.000 0.000 1.000
#> GSM615933     1  0.0747      0.925 0.984 0.016 0.000
#> GSM615939     2  0.0000      0.866 0.000 1.000 0.000
#> GSM615941     3  0.0237      0.983 0.000 0.004 0.996
#> GSM615944     3  0.0000      0.985 0.000 0.000 1.000
#> GSM615945     1  0.0000      0.928 1.000 0.000 0.000
#> GSM615947     2  0.1643      0.871 0.044 0.956 0.000
#> GSM615948     3  0.0424      0.980 0.000 0.008 0.992
#> GSM615951     3  0.0000      0.985 0.000 0.000 1.000
#> GSM615918     1  0.1643      0.915 0.956 0.044 0.000
#> GSM615927     1  0.0000      0.928 1.000 0.000 0.000
#> GSM615929     2  0.6372      0.683 0.068 0.756 0.176
#> GSM615931     1  0.0000      0.928 1.000 0.000 0.000
#> GSM615937     1  0.0000      0.928 1.000 0.000 0.000
#> GSM615938     2  0.4178      0.865 0.172 0.828 0.000
#> GSM615940     2  0.0000      0.866 0.000 1.000 0.000
#> GSM615946     2  0.0000      0.866 0.000 1.000 0.000
#> GSM615952     3  0.0237      0.983 0.000 0.004 0.996
#> GSM615953     2  0.4178      0.865 0.172 0.828 0.000
#> GSM615955     3  0.0000      0.985 0.000 0.000 1.000
#> GSM721722     3  0.0000      0.985 0.000 0.000 1.000
#> GSM721723     2  0.4346      0.858 0.184 0.816 0.000
#> GSM721724     2  0.0000      0.866 0.000 1.000 0.000
#> GSM615917     1  0.1643      0.915 0.956 0.044 0.000
#> GSM615920     3  0.2165      0.924 0.064 0.000 0.936
#> GSM615923     1  0.0000      0.928 1.000 0.000 0.000
#> GSM615928     1  0.4178      0.814 0.828 0.172 0.000
#> GSM615934     3  0.3686      0.846 0.000 0.140 0.860
#> GSM615950     1  0.0000      0.928 1.000 0.000 0.000
#> GSM615954     1  0.0000      0.928 1.000 0.000 0.000
#> GSM615956     2  0.0000      0.866 0.000 1.000 0.000
#> GSM615958     3  0.0000      0.985 0.000 0.000 1.000
#> GSM615924     1  0.3412      0.858 0.876 0.124 0.000
#> GSM615930     1  0.0000      0.928 1.000 0.000 0.000
#> GSM615932     2  0.4121      0.866 0.168 0.832 0.000
#> GSM615935     2  0.4121      0.866 0.168 0.832 0.000
#> GSM615936     2  0.2066      0.855 0.000 0.940 0.060
#> GSM615942     3  0.0237      0.983 0.000 0.004 0.996
#> GSM615943     1  0.0000      0.928 1.000 0.000 0.000
#> GSM615949     2  0.3941      0.755 0.000 0.844 0.156
#> GSM615957     2  0.4121      0.866 0.168 0.832 0.000
#> GSM721720     2  0.4931      0.813 0.232 0.768 0.000
#> GSM721721     1  0.4178      0.814 0.828 0.172 0.000
#> GSM615959     3  0.0000      0.985 0.000 0.000 1.000
#> GSM615960     3  0.0000      0.985 0.000 0.000 1.000
#> GSM615961     3  0.0000      0.985 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM615919     1  0.5434      0.496 0.740 0.128 0.000 0.132
#> GSM615921     2  0.5184      0.295 0.304 0.672 0.000 0.024
#> GSM615922     3  0.3978      0.810 0.192 0.012 0.796 0.000
#> GSM615925     4  0.4907      0.315 0.420 0.000 0.000 0.580
#> GSM615926     3  0.1211      0.856 0.040 0.000 0.960 0.000
#> GSM615933     4  0.1004      0.634 0.024 0.004 0.000 0.972
#> GSM615939     2  0.4605      0.458 0.336 0.664 0.000 0.000
#> GSM615941     3  0.4907      0.796 0.176 0.060 0.764 0.000
#> GSM615944     3  0.0592      0.858 0.016 0.000 0.984 0.000
#> GSM615945     4  0.0376      0.638 0.004 0.004 0.000 0.992
#> GSM615947     2  0.2469      0.593 0.108 0.892 0.000 0.000
#> GSM615948     3  0.5356      0.772 0.200 0.072 0.728 0.000
#> GSM615951     3  0.3966      0.829 0.088 0.072 0.840 0.000
#> GSM615918     4  0.4925      0.307 0.428 0.000 0.000 0.572
#> GSM615927     4  0.4817      0.352 0.388 0.000 0.000 0.612
#> GSM615929     1  0.2627      0.531 0.920 0.020 0.024 0.036
#> GSM615931     4  0.0469      0.637 0.012 0.000 0.000 0.988
#> GSM615937     4  0.5446      0.445 0.044 0.276 0.000 0.680
#> GSM615938     2  0.3806      0.563 0.020 0.824 0.000 0.156
#> GSM615940     2  0.5161      0.251 0.476 0.520 0.004 0.000
#> GSM615946     2  0.4428      0.508 0.276 0.720 0.000 0.004
#> GSM615952     3  0.4168      0.821 0.080 0.092 0.828 0.000
#> GSM615953     2  0.2611      0.608 0.008 0.896 0.000 0.096
#> GSM615955     3  0.0336      0.857 0.008 0.000 0.992 0.000
#> GSM721722     3  0.0707      0.858 0.020 0.000 0.980 0.000
#> GSM721723     2  0.6083      0.263 0.056 0.584 0.000 0.360
#> GSM721724     2  0.4661      0.446 0.348 0.652 0.000 0.000
#> GSM615917     4  0.4925      0.307 0.428 0.000 0.000 0.572
#> GSM615920     3  0.5062      0.481 0.284 0.000 0.692 0.024
#> GSM615923     4  0.5267      0.560 0.184 0.076 0.000 0.740
#> GSM615928     1  0.4957      0.274 0.668 0.012 0.000 0.320
#> GSM615934     3  0.5888      0.470 0.424 0.036 0.540 0.000
#> GSM615950     4  0.5471      0.455 0.048 0.268 0.000 0.684
#> GSM615954     4  0.4418      0.537 0.032 0.184 0.000 0.784
#> GSM615956     2  0.4222      0.506 0.272 0.728 0.000 0.000
#> GSM615958     3  0.0336      0.854 0.008 0.000 0.992 0.000
#> GSM615924     4  0.4972      0.242 0.456 0.000 0.000 0.544
#> GSM615930     4  0.0000      0.637 0.000 0.000 0.000 1.000
#> GSM615932     2  0.2918      0.594 0.008 0.876 0.000 0.116
#> GSM615935     2  0.1890      0.615 0.008 0.936 0.000 0.056
#> GSM615936     2  0.5888      0.283 0.424 0.540 0.036 0.000
#> GSM615942     3  0.5747      0.752 0.196 0.100 0.704 0.000
#> GSM615943     4  0.2011      0.613 0.000 0.080 0.000 0.920
#> GSM615949     1  0.5570     -0.310 0.540 0.440 0.020 0.000
#> GSM615957     2  0.0927      0.613 0.008 0.976 0.000 0.016
#> GSM721720     2  0.6214      0.155 0.056 0.536 0.000 0.408
#> GSM721721     1  0.4318      0.466 0.776 0.012 0.004 0.208
#> GSM615959     3  0.0336      0.854 0.008 0.000 0.992 0.000
#> GSM615960     3  0.0336      0.854 0.008 0.000 0.992 0.000
#> GSM615961     3  0.0336      0.854 0.008 0.000 0.992 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM615919     4  0.2418     0.6179 0.000 0.044 0.020 0.912 0.024
#> GSM615921     2  0.4493     0.5404 0.000 0.700 0.012 0.272 0.016
#> GSM615922     3  0.4118     0.3275 0.336 0.000 0.660 0.004 0.000
#> GSM615925     4  0.4390     0.5808 0.000 0.000 0.004 0.568 0.428
#> GSM615926     1  0.3741     0.6314 0.732 0.000 0.264 0.004 0.000
#> GSM615933     5  0.2078     0.6135 0.000 0.036 0.004 0.036 0.924
#> GSM615939     2  0.5930     0.4993 0.000 0.596 0.196 0.208 0.000
#> GSM615941     3  0.3857     0.3859 0.312 0.000 0.688 0.000 0.000
#> GSM615944     1  0.3661     0.6346 0.724 0.000 0.276 0.000 0.000
#> GSM615945     5  0.0671     0.6514 0.000 0.004 0.000 0.016 0.980
#> GSM615947     2  0.3752     0.6490 0.000 0.812 0.124 0.064 0.000
#> GSM615948     3  0.4070     0.4716 0.256 0.012 0.728 0.004 0.000
#> GSM615951     1  0.5220     0.3023 0.516 0.044 0.440 0.000 0.000
#> GSM615918     4  0.4397     0.5743 0.000 0.000 0.004 0.564 0.432
#> GSM615927     5  0.4341    -0.3380 0.000 0.000 0.004 0.404 0.592
#> GSM615929     4  0.5366     0.4451 0.008 0.044 0.236 0.688 0.024
#> GSM615931     5  0.1059     0.6437 0.000 0.004 0.008 0.020 0.968
#> GSM615937     5  0.6780     0.4738 0.000 0.248 0.064 0.116 0.572
#> GSM615938     2  0.2721     0.6820 0.000 0.892 0.028 0.012 0.068
#> GSM615940     3  0.6284     0.1022 0.000 0.288 0.524 0.188 0.000
#> GSM615946     2  0.5246     0.5876 0.000 0.692 0.124 0.180 0.004
#> GSM615952     1  0.5594     0.2724 0.492 0.060 0.444 0.004 0.000
#> GSM615953     2  0.4121     0.6763 0.000 0.812 0.088 0.020 0.080
#> GSM615955     1  0.2852     0.7091 0.828 0.000 0.172 0.000 0.000
#> GSM721722     1  0.3242     0.6915 0.784 0.000 0.216 0.000 0.000
#> GSM721723     2  0.7077     0.2763 0.000 0.560 0.084 0.140 0.216
#> GSM721724     2  0.6132     0.4660 0.000 0.564 0.224 0.212 0.000
#> GSM615917     4  0.4350     0.5989 0.000 0.000 0.004 0.588 0.408
#> GSM615920     1  0.4605     0.5159 0.732 0.000 0.040 0.216 0.012
#> GSM615923     5  0.7017     0.2374 0.000 0.108 0.056 0.392 0.444
#> GSM615928     4  0.3723     0.6593 0.000 0.000 0.044 0.804 0.152
#> GSM615934     3  0.5045     0.5102 0.172 0.000 0.712 0.112 0.004
#> GSM615950     5  0.6553     0.5002 0.000 0.232 0.060 0.108 0.600
#> GSM615954     5  0.5070     0.6224 0.004 0.132 0.052 0.056 0.756
#> GSM615956     2  0.5074     0.5966 0.000 0.700 0.132 0.168 0.000
#> GSM615958     1  0.0000     0.7322 1.000 0.000 0.000 0.000 0.000
#> GSM615924     4  0.4232     0.6463 0.000 0.000 0.012 0.676 0.312
#> GSM615930     5  0.0566     0.6530 0.000 0.004 0.000 0.012 0.984
#> GSM615932     2  0.1991     0.6917 0.000 0.916 0.004 0.004 0.076
#> GSM615935     2  0.2879     0.6779 0.000 0.868 0.032 0.000 0.100
#> GSM615936     3  0.6341     0.0982 0.020 0.376 0.520 0.076 0.008
#> GSM615942     3  0.3970     0.4763 0.236 0.020 0.744 0.000 0.000
#> GSM615943     5  0.2079     0.6613 0.000 0.064 0.020 0.000 0.916
#> GSM615949     3  0.4916     0.4760 0.000 0.124 0.716 0.160 0.000
#> GSM615957     2  0.2824     0.6795 0.000 0.888 0.068 0.028 0.016
#> GSM721720     2  0.7494     0.0320 0.000 0.464 0.084 0.144 0.308
#> GSM721721     4  0.2881     0.6245 0.004 0.008 0.060 0.888 0.040
#> GSM615959     1  0.0000     0.7322 1.000 0.000 0.000 0.000 0.000
#> GSM615960     1  0.0000     0.7322 1.000 0.000 0.000 0.000 0.000
#> GSM615961     1  0.0000     0.7322 1.000 0.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM615919     4   0.335     0.6205 0.004 0.124 0.004 0.824 0.000 0.044
#> GSM615921     2   0.644     0.1559 0.000 0.412 0.008 0.212 0.012 0.356
#> GSM615922     3   0.424     0.6011 0.180 0.000 0.752 0.012 0.008 0.048
#> GSM615925     4   0.339     0.5609 0.000 0.000 0.000 0.704 0.296 0.000
#> GSM615926     1   0.516     0.4414 0.604 0.000 0.324 0.020 0.008 0.044
#> GSM615933     5   0.265     0.6953 0.000 0.052 0.000 0.068 0.876 0.004
#> GSM615939     2   0.261     0.5702 0.000 0.872 0.080 0.048 0.000 0.000
#> GSM615941     3   0.342     0.6197 0.180 0.012 0.792 0.000 0.000 0.016
#> GSM615944     1   0.458     0.4770 0.616 0.000 0.344 0.004 0.004 0.032
#> GSM615945     5   0.079     0.7274 0.000 0.000 0.000 0.032 0.968 0.000
#> GSM615947     2   0.348     0.5557 0.000 0.808 0.044 0.008 0.000 0.140
#> GSM615948     3   0.348     0.6652 0.112 0.028 0.828 0.004 0.000 0.028
#> GSM615951     1   0.644    -0.0202 0.424 0.032 0.396 0.008 0.000 0.140
#> GSM615918     4   0.362     0.5388 0.000 0.000 0.000 0.680 0.316 0.004
#> GSM615927     5   0.399    -0.2246 0.000 0.000 0.000 0.468 0.528 0.004
#> GSM615929     4   0.617     0.4665 0.000 0.160 0.164 0.612 0.020 0.044
#> GSM615931     5   0.191     0.7246 0.000 0.000 0.016 0.056 0.920 0.008
#> GSM615937     6   0.456     0.4926 0.000 0.000 0.000 0.040 0.392 0.568
#> GSM615938     2   0.558     0.2807 0.000 0.556 0.016 0.004 0.092 0.332
#> GSM615940     2   0.674     0.2464 0.000 0.472 0.328 0.088 0.008 0.104
#> GSM615946     2   0.302     0.5740 0.000 0.868 0.024 0.048 0.004 0.056
#> GSM615952     3   0.682    -0.0439 0.344 0.040 0.408 0.008 0.000 0.200
#> GSM615953     2   0.663     0.3180 0.000 0.464 0.036 0.020 0.132 0.348
#> GSM615955     1   0.357     0.6150 0.768 0.000 0.208 0.004 0.004 0.016
#> GSM721722     1   0.393     0.5196 0.656 0.000 0.332 0.000 0.004 0.008
#> GSM721723     6   0.494     0.5908 0.000 0.092 0.000 0.040 0.160 0.708
#> GSM721724     2   0.477     0.5380 0.000 0.720 0.164 0.080 0.000 0.036
#> GSM615917     4   0.340     0.5838 0.000 0.000 0.000 0.724 0.272 0.004
#> GSM615920     1   0.532     0.5170 0.712 0.012 0.064 0.160 0.020 0.032
#> GSM615923     4   0.629    -0.1494 0.000 0.000 0.008 0.392 0.280 0.320
#> GSM615928     4   0.392     0.6407 0.000 0.032 0.020 0.820 0.064 0.064
#> GSM615934     3   0.495     0.6105 0.076 0.040 0.768 0.048 0.012 0.056
#> GSM615950     6   0.459     0.3702 0.000 0.000 0.000 0.036 0.476 0.488
#> GSM615954     5   0.454     0.0822 0.004 0.012 0.004 0.016 0.640 0.324
#> GSM615956     2   0.390     0.5531 0.000 0.780 0.020 0.044 0.000 0.156
#> GSM615958     1   0.000     0.7015 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM615924     4   0.353     0.6394 0.000 0.032 0.000 0.792 0.168 0.008
#> GSM615930     5   0.172     0.7276 0.000 0.000 0.000 0.060 0.924 0.016
#> GSM615932     2   0.547     0.3452 0.000 0.560 0.012 0.008 0.076 0.344
#> GSM615935     2   0.624     0.3718 0.000 0.508 0.028 0.016 0.108 0.340
#> GSM615936     2   0.708     0.1475 0.028 0.420 0.340 0.032 0.004 0.176
#> GSM615942     3   0.378     0.6354 0.140 0.012 0.796 0.004 0.000 0.048
#> GSM615943     5   0.170     0.6215 0.000 0.004 0.000 0.000 0.916 0.080
#> GSM615949     3   0.618     0.2807 0.000 0.228 0.592 0.080 0.008 0.092
#> GSM615957     6   0.439    -0.2634 0.000 0.364 0.020 0.008 0.000 0.608
#> GSM721720     6   0.499     0.6303 0.000 0.064 0.000 0.040 0.212 0.684
#> GSM721721     4   0.394     0.5970 0.000 0.012 0.052 0.800 0.016 0.120
#> GSM615959     1   0.000     0.7015 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM615960     1   0.000     0.7015 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM615961     1   0.000     0.7015 1.000 0.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n age(p) gender(p) tissue(p) k
#> MAD:skmeans 47  0.610     0.935   0.08816 2
#> MAD:skmeans 49  0.654     0.129   0.01120 3
#> MAD:skmeans 30  0.618     0.448   0.15275 4
#> MAD:skmeans 33  0.871     0.668   0.01635 5
#> MAD:skmeans 31  0.608     0.347   0.00761 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16230 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.251           0.767       0.818         0.2897 0.850   0.850
#> 3 3 0.562           0.799       0.900         1.0134 0.571   0.496
#> 4 4 0.737           0.784       0.901         0.2276 0.718   0.426
#> 5 5 0.691           0.641       0.849         0.0628 0.916   0.720
#> 6 6 0.724           0.646       0.824         0.0531 0.939   0.753

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM615919     2  0.8555      0.782 0.280 0.720
#> GSM615921     2  0.9635      0.757 0.388 0.612
#> GSM615922     2  0.0000      0.721 0.000 1.000
#> GSM615925     2  0.8327      0.746 0.264 0.736
#> GSM615926     2  0.0000      0.721 0.000 1.000
#> GSM615933     2  0.9635      0.757 0.388 0.612
#> GSM615939     2  0.5059      0.758 0.112 0.888
#> GSM615941     2  0.0000      0.721 0.000 1.000
#> GSM615944     2  0.1184      0.705 0.016 0.984
#> GSM615945     2  0.9608      0.758 0.384 0.616
#> GSM615947     2  0.5408      0.760 0.124 0.876
#> GSM615948     2  0.0000      0.721 0.000 1.000
#> GSM615951     2  0.0000      0.721 0.000 1.000
#> GSM615918     2  0.7950      0.750 0.240 0.760
#> GSM615927     2  0.9608      0.758 0.384 0.616
#> GSM615929     2  0.0000      0.721 0.000 1.000
#> GSM615931     2  0.9209      0.760 0.336 0.664
#> GSM615937     2  0.9608      0.758 0.384 0.616
#> GSM615938     2  0.9635      0.757 0.388 0.612
#> GSM615940     2  0.0672      0.726 0.008 0.992
#> GSM615946     2  0.5408      0.760 0.124 0.876
#> GSM615952     2  0.5408      0.760 0.124 0.876
#> GSM615953     2  0.6438      0.768 0.164 0.836
#> GSM615955     2  0.1843      0.690 0.028 0.972
#> GSM721722     2  0.1843      0.690 0.028 0.972
#> GSM721723     2  0.8955      0.773 0.312 0.688
#> GSM721724     2  0.5408      0.760 0.124 0.876
#> GSM615917     2  0.9608      0.758 0.384 0.616
#> GSM615920     2  0.0376      0.723 0.004 0.996
#> GSM615923     2  0.8267      0.747 0.260 0.740
#> GSM615928     2  0.4815      0.749 0.104 0.896
#> GSM615934     2  0.0000      0.721 0.000 1.000
#> GSM615950     2  0.9608      0.758 0.384 0.616
#> GSM615954     2  0.9608      0.759 0.384 0.616
#> GSM615956     2  0.5408      0.760 0.124 0.876
#> GSM615958     1  0.9635      1.000 0.612 0.388
#> GSM615924     2  0.8443      0.749 0.272 0.728
#> GSM615930     2  0.9635      0.757 0.388 0.612
#> GSM615932     2  0.9635      0.757 0.388 0.612
#> GSM615935     2  0.9635      0.757 0.388 0.612
#> GSM615936     2  0.5408      0.761 0.124 0.876
#> GSM615942     2  0.0000      0.721 0.000 1.000
#> GSM615943     2  0.9635      0.757 0.388 0.612
#> GSM615949     2  0.0000      0.721 0.000 1.000
#> GSM615957     2  0.8081      0.778 0.248 0.752
#> GSM721720     2  0.8443      0.778 0.272 0.728
#> GSM721721     2  0.7299      0.755 0.204 0.796
#> GSM615959     1  0.9635      1.000 0.612 0.388
#> GSM615960     1  0.9635      1.000 0.612 0.388
#> GSM615961     1  0.9635      1.000 0.612 0.388

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM615919     3  0.6299     -0.141 0.000 0.476 0.524
#> GSM615921     2  0.1860      0.827 0.000 0.948 0.052
#> GSM615922     3  0.0000      0.894 0.000 0.000 1.000
#> GSM615925     3  0.4931      0.703 0.000 0.232 0.768
#> GSM615926     3  0.0000      0.894 0.000 0.000 1.000
#> GSM615933     2  0.0000      0.831 0.000 1.000 0.000
#> GSM615939     2  0.5138      0.738 0.000 0.748 0.252
#> GSM615941     3  0.0000      0.894 0.000 0.000 1.000
#> GSM615944     3  0.3482      0.811 0.128 0.000 0.872
#> GSM615945     2  0.1753      0.832 0.000 0.952 0.048
#> GSM615947     2  0.5810      0.639 0.000 0.664 0.336
#> GSM615948     3  0.0000      0.894 0.000 0.000 1.000
#> GSM615951     3  0.0892      0.884 0.000 0.020 0.980
#> GSM615918     3  0.4178      0.774 0.000 0.172 0.828
#> GSM615927     2  0.1753      0.832 0.000 0.952 0.048
#> GSM615929     3  0.0000      0.894 0.000 0.000 1.000
#> GSM615931     2  0.5859      0.440 0.000 0.656 0.344
#> GSM615937     2  0.1753      0.832 0.000 0.952 0.048
#> GSM615938     2  0.0000      0.831 0.000 1.000 0.000
#> GSM615940     3  0.0592      0.890 0.000 0.012 0.988
#> GSM615946     2  0.4974      0.748 0.000 0.764 0.236
#> GSM615952     2  0.5178      0.742 0.000 0.744 0.256
#> GSM615953     2  0.0747      0.833 0.000 0.984 0.016
#> GSM615955     3  0.3941      0.784 0.156 0.000 0.844
#> GSM721722     3  0.2356      0.857 0.072 0.000 0.928
#> GSM721723     2  0.0747      0.833 0.000 0.984 0.016
#> GSM721724     2  0.5327      0.721 0.000 0.728 0.272
#> GSM615917     2  0.3879      0.771 0.000 0.848 0.152
#> GSM615920     3  0.0237      0.893 0.000 0.004 0.996
#> GSM615923     3  0.4702      0.729 0.000 0.212 0.788
#> GSM615928     3  0.2066      0.869 0.000 0.060 0.940
#> GSM615934     3  0.0000      0.894 0.000 0.000 1.000
#> GSM615950     2  0.5760      0.495 0.000 0.672 0.328
#> GSM615954     2  0.0237      0.832 0.000 0.996 0.004
#> GSM615956     2  0.4974      0.748 0.000 0.764 0.236
#> GSM615958     1  0.0000      1.000 1.000 0.000 0.000
#> GSM615924     3  0.3619      0.821 0.000 0.136 0.864
#> GSM615930     2  0.1643      0.832 0.000 0.956 0.044
#> GSM615932     2  0.0000      0.831 0.000 1.000 0.000
#> GSM615935     2  0.0000      0.831 0.000 1.000 0.000
#> GSM615936     2  0.6079      0.577 0.000 0.612 0.388
#> GSM615942     3  0.0000      0.894 0.000 0.000 1.000
#> GSM615943     2  0.1289      0.834 0.000 0.968 0.032
#> GSM615949     3  0.0000      0.894 0.000 0.000 1.000
#> GSM615957     2  0.1289      0.832 0.000 0.968 0.032
#> GSM721720     2  0.4235      0.787 0.000 0.824 0.176
#> GSM721721     3  0.0747      0.889 0.000 0.016 0.984
#> GSM615959     1  0.0000      1.000 1.000 0.000 0.000
#> GSM615960     1  0.0000      1.000 1.000 0.000 0.000
#> GSM615961     1  0.0000      1.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM615919     2  0.6276      0.355 0.000 0.556 0.064 0.380
#> GSM615921     2  0.4981      0.224 0.000 0.536 0.000 0.464
#> GSM615922     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM615925     4  0.1302      0.803 0.000 0.000 0.044 0.956
#> GSM615926     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM615933     4  0.0000      0.813 0.000 0.000 0.000 1.000
#> GSM615939     2  0.1716      0.834 0.000 0.936 0.064 0.000
#> GSM615941     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM615944     3  0.1637      0.884 0.060 0.000 0.940 0.000
#> GSM615945     4  0.0000      0.813 0.000 0.000 0.000 1.000
#> GSM615947     2  0.1716      0.834 0.000 0.936 0.064 0.000
#> GSM615948     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM615951     3  0.0188      0.925 0.000 0.004 0.996 0.000
#> GSM615918     4  0.3688      0.683 0.000 0.000 0.208 0.792
#> GSM615927     4  0.0000      0.813 0.000 0.000 0.000 1.000
#> GSM615929     3  0.2281      0.850 0.000 0.096 0.904 0.000
#> GSM615931     4  0.5039      0.328 0.000 0.004 0.404 0.592
#> GSM615937     4  0.2844      0.784 0.000 0.048 0.052 0.900
#> GSM615938     2  0.1716      0.823 0.000 0.936 0.000 0.064
#> GSM615940     3  0.1867      0.881 0.000 0.072 0.928 0.000
#> GSM615946     2  0.1716      0.834 0.000 0.936 0.064 0.000
#> GSM615952     3  0.4961      0.119 0.000 0.448 0.552 0.000
#> GSM615953     2  0.1867      0.822 0.000 0.928 0.000 0.072
#> GSM615955     3  0.2973      0.814 0.144 0.000 0.856 0.000
#> GSM721722     3  0.0707      0.915 0.020 0.000 0.980 0.000
#> GSM721723     2  0.0188      0.822 0.000 0.996 0.000 0.004
#> GSM721724     2  0.1716      0.834 0.000 0.936 0.064 0.000
#> GSM615917     4  0.0000      0.813 0.000 0.000 0.000 1.000
#> GSM615920     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM615923     3  0.3545      0.752 0.000 0.008 0.828 0.164
#> GSM615928     4  0.5560      0.622 0.000 0.156 0.116 0.728
#> GSM615934     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM615950     4  0.5659      0.390 0.000 0.032 0.368 0.600
#> GSM615954     2  0.3764      0.704 0.000 0.784 0.000 0.216
#> GSM615956     2  0.1716      0.834 0.000 0.936 0.064 0.000
#> GSM615958     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM615924     4  0.5292      0.582 0.000 0.208 0.064 0.728
#> GSM615930     4  0.0188      0.812 0.000 0.004 0.000 0.996
#> GSM615932     2  0.4406      0.588 0.000 0.700 0.000 0.300
#> GSM615935     4  0.3400      0.658 0.000 0.180 0.000 0.820
#> GSM615936     3  0.1474      0.898 0.000 0.052 0.948 0.000
#> GSM615942     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM615943     4  0.0000      0.813 0.000 0.000 0.000 1.000
#> GSM615949     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM615957     2  0.0000      0.821 0.000 1.000 0.000 0.000
#> GSM721720     2  0.2149      0.777 0.000 0.912 0.088 0.000
#> GSM721721     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM615959     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM615960     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM615961     1  0.0000      1.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM615919     2  0.4403    0.24761 0.000 0.608 0.000 0.384 0.008
#> GSM615921     4  0.4980   -0.11646 0.000 0.484 0.000 0.488 0.028
#> GSM615922     3  0.0510    0.92292 0.000 0.016 0.984 0.000 0.000
#> GSM615925     4  0.0671    0.73203 0.000 0.000 0.016 0.980 0.004
#> GSM615926     3  0.0000    0.92341 0.000 0.000 1.000 0.000 0.000
#> GSM615933     4  0.0290    0.73654 0.000 0.008 0.000 0.992 0.000
#> GSM615939     2  0.3752    0.62162 0.000 0.708 0.000 0.000 0.292
#> GSM615941     3  0.0000    0.92341 0.000 0.000 1.000 0.000 0.000
#> GSM615944     3  0.0000    0.92341 0.000 0.000 1.000 0.000 0.000
#> GSM615945     4  0.0290    0.73654 0.000 0.008 0.000 0.992 0.000
#> GSM615947     2  0.3752    0.62162 0.000 0.708 0.000 0.000 0.292
#> GSM615948     3  0.0510    0.92292 0.000 0.016 0.984 0.000 0.000
#> GSM615951     3  0.0609    0.91211 0.000 0.020 0.980 0.000 0.000
#> GSM615918     4  0.3366    0.54100 0.000 0.000 0.212 0.784 0.004
#> GSM615927     4  0.0000    0.73557 0.000 0.000 0.000 1.000 0.000
#> GSM615929     3  0.2077    0.86317 0.000 0.084 0.908 0.008 0.000
#> GSM615931     4  0.6106    0.11138 0.000 0.204 0.228 0.568 0.000
#> GSM615937     5  0.6855    0.22297 0.000 0.248 0.004 0.364 0.384
#> GSM615938     2  0.4891    0.59773 0.000 0.640 0.000 0.044 0.316
#> GSM615940     3  0.2852    0.77891 0.000 0.172 0.828 0.000 0.000
#> GSM615946     2  0.3752    0.62162 0.000 0.708 0.000 0.000 0.292
#> GSM615952     2  0.4242   -0.07518 0.000 0.572 0.428 0.000 0.000
#> GSM615953     2  0.2233    0.43098 0.000 0.904 0.016 0.080 0.000
#> GSM615955     3  0.2179    0.84120 0.112 0.000 0.888 0.000 0.000
#> GSM721722     3  0.0000    0.92341 0.000 0.000 1.000 0.000 0.000
#> GSM721723     5  0.4138    0.46908 0.000 0.384 0.000 0.000 0.616
#> GSM721724     2  0.3752    0.62162 0.000 0.708 0.000 0.000 0.292
#> GSM615917     4  0.0162    0.73538 0.000 0.000 0.000 0.996 0.004
#> GSM615920     3  0.0000    0.92341 0.000 0.000 1.000 0.000 0.000
#> GSM615923     3  0.4499    0.66915 0.000 0.004 0.764 0.136 0.096
#> GSM615928     4  0.4177    0.59561 0.000 0.200 0.036 0.760 0.004
#> GSM615934     3  0.0510    0.92292 0.000 0.016 0.984 0.000 0.000
#> GSM615950     5  0.7668    0.31647 0.000 0.064 0.272 0.236 0.428
#> GSM615954     2  0.3814    0.19728 0.000 0.720 0.000 0.276 0.004
#> GSM615956     2  0.0510    0.47769 0.000 0.984 0.016 0.000 0.000
#> GSM615958     1  0.0000    1.00000 1.000 0.000 0.000 0.000 0.000
#> GSM615924     4  0.3461    0.59347 0.000 0.224 0.000 0.772 0.004
#> GSM615930     4  0.3812    0.58656 0.000 0.092 0.000 0.812 0.096
#> GSM615932     2  0.6776    0.35271 0.000 0.392 0.000 0.316 0.292
#> GSM615935     4  0.3752    0.35429 0.000 0.292 0.000 0.708 0.000
#> GSM615936     3  0.3949    0.48515 0.000 0.332 0.668 0.000 0.000
#> GSM615942     3  0.0162    0.92371 0.000 0.004 0.996 0.000 0.000
#> GSM615943     4  0.0290    0.73654 0.000 0.008 0.000 0.992 0.000
#> GSM615949     3  0.0510    0.92292 0.000 0.016 0.984 0.000 0.000
#> GSM615957     2  0.3857    0.00111 0.000 0.688 0.000 0.000 0.312
#> GSM721720     5  0.4086    0.54634 0.000 0.284 0.012 0.000 0.704
#> GSM721721     3  0.0510    0.92292 0.000 0.016 0.984 0.000 0.000
#> GSM615959     1  0.0000    1.00000 1.000 0.000 0.000 0.000 0.000
#> GSM615960     1  0.0000    1.00000 1.000 0.000 0.000 0.000 0.000
#> GSM615961     1  0.0000    1.00000 1.000 0.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM615919     2  0.4273     0.2458 0.000 0.596 0.000 0.380 0.000 0.024
#> GSM615921     4  0.5722     0.2771 0.000 0.336 0.012 0.560 0.056 0.036
#> GSM615922     3  0.0458     0.8963 0.000 0.016 0.984 0.000 0.000 0.000
#> GSM615925     4  0.0547     0.6868 0.000 0.000 0.000 0.980 0.000 0.020
#> GSM615926     3  0.0000     0.8967 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM615933     4  0.1501     0.6831 0.000 0.000 0.000 0.924 0.076 0.000
#> GSM615939     2  0.0000     0.7377 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM615941     3  0.0937     0.8842 0.000 0.000 0.960 0.000 0.000 0.040
#> GSM615944     3  0.0000     0.8967 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM615945     4  0.1610     0.6805 0.000 0.000 0.000 0.916 0.084 0.000
#> GSM615947     2  0.0260     0.7368 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM615948     3  0.0458     0.8963 0.000 0.016 0.984 0.000 0.000 0.000
#> GSM615951     3  0.3351     0.6483 0.000 0.000 0.712 0.000 0.000 0.288
#> GSM615918     4  0.3245     0.5543 0.000 0.004 0.184 0.796 0.000 0.016
#> GSM615927     4  0.1204     0.6877 0.000 0.000 0.000 0.944 0.056 0.000
#> GSM615929     3  0.2665     0.8282 0.000 0.104 0.868 0.016 0.000 0.012
#> GSM615931     4  0.6617     0.1834 0.000 0.000 0.196 0.516 0.076 0.212
#> GSM615937     5  0.3946     0.6282 0.000 0.000 0.004 0.152 0.768 0.076
#> GSM615938     2  0.2058     0.6914 0.000 0.908 0.000 0.000 0.056 0.036
#> GSM615940     3  0.4079     0.7314 0.000 0.136 0.752 0.000 0.000 0.112
#> GSM615946     2  0.0000     0.7377 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM615952     6  0.4244     0.5177 0.000 0.080 0.200 0.000 0.000 0.720
#> GSM615953     6  0.4482     0.3774 0.000 0.336 0.016 0.020 0.000 0.628
#> GSM615955     3  0.4145     0.6564 0.048 0.000 0.700 0.000 0.000 0.252
#> GSM721722     3  0.0000     0.8967 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM721723     6  0.3758     0.2914 0.000 0.008 0.000 0.000 0.324 0.668
#> GSM721724     2  0.0790     0.7284 0.000 0.968 0.000 0.000 0.000 0.032
#> GSM615917     4  0.0458     0.6870 0.000 0.000 0.000 0.984 0.000 0.016
#> GSM615920     3  0.0000     0.8967 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM615923     3  0.4900     0.6522 0.000 0.008 0.712 0.064 0.184 0.032
#> GSM615928     4  0.4179     0.5819 0.000 0.188 0.056 0.744 0.000 0.012
#> GSM615934     3  0.0458     0.8963 0.000 0.016 0.984 0.000 0.000 0.000
#> GSM615950     5  0.2491     0.6488 0.000 0.000 0.000 0.164 0.836 0.000
#> GSM615954     6  0.6658     0.3194 0.000 0.224 0.000 0.256 0.052 0.468
#> GSM615956     2  0.4246    -0.1711 0.000 0.532 0.016 0.000 0.000 0.452
#> GSM615958     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM615924     4  0.3769     0.5887 0.000 0.192 0.024 0.768 0.000 0.016
#> GSM615930     5  0.3672     0.4633 0.000 0.000 0.000 0.368 0.632 0.000
#> GSM615932     2  0.4239     0.4645 0.000 0.696 0.000 0.248 0.000 0.056
#> GSM615935     4  0.4594    -0.0365 0.000 0.000 0.000 0.484 0.036 0.480
#> GSM615936     6  0.4671     0.4100 0.000 0.068 0.304 0.000 0.000 0.628
#> GSM615942     3  0.1471     0.8688 0.000 0.004 0.932 0.000 0.000 0.064
#> GSM615943     4  0.1610     0.6805 0.000 0.000 0.000 0.916 0.084 0.000
#> GSM615949     3  0.0820     0.8939 0.000 0.016 0.972 0.000 0.000 0.012
#> GSM615957     6  0.4253     0.4611 0.000 0.108 0.000 0.000 0.160 0.732
#> GSM721720     5  0.3101     0.4401 0.000 0.000 0.000 0.000 0.756 0.244
#> GSM721721     3  0.1245     0.8866 0.000 0.016 0.952 0.000 0.000 0.032
#> GSM615959     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM615960     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM615961     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n age(p) gender(p) tissue(p) k
#> MAD:pam 50 0.0825     0.785  9.94e-10 2
#> MAD:pam 47 0.0813     0.310  6.22e-11 3
#> MAD:pam 45 0.1837     0.642  9.25e-10 4
#> MAD:pam 36 0.0303     0.672  2.89e-07 5
#> MAD:pam 37 0.0711     0.771  5.99e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16230 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.495           0.897       0.921         0.2221 0.850   0.850
#> 3 3 0.434           0.853       0.899         1.3480 0.650   0.588
#> 4 4 0.509           0.668       0.790         0.2597 0.791   0.594
#> 5 5 0.609           0.551       0.773         0.1253 0.840   0.589
#> 6 6 0.648           0.520       0.751         0.0666 0.863   0.584

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM615919     2  0.5629      0.905 0.132 0.868
#> GSM615921     2  0.0000      0.906 0.000 1.000
#> GSM615922     2  0.5842      0.902 0.140 0.860
#> GSM615925     2  0.0000      0.906 0.000 1.000
#> GSM615926     2  0.6247      0.892 0.156 0.844
#> GSM615933     2  0.0000      0.906 0.000 1.000
#> GSM615939     2  0.5737      0.904 0.136 0.864
#> GSM615941     2  0.5737      0.904 0.136 0.864
#> GSM615944     2  0.7602      0.832 0.220 0.780
#> GSM615945     2  0.0000      0.906 0.000 1.000
#> GSM615947     2  0.5178      0.907 0.116 0.884
#> GSM615948     2  0.5737      0.904 0.136 0.864
#> GSM615951     2  0.5842      0.902 0.140 0.860
#> GSM615918     2  0.0000      0.906 0.000 1.000
#> GSM615927     2  0.0000      0.906 0.000 1.000
#> GSM615929     2  0.5737      0.904 0.136 0.864
#> GSM615931     2  0.0000      0.906 0.000 1.000
#> GSM615937     2  0.1633      0.895 0.024 0.976
#> GSM615938     2  0.0000      0.906 0.000 1.000
#> GSM615940     2  0.5737      0.904 0.136 0.864
#> GSM615946     2  0.5737      0.904 0.136 0.864
#> GSM615952     2  0.5408      0.907 0.124 0.876
#> GSM615953     2  0.0000      0.906 0.000 1.000
#> GSM615955     2  0.9710      0.537 0.400 0.600
#> GSM721722     2  0.9358      0.636 0.352 0.648
#> GSM721723     2  0.1414      0.897 0.020 0.980
#> GSM721724     2  0.5737      0.904 0.136 0.864
#> GSM615917     2  0.0000      0.906 0.000 1.000
#> GSM615920     2  0.5629      0.905 0.132 0.868
#> GSM615923     2  0.0000      0.906 0.000 1.000
#> GSM615928     2  0.5519      0.906 0.128 0.872
#> GSM615934     2  0.5629      0.905 0.132 0.868
#> GSM615950     2  0.0000      0.906 0.000 1.000
#> GSM615954     2  0.1843      0.892 0.028 0.972
#> GSM615956     2  0.5737      0.904 0.136 0.864
#> GSM615958     1  0.0000      1.000 1.000 0.000
#> GSM615924     2  0.0000      0.906 0.000 1.000
#> GSM615930     2  0.0000      0.906 0.000 1.000
#> GSM615932     2  0.1184      0.899 0.016 0.984
#> GSM615935     2  0.0000      0.906 0.000 1.000
#> GSM615936     2  0.5519      0.906 0.128 0.872
#> GSM615942     2  0.5842      0.902 0.140 0.860
#> GSM615943     2  0.1414      0.897 0.020 0.980
#> GSM615949     2  0.5737      0.904 0.136 0.864
#> GSM615957     2  0.2043      0.890 0.032 0.968
#> GSM721720     2  0.0376      0.904 0.004 0.996
#> GSM721721     2  0.5629      0.905 0.132 0.868
#> GSM615959     1  0.0000      1.000 1.000 0.000
#> GSM615960     1  0.0000      1.000 1.000 0.000
#> GSM615961     1  0.0000      1.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM615919     3  0.1411      0.855 0.000 0.036 0.964
#> GSM615921     3  0.5098      0.721 0.000 0.248 0.752
#> GSM615922     3  0.0237      0.858 0.000 0.004 0.996
#> GSM615925     3  0.4062      0.798 0.000 0.164 0.836
#> GSM615926     3  0.3267      0.857 0.000 0.116 0.884
#> GSM615933     3  0.5098      0.710 0.000 0.248 0.752
#> GSM615939     3  0.0237      0.858 0.000 0.004 0.996
#> GSM615941     3  0.3192      0.859 0.000 0.112 0.888
#> GSM615944     3  0.5538      0.825 0.072 0.116 0.812
#> GSM615945     2  0.2448      0.885 0.000 0.924 0.076
#> GSM615947     3  0.3192      0.862 0.000 0.112 0.888
#> GSM615948     3  0.3192      0.859 0.000 0.112 0.888
#> GSM615951     3  0.3267      0.857 0.000 0.116 0.884
#> GSM615918     3  0.5178      0.781 0.000 0.256 0.744
#> GSM615927     3  0.5178      0.709 0.000 0.256 0.744
#> GSM615929     3  0.0000      0.857 0.000 0.000 1.000
#> GSM615931     3  0.6192      0.537 0.000 0.420 0.580
#> GSM615937     2  0.0892      0.927 0.000 0.980 0.020
#> GSM615938     2  0.1163      0.930 0.000 0.972 0.028
#> GSM615940     3  0.0237      0.858 0.000 0.004 0.996
#> GSM615946     3  0.1964      0.854 0.000 0.056 0.944
#> GSM615952     3  0.3551      0.852 0.000 0.132 0.868
#> GSM615953     2  0.4178      0.807 0.000 0.828 0.172
#> GSM615955     3  0.5538      0.825 0.072 0.116 0.812
#> GSM721722     3  0.5538      0.825 0.072 0.116 0.812
#> GSM721723     2  0.1411      0.927 0.000 0.964 0.036
#> GSM721724     3  0.0237      0.858 0.000 0.004 0.996
#> GSM615917     3  0.4178      0.792 0.000 0.172 0.828
#> GSM615920     3  0.4062      0.849 0.000 0.164 0.836
#> GSM615923     3  0.5785      0.694 0.000 0.332 0.668
#> GSM615928     3  0.2537      0.846 0.000 0.080 0.920
#> GSM615934     3  0.0237      0.858 0.000 0.004 0.996
#> GSM615950     2  0.0747      0.924 0.000 0.984 0.016
#> GSM615954     2  0.1031      0.926 0.000 0.976 0.024
#> GSM615956     3  0.3267      0.857 0.000 0.116 0.884
#> GSM615958     1  0.0000      1.000 1.000 0.000 0.000
#> GSM615924     3  0.4062      0.797 0.000 0.164 0.836
#> GSM615930     2  0.2356      0.889 0.000 0.928 0.072
#> GSM615932     2  0.1163      0.930 0.000 0.972 0.028
#> GSM615935     2  0.2356      0.905 0.000 0.928 0.072
#> GSM615936     3  0.3267      0.859 0.000 0.116 0.884
#> GSM615942     3  0.3192      0.859 0.000 0.112 0.888
#> GSM615943     2  0.0592      0.916 0.000 0.988 0.012
#> GSM615949     3  0.0237      0.858 0.000 0.004 0.996
#> GSM615957     2  0.4605      0.747 0.000 0.796 0.204
#> GSM721720     2  0.1163      0.930 0.000 0.972 0.028
#> GSM721721     3  0.1411      0.855 0.000 0.036 0.964
#> GSM615959     1  0.0000      1.000 1.000 0.000 0.000
#> GSM615960     1  0.0000      1.000 1.000 0.000 0.000
#> GSM615961     1  0.0000      1.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette p1    p2    p3    p4
#> GSM615919     3  0.4996     0.4576  0 0.000 0.516 0.484
#> GSM615921     3  0.7498     0.4237  0 0.216 0.492 0.292
#> GSM615922     3  0.3688     0.8225  0 0.000 0.792 0.208
#> GSM615925     4  0.2216     0.6933  0 0.000 0.092 0.908
#> GSM615926     3  0.0817     0.7634  0 0.000 0.976 0.024
#> GSM615933     4  0.6401     0.5951  0 0.172 0.176 0.652
#> GSM615939     3  0.3486     0.8325  0 0.000 0.812 0.188
#> GSM615941     3  0.0336     0.7699  0 0.000 0.992 0.008
#> GSM615944     3  0.0921     0.7546  0 0.000 0.972 0.028
#> GSM615945     4  0.5383    -0.0852  0 0.452 0.012 0.536
#> GSM615947     3  0.3528     0.8314  0 0.000 0.808 0.192
#> GSM615948     3  0.3486     0.8325  0 0.000 0.812 0.188
#> GSM615951     3  0.0000     0.7650  0 0.000 1.000 0.000
#> GSM615918     4  0.2216     0.6933  0 0.000 0.092 0.908
#> GSM615927     4  0.2868     0.6767  0 0.000 0.136 0.864
#> GSM615929     3  0.4907     0.5815  0 0.000 0.580 0.420
#> GSM615931     4  0.6906     0.5134  0 0.264 0.156 0.580
#> GSM615937     2  0.3172     0.6719  0 0.840 0.000 0.160
#> GSM615938     2  0.0592     0.7424  0 0.984 0.016 0.000
#> GSM615940     3  0.3486     0.8325  0 0.000 0.812 0.188
#> GSM615946     3  0.3486     0.8325  0 0.000 0.812 0.188
#> GSM615952     3  0.0188     0.7640  0 0.000 0.996 0.004
#> GSM615953     2  0.5080     0.2415  0 0.576 0.420 0.004
#> GSM615955     3  0.0921     0.7546  0 0.000 0.972 0.028
#> GSM721722     3  0.1211     0.7526  0 0.000 0.960 0.040
#> GSM721723     2  0.0469     0.7426  0 0.988 0.012 0.000
#> GSM721724     3  0.3486     0.8325  0 0.000 0.812 0.188
#> GSM615917     4  0.2216     0.6933  0 0.000 0.092 0.908
#> GSM615920     3  0.2589     0.7199  0 0.000 0.884 0.116
#> GSM615923     4  0.6823     0.5212  0 0.244 0.160 0.596
#> GSM615928     4  0.4746    -0.0236  0 0.000 0.368 0.632
#> GSM615934     3  0.3528     0.8312  0 0.000 0.808 0.192
#> GSM615950     2  0.3172     0.6719  0 0.840 0.000 0.160
#> GSM615954     2  0.4661     0.4256  0 0.652 0.000 0.348
#> GSM615956     3  0.3528     0.8314  0 0.000 0.808 0.192
#> GSM615958     1  0.0000     1.0000  1 0.000 0.000 0.000
#> GSM615924     4  0.2408     0.6945  0 0.000 0.104 0.896
#> GSM615930     4  0.5383    -0.0852  0 0.452 0.012 0.536
#> GSM615932     2  0.0469     0.7426  0 0.988 0.012 0.000
#> GSM615935     2  0.1118     0.7313  0 0.964 0.036 0.000
#> GSM615936     3  0.3528     0.8314  0 0.000 0.808 0.192
#> GSM615942     3  0.3444     0.8326  0 0.000 0.816 0.184
#> GSM615943     2  0.4661     0.4256  0 0.652 0.000 0.348
#> GSM615949     3  0.3486     0.8325  0 0.000 0.812 0.188
#> GSM615957     2  0.4624     0.4046  0 0.660 0.340 0.000
#> GSM721720     2  0.0469     0.7426  0 0.988 0.012 0.000
#> GSM721721     3  0.4994     0.4670  0 0.000 0.520 0.480
#> GSM615959     1  0.0000     1.0000  1 0.000 0.000 0.000
#> GSM615960     1  0.0000     1.0000  1 0.000 0.000 0.000
#> GSM615961     1  0.0000     1.0000  1 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1    p2    p3    p4    p5
#> GSM615919     4  0.4558     0.6656  0 0.000 0.216 0.724 0.060
#> GSM615921     3  0.5412     0.5285  0 0.216 0.684 0.080 0.020
#> GSM615922     3  0.3586     0.5537  0 0.000 0.736 0.264 0.000
#> GSM615925     5  0.4304     0.3830  0 0.000 0.000 0.484 0.516
#> GSM615926     3  0.3577     0.6214  0 0.160 0.808 0.032 0.000
#> GSM615933     5  0.3885     0.5300  0 0.000 0.008 0.268 0.724
#> GSM615939     3  0.3519     0.6339  0 0.008 0.776 0.216 0.000
#> GSM615941     3  0.0162     0.7248  0 0.000 0.996 0.004 0.000
#> GSM615944     3  0.3282     0.6223  0 0.188 0.804 0.008 0.000
#> GSM615945     5  0.0290     0.4994  0 0.008 0.000 0.000 0.992
#> GSM615947     3  0.1596     0.7229  0 0.012 0.948 0.028 0.012
#> GSM615948     3  0.0955     0.7238  0 0.004 0.968 0.028 0.000
#> GSM615951     3  0.0162     0.7248  0 0.000 0.996 0.004 0.000
#> GSM615918     5  0.4304     0.3830  0 0.000 0.000 0.484 0.516
#> GSM615927     5  0.4304     0.3830  0 0.000 0.000 0.484 0.516
#> GSM615929     4  0.4557     0.0911  0 0.000 0.404 0.584 0.012
#> GSM615931     5  0.3861     0.5318  0 0.000 0.008 0.264 0.728
#> GSM615937     5  0.4717    -0.2923  0 0.396 0.000 0.020 0.584
#> GSM615938     2  0.3586     0.9108  0 0.792 0.020 0.000 0.188
#> GSM615940     3  0.3388     0.6475  0 0.008 0.792 0.200 0.000
#> GSM615946     3  0.3874     0.6280  0 0.008 0.776 0.200 0.016
#> GSM615952     3  0.0162     0.7248  0 0.000 0.996 0.004 0.000
#> GSM615953     3  0.4379     0.5542  0 0.220 0.740 0.008 0.032
#> GSM615955     3  0.3462     0.6134  0 0.196 0.792 0.012 0.000
#> GSM721722     3  0.3656     0.6066  0 0.196 0.784 0.020 0.000
#> GSM721723     2  0.3602     0.9109  0 0.796 0.024 0.000 0.180
#> GSM721724     3  0.3519     0.6339  0 0.008 0.776 0.216 0.000
#> GSM615917     5  0.4304     0.3830  0 0.000 0.000 0.484 0.516
#> GSM615920     3  0.5915    -0.3244  0 0.000 0.508 0.384 0.108
#> GSM615923     5  0.3579     0.5356  0 0.000 0.004 0.240 0.756
#> GSM615928     4  0.4157     0.0919  0 0.000 0.020 0.716 0.264
#> GSM615934     3  0.3480     0.5707  0 0.000 0.752 0.248 0.000
#> GSM615950     5  0.4697    -0.2843  0 0.388 0.000 0.020 0.592
#> GSM615954     5  0.3912     0.1650  0 0.228 0.000 0.020 0.752
#> GSM615956     3  0.3732     0.6352  0 0.008 0.776 0.208 0.008
#> GSM615958     1  0.0000     1.0000  1 0.000 0.000 0.000 0.000
#> GSM615924     5  0.4304     0.3830  0 0.000 0.000 0.484 0.516
#> GSM615930     5  0.0290     0.4994  0 0.008 0.000 0.000 0.992
#> GSM615932     2  0.3456     0.9115  0 0.800 0.016 0.000 0.184
#> GSM615935     2  0.3921     0.7162  0 0.784 0.172 0.000 0.044
#> GSM615936     3  0.1280     0.7233  0 0.008 0.960 0.024 0.008
#> GSM615942     3  0.0162     0.7248  0 0.000 0.996 0.004 0.000
#> GSM615943     5  0.3757     0.2054  0 0.208 0.000 0.020 0.772
#> GSM615949     3  0.4457     0.4851  0 0.004 0.656 0.328 0.012
#> GSM615957     3  0.4367     0.3341  0 0.416 0.580 0.000 0.004
#> GSM721720     2  0.3266     0.8916  0 0.796 0.004 0.000 0.200
#> GSM721721     4  0.4732     0.6558  0 0.000 0.208 0.716 0.076
#> GSM615959     1  0.0000     1.0000  1 0.000 0.000 0.000 0.000
#> GSM615960     1  0.0000     1.0000  1 0.000 0.000 0.000 0.000
#> GSM615961     1  0.0000     1.0000  1 0.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1    p2    p3    p4    p5    p6
#> GSM615919     4  0.6718     0.1017  0 0.236 0.260 0.452 0.052 0.000
#> GSM615921     2  0.5945     0.0235  0 0.480 0.000 0.304 0.004 0.212
#> GSM615922     2  0.6489     0.1113  0 0.464 0.352 0.088 0.096 0.000
#> GSM615925     4  0.0000     0.6657  0 0.000 0.000 1.000 0.000 0.000
#> GSM615926     2  0.6208    -0.2858  0 0.416 0.364 0.208 0.012 0.000
#> GSM615933     4  0.3341     0.4641  0 0.004 0.000 0.776 0.208 0.012
#> GSM615939     2  0.2431     0.5258  0 0.860 0.132 0.000 0.008 0.000
#> GSM615941     2  0.3476     0.3943  0 0.732 0.260 0.004 0.004 0.000
#> GSM615944     3  0.4586     0.4415  0 0.400 0.564 0.004 0.032 0.000
#> GSM615945     5  0.4100     0.4568  0 0.004 0.000 0.388 0.600 0.008
#> GSM615947     2  0.0405     0.5268  0 0.988 0.000 0.000 0.008 0.004
#> GSM615948     2  0.4016     0.3800  0 0.684 0.292 0.004 0.020 0.000
#> GSM615951     2  0.3452     0.3991  0 0.736 0.256 0.004 0.004 0.000
#> GSM615918     4  0.0000     0.6657  0 0.000 0.000 1.000 0.000 0.000
#> GSM615927     4  0.2243     0.6201  0 0.004 0.000 0.880 0.112 0.004
#> GSM615929     3  0.6953    -0.2479  0 0.164 0.384 0.364 0.088 0.000
#> GSM615931     4  0.3134     0.4506  0 0.004 0.000 0.784 0.208 0.004
#> GSM615937     5  0.3816     0.6964  0 0.000 0.000 0.032 0.728 0.240
#> GSM615938     6  0.0146     0.9905  0 0.004 0.000 0.000 0.000 0.996
#> GSM615940     2  0.2257     0.5313  0 0.876 0.116 0.000 0.008 0.000
#> GSM615946     2  0.3116     0.5197  0 0.836 0.132 0.016 0.004 0.012
#> GSM615952     2  0.3293     0.4247  0 0.788 0.196 0.004 0.008 0.004
#> GSM615953     2  0.4562     0.2711  0 0.648 0.000 0.052 0.004 0.296
#> GSM615955     3  0.5054     0.5258  0 0.368 0.548 0.000 0.084 0.000
#> GSM721722     3  0.5054     0.5258  0 0.368 0.548 0.000 0.084 0.000
#> GSM721723     6  0.0000     0.9926  0 0.000 0.000 0.000 0.000 1.000
#> GSM721724     2  0.2431     0.5258  0 0.860 0.132 0.000 0.008 0.000
#> GSM615917     4  0.0000     0.6657  0 0.000 0.000 1.000 0.000 0.000
#> GSM615920     4  0.5729    -0.1015  0 0.348 0.140 0.504 0.008 0.000
#> GSM615923     4  0.3450     0.4668  0 0.008 0.000 0.772 0.208 0.012
#> GSM615928     4  0.4315     0.5605  0 0.104 0.144 0.744 0.008 0.000
#> GSM615934     2  0.5695     0.2042  0 0.508 0.372 0.020 0.100 0.000
#> GSM615950     5  0.3888     0.6845  0 0.000 0.000 0.032 0.716 0.252
#> GSM615954     5  0.3662     0.7333  0 0.004 0.000 0.044 0.780 0.172
#> GSM615956     2  0.2462     0.5287  0 0.860 0.132 0.004 0.000 0.004
#> GSM615958     1  0.0000     1.0000  1 0.000 0.000 0.000 0.000 0.000
#> GSM615924     4  0.1148     0.6650  0 0.020 0.000 0.960 0.016 0.004
#> GSM615930     5  0.4118     0.4438  0 0.004 0.000 0.396 0.592 0.008
#> GSM615932     6  0.0000     0.9926  0 0.000 0.000 0.000 0.000 1.000
#> GSM615935     6  0.0458     0.9772  0 0.016 0.000 0.000 0.000 0.984
#> GSM615936     2  0.1370     0.5235  0 0.948 0.036 0.012 0.004 0.000
#> GSM615942     2  0.3608     0.4030  0 0.736 0.248 0.004 0.012 0.000
#> GSM615943     5  0.3700     0.7406  0 0.000 0.000 0.068 0.780 0.152
#> GSM615949     2  0.5473     0.3796  0 0.592 0.300 0.036 0.072 0.000
#> GSM615957     2  0.3807     0.3172  0 0.628 0.000 0.000 0.004 0.368
#> GSM721720     6  0.0000     0.9926  0 0.000 0.000 0.000 0.000 1.000
#> GSM721721     4  0.6752     0.1353  0 0.188 0.280 0.464 0.068 0.000
#> GSM615959     1  0.0000     1.0000  1 0.000 0.000 0.000 0.000 0.000
#> GSM615960     1  0.0000     1.0000  1 0.000 0.000 0.000 0.000 0.000
#> GSM615961     1  0.0000     1.0000  1 0.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n age(p) gender(p) tissue(p) k
#> MAD:mclust 50 0.0825     0.785  9.94e-10 2
#> MAD:mclust 50 0.0175     0.112  1.39e-11 3
#> MAD:mclust 40 0.0509     0.283  1.07e-08 4
#> MAD:mclust 34 0.0338     0.188  7.45e-07 5
#> MAD:mclust 28 0.1362     0.387  3.64e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16230 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.660           0.810       0.928         0.3987 0.628   0.628
#> 3 3 0.574           0.697       0.862         0.6446 0.615   0.428
#> 4 4 0.477           0.465       0.700         0.1382 0.807   0.499
#> 5 5 0.572           0.427       0.632         0.0733 0.812   0.403
#> 6 6 0.711           0.671       0.818         0.0437 0.865   0.454

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM615919     2  0.0000     0.9188 0.000 1.000
#> GSM615921     2  0.0000     0.9188 0.000 1.000
#> GSM615922     1  0.9881     0.1897 0.564 0.436
#> GSM615925     2  0.6531     0.7693 0.168 0.832
#> GSM615926     1  0.0000     0.9031 1.000 0.000
#> GSM615933     2  0.0000     0.9188 0.000 1.000
#> GSM615939     2  0.0000     0.9188 0.000 1.000
#> GSM615941     1  0.5408     0.8068 0.876 0.124
#> GSM615944     1  0.0000     0.9031 1.000 0.000
#> GSM615945     2  0.0000     0.9188 0.000 1.000
#> GSM615947     2  0.0000     0.9188 0.000 1.000
#> GSM615948     2  0.9922     0.1692 0.448 0.552
#> GSM615951     1  0.2423     0.8804 0.960 0.040
#> GSM615918     2  0.5294     0.8210 0.120 0.880
#> GSM615927     2  0.0000     0.9188 0.000 1.000
#> GSM615929     2  0.5946     0.7969 0.144 0.856
#> GSM615931     2  0.0672     0.9140 0.008 0.992
#> GSM615937     2  0.0000     0.9188 0.000 1.000
#> GSM615938     2  0.0000     0.9188 0.000 1.000
#> GSM615940     2  0.1184     0.9086 0.016 0.984
#> GSM615946     2  0.0000     0.9188 0.000 1.000
#> GSM615952     2  0.9963     0.0603 0.464 0.536
#> GSM615953     2  0.0000     0.9188 0.000 1.000
#> GSM615955     1  0.0000     0.9031 1.000 0.000
#> GSM721722     1  0.0000     0.9031 1.000 0.000
#> GSM721723     2  0.0000     0.9188 0.000 1.000
#> GSM721724     2  0.0000     0.9188 0.000 1.000
#> GSM615917     2  0.0376     0.9164 0.004 0.996
#> GSM615920     2  1.0000    -0.0588 0.500 0.500
#> GSM615923     2  0.0000     0.9188 0.000 1.000
#> GSM615928     2  0.0000     0.9188 0.000 1.000
#> GSM615934     2  0.9909     0.1830 0.444 0.556
#> GSM615950     2  0.0000     0.9188 0.000 1.000
#> GSM615954     2  0.0000     0.9188 0.000 1.000
#> GSM615956     2  0.0000     0.9188 0.000 1.000
#> GSM615958     1  0.0000     0.9031 1.000 0.000
#> GSM615924     2  0.0000     0.9188 0.000 1.000
#> GSM615930     2  0.0000     0.9188 0.000 1.000
#> GSM615932     2  0.0000     0.9188 0.000 1.000
#> GSM615935     2  0.0000     0.9188 0.000 1.000
#> GSM615936     2  0.0000     0.9188 0.000 1.000
#> GSM615942     1  0.9170     0.4818 0.668 0.332
#> GSM615943     2  0.0000     0.9188 0.000 1.000
#> GSM615949     2  0.6247     0.7836 0.156 0.844
#> GSM615957     2  0.0000     0.9188 0.000 1.000
#> GSM721720     2  0.0000     0.9188 0.000 1.000
#> GSM721721     2  0.6801     0.7542 0.180 0.820
#> GSM615959     1  0.0000     0.9031 1.000 0.000
#> GSM615960     1  0.0000     0.9031 1.000 0.000
#> GSM615961     1  0.0000     0.9031 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM615919     3  0.5733     0.4536 0.000 0.324 0.676
#> GSM615921     2  0.6079     0.2423 0.000 0.612 0.388
#> GSM615922     1  0.6703     0.5999 0.712 0.236 0.052
#> GSM615925     3  0.0000     0.8812 0.000 0.000 1.000
#> GSM615926     1  0.2229     0.8094 0.944 0.012 0.044
#> GSM615933     3  0.0892     0.8898 0.000 0.020 0.980
#> GSM615939     2  0.4465     0.7306 0.004 0.820 0.176
#> GSM615941     2  0.5643     0.5910 0.220 0.760 0.020
#> GSM615944     1  0.0237     0.8240 0.996 0.004 0.000
#> GSM615945     3  0.1964     0.8784 0.000 0.056 0.944
#> GSM615947     2  0.0592     0.7911 0.000 0.988 0.012
#> GSM615948     2  0.7561    -0.0108 0.444 0.516 0.040
#> GSM615951     1  0.6553     0.2728 0.580 0.412 0.008
#> GSM615918     3  0.0475     0.8764 0.004 0.004 0.992
#> GSM615927     3  0.1289     0.8880 0.000 0.032 0.968
#> GSM615929     3  0.8361     0.1134 0.092 0.364 0.544
#> GSM615931     3  0.0892     0.8898 0.000 0.020 0.980
#> GSM615937     3  0.5115     0.7679 0.016 0.188 0.796
#> GSM615938     2  0.4702     0.6483 0.000 0.788 0.212
#> GSM615940     2  0.2229     0.7887 0.012 0.944 0.044
#> GSM615946     2  0.4399     0.7263 0.000 0.812 0.188
#> GSM615952     2  0.1289     0.7753 0.032 0.968 0.000
#> GSM615953     2  0.1643     0.7921 0.000 0.956 0.044
#> GSM615955     1  0.0983     0.8219 0.980 0.016 0.004
#> GSM721722     1  0.1482     0.8183 0.968 0.012 0.020
#> GSM721723     2  0.1289     0.7933 0.000 0.968 0.032
#> GSM721724     2  0.2165     0.7899 0.000 0.936 0.064
#> GSM615917     3  0.0237     0.8835 0.000 0.004 0.996
#> GSM615920     1  0.7130     0.1473 0.544 0.024 0.432
#> GSM615923     3  0.1031     0.8896 0.000 0.024 0.976
#> GSM615928     3  0.1031     0.8885 0.000 0.024 0.976
#> GSM615934     1  0.9532     0.2821 0.472 0.316 0.212
#> GSM615950     3  0.4399     0.7782 0.000 0.188 0.812
#> GSM615954     3  0.3267     0.8448 0.000 0.116 0.884
#> GSM615956     2  0.2356     0.7878 0.000 0.928 0.072
#> GSM615958     1  0.0237     0.8243 0.996 0.004 0.000
#> GSM615924     3  0.0892     0.8898 0.000 0.020 0.980
#> GSM615930     3  0.0892     0.8898 0.000 0.020 0.980
#> GSM615932     2  0.5254     0.5678 0.000 0.736 0.264
#> GSM615935     2  0.1753     0.7920 0.000 0.952 0.048
#> GSM615936     2  0.0747     0.7917 0.000 0.984 0.016
#> GSM615942     2  0.7054    -0.0173 0.456 0.524 0.020
#> GSM615943     3  0.3267     0.8447 0.000 0.116 0.884
#> GSM615949     2  0.5810     0.6962 0.072 0.796 0.132
#> GSM615957     2  0.0747     0.7917 0.000 0.984 0.016
#> GSM721720     2  0.5178     0.5753 0.000 0.744 0.256
#> GSM721721     3  0.4527     0.7924 0.052 0.088 0.860
#> GSM615959     1  0.0237     0.8243 0.996 0.004 0.000
#> GSM615960     1  0.0237     0.8243 0.996 0.004 0.000
#> GSM615961     1  0.0237     0.8243 0.996 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM615919     3   0.516    0.44693 0.000 0.136 0.760 0.104
#> GSM615921     2   0.480    0.57541 0.000 0.768 0.180 0.052
#> GSM615922     3   0.420    0.42339 0.068 0.108 0.824 0.000
#> GSM615925     3   0.499    0.03221 0.000 0.000 0.532 0.468
#> GSM615926     1   0.500    0.40775 0.508 0.000 0.492 0.000
#> GSM615933     4   0.302    0.59158 0.000 0.000 0.148 0.852
#> GSM615939     2   0.483    0.33676 0.000 0.608 0.392 0.000
#> GSM615941     2   0.687    0.31773 0.152 0.584 0.264 0.000
#> GSM615944     1   0.394    0.75406 0.800 0.012 0.188 0.000
#> GSM615945     4   0.130    0.64730 0.000 0.000 0.044 0.956
#> GSM615947     2   0.130    0.68361 0.000 0.956 0.044 0.000
#> GSM615948     3   0.617    0.29188 0.084 0.284 0.632 0.000
#> GSM615951     1   0.662    0.57153 0.628 0.192 0.180 0.000
#> GSM615918     4   0.499   -0.00346 0.000 0.000 0.472 0.528
#> GSM615927     4   0.369    0.51438 0.000 0.000 0.208 0.792
#> GSM615929     3   0.155    0.51815 0.000 0.008 0.952 0.040
#> GSM615931     4   0.201    0.63814 0.000 0.000 0.080 0.920
#> GSM615937     4   0.724    0.26510 0.096 0.320 0.024 0.560
#> GSM615938     2   0.438    0.53074 0.000 0.704 0.000 0.296
#> GSM615940     2   0.455    0.55564 0.000 0.732 0.256 0.012
#> GSM615946     2   0.391    0.58051 0.000 0.768 0.232 0.000
#> GSM615952     2   0.464    0.64112 0.132 0.800 0.064 0.004
#> GSM615953     2   0.529    0.50183 0.000 0.652 0.024 0.324
#> GSM615955     1   0.436    0.74008 0.764 0.016 0.220 0.000
#> GSM721722     1   0.482    0.59298 0.612 0.000 0.388 0.000
#> GSM721723     2   0.391    0.60190 0.000 0.784 0.004 0.212
#> GSM721724     2   0.331    0.62996 0.000 0.828 0.172 0.000
#> GSM615917     3   0.498    0.02429 0.000 0.000 0.536 0.464
#> GSM615920     4   0.785    0.03215 0.356 0.000 0.268 0.376
#> GSM615923     4   0.554    0.45844 0.000 0.056 0.256 0.688
#> GSM615928     3   0.513    0.26943 0.000 0.016 0.652 0.332
#> GSM615934     3   0.447    0.42897 0.032 0.172 0.792 0.004
#> GSM615950     4   0.391    0.59989 0.000 0.156 0.024 0.820
#> GSM615954     4   0.500    0.57655 0.044 0.144 0.024 0.788
#> GSM615956     2   0.220    0.67950 0.000 0.916 0.080 0.004
#> GSM615958     1   0.000    0.77415 1.000 0.000 0.000 0.000
#> GSM615924     3   0.500   -0.05665 0.000 0.000 0.508 0.492
#> GSM615930     4   0.179    0.64458 0.000 0.000 0.068 0.932
#> GSM615932     2   0.515    0.27560 0.000 0.532 0.004 0.464
#> GSM615935     4   0.615   -0.26595 0.000 0.460 0.048 0.492
#> GSM615936     2   0.539    0.66569 0.016 0.768 0.124 0.092
#> GSM615942     3   0.773   -0.16269 0.296 0.260 0.444 0.000
#> GSM615943     4   0.115    0.64444 0.000 0.024 0.008 0.968
#> GSM615949     3   0.487    0.21734 0.000 0.356 0.640 0.004
#> GSM615957     2   0.147    0.69000 0.000 0.948 0.000 0.052
#> GSM721720     2   0.472    0.54369 0.000 0.720 0.016 0.264
#> GSM721721     3   0.283    0.49196 0.000 0.004 0.876 0.120
#> GSM615959     1   0.000    0.77415 1.000 0.000 0.000 0.000
#> GSM615960     1   0.000    0.77415 1.000 0.000 0.000 0.000
#> GSM615961     1   0.000    0.77415 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM615919     4  0.2125     0.5947 0.000 0.052 0.024 0.920 0.004
#> GSM615921     2  0.5572     0.3887 0.000 0.668 0.204 0.116 0.012
#> GSM615922     4  0.5630    -0.1503 0.044 0.004 0.452 0.492 0.008
#> GSM615925     4  0.4151     0.4596 0.000 0.000 0.004 0.652 0.344
#> GSM615926     3  0.8404    -0.2146 0.288 0.120 0.320 0.268 0.004
#> GSM615933     5  0.2228     0.8213 0.000 0.000 0.048 0.040 0.912
#> GSM615939     3  0.5397     0.4460 0.000 0.152 0.688 0.152 0.008
#> GSM615941     3  0.7024     0.1969 0.168 0.096 0.580 0.156 0.000
#> GSM615944     1  0.4697     0.6047 0.660 0.000 0.304 0.036 0.000
#> GSM615945     5  0.0807     0.8458 0.000 0.000 0.012 0.012 0.976
#> GSM615947     3  0.4310     0.2308 0.000 0.392 0.604 0.000 0.004
#> GSM615948     3  0.7008     0.2589 0.076 0.104 0.528 0.292 0.000
#> GSM615951     1  0.5229     0.4522 0.568 0.004 0.396 0.020 0.012
#> GSM615918     4  0.4356     0.4602 0.000 0.012 0.000 0.648 0.340
#> GSM615927     5  0.3061     0.7378 0.000 0.000 0.020 0.136 0.844
#> GSM615929     4  0.1792     0.5424 0.000 0.000 0.084 0.916 0.000
#> GSM615931     5  0.1041     0.8438 0.000 0.004 0.000 0.032 0.964
#> GSM615937     2  0.5027     0.5581 0.004 0.724 0.040 0.028 0.204
#> GSM615938     2  0.5067     0.3923 0.000 0.648 0.288 0.000 0.064
#> GSM615940     3  0.3518     0.4661 0.000 0.064 0.856 0.044 0.036
#> GSM615946     3  0.6020     0.2983 0.000 0.308 0.584 0.088 0.020
#> GSM615952     3  0.6402    -0.0866 0.348 0.180 0.472 0.000 0.000
#> GSM615953     3  0.6897    -0.0522 0.012 0.204 0.416 0.000 0.368
#> GSM615955     1  0.4479     0.6278 0.700 0.000 0.264 0.036 0.000
#> GSM721722     1  0.6579     0.3464 0.460 0.000 0.308 0.232 0.000
#> GSM721723     2  0.1082     0.6014 0.000 0.964 0.008 0.000 0.028
#> GSM721724     3  0.5562     0.1984 0.000 0.408 0.520 0.072 0.000
#> GSM615917     4  0.4029     0.4921 0.000 0.004 0.000 0.680 0.316
#> GSM615920     4  0.6931     0.3503 0.300 0.012 0.012 0.504 0.172
#> GSM615923     2  0.6101     0.2793 0.000 0.528 0.000 0.328 0.144
#> GSM615928     4  0.3420     0.6062 0.000 0.084 0.000 0.840 0.076
#> GSM615934     4  0.4700    -0.1573 0.004 0.000 0.472 0.516 0.008
#> GSM615950     2  0.4616     0.4941 0.000 0.680 0.004 0.028 0.288
#> GSM615954     2  0.6259     0.2035 0.060 0.472 0.004 0.028 0.436
#> GSM615956     3  0.4822     0.2244 0.000 0.340 0.632 0.016 0.012
#> GSM615958     1  0.0162     0.7159 0.996 0.000 0.004 0.000 0.000
#> GSM615924     4  0.4109     0.5210 0.000 0.012 0.000 0.700 0.288
#> GSM615930     5  0.1764     0.8226 0.000 0.008 0.000 0.064 0.928
#> GSM615932     2  0.6612     0.1558 0.000 0.412 0.372 0.000 0.216
#> GSM615935     5  0.4927     0.4022 0.000 0.052 0.296 0.000 0.652
#> GSM615936     3  0.4595     0.4069 0.028 0.028 0.760 0.004 0.180
#> GSM615942     3  0.6274     0.0711 0.244 0.000 0.580 0.164 0.012
#> GSM615943     5  0.0693     0.8436 0.000 0.012 0.000 0.008 0.980
#> GSM615949     3  0.5137     0.1876 0.000 0.004 0.548 0.416 0.032
#> GSM615957     2  0.1792     0.5426 0.000 0.916 0.084 0.000 0.000
#> GSM721720     2  0.1492     0.6085 0.004 0.948 0.000 0.008 0.040
#> GSM721721     4  0.1772     0.5914 0.000 0.020 0.032 0.940 0.008
#> GSM615959     1  0.0000     0.7140 1.000 0.000 0.000 0.000 0.000
#> GSM615960     1  0.0162     0.7159 0.996 0.000 0.004 0.000 0.000
#> GSM615961     1  0.0000     0.7140 1.000 0.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM615919     4  0.1649      0.796 0.000 0.016 0.008 0.936 0.000 0.040
#> GSM615921     2  0.5700      0.249 0.000 0.508 0.008 0.136 0.000 0.348
#> GSM615922     3  0.1285      0.806 0.000 0.000 0.944 0.052 0.000 0.004
#> GSM615925     4  0.3221      0.720 0.000 0.000 0.000 0.736 0.264 0.000
#> GSM615926     3  0.0993      0.804 0.000 0.000 0.964 0.012 0.000 0.024
#> GSM615933     5  0.1793      0.839 0.000 0.032 0.004 0.036 0.928 0.000
#> GSM615939     2  0.3052      0.661 0.000 0.848 0.080 0.068 0.000 0.004
#> GSM615941     3  0.1109      0.807 0.016 0.004 0.964 0.004 0.000 0.012
#> GSM615944     3  0.1007      0.800 0.044 0.000 0.956 0.000 0.000 0.000
#> GSM615945     5  0.0260      0.854 0.000 0.008 0.000 0.000 0.992 0.000
#> GSM615947     2  0.1485      0.678 0.000 0.944 0.024 0.004 0.000 0.028
#> GSM615948     3  0.1624      0.802 0.004 0.000 0.936 0.020 0.000 0.040
#> GSM615951     3  0.4487      0.234 0.420 0.024 0.552 0.000 0.000 0.004
#> GSM615918     4  0.3314      0.755 0.000 0.000 0.000 0.764 0.224 0.012
#> GSM615927     5  0.2613      0.743 0.000 0.012 0.000 0.140 0.848 0.000
#> GSM615929     4  0.1332      0.781 0.000 0.028 0.012 0.952 0.000 0.008
#> GSM615931     5  0.1448      0.849 0.000 0.000 0.024 0.016 0.948 0.012
#> GSM615937     6  0.3683      0.690 0.000 0.000 0.192 0.000 0.044 0.764
#> GSM615938     2  0.4574      0.172 0.000 0.524 0.000 0.000 0.036 0.440
#> GSM615940     2  0.5361      0.274 0.000 0.560 0.344 0.008 0.084 0.004
#> GSM615946     2  0.2648      0.670 0.000 0.884 0.004 0.064 0.008 0.040
#> GSM615952     3  0.4663      0.596 0.192 0.016 0.708 0.000 0.000 0.084
#> GSM615953     2  0.4580      0.308 0.052 0.612 0.000 0.000 0.336 0.000
#> GSM615955     1  0.3756      0.169 0.600 0.000 0.400 0.000 0.000 0.000
#> GSM721722     3  0.3102      0.775 0.084 0.008 0.856 0.044 0.000 0.008
#> GSM721723     6  0.0717      0.791 0.000 0.016 0.008 0.000 0.000 0.976
#> GSM721724     2  0.6478      0.357 0.000 0.496 0.172 0.052 0.000 0.280
#> GSM615917     4  0.2814      0.790 0.000 0.000 0.000 0.820 0.172 0.008
#> GSM615920     4  0.6201      0.613 0.208 0.000 0.068 0.588 0.132 0.004
#> GSM615923     6  0.3139      0.743 0.000 0.000 0.008 0.120 0.036 0.836
#> GSM615928     4  0.3481      0.691 0.000 0.000 0.004 0.756 0.012 0.228
#> GSM615934     3  0.4066      0.654 0.000 0.028 0.696 0.272 0.000 0.004
#> GSM615950     6  0.2151      0.793 0.000 0.000 0.016 0.008 0.072 0.904
#> GSM615954     6  0.4586      0.530 0.036 0.000 0.000 0.012 0.312 0.640
#> GSM615956     2  0.1382      0.674 0.000 0.948 0.000 0.008 0.008 0.036
#> GSM615958     1  0.0458      0.873 0.984 0.000 0.016 0.000 0.000 0.000
#> GSM615924     4  0.2412      0.813 0.000 0.000 0.000 0.880 0.092 0.028
#> GSM615930     5  0.1480      0.844 0.000 0.000 0.000 0.040 0.940 0.020
#> GSM615932     2  0.2595      0.598 0.000 0.836 0.000 0.000 0.160 0.004
#> GSM615935     5  0.3841      0.302 0.000 0.380 0.004 0.000 0.616 0.000
#> GSM615936     3  0.5223      0.502 0.004 0.168 0.628 0.000 0.200 0.000
#> GSM615942     3  0.0964      0.807 0.016 0.004 0.968 0.012 0.000 0.000
#> GSM615943     5  0.0837      0.854 0.000 0.004 0.000 0.004 0.972 0.020
#> GSM615949     3  0.4268      0.675 0.000 0.028 0.700 0.256 0.000 0.016
#> GSM615957     6  0.3388      0.640 0.000 0.172 0.036 0.000 0.000 0.792
#> GSM721720     6  0.0653      0.795 0.000 0.012 0.004 0.000 0.004 0.980
#> GSM721721     4  0.2095      0.783 0.000 0.028 0.016 0.916 0.000 0.040
#> GSM615959     1  0.0458      0.873 0.984 0.000 0.016 0.000 0.000 0.000
#> GSM615960     1  0.0458      0.873 0.984 0.000 0.016 0.000 0.000 0.000
#> GSM615961     1  0.0363      0.870 0.988 0.000 0.012 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n age(p) gender(p) tissue(p) k
#> MAD:NMF 44  0.974     0.765  1.19e-03 2
#> MAD:NMF 42  0.671     0.266  3.02e-04 3
#> MAD:NMF 30  0.616     0.536  5.35e-03 4
#> MAD:NMF 21  0.685     0.561  6.27e-03 5
#> MAD:NMF 42  0.220     0.832  5.89e-08 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16230 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.707           0.852       0.922         0.2773 0.650   0.650
#> 3 3 0.786           0.825       0.922         0.6573 0.905   0.857
#> 4 4 0.467           0.628       0.779         0.2229 0.923   0.868
#> 5 5 0.513           0.593       0.789         0.2229 0.782   0.591
#> 6 6 0.602           0.384       0.657         0.0918 0.800   0.479

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM615919     1   1.000      0.550 0.512 0.488
#> GSM615921     2   0.000      0.971 0.000 1.000
#> GSM615922     2   0.000      0.971 0.000 1.000
#> GSM615925     1   1.000      0.550 0.512 0.488
#> GSM615926     2   0.722      0.593 0.200 0.800
#> GSM615933     2   0.000      0.971 0.000 1.000
#> GSM615939     2   0.000      0.971 0.000 1.000
#> GSM615941     2   0.224      0.924 0.036 0.964
#> GSM615944     2   0.242      0.918 0.040 0.960
#> GSM615945     2   0.000      0.971 0.000 1.000
#> GSM615947     2   0.000      0.971 0.000 1.000
#> GSM615948     2   0.000      0.971 0.000 1.000
#> GSM615951     2   0.000      0.971 0.000 1.000
#> GSM615918     1   1.000      0.550 0.512 0.488
#> GSM615927     2   0.000      0.971 0.000 1.000
#> GSM615929     2   0.996     -0.467 0.464 0.536
#> GSM615931     2   0.000      0.971 0.000 1.000
#> GSM615937     2   0.000      0.971 0.000 1.000
#> GSM615938     2   0.000      0.971 0.000 1.000
#> GSM615940     2   0.000      0.971 0.000 1.000
#> GSM615946     2   0.000      0.971 0.000 1.000
#> GSM615952     2   0.000      0.971 0.000 1.000
#> GSM615953     2   0.000      0.971 0.000 1.000
#> GSM615955     1   0.943      0.646 0.640 0.360
#> GSM721722     1   0.943      0.646 0.640 0.360
#> GSM721723     2   0.000      0.971 0.000 1.000
#> GSM721724     2   0.000      0.971 0.000 1.000
#> GSM615917     1   1.000      0.550 0.512 0.488
#> GSM615920     1   1.000      0.550 0.512 0.488
#> GSM615923     2   0.000      0.971 0.000 1.000
#> GSM615928     2   0.000      0.971 0.000 1.000
#> GSM615934     2   0.000      0.971 0.000 1.000
#> GSM615950     2   0.000      0.971 0.000 1.000
#> GSM615954     2   0.000      0.971 0.000 1.000
#> GSM615956     2   0.000      0.971 0.000 1.000
#> GSM615958     1   0.000      0.650 1.000 0.000
#> GSM615924     2   0.000      0.971 0.000 1.000
#> GSM615930     2   0.000      0.971 0.000 1.000
#> GSM615932     2   0.000      0.971 0.000 1.000
#> GSM615935     2   0.000      0.971 0.000 1.000
#> GSM615936     2   0.000      0.971 0.000 1.000
#> GSM615942     2   0.000      0.971 0.000 1.000
#> GSM615943     2   0.000      0.971 0.000 1.000
#> GSM615949     2   0.000      0.971 0.000 1.000
#> GSM615957     2   0.000      0.971 0.000 1.000
#> GSM721720     2   0.000      0.971 0.000 1.000
#> GSM721721     2   0.000      0.971 0.000 1.000
#> GSM615959     1   0.000      0.650 1.000 0.000
#> GSM615960     1   0.000      0.650 1.000 0.000
#> GSM615961     1   0.000      0.650 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM615919     3  0.0747     0.8430 0.000 0.016 0.984
#> GSM615921     2  0.5760     0.5754 0.000 0.672 0.328
#> GSM615922     2  0.2878     0.8513 0.000 0.904 0.096
#> GSM615925     3  0.0747     0.8430 0.000 0.016 0.984
#> GSM615926     3  0.6305    -0.0757 0.000 0.484 0.516
#> GSM615933     2  0.1163     0.9073 0.000 0.972 0.028
#> GSM615939     2  0.0237     0.9079 0.000 0.996 0.004
#> GSM615941     2  0.5785     0.5389 0.000 0.668 0.332
#> GSM615944     2  0.5835     0.5234 0.000 0.660 0.340
#> GSM615945     2  0.1163     0.9073 0.000 0.972 0.028
#> GSM615947     2  0.0237     0.9079 0.000 0.996 0.004
#> GSM615948     2  0.0000     0.9074 0.000 1.000 0.000
#> GSM615951     2  0.0747     0.9025 0.000 0.984 0.016
#> GSM615918     3  0.0747     0.8430 0.000 0.016 0.984
#> GSM615927     2  0.5760     0.5754 0.000 0.672 0.328
#> GSM615929     3  0.2165     0.7954 0.000 0.064 0.936
#> GSM615931     2  0.0000     0.9074 0.000 1.000 0.000
#> GSM615937     2  0.1163     0.9073 0.000 0.972 0.028
#> GSM615938     2  0.1163     0.9073 0.000 0.972 0.028
#> GSM615940     2  0.0747     0.9025 0.000 0.984 0.016
#> GSM615946     2  0.1163     0.9073 0.000 0.972 0.028
#> GSM615952     2  0.0747     0.9025 0.000 0.984 0.016
#> GSM615953     2  0.0747     0.9025 0.000 0.984 0.016
#> GSM615955     3  0.3482     0.7437 0.128 0.000 0.872
#> GSM721722     3  0.3482     0.7437 0.128 0.000 0.872
#> GSM721723     2  0.1163     0.9073 0.000 0.972 0.028
#> GSM721724     2  0.0237     0.9079 0.000 0.996 0.004
#> GSM615917     3  0.0747     0.8430 0.000 0.016 0.984
#> GSM615920     3  0.0747     0.8430 0.000 0.016 0.984
#> GSM615923     2  0.1163     0.9073 0.000 0.972 0.028
#> GSM615928     2  0.5760     0.5754 0.000 0.672 0.328
#> GSM615934     2  0.0592     0.9040 0.000 0.988 0.012
#> GSM615950     2  0.1163     0.9073 0.000 0.972 0.028
#> GSM615954     2  0.1163     0.9073 0.000 0.972 0.028
#> GSM615956     2  0.0747     0.9025 0.000 0.984 0.016
#> GSM615958     1  0.0000     1.0000 1.000 0.000 0.000
#> GSM615924     2  0.6215     0.3473 0.000 0.572 0.428
#> GSM615930     2  0.1163     0.9073 0.000 0.972 0.028
#> GSM615932     2  0.1163     0.9073 0.000 0.972 0.028
#> GSM615935     2  0.0747     0.9025 0.000 0.984 0.016
#> GSM615936     2  0.0592     0.9040 0.000 0.988 0.012
#> GSM615942     2  0.0000     0.9074 0.000 1.000 0.000
#> GSM615943     2  0.1163     0.9073 0.000 0.972 0.028
#> GSM615949     2  0.0000     0.9074 0.000 1.000 0.000
#> GSM615957     2  0.0747     0.9025 0.000 0.984 0.016
#> GSM721720     2  0.1163     0.9073 0.000 0.972 0.028
#> GSM721721     2  0.5760     0.5754 0.000 0.672 0.328
#> GSM615959     1  0.0000     1.0000 1.000 0.000 0.000
#> GSM615960     1  0.0000     1.0000 1.000 0.000 0.000
#> GSM615961     1  0.0000     1.0000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM615919     4  0.0000      0.920 0.000 0.000 0.000 1.000
#> GSM615921     2  0.4897      0.425 0.000 0.660 0.008 0.332
#> GSM615922     2  0.6234      0.547 0.000 0.584 0.348 0.068
#> GSM615925     4  0.0000      0.920 0.000 0.000 0.000 1.000
#> GSM615926     3  0.6879      0.389 0.000 0.216 0.596 0.188
#> GSM615933     2  0.0000      0.703 0.000 1.000 0.000 0.000
#> GSM615939     2  0.3942      0.708 0.000 0.764 0.236 0.000
#> GSM615941     3  0.7374      0.144 0.000 0.380 0.456 0.164
#> GSM615944     3  0.7431      0.160 0.000 0.380 0.448 0.172
#> GSM615945     2  0.0000      0.703 0.000 1.000 0.000 0.000
#> GSM615947     2  0.3873      0.708 0.000 0.772 0.228 0.000
#> GSM615948     2  0.4164      0.701 0.000 0.736 0.264 0.000
#> GSM615951     2  0.4907      0.579 0.000 0.580 0.420 0.000
#> GSM615918     4  0.0000      0.920 0.000 0.000 0.000 1.000
#> GSM615927     2  0.4897      0.425 0.000 0.660 0.008 0.332
#> GSM615929     4  0.4436      0.765 0.000 0.052 0.148 0.800
#> GSM615931     2  0.4072      0.704 0.000 0.748 0.252 0.000
#> GSM615937     2  0.0188      0.702 0.000 0.996 0.004 0.000
#> GSM615938     2  0.0000      0.703 0.000 1.000 0.000 0.000
#> GSM615940     2  0.4925      0.566 0.000 0.572 0.428 0.000
#> GSM615946     2  0.0188      0.702 0.000 0.996 0.004 0.000
#> GSM615952     2  0.4916      0.575 0.000 0.576 0.424 0.000
#> GSM615953     2  0.4916      0.575 0.000 0.576 0.424 0.000
#> GSM615955     3  0.6937     -0.215 0.124 0.000 0.532 0.344
#> GSM721722     3  0.6949     -0.219 0.124 0.000 0.528 0.348
#> GSM721723     2  0.0000      0.703 0.000 1.000 0.000 0.000
#> GSM721724     2  0.3975      0.706 0.000 0.760 0.240 0.000
#> GSM615917     4  0.0000      0.920 0.000 0.000 0.000 1.000
#> GSM615920     4  0.3219      0.818 0.000 0.000 0.164 0.836
#> GSM615923     2  0.0000      0.703 0.000 1.000 0.000 0.000
#> GSM615928     2  0.4897      0.425 0.000 0.660 0.008 0.332
#> GSM615934     2  0.4522      0.669 0.000 0.680 0.320 0.000
#> GSM615950     2  0.0000      0.703 0.000 1.000 0.000 0.000
#> GSM615954     2  0.0592      0.697 0.000 0.984 0.016 0.000
#> GSM615956     2  0.4916      0.575 0.000 0.576 0.424 0.000
#> GSM615958     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM615924     2  0.5236      0.208 0.000 0.560 0.008 0.432
#> GSM615930     2  0.0188      0.702 0.000 0.996 0.004 0.000
#> GSM615932     2  0.0188      0.702 0.000 0.996 0.004 0.000
#> GSM615935     2  0.4925      0.566 0.000 0.572 0.428 0.000
#> GSM615936     2  0.4431      0.682 0.000 0.696 0.304 0.000
#> GSM615942     2  0.4382      0.685 0.000 0.704 0.296 0.000
#> GSM615943     2  0.0000      0.703 0.000 1.000 0.000 0.000
#> GSM615949     2  0.4164      0.699 0.000 0.736 0.264 0.000
#> GSM615957     2  0.4916      0.575 0.000 0.576 0.424 0.000
#> GSM721720     2  0.0000      0.703 0.000 1.000 0.000 0.000
#> GSM721721     2  0.4897      0.425 0.000 0.660 0.008 0.332
#> GSM615959     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM615960     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM615961     1  0.0000      1.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1    p2    p3    p4    p5
#> GSM615919     4  0.0000      0.908  0 0.000 0.000 1.000 0.000
#> GSM615921     5  0.4418      0.509  0 0.000 0.016 0.332 0.652
#> GSM615922     3  0.5013      0.652  0 0.080 0.680 0.000 0.240
#> GSM615925     4  0.0000      0.908  0 0.000 0.000 1.000 0.000
#> GSM615926     3  0.4449     -0.156  0 0.484 0.512 0.004 0.000
#> GSM615933     5  0.2516      0.603  0 0.000 0.140 0.000 0.860
#> GSM615939     5  0.4138      0.367  0 0.000 0.384 0.000 0.616
#> GSM615941     3  0.5987      0.385  0 0.304 0.556 0.000 0.140
#> GSM615944     3  0.6016      0.369  0 0.312 0.548 0.000 0.140
#> GSM615945     5  0.2516      0.603  0 0.000 0.140 0.000 0.860
#> GSM615947     5  0.4074      0.397  0 0.000 0.364 0.000 0.636
#> GSM615948     5  0.4182      0.338  0 0.000 0.400 0.000 0.600
#> GSM615951     3  0.3177      0.694  0 0.000 0.792 0.000 0.208
#> GSM615918     4  0.0000      0.908  0 0.000 0.000 1.000 0.000
#> GSM615927     5  0.4418      0.509  0 0.000 0.016 0.332 0.652
#> GSM615929     4  0.4119      0.781  0 0.140 0.024 0.800 0.036
#> GSM615931     5  0.4101      0.388  0 0.000 0.372 0.000 0.628
#> GSM615937     5  0.0510      0.656  0 0.000 0.016 0.000 0.984
#> GSM615938     5  0.2377      0.611  0 0.000 0.128 0.000 0.872
#> GSM615940     3  0.2127      0.596  0 0.000 0.892 0.000 0.108
#> GSM615946     5  0.0703      0.657  0 0.000 0.024 0.000 0.976
#> GSM615952     3  0.3143      0.698  0 0.000 0.796 0.000 0.204
#> GSM615953     3  0.3143      0.698  0 0.000 0.796 0.000 0.204
#> GSM615955     2  0.0000      0.995  0 1.000 0.000 0.000 0.000
#> GSM721722     2  0.0162      0.995  0 0.996 0.000 0.004 0.000
#> GSM721723     5  0.1197      0.644  0 0.000 0.048 0.000 0.952
#> GSM721724     5  0.4307      0.294  0 0.000 0.496 0.000 0.504
#> GSM615917     4  0.0000      0.908  0 0.000 0.000 1.000 0.000
#> GSM615920     4  0.3424      0.713  0 0.240 0.000 0.760 0.000
#> GSM615923     5  0.0162      0.657  0 0.000 0.004 0.000 0.996
#> GSM615928     5  0.4418      0.509  0 0.000 0.016 0.332 0.652
#> GSM615934     5  0.4300      0.144  0 0.000 0.476 0.000 0.524
#> GSM615950     5  0.2377      0.611  0 0.000 0.128 0.000 0.872
#> GSM615954     5  0.1608      0.629  0 0.000 0.072 0.000 0.928
#> GSM615956     3  0.3143      0.698  0 0.000 0.796 0.000 0.204
#> GSM615958     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM615924     5  0.4867      0.337  0 0.000 0.024 0.432 0.544
#> GSM615930     5  0.0794      0.655  0 0.000 0.028 0.000 0.972
#> GSM615932     5  0.0963      0.653  0 0.000 0.036 0.000 0.964
#> GSM615935     3  0.2127      0.596  0 0.000 0.892 0.000 0.108
#> GSM615936     5  0.4287      0.204  0 0.000 0.460 0.000 0.540
#> GSM615942     5  0.4278      0.219  0 0.000 0.452 0.000 0.548
#> GSM615943     5  0.2516      0.603  0 0.000 0.140 0.000 0.860
#> GSM615949     3  0.4302     -0.335  0 0.000 0.520 0.000 0.480
#> GSM615957     3  0.3143      0.698  0 0.000 0.796 0.000 0.204
#> GSM721720     5  0.1341      0.642  0 0.000 0.056 0.000 0.944
#> GSM721721     5  0.4418      0.509  0 0.000 0.016 0.332 0.652
#> GSM615959     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM615960     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM615961     1  0.0000      1.000  1 0.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1    p2    p3    p4    p5    p6
#> GSM615919     4  0.3351     0.6599  0 0.000 0.288 0.712 0.000 0.000
#> GSM615921     2  0.5900    -0.0574  0 0.472 0.004 0.336 0.000 0.188
#> GSM615922     3  0.6027     0.6963  0 0.296 0.552 0.000 0.080 0.072
#> GSM615925     4  0.3371     0.6590  0 0.000 0.292 0.708 0.000 0.000
#> GSM615926     3  0.5902    -0.0610  0 0.048 0.448 0.000 0.432 0.072
#> GSM615933     2  0.3797    -0.3759  0 0.580 0.000 0.000 0.000 0.420
#> GSM615939     2  0.2932     0.3114  0 0.820 0.016 0.000 0.000 0.164
#> GSM615941     3  0.5598     0.3876  0 0.056 0.616 0.000 0.252 0.076
#> GSM615944     3  0.5583     0.3771  0 0.052 0.612 0.000 0.260 0.076
#> GSM615945     2  0.3797    -0.3759  0 0.580 0.000 0.000 0.000 0.420
#> GSM615947     2  0.3171     0.2786  0 0.784 0.012 0.000 0.000 0.204
#> GSM615948     2  0.3370     0.3289  0 0.804 0.048 0.000 0.000 0.148
#> GSM615951     3  0.4941     0.7541  0 0.376 0.552 0.000 0.000 0.072
#> GSM615918     4  0.3351     0.6599  0 0.000 0.288 0.712 0.000 0.000
#> GSM615927     2  0.5900    -0.0574  0 0.472 0.004 0.336 0.000 0.188
#> GSM615929     4  0.3800     0.2991  0 0.020 0.008 0.800 0.140 0.032
#> GSM615931     2  0.2597     0.2995  0 0.824 0.000 0.000 0.000 0.176
#> GSM615937     6  0.3690     0.6817  0 0.308 0.008 0.000 0.000 0.684
#> GSM615938     2  0.3782    -0.4146  0 0.588 0.000 0.000 0.000 0.412
#> GSM615940     2  0.5135    -0.4328  0 0.572 0.324 0.000 0.000 0.104
#> GSM615946     6  0.3862     0.6179  0 0.476 0.000 0.000 0.000 0.524
#> GSM615952     3  0.4923     0.7608  0 0.368 0.560 0.000 0.000 0.072
#> GSM615953     3  0.4923     0.7608  0 0.368 0.560 0.000 0.000 0.072
#> GSM615955     5  0.0000     0.9948  0 0.000 0.000 0.000 1.000 0.000
#> GSM721722     5  0.0146     0.9948  0 0.000 0.000 0.004 0.996 0.000
#> GSM721723     6  0.3582     0.6403  0 0.252 0.016 0.000 0.000 0.732
#> GSM721724     2  0.1327     0.3357  0 0.936 0.000 0.000 0.000 0.064
#> GSM615917     4  0.3351     0.6599  0 0.000 0.288 0.712 0.000 0.000
#> GSM615920     4  0.5685     0.4446  0 0.000 0.232 0.528 0.240 0.000
#> GSM615923     6  0.3890     0.6854  0 0.400 0.004 0.000 0.000 0.596
#> GSM615928     2  0.5900    -0.0574  0 0.472 0.004 0.336 0.000 0.188
#> GSM615934     2  0.3109     0.3155  0 0.772 0.224 0.000 0.000 0.004
#> GSM615950     2  0.3782    -0.4146  0 0.588 0.000 0.000 0.000 0.412
#> GSM615954     6  0.3612     0.5159  0 0.168 0.052 0.000 0.000 0.780
#> GSM615956     3  0.4923     0.7608  0 0.368 0.560 0.000 0.000 0.072
#> GSM615958     1  0.0000     1.0000  1 0.000 0.000 0.000 0.000 0.000
#> GSM615924     4  0.6017    -0.4122  0 0.352 0.004 0.436 0.000 0.208
#> GSM615930     6  0.3804     0.6740  0 0.424 0.000 0.000 0.000 0.576
#> GSM615932     6  0.3937     0.6714  0 0.424 0.004 0.000 0.000 0.572
#> GSM615935     2  0.5135    -0.4328  0 0.572 0.324 0.000 0.000 0.104
#> GSM615936     2  0.3815     0.3355  0 0.776 0.092 0.000 0.000 0.132
#> GSM615942     2  0.2805     0.3563  0 0.828 0.160 0.000 0.000 0.012
#> GSM615943     2  0.3797    -0.3759  0 0.580 0.000 0.000 0.000 0.420
#> GSM615949     2  0.0937     0.3488  0 0.960 0.000 0.000 0.000 0.040
#> GSM615957     3  0.4923     0.7608  0 0.368 0.560 0.000 0.000 0.072
#> GSM721720     6  0.3847     0.6741  0 0.348 0.008 0.000 0.000 0.644
#> GSM721721     2  0.5900    -0.0574  0 0.472 0.004 0.336 0.000 0.188
#> GSM615959     1  0.0000     1.0000  1 0.000 0.000 0.000 0.000 0.000
#> GSM615960     1  0.0000     1.0000  1 0.000 0.000 0.000 0.000 0.000
#> GSM615961     1  0.0000     1.0000  1 0.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n age(p) gender(p) tissue(p) k
#> ATC:hclust 49 0.8173     1.000  1.14e-03 2
#> ATC:hclust 48 0.0461     0.703  3.78e-11 3
#> ATC:hclust 40 0.0907     0.366  2.06e-09 4
#> ATC:hclust 37 0.1255     0.478  1.80e-07 5
#> ATC:hclust 24 0.0857     0.308  7.99e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16230 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.878           0.887       0.957         0.2513 0.784   0.784
#> 3 3 0.622           0.884       0.926         0.7893 0.771   0.712
#> 4 4 0.698           0.887       0.928         0.4387 0.724   0.538
#> 5 5 0.606           0.555       0.691         0.1507 0.796   0.477
#> 6 6 0.638           0.515       0.666         0.0764 0.956   0.825

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM615919     2   0.936      0.448 0.352 0.648
#> GSM615921     2   0.000      0.954 0.000 1.000
#> GSM615922     2   0.000      0.954 0.000 1.000
#> GSM615925     2   0.909      0.507 0.324 0.676
#> GSM615926     2   0.000      0.954 0.000 1.000
#> GSM615933     2   0.000      0.954 0.000 1.000
#> GSM615939     2   0.000      0.954 0.000 1.000
#> GSM615941     2   0.000      0.954 0.000 1.000
#> GSM615944     2   0.000      0.954 0.000 1.000
#> GSM615945     2   0.000      0.954 0.000 1.000
#> GSM615947     2   0.000      0.954 0.000 1.000
#> GSM615948     2   0.000      0.954 0.000 1.000
#> GSM615951     2   0.000      0.954 0.000 1.000
#> GSM615918     2   0.943      0.430 0.360 0.640
#> GSM615927     2   0.000      0.954 0.000 1.000
#> GSM615929     2   0.000      0.954 0.000 1.000
#> GSM615931     2   0.000      0.954 0.000 1.000
#> GSM615937     2   0.000      0.954 0.000 1.000
#> GSM615938     2   0.000      0.954 0.000 1.000
#> GSM615940     2   0.000      0.954 0.000 1.000
#> GSM615946     2   0.000      0.954 0.000 1.000
#> GSM615952     2   0.000      0.954 0.000 1.000
#> GSM615953     2   0.000      0.954 0.000 1.000
#> GSM615955     1   0.958      0.312 0.620 0.380
#> GSM721722     1   0.000      0.916 1.000 0.000
#> GSM721723     2   0.000      0.954 0.000 1.000
#> GSM721724     2   0.000      0.954 0.000 1.000
#> GSM615917     2   0.936      0.448 0.352 0.648
#> GSM615920     2   0.943      0.430 0.360 0.640
#> GSM615923     2   0.000      0.954 0.000 1.000
#> GSM615928     2   0.000      0.954 0.000 1.000
#> GSM615934     2   0.000      0.954 0.000 1.000
#> GSM615950     2   0.000      0.954 0.000 1.000
#> GSM615954     2   0.000      0.954 0.000 1.000
#> GSM615956     2   0.000      0.954 0.000 1.000
#> GSM615958     1   0.000      0.916 1.000 0.000
#> GSM615924     2   0.000      0.954 0.000 1.000
#> GSM615930     2   0.000      0.954 0.000 1.000
#> GSM615932     2   0.000      0.954 0.000 1.000
#> GSM615935     2   0.000      0.954 0.000 1.000
#> GSM615936     2   0.000      0.954 0.000 1.000
#> GSM615942     2   0.000      0.954 0.000 1.000
#> GSM615943     2   0.000      0.954 0.000 1.000
#> GSM615949     2   0.000      0.954 0.000 1.000
#> GSM615957     2   0.000      0.954 0.000 1.000
#> GSM721720     2   0.000      0.954 0.000 1.000
#> GSM721721     2   0.000      0.954 0.000 1.000
#> GSM615959     1   0.000      0.916 1.000 0.000
#> GSM615960     1   0.000      0.916 1.000 0.000
#> GSM615961     1   0.000      0.916 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM615919     3  0.4326      0.809 0.012 0.144 0.844
#> GSM615921     2  0.1163      0.924 0.000 0.972 0.028
#> GSM615922     2  0.3941      0.861 0.000 0.844 0.156
#> GSM615925     3  0.4326      0.809 0.012 0.144 0.844
#> GSM615926     3  0.3340      0.687 0.000 0.120 0.880
#> GSM615933     2  0.1163      0.924 0.000 0.972 0.028
#> GSM615939     2  0.1163      0.918 0.000 0.972 0.028
#> GSM615941     2  0.4291      0.843 0.000 0.820 0.180
#> GSM615944     2  0.4291      0.843 0.000 0.820 0.180
#> GSM615945     2  0.1163      0.924 0.000 0.972 0.028
#> GSM615947     2  0.1289      0.918 0.000 0.968 0.032
#> GSM615948     2  0.1289      0.918 0.000 0.968 0.032
#> GSM615951     2  0.3941      0.861 0.000 0.844 0.156
#> GSM615918     3  0.4326      0.809 0.012 0.144 0.844
#> GSM615927     2  0.1163      0.924 0.000 0.972 0.028
#> GSM615929     3  0.1031      0.790 0.000 0.024 0.976
#> GSM615931     2  0.0000      0.922 0.000 1.000 0.000
#> GSM615937     2  0.1163      0.924 0.000 0.972 0.028
#> GSM615938     2  0.1163      0.924 0.000 0.972 0.028
#> GSM615940     2  0.3941      0.861 0.000 0.844 0.156
#> GSM615946     2  0.1163      0.924 0.000 0.972 0.028
#> GSM615952     2  0.4291      0.843 0.000 0.820 0.180
#> GSM615953     2  0.0592      0.920 0.000 0.988 0.012
#> GSM615955     3  0.3933      0.701 0.092 0.028 0.880
#> GSM721722     3  0.5363      0.592 0.276 0.000 0.724
#> GSM721723     2  0.1163      0.924 0.000 0.972 0.028
#> GSM721724     2  0.1411      0.916 0.000 0.964 0.036
#> GSM615917     3  0.4326      0.809 0.012 0.144 0.844
#> GSM615920     3  0.1620      0.793 0.012 0.024 0.964
#> GSM615923     2  0.1163      0.924 0.000 0.972 0.028
#> GSM615928     2  0.1163      0.924 0.000 0.972 0.028
#> GSM615934     2  0.3941      0.861 0.000 0.844 0.156
#> GSM615950     2  0.1163      0.924 0.000 0.972 0.028
#> GSM615954     2  0.1163      0.924 0.000 0.972 0.028
#> GSM615956     2  0.2165      0.907 0.000 0.936 0.064
#> GSM615958     1  0.0000      1.000 1.000 0.000 0.000
#> GSM615924     2  0.1529      0.916 0.000 0.960 0.040
#> GSM615930     2  0.1163      0.924 0.000 0.972 0.028
#> GSM615932     2  0.1163      0.924 0.000 0.972 0.028
#> GSM615935     2  0.3941      0.861 0.000 0.844 0.156
#> GSM615936     2  0.3941      0.861 0.000 0.844 0.156
#> GSM615942     2  0.3941      0.861 0.000 0.844 0.156
#> GSM615943     2  0.1163      0.924 0.000 0.972 0.028
#> GSM615949     2  0.1411      0.916 0.000 0.964 0.036
#> GSM615957     2  0.3941      0.861 0.000 0.844 0.156
#> GSM721720     2  0.1163      0.924 0.000 0.972 0.028
#> GSM721721     2  0.1163      0.924 0.000 0.972 0.028
#> GSM615959     1  0.0000      1.000 1.000 0.000 0.000
#> GSM615960     1  0.0000      1.000 1.000 0.000 0.000
#> GSM615961     1  0.0000      1.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM615919     4  0.0188    0.99271 0.000 0.004 0.000 0.996
#> GSM615921     2  0.1389    0.94058 0.000 0.952 0.048 0.000
#> GSM615922     3  0.2011    0.84443 0.000 0.080 0.920 0.000
#> GSM615925     4  0.0188    0.99271 0.000 0.004 0.000 0.996
#> GSM615926     3  0.3893    0.67704 0.000 0.008 0.796 0.196
#> GSM615933     2  0.0000    0.94113 0.000 1.000 0.000 0.000
#> GSM615939     2  0.2814    0.87560 0.000 0.868 0.132 0.000
#> GSM615941     3  0.2002    0.83148 0.000 0.044 0.936 0.020
#> GSM615944     3  0.2002    0.83148 0.000 0.044 0.936 0.020
#> GSM615945     2  0.0000    0.94113 0.000 1.000 0.000 0.000
#> GSM615947     2  0.2868    0.87179 0.000 0.864 0.136 0.000
#> GSM615948     2  0.3074    0.86212 0.000 0.848 0.152 0.000
#> GSM615951     3  0.2011    0.84443 0.000 0.080 0.920 0.000
#> GSM615918     4  0.0188    0.99271 0.000 0.004 0.000 0.996
#> GSM615927     2  0.1576    0.93963 0.000 0.948 0.048 0.004
#> GSM615929     4  0.0469    0.98699 0.000 0.000 0.012 0.988
#> GSM615931     2  0.0000    0.94113 0.000 1.000 0.000 0.000
#> GSM615937     2  0.0707    0.94350 0.000 0.980 0.020 0.000
#> GSM615938     2  0.0000    0.94113 0.000 1.000 0.000 0.000
#> GSM615940     3  0.3945    0.76641 0.000 0.216 0.780 0.004
#> GSM615946     2  0.0000    0.94113 0.000 1.000 0.000 0.000
#> GSM615952     3  0.1724    0.82715 0.000 0.032 0.948 0.020
#> GSM615953     2  0.3266    0.86586 0.000 0.832 0.168 0.000
#> GSM615955     3  0.4086    0.63837 0.008 0.000 0.776 0.216
#> GSM721722     4  0.0804    0.98216 0.012 0.000 0.008 0.980
#> GSM721723     2  0.1302    0.94105 0.000 0.956 0.044 0.000
#> GSM721724     2  0.1022    0.93497 0.000 0.968 0.032 0.000
#> GSM615917     4  0.0188    0.99271 0.000 0.004 0.000 0.996
#> GSM615920     4  0.0336    0.98898 0.000 0.000 0.008 0.992
#> GSM615923     2  0.1389    0.94058 0.000 0.952 0.048 0.000
#> GSM615928     2  0.1576    0.93963 0.000 0.948 0.048 0.004
#> GSM615934     3  0.2647    0.84091 0.000 0.120 0.880 0.000
#> GSM615950     2  0.0000    0.94113 0.000 1.000 0.000 0.000
#> GSM615954     2  0.2704    0.90094 0.000 0.876 0.124 0.000
#> GSM615956     3  0.4994   -0.00973 0.000 0.480 0.520 0.000
#> GSM615958     1  0.0707    0.99050 0.980 0.000 0.020 0.000
#> GSM615924     2  0.1576    0.93963 0.000 0.948 0.048 0.004
#> GSM615930     2  0.1792    0.91752 0.000 0.932 0.068 0.000
#> GSM615932     2  0.2408    0.89652 0.000 0.896 0.104 0.000
#> GSM615935     3  0.3945    0.76641 0.000 0.216 0.780 0.004
#> GSM615936     3  0.3219    0.81486 0.000 0.164 0.836 0.000
#> GSM615942     3  0.2589    0.84204 0.000 0.116 0.884 0.000
#> GSM615943     2  0.0000    0.94113 0.000 1.000 0.000 0.000
#> GSM615949     2  0.0657    0.93833 0.000 0.984 0.012 0.004
#> GSM615957     3  0.1940    0.84424 0.000 0.076 0.924 0.000
#> GSM721720     2  0.1867    0.93324 0.000 0.928 0.072 0.000
#> GSM721721     2  0.1576    0.93963 0.000 0.948 0.048 0.004
#> GSM615959     1  0.0000    0.99486 1.000 0.000 0.000 0.000
#> GSM615960     1  0.0336    0.99434 0.992 0.000 0.008 0.000
#> GSM615961     1  0.0000    0.99486 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM615919     4  0.0000     0.9365 0.000 0.000 0.000 1.000 0.000
#> GSM615921     5  0.4090     0.8338 0.000 0.268 0.000 0.016 0.716
#> GSM615922     3  0.4114     0.8032 0.000 0.244 0.732 0.000 0.024
#> GSM615925     4  0.0000     0.9365 0.000 0.000 0.000 1.000 0.000
#> GSM615926     3  0.1891     0.6915 0.000 0.016 0.936 0.032 0.016
#> GSM615933     2  0.4397    -0.0850 0.004 0.564 0.000 0.000 0.432
#> GSM615939     2  0.2974     0.4414 0.000 0.868 0.052 0.000 0.080
#> GSM615941     3  0.2891     0.8183 0.000 0.176 0.824 0.000 0.000
#> GSM615944     3  0.1956     0.7680 0.000 0.076 0.916 0.000 0.008
#> GSM615945     2  0.4397    -0.0850 0.004 0.564 0.000 0.000 0.432
#> GSM615947     2  0.3055     0.4442 0.000 0.864 0.064 0.000 0.072
#> GSM615948     2  0.3586     0.4305 0.000 0.828 0.096 0.000 0.076
#> GSM615951     3  0.4024     0.8075 0.000 0.220 0.752 0.000 0.028
#> GSM615918     4  0.0000     0.9365 0.000 0.000 0.000 1.000 0.000
#> GSM615927     5  0.4114     0.8351 0.000 0.272 0.000 0.016 0.712
#> GSM615929     4  0.0703     0.9296 0.000 0.000 0.024 0.976 0.000
#> GSM615931     2  0.2732     0.3783 0.000 0.840 0.000 0.000 0.160
#> GSM615937     5  0.3932     0.7754 0.000 0.328 0.000 0.000 0.672
#> GSM615938     2  0.4403    -0.1040 0.004 0.560 0.000 0.000 0.436
#> GSM615940     2  0.6451    -0.2586 0.004 0.496 0.328 0.000 0.172
#> GSM615946     2  0.3636     0.2140 0.000 0.728 0.000 0.000 0.272
#> GSM615952     3  0.3053     0.8184 0.000 0.164 0.828 0.000 0.008
#> GSM615953     2  0.4840     0.3099 0.000 0.676 0.056 0.000 0.268
#> GSM615955     3  0.2079     0.6531 0.000 0.000 0.916 0.064 0.020
#> GSM721722     4  0.3912     0.8012 0.004 0.000 0.208 0.768 0.020
#> GSM721723     5  0.3395     0.7833 0.000 0.236 0.000 0.000 0.764
#> GSM721724     2  0.3257     0.4370 0.004 0.844 0.028 0.000 0.124
#> GSM615917     4  0.0000     0.9365 0.000 0.000 0.000 1.000 0.000
#> GSM615920     4  0.3011     0.8608 0.000 0.000 0.140 0.844 0.016
#> GSM615923     5  0.3395     0.8243 0.000 0.236 0.000 0.000 0.764
#> GSM615928     5  0.4114     0.8351 0.000 0.272 0.000 0.016 0.712
#> GSM615934     3  0.4367     0.6516 0.000 0.416 0.580 0.000 0.004
#> GSM615950     2  0.4403    -0.0971 0.004 0.560 0.000 0.000 0.436
#> GSM615954     5  0.4016     0.6962 0.000 0.272 0.012 0.000 0.716
#> GSM615956     2  0.6040     0.0386 0.000 0.556 0.292 0.000 0.152
#> GSM615958     1  0.0162     0.9966 0.996 0.000 0.000 0.004 0.000
#> GSM615924     5  0.4206     0.8216 0.000 0.288 0.000 0.016 0.696
#> GSM615930     2  0.4787    -0.2232 0.000 0.548 0.020 0.000 0.432
#> GSM615932     2  0.4718     0.0884 0.000 0.628 0.028 0.000 0.344
#> GSM615935     2  0.6430    -0.2373 0.004 0.504 0.320 0.000 0.172
#> GSM615936     2  0.4309    -0.0128 0.000 0.676 0.308 0.000 0.016
#> GSM615942     3  0.4367     0.6516 0.000 0.416 0.580 0.000 0.004
#> GSM615943     2  0.4390    -0.0740 0.004 0.568 0.000 0.000 0.428
#> GSM615949     2  0.3308     0.4210 0.004 0.832 0.020 0.000 0.144
#> GSM615957     3  0.4766     0.7897 0.000 0.220 0.708 0.000 0.072
#> GSM721720     5  0.3863     0.7157 0.000 0.248 0.012 0.000 0.740
#> GSM721721     5  0.3934     0.8372 0.000 0.244 0.000 0.016 0.740
#> GSM615959     1  0.0451     0.9966 0.988 0.000 0.000 0.004 0.008
#> GSM615960     1  0.0162     0.9966 0.996 0.000 0.000 0.004 0.000
#> GSM615961     1  0.0451     0.9966 0.988 0.000 0.000 0.004 0.008

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4 p5    p6
#> GSM615919     4  0.0000     0.8758 0.000 0.000 0.000 1.000 NA 0.000
#> GSM615921     6  0.2412     0.7075 0.000 0.092 0.000 0.028 NA 0.880
#> GSM615922     3  0.1984     0.6301 0.000 0.056 0.912 0.000 NA 0.032
#> GSM615925     4  0.0146     0.8747 0.000 0.000 0.000 0.996 NA 0.000
#> GSM615926     3  0.4242     0.4157 0.000 0.012 0.572 0.004 NA 0.000
#> GSM615933     2  0.5336     0.2709 0.000 0.572 0.000 0.000 NA 0.284
#> GSM615939     2  0.5298     0.3556 0.000 0.644 0.244 0.000 NA 0.064
#> GSM615941     3  0.1845     0.6391 0.000 0.028 0.920 0.000 NA 0.000
#> GSM615944     3  0.3575     0.5293 0.000 0.008 0.708 0.000 NA 0.000
#> GSM615945     2  0.5318     0.2789 0.000 0.580 0.000 0.000 NA 0.272
#> GSM615947     2  0.5288     0.3502 0.000 0.640 0.252 0.000 NA 0.060
#> GSM615948     2  0.5333     0.3236 0.000 0.624 0.272 0.000 NA 0.056
#> GSM615951     3  0.2170     0.6351 0.000 0.016 0.908 0.000 NA 0.016
#> GSM615918     4  0.0000     0.8758 0.000 0.000 0.000 1.000 NA 0.000
#> GSM615927     6  0.2510     0.7089 0.000 0.100 0.000 0.028 NA 0.872
#> GSM615929     4  0.1096     0.8647 0.000 0.004 0.004 0.964 NA 0.008
#> GSM615931     2  0.3241     0.4683 0.000 0.824 0.064 0.000 NA 0.112
#> GSM615937     6  0.5638     0.3311 0.000 0.352 0.004 0.000 NA 0.504
#> GSM615938     2  0.5410     0.2435 0.000 0.564 0.000 0.000 NA 0.280
#> GSM615940     3  0.6301     0.1359 0.000 0.388 0.400 0.000 NA 0.020
#> GSM615946     2  0.4332     0.3877 0.000 0.740 0.008 0.000 NA 0.156
#> GSM615952     3  0.1757     0.6407 0.000 0.008 0.916 0.000 NA 0.000
#> GSM615953     2  0.7335     0.1085 0.000 0.384 0.284 0.000 NA 0.132
#> GSM615955     3  0.4460     0.3689 0.000 0.000 0.520 0.028 NA 0.000
#> GSM721722     4  0.4084     0.6301 0.000 0.000 0.012 0.588 NA 0.000
#> GSM721723     6  0.5570     0.5509 0.000 0.152 0.016 0.000 NA 0.600
#> GSM721724     2  0.5776     0.3975 0.000 0.624 0.204 0.000 NA 0.108
#> GSM615917     4  0.0000     0.8758 0.000 0.000 0.000 1.000 NA 0.000
#> GSM615920     4  0.3668     0.6959 0.000 0.004 0.000 0.668 NA 0.000
#> GSM615923     6  0.2744     0.6963 0.000 0.072 0.000 0.000 NA 0.864
#> GSM615928     6  0.2510     0.7089 0.000 0.100 0.000 0.028 NA 0.872
#> GSM615934     3  0.4019     0.4149 0.000 0.332 0.652 0.000 NA 0.004
#> GSM615950     2  0.5410     0.2435 0.000 0.564 0.000 0.000 NA 0.280
#> GSM615954     6  0.6403     0.4670 0.000 0.164 0.048 0.000 NA 0.500
#> GSM615956     3  0.7071     0.1736 0.000 0.240 0.448 0.000 NA 0.108
#> GSM615958     1  0.0508     0.9928 0.984 0.012 0.000 0.000 NA 0.000
#> GSM615924     6  0.2747     0.7039 0.000 0.108 0.000 0.028 NA 0.860
#> GSM615930     2  0.5712     0.2681 0.000 0.592 0.024 0.000 NA 0.236
#> GSM615932     2  0.5732     0.3450 0.000 0.628 0.048 0.000 NA 0.172
#> GSM615935     2  0.6301    -0.2255 0.000 0.400 0.388 0.000 NA 0.020
#> GSM615936     2  0.4925    -0.0866 0.000 0.492 0.460 0.000 NA 0.016
#> GSM615942     3  0.4034     0.4084 0.000 0.336 0.648 0.000 NA 0.004
#> GSM615943     2  0.5336     0.2709 0.000 0.572 0.000 0.000 NA 0.284
#> GSM615949     2  0.5646     0.4104 0.000 0.640 0.192 0.000 NA 0.108
#> GSM615957     3  0.3749     0.5923 0.000 0.028 0.804 0.000 NA 0.044
#> GSM721720     6  0.6155     0.4991 0.000 0.160 0.036 0.000 NA 0.532
#> GSM721721     6  0.2479     0.7090 0.000 0.064 0.000 0.028 NA 0.892
#> GSM615959     1  0.0000     0.9942 1.000 0.000 0.000 0.000 NA 0.000
#> GSM615960     1  0.0405     0.9938 0.988 0.008 0.000 0.000 NA 0.000
#> GSM615961     1  0.0000     0.9942 1.000 0.000 0.000 0.000 NA 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n age(p) gender(p) tissue(p) k
#> ATC:kmeans 45 0.2673     0.557  3.52e-07 2
#> ATC:kmeans 50 0.0343     0.582  1.39e-11 3
#> ATC:kmeans 49 0.1171     0.742  1.30e-10 4
#> ATC:kmeans 31 0.0640     0.591  8.50e-07 5
#> ATC:kmeans 24 0.0463     0.582  2.50e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16230 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.987       0.994         0.4396 0.556   0.556
#> 3 3 0.908           0.946       0.975         0.4476 0.762   0.589
#> 4 4 0.609           0.592       0.760         0.1470 0.905   0.751
#> 5 5 0.637           0.512       0.701         0.0728 0.887   0.645
#> 6 6 0.696           0.622       0.773         0.0503 0.901   0.602

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM615919     1  0.0000      0.979 1.000 0.000
#> GSM615921     2  0.0000      1.000 0.000 1.000
#> GSM615922     2  0.0000      1.000 0.000 1.000
#> GSM615925     1  0.0000      0.979 1.000 0.000
#> GSM615926     1  0.0000      0.979 1.000 0.000
#> GSM615933     2  0.0000      1.000 0.000 1.000
#> GSM615939     2  0.0000      1.000 0.000 1.000
#> GSM615941     1  0.7219      0.762 0.800 0.200
#> GSM615944     1  0.4939      0.881 0.892 0.108
#> GSM615945     2  0.0000      1.000 0.000 1.000
#> GSM615947     2  0.0000      1.000 0.000 1.000
#> GSM615948     2  0.0000      1.000 0.000 1.000
#> GSM615951     2  0.0000      1.000 0.000 1.000
#> GSM615918     1  0.0000      0.979 1.000 0.000
#> GSM615927     2  0.0000      1.000 0.000 1.000
#> GSM615929     1  0.0000      0.979 1.000 0.000
#> GSM615931     2  0.0000      1.000 0.000 1.000
#> GSM615937     2  0.0000      1.000 0.000 1.000
#> GSM615938     2  0.0000      1.000 0.000 1.000
#> GSM615940     2  0.0000      1.000 0.000 1.000
#> GSM615946     2  0.0000      1.000 0.000 1.000
#> GSM615952     1  0.0672      0.973 0.992 0.008
#> GSM615953     2  0.0000      1.000 0.000 1.000
#> GSM615955     1  0.0000      0.979 1.000 0.000
#> GSM721722     1  0.0000      0.979 1.000 0.000
#> GSM721723     2  0.0000      1.000 0.000 1.000
#> GSM721724     2  0.0000      1.000 0.000 1.000
#> GSM615917     1  0.0000      0.979 1.000 0.000
#> GSM615920     1  0.0000      0.979 1.000 0.000
#> GSM615923     2  0.0000      1.000 0.000 1.000
#> GSM615928     2  0.0000      1.000 0.000 1.000
#> GSM615934     2  0.0000      1.000 0.000 1.000
#> GSM615950     2  0.0000      1.000 0.000 1.000
#> GSM615954     2  0.0000      1.000 0.000 1.000
#> GSM615956     2  0.0000      1.000 0.000 1.000
#> GSM615958     1  0.0000      0.979 1.000 0.000
#> GSM615924     2  0.0000      1.000 0.000 1.000
#> GSM615930     2  0.0000      1.000 0.000 1.000
#> GSM615932     2  0.0000      1.000 0.000 1.000
#> GSM615935     2  0.0000      1.000 0.000 1.000
#> GSM615936     2  0.0000      1.000 0.000 1.000
#> GSM615942     2  0.0000      1.000 0.000 1.000
#> GSM615943     2  0.0000      1.000 0.000 1.000
#> GSM615949     2  0.0000      1.000 0.000 1.000
#> GSM615957     2  0.0000      1.000 0.000 1.000
#> GSM721720     2  0.0000      1.000 0.000 1.000
#> GSM721721     2  0.0000      1.000 0.000 1.000
#> GSM615959     1  0.0000      0.979 1.000 0.000
#> GSM615960     1  0.0000      0.979 1.000 0.000
#> GSM615961     1  0.0000      0.979 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM615919     1  0.0000      0.981 1.000 0.000 0.000
#> GSM615921     2  0.0237      0.978 0.000 0.996 0.004
#> GSM615922     3  0.0000      0.942 0.000 0.000 1.000
#> GSM615925     1  0.0000      0.981 1.000 0.000 0.000
#> GSM615926     1  0.3038      0.893 0.896 0.000 0.104
#> GSM615933     2  0.0000      0.978 0.000 1.000 0.000
#> GSM615939     2  0.0747      0.969 0.000 0.984 0.016
#> GSM615941     3  0.0237      0.942 0.004 0.000 0.996
#> GSM615944     3  0.0237      0.942 0.004 0.000 0.996
#> GSM615945     2  0.0000      0.978 0.000 1.000 0.000
#> GSM615947     2  0.2959      0.898 0.000 0.900 0.100
#> GSM615948     2  0.3192      0.885 0.000 0.888 0.112
#> GSM615951     3  0.0000      0.942 0.000 0.000 1.000
#> GSM615918     1  0.0000      0.981 1.000 0.000 0.000
#> GSM615927     2  0.0237      0.978 0.000 0.996 0.004
#> GSM615929     1  0.0000      0.981 1.000 0.000 0.000
#> GSM615931     2  0.0000      0.978 0.000 1.000 0.000
#> GSM615937     2  0.0000      0.978 0.000 1.000 0.000
#> GSM615938     2  0.0000      0.978 0.000 1.000 0.000
#> GSM615940     3  0.0747      0.942 0.000 0.016 0.984
#> GSM615946     2  0.0000      0.978 0.000 1.000 0.000
#> GSM615952     3  0.0237      0.942 0.004 0.000 0.996
#> GSM615953     2  0.0747      0.970 0.000 0.984 0.016
#> GSM615955     1  0.3267      0.880 0.884 0.000 0.116
#> GSM721722     1  0.0000      0.981 1.000 0.000 0.000
#> GSM721723     2  0.0237      0.978 0.000 0.996 0.004
#> GSM721724     2  0.3038      0.894 0.000 0.896 0.104
#> GSM615917     1  0.0000      0.981 1.000 0.000 0.000
#> GSM615920     1  0.0000      0.981 1.000 0.000 0.000
#> GSM615923     2  0.0237      0.978 0.000 0.996 0.004
#> GSM615928     2  0.0237      0.978 0.000 0.996 0.004
#> GSM615934     3  0.0747      0.942 0.000 0.016 0.984
#> GSM615950     2  0.0000      0.978 0.000 1.000 0.000
#> GSM615954     2  0.0747      0.970 0.000 0.984 0.016
#> GSM615956     3  0.6204      0.261 0.000 0.424 0.576
#> GSM615958     1  0.0000      0.981 1.000 0.000 0.000
#> GSM615924     2  0.0237      0.978 0.000 0.996 0.004
#> GSM615930     2  0.0000      0.978 0.000 1.000 0.000
#> GSM615932     2  0.0000      0.978 0.000 1.000 0.000
#> GSM615935     3  0.0747      0.942 0.000 0.016 0.984
#> GSM615936     3  0.1031      0.936 0.000 0.024 0.976
#> GSM615942     3  0.0747      0.942 0.000 0.016 0.984
#> GSM615943     2  0.0000      0.978 0.000 1.000 0.000
#> GSM615949     2  0.2878      0.902 0.000 0.904 0.096
#> GSM615957     3  0.0000      0.942 0.000 0.000 1.000
#> GSM721720     2  0.0237      0.978 0.000 0.996 0.004
#> GSM721721     2  0.0237      0.978 0.000 0.996 0.004
#> GSM615959     1  0.0000      0.981 1.000 0.000 0.000
#> GSM615960     1  0.0000      0.981 1.000 0.000 0.000
#> GSM615961     1  0.0000      0.981 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM615919     1  0.4888     0.6584 0.588 0.000 0.000 0.412
#> GSM615921     2  0.4981    -0.6992 0.000 0.536 0.000 0.464
#> GSM615922     3  0.3172     0.7935 0.000 0.000 0.840 0.160
#> GSM615925     1  0.4888     0.6584 0.588 0.000 0.000 0.412
#> GSM615926     1  0.3877     0.6705 0.840 0.000 0.048 0.112
#> GSM615933     2  0.0000     0.6075 0.000 1.000 0.000 0.000
#> GSM615939     2  0.4567     0.5233 0.000 0.716 0.276 0.008
#> GSM615941     3  0.5670     0.7473 0.104 0.008 0.736 0.152
#> GSM615944     3  0.6472     0.6855 0.172 0.008 0.668 0.152
#> GSM615945     2  0.0000     0.6075 0.000 1.000 0.000 0.000
#> GSM615947     2  0.4936     0.4976 0.000 0.672 0.316 0.012
#> GSM615948     2  0.5174     0.4590 0.000 0.620 0.368 0.012
#> GSM615951     3  0.3942     0.7761 0.000 0.000 0.764 0.236
#> GSM615918     1  0.4888     0.6584 0.588 0.000 0.000 0.412
#> GSM615927     4  0.4961     0.8800 0.000 0.448 0.000 0.552
#> GSM615929     1  0.4888     0.6584 0.588 0.000 0.000 0.412
#> GSM615931     2  0.3249     0.5825 0.000 0.852 0.140 0.008
#> GSM615937     2  0.2408     0.4823 0.000 0.896 0.000 0.104
#> GSM615938     2  0.0188     0.6045 0.000 0.996 0.000 0.004
#> GSM615940     3  0.2266     0.7716 0.000 0.084 0.912 0.004
#> GSM615946     2  0.2342     0.6012 0.000 0.912 0.080 0.008
#> GSM615952     3  0.6238     0.6992 0.092 0.000 0.632 0.276
#> GSM615953     2  0.5185     0.4846 0.000 0.748 0.076 0.176
#> GSM615955     1  0.4415     0.6302 0.804 0.000 0.056 0.140
#> GSM721722     1  0.0000     0.7926 1.000 0.000 0.000 0.000
#> GSM721723     2  0.4539     0.1250 0.000 0.720 0.008 0.272
#> GSM721724     2  0.4897     0.4872 0.000 0.660 0.332 0.008
#> GSM615917     1  0.4888     0.6584 0.588 0.000 0.000 0.412
#> GSM615920     1  0.0707     0.7908 0.980 0.000 0.000 0.020
#> GSM615923     2  0.4356    -0.0080 0.000 0.708 0.000 0.292
#> GSM615928     4  0.4981     0.8520 0.000 0.464 0.000 0.536
#> GSM615934     3  0.2596     0.7888 0.000 0.068 0.908 0.024
#> GSM615950     2  0.0000     0.6075 0.000 1.000 0.000 0.000
#> GSM615954     2  0.5189     0.0800 0.000 0.616 0.012 0.372
#> GSM615956     2  0.7547     0.2348 0.000 0.488 0.276 0.236
#> GSM615958     1  0.0000     0.7926 1.000 0.000 0.000 0.000
#> GSM615924     4  0.4500     0.7379 0.000 0.316 0.000 0.684
#> GSM615930     2  0.0336     0.6079 0.000 0.992 0.000 0.008
#> GSM615932     2  0.0804     0.6100 0.000 0.980 0.012 0.008
#> GSM615935     3  0.2714     0.7487 0.000 0.112 0.884 0.004
#> GSM615936     3  0.3401     0.6987 0.000 0.152 0.840 0.008
#> GSM615942     3  0.1792     0.7826 0.000 0.068 0.932 0.000
#> GSM615943     2  0.0000     0.6075 0.000 1.000 0.000 0.000
#> GSM615949     2  0.5099     0.4400 0.000 0.612 0.380 0.008
#> GSM615957     3  0.4277     0.7587 0.000 0.000 0.720 0.280
#> GSM721720     2  0.4877     0.0885 0.000 0.664 0.008 0.328
#> GSM721721     4  0.4948     0.8812 0.000 0.440 0.000 0.560
#> GSM615959     1  0.0000     0.7926 1.000 0.000 0.000 0.000
#> GSM615960     1  0.0000     0.7926 1.000 0.000 0.000 0.000
#> GSM615961     1  0.0000     0.7926 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM615919     1  0.7018     0.5528 0.408 0.244 0.012 0.336 0.000
#> GSM615921     4  0.4122     0.9035 0.000 0.004 0.004 0.688 0.304
#> GSM615922     3  0.4277     0.3571 0.000 0.156 0.768 0.076 0.000
#> GSM615925     1  0.7018     0.5528 0.408 0.244 0.012 0.336 0.000
#> GSM615926     1  0.4107     0.5654 0.820 0.084 0.040 0.056 0.000
#> GSM615933     5  0.0451     0.6450 0.000 0.000 0.004 0.008 0.988
#> GSM615939     5  0.5268     0.3148 0.000 0.048 0.360 0.004 0.588
#> GSM615941     3  0.6772     0.1663 0.208 0.136 0.596 0.056 0.004
#> GSM615944     3  0.7159     0.0469 0.332 0.136 0.476 0.056 0.000
#> GSM615945     5  0.0451     0.6450 0.000 0.000 0.004 0.008 0.988
#> GSM615947     5  0.5360     0.2413 0.000 0.048 0.396 0.004 0.552
#> GSM615948     5  0.5585     0.1008 0.000 0.044 0.460 0.012 0.484
#> GSM615951     2  0.4302     0.2920 0.000 0.520 0.480 0.000 0.000
#> GSM615918     1  0.7018     0.5528 0.408 0.244 0.012 0.336 0.000
#> GSM615927     4  0.3838     0.9215 0.000 0.000 0.004 0.716 0.280
#> GSM615929     1  0.7018     0.5528 0.408 0.244 0.012 0.336 0.000
#> GSM615931     5  0.3535     0.5947 0.000 0.028 0.164 0.000 0.808
#> GSM615937     5  0.2624     0.5201 0.000 0.012 0.000 0.116 0.872
#> GSM615938     5  0.0566     0.6480 0.000 0.012 0.000 0.004 0.984
#> GSM615940     3  0.2959     0.5997 0.000 0.036 0.864 0.000 0.100
#> GSM615946     5  0.2234     0.6424 0.000 0.036 0.044 0.004 0.916
#> GSM615952     2  0.5733     0.4125 0.080 0.580 0.332 0.008 0.000
#> GSM615953     2  0.4494     0.2615 0.000 0.608 0.012 0.000 0.380
#> GSM615955     1  0.4218     0.5563 0.812 0.092 0.040 0.056 0.000
#> GSM721722     1  0.0000     0.6990 1.000 0.000 0.000 0.000 0.000
#> GSM721723     5  0.6438    -0.0700 0.000 0.280 0.000 0.220 0.500
#> GSM721724     5  0.5605     0.0831 0.000 0.052 0.464 0.008 0.476
#> GSM615917     1  0.7018     0.5528 0.408 0.244 0.012 0.336 0.000
#> GSM615920     1  0.1872     0.6892 0.928 0.052 0.000 0.020 0.000
#> GSM615923     4  0.4585     0.7630 0.000 0.008 0.004 0.592 0.396
#> GSM615928     4  0.3838     0.9215 0.000 0.000 0.004 0.716 0.280
#> GSM615934     3  0.2095     0.5962 0.000 0.008 0.920 0.012 0.060
#> GSM615950     5  0.0566     0.6426 0.000 0.000 0.004 0.012 0.984
#> GSM615954     5  0.6219    -0.0724 0.000 0.424 0.000 0.140 0.436
#> GSM615956     2  0.5156     0.4607 0.000 0.656 0.064 0.004 0.276
#> GSM615958     1  0.0000     0.6990 1.000 0.000 0.000 0.000 0.000
#> GSM615924     4  0.4052     0.8200 0.000 0.028 0.004 0.764 0.204
#> GSM615930     5  0.0798     0.6441 0.000 0.016 0.000 0.008 0.976
#> GSM615932     5  0.1299     0.6478 0.000 0.020 0.012 0.008 0.960
#> GSM615935     3  0.3214     0.5945 0.000 0.036 0.844 0.000 0.120
#> GSM615936     3  0.3381     0.5492 0.000 0.016 0.808 0.000 0.176
#> GSM615942     3  0.1914     0.5979 0.000 0.016 0.924 0.000 0.060
#> GSM615943     5  0.0451     0.6450 0.000 0.000 0.004 0.008 0.988
#> GSM615949     3  0.5234    -0.0632 0.000 0.036 0.524 0.004 0.436
#> GSM615957     2  0.3932     0.4896 0.000 0.672 0.328 0.000 0.000
#> GSM721720     5  0.6115     0.0657 0.000 0.280 0.000 0.168 0.552
#> GSM721721     4  0.3968     0.9200 0.000 0.004 0.004 0.716 0.276
#> GSM615959     1  0.0000     0.6990 1.000 0.000 0.000 0.000 0.000
#> GSM615960     1  0.0000     0.6990 1.000 0.000 0.000 0.000 0.000
#> GSM615961     1  0.0000     0.6990 1.000 0.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM615919     4  0.0000     0.9987 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM615921     6  0.2436     0.9330 0.000 0.000 0.000 0.032 0.088 0.880
#> GSM615922     3  0.5513     0.3511 0.056 0.160 0.660 0.000 0.000 0.124
#> GSM615925     4  0.0000     0.9987 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM615926     1  0.2673     0.7180 0.876 0.008 0.008 0.092 0.000 0.016
#> GSM615933     5  0.1807     0.7295 0.000 0.000 0.020 0.000 0.920 0.060
#> GSM615939     5  0.5516     0.1136 0.012 0.036 0.364 0.000 0.552 0.036
#> GSM615941     3  0.6417     0.1638 0.300 0.132 0.504 0.000 0.000 0.064
#> GSM615944     1  0.6510    -0.1799 0.416 0.124 0.396 0.000 0.000 0.064
#> GSM615945     5  0.1867     0.7288 0.000 0.000 0.020 0.000 0.916 0.064
#> GSM615947     5  0.5844     0.1212 0.024 0.044 0.356 0.000 0.540 0.036
#> GSM615948     3  0.5921     0.1244 0.024 0.044 0.496 0.000 0.400 0.036
#> GSM615951     2  0.3934     0.5288 0.020 0.728 0.240 0.000 0.000 0.012
#> GSM615918     4  0.0000     0.9987 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM615927     6  0.2608     0.9350 0.000 0.000 0.000 0.048 0.080 0.872
#> GSM615929     4  0.0146     0.9947 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM615931     5  0.3779     0.5972 0.008 0.008 0.152 0.000 0.792 0.040
#> GSM615937     5  0.4265     0.6291 0.024 0.032 0.008 0.000 0.752 0.184
#> GSM615938     5  0.2501     0.7261 0.004 0.016 0.028 0.000 0.896 0.056
#> GSM615940     3  0.3025     0.6136 0.004 0.068 0.860 0.000 0.060 0.008
#> GSM615946     5  0.2123     0.6893 0.008 0.000 0.064 0.000 0.908 0.020
#> GSM615952     2  0.4437     0.5854 0.120 0.744 0.120 0.000 0.000 0.016
#> GSM615953     2  0.3386     0.6482 0.008 0.788 0.000 0.000 0.188 0.016
#> GSM615955     1  0.2030     0.7063 0.908 0.028 0.000 0.064 0.000 0.000
#> GSM721722     1  0.3126     0.8094 0.752 0.000 0.000 0.248 0.000 0.000
#> GSM721723     5  0.6516    -0.0648 0.012 0.284 0.004 0.000 0.352 0.348
#> GSM721724     3  0.6044     0.1644 0.012 0.048 0.496 0.000 0.384 0.060
#> GSM615917     4  0.0000     0.9987 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM615920     1  0.3351     0.7669 0.712 0.000 0.000 0.288 0.000 0.000
#> GSM615923     6  0.2664     0.8279 0.000 0.000 0.000 0.000 0.184 0.816
#> GSM615928     6  0.2457     0.9348 0.000 0.000 0.000 0.036 0.084 0.880
#> GSM615934     3  0.2606     0.5717 0.036 0.028 0.896 0.000 0.008 0.032
#> GSM615950     5  0.1863     0.7300 0.000 0.004 0.016 0.000 0.920 0.060
#> GSM615954     2  0.6094     0.2865 0.016 0.516 0.004 0.000 0.292 0.172
#> GSM615956     2  0.2468     0.6920 0.000 0.880 0.008 0.000 0.096 0.016
#> GSM615958     1  0.3126     0.8094 0.752 0.000 0.000 0.248 0.000 0.000
#> GSM615924     6  0.3570     0.8620 0.000 0.000 0.000 0.144 0.064 0.792
#> GSM615930     5  0.2150     0.6996 0.044 0.004 0.004 0.000 0.912 0.036
#> GSM615932     5  0.2574     0.6900 0.048 0.008 0.020 0.000 0.896 0.028
#> GSM615935     3  0.3448     0.6184 0.004 0.064 0.828 0.000 0.096 0.008
#> GSM615936     3  0.3677     0.6178 0.008 0.032 0.796 0.000 0.156 0.008
#> GSM615942     3  0.1921     0.6103 0.004 0.032 0.928 0.000 0.024 0.012
#> GSM615943     5  0.1745     0.7296 0.000 0.000 0.020 0.000 0.924 0.056
#> GSM615949     3  0.5292     0.2931 0.004 0.024 0.564 0.000 0.360 0.048
#> GSM615957     2  0.1501     0.6785 0.000 0.924 0.076 0.000 0.000 0.000
#> GSM721720     5  0.6409    -0.0111 0.020 0.308 0.000 0.000 0.428 0.244
#> GSM721721     6  0.2629     0.9263 0.000 0.000 0.000 0.060 0.068 0.872
#> GSM615959     1  0.3126     0.8094 0.752 0.000 0.000 0.248 0.000 0.000
#> GSM615960     1  0.3126     0.8094 0.752 0.000 0.000 0.248 0.000 0.000
#> GSM615961     1  0.3126     0.8094 0.752 0.000 0.000 0.248 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n age(p) gender(p) tissue(p) k
#> ATC:skmeans 50  0.601     0.779   0.01311 2
#> ATC:skmeans 49  0.991     0.918   0.00240 3
#> ATC:skmeans 38  0.690     0.888   0.03515 4
#> ATC:skmeans 34  0.418     0.640   0.06228 5
#> ATC:skmeans 39  0.375     0.799   0.00401 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16230 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.1845 0.816   0.816
#> 3 3 1.000           0.994       0.997         0.8986 0.829   0.792
#> 4 4 0.524           0.872       0.895         0.7852 0.713   0.562
#> 5 5 0.580           0.752       0.848         0.1948 0.851   0.601
#> 6 6 0.656           0.738       0.858         0.0483 0.956   0.818

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> GSM615919     2       0          1  0  1
#> GSM615921     2       0          1  0  1
#> GSM615922     2       0          1  0  1
#> GSM615925     2       0          1  0  1
#> GSM615926     2       0          1  0  1
#> GSM615933     2       0          1  0  1
#> GSM615939     2       0          1  0  1
#> GSM615941     2       0          1  0  1
#> GSM615944     2       0          1  0  1
#> GSM615945     2       0          1  0  1
#> GSM615947     2       0          1  0  1
#> GSM615948     2       0          1  0  1
#> GSM615951     2       0          1  0  1
#> GSM615918     2       0          1  0  1
#> GSM615927     2       0          1  0  1
#> GSM615929     2       0          1  0  1
#> GSM615931     2       0          1  0  1
#> GSM615937     2       0          1  0  1
#> GSM615938     2       0          1  0  1
#> GSM615940     2       0          1  0  1
#> GSM615946     2       0          1  0  1
#> GSM615952     2       0          1  0  1
#> GSM615953     2       0          1  0  1
#> GSM615955     2       0          1  0  1
#> GSM721722     1       0          1  1  0
#> GSM721723     2       0          1  0  1
#> GSM721724     2       0          1  0  1
#> GSM615917     2       0          1  0  1
#> GSM615920     2       0          1  0  1
#> GSM615923     2       0          1  0  1
#> GSM615928     2       0          1  0  1
#> GSM615934     2       0          1  0  1
#> GSM615950     2       0          1  0  1
#> GSM615954     2       0          1  0  1
#> GSM615956     2       0          1  0  1
#> GSM615958     1       0          1  1  0
#> GSM615924     2       0          1  0  1
#> GSM615930     2       0          1  0  1
#> GSM615932     2       0          1  0  1
#> GSM615935     2       0          1  0  1
#> GSM615936     2       0          1  0  1
#> GSM615942     2       0          1  0  1
#> GSM615943     2       0          1  0  1
#> GSM615949     2       0          1  0  1
#> GSM615957     2       0          1  0  1
#> GSM721720     2       0          1  0  1
#> GSM721721     2       0          1  0  1
#> GSM615959     1       0          1  1  0
#> GSM615960     1       0          1  1  0
#> GSM615961     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette p1    p2    p3
#> GSM615919     3  0.0000      1.000  0 0.000 1.000
#> GSM615921     2  0.0000      0.997  0 1.000 0.000
#> GSM615922     2  0.0000      0.997  0 1.000 0.000
#> GSM615925     3  0.0000      1.000  0 0.000 1.000
#> GSM615926     2  0.0000      0.997  0 1.000 0.000
#> GSM615933     2  0.0000      0.997  0 1.000 0.000
#> GSM615939     2  0.0000      0.997  0 1.000 0.000
#> GSM615941     2  0.0000      0.997  0 1.000 0.000
#> GSM615944     2  0.0000      0.997  0 1.000 0.000
#> GSM615945     2  0.0000      0.997  0 1.000 0.000
#> GSM615947     2  0.0000      0.997  0 1.000 0.000
#> GSM615948     2  0.0000      0.997  0 1.000 0.000
#> GSM615951     2  0.0000      0.997  0 1.000 0.000
#> GSM615918     3  0.0000      1.000  0 0.000 1.000
#> GSM615927     2  0.0000      0.997  0 1.000 0.000
#> GSM615929     2  0.3340      0.863  0 0.880 0.120
#> GSM615931     2  0.0000      0.997  0 1.000 0.000
#> GSM615937     2  0.0000      0.997  0 1.000 0.000
#> GSM615938     2  0.0000      0.997  0 1.000 0.000
#> GSM615940     2  0.0000      0.997  0 1.000 0.000
#> GSM615946     2  0.0000      0.997  0 1.000 0.000
#> GSM615952     2  0.0000      0.997  0 1.000 0.000
#> GSM615953     2  0.0000      0.997  0 1.000 0.000
#> GSM615955     2  0.0592      0.985  0 0.988 0.012
#> GSM721722     3  0.0000      1.000  0 0.000 1.000
#> GSM721723     2  0.0000      0.997  0 1.000 0.000
#> GSM721724     2  0.0000      0.997  0 1.000 0.000
#> GSM615917     3  0.0000      1.000  0 0.000 1.000
#> GSM615920     3  0.0000      1.000  0 0.000 1.000
#> GSM615923     2  0.0000      0.997  0 1.000 0.000
#> GSM615928     2  0.0000      0.997  0 1.000 0.000
#> GSM615934     2  0.0000      0.997  0 1.000 0.000
#> GSM615950     2  0.0000      0.997  0 1.000 0.000
#> GSM615954     2  0.0000      0.997  0 1.000 0.000
#> GSM615956     2  0.0000      0.997  0 1.000 0.000
#> GSM615958     1  0.0000      1.000  1 0.000 0.000
#> GSM615924     2  0.0000      0.997  0 1.000 0.000
#> GSM615930     2  0.0000      0.997  0 1.000 0.000
#> GSM615932     2  0.0000      0.997  0 1.000 0.000
#> GSM615935     2  0.0000      0.997  0 1.000 0.000
#> GSM615936     2  0.0000      0.997  0 1.000 0.000
#> GSM615942     2  0.0000      0.997  0 1.000 0.000
#> GSM615943     2  0.0000      0.997  0 1.000 0.000
#> GSM615949     2  0.0000      0.997  0 1.000 0.000
#> GSM615957     2  0.0000      0.997  0 1.000 0.000
#> GSM721720     2  0.0000      0.997  0 1.000 0.000
#> GSM721721     2  0.0000      0.997  0 1.000 0.000
#> GSM615959     1  0.0000      1.000  1 0.000 0.000
#> GSM615960     1  0.0000      1.000  1 0.000 0.000
#> GSM615961     1  0.0000      1.000  1 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette p1    p2    p3    p4
#> GSM615919     4  0.0000      1.000  0 0.000 0.000 1.000
#> GSM615921     2  0.4164      0.752  0 0.736 0.264 0.000
#> GSM615922     3  0.3610      0.872  0 0.200 0.800 0.000
#> GSM615925     4  0.0000      1.000  0 0.000 0.000 1.000
#> GSM615926     3  0.3610      0.872  0 0.200 0.800 0.000
#> GSM615933     2  0.2281      0.793  0 0.904 0.096 0.000
#> GSM615939     2  0.2530      0.884  0 0.888 0.112 0.000
#> GSM615941     3  0.3610      0.872  0 0.200 0.800 0.000
#> GSM615944     3  0.3610      0.872  0 0.200 0.800 0.000
#> GSM615945     2  0.0000      0.862  0 1.000 0.000 0.000
#> GSM615947     2  0.2530      0.884  0 0.888 0.112 0.000
#> GSM615948     2  0.2530      0.884  0 0.888 0.112 0.000
#> GSM615951     3  0.2281      0.859  0 0.096 0.904 0.000
#> GSM615918     4  0.0000      1.000  0 0.000 0.000 1.000
#> GSM615927     2  0.4643      0.653  0 0.656 0.344 0.000
#> GSM615929     3  0.2565      0.805  0 0.032 0.912 0.056
#> GSM615931     2  0.2530      0.884  0 0.888 0.112 0.000
#> GSM615937     2  0.0469      0.864  0 0.988 0.012 0.000
#> GSM615938     2  0.0000      0.862  0 1.000 0.000 0.000
#> GSM615940     3  0.3610      0.872  0 0.200 0.800 0.000
#> GSM615946     2  0.2469      0.885  0 0.892 0.108 0.000
#> GSM615952     3  0.2281      0.859  0 0.096 0.904 0.000
#> GSM615953     2  0.3764      0.818  0 0.784 0.216 0.000
#> GSM615955     3  0.2281      0.859  0 0.096 0.904 0.000
#> GSM721722     4  0.0000      1.000  0 0.000 0.000 1.000
#> GSM721723     2  0.3610      0.729  0 0.800 0.200 0.000
#> GSM721724     2  0.2530      0.884  0 0.888 0.112 0.000
#> GSM615917     4  0.0000      1.000  0 0.000 0.000 1.000
#> GSM615920     4  0.0000      1.000  0 0.000 0.000 1.000
#> GSM615923     3  0.3837      0.725  0 0.224 0.776 0.000
#> GSM615928     2  0.3569      0.840  0 0.804 0.196 0.000
#> GSM615934     2  0.2589      0.882  0 0.884 0.116 0.000
#> GSM615950     2  0.0000      0.862  0 1.000 0.000 0.000
#> GSM615954     2  0.3688      0.734  0 0.792 0.208 0.000
#> GSM615956     2  0.3764      0.818  0 0.784 0.216 0.000
#> GSM615958     1  0.0000      1.000  1 0.000 0.000 0.000
#> GSM615924     3  0.3837      0.737  0 0.224 0.776 0.000
#> GSM615930     2  0.0000      0.862  0 1.000 0.000 0.000
#> GSM615932     2  0.2530      0.884  0 0.888 0.112 0.000
#> GSM615935     2  0.2530      0.884  0 0.888 0.112 0.000
#> GSM615936     2  0.2530      0.884  0 0.888 0.112 0.000
#> GSM615942     2  0.2530      0.884  0 0.888 0.112 0.000
#> GSM615943     2  0.0000      0.862  0 1.000 0.000 0.000
#> GSM615949     2  0.2530      0.884  0 0.888 0.112 0.000
#> GSM615957     3  0.2281      0.859  0 0.096 0.904 0.000
#> GSM721720     2  0.2530      0.791  0 0.888 0.112 0.000
#> GSM721721     3  0.2408      0.825  0 0.104 0.896 0.000
#> GSM615959     1  0.0000      1.000  1 0.000 0.000 0.000
#> GSM615960     1  0.0000      1.000  1 0.000 0.000 0.000
#> GSM615961     1  0.0000      1.000  1 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1    p2    p3    p4    p5
#> GSM615919     4  0.0000      0.994  0 0.000 0.000 1.000 0.000
#> GSM615921     2  0.6091      0.306  0 0.524 0.140 0.000 0.336
#> GSM615922     3  0.3837      0.773  0 0.308 0.692 0.000 0.000
#> GSM615925     4  0.0000      0.994  0 0.000 0.000 1.000 0.000
#> GSM615926     3  0.3816      0.772  0 0.304 0.696 0.000 0.000
#> GSM615933     5  0.2074      0.667  0 0.104 0.000 0.000 0.896
#> GSM615939     2  0.0000      0.821  0 1.000 0.000 0.000 0.000
#> GSM615941     3  0.3857      0.770  0 0.312 0.688 0.000 0.000
#> GSM615944     3  0.4419      0.766  0 0.312 0.668 0.000 0.020
#> GSM615945     5  0.3242      0.744  0 0.216 0.000 0.000 0.784
#> GSM615947     2  0.0000      0.821  0 1.000 0.000 0.000 0.000
#> GSM615948     2  0.0000      0.821  0 1.000 0.000 0.000 0.000
#> GSM615951     3  0.2179      0.795  0 0.112 0.888 0.000 0.000
#> GSM615918     4  0.0000      0.994  0 0.000 0.000 1.000 0.000
#> GSM615927     2  0.6257      0.183  0 0.460 0.148 0.000 0.392
#> GSM615929     3  0.2329      0.798  0 0.124 0.876 0.000 0.000
#> GSM615931     2  0.0000      0.821  0 1.000 0.000 0.000 0.000
#> GSM615937     5  0.4304      0.429  0 0.484 0.000 0.000 0.516
#> GSM615938     2  0.4182      0.122  0 0.600 0.000 0.000 0.400
#> GSM615940     3  0.4173      0.770  0 0.300 0.688 0.000 0.012
#> GSM615946     2  0.0162      0.818  0 0.996 0.000 0.000 0.004
#> GSM615952     3  0.2179      0.795  0 0.112 0.888 0.000 0.000
#> GSM615953     2  0.3109      0.632  0 0.800 0.200 0.000 0.000
#> GSM615955     3  0.2848      0.781  0 0.104 0.868 0.000 0.028
#> GSM721722     4  0.1082      0.969  0 0.000 0.008 0.964 0.028
#> GSM721723     5  0.3577      0.672  0 0.160 0.032 0.000 0.808
#> GSM721724     2  0.0000      0.821  0 1.000 0.000 0.000 0.000
#> GSM615917     4  0.0000      0.994  0 0.000 0.000 1.000 0.000
#> GSM615920     4  0.0000      0.994  0 0.000 0.000 1.000 0.000
#> GSM615923     5  0.2966      0.549  0 0.000 0.184 0.000 0.816
#> GSM615928     2  0.4934      0.529  0 0.708 0.104 0.000 0.188
#> GSM615934     2  0.0162      0.818  0 0.996 0.004 0.000 0.000
#> GSM615950     5  0.3242      0.744  0 0.216 0.000 0.000 0.784
#> GSM615954     5  0.5983      0.610  0 0.212 0.200 0.000 0.588
#> GSM615956     2  0.3109      0.632  0 0.800 0.200 0.000 0.000
#> GSM615958     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM615924     3  0.4237      0.607  0 0.048 0.752 0.000 0.200
#> GSM615930     5  0.3966      0.663  0 0.336 0.000 0.000 0.664
#> GSM615932     2  0.0000      0.821  0 1.000 0.000 0.000 0.000
#> GSM615935     2  0.0162      0.819  0 0.996 0.000 0.000 0.004
#> GSM615936     2  0.0000      0.821  0 1.000 0.000 0.000 0.000
#> GSM615942     2  0.0000      0.821  0 1.000 0.000 0.000 0.000
#> GSM615943     5  0.3242      0.744  0 0.216 0.000 0.000 0.784
#> GSM615949     2  0.2377      0.703  0 0.872 0.000 0.000 0.128
#> GSM615957     3  0.2179      0.795  0 0.112 0.888 0.000 0.000
#> GSM721720     5  0.5197      0.658  0 0.116 0.204 0.000 0.680
#> GSM721721     3  0.3586      0.630  0 0.020 0.792 0.000 0.188
#> GSM615959     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM615960     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> GSM615961     1  0.0000      1.000  1 0.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1    p2    p3    p4    p5    p6
#> GSM615919     4  0.0000      1.000  0 0.000 0.000 1.000 0.000 0.000
#> GSM615921     2  0.6814      0.338  0 0.508 0.148 0.000 0.216 0.128
#> GSM615922     3  0.4449      0.761  0 0.216 0.696 0.000 0.000 0.088
#> GSM615925     4  0.0000      1.000  0 0.000 0.000 1.000 0.000 0.000
#> GSM615926     3  0.4587      0.757  0 0.204 0.688 0.000 0.000 0.108
#> GSM615933     5  0.1387      0.707  0 0.068 0.000 0.000 0.932 0.000
#> GSM615939     2  0.0000      0.859  0 1.000 0.000 0.000 0.000 0.000
#> GSM615941     3  0.4500      0.757  0 0.224 0.688 0.000 0.000 0.088
#> GSM615944     6  0.5116      0.310  0 0.132 0.256 0.000 0.000 0.612
#> GSM615945     5  0.0000      0.709  0 0.000 0.000 0.000 1.000 0.000
#> GSM615947     2  0.0000      0.859  0 1.000 0.000 0.000 0.000 0.000
#> GSM615948     2  0.0000      0.859  0 1.000 0.000 0.000 0.000 0.000
#> GSM615951     3  0.1957      0.758  0 0.112 0.888 0.000 0.000 0.000
#> GSM615918     4  0.0000      1.000  0 0.000 0.000 1.000 0.000 0.000
#> GSM615927     2  0.7052      0.225  0 0.452 0.156 0.000 0.264 0.128
#> GSM615929     3  0.3558      0.760  0 0.112 0.800 0.000 0.000 0.088
#> GSM615931     2  0.0146      0.858  0 0.996 0.000 0.000 0.004 0.000
#> GSM615937     5  0.3819      0.531  0 0.372 0.004 0.000 0.624 0.000
#> GSM615938     5  0.3782      0.200  0 0.412 0.000 0.000 0.588 0.000
#> GSM615940     3  0.4500      0.729  0 0.224 0.688 0.000 0.088 0.000
#> GSM615946     2  0.0146      0.857  0 0.996 0.000 0.000 0.004 0.000
#> GSM615952     3  0.1957      0.758  0 0.112 0.888 0.000 0.000 0.000
#> GSM615953     2  0.2793      0.712  0 0.800 0.200 0.000 0.000 0.000
#> GSM615955     6  0.2135      0.627  0 0.000 0.128 0.000 0.000 0.872
#> GSM721722     6  0.2912      0.488  0 0.000 0.000 0.216 0.000 0.784
#> GSM721723     5  0.2766      0.690  0 0.140 0.008 0.000 0.844 0.008
#> GSM721724     2  0.0000      0.859  0 1.000 0.000 0.000 0.000 0.000
#> GSM615917     4  0.0000      1.000  0 0.000 0.000 1.000 0.000 0.000
#> GSM615920     4  0.0000      1.000  0 0.000 0.000 1.000 0.000 0.000
#> GSM615923     5  0.4382      0.547  0 0.000 0.156 0.000 0.720 0.124
#> GSM615928     2  0.4001      0.648  0 0.760 0.112 0.000 0.000 0.128
#> GSM615934     2  0.0146      0.857  0 0.996 0.004 0.000 0.000 0.000
#> GSM615950     5  0.0000      0.709  0 0.000 0.000 0.000 1.000 0.000
#> GSM615954     5  0.5173      0.521  0 0.180 0.200 0.000 0.620 0.000
#> GSM615956     2  0.2793      0.712  0 0.800 0.200 0.000 0.000 0.000
#> GSM615958     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> GSM615924     3  0.4387      0.562  0 0.116 0.744 0.000 0.012 0.128
#> GSM615930     5  0.3351      0.592  0 0.288 0.000 0.000 0.712 0.000
#> GSM615932     2  0.0000      0.859  0 1.000 0.000 0.000 0.000 0.000
#> GSM615935     2  0.1075      0.830  0 0.952 0.000 0.000 0.048 0.000
#> GSM615936     2  0.0000      0.859  0 1.000 0.000 0.000 0.000 0.000
#> GSM615942     2  0.0000      0.859  0 1.000 0.000 0.000 0.000 0.000
#> GSM615943     5  0.0000      0.709  0 0.000 0.000 0.000 1.000 0.000
#> GSM615949     2  0.2912      0.657  0 0.784 0.000 0.000 0.216 0.000
#> GSM615957     3  0.1957      0.758  0 0.112 0.888 0.000 0.000 0.000
#> GSM721720     5  0.3469      0.675  0 0.088 0.104 0.000 0.808 0.000
#> GSM721721     3  0.3727      0.591  0 0.088 0.784 0.000 0.000 0.128
#> GSM615959     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> GSM615960     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> GSM615961     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n age(p) gender(p) tissue(p) k
#> ATC:pam 50 0.2564     0.506  7.18e-08 2
#> ATC:pam 50 0.0713     0.392  1.39e-11 3
#> ATC:pam 50 0.0959     0.577  7.99e-11 4
#> ATC:pam 46 0.0681     0.666  2.46e-09 5
#> ATC:pam 45 0.2028     0.507  1.45e-08 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16230 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.549           0.682       0.883         0.2855 0.754   0.754
#> 3 3 0.575           0.797       0.882         0.7571 0.742   0.667
#> 4 4 0.423           0.632       0.789         0.2634 0.767   0.583
#> 5 5 0.702           0.804       0.885         0.0987 0.960   0.888
#> 6 6 0.725           0.683       0.846         0.1295 0.768   0.393

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM615919     1  0.9996      0.107 0.512 0.488
#> GSM615921     2  0.8813      0.533 0.300 0.700
#> GSM615922     2  0.8661      0.553 0.288 0.712
#> GSM615925     2  0.9993     -0.132 0.484 0.516
#> GSM615926     2  0.8661      0.553 0.288 0.712
#> GSM615933     2  0.0000      0.852 0.000 1.000
#> GSM615939     2  0.0000      0.852 0.000 1.000
#> GSM615941     2  0.0000      0.852 0.000 1.000
#> GSM615944     2  0.0376      0.850 0.004 0.996
#> GSM615945     2  0.0000      0.852 0.000 1.000
#> GSM615947     2  0.0000      0.852 0.000 1.000
#> GSM615948     2  0.0000      0.852 0.000 1.000
#> GSM615951     2  0.0000      0.852 0.000 1.000
#> GSM615918     1  0.9996      0.107 0.512 0.488
#> GSM615927     2  0.8813      0.533 0.300 0.700
#> GSM615929     2  0.8861      0.525 0.304 0.696
#> GSM615931     2  0.0000      0.852 0.000 1.000
#> GSM615937     2  0.0000      0.852 0.000 1.000
#> GSM615938     2  0.0000      0.852 0.000 1.000
#> GSM615940     2  0.0000      0.852 0.000 1.000
#> GSM615946     2  0.0000      0.852 0.000 1.000
#> GSM615952     2  0.0376      0.850 0.004 0.996
#> GSM615953     2  0.0000      0.852 0.000 1.000
#> GSM615955     2  0.8763      0.539 0.296 0.704
#> GSM721722     2  0.9427      0.385 0.360 0.640
#> GSM721723     2  0.3879      0.795 0.076 0.924
#> GSM721724     2  0.0000      0.852 0.000 1.000
#> GSM615917     1  0.9996      0.107 0.512 0.488
#> GSM615920     2  0.9996     -0.149 0.488 0.512
#> GSM615923     2  0.8555      0.565 0.280 0.720
#> GSM615928     2  0.8763      0.540 0.296 0.704
#> GSM615934     2  0.0000      0.852 0.000 1.000
#> GSM615950     2  0.0000      0.852 0.000 1.000
#> GSM615954     2  0.0000      0.852 0.000 1.000
#> GSM615956     2  0.0000      0.852 0.000 1.000
#> GSM615958     1  0.0000      0.687 1.000 0.000
#> GSM615924     2  0.8763      0.540 0.296 0.704
#> GSM615930     2  0.0000      0.852 0.000 1.000
#> GSM615932     2  0.0000      0.852 0.000 1.000
#> GSM615935     2  0.0000      0.852 0.000 1.000
#> GSM615936     2  0.0000      0.852 0.000 1.000
#> GSM615942     2  0.1184      0.842 0.016 0.984
#> GSM615943     2  0.0000      0.852 0.000 1.000
#> GSM615949     2  0.0000      0.852 0.000 1.000
#> GSM615957     2  0.0000      0.852 0.000 1.000
#> GSM721720     2  0.0000      0.852 0.000 1.000
#> GSM721721     2  0.8813      0.533 0.300 0.700
#> GSM615959     1  0.0000      0.687 1.000 0.000
#> GSM615960     1  0.0000      0.687 1.000 0.000
#> GSM615961     1  0.0000      0.687 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM615919     3  0.3192      0.759 0.112 0.000 0.888
#> GSM615921     2  0.6255      0.698 0.016 0.684 0.300
#> GSM615922     2  0.5216      0.713 0.000 0.740 0.260
#> GSM615925     3  0.2878      0.759 0.096 0.000 0.904
#> GSM615926     3  0.3038      0.758 0.000 0.104 0.896
#> GSM615933     2  0.1411      0.872 0.000 0.964 0.036
#> GSM615939     2  0.0424      0.877 0.000 0.992 0.008
#> GSM615941     2  0.5431      0.550 0.000 0.716 0.284
#> GSM615944     3  0.5988      0.518 0.000 0.368 0.632
#> GSM615945     2  0.0592      0.876 0.000 0.988 0.012
#> GSM615947     2  0.0424      0.877 0.000 0.992 0.008
#> GSM615948     2  0.1163      0.876 0.000 0.972 0.028
#> GSM615951     2  0.2261      0.860 0.000 0.932 0.068
#> GSM615918     3  0.3192      0.759 0.112 0.000 0.888
#> GSM615927     2  0.6255      0.698 0.016 0.684 0.300
#> GSM615929     3  0.3043      0.773 0.008 0.084 0.908
#> GSM615931     2  0.0000      0.875 0.000 1.000 0.000
#> GSM615937     2  0.3921      0.846 0.016 0.872 0.112
#> GSM615938     2  0.2066      0.863 0.000 0.940 0.060
#> GSM615940     2  0.2448      0.859 0.000 0.924 0.076
#> GSM615946     2  0.0000      0.875 0.000 1.000 0.000
#> GSM615952     3  0.6252      0.325 0.000 0.444 0.556
#> GSM615953     2  0.0424      0.877 0.000 0.992 0.008
#> GSM615955     3  0.2356      0.775 0.000 0.072 0.928
#> GSM721722     3  0.5117      0.729 0.108 0.060 0.832
#> GSM721723     2  0.4209      0.842 0.016 0.856 0.128
#> GSM721724     2  0.0592      0.878 0.000 0.988 0.012
#> GSM615917     3  0.3192      0.759 0.112 0.000 0.888
#> GSM615920     3  0.4892      0.761 0.112 0.048 0.840
#> GSM615923     2  0.6224      0.701 0.016 0.688 0.296
#> GSM615928     2  0.6255      0.698 0.016 0.684 0.300
#> GSM615934     2  0.1163      0.875 0.000 0.972 0.028
#> GSM615950     2  0.1964      0.865 0.000 0.944 0.056
#> GSM615954     2  0.0892      0.876 0.000 0.980 0.020
#> GSM615956     2  0.0424      0.877 0.000 0.992 0.008
#> GSM615958     1  0.0747      1.000 0.984 0.000 0.016
#> GSM615924     2  0.6255      0.698 0.016 0.684 0.300
#> GSM615930     2  0.3091      0.854 0.016 0.912 0.072
#> GSM615932     2  0.0592      0.877 0.000 0.988 0.012
#> GSM615935     2  0.2261      0.862 0.000 0.932 0.068
#> GSM615936     2  0.0747      0.875 0.000 0.984 0.016
#> GSM615942     2  0.3267      0.836 0.000 0.884 0.116
#> GSM615943     2  0.2165      0.862 0.000 0.936 0.064
#> GSM615949     2  0.1031      0.876 0.000 0.976 0.024
#> GSM615957     2  0.6180      0.158 0.000 0.584 0.416
#> GSM721720     2  0.0000      0.875 0.000 1.000 0.000
#> GSM721721     2  0.6255      0.698 0.016 0.684 0.300
#> GSM615959     1  0.0747      1.000 0.984 0.000 0.016
#> GSM615960     1  0.0747      1.000 0.984 0.000 0.016
#> GSM615961     1  0.0747      1.000 0.984 0.000 0.016

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM615919     4  0.0188      0.790 0.000 0.004 0.000 0.996
#> GSM615921     2  0.5619      0.560 0.000 0.688 0.064 0.248
#> GSM615922     3  0.7883      0.385 0.000 0.300 0.384 0.316
#> GSM615925     4  0.1174      0.790 0.000 0.020 0.012 0.968
#> GSM615926     3  0.4713     -0.256 0.000 0.000 0.640 0.360
#> GSM615933     2  0.1488      0.752 0.000 0.956 0.012 0.032
#> GSM615939     2  0.3172      0.684 0.000 0.840 0.160 0.000
#> GSM615941     3  0.4088      0.649 0.000 0.232 0.764 0.004
#> GSM615944     3  0.4336      0.388 0.000 0.060 0.812 0.128
#> GSM615945     2  0.1398      0.753 0.000 0.956 0.004 0.040
#> GSM615947     2  0.3219      0.679 0.000 0.836 0.164 0.000
#> GSM615948     2  0.3942      0.576 0.000 0.764 0.236 0.000
#> GSM615951     3  0.7002      0.616 0.000 0.352 0.520 0.128
#> GSM615918     4  0.0376      0.790 0.000 0.004 0.004 0.992
#> GSM615927     2  0.5619      0.560 0.000 0.688 0.064 0.248
#> GSM615929     4  0.6184      0.412 0.000 0.216 0.120 0.664
#> GSM615931     2  0.2469      0.712 0.000 0.892 0.108 0.000
#> GSM615937     2  0.1624      0.754 0.000 0.952 0.020 0.028
#> GSM615938     2  0.1722      0.752 0.000 0.944 0.008 0.048
#> GSM615940     3  0.5666      0.600 0.000 0.348 0.616 0.036
#> GSM615946     2  0.0817      0.752 0.000 0.976 0.024 0.000
#> GSM615952     3  0.4093      0.473 0.000 0.096 0.832 0.072
#> GSM615953     2  0.2921      0.697 0.000 0.860 0.140 0.000
#> GSM615955     4  0.4817      0.682 0.000 0.000 0.388 0.612
#> GSM721722     4  0.4819      0.716 0.004 0.000 0.344 0.652
#> GSM721723     2  0.2843      0.734 0.000 0.892 0.020 0.088
#> GSM721724     2  0.5964      0.407 0.000 0.676 0.228 0.096
#> GSM615917     4  0.0188      0.790 0.000 0.004 0.000 0.996
#> GSM615920     4  0.4277      0.737 0.000 0.000 0.280 0.720
#> GSM615923     2  0.5664      0.574 0.000 0.696 0.076 0.228
#> GSM615928     2  0.5657      0.563 0.000 0.688 0.068 0.244
#> GSM615934     3  0.4720      0.606 0.000 0.324 0.672 0.004
#> GSM615950     2  0.1722      0.752 0.000 0.944 0.008 0.048
#> GSM615954     2  0.2662      0.736 0.000 0.900 0.084 0.016
#> GSM615956     2  0.4933     -0.123 0.000 0.568 0.432 0.000
#> GSM615958     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM615924     2  0.5810      0.544 0.000 0.660 0.064 0.276
#> GSM615930     2  0.1584      0.753 0.000 0.952 0.012 0.036
#> GSM615932     2  0.0524      0.753 0.000 0.988 0.008 0.004
#> GSM615935     3  0.5028      0.489 0.000 0.400 0.596 0.004
#> GSM615936     3  0.4948      0.408 0.000 0.440 0.560 0.000
#> GSM615942     3  0.6448      0.616 0.000 0.316 0.592 0.092
#> GSM615943     2  0.1209      0.753 0.000 0.964 0.004 0.032
#> GSM615949     2  0.6219      0.393 0.000 0.640 0.264 0.096
#> GSM615957     3  0.6514      0.575 0.000 0.212 0.636 0.152
#> GSM721720     2  0.1902      0.741 0.000 0.932 0.064 0.004
#> GSM721721     2  0.5648      0.555 0.000 0.684 0.064 0.252
#> GSM615959     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM615960     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM615961     1  0.0000      1.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM615919     4  0.0000      0.841 0.000 0.000 0.000 1.000 0.000
#> GSM615921     5  0.4940      0.732 0.000 0.088 0.008 0.180 0.724
#> GSM615922     3  0.3879      0.749 0.000 0.188 0.784 0.016 0.012
#> GSM615925     4  0.0807      0.836 0.000 0.012 0.012 0.976 0.000
#> GSM615926     3  0.4338      0.618 0.000 0.280 0.696 0.024 0.000
#> GSM615933     5  0.0693      0.858 0.000 0.008 0.012 0.000 0.980
#> GSM615939     5  0.2278      0.848 0.000 0.032 0.060 0.000 0.908
#> GSM615941     3  0.0451      0.848 0.000 0.004 0.988 0.000 0.008
#> GSM615944     3  0.1851      0.829 0.000 0.088 0.912 0.000 0.000
#> GSM615945     5  0.0671      0.859 0.000 0.004 0.016 0.000 0.980
#> GSM615947     5  0.2654      0.834 0.000 0.032 0.084 0.000 0.884
#> GSM615948     5  0.4716      0.511 0.000 0.036 0.308 0.000 0.656
#> GSM615951     3  0.1626      0.842 0.000 0.044 0.940 0.000 0.016
#> GSM615918     4  0.0000      0.841 0.000 0.000 0.000 1.000 0.000
#> GSM615927     5  0.4872      0.732 0.000 0.092 0.004 0.180 0.724
#> GSM615929     4  0.6017      0.488 0.000 0.200 0.024 0.640 0.136
#> GSM615931     5  0.1774      0.854 0.000 0.016 0.052 0.000 0.932
#> GSM615937     5  0.1026      0.857 0.000 0.024 0.004 0.004 0.968
#> GSM615938     5  0.0693      0.858 0.000 0.012 0.008 0.000 0.980
#> GSM615940     3  0.1928      0.830 0.000 0.004 0.920 0.004 0.072
#> GSM615946     5  0.0693      0.858 0.000 0.008 0.012 0.000 0.980
#> GSM615952     3  0.1638      0.841 0.000 0.064 0.932 0.000 0.004
#> GSM615953     5  0.2236      0.847 0.000 0.024 0.068 0.000 0.908
#> GSM615955     2  0.1774      0.923 0.000 0.932 0.052 0.016 0.000
#> GSM721722     2  0.1862      0.921 0.004 0.932 0.016 0.048 0.000
#> GSM721723     5  0.2199      0.849 0.000 0.016 0.008 0.060 0.916
#> GSM721724     5  0.5167      0.335 0.000 0.044 0.404 0.000 0.552
#> GSM615917     4  0.0000      0.841 0.000 0.000 0.000 1.000 0.000
#> GSM615920     4  0.3912      0.646 0.000 0.228 0.020 0.752 0.000
#> GSM615923     5  0.4696      0.746 0.000 0.084 0.004 0.172 0.740
#> GSM615928     5  0.4872      0.732 0.000 0.092 0.004 0.180 0.724
#> GSM615934     3  0.0451      0.848 0.000 0.004 0.988 0.000 0.008
#> GSM615950     5  0.0693      0.858 0.000 0.012 0.008 0.000 0.980
#> GSM615954     5  0.1408      0.858 0.000 0.008 0.044 0.000 0.948
#> GSM615956     3  0.4243      0.580 0.000 0.024 0.712 0.000 0.264
#> GSM615958     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM615924     5  0.4906      0.730 0.000 0.092 0.004 0.184 0.720
#> GSM615930     5  0.0854      0.858 0.000 0.008 0.012 0.004 0.976
#> GSM615932     5  0.1173      0.859 0.000 0.012 0.020 0.004 0.964
#> GSM615935     3  0.2020      0.809 0.000 0.000 0.900 0.000 0.100
#> GSM615936     3  0.2462      0.791 0.000 0.008 0.880 0.000 0.112
#> GSM615942     3  0.1597      0.840 0.000 0.048 0.940 0.000 0.012
#> GSM615943     5  0.0324      0.857 0.000 0.004 0.004 0.000 0.992
#> GSM615949     5  0.4589      0.698 0.000 0.064 0.212 0.000 0.724
#> GSM615957     3  0.1557      0.840 0.000 0.052 0.940 0.000 0.008
#> GSM721720     5  0.1557      0.857 0.000 0.008 0.052 0.000 0.940
#> GSM721721     5  0.4820      0.734 0.000 0.088 0.004 0.180 0.728
#> GSM615959     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM615960     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM615961     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1    p2    p3    p4    p5    p6
#> GSM615919     4  0.0146     0.8633  0 0.000 0.000 0.996 0.000 0.004
#> GSM615921     6  0.0363     0.8140  0 0.000 0.000 0.000 0.012 0.988
#> GSM615922     2  0.2806     0.7061  0 0.844 0.136 0.000 0.016 0.004
#> GSM615925     4  0.5237     0.4657  0 0.024 0.184 0.688 0.016 0.088
#> GSM615926     3  0.4446     0.1301  0 0.460 0.520 0.008 0.008 0.004
#> GSM615933     5  0.1218     0.8441  0 0.012 0.004 0.000 0.956 0.028
#> GSM615939     5  0.5779    -0.0475  0 0.408 0.136 0.000 0.448 0.008
#> GSM615941     2  0.1282     0.7671  0 0.956 0.024 0.004 0.012 0.004
#> GSM615944     2  0.2668     0.6478  0 0.828 0.168 0.000 0.000 0.004
#> GSM615945     5  0.0748     0.8440  0 0.004 0.004 0.000 0.976 0.016
#> GSM615947     2  0.5573     0.3069  0 0.524 0.136 0.000 0.336 0.004
#> GSM615948     2  0.5507     0.4053  0 0.576 0.132 0.004 0.284 0.004
#> GSM615951     2  0.2288     0.7433  0 0.896 0.072 0.000 0.028 0.004
#> GSM615918     4  0.0000     0.8658  0 0.000 0.000 1.000 0.000 0.000
#> GSM615927     6  0.0508     0.8155  0 0.004 0.000 0.000 0.012 0.984
#> GSM615929     3  0.6532     0.3122  0 0.040 0.496 0.320 0.016 0.128
#> GSM615931     5  0.2136     0.8236  0 0.048 0.048 0.000 0.904 0.000
#> GSM615937     6  0.4395     0.2775  0 0.016 0.008 0.000 0.396 0.580
#> GSM615938     5  0.1951     0.8211  0 0.016 0.000 0.000 0.908 0.076
#> GSM615940     2  0.1377     0.7651  0 0.952 0.024 0.004 0.016 0.004
#> GSM615946     5  0.0858     0.8437  0 0.028 0.004 0.000 0.968 0.000
#> GSM615952     2  0.1843     0.7468  0 0.912 0.080 0.000 0.004 0.004
#> GSM615953     2  0.5761     0.2628  0 0.516 0.136 0.000 0.336 0.012
#> GSM615955     3  0.2553     0.5566  0 0.144 0.848 0.008 0.000 0.000
#> GSM721722     3  0.3002     0.5515  0 0.100 0.848 0.048 0.000 0.004
#> GSM721723     6  0.4074     0.5435  0 0.024 0.004 0.000 0.288 0.684
#> GSM721724     2  0.2163     0.7515  0 0.892 0.016 0.000 0.092 0.000
#> GSM615917     4  0.0000     0.8658  0 0.000 0.000 1.000 0.000 0.000
#> GSM615920     3  0.5874     0.2742  0 0.024 0.512 0.360 0.004 0.100
#> GSM615923     6  0.1806     0.7931  0 0.000 0.004 0.000 0.088 0.908
#> GSM615928     6  0.0622     0.8158  0 0.008 0.000 0.000 0.012 0.980
#> GSM615934     2  0.0551     0.7674  0 0.984 0.008 0.004 0.004 0.000
#> GSM615950     5  0.1564     0.8398  0 0.024 0.000 0.000 0.936 0.040
#> GSM615954     5  0.5251     0.3110  0 0.076 0.008 0.004 0.576 0.336
#> GSM615956     2  0.4554     0.5912  0 0.712 0.124 0.000 0.160 0.004
#> GSM615958     1  0.0000     1.0000  1 0.000 0.000 0.000 0.000 0.000
#> GSM615924     6  0.1148     0.8074  0 0.020 0.000 0.004 0.016 0.960
#> GSM615930     5  0.1257     0.8292  0 0.028 0.020 0.000 0.952 0.000
#> GSM615932     5  0.1003     0.8385  0 0.016 0.020 0.000 0.964 0.000
#> GSM615935     2  0.1340     0.7668  0 0.948 0.008 0.000 0.040 0.004
#> GSM615936     2  0.0665     0.7681  0 0.980 0.008 0.004 0.008 0.000
#> GSM615942     2  0.0717     0.7680  0 0.976 0.008 0.000 0.016 0.000
#> GSM615943     5  0.0603     0.8413  0 0.000 0.004 0.000 0.980 0.016
#> GSM615949     2  0.3629     0.5643  0 0.724 0.016 0.000 0.260 0.000
#> GSM615957     2  0.2290     0.7384  0 0.892 0.084 0.000 0.020 0.004
#> GSM721720     5  0.3797     0.7538  0 0.072 0.012 0.004 0.804 0.108
#> GSM721721     6  0.2595     0.7635  0 0.024 0.048 0.020 0.012 0.896
#> GSM615959     1  0.0000     1.0000  1 0.000 0.000 0.000 0.000 0.000
#> GSM615960     1  0.0000     1.0000  1 0.000 0.000 0.000 0.000 0.000
#> GSM615961     1  0.0000     1.0000  1 0.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n age(p) gender(p) tissue(p) k
#> ATC:mclust 44 0.0949     0.884  1.06e-08 2
#> ATC:mclust 48 0.0243     0.461  3.78e-11 3
#> ATC:mclust 40 0.1333     0.766  1.07e-08 4
#> ATC:mclust 48 0.1731     0.263  9.44e-10 5
#> ATC:mclust 40 0.2699     0.692  1.49e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16230 rows and 50 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.799           0.896       0.958         0.3725 0.628   0.628
#> 3 3 0.519           0.764       0.864         0.5688 0.743   0.611
#> 4 4 0.594           0.737       0.856         0.1974 0.835   0.646
#> 5 5 0.717           0.632       0.794         0.1064 0.862   0.607
#> 6 6 0.734           0.760       0.850         0.0467 0.892   0.590

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM615919     1  0.8016      0.701 0.756 0.244
#> GSM615921     2  0.0000      0.965 0.000 1.000
#> GSM615922     2  0.0000      0.965 0.000 1.000
#> GSM615925     1  0.9795      0.332 0.584 0.416
#> GSM615926     1  0.6623      0.793 0.828 0.172
#> GSM615933     2  0.0000      0.965 0.000 1.000
#> GSM615939     2  0.0000      0.965 0.000 1.000
#> GSM615941     2  0.5059      0.843 0.112 0.888
#> GSM615944     2  0.9754      0.241 0.408 0.592
#> GSM615945     2  0.0000      0.965 0.000 1.000
#> GSM615947     2  0.0000      0.965 0.000 1.000
#> GSM615948     2  0.0000      0.965 0.000 1.000
#> GSM615951     2  0.0000      0.965 0.000 1.000
#> GSM615918     1  0.0376      0.908 0.996 0.004
#> GSM615927     2  0.0000      0.965 0.000 1.000
#> GSM615929     2  0.9710      0.262 0.400 0.600
#> GSM615931     2  0.0000      0.965 0.000 1.000
#> GSM615937     2  0.0000      0.965 0.000 1.000
#> GSM615938     2  0.0000      0.965 0.000 1.000
#> GSM615940     2  0.0000      0.965 0.000 1.000
#> GSM615946     2  0.0000      0.965 0.000 1.000
#> GSM615952     2  0.7674      0.677 0.224 0.776
#> GSM615953     2  0.0000      0.965 0.000 1.000
#> GSM615955     1  0.0000      0.909 1.000 0.000
#> GSM721722     1  0.0000      0.909 1.000 0.000
#> GSM721723     2  0.0000      0.965 0.000 1.000
#> GSM721724     2  0.0000      0.965 0.000 1.000
#> GSM615917     1  0.4690      0.855 0.900 0.100
#> GSM615920     1  0.0000      0.909 1.000 0.000
#> GSM615923     2  0.0000      0.965 0.000 1.000
#> GSM615928     2  0.0000      0.965 0.000 1.000
#> GSM615934     2  0.0000      0.965 0.000 1.000
#> GSM615950     2  0.0000      0.965 0.000 1.000
#> GSM615954     2  0.0000      0.965 0.000 1.000
#> GSM615956     2  0.0000      0.965 0.000 1.000
#> GSM615958     1  0.0000      0.909 1.000 0.000
#> GSM615924     2  0.0000      0.965 0.000 1.000
#> GSM615930     2  0.0000      0.965 0.000 1.000
#> GSM615932     2  0.0000      0.965 0.000 1.000
#> GSM615935     2  0.0000      0.965 0.000 1.000
#> GSM615936     2  0.0000      0.965 0.000 1.000
#> GSM615942     2  0.0000      0.965 0.000 1.000
#> GSM615943     2  0.0000      0.965 0.000 1.000
#> GSM615949     2  0.0000      0.965 0.000 1.000
#> GSM615957     2  0.0000      0.965 0.000 1.000
#> GSM721720     2  0.0000      0.965 0.000 1.000
#> GSM721721     2  0.0000      0.965 0.000 1.000
#> GSM615959     1  0.0000      0.909 1.000 0.000
#> GSM615960     1  0.0000      0.909 1.000 0.000
#> GSM615961     1  0.0000      0.909 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM615919     3  0.3482      0.725 0.128 0.000 0.872
#> GSM615921     3  0.2066      0.773 0.000 0.060 0.940
#> GSM615922     2  0.2804      0.835 0.016 0.924 0.060
#> GSM615925     3  0.3482      0.725 0.128 0.000 0.872
#> GSM615926     1  0.4047      0.819 0.848 0.148 0.004
#> GSM615933     2  0.4291      0.834 0.000 0.820 0.180
#> GSM615939     2  0.3038      0.857 0.000 0.896 0.104
#> GSM615941     2  0.3193      0.773 0.100 0.896 0.004
#> GSM615944     2  0.5953      0.510 0.280 0.708 0.012
#> GSM615945     2  0.4121      0.840 0.000 0.832 0.168
#> GSM615947     2  0.2625      0.857 0.000 0.916 0.084
#> GSM615948     2  0.2261      0.856 0.000 0.932 0.068
#> GSM615951     2  0.2297      0.836 0.020 0.944 0.036
#> GSM615918     3  0.3941      0.698 0.156 0.000 0.844
#> GSM615927     3  0.2066      0.773 0.000 0.060 0.940
#> GSM615929     3  0.4291      0.684 0.180 0.000 0.820
#> GSM615931     2  0.3267      0.855 0.000 0.884 0.116
#> GSM615937     2  0.5650      0.701 0.000 0.688 0.312
#> GSM615938     2  0.4796      0.806 0.000 0.780 0.220
#> GSM615940     2  0.1129      0.829 0.020 0.976 0.004
#> GSM615946     2  0.3619      0.851 0.000 0.864 0.136
#> GSM615952     2  0.5378      0.627 0.236 0.756 0.008
#> GSM615953     2  0.3816      0.854 0.000 0.852 0.148
#> GSM615955     1  0.3845      0.838 0.872 0.116 0.012
#> GSM721722     1  0.1753      0.917 0.952 0.000 0.048
#> GSM721723     2  0.5926      0.650 0.000 0.644 0.356
#> GSM721724     2  0.0892      0.848 0.000 0.980 0.020
#> GSM615917     3  0.3551      0.721 0.132 0.000 0.868
#> GSM615920     3  0.6062      0.335 0.384 0.000 0.616
#> GSM615923     3  0.4555      0.614 0.000 0.200 0.800
#> GSM615928     3  0.2066      0.773 0.000 0.060 0.940
#> GSM615934     2  0.1129      0.829 0.020 0.976 0.004
#> GSM615950     2  0.4702      0.813 0.000 0.788 0.212
#> GSM615954     3  0.6307     -0.314 0.000 0.488 0.512
#> GSM615956     2  0.3879      0.852 0.000 0.848 0.152
#> GSM615958     1  0.1163      0.930 0.972 0.000 0.028
#> GSM615924     3  0.1964      0.773 0.000 0.056 0.944
#> GSM615930     2  0.5678      0.696 0.000 0.684 0.316
#> GSM615932     2  0.4346      0.832 0.000 0.816 0.184
#> GSM615935     2  0.0424      0.844 0.000 0.992 0.008
#> GSM615936     2  0.0592      0.846 0.000 0.988 0.012
#> GSM615942     2  0.1129      0.829 0.020 0.976 0.004
#> GSM615943     2  0.4555      0.822 0.000 0.800 0.200
#> GSM615949     2  0.2537      0.858 0.000 0.920 0.080
#> GSM615957     2  0.2902      0.835 0.016 0.920 0.064
#> GSM721720     2  0.6111      0.571 0.000 0.604 0.396
#> GSM721721     3  0.2066      0.773 0.000 0.060 0.940
#> GSM615959     1  0.1163      0.930 0.972 0.000 0.028
#> GSM615960     1  0.1031      0.929 0.976 0.000 0.024
#> GSM615961     1  0.1163      0.930 0.972 0.000 0.028

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM615919     4  0.0657      0.872 0.012 0.000 0.004 0.984
#> GSM615921     4  0.2111      0.877 0.000 0.044 0.024 0.932
#> GSM615922     3  0.3037      0.762 0.000 0.100 0.880 0.020
#> GSM615925     4  0.0817      0.868 0.024 0.000 0.000 0.976
#> GSM615926     3  0.4282      0.698 0.160 0.008 0.808 0.024
#> GSM615933     2  0.0804      0.799 0.000 0.980 0.012 0.008
#> GSM615939     2  0.0804      0.798 0.000 0.980 0.012 0.008
#> GSM615941     2  0.5756      0.284 0.032 0.568 0.400 0.000
#> GSM615944     3  0.3435      0.739 0.100 0.036 0.864 0.000
#> GSM615945     2  0.0804      0.798 0.000 0.980 0.012 0.008
#> GSM615947     2  0.2124      0.792 0.000 0.924 0.068 0.008
#> GSM615948     2  0.3217      0.778 0.000 0.860 0.128 0.012
#> GSM615951     3  0.2741      0.749 0.000 0.096 0.892 0.012
#> GSM615918     4  0.0817      0.868 0.024 0.000 0.000 0.976
#> GSM615927     4  0.2021      0.879 0.000 0.040 0.024 0.936
#> GSM615929     4  0.2654      0.799 0.108 0.004 0.000 0.888
#> GSM615931     2  0.1109      0.795 0.000 0.968 0.028 0.004
#> GSM615937     2  0.4070      0.733 0.000 0.824 0.044 0.132
#> GSM615938     2  0.3354      0.764 0.000 0.872 0.044 0.084
#> GSM615940     2  0.4776      0.383 0.000 0.624 0.376 0.000
#> GSM615946     2  0.0524      0.798 0.000 0.988 0.008 0.004
#> GSM615952     3  0.3249      0.731 0.140 0.000 0.852 0.008
#> GSM615953     2  0.4361      0.690 0.000 0.772 0.208 0.020
#> GSM615955     3  0.4164      0.594 0.264 0.000 0.736 0.000
#> GSM721722     1  0.2675      0.874 0.892 0.000 0.008 0.100
#> GSM721723     2  0.7393      0.285 0.000 0.488 0.180 0.332
#> GSM721724     2  0.4018      0.721 0.000 0.772 0.224 0.004
#> GSM615917     4  0.0707      0.869 0.020 0.000 0.000 0.980
#> GSM615920     4  0.4543      0.483 0.324 0.000 0.000 0.676
#> GSM615923     4  0.5929      0.483 0.000 0.296 0.064 0.640
#> GSM615928     4  0.2197      0.875 0.000 0.048 0.024 0.928
#> GSM615934     2  0.4164      0.607 0.000 0.736 0.264 0.000
#> GSM615950     2  0.2797      0.776 0.000 0.900 0.032 0.068
#> GSM615954     2  0.7136      0.503 0.012 0.604 0.172 0.212
#> GSM615956     2  0.5450      0.615 0.016 0.700 0.260 0.024
#> GSM615958     1  0.0188      0.965 0.996 0.000 0.004 0.000
#> GSM615924     4  0.2021      0.879 0.000 0.040 0.024 0.936
#> GSM615930     2  0.0524      0.798 0.000 0.988 0.004 0.008
#> GSM615932     2  0.0469      0.799 0.000 0.988 0.000 0.012
#> GSM615935     2  0.3311      0.709 0.000 0.828 0.172 0.000
#> GSM615936     2  0.3123      0.725 0.000 0.844 0.156 0.000
#> GSM615942     3  0.4624      0.449 0.000 0.340 0.660 0.000
#> GSM615943     2  0.1059      0.797 0.000 0.972 0.012 0.016
#> GSM615949     2  0.3400      0.703 0.000 0.820 0.180 0.000
#> GSM615957     3  0.4330      0.715 0.048 0.112 0.828 0.012
#> GSM721720     2  0.6049      0.606 0.000 0.684 0.132 0.184
#> GSM721721     4  0.2021      0.879 0.000 0.040 0.024 0.936
#> GSM615959     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM615960     1  0.0336      0.963 0.992 0.000 0.008 0.000
#> GSM615961     1  0.0000      0.966 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM615919     4  0.0290    0.93243 0.000 0.008 0.000 0.992 0.000
#> GSM615921     4  0.2438    0.90096 0.000 0.040 0.000 0.900 0.060
#> GSM615922     3  0.2460    0.71471 0.000 0.072 0.900 0.024 0.004
#> GSM615925     4  0.0510    0.92831 0.016 0.000 0.000 0.984 0.000
#> GSM615926     3  0.4208    0.61318 0.148 0.012 0.788 0.052 0.000
#> GSM615933     5  0.4182   -0.47469 0.000 0.400 0.000 0.000 0.600
#> GSM615939     5  0.2304    0.48881 0.000 0.100 0.008 0.000 0.892
#> GSM615941     3  0.6416    0.00669 0.000 0.292 0.500 0.000 0.208
#> GSM615944     3  0.1121    0.70984 0.000 0.044 0.956 0.000 0.000
#> GSM615945     5  0.4264   -0.38947 0.000 0.376 0.004 0.000 0.620
#> GSM615947     5  0.2179    0.48732 0.004 0.100 0.000 0.000 0.896
#> GSM615948     5  0.2125    0.52660 0.004 0.052 0.024 0.000 0.920
#> GSM615951     3  0.3837    0.66850 0.000 0.308 0.692 0.000 0.000
#> GSM615918     4  0.0510    0.92787 0.016 0.000 0.000 0.984 0.000
#> GSM615927     4  0.1836    0.92660 0.000 0.036 0.000 0.932 0.032
#> GSM615929     4  0.0451    0.92966 0.008 0.000 0.000 0.988 0.004
#> GSM615931     2  0.4451    0.70158 0.000 0.504 0.004 0.000 0.492
#> GSM615937     5  0.2798    0.58108 0.000 0.140 0.000 0.008 0.852
#> GSM615938     5  0.1704    0.58057 0.000 0.068 0.000 0.004 0.928
#> GSM615940     2  0.5523    0.84368 0.000 0.592 0.088 0.000 0.320
#> GSM615946     5  0.2377    0.44006 0.000 0.128 0.000 0.000 0.872
#> GSM615952     3  0.4546    0.64646 0.028 0.304 0.668 0.000 0.000
#> GSM615953     5  0.4832    0.52274 0.000 0.356 0.024 0.004 0.616
#> GSM615955     3  0.0807    0.70743 0.012 0.012 0.976 0.000 0.000
#> GSM721722     1  0.3394    0.82179 0.824 0.004 0.020 0.152 0.000
#> GSM721723     5  0.4661    0.52736 0.000 0.356 0.016 0.004 0.624
#> GSM721724     5  0.3184    0.48514 0.000 0.100 0.048 0.000 0.852
#> GSM615917     4  0.0162    0.93092 0.004 0.000 0.000 0.996 0.000
#> GSM615920     4  0.3452    0.65853 0.244 0.000 0.000 0.756 0.000
#> GSM615923     5  0.5703    0.47670 0.000 0.188 0.000 0.184 0.628
#> GSM615928     4  0.1750    0.92797 0.000 0.028 0.000 0.936 0.036
#> GSM615934     2  0.6040    0.77464 0.000 0.556 0.152 0.000 0.292
#> GSM615950     5  0.0771    0.56907 0.000 0.020 0.000 0.004 0.976
#> GSM615954     5  0.4789    0.51202 0.000 0.368 0.020 0.004 0.608
#> GSM615956     5  0.5353    0.47918 0.004 0.368 0.052 0.000 0.576
#> GSM615958     1  0.0000    0.95045 1.000 0.000 0.000 0.000 0.000
#> GSM615924     4  0.1579    0.93078 0.000 0.032 0.000 0.944 0.024
#> GSM615930     5  0.4074   -0.36301 0.000 0.364 0.000 0.000 0.636
#> GSM615932     5  0.2230    0.46847 0.000 0.116 0.000 0.000 0.884
#> GSM615935     2  0.4610    0.87442 0.000 0.596 0.016 0.000 0.388
#> GSM615936     2  0.4547    0.86675 0.000 0.588 0.012 0.000 0.400
#> GSM615942     3  0.4893    0.52838 0.000 0.208 0.704 0.000 0.088
#> GSM615943     5  0.1792    0.49966 0.000 0.084 0.000 0.000 0.916
#> GSM615949     2  0.4958    0.87611 0.000 0.592 0.036 0.000 0.372
#> GSM615957     3  0.4676    0.59435 0.004 0.392 0.592 0.000 0.012
#> GSM721720     5  0.4567    0.53072 0.000 0.356 0.012 0.004 0.628
#> GSM721721     4  0.1911    0.92587 0.000 0.036 0.004 0.932 0.028
#> GSM615959     1  0.0404    0.95198 0.988 0.000 0.000 0.012 0.000
#> GSM615960     1  0.0000    0.95045 1.000 0.000 0.000 0.000 0.000
#> GSM615961     1  0.0404    0.95198 0.988 0.000 0.000 0.012 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM615919     4  0.0146     0.9383 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM615921     4  0.2424     0.8967 0.000 0.028 0.000 0.900 0.036 0.036
#> GSM615922     3  0.3192     0.7789 0.000 0.024 0.848 0.088 0.000 0.040
#> GSM615925     4  0.0935     0.9338 0.032 0.004 0.000 0.964 0.000 0.000
#> GSM615926     3  0.4045     0.7705 0.068 0.028 0.820 0.044 0.036 0.004
#> GSM615933     5  0.4052     0.4252 0.000 0.356 0.000 0.000 0.628 0.016
#> GSM615939     5  0.2796     0.7487 0.000 0.080 0.044 0.000 0.868 0.008
#> GSM615941     3  0.2290     0.7988 0.004 0.020 0.892 0.000 0.084 0.000
#> GSM615944     3  0.0806     0.8230 0.000 0.008 0.972 0.000 0.020 0.000
#> GSM615945     5  0.4123     0.2494 0.000 0.420 0.000 0.000 0.568 0.012
#> GSM615947     5  0.3034     0.7538 0.012 0.048 0.060 0.000 0.868 0.012
#> GSM615948     5  0.2230     0.7619 0.000 0.024 0.084 0.000 0.892 0.000
#> GSM615951     6  0.3457     0.6718 0.000 0.012 0.196 0.000 0.012 0.780
#> GSM615918     4  0.0777     0.9349 0.024 0.004 0.000 0.972 0.000 0.000
#> GSM615927     4  0.1078     0.9370 0.000 0.016 0.000 0.964 0.008 0.012
#> GSM615929     4  0.1138     0.9350 0.024 0.012 0.004 0.960 0.000 0.000
#> GSM615931     5  0.4220     0.6128 0.000 0.244 0.040 0.000 0.708 0.008
#> GSM615937     5  0.1937     0.7774 0.000 0.012 0.012 0.004 0.924 0.048
#> GSM615938     5  0.1334     0.7848 0.000 0.020 0.000 0.000 0.948 0.032
#> GSM615940     2  0.2340     0.7111 0.000 0.896 0.044 0.000 0.056 0.004
#> GSM615946     5  0.1334     0.7893 0.000 0.032 0.020 0.000 0.948 0.000
#> GSM615952     6  0.2723     0.7002 0.016 0.000 0.128 0.000 0.004 0.852
#> GSM615953     6  0.2768     0.8032 0.000 0.012 0.000 0.000 0.156 0.832
#> GSM615955     3  0.2573     0.7666 0.004 0.008 0.856 0.000 0.000 0.132
#> GSM721722     1  0.4108     0.7164 0.744 0.000 0.092 0.164 0.000 0.000
#> GSM721723     6  0.3533     0.7749 0.000 0.012 0.000 0.004 0.236 0.748
#> GSM721724     5  0.3309     0.7674 0.000 0.076 0.052 0.000 0.844 0.028
#> GSM615917     4  0.0405     0.9373 0.008 0.004 0.000 0.988 0.000 0.000
#> GSM615920     4  0.3883     0.5943 0.264 0.004 0.004 0.716 0.004 0.008
#> GSM615923     5  0.4771     0.5875 0.000 0.036 0.000 0.112 0.728 0.124
#> GSM615928     4  0.1251     0.9340 0.000 0.024 0.000 0.956 0.012 0.008
#> GSM615934     3  0.4307     0.5376 0.000 0.072 0.704 0.000 0.224 0.000
#> GSM615950     5  0.1633     0.7804 0.000 0.024 0.000 0.000 0.932 0.044
#> GSM615954     6  0.3864     0.6480 0.004 0.004 0.000 0.000 0.344 0.648
#> GSM615956     6  0.2567     0.8043 0.012 0.004 0.008 0.000 0.100 0.876
#> GSM615958     1  0.1152     0.9107 0.952 0.004 0.000 0.000 0.000 0.044
#> GSM615924     4  0.0603     0.9392 0.000 0.016 0.000 0.980 0.000 0.004
#> GSM615930     5  0.3296     0.6800 0.008 0.188 0.000 0.000 0.792 0.012
#> GSM615932     5  0.1980     0.7853 0.000 0.048 0.016 0.000 0.920 0.016
#> GSM615935     2  0.2030     0.7212 0.000 0.908 0.028 0.000 0.064 0.000
#> GSM615936     2  0.4948     0.0765 0.000 0.472 0.064 0.000 0.464 0.000
#> GSM615942     3  0.1913     0.8044 0.000 0.080 0.908 0.000 0.012 0.000
#> GSM615943     5  0.2201     0.7804 0.000 0.076 0.000 0.000 0.896 0.028
#> GSM615949     2  0.4252     0.6852 0.000 0.728 0.096 0.000 0.176 0.000
#> GSM615957     6  0.1768     0.7563 0.008 0.012 0.044 0.000 0.004 0.932
#> GSM721720     6  0.3733     0.7795 0.004 0.024 0.000 0.004 0.208 0.760
#> GSM721721     4  0.1332     0.9322 0.000 0.012 0.000 0.952 0.008 0.028
#> GSM615959     1  0.0146     0.9204 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM615960     1  0.0777     0.9182 0.972 0.004 0.000 0.000 0.000 0.024
#> GSM615961     1  0.0146     0.9204 0.996 0.004 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n age(p) gender(p) tissue(p) k
#> ATC:NMF 47  0.936     1.000  1.55e-03 2
#> ATC:NMF 48  0.707     0.528  2.82e-06 3
#> ATC:NMF 44  0.141     0.596  1.70e-07 4
#> ATC:NMF 38  0.291     0.473  6.17e-06 5
#> ATC:NMF 47  0.546     0.263  6.80e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0