cola Report for GDS5074

Date: 2019-12-25 21:59:44 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 51941 rows and 52 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4, anno = anno)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 51941    52

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_list), 
    col = get_anno_col(res_list)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
CV:kmeans 2 1.000 0.993 0.996 **
MAD:kmeans 2 1.000 0.959 0.981 **
ATC:kmeans 3 1.000 0.994 0.996 ** 2
SD:mclust 3 0.968 0.921 0.961 **
MAD:skmeans 3 0.949 0.933 0.968 * 2
CV:skmeans 3 0.929 0.935 0.971 * 2
CV:NMF 3 0.926 0.915 0.964 * 2
SD:kmeans 2 0.922 0.950 0.970 *
ATC:NMF 2 0.920 0.949 0.977 *
MAD:mclust 5 0.918 0.882 0.937 *
ATC:pam 6 0.916 0.873 0.928 * 2,4,5
ATC:skmeans 6 0.901 0.798 0.903 * 2,3
CV:mclust 5 0.901 0.886 0.953 * 3
SD:skmeans 2 0.881 0.881 0.956
MAD:pam 2 0.875 0.861 0.947
MAD:NMF 2 0.843 0.881 0.952
ATC:hclust 4 0.815 0.854 0.921
SD:NMF 2 0.805 0.871 0.949
CV:pam 3 0.706 0.893 0.940
SD:pam 2 0.678 0.820 0.927
SD:hclust 2 0.547 0.771 0.905
ATC:mclust 4 0.543 0.613 0.785
MAD:hclust 2 0.506 0.798 0.906
CV:hclust 2 0.481 0.716 0.862

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.805           0.871       0.949          0.507 0.490   0.490
#> CV:NMF      2 0.957           0.937       0.973          0.507 0.491   0.491
#> MAD:NMF     2 0.843           0.881       0.952          0.505 0.493   0.493
#> ATC:NMF     2 0.920           0.949       0.977          0.489 0.509   0.509
#> SD:skmeans  2 0.881           0.881       0.956          0.506 0.493   0.493
#> CV:skmeans  2 0.959           0.933       0.974          0.505 0.497   0.497
#> MAD:skmeans 2 1.000           0.930       0.974          0.508 0.493   0.493
#> ATC:skmeans 2 1.000           0.998       0.999          0.509 0.491   0.491
#> SD:mclust   2 0.491           0.937       0.880          0.449 0.517   0.517
#> CV:mclust   2 0.500           0.964       0.915          0.430 0.517   0.517
#> MAD:mclust  2 0.485           0.889       0.855          0.418 0.509   0.509
#> ATC:mclust  2 0.769           0.865       0.945          0.366 0.660   0.660
#> SD:kmeans   2 0.922           0.950       0.970          0.487 0.517   0.517
#> CV:kmeans   2 1.000           0.993       0.996          0.485 0.517   0.517
#> MAD:kmeans  2 1.000           0.959       0.981          0.489 0.517   0.517
#> ATC:kmeans  2 1.000           0.973       0.988          0.505 0.493   0.493
#> SD:pam      2 0.678           0.820       0.927          0.452 0.538   0.538
#> CV:pam      2 0.640           0.806       0.922          0.472 0.527   0.527
#> MAD:pam     2 0.875           0.861       0.947          0.481 0.527   0.527
#> ATC:pam     2 1.000           0.941       0.976          0.480 0.509   0.509
#> SD:hclust   2 0.547           0.771       0.905          0.480 0.509   0.509
#> CV:hclust   2 0.481           0.716       0.862          0.463 0.517   0.517
#> MAD:hclust  2 0.506           0.798       0.906          0.477 0.502   0.502
#> ATC:hclust  2 0.573           0.875       0.920          0.474 0.527   0.527
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.843           0.846       0.940          0.281 0.808   0.625
#> CV:NMF      3 0.926           0.915       0.964          0.233 0.796   0.620
#> MAD:NMF     3 0.826           0.846       0.936          0.275 0.806   0.624
#> ATC:NMF     3 0.746           0.833       0.915          0.175 0.934   0.872
#> SD:skmeans  3 0.861           0.880       0.948          0.291 0.795   0.609
#> CV:skmeans  3 0.929           0.935       0.971          0.280 0.830   0.665
#> MAD:skmeans 3 0.949           0.933       0.968          0.275 0.822   0.652
#> ATC:skmeans 3 0.937           0.927       0.961          0.171 0.872   0.744
#> SD:mclust   3 0.968           0.921       0.961          0.274 0.880   0.775
#> CV:mclust   3 1.000           0.973       0.985          0.334 0.880   0.775
#> MAD:mclust  3 0.864           0.910       0.951          0.409 0.900   0.806
#> ATC:mclust  3 0.283           0.605       0.743          0.568 0.738   0.602
#> SD:kmeans   3 0.760           0.867       0.932          0.297 0.830   0.679
#> CV:kmeans   3 0.673           0.802       0.866          0.344 0.762   0.557
#> MAD:kmeans  3 0.679           0.645       0.859          0.333 0.792   0.609
#> ATC:kmeans  3 1.000           0.994       0.996          0.341 0.734   0.508
#> SD:pam      3 0.467           0.483       0.747          0.436 0.731   0.526
#> CV:pam      3 0.706           0.893       0.940          0.397 0.748   0.548
#> MAD:pam     3 0.564           0.731       0.772          0.387 0.769   0.573
#> ATC:pam     3 0.813           0.933       0.961          0.371 0.748   0.546
#> SD:hclust   3 0.457           0.631       0.785          0.262 0.867   0.742
#> CV:hclust   3 0.528           0.601       0.783          0.348 0.755   0.549
#> MAD:hclust  3 0.491           0.670       0.822          0.275 0.876   0.757
#> ATC:hclust  3 0.636           0.854       0.889          0.374 0.796   0.614
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.592           0.517       0.732         0.1396 0.784   0.461
#> CV:NMF      4 0.535           0.532       0.737         0.1586 0.948   0.864
#> MAD:NMF     4 0.613           0.448       0.697         0.1370 0.836   0.569
#> ATC:NMF     4 0.673           0.672       0.852         0.1307 0.870   0.727
#> SD:skmeans  4 0.730           0.799       0.881         0.1191 0.910   0.748
#> CV:skmeans  4 0.815           0.831       0.904         0.1104 0.913   0.754
#> MAD:skmeans 4 0.750           0.832       0.892         0.1196 0.899   0.724
#> ATC:skmeans 4 0.835           0.857       0.934         0.0549 0.991   0.976
#> SD:mclust   4 0.562           0.696       0.810         0.1559 0.856   0.674
#> CV:mclust   4 0.739           0.893       0.901         0.2235 0.796   0.552
#> MAD:mclust  4 0.554           0.867       0.879         0.1744 0.828   0.604
#> ATC:mclust  4 0.543           0.613       0.785         0.2115 0.652   0.328
#> SD:kmeans   4 0.585           0.519       0.672         0.1486 0.898   0.739
#> CV:kmeans   4 0.685           0.786       0.846         0.1172 0.956   0.862
#> MAD:kmeans  4 0.591           0.572       0.729         0.1268 0.865   0.650
#> ATC:kmeans  4 0.894           0.930       0.930         0.0795 0.947   0.836
#> SD:pam      4 0.533           0.566       0.749         0.1052 0.802   0.530
#> CV:pam      4 0.621           0.825       0.872         0.1075 0.906   0.730
#> MAD:pam     4 0.635           0.544       0.787         0.1228 0.682   0.284
#> ATC:pam     4 0.952           0.938       0.975         0.1071 0.861   0.634
#> SD:hclust   4 0.545           0.541       0.704         0.1387 0.910   0.776
#> CV:hclust   4 0.563           0.703       0.828         0.1211 0.863   0.632
#> MAD:hclust  4 0.544           0.575       0.754         0.1365 0.961   0.903
#> ATC:hclust  4 0.815           0.854       0.921         0.1234 0.923   0.770
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.530           0.454       0.693         0.0662 0.832   0.480
#> CV:NMF      5 0.529           0.465       0.686         0.0843 0.824   0.522
#> MAD:NMF     5 0.537           0.496       0.726         0.0730 0.842   0.508
#> ATC:NMF     5 0.637           0.689       0.835         0.0963 0.916   0.784
#> SD:skmeans  5 0.705           0.627       0.811         0.0794 0.909   0.672
#> CV:skmeans  5 0.736           0.710       0.850         0.0738 0.942   0.793
#> MAD:skmeans 5 0.708           0.666       0.813         0.0701 0.962   0.868
#> ATC:skmeans 5 0.869           0.788       0.910         0.0417 0.997   0.992
#> SD:mclust   5 0.817           0.871       0.907         0.1464 0.888   0.664
#> CV:mclust   5 0.901           0.886       0.953         0.1029 0.872   0.592
#> MAD:mclust  5 0.918           0.882       0.937         0.1277 0.867   0.581
#> ATC:mclust  5 0.491           0.518       0.672         0.0679 0.917   0.747
#> SD:kmeans   5 0.619           0.509       0.702         0.0781 0.788   0.423
#> CV:kmeans   5 0.677           0.752       0.810         0.0694 0.942   0.794
#> MAD:kmeans  5 0.628           0.547       0.724         0.0677 0.916   0.734
#> ATC:kmeans  5 0.871           0.855       0.896         0.0651 0.946   0.803
#> SD:pam      5 0.665           0.514       0.752         0.0993 0.769   0.382
#> CV:pam      5 0.790           0.844       0.925         0.0723 0.919   0.713
#> MAD:pam     5 0.635           0.520       0.716         0.0614 0.785   0.348
#> ATC:pam     5 0.933           0.919       0.958         0.0761 0.937   0.774
#> SD:hclust   5 0.623           0.401       0.703         0.1241 0.753   0.395
#> CV:hclust   5 0.622           0.560       0.759         0.0897 0.949   0.822
#> MAD:hclust  5 0.681           0.667       0.809         0.1199 0.796   0.486
#> ATC:hclust  5 0.787           0.720       0.831         0.0627 0.935   0.764
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.551           0.435       0.684         0.0434 0.883   0.558
#> CV:NMF      6 0.594           0.556       0.730         0.0435 0.902   0.615
#> MAD:NMF     6 0.563           0.418       0.681         0.0461 0.874   0.526
#> ATC:NMF     6 0.597           0.618       0.770         0.0617 0.941   0.816
#> SD:skmeans  6 0.697           0.495       0.721         0.0400 0.913   0.636
#> CV:skmeans  6 0.704           0.652       0.805         0.0410 0.985   0.935
#> MAD:skmeans 6 0.692           0.547       0.751         0.0427 0.958   0.837
#> ATC:skmeans 6 0.901           0.798       0.903         0.0283 0.968   0.914
#> SD:mclust   6 0.662           0.715       0.795         0.0518 0.879   0.560
#> CV:mclust   6 0.766           0.803       0.838         0.0525 0.899   0.589
#> MAD:mclust  6 0.746           0.766       0.832         0.0311 0.925   0.692
#> ATC:mclust  6 0.548           0.222       0.624         0.0714 0.863   0.559
#> SD:kmeans   6 0.649           0.558       0.714         0.0514 0.857   0.459
#> CV:kmeans   6 0.726           0.539       0.710         0.0506 0.956   0.808
#> MAD:kmeans  6 0.707           0.511       0.692         0.0490 0.894   0.595
#> ATC:kmeans  6 0.791           0.576       0.802         0.0455 0.977   0.896
#> SD:pam      6 0.704           0.472       0.747         0.0530 0.821   0.342
#> CV:pam      6 0.817           0.762       0.879         0.0552 0.932   0.705
#> MAD:pam     6 0.769           0.754       0.850         0.0463 0.878   0.498
#> ATC:pam     6 0.916           0.873       0.928         0.0301 0.977   0.897
#> SD:hclust   6 0.646           0.506       0.729         0.0415 0.935   0.740
#> CV:hclust   6 0.684           0.567       0.771         0.0593 0.911   0.672
#> MAD:hclust  6 0.679           0.539       0.734         0.0419 0.943   0.763
#> ATC:hclust  6 0.804           0.736       0.808         0.0403 0.941   0.759

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Test to known annotations

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res_list, k = 2)
#>              n disease.state(p) k
#> SD:NMF      48           0.1432 2
#> CV:NMF      50           0.0733 2
#> MAD:NMF     48           0.1239 2
#> ATC:NMF     52           0.5572 2
#> SD:skmeans  47           0.2293 2
#> CV:skmeans  50           0.1164 2
#> MAD:skmeans 50           0.4515 2
#> ATC:skmeans 52           0.8193 2
#> SD:mclust   52           0.4084 2
#> CV:mclust   52           0.4084 2
#> MAD:mclust  51           0.3304 2
#> ATC:mclust  47           0.0193 2
#> SD:kmeans   52           0.4084 2
#> CV:kmeans   52           0.4084 2
#> MAD:kmeans  51           0.3304 2
#> ATC:kmeans  52           0.6470 2
#> SD:pam      46           0.1188 2
#> CV:pam      44           0.4688 2
#> MAD:pam     47           0.3214 2
#> ATC:pam     49           0.4869 2
#> SD:hclust   45           0.2860 2
#> CV:hclust   46           0.3673 2
#> MAD:hclust  47           0.3214 2
#> ATC:hclust  51           0.5727 2
test_to_known_factors(res_list, k = 3)
#>              n disease.state(p) k
#> SD:NMF      49           0.0405 3
#> CV:NMF      49           0.1722 3
#> MAD:NMF     48           0.0878 3
#> ATC:NMF     48           0.5203 3
#> SD:skmeans  50           0.1387 3
#> CV:skmeans  51           0.3455 3
#> MAD:skmeans 51           0.2524 3
#> ATC:skmeans 49           0.6416 3
#> SD:mclust   50           0.4671 3
#> CV:mclust   52           0.3319 3
#> MAD:mclust  51           0.5747 3
#> ATC:mclust  38           0.0490 3
#> SD:kmeans   50           0.2390 3
#> CV:kmeans   49           0.4566 3
#> MAD:kmeans  40           0.1770 3
#> ATC:kmeans  52           0.4105 3
#> SD:pam      33           0.0166 3
#> CV:pam      52           0.0943 3
#> MAD:pam     48           0.1346 3
#> ATC:pam     52           0.4743 3
#> SD:hclust   46           0.3279 3
#> CV:hclust   43           0.3383 3
#> MAD:hclust  44           0.2474 3
#> ATC:hclust  51           0.4269 3
test_to_known_factors(res_list, k = 4)
#>              n disease.state(p) k
#> SD:NMF      34           0.3677 4
#> CV:NMF      36           0.2837 4
#> MAD:NMF     22           0.4421 4
#> ATC:NMF     45           0.4901 4
#> SD:skmeans  47           0.1285 4
#> CV:skmeans  49           0.2876 4
#> MAD:skmeans 50           0.1540 4
#> ATC:skmeans 45           0.6700 4
#> SD:mclust   45           0.3408 4
#> CV:mclust   50           0.5027 4
#> MAD:mclust  52           0.4774 4
#> ATC:mclust  38           0.4060 4
#> SD:kmeans   32           0.6630 4
#> CV:kmeans   48           0.5708 4
#> MAD:kmeans  34           0.0678 4
#> ATC:kmeans  52           0.5402 4
#> SD:pam      39           0.1509 4
#> CV:pam      52           0.1199 4
#> MAD:pam     24           0.3991 4
#> ATC:pam     52           0.6527 4
#> SD:hclust   36           0.0616 4
#> CV:hclust   44           0.5542 4
#> MAD:hclust  44           0.0917 4
#> ATC:hclust  48           0.5393 4
test_to_known_factors(res_list, k = 5)
#>              n disease.state(p) k
#> SD:NMF      26           0.0544 5
#> CV:NMF      26           0.4025 5
#> MAD:NMF     32           0.2072 5
#> ATC:NMF     44           0.2779 5
#> SD:skmeans  35           0.1260 5
#> CV:skmeans  43           0.3964 5
#> MAD:skmeans 44           0.5078 5
#> ATC:skmeans 41           0.1928 5
#> SD:mclust   49           0.0189 5
#> CV:mclust   50           0.0301 5
#> MAD:mclust  49           0.0445 5
#> ATC:mclust  36           0.3115 5
#> SD:kmeans   30           0.3155 5
#> CV:kmeans   51           0.6929 5
#> MAD:kmeans  38           0.4188 5
#> ATC:kmeans  50           0.3176 5
#> SD:pam      36           0.1086 5
#> CV:pam      50           0.1567 5
#> MAD:pam     29           0.0421 5
#> ATC:pam     51           0.3302 5
#> SD:hclust   21           0.1641 5
#> CV:hclust   34           0.9531 5
#> MAD:hclust  44           0.1101 5
#> ATC:hclust  42           0.5325 5
test_to_known_factors(res_list, k = 6)
#>              n disease.state(p) k
#> SD:NMF      28           0.1760 6
#> CV:NMF      35           0.4341 6
#> MAD:NMF     24           0.2405 6
#> ATC:NMF     44           0.4544 6
#> SD:skmeans  25           0.3838 6
#> CV:skmeans  41           0.4281 6
#> MAD:skmeans 35           0.6674 6
#> ATC:skmeans 43           0.1838 6
#> SD:mclust   44           0.0616 6
#> CV:mclust   49           0.0144 6
#> MAD:mclust  47           0.0634 6
#> ATC:mclust   9           1.0000 6
#> SD:kmeans   38           0.3863 6
#> CV:kmeans   36           0.2468 6
#> MAD:kmeans  37           0.0783 6
#> ATC:kmeans  35           0.1987 6
#> SD:pam      27           0.1587 6
#> CV:pam      46           0.1770 6
#> MAD:pam     48           0.1607 6
#> ATC:pam     51           0.4659 6
#> SD:hclust   33           0.0566 6
#> CV:hclust   38           0.5188 6
#> MAD:hclust  35           0.6769 6
#> ATC:hclust  44           0.6019 6

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.547           0.771       0.905         0.4796 0.509   0.509
#> 3 3 0.457           0.631       0.785         0.2619 0.867   0.742
#> 4 4 0.545           0.541       0.704         0.1387 0.910   0.776
#> 5 5 0.623           0.401       0.703         0.1241 0.753   0.395
#> 6 6 0.646           0.506       0.729         0.0415 0.935   0.740

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1167072     1  0.4939      0.847 0.892 0.108
#> GSM1167073     1  0.6438      0.805 0.836 0.164
#> GSM1167074     2  0.3879      0.836 0.076 0.924
#> GSM1167075     1  0.0000      0.889 1.000 0.000
#> GSM1167076     1  0.0000      0.889 1.000 0.000
#> GSM1167077     2  1.0000     -0.104 0.496 0.504
#> GSM1167078     1  0.5519      0.833 0.872 0.128
#> GSM1167079     2  0.0000      0.880 0.000 1.000
#> GSM1167080     1  0.0000      0.889 1.000 0.000
#> GSM1167081     2  0.0000      0.880 0.000 1.000
#> GSM1167082     1  0.0000      0.889 1.000 0.000
#> GSM1167083     2  0.0000      0.880 0.000 1.000
#> GSM1167084     1  0.0000      0.889 1.000 0.000
#> GSM1167085     2  0.3879      0.836 0.076 0.924
#> GSM1167086     1  0.0000      0.889 1.000 0.000
#> GSM1167087     1  0.0000      0.889 1.000 0.000
#> GSM1167088     1  0.0000      0.889 1.000 0.000
#> GSM1167089     1  0.9983      0.104 0.524 0.476
#> GSM1167090     1  0.6048      0.819 0.852 0.148
#> GSM1167091     1  0.0672      0.887 0.992 0.008
#> GSM1167092     1  0.6623      0.798 0.828 0.172
#> GSM1167093     2  0.9881      0.169 0.436 0.564
#> GSM1167094     1  0.2043      0.882 0.968 0.032
#> GSM1167095     2  0.0672      0.877 0.008 0.992
#> GSM1167096     1  0.2043      0.882 0.968 0.032
#> GSM1167097     1  0.0000      0.889 1.000 0.000
#> GSM1167098     1  0.9970      0.133 0.532 0.468
#> GSM1167099     1  0.0000      0.889 1.000 0.000
#> GSM1167100     2  0.4690      0.818 0.100 0.900
#> GSM1167101     2  0.3879      0.836 0.076 0.924
#> GSM1167122     1  0.4298      0.851 0.912 0.088
#> GSM1167102     2  0.0000      0.880 0.000 1.000
#> GSM1167103     2  0.0000      0.880 0.000 1.000
#> GSM1167104     1  0.0000      0.889 1.000 0.000
#> GSM1167105     2  0.0000      0.880 0.000 1.000
#> GSM1167106     1  0.0000      0.889 1.000 0.000
#> GSM1167107     2  0.0000      0.880 0.000 1.000
#> GSM1167108     1  0.0000      0.889 1.000 0.000
#> GSM1167109     2  0.0000      0.880 0.000 1.000
#> GSM1167110     1  0.6801      0.788 0.820 0.180
#> GSM1167111     2  0.0000      0.880 0.000 1.000
#> GSM1167112     2  0.0000      0.880 0.000 1.000
#> GSM1167113     1  0.6438      0.805 0.836 0.164
#> GSM1167114     2  0.9754      0.275 0.408 0.592
#> GSM1167115     2  0.0000      0.880 0.000 1.000
#> GSM1167116     1  0.6531      0.801 0.832 0.168
#> GSM1167117     2  0.0000      0.880 0.000 1.000
#> GSM1167118     1  0.3733      0.860 0.928 0.072
#> GSM1167119     1  0.0000      0.889 1.000 0.000
#> GSM1167120     2  0.9491      0.387 0.368 0.632
#> GSM1167121     1  0.9970      0.146 0.532 0.468
#> GSM1167123     1  0.0000      0.889 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1167072     1  0.7376      0.650 0.672 0.076 0.252
#> GSM1167073     1  0.7987      0.601 0.616 0.092 0.292
#> GSM1167074     2  0.4504      0.637 0.000 0.804 0.196
#> GSM1167075     1  0.5363      0.612 0.724 0.000 0.276
#> GSM1167076     3  0.5650      0.415 0.312 0.000 0.688
#> GSM1167077     2  0.9914     -0.323 0.328 0.392 0.280
#> GSM1167078     1  0.6936      0.672 0.704 0.064 0.232
#> GSM1167079     2  0.0892      0.765 0.000 0.980 0.020
#> GSM1167080     1  0.0000      0.760 1.000 0.000 0.000
#> GSM1167081     2  0.0892      0.765 0.000 0.980 0.020
#> GSM1167082     1  0.4002      0.738 0.840 0.000 0.160
#> GSM1167083     2  0.3192      0.711 0.000 0.888 0.112
#> GSM1167084     1  0.0000      0.760 1.000 0.000 0.000
#> GSM1167085     2  0.5497      0.653 0.048 0.804 0.148
#> GSM1167086     1  0.0000      0.760 1.000 0.000 0.000
#> GSM1167087     1  0.0000      0.760 1.000 0.000 0.000
#> GSM1167088     1  0.0000      0.760 1.000 0.000 0.000
#> GSM1167089     3  0.8592      0.576 0.116 0.332 0.552
#> GSM1167090     1  0.7807      0.573 0.596 0.068 0.336
#> GSM1167091     1  0.3752      0.734 0.856 0.000 0.144
#> GSM1167092     1  0.8122      0.589 0.608 0.100 0.292
#> GSM1167093     3  0.7627      0.361 0.044 0.428 0.528
#> GSM1167094     1  0.6019      0.658 0.700 0.012 0.288
#> GSM1167095     2  0.4291      0.724 0.008 0.840 0.152
#> GSM1167096     1  0.6019      0.658 0.700 0.012 0.288
#> GSM1167097     1  0.0000      0.760 1.000 0.000 0.000
#> GSM1167098     3  0.8738      0.583 0.128 0.328 0.544
#> GSM1167099     1  0.0000      0.760 1.000 0.000 0.000
#> GSM1167100     2  0.6208      0.630 0.088 0.776 0.136
#> GSM1167101     2  0.4504      0.637 0.000 0.804 0.196
#> GSM1167122     3  0.5986      0.518 0.240 0.024 0.736
#> GSM1167102     2  0.2878      0.751 0.000 0.904 0.096
#> GSM1167103     2  0.0000      0.767 0.000 1.000 0.000
#> GSM1167104     1  0.0000      0.760 1.000 0.000 0.000
#> GSM1167105     2  0.2878      0.751 0.000 0.904 0.096
#> GSM1167106     1  0.0000      0.760 1.000 0.000 0.000
#> GSM1167107     2  0.0592      0.766 0.000 0.988 0.012
#> GSM1167108     1  0.4002      0.738 0.840 0.000 0.160
#> GSM1167109     2  0.0592      0.766 0.000 0.988 0.012
#> GSM1167110     1  0.8173      0.577 0.600 0.100 0.300
#> GSM1167111     2  0.4002      0.724 0.000 0.840 0.160
#> GSM1167112     2  0.0892      0.767 0.000 0.980 0.020
#> GSM1167113     1  0.7987      0.601 0.616 0.092 0.292
#> GSM1167114     2  0.9369      0.022 0.408 0.424 0.168
#> GSM1167115     2  0.0592      0.766 0.000 0.988 0.012
#> GSM1167116     1  0.8055      0.596 0.612 0.096 0.292
#> GSM1167117     2  0.4002      0.724 0.000 0.840 0.160
#> GSM1167118     1  0.2651      0.732 0.928 0.060 0.012
#> GSM1167119     1  0.0000      0.760 1.000 0.000 0.000
#> GSM1167120     2  0.9172      0.079 0.356 0.488 0.156
#> GSM1167121     3  0.8703      0.548 0.124 0.332 0.544
#> GSM1167123     3  0.5650      0.415 0.312 0.000 0.688

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1167072     1  0.7913     0.6209 0.576 0.052 0.192 0.180
#> GSM1167073     1  0.8698     0.5701 0.512 0.096 0.208 0.184
#> GSM1167074     4  0.3172     0.3507 0.000 0.160 0.000 0.840
#> GSM1167075     1  0.4972     0.3049 0.544 0.000 0.456 0.000
#> GSM1167076     3  0.0469     0.9405 0.012 0.000 0.988 0.000
#> GSM1167077     4  0.9884     0.0715 0.200 0.244 0.232 0.324
#> GSM1167078     1  0.7655     0.5954 0.604 0.080 0.224 0.092
#> GSM1167079     2  0.4053     0.6355 0.000 0.768 0.004 0.228
#> GSM1167080     1  0.0188     0.7199 0.996 0.000 0.004 0.000
#> GSM1167081     2  0.4053     0.6355 0.000 0.768 0.004 0.228
#> GSM1167082     1  0.4713     0.7013 0.776 0.000 0.172 0.052
#> GSM1167083     4  0.4072     0.1939 0.000 0.252 0.000 0.748
#> GSM1167084     1  0.0188     0.7199 0.996 0.000 0.004 0.000
#> GSM1167085     4  0.5753     0.3367 0.000 0.248 0.072 0.680
#> GSM1167086     1  0.0336     0.7204 0.992 0.000 0.008 0.000
#> GSM1167087     1  0.0336     0.7210 0.992 0.000 0.008 0.000
#> GSM1167088     1  0.0188     0.7199 0.996 0.000 0.004 0.000
#> GSM1167089     4  0.5349     0.1625 0.012 0.004 0.368 0.616
#> GSM1167090     1  0.8808     0.4821 0.448 0.072 0.296 0.184
#> GSM1167091     1  0.4405     0.7009 0.800 0.000 0.152 0.048
#> GSM1167092     1  0.9059     0.4984 0.448 0.100 0.264 0.188
#> GSM1167093     4  0.5137     0.2977 0.000 0.024 0.296 0.680
#> GSM1167094     1  0.6623     0.6342 0.620 0.000 0.232 0.148
#> GSM1167095     2  0.2452     0.5968 0.004 0.908 0.004 0.084
#> GSM1167096     1  0.6623     0.6342 0.620 0.000 0.232 0.148
#> GSM1167097     1  0.0336     0.7210 0.992 0.000 0.008 0.000
#> GSM1167098     4  0.5545     0.1590 0.020 0.004 0.364 0.612
#> GSM1167099     1  0.0000     0.7186 1.000 0.000 0.000 0.000
#> GSM1167100     4  0.6625     0.3018 0.036 0.256 0.060 0.648
#> GSM1167101     4  0.3172     0.3507 0.000 0.160 0.000 0.840
#> GSM1167122     3  0.2334     0.8716 0.004 0.000 0.908 0.088
#> GSM1167102     2  0.4283     0.6314 0.000 0.740 0.004 0.256
#> GSM1167103     2  0.5080     0.5862 0.000 0.576 0.004 0.420
#> GSM1167104     1  0.0592     0.7214 0.984 0.000 0.000 0.016
#> GSM1167105     2  0.4283     0.6314 0.000 0.740 0.004 0.256
#> GSM1167106     1  0.0707     0.7216 0.980 0.000 0.000 0.020
#> GSM1167107     2  0.5105     0.5751 0.000 0.564 0.004 0.432
#> GSM1167108     1  0.4713     0.7013 0.776 0.000 0.172 0.052
#> GSM1167109     2  0.5080     0.5841 0.000 0.576 0.004 0.420
#> GSM1167110     1  0.9121     0.4816 0.436 0.100 0.268 0.196
#> GSM1167111     2  0.0188     0.5542 0.000 0.996 0.004 0.000
#> GSM1167112     2  0.5088     0.5785 0.000 0.572 0.004 0.424
#> GSM1167113     1  0.8698     0.5701 0.512 0.096 0.208 0.184
#> GSM1167114     2  0.6407    -0.0948 0.348 0.580 0.004 0.068
#> GSM1167115     2  0.5105     0.5751 0.000 0.564 0.004 0.432
#> GSM1167116     1  0.8886     0.5372 0.484 0.100 0.232 0.184
#> GSM1167117     2  0.0376     0.5572 0.000 0.992 0.004 0.004
#> GSM1167118     1  0.3400     0.7042 0.872 0.064 0.000 0.064
#> GSM1167119     1  0.0336     0.7210 0.992 0.000 0.008 0.000
#> GSM1167120     2  0.7094     0.0427 0.296 0.568 0.008 0.128
#> GSM1167121     4  0.6849     0.1028 0.016 0.068 0.376 0.540
#> GSM1167123     3  0.0469     0.9405 0.012 0.000 0.988 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1167072     4  0.3516     0.6174 0.152 0.008 0.020 0.820 0.000
#> GSM1167073     4  0.1956     0.6553 0.076 0.008 0.000 0.916 0.000
#> GSM1167074     2  0.4849     0.3349 0.000 0.548 0.432 0.016 0.004
#> GSM1167075     1  0.6917     0.2107 0.516 0.000 0.296 0.040 0.148
#> GSM1167076     3  0.4942     0.4400 0.000 0.000 0.540 0.028 0.432
#> GSM1167077     4  0.5662     0.2209 0.000 0.184 0.164 0.648 0.004
#> GSM1167078     4  0.5007     0.0452 0.440 0.004 0.016 0.536 0.004
#> GSM1167079     2  0.4483    -0.3071 0.000 0.672 0.008 0.012 0.308
#> GSM1167080     1  0.0613     0.7622 0.984 0.000 0.004 0.004 0.008
#> GSM1167081     2  0.4483    -0.3071 0.000 0.672 0.008 0.012 0.308
#> GSM1167082     1  0.5479     0.2138 0.508 0.000 0.052 0.436 0.004
#> GSM1167083     2  0.4523     0.4469 0.000 0.640 0.344 0.012 0.004
#> GSM1167084     1  0.0613     0.7622 0.984 0.000 0.004 0.004 0.008
#> GSM1167085     2  0.5844     0.3530 0.000 0.544 0.360 0.092 0.004
#> GSM1167086     1  0.0854     0.7589 0.976 0.000 0.004 0.012 0.008
#> GSM1167087     1  0.1106     0.7686 0.964 0.000 0.012 0.024 0.000
#> GSM1167088     1  0.0613     0.7622 0.984 0.000 0.004 0.004 0.008
#> GSM1167089     3  0.5666     0.3058 0.000 0.064 0.548 0.380 0.008
#> GSM1167090     4  0.2086     0.6150 0.020 0.000 0.048 0.924 0.008
#> GSM1167091     1  0.5862     0.2533 0.516 0.000 0.068 0.404 0.012
#> GSM1167092     4  0.1306     0.6376 0.016 0.008 0.016 0.960 0.000
#> GSM1167093     3  0.6050     0.3069 0.000 0.144 0.544 0.312 0.000
#> GSM1167094     4  0.5007     0.5317 0.188 0.000 0.080 0.720 0.012
#> GSM1167095     2  0.5599    -0.8065 0.000 0.484 0.000 0.072 0.444
#> GSM1167096     4  0.4973     0.5364 0.184 0.000 0.080 0.724 0.012
#> GSM1167097     1  0.1106     0.7686 0.964 0.000 0.012 0.024 0.000
#> GSM1167098     3  0.5691     0.2904 0.000 0.064 0.536 0.392 0.008
#> GSM1167099     1  0.0703     0.7679 0.976 0.000 0.000 0.024 0.000
#> GSM1167100     2  0.6143     0.3575 0.000 0.544 0.316 0.136 0.004
#> GSM1167101     2  0.4849     0.3349 0.000 0.548 0.432 0.016 0.004
#> GSM1167122     3  0.5783     0.4712 0.000 0.000 0.540 0.100 0.360
#> GSM1167102     2  0.4674    -0.0828 0.000 0.708 0.000 0.060 0.232
#> GSM1167103     2  0.0740     0.4578 0.000 0.980 0.008 0.004 0.008
#> GSM1167104     1  0.1732     0.7473 0.920 0.000 0.000 0.080 0.000
#> GSM1167105     2  0.4617    -0.0556 0.000 0.716 0.000 0.060 0.224
#> GSM1167106     1  0.2929     0.6716 0.820 0.000 0.000 0.180 0.000
#> GSM1167107     2  0.0290     0.4699 0.000 0.992 0.000 0.008 0.000
#> GSM1167108     1  0.5479     0.2138 0.508 0.000 0.052 0.436 0.004
#> GSM1167109     2  0.1168     0.4444 0.000 0.960 0.000 0.008 0.032
#> GSM1167110     4  0.0981     0.6278 0.008 0.008 0.012 0.972 0.000
#> GSM1167111     5  0.5440     0.9911 0.000 0.396 0.000 0.064 0.540
#> GSM1167112     2  0.0566     0.4674 0.000 0.984 0.000 0.012 0.004
#> GSM1167113     4  0.1956     0.6553 0.076 0.008 0.000 0.916 0.000
#> GSM1167114     4  0.5721     0.0131 0.000 0.084 0.000 0.492 0.424
#> GSM1167115     2  0.0290     0.4699 0.000 0.992 0.000 0.008 0.000
#> GSM1167116     4  0.1484     0.6508 0.048 0.008 0.000 0.944 0.000
#> GSM1167117     5  0.5447     0.9910 0.000 0.400 0.000 0.064 0.536
#> GSM1167118     1  0.5315     0.1604 0.500 0.000 0.004 0.456 0.040
#> GSM1167119     1  0.1106     0.7686 0.964 0.000 0.012 0.024 0.000
#> GSM1167120     4  0.6652    -0.0183 0.012 0.176 0.000 0.496 0.316
#> GSM1167121     4  0.5549    -0.3196 0.000 0.048 0.468 0.476 0.008
#> GSM1167123     3  0.4942     0.4400 0.000 0.000 0.540 0.028 0.432

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1167072     4  0.2791     0.6850 0.124 0.008 0.016 0.852 0.000 0.000
#> GSM1167073     4  0.1471     0.7251 0.064 0.004 0.000 0.932 0.000 0.000
#> GSM1167074     5  0.4591     0.2880 0.000 0.408 0.000 0.000 0.552 0.040
#> GSM1167075     3  0.7248     0.2139 0.328 0.068 0.424 0.028 0.000 0.152
#> GSM1167076     3  0.0405     0.7242 0.000 0.008 0.988 0.004 0.000 0.000
#> GSM1167077     4  0.5901     0.0845 0.000 0.164 0.004 0.616 0.172 0.044
#> GSM1167078     4  0.6596     0.2071 0.296 0.044 0.020 0.512 0.000 0.128
#> GSM1167079     5  0.4902    -0.0709 0.000 0.088 0.000 0.000 0.608 0.304
#> GSM1167080     1  0.1672     0.6984 0.932 0.048 0.000 0.004 0.000 0.016
#> GSM1167081     5  0.4986    -0.0877 0.000 0.096 0.000 0.000 0.600 0.304
#> GSM1167082     1  0.6064     0.2216 0.480 0.096 0.036 0.384 0.000 0.004
#> GSM1167083     5  0.4332     0.4305 0.000 0.316 0.000 0.000 0.644 0.040
#> GSM1167084     1  0.1536     0.7012 0.940 0.040 0.000 0.004 0.000 0.016
#> GSM1167085     5  0.5643     0.2934 0.000 0.356 0.004 0.056 0.544 0.040
#> GSM1167086     1  0.3603     0.6247 0.808 0.056 0.000 0.012 0.000 0.124
#> GSM1167087     1  0.1857     0.7238 0.928 0.028 0.012 0.032 0.000 0.000
#> GSM1167088     1  0.3511     0.6264 0.808 0.064 0.000 0.004 0.000 0.124
#> GSM1167089     2  0.4745     0.8926 0.000 0.676 0.024 0.264 0.020 0.016
#> GSM1167090     4  0.3039     0.6633 0.028 0.068 0.008 0.868 0.000 0.028
#> GSM1167091     1  0.6496     0.2476 0.480 0.088 0.032 0.364 0.000 0.036
#> GSM1167092     4  0.1269     0.7036 0.012 0.012 0.020 0.956 0.000 0.000
#> GSM1167093     2  0.4569     0.8093 0.000 0.700 0.004 0.200 0.096 0.000
#> GSM1167094     4  0.5864     0.5409 0.156 0.120 0.036 0.656 0.000 0.032
#> GSM1167095     6  0.4756     0.3191 0.000 0.032 0.000 0.008 0.456 0.504
#> GSM1167096     4  0.5869     0.5416 0.152 0.124 0.036 0.656 0.000 0.032
#> GSM1167097     1  0.1857     0.7238 0.928 0.028 0.012 0.032 0.000 0.000
#> GSM1167098     2  0.4806     0.8920 0.000 0.664 0.024 0.276 0.020 0.016
#> GSM1167099     1  0.0725     0.7206 0.976 0.012 0.000 0.012 0.000 0.000
#> GSM1167100     5  0.6035     0.3064 0.000 0.304 0.004 0.100 0.548 0.044
#> GSM1167101     5  0.4591     0.2880 0.000 0.408 0.000 0.000 0.552 0.040
#> GSM1167122     3  0.3635     0.5978 0.000 0.120 0.804 0.068 0.000 0.008
#> GSM1167102     5  0.3575     0.1989 0.000 0.000 0.000 0.008 0.708 0.284
#> GSM1167103     5  0.1141     0.5301 0.000 0.052 0.000 0.000 0.948 0.000
#> GSM1167104     1  0.1643     0.7221 0.924 0.008 0.000 0.068 0.000 0.000
#> GSM1167105     5  0.3534     0.2161 0.000 0.000 0.000 0.008 0.716 0.276
#> GSM1167106     1  0.2778     0.6737 0.824 0.008 0.000 0.168 0.000 0.000
#> GSM1167107     5  0.0000     0.5564 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167108     1  0.6064     0.2216 0.480 0.096 0.036 0.384 0.000 0.004
#> GSM1167109     5  0.0937     0.5369 0.000 0.000 0.000 0.000 0.960 0.040
#> GSM1167110     4  0.1307     0.6913 0.008 0.032 0.008 0.952 0.000 0.000
#> GSM1167111     6  0.3578     0.5120 0.000 0.000 0.000 0.000 0.340 0.660
#> GSM1167112     5  0.0291     0.5546 0.000 0.000 0.000 0.004 0.992 0.004
#> GSM1167113     4  0.1471     0.7251 0.064 0.004 0.000 0.932 0.000 0.000
#> GSM1167114     6  0.5113     0.2791 0.000 0.036 0.000 0.336 0.036 0.592
#> GSM1167115     5  0.0000     0.5564 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167116     4  0.1364     0.7181 0.048 0.004 0.004 0.944 0.000 0.000
#> GSM1167117     6  0.3607     0.5079 0.000 0.000 0.000 0.000 0.348 0.652
#> GSM1167118     1  0.6197     0.2096 0.492 0.052 0.000 0.348 0.000 0.108
#> GSM1167119     1  0.1857     0.7238 0.928 0.028 0.012 0.032 0.000 0.000
#> GSM1167120     6  0.6645     0.3280 0.012 0.036 0.000 0.352 0.156 0.444
#> GSM1167121     2  0.4303     0.7978 0.000 0.616 0.008 0.360 0.000 0.016
#> GSM1167123     3  0.0405     0.7242 0.000 0.008 0.988 0.004 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) k
#> SD:hclust 45           0.2860 2
#> SD:hclust 46           0.3279 3
#> SD:hclust 36           0.0616 4
#> SD:hclust 21           0.1641 5
#> SD:hclust 33           0.0566 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.922           0.950       0.970         0.4871 0.517   0.517
#> 3 3 0.760           0.867       0.932         0.2973 0.830   0.679
#> 4 4 0.585           0.519       0.672         0.1486 0.898   0.739
#> 5 5 0.619           0.509       0.702         0.0781 0.788   0.423
#> 6 6 0.649           0.558       0.714         0.0514 0.857   0.459

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1167072     1   0.000      0.962 1.000 0.000
#> GSM1167073     1   0.000      0.962 1.000 0.000
#> GSM1167074     2   0.000      0.978 0.000 1.000
#> GSM1167075     1   0.163      0.947 0.976 0.024
#> GSM1167076     1   0.163      0.947 0.976 0.024
#> GSM1167077     2   0.163      0.994 0.024 0.976
#> GSM1167078     1   0.000      0.962 1.000 0.000
#> GSM1167079     2   0.163      0.994 0.024 0.976
#> GSM1167080     1   0.000      0.962 1.000 0.000
#> GSM1167081     2   0.163      0.994 0.024 0.976
#> GSM1167082     1   0.000      0.962 1.000 0.000
#> GSM1167083     2   0.163      0.994 0.024 0.976
#> GSM1167084     1   0.000      0.962 1.000 0.000
#> GSM1167085     2   0.000      0.978 0.000 1.000
#> GSM1167086     1   0.000      0.962 1.000 0.000
#> GSM1167087     1   0.000      0.962 1.000 0.000
#> GSM1167088     1   0.000      0.962 1.000 0.000
#> GSM1167089     1   0.767      0.753 0.776 0.224
#> GSM1167090     1   0.000      0.962 1.000 0.000
#> GSM1167091     1   0.000      0.962 1.000 0.000
#> GSM1167092     1   0.000      0.962 1.000 0.000
#> GSM1167093     2   0.000      0.978 0.000 1.000
#> GSM1167094     1   0.000      0.962 1.000 0.000
#> GSM1167095     2   0.163      0.994 0.024 0.976
#> GSM1167096     1   0.000      0.962 1.000 0.000
#> GSM1167097     1   0.000      0.962 1.000 0.000
#> GSM1167098     1   0.767      0.753 0.776 0.224
#> GSM1167099     1   0.000      0.962 1.000 0.000
#> GSM1167100     2   0.163      0.994 0.024 0.976
#> GSM1167101     2   0.000      0.978 0.000 1.000
#> GSM1167122     1   0.242      0.941 0.960 0.040
#> GSM1167102     2   0.163      0.994 0.024 0.976
#> GSM1167103     2   0.163      0.994 0.024 0.976
#> GSM1167104     1   0.000      0.962 1.000 0.000
#> GSM1167105     2   0.163      0.994 0.024 0.976
#> GSM1167106     1   0.000      0.962 1.000 0.000
#> GSM1167107     2   0.163      0.994 0.024 0.976
#> GSM1167108     1   0.000      0.962 1.000 0.000
#> GSM1167109     2   0.163      0.994 0.024 0.976
#> GSM1167110     1   0.278      0.926 0.952 0.048
#> GSM1167111     2   0.163      0.994 0.024 0.976
#> GSM1167112     2   0.163      0.994 0.024 0.976
#> GSM1167113     1   0.000      0.962 1.000 0.000
#> GSM1167114     1   0.909      0.512 0.676 0.324
#> GSM1167115     2   0.163      0.994 0.024 0.976
#> GSM1167116     1   0.000      0.962 1.000 0.000
#> GSM1167117     2   0.163      0.994 0.024 0.976
#> GSM1167118     1   0.000      0.962 1.000 0.000
#> GSM1167119     1   0.000      0.962 1.000 0.000
#> GSM1167120     2   0.163      0.994 0.024 0.976
#> GSM1167121     1   0.821      0.705 0.744 0.256
#> GSM1167123     1   0.163      0.947 0.976 0.024

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1167072     1  0.0237     0.9471 0.996 0.000 0.004
#> GSM1167073     1  0.0000     0.9474 1.000 0.000 0.000
#> GSM1167074     2  0.5529     0.6700 0.000 0.704 0.296
#> GSM1167075     1  0.3816     0.8154 0.852 0.000 0.148
#> GSM1167076     3  0.3551     0.7737 0.132 0.000 0.868
#> GSM1167077     2  0.3619     0.9027 0.000 0.864 0.136
#> GSM1167078     1  0.1989     0.9235 0.948 0.004 0.048
#> GSM1167079     2  0.0237     0.9286 0.000 0.996 0.004
#> GSM1167080     1  0.0237     0.9471 0.996 0.000 0.004
#> GSM1167081     2  0.0237     0.9286 0.000 0.996 0.004
#> GSM1167082     1  0.0000     0.9474 1.000 0.000 0.000
#> GSM1167083     2  0.3038     0.9184 0.000 0.896 0.104
#> GSM1167084     1  0.0237     0.9471 0.996 0.000 0.004
#> GSM1167085     3  0.6126     0.1155 0.000 0.400 0.600
#> GSM1167086     1  0.0237     0.9471 0.996 0.000 0.004
#> GSM1167087     1  0.0237     0.9471 0.996 0.000 0.004
#> GSM1167088     1  0.0237     0.9471 0.996 0.000 0.004
#> GSM1167089     3  0.0237     0.8283 0.004 0.000 0.996
#> GSM1167090     1  0.4293     0.8193 0.832 0.004 0.164
#> GSM1167091     1  0.0237     0.9471 0.996 0.000 0.004
#> GSM1167092     1  0.4110     0.8357 0.844 0.004 0.152
#> GSM1167093     3  0.0592     0.8206 0.000 0.012 0.988
#> GSM1167094     1  0.1031     0.9380 0.976 0.000 0.024
#> GSM1167095     2  0.0424     0.9286 0.000 0.992 0.008
#> GSM1167096     1  0.3340     0.8670 0.880 0.000 0.120
#> GSM1167097     1  0.0237     0.9471 0.996 0.000 0.004
#> GSM1167098     3  0.0237     0.8283 0.004 0.000 0.996
#> GSM1167099     1  0.0237     0.9471 0.996 0.000 0.004
#> GSM1167100     2  0.3551     0.9038 0.000 0.868 0.132
#> GSM1167101     2  0.3116     0.9163 0.000 0.892 0.108
#> GSM1167122     3  0.0237     0.8283 0.004 0.000 0.996
#> GSM1167102     2  0.0424     0.9286 0.000 0.992 0.008
#> GSM1167103     2  0.1411     0.9329 0.000 0.964 0.036
#> GSM1167104     1  0.0237     0.9471 0.996 0.000 0.004
#> GSM1167105     2  0.2537     0.9303 0.000 0.920 0.080
#> GSM1167106     1  0.0000     0.9474 1.000 0.000 0.000
#> GSM1167107     2  0.2625     0.9272 0.000 0.916 0.084
#> GSM1167108     1  0.0237     0.9471 0.996 0.000 0.004
#> GSM1167109     2  0.0237     0.9286 0.000 0.996 0.004
#> GSM1167110     3  0.6468     0.0927 0.444 0.004 0.552
#> GSM1167111     2  0.0424     0.9286 0.000 0.992 0.008
#> GSM1167112     2  0.2537     0.9303 0.000 0.920 0.080
#> GSM1167113     1  0.4047     0.8406 0.848 0.004 0.148
#> GSM1167114     1  0.6079     0.6741 0.748 0.216 0.036
#> GSM1167115     2  0.2625     0.9272 0.000 0.916 0.084
#> GSM1167116     1  0.1647     0.9293 0.960 0.004 0.036
#> GSM1167117     2  0.0424     0.9286 0.000 0.992 0.008
#> GSM1167118     1  0.0237     0.9471 0.996 0.000 0.004
#> GSM1167119     1  0.0237     0.9471 0.996 0.000 0.004
#> GSM1167120     2  0.1647     0.9148 0.004 0.960 0.036
#> GSM1167121     3  0.0237     0.8283 0.004 0.000 0.996
#> GSM1167123     3  0.3267     0.7831 0.116 0.000 0.884

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1167072     1  0.3505     0.7610 0.864 0.000 0.048 0.088
#> GSM1167073     1  0.1975     0.7627 0.936 0.000 0.016 0.048
#> GSM1167074     4  0.6160     0.3884 0.000 0.316 0.072 0.612
#> GSM1167075     1  0.6326     0.3433 0.556 0.000 0.376 0.068
#> GSM1167076     3  0.0817     0.7498 0.024 0.000 0.976 0.000
#> GSM1167077     4  0.3636     0.3917 0.000 0.172 0.008 0.820
#> GSM1167078     1  0.6894     0.5487 0.556 0.028 0.056 0.360
#> GSM1167079     2  0.2921     0.5274 0.000 0.860 0.000 0.140
#> GSM1167080     1  0.3239     0.7310 0.880 0.000 0.052 0.068
#> GSM1167081     2  0.1557     0.5502 0.000 0.944 0.000 0.056
#> GSM1167082     1  0.3229     0.7587 0.880 0.000 0.072 0.048
#> GSM1167083     4  0.5453     0.2699 0.000 0.388 0.020 0.592
#> GSM1167084     1  0.3239     0.7310 0.880 0.000 0.052 0.068
#> GSM1167085     4  0.6330     0.4773 0.000 0.200 0.144 0.656
#> GSM1167086     1  0.3239     0.7310 0.880 0.000 0.052 0.068
#> GSM1167087     1  0.3453     0.7569 0.868 0.000 0.052 0.080
#> GSM1167088     1  0.3239     0.7310 0.880 0.000 0.052 0.068
#> GSM1167089     3  0.3172     0.7674 0.000 0.000 0.840 0.160
#> GSM1167090     1  0.7961     0.3817 0.420 0.008 0.220 0.352
#> GSM1167091     1  0.3818     0.7384 0.844 0.000 0.108 0.048
#> GSM1167092     1  0.8349     0.3298 0.412 0.028 0.204 0.356
#> GSM1167093     4  0.5716    -0.0807 0.000 0.028 0.420 0.552
#> GSM1167094     1  0.6221     0.6341 0.644 0.000 0.100 0.256
#> GSM1167095     2  0.0188     0.5626 0.000 0.996 0.000 0.004
#> GSM1167096     1  0.7310     0.5093 0.532 0.000 0.212 0.256
#> GSM1167097     1  0.3611     0.7332 0.860 0.000 0.080 0.060
#> GSM1167098     3  0.5147     0.5205 0.000 0.004 0.536 0.460
#> GSM1167099     1  0.1716     0.7482 0.936 0.000 0.000 0.064
#> GSM1167100     4  0.4737     0.4464 0.000 0.252 0.020 0.728
#> GSM1167101     4  0.5453     0.2699 0.000 0.388 0.020 0.592
#> GSM1167122     3  0.2704     0.7765 0.000 0.000 0.876 0.124
#> GSM1167102     2  0.0188     0.5626 0.000 0.996 0.000 0.004
#> GSM1167103     2  0.4907     0.2824 0.000 0.580 0.000 0.420
#> GSM1167104     1  0.1557     0.7486 0.944 0.000 0.000 0.056
#> GSM1167105     2  0.4776     0.3125 0.000 0.624 0.000 0.376
#> GSM1167106     1  0.0469     0.7615 0.988 0.000 0.000 0.012
#> GSM1167107     2  0.4925     0.2670 0.000 0.572 0.000 0.428
#> GSM1167108     1  0.3959     0.7493 0.840 0.000 0.068 0.092
#> GSM1167109     2  0.4746     0.3582 0.000 0.632 0.000 0.368
#> GSM1167110     4  0.7891    -0.3292 0.232 0.004 0.352 0.412
#> GSM1167111     2  0.0188     0.5626 0.000 0.996 0.000 0.004
#> GSM1167112     2  0.4790     0.3065 0.000 0.620 0.000 0.380
#> GSM1167113     1  0.8518     0.3071 0.396 0.036 0.208 0.360
#> GSM1167114     2  0.7813     0.0618 0.176 0.496 0.016 0.312
#> GSM1167115     2  0.4933     0.2672 0.000 0.568 0.000 0.432
#> GSM1167116     1  0.7010     0.5392 0.552 0.028 0.064 0.356
#> GSM1167117     2  0.0188     0.5626 0.000 0.996 0.000 0.004
#> GSM1167118     1  0.2737     0.7567 0.888 0.000 0.008 0.104
#> GSM1167119     1  0.3453     0.7569 0.868 0.000 0.052 0.080
#> GSM1167120     2  0.5948     0.1888 0.048 0.628 0.004 0.320
#> GSM1167121     3  0.4632     0.6760 0.000 0.004 0.688 0.308
#> GSM1167123     3  0.0817     0.7498 0.024 0.000 0.976 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1167072     4  0.5417    -0.2952 0.472 0.016 0.028 0.484 0.000
#> GSM1167073     1  0.5012     0.4787 0.600 0.016 0.016 0.368 0.000
#> GSM1167074     2  0.1830     0.6073 0.000 0.924 0.008 0.000 0.068
#> GSM1167075     1  0.4792     0.2945 0.656 0.012 0.312 0.020 0.000
#> GSM1167076     3  0.0992     0.9280 0.008 0.000 0.968 0.024 0.000
#> GSM1167077     2  0.5149     0.1681 0.000 0.540 0.004 0.424 0.032
#> GSM1167078     4  0.5804     0.5598 0.240 0.076 0.016 0.656 0.012
#> GSM1167079     5  0.4089     0.6415 0.000 0.124 0.024 0.044 0.808
#> GSM1167080     1  0.1153     0.6725 0.964 0.004 0.024 0.008 0.000
#> GSM1167081     5  0.2199     0.7334 0.000 0.060 0.016 0.008 0.916
#> GSM1167082     1  0.5943     0.4074 0.508 0.044 0.032 0.416 0.000
#> GSM1167083     2  0.2911     0.5937 0.000 0.852 0.008 0.004 0.136
#> GSM1167084     1  0.0771     0.6747 0.976 0.000 0.020 0.004 0.000
#> GSM1167085     2  0.3518     0.5943 0.000 0.856 0.036 0.064 0.044
#> GSM1167086     1  0.1059     0.6741 0.968 0.004 0.020 0.008 0.000
#> GSM1167087     1  0.5485     0.3616 0.488 0.032 0.016 0.464 0.000
#> GSM1167088     1  0.1153     0.6725 0.964 0.004 0.024 0.008 0.000
#> GSM1167089     3  0.3134     0.8726 0.000 0.120 0.848 0.032 0.000
#> GSM1167090     4  0.3248     0.6425 0.048 0.064 0.020 0.868 0.000
#> GSM1167091     1  0.4977     0.5974 0.688 0.016 0.040 0.256 0.000
#> GSM1167092     4  0.4426     0.6426 0.116 0.072 0.016 0.792 0.004
#> GSM1167093     2  0.4080     0.4969 0.000 0.800 0.136 0.052 0.012
#> GSM1167094     4  0.4143     0.4891 0.160 0.016 0.036 0.788 0.000
#> GSM1167095     5  0.0000     0.7621 0.000 0.000 0.000 0.000 1.000
#> GSM1167096     4  0.4138     0.4979 0.152 0.016 0.040 0.792 0.000
#> GSM1167097     1  0.2606     0.6654 0.900 0.012 0.032 0.056 0.000
#> GSM1167098     4  0.6728     0.1814 0.000 0.308 0.192 0.488 0.012
#> GSM1167099     1  0.2569     0.6831 0.896 0.032 0.004 0.068 0.000
#> GSM1167100     2  0.2954     0.5998 0.000 0.876 0.004 0.064 0.056
#> GSM1167101     2  0.2583     0.5969 0.000 0.864 0.004 0.000 0.132
#> GSM1167122     3  0.2139     0.9220 0.000 0.052 0.916 0.032 0.000
#> GSM1167102     5  0.1725     0.7328 0.000 0.044 0.000 0.020 0.936
#> GSM1167103     2  0.5750     0.3526 0.000 0.544 0.024 0.044 0.388
#> GSM1167104     1  0.2388     0.6834 0.900 0.028 0.000 0.072 0.000
#> GSM1167105     2  0.5775     0.3818 0.000 0.512 0.008 0.068 0.412
#> GSM1167106     1  0.4420     0.5843 0.692 0.028 0.000 0.280 0.000
#> GSM1167107     2  0.5717     0.3969 0.000 0.560 0.016 0.056 0.368
#> GSM1167108     4  0.5969    -0.3835 0.448 0.044 0.032 0.476 0.000
#> GSM1167109     5  0.5492     0.2348 0.000 0.308 0.024 0.044 0.624
#> GSM1167110     4  0.4941     0.6105 0.028 0.144 0.060 0.760 0.008
#> GSM1167111     5  0.0162     0.7619 0.000 0.004 0.000 0.000 0.996
#> GSM1167112     2  0.6155     0.3802 0.000 0.488 0.008 0.104 0.400
#> GSM1167113     4  0.4275     0.6486 0.068 0.084 0.012 0.816 0.020
#> GSM1167114     4  0.4841     0.2673 0.008 0.016 0.000 0.600 0.376
#> GSM1167115     2  0.5847     0.4052 0.000 0.544 0.016 0.064 0.376
#> GSM1167116     4  0.4044     0.6419 0.120 0.076 0.000 0.800 0.004
#> GSM1167117     5  0.0000     0.7621 0.000 0.000 0.000 0.000 1.000
#> GSM1167118     1  0.5122     0.4246 0.556 0.032 0.004 0.408 0.000
#> GSM1167119     1  0.5483     0.3703 0.492 0.032 0.016 0.460 0.000
#> GSM1167120     5  0.5605    -0.0056 0.000 0.076 0.000 0.404 0.520
#> GSM1167121     2  0.7006    -0.1161 0.000 0.392 0.288 0.312 0.008
#> GSM1167123     3  0.0992     0.9280 0.008 0.000 0.968 0.024 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1167072     1   0.515      0.531 0.676 0.000 0.004 0.192 0.020 0.108
#> GSM1167073     1   0.590      0.430 0.548 0.000 0.004 0.212 0.008 0.228
#> GSM1167074     2   0.406      0.635 0.000 0.784 0.028 0.120 0.000 0.068
#> GSM1167075     6   0.562      0.480 0.096 0.000 0.232 0.028 0.012 0.632
#> GSM1167076     3   0.170      0.885 0.024 0.000 0.928 0.000 0.000 0.048
#> GSM1167077     4   0.285      0.581 0.000 0.176 0.000 0.816 0.000 0.008
#> GSM1167078     4   0.434      0.667 0.096 0.000 0.000 0.716 0.000 0.188
#> GSM1167079     5   0.558      0.306 0.000 0.328 0.008 0.020 0.568 0.076
#> GSM1167080     6   0.330      0.811 0.236 0.000 0.000 0.008 0.000 0.756
#> GSM1167081     5   0.428      0.614 0.000 0.132 0.004 0.020 0.768 0.076
#> GSM1167082     1   0.215      0.572 0.912 0.000 0.000 0.040 0.012 0.036
#> GSM1167083     2   0.399      0.647 0.000 0.792 0.016 0.108 0.004 0.080
#> GSM1167084     6   0.329      0.800 0.252 0.000 0.000 0.004 0.000 0.744
#> GSM1167085     2   0.517      0.556 0.000 0.648 0.040 0.252 0.000 0.060
#> GSM1167086     6   0.343      0.810 0.228 0.000 0.000 0.016 0.000 0.756
#> GSM1167087     1   0.316      0.566 0.848 0.000 0.000 0.040 0.020 0.092
#> GSM1167088     6   0.334      0.812 0.228 0.000 0.000 0.012 0.000 0.760
#> GSM1167089     3   0.377      0.757 0.000 0.088 0.800 0.100 0.000 0.012
#> GSM1167090     4   0.421      0.722 0.176 0.004 0.020 0.764 0.012 0.024
#> GSM1167091     1   0.461      0.349 0.700 0.000 0.004 0.044 0.020 0.232
#> GSM1167092     4   0.420      0.721 0.152 0.000 0.008 0.752 0.000 0.088
#> GSM1167093     2   0.629      0.439 0.000 0.556 0.144 0.232 0.000 0.068
#> GSM1167094     1   0.471      0.250 0.616 0.000 0.004 0.340 0.020 0.020
#> GSM1167095     5   0.101      0.724 0.000 0.044 0.000 0.000 0.956 0.000
#> GSM1167096     1   0.502      0.235 0.608 0.000 0.012 0.332 0.020 0.028
#> GSM1167097     6   0.436      0.595 0.376 0.000 0.000 0.012 0.012 0.600
#> GSM1167098     4   0.503      0.524 0.012 0.100 0.152 0.712 0.000 0.024
#> GSM1167099     1   0.421     -0.252 0.528 0.000 0.000 0.008 0.004 0.460
#> GSM1167100     2   0.510      0.518 0.000 0.616 0.020 0.300 0.000 0.064
#> GSM1167101     2   0.369      0.651 0.000 0.816 0.016 0.096 0.004 0.068
#> GSM1167122     3   0.105      0.876 0.000 0.008 0.960 0.032 0.000 0.000
#> GSM1167102     5   0.231      0.689 0.000 0.108 0.000 0.008 0.880 0.004
#> GSM1167103     2   0.439      0.545 0.000 0.748 0.008 0.016 0.172 0.056
#> GSM1167104     1   0.410     -0.224 0.544 0.000 0.000 0.004 0.004 0.448
#> GSM1167105     2   0.424      0.562 0.000 0.704 0.000 0.048 0.244 0.004
#> GSM1167106     1   0.313      0.463 0.784 0.000 0.000 0.004 0.004 0.208
#> GSM1167107     2   0.365      0.589 0.000 0.788 0.000 0.016 0.168 0.028
#> GSM1167108     1   0.169      0.586 0.932 0.000 0.000 0.048 0.012 0.008
#> GSM1167109     2   0.526      0.222 0.000 0.576 0.004 0.016 0.344 0.060
#> GSM1167110     4   0.452      0.741 0.160 0.016 0.056 0.752 0.004 0.012
#> GSM1167111     5   0.115      0.724 0.000 0.044 0.000 0.000 0.952 0.004
#> GSM1167112     2   0.447      0.563 0.000 0.696 0.000 0.060 0.236 0.008
#> GSM1167113     4   0.414      0.731 0.168 0.000 0.012 0.768 0.016 0.036
#> GSM1167114     5   0.524      0.248 0.068 0.000 0.000 0.352 0.564 0.016
#> GSM1167115     2   0.415      0.597 0.000 0.760 0.000 0.048 0.168 0.024
#> GSM1167116     4   0.410      0.695 0.216 0.000 0.000 0.732 0.008 0.044
#> GSM1167117     5   0.101      0.724 0.000 0.044 0.000 0.000 0.956 0.000
#> GSM1167118     1   0.410      0.527 0.760 0.000 0.000 0.064 0.012 0.164
#> GSM1167119     1   0.316      0.566 0.848 0.000 0.000 0.040 0.020 0.092
#> GSM1167120     5   0.471      0.306 0.020 0.000 0.000 0.360 0.596 0.024
#> GSM1167121     4   0.522      0.452 0.000 0.136 0.184 0.660 0.000 0.020
#> GSM1167123     3   0.170      0.885 0.024 0.000 0.928 0.000 0.000 0.048

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) k
#> SD:kmeans 52            0.408 2
#> SD:kmeans 50            0.239 3
#> SD:kmeans 32            0.663 4
#> SD:kmeans 30            0.316 5
#> SD:kmeans 38            0.386 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.881           0.881       0.956         0.5061 0.493   0.493
#> 3 3 0.861           0.880       0.948         0.2910 0.795   0.609
#> 4 4 0.730           0.799       0.881         0.1191 0.910   0.748
#> 5 5 0.705           0.627       0.811         0.0794 0.909   0.672
#> 6 6 0.697           0.495       0.721         0.0400 0.913   0.636

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1167072     1   0.000      0.958 1.000 0.000
#> GSM1167073     1   0.000      0.958 1.000 0.000
#> GSM1167074     2   0.000      0.941 0.000 1.000
#> GSM1167075     1   0.000      0.958 1.000 0.000
#> GSM1167076     1   0.000      0.958 1.000 0.000
#> GSM1167077     2   0.000      0.941 0.000 1.000
#> GSM1167078     1   0.000      0.958 1.000 0.000
#> GSM1167079     2   0.000      0.941 0.000 1.000
#> GSM1167080     1   0.000      0.958 1.000 0.000
#> GSM1167081     2   0.000      0.941 0.000 1.000
#> GSM1167082     1   0.000      0.958 1.000 0.000
#> GSM1167083     2   0.000      0.941 0.000 1.000
#> GSM1167084     1   0.000      0.958 1.000 0.000
#> GSM1167085     2   0.000      0.941 0.000 1.000
#> GSM1167086     1   0.000      0.958 1.000 0.000
#> GSM1167087     1   0.000      0.958 1.000 0.000
#> GSM1167088     1   0.000      0.958 1.000 0.000
#> GSM1167089     1   0.980      0.284 0.584 0.416
#> GSM1167090     1   0.000      0.958 1.000 0.000
#> GSM1167091     1   0.000      0.958 1.000 0.000
#> GSM1167092     1   0.000      0.958 1.000 0.000
#> GSM1167093     2   0.000      0.941 0.000 1.000
#> GSM1167094     1   0.000      0.958 1.000 0.000
#> GSM1167095     2   0.000      0.941 0.000 1.000
#> GSM1167096     1   0.000      0.958 1.000 0.000
#> GSM1167097     1   0.000      0.958 1.000 0.000
#> GSM1167098     2   0.981      0.219 0.420 0.580
#> GSM1167099     1   0.000      0.958 1.000 0.000
#> GSM1167100     2   0.000      0.941 0.000 1.000
#> GSM1167101     2   0.000      0.941 0.000 1.000
#> GSM1167122     1   0.971      0.328 0.600 0.400
#> GSM1167102     2   0.000      0.941 0.000 1.000
#> GSM1167103     2   0.000      0.941 0.000 1.000
#> GSM1167104     1   0.000      0.958 1.000 0.000
#> GSM1167105     2   0.000      0.941 0.000 1.000
#> GSM1167106     1   0.000      0.958 1.000 0.000
#> GSM1167107     2   0.000      0.941 0.000 1.000
#> GSM1167108     1   0.000      0.958 1.000 0.000
#> GSM1167109     2   0.000      0.941 0.000 1.000
#> GSM1167110     1   0.730      0.719 0.796 0.204
#> GSM1167111     2   0.000      0.941 0.000 1.000
#> GSM1167112     2   0.000      0.941 0.000 1.000
#> GSM1167113     1   0.141      0.940 0.980 0.020
#> GSM1167114     2   0.971      0.344 0.400 0.600
#> GSM1167115     2   0.000      0.941 0.000 1.000
#> GSM1167116     2   0.987      0.262 0.432 0.568
#> GSM1167117     2   0.000      0.941 0.000 1.000
#> GSM1167118     1   0.000      0.958 1.000 0.000
#> GSM1167119     1   0.000      0.958 1.000 0.000
#> GSM1167120     2   0.000      0.941 0.000 1.000
#> GSM1167121     2   0.000      0.941 0.000 1.000
#> GSM1167123     1   0.000      0.958 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1167072     1  0.0000      0.954 1.000 0.000 0.000
#> GSM1167073     1  0.0000      0.954 1.000 0.000 0.000
#> GSM1167074     2  0.5650      0.594 0.000 0.688 0.312
#> GSM1167075     1  0.2878      0.863 0.904 0.000 0.096
#> GSM1167076     3  0.0592      0.917 0.012 0.000 0.988
#> GSM1167077     2  0.0424      0.928 0.000 0.992 0.008
#> GSM1167078     1  0.0475      0.949 0.992 0.004 0.004
#> GSM1167079     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167080     1  0.0000      0.954 1.000 0.000 0.000
#> GSM1167081     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167082     1  0.0000      0.954 1.000 0.000 0.000
#> GSM1167083     2  0.2537      0.885 0.000 0.920 0.080
#> GSM1167084     1  0.0000      0.954 1.000 0.000 0.000
#> GSM1167085     2  0.6252      0.318 0.000 0.556 0.444
#> GSM1167086     1  0.0000      0.954 1.000 0.000 0.000
#> GSM1167087     1  0.0000      0.954 1.000 0.000 0.000
#> GSM1167088     1  0.0000      0.954 1.000 0.000 0.000
#> GSM1167089     3  0.0000      0.921 0.000 0.000 1.000
#> GSM1167090     1  0.5058      0.656 0.756 0.000 0.244
#> GSM1167091     1  0.0000      0.954 1.000 0.000 0.000
#> GSM1167092     3  0.6111      0.350 0.396 0.000 0.604
#> GSM1167093     3  0.0000      0.921 0.000 0.000 1.000
#> GSM1167094     1  0.0000      0.954 1.000 0.000 0.000
#> GSM1167095     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167096     1  0.4504      0.728 0.804 0.000 0.196
#> GSM1167097     1  0.0000      0.954 1.000 0.000 0.000
#> GSM1167098     3  0.0000      0.921 0.000 0.000 1.000
#> GSM1167099     1  0.0000      0.954 1.000 0.000 0.000
#> GSM1167100     2  0.2537      0.885 0.000 0.920 0.080
#> GSM1167101     2  0.2537      0.885 0.000 0.920 0.080
#> GSM1167122     3  0.0000      0.921 0.000 0.000 1.000
#> GSM1167102     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167103     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167104     1  0.0000      0.954 1.000 0.000 0.000
#> GSM1167105     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167106     1  0.0000      0.954 1.000 0.000 0.000
#> GSM1167107     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167108     1  0.0000      0.954 1.000 0.000 0.000
#> GSM1167109     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167110     3  0.0000      0.921 0.000 0.000 1.000
#> GSM1167111     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167112     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167113     3  0.6529      0.741 0.152 0.092 0.756
#> GSM1167114     2  0.4796      0.674 0.220 0.780 0.000
#> GSM1167115     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167116     1  0.5363      0.595 0.724 0.276 0.000
#> GSM1167117     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167118     1  0.0000      0.954 1.000 0.000 0.000
#> GSM1167119     1  0.0000      0.954 1.000 0.000 0.000
#> GSM1167120     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167121     3  0.0000      0.921 0.000 0.000 1.000
#> GSM1167123     3  0.0592      0.917 0.012 0.000 0.988

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1167072     1  0.0188      0.905 0.996 0.000 0.004 0.000
#> GSM1167073     1  0.0469      0.906 0.988 0.000 0.000 0.012
#> GSM1167074     2  0.1211      0.840 0.000 0.960 0.040 0.000
#> GSM1167075     1  0.4420      0.676 0.748 0.000 0.240 0.012
#> GSM1167076     3  0.0188      0.816 0.004 0.000 0.996 0.000
#> GSM1167077     2  0.1209      0.871 0.000 0.964 0.004 0.032
#> GSM1167078     1  0.6125      0.687 0.732 0.076 0.048 0.144
#> GSM1167079     2  0.4843      0.324 0.000 0.604 0.000 0.396
#> GSM1167080     1  0.0937      0.901 0.976 0.000 0.012 0.012
#> GSM1167081     4  0.3400      0.819 0.000 0.180 0.000 0.820
#> GSM1167082     1  0.2742      0.890 0.900 0.000 0.024 0.076
#> GSM1167083     2  0.0336      0.864 0.000 0.992 0.008 0.000
#> GSM1167084     1  0.0937      0.901 0.976 0.000 0.012 0.012
#> GSM1167085     2  0.1792      0.815 0.000 0.932 0.068 0.000
#> GSM1167086     1  0.0937      0.901 0.976 0.000 0.012 0.012
#> GSM1167087     1  0.1792      0.901 0.932 0.000 0.000 0.068
#> GSM1167088     1  0.0937      0.901 0.976 0.000 0.012 0.012
#> GSM1167089     3  0.1211      0.825 0.000 0.040 0.960 0.000
#> GSM1167090     1  0.6751      0.543 0.616 0.024 0.288 0.072
#> GSM1167091     1  0.2131      0.894 0.932 0.000 0.032 0.036
#> GSM1167092     3  0.5344      0.496 0.300 0.000 0.668 0.032
#> GSM1167093     3  0.4992      0.214 0.000 0.476 0.524 0.000
#> GSM1167094     1  0.3080      0.881 0.880 0.000 0.024 0.096
#> GSM1167095     4  0.2760      0.857 0.000 0.128 0.000 0.872
#> GSM1167096     1  0.5470      0.729 0.732 0.000 0.168 0.100
#> GSM1167097     1  0.0188      0.905 0.996 0.000 0.004 0.000
#> GSM1167098     3  0.2635      0.810 0.000 0.076 0.904 0.020
#> GSM1167099     1  0.1211      0.905 0.960 0.000 0.000 0.040
#> GSM1167100     2  0.0336      0.864 0.000 0.992 0.008 0.000
#> GSM1167101     2  0.0336      0.864 0.000 0.992 0.008 0.000
#> GSM1167122     3  0.1118      0.824 0.000 0.036 0.964 0.000
#> GSM1167102     4  0.4164      0.688 0.000 0.264 0.000 0.736
#> GSM1167103     2  0.2281      0.870 0.000 0.904 0.000 0.096
#> GSM1167104     1  0.1211      0.905 0.960 0.000 0.000 0.040
#> GSM1167105     2  0.3219      0.829 0.000 0.836 0.000 0.164
#> GSM1167106     1  0.1211      0.905 0.960 0.000 0.000 0.040
#> GSM1167107     2  0.2281      0.870 0.000 0.904 0.000 0.096
#> GSM1167108     1  0.3080      0.884 0.880 0.000 0.024 0.096
#> GSM1167109     2  0.2921      0.843 0.000 0.860 0.000 0.140
#> GSM1167110     3  0.1902      0.822 0.004 0.064 0.932 0.000
#> GSM1167111     4  0.2760      0.857 0.000 0.128 0.000 0.872
#> GSM1167112     2  0.3311      0.820 0.000 0.828 0.000 0.172
#> GSM1167113     3  0.7305      0.469 0.180 0.008 0.568 0.244
#> GSM1167114     4  0.1174      0.774 0.020 0.012 0.000 0.968
#> GSM1167115     2  0.2281      0.870 0.000 0.904 0.000 0.096
#> GSM1167116     4  0.4304      0.485 0.284 0.000 0.000 0.716
#> GSM1167117     4  0.2760      0.857 0.000 0.128 0.000 0.872
#> GSM1167118     1  0.1940      0.899 0.924 0.000 0.000 0.076
#> GSM1167119     1  0.1940      0.899 0.924 0.000 0.000 0.076
#> GSM1167120     4  0.2530      0.852 0.000 0.112 0.000 0.888
#> GSM1167121     3  0.1867      0.820 0.000 0.072 0.928 0.000
#> GSM1167123     3  0.0188      0.816 0.004 0.000 0.996 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1167072     1  0.4074      0.438 0.636 0.000 0.000 0.364 0.000
#> GSM1167073     1  0.3521      0.569 0.764 0.000 0.000 0.232 0.004
#> GSM1167074     2  0.1168      0.869 0.000 0.960 0.008 0.032 0.000
#> GSM1167075     1  0.2771      0.468 0.860 0.000 0.128 0.012 0.000
#> GSM1167076     3  0.0290      0.866 0.000 0.000 0.992 0.008 0.000
#> GSM1167077     2  0.1907      0.870 0.000 0.928 0.000 0.044 0.028
#> GSM1167078     1  0.3671      0.438 0.844 0.024 0.000 0.072 0.060
#> GSM1167079     2  0.4210      0.368 0.000 0.588 0.000 0.000 0.412
#> GSM1167080     1  0.0510      0.597 0.984 0.000 0.000 0.016 0.000
#> GSM1167081     5  0.1608      0.838 0.000 0.072 0.000 0.000 0.928
#> GSM1167082     4  0.3966      0.397 0.336 0.000 0.000 0.664 0.000
#> GSM1167083     2  0.1329      0.872 0.000 0.956 0.008 0.032 0.004
#> GSM1167084     1  0.1965      0.601 0.904 0.000 0.000 0.096 0.000
#> GSM1167085     2  0.1668      0.857 0.000 0.940 0.028 0.032 0.000
#> GSM1167086     1  0.0510      0.590 0.984 0.000 0.000 0.016 0.000
#> GSM1167087     4  0.4562     -0.140 0.492 0.000 0.000 0.500 0.008
#> GSM1167088     1  0.0290      0.585 0.992 0.000 0.000 0.008 0.000
#> GSM1167089     3  0.0404      0.870 0.000 0.012 0.988 0.000 0.000
#> GSM1167090     4  0.6175      0.268 0.324 0.008 0.124 0.544 0.000
#> GSM1167091     4  0.4561      0.233 0.488 0.000 0.008 0.504 0.000
#> GSM1167092     3  0.6199      0.494 0.204 0.000 0.624 0.144 0.028
#> GSM1167093     3  0.4768      0.417 0.000 0.384 0.592 0.024 0.000
#> GSM1167094     4  0.3246      0.533 0.184 0.000 0.008 0.808 0.000
#> GSM1167095     5  0.0794      0.862 0.000 0.028 0.000 0.000 0.972
#> GSM1167096     4  0.3622      0.524 0.124 0.000 0.056 0.820 0.000
#> GSM1167097     1  0.3966      0.443 0.664 0.000 0.000 0.336 0.000
#> GSM1167098     3  0.2022      0.855 0.004 0.048 0.928 0.016 0.004
#> GSM1167099     1  0.3969      0.515 0.692 0.000 0.000 0.304 0.004
#> GSM1167100     2  0.1168      0.869 0.000 0.960 0.008 0.032 0.000
#> GSM1167101     2  0.1168      0.869 0.000 0.960 0.008 0.032 0.000
#> GSM1167122     3  0.0290      0.869 0.000 0.008 0.992 0.000 0.000
#> GSM1167102     5  0.3508      0.590 0.000 0.252 0.000 0.000 0.748
#> GSM1167103     2  0.1851      0.878 0.000 0.912 0.000 0.000 0.088
#> GSM1167104     1  0.4135      0.476 0.656 0.000 0.000 0.340 0.004
#> GSM1167105     2  0.2605      0.850 0.000 0.852 0.000 0.000 0.148
#> GSM1167106     1  0.4251      0.412 0.624 0.000 0.000 0.372 0.004
#> GSM1167107     2  0.1908      0.877 0.000 0.908 0.000 0.000 0.092
#> GSM1167108     4  0.3662      0.505 0.252 0.000 0.004 0.744 0.000
#> GSM1167109     2  0.2561      0.851 0.000 0.856 0.000 0.000 0.144
#> GSM1167110     3  0.3008      0.831 0.000 0.036 0.868 0.092 0.004
#> GSM1167111     5  0.0963      0.860 0.000 0.036 0.000 0.000 0.964
#> GSM1167112     2  0.2690      0.843 0.000 0.844 0.000 0.000 0.156
#> GSM1167113     4  0.6112      0.344 0.056 0.008 0.208 0.660 0.068
#> GSM1167114     5  0.1043      0.832 0.000 0.000 0.000 0.040 0.960
#> GSM1167115     2  0.1908      0.877 0.000 0.908 0.000 0.000 0.092
#> GSM1167116     5  0.6331      0.197 0.152 0.004 0.000 0.336 0.508
#> GSM1167117     5  0.0794      0.862 0.000 0.028 0.000 0.000 0.972
#> GSM1167118     1  0.4446      0.338 0.592 0.000 0.000 0.400 0.008
#> GSM1167119     4  0.4560     -0.114 0.484 0.000 0.000 0.508 0.008
#> GSM1167120     5  0.0771      0.850 0.000 0.004 0.000 0.020 0.976
#> GSM1167121     3  0.1568      0.862 0.000 0.036 0.944 0.020 0.000
#> GSM1167123     3  0.0290      0.866 0.000 0.000 0.992 0.008 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1167072     1  0.3377     0.4151 0.808 0.000 0.000 0.136 0.000 0.056
#> GSM1167073     1  0.4605     0.4048 0.692 0.000 0.000 0.184 0.000 0.124
#> GSM1167074     2  0.2398     0.7930 0.000 0.876 0.020 0.000 0.000 0.104
#> GSM1167075     1  0.7248     0.1129 0.360 0.000 0.164 0.344 0.000 0.132
#> GSM1167076     3  0.0520     0.7311 0.000 0.000 0.984 0.008 0.000 0.008
#> GSM1167077     2  0.4171     0.7626 0.000 0.784 0.000 0.040 0.088 0.088
#> GSM1167078     4  0.6287    -0.2808 0.340 0.004 0.000 0.424 0.008 0.224
#> GSM1167079     5  0.3975     0.0654 0.000 0.452 0.000 0.000 0.544 0.004
#> GSM1167080     1  0.5367     0.3114 0.532 0.000 0.000 0.344 0.000 0.124
#> GSM1167081     5  0.1075     0.8050 0.000 0.048 0.000 0.000 0.952 0.000
#> GSM1167082     1  0.4092     0.0104 0.636 0.000 0.000 0.344 0.000 0.020
#> GSM1167083     2  0.2325     0.8063 0.000 0.884 0.008 0.000 0.008 0.100
#> GSM1167084     1  0.4892     0.3651 0.628 0.000 0.000 0.272 0.000 0.100
#> GSM1167085     2  0.2912     0.7713 0.000 0.844 0.040 0.000 0.000 0.116
#> GSM1167086     1  0.5379     0.2907 0.516 0.000 0.000 0.364 0.000 0.120
#> GSM1167087     1  0.4024     0.2969 0.744 0.000 0.000 0.184 0.000 0.072
#> GSM1167088     1  0.5498     0.2713 0.488 0.000 0.000 0.380 0.000 0.132
#> GSM1167089     3  0.0405     0.7323 0.000 0.004 0.988 0.000 0.000 0.008
#> GSM1167090     4  0.4402     0.0744 0.028 0.004 0.080 0.764 0.000 0.124
#> GSM1167091     4  0.3804     0.0556 0.424 0.000 0.000 0.576 0.000 0.000
#> GSM1167092     3  0.7286     0.0156 0.220 0.000 0.448 0.112 0.008 0.212
#> GSM1167093     3  0.5282     0.1646 0.000 0.416 0.484 0.000 0.000 0.100
#> GSM1167094     4  0.4788     0.3145 0.372 0.000 0.000 0.568 0.000 0.060
#> GSM1167095     5  0.0520     0.8103 0.000 0.008 0.000 0.000 0.984 0.008
#> GSM1167096     4  0.5420     0.2867 0.336 0.000 0.016 0.560 0.000 0.088
#> GSM1167097     1  0.3671     0.4170 0.756 0.000 0.000 0.208 0.000 0.036
#> GSM1167098     3  0.2697     0.6868 0.000 0.048 0.876 0.008 0.000 0.068
#> GSM1167099     1  0.2328     0.4745 0.892 0.000 0.000 0.052 0.000 0.056
#> GSM1167100     2  0.2455     0.7956 0.000 0.872 0.012 0.004 0.000 0.112
#> GSM1167101     2  0.2070     0.8014 0.000 0.892 0.008 0.000 0.000 0.100
#> GSM1167122     3  0.0146     0.7330 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM1167102     5  0.2558     0.7171 0.000 0.156 0.000 0.000 0.840 0.004
#> GSM1167103     2  0.2219     0.8142 0.000 0.864 0.000 0.000 0.136 0.000
#> GSM1167104     1  0.0508     0.4751 0.984 0.000 0.000 0.004 0.000 0.012
#> GSM1167105     2  0.2994     0.7652 0.000 0.788 0.000 0.000 0.208 0.004
#> GSM1167106     1  0.1341     0.4645 0.948 0.000 0.000 0.024 0.000 0.028
#> GSM1167107     2  0.2219     0.8142 0.000 0.864 0.000 0.000 0.136 0.000
#> GSM1167108     1  0.4410    -0.1740 0.560 0.000 0.000 0.412 0.000 0.028
#> GSM1167109     2  0.2941     0.7464 0.000 0.780 0.000 0.000 0.220 0.000
#> GSM1167110     3  0.5591     0.2210 0.032 0.036 0.524 0.016 0.000 0.392
#> GSM1167111     5  0.0547     0.8139 0.000 0.020 0.000 0.000 0.980 0.000
#> GSM1167112     2  0.2902     0.7765 0.000 0.800 0.000 0.000 0.196 0.004
#> GSM1167113     6  0.7442     0.4168 0.184 0.020 0.076 0.188 0.024 0.508
#> GSM1167114     5  0.2655     0.7008 0.012 0.000 0.000 0.020 0.872 0.096
#> GSM1167115     2  0.2320     0.8153 0.000 0.864 0.000 0.000 0.132 0.004
#> GSM1167116     6  0.6392     0.4575 0.296 0.008 0.000 0.028 0.168 0.500
#> GSM1167117     5  0.0363     0.8139 0.000 0.012 0.000 0.000 0.988 0.000
#> GSM1167118     1  0.3845     0.3970 0.772 0.000 0.000 0.088 0.000 0.140
#> GSM1167119     1  0.4222     0.2874 0.728 0.000 0.000 0.184 0.000 0.088
#> GSM1167120     5  0.2135     0.7191 0.000 0.000 0.000 0.000 0.872 0.128
#> GSM1167121     3  0.2653     0.6889 0.000 0.028 0.868 0.004 0.000 0.100
#> GSM1167123     3  0.0405     0.7314 0.000 0.000 0.988 0.008 0.000 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> SD:skmeans 47            0.229 2
#> SD:skmeans 50            0.139 3
#> SD:skmeans 47            0.129 4
#> SD:skmeans 35            0.126 5
#> SD:skmeans 25            0.384 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.678           0.820       0.927         0.4517 0.538   0.538
#> 3 3 0.467           0.483       0.747         0.4358 0.731   0.526
#> 4 4 0.533           0.566       0.749         0.1052 0.802   0.530
#> 5 5 0.665           0.514       0.752         0.0993 0.769   0.382
#> 6 6 0.704           0.472       0.747         0.0530 0.821   0.342

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1167072     1   0.000     0.9280 1.000 0.000
#> GSM1167073     1   0.118     0.9252 0.984 0.016
#> GSM1167074     2   0.000     0.8825 0.000 1.000
#> GSM1167075     1   0.224     0.9186 0.964 0.036
#> GSM1167076     1   0.141     0.9240 0.980 0.020
#> GSM1167077     1   0.998     0.0288 0.524 0.476
#> GSM1167078     1   0.224     0.9186 0.964 0.036
#> GSM1167079     2   0.000     0.8825 0.000 1.000
#> GSM1167080     1   0.000     0.9280 1.000 0.000
#> GSM1167081     2   0.000     0.8825 0.000 1.000
#> GSM1167082     1   0.000     0.9280 1.000 0.000
#> GSM1167083     2   0.000     0.8825 0.000 1.000
#> GSM1167084     1   0.000     0.9280 1.000 0.000
#> GSM1167085     2   0.985     0.2496 0.428 0.572
#> GSM1167086     1   0.000     0.9280 1.000 0.000
#> GSM1167087     1   0.000     0.9280 1.000 0.000
#> GSM1167088     1   0.118     0.9252 0.984 0.016
#> GSM1167089     1   0.730     0.7511 0.796 0.204
#> GSM1167090     1   0.242     0.9170 0.960 0.040
#> GSM1167091     1   0.000     0.9280 1.000 0.000
#> GSM1167092     1   0.242     0.9170 0.960 0.040
#> GSM1167093     2   0.985     0.2496 0.428 0.572
#> GSM1167094     1   0.000     0.9280 1.000 0.000
#> GSM1167095     2   0.952     0.4032 0.372 0.628
#> GSM1167096     1   0.000     0.9280 1.000 0.000
#> GSM1167097     1   0.000     0.9280 1.000 0.000
#> GSM1167098     1   0.242     0.9170 0.960 0.040
#> GSM1167099     1   0.000     0.9280 1.000 0.000
#> GSM1167100     2   0.991     0.1977 0.444 0.556
#> GSM1167101     2   0.000     0.8825 0.000 1.000
#> GSM1167122     1   0.242     0.9170 0.960 0.040
#> GSM1167102     2   0.000     0.8825 0.000 1.000
#> GSM1167103     2   0.000     0.8825 0.000 1.000
#> GSM1167104     1   0.000     0.9280 1.000 0.000
#> GSM1167105     2   0.000     0.8825 0.000 1.000
#> GSM1167106     1   0.000     0.9280 1.000 0.000
#> GSM1167107     2   0.000     0.8825 0.000 1.000
#> GSM1167108     1   0.000     0.9280 1.000 0.000
#> GSM1167109     2   0.000     0.8825 0.000 1.000
#> GSM1167110     1   0.634     0.8071 0.840 0.160
#> GSM1167111     2   0.000     0.8825 0.000 1.000
#> GSM1167112     2   0.000     0.8825 0.000 1.000
#> GSM1167113     1   0.482     0.8650 0.896 0.104
#> GSM1167114     1   0.456     0.8540 0.904 0.096
#> GSM1167115     2   0.000     0.8825 0.000 1.000
#> GSM1167116     1   0.563     0.8370 0.868 0.132
#> GSM1167117     2   0.311     0.8388 0.056 0.944
#> GSM1167118     1   0.000     0.9280 1.000 0.000
#> GSM1167119     1   0.000     0.9280 1.000 0.000
#> GSM1167120     1   0.775     0.7141 0.772 0.228
#> GSM1167121     1   0.973     0.2949 0.596 0.404
#> GSM1167123     1   0.000     0.9280 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1167072     1  0.6140    0.48202 0.596 0.000 0.404
#> GSM1167073     1  0.6302    0.39155 0.520 0.000 0.480
#> GSM1167074     2  0.6302    0.58433 0.000 0.520 0.480
#> GSM1167075     1  0.3816    0.66075 0.852 0.000 0.148
#> GSM1167076     1  0.4931    0.57126 0.768 0.000 0.232
#> GSM1167077     3  0.2280    0.54582 0.008 0.052 0.940
#> GSM1167078     1  0.5178    0.55733 0.744 0.000 0.256
#> GSM1167079     2  0.0000    0.62257 0.000 1.000 0.000
#> GSM1167080     1  0.0000    0.69717 1.000 0.000 0.000
#> GSM1167081     2  0.0000    0.62257 0.000 1.000 0.000
#> GSM1167082     1  0.6008    0.48999 0.628 0.000 0.372
#> GSM1167083     2  0.6299    0.58986 0.000 0.524 0.476
#> GSM1167084     1  0.0237    0.69760 0.996 0.000 0.004
#> GSM1167085     3  0.6057   -0.16779 0.004 0.340 0.656
#> GSM1167086     1  0.3038    0.69018 0.896 0.000 0.104
#> GSM1167087     1  0.3116    0.69002 0.892 0.000 0.108
#> GSM1167088     1  0.2537    0.69307 0.920 0.000 0.080
#> GSM1167089     3  0.0000    0.57741 0.000 0.000 1.000
#> GSM1167090     3  0.2625    0.57177 0.084 0.000 0.916
#> GSM1167091     1  0.0000    0.69717 1.000 0.000 0.000
#> GSM1167092     3  0.6359   -0.20152 0.404 0.004 0.592
#> GSM1167093     3  0.5810   -0.16587 0.000 0.336 0.664
#> GSM1167094     1  0.6252    0.41548 0.556 0.000 0.444
#> GSM1167095     2  0.3715    0.48594 0.004 0.868 0.128
#> GSM1167096     1  0.6252    0.41548 0.556 0.000 0.444
#> GSM1167097     1  0.0000    0.69717 1.000 0.000 0.000
#> GSM1167098     3  0.2682    0.56773 0.004 0.076 0.920
#> GSM1167099     1  0.1529    0.70133 0.960 0.000 0.040
#> GSM1167100     3  0.5929   -0.10605 0.004 0.320 0.676
#> GSM1167101     2  0.6299    0.58986 0.000 0.524 0.476
#> GSM1167122     3  0.0000    0.57741 0.000 0.000 1.000
#> GSM1167102     2  0.0000    0.62257 0.000 1.000 0.000
#> GSM1167103     2  0.6286    0.59366 0.000 0.536 0.464
#> GSM1167104     1  0.0000    0.69717 1.000 0.000 0.000
#> GSM1167105     2  0.6299    0.58986 0.000 0.524 0.476
#> GSM1167106     1  0.6140    0.45555 0.596 0.000 0.404
#> GSM1167107     2  0.6299    0.58986 0.000 0.524 0.476
#> GSM1167108     1  0.6140    0.45555 0.596 0.000 0.404
#> GSM1167109     2  0.0000    0.62257 0.000 1.000 0.000
#> GSM1167110     3  0.5223    0.47704 0.176 0.024 0.800
#> GSM1167111     2  0.0000    0.62257 0.000 1.000 0.000
#> GSM1167112     2  0.6192    0.59712 0.000 0.580 0.420
#> GSM1167113     3  0.7036   -0.32234 0.444 0.020 0.536
#> GSM1167114     3  0.6819    0.28381 0.012 0.476 0.512
#> GSM1167115     2  0.6299    0.58986 0.000 0.524 0.476
#> GSM1167116     3  0.4121    0.47039 0.168 0.000 0.832
#> GSM1167117     2  0.1163    0.59914 0.000 0.972 0.028
#> GSM1167118     1  0.4654    0.65663 0.792 0.000 0.208
#> GSM1167119     1  0.6215    0.44047 0.572 0.000 0.428
#> GSM1167120     3  0.6676    0.28360 0.008 0.476 0.516
#> GSM1167121     3  0.1529    0.55092 0.000 0.040 0.960
#> GSM1167123     3  0.6095    0.00693 0.392 0.000 0.608

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1167072     1  0.5705     0.7356 0.704 0.092 0.204 0.000
#> GSM1167073     1  0.7761     0.6123 0.436 0.280 0.284 0.000
#> GSM1167074     2  0.4844     0.5408 0.000 0.688 0.012 0.300
#> GSM1167075     1  0.6181     0.6852 0.668 0.128 0.204 0.000
#> GSM1167076     3  0.4257     0.7023 0.048 0.140 0.812 0.000
#> GSM1167077     2  0.0817     0.4697 0.000 0.976 0.024 0.000
#> GSM1167078     1  0.6386     0.6154 0.640 0.236 0.124 0.000
#> GSM1167079     4  0.0188     0.8299 0.000 0.004 0.000 0.996
#> GSM1167080     1  0.4040     0.7129 0.752 0.000 0.248 0.000
#> GSM1167081     4  0.0000     0.8319 0.000 0.000 0.000 1.000
#> GSM1167082     1  0.1940     0.7107 0.924 0.076 0.000 0.000
#> GSM1167083     2  0.4888     0.4899 0.000 0.588 0.000 0.412
#> GSM1167084     1  0.2530     0.7207 0.888 0.000 0.112 0.000
#> GSM1167085     2  0.2593     0.4607 0.000 0.892 0.104 0.004
#> GSM1167086     1  0.5799     0.7025 0.668 0.068 0.264 0.000
#> GSM1167087     1  0.4282     0.7342 0.816 0.060 0.124 0.000
#> GSM1167088     1  0.5365     0.7050 0.692 0.044 0.264 0.000
#> GSM1167089     2  0.4898     0.0945 0.000 0.584 0.416 0.000
#> GSM1167090     2  0.3674     0.3828 0.104 0.852 0.044 0.000
#> GSM1167091     1  0.0000     0.7025 1.000 0.000 0.000 0.000
#> GSM1167092     2  0.6792     0.0392 0.140 0.588 0.272 0.000
#> GSM1167093     2  0.4898     0.0945 0.000 0.584 0.416 0.000
#> GSM1167094     1  0.5157     0.6231 0.688 0.284 0.028 0.000
#> GSM1167095     4  0.2868     0.7435 0.000 0.136 0.000 0.864
#> GSM1167096     1  0.5157     0.6231 0.688 0.284 0.028 0.000
#> GSM1167097     1  0.0000     0.7025 1.000 0.000 0.000 0.000
#> GSM1167098     2  0.6084     0.2570 0.000 0.656 0.252 0.092
#> GSM1167099     1  0.5025     0.7207 0.716 0.032 0.252 0.000
#> GSM1167100     2  0.0188     0.4838 0.000 0.996 0.000 0.004
#> GSM1167101     2  0.4477     0.5442 0.000 0.688 0.000 0.312
#> GSM1167122     3  0.4331     0.5640 0.000 0.288 0.712 0.000
#> GSM1167102     4  0.0000     0.8319 0.000 0.000 0.000 1.000
#> GSM1167103     2  0.4543     0.5384 0.000 0.676 0.000 0.324
#> GSM1167104     1  0.0000     0.7025 1.000 0.000 0.000 0.000
#> GSM1167105     2  0.4477     0.5442 0.000 0.688 0.000 0.312
#> GSM1167106     1  0.3659     0.6940 0.840 0.136 0.024 0.000
#> GSM1167107     2  0.4477     0.5442 0.000 0.688 0.000 0.312
#> GSM1167108     1  0.4776     0.6306 0.732 0.244 0.024 0.000
#> GSM1167109     4  0.2408     0.7402 0.000 0.104 0.000 0.896
#> GSM1167110     2  0.7179    -0.4461 0.380 0.480 0.140 0.000
#> GSM1167111     4  0.0000     0.8319 0.000 0.000 0.000 1.000
#> GSM1167112     2  0.4790     0.4931 0.000 0.620 0.000 0.380
#> GSM1167113     1  0.7864     0.5797 0.392 0.320 0.288 0.000
#> GSM1167114     4  0.4477     0.5416 0.000 0.312 0.000 0.688
#> GSM1167115     2  0.4477     0.5442 0.000 0.688 0.000 0.312
#> GSM1167116     2  0.6686     0.0541 0.200 0.620 0.180 0.000
#> GSM1167117     4  0.0000     0.8319 0.000 0.000 0.000 1.000
#> GSM1167118     1  0.7318     0.6680 0.524 0.196 0.280 0.000
#> GSM1167119     1  0.4057     0.6980 0.812 0.160 0.028 0.000
#> GSM1167120     4  0.4477     0.5416 0.000 0.312 0.000 0.688
#> GSM1167121     2  0.3266     0.3843 0.000 0.832 0.168 0.000
#> GSM1167123     3  0.3610     0.6312 0.200 0.000 0.800 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1167072     1  0.5827     0.0982 0.576 0.000 0.000 0.300 0.124
#> GSM1167073     4  0.4300     0.3964 0.476 0.000 0.000 0.524 0.000
#> GSM1167074     2  0.0000     0.8215 0.000 1.000 0.000 0.000 0.000
#> GSM1167075     1  0.2657     0.6283 0.900 0.024 0.052 0.024 0.000
#> GSM1167076     3  0.0000     0.7667 0.000 0.000 1.000 0.000 0.000
#> GSM1167077     4  0.4971     0.3422 0.028 0.460 0.000 0.512 0.000
#> GSM1167078     1  0.3182     0.5587 0.844 0.124 0.000 0.032 0.000
#> GSM1167079     5  0.5652     0.5807 0.000 0.080 0.000 0.404 0.516
#> GSM1167080     1  0.1043     0.6477 0.960 0.000 0.000 0.000 0.040
#> GSM1167081     5  0.4434     0.6426 0.000 0.004 0.000 0.460 0.536
#> GSM1167082     5  0.6362    -0.4058 0.168 0.000 0.000 0.368 0.464
#> GSM1167083     2  0.4430     0.2772 0.000 0.540 0.000 0.004 0.456
#> GSM1167084     1  0.3966     0.5949 0.664 0.000 0.000 0.000 0.336
#> GSM1167085     2  0.0798     0.8125 0.000 0.976 0.008 0.016 0.000
#> GSM1167086     1  0.0703     0.6316 0.976 0.000 0.000 0.024 0.000
#> GSM1167087     1  0.4655     0.5958 0.644 0.000 0.000 0.028 0.328
#> GSM1167088     1  0.0404     0.6356 0.988 0.000 0.000 0.012 0.000
#> GSM1167089     3  0.3949     0.5260 0.000 0.332 0.668 0.000 0.000
#> GSM1167090     4  0.6087     0.5259 0.124 0.332 0.004 0.540 0.000
#> GSM1167091     1  0.4549     0.5251 0.528 0.000 0.000 0.008 0.464
#> GSM1167092     4  0.5855     0.5256 0.356 0.108 0.000 0.536 0.000
#> GSM1167093     3  0.4201     0.4101 0.000 0.408 0.592 0.000 0.000
#> GSM1167094     4  0.4291     0.3952 0.000 0.000 0.000 0.536 0.464
#> GSM1167095     5  0.4291     0.6421 0.000 0.000 0.000 0.464 0.536
#> GSM1167096     4  0.4291     0.3952 0.000 0.000 0.000 0.536 0.464
#> GSM1167097     1  0.4437     0.5255 0.532 0.000 0.000 0.004 0.464
#> GSM1167098     4  0.6795     0.3319 0.012 0.276 0.224 0.488 0.000
#> GSM1167099     1  0.1043     0.6190 0.960 0.000 0.000 0.040 0.000
#> GSM1167100     2  0.2605     0.6818 0.000 0.852 0.000 0.148 0.000
#> GSM1167101     2  0.0000     0.8215 0.000 1.000 0.000 0.000 0.000
#> GSM1167122     3  0.0000     0.7667 0.000 0.000 1.000 0.000 0.000
#> GSM1167102     5  0.4434     0.6426 0.000 0.004 0.000 0.460 0.536
#> GSM1167103     2  0.0404     0.8203 0.000 0.988 0.000 0.012 0.000
#> GSM1167104     1  0.4291     0.5273 0.536 0.000 0.000 0.000 0.464
#> GSM1167105     2  0.1399     0.8090 0.000 0.952 0.000 0.028 0.020
#> GSM1167106     5  0.5929    -0.4588 0.104 0.000 0.000 0.432 0.464
#> GSM1167107     2  0.0000     0.8215 0.000 1.000 0.000 0.000 0.000
#> GSM1167108     4  0.5044     0.3677 0.032 0.000 0.000 0.504 0.464
#> GSM1167109     2  0.4969     0.3235 0.000 0.588 0.000 0.376 0.036
#> GSM1167110     4  0.6394     0.5488 0.308 0.144 0.012 0.536 0.000
#> GSM1167111     5  0.4434     0.6426 0.000 0.004 0.000 0.460 0.536
#> GSM1167112     2  0.2388     0.7854 0.028 0.900 0.000 0.072 0.000
#> GSM1167113     4  0.4572     0.4132 0.452 0.004 0.004 0.540 0.000
#> GSM1167114     5  0.4291     0.6421 0.000 0.000 0.000 0.464 0.536
#> GSM1167115     2  0.1082     0.8091 0.028 0.964 0.000 0.008 0.000
#> GSM1167116     4  0.6367     0.5775 0.272 0.188 0.004 0.536 0.000
#> GSM1167117     5  0.4434     0.6426 0.000 0.004 0.000 0.460 0.536
#> GSM1167118     1  0.3612     0.2305 0.732 0.000 0.000 0.268 0.000
#> GSM1167119     5  0.5929    -0.4514 0.104 0.000 0.000 0.432 0.464
#> GSM1167120     5  0.4291     0.6421 0.000 0.000 0.000 0.464 0.536
#> GSM1167121     4  0.7049     0.3255 0.028 0.376 0.172 0.424 0.000
#> GSM1167123     3  0.0000     0.7667 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1167072     1  0.4892    0.02307 0.500 0.000 0.000 0.060 0.000 0.440
#> GSM1167073     6  0.4534    0.08300 0.032 0.000 0.000 0.476 0.000 0.492
#> GSM1167074     2  0.0000    0.49951 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1167075     6  0.0692    0.69151 0.000 0.004 0.020 0.000 0.000 0.976
#> GSM1167076     3  0.0000    0.78515 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1167077     4  0.4124    0.09414 0.024 0.332 0.000 0.644 0.000 0.000
#> GSM1167078     6  0.2768    0.53474 0.000 0.156 0.000 0.012 0.000 0.832
#> GSM1167079     5  0.2740    0.83475 0.000 0.028 0.000 0.120 0.852 0.000
#> GSM1167080     6  0.0692    0.69176 0.020 0.000 0.000 0.004 0.000 0.976
#> GSM1167081     5  0.0000    0.97804 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167082     1  0.0000    0.81672 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1167083     2  0.3547    0.27118 0.000 0.668 0.000 0.000 0.332 0.000
#> GSM1167084     1  0.3684    0.52236 0.628 0.000 0.000 0.000 0.000 0.372
#> GSM1167085     2  0.1075    0.49580 0.000 0.952 0.000 0.048 0.000 0.000
#> GSM1167086     6  0.0000    0.69548 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1167087     1  0.3288    0.66831 0.724 0.000 0.000 0.000 0.000 0.276
#> GSM1167088     6  0.0146    0.69592 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM1167089     3  0.4532   -0.00848 0.000 0.468 0.500 0.032 0.000 0.000
#> GSM1167090     4  0.5380    0.06424 0.028 0.416 0.000 0.504 0.000 0.052
#> GSM1167091     1  0.1957    0.79578 0.888 0.000 0.000 0.000 0.000 0.112
#> GSM1167092     4  0.6054   -0.04066 0.028 0.124 0.000 0.452 0.000 0.396
#> GSM1167093     2  0.4419   -0.05778 0.000 0.584 0.384 0.032 0.000 0.000
#> GSM1167094     1  0.3729    0.53686 0.692 0.000 0.000 0.296 0.000 0.012
#> GSM1167095     5  0.0000    0.97804 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167096     1  0.2019    0.77898 0.900 0.000 0.000 0.088 0.000 0.012
#> GSM1167097     1  0.1957    0.79578 0.888 0.000 0.000 0.000 0.000 0.112
#> GSM1167098     2  0.7020   -0.00357 0.008 0.424 0.168 0.348 0.032 0.020
#> GSM1167099     6  0.5047    0.37530 0.348 0.000 0.000 0.088 0.000 0.564
#> GSM1167100     2  0.1814    0.47378 0.000 0.900 0.000 0.100 0.000 0.000
#> GSM1167101     2  0.1556    0.48087 0.000 0.920 0.000 0.080 0.000 0.000
#> GSM1167122     3  0.0000    0.78515 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1167102     5  0.0000    0.97804 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167103     2  0.3862    0.18322 0.000 0.524 0.000 0.476 0.000 0.000
#> GSM1167104     1  0.0713    0.81205 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM1167105     2  0.5121    0.28138 0.000 0.568 0.000 0.332 0.100 0.000
#> GSM1167106     1  0.0146    0.81674 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM1167107     2  0.3868    0.17617 0.000 0.508 0.000 0.492 0.000 0.000
#> GSM1167108     1  0.0000    0.81672 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1167109     4  0.5605   -0.23158 0.000 0.360 0.000 0.488 0.152 0.000
#> GSM1167110     4  0.6099    0.05021 0.024 0.108 0.012 0.512 0.000 0.344
#> GSM1167111     5  0.0000    0.97804 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167112     4  0.3979   -0.18151 0.000 0.360 0.000 0.628 0.012 0.000
#> GSM1167113     4  0.4654   -0.20545 0.032 0.004 0.000 0.512 0.000 0.452
#> GSM1167114     5  0.0000    0.97804 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167115     4  0.3727   -0.21242 0.000 0.388 0.000 0.612 0.000 0.000
#> GSM1167116     4  0.6120    0.16175 0.024 0.176 0.000 0.512 0.000 0.288
#> GSM1167117     5  0.0000    0.97804 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167118     6  0.5146    0.22884 0.088 0.000 0.000 0.396 0.000 0.516
#> GSM1167119     1  0.0458    0.81674 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM1167120     5  0.0000    0.97804 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167121     2  0.5347    0.01804 0.000 0.480 0.108 0.412 0.000 0.000
#> GSM1167123     3  0.0000    0.78515 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) k
#> SD:pam 46           0.1188 2
#> SD:pam 33           0.0166 3
#> SD:pam 39           0.1509 4
#> SD:pam 36           0.1086 5
#> SD:pam 27           0.1587 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.491           0.937       0.880         0.4486 0.517   0.517
#> 3 3 0.968           0.921       0.961         0.2743 0.880   0.775
#> 4 4 0.562           0.696       0.810         0.1559 0.856   0.674
#> 5 5 0.817           0.871       0.907         0.1464 0.888   0.664
#> 6 6 0.662           0.715       0.795         0.0518 0.879   0.560

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1167072     1  0.5842      0.943 0.860 0.140
#> GSM1167073     1  0.5842      0.943 0.860 0.140
#> GSM1167074     2  0.0000      1.000 0.000 1.000
#> GSM1167075     1  0.5842      0.943 0.860 0.140
#> GSM1167076     1  0.5842      0.943 0.860 0.140
#> GSM1167077     2  0.0000      1.000 0.000 1.000
#> GSM1167078     1  0.5842      0.943 0.860 0.140
#> GSM1167079     2  0.0000      1.000 0.000 1.000
#> GSM1167080     1  0.5842      0.943 0.860 0.140
#> GSM1167081     2  0.0000      1.000 0.000 1.000
#> GSM1167082     1  0.0000      0.847 1.000 0.000
#> GSM1167083     2  0.0000      1.000 0.000 1.000
#> GSM1167084     1  0.5842      0.943 0.860 0.140
#> GSM1167085     2  0.0000      1.000 0.000 1.000
#> GSM1167086     1  0.5842      0.943 0.860 0.140
#> GSM1167087     1  0.0000      0.847 1.000 0.000
#> GSM1167088     1  0.5842      0.943 0.860 0.140
#> GSM1167089     1  0.9248      0.697 0.660 0.340
#> GSM1167090     1  0.5842      0.943 0.860 0.140
#> GSM1167091     1  0.5842      0.943 0.860 0.140
#> GSM1167092     1  0.5842      0.943 0.860 0.140
#> GSM1167093     2  0.0000      1.000 0.000 1.000
#> GSM1167094     1  0.2043      0.870 0.968 0.032
#> GSM1167095     2  0.0000      1.000 0.000 1.000
#> GSM1167096     1  0.5842      0.943 0.860 0.140
#> GSM1167097     1  0.5842      0.943 0.860 0.140
#> GSM1167098     1  0.9248      0.697 0.660 0.340
#> GSM1167099     1  0.5842      0.943 0.860 0.140
#> GSM1167100     2  0.0000      1.000 0.000 1.000
#> GSM1167101     2  0.0000      1.000 0.000 1.000
#> GSM1167122     1  0.5842      0.943 0.860 0.140
#> GSM1167102     2  0.0000      1.000 0.000 1.000
#> GSM1167103     2  0.0000      1.000 0.000 1.000
#> GSM1167104     1  0.5842      0.943 0.860 0.140
#> GSM1167105     2  0.0000      1.000 0.000 1.000
#> GSM1167106     1  0.0376      0.850 0.996 0.004
#> GSM1167107     2  0.0000      1.000 0.000 1.000
#> GSM1167108     1  0.0000      0.847 1.000 0.000
#> GSM1167109     2  0.0000      1.000 0.000 1.000
#> GSM1167110     1  0.6048      0.937 0.852 0.148
#> GSM1167111     2  0.0000      1.000 0.000 1.000
#> GSM1167112     2  0.0000      1.000 0.000 1.000
#> GSM1167113     1  0.5842      0.943 0.860 0.140
#> GSM1167114     1  0.5842      0.943 0.860 0.140
#> GSM1167115     2  0.0000      1.000 0.000 1.000
#> GSM1167116     1  0.5842      0.943 0.860 0.140
#> GSM1167117     2  0.0000      1.000 0.000 1.000
#> GSM1167118     1  0.5842      0.943 0.860 0.140
#> GSM1167119     1  0.0000      0.847 1.000 0.000
#> GSM1167120     2  0.0000      1.000 0.000 1.000
#> GSM1167121     1  0.9795      0.543 0.584 0.416
#> GSM1167123     1  0.5842      0.943 0.860 0.140

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1167072     1  0.0747      0.957 0.984 0.016 0.000
#> GSM1167073     1  0.0747      0.957 0.984 0.016 0.000
#> GSM1167074     2  0.0661      0.966 0.004 0.988 0.008
#> GSM1167075     1  0.0747      0.957 0.984 0.016 0.000
#> GSM1167076     3  0.1170      0.925 0.008 0.016 0.976
#> GSM1167077     2  0.0475      0.968 0.004 0.992 0.004
#> GSM1167078     1  0.2796      0.886 0.908 0.092 0.000
#> GSM1167079     2  0.0237      0.969 0.004 0.996 0.000
#> GSM1167080     1  0.0747      0.957 0.984 0.016 0.000
#> GSM1167081     2  0.0237      0.969 0.004 0.996 0.000
#> GSM1167082     1  0.0237      0.944 0.996 0.000 0.004
#> GSM1167083     2  0.0475      0.968 0.004 0.992 0.004
#> GSM1167084     1  0.0747      0.957 0.984 0.016 0.000
#> GSM1167085     2  0.0661      0.966 0.004 0.988 0.008
#> GSM1167086     1  0.0747      0.957 0.984 0.016 0.000
#> GSM1167087     1  0.0237      0.944 0.996 0.000 0.004
#> GSM1167088     1  0.0747      0.957 0.984 0.016 0.000
#> GSM1167089     3  0.3425      0.917 0.004 0.112 0.884
#> GSM1167090     1  0.2711      0.891 0.912 0.088 0.000
#> GSM1167091     1  0.0747      0.957 0.984 0.016 0.000
#> GSM1167092     1  0.0747      0.957 0.984 0.016 0.000
#> GSM1167093     2  0.0661      0.966 0.004 0.988 0.008
#> GSM1167094     1  0.0237      0.944 0.996 0.000 0.004
#> GSM1167095     2  0.0237      0.969 0.004 0.996 0.000
#> GSM1167096     1  0.0747      0.957 0.984 0.016 0.000
#> GSM1167097     1  0.0747      0.957 0.984 0.016 0.000
#> GSM1167098     1  0.6527      0.345 0.588 0.404 0.008
#> GSM1167099     1  0.0747      0.957 0.984 0.016 0.000
#> GSM1167100     2  0.0661      0.966 0.004 0.988 0.008
#> GSM1167101     2  0.0661      0.966 0.004 0.988 0.008
#> GSM1167122     3  0.3425      0.917 0.004 0.112 0.884
#> GSM1167102     2  0.0237      0.969 0.004 0.996 0.000
#> GSM1167103     2  0.0237      0.969 0.004 0.996 0.000
#> GSM1167104     1  0.0747      0.957 0.984 0.016 0.000
#> GSM1167105     2  0.0747      0.949 0.000 0.984 0.016
#> GSM1167106     1  0.0000      0.947 1.000 0.000 0.000
#> GSM1167107     2  0.0747      0.949 0.000 0.984 0.016
#> GSM1167108     1  0.0237      0.944 0.996 0.000 0.004
#> GSM1167109     2  0.0237      0.969 0.004 0.996 0.000
#> GSM1167110     1  0.4353      0.794 0.836 0.156 0.008
#> GSM1167111     2  0.0237      0.969 0.004 0.996 0.000
#> GSM1167112     2  0.0237      0.969 0.004 0.996 0.000
#> GSM1167113     1  0.2625      0.895 0.916 0.084 0.000
#> GSM1167114     1  0.0747      0.957 0.984 0.016 0.000
#> GSM1167115     2  0.0747      0.949 0.000 0.984 0.016
#> GSM1167116     1  0.0747      0.957 0.984 0.016 0.000
#> GSM1167117     2  0.0237      0.969 0.004 0.996 0.000
#> GSM1167118     1  0.0747      0.957 0.984 0.016 0.000
#> GSM1167119     1  0.0237      0.944 0.996 0.000 0.004
#> GSM1167120     2  0.0237      0.969 0.004 0.996 0.000
#> GSM1167121     2  0.6468      0.103 0.004 0.552 0.444
#> GSM1167123     3  0.1170      0.925 0.008 0.016 0.976

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1167072     1  0.0707     0.5921 0.980 0.020 0.000 0.000
#> GSM1167073     1  0.1411     0.5713 0.960 0.020 0.000 0.020
#> GSM1167074     2  0.4008     0.7596 0.000 0.756 0.244 0.000
#> GSM1167075     4  0.5602     0.9941 0.472 0.020 0.000 0.508
#> GSM1167076     3  0.4250     0.7815 0.000 0.000 0.724 0.276
#> GSM1167077     2  0.3569     0.7876 0.000 0.804 0.196 0.000
#> GSM1167078     1  0.3764     0.6245 0.784 0.216 0.000 0.000
#> GSM1167079     2  0.0000     0.8589 0.000 1.000 0.000 0.000
#> GSM1167080     4  0.5602     0.9941 0.472 0.020 0.000 0.508
#> GSM1167081     2  0.0000     0.8589 0.000 1.000 0.000 0.000
#> GSM1167082     1  0.2589     0.6134 0.884 0.000 0.000 0.116
#> GSM1167083     2  0.3873     0.7714 0.000 0.772 0.228 0.000
#> GSM1167084     4  0.5604     0.9959 0.476 0.020 0.000 0.504
#> GSM1167085     2  0.4008     0.7596 0.000 0.756 0.244 0.000
#> GSM1167086     4  0.5606     0.9900 0.480 0.020 0.000 0.500
#> GSM1167087     1  0.4250     0.3668 0.724 0.000 0.000 0.276
#> GSM1167088     4  0.5602     0.9941 0.472 0.020 0.000 0.508
#> GSM1167089     3  0.6883     0.7119 0.000 0.212 0.596 0.192
#> GSM1167090     1  0.3945     0.6243 0.780 0.216 0.000 0.004
#> GSM1167091     1  0.5339    -0.4710 0.624 0.020 0.000 0.356
#> GSM1167092     1  0.0895     0.5944 0.976 0.020 0.000 0.004
#> GSM1167093     2  0.4250     0.7272 0.000 0.724 0.276 0.000
#> GSM1167094     1  0.3528     0.6107 0.808 0.000 0.000 0.192
#> GSM1167095     2  0.0000     0.8589 0.000 1.000 0.000 0.000
#> GSM1167096     1  0.4204     0.6242 0.788 0.020 0.000 0.192
#> GSM1167097     4  0.5604     0.9959 0.476 0.020 0.000 0.504
#> GSM1167098     1  0.7579     0.3203 0.512 0.228 0.256 0.004
#> GSM1167099     4  0.5604     0.9959 0.476 0.020 0.000 0.504
#> GSM1167100     2  0.3907     0.7690 0.000 0.768 0.232 0.000
#> GSM1167101     2  0.3907     0.7690 0.000 0.768 0.232 0.000
#> GSM1167122     3  0.6944     0.7460 0.000 0.196 0.588 0.216
#> GSM1167102     2  0.0000     0.8589 0.000 1.000 0.000 0.000
#> GSM1167103     2  0.0000     0.8589 0.000 1.000 0.000 0.000
#> GSM1167104     4  0.5604     0.9959 0.476 0.020 0.000 0.504
#> GSM1167105     2  0.0707     0.8449 0.000 0.980 0.000 0.020
#> GSM1167106     1  0.2973     0.2915 0.856 0.000 0.000 0.144
#> GSM1167107     2  0.0707     0.8449 0.000 0.980 0.000 0.020
#> GSM1167108     1  0.3528     0.6107 0.808 0.000 0.000 0.192
#> GSM1167109     2  0.0000     0.8589 0.000 1.000 0.000 0.000
#> GSM1167110     1  0.4126     0.6220 0.776 0.216 0.004 0.004
#> GSM1167111     2  0.0000     0.8589 0.000 1.000 0.000 0.000
#> GSM1167112     2  0.0000     0.8589 0.000 1.000 0.000 0.000
#> GSM1167113     1  0.3945     0.6243 0.780 0.216 0.000 0.004
#> GSM1167114     1  0.3908     0.6263 0.784 0.212 0.000 0.004
#> GSM1167115     2  0.0707     0.8449 0.000 0.980 0.000 0.020
#> GSM1167116     1  0.0895     0.5944 0.976 0.020 0.000 0.004
#> GSM1167117     2  0.0000     0.8589 0.000 1.000 0.000 0.000
#> GSM1167118     1  0.1520     0.5660 0.956 0.020 0.000 0.024
#> GSM1167119     1  0.4356     0.2871 0.708 0.000 0.000 0.292
#> GSM1167120     2  0.5080     0.0617 0.420 0.576 0.000 0.004
#> GSM1167121     1  0.7718     0.2653 0.480 0.228 0.288 0.004
#> GSM1167123     3  0.4250     0.7815 0.000 0.000 0.724 0.276

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1167072     4  0.2929      0.842 0.180 0.000 0.000 0.820 0.000
#> GSM1167073     4  0.2966      0.842 0.184 0.000 0.000 0.816 0.000
#> GSM1167074     2  0.0162      0.896 0.000 0.996 0.004 0.000 0.000
#> GSM1167075     1  0.0290      0.983 0.992 0.000 0.000 0.008 0.000
#> GSM1167076     3  0.0000      0.874 0.000 0.000 1.000 0.000 0.000
#> GSM1167077     2  0.4729      0.550 0.004 0.708 0.000 0.236 0.052
#> GSM1167078     4  0.3691      0.850 0.164 0.004 0.000 0.804 0.028
#> GSM1167079     5  0.0404      0.981 0.000 0.012 0.000 0.000 0.988
#> GSM1167080     1  0.0162      0.978 0.996 0.000 0.000 0.004 0.000
#> GSM1167081     5  0.0404      0.981 0.000 0.012 0.000 0.000 0.988
#> GSM1167082     4  0.1608      0.857 0.072 0.000 0.000 0.928 0.000
#> GSM1167083     2  0.0000      0.898 0.000 1.000 0.000 0.000 0.000
#> GSM1167084     1  0.0290      0.983 0.992 0.000 0.000 0.008 0.000
#> GSM1167085     2  0.1251      0.907 0.000 0.956 0.008 0.000 0.036
#> GSM1167086     1  0.0794      0.978 0.972 0.000 0.000 0.028 0.000
#> GSM1167087     4  0.1608      0.857 0.072 0.000 0.000 0.928 0.000
#> GSM1167088     1  0.0162      0.978 0.996 0.000 0.000 0.004 0.000
#> GSM1167089     3  0.3452      0.822 0.000 0.148 0.820 0.000 0.032
#> GSM1167090     4  0.3881      0.830 0.040 0.072 0.012 0.844 0.032
#> GSM1167091     4  0.4182      0.432 0.400 0.000 0.000 0.600 0.000
#> GSM1167092     4  0.2886      0.856 0.148 0.000 0.000 0.844 0.008
#> GSM1167093     2  0.1386      0.907 0.000 0.952 0.016 0.000 0.032
#> GSM1167094     4  0.0000      0.827 0.000 0.000 0.000 1.000 0.000
#> GSM1167095     5  0.0324      0.981 0.004 0.004 0.000 0.000 0.992
#> GSM1167096     4  0.0324      0.827 0.000 0.004 0.000 0.992 0.004
#> GSM1167097     1  0.0703      0.982 0.976 0.000 0.000 0.024 0.000
#> GSM1167098     4  0.5221      0.383 0.000 0.372 0.008 0.584 0.036
#> GSM1167099     1  0.0609      0.982 0.980 0.000 0.000 0.020 0.000
#> GSM1167100     2  0.1205      0.904 0.004 0.956 0.000 0.000 0.040
#> GSM1167101     2  0.0000      0.898 0.000 1.000 0.000 0.000 0.000
#> GSM1167122     3  0.3035      0.856 0.000 0.112 0.856 0.000 0.032
#> GSM1167102     5  0.0404      0.981 0.000 0.012 0.000 0.000 0.988
#> GSM1167103     5  0.0510      0.982 0.000 0.016 0.000 0.000 0.984
#> GSM1167104     1  0.0794      0.977 0.972 0.000 0.000 0.028 0.000
#> GSM1167105     5  0.0880      0.970 0.000 0.032 0.000 0.000 0.968
#> GSM1167106     4  0.2773      0.848 0.164 0.000 0.000 0.836 0.000
#> GSM1167107     5  0.0771      0.979 0.000 0.020 0.004 0.000 0.976
#> GSM1167108     4  0.0000      0.827 0.000 0.000 0.000 1.000 0.000
#> GSM1167109     5  0.0404      0.983 0.000 0.012 0.000 0.000 0.988
#> GSM1167110     4  0.3924      0.758 0.000 0.156 0.012 0.800 0.032
#> GSM1167111     5  0.0162      0.982 0.000 0.004 0.000 0.000 0.996
#> GSM1167112     5  0.0963      0.967 0.000 0.036 0.000 0.000 0.964
#> GSM1167113     4  0.3608      0.857 0.096 0.012 0.004 0.844 0.044
#> GSM1167114     4  0.3242      0.826 0.040 0.000 0.000 0.844 0.116
#> GSM1167115     5  0.1205      0.964 0.000 0.040 0.004 0.000 0.956
#> GSM1167116     4  0.3151      0.857 0.144 0.000 0.000 0.836 0.020
#> GSM1167117     5  0.0324      0.982 0.000 0.004 0.004 0.000 0.992
#> GSM1167118     4  0.2690      0.853 0.156 0.000 0.000 0.844 0.000
#> GSM1167119     4  0.1792      0.859 0.084 0.000 0.000 0.916 0.000
#> GSM1167120     4  0.4545      0.348 0.004 0.004 0.000 0.560 0.432
#> GSM1167121     2  0.1281      0.907 0.000 0.956 0.012 0.000 0.032
#> GSM1167123     3  0.0000      0.874 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1167072     4  0.4378      0.450 0.368 0.000 0.000 0.600 0.000 0.032
#> GSM1167073     4  0.3925      0.639 0.236 0.000 0.000 0.724 0.000 0.040
#> GSM1167074     2  0.0000      0.847 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1167075     6  0.3954      0.989 0.352 0.000 0.000 0.012 0.000 0.636
#> GSM1167076     3  0.0000      0.929 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1167077     4  0.4604      0.556 0.000 0.152 0.000 0.696 0.152 0.000
#> GSM1167078     4  0.3507      0.723 0.124 0.000 0.000 0.816 0.016 0.044
#> GSM1167079     5  0.3704      0.844 0.000 0.016 0.000 0.008 0.744 0.232
#> GSM1167080     6  0.3927      0.995 0.344 0.000 0.000 0.012 0.000 0.644
#> GSM1167081     5  0.3704      0.844 0.000 0.016 0.000 0.008 0.744 0.232
#> GSM1167082     1  0.3534      0.621 0.716 0.000 0.000 0.276 0.000 0.008
#> GSM1167083     2  0.0000      0.847 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1167084     1  0.3748     -0.152 0.688 0.000 0.000 0.012 0.000 0.300
#> GSM1167085     2  0.3632      0.833 0.000 0.828 0.004 0.072 0.028 0.068
#> GSM1167086     1  0.3088      0.310 0.808 0.000 0.000 0.020 0.000 0.172
#> GSM1167087     1  0.3555      0.621 0.712 0.000 0.000 0.280 0.000 0.008
#> GSM1167088     6  0.3927      0.995 0.344 0.000 0.000 0.012 0.000 0.644
#> GSM1167089     3  0.2709      0.905 0.000 0.024 0.892 0.044 0.020 0.020
#> GSM1167090     4  0.3156      0.745 0.084 0.012 0.004 0.852 0.048 0.000
#> GSM1167091     1  0.1863      0.638 0.896 0.000 0.000 0.104 0.000 0.000
#> GSM1167092     4  0.3166      0.715 0.156 0.000 0.000 0.816 0.004 0.024
#> GSM1167093     2  0.3462      0.828 0.000 0.836 0.008 0.040 0.096 0.020
#> GSM1167094     4  0.4348      0.352 0.320 0.000 0.000 0.640 0.000 0.040
#> GSM1167095     5  0.2902      0.862 0.000 0.004 0.000 0.000 0.800 0.196
#> GSM1167096     4  0.4247      0.407 0.296 0.000 0.000 0.664 0.000 0.040
#> GSM1167097     1  0.2668      0.318 0.828 0.000 0.000 0.004 0.000 0.168
#> GSM1167098     4  0.3584      0.687 0.000 0.068 0.008 0.832 0.020 0.072
#> GSM1167099     1  0.2263      0.452 0.884 0.000 0.000 0.016 0.000 0.100
#> GSM1167100     2  0.3493      0.790 0.000 0.800 0.000 0.064 0.136 0.000
#> GSM1167101     2  0.0000      0.847 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1167122     3  0.2156      0.927 0.000 0.012 0.920 0.028 0.020 0.020
#> GSM1167102     5  0.0520      0.891 0.000 0.000 0.000 0.008 0.984 0.008
#> GSM1167103     5  0.1173      0.893 0.000 0.016 0.000 0.008 0.960 0.016
#> GSM1167104     1  0.1367      0.522 0.944 0.000 0.000 0.012 0.000 0.044
#> GSM1167105     5  0.1036      0.885 0.000 0.004 0.000 0.024 0.964 0.008
#> GSM1167106     1  0.3161      0.639 0.776 0.000 0.000 0.216 0.000 0.008
#> GSM1167107     5  0.0692      0.894 0.000 0.020 0.004 0.000 0.976 0.000
#> GSM1167108     1  0.4624      0.294 0.528 0.000 0.000 0.432 0.000 0.040
#> GSM1167109     5  0.0717      0.895 0.000 0.016 0.000 0.000 0.976 0.008
#> GSM1167110     4  0.3018      0.722 0.000 0.028 0.008 0.872 0.052 0.040
#> GSM1167111     5  0.2902      0.862 0.000 0.004 0.000 0.000 0.800 0.196
#> GSM1167112     5  0.1194      0.882 0.000 0.004 0.000 0.032 0.956 0.008
#> GSM1167113     4  0.3049      0.737 0.048 0.004 0.000 0.844 0.104 0.000
#> GSM1167114     4  0.5029      0.656 0.200 0.004 0.000 0.664 0.128 0.004
#> GSM1167115     5  0.0951      0.892 0.000 0.020 0.004 0.008 0.968 0.000
#> GSM1167116     4  0.3316      0.718 0.152 0.000 0.000 0.812 0.008 0.028
#> GSM1167117     5  0.2902      0.862 0.000 0.004 0.000 0.000 0.800 0.196
#> GSM1167118     1  0.3133      0.639 0.780 0.000 0.000 0.212 0.000 0.008
#> GSM1167119     1  0.3288      0.627 0.724 0.000 0.000 0.276 0.000 0.000
#> GSM1167120     4  0.3104      0.691 0.000 0.004 0.004 0.788 0.204 0.000
#> GSM1167121     2  0.5082      0.709 0.000 0.676 0.008 0.220 0.020 0.076
#> GSM1167123     3  0.0000      0.929 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) k
#> SD:mclust 52           0.4084 2
#> SD:mclust 50           0.4671 3
#> SD:mclust 45           0.3408 4
#> SD:mclust 49           0.0189 5
#> SD:mclust 44           0.0616 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.805           0.871       0.949         0.5071 0.490   0.490
#> 3 3 0.843           0.846       0.940         0.2808 0.808   0.625
#> 4 4 0.592           0.517       0.732         0.1396 0.784   0.461
#> 5 5 0.530           0.454       0.693         0.0662 0.832   0.480
#> 6 6 0.551           0.435       0.684         0.0434 0.883   0.558

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1167072     1   0.000     0.9504 1.000 0.000
#> GSM1167073     1   0.000     0.9504 1.000 0.000
#> GSM1167074     2   0.000     0.9350 0.000 1.000
#> GSM1167075     1   0.000     0.9504 1.000 0.000
#> GSM1167076     1   0.000     0.9504 1.000 0.000
#> GSM1167077     2   0.000     0.9350 0.000 1.000
#> GSM1167078     2   0.990     0.2441 0.440 0.560
#> GSM1167079     2   0.000     0.9350 0.000 1.000
#> GSM1167080     1   0.000     0.9504 1.000 0.000
#> GSM1167081     2   0.000     0.9350 0.000 1.000
#> GSM1167082     1   0.000     0.9504 1.000 0.000
#> GSM1167083     2   0.000     0.9350 0.000 1.000
#> GSM1167084     1   0.000     0.9504 1.000 0.000
#> GSM1167085     2   0.000     0.9350 0.000 1.000
#> GSM1167086     1   0.000     0.9504 1.000 0.000
#> GSM1167087     1   0.000     0.9504 1.000 0.000
#> GSM1167088     1   0.000     0.9504 1.000 0.000
#> GSM1167089     1   0.932     0.4721 0.652 0.348
#> GSM1167090     1   0.913     0.4807 0.672 0.328
#> GSM1167091     1   0.000     0.9504 1.000 0.000
#> GSM1167092     1   0.163     0.9308 0.976 0.024
#> GSM1167093     2   0.000     0.9350 0.000 1.000
#> GSM1167094     1   0.000     0.9504 1.000 0.000
#> GSM1167095     2   0.000     0.9350 0.000 1.000
#> GSM1167096     1   0.000     0.9504 1.000 0.000
#> GSM1167097     1   0.000     0.9504 1.000 0.000
#> GSM1167098     2   0.184     0.9121 0.028 0.972
#> GSM1167099     1   0.000     0.9504 1.000 0.000
#> GSM1167100     2   0.000     0.9350 0.000 1.000
#> GSM1167101     2   0.000     0.9350 0.000 1.000
#> GSM1167122     1   0.518     0.8379 0.884 0.116
#> GSM1167102     2   0.000     0.9350 0.000 1.000
#> GSM1167103     2   0.000     0.9350 0.000 1.000
#> GSM1167104     1   0.000     0.9504 1.000 0.000
#> GSM1167105     2   0.000     0.9350 0.000 1.000
#> GSM1167106     1   0.000     0.9504 1.000 0.000
#> GSM1167107     2   0.000     0.9350 0.000 1.000
#> GSM1167108     1   0.000     0.9504 1.000 0.000
#> GSM1167109     2   0.000     0.9350 0.000 1.000
#> GSM1167110     1   0.909     0.5187 0.676 0.324
#> GSM1167111     2   0.000     0.9350 0.000 1.000
#> GSM1167112     2   0.000     0.9350 0.000 1.000
#> GSM1167113     2   0.999     0.0743 0.484 0.516
#> GSM1167114     2   0.808     0.6603 0.248 0.752
#> GSM1167115     2   0.000     0.9350 0.000 1.000
#> GSM1167116     2   0.900     0.5444 0.316 0.684
#> GSM1167117     2   0.000     0.9350 0.000 1.000
#> GSM1167118     1   0.000     0.9504 1.000 0.000
#> GSM1167119     1   0.000     0.9504 1.000 0.000
#> GSM1167120     2   0.000     0.9350 0.000 1.000
#> GSM1167121     2   0.000     0.9350 0.000 1.000
#> GSM1167123     1   0.000     0.9504 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1167072     1  0.0000      0.952 1.000 0.000 0.000
#> GSM1167073     1  0.0000      0.952 1.000 0.000 0.000
#> GSM1167074     3  0.1860      0.904 0.000 0.052 0.948
#> GSM1167075     3  0.4796      0.685 0.220 0.000 0.780
#> GSM1167076     3  0.0000      0.931 0.000 0.000 1.000
#> GSM1167077     2  0.0000      0.898 0.000 1.000 0.000
#> GSM1167078     2  0.6286      0.202 0.464 0.536 0.000
#> GSM1167079     2  0.0000      0.898 0.000 1.000 0.000
#> GSM1167080     1  0.0000      0.952 1.000 0.000 0.000
#> GSM1167081     2  0.0000      0.898 0.000 1.000 0.000
#> GSM1167082     1  0.0000      0.952 1.000 0.000 0.000
#> GSM1167083     2  0.0747      0.889 0.000 0.984 0.016
#> GSM1167084     1  0.0000      0.952 1.000 0.000 0.000
#> GSM1167085     3  0.5363      0.594 0.000 0.276 0.724
#> GSM1167086     1  0.0000      0.952 1.000 0.000 0.000
#> GSM1167087     1  0.0000      0.952 1.000 0.000 0.000
#> GSM1167088     1  0.0000      0.952 1.000 0.000 0.000
#> GSM1167089     3  0.0000      0.931 0.000 0.000 1.000
#> GSM1167090     1  0.6309     -0.145 0.504 0.496 0.000
#> GSM1167091     1  0.0000      0.952 1.000 0.000 0.000
#> GSM1167092     1  0.7444      0.566 0.684 0.096 0.220
#> GSM1167093     3  0.0000      0.931 0.000 0.000 1.000
#> GSM1167094     1  0.0000      0.952 1.000 0.000 0.000
#> GSM1167095     2  0.0000      0.898 0.000 1.000 0.000
#> GSM1167096     1  0.0000      0.952 1.000 0.000 0.000
#> GSM1167097     1  0.0000      0.952 1.000 0.000 0.000
#> GSM1167098     3  0.1964      0.905 0.000 0.056 0.944
#> GSM1167099     1  0.0000      0.952 1.000 0.000 0.000
#> GSM1167100     2  0.3941      0.762 0.000 0.844 0.156
#> GSM1167101     2  0.1411      0.875 0.000 0.964 0.036
#> GSM1167122     3  0.0000      0.931 0.000 0.000 1.000
#> GSM1167102     2  0.0000      0.898 0.000 1.000 0.000
#> GSM1167103     2  0.0000      0.898 0.000 1.000 0.000
#> GSM1167104     1  0.0000      0.952 1.000 0.000 0.000
#> GSM1167105     2  0.0000      0.898 0.000 1.000 0.000
#> GSM1167106     1  0.0000      0.952 1.000 0.000 0.000
#> GSM1167107     2  0.0000      0.898 0.000 1.000 0.000
#> GSM1167108     1  0.0000      0.952 1.000 0.000 0.000
#> GSM1167109     2  0.0000      0.898 0.000 1.000 0.000
#> GSM1167110     3  0.0983      0.925 0.016 0.004 0.980
#> GSM1167111     2  0.0000      0.898 0.000 1.000 0.000
#> GSM1167112     2  0.0000      0.898 0.000 1.000 0.000
#> GSM1167113     2  0.6154      0.364 0.408 0.592 0.000
#> GSM1167114     2  0.5178      0.655 0.256 0.744 0.000
#> GSM1167115     2  0.0000      0.898 0.000 1.000 0.000
#> GSM1167116     2  0.5859      0.507 0.344 0.656 0.000
#> GSM1167117     2  0.0000      0.898 0.000 1.000 0.000
#> GSM1167118     1  0.0000      0.952 1.000 0.000 0.000
#> GSM1167119     1  0.0000      0.952 1.000 0.000 0.000
#> GSM1167120     2  0.0000      0.898 0.000 1.000 0.000
#> GSM1167121     3  0.0000      0.931 0.000 0.000 1.000
#> GSM1167123     3  0.0237      0.930 0.004 0.000 0.996

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1167072     1  0.2542    0.76053 0.904 0.000 0.012 0.084
#> GSM1167073     1  0.0992    0.76518 0.976 0.008 0.004 0.012
#> GSM1167074     3  0.5334    0.68748 0.000 0.284 0.680 0.036
#> GSM1167075     1  0.6048    0.31242 0.576 0.012 0.384 0.028
#> GSM1167076     3  0.0592    0.85599 0.000 0.000 0.984 0.016
#> GSM1167077     2  0.4937    0.74301 0.004 0.660 0.004 0.332
#> GSM1167078     1  0.6188    0.40467 0.548 0.396 0.000 0.056
#> GSM1167079     2  0.4331    0.76954 0.000 0.712 0.000 0.288
#> GSM1167080     1  0.2125    0.73449 0.920 0.076 0.000 0.004
#> GSM1167081     2  0.4356    0.76984 0.000 0.708 0.000 0.292
#> GSM1167082     1  0.4011    0.68191 0.784 0.000 0.008 0.208
#> GSM1167083     2  0.0524    0.50333 0.000 0.988 0.008 0.004
#> GSM1167084     1  0.0469    0.76523 0.988 0.000 0.000 0.012
#> GSM1167085     3  0.6640    0.49454 0.000 0.208 0.624 0.168
#> GSM1167086     1  0.4228    0.62725 0.760 0.232 0.000 0.008
#> GSM1167087     4  0.4888    0.01702 0.412 0.000 0.000 0.588
#> GSM1167088     1  0.4594    0.58703 0.712 0.280 0.000 0.008
#> GSM1167089     3  0.0524    0.85574 0.000 0.008 0.988 0.004
#> GSM1167090     2  0.8807   -0.27182 0.316 0.376 0.044 0.264
#> GSM1167091     1  0.0712    0.76312 0.984 0.004 0.004 0.008
#> GSM1167092     4  0.7755   -0.00106 0.300 0.012 0.188 0.500
#> GSM1167093     3  0.1305    0.85670 0.000 0.004 0.960 0.036
#> GSM1167094     1  0.5070    0.31550 0.580 0.000 0.004 0.416
#> GSM1167095     2  0.4454    0.76549 0.000 0.692 0.000 0.308
#> GSM1167096     4  0.5747    0.07516 0.384 0.008 0.020 0.588
#> GSM1167097     1  0.2868    0.74618 0.864 0.000 0.000 0.136
#> GSM1167098     3  0.5062    0.75609 0.024 0.212 0.748 0.016
#> GSM1167099     1  0.1557    0.76598 0.944 0.000 0.000 0.056
#> GSM1167100     2  0.2695    0.46687 0.008 0.912 0.024 0.056
#> GSM1167101     2  0.4955    0.75013 0.000 0.708 0.024 0.268
#> GSM1167122     3  0.0376    0.85505 0.004 0.000 0.992 0.004
#> GSM1167102     4  0.4941   -0.48665 0.000 0.436 0.000 0.564
#> GSM1167103     2  0.4431    0.77081 0.000 0.696 0.000 0.304
#> GSM1167104     1  0.2868    0.74627 0.864 0.000 0.000 0.136
#> GSM1167105     4  0.4999   -0.59404 0.000 0.492 0.000 0.508
#> GSM1167106     1  0.3610    0.70233 0.800 0.000 0.000 0.200
#> GSM1167107     2  0.4776    0.74055 0.000 0.624 0.000 0.376
#> GSM1167108     4  0.5099    0.08305 0.380 0.000 0.008 0.612
#> GSM1167109     2  0.4522    0.76591 0.000 0.680 0.000 0.320
#> GSM1167110     3  0.4018    0.74336 0.000 0.004 0.772 0.224
#> GSM1167111     4  0.4941   -0.42405 0.000 0.436 0.000 0.564
#> GSM1167112     2  0.4955    0.63408 0.000 0.556 0.000 0.444
#> GSM1167113     4  0.2956    0.37755 0.036 0.048 0.012 0.904
#> GSM1167114     4  0.4149    0.26615 0.036 0.152 0.000 0.812
#> GSM1167115     2  0.4804    0.73455 0.000 0.616 0.000 0.384
#> GSM1167116     4  0.3833    0.34019 0.072 0.080 0.000 0.848
#> GSM1167117     2  0.4605    0.75338 0.000 0.664 0.000 0.336
#> GSM1167118     1  0.3400    0.70916 0.820 0.000 0.000 0.180
#> GSM1167119     4  0.4967   -0.08137 0.452 0.000 0.000 0.548
#> GSM1167120     4  0.3157    0.21270 0.004 0.144 0.000 0.852
#> GSM1167121     3  0.1978    0.84958 0.000 0.004 0.928 0.068
#> GSM1167123     3  0.1256    0.84941 0.028 0.000 0.964 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1167072     1  0.3723     0.7309 0.840 0.000 0.040 0.088 0.032
#> GSM1167073     1  0.1757     0.7767 0.936 0.012 0.000 0.004 0.048
#> GSM1167074     3  0.6072     0.3278 0.000 0.316 0.552 0.004 0.128
#> GSM1167075     3  0.7539     0.1888 0.248 0.000 0.484 0.080 0.188
#> GSM1167076     3  0.1399     0.6525 0.000 0.000 0.952 0.028 0.020
#> GSM1167077     2  0.3124     0.4885 0.000 0.844 0.016 0.004 0.136
#> GSM1167078     5  0.5684     0.2553 0.288 0.064 0.004 0.016 0.628
#> GSM1167079     2  0.4920     0.4442 0.000 0.644 0.000 0.048 0.308
#> GSM1167080     1  0.2233     0.7491 0.892 0.000 0.000 0.004 0.104
#> GSM1167081     2  0.5813     0.3953 0.000 0.560 0.000 0.112 0.328
#> GSM1167082     1  0.3170     0.7011 0.828 0.000 0.004 0.160 0.008
#> GSM1167083     5  0.3728     0.1109 0.000 0.244 0.000 0.008 0.748
#> GSM1167084     1  0.1357     0.7750 0.948 0.000 0.000 0.004 0.048
#> GSM1167085     2  0.5681     0.0314 0.000 0.540 0.392 0.012 0.056
#> GSM1167086     1  0.4114     0.3876 0.624 0.000 0.000 0.000 0.376
#> GSM1167087     4  0.4946     0.5208 0.232 0.004 0.000 0.696 0.068
#> GSM1167088     1  0.4440     0.1165 0.528 0.000 0.000 0.004 0.468
#> GSM1167089     3  0.1205     0.6455 0.000 0.000 0.956 0.004 0.040
#> GSM1167090     5  0.8093     0.2576 0.076 0.292 0.032 0.144 0.456
#> GSM1167091     1  0.3307     0.7559 0.844 0.000 0.000 0.052 0.104
#> GSM1167092     4  0.9081     0.1334 0.132 0.084 0.264 0.388 0.132
#> GSM1167093     3  0.2677     0.6323 0.000 0.112 0.872 0.000 0.016
#> GSM1167094     4  0.5142     0.5272 0.232 0.012 0.020 0.704 0.032
#> GSM1167095     2  0.6790     0.2639 0.000 0.384 0.000 0.300 0.316
#> GSM1167096     4  0.3805     0.5336 0.108 0.000 0.044 0.828 0.020
#> GSM1167097     1  0.4572     0.6785 0.756 0.000 0.004 0.148 0.092
#> GSM1167098     3  0.7273    -0.0497 0.012 0.004 0.348 0.332 0.304
#> GSM1167099     1  0.0912     0.7807 0.972 0.000 0.000 0.016 0.012
#> GSM1167100     2  0.5908     0.2146 0.020 0.564 0.040 0.012 0.364
#> GSM1167101     2  0.4505     0.5159 0.000 0.752 0.068 0.004 0.176
#> GSM1167122     3  0.1442     0.6511 0.004 0.000 0.952 0.012 0.032
#> GSM1167102     2  0.6368     0.3222 0.000 0.488 0.000 0.332 0.180
#> GSM1167103     2  0.2824     0.5526 0.000 0.864 0.000 0.020 0.116
#> GSM1167104     1  0.1830     0.7736 0.932 0.000 0.000 0.040 0.028
#> GSM1167105     2  0.4226     0.4869 0.000 0.764 0.000 0.176 0.060
#> GSM1167106     1  0.2283     0.7728 0.916 0.008 0.000 0.040 0.036
#> GSM1167107     2  0.1399     0.5413 0.000 0.952 0.000 0.028 0.020
#> GSM1167108     1  0.6019     0.3134 0.596 0.024 0.008 0.312 0.060
#> GSM1167109     2  0.3681     0.5511 0.000 0.808 0.000 0.044 0.148
#> GSM1167110     3  0.7028     0.2254 0.036 0.412 0.444 0.016 0.092
#> GSM1167111     4  0.6243    -0.0256 0.000 0.216 0.000 0.544 0.240
#> GSM1167112     2  0.4953     0.5356 0.000 0.712 0.000 0.164 0.124
#> GSM1167113     2  0.7845     0.2100 0.132 0.576 0.112 0.100 0.080
#> GSM1167114     4  0.3423     0.4253 0.008 0.108 0.000 0.844 0.040
#> GSM1167115     2  0.0000     0.5507 0.000 1.000 0.000 0.000 0.000
#> GSM1167116     2  0.5789     0.3886 0.104 0.712 0.004 0.100 0.080
#> GSM1167117     2  0.6820     0.2276 0.000 0.352 0.000 0.332 0.316
#> GSM1167118     1  0.3222     0.7428 0.852 0.004 0.000 0.108 0.036
#> GSM1167119     4  0.5523     0.2688 0.368 0.004 0.000 0.564 0.064
#> GSM1167120     2  0.5926     0.3910 0.008 0.600 0.000 0.272 0.120
#> GSM1167121     3  0.4522     0.5402 0.000 0.240 0.720 0.008 0.032
#> GSM1167123     3  0.2444     0.6418 0.024 0.000 0.912 0.028 0.036

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1167072     1  0.6625     0.4408 0.612 0.012 0.164 0.052 0.120 0.040
#> GSM1167073     1  0.2451     0.7130 0.900 0.008 0.028 0.004 0.004 0.056
#> GSM1167074     3  0.6792     0.1080 0.000 0.312 0.372 0.008 0.024 0.284
#> GSM1167075     6  0.7560     0.0445 0.064 0.000 0.224 0.132 0.096 0.484
#> GSM1167076     3  0.3185     0.5952 0.000 0.000 0.848 0.016 0.060 0.076
#> GSM1167077     2  0.3155     0.6124 0.004 0.828 0.000 0.000 0.036 0.132
#> GSM1167078     6  0.4050     0.3931 0.132 0.012 0.000 0.004 0.072 0.780
#> GSM1167079     5  0.3672     0.3345 0.000 0.368 0.000 0.000 0.632 0.000
#> GSM1167080     1  0.3003     0.6420 0.812 0.000 0.000 0.016 0.000 0.172
#> GSM1167081     5  0.3192     0.5159 0.000 0.216 0.000 0.004 0.776 0.004
#> GSM1167082     1  0.4085     0.6640 0.804 0.000 0.072 0.068 0.008 0.048
#> GSM1167083     5  0.6345     0.1422 0.000 0.132 0.032 0.008 0.476 0.352
#> GSM1167084     1  0.1908     0.6943 0.900 0.000 0.000 0.004 0.000 0.096
#> GSM1167085     2  0.6467     0.4047 0.000 0.552 0.152 0.044 0.016 0.236
#> GSM1167086     1  0.4410     0.0460 0.508 0.000 0.000 0.008 0.012 0.472
#> GSM1167087     4  0.6226     0.4412 0.176 0.008 0.008 0.624 0.084 0.100
#> GSM1167088     6  0.4505    -0.0938 0.448 0.004 0.000 0.004 0.016 0.528
#> GSM1167089     3  0.3859     0.5484 0.000 0.004 0.724 0.004 0.016 0.252
#> GSM1167090     6  0.7317     0.0758 0.032 0.304 0.012 0.200 0.028 0.424
#> GSM1167091     1  0.4527     0.6460 0.756 0.000 0.052 0.032 0.012 0.148
#> GSM1167092     5  0.8955    -0.1026 0.072 0.032 0.164 0.168 0.320 0.244
#> GSM1167093     3  0.3358     0.6259 0.000 0.116 0.824 0.008 0.000 0.052
#> GSM1167094     4  0.6029     0.5185 0.192 0.040 0.072 0.652 0.016 0.028
#> GSM1167095     5  0.3144     0.5391 0.000 0.172 0.000 0.016 0.808 0.004
#> GSM1167096     4  0.6315     0.5189 0.060 0.004 0.176 0.624 0.108 0.028
#> GSM1167097     1  0.6742     0.2853 0.524 0.000 0.008 0.200 0.072 0.196
#> GSM1167098     5  0.6332     0.1013 0.000 0.012 0.360 0.060 0.492 0.076
#> GSM1167099     1  0.1251     0.7213 0.956 0.000 0.000 0.008 0.012 0.024
#> GSM1167100     2  0.6450     0.1134 0.000 0.440 0.012 0.012 0.200 0.336
#> GSM1167101     2  0.5589     0.4984 0.000 0.652 0.180 0.004 0.120 0.044
#> GSM1167122     3  0.0547     0.6439 0.000 0.000 0.980 0.000 0.020 0.000
#> GSM1167102     5  0.6620     0.3047 0.000 0.248 0.000 0.316 0.404 0.032
#> GSM1167103     2  0.2408     0.6174 0.000 0.892 0.004 0.004 0.076 0.024
#> GSM1167104     1  0.1767     0.7221 0.932 0.000 0.000 0.020 0.012 0.036
#> GSM1167105     2  0.4722     0.5493 0.000 0.700 0.000 0.216 0.036 0.048
#> GSM1167106     1  0.1629     0.7202 0.944 0.012 0.000 0.020 0.012 0.012
#> GSM1167107     2  0.0862     0.6345 0.000 0.972 0.000 0.004 0.016 0.008
#> GSM1167108     1  0.5833     0.5171 0.672 0.032 0.056 0.184 0.016 0.040
#> GSM1167109     2  0.3835     0.4049 0.000 0.684 0.000 0.016 0.300 0.000
#> GSM1167110     2  0.6791     0.3487 0.084 0.580 0.228 0.044 0.024 0.040
#> GSM1167111     4  0.5362     0.1287 0.000 0.108 0.000 0.544 0.344 0.004
#> GSM1167112     2  0.4440     0.5561 0.000 0.756 0.020 0.096 0.124 0.004
#> GSM1167113     2  0.7562     0.3053 0.204 0.508 0.160 0.056 0.020 0.052
#> GSM1167114     4  0.3527     0.5051 0.008 0.052 0.000 0.808 0.132 0.000
#> GSM1167115     2  0.2237     0.6149 0.000 0.896 0.000 0.004 0.080 0.020
#> GSM1167116     2  0.5310     0.5514 0.100 0.728 0.000 0.068 0.056 0.048
#> GSM1167117     5  0.3732     0.5298 0.000 0.144 0.000 0.076 0.780 0.000
#> GSM1167118     1  0.3561     0.6818 0.828 0.032 0.000 0.108 0.012 0.020
#> GSM1167119     4  0.5856     0.4129 0.256 0.008 0.004 0.604 0.032 0.096
#> GSM1167120     5  0.7121     0.2841 0.024 0.324 0.000 0.136 0.444 0.072
#> GSM1167121     3  0.5607     0.1401 0.000 0.412 0.500 0.012 0.020 0.056
#> GSM1167123     3  0.1387     0.6356 0.008 0.004 0.956 0.008 0.012 0.012

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) k
#> SD:NMF 48           0.1432 2
#> SD:NMF 49           0.0405 3
#> SD:NMF 34           0.3677 4
#> SD:NMF 26           0.0544 5
#> SD:NMF 28           0.1760 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.481           0.716       0.862         0.4626 0.517   0.517
#> 3 3 0.528           0.601       0.783         0.3478 0.755   0.549
#> 4 4 0.563           0.703       0.828         0.1211 0.863   0.632
#> 5 5 0.622           0.560       0.759         0.0897 0.949   0.822
#> 6 6 0.684           0.567       0.771         0.0593 0.911   0.672

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1167072     1   0.861     0.6763 0.716 0.284
#> GSM1167073     1   0.738     0.7197 0.792 0.208
#> GSM1167074     2   0.000     0.9086 0.000 1.000
#> GSM1167075     1   0.000     0.7692 1.000 0.000
#> GSM1167076     1   0.000     0.7692 1.000 0.000
#> GSM1167077     1   0.994     0.4483 0.544 0.456
#> GSM1167078     1   0.981     0.5253 0.580 0.420
#> GSM1167079     2   0.000     0.9086 0.000 1.000
#> GSM1167080     1   0.000     0.7692 1.000 0.000
#> GSM1167081     2   0.000     0.9086 0.000 1.000
#> GSM1167082     1   0.430     0.7621 0.912 0.088
#> GSM1167083     2   0.000     0.9086 0.000 1.000
#> GSM1167084     1   0.000     0.7692 1.000 0.000
#> GSM1167085     2   0.615     0.7329 0.152 0.848
#> GSM1167086     1   0.000     0.7692 1.000 0.000
#> GSM1167087     1   0.000     0.7692 1.000 0.000
#> GSM1167088     1   0.000     0.7692 1.000 0.000
#> GSM1167089     1   0.997     0.4246 0.532 0.468
#> GSM1167090     1   0.955     0.5940 0.624 0.376
#> GSM1167091     1   0.163     0.7702 0.976 0.024
#> GSM1167092     1   0.983     0.5210 0.576 0.424
#> GSM1167093     2   0.358     0.8443 0.068 0.932
#> GSM1167094     1   0.936     0.6210 0.648 0.352
#> GSM1167095     2   0.000     0.9086 0.000 1.000
#> GSM1167096     1   0.932     0.6247 0.652 0.348
#> GSM1167097     1   0.000     0.7692 1.000 0.000
#> GSM1167098     1   0.997     0.4246 0.532 0.468
#> GSM1167099     1   0.000     0.7692 1.000 0.000
#> GSM1167100     2   0.706     0.6703 0.192 0.808
#> GSM1167101     2   0.000     0.9086 0.000 1.000
#> GSM1167122     1   0.821     0.6905 0.744 0.256
#> GSM1167102     2   0.000     0.9086 0.000 1.000
#> GSM1167103     2   0.000     0.9086 0.000 1.000
#> GSM1167104     1   0.000     0.7692 1.000 0.000
#> GSM1167105     2   0.000     0.9086 0.000 1.000
#> GSM1167106     1   0.163     0.7699 0.976 0.024
#> GSM1167107     2   0.000     0.9086 0.000 1.000
#> GSM1167108     1   0.443     0.7612 0.908 0.092
#> GSM1167109     2   0.000     0.9086 0.000 1.000
#> GSM1167110     1   0.949     0.6041 0.632 0.368
#> GSM1167111     2   0.000     0.9086 0.000 1.000
#> GSM1167112     2   0.000     0.9086 0.000 1.000
#> GSM1167113     1   0.949     0.6041 0.632 0.368
#> GSM1167114     2   0.963     0.0896 0.388 0.612
#> GSM1167115     2   0.000     0.9086 0.000 1.000
#> GSM1167116     1   0.955     0.5941 0.624 0.376
#> GSM1167117     2   0.000     0.9086 0.000 1.000
#> GSM1167118     1   0.311     0.7668 0.944 0.056
#> GSM1167119     1   0.000     0.7692 1.000 0.000
#> GSM1167120     2   0.998    -0.2689 0.472 0.528
#> GSM1167121     1   0.998     0.4177 0.528 0.472
#> GSM1167123     1   0.000     0.7692 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1167072     1  0.6314    -0.1451 0.604 0.004 0.392
#> GSM1167073     1  0.5465     0.2678 0.712 0.000 0.288
#> GSM1167074     2  0.1031     0.9070 0.000 0.976 0.024
#> GSM1167075     1  0.3941     0.5637 0.844 0.000 0.156
#> GSM1167076     3  0.6295    -0.1126 0.472 0.000 0.528
#> GSM1167077     3  0.8618     0.5468 0.388 0.104 0.508
#> GSM1167078     3  0.7777     0.5715 0.416 0.052 0.532
#> GSM1167079     2  0.0000     0.9150 0.000 1.000 0.000
#> GSM1167080     1  0.0000     0.7432 1.000 0.000 0.000
#> GSM1167081     2  0.0000     0.9150 0.000 1.000 0.000
#> GSM1167082     1  0.4452     0.5558 0.808 0.000 0.192
#> GSM1167083     2  0.1031     0.9070 0.000 0.976 0.024
#> GSM1167084     1  0.0000     0.7432 1.000 0.000 0.000
#> GSM1167085     2  0.6919     0.2782 0.016 0.536 0.448
#> GSM1167086     1  0.0000     0.7432 1.000 0.000 0.000
#> GSM1167087     1  0.0592     0.7424 0.988 0.000 0.012
#> GSM1167088     1  0.0000     0.7432 1.000 0.000 0.000
#> GSM1167089     3  0.7703     0.5513 0.232 0.104 0.664
#> GSM1167090     3  0.6859     0.5754 0.420 0.016 0.564
#> GSM1167091     1  0.3192     0.6792 0.888 0.000 0.112
#> GSM1167092     3  0.7890     0.5902 0.372 0.064 0.564
#> GSM1167093     2  0.5431     0.6365 0.000 0.716 0.284
#> GSM1167094     3  0.6617     0.5464 0.436 0.008 0.556
#> GSM1167095     2  0.0000     0.9150 0.000 1.000 0.000
#> GSM1167096     3  0.6587     0.5549 0.424 0.008 0.568
#> GSM1167097     1  0.0237     0.7430 0.996 0.000 0.004
#> GSM1167098     3  0.7741     0.5535 0.236 0.104 0.660
#> GSM1167099     1  0.0000     0.7432 1.000 0.000 0.000
#> GSM1167100     2  0.8878     0.0672 0.124 0.492 0.384
#> GSM1167101     2  0.1031     0.9070 0.000 0.976 0.024
#> GSM1167122     3  0.5687     0.2712 0.224 0.020 0.756
#> GSM1167102     2  0.0592     0.9125 0.000 0.988 0.012
#> GSM1167103     2  0.0237     0.9145 0.000 0.996 0.004
#> GSM1167104     1  0.0000     0.7432 1.000 0.000 0.000
#> GSM1167105     2  0.0424     0.9130 0.000 0.992 0.008
#> GSM1167106     1  0.1289     0.7298 0.968 0.000 0.032
#> GSM1167107     2  0.0237     0.9145 0.000 0.996 0.004
#> GSM1167108     1  0.4399     0.5659 0.812 0.000 0.188
#> GSM1167109     2  0.0000     0.9150 0.000 1.000 0.000
#> GSM1167110     3  0.6786     0.5546 0.448 0.012 0.540
#> GSM1167111     2  0.0592     0.9125 0.000 0.988 0.012
#> GSM1167112     2  0.0000     0.9150 0.000 1.000 0.000
#> GSM1167113     3  0.6793     0.5494 0.452 0.012 0.536
#> GSM1167114     1  0.9984    -0.3164 0.360 0.312 0.328
#> GSM1167115     2  0.0000     0.9150 0.000 1.000 0.000
#> GSM1167116     3  0.7043     0.5574 0.448 0.020 0.532
#> GSM1167117     2  0.0747     0.9113 0.000 0.984 0.016
#> GSM1167118     1  0.3116     0.6639 0.892 0.000 0.108
#> GSM1167119     1  0.0592     0.7424 0.988 0.000 0.012
#> GSM1167120     1  0.9522    -0.4455 0.408 0.188 0.404
#> GSM1167121     3  0.8014     0.5642 0.268 0.104 0.628
#> GSM1167123     3  0.6295    -0.1126 0.472 0.000 0.528

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1167072     3  0.5337     0.2504 0.424 0.000 0.564 0.012
#> GSM1167073     1  0.4877     0.2552 0.592 0.000 0.408 0.000
#> GSM1167074     2  0.3099     0.8581 0.000 0.876 0.104 0.020
#> GSM1167075     1  0.5310     0.1169 0.576 0.000 0.012 0.412
#> GSM1167076     4  0.3013     0.7695 0.080 0.000 0.032 0.888
#> GSM1167077     3  0.4888     0.7292 0.140 0.072 0.784 0.004
#> GSM1167078     3  0.3841     0.7440 0.144 0.020 0.832 0.004
#> GSM1167079     2  0.0188     0.9131 0.000 0.996 0.000 0.004
#> GSM1167080     1  0.0188     0.8027 0.996 0.000 0.004 0.000
#> GSM1167081     2  0.0336     0.9130 0.000 0.992 0.000 0.008
#> GSM1167082     1  0.4857     0.5296 0.668 0.000 0.324 0.008
#> GSM1167083     2  0.3278     0.8495 0.000 0.864 0.116 0.020
#> GSM1167084     1  0.0336     0.8046 0.992 0.000 0.008 0.000
#> GSM1167085     3  0.6521     0.0684 0.000 0.412 0.512 0.076
#> GSM1167086     1  0.0336     0.8046 0.992 0.000 0.008 0.000
#> GSM1167087     1  0.2469     0.7921 0.892 0.000 0.108 0.000
#> GSM1167088     1  0.0188     0.8027 0.996 0.000 0.004 0.000
#> GSM1167089     3  0.3958     0.6102 0.052 0.000 0.836 0.112
#> GSM1167090     3  0.3806     0.7412 0.156 0.000 0.824 0.020
#> GSM1167091     1  0.3166     0.7681 0.868 0.000 0.116 0.016
#> GSM1167092     3  0.3787     0.7273 0.124 0.000 0.840 0.036
#> GSM1167093     2  0.6338     0.4490 0.000 0.600 0.316 0.084
#> GSM1167094     3  0.4139     0.7272 0.176 0.000 0.800 0.024
#> GSM1167095     2  0.0336     0.9130 0.000 0.992 0.000 0.008
#> GSM1167096     3  0.4467     0.7239 0.172 0.000 0.788 0.040
#> GSM1167097     1  0.0469     0.8050 0.988 0.000 0.012 0.000
#> GSM1167098     3  0.4037     0.6146 0.056 0.000 0.832 0.112
#> GSM1167099     1  0.0000     0.8014 1.000 0.000 0.000 0.000
#> GSM1167100     3  0.6824     0.1981 0.060 0.428 0.496 0.016
#> GSM1167101     2  0.3099     0.8581 0.000 0.876 0.104 0.020
#> GSM1167122     4  0.6386     0.2960 0.072 0.000 0.376 0.552
#> GSM1167102     2  0.2892     0.8697 0.000 0.896 0.036 0.068
#> GSM1167103     2  0.0937     0.9097 0.000 0.976 0.012 0.012
#> GSM1167104     1  0.0188     0.8037 0.996 0.000 0.004 0.000
#> GSM1167105     2  0.1733     0.8968 0.000 0.948 0.028 0.024
#> GSM1167106     1  0.2921     0.7695 0.860 0.000 0.140 0.000
#> GSM1167107     2  0.0937     0.9097 0.000 0.976 0.012 0.012
#> GSM1167108     1  0.4836     0.5406 0.672 0.000 0.320 0.008
#> GSM1167109     2  0.0000     0.9133 0.000 1.000 0.000 0.000
#> GSM1167110     3  0.3356     0.7407 0.176 0.000 0.824 0.000
#> GSM1167111     2  0.3243     0.8578 0.000 0.876 0.036 0.088
#> GSM1167112     2  0.0188     0.9133 0.000 0.996 0.004 0.000
#> GSM1167113     3  0.3400     0.7393 0.180 0.000 0.820 0.000
#> GSM1167114     3  0.7730     0.4954 0.108 0.192 0.612 0.088
#> GSM1167115     2  0.0188     0.9133 0.000 0.996 0.004 0.000
#> GSM1167116     3  0.3636     0.7420 0.172 0.000 0.820 0.008
#> GSM1167117     2  0.3333     0.8560 0.000 0.872 0.040 0.088
#> GSM1167118     1  0.4193     0.6161 0.732 0.000 0.268 0.000
#> GSM1167119     1  0.2469     0.7921 0.892 0.000 0.108 0.000
#> GSM1167120     3  0.6745     0.6407 0.148 0.160 0.668 0.024
#> GSM1167121     3  0.3617     0.6469 0.064 0.000 0.860 0.076
#> GSM1167123     4  0.3013     0.7695 0.080 0.000 0.032 0.888

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1167072     4  0.5639     0.3147 0.292 0.032 0.048 0.628 0.000
#> GSM1167073     1  0.4913     0.1602 0.492 0.012 0.008 0.488 0.000
#> GSM1167074     2  0.4448     0.3938 0.000 0.516 0.000 0.004 0.480
#> GSM1167075     1  0.4425     0.1378 0.544 0.000 0.452 0.004 0.000
#> GSM1167076     3  0.0290     0.7429 0.008 0.000 0.992 0.000 0.000
#> GSM1167077     4  0.3195     0.7225 0.004 0.100 0.000 0.856 0.040
#> GSM1167078     4  0.2644     0.7348 0.016 0.068 0.000 0.896 0.020
#> GSM1167079     5  0.0000     0.5907 0.000 0.000 0.000 0.000 1.000
#> GSM1167080     1  0.0451     0.7788 0.988 0.000 0.008 0.004 0.000
#> GSM1167081     5  0.0162     0.5908 0.000 0.004 0.000 0.000 0.996
#> GSM1167082     1  0.5755     0.4811 0.580 0.024 0.052 0.344 0.000
#> GSM1167083     2  0.4443     0.4049 0.000 0.524 0.000 0.004 0.472
#> GSM1167084     1  0.0451     0.7808 0.988 0.000 0.004 0.008 0.000
#> GSM1167085     2  0.6545     0.1879 0.000 0.460 0.000 0.324 0.216
#> GSM1167086     1  0.0451     0.7808 0.988 0.000 0.004 0.008 0.000
#> GSM1167087     1  0.3016     0.7561 0.848 0.020 0.000 0.132 0.000
#> GSM1167088     1  0.0451     0.7788 0.988 0.000 0.008 0.004 0.000
#> GSM1167089     4  0.4703     0.5400 0.000 0.340 0.028 0.632 0.000
#> GSM1167090     4  0.2251     0.7358 0.008 0.052 0.024 0.916 0.000
#> GSM1167091     1  0.3584     0.7184 0.832 0.004 0.056 0.108 0.000
#> GSM1167092     4  0.3320     0.7001 0.012 0.164 0.000 0.820 0.004
#> GSM1167093     2  0.6223     0.4334 0.000 0.512 0.000 0.160 0.328
#> GSM1167094     4  0.3157     0.7186 0.016 0.052 0.060 0.872 0.000
#> GSM1167095     5  0.0162     0.5908 0.000 0.004 0.000 0.000 0.996
#> GSM1167096     4  0.3780     0.6923 0.012 0.100 0.060 0.828 0.000
#> GSM1167097     1  0.0162     0.7803 0.996 0.000 0.000 0.004 0.000
#> GSM1167098     4  0.4687     0.5435 0.000 0.336 0.028 0.636 0.000
#> GSM1167099     1  0.0290     0.7782 0.992 0.000 0.008 0.000 0.000
#> GSM1167100     4  0.6486    -0.0699 0.000 0.272 0.000 0.492 0.236
#> GSM1167101     2  0.4448     0.3938 0.000 0.516 0.000 0.004 0.480
#> GSM1167122     3  0.5474     0.2272 0.000 0.076 0.576 0.348 0.000
#> GSM1167102     5  0.2732     0.5311 0.000 0.160 0.000 0.000 0.840
#> GSM1167103     5  0.3949     0.3436 0.000 0.332 0.000 0.000 0.668
#> GSM1167104     1  0.0162     0.7791 0.996 0.000 0.004 0.000 0.000
#> GSM1167105     5  0.3966     0.4689 0.000 0.336 0.000 0.000 0.664
#> GSM1167106     1  0.3516     0.7367 0.812 0.020 0.004 0.164 0.000
#> GSM1167107     5  0.3949     0.3436 0.000 0.332 0.000 0.000 0.668
#> GSM1167108     1  0.5537     0.5104 0.600 0.024 0.040 0.336 0.000
#> GSM1167109     5  0.3752     0.4278 0.000 0.292 0.000 0.000 0.708
#> GSM1167110     4  0.0798     0.7369 0.016 0.008 0.000 0.976 0.000
#> GSM1167111     5  0.2891     0.5156 0.000 0.176 0.000 0.000 0.824
#> GSM1167112     5  0.3816     0.4119 0.000 0.304 0.000 0.000 0.696
#> GSM1167113     4  0.1329     0.7326 0.032 0.008 0.004 0.956 0.000
#> GSM1167114     4  0.5757     0.4546 0.004 0.228 0.000 0.628 0.140
#> GSM1167115     5  0.3816     0.4119 0.000 0.304 0.000 0.000 0.696
#> GSM1167116     4  0.0833     0.7368 0.016 0.004 0.000 0.976 0.004
#> GSM1167117     5  0.3048     0.5139 0.000 0.176 0.000 0.004 0.820
#> GSM1167118     1  0.4556     0.6053 0.680 0.024 0.004 0.292 0.000
#> GSM1167119     1  0.3016     0.7561 0.848 0.020 0.000 0.132 0.000
#> GSM1167120     4  0.4652     0.6118 0.008 0.092 0.000 0.756 0.144
#> GSM1167121     4  0.3861     0.6025 0.004 0.284 0.000 0.712 0.000
#> GSM1167123     3  0.0740     0.7463 0.008 0.004 0.980 0.008 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1167072     4  0.5715      0.238 0.284 0.000 0.004 0.532 0.000 0.180
#> GSM1167073     1  0.4944      0.162 0.488 0.000 0.000 0.448 0.000 0.064
#> GSM1167074     2  0.0000      0.625 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1167075     1  0.4739      0.075 0.516 0.000 0.436 0.000 0.000 0.048
#> GSM1167076     3  0.0000      0.749 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1167077     4  0.3561      0.526 0.000 0.056 0.000 0.812 0.012 0.120
#> GSM1167078     4  0.2841      0.556 0.008 0.004 0.000 0.852 0.012 0.124
#> GSM1167079     5  0.2778      0.834 0.000 0.168 0.000 0.000 0.824 0.008
#> GSM1167080     1  0.0260      0.787 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM1167081     5  0.2841      0.839 0.000 0.164 0.000 0.000 0.824 0.012
#> GSM1167082     1  0.5461      0.505 0.568 0.000 0.000 0.248 0.000 0.184
#> GSM1167083     2  0.0603      0.620 0.000 0.980 0.000 0.000 0.004 0.016
#> GSM1167084     1  0.0291      0.789 0.992 0.000 0.000 0.004 0.000 0.004
#> GSM1167085     2  0.5341     -0.149 0.000 0.508 0.000 0.112 0.000 0.380
#> GSM1167086     1  0.0291      0.789 0.992 0.000 0.000 0.004 0.000 0.004
#> GSM1167087     1  0.2956      0.764 0.840 0.000 0.000 0.120 0.000 0.040
#> GSM1167088     1  0.0260      0.787 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM1167089     6  0.4382      0.992 0.000 0.060 0.000 0.264 0.000 0.676
#> GSM1167090     4  0.3468      0.454 0.000 0.004 0.000 0.712 0.000 0.284
#> GSM1167091     1  0.2982      0.726 0.820 0.000 0.004 0.012 0.000 0.164
#> GSM1167092     4  0.3530      0.422 0.008 0.028 0.000 0.800 0.004 0.160
#> GSM1167093     2  0.3508      0.347 0.000 0.704 0.000 0.004 0.000 0.292
#> GSM1167094     4  0.3965      0.408 0.004 0.000 0.004 0.616 0.000 0.376
#> GSM1167095     5  0.2841      0.839 0.000 0.164 0.000 0.000 0.824 0.012
#> GSM1167096     4  0.4076      0.353 0.004 0.000 0.004 0.564 0.000 0.428
#> GSM1167097     1  0.0458      0.787 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM1167098     6  0.4402      0.992 0.000 0.060 0.000 0.268 0.000 0.672
#> GSM1167099     1  0.0260      0.788 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM1167100     2  0.5344     -0.165 0.000 0.468 0.000 0.448 0.012 0.072
#> GSM1167101     2  0.0000      0.625 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1167122     3  0.5381      0.218 0.000 0.012 0.548 0.088 0.000 0.352
#> GSM1167102     5  0.0713      0.853 0.000 0.028 0.000 0.000 0.972 0.000
#> GSM1167103     2  0.3126      0.599 0.000 0.752 0.000 0.000 0.248 0.000
#> GSM1167104     1  0.0146      0.788 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM1167105     2  0.3765      0.420 0.000 0.596 0.000 0.000 0.404 0.000
#> GSM1167106     1  0.3139      0.739 0.812 0.000 0.000 0.160 0.000 0.028
#> GSM1167107     2  0.3126      0.599 0.000 0.752 0.000 0.000 0.248 0.000
#> GSM1167108     1  0.5288      0.531 0.592 0.000 0.000 0.252 0.000 0.156
#> GSM1167109     2  0.3371      0.563 0.000 0.708 0.000 0.000 0.292 0.000
#> GSM1167110     4  0.0725      0.602 0.012 0.000 0.000 0.976 0.000 0.012
#> GSM1167111     5  0.0000      0.846 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167112     2  0.3309      0.577 0.000 0.720 0.000 0.000 0.280 0.000
#> GSM1167113     4  0.1845      0.601 0.028 0.000 0.000 0.920 0.000 0.052
#> GSM1167114     4  0.5344      0.434 0.000 0.000 0.000 0.588 0.240 0.172
#> GSM1167115     2  0.3309      0.577 0.000 0.720 0.000 0.000 0.280 0.000
#> GSM1167116     4  0.0508      0.604 0.012 0.000 0.000 0.984 0.004 0.000
#> GSM1167117     5  0.0146      0.844 0.000 0.000 0.000 0.004 0.996 0.000
#> GSM1167118     1  0.4570      0.581 0.668 0.000 0.000 0.252 0.000 0.080
#> GSM1167119     1  0.2956      0.764 0.840 0.000 0.000 0.120 0.000 0.040
#> GSM1167120     4  0.4403      0.520 0.000 0.004 0.000 0.724 0.100 0.172
#> GSM1167121     4  0.4850     -0.567 0.000 0.056 0.000 0.496 0.000 0.448
#> GSM1167123     3  0.0547      0.754 0.000 0.000 0.980 0.000 0.000 0.020

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) k
#> CV:hclust 46            0.367 2
#> CV:hclust 43            0.338 3
#> CV:hclust 44            0.554 4
#> CV:hclust 34            0.953 5
#> CV:hclust 38            0.519 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.993       0.996         0.4847 0.517   0.517
#> 3 3 0.673           0.802       0.866         0.3441 0.762   0.557
#> 4 4 0.685           0.786       0.846         0.1172 0.956   0.862
#> 5 5 0.677           0.752       0.810         0.0694 0.942   0.794
#> 6 6 0.726           0.539       0.710         0.0506 0.956   0.808

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1167072     1   0.000      0.994 1.000 0.000
#> GSM1167073     1   0.000      0.994 1.000 0.000
#> GSM1167074     2   0.000      1.000 0.000 1.000
#> GSM1167075     1   0.000      0.994 1.000 0.000
#> GSM1167076     1   0.000      0.994 1.000 0.000
#> GSM1167077     2   0.000      1.000 0.000 1.000
#> GSM1167078     1   0.000      0.994 1.000 0.000
#> GSM1167079     2   0.000      1.000 0.000 1.000
#> GSM1167080     1   0.000      0.994 1.000 0.000
#> GSM1167081     2   0.000      1.000 0.000 1.000
#> GSM1167082     1   0.000      0.994 1.000 0.000
#> GSM1167083     2   0.000      1.000 0.000 1.000
#> GSM1167084     1   0.000      0.994 1.000 0.000
#> GSM1167085     2   0.000      1.000 0.000 1.000
#> GSM1167086     1   0.000      0.994 1.000 0.000
#> GSM1167087     1   0.000      0.994 1.000 0.000
#> GSM1167088     1   0.000      0.994 1.000 0.000
#> GSM1167089     1   0.000      0.994 1.000 0.000
#> GSM1167090     1   0.000      0.994 1.000 0.000
#> GSM1167091     1   0.000      0.994 1.000 0.000
#> GSM1167092     1   0.000      0.994 1.000 0.000
#> GSM1167093     2   0.000      1.000 0.000 1.000
#> GSM1167094     1   0.000      0.994 1.000 0.000
#> GSM1167095     2   0.000      1.000 0.000 1.000
#> GSM1167096     1   0.000      0.994 1.000 0.000
#> GSM1167097     1   0.000      0.994 1.000 0.000
#> GSM1167098     1   0.184      0.970 0.972 0.028
#> GSM1167099     1   0.000      0.994 1.000 0.000
#> GSM1167100     2   0.000      1.000 0.000 1.000
#> GSM1167101     2   0.000      1.000 0.000 1.000
#> GSM1167122     1   0.000      0.994 1.000 0.000
#> GSM1167102     2   0.000      1.000 0.000 1.000
#> GSM1167103     2   0.000      1.000 0.000 1.000
#> GSM1167104     1   0.000      0.994 1.000 0.000
#> GSM1167105     2   0.000      1.000 0.000 1.000
#> GSM1167106     1   0.000      0.994 1.000 0.000
#> GSM1167107     2   0.000      1.000 0.000 1.000
#> GSM1167108     1   0.000      0.994 1.000 0.000
#> GSM1167109     2   0.000      1.000 0.000 1.000
#> GSM1167110     1   0.000      0.994 1.000 0.000
#> GSM1167111     2   0.000      1.000 0.000 1.000
#> GSM1167112     2   0.000      1.000 0.000 1.000
#> GSM1167113     1   0.000      0.994 1.000 0.000
#> GSM1167114     1   0.343      0.934 0.936 0.064
#> GSM1167115     2   0.000      1.000 0.000 1.000
#> GSM1167116     1   0.000      0.994 1.000 0.000
#> GSM1167117     2   0.000      1.000 0.000 1.000
#> GSM1167118     1   0.000      0.994 1.000 0.000
#> GSM1167119     1   0.000      0.994 1.000 0.000
#> GSM1167120     2   0.000      1.000 0.000 1.000
#> GSM1167121     1   0.469      0.893 0.900 0.100
#> GSM1167123     1   0.000      0.994 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1167072     1  0.0237     0.9713 0.996 0.000 0.004
#> GSM1167073     1  0.0237     0.9713 0.996 0.000 0.004
#> GSM1167074     2  0.3267     0.8504 0.000 0.884 0.116
#> GSM1167075     1  0.0592     0.9672 0.988 0.000 0.012
#> GSM1167076     1  0.5706     0.4637 0.680 0.000 0.320
#> GSM1167077     3  0.5926     0.2516 0.000 0.356 0.644
#> GSM1167078     3  0.6286     0.5573 0.464 0.000 0.536
#> GSM1167079     2  0.2165     0.8852 0.000 0.936 0.064
#> GSM1167080     1  0.0424     0.9709 0.992 0.000 0.008
#> GSM1167081     2  0.2448     0.8822 0.000 0.924 0.076
#> GSM1167082     1  0.0000     0.9715 1.000 0.000 0.000
#> GSM1167083     2  0.3192     0.8529 0.000 0.888 0.112
#> GSM1167084     1  0.0424     0.9709 0.992 0.000 0.008
#> GSM1167085     2  0.5621     0.6505 0.000 0.692 0.308
#> GSM1167086     1  0.0424     0.9709 0.992 0.000 0.008
#> GSM1167087     1  0.0000     0.9715 1.000 0.000 0.000
#> GSM1167088     1  0.0424     0.9709 0.992 0.000 0.008
#> GSM1167089     3  0.2448     0.6981 0.076 0.000 0.924
#> GSM1167090     3  0.5926     0.6957 0.356 0.000 0.644
#> GSM1167091     1  0.0424     0.9709 0.992 0.000 0.008
#> GSM1167092     3  0.5926     0.6984 0.356 0.000 0.644
#> GSM1167093     2  0.5733     0.6349 0.000 0.676 0.324
#> GSM1167094     3  0.6291     0.5404 0.468 0.000 0.532
#> GSM1167095     2  0.2448     0.8822 0.000 0.924 0.076
#> GSM1167096     3  0.6008     0.6697 0.372 0.000 0.628
#> GSM1167097     1  0.0424     0.9709 0.992 0.000 0.008
#> GSM1167098     3  0.2356     0.6970 0.072 0.000 0.928
#> GSM1167099     1  0.0000     0.9715 1.000 0.000 0.000
#> GSM1167100     2  0.5560     0.6626 0.000 0.700 0.300
#> GSM1167101     2  0.3192     0.8529 0.000 0.888 0.112
#> GSM1167122     3  0.2448     0.6981 0.076 0.000 0.924
#> GSM1167102     2  0.2448     0.8822 0.000 0.924 0.076
#> GSM1167103     2  0.0237     0.8965 0.000 0.996 0.004
#> GSM1167104     1  0.0000     0.9715 1.000 0.000 0.000
#> GSM1167105     2  0.0237     0.8965 0.000 0.996 0.004
#> GSM1167106     1  0.0000     0.9715 1.000 0.000 0.000
#> GSM1167107     2  0.0237     0.8965 0.000 0.996 0.004
#> GSM1167108     1  0.0000     0.9715 1.000 0.000 0.000
#> GSM1167109     2  0.0237     0.8958 0.000 0.996 0.004
#> GSM1167110     3  0.5859     0.7029 0.344 0.000 0.656
#> GSM1167111     2  0.2448     0.8822 0.000 0.924 0.076
#> GSM1167112     2  0.0237     0.8965 0.000 0.996 0.004
#> GSM1167113     3  0.5948     0.6956 0.360 0.000 0.640
#> GSM1167114     3  0.8457     0.6197 0.216 0.168 0.616
#> GSM1167115     2  0.0237     0.8965 0.000 0.996 0.004
#> GSM1167116     3  0.6180     0.6382 0.416 0.000 0.584
#> GSM1167117     2  0.2448     0.8822 0.000 0.924 0.076
#> GSM1167118     1  0.0000     0.9715 1.000 0.000 0.000
#> GSM1167119     1  0.0000     0.9715 1.000 0.000 0.000
#> GSM1167120     3  0.6577     0.0996 0.008 0.420 0.572
#> GSM1167121     3  0.2902     0.6337 0.016 0.064 0.920
#> GSM1167123     3  0.5016     0.6831 0.240 0.000 0.760

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1167072     1  0.2635      0.922 0.904 0.000 0.076 0.020
#> GSM1167073     1  0.0469      0.949 0.988 0.000 0.012 0.000
#> GSM1167074     2  0.3143      0.772 0.000 0.876 0.024 0.100
#> GSM1167075     1  0.1389      0.933 0.952 0.000 0.000 0.048
#> GSM1167076     4  0.3249      0.741 0.140 0.000 0.008 0.852
#> GSM1167077     3  0.6609      0.562 0.000 0.144 0.620 0.236
#> GSM1167078     3  0.6500      0.572 0.260 0.000 0.620 0.120
#> GSM1167079     2  0.4542      0.747 0.000 0.752 0.228 0.020
#> GSM1167080     1  0.0592      0.946 0.984 0.000 0.000 0.016
#> GSM1167081     2  0.5213      0.697 0.000 0.652 0.328 0.020
#> GSM1167082     1  0.2775      0.918 0.896 0.000 0.084 0.020
#> GSM1167083     2  0.1929      0.809 0.000 0.940 0.024 0.036
#> GSM1167084     1  0.0592      0.946 0.984 0.000 0.000 0.016
#> GSM1167085     2  0.4931      0.696 0.000 0.776 0.092 0.132
#> GSM1167086     1  0.0592      0.946 0.984 0.000 0.000 0.016
#> GSM1167087     1  0.2542      0.922 0.904 0.000 0.084 0.012
#> GSM1167088     1  0.0592      0.946 0.984 0.000 0.000 0.016
#> GSM1167089     4  0.1743      0.834 0.004 0.000 0.056 0.940
#> GSM1167090     3  0.6269      0.739 0.096 0.000 0.632 0.272
#> GSM1167091     1  0.1833      0.941 0.944 0.000 0.024 0.032
#> GSM1167092     3  0.6180      0.734 0.080 0.000 0.624 0.296
#> GSM1167093     2  0.4227      0.735 0.000 0.820 0.060 0.120
#> GSM1167094     3  0.7037      0.652 0.168 0.000 0.564 0.268
#> GSM1167095     2  0.5167      0.694 0.000 0.644 0.340 0.016
#> GSM1167096     3  0.6711      0.683 0.116 0.000 0.576 0.308
#> GSM1167097     1  0.0817      0.946 0.976 0.000 0.000 0.024
#> GSM1167098     3  0.5165      0.484 0.004 0.000 0.512 0.484
#> GSM1167099     1  0.0188      0.947 0.996 0.000 0.004 0.000
#> GSM1167100     2  0.4869      0.704 0.000 0.780 0.088 0.132
#> GSM1167101     2  0.1833      0.809 0.000 0.944 0.024 0.032
#> GSM1167122     4  0.1661      0.836 0.004 0.000 0.052 0.944
#> GSM1167102     2  0.5090      0.703 0.000 0.660 0.324 0.016
#> GSM1167103     2  0.0000      0.824 0.000 1.000 0.000 0.000
#> GSM1167104     1  0.0188      0.947 0.996 0.000 0.004 0.000
#> GSM1167105     2  0.0336      0.824 0.000 0.992 0.008 0.000
#> GSM1167106     1  0.0469      0.948 0.988 0.000 0.012 0.000
#> GSM1167107     2  0.0000      0.824 0.000 1.000 0.000 0.000
#> GSM1167108     1  0.2909      0.914 0.888 0.000 0.092 0.020
#> GSM1167109     2  0.0592      0.823 0.000 0.984 0.000 0.016
#> GSM1167110     3  0.6217      0.737 0.084 0.000 0.624 0.292
#> GSM1167111     2  0.5167      0.694 0.000 0.644 0.340 0.016
#> GSM1167112     2  0.0336      0.824 0.000 0.992 0.008 0.000
#> GSM1167113     3  0.6262      0.740 0.092 0.000 0.628 0.280
#> GSM1167114     3  0.1059      0.457 0.016 0.012 0.972 0.000
#> GSM1167115     2  0.0000      0.824 0.000 1.000 0.000 0.000
#> GSM1167116     3  0.6378      0.737 0.108 0.000 0.628 0.264
#> GSM1167117     2  0.5167      0.694 0.000 0.644 0.340 0.016
#> GSM1167118     1  0.2530      0.898 0.888 0.000 0.112 0.000
#> GSM1167119     1  0.2542      0.922 0.904 0.000 0.084 0.012
#> GSM1167120     3  0.1706      0.440 0.000 0.036 0.948 0.016
#> GSM1167121     3  0.5155      0.500 0.000 0.004 0.528 0.468
#> GSM1167123     4  0.2385      0.837 0.052 0.000 0.028 0.920

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1167072     1  0.5002      0.798 0.752 0.000 0.032 0.112 0.104
#> GSM1167073     1  0.1547      0.852 0.948 0.000 0.004 0.016 0.032
#> GSM1167074     2  0.0992      0.643 0.000 0.968 0.008 0.024 0.000
#> GSM1167075     1  0.3119      0.806 0.860 0.000 0.068 0.000 0.072
#> GSM1167076     3  0.2540      0.909 0.024 0.000 0.888 0.088 0.000
#> GSM1167077     4  0.3362      0.727 0.000 0.156 0.012 0.824 0.008
#> GSM1167078     4  0.2586      0.801 0.084 0.000 0.012 0.892 0.012
#> GSM1167079     5  0.5235      0.749 0.000 0.312 0.068 0.000 0.620
#> GSM1167080     1  0.2036      0.838 0.920 0.000 0.024 0.000 0.056
#> GSM1167081     5  0.4649      0.839 0.000 0.244 0.044 0.004 0.708
#> GSM1167082     1  0.5650      0.763 0.704 0.000 0.048 0.112 0.136
#> GSM1167083     2  0.1869      0.632 0.000 0.936 0.028 0.008 0.028
#> GSM1167084     1  0.1800      0.839 0.932 0.000 0.020 0.000 0.048
#> GSM1167085     2  0.3718      0.548 0.000 0.784 0.016 0.196 0.004
#> GSM1167086     1  0.2124      0.836 0.916 0.000 0.028 0.000 0.056
#> GSM1167087     1  0.4985      0.795 0.744 0.000 0.020 0.112 0.124
#> GSM1167088     1  0.2260      0.835 0.908 0.000 0.028 0.000 0.064
#> GSM1167089     3  0.3863      0.910 0.000 0.052 0.796 0.152 0.000
#> GSM1167090     4  0.2505      0.804 0.020 0.000 0.000 0.888 0.092
#> GSM1167091     1  0.5001      0.808 0.724 0.000 0.064 0.020 0.192
#> GSM1167092     4  0.0865      0.832 0.024 0.000 0.000 0.972 0.004
#> GSM1167093     2  0.3080      0.597 0.000 0.852 0.020 0.124 0.004
#> GSM1167094     4  0.5049      0.693 0.068 0.000 0.044 0.748 0.140
#> GSM1167095     5  0.4074      0.849 0.000 0.224 0.012 0.012 0.752
#> GSM1167096     4  0.5016      0.698 0.048 0.000 0.064 0.752 0.136
#> GSM1167097     1  0.2171      0.836 0.912 0.000 0.024 0.000 0.064
#> GSM1167098     4  0.2795      0.769 0.000 0.064 0.056 0.880 0.000
#> GSM1167099     1  0.0693      0.848 0.980 0.000 0.008 0.000 0.012
#> GSM1167100     2  0.3751      0.535 0.000 0.772 0.012 0.212 0.004
#> GSM1167101     2  0.0404      0.646 0.000 0.988 0.000 0.000 0.012
#> GSM1167122     3  0.3284      0.927 0.000 0.024 0.828 0.148 0.000
#> GSM1167102     5  0.4199      0.799 0.000 0.296 0.004 0.008 0.692
#> GSM1167103     2  0.4788      0.455 0.000 0.696 0.064 0.000 0.240
#> GSM1167104     1  0.0451      0.848 0.988 0.000 0.004 0.000 0.008
#> GSM1167105     2  0.4329      0.509 0.000 0.716 0.032 0.000 0.252
#> GSM1167106     1  0.1757      0.849 0.936 0.000 0.004 0.012 0.048
#> GSM1167107     2  0.4221      0.518 0.000 0.732 0.032 0.000 0.236
#> GSM1167108     1  0.5695      0.760 0.700 0.000 0.048 0.116 0.136
#> GSM1167109     5  0.5488      0.516 0.000 0.428 0.064 0.000 0.508
#> GSM1167110     4  0.0898      0.830 0.020 0.000 0.008 0.972 0.000
#> GSM1167111     5  0.3582      0.852 0.000 0.224 0.000 0.008 0.768
#> GSM1167112     2  0.4329      0.509 0.000 0.716 0.032 0.000 0.252
#> GSM1167113     4  0.0609      0.831 0.020 0.000 0.000 0.980 0.000
#> GSM1167114     4  0.4161      0.685 0.000 0.000 0.016 0.704 0.280
#> GSM1167115     2  0.4221      0.518 0.000 0.732 0.032 0.000 0.236
#> GSM1167116     4  0.1300      0.833 0.028 0.000 0.016 0.956 0.000
#> GSM1167117     5  0.4074      0.849 0.000 0.224 0.012 0.012 0.752
#> GSM1167118     1  0.4795      0.799 0.752 0.000 0.012 0.116 0.120
#> GSM1167119     1  0.4985      0.795 0.744 0.000 0.020 0.112 0.124
#> GSM1167120     4  0.3381      0.733 0.000 0.000 0.016 0.808 0.176
#> GSM1167121     4  0.3182      0.722 0.000 0.124 0.032 0.844 0.000
#> GSM1167123     3  0.2462      0.928 0.008 0.000 0.880 0.112 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1167072     6  0.5964     0.7957 0.412 0.016 0.008 0.108 0.000 0.456
#> GSM1167073     1  0.4228     0.2772 0.704 0.012 0.000 0.032 0.000 0.252
#> GSM1167074     2  0.4475     0.5646 0.000 0.700 0.004 0.016 0.036 0.244
#> GSM1167075     1  0.3023     0.5220 0.864 0.028 0.052 0.000 0.000 0.056
#> GSM1167076     3  0.1121     0.9175 0.008 0.004 0.964 0.016 0.000 0.008
#> GSM1167077     4  0.2985     0.7448 0.000 0.036 0.004 0.844 0.000 0.116
#> GSM1167078     4  0.2094     0.7904 0.016 0.008 0.000 0.908 0.000 0.068
#> GSM1167079     5  0.4073     0.7000 0.000 0.160 0.008 0.000 0.760 0.072
#> GSM1167080     1  0.0291     0.5746 0.992 0.004 0.000 0.000 0.000 0.004
#> GSM1167081     5  0.1923     0.8600 0.000 0.004 0.016 0.000 0.916 0.064
#> GSM1167082     6  0.5657     0.9024 0.356 0.004 0.008 0.112 0.000 0.520
#> GSM1167083     2  0.4515     0.5533 0.000 0.640 0.000 0.000 0.056 0.304
#> GSM1167084     1  0.0632     0.5750 0.976 0.000 0.000 0.000 0.000 0.024
#> GSM1167085     2  0.5223     0.4924 0.000 0.616 0.012 0.100 0.000 0.272
#> GSM1167086     1  0.1074     0.5705 0.960 0.012 0.000 0.000 0.000 0.028
#> GSM1167087     1  0.5857    -0.5832 0.456 0.012 0.008 0.104 0.000 0.420
#> GSM1167088     1  0.0993     0.5693 0.964 0.012 0.000 0.000 0.000 0.024
#> GSM1167089     3  0.3520     0.8679 0.000 0.016 0.820 0.056 0.000 0.108
#> GSM1167090     4  0.3122     0.7400 0.000 0.020 0.000 0.804 0.000 0.176
#> GSM1167091     1  0.5335    -0.4878 0.532 0.012 0.008 0.056 0.000 0.392
#> GSM1167092     4  0.0405     0.7985 0.004 0.008 0.000 0.988 0.000 0.000
#> GSM1167093     2  0.4926     0.5302 0.000 0.656 0.012 0.056 0.008 0.268
#> GSM1167094     4  0.5011     0.3574 0.032 0.020 0.004 0.572 0.000 0.372
#> GSM1167095     5  0.1088     0.8712 0.000 0.000 0.016 0.000 0.960 0.024
#> GSM1167096     4  0.4925     0.4131 0.004 0.020 0.028 0.584 0.000 0.364
#> GSM1167097     1  0.1738     0.5602 0.928 0.016 0.004 0.000 0.000 0.052
#> GSM1167098     4  0.3880     0.7207 0.000 0.024 0.052 0.792 0.000 0.132
#> GSM1167099     1  0.2482     0.5142 0.848 0.004 0.000 0.000 0.000 0.148
#> GSM1167100     2  0.5907     0.4007 0.000 0.520 0.012 0.176 0.000 0.292
#> GSM1167101     2  0.3865     0.5662 0.000 0.752 0.000 0.000 0.056 0.192
#> GSM1167122     3  0.2138     0.9169 0.000 0.004 0.908 0.036 0.000 0.052
#> GSM1167102     5  0.2668     0.7401 0.000 0.168 0.004 0.000 0.828 0.000
#> GSM1167103     2  0.4316     0.4145 0.000 0.648 0.000 0.000 0.312 0.040
#> GSM1167104     1  0.2595     0.5098 0.836 0.004 0.000 0.000 0.000 0.160
#> GSM1167105     2  0.3636     0.4379 0.000 0.676 0.004 0.000 0.320 0.000
#> GSM1167106     1  0.4338     0.1367 0.660 0.004 0.000 0.036 0.000 0.300
#> GSM1167107     2  0.3464     0.4451 0.000 0.688 0.000 0.000 0.312 0.000
#> GSM1167108     6  0.5551     0.9007 0.352 0.000 0.008 0.116 0.000 0.524
#> GSM1167109     2  0.4534    -0.0388 0.000 0.496 0.000 0.000 0.472 0.032
#> GSM1167110     4  0.0405     0.7987 0.000 0.000 0.004 0.988 0.000 0.008
#> GSM1167111     5  0.0692     0.8719 0.000 0.020 0.004 0.000 0.976 0.000
#> GSM1167112     2  0.3482     0.4428 0.000 0.684 0.000 0.000 0.316 0.000
#> GSM1167113     4  0.0405     0.7987 0.000 0.000 0.004 0.988 0.000 0.008
#> GSM1167114     4  0.5300     0.6233 0.000 0.020 0.004 0.640 0.244 0.092
#> GSM1167115     2  0.3464     0.4451 0.000 0.688 0.000 0.000 0.312 0.000
#> GSM1167116     4  0.1147     0.7969 0.004 0.000 0.004 0.960 0.004 0.028
#> GSM1167117     5  0.0291     0.8682 0.000 0.000 0.004 0.000 0.992 0.004
#> GSM1167118     1  0.5351    -0.4863 0.524 0.004 0.000 0.100 0.000 0.372
#> GSM1167119     1  0.5857    -0.5832 0.456 0.012 0.008 0.104 0.000 0.420
#> GSM1167120     4  0.3861     0.6682 0.000 0.000 0.008 0.744 0.220 0.028
#> GSM1167121     4  0.3354     0.7199 0.000 0.028 0.020 0.824 0.000 0.128
#> GSM1167123     3  0.0951     0.9206 0.004 0.000 0.968 0.020 0.000 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) k
#> CV:kmeans 52            0.408 2
#> CV:kmeans 49            0.457 3
#> CV:kmeans 48            0.571 4
#> CV:kmeans 51            0.693 5
#> CV:kmeans 36            0.247 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.959           0.933       0.974         0.5052 0.497   0.497
#> 3 3 0.929           0.935       0.971         0.2802 0.830   0.665
#> 4 4 0.815           0.831       0.904         0.1104 0.913   0.754
#> 5 5 0.736           0.710       0.850         0.0738 0.942   0.793
#> 6 6 0.704           0.652       0.805         0.0410 0.985   0.935

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1167072     1   0.000      0.964 1.000 0.000
#> GSM1167073     1   0.000      0.964 1.000 0.000
#> GSM1167074     2   0.000      0.980 0.000 1.000
#> GSM1167075     1   0.000      0.964 1.000 0.000
#> GSM1167076     1   0.000      0.964 1.000 0.000
#> GSM1167077     2   0.000      0.980 0.000 1.000
#> GSM1167078     1   0.000      0.964 1.000 0.000
#> GSM1167079     2   0.000      0.980 0.000 1.000
#> GSM1167080     1   0.000      0.964 1.000 0.000
#> GSM1167081     2   0.000      0.980 0.000 1.000
#> GSM1167082     1   0.000      0.964 1.000 0.000
#> GSM1167083     2   0.000      0.980 0.000 1.000
#> GSM1167084     1   0.000      0.964 1.000 0.000
#> GSM1167085     2   0.000      0.980 0.000 1.000
#> GSM1167086     1   0.000      0.964 1.000 0.000
#> GSM1167087     1   0.000      0.964 1.000 0.000
#> GSM1167088     1   0.000      0.964 1.000 0.000
#> GSM1167089     1   0.861      0.607 0.716 0.284
#> GSM1167090     1   0.000      0.964 1.000 0.000
#> GSM1167091     1   0.000      0.964 1.000 0.000
#> GSM1167092     1   0.000      0.964 1.000 0.000
#> GSM1167093     2   0.000      0.980 0.000 1.000
#> GSM1167094     1   0.000      0.964 1.000 0.000
#> GSM1167095     2   0.000      0.980 0.000 1.000
#> GSM1167096     1   0.000      0.964 1.000 0.000
#> GSM1167097     1   0.000      0.964 1.000 0.000
#> GSM1167098     2   0.936      0.420 0.352 0.648
#> GSM1167099     1   0.000      0.964 1.000 0.000
#> GSM1167100     2   0.000      0.980 0.000 1.000
#> GSM1167101     2   0.000      0.980 0.000 1.000
#> GSM1167122     1   0.855      0.614 0.720 0.280
#> GSM1167102     2   0.000      0.980 0.000 1.000
#> GSM1167103     2   0.000      0.980 0.000 1.000
#> GSM1167104     1   0.000      0.964 1.000 0.000
#> GSM1167105     2   0.000      0.980 0.000 1.000
#> GSM1167106     1   0.000      0.964 1.000 0.000
#> GSM1167107     2   0.000      0.980 0.000 1.000
#> GSM1167108     1   0.000      0.964 1.000 0.000
#> GSM1167109     2   0.000      0.980 0.000 1.000
#> GSM1167110     1   0.000      0.964 1.000 0.000
#> GSM1167111     2   0.000      0.980 0.000 1.000
#> GSM1167112     2   0.000      0.980 0.000 1.000
#> GSM1167113     1   0.000      0.964 1.000 0.000
#> GSM1167114     2   0.358      0.910 0.068 0.932
#> GSM1167115     2   0.000      0.980 0.000 1.000
#> GSM1167116     1   0.966      0.347 0.608 0.392
#> GSM1167117     2   0.000      0.980 0.000 1.000
#> GSM1167118     1   0.000      0.964 1.000 0.000
#> GSM1167119     1   0.000      0.964 1.000 0.000
#> GSM1167120     2   0.000      0.980 0.000 1.000
#> GSM1167121     2   0.000      0.980 0.000 1.000
#> GSM1167123     1   0.000      0.964 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1167072     1  0.0000      0.972 1.000 0.000 0.000
#> GSM1167073     1  0.0000      0.972 1.000 0.000 0.000
#> GSM1167074     2  0.0592      0.985 0.000 0.988 0.012
#> GSM1167075     1  0.0000      0.972 1.000 0.000 0.000
#> GSM1167076     3  0.0592      0.903 0.012 0.000 0.988
#> GSM1167077     2  0.0424      0.987 0.000 0.992 0.008
#> GSM1167078     1  0.0424      0.966 0.992 0.000 0.008
#> GSM1167079     2  0.0000      0.990 0.000 1.000 0.000
#> GSM1167080     1  0.0000      0.972 1.000 0.000 0.000
#> GSM1167081     2  0.0000      0.990 0.000 1.000 0.000
#> GSM1167082     1  0.0000      0.972 1.000 0.000 0.000
#> GSM1167083     2  0.0424      0.987 0.000 0.992 0.008
#> GSM1167084     1  0.0000      0.972 1.000 0.000 0.000
#> GSM1167085     2  0.0592      0.985 0.000 0.988 0.012
#> GSM1167086     1  0.0000      0.972 1.000 0.000 0.000
#> GSM1167087     1  0.0000      0.972 1.000 0.000 0.000
#> GSM1167088     1  0.0000      0.972 1.000 0.000 0.000
#> GSM1167089     3  0.0000      0.903 0.000 0.000 1.000
#> GSM1167090     1  0.5882      0.405 0.652 0.000 0.348
#> GSM1167091     1  0.0000      0.972 1.000 0.000 0.000
#> GSM1167092     3  0.5882      0.522 0.348 0.000 0.652
#> GSM1167093     2  0.3686      0.846 0.000 0.860 0.140
#> GSM1167094     1  0.1031      0.950 0.976 0.000 0.024
#> GSM1167095     2  0.0000      0.990 0.000 1.000 0.000
#> GSM1167096     3  0.3038      0.859 0.104 0.000 0.896
#> GSM1167097     1  0.0000      0.972 1.000 0.000 0.000
#> GSM1167098     3  0.0000      0.903 0.000 0.000 1.000
#> GSM1167099     1  0.0000      0.972 1.000 0.000 0.000
#> GSM1167100     2  0.0424      0.987 0.000 0.992 0.008
#> GSM1167101     2  0.0424      0.987 0.000 0.992 0.008
#> GSM1167122     3  0.0000      0.903 0.000 0.000 1.000
#> GSM1167102     2  0.0000      0.990 0.000 1.000 0.000
#> GSM1167103     2  0.0000      0.990 0.000 1.000 0.000
#> GSM1167104     1  0.0000      0.972 1.000 0.000 0.000
#> GSM1167105     2  0.0000      0.990 0.000 1.000 0.000
#> GSM1167106     1  0.0000      0.972 1.000 0.000 0.000
#> GSM1167107     2  0.0000      0.990 0.000 1.000 0.000
#> GSM1167108     1  0.0000      0.972 1.000 0.000 0.000
#> GSM1167109     2  0.0000      0.990 0.000 1.000 0.000
#> GSM1167110     3  0.2711      0.867 0.088 0.000 0.912
#> GSM1167111     2  0.0000      0.990 0.000 1.000 0.000
#> GSM1167112     2  0.0000      0.990 0.000 1.000 0.000
#> GSM1167113     3  0.5397      0.661 0.280 0.000 0.720
#> GSM1167114     2  0.0424      0.983 0.008 0.992 0.000
#> GSM1167115     2  0.0000      0.990 0.000 1.000 0.000
#> GSM1167116     1  0.2959      0.849 0.900 0.100 0.000
#> GSM1167117     2  0.0000      0.990 0.000 1.000 0.000
#> GSM1167118     1  0.0000      0.972 1.000 0.000 0.000
#> GSM1167119     1  0.0000      0.972 1.000 0.000 0.000
#> GSM1167120     2  0.0000      0.990 0.000 1.000 0.000
#> GSM1167121     3  0.0000      0.903 0.000 0.000 1.000
#> GSM1167123     3  0.0424      0.903 0.008 0.000 0.992

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1167072     1  0.0000      0.951 1.000 0.000 0.000 0.000
#> GSM1167073     1  0.0188      0.950 0.996 0.000 0.000 0.004
#> GSM1167074     2  0.0188      0.925 0.000 0.996 0.004 0.000
#> GSM1167075     1  0.0000      0.951 1.000 0.000 0.000 0.000
#> GSM1167076     3  0.0336      0.802 0.008 0.000 0.992 0.000
#> GSM1167077     2  0.0592      0.919 0.000 0.984 0.000 0.016
#> GSM1167078     1  0.2060      0.908 0.932 0.016 0.000 0.052
#> GSM1167079     2  0.2281      0.875 0.000 0.904 0.000 0.096
#> GSM1167080     1  0.0000      0.951 1.000 0.000 0.000 0.000
#> GSM1167081     4  0.4454      0.744 0.000 0.308 0.000 0.692
#> GSM1167082     1  0.1890      0.933 0.936 0.000 0.008 0.056
#> GSM1167083     2  0.0188      0.925 0.000 0.996 0.004 0.000
#> GSM1167084     1  0.0000      0.951 1.000 0.000 0.000 0.000
#> GSM1167085     2  0.0188      0.925 0.000 0.996 0.004 0.000
#> GSM1167086     1  0.0000      0.951 1.000 0.000 0.000 0.000
#> GSM1167087     1  0.1489      0.939 0.952 0.000 0.004 0.044
#> GSM1167088     1  0.0000      0.951 1.000 0.000 0.000 0.000
#> GSM1167089     3  0.0336      0.801 0.000 0.008 0.992 0.000
#> GSM1167090     1  0.6111      0.500 0.652 0.000 0.256 0.092
#> GSM1167091     1  0.1488      0.933 0.956 0.000 0.012 0.032
#> GSM1167092     3  0.6508      0.553 0.296 0.000 0.600 0.104
#> GSM1167093     2  0.1211      0.890 0.000 0.960 0.040 0.000
#> GSM1167094     1  0.3978      0.848 0.836 0.000 0.056 0.108
#> GSM1167095     4  0.4382      0.758 0.000 0.296 0.000 0.704
#> GSM1167096     3  0.6170      0.629 0.192 0.000 0.672 0.136
#> GSM1167097     1  0.0188      0.951 0.996 0.000 0.000 0.004
#> GSM1167098     3  0.1510      0.791 0.000 0.028 0.956 0.016
#> GSM1167099     1  0.0657      0.949 0.984 0.000 0.004 0.012
#> GSM1167100     2  0.0188      0.925 0.000 0.996 0.004 0.000
#> GSM1167101     2  0.0188      0.925 0.000 0.996 0.004 0.000
#> GSM1167122     3  0.0336      0.801 0.000 0.008 0.992 0.000
#> GSM1167102     2  0.4790      0.189 0.000 0.620 0.000 0.380
#> GSM1167103     2  0.1022      0.926 0.000 0.968 0.000 0.032
#> GSM1167104     1  0.0524      0.950 0.988 0.000 0.004 0.008
#> GSM1167105     2  0.1474      0.917 0.000 0.948 0.000 0.052
#> GSM1167106     1  0.0779      0.948 0.980 0.000 0.004 0.016
#> GSM1167107     2  0.1022      0.926 0.000 0.968 0.000 0.032
#> GSM1167108     1  0.2198      0.924 0.920 0.000 0.008 0.072
#> GSM1167109     2  0.1557      0.915 0.000 0.944 0.000 0.056
#> GSM1167110     3  0.5612      0.689 0.152 0.008 0.740 0.100
#> GSM1167111     4  0.4406      0.755 0.000 0.300 0.000 0.700
#> GSM1167112     2  0.1557      0.915 0.000 0.944 0.000 0.056
#> GSM1167113     3  0.7707      0.418 0.320 0.000 0.440 0.240
#> GSM1167114     4  0.0592      0.641 0.000 0.016 0.000 0.984
#> GSM1167115     2  0.1118      0.925 0.000 0.964 0.000 0.036
#> GSM1167116     4  0.4089      0.428 0.212 0.004 0.004 0.780
#> GSM1167117     4  0.4382      0.758 0.000 0.296 0.000 0.704
#> GSM1167118     1  0.1398      0.943 0.956 0.000 0.004 0.040
#> GSM1167119     1  0.1489      0.939 0.952 0.000 0.004 0.044
#> GSM1167120     4  0.2530      0.732 0.000 0.112 0.000 0.888
#> GSM1167121     3  0.1733      0.789 0.000 0.028 0.948 0.024
#> GSM1167123     3  0.0336      0.802 0.008 0.000 0.992 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1167072     1  0.1341      0.819 0.944 0.000 0.000 0.056 0.000
#> GSM1167073     1  0.1197      0.816 0.952 0.000 0.000 0.048 0.000
#> GSM1167074     2  0.0000      0.917 0.000 1.000 0.000 0.000 0.000
#> GSM1167075     1  0.2886      0.773 0.844 0.000 0.000 0.148 0.008
#> GSM1167076     3  0.0000      0.803 0.000 0.000 1.000 0.000 0.000
#> GSM1167077     2  0.3267      0.804 0.000 0.844 0.000 0.112 0.044
#> GSM1167078     1  0.4784      0.554 0.680 0.008 0.004 0.284 0.024
#> GSM1167079     2  0.3774      0.625 0.000 0.704 0.000 0.000 0.296
#> GSM1167080     1  0.2411      0.794 0.884 0.000 0.000 0.108 0.008
#> GSM1167081     5  0.1965      0.798 0.000 0.096 0.000 0.000 0.904
#> GSM1167082     1  0.3534      0.544 0.744 0.000 0.000 0.256 0.000
#> GSM1167083     2  0.0290      0.917 0.000 0.992 0.000 0.000 0.008
#> GSM1167084     1  0.1830      0.808 0.924 0.000 0.000 0.068 0.008
#> GSM1167085     2  0.0000      0.917 0.000 1.000 0.000 0.000 0.000
#> GSM1167086     1  0.2707      0.780 0.860 0.000 0.000 0.132 0.008
#> GSM1167087     1  0.1908      0.787 0.908 0.000 0.000 0.092 0.000
#> GSM1167088     1  0.2707      0.781 0.860 0.000 0.000 0.132 0.008
#> GSM1167089     3  0.0000      0.803 0.000 0.000 1.000 0.000 0.000
#> GSM1167090     4  0.5183      0.530 0.200 0.004 0.104 0.692 0.000
#> GSM1167091     1  0.4211      0.437 0.636 0.000 0.000 0.360 0.004
#> GSM1167092     3  0.6749      0.148 0.264 0.000 0.544 0.160 0.032
#> GSM1167093     2  0.0404      0.911 0.000 0.988 0.012 0.000 0.000
#> GSM1167094     4  0.5148      0.257 0.432 0.000 0.040 0.528 0.000
#> GSM1167095     5  0.1851      0.798 0.000 0.088 0.000 0.000 0.912
#> GSM1167096     4  0.6170      0.261 0.120 0.000 0.384 0.492 0.004
#> GSM1167097     1  0.1282      0.818 0.952 0.000 0.000 0.044 0.004
#> GSM1167098     3  0.2151      0.764 0.000 0.020 0.924 0.040 0.016
#> GSM1167099     1  0.1043      0.807 0.960 0.000 0.000 0.040 0.000
#> GSM1167100     2  0.0290      0.915 0.000 0.992 0.000 0.008 0.000
#> GSM1167101     2  0.0000      0.917 0.000 1.000 0.000 0.000 0.000
#> GSM1167122     3  0.0000      0.803 0.000 0.000 1.000 0.000 0.000
#> GSM1167102     5  0.4088      0.380 0.000 0.368 0.000 0.000 0.632
#> GSM1167103     2  0.1671      0.916 0.000 0.924 0.000 0.000 0.076
#> GSM1167104     1  0.0880      0.808 0.968 0.000 0.000 0.032 0.000
#> GSM1167105     2  0.1732      0.914 0.000 0.920 0.000 0.000 0.080
#> GSM1167106     1  0.1121      0.804 0.956 0.000 0.000 0.044 0.000
#> GSM1167107     2  0.1608      0.917 0.000 0.928 0.000 0.000 0.072
#> GSM1167108     1  0.3816      0.452 0.696 0.000 0.000 0.304 0.000
#> GSM1167109     2  0.2074      0.899 0.000 0.896 0.000 0.000 0.104
#> GSM1167110     3  0.6704      0.308 0.140 0.000 0.560 0.260 0.040
#> GSM1167111     5  0.1965      0.797 0.000 0.096 0.000 0.000 0.904
#> GSM1167112     2  0.1908      0.907 0.000 0.908 0.000 0.000 0.092
#> GSM1167113     4  0.7401      0.308 0.252 0.000 0.164 0.504 0.080
#> GSM1167114     5  0.1671      0.721 0.000 0.000 0.000 0.076 0.924
#> GSM1167115     2  0.1608      0.917 0.000 0.928 0.000 0.000 0.072
#> GSM1167116     5  0.6718     -0.122 0.260 0.000 0.000 0.328 0.412
#> GSM1167117     5  0.1908      0.798 0.000 0.092 0.000 0.000 0.908
#> GSM1167118     1  0.1671      0.802 0.924 0.000 0.000 0.076 0.000
#> GSM1167119     1  0.2424      0.755 0.868 0.000 0.000 0.132 0.000
#> GSM1167120     5  0.1845      0.734 0.000 0.016 0.000 0.056 0.928
#> GSM1167121     3  0.3265      0.722 0.000 0.020 0.848 0.120 0.012
#> GSM1167123     3  0.0000      0.803 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1167072     1  0.2412     0.7623 0.880 0.000 0.000 0.092 0.000 0.028
#> GSM1167073     1  0.2519     0.7634 0.884 0.000 0.000 0.044 0.004 0.068
#> GSM1167074     2  0.0858     0.8232 0.000 0.968 0.004 0.000 0.000 0.028
#> GSM1167075     1  0.4152     0.7041 0.788 0.000 0.024 0.112 0.008 0.068
#> GSM1167076     3  0.0551     0.7681 0.004 0.000 0.984 0.008 0.000 0.004
#> GSM1167077     2  0.5950     0.5592 0.000 0.628 0.000 0.104 0.132 0.136
#> GSM1167078     1  0.6729     0.1684 0.464 0.012 0.004 0.308 0.028 0.184
#> GSM1167079     2  0.4260     0.2105 0.000 0.512 0.000 0.000 0.472 0.016
#> GSM1167080     1  0.2789     0.7432 0.864 0.000 0.000 0.088 0.004 0.044
#> GSM1167081     5  0.1267     0.8075 0.000 0.060 0.000 0.000 0.940 0.000
#> GSM1167082     1  0.4002     0.4868 0.660 0.000 0.000 0.320 0.000 0.020
#> GSM1167083     2  0.2137     0.8161 0.000 0.912 0.000 0.012 0.048 0.028
#> GSM1167084     1  0.1863     0.7625 0.920 0.000 0.000 0.044 0.000 0.036
#> GSM1167085     2  0.1074     0.8205 0.000 0.960 0.012 0.000 0.000 0.028
#> GSM1167086     1  0.3065     0.7331 0.844 0.000 0.000 0.100 0.004 0.052
#> GSM1167087     1  0.3557     0.6930 0.800 0.000 0.000 0.148 0.008 0.044
#> GSM1167088     1  0.3436     0.7149 0.812 0.000 0.000 0.128 0.004 0.056
#> GSM1167089     3  0.0976     0.7640 0.000 0.008 0.968 0.008 0.000 0.016
#> GSM1167090     4  0.3865     0.5122 0.072 0.000 0.056 0.816 0.004 0.052
#> GSM1167091     1  0.4490     0.4356 0.604 0.000 0.004 0.360 0.000 0.032
#> GSM1167092     3  0.7606    -0.0433 0.180 0.000 0.400 0.132 0.016 0.272
#> GSM1167093     2  0.1924     0.7975 0.000 0.920 0.048 0.000 0.004 0.028
#> GSM1167094     4  0.4222     0.5189 0.248 0.000 0.016 0.708 0.000 0.028
#> GSM1167095     5  0.1141     0.8084 0.000 0.052 0.000 0.000 0.948 0.000
#> GSM1167096     4  0.5052     0.5381 0.080 0.000 0.168 0.700 0.000 0.052
#> GSM1167097     1  0.1972     0.7706 0.916 0.000 0.000 0.056 0.004 0.024
#> GSM1167098     3  0.4488     0.6298 0.000 0.036 0.776 0.080 0.016 0.092
#> GSM1167099     1  0.1700     0.7635 0.928 0.000 0.000 0.024 0.000 0.048
#> GSM1167100     2  0.1718     0.8127 0.000 0.932 0.000 0.016 0.008 0.044
#> GSM1167101     2  0.0458     0.8268 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM1167122     3  0.0000     0.7695 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1167102     5  0.4052     0.3448 0.000 0.356 0.000 0.000 0.628 0.016
#> GSM1167103     2  0.2536     0.8279 0.000 0.864 0.000 0.000 0.116 0.020
#> GSM1167104     1  0.1649     0.7605 0.932 0.000 0.000 0.032 0.000 0.036
#> GSM1167105     2  0.2790     0.8162 0.000 0.840 0.000 0.000 0.140 0.020
#> GSM1167106     1  0.2066     0.7564 0.908 0.000 0.000 0.052 0.000 0.040
#> GSM1167107     2  0.2398     0.8301 0.000 0.876 0.000 0.000 0.104 0.020
#> GSM1167108     1  0.4357     0.4155 0.624 0.000 0.000 0.340 0.000 0.036
#> GSM1167109     2  0.3088     0.7929 0.000 0.808 0.000 0.000 0.172 0.020
#> GSM1167110     6  0.6401     0.2694 0.132 0.000 0.384 0.040 0.004 0.440
#> GSM1167111     5  0.1895     0.7939 0.000 0.072 0.000 0.000 0.912 0.016
#> GSM1167112     2  0.2830     0.8132 0.000 0.836 0.000 0.000 0.144 0.020
#> GSM1167113     6  0.6677     0.4031 0.136 0.000 0.108 0.180 0.012 0.564
#> GSM1167114     5  0.3196     0.6562 0.000 0.000 0.000 0.064 0.828 0.108
#> GSM1167115     2  0.2536     0.8271 0.000 0.864 0.000 0.000 0.116 0.020
#> GSM1167116     6  0.5528     0.3796 0.128 0.000 0.000 0.048 0.172 0.652
#> GSM1167117     5  0.1141     0.8084 0.000 0.052 0.000 0.000 0.948 0.000
#> GSM1167118     1  0.3413     0.7383 0.812 0.000 0.000 0.108 0.000 0.080
#> GSM1167119     1  0.4308     0.6223 0.728 0.000 0.000 0.196 0.008 0.068
#> GSM1167120     5  0.3528     0.4962 0.000 0.004 0.000 0.000 0.700 0.296
#> GSM1167121     3  0.3621     0.5525 0.000 0.032 0.772 0.004 0.000 0.192
#> GSM1167123     3  0.0405     0.7696 0.000 0.000 0.988 0.008 0.000 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> CV:skmeans 50            0.116 2
#> CV:skmeans 51            0.345 3
#> CV:skmeans 49            0.288 4
#> CV:skmeans 43            0.396 5
#> CV:skmeans 41            0.428 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.640           0.806       0.922         0.4717 0.527   0.527
#> 3 3 0.706           0.893       0.940         0.3967 0.748   0.548
#> 4 4 0.621           0.825       0.872         0.1075 0.906   0.730
#> 5 5 0.790           0.844       0.925         0.0723 0.919   0.713
#> 6 6 0.817           0.762       0.879         0.0552 0.932   0.705

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1167072     1  0.0000     0.8961 1.000 0.000
#> GSM1167073     1  0.0000     0.8961 1.000 0.000
#> GSM1167074     2  0.0000     0.9196 0.000 1.000
#> GSM1167075     1  0.0000     0.8961 1.000 0.000
#> GSM1167076     1  0.0000     0.8961 1.000 0.000
#> GSM1167077     1  1.0000     0.0593 0.504 0.496
#> GSM1167078     1  0.0000     0.8961 1.000 0.000
#> GSM1167079     2  0.0000     0.9196 0.000 1.000
#> GSM1167080     1  0.0000     0.8961 1.000 0.000
#> GSM1167081     2  0.0000     0.9196 0.000 1.000
#> GSM1167082     1  0.0000     0.8961 1.000 0.000
#> GSM1167083     2  0.0000     0.9196 0.000 1.000
#> GSM1167084     1  0.0000     0.8961 1.000 0.000
#> GSM1167085     2  0.6712     0.7602 0.176 0.824
#> GSM1167086     1  0.0000     0.8961 1.000 0.000
#> GSM1167087     1  0.0000     0.8961 1.000 0.000
#> GSM1167088     1  0.0000     0.8961 1.000 0.000
#> GSM1167089     1  0.9393     0.4869 0.644 0.356
#> GSM1167090     1  0.9393     0.4869 0.644 0.356
#> GSM1167091     1  0.0000     0.8961 1.000 0.000
#> GSM1167092     1  0.7815     0.6747 0.768 0.232
#> GSM1167093     2  0.5842     0.8048 0.140 0.860
#> GSM1167094     1  0.0000     0.8961 1.000 0.000
#> GSM1167095     2  0.5737     0.8099 0.136 0.864
#> GSM1167096     1  0.0000     0.8961 1.000 0.000
#> GSM1167097     1  0.0000     0.8961 1.000 0.000
#> GSM1167098     1  0.9393     0.4869 0.644 0.356
#> GSM1167099     1  0.0000     0.8961 1.000 0.000
#> GSM1167100     2  0.9044     0.4961 0.320 0.680
#> GSM1167101     2  0.0000     0.9196 0.000 1.000
#> GSM1167122     1  0.9393     0.4869 0.644 0.356
#> GSM1167102     2  0.0000     0.9196 0.000 1.000
#> GSM1167103     2  0.0000     0.9196 0.000 1.000
#> GSM1167104     1  0.0000     0.8961 1.000 0.000
#> GSM1167105     2  0.0000     0.9196 0.000 1.000
#> GSM1167106     1  0.0000     0.8961 1.000 0.000
#> GSM1167107     2  0.0000     0.9196 0.000 1.000
#> GSM1167108     1  0.0000     0.8961 1.000 0.000
#> GSM1167109     2  0.0000     0.9196 0.000 1.000
#> GSM1167110     1  0.0000     0.8961 1.000 0.000
#> GSM1167111     2  0.0000     0.9196 0.000 1.000
#> GSM1167112     2  0.0000     0.9196 0.000 1.000
#> GSM1167113     1  0.0000     0.8961 1.000 0.000
#> GSM1167114     1  0.0376     0.8930 0.996 0.004
#> GSM1167115     2  0.0000     0.9196 0.000 1.000
#> GSM1167116     1  0.9044     0.5495 0.680 0.320
#> GSM1167117     2  0.0376     0.9173 0.004 0.996
#> GSM1167118     1  0.0000     0.8961 1.000 0.000
#> GSM1167119     1  0.0000     0.8961 1.000 0.000
#> GSM1167120     1  0.9491     0.4609 0.632 0.368
#> GSM1167121     2  0.9922     0.1022 0.448 0.552
#> GSM1167123     1  0.0000     0.8961 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1167072     3  0.4002      0.811 0.160 0.000 0.840
#> GSM1167073     3  0.4178      0.806 0.172 0.000 0.828
#> GSM1167074     2  0.0592      0.958 0.000 0.988 0.012
#> GSM1167075     1  0.4291      0.839 0.820 0.000 0.180
#> GSM1167076     1  0.4702      0.802 0.788 0.000 0.212
#> GSM1167077     3  0.0000      0.924 0.000 0.000 1.000
#> GSM1167078     3  0.4178      0.797 0.172 0.000 0.828
#> GSM1167079     2  0.0000      0.956 0.000 1.000 0.000
#> GSM1167080     1  0.0000      0.904 1.000 0.000 0.000
#> GSM1167081     2  0.0000      0.956 0.000 1.000 0.000
#> GSM1167082     1  0.1031      0.899 0.976 0.000 0.024
#> GSM1167083     2  0.0592      0.958 0.000 0.988 0.012
#> GSM1167084     1  0.0000      0.904 1.000 0.000 0.000
#> GSM1167085     2  0.4346      0.795 0.000 0.816 0.184
#> GSM1167086     1  0.4291      0.839 0.820 0.000 0.180
#> GSM1167087     1  0.4002      0.856 0.840 0.000 0.160
#> GSM1167088     1  0.2959      0.890 0.900 0.000 0.100
#> GSM1167089     3  0.0000      0.924 0.000 0.000 1.000
#> GSM1167090     3  0.0000      0.924 0.000 0.000 1.000
#> GSM1167091     1  0.2878      0.892 0.904 0.000 0.096
#> GSM1167092     3  0.0237      0.924 0.004 0.000 0.996
#> GSM1167093     2  0.3879      0.834 0.000 0.848 0.152
#> GSM1167094     3  0.0592      0.924 0.012 0.000 0.988
#> GSM1167095     2  0.4235      0.795 0.000 0.824 0.176
#> GSM1167096     3  0.0592      0.924 0.012 0.000 0.988
#> GSM1167097     1  0.0000      0.904 1.000 0.000 0.000
#> GSM1167098     3  0.0000      0.924 0.000 0.000 1.000
#> GSM1167099     1  0.0000      0.904 1.000 0.000 0.000
#> GSM1167100     3  0.4504      0.728 0.000 0.196 0.804
#> GSM1167101     2  0.0592      0.958 0.000 0.988 0.012
#> GSM1167122     3  0.0000      0.924 0.000 0.000 1.000
#> GSM1167102     2  0.0000      0.956 0.000 1.000 0.000
#> GSM1167103     2  0.0592      0.958 0.000 0.988 0.012
#> GSM1167104     1  0.0000      0.904 1.000 0.000 0.000
#> GSM1167105     2  0.0592      0.958 0.000 0.988 0.012
#> GSM1167106     1  0.2165      0.882 0.936 0.000 0.064
#> GSM1167107     2  0.0592      0.958 0.000 0.988 0.012
#> GSM1167108     3  0.4654      0.746 0.208 0.000 0.792
#> GSM1167109     2  0.0000      0.956 0.000 1.000 0.000
#> GSM1167110     3  0.0592      0.924 0.012 0.000 0.988
#> GSM1167111     2  0.0000      0.956 0.000 1.000 0.000
#> GSM1167112     2  0.0592      0.958 0.000 0.988 0.012
#> GSM1167113     3  0.0592      0.924 0.012 0.000 0.988
#> GSM1167114     3  0.0592      0.922 0.000 0.012 0.988
#> GSM1167115     2  0.0592      0.958 0.000 0.988 0.012
#> GSM1167116     3  0.0237      0.924 0.004 0.000 0.996
#> GSM1167117     2  0.1031      0.943 0.000 0.976 0.024
#> GSM1167118     3  0.5810      0.594 0.336 0.000 0.664
#> GSM1167119     3  0.3551      0.850 0.132 0.000 0.868
#> GSM1167120     3  0.0592      0.922 0.000 0.012 0.988
#> GSM1167121     3  0.0000      0.924 0.000 0.000 1.000
#> GSM1167123     3  0.0592      0.924 0.012 0.000 0.988

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1167072     3  0.3402      0.824 0.164 0.000 0.832 0.004
#> GSM1167073     3  0.3219      0.826 0.164 0.000 0.836 0.000
#> GSM1167074     2  0.0779      0.907 0.000 0.980 0.004 0.016
#> GSM1167075     1  0.3402      0.823 0.832 0.000 0.164 0.004
#> GSM1167076     1  0.6583      0.612 0.632 0.000 0.192 0.176
#> GSM1167077     3  0.3170      0.840 0.044 0.056 0.892 0.008
#> GSM1167078     3  0.3494      0.817 0.172 0.000 0.824 0.004
#> GSM1167079     4  0.3400      0.881 0.000 0.180 0.000 0.820
#> GSM1167080     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> GSM1167081     4  0.3400      0.881 0.000 0.180 0.000 0.820
#> GSM1167082     1  0.0817      0.884 0.976 0.000 0.024 0.000
#> GSM1167083     4  0.3486      0.875 0.000 0.188 0.000 0.812
#> GSM1167084     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> GSM1167085     2  0.4868      0.680 0.000 0.748 0.212 0.040
#> GSM1167086     1  0.3402      0.823 0.832 0.000 0.164 0.004
#> GSM1167087     1  0.3208      0.838 0.848 0.000 0.148 0.004
#> GSM1167088     1  0.2469      0.865 0.892 0.000 0.108 0.000
#> GSM1167089     3  0.3681      0.744 0.000 0.008 0.816 0.176
#> GSM1167090     3  0.2450      0.849 0.072 0.000 0.912 0.016
#> GSM1167091     1  0.2760      0.850 0.872 0.000 0.128 0.000
#> GSM1167092     3  0.0376      0.832 0.004 0.000 0.992 0.004
#> GSM1167093     2  0.6155      0.643 0.000 0.676 0.148 0.176
#> GSM1167094     3  0.3157      0.831 0.144 0.000 0.852 0.004
#> GSM1167095     4  0.4203      0.817 0.000 0.068 0.108 0.824
#> GSM1167096     3  0.2401      0.847 0.092 0.000 0.904 0.004
#> GSM1167097     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> GSM1167098     3  0.2647      0.785 0.000 0.000 0.880 0.120
#> GSM1167099     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> GSM1167100     3  0.4482      0.646 0.000 0.264 0.728 0.008
#> GSM1167101     2  0.0000      0.919 0.000 1.000 0.000 0.000
#> GSM1167122     3  0.3681      0.744 0.000 0.008 0.816 0.176
#> GSM1167102     4  0.3400      0.881 0.000 0.180 0.000 0.820
#> GSM1167103     2  0.0000      0.919 0.000 1.000 0.000 0.000
#> GSM1167104     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> GSM1167105     2  0.0000      0.919 0.000 1.000 0.000 0.000
#> GSM1167106     1  0.1716      0.861 0.936 0.000 0.064 0.000
#> GSM1167107     2  0.0000      0.919 0.000 1.000 0.000 0.000
#> GSM1167108     3  0.4713      0.652 0.360 0.000 0.640 0.000
#> GSM1167109     2  0.0336      0.912 0.000 0.992 0.000 0.008
#> GSM1167110     3  0.2450      0.849 0.072 0.000 0.912 0.016
#> GSM1167111     4  0.3400      0.881 0.000 0.180 0.000 0.820
#> GSM1167112     2  0.0000      0.919 0.000 1.000 0.000 0.000
#> GSM1167113     3  0.3157      0.831 0.144 0.000 0.852 0.004
#> GSM1167114     4  0.3356      0.756 0.000 0.000 0.176 0.824
#> GSM1167115     2  0.0000      0.919 0.000 1.000 0.000 0.000
#> GSM1167116     3  0.1867      0.849 0.072 0.000 0.928 0.000
#> GSM1167117     4  0.3400      0.881 0.000 0.180 0.000 0.820
#> GSM1167118     3  0.4585      0.688 0.332 0.000 0.668 0.000
#> GSM1167119     3  0.3649      0.803 0.204 0.000 0.796 0.000
#> GSM1167120     4  0.4564      0.552 0.000 0.000 0.328 0.672
#> GSM1167121     3  0.1042      0.823 0.000 0.008 0.972 0.020
#> GSM1167123     3  0.3356      0.748 0.000 0.000 0.824 0.176

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1167072     4  0.3305      0.714 0.224 0.000 0.000 0.776 0.000
#> GSM1167073     4  0.2929      0.753 0.180 0.000 0.000 0.820 0.000
#> GSM1167074     2  0.0000      0.994 0.000 1.000 0.000 0.000 0.000
#> GSM1167075     1  0.2690      0.832 0.844 0.000 0.000 0.156 0.000
#> GSM1167076     3  0.0000      0.907 0.000 0.000 1.000 0.000 0.000
#> GSM1167077     4  0.0510      0.823 0.000 0.016 0.000 0.984 0.000
#> GSM1167078     4  0.3242      0.720 0.216 0.000 0.000 0.784 0.000
#> GSM1167079     5  0.0000      0.945 0.000 0.000 0.000 0.000 1.000
#> GSM1167080     1  0.0000      0.914 1.000 0.000 0.000 0.000 0.000
#> GSM1167081     5  0.0000      0.945 0.000 0.000 0.000 0.000 1.000
#> GSM1167082     1  0.0794      0.904 0.972 0.000 0.000 0.028 0.000
#> GSM1167083     5  0.0000      0.945 0.000 0.000 0.000 0.000 1.000
#> GSM1167084     1  0.0000      0.914 1.000 0.000 0.000 0.000 0.000
#> GSM1167085     2  0.0290      0.985 0.000 0.992 0.000 0.008 0.000
#> GSM1167086     1  0.2690      0.832 0.844 0.000 0.000 0.156 0.000
#> GSM1167087     1  0.2516      0.849 0.860 0.000 0.000 0.140 0.000
#> GSM1167088     1  0.2020      0.878 0.900 0.000 0.000 0.100 0.000
#> GSM1167089     3  0.2561      0.795 0.000 0.000 0.856 0.144 0.000
#> GSM1167090     4  0.0162      0.827 0.000 0.004 0.000 0.996 0.000
#> GSM1167091     4  0.4171      0.485 0.396 0.000 0.000 0.604 0.000
#> GSM1167092     4  0.0000      0.828 0.000 0.000 0.000 1.000 0.000
#> GSM1167093     3  0.2929      0.774 0.000 0.180 0.820 0.000 0.000
#> GSM1167094     4  0.0000      0.828 0.000 0.000 0.000 1.000 0.000
#> GSM1167095     5  0.0000      0.945 0.000 0.000 0.000 0.000 1.000
#> GSM1167096     4  0.0000      0.828 0.000 0.000 0.000 1.000 0.000
#> GSM1167097     1  0.0000      0.914 1.000 0.000 0.000 0.000 0.000
#> GSM1167098     4  0.2561      0.732 0.000 0.000 0.144 0.856 0.000
#> GSM1167099     1  0.0000      0.914 1.000 0.000 0.000 0.000 0.000
#> GSM1167100     4  0.3336      0.649 0.000 0.228 0.000 0.772 0.000
#> GSM1167101     2  0.0162      0.996 0.000 0.996 0.000 0.000 0.004
#> GSM1167122     3  0.0000      0.907 0.000 0.000 1.000 0.000 0.000
#> GSM1167102     5  0.0162      0.942 0.000 0.004 0.000 0.000 0.996
#> GSM1167103     2  0.0162      0.996 0.000 0.996 0.000 0.000 0.004
#> GSM1167104     1  0.0000      0.914 1.000 0.000 0.000 0.000 0.000
#> GSM1167105     2  0.0000      0.994 0.000 1.000 0.000 0.000 0.000
#> GSM1167106     1  0.1341      0.884 0.944 0.000 0.000 0.056 0.000
#> GSM1167107     2  0.0162      0.996 0.000 0.996 0.000 0.000 0.004
#> GSM1167108     4  0.4302      0.153 0.480 0.000 0.000 0.520 0.000
#> GSM1167109     2  0.0290      0.993 0.000 0.992 0.000 0.000 0.008
#> GSM1167110     4  0.0000      0.828 0.000 0.000 0.000 1.000 0.000
#> GSM1167111     5  0.0000      0.945 0.000 0.000 0.000 0.000 1.000
#> GSM1167112     2  0.0162      0.996 0.000 0.996 0.000 0.000 0.004
#> GSM1167113     4  0.0000      0.828 0.000 0.000 0.000 1.000 0.000
#> GSM1167114     5  0.0162      0.942 0.000 0.000 0.000 0.004 0.996
#> GSM1167115     2  0.0162      0.996 0.000 0.996 0.000 0.000 0.004
#> GSM1167116     4  0.0000      0.828 0.000 0.000 0.000 1.000 0.000
#> GSM1167117     5  0.0000      0.945 0.000 0.000 0.000 0.000 1.000
#> GSM1167118     4  0.3999      0.595 0.344 0.000 0.000 0.656 0.000
#> GSM1167119     4  0.3857      0.572 0.312 0.000 0.000 0.688 0.000
#> GSM1167120     5  0.3876      0.513 0.000 0.000 0.000 0.316 0.684
#> GSM1167121     4  0.0566      0.824 0.000 0.004 0.012 0.984 0.000
#> GSM1167123     3  0.0000      0.907 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1167072     4  0.5488    0.00522 0.128 0.000 0.000 0.476 0.000 0.396
#> GSM1167073     4  0.0972    0.83737 0.028 0.000 0.000 0.964 0.000 0.008
#> GSM1167074     2  0.2442    0.87786 0.000 0.852 0.000 0.004 0.000 0.144
#> GSM1167075     6  0.3375    0.80769 0.096 0.000 0.000 0.088 0.000 0.816
#> GSM1167076     3  0.0000    0.89313 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1167077     4  0.0260    0.84249 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM1167078     6  0.2981    0.74593 0.020 0.000 0.000 0.160 0.000 0.820
#> GSM1167079     5  0.0363    0.92514 0.000 0.000 0.000 0.000 0.988 0.012
#> GSM1167080     1  0.3807    0.29196 0.628 0.000 0.000 0.004 0.000 0.368
#> GSM1167081     5  0.0000    0.92952 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167082     1  0.0603    0.72518 0.980 0.000 0.000 0.004 0.000 0.016
#> GSM1167083     5  0.2442    0.82197 0.000 0.000 0.000 0.004 0.852 0.144
#> GSM1167084     6  0.3868    0.09656 0.492 0.000 0.000 0.000 0.000 0.508
#> GSM1167085     2  0.2070    0.88987 0.000 0.892 0.000 0.008 0.000 0.100
#> GSM1167086     6  0.3225    0.80885 0.092 0.000 0.000 0.080 0.000 0.828
#> GSM1167087     1  0.4228    0.46823 0.716 0.000 0.000 0.072 0.000 0.212
#> GSM1167088     6  0.3193    0.79182 0.124 0.000 0.000 0.052 0.000 0.824
#> GSM1167089     3  0.3473    0.79374 0.000 0.000 0.808 0.096 0.000 0.096
#> GSM1167090     4  0.0632    0.84179 0.000 0.000 0.000 0.976 0.000 0.024
#> GSM1167091     6  0.3996    0.73238 0.168 0.000 0.000 0.080 0.000 0.752
#> GSM1167092     4  0.0291    0.84271 0.004 0.000 0.000 0.992 0.000 0.004
#> GSM1167093     3  0.4286    0.77369 0.000 0.092 0.744 0.008 0.000 0.156
#> GSM1167094     4  0.1807    0.82181 0.060 0.000 0.000 0.920 0.000 0.020
#> GSM1167095     5  0.0000    0.92952 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167096     4  0.2250    0.80425 0.092 0.000 0.000 0.888 0.000 0.020
#> GSM1167097     1  0.2491    0.63073 0.836 0.000 0.000 0.000 0.000 0.164
#> GSM1167098     4  0.2772    0.73279 0.000 0.000 0.180 0.816 0.000 0.004
#> GSM1167099     1  0.1500    0.70961 0.936 0.000 0.000 0.012 0.000 0.052
#> GSM1167100     4  0.4299    0.61160 0.000 0.188 0.000 0.720 0.000 0.092
#> GSM1167101     2  0.1204    0.93788 0.000 0.944 0.000 0.000 0.000 0.056
#> GSM1167122     3  0.0000    0.89313 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1167102     5  0.1141    0.89969 0.000 0.052 0.000 0.000 0.948 0.000
#> GSM1167103     2  0.1204    0.93788 0.000 0.944 0.000 0.000 0.000 0.056
#> GSM1167104     1  0.0000    0.72826 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1167105     2  0.0146    0.95359 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM1167106     1  0.0363    0.72773 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM1167107     2  0.0000    0.95400 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1167108     1  0.4131    0.12813 0.600 0.000 0.000 0.384 0.000 0.016
#> GSM1167109     2  0.0146    0.95259 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM1167110     4  0.0458    0.84247 0.000 0.000 0.000 0.984 0.000 0.016
#> GSM1167111     5  0.0000    0.92952 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167112     2  0.0000    0.95400 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1167113     4  0.0260    0.84212 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM1167114     5  0.0000    0.92952 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167115     2  0.0000    0.95400 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1167116     4  0.0000    0.84312 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM1167117     5  0.0000    0.92952 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167118     4  0.3287    0.68106 0.220 0.000 0.000 0.768 0.000 0.012
#> GSM1167119     4  0.4039    0.32231 0.424 0.000 0.000 0.568 0.000 0.008
#> GSM1167120     5  0.3426    0.60539 0.000 0.000 0.000 0.276 0.720 0.004
#> GSM1167121     4  0.1814    0.79796 0.000 0.000 0.000 0.900 0.000 0.100
#> GSM1167123     3  0.0000    0.89313 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) k
#> CV:pam 44           0.4688 2
#> CV:pam 52           0.0943 3
#> CV:pam 52           0.1199 4
#> CV:pam 50           0.1567 5
#> CV:pam 46           0.1770 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.500           0.964       0.915         0.4295 0.517   0.517
#> 3 3 1.000           0.973       0.985         0.3336 0.880   0.775
#> 4 4 0.739           0.893       0.901         0.2235 0.796   0.552
#> 5 5 0.901           0.886       0.953         0.1029 0.872   0.592
#> 6 6 0.766           0.803       0.838         0.0525 0.899   0.589

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 3

There is also optional best \(k\) = 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1167072     1  0.6712      0.963 0.824 0.176
#> GSM1167073     1  0.6148      0.951 0.848 0.152
#> GSM1167074     2  0.0000      0.999 0.000 1.000
#> GSM1167075     1  0.6801      0.964 0.820 0.180
#> GSM1167076     1  0.6801      0.964 0.820 0.180
#> GSM1167077     2  0.0000      0.999 0.000 1.000
#> GSM1167078     1  0.6801      0.964 0.820 0.180
#> GSM1167079     2  0.0000      0.999 0.000 1.000
#> GSM1167080     1  0.6801      0.964 0.820 0.180
#> GSM1167081     2  0.0000      0.999 0.000 1.000
#> GSM1167082     1  0.0672      0.828 0.992 0.008
#> GSM1167083     2  0.0000      0.999 0.000 1.000
#> GSM1167084     1  0.6801      0.964 0.820 0.180
#> GSM1167085     2  0.0000      0.999 0.000 1.000
#> GSM1167086     1  0.5842      0.944 0.860 0.140
#> GSM1167087     1  0.0000      0.822 1.000 0.000
#> GSM1167088     1  0.5842      0.944 0.860 0.140
#> GSM1167089     1  0.6801      0.964 0.820 0.180
#> GSM1167090     1  0.6801      0.964 0.820 0.180
#> GSM1167091     1  0.5946      0.946 0.856 0.144
#> GSM1167092     1  0.6712      0.963 0.824 0.176
#> GSM1167093     2  0.0000      0.999 0.000 1.000
#> GSM1167094     1  0.5946      0.944 0.856 0.144
#> GSM1167095     2  0.0000      0.999 0.000 1.000
#> GSM1167096     1  0.6712      0.963 0.824 0.176
#> GSM1167097     1  0.6801      0.964 0.820 0.180
#> GSM1167098     1  0.6801      0.964 0.820 0.180
#> GSM1167099     1  0.6801      0.964 0.820 0.180
#> GSM1167100     2  0.0000      0.999 0.000 1.000
#> GSM1167101     2  0.0000      0.999 0.000 1.000
#> GSM1167122     1  0.6801      0.964 0.820 0.180
#> GSM1167102     2  0.0000      0.999 0.000 1.000
#> GSM1167103     2  0.0000      0.999 0.000 1.000
#> GSM1167104     1  0.6712      0.963 0.824 0.176
#> GSM1167105     2  0.0000      0.999 0.000 1.000
#> GSM1167106     1  0.5408      0.932 0.876 0.124
#> GSM1167107     2  0.0000      0.999 0.000 1.000
#> GSM1167108     1  0.0672      0.828 0.992 0.008
#> GSM1167109     2  0.0000      0.999 0.000 1.000
#> GSM1167110     1  0.6801      0.964 0.820 0.180
#> GSM1167111     2  0.0000      0.999 0.000 1.000
#> GSM1167112     2  0.0000      0.999 0.000 1.000
#> GSM1167113     1  0.6801      0.964 0.820 0.180
#> GSM1167114     1  0.6801      0.964 0.820 0.180
#> GSM1167115     2  0.0000      0.999 0.000 1.000
#> GSM1167116     1  0.6801      0.964 0.820 0.180
#> GSM1167117     2  0.0000      0.999 0.000 1.000
#> GSM1167118     1  0.6801      0.964 0.820 0.180
#> GSM1167119     1  0.0000      0.822 1.000 0.000
#> GSM1167120     2  0.0672      0.990 0.008 0.992
#> GSM1167121     1  0.6801      0.964 0.820 0.180
#> GSM1167123     1  0.6801      0.964 0.820 0.180

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1167072     1  0.0237      0.988 0.996 0.000 0.004
#> GSM1167073     1  0.0000      0.989 1.000 0.000 0.000
#> GSM1167074     2  0.0829      0.974 0.004 0.984 0.012
#> GSM1167075     1  0.0000      0.989 1.000 0.000 0.000
#> GSM1167076     3  0.1031      0.987 0.024 0.000 0.976
#> GSM1167077     2  0.1337      0.967 0.012 0.972 0.016
#> GSM1167078     1  0.0237      0.988 0.996 0.000 0.004
#> GSM1167079     2  0.0237      0.977 0.004 0.996 0.000
#> GSM1167080     1  0.0000      0.989 1.000 0.000 0.000
#> GSM1167081     2  0.0237      0.977 0.004 0.996 0.000
#> GSM1167082     1  0.0424      0.984 0.992 0.000 0.008
#> GSM1167083     2  0.0661      0.975 0.004 0.988 0.008
#> GSM1167084     1  0.0000      0.989 1.000 0.000 0.000
#> GSM1167085     2  0.0983      0.972 0.004 0.980 0.016
#> GSM1167086     1  0.0000      0.989 1.000 0.000 0.000
#> GSM1167087     1  0.0424      0.984 0.992 0.000 0.008
#> GSM1167088     1  0.0000      0.989 1.000 0.000 0.000
#> GSM1167089     3  0.0424      0.989 0.008 0.000 0.992
#> GSM1167090     1  0.0592      0.985 0.988 0.000 0.012
#> GSM1167091     1  0.0000      0.989 1.000 0.000 0.000
#> GSM1167092     1  0.0592      0.985 0.988 0.000 0.012
#> GSM1167093     2  0.0983      0.972 0.004 0.980 0.016
#> GSM1167094     1  0.0424      0.987 0.992 0.000 0.008
#> GSM1167095     2  0.0237      0.977 0.004 0.996 0.000
#> GSM1167096     1  0.0424      0.987 0.992 0.000 0.008
#> GSM1167097     1  0.0000      0.989 1.000 0.000 0.000
#> GSM1167098     1  0.4342      0.814 0.856 0.120 0.024
#> GSM1167099     1  0.0000      0.989 1.000 0.000 0.000
#> GSM1167100     2  0.1015      0.972 0.008 0.980 0.012
#> GSM1167101     2  0.0661      0.975 0.004 0.988 0.008
#> GSM1167122     3  0.0424      0.989 0.008 0.000 0.992
#> GSM1167102     2  0.0000      0.975 0.000 1.000 0.000
#> GSM1167103     2  0.0237      0.977 0.004 0.996 0.000
#> GSM1167104     1  0.0000      0.989 1.000 0.000 0.000
#> GSM1167105     2  0.0000      0.975 0.000 1.000 0.000
#> GSM1167106     1  0.0237      0.987 0.996 0.000 0.004
#> GSM1167107     2  0.0000      0.975 0.000 1.000 0.000
#> GSM1167108     1  0.0424      0.984 0.992 0.000 0.008
#> GSM1167109     2  0.0000      0.975 0.000 1.000 0.000
#> GSM1167110     1  0.0592      0.985 0.988 0.000 0.012
#> GSM1167111     2  0.0237      0.977 0.004 0.996 0.000
#> GSM1167112     2  0.0237      0.977 0.004 0.996 0.000
#> GSM1167113     1  0.0424      0.987 0.992 0.000 0.008
#> GSM1167114     1  0.0661      0.984 0.988 0.004 0.008
#> GSM1167115     2  0.0000      0.975 0.000 1.000 0.000
#> GSM1167116     1  0.0424      0.987 0.992 0.000 0.008
#> GSM1167117     2  0.0475      0.976 0.004 0.992 0.004
#> GSM1167118     1  0.0237      0.987 0.996 0.000 0.004
#> GSM1167119     1  0.0424      0.984 0.992 0.000 0.008
#> GSM1167120     2  0.4128      0.798 0.132 0.856 0.012
#> GSM1167121     2  0.4045      0.841 0.104 0.872 0.024
#> GSM1167123     3  0.0892      0.988 0.020 0.000 0.980

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1167072     3  0.4454      0.757 0.308 0.000 0.692 0.000
#> GSM1167073     1  0.1302      0.918 0.956 0.000 0.044 0.000
#> GSM1167074     2  0.3484      0.889 0.004 0.844 0.144 0.008
#> GSM1167075     1  0.0376      0.937 0.992 0.004 0.004 0.000
#> GSM1167076     4  0.0336      0.997 0.000 0.000 0.008 0.992
#> GSM1167077     3  0.4456      0.462 0.004 0.280 0.716 0.000
#> GSM1167078     3  0.4361      0.872 0.208 0.020 0.772 0.000
#> GSM1167079     2  0.0657      0.940 0.004 0.984 0.012 0.000
#> GSM1167080     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> GSM1167081     2  0.0657      0.940 0.004 0.984 0.012 0.000
#> GSM1167082     1  0.4776      0.367 0.624 0.000 0.376 0.000
#> GSM1167083     2  0.3484      0.889 0.004 0.844 0.144 0.008
#> GSM1167084     1  0.0376      0.937 0.992 0.004 0.004 0.000
#> GSM1167085     2  0.3484      0.891 0.004 0.844 0.144 0.008
#> GSM1167086     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> GSM1167087     1  0.1867      0.910 0.928 0.000 0.072 0.000
#> GSM1167088     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> GSM1167089     4  0.0592      0.997 0.000 0.000 0.016 0.984
#> GSM1167090     3  0.4731      0.898 0.160 0.060 0.780 0.000
#> GSM1167091     1  0.2466      0.896 0.900 0.004 0.096 0.000
#> GSM1167092     3  0.4175      0.870 0.212 0.012 0.776 0.000
#> GSM1167093     2  0.3612      0.890 0.004 0.840 0.144 0.012
#> GSM1167094     3  0.3219      0.860 0.164 0.000 0.836 0.000
#> GSM1167095     2  0.0657      0.942 0.004 0.984 0.012 0.000
#> GSM1167096     3  0.4746      0.897 0.168 0.056 0.776 0.000
#> GSM1167097     1  0.0376      0.937 0.992 0.004 0.004 0.000
#> GSM1167098     3  0.4428      0.881 0.124 0.068 0.808 0.000
#> GSM1167099     1  0.0376      0.937 0.992 0.004 0.004 0.000
#> GSM1167100     2  0.3484      0.891 0.004 0.844 0.144 0.008
#> GSM1167101     2  0.3432      0.890 0.004 0.848 0.140 0.008
#> GSM1167122     4  0.0592      0.997 0.000 0.000 0.016 0.984
#> GSM1167102     2  0.0524      0.943 0.004 0.988 0.008 0.000
#> GSM1167103     2  0.0188      0.943 0.004 0.996 0.000 0.000
#> GSM1167104     1  0.0376      0.937 0.992 0.004 0.004 0.000
#> GSM1167105     2  0.0188      0.942 0.000 0.996 0.004 0.000
#> GSM1167106     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> GSM1167107     2  0.0336      0.942 0.000 0.992 0.008 0.000
#> GSM1167108     3  0.3528      0.844 0.192 0.000 0.808 0.000
#> GSM1167109     2  0.0524      0.943 0.004 0.988 0.008 0.000
#> GSM1167110     3  0.4731      0.898 0.160 0.060 0.780 0.000
#> GSM1167111     2  0.0657      0.942 0.004 0.984 0.012 0.000
#> GSM1167112     2  0.0376      0.943 0.004 0.992 0.004 0.000
#> GSM1167113     3  0.4731      0.898 0.160 0.060 0.780 0.000
#> GSM1167114     3  0.4735      0.894 0.148 0.068 0.784 0.000
#> GSM1167115     2  0.0524      0.942 0.000 0.988 0.008 0.004
#> GSM1167116     3  0.4633      0.895 0.172 0.048 0.780 0.000
#> GSM1167117     2  0.0657      0.942 0.004 0.984 0.012 0.000
#> GSM1167118     1  0.2401      0.875 0.904 0.004 0.092 0.000
#> GSM1167119     1  0.2345      0.894 0.900 0.000 0.100 0.000
#> GSM1167120     3  0.5000      0.847 0.100 0.128 0.772 0.000
#> GSM1167121     3  0.2125      0.742 0.004 0.076 0.920 0.000
#> GSM1167123     4  0.0336      0.997 0.000 0.000 0.008 0.992

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1167072     4  0.0404      0.933 0.012 0.000 0.000 0.988 0.000
#> GSM1167073     1  0.3684      0.646 0.720 0.000 0.000 0.280 0.000
#> GSM1167074     2  0.0290      0.929 0.000 0.992 0.000 0.000 0.008
#> GSM1167075     1  0.0162      0.859 0.996 0.004 0.000 0.000 0.000
#> GSM1167076     3  0.0000      0.992 0.000 0.000 1.000 0.000 0.000
#> GSM1167077     4  0.3579      0.650 0.000 0.240 0.000 0.756 0.004
#> GSM1167078     4  0.0162      0.936 0.004 0.000 0.000 0.996 0.000
#> GSM1167079     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000
#> GSM1167080     1  0.0162      0.859 0.996 0.004 0.000 0.000 0.000
#> GSM1167081     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000
#> GSM1167082     4  0.1357      0.901 0.048 0.004 0.000 0.948 0.000
#> GSM1167083     2  0.0404      0.925 0.000 0.988 0.000 0.000 0.012
#> GSM1167084     1  0.0000      0.859 1.000 0.000 0.000 0.000 0.000
#> GSM1167085     2  0.0290      0.929 0.000 0.992 0.000 0.000 0.008
#> GSM1167086     1  0.0162      0.858 0.996 0.000 0.000 0.004 0.000
#> GSM1167087     1  0.4440      0.154 0.528 0.004 0.000 0.468 0.000
#> GSM1167088     1  0.0000      0.859 1.000 0.000 0.000 0.000 0.000
#> GSM1167089     3  0.0451      0.992 0.000 0.004 0.988 0.008 0.000
#> GSM1167090     4  0.0000      0.936 0.000 0.000 0.000 1.000 0.000
#> GSM1167091     1  0.3561      0.672 0.740 0.000 0.000 0.260 0.000
#> GSM1167092     4  0.0000      0.936 0.000 0.000 0.000 1.000 0.000
#> GSM1167093     2  0.0290      0.929 0.000 0.992 0.000 0.000 0.008
#> GSM1167094     4  0.0162      0.936 0.004 0.000 0.000 0.996 0.000
#> GSM1167095     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000
#> GSM1167096     4  0.0162      0.936 0.004 0.000 0.000 0.996 0.000
#> GSM1167097     1  0.0000      0.859 1.000 0.000 0.000 0.000 0.000
#> GSM1167098     4  0.1544      0.880 0.000 0.068 0.000 0.932 0.000
#> GSM1167099     1  0.0162      0.859 0.996 0.004 0.000 0.000 0.000
#> GSM1167100     2  0.0290      0.929 0.000 0.992 0.000 0.000 0.008
#> GSM1167101     2  0.0290      0.929 0.000 0.992 0.000 0.000 0.008
#> GSM1167122     3  0.0451      0.992 0.000 0.004 0.988 0.008 0.000
#> GSM1167102     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000
#> GSM1167103     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000
#> GSM1167104     1  0.0162      0.859 0.996 0.004 0.000 0.000 0.000
#> GSM1167105     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000
#> GSM1167106     1  0.2424      0.775 0.868 0.000 0.000 0.132 0.000
#> GSM1167107     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000
#> GSM1167108     4  0.0324      0.935 0.004 0.004 0.000 0.992 0.000
#> GSM1167109     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000
#> GSM1167110     4  0.0000      0.936 0.000 0.000 0.000 1.000 0.000
#> GSM1167111     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000
#> GSM1167112     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000
#> GSM1167113     4  0.0000      0.936 0.000 0.000 0.000 1.000 0.000
#> GSM1167114     4  0.0162      0.935 0.000 0.000 0.000 0.996 0.004
#> GSM1167115     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000
#> GSM1167116     4  0.0000      0.936 0.000 0.000 0.000 1.000 0.000
#> GSM1167117     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000
#> GSM1167118     4  0.2773      0.768 0.164 0.000 0.000 0.836 0.000
#> GSM1167119     4  0.4101      0.440 0.332 0.004 0.000 0.664 0.000
#> GSM1167120     4  0.0162      0.935 0.000 0.000 0.000 0.996 0.004
#> GSM1167121     2  0.3752      0.556 0.000 0.708 0.000 0.292 0.000
#> GSM1167123     3  0.0000      0.992 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1167072     6  0.5350      0.622 0.140 0.000 0.000 0.296 0.000 0.564
#> GSM1167073     1  0.4062      0.691 0.744 0.000 0.000 0.080 0.000 0.176
#> GSM1167074     2  0.0692      0.918 0.000 0.976 0.004 0.000 0.020 0.000
#> GSM1167075     1  0.0000      0.905 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1167076     3  0.0260      0.993 0.000 0.000 0.992 0.000 0.000 0.008
#> GSM1167077     4  0.3254      0.668 0.000 0.172 0.000 0.804 0.016 0.008
#> GSM1167078     4  0.2253      0.766 0.084 0.012 0.000 0.896 0.004 0.004
#> GSM1167079     5  0.4079      0.823 0.000 0.000 0.000 0.084 0.744 0.172
#> GSM1167080     1  0.0363      0.909 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM1167081     5  0.4079      0.823 0.000 0.000 0.000 0.084 0.744 0.172
#> GSM1167082     6  0.2948      0.757 0.008 0.000 0.000 0.188 0.000 0.804
#> GSM1167083     2  0.0891      0.918 0.000 0.968 0.000 0.000 0.024 0.008
#> GSM1167084     1  0.1444      0.931 0.928 0.000 0.000 0.000 0.000 0.072
#> GSM1167085     2  0.0806      0.917 0.000 0.972 0.000 0.008 0.020 0.000
#> GSM1167086     1  0.1866      0.923 0.908 0.000 0.000 0.008 0.000 0.084
#> GSM1167087     6  0.3901      0.767 0.096 0.000 0.000 0.136 0.000 0.768
#> GSM1167088     1  0.0363      0.909 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM1167089     3  0.0291      0.991 0.000 0.004 0.992 0.004 0.000 0.000
#> GSM1167090     4  0.2485      0.738 0.000 0.024 0.000 0.884 0.084 0.008
#> GSM1167091     6  0.4818      0.546 0.272 0.008 0.000 0.072 0.000 0.648
#> GSM1167092     4  0.3942      0.764 0.084 0.020 0.000 0.792 0.000 0.104
#> GSM1167093     2  0.0891      0.918 0.000 0.968 0.008 0.000 0.024 0.000
#> GSM1167094     6  0.3371      0.662 0.000 0.000 0.000 0.292 0.000 0.708
#> GSM1167095     5  0.1814      0.895 0.000 0.000 0.000 0.000 0.900 0.100
#> GSM1167096     6  0.5120      0.426 0.000 0.000 0.000 0.380 0.088 0.532
#> GSM1167097     1  0.1444      0.931 0.928 0.000 0.000 0.000 0.000 0.072
#> GSM1167098     4  0.2278      0.726 0.000 0.128 0.000 0.868 0.004 0.000
#> GSM1167099     1  0.1858      0.928 0.912 0.012 0.000 0.000 0.000 0.076
#> GSM1167100     2  0.4159      0.578 0.000 0.672 0.000 0.300 0.020 0.008
#> GSM1167101     2  0.0806      0.916 0.000 0.972 0.008 0.000 0.020 0.000
#> GSM1167122     3  0.0146      0.992 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM1167102     5  0.0260      0.908 0.000 0.008 0.000 0.000 0.992 0.000
#> GSM1167103     5  0.1714      0.876 0.000 0.092 0.000 0.000 0.908 0.000
#> GSM1167104     1  0.1644      0.930 0.920 0.004 0.000 0.000 0.000 0.076
#> GSM1167105     5  0.0260      0.908 0.000 0.008 0.000 0.000 0.992 0.000
#> GSM1167106     6  0.4823      0.393 0.388 0.000 0.000 0.060 0.000 0.552
#> GSM1167107     5  0.1765      0.873 0.000 0.096 0.000 0.000 0.904 0.000
#> GSM1167108     6  0.2762      0.752 0.000 0.000 0.000 0.196 0.000 0.804
#> GSM1167109     5  0.0508      0.906 0.000 0.004 0.000 0.012 0.984 0.000
#> GSM1167110     4  0.4032      0.772 0.084 0.032 0.000 0.792 0.000 0.092
#> GSM1167111     5  0.2121      0.894 0.000 0.000 0.000 0.012 0.892 0.096
#> GSM1167112     5  0.0260      0.908 0.000 0.008 0.000 0.000 0.992 0.000
#> GSM1167113     4  0.3897      0.767 0.084 0.020 0.000 0.796 0.000 0.100
#> GSM1167114     4  0.4932      0.273 0.000 0.000 0.000 0.600 0.088 0.312
#> GSM1167115     5  0.1610      0.881 0.000 0.084 0.000 0.000 0.916 0.000
#> GSM1167116     4  0.3418      0.769 0.084 0.000 0.000 0.820 0.004 0.092
#> GSM1167117     5  0.1814      0.895 0.000 0.000 0.000 0.000 0.900 0.100
#> GSM1167118     6  0.4830      0.735 0.172 0.000 0.000 0.160 0.000 0.668
#> GSM1167119     6  0.3532      0.765 0.064 0.000 0.000 0.140 0.000 0.796
#> GSM1167120     4  0.3523      0.771 0.076 0.000 0.000 0.820 0.012 0.092
#> GSM1167121     4  0.3644      0.529 0.000 0.252 0.008 0.732 0.008 0.000
#> GSM1167123     3  0.0260      0.993 0.000 0.000 0.992 0.000 0.000 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) k
#> CV:mclust 52           0.4084 2
#> CV:mclust 52           0.3319 3
#> CV:mclust 50           0.5027 4
#> CV:mclust 50           0.0301 5
#> CV:mclust 49           0.0144 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.957           0.937       0.973         0.5068 0.491   0.491
#> 3 3 0.926           0.915       0.964         0.2326 0.796   0.620
#> 4 4 0.535           0.532       0.737         0.1586 0.948   0.864
#> 5 5 0.529           0.465       0.686         0.0843 0.824   0.522
#> 6 6 0.594           0.556       0.730         0.0435 0.902   0.615

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1167072     1  0.0000      0.963 1.000 0.000
#> GSM1167073     1  0.0000      0.963 1.000 0.000
#> GSM1167074     2  0.0000      0.979 0.000 1.000
#> GSM1167075     1  0.0000      0.963 1.000 0.000
#> GSM1167076     1  0.0000      0.963 1.000 0.000
#> GSM1167077     2  0.0000      0.979 0.000 1.000
#> GSM1167078     2  0.4298      0.894 0.088 0.912
#> GSM1167079     2  0.0000      0.979 0.000 1.000
#> GSM1167080     1  0.0000      0.963 1.000 0.000
#> GSM1167081     2  0.0000      0.979 0.000 1.000
#> GSM1167082     1  0.0000      0.963 1.000 0.000
#> GSM1167083     2  0.0000      0.979 0.000 1.000
#> GSM1167084     1  0.0000      0.963 1.000 0.000
#> GSM1167085     2  0.0000      0.979 0.000 1.000
#> GSM1167086     1  0.0000      0.963 1.000 0.000
#> GSM1167087     1  0.0000      0.963 1.000 0.000
#> GSM1167088     1  0.0000      0.963 1.000 0.000
#> GSM1167089     1  0.6438      0.803 0.836 0.164
#> GSM1167090     1  0.9661      0.370 0.608 0.392
#> GSM1167091     1  0.0000      0.963 1.000 0.000
#> GSM1167092     1  0.7528      0.729 0.784 0.216
#> GSM1167093     2  0.0000      0.979 0.000 1.000
#> GSM1167094     1  0.0000      0.963 1.000 0.000
#> GSM1167095     2  0.0000      0.979 0.000 1.000
#> GSM1167096     1  0.0000      0.963 1.000 0.000
#> GSM1167097     1  0.0000      0.963 1.000 0.000
#> GSM1167098     2  0.0000      0.979 0.000 1.000
#> GSM1167099     1  0.0000      0.963 1.000 0.000
#> GSM1167100     2  0.0000      0.979 0.000 1.000
#> GSM1167101     2  0.0000      0.979 0.000 1.000
#> GSM1167122     1  0.4022      0.896 0.920 0.080
#> GSM1167102     2  0.0000      0.979 0.000 1.000
#> GSM1167103     2  0.0000      0.979 0.000 1.000
#> GSM1167104     1  0.0000      0.963 1.000 0.000
#> GSM1167105     2  0.0000      0.979 0.000 1.000
#> GSM1167106     1  0.0000      0.963 1.000 0.000
#> GSM1167107     2  0.0000      0.979 0.000 1.000
#> GSM1167108     1  0.0000      0.963 1.000 0.000
#> GSM1167109     2  0.0000      0.979 0.000 1.000
#> GSM1167110     2  0.9323      0.442 0.348 0.652
#> GSM1167111     2  0.0000      0.979 0.000 1.000
#> GSM1167112     2  0.0000      0.979 0.000 1.000
#> GSM1167113     2  0.4022      0.902 0.080 0.920
#> GSM1167114     2  0.0000      0.979 0.000 1.000
#> GSM1167115     2  0.0000      0.979 0.000 1.000
#> GSM1167116     2  0.0938      0.969 0.012 0.988
#> GSM1167117     2  0.0000      0.979 0.000 1.000
#> GSM1167118     1  0.0376      0.960 0.996 0.004
#> GSM1167119     1  0.0000      0.963 1.000 0.000
#> GSM1167120     2  0.0000      0.979 0.000 1.000
#> GSM1167121     2  0.0000      0.979 0.000 1.000
#> GSM1167123     1  0.0000      0.963 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1167072     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167073     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167074     2  0.5948      0.428 0.000 0.640 0.360
#> GSM1167075     3  0.1411      0.916 0.036 0.000 0.964
#> GSM1167076     3  0.0000      0.938 0.000 0.000 1.000
#> GSM1167077     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167078     2  0.1753      0.895 0.048 0.952 0.000
#> GSM1167079     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167080     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167081     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167082     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167083     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167084     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167085     2  0.1643      0.901 0.000 0.956 0.044
#> GSM1167086     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167087     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167088     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167089     3  0.0000      0.938 0.000 0.000 1.000
#> GSM1167090     2  0.5905      0.496 0.352 0.648 0.000
#> GSM1167091     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167092     2  0.7903      0.399 0.356 0.576 0.068
#> GSM1167093     3  0.4796      0.724 0.000 0.220 0.780
#> GSM1167094     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167095     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167096     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167097     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167098     2  0.4887      0.678 0.000 0.772 0.228
#> GSM1167099     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167100     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167101     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167122     3  0.0000      0.938 0.000 0.000 1.000
#> GSM1167102     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167103     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167104     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167105     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167106     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167107     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167108     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167109     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167110     3  0.3482      0.848 0.000 0.128 0.872
#> GSM1167111     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167112     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167113     2  0.0747      0.921 0.016 0.984 0.000
#> GSM1167114     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167115     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167116     2  0.1289      0.909 0.032 0.968 0.000
#> GSM1167117     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167118     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167119     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167120     2  0.0000      0.932 0.000 1.000 0.000
#> GSM1167121     3  0.0424      0.937 0.000 0.008 0.992
#> GSM1167123     3  0.0000      0.938 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1167072     1  0.3521     0.6387 0.864 0.084 0.000 0.052
#> GSM1167073     1  0.4696     0.6072 0.796 0.064 0.004 0.136
#> GSM1167074     2  0.6758     0.3655 0.000 0.604 0.240 0.156
#> GSM1167075     3  0.5845     0.4921 0.252 0.000 0.672 0.076
#> GSM1167076     3  0.0336     0.7722 0.000 0.000 0.992 0.008
#> GSM1167077     2  0.3356     0.6560 0.000 0.824 0.000 0.176
#> GSM1167078     4  0.6795     0.4597 0.172 0.172 0.012 0.644
#> GSM1167079     2  0.1118     0.7003 0.000 0.964 0.000 0.036
#> GSM1167080     1  0.4193     0.5100 0.732 0.000 0.000 0.268
#> GSM1167081     2  0.0592     0.7073 0.000 0.984 0.000 0.016
#> GSM1167082     1  0.3219     0.6787 0.836 0.000 0.000 0.164
#> GSM1167083     2  0.4916     0.0658 0.000 0.576 0.000 0.424
#> GSM1167084     1  0.2408     0.6443 0.896 0.000 0.000 0.104
#> GSM1167085     2  0.5063     0.6171 0.000 0.768 0.108 0.124
#> GSM1167086     1  0.4981     0.1339 0.536 0.000 0.000 0.464
#> GSM1167087     1  0.4643     0.5653 0.656 0.000 0.000 0.344
#> GSM1167088     1  0.5000     0.0491 0.504 0.000 0.000 0.496
#> GSM1167089     3  0.0336     0.7732 0.000 0.000 0.992 0.008
#> GSM1167090     4  0.7185     0.4410 0.216 0.152 0.020 0.612
#> GSM1167091     1  0.4222     0.5189 0.728 0.000 0.000 0.272
#> GSM1167092     4  0.8267    -0.1452 0.136 0.376 0.048 0.440
#> GSM1167093     3  0.5066     0.6036 0.000 0.148 0.764 0.088
#> GSM1167094     1  0.4595     0.6500 0.776 0.040 0.000 0.184
#> GSM1167095     2  0.0657     0.7071 0.004 0.984 0.000 0.012
#> GSM1167096     1  0.6568     0.4630 0.572 0.096 0.000 0.332
#> GSM1167097     1  0.1211     0.6835 0.960 0.000 0.000 0.040
#> GSM1167098     2  0.8584    -0.2133 0.028 0.364 0.328 0.280
#> GSM1167099     1  0.2469     0.6853 0.892 0.000 0.000 0.108
#> GSM1167100     2  0.4933     0.2189 0.000 0.568 0.000 0.432
#> GSM1167101     2  0.1489     0.6981 0.000 0.952 0.004 0.044
#> GSM1167122     3  0.0895     0.7690 0.004 0.000 0.976 0.020
#> GSM1167102     2  0.2868     0.6812 0.000 0.864 0.000 0.136
#> GSM1167103     2  0.0921     0.7095 0.000 0.972 0.000 0.028
#> GSM1167104     1  0.2281     0.6879 0.904 0.000 0.000 0.096
#> GSM1167105     2  0.2704     0.6849 0.000 0.876 0.000 0.124
#> GSM1167106     1  0.3219     0.6804 0.836 0.000 0.000 0.164
#> GSM1167107     2  0.2408     0.6918 0.000 0.896 0.000 0.104
#> GSM1167108     1  0.4543     0.5714 0.676 0.000 0.000 0.324
#> GSM1167109     2  0.0000     0.7086 0.000 1.000 0.000 0.000
#> GSM1167110     3  0.8386     0.1530 0.056 0.136 0.436 0.372
#> GSM1167111     2  0.1661     0.6982 0.004 0.944 0.000 0.052
#> GSM1167112     2  0.1824     0.6966 0.004 0.936 0.000 0.060
#> GSM1167113     2  0.6027     0.2610 0.036 0.552 0.004 0.408
#> GSM1167114     2  0.5517     0.3146 0.036 0.648 0.000 0.316
#> GSM1167115     2  0.2469     0.6882 0.000 0.892 0.000 0.108
#> GSM1167116     2  0.5921     0.1692 0.036 0.516 0.000 0.448
#> GSM1167117     2  0.0657     0.7071 0.004 0.984 0.000 0.012
#> GSM1167118     1  0.3688     0.6643 0.792 0.000 0.000 0.208
#> GSM1167119     1  0.4585     0.5759 0.668 0.000 0.000 0.332
#> GSM1167120     2  0.4888     0.3296 0.000 0.588 0.000 0.412
#> GSM1167121     3  0.3711     0.7110 0.000 0.024 0.836 0.140
#> GSM1167123     3  0.1209     0.7664 0.004 0.000 0.964 0.032

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1167072     1  0.6759     0.4169 0.592 0.004 0.056 0.224 0.124
#> GSM1167073     1  0.4366     0.6893 0.792 0.016 0.012 0.036 0.144
#> GSM1167074     2  0.5882     0.4421 0.000 0.620 0.252 0.012 0.116
#> GSM1167075     3  0.6780     0.4621 0.100 0.000 0.592 0.092 0.216
#> GSM1167076     3  0.0771     0.7924 0.000 0.000 0.976 0.004 0.020
#> GSM1167077     2  0.3500     0.5654 0.000 0.808 0.004 0.016 0.172
#> GSM1167078     5  0.4023     0.5152 0.076 0.096 0.004 0.008 0.816
#> GSM1167079     2  0.5646     0.4950 0.000 0.632 0.000 0.212 0.156
#> GSM1167080     1  0.3662     0.5931 0.744 0.000 0.000 0.004 0.252
#> GSM1167081     2  0.6140     0.3725 0.000 0.528 0.000 0.320 0.152
#> GSM1167082     1  0.3099     0.6987 0.848 0.000 0.000 0.124 0.028
#> GSM1167083     5  0.5470     0.2167 0.000 0.252 0.000 0.112 0.636
#> GSM1167084     1  0.2230     0.7188 0.884 0.000 0.000 0.000 0.116
#> GSM1167085     2  0.4695     0.5008 0.000 0.700 0.260 0.016 0.024
#> GSM1167086     5  0.4517     0.1739 0.388 0.000 0.000 0.012 0.600
#> GSM1167087     4  0.5125     0.1165 0.416 0.000 0.000 0.544 0.040
#> GSM1167088     5  0.4346     0.3677 0.304 0.004 0.000 0.012 0.680
#> GSM1167089     3  0.1121     0.7852 0.000 0.000 0.956 0.000 0.044
#> GSM1167090     5  0.7427     0.2020 0.040 0.348 0.024 0.120 0.468
#> GSM1167091     1  0.4470     0.4608 0.656 0.000 0.008 0.008 0.328
#> GSM1167092     4  0.8151     0.2641 0.068 0.116 0.144 0.540 0.132
#> GSM1167093     3  0.3888     0.6539 0.000 0.228 0.756 0.008 0.008
#> GSM1167094     4  0.5978     0.2230 0.360 0.040 0.024 0.564 0.012
#> GSM1167095     2  0.6219     0.2044 0.000 0.440 0.000 0.420 0.140
#> GSM1167096     4  0.5433     0.3720 0.252 0.012 0.052 0.672 0.012
#> GSM1167097     1  0.4269     0.6678 0.776 0.000 0.000 0.108 0.116
#> GSM1167098     4  0.7753     0.0501 0.008 0.044 0.240 0.400 0.308
#> GSM1167099     1  0.1408     0.7457 0.948 0.000 0.000 0.008 0.044
#> GSM1167100     2  0.4348     0.4495 0.000 0.668 0.000 0.016 0.316
#> GSM1167101     2  0.3919     0.6228 0.000 0.816 0.008 0.076 0.100
#> GSM1167122     3  0.0771     0.7904 0.000 0.000 0.976 0.004 0.020
#> GSM1167102     2  0.4823     0.4742 0.000 0.644 0.000 0.316 0.040
#> GSM1167103     2  0.1965     0.6447 0.000 0.924 0.000 0.024 0.052
#> GSM1167104     1  0.0798     0.7481 0.976 0.000 0.000 0.016 0.008
#> GSM1167105     2  0.2660     0.6177 0.000 0.864 0.000 0.128 0.008
#> GSM1167106     1  0.1596     0.7467 0.948 0.012 0.000 0.012 0.028
#> GSM1167107     2  0.1582     0.6374 0.000 0.944 0.000 0.028 0.028
#> GSM1167108     1  0.5058     0.5278 0.716 0.020 0.004 0.212 0.048
#> GSM1167109     2  0.3579     0.6146 0.000 0.828 0.000 0.100 0.072
#> GSM1167110     2  0.7376    -0.0623 0.040 0.468 0.372 0.048 0.072
#> GSM1167111     4  0.5569    -0.0589 0.000 0.364 0.000 0.556 0.080
#> GSM1167112     2  0.4125     0.5886 0.000 0.772 0.000 0.172 0.056
#> GSM1167113     2  0.6586     0.4491 0.100 0.668 0.032 0.132 0.068
#> GSM1167114     4  0.5005     0.3954 0.072 0.160 0.000 0.740 0.028
#> GSM1167115     2  0.1106     0.6458 0.000 0.964 0.000 0.024 0.012
#> GSM1167116     2  0.5824     0.4648 0.064 0.684 0.000 0.176 0.076
#> GSM1167117     4  0.6137    -0.2251 0.000 0.392 0.000 0.476 0.132
#> GSM1167118     1  0.4910     0.5631 0.740 0.072 0.000 0.168 0.020
#> GSM1167119     4  0.5347     0.1567 0.396 0.008 0.000 0.556 0.040
#> GSM1167120     2  0.5622     0.2829 0.012 0.512 0.000 0.428 0.048
#> GSM1167121     3  0.4658     0.5348 0.000 0.296 0.672 0.004 0.028
#> GSM1167123     3  0.0932     0.7893 0.004 0.000 0.972 0.004 0.020

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1167072     1  0.6033      0.301 0.536 0.004 0.052 0.044 0.348 0.016
#> GSM1167073     1  0.2942      0.678 0.856 0.004 0.000 0.036 0.004 0.100
#> GSM1167074     2  0.5598      0.604 0.004 0.632 0.244 0.004 0.040 0.076
#> GSM1167075     3  0.7833      0.119 0.060 0.000 0.360 0.120 0.112 0.348
#> GSM1167076     3  0.0790      0.762 0.000 0.000 0.968 0.000 0.000 0.032
#> GSM1167077     2  0.2822      0.700 0.000 0.856 0.000 0.004 0.032 0.108
#> GSM1167078     6  0.3756      0.482 0.032 0.016 0.000 0.004 0.156 0.792
#> GSM1167079     5  0.4217      0.460 0.000 0.296 0.000 0.008 0.672 0.024
#> GSM1167080     1  0.3652      0.516 0.720 0.000 0.000 0.016 0.000 0.264
#> GSM1167081     5  0.2980      0.617 0.000 0.180 0.000 0.000 0.808 0.012
#> GSM1167082     1  0.2996      0.692 0.832 0.000 0.000 0.144 0.008 0.016
#> GSM1167083     6  0.5790      0.173 0.000 0.128 0.000 0.016 0.340 0.516
#> GSM1167084     1  0.1983      0.699 0.908 0.000 0.000 0.020 0.000 0.072
#> GSM1167085     2  0.5013      0.695 0.004 0.736 0.092 0.004 0.092 0.072
#> GSM1167086     6  0.4234      0.153 0.372 0.000 0.000 0.004 0.016 0.608
#> GSM1167087     4  0.4518      0.754 0.132 0.004 0.004 0.760 0.028 0.072
#> GSM1167088     6  0.4354      0.414 0.272 0.028 0.000 0.000 0.016 0.684
#> GSM1167089     3  0.2213      0.744 0.000 0.004 0.904 0.020 0.004 0.068
#> GSM1167090     6  0.5916      0.248 0.008 0.356 0.000 0.132 0.008 0.496
#> GSM1167091     1  0.5156      0.392 0.612 0.000 0.012 0.052 0.012 0.312
#> GSM1167092     5  0.6931      0.337 0.044 0.028 0.076 0.092 0.608 0.152
#> GSM1167093     3  0.4022      0.388 0.000 0.300 0.680 0.004 0.012 0.004
#> GSM1167094     4  0.4354      0.782 0.084 0.040 0.020 0.804 0.028 0.024
#> GSM1167095     5  0.3181      0.623 0.000 0.112 0.000 0.020 0.840 0.028
#> GSM1167096     4  0.3973      0.786 0.036 0.008 0.044 0.812 0.096 0.004
#> GSM1167097     1  0.6360      0.383 0.540 0.000 0.004 0.248 0.048 0.160
#> GSM1167098     5  0.7046      0.244 0.000 0.012 0.256 0.092 0.484 0.156
#> GSM1167099     1  0.0964      0.711 0.968 0.000 0.000 0.012 0.016 0.004
#> GSM1167100     2  0.6078      0.405 0.012 0.524 0.000 0.004 0.216 0.244
#> GSM1167101     2  0.4692      0.627 0.000 0.704 0.028 0.008 0.224 0.036
#> GSM1167122     3  0.0146      0.763 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM1167102     5  0.5345      0.515 0.004 0.288 0.000 0.092 0.604 0.012
#> GSM1167103     2  0.2535      0.715 0.000 0.888 0.000 0.012 0.064 0.036
#> GSM1167104     1  0.1528      0.713 0.944 0.000 0.000 0.028 0.016 0.012
#> GSM1167105     2  0.2585      0.716 0.000 0.888 0.000 0.048 0.016 0.048
#> GSM1167106     1  0.2100      0.703 0.916 0.036 0.000 0.032 0.016 0.000
#> GSM1167107     2  0.0405      0.721 0.000 0.988 0.000 0.008 0.004 0.000
#> GSM1167108     1  0.4587      0.623 0.740 0.052 0.000 0.172 0.024 0.012
#> GSM1167109     2  0.4029      0.533 0.000 0.688 0.000 0.012 0.288 0.012
#> GSM1167110     2  0.5194      0.632 0.076 0.724 0.144 0.016 0.024 0.016
#> GSM1167111     5  0.5965      0.128 0.000 0.168 0.000 0.404 0.420 0.008
#> GSM1167112     2  0.4512      0.578 0.000 0.708 0.000 0.096 0.192 0.004
#> GSM1167113     2  0.5211      0.628 0.124 0.736 0.032 0.064 0.032 0.012
#> GSM1167114     4  0.3318      0.737 0.008 0.044 0.000 0.824 0.124 0.000
#> GSM1167115     2  0.2431      0.700 0.000 0.860 0.000 0.000 0.132 0.008
#> GSM1167116     2  0.4700      0.664 0.056 0.764 0.000 0.072 0.092 0.016
#> GSM1167117     5  0.3776      0.590 0.000 0.056 0.000 0.132 0.796 0.016
#> GSM1167118     1  0.5642      0.472 0.620 0.092 0.000 0.244 0.004 0.040
#> GSM1167119     4  0.3864      0.767 0.092 0.016 0.000 0.808 0.008 0.076
#> GSM1167120     5  0.6208      0.505 0.036 0.260 0.000 0.056 0.588 0.060
#> GSM1167121     2  0.4681      0.237 0.000 0.548 0.420 0.012 0.008 0.012
#> GSM1167123     3  0.0551      0.761 0.000 0.000 0.984 0.004 0.004 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) k
#> CV:NMF 50           0.0733 2
#> CV:NMF 49           0.1722 3
#> CV:NMF 36           0.2837 4
#> CV:NMF 26           0.4025 5
#> CV:NMF 35           0.4341 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.506           0.798       0.906         0.4769 0.502   0.502
#> 3 3 0.491           0.670       0.822         0.2747 0.876   0.757
#> 4 4 0.544           0.575       0.754         0.1365 0.961   0.903
#> 5 5 0.681           0.667       0.809         0.1199 0.796   0.486
#> 6 6 0.679           0.539       0.734         0.0419 0.943   0.763

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1167072     1  0.5408      0.853 0.876 0.124
#> GSM1167073     1  0.5519      0.851 0.872 0.128
#> GSM1167074     2  0.0376      0.868 0.004 0.996
#> GSM1167075     1  0.0000      0.900 1.000 0.000
#> GSM1167076     1  0.0000      0.900 1.000 0.000
#> GSM1167077     1  0.9393      0.511 0.644 0.356
#> GSM1167078     1  0.7376      0.782 0.792 0.208
#> GSM1167079     2  0.0000      0.870 0.000 1.000
#> GSM1167080     1  0.0000      0.900 1.000 0.000
#> GSM1167081     2  0.0000      0.870 0.000 1.000
#> GSM1167082     1  0.1633      0.898 0.976 0.024
#> GSM1167083     2  0.0000      0.870 0.000 1.000
#> GSM1167084     1  0.0000      0.900 1.000 0.000
#> GSM1167085     2  0.8499      0.604 0.276 0.724
#> GSM1167086     1  0.0000      0.900 1.000 0.000
#> GSM1167087     1  0.0000      0.900 1.000 0.000
#> GSM1167088     1  0.0000      0.900 1.000 0.000
#> GSM1167089     2  0.9963      0.184 0.464 0.536
#> GSM1167090     1  0.6712      0.815 0.824 0.176
#> GSM1167091     1  0.0672      0.900 0.992 0.008
#> GSM1167092     1  0.7139      0.795 0.804 0.196
#> GSM1167093     2  0.7453      0.690 0.212 0.788
#> GSM1167094     1  0.2603      0.893 0.956 0.044
#> GSM1167095     2  0.0000      0.870 0.000 1.000
#> GSM1167096     1  0.2236      0.895 0.964 0.036
#> GSM1167097     1  0.0000      0.900 1.000 0.000
#> GSM1167098     2  0.9963      0.184 0.464 0.536
#> GSM1167099     1  0.0000      0.900 1.000 0.000
#> GSM1167100     2  0.6531      0.741 0.168 0.832
#> GSM1167101     2  0.0376      0.868 0.004 0.996
#> GSM1167122     1  0.7883      0.719 0.764 0.236
#> GSM1167102     2  0.0000      0.870 0.000 1.000
#> GSM1167103     2  0.0000      0.870 0.000 1.000
#> GSM1167104     1  0.0000      0.900 1.000 0.000
#> GSM1167105     2  0.0000      0.870 0.000 1.000
#> GSM1167106     1  0.0000      0.900 1.000 0.000
#> GSM1167107     2  0.0000      0.870 0.000 1.000
#> GSM1167108     1  0.1633      0.898 0.976 0.024
#> GSM1167109     2  0.0000      0.870 0.000 1.000
#> GSM1167110     1  0.6887      0.807 0.816 0.184
#> GSM1167111     2  0.0000      0.870 0.000 1.000
#> GSM1167112     2  0.0000      0.870 0.000 1.000
#> GSM1167113     1  0.6801      0.810 0.820 0.180
#> GSM1167114     1  0.9491      0.476 0.632 0.368
#> GSM1167115     2  0.0000      0.870 0.000 1.000
#> GSM1167116     1  0.7139      0.795 0.804 0.196
#> GSM1167117     2  0.0000      0.870 0.000 1.000
#> GSM1167118     1  0.1843      0.897 0.972 0.028
#> GSM1167119     1  0.0000      0.900 1.000 0.000
#> GSM1167120     2  0.9170      0.490 0.332 0.668
#> GSM1167121     2  0.9866      0.262 0.432 0.568
#> GSM1167123     1  0.0000      0.900 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1167072     1  0.5803     0.7479 0.760 0.028 0.212
#> GSM1167073     1  0.6012     0.7404 0.748 0.032 0.220
#> GSM1167074     2  0.4654     0.6537 0.000 0.792 0.208
#> GSM1167075     1  0.5560     0.4455 0.700 0.000 0.300
#> GSM1167076     3  0.6111     0.2994 0.396 0.000 0.604
#> GSM1167077     1  0.9058     0.4002 0.544 0.180 0.276
#> GSM1167078     1  0.7187     0.6856 0.692 0.076 0.232
#> GSM1167079     2  0.0000     0.8166 0.000 1.000 0.000
#> GSM1167080     1  0.0237     0.8116 0.996 0.000 0.004
#> GSM1167081     2  0.0000     0.8166 0.000 1.000 0.000
#> GSM1167082     1  0.2878     0.8049 0.904 0.000 0.096
#> GSM1167083     2  0.3619     0.7269 0.000 0.864 0.136
#> GSM1167084     1  0.0237     0.8116 0.996 0.000 0.004
#> GSM1167085     3  0.6521    -0.0222 0.004 0.496 0.500
#> GSM1167086     1  0.0424     0.8103 0.992 0.000 0.008
#> GSM1167087     1  0.0000     0.8129 1.000 0.000 0.000
#> GSM1167088     1  0.0424     0.8103 0.992 0.000 0.008
#> GSM1167089     3  0.8397     0.5445 0.116 0.296 0.588
#> GSM1167090     1  0.6887     0.7081 0.704 0.060 0.236
#> GSM1167091     1  0.1031     0.8136 0.976 0.000 0.024
#> GSM1167092     1  0.7112     0.6882 0.680 0.060 0.260
#> GSM1167093     2  0.6235     0.1291 0.000 0.564 0.436
#> GSM1167094     1  0.3715     0.7949 0.868 0.004 0.128
#> GSM1167095     2  0.4121     0.7295 0.000 0.832 0.168
#> GSM1167096     1  0.3192     0.8014 0.888 0.000 0.112
#> GSM1167097     1  0.0237     0.8116 0.996 0.000 0.004
#> GSM1167098     3  0.8397     0.5445 0.116 0.296 0.588
#> GSM1167099     1  0.0237     0.8116 0.996 0.000 0.004
#> GSM1167100     2  0.7710     0.3820 0.100 0.660 0.240
#> GSM1167101     2  0.4654     0.6537 0.000 0.792 0.208
#> GSM1167122     3  0.4999     0.5680 0.152 0.028 0.820
#> GSM1167102     2  0.1163     0.8109 0.000 0.972 0.028
#> GSM1167103     2  0.0000     0.8166 0.000 1.000 0.000
#> GSM1167104     1  0.0237     0.8116 0.996 0.000 0.004
#> GSM1167105     2  0.1163     0.8109 0.000 0.972 0.028
#> GSM1167106     1  0.0000     0.8129 1.000 0.000 0.000
#> GSM1167107     2  0.0000     0.8166 0.000 1.000 0.000
#> GSM1167108     1  0.2878     0.8049 0.904 0.000 0.096
#> GSM1167109     2  0.0000     0.8166 0.000 1.000 0.000
#> GSM1167110     1  0.7076     0.6883 0.684 0.060 0.256
#> GSM1167111     2  0.3879     0.7404 0.000 0.848 0.152
#> GSM1167112     2  0.0592     0.8151 0.000 0.988 0.012
#> GSM1167113     1  0.7040     0.6912 0.688 0.060 0.252
#> GSM1167114     1  0.8427     0.5157 0.620 0.172 0.208
#> GSM1167115     2  0.0237     0.8163 0.000 0.996 0.004
#> GSM1167116     1  0.7146     0.6842 0.676 0.060 0.264
#> GSM1167117     2  0.3879     0.7404 0.000 0.848 0.152
#> GSM1167118     1  0.1529     0.8134 0.960 0.000 0.040
#> GSM1167119     1  0.0000     0.8129 1.000 0.000 0.000
#> GSM1167120     2  0.8995     0.0497 0.320 0.528 0.152
#> GSM1167121     3  0.7924     0.5039 0.084 0.304 0.612
#> GSM1167123     3  0.6111     0.2994 0.396 0.000 0.604

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1167072     1  0.5972     0.6367 0.696 0.012 0.220 0.072
#> GSM1167073     1  0.6129     0.6255 0.676 0.012 0.240 0.072
#> GSM1167074     2  0.5294    -0.0838 0.000 0.508 0.484 0.008
#> GSM1167075     1  0.7008    -0.1777 0.448 0.000 0.116 0.436
#> GSM1167076     4  0.6351     1.0000 0.104 0.000 0.268 0.628
#> GSM1167077     1  0.8039     0.3858 0.488 0.068 0.356 0.088
#> GSM1167078     1  0.6548     0.5978 0.644 0.020 0.260 0.076
#> GSM1167079     2  0.0707     0.7390 0.000 0.980 0.000 0.020
#> GSM1167080     1  0.2530     0.6845 0.888 0.000 0.000 0.112
#> GSM1167081     2  0.0921     0.7384 0.000 0.972 0.000 0.028
#> GSM1167082     1  0.3570     0.6930 0.860 0.000 0.092 0.048
#> GSM1167083     2  0.5150     0.1602 0.000 0.596 0.396 0.008
#> GSM1167084     1  0.2530     0.6845 0.888 0.000 0.000 0.112
#> GSM1167085     3  0.3668     0.6002 0.000 0.188 0.808 0.004
#> GSM1167086     1  0.2714     0.6843 0.884 0.000 0.004 0.112
#> GSM1167087     1  0.2593     0.6913 0.892 0.000 0.004 0.104
#> GSM1167088     1  0.2714     0.6843 0.884 0.000 0.004 0.112
#> GSM1167089     3  0.1022     0.5892 0.000 0.000 0.968 0.032
#> GSM1167090     1  0.6735     0.5787 0.608 0.012 0.288 0.092
#> GSM1167091     1  0.3266     0.6943 0.868 0.000 0.024 0.108
#> GSM1167092     1  0.6879     0.5824 0.608 0.012 0.268 0.112
#> GSM1167093     3  0.4313     0.5459 0.000 0.260 0.736 0.004
#> GSM1167094     1  0.4318     0.6844 0.816 0.000 0.116 0.068
#> GSM1167095     2  0.4617     0.6554 0.000 0.764 0.032 0.204
#> GSM1167096     1  0.4010     0.6892 0.836 0.000 0.100 0.064
#> GSM1167097     1  0.2408     0.6894 0.896 0.000 0.000 0.104
#> GSM1167098     3  0.1022     0.5892 0.000 0.000 0.968 0.032
#> GSM1167099     1  0.2408     0.6894 0.896 0.000 0.000 0.104
#> GSM1167100     3  0.7642     0.2710 0.108 0.380 0.484 0.028
#> GSM1167101     2  0.5294    -0.0838 0.000 0.508 0.484 0.008
#> GSM1167122     3  0.4955    -0.3618 0.000 0.000 0.556 0.444
#> GSM1167102     2  0.3105     0.7140 0.000 0.856 0.004 0.140
#> GSM1167103     2  0.0779     0.7362 0.000 0.980 0.016 0.004
#> GSM1167104     1  0.2408     0.6894 0.896 0.000 0.000 0.104
#> GSM1167105     2  0.3495     0.7164 0.000 0.844 0.016 0.140
#> GSM1167106     1  0.2197     0.6970 0.916 0.000 0.004 0.080
#> GSM1167107     2  0.0707     0.7357 0.000 0.980 0.020 0.000
#> GSM1167108     1  0.3570     0.6930 0.860 0.000 0.092 0.048
#> GSM1167109     2  0.0592     0.7370 0.000 0.984 0.016 0.000
#> GSM1167110     1  0.6781     0.5607 0.592 0.012 0.308 0.088
#> GSM1167111     2  0.4838     0.6381 0.000 0.724 0.024 0.252
#> GSM1167112     2  0.1520     0.7380 0.000 0.956 0.020 0.024
#> GSM1167113     1  0.6725     0.5645 0.596 0.012 0.308 0.084
#> GSM1167114     1  0.7034     0.5078 0.608 0.052 0.056 0.284
#> GSM1167115     2  0.0895     0.7372 0.000 0.976 0.020 0.004
#> GSM1167116     1  0.6903     0.5774 0.604 0.012 0.272 0.112
#> GSM1167117     2  0.4838     0.6381 0.000 0.724 0.024 0.252
#> GSM1167118     1  0.1733     0.7053 0.948 0.000 0.024 0.028
#> GSM1167119     1  0.2593     0.6913 0.892 0.000 0.004 0.104
#> GSM1167120     2  0.9373     0.0868 0.296 0.380 0.108 0.216
#> GSM1167121     3  0.0817     0.5825 0.000 0.000 0.976 0.024
#> GSM1167123     4  0.6351     1.0000 0.104 0.000 0.268 0.628

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1167072     4  0.2900     0.7340 0.092 0.012 0.020 0.876 0.000
#> GSM1167073     4  0.2526     0.7360 0.080 0.012 0.012 0.896 0.000
#> GSM1167074     2  0.4658     0.3478 0.000 0.504 0.000 0.012 0.484
#> GSM1167075     3  0.4645     0.1433 0.424 0.004 0.564 0.008 0.000
#> GSM1167076     3  0.0727     0.6569 0.012 0.004 0.980 0.004 0.000
#> GSM1167077     4  0.3578     0.5842 0.000 0.132 0.000 0.820 0.048
#> GSM1167078     4  0.4713     0.5943 0.204 0.036 0.012 0.740 0.008
#> GSM1167079     5  0.0671     0.8189 0.000 0.016 0.004 0.000 0.980
#> GSM1167080     1  0.0880     0.9324 0.968 0.000 0.032 0.000 0.000
#> GSM1167081     5  0.1106     0.8179 0.000 0.024 0.012 0.000 0.964
#> GSM1167082     4  0.5524     0.5675 0.320 0.012 0.060 0.608 0.000
#> GSM1167083     5  0.4730    -0.2224 0.000 0.416 0.004 0.012 0.568
#> GSM1167084     1  0.0703     0.9349 0.976 0.000 0.024 0.000 0.000
#> GSM1167085     2  0.5331     0.6338 0.000 0.692 0.008 0.124 0.176
#> GSM1167086     1  0.0865     0.9343 0.972 0.004 0.024 0.000 0.000
#> GSM1167087     1  0.1732     0.8861 0.920 0.000 0.000 0.080 0.000
#> GSM1167088     1  0.1041     0.9304 0.964 0.004 0.032 0.000 0.000
#> GSM1167089     2  0.5010     0.5296 0.000 0.688 0.088 0.224 0.000
#> GSM1167090     4  0.1405     0.7257 0.008 0.016 0.020 0.956 0.000
#> GSM1167091     1  0.2927     0.8306 0.872 0.000 0.060 0.068 0.000
#> GSM1167092     4  0.1179     0.7287 0.016 0.016 0.004 0.964 0.000
#> GSM1167093     2  0.4973     0.6262 0.000 0.692 0.004 0.068 0.236
#> GSM1167094     4  0.4426     0.6759 0.196 0.004 0.052 0.748 0.000
#> GSM1167095     5  0.4484     0.7114 0.000 0.192 0.012 0.044 0.752
#> GSM1167096     4  0.5028     0.6518 0.220 0.012 0.064 0.704 0.000
#> GSM1167097     1  0.0000     0.9371 1.000 0.000 0.000 0.000 0.000
#> GSM1167098     2  0.5010     0.5296 0.000 0.688 0.088 0.224 0.000
#> GSM1167099     1  0.0162     0.9372 0.996 0.000 0.004 0.000 0.000
#> GSM1167100     2  0.6726     0.4619 0.000 0.388 0.000 0.252 0.360
#> GSM1167101     2  0.4658     0.3478 0.000 0.504 0.000 0.012 0.484
#> GSM1167122     3  0.6035     0.2062 0.000 0.204 0.580 0.216 0.000
#> GSM1167102     5  0.2881     0.7903 0.000 0.124 0.004 0.012 0.860
#> GSM1167103     5  0.1041     0.8122 0.000 0.032 0.004 0.000 0.964
#> GSM1167104     1  0.0000     0.9371 1.000 0.000 0.000 0.000 0.000
#> GSM1167105     5  0.2929     0.7944 0.000 0.128 0.004 0.012 0.856
#> GSM1167106     1  0.1197     0.9129 0.952 0.000 0.000 0.048 0.000
#> GSM1167107     5  0.0880     0.8133 0.000 0.032 0.000 0.000 0.968
#> GSM1167108     4  0.5564     0.5705 0.316 0.012 0.064 0.608 0.000
#> GSM1167109     5  0.0794     0.8153 0.000 0.028 0.000 0.000 0.972
#> GSM1167110     4  0.1310     0.7180 0.000 0.024 0.020 0.956 0.000
#> GSM1167111     5  0.4296     0.6973 0.000 0.256 0.012 0.012 0.720
#> GSM1167112     5  0.1605     0.8163 0.000 0.040 0.004 0.012 0.944
#> GSM1167113     4  0.1471     0.7202 0.004 0.024 0.020 0.952 0.000
#> GSM1167114     4  0.4879     0.5689 0.004 0.256 0.004 0.692 0.044
#> GSM1167115     5  0.1041     0.8145 0.000 0.032 0.000 0.004 0.964
#> GSM1167116     4  0.0807     0.7281 0.012 0.012 0.000 0.976 0.000
#> GSM1167117     5  0.4296     0.6973 0.000 0.256 0.012 0.012 0.720
#> GSM1167118     4  0.4822     0.4107 0.416 0.016 0.004 0.564 0.000
#> GSM1167119     1  0.1732     0.8861 0.920 0.000 0.000 0.080 0.000
#> GSM1167120     4  0.6140     0.0628 0.000 0.136 0.000 0.492 0.372
#> GSM1167121     2  0.4817     0.5259 0.000 0.680 0.056 0.264 0.000
#> GSM1167123     3  0.0727     0.6569 0.012 0.004 0.980 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1167072     4  0.2518     0.7332 0.068 0.020 0.016 0.892 0.000 0.004
#> GSM1167073     4  0.2086     0.7334 0.064 0.012 0.008 0.912 0.000 0.004
#> GSM1167074     5  0.5095     0.0244 0.000 0.420 0.000 0.000 0.500 0.080
#> GSM1167075     3  0.6731     0.3374 0.228 0.052 0.480 0.004 0.000 0.236
#> GSM1167076     3  0.0291     0.6641 0.004 0.004 0.992 0.000 0.000 0.000
#> GSM1167077     4  0.3630     0.5853 0.000 0.120 0.000 0.812 0.044 0.024
#> GSM1167078     4  0.5035     0.5892 0.104 0.044 0.012 0.728 0.000 0.112
#> GSM1167079     5  0.4000    -0.1379 0.000 0.048 0.000 0.000 0.724 0.228
#> GSM1167080     1  0.2484     0.8467 0.896 0.044 0.024 0.000 0.000 0.036
#> GSM1167081     5  0.4332    -0.4000 0.000 0.052 0.000 0.000 0.672 0.276
#> GSM1167082     4  0.6521     0.5698 0.216 0.116 0.032 0.580 0.000 0.056
#> GSM1167083     5  0.5208     0.2038 0.000 0.336 0.000 0.000 0.556 0.108
#> GSM1167084     1  0.2174     0.8548 0.912 0.036 0.016 0.000 0.000 0.036
#> GSM1167085     2  0.4974     0.6919 0.000 0.688 0.000 0.116 0.176 0.020
#> GSM1167086     1  0.3355     0.8115 0.828 0.040 0.016 0.000 0.000 0.116
#> GSM1167087     1  0.2454     0.8243 0.884 0.000 0.008 0.088 0.000 0.020
#> GSM1167088     1  0.3651     0.7982 0.812 0.048 0.024 0.000 0.000 0.116
#> GSM1167089     2  0.4410     0.7622 0.000 0.716 0.052 0.216 0.000 0.016
#> GSM1167090     4  0.2018     0.7230 0.004 0.028 0.016 0.924 0.000 0.028
#> GSM1167091     1  0.4796     0.6740 0.756 0.112 0.036 0.068 0.000 0.028
#> GSM1167092     4  0.1294     0.7254 0.008 0.024 0.004 0.956 0.000 0.008
#> GSM1167093     2  0.4436     0.5702 0.000 0.704 0.000 0.040 0.236 0.020
#> GSM1167094     4  0.5095     0.6780 0.092 0.112 0.028 0.732 0.000 0.036
#> GSM1167095     6  0.5097     0.8563 0.000 0.044 0.000 0.016 0.468 0.472
#> GSM1167096     4  0.5862     0.6419 0.116 0.120 0.032 0.672 0.000 0.060
#> GSM1167097     1  0.1065     0.8657 0.964 0.000 0.008 0.008 0.000 0.020
#> GSM1167098     2  0.4410     0.7622 0.000 0.716 0.052 0.216 0.000 0.016
#> GSM1167099     1  0.0520     0.8711 0.984 0.008 0.008 0.000 0.000 0.000
#> GSM1167100     5  0.7016    -0.2974 0.000 0.320 0.000 0.256 0.360 0.064
#> GSM1167101     5  0.5095     0.0244 0.000 0.420 0.000 0.000 0.500 0.080
#> GSM1167122     3  0.5850     0.1469 0.000 0.220 0.560 0.204 0.000 0.016
#> GSM1167102     5  0.3738    -0.3970 0.000 0.004 0.000 0.004 0.680 0.312
#> GSM1167103     5  0.1049     0.4293 0.000 0.008 0.000 0.000 0.960 0.032
#> GSM1167104     1  0.0260     0.8704 0.992 0.008 0.000 0.000 0.000 0.000
#> GSM1167105     5  0.2624     0.1595 0.000 0.004 0.000 0.004 0.844 0.148
#> GSM1167106     1  0.1333     0.8593 0.944 0.008 0.000 0.048 0.000 0.000
#> GSM1167107     5  0.0146     0.4352 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM1167108     4  0.6534     0.5707 0.212 0.120 0.032 0.580 0.000 0.056
#> GSM1167109     5  0.0363     0.4319 0.000 0.000 0.000 0.000 0.988 0.012
#> GSM1167110     4  0.1088     0.7150 0.000 0.024 0.016 0.960 0.000 0.000
#> GSM1167111     6  0.3851     0.9305 0.000 0.000 0.000 0.000 0.460 0.540
#> GSM1167112     5  0.0862     0.4200 0.000 0.008 0.000 0.004 0.972 0.016
#> GSM1167113     4  0.1003     0.7158 0.000 0.020 0.016 0.964 0.000 0.000
#> GSM1167114     4  0.4231     0.5568 0.000 0.012 0.000 0.616 0.008 0.364
#> GSM1167115     5  0.0260     0.4336 0.000 0.008 0.000 0.000 0.992 0.000
#> GSM1167116     4  0.1065     0.7268 0.008 0.020 0.000 0.964 0.000 0.008
#> GSM1167117     6  0.3851     0.9305 0.000 0.000 0.000 0.000 0.460 0.540
#> GSM1167118     4  0.5256     0.3765 0.400 0.004 0.008 0.524 0.000 0.064
#> GSM1167119     1  0.2454     0.8243 0.884 0.000 0.008 0.088 0.000 0.020
#> GSM1167120     4  0.6439    -0.0925 0.000 0.028 0.000 0.456 0.288 0.228
#> GSM1167121     2  0.4172     0.7448 0.000 0.708 0.024 0.252 0.000 0.016
#> GSM1167123     3  0.0291     0.6641 0.004 0.004 0.992 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> MAD:hclust 47           0.3214 2
#> MAD:hclust 44           0.2474 3
#> MAD:hclust 44           0.0917 4
#> MAD:hclust 44           0.1101 5
#> MAD:hclust 35           0.6769 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.959       0.981         0.4891 0.517   0.517
#> 3 3 0.679           0.645       0.859         0.3332 0.792   0.609
#> 4 4 0.591           0.572       0.729         0.1268 0.865   0.650
#> 5 5 0.628           0.547       0.724         0.0677 0.916   0.734
#> 6 6 0.707           0.511       0.692         0.0490 0.894   0.595

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1167072     1   0.000      0.968 1.000 0.000
#> GSM1167073     1   0.000      0.968 1.000 0.000
#> GSM1167074     2   0.000      1.000 0.000 1.000
#> GSM1167075     1   0.000      0.968 1.000 0.000
#> GSM1167076     1   0.000      0.968 1.000 0.000
#> GSM1167077     2   0.000      1.000 0.000 1.000
#> GSM1167078     1   0.141      0.959 0.980 0.020
#> GSM1167079     2   0.000      1.000 0.000 1.000
#> GSM1167080     1   0.000      0.968 1.000 0.000
#> GSM1167081     2   0.000      1.000 0.000 1.000
#> GSM1167082     1   0.000      0.968 1.000 0.000
#> GSM1167083     2   0.000      1.000 0.000 1.000
#> GSM1167084     1   0.000      0.968 1.000 0.000
#> GSM1167085     2   0.000      1.000 0.000 1.000
#> GSM1167086     1   0.000      0.968 1.000 0.000
#> GSM1167087     1   0.000      0.968 1.000 0.000
#> GSM1167088     1   0.000      0.968 1.000 0.000
#> GSM1167089     1   0.775      0.726 0.772 0.228
#> GSM1167090     1   0.141      0.959 0.980 0.020
#> GSM1167091     1   0.000      0.968 1.000 0.000
#> GSM1167092     1   0.000      0.968 1.000 0.000
#> GSM1167093     2   0.000      1.000 0.000 1.000
#> GSM1167094     1   0.000      0.968 1.000 0.000
#> GSM1167095     2   0.000      1.000 0.000 1.000
#> GSM1167096     1   0.000      0.968 1.000 0.000
#> GSM1167097     1   0.000      0.968 1.000 0.000
#> GSM1167098     1   0.775      0.726 0.772 0.228
#> GSM1167099     1   0.000      0.968 1.000 0.000
#> GSM1167100     2   0.000      1.000 0.000 1.000
#> GSM1167101     2   0.000      1.000 0.000 1.000
#> GSM1167122     1   0.141      0.959 0.980 0.020
#> GSM1167102     2   0.000      1.000 0.000 1.000
#> GSM1167103     2   0.000      1.000 0.000 1.000
#> GSM1167104     1   0.000      0.968 1.000 0.000
#> GSM1167105     2   0.000      1.000 0.000 1.000
#> GSM1167106     1   0.000      0.968 1.000 0.000
#> GSM1167107     2   0.000      1.000 0.000 1.000
#> GSM1167108     1   0.000      0.968 1.000 0.000
#> GSM1167109     2   0.000      1.000 0.000 1.000
#> GSM1167110     1   0.141      0.959 0.980 0.020
#> GSM1167111     2   0.000      1.000 0.000 1.000
#> GSM1167112     2   0.000      1.000 0.000 1.000
#> GSM1167113     1   0.141      0.959 0.980 0.020
#> GSM1167114     1   0.204      0.950 0.968 0.032
#> GSM1167115     2   0.000      1.000 0.000 1.000
#> GSM1167116     1   0.141      0.959 0.980 0.020
#> GSM1167117     2   0.000      1.000 0.000 1.000
#> GSM1167118     1   0.000      0.968 1.000 0.000
#> GSM1167119     1   0.000      0.968 1.000 0.000
#> GSM1167120     2   0.000      1.000 0.000 1.000
#> GSM1167121     1   0.961      0.425 0.616 0.384
#> GSM1167123     1   0.000      0.968 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1167072     1  0.0592    0.84848 0.988 0.000 0.012
#> GSM1167073     1  0.0592    0.84850 0.988 0.000 0.012
#> GSM1167074     2  0.4931    0.73650 0.000 0.768 0.232
#> GSM1167075     1  0.2711    0.78745 0.912 0.000 0.088
#> GSM1167076     3  0.6309    0.00933 0.496 0.000 0.504
#> GSM1167077     3  0.6309   -0.37660 0.000 0.500 0.500
#> GSM1167078     1  0.6168    0.14047 0.588 0.000 0.412
#> GSM1167079     2  0.0000    0.88057 0.000 1.000 0.000
#> GSM1167080     1  0.0592    0.85118 0.988 0.000 0.012
#> GSM1167081     2  0.0237    0.88007 0.000 0.996 0.004
#> GSM1167082     1  0.0000    0.85404 1.000 0.000 0.000
#> GSM1167083     2  0.4887    0.74040 0.000 0.772 0.228
#> GSM1167084     1  0.0592    0.85118 0.988 0.000 0.012
#> GSM1167085     2  0.6252    0.42441 0.000 0.556 0.444
#> GSM1167086     1  0.0592    0.85118 0.988 0.000 0.012
#> GSM1167087     1  0.0000    0.85404 1.000 0.000 0.000
#> GSM1167088     1  0.0592    0.85118 0.988 0.000 0.012
#> GSM1167089     3  0.0237    0.62663 0.000 0.004 0.996
#> GSM1167090     3  0.6204    0.30178 0.424 0.000 0.576
#> GSM1167091     1  0.0592    0.85118 0.988 0.000 0.012
#> GSM1167092     3  0.6095    0.36941 0.392 0.000 0.608
#> GSM1167093     3  0.5560    0.15978 0.000 0.300 0.700
#> GSM1167094     1  0.5254    0.50956 0.736 0.000 0.264
#> GSM1167095     2  0.0237    0.88007 0.000 0.996 0.004
#> GSM1167096     1  0.6095    0.19850 0.608 0.000 0.392
#> GSM1167097     1  0.0592    0.85118 0.988 0.000 0.012
#> GSM1167098     3  0.0424    0.62865 0.008 0.000 0.992
#> GSM1167099     1  0.0000    0.85404 1.000 0.000 0.000
#> GSM1167100     2  0.6095    0.52383 0.000 0.608 0.392
#> GSM1167101     2  0.4887    0.74040 0.000 0.772 0.228
#> GSM1167122     3  0.0237    0.62663 0.000 0.004 0.996
#> GSM1167102     2  0.0237    0.88007 0.000 0.996 0.004
#> GSM1167103     2  0.0000    0.88057 0.000 1.000 0.000
#> GSM1167104     1  0.0000    0.85404 1.000 0.000 0.000
#> GSM1167105     2  0.0237    0.88064 0.000 0.996 0.004
#> GSM1167106     1  0.0000    0.85404 1.000 0.000 0.000
#> GSM1167107     2  0.0237    0.88064 0.000 0.996 0.004
#> GSM1167108     1  0.0000    0.85404 1.000 0.000 0.000
#> GSM1167109     2  0.0000    0.88057 0.000 1.000 0.000
#> GSM1167110     3  0.5254    0.53331 0.264 0.000 0.736
#> GSM1167111     2  0.0237    0.88007 0.000 0.996 0.004
#> GSM1167112     2  0.0237    0.88064 0.000 0.996 0.004
#> GSM1167113     3  0.6140    0.34934 0.404 0.000 0.596
#> GSM1167114     1  0.9824   -0.20078 0.404 0.248 0.348
#> GSM1167115     2  0.0237    0.88064 0.000 0.996 0.004
#> GSM1167116     1  0.6295   -0.06893 0.528 0.000 0.472
#> GSM1167117     2  0.0237    0.88007 0.000 0.996 0.004
#> GSM1167118     1  0.0000    0.85404 1.000 0.000 0.000
#> GSM1167119     1  0.0000    0.85404 1.000 0.000 0.000
#> GSM1167120     2  0.5797    0.54473 0.008 0.712 0.280
#> GSM1167121     3  0.0848    0.62587 0.008 0.008 0.984
#> GSM1167123     3  0.5835    0.39906 0.340 0.000 0.660

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1167072     1  0.3852     0.8125 0.800 0.000 0.008 0.192
#> GSM1167073     1  0.2944     0.8495 0.868 0.000 0.004 0.128
#> GSM1167074     2  0.4614     0.6490 0.000 0.792 0.144 0.064
#> GSM1167075     1  0.4869     0.7337 0.780 0.000 0.088 0.132
#> GSM1167076     3  0.7155     0.2816 0.144 0.000 0.504 0.352
#> GSM1167077     3  0.7310    -0.2009 0.000 0.408 0.440 0.152
#> GSM1167078     3  0.7811    -0.0356 0.336 0.000 0.404 0.260
#> GSM1167079     2  0.3726     0.6362 0.000 0.788 0.000 0.212
#> GSM1167080     1  0.1474     0.8750 0.948 0.000 0.000 0.052
#> GSM1167081     2  0.4356     0.5753 0.000 0.708 0.000 0.292
#> GSM1167082     1  0.2469     0.8728 0.892 0.000 0.000 0.108
#> GSM1167083     2  0.4227     0.6643 0.000 0.820 0.120 0.060
#> GSM1167084     1  0.1637     0.8749 0.940 0.000 0.000 0.060
#> GSM1167085     2  0.6123     0.4426 0.000 0.600 0.336 0.064
#> GSM1167086     1  0.1557     0.8760 0.944 0.000 0.000 0.056
#> GSM1167087     1  0.2921     0.8516 0.860 0.000 0.000 0.140
#> GSM1167088     1  0.1557     0.8760 0.944 0.000 0.000 0.056
#> GSM1167089     3  0.4040     0.3135 0.000 0.000 0.752 0.248
#> GSM1167090     3  0.6220     0.2316 0.104 0.000 0.648 0.248
#> GSM1167091     1  0.2216     0.8782 0.908 0.000 0.000 0.092
#> GSM1167092     3  0.6192     0.2341 0.104 0.000 0.652 0.244
#> GSM1167093     2  0.7297     0.2459 0.000 0.456 0.392 0.152
#> GSM1167094     3  0.7824     0.0844 0.336 0.000 0.400 0.264
#> GSM1167095     2  0.4837     0.5331 0.000 0.648 0.004 0.348
#> GSM1167096     3  0.7661     0.1331 0.272 0.000 0.464 0.264
#> GSM1167097     1  0.1716     0.8760 0.936 0.000 0.000 0.064
#> GSM1167098     3  0.0188     0.2900 0.000 0.000 0.996 0.004
#> GSM1167099     1  0.0336     0.8844 0.992 0.000 0.000 0.008
#> GSM1167100     2  0.5993     0.4745 0.000 0.628 0.308 0.064
#> GSM1167101     2  0.4462     0.6563 0.000 0.804 0.132 0.064
#> GSM1167122     3  0.4193     0.3177 0.000 0.000 0.732 0.268
#> GSM1167102     2  0.4431     0.5779 0.000 0.696 0.000 0.304
#> GSM1167103     2  0.0000     0.7227 0.000 1.000 0.000 0.000
#> GSM1167104     1  0.0336     0.8844 0.992 0.000 0.000 0.008
#> GSM1167105     2  0.1302     0.7183 0.000 0.956 0.000 0.044
#> GSM1167106     1  0.1389     0.8810 0.952 0.000 0.000 0.048
#> GSM1167107     2  0.0000     0.7227 0.000 1.000 0.000 0.000
#> GSM1167108     1  0.3610     0.8088 0.800 0.000 0.000 0.200
#> GSM1167109     2  0.0592     0.7220 0.000 0.984 0.000 0.016
#> GSM1167110     3  0.5756     0.2457 0.084 0.000 0.692 0.224
#> GSM1167111     2  0.4661     0.5373 0.000 0.652 0.000 0.348
#> GSM1167112     2  0.1557     0.7147 0.000 0.944 0.000 0.056
#> GSM1167113     3  0.6164     0.2359 0.104 0.000 0.656 0.240
#> GSM1167114     4  0.7462     0.7770 0.076 0.056 0.292 0.576
#> GSM1167115     2  0.0000     0.7227 0.000 1.000 0.000 0.000
#> GSM1167116     3  0.7015     0.1399 0.168 0.000 0.568 0.264
#> GSM1167117     2  0.4661     0.5373 0.000 0.652 0.000 0.348
#> GSM1167118     1  0.3791     0.7722 0.796 0.000 0.004 0.200
#> GSM1167119     1  0.2921     0.8516 0.860 0.000 0.000 0.140
#> GSM1167120     4  0.6746     0.7853 0.000 0.108 0.340 0.552
#> GSM1167121     3  0.2281     0.3116 0.000 0.000 0.904 0.096
#> GSM1167123     3  0.6831     0.2944 0.112 0.000 0.536 0.352

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1167072     1  0.6519      0.611 0.580 0.000 0.064 0.276 0.080
#> GSM1167073     1  0.5250      0.686 0.668 0.000 0.008 0.252 0.072
#> GSM1167074     2  0.4912      0.504 0.000 0.688 0.048 0.008 0.256
#> GSM1167075     1  0.5635      0.534 0.648 0.000 0.248 0.016 0.088
#> GSM1167076     3  0.2171      0.827 0.024 0.000 0.912 0.064 0.000
#> GSM1167077     4  0.5145      0.542 0.000 0.176 0.044 0.728 0.052
#> GSM1167078     4  0.1960      0.737 0.048 0.000 0.020 0.928 0.004
#> GSM1167079     2  0.4252     -0.550 0.000 0.652 0.008 0.000 0.340
#> GSM1167080     1  0.3400      0.717 0.848 0.000 0.076 0.004 0.072
#> GSM1167081     2  0.4557     -0.868 0.000 0.516 0.008 0.000 0.476
#> GSM1167082     1  0.5642      0.734 0.712 0.000 0.064 0.116 0.108
#> GSM1167083     2  0.4375      0.508 0.000 0.728 0.032 0.004 0.236
#> GSM1167084     1  0.3338      0.718 0.852 0.000 0.076 0.004 0.068
#> GSM1167085     2  0.7147      0.439 0.000 0.528 0.064 0.156 0.252
#> GSM1167086     1  0.3460      0.720 0.844 0.000 0.076 0.004 0.076
#> GSM1167087     1  0.5538      0.729 0.696 0.000 0.024 0.152 0.128
#> GSM1167088     1  0.3460      0.716 0.844 0.000 0.076 0.004 0.076
#> GSM1167089     3  0.5023      0.727 0.000 0.004 0.708 0.096 0.192
#> GSM1167090     4  0.0740      0.751 0.004 0.000 0.008 0.980 0.008
#> GSM1167091     1  0.6159      0.743 0.664 0.000 0.100 0.076 0.160
#> GSM1167092     4  0.0740      0.751 0.008 0.000 0.008 0.980 0.004
#> GSM1167093     2  0.7584      0.372 0.000 0.492 0.112 0.144 0.252
#> GSM1167094     4  0.5926      0.524 0.140 0.000 0.060 0.684 0.116
#> GSM1167095     5  0.4791      0.993 0.000 0.460 0.004 0.012 0.524
#> GSM1167096     4  0.5946      0.526 0.136 0.000 0.064 0.684 0.116
#> GSM1167097     1  0.3354      0.726 0.844 0.000 0.068 0.000 0.088
#> GSM1167098     4  0.5268      0.460 0.000 0.000 0.220 0.668 0.112
#> GSM1167099     1  0.0162      0.753 0.996 0.000 0.000 0.000 0.004
#> GSM1167100     2  0.7147      0.439 0.000 0.528 0.064 0.156 0.252
#> GSM1167101     2  0.4508      0.507 0.000 0.708 0.032 0.004 0.256
#> GSM1167122     3  0.3593      0.815 0.000 0.000 0.828 0.088 0.084
#> GSM1167102     2  0.4555     -0.878 0.000 0.520 0.000 0.008 0.472
#> GSM1167103     2  0.0451      0.422 0.000 0.988 0.004 0.000 0.008
#> GSM1167104     1  0.0162      0.753 0.996 0.000 0.000 0.000 0.004
#> GSM1167105     2  0.1484      0.393 0.000 0.944 0.000 0.008 0.048
#> GSM1167106     1  0.3517      0.760 0.832 0.000 0.000 0.100 0.068
#> GSM1167107     2  0.0000      0.429 0.000 1.000 0.000 0.000 0.000
#> GSM1167108     1  0.6459      0.673 0.624 0.000 0.064 0.196 0.116
#> GSM1167109     2  0.3607     -0.238 0.000 0.752 0.004 0.000 0.244
#> GSM1167110     4  0.1124      0.745 0.004 0.000 0.036 0.960 0.000
#> GSM1167111     5  0.4644      0.997 0.000 0.460 0.000 0.012 0.528
#> GSM1167112     2  0.1740      0.379 0.000 0.932 0.000 0.012 0.056
#> GSM1167113     4  0.0486      0.752 0.004 0.000 0.004 0.988 0.004
#> GSM1167114     4  0.4635      0.572 0.016 0.000 0.008 0.656 0.320
#> GSM1167115     2  0.0000      0.429 0.000 1.000 0.000 0.000 0.000
#> GSM1167116     4  0.0798      0.753 0.016 0.000 0.000 0.976 0.008
#> GSM1167117     5  0.4644      0.997 0.000 0.460 0.000 0.012 0.528
#> GSM1167118     1  0.5362      0.704 0.684 0.000 0.008 0.196 0.112
#> GSM1167119     1  0.5499      0.732 0.700 0.000 0.024 0.148 0.128
#> GSM1167120     4  0.3968      0.591 0.000 0.004 0.004 0.716 0.276
#> GSM1167121     4  0.6464      0.269 0.000 0.016 0.240 0.564 0.180
#> GSM1167123     3  0.2079      0.829 0.020 0.000 0.916 0.064 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1167072     6  0.6064      0.485 0.268 0.000 0.008 0.212 0.004 0.508
#> GSM1167073     1  0.6406     -0.463 0.404 0.008 0.008 0.168 0.008 0.404
#> GSM1167074     2  0.1749      0.604 0.000 0.932 0.024 0.000 0.036 0.008
#> GSM1167075     1  0.5104      0.444 0.712 0.012 0.156 0.016 0.008 0.096
#> GSM1167076     3  0.2510      0.865 0.024 0.000 0.892 0.024 0.000 0.060
#> GSM1167077     4  0.3406      0.707 0.000 0.136 0.004 0.816 0.004 0.040
#> GSM1167078     4  0.3040      0.748 0.032 0.012 0.012 0.864 0.000 0.080
#> GSM1167079     5  0.5299      0.608 0.000 0.120 0.036 0.000 0.668 0.176
#> GSM1167080     1  0.0436      0.604 0.988 0.000 0.004 0.004 0.000 0.004
#> GSM1167081     5  0.3629      0.727 0.000 0.076 0.024 0.000 0.820 0.080
#> GSM1167082     6  0.4821      0.576 0.336 0.000 0.004 0.060 0.000 0.600
#> GSM1167083     2  0.2758      0.597 0.000 0.872 0.012 0.000 0.036 0.080
#> GSM1167084     1  0.0405      0.604 0.988 0.000 0.004 0.000 0.000 0.008
#> GSM1167085     2  0.2993      0.557 0.000 0.868 0.048 0.064 0.012 0.008
#> GSM1167086     1  0.1371      0.599 0.948 0.004 0.004 0.004 0.000 0.040
#> GSM1167087     6  0.5434      0.548 0.368 0.008 0.000 0.068 0.012 0.544
#> GSM1167088     1  0.1371      0.599 0.948 0.004 0.004 0.004 0.000 0.040
#> GSM1167089     3  0.4117      0.716 0.000 0.192 0.740 0.064 0.000 0.004
#> GSM1167090     4  0.1769      0.766 0.000 0.012 0.004 0.924 0.000 0.060
#> GSM1167091     1  0.4728     -0.312 0.500 0.004 0.004 0.028 0.000 0.464
#> GSM1167092     4  0.0551      0.772 0.004 0.000 0.008 0.984 0.000 0.004
#> GSM1167093     2  0.2886      0.536 0.000 0.860 0.072 0.064 0.000 0.004
#> GSM1167094     6  0.4951      0.047 0.036 0.008 0.004 0.472 0.000 0.480
#> GSM1167095     5  0.1007      0.773 0.000 0.016 0.004 0.004 0.968 0.008
#> GSM1167096     4  0.4891     -0.227 0.032 0.008 0.004 0.488 0.000 0.468
#> GSM1167097     1  0.2726      0.548 0.848 0.008 0.000 0.000 0.008 0.136
#> GSM1167098     4  0.3897      0.648 0.000 0.084 0.136 0.776 0.000 0.004
#> GSM1167099     1  0.3596      0.411 0.740 0.008 0.000 0.000 0.008 0.244
#> GSM1167100     2  0.3306      0.542 0.000 0.852 0.040 0.076 0.012 0.020
#> GSM1167101     2  0.2190      0.605 0.000 0.908 0.008 0.000 0.040 0.044
#> GSM1167122     3  0.1780      0.857 0.000 0.028 0.924 0.048 0.000 0.000
#> GSM1167102     5  0.3366      0.682 0.000 0.092 0.004 0.000 0.824 0.080
#> GSM1167103     2  0.6649      0.285 0.000 0.436 0.040 0.000 0.280 0.244
#> GSM1167104     1  0.3596      0.404 0.740 0.008 0.000 0.000 0.008 0.244
#> GSM1167105     2  0.6161      0.255 0.000 0.416 0.016 0.000 0.392 0.176
#> GSM1167106     1  0.4983     -0.403 0.500 0.008 0.000 0.032 0.008 0.452
#> GSM1167107     2  0.6475      0.334 0.000 0.468 0.036 0.000 0.288 0.208
#> GSM1167108     6  0.5073      0.608 0.292 0.000 0.004 0.096 0.000 0.608
#> GSM1167109     5  0.6244      0.389 0.000 0.192 0.040 0.000 0.536 0.232
#> GSM1167110     4  0.0653      0.770 0.000 0.004 0.012 0.980 0.000 0.004
#> GSM1167111     5  0.0603      0.775 0.000 0.016 0.000 0.004 0.980 0.000
#> GSM1167112     2  0.6287      0.242 0.000 0.412 0.016 0.004 0.392 0.176
#> GSM1167113     4  0.0520      0.772 0.000 0.000 0.000 0.984 0.008 0.008
#> GSM1167114     4  0.4744      0.522 0.000 0.008 0.004 0.608 0.344 0.036
#> GSM1167115     2  0.6336      0.337 0.000 0.480 0.028 0.000 0.288 0.204
#> GSM1167116     4  0.1180      0.771 0.004 0.004 0.008 0.960 0.000 0.024
#> GSM1167117     5  0.0603      0.775 0.000 0.016 0.000 0.004 0.980 0.000
#> GSM1167118     6  0.5718      0.530 0.372 0.008 0.000 0.104 0.008 0.508
#> GSM1167119     6  0.5434      0.548 0.368 0.008 0.000 0.068 0.012 0.544
#> GSM1167120     4  0.4091      0.543 0.000 0.004 0.004 0.644 0.340 0.008
#> GSM1167121     4  0.4946      0.502 0.000 0.220 0.120 0.656 0.000 0.004
#> GSM1167123     3  0.2449      0.867 0.024 0.000 0.896 0.024 0.000 0.056

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> MAD:kmeans 51           0.3304 2
#> MAD:kmeans 40           0.1770 3
#> MAD:kmeans 34           0.0678 4
#> MAD:kmeans 38           0.4188 5
#> MAD:kmeans 37           0.0783 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.930       0.974         0.5075 0.493   0.493
#> 3 3 0.949           0.933       0.968         0.2748 0.822   0.652
#> 4 4 0.750           0.832       0.892         0.1196 0.899   0.724
#> 5 5 0.708           0.666       0.813         0.0701 0.962   0.868
#> 6 6 0.692           0.547       0.751         0.0427 0.958   0.837

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1167072     1  0.0000     0.9711 1.000 0.000
#> GSM1167073     1  0.0000     0.9711 1.000 0.000
#> GSM1167074     2  0.0000     0.9733 0.000 1.000
#> GSM1167075     1  0.0000     0.9711 1.000 0.000
#> GSM1167076     1  0.0000     0.9711 1.000 0.000
#> GSM1167077     2  0.0000     0.9733 0.000 1.000
#> GSM1167078     1  0.0000     0.9711 1.000 0.000
#> GSM1167079     2  0.0000     0.9733 0.000 1.000
#> GSM1167080     1  0.0000     0.9711 1.000 0.000
#> GSM1167081     2  0.0000     0.9733 0.000 1.000
#> GSM1167082     1  0.0000     0.9711 1.000 0.000
#> GSM1167083     2  0.0000     0.9733 0.000 1.000
#> GSM1167084     1  0.0000     0.9711 1.000 0.000
#> GSM1167085     2  0.0000     0.9733 0.000 1.000
#> GSM1167086     1  0.0000     0.9711 1.000 0.000
#> GSM1167087     1  0.0000     0.9711 1.000 0.000
#> GSM1167088     1  0.0000     0.9711 1.000 0.000
#> GSM1167089     2  0.3274     0.9183 0.060 0.940
#> GSM1167090     1  0.0000     0.9711 1.000 0.000
#> GSM1167091     1  0.0000     0.9711 1.000 0.000
#> GSM1167092     1  0.0000     0.9711 1.000 0.000
#> GSM1167093     2  0.0000     0.9733 0.000 1.000
#> GSM1167094     1  0.0000     0.9711 1.000 0.000
#> GSM1167095     2  0.0000     0.9733 0.000 1.000
#> GSM1167096     1  0.0000     0.9711 1.000 0.000
#> GSM1167097     1  0.0000     0.9711 1.000 0.000
#> GSM1167098     2  0.3274     0.9183 0.060 0.940
#> GSM1167099     1  0.0000     0.9711 1.000 0.000
#> GSM1167100     2  0.0000     0.9733 0.000 1.000
#> GSM1167101     2  0.0000     0.9733 0.000 1.000
#> GSM1167122     1  0.9988     0.0621 0.520 0.480
#> GSM1167102     2  0.0000     0.9733 0.000 1.000
#> GSM1167103     2  0.0000     0.9733 0.000 1.000
#> GSM1167104     1  0.0000     0.9711 1.000 0.000
#> GSM1167105     2  0.0000     0.9733 0.000 1.000
#> GSM1167106     1  0.0000     0.9711 1.000 0.000
#> GSM1167107     2  0.0000     0.9733 0.000 1.000
#> GSM1167108     1  0.0000     0.9711 1.000 0.000
#> GSM1167109     2  0.0000     0.9733 0.000 1.000
#> GSM1167110     1  0.7219     0.7348 0.800 0.200
#> GSM1167111     2  0.0000     0.9733 0.000 1.000
#> GSM1167112     2  0.0000     0.9733 0.000 1.000
#> GSM1167113     1  0.0376     0.9677 0.996 0.004
#> GSM1167114     2  0.9963     0.1068 0.464 0.536
#> GSM1167115     2  0.0000     0.9733 0.000 1.000
#> GSM1167116     1  0.3274     0.9136 0.940 0.060
#> GSM1167117     2  0.0000     0.9733 0.000 1.000
#> GSM1167118     1  0.0000     0.9711 1.000 0.000
#> GSM1167119     1  0.0000     0.9711 1.000 0.000
#> GSM1167120     2  0.0000     0.9733 0.000 1.000
#> GSM1167121     2  0.0000     0.9733 0.000 1.000
#> GSM1167123     1  0.0000     0.9711 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1167072     1   0.000      0.979 1.000 0.000 0.000
#> GSM1167073     1   0.000      0.979 1.000 0.000 0.000
#> GSM1167074     2   0.196      0.934 0.000 0.944 0.056
#> GSM1167075     1   0.186      0.934 0.948 0.000 0.052
#> GSM1167076     3   0.186      0.911 0.052 0.000 0.948
#> GSM1167077     2   0.000      0.963 0.000 1.000 0.000
#> GSM1167078     1   0.000      0.979 1.000 0.000 0.000
#> GSM1167079     2   0.000      0.963 0.000 1.000 0.000
#> GSM1167080     1   0.000      0.979 1.000 0.000 0.000
#> GSM1167081     2   0.000      0.963 0.000 1.000 0.000
#> GSM1167082     1   0.000      0.979 1.000 0.000 0.000
#> GSM1167083     2   0.186      0.936 0.000 0.948 0.052
#> GSM1167084     1   0.000      0.979 1.000 0.000 0.000
#> GSM1167085     2   0.207      0.931 0.000 0.940 0.060
#> GSM1167086     1   0.000      0.979 1.000 0.000 0.000
#> GSM1167087     1   0.000      0.979 1.000 0.000 0.000
#> GSM1167088     1   0.000      0.979 1.000 0.000 0.000
#> GSM1167089     3   0.000      0.926 0.000 0.000 1.000
#> GSM1167090     1   0.484      0.703 0.776 0.000 0.224
#> GSM1167091     1   0.000      0.979 1.000 0.000 0.000
#> GSM1167092     3   0.536      0.654 0.276 0.000 0.724
#> GSM1167093     3   0.334      0.831 0.000 0.120 0.880
#> GSM1167094     1   0.000      0.979 1.000 0.000 0.000
#> GSM1167095     2   0.000      0.963 0.000 1.000 0.000
#> GSM1167096     1   0.226      0.915 0.932 0.000 0.068
#> GSM1167097     1   0.000      0.979 1.000 0.000 0.000
#> GSM1167098     3   0.000      0.926 0.000 0.000 1.000
#> GSM1167099     1   0.000      0.979 1.000 0.000 0.000
#> GSM1167100     2   0.186      0.936 0.000 0.948 0.052
#> GSM1167101     2   0.186      0.936 0.000 0.948 0.052
#> GSM1167122     3   0.000      0.926 0.000 0.000 1.000
#> GSM1167102     2   0.000      0.963 0.000 1.000 0.000
#> GSM1167103     2   0.000      0.963 0.000 1.000 0.000
#> GSM1167104     1   0.000      0.979 1.000 0.000 0.000
#> GSM1167105     2   0.000      0.963 0.000 1.000 0.000
#> GSM1167106     1   0.000      0.979 1.000 0.000 0.000
#> GSM1167107     2   0.000      0.963 0.000 1.000 0.000
#> GSM1167108     1   0.000      0.979 1.000 0.000 0.000
#> GSM1167109     2   0.000      0.963 0.000 1.000 0.000
#> GSM1167110     3   0.000      0.926 0.000 0.000 1.000
#> GSM1167111     2   0.000      0.963 0.000 1.000 0.000
#> GSM1167112     2   0.000      0.963 0.000 1.000 0.000
#> GSM1167113     3   0.487      0.859 0.100 0.056 0.844
#> GSM1167114     2   0.586      0.469 0.344 0.656 0.000
#> GSM1167115     2   0.000      0.963 0.000 1.000 0.000
#> GSM1167116     1   0.186      0.924 0.948 0.052 0.000
#> GSM1167117     2   0.000      0.963 0.000 1.000 0.000
#> GSM1167118     1   0.000      0.979 1.000 0.000 0.000
#> GSM1167119     1   0.000      0.979 1.000 0.000 0.000
#> GSM1167120     2   0.000      0.963 0.000 1.000 0.000
#> GSM1167121     3   0.000      0.926 0.000 0.000 1.000
#> GSM1167123     3   0.186      0.911 0.052 0.000 0.948

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1167072     1  0.0469      0.919 0.988 0.000 0.000 0.012
#> GSM1167073     1  0.0592      0.920 0.984 0.000 0.000 0.016
#> GSM1167074     2  0.2011      0.863 0.000 0.920 0.080 0.000
#> GSM1167075     1  0.2909      0.854 0.888 0.000 0.092 0.020
#> GSM1167076     3  0.2399      0.854 0.048 0.000 0.920 0.032
#> GSM1167077     2  0.0779      0.881 0.000 0.980 0.004 0.016
#> GSM1167078     1  0.3892      0.839 0.852 0.020 0.024 0.104
#> GSM1167079     2  0.2081      0.840 0.000 0.916 0.000 0.084
#> GSM1167080     1  0.0817      0.916 0.976 0.000 0.000 0.024
#> GSM1167081     4  0.4543      0.730 0.000 0.324 0.000 0.676
#> GSM1167082     1  0.1474      0.918 0.948 0.000 0.000 0.052
#> GSM1167083     2  0.2011      0.863 0.000 0.920 0.080 0.000
#> GSM1167084     1  0.0707      0.916 0.980 0.000 0.000 0.020
#> GSM1167085     2  0.2081      0.860 0.000 0.916 0.084 0.000
#> GSM1167086     1  0.0707      0.916 0.980 0.000 0.000 0.020
#> GSM1167087     1  0.1867      0.911 0.928 0.000 0.000 0.072
#> GSM1167088     1  0.0817      0.916 0.976 0.000 0.000 0.024
#> GSM1167089     3  0.0469      0.869 0.000 0.012 0.988 0.000
#> GSM1167090     1  0.6307      0.678 0.684 0.008 0.160 0.148
#> GSM1167091     1  0.1389      0.914 0.952 0.000 0.000 0.048
#> GSM1167092     3  0.5030      0.703 0.188 0.000 0.752 0.060
#> GSM1167093     2  0.3975      0.674 0.000 0.760 0.240 0.000
#> GSM1167094     1  0.3074      0.872 0.848 0.000 0.000 0.152
#> GSM1167095     4  0.4072      0.823 0.000 0.252 0.000 0.748
#> GSM1167096     1  0.6449      0.596 0.644 0.000 0.204 0.152
#> GSM1167097     1  0.0469      0.918 0.988 0.000 0.000 0.012
#> GSM1167098     3  0.0376      0.870 0.000 0.004 0.992 0.004
#> GSM1167099     1  0.1211      0.919 0.960 0.000 0.000 0.040
#> GSM1167100     2  0.2011      0.863 0.000 0.920 0.080 0.000
#> GSM1167101     2  0.2011      0.863 0.000 0.920 0.080 0.000
#> GSM1167122     3  0.0188      0.871 0.000 0.004 0.996 0.000
#> GSM1167102     2  0.4522      0.363 0.000 0.680 0.000 0.320
#> GSM1167103     2  0.1022      0.882 0.000 0.968 0.000 0.032
#> GSM1167104     1  0.1022      0.919 0.968 0.000 0.000 0.032
#> GSM1167105     2  0.1022      0.882 0.000 0.968 0.000 0.032
#> GSM1167106     1  0.1211      0.919 0.960 0.000 0.000 0.040
#> GSM1167107     2  0.1022      0.882 0.000 0.968 0.000 0.032
#> GSM1167108     1  0.2704      0.889 0.876 0.000 0.000 0.124
#> GSM1167109     2  0.1211      0.877 0.000 0.960 0.000 0.040
#> GSM1167110     3  0.2060      0.858 0.000 0.016 0.932 0.052
#> GSM1167111     4  0.4072      0.823 0.000 0.252 0.000 0.748
#> GSM1167112     2  0.1389      0.873 0.000 0.952 0.000 0.048
#> GSM1167113     3  0.7236      0.498 0.152 0.004 0.540 0.304
#> GSM1167114     4  0.1833      0.687 0.032 0.024 0.000 0.944
#> GSM1167115     2  0.1022      0.882 0.000 0.968 0.000 0.032
#> GSM1167116     4  0.3649      0.532 0.204 0.000 0.000 0.796
#> GSM1167117     4  0.4072      0.823 0.000 0.252 0.000 0.748
#> GSM1167118     1  0.2345      0.902 0.900 0.000 0.000 0.100
#> GSM1167119     1  0.2281      0.902 0.904 0.000 0.000 0.096
#> GSM1167120     4  0.3444      0.811 0.000 0.184 0.000 0.816
#> GSM1167121     3  0.1488      0.858 0.000 0.032 0.956 0.012
#> GSM1167123     3  0.2399      0.854 0.048 0.000 0.920 0.032

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1167072     1  0.2233     0.7220 0.904 0.000 0.016 0.080 0.000
#> GSM1167073     1  0.2873     0.7105 0.856 0.000 0.016 0.128 0.000
#> GSM1167074     2  0.0451     0.8725 0.000 0.988 0.004 0.008 0.000
#> GSM1167075     1  0.5939     0.4339 0.576 0.000 0.148 0.276 0.000
#> GSM1167076     3  0.0290     0.8502 0.000 0.000 0.992 0.008 0.000
#> GSM1167077     2  0.3215     0.8358 0.000 0.852 0.000 0.092 0.056
#> GSM1167078     1  0.7010     0.2346 0.468 0.028 0.044 0.400 0.060
#> GSM1167079     2  0.4151     0.5822 0.000 0.652 0.000 0.004 0.344
#> GSM1167080     1  0.4054     0.6393 0.732 0.000 0.020 0.248 0.000
#> GSM1167081     5  0.2124     0.7317 0.000 0.096 0.000 0.004 0.900
#> GSM1167082     1  0.1908     0.6710 0.908 0.000 0.000 0.092 0.000
#> GSM1167083     2  0.0324     0.8765 0.000 0.992 0.000 0.004 0.004
#> GSM1167084     1  0.3586     0.6740 0.792 0.000 0.020 0.188 0.000
#> GSM1167085     2  0.0451     0.8725 0.000 0.988 0.004 0.008 0.000
#> GSM1167086     1  0.4132     0.6242 0.720 0.000 0.020 0.260 0.000
#> GSM1167087     1  0.1410     0.6990 0.940 0.000 0.000 0.060 0.000
#> GSM1167088     1  0.4252     0.6108 0.700 0.000 0.020 0.280 0.000
#> GSM1167089     3  0.1205     0.8504 0.000 0.040 0.956 0.004 0.000
#> GSM1167090     4  0.5214     0.4373 0.156 0.012 0.120 0.712 0.000
#> GSM1167091     1  0.4152     0.6129 0.692 0.000 0.012 0.296 0.000
#> GSM1167092     3  0.5116     0.5196 0.160 0.000 0.724 0.100 0.016
#> GSM1167093     2  0.1557     0.8387 0.000 0.940 0.052 0.008 0.000
#> GSM1167094     1  0.4211     0.1857 0.636 0.000 0.004 0.360 0.000
#> GSM1167095     5  0.0880     0.7638 0.000 0.032 0.000 0.000 0.968
#> GSM1167096     1  0.5812    -0.1952 0.528 0.000 0.100 0.372 0.000
#> GSM1167097     1  0.1956     0.7230 0.916 0.000 0.008 0.076 0.000
#> GSM1167098     3  0.2012     0.8357 0.000 0.060 0.920 0.020 0.000
#> GSM1167099     1  0.0880     0.7196 0.968 0.000 0.000 0.032 0.000
#> GSM1167100     2  0.0162     0.8756 0.000 0.996 0.000 0.004 0.000
#> GSM1167101     2  0.0162     0.8756 0.000 0.996 0.000 0.004 0.000
#> GSM1167122     3  0.0609     0.8532 0.000 0.020 0.980 0.000 0.000
#> GSM1167102     5  0.4350     0.0975 0.000 0.408 0.000 0.004 0.588
#> GSM1167103     2  0.2488     0.8756 0.000 0.872 0.000 0.004 0.124
#> GSM1167104     1  0.0290     0.7163 0.992 0.000 0.000 0.008 0.000
#> GSM1167105     2  0.2763     0.8654 0.000 0.848 0.000 0.004 0.148
#> GSM1167106     1  0.0404     0.7159 0.988 0.000 0.000 0.012 0.000
#> GSM1167107     2  0.2488     0.8756 0.000 0.872 0.000 0.004 0.124
#> GSM1167108     1  0.3210     0.5195 0.788 0.000 0.000 0.212 0.000
#> GSM1167109     2  0.2890     0.8572 0.000 0.836 0.000 0.004 0.160
#> GSM1167110     3  0.4743     0.6202 0.028 0.008 0.712 0.244 0.008
#> GSM1167111     5  0.1043     0.7640 0.000 0.040 0.000 0.000 0.960
#> GSM1167112     2  0.3086     0.8440 0.000 0.816 0.000 0.004 0.180
#> GSM1167113     4  0.7416     0.4155 0.248 0.004 0.184 0.504 0.060
#> GSM1167114     5  0.2903     0.6471 0.048 0.000 0.000 0.080 0.872
#> GSM1167115     2  0.2536     0.8743 0.000 0.868 0.000 0.004 0.128
#> GSM1167116     5  0.6673    -0.1285 0.284 0.000 0.000 0.276 0.440
#> GSM1167117     5  0.0963     0.7647 0.000 0.036 0.000 0.000 0.964
#> GSM1167118     1  0.1410     0.7044 0.940 0.000 0.000 0.060 0.000
#> GSM1167119     1  0.1410     0.7018 0.940 0.000 0.000 0.060 0.000
#> GSM1167120     5  0.1638     0.7213 0.000 0.004 0.000 0.064 0.932
#> GSM1167121     3  0.3512     0.7869 0.000 0.068 0.840 0.088 0.004
#> GSM1167123     3  0.0290     0.8502 0.000 0.000 0.992 0.008 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1167072     1  0.3164     0.6033 0.824 0.000 0.000 0.032 0.004 0.140
#> GSM1167073     1  0.3066     0.5935 0.832 0.000 0.000 0.044 0.000 0.124
#> GSM1167074     2  0.1585     0.7863 0.000 0.940 0.012 0.036 0.000 0.012
#> GSM1167075     1  0.5715     0.2067 0.504 0.000 0.072 0.028 0.004 0.392
#> GSM1167076     3  0.1237     0.7831 0.004 0.000 0.956 0.020 0.000 0.020
#> GSM1167077     2  0.4189     0.7422 0.000 0.780 0.000 0.040 0.112 0.068
#> GSM1167078     6  0.5983    -0.1005 0.316 0.008 0.012 0.080 0.024 0.560
#> GSM1167079     2  0.4089     0.2987 0.000 0.524 0.000 0.008 0.468 0.000
#> GSM1167080     1  0.3742     0.4329 0.648 0.000 0.000 0.004 0.000 0.348
#> GSM1167081     5  0.1556     0.7864 0.000 0.080 0.000 0.000 0.920 0.000
#> GSM1167082     1  0.3345     0.4817 0.788 0.000 0.000 0.028 0.000 0.184
#> GSM1167083     2  0.1749     0.7936 0.000 0.936 0.004 0.032 0.012 0.016
#> GSM1167084     1  0.3101     0.5343 0.756 0.000 0.000 0.000 0.000 0.244
#> GSM1167085     2  0.1838     0.7808 0.000 0.928 0.020 0.040 0.000 0.012
#> GSM1167086     1  0.3915     0.3446 0.584 0.000 0.000 0.004 0.000 0.412
#> GSM1167087     1  0.2798     0.5688 0.852 0.000 0.000 0.036 0.000 0.112
#> GSM1167088     1  0.4169     0.2572 0.532 0.000 0.000 0.012 0.000 0.456
#> GSM1167089     3  0.1515     0.7805 0.000 0.028 0.944 0.020 0.000 0.008
#> GSM1167090     6  0.5114     0.0873 0.064 0.000 0.060 0.188 0.000 0.688
#> GSM1167091     1  0.4828     0.3306 0.568 0.000 0.000 0.064 0.000 0.368
#> GSM1167092     3  0.7054     0.1980 0.132 0.000 0.504 0.224 0.012 0.128
#> GSM1167093     2  0.3307     0.6933 0.000 0.828 0.120 0.040 0.000 0.012
#> GSM1167094     1  0.5744    -0.2851 0.424 0.000 0.000 0.168 0.000 0.408
#> GSM1167095     5  0.0692     0.8203 0.000 0.020 0.000 0.004 0.976 0.000
#> GSM1167096     6  0.6384     0.0423 0.368 0.000 0.028 0.184 0.000 0.420
#> GSM1167097     1  0.2389     0.6138 0.864 0.000 0.000 0.008 0.000 0.128
#> GSM1167098     3  0.3178     0.7355 0.000 0.044 0.848 0.088 0.000 0.020
#> GSM1167099     1  0.1498     0.6199 0.940 0.000 0.000 0.028 0.000 0.032
#> GSM1167100     2  0.1737     0.7862 0.000 0.932 0.008 0.040 0.000 0.020
#> GSM1167101     2  0.1116     0.7926 0.000 0.960 0.004 0.028 0.000 0.008
#> GSM1167122     3  0.0146     0.7900 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM1167102     5  0.3672     0.4096 0.000 0.304 0.000 0.008 0.688 0.000
#> GSM1167103     2  0.2848     0.7939 0.000 0.816 0.000 0.008 0.176 0.000
#> GSM1167104     1  0.0806     0.6198 0.972 0.000 0.000 0.020 0.000 0.008
#> GSM1167105     2  0.2948     0.7870 0.000 0.804 0.000 0.008 0.188 0.000
#> GSM1167106     1  0.1261     0.6163 0.952 0.000 0.000 0.024 0.000 0.024
#> GSM1167107     2  0.2848     0.7934 0.000 0.816 0.000 0.008 0.176 0.000
#> GSM1167108     1  0.4616     0.2612 0.648 0.000 0.000 0.072 0.000 0.280
#> GSM1167109     2  0.3373     0.7375 0.000 0.744 0.000 0.008 0.248 0.000
#> GSM1167110     4  0.4805    -0.1141 0.016 0.008 0.468 0.496 0.000 0.012
#> GSM1167111     5  0.0632     0.8190 0.000 0.024 0.000 0.000 0.976 0.000
#> GSM1167112     2  0.3245     0.7596 0.000 0.764 0.000 0.008 0.228 0.000
#> GSM1167113     4  0.6360     0.3234 0.128 0.008 0.048 0.628 0.032 0.156
#> GSM1167114     5  0.3844     0.6135 0.028 0.000 0.000 0.140 0.792 0.040
#> GSM1167115     2  0.2848     0.7934 0.000 0.816 0.000 0.008 0.176 0.000
#> GSM1167116     4  0.6287     0.2839 0.224 0.004 0.004 0.560 0.172 0.036
#> GSM1167117     5  0.0692     0.8203 0.000 0.020 0.000 0.004 0.976 0.000
#> GSM1167118     1  0.3354     0.5770 0.812 0.000 0.000 0.060 0.000 0.128
#> GSM1167119     1  0.2860     0.5560 0.852 0.000 0.000 0.048 0.000 0.100
#> GSM1167120     5  0.2920     0.6805 0.000 0.004 0.000 0.168 0.820 0.008
#> GSM1167121     3  0.3961     0.6114 0.000 0.080 0.768 0.148 0.000 0.004
#> GSM1167123     3  0.1148     0.7848 0.004 0.000 0.960 0.020 0.000 0.016

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> MAD:skmeans 50            0.451 2
#> MAD:skmeans 51            0.252 3
#> MAD:skmeans 50            0.154 4
#> MAD:skmeans 44            0.508 5
#> MAD:skmeans 35            0.667 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.875           0.861       0.947         0.4812 0.527   0.527
#> 3 3 0.564           0.731       0.772         0.3866 0.769   0.573
#> 4 4 0.635           0.544       0.787         0.1228 0.682   0.284
#> 5 5 0.635           0.520       0.716         0.0614 0.785   0.348
#> 6 6 0.769           0.754       0.850         0.0463 0.878   0.498

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1167072     1  0.0000      0.934 1.000 0.000
#> GSM1167073     1  0.0000      0.934 1.000 0.000
#> GSM1167074     2  0.0000      0.952 0.000 1.000
#> GSM1167075     1  0.0000      0.934 1.000 0.000
#> GSM1167076     1  0.0000      0.934 1.000 0.000
#> GSM1167077     1  0.9795      0.266 0.584 0.416
#> GSM1167078     1  0.0376      0.932 0.996 0.004
#> GSM1167079     2  0.0000      0.952 0.000 1.000
#> GSM1167080     1  0.0000      0.934 1.000 0.000
#> GSM1167081     2  0.0000      0.952 0.000 1.000
#> GSM1167082     1  0.0000      0.934 1.000 0.000
#> GSM1167083     2  0.0000      0.952 0.000 1.000
#> GSM1167084     1  0.0000      0.934 1.000 0.000
#> GSM1167085     2  0.3114      0.915 0.056 0.944
#> GSM1167086     1  0.0000      0.934 1.000 0.000
#> GSM1167087     1  0.0000      0.934 1.000 0.000
#> GSM1167088     1  0.0000      0.934 1.000 0.000
#> GSM1167089     1  0.9977      0.108 0.528 0.472
#> GSM1167090     1  0.0376      0.932 0.996 0.004
#> GSM1167091     1  0.0000      0.934 1.000 0.000
#> GSM1167092     1  0.0376      0.932 0.996 0.004
#> GSM1167093     2  0.2778      0.922 0.048 0.952
#> GSM1167094     1  0.0000      0.934 1.000 0.000
#> GSM1167095     2  0.7139      0.740 0.196 0.804
#> GSM1167096     1  0.0000      0.934 1.000 0.000
#> GSM1167097     1  0.0000      0.934 1.000 0.000
#> GSM1167098     1  0.0672      0.930 0.992 0.008
#> GSM1167099     1  0.0000      0.934 1.000 0.000
#> GSM1167100     2  0.3114      0.915 0.056 0.944
#> GSM1167101     2  0.0000      0.952 0.000 1.000
#> GSM1167122     1  0.0672      0.930 0.992 0.008
#> GSM1167102     2  0.0000      0.952 0.000 1.000
#> GSM1167103     2  0.0000      0.952 0.000 1.000
#> GSM1167104     1  0.0000      0.934 1.000 0.000
#> GSM1167105     2  0.0000      0.952 0.000 1.000
#> GSM1167106     1  0.0000      0.934 1.000 0.000
#> GSM1167107     2  0.0000      0.952 0.000 1.000
#> GSM1167108     1  0.0000      0.934 1.000 0.000
#> GSM1167109     2  0.0000      0.952 0.000 1.000
#> GSM1167110     1  0.3114      0.891 0.944 0.056
#> GSM1167111     2  0.0000      0.952 0.000 1.000
#> GSM1167112     2  0.0000      0.952 0.000 1.000
#> GSM1167113     1  0.1414      0.921 0.980 0.020
#> GSM1167114     1  0.9909      0.190 0.556 0.444
#> GSM1167115     2  0.0000      0.952 0.000 1.000
#> GSM1167116     1  0.3114      0.891 0.944 0.056
#> GSM1167117     2  0.0938      0.945 0.012 0.988
#> GSM1167118     1  0.0000      0.934 1.000 0.000
#> GSM1167119     1  0.0000      0.934 1.000 0.000
#> GSM1167120     1  0.9933      0.185 0.548 0.452
#> GSM1167121     2  0.9815      0.240 0.420 0.580
#> GSM1167123     1  0.0000      0.934 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1167072     3  0.6126      0.455 0.400 0.000 0.600
#> GSM1167073     3  0.4931      0.677 0.232 0.000 0.768
#> GSM1167074     2  0.3619      0.918 0.000 0.864 0.136
#> GSM1167075     1  0.5363      0.631 0.724 0.000 0.276
#> GSM1167076     1  0.5363      0.637 0.724 0.000 0.276
#> GSM1167077     3  0.2878      0.709 0.000 0.096 0.904
#> GSM1167078     3  0.5327      0.550 0.272 0.000 0.728
#> GSM1167079     2  0.0000      0.903 0.000 1.000 0.000
#> GSM1167080     1  0.0000      0.765 1.000 0.000 0.000
#> GSM1167081     2  0.0000      0.903 0.000 1.000 0.000
#> GSM1167082     1  0.3340      0.696 0.880 0.000 0.120
#> GSM1167083     2  0.3267      0.926 0.000 0.884 0.116
#> GSM1167084     1  0.0000      0.765 1.000 0.000 0.000
#> GSM1167085     2  0.4121      0.900 0.000 0.832 0.168
#> GSM1167086     1  0.5216      0.648 0.740 0.000 0.260
#> GSM1167087     1  0.5497      0.616 0.708 0.000 0.292
#> GSM1167088     1  0.4399      0.694 0.812 0.000 0.188
#> GSM1167089     3  0.0000      0.769 0.000 0.000 1.000
#> GSM1167090     3  0.2356      0.774 0.072 0.000 0.928
#> GSM1167091     1  0.0000      0.765 1.000 0.000 0.000
#> GSM1167092     3  0.2261      0.774 0.068 0.000 0.932
#> GSM1167093     2  0.4002      0.905 0.000 0.840 0.160
#> GSM1167094     3  0.5905      0.563 0.352 0.000 0.648
#> GSM1167095     2  0.5327      0.571 0.000 0.728 0.272
#> GSM1167096     3  0.5905      0.563 0.352 0.000 0.648
#> GSM1167097     1  0.0000      0.765 1.000 0.000 0.000
#> GSM1167098     3  0.0747      0.772 0.000 0.016 0.984
#> GSM1167099     1  0.0000      0.765 1.000 0.000 0.000
#> GSM1167100     2  0.4121      0.900 0.000 0.832 0.168
#> GSM1167101     2  0.3267      0.926 0.000 0.884 0.116
#> GSM1167122     3  0.0000      0.769 0.000 0.000 1.000
#> GSM1167102     2  0.0000      0.903 0.000 1.000 0.000
#> GSM1167103     2  0.3116      0.926 0.000 0.892 0.108
#> GSM1167104     1  0.0000      0.765 1.000 0.000 0.000
#> GSM1167105     2  0.3267      0.926 0.000 0.884 0.116
#> GSM1167106     1  0.4178      0.637 0.828 0.000 0.172
#> GSM1167107     2  0.3267      0.926 0.000 0.884 0.116
#> GSM1167108     3  0.6225      0.423 0.432 0.000 0.568
#> GSM1167109     2  0.0000      0.903 0.000 1.000 0.000
#> GSM1167110     3  0.1031      0.778 0.024 0.000 0.976
#> GSM1167111     2  0.0000      0.903 0.000 1.000 0.000
#> GSM1167112     2  0.2625      0.924 0.000 0.916 0.084
#> GSM1167113     3  0.3030      0.760 0.092 0.004 0.904
#> GSM1167114     3  0.4136      0.739 0.020 0.116 0.864
#> GSM1167115     2  0.3267      0.926 0.000 0.884 0.116
#> GSM1167116     3  0.0892      0.777 0.020 0.000 0.980
#> GSM1167117     2  0.0424      0.900 0.000 0.992 0.008
#> GSM1167118     1  0.6260     -0.131 0.552 0.000 0.448
#> GSM1167119     1  0.5988      0.136 0.632 0.000 0.368
#> GSM1167120     3  0.3267      0.740 0.000 0.116 0.884
#> GSM1167121     3  0.4062      0.639 0.000 0.164 0.836
#> GSM1167123     3  0.5882      0.564 0.348 0.000 0.652

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1167072     1  0.4713   -0.08910 0.640 0.000 0.360 0.000
#> GSM1167073     3  0.4941    0.30048 0.436 0.000 0.564 0.000
#> GSM1167074     2  0.0592    0.86840 0.000 0.984 0.000 0.016
#> GSM1167075     3  0.1716    0.48239 0.064 0.000 0.936 0.000
#> GSM1167076     3  0.2924    0.40017 0.100 0.016 0.884 0.000
#> GSM1167077     2  0.4277    0.63906 0.280 0.720 0.000 0.000
#> GSM1167078     3  0.8045    0.29496 0.236 0.252 0.492 0.020
#> GSM1167079     4  0.0336    0.96291 0.000 0.008 0.000 0.992
#> GSM1167080     3  0.3649    0.34349 0.204 0.000 0.796 0.000
#> GSM1167081     4  0.0000    0.96672 0.000 0.000 0.000 1.000
#> GSM1167082     1  0.4585    0.38402 0.668 0.000 0.332 0.000
#> GSM1167083     2  0.3172    0.80489 0.000 0.840 0.000 0.160
#> GSM1167084     1  0.5000    0.16804 0.500 0.000 0.500 0.000
#> GSM1167085     2  0.1975    0.86136 0.000 0.936 0.048 0.016
#> GSM1167086     3  0.1716    0.48239 0.064 0.000 0.936 0.000
#> GSM1167087     3  0.4746   -0.00689 0.368 0.000 0.632 0.000
#> GSM1167088     3  0.1867    0.47897 0.072 0.000 0.928 0.000
#> GSM1167089     2  0.3778    0.80625 0.100 0.848 0.052 0.000
#> GSM1167090     1  0.7874   -0.18907 0.372 0.348 0.280 0.000
#> GSM1167091     1  0.4564    0.38547 0.672 0.000 0.328 0.000
#> GSM1167092     3  0.7747    0.15964 0.384 0.232 0.384 0.000
#> GSM1167093     2  0.1474    0.85559 0.000 0.948 0.052 0.000
#> GSM1167094     1  0.0469    0.43793 0.988 0.000 0.012 0.000
#> GSM1167095     4  0.0000    0.96672 0.000 0.000 0.000 1.000
#> GSM1167096     1  0.0469    0.43793 0.988 0.000 0.012 0.000
#> GSM1167097     1  0.4746    0.35918 0.632 0.000 0.368 0.000
#> GSM1167098     2  0.8069    0.36572 0.260 0.516 0.192 0.032
#> GSM1167099     3  0.4277    0.22810 0.280 0.000 0.720 0.000
#> GSM1167100     2  0.0592    0.86840 0.000 0.984 0.000 0.016
#> GSM1167101     2  0.0592    0.86840 0.000 0.984 0.000 0.016
#> GSM1167122     2  0.5051    0.74839 0.100 0.768 0.132 0.000
#> GSM1167102     4  0.0000    0.96672 0.000 0.000 0.000 1.000
#> GSM1167103     2  0.2216    0.83242 0.000 0.908 0.000 0.092
#> GSM1167104     1  0.4746    0.35918 0.632 0.000 0.368 0.000
#> GSM1167105     2  0.0592    0.86840 0.000 0.984 0.000 0.016
#> GSM1167106     1  0.4605    0.38026 0.664 0.000 0.336 0.000
#> GSM1167107     2  0.0592    0.86840 0.000 0.984 0.000 0.016
#> GSM1167108     1  0.0336    0.44133 0.992 0.000 0.008 0.000
#> GSM1167109     4  0.3074    0.82989 0.000 0.152 0.000 0.848
#> GSM1167110     1  0.7914   -0.23377 0.348 0.308 0.344 0.000
#> GSM1167111     4  0.0000    0.96672 0.000 0.000 0.000 1.000
#> GSM1167112     2  0.3219    0.76479 0.000 0.836 0.000 0.164
#> GSM1167113     3  0.5376    0.30068 0.396 0.000 0.588 0.016
#> GSM1167114     4  0.0592    0.95477 0.016 0.000 0.000 0.984
#> GSM1167115     2  0.0592    0.86840 0.000 0.984 0.000 0.016
#> GSM1167116     3  0.7544    0.21657 0.352 0.196 0.452 0.000
#> GSM1167117     4  0.0000    0.96672 0.000 0.000 0.000 1.000
#> GSM1167118     1  0.4985   -0.28339 0.532 0.000 0.468 0.000
#> GSM1167119     1  0.1118    0.44376 0.964 0.000 0.036 0.000
#> GSM1167120     4  0.1716    0.91106 0.064 0.000 0.000 0.936
#> GSM1167121     2  0.3899    0.80446 0.108 0.840 0.052 0.000
#> GSM1167123     1  0.2593    0.40379 0.904 0.016 0.080 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1167072     4  0.4310    0.18049 0.392 0.000 0.004 0.604 0.000
#> GSM1167073     4  0.4437    0.29924 0.464 0.000 0.004 0.532 0.000
#> GSM1167074     2  0.1410    0.84952 0.000 0.940 0.060 0.000 0.000
#> GSM1167075     1  0.0693    0.58826 0.980 0.000 0.008 0.012 0.000
#> GSM1167076     3  0.2193    0.60342 0.092 0.000 0.900 0.008 0.000
#> GSM1167077     4  0.5440   -0.00581 0.004 0.472 0.048 0.476 0.000
#> GSM1167078     1  0.4581    0.28417 0.744 0.052 0.004 0.196 0.004
#> GSM1167079     5  0.2777    0.82331 0.000 0.120 0.016 0.000 0.864
#> GSM1167080     1  0.2629    0.60857 0.860 0.000 0.004 0.136 0.000
#> GSM1167081     5  0.0404    0.90975 0.000 0.000 0.012 0.000 0.988
#> GSM1167082     4  0.3586    0.05240 0.264 0.000 0.000 0.736 0.000
#> GSM1167083     5  0.5368    0.33369 0.000 0.332 0.072 0.000 0.596
#> GSM1167084     1  0.4015    0.51812 0.652 0.000 0.000 0.348 0.000
#> GSM1167085     2  0.2929    0.71518 0.000 0.820 0.180 0.000 0.000
#> GSM1167086     1  0.0404    0.59000 0.988 0.000 0.000 0.012 0.000
#> GSM1167087     1  0.3452    0.54478 0.756 0.000 0.000 0.244 0.000
#> GSM1167088     1  0.0000    0.59526 1.000 0.000 0.000 0.000 0.000
#> GSM1167089     3  0.3561    0.57782 0.000 0.260 0.740 0.000 0.000
#> GSM1167090     4  0.7456    0.30122 0.244 0.128 0.116 0.512 0.000
#> GSM1167091     4  0.3990   -0.16726 0.308 0.000 0.004 0.688 0.000
#> GSM1167092     4  0.7241    0.30632 0.272 0.072 0.144 0.512 0.000
#> GSM1167093     3  0.3816    0.53520 0.000 0.304 0.696 0.000 0.000
#> GSM1167094     4  0.0609    0.40118 0.020 0.000 0.000 0.980 0.000
#> GSM1167095     5  0.0162    0.91281 0.004 0.000 0.000 0.000 0.996
#> GSM1167096     4  0.0609    0.40118 0.020 0.000 0.000 0.980 0.000
#> GSM1167097     1  0.4305    0.38860 0.512 0.000 0.000 0.488 0.000
#> GSM1167098     3  0.8497    0.10959 0.136 0.164 0.352 0.332 0.016
#> GSM1167099     1  0.3689    0.56005 0.740 0.000 0.004 0.256 0.000
#> GSM1167100     2  0.2304    0.82120 0.000 0.892 0.100 0.008 0.000
#> GSM1167101     2  0.1121    0.85642 0.000 0.956 0.044 0.000 0.000
#> GSM1167122     3  0.0898    0.63904 0.020 0.008 0.972 0.000 0.000
#> GSM1167102     5  0.0000    0.91369 0.000 0.000 0.000 0.000 1.000
#> GSM1167103     2  0.1300    0.84371 0.000 0.956 0.016 0.000 0.028
#> GSM1167104     1  0.4305    0.38860 0.512 0.000 0.000 0.488 0.000
#> GSM1167105     2  0.2067    0.85404 0.000 0.920 0.048 0.000 0.032
#> GSM1167106     4  0.3684    0.02448 0.280 0.000 0.000 0.720 0.000
#> GSM1167107     2  0.0566    0.85494 0.000 0.984 0.012 0.000 0.004
#> GSM1167108     4  0.1608    0.34927 0.072 0.000 0.000 0.928 0.000
#> GSM1167109     2  0.4249    0.49780 0.000 0.688 0.016 0.000 0.296
#> GSM1167110     4  0.7702    0.24107 0.192 0.152 0.156 0.500 0.000
#> GSM1167111     5  0.0000    0.91369 0.000 0.000 0.000 0.000 1.000
#> GSM1167112     2  0.2646    0.78160 0.000 0.868 0.004 0.004 0.124
#> GSM1167113     4  0.6071    0.36666 0.388 0.000 0.088 0.512 0.012
#> GSM1167114     5  0.0162    0.91281 0.004 0.000 0.000 0.000 0.996
#> GSM1167115     2  0.0404    0.85918 0.000 0.988 0.012 0.000 0.000
#> GSM1167116     4  0.7148    0.33990 0.292 0.072 0.124 0.512 0.000
#> GSM1167117     5  0.0000    0.91369 0.000 0.000 0.000 0.000 1.000
#> GSM1167118     1  0.4182    0.31197 0.644 0.000 0.004 0.352 0.000
#> GSM1167119     4  0.4262   -0.37161 0.440 0.000 0.000 0.560 0.000
#> GSM1167120     5  0.1205    0.88029 0.004 0.000 0.000 0.040 0.956
#> GSM1167121     3  0.6337    0.48380 0.000 0.260 0.524 0.216 0.000
#> GSM1167123     3  0.2471    0.54360 0.000 0.000 0.864 0.136 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1167072     1  0.3588      0.783 0.788 0.000 0.000 0.060 0.000 0.152
#> GSM1167073     4  0.3674      0.659 0.016 0.000 0.000 0.716 0.000 0.268
#> GSM1167074     2  0.3957      0.752 0.000 0.712 0.008 0.260 0.000 0.020
#> GSM1167075     6  0.0717      0.908 0.016 0.000 0.008 0.000 0.000 0.976
#> GSM1167076     3  0.0363      0.797 0.000 0.000 0.988 0.000 0.000 0.012
#> GSM1167077     4  0.0748      0.619 0.000 0.016 0.004 0.976 0.000 0.004
#> GSM1167078     6  0.1327      0.846 0.000 0.000 0.000 0.064 0.000 0.936
#> GSM1167079     5  0.3101      0.720 0.000 0.244 0.000 0.000 0.756 0.000
#> GSM1167080     6  0.2593      0.780 0.148 0.000 0.000 0.008 0.000 0.844
#> GSM1167081     5  0.0547      0.897 0.000 0.020 0.000 0.000 0.980 0.000
#> GSM1167082     1  0.0000      0.901 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1167083     5  0.5864      0.448 0.000 0.144 0.008 0.240 0.588 0.020
#> GSM1167084     1  0.2454      0.804 0.840 0.000 0.000 0.000 0.000 0.160
#> GSM1167085     2  0.4056      0.749 0.000 0.696 0.012 0.276 0.000 0.016
#> GSM1167086     6  0.0547      0.909 0.020 0.000 0.000 0.000 0.000 0.980
#> GSM1167087     1  0.3351      0.639 0.712 0.000 0.000 0.000 0.000 0.288
#> GSM1167088     6  0.0790      0.908 0.032 0.000 0.000 0.000 0.000 0.968
#> GSM1167089     3  0.3855      0.679 0.000 0.004 0.704 0.276 0.000 0.016
#> GSM1167090     4  0.2664      0.688 0.000 0.000 0.000 0.816 0.000 0.184
#> GSM1167091     1  0.1477      0.892 0.940 0.000 0.004 0.008 0.000 0.048
#> GSM1167092     4  0.3175      0.676 0.000 0.000 0.000 0.744 0.000 0.256
#> GSM1167093     3  0.5132      0.629 0.000 0.072 0.624 0.284 0.000 0.020
#> GSM1167094     4  0.4439      0.250 0.432 0.000 0.000 0.540 0.000 0.028
#> GSM1167095     5  0.0000      0.905 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167096     1  0.2145      0.861 0.900 0.000 0.000 0.072 0.000 0.028
#> GSM1167097     1  0.0547      0.898 0.980 0.000 0.000 0.000 0.000 0.020
#> GSM1167098     4  0.5927      0.303 0.000 0.004 0.308 0.532 0.016 0.140
#> GSM1167099     1  0.2389      0.825 0.864 0.000 0.000 0.008 0.000 0.128
#> GSM1167100     2  0.4097      0.744 0.000 0.688 0.012 0.284 0.000 0.016
#> GSM1167101     2  0.3163      0.805 0.000 0.808 0.008 0.172 0.000 0.012
#> GSM1167122     3  0.0000      0.802 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1167102     5  0.0000      0.905 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167103     2  0.0405      0.807 0.000 0.988 0.000 0.008 0.000 0.004
#> GSM1167104     1  0.0000      0.901 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1167105     2  0.3869      0.807 0.000 0.768 0.004 0.168 0.060 0.000
#> GSM1167106     1  0.0000      0.901 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1167107     2  0.0146      0.809 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM1167108     1  0.1124      0.892 0.956 0.000 0.000 0.036 0.000 0.008
#> GSM1167109     2  0.1814      0.767 0.000 0.900 0.000 0.000 0.100 0.000
#> GSM1167110     4  0.1806      0.669 0.000 0.000 0.004 0.908 0.000 0.088
#> GSM1167111     5  0.0000      0.905 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167112     2  0.2826      0.772 0.000 0.844 0.000 0.028 0.128 0.000
#> GSM1167113     4  0.3608      0.662 0.000 0.000 0.000 0.716 0.012 0.272
#> GSM1167114     5  0.0000      0.905 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167115     2  0.1349      0.820 0.000 0.940 0.004 0.056 0.000 0.000
#> GSM1167116     4  0.2823      0.694 0.000 0.000 0.000 0.796 0.000 0.204
#> GSM1167117     5  0.0000      0.905 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167118     4  0.4760      0.603 0.120 0.000 0.000 0.668 0.000 0.212
#> GSM1167119     1  0.0000      0.901 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1167120     5  0.1075      0.869 0.000 0.000 0.000 0.048 0.952 0.000
#> GSM1167121     4  0.4284     -0.179 0.000 0.004 0.392 0.588 0.000 0.016
#> GSM1167123     3  0.0363      0.797 0.012 0.000 0.988 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) k
#> MAD:pam 47           0.3214 2
#> MAD:pam 48           0.1346 3
#> MAD:pam 24           0.3991 4
#> MAD:pam 29           0.0421 5
#> MAD:pam 48           0.1607 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.485           0.889       0.855         0.4177 0.509   0.509
#> 3 3 0.864           0.910       0.951         0.4093 0.900   0.806
#> 4 4 0.554           0.867       0.879         0.1744 0.828   0.604
#> 5 5 0.918           0.882       0.937         0.1277 0.867   0.581
#> 6 6 0.746           0.766       0.832         0.0311 0.925   0.692

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1167072     1  0.7602      0.898 0.780 0.220
#> GSM1167073     1  0.7528      0.896 0.784 0.216
#> GSM1167074     2  0.0000      0.977 0.000 1.000
#> GSM1167075     1  0.8267      0.909 0.740 0.260
#> GSM1167076     1  0.8267      0.909 0.740 0.260
#> GSM1167077     2  0.0000      0.977 0.000 1.000
#> GSM1167078     1  0.8267      0.909 0.740 0.260
#> GSM1167079     2  0.0000      0.977 0.000 1.000
#> GSM1167080     1  0.8267      0.909 0.740 0.260
#> GSM1167081     2  0.0000      0.977 0.000 1.000
#> GSM1167082     1  0.2778      0.749 0.952 0.048
#> GSM1167083     2  0.0000      0.977 0.000 1.000
#> GSM1167084     1  0.8267      0.909 0.740 0.260
#> GSM1167085     2  0.0000      0.977 0.000 1.000
#> GSM1167086     1  0.7528      0.896 0.784 0.216
#> GSM1167087     1  0.0000      0.720 1.000 0.000
#> GSM1167088     1  0.7528      0.896 0.784 0.216
#> GSM1167089     1  0.9954      0.579 0.540 0.460
#> GSM1167090     1  0.8267      0.909 0.740 0.260
#> GSM1167091     1  0.8267      0.909 0.740 0.260
#> GSM1167092     1  0.8016      0.905 0.756 0.244
#> GSM1167093     2  0.0000      0.977 0.000 1.000
#> GSM1167094     1  0.7056      0.872 0.808 0.192
#> GSM1167095     2  0.0000      0.977 0.000 1.000
#> GSM1167096     1  0.7528      0.896 0.784 0.216
#> GSM1167097     1  0.8267      0.909 0.740 0.260
#> GSM1167098     1  0.9954      0.579 0.540 0.460
#> GSM1167099     1  0.8267      0.909 0.740 0.260
#> GSM1167100     2  0.0000      0.977 0.000 1.000
#> GSM1167101     2  0.0000      0.977 0.000 1.000
#> GSM1167122     1  0.8267      0.909 0.740 0.260
#> GSM1167102     2  0.0000      0.977 0.000 1.000
#> GSM1167103     2  0.0000      0.977 0.000 1.000
#> GSM1167104     1  0.7602      0.898 0.780 0.220
#> GSM1167105     2  0.0000      0.977 0.000 1.000
#> GSM1167106     1  0.0376      0.724 0.996 0.004
#> GSM1167107     2  0.0000      0.977 0.000 1.000
#> GSM1167108     1  0.0376      0.724 0.996 0.004
#> GSM1167109     2  0.0000      0.977 0.000 1.000
#> GSM1167110     1  0.8267      0.909 0.740 0.260
#> GSM1167111     2  0.0000      0.977 0.000 1.000
#> GSM1167112     2  0.0000      0.977 0.000 1.000
#> GSM1167113     1  0.8267      0.909 0.740 0.260
#> GSM1167114     1  0.8267      0.909 0.740 0.260
#> GSM1167115     2  0.0000      0.977 0.000 1.000
#> GSM1167116     1  0.8267      0.909 0.740 0.260
#> GSM1167117     2  0.0000      0.977 0.000 1.000
#> GSM1167118     1  0.8267      0.909 0.740 0.260
#> GSM1167119     1  0.0000      0.720 1.000 0.000
#> GSM1167120     2  0.0000      0.977 0.000 1.000
#> GSM1167121     2  0.9170      0.178 0.332 0.668
#> GSM1167123     1  0.8267      0.909 0.740 0.260

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1167072     1  0.0475      0.960 0.992 0.004 0.004
#> GSM1167073     1  0.0237      0.961 0.996 0.004 0.000
#> GSM1167074     2  0.4121      0.848 0.000 0.832 0.168
#> GSM1167075     1  0.0000      0.961 1.000 0.000 0.000
#> GSM1167076     3  0.4629      0.775 0.188 0.004 0.808
#> GSM1167077     2  0.1411      0.933 0.000 0.964 0.036
#> GSM1167078     1  0.1525      0.940 0.964 0.032 0.004
#> GSM1167079     2  0.0000      0.946 0.000 1.000 0.000
#> GSM1167080     1  0.0000      0.961 1.000 0.000 0.000
#> GSM1167081     2  0.0000      0.946 0.000 1.000 0.000
#> GSM1167082     1  0.0661      0.959 0.988 0.004 0.008
#> GSM1167083     2  0.2796      0.902 0.000 0.908 0.092
#> GSM1167084     1  0.0000      0.961 1.000 0.000 0.000
#> GSM1167085     2  0.4121      0.847 0.000 0.832 0.168
#> GSM1167086     1  0.0000      0.961 1.000 0.000 0.000
#> GSM1167087     1  0.0592      0.958 0.988 0.000 0.012
#> GSM1167088     1  0.0000      0.961 1.000 0.000 0.000
#> GSM1167089     3  0.2261      0.815 0.000 0.068 0.932
#> GSM1167090     1  0.2749      0.900 0.924 0.064 0.012
#> GSM1167091     1  0.0000      0.961 1.000 0.000 0.000
#> GSM1167092     1  0.1015      0.955 0.980 0.008 0.012
#> GSM1167093     2  0.4291      0.836 0.000 0.820 0.180
#> GSM1167094     1  0.0475      0.960 0.992 0.004 0.004
#> GSM1167095     2  0.0000      0.946 0.000 1.000 0.000
#> GSM1167096     1  0.0475      0.960 0.992 0.004 0.004
#> GSM1167097     1  0.0000      0.961 1.000 0.000 0.000
#> GSM1167098     1  0.7931      0.409 0.624 0.092 0.284
#> GSM1167099     1  0.0000      0.961 1.000 0.000 0.000
#> GSM1167100     2  0.4062      0.851 0.000 0.836 0.164
#> GSM1167101     2  0.3551      0.876 0.000 0.868 0.132
#> GSM1167122     3  0.2550      0.822 0.012 0.056 0.932
#> GSM1167102     2  0.0000      0.946 0.000 1.000 0.000
#> GSM1167103     2  0.0000      0.946 0.000 1.000 0.000
#> GSM1167104     1  0.0000      0.961 1.000 0.000 0.000
#> GSM1167105     2  0.0000      0.946 0.000 1.000 0.000
#> GSM1167106     1  0.0424      0.959 0.992 0.000 0.008
#> GSM1167107     2  0.0000      0.946 0.000 1.000 0.000
#> GSM1167108     1  0.0237      0.961 0.996 0.004 0.000
#> GSM1167109     2  0.0000      0.946 0.000 1.000 0.000
#> GSM1167110     1  0.5285      0.789 0.824 0.064 0.112
#> GSM1167111     2  0.0000      0.946 0.000 1.000 0.000
#> GSM1167112     2  0.0000      0.946 0.000 1.000 0.000
#> GSM1167113     1  0.2749      0.900 0.924 0.064 0.012
#> GSM1167114     1  0.1774      0.942 0.960 0.024 0.016
#> GSM1167115     2  0.0000      0.946 0.000 1.000 0.000
#> GSM1167116     1  0.1337      0.950 0.972 0.016 0.012
#> GSM1167117     2  0.0000      0.946 0.000 1.000 0.000
#> GSM1167118     1  0.0661      0.959 0.988 0.004 0.008
#> GSM1167119     1  0.0592      0.958 0.988 0.000 0.012
#> GSM1167120     2  0.0829      0.936 0.004 0.984 0.012
#> GSM1167121     3  0.4178      0.718 0.000 0.172 0.828
#> GSM1167123     3  0.4629      0.775 0.188 0.004 0.808

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1167072     3  0.4776      0.565 0.376 0.000 0.624 0.000
#> GSM1167073     1  0.3219      0.795 0.836 0.000 0.164 0.000
#> GSM1167074     2  0.3271      0.881 0.000 0.856 0.132 0.012
#> GSM1167075     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> GSM1167076     4  0.0524      0.853 0.008 0.000 0.004 0.988
#> GSM1167077     2  0.4230      0.801 0.008 0.776 0.212 0.004
#> GSM1167078     3  0.5624      0.854 0.148 0.128 0.724 0.000
#> GSM1167079     2  0.0000      0.932 0.000 1.000 0.000 0.000
#> GSM1167080     1  0.0188      0.935 0.996 0.000 0.004 0.000
#> GSM1167081     2  0.0000      0.932 0.000 1.000 0.000 0.000
#> GSM1167082     1  0.3801      0.776 0.780 0.000 0.220 0.000
#> GSM1167083     2  0.3217      0.883 0.000 0.860 0.128 0.012
#> GSM1167084     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> GSM1167085     2  0.3508      0.880 0.004 0.848 0.136 0.012
#> GSM1167086     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> GSM1167087     1  0.2760      0.875 0.872 0.000 0.128 0.000
#> GSM1167088     1  0.0188      0.935 0.996 0.000 0.004 0.000
#> GSM1167089     4  0.3659      0.830 0.000 0.136 0.024 0.840
#> GSM1167090     3  0.5926      0.855 0.132 0.132 0.724 0.012
#> GSM1167091     1  0.0921      0.929 0.972 0.000 0.028 0.000
#> GSM1167092     3  0.5436      0.837 0.176 0.092 0.732 0.000
#> GSM1167093     2  0.3501      0.878 0.000 0.848 0.132 0.020
#> GSM1167094     3  0.2921      0.766 0.140 0.000 0.860 0.000
#> GSM1167095     2  0.0336      0.932 0.008 0.992 0.000 0.000
#> GSM1167096     3  0.2973      0.767 0.144 0.000 0.856 0.000
#> GSM1167097     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> GSM1167098     3  0.5027      0.766 0.052 0.160 0.776 0.012
#> GSM1167099     1  0.0000      0.936 1.000 0.000 0.000 0.000
#> GSM1167100     2  0.3598      0.881 0.008 0.848 0.132 0.012
#> GSM1167101     2  0.3217      0.883 0.000 0.860 0.128 0.012
#> GSM1167122     4  0.3196      0.837 0.000 0.136 0.008 0.856
#> GSM1167102     2  0.0188      0.934 0.004 0.996 0.000 0.000
#> GSM1167103     2  0.0000      0.932 0.000 1.000 0.000 0.000
#> GSM1167104     1  0.0592      0.933 0.984 0.000 0.016 0.000
#> GSM1167105     2  0.0188      0.934 0.004 0.996 0.000 0.000
#> GSM1167106     1  0.0336      0.935 0.992 0.000 0.008 0.000
#> GSM1167107     2  0.0188      0.934 0.004 0.996 0.000 0.000
#> GSM1167108     3  0.3123      0.756 0.156 0.000 0.844 0.000
#> GSM1167109     2  0.0336      0.932 0.008 0.992 0.000 0.000
#> GSM1167110     3  0.5849      0.853 0.128 0.140 0.724 0.008
#> GSM1167111     2  0.0188      0.934 0.004 0.996 0.000 0.000
#> GSM1167112     2  0.0188      0.934 0.004 0.996 0.000 0.000
#> GSM1167113     3  0.6023      0.855 0.136 0.136 0.716 0.012
#> GSM1167114     3  0.5722      0.853 0.136 0.148 0.716 0.000
#> GSM1167115     2  0.0188      0.934 0.004 0.996 0.000 0.000
#> GSM1167116     3  0.5724      0.855 0.140 0.144 0.716 0.000
#> GSM1167117     2  0.0336      0.932 0.008 0.992 0.000 0.000
#> GSM1167118     1  0.3074      0.803 0.848 0.000 0.152 0.000
#> GSM1167119     1  0.2589      0.878 0.884 0.000 0.116 0.000
#> GSM1167120     3  0.4746      0.672 0.008 0.304 0.688 0.000
#> GSM1167121     3  0.3958      0.690 0.000 0.160 0.816 0.024
#> GSM1167123     4  0.0524      0.853 0.008 0.000 0.004 0.988

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1167072     4  0.3010      0.778 0.172 0.000 0.000 0.824 0.004
#> GSM1167073     4  0.4350      0.328 0.408 0.000 0.000 0.588 0.004
#> GSM1167074     2  0.0000      0.959 0.000 1.000 0.000 0.000 0.000
#> GSM1167075     1  0.0162      0.940 0.996 0.004 0.000 0.000 0.000
#> GSM1167076     3  0.0290      0.920 0.000 0.008 0.992 0.000 0.000
#> GSM1167077     4  0.5862      0.232 0.012 0.404 0.000 0.516 0.068
#> GSM1167078     4  0.1408      0.864 0.044 0.000 0.000 0.948 0.008
#> GSM1167079     5  0.1205      0.958 0.000 0.040 0.004 0.000 0.956
#> GSM1167080     1  0.0162      0.940 0.996 0.000 0.000 0.000 0.004
#> GSM1167081     5  0.1205      0.958 0.000 0.040 0.004 0.000 0.956
#> GSM1167082     1  0.3999      0.491 0.656 0.000 0.000 0.344 0.000
#> GSM1167083     2  0.0000      0.959 0.000 1.000 0.000 0.000 0.000
#> GSM1167084     1  0.0000      0.941 1.000 0.000 0.000 0.000 0.000
#> GSM1167085     2  0.1404      0.963 0.008 0.956 0.004 0.004 0.028
#> GSM1167086     1  0.0000      0.941 1.000 0.000 0.000 0.000 0.000
#> GSM1167087     1  0.2471      0.850 0.864 0.000 0.000 0.136 0.000
#> GSM1167088     1  0.0162      0.940 0.996 0.000 0.000 0.000 0.004
#> GSM1167089     3  0.3484      0.814 0.000 0.152 0.820 0.004 0.024
#> GSM1167090     4  0.1631      0.870 0.020 0.004 0.004 0.948 0.024
#> GSM1167091     1  0.0671      0.933 0.980 0.000 0.004 0.016 0.000
#> GSM1167092     4  0.1493      0.871 0.028 0.000 0.000 0.948 0.024
#> GSM1167093     2  0.1356      0.963 0.000 0.956 0.012 0.004 0.028
#> GSM1167094     4  0.0290      0.861 0.008 0.000 0.000 0.992 0.000
#> GSM1167095     5  0.0162      0.981 0.000 0.000 0.004 0.000 0.996
#> GSM1167096     4  0.0324      0.862 0.004 0.000 0.000 0.992 0.004
#> GSM1167097     1  0.0000      0.941 1.000 0.000 0.000 0.000 0.000
#> GSM1167098     4  0.3538      0.785 0.008 0.124 0.004 0.836 0.028
#> GSM1167099     1  0.0290      0.939 0.992 0.000 0.000 0.000 0.008
#> GSM1167100     2  0.1281      0.959 0.012 0.956 0.000 0.000 0.032
#> GSM1167101     2  0.0162      0.961 0.000 0.996 0.000 0.000 0.004
#> GSM1167122     3  0.1822      0.912 0.000 0.036 0.936 0.004 0.024
#> GSM1167102     5  0.0324      0.982 0.004 0.000 0.004 0.000 0.992
#> GSM1167103     5  0.1043      0.960 0.000 0.040 0.000 0.000 0.960
#> GSM1167104     1  0.0324      0.940 0.992 0.000 0.000 0.004 0.004
#> GSM1167105     5  0.0324      0.982 0.004 0.000 0.004 0.000 0.992
#> GSM1167106     1  0.0880      0.929 0.968 0.000 0.000 0.032 0.000
#> GSM1167107     5  0.0162      0.983 0.000 0.000 0.004 0.000 0.996
#> GSM1167108     4  0.0404      0.860 0.012 0.000 0.000 0.988 0.000
#> GSM1167109     5  0.0162      0.982 0.000 0.004 0.000 0.000 0.996
#> GSM1167110     4  0.1554      0.866 0.008 0.004 0.012 0.952 0.024
#> GSM1167111     5  0.0000      0.983 0.000 0.000 0.000 0.000 1.000
#> GSM1167112     5  0.0324      0.982 0.004 0.000 0.004 0.000 0.992
#> GSM1167113     4  0.1631      0.870 0.020 0.004 0.004 0.948 0.024
#> GSM1167114     4  0.1443      0.866 0.004 0.000 0.004 0.948 0.044
#> GSM1167115     5  0.0162      0.983 0.000 0.000 0.004 0.000 0.996
#> GSM1167116     4  0.1493      0.870 0.024 0.000 0.000 0.948 0.028
#> GSM1167117     5  0.0000      0.983 0.000 0.000 0.000 0.000 1.000
#> GSM1167118     4  0.4178      0.607 0.292 0.000 0.004 0.696 0.008
#> GSM1167119     1  0.1732      0.902 0.920 0.000 0.000 0.080 0.000
#> GSM1167120     4  0.1831      0.848 0.000 0.000 0.004 0.920 0.076
#> GSM1167121     2  0.1356      0.963 0.000 0.956 0.012 0.004 0.028
#> GSM1167123     3  0.0290      0.920 0.000 0.008 0.992 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1167072     4  0.3383      0.678 0.268 0.000 0.000 0.728 0.004 0.000
#> GSM1167073     1  0.4041      0.256 0.584 0.000 0.000 0.408 0.004 0.004
#> GSM1167074     2  0.1297      0.920 0.000 0.948 0.000 0.000 0.040 0.012
#> GSM1167075     6  0.4331      0.974 0.444 0.008 0.004 0.000 0.004 0.540
#> GSM1167076     3  0.0000      0.906 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1167077     4  0.4802      0.727 0.008 0.132 0.000 0.728 0.112 0.020
#> GSM1167078     4  0.3306      0.838 0.076 0.012 0.000 0.852 0.040 0.020
#> GSM1167079     5  0.3670      0.815 0.000 0.012 0.000 0.000 0.704 0.284
#> GSM1167080     6  0.4072      0.987 0.448 0.000 0.000 0.008 0.000 0.544
#> GSM1167081     5  0.3670      0.815 0.000 0.012 0.000 0.000 0.704 0.284
#> GSM1167082     1  0.4107      0.556 0.756 0.000 0.000 0.148 0.004 0.092
#> GSM1167083     2  0.1297      0.920 0.000 0.948 0.000 0.000 0.040 0.012
#> GSM1167084     1  0.2695      0.430 0.844 0.000 0.000 0.008 0.004 0.144
#> GSM1167085     2  0.1477      0.920 0.004 0.940 0.000 0.008 0.048 0.000
#> GSM1167086     1  0.2355      0.498 0.876 0.000 0.000 0.008 0.004 0.112
#> GSM1167087     1  0.3328      0.580 0.816 0.000 0.000 0.064 0.000 0.120
#> GSM1167088     6  0.4072      0.987 0.448 0.000 0.000 0.008 0.000 0.544
#> GSM1167089     3  0.2772      0.847 0.000 0.180 0.816 0.000 0.000 0.004
#> GSM1167090     4  0.1481      0.846 0.012 0.008 0.004 0.952 0.016 0.008
#> GSM1167091     1  0.0862      0.595 0.972 0.000 0.000 0.016 0.004 0.008
#> GSM1167092     4  0.0993      0.846 0.024 0.000 0.000 0.964 0.012 0.000
#> GSM1167093     2  0.1686      0.920 0.000 0.932 0.004 0.008 0.052 0.004
#> GSM1167094     4  0.4418      0.657 0.192 0.000 0.000 0.708 0.000 0.100
#> GSM1167095     5  0.3121      0.860 0.004 0.000 0.000 0.008 0.796 0.192
#> GSM1167096     4  0.4199      0.695 0.164 0.000 0.000 0.736 0.000 0.100
#> GSM1167097     1  0.2400      0.491 0.872 0.000 0.000 0.008 0.004 0.116
#> GSM1167098     4  0.3665      0.771 0.000 0.140 0.008 0.804 0.040 0.008
#> GSM1167099     1  0.2003      0.509 0.884 0.000 0.000 0.000 0.000 0.116
#> GSM1167100     2  0.2037      0.913 0.008 0.916 0.000 0.008 0.060 0.008
#> GSM1167101     2  0.1297      0.920 0.000 0.948 0.000 0.000 0.040 0.012
#> GSM1167122     3  0.2146      0.899 0.000 0.116 0.880 0.000 0.000 0.004
#> GSM1167102     5  0.0405      0.892 0.000 0.000 0.000 0.004 0.988 0.008
#> GSM1167103     5  0.2203      0.865 0.000 0.016 0.000 0.004 0.896 0.084
#> GSM1167104     1  0.1957      0.511 0.888 0.000 0.000 0.000 0.000 0.112
#> GSM1167105     5  0.0508      0.891 0.000 0.000 0.000 0.004 0.984 0.012
#> GSM1167106     1  0.1498      0.604 0.940 0.000 0.000 0.032 0.000 0.028
#> GSM1167107     5  0.0363      0.892 0.000 0.000 0.000 0.000 0.988 0.012
#> GSM1167108     1  0.5121      0.373 0.568 0.000 0.000 0.332 0.000 0.100
#> GSM1167109     5  0.0603      0.893 0.004 0.000 0.000 0.000 0.980 0.016
#> GSM1167110     4  0.1312      0.842 0.004 0.020 0.008 0.956 0.012 0.000
#> GSM1167111     5  0.3121      0.860 0.004 0.000 0.000 0.008 0.796 0.192
#> GSM1167112     5  0.0405      0.892 0.000 0.000 0.000 0.004 0.988 0.008
#> GSM1167113     4  0.1138      0.848 0.012 0.004 0.000 0.960 0.024 0.000
#> GSM1167114     4  0.4085      0.803 0.092 0.000 0.000 0.780 0.108 0.020
#> GSM1167115     5  0.0146      0.893 0.000 0.000 0.000 0.000 0.996 0.004
#> GSM1167116     4  0.2468      0.846 0.060 0.000 0.000 0.888 0.048 0.004
#> GSM1167117     5  0.3121      0.860 0.004 0.000 0.000 0.008 0.796 0.192
#> GSM1167118     1  0.3315      0.535 0.780 0.000 0.000 0.200 0.000 0.020
#> GSM1167119     1  0.3270      0.580 0.820 0.000 0.000 0.060 0.000 0.120
#> GSM1167120     4  0.2809      0.813 0.004 0.000 0.000 0.848 0.128 0.020
#> GSM1167121     2  0.4363      0.683 0.000 0.732 0.008 0.204 0.044 0.012
#> GSM1167123     3  0.0000      0.906 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> MAD:mclust 51           0.3304 2
#> MAD:mclust 51           0.5747 3
#> MAD:mclust 52           0.4774 4
#> MAD:mclust 49           0.0445 5
#> MAD:mclust 47           0.0634 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.843           0.881       0.952         0.5046 0.493   0.493
#> 3 3 0.826           0.846       0.936         0.2750 0.806   0.624
#> 4 4 0.613           0.448       0.697         0.1370 0.836   0.569
#> 5 5 0.537           0.496       0.726         0.0730 0.842   0.508
#> 6 6 0.563           0.418       0.681         0.0461 0.874   0.526

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1167072     1   0.000      0.968 1.000 0.000
#> GSM1167073     1   0.000      0.968 1.000 0.000
#> GSM1167074     2   0.000      0.928 0.000 1.000
#> GSM1167075     1   0.000      0.968 1.000 0.000
#> GSM1167076     1   0.000      0.968 1.000 0.000
#> GSM1167077     2   0.000      0.928 0.000 1.000
#> GSM1167078     2   0.939      0.489 0.356 0.644
#> GSM1167079     2   0.000      0.928 0.000 1.000
#> GSM1167080     1   0.000      0.968 1.000 0.000
#> GSM1167081     2   0.000      0.928 0.000 1.000
#> GSM1167082     1   0.000      0.968 1.000 0.000
#> GSM1167083     2   0.000      0.928 0.000 1.000
#> GSM1167084     1   0.000      0.968 1.000 0.000
#> GSM1167085     2   0.000      0.928 0.000 1.000
#> GSM1167086     1   0.000      0.968 1.000 0.000
#> GSM1167087     1   0.000      0.968 1.000 0.000
#> GSM1167088     1   0.000      0.968 1.000 0.000
#> GSM1167089     2   0.204      0.905 0.032 0.968
#> GSM1167090     2   0.999      0.147 0.480 0.520
#> GSM1167091     1   0.000      0.968 1.000 0.000
#> GSM1167092     1   0.358      0.901 0.932 0.068
#> GSM1167093     2   0.000      0.928 0.000 1.000
#> GSM1167094     1   0.000      0.968 1.000 0.000
#> GSM1167095     2   0.000      0.928 0.000 1.000
#> GSM1167096     1   0.000      0.968 1.000 0.000
#> GSM1167097     1   0.000      0.968 1.000 0.000
#> GSM1167098     2   0.118      0.917 0.016 0.984
#> GSM1167099     1   0.000      0.968 1.000 0.000
#> GSM1167100     2   0.000      0.928 0.000 1.000
#> GSM1167101     2   0.000      0.928 0.000 1.000
#> GSM1167122     1   0.730      0.724 0.796 0.204
#> GSM1167102     2   0.000      0.928 0.000 1.000
#> GSM1167103     2   0.000      0.928 0.000 1.000
#> GSM1167104     1   0.000      0.968 1.000 0.000
#> GSM1167105     2   0.000      0.928 0.000 1.000
#> GSM1167106     1   0.000      0.968 1.000 0.000
#> GSM1167107     2   0.000      0.928 0.000 1.000
#> GSM1167108     1   0.000      0.968 1.000 0.000
#> GSM1167109     2   0.000      0.928 0.000 1.000
#> GSM1167110     1   0.966      0.289 0.608 0.392
#> GSM1167111     2   0.000      0.928 0.000 1.000
#> GSM1167112     2   0.000      0.928 0.000 1.000
#> GSM1167113     2   0.983      0.318 0.424 0.576
#> GSM1167114     2   0.795      0.686 0.240 0.760
#> GSM1167115     2   0.000      0.928 0.000 1.000
#> GSM1167116     2   0.876      0.601 0.296 0.704
#> GSM1167117     2   0.000      0.928 0.000 1.000
#> GSM1167118     1   0.000      0.968 1.000 0.000
#> GSM1167119     1   0.000      0.968 1.000 0.000
#> GSM1167120     2   0.000      0.928 0.000 1.000
#> GSM1167121     2   0.000      0.928 0.000 1.000
#> GSM1167123     1   0.000      0.968 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1167072     1  0.0000    0.98419 1.000 0.000 0.000
#> GSM1167073     1  0.0000    0.98419 1.000 0.000 0.000
#> GSM1167074     3  0.3482    0.79151 0.000 0.128 0.872
#> GSM1167075     3  0.6307    0.00574 0.488 0.000 0.512
#> GSM1167076     3  0.0237    0.86876 0.004 0.000 0.996
#> GSM1167077     2  0.0000    0.89086 0.000 1.000 0.000
#> GSM1167078     2  0.5882    0.54074 0.348 0.652 0.000
#> GSM1167079     2  0.0000    0.89086 0.000 1.000 0.000
#> GSM1167080     1  0.0000    0.98419 1.000 0.000 0.000
#> GSM1167081     2  0.0000    0.89086 0.000 1.000 0.000
#> GSM1167082     1  0.0000    0.98419 1.000 0.000 0.000
#> GSM1167083     2  0.0592    0.88429 0.000 0.988 0.012
#> GSM1167084     1  0.0000    0.98419 1.000 0.000 0.000
#> GSM1167085     3  0.6180    0.26275 0.000 0.416 0.584
#> GSM1167086     1  0.0000    0.98419 1.000 0.000 0.000
#> GSM1167087     1  0.0000    0.98419 1.000 0.000 0.000
#> GSM1167088     1  0.0000    0.98419 1.000 0.000 0.000
#> GSM1167089     3  0.0000    0.86916 0.000 0.000 1.000
#> GSM1167090     2  0.6252    0.32100 0.444 0.556 0.000
#> GSM1167091     1  0.0000    0.98419 1.000 0.000 0.000
#> GSM1167092     1  0.6911    0.62696 0.728 0.092 0.180
#> GSM1167093     3  0.0000    0.86916 0.000 0.000 1.000
#> GSM1167094     1  0.0000    0.98419 1.000 0.000 0.000
#> GSM1167095     2  0.0000    0.89086 0.000 1.000 0.000
#> GSM1167096     1  0.0000    0.98419 1.000 0.000 0.000
#> GSM1167097     1  0.0000    0.98419 1.000 0.000 0.000
#> GSM1167098     3  0.2448    0.83837 0.000 0.076 0.924
#> GSM1167099     1  0.0000    0.98419 1.000 0.000 0.000
#> GSM1167100     2  0.2711    0.82268 0.000 0.912 0.088
#> GSM1167101     2  0.0747    0.88180 0.000 0.984 0.016
#> GSM1167122     3  0.0000    0.86916 0.000 0.000 1.000
#> GSM1167102     2  0.0000    0.89086 0.000 1.000 0.000
#> GSM1167103     2  0.0000    0.89086 0.000 1.000 0.000
#> GSM1167104     1  0.0000    0.98419 1.000 0.000 0.000
#> GSM1167105     2  0.0000    0.89086 0.000 1.000 0.000
#> GSM1167106     1  0.0000    0.98419 1.000 0.000 0.000
#> GSM1167107     2  0.0000    0.89086 0.000 1.000 0.000
#> GSM1167108     1  0.0000    0.98419 1.000 0.000 0.000
#> GSM1167109     2  0.0000    0.89086 0.000 1.000 0.000
#> GSM1167110     3  0.3472    0.83745 0.056 0.040 0.904
#> GSM1167111     2  0.0000    0.89086 0.000 1.000 0.000
#> GSM1167112     2  0.0000    0.89086 0.000 1.000 0.000
#> GSM1167113     2  0.6140    0.42575 0.404 0.596 0.000
#> GSM1167114     2  0.4605    0.71831 0.204 0.796 0.000
#> GSM1167115     2  0.0000    0.89086 0.000 1.000 0.000
#> GSM1167116     2  0.5497    0.62692 0.292 0.708 0.000
#> GSM1167117     2  0.0000    0.89086 0.000 1.000 0.000
#> GSM1167118     1  0.0000    0.98419 1.000 0.000 0.000
#> GSM1167119     1  0.0000    0.98419 1.000 0.000 0.000
#> GSM1167120     2  0.0000    0.89086 0.000 1.000 0.000
#> GSM1167121     3  0.0000    0.86916 0.000 0.000 1.000
#> GSM1167123     3  0.0892    0.86439 0.020 0.000 0.980

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1167072     1  0.5294    -0.3248 0.508 0.000 0.008 0.484
#> GSM1167073     4  0.5132     0.3710 0.448 0.000 0.004 0.548
#> GSM1167074     3  0.7497     0.4279 0.000 0.240 0.500 0.260
#> GSM1167075     4  0.6350     0.3940 0.364 0.000 0.072 0.564
#> GSM1167076     3  0.0779     0.8235 0.016 0.000 0.980 0.004
#> GSM1167077     2  0.1807     0.8281 0.000 0.940 0.008 0.052
#> GSM1167078     4  0.4415     0.2817 0.056 0.140 0.000 0.804
#> GSM1167079     2  0.1389     0.8317 0.000 0.952 0.000 0.048
#> GSM1167080     4  0.4898     0.4184 0.416 0.000 0.000 0.584
#> GSM1167081     2  0.1118     0.8352 0.000 0.964 0.000 0.036
#> GSM1167082     1  0.4877    -0.1513 0.592 0.000 0.000 0.408
#> GSM1167083     2  0.5231     0.4837 0.000 0.604 0.012 0.384
#> GSM1167084     4  0.4961     0.3780 0.448 0.000 0.000 0.552
#> GSM1167085     3  0.6177     0.0476 0.004 0.468 0.488 0.040
#> GSM1167086     4  0.3444     0.4391 0.184 0.000 0.000 0.816
#> GSM1167087     1  0.1474     0.3660 0.948 0.000 0.000 0.052
#> GSM1167088     4  0.2408     0.4097 0.104 0.000 0.000 0.896
#> GSM1167089     3  0.0188     0.8245 0.000 0.000 0.996 0.004
#> GSM1167090     4  0.7512     0.1048 0.248 0.204 0.008 0.540
#> GSM1167091     4  0.5203     0.4106 0.416 0.000 0.008 0.576
#> GSM1167092     1  0.7177     0.2334 0.656 0.076 0.180 0.088
#> GSM1167093     3  0.0672     0.8251 0.000 0.008 0.984 0.008
#> GSM1167094     1  0.3432     0.3183 0.848 0.004 0.008 0.140
#> GSM1167095     2  0.1109     0.8374 0.004 0.968 0.000 0.028
#> GSM1167096     1  0.1943     0.3629 0.944 0.016 0.008 0.032
#> GSM1167097     1  0.4985    -0.3100 0.532 0.000 0.000 0.468
#> GSM1167098     3  0.5062     0.7390 0.016 0.032 0.760 0.192
#> GSM1167099     4  0.5000     0.2598 0.496 0.000 0.000 0.504
#> GSM1167100     2  0.5112     0.4875 0.000 0.608 0.008 0.384
#> GSM1167101     2  0.2329     0.8182 0.000 0.916 0.012 0.072
#> GSM1167122     3  0.1109     0.8229 0.004 0.000 0.968 0.028
#> GSM1167102     2  0.2271     0.8192 0.076 0.916 0.000 0.008
#> GSM1167103     2  0.1557     0.8329 0.000 0.944 0.000 0.056
#> GSM1167104     1  0.4992    -0.3002 0.524 0.000 0.000 0.476
#> GSM1167105     2  0.2489     0.8206 0.068 0.912 0.000 0.020
#> GSM1167106     1  0.4977    -0.2610 0.540 0.000 0.000 0.460
#> GSM1167107     2  0.1362     0.8369 0.012 0.964 0.004 0.020
#> GSM1167108     1  0.0817     0.3694 0.976 0.000 0.000 0.024
#> GSM1167109     2  0.0000     0.8386 0.000 1.000 0.000 0.000
#> GSM1167110     3  0.5686     0.6793 0.188 0.040 0.736 0.036
#> GSM1167111     2  0.3681     0.7509 0.176 0.816 0.000 0.008
#> GSM1167112     2  0.2988     0.7894 0.112 0.876 0.000 0.012
#> GSM1167113     1  0.6179    -0.1169 0.552 0.392 0.000 0.056
#> GSM1167114     1  0.5167    -0.3365 0.508 0.488 0.000 0.004
#> GSM1167115     2  0.1247     0.8365 0.012 0.968 0.004 0.016
#> GSM1167116     2  0.6929     0.1402 0.444 0.448 0.000 0.108
#> GSM1167117     2  0.1059     0.8388 0.016 0.972 0.000 0.012
#> GSM1167118     1  0.5147    -0.2787 0.536 0.004 0.000 0.460
#> GSM1167119     1  0.2345     0.3468 0.900 0.000 0.000 0.100
#> GSM1167120     2  0.5339     0.4845 0.384 0.600 0.000 0.016
#> GSM1167121     3  0.1396     0.8209 0.004 0.004 0.960 0.032
#> GSM1167123     3  0.2021     0.8135 0.024 0.000 0.936 0.040

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1167072     1  0.3302     0.7399 0.864 0.000 0.044 0.072 0.020
#> GSM1167073     1  0.1267     0.7575 0.960 0.000 0.012 0.004 0.024
#> GSM1167074     3  0.6620     0.2091 0.000 0.352 0.452 0.004 0.192
#> GSM1167075     1  0.7997     0.1021 0.400 0.000 0.208 0.104 0.288
#> GSM1167076     3  0.1915     0.6831 0.000 0.000 0.928 0.040 0.032
#> GSM1167077     2  0.3087     0.6418 0.008 0.836 0.000 0.004 0.152
#> GSM1167078     5  0.4996     0.3996 0.280 0.052 0.000 0.004 0.664
#> GSM1167079     2  0.3675     0.6490 0.000 0.788 0.000 0.024 0.188
#> GSM1167080     1  0.2563     0.7009 0.872 0.000 0.000 0.008 0.120
#> GSM1167081     2  0.4779     0.6275 0.000 0.716 0.000 0.084 0.200
#> GSM1167082     1  0.3269     0.7288 0.852 0.000 0.020 0.112 0.016
#> GSM1167083     5  0.4494    -0.1442 0.000 0.380 0.000 0.012 0.608
#> GSM1167084     1  0.1478     0.7413 0.936 0.000 0.000 0.000 0.064
#> GSM1167085     2  0.6348     0.1154 0.004 0.532 0.348 0.016 0.100
#> GSM1167086     1  0.4450    -0.1300 0.508 0.000 0.000 0.004 0.488
#> GSM1167087     4  0.4751     0.5051 0.264 0.000 0.008 0.692 0.036
#> GSM1167088     5  0.4446    -0.0356 0.476 0.000 0.000 0.004 0.520
#> GSM1167089     3  0.2513     0.6733 0.000 0.000 0.876 0.008 0.116
#> GSM1167090     5  0.8160     0.1798 0.080 0.144 0.052 0.220 0.504
#> GSM1167091     1  0.4587     0.6468 0.760 0.000 0.024 0.044 0.172
#> GSM1167092     4  0.8272     0.2389 0.204 0.016 0.252 0.428 0.100
#> GSM1167093     3  0.2352     0.6893 0.000 0.048 0.912 0.008 0.032
#> GSM1167094     4  0.3838     0.5694 0.136 0.004 0.036 0.816 0.008
#> GSM1167095     2  0.5664     0.5897 0.000 0.632 0.000 0.168 0.200
#> GSM1167096     4  0.3197     0.5682 0.076 0.008 0.052 0.864 0.000
#> GSM1167097     1  0.5055     0.6325 0.720 0.000 0.008 0.160 0.112
#> GSM1167098     3  0.7352    -0.0101 0.000 0.024 0.356 0.308 0.312
#> GSM1167099     1  0.0290     0.7613 0.992 0.000 0.000 0.008 0.000
#> GSM1167100     2  0.4940     0.4026 0.012 0.584 0.008 0.004 0.392
#> GSM1167101     2  0.3252     0.6639 0.000 0.828 0.008 0.008 0.156
#> GSM1167122     3  0.0671     0.6923 0.000 0.000 0.980 0.016 0.004
#> GSM1167102     2  0.5811     0.5857 0.000 0.596 0.000 0.264 0.140
#> GSM1167103     2  0.0609     0.6794 0.000 0.980 0.000 0.000 0.020
#> GSM1167104     1  0.0955     0.7607 0.968 0.000 0.000 0.028 0.004
#> GSM1167105     2  0.4400     0.6147 0.000 0.736 0.000 0.212 0.052
#> GSM1167106     1  0.0992     0.7602 0.968 0.000 0.000 0.024 0.008
#> GSM1167107     2  0.2434     0.6641 0.000 0.908 0.008 0.036 0.048
#> GSM1167108     1  0.5332     0.4514 0.676 0.020 0.004 0.252 0.048
#> GSM1167109     2  0.3459     0.6785 0.000 0.832 0.000 0.052 0.116
#> GSM1167110     3  0.8103     0.3787 0.088 0.272 0.476 0.036 0.128
#> GSM1167111     4  0.6186    -0.2034 0.000 0.336 0.000 0.512 0.152
#> GSM1167112     2  0.3556     0.6793 0.000 0.828 0.008 0.132 0.032
#> GSM1167113     2  0.8271     0.1923 0.240 0.492 0.076 0.120 0.072
#> GSM1167114     4  0.3010     0.4724 0.008 0.116 0.000 0.860 0.016
#> GSM1167115     2  0.1673     0.6738 0.000 0.944 0.008 0.016 0.032
#> GSM1167116     2  0.6791     0.4328 0.136 0.628 0.008 0.136 0.092
#> GSM1167117     2  0.6303     0.4936 0.000 0.524 0.000 0.280 0.196
#> GSM1167118     1  0.2228     0.7420 0.912 0.012 0.000 0.068 0.008
#> GSM1167119     4  0.5066     0.3742 0.344 0.000 0.000 0.608 0.048
#> GSM1167120     2  0.6334     0.4915 0.040 0.604 0.000 0.248 0.108
#> GSM1167121     3  0.4509     0.6269 0.000 0.152 0.752 0.000 0.096
#> GSM1167123     3  0.1862     0.6788 0.004 0.000 0.932 0.048 0.016

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1167072     1  0.6106    0.50526 0.648 0.000 0.128 0.052 0.132 0.040
#> GSM1167073     1  0.1863    0.74724 0.920 0.004 0.016 0.000 0.000 0.060
#> GSM1167074     2  0.7199    0.10521 0.000 0.348 0.296 0.000 0.084 0.272
#> GSM1167075     6  0.7846   -0.00919 0.100 0.000 0.168 0.076 0.200 0.456
#> GSM1167076     3  0.3078    0.71438 0.000 0.000 0.860 0.028 0.048 0.064
#> GSM1167077     2  0.3388    0.52572 0.000 0.804 0.000 0.004 0.036 0.156
#> GSM1167078     6  0.4622    0.38454 0.164 0.020 0.000 0.000 0.092 0.724
#> GSM1167079     5  0.4051    0.28744 0.000 0.432 0.000 0.000 0.560 0.008
#> GSM1167080     1  0.2669    0.68345 0.836 0.000 0.000 0.000 0.008 0.156
#> GSM1167081     5  0.3684    0.44136 0.000 0.332 0.000 0.004 0.664 0.000
#> GSM1167082     1  0.3334    0.72109 0.852 0.000 0.052 0.064 0.020 0.012
#> GSM1167083     6  0.5979   -0.19789 0.000 0.192 0.004 0.000 0.392 0.412
#> GSM1167084     1  0.2020    0.73973 0.896 0.000 0.000 0.000 0.008 0.096
#> GSM1167085     2  0.6089    0.41162 0.000 0.592 0.160 0.000 0.064 0.184
#> GSM1167086     6  0.4098    0.00598 0.444 0.000 0.000 0.004 0.004 0.548
#> GSM1167087     4  0.6768    0.40078 0.208 0.000 0.004 0.528 0.152 0.108
#> GSM1167088     6  0.4107    0.06534 0.452 0.004 0.000 0.000 0.004 0.540
#> GSM1167089     3  0.3886    0.62500 0.000 0.000 0.708 0.000 0.028 0.264
#> GSM1167090     6  0.6498    0.04446 0.020 0.252 0.000 0.248 0.008 0.472
#> GSM1167091     1  0.4874    0.57820 0.696 0.000 0.036 0.028 0.016 0.224
#> GSM1167092     5  0.8148   -0.21576 0.092 0.000 0.132 0.156 0.424 0.196
#> GSM1167093     3  0.2649    0.73837 0.000 0.052 0.884 0.000 0.016 0.048
#> GSM1167094     4  0.4288    0.57370 0.120 0.020 0.036 0.792 0.012 0.020
#> GSM1167095     5  0.4009    0.47214 0.000 0.288 0.000 0.028 0.684 0.000
#> GSM1167096     4  0.4298    0.57484 0.028 0.000 0.100 0.784 0.076 0.012
#> GSM1167097     1  0.7334    0.24073 0.488 0.000 0.020 0.156 0.144 0.192
#> GSM1167098     5  0.6793   -0.04399 0.000 0.008 0.336 0.092 0.460 0.104
#> GSM1167099     1  0.0862    0.75907 0.972 0.000 0.000 0.004 0.016 0.008
#> GSM1167100     2  0.6178   -0.07391 0.000 0.396 0.004 0.000 0.336 0.264
#> GSM1167101     2  0.4843    0.28106 0.000 0.664 0.060 0.000 0.256 0.020
#> GSM1167122     3  0.0837    0.76247 0.004 0.000 0.972 0.004 0.020 0.000
#> GSM1167102     5  0.6281    0.25851 0.000 0.308 0.000 0.284 0.400 0.008
#> GSM1167103     2  0.1196    0.54756 0.000 0.952 0.000 0.000 0.040 0.008
#> GSM1167104     1  0.1485    0.75525 0.944 0.000 0.000 0.004 0.024 0.028
#> GSM1167105     2  0.4572    0.45017 0.000 0.692 0.000 0.244 0.032 0.032
#> GSM1167106     1  0.1579    0.75275 0.944 0.008 0.000 0.004 0.024 0.020
#> GSM1167107     2  0.0964    0.55904 0.000 0.968 0.000 0.012 0.016 0.004
#> GSM1167108     1  0.5153    0.61056 0.724 0.012 0.032 0.164 0.036 0.032
#> GSM1167109     2  0.3101    0.35802 0.000 0.756 0.000 0.000 0.244 0.000
#> GSM1167110     2  0.6726    0.20435 0.100 0.528 0.288 0.004 0.044 0.036
#> GSM1167111     4  0.5337    0.19976 0.000 0.164 0.000 0.608 0.224 0.004
#> GSM1167112     2  0.3579    0.51795 0.000 0.816 0.016 0.108 0.060 0.000
#> GSM1167113     2  0.7175    0.25669 0.304 0.480 0.120 0.012 0.052 0.032
#> GSM1167114     4  0.2007    0.57328 0.000 0.044 0.000 0.916 0.036 0.004
#> GSM1167115     2  0.2151    0.53088 0.000 0.904 0.008 0.000 0.072 0.016
#> GSM1167116     2  0.5848    0.42544 0.120 0.680 0.000 0.044 0.096 0.060
#> GSM1167117     5  0.4918    0.47524 0.000 0.232 0.000 0.124 0.644 0.000
#> GSM1167118     1  0.3025    0.72870 0.856 0.004 0.000 0.092 0.008 0.040
#> GSM1167119     4  0.6496    0.43895 0.184 0.004 0.004 0.580 0.096 0.132
#> GSM1167120     5  0.7346    0.22110 0.072 0.312 0.000 0.052 0.448 0.116
#> GSM1167121     3  0.5092    0.25943 0.000 0.376 0.560 0.000 0.036 0.028
#> GSM1167123     3  0.1905    0.74878 0.020 0.000 0.932 0.016 0.020 0.012

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) k
#> MAD:NMF 48           0.1239 2
#> MAD:NMF 48           0.0878 3
#> MAD:NMF 22           0.4421 4
#> MAD:NMF 32           0.2072 5
#> MAD:NMF 24           0.2405 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.573           0.875       0.920         0.4742 0.527   0.527
#> 3 3 0.636           0.854       0.889         0.3737 0.796   0.614
#> 4 4 0.815           0.854       0.921         0.1234 0.923   0.770
#> 5 5 0.787           0.720       0.831         0.0627 0.935   0.764
#> 6 6 0.804           0.736       0.808         0.0403 0.941   0.759

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1167072     1   0.443      0.874 0.908 0.092
#> GSM1167073     1   0.000      0.991 1.000 0.000
#> GSM1167074     2   0.000      0.864 0.000 1.000
#> GSM1167075     1   0.000      0.991 1.000 0.000
#> GSM1167076     1   0.000      0.991 1.000 0.000
#> GSM1167077     2   0.767      0.805 0.224 0.776
#> GSM1167078     2   0.775      0.802 0.228 0.772
#> GSM1167079     2   0.000      0.864 0.000 1.000
#> GSM1167080     1   0.000      0.991 1.000 0.000
#> GSM1167081     2   0.000      0.864 0.000 1.000
#> GSM1167082     1   0.000      0.991 1.000 0.000
#> GSM1167083     2   0.000      0.864 0.000 1.000
#> GSM1167084     1   0.000      0.991 1.000 0.000
#> GSM1167085     2   0.000      0.864 0.000 1.000
#> GSM1167086     1   0.000      0.991 1.000 0.000
#> GSM1167087     1   0.000      0.991 1.000 0.000
#> GSM1167088     1   0.000      0.991 1.000 0.000
#> GSM1167089     2   0.714      0.819 0.196 0.804
#> GSM1167090     2   0.767      0.805 0.224 0.776
#> GSM1167091     1   0.000      0.991 1.000 0.000
#> GSM1167092     2   0.833      0.771 0.264 0.736
#> GSM1167093     2   0.000      0.864 0.000 1.000
#> GSM1167094     2   0.917      0.687 0.332 0.668
#> GSM1167095     2   0.000      0.864 0.000 1.000
#> GSM1167096     2   0.917      0.687 0.332 0.668
#> GSM1167097     1   0.000      0.991 1.000 0.000
#> GSM1167098     2   0.767      0.805 0.224 0.776
#> GSM1167099     1   0.000      0.991 1.000 0.000
#> GSM1167100     2   0.327      0.854 0.060 0.940
#> GSM1167101     2   0.000      0.864 0.000 1.000
#> GSM1167122     2   0.714      0.819 0.196 0.804
#> GSM1167102     2   0.000      0.864 0.000 1.000
#> GSM1167103     2   0.000      0.864 0.000 1.000
#> GSM1167104     1   0.000      0.991 1.000 0.000
#> GSM1167105     2   0.000      0.864 0.000 1.000
#> GSM1167106     1   0.000      0.991 1.000 0.000
#> GSM1167107     2   0.000      0.864 0.000 1.000
#> GSM1167108     1   0.204      0.956 0.968 0.032
#> GSM1167109     2   0.000      0.864 0.000 1.000
#> GSM1167110     2   0.994      0.430 0.456 0.544
#> GSM1167111     2   0.000      0.864 0.000 1.000
#> GSM1167112     2   0.000      0.864 0.000 1.000
#> GSM1167113     2   0.917      0.687 0.332 0.668
#> GSM1167114     2   0.775      0.802 0.228 0.772
#> GSM1167115     2   0.000      0.864 0.000 1.000
#> GSM1167116     2   0.839      0.767 0.268 0.732
#> GSM1167117     2   0.000      0.864 0.000 1.000
#> GSM1167118     1   0.000      0.991 1.000 0.000
#> GSM1167119     1   0.000      0.991 1.000 0.000
#> GSM1167120     2   0.839      0.767 0.268 0.732
#> GSM1167121     2   0.714      0.819 0.196 0.804
#> GSM1167123     1   0.000      0.991 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1167072     1   0.586      0.716 0.656 0.000 0.344
#> GSM1167073     1   0.489      0.863 0.772 0.000 0.228
#> GSM1167074     2   0.000      0.932 0.000 1.000 0.000
#> GSM1167075     1   0.489      0.863 0.772 0.000 0.228
#> GSM1167076     1   0.489      0.863 0.772 0.000 0.228
#> GSM1167077     3   0.312      0.925 0.000 0.108 0.892
#> GSM1167078     3   0.304      0.926 0.000 0.104 0.896
#> GSM1167079     2   0.000      0.932 0.000 1.000 0.000
#> GSM1167080     1   0.216      0.776 0.936 0.000 0.064
#> GSM1167081     2   0.000      0.932 0.000 1.000 0.000
#> GSM1167082     1   0.355      0.860 0.868 0.000 0.132
#> GSM1167083     2   0.000      0.932 0.000 1.000 0.000
#> GSM1167084     1   0.216      0.776 0.936 0.000 0.064
#> GSM1167085     2   0.103      0.916 0.000 0.976 0.024
#> GSM1167086     1   0.489      0.863 0.772 0.000 0.228
#> GSM1167087     1   0.355      0.860 0.868 0.000 0.132
#> GSM1167088     1   0.489      0.863 0.772 0.000 0.228
#> GSM1167089     3   0.362      0.907 0.000 0.136 0.864
#> GSM1167090     3   0.312      0.925 0.000 0.108 0.892
#> GSM1167091     1   0.489      0.863 0.772 0.000 0.228
#> GSM1167092     3   0.226      0.920 0.000 0.068 0.932
#> GSM1167093     2   0.103      0.916 0.000 0.976 0.024
#> GSM1167094     3   0.216      0.864 0.064 0.000 0.936
#> GSM1167095     2   0.525      0.629 0.000 0.736 0.264
#> GSM1167096     3   0.216      0.864 0.064 0.000 0.936
#> GSM1167097     1   0.216      0.776 0.936 0.000 0.064
#> GSM1167098     3   0.312      0.925 0.000 0.108 0.892
#> GSM1167099     1   0.216      0.776 0.936 0.000 0.064
#> GSM1167100     2   0.627      0.105 0.000 0.544 0.456
#> GSM1167101     2   0.000      0.932 0.000 1.000 0.000
#> GSM1167122     3   0.362      0.907 0.000 0.136 0.864
#> GSM1167102     2   0.000      0.932 0.000 1.000 0.000
#> GSM1167103     2   0.000      0.932 0.000 1.000 0.000
#> GSM1167104     1   0.216      0.776 0.936 0.000 0.064
#> GSM1167105     2   0.000      0.932 0.000 1.000 0.000
#> GSM1167106     1   0.355      0.860 0.868 0.000 0.132
#> GSM1167107     2   0.000      0.932 0.000 1.000 0.000
#> GSM1167108     1   0.556      0.789 0.700 0.000 0.300
#> GSM1167109     2   0.000      0.932 0.000 1.000 0.000
#> GSM1167110     3   0.440      0.682 0.188 0.000 0.812
#> GSM1167111     2   0.000      0.932 0.000 1.000 0.000
#> GSM1167112     2   0.000      0.932 0.000 1.000 0.000
#> GSM1167113     3   0.216      0.864 0.064 0.000 0.936
#> GSM1167114     3   0.304      0.926 0.000 0.104 0.896
#> GSM1167115     2   0.000      0.932 0.000 1.000 0.000
#> GSM1167116     3   0.216      0.919 0.000 0.064 0.936
#> GSM1167117     2   0.525      0.629 0.000 0.736 0.264
#> GSM1167118     1   0.489      0.863 0.772 0.000 0.228
#> GSM1167119     1   0.355      0.860 0.868 0.000 0.132
#> GSM1167120     3   0.216      0.919 0.000 0.064 0.936
#> GSM1167121     3   0.362      0.907 0.000 0.136 0.864
#> GSM1167123     1   0.489      0.863 0.772 0.000 0.228

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1167072     1  0.2973     0.8253 0.884 0.000 0.096 0.020
#> GSM1167073     1  0.0000     0.9364 1.000 0.000 0.000 0.000
#> GSM1167074     2  0.0000     0.9346 0.000 1.000 0.000 0.000
#> GSM1167075     1  0.0000     0.9364 1.000 0.000 0.000 0.000
#> GSM1167076     1  0.0000     0.9364 1.000 0.000 0.000 0.000
#> GSM1167077     3  0.0000     0.8488 0.000 0.000 1.000 0.000
#> GSM1167078     3  0.0188     0.8496 0.004 0.000 0.996 0.000
#> GSM1167079     2  0.0000     0.9346 0.000 1.000 0.000 0.000
#> GSM1167080     4  0.2216     0.9954 0.092 0.000 0.000 0.908
#> GSM1167081     2  0.0000     0.9346 0.000 1.000 0.000 0.000
#> GSM1167082     1  0.2647     0.8707 0.880 0.000 0.000 0.120
#> GSM1167083     2  0.0000     0.9346 0.000 1.000 0.000 0.000
#> GSM1167084     4  0.2469     0.9812 0.108 0.000 0.000 0.892
#> GSM1167085     2  0.2399     0.8817 0.000 0.920 0.048 0.032
#> GSM1167086     1  0.0000     0.9364 1.000 0.000 0.000 0.000
#> GSM1167087     1  0.2647     0.8707 0.880 0.000 0.000 0.120
#> GSM1167088     1  0.0000     0.9364 1.000 0.000 0.000 0.000
#> GSM1167089     3  0.1637     0.8274 0.000 0.000 0.940 0.060
#> GSM1167090     3  0.0000     0.8488 0.000 0.000 1.000 0.000
#> GSM1167091     1  0.0000     0.9364 1.000 0.000 0.000 0.000
#> GSM1167092     3  0.1929     0.8463 0.036 0.000 0.940 0.024
#> GSM1167093     2  0.2399     0.8817 0.000 0.920 0.048 0.032
#> GSM1167094     3  0.4500     0.7443 0.192 0.000 0.776 0.032
#> GSM1167095     2  0.6058     0.4461 0.000 0.604 0.336 0.060
#> GSM1167096     3  0.4500     0.7443 0.192 0.000 0.776 0.032
#> GSM1167097     4  0.2216     0.9954 0.092 0.000 0.000 0.908
#> GSM1167098     3  0.0000     0.8488 0.000 0.000 1.000 0.000
#> GSM1167099     4  0.2216     0.9954 0.092 0.000 0.000 0.908
#> GSM1167100     3  0.6278     0.0877 0.000 0.408 0.532 0.060
#> GSM1167101     2  0.0000     0.9346 0.000 1.000 0.000 0.000
#> GSM1167122     3  0.1637     0.8274 0.000 0.000 0.940 0.060
#> GSM1167102     2  0.0000     0.9346 0.000 1.000 0.000 0.000
#> GSM1167103     2  0.0000     0.9346 0.000 1.000 0.000 0.000
#> GSM1167104     4  0.2216     0.9954 0.092 0.000 0.000 0.908
#> GSM1167105     2  0.0000     0.9346 0.000 1.000 0.000 0.000
#> GSM1167106     1  0.2647     0.8707 0.880 0.000 0.000 0.120
#> GSM1167107     2  0.0000     0.9346 0.000 1.000 0.000 0.000
#> GSM1167108     1  0.2101     0.8758 0.928 0.000 0.060 0.012
#> GSM1167109     2  0.0000     0.9346 0.000 1.000 0.000 0.000
#> GSM1167110     3  0.5784     0.3730 0.412 0.000 0.556 0.032
#> GSM1167111     2  0.0000     0.9346 0.000 1.000 0.000 0.000
#> GSM1167112     2  0.0000     0.9346 0.000 1.000 0.000 0.000
#> GSM1167113     3  0.4459     0.7478 0.188 0.000 0.780 0.032
#> GSM1167114     3  0.1109     0.8478 0.004 0.000 0.968 0.028
#> GSM1167115     2  0.0000     0.9346 0.000 1.000 0.000 0.000
#> GSM1167116     3  0.2224     0.8417 0.040 0.000 0.928 0.032
#> GSM1167117     2  0.6058     0.4461 0.000 0.604 0.336 0.060
#> GSM1167118     1  0.0000     0.9364 1.000 0.000 0.000 0.000
#> GSM1167119     1  0.2647     0.8707 0.880 0.000 0.000 0.120
#> GSM1167120     3  0.2224     0.8417 0.040 0.000 0.928 0.032
#> GSM1167121     3  0.1637     0.8274 0.000 0.000 0.940 0.060
#> GSM1167123     1  0.0000     0.9364 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1167072     1  0.3561      0.699 0.740 0.000 0.000 0.260 0.000
#> GSM1167073     1  0.0000      0.891 1.000 0.000 0.000 0.000 0.000
#> GSM1167074     2  0.0609      0.935 0.000 0.980 0.020 0.000 0.000
#> GSM1167075     1  0.2471      0.850 0.864 0.000 0.136 0.000 0.000
#> GSM1167076     1  0.2471      0.850 0.864 0.000 0.136 0.000 0.000
#> GSM1167077     4  0.4256      0.438 0.000 0.000 0.436 0.564 0.000
#> GSM1167078     4  0.4015      0.572 0.000 0.000 0.348 0.652 0.000
#> GSM1167079     2  0.0794      0.939 0.000 0.972 0.028 0.000 0.000
#> GSM1167080     5  0.0000      0.976 0.000 0.000 0.000 0.000 1.000
#> GSM1167081     2  0.1544      0.900 0.000 0.932 0.068 0.000 0.000
#> GSM1167082     1  0.2685      0.861 0.880 0.000 0.092 0.000 0.028
#> GSM1167083     2  0.0404      0.939 0.000 0.988 0.012 0.000 0.000
#> GSM1167084     5  0.2505      0.900 0.020 0.000 0.092 0.000 0.888
#> GSM1167085     2  0.3305      0.720 0.000 0.776 0.224 0.000 0.000
#> GSM1167086     1  0.0000      0.891 1.000 0.000 0.000 0.000 0.000
#> GSM1167087     1  0.2740      0.861 0.876 0.000 0.096 0.000 0.028
#> GSM1167088     1  0.0000      0.891 1.000 0.000 0.000 0.000 0.000
#> GSM1167089     3  0.4249     -0.159 0.000 0.000 0.568 0.432 0.000
#> GSM1167090     4  0.4201      0.495 0.000 0.000 0.408 0.592 0.000
#> GSM1167091     1  0.0000      0.891 1.000 0.000 0.000 0.000 0.000
#> GSM1167092     4  0.3366      0.664 0.000 0.000 0.232 0.768 0.000
#> GSM1167093     2  0.3305      0.720 0.000 0.776 0.224 0.000 0.000
#> GSM1167094     4  0.0451      0.626 0.004 0.000 0.008 0.988 0.000
#> GSM1167095     3  0.4403      0.163 0.000 0.436 0.560 0.004 0.000
#> GSM1167096     4  0.0451      0.626 0.004 0.000 0.008 0.988 0.000
#> GSM1167097     5  0.0000      0.976 0.000 0.000 0.000 0.000 1.000
#> GSM1167098     4  0.4192      0.500 0.000 0.000 0.404 0.596 0.000
#> GSM1167099     5  0.0000      0.976 0.000 0.000 0.000 0.000 1.000
#> GSM1167100     3  0.4959      0.401 0.000 0.240 0.684 0.076 0.000
#> GSM1167101     2  0.0290      0.940 0.000 0.992 0.008 0.000 0.000
#> GSM1167122     3  0.4262     -0.179 0.000 0.000 0.560 0.440 0.000
#> GSM1167102     2  0.0000      0.941 0.000 1.000 0.000 0.000 0.000
#> GSM1167103     2  0.0794      0.939 0.000 0.972 0.028 0.000 0.000
#> GSM1167104     5  0.0000      0.976 0.000 0.000 0.000 0.000 1.000
#> GSM1167105     2  0.0794      0.939 0.000 0.972 0.028 0.000 0.000
#> GSM1167106     1  0.2740      0.861 0.876 0.000 0.096 0.000 0.028
#> GSM1167107     2  0.0290      0.940 0.000 0.992 0.008 0.000 0.000
#> GSM1167108     1  0.3849      0.723 0.752 0.000 0.016 0.232 0.000
#> GSM1167109     2  0.0794      0.939 0.000 0.972 0.028 0.000 0.000
#> GSM1167110     4  0.3366      0.380 0.232 0.000 0.000 0.768 0.000
#> GSM1167111     2  0.0794      0.939 0.000 0.972 0.028 0.000 0.000
#> GSM1167112     2  0.0000      0.941 0.000 1.000 0.000 0.000 0.000
#> GSM1167113     4  0.0290      0.628 0.008 0.000 0.000 0.992 0.000
#> GSM1167114     4  0.3752      0.628 0.000 0.000 0.292 0.708 0.000
#> GSM1167115     2  0.0794      0.939 0.000 0.972 0.028 0.000 0.000
#> GSM1167116     4  0.2690      0.679 0.000 0.000 0.156 0.844 0.000
#> GSM1167117     3  0.4403      0.163 0.000 0.436 0.560 0.004 0.000
#> GSM1167118     1  0.0609      0.888 0.980 0.000 0.000 0.020 0.000
#> GSM1167119     1  0.2685      0.861 0.880 0.000 0.092 0.000 0.028
#> GSM1167120     4  0.2690      0.679 0.000 0.000 0.156 0.844 0.000
#> GSM1167121     3  0.4249     -0.159 0.000 0.000 0.568 0.432 0.000
#> GSM1167123     1  0.2471      0.850 0.864 0.000 0.136 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5   p6
#> GSM1167072     1  0.4802      0.453 0.736 0.116 0.068 0.080 0.000 0.00
#> GSM1167073     1  0.0000      0.797 1.000 0.000 0.000 0.000 0.000 0.00
#> GSM1167074     5  0.1387      0.880 0.000 0.068 0.000 0.000 0.932 0.00
#> GSM1167075     3  0.3774      1.000 0.408 0.000 0.592 0.000 0.000 0.00
#> GSM1167076     3  0.3774      1.000 0.408 0.000 0.592 0.000 0.000 0.00
#> GSM1167077     4  0.3911      0.561 0.000 0.256 0.032 0.712 0.000 0.00
#> GSM1167078     4  0.2266      0.643 0.000 0.108 0.012 0.880 0.000 0.00
#> GSM1167079     5  0.0000      0.897 0.000 0.000 0.000 0.000 1.000 0.00
#> GSM1167080     6  0.0000      0.965 0.000 0.000 0.000 0.000 0.000 1.00
#> GSM1167081     5  0.2762      0.742 0.000 0.196 0.000 0.000 0.804 0.00
#> GSM1167082     1  0.2219      0.768 0.864 0.000 0.136 0.000 0.000 0.00
#> GSM1167083     5  0.1007      0.894 0.000 0.044 0.000 0.000 0.956 0.00
#> GSM1167084     6  0.2538      0.850 0.016 0.000 0.124 0.000 0.000 0.86
#> GSM1167085     5  0.3747      0.361 0.000 0.396 0.000 0.000 0.604 0.00
#> GSM1167086     1  0.0000      0.797 1.000 0.000 0.000 0.000 0.000 0.00
#> GSM1167087     1  0.2340      0.765 0.852 0.000 0.148 0.000 0.000 0.00
#> GSM1167088     1  0.0000      0.797 1.000 0.000 0.000 0.000 0.000 0.00
#> GSM1167089     4  0.4795      0.370 0.000 0.400 0.056 0.544 0.000 0.00
#> GSM1167090     4  0.3385      0.612 0.000 0.180 0.032 0.788 0.000 0.00
#> GSM1167091     1  0.0000      0.797 1.000 0.000 0.000 0.000 0.000 0.00
#> GSM1167092     4  0.1719      0.658 0.000 0.016 0.060 0.924 0.000 0.00
#> GSM1167093     5  0.3747      0.361 0.000 0.396 0.000 0.000 0.604 0.00
#> GSM1167094     4  0.4823      0.562 0.000 0.124 0.216 0.660 0.000 0.00
#> GSM1167095     2  0.3982      0.839 0.000 0.740 0.000 0.060 0.200 0.00
#> GSM1167096     4  0.4823      0.562 0.000 0.124 0.216 0.660 0.000 0.00
#> GSM1167097     6  0.0000      0.965 0.000 0.000 0.000 0.000 0.000 1.00
#> GSM1167098     4  0.3284      0.618 0.000 0.168 0.032 0.800 0.000 0.00
#> GSM1167099     6  0.0000      0.965 0.000 0.000 0.000 0.000 0.000 1.00
#> GSM1167100     2  0.2400      0.627 0.000 0.872 0.004 0.116 0.008 0.00
#> GSM1167101     5  0.0937      0.896 0.000 0.040 0.000 0.000 0.960 0.00
#> GSM1167122     4  0.4764      0.391 0.000 0.384 0.056 0.560 0.000 0.00
#> GSM1167102     5  0.0713      0.898 0.000 0.028 0.000 0.000 0.972 0.00
#> GSM1167103     5  0.0000      0.897 0.000 0.000 0.000 0.000 1.000 0.00
#> GSM1167104     6  0.0000      0.965 0.000 0.000 0.000 0.000 0.000 1.00
#> GSM1167105     5  0.0000      0.897 0.000 0.000 0.000 0.000 1.000 0.00
#> GSM1167106     1  0.2340      0.765 0.852 0.000 0.148 0.000 0.000 0.00
#> GSM1167107     5  0.0937      0.896 0.000 0.040 0.000 0.000 0.960 0.00
#> GSM1167108     1  0.4776      0.422 0.708 0.100 0.172 0.020 0.000 0.00
#> GSM1167109     5  0.0000      0.897 0.000 0.000 0.000 0.000 1.000 0.00
#> GSM1167110     4  0.7023      0.281 0.228 0.120 0.184 0.468 0.000 0.00
#> GSM1167111     5  0.0000      0.897 0.000 0.000 0.000 0.000 1.000 0.00
#> GSM1167112     5  0.0713      0.898 0.000 0.028 0.000 0.000 0.972 0.00
#> GSM1167113     4  0.4762      0.571 0.004 0.120 0.192 0.684 0.000 0.00
#> GSM1167114     4  0.1349      0.657 0.000 0.056 0.004 0.940 0.000 0.00
#> GSM1167115     5  0.0000      0.897 0.000 0.000 0.000 0.000 1.000 0.00
#> GSM1167116     4  0.2320      0.644 0.000 0.004 0.132 0.864 0.000 0.00
#> GSM1167117     2  0.3982      0.839 0.000 0.740 0.000 0.060 0.200 0.00
#> GSM1167118     1  0.0603      0.786 0.980 0.016 0.004 0.000 0.000 0.00
#> GSM1167119     1  0.2219      0.768 0.864 0.000 0.136 0.000 0.000 0.00
#> GSM1167120     4  0.2320      0.644 0.000 0.004 0.132 0.864 0.000 0.00
#> GSM1167121     4  0.4780      0.381 0.000 0.392 0.056 0.552 0.000 0.00
#> GSM1167123     3  0.3774      1.000 0.408 0.000 0.592 0.000 0.000 0.00

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> ATC:hclust 51            0.573 2
#> ATC:hclust 51            0.427 3
#> ATC:hclust 48            0.539 4
#> ATC:hclust 42            0.532 5
#> ATC:hclust 44            0.602 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.973       0.988         0.5055 0.493   0.493
#> 3 3 1.000           0.994       0.996         0.3413 0.734   0.508
#> 4 4 0.894           0.930       0.930         0.0795 0.947   0.836
#> 5 5 0.871           0.855       0.896         0.0651 0.946   0.803
#> 6 6 0.791           0.576       0.802         0.0455 0.977   0.896

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1167072     1   0.000      0.994 1.000 0.000
#> GSM1167073     1   0.000      0.994 1.000 0.000
#> GSM1167074     2   0.000      0.979 0.000 1.000
#> GSM1167075     1   0.000      0.994 1.000 0.000
#> GSM1167076     1   0.000      0.994 1.000 0.000
#> GSM1167077     2   0.000      0.979 0.000 1.000
#> GSM1167078     1   0.000      0.994 1.000 0.000
#> GSM1167079     2   0.000      0.979 0.000 1.000
#> GSM1167080     1   0.000      0.994 1.000 0.000
#> GSM1167081     2   0.000      0.979 0.000 1.000
#> GSM1167082     1   0.000      0.994 1.000 0.000
#> GSM1167083     2   0.000      0.979 0.000 1.000
#> GSM1167084     1   0.000      0.994 1.000 0.000
#> GSM1167085     2   0.000      0.979 0.000 1.000
#> GSM1167086     1   0.000      0.994 1.000 0.000
#> GSM1167087     1   0.000      0.994 1.000 0.000
#> GSM1167088     1   0.000      0.994 1.000 0.000
#> GSM1167089     2   0.000      0.979 0.000 1.000
#> GSM1167090     2   0.204      0.952 0.032 0.968
#> GSM1167091     1   0.000      0.994 1.000 0.000
#> GSM1167092     1   0.000      0.994 1.000 0.000
#> GSM1167093     2   0.000      0.979 0.000 1.000
#> GSM1167094     1   0.000      0.994 1.000 0.000
#> GSM1167095     2   0.000      0.979 0.000 1.000
#> GSM1167096     1   0.000      0.994 1.000 0.000
#> GSM1167097     1   0.000      0.994 1.000 0.000
#> GSM1167098     2   0.714      0.763 0.196 0.804
#> GSM1167099     1   0.000      0.994 1.000 0.000
#> GSM1167100     2   0.000      0.979 0.000 1.000
#> GSM1167101     2   0.000      0.979 0.000 1.000
#> GSM1167122     1   0.653      0.790 0.832 0.168
#> GSM1167102     2   0.000      0.979 0.000 1.000
#> GSM1167103     2   0.000      0.979 0.000 1.000
#> GSM1167104     1   0.000      0.994 1.000 0.000
#> GSM1167105     2   0.000      0.979 0.000 1.000
#> GSM1167106     1   0.000      0.994 1.000 0.000
#> GSM1167107     2   0.000      0.979 0.000 1.000
#> GSM1167108     1   0.000      0.994 1.000 0.000
#> GSM1167109     2   0.000      0.979 0.000 1.000
#> GSM1167110     1   0.000      0.994 1.000 0.000
#> GSM1167111     2   0.000      0.979 0.000 1.000
#> GSM1167112     2   0.000      0.979 0.000 1.000
#> GSM1167113     1   0.000      0.994 1.000 0.000
#> GSM1167114     2   0.802      0.689 0.244 0.756
#> GSM1167115     2   0.000      0.979 0.000 1.000
#> GSM1167116     1   0.000      0.994 1.000 0.000
#> GSM1167117     2   0.000      0.979 0.000 1.000
#> GSM1167118     1   0.000      0.994 1.000 0.000
#> GSM1167119     1   0.000      0.994 1.000 0.000
#> GSM1167120     1   0.000      0.994 1.000 0.000
#> GSM1167121     2   0.000      0.979 0.000 1.000
#> GSM1167123     1   0.000      0.994 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1167072     1   0.116      0.979 0.972 0.000 0.028
#> GSM1167073     1   0.000      0.991 1.000 0.000 0.000
#> GSM1167074     2   0.000      1.000 0.000 1.000 0.000
#> GSM1167075     1   0.000      0.991 1.000 0.000 0.000
#> GSM1167076     1   0.000      0.991 1.000 0.000 0.000
#> GSM1167077     3   0.000      0.998 0.000 0.000 1.000
#> GSM1167078     3   0.000      0.998 0.000 0.000 1.000
#> GSM1167079     2   0.000      1.000 0.000 1.000 0.000
#> GSM1167080     1   0.000      0.991 1.000 0.000 0.000
#> GSM1167081     2   0.000      1.000 0.000 1.000 0.000
#> GSM1167082     1   0.000      0.991 1.000 0.000 0.000
#> GSM1167083     2   0.000      1.000 0.000 1.000 0.000
#> GSM1167084     1   0.000      0.991 1.000 0.000 0.000
#> GSM1167085     2   0.000      1.000 0.000 1.000 0.000
#> GSM1167086     1   0.116      0.979 0.972 0.000 0.028
#> GSM1167087     1   0.000      0.991 1.000 0.000 0.000
#> GSM1167088     1   0.000      0.991 1.000 0.000 0.000
#> GSM1167089     3   0.000      0.998 0.000 0.000 1.000
#> GSM1167090     3   0.000      0.998 0.000 0.000 1.000
#> GSM1167091     1   0.116      0.979 0.972 0.000 0.028
#> GSM1167092     3   0.000      0.998 0.000 0.000 1.000
#> GSM1167093     2   0.000      1.000 0.000 1.000 0.000
#> GSM1167094     3   0.000      0.998 0.000 0.000 1.000
#> GSM1167095     2   0.000      1.000 0.000 1.000 0.000
#> GSM1167096     3   0.000      0.998 0.000 0.000 1.000
#> GSM1167097     1   0.000      0.991 1.000 0.000 0.000
#> GSM1167098     3   0.000      0.998 0.000 0.000 1.000
#> GSM1167099     1   0.000      0.991 1.000 0.000 0.000
#> GSM1167100     3   0.116      0.969 0.000 0.028 0.972
#> GSM1167101     2   0.000      1.000 0.000 1.000 0.000
#> GSM1167122     3   0.000      0.998 0.000 0.000 1.000
#> GSM1167102     2   0.000      1.000 0.000 1.000 0.000
#> GSM1167103     2   0.000      1.000 0.000 1.000 0.000
#> GSM1167104     1   0.000      0.991 1.000 0.000 0.000
#> GSM1167105     2   0.000      1.000 0.000 1.000 0.000
#> GSM1167106     1   0.000      0.991 1.000 0.000 0.000
#> GSM1167107     2   0.000      1.000 0.000 1.000 0.000
#> GSM1167108     1   0.116      0.979 0.972 0.000 0.028
#> GSM1167109     2   0.000      1.000 0.000 1.000 0.000
#> GSM1167110     3   0.000      0.998 0.000 0.000 1.000
#> GSM1167111     2   0.000      1.000 0.000 1.000 0.000
#> GSM1167112     2   0.000      1.000 0.000 1.000 0.000
#> GSM1167113     3   0.000      0.998 0.000 0.000 1.000
#> GSM1167114     3   0.000      0.998 0.000 0.000 1.000
#> GSM1167115     2   0.000      1.000 0.000 1.000 0.000
#> GSM1167116     3   0.000      0.998 0.000 0.000 1.000
#> GSM1167117     2   0.000      1.000 0.000 1.000 0.000
#> GSM1167118     1   0.116      0.979 0.972 0.000 0.028
#> GSM1167119     1   0.000      0.991 1.000 0.000 0.000
#> GSM1167120     3   0.000      0.998 0.000 0.000 1.000
#> GSM1167121     3   0.000      0.998 0.000 0.000 1.000
#> GSM1167123     1   0.116      0.979 0.972 0.000 0.028

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1167072     1   0.147      0.903 0.948 0.000 0.052 0.000
#> GSM1167073     1   0.000      0.993 1.000 0.000 0.000 0.000
#> GSM1167074     2   0.000      0.916 0.000 1.000 0.000 0.000
#> GSM1167075     1   0.000      0.993 1.000 0.000 0.000 0.000
#> GSM1167076     1   0.000      0.993 1.000 0.000 0.000 0.000
#> GSM1167077     3   0.139      0.932 0.000 0.000 0.952 0.048
#> GSM1167078     3   0.000      0.956 0.000 0.000 1.000 0.000
#> GSM1167079     2   0.000      0.916 0.000 1.000 0.000 0.000
#> GSM1167080     4   0.441      1.000 0.300 0.000 0.000 0.700
#> GSM1167081     2   0.407      0.796 0.000 0.748 0.000 0.252
#> GSM1167082     1   0.000      0.993 1.000 0.000 0.000 0.000
#> GSM1167083     2   0.000      0.916 0.000 1.000 0.000 0.000
#> GSM1167084     4   0.441      1.000 0.300 0.000 0.000 0.700
#> GSM1167085     2   0.441      0.769 0.000 0.700 0.000 0.300
#> GSM1167086     1   0.000      0.993 1.000 0.000 0.000 0.000
#> GSM1167087     1   0.000      0.993 1.000 0.000 0.000 0.000
#> GSM1167088     1   0.000      0.993 1.000 0.000 0.000 0.000
#> GSM1167089     3   0.139      0.932 0.000 0.000 0.952 0.048
#> GSM1167090     3   0.000      0.956 0.000 0.000 1.000 0.000
#> GSM1167091     1   0.000      0.993 1.000 0.000 0.000 0.000
#> GSM1167092     3   0.000      0.956 0.000 0.000 1.000 0.000
#> GSM1167093     2   0.441      0.769 0.000 0.700 0.000 0.300
#> GSM1167094     3   0.000      0.956 0.000 0.000 1.000 0.000
#> GSM1167095     2   0.441      0.769 0.000 0.700 0.000 0.300
#> GSM1167096     3   0.000      0.956 0.000 0.000 1.000 0.000
#> GSM1167097     4   0.441      1.000 0.300 0.000 0.000 0.700
#> GSM1167098     3   0.000      0.956 0.000 0.000 1.000 0.000
#> GSM1167099     4   0.441      1.000 0.300 0.000 0.000 0.700
#> GSM1167100     3   0.441      0.670 0.000 0.000 0.700 0.300
#> GSM1167101     2   0.000      0.916 0.000 1.000 0.000 0.000
#> GSM1167122     3   0.000      0.956 0.000 0.000 1.000 0.000
#> GSM1167102     2   0.000      0.916 0.000 1.000 0.000 0.000
#> GSM1167103     2   0.000      0.916 0.000 1.000 0.000 0.000
#> GSM1167104     4   0.441      1.000 0.300 0.000 0.000 0.700
#> GSM1167105     2   0.000      0.916 0.000 1.000 0.000 0.000
#> GSM1167106     1   0.000      0.993 1.000 0.000 0.000 0.000
#> GSM1167107     2   0.000      0.916 0.000 1.000 0.000 0.000
#> GSM1167108     1   0.000      0.993 1.000 0.000 0.000 0.000
#> GSM1167109     2   0.000      0.916 0.000 1.000 0.000 0.000
#> GSM1167110     3   0.357      0.723 0.196 0.000 0.804 0.000
#> GSM1167111     2   0.000      0.916 0.000 1.000 0.000 0.000
#> GSM1167112     2   0.000      0.916 0.000 1.000 0.000 0.000
#> GSM1167113     3   0.000      0.956 0.000 0.000 1.000 0.000
#> GSM1167114     3   0.000      0.956 0.000 0.000 1.000 0.000
#> GSM1167115     2   0.000      0.916 0.000 1.000 0.000 0.000
#> GSM1167116     3   0.000      0.956 0.000 0.000 1.000 0.000
#> GSM1167117     2   0.441      0.769 0.000 0.700 0.000 0.300
#> GSM1167118     1   0.000      0.993 1.000 0.000 0.000 0.000
#> GSM1167119     1   0.000      0.993 1.000 0.000 0.000 0.000
#> GSM1167120     3   0.000      0.956 0.000 0.000 1.000 0.000
#> GSM1167121     3   0.139      0.932 0.000 0.000 0.952 0.048
#> GSM1167123     1   0.000      0.993 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1167072     1  0.0290     0.9451 0.992 0.000 0.000 0.000 0.008
#> GSM1167073     1  0.0000     0.9465 1.000 0.000 0.000 0.000 0.000
#> GSM1167074     2  0.0703     0.9344 0.000 0.976 0.024 0.000 0.000
#> GSM1167075     1  0.2648     0.8898 0.848 0.000 0.000 0.000 0.152
#> GSM1167076     1  0.2648     0.8898 0.848 0.000 0.000 0.000 0.152
#> GSM1167077     4  0.4219     0.6048 0.000 0.000 0.000 0.584 0.416
#> GSM1167078     4  0.1478     0.8567 0.000 0.000 0.000 0.936 0.064
#> GSM1167079     2  0.0000     0.9433 0.000 1.000 0.000 0.000 0.000
#> GSM1167080     3  0.1121     0.9991 0.044 0.000 0.956 0.000 0.000
#> GSM1167081     2  0.4866    -0.0319 0.000 0.620 0.036 0.000 0.344
#> GSM1167082     1  0.1792     0.9354 0.916 0.000 0.000 0.000 0.084
#> GSM1167083     2  0.0880     0.9293 0.000 0.968 0.032 0.000 0.000
#> GSM1167084     3  0.1282     0.9964 0.044 0.000 0.952 0.000 0.004
#> GSM1167085     5  0.4392     0.7830 0.000 0.380 0.008 0.000 0.612
#> GSM1167086     1  0.0162     0.9460 0.996 0.000 0.000 0.000 0.004
#> GSM1167087     1  0.1792     0.9354 0.916 0.000 0.000 0.000 0.084
#> GSM1167088     1  0.0000     0.9465 1.000 0.000 0.000 0.000 0.000
#> GSM1167089     4  0.4249     0.5824 0.000 0.000 0.000 0.568 0.432
#> GSM1167090     4  0.3003     0.8206 0.000 0.000 0.000 0.812 0.188
#> GSM1167091     1  0.0162     0.9460 0.996 0.000 0.000 0.000 0.004
#> GSM1167092     4  0.0000     0.8587 0.000 0.000 0.000 1.000 0.000
#> GSM1167093     5  0.4537     0.7558 0.000 0.396 0.012 0.000 0.592
#> GSM1167094     4  0.0162     0.8574 0.000 0.000 0.000 0.996 0.004
#> GSM1167095     5  0.4126     0.7857 0.000 0.380 0.000 0.000 0.620
#> GSM1167096     4  0.0162     0.8574 0.000 0.000 0.000 0.996 0.004
#> GSM1167097     3  0.1121     0.9991 0.044 0.000 0.956 0.000 0.000
#> GSM1167098     4  0.2891     0.8263 0.000 0.000 0.000 0.824 0.176
#> GSM1167099     3  0.1121     0.9991 0.044 0.000 0.956 0.000 0.000
#> GSM1167100     5  0.3143     0.2185 0.000 0.000 0.000 0.204 0.796
#> GSM1167101     2  0.0609     0.9364 0.000 0.980 0.020 0.000 0.000
#> GSM1167122     4  0.2891     0.8263 0.000 0.000 0.000 0.824 0.176
#> GSM1167102     2  0.0880     0.9293 0.000 0.968 0.032 0.000 0.000
#> GSM1167103     2  0.0000     0.9433 0.000 1.000 0.000 0.000 0.000
#> GSM1167104     3  0.1121     0.9991 0.044 0.000 0.956 0.000 0.000
#> GSM1167105     2  0.0000     0.9433 0.000 1.000 0.000 0.000 0.000
#> GSM1167106     1  0.1792     0.9354 0.916 0.000 0.000 0.000 0.084
#> GSM1167107     2  0.0290     0.9412 0.000 0.992 0.008 0.000 0.000
#> GSM1167108     1  0.0609     0.9452 0.980 0.000 0.000 0.000 0.020
#> GSM1167109     2  0.0000     0.9433 0.000 1.000 0.000 0.000 0.000
#> GSM1167110     4  0.2136     0.7864 0.088 0.000 0.000 0.904 0.008
#> GSM1167111     2  0.0000     0.9433 0.000 1.000 0.000 0.000 0.000
#> GSM1167112     2  0.0000     0.9433 0.000 1.000 0.000 0.000 0.000
#> GSM1167113     4  0.0000     0.8587 0.000 0.000 0.000 1.000 0.000
#> GSM1167114     4  0.1544     0.8562 0.000 0.000 0.000 0.932 0.068
#> GSM1167115     2  0.0000     0.9433 0.000 1.000 0.000 0.000 0.000
#> GSM1167116     4  0.0000     0.8587 0.000 0.000 0.000 1.000 0.000
#> GSM1167117     5  0.4126     0.7857 0.000 0.380 0.000 0.000 0.620
#> GSM1167118     1  0.0703     0.9434 0.976 0.000 0.000 0.000 0.024
#> GSM1167119     1  0.1792     0.9354 0.916 0.000 0.000 0.000 0.084
#> GSM1167120     4  0.0000     0.8587 0.000 0.000 0.000 1.000 0.000
#> GSM1167121     4  0.4249     0.5824 0.000 0.000 0.000 0.568 0.432
#> GSM1167123     1  0.2648     0.8898 0.848 0.000 0.000 0.000 0.152

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1167072     1  0.1204     0.8518 0.944 0.000 0.056 0.000 0.000 0.000
#> GSM1167073     1  0.0405     0.8648 0.988 0.004 0.008 0.000 0.000 0.000
#> GSM1167074     5  0.2597     0.8349 0.000 0.000 0.176 0.000 0.824 0.000
#> GSM1167075     1  0.4787     0.7527 0.656 0.108 0.236 0.000 0.000 0.000
#> GSM1167076     1  0.4787     0.7527 0.656 0.108 0.236 0.000 0.000 0.000
#> GSM1167077     4  0.3373     0.3207 0.000 0.248 0.008 0.744 0.000 0.000
#> GSM1167078     4  0.3309    -0.1113 0.000 0.000 0.280 0.720 0.000 0.000
#> GSM1167079     5  0.0260     0.9101 0.000 0.000 0.008 0.000 0.992 0.000
#> GSM1167080     6  0.0405     0.9946 0.008 0.000 0.004 0.000 0.000 0.988
#> GSM1167081     2  0.6084     0.4553 0.000 0.436 0.200 0.000 0.356 0.008
#> GSM1167082     1  0.3873     0.8382 0.772 0.124 0.104 0.000 0.000 0.000
#> GSM1167083     5  0.2762     0.8250 0.000 0.000 0.196 0.000 0.804 0.000
#> GSM1167084     6  0.0767     0.9844 0.008 0.012 0.004 0.000 0.000 0.976
#> GSM1167085     2  0.4229     0.7812 0.000 0.712 0.068 0.000 0.220 0.000
#> GSM1167086     1  0.0458     0.8633 0.984 0.000 0.016 0.000 0.000 0.000
#> GSM1167087     1  0.3828     0.8387 0.776 0.124 0.100 0.000 0.000 0.000
#> GSM1167088     1  0.0146     0.8652 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM1167089     4  0.3490     0.3164 0.000 0.268 0.008 0.724 0.000 0.000
#> GSM1167090     4  0.1866     0.3335 0.000 0.084 0.008 0.908 0.000 0.000
#> GSM1167091     1  0.0363     0.8649 0.988 0.000 0.012 0.000 0.000 0.000
#> GSM1167092     4  0.3797    -0.4368 0.000 0.000 0.420 0.580 0.000 0.000
#> GSM1167093     2  0.5156     0.7231 0.000 0.612 0.144 0.000 0.244 0.000
#> GSM1167094     4  0.3986    -0.5735 0.000 0.004 0.464 0.532 0.000 0.000
#> GSM1167095     2  0.3050     0.7868 0.000 0.764 0.000 0.000 0.236 0.000
#> GSM1167096     4  0.3986    -0.5735 0.000 0.004 0.464 0.532 0.000 0.000
#> GSM1167097     6  0.0260     0.9948 0.008 0.000 0.000 0.000 0.000 0.992
#> GSM1167098     4  0.0000     0.3155 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM1167099     6  0.0405     0.9946 0.008 0.000 0.004 0.000 0.000 0.988
#> GSM1167100     2  0.3421     0.4226 0.000 0.736 0.008 0.256 0.000 0.000
#> GSM1167101     5  0.2491     0.8426 0.000 0.000 0.164 0.000 0.836 0.000
#> GSM1167122     4  0.0260     0.3162 0.000 0.008 0.000 0.992 0.000 0.000
#> GSM1167102     5  0.2697     0.8253 0.000 0.000 0.188 0.000 0.812 0.000
#> GSM1167103     5  0.0260     0.9101 0.000 0.000 0.008 0.000 0.992 0.000
#> GSM1167104     6  0.0260     0.9948 0.008 0.000 0.000 0.000 0.000 0.992
#> GSM1167105     5  0.0000     0.9101 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167106     1  0.3828     0.8387 0.776 0.124 0.100 0.000 0.000 0.000
#> GSM1167107     5  0.1444     0.8899 0.000 0.000 0.072 0.000 0.928 0.000
#> GSM1167108     1  0.1858     0.8537 0.912 0.012 0.076 0.000 0.000 0.000
#> GSM1167109     5  0.0260     0.9101 0.000 0.000 0.008 0.000 0.992 0.000
#> GSM1167110     3  0.5221     0.0000 0.092 0.000 0.476 0.432 0.000 0.000
#> GSM1167111     5  0.0260     0.9101 0.000 0.000 0.008 0.000 0.992 0.000
#> GSM1167112     5  0.0000     0.9101 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167113     4  0.3810    -0.4489 0.000 0.000 0.428 0.572 0.000 0.000
#> GSM1167114     4  0.3126    -0.0344 0.000 0.000 0.248 0.752 0.000 0.000
#> GSM1167115     5  0.0000     0.9101 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167116     4  0.3810    -0.4489 0.000 0.000 0.428 0.572 0.000 0.000
#> GSM1167117     2  0.3050     0.7868 0.000 0.764 0.000 0.000 0.236 0.000
#> GSM1167118     1  0.1686     0.8556 0.924 0.012 0.064 0.000 0.000 0.000
#> GSM1167119     1  0.3873     0.8382 0.772 0.124 0.104 0.000 0.000 0.000
#> GSM1167120     4  0.3823    -0.4674 0.000 0.000 0.436 0.564 0.000 0.000
#> GSM1167121     4  0.3490     0.3164 0.000 0.268 0.008 0.724 0.000 0.000
#> GSM1167123     1  0.4764     0.7537 0.660 0.108 0.232 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> ATC:kmeans 52            0.647 2
#> ATC:kmeans 52            0.411 3
#> ATC:kmeans 52            0.540 4
#> ATC:kmeans 50            0.318 5
#> ATC:kmeans 35            0.199 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.998       0.999         0.5094 0.491   0.491
#> 3 3 0.937           0.927       0.961         0.1705 0.872   0.744
#> 4 4 0.835           0.857       0.934         0.0549 0.991   0.976
#> 5 5 0.869           0.788       0.910         0.0417 0.997   0.992
#> 6 6 0.901           0.798       0.903         0.0283 0.968   0.914

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1167072     1   0.000      1.000 1.000 0.000
#> GSM1167073     1   0.000      1.000 1.000 0.000
#> GSM1167074     2   0.000      0.998 0.000 1.000
#> GSM1167075     1   0.000      1.000 1.000 0.000
#> GSM1167076     1   0.000      1.000 1.000 0.000
#> GSM1167077     2   0.000      0.998 0.000 1.000
#> GSM1167078     1   0.000      1.000 1.000 0.000
#> GSM1167079     2   0.000      0.998 0.000 1.000
#> GSM1167080     1   0.000      1.000 1.000 0.000
#> GSM1167081     2   0.000      0.998 0.000 1.000
#> GSM1167082     1   0.000      1.000 1.000 0.000
#> GSM1167083     2   0.000      0.998 0.000 1.000
#> GSM1167084     1   0.000      1.000 1.000 0.000
#> GSM1167085     2   0.000      0.998 0.000 1.000
#> GSM1167086     1   0.000      1.000 1.000 0.000
#> GSM1167087     1   0.000      1.000 1.000 0.000
#> GSM1167088     1   0.000      1.000 1.000 0.000
#> GSM1167089     2   0.000      0.998 0.000 1.000
#> GSM1167090     2   0.000      0.998 0.000 1.000
#> GSM1167091     1   0.000      1.000 1.000 0.000
#> GSM1167092     1   0.000      1.000 1.000 0.000
#> GSM1167093     2   0.000      0.998 0.000 1.000
#> GSM1167094     1   0.000      1.000 1.000 0.000
#> GSM1167095     2   0.000      0.998 0.000 1.000
#> GSM1167096     1   0.000      1.000 1.000 0.000
#> GSM1167097     1   0.000      1.000 1.000 0.000
#> GSM1167098     2   0.000      0.998 0.000 1.000
#> GSM1167099     1   0.000      1.000 1.000 0.000
#> GSM1167100     2   0.000      0.998 0.000 1.000
#> GSM1167101     2   0.000      0.998 0.000 1.000
#> GSM1167122     2   0.311      0.941 0.056 0.944
#> GSM1167102     2   0.000      0.998 0.000 1.000
#> GSM1167103     2   0.000      0.998 0.000 1.000
#> GSM1167104     1   0.000      1.000 1.000 0.000
#> GSM1167105     2   0.000      0.998 0.000 1.000
#> GSM1167106     1   0.000      1.000 1.000 0.000
#> GSM1167107     2   0.000      0.998 0.000 1.000
#> GSM1167108     1   0.000      1.000 1.000 0.000
#> GSM1167109     2   0.000      0.998 0.000 1.000
#> GSM1167110     1   0.000      1.000 1.000 0.000
#> GSM1167111     2   0.000      0.998 0.000 1.000
#> GSM1167112     2   0.000      0.998 0.000 1.000
#> GSM1167113     1   0.000      1.000 1.000 0.000
#> GSM1167114     2   0.000      0.998 0.000 1.000
#> GSM1167115     2   0.000      0.998 0.000 1.000
#> GSM1167116     1   0.000      1.000 1.000 0.000
#> GSM1167117     2   0.000      0.998 0.000 1.000
#> GSM1167118     1   0.000      1.000 1.000 0.000
#> GSM1167119     1   0.000      1.000 1.000 0.000
#> GSM1167120     1   0.000      1.000 1.000 0.000
#> GSM1167121     2   0.000      0.998 0.000 1.000
#> GSM1167123     1   0.000      1.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1167072     1  0.0000      0.996 1.000 0.000 0.000
#> GSM1167073     1  0.0000      0.996 1.000 0.000 0.000
#> GSM1167074     2  0.0000      0.996 0.000 1.000 0.000
#> GSM1167075     1  0.0000      0.996 1.000 0.000 0.000
#> GSM1167076     1  0.0000      0.996 1.000 0.000 0.000
#> GSM1167077     2  0.0000      0.996 0.000 1.000 0.000
#> GSM1167078     3  0.4654      0.652 0.208 0.000 0.792
#> GSM1167079     2  0.0000      0.996 0.000 1.000 0.000
#> GSM1167080     1  0.0000      0.996 1.000 0.000 0.000
#> GSM1167081     2  0.0000      0.996 0.000 1.000 0.000
#> GSM1167082     1  0.0000      0.996 1.000 0.000 0.000
#> GSM1167083     2  0.0000      0.996 0.000 1.000 0.000
#> GSM1167084     1  0.0000      0.996 1.000 0.000 0.000
#> GSM1167085     2  0.0000      0.996 0.000 1.000 0.000
#> GSM1167086     1  0.0000      0.996 1.000 0.000 0.000
#> GSM1167087     1  0.0000      0.996 1.000 0.000 0.000
#> GSM1167088     1  0.0000      0.996 1.000 0.000 0.000
#> GSM1167089     2  0.1289      0.968 0.000 0.968 0.032
#> GSM1167090     2  0.0424      0.990 0.000 0.992 0.008
#> GSM1167091     1  0.0000      0.996 1.000 0.000 0.000
#> GSM1167092     3  0.3752      0.688 0.144 0.000 0.856
#> GSM1167093     2  0.0000      0.996 0.000 1.000 0.000
#> GSM1167094     1  0.0424      0.988 0.992 0.000 0.008
#> GSM1167095     2  0.0000      0.996 0.000 1.000 0.000
#> GSM1167096     1  0.0237      0.992 0.996 0.000 0.004
#> GSM1167097     1  0.0000      0.996 1.000 0.000 0.000
#> GSM1167098     3  0.5926      0.334 0.000 0.356 0.644
#> GSM1167099     1  0.0000      0.996 1.000 0.000 0.000
#> GSM1167100     2  0.0000      0.996 0.000 1.000 0.000
#> GSM1167101     2  0.0000      0.996 0.000 1.000 0.000
#> GSM1167122     3  0.2066      0.676 0.000 0.060 0.940
#> GSM1167102     2  0.0000      0.996 0.000 1.000 0.000
#> GSM1167103     2  0.0000      0.996 0.000 1.000 0.000
#> GSM1167104     1  0.0000      0.996 1.000 0.000 0.000
#> GSM1167105     2  0.0000      0.996 0.000 1.000 0.000
#> GSM1167106     1  0.0000      0.996 1.000 0.000 0.000
#> GSM1167107     2  0.0000      0.996 0.000 1.000 0.000
#> GSM1167108     1  0.0000      0.996 1.000 0.000 0.000
#> GSM1167109     2  0.0000      0.996 0.000 1.000 0.000
#> GSM1167110     1  0.0000      0.996 1.000 0.000 0.000
#> GSM1167111     2  0.0000      0.996 0.000 1.000 0.000
#> GSM1167112     2  0.0000      0.996 0.000 1.000 0.000
#> GSM1167113     1  0.2066      0.921 0.940 0.000 0.060
#> GSM1167114     3  0.4178      0.624 0.000 0.172 0.828
#> GSM1167115     2  0.0000      0.996 0.000 1.000 0.000
#> GSM1167116     3  0.6305      0.237 0.484 0.000 0.516
#> GSM1167117     2  0.0000      0.996 0.000 1.000 0.000
#> GSM1167118     1  0.0000      0.996 1.000 0.000 0.000
#> GSM1167119     1  0.0000      0.996 1.000 0.000 0.000
#> GSM1167120     3  0.6260      0.330 0.448 0.000 0.552
#> GSM1167121     2  0.1289      0.968 0.000 0.968 0.032
#> GSM1167123     1  0.0000      0.996 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1167072     1   0.000     0.9738 1.000 0.000 0.000 0.000
#> GSM1167073     1   0.000     0.9738 1.000 0.000 0.000 0.000
#> GSM1167074     2   0.000     0.9656 0.000 1.000 0.000 0.000
#> GSM1167075     1   0.000     0.9738 1.000 0.000 0.000 0.000
#> GSM1167076     1   0.000     0.9738 1.000 0.000 0.000 0.000
#> GSM1167077     2   0.000     0.9656 0.000 1.000 0.000 0.000
#> GSM1167078     4   0.591     0.3066 0.088 0.000 0.236 0.676
#> GSM1167079     2   0.000     0.9656 0.000 1.000 0.000 0.000
#> GSM1167080     1   0.000     0.9738 1.000 0.000 0.000 0.000
#> GSM1167081     2   0.000     0.9656 0.000 1.000 0.000 0.000
#> GSM1167082     1   0.000     0.9738 1.000 0.000 0.000 0.000
#> GSM1167083     2   0.000     0.9656 0.000 1.000 0.000 0.000
#> GSM1167084     1   0.000     0.9738 1.000 0.000 0.000 0.000
#> GSM1167085     2   0.000     0.9656 0.000 1.000 0.000 0.000
#> GSM1167086     1   0.000     0.9738 1.000 0.000 0.000 0.000
#> GSM1167087     1   0.000     0.9738 1.000 0.000 0.000 0.000
#> GSM1167088     1   0.000     0.9738 1.000 0.000 0.000 0.000
#> GSM1167089     2   0.416     0.6548 0.000 0.736 0.264 0.000
#> GSM1167090     2   0.410     0.7980 0.000 0.832 0.076 0.092
#> GSM1167091     1   0.000     0.9738 1.000 0.000 0.000 0.000
#> GSM1167092     3   0.702     0.0107 0.192 0.000 0.576 0.232
#> GSM1167093     2   0.000     0.9656 0.000 1.000 0.000 0.000
#> GSM1167094     1   0.401     0.7694 0.820 0.000 0.032 0.148
#> GSM1167095     2   0.000     0.9656 0.000 1.000 0.000 0.000
#> GSM1167096     1   0.334     0.8185 0.856 0.000 0.016 0.128
#> GSM1167097     1   0.000     0.9738 1.000 0.000 0.000 0.000
#> GSM1167098     3   0.503     0.3764 0.000 0.156 0.764 0.080
#> GSM1167099     1   0.000     0.9738 1.000 0.000 0.000 0.000
#> GSM1167100     2   0.000     0.9656 0.000 1.000 0.000 0.000
#> GSM1167101     2   0.000     0.9656 0.000 1.000 0.000 0.000
#> GSM1167122     3   0.115     0.4354 0.000 0.008 0.968 0.024
#> GSM1167102     2   0.000     0.9656 0.000 1.000 0.000 0.000
#> GSM1167103     2   0.000     0.9656 0.000 1.000 0.000 0.000
#> GSM1167104     1   0.000     0.9738 1.000 0.000 0.000 0.000
#> GSM1167105     2   0.000     0.9656 0.000 1.000 0.000 0.000
#> GSM1167106     1   0.000     0.9738 1.000 0.000 0.000 0.000
#> GSM1167107     2   0.000     0.9656 0.000 1.000 0.000 0.000
#> GSM1167108     1   0.000     0.9738 1.000 0.000 0.000 0.000
#> GSM1167109     2   0.000     0.9656 0.000 1.000 0.000 0.000
#> GSM1167110     1   0.000     0.9738 1.000 0.000 0.000 0.000
#> GSM1167111     2   0.000     0.9656 0.000 1.000 0.000 0.000
#> GSM1167112     2   0.000     0.9656 0.000 1.000 0.000 0.000
#> GSM1167113     1   0.422     0.7525 0.824 0.000 0.076 0.100
#> GSM1167114     4   0.622     0.1679 0.000 0.108 0.240 0.652
#> GSM1167115     2   0.000     0.9656 0.000 1.000 0.000 0.000
#> GSM1167116     4   0.552     0.4798 0.264 0.000 0.052 0.684
#> GSM1167117     2   0.000     0.9656 0.000 1.000 0.000 0.000
#> GSM1167118     1   0.000     0.9738 1.000 0.000 0.000 0.000
#> GSM1167119     1   0.000     0.9738 1.000 0.000 0.000 0.000
#> GSM1167120     4   0.578     0.4828 0.220 0.000 0.088 0.692
#> GSM1167121     2   0.404     0.6797 0.000 0.752 0.248 0.000
#> GSM1167123     1   0.000     0.9738 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1167072     1  0.0000     0.9322 1.000 0.000 0.000 0.000 0.000
#> GSM1167073     1  0.0000     0.9322 1.000 0.000 0.000 0.000 0.000
#> GSM1167074     2  0.0000     0.9405 0.000 1.000 0.000 0.000 0.000
#> GSM1167075     1  0.0000     0.9322 1.000 0.000 0.000 0.000 0.000
#> GSM1167076     1  0.0000     0.9322 1.000 0.000 0.000 0.000 0.000
#> GSM1167077     2  0.0404     0.9311 0.000 0.988 0.000 0.000 0.012
#> GSM1167078     5  0.3818     0.4266 0.028 0.000 0.060 0.076 0.836
#> GSM1167079     2  0.0000     0.9405 0.000 1.000 0.000 0.000 0.000
#> GSM1167080     1  0.0000     0.9322 1.000 0.000 0.000 0.000 0.000
#> GSM1167081     2  0.0000     0.9405 0.000 1.000 0.000 0.000 0.000
#> GSM1167082     1  0.0000     0.9322 1.000 0.000 0.000 0.000 0.000
#> GSM1167083     2  0.0000     0.9405 0.000 1.000 0.000 0.000 0.000
#> GSM1167084     1  0.0000     0.9322 1.000 0.000 0.000 0.000 0.000
#> GSM1167085     2  0.0000     0.9405 0.000 1.000 0.000 0.000 0.000
#> GSM1167086     1  0.0000     0.9322 1.000 0.000 0.000 0.000 0.000
#> GSM1167087     1  0.0000     0.9322 1.000 0.000 0.000 0.000 0.000
#> GSM1167088     1  0.0000     0.9322 1.000 0.000 0.000 0.000 0.000
#> GSM1167089     2  0.4517     0.3938 0.000 0.600 0.388 0.000 0.012
#> GSM1167090     2  0.5001     0.4208 0.000 0.620 0.036 0.004 0.340
#> GSM1167091     1  0.0000     0.9322 1.000 0.000 0.000 0.000 0.000
#> GSM1167092     3  0.8035    -0.0924 0.216 0.000 0.436 0.212 0.136
#> GSM1167093     2  0.0000     0.9405 0.000 1.000 0.000 0.000 0.000
#> GSM1167094     1  0.6932    -0.0476 0.476 0.000 0.016 0.256 0.252
#> GSM1167095     2  0.0000     0.9405 0.000 1.000 0.000 0.000 0.000
#> GSM1167096     1  0.6176     0.2855 0.592 0.000 0.016 0.260 0.132
#> GSM1167097     1  0.0000     0.9322 1.000 0.000 0.000 0.000 0.000
#> GSM1167098     3  0.5667     0.2372 0.000 0.100 0.700 0.048 0.152
#> GSM1167099     1  0.0000     0.9322 1.000 0.000 0.000 0.000 0.000
#> GSM1167100     2  0.0000     0.9405 0.000 1.000 0.000 0.000 0.000
#> GSM1167101     2  0.0000     0.9405 0.000 1.000 0.000 0.000 0.000
#> GSM1167122     3  0.0486     0.3422 0.000 0.004 0.988 0.004 0.004
#> GSM1167102     2  0.0000     0.9405 0.000 1.000 0.000 0.000 0.000
#> GSM1167103     2  0.0000     0.9405 0.000 1.000 0.000 0.000 0.000
#> GSM1167104     1  0.0000     0.9322 1.000 0.000 0.000 0.000 0.000
#> GSM1167105     2  0.0000     0.9405 0.000 1.000 0.000 0.000 0.000
#> GSM1167106     1  0.0000     0.9322 1.000 0.000 0.000 0.000 0.000
#> GSM1167107     2  0.0000     0.9405 0.000 1.000 0.000 0.000 0.000
#> GSM1167108     1  0.0162     0.9287 0.996 0.000 0.000 0.004 0.000
#> GSM1167109     2  0.0000     0.9405 0.000 1.000 0.000 0.000 0.000
#> GSM1167110     1  0.0510     0.9172 0.984 0.000 0.000 0.016 0.000
#> GSM1167111     2  0.0000     0.9405 0.000 1.000 0.000 0.000 0.000
#> GSM1167112     2  0.0000     0.9405 0.000 1.000 0.000 0.000 0.000
#> GSM1167113     1  0.5928     0.4303 0.672 0.000 0.044 0.168 0.116
#> GSM1167114     5  0.7531     0.3524 0.000 0.084 0.144 0.324 0.448
#> GSM1167115     2  0.0000     0.9405 0.000 1.000 0.000 0.000 0.000
#> GSM1167116     4  0.5503     0.6693 0.192 0.000 0.028 0.692 0.088
#> GSM1167117     2  0.0000     0.9405 0.000 1.000 0.000 0.000 0.000
#> GSM1167118     1  0.0000     0.9322 1.000 0.000 0.000 0.000 0.000
#> GSM1167119     1  0.0000     0.9322 1.000 0.000 0.000 0.000 0.000
#> GSM1167120     4  0.3632     0.6458 0.112 0.000 0.024 0.836 0.028
#> GSM1167121     2  0.4161     0.4089 0.000 0.608 0.392 0.000 0.000
#> GSM1167123     1  0.0000     0.9322 1.000 0.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1167072     1  0.0146      0.965 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM1167073     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1167074     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167075     1  0.0291      0.963 0.992 0.000 0.000 0.004 0.000 0.004
#> GSM1167076     1  0.0291      0.963 0.992 0.000 0.000 0.004 0.000 0.004
#> GSM1167077     5  0.1261      0.891 0.000 0.028 0.004 0.008 0.956 0.004
#> GSM1167078     2  0.3506      0.427 0.004 0.828 0.012 0.088 0.000 0.068
#> GSM1167079     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167080     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1167081     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167082     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1167083     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167084     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1167085     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167086     1  0.0146      0.965 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM1167087     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1167088     1  0.0146      0.964 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM1167089     5  0.6398      0.136 0.000 0.060 0.352 0.084 0.492 0.012
#> GSM1167090     5  0.6609      0.166 0.000 0.300 0.056 0.128 0.504 0.012
#> GSM1167091     1  0.0291      0.962 0.992 0.004 0.000 0.004 0.000 0.000
#> GSM1167092     3  0.8025      0.130 0.148 0.112 0.452 0.112 0.000 0.176
#> GSM1167093     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167094     4  0.3647      0.573 0.216 0.012 0.004 0.760 0.000 0.008
#> GSM1167095     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167096     4  0.4776      0.618 0.356 0.000 0.004 0.588 0.000 0.052
#> GSM1167097     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1167098     3  0.7489      0.211 0.000 0.184 0.516 0.116 0.092 0.092
#> GSM1167099     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1167100     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167101     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167122     3  0.1251      0.364 0.000 0.024 0.956 0.012 0.000 0.008
#> GSM1167102     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167103     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167104     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1167105     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167106     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1167107     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167108     1  0.0146      0.965 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM1167109     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167110     1  0.1003      0.926 0.964 0.000 0.004 0.004 0.000 0.028
#> GSM1167111     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167112     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167113     1  0.6174      0.110 0.612 0.048 0.056 0.056 0.000 0.228
#> GSM1167114     2  0.6775      0.362 0.000 0.500 0.032 0.096 0.060 0.312
#> GSM1167115     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167116     6  0.4932      0.681 0.156 0.072 0.004 0.048 0.000 0.720
#> GSM1167117     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1167118     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1167119     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1167120     6  0.4212      0.670 0.096 0.016 0.024 0.072 0.000 0.792
#> GSM1167121     5  0.5532      0.251 0.000 0.028 0.376 0.044 0.540 0.012
#> GSM1167123     1  0.0893      0.943 0.972 0.004 0.004 0.016 0.000 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> ATC:skmeans 52            0.819 2
#> ATC:skmeans 49            0.642 3
#> ATC:skmeans 45            0.670 4
#> ATC:skmeans 41            0.193 5
#> ATC:skmeans 43            0.184 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.941       0.976         0.4801 0.509   0.509
#> 3 3 0.813           0.933       0.961         0.3707 0.748   0.546
#> 4 4 0.952           0.938       0.975         0.1071 0.861   0.634
#> 5 5 0.933           0.919       0.958         0.0761 0.937   0.774
#> 6 6 0.916           0.873       0.928         0.0301 0.977   0.897

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 4 5

There is also optional best \(k\) = 2 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1167072     1  0.0000      0.998 1.000 0.000
#> GSM1167073     1  0.0000      0.998 1.000 0.000
#> GSM1167074     2  0.0000      0.938 0.000 1.000
#> GSM1167075     1  0.0000      0.998 1.000 0.000
#> GSM1167076     1  0.0000      0.998 1.000 0.000
#> GSM1167077     2  0.9815      0.341 0.420 0.580
#> GSM1167078     1  0.0938      0.989 0.988 0.012
#> GSM1167079     2  0.0000      0.938 0.000 1.000
#> GSM1167080     1  0.0000      0.998 1.000 0.000
#> GSM1167081     2  0.0000      0.938 0.000 1.000
#> GSM1167082     1  0.0000      0.998 1.000 0.000
#> GSM1167083     2  0.0000      0.938 0.000 1.000
#> GSM1167084     1  0.0000      0.998 1.000 0.000
#> GSM1167085     2  0.0000      0.938 0.000 1.000
#> GSM1167086     1  0.0000      0.998 1.000 0.000
#> GSM1167087     1  0.0000      0.998 1.000 0.000
#> GSM1167088     1  0.0000      0.998 1.000 0.000
#> GSM1167089     2  0.9427      0.479 0.360 0.640
#> GSM1167090     1  0.0938      0.989 0.988 0.012
#> GSM1167091     1  0.0000      0.998 1.000 0.000
#> GSM1167092     1  0.0000      0.998 1.000 0.000
#> GSM1167093     2  0.0000      0.938 0.000 1.000
#> GSM1167094     1  0.0000      0.998 1.000 0.000
#> GSM1167095     2  0.0000      0.938 0.000 1.000
#> GSM1167096     1  0.0000      0.998 1.000 0.000
#> GSM1167097     1  0.0000      0.998 1.000 0.000
#> GSM1167098     1  0.0938      0.989 0.988 0.012
#> GSM1167099     1  0.0000      0.998 1.000 0.000
#> GSM1167100     2  0.0000      0.938 0.000 1.000
#> GSM1167101     2  0.0000      0.938 0.000 1.000
#> GSM1167122     1  0.0938      0.989 0.988 0.012
#> GSM1167102     2  0.0000      0.938 0.000 1.000
#> GSM1167103     2  0.0000      0.938 0.000 1.000
#> GSM1167104     1  0.0000      0.998 1.000 0.000
#> GSM1167105     2  0.0000      0.938 0.000 1.000
#> GSM1167106     1  0.0000      0.998 1.000 0.000
#> GSM1167107     2  0.0000      0.938 0.000 1.000
#> GSM1167108     1  0.0000      0.998 1.000 0.000
#> GSM1167109     2  0.0000      0.938 0.000 1.000
#> GSM1167110     1  0.0000      0.998 1.000 0.000
#> GSM1167111     2  0.0000      0.938 0.000 1.000
#> GSM1167112     2  0.0000      0.938 0.000 1.000
#> GSM1167113     1  0.0000      0.998 1.000 0.000
#> GSM1167114     1  0.0938      0.989 0.988 0.012
#> GSM1167115     2  0.0000      0.938 0.000 1.000
#> GSM1167116     1  0.0000      0.998 1.000 0.000
#> GSM1167117     2  0.0000      0.938 0.000 1.000
#> GSM1167118     1  0.0000      0.998 1.000 0.000
#> GSM1167119     1  0.0000      0.998 1.000 0.000
#> GSM1167120     1  0.0000      0.998 1.000 0.000
#> GSM1167121     2  0.9815      0.341 0.420 0.580
#> GSM1167123     1  0.0000      0.998 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1167072     3  0.4702      0.813 0.212 0.000 0.788
#> GSM1167073     3  0.4702      0.813 0.212 0.000 0.788
#> GSM1167074     2  0.0000      0.979 0.000 1.000 0.000
#> GSM1167075     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167076     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167077     3  0.0000      0.915 0.000 0.000 1.000
#> GSM1167078     3  0.0000      0.915 0.000 0.000 1.000
#> GSM1167079     2  0.0000      0.979 0.000 1.000 0.000
#> GSM1167080     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167081     2  0.0000      0.979 0.000 1.000 0.000
#> GSM1167082     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167083     2  0.0000      0.979 0.000 1.000 0.000
#> GSM1167084     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167085     2  0.0000      0.979 0.000 1.000 0.000
#> GSM1167086     3  0.4702      0.813 0.212 0.000 0.788
#> GSM1167087     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167088     3  0.4702      0.813 0.212 0.000 0.788
#> GSM1167089     3  0.0000      0.915 0.000 0.000 1.000
#> GSM1167090     3  0.0000      0.915 0.000 0.000 1.000
#> GSM1167091     3  0.4702      0.813 0.212 0.000 0.788
#> GSM1167092     3  0.0000      0.915 0.000 0.000 1.000
#> GSM1167093     2  0.0000      0.979 0.000 1.000 0.000
#> GSM1167094     3  0.0000      0.915 0.000 0.000 1.000
#> GSM1167095     2  0.3192      0.876 0.000 0.888 0.112
#> GSM1167096     3  0.0000      0.915 0.000 0.000 1.000
#> GSM1167097     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167098     3  0.0000      0.915 0.000 0.000 1.000
#> GSM1167099     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167100     2  0.4702      0.763 0.000 0.788 0.212
#> GSM1167101     2  0.0000      0.979 0.000 1.000 0.000
#> GSM1167122     3  0.0000      0.915 0.000 0.000 1.000
#> GSM1167102     2  0.0000      0.979 0.000 1.000 0.000
#> GSM1167103     2  0.0000      0.979 0.000 1.000 0.000
#> GSM1167104     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167105     2  0.0000      0.979 0.000 1.000 0.000
#> GSM1167106     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167107     2  0.0000      0.979 0.000 1.000 0.000
#> GSM1167108     3  0.4702      0.813 0.212 0.000 0.788
#> GSM1167109     2  0.0000      0.979 0.000 1.000 0.000
#> GSM1167110     3  0.0000      0.915 0.000 0.000 1.000
#> GSM1167111     2  0.0000      0.979 0.000 1.000 0.000
#> GSM1167112     2  0.0000      0.979 0.000 1.000 0.000
#> GSM1167113     3  0.0000      0.915 0.000 0.000 1.000
#> GSM1167114     3  0.0000      0.915 0.000 0.000 1.000
#> GSM1167115     2  0.0000      0.979 0.000 1.000 0.000
#> GSM1167116     3  0.0000      0.915 0.000 0.000 1.000
#> GSM1167117     2  0.0592      0.970 0.000 0.988 0.012
#> GSM1167118     3  0.4702      0.813 0.212 0.000 0.788
#> GSM1167119     1  0.0000      1.000 1.000 0.000 0.000
#> GSM1167120     3  0.0000      0.915 0.000 0.000 1.000
#> GSM1167121     3  0.0000      0.915 0.000 0.000 1.000
#> GSM1167123     3  0.4702      0.813 0.212 0.000 0.788

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1167072     3  0.4477      0.556 0.312 0.000 0.688 0.000
#> GSM1167073     1  0.0000      0.976 1.000 0.000 0.000 0.000
#> GSM1167074     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> GSM1167075     1  0.0000      0.976 1.000 0.000 0.000 0.000
#> GSM1167076     1  0.0000      0.976 1.000 0.000 0.000 0.000
#> GSM1167077     3  0.0000      0.949 0.000 0.000 1.000 0.000
#> GSM1167078     3  0.0000      0.949 0.000 0.000 1.000 0.000
#> GSM1167079     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> GSM1167080     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM1167081     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> GSM1167082     1  0.0000      0.976 1.000 0.000 0.000 0.000
#> GSM1167083     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> GSM1167084     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM1167085     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> GSM1167086     1  0.0000      0.976 1.000 0.000 0.000 0.000
#> GSM1167087     1  0.0000      0.976 1.000 0.000 0.000 0.000
#> GSM1167088     1  0.0000      0.976 1.000 0.000 0.000 0.000
#> GSM1167089     3  0.0000      0.949 0.000 0.000 1.000 0.000
#> GSM1167090     3  0.0000      0.949 0.000 0.000 1.000 0.000
#> GSM1167091     1  0.0336      0.968 0.992 0.000 0.008 0.000
#> GSM1167092     3  0.0000      0.949 0.000 0.000 1.000 0.000
#> GSM1167093     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> GSM1167094     3  0.0000      0.949 0.000 0.000 1.000 0.000
#> GSM1167095     2  0.2530      0.852 0.000 0.888 0.112 0.000
#> GSM1167096     3  0.0921      0.925 0.028 0.000 0.972 0.000
#> GSM1167097     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM1167098     3  0.0000      0.949 0.000 0.000 1.000 0.000
#> GSM1167099     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM1167100     2  0.4431      0.584 0.000 0.696 0.304 0.000
#> GSM1167101     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> GSM1167122     3  0.0000      0.949 0.000 0.000 1.000 0.000
#> GSM1167102     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> GSM1167103     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> GSM1167104     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM1167105     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> GSM1167106     1  0.0188      0.973 0.996 0.000 0.000 0.004
#> GSM1167107     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> GSM1167108     1  0.0000      0.976 1.000 0.000 0.000 0.000
#> GSM1167109     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> GSM1167110     3  0.4356      0.594 0.292 0.000 0.708 0.000
#> GSM1167111     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> GSM1167112     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> GSM1167113     3  0.0000      0.949 0.000 0.000 1.000 0.000
#> GSM1167114     3  0.0000      0.949 0.000 0.000 1.000 0.000
#> GSM1167115     2  0.0000      0.970 0.000 1.000 0.000 0.000
#> GSM1167116     3  0.0000      0.949 0.000 0.000 1.000 0.000
#> GSM1167117     2  0.0469      0.960 0.000 0.988 0.012 0.000
#> GSM1167118     1  0.3764      0.696 0.784 0.000 0.216 0.000
#> GSM1167119     1  0.0000      0.976 1.000 0.000 0.000 0.000
#> GSM1167120     3  0.0000      0.949 0.000 0.000 1.000 0.000
#> GSM1167121     3  0.0000      0.949 0.000 0.000 1.000 0.000
#> GSM1167123     1  0.0000      0.976 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4 p5
#> GSM1167072     4  0.0794      0.857 0.028 0.000 0.000 0.972  0
#> GSM1167073     1  0.0162      0.919 0.996 0.000 0.000 0.004  0
#> GSM1167074     2  0.0000      0.984 0.000 1.000 0.000 0.000  0
#> GSM1167075     1  0.0000      0.920 1.000 0.000 0.000 0.000  0
#> GSM1167076     1  0.0000      0.920 1.000 0.000 0.000 0.000  0
#> GSM1167077     3  0.0000      0.978 0.000 0.000 1.000 0.000  0
#> GSM1167078     4  0.3336      0.777 0.000 0.000 0.228 0.772  0
#> GSM1167079     2  0.0000      0.984 0.000 1.000 0.000 0.000  0
#> GSM1167080     5  0.0000      1.000 0.000 0.000 0.000 0.000  1
#> GSM1167081     2  0.0162      0.982 0.000 0.996 0.004 0.000  0
#> GSM1167082     1  0.0000      0.920 1.000 0.000 0.000 0.000  0
#> GSM1167083     2  0.0000      0.984 0.000 1.000 0.000 0.000  0
#> GSM1167084     5  0.0000      1.000 0.000 0.000 0.000 0.000  1
#> GSM1167085     2  0.0880      0.966 0.000 0.968 0.032 0.000  0
#> GSM1167086     1  0.3305      0.757 0.776 0.000 0.000 0.224  0
#> GSM1167087     1  0.0000      0.920 1.000 0.000 0.000 0.000  0
#> GSM1167088     1  0.0000      0.920 1.000 0.000 0.000 0.000  0
#> GSM1167089     3  0.0000      0.978 0.000 0.000 1.000 0.000  0
#> GSM1167090     3  0.0880      0.971 0.000 0.000 0.968 0.032  0
#> GSM1167091     1  0.0404      0.913 0.988 0.000 0.000 0.012  0
#> GSM1167092     4  0.3109      0.798 0.000 0.000 0.200 0.800  0
#> GSM1167093     2  0.0880      0.966 0.000 0.968 0.032 0.000  0
#> GSM1167094     4  0.3305      0.780 0.000 0.000 0.224 0.776  0
#> GSM1167095     2  0.2561      0.842 0.000 0.856 0.144 0.000  0
#> GSM1167096     4  0.0000      0.878 0.000 0.000 0.000 1.000  0
#> GSM1167097     5  0.0000      1.000 0.000 0.000 0.000 0.000  1
#> GSM1167098     3  0.0880      0.971 0.000 0.000 0.968 0.032  0
#> GSM1167099     5  0.0000      1.000 0.000 0.000 0.000 0.000  1
#> GSM1167100     3  0.0000      0.978 0.000 0.000 1.000 0.000  0
#> GSM1167101     2  0.0000      0.984 0.000 1.000 0.000 0.000  0
#> GSM1167122     3  0.0963      0.968 0.000 0.000 0.964 0.036  0
#> GSM1167102     2  0.0000      0.984 0.000 1.000 0.000 0.000  0
#> GSM1167103     2  0.0000      0.984 0.000 1.000 0.000 0.000  0
#> GSM1167104     5  0.0000      1.000 0.000 0.000 0.000 0.000  1
#> GSM1167105     2  0.0000      0.984 0.000 1.000 0.000 0.000  0
#> GSM1167106     1  0.0000      0.920 1.000 0.000 0.000 0.000  0
#> GSM1167107     2  0.0000      0.984 0.000 1.000 0.000 0.000  0
#> GSM1167108     1  0.3305      0.757 0.776 0.000 0.000 0.224  0
#> GSM1167109     2  0.0000      0.984 0.000 1.000 0.000 0.000  0
#> GSM1167110     4  0.0000      0.878 0.000 0.000 0.000 1.000  0
#> GSM1167111     2  0.0000      0.984 0.000 1.000 0.000 0.000  0
#> GSM1167112     2  0.0000      0.984 0.000 1.000 0.000 0.000  0
#> GSM1167113     4  0.0000      0.878 0.000 0.000 0.000 1.000  0
#> GSM1167114     4  0.3336      0.777 0.000 0.000 0.228 0.772  0
#> GSM1167115     2  0.0000      0.984 0.000 1.000 0.000 0.000  0
#> GSM1167116     4  0.0000      0.878 0.000 0.000 0.000 1.000  0
#> GSM1167117     2  0.1121      0.957 0.000 0.956 0.044 0.000  0
#> GSM1167118     1  0.4262      0.372 0.560 0.000 0.000 0.440  0
#> GSM1167119     1  0.0000      0.920 1.000 0.000 0.000 0.000  0
#> GSM1167120     4  0.0000      0.878 0.000 0.000 0.000 1.000  0
#> GSM1167121     3  0.0000      0.978 0.000 0.000 1.000 0.000  0
#> GSM1167123     1  0.0000      0.920 1.000 0.000 0.000 0.000  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5 p6
#> GSM1167072     4  0.2135      0.728 0.128 0.000 0.000 0.872 0.000  0
#> GSM1167073     1  0.0146      0.736 0.996 0.000 0.000 0.004 0.000  0
#> GSM1167074     5  0.0000      0.971 0.000 0.000 0.000 0.000 1.000  0
#> GSM1167075     3  0.2762      0.893 0.196 0.000 0.804 0.000 0.000  0
#> GSM1167076     3  0.2762      0.893 0.196 0.000 0.804 0.000 0.000  0
#> GSM1167077     2  0.0000      0.969 0.000 1.000 0.000 0.000 0.000  0
#> GSM1167078     4  0.2996      0.772 0.000 0.228 0.000 0.772 0.000  0
#> GSM1167079     5  0.0000      0.971 0.000 0.000 0.000 0.000 1.000  0
#> GSM1167080     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000  1
#> GSM1167081     5  0.1152      0.949 0.000 0.004 0.044 0.000 0.952  0
#> GSM1167082     1  0.2300      0.774 0.856 0.000 0.144 0.000 0.000  0
#> GSM1167083     5  0.0146      0.970 0.000 0.000 0.004 0.000 0.996  0
#> GSM1167084     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000  1
#> GSM1167085     5  0.1921      0.928 0.000 0.032 0.052 0.000 0.916  0
#> GSM1167086     1  0.3566      0.582 0.752 0.000 0.024 0.224 0.000  0
#> GSM1167087     1  0.2300      0.774 0.856 0.000 0.144 0.000 0.000  0
#> GSM1167088     1  0.0000      0.737 1.000 0.000 0.000 0.000 0.000  0
#> GSM1167089     2  0.0000      0.969 0.000 1.000 0.000 0.000 0.000  0
#> GSM1167090     2  0.0790      0.962 0.000 0.968 0.000 0.032 0.000  0
#> GSM1167091     1  0.2300      0.774 0.856 0.000 0.144 0.000 0.000  0
#> GSM1167092     4  0.2793      0.792 0.000 0.200 0.000 0.800 0.000  0
#> GSM1167093     5  0.1856      0.931 0.000 0.032 0.048 0.000 0.920  0
#> GSM1167094     4  0.2969      0.774 0.000 0.224 0.000 0.776 0.000  0
#> GSM1167095     5  0.3193      0.828 0.000 0.124 0.052 0.000 0.824  0
#> GSM1167096     4  0.0000      0.852 0.000 0.000 0.000 1.000 0.000  0
#> GSM1167097     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000  1
#> GSM1167098     2  0.0790      0.962 0.000 0.968 0.000 0.032 0.000  0
#> GSM1167099     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000  1
#> GSM1167100     2  0.0865      0.936 0.000 0.964 0.036 0.000 0.000  0
#> GSM1167101     5  0.0000      0.971 0.000 0.000 0.000 0.000 1.000  0
#> GSM1167122     2  0.0865      0.960 0.000 0.964 0.000 0.036 0.000  0
#> GSM1167102     5  0.0000      0.971 0.000 0.000 0.000 0.000 1.000  0
#> GSM1167103     5  0.0000      0.971 0.000 0.000 0.000 0.000 1.000  0
#> GSM1167104     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000  1
#> GSM1167105     5  0.0000      0.971 0.000 0.000 0.000 0.000 1.000  0
#> GSM1167106     1  0.2300      0.774 0.856 0.000 0.144 0.000 0.000  0
#> GSM1167107     5  0.0000      0.971 0.000 0.000 0.000 0.000 1.000  0
#> GSM1167108     1  0.2969      0.602 0.776 0.000 0.000 0.224 0.000  0
#> GSM1167109     5  0.0000      0.971 0.000 0.000 0.000 0.000 1.000  0
#> GSM1167110     4  0.0000      0.852 0.000 0.000 0.000 1.000 0.000  0
#> GSM1167111     5  0.0000      0.971 0.000 0.000 0.000 0.000 1.000  0
#> GSM1167112     5  0.0000      0.971 0.000 0.000 0.000 0.000 1.000  0
#> GSM1167113     4  0.0000      0.852 0.000 0.000 0.000 1.000 0.000  0
#> GSM1167114     4  0.2996      0.772 0.000 0.228 0.000 0.772 0.000  0
#> GSM1167115     5  0.0000      0.971 0.000 0.000 0.000 0.000 1.000  0
#> GSM1167116     4  0.0000      0.852 0.000 0.000 0.000 1.000 0.000  0
#> GSM1167117     5  0.2134      0.919 0.000 0.044 0.052 0.000 0.904  0
#> GSM1167118     1  0.3847      0.250 0.544 0.000 0.000 0.456 0.000  0
#> GSM1167119     1  0.2300      0.774 0.856 0.000 0.144 0.000 0.000  0
#> GSM1167120     4  0.0000      0.852 0.000 0.000 0.000 1.000 0.000  0
#> GSM1167121     2  0.0000      0.969 0.000 1.000 0.000 0.000 0.000  0
#> GSM1167123     3  0.1501      0.777 0.076 0.000 0.924 0.000 0.000  0

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) k
#> ATC:pam 49            0.487 2
#> ATC:pam 52            0.474 3
#> ATC:pam 52            0.653 4
#> ATC:pam 51            0.330 5
#> ATC:pam 51            0.466 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.769           0.865       0.945         0.3665 0.660   0.660
#> 3 3 0.283           0.605       0.743         0.5680 0.738   0.602
#> 4 4 0.543           0.613       0.785         0.2115 0.652   0.328
#> 5 5 0.491           0.518       0.672         0.0679 0.917   0.747
#> 6 6 0.548           0.222       0.624         0.0714 0.863   0.559

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1167072     1  0.0376     0.9395 0.996 0.004
#> GSM1167073     1  0.0000     0.9406 1.000 0.000
#> GSM1167074     1  0.9580     0.3823 0.620 0.380
#> GSM1167075     1  0.0938     0.9373 0.988 0.012
#> GSM1167076     1  0.0938     0.9373 0.988 0.012
#> GSM1167077     1  0.0000     0.9406 1.000 0.000
#> GSM1167078     1  0.0000     0.9406 1.000 0.000
#> GSM1167079     2  0.6048     0.8234 0.148 0.852
#> GSM1167080     1  0.0000     0.9406 1.000 0.000
#> GSM1167081     2  0.9460     0.4398 0.364 0.636
#> GSM1167082     1  0.0000     0.9406 1.000 0.000
#> GSM1167083     1  0.9954     0.0682 0.540 0.460
#> GSM1167084     1  0.0000     0.9406 1.000 0.000
#> GSM1167085     1  0.7299     0.7279 0.796 0.204
#> GSM1167086     1  0.0376     0.9395 0.996 0.004
#> GSM1167087     1  0.0000     0.9406 1.000 0.000
#> GSM1167088     1  0.0000     0.9406 1.000 0.000
#> GSM1167089     1  0.0938     0.9373 0.988 0.012
#> GSM1167090     1  0.0000     0.9406 1.000 0.000
#> GSM1167091     1  0.0376     0.9395 0.996 0.004
#> GSM1167092     1  0.0938     0.9373 0.988 0.012
#> GSM1167093     1  0.8955     0.5396 0.688 0.312
#> GSM1167094     1  0.0376     0.9397 0.996 0.004
#> GSM1167095     1  0.9248     0.4739 0.660 0.340
#> GSM1167096     1  0.0000     0.9406 1.000 0.000
#> GSM1167097     1  0.0000     0.9406 1.000 0.000
#> GSM1167098     1  0.0672     0.9387 0.992 0.008
#> GSM1167099     1  0.0000     0.9406 1.000 0.000
#> GSM1167100     1  0.0938     0.9373 0.988 0.012
#> GSM1167101     2  0.0000     0.9219 0.000 1.000
#> GSM1167122     1  0.0938     0.9373 0.988 0.012
#> GSM1167102     2  0.2778     0.9012 0.048 0.952
#> GSM1167103     2  0.0376     0.9218 0.004 0.996
#> GSM1167104     1  0.0000     0.9406 1.000 0.000
#> GSM1167105     2  0.0376     0.9218 0.004 0.996
#> GSM1167106     1  0.0000     0.9406 1.000 0.000
#> GSM1167107     2  0.0000     0.9219 0.000 1.000
#> GSM1167108     1  0.0000     0.9406 1.000 0.000
#> GSM1167109     2  0.0000     0.9219 0.000 1.000
#> GSM1167110     1  0.0000     0.9406 1.000 0.000
#> GSM1167111     2  0.5946     0.8278 0.144 0.856
#> GSM1167112     2  0.0376     0.9218 0.004 0.996
#> GSM1167113     1  0.0672     0.9387 0.992 0.008
#> GSM1167114     1  0.0376     0.9397 0.996 0.004
#> GSM1167115     2  0.0000     0.9219 0.000 1.000
#> GSM1167116     1  0.0000     0.9406 1.000 0.000
#> GSM1167117     1  0.9248     0.4648 0.660 0.340
#> GSM1167118     1  0.0000     0.9406 1.000 0.000
#> GSM1167119     1  0.0000     0.9406 1.000 0.000
#> GSM1167120     1  0.0000     0.9406 1.000 0.000
#> GSM1167121     1  0.0938     0.9373 0.988 0.012
#> GSM1167123     1  0.0938     0.9373 0.988 0.012

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1167072     3  0.6309     0.0454 0.496 0.000 0.504
#> GSM1167073     1  0.6305    -0.0778 0.516 0.000 0.484
#> GSM1167074     3  0.5178     0.6726 0.000 0.256 0.744
#> GSM1167075     3  0.4750     0.3975 0.216 0.000 0.784
#> GSM1167076     3  0.4750     0.3975 0.216 0.000 0.784
#> GSM1167077     3  0.7085     0.7046 0.096 0.188 0.716
#> GSM1167078     3  0.6693     0.7067 0.104 0.148 0.748
#> GSM1167079     2  0.3769     0.8327 0.016 0.880 0.104
#> GSM1167080     1  0.4178     0.6951 0.828 0.000 0.172
#> GSM1167081     2  0.7092     0.5602 0.084 0.708 0.208
#> GSM1167082     1  0.4233     0.7140 0.836 0.004 0.160
#> GSM1167083     3  0.7389     0.4095 0.032 0.464 0.504
#> GSM1167084     1  0.2261     0.7541 0.932 0.000 0.068
#> GSM1167085     3  0.5956     0.6774 0.016 0.264 0.720
#> GSM1167086     3  0.6309     0.0454 0.496 0.000 0.504
#> GSM1167087     1  0.2878     0.7582 0.904 0.000 0.096
#> GSM1167088     3  0.8543     0.5988 0.268 0.140 0.592
#> GSM1167089     3  0.3461     0.5614 0.076 0.024 0.900
#> GSM1167090     3  0.6990     0.7042 0.108 0.164 0.728
#> GSM1167091     3  0.8250     0.6352 0.232 0.140 0.628
#> GSM1167092     3  0.6349     0.7089 0.092 0.140 0.768
#> GSM1167093     3  0.4842     0.6840 0.000 0.224 0.776
#> GSM1167094     3  0.6520     0.1189 0.488 0.004 0.508
#> GSM1167095     3  0.7841     0.4111 0.056 0.408 0.536
#> GSM1167096     1  0.6521    -0.1706 0.504 0.004 0.492
#> GSM1167097     1  0.2356     0.7550 0.928 0.000 0.072
#> GSM1167098     3  0.6544     0.7074 0.084 0.164 0.752
#> GSM1167099     1  0.2625     0.7500 0.916 0.000 0.084
#> GSM1167100     3  0.5901     0.7056 0.040 0.192 0.768
#> GSM1167101     2  0.0237     0.9376 0.000 0.996 0.004
#> GSM1167122     3  0.4128     0.6921 0.012 0.132 0.856
#> GSM1167102     2  0.1399     0.9227 0.004 0.968 0.028
#> GSM1167103     2  0.0000     0.9389 0.000 1.000 0.000
#> GSM1167104     1  0.1964     0.7466 0.944 0.000 0.056
#> GSM1167105     2  0.0000     0.9389 0.000 1.000 0.000
#> GSM1167106     1  0.2878     0.7565 0.904 0.000 0.096
#> GSM1167107     2  0.0000     0.9389 0.000 1.000 0.000
#> GSM1167108     1  0.6267    -0.0400 0.548 0.000 0.452
#> GSM1167109     2  0.0000     0.9389 0.000 1.000 0.000
#> GSM1167110     3  0.6305     0.0887 0.484 0.000 0.516
#> GSM1167111     2  0.2383     0.9010 0.016 0.940 0.044
#> GSM1167112     2  0.0000     0.9389 0.000 1.000 0.000
#> GSM1167113     3  0.6573     0.7059 0.104 0.140 0.756
#> GSM1167114     3  0.6529     0.7088 0.092 0.152 0.756
#> GSM1167115     2  0.0000     0.9389 0.000 1.000 0.000
#> GSM1167116     3  0.7163     0.6953 0.136 0.144 0.720
#> GSM1167117     3  0.6998     0.6674 0.044 0.292 0.664
#> GSM1167118     3  0.6565     0.2647 0.416 0.008 0.576
#> GSM1167119     1  0.3715     0.7237 0.868 0.004 0.128
#> GSM1167120     3  0.7853     0.3934 0.384 0.060 0.556
#> GSM1167121     3  0.4645     0.6965 0.008 0.176 0.816
#> GSM1167123     3  0.3752     0.4863 0.144 0.000 0.856

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1167072     1  0.4426    0.76989 0.772 0.000 0.024 0.204
#> GSM1167073     1  0.4793    0.76922 0.756 0.000 0.040 0.204
#> GSM1167074     2  0.6862    0.25611 0.000 0.560 0.312 0.128
#> GSM1167075     4  0.1520    0.84422 0.020 0.000 0.024 0.956
#> GSM1167076     4  0.1297    0.84025 0.020 0.000 0.016 0.964
#> GSM1167077     2  0.5857    0.22075 0.056 0.636 0.308 0.000
#> GSM1167078     3  0.5805    0.54556 0.068 0.240 0.688 0.004
#> GSM1167079     2  0.2066    0.79598 0.028 0.940 0.024 0.008
#> GSM1167080     1  0.1510    0.73522 0.956 0.000 0.016 0.028
#> GSM1167081     2  0.2632    0.78701 0.048 0.916 0.028 0.008
#> GSM1167082     1  0.6608    0.70870 0.628 0.000 0.168 0.204
#> GSM1167083     2  0.2222    0.79255 0.032 0.932 0.032 0.004
#> GSM1167084     1  0.0469    0.74569 0.988 0.000 0.012 0.000
#> GSM1167085     2  0.5544    0.44959 0.028 0.668 0.296 0.008
#> GSM1167086     1  0.5184    0.76303 0.736 0.000 0.060 0.204
#> GSM1167087     1  0.4175    0.76856 0.776 0.000 0.012 0.212
#> GSM1167088     3  0.5962    0.24868 0.088 0.008 0.700 0.204
#> GSM1167089     4  0.4631    0.49071 0.004 0.008 0.260 0.728
#> GSM1167090     3  0.6602    0.29694 0.068 0.432 0.496 0.004
#> GSM1167091     3  0.5901    0.25030 0.084 0.008 0.704 0.204
#> GSM1167092     3  0.5496    0.60946 0.088 0.188 0.724 0.000
#> GSM1167093     2  0.7131    0.19262 0.008 0.528 0.352 0.112
#> GSM1167094     1  0.6370    0.32630 0.492 0.044 0.456 0.008
#> GSM1167095     2  0.3399    0.74280 0.032 0.872 0.092 0.004
#> GSM1167096     1  0.5172    0.53405 0.588 0.000 0.404 0.008
#> GSM1167097     1  0.0937    0.74258 0.976 0.000 0.012 0.012
#> GSM1167098     3  0.5137    0.58915 0.036 0.216 0.740 0.008
#> GSM1167099     1  0.1510    0.73522 0.956 0.000 0.016 0.028
#> GSM1167100     3  0.5925    0.43898 0.028 0.324 0.632 0.016
#> GSM1167101     2  0.0188    0.80684 0.000 0.996 0.004 0.000
#> GSM1167122     3  0.5161    0.00854 0.000 0.008 0.592 0.400
#> GSM1167102     2  0.0188    0.80558 0.004 0.996 0.000 0.000
#> GSM1167103     2  0.0000    0.80554 0.000 1.000 0.000 0.000
#> GSM1167104     1  0.0927    0.74221 0.976 0.000 0.008 0.016
#> GSM1167105     2  0.0188    0.80535 0.000 0.996 0.004 0.000
#> GSM1167106     1  0.3982    0.76772 0.776 0.000 0.004 0.220
#> GSM1167107     2  0.0188    0.80684 0.000 0.996 0.004 0.000
#> GSM1167108     1  0.4986    0.75398 0.740 0.000 0.044 0.216
#> GSM1167109     2  0.0000    0.80554 0.000 1.000 0.000 0.000
#> GSM1167110     1  0.4008    0.65810 0.756 0.000 0.244 0.000
#> GSM1167111     2  0.1811    0.79823 0.028 0.948 0.020 0.004
#> GSM1167112     2  0.0188    0.80535 0.000 0.996 0.004 0.000
#> GSM1167113     3  0.7098    0.49624 0.244 0.192 0.564 0.000
#> GSM1167114     2  0.6103   -0.25470 0.036 0.492 0.468 0.004
#> GSM1167115     2  0.0000    0.80554 0.000 1.000 0.000 0.000
#> GSM1167116     3  0.7932    0.40535 0.252 0.280 0.460 0.008
#> GSM1167117     2  0.2731    0.78112 0.032 0.912 0.048 0.008
#> GSM1167118     1  0.7777    0.66006 0.576 0.040 0.172 0.212
#> GSM1167119     1  0.6805    0.70468 0.604 0.000 0.176 0.220
#> GSM1167120     1  0.5811    0.55472 0.672 0.048 0.272 0.008
#> GSM1167121     3  0.6744    0.52946 0.020 0.224 0.648 0.108
#> GSM1167123     4  0.1878    0.83588 0.008 0.008 0.040 0.944

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1167072     1  0.2957     0.7029 0.860 0.000 0.120 0.012 0.008
#> GSM1167073     1  0.4295     0.7031 0.804 0.004 0.120 0.036 0.036
#> GSM1167074     3  0.7637     0.3146 0.000 0.252 0.396 0.300 0.052
#> GSM1167075     3  0.0290     0.6382 0.000 0.000 0.992 0.000 0.008
#> GSM1167076     3  0.0290     0.6382 0.000 0.000 0.992 0.000 0.008
#> GSM1167077     2  0.6566     0.0176 0.084 0.476 0.000 0.400 0.040
#> GSM1167078     4  0.6282     0.4628 0.248 0.216 0.000 0.536 0.000
#> GSM1167079     2  0.4555     0.6163 0.000 0.636 0.000 0.020 0.344
#> GSM1167080     1  0.3284     0.6999 0.828 0.000 0.000 0.024 0.148
#> GSM1167081     2  0.5756     0.5076 0.028 0.512 0.000 0.036 0.424
#> GSM1167082     1  0.5652     0.6664 0.700 0.012 0.120 0.152 0.016
#> GSM1167083     2  0.5007     0.5020 0.016 0.688 0.004 0.260 0.032
#> GSM1167084     1  0.2848     0.7024 0.840 0.000 0.000 0.004 0.156
#> GSM1167085     2  0.6774     0.1818 0.008 0.520 0.068 0.348 0.056
#> GSM1167086     1  0.5825     0.5586 0.664 0.008 0.120 0.196 0.012
#> GSM1167087     1  0.4750     0.6932 0.760 0.000 0.120 0.016 0.104
#> GSM1167088     4  0.5308     0.4822 0.144 0.008 0.124 0.716 0.008
#> GSM1167089     3  0.3558     0.5967 0.000 0.004 0.824 0.136 0.036
#> GSM1167090     4  0.5711     0.3909 0.100 0.296 0.004 0.600 0.000
#> GSM1167091     4  0.5192     0.4881 0.128 0.004 0.140 0.720 0.008
#> GSM1167092     4  0.6742     0.4410 0.344 0.180 0.012 0.464 0.000
#> GSM1167093     3  0.7703     0.2972 0.000 0.256 0.384 0.304 0.056
#> GSM1167094     1  0.6212     0.4610 0.600 0.036 0.000 0.272 0.092
#> GSM1167095     2  0.5717     0.5896 0.016 0.608 0.000 0.072 0.304
#> GSM1167096     1  0.5299     0.5912 0.692 0.008 0.000 0.188 0.112
#> GSM1167097     1  0.3193     0.7007 0.840 0.000 0.000 0.028 0.132
#> GSM1167098     4  0.5114     0.5610 0.096 0.176 0.012 0.716 0.000
#> GSM1167099     1  0.3877     0.6894 0.764 0.000 0.000 0.024 0.212
#> GSM1167100     4  0.5914     0.3540 0.016 0.224 0.036 0.668 0.056
#> GSM1167101     2  0.0000     0.7178 0.000 1.000 0.000 0.000 0.000
#> GSM1167122     3  0.6379     0.4063 0.056 0.000 0.508 0.384 0.052
#> GSM1167102     2  0.0566     0.7136 0.004 0.984 0.000 0.012 0.000
#> GSM1167103     2  0.0703     0.7163 0.000 0.976 0.000 0.000 0.024
#> GSM1167104     1  0.4339     0.6329 0.652 0.000 0.000 0.012 0.336
#> GSM1167105     2  0.0290     0.7141 0.000 0.992 0.008 0.000 0.000
#> GSM1167106     1  0.5972     0.6397 0.620 0.000 0.120 0.016 0.244
#> GSM1167107     2  0.0000     0.7178 0.000 1.000 0.000 0.000 0.000
#> GSM1167108     1  0.6721     0.5887 0.532 0.000 0.120 0.040 0.308
#> GSM1167109     2  0.0000     0.7178 0.000 1.000 0.000 0.000 0.000
#> GSM1167110     1  0.2125     0.6817 0.920 0.004 0.000 0.052 0.024
#> GSM1167111     2  0.3983     0.6268 0.000 0.660 0.000 0.000 0.340
#> GSM1167112     2  0.0000     0.7178 0.000 1.000 0.000 0.000 0.000
#> GSM1167113     1  0.6682    -0.1873 0.476 0.248 0.000 0.272 0.004
#> GSM1167114     2  0.6938    -0.3094 0.308 0.372 0.000 0.316 0.004
#> GSM1167115     2  0.0000     0.7178 0.000 1.000 0.000 0.000 0.000
#> GSM1167116     1  0.6527     0.0404 0.532 0.232 0.000 0.228 0.008
#> GSM1167117     2  0.4703     0.6142 0.000 0.632 0.000 0.028 0.340
#> GSM1167118     1  0.5374     0.6697 0.712 0.000 0.120 0.144 0.024
#> GSM1167119     1  0.6033     0.6681 0.668 0.000 0.120 0.160 0.052
#> GSM1167120     1  0.4983     0.5465 0.668 0.008 0.000 0.044 0.280
#> GSM1167121     4  0.6899    -0.3230 0.000 0.108 0.348 0.492 0.052
#> GSM1167123     3  0.0290     0.6384 0.000 0.000 0.992 0.008 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1167072     1  0.2331    0.43158 0.888 0.000 0.000 0.032 0.000 0.080
#> GSM1167073     1  0.1938    0.46917 0.920 0.004 0.000 0.040 0.000 0.036
#> GSM1167074     3  0.6187    0.47095 0.000 0.100 0.600 0.196 0.100 0.004
#> GSM1167075     3  0.3809    0.54324 0.004 0.304 0.684 0.000 0.000 0.008
#> GSM1167076     3  0.3809    0.54324 0.004 0.304 0.684 0.000 0.000 0.008
#> GSM1167077     5  0.5966    0.03507 0.056 0.052 0.008 0.388 0.496 0.000
#> GSM1167078     4  0.3433    0.57613 0.024 0.096 0.004 0.836 0.040 0.000
#> GSM1167079     5  0.0458    0.29551 0.000 0.000 0.000 0.016 0.984 0.000
#> GSM1167080     1  0.4866    0.32410 0.692 0.020 0.000 0.092 0.000 0.196
#> GSM1167081     5  0.3710    0.24508 0.008 0.052 0.000 0.016 0.816 0.108
#> GSM1167082     1  0.3809    0.45994 0.792 0.012 0.000 0.152 0.008 0.036
#> GSM1167083     5  0.5526   -0.06512 0.000 0.112 0.008 0.356 0.524 0.000
#> GSM1167084     1  0.2912    0.38916 0.816 0.000 0.000 0.012 0.000 0.172
#> GSM1167085     3  0.7912    0.00914 0.000 0.188 0.320 0.288 0.188 0.016
#> GSM1167086     1  0.4756    0.16674 0.628 0.000 0.000 0.304 0.004 0.064
#> GSM1167087     1  0.3483    0.14842 0.748 0.000 0.000 0.016 0.000 0.236
#> GSM1167088     4  0.4000    0.51250 0.052 0.056 0.032 0.820 0.000 0.040
#> GSM1167089     3  0.3306    0.56290 0.000 0.136 0.820 0.036 0.000 0.008
#> GSM1167090     4  0.5077    0.50148 0.012 0.120 0.016 0.700 0.152 0.000
#> GSM1167091     4  0.4330    0.50221 0.056 0.056 0.048 0.800 0.000 0.040
#> GSM1167092     4  0.5862    0.42463 0.276 0.056 0.020 0.604 0.004 0.040
#> GSM1167093     3  0.6055    0.47135 0.000 0.112 0.596 0.236 0.044 0.012
#> GSM1167094     1  0.6155    0.21156 0.532 0.008 0.004 0.200 0.008 0.248
#> GSM1167095     5  0.2814    0.28330 0.004 0.052 0.000 0.080 0.864 0.000
#> GSM1167096     1  0.5733    0.14611 0.552 0.008 0.004 0.144 0.000 0.292
#> GSM1167097     1  0.3485    0.39071 0.784 0.004 0.000 0.028 0.000 0.184
#> GSM1167098     4  0.5027    0.49600 0.060 0.096 0.072 0.748 0.020 0.004
#> GSM1167099     1  0.4667    0.09900 0.624 0.032 0.000 0.016 0.000 0.328
#> GSM1167100     4  0.6866    0.13181 0.004 0.116 0.212 0.544 0.112 0.012
#> GSM1167101     2  0.4473    0.00000 0.000 0.488 0.000 0.028 0.484 0.000
#> GSM1167122     3  0.3215    0.51092 0.000 0.000 0.756 0.240 0.004 0.000
#> GSM1167102     5  0.4101   -0.50147 0.000 0.408 0.000 0.012 0.580 0.000
#> GSM1167103     5  0.3578   -0.33110 0.000 0.340 0.000 0.000 0.660 0.000
#> GSM1167104     6  0.3868    0.28007 0.496 0.000 0.000 0.000 0.000 0.504
#> GSM1167105     5  0.4335   -0.89992 0.000 0.472 0.000 0.020 0.508 0.000
#> GSM1167106     6  0.4183    0.42597 0.480 0.000 0.000 0.012 0.000 0.508
#> GSM1167107     5  0.3915   -0.52510 0.000 0.412 0.000 0.004 0.584 0.000
#> GSM1167108     6  0.4386    0.34590 0.464 0.004 0.000 0.016 0.000 0.516
#> GSM1167109     5  0.3672   -0.38916 0.000 0.368 0.000 0.000 0.632 0.000
#> GSM1167110     1  0.3396    0.45668 0.828 0.016 0.000 0.108 0.000 0.048
#> GSM1167111     5  0.0363    0.28068 0.000 0.012 0.000 0.000 0.988 0.000
#> GSM1167112     5  0.3747   -0.47367 0.000 0.396 0.000 0.000 0.604 0.000
#> GSM1167113     4  0.6789    0.25631 0.372 0.076 0.004 0.460 0.052 0.036
#> GSM1167114     4  0.6986    0.41580 0.120 0.092 0.000 0.500 0.268 0.020
#> GSM1167115     5  0.3789   -0.53982 0.000 0.416 0.000 0.000 0.584 0.000
#> GSM1167116     4  0.7365    0.19041 0.352 0.080 0.000 0.392 0.148 0.028
#> GSM1167117     5  0.1408    0.30059 0.000 0.036 0.000 0.020 0.944 0.000
#> GSM1167118     1  0.4974    0.37897 0.668 0.028 0.000 0.248 0.004 0.052
#> GSM1167119     1  0.4937    0.41695 0.696 0.020 0.000 0.136 0.000 0.148
#> GSM1167120     6  0.7040    0.17464 0.364 0.080 0.000 0.056 0.060 0.440
#> GSM1167121     3  0.5752    0.44023 0.000 0.092 0.592 0.280 0.020 0.016
#> GSM1167123     3  0.3928    0.54401 0.004 0.300 0.684 0.004 0.000 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> ATC:mclust 47           0.0193 2
#> ATC:mclust 38           0.0490 3
#> ATC:mclust 38           0.4060 4
#> ATC:mclust 36           0.3115 5
#> ATC:mclust  9           1.0000 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 52 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.920           0.949       0.977         0.4891 0.509   0.509
#> 3 3 0.746           0.833       0.915         0.1752 0.934   0.872
#> 4 4 0.673           0.672       0.852         0.1307 0.870   0.727
#> 5 5 0.637           0.689       0.835         0.0963 0.916   0.784
#> 6 6 0.597           0.618       0.770         0.0617 0.941   0.816

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1167072     1  0.0000      0.979 1.000 0.000
#> GSM1167073     1  0.0000      0.979 1.000 0.000
#> GSM1167074     2  0.0000      0.968 0.000 1.000
#> GSM1167075     1  0.0000      0.979 1.000 0.000
#> GSM1167076     1  0.0000      0.979 1.000 0.000
#> GSM1167077     2  0.6343      0.812 0.160 0.840
#> GSM1167078     1  0.0000      0.979 1.000 0.000
#> GSM1167079     2  0.0000      0.968 0.000 1.000
#> GSM1167080     1  0.0000      0.979 1.000 0.000
#> GSM1167081     2  0.0000      0.968 0.000 1.000
#> GSM1167082     1  0.0000      0.979 1.000 0.000
#> GSM1167083     2  0.0000      0.968 0.000 1.000
#> GSM1167084     1  0.0000      0.979 1.000 0.000
#> GSM1167085     2  0.0000      0.968 0.000 1.000
#> GSM1167086     1  0.0000      0.979 1.000 0.000
#> GSM1167087     1  0.0000      0.979 1.000 0.000
#> GSM1167088     1  0.0000      0.979 1.000 0.000
#> GSM1167089     2  0.7674      0.726 0.224 0.776
#> GSM1167090     1  0.8443      0.624 0.728 0.272
#> GSM1167091     1  0.0000      0.979 1.000 0.000
#> GSM1167092     1  0.0000      0.979 1.000 0.000
#> GSM1167093     2  0.0000      0.968 0.000 1.000
#> GSM1167094     1  0.0000      0.979 1.000 0.000
#> GSM1167095     2  0.0000      0.968 0.000 1.000
#> GSM1167096     1  0.0000      0.979 1.000 0.000
#> GSM1167097     1  0.0000      0.979 1.000 0.000
#> GSM1167098     1  0.4431      0.887 0.908 0.092
#> GSM1167099     1  0.0000      0.979 1.000 0.000
#> GSM1167100     2  0.0000      0.968 0.000 1.000
#> GSM1167101     2  0.0000      0.968 0.000 1.000
#> GSM1167122     1  0.0000      0.979 1.000 0.000
#> GSM1167102     2  0.0000      0.968 0.000 1.000
#> GSM1167103     2  0.0000      0.968 0.000 1.000
#> GSM1167104     1  0.0000      0.979 1.000 0.000
#> GSM1167105     2  0.0000      0.968 0.000 1.000
#> GSM1167106     1  0.0000      0.979 1.000 0.000
#> GSM1167107     2  0.0000      0.968 0.000 1.000
#> GSM1167108     1  0.0000      0.979 1.000 0.000
#> GSM1167109     2  0.0000      0.968 0.000 1.000
#> GSM1167110     1  0.0000      0.979 1.000 0.000
#> GSM1167111     2  0.0000      0.968 0.000 1.000
#> GSM1167112     2  0.0000      0.968 0.000 1.000
#> GSM1167113     1  0.0000      0.979 1.000 0.000
#> GSM1167114     1  0.7745      0.702 0.772 0.228
#> GSM1167115     2  0.0000      0.968 0.000 1.000
#> GSM1167116     1  0.0000      0.979 1.000 0.000
#> GSM1167117     2  0.0000      0.968 0.000 1.000
#> GSM1167118     1  0.0000      0.979 1.000 0.000
#> GSM1167119     1  0.0000      0.979 1.000 0.000
#> GSM1167120     1  0.0376      0.976 0.996 0.004
#> GSM1167121     2  0.7602      0.732 0.220 0.780
#> GSM1167123     1  0.0000      0.979 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1167072     1  0.0592     0.9012 0.988 0.000 0.012
#> GSM1167073     1  0.0592     0.9006 0.988 0.000 0.012
#> GSM1167074     2  0.0237     0.9600 0.000 0.996 0.004
#> GSM1167075     1  0.3340     0.8499 0.880 0.000 0.120
#> GSM1167076     1  0.3412     0.8471 0.876 0.000 0.124
#> GSM1167077     2  0.3670     0.8476 0.020 0.888 0.092
#> GSM1167078     1  0.3454     0.8517 0.888 0.008 0.104
#> GSM1167079     2  0.0237     0.9612 0.000 0.996 0.004
#> GSM1167080     1  0.0592     0.9003 0.988 0.000 0.012
#> GSM1167081     2  0.5529     0.5248 0.000 0.704 0.296
#> GSM1167082     1  0.1031     0.9017 0.976 0.000 0.024
#> GSM1167083     2  0.2711     0.8778 0.000 0.912 0.088
#> GSM1167084     1  0.0747     0.9009 0.984 0.000 0.016
#> GSM1167085     2  0.0000     0.9624 0.000 1.000 0.000
#> GSM1167086     1  0.0747     0.9017 0.984 0.000 0.016
#> GSM1167087     1  0.0892     0.9002 0.980 0.000 0.020
#> GSM1167088     1  0.3412     0.8427 0.876 0.000 0.124
#> GSM1167089     3  0.6224     0.6944 0.032 0.240 0.728
#> GSM1167090     1  0.8402     0.1753 0.532 0.376 0.092
#> GSM1167091     1  0.1411     0.8956 0.964 0.000 0.036
#> GSM1167092     1  0.2537     0.8781 0.920 0.000 0.080
#> GSM1167093     3  0.6299     0.3273 0.000 0.476 0.524
#> GSM1167094     1  0.1964     0.8882 0.944 0.000 0.056
#> GSM1167095     2  0.0000     0.9624 0.000 1.000 0.000
#> GSM1167096     1  0.1964     0.8900 0.944 0.000 0.056
#> GSM1167097     1  0.1031     0.8982 0.976 0.000 0.024
#> GSM1167098     1  0.6542     0.6267 0.736 0.204 0.060
#> GSM1167099     1  0.0424     0.9017 0.992 0.000 0.008
#> GSM1167100     2  0.0592     0.9543 0.000 0.988 0.012
#> GSM1167101     2  0.0000     0.9624 0.000 1.000 0.000
#> GSM1167122     3  0.5024     0.5552 0.220 0.004 0.776
#> GSM1167102     2  0.0237     0.9612 0.000 0.996 0.004
#> GSM1167103     2  0.0000     0.9624 0.000 1.000 0.000
#> GSM1167104     1  0.0747     0.9009 0.984 0.000 0.016
#> GSM1167105     2  0.0000     0.9624 0.000 1.000 0.000
#> GSM1167106     1  0.0892     0.9002 0.980 0.000 0.020
#> GSM1167107     2  0.0237     0.9612 0.000 0.996 0.004
#> GSM1167108     1  0.1289     0.8976 0.968 0.000 0.032
#> GSM1167109     2  0.0000     0.9624 0.000 1.000 0.000
#> GSM1167110     1  0.0747     0.9009 0.984 0.000 0.016
#> GSM1167111     2  0.0000     0.9624 0.000 1.000 0.000
#> GSM1167112     2  0.0000     0.9624 0.000 1.000 0.000
#> GSM1167113     1  0.1765     0.8941 0.956 0.004 0.040
#> GSM1167114     1  0.7044     0.3665 0.620 0.348 0.032
#> GSM1167115     2  0.0000     0.9624 0.000 1.000 0.000
#> GSM1167116     1  0.1267     0.8985 0.972 0.004 0.024
#> GSM1167117     2  0.0237     0.9612 0.000 0.996 0.004
#> GSM1167118     1  0.0237     0.9018 0.996 0.000 0.004
#> GSM1167119     1  0.1411     0.8970 0.964 0.000 0.036
#> GSM1167120     1  0.2703     0.8802 0.928 0.016 0.056
#> GSM1167121     3  0.5521     0.7189 0.032 0.180 0.788
#> GSM1167123     1  0.6308     0.0777 0.508 0.000 0.492

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1167072     1  0.0937      0.791 0.976 0.000 0.012 0.012
#> GSM1167073     1  0.2363      0.776 0.920 0.000 0.024 0.056
#> GSM1167074     2  0.0895      0.846 0.000 0.976 0.020 0.004
#> GSM1167075     1  0.3716      0.719 0.852 0.000 0.096 0.052
#> GSM1167076     1  0.4037      0.666 0.824 0.000 0.136 0.040
#> GSM1167077     2  0.3873      0.681 0.000 0.772 0.000 0.228
#> GSM1167078     4  0.7100      0.902 0.440 0.020 0.072 0.468
#> GSM1167079     2  0.0000      0.853 0.000 1.000 0.000 0.000
#> GSM1167080     1  0.2300      0.774 0.924 0.000 0.028 0.048
#> GSM1167081     2  0.6192      0.294 0.000 0.512 0.052 0.436
#> GSM1167082     1  0.2376      0.781 0.916 0.000 0.016 0.068
#> GSM1167083     2  0.3907      0.672 0.000 0.768 0.000 0.232
#> GSM1167084     1  0.1489      0.790 0.952 0.000 0.004 0.044
#> GSM1167085     2  0.0469      0.851 0.000 0.988 0.012 0.000
#> GSM1167086     1  0.1890      0.785 0.936 0.000 0.008 0.056
#> GSM1167087     1  0.1545      0.787 0.952 0.000 0.008 0.040
#> GSM1167088     4  0.6247      0.903 0.428 0.000 0.056 0.516
#> GSM1167089     3  0.5067      0.733 0.024 0.164 0.776 0.036
#> GSM1167090     2  0.8094     -0.272 0.256 0.388 0.008 0.348
#> GSM1167091     1  0.5966     -0.110 0.648 0.000 0.072 0.280
#> GSM1167092     1  0.5574      0.422 0.728 0.004 0.184 0.084
#> GSM1167093     3  0.4456      0.620 0.000 0.280 0.716 0.004
#> GSM1167094     1  0.3052      0.752 0.880 0.004 0.012 0.104
#> GSM1167095     2  0.1356      0.838 0.000 0.960 0.008 0.032
#> GSM1167096     1  0.3143      0.740 0.876 0.000 0.024 0.100
#> GSM1167097     1  0.1724      0.785 0.948 0.000 0.020 0.032
#> GSM1167098     1  0.9306     -0.606 0.396 0.112 0.192 0.300
#> GSM1167099     1  0.1545      0.788 0.952 0.000 0.008 0.040
#> GSM1167100     2  0.2466      0.803 0.000 0.916 0.028 0.056
#> GSM1167101     2  0.0336      0.852 0.000 0.992 0.008 0.000
#> GSM1167122     3  0.2307      0.729 0.048 0.008 0.928 0.016
#> GSM1167102     2  0.0188      0.852 0.000 0.996 0.000 0.004
#> GSM1167103     2  0.0000      0.853 0.000 1.000 0.000 0.000
#> GSM1167104     1  0.0895      0.791 0.976 0.000 0.004 0.020
#> GSM1167105     2  0.0376      0.852 0.000 0.992 0.004 0.004
#> GSM1167106     1  0.1284      0.786 0.964 0.000 0.012 0.024
#> GSM1167107     2  0.0188      0.852 0.000 0.996 0.004 0.000
#> GSM1167108     1  0.1724      0.782 0.948 0.000 0.020 0.032
#> GSM1167109     2  0.0000      0.853 0.000 1.000 0.000 0.000
#> GSM1167110     1  0.1888      0.781 0.940 0.000 0.016 0.044
#> GSM1167111     2  0.0000      0.853 0.000 1.000 0.000 0.000
#> GSM1167112     2  0.1004      0.843 0.000 0.972 0.004 0.024
#> GSM1167113     1  0.3617      0.724 0.860 0.000 0.064 0.076
#> GSM1167114     2  0.9012     -0.463 0.356 0.360 0.068 0.216
#> GSM1167115     2  0.0376      0.852 0.000 0.992 0.004 0.004
#> GSM1167116     1  0.3961      0.698 0.852 0.012 0.048 0.088
#> GSM1167117     2  0.0000      0.853 0.000 1.000 0.000 0.000
#> GSM1167118     1  0.2335      0.769 0.920 0.000 0.020 0.060
#> GSM1167119     1  0.2281      0.771 0.904 0.000 0.000 0.096
#> GSM1167120     1  0.5133      0.413 0.740 0.024 0.016 0.220
#> GSM1167121     3  0.3199      0.759 0.012 0.060 0.892 0.036
#> GSM1167123     3  0.4798      0.513 0.180 0.000 0.768 0.052

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1167072     1  0.0451    0.80104 0.988 0.000 0.000 0.008 0.004
#> GSM1167073     1  0.1836    0.80161 0.932 0.000 0.000 0.032 0.036
#> GSM1167074     2  0.2420    0.75235 0.000 0.896 0.088 0.008 0.008
#> GSM1167075     1  0.3398    0.77560 0.864 0.000 0.044 0.048 0.044
#> GSM1167076     1  0.2930    0.76193 0.880 0.000 0.076 0.012 0.032
#> GSM1167077     2  0.3835    0.59218 0.000 0.796 0.000 0.048 0.156
#> GSM1167078     4  0.6414    0.62959 0.160 0.000 0.012 0.548 0.280
#> GSM1167079     2  0.0579    0.86687 0.000 0.984 0.000 0.008 0.008
#> GSM1167080     1  0.2777    0.76865 0.864 0.000 0.000 0.120 0.016
#> GSM1167081     5  0.5014    0.00000 0.000 0.412 0.008 0.020 0.560
#> GSM1167082     1  0.2886    0.75463 0.844 0.000 0.000 0.148 0.008
#> GSM1167083     2  0.4449    0.48514 0.000 0.752 0.000 0.080 0.168
#> GSM1167084     1  0.0794    0.80212 0.972 0.000 0.000 0.028 0.000
#> GSM1167085     2  0.0807    0.86368 0.000 0.976 0.012 0.012 0.000
#> GSM1167086     1  0.2387    0.79417 0.908 0.000 0.004 0.048 0.040
#> GSM1167087     1  0.0566    0.80057 0.984 0.000 0.000 0.012 0.004
#> GSM1167088     4  0.6326    0.66639 0.216 0.000 0.004 0.552 0.228
#> GSM1167089     3  0.4302    0.80895 0.028 0.072 0.824 0.024 0.052
#> GSM1167090     4  0.8300   -0.00451 0.128 0.288 0.004 0.376 0.204
#> GSM1167091     4  0.5704    0.60903 0.272 0.000 0.028 0.636 0.064
#> GSM1167092     1  0.7231   -0.04707 0.460 0.000 0.096 0.356 0.088
#> GSM1167093     3  0.3169    0.74518 0.000 0.140 0.840 0.016 0.004
#> GSM1167094     1  0.4889    0.62877 0.724 0.004 0.004 0.196 0.072
#> GSM1167095     2  0.4436    0.42519 0.000 0.744 0.008 0.208 0.040
#> GSM1167096     1  0.4845    0.62628 0.728 0.000 0.008 0.188 0.076
#> GSM1167097     1  0.1430    0.80120 0.944 0.000 0.000 0.052 0.004
#> GSM1167098     4  0.4781    0.62785 0.152 0.008 0.084 0.752 0.004
#> GSM1167099     1  0.1697    0.79818 0.932 0.000 0.000 0.060 0.008
#> GSM1167100     2  0.4526    0.51505 0.000 0.772 0.032 0.156 0.040
#> GSM1167101     2  0.0324    0.86670 0.000 0.992 0.004 0.004 0.000
#> GSM1167122     3  0.1492    0.85067 0.004 0.000 0.948 0.040 0.008
#> GSM1167102     2  0.0703    0.85931 0.000 0.976 0.000 0.000 0.024
#> GSM1167103     2  0.0671    0.86757 0.000 0.980 0.004 0.016 0.000
#> GSM1167104     1  0.0451    0.80065 0.988 0.000 0.004 0.000 0.008
#> GSM1167105     2  0.0981    0.86262 0.000 0.972 0.008 0.012 0.008
#> GSM1167106     1  0.1179    0.79567 0.964 0.000 0.004 0.016 0.016
#> GSM1167107     2  0.0451    0.86615 0.000 0.988 0.000 0.004 0.008
#> GSM1167108     1  0.2075    0.78422 0.924 0.000 0.004 0.040 0.032
#> GSM1167109     2  0.0162    0.86749 0.000 0.996 0.000 0.004 0.000
#> GSM1167110     1  0.1701    0.80065 0.936 0.000 0.000 0.016 0.048
#> GSM1167111     2  0.0854    0.86476 0.000 0.976 0.004 0.012 0.008
#> GSM1167112     2  0.1442    0.84560 0.000 0.952 0.012 0.032 0.004
#> GSM1167113     1  0.5880    0.48864 0.644 0.008 0.004 0.196 0.148
#> GSM1167114     4  0.6190    0.59118 0.160 0.108 0.020 0.676 0.036
#> GSM1167115     2  0.0579    0.86432 0.000 0.984 0.008 0.008 0.000
#> GSM1167116     1  0.5785    0.30762 0.572 0.012 0.004 0.352 0.060
#> GSM1167117     2  0.0865    0.86029 0.000 0.972 0.000 0.004 0.024
#> GSM1167118     1  0.3527    0.70875 0.792 0.000 0.000 0.192 0.016
#> GSM1167119     1  0.4503    0.60060 0.696 0.000 0.000 0.268 0.036
#> GSM1167120     1  0.5523    0.40375 0.624 0.036 0.004 0.024 0.312
#> GSM1167121     3  0.2451    0.84480 0.000 0.004 0.904 0.056 0.036
#> GSM1167123     3  0.3126    0.79485 0.076 0.000 0.868 0.048 0.008

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1167072     1  0.1511     0.7366 0.944 0.032 0.000 0.012 0.000 0.012
#> GSM1167073     1  0.3717     0.7006 0.808 0.084 0.000 0.092 0.000 0.016
#> GSM1167074     5  0.3152     0.7243 0.000 0.016 0.132 0.000 0.832 0.020
#> GSM1167075     1  0.4815     0.6602 0.760 0.024 0.072 0.056 0.000 0.088
#> GSM1167076     1  0.4327     0.6713 0.792 0.024 0.068 0.032 0.000 0.084
#> GSM1167077     5  0.4500     0.5946 0.000 0.104 0.000 0.016 0.736 0.144
#> GSM1167078     4  0.6397     0.5509 0.136 0.064 0.000 0.516 0.000 0.284
#> GSM1167079     5  0.0260     0.8450 0.000 0.008 0.000 0.000 0.992 0.000
#> GSM1167080     1  0.3844     0.6382 0.764 0.028 0.000 0.192 0.000 0.016
#> GSM1167081     2  0.5599    -0.1783 0.000 0.536 0.004 0.032 0.368 0.060
#> GSM1167082     1  0.3510     0.6349 0.772 0.008 0.000 0.204 0.000 0.016
#> GSM1167083     5  0.3806     0.5973 0.000 0.028 0.000 0.008 0.752 0.212
#> GSM1167084     1  0.1265     0.7324 0.948 0.000 0.000 0.044 0.000 0.008
#> GSM1167085     5  0.0405     0.8453 0.000 0.000 0.008 0.000 0.988 0.004
#> GSM1167086     1  0.3590     0.6912 0.808 0.024 0.000 0.032 0.000 0.136
#> GSM1167087     1  0.1262     0.7364 0.956 0.008 0.000 0.020 0.000 0.016
#> GSM1167088     4  0.6045     0.5544 0.160 0.024 0.000 0.520 0.000 0.296
#> GSM1167089     3  0.6031     0.6132 0.044 0.044 0.676 0.016 0.076 0.144
#> GSM1167090     6  0.6435     0.0000 0.068 0.004 0.000 0.120 0.280 0.528
#> GSM1167091     4  0.5273     0.6766 0.208 0.008 0.012 0.656 0.000 0.116
#> GSM1167092     4  0.6920     0.6080 0.184 0.140 0.096 0.552 0.000 0.028
#> GSM1167093     3  0.3419     0.6863 0.000 0.020 0.820 0.020 0.136 0.004
#> GSM1167094     1  0.6188     0.4624 0.604 0.136 0.000 0.068 0.008 0.184
#> GSM1167095     5  0.6392     0.1890 0.000 0.124 0.008 0.228 0.568 0.072
#> GSM1167096     1  0.7096     0.2989 0.500 0.152 0.012 0.120 0.000 0.216
#> GSM1167097     1  0.2113     0.7208 0.896 0.004 0.000 0.092 0.000 0.008
#> GSM1167098     4  0.5130     0.6222 0.120 0.036 0.028 0.728 0.000 0.088
#> GSM1167099     1  0.3486     0.6633 0.788 0.024 0.000 0.180 0.000 0.008
#> GSM1167100     5  0.4391     0.5764 0.000 0.012 0.012 0.152 0.756 0.068
#> GSM1167101     5  0.1138     0.8434 0.000 0.012 0.004 0.000 0.960 0.024
#> GSM1167122     3  0.1471     0.7919 0.000 0.004 0.932 0.064 0.000 0.000
#> GSM1167102     5  0.1219     0.8422 0.000 0.048 0.000 0.000 0.948 0.004
#> GSM1167103     5  0.2122     0.8148 0.000 0.008 0.000 0.008 0.900 0.084
#> GSM1167104     1  0.1485     0.7355 0.944 0.024 0.000 0.028 0.000 0.004
#> GSM1167105     5  0.1036     0.8457 0.000 0.004 0.008 0.000 0.964 0.024
#> GSM1167106     1  0.2380     0.7159 0.900 0.036 0.000 0.016 0.000 0.048
#> GSM1167107     5  0.0692     0.8425 0.000 0.004 0.000 0.000 0.976 0.020
#> GSM1167108     1  0.4168     0.6246 0.776 0.100 0.000 0.024 0.000 0.100
#> GSM1167109     5  0.1251     0.8447 0.000 0.024 0.000 0.008 0.956 0.012
#> GSM1167110     1  0.2932     0.7229 0.860 0.088 0.000 0.040 0.000 0.012
#> GSM1167111     5  0.1737     0.8379 0.000 0.008 0.000 0.020 0.932 0.040
#> GSM1167112     5  0.3142     0.7782 0.000 0.032 0.004 0.024 0.856 0.084
#> GSM1167113     1  0.6876    -0.2863 0.384 0.260 0.004 0.312 0.000 0.040
#> GSM1167114     4  0.5520     0.6159 0.132 0.012 0.028 0.708 0.032 0.088
#> GSM1167115     5  0.1210     0.8460 0.000 0.020 0.004 0.008 0.960 0.008
#> GSM1167116     4  0.5384     0.5387 0.320 0.064 0.008 0.592 0.004 0.012
#> GSM1167117     5  0.1577     0.8385 0.000 0.036 0.000 0.016 0.940 0.008
#> GSM1167118     1  0.4010     0.5277 0.692 0.012 0.000 0.284 0.000 0.012
#> GSM1167119     1  0.5850     0.3975 0.600 0.084 0.000 0.244 0.000 0.072
#> GSM1167120     2  0.6749     0.0496 0.340 0.484 0.004 0.068 0.084 0.020
#> GSM1167121     3  0.2949     0.7866 0.000 0.012 0.868 0.084 0.020 0.016
#> GSM1167123     3  0.2924     0.7463 0.068 0.004 0.872 0.032 0.000 0.024

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) k
#> ATC:NMF 52            0.557 2
#> ATC:NMF 48            0.520 3
#> ATC:NMF 45            0.490 4
#> ATC:NMF 44            0.278 5
#> ATC:NMF 44            0.454 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0