Date: 2019-12-25 21:58:04 CET, cola version: 1.3.2
Document is loading... 
All available functions which can be applied to this res_list object:
res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 38950 rows and 108 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]
The call of run_all_consensus_partition_methods() was:
#> run_all_consensus_partition_methods(data = mat, mc.cores = 4, anno = anno)
Dimension of the input matrix:
mat = get_matrix(res_list)
dim(mat)
#> [1] 38950   108
The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.
library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_list), 
    col = get_anno_col(res_list)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

Folowing table shows the best k (number of partitions) for each combination
of top-value methods and partition methods. Clicking on the method name in
the table goes to the section for a single combination of methods.
The cola vignette explains the definition of the metrics used for determining the best number of partitions.
suggest_best_k(res_list)
| The best k | 1-PAC | Mean silhouette | Concordance | Optional k | ||
|---|---|---|---|---|---|---|
| CV:mclust | 2 | 1.000 | 0.970 | 0.973 | ** | |
| ATC:NMF | 2 | 1.000 | 0.968 | 0.987 | ** | |
| MAD:mclust | 4 | 0.946 | 0.886 | 0.938 | * | |
| ATC:skmeans | 5 | 0.926 | 0.839 | 0.935 | * | 2,3,4 | 
| ATC:pam | 5 | 0.912 | 0.902 | 0.957 | * | |
| ATC:kmeans | 2 | 0.904 | 0.931 | 0.971 | * | |
| MAD:skmeans | 4 | 0.854 | 0.818 | 0.919 | ||
| CV:NMF | 2 | 0.850 | 0.916 | 0.963 | ||
| MAD:NMF | 2 | 0.842 | 0.895 | 0.957 | ||
| CV:kmeans | 2 | 0.835 | 0.902 | 0.960 | ||
| SD:skmeans | 4 | 0.814 | 0.829 | 0.911 | ||
| SD:NMF | 2 | 0.781 | 0.880 | 0.950 | ||
| CV:skmeans | 2 | 0.758 | 0.923 | 0.962 | ||
| SD:pam | 6 | 0.748 | 0.724 | 0.856 | ||
| SD:kmeans | 4 | 0.698 | 0.827 | 0.881 | ||
| MAD:kmeans | 2 | 0.695 | 0.876 | 0.936 | ||
| SD:mclust | 3 | 0.686 | 0.886 | 0.913 | ||
| MAD:pam | 6 | 0.678 | 0.667 | 0.819 | ||
| ATC:mclust | 2 | 0.620 | 0.729 | 0.889 | ||
| ATC:hclust | 4 | 0.585 | 0.587 | 0.804 | ||
| CV:hclust | 4 | 0.510 | 0.615 | 0.846 | ||
| CV:pam | 3 | 0.496 | 0.726 | 0.857 | ||
| MAD:hclust | 3 | 0.360 | 0.662 | 0.826 | ||
| SD:hclust | 3 | 0.331 | 0.691 | 0.833 | 
**: 1-PAC > 0.95, *: 1-PAC > 0.9
Cumulative distribution function curves of consensus matrix for all methods.
collect_plots(res_list, fun = plot_ecdf)

Consensus heatmaps for all methods. (What is a consensus heatmap?)
collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

Membership heatmaps for all methods. (What is a membership heatmap?)
collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

Signature heatmaps for all methods. (What is a signature heatmap?)
Note in following heatmaps, rows are scaled.
collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)
get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.781           0.880       0.950          0.495 0.502   0.502
#> CV:NMF      2 0.850           0.916       0.963          0.489 0.509   0.509
#> MAD:NMF     2 0.842           0.895       0.957          0.495 0.504   0.504
#> ATC:NMF     2 1.000           0.968       0.987          0.474 0.529   0.529
#> SD:skmeans  2 0.608           0.820       0.923          0.502 0.500   0.500
#> CV:skmeans  2 0.758           0.923       0.962          0.503 0.497   0.497
#> MAD:skmeans 2 0.674           0.817       0.927          0.503 0.498   0.498
#> ATC:skmeans 2 1.000           0.997       0.999          0.504 0.496   0.496
#> SD:mclust   2 0.717           0.931       0.940          0.249 0.786   0.786
#> CV:mclust   2 1.000           0.970       0.973          0.460 0.529   0.529
#> MAD:mclust  2 0.278           0.625       0.798          0.407 0.525   0.525
#> ATC:mclust  2 0.620           0.729       0.889          0.439 0.595   0.595
#> SD:kmeans   2 0.588           0.770       0.898          0.445 0.565   0.565
#> CV:kmeans   2 0.835           0.902       0.960          0.476 0.516   0.516
#> MAD:kmeans  2 0.695           0.876       0.936          0.464 0.551   0.551
#> ATC:kmeans  2 0.904           0.931       0.971          0.492 0.504   0.504
#> SD:pam      2 0.278           0.428       0.691          0.466 0.540   0.540
#> CV:pam      2 0.356           0.697       0.842          0.498 0.496   0.496
#> MAD:pam     2 0.338           0.391       0.713          0.464 0.587   0.587
#> ATC:pam     2 0.389           0.546       0.802          0.455 0.621   0.621
#> SD:hclust   2 0.411           0.780       0.881          0.341 0.707   0.707
#> CV:hclust   2 0.319           0.603       0.813          0.278 0.673   0.673
#> MAD:hclust  2 0.206           0.216       0.600          0.409 0.506   0.506
#> ATC:hclust  2 0.600           0.776       0.907          0.423 0.587   0.587
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.640           0.774       0.898          0.255 0.747   0.555
#> CV:NMF      3 0.516           0.563       0.758          0.329 0.786   0.612
#> MAD:NMF     3 0.606           0.745       0.868          0.276 0.827   0.674
#> ATC:NMF     3 0.500           0.530       0.756          0.351 0.782   0.612
#> SD:skmeans  3 0.611           0.736       0.875          0.328 0.733   0.518
#> CV:skmeans  3 0.575           0.714       0.845          0.317 0.728   0.505
#> MAD:skmeans 3 0.479           0.539       0.745          0.327 0.721   0.505
#> ATC:skmeans 3 0.963           0.956       0.979          0.326 0.755   0.542
#> SD:mclust   3 0.686           0.886       0.913          0.928 0.740   0.670
#> CV:mclust   3 0.777           0.885       0.925          0.163 0.890   0.802
#> MAD:mclust  3 0.310           0.558       0.740          0.307 0.778   0.622
#> ATC:mclust  3 0.610           0.553       0.778          0.405 0.551   0.350
#> SD:kmeans   3 0.477           0.696       0.839          0.382 0.733   0.564
#> CV:kmeans   3 0.427           0.530       0.738          0.308 0.862   0.748
#> MAD:kmeans  3 0.427           0.590       0.770          0.345 0.796   0.649
#> ATC:kmeans  3 0.723           0.750       0.889          0.333 0.736   0.520
#> SD:pam      3 0.381           0.602       0.766          0.373 0.628   0.415
#> CV:pam      3 0.496           0.726       0.857          0.324 0.697   0.463
#> MAD:pam     3 0.331           0.485       0.763          0.331 0.468   0.291
#> ATC:pam     3 0.797           0.874       0.944          0.437 0.701   0.529
#> SD:hclust   3 0.331           0.691       0.833          0.534 0.788   0.701
#> CV:hclust   3 0.488           0.579       0.827          0.756 0.714   0.606
#> MAD:hclust  3 0.360           0.662       0.826          0.352 0.530   0.374
#> ATC:hclust  3 0.539           0.581       0.811          0.468 0.729   0.554
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.635           0.817       0.873         0.1886 0.792   0.508
#> CV:NMF      4 0.659           0.771       0.861         0.1368 0.738   0.414
#> MAD:NMF     4 0.683           0.813       0.886         0.1677 0.749   0.439
#> ATC:NMF     4 0.614           0.640       0.815         0.0965 0.750   0.470
#> SD:skmeans  4 0.814           0.829       0.911         0.1300 0.775   0.447
#> CV:skmeans  4 0.618           0.606       0.810         0.1335 0.808   0.500
#> MAD:skmeans 4 0.854           0.818       0.919         0.1285 0.796   0.490
#> ATC:skmeans 4 0.973           0.928       0.970         0.1148 0.885   0.672
#> SD:mclust   4 0.677           0.829       0.903         0.4877 0.710   0.469
#> CV:mclust   4 0.554           0.573       0.736         0.2639 0.777   0.539
#> MAD:mclust  4 0.946           0.886       0.938         0.3613 0.666   0.353
#> ATC:mclust  4 0.670           0.800       0.870         0.1075 0.785   0.515
#> SD:kmeans   4 0.698           0.827       0.881         0.1853 0.770   0.483
#> CV:kmeans   4 0.505           0.588       0.750         0.1491 0.762   0.497
#> MAD:kmeans  4 0.820           0.864       0.913         0.1692 0.772   0.499
#> ATC:kmeans  4 0.641           0.732       0.839         0.1169 0.843   0.582
#> SD:pam      4 0.584           0.747       0.828         0.1520 0.781   0.472
#> CV:pam      4 0.501           0.441       0.694         0.1074 0.845   0.581
#> MAD:pam     4 0.455           0.514       0.740         0.1661 0.727   0.396
#> ATC:pam     4 0.726           0.747       0.861         0.1088 0.916   0.768
#> SD:hclust   4 0.319           0.500       0.764         0.1283 0.890   0.797
#> CV:hclust   4 0.510           0.615       0.846         0.0985 0.920   0.844
#> MAD:hclust  4 0.343           0.517       0.752         0.1257 0.927   0.864
#> ATC:hclust  4 0.585           0.587       0.804         0.0926 0.909   0.769
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.674           0.665       0.820         0.0738 0.906   0.658
#> CV:NMF      5 0.661           0.649       0.812         0.0624 0.952   0.816
#> MAD:NMF     5 0.643           0.634       0.777         0.0729 0.895   0.625
#> ATC:NMF     5 0.647           0.679       0.832         0.0941 0.789   0.443
#> SD:skmeans  5 0.710           0.604       0.764         0.0645 0.939   0.763
#> CV:skmeans  5 0.600           0.539       0.728         0.0593 0.857   0.525
#> MAD:skmeans 5 0.740           0.629       0.769         0.0631 0.894   0.614
#> ATC:skmeans 5 0.926           0.839       0.935         0.0572 0.920   0.708
#> SD:mclust   5 0.641           0.768       0.857         0.0502 0.924   0.743
#> CV:mclust   5 0.564           0.603       0.749         0.1021 0.824   0.498
#> MAD:mclust  5 0.761           0.817       0.896         0.0471 0.921   0.729
#> ATC:mclust  5 0.756           0.766       0.881         0.1035 0.814   0.507
#> SD:kmeans   5 0.656           0.631       0.784         0.0752 0.964   0.871
#> CV:kmeans   5 0.583           0.628       0.765         0.0808 0.861   0.548
#> MAD:kmeans  5 0.692           0.651       0.789         0.0774 0.955   0.839
#> ATC:kmeans  5 0.772           0.701       0.821         0.0736 0.922   0.719
#> SD:pam      5 0.659           0.689       0.802         0.0674 0.920   0.704
#> CV:pam      5 0.646           0.697       0.836         0.0749 0.877   0.584
#> MAD:pam     5 0.581           0.458       0.704         0.0850 0.848   0.495
#> ATC:pam     5 0.912           0.902       0.957         0.0921 0.857   0.551
#> SD:hclust   5 0.352           0.506       0.703         0.0990 0.855   0.708
#> CV:hclust   5 0.553           0.594       0.819         0.0562 0.960   0.913
#> MAD:hclust  5 0.400           0.380       0.671         0.1143 0.852   0.696
#> ATC:hclust  5 0.575           0.537       0.758         0.0642 0.923   0.783
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.691           0.625       0.786         0.0439 0.904   0.592
#> CV:NMF      6 0.684           0.608       0.790         0.0427 0.921   0.672
#> MAD:NMF     6 0.669           0.632       0.778         0.0448 0.896   0.561
#> ATC:NMF     6 0.566           0.473       0.639         0.0460 0.891   0.590
#> SD:skmeans  6 0.710           0.549       0.748         0.0376 0.943   0.739
#> CV:skmeans  6 0.638           0.511       0.710         0.0396 0.920   0.660
#> MAD:skmeans 6 0.722           0.547       0.754         0.0391 0.888   0.531
#> ATC:skmeans 6 0.819           0.716       0.830         0.0461 0.920   0.655
#> SD:mclust   6 0.637           0.564       0.763         0.0645 0.909   0.657
#> CV:mclust   6 0.672           0.624       0.796         0.0644 0.892   0.616
#> MAD:mclust  6 0.785           0.693       0.839         0.0697 0.926   0.707
#> ATC:mclust  6 0.667           0.530       0.752         0.0490 0.900   0.641
#> SD:kmeans   6 0.643           0.453       0.678         0.0451 0.928   0.719
#> CV:kmeans   6 0.645           0.623       0.750         0.0411 0.957   0.809
#> MAD:kmeans  6 0.678           0.538       0.705         0.0476 0.892   0.586
#> ATC:kmeans  6 0.739           0.642       0.773         0.0410 0.952   0.785
#> SD:pam      6 0.748           0.724       0.856         0.0391 0.954   0.790
#> CV:pam      6 0.641           0.534       0.721         0.0375 0.945   0.753
#> MAD:pam     6 0.678           0.667       0.819         0.0422 0.921   0.658
#> ATC:pam     6 0.852           0.877       0.920         0.0297 0.972   0.865
#> SD:hclust   6 0.365           0.467       0.651         0.1020 0.876   0.676
#> CV:hclust   6 0.522           0.570       0.787         0.0687 0.956   0.901
#> MAD:hclust  6 0.431           0.424       0.649         0.0771 0.881   0.672
#> ATC:hclust  6 0.610           0.599       0.732         0.0457 0.870   0.598
Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.
collect_stats(res_list, k = 2)

collect_stats(res_list, k = 3)

collect_stats(res_list, k = 4)

collect_stats(res_list, k = 5)

collect_stats(res_list, k = 6)

Collect partitions from all methods:
collect_classes(res_list, k = 2)

collect_classes(res_list, k = 3)

collect_classes(res_list, k = 4)

collect_classes(res_list, k = 5)

collect_classes(res_list, k = 6)

Overlap of top rows from different top-row methods:
top_rows_overlap(res_list, top_n = 1000, method = "euler")

top_rows_overlap(res_list, top_n = 2000, method = "euler")

top_rows_overlap(res_list, top_n = 3000, method = "euler")

top_rows_overlap(res_list, top_n = 4000, method = "euler")

top_rows_overlap(res_list, top_n = 5000, method = "euler")

Also visualize the correspondance of rankings between different top-row methods:
top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

Heatmaps of the top rows:
top_rows_heatmap(res_list, top_n = 1000)

top_rows_heatmap(res_list, top_n = 2000)

top_rows_heatmap(res_list, top_n = 3000)

top_rows_heatmap(res_list, top_n = 4000)

top_rows_heatmap(res_list, top_n = 5000)

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res_list, k = 2)
#>               n disease.state(p) gender(p) k
#> SD:NMF      102          0.39176     0.753 2
#> CV:NMF      105          0.73098     1.000 2
#> MAD:NMF     102          0.48106     0.753 2
#> ATC:NMF     107          0.29010     1.000 2
#> SD:skmeans  101          0.28138     0.645 2
#> CV:skmeans  107          0.96390     0.747 2
#> MAD:skmeans  96          0.83703     1.000 2
#> ATC:skmeans 108          0.43138     0.957 2
#> SD:mclust   108          0.40381     0.706 2
#> CV:mclust   108          0.76287     1.000 2
#> MAD:mclust   92          0.84752     1.000 2
#> ATC:mclust   84          0.80360     0.942 2
#> SD:kmeans    95          0.85807     0.373 2
#> CV:kmeans   103          0.68325     1.000 2
#> MAD:kmeans  105          0.77262     0.330 2
#> ATC:kmeans  107          0.23517     0.813 2
#> SD:pam       76          0.00167     1.000 2
#> CV:pam       93          0.42806     1.000 2
#> MAD:pam      55          0.07190     0.922 2
#> ATC:pam      64          0.29230     0.625 2
#> SD:hclust   100          0.66823     1.000 2
#> CV:hclust    82          0.70571     0.177 2
#> MAD:hclust   34               NA        NA 2
#> ATC:hclust   92          0.21993     0.879 2
test_to_known_factors(res_list, k = 3)
#>               n disease.state(p) gender(p) k
#> SD:NMF       96          0.83267     0.383 3
#> CV:NMF       81          0.30690     0.857 3
#> MAD:NMF      95          0.94174     0.290 3
#> ATC:NMF      80          0.35795     0.930 3
#> SD:skmeans   91          0.76251     0.952 3
#> CV:skmeans   92          0.00555     0.913 3
#> MAD:skmeans  65          0.31240     0.732 3
#> ATC:skmeans 107          0.22553     0.923 3
#> SD:mclust   106          0.56865     0.136 3
#> CV:mclust   102          0.02039     0.783 3
#> MAD:mclust   75          0.00806     0.542 3
#> ATC:mclust   72          0.26354     0.731 3
#> SD:kmeans    92          0.88731     0.601 3
#> CV:kmeans    78          0.85960     0.985 3
#> MAD:kmeans   86          0.85051     0.697 3
#> ATC:kmeans   91          0.56321     0.964 3
#> SD:pam       87          0.14071     0.653 3
#> CV:pam       91          0.19282     0.528 3
#> MAD:pam      67          0.07715     0.745 3
#> ATC:pam     102          0.63089     0.243 3
#> SD:hclust    90          0.77854     0.555 3
#> CV:hclust    70          0.56416     0.689 3
#> MAD:hclust   90          0.79724     0.481 3
#> ATC:hclust   75          0.54906     0.762 3
test_to_known_factors(res_list, k = 4)
#>               n disease.state(p) gender(p) k
#> SD:NMF      104          0.00425    0.7325 4
#> CV:NMF      100          0.00270    0.4353 4
#> MAD:NMF     102          0.00357    0.7012 4
#> ATC:NMF      89          0.31120    0.5760 4
#> SD:skmeans   97          0.00821    0.9911 4
#> CV:skmeans   79          0.01149    0.6986 4
#> MAD:skmeans  97          0.00542    0.9794 4
#> ATC:skmeans 103          0.25347    0.8363 4
#> SD:mclust   100          0.00400    0.5508 4
#> CV:mclust    57          0.00332    0.2233 4
#> MAD:mclust  105          0.00324    0.6986 4
#> ATC:mclust  104          0.37564    0.0799 4
#> SD:kmeans   101          0.01049    0.7969 4
#> CV:kmeans    83          0.01062    0.9758 4
#> MAD:kmeans  103          0.00304    0.5520 4
#> ATC:kmeans   94          0.68179    0.1699 4
#> SD:pam       99          0.02249    0.8648 4
#> CV:pam       60          0.01864    0.3328 4
#> MAD:pam      72          0.18347    0.6843 4
#> ATC:pam      93          0.99016    0.3352 4
#> SD:hclust    74          0.30061    0.8063 4
#> CV:hclust    67          0.90614    0.1465 4
#> MAD:hclust   72          0.84074    0.3911 4
#> ATC:hclust   75          0.57976    0.1738 4
test_to_known_factors(res_list, k = 5)
#>               n disease.state(p) gender(p) k
#> SD:NMF       92         0.007545     0.359 5
#> CV:NMF       90         0.000921     0.016 5
#> MAD:NMF      88         0.017078     0.483 5
#> ATC:NMF      88         0.395552     0.440 5
#> SD:skmeans   77         0.000346     0.988 5
#> CV:skmeans   62         0.005429     0.186 5
#> MAD:skmeans  86         0.000385     0.997 5
#> ATC:skmeans  95         0.325055     0.242 5
#> SD:mclust   100         0.001271     0.411 5
#> CV:mclust    80         0.000833     0.406 5
#> MAD:mclust  103         0.003965     0.491 5
#> ATC:mclust   92         0.996923     0.252 5
#> SD:kmeans    88         0.001559     0.774 5
#> CV:kmeans    78         0.000305     0.472 5
#> MAD:kmeans   88         0.004028     0.746 5
#> ATC:kmeans   91         0.696724     0.091 5
#> SD:pam       99         0.077620     0.610 5
#> CV:pam       92         0.049094     0.410 5
#> MAD:pam      47         0.013712     0.855 5
#> ATC:pam     105         0.998042     0.323 5
#> SD:hclust    74         0.124396     0.454 5
#> CV:hclust    65         0.935880     0.162 5
#> MAD:hclust   34         0.541178     0.564 5
#> ATC:hclust   68         0.283954     0.208 5
test_to_known_factors(res_list, k = 6)
#>               n disease.state(p) gender(p) k
#> SD:NMF       83         0.000926    0.0673 6
#> CV:NMF       86         0.023660    0.0282 6
#> MAD:NMF      88         0.003560    0.5312 6
#> ATC:NMF      66         0.057073    0.5576 6
#> SD:skmeans   68         0.001059    0.6986 6
#> CV:skmeans   70         0.000438    0.5016 6
#> MAD:skmeans  70         0.003139    0.9673 6
#> ATC:skmeans  89         0.147885    0.3914 6
#> SD:mclust    69         0.098346    0.6782 6
#> CV:mclust    77         0.001699    0.5770 6
#> MAD:mclust   88         0.028448    0.6494 6
#> ATC:mclust   80         0.958057    0.1733 6
#> SD:kmeans    56         0.080012    0.5215 6
#> CV:kmeans    83         0.000172    0.3758 6
#> MAD:kmeans   69         0.005757    0.1618 6
#> ATC:kmeans   84         0.240161    0.2112 6
#> SD:pam       99         0.056421    0.6115 6
#> CV:pam       70         0.003492    0.2609 6
#> MAD:pam      90         0.020161    0.4461 6
#> ATC:pam     106         0.985782    0.1162 6
#> SD:hclust    63         0.015805    0.2772 6
#> CV:hclust    63         0.770466    0.1118 6
#> MAD:hclust   53         0.084141    0.0821 6
#> ATC:hclust   83         0.213625    0.4094 6
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 38950 rows and 108 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.411           0.780       0.881          0.341 0.707   0.707
#> 3 3 0.331           0.691       0.833          0.534 0.788   0.701
#> 4 4 0.319           0.500       0.764          0.128 0.890   0.797
#> 5 5 0.352           0.506       0.703          0.099 0.855   0.708
#> 6 6 0.365           0.467       0.651          0.102 0.876   0.676
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1068478     2  0.3879      0.863 0.076 0.924
#> GSM1068479     1  0.9933      0.471 0.548 0.452
#> GSM1068481     1  0.2423      0.789 0.960 0.040
#> GSM1068482     1  0.0000      0.796 1.000 0.000
#> GSM1068483     2  0.8443      0.705 0.272 0.728
#> GSM1068486     1  0.4690      0.771 0.900 0.100
#> GSM1068487     2  0.0000      0.874 0.000 1.000
#> GSM1068488     2  0.4022      0.855 0.080 0.920
#> GSM1068490     2  0.0000      0.874 0.000 1.000
#> GSM1068491     1  0.9896      0.498 0.560 0.440
#> GSM1068492     1  0.9896      0.498 0.560 0.440
#> GSM1068493     2  0.7219      0.787 0.200 0.800
#> GSM1068494     1  0.9896      0.114 0.560 0.440
#> GSM1068495     2  0.3879      0.867 0.076 0.924
#> GSM1068496     2  0.9933      0.183 0.452 0.548
#> GSM1068498     2  0.3879      0.863 0.076 0.924
#> GSM1068499     2  0.8608      0.689 0.284 0.716
#> GSM1068500     2  0.8443      0.705 0.272 0.728
#> GSM1068502     1  0.9896      0.498 0.560 0.440
#> GSM1068503     2  0.0000      0.874 0.000 1.000
#> GSM1068505     2  0.0376      0.874 0.004 0.996
#> GSM1068506     2  0.0000      0.874 0.000 1.000
#> GSM1068507     2  0.1184      0.875 0.016 0.984
#> GSM1068508     2  0.3114      0.871 0.056 0.944
#> GSM1068510     2  0.5408      0.840 0.124 0.876
#> GSM1068512     2  0.6148      0.810 0.152 0.848
#> GSM1068513     2  0.1184      0.875 0.016 0.984
#> GSM1068514     2  0.8016      0.603 0.244 0.756
#> GSM1068517     2  0.3879      0.863 0.076 0.924
#> GSM1068518     2  0.7602      0.734 0.220 0.780
#> GSM1068520     2  0.7883      0.741 0.236 0.764
#> GSM1068521     2  0.7815      0.745 0.232 0.768
#> GSM1068522     2  0.0000      0.874 0.000 1.000
#> GSM1068524     2  0.1184      0.873 0.016 0.984
#> GSM1068527     2  0.1184      0.873 0.016 0.984
#> GSM1068480     1  0.0376      0.796 0.996 0.004
#> GSM1068484     2  0.2236      0.870 0.036 0.964
#> GSM1068485     1  0.0000      0.796 1.000 0.000
#> GSM1068489     2  0.0376      0.874 0.004 0.996
#> GSM1068497     2  0.3879      0.863 0.076 0.924
#> GSM1068501     2  0.5408      0.840 0.124 0.876
#> GSM1068504     2  0.0000      0.874 0.000 1.000
#> GSM1068509     2  0.8955      0.616 0.312 0.688
#> GSM1068511     2  0.9358      0.433 0.352 0.648
#> GSM1068515     2  0.5059      0.848 0.112 0.888
#> GSM1068516     2  0.7528      0.745 0.216 0.784
#> GSM1068519     2  0.8661      0.681 0.288 0.712
#> GSM1068523     2  0.0000      0.874 0.000 1.000
#> GSM1068525     2  0.2236      0.870 0.036 0.964
#> GSM1068526     2  0.0672      0.873 0.008 0.992
#> GSM1068458     2  0.8016      0.733 0.244 0.756
#> GSM1068459     1  0.0000      0.796 1.000 0.000
#> GSM1068460     2  0.0000      0.874 0.000 1.000
#> GSM1068461     1  0.0000      0.796 1.000 0.000
#> GSM1068464     2  0.0000      0.874 0.000 1.000
#> GSM1068468     2  0.2423      0.873 0.040 0.960
#> GSM1068472     2  0.4161      0.862 0.084 0.916
#> GSM1068473     2  0.0000      0.874 0.000 1.000
#> GSM1068474     2  0.0000      0.874 0.000 1.000
#> GSM1068476     1  0.9775      0.535 0.588 0.412
#> GSM1068477     2  0.0000      0.874 0.000 1.000
#> GSM1068462     2  0.3733      0.868 0.072 0.928
#> GSM1068463     1  0.0000      0.796 1.000 0.000
#> GSM1068465     2  0.3114      0.871 0.056 0.944
#> GSM1068466     2  0.7883      0.742 0.236 0.764
#> GSM1068467     2  0.2423      0.873 0.040 0.960
#> GSM1068469     2  0.4161      0.860 0.084 0.916
#> GSM1068470     2  0.0000      0.874 0.000 1.000
#> GSM1068471     2  0.0000      0.874 0.000 1.000
#> GSM1068475     2  0.0000      0.874 0.000 1.000
#> GSM1068528     1  0.8608      0.561 0.716 0.284
#> GSM1068531     2  0.8267      0.712 0.260 0.740
#> GSM1068532     2  0.8661      0.678 0.288 0.712
#> GSM1068533     2  0.8016      0.733 0.244 0.756
#> GSM1068535     2  0.5519      0.837 0.128 0.872
#> GSM1068537     2  0.8555      0.688 0.280 0.720
#> GSM1068538     2  0.8661      0.678 0.288 0.712
#> GSM1068539     2  0.3879      0.867 0.076 0.924
#> GSM1068540     2  0.8267      0.712 0.260 0.740
#> GSM1068542     2  0.0000      0.874 0.000 1.000
#> GSM1068543     2  0.2423      0.868 0.040 0.960
#> GSM1068544     1  0.1184      0.793 0.984 0.016
#> GSM1068545     2  0.0000      0.874 0.000 1.000
#> GSM1068546     1  0.0000      0.796 1.000 0.000
#> GSM1068547     2  0.7883      0.741 0.236 0.764
#> GSM1068548     2  0.0000      0.874 0.000 1.000
#> GSM1068549     1  0.0000      0.796 1.000 0.000
#> GSM1068550     2  0.0672      0.873 0.008 0.992
#> GSM1068551     2  0.0000      0.874 0.000 1.000
#> GSM1068552     2  0.0000      0.874 0.000 1.000
#> GSM1068555     2  0.0000      0.874 0.000 1.000
#> GSM1068556     2  0.2423      0.868 0.040 0.960
#> GSM1068557     2  0.3879      0.868 0.076 0.924
#> GSM1068560     2  0.1184      0.873 0.016 0.984
#> GSM1068561     2  0.4161      0.866 0.084 0.916
#> GSM1068562     2  0.0672      0.873 0.008 0.992
#> GSM1068563     2  0.0000      0.874 0.000 1.000
#> GSM1068565     2  0.0000      0.874 0.000 1.000
#> GSM1068529     2  0.7883      0.698 0.236 0.764
#> GSM1068530     2  0.8443      0.698 0.272 0.728
#> GSM1068534     2  0.7883      0.698 0.236 0.764
#> GSM1068536     2  0.4815      0.857 0.104 0.896
#> GSM1068541     2  0.2778      0.873 0.048 0.952
#> GSM1068553     2  0.5408      0.840 0.124 0.876
#> GSM1068554     2  0.5408      0.840 0.124 0.876
#> GSM1068558     1  0.9000      0.629 0.684 0.316
#> GSM1068559     2  0.9580      0.236 0.380 0.620
#> GSM1068564     2  0.0376      0.874 0.004 0.996
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1068478     2  0.4002      0.759 0.160 0.840 0.000
#> GSM1068479     3  0.6483      0.330 0.004 0.452 0.544
#> GSM1068481     3  0.2810      0.675 0.036 0.036 0.928
#> GSM1068482     3  0.0747      0.688 0.016 0.000 0.984
#> GSM1068483     1  0.8168      0.668 0.612 0.280 0.108
#> GSM1068486     3  0.3752      0.651 0.020 0.096 0.884
#> GSM1068487     2  0.0000      0.826 0.000 1.000 0.000
#> GSM1068488     2  0.6424      0.729 0.180 0.752 0.068
#> GSM1068490     2  0.0000      0.826 0.000 1.000 0.000
#> GSM1068491     3  0.6460      0.364 0.004 0.440 0.556
#> GSM1068492     3  0.6460      0.364 0.004 0.440 0.556
#> GSM1068493     2  0.7179      0.637 0.184 0.712 0.104
#> GSM1068494     3  0.9242      0.115 0.240 0.228 0.532
#> GSM1068495     2  0.4196      0.799 0.112 0.864 0.024
#> GSM1068496     1  0.9901      0.135 0.392 0.272 0.336
#> GSM1068498     2  0.3816      0.767 0.148 0.852 0.000
#> GSM1068499     1  0.8109      0.657 0.628 0.256 0.116
#> GSM1068500     1  0.8168      0.668 0.612 0.280 0.108
#> GSM1068502     3  0.6460      0.364 0.004 0.440 0.556
#> GSM1068503     2  0.0000      0.826 0.000 1.000 0.000
#> GSM1068505     2  0.3573      0.811 0.120 0.876 0.004
#> GSM1068506     2  0.1964      0.827 0.056 0.944 0.000
#> GSM1068507     2  0.2173      0.828 0.048 0.944 0.008
#> GSM1068508     2  0.3619      0.798 0.136 0.864 0.000
#> GSM1068510     2  0.7775      0.472 0.304 0.620 0.076
#> GSM1068512     2  0.7345      0.664 0.192 0.700 0.108
#> GSM1068513     2  0.1950      0.828 0.040 0.952 0.008
#> GSM1068514     2  0.7634      0.552 0.100 0.668 0.232
#> GSM1068517     2  0.3816      0.767 0.148 0.852 0.000
#> GSM1068518     2  0.8657      0.471 0.244 0.592 0.164
#> GSM1068520     1  0.4750      0.768 0.784 0.216 0.000
#> GSM1068521     1  0.4702      0.769 0.788 0.212 0.000
#> GSM1068522     2  0.0592      0.827 0.012 0.988 0.000
#> GSM1068524     2  0.0983      0.827 0.004 0.980 0.016
#> GSM1068527     2  0.4805      0.775 0.176 0.812 0.012
#> GSM1068480     3  0.0747      0.688 0.016 0.000 0.984
#> GSM1068484     2  0.3028      0.827 0.048 0.920 0.032
#> GSM1068485     3  0.0424      0.689 0.008 0.000 0.992
#> GSM1068489     2  0.2400      0.826 0.064 0.932 0.004
#> GSM1068497     2  0.4002      0.759 0.160 0.840 0.000
#> GSM1068501     2  0.7826      0.459 0.312 0.612 0.076
#> GSM1068504     2  0.0000      0.826 0.000 1.000 0.000
#> GSM1068509     2  0.9455      0.151 0.304 0.488 0.208
#> GSM1068511     2  0.8588      0.285 0.112 0.544 0.344
#> GSM1068515     2  0.5982      0.495 0.328 0.668 0.004
#> GSM1068516     2  0.8408      0.514 0.244 0.612 0.144
#> GSM1068519     1  0.6001      0.752 0.784 0.144 0.072
#> GSM1068523     2  0.0000      0.826 0.000 1.000 0.000
#> GSM1068525     2  0.3028      0.827 0.048 0.920 0.032
#> GSM1068526     2  0.2774      0.825 0.072 0.920 0.008
#> GSM1068458     1  0.4002      0.775 0.840 0.160 0.000
#> GSM1068459     3  0.0892      0.688 0.020 0.000 0.980
#> GSM1068460     2  0.2165      0.829 0.064 0.936 0.000
#> GSM1068461     3  0.0424      0.690 0.008 0.000 0.992
#> GSM1068464     2  0.0000      0.826 0.000 1.000 0.000
#> GSM1068468     2  0.2550      0.823 0.056 0.932 0.012
#> GSM1068472     2  0.3755      0.789 0.120 0.872 0.008
#> GSM1068473     2  0.0000      0.826 0.000 1.000 0.000
#> GSM1068474     2  0.0000      0.826 0.000 1.000 0.000
#> GSM1068476     3  0.6168      0.423 0.000 0.412 0.588
#> GSM1068477     2  0.0592      0.827 0.012 0.988 0.000
#> GSM1068462     2  0.3695      0.799 0.108 0.880 0.012
#> GSM1068463     3  0.0892      0.688 0.020 0.000 0.980
#> GSM1068465     2  0.3686      0.795 0.140 0.860 0.000
#> GSM1068466     1  0.5291      0.718 0.732 0.268 0.000
#> GSM1068467     2  0.2446      0.823 0.052 0.936 0.012
#> GSM1068469     2  0.3686      0.775 0.140 0.860 0.000
#> GSM1068470     2  0.0000      0.826 0.000 1.000 0.000
#> GSM1068471     2  0.0000      0.826 0.000 1.000 0.000
#> GSM1068475     2  0.0000      0.826 0.000 1.000 0.000
#> GSM1068528     3  0.7905      0.170 0.376 0.064 0.560
#> GSM1068531     1  0.1289      0.740 0.968 0.032 0.000
#> GSM1068532     1  0.0848      0.714 0.984 0.008 0.008
#> GSM1068533     1  0.4002      0.775 0.840 0.160 0.000
#> GSM1068535     2  0.7948      0.458 0.320 0.600 0.080
#> GSM1068537     1  0.1170      0.724 0.976 0.016 0.008
#> GSM1068538     1  0.0848      0.714 0.984 0.008 0.008
#> GSM1068539     2  0.4196      0.799 0.112 0.864 0.024
#> GSM1068540     1  0.2066      0.757 0.940 0.060 0.000
#> GSM1068542     2  0.3116      0.816 0.108 0.892 0.000
#> GSM1068543     2  0.4563      0.802 0.112 0.852 0.036
#> GSM1068544     3  0.1529      0.679 0.040 0.000 0.960
#> GSM1068545     2  0.1860      0.827 0.052 0.948 0.000
#> GSM1068546     3  0.0424      0.690 0.008 0.000 0.992
#> GSM1068547     1  0.4605      0.773 0.796 0.204 0.000
#> GSM1068548     2  0.3267      0.813 0.116 0.884 0.000
#> GSM1068549     3  0.0424      0.690 0.008 0.000 0.992
#> GSM1068550     2  0.3129      0.821 0.088 0.904 0.008
#> GSM1068551     2  0.0000      0.826 0.000 1.000 0.000
#> GSM1068552     2  0.2066      0.827 0.060 0.940 0.000
#> GSM1068555     2  0.0000      0.826 0.000 1.000 0.000
#> GSM1068556     2  0.4708      0.797 0.120 0.844 0.036
#> GSM1068557     2  0.3989      0.803 0.124 0.864 0.012
#> GSM1068560     2  0.4805      0.775 0.176 0.812 0.012
#> GSM1068561     2  0.5000      0.784 0.124 0.832 0.044
#> GSM1068562     2  0.3129      0.821 0.088 0.904 0.008
#> GSM1068563     2  0.1860      0.827 0.052 0.948 0.000
#> GSM1068565     2  0.0000      0.826 0.000 1.000 0.000
#> GSM1068529     2  0.8484      0.524 0.196 0.616 0.188
#> GSM1068530     1  0.1031      0.733 0.976 0.024 0.000
#> GSM1068534     2  0.8484      0.524 0.196 0.616 0.188
#> GSM1068536     2  0.6601      0.614 0.296 0.676 0.028
#> GSM1068541     2  0.3267      0.812 0.116 0.884 0.000
#> GSM1068553     2  0.7826      0.459 0.312 0.612 0.076
#> GSM1068554     2  0.7826      0.459 0.312 0.612 0.076
#> GSM1068558     3  0.6075      0.503 0.008 0.316 0.676
#> GSM1068559     2  0.7980      0.305 0.072 0.572 0.356
#> GSM1068564     2  0.2400      0.826 0.064 0.932 0.004
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1068478     2  0.3711     0.6228 0.140 0.836 0.000 0.024
#> GSM1068479     2  0.7679    -0.3075 0.000 0.408 0.376 0.216
#> GSM1068481     3  0.2531     0.7432 0.020 0.032 0.924 0.024
#> GSM1068482     3  0.2334     0.7723 0.004 0.000 0.908 0.088
#> GSM1068483     1  0.7672     0.4992 0.596 0.236 0.096 0.072
#> GSM1068486     3  0.5589     0.6037 0.016 0.060 0.736 0.188
#> GSM1068487     2  0.0000     0.6966 0.000 1.000 0.000 0.000
#> GSM1068488     2  0.6973     0.3227 0.116 0.596 0.012 0.276
#> GSM1068490     2  0.0000     0.6966 0.000 1.000 0.000 0.000
#> GSM1068491     2  0.7699    -0.3165 0.000 0.400 0.380 0.220
#> GSM1068492     2  0.7714    -0.3172 0.000 0.400 0.376 0.224
#> GSM1068493     2  0.7312     0.3747 0.164 0.652 0.084 0.100
#> GSM1068494     4  0.6961     0.0179 0.132 0.012 0.244 0.612
#> GSM1068495     2  0.3974     0.6534 0.108 0.844 0.008 0.040
#> GSM1068496     1  0.9873    -0.2322 0.324 0.192 0.244 0.240
#> GSM1068498     2  0.3443     0.6322 0.136 0.848 0.000 0.016
#> GSM1068499     1  0.8143     0.4406 0.536 0.116 0.072 0.276
#> GSM1068500     1  0.7672     0.4992 0.596 0.236 0.096 0.072
#> GSM1068502     2  0.7714    -0.3172 0.000 0.400 0.376 0.224
#> GSM1068503     2  0.0000     0.6966 0.000 1.000 0.000 0.000
#> GSM1068505     2  0.4549     0.6365 0.100 0.804 0.000 0.096
#> GSM1068506     2  0.2965     0.6795 0.036 0.892 0.000 0.072
#> GSM1068507     2  0.2505     0.6930 0.040 0.920 0.004 0.036
#> GSM1068508     2  0.3907     0.6422 0.140 0.828 0.000 0.032
#> GSM1068510     2  0.8209     0.0954 0.212 0.516 0.040 0.232
#> GSM1068512     2  0.7418     0.1290 0.136 0.548 0.016 0.300
#> GSM1068513     2  0.2123     0.6936 0.032 0.936 0.004 0.028
#> GSM1068514     2  0.7747    -0.1713 0.044 0.508 0.096 0.352
#> GSM1068517     2  0.3443     0.6322 0.136 0.848 0.000 0.016
#> GSM1068518     2  0.8498    -0.3370 0.180 0.420 0.044 0.356
#> GSM1068520     1  0.4590     0.6807 0.792 0.148 0.000 0.060
#> GSM1068521     1  0.4636     0.6842 0.792 0.140 0.000 0.068
#> GSM1068522     2  0.0524     0.6975 0.008 0.988 0.000 0.004
#> GSM1068524     2  0.1489     0.6938 0.004 0.952 0.000 0.044
#> GSM1068527     2  0.6275     0.4161 0.104 0.640 0.000 0.256
#> GSM1068480     3  0.4500     0.6569 0.000 0.000 0.684 0.316
#> GSM1068484     2  0.4567     0.5172 0.008 0.716 0.000 0.276
#> GSM1068485     3  0.1302     0.7753 0.000 0.000 0.956 0.044
#> GSM1068489     2  0.3333     0.6719 0.040 0.872 0.000 0.088
#> GSM1068497     2  0.3711     0.6228 0.140 0.836 0.000 0.024
#> GSM1068501     2  0.8281     0.0783 0.220 0.504 0.040 0.236
#> GSM1068504     2  0.0000     0.6966 0.000 1.000 0.000 0.000
#> GSM1068509     4  0.9437     0.3655 0.232 0.300 0.108 0.360
#> GSM1068511     4  0.7849     0.4345 0.052 0.300 0.108 0.540
#> GSM1068515     2  0.5691     0.3522 0.304 0.648 0.000 0.048
#> GSM1068516     2  0.8359    -0.3042 0.168 0.432 0.040 0.360
#> GSM1068519     1  0.6064     0.5898 0.668 0.024 0.040 0.268
#> GSM1068523     2  0.0000     0.6966 0.000 1.000 0.000 0.000
#> GSM1068525     2  0.4567     0.5172 0.008 0.716 0.000 0.276
#> GSM1068526     2  0.3505     0.6696 0.048 0.864 0.000 0.088
#> GSM1068458     1  0.4100     0.6913 0.824 0.128 0.000 0.048
#> GSM1068459     3  0.0524     0.7765 0.004 0.000 0.988 0.008
#> GSM1068460     2  0.2908     0.6889 0.064 0.896 0.000 0.040
#> GSM1068461     3  0.3569     0.7443 0.000 0.000 0.804 0.196
#> GSM1068464     2  0.0000     0.6966 0.000 1.000 0.000 0.000
#> GSM1068468     2  0.2594     0.6871 0.044 0.916 0.004 0.036
#> GSM1068472     2  0.3389     0.6521 0.104 0.868 0.004 0.024
#> GSM1068473     2  0.0000     0.6966 0.000 1.000 0.000 0.000
#> GSM1068474     2  0.0000     0.6966 0.000 1.000 0.000 0.000
#> GSM1068476     3  0.7530    -0.2280 0.000 0.376 0.436 0.188
#> GSM1068477     2  0.0524     0.6975 0.008 0.988 0.000 0.004
#> GSM1068462     2  0.3366     0.6607 0.096 0.872 0.004 0.028
#> GSM1068463     3  0.0524     0.7765 0.004 0.000 0.988 0.008
#> GSM1068465     2  0.3863     0.6379 0.144 0.828 0.000 0.028
#> GSM1068466     1  0.5136     0.5893 0.728 0.224 0.000 0.048
#> GSM1068467     2  0.2310     0.6873 0.040 0.928 0.004 0.028
#> GSM1068469     2  0.3392     0.6401 0.124 0.856 0.000 0.020
#> GSM1068470     2  0.0000     0.6966 0.000 1.000 0.000 0.000
#> GSM1068471     2  0.0000     0.6966 0.000 1.000 0.000 0.000
#> GSM1068475     2  0.0000     0.6966 0.000 1.000 0.000 0.000
#> GSM1068528     3  0.7118     0.1789 0.352 0.052 0.552 0.044
#> GSM1068531     1  0.1004     0.7029 0.972 0.004 0.000 0.024
#> GSM1068532     1  0.1520     0.6961 0.956 0.000 0.020 0.024
#> GSM1068533     1  0.4100     0.6913 0.824 0.128 0.000 0.048
#> GSM1068535     2  0.8391     0.0532 0.240 0.484 0.040 0.236
#> GSM1068537     1  0.1174     0.6983 0.968 0.000 0.012 0.020
#> GSM1068538     1  0.1520     0.6961 0.956 0.000 0.020 0.024
#> GSM1068539     2  0.3884     0.6552 0.108 0.848 0.008 0.036
#> GSM1068540     1  0.1824     0.7010 0.936 0.004 0.000 0.060
#> GSM1068542     2  0.4513     0.6327 0.076 0.804 0.000 0.120
#> GSM1068543     2  0.5648     0.4901 0.064 0.684 0.000 0.252
#> GSM1068544     3  0.1174     0.7728 0.020 0.000 0.968 0.012
#> GSM1068545     2  0.2871     0.6806 0.032 0.896 0.000 0.072
#> GSM1068546     3  0.3649     0.7409 0.000 0.000 0.796 0.204
#> GSM1068547     1  0.4415     0.6887 0.804 0.140 0.000 0.056
#> GSM1068548     2  0.4646     0.6276 0.084 0.796 0.000 0.120
#> GSM1068549     3  0.3726     0.7390 0.000 0.000 0.788 0.212
#> GSM1068550     2  0.4055     0.6521 0.060 0.832 0.000 0.108
#> GSM1068551     2  0.0000     0.6966 0.000 1.000 0.000 0.000
#> GSM1068552     2  0.3056     0.6790 0.040 0.888 0.000 0.072
#> GSM1068555     2  0.0000     0.6966 0.000 1.000 0.000 0.000
#> GSM1068556     2  0.5687     0.4909 0.068 0.684 0.000 0.248
#> GSM1068557     2  0.4467     0.6431 0.104 0.816 0.004 0.076
#> GSM1068560     2  0.6275     0.4161 0.104 0.640 0.000 0.256
#> GSM1068561     2  0.5176     0.6064 0.108 0.780 0.012 0.100
#> GSM1068562     2  0.4055     0.6521 0.060 0.832 0.000 0.108
#> GSM1068563     2  0.2943     0.6790 0.032 0.892 0.000 0.076
#> GSM1068565     2  0.0000     0.6966 0.000 1.000 0.000 0.000
#> GSM1068529     4  0.8210     0.3277 0.120 0.404 0.052 0.424
#> GSM1068530     1  0.1191     0.7020 0.968 0.004 0.004 0.024
#> GSM1068534     4  0.8210     0.3277 0.120 0.404 0.052 0.424
#> GSM1068536     2  0.6761     0.3961 0.268 0.612 0.008 0.112
#> GSM1068541     2  0.3647     0.6754 0.108 0.852 0.000 0.040
#> GSM1068553     2  0.8278     0.0830 0.216 0.504 0.040 0.240
#> GSM1068554     2  0.8278     0.0830 0.216 0.504 0.040 0.240
#> GSM1068558     4  0.7220    -0.1874 0.000 0.144 0.384 0.472
#> GSM1068559     2  0.8445    -0.3410 0.036 0.420 0.196 0.348
#> GSM1068564     2  0.3266     0.6735 0.040 0.876 0.000 0.084
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1068478     2  0.4121    0.58720 0.036 0.784 0.000 0.012 0.168
#> GSM1068479     4  0.8049    0.66904 0.000 0.320 0.244 0.344 0.092
#> GSM1068481     3  0.2459    0.72672 0.004 0.000 0.904 0.040 0.052
#> GSM1068482     3  0.2193    0.74926 0.000 0.000 0.912 0.060 0.028
#> GSM1068483     1  0.8277    0.43454 0.456 0.172 0.088 0.032 0.252
#> GSM1068486     3  0.5838    0.49634 0.004 0.008 0.588 0.320 0.080
#> GSM1068487     2  0.0000    0.70849 0.000 1.000 0.000 0.000 0.000
#> GSM1068488     2  0.6922   -0.13877 0.028 0.448 0.012 0.104 0.408
#> GSM1068490     2  0.0000    0.70849 0.000 1.000 0.000 0.000 0.000
#> GSM1068491     4  0.8037    0.67691 0.000 0.316 0.256 0.340 0.088
#> GSM1068492     4  0.8047    0.67819 0.000 0.316 0.244 0.348 0.092
#> GSM1068493     2  0.7328    0.24230 0.060 0.576 0.084 0.048 0.232
#> GSM1068494     5  0.7680   -0.12042 0.076 0.000 0.188 0.308 0.428
#> GSM1068495     2  0.3745    0.64013 0.036 0.820 0.000 0.012 0.132
#> GSM1068496     5  0.9762    0.00209 0.200 0.108 0.248 0.188 0.256
#> GSM1068498     2  0.3964    0.60034 0.032 0.796 0.000 0.012 0.160
#> GSM1068499     5  0.7552   -0.15077 0.304 0.064 0.036 0.088 0.508
#> GSM1068500     1  0.8277    0.43454 0.456 0.172 0.088 0.032 0.252
#> GSM1068502     4  0.8047    0.67819 0.000 0.316 0.244 0.348 0.092
#> GSM1068503     2  0.0000    0.70849 0.000 1.000 0.000 0.000 0.000
#> GSM1068505     2  0.5035    0.55305 0.044 0.712 0.000 0.028 0.216
#> GSM1068506     2  0.3234    0.65274 0.012 0.836 0.000 0.008 0.144
#> GSM1068507     2  0.2193    0.69581 0.000 0.900 0.000 0.008 0.092
#> GSM1068508     2  0.4224    0.63526 0.080 0.792 0.000 0.008 0.120
#> GSM1068510     5  0.5720    0.39178 0.004 0.388 0.008 0.056 0.544
#> GSM1068512     2  0.7804   -0.24009 0.076 0.420 0.012 0.140 0.352
#> GSM1068513     2  0.1952    0.69751 0.000 0.912 0.000 0.004 0.084
#> GSM1068514     2  0.8293   -0.34756 0.032 0.400 0.060 0.212 0.296
#> GSM1068517     2  0.3964    0.60034 0.032 0.796 0.000 0.012 0.160
#> GSM1068518     5  0.8456    0.31150 0.100 0.324 0.036 0.144 0.396
#> GSM1068520     1  0.5305    0.65902 0.708 0.116 0.000 0.016 0.160
#> GSM1068521     1  0.5259    0.65767 0.712 0.112 0.000 0.016 0.160
#> GSM1068522     2  0.1116    0.70638 0.004 0.964 0.000 0.004 0.028
#> GSM1068524     2  0.2011    0.69445 0.000 0.908 0.000 0.004 0.088
#> GSM1068527     2  0.6330    0.17182 0.052 0.532 0.000 0.056 0.360
#> GSM1068480     3  0.5856    0.49755 0.000 0.000 0.504 0.396 0.100
#> GSM1068484     2  0.5633    0.27147 0.004 0.580 0.000 0.080 0.336
#> GSM1068485     3  0.2753    0.73238 0.000 0.000 0.856 0.136 0.008
#> GSM1068489     2  0.3583    0.62148 0.012 0.792 0.000 0.004 0.192
#> GSM1068497     2  0.4121    0.58720 0.036 0.784 0.000 0.012 0.168
#> GSM1068501     5  0.5862    0.40160 0.008 0.376 0.008 0.060 0.548
#> GSM1068504     2  0.0162    0.70867 0.000 0.996 0.000 0.000 0.004
#> GSM1068509     5  0.9157    0.24893 0.128 0.200 0.100 0.160 0.412
#> GSM1068511     4  0.7858   -0.05573 0.020 0.148 0.060 0.388 0.384
#> GSM1068515     2  0.6370    0.24255 0.168 0.588 0.000 0.020 0.224
#> GSM1068516     5  0.8092    0.31319 0.072 0.352 0.028 0.144 0.404
#> GSM1068519     5  0.5800   -0.35855 0.396 0.000 0.008 0.072 0.524
#> GSM1068523     2  0.0290    0.70834 0.000 0.992 0.000 0.000 0.008
#> GSM1068525     2  0.5646    0.26181 0.004 0.576 0.000 0.080 0.340
#> GSM1068526     2  0.3786    0.60997 0.016 0.776 0.000 0.004 0.204
#> GSM1068458     1  0.5607    0.65849 0.664 0.080 0.000 0.024 0.232
#> GSM1068459     3  0.0290    0.75248 0.000 0.000 0.992 0.000 0.008
#> GSM1068460     2  0.3059    0.67792 0.028 0.860 0.000 0.004 0.108
#> GSM1068461     3  0.4575    0.67525 0.000 0.000 0.648 0.328 0.024
#> GSM1068464     2  0.0162    0.70870 0.000 0.996 0.000 0.000 0.004
#> GSM1068468     2  0.2337    0.69333 0.004 0.904 0.004 0.008 0.080
#> GSM1068472     2  0.3925    0.62294 0.016 0.804 0.004 0.020 0.156
#> GSM1068473     2  0.0162    0.70856 0.000 0.996 0.000 0.000 0.004
#> GSM1068474     2  0.0162    0.70867 0.000 0.996 0.000 0.000 0.004
#> GSM1068476     4  0.8008    0.63008 0.000 0.308 0.292 0.320 0.080
#> GSM1068477     2  0.1116    0.70638 0.004 0.964 0.000 0.004 0.028
#> GSM1068462     2  0.3376    0.65601 0.012 0.844 0.004 0.016 0.124
#> GSM1068463     3  0.0290    0.75248 0.000 0.000 0.992 0.000 0.008
#> GSM1068465     2  0.4233    0.62999 0.084 0.792 0.000 0.008 0.116
#> GSM1068466     1  0.6223    0.56266 0.612 0.180 0.000 0.020 0.188
#> GSM1068467     2  0.2150    0.69438 0.004 0.916 0.004 0.008 0.068
#> GSM1068469     2  0.3907    0.60222 0.016 0.788 0.000 0.016 0.180
#> GSM1068470     2  0.0162    0.70867 0.000 0.996 0.000 0.000 0.004
#> GSM1068471     2  0.0162    0.70870 0.000 0.996 0.000 0.000 0.004
#> GSM1068475     2  0.0162    0.70867 0.000 0.996 0.000 0.000 0.004
#> GSM1068528     3  0.6658    0.24705 0.272 0.000 0.556 0.036 0.136
#> GSM1068531     1  0.1740    0.69590 0.932 0.000 0.000 0.012 0.056
#> GSM1068532     1  0.2269    0.67523 0.920 0.000 0.020 0.032 0.028
#> GSM1068533     1  0.5607    0.65849 0.664 0.080 0.000 0.024 0.232
#> GSM1068535     5  0.6053    0.39143 0.024 0.356 0.008 0.052 0.560
#> GSM1068537     1  0.1596    0.68685 0.948 0.000 0.012 0.028 0.012
#> GSM1068538     1  0.2269    0.67523 0.920 0.000 0.020 0.032 0.028
#> GSM1068539     2  0.3699    0.64266 0.036 0.824 0.000 0.012 0.128
#> GSM1068540     1  0.2464    0.70029 0.904 0.004 0.000 0.048 0.044
#> GSM1068542     2  0.5185    0.52240 0.032 0.692 0.000 0.040 0.236
#> GSM1068543     2  0.6385    0.15380 0.024 0.520 0.004 0.084 0.368
#> GSM1068544     3  0.1087    0.74959 0.016 0.000 0.968 0.008 0.008
#> GSM1068545     2  0.3190    0.65528 0.012 0.840 0.000 0.008 0.140
#> GSM1068546     3  0.4763    0.66887 0.000 0.000 0.632 0.336 0.032
#> GSM1068547     1  0.5124    0.66669 0.720 0.112 0.000 0.012 0.156
#> GSM1068548     2  0.5259    0.51834 0.036 0.688 0.000 0.040 0.236
#> GSM1068549     3  0.4794    0.66538 0.000 0.000 0.624 0.344 0.032
#> GSM1068550     2  0.4096    0.57911 0.020 0.744 0.000 0.004 0.232
#> GSM1068551     2  0.0290    0.70834 0.000 0.992 0.000 0.000 0.008
#> GSM1068552     2  0.3421    0.64689 0.016 0.824 0.000 0.008 0.152
#> GSM1068555     2  0.0290    0.70834 0.000 0.992 0.000 0.000 0.008
#> GSM1068556     2  0.6347    0.15702 0.024 0.520 0.004 0.080 0.372
#> GSM1068557     2  0.4391    0.61616 0.024 0.772 0.004 0.024 0.176
#> GSM1068560     2  0.6330    0.17182 0.052 0.532 0.000 0.056 0.360
#> GSM1068561     2  0.4436    0.57072 0.040 0.744 0.000 0.008 0.208
#> GSM1068562     2  0.4096    0.57911 0.020 0.744 0.000 0.004 0.232
#> GSM1068563     2  0.3234    0.65273 0.012 0.836 0.000 0.008 0.144
#> GSM1068565     2  0.0162    0.70867 0.000 0.996 0.000 0.000 0.004
#> GSM1068529     5  0.8235    0.30003 0.056 0.316 0.040 0.176 0.412
#> GSM1068530     1  0.1490    0.68937 0.952 0.004 0.004 0.032 0.008
#> GSM1068534     5  0.8235    0.30003 0.056 0.316 0.040 0.176 0.412
#> GSM1068536     2  0.6318    0.29143 0.128 0.556 0.000 0.016 0.300
#> GSM1068541     2  0.3978    0.66139 0.052 0.796 0.000 0.004 0.148
#> GSM1068553     5  0.5806    0.40096 0.008 0.376 0.008 0.056 0.552
#> GSM1068554     5  0.5806    0.40096 0.008 0.376 0.008 0.056 0.552
#> GSM1068558     4  0.6441   -0.09314 0.000 0.016 0.208 0.572 0.204
#> GSM1068559     2  0.8610   -0.48926 0.008 0.344 0.160 0.224 0.264
#> GSM1068564     2  0.3583    0.62198 0.012 0.792 0.000 0.004 0.192
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1068478     2  0.3704    0.56746 0.016 0.744 0.000 0.000 0.232 0.008
#> GSM1068479     4  0.5924    0.55309 0.000 0.176 0.020 0.588 0.008 0.208
#> GSM1068481     3  0.5718    0.69002 0.000 0.000 0.528 0.176 0.292 0.004
#> GSM1068482     3  0.5689    0.71445 0.000 0.000 0.620 0.152 0.192 0.036
#> GSM1068483     1  0.7055    0.28874 0.404 0.128 0.000 0.012 0.368 0.088
#> GSM1068486     4  0.6058   -0.28325 0.000 0.004 0.244 0.528 0.212 0.012
#> GSM1068487     2  0.0458    0.69182 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM1068488     6  0.5124    0.55933 0.000 0.228 0.000 0.036 0.072 0.664
#> GSM1068490     2  0.0458    0.69182 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM1068491     4  0.5934    0.55901 0.000 0.176 0.032 0.596 0.004 0.192
#> GSM1068492     4  0.5586    0.56117 0.000 0.176 0.012 0.612 0.004 0.196
#> GSM1068493     2  0.6801    0.26114 0.048 0.536 0.004 0.036 0.264 0.112
#> GSM1068494     5  0.7788    0.16488 0.040 0.000 0.076 0.240 0.344 0.300
#> GSM1068495     2  0.4264    0.61872 0.020 0.764 0.000 0.000 0.116 0.100
#> GSM1068496     5  0.9115    0.36554 0.168 0.104 0.092 0.096 0.388 0.152
#> GSM1068498     2  0.3624    0.57938 0.016 0.756 0.000 0.000 0.220 0.008
#> GSM1068499     5  0.7182    0.04551 0.272 0.044 0.000 0.016 0.368 0.300
#> GSM1068500     1  0.7055    0.28874 0.404 0.128 0.000 0.012 0.368 0.088
#> GSM1068502     4  0.5586    0.56117 0.000 0.176 0.012 0.612 0.004 0.196
#> GSM1068503     2  0.0458    0.69182 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM1068505     2  0.4929    0.15838 0.008 0.564 0.000 0.000 0.052 0.376
#> GSM1068506     2  0.3867    0.42197 0.000 0.688 0.000 0.004 0.012 0.296
#> GSM1068507     2  0.2843    0.65215 0.000 0.848 0.000 0.000 0.036 0.116
#> GSM1068508     2  0.4340    0.61543 0.040 0.764 0.000 0.000 0.132 0.064
#> GSM1068510     6  0.5136    0.44352 0.000 0.160 0.000 0.004 0.196 0.640
#> GSM1068512     6  0.6776    0.48719 0.032 0.292 0.000 0.056 0.108 0.512
#> GSM1068513     2  0.2633    0.65762 0.000 0.864 0.000 0.000 0.032 0.104
#> GSM1068514     6  0.7556    0.23121 0.008 0.236 0.000 0.200 0.152 0.404
#> GSM1068517     2  0.3624    0.57938 0.016 0.756 0.000 0.000 0.220 0.008
#> GSM1068518     6  0.7734    0.26039 0.048 0.216 0.000 0.084 0.228 0.424
#> GSM1068520     1  0.5755    0.56041 0.648 0.092 0.000 0.000 0.132 0.128
#> GSM1068521     1  0.5674    0.55650 0.656 0.088 0.000 0.000 0.124 0.132
#> GSM1068522     2  0.2489    0.63356 0.000 0.860 0.000 0.000 0.012 0.128
#> GSM1068524     2  0.3221    0.58962 0.000 0.792 0.000 0.000 0.020 0.188
#> GSM1068527     6  0.5729    0.49617 0.016 0.356 0.000 0.000 0.116 0.512
#> GSM1068480     4  0.6275   -0.18141 0.000 0.000 0.196 0.560 0.184 0.060
#> GSM1068484     6  0.5487    0.47451 0.000 0.384 0.000 0.016 0.084 0.516
#> GSM1068485     3  0.5837    0.64384 0.000 0.000 0.460 0.340 0.200 0.000
#> GSM1068489     2  0.4099    0.27215 0.000 0.612 0.000 0.000 0.016 0.372
#> GSM1068497     2  0.3704    0.56746 0.016 0.744 0.000 0.000 0.232 0.008
#> GSM1068501     6  0.5007    0.44600 0.000 0.144 0.000 0.004 0.196 0.656
#> GSM1068504     2  0.0508    0.69241 0.000 0.984 0.000 0.000 0.012 0.004
#> GSM1068509     5  0.8391    0.14182 0.088 0.164 0.008 0.100 0.360 0.280
#> GSM1068511     4  0.6655   -0.16463 0.000 0.076 0.000 0.400 0.128 0.396
#> GSM1068515     2  0.6470    0.28239 0.132 0.524 0.000 0.004 0.276 0.064
#> GSM1068516     6  0.7975    0.15423 0.040 0.288 0.004 0.080 0.268 0.320
#> GSM1068519     1  0.6104   -0.00422 0.364 0.000 0.000 0.000 0.348 0.288
#> GSM1068523     2  0.0692    0.69175 0.000 0.976 0.000 0.000 0.020 0.004
#> GSM1068525     6  0.5480    0.48137 0.000 0.380 0.000 0.016 0.084 0.520
#> GSM1068526     2  0.4093    0.20754 0.000 0.584 0.000 0.000 0.012 0.404
#> GSM1068458     1  0.5722    0.53807 0.596 0.044 0.000 0.004 0.276 0.080
#> GSM1068459     3  0.5069    0.74245 0.000 0.000 0.628 0.144 0.228 0.000
#> GSM1068460     2  0.3883    0.54061 0.004 0.752 0.000 0.000 0.044 0.200
#> GSM1068461     3  0.3271    0.56435 0.000 0.000 0.760 0.232 0.000 0.008
#> GSM1068464     2  0.0363    0.69242 0.000 0.988 0.000 0.000 0.000 0.012
#> GSM1068468     2  0.2983    0.67086 0.000 0.856 0.000 0.012 0.092 0.040
#> GSM1068472     2  0.3655    0.60537 0.004 0.776 0.000 0.012 0.192 0.016
#> GSM1068473     2  0.0632    0.69023 0.000 0.976 0.000 0.000 0.000 0.024
#> GSM1068474     2  0.0260    0.69329 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM1068476     4  0.6853    0.54001 0.000 0.168 0.124 0.524 0.004 0.180
#> GSM1068477     2  0.2489    0.63356 0.000 0.860 0.000 0.000 0.012 0.128
#> GSM1068462     2  0.3657    0.62980 0.004 0.788 0.000 0.012 0.172 0.024
#> GSM1068463     3  0.5146    0.74004 0.000 0.000 0.616 0.148 0.236 0.000
#> GSM1068465     2  0.4330    0.61465 0.044 0.764 0.000 0.000 0.136 0.056
#> GSM1068466     1  0.6398    0.49590 0.552 0.120 0.000 0.000 0.232 0.096
#> GSM1068467     2  0.2815    0.67348 0.000 0.864 0.000 0.012 0.096 0.028
#> GSM1068469     2  0.3792    0.57883 0.004 0.744 0.000 0.004 0.228 0.020
#> GSM1068470     2  0.0508    0.69241 0.000 0.984 0.000 0.000 0.012 0.004
#> GSM1068471     2  0.0725    0.69309 0.000 0.976 0.000 0.000 0.012 0.012
#> GSM1068475     2  0.0508    0.69241 0.000 0.984 0.000 0.000 0.012 0.004
#> GSM1068528     5  0.7825   -0.17383 0.248 0.000 0.216 0.144 0.372 0.020
#> GSM1068531     1  0.2144    0.59597 0.908 0.000 0.000 0.004 0.048 0.040
#> GSM1068532     1  0.1524    0.57014 0.932 0.000 0.000 0.000 0.060 0.008
#> GSM1068533     1  0.5722    0.53807 0.596 0.044 0.000 0.004 0.276 0.080
#> GSM1068535     6  0.4659    0.46357 0.000 0.132 0.000 0.012 0.140 0.716
#> GSM1068537     1  0.0937    0.58488 0.960 0.000 0.000 0.000 0.040 0.000
#> GSM1068538     1  0.1524    0.57014 0.932 0.000 0.000 0.000 0.060 0.008
#> GSM1068539     2  0.4218    0.62233 0.020 0.768 0.000 0.000 0.116 0.096
#> GSM1068540     1  0.2420    0.59331 0.892 0.000 0.000 0.008 0.068 0.032
#> GSM1068542     2  0.4381    0.02265 0.004 0.524 0.000 0.000 0.016 0.456
#> GSM1068543     6  0.4245    0.56981 0.000 0.280 0.000 0.020 0.016 0.684
#> GSM1068544     3  0.5596    0.73527 0.020 0.000 0.604 0.148 0.228 0.000
#> GSM1068545     2  0.3848    0.42867 0.000 0.692 0.000 0.004 0.012 0.292
#> GSM1068546     3  0.2665    0.59058 0.000 0.000 0.868 0.104 0.016 0.012
#> GSM1068547     1  0.5637    0.56757 0.660 0.088 0.000 0.000 0.128 0.124
#> GSM1068548     2  0.4546    0.03502 0.008 0.528 0.000 0.000 0.020 0.444
#> GSM1068549     3  0.2666    0.58752 0.000 0.000 0.864 0.112 0.012 0.012
#> GSM1068550     2  0.4045    0.14515 0.000 0.564 0.000 0.000 0.008 0.428
#> GSM1068551     2  0.0603    0.69232 0.000 0.980 0.000 0.000 0.016 0.004
#> GSM1068552     2  0.3955    0.39111 0.000 0.668 0.000 0.004 0.012 0.316
#> GSM1068555     2  0.0692    0.69175 0.000 0.976 0.000 0.000 0.020 0.004
#> GSM1068556     6  0.4158    0.56838 0.000 0.280 0.000 0.020 0.012 0.688
#> GSM1068557     2  0.4817    0.57468 0.016 0.716 0.000 0.008 0.168 0.092
#> GSM1068560     6  0.5729    0.49617 0.016 0.356 0.000 0.000 0.116 0.512
#> GSM1068561     2  0.5251    0.49488 0.024 0.676 0.000 0.004 0.136 0.160
#> GSM1068562     2  0.4045    0.14515 0.000 0.564 0.000 0.000 0.008 0.428
#> GSM1068563     2  0.3867    0.42202 0.000 0.688 0.000 0.004 0.012 0.296
#> GSM1068565     2  0.0260    0.69329 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM1068529     6  0.7760    0.29414 0.028 0.216 0.004 0.112 0.212 0.428
#> GSM1068530     1  0.0632    0.59071 0.976 0.000 0.000 0.000 0.024 0.000
#> GSM1068534     6  0.7760    0.29414 0.028 0.216 0.004 0.112 0.212 0.428
#> GSM1068536     2  0.6792    0.14867 0.080 0.480 0.000 0.000 0.192 0.248
#> GSM1068541     2  0.4548    0.61033 0.028 0.744 0.000 0.000 0.108 0.120
#> GSM1068553     6  0.4980    0.44770 0.000 0.144 0.000 0.004 0.192 0.660
#> GSM1068554     6  0.4980    0.44770 0.000 0.144 0.000 0.004 0.192 0.660
#> GSM1068558     4  0.4327    0.17798 0.000 0.000 0.016 0.748 0.080 0.156
#> GSM1068559     4  0.7269    0.02219 0.004 0.196 0.000 0.388 0.100 0.312
#> GSM1068564     2  0.4026    0.27138 0.000 0.612 0.000 0.000 0.012 0.376
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#>             n disease.state(p) gender(p) k
#> SD:hclust 100           0.6682     1.000 2
#> SD:hclust  90           0.7785     0.555 3
#> SD:hclust  74           0.3006     0.806 4
#> SD:hclust  74           0.1244     0.454 5
#> SD:hclust  63           0.0158     0.277 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 38950 rows and 108 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.588           0.770       0.898         0.4447 0.565   0.565
#> 3 3 0.477           0.696       0.839         0.3817 0.733   0.564
#> 4 4 0.698           0.827       0.881         0.1853 0.770   0.483
#> 5 5 0.656           0.631       0.784         0.0752 0.964   0.871
#> 6 6 0.643           0.453       0.678         0.0451 0.928   0.719
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1068478     2  0.9954    -0.1264 0.460 0.540
#> GSM1068479     2  0.9129     0.5184 0.328 0.672
#> GSM1068481     1  0.0672     0.8400 0.992 0.008
#> GSM1068482     1  0.0000     0.8402 1.000 0.000
#> GSM1068483     1  0.8555     0.7124 0.720 0.280
#> GSM1068486     1  0.0672     0.8400 0.992 0.008
#> GSM1068487     2  0.0000     0.8941 0.000 1.000
#> GSM1068488     2  0.9087     0.5264 0.324 0.676
#> GSM1068490     2  0.0000     0.8941 0.000 1.000
#> GSM1068491     1  0.1843     0.8324 0.972 0.028
#> GSM1068492     2  0.9661     0.4068 0.392 0.608
#> GSM1068493     2  0.0672     0.8903 0.008 0.992
#> GSM1068494     1  0.0672     0.8403 0.992 0.008
#> GSM1068495     2  0.0672     0.8917 0.008 0.992
#> GSM1068496     1  0.0000     0.8402 1.000 0.000
#> GSM1068498     2  0.0672     0.8903 0.008 0.992
#> GSM1068499     1  0.2603     0.8346 0.956 0.044
#> GSM1068500     1  0.8144     0.7373 0.748 0.252
#> GSM1068502     2  0.9248     0.4995 0.340 0.660
#> GSM1068503     2  0.0000     0.8941 0.000 1.000
#> GSM1068505     2  0.0672     0.8917 0.008 0.992
#> GSM1068506     2  0.0376     0.8933 0.004 0.996
#> GSM1068507     2  0.0000     0.8941 0.000 1.000
#> GSM1068508     2  0.0672     0.8917 0.008 0.992
#> GSM1068510     2  0.0938     0.8873 0.012 0.988
#> GSM1068512     2  0.9491     0.4411 0.368 0.632
#> GSM1068513     2  0.0000     0.8941 0.000 1.000
#> GSM1068514     2  0.9970     0.2246 0.468 0.532
#> GSM1068517     2  0.0000     0.8941 0.000 1.000
#> GSM1068518     2  0.0672     0.8917 0.008 0.992
#> GSM1068520     1  0.9815     0.4582 0.580 0.420
#> GSM1068521     1  0.9170     0.6409 0.668 0.332
#> GSM1068522     2  0.0000     0.8941 0.000 1.000
#> GSM1068524     2  0.0000     0.8941 0.000 1.000
#> GSM1068527     2  0.0672     0.8917 0.008 0.992
#> GSM1068480     1  0.0672     0.8400 0.992 0.008
#> GSM1068484     2  0.0000     0.8941 0.000 1.000
#> GSM1068485     1  0.0672     0.8400 0.992 0.008
#> GSM1068489     2  0.0376     0.8933 0.004 0.996
#> GSM1068497     2  0.0672     0.8903 0.008 0.992
#> GSM1068501     2  0.0000     0.8941 0.000 1.000
#> GSM1068504     2  0.0000     0.8941 0.000 1.000
#> GSM1068509     1  0.8713     0.6992 0.708 0.292
#> GSM1068511     1  0.6973     0.7628 0.812 0.188
#> GSM1068515     2  0.9909    -0.0849 0.444 0.556
#> GSM1068516     2  0.0000     0.8941 0.000 1.000
#> GSM1068519     1  0.8499     0.7157 0.724 0.276
#> GSM1068523     2  0.0000     0.8941 0.000 1.000
#> GSM1068525     2  0.0000     0.8941 0.000 1.000
#> GSM1068526     2  0.0376     0.8933 0.004 0.996
#> GSM1068458     1  0.9170     0.6409 0.668 0.332
#> GSM1068459     1  0.0000     0.8402 1.000 0.000
#> GSM1068460     2  0.0672     0.8917 0.008 0.992
#> GSM1068461     1  0.0672     0.8400 0.992 0.008
#> GSM1068464     2  0.0000     0.8941 0.000 1.000
#> GSM1068468     2  0.0000     0.8941 0.000 1.000
#> GSM1068472     2  0.0000     0.8941 0.000 1.000
#> GSM1068473     2  0.0000     0.8941 0.000 1.000
#> GSM1068474     2  0.0000     0.8941 0.000 1.000
#> GSM1068476     1  0.7453     0.6446 0.788 0.212
#> GSM1068477     2  0.0000     0.8941 0.000 1.000
#> GSM1068462     2  0.0000     0.8941 0.000 1.000
#> GSM1068463     1  0.0376     0.8400 0.996 0.004
#> GSM1068465     2  0.1184     0.8869 0.016 0.984
#> GSM1068466     1  0.9286     0.6196 0.656 0.344
#> GSM1068467     2  0.0000     0.8941 0.000 1.000
#> GSM1068469     2  0.0672     0.8903 0.008 0.992
#> GSM1068470     2  0.0000     0.8941 0.000 1.000
#> GSM1068471     2  0.0000     0.8941 0.000 1.000
#> GSM1068475     2  0.0000     0.8941 0.000 1.000
#> GSM1068528     1  0.0000     0.8402 1.000 0.000
#> GSM1068531     1  0.8763     0.6947 0.704 0.296
#> GSM1068532     1  0.0000     0.8402 1.000 0.000
#> GSM1068533     1  0.7139     0.7726 0.804 0.196
#> GSM1068535     1  0.7883     0.7477 0.764 0.236
#> GSM1068537     1  0.3431     0.8286 0.936 0.064
#> GSM1068538     1  0.0000     0.8402 1.000 0.000
#> GSM1068539     2  0.0672     0.8917 0.008 0.992
#> GSM1068540     1  0.8763     0.6947 0.704 0.296
#> GSM1068542     2  0.0672     0.8917 0.008 0.992
#> GSM1068543     2  0.9580     0.4368 0.380 0.620
#> GSM1068544     1  0.0000     0.8402 1.000 0.000
#> GSM1068545     2  0.0376     0.8933 0.004 0.996
#> GSM1068546     1  0.0672     0.8400 0.992 0.008
#> GSM1068547     2  0.9963    -0.1413 0.464 0.536
#> GSM1068548     2  0.0672     0.8917 0.008 0.992
#> GSM1068549     1  0.0672     0.8400 0.992 0.008
#> GSM1068550     2  0.0672     0.8917 0.008 0.992
#> GSM1068551     2  0.0000     0.8941 0.000 1.000
#> GSM1068552     2  0.0376     0.8933 0.004 0.996
#> GSM1068555     2  0.0000     0.8941 0.000 1.000
#> GSM1068556     2  0.9427     0.4725 0.360 0.640
#> GSM1068557     2  0.0000     0.8941 0.000 1.000
#> GSM1068560     2  0.0672     0.8917 0.008 0.992
#> GSM1068561     2  0.0000     0.8941 0.000 1.000
#> GSM1068562     2  0.0376     0.8933 0.004 0.996
#> GSM1068563     2  0.2043     0.8739 0.032 0.968
#> GSM1068565     2  0.0000     0.8941 0.000 1.000
#> GSM1068529     2  0.9866     0.3203 0.432 0.568
#> GSM1068530     1  0.8763     0.6947 0.704 0.296
#> GSM1068534     2  0.8813     0.5613 0.300 0.700
#> GSM1068536     2  0.1184     0.8869 0.016 0.984
#> GSM1068541     2  0.0376     0.8933 0.004 0.996
#> GSM1068553     2  0.7219     0.6928 0.200 0.800
#> GSM1068554     2  0.0938     0.8873 0.012 0.988
#> GSM1068558     2  0.9850     0.3296 0.428 0.572
#> GSM1068559     2  0.9988     0.1891 0.480 0.520
#> GSM1068564     2  0.0376     0.8933 0.004 0.996
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1068478     1  0.4399      0.681 0.812 0.188 0.000
#> GSM1068479     3  0.5678      0.611 0.000 0.316 0.684
#> GSM1068481     3  0.3192      0.835 0.112 0.000 0.888
#> GSM1068482     3  0.3267      0.834 0.116 0.000 0.884
#> GSM1068483     1  0.1170      0.819 0.976 0.008 0.016
#> GSM1068486     3  0.3192      0.835 0.112 0.000 0.888
#> GSM1068487     2  0.0592      0.796 0.000 0.988 0.012
#> GSM1068488     2  0.9095      0.333 0.376 0.480 0.144
#> GSM1068490     2  0.0592      0.796 0.000 0.988 0.012
#> GSM1068491     3  0.3129      0.830 0.088 0.008 0.904
#> GSM1068492     3  0.5247      0.634 0.008 0.224 0.768
#> GSM1068493     2  0.1620      0.788 0.012 0.964 0.024
#> GSM1068494     1  0.3116      0.771 0.892 0.000 0.108
#> GSM1068495     2  0.5519      0.750 0.120 0.812 0.068
#> GSM1068496     1  0.2261      0.777 0.932 0.000 0.068
#> GSM1068498     2  0.5591      0.408 0.304 0.696 0.000
#> GSM1068499     1  0.1643      0.810 0.956 0.000 0.044
#> GSM1068500     1  0.1170      0.819 0.976 0.008 0.016
#> GSM1068502     3  0.5845      0.616 0.004 0.308 0.688
#> GSM1068503     2  0.0592      0.796 0.000 0.988 0.012
#> GSM1068505     2  0.7848      0.596 0.264 0.640 0.096
#> GSM1068506     2  0.7059      0.678 0.192 0.716 0.092
#> GSM1068507     2  0.7807      0.630 0.236 0.656 0.108
#> GSM1068508     2  0.0237      0.797 0.004 0.996 0.000
#> GSM1068510     2  0.4683      0.769 0.024 0.836 0.140
#> GSM1068512     1  0.8666      0.177 0.544 0.336 0.120
#> GSM1068513     2  0.0592      0.796 0.000 0.988 0.012
#> GSM1068514     3  0.5678      0.633 0.032 0.192 0.776
#> GSM1068517     2  0.4887      0.555 0.228 0.772 0.000
#> GSM1068518     2  0.8569      0.361 0.392 0.508 0.100
#> GSM1068520     1  0.0983      0.821 0.980 0.016 0.004
#> GSM1068521     1  0.0661      0.822 0.988 0.004 0.008
#> GSM1068522     2  0.0747      0.796 0.000 0.984 0.016
#> GSM1068524     2  0.1031      0.797 0.000 0.976 0.024
#> GSM1068527     1  0.8173      0.317 0.600 0.300 0.100
#> GSM1068480     3  0.3116      0.834 0.108 0.000 0.892
#> GSM1068484     2  0.4449      0.772 0.040 0.860 0.100
#> GSM1068485     3  0.3192      0.835 0.112 0.000 0.888
#> GSM1068489     2  0.7851      0.604 0.256 0.644 0.100
#> GSM1068497     2  0.4931      0.548 0.232 0.768 0.000
#> GSM1068501     2  0.5467      0.761 0.072 0.816 0.112
#> GSM1068504     2  0.0592      0.796 0.000 0.988 0.012
#> GSM1068509     1  0.1643      0.809 0.956 0.000 0.044
#> GSM1068511     1  0.8965      0.434 0.564 0.196 0.240
#> GSM1068515     1  0.6062      0.327 0.616 0.384 0.000
#> GSM1068516     2  0.6920      0.698 0.164 0.732 0.104
#> GSM1068519     1  0.0829      0.822 0.984 0.004 0.012
#> GSM1068523     2  0.0237      0.797 0.004 0.996 0.000
#> GSM1068525     2  0.3690      0.778 0.016 0.884 0.100
#> GSM1068526     2  0.8009      0.578 0.276 0.624 0.100
#> GSM1068458     1  0.0661      0.822 0.988 0.004 0.008
#> GSM1068459     3  0.3267      0.834 0.116 0.000 0.884
#> GSM1068460     1  0.4075      0.774 0.880 0.048 0.072
#> GSM1068461     3  0.3192      0.835 0.112 0.000 0.888
#> GSM1068464     2  0.0592      0.796 0.000 0.988 0.012
#> GSM1068468     2  0.1015      0.795 0.008 0.980 0.012
#> GSM1068472     2  0.1015      0.795 0.008 0.980 0.012
#> GSM1068473     2  0.0592      0.796 0.000 0.988 0.012
#> GSM1068474     2  0.0829      0.795 0.004 0.984 0.012
#> GSM1068476     3  0.2486      0.821 0.060 0.008 0.932
#> GSM1068477     2  0.0829      0.795 0.004 0.984 0.012
#> GSM1068462     2  0.1015      0.795 0.008 0.980 0.012
#> GSM1068463     3  0.3267      0.834 0.116 0.000 0.884
#> GSM1068465     1  0.5346      0.722 0.808 0.152 0.040
#> GSM1068466     1  0.0829      0.822 0.984 0.012 0.004
#> GSM1068467     2  0.1015      0.795 0.008 0.980 0.012
#> GSM1068469     2  0.5450      0.553 0.228 0.760 0.012
#> GSM1068470     2  0.0237      0.797 0.004 0.996 0.000
#> GSM1068471     2  0.0829      0.795 0.004 0.984 0.012
#> GSM1068475     2  0.0829      0.795 0.004 0.984 0.012
#> GSM1068528     1  0.5098      0.479 0.752 0.000 0.248
#> GSM1068531     1  0.0424      0.821 0.992 0.000 0.008
#> GSM1068532     1  0.0892      0.817 0.980 0.000 0.020
#> GSM1068533     1  0.0892      0.817 0.980 0.000 0.020
#> GSM1068535     1  0.7926      0.477 0.656 0.216 0.128
#> GSM1068537     1  0.0892      0.817 0.980 0.000 0.020
#> GSM1068538     1  0.0892      0.817 0.980 0.000 0.020
#> GSM1068539     2  0.4642      0.773 0.084 0.856 0.060
#> GSM1068540     1  0.0237      0.822 0.996 0.000 0.004
#> GSM1068542     2  0.8204      0.519 0.316 0.588 0.096
#> GSM1068543     2  0.8975      0.325 0.384 0.484 0.132
#> GSM1068544     3  0.3482      0.824 0.128 0.000 0.872
#> GSM1068545     2  0.2564      0.793 0.036 0.936 0.028
#> GSM1068546     3  0.3192      0.835 0.112 0.000 0.888
#> GSM1068547     1  0.2527      0.800 0.936 0.020 0.044
#> GSM1068548     2  0.8499      0.371 0.388 0.516 0.096
#> GSM1068549     3  0.3192      0.835 0.112 0.000 0.888
#> GSM1068550     2  0.8055      0.558 0.292 0.612 0.096
#> GSM1068551     2  0.0237      0.797 0.004 0.996 0.000
#> GSM1068552     2  0.5737      0.746 0.104 0.804 0.092
#> GSM1068555     2  0.0237      0.797 0.004 0.996 0.000
#> GSM1068556     2  0.8878      0.339 0.384 0.492 0.124
#> GSM1068557     2  0.1015      0.795 0.008 0.980 0.012
#> GSM1068560     2  0.8559      0.367 0.388 0.512 0.100
#> GSM1068561     2  0.2773      0.792 0.024 0.928 0.048
#> GSM1068562     2  0.8014      0.586 0.268 0.628 0.104
#> GSM1068563     2  0.8186      0.551 0.292 0.604 0.104
#> GSM1068565     2  0.0475      0.797 0.004 0.992 0.004
#> GSM1068529     3  0.7095      0.420 0.048 0.292 0.660
#> GSM1068530     1  0.0424      0.821 0.992 0.000 0.008
#> GSM1068534     1  0.9151     -0.181 0.436 0.420 0.144
#> GSM1068536     1  0.4121      0.769 0.876 0.040 0.084
#> GSM1068541     2  0.4874      0.748 0.144 0.828 0.028
#> GSM1068553     2  0.8936      0.324 0.388 0.484 0.128
#> GSM1068554     2  0.6349      0.739 0.092 0.768 0.140
#> GSM1068558     3  0.2492      0.755 0.016 0.048 0.936
#> GSM1068559     3  0.5678      0.633 0.032 0.192 0.776
#> GSM1068564     2  0.3445      0.783 0.016 0.896 0.088
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1068478     1  0.4239      0.821 0.812 0.152 0.004 0.032
#> GSM1068479     3  0.6438      0.161 0.000 0.436 0.496 0.068
#> GSM1068481     3  0.1406      0.899 0.024 0.000 0.960 0.016
#> GSM1068482     3  0.1297      0.900 0.020 0.000 0.964 0.016
#> GSM1068483     1  0.2261      0.907 0.932 0.036 0.008 0.024
#> GSM1068486     3  0.0657      0.902 0.012 0.000 0.984 0.004
#> GSM1068487     2  0.1824      0.904 0.000 0.936 0.004 0.060
#> GSM1068488     4  0.2131      0.863 0.008 0.040 0.016 0.936
#> GSM1068490     2  0.1637      0.905 0.000 0.940 0.000 0.060
#> GSM1068491     3  0.1229      0.895 0.004 0.008 0.968 0.020
#> GSM1068492     4  0.5564      0.245 0.000 0.020 0.436 0.544
#> GSM1068493     2  0.2352      0.873 0.016 0.928 0.012 0.044
#> GSM1068494     4  0.4354      0.799 0.108 0.032 0.028 0.832
#> GSM1068495     2  0.6227      0.316 0.052 0.572 0.004 0.372
#> GSM1068496     1  0.4327      0.850 0.836 0.028 0.036 0.100
#> GSM1068498     2  0.2360      0.856 0.052 0.924 0.004 0.020
#> GSM1068499     1  0.4484      0.836 0.816 0.032 0.020 0.132
#> GSM1068500     1  0.2269      0.908 0.932 0.032 0.008 0.028
#> GSM1068502     3  0.6451      0.260 0.000 0.404 0.524 0.072
#> GSM1068503     2  0.1824      0.904 0.000 0.936 0.004 0.060
#> GSM1068505     4  0.4583      0.845 0.112 0.076 0.004 0.808
#> GSM1068506     4  0.3598      0.846 0.028 0.124 0.000 0.848
#> GSM1068507     4  0.5690      0.756 0.084 0.196 0.004 0.716
#> GSM1068508     2  0.2335      0.898 0.020 0.920 0.000 0.060
#> GSM1068510     4  0.3224      0.850 0.000 0.120 0.016 0.864
#> GSM1068512     4  0.3400      0.861 0.044 0.068 0.008 0.880
#> GSM1068513     2  0.1824      0.904 0.000 0.936 0.004 0.060
#> GSM1068514     4  0.5108      0.543 0.000 0.020 0.308 0.672
#> GSM1068517     2  0.2189      0.864 0.044 0.932 0.004 0.020
#> GSM1068518     4  0.3439      0.850 0.048 0.084 0.000 0.868
#> GSM1068520     1  0.0895      0.913 0.976 0.020 0.000 0.004
#> GSM1068521     1  0.1406      0.913 0.960 0.016 0.000 0.024
#> GSM1068522     2  0.2164      0.900 0.004 0.924 0.004 0.068
#> GSM1068524     2  0.3196      0.853 0.000 0.856 0.008 0.136
#> GSM1068527     4  0.4150      0.845 0.120 0.056 0.000 0.824
#> GSM1068480     3  0.1635      0.887 0.008 0.000 0.948 0.044
#> GSM1068484     4  0.2048      0.868 0.008 0.064 0.000 0.928
#> GSM1068485     3  0.0895      0.902 0.020 0.000 0.976 0.004
#> GSM1068489     4  0.3127      0.869 0.032 0.068 0.008 0.892
#> GSM1068497     2  0.2189      0.864 0.044 0.932 0.004 0.020
#> GSM1068501     4  0.3695      0.853 0.028 0.108 0.008 0.856
#> GSM1068504     2  0.1637      0.905 0.000 0.940 0.000 0.060
#> GSM1068509     1  0.5022      0.755 0.736 0.044 0.000 0.220
#> GSM1068511     4  0.2895      0.841 0.016 0.032 0.044 0.908
#> GSM1068515     1  0.5522      0.633 0.668 0.288 0.000 0.044
#> GSM1068516     4  0.3027      0.859 0.020 0.088 0.004 0.888
#> GSM1068519     1  0.1847      0.906 0.940 0.004 0.004 0.052
#> GSM1068523     2  0.1661      0.904 0.000 0.944 0.004 0.052
#> GSM1068525     4  0.2010      0.867 0.004 0.060 0.004 0.932
#> GSM1068526     4  0.2919      0.869 0.044 0.060 0.000 0.896
#> GSM1068458     1  0.1174      0.912 0.968 0.020 0.000 0.012
#> GSM1068459     3  0.1510      0.898 0.028 0.000 0.956 0.016
#> GSM1068460     1  0.1624      0.909 0.952 0.028 0.000 0.020
#> GSM1068461     3  0.0804      0.901 0.012 0.000 0.980 0.008
#> GSM1068464     2  0.1557      0.905 0.000 0.944 0.000 0.056
#> GSM1068468     2  0.0657      0.894 0.004 0.984 0.000 0.012
#> GSM1068472     2  0.0657      0.896 0.004 0.984 0.000 0.012
#> GSM1068473     2  0.1824      0.904 0.000 0.936 0.004 0.060
#> GSM1068474     2  0.1557      0.905 0.000 0.944 0.000 0.056
#> GSM1068476     3  0.1339      0.893 0.004 0.008 0.964 0.024
#> GSM1068477     2  0.1389      0.906 0.000 0.952 0.000 0.048
#> GSM1068462     2  0.1593      0.877 0.004 0.956 0.016 0.024
#> GSM1068463     3  0.1510      0.898 0.028 0.000 0.956 0.016
#> GSM1068465     1  0.4155      0.848 0.828 0.100 0.000 0.072
#> GSM1068466     1  0.1042      0.912 0.972 0.020 0.000 0.008
#> GSM1068467     2  0.0524      0.894 0.004 0.988 0.000 0.008
#> GSM1068469     2  0.1798      0.867 0.040 0.944 0.000 0.016
#> GSM1068470     2  0.1902      0.905 0.000 0.932 0.004 0.064
#> GSM1068471     2  0.1557      0.905 0.000 0.944 0.000 0.056
#> GSM1068475     2  0.1474      0.905 0.000 0.948 0.000 0.052
#> GSM1068528     1  0.4114      0.777 0.812 0.008 0.164 0.016
#> GSM1068531     1  0.0336      0.911 0.992 0.000 0.000 0.008
#> GSM1068532     1  0.1624      0.899 0.952 0.000 0.020 0.028
#> GSM1068533     1  0.1042      0.904 0.972 0.000 0.008 0.020
#> GSM1068535     4  0.5379      0.687 0.264 0.016 0.020 0.700
#> GSM1068537     1  0.1174      0.901 0.968 0.000 0.012 0.020
#> GSM1068538     1  0.1174      0.901 0.968 0.000 0.012 0.020
#> GSM1068539     2  0.6227      0.316 0.052 0.572 0.004 0.372
#> GSM1068540     1  0.0895      0.912 0.976 0.004 0.000 0.020
#> GSM1068542     4  0.4254      0.851 0.104 0.064 0.004 0.828
#> GSM1068543     4  0.2307      0.869 0.016 0.048 0.008 0.928
#> GSM1068544     3  0.1706      0.893 0.036 0.000 0.948 0.016
#> GSM1068545     2  0.4795      0.632 0.012 0.696 0.000 0.292
#> GSM1068546     3  0.1388      0.897 0.012 0.000 0.960 0.028
#> GSM1068547     1  0.1182      0.913 0.968 0.016 0.000 0.016
#> GSM1068548     4  0.4663      0.831 0.148 0.064 0.000 0.788
#> GSM1068549     3  0.0804      0.900 0.008 0.000 0.980 0.012
#> GSM1068550     4  0.3320      0.866 0.056 0.068 0.000 0.876
#> GSM1068551     2  0.1902      0.905 0.000 0.932 0.004 0.064
#> GSM1068552     4  0.3970      0.845 0.036 0.124 0.004 0.836
#> GSM1068555     2  0.1661      0.903 0.000 0.944 0.004 0.052
#> GSM1068556     4  0.2421      0.868 0.020 0.048 0.008 0.924
#> GSM1068557     2  0.1543      0.889 0.008 0.956 0.004 0.032
#> GSM1068560     4  0.3168      0.867 0.060 0.056 0.000 0.884
#> GSM1068561     2  0.4128      0.760 0.020 0.808 0.004 0.168
#> GSM1068562     4  0.1722      0.868 0.008 0.048 0.000 0.944
#> GSM1068563     4  0.2542      0.866 0.012 0.084 0.000 0.904
#> GSM1068565     2  0.1557      0.905 0.000 0.944 0.000 0.056
#> GSM1068529     4  0.3325      0.828 0.008 0.044 0.064 0.884
#> GSM1068530     1  0.0336      0.909 0.992 0.000 0.000 0.008
#> GSM1068534     4  0.2804      0.852 0.016 0.060 0.016 0.908
#> GSM1068536     1  0.3836      0.856 0.852 0.052 0.004 0.092
#> GSM1068541     2  0.5102      0.706 0.064 0.748 0.000 0.188
#> GSM1068553     4  0.4061      0.853 0.092 0.044 0.016 0.848
#> GSM1068554     4  0.3820      0.857 0.028 0.100 0.016 0.856
#> GSM1068558     4  0.5138      0.371 0.000 0.008 0.392 0.600
#> GSM1068559     4  0.5527      0.445 0.000 0.028 0.356 0.616
#> GSM1068564     4  0.4747      0.710 0.016 0.244 0.004 0.736
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1068478     1  0.5957     0.4136 0.508 0.068 0.000 0.016 0.408
#> GSM1068479     2  0.7651    -0.0264 0.000 0.420 0.348 0.112 0.120
#> GSM1068481     3  0.1197     0.9352 0.000 0.000 0.952 0.000 0.048
#> GSM1068482     3  0.2110     0.9231 0.016 0.000 0.912 0.000 0.072
#> GSM1068483     1  0.3742     0.7723 0.792 0.012 0.000 0.012 0.184
#> GSM1068486     3  0.0000     0.9362 0.000 0.000 1.000 0.000 0.000
#> GSM1068487     2  0.0324     0.6855 0.000 0.992 0.000 0.004 0.004
#> GSM1068488     4  0.2011     0.6945 0.000 0.004 0.000 0.908 0.088
#> GSM1068490     2  0.0324     0.6855 0.000 0.992 0.000 0.004 0.004
#> GSM1068491     3  0.1965     0.8987 0.000 0.000 0.904 0.000 0.096
#> GSM1068492     4  0.6377     0.3674 0.000 0.008 0.288 0.540 0.164
#> GSM1068493     2  0.4994     0.2249 0.020 0.604 0.000 0.012 0.364
#> GSM1068494     4  0.4686     0.5551 0.092 0.004 0.004 0.756 0.144
#> GSM1068495     5  0.6757     0.7126 0.020 0.184 0.000 0.280 0.516
#> GSM1068496     1  0.5476     0.6705 0.676 0.004 0.016 0.072 0.232
#> GSM1068498     2  0.4909     0.2318 0.032 0.588 0.000 0.000 0.380
#> GSM1068499     1  0.5960     0.6236 0.624 0.004 0.004 0.164 0.204
#> GSM1068500     1  0.4048     0.7594 0.764 0.012 0.000 0.016 0.208
#> GSM1068502     2  0.7964    -0.1238 0.000 0.372 0.352 0.132 0.144
#> GSM1068503     2  0.2304     0.6031 0.000 0.892 0.000 0.008 0.100
#> GSM1068505     4  0.5181     0.6245 0.032 0.028 0.000 0.668 0.272
#> GSM1068506     4  0.5190     0.5903 0.000 0.096 0.000 0.668 0.236
#> GSM1068507     4  0.6567     0.3971 0.008 0.240 0.000 0.524 0.228
#> GSM1068508     2  0.4207     0.4625 0.008 0.708 0.000 0.008 0.276
#> GSM1068510     4  0.5287     0.6137 0.000 0.092 0.000 0.648 0.260
#> GSM1068512     4  0.1628     0.6952 0.000 0.008 0.000 0.936 0.056
#> GSM1068513     2  0.2233     0.6105 0.000 0.892 0.000 0.004 0.104
#> GSM1068514     4  0.5831     0.4511 0.000 0.000 0.236 0.604 0.160
#> GSM1068517     2  0.4909     0.2318 0.032 0.588 0.000 0.000 0.380
#> GSM1068518     4  0.3234     0.6398 0.012 0.008 0.000 0.836 0.144
#> GSM1068520     1  0.2462     0.8012 0.880 0.000 0.000 0.008 0.112
#> GSM1068521     1  0.3002     0.7987 0.856 0.000 0.000 0.028 0.116
#> GSM1068522     2  0.4605     0.3336 0.000 0.732 0.000 0.076 0.192
#> GSM1068524     2  0.2914     0.6068 0.000 0.872 0.000 0.076 0.052
#> GSM1068527     4  0.3849     0.6722 0.052 0.004 0.000 0.808 0.136
#> GSM1068480     3  0.1981     0.8976 0.000 0.000 0.924 0.048 0.028
#> GSM1068484     4  0.1251     0.7043 0.000 0.008 0.000 0.956 0.036
#> GSM1068485     3  0.0609     0.9377 0.000 0.000 0.980 0.000 0.020
#> GSM1068489     4  0.3815     0.6783 0.004 0.012 0.000 0.764 0.220
#> GSM1068497     2  0.4886     0.2480 0.032 0.596 0.000 0.000 0.372
#> GSM1068501     4  0.5330     0.6120 0.004 0.072 0.000 0.636 0.288
#> GSM1068504     2  0.0162     0.6864 0.000 0.996 0.000 0.004 0.000
#> GSM1068509     1  0.6023     0.5749 0.600 0.004 0.000 0.208 0.188
#> GSM1068511     4  0.2462     0.6894 0.000 0.000 0.008 0.880 0.112
#> GSM1068515     1  0.6624     0.3950 0.516 0.164 0.000 0.016 0.304
#> GSM1068516     4  0.2358     0.6798 0.000 0.008 0.000 0.888 0.104
#> GSM1068519     1  0.3336     0.7892 0.844 0.000 0.000 0.060 0.096
#> GSM1068523     2  0.3231     0.5946 0.000 0.800 0.000 0.004 0.196
#> GSM1068525     4  0.1830     0.6950 0.000 0.008 0.000 0.924 0.068
#> GSM1068526     4  0.3821     0.6677 0.000 0.020 0.000 0.764 0.216
#> GSM1068458     1  0.2124     0.8031 0.900 0.000 0.000 0.004 0.096
#> GSM1068459     3  0.2110     0.9231 0.016 0.000 0.912 0.000 0.072
#> GSM1068460     1  0.3519     0.7585 0.776 0.000 0.000 0.008 0.216
#> GSM1068461     3  0.0404     0.9354 0.000 0.000 0.988 0.000 0.012
#> GSM1068464     2  0.0324     0.6859 0.000 0.992 0.000 0.004 0.004
#> GSM1068468     2  0.2439     0.6468 0.004 0.876 0.000 0.000 0.120
#> GSM1068472     2  0.2763     0.6210 0.004 0.848 0.000 0.000 0.148
#> GSM1068473     2  0.0324     0.6855 0.000 0.992 0.000 0.004 0.004
#> GSM1068474     2  0.0162     0.6864 0.000 0.996 0.000 0.004 0.000
#> GSM1068476     3  0.2020     0.8987 0.000 0.000 0.900 0.000 0.100
#> GSM1068477     2  0.1365     0.6861 0.004 0.952 0.000 0.004 0.040
#> GSM1068462     2  0.2763     0.6210 0.004 0.848 0.000 0.000 0.148
#> GSM1068463     3  0.2110     0.9231 0.016 0.000 0.912 0.000 0.072
#> GSM1068465     1  0.5328     0.6034 0.604 0.036 0.000 0.016 0.344
#> GSM1068466     1  0.2389     0.8009 0.880 0.000 0.000 0.004 0.116
#> GSM1068467     2  0.2439     0.6459 0.004 0.876 0.000 0.000 0.120
#> GSM1068469     2  0.3912     0.5013 0.020 0.752 0.000 0.000 0.228
#> GSM1068470     2  0.2763     0.6312 0.000 0.848 0.000 0.004 0.148
#> GSM1068471     2  0.0162     0.6864 0.000 0.996 0.000 0.004 0.000
#> GSM1068475     2  0.0955     0.6847 0.000 0.968 0.000 0.004 0.028
#> GSM1068528     1  0.5121     0.6642 0.708 0.004 0.152 0.000 0.136
#> GSM1068531     1  0.1082     0.7967 0.964 0.000 0.000 0.008 0.028
#> GSM1068532     1  0.1831     0.7747 0.920 0.000 0.000 0.004 0.076
#> GSM1068533     1  0.1041     0.7980 0.964 0.000 0.000 0.004 0.032
#> GSM1068535     4  0.6124     0.5337 0.200 0.000 0.000 0.564 0.236
#> GSM1068537     1  0.1205     0.7863 0.956 0.000 0.000 0.004 0.040
#> GSM1068538     1  0.1704     0.7764 0.928 0.000 0.000 0.004 0.068
#> GSM1068539     5  0.6797     0.7145 0.020 0.188 0.000 0.284 0.508
#> GSM1068540     1  0.1893     0.8042 0.928 0.000 0.000 0.024 0.048
#> GSM1068542     4  0.4364     0.6564 0.020 0.016 0.000 0.740 0.224
#> GSM1068543     4  0.0451     0.7075 0.000 0.004 0.000 0.988 0.008
#> GSM1068544     3  0.2694     0.9038 0.040 0.000 0.884 0.000 0.076
#> GSM1068545     2  0.6731    -0.3543 0.000 0.416 0.000 0.280 0.304
#> GSM1068546     3  0.1430     0.9231 0.000 0.000 0.944 0.004 0.052
#> GSM1068547     1  0.2304     0.8038 0.892 0.000 0.000 0.008 0.100
#> GSM1068548     4  0.5209     0.6353 0.076 0.016 0.000 0.700 0.208
#> GSM1068549     3  0.1121     0.9265 0.000 0.000 0.956 0.000 0.044
#> GSM1068550     4  0.4188     0.6576 0.008 0.020 0.000 0.744 0.228
#> GSM1068551     2  0.2583     0.6418 0.000 0.864 0.000 0.004 0.132
#> GSM1068552     4  0.5715     0.5191 0.000 0.152 0.000 0.620 0.228
#> GSM1068555     2  0.3196     0.5992 0.000 0.804 0.000 0.004 0.192
#> GSM1068556     4  0.0955     0.7094 0.000 0.004 0.000 0.968 0.028
#> GSM1068557     2  0.4029     0.4313 0.004 0.680 0.000 0.000 0.316
#> GSM1068560     4  0.3461     0.6704 0.016 0.004 0.000 0.812 0.168
#> GSM1068561     5  0.6504     0.3379 0.012 0.428 0.000 0.132 0.428
#> GSM1068562     4  0.1502     0.7072 0.000 0.004 0.000 0.940 0.056
#> GSM1068563     4  0.3791     0.6710 0.000 0.076 0.000 0.812 0.112
#> GSM1068565     2  0.1768     0.6736 0.000 0.924 0.000 0.004 0.072
#> GSM1068529     4  0.3880     0.6230 0.000 0.004 0.044 0.800 0.152
#> GSM1068530     1  0.0510     0.7937 0.984 0.000 0.000 0.000 0.016
#> GSM1068534     4  0.1864     0.6903 0.000 0.004 0.004 0.924 0.068
#> GSM1068536     1  0.5920     0.3356 0.464 0.004 0.000 0.088 0.444
#> GSM1068541     5  0.6914     0.5472 0.044 0.316 0.000 0.132 0.508
#> GSM1068553     4  0.4252     0.6577 0.020 0.000 0.000 0.700 0.280
#> GSM1068554     4  0.5637     0.5865 0.004 0.100 0.000 0.616 0.280
#> GSM1068558     4  0.6034     0.4179 0.000 0.000 0.256 0.572 0.172
#> GSM1068559     4  0.5899     0.4378 0.000 0.000 0.248 0.592 0.160
#> GSM1068564     4  0.6592     0.2001 0.000 0.300 0.000 0.460 0.240
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1068478     5  0.3950     0.1136 0.312 0.008 0.000 0.000 0.672 0.008
#> GSM1068479     2  0.8566    -0.0332 0.000 0.336 0.152 0.244 0.124 0.144
#> GSM1068481     3  0.0725     0.8699 0.000 0.000 0.976 0.012 0.012 0.000
#> GSM1068482     3  0.2095     0.8552 0.016 0.000 0.916 0.040 0.028 0.000
#> GSM1068483     1  0.4378     0.6183 0.672 0.008 0.000 0.012 0.292 0.016
#> GSM1068486     3  0.0692     0.8718 0.000 0.000 0.976 0.020 0.004 0.000
#> GSM1068487     2  0.0000     0.6642 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068488     6  0.1787     0.4599 0.000 0.004 0.000 0.068 0.008 0.920
#> GSM1068490     2  0.0000     0.6642 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068491     3  0.5192     0.7196 0.000 0.000 0.640 0.228 0.120 0.012
#> GSM1068492     6  0.7164     0.2124 0.000 0.008 0.140 0.280 0.120 0.452
#> GSM1068493     2  0.5808    -0.0743 0.008 0.460 0.000 0.028 0.436 0.068
#> GSM1068494     6  0.5537     0.3651 0.044 0.000 0.008 0.096 0.192 0.660
#> GSM1068495     5  0.5705     0.5195 0.012 0.092 0.000 0.040 0.636 0.220
#> GSM1068496     1  0.8076     0.3993 0.432 0.000 0.132 0.088 0.204 0.144
#> GSM1068498     5  0.3993     0.2294 0.008 0.400 0.000 0.000 0.592 0.000
#> GSM1068499     1  0.7674     0.4060 0.420 0.000 0.048 0.080 0.272 0.180
#> GSM1068500     1  0.4525     0.6001 0.656 0.012 0.000 0.012 0.304 0.016
#> GSM1068502     2  0.8702    -0.1141 0.000 0.288 0.160 0.260 0.120 0.172
#> GSM1068503     2  0.2668     0.5440 0.000 0.828 0.000 0.168 0.000 0.004
#> GSM1068505     4  0.5524     0.4192 0.032 0.008 0.000 0.492 0.040 0.428
#> GSM1068506     6  0.5556    -0.3246 0.000 0.048 0.000 0.408 0.044 0.500
#> GSM1068507     4  0.6473     0.5860 0.012 0.232 0.000 0.460 0.012 0.284
#> GSM1068508     2  0.4580     0.0930 0.004 0.528 0.000 0.028 0.440 0.000
#> GSM1068510     4  0.5968     0.5357 0.000 0.140 0.000 0.432 0.016 0.412
#> GSM1068512     6  0.1477     0.4854 0.000 0.004 0.000 0.008 0.048 0.940
#> GSM1068513     2  0.3043     0.5347 0.000 0.796 0.000 0.196 0.004 0.004
#> GSM1068514     6  0.6498     0.2564 0.000 0.000 0.096 0.272 0.112 0.520
#> GSM1068517     5  0.4010     0.2103 0.008 0.408 0.000 0.000 0.584 0.000
#> GSM1068518     6  0.4549     0.3943 0.008 0.004 0.000 0.056 0.236 0.696
#> GSM1068520     1  0.3473     0.6860 0.780 0.000 0.000 0.024 0.192 0.004
#> GSM1068521     1  0.4709     0.6731 0.696 0.000 0.000 0.060 0.220 0.024
#> GSM1068522     2  0.4676     0.0822 0.000 0.572 0.000 0.384 0.004 0.040
#> GSM1068524     2  0.3271     0.6027 0.000 0.844 0.000 0.020 0.076 0.060
#> GSM1068527     6  0.4927     0.3404 0.032 0.004 0.000 0.096 0.152 0.716
#> GSM1068480     3  0.4299     0.8110 0.000 0.000 0.776 0.100 0.072 0.052
#> GSM1068484     6  0.1672     0.4770 0.000 0.004 0.000 0.016 0.048 0.932
#> GSM1068485     3  0.0146     0.8719 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM1068489     4  0.4224     0.4933 0.000 0.008 0.000 0.512 0.004 0.476
#> GSM1068497     5  0.4018     0.2006 0.008 0.412 0.000 0.000 0.580 0.000
#> GSM1068501     4  0.5770     0.6629 0.000 0.108 0.000 0.528 0.024 0.340
#> GSM1068504     2  0.0000     0.6642 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068509     1  0.7024     0.3280 0.400 0.000 0.000 0.080 0.208 0.312
#> GSM1068511     6  0.3063     0.4577 0.000 0.000 0.016 0.076 0.052 0.856
#> GSM1068515     1  0.7091     0.1344 0.424 0.080 0.000 0.124 0.352 0.020
#> GSM1068516     6  0.3315     0.4635 0.004 0.004 0.000 0.056 0.104 0.832
#> GSM1068519     1  0.5044     0.6668 0.704 0.000 0.000 0.080 0.160 0.056
#> GSM1068523     2  0.4153     0.3609 0.000 0.636 0.000 0.024 0.340 0.000
#> GSM1068525     6  0.1313     0.4863 0.000 0.004 0.000 0.016 0.028 0.952
#> GSM1068526     6  0.4569    -0.2769 0.000 0.008 0.000 0.408 0.024 0.560
#> GSM1068458     1  0.2940     0.7005 0.848 0.000 0.000 0.036 0.112 0.004
#> GSM1068459     3  0.1787     0.8569 0.016 0.000 0.932 0.032 0.020 0.000
#> GSM1068460     1  0.4310     0.6106 0.684 0.000 0.000 0.044 0.268 0.004
#> GSM1068461     3  0.2197     0.8608 0.000 0.000 0.900 0.056 0.044 0.000
#> GSM1068464     2  0.0146     0.6640 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM1068468     2  0.3017     0.5989 0.000 0.816 0.000 0.020 0.164 0.000
#> GSM1068472     2  0.2859     0.6027 0.000 0.828 0.000 0.016 0.156 0.000
#> GSM1068473     2  0.0000     0.6642 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068474     2  0.0000     0.6642 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068476     3  0.5064     0.7275 0.000 0.000 0.652 0.216 0.124 0.008
#> GSM1068477     2  0.1714     0.6490 0.000 0.908 0.000 0.000 0.092 0.000
#> GSM1068462     2  0.3053     0.5923 0.000 0.812 0.000 0.020 0.168 0.000
#> GSM1068463     3  0.1710     0.8569 0.016 0.000 0.936 0.028 0.020 0.000
#> GSM1068465     5  0.4696    -0.3494 0.480 0.004 0.000 0.020 0.488 0.008
#> GSM1068466     1  0.3695     0.6881 0.776 0.000 0.000 0.044 0.176 0.004
#> GSM1068467     2  0.2932     0.5997 0.000 0.820 0.000 0.016 0.164 0.000
#> GSM1068469     2  0.3859     0.4316 0.000 0.692 0.000 0.020 0.288 0.000
#> GSM1068470     2  0.3509     0.5022 0.000 0.744 0.000 0.016 0.240 0.000
#> GSM1068471     2  0.0000     0.6642 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068475     2  0.0865     0.6576 0.000 0.964 0.000 0.000 0.036 0.000
#> GSM1068528     1  0.6458     0.2533 0.456 0.000 0.364 0.076 0.104 0.000
#> GSM1068531     1  0.1268     0.7115 0.952 0.000 0.000 0.036 0.008 0.004
#> GSM1068532     1  0.3105     0.6766 0.848 0.000 0.008 0.080 0.064 0.000
#> GSM1068533     1  0.1484     0.7097 0.944 0.000 0.004 0.040 0.008 0.004
#> GSM1068535     4  0.6138     0.5044 0.176 0.000 0.000 0.484 0.020 0.320
#> GSM1068537     1  0.1401     0.7056 0.948 0.000 0.004 0.028 0.020 0.000
#> GSM1068538     1  0.1924     0.6968 0.920 0.000 0.004 0.048 0.028 0.000
#> GSM1068539     5  0.5698     0.5144 0.008 0.104 0.000 0.036 0.628 0.224
#> GSM1068540     1  0.3675     0.7011 0.804 0.000 0.000 0.052 0.128 0.016
#> GSM1068542     6  0.5513    -0.3252 0.032 0.008 0.000 0.416 0.040 0.504
#> GSM1068543     6  0.1464     0.4517 0.000 0.004 0.000 0.036 0.016 0.944
#> GSM1068544     3  0.2903     0.8178 0.036 0.000 0.872 0.056 0.036 0.000
#> GSM1068545     2  0.7721    -0.2153 0.000 0.280 0.000 0.252 0.232 0.236
#> GSM1068546     3  0.2164     0.8595 0.000 0.000 0.900 0.068 0.032 0.000
#> GSM1068547     1  0.3453     0.6929 0.788 0.000 0.000 0.028 0.180 0.004
#> GSM1068548     6  0.6083    -0.2977 0.052 0.012 0.000 0.376 0.060 0.500
#> GSM1068549     3  0.4117     0.7971 0.000 0.000 0.748 0.140 0.112 0.000
#> GSM1068550     6  0.5080    -0.2835 0.012 0.008 0.000 0.404 0.036 0.540
#> GSM1068551     2  0.3534     0.5040 0.000 0.740 0.000 0.016 0.244 0.000
#> GSM1068552     6  0.5805    -0.3550 0.000 0.080 0.000 0.404 0.036 0.480
#> GSM1068555     2  0.4124     0.3725 0.000 0.644 0.000 0.024 0.332 0.000
#> GSM1068556     6  0.2002     0.4233 0.000 0.004 0.000 0.076 0.012 0.908
#> GSM1068557     2  0.4282     0.2100 0.000 0.560 0.000 0.020 0.420 0.000
#> GSM1068560     6  0.4750     0.3410 0.004 0.004 0.000 0.120 0.172 0.700
#> GSM1068561     5  0.5592     0.4732 0.004 0.208 0.000 0.028 0.632 0.128
#> GSM1068562     6  0.2443     0.4017 0.000 0.004 0.000 0.096 0.020 0.880
#> GSM1068563     6  0.4629     0.0993 0.000 0.040 0.000 0.256 0.024 0.680
#> GSM1068565     2  0.2263     0.6322 0.000 0.884 0.000 0.016 0.100 0.000
#> GSM1068529     6  0.4251     0.4260 0.000 0.000 0.008 0.152 0.092 0.748
#> GSM1068530     1  0.0717     0.7096 0.976 0.000 0.000 0.016 0.008 0.000
#> GSM1068534     6  0.2003     0.4759 0.000 0.000 0.000 0.044 0.044 0.912
#> GSM1068536     5  0.6266     0.1210 0.292 0.000 0.000 0.084 0.532 0.092
#> GSM1068541     5  0.7101     0.4001 0.028 0.192 0.000 0.148 0.528 0.104
#> GSM1068553     4  0.4808     0.5838 0.016 0.004 0.000 0.548 0.020 0.412
#> GSM1068554     4  0.5759     0.6646 0.000 0.116 0.000 0.528 0.020 0.336
#> GSM1068558     6  0.6542     0.2735 0.000 0.000 0.120 0.256 0.100 0.524
#> GSM1068559     6  0.6543     0.2659 0.000 0.000 0.108 0.264 0.108 0.520
#> GSM1068564     4  0.6446     0.4437 0.000 0.248 0.000 0.440 0.024 0.288
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#>             n disease.state(p) gender(p) k
#> SD:kmeans  95          0.85807     0.373 2
#> SD:kmeans  92          0.88731     0.601 3
#> SD:kmeans 101          0.01049     0.797 4
#> SD:kmeans  88          0.00156     0.774 5
#> SD:kmeans  56          0.08001     0.522 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 38950 rows and 108 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.608           0.820       0.923         0.5019 0.500   0.500
#> 3 3 0.611           0.736       0.875         0.3275 0.733   0.518
#> 4 4 0.814           0.829       0.911         0.1300 0.775   0.447
#> 5 5 0.710           0.604       0.764         0.0645 0.939   0.763
#> 6 6 0.710           0.549       0.748         0.0376 0.943   0.739
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1068478     1  0.9754      0.261 0.592 0.408
#> GSM1068479     2  0.9209      0.447 0.336 0.664
#> GSM1068481     1  0.0000      0.908 1.000 0.000
#> GSM1068482     1  0.0000      0.908 1.000 0.000
#> GSM1068483     1  0.0000      0.908 1.000 0.000
#> GSM1068486     1  0.0000      0.908 1.000 0.000
#> GSM1068487     2  0.0000      0.908 0.000 1.000
#> GSM1068488     1  0.8386      0.647 0.732 0.268
#> GSM1068490     2  0.0000      0.908 0.000 1.000
#> GSM1068491     1  0.0000      0.908 1.000 0.000
#> GSM1068492     2  0.9970      0.055 0.468 0.532
#> GSM1068493     1  0.3431      0.862 0.936 0.064
#> GSM1068494     1  0.0000      0.908 1.000 0.000
#> GSM1068495     2  0.0000      0.908 0.000 1.000
#> GSM1068496     1  0.0000      0.908 1.000 0.000
#> GSM1068498     2  0.8327      0.652 0.264 0.736
#> GSM1068499     1  0.0000      0.908 1.000 0.000
#> GSM1068500     1  0.0000      0.908 1.000 0.000
#> GSM1068502     2  0.9323      0.419 0.348 0.652
#> GSM1068503     2  0.0000      0.908 0.000 1.000
#> GSM1068505     2  0.0000      0.908 0.000 1.000
#> GSM1068506     2  0.0000      0.908 0.000 1.000
#> GSM1068507     2  0.0000      0.908 0.000 1.000
#> GSM1068508     2  0.0000      0.908 0.000 1.000
#> GSM1068510     2  0.0376      0.906 0.004 0.996
#> GSM1068512     1  0.7453      0.720 0.788 0.212
#> GSM1068513     2  0.0000      0.908 0.000 1.000
#> GSM1068514     1  0.8207      0.664 0.744 0.256
#> GSM1068517     2  0.7602      0.711 0.220 0.780
#> GSM1068518     1  0.4815      0.834 0.896 0.104
#> GSM1068520     1  0.8016      0.632 0.756 0.244
#> GSM1068521     1  0.0000      0.908 1.000 0.000
#> GSM1068522     2  0.0000      0.908 0.000 1.000
#> GSM1068524     2  0.0000      0.908 0.000 1.000
#> GSM1068527     2  0.7219      0.704 0.200 0.800
#> GSM1068480     1  0.0000      0.908 1.000 0.000
#> GSM1068484     2  0.0000      0.908 0.000 1.000
#> GSM1068485     1  0.0000      0.908 1.000 0.000
#> GSM1068489     2  0.0000      0.908 0.000 1.000
#> GSM1068497     2  0.8327      0.652 0.264 0.736
#> GSM1068501     2  0.0000      0.908 0.000 1.000
#> GSM1068504     2  0.0000      0.908 0.000 1.000
#> GSM1068509     1  0.0000      0.908 1.000 0.000
#> GSM1068511     1  0.0000      0.908 1.000 0.000
#> GSM1068515     1  0.9754      0.261 0.592 0.408
#> GSM1068516     2  0.9608      0.329 0.384 0.616
#> GSM1068519     1  0.0000      0.908 1.000 0.000
#> GSM1068523     2  0.0000      0.908 0.000 1.000
#> GSM1068525     2  0.0000      0.908 0.000 1.000
#> GSM1068526     2  0.0672      0.904 0.008 0.992
#> GSM1068458     1  0.0376      0.905 0.996 0.004
#> GSM1068459     1  0.0000      0.908 1.000 0.000
#> GSM1068460     2  0.7453      0.721 0.212 0.788
#> GSM1068461     1  0.0000      0.908 1.000 0.000
#> GSM1068464     2  0.0000      0.908 0.000 1.000
#> GSM1068468     2  0.0000      0.908 0.000 1.000
#> GSM1068472     2  0.6048      0.791 0.148 0.852
#> GSM1068473     2  0.0000      0.908 0.000 1.000
#> GSM1068474     2  0.0000      0.908 0.000 1.000
#> GSM1068476     1  0.5519      0.811 0.872 0.128
#> GSM1068477     2  0.0000      0.908 0.000 1.000
#> GSM1068462     2  0.8327      0.652 0.264 0.736
#> GSM1068463     1  0.0000      0.908 1.000 0.000
#> GSM1068465     2  0.8386      0.646 0.268 0.732
#> GSM1068466     1  0.7299      0.699 0.796 0.204
#> GSM1068467     2  0.0000      0.908 0.000 1.000
#> GSM1068469     2  0.8386      0.646 0.268 0.732
#> GSM1068470     2  0.0000      0.908 0.000 1.000
#> GSM1068471     2  0.0000      0.908 0.000 1.000
#> GSM1068475     2  0.0000      0.908 0.000 1.000
#> GSM1068528     1  0.0000      0.908 1.000 0.000
#> GSM1068531     1  0.0000      0.908 1.000 0.000
#> GSM1068532     1  0.0000      0.908 1.000 0.000
#> GSM1068533     1  0.0000      0.908 1.000 0.000
#> GSM1068535     1  0.0000      0.908 1.000 0.000
#> GSM1068537     1  0.0000      0.908 1.000 0.000
#> GSM1068538     1  0.0000      0.908 1.000 0.000
#> GSM1068539     2  0.0000      0.908 0.000 1.000
#> GSM1068540     1  0.0000      0.908 1.000 0.000
#> GSM1068542     2  0.0672      0.904 0.008 0.992
#> GSM1068543     1  0.8499      0.635 0.724 0.276
#> GSM1068544     1  0.0000      0.908 1.000 0.000
#> GSM1068545     2  0.0000      0.908 0.000 1.000
#> GSM1068546     1  0.0000      0.908 1.000 0.000
#> GSM1068547     1  0.9209      0.445 0.664 0.336
#> GSM1068548     2  0.1184      0.899 0.016 0.984
#> GSM1068549     1  0.0000      0.908 1.000 0.000
#> GSM1068550     2  0.0000      0.908 0.000 1.000
#> GSM1068551     2  0.0000      0.908 0.000 1.000
#> GSM1068552     2  0.0000      0.908 0.000 1.000
#> GSM1068555     2  0.0000      0.908 0.000 1.000
#> GSM1068556     1  0.8443      0.641 0.728 0.272
#> GSM1068557     2  0.0000      0.908 0.000 1.000
#> GSM1068560     2  0.1184      0.899 0.016 0.984
#> GSM1068561     2  0.6973      0.749 0.188 0.812
#> GSM1068562     2  0.3879      0.850 0.076 0.924
#> GSM1068563     2  0.8267      0.608 0.260 0.740
#> GSM1068565     2  0.0000      0.908 0.000 1.000
#> GSM1068529     1  0.0000      0.908 1.000 0.000
#> GSM1068530     1  0.0000      0.908 1.000 0.000
#> GSM1068534     1  0.0000      0.908 1.000 0.000
#> GSM1068536     2  0.8813      0.595 0.300 0.700
#> GSM1068541     2  0.0000      0.908 0.000 1.000
#> GSM1068553     1  0.8327      0.653 0.736 0.264
#> GSM1068554     2  0.0376      0.906 0.004 0.996
#> GSM1068558     1  0.8386      0.647 0.732 0.268
#> GSM1068559     1  0.2423      0.883 0.960 0.040
#> GSM1068564     2  0.0000      0.908 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1068478     1  0.3192     0.7766 0.888 0.112 0.000
#> GSM1068479     3  0.0747     0.8941 0.000 0.016 0.984
#> GSM1068481     3  0.0747     0.8997 0.016 0.000 0.984
#> GSM1068482     3  0.0747     0.8997 0.016 0.000 0.984
#> GSM1068483     1  0.3340     0.7722 0.880 0.000 0.120
#> GSM1068486     3  0.0747     0.8997 0.016 0.000 0.984
#> GSM1068487     2  0.0000     0.8406 0.000 1.000 0.000
#> GSM1068488     3  0.0983     0.8887 0.004 0.016 0.980
#> GSM1068490     2  0.0000     0.8406 0.000 1.000 0.000
#> GSM1068491     3  0.0747     0.8997 0.016 0.000 0.984
#> GSM1068492     3  0.0000     0.8972 0.000 0.000 1.000
#> GSM1068493     3  0.8301     0.4412 0.108 0.300 0.592
#> GSM1068494     3  0.5216     0.6554 0.260 0.000 0.740
#> GSM1068495     2  0.6299     0.0961 0.476 0.524 0.000
#> GSM1068496     1  0.6291     0.1741 0.532 0.000 0.468
#> GSM1068498     1  0.6079     0.4290 0.612 0.388 0.000
#> GSM1068499     1  0.6168     0.3349 0.588 0.000 0.412
#> GSM1068500     1  0.4555     0.6978 0.800 0.000 0.200
#> GSM1068502     3  0.0747     0.8941 0.000 0.016 0.984
#> GSM1068503     2  0.0000     0.8406 0.000 1.000 0.000
#> GSM1068505     2  0.5956     0.6689 0.264 0.720 0.016
#> GSM1068506     2  0.5219     0.7344 0.196 0.788 0.016
#> GSM1068507     2  0.7330     0.6635 0.216 0.692 0.092
#> GSM1068508     2  0.2448     0.8141 0.076 0.924 0.000
#> GSM1068510     3  0.6045     0.3864 0.000 0.380 0.620
#> GSM1068512     3  0.5315     0.7074 0.216 0.012 0.772
#> GSM1068513     2  0.0000     0.8406 0.000 1.000 0.000
#> GSM1068514     3  0.0000     0.8972 0.000 0.000 1.000
#> GSM1068517     1  0.6140     0.3946 0.596 0.404 0.000
#> GSM1068518     1  0.5024     0.6471 0.776 0.004 0.220
#> GSM1068520     1  0.0000     0.8359 1.000 0.000 0.000
#> GSM1068521     1  0.0000     0.8359 1.000 0.000 0.000
#> GSM1068522     2  0.0000     0.8406 0.000 1.000 0.000
#> GSM1068524     2  0.0000     0.8406 0.000 1.000 0.000
#> GSM1068527     1  0.2804     0.7847 0.924 0.060 0.016
#> GSM1068480     3  0.0747     0.8997 0.016 0.000 0.984
#> GSM1068484     2  0.0747     0.8370 0.000 0.984 0.016
#> GSM1068485     3  0.0747     0.8997 0.016 0.000 0.984
#> GSM1068489     2  0.5681     0.6984 0.236 0.748 0.016
#> GSM1068497     1  0.6095     0.4210 0.608 0.392 0.000
#> GSM1068501     2  0.2804     0.8172 0.060 0.924 0.016
#> GSM1068504     2  0.0000     0.8406 0.000 1.000 0.000
#> GSM1068509     1  0.4399     0.7093 0.812 0.000 0.188
#> GSM1068511     3  0.0237     0.8985 0.004 0.000 0.996
#> GSM1068515     1  0.4796     0.6771 0.780 0.220 0.000
#> GSM1068516     3  0.6107     0.7235 0.100 0.116 0.784
#> GSM1068519     1  0.0000     0.8359 1.000 0.000 0.000
#> GSM1068523     2  0.0000     0.8406 0.000 1.000 0.000
#> GSM1068525     2  0.0747     0.8370 0.000 0.984 0.016
#> GSM1068526     2  0.5633     0.7201 0.208 0.768 0.024
#> GSM1068458     1  0.0000     0.8359 1.000 0.000 0.000
#> GSM1068459     3  0.0747     0.8997 0.016 0.000 0.984
#> GSM1068460     1  0.0000     0.8359 1.000 0.000 0.000
#> GSM1068461     3  0.0747     0.8997 0.016 0.000 0.984
#> GSM1068464     2  0.0000     0.8406 0.000 1.000 0.000
#> GSM1068468     2  0.1636     0.8266 0.016 0.964 0.020
#> GSM1068472     2  0.1919     0.8226 0.024 0.956 0.020
#> GSM1068473     2  0.0000     0.8406 0.000 1.000 0.000
#> GSM1068474     2  0.0000     0.8406 0.000 1.000 0.000
#> GSM1068476     3  0.0829     0.8991 0.012 0.004 0.984
#> GSM1068477     2  0.0000     0.8406 0.000 1.000 0.000
#> GSM1068462     2  0.6777     0.3494 0.020 0.616 0.364
#> GSM1068463     3  0.0747     0.8997 0.016 0.000 0.984
#> GSM1068465     1  0.2625     0.7954 0.916 0.084 0.000
#> GSM1068466     1  0.0000     0.8359 1.000 0.000 0.000
#> GSM1068467     2  0.1482     0.8284 0.012 0.968 0.020
#> GSM1068469     1  0.7049     0.2516 0.528 0.452 0.020
#> GSM1068470     2  0.0000     0.8406 0.000 1.000 0.000
#> GSM1068471     2  0.0000     0.8406 0.000 1.000 0.000
#> GSM1068475     2  0.0000     0.8406 0.000 1.000 0.000
#> GSM1068528     1  0.5859     0.4857 0.656 0.000 0.344
#> GSM1068531     1  0.0000     0.8359 1.000 0.000 0.000
#> GSM1068532     1  0.1964     0.8082 0.944 0.000 0.056
#> GSM1068533     1  0.0000     0.8359 1.000 0.000 0.000
#> GSM1068535     3  0.6126     0.3861 0.400 0.000 0.600
#> GSM1068537     1  0.0000     0.8359 1.000 0.000 0.000
#> GSM1068538     1  0.0000     0.8359 1.000 0.000 0.000
#> GSM1068539     2  0.5650     0.5494 0.312 0.688 0.000
#> GSM1068540     1  0.0000     0.8359 1.000 0.000 0.000
#> GSM1068542     2  0.6396     0.5951 0.320 0.664 0.016
#> GSM1068543     3  0.3213     0.8467 0.060 0.028 0.912
#> GSM1068544     3  0.4002     0.7615 0.160 0.000 0.840
#> GSM1068545     2  0.1163     0.8339 0.028 0.972 0.000
#> GSM1068546     3  0.0747     0.8997 0.016 0.000 0.984
#> GSM1068547     1  0.0000     0.8359 1.000 0.000 0.000
#> GSM1068548     2  0.6783     0.4697 0.396 0.588 0.016
#> GSM1068549     3  0.0747     0.8997 0.016 0.000 0.984
#> GSM1068550     2  0.5956     0.6689 0.264 0.720 0.016
#> GSM1068551     2  0.0000     0.8406 0.000 1.000 0.000
#> GSM1068552     2  0.4539     0.7675 0.148 0.836 0.016
#> GSM1068555     2  0.0000     0.8406 0.000 1.000 0.000
#> GSM1068556     3  0.3967     0.8262 0.072 0.044 0.884
#> GSM1068557     2  0.1129     0.8313 0.004 0.976 0.020
#> GSM1068560     2  0.6912     0.3712 0.444 0.540 0.016
#> GSM1068561     2  0.7851     0.0324 0.412 0.532 0.056
#> GSM1068562     2  0.6880     0.6920 0.108 0.736 0.156
#> GSM1068563     2  0.6717     0.4614 0.020 0.628 0.352
#> GSM1068565     2  0.0000     0.8406 0.000 1.000 0.000
#> GSM1068529     3  0.0000     0.8972 0.000 0.000 1.000
#> GSM1068530     1  0.0000     0.8359 1.000 0.000 0.000
#> GSM1068534     3  0.0000     0.8972 0.000 0.000 1.000
#> GSM1068536     1  0.0237     0.8345 0.996 0.004 0.000
#> GSM1068541     2  0.5835     0.5162 0.340 0.660 0.000
#> GSM1068553     3  0.6771     0.5707 0.276 0.040 0.684
#> GSM1068554     2  0.8730     0.1309 0.108 0.472 0.420
#> GSM1068558     3  0.0000     0.8972 0.000 0.000 1.000
#> GSM1068559     3  0.0237     0.8984 0.004 0.000 0.996
#> GSM1068564     2  0.1905     0.8299 0.028 0.956 0.016
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1068478     1  0.1629    0.93075 0.952 0.024 0.000 0.024
#> GSM1068479     3  0.1557    0.88009 0.000 0.056 0.944 0.000
#> GSM1068481     3  0.0000    0.92158 0.000 0.000 1.000 0.000
#> GSM1068482     3  0.0000    0.92158 0.000 0.000 1.000 0.000
#> GSM1068483     1  0.1339    0.93554 0.964 0.008 0.024 0.004
#> GSM1068486     3  0.0000    0.92158 0.000 0.000 1.000 0.000
#> GSM1068487     2  0.0188    0.91495 0.000 0.996 0.000 0.004
#> GSM1068488     4  0.2593    0.83071 0.004 0.000 0.104 0.892
#> GSM1068490     2  0.0188    0.91495 0.000 0.996 0.000 0.004
#> GSM1068491     3  0.0000    0.92158 0.000 0.000 1.000 0.000
#> GSM1068492     3  0.0188    0.91965 0.000 0.000 0.996 0.004
#> GSM1068493     2  0.5004    0.34511 0.000 0.604 0.392 0.004
#> GSM1068494     3  0.7130    0.14544 0.396 0.000 0.472 0.132
#> GSM1068495     2  0.6639    0.45206 0.120 0.596 0.000 0.284
#> GSM1068496     3  0.5138    0.33854 0.392 0.000 0.600 0.008
#> GSM1068498     2  0.1867    0.87218 0.072 0.928 0.000 0.000
#> GSM1068499     3  0.5928    0.10359 0.456 0.000 0.508 0.036
#> GSM1068500     1  0.2281    0.87649 0.904 0.000 0.096 0.000
#> GSM1068502     3  0.1211    0.89424 0.000 0.040 0.960 0.000
#> GSM1068503     2  0.2281    0.83763 0.000 0.904 0.000 0.096
#> GSM1068505     4  0.2589    0.84977 0.116 0.000 0.000 0.884
#> GSM1068506     4  0.2131    0.86823 0.032 0.036 0.000 0.932
#> GSM1068507     4  0.6501    0.58228 0.116 0.268 0.000 0.616
#> GSM1068508     2  0.1929    0.88440 0.036 0.940 0.000 0.024
#> GSM1068510     4  0.5581    0.73219 0.000 0.140 0.132 0.728
#> GSM1068512     4  0.6364    0.64430 0.144 0.000 0.204 0.652
#> GSM1068513     2  0.0469    0.91212 0.000 0.988 0.000 0.012
#> GSM1068514     3  0.0000    0.92158 0.000 0.000 1.000 0.000
#> GSM1068517     2  0.1022    0.90100 0.032 0.968 0.000 0.000
#> GSM1068518     4  0.7379    0.18012 0.364 0.000 0.168 0.468
#> GSM1068520     1  0.0000    0.94506 1.000 0.000 0.000 0.000
#> GSM1068521     1  0.1118    0.93458 0.964 0.000 0.000 0.036
#> GSM1068522     2  0.5673    0.00761 0.024 0.528 0.000 0.448
#> GSM1068524     2  0.1118    0.90057 0.000 0.964 0.000 0.036
#> GSM1068527     4  0.3494    0.78573 0.172 0.004 0.000 0.824
#> GSM1068480     3  0.0000    0.92158 0.000 0.000 1.000 0.000
#> GSM1068484     4  0.1042    0.86837 0.008 0.020 0.000 0.972
#> GSM1068485     3  0.0000    0.92158 0.000 0.000 1.000 0.000
#> GSM1068489     4  0.1022    0.86947 0.032 0.000 0.000 0.968
#> GSM1068497     2  0.1118    0.89858 0.036 0.964 0.000 0.000
#> GSM1068501     4  0.2402    0.85611 0.012 0.076 0.000 0.912
#> GSM1068504     2  0.0188    0.91495 0.000 0.996 0.000 0.004
#> GSM1068509     1  0.2831    0.87287 0.876 0.000 0.004 0.120
#> GSM1068511     3  0.2675    0.84117 0.008 0.000 0.892 0.100
#> GSM1068515     1  0.4054    0.74476 0.796 0.188 0.000 0.016
#> GSM1068516     4  0.1443    0.86763 0.008 0.004 0.028 0.960
#> GSM1068519     1  0.1489    0.93099 0.952 0.000 0.004 0.044
#> GSM1068523     2  0.0336    0.91319 0.000 0.992 0.000 0.008
#> GSM1068525     4  0.1302    0.86516 0.000 0.044 0.000 0.956
#> GSM1068526     4  0.1118    0.86917 0.036 0.000 0.000 0.964
#> GSM1068458     1  0.0336    0.94301 0.992 0.000 0.000 0.008
#> GSM1068459     3  0.0000    0.92158 0.000 0.000 1.000 0.000
#> GSM1068460     1  0.0000    0.94506 1.000 0.000 0.000 0.000
#> GSM1068461     3  0.0000    0.92158 0.000 0.000 1.000 0.000
#> GSM1068464     2  0.0188    0.91495 0.000 0.996 0.000 0.004
#> GSM1068468     2  0.0000    0.91444 0.000 1.000 0.000 0.000
#> GSM1068472     2  0.0188    0.91495 0.000 0.996 0.000 0.004
#> GSM1068473     2  0.0188    0.91495 0.000 0.996 0.000 0.004
#> GSM1068474     2  0.0188    0.91495 0.000 0.996 0.000 0.004
#> GSM1068476     3  0.0000    0.92158 0.000 0.000 1.000 0.000
#> GSM1068477     2  0.0000    0.91444 0.000 1.000 0.000 0.000
#> GSM1068462     2  0.0336    0.91245 0.000 0.992 0.008 0.000
#> GSM1068463     3  0.0188    0.91970 0.004 0.000 0.996 0.000
#> GSM1068465     1  0.1733    0.92816 0.948 0.028 0.000 0.024
#> GSM1068466     1  0.0188    0.94413 0.996 0.000 0.000 0.004
#> GSM1068467     2  0.0000    0.91444 0.000 1.000 0.000 0.000
#> GSM1068469     2  0.0592    0.90911 0.016 0.984 0.000 0.000
#> GSM1068470     2  0.0336    0.91319 0.000 0.992 0.000 0.008
#> GSM1068471     2  0.0188    0.91495 0.000 0.996 0.000 0.004
#> GSM1068475     2  0.0188    0.91495 0.000 0.996 0.000 0.004
#> GSM1068528     1  0.4585    0.49686 0.668 0.000 0.332 0.000
#> GSM1068531     1  0.0000    0.94506 1.000 0.000 0.000 0.000
#> GSM1068532     1  0.1297    0.93804 0.964 0.000 0.016 0.020
#> GSM1068533     1  0.0336    0.94301 0.992 0.000 0.000 0.008
#> GSM1068535     4  0.4661    0.71731 0.256 0.000 0.016 0.728
#> GSM1068537     1  0.0188    0.94416 0.996 0.000 0.000 0.004
#> GSM1068538     1  0.0336    0.94301 0.992 0.000 0.000 0.008
#> GSM1068539     2  0.6371    0.46090 0.092 0.608 0.000 0.300
#> GSM1068540     1  0.1118    0.93458 0.964 0.000 0.000 0.036
#> GSM1068542     4  0.2408    0.85528 0.104 0.000 0.000 0.896
#> GSM1068543     4  0.1902    0.86022 0.004 0.000 0.064 0.932
#> GSM1068544     3  0.0469    0.91571 0.012 0.000 0.988 0.000
#> GSM1068545     4  0.4830    0.33077 0.000 0.392 0.000 0.608
#> GSM1068546     3  0.0000    0.92158 0.000 0.000 1.000 0.000
#> GSM1068547     1  0.0000    0.94506 1.000 0.000 0.000 0.000
#> GSM1068548     4  0.3208    0.83511 0.148 0.004 0.000 0.848
#> GSM1068549     3  0.0000    0.92158 0.000 0.000 1.000 0.000
#> GSM1068550     4  0.0817    0.87051 0.024 0.000 0.000 0.976
#> GSM1068551     2  0.0336    0.91319 0.000 0.992 0.000 0.008
#> GSM1068552     4  0.2036    0.86926 0.032 0.032 0.000 0.936
#> GSM1068555     2  0.0188    0.91424 0.000 0.996 0.000 0.004
#> GSM1068556     4  0.1661    0.86427 0.004 0.000 0.052 0.944
#> GSM1068557     2  0.0000    0.91444 0.000 1.000 0.000 0.000
#> GSM1068560     4  0.2714    0.83026 0.112 0.004 0.000 0.884
#> GSM1068561     2  0.2497    0.87808 0.016 0.924 0.020 0.040
#> GSM1068562     4  0.0188    0.86755 0.000 0.000 0.004 0.996
#> GSM1068563     4  0.2565    0.86052 0.000 0.032 0.056 0.912
#> GSM1068565     2  0.0188    0.91495 0.000 0.996 0.000 0.004
#> GSM1068529     3  0.1211    0.89672 0.000 0.000 0.960 0.040
#> GSM1068530     1  0.0000    0.94506 1.000 0.000 0.000 0.000
#> GSM1068534     3  0.2973    0.80249 0.000 0.000 0.856 0.144
#> GSM1068536     1  0.0657    0.94024 0.984 0.004 0.000 0.012
#> GSM1068541     2  0.7248    0.37943 0.284 0.532 0.000 0.184
#> GSM1068553     4  0.1824    0.86796 0.060 0.000 0.004 0.936
#> GSM1068554     4  0.3416    0.86165 0.036 0.040 0.036 0.888
#> GSM1068558     3  0.0188    0.91989 0.000 0.000 0.996 0.004
#> GSM1068559     3  0.0000    0.92158 0.000 0.000 1.000 0.000
#> GSM1068564     4  0.2670    0.85728 0.024 0.072 0.000 0.904
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1068478     1  0.4298     0.5579 0.640 0.008 0.000 0.000 0.352
#> GSM1068479     3  0.3266     0.6893 0.000 0.200 0.796 0.000 0.004
#> GSM1068481     3  0.0404     0.8662 0.012 0.000 0.988 0.000 0.000
#> GSM1068482     3  0.0510     0.8655 0.016 0.000 0.984 0.000 0.000
#> GSM1068483     1  0.1168     0.8759 0.960 0.000 0.032 0.000 0.008
#> GSM1068486     3  0.0162     0.8668 0.004 0.000 0.996 0.000 0.000
#> GSM1068487     2  0.0451     0.7072 0.000 0.988 0.000 0.004 0.008
#> GSM1068488     4  0.6099     0.5241 0.008 0.000 0.100 0.504 0.388
#> GSM1068490     2  0.0451     0.7072 0.000 0.988 0.000 0.004 0.008
#> GSM1068491     3  0.0162     0.8668 0.000 0.000 0.996 0.000 0.004
#> GSM1068492     3  0.2438     0.8370 0.000 0.044 0.908 0.008 0.040
#> GSM1068493     2  0.6925    -0.0946 0.004 0.368 0.344 0.000 0.284
#> GSM1068494     5  0.7764    -0.0537 0.180 0.000 0.292 0.092 0.436
#> GSM1068495     5  0.3883     0.4828 0.032 0.052 0.000 0.084 0.832
#> GSM1068496     3  0.5506     0.1883 0.404 0.000 0.528 0.000 0.068
#> GSM1068498     5  0.4872     0.1950 0.024 0.436 0.000 0.000 0.540
#> GSM1068499     3  0.6718     0.0332 0.396 0.000 0.436 0.016 0.152
#> GSM1068500     1  0.1638     0.8567 0.932 0.000 0.064 0.000 0.004
#> GSM1068502     3  0.3343     0.7210 0.000 0.172 0.812 0.000 0.016
#> GSM1068503     2  0.3527     0.5260 0.000 0.792 0.000 0.192 0.016
#> GSM1068505     4  0.2954     0.7018 0.064 0.004 0.000 0.876 0.056
#> GSM1068506     4  0.1865     0.7077 0.008 0.032 0.000 0.936 0.024
#> GSM1068507     2  0.7067    -0.1032 0.060 0.444 0.004 0.400 0.092
#> GSM1068508     2  0.5246    -0.0192 0.020 0.524 0.000 0.016 0.440
#> GSM1068510     4  0.7829     0.3429 0.000 0.288 0.100 0.432 0.180
#> GSM1068512     4  0.6499     0.5774 0.056 0.000 0.100 0.596 0.248
#> GSM1068513     2  0.3301     0.5974 0.000 0.848 0.000 0.072 0.080
#> GSM1068514     3  0.1408     0.8549 0.000 0.000 0.948 0.008 0.044
#> GSM1068517     5  0.4538     0.1713 0.008 0.452 0.000 0.000 0.540
#> GSM1068518     5  0.4928     0.2126 0.072 0.000 0.012 0.192 0.724
#> GSM1068520     1  0.0671     0.8848 0.980 0.000 0.000 0.004 0.016
#> GSM1068521     1  0.1892     0.8645 0.916 0.000 0.000 0.004 0.080
#> GSM1068522     2  0.5063     0.3383 0.000 0.632 0.000 0.312 0.056
#> GSM1068524     2  0.4183     0.3411 0.000 0.668 0.000 0.008 0.324
#> GSM1068527     4  0.5393     0.5676 0.080 0.000 0.000 0.608 0.312
#> GSM1068480     3  0.1059     0.8617 0.004 0.000 0.968 0.008 0.020
#> GSM1068484     4  0.3966     0.5986 0.000 0.000 0.000 0.664 0.336
#> GSM1068485     3  0.0162     0.8668 0.004 0.000 0.996 0.000 0.000
#> GSM1068489     4  0.2116     0.7052 0.008 0.004 0.000 0.912 0.076
#> GSM1068497     5  0.4542     0.1621 0.008 0.456 0.000 0.000 0.536
#> GSM1068501     4  0.5850     0.4959 0.004 0.244 0.004 0.624 0.124
#> GSM1068504     2  0.0000     0.7107 0.000 1.000 0.000 0.000 0.000
#> GSM1068509     1  0.3958     0.7629 0.780 0.000 0.000 0.044 0.176
#> GSM1068511     3  0.5628     0.5648 0.016 0.000 0.660 0.224 0.100
#> GSM1068515     1  0.4983     0.7297 0.764 0.092 0.000 0.084 0.060
#> GSM1068516     5  0.3934     0.0885 0.000 0.000 0.008 0.276 0.716
#> GSM1068519     1  0.2997     0.8146 0.840 0.000 0.000 0.012 0.148
#> GSM1068523     5  0.4307     0.0660 0.000 0.496 0.000 0.000 0.504
#> GSM1068525     4  0.4586     0.4344 0.000 0.004 0.004 0.524 0.468
#> GSM1068526     4  0.0613     0.7149 0.008 0.004 0.000 0.984 0.004
#> GSM1068458     1  0.0566     0.8845 0.984 0.000 0.000 0.012 0.004
#> GSM1068459     3  0.0510     0.8655 0.016 0.000 0.984 0.000 0.000
#> GSM1068460     1  0.0898     0.8833 0.972 0.000 0.000 0.008 0.020
#> GSM1068461     3  0.0000     0.8668 0.000 0.000 1.000 0.000 0.000
#> GSM1068464     2  0.0162     0.7112 0.000 0.996 0.000 0.000 0.004
#> GSM1068468     2  0.1478     0.7022 0.000 0.936 0.000 0.000 0.064
#> GSM1068472     2  0.0703     0.7100 0.000 0.976 0.000 0.000 0.024
#> GSM1068473     2  0.0579     0.7052 0.000 0.984 0.000 0.008 0.008
#> GSM1068474     2  0.0000     0.7107 0.000 1.000 0.000 0.000 0.000
#> GSM1068476     3  0.0290     0.8663 0.000 0.000 0.992 0.000 0.008
#> GSM1068477     2  0.1965     0.6757 0.000 0.904 0.000 0.000 0.096
#> GSM1068462     2  0.1430     0.7039 0.000 0.944 0.004 0.000 0.052
#> GSM1068463     3  0.0510     0.8655 0.016 0.000 0.984 0.000 0.000
#> GSM1068465     1  0.3093     0.8010 0.824 0.008 0.000 0.000 0.168
#> GSM1068466     1  0.0693     0.8851 0.980 0.000 0.000 0.008 0.012
#> GSM1068467     2  0.1544     0.6996 0.000 0.932 0.000 0.000 0.068
#> GSM1068469     2  0.1792     0.6911 0.000 0.916 0.000 0.000 0.084
#> GSM1068470     2  0.4171     0.1618 0.000 0.604 0.000 0.000 0.396
#> GSM1068471     2  0.0162     0.7112 0.000 0.996 0.000 0.000 0.004
#> GSM1068475     2  0.1043     0.7067 0.000 0.960 0.000 0.000 0.040
#> GSM1068528     1  0.4341     0.2968 0.592 0.000 0.404 0.000 0.004
#> GSM1068531     1  0.0451     0.8849 0.988 0.000 0.000 0.008 0.004
#> GSM1068532     1  0.0609     0.8815 0.980 0.000 0.020 0.000 0.000
#> GSM1068533     1  0.0693     0.8837 0.980 0.000 0.008 0.012 0.000
#> GSM1068535     4  0.6239     0.4991 0.292 0.004 0.020 0.584 0.100
#> GSM1068537     1  0.0162     0.8848 0.996 0.000 0.004 0.000 0.000
#> GSM1068538     1  0.0566     0.8827 0.984 0.000 0.012 0.004 0.000
#> GSM1068539     5  0.4182     0.4970 0.028 0.076 0.000 0.084 0.812
#> GSM1068540     1  0.1704     0.8659 0.928 0.000 0.000 0.004 0.068
#> GSM1068542     4  0.1197     0.7133 0.048 0.000 0.000 0.952 0.000
#> GSM1068543     4  0.4840     0.6193 0.000 0.000 0.064 0.688 0.248
#> GSM1068544     3  0.1410     0.8417 0.060 0.000 0.940 0.000 0.000
#> GSM1068545     4  0.5607     0.3229 0.000 0.140 0.000 0.632 0.228
#> GSM1068546     3  0.0290     0.8667 0.000 0.000 0.992 0.000 0.008
#> GSM1068547     1  0.0693     0.8845 0.980 0.000 0.000 0.008 0.012
#> GSM1068548     4  0.3154     0.6818 0.148 0.004 0.000 0.836 0.012
#> GSM1068549     3  0.0162     0.8668 0.000 0.000 0.996 0.000 0.004
#> GSM1068550     4  0.1626     0.7174 0.016 0.000 0.000 0.940 0.044
#> GSM1068551     2  0.4030     0.2719 0.000 0.648 0.000 0.000 0.352
#> GSM1068552     4  0.1442     0.7099 0.012 0.032 0.000 0.952 0.004
#> GSM1068555     2  0.4307    -0.1544 0.000 0.504 0.000 0.000 0.496
#> GSM1068556     4  0.4328     0.6564 0.012 0.000 0.032 0.756 0.200
#> GSM1068557     2  0.4300    -0.0693 0.000 0.524 0.000 0.000 0.476
#> GSM1068560     4  0.5173     0.3970 0.040 0.000 0.000 0.500 0.460
#> GSM1068561     5  0.3990     0.3666 0.000 0.308 0.004 0.000 0.688
#> GSM1068562     4  0.3838     0.6292 0.000 0.000 0.004 0.716 0.280
#> GSM1068563     4  0.3005     0.7053 0.004 0.032 0.028 0.888 0.048
#> GSM1068565     2  0.2424     0.6426 0.000 0.868 0.000 0.000 0.132
#> GSM1068529     3  0.4177     0.7081 0.004 0.000 0.760 0.036 0.200
#> GSM1068530     1  0.0000     0.8852 1.000 0.000 0.000 0.000 0.000
#> GSM1068534     3  0.6282     0.3825 0.004 0.000 0.556 0.248 0.192
#> GSM1068536     1  0.4540     0.4913 0.640 0.000 0.000 0.020 0.340
#> GSM1068541     5  0.8239     0.3217 0.164 0.192 0.000 0.248 0.396
#> GSM1068553     4  0.3195     0.6939 0.032 0.004 0.004 0.860 0.100
#> GSM1068554     4  0.5832     0.5107 0.004 0.232 0.016 0.648 0.100
#> GSM1068558     3  0.2358     0.8168 0.000 0.000 0.888 0.008 0.104
#> GSM1068559     3  0.0510     0.8652 0.000 0.000 0.984 0.000 0.016
#> GSM1068564     4  0.3248     0.6739 0.004 0.104 0.000 0.852 0.040
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1068478     5  0.4533    -0.1668 0.468 0.004 0.000 0.024 0.504 0.000
#> GSM1068479     3  0.4628     0.6120 0.000 0.208 0.704 0.072 0.016 0.000
#> GSM1068481     3  0.0653     0.7970 0.004 0.000 0.980 0.012 0.004 0.000
#> GSM1068482     3  0.1007     0.7959 0.004 0.000 0.968 0.016 0.008 0.004
#> GSM1068483     1  0.1959     0.8531 0.924 0.000 0.020 0.032 0.024 0.000
#> GSM1068486     3  0.0000     0.7989 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068487     2  0.0363     0.7549 0.000 0.988 0.000 0.012 0.000 0.000
#> GSM1068488     4  0.5900     0.0173 0.000 0.000 0.032 0.492 0.100 0.376
#> GSM1068490     2  0.0146     0.7569 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM1068491     3  0.1757     0.7903 0.000 0.000 0.916 0.076 0.008 0.000
#> GSM1068492     3  0.4820     0.7075 0.000 0.012 0.728 0.164 0.028 0.068
#> GSM1068493     5  0.7114     0.2445 0.008 0.232 0.308 0.048 0.400 0.004
#> GSM1068494     4  0.8596    -0.0246 0.076 0.000 0.176 0.256 0.252 0.240
#> GSM1068495     5  0.3621     0.5276 0.008 0.028 0.000 0.040 0.828 0.096
#> GSM1068496     3  0.6755     0.2245 0.332 0.000 0.492 0.076 0.052 0.048
#> GSM1068498     5  0.3648     0.5539 0.004 0.240 0.000 0.016 0.740 0.000
#> GSM1068499     3  0.7645     0.2313 0.268 0.000 0.448 0.132 0.088 0.064
#> GSM1068500     1  0.2541     0.8345 0.892 0.000 0.052 0.032 0.024 0.000
#> GSM1068502     3  0.4644     0.6604 0.000 0.160 0.728 0.092 0.016 0.004
#> GSM1068503     2  0.3030     0.6727 0.000 0.848 0.000 0.092 0.004 0.056
#> GSM1068505     6  0.4763     0.1799 0.016 0.008 0.000 0.420 0.012 0.544
#> GSM1068506     6  0.4049     0.5050 0.000 0.044 0.000 0.208 0.008 0.740
#> GSM1068507     4  0.5575     0.1582 0.016 0.432 0.000 0.464 0.000 0.088
#> GSM1068508     2  0.5462    -0.1077 0.004 0.476 0.000 0.008 0.432 0.080
#> GSM1068510     4  0.5127     0.4597 0.000 0.160 0.032 0.716 0.028 0.064
#> GSM1068512     6  0.5765     0.4147 0.068 0.000 0.036 0.156 0.064 0.676
#> GSM1068513     2  0.3428     0.4363 0.000 0.696 0.000 0.304 0.000 0.000
#> GSM1068514     3  0.4104     0.7265 0.000 0.000 0.760 0.172 0.020 0.048
#> GSM1068517     5  0.3509     0.5540 0.000 0.240 0.000 0.016 0.744 0.000
#> GSM1068518     6  0.6837     0.0873 0.032 0.000 0.008 0.236 0.356 0.368
#> GSM1068520     1  0.0547     0.8640 0.980 0.000 0.000 0.000 0.020 0.000
#> GSM1068521     1  0.1745     0.8518 0.924 0.000 0.000 0.020 0.056 0.000
#> GSM1068522     2  0.5015     0.2753 0.000 0.616 0.000 0.288 0.004 0.092
#> GSM1068524     2  0.5411     0.1667 0.000 0.548 0.000 0.092 0.348 0.012
#> GSM1068527     6  0.5491     0.4389 0.064 0.000 0.000 0.140 0.128 0.668
#> GSM1068480     3  0.1116     0.7991 0.000 0.000 0.960 0.028 0.004 0.008
#> GSM1068484     6  0.5191     0.3665 0.000 0.004 0.000 0.220 0.148 0.628
#> GSM1068485     3  0.0291     0.7990 0.000 0.000 0.992 0.004 0.004 0.000
#> GSM1068489     4  0.3890     0.1260 0.004 0.000 0.000 0.596 0.000 0.400
#> GSM1068497     5  0.3592     0.5522 0.000 0.240 0.000 0.020 0.740 0.000
#> GSM1068501     4  0.4143     0.4793 0.000 0.124 0.000 0.756 0.004 0.116
#> GSM1068504     2  0.0000     0.7572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068509     1  0.5390     0.6506 0.688 0.000 0.004 0.128 0.060 0.120
#> GSM1068511     3  0.6425     0.3378 0.020 0.000 0.512 0.132 0.028 0.308
#> GSM1068515     1  0.5748     0.6071 0.664 0.084 0.004 0.092 0.152 0.004
#> GSM1068516     5  0.5927    -0.0450 0.000 0.000 0.000 0.272 0.464 0.264
#> GSM1068519     1  0.4531     0.7147 0.744 0.000 0.000 0.148 0.072 0.036
#> GSM1068523     5  0.3684     0.4871 0.000 0.332 0.000 0.000 0.664 0.004
#> GSM1068525     6  0.5868     0.2900 0.000 0.016 0.000 0.200 0.228 0.556
#> GSM1068526     6  0.3412     0.5180 0.004 0.008 0.000 0.212 0.004 0.772
#> GSM1068458     1  0.0551     0.8653 0.984 0.000 0.004 0.004 0.008 0.000
#> GSM1068459     3  0.0912     0.7961 0.004 0.000 0.972 0.012 0.008 0.004
#> GSM1068460     1  0.1265     0.8567 0.948 0.000 0.000 0.000 0.044 0.008
#> GSM1068461     3  0.0972     0.7982 0.000 0.000 0.964 0.028 0.008 0.000
#> GSM1068464     2  0.0291     0.7573 0.000 0.992 0.000 0.004 0.004 0.000
#> GSM1068468     2  0.2930     0.7069 0.000 0.840 0.000 0.036 0.124 0.000
#> GSM1068472     2  0.2537     0.7207 0.000 0.872 0.000 0.032 0.096 0.000
#> GSM1068473     2  0.0547     0.7520 0.000 0.980 0.000 0.020 0.000 0.000
#> GSM1068474     2  0.0000     0.7572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068476     3  0.1812     0.7888 0.000 0.000 0.912 0.080 0.008 0.000
#> GSM1068477     2  0.2600     0.7128 0.000 0.860 0.000 0.008 0.124 0.008
#> GSM1068462     2  0.3473     0.6867 0.000 0.812 0.012 0.040 0.136 0.000
#> GSM1068463     3  0.0893     0.7959 0.004 0.000 0.972 0.016 0.004 0.004
#> GSM1068465     1  0.3732     0.6841 0.744 0.000 0.000 0.024 0.228 0.004
#> GSM1068466     1  0.0508     0.8650 0.984 0.000 0.000 0.004 0.012 0.000
#> GSM1068467     2  0.2706     0.7132 0.000 0.852 0.000 0.024 0.124 0.000
#> GSM1068469     2  0.3488     0.6520 0.000 0.780 0.000 0.036 0.184 0.000
#> GSM1068470     2  0.4524    -0.0583 0.000 0.520 0.000 0.004 0.452 0.024
#> GSM1068471     2  0.0260     0.7576 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM1068475     2  0.0790     0.7517 0.000 0.968 0.000 0.000 0.032 0.000
#> GSM1068528     1  0.4936     0.1400 0.512 0.000 0.444 0.024 0.012 0.008
#> GSM1068531     1  0.0146     0.8657 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM1068532     1  0.1536     0.8561 0.940 0.000 0.000 0.040 0.016 0.004
#> GSM1068533     1  0.0665     0.8648 0.980 0.000 0.004 0.008 0.008 0.000
#> GSM1068535     4  0.5223     0.3739 0.220 0.000 0.004 0.624 0.000 0.152
#> GSM1068537     1  0.0603     0.8649 0.980 0.000 0.000 0.016 0.000 0.004
#> GSM1068538     1  0.0551     0.8647 0.984 0.000 0.004 0.008 0.000 0.004
#> GSM1068539     5  0.3713     0.5290 0.008 0.032 0.000 0.044 0.824 0.092
#> GSM1068540     1  0.2065     0.8469 0.912 0.000 0.000 0.032 0.052 0.004
#> GSM1068542     6  0.3576     0.5002 0.008 0.004 0.000 0.236 0.004 0.748
#> GSM1068543     6  0.3942     0.4686 0.000 0.000 0.008 0.120 0.092 0.780
#> GSM1068544     3  0.1760     0.7831 0.028 0.000 0.936 0.020 0.012 0.004
#> GSM1068545     6  0.6021     0.3875 0.000 0.108 0.000 0.108 0.168 0.616
#> GSM1068546     3  0.1471     0.7916 0.000 0.000 0.932 0.064 0.004 0.000
#> GSM1068547     1  0.0632     0.8638 0.976 0.000 0.000 0.000 0.024 0.000
#> GSM1068548     6  0.4690     0.4977 0.092 0.012 0.000 0.152 0.012 0.732
#> GSM1068549     3  0.1584     0.7925 0.000 0.000 0.928 0.064 0.008 0.000
#> GSM1068550     6  0.3599     0.5232 0.004 0.004 0.000 0.212 0.016 0.764
#> GSM1068551     2  0.4461     0.1051 0.000 0.564 0.000 0.000 0.404 0.032
#> GSM1068552     6  0.4142     0.5028 0.004 0.048 0.000 0.208 0.004 0.736
#> GSM1068555     5  0.3905     0.4493 0.000 0.356 0.000 0.004 0.636 0.004
#> GSM1068556     6  0.2277     0.5139 0.000 0.000 0.000 0.076 0.032 0.892
#> GSM1068557     5  0.4015     0.3373 0.000 0.372 0.000 0.012 0.616 0.000
#> GSM1068560     6  0.4965     0.4403 0.024 0.000 0.000 0.076 0.228 0.672
#> GSM1068561     5  0.3773     0.5838 0.000 0.140 0.004 0.028 0.800 0.028
#> GSM1068562     6  0.3073     0.5122 0.000 0.000 0.000 0.080 0.080 0.840
#> GSM1068563     6  0.3606     0.5332 0.000 0.048 0.008 0.132 0.004 0.808
#> GSM1068565     2  0.2859     0.6428 0.000 0.828 0.000 0.000 0.156 0.016
#> GSM1068529     3  0.6458     0.4747 0.000 0.000 0.560 0.148 0.104 0.188
#> GSM1068530     1  0.0405     0.8651 0.988 0.000 0.000 0.008 0.000 0.004
#> GSM1068534     3  0.6694     0.1106 0.004 0.000 0.404 0.140 0.060 0.392
#> GSM1068536     1  0.4798     0.2677 0.544 0.000 0.000 0.032 0.412 0.012
#> GSM1068541     5  0.7586     0.2430 0.140 0.072 0.000 0.068 0.452 0.268
#> GSM1068553     4  0.3653     0.3155 0.008 0.000 0.000 0.692 0.000 0.300
#> GSM1068554     4  0.4486     0.4556 0.000 0.112 0.000 0.704 0.000 0.184
#> GSM1068558     3  0.4758     0.6893 0.000 0.000 0.732 0.132 0.044 0.092
#> GSM1068559     3  0.1918     0.7882 0.000 0.000 0.904 0.088 0.008 0.000
#> GSM1068564     6  0.5771     0.2116 0.000 0.192 0.000 0.280 0.004 0.524
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#>              n disease.state(p) gender(p) k
#> SD:skmeans 101         0.281381     0.645 2
#> SD:skmeans  91         0.762514     0.952 3
#> SD:skmeans  97         0.008215     0.991 4
#> SD:skmeans  77         0.000346     0.988 5
#> SD:skmeans  68         0.001059     0.699 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 38950 rows and 108 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.278           0.428       0.691         0.4656 0.540   0.540
#> 3 3 0.381           0.602       0.766         0.3732 0.628   0.415
#> 4 4 0.584           0.747       0.828         0.1520 0.781   0.472
#> 5 5 0.659           0.689       0.802         0.0674 0.920   0.704
#> 6 6 0.748           0.724       0.856         0.0391 0.954   0.790
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1068478     1  0.8016     0.2097 0.756 0.244
#> GSM1068479     1  0.9866    -0.3893 0.568 0.432
#> GSM1068481     1  0.0000     0.5789 1.000 0.000
#> GSM1068482     1  0.0000     0.5789 1.000 0.000
#> GSM1068483     1  0.3431     0.5468 0.936 0.064
#> GSM1068486     1  0.0000     0.5789 1.000 0.000
#> GSM1068487     2  0.9661     0.6664 0.392 0.608
#> GSM1068488     1  0.9661     0.5102 0.608 0.392
#> GSM1068490     2  0.9795     0.6466 0.416 0.584
#> GSM1068491     1  0.0000     0.5789 1.000 0.000
#> GSM1068492     1  0.5946     0.3608 0.856 0.144
#> GSM1068493     1  0.7950     0.1942 0.760 0.240
#> GSM1068494     1  0.1184     0.5827 0.984 0.016
#> GSM1068495     1  0.9209    -0.0695 0.664 0.336
#> GSM1068496     1  0.0938     0.5755 0.988 0.012
#> GSM1068498     2  0.9661     0.6664 0.392 0.608
#> GSM1068499     1  0.0000     0.5789 1.000 0.000
#> GSM1068500     1  0.3431     0.5468 0.936 0.064
#> GSM1068502     1  0.9491    -0.3253 0.632 0.368
#> GSM1068503     2  0.8713     0.3796 0.292 0.708
#> GSM1068505     2  0.6801     0.1632 0.180 0.820
#> GSM1068506     1  0.9944     0.4992 0.544 0.456
#> GSM1068507     2  0.9983     0.2017 0.476 0.524
#> GSM1068508     2  0.9661     0.6664 0.392 0.608
#> GSM1068510     2  0.7950     0.1143 0.240 0.760
#> GSM1068512     1  0.9661     0.5102 0.608 0.392
#> GSM1068513     2  0.8955     0.5889 0.312 0.688
#> GSM1068514     1  0.9815     0.4925 0.580 0.420
#> GSM1068517     2  0.9661     0.6664 0.392 0.608
#> GSM1068518     1  0.3114     0.5235 0.944 0.056
#> GSM1068520     1  0.3431     0.5468 0.936 0.064
#> GSM1068521     1  0.3431     0.5468 0.936 0.064
#> GSM1068522     2  0.0000     0.3689 0.000 1.000
#> GSM1068524     2  0.9580     0.6604 0.380 0.620
#> GSM1068527     1  0.9944     0.4992 0.544 0.456
#> GSM1068480     1  0.0000     0.5789 1.000 0.000
#> GSM1068484     2  0.9896    -0.3316 0.440 0.560
#> GSM1068485     1  0.0000     0.5789 1.000 0.000
#> GSM1068489     1  1.0000     0.4591 0.500 0.500
#> GSM1068497     2  0.9661     0.6664 0.392 0.608
#> GSM1068501     2  0.6148     0.2468 0.152 0.848
#> GSM1068504     2  0.9661     0.6664 0.392 0.608
#> GSM1068509     1  0.9286     0.5343 0.656 0.344
#> GSM1068511     1  0.9661     0.5102 0.608 0.392
#> GSM1068515     1  0.3431     0.5468 0.936 0.064
#> GSM1068516     1  0.9754     0.5101 0.592 0.408
#> GSM1068519     1  0.9661     0.5102 0.608 0.392
#> GSM1068523     2  0.9580     0.6604 0.380 0.620
#> GSM1068525     2  0.8909    -0.0353 0.308 0.692
#> GSM1068526     1  0.9933     0.5005 0.548 0.452
#> GSM1068458     1  0.3584     0.5491 0.932 0.068
#> GSM1068459     1  0.0000     0.5789 1.000 0.000
#> GSM1068460     1  0.9988    -0.1331 0.520 0.480
#> GSM1068461     1  0.0000     0.5789 1.000 0.000
#> GSM1068464     2  0.9661     0.6664 0.392 0.608
#> GSM1068468     2  0.9661     0.6664 0.392 0.608
#> GSM1068472     1  0.9866    -0.3893 0.568 0.432
#> GSM1068473     2  0.9661     0.6664 0.392 0.608
#> GSM1068474     2  0.9661     0.6664 0.392 0.608
#> GSM1068476     1  0.5629     0.4222 0.868 0.132
#> GSM1068477     2  0.9661     0.6664 0.392 0.608
#> GSM1068462     2  0.9970     0.5687 0.468 0.532
#> GSM1068463     1  0.0000     0.5789 1.000 0.000
#> GSM1068465     2  0.9983    -0.4327 0.476 0.524
#> GSM1068466     1  0.9087     0.5380 0.676 0.324
#> GSM1068467     2  0.9775     0.6469 0.412 0.588
#> GSM1068469     1  1.0000    -0.5301 0.500 0.500
#> GSM1068470     2  0.9661     0.6664 0.392 0.608
#> GSM1068471     2  0.9661     0.6664 0.392 0.608
#> GSM1068475     2  0.9661     0.6664 0.392 0.608
#> GSM1068528     1  0.3431     0.5468 0.936 0.064
#> GSM1068531     1  0.9944     0.4992 0.544 0.456
#> GSM1068532     1  0.8081     0.5504 0.752 0.248
#> GSM1068533     1  0.9922     0.5028 0.552 0.448
#> GSM1068535     1  0.9661     0.5102 0.608 0.392
#> GSM1068537     1  0.9661     0.5102 0.608 0.392
#> GSM1068538     1  0.9815     0.5084 0.580 0.420
#> GSM1068539     2  0.9732     0.6386 0.404 0.596
#> GSM1068540     1  0.3879     0.5530 0.924 0.076
#> GSM1068542     1  0.9710     0.5062 0.600 0.400
#> GSM1068543     1  0.9661     0.5102 0.608 0.392
#> GSM1068544     1  0.3431     0.5468 0.936 0.064
#> GSM1068545     2  0.7674     0.4368 0.224 0.776
#> GSM1068546     1  0.9661     0.5102 0.608 0.392
#> GSM1068547     1  0.8813     0.5455 0.700 0.300
#> GSM1068548     1  0.9661     0.5102 0.608 0.392
#> GSM1068549     1  0.1843     0.5842 0.972 0.028
#> GSM1068550     2  0.9608    -0.3134 0.384 0.616
#> GSM1068551     2  0.9661     0.6664 0.392 0.608
#> GSM1068552     2  0.9922    -0.4155 0.448 0.552
#> GSM1068555     2  0.9661     0.6664 0.392 0.608
#> GSM1068556     1  0.9661     0.5102 0.608 0.392
#> GSM1068557     1  0.9850    -0.3810 0.572 0.428
#> GSM1068560     1  0.5059     0.5668 0.888 0.112
#> GSM1068561     1  0.9552    -0.2599 0.624 0.376
#> GSM1068562     1  0.2778     0.5838 0.952 0.048
#> GSM1068563     1  0.9686     0.5103 0.604 0.396
#> GSM1068565     2  0.9661     0.6664 0.392 0.608
#> GSM1068529     1  0.3879     0.5530 0.924 0.076
#> GSM1068530     1  0.7453     0.5601 0.788 0.212
#> GSM1068534     1  0.9491     0.5172 0.632 0.368
#> GSM1068536     1  0.4690     0.5640 0.900 0.100
#> GSM1068541     1  0.8713     0.1235 0.708 0.292
#> GSM1068553     1  0.9661     0.5102 0.608 0.392
#> GSM1068554     2  0.7950     0.1143 0.240 0.760
#> GSM1068558     1  0.0938     0.5815 0.988 0.012
#> GSM1068559     1  0.0938     0.5815 0.988 0.012
#> GSM1068564     2  0.0376     0.3669 0.004 0.996
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1068478     1  0.6728     0.6805 0.748 0.124 0.128
#> GSM1068479     2  0.5200     0.6920 0.184 0.796 0.020
#> GSM1068481     3  0.7306     0.6264 0.236 0.080 0.684
#> GSM1068482     3  0.4702     0.6892 0.212 0.000 0.788
#> GSM1068483     1  0.7022     0.7701 0.684 0.056 0.260
#> GSM1068486     3  0.7306     0.6264 0.236 0.080 0.684
#> GSM1068487     2  0.0592     0.7577 0.012 0.988 0.000
#> GSM1068488     3  0.2165     0.6991 0.064 0.000 0.936
#> GSM1068490     2  0.0000     0.7573 0.000 1.000 0.000
#> GSM1068491     3  0.7531     0.6219 0.236 0.092 0.672
#> GSM1068492     3  0.4346     0.6487 0.000 0.184 0.816
#> GSM1068493     2  0.8842     0.4157 0.208 0.580 0.212
#> GSM1068494     3  0.4887     0.5298 0.228 0.000 0.772
#> GSM1068495     2  0.8255     0.1201 0.428 0.496 0.076
#> GSM1068496     3  0.5254     0.4486 0.264 0.000 0.736
#> GSM1068498     1  0.5465     0.4599 0.712 0.288 0.000
#> GSM1068499     3  0.2356     0.7137 0.072 0.000 0.928
#> GSM1068500     1  0.7022     0.7701 0.684 0.056 0.260
#> GSM1068502     3  0.8142     0.5290 0.112 0.268 0.620
#> GSM1068503     2  0.2711     0.7433 0.000 0.912 0.088
#> GSM1068505     2  0.9006     0.4550 0.188 0.556 0.256
#> GSM1068506     2  0.7786     0.5087 0.068 0.600 0.332
#> GSM1068507     2  0.4931     0.6543 0.000 0.768 0.232
#> GSM1068508     2  0.2711     0.7442 0.088 0.912 0.000
#> GSM1068510     2  0.7004     0.2231 0.020 0.552 0.428
#> GSM1068512     3  0.0237     0.7182 0.004 0.000 0.996
#> GSM1068513     2  0.0592     0.7580 0.000 0.988 0.012
#> GSM1068514     3  0.2878     0.7072 0.000 0.096 0.904
#> GSM1068517     2  0.6309     0.0972 0.496 0.504 0.000
#> GSM1068518     3  0.4095     0.7139 0.064 0.056 0.880
#> GSM1068520     1  0.5327     0.7835 0.728 0.000 0.272
#> GSM1068521     1  0.5480     0.7857 0.732 0.004 0.264
#> GSM1068522     2  0.4475     0.7207 0.064 0.864 0.072
#> GSM1068524     2  0.0892     0.7572 0.020 0.980 0.000
#> GSM1068527     3  0.6280    -0.2729 0.460 0.000 0.540
#> GSM1068480     3  0.2356     0.7137 0.072 0.000 0.928
#> GSM1068484     3  0.8033    -0.1729 0.064 0.424 0.512
#> GSM1068485     3  0.5216     0.6635 0.260 0.000 0.740
#> GSM1068489     2  0.7996     0.4516 0.068 0.552 0.380
#> GSM1068497     2  0.6215     0.2985 0.428 0.572 0.000
#> GSM1068501     3  0.7864     0.3149 0.072 0.332 0.596
#> GSM1068504     2  0.0892     0.7572 0.020 0.980 0.000
#> GSM1068509     3  0.5098     0.4482 0.248 0.000 0.752
#> GSM1068511     3  0.0237     0.7182 0.004 0.000 0.996
#> GSM1068515     2  0.9531     0.2010 0.208 0.468 0.324
#> GSM1068516     3  0.4605     0.5789 0.204 0.000 0.796
#> GSM1068519     3  0.3551     0.6877 0.132 0.000 0.868
#> GSM1068523     2  0.2165     0.7506 0.064 0.936 0.000
#> GSM1068525     2  0.5070     0.6628 0.004 0.772 0.224
#> GSM1068526     2  0.9294     0.3211 0.172 0.484 0.344
#> GSM1068458     1  0.5785     0.7653 0.696 0.004 0.300
#> GSM1068459     3  0.5216     0.6635 0.260 0.000 0.740
#> GSM1068460     1  0.6529     0.6955 0.760 0.124 0.116
#> GSM1068461     3  0.7306     0.6264 0.236 0.080 0.684
#> GSM1068464     2  0.0000     0.7573 0.000 1.000 0.000
#> GSM1068468     2  0.2280     0.7518 0.052 0.940 0.008
#> GSM1068472     2  0.4139     0.7179 0.016 0.860 0.124
#> GSM1068473     2  0.0000     0.7573 0.000 1.000 0.000
#> GSM1068474     2  0.0892     0.7572 0.020 0.980 0.000
#> GSM1068476     3  0.5958     0.6617 0.300 0.008 0.692
#> GSM1068477     2  0.2066     0.7511 0.060 0.940 0.000
#> GSM1068462     2  0.2400     0.7542 0.004 0.932 0.064
#> GSM1068463     3  0.5254     0.6641 0.264 0.000 0.736
#> GSM1068465     1  0.9472     0.5096 0.492 0.288 0.220
#> GSM1068466     1  0.5737     0.7542 0.732 0.012 0.256
#> GSM1068467     2  0.1015     0.7605 0.008 0.980 0.012
#> GSM1068469     2  0.3234     0.7474 0.020 0.908 0.072
#> GSM1068470     2  0.2165     0.7506 0.064 0.936 0.000
#> GSM1068471     2  0.0000     0.7573 0.000 1.000 0.000
#> GSM1068475     2  0.1964     0.7519 0.056 0.944 0.000
#> GSM1068528     1  0.4842     0.7048 0.776 0.000 0.224
#> GSM1068531     1  0.5678     0.7210 0.684 0.000 0.316
#> GSM1068532     3  0.1753     0.7195 0.048 0.000 0.952
#> GSM1068533     1  0.6026     0.7413 0.624 0.000 0.376
#> GSM1068535     3  0.2165     0.6991 0.064 0.000 0.936
#> GSM1068537     1  0.5968     0.7556 0.636 0.000 0.364
#> GSM1068538     3  0.6260    -0.3516 0.448 0.000 0.552
#> GSM1068539     1  0.6955    -0.1358 0.492 0.492 0.016
#> GSM1068540     1  0.5465     0.7803 0.712 0.000 0.288
#> GSM1068542     2  0.9147     0.3461 0.156 0.496 0.348
#> GSM1068543     3  0.2261     0.6976 0.068 0.000 0.932
#> GSM1068544     3  0.6305     0.3914 0.484 0.000 0.516
#> GSM1068545     2  0.2689     0.7597 0.032 0.932 0.036
#> GSM1068546     3  0.4654     0.6672 0.208 0.000 0.792
#> GSM1068547     1  0.5138     0.7795 0.748 0.000 0.252
#> GSM1068548     3  0.6154    -0.1159 0.408 0.000 0.592
#> GSM1068549     3  0.5058     0.6713 0.244 0.000 0.756
#> GSM1068550     2  0.7847     0.5021 0.068 0.588 0.344
#> GSM1068551     2  0.3116     0.7428 0.108 0.892 0.000
#> GSM1068552     2  0.7683     0.5187 0.064 0.608 0.328
#> GSM1068555     2  0.2165     0.7506 0.064 0.936 0.000
#> GSM1068556     3  0.1163     0.7135 0.028 0.000 0.972
#> GSM1068557     2  0.5276     0.7033 0.052 0.820 0.128
#> GSM1068560     1  0.5831     0.7535 0.708 0.008 0.284
#> GSM1068561     2  0.9212     0.0552 0.372 0.472 0.156
#> GSM1068562     3  0.2711     0.7196 0.088 0.000 0.912
#> GSM1068563     3  0.2165     0.6991 0.064 0.000 0.936
#> GSM1068565     2  0.1860     0.7528 0.052 0.948 0.000
#> GSM1068529     3  0.2261     0.7148 0.068 0.000 0.932
#> GSM1068530     1  0.5678     0.7684 0.684 0.000 0.316
#> GSM1068534     3  0.1289     0.7164 0.032 0.000 0.968
#> GSM1068536     1  0.5882     0.7607 0.652 0.000 0.348
#> GSM1068541     2  0.8336     0.5010 0.224 0.624 0.152
#> GSM1068553     3  0.2165     0.6991 0.064 0.000 0.936
#> GSM1068554     2  0.7536     0.5723 0.064 0.632 0.304
#> GSM1068558     3  0.2879     0.7170 0.052 0.024 0.924
#> GSM1068559     3  0.3237     0.7210 0.056 0.032 0.912
#> GSM1068564     2  0.5650     0.7025 0.084 0.808 0.108
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1068478     1  0.2011      0.720 0.920 0.080 0.000 0.000
#> GSM1068479     2  0.3649      0.748 0.000 0.796 0.204 0.000
#> GSM1068481     3  0.0336      0.769 0.000 0.008 0.992 0.000
#> GSM1068482     3  0.2266      0.791 0.004 0.000 0.912 0.084
#> GSM1068483     1  0.3970      0.745 0.840 0.084 0.000 0.076
#> GSM1068486     3  0.0524      0.770 0.000 0.008 0.988 0.004
#> GSM1068487     2  0.0921      0.853 0.028 0.972 0.000 0.000
#> GSM1068488     3  0.5203      0.795 0.048 0.000 0.720 0.232
#> GSM1068490     2  0.0000      0.851 0.000 1.000 0.000 0.000
#> GSM1068491     3  0.0000      0.773 0.000 0.000 1.000 0.000
#> GSM1068492     3  0.6255      0.787 0.064 0.056 0.720 0.160
#> GSM1068493     2  0.6393      0.346 0.332 0.604 0.020 0.044
#> GSM1068494     3  0.7341      0.552 0.252 0.000 0.528 0.220
#> GSM1068495     1  0.4857      0.456 0.668 0.324 0.000 0.008
#> GSM1068496     1  0.7179      0.275 0.544 0.000 0.276 0.180
#> GSM1068498     1  0.2530      0.710 0.896 0.100 0.000 0.004
#> GSM1068499     3  0.5397      0.799 0.068 0.000 0.720 0.212
#> GSM1068500     1  0.4039      0.744 0.836 0.084 0.000 0.080
#> GSM1068502     3  0.3937      0.697 0.012 0.188 0.800 0.000
#> GSM1068503     2  0.1488      0.840 0.032 0.956 0.000 0.012
#> GSM1068505     4  0.2924      0.797 0.016 0.100 0.000 0.884
#> GSM1068506     4  0.1743      0.849 0.056 0.004 0.000 0.940
#> GSM1068507     2  0.5246      0.718 0.060 0.796 0.084 0.060
#> GSM1068508     2  0.3710      0.774 0.192 0.804 0.000 0.004
#> GSM1068510     2  0.7028      0.436 0.000 0.568 0.172 0.260
#> GSM1068512     3  0.5431      0.795 0.064 0.000 0.712 0.224
#> GSM1068513     2  0.2376      0.822 0.000 0.916 0.016 0.068
#> GSM1068514     3  0.5507      0.800 0.064 0.004 0.720 0.212
#> GSM1068517     1  0.4741      0.454 0.668 0.328 0.000 0.004
#> GSM1068518     3  0.5507      0.800 0.064 0.004 0.720 0.212
#> GSM1068520     1  0.1211      0.758 0.960 0.000 0.000 0.040
#> GSM1068521     1  0.1305      0.759 0.960 0.004 0.000 0.036
#> GSM1068522     4  0.4018      0.670 0.004 0.224 0.000 0.772
#> GSM1068524     2  0.1398      0.851 0.040 0.956 0.000 0.004
#> GSM1068527     4  0.0817      0.850 0.024 0.000 0.000 0.976
#> GSM1068480     3  0.5328      0.800 0.064 0.000 0.724 0.212
#> GSM1068484     4  0.0937      0.851 0.000 0.012 0.012 0.976
#> GSM1068485     3  0.0000      0.773 0.000 0.000 1.000 0.000
#> GSM1068489     4  0.0188      0.852 0.000 0.000 0.004 0.996
#> GSM1068497     1  0.4781      0.437 0.660 0.336 0.000 0.004
#> GSM1068501     4  0.3662      0.752 0.012 0.148 0.004 0.836
#> GSM1068504     2  0.1398      0.851 0.040 0.956 0.000 0.004
#> GSM1068509     4  0.2334      0.840 0.088 0.000 0.004 0.908
#> GSM1068511     3  0.5785      0.742 0.064 0.000 0.664 0.272
#> GSM1068515     2  0.5685      0.269 0.024 0.516 0.000 0.460
#> GSM1068516     4  0.2943      0.831 0.076 0.000 0.032 0.892
#> GSM1068519     4  0.2412      0.819 0.084 0.000 0.008 0.908
#> GSM1068523     2  0.3105      0.817 0.140 0.856 0.000 0.004
#> GSM1068525     2  0.5629      0.665 0.064 0.756 0.032 0.148
#> GSM1068526     4  0.1902      0.846 0.064 0.004 0.000 0.932
#> GSM1068458     4  0.4509      0.591 0.288 0.004 0.000 0.708
#> GSM1068459     3  0.0000      0.773 0.000 0.000 1.000 0.000
#> GSM1068460     4  0.4655      0.673 0.208 0.032 0.000 0.760
#> GSM1068461     3  0.0000      0.773 0.000 0.000 1.000 0.000
#> GSM1068464     2  0.0000      0.851 0.000 1.000 0.000 0.000
#> GSM1068468     2  0.1975      0.850 0.048 0.936 0.016 0.000
#> GSM1068472     2  0.2300      0.814 0.064 0.920 0.000 0.016
#> GSM1068473     2  0.0000      0.851 0.000 1.000 0.000 0.000
#> GSM1068474     2  0.1211      0.851 0.040 0.960 0.000 0.000
#> GSM1068476     3  0.0000      0.773 0.000 0.000 1.000 0.000
#> GSM1068477     2  0.1978      0.845 0.068 0.928 0.000 0.004
#> GSM1068462     2  0.2057      0.835 0.032 0.940 0.020 0.008
#> GSM1068463     3  0.0336      0.773 0.000 0.000 0.992 0.008
#> GSM1068465     1  0.4578      0.714 0.788 0.160 0.000 0.052
#> GSM1068466     1  0.3160      0.733 0.872 0.020 0.000 0.108
#> GSM1068467     2  0.0376      0.851 0.004 0.992 0.000 0.004
#> GSM1068469     2  0.2048      0.835 0.064 0.928 0.000 0.008
#> GSM1068470     2  0.3105      0.817 0.140 0.856 0.000 0.004
#> GSM1068471     2  0.0376      0.852 0.004 0.992 0.000 0.004
#> GSM1068475     2  0.2197      0.841 0.080 0.916 0.000 0.004
#> GSM1068528     1  0.5493      0.696 0.744 0.004 0.144 0.108
#> GSM1068531     4  0.3266      0.769 0.168 0.000 0.000 0.832
#> GSM1068532     3  0.5511      0.796 0.084 0.000 0.720 0.196
#> GSM1068533     1  0.3907      0.619 0.768 0.000 0.000 0.232
#> GSM1068535     4  0.1059      0.850 0.016 0.000 0.012 0.972
#> GSM1068537     1  0.3052      0.716 0.860 0.000 0.004 0.136
#> GSM1068538     4  0.4697      0.525 0.356 0.000 0.000 0.644
#> GSM1068539     1  0.4655      0.482 0.684 0.312 0.000 0.004
#> GSM1068540     1  0.2345      0.744 0.900 0.000 0.000 0.100
#> GSM1068542     4  0.1792      0.846 0.068 0.000 0.000 0.932
#> GSM1068543     4  0.2048      0.844 0.064 0.000 0.008 0.928
#> GSM1068544     3  0.3837      0.532 0.224 0.000 0.776 0.000
#> GSM1068545     2  0.4235      0.809 0.092 0.824 0.000 0.084
#> GSM1068546     3  0.0188      0.772 0.000 0.000 0.996 0.004
#> GSM1068547     1  0.2973      0.735 0.856 0.000 0.000 0.144
#> GSM1068548     4  0.3105      0.821 0.140 0.004 0.000 0.856
#> GSM1068549     3  0.0000      0.773 0.000 0.000 1.000 0.000
#> GSM1068550     4  0.0817      0.849 0.024 0.000 0.000 0.976
#> GSM1068551     2  0.2944      0.823 0.128 0.868 0.000 0.004
#> GSM1068552     4  0.2466      0.843 0.056 0.028 0.000 0.916
#> GSM1068555     2  0.3105      0.817 0.140 0.856 0.000 0.004
#> GSM1068556     4  0.3547      0.799 0.064 0.000 0.072 0.864
#> GSM1068557     2  0.2888      0.802 0.004 0.872 0.000 0.124
#> GSM1068560     4  0.2216      0.845 0.092 0.000 0.000 0.908
#> GSM1068561     1  0.5284      0.456 0.616 0.368 0.000 0.016
#> GSM1068562     3  0.5431      0.795 0.064 0.000 0.712 0.224
#> GSM1068563     4  0.4114      0.750 0.060 0.000 0.112 0.828
#> GSM1068565     2  0.2654      0.833 0.108 0.888 0.000 0.004
#> GSM1068529     3  0.5431      0.795 0.064 0.000 0.712 0.224
#> GSM1068530     1  0.2760      0.724 0.872 0.000 0.000 0.128
#> GSM1068534     3  0.5590      0.776 0.064 0.000 0.692 0.244
#> GSM1068536     1  0.3801      0.643 0.780 0.000 0.000 0.220
#> GSM1068541     2  0.6224      0.633 0.144 0.668 0.000 0.188
#> GSM1068553     4  0.0336      0.852 0.000 0.000 0.008 0.992
#> GSM1068554     4  0.3157      0.763 0.000 0.144 0.004 0.852
#> GSM1068558     3  0.5576      0.796 0.064 0.004 0.712 0.220
#> GSM1068559     3  0.5363      0.798 0.064 0.000 0.720 0.216
#> GSM1068564     4  0.4139      0.723 0.040 0.144 0.000 0.816
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1068478     5  0.2516      0.622 0.140 0.000 0.000 0.000 0.860
#> GSM1068479     2  0.4588      0.677 0.156 0.768 0.048 0.000 0.028
#> GSM1068481     3  0.5213      0.704 0.312 0.056 0.628 0.000 0.004
#> GSM1068482     3  0.3550      0.766 0.236 0.000 0.760 0.000 0.004
#> GSM1068483     1  0.6472      0.601 0.616 0.228 0.100 0.004 0.052
#> GSM1068486     3  0.5024      0.713 0.312 0.044 0.640 0.000 0.004
#> GSM1068487     2  0.1908      0.791 0.000 0.908 0.000 0.000 0.092
#> GSM1068488     3  0.1965      0.766 0.000 0.000 0.904 0.096 0.000
#> GSM1068490     2  0.0000      0.796 0.000 1.000 0.000 0.000 0.000
#> GSM1068491     3  0.3814      0.751 0.276 0.000 0.720 0.000 0.004
#> GSM1068492     3  0.2763      0.730 0.000 0.148 0.848 0.004 0.000
#> GSM1068493     2  0.2949      0.739 0.000 0.876 0.052 0.004 0.068
#> GSM1068494     3  0.2166      0.749 0.012 0.000 0.912 0.004 0.072
#> GSM1068495     5  0.0671      0.717 0.000 0.004 0.000 0.016 0.980
#> GSM1068496     3  0.1430      0.769 0.000 0.000 0.944 0.004 0.052
#> GSM1068498     5  0.1557      0.703 0.052 0.008 0.000 0.000 0.940
#> GSM1068499     3  0.0833      0.785 0.004 0.000 0.976 0.004 0.016
#> GSM1068500     1  0.6973      0.570 0.576 0.232 0.104 0.004 0.084
#> GSM1068502     3  0.3944      0.627 0.004 0.272 0.720 0.000 0.004
#> GSM1068503     2  0.0703      0.799 0.000 0.976 0.000 0.000 0.024
#> GSM1068505     4  0.0510      0.779 0.000 0.016 0.000 0.984 0.000
#> GSM1068506     4  0.3586      0.773 0.000 0.000 0.264 0.736 0.000
#> GSM1068507     2  0.1892      0.757 0.000 0.916 0.080 0.004 0.000
#> GSM1068508     2  0.3636      0.680 0.000 0.728 0.000 0.000 0.272
#> GSM1068510     2  0.6473      0.201 0.000 0.468 0.164 0.364 0.004
#> GSM1068512     3  0.0162      0.787 0.000 0.000 0.996 0.004 0.000
#> GSM1068513     2  0.0486      0.796 0.000 0.988 0.004 0.004 0.004
#> GSM1068514     3  0.0162      0.787 0.000 0.000 0.996 0.004 0.000
#> GSM1068517     5  0.0290      0.721 0.000 0.008 0.000 0.000 0.992
#> GSM1068518     3  0.0162      0.787 0.000 0.000 0.996 0.004 0.000
#> GSM1068520     1  0.5677      0.675 0.672 0.000 0.036 0.076 0.216
#> GSM1068521     1  0.5992      0.676 0.648 0.004 0.032 0.088 0.228
#> GSM1068522     4  0.2338      0.754 0.000 0.112 0.000 0.884 0.004
#> GSM1068524     2  0.3304      0.756 0.000 0.816 0.000 0.016 0.168
#> GSM1068527     4  0.0963      0.792 0.000 0.000 0.036 0.964 0.000
#> GSM1068480     3  0.0162      0.787 0.000 0.000 0.996 0.004 0.000
#> GSM1068484     4  0.2249      0.807 0.000 0.008 0.096 0.896 0.000
#> GSM1068485     3  0.4419      0.737 0.312 0.000 0.668 0.000 0.020
#> GSM1068489     4  0.2074      0.807 0.000 0.000 0.104 0.896 0.000
#> GSM1068497     5  0.1043      0.723 0.000 0.040 0.000 0.000 0.960
#> GSM1068501     4  0.2853      0.783 0.000 0.036 0.028 0.892 0.044
#> GSM1068504     2  0.2773      0.759 0.000 0.836 0.000 0.000 0.164
#> GSM1068509     4  0.4655      0.764 0.000 0.000 0.248 0.700 0.052
#> GSM1068511     3  0.1341      0.754 0.000 0.000 0.944 0.056 0.000
#> GSM1068515     5  0.7915      0.391 0.012 0.136 0.176 0.168 0.508
#> GSM1068516     4  0.4854      0.723 0.000 0.000 0.308 0.648 0.044
#> GSM1068519     4  0.1525      0.770 0.012 0.000 0.004 0.948 0.036
#> GSM1068523     2  0.4249      0.420 0.000 0.568 0.000 0.000 0.432
#> GSM1068525     2  0.4146      0.562 0.000 0.716 0.268 0.004 0.012
#> GSM1068526     4  0.3684      0.762 0.000 0.000 0.280 0.720 0.000
#> GSM1068458     1  0.5260      0.722 0.684 0.004 0.108 0.204 0.000
#> GSM1068459     3  0.4009      0.739 0.312 0.000 0.684 0.000 0.004
#> GSM1068460     4  0.1357      0.769 0.004 0.000 0.000 0.948 0.048
#> GSM1068461     3  0.4009      0.739 0.312 0.000 0.684 0.000 0.004
#> GSM1068464     2  0.0000      0.796 0.000 1.000 0.000 0.000 0.000
#> GSM1068468     2  0.1908      0.773 0.000 0.908 0.000 0.000 0.092
#> GSM1068472     2  0.0451      0.795 0.000 0.988 0.004 0.000 0.008
#> GSM1068473     2  0.0000      0.796 0.000 1.000 0.000 0.000 0.000
#> GSM1068474     2  0.2648      0.767 0.000 0.848 0.000 0.000 0.152
#> GSM1068476     3  0.4009      0.739 0.312 0.000 0.684 0.000 0.004
#> GSM1068477     2  0.4249      0.275 0.000 0.568 0.000 0.000 0.432
#> GSM1068462     2  0.0451      0.795 0.000 0.988 0.004 0.000 0.008
#> GSM1068463     3  0.4385      0.734 0.312 0.012 0.672 0.000 0.004
#> GSM1068465     1  0.6660      0.639 0.612 0.052 0.156 0.004 0.176
#> GSM1068466     1  0.5137      0.669 0.684 0.000 0.000 0.208 0.108
#> GSM1068467     2  0.0609      0.795 0.000 0.980 0.000 0.000 0.020
#> GSM1068469     5  0.4299      0.415 0.000 0.388 0.004 0.000 0.608
#> GSM1068470     5  0.2471      0.669 0.000 0.136 0.000 0.000 0.864
#> GSM1068471     2  0.1478      0.797 0.000 0.936 0.000 0.000 0.064
#> GSM1068475     2  0.3395      0.706 0.000 0.764 0.000 0.000 0.236
#> GSM1068528     1  0.4670      0.614 0.764 0.008 0.136 0.004 0.088
#> GSM1068531     4  0.2753      0.655 0.136 0.000 0.000 0.856 0.008
#> GSM1068532     3  0.2573      0.734 0.016 0.000 0.880 0.104 0.000
#> GSM1068533     1  0.5739      0.743 0.680 0.000 0.184 0.100 0.036
#> GSM1068535     4  0.0451      0.781 0.004 0.000 0.008 0.988 0.000
#> GSM1068537     1  0.5894      0.748 0.676 0.000 0.172 0.104 0.048
#> GSM1068538     1  0.5190      0.736 0.688 0.000 0.172 0.140 0.000
#> GSM1068539     5  0.0566      0.721 0.012 0.004 0.000 0.000 0.984
#> GSM1068540     1  0.6147      0.754 0.672 0.000 0.132 0.104 0.092
#> GSM1068542     4  0.3661      0.765 0.000 0.000 0.276 0.724 0.000
#> GSM1068543     4  0.3561      0.775 0.000 0.000 0.260 0.740 0.000
#> GSM1068544     1  0.5435     -0.285 0.576 0.000 0.352 0.000 0.072
#> GSM1068545     2  0.5342      0.654 0.000 0.676 0.024 0.056 0.244
#> GSM1068546     3  0.4584      0.733 0.312 0.000 0.660 0.000 0.028
#> GSM1068547     1  0.5913      0.731 0.684 0.000 0.060 0.148 0.108
#> GSM1068548     4  0.6147      0.305 0.256 0.000 0.188 0.556 0.000
#> GSM1068549     3  0.3861      0.749 0.284 0.000 0.712 0.000 0.004
#> GSM1068550     4  0.0510      0.786 0.000 0.000 0.016 0.984 0.000
#> GSM1068551     2  0.3774      0.664 0.000 0.704 0.000 0.000 0.296
#> GSM1068552     4  0.5122      0.756 0.000 0.008 0.224 0.692 0.076
#> GSM1068555     5  0.4262     -0.119 0.000 0.440 0.000 0.000 0.560
#> GSM1068556     4  0.4060      0.692 0.000 0.000 0.360 0.640 0.000
#> GSM1068557     2  0.1403      0.787 0.000 0.952 0.000 0.024 0.024
#> GSM1068560     4  0.4955      0.743 0.000 0.000 0.248 0.680 0.072
#> GSM1068561     2  0.3366      0.654 0.000 0.784 0.004 0.000 0.212
#> GSM1068562     3  0.1662      0.767 0.000 0.004 0.936 0.004 0.056
#> GSM1068563     4  0.4161      0.653 0.000 0.000 0.392 0.608 0.000
#> GSM1068565     2  0.3561      0.687 0.000 0.740 0.000 0.000 0.260
#> GSM1068529     3  0.1571      0.766 0.000 0.000 0.936 0.004 0.060
#> GSM1068530     1  0.5962      0.753 0.688 0.000 0.124 0.104 0.084
#> GSM1068534     3  0.0609      0.783 0.000 0.000 0.980 0.020 0.000
#> GSM1068536     5  0.6948     -0.239 0.300 0.000 0.272 0.008 0.420
#> GSM1068541     5  0.3882      0.689 0.004 0.080 0.056 0.024 0.836
#> GSM1068553     4  0.2074      0.807 0.000 0.000 0.104 0.896 0.000
#> GSM1068554     4  0.2592      0.796 0.000 0.052 0.056 0.892 0.000
#> GSM1068558     3  0.1205      0.776 0.000 0.000 0.956 0.004 0.040
#> GSM1068559     3  0.0771      0.784 0.000 0.000 0.976 0.004 0.020
#> GSM1068564     4  0.2554      0.759 0.000 0.036 0.000 0.892 0.072
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1068478     5  0.1910     0.6857 0.108 0.000 0.000 0.000 0.892 0.000
#> GSM1068479     2  0.3456     0.7328 0.000 0.800 0.156 0.000 0.004 0.040
#> GSM1068481     3  0.2932     0.8190 0.000 0.016 0.820 0.000 0.000 0.164
#> GSM1068482     3  0.3050     0.7582 0.000 0.000 0.764 0.000 0.000 0.236
#> GSM1068483     1  0.4439     0.6645 0.692 0.240 0.000 0.004 0.000 0.064
#> GSM1068486     3  0.2632     0.8218 0.000 0.004 0.832 0.000 0.000 0.164
#> GSM1068487     2  0.1556     0.8298 0.000 0.920 0.000 0.000 0.080 0.000
#> GSM1068488     6  0.1863     0.7894 0.000 0.000 0.000 0.104 0.000 0.896
#> GSM1068490     2  0.0000     0.8363 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068491     6  0.3288     0.5126 0.000 0.000 0.276 0.000 0.000 0.724
#> GSM1068492     6  0.2491     0.7114 0.000 0.164 0.000 0.000 0.000 0.836
#> GSM1068493     2  0.1124     0.8208 0.000 0.956 0.000 0.000 0.008 0.036
#> GSM1068494     6  0.0767     0.8627 0.000 0.000 0.008 0.004 0.012 0.976
#> GSM1068495     5  0.0260     0.7678 0.008 0.000 0.000 0.000 0.992 0.000
#> GSM1068496     6  0.0146     0.8673 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM1068498     5  0.0363     0.7659 0.012 0.000 0.000 0.000 0.988 0.000
#> GSM1068499     6  0.0146     0.8678 0.000 0.000 0.000 0.000 0.004 0.996
#> GSM1068500     1  0.4802     0.6441 0.668 0.252 0.000 0.004 0.008 0.068
#> GSM1068502     6  0.3288     0.5593 0.000 0.276 0.000 0.000 0.000 0.724
#> GSM1068503     2  0.0260     0.8374 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM1068505     4  0.0146     0.7966 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM1068506     4  0.3198     0.7315 0.000 0.000 0.000 0.740 0.000 0.260
#> GSM1068507     2  0.1327     0.8056 0.000 0.936 0.000 0.000 0.000 0.064
#> GSM1068508     2  0.3288     0.6950 0.000 0.724 0.000 0.000 0.276 0.000
#> GSM1068510     4  0.5696    -0.0566 0.000 0.372 0.000 0.464 0.000 0.164
#> GSM1068512     6  0.0146     0.8673 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM1068513     2  0.0000     0.8363 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068514     6  0.0000     0.8672 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068517     5  0.0000     0.7696 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1068518     6  0.0000     0.8672 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068520     1  0.3948     0.7270 0.748 0.000 0.000 0.000 0.188 0.064
#> GSM1068521     1  0.4120     0.7313 0.748 0.012 0.000 0.000 0.188 0.052
#> GSM1068522     4  0.0260     0.7957 0.000 0.008 0.000 0.992 0.000 0.000
#> GSM1068524     2  0.2868     0.7989 0.000 0.840 0.000 0.028 0.132 0.000
#> GSM1068527     4  0.1391     0.7932 0.016 0.000 0.000 0.944 0.000 0.040
#> GSM1068480     6  0.2730     0.6961 0.000 0.000 0.192 0.000 0.000 0.808
#> GSM1068484     4  0.0146     0.7969 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM1068485     3  0.0000     0.8396 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068489     4  0.0000     0.7974 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068497     5  0.0146     0.7695 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM1068501     4  0.0146     0.7969 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM1068504     2  0.2178     0.8091 0.000 0.868 0.000 0.000 0.132 0.000
#> GSM1068509     4  0.3215     0.7411 0.000 0.000 0.000 0.756 0.004 0.240
#> GSM1068511     6  0.1204     0.8263 0.000 0.000 0.000 0.056 0.000 0.944
#> GSM1068515     5  0.6048     0.4411 0.000 0.084 0.000 0.248 0.580 0.088
#> GSM1068516     4  0.3672     0.6893 0.000 0.000 0.000 0.688 0.008 0.304
#> GSM1068519     4  0.0291     0.7964 0.004 0.000 0.000 0.992 0.004 0.000
#> GSM1068523     2  0.3851     0.3986 0.000 0.540 0.000 0.000 0.460 0.000
#> GSM1068525     2  0.3490     0.5935 0.000 0.724 0.000 0.000 0.008 0.268
#> GSM1068526     4  0.3288     0.7196 0.000 0.000 0.000 0.724 0.000 0.276
#> GSM1068458     1  0.4183     0.7385 0.752 0.004 0.000 0.116 0.000 0.128
#> GSM1068459     3  0.0865     0.8399 0.000 0.000 0.964 0.000 0.000 0.036
#> GSM1068460     4  0.0806     0.7903 0.020 0.000 0.000 0.972 0.008 0.000
#> GSM1068461     3  0.0000     0.8396 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068464     2  0.0000     0.8363 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068468     2  0.1411     0.8180 0.000 0.936 0.000 0.000 0.060 0.004
#> GSM1068472     2  0.0146     0.8359 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM1068473     2  0.0000     0.8363 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068474     2  0.2092     0.8131 0.000 0.876 0.000 0.000 0.124 0.000
#> GSM1068476     3  0.3717     0.4732 0.000 0.000 0.616 0.000 0.000 0.384
#> GSM1068477     2  0.3817     0.3021 0.000 0.568 0.000 0.000 0.432 0.000
#> GSM1068462     2  0.0146     0.8359 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM1068463     3  0.0000     0.8396 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068465     1  0.5668     0.6475 0.640 0.052 0.000 0.000 0.156 0.152
#> GSM1068466     1  0.3925     0.7069 0.744 0.000 0.000 0.200 0.056 0.000
#> GSM1068467     2  0.0260     0.8360 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM1068469     5  0.3446     0.5227 0.000 0.308 0.000 0.000 0.692 0.000
#> GSM1068470     5  0.0790     0.7583 0.000 0.032 0.000 0.000 0.968 0.000
#> GSM1068471     2  0.1204     0.8352 0.000 0.944 0.000 0.000 0.056 0.000
#> GSM1068475     2  0.3198     0.7089 0.000 0.740 0.000 0.000 0.260 0.000
#> GSM1068528     3  0.2613     0.7389 0.000 0.000 0.848 0.000 0.012 0.140
#> GSM1068531     4  0.2632     0.6603 0.164 0.000 0.000 0.832 0.004 0.000
#> GSM1068532     6  0.3886     0.5949 0.264 0.000 0.028 0.000 0.000 0.708
#> GSM1068533     1  0.0146     0.8039 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM1068535     4  0.0146     0.7966 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM1068537     1  0.0000     0.8046 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1068538     1  0.0000     0.8046 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1068539     5  0.0000     0.7696 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1068540     1  0.0000     0.8046 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1068542     4  0.3288     0.7196 0.000 0.000 0.000 0.724 0.000 0.276
#> GSM1068543     4  0.3198     0.7317 0.000 0.000 0.000 0.740 0.000 0.260
#> GSM1068544     3  0.0000     0.8396 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068545     2  0.4784     0.6794 0.000 0.680 0.000 0.064 0.236 0.020
#> GSM1068546     3  0.2632     0.8214 0.000 0.000 0.832 0.000 0.004 0.164
#> GSM1068547     1  0.4640     0.7637 0.752 0.000 0.000 0.092 0.072 0.084
#> GSM1068548     4  0.5899     0.2401 0.360 0.000 0.000 0.432 0.000 0.208
#> GSM1068549     6  0.3371     0.4835 0.000 0.000 0.292 0.000 0.000 0.708
#> GSM1068550     4  0.0146     0.7966 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM1068551     2  0.3428     0.6681 0.000 0.696 0.000 0.000 0.304 0.000
#> GSM1068552     4  0.4608     0.6977 0.000 0.000 0.000 0.680 0.100 0.220
#> GSM1068555     5  0.3765    -0.0637 0.000 0.404 0.000 0.000 0.596 0.000
#> GSM1068556     4  0.3634     0.6273 0.000 0.000 0.000 0.644 0.000 0.356
#> GSM1068557     2  0.0508     0.8338 0.000 0.984 0.000 0.012 0.004 0.000
#> GSM1068560     4  0.3767     0.7257 0.004 0.000 0.000 0.720 0.016 0.260
#> GSM1068561     2  0.2219     0.7629 0.000 0.864 0.000 0.000 0.136 0.000
#> GSM1068562     6  0.0405     0.8667 0.000 0.004 0.000 0.000 0.008 0.988
#> GSM1068563     4  0.3747     0.5666 0.000 0.000 0.000 0.604 0.000 0.396
#> GSM1068565     2  0.3371     0.6780 0.000 0.708 0.000 0.000 0.292 0.000
#> GSM1068529     6  0.0405     0.8667 0.000 0.000 0.000 0.004 0.008 0.988
#> GSM1068530     1  0.0000     0.8046 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1068534     6  0.0547     0.8602 0.000 0.000 0.000 0.020 0.000 0.980
#> GSM1068536     5  0.6337    -0.1480 0.352 0.000 0.000 0.012 0.384 0.252
#> GSM1068541     5  0.2638     0.7270 0.004 0.032 0.000 0.016 0.888 0.060
#> GSM1068553     4  0.0000     0.7974 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068554     4  0.0146     0.7969 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM1068558     6  0.0291     0.8672 0.000 0.000 0.000 0.004 0.004 0.992
#> GSM1068559     6  0.0146     0.8678 0.000 0.000 0.000 0.000 0.004 0.996
#> GSM1068564     4  0.0146     0.7969 0.000 0.004 0.000 0.996 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#>         n disease.state(p) gender(p) k
#> SD:pam 76          0.00167     1.000 2
#> SD:pam 87          0.14071     0.653 3
#> SD:pam 99          0.02249     0.865 4
#> SD:pam 99          0.07762     0.610 5
#> SD:pam 99          0.05642     0.612 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 38950 rows and 108 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.717           0.931       0.940         0.2486 0.786   0.786
#> 3 3 0.686           0.886       0.913         0.9285 0.740   0.670
#> 4 4 0.677           0.829       0.903         0.4877 0.710   0.469
#> 5 5 0.641           0.768       0.857         0.0502 0.924   0.743
#> 6 6 0.637           0.564       0.763         0.0645 0.909   0.657
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1068478     2  0.4562      0.937 0.096 0.904
#> GSM1068479     2  0.5294      0.927 0.120 0.880
#> GSM1068481     1  0.0000      0.972 1.000 0.000
#> GSM1068482     1  0.0000      0.972 1.000 0.000
#> GSM1068483     2  0.4939      0.934 0.108 0.892
#> GSM1068486     1  0.0000      0.972 1.000 0.000
#> GSM1068487     2  0.0000      0.933 0.000 1.000
#> GSM1068488     2  0.4690      0.936 0.100 0.900
#> GSM1068490     2  0.0000      0.933 0.000 1.000
#> GSM1068491     1  0.6801      0.767 0.820 0.180
#> GSM1068492     2  0.7299      0.847 0.204 0.796
#> GSM1068493     2  0.4431      0.938 0.092 0.908
#> GSM1068494     2  0.5737      0.919 0.136 0.864
#> GSM1068495     2  0.0000      0.933 0.000 1.000
#> GSM1068496     2  0.5737      0.919 0.136 0.864
#> GSM1068498     2  0.4562      0.937 0.096 0.904
#> GSM1068499     2  0.5737      0.919 0.136 0.864
#> GSM1068500     2  0.4939      0.934 0.108 0.892
#> GSM1068502     2  0.8608      0.727 0.284 0.716
#> GSM1068503     2  0.0000      0.933 0.000 1.000
#> GSM1068505     2  0.0000      0.933 0.000 1.000
#> GSM1068506     2  0.0000      0.933 0.000 1.000
#> GSM1068507     2  0.0000      0.933 0.000 1.000
#> GSM1068508     2  0.0000      0.933 0.000 1.000
#> GSM1068510     2  0.4431      0.938 0.092 0.908
#> GSM1068512     2  0.4939      0.933 0.108 0.892
#> GSM1068513     2  0.0000      0.933 0.000 1.000
#> GSM1068514     2  0.5294      0.927 0.120 0.880
#> GSM1068517     2  0.4431      0.938 0.092 0.908
#> GSM1068518     2  0.4022      0.939 0.080 0.920
#> GSM1068520     2  0.4562      0.937 0.096 0.904
#> GSM1068521     2  0.4690      0.936 0.100 0.900
#> GSM1068522     2  0.0000      0.933 0.000 1.000
#> GSM1068524     2  0.0000      0.933 0.000 1.000
#> GSM1068527     2  0.4690      0.936 0.100 0.900
#> GSM1068480     1  0.0000      0.972 1.000 0.000
#> GSM1068484     2  0.0000      0.933 0.000 1.000
#> GSM1068485     1  0.0000      0.972 1.000 0.000
#> GSM1068489     2  0.0000      0.933 0.000 1.000
#> GSM1068497     2  0.4431      0.938 0.092 0.908
#> GSM1068501     2  0.0376      0.934 0.004 0.996
#> GSM1068504     2  0.0000      0.933 0.000 1.000
#> GSM1068509     2  0.4690      0.936 0.100 0.900
#> GSM1068511     2  0.4562      0.937 0.096 0.904
#> GSM1068515     2  0.4562      0.937 0.096 0.904
#> GSM1068516     2  0.2778      0.938 0.048 0.952
#> GSM1068519     2  0.5737      0.919 0.136 0.864
#> GSM1068523     2  0.0000      0.933 0.000 1.000
#> GSM1068525     2  0.0000      0.933 0.000 1.000
#> GSM1068526     2  0.0000      0.933 0.000 1.000
#> GSM1068458     2  0.4690      0.936 0.100 0.900
#> GSM1068459     1  0.0000      0.972 1.000 0.000
#> GSM1068460     2  0.4431      0.938 0.092 0.908
#> GSM1068461     1  0.0000      0.972 1.000 0.000
#> GSM1068464     2  0.0000      0.933 0.000 1.000
#> GSM1068468     2  0.0000      0.933 0.000 1.000
#> GSM1068472     2  0.4298      0.938 0.088 0.912
#> GSM1068473     2  0.0000      0.933 0.000 1.000
#> GSM1068474     2  0.0000      0.933 0.000 1.000
#> GSM1068476     1  0.5408      0.850 0.876 0.124
#> GSM1068477     2  0.0000      0.933 0.000 1.000
#> GSM1068462     2  0.4431      0.938 0.092 0.908
#> GSM1068463     1  0.0000      0.972 1.000 0.000
#> GSM1068465     2  0.4431      0.938 0.092 0.908
#> GSM1068466     2  0.4562      0.937 0.096 0.904
#> GSM1068467     2  0.3431      0.939 0.064 0.936
#> GSM1068469     2  0.4431      0.938 0.092 0.908
#> GSM1068470     2  0.0000      0.933 0.000 1.000
#> GSM1068471     2  0.0000      0.933 0.000 1.000
#> GSM1068475     2  0.0000      0.933 0.000 1.000
#> GSM1068528     2  0.5737      0.919 0.136 0.864
#> GSM1068531     2  0.5737      0.919 0.136 0.864
#> GSM1068532     2  0.6531      0.893 0.168 0.832
#> GSM1068533     2  0.5737      0.919 0.136 0.864
#> GSM1068535     2  0.5294      0.927 0.120 0.880
#> GSM1068537     2  0.5737      0.919 0.136 0.864
#> GSM1068538     2  0.5737      0.919 0.136 0.864
#> GSM1068539     2  0.0000      0.933 0.000 1.000
#> GSM1068540     2  0.5737      0.919 0.136 0.864
#> GSM1068542     2  0.0000      0.933 0.000 1.000
#> GSM1068543     2  0.5294      0.927 0.120 0.880
#> GSM1068544     1  0.0000      0.972 1.000 0.000
#> GSM1068545     2  0.0000      0.933 0.000 1.000
#> GSM1068546     1  0.0000      0.972 1.000 0.000
#> GSM1068547     2  0.4815      0.935 0.104 0.896
#> GSM1068548     2  0.0000      0.933 0.000 1.000
#> GSM1068549     1  0.0000      0.972 1.000 0.000
#> GSM1068550     2  0.0000      0.933 0.000 1.000
#> GSM1068551     2  0.0000      0.933 0.000 1.000
#> GSM1068552     2  0.0000      0.933 0.000 1.000
#> GSM1068555     2  0.0000      0.933 0.000 1.000
#> GSM1068556     2  0.5294      0.927 0.120 0.880
#> GSM1068557     2  0.0000      0.933 0.000 1.000
#> GSM1068560     2  0.0000      0.933 0.000 1.000
#> GSM1068561     2  0.1633      0.936 0.024 0.976
#> GSM1068562     2  0.0000      0.933 0.000 1.000
#> GSM1068563     2  0.0000      0.933 0.000 1.000
#> GSM1068565     2  0.0000      0.933 0.000 1.000
#> GSM1068529     2  0.5294      0.927 0.120 0.880
#> GSM1068530     2  0.5737      0.919 0.136 0.864
#> GSM1068534     2  0.4431      0.938 0.092 0.908
#> GSM1068536     2  0.4431      0.938 0.092 0.908
#> GSM1068541     2  0.0376      0.934 0.004 0.996
#> GSM1068553     2  0.5059      0.931 0.112 0.888
#> GSM1068554     2  0.4431      0.938 0.092 0.908
#> GSM1068558     2  0.6247      0.901 0.156 0.844
#> GSM1068559     2  0.5294      0.927 0.120 0.880
#> GSM1068564     2  0.0000      0.933 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1068478     1  0.4702     0.7950 0.788 0.212 0.000
#> GSM1068479     2  0.2955     0.9140 0.080 0.912 0.008
#> GSM1068481     3  0.2860     0.9927 0.084 0.004 0.912
#> GSM1068482     3  0.2860     0.9927 0.084 0.004 0.912
#> GSM1068483     1  0.4399     0.8311 0.812 0.188 0.000
#> GSM1068486     3  0.2772     0.9910 0.080 0.004 0.916
#> GSM1068487     2  0.2356     0.9123 0.000 0.928 0.072
#> GSM1068488     2  0.2878     0.9099 0.096 0.904 0.000
#> GSM1068490     2  0.2625     0.9093 0.000 0.916 0.084
#> GSM1068491     3  0.3550     0.9619 0.080 0.024 0.896
#> GSM1068492     2  0.6119     0.7745 0.064 0.772 0.164
#> GSM1068493     2  0.2772     0.9137 0.080 0.916 0.004
#> GSM1068494     1  0.3851     0.8651 0.860 0.136 0.004
#> GSM1068495     2  0.2496     0.9192 0.068 0.928 0.004
#> GSM1068496     1  0.3619     0.8655 0.864 0.136 0.000
#> GSM1068498     2  0.3412     0.8913 0.124 0.876 0.000
#> GSM1068499     1  0.4121     0.8488 0.832 0.168 0.000
#> GSM1068500     1  0.4555     0.8162 0.800 0.200 0.000
#> GSM1068502     2  0.6875     0.7208 0.080 0.724 0.196
#> GSM1068503     2  0.0000     0.9174 0.000 1.000 0.000
#> GSM1068505     2  0.0424     0.9156 0.008 0.992 0.000
#> GSM1068506     2  0.0237     0.9160 0.004 0.996 0.000
#> GSM1068507     2  0.0424     0.9195 0.008 0.992 0.000
#> GSM1068508     2  0.2860     0.9137 0.084 0.912 0.004
#> GSM1068510     2  0.2165     0.9182 0.064 0.936 0.000
#> GSM1068512     2  0.2301     0.9061 0.060 0.936 0.004
#> GSM1068513     2  0.0000     0.9174 0.000 1.000 0.000
#> GSM1068514     2  0.3045     0.9161 0.064 0.916 0.020
#> GSM1068517     2  0.2711     0.9133 0.088 0.912 0.000
#> GSM1068518     2  0.3030     0.9106 0.092 0.904 0.004
#> GSM1068520     1  0.3941     0.8554 0.844 0.156 0.000
#> GSM1068521     1  0.3752     0.8633 0.856 0.144 0.000
#> GSM1068522     2  0.0237     0.9160 0.004 0.996 0.000
#> GSM1068524     2  0.0000     0.9174 0.000 1.000 0.000
#> GSM1068527     2  0.2165     0.8936 0.064 0.936 0.000
#> GSM1068480     3  0.2860     0.9927 0.084 0.004 0.912
#> GSM1068484     2  0.0424     0.9156 0.008 0.992 0.000
#> GSM1068485     3  0.2860     0.9927 0.084 0.004 0.912
#> GSM1068489     2  0.0237     0.9160 0.004 0.996 0.000
#> GSM1068497     2  0.2711     0.9133 0.088 0.912 0.000
#> GSM1068501     2  0.0237     0.9172 0.004 0.996 0.000
#> GSM1068504     2  0.2625     0.9093 0.000 0.916 0.084
#> GSM1068509     2  0.6521    -0.0376 0.496 0.500 0.004
#> GSM1068511     2  0.3425     0.9015 0.112 0.884 0.004
#> GSM1068515     2  0.4399     0.8131 0.188 0.812 0.000
#> GSM1068516     2  0.0475     0.9191 0.004 0.992 0.004
#> GSM1068519     1  0.3412     0.8656 0.876 0.124 0.000
#> GSM1068523     2  0.2860     0.9087 0.004 0.912 0.084
#> GSM1068525     2  0.0000     0.9174 0.000 1.000 0.000
#> GSM1068526     2  0.0237     0.9160 0.004 0.996 0.000
#> GSM1068458     1  0.3879     0.8596 0.848 0.152 0.000
#> GSM1068459     3  0.2860     0.9927 0.084 0.004 0.912
#> GSM1068460     2  0.3784     0.8921 0.132 0.864 0.004
#> GSM1068461     3  0.2860     0.9927 0.084 0.004 0.912
#> GSM1068464     2  0.2625     0.9093 0.000 0.916 0.084
#> GSM1068468     2  0.2772     0.9137 0.080 0.916 0.004
#> GSM1068472     2  0.2772     0.9137 0.080 0.916 0.004
#> GSM1068473     2  0.2625     0.9093 0.000 0.916 0.084
#> GSM1068474     2  0.2625     0.9093 0.000 0.916 0.084
#> GSM1068476     3  0.2955     0.9874 0.080 0.008 0.912
#> GSM1068477     2  0.2772     0.9137 0.080 0.916 0.004
#> GSM1068462     2  0.2772     0.9137 0.080 0.916 0.004
#> GSM1068463     3  0.2860     0.9927 0.084 0.004 0.912
#> GSM1068465     2  0.3983     0.8696 0.144 0.852 0.004
#> GSM1068466     1  0.4291     0.8361 0.820 0.180 0.000
#> GSM1068467     2  0.2772     0.9137 0.080 0.916 0.004
#> GSM1068469     2  0.2625     0.9131 0.084 0.916 0.000
#> GSM1068470     2  0.2860     0.9087 0.004 0.912 0.084
#> GSM1068471     2  0.2625     0.9093 0.000 0.916 0.084
#> GSM1068475     2  0.2860     0.9087 0.004 0.912 0.084
#> GSM1068528     1  0.3995     0.7686 0.868 0.016 0.116
#> GSM1068531     1  0.0237     0.8158 0.996 0.004 0.000
#> GSM1068532     1  0.0424     0.8178 0.992 0.008 0.000
#> GSM1068533     1  0.0424     0.8178 0.992 0.008 0.000
#> GSM1068535     2  0.6286     0.2448 0.464 0.536 0.000
#> GSM1068537     1  0.0424     0.8178 0.992 0.008 0.000
#> GSM1068538     1  0.0424     0.8178 0.992 0.008 0.000
#> GSM1068539     2  0.0829     0.9199 0.012 0.984 0.004
#> GSM1068540     1  0.0592     0.8231 0.988 0.012 0.000
#> GSM1068542     2  0.1643     0.9065 0.044 0.956 0.000
#> GSM1068543     2  0.2066     0.9024 0.060 0.940 0.000
#> GSM1068544     3  0.3193     0.9781 0.100 0.004 0.896
#> GSM1068545     2  0.0424     0.9185 0.008 0.992 0.000
#> GSM1068546     3  0.2772     0.9910 0.080 0.004 0.916
#> GSM1068547     1  0.2448     0.8547 0.924 0.076 0.000
#> GSM1068548     2  0.2356     0.8889 0.072 0.928 0.000
#> GSM1068549     3  0.2772     0.9910 0.080 0.004 0.916
#> GSM1068550     2  0.0747     0.9156 0.016 0.984 0.000
#> GSM1068551     2  0.2625     0.9093 0.000 0.916 0.084
#> GSM1068552     2  0.0237     0.9160 0.004 0.996 0.000
#> GSM1068555     2  0.2860     0.9087 0.004 0.912 0.084
#> GSM1068556     2  0.2261     0.8885 0.068 0.932 0.000
#> GSM1068557     2  0.2772     0.9137 0.080 0.916 0.004
#> GSM1068560     2  0.1289     0.9116 0.032 0.968 0.000
#> GSM1068561     2  0.2772     0.9137 0.080 0.916 0.004
#> GSM1068562     2  0.0424     0.9163 0.008 0.992 0.000
#> GSM1068563     2  0.0424     0.9163 0.008 0.992 0.000
#> GSM1068565     2  0.2860     0.9087 0.004 0.912 0.084
#> GSM1068529     2  0.2772     0.9137 0.080 0.916 0.004
#> GSM1068530     1  0.0237     0.8158 0.996 0.004 0.000
#> GSM1068534     2  0.2860     0.9131 0.084 0.912 0.004
#> GSM1068536     2  0.3573     0.8994 0.120 0.876 0.004
#> GSM1068541     2  0.2860     0.9137 0.084 0.912 0.004
#> GSM1068553     2  0.3340     0.8959 0.120 0.880 0.000
#> GSM1068554     2  0.1753     0.9213 0.048 0.952 0.000
#> GSM1068558     2  0.5884     0.7963 0.064 0.788 0.148
#> GSM1068559     2  0.2772     0.9137 0.080 0.916 0.004
#> GSM1068564     2  0.0424     0.9156 0.008 0.992 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1068478     1  0.3751      0.911 0.800 0.004 0.000 0.196
#> GSM1068479     2  0.2737      0.803 0.000 0.888 0.104 0.008
#> GSM1068481     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM1068482     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM1068483     1  0.3751      0.911 0.800 0.004 0.000 0.196
#> GSM1068486     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM1068487     2  0.0000      0.882 0.000 1.000 0.000 0.000
#> GSM1068488     4  0.0336      0.883 0.000 0.008 0.000 0.992
#> GSM1068490     2  0.0000      0.882 0.000 1.000 0.000 0.000
#> GSM1068491     3  0.0188      0.996 0.000 0.000 0.996 0.004
#> GSM1068492     4  0.4250      0.614 0.000 0.000 0.276 0.724
#> GSM1068493     2  0.3528      0.739 0.000 0.808 0.000 0.192
#> GSM1068494     4  0.4713      0.178 0.360 0.000 0.000 0.640
#> GSM1068495     2  0.4955      0.317 0.000 0.556 0.000 0.444
#> GSM1068496     1  0.3569      0.912 0.804 0.000 0.000 0.196
#> GSM1068498     2  0.2401      0.830 0.004 0.904 0.000 0.092
#> GSM1068499     1  0.3569      0.912 0.804 0.000 0.000 0.196
#> GSM1068500     1  0.3751      0.911 0.800 0.004 0.000 0.196
#> GSM1068502     2  0.5138      0.353 0.000 0.600 0.392 0.008
#> GSM1068503     2  0.1022      0.865 0.000 0.968 0.000 0.032
#> GSM1068505     4  0.2530      0.842 0.000 0.112 0.000 0.888
#> GSM1068506     4  0.2469      0.844 0.000 0.108 0.000 0.892
#> GSM1068507     4  0.3610      0.756 0.000 0.200 0.000 0.800
#> GSM1068508     2  0.3024      0.785 0.000 0.852 0.000 0.148
#> GSM1068510     4  0.3610      0.760 0.000 0.200 0.000 0.800
#> GSM1068512     4  0.0188      0.881 0.004 0.000 0.000 0.996
#> GSM1068513     2  0.4761      0.328 0.000 0.628 0.000 0.372
#> GSM1068514     4  0.1637      0.856 0.000 0.000 0.060 0.940
#> GSM1068517     2  0.0376      0.880 0.004 0.992 0.000 0.004
#> GSM1068518     4  0.0188      0.882 0.000 0.004 0.000 0.996
#> GSM1068520     1  0.3569      0.912 0.804 0.000 0.000 0.196
#> GSM1068521     1  0.3569      0.912 0.804 0.000 0.000 0.196
#> GSM1068522     4  0.4972      0.261 0.000 0.456 0.000 0.544
#> GSM1068524     2  0.3649      0.691 0.000 0.796 0.000 0.204
#> GSM1068527     4  0.0376      0.882 0.004 0.004 0.000 0.992
#> GSM1068480     3  0.0188      0.997 0.000 0.000 0.996 0.004
#> GSM1068484     4  0.0336      0.883 0.000 0.008 0.000 0.992
#> GSM1068485     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM1068489     4  0.0707      0.882 0.000 0.020 0.000 0.980
#> GSM1068497     2  0.0188      0.881 0.004 0.996 0.000 0.000
#> GSM1068501     4  0.2408      0.847 0.000 0.104 0.000 0.896
#> GSM1068504     2  0.0000      0.882 0.000 1.000 0.000 0.000
#> GSM1068509     1  0.4535      0.804 0.704 0.004 0.000 0.292
#> GSM1068511     4  0.0188      0.882 0.000 0.004 0.000 0.996
#> GSM1068515     2  0.7015      0.019 0.396 0.484 0.000 0.120
#> GSM1068516     4  0.0188      0.882 0.000 0.004 0.000 0.996
#> GSM1068519     1  0.3569      0.912 0.804 0.000 0.000 0.196
#> GSM1068523     2  0.0000      0.882 0.000 1.000 0.000 0.000
#> GSM1068525     4  0.1637      0.868 0.000 0.060 0.000 0.940
#> GSM1068526     4  0.0921      0.879 0.000 0.028 0.000 0.972
#> GSM1068458     1  0.3569      0.912 0.804 0.000 0.000 0.196
#> GSM1068459     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM1068460     1  0.3610      0.911 0.800 0.000 0.000 0.200
#> GSM1068461     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM1068464     2  0.0000      0.882 0.000 1.000 0.000 0.000
#> GSM1068468     2  0.0188      0.881 0.000 0.996 0.000 0.004
#> GSM1068472     2  0.0188      0.881 0.000 0.996 0.000 0.004
#> GSM1068473     2  0.0000      0.882 0.000 1.000 0.000 0.000
#> GSM1068474     2  0.0000      0.882 0.000 1.000 0.000 0.000
#> GSM1068476     3  0.0188      0.996 0.000 0.000 0.996 0.004
#> GSM1068477     2  0.0188      0.881 0.000 0.996 0.000 0.004
#> GSM1068462     2  0.0188      0.881 0.000 0.996 0.000 0.004
#> GSM1068463     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM1068465     1  0.6497      0.749 0.640 0.160 0.000 0.200
#> GSM1068466     1  0.3751      0.911 0.800 0.004 0.000 0.196
#> GSM1068467     2  0.0188      0.881 0.000 0.996 0.000 0.004
#> GSM1068469     2  0.0188      0.881 0.004 0.996 0.000 0.000
#> GSM1068470     2  0.0000      0.882 0.000 1.000 0.000 0.000
#> GSM1068471     2  0.0000      0.882 0.000 1.000 0.000 0.000
#> GSM1068475     2  0.0000      0.882 0.000 1.000 0.000 0.000
#> GSM1068528     1  0.4499      0.862 0.804 0.000 0.072 0.124
#> GSM1068531     1  0.0000      0.795 1.000 0.000 0.000 0.000
#> GSM1068532     1  0.0000      0.795 1.000 0.000 0.000 0.000
#> GSM1068533     1  0.0000      0.795 1.000 0.000 0.000 0.000
#> GSM1068535     4  0.3486      0.764 0.188 0.000 0.000 0.812
#> GSM1068537     1  0.0000      0.795 1.000 0.000 0.000 0.000
#> GSM1068538     1  0.0000      0.795 1.000 0.000 0.000 0.000
#> GSM1068539     4  0.4564      0.417 0.000 0.328 0.000 0.672
#> GSM1068540     1  0.3569      0.912 0.804 0.000 0.000 0.196
#> GSM1068542     4  0.0336      0.883 0.000 0.008 0.000 0.992
#> GSM1068543     4  0.0376      0.882 0.004 0.004 0.000 0.992
#> GSM1068544     3  0.0188      0.996 0.004 0.000 0.996 0.000
#> GSM1068545     2  0.3764      0.727 0.000 0.784 0.000 0.216
#> GSM1068546     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM1068547     1  0.3569      0.912 0.804 0.000 0.000 0.196
#> GSM1068548     4  0.0376      0.882 0.004 0.004 0.000 0.992
#> GSM1068549     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> GSM1068550     4  0.0336      0.883 0.000 0.008 0.000 0.992
#> GSM1068551     2  0.0000      0.882 0.000 1.000 0.000 0.000
#> GSM1068552     4  0.3266      0.796 0.000 0.168 0.000 0.832
#> GSM1068555     2  0.0000      0.882 0.000 1.000 0.000 0.000
#> GSM1068556     4  0.0376      0.882 0.004 0.004 0.000 0.992
#> GSM1068557     2  0.2814      0.803 0.000 0.868 0.000 0.132
#> GSM1068560     4  0.0336      0.883 0.000 0.008 0.000 0.992
#> GSM1068561     2  0.4746      0.476 0.000 0.632 0.000 0.368
#> GSM1068562     4  0.0336      0.883 0.000 0.008 0.000 0.992
#> GSM1068563     4  0.0336      0.883 0.000 0.008 0.000 0.992
#> GSM1068565     2  0.0000      0.882 0.000 1.000 0.000 0.000
#> GSM1068529     4  0.0000      0.881 0.000 0.000 0.000 1.000
#> GSM1068530     1  0.0000      0.795 1.000 0.000 0.000 0.000
#> GSM1068534     4  0.0188      0.882 0.000 0.004 0.000 0.996
#> GSM1068536     1  0.3945      0.897 0.780 0.004 0.000 0.216
#> GSM1068541     2  0.3266      0.767 0.000 0.832 0.000 0.168
#> GSM1068553     4  0.0895      0.879 0.020 0.004 0.000 0.976
#> GSM1068554     4  0.3649      0.755 0.000 0.204 0.000 0.796
#> GSM1068558     4  0.3569      0.721 0.000 0.000 0.196 0.804
#> GSM1068559     4  0.0188      0.882 0.000 0.004 0.000 0.996
#> GSM1068564     4  0.3528      0.770 0.000 0.192 0.000 0.808
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1068478     5  0.6144      0.263 0.280 0.000 0.000 0.172 0.548
#> GSM1068479     2  0.5505      0.628 0.000 0.712 0.056 0.072 0.160
#> GSM1068481     3  0.0162      0.982 0.004 0.000 0.996 0.000 0.000
#> GSM1068482     3  0.0162      0.982 0.004 0.000 0.996 0.000 0.000
#> GSM1068483     1  0.4883      0.772 0.708 0.000 0.000 0.200 0.092
#> GSM1068486     3  0.0000      0.979 0.000 0.000 1.000 0.000 0.000
#> GSM1068487     2  0.1671      0.775 0.000 0.924 0.000 0.076 0.000
#> GSM1068488     4  0.0807      0.869 0.000 0.012 0.000 0.976 0.012
#> GSM1068490     2  0.0000      0.804 0.000 1.000 0.000 0.000 0.000
#> GSM1068491     3  0.0510      0.972 0.000 0.000 0.984 0.000 0.016
#> GSM1068492     4  0.4872      0.686 0.000 0.000 0.120 0.720 0.160
#> GSM1068493     5  0.5530      0.646 0.000 0.096 0.004 0.268 0.632
#> GSM1068494     4  0.4697      0.144 0.360 0.000 0.008 0.620 0.012
#> GSM1068495     4  0.4709      0.605 0.000 0.068 0.004 0.728 0.200
#> GSM1068496     1  0.3550      0.819 0.796 0.000 0.000 0.184 0.020
#> GSM1068498     5  0.3972      0.697 0.012 0.188 0.000 0.020 0.780
#> GSM1068499     1  0.3511      0.819 0.800 0.000 0.004 0.184 0.012
#> GSM1068500     1  0.5169      0.749 0.688 0.000 0.000 0.184 0.128
#> GSM1068502     2  0.7021      0.432 0.000 0.564 0.204 0.072 0.160
#> GSM1068503     2  0.2377      0.740 0.000 0.872 0.000 0.128 0.000
#> GSM1068505     4  0.3397      0.846 0.004 0.080 0.000 0.848 0.068
#> GSM1068506     4  0.3229      0.827 0.000 0.128 0.000 0.840 0.032
#> GSM1068507     4  0.3691      0.775 0.000 0.164 0.004 0.804 0.028
#> GSM1068508     2  0.5192      0.544 0.000 0.696 0.004 0.184 0.116
#> GSM1068510     4  0.3143      0.748 0.000 0.204 0.000 0.796 0.000
#> GSM1068512     4  0.0566      0.868 0.000 0.000 0.004 0.984 0.012
#> GSM1068513     2  0.3983      0.426 0.000 0.660 0.000 0.340 0.000
#> GSM1068514     4  0.4010      0.754 0.000 0.000 0.056 0.784 0.160
#> GSM1068517     5  0.3596      0.671 0.000 0.212 0.000 0.012 0.776
#> GSM1068518     4  0.0727      0.864 0.004 0.000 0.004 0.980 0.012
#> GSM1068520     1  0.3995      0.814 0.788 0.000 0.000 0.152 0.060
#> GSM1068521     1  0.3419      0.822 0.804 0.000 0.000 0.180 0.016
#> GSM1068522     2  0.4527      0.310 0.000 0.596 0.000 0.392 0.012
#> GSM1068524     2  0.1908      0.767 0.000 0.908 0.000 0.092 0.000
#> GSM1068527     4  0.1356      0.869 0.004 0.012 0.000 0.956 0.028
#> GSM1068480     3  0.2536      0.872 0.004 0.000 0.868 0.000 0.128
#> GSM1068484     4  0.1668      0.873 0.000 0.032 0.000 0.940 0.028
#> GSM1068485     3  0.0162      0.982 0.004 0.000 0.996 0.000 0.000
#> GSM1068489     4  0.2228      0.868 0.000 0.040 0.000 0.912 0.048
#> GSM1068497     5  0.3628      0.672 0.012 0.216 0.000 0.000 0.772
#> GSM1068501     4  0.3002      0.834 0.000 0.116 0.000 0.856 0.028
#> GSM1068504     2  0.0000      0.804 0.000 1.000 0.000 0.000 0.000
#> GSM1068509     1  0.4507      0.632 0.644 0.000 0.004 0.340 0.012
#> GSM1068511     4  0.0162      0.866 0.000 0.000 0.004 0.996 0.000
#> GSM1068515     5  0.5302      0.712 0.072 0.112 0.000 0.076 0.740
#> GSM1068516     4  0.0613      0.866 0.000 0.004 0.004 0.984 0.008
#> GSM1068519     1  0.3550      0.820 0.796 0.000 0.000 0.184 0.020
#> GSM1068523     2  0.0404      0.802 0.000 0.988 0.000 0.000 0.012
#> GSM1068525     4  0.2074      0.849 0.000 0.104 0.000 0.896 0.000
#> GSM1068526     4  0.2300      0.867 0.000 0.040 0.000 0.908 0.052
#> GSM1068458     1  0.4031      0.816 0.796 0.008 0.000 0.148 0.048
#> GSM1068459     3  0.0162      0.982 0.004 0.000 0.996 0.000 0.000
#> GSM1068460     1  0.6365      0.511 0.540 0.000 0.004 0.260 0.196
#> GSM1068461     3  0.0162      0.982 0.004 0.000 0.996 0.000 0.000
#> GSM1068464     2  0.0290      0.803 0.000 0.992 0.000 0.008 0.000
#> GSM1068468     2  0.3516      0.704 0.000 0.812 0.004 0.020 0.164
#> GSM1068472     2  0.4089      0.604 0.000 0.736 0.004 0.016 0.244
#> GSM1068473     2  0.0000      0.804 0.000 1.000 0.000 0.000 0.000
#> GSM1068474     2  0.0000      0.804 0.000 1.000 0.000 0.000 0.000
#> GSM1068476     3  0.1485      0.937 0.000 0.000 0.948 0.020 0.032
#> GSM1068477     2  0.4100      0.698 0.000 0.784 0.004 0.052 0.160
#> GSM1068462     2  0.4571      0.494 0.000 0.664 0.004 0.020 0.312
#> GSM1068463     3  0.0162      0.982 0.004 0.000 0.996 0.000 0.000
#> GSM1068465     5  0.6361      0.380 0.240 0.008 0.004 0.172 0.576
#> GSM1068466     1  0.3888      0.816 0.796 0.000 0.000 0.148 0.056
#> GSM1068467     2  0.3435      0.713 0.000 0.820 0.004 0.020 0.156
#> GSM1068469     5  0.4096      0.622 0.012 0.260 0.000 0.004 0.724
#> GSM1068470     2  0.0404      0.802 0.000 0.988 0.000 0.000 0.012
#> GSM1068471     2  0.0000      0.804 0.000 1.000 0.000 0.000 0.000
#> GSM1068475     2  0.0290      0.803 0.000 0.992 0.000 0.000 0.008
#> GSM1068528     1  0.4022      0.775 0.804 0.000 0.100 0.092 0.004
#> GSM1068531     1  0.0290      0.747 0.992 0.000 0.000 0.000 0.008
#> GSM1068532     1  0.0000      0.744 1.000 0.000 0.000 0.000 0.000
#> GSM1068533     1  0.0000      0.744 1.000 0.000 0.000 0.000 0.000
#> GSM1068535     4  0.3039      0.767 0.192 0.000 0.000 0.808 0.000
#> GSM1068537     1  0.0000      0.744 1.000 0.000 0.000 0.000 0.000
#> GSM1068538     1  0.0000      0.744 1.000 0.000 0.000 0.000 0.000
#> GSM1068539     4  0.1978      0.859 0.000 0.024 0.004 0.928 0.044
#> GSM1068540     1  0.3419      0.822 0.804 0.000 0.000 0.180 0.016
#> GSM1068542     4  0.2037      0.865 0.004 0.012 0.000 0.920 0.064
#> GSM1068543     4  0.1074      0.871 0.004 0.012 0.000 0.968 0.016
#> GSM1068544     3  0.0290      0.979 0.008 0.000 0.992 0.000 0.000
#> GSM1068545     2  0.4779      0.418 0.000 0.628 0.000 0.340 0.032
#> GSM1068546     3  0.0162      0.982 0.004 0.000 0.996 0.000 0.000
#> GSM1068547     1  0.3691      0.819 0.804 0.000 0.000 0.156 0.040
#> GSM1068548     4  0.2037      0.865 0.004 0.012 0.000 0.920 0.064
#> GSM1068549     3  0.0000      0.979 0.000 0.000 1.000 0.000 0.000
#> GSM1068550     4  0.1970      0.865 0.004 0.012 0.000 0.924 0.060
#> GSM1068551     2  0.0000      0.804 0.000 1.000 0.000 0.000 0.000
#> GSM1068552     4  0.3432      0.821 0.000 0.132 0.000 0.828 0.040
#> GSM1068555     2  0.0000      0.804 0.000 1.000 0.000 0.000 0.000
#> GSM1068556     4  0.0968      0.868 0.004 0.012 0.000 0.972 0.012
#> GSM1068557     2  0.3340      0.710 0.000 0.824 0.004 0.156 0.016
#> GSM1068560     4  0.1356      0.869 0.004 0.012 0.000 0.956 0.028
#> GSM1068561     4  0.3548      0.763 0.000 0.188 0.004 0.796 0.012
#> GSM1068562     4  0.1117      0.872 0.000 0.020 0.000 0.964 0.016
#> GSM1068563     4  0.0807      0.870 0.000 0.012 0.000 0.976 0.012
#> GSM1068565     2  0.0290      0.803 0.000 0.992 0.000 0.000 0.008
#> GSM1068529     4  0.2798      0.801 0.000 0.000 0.008 0.852 0.140
#> GSM1068530     1  0.0290      0.747 0.992 0.000 0.000 0.000 0.008
#> GSM1068534     4  0.0162      0.866 0.000 0.000 0.004 0.996 0.000
#> GSM1068536     1  0.6094      0.517 0.552 0.000 0.004 0.312 0.132
#> GSM1068541     5  0.5384      0.652 0.000 0.104 0.004 0.228 0.664
#> GSM1068553     4  0.2047      0.869 0.012 0.020 0.000 0.928 0.040
#> GSM1068554     4  0.3333      0.746 0.000 0.208 0.000 0.788 0.004
#> GSM1068558     4  0.4317      0.739 0.000 0.000 0.076 0.764 0.160
#> GSM1068559     4  0.0671      0.867 0.000 0.000 0.016 0.980 0.004
#> GSM1068564     4  0.3977      0.745 0.000 0.204 0.000 0.764 0.032
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1068478     5  0.6278    -0.0943 0.404 0.004 0.000 0.024 0.420 0.148
#> GSM1068479     4  0.5632     0.0569 0.000 0.384 0.084 0.508 0.024 0.000
#> GSM1068481     3  0.0000     0.9306 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068482     3  0.0000     0.9306 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068483     1  0.4850     0.7741 0.740 0.016 0.000 0.040 0.064 0.140
#> GSM1068486     3  0.0000     0.9306 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068487     2  0.0508     0.7831 0.000 0.984 0.000 0.012 0.000 0.004
#> GSM1068488     6  0.4821     0.3801 0.000 0.016 0.000 0.416 0.028 0.540
#> GSM1068490     2  0.0260     0.7850 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM1068491     3  0.3244     0.6676 0.000 0.000 0.732 0.268 0.000 0.000
#> GSM1068492     4  0.4213     0.5249 0.000 0.000 0.100 0.772 0.024 0.104
#> GSM1068493     5  0.5250     0.5361 0.000 0.052 0.000 0.140 0.688 0.120
#> GSM1068494     1  0.6967     0.2741 0.456 0.016 0.000 0.200 0.048 0.280
#> GSM1068495     6  0.4734     0.4483 0.024 0.004 0.000 0.112 0.128 0.732
#> GSM1068496     1  0.4280     0.8039 0.796 0.016 0.000 0.064 0.052 0.072
#> GSM1068498     5  0.2250     0.6492 0.000 0.064 0.000 0.000 0.896 0.040
#> GSM1068499     1  0.4218     0.8000 0.796 0.016 0.000 0.060 0.036 0.092
#> GSM1068500     1  0.4850     0.7736 0.740 0.016 0.000 0.040 0.064 0.140
#> GSM1068502     4  0.5935     0.1411 0.000 0.340 0.128 0.508 0.024 0.000
#> GSM1068503     2  0.1982     0.7320 0.000 0.912 0.000 0.016 0.004 0.068
#> GSM1068505     6  0.0891     0.5956 0.000 0.008 0.000 0.000 0.024 0.968
#> GSM1068506     6  0.1753     0.5951 0.000 0.084 0.000 0.000 0.004 0.912
#> GSM1068507     6  0.6009     0.3364 0.008 0.104 0.000 0.360 0.024 0.504
#> GSM1068508     2  0.6076     0.3858 0.000 0.592 0.000 0.080 0.112 0.216
#> GSM1068510     6  0.5820     0.2501 0.000 0.144 0.000 0.392 0.008 0.456
#> GSM1068512     6  0.4821     0.3866 0.000 0.016 0.000 0.416 0.028 0.540
#> GSM1068513     2  0.3606     0.4960 0.000 0.728 0.000 0.016 0.000 0.256
#> GSM1068514     4  0.3293     0.4930 0.000 0.000 0.040 0.824 0.008 0.128
#> GSM1068517     5  0.2112     0.6401 0.000 0.088 0.000 0.000 0.896 0.016
#> GSM1068518     6  0.4361     0.5310 0.000 0.012 0.000 0.252 0.040 0.696
#> GSM1068520     1  0.3662     0.7954 0.780 0.000 0.000 0.004 0.044 0.172
#> GSM1068521     1  0.4147     0.8048 0.792 0.016 0.000 0.020 0.060 0.112
#> GSM1068522     2  0.3833     0.1911 0.000 0.556 0.000 0.000 0.000 0.444
#> GSM1068524     2  0.0964     0.7830 0.000 0.968 0.000 0.016 0.004 0.012
#> GSM1068527     6  0.1909     0.6015 0.000 0.004 0.000 0.024 0.052 0.920
#> GSM1068480     3  0.2790     0.8023 0.000 0.000 0.844 0.132 0.024 0.000
#> GSM1068484     6  0.2978     0.6019 0.000 0.012 0.000 0.072 0.056 0.860
#> GSM1068485     3  0.0000     0.9306 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068489     6  0.1820     0.6061 0.000 0.056 0.000 0.008 0.012 0.924
#> GSM1068497     5  0.2070     0.6363 0.000 0.092 0.000 0.000 0.896 0.012
#> GSM1068501     6  0.4962     0.4865 0.000 0.060 0.000 0.280 0.020 0.640
#> GSM1068504     2  0.0260     0.7850 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM1068509     1  0.5401     0.6853 0.680 0.016 0.000 0.060 0.052 0.192
#> GSM1068511     6  0.4886     0.3839 0.000 0.016 0.000 0.416 0.032 0.536
#> GSM1068515     5  0.5102     0.6451 0.068 0.084 0.000 0.020 0.736 0.092
#> GSM1068516     6  0.4724     0.4410 0.000 0.016 0.000 0.368 0.028 0.588
#> GSM1068519     1  0.4771     0.8112 0.744 0.004 0.000 0.072 0.060 0.120
#> GSM1068523     2  0.2121     0.7529 0.000 0.892 0.000 0.000 0.096 0.012
#> GSM1068525     6  0.5404     0.4385 0.000 0.076 0.000 0.324 0.024 0.576
#> GSM1068526     6  0.1826     0.6038 0.000 0.052 0.000 0.004 0.020 0.924
#> GSM1068458     1  0.3939     0.7973 0.796 0.040 0.000 0.004 0.032 0.128
#> GSM1068459     3  0.0000     0.9306 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068460     6  0.6781    -0.1382 0.300 0.000 0.000 0.104 0.128 0.468
#> GSM1068461     3  0.0000     0.9306 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068464     2  0.1194     0.7662 0.000 0.956 0.000 0.032 0.008 0.004
#> GSM1068468     2  0.4822    -0.1750 0.000 0.480 0.000 0.036 0.476 0.008
#> GSM1068472     5  0.4646     0.4036 0.000 0.356 0.000 0.036 0.600 0.008
#> GSM1068473     2  0.0146     0.7842 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM1068474     2  0.0146     0.7842 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM1068476     3  0.3727     0.4930 0.000 0.000 0.612 0.388 0.000 0.000
#> GSM1068477     2  0.4238     0.2887 0.000 0.636 0.000 0.008 0.340 0.016
#> GSM1068462     5  0.4585     0.4896 0.000 0.304 0.000 0.044 0.644 0.008
#> GSM1068463     3  0.0000     0.9306 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068465     5  0.7006     0.3554 0.224 0.004 0.000 0.104 0.484 0.184
#> GSM1068466     1  0.4154     0.7928 0.780 0.044 0.000 0.004 0.036 0.136
#> GSM1068467     2  0.4821    -0.1626 0.000 0.484 0.000 0.036 0.472 0.008
#> GSM1068469     5  0.3353     0.6212 0.000 0.160 0.000 0.032 0.804 0.004
#> GSM1068470     2  0.2121     0.7529 0.000 0.892 0.000 0.000 0.096 0.012
#> GSM1068471     2  0.0291     0.7848 0.000 0.992 0.000 0.000 0.004 0.004
#> GSM1068475     2  0.1913     0.7609 0.000 0.908 0.000 0.000 0.080 0.012
#> GSM1068528     1  0.3809     0.7935 0.812 0.000 0.088 0.048 0.000 0.052
#> GSM1068531     1  0.2471     0.7712 0.888 0.000 0.000 0.056 0.004 0.052
#> GSM1068532     1  0.1204     0.7632 0.944 0.000 0.000 0.056 0.000 0.000
#> GSM1068533     1  0.0632     0.7727 0.976 0.000 0.000 0.024 0.000 0.000
#> GSM1068535     6  0.5861     0.1649 0.200 0.000 0.000 0.356 0.000 0.444
#> GSM1068537     1  0.1204     0.7632 0.944 0.000 0.000 0.056 0.000 0.000
#> GSM1068538     1  0.1204     0.7632 0.944 0.000 0.000 0.056 0.000 0.000
#> GSM1068539     6  0.3016     0.5563 0.000 0.008 0.000 0.092 0.048 0.852
#> GSM1068540     1  0.4572     0.8151 0.756 0.004 0.000 0.060 0.052 0.128
#> GSM1068542     6  0.0632     0.5965 0.000 0.000 0.000 0.000 0.024 0.976
#> GSM1068543     6  0.4747     0.3878 0.000 0.016 0.000 0.412 0.024 0.548
#> GSM1068544     3  0.0000     0.9306 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068545     6  0.4935     0.1245 0.000 0.388 0.000 0.012 0.044 0.556
#> GSM1068546     3  0.0000     0.9306 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068547     1  0.3691     0.8056 0.784 0.000 0.000 0.020 0.024 0.172
#> GSM1068548     6  0.0632     0.5965 0.000 0.000 0.000 0.000 0.024 0.976
#> GSM1068549     3  0.0000     0.9306 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068550     6  0.0935     0.5981 0.000 0.004 0.000 0.000 0.032 0.964
#> GSM1068551     2  0.1049     0.7797 0.000 0.960 0.000 0.000 0.032 0.008
#> GSM1068552     6  0.2191     0.5796 0.000 0.120 0.000 0.000 0.004 0.876
#> GSM1068555     2  0.2020     0.7555 0.000 0.896 0.000 0.000 0.096 0.008
#> GSM1068556     6  0.4679     0.4455 0.000 0.016 0.000 0.352 0.028 0.604
#> GSM1068557     5  0.6027     0.2048 0.000 0.420 0.000 0.052 0.448 0.080
#> GSM1068560     6  0.1829     0.5992 0.000 0.004 0.000 0.012 0.064 0.920
#> GSM1068561     6  0.5626     0.4832 0.000 0.120 0.000 0.136 0.084 0.660
#> GSM1068562     6  0.3272     0.5885 0.000 0.016 0.000 0.144 0.020 0.820
#> GSM1068563     6  0.2375     0.6020 0.000 0.016 0.000 0.068 0.020 0.896
#> GSM1068565     2  0.1367     0.7727 0.000 0.944 0.000 0.000 0.044 0.012
#> GSM1068529     4  0.4726    -0.2234 0.000 0.008 0.004 0.540 0.024 0.424
#> GSM1068530     1  0.1989     0.7796 0.916 0.000 0.000 0.028 0.004 0.052
#> GSM1068534     6  0.4891     0.3786 0.000 0.016 0.000 0.420 0.032 0.532
#> GSM1068536     6  0.6839    -0.2392 0.348 0.000 0.000 0.104 0.124 0.424
#> GSM1068541     5  0.6726     0.3548 0.044 0.024 0.000 0.116 0.444 0.372
#> GSM1068553     6  0.5283     0.3823 0.064 0.000 0.000 0.356 0.020 0.560
#> GSM1068554     6  0.6080     0.2473 0.008 0.172 0.000 0.360 0.004 0.456
#> GSM1068558     4  0.4196     0.5224 0.000 0.000 0.084 0.772 0.024 0.120
#> GSM1068559     4  0.5272    -0.1892 0.000 0.012 0.028 0.532 0.024 0.404
#> GSM1068564     6  0.3587     0.4930 0.000 0.188 0.000 0.000 0.040 0.772
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#>             n disease.state(p) gender(p) k
#> SD:mclust 108          0.40381     0.706 2
#> SD:mclust 106          0.56865     0.136 3
#> SD:mclust 100          0.00400     0.551 4
#> SD:mclust 100          0.00127     0.411 5
#> SD:mclust  69          0.09835     0.678 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 38950 rows and 108 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.781           0.880       0.950         0.4948 0.502   0.502
#> 3 3 0.640           0.774       0.898         0.2554 0.747   0.555
#> 4 4 0.635           0.817       0.873         0.1886 0.792   0.508
#> 5 5 0.674           0.665       0.820         0.0738 0.906   0.658
#> 6 6 0.691           0.625       0.786         0.0439 0.904   0.592
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1068478     1  0.9000     0.5737 0.684 0.316
#> GSM1068479     2  0.0000     0.9594 0.000 1.000
#> GSM1068481     1  0.0000     0.9279 1.000 0.000
#> GSM1068482     1  0.0000     0.9279 1.000 0.000
#> GSM1068483     1  0.0000     0.9279 1.000 0.000
#> GSM1068486     1  0.0000     0.9279 1.000 0.000
#> GSM1068487     2  0.0000     0.9594 0.000 1.000
#> GSM1068488     1  0.9993     0.0564 0.516 0.484
#> GSM1068490     2  0.0000     0.9594 0.000 1.000
#> GSM1068491     1  0.0000     0.9279 1.000 0.000
#> GSM1068492     2  0.9358     0.4594 0.352 0.648
#> GSM1068493     1  0.9044     0.5706 0.680 0.320
#> GSM1068494     1  0.0000     0.9279 1.000 0.000
#> GSM1068495     2  0.0000     0.9594 0.000 1.000
#> GSM1068496     1  0.0000     0.9279 1.000 0.000
#> GSM1068498     2  0.0000     0.9594 0.000 1.000
#> GSM1068499     1  0.0000     0.9279 1.000 0.000
#> GSM1068500     1  0.0000     0.9279 1.000 0.000
#> GSM1068502     2  0.0376     0.9565 0.004 0.996
#> GSM1068503     2  0.0000     0.9594 0.000 1.000
#> GSM1068505     2  0.0000     0.9594 0.000 1.000
#> GSM1068506     2  0.0000     0.9594 0.000 1.000
#> GSM1068507     2  0.5294     0.8510 0.120 0.880
#> GSM1068508     2  0.0000     0.9594 0.000 1.000
#> GSM1068510     2  0.0000     0.9594 0.000 1.000
#> GSM1068512     1  0.2778     0.8952 0.952 0.048
#> GSM1068513     2  0.0000     0.9594 0.000 1.000
#> GSM1068514     1  0.1843     0.9103 0.972 0.028
#> GSM1068517     2  0.0000     0.9594 0.000 1.000
#> GSM1068518     1  0.9460     0.4320 0.636 0.364
#> GSM1068520     1  0.0000     0.9279 1.000 0.000
#> GSM1068521     1  0.0000     0.9279 1.000 0.000
#> GSM1068522     2  0.0000     0.9594 0.000 1.000
#> GSM1068524     2  0.0000     0.9594 0.000 1.000
#> GSM1068527     2  0.9000     0.5436 0.316 0.684
#> GSM1068480     1  0.0000     0.9279 1.000 0.000
#> GSM1068484     2  0.0000     0.9594 0.000 1.000
#> GSM1068485     1  0.0000     0.9279 1.000 0.000
#> GSM1068489     2  0.0000     0.9594 0.000 1.000
#> GSM1068497     2  0.0000     0.9594 0.000 1.000
#> GSM1068501     2  0.0000     0.9594 0.000 1.000
#> GSM1068504     2  0.0000     0.9594 0.000 1.000
#> GSM1068509     1  0.0938     0.9214 0.988 0.012
#> GSM1068511     1  0.0000     0.9279 1.000 0.000
#> GSM1068515     1  0.8207     0.6723 0.744 0.256
#> GSM1068516     2  0.0000     0.9594 0.000 1.000
#> GSM1068519     1  0.0000     0.9279 1.000 0.000
#> GSM1068523     2  0.0000     0.9594 0.000 1.000
#> GSM1068525     2  0.0000     0.9594 0.000 1.000
#> GSM1068526     2  0.0000     0.9594 0.000 1.000
#> GSM1068458     1  0.0000     0.9279 1.000 0.000
#> GSM1068459     1  0.0000     0.9279 1.000 0.000
#> GSM1068460     2  0.8016     0.6796 0.244 0.756
#> GSM1068461     1  0.0000     0.9279 1.000 0.000
#> GSM1068464     2  0.0000     0.9594 0.000 1.000
#> GSM1068468     2  0.0000     0.9594 0.000 1.000
#> GSM1068472     2  0.0000     0.9594 0.000 1.000
#> GSM1068473     2  0.0000     0.9594 0.000 1.000
#> GSM1068474     2  0.0000     0.9594 0.000 1.000
#> GSM1068476     1  0.0000     0.9279 1.000 0.000
#> GSM1068477     2  0.0000     0.9594 0.000 1.000
#> GSM1068462     2  0.0000     0.9594 0.000 1.000
#> GSM1068463     1  0.0000     0.9279 1.000 0.000
#> GSM1068465     2  0.0000     0.9594 0.000 1.000
#> GSM1068466     1  0.7139     0.7486 0.804 0.196
#> GSM1068467     2  0.0000     0.9594 0.000 1.000
#> GSM1068469     2  0.0938     0.9499 0.012 0.988
#> GSM1068470     2  0.0000     0.9594 0.000 1.000
#> GSM1068471     2  0.0000     0.9594 0.000 1.000
#> GSM1068475     2  0.0000     0.9594 0.000 1.000
#> GSM1068528     1  0.0000     0.9279 1.000 0.000
#> GSM1068531     1  0.0000     0.9279 1.000 0.000
#> GSM1068532     1  0.0000     0.9279 1.000 0.000
#> GSM1068533     1  0.0000     0.9279 1.000 0.000
#> GSM1068535     1  0.0000     0.9279 1.000 0.000
#> GSM1068537     1  0.0000     0.9279 1.000 0.000
#> GSM1068538     1  0.0000     0.9279 1.000 0.000
#> GSM1068539     2  0.0000     0.9594 0.000 1.000
#> GSM1068540     1  0.0000     0.9279 1.000 0.000
#> GSM1068542     2  0.3584     0.9032 0.068 0.932
#> GSM1068543     1  0.9732     0.3232 0.596 0.404
#> GSM1068544     1  0.0000     0.9279 1.000 0.000
#> GSM1068545     2  0.0000     0.9594 0.000 1.000
#> GSM1068546     1  0.0000     0.9279 1.000 0.000
#> GSM1068547     1  0.0000     0.9279 1.000 0.000
#> GSM1068548     2  0.5737     0.8317 0.136 0.864
#> GSM1068549     1  0.0000     0.9279 1.000 0.000
#> GSM1068550     2  0.0000     0.9594 0.000 1.000
#> GSM1068551     2  0.0000     0.9594 0.000 1.000
#> GSM1068552     2  0.0000     0.9594 0.000 1.000
#> GSM1068555     2  0.0000     0.9594 0.000 1.000
#> GSM1068556     1  0.9954     0.1443 0.540 0.460
#> GSM1068557     2  0.0000     0.9594 0.000 1.000
#> GSM1068560     2  0.5294     0.8505 0.120 0.880
#> GSM1068561     2  0.0000     0.9594 0.000 1.000
#> GSM1068562     2  0.4431     0.8795 0.092 0.908
#> GSM1068563     2  0.7219     0.7470 0.200 0.800
#> GSM1068565     2  0.0000     0.9594 0.000 1.000
#> GSM1068529     1  0.4939     0.8464 0.892 0.108
#> GSM1068530     1  0.0000     0.9279 1.000 0.000
#> GSM1068534     1  0.2423     0.9028 0.960 0.040
#> GSM1068536     2  0.3274     0.9057 0.060 0.940
#> GSM1068541     2  0.0000     0.9594 0.000 1.000
#> GSM1068553     1  0.5178     0.8325 0.884 0.116
#> GSM1068554     2  0.0000     0.9594 0.000 1.000
#> GSM1068558     2  0.9977     0.0530 0.472 0.528
#> GSM1068559     1  0.1184     0.9188 0.984 0.016
#> GSM1068564     2  0.0000     0.9594 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1068478     1  0.4702     0.6837 0.788 0.212 0.000
#> GSM1068479     3  0.6235     0.2494 0.000 0.436 0.564
#> GSM1068481     3  0.1031     0.8387 0.024 0.000 0.976
#> GSM1068482     3  0.2448     0.8078 0.076 0.000 0.924
#> GSM1068483     1  0.0424     0.8679 0.992 0.000 0.008
#> GSM1068486     3  0.0747     0.8407 0.016 0.000 0.984
#> GSM1068487     2  0.0747     0.8951 0.000 0.984 0.016
#> GSM1068488     3  0.9717     0.1384 0.220 0.384 0.396
#> GSM1068490     2  0.0592     0.8956 0.000 0.988 0.012
#> GSM1068491     3  0.0237     0.8408 0.004 0.000 0.996
#> GSM1068492     3  0.4178     0.7339 0.000 0.172 0.828
#> GSM1068493     2  0.4540     0.7819 0.028 0.848 0.124
#> GSM1068494     1  0.3879     0.7548 0.848 0.000 0.152
#> GSM1068495     2  0.4452     0.7403 0.192 0.808 0.000
#> GSM1068496     1  0.0592     0.8671 0.988 0.000 0.012
#> GSM1068498     2  0.6267     0.1465 0.452 0.548 0.000
#> GSM1068499     1  0.3038     0.8056 0.896 0.000 0.104
#> GSM1068500     1  0.1289     0.8578 0.968 0.000 0.032
#> GSM1068502     3  0.5882     0.4716 0.000 0.348 0.652
#> GSM1068503     2  0.0747     0.8951 0.000 0.984 0.016
#> GSM1068505     2  0.2173     0.8780 0.048 0.944 0.008
#> GSM1068506     2  0.0237     0.8961 0.000 0.996 0.004
#> GSM1068507     2  0.3670     0.8335 0.092 0.888 0.020
#> GSM1068508     2  0.0592     0.8930 0.012 0.988 0.000
#> GSM1068510     2  0.4654     0.7021 0.000 0.792 0.208
#> GSM1068512     1  0.5858     0.6087 0.740 0.240 0.020
#> GSM1068513     2  0.0747     0.8951 0.000 0.984 0.016
#> GSM1068514     3  0.1031     0.8379 0.000 0.024 0.976
#> GSM1068517     2  0.3551     0.8066 0.132 0.868 0.000
#> GSM1068518     2  0.6647     0.2067 0.452 0.540 0.008
#> GSM1068520     1  0.0237     0.8670 0.996 0.004 0.000
#> GSM1068521     1  0.0475     0.8677 0.992 0.004 0.004
#> GSM1068522     2  0.0592     0.8956 0.000 0.988 0.012
#> GSM1068524     2  0.0747     0.8951 0.000 0.984 0.016
#> GSM1068527     1  0.3682     0.7809 0.876 0.116 0.008
#> GSM1068480     3  0.0747     0.8407 0.016 0.000 0.984
#> GSM1068484     2  0.0747     0.8951 0.000 0.984 0.016
#> GSM1068485     3  0.1163     0.8375 0.028 0.000 0.972
#> GSM1068489     2  0.0747     0.8951 0.000 0.984 0.016
#> GSM1068497     2  0.5882     0.4471 0.348 0.652 0.000
#> GSM1068501     2  0.0747     0.8951 0.000 0.984 0.016
#> GSM1068504     2  0.0592     0.8956 0.000 0.988 0.012
#> GSM1068509     1  0.2590     0.8281 0.924 0.072 0.004
#> GSM1068511     3  0.6026     0.3174 0.376 0.000 0.624
#> GSM1068515     1  0.7519     0.3163 0.568 0.388 0.044
#> GSM1068516     2  0.0424     0.8960 0.000 0.992 0.008
#> GSM1068519     1  0.0424     0.8679 0.992 0.000 0.008
#> GSM1068523     2  0.0237     0.8952 0.004 0.996 0.000
#> GSM1068525     2  0.0747     0.8951 0.000 0.984 0.016
#> GSM1068526     2  0.0747     0.8951 0.000 0.984 0.016
#> GSM1068458     1  0.0237     0.8681 0.996 0.000 0.004
#> GSM1068459     3  0.1411     0.8347 0.036 0.000 0.964
#> GSM1068460     1  0.0892     0.8614 0.980 0.020 0.000
#> GSM1068461     3  0.0747     0.8407 0.016 0.000 0.984
#> GSM1068464     2  0.0424     0.8960 0.000 0.992 0.008
#> GSM1068468     2  0.0661     0.8956 0.004 0.988 0.008
#> GSM1068472     2  0.0237     0.8952 0.004 0.996 0.000
#> GSM1068473     2  0.0592     0.8956 0.000 0.988 0.012
#> GSM1068474     2  0.0237     0.8959 0.000 0.996 0.004
#> GSM1068476     3  0.0747     0.8394 0.000 0.016 0.984
#> GSM1068477     2  0.0747     0.8913 0.016 0.984 0.000
#> GSM1068462     2  0.3349     0.8199 0.004 0.888 0.108
#> GSM1068463     3  0.2796     0.7923 0.092 0.000 0.908
#> GSM1068465     1  0.5678     0.5353 0.684 0.316 0.000
#> GSM1068466     1  0.3412     0.7779 0.876 0.124 0.000
#> GSM1068467     2  0.0475     0.8955 0.004 0.992 0.004
#> GSM1068469     2  0.1529     0.8792 0.040 0.960 0.000
#> GSM1068470     2  0.0424     0.8942 0.008 0.992 0.000
#> GSM1068471     2  0.0237     0.8959 0.000 0.996 0.004
#> GSM1068475     2  0.0237     0.8952 0.004 0.996 0.000
#> GSM1068528     1  0.0592     0.8674 0.988 0.000 0.012
#> GSM1068531     1  0.0237     0.8681 0.996 0.000 0.004
#> GSM1068532     1  0.0892     0.8640 0.980 0.000 0.020
#> GSM1068533     1  0.0424     0.8679 0.992 0.000 0.008
#> GSM1068535     1  0.5529     0.5481 0.704 0.000 0.296
#> GSM1068537     1  0.0592     0.8671 0.988 0.000 0.012
#> GSM1068538     1  0.0592     0.8671 0.988 0.000 0.012
#> GSM1068539     2  0.2959     0.8392 0.100 0.900 0.000
#> GSM1068540     1  0.0237     0.8681 0.996 0.000 0.004
#> GSM1068542     2  0.5420     0.6680 0.240 0.752 0.008
#> GSM1068543     2  0.9048     0.3424 0.288 0.540 0.172
#> GSM1068544     1  0.2165     0.8384 0.936 0.000 0.064
#> GSM1068545     2  0.0237     0.8952 0.004 0.996 0.000
#> GSM1068546     3  0.0747     0.8407 0.016 0.000 0.984
#> GSM1068547     1  0.0424     0.8658 0.992 0.008 0.000
#> GSM1068548     2  0.6577     0.3041 0.420 0.572 0.008
#> GSM1068549     3  0.0592     0.8408 0.012 0.000 0.988
#> GSM1068550     2  0.1950     0.8804 0.040 0.952 0.008
#> GSM1068551     2  0.0237     0.8952 0.004 0.996 0.000
#> GSM1068552     2  0.0829     0.8956 0.004 0.984 0.012
#> GSM1068555     2  0.0237     0.8952 0.004 0.996 0.000
#> GSM1068556     2  0.6848     0.3005 0.416 0.568 0.016
#> GSM1068557     2  0.0424     0.8942 0.008 0.992 0.000
#> GSM1068560     2  0.5797     0.6164 0.280 0.712 0.008
#> GSM1068561     2  0.0592     0.8930 0.012 0.988 0.000
#> GSM1068562     2  0.1905     0.8846 0.028 0.956 0.016
#> GSM1068563     2  0.5455     0.7069 0.028 0.788 0.184
#> GSM1068565     2  0.0237     0.8952 0.004 0.996 0.000
#> GSM1068529     3  0.3851     0.7698 0.004 0.136 0.860
#> GSM1068530     1  0.0237     0.8670 0.996 0.004 0.000
#> GSM1068534     3  0.7244     0.6224 0.092 0.208 0.700
#> GSM1068536     1  0.3816     0.7601 0.852 0.148 0.000
#> GSM1068541     2  0.3482     0.8106 0.128 0.872 0.000
#> GSM1068553     1  0.9649    -0.0643 0.404 0.208 0.388
#> GSM1068554     2  0.2356     0.8619 0.000 0.928 0.072
#> GSM1068558     3  0.1163     0.8373 0.000 0.028 0.972
#> GSM1068559     3  0.1031     0.8383 0.000 0.024 0.976
#> GSM1068564     2  0.0592     0.8956 0.000 0.988 0.012
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1068478     1  0.4982      0.797 0.772 0.136 0.000 0.092
#> GSM1068479     3  0.5298      0.390 0.000 0.372 0.612 0.016
#> GSM1068481     3  0.3008      0.859 0.044 0.020 0.904 0.032
#> GSM1068482     3  0.1637      0.866 0.060 0.000 0.940 0.000
#> GSM1068483     1  0.1576      0.907 0.948 0.048 0.000 0.004
#> GSM1068486     3  0.0895      0.882 0.004 0.000 0.976 0.020
#> GSM1068487     2  0.3266      0.791 0.000 0.832 0.000 0.168
#> GSM1068488     4  0.3105      0.795 0.140 0.000 0.004 0.856
#> GSM1068490     2  0.3219      0.813 0.000 0.836 0.000 0.164
#> GSM1068491     3  0.0000      0.882 0.000 0.000 1.000 0.000
#> GSM1068492     3  0.2984      0.830 0.000 0.028 0.888 0.084
#> GSM1068493     2  0.1305      0.882 0.036 0.960 0.004 0.000
#> GSM1068494     1  0.3402      0.862 0.832 0.000 0.004 0.164
#> GSM1068495     2  0.7093      0.172 0.396 0.476 0.000 0.128
#> GSM1068496     1  0.0937      0.917 0.976 0.012 0.000 0.012
#> GSM1068498     2  0.3691      0.819 0.076 0.856 0.000 0.068
#> GSM1068499     1  0.4101      0.868 0.848 0.024 0.036 0.092
#> GSM1068500     1  0.2170      0.905 0.936 0.036 0.016 0.012
#> GSM1068502     3  0.4630      0.632 0.000 0.252 0.732 0.016
#> GSM1068503     4  0.3907      0.767 0.000 0.232 0.000 0.768
#> GSM1068505     4  0.2401      0.827 0.004 0.092 0.000 0.904
#> GSM1068506     4  0.3311      0.809 0.000 0.172 0.000 0.828
#> GSM1068507     4  0.3570      0.824 0.048 0.092 0.000 0.860
#> GSM1068508     2  0.1637      0.891 0.000 0.940 0.000 0.060
#> GSM1068510     4  0.3306      0.816 0.000 0.156 0.004 0.840
#> GSM1068512     4  0.4277      0.695 0.280 0.000 0.000 0.720
#> GSM1068513     4  0.4713      0.532 0.000 0.360 0.000 0.640
#> GSM1068514     3  0.1792      0.857 0.000 0.000 0.932 0.068
#> GSM1068517     2  0.2844      0.852 0.052 0.900 0.000 0.048
#> GSM1068518     4  0.5473      0.515 0.324 0.032 0.000 0.644
#> GSM1068520     1  0.1059      0.913 0.972 0.016 0.000 0.012
#> GSM1068521     1  0.1807      0.909 0.940 0.008 0.000 0.052
#> GSM1068522     4  0.3528      0.787 0.000 0.192 0.000 0.808
#> GSM1068524     4  0.4585      0.659 0.000 0.332 0.000 0.668
#> GSM1068527     4  0.3172      0.766 0.160 0.000 0.000 0.840
#> GSM1068480     3  0.0921      0.880 0.000 0.000 0.972 0.028
#> GSM1068484     4  0.3024      0.807 0.000 0.148 0.000 0.852
#> GSM1068485     3  0.0804      0.882 0.012 0.008 0.980 0.000
#> GSM1068489     4  0.2469      0.815 0.000 0.108 0.000 0.892
#> GSM1068497     2  0.3009      0.846 0.056 0.892 0.000 0.052
#> GSM1068501     4  0.2814      0.811 0.000 0.132 0.000 0.868
#> GSM1068504     2  0.1557      0.892 0.000 0.944 0.000 0.056
#> GSM1068509     1  0.2928      0.885 0.880 0.012 0.000 0.108
#> GSM1068511     4  0.5035      0.736 0.204 0.000 0.052 0.744
#> GSM1068515     2  0.4397      0.784 0.120 0.820 0.008 0.052
#> GSM1068516     4  0.2831      0.813 0.004 0.120 0.000 0.876
#> GSM1068519     1  0.2921      0.882 0.860 0.000 0.000 0.140
#> GSM1068523     2  0.2589      0.869 0.000 0.884 0.000 0.116
#> GSM1068525     4  0.3219      0.801 0.000 0.164 0.000 0.836
#> GSM1068526     4  0.1792      0.831 0.000 0.068 0.000 0.932
#> GSM1068458     1  0.2796      0.874 0.892 0.016 0.000 0.092
#> GSM1068459     3  0.0817      0.881 0.024 0.000 0.976 0.000
#> GSM1068460     1  0.0592      0.915 0.984 0.000 0.000 0.016
#> GSM1068461     3  0.0188      0.883 0.000 0.000 0.996 0.004
#> GSM1068464     2  0.1474      0.895 0.000 0.948 0.000 0.052
#> GSM1068468     2  0.0657      0.896 0.004 0.984 0.000 0.012
#> GSM1068472     2  0.0937      0.893 0.012 0.976 0.000 0.012
#> GSM1068473     2  0.3486      0.779 0.000 0.812 0.000 0.188
#> GSM1068474     2  0.1716      0.891 0.000 0.936 0.000 0.064
#> GSM1068476     3  0.0000      0.882 0.000 0.000 1.000 0.000
#> GSM1068477     2  0.1118      0.895 0.000 0.964 0.000 0.036
#> GSM1068462     2  0.1739      0.880 0.016 0.952 0.024 0.008
#> GSM1068463     3  0.4464      0.680 0.224 0.004 0.760 0.012
#> GSM1068465     1  0.5798      0.698 0.696 0.208 0.000 0.096
#> GSM1068466     1  0.3464      0.872 0.868 0.076 0.000 0.056
#> GSM1068467     2  0.0672      0.894 0.008 0.984 0.000 0.008
#> GSM1068469     2  0.1545      0.880 0.040 0.952 0.000 0.008
#> GSM1068470     2  0.1389      0.898 0.000 0.952 0.000 0.048
#> GSM1068471     2  0.1022      0.898 0.000 0.968 0.000 0.032
#> GSM1068475     2  0.1211      0.897 0.000 0.960 0.000 0.040
#> GSM1068528     1  0.0937      0.914 0.976 0.012 0.000 0.012
#> GSM1068531     1  0.1389      0.909 0.952 0.000 0.000 0.048
#> GSM1068532     1  0.1118      0.910 0.964 0.000 0.000 0.036
#> GSM1068533     1  0.2469      0.873 0.892 0.000 0.000 0.108
#> GSM1068535     4  0.3764      0.714 0.216 0.000 0.000 0.784
#> GSM1068537     1  0.1302      0.911 0.956 0.000 0.000 0.044
#> GSM1068538     1  0.1474      0.910 0.948 0.000 0.000 0.052
#> GSM1068539     2  0.5188      0.705 0.044 0.716 0.000 0.240
#> GSM1068540     1  0.1557      0.913 0.944 0.000 0.000 0.056
#> GSM1068542     4  0.2216      0.805 0.092 0.000 0.000 0.908
#> GSM1068543     4  0.2412      0.809 0.084 0.000 0.008 0.908
#> GSM1068544     1  0.1042      0.913 0.972 0.008 0.020 0.000
#> GSM1068545     4  0.4941      0.427 0.000 0.436 0.000 0.564
#> GSM1068546     3  0.1489      0.876 0.004 0.000 0.952 0.044
#> GSM1068547     1  0.1022      0.913 0.968 0.000 0.000 0.032
#> GSM1068548     4  0.2469      0.801 0.108 0.000 0.000 0.892
#> GSM1068549     3  0.0000      0.882 0.000 0.000 1.000 0.000
#> GSM1068550     4  0.3597      0.827 0.016 0.148 0.000 0.836
#> GSM1068551     2  0.2216      0.871 0.000 0.908 0.000 0.092
#> GSM1068552     4  0.2973      0.816 0.000 0.144 0.000 0.856
#> GSM1068555     2  0.0921      0.898 0.000 0.972 0.000 0.028
#> GSM1068556     4  0.3569      0.777 0.196 0.000 0.000 0.804
#> GSM1068557     2  0.1042      0.896 0.008 0.972 0.000 0.020
#> GSM1068560     4  0.3108      0.801 0.112 0.016 0.000 0.872
#> GSM1068561     2  0.1389      0.897 0.000 0.952 0.000 0.048
#> GSM1068562     4  0.3484      0.822 0.008 0.144 0.004 0.844
#> GSM1068563     4  0.5435      0.748 0.016 0.056 0.180 0.748
#> GSM1068565     2  0.1940      0.883 0.000 0.924 0.000 0.076
#> GSM1068529     3  0.4692      0.726 0.000 0.032 0.756 0.212
#> GSM1068530     1  0.0469      0.916 0.988 0.000 0.000 0.012
#> GSM1068534     4  0.5460      0.727 0.028 0.068 0.136 0.768
#> GSM1068536     1  0.4318      0.852 0.816 0.068 0.000 0.116
#> GSM1068541     2  0.3796      0.836 0.056 0.848 0.000 0.096
#> GSM1068553     4  0.2647      0.792 0.120 0.000 0.000 0.880
#> GSM1068554     4  0.2859      0.824 0.000 0.112 0.008 0.880
#> GSM1068558     3  0.5024      0.391 0.000 0.008 0.632 0.360
#> GSM1068559     3  0.1174      0.879 0.000 0.012 0.968 0.020
#> GSM1068564     4  0.4072      0.770 0.000 0.252 0.000 0.748
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1068478     1  0.3910     0.7004 0.772 0.196 0.000 0.000 0.032
#> GSM1068479     3  0.4639     0.4448 0.000 0.344 0.632 0.024 0.000
#> GSM1068481     3  0.4072     0.7738 0.152 0.008 0.792 0.048 0.000
#> GSM1068482     3  0.2329     0.8165 0.124 0.000 0.876 0.000 0.000
#> GSM1068483     1  0.0451     0.8447 0.988 0.008 0.004 0.000 0.000
#> GSM1068486     3  0.1124     0.8610 0.004 0.000 0.960 0.036 0.000
#> GSM1068487     2  0.5068     0.3476 0.000 0.592 0.000 0.364 0.044
#> GSM1068488     5  0.2878     0.6561 0.068 0.000 0.004 0.048 0.880
#> GSM1068490     2  0.4576     0.3811 0.000 0.608 0.000 0.376 0.016
#> GSM1068491     3  0.0000     0.8655 0.000 0.000 1.000 0.000 0.000
#> GSM1068492     3  0.2673     0.8233 0.000 0.024 0.900 0.048 0.028
#> GSM1068493     2  0.1571     0.8466 0.060 0.936 0.000 0.004 0.000
#> GSM1068494     5  0.4512     0.3976 0.300 0.000 0.020 0.004 0.676
#> GSM1068495     5  0.4841     0.5549 0.160 0.104 0.000 0.004 0.732
#> GSM1068496     1  0.0703     0.8433 0.976 0.000 0.000 0.000 0.024
#> GSM1068498     2  0.1851     0.8258 0.088 0.912 0.000 0.000 0.000
#> GSM1068499     1  0.4808     0.6628 0.696 0.012 0.020 0.008 0.264
#> GSM1068500     1  0.0162     0.8446 0.996 0.000 0.004 0.000 0.000
#> GSM1068502     3  0.3779     0.7397 0.000 0.124 0.816 0.056 0.004
#> GSM1068503     4  0.6396     0.4448 0.000 0.280 0.000 0.508 0.212
#> GSM1068505     4  0.4108     0.6136 0.000 0.008 0.000 0.684 0.308
#> GSM1068506     4  0.5309     0.6069 0.000 0.092 0.000 0.644 0.264
#> GSM1068507     4  0.1205     0.6507 0.004 0.040 0.000 0.956 0.000
#> GSM1068508     2  0.1915     0.8613 0.000 0.928 0.000 0.040 0.032
#> GSM1068510     4  0.5082     0.6241 0.000 0.052 0.012 0.680 0.256
#> GSM1068512     5  0.5086     0.5162 0.156 0.000 0.000 0.144 0.700
#> GSM1068513     4  0.3060     0.6361 0.000 0.128 0.000 0.848 0.024
#> GSM1068514     3  0.1012     0.8624 0.000 0.000 0.968 0.020 0.012
#> GSM1068517     2  0.1341     0.8460 0.056 0.944 0.000 0.000 0.000
#> GSM1068518     5  0.2377     0.6419 0.128 0.000 0.000 0.000 0.872
#> GSM1068520     1  0.0671     0.8455 0.980 0.004 0.000 0.016 0.000
#> GSM1068521     1  0.1197     0.8384 0.952 0.000 0.000 0.000 0.048
#> GSM1068522     4  0.1704     0.6495 0.000 0.068 0.000 0.928 0.004
#> GSM1068524     5  0.5739     0.2565 0.000 0.344 0.000 0.100 0.556
#> GSM1068527     5  0.1484     0.6668 0.048 0.000 0.000 0.008 0.944
#> GSM1068480     3  0.1043     0.8586 0.000 0.000 0.960 0.000 0.040
#> GSM1068484     5  0.2423     0.6213 0.000 0.024 0.000 0.080 0.896
#> GSM1068485     3  0.0324     0.8660 0.004 0.000 0.992 0.000 0.004
#> GSM1068489     4  0.4306     0.3459 0.000 0.000 0.000 0.508 0.492
#> GSM1068497     2  0.1478     0.8417 0.064 0.936 0.000 0.000 0.000
#> GSM1068501     4  0.4014     0.5781 0.000 0.016 0.000 0.728 0.256
#> GSM1068504     2  0.1549     0.8625 0.000 0.944 0.000 0.040 0.016
#> GSM1068509     1  0.4567     0.5481 0.628 0.012 0.000 0.004 0.356
#> GSM1068511     5  0.6796     0.3855 0.124 0.000 0.136 0.128 0.612
#> GSM1068515     2  0.5298     0.6823 0.140 0.736 0.016 0.016 0.092
#> GSM1068516     5  0.0671     0.6602 0.000 0.016 0.000 0.004 0.980
#> GSM1068519     1  0.5373     0.6458 0.620 0.000 0.000 0.084 0.296
#> GSM1068523     2  0.3906     0.5778 0.000 0.704 0.000 0.004 0.292
#> GSM1068525     5  0.0912     0.6600 0.000 0.012 0.000 0.016 0.972
#> GSM1068526     4  0.4961     0.4172 0.000 0.028 0.000 0.524 0.448
#> GSM1068458     1  0.3884     0.6807 0.708 0.000 0.004 0.288 0.000
#> GSM1068459     3  0.1410     0.8529 0.060 0.000 0.940 0.000 0.000
#> GSM1068460     1  0.2777     0.8238 0.864 0.000 0.000 0.120 0.016
#> GSM1068461     3  0.0162     0.8660 0.000 0.004 0.996 0.000 0.000
#> GSM1068464     2  0.2719     0.7989 0.000 0.852 0.000 0.144 0.004
#> GSM1068468     2  0.0794     0.8651 0.000 0.972 0.000 0.028 0.000
#> GSM1068472     2  0.0865     0.8650 0.000 0.972 0.004 0.024 0.000
#> GSM1068473     2  0.4420     0.2122 0.000 0.548 0.000 0.448 0.004
#> GSM1068474     2  0.2471     0.8067 0.000 0.864 0.000 0.136 0.000
#> GSM1068476     3  0.0671     0.8660 0.000 0.004 0.980 0.016 0.000
#> GSM1068477     2  0.1341     0.8604 0.000 0.944 0.000 0.056 0.000
#> GSM1068462     2  0.1931     0.8412 0.008 0.932 0.048 0.004 0.008
#> GSM1068463     3  0.4731     0.1722 0.456 0.000 0.528 0.016 0.000
#> GSM1068465     1  0.5927     0.6330 0.652 0.188 0.000 0.024 0.136
#> GSM1068466     1  0.4250     0.8034 0.804 0.012 0.004 0.092 0.088
#> GSM1068467     2  0.0451     0.8623 0.000 0.988 0.000 0.004 0.008
#> GSM1068469     2  0.1041     0.8538 0.032 0.964 0.004 0.000 0.000
#> GSM1068470     2  0.1041     0.8624 0.000 0.964 0.000 0.004 0.032
#> GSM1068471     2  0.1704     0.8548 0.000 0.928 0.000 0.068 0.004
#> GSM1068475     2  0.0865     0.8655 0.000 0.972 0.000 0.024 0.004
#> GSM1068528     1  0.0000     0.8446 1.000 0.000 0.000 0.000 0.000
#> GSM1068531     1  0.1792     0.8367 0.916 0.000 0.000 0.084 0.000
#> GSM1068532     1  0.1608     0.8398 0.928 0.000 0.000 0.072 0.000
#> GSM1068533     1  0.4350     0.5392 0.588 0.000 0.004 0.408 0.000
#> GSM1068535     4  0.2628     0.5823 0.088 0.000 0.000 0.884 0.028
#> GSM1068537     1  0.1608     0.8398 0.928 0.000 0.000 0.072 0.000
#> GSM1068538     1  0.3333     0.7642 0.788 0.000 0.004 0.208 0.000
#> GSM1068539     5  0.2511     0.6509 0.016 0.088 0.000 0.004 0.892
#> GSM1068540     1  0.1704     0.8318 0.928 0.000 0.000 0.004 0.068
#> GSM1068542     4  0.3980     0.6312 0.008 0.000 0.000 0.708 0.284
#> GSM1068543     5  0.2843     0.6077 0.008 0.000 0.000 0.144 0.848
#> GSM1068544     1  0.0404     0.8437 0.988 0.000 0.012 0.000 0.000
#> GSM1068545     5  0.6819    -0.2521 0.000 0.324 0.000 0.320 0.356
#> GSM1068546     3  0.3579     0.7125 0.004 0.000 0.756 0.240 0.000
#> GSM1068547     1  0.2110     0.8411 0.912 0.000 0.000 0.072 0.016
#> GSM1068548     4  0.4157     0.6298 0.020 0.000 0.000 0.716 0.264
#> GSM1068549     3  0.0324     0.8657 0.000 0.000 0.992 0.004 0.004
#> GSM1068550     5  0.5262    -0.1105 0.008 0.036 0.000 0.388 0.568
#> GSM1068551     2  0.2139     0.8493 0.000 0.916 0.000 0.032 0.052
#> GSM1068552     4  0.5353     0.5316 0.000 0.064 0.000 0.576 0.360
#> GSM1068555     2  0.1121     0.8580 0.000 0.956 0.000 0.000 0.044
#> GSM1068556     5  0.3988     0.5341 0.036 0.000 0.000 0.196 0.768
#> GSM1068557     2  0.0451     0.8634 0.000 0.988 0.000 0.008 0.004
#> GSM1068560     5  0.1357     0.6673 0.048 0.000 0.000 0.004 0.948
#> GSM1068561     5  0.5180    -0.0307 0.020 0.484 0.000 0.012 0.484
#> GSM1068562     5  0.2792     0.6439 0.004 0.040 0.000 0.072 0.884
#> GSM1068563     4  0.7849     0.3838 0.036 0.040 0.148 0.420 0.356
#> GSM1068565     2  0.2104     0.8527 0.000 0.916 0.000 0.060 0.024
#> GSM1068529     5  0.3439     0.5727 0.004 0.008 0.188 0.000 0.800
#> GSM1068530     1  0.0566     0.8463 0.984 0.000 0.000 0.012 0.004
#> GSM1068534     5  0.1891     0.6512 0.004 0.004 0.060 0.004 0.928
#> GSM1068536     1  0.5111     0.5046 0.592 0.016 0.000 0.020 0.372
#> GSM1068541     2  0.4202     0.7543 0.068 0.796 0.000 0.012 0.124
#> GSM1068553     4  0.1942     0.6443 0.012 0.000 0.000 0.920 0.068
#> GSM1068554     4  0.1377     0.6571 0.000 0.020 0.004 0.956 0.020
#> GSM1068558     5  0.3086     0.5898 0.000 0.000 0.180 0.004 0.816
#> GSM1068559     3  0.2074     0.8212 0.000 0.000 0.896 0.000 0.104
#> GSM1068564     5  0.5604    -0.4303 0.000 0.072 0.000 0.460 0.468
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1068478     1  0.5205     0.4136 0.580 0.336 0.000 0.004 0.008 0.072
#> GSM1068479     3  0.3087     0.7154 0.000 0.176 0.808 0.012 0.004 0.000
#> GSM1068481     3  0.5534     0.5111 0.300 0.020 0.604 0.032 0.044 0.000
#> GSM1068482     3  0.2773     0.8013 0.152 0.000 0.836 0.000 0.004 0.008
#> GSM1068483     1  0.0405     0.7764 0.988 0.008 0.000 0.004 0.000 0.000
#> GSM1068486     3  0.1452     0.8703 0.012 0.000 0.948 0.020 0.020 0.000
#> GSM1068487     2  0.4516     0.3137 0.000 0.564 0.000 0.400 0.036 0.000
#> GSM1068488     6  0.4457     0.1604 0.004 0.000 0.012 0.364 0.012 0.608
#> GSM1068490     4  0.4449     0.0499 0.000 0.440 0.000 0.532 0.028 0.000
#> GSM1068491     3  0.0000     0.8766 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068492     3  0.2809     0.7904 0.000 0.004 0.848 0.128 0.000 0.020
#> GSM1068493     2  0.1294     0.8163 0.024 0.956 0.000 0.004 0.008 0.008
#> GSM1068494     6  0.1956     0.6561 0.080 0.000 0.000 0.004 0.008 0.908
#> GSM1068495     6  0.2827     0.6590 0.052 0.040 0.000 0.024 0.004 0.880
#> GSM1068496     1  0.1268     0.7717 0.952 0.000 0.000 0.008 0.004 0.036
#> GSM1068498     2  0.1636     0.8019 0.024 0.936 0.000 0.004 0.000 0.036
#> GSM1068499     6  0.7072     0.3256 0.208 0.020 0.064 0.000 0.224 0.484
#> GSM1068500     1  0.0767     0.7761 0.976 0.008 0.000 0.000 0.012 0.004
#> GSM1068502     3  0.2950     0.7607 0.000 0.024 0.828 0.148 0.000 0.000
#> GSM1068503     4  0.4142     0.6172 0.000 0.200 0.000 0.744 0.028 0.028
#> GSM1068505     4  0.4680     0.5431 0.000 0.000 0.000 0.680 0.200 0.120
#> GSM1068506     4  0.2645     0.6940 0.008 0.052 0.000 0.888 0.008 0.044
#> GSM1068507     5  0.3314     0.7385 0.000 0.004 0.000 0.256 0.740 0.000
#> GSM1068508     2  0.2346     0.7805 0.000 0.868 0.000 0.124 0.008 0.000
#> GSM1068510     5  0.4913     0.7131 0.000 0.000 0.040 0.180 0.704 0.076
#> GSM1068512     4  0.5920     0.3744 0.144 0.000 0.004 0.516 0.012 0.324
#> GSM1068513     5  0.4127     0.6894 0.000 0.036 0.000 0.284 0.680 0.000
#> GSM1068514     3  0.0862     0.8753 0.000 0.000 0.972 0.016 0.004 0.008
#> GSM1068517     2  0.1036     0.8124 0.008 0.964 0.000 0.004 0.000 0.024
#> GSM1068518     6  0.1924     0.6666 0.024 0.004 0.004 0.036 0.004 0.928
#> GSM1068520     1  0.2358     0.7667 0.908 0.016 0.000 0.012 0.044 0.020
#> GSM1068521     6  0.6257    -0.0901 0.412 0.028 0.000 0.008 0.120 0.432
#> GSM1068522     4  0.3312     0.5065 0.000 0.028 0.000 0.792 0.180 0.000
#> GSM1068524     2  0.6375    -0.0436 0.000 0.400 0.000 0.240 0.016 0.344
#> GSM1068527     6  0.1657     0.6563 0.000 0.000 0.000 0.056 0.016 0.928
#> GSM1068480     3  0.1010     0.8691 0.000 0.000 0.960 0.000 0.004 0.036
#> GSM1068484     6  0.3534     0.4704 0.000 0.000 0.000 0.244 0.016 0.740
#> GSM1068485     3  0.0146     0.8773 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM1068489     4  0.5149     0.3288 0.000 0.000 0.000 0.476 0.440 0.084
#> GSM1068497     2  0.1854     0.8040 0.016 0.932 0.000 0.004 0.020 0.028
#> GSM1068501     5  0.2088     0.6605 0.000 0.000 0.000 0.028 0.904 0.068
#> GSM1068504     2  0.1686     0.8149 0.000 0.924 0.000 0.064 0.012 0.000
#> GSM1068509     1  0.5787     0.0752 0.444 0.000 0.000 0.000 0.180 0.376
#> GSM1068511     1  0.7398     0.1628 0.444 0.000 0.216 0.208 0.012 0.120
#> GSM1068515     2  0.5096     0.5836 0.064 0.688 0.000 0.012 0.208 0.028
#> GSM1068516     6  0.2006     0.6577 0.000 0.000 0.000 0.016 0.080 0.904
#> GSM1068519     5  0.3807     0.5008 0.052 0.000 0.000 0.000 0.756 0.192
#> GSM1068523     2  0.4175     0.6060 0.000 0.716 0.000 0.016 0.028 0.240
#> GSM1068525     6  0.2501     0.6297 0.000 0.000 0.004 0.108 0.016 0.872
#> GSM1068526     4  0.2738     0.6992 0.000 0.000 0.000 0.820 0.004 0.176
#> GSM1068458     1  0.4526     0.6416 0.708 0.004 0.000 0.100 0.188 0.000
#> GSM1068459     3  0.2527     0.7941 0.168 0.000 0.832 0.000 0.000 0.000
#> GSM1068460     1  0.5063     0.6536 0.704 0.004 0.000 0.072 0.172 0.048
#> GSM1068461     3  0.0622     0.8777 0.012 0.000 0.980 0.000 0.008 0.000
#> GSM1068464     2  0.3979     0.4510 0.000 0.628 0.000 0.360 0.012 0.000
#> GSM1068468     2  0.0858     0.8193 0.000 0.968 0.000 0.028 0.004 0.000
#> GSM1068472     2  0.0858     0.8183 0.000 0.968 0.000 0.028 0.004 0.000
#> GSM1068473     2  0.5643     0.3729 0.000 0.536 0.000 0.248 0.216 0.000
#> GSM1068474     2  0.2412     0.7955 0.000 0.880 0.000 0.092 0.028 0.000
#> GSM1068476     3  0.0632     0.8764 0.000 0.000 0.976 0.000 0.024 0.000
#> GSM1068477     2  0.1745     0.8169 0.000 0.924 0.000 0.056 0.020 0.000
#> GSM1068462     2  0.2695     0.7382 0.000 0.844 0.004 0.000 0.144 0.008
#> GSM1068463     1  0.4405     0.2586 0.604 0.000 0.368 0.008 0.020 0.000
#> GSM1068465     1  0.6681     0.4283 0.556 0.168 0.000 0.064 0.192 0.020
#> GSM1068466     5  0.5447    -0.1133 0.396 0.040 0.000 0.004 0.524 0.036
#> GSM1068467     2  0.0551     0.8174 0.000 0.984 0.000 0.004 0.008 0.004
#> GSM1068469     2  0.0924     0.8155 0.008 0.972 0.004 0.000 0.008 0.008
#> GSM1068470     2  0.0790     0.8187 0.000 0.968 0.000 0.032 0.000 0.000
#> GSM1068471     2  0.2019     0.8041 0.000 0.900 0.000 0.088 0.012 0.000
#> GSM1068475     2  0.1082     0.8171 0.000 0.956 0.000 0.040 0.004 0.000
#> GSM1068528     1  0.1026     0.7763 0.968 0.008 0.000 0.004 0.008 0.012
#> GSM1068531     1  0.3371     0.6784 0.780 0.000 0.000 0.004 0.200 0.016
#> GSM1068532     1  0.0622     0.7763 0.980 0.000 0.000 0.012 0.008 0.000
#> GSM1068533     1  0.4631     0.6093 0.692 0.000 0.000 0.168 0.140 0.000
#> GSM1068535     5  0.3813     0.7493 0.024 0.000 0.000 0.224 0.744 0.008
#> GSM1068537     1  0.0603     0.7755 0.980 0.000 0.000 0.016 0.004 0.000
#> GSM1068538     1  0.3055     0.7364 0.840 0.000 0.000 0.064 0.096 0.000
#> GSM1068539     6  0.2647     0.6624 0.024 0.032 0.000 0.032 0.016 0.896
#> GSM1068540     1  0.2114     0.7548 0.904 0.000 0.000 0.008 0.012 0.076
#> GSM1068542     4  0.3368     0.6924 0.004 0.000 0.000 0.820 0.060 0.116
#> GSM1068543     6  0.3134     0.5306 0.004 0.000 0.004 0.208 0.000 0.784
#> GSM1068544     1  0.1625     0.7553 0.928 0.000 0.060 0.000 0.000 0.012
#> GSM1068545     4  0.4809     0.6251 0.004 0.188 0.000 0.680 0.000 0.128
#> GSM1068546     5  0.4899     0.6243 0.004 0.000 0.216 0.104 0.672 0.004
#> GSM1068547     1  0.3103     0.7503 0.856 0.000 0.000 0.024 0.076 0.044
#> GSM1068548     4  0.2737     0.7032 0.024 0.000 0.000 0.868 0.012 0.096
#> GSM1068549     3  0.0363     0.8772 0.000 0.000 0.988 0.000 0.012 0.000
#> GSM1068550     4  0.3741     0.5814 0.000 0.000 0.000 0.672 0.008 0.320
#> GSM1068551     2  0.3969     0.4819 0.000 0.652 0.000 0.332 0.000 0.016
#> GSM1068552     4  0.2595     0.7062 0.000 0.004 0.000 0.836 0.000 0.160
#> GSM1068555     2  0.1296     0.8162 0.000 0.952 0.000 0.012 0.004 0.032
#> GSM1068556     4  0.4025     0.4048 0.008 0.000 0.000 0.576 0.000 0.416
#> GSM1068557     2  0.0893     0.8167 0.004 0.972 0.000 0.004 0.004 0.016
#> GSM1068560     6  0.1462     0.6562 0.000 0.000 0.000 0.056 0.008 0.936
#> GSM1068561     6  0.4784     0.1737 0.024 0.404 0.000 0.004 0.012 0.556
#> GSM1068562     6  0.3050     0.4956 0.000 0.000 0.000 0.236 0.000 0.764
#> GSM1068563     4  0.4721     0.6531 0.028 0.008 0.104 0.752 0.004 0.104
#> GSM1068565     2  0.2118     0.7926 0.000 0.888 0.000 0.104 0.008 0.000
#> GSM1068529     6  0.3828     0.5314 0.000 0.004 0.288 0.012 0.000 0.696
#> GSM1068530     1  0.0405     0.7759 0.988 0.004 0.000 0.008 0.000 0.000
#> GSM1068534     6  0.7709     0.2134 0.068 0.000 0.332 0.100 0.104 0.396
#> GSM1068536     6  0.5703     0.4363 0.128 0.024 0.000 0.004 0.240 0.604
#> GSM1068541     2  0.7255     0.2801 0.220 0.480 0.000 0.084 0.192 0.024
#> GSM1068553     5  0.3470     0.7466 0.000 0.000 0.000 0.248 0.740 0.012
#> GSM1068554     5  0.3265     0.7456 0.000 0.000 0.004 0.248 0.748 0.000
#> GSM1068558     6  0.5081     0.3809 0.000 0.000 0.356 0.068 0.008 0.568
#> GSM1068559     3  0.2436     0.8210 0.000 0.000 0.880 0.000 0.088 0.032
#> GSM1068564     4  0.4264     0.6904 0.000 0.012 0.000 0.752 0.148 0.088
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#>          n disease.state(p) gender(p) k
#> SD:NMF 102         0.391757    0.7534 2
#> SD:NMF  96         0.832671    0.3825 3
#> SD:NMF 104         0.004254    0.7325 4
#> SD:NMF  92         0.007545    0.3586 5
#> SD:NMF  83         0.000926    0.0673 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 38950 rows and 108 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.319           0.603       0.813         0.2775 0.673   0.673
#> 3 3 0.488           0.579       0.827         0.7560 0.714   0.606
#> 4 4 0.510           0.615       0.846         0.0985 0.920   0.844
#> 5 5 0.553           0.594       0.819         0.0562 0.960   0.913
#> 6 6 0.522           0.570       0.787         0.0687 0.956   0.901
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1068478     2  0.8713     0.1968 0.292 0.708
#> GSM1068479     2  0.2043     0.7662 0.032 0.968
#> GSM1068481     1  0.9850     0.9169 0.572 0.428
#> GSM1068482     1  0.9996     0.7714 0.512 0.488
#> GSM1068483     1  0.9909     0.9081 0.556 0.444
#> GSM1068486     2  0.9323    -0.1166 0.348 0.652
#> GSM1068487     2  0.0000     0.7813 0.000 1.000
#> GSM1068488     2  0.2778     0.7501 0.048 0.952
#> GSM1068490     2  0.0000     0.7813 0.000 1.000
#> GSM1068491     2  0.2043     0.7662 0.032 0.968
#> GSM1068492     2  0.2043     0.7662 0.032 0.968
#> GSM1068493     2  0.8016     0.3836 0.244 0.756
#> GSM1068494     1  0.9850     0.9191 0.572 0.428
#> GSM1068495     2  0.8443     0.2803 0.272 0.728
#> GSM1068496     1  0.9866     0.9196 0.568 0.432
#> GSM1068498     2  0.8499     0.2608 0.276 0.724
#> GSM1068499     1  0.9833     0.9224 0.576 0.424
#> GSM1068500     1  0.9881     0.9181 0.564 0.436
#> GSM1068502     2  0.2043     0.7662 0.032 0.968
#> GSM1068503     2  0.0000     0.7813 0.000 1.000
#> GSM1068505     2  0.0000     0.7813 0.000 1.000
#> GSM1068506     2  0.0376     0.7801 0.004 0.996
#> GSM1068507     2  0.0000     0.7813 0.000 1.000
#> GSM1068508     2  0.0672     0.7792 0.008 0.992
#> GSM1068510     2  0.0000     0.7813 0.000 1.000
#> GSM1068512     2  0.1184     0.7767 0.016 0.984
#> GSM1068513     2  0.0000     0.7813 0.000 1.000
#> GSM1068514     2  0.2043     0.7662 0.032 0.968
#> GSM1068517     2  0.8499     0.2608 0.276 0.724
#> GSM1068518     2  0.7950     0.3955 0.240 0.760
#> GSM1068520     1  0.9996     0.8112 0.512 0.488
#> GSM1068521     2  0.9944    -0.6437 0.456 0.544
#> GSM1068522     2  0.0000     0.7813 0.000 1.000
#> GSM1068524     2  0.0000     0.7813 0.000 1.000
#> GSM1068527     2  0.0376     0.7801 0.004 0.996
#> GSM1068480     2  0.9988    -0.6816 0.480 0.520
#> GSM1068484     2  0.0000     0.7813 0.000 1.000
#> GSM1068485     2  0.9998    -0.7251 0.492 0.508
#> GSM1068489     2  0.0000     0.7813 0.000 1.000
#> GSM1068497     2  0.8608     0.2283 0.284 0.716
#> GSM1068501     2  0.0000     0.7813 0.000 1.000
#> GSM1068504     2  0.0000     0.7813 0.000 1.000
#> GSM1068509     2  0.7453     0.4782 0.212 0.788
#> GSM1068511     2  0.9608     0.2147 0.384 0.616
#> GSM1068515     2  0.9209    -0.0268 0.336 0.664
#> GSM1068516     2  0.8555     0.2467 0.280 0.720
#> GSM1068519     1  0.9815     0.9242 0.580 0.420
#> GSM1068523     2  0.0000     0.7813 0.000 1.000
#> GSM1068525     2  0.0000     0.7813 0.000 1.000
#> GSM1068526     2  0.0376     0.7801 0.004 0.996
#> GSM1068458     1  0.9775     0.9274 0.588 0.412
#> GSM1068459     1  0.9850     0.9161 0.572 0.428
#> GSM1068460     2  0.6438     0.5886 0.164 0.836
#> GSM1068461     2  0.9922    -0.5836 0.448 0.552
#> GSM1068464     2  0.0000     0.7813 0.000 1.000
#> GSM1068468     2  0.0376     0.7804 0.004 0.996
#> GSM1068472     2  0.5629     0.6468 0.132 0.868
#> GSM1068473     2  0.0000     0.7813 0.000 1.000
#> GSM1068474     2  0.0000     0.7813 0.000 1.000
#> GSM1068476     2  0.9815    -0.4818 0.420 0.580
#> GSM1068477     2  0.0000     0.7813 0.000 1.000
#> GSM1068462     2  0.6048     0.6182 0.148 0.852
#> GSM1068463     1  0.9732     0.9151 0.596 0.404
#> GSM1068465     2  0.8144     0.3417 0.252 0.748
#> GSM1068466     2  0.9998    -0.7644 0.492 0.508
#> GSM1068467     2  0.1843     0.7670 0.028 0.972
#> GSM1068469     2  0.7299     0.4977 0.204 0.796
#> GSM1068470     2  0.0000     0.7813 0.000 1.000
#> GSM1068471     2  0.0000     0.7813 0.000 1.000
#> GSM1068475     2  0.0000     0.7813 0.000 1.000
#> GSM1068528     1  0.9775     0.9247 0.588 0.412
#> GSM1068531     1  0.9686     0.9260 0.604 0.396
#> GSM1068532     1  0.9686     0.9260 0.604 0.396
#> GSM1068533     1  0.9710     0.9280 0.600 0.400
#> GSM1068535     2  0.2778     0.7508 0.048 0.952
#> GSM1068537     1  0.9686     0.9260 0.604 0.396
#> GSM1068538     1  0.9686     0.9260 0.604 0.396
#> GSM1068539     2  0.8608     0.2287 0.284 0.716
#> GSM1068540     1  0.9686     0.9260 0.604 0.396
#> GSM1068542     2  0.0376     0.7801 0.004 0.996
#> GSM1068543     2  0.0938     0.7782 0.012 0.988
#> GSM1068544     1  0.9850     0.9161 0.572 0.428
#> GSM1068545     2  0.0376     0.7801 0.004 0.996
#> GSM1068546     2  0.9977    -0.6619 0.472 0.528
#> GSM1068547     1  0.9993     0.8212 0.516 0.484
#> GSM1068548     2  0.0376     0.7801 0.004 0.996
#> GSM1068549     2  0.9922    -0.5836 0.448 0.552
#> GSM1068550     2  0.0376     0.7801 0.004 0.996
#> GSM1068551     2  0.0000     0.7813 0.000 1.000
#> GSM1068552     2  0.0376     0.7801 0.004 0.996
#> GSM1068555     2  0.0000     0.7813 0.000 1.000
#> GSM1068556     2  0.0672     0.7798 0.008 0.992
#> GSM1068557     2  0.4562     0.6953 0.096 0.904
#> GSM1068560     2  0.0376     0.7801 0.004 0.996
#> GSM1068561     2  0.8267     0.3258 0.260 0.740
#> GSM1068562     2  0.0376     0.7801 0.004 0.996
#> GSM1068563     2  0.0376     0.7801 0.004 0.996
#> GSM1068565     2  0.0000     0.7813 0.000 1.000
#> GSM1068529     2  0.5629     0.6440 0.132 0.868
#> GSM1068530     1  0.9686     0.9260 0.604 0.396
#> GSM1068534     2  0.5629     0.6440 0.132 0.868
#> GSM1068536     2  0.8555     0.2448 0.280 0.720
#> GSM1068541     2  0.6148     0.6080 0.152 0.848
#> GSM1068553     2  0.0938     0.7779 0.012 0.988
#> GSM1068554     2  0.0938     0.7779 0.012 0.988
#> GSM1068558     2  0.9635     0.2108 0.388 0.612
#> GSM1068559     2  0.0938     0.7785 0.012 0.988
#> GSM1068564     2  0.0000     0.7813 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1068478     1  0.6432     0.2862 0.568 0.428 0.004
#> GSM1068479     2  0.3406     0.7652 0.028 0.904 0.068
#> GSM1068481     1  0.6539     0.4347 0.684 0.028 0.288
#> GSM1068482     1  0.6204     0.2276 0.576 0.000 0.424
#> GSM1068483     1  0.6646     0.5345 0.740 0.076 0.184
#> GSM1068486     1  0.9680     0.1892 0.456 0.300 0.244
#> GSM1068487     2  0.0000     0.8542 0.000 1.000 0.000
#> GSM1068488     2  0.2229     0.8151 0.044 0.944 0.012
#> GSM1068490     2  0.0000     0.8542 0.000 1.000 0.000
#> GSM1068491     2  0.3406     0.7652 0.028 0.904 0.068
#> GSM1068492     2  0.3406     0.7652 0.028 0.904 0.068
#> GSM1068493     2  0.7744    -0.1396 0.448 0.504 0.048
#> GSM1068494     1  0.4887     0.5668 0.844 0.096 0.060
#> GSM1068495     2  0.6682    -0.1341 0.488 0.504 0.008
#> GSM1068496     1  0.6601     0.4222 0.676 0.028 0.296
#> GSM1068498     1  0.6483     0.2564 0.544 0.452 0.004
#> GSM1068499     1  0.2959     0.5753 0.900 0.100 0.000
#> GSM1068500     1  0.6348     0.5336 0.752 0.060 0.188
#> GSM1068502     2  0.3406     0.7652 0.028 0.904 0.068
#> GSM1068503     2  0.0000     0.8542 0.000 1.000 0.000
#> GSM1068505     2  0.0000     0.8542 0.000 1.000 0.000
#> GSM1068506     2  0.0237     0.8535 0.004 0.996 0.000
#> GSM1068507     2  0.0000     0.8542 0.000 1.000 0.000
#> GSM1068508     2  0.0424     0.8516 0.008 0.992 0.000
#> GSM1068510     2  0.0000     0.8542 0.000 1.000 0.000
#> GSM1068512     2  0.1129     0.8439 0.020 0.976 0.004
#> GSM1068513     2  0.0000     0.8542 0.000 1.000 0.000
#> GSM1068514     2  0.3310     0.7704 0.028 0.908 0.064
#> GSM1068517     1  0.6483     0.2564 0.544 0.452 0.004
#> GSM1068518     2  0.6633     0.0399 0.444 0.548 0.008
#> GSM1068520     1  0.4291     0.5577 0.840 0.152 0.008
#> GSM1068521     1  0.5406     0.4941 0.764 0.224 0.012
#> GSM1068522     2  0.0000     0.8542 0.000 1.000 0.000
#> GSM1068524     2  0.0000     0.8542 0.000 1.000 0.000
#> GSM1068527     2  0.0237     0.8535 0.004 0.996 0.000
#> GSM1068480     1  0.6799     0.1630 0.532 0.012 0.456
#> GSM1068484     2  0.0000     0.8542 0.000 1.000 0.000
#> GSM1068485     1  0.7130     0.2674 0.544 0.024 0.432
#> GSM1068489     2  0.0237     0.8529 0.004 0.996 0.000
#> GSM1068497     1  0.6451     0.2770 0.560 0.436 0.004
#> GSM1068501     2  0.0424     0.8510 0.008 0.992 0.000
#> GSM1068504     2  0.0000     0.8542 0.000 1.000 0.000
#> GSM1068509     2  0.6910     0.1790 0.396 0.584 0.020
#> GSM1068511     3  0.6513     0.1655 0.004 0.476 0.520
#> GSM1068515     1  0.7001     0.3053 0.588 0.388 0.024
#> GSM1068516     2  0.6683    -0.1429 0.492 0.500 0.008
#> GSM1068519     1  0.2878     0.5755 0.904 0.096 0.000
#> GSM1068523     2  0.0000     0.8542 0.000 1.000 0.000
#> GSM1068525     2  0.0000     0.8542 0.000 1.000 0.000
#> GSM1068526     2  0.0237     0.8535 0.004 0.996 0.000
#> GSM1068458     1  0.2590     0.5822 0.924 0.072 0.004
#> GSM1068459     1  0.6570     0.4118 0.668 0.024 0.308
#> GSM1068460     2  0.5690     0.4758 0.288 0.708 0.004
#> GSM1068461     3  0.7652    -0.1442 0.444 0.044 0.512
#> GSM1068464     2  0.0000     0.8542 0.000 1.000 0.000
#> GSM1068468     2  0.0892     0.8435 0.020 0.980 0.000
#> GSM1068472     2  0.6126     0.3339 0.352 0.644 0.004
#> GSM1068473     2  0.0000     0.8542 0.000 1.000 0.000
#> GSM1068474     2  0.0000     0.8542 0.000 1.000 0.000
#> GSM1068476     3  0.9487     0.2164 0.244 0.260 0.496
#> GSM1068477     2  0.0000     0.8542 0.000 1.000 0.000
#> GSM1068462     2  0.6095     0.2300 0.392 0.608 0.000
#> GSM1068463     1  0.5706     0.3456 0.680 0.000 0.320
#> GSM1068465     1  0.6994     0.2465 0.556 0.424 0.020
#> GSM1068466     1  0.4589     0.5430 0.820 0.172 0.008
#> GSM1068467     2  0.1643     0.8248 0.044 0.956 0.000
#> GSM1068469     2  0.6280    -0.0227 0.460 0.540 0.000
#> GSM1068470     2  0.0000     0.8542 0.000 1.000 0.000
#> GSM1068471     2  0.0000     0.8542 0.000 1.000 0.000
#> GSM1068475     2  0.0000     0.8542 0.000 1.000 0.000
#> GSM1068528     1  0.5803     0.4936 0.760 0.028 0.212
#> GSM1068531     1  0.1964     0.5782 0.944 0.056 0.000
#> GSM1068532     1  0.2313     0.5683 0.944 0.032 0.024
#> GSM1068533     1  0.2301     0.5797 0.936 0.060 0.004
#> GSM1068535     2  0.2229     0.8154 0.044 0.944 0.012
#> GSM1068537     1  0.2176     0.5691 0.948 0.032 0.020
#> GSM1068538     1  0.2313     0.5683 0.944 0.032 0.024
#> GSM1068539     2  0.6683    -0.1581 0.496 0.496 0.008
#> GSM1068540     1  0.2176     0.5691 0.948 0.032 0.020
#> GSM1068542     2  0.0237     0.8535 0.004 0.996 0.000
#> GSM1068543     2  0.1015     0.8451 0.012 0.980 0.008
#> GSM1068544     1  0.6570     0.4118 0.668 0.024 0.308
#> GSM1068545     2  0.0237     0.8535 0.004 0.996 0.000
#> GSM1068546     1  0.6299     0.1310 0.524 0.000 0.476
#> GSM1068547     1  0.4228     0.5601 0.844 0.148 0.008
#> GSM1068548     2  0.0237     0.8535 0.004 0.996 0.000
#> GSM1068549     3  0.7652    -0.1442 0.444 0.044 0.512
#> GSM1068550     2  0.0237     0.8535 0.004 0.996 0.000
#> GSM1068551     2  0.0000     0.8542 0.000 1.000 0.000
#> GSM1068552     2  0.0237     0.8535 0.004 0.996 0.000
#> GSM1068555     2  0.0000     0.8542 0.000 1.000 0.000
#> GSM1068556     2  0.0424     0.8523 0.008 0.992 0.000
#> GSM1068557     2  0.4555     0.6214 0.200 0.800 0.000
#> GSM1068560     2  0.0237     0.8535 0.004 0.996 0.000
#> GSM1068561     1  0.6682     0.1670 0.504 0.488 0.008
#> GSM1068562     2  0.0237     0.8535 0.004 0.996 0.000
#> GSM1068563     2  0.0237     0.8535 0.004 0.996 0.000
#> GSM1068565     2  0.0000     0.8542 0.000 1.000 0.000
#> GSM1068529     2  0.6051     0.4483 0.292 0.696 0.012
#> GSM1068530     1  0.2313     0.5683 0.944 0.032 0.024
#> GSM1068534     2  0.6047     0.4173 0.312 0.680 0.008
#> GSM1068536     1  0.6682     0.1605 0.504 0.488 0.008
#> GSM1068541     2  0.5690     0.4669 0.288 0.708 0.004
#> GSM1068553     2  0.1015     0.8457 0.008 0.980 0.012
#> GSM1068554     2  0.1015     0.8457 0.008 0.980 0.012
#> GSM1068558     3  0.6299     0.1649 0.000 0.476 0.524
#> GSM1068559     2  0.0747     0.8492 0.016 0.984 0.000
#> GSM1068564     2  0.0237     0.8529 0.004 0.996 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1068478     1  0.5016    0.47172 0.600 0.396 0.004 0.000
#> GSM1068479     2  0.3272    0.78069 0.004 0.860 0.128 0.008
#> GSM1068481     1  0.5660   -0.17409 0.576 0.004 0.400 0.020
#> GSM1068482     3  0.5256    0.50227 0.392 0.000 0.596 0.012
#> GSM1068483     1  0.5172    0.33542 0.736 0.036 0.220 0.008
#> GSM1068486     1  0.7872    0.24559 0.448 0.276 0.272 0.004
#> GSM1068487     2  0.0000    0.89554 0.000 1.000 0.000 0.000
#> GSM1068488     2  0.1767    0.85973 0.044 0.944 0.012 0.000
#> GSM1068490     2  0.0000    0.89554 0.000 1.000 0.000 0.000
#> GSM1068491     2  0.3272    0.78069 0.004 0.860 0.128 0.008
#> GSM1068492     2  0.3272    0.78069 0.004 0.860 0.128 0.008
#> GSM1068493     2  0.6449   -0.25194 0.452 0.480 0.068 0.000
#> GSM1068494     1  0.4374    0.44374 0.812 0.068 0.120 0.000
#> GSM1068495     1  0.5290    0.27304 0.516 0.476 0.008 0.000
#> GSM1068496     1  0.5223   -0.18461 0.584 0.004 0.408 0.004
#> GSM1068498     1  0.5080    0.42623 0.576 0.420 0.004 0.000
#> GSM1068499     1  0.1902    0.51676 0.932 0.064 0.004 0.000
#> GSM1068500     1  0.4862    0.30220 0.744 0.020 0.228 0.008
#> GSM1068502     2  0.3272    0.78069 0.004 0.860 0.128 0.008
#> GSM1068503     2  0.0000    0.89554 0.000 1.000 0.000 0.000
#> GSM1068505     2  0.0000    0.89554 0.000 1.000 0.000 0.000
#> GSM1068506     2  0.0188    0.89490 0.004 0.996 0.000 0.000
#> GSM1068507     2  0.0000    0.89554 0.000 1.000 0.000 0.000
#> GSM1068508     2  0.0336    0.89291 0.008 0.992 0.000 0.000
#> GSM1068510     2  0.0000    0.89554 0.000 1.000 0.000 0.000
#> GSM1068512     2  0.0895    0.88596 0.020 0.976 0.004 0.000
#> GSM1068513     2  0.0000    0.89554 0.000 1.000 0.000 0.000
#> GSM1068514     2  0.3160    0.78894 0.004 0.868 0.120 0.008
#> GSM1068517     1  0.5080    0.42623 0.576 0.420 0.004 0.000
#> GSM1068518     2  0.5281   -0.12661 0.464 0.528 0.008 0.000
#> GSM1068520     1  0.2976    0.54052 0.872 0.120 0.008 0.000
#> GSM1068521     1  0.3978    0.53450 0.796 0.192 0.012 0.000
#> GSM1068522     2  0.0000    0.89554 0.000 1.000 0.000 0.000
#> GSM1068524     2  0.0000    0.89554 0.000 1.000 0.000 0.000
#> GSM1068527     2  0.0188    0.89490 0.004 0.996 0.000 0.000
#> GSM1068480     3  0.5473    0.58198 0.324 0.000 0.644 0.032
#> GSM1068484     2  0.0000    0.89554 0.000 1.000 0.000 0.000
#> GSM1068485     3  0.5531    0.37477 0.436 0.004 0.548 0.012
#> GSM1068489     2  0.0188    0.89428 0.004 0.996 0.000 0.000
#> GSM1068497     1  0.5039    0.45782 0.592 0.404 0.004 0.000
#> GSM1068501     2  0.0336    0.89220 0.008 0.992 0.000 0.000
#> GSM1068504     2  0.0000    0.89554 0.000 1.000 0.000 0.000
#> GSM1068509     2  0.5708    0.00574 0.416 0.556 0.028 0.000
#> GSM1068511     4  0.0376    0.99281 0.004 0.004 0.000 0.992
#> GSM1068515     1  0.6617    0.45623 0.552 0.372 0.068 0.008
#> GSM1068516     1  0.5288    0.28453 0.520 0.472 0.008 0.000
#> GSM1068519     1  0.1637    0.51515 0.940 0.060 0.000 0.000
#> GSM1068523     2  0.0000    0.89554 0.000 1.000 0.000 0.000
#> GSM1068525     2  0.0000    0.89554 0.000 1.000 0.000 0.000
#> GSM1068526     2  0.0188    0.89490 0.004 0.996 0.000 0.000
#> GSM1068458     1  0.1305    0.50306 0.960 0.036 0.004 0.000
#> GSM1068459     1  0.5509   -0.23114 0.560 0.004 0.424 0.012
#> GSM1068460     2  0.4584    0.47373 0.300 0.696 0.004 0.000
#> GSM1068461     3  0.0188    0.43738 0.004 0.000 0.996 0.000
#> GSM1068464     2  0.0000    0.89554 0.000 1.000 0.000 0.000
#> GSM1068468     2  0.0707    0.88598 0.020 0.980 0.000 0.000
#> GSM1068472     2  0.5306    0.29037 0.348 0.632 0.020 0.000
#> GSM1068473     2  0.0000    0.89554 0.000 1.000 0.000 0.000
#> GSM1068474     2  0.0000    0.89554 0.000 1.000 0.000 0.000
#> GSM1068476     3  0.4126    0.25482 0.004 0.216 0.776 0.004
#> GSM1068477     2  0.0000    0.89554 0.000 1.000 0.000 0.000
#> GSM1068462     2  0.5387    0.10993 0.400 0.584 0.016 0.000
#> GSM1068463     3  0.5161    0.54039 0.300 0.000 0.676 0.024
#> GSM1068465     1  0.7362    0.42524 0.568 0.272 0.016 0.144
#> GSM1068466     1  0.3196    0.54129 0.856 0.136 0.008 0.000
#> GSM1068467     2  0.1302    0.86847 0.044 0.956 0.000 0.000
#> GSM1068469     2  0.5508   -0.19321 0.476 0.508 0.016 0.000
#> GSM1068470     2  0.0000    0.89554 0.000 1.000 0.000 0.000
#> GSM1068471     2  0.0000    0.89554 0.000 1.000 0.000 0.000
#> GSM1068475     2  0.0000    0.89554 0.000 1.000 0.000 0.000
#> GSM1068528     1  0.4661    0.18271 0.724 0.004 0.264 0.008
#> GSM1068531     1  0.0707    0.48792 0.980 0.020 0.000 0.000
#> GSM1068532     1  0.2156    0.44203 0.928 0.008 0.060 0.004
#> GSM1068533     1  0.1151    0.49139 0.968 0.024 0.008 0.000
#> GSM1068535     2  0.1767    0.86039 0.044 0.944 0.012 0.000
#> GSM1068537     1  0.1890    0.44598 0.936 0.008 0.056 0.000
#> GSM1068538     1  0.2156    0.44203 0.928 0.008 0.060 0.004
#> GSM1068539     1  0.5285    0.29707 0.524 0.468 0.008 0.000
#> GSM1068540     1  0.1890    0.44598 0.936 0.008 0.056 0.000
#> GSM1068542     2  0.0188    0.89490 0.004 0.996 0.000 0.000
#> GSM1068543     2  0.0804    0.88757 0.012 0.980 0.008 0.000
#> GSM1068544     1  0.5509   -0.23114 0.560 0.004 0.424 0.012
#> GSM1068545     2  0.0188    0.89490 0.004 0.996 0.000 0.000
#> GSM1068546     3  0.3831    0.60731 0.204 0.000 0.792 0.004
#> GSM1068547     1  0.2918    0.53959 0.876 0.116 0.008 0.000
#> GSM1068548     2  0.0188    0.89490 0.004 0.996 0.000 0.000
#> GSM1068549     3  0.0376    0.43524 0.004 0.000 0.992 0.004
#> GSM1068550     2  0.0188    0.89490 0.004 0.996 0.000 0.000
#> GSM1068551     2  0.0000    0.89554 0.000 1.000 0.000 0.000
#> GSM1068552     2  0.0188    0.89490 0.004 0.996 0.000 0.000
#> GSM1068555     2  0.0000    0.89554 0.000 1.000 0.000 0.000
#> GSM1068556     2  0.0336    0.89371 0.008 0.992 0.000 0.000
#> GSM1068557     2  0.3726    0.65082 0.212 0.788 0.000 0.000
#> GSM1068560     2  0.0188    0.89490 0.004 0.996 0.000 0.000
#> GSM1068561     1  0.5685    0.30830 0.516 0.460 0.024 0.000
#> GSM1068562     2  0.0188    0.89490 0.004 0.996 0.000 0.000
#> GSM1068563     2  0.0188    0.89490 0.004 0.996 0.000 0.000
#> GSM1068565     2  0.0000    0.89554 0.000 1.000 0.000 0.000
#> GSM1068529     2  0.5417    0.42646 0.284 0.676 0.040 0.000
#> GSM1068530     1  0.2156    0.44203 0.928 0.008 0.060 0.004
#> GSM1068534     2  0.5512    0.38354 0.300 0.660 0.040 0.000
#> GSM1068536     1  0.5281    0.31145 0.528 0.464 0.008 0.000
#> GSM1068541     2  0.4560    0.47366 0.296 0.700 0.004 0.000
#> GSM1068553     2  0.0859    0.88824 0.008 0.980 0.008 0.004
#> GSM1068554     2  0.0859    0.88824 0.008 0.980 0.008 0.004
#> GSM1068558     4  0.0188    0.99283 0.000 0.004 0.000 0.996
#> GSM1068559     2  0.0804    0.88982 0.012 0.980 0.008 0.000
#> GSM1068564     2  0.0188    0.89428 0.004 0.996 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1068478     1  0.5048     0.4718 0.612 0.000 0.016 0.352 0.020
#> GSM1068479     4  0.2741     0.7736 0.000 0.004 0.132 0.860 0.004
#> GSM1068481     5  0.4866     0.7426 0.396 0.004 0.020 0.000 0.580
#> GSM1068482     3  0.4604     0.4912 0.012 0.000 0.560 0.000 0.428
#> GSM1068483     1  0.5423    -0.1424 0.632 0.004 0.036 0.020 0.308
#> GSM1068486     1  0.8282     0.1149 0.384 0.000 0.168 0.256 0.192
#> GSM1068487     4  0.0162     0.8790 0.000 0.000 0.000 0.996 0.004
#> GSM1068488     4  0.1787     0.8454 0.044 0.000 0.004 0.936 0.016
#> GSM1068490     4  0.0000     0.8789 0.000 0.000 0.000 1.000 0.000
#> GSM1068491     4  0.2741     0.7736 0.000 0.004 0.132 0.860 0.004
#> GSM1068492     4  0.2741     0.7736 0.000 0.004 0.132 0.860 0.004
#> GSM1068493     4  0.6236    -0.2766 0.436 0.000 0.024 0.464 0.076
#> GSM1068494     1  0.4986     0.1993 0.748 0.000 0.148 0.036 0.068
#> GSM1068495     1  0.4986     0.3428 0.532 0.000 0.012 0.444 0.012
#> GSM1068496     5  0.4862     0.7941 0.364 0.000 0.032 0.000 0.604
#> GSM1068498     1  0.5123     0.4641 0.588 0.000 0.016 0.376 0.020
#> GSM1068499     1  0.2149     0.3759 0.924 0.000 0.012 0.028 0.036
#> GSM1068500     1  0.4994    -0.1926 0.636 0.004 0.024 0.008 0.328
#> GSM1068502     4  0.2741     0.7736 0.000 0.004 0.132 0.860 0.004
#> GSM1068503     4  0.0162     0.8790 0.000 0.000 0.000 0.996 0.004
#> GSM1068505     4  0.0000     0.8789 0.000 0.000 0.000 1.000 0.000
#> GSM1068506     4  0.0162     0.8791 0.000 0.000 0.004 0.996 0.000
#> GSM1068507     4  0.0000     0.8789 0.000 0.000 0.000 1.000 0.000
#> GSM1068508     4  0.0290     0.8791 0.008 0.000 0.000 0.992 0.000
#> GSM1068510     4  0.0000     0.8789 0.000 0.000 0.000 1.000 0.000
#> GSM1068512     4  0.0960     0.8723 0.016 0.000 0.008 0.972 0.004
#> GSM1068513     4  0.0000     0.8789 0.000 0.000 0.000 1.000 0.000
#> GSM1068514     4  0.2646     0.7818 0.000 0.004 0.124 0.868 0.004
#> GSM1068517     1  0.5123     0.4641 0.588 0.000 0.016 0.376 0.020
#> GSM1068518     4  0.5098    -0.2212 0.480 0.000 0.012 0.492 0.016
#> GSM1068520     1  0.2588     0.4570 0.884 0.000 0.008 0.100 0.008
#> GSM1068521     1  0.3373     0.4729 0.816 0.000 0.008 0.168 0.008
#> GSM1068522     4  0.0000     0.8789 0.000 0.000 0.000 1.000 0.000
#> GSM1068524     4  0.0451     0.8785 0.000 0.000 0.008 0.988 0.004
#> GSM1068527     4  0.0451     0.8775 0.000 0.000 0.008 0.988 0.004
#> GSM1068480     3  0.4946     0.5313 0.012 0.024 0.636 0.000 0.328
#> GSM1068484     4  0.0324     0.8786 0.000 0.000 0.004 0.992 0.004
#> GSM1068485     5  0.6300     0.7052 0.336 0.000 0.168 0.000 0.496
#> GSM1068489     4  0.0162     0.8793 0.004 0.000 0.000 0.996 0.000
#> GSM1068497     1  0.5075     0.4696 0.604 0.000 0.016 0.360 0.020
#> GSM1068501     4  0.0324     0.8790 0.004 0.000 0.000 0.992 0.004
#> GSM1068504     4  0.0451     0.8780 0.000 0.000 0.004 0.988 0.008
#> GSM1068509     4  0.5283    -0.0403 0.420 0.000 0.012 0.540 0.028
#> GSM1068511     2  0.0162     0.9912 0.004 0.996 0.000 0.000 0.000
#> GSM1068515     4  0.8351    -0.3538 0.300 0.000 0.208 0.336 0.156
#> GSM1068516     1  0.5071     0.3542 0.532 0.000 0.012 0.440 0.016
#> GSM1068519     1  0.1978     0.3709 0.932 0.000 0.012 0.024 0.032
#> GSM1068523     4  0.0693     0.8755 0.000 0.000 0.012 0.980 0.008
#> GSM1068525     4  0.0324     0.8786 0.000 0.000 0.004 0.992 0.004
#> GSM1068526     4  0.0162     0.8791 0.000 0.000 0.004 0.996 0.000
#> GSM1068458     1  0.1200     0.3719 0.964 0.000 0.008 0.016 0.012
#> GSM1068459     5  0.4866     0.8091 0.344 0.000 0.036 0.000 0.620
#> GSM1068460     4  0.4502     0.4160 0.312 0.000 0.012 0.668 0.008
#> GSM1068461     3  0.3661     0.5749 0.000 0.000 0.724 0.000 0.276
#> GSM1068464     4  0.0290     0.8787 0.000 0.000 0.000 0.992 0.008
#> GSM1068468     4  0.0898     0.8703 0.020 0.000 0.000 0.972 0.008
#> GSM1068472     4  0.5523     0.2325 0.332 0.000 0.024 0.604 0.040
#> GSM1068473     4  0.0000     0.8789 0.000 0.000 0.000 1.000 0.000
#> GSM1068474     4  0.0451     0.8780 0.000 0.000 0.004 0.988 0.008
#> GSM1068476     3  0.6133     0.3221 0.000 0.000 0.564 0.216 0.220
#> GSM1068477     4  0.0162     0.8792 0.000 0.000 0.000 0.996 0.004
#> GSM1068462     4  0.5678     0.0462 0.380 0.000 0.028 0.556 0.036
#> GSM1068463     5  0.3495    -0.0508 0.032 0.000 0.152 0.000 0.816
#> GSM1068465     1  0.6843     0.3649 0.568 0.148 0.012 0.244 0.028
#> GSM1068466     1  0.2857     0.4626 0.868 0.000 0.008 0.112 0.012
#> GSM1068467     4  0.1569     0.8515 0.044 0.000 0.004 0.944 0.008
#> GSM1068469     4  0.5779    -0.2469 0.456 0.000 0.028 0.480 0.036
#> GSM1068470     4  0.0451     0.8780 0.000 0.000 0.004 0.988 0.008
#> GSM1068471     4  0.0162     0.8790 0.000 0.000 0.000 0.996 0.004
#> GSM1068475     4  0.0451     0.8780 0.000 0.000 0.004 0.988 0.008
#> GSM1068528     1  0.4546    -0.4719 0.532 0.000 0.008 0.000 0.460
#> GSM1068531     1  0.0693     0.3448 0.980 0.000 0.008 0.000 0.012
#> GSM1068532     1  0.3642     0.1068 0.760 0.000 0.008 0.000 0.232
#> GSM1068533     1  0.1059     0.3486 0.968 0.000 0.008 0.004 0.020
#> GSM1068535     4  0.1710     0.8486 0.040 0.000 0.004 0.940 0.016
#> GSM1068537     1  0.2971     0.2010 0.836 0.000 0.008 0.000 0.156
#> GSM1068538     1  0.3671     0.1013 0.756 0.000 0.008 0.000 0.236
#> GSM1068539     1  0.4976     0.3660 0.540 0.000 0.012 0.436 0.012
#> GSM1068540     1  0.2513     0.2411 0.876 0.000 0.008 0.000 0.116
#> GSM1068542     4  0.0162     0.8791 0.000 0.000 0.004 0.996 0.000
#> GSM1068543     4  0.0968     0.8708 0.012 0.000 0.012 0.972 0.004
#> GSM1068544     5  0.4866     0.8091 0.344 0.000 0.036 0.000 0.620
#> GSM1068545     4  0.0162     0.8791 0.000 0.000 0.004 0.996 0.000
#> GSM1068546     3  0.3318     0.5873 0.012 0.000 0.808 0.000 0.180
#> GSM1068547     1  0.2533     0.4545 0.888 0.000 0.008 0.096 0.008
#> GSM1068548     4  0.0162     0.8791 0.000 0.000 0.004 0.996 0.000
#> GSM1068549     3  0.3636     0.5741 0.000 0.000 0.728 0.000 0.272
#> GSM1068550     4  0.0162     0.8791 0.000 0.000 0.004 0.996 0.000
#> GSM1068551     4  0.0693     0.8755 0.000 0.000 0.012 0.980 0.008
#> GSM1068552     4  0.0162     0.8791 0.000 0.000 0.004 0.996 0.000
#> GSM1068555     4  0.0693     0.8755 0.000 0.000 0.012 0.980 0.008
#> GSM1068556     4  0.0324     0.8790 0.004 0.000 0.004 0.992 0.000
#> GSM1068557     4  0.3845     0.6070 0.224 0.000 0.012 0.760 0.004
#> GSM1068560     4  0.0451     0.8775 0.000 0.000 0.008 0.988 0.004
#> GSM1068561     1  0.5898     0.3523 0.496 0.000 0.032 0.432 0.040
#> GSM1068562     4  0.0290     0.8788 0.000 0.000 0.008 0.992 0.000
#> GSM1068563     4  0.0162     0.8791 0.000 0.000 0.004 0.996 0.000
#> GSM1068565     4  0.0162     0.8793 0.000 0.000 0.004 0.996 0.000
#> GSM1068529     4  0.5109     0.4023 0.284 0.000 0.044 0.660 0.012
#> GSM1068530     1  0.3671     0.1013 0.756 0.000 0.008 0.000 0.236
#> GSM1068534     4  0.5380     0.3603 0.288 0.000 0.048 0.644 0.020
#> GSM1068536     1  0.5061     0.3747 0.540 0.000 0.012 0.432 0.016
#> GSM1068541     4  0.4422     0.4328 0.300 0.000 0.004 0.680 0.016
#> GSM1068553     4  0.0727     0.8757 0.004 0.000 0.012 0.980 0.004
#> GSM1068554     4  0.0727     0.8757 0.004 0.000 0.012 0.980 0.004
#> GSM1068558     2  0.0000     0.9912 0.000 1.000 0.000 0.000 0.000
#> GSM1068559     4  0.0693     0.8767 0.008 0.000 0.012 0.980 0.000
#> GSM1068564     4  0.0162     0.8793 0.004 0.000 0.000 0.996 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1068478     1  0.5475   0.462333 0.600 0.220 0.008 0.000 0.172 0.000
#> GSM1068479     2  0.3996   0.717006 0.000 0.784 0.012 0.132 0.068 0.004
#> GSM1068481     3  0.4616   0.736082 0.384 0.000 0.576 0.004 0.036 0.000
#> GSM1068482     5  0.5362   0.000907 0.004 0.000 0.200 0.188 0.608 0.000
#> GSM1068483     1  0.5188  -0.196244 0.592 0.012 0.316 0.000 0.080 0.000
#> GSM1068486     1  0.8410   0.109509 0.356 0.244 0.164 0.092 0.144 0.000
#> GSM1068487     2  0.0713   0.871641 0.000 0.972 0.000 0.000 0.028 0.000
#> GSM1068488     2  0.1858   0.851655 0.052 0.924 0.012 0.000 0.012 0.000
#> GSM1068490     2  0.0146   0.873438 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM1068491     2  0.3996   0.717006 0.000 0.784 0.012 0.132 0.068 0.004
#> GSM1068492     2  0.3996   0.717006 0.000 0.784 0.012 0.132 0.068 0.004
#> GSM1068493     2  0.6320  -0.329371 0.412 0.428 0.084 0.000 0.076 0.000
#> GSM1068494     1  0.5174   0.193313 0.712 0.024 0.036 0.068 0.160 0.000
#> GSM1068495     1  0.5279   0.419084 0.544 0.356 0.004 0.000 0.096 0.000
#> GSM1068496     3  0.4383   0.785023 0.356 0.000 0.616 0.016 0.012 0.000
#> GSM1068498     1  0.5607   0.460041 0.576 0.240 0.008 0.000 0.176 0.000
#> GSM1068499     1  0.2784   0.339086 0.868 0.020 0.020 0.000 0.092 0.000
#> GSM1068500     1  0.4859  -0.239250 0.600 0.004 0.332 0.000 0.064 0.000
#> GSM1068502     2  0.3996   0.717006 0.000 0.784 0.012 0.132 0.068 0.004
#> GSM1068503     2  0.0547   0.872873 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM1068505     2  0.0508   0.873905 0.004 0.984 0.000 0.000 0.012 0.000
#> GSM1068506     2  0.0603   0.874000 0.004 0.980 0.000 0.000 0.016 0.000
#> GSM1068507     2  0.0146   0.873438 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM1068508     2  0.1370   0.872785 0.012 0.948 0.004 0.000 0.036 0.000
#> GSM1068510     2  0.0405   0.874333 0.000 0.988 0.004 0.000 0.008 0.000
#> GSM1068512     2  0.1364   0.868319 0.020 0.952 0.012 0.000 0.016 0.000
#> GSM1068513     2  0.0260   0.874132 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM1068514     2  0.3860   0.729116 0.000 0.796 0.012 0.124 0.064 0.004
#> GSM1068517     1  0.5607   0.460041 0.576 0.240 0.008 0.000 0.176 0.000
#> GSM1068518     1  0.5165   0.312179 0.492 0.436 0.008 0.000 0.064 0.000
#> GSM1068520     1  0.2401   0.421095 0.892 0.072 0.008 0.000 0.028 0.000
#> GSM1068521     1  0.3375   0.446286 0.824 0.112 0.008 0.000 0.056 0.000
#> GSM1068522     2  0.0146   0.873438 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM1068524     2  0.1908   0.846416 0.004 0.900 0.000 0.000 0.096 0.000
#> GSM1068527     2  0.0767   0.871200 0.008 0.976 0.004 0.000 0.012 0.000
#> GSM1068480     5  0.5769  -0.102956 0.004 0.000 0.108 0.296 0.568 0.024
#> GSM1068484     2  0.1167   0.873533 0.012 0.960 0.008 0.000 0.020 0.000
#> GSM1068485     3  0.6251   0.713678 0.336 0.000 0.492 0.124 0.048 0.000
#> GSM1068489     2  0.0622   0.874803 0.008 0.980 0.000 0.000 0.012 0.000
#> GSM1068497     1  0.5519   0.461542 0.592 0.228 0.008 0.000 0.172 0.000
#> GSM1068501     2  0.0665   0.873577 0.004 0.980 0.008 0.000 0.008 0.000
#> GSM1068504     2  0.1588   0.858538 0.004 0.924 0.000 0.000 0.072 0.000
#> GSM1068509     2  0.5844  -0.215419 0.416 0.460 0.028 0.000 0.096 0.000
#> GSM1068511     6  0.0291   0.989634 0.004 0.000 0.000 0.000 0.004 0.992
#> GSM1068515     5  0.7312  -0.125033 0.268 0.212 0.096 0.008 0.416 0.000
#> GSM1068516     1  0.5359   0.416670 0.536 0.364 0.008 0.000 0.092 0.000
#> GSM1068519     1  0.2611   0.333493 0.876 0.016 0.016 0.000 0.092 0.000
#> GSM1068523     2  0.2146   0.832979 0.004 0.880 0.000 0.000 0.116 0.000
#> GSM1068525     2  0.1251   0.873629 0.012 0.956 0.008 0.000 0.024 0.000
#> GSM1068526     2  0.0767   0.872761 0.004 0.976 0.008 0.000 0.012 0.000
#> GSM1068458     1  0.1757   0.328054 0.928 0.008 0.012 0.000 0.052 0.000
#> GSM1068459     3  0.4397   0.799943 0.336 0.000 0.632 0.020 0.012 0.000
#> GSM1068460     2  0.5067   0.312678 0.308 0.604 0.008 0.000 0.080 0.000
#> GSM1068461     4  0.1528   0.599886 0.000 0.000 0.048 0.936 0.016 0.000
#> GSM1068464     2  0.1219   0.866825 0.004 0.948 0.000 0.000 0.048 0.000
#> GSM1068468     2  0.1970   0.850667 0.028 0.912 0.000 0.000 0.060 0.000
#> GSM1068472     2  0.6148   0.090120 0.308 0.524 0.048 0.000 0.120 0.000
#> GSM1068473     2  0.0146   0.873438 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM1068474     2  0.1075   0.867767 0.000 0.952 0.000 0.000 0.048 0.000
#> GSM1068476     4  0.3969   0.301558 0.000 0.212 0.044 0.740 0.004 0.000
#> GSM1068477     2  0.0260   0.874074 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM1068462     2  0.6317  -0.137552 0.356 0.468 0.048 0.000 0.128 0.000
#> GSM1068463     3  0.2809   0.187636 0.020 0.000 0.848 0.128 0.004 0.000
#> GSM1068465     1  0.6792   0.346421 0.552 0.212 0.036 0.000 0.056 0.144
#> GSM1068466     1  0.2728   0.430418 0.872 0.080 0.008 0.000 0.040 0.000
#> GSM1068467     2  0.2697   0.818881 0.044 0.864 0.000 0.000 0.092 0.000
#> GSM1068469     1  0.6508   0.349084 0.432 0.364 0.048 0.000 0.156 0.000
#> GSM1068470     2  0.1531   0.858471 0.004 0.928 0.000 0.000 0.068 0.000
#> GSM1068471     2  0.1285   0.865068 0.004 0.944 0.000 0.000 0.052 0.000
#> GSM1068475     2  0.1588   0.858538 0.004 0.924 0.000 0.000 0.072 0.000
#> GSM1068528     1  0.4649  -0.514100 0.492 0.000 0.468 0.000 0.040 0.000
#> GSM1068531     1  0.2121   0.293490 0.892 0.000 0.012 0.000 0.096 0.000
#> GSM1068532     1  0.4325   0.005239 0.692 0.000 0.244 0.000 0.064 0.000
#> GSM1068533     1  0.1983   0.294714 0.908 0.000 0.020 0.000 0.072 0.000
#> GSM1068535     2  0.1887   0.850301 0.048 0.924 0.016 0.000 0.012 0.000
#> GSM1068537     1  0.3894   0.112199 0.760 0.000 0.168 0.000 0.072 0.000
#> GSM1068538     1  0.4348  -0.001296 0.688 0.000 0.248 0.000 0.064 0.000
#> GSM1068539     1  0.5332   0.426059 0.548 0.352 0.008 0.000 0.092 0.000
#> GSM1068540     1  0.3678   0.155894 0.788 0.000 0.128 0.000 0.084 0.000
#> GSM1068542     2  0.0405   0.872092 0.004 0.988 0.000 0.000 0.008 0.000
#> GSM1068543     2  0.1452   0.866441 0.020 0.948 0.012 0.000 0.020 0.000
#> GSM1068544     3  0.4397   0.799943 0.336 0.000 0.632 0.020 0.012 0.000
#> GSM1068545     2  0.0777   0.874743 0.004 0.972 0.000 0.000 0.024 0.000
#> GSM1068546     4  0.4453   0.217224 0.000 0.000 0.044 0.624 0.332 0.000
#> GSM1068547     1  0.2344   0.417580 0.896 0.068 0.008 0.000 0.028 0.000
#> GSM1068548     2  0.0653   0.871974 0.004 0.980 0.004 0.000 0.012 0.000
#> GSM1068549     4  0.1007   0.601439 0.000 0.000 0.044 0.956 0.000 0.000
#> GSM1068550     2  0.0508   0.873044 0.004 0.984 0.000 0.000 0.012 0.000
#> GSM1068551     2  0.2100   0.835055 0.004 0.884 0.000 0.000 0.112 0.000
#> GSM1068552     2  0.0603   0.874000 0.004 0.980 0.000 0.000 0.016 0.000
#> GSM1068555     2  0.2146   0.832979 0.004 0.880 0.000 0.000 0.116 0.000
#> GSM1068556     2  0.0881   0.871797 0.012 0.972 0.008 0.000 0.008 0.000
#> GSM1068557     2  0.4307   0.555190 0.224 0.704 0.000 0.000 0.072 0.000
#> GSM1068560     2  0.0767   0.871200 0.008 0.976 0.004 0.000 0.012 0.000
#> GSM1068561     1  0.6185   0.379453 0.484 0.360 0.052 0.000 0.104 0.000
#> GSM1068562     2  0.0748   0.873142 0.004 0.976 0.004 0.000 0.016 0.000
#> GSM1068563     2  0.0837   0.875023 0.004 0.972 0.004 0.000 0.020 0.000
#> GSM1068565     2  0.0865   0.871525 0.000 0.964 0.000 0.000 0.036 0.000
#> GSM1068529     2  0.5805   0.278186 0.284 0.580 0.004 0.036 0.096 0.000
#> GSM1068530     1  0.4348  -0.001296 0.688 0.000 0.248 0.000 0.064 0.000
#> GSM1068534     2  0.6070   0.237467 0.288 0.568 0.020 0.032 0.092 0.000
#> GSM1068536     1  0.5401   0.430596 0.552 0.344 0.012 0.000 0.092 0.000
#> GSM1068541     2  0.5431   0.260713 0.304 0.576 0.012 0.000 0.108 0.000
#> GSM1068553     2  0.1140   0.871062 0.008 0.964 0.008 0.008 0.012 0.000
#> GSM1068554     2  0.1140   0.871062 0.008 0.964 0.008 0.008 0.012 0.000
#> GSM1068558     6  0.0000   0.989628 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068559     2  0.1604   0.871322 0.016 0.944 0.008 0.008 0.024 0.000
#> GSM1068564     2  0.0622   0.874803 0.008 0.980 0.000 0.000 0.012 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#>            n disease.state(p) gender(p) k
#> CV:hclust 82            0.706     0.177 2
#> CV:hclust 70            0.564     0.689 3
#> CV:hclust 67            0.906     0.147 4
#> CV:hclust 65            0.936     0.162 5
#> CV:hclust 63            0.770     0.112 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 38950 rows and 108 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.835           0.902       0.960         0.4756 0.516   0.516
#> 3 3 0.427           0.530       0.738         0.3079 0.862   0.748
#> 4 4 0.505           0.588       0.750         0.1491 0.762   0.497
#> 5 5 0.583           0.628       0.765         0.0808 0.861   0.548
#> 6 6 0.645           0.623       0.750         0.0411 0.957   0.809
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1068478     1  0.0376      0.930 0.996 0.004
#> GSM1068479     2  0.0000      0.972 0.000 1.000
#> GSM1068481     1  0.0000      0.932 1.000 0.000
#> GSM1068482     1  0.0000      0.932 1.000 0.000
#> GSM1068483     1  0.0000      0.932 1.000 0.000
#> GSM1068486     1  0.0000      0.932 1.000 0.000
#> GSM1068487     2  0.0000      0.972 0.000 1.000
#> GSM1068488     2  0.0672      0.966 0.008 0.992
#> GSM1068490     2  0.0000      0.972 0.000 1.000
#> GSM1068491     2  0.0938      0.963 0.012 0.988
#> GSM1068492     2  0.0000      0.972 0.000 1.000
#> GSM1068493     1  0.7219      0.768 0.800 0.200
#> GSM1068494     1  0.0000      0.932 1.000 0.000
#> GSM1068495     2  0.8144      0.627 0.252 0.748
#> GSM1068496     1  0.0000      0.932 1.000 0.000
#> GSM1068498     1  0.7376      0.761 0.792 0.208
#> GSM1068499     1  0.0000      0.932 1.000 0.000
#> GSM1068500     1  0.0000      0.932 1.000 0.000
#> GSM1068502     2  0.0000      0.972 0.000 1.000
#> GSM1068503     2  0.0000      0.972 0.000 1.000
#> GSM1068505     2  0.0000      0.972 0.000 1.000
#> GSM1068506     2  0.0000      0.972 0.000 1.000
#> GSM1068507     2  0.0000      0.972 0.000 1.000
#> GSM1068508     2  0.0000      0.972 0.000 1.000
#> GSM1068510     2  0.0000      0.972 0.000 1.000
#> GSM1068512     2  0.0672      0.966 0.008 0.992
#> GSM1068513     2  0.0000      0.972 0.000 1.000
#> GSM1068514     2  0.0000      0.972 0.000 1.000
#> GSM1068517     2  1.0000     -0.103 0.496 0.504
#> GSM1068518     2  0.4939      0.858 0.108 0.892
#> GSM1068520     1  0.0000      0.932 1.000 0.000
#> GSM1068521     1  0.0376      0.930 0.996 0.004
#> GSM1068522     2  0.0000      0.972 0.000 1.000
#> GSM1068524     2  0.0000      0.972 0.000 1.000
#> GSM1068527     2  0.0000      0.972 0.000 1.000
#> GSM1068480     1  0.0000      0.932 1.000 0.000
#> GSM1068484     2  0.0000      0.972 0.000 1.000
#> GSM1068485     1  0.0000      0.932 1.000 0.000
#> GSM1068489     2  0.0000      0.972 0.000 1.000
#> GSM1068497     1  0.7453      0.756 0.788 0.212
#> GSM1068501     2  0.0000      0.972 0.000 1.000
#> GSM1068504     2  0.0000      0.972 0.000 1.000
#> GSM1068509     1  0.5408      0.842 0.876 0.124
#> GSM1068511     1  0.0000      0.932 1.000 0.000
#> GSM1068515     1  0.7219      0.770 0.800 0.200
#> GSM1068516     2  0.0376      0.969 0.004 0.996
#> GSM1068519     1  0.0376      0.930 0.996 0.004
#> GSM1068523     2  0.0000      0.972 0.000 1.000
#> GSM1068525     2  0.0000      0.972 0.000 1.000
#> GSM1068526     2  0.0000      0.972 0.000 1.000
#> GSM1068458     1  0.0000      0.932 1.000 0.000
#> GSM1068459     1  0.0000      0.932 1.000 0.000
#> GSM1068460     2  0.0000      0.972 0.000 1.000
#> GSM1068461     1  0.0000      0.932 1.000 0.000
#> GSM1068464     2  0.0000      0.972 0.000 1.000
#> GSM1068468     2  0.0000      0.972 0.000 1.000
#> GSM1068472     1  0.9983      0.175 0.524 0.476
#> GSM1068473     2  0.0000      0.972 0.000 1.000
#> GSM1068474     2  0.0000      0.972 0.000 1.000
#> GSM1068476     2  0.0938      0.963 0.012 0.988
#> GSM1068477     2  0.0000      0.972 0.000 1.000
#> GSM1068462     2  0.0000      0.972 0.000 1.000
#> GSM1068463     1  0.0000      0.932 1.000 0.000
#> GSM1068465     1  0.9460      0.492 0.636 0.364
#> GSM1068466     1  0.0376      0.930 0.996 0.004
#> GSM1068467     2  0.0000      0.972 0.000 1.000
#> GSM1068469     1  0.9580      0.455 0.620 0.380
#> GSM1068470     2  0.0000      0.972 0.000 1.000
#> GSM1068471     2  0.0000      0.972 0.000 1.000
#> GSM1068475     2  0.0000      0.972 0.000 1.000
#> GSM1068528     1  0.0000      0.932 1.000 0.000
#> GSM1068531     1  0.0000      0.932 1.000 0.000
#> GSM1068532     1  0.0000      0.932 1.000 0.000
#> GSM1068533     1  0.0000      0.932 1.000 0.000
#> GSM1068535     1  0.2423      0.905 0.960 0.040
#> GSM1068537     1  0.0000      0.932 1.000 0.000
#> GSM1068538     1  0.0000      0.932 1.000 0.000
#> GSM1068539     2  0.0000      0.972 0.000 1.000
#> GSM1068540     1  0.0000      0.932 1.000 0.000
#> GSM1068542     2  0.0000      0.972 0.000 1.000
#> GSM1068543     2  0.0672      0.966 0.008 0.992
#> GSM1068544     1  0.0000      0.932 1.000 0.000
#> GSM1068545     2  0.0000      0.972 0.000 1.000
#> GSM1068546     1  0.0000      0.932 1.000 0.000
#> GSM1068547     1  0.0376      0.930 0.996 0.004
#> GSM1068548     2  0.0000      0.972 0.000 1.000
#> GSM1068549     1  0.0000      0.932 1.000 0.000
#> GSM1068550     2  0.0000      0.972 0.000 1.000
#> GSM1068551     2  0.0000      0.972 0.000 1.000
#> GSM1068552     2  0.0000      0.972 0.000 1.000
#> GSM1068555     2  0.0000      0.972 0.000 1.000
#> GSM1068556     2  0.0672      0.966 0.008 0.992
#> GSM1068557     2  0.0000      0.972 0.000 1.000
#> GSM1068560     2  0.0000      0.972 0.000 1.000
#> GSM1068561     2  1.0000     -0.104 0.496 0.504
#> GSM1068562     2  0.0000      0.972 0.000 1.000
#> GSM1068563     2  0.0000      0.972 0.000 1.000
#> GSM1068565     2  0.0000      0.972 0.000 1.000
#> GSM1068529     2  0.6247      0.794 0.156 0.844
#> GSM1068530     1  0.0000      0.932 1.000 0.000
#> GSM1068534     1  0.8443      0.666 0.728 0.272
#> GSM1068536     1  0.7453      0.756 0.788 0.212
#> GSM1068541     2  0.0000      0.972 0.000 1.000
#> GSM1068553     2  0.0000      0.972 0.000 1.000
#> GSM1068554     2  0.0000      0.972 0.000 1.000
#> GSM1068558     2  0.3274      0.916 0.060 0.940
#> GSM1068559     2  0.0000      0.972 0.000 1.000
#> GSM1068564     2  0.0000      0.972 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1068478     1  0.1620      0.540 0.964 0.012 0.024
#> GSM1068479     2  0.6148      0.669 0.004 0.640 0.356
#> GSM1068481     1  0.6305     -0.670 0.516 0.000 0.484
#> GSM1068482     3  0.6308      0.658 0.492 0.000 0.508
#> GSM1068483     1  0.1411      0.512 0.964 0.000 0.036
#> GSM1068486     3  0.6798      0.721 0.400 0.016 0.584
#> GSM1068487     2  0.5621      0.758 0.000 0.692 0.308
#> GSM1068488     2  0.3539      0.731 0.012 0.888 0.100
#> GSM1068490     2  0.5591      0.759 0.000 0.696 0.304
#> GSM1068491     2  0.6357      0.626 0.012 0.652 0.336
#> GSM1068492     2  0.5201      0.708 0.004 0.760 0.236
#> GSM1068493     1  0.5344      0.520 0.824 0.084 0.092
#> GSM1068494     1  0.2176      0.535 0.948 0.032 0.020
#> GSM1068495     1  0.8971      0.347 0.520 0.336 0.144
#> GSM1068496     1  0.4121      0.312 0.832 0.000 0.168
#> GSM1068498     1  0.6304      0.477 0.752 0.056 0.192
#> GSM1068499     1  0.0892      0.526 0.980 0.000 0.020
#> GSM1068500     1  0.3192      0.409 0.888 0.000 0.112
#> GSM1068502     2  0.6189      0.702 0.004 0.632 0.364
#> GSM1068503     2  0.5560      0.762 0.000 0.700 0.300
#> GSM1068505     2  0.0983      0.779 0.004 0.980 0.016
#> GSM1068506     2  0.0475      0.779 0.004 0.992 0.004
#> GSM1068507     2  0.1031      0.779 0.000 0.976 0.024
#> GSM1068508     2  0.4452      0.777 0.000 0.808 0.192
#> GSM1068510     2  0.1964      0.777 0.000 0.944 0.056
#> GSM1068512     2  0.3618      0.728 0.012 0.884 0.104
#> GSM1068513     2  0.4931      0.774 0.000 0.768 0.232
#> GSM1068514     2  0.4413      0.691 0.008 0.832 0.160
#> GSM1068517     1  0.9148      0.311 0.504 0.160 0.336
#> GSM1068518     2  0.8339     -0.199 0.448 0.472 0.080
#> GSM1068520     1  0.0237      0.532 0.996 0.004 0.000
#> GSM1068521     1  0.1031      0.539 0.976 0.024 0.000
#> GSM1068522     2  0.5465      0.765 0.000 0.712 0.288
#> GSM1068524     2  0.5497      0.765 0.000 0.708 0.292
#> GSM1068527     2  0.0848      0.776 0.008 0.984 0.008
#> GSM1068480     3  0.6421      0.724 0.424 0.004 0.572
#> GSM1068484     2  0.0237      0.779 0.000 0.996 0.004
#> GSM1068485     3  0.6305      0.688 0.484 0.000 0.516
#> GSM1068489     2  0.0661      0.777 0.004 0.988 0.008
#> GSM1068497     1  0.6495      0.474 0.740 0.060 0.200
#> GSM1068501     2  0.1289      0.780 0.000 0.968 0.032
#> GSM1068504     2  0.5706      0.755 0.000 0.680 0.320
#> GSM1068509     1  0.5235      0.504 0.812 0.152 0.036
#> GSM1068511     1  0.6305     -0.642 0.516 0.000 0.484
#> GSM1068515     1  0.6573      0.500 0.756 0.140 0.104
#> GSM1068516     2  0.7890     -0.118 0.432 0.512 0.056
#> GSM1068519     1  0.1399      0.539 0.968 0.028 0.004
#> GSM1068523     2  0.5733      0.755 0.000 0.676 0.324
#> GSM1068525     2  0.1753      0.769 0.000 0.952 0.048
#> GSM1068526     2  0.0661      0.776 0.004 0.988 0.008
#> GSM1068458     1  0.0237      0.532 0.996 0.004 0.000
#> GSM1068459     1  0.6305     -0.670 0.516 0.000 0.484
#> GSM1068460     2  0.7835     -0.160 0.456 0.492 0.052
#> GSM1068461     3  0.6140      0.726 0.404 0.000 0.596
#> GSM1068464     2  0.5650      0.757 0.000 0.688 0.312
#> GSM1068468     2  0.7284      0.724 0.044 0.620 0.336
#> GSM1068472     1  0.9029      0.336 0.536 0.164 0.300
#> GSM1068473     2  0.5650      0.758 0.000 0.688 0.312
#> GSM1068474     2  0.5591      0.759 0.000 0.696 0.304
#> GSM1068476     2  0.5982      0.645 0.004 0.668 0.328
#> GSM1068477     2  0.5591      0.759 0.000 0.696 0.304
#> GSM1068462     2  0.7284      0.724 0.044 0.620 0.336
#> GSM1068463     1  0.6305     -0.670 0.516 0.000 0.484
#> GSM1068465     1  0.7915      0.435 0.644 0.248 0.108
#> GSM1068466     1  0.0475      0.534 0.992 0.004 0.004
#> GSM1068467     2  0.7727      0.706 0.064 0.600 0.336
#> GSM1068469     1  0.8771      0.355 0.556 0.140 0.304
#> GSM1068470     2  0.5706      0.755 0.000 0.680 0.320
#> GSM1068471     2  0.5706      0.755 0.000 0.680 0.320
#> GSM1068475     2  0.5706      0.755 0.000 0.680 0.320
#> GSM1068528     1  0.6126     -0.491 0.600 0.000 0.400
#> GSM1068531     1  0.1529      0.504 0.960 0.000 0.040
#> GSM1068532     1  0.3941      0.332 0.844 0.000 0.156
#> GSM1068533     1  0.2448      0.465 0.924 0.000 0.076
#> GSM1068535     1  0.7536      0.334 0.632 0.304 0.064
#> GSM1068537     1  0.3941      0.332 0.844 0.000 0.156
#> GSM1068538     1  0.3816      0.349 0.852 0.000 0.148
#> GSM1068539     2  0.9152     -0.125 0.424 0.432 0.144
#> GSM1068540     1  0.1525      0.514 0.964 0.004 0.032
#> GSM1068542     2  0.0983      0.775 0.004 0.980 0.016
#> GSM1068543     2  0.4099      0.700 0.008 0.852 0.140
#> GSM1068544     1  0.6305     -0.670 0.516 0.000 0.484
#> GSM1068545     2  0.4062      0.779 0.000 0.836 0.164
#> GSM1068546     3  0.6295      0.698 0.472 0.000 0.528
#> GSM1068547     1  0.1031      0.539 0.976 0.024 0.000
#> GSM1068548     2  0.1015      0.775 0.008 0.980 0.012
#> GSM1068549     3  0.7983      0.600 0.264 0.104 0.632
#> GSM1068550     2  0.0661      0.779 0.004 0.988 0.008
#> GSM1068551     2  0.5650      0.757 0.000 0.688 0.312
#> GSM1068552     2  0.3030      0.783 0.004 0.904 0.092
#> GSM1068555     2  0.5760      0.754 0.000 0.672 0.328
#> GSM1068556     2  0.3120      0.742 0.012 0.908 0.080
#> GSM1068557     2  0.6988      0.740 0.036 0.644 0.320
#> GSM1068560     2  0.0661      0.777 0.008 0.988 0.004
#> GSM1068561     1  0.8625      0.394 0.576 0.288 0.136
#> GSM1068562     2  0.0829      0.776 0.004 0.984 0.012
#> GSM1068563     2  0.0829      0.776 0.004 0.984 0.012
#> GSM1068565     2  0.5621      0.758 0.000 0.692 0.308
#> GSM1068529     1  0.9266      0.192 0.424 0.420 0.156
#> GSM1068530     1  0.1964      0.489 0.944 0.000 0.056
#> GSM1068534     1  0.7944      0.378 0.616 0.296 0.088
#> GSM1068536     1  0.6231      0.505 0.772 0.148 0.080
#> GSM1068541     1  0.9458      0.169 0.448 0.368 0.184
#> GSM1068553     2  0.1647      0.769 0.004 0.960 0.036
#> GSM1068554     2  0.1163      0.776 0.000 0.972 0.028
#> GSM1068558     3  0.6448      0.282 0.012 0.352 0.636
#> GSM1068559     2  0.4099      0.706 0.008 0.852 0.140
#> GSM1068564     2  0.3551      0.782 0.000 0.868 0.132
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1068478     1  0.1824     0.6517 0.936 0.004 0.000 0.060
#> GSM1068479     2  0.7281     0.3136 0.000 0.532 0.196 0.272
#> GSM1068481     3  0.3942     0.7552 0.236 0.000 0.764 0.000
#> GSM1068482     3  0.4285     0.7889 0.156 0.000 0.804 0.040
#> GSM1068483     1  0.3402     0.5156 0.832 0.000 0.164 0.004
#> GSM1068486     3  0.4608     0.7733 0.096 0.000 0.800 0.104
#> GSM1068487     2  0.0188     0.7970 0.000 0.996 0.000 0.004
#> GSM1068488     4  0.4719     0.7163 0.016 0.224 0.008 0.752
#> GSM1068490     2  0.0336     0.7943 0.000 0.992 0.000 0.008
#> GSM1068491     4  0.7834     0.1033 0.000 0.308 0.284 0.408
#> GSM1068492     4  0.7064     0.3651 0.000 0.280 0.164 0.556
#> GSM1068493     1  0.5601     0.6461 0.764 0.052 0.048 0.136
#> GSM1068494     1  0.3818     0.6491 0.844 0.000 0.048 0.108
#> GSM1068495     1  0.6751     0.5818 0.624 0.124 0.008 0.244
#> GSM1068496     1  0.4817     0.0575 0.612 0.000 0.388 0.000
#> GSM1068498     1  0.5782     0.5912 0.704 0.220 0.008 0.068
#> GSM1068499     1  0.3081     0.6445 0.888 0.000 0.048 0.064
#> GSM1068500     1  0.4428     0.3305 0.720 0.000 0.276 0.004
#> GSM1068502     2  0.6724     0.4282 0.000 0.612 0.164 0.224
#> GSM1068503     2  0.1474     0.7549 0.000 0.948 0.000 0.052
#> GSM1068505     4  0.4713     0.7452 0.000 0.360 0.000 0.640
#> GSM1068506     4  0.4697     0.7484 0.000 0.356 0.000 0.644
#> GSM1068507     4  0.4872     0.7470 0.000 0.356 0.004 0.640
#> GSM1068508     2  0.4193     0.3091 0.000 0.732 0.000 0.268
#> GSM1068510     4  0.5186     0.7377 0.000 0.344 0.016 0.640
#> GSM1068512     4  0.4339     0.7168 0.008 0.224 0.004 0.764
#> GSM1068513     2  0.3105     0.6373 0.000 0.856 0.004 0.140
#> GSM1068514     4  0.5470     0.5988 0.000 0.168 0.100 0.732
#> GSM1068517     1  0.6667     0.3902 0.532 0.392 0.008 0.068
#> GSM1068518     4  0.6217     0.1070 0.360 0.040 0.012 0.588
#> GSM1068520     1  0.0188     0.6384 0.996 0.000 0.000 0.004
#> GSM1068521     1  0.1637     0.6529 0.940 0.000 0.000 0.060
#> GSM1068522     2  0.2647     0.6620 0.000 0.880 0.000 0.120
#> GSM1068524     2  0.0469     0.7922 0.000 0.988 0.000 0.012
#> GSM1068527     4  0.4543     0.7548 0.000 0.324 0.000 0.676
#> GSM1068480     3  0.4804     0.7391 0.064 0.000 0.776 0.160
#> GSM1068484     4  0.4837     0.7538 0.000 0.348 0.004 0.648
#> GSM1068485     3  0.4105     0.7893 0.156 0.000 0.812 0.032
#> GSM1068489     4  0.4679     0.7507 0.000 0.352 0.000 0.648
#> GSM1068497     1  0.6083     0.5849 0.688 0.228 0.016 0.068
#> GSM1068501     4  0.5220     0.7408 0.000 0.352 0.016 0.632
#> GSM1068504     2  0.0000     0.7991 0.000 1.000 0.000 0.000
#> GSM1068509     1  0.4975     0.6346 0.752 0.008 0.032 0.208
#> GSM1068511     3  0.6351     0.6759 0.268 0.000 0.628 0.104
#> GSM1068515     1  0.6500     0.6305 0.696 0.064 0.056 0.184
#> GSM1068516     4  0.6215     0.0476 0.384 0.036 0.012 0.568
#> GSM1068519     1  0.1209     0.6489 0.964 0.000 0.004 0.032
#> GSM1068523     2  0.0000     0.7991 0.000 1.000 0.000 0.000
#> GSM1068525     4  0.4560     0.7475 0.000 0.296 0.004 0.700
#> GSM1068526     4  0.4624     0.7551 0.000 0.340 0.000 0.660
#> GSM1068458     1  0.0188     0.6384 0.996 0.000 0.000 0.004
#> GSM1068459     3  0.3907     0.7583 0.232 0.000 0.768 0.000
#> GSM1068460     1  0.5384     0.5550 0.648 0.028 0.000 0.324
#> GSM1068461     3  0.3734     0.7475 0.044 0.000 0.848 0.108
#> GSM1068464     2  0.0336     0.7951 0.000 0.992 0.000 0.008
#> GSM1068468     2  0.5352     0.5638 0.156 0.756 0.008 0.080
#> GSM1068472     1  0.7174     0.3234 0.484 0.420 0.024 0.072
#> GSM1068473     2  0.0336     0.7943 0.000 0.992 0.000 0.008
#> GSM1068474     2  0.0000     0.7991 0.000 1.000 0.000 0.000
#> GSM1068476     4  0.7823     0.1125 0.000 0.308 0.280 0.412
#> GSM1068477     2  0.0000     0.7991 0.000 1.000 0.000 0.000
#> GSM1068462     2  0.5397     0.5594 0.160 0.752 0.008 0.080
#> GSM1068463     3  0.3975     0.7535 0.240 0.000 0.760 0.000
#> GSM1068465     1  0.5751     0.6243 0.708 0.020 0.044 0.228
#> GSM1068466     1  0.0376     0.6365 0.992 0.000 0.004 0.004
#> GSM1068467     2  0.5694     0.5206 0.176 0.728 0.008 0.088
#> GSM1068469     1  0.7181     0.3062 0.476 0.428 0.024 0.072
#> GSM1068470     2  0.0000     0.7991 0.000 1.000 0.000 0.000
#> GSM1068471     2  0.0000     0.7991 0.000 1.000 0.000 0.000
#> GSM1068475     2  0.0000     0.7991 0.000 1.000 0.000 0.000
#> GSM1068528     3  0.4925     0.4809 0.428 0.000 0.572 0.000
#> GSM1068531     1  0.3052     0.5288 0.860 0.000 0.136 0.004
#> GSM1068532     1  0.4855     0.1339 0.644 0.000 0.352 0.004
#> GSM1068533     1  0.4313     0.3506 0.736 0.000 0.260 0.004
#> GSM1068535     4  0.6744     0.3849 0.276 0.024 0.076 0.624
#> GSM1068537     1  0.4837     0.1436 0.648 0.000 0.348 0.004
#> GSM1068538     1  0.4819     0.1586 0.652 0.000 0.344 0.004
#> GSM1068539     1  0.7367     0.4789 0.536 0.152 0.008 0.304
#> GSM1068540     1  0.3208     0.5134 0.848 0.000 0.148 0.004
#> GSM1068542     4  0.4713     0.7452 0.000 0.360 0.000 0.640
#> GSM1068543     4  0.3908     0.7074 0.000 0.212 0.004 0.784
#> GSM1068544     3  0.4134     0.7380 0.260 0.000 0.740 0.000
#> GSM1068545     2  0.4843    -0.2087 0.000 0.604 0.000 0.396
#> GSM1068546     3  0.4245     0.7896 0.116 0.000 0.820 0.064
#> GSM1068547     1  0.0469     0.6421 0.988 0.000 0.000 0.012
#> GSM1068548     4  0.4643     0.7543 0.000 0.344 0.000 0.656
#> GSM1068549     3  0.4327     0.6717 0.016 0.000 0.768 0.216
#> GSM1068550     4  0.4713     0.7452 0.000 0.360 0.000 0.640
#> GSM1068551     2  0.0000     0.7991 0.000 1.000 0.000 0.000
#> GSM1068552     4  0.4989     0.5555 0.000 0.472 0.000 0.528
#> GSM1068555     2  0.0188     0.7970 0.000 0.996 0.000 0.004
#> GSM1068556     4  0.4283     0.7317 0.000 0.256 0.004 0.740
#> GSM1068557     2  0.5941     0.5331 0.172 0.712 0.008 0.108
#> GSM1068560     4  0.4661     0.7533 0.000 0.348 0.000 0.652
#> GSM1068561     1  0.7426     0.5985 0.632 0.140 0.056 0.172
#> GSM1068562     4  0.4661     0.7533 0.000 0.348 0.000 0.652
#> GSM1068563     4  0.4624     0.7551 0.000 0.340 0.000 0.660
#> GSM1068565     2  0.0000     0.7991 0.000 1.000 0.000 0.000
#> GSM1068529     4  0.6684     0.0497 0.360 0.028 0.044 0.568
#> GSM1068530     1  0.3870     0.4391 0.788 0.000 0.208 0.004
#> GSM1068534     1  0.6734     0.3573 0.488 0.008 0.068 0.436
#> GSM1068536     1  0.4218     0.6468 0.796 0.012 0.008 0.184
#> GSM1068541     1  0.6549     0.5642 0.612 0.120 0.000 0.268
#> GSM1068553     4  0.5018     0.7527 0.000 0.332 0.012 0.656
#> GSM1068554     4  0.5220     0.7408 0.000 0.352 0.016 0.632
#> GSM1068558     3  0.4431     0.5999 0.000 0.000 0.696 0.304
#> GSM1068559     4  0.5185     0.6294 0.000 0.176 0.076 0.748
#> GSM1068564     2  0.4972    -0.4065 0.000 0.544 0.000 0.456
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1068478     5   0.229     0.7229 0.108 0.004 0.000 0.000 0.888
#> GSM1068479     3   0.625     0.4329 0.000 0.284 0.572 0.128 0.016
#> GSM1068481     1   0.372     0.4405 0.784 0.004 0.196 0.000 0.016
#> GSM1068482     1   0.592     0.1544 0.580 0.032 0.332 0.000 0.056
#> GSM1068483     1   0.513     0.2859 0.536 0.024 0.008 0.000 0.432
#> GSM1068486     3   0.615     0.2441 0.356 0.032 0.552 0.004 0.056
#> GSM1068487     2   0.247     0.8586 0.000 0.864 0.000 0.136 0.000
#> GSM1068488     4   0.417     0.7108 0.000 0.008 0.148 0.788 0.056
#> GSM1068490     2   0.263     0.8574 0.000 0.860 0.004 0.136 0.000
#> GSM1068491     3   0.638     0.5020 0.012 0.148 0.616 0.208 0.016
#> GSM1068492     3   0.656     0.3324 0.000 0.120 0.548 0.300 0.032
#> GSM1068493     5   0.240     0.7641 0.028 0.016 0.012 0.024 0.920
#> GSM1068494     5   0.353     0.7460 0.064 0.016 0.032 0.024 0.864
#> GSM1068495     5   0.249     0.7651 0.000 0.036 0.000 0.068 0.896
#> GSM1068496     1   0.345     0.6279 0.812 0.000 0.024 0.000 0.164
#> GSM1068498     5   0.343     0.7196 0.040 0.132 0.000 0.000 0.828
#> GSM1068499     5   0.274     0.7413 0.084 0.004 0.016 0.008 0.888
#> GSM1068500     1   0.486     0.5060 0.636 0.008 0.024 0.000 0.332
#> GSM1068502     3   0.576     0.3149 0.000 0.364 0.560 0.060 0.016
#> GSM1068503     2   0.343     0.7882 0.000 0.776 0.004 0.220 0.000
#> GSM1068505     4   0.157     0.8329 0.000 0.044 0.004 0.944 0.008
#> GSM1068506     4   0.196     0.8365 0.000 0.048 0.004 0.928 0.020
#> GSM1068507     4   0.203     0.8303 0.000 0.056 0.008 0.924 0.012
#> GSM1068508     2   0.480     0.4348 0.000 0.580 0.000 0.396 0.024
#> GSM1068510     4   0.229     0.8138 0.000 0.048 0.024 0.916 0.012
#> GSM1068512     4   0.410     0.7132 0.000 0.008 0.148 0.792 0.052
#> GSM1068513     2   0.478     0.3756 0.000 0.532 0.012 0.452 0.004
#> GSM1068514     4   0.555     0.1284 0.000 0.016 0.456 0.492 0.036
#> GSM1068517     5   0.410     0.5743 0.004 0.300 0.000 0.004 0.692
#> GSM1068518     5   0.467     0.5984 0.000 0.000 0.056 0.240 0.704
#> GSM1068520     5   0.471     0.4827 0.292 0.040 0.000 0.000 0.668
#> GSM1068521     5   0.311     0.6989 0.132 0.024 0.000 0.000 0.844
#> GSM1068522     2   0.414     0.6719 0.000 0.684 0.004 0.308 0.004
#> GSM1068524     2   0.296     0.8491 0.000 0.840 0.004 0.152 0.004
#> GSM1068527     4   0.278     0.8250 0.000 0.032 0.032 0.896 0.040
#> GSM1068480     3   0.601     0.3567 0.252 0.064 0.632 0.000 0.052
#> GSM1068484     4   0.302     0.8258 0.000 0.040 0.032 0.884 0.044
#> GSM1068485     1   0.466     0.2029 0.624 0.004 0.356 0.000 0.016
#> GSM1068489     4   0.136     0.8353 0.000 0.028 0.004 0.956 0.012
#> GSM1068497     5   0.311     0.7337 0.028 0.112 0.004 0.000 0.856
#> GSM1068501     4   0.205     0.8223 0.000 0.040 0.020 0.928 0.012
#> GSM1068504     2   0.292     0.8569 0.000 0.852 0.000 0.132 0.016
#> GSM1068509     5   0.195     0.7637 0.024 0.000 0.008 0.036 0.932
#> GSM1068511     3   0.768    -0.0959 0.336 0.072 0.404 0.000 0.188
#> GSM1068515     5   0.332     0.7502 0.016 0.040 0.048 0.020 0.876
#> GSM1068516     5   0.419     0.6517 0.000 0.000 0.040 0.212 0.748
#> GSM1068519     5   0.477     0.5937 0.212 0.040 0.000 0.020 0.728
#> GSM1068523     2   0.306     0.8555 0.000 0.844 0.000 0.136 0.020
#> GSM1068525     4   0.335     0.8047 0.000 0.024 0.052 0.864 0.060
#> GSM1068526     4   0.205     0.8383 0.000 0.040 0.012 0.928 0.020
#> GSM1068458     5   0.476     0.4830 0.288 0.044 0.000 0.000 0.668
#> GSM1068459     1   0.346     0.4476 0.792 0.000 0.196 0.000 0.012
#> GSM1068460     5   0.334     0.7336 0.020 0.008 0.000 0.136 0.836
#> GSM1068461     3   0.501     0.3522 0.320 0.020 0.640 0.000 0.020
#> GSM1068464     2   0.254     0.8551 0.000 0.868 0.004 0.128 0.000
#> GSM1068468     2   0.340     0.6606 0.000 0.812 0.004 0.012 0.172
#> GSM1068472     5   0.445     0.5385 0.008 0.324 0.000 0.008 0.660
#> GSM1068473     2   0.263     0.8574 0.000 0.860 0.004 0.136 0.000
#> GSM1068474     2   0.247     0.8586 0.000 0.864 0.000 0.136 0.000
#> GSM1068476     3   0.635     0.5046 0.012 0.148 0.620 0.204 0.016
#> GSM1068477     2   0.247     0.8586 0.000 0.864 0.000 0.136 0.000
#> GSM1068462     2   0.399     0.5866 0.000 0.740 0.004 0.012 0.244
#> GSM1068463     1   0.346     0.4476 0.792 0.000 0.196 0.000 0.012
#> GSM1068465     5   0.364     0.7494 0.020 0.024 0.060 0.036 0.860
#> GSM1068466     5   0.471     0.4974 0.280 0.044 0.000 0.000 0.676
#> GSM1068467     2   0.416     0.5661 0.000 0.728 0.008 0.012 0.252
#> GSM1068469     5   0.448     0.4175 0.012 0.376 0.000 0.000 0.612
#> GSM1068470     2   0.306     0.8555 0.000 0.844 0.000 0.136 0.020
#> GSM1068471     2   0.292     0.8569 0.000 0.852 0.000 0.132 0.016
#> GSM1068475     2   0.292     0.8569 0.000 0.852 0.000 0.132 0.016
#> GSM1068528     1   0.191     0.5573 0.932 0.004 0.036 0.000 0.028
#> GSM1068531     1   0.517     0.4008 0.576 0.048 0.000 0.000 0.376
#> GSM1068532     1   0.392     0.6369 0.780 0.040 0.000 0.000 0.180
#> GSM1068533     1   0.427     0.6310 0.748 0.048 0.000 0.000 0.204
#> GSM1068535     4   0.514     0.6419 0.072 0.048 0.044 0.780 0.056
#> GSM1068537     1   0.392     0.6369 0.780 0.040 0.000 0.000 0.180
#> GSM1068538     1   0.410     0.6353 0.764 0.044 0.000 0.000 0.192
#> GSM1068539     5   0.356     0.7450 0.000 0.044 0.012 0.104 0.840
#> GSM1068540     1   0.506     0.3839 0.576 0.040 0.000 0.000 0.384
#> GSM1068542     4   0.188     0.8355 0.000 0.048 0.008 0.932 0.012
#> GSM1068543     4   0.392     0.7223 0.000 0.008 0.144 0.804 0.044
#> GSM1068544     1   0.282     0.4934 0.856 0.000 0.132 0.000 0.012
#> GSM1068545     4   0.472     0.2088 0.000 0.396 0.000 0.584 0.020
#> GSM1068546     1   0.630    -0.1045 0.472 0.028 0.440 0.012 0.048
#> GSM1068547     5   0.464     0.5037 0.280 0.040 0.000 0.000 0.680
#> GSM1068548     4   0.201     0.8375 0.000 0.044 0.008 0.928 0.020
#> GSM1068549     3   0.395     0.4607 0.176 0.012 0.792 0.012 0.008
#> GSM1068550     4   0.176     0.8348 0.000 0.048 0.004 0.936 0.012
#> GSM1068551     2   0.252     0.8580 0.000 0.860 0.000 0.140 0.000
#> GSM1068552     4   0.372     0.6304 0.000 0.228 0.000 0.760 0.012
#> GSM1068555     2   0.302     0.8544 0.000 0.848 0.000 0.132 0.020
#> GSM1068556     4   0.356     0.7623 0.000 0.016 0.108 0.840 0.036
#> GSM1068557     2   0.488     0.2494 0.000 0.572 0.004 0.020 0.404
#> GSM1068560     4   0.286     0.8280 0.000 0.040 0.028 0.892 0.040
#> GSM1068561     5   0.288     0.7617 0.008 0.044 0.024 0.028 0.896
#> GSM1068562     4   0.252     0.8324 0.000 0.040 0.028 0.908 0.024
#> GSM1068563     4   0.232     0.8376 0.000 0.044 0.016 0.916 0.024
#> GSM1068565     2   0.247     0.8586 0.000 0.864 0.000 0.136 0.000
#> GSM1068529     5   0.475     0.6373 0.000 0.004 0.080 0.184 0.732
#> GSM1068530     1   0.437     0.5996 0.724 0.040 0.000 0.000 0.236
#> GSM1068534     5   0.474     0.6728 0.008 0.012 0.068 0.148 0.764
#> GSM1068536     5   0.191     0.7616 0.036 0.004 0.000 0.028 0.932
#> GSM1068541     5   0.279     0.7614 0.000 0.056 0.000 0.064 0.880
#> GSM1068553     4   0.152     0.8293 0.000 0.020 0.016 0.952 0.012
#> GSM1068554     4   0.197     0.8233 0.000 0.036 0.020 0.932 0.012
#> GSM1068558     3   0.488     0.4512 0.124 0.068 0.768 0.004 0.036
#> GSM1068559     4   0.552     0.3715 0.000 0.016 0.364 0.576 0.044
#> GSM1068564     4   0.418     0.4147 0.000 0.324 0.000 0.668 0.008
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1068478     5   0.152      0.707 0.060 0.008 0.000 0.000 0.932 0.000
#> GSM1068479     4   0.534      0.702 0.000 0.156 0.060 0.680 0.000 0.104
#> GSM1068481     3   0.421      0.366 0.460 0.000 0.528 0.004 0.008 0.000
#> GSM1068482     3   0.431      0.567 0.260 0.000 0.692 0.040 0.008 0.000
#> GSM1068483     1   0.582      0.497 0.548 0.020 0.072 0.020 0.340 0.000
#> GSM1068486     3   0.437      0.602 0.064 0.004 0.740 0.180 0.012 0.000
#> GSM1068487     2   0.154      0.866 0.000 0.936 0.008 0.004 0.000 0.052
#> GSM1068488     6   0.366      0.670 0.000 0.008 0.004 0.184 0.024 0.780
#> GSM1068490     2   0.161      0.864 0.000 0.932 0.008 0.004 0.000 0.056
#> GSM1068491     4   0.557      0.721 0.000 0.088 0.100 0.676 0.004 0.132
#> GSM1068492     4   0.457      0.711 0.000 0.076 0.008 0.732 0.012 0.172
#> GSM1068493     5   0.262      0.732 0.004 0.028 0.032 0.024 0.900 0.012
#> GSM1068494     5   0.434      0.700 0.036 0.000 0.044 0.096 0.792 0.032
#> GSM1068495     5   0.269      0.737 0.000 0.040 0.004 0.012 0.884 0.060
#> GSM1068496     1   0.452      0.411 0.692 0.000 0.228 0.004 0.076 0.000
#> GSM1068498     5   0.310      0.712 0.020 0.104 0.016 0.008 0.852 0.000
#> GSM1068499     5   0.298      0.718 0.036 0.004 0.036 0.052 0.872 0.000
#> GSM1068500     1   0.582      0.577 0.588 0.012 0.128 0.016 0.256 0.000
#> GSM1068502     4   0.506      0.640 0.000 0.204 0.056 0.684 0.000 0.056
#> GSM1068503     2   0.273      0.783 0.000 0.840 0.008 0.004 0.000 0.148
#> GSM1068505     6   0.267      0.775 0.012 0.048 0.028 0.020 0.000 0.892
#> GSM1068506     6   0.182      0.789 0.000 0.056 0.000 0.012 0.008 0.924
#> GSM1068507     6   0.337      0.768 0.012 0.080 0.024 0.036 0.000 0.848
#> GSM1068508     2   0.392      0.399 0.000 0.620 0.000 0.008 0.000 0.372
#> GSM1068510     6   0.481      0.686 0.032 0.056 0.072 0.076 0.000 0.764
#> GSM1068512     6   0.345      0.686 0.000 0.008 0.004 0.160 0.024 0.804
#> GSM1068513     2   0.558      0.366 0.016 0.556 0.040 0.032 0.000 0.356
#> GSM1068514     4   0.422      0.547 0.000 0.012 0.000 0.660 0.016 0.312
#> GSM1068517     5   0.392      0.628 0.004 0.244 0.016 0.008 0.728 0.000
#> GSM1068518     5   0.488      0.603 0.000 0.004 0.008 0.116 0.692 0.180
#> GSM1068520     5   0.435      0.219 0.392 0.008 0.004 0.008 0.588 0.000
#> GSM1068521     5   0.286      0.658 0.136 0.004 0.000 0.012 0.844 0.004
#> GSM1068522     2   0.453      0.659 0.008 0.724 0.032 0.020 0.004 0.212
#> GSM1068524     2   0.164      0.867 0.000 0.932 0.004 0.012 0.000 0.052
#> GSM1068527     6   0.319      0.761 0.000 0.032 0.004 0.088 0.024 0.852
#> GSM1068480     3   0.335      0.542 0.008 0.000 0.792 0.184 0.016 0.000
#> GSM1068484     6   0.402      0.746 0.000 0.040 0.008 0.132 0.028 0.792
#> GSM1068485     3   0.497      0.537 0.296 0.000 0.624 0.068 0.012 0.000
#> GSM1068489     6   0.327      0.767 0.012 0.044 0.044 0.032 0.004 0.864
#> GSM1068497     5   0.286      0.717 0.016 0.092 0.016 0.008 0.868 0.000
#> GSM1068501     6   0.482      0.691 0.032 0.044 0.076 0.076 0.004 0.768
#> GSM1068504     2   0.169      0.867 0.000 0.932 0.004 0.008 0.004 0.052
#> GSM1068509     5   0.240      0.731 0.000 0.004 0.020 0.040 0.904 0.032
#> GSM1068511     3   0.729      0.359 0.160 0.028 0.524 0.156 0.128 0.004
#> GSM1068515     5   0.427      0.685 0.012 0.044 0.108 0.048 0.788 0.000
#> GSM1068516     5   0.429      0.682 0.000 0.008 0.016 0.088 0.772 0.116
#> GSM1068519     5   0.467      0.377 0.328 0.000 0.016 0.032 0.624 0.000
#> GSM1068523     2   0.188      0.864 0.000 0.924 0.004 0.016 0.004 0.052
#> GSM1068525     6   0.380      0.720 0.000 0.020 0.008 0.148 0.028 0.796
#> GSM1068526     6   0.187      0.792 0.000 0.048 0.000 0.020 0.008 0.924
#> GSM1068458     5   0.497      0.113 0.416 0.012 0.028 0.008 0.536 0.000
#> GSM1068459     3   0.409      0.368 0.464 0.000 0.528 0.000 0.008 0.000
#> GSM1068460     5   0.305      0.722 0.028 0.004 0.000 0.016 0.856 0.096
#> GSM1068461     3   0.424      0.378 0.028 0.000 0.628 0.344 0.000 0.000
#> GSM1068464     2   0.162      0.861 0.000 0.932 0.000 0.020 0.000 0.048
#> GSM1068468     2   0.324      0.695 0.000 0.832 0.012 0.024 0.128 0.004
#> GSM1068472     5   0.453      0.549 0.004 0.312 0.016 0.020 0.648 0.000
#> GSM1068473     2   0.161      0.864 0.000 0.932 0.008 0.004 0.000 0.056
#> GSM1068474     2   0.154      0.866 0.000 0.936 0.008 0.004 0.000 0.052
#> GSM1068476     4   0.551      0.715 0.000 0.096 0.104 0.684 0.004 0.112
#> GSM1068477     2   0.128      0.868 0.000 0.944 0.000 0.004 0.000 0.052
#> GSM1068462     2   0.432      0.454 0.000 0.680 0.016 0.024 0.280 0.000
#> GSM1068463     3   0.409      0.367 0.468 0.000 0.524 0.000 0.008 0.000
#> GSM1068465     5   0.448      0.692 0.024 0.032 0.088 0.040 0.796 0.020
#> GSM1068466     5   0.478      0.194 0.388 0.012 0.020 0.008 0.572 0.000
#> GSM1068467     2   0.470      0.357 0.000 0.632 0.016 0.028 0.320 0.004
#> GSM1068469     5   0.471      0.443 0.004 0.368 0.020 0.016 0.592 0.000
#> GSM1068470     2   0.179      0.865 0.000 0.928 0.004 0.012 0.004 0.052
#> GSM1068471     2   0.169      0.867 0.000 0.932 0.004 0.008 0.004 0.052
#> GSM1068475     2   0.143      0.867 0.000 0.940 0.000 0.004 0.004 0.052
#> GSM1068528     1   0.446      0.140 0.632 0.008 0.336 0.008 0.016 0.000
#> GSM1068531     1   0.420      0.628 0.704 0.008 0.020 0.008 0.260 0.000
#> GSM1068532     1   0.216      0.692 0.892 0.000 0.008 0.004 0.096 0.000
#> GSM1068533     1   0.304      0.688 0.848 0.008 0.020 0.008 0.116 0.000
#> GSM1068535     6   0.533      0.567 0.148 0.004 0.064 0.052 0.020 0.712
#> GSM1068537     1   0.202      0.692 0.896 0.000 0.008 0.000 0.096 0.000
#> GSM1068538     1   0.216      0.693 0.892 0.000 0.008 0.004 0.096 0.000
#> GSM1068539     5   0.410      0.713 0.000 0.040 0.004 0.068 0.796 0.092
#> GSM1068540     1   0.355      0.602 0.696 0.000 0.000 0.004 0.300 0.000
#> GSM1068542     6   0.135      0.789 0.004 0.056 0.000 0.000 0.000 0.940
#> GSM1068543     6   0.341      0.685 0.000 0.008 0.004 0.164 0.020 0.804
#> GSM1068544     1   0.418     -0.376 0.504 0.000 0.484 0.000 0.012 0.000
#> GSM1068545     6   0.417      0.231 0.000 0.424 0.000 0.008 0.004 0.564
#> GSM1068546     3   0.479      0.617 0.124 0.004 0.740 0.104 0.012 0.016
#> GSM1068547     5   0.450      0.209 0.400 0.008 0.004 0.008 0.576 0.004
#> GSM1068548     6   0.183      0.791 0.000 0.052 0.000 0.020 0.004 0.924
#> GSM1068549     4   0.434      0.229 0.016 0.000 0.344 0.628 0.000 0.012
#> GSM1068550     6   0.149      0.789 0.000 0.056 0.000 0.004 0.004 0.936
#> GSM1068551     2   0.164      0.866 0.000 0.932 0.004 0.012 0.000 0.052
#> GSM1068552     6   0.356      0.595 0.000 0.256 0.000 0.008 0.004 0.732
#> GSM1068555     2   0.186      0.859 0.000 0.928 0.004 0.016 0.008 0.044
#> GSM1068556     6   0.320      0.719 0.000 0.012 0.004 0.132 0.020 0.832
#> GSM1068557     5   0.521      0.221 0.000 0.432 0.008 0.032 0.508 0.020
#> GSM1068560     6   0.338      0.765 0.000 0.040 0.004 0.092 0.024 0.840
#> GSM1068561     5   0.351      0.736 0.000 0.048 0.020 0.036 0.848 0.048
#> GSM1068562     6   0.313      0.774 0.000 0.052 0.000 0.088 0.012 0.848
#> GSM1068563     6   0.265      0.786 0.000 0.048 0.000 0.052 0.016 0.884
#> GSM1068565     2   0.128      0.868 0.000 0.944 0.000 0.004 0.000 0.052
#> GSM1068529     5   0.497      0.659 0.000 0.008 0.036 0.132 0.724 0.100
#> GSM1068530     1   0.212      0.695 0.888 0.000 0.008 0.000 0.104 0.000
#> GSM1068534     5   0.563      0.644 0.004 0.008 0.104 0.096 0.688 0.100
#> GSM1068536     5   0.119      0.720 0.032 0.000 0.004 0.000 0.956 0.008
#> GSM1068541     5   0.281      0.737 0.004 0.040 0.020 0.000 0.880 0.056
#> GSM1068553     6   0.398      0.724 0.032 0.028 0.064 0.048 0.004 0.824
#> GSM1068554     6   0.466      0.697 0.032 0.044 0.076 0.064 0.004 0.780
#> GSM1068558     3   0.584      0.307 0.060 0.028 0.536 0.360 0.012 0.004
#> GSM1068559     4   0.464      0.314 0.000 0.012 0.004 0.564 0.016 0.404
#> GSM1068564     6   0.498      0.356 0.000 0.372 0.024 0.020 0.008 0.576
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#>             n disease.state(p) gender(p) k
#> CV:kmeans 103         0.683245     1.000 2
#> CV:kmeans  78         0.859603     0.985 3
#> CV:kmeans  83         0.010616     0.976 4
#> CV:kmeans  78         0.000305     0.472 5
#> CV:kmeans  83         0.000172     0.376 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 38950 rows and 108 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.758           0.923       0.962         0.5029 0.497   0.497
#> 3 3 0.575           0.714       0.845         0.3170 0.728   0.505
#> 4 4 0.618           0.606       0.810         0.1335 0.808   0.500
#> 5 5 0.600           0.539       0.728         0.0593 0.857   0.525
#> 6 6 0.638           0.511       0.710         0.0396 0.920   0.660
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1068478     1  0.0000      0.953 1.000 0.000
#> GSM1068479     2  0.0000      0.964 0.000 1.000
#> GSM1068481     1  0.0000      0.953 1.000 0.000
#> GSM1068482     1  0.0000      0.953 1.000 0.000
#> GSM1068483     1  0.0000      0.953 1.000 0.000
#> GSM1068486     1  0.0000      0.953 1.000 0.000
#> GSM1068487     2  0.0000      0.964 0.000 1.000
#> GSM1068488     2  0.6973      0.787 0.188 0.812
#> GSM1068490     2  0.0000      0.964 0.000 1.000
#> GSM1068491     2  0.7056      0.782 0.192 0.808
#> GSM1068492     2  0.0000      0.964 0.000 1.000
#> GSM1068493     1  0.0000      0.953 1.000 0.000
#> GSM1068494     1  0.0000      0.953 1.000 0.000
#> GSM1068495     1  0.7056      0.800 0.808 0.192
#> GSM1068496     1  0.0000      0.953 1.000 0.000
#> GSM1068498     1  0.6623      0.820 0.828 0.172
#> GSM1068499     1  0.0000      0.953 1.000 0.000
#> GSM1068500     1  0.0000      0.953 1.000 0.000
#> GSM1068502     2  0.0000      0.964 0.000 1.000
#> GSM1068503     2  0.0000      0.964 0.000 1.000
#> GSM1068505     2  0.0000      0.964 0.000 1.000
#> GSM1068506     2  0.0000      0.964 0.000 1.000
#> GSM1068507     2  0.0000      0.964 0.000 1.000
#> GSM1068508     2  0.0000      0.964 0.000 1.000
#> GSM1068510     2  0.0000      0.964 0.000 1.000
#> GSM1068512     2  0.7219      0.772 0.200 0.800
#> GSM1068513     2  0.0000      0.964 0.000 1.000
#> GSM1068514     2  0.6148      0.827 0.152 0.848
#> GSM1068517     1  0.7219      0.792 0.800 0.200
#> GSM1068518     1  0.0000      0.953 1.000 0.000
#> GSM1068520     1  0.0000      0.953 1.000 0.000
#> GSM1068521     1  0.0000      0.953 1.000 0.000
#> GSM1068522     2  0.0000      0.964 0.000 1.000
#> GSM1068524     2  0.0000      0.964 0.000 1.000
#> GSM1068527     2  0.0000      0.964 0.000 1.000
#> GSM1068480     1  0.0000      0.953 1.000 0.000
#> GSM1068484     2  0.0000      0.964 0.000 1.000
#> GSM1068485     1  0.0000      0.953 1.000 0.000
#> GSM1068489     2  0.0000      0.964 0.000 1.000
#> GSM1068497     1  0.6623      0.820 0.828 0.172
#> GSM1068501     2  0.0000      0.964 0.000 1.000
#> GSM1068504     2  0.0000      0.964 0.000 1.000
#> GSM1068509     1  0.0000      0.953 1.000 0.000
#> GSM1068511     1  0.0000      0.953 1.000 0.000
#> GSM1068515     1  0.0376      0.951 0.996 0.004
#> GSM1068516     1  0.5294      0.870 0.880 0.120
#> GSM1068519     1  0.0000      0.953 1.000 0.000
#> GSM1068523     2  0.0000      0.964 0.000 1.000
#> GSM1068525     2  0.0000      0.964 0.000 1.000
#> GSM1068526     2  0.0000      0.964 0.000 1.000
#> GSM1068458     1  0.0000      0.953 1.000 0.000
#> GSM1068459     1  0.0000      0.953 1.000 0.000
#> GSM1068460     1  0.8016      0.732 0.756 0.244
#> GSM1068461     1  0.0000      0.953 1.000 0.000
#> GSM1068464     2  0.0000      0.964 0.000 1.000
#> GSM1068468     2  0.0000      0.964 0.000 1.000
#> GSM1068472     1  0.7219      0.792 0.800 0.200
#> GSM1068473     2  0.0000      0.964 0.000 1.000
#> GSM1068474     2  0.0000      0.964 0.000 1.000
#> GSM1068476     2  0.6623      0.805 0.172 0.828
#> GSM1068477     2  0.0000      0.964 0.000 1.000
#> GSM1068462     2  0.0000      0.964 0.000 1.000
#> GSM1068463     1  0.0000      0.953 1.000 0.000
#> GSM1068465     1  0.6712      0.816 0.824 0.176
#> GSM1068466     1  0.0000      0.953 1.000 0.000
#> GSM1068467     2  0.0000      0.964 0.000 1.000
#> GSM1068469     1  0.7219      0.792 0.800 0.200
#> GSM1068470     2  0.0000      0.964 0.000 1.000
#> GSM1068471     2  0.0000      0.964 0.000 1.000
#> GSM1068475     2  0.0000      0.964 0.000 1.000
#> GSM1068528     1  0.0000      0.953 1.000 0.000
#> GSM1068531     1  0.0000      0.953 1.000 0.000
#> GSM1068532     1  0.0000      0.953 1.000 0.000
#> GSM1068533     1  0.0000      0.953 1.000 0.000
#> GSM1068535     1  0.0000      0.953 1.000 0.000
#> GSM1068537     1  0.0000      0.953 1.000 0.000
#> GSM1068538     1  0.0000      0.953 1.000 0.000
#> GSM1068539     2  0.8327      0.610 0.264 0.736
#> GSM1068540     1  0.0000      0.953 1.000 0.000
#> GSM1068542     2  0.0000      0.964 0.000 1.000
#> GSM1068543     2  0.6531      0.810 0.168 0.832
#> GSM1068544     1  0.0000      0.953 1.000 0.000
#> GSM1068545     2  0.0000      0.964 0.000 1.000
#> GSM1068546     1  0.0000      0.953 1.000 0.000
#> GSM1068547     1  0.0000      0.953 1.000 0.000
#> GSM1068548     2  0.0000      0.964 0.000 1.000
#> GSM1068549     1  0.0000      0.953 1.000 0.000
#> GSM1068550     2  0.0000      0.964 0.000 1.000
#> GSM1068551     2  0.0000      0.964 0.000 1.000
#> GSM1068552     2  0.0000      0.964 0.000 1.000
#> GSM1068555     2  0.0000      0.964 0.000 1.000
#> GSM1068556     2  0.6623      0.805 0.172 0.828
#> GSM1068557     2  0.0000      0.964 0.000 1.000
#> GSM1068560     2  0.0000      0.964 0.000 1.000
#> GSM1068561     1  0.7219      0.792 0.800 0.200
#> GSM1068562     2  0.0000      0.964 0.000 1.000
#> GSM1068563     2  0.0000      0.964 0.000 1.000
#> GSM1068565     2  0.0000      0.964 0.000 1.000
#> GSM1068529     1  0.0000      0.953 1.000 0.000
#> GSM1068530     1  0.0000      0.953 1.000 0.000
#> GSM1068534     1  0.0000      0.953 1.000 0.000
#> GSM1068536     1  0.2948      0.919 0.948 0.052
#> GSM1068541     1  0.8861      0.635 0.696 0.304
#> GSM1068553     2  0.2236      0.935 0.036 0.964
#> GSM1068554     2  0.0000      0.964 0.000 1.000
#> GSM1068558     2  0.9460      0.489 0.364 0.636
#> GSM1068559     2  0.0000      0.964 0.000 1.000
#> GSM1068564     2  0.0000      0.964 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1068478     1  0.3879     0.8750 0.848 0.152 0.000
#> GSM1068479     3  0.6500    -0.0698 0.004 0.464 0.532
#> GSM1068481     1  0.0424     0.8960 0.992 0.000 0.008
#> GSM1068482     1  0.1163     0.8905 0.972 0.000 0.028
#> GSM1068483     1  0.1860     0.8982 0.948 0.052 0.000
#> GSM1068486     1  0.1163     0.8905 0.972 0.000 0.028
#> GSM1068487     2  0.4002     0.7621 0.000 0.840 0.160
#> GSM1068488     3  0.2261     0.7737 0.068 0.000 0.932
#> GSM1068490     2  0.4235     0.7509 0.000 0.824 0.176
#> GSM1068491     3  0.5901     0.6774 0.048 0.176 0.776
#> GSM1068492     3  0.3879     0.7268 0.000 0.152 0.848
#> GSM1068493     1  0.0475     0.8973 0.992 0.004 0.004
#> GSM1068494     1  0.2313     0.8968 0.944 0.032 0.024
#> GSM1068495     2  0.7424     0.0374 0.388 0.572 0.040
#> GSM1068496     1  0.0829     0.8989 0.984 0.012 0.004
#> GSM1068498     2  0.6204    -0.0445 0.424 0.576 0.000
#> GSM1068499     1  0.0237     0.8977 0.996 0.004 0.000
#> GSM1068500     1  0.1529     0.8990 0.960 0.040 0.000
#> GSM1068502     2  0.6291     0.2530 0.000 0.532 0.468
#> GSM1068503     2  0.5327     0.6480 0.000 0.728 0.272
#> GSM1068505     3  0.3482     0.7594 0.000 0.128 0.872
#> GSM1068506     3  0.3619     0.7590 0.000 0.136 0.864
#> GSM1068507     3  0.3038     0.7951 0.000 0.104 0.896
#> GSM1068508     2  0.5327     0.6654 0.000 0.728 0.272
#> GSM1068510     3  0.3038     0.7998 0.000 0.104 0.896
#> GSM1068512     3  0.1529     0.7961 0.040 0.000 0.960
#> GSM1068513     2  0.6154     0.4114 0.000 0.592 0.408
#> GSM1068514     3  0.2564     0.8060 0.028 0.036 0.936
#> GSM1068517     2  0.2261     0.6512 0.068 0.932 0.000
#> GSM1068518     3  0.7665     0.0320 0.456 0.044 0.500
#> GSM1068520     1  0.3879     0.8750 0.848 0.152 0.000
#> GSM1068521     1  0.3879     0.8750 0.848 0.152 0.000
#> GSM1068522     2  0.5988     0.4912 0.000 0.632 0.368
#> GSM1068524     2  0.4346     0.7485 0.000 0.816 0.184
#> GSM1068527     3  0.1163     0.8277 0.000 0.028 0.972
#> GSM1068480     1  0.1163     0.8905 0.972 0.000 0.028
#> GSM1068484     3  0.1289     0.8284 0.000 0.032 0.968
#> GSM1068485     1  0.1031     0.8921 0.976 0.000 0.024
#> GSM1068489     3  0.1289     0.8284 0.000 0.032 0.968
#> GSM1068497     2  0.6225    -0.0721 0.432 0.568 0.000
#> GSM1068501     3  0.3038     0.7922 0.000 0.104 0.896
#> GSM1068504     2  0.3879     0.7649 0.000 0.848 0.152
#> GSM1068509     1  0.1753     0.9005 0.952 0.048 0.000
#> GSM1068511     1  0.1031     0.8920 0.976 0.000 0.024
#> GSM1068515     1  0.2711     0.8895 0.912 0.088 0.000
#> GSM1068516     3  0.6632     0.5970 0.064 0.204 0.732
#> GSM1068519     1  0.3482     0.8851 0.872 0.128 0.000
#> GSM1068523     2  0.3879     0.7649 0.000 0.848 0.152
#> GSM1068525     3  0.1289     0.8284 0.000 0.032 0.968
#> GSM1068526     3  0.1289     0.8284 0.000 0.032 0.968
#> GSM1068458     1  0.3879     0.8750 0.848 0.152 0.000
#> GSM1068459     1  0.1163     0.8905 0.972 0.000 0.028
#> GSM1068460     2  0.9955     0.0119 0.316 0.380 0.304
#> GSM1068461     1  0.1163     0.8905 0.972 0.000 0.028
#> GSM1068464     2  0.4002     0.7621 0.000 0.840 0.160
#> GSM1068468     2  0.3116     0.7515 0.000 0.892 0.108
#> GSM1068472     2  0.5785     0.4173 0.332 0.668 0.000
#> GSM1068473     2  0.4062     0.7597 0.000 0.836 0.164
#> GSM1068474     2  0.4002     0.7621 0.000 0.840 0.160
#> GSM1068476     3  0.4897     0.7038 0.016 0.172 0.812
#> GSM1068477     2  0.3879     0.7649 0.000 0.848 0.152
#> GSM1068462     2  0.3607     0.7535 0.008 0.880 0.112
#> GSM1068463     1  0.0747     0.8943 0.984 0.000 0.016
#> GSM1068465     1  0.5536     0.6982 0.752 0.236 0.012
#> GSM1068466     1  0.3879     0.8750 0.848 0.152 0.000
#> GSM1068467     2  0.0829     0.6936 0.004 0.984 0.012
#> GSM1068469     2  0.5327     0.5112 0.272 0.728 0.000
#> GSM1068470     2  0.3879     0.7649 0.000 0.848 0.152
#> GSM1068471     2  0.4002     0.7621 0.000 0.840 0.160
#> GSM1068475     2  0.3879     0.7649 0.000 0.848 0.152
#> GSM1068528     1  0.0424     0.8987 0.992 0.008 0.000
#> GSM1068531     1  0.3340     0.8879 0.880 0.120 0.000
#> GSM1068532     1  0.2537     0.8957 0.920 0.080 0.000
#> GSM1068533     1  0.3340     0.8879 0.880 0.120 0.000
#> GSM1068535     3  0.8228     0.2632 0.364 0.084 0.552
#> GSM1068537     1  0.3192     0.8899 0.888 0.112 0.000
#> GSM1068538     1  0.3267     0.8889 0.884 0.116 0.000
#> GSM1068539     2  0.4744     0.6067 0.028 0.836 0.136
#> GSM1068540     1  0.3267     0.8891 0.884 0.116 0.000
#> GSM1068542     3  0.1411     0.8275 0.000 0.036 0.964
#> GSM1068543     3  0.0237     0.8171 0.004 0.000 0.996
#> GSM1068544     1  0.1129     0.8948 0.976 0.004 0.020
#> GSM1068545     2  0.6252     0.3617 0.000 0.556 0.444
#> GSM1068546     1  0.1163     0.8905 0.972 0.000 0.028
#> GSM1068547     1  0.3879     0.8750 0.848 0.152 0.000
#> GSM1068548     3  0.1289     0.8284 0.000 0.032 0.968
#> GSM1068549     1  0.5431     0.5762 0.716 0.000 0.284
#> GSM1068550     3  0.1964     0.8199 0.000 0.056 0.944
#> GSM1068551     2  0.3879     0.7649 0.000 0.848 0.152
#> GSM1068552     3  0.5138     0.5757 0.000 0.252 0.748
#> GSM1068555     2  0.3879     0.7649 0.000 0.848 0.152
#> GSM1068556     3  0.0661     0.8208 0.004 0.008 0.988
#> GSM1068557     2  0.3482     0.7588 0.000 0.872 0.128
#> GSM1068560     3  0.1289     0.8284 0.000 0.032 0.968
#> GSM1068561     1  0.6410     0.2146 0.576 0.420 0.004
#> GSM1068562     3  0.1289     0.8284 0.000 0.032 0.968
#> GSM1068563     3  0.3686     0.7546 0.000 0.140 0.860
#> GSM1068565     2  0.3879     0.7649 0.000 0.848 0.152
#> GSM1068529     1  0.6577     0.2348 0.572 0.008 0.420
#> GSM1068530     1  0.3340     0.8879 0.880 0.120 0.000
#> GSM1068534     1  0.3116     0.8332 0.892 0.000 0.108
#> GSM1068536     1  0.4293     0.8660 0.832 0.164 0.004
#> GSM1068541     2  0.5307     0.5962 0.056 0.820 0.124
#> GSM1068553     3  0.1163     0.8277 0.000 0.028 0.972
#> GSM1068554     3  0.1643     0.8256 0.000 0.044 0.956
#> GSM1068558     3  0.6229     0.4633 0.340 0.008 0.652
#> GSM1068559     3  0.2584     0.8033 0.008 0.064 0.928
#> GSM1068564     3  0.6204     0.0934 0.000 0.424 0.576
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1068478     1  0.0779     0.6502 0.980 0.016 0.004 0.000
#> GSM1068479     2  0.6516     0.4189 0.000 0.576 0.332 0.092
#> GSM1068481     3  0.4454     0.5381 0.308 0.000 0.692 0.000
#> GSM1068482     3  0.3266     0.6416 0.168 0.000 0.832 0.000
#> GSM1068483     1  0.4925     0.1321 0.572 0.000 0.428 0.000
#> GSM1068486     3  0.1118     0.6549 0.036 0.000 0.964 0.000
#> GSM1068487     2  0.1209     0.8726 0.000 0.964 0.004 0.032
#> GSM1068488     4  0.3662     0.7679 0.004 0.012 0.148 0.836
#> GSM1068490     2  0.1305     0.8709 0.000 0.960 0.004 0.036
#> GSM1068491     3  0.7483    -0.0614 0.000 0.360 0.456 0.184
#> GSM1068492     4  0.7922     0.0862 0.000 0.320 0.336 0.344
#> GSM1068493     3  0.5957     0.3843 0.364 0.048 0.588 0.000
#> GSM1068494     1  0.4992    -0.0651 0.524 0.000 0.476 0.000
#> GSM1068495     1  0.4339     0.5440 0.764 0.224 0.004 0.008
#> GSM1068496     1  0.5000    -0.1517 0.504 0.000 0.496 0.000
#> GSM1068498     1  0.4372     0.5139 0.728 0.268 0.004 0.000
#> GSM1068499     3  0.4898     0.3529 0.416 0.000 0.584 0.000
#> GSM1068500     1  0.4967     0.0413 0.548 0.000 0.452 0.000
#> GSM1068502     2  0.5898     0.4902 0.000 0.628 0.316 0.056
#> GSM1068503     2  0.3448     0.7562 0.000 0.828 0.004 0.168
#> GSM1068505     4  0.1211     0.8507 0.000 0.040 0.000 0.960
#> GSM1068506     4  0.1557     0.8458 0.000 0.056 0.000 0.944
#> GSM1068507     4  0.2342     0.8349 0.000 0.080 0.008 0.912
#> GSM1068508     2  0.4564     0.5006 0.000 0.672 0.000 0.328
#> GSM1068510     4  0.4776     0.7342 0.000 0.164 0.060 0.776
#> GSM1068512     4  0.2867     0.8003 0.000 0.012 0.104 0.884
#> GSM1068513     2  0.4343     0.6391 0.000 0.732 0.004 0.264
#> GSM1068514     4  0.6158     0.4394 0.000 0.056 0.384 0.560
#> GSM1068517     1  0.5229     0.2253 0.564 0.428 0.008 0.000
#> GSM1068518     1  0.7702     0.0327 0.416 0.000 0.360 0.224
#> GSM1068520     1  0.0376     0.6534 0.992 0.004 0.004 0.000
#> GSM1068521     1  0.0188     0.6525 0.996 0.004 0.000 0.000
#> GSM1068522     2  0.4877     0.2921 0.000 0.592 0.000 0.408
#> GSM1068524     2  0.2593     0.8272 0.000 0.892 0.004 0.104
#> GSM1068527     4  0.0376     0.8511 0.000 0.004 0.004 0.992
#> GSM1068480     3  0.1118     0.6547 0.036 0.000 0.964 0.000
#> GSM1068484     4  0.1488     0.8553 0.000 0.032 0.012 0.956
#> GSM1068485     3  0.2589     0.6583 0.116 0.000 0.884 0.000
#> GSM1068489     4  0.0921     0.8535 0.000 0.028 0.000 0.972
#> GSM1068497     1  0.5131     0.4952 0.692 0.280 0.028 0.000
#> GSM1068501     4  0.2124     0.8420 0.000 0.068 0.008 0.924
#> GSM1068504     2  0.1209     0.8726 0.000 0.964 0.004 0.032
#> GSM1068509     1  0.4277     0.4295 0.720 0.000 0.280 0.000
#> GSM1068511     3  0.4356     0.5426 0.292 0.000 0.708 0.000
#> GSM1068515     1  0.6336    -0.0579 0.480 0.060 0.460 0.000
#> GSM1068516     1  0.7708     0.2801 0.540 0.024 0.280 0.156
#> GSM1068519     1  0.1118     0.6531 0.964 0.000 0.036 0.000
#> GSM1068523     2  0.1118     0.8717 0.000 0.964 0.000 0.036
#> GSM1068525     4  0.3764     0.8117 0.000 0.072 0.076 0.852
#> GSM1068526     4  0.0469     0.8532 0.000 0.012 0.000 0.988
#> GSM1068458     1  0.1792     0.6486 0.932 0.000 0.068 0.000
#> GSM1068459     3  0.4072     0.5964 0.252 0.000 0.748 0.000
#> GSM1068460     1  0.4228     0.5082 0.760 0.008 0.000 0.232
#> GSM1068461     3  0.0921     0.6474 0.028 0.000 0.972 0.000
#> GSM1068464     2  0.0779     0.8685 0.000 0.980 0.004 0.016
#> GSM1068468     2  0.0804     0.8550 0.012 0.980 0.000 0.008
#> GSM1068472     2  0.6551     0.4161 0.136 0.624 0.240 0.000
#> GSM1068473     2  0.1209     0.8726 0.000 0.964 0.004 0.032
#> GSM1068474     2  0.1209     0.8726 0.000 0.964 0.004 0.032
#> GSM1068476     3  0.7626    -0.1478 0.000 0.384 0.412 0.204
#> GSM1068477     2  0.0921     0.8725 0.000 0.972 0.000 0.028
#> GSM1068462     2  0.0188     0.8586 0.004 0.996 0.000 0.000
#> GSM1068463     3  0.4454     0.5434 0.308 0.000 0.692 0.000
#> GSM1068465     1  0.6653     0.3547 0.592 0.048 0.332 0.028
#> GSM1068466     1  0.1302     0.6534 0.956 0.000 0.044 0.000
#> GSM1068467     2  0.1305     0.8362 0.036 0.960 0.000 0.004
#> GSM1068469     2  0.6534     0.4351 0.148 0.632 0.220 0.000
#> GSM1068470     2  0.1022     0.8727 0.000 0.968 0.000 0.032
#> GSM1068471     2  0.1109     0.8724 0.000 0.968 0.004 0.028
#> GSM1068475     2  0.1022     0.8727 0.000 0.968 0.000 0.032
#> GSM1068528     3  0.4888     0.3550 0.412 0.000 0.588 0.000
#> GSM1068531     1  0.2216     0.6397 0.908 0.000 0.092 0.000
#> GSM1068532     1  0.4304     0.4463 0.716 0.000 0.284 0.000
#> GSM1068533     1  0.3266     0.5902 0.832 0.000 0.168 0.000
#> GSM1068535     4  0.6381     0.4095 0.280 0.004 0.088 0.628
#> GSM1068537     1  0.3486     0.5727 0.812 0.000 0.188 0.000
#> GSM1068538     1  0.3444     0.5769 0.816 0.000 0.184 0.000
#> GSM1068539     1  0.5827     0.4250 0.632 0.316 0.000 0.052
#> GSM1068540     1  0.1637     0.6494 0.940 0.000 0.060 0.000
#> GSM1068542     4  0.0707     0.8538 0.000 0.020 0.000 0.980
#> GSM1068543     4  0.2737     0.8034 0.000 0.008 0.104 0.888
#> GSM1068544     3  0.4522     0.5245 0.320 0.000 0.680 0.000
#> GSM1068545     4  0.4661     0.4660 0.000 0.348 0.000 0.652
#> GSM1068546     3  0.2647     0.6587 0.120 0.000 0.880 0.000
#> GSM1068547     1  0.0188     0.6534 0.996 0.000 0.004 0.000
#> GSM1068548     4  0.0817     0.8541 0.000 0.024 0.000 0.976
#> GSM1068549     3  0.1884     0.6265 0.020 0.016 0.948 0.016
#> GSM1068550     4  0.0921     0.8535 0.000 0.028 0.000 0.972
#> GSM1068551     2  0.1022     0.8727 0.000 0.968 0.000 0.032
#> GSM1068552     4  0.3649     0.7111 0.000 0.204 0.000 0.796
#> GSM1068555     2  0.0817     0.8710 0.000 0.976 0.000 0.024
#> GSM1068556     4  0.0921     0.8425 0.000 0.000 0.028 0.972
#> GSM1068557     2  0.0844     0.8533 0.012 0.980 0.004 0.004
#> GSM1068560     4  0.0707     0.8542 0.000 0.020 0.000 0.980
#> GSM1068561     3  0.7795     0.0401 0.280 0.296 0.424 0.000
#> GSM1068562     4  0.0592     0.8535 0.000 0.016 0.000 0.984
#> GSM1068563     4  0.2408     0.8241 0.000 0.104 0.000 0.896
#> GSM1068565     2  0.1022     0.8727 0.000 0.968 0.000 0.032
#> GSM1068529     3  0.3614     0.5699 0.080 0.008 0.868 0.044
#> GSM1068530     1  0.2408     0.6338 0.896 0.000 0.104 0.000
#> GSM1068534     3  0.3245     0.6548 0.100 0.000 0.872 0.028
#> GSM1068536     1  0.2096     0.6426 0.940 0.016 0.016 0.028
#> GSM1068541     1  0.5664     0.5125 0.696 0.228 0.000 0.076
#> GSM1068553     4  0.0707     0.8538 0.000 0.020 0.000 0.980
#> GSM1068554     4  0.1545     0.8519 0.000 0.040 0.008 0.952
#> GSM1068558     3  0.1211     0.6159 0.000 0.000 0.960 0.040
#> GSM1068559     4  0.6759     0.4521 0.000 0.108 0.344 0.548
#> GSM1068564     4  0.4277     0.6014 0.000 0.280 0.000 0.720
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1068478     5  0.3452     0.4958 0.244 0.000 0.000 0.000 0.756
#> GSM1068479     3  0.5059     0.4919 0.004 0.292 0.652 0.052 0.000
#> GSM1068481     1  0.3582     0.4981 0.768 0.000 0.224 0.000 0.008
#> GSM1068482     1  0.5057     0.3313 0.604 0.004 0.356 0.000 0.036
#> GSM1068483     1  0.4025     0.5131 0.796 0.004 0.060 0.000 0.140
#> GSM1068486     3  0.5130     0.0723 0.412 0.004 0.552 0.000 0.032
#> GSM1068487     2  0.0771     0.8504 0.000 0.976 0.000 0.020 0.004
#> GSM1068488     4  0.5228     0.4473 0.000 0.000 0.356 0.588 0.056
#> GSM1068490     2  0.0865     0.8489 0.000 0.972 0.000 0.024 0.004
#> GSM1068491     3  0.4527     0.6014 0.004 0.172 0.752 0.072 0.000
#> GSM1068492     3  0.5804     0.5015 0.000 0.148 0.656 0.180 0.016
#> GSM1068493     1  0.6366     0.3692 0.564 0.012 0.168 0.000 0.256
#> GSM1068494     1  0.6515     0.2424 0.464 0.000 0.208 0.000 0.328
#> GSM1068495     5  0.3302     0.6468 0.044 0.048 0.016 0.016 0.876
#> GSM1068496     1  0.3437     0.5570 0.832 0.000 0.120 0.000 0.048
#> GSM1068498     5  0.3433     0.6425 0.032 0.132 0.004 0.000 0.832
#> GSM1068499     1  0.5221     0.5078 0.696 0.004 0.172 0.000 0.128
#> GSM1068500     1  0.3648     0.5440 0.824 0.000 0.084 0.000 0.092
#> GSM1068502     3  0.4865     0.4400 0.000 0.324 0.640 0.032 0.004
#> GSM1068503     2  0.3456     0.6872 0.000 0.788 0.004 0.204 0.004
#> GSM1068505     4  0.1331     0.7974 0.000 0.040 0.000 0.952 0.008
#> GSM1068506     4  0.2349     0.7894 0.000 0.084 0.012 0.900 0.004
#> GSM1068507     4  0.3960     0.7400 0.000 0.148 0.044 0.800 0.008
#> GSM1068508     2  0.4774     0.3952 0.000 0.632 0.004 0.340 0.024
#> GSM1068510     4  0.6130     0.4901 0.000 0.268 0.144 0.580 0.008
#> GSM1068512     4  0.4975     0.5745 0.004 0.000 0.276 0.668 0.052
#> GSM1068513     2  0.4441     0.6057 0.000 0.716 0.024 0.252 0.008
#> GSM1068514     3  0.4495     0.4532 0.000 0.032 0.724 0.236 0.008
#> GSM1068517     5  0.3797     0.5831 0.008 0.232 0.004 0.000 0.756
#> GSM1068518     3  0.8442     0.0247 0.200 0.000 0.312 0.184 0.304
#> GSM1068520     5  0.4273     0.1767 0.448 0.000 0.000 0.000 0.552
#> GSM1068521     5  0.4161     0.2735 0.392 0.000 0.000 0.000 0.608
#> GSM1068522     2  0.4134     0.5462 0.000 0.704 0.004 0.284 0.008
#> GSM1068524     2  0.2664     0.8104 0.000 0.884 0.004 0.092 0.020
#> GSM1068527     4  0.2954     0.7715 0.000 0.004 0.064 0.876 0.056
#> GSM1068480     3  0.5158     0.1015 0.392 0.004 0.568 0.000 0.036
#> GSM1068484     4  0.4622     0.7404 0.000 0.036 0.120 0.780 0.064
#> GSM1068485     1  0.4604     0.2145 0.584 0.004 0.404 0.000 0.008
#> GSM1068489     4  0.1804     0.7949 0.000 0.024 0.012 0.940 0.024
#> GSM1068497     5  0.3602     0.6310 0.036 0.140 0.004 0.000 0.820
#> GSM1068501     4  0.4447     0.7095 0.000 0.172 0.032 0.768 0.028
#> GSM1068504     2  0.0798     0.8534 0.000 0.976 0.000 0.016 0.008
#> GSM1068509     1  0.6074     0.0751 0.452 0.004 0.104 0.000 0.440
#> GSM1068511     1  0.4900     0.4317 0.656 0.004 0.300 0.000 0.040
#> GSM1068515     5  0.7096    -0.0825 0.408 0.024 0.148 0.008 0.412
#> GSM1068516     5  0.5209     0.5170 0.028 0.004 0.128 0.100 0.740
#> GSM1068519     1  0.4434     0.0755 0.536 0.000 0.004 0.000 0.460
#> GSM1068523     2  0.2208     0.8369 0.000 0.908 0.000 0.020 0.072
#> GSM1068525     4  0.6237     0.5750 0.000 0.068 0.224 0.632 0.076
#> GSM1068526     4  0.1405     0.7995 0.000 0.016 0.020 0.956 0.008
#> GSM1068458     1  0.4067     0.3538 0.692 0.000 0.008 0.000 0.300
#> GSM1068459     1  0.3579     0.4864 0.756 0.000 0.240 0.000 0.004
#> GSM1068460     5  0.6246     0.3935 0.236 0.004 0.000 0.196 0.564
#> GSM1068461     3  0.4309     0.3509 0.308 0.000 0.676 0.000 0.016
#> GSM1068464     2  0.0486     0.8516 0.000 0.988 0.004 0.004 0.004
#> GSM1068468     2  0.2291     0.8215 0.000 0.908 0.036 0.000 0.056
#> GSM1068472     2  0.7559     0.1140 0.132 0.472 0.104 0.000 0.292
#> GSM1068473     2  0.0932     0.8492 0.000 0.972 0.004 0.020 0.004
#> GSM1068474     2  0.0671     0.8516 0.000 0.980 0.000 0.016 0.004
#> GSM1068476     3  0.4712     0.5911 0.004 0.180 0.736 0.080 0.000
#> GSM1068477     2  0.0671     0.8521 0.000 0.980 0.000 0.004 0.016
#> GSM1068462     2  0.2522     0.8014 0.000 0.880 0.012 0.000 0.108
#> GSM1068463     1  0.3521     0.4933 0.764 0.000 0.232 0.000 0.004
#> GSM1068465     1  0.6570     0.1876 0.540 0.016 0.088 0.020 0.336
#> GSM1068466     1  0.4517     0.0922 0.556 0.000 0.008 0.000 0.436
#> GSM1068467     2  0.4177     0.7132 0.004 0.776 0.052 0.000 0.168
#> GSM1068469     2  0.7034     0.1645 0.104 0.496 0.068 0.000 0.332
#> GSM1068470     2  0.1281     0.8505 0.000 0.956 0.000 0.012 0.032
#> GSM1068471     2  0.0771     0.8524 0.000 0.976 0.000 0.020 0.004
#> GSM1068475     2  0.0807     0.8534 0.000 0.976 0.000 0.012 0.012
#> GSM1068528     1  0.3412     0.5583 0.820 0.000 0.152 0.000 0.028
#> GSM1068531     1  0.3707     0.3850 0.716 0.000 0.000 0.000 0.284
#> GSM1068532     1  0.2891     0.4808 0.824 0.000 0.000 0.000 0.176
#> GSM1068533     1  0.3607     0.4251 0.752 0.000 0.004 0.000 0.244
#> GSM1068535     1  0.6371     0.1069 0.488 0.000 0.036 0.404 0.072
#> GSM1068537     1  0.3177     0.4570 0.792 0.000 0.000 0.000 0.208
#> GSM1068538     1  0.3336     0.4395 0.772 0.000 0.000 0.000 0.228
#> GSM1068539     5  0.4116     0.6399 0.020 0.112 0.016 0.032 0.820
#> GSM1068540     1  0.3983     0.3102 0.660 0.000 0.000 0.000 0.340
#> GSM1068542     4  0.0955     0.7977 0.000 0.028 0.000 0.968 0.004
#> GSM1068543     4  0.4394     0.6545 0.000 0.000 0.220 0.732 0.048
#> GSM1068544     1  0.3961     0.5239 0.760 0.000 0.212 0.000 0.028
#> GSM1068545     4  0.4402     0.4291 0.000 0.372 0.004 0.620 0.004
#> GSM1068546     1  0.5024     0.1348 0.528 0.000 0.440 0.000 0.032
#> GSM1068547     1  0.4305    -0.0793 0.512 0.000 0.000 0.000 0.488
#> GSM1068548     4  0.1612     0.8002 0.000 0.024 0.016 0.948 0.012
#> GSM1068549     3  0.3327     0.5198 0.160 0.004 0.824 0.004 0.008
#> GSM1068550     4  0.1280     0.7992 0.000 0.024 0.008 0.960 0.008
#> GSM1068551     2  0.0912     0.8538 0.000 0.972 0.000 0.016 0.012
#> GSM1068552     4  0.3123     0.7253 0.000 0.184 0.000 0.812 0.004
#> GSM1068555     2  0.1768     0.8378 0.000 0.924 0.000 0.004 0.072
#> GSM1068556     4  0.3359     0.7458 0.000 0.000 0.108 0.840 0.052
#> GSM1068557     2  0.3127     0.7860 0.000 0.848 0.020 0.004 0.128
#> GSM1068560     4  0.2842     0.7841 0.000 0.012 0.044 0.888 0.056
#> GSM1068561     5  0.6807     0.4069 0.176 0.116 0.104 0.000 0.604
#> GSM1068562     4  0.2597     0.7936 0.000 0.020 0.036 0.904 0.040
#> GSM1068563     4  0.3807     0.7644 0.000 0.116 0.056 0.820 0.008
#> GSM1068565     2  0.0693     0.8534 0.000 0.980 0.000 0.012 0.008
#> GSM1068529     3  0.5781     0.4918 0.120 0.012 0.692 0.020 0.156
#> GSM1068530     1  0.3612     0.4019 0.732 0.000 0.000 0.000 0.268
#> GSM1068534     1  0.7025     0.0730 0.440 0.004 0.404 0.048 0.104
#> GSM1068536     5  0.2984     0.5944 0.124 0.000 0.004 0.016 0.856
#> GSM1068541     5  0.5540     0.6131 0.084 0.120 0.004 0.064 0.728
#> GSM1068553     4  0.2006     0.7937 0.000 0.024 0.020 0.932 0.024
#> GSM1068554     4  0.3946     0.7505 0.000 0.124 0.032 0.816 0.028
#> GSM1068558     3  0.3641     0.4860 0.152 0.004 0.816 0.004 0.024
#> GSM1068559     3  0.5044     0.4000 0.000 0.044 0.672 0.272 0.012
#> GSM1068564     4  0.4592     0.5190 0.000 0.332 0.000 0.644 0.024
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1068478     5  0.4039    0.43590 0.352 0.000 0.016 0.000 0.632 0.000
#> GSM1068479     6  0.2851    0.72177 0.000 0.132 0.020 0.004 0.000 0.844
#> GSM1068481     3  0.4344    0.41922 0.424 0.000 0.556 0.000 0.004 0.016
#> GSM1068482     3  0.4135    0.58422 0.248 0.000 0.712 0.000 0.012 0.028
#> GSM1068483     1  0.5184    0.13393 0.608 0.000 0.292 0.000 0.088 0.012
#> GSM1068486     3  0.4710    0.57680 0.104 0.000 0.684 0.000 0.004 0.208
#> GSM1068487     2  0.1116    0.82289 0.000 0.960 0.004 0.028 0.000 0.008
#> GSM1068488     6  0.6788   -0.07643 0.012 0.000 0.132 0.348 0.060 0.448
#> GSM1068490     2  0.1528    0.81917 0.000 0.944 0.012 0.028 0.000 0.016
#> GSM1068491     6  0.2828    0.73128 0.000 0.040 0.080 0.012 0.000 0.868
#> GSM1068492     6  0.2722    0.73870 0.000 0.048 0.008 0.060 0.004 0.880
#> GSM1068493     3  0.6382    0.41318 0.244 0.012 0.516 0.000 0.208 0.020
#> GSM1068494     3  0.6977    0.01322 0.304 0.000 0.348 0.000 0.292 0.056
#> GSM1068495     5  0.3463    0.69720 0.088 0.032 0.020 0.004 0.844 0.012
#> GSM1068496     1  0.4018   -0.12637 0.580 0.000 0.412 0.000 0.008 0.000
#> GSM1068498     5  0.3955    0.68100 0.148 0.064 0.012 0.000 0.776 0.000
#> GSM1068499     3  0.5503    0.35845 0.372 0.000 0.520 0.000 0.096 0.012
#> GSM1068500     1  0.4684   -0.03468 0.576 0.000 0.372 0.000 0.052 0.000
#> GSM1068502     6  0.2933    0.66735 0.000 0.200 0.000 0.004 0.000 0.796
#> GSM1068503     2  0.3419    0.73656 0.000 0.820 0.020 0.136 0.004 0.020
#> GSM1068505     4  0.2231    0.70749 0.000 0.008 0.048 0.912 0.020 0.012
#> GSM1068506     4  0.2587    0.71566 0.000 0.048 0.028 0.896 0.016 0.012
#> GSM1068507     4  0.5841    0.56274 0.000 0.196 0.044 0.620 0.004 0.136
#> GSM1068508     2  0.5251    0.32381 0.000 0.592 0.020 0.336 0.036 0.016
#> GSM1068510     4  0.7716    0.25168 0.000 0.276 0.076 0.384 0.040 0.224
#> GSM1068512     4  0.6153    0.31518 0.008 0.000 0.116 0.500 0.028 0.348
#> GSM1068513     2  0.5360    0.53208 0.000 0.656 0.044 0.232 0.008 0.060
#> GSM1068514     6  0.2382    0.74297 0.000 0.020 0.024 0.048 0.004 0.904
#> GSM1068517     5  0.3963    0.66644 0.060 0.140 0.012 0.000 0.784 0.004
#> GSM1068518     5  0.8622    0.07281 0.112 0.000 0.260 0.136 0.300 0.192
#> GSM1068520     1  0.3565    0.33010 0.692 0.000 0.004 0.000 0.304 0.000
#> GSM1068521     1  0.4364    0.14775 0.608 0.000 0.024 0.004 0.364 0.000
#> GSM1068522     2  0.4852    0.49493 0.000 0.656 0.048 0.276 0.008 0.012
#> GSM1068524     2  0.3396    0.79545 0.000 0.852 0.012 0.056 0.040 0.040
#> GSM1068527     4  0.4971    0.63840 0.004 0.000 0.080 0.724 0.056 0.136
#> GSM1068480     3  0.4521    0.55807 0.068 0.000 0.716 0.000 0.016 0.200
#> GSM1068484     4  0.6165    0.63406 0.000 0.072 0.076 0.652 0.056 0.144
#> GSM1068485     3  0.5333    0.54998 0.300 0.000 0.564 0.000 0.000 0.136
#> GSM1068489     4  0.2787    0.70336 0.000 0.012 0.072 0.880 0.020 0.016
#> GSM1068497     5  0.4264    0.68396 0.092 0.072 0.040 0.000 0.788 0.008
#> GSM1068501     4  0.6494    0.54987 0.004 0.196 0.084 0.608 0.040 0.068
#> GSM1068504     2  0.1138    0.82511 0.000 0.960 0.000 0.024 0.012 0.004
#> GSM1068509     1  0.6605    0.01650 0.352 0.000 0.300 0.000 0.324 0.024
#> GSM1068511     3  0.4929    0.55423 0.260 0.000 0.664 0.004 0.040 0.032
#> GSM1068515     3  0.7523    0.01529 0.180 0.028 0.412 0.024 0.320 0.036
#> GSM1068516     5  0.5908    0.58104 0.056 0.004 0.084 0.044 0.680 0.132
#> GSM1068519     1  0.4490    0.42338 0.700 0.000 0.104 0.000 0.196 0.000
#> GSM1068523     2  0.3194    0.79200 0.000 0.852 0.012 0.032 0.092 0.012
#> GSM1068525     4  0.7583    0.30288 0.000 0.068 0.104 0.428 0.088 0.312
#> GSM1068526     4  0.2501    0.71329 0.000 0.004 0.040 0.896 0.012 0.048
#> GSM1068458     1  0.1719    0.59205 0.924 0.000 0.016 0.000 0.060 0.000
#> GSM1068459     3  0.4205    0.43469 0.420 0.000 0.564 0.000 0.000 0.016
#> GSM1068460     1  0.6623    0.02751 0.524 0.004 0.060 0.128 0.276 0.008
#> GSM1068461     3  0.5277    0.33865 0.088 0.000 0.512 0.000 0.004 0.396
#> GSM1068464     2  0.1232    0.82320 0.000 0.956 0.000 0.016 0.004 0.024
#> GSM1068468     2  0.3116    0.78138 0.004 0.864 0.012 0.008 0.040 0.072
#> GSM1068472     2  0.7494   -0.04581 0.044 0.388 0.244 0.000 0.280 0.044
#> GSM1068473     2  0.1511    0.81768 0.000 0.944 0.012 0.032 0.000 0.012
#> GSM1068474     2  0.1036    0.82339 0.000 0.964 0.008 0.024 0.000 0.004
#> GSM1068476     6  0.2619    0.74471 0.000 0.056 0.048 0.012 0.000 0.884
#> GSM1068477     2  0.1579    0.82502 0.000 0.944 0.004 0.024 0.020 0.008
#> GSM1068462     2  0.3482    0.75214 0.000 0.824 0.020 0.000 0.108 0.048
#> GSM1068463     3  0.4141    0.41541 0.432 0.000 0.556 0.000 0.000 0.012
#> GSM1068465     1  0.7237   -0.00252 0.340 0.004 0.336 0.020 0.268 0.032
#> GSM1068466     1  0.3136    0.50161 0.796 0.000 0.016 0.000 0.188 0.000
#> GSM1068467     2  0.4711    0.61266 0.000 0.704 0.008 0.004 0.192 0.092
#> GSM1068469     2  0.6795   -0.02793 0.020 0.412 0.192 0.000 0.352 0.024
#> GSM1068470     2  0.1836    0.81822 0.000 0.928 0.004 0.012 0.048 0.008
#> GSM1068471     2  0.1053    0.82431 0.000 0.964 0.004 0.020 0.012 0.000
#> GSM1068475     2  0.1059    0.82366 0.000 0.964 0.004 0.016 0.016 0.000
#> GSM1068528     1  0.3944   -0.16449 0.568 0.000 0.428 0.000 0.004 0.000
#> GSM1068531     1  0.1196    0.59232 0.952 0.000 0.008 0.000 0.040 0.000
#> GSM1068532     1  0.1501    0.54433 0.924 0.000 0.076 0.000 0.000 0.000
#> GSM1068533     1  0.1367    0.57206 0.944 0.000 0.044 0.000 0.012 0.000
#> GSM1068535     1  0.6667    0.22015 0.520 0.004 0.088 0.308 0.032 0.048
#> GSM1068537     1  0.1267    0.56071 0.940 0.000 0.060 0.000 0.000 0.000
#> GSM1068538     1  0.1075    0.56775 0.952 0.000 0.048 0.000 0.000 0.000
#> GSM1068539     5  0.4525    0.67494 0.056 0.060 0.048 0.012 0.796 0.028
#> GSM1068540     1  0.2066    0.58881 0.904 0.000 0.024 0.000 0.072 0.000
#> GSM1068542     4  0.1425    0.71569 0.000 0.008 0.020 0.952 0.008 0.012
#> GSM1068543     4  0.5345    0.34630 0.000 0.000 0.048 0.536 0.032 0.384
#> GSM1068544     1  0.4468   -0.36118 0.492 0.000 0.484 0.000 0.004 0.020
#> GSM1068545     4  0.4956    0.45630 0.000 0.320 0.020 0.620 0.032 0.008
#> GSM1068546     3  0.5598    0.59645 0.228 0.004 0.604 0.000 0.012 0.152
#> GSM1068547     1  0.3187    0.49135 0.796 0.000 0.012 0.004 0.188 0.000
#> GSM1068548     4  0.2554    0.71325 0.000 0.000 0.044 0.892 0.024 0.040
#> GSM1068549     6  0.3695    0.45142 0.016 0.000 0.272 0.000 0.000 0.712
#> GSM1068550     4  0.1755    0.71727 0.000 0.008 0.028 0.932 0.032 0.000
#> GSM1068551     2  0.1743    0.82150 0.000 0.936 0.004 0.024 0.028 0.008
#> GSM1068552     4  0.3958    0.65666 0.000 0.172 0.020 0.776 0.020 0.012
#> GSM1068555     2  0.2976    0.76675 0.000 0.844 0.008 0.004 0.128 0.016
#> GSM1068556     4  0.4920    0.60704 0.000 0.004 0.064 0.704 0.036 0.192
#> GSM1068557     2  0.4973    0.61274 0.000 0.684 0.020 0.004 0.212 0.080
#> GSM1068560     4  0.4591    0.68282 0.004 0.016 0.060 0.780 0.064 0.076
#> GSM1068561     5  0.5658    0.45955 0.012 0.064 0.272 0.004 0.616 0.032
#> GSM1068562     4  0.4412    0.69787 0.000 0.020 0.052 0.784 0.044 0.100
#> GSM1068563     4  0.5031    0.68076 0.000 0.084 0.052 0.744 0.028 0.092
#> GSM1068565     2  0.1003    0.82412 0.000 0.964 0.000 0.028 0.004 0.004
#> GSM1068529     6  0.6735    0.10059 0.012 0.004 0.364 0.020 0.196 0.404
#> GSM1068530     1  0.0914    0.58717 0.968 0.000 0.016 0.000 0.016 0.000
#> GSM1068534     3  0.5598    0.54395 0.072 0.004 0.712 0.040 0.076 0.096
#> GSM1068536     5  0.4263    0.55880 0.276 0.000 0.032 0.008 0.684 0.000
#> GSM1068541     5  0.6584    0.56564 0.192 0.052 0.040 0.116 0.596 0.004
#> GSM1068553     4  0.3683    0.68813 0.004 0.016 0.080 0.836 0.028 0.036
#> GSM1068554     4  0.5853    0.60703 0.004 0.124 0.076 0.684 0.032 0.080
#> GSM1068558     3  0.4965    0.03795 0.016 0.000 0.504 0.012 0.016 0.452
#> GSM1068559     6  0.3040    0.72246 0.000 0.024 0.024 0.088 0.004 0.860
#> GSM1068564     4  0.5086    0.33366 0.000 0.376 0.040 0.564 0.012 0.008
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#>              n disease.state(p) gender(p) k
#> CV:skmeans 107         0.963896     0.747 2
#> CV:skmeans  92         0.005553     0.913 3
#> CV:skmeans  79         0.011492     0.699 4
#> CV:skmeans  62         0.005429     0.186 5
#> CV:skmeans  70         0.000438     0.502 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 38950 rows and 108 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.356           0.697       0.842         0.4977 0.496   0.496
#> 3 3 0.496           0.726       0.857         0.3242 0.697   0.463
#> 4 4 0.501           0.441       0.694         0.1074 0.845   0.581
#> 5 5 0.646           0.697       0.836         0.0749 0.877   0.584
#> 6 6 0.641           0.534       0.721         0.0375 0.945   0.753
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1068478     1  0.0000     0.8226 1.000 0.000
#> GSM1068479     2  0.0672     0.7607 0.008 0.992
#> GSM1068481     1  0.3274     0.8040 0.940 0.060
#> GSM1068482     1  0.8267     0.7119 0.740 0.260
#> GSM1068483     1  0.0000     0.8226 1.000 0.000
#> GSM1068486     1  0.9129     0.4335 0.672 0.328
#> GSM1068487     2  0.7219     0.7875 0.200 0.800
#> GSM1068488     2  0.6148     0.6264 0.152 0.848
#> GSM1068490     2  0.7219     0.7875 0.200 0.800
#> GSM1068491     2  0.0000     0.7576 0.000 1.000
#> GSM1068492     2  0.0000     0.7576 0.000 1.000
#> GSM1068493     1  0.0938     0.8212 0.988 0.012
#> GSM1068494     1  0.7528     0.7358 0.784 0.216
#> GSM1068495     1  0.0000     0.8226 1.000 0.000
#> GSM1068496     1  0.3274     0.8058 0.940 0.060
#> GSM1068498     1  0.0000     0.8226 1.000 0.000
#> GSM1068499     1  0.8267     0.7119 0.740 0.260
#> GSM1068500     1  0.0000     0.8226 1.000 0.000
#> GSM1068502     2  0.0000     0.7576 0.000 1.000
#> GSM1068503     2  0.7056     0.7891 0.192 0.808
#> GSM1068505     1  0.9552     0.1300 0.624 0.376
#> GSM1068506     2  0.8327     0.7663 0.264 0.736
#> GSM1068507     2  0.2603     0.7707 0.044 0.956
#> GSM1068508     2  0.8081     0.7740 0.248 0.752
#> GSM1068510     2  0.0000     0.7576 0.000 1.000
#> GSM1068512     2  0.6801     0.5854 0.180 0.820
#> GSM1068513     2  0.7139     0.7884 0.196 0.804
#> GSM1068514     2  0.0000     0.7576 0.000 1.000
#> GSM1068517     1  0.0376     0.8211 0.996 0.004
#> GSM1068518     2  0.8327     0.4324 0.264 0.736
#> GSM1068520     1  0.0000     0.8226 1.000 0.000
#> GSM1068521     1  0.0000     0.8226 1.000 0.000
#> GSM1068522     2  0.8327     0.7663 0.264 0.736
#> GSM1068524     2  0.7376     0.7875 0.208 0.792
#> GSM1068527     1  0.9795     0.4973 0.584 0.416
#> GSM1068480     1  0.8267     0.7119 0.740 0.260
#> GSM1068484     2  0.0000     0.7576 0.000 1.000
#> GSM1068485     1  0.8267     0.7119 0.740 0.260
#> GSM1068489     2  0.3431     0.7533 0.064 0.936
#> GSM1068497     1  0.0376     0.8211 0.996 0.004
#> GSM1068501     2  0.0000     0.7576 0.000 1.000
#> GSM1068504     2  0.6973     0.7893 0.188 0.812
#> GSM1068509     1  0.7219     0.7400 0.800 0.200
#> GSM1068511     1  0.8081     0.7213 0.752 0.248
#> GSM1068515     1  0.8386     0.4681 0.732 0.268
#> GSM1068516     1  0.8909     0.6816 0.692 0.308
#> GSM1068519     1  0.7453     0.7372 0.788 0.212
#> GSM1068523     2  0.8207     0.7701 0.256 0.744
#> GSM1068525     2  0.0000     0.7576 0.000 1.000
#> GSM1068526     2  0.0672     0.7586 0.008 0.992
#> GSM1068458     1  0.0000     0.8226 1.000 0.000
#> GSM1068459     1  0.8267     0.7119 0.740 0.260
#> GSM1068460     1  0.0672     0.8197 0.992 0.008
#> GSM1068461     2  0.9970    -0.3054 0.468 0.532
#> GSM1068464     2  0.7219     0.7875 0.200 0.800
#> GSM1068468     2  0.7376     0.7867 0.208 0.792
#> GSM1068472     1  0.2948     0.8052 0.948 0.052
#> GSM1068473     2  0.7299     0.7870 0.204 0.796
#> GSM1068474     2  0.8267     0.7674 0.260 0.740
#> GSM1068476     2  0.0376     0.7567 0.004 0.996
#> GSM1068477     2  0.8327     0.7663 0.264 0.736
#> GSM1068462     2  0.7219     0.7875 0.200 0.800
#> GSM1068463     1  0.4562     0.7988 0.904 0.096
#> GSM1068465     1  0.9815    -0.0355 0.580 0.420
#> GSM1068466     1  0.0000     0.8226 1.000 0.000
#> GSM1068467     2  0.8267     0.7684 0.260 0.740
#> GSM1068469     2  0.9881     0.4884 0.436 0.564
#> GSM1068470     2  0.8267     0.7674 0.260 0.740
#> GSM1068471     2  0.7219     0.7875 0.200 0.800
#> GSM1068475     2  0.8207     0.7697 0.256 0.744
#> GSM1068528     1  0.0376     0.8224 0.996 0.004
#> GSM1068531     1  0.0000     0.8226 1.000 0.000
#> GSM1068532     1  0.7299     0.7392 0.796 0.204
#> GSM1068533     1  0.0000     0.8226 1.000 0.000
#> GSM1068535     1  0.9000     0.6736 0.684 0.316
#> GSM1068537     1  0.4022     0.8030 0.920 0.080
#> GSM1068538     1  0.0000     0.8226 1.000 0.000
#> GSM1068539     1  0.0672     0.8229 0.992 0.008
#> GSM1068540     1  0.0938     0.8224 0.988 0.012
#> GSM1068542     2  0.8327     0.7669 0.264 0.736
#> GSM1068543     2  0.8813     0.2921 0.300 0.700
#> GSM1068544     1  0.7674     0.7319 0.776 0.224
#> GSM1068545     2  0.8267     0.7674 0.260 0.740
#> GSM1068546     1  0.8267     0.7119 0.740 0.260
#> GSM1068547     1  0.0000     0.8226 1.000 0.000
#> GSM1068548     1  0.8813     0.4531 0.700 0.300
#> GSM1068549     2  0.0376     0.7567 0.004 0.996
#> GSM1068550     2  0.8207     0.7712 0.256 0.744
#> GSM1068551     2  0.8267     0.7674 0.260 0.740
#> GSM1068552     2  0.8327     0.7663 0.264 0.736
#> GSM1068555     2  0.7299     0.7872 0.204 0.796
#> GSM1068556     2  0.9963    -0.2870 0.464 0.536
#> GSM1068557     2  0.9815     0.5576 0.420 0.580
#> GSM1068560     1  0.9522     0.4331 0.628 0.372
#> GSM1068561     1  0.0672     0.8198 0.992 0.008
#> GSM1068562     2  0.0376     0.7567 0.004 0.996
#> GSM1068563     2  0.0376     0.7567 0.004 0.996
#> GSM1068565     2  0.8267     0.7674 0.260 0.740
#> GSM1068529     1  0.9922     0.4867 0.552 0.448
#> GSM1068530     1  0.0000     0.8226 1.000 0.000
#> GSM1068534     1  0.6887     0.6940 0.816 0.184
#> GSM1068536     1  0.0000     0.8226 1.000 0.000
#> GSM1068541     1  0.3733     0.7727 0.928 0.072
#> GSM1068553     2  0.9970    -0.3036 0.468 0.532
#> GSM1068554     2  0.0000     0.7576 0.000 1.000
#> GSM1068558     2  0.7674     0.4797 0.224 0.776
#> GSM1068559     2  0.0000     0.7576 0.000 1.000
#> GSM1068564     2  0.6801     0.7821 0.180 0.820
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1068478     1  0.3038      0.899 0.896 0.104 0.000
#> GSM1068479     3  0.4504      0.644 0.000 0.196 0.804
#> GSM1068481     1  0.4128      0.886 0.856 0.132 0.012
#> GSM1068482     3  0.5785      0.571 0.332 0.000 0.668
#> GSM1068483     1  0.3038      0.899 0.896 0.104 0.000
#> GSM1068486     3  0.4960      0.708 0.040 0.128 0.832
#> GSM1068487     2  0.0000      0.822 0.000 1.000 0.000
#> GSM1068488     3  0.0237      0.791 0.000 0.004 0.996
#> GSM1068490     2  0.0000      0.822 0.000 1.000 0.000
#> GSM1068491     3  0.0237      0.791 0.000 0.004 0.996
#> GSM1068492     3  0.0237      0.791 0.000 0.004 0.996
#> GSM1068493     1  0.3965      0.887 0.860 0.132 0.008
#> GSM1068494     1  0.3038      0.848 0.896 0.000 0.104
#> GSM1068495     1  0.2261      0.900 0.932 0.068 0.000
#> GSM1068496     1  0.5728      0.681 0.772 0.032 0.196
#> GSM1068498     1  0.3192      0.897 0.888 0.112 0.000
#> GSM1068499     1  0.3619      0.824 0.864 0.000 0.136
#> GSM1068500     1  0.3038      0.899 0.896 0.104 0.000
#> GSM1068502     3  0.0237      0.791 0.000 0.004 0.996
#> GSM1068503     2  0.0000      0.822 0.000 1.000 0.000
#> GSM1068505     2  0.4842      0.671 0.224 0.776 0.000
#> GSM1068506     2  0.4058      0.788 0.044 0.880 0.076
#> GSM1068507     3  0.5785      0.453 0.000 0.332 0.668
#> GSM1068508     2  0.2229      0.809 0.012 0.944 0.044
#> GSM1068510     2  0.6280      0.211 0.000 0.540 0.460
#> GSM1068512     3  0.0237      0.791 0.000 0.004 0.996
#> GSM1068513     2  0.4062      0.732 0.000 0.836 0.164
#> GSM1068514     3  0.0237      0.791 0.000 0.004 0.996
#> GSM1068517     1  0.3192      0.897 0.888 0.112 0.000
#> GSM1068518     3  0.0237      0.791 0.000 0.004 0.996
#> GSM1068520     1  0.2959      0.900 0.900 0.100 0.000
#> GSM1068521     1  0.2261      0.900 0.932 0.068 0.000
#> GSM1068522     2  0.1643      0.814 0.044 0.956 0.000
#> GSM1068524     2  0.0424      0.822 0.000 0.992 0.008
#> GSM1068527     3  0.6435      0.708 0.168 0.076 0.756
#> GSM1068480     3  0.4842      0.671 0.224 0.000 0.776
#> GSM1068484     2  0.5988      0.422 0.000 0.632 0.368
#> GSM1068485     3  0.6154      0.262 0.408 0.000 0.592
#> GSM1068489     2  0.7238      0.473 0.044 0.628 0.328
#> GSM1068497     1  0.3192      0.897 0.888 0.112 0.000
#> GSM1068501     3  0.5760      0.463 0.000 0.328 0.672
#> GSM1068504     2  0.0424      0.822 0.000 0.992 0.008
#> GSM1068509     1  0.2448      0.864 0.924 0.000 0.076
#> GSM1068511     1  0.4172      0.804 0.840 0.004 0.156
#> GSM1068515     2  0.5905      0.370 0.352 0.648 0.000
#> GSM1068516     3  0.5692      0.616 0.268 0.008 0.724
#> GSM1068519     1  0.5138      0.658 0.748 0.000 0.252
#> GSM1068523     2  0.0892      0.821 0.020 0.980 0.000
#> GSM1068525     3  0.6309     -0.134 0.000 0.496 0.504
#> GSM1068526     2  0.5335      0.641 0.008 0.760 0.232
#> GSM1068458     1  0.2878      0.893 0.904 0.096 0.000
#> GSM1068459     3  0.6204      0.310 0.424 0.000 0.576
#> GSM1068460     1  0.3752      0.848 0.856 0.144 0.000
#> GSM1068461     3  0.0000      0.790 0.000 0.000 1.000
#> GSM1068464     2  0.2796      0.780 0.000 0.908 0.092
#> GSM1068468     2  0.5016      0.653 0.000 0.760 0.240
#> GSM1068472     1  0.4861      0.846 0.808 0.180 0.012
#> GSM1068473     2  0.0000      0.822 0.000 1.000 0.000
#> GSM1068474     2  0.0000      0.822 0.000 1.000 0.000
#> GSM1068476     3  0.0237      0.791 0.000 0.004 0.996
#> GSM1068477     2  0.1643      0.814 0.044 0.956 0.000
#> GSM1068462     2  0.4399      0.696 0.000 0.812 0.188
#> GSM1068463     1  0.4443      0.840 0.864 0.052 0.084
#> GSM1068465     2  0.7796      0.233 0.392 0.552 0.056
#> GSM1068466     1  0.2711      0.902 0.912 0.088 0.000
#> GSM1068467     2  0.5497      0.571 0.000 0.708 0.292
#> GSM1068469     2  0.5650      0.488 0.312 0.688 0.000
#> GSM1068470     2  0.0000      0.822 0.000 1.000 0.000
#> GSM1068471     2  0.0000      0.822 0.000 1.000 0.000
#> GSM1068475     2  0.0000      0.822 0.000 1.000 0.000
#> GSM1068528     1  0.2796      0.897 0.908 0.092 0.000
#> GSM1068531     1  0.0000      0.881 1.000 0.000 0.000
#> GSM1068532     1  0.2959      0.825 0.900 0.000 0.100
#> GSM1068533     1  0.0000      0.881 1.000 0.000 0.000
#> GSM1068535     3  0.1753      0.780 0.048 0.000 0.952
#> GSM1068537     1  0.0237      0.879 0.996 0.000 0.004
#> GSM1068538     1  0.0000      0.881 1.000 0.000 0.000
#> GSM1068539     1  0.2261      0.900 0.932 0.068 0.000
#> GSM1068540     1  0.0000      0.881 1.000 0.000 0.000
#> GSM1068542     2  0.6688      0.501 0.028 0.664 0.308
#> GSM1068543     3  0.0237      0.791 0.000 0.004 0.996
#> GSM1068544     1  0.3686      0.788 0.860 0.000 0.140
#> GSM1068545     2  0.1643      0.814 0.044 0.956 0.000
#> GSM1068546     3  0.5291      0.617 0.268 0.000 0.732
#> GSM1068547     1  0.2356      0.900 0.928 0.072 0.000
#> GSM1068548     3  0.9930      0.129 0.276 0.360 0.364
#> GSM1068549     3  0.0000      0.790 0.000 0.000 1.000
#> GSM1068550     2  0.3780      0.795 0.044 0.892 0.064
#> GSM1068551     2  0.1289      0.817 0.032 0.968 0.000
#> GSM1068552     2  0.1411      0.817 0.036 0.964 0.000
#> GSM1068555     2  0.0000      0.822 0.000 1.000 0.000
#> GSM1068556     3  0.3590      0.757 0.028 0.076 0.896
#> GSM1068557     2  0.6758      0.444 0.360 0.620 0.020
#> GSM1068560     2  0.8957      0.365 0.312 0.536 0.152
#> GSM1068561     1  0.3686      0.884 0.860 0.140 0.000
#> GSM1068562     3  0.3412      0.732 0.000 0.124 0.876
#> GSM1068563     3  0.2711      0.755 0.000 0.088 0.912
#> GSM1068565     2  0.0000      0.822 0.000 1.000 0.000
#> GSM1068529     3  0.0747      0.790 0.016 0.000 0.984
#> GSM1068530     1  0.0000      0.881 1.000 0.000 0.000
#> GSM1068534     3  0.8543      0.467 0.268 0.140 0.592
#> GSM1068536     1  0.2261      0.900 0.932 0.068 0.000
#> GSM1068541     1  0.6140      0.412 0.596 0.404 0.000
#> GSM1068553     3  0.9512      0.403 0.248 0.260 0.492
#> GSM1068554     2  0.5016      0.636 0.000 0.760 0.240
#> GSM1068558     3  0.5863      0.723 0.120 0.084 0.796
#> GSM1068559     3  0.0237      0.791 0.000 0.004 0.996
#> GSM1068564     2  0.2564      0.807 0.036 0.936 0.028
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1068478     1  0.2149    0.80957 0.912 0.088 0.000 0.000
#> GSM1068479     3  0.7717    0.28166 0.000 0.232 0.424 0.344
#> GSM1068481     1  0.6919    0.43258 0.500 0.112 0.388 0.000
#> GSM1068482     3  0.2480    0.30670 0.088 0.000 0.904 0.008
#> GSM1068483     1  0.2216    0.80872 0.908 0.092 0.000 0.000
#> GSM1068486     3  0.8063    0.41474 0.048 0.112 0.448 0.392
#> GSM1068487     2  0.0376    0.73626 0.004 0.992 0.000 0.004
#> GSM1068488     3  0.4961    0.53795 0.000 0.000 0.552 0.448
#> GSM1068490     2  0.0376    0.73626 0.004 0.992 0.000 0.004
#> GSM1068491     3  0.4961    0.53795 0.000 0.000 0.552 0.448
#> GSM1068492     3  0.4961    0.53795 0.000 0.000 0.552 0.448
#> GSM1068493     1  0.2988    0.80130 0.876 0.112 0.000 0.012
#> GSM1068494     1  0.3453    0.77073 0.868 0.000 0.080 0.052
#> GSM1068495     1  0.2926    0.80850 0.896 0.048 0.000 0.056
#> GSM1068496     1  0.4889    0.43342 0.636 0.004 0.360 0.000
#> GSM1068498     1  0.2216    0.81014 0.908 0.092 0.000 0.000
#> GSM1068499     1  0.3325    0.74632 0.864 0.000 0.112 0.024
#> GSM1068500     1  0.2796    0.80925 0.892 0.092 0.016 0.000
#> GSM1068502     3  0.4961    0.53795 0.000 0.000 0.552 0.448
#> GSM1068503     2  0.0895    0.73426 0.004 0.976 0.000 0.020
#> GSM1068505     4  0.7211    0.27486 0.248 0.204 0.000 0.548
#> GSM1068506     4  0.4985   -0.15547 0.000 0.468 0.000 0.532
#> GSM1068507     2  0.7921   -0.31720 0.000 0.348 0.320 0.332
#> GSM1068508     2  0.0937    0.73477 0.012 0.976 0.000 0.012
#> GSM1068510     2  0.7121    0.21624 0.000 0.544 0.292 0.164
#> GSM1068512     3  0.4961    0.53795 0.000 0.000 0.552 0.448
#> GSM1068513     2  0.2115    0.71895 0.004 0.936 0.024 0.036
#> GSM1068514     3  0.4961    0.53795 0.000 0.000 0.552 0.448
#> GSM1068517     1  0.2216    0.81014 0.908 0.092 0.000 0.000
#> GSM1068518     3  0.4961    0.53795 0.000 0.000 0.552 0.448
#> GSM1068520     1  0.2334    0.81005 0.908 0.088 0.000 0.004
#> GSM1068521     1  0.2926    0.80884 0.896 0.048 0.000 0.056
#> GSM1068522     2  0.4992    0.21248 0.000 0.524 0.000 0.476
#> GSM1068524     2  0.2665    0.70723 0.004 0.900 0.008 0.088
#> GSM1068527     4  0.6705   -0.05952 0.148 0.000 0.244 0.608
#> GSM1068480     3  0.1637    0.38357 0.000 0.000 0.940 0.060
#> GSM1068484     2  0.7345    0.18060 0.000 0.492 0.172 0.336
#> GSM1068485     3  0.5522    0.15108 0.288 0.000 0.668 0.044
#> GSM1068489     4  0.5040    0.00892 0.000 0.364 0.008 0.628
#> GSM1068497     1  0.2149    0.80957 0.912 0.088 0.000 0.000
#> GSM1068501     4  0.5670    0.25777 0.000 0.152 0.128 0.720
#> GSM1068504     2  0.1489    0.72273 0.000 0.952 0.004 0.044
#> GSM1068509     1  0.3806    0.75619 0.824 0.000 0.020 0.156
#> GSM1068511     3  0.6672   -0.25554 0.408 0.000 0.504 0.088
#> GSM1068515     4  0.7500    0.05338 0.400 0.156 0.004 0.440
#> GSM1068516     3  0.7215    0.23025 0.348 0.000 0.500 0.152
#> GSM1068519     1  0.5993    0.58945 0.692 0.000 0.148 0.160
#> GSM1068523     2  0.3725    0.63113 0.008 0.812 0.000 0.180
#> GSM1068525     2  0.6640    0.20802 0.000 0.552 0.352 0.096
#> GSM1068526     4  0.6611   -0.10890 0.000 0.456 0.080 0.464
#> GSM1068458     1  0.4610    0.78052 0.804 0.068 0.004 0.124
#> GSM1068459     3  0.4955    0.06187 0.344 0.000 0.648 0.008
#> GSM1068460     1  0.5414    0.46637 0.604 0.020 0.000 0.376
#> GSM1068461     3  0.4477    0.49494 0.000 0.000 0.688 0.312
#> GSM1068464     2  0.0524    0.73515 0.008 0.988 0.000 0.004
#> GSM1068468     2  0.4059    0.64487 0.008 0.844 0.092 0.056
#> GSM1068472     1  0.3627    0.78152 0.840 0.144 0.008 0.008
#> GSM1068473     2  0.0524    0.73567 0.008 0.988 0.000 0.004
#> GSM1068474     2  0.0188    0.73621 0.000 0.996 0.000 0.004
#> GSM1068476     3  0.4961    0.53795 0.000 0.000 0.552 0.448
#> GSM1068477     2  0.4837    0.41970 0.004 0.648 0.000 0.348
#> GSM1068462     2  0.3127    0.67542 0.008 0.892 0.032 0.068
#> GSM1068463     1  0.5669    0.28636 0.516 0.016 0.464 0.004
#> GSM1068465     1  0.8020   -0.13338 0.380 0.276 0.004 0.340
#> GSM1068466     1  0.2596    0.81262 0.908 0.068 0.000 0.024
#> GSM1068467     2  0.4184    0.64359 0.008 0.836 0.056 0.100
#> GSM1068469     2  0.3074    0.61085 0.152 0.848 0.000 0.000
#> GSM1068470     2  0.3142    0.67523 0.008 0.860 0.000 0.132
#> GSM1068471     2  0.0188    0.73570 0.004 0.996 0.000 0.000
#> GSM1068475     2  0.0376    0.73567 0.004 0.992 0.000 0.004
#> GSM1068528     1  0.3442    0.80443 0.880 0.068 0.040 0.012
#> GSM1068531     1  0.3249    0.77323 0.852 0.000 0.008 0.140
#> GSM1068532     3  0.6504   -0.28275 0.452 0.000 0.476 0.072
#> GSM1068533     1  0.3198    0.76645 0.880 0.000 0.040 0.080
#> GSM1068535     4  0.4713   -0.37763 0.000 0.000 0.360 0.640
#> GSM1068537     1  0.4673    0.53567 0.700 0.000 0.292 0.008
#> GSM1068538     1  0.4426    0.72765 0.812 0.000 0.096 0.092
#> GSM1068539     1  0.3850    0.79301 0.840 0.044 0.000 0.116
#> GSM1068540     1  0.0524    0.79187 0.988 0.000 0.008 0.004
#> GSM1068542     4  0.4605    0.16081 0.000 0.336 0.000 0.664
#> GSM1068543     4  0.4998   -0.51829 0.000 0.000 0.488 0.512
#> GSM1068544     3  0.5292   -0.25617 0.480 0.000 0.512 0.008
#> GSM1068545     2  0.4933    0.27044 0.000 0.568 0.000 0.432
#> GSM1068546     3  0.6523    0.26919 0.348 0.000 0.564 0.088
#> GSM1068547     1  0.4153    0.78347 0.820 0.048 0.000 0.132
#> GSM1068548     4  0.8684    0.23410 0.292 0.168 0.072 0.468
#> GSM1068549     3  0.4961    0.53795 0.000 0.000 0.552 0.448
#> GSM1068550     4  0.4955   -0.11807 0.000 0.444 0.000 0.556
#> GSM1068551     2  0.2281    0.69913 0.000 0.904 0.000 0.096
#> GSM1068552     2  0.4998    0.16106 0.000 0.512 0.000 0.488
#> GSM1068555     2  0.0336    0.73539 0.008 0.992 0.000 0.000
#> GSM1068556     4  0.4605   -0.28503 0.000 0.000 0.336 0.664
#> GSM1068557     2  0.6233    0.43168 0.216 0.660 0.000 0.124
#> GSM1068560     4  0.6907    0.17095 0.348 0.120 0.000 0.532
#> GSM1068561     1  0.3032    0.79847 0.868 0.124 0.000 0.008
#> GSM1068562     4  0.5047   -0.20952 0.000 0.016 0.316 0.668
#> GSM1068563     4  0.4624   -0.26347 0.000 0.000 0.340 0.660
#> GSM1068565     2  0.0336    0.73670 0.000 0.992 0.000 0.008
#> GSM1068529     3  0.5353    0.53215 0.012 0.000 0.556 0.432
#> GSM1068530     1  0.1545    0.78048 0.952 0.000 0.040 0.008
#> GSM1068534     3  0.8893    0.12418 0.356 0.116 0.412 0.116
#> GSM1068536     1  0.3890    0.78814 0.836 0.028 0.004 0.132
#> GSM1068541     1  0.7063    0.21989 0.508 0.112 0.004 0.376
#> GSM1068553     4  0.8420    0.26377 0.328 0.088 0.104 0.480
#> GSM1068554     4  0.6389   -0.06828 0.000 0.448 0.064 0.488
#> GSM1068558     3  0.8352    0.38602 0.128 0.092 0.540 0.240
#> GSM1068559     3  0.4961    0.53795 0.000 0.000 0.552 0.448
#> GSM1068564     2  0.4989    0.18304 0.000 0.528 0.000 0.472
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1068478     1  0.0510     0.8487 0.984 0.016 0.000 0.000 0.000
#> GSM1068479     5  0.3690     0.6191 0.000 0.224 0.000 0.012 0.764
#> GSM1068481     3  0.4755     0.6332 0.244 0.060 0.696 0.000 0.000
#> GSM1068482     3  0.0794     0.8415 0.000 0.000 0.972 0.000 0.028
#> GSM1068483     1  0.0609     0.8481 0.980 0.020 0.000 0.000 0.000
#> GSM1068486     5  0.3080     0.7370 0.060 0.060 0.008 0.000 0.872
#> GSM1068487     2  0.1845     0.8376 0.016 0.928 0.000 0.056 0.000
#> GSM1068488     5  0.0000     0.8013 0.000 0.000 0.000 0.000 1.000
#> GSM1068490     2  0.2171     0.8360 0.024 0.912 0.000 0.064 0.000
#> GSM1068491     5  0.0000     0.8013 0.000 0.000 0.000 0.000 1.000
#> GSM1068492     5  0.0000     0.8013 0.000 0.000 0.000 0.000 1.000
#> GSM1068493     1  0.1697     0.8356 0.932 0.060 0.000 0.000 0.008
#> GSM1068494     1  0.2067     0.8425 0.920 0.000 0.000 0.032 0.048
#> GSM1068495     1  0.1331     0.8504 0.952 0.008 0.000 0.040 0.000
#> GSM1068496     1  0.4047     0.4903 0.676 0.004 0.320 0.000 0.000
#> GSM1068498     1  0.0703     0.8477 0.976 0.024 0.000 0.000 0.000
#> GSM1068499     1  0.1892     0.8248 0.916 0.000 0.000 0.004 0.080
#> GSM1068500     1  0.1117     0.8480 0.964 0.020 0.016 0.000 0.000
#> GSM1068502     5  0.0000     0.8013 0.000 0.000 0.000 0.000 1.000
#> GSM1068503     2  0.2236     0.8361 0.024 0.908 0.000 0.068 0.000
#> GSM1068505     4  0.0451     0.7350 0.000 0.008 0.004 0.988 0.000
#> GSM1068506     4  0.1365     0.7468 0.004 0.040 0.004 0.952 0.000
#> GSM1068507     5  0.5198     0.4530 0.004 0.284 0.000 0.064 0.648
#> GSM1068508     2  0.1568     0.8420 0.020 0.944 0.000 0.036 0.000
#> GSM1068510     2  0.5616     0.3240 0.000 0.552 0.000 0.084 0.364
#> GSM1068512     5  0.0000     0.8013 0.000 0.000 0.000 0.000 1.000
#> GSM1068513     2  0.2684     0.8315 0.024 0.900 0.000 0.032 0.044
#> GSM1068514     5  0.0000     0.8013 0.000 0.000 0.000 0.000 1.000
#> GSM1068517     1  0.0703     0.8477 0.976 0.024 0.000 0.000 0.000
#> GSM1068518     5  0.0000     0.8013 0.000 0.000 0.000 0.000 1.000
#> GSM1068520     1  0.0609     0.8481 0.980 0.020 0.000 0.000 0.000
#> GSM1068521     1  0.1408     0.8506 0.948 0.008 0.000 0.044 0.000
#> GSM1068522     4  0.2329     0.7265 0.000 0.124 0.000 0.876 0.000
#> GSM1068524     2  0.2522     0.7843 0.000 0.880 0.000 0.108 0.012
#> GSM1068527     4  0.5547     0.1404 0.060 0.000 0.004 0.532 0.404
#> GSM1068480     3  0.3816     0.5311 0.000 0.000 0.696 0.000 0.304
#> GSM1068484     4  0.6664     0.1575 0.000 0.360 0.000 0.408 0.232
#> GSM1068485     3  0.3231     0.7068 0.004 0.000 0.800 0.000 0.196
#> GSM1068489     4  0.2381     0.7379 0.000 0.052 0.004 0.908 0.036
#> GSM1068497     1  0.0000     0.8498 1.000 0.000 0.000 0.000 0.000
#> GSM1068501     4  0.5500     0.5737 0.000 0.124 0.000 0.640 0.236
#> GSM1068504     2  0.0880     0.8369 0.000 0.968 0.000 0.032 0.000
#> GSM1068509     1  0.3099     0.8117 0.848 0.000 0.008 0.132 0.012
#> GSM1068511     3  0.4679     0.7444 0.156 0.000 0.764 0.040 0.040
#> GSM1068515     4  0.5058     0.6317 0.216 0.068 0.012 0.704 0.000
#> GSM1068516     5  0.4840     0.5357 0.268 0.000 0.000 0.056 0.676
#> GSM1068519     1  0.5243     0.6277 0.680 0.000 0.000 0.132 0.188
#> GSM1068523     2  0.3656     0.6870 0.020 0.784 0.000 0.196 0.000
#> GSM1068525     2  0.4278     0.2146 0.000 0.548 0.000 0.000 0.452
#> GSM1068526     4  0.5265     0.5778 0.000 0.248 0.000 0.656 0.096
#> GSM1068458     1  0.4049     0.7928 0.788 0.040 0.008 0.164 0.000
#> GSM1068459     3  0.0451     0.8454 0.004 0.000 0.988 0.000 0.008
#> GSM1068460     1  0.4591     0.2275 0.516 0.004 0.004 0.476 0.000
#> GSM1068461     5  0.2516     0.7083 0.000 0.000 0.140 0.000 0.860
#> GSM1068464     2  0.0703     0.8380 0.024 0.976 0.000 0.000 0.000
#> GSM1068468     2  0.3915     0.7272 0.024 0.792 0.000 0.012 0.172
#> GSM1068472     1  0.2828     0.7992 0.872 0.104 0.004 0.000 0.020
#> GSM1068473     2  0.1965     0.8374 0.024 0.924 0.000 0.052 0.000
#> GSM1068474     2  0.1484     0.8387 0.008 0.944 0.000 0.048 0.000
#> GSM1068476     5  0.0000     0.8013 0.000 0.000 0.000 0.000 1.000
#> GSM1068477     4  0.3884     0.5752 0.000 0.288 0.004 0.708 0.000
#> GSM1068462     2  0.1978     0.8279 0.024 0.928 0.000 0.004 0.044
#> GSM1068463     3  0.0404     0.8458 0.012 0.000 0.988 0.000 0.000
#> GSM1068465     4  0.6180     0.5291 0.304 0.096 0.008 0.580 0.012
#> GSM1068466     1  0.1018     0.8516 0.968 0.016 0.000 0.016 0.000
#> GSM1068467     2  0.3396     0.7977 0.024 0.856 0.000 0.032 0.088
#> GSM1068469     2  0.2329     0.7857 0.124 0.876 0.000 0.000 0.000
#> GSM1068470     2  0.3513     0.6992 0.020 0.800 0.000 0.180 0.000
#> GSM1068471     2  0.0798     0.8405 0.016 0.976 0.000 0.008 0.000
#> GSM1068475     2  0.0451     0.8377 0.004 0.988 0.000 0.008 0.000
#> GSM1068528     1  0.3577     0.7798 0.808 0.032 0.160 0.000 0.000
#> GSM1068531     1  0.3039     0.8105 0.836 0.000 0.012 0.152 0.000
#> GSM1068532     3  0.0290     0.8448 0.008 0.000 0.992 0.000 0.000
#> GSM1068533     1  0.4467     0.7607 0.752 0.000 0.164 0.084 0.000
#> GSM1068535     5  0.3612     0.5868 0.000 0.000 0.000 0.268 0.732
#> GSM1068537     1  0.4161     0.4438 0.608 0.000 0.392 0.000 0.000
#> GSM1068538     1  0.5604     0.2421 0.468 0.000 0.460 0.072 0.000
#> GSM1068539     1  0.2583     0.8226 0.864 0.000 0.004 0.132 0.000
#> GSM1068540     1  0.1121     0.8449 0.956 0.000 0.044 0.000 0.000
#> GSM1068542     4  0.2069     0.7510 0.012 0.076 0.000 0.912 0.000
#> GSM1068543     5  0.2280     0.7425 0.000 0.000 0.000 0.120 0.880
#> GSM1068544     3  0.0404     0.8458 0.012 0.000 0.988 0.000 0.000
#> GSM1068545     4  0.3246     0.6973 0.008 0.184 0.000 0.808 0.000
#> GSM1068546     5  0.6780     0.1261 0.268 0.000 0.280 0.004 0.448
#> GSM1068547     1  0.3197     0.8107 0.832 0.012 0.004 0.152 0.000
#> GSM1068548     4  0.5352     0.7012 0.056 0.088 0.008 0.748 0.100
#> GSM1068549     5  0.0000     0.8013 0.000 0.000 0.000 0.000 1.000
#> GSM1068550     4  0.0566     0.7359 0.000 0.012 0.004 0.984 0.000
#> GSM1068551     2  0.3177     0.7031 0.000 0.792 0.000 0.208 0.000
#> GSM1068552     4  0.2248     0.7503 0.012 0.088 0.000 0.900 0.000
#> GSM1068555     2  0.0771     0.8341 0.020 0.976 0.000 0.004 0.000
#> GSM1068556     4  0.4294     0.1143 0.000 0.000 0.000 0.532 0.468
#> GSM1068557     2  0.5843     0.4837 0.204 0.624 0.004 0.168 0.000
#> GSM1068560     4  0.1992     0.7468 0.032 0.044 0.000 0.924 0.000
#> GSM1068561     1  0.1830     0.8341 0.924 0.068 0.000 0.008 0.000
#> GSM1068562     5  0.4738    -0.0731 0.000 0.016 0.000 0.464 0.520
#> GSM1068563     5  0.3796     0.4406 0.000 0.000 0.000 0.300 0.700
#> GSM1068565     2  0.2873     0.7909 0.016 0.856 0.000 0.128 0.000
#> GSM1068529     5  0.0693     0.7959 0.012 0.000 0.008 0.000 0.980
#> GSM1068530     1  0.2966     0.7741 0.816 0.000 0.184 0.000 0.000
#> GSM1068534     5  0.6527     0.4545 0.292 0.068 0.008 0.052 0.580
#> GSM1068536     1  0.2881     0.8292 0.860 0.004 0.012 0.124 0.000
#> GSM1068541     4  0.5696     0.2757 0.400 0.056 0.012 0.532 0.000
#> GSM1068553     4  0.3413     0.7100 0.000 0.044 0.000 0.832 0.124
#> GSM1068554     4  0.3459     0.7312 0.000 0.116 0.000 0.832 0.052
#> GSM1068558     5  0.4389     0.6855 0.120 0.092 0.008 0.000 0.780
#> GSM1068559     5  0.0000     0.8013 0.000 0.000 0.000 0.000 1.000
#> GSM1068564     4  0.3177     0.7037 0.000 0.208 0.000 0.792 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1068478     5  0.4494    0.64323 0.424 0.032 0.000 0.000 0.544 0.000
#> GSM1068479     6  0.3788    0.56626 0.000 0.232 0.000 0.020 0.008 0.740
#> GSM1068481     3  0.5033    0.58573 0.072 0.060 0.704 0.000 0.164 0.000
#> GSM1068482     3  0.1672    0.83834 0.000 0.000 0.932 0.004 0.048 0.016
#> GSM1068483     5  0.4615    0.63884 0.424 0.040 0.000 0.000 0.536 0.000
#> GSM1068486     6  0.3862    0.67925 0.048 0.060 0.000 0.004 0.072 0.816
#> GSM1068487     2  0.3168    0.75892 0.000 0.804 0.000 0.172 0.024 0.000
#> GSM1068488     6  0.0000    0.76242 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068490     2  0.3737    0.74746 0.008 0.772 0.000 0.184 0.036 0.000
#> GSM1068491     6  0.0000    0.76242 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068492     6  0.0000    0.76242 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068493     5  0.5040    0.57408 0.380 0.060 0.000 0.000 0.552 0.008
#> GSM1068494     1  0.4468    0.08086 0.660 0.000 0.000 0.004 0.288 0.048
#> GSM1068495     1  0.3707    0.04934 0.680 0.000 0.000 0.008 0.312 0.000
#> GSM1068496     5  0.5814    0.42919 0.248 0.004 0.224 0.000 0.524 0.000
#> GSM1068498     5  0.3774    0.63505 0.408 0.000 0.000 0.000 0.592 0.000
#> GSM1068499     1  0.4740    0.06571 0.632 0.000 0.000 0.004 0.300 0.064
#> GSM1068500     5  0.4995    0.64294 0.408 0.040 0.016 0.000 0.536 0.000
#> GSM1068502     6  0.0000    0.76242 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068503     2  0.3364    0.74928 0.000 0.780 0.000 0.196 0.024 0.000
#> GSM1068505     4  0.3668    0.63102 0.328 0.004 0.000 0.668 0.000 0.000
#> GSM1068506     4  0.2114    0.73943 0.076 0.012 0.000 0.904 0.008 0.000
#> GSM1068507     6  0.5977    0.33682 0.000 0.216 0.000 0.192 0.028 0.564
#> GSM1068508     2  0.1966    0.80251 0.028 0.924 0.000 0.024 0.024 0.000
#> GSM1068510     2  0.5156    0.43655 0.000 0.580 0.000 0.112 0.000 0.308
#> GSM1068512     6  0.0508    0.75873 0.000 0.000 0.000 0.004 0.012 0.984
#> GSM1068513     2  0.1616    0.79386 0.000 0.932 0.000 0.048 0.000 0.020
#> GSM1068514     6  0.0000    0.76242 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068517     5  0.3782    0.62655 0.412 0.000 0.000 0.000 0.588 0.000
#> GSM1068518     6  0.0000    0.76242 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068520     5  0.4615    0.63884 0.424 0.040 0.000 0.000 0.536 0.000
#> GSM1068521     5  0.4096    0.55039 0.484 0.000 0.000 0.008 0.508 0.000
#> GSM1068522     4  0.4882    0.69631 0.236 0.104 0.000 0.656 0.004 0.000
#> GSM1068524     2  0.2581    0.74771 0.000 0.856 0.000 0.128 0.016 0.000
#> GSM1068527     1  0.5983   -0.37914 0.412 0.000 0.000 0.356 0.000 0.232
#> GSM1068480     3  0.4244    0.55075 0.004 0.000 0.680 0.000 0.036 0.280
#> GSM1068484     4  0.5746    0.16094 0.000 0.376 0.000 0.452 0.000 0.172
#> GSM1068485     3  0.2913    0.71879 0.004 0.000 0.812 0.004 0.000 0.180
#> GSM1068489     4  0.3665    0.71379 0.172 0.032 0.000 0.784 0.000 0.012
#> GSM1068497     5  0.4032    0.64125 0.420 0.008 0.000 0.000 0.572 0.000
#> GSM1068501     4  0.4882    0.58805 0.000 0.152 0.000 0.660 0.000 0.188
#> GSM1068504     2  0.1257    0.79939 0.000 0.952 0.000 0.028 0.020 0.000
#> GSM1068509     1  0.5699   -0.09306 0.476 0.000 0.000 0.104 0.404 0.016
#> GSM1068511     5  0.6173   -0.57985 0.052 0.000 0.440 0.032 0.440 0.036
#> GSM1068515     4  0.5823    0.49547 0.260 0.060 0.000 0.592 0.088 0.000
#> GSM1068516     6  0.4705    0.14944 0.472 0.000 0.000 0.044 0.000 0.484
#> GSM1068519     1  0.6536    0.30214 0.548 0.000 0.000 0.132 0.204 0.116
#> GSM1068523     2  0.3610    0.70343 0.004 0.792 0.000 0.152 0.052 0.000
#> GSM1068525     2  0.3774    0.34457 0.000 0.592 0.000 0.000 0.000 0.408
#> GSM1068526     4  0.3555    0.60128 0.000 0.176 0.000 0.780 0.000 0.044
#> GSM1068458     1  0.3428    0.38363 0.808 0.016 0.000 0.024 0.152 0.000
#> GSM1068459     3  0.0000    0.85653 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068460     1  0.2664    0.39071 0.816 0.000 0.000 0.184 0.000 0.000
#> GSM1068461     6  0.2402    0.67323 0.000 0.000 0.140 0.000 0.004 0.856
#> GSM1068464     2  0.0777    0.79951 0.004 0.972 0.000 0.000 0.024 0.000
#> GSM1068468     2  0.4866    0.66221 0.044 0.716 0.000 0.020 0.028 0.192
#> GSM1068472     1  0.5265   -0.04807 0.520 0.088 0.000 0.000 0.388 0.004
#> GSM1068473     2  0.3569    0.75586 0.008 0.792 0.000 0.164 0.036 0.000
#> GSM1068474     2  0.3284    0.76067 0.000 0.800 0.000 0.168 0.032 0.000
#> GSM1068476     6  0.0146    0.76186 0.000 0.000 0.000 0.000 0.004 0.996
#> GSM1068477     4  0.6302    0.55947 0.348 0.172 0.000 0.452 0.028 0.000
#> GSM1068462     2  0.0363    0.80007 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM1068463     3  0.0000    0.85653 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068465     4  0.6955    0.44609 0.100 0.132 0.000 0.528 0.220 0.020
#> GSM1068466     1  0.4613   -0.44367 0.528 0.024 0.000 0.008 0.440 0.000
#> GSM1068467     2  0.2550    0.78532 0.036 0.892 0.000 0.000 0.024 0.048
#> GSM1068469     2  0.2237    0.77595 0.068 0.896 0.000 0.000 0.036 0.000
#> GSM1068470     2  0.3530    0.69469 0.000 0.792 0.000 0.152 0.056 0.000
#> GSM1068471     2  0.0363    0.80010 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM1068475     2  0.1074    0.79940 0.000 0.960 0.000 0.012 0.028 0.000
#> GSM1068528     1  0.6396   -0.22336 0.436 0.036 0.164 0.000 0.364 0.000
#> GSM1068531     1  0.0405    0.44294 0.988 0.000 0.000 0.008 0.004 0.000
#> GSM1068532     3  0.0000    0.85653 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068533     1  0.4526    0.26407 0.704 0.000 0.164 0.000 0.132 0.000
#> GSM1068535     6  0.5201    0.41583 0.184 0.000 0.000 0.200 0.000 0.616
#> GSM1068537     5  0.5902    0.30432 0.212 0.000 0.348 0.000 0.440 0.000
#> GSM1068538     1  0.3619    0.33224 0.680 0.000 0.316 0.004 0.000 0.000
#> GSM1068539     1  0.1524    0.43448 0.932 0.000 0.000 0.008 0.060 0.000
#> GSM1068540     5  0.4666    0.63075 0.420 0.000 0.044 0.000 0.536 0.000
#> GSM1068542     4  0.1959    0.72676 0.024 0.020 0.000 0.924 0.032 0.000
#> GSM1068543     6  0.2623    0.69676 0.016 0.000 0.000 0.132 0.000 0.852
#> GSM1068544     3  0.0000    0.85653 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068545     4  0.3827    0.66529 0.040 0.124 0.000 0.800 0.036 0.000
#> GSM1068546     6  0.6046    0.10922 0.396 0.000 0.168 0.000 0.012 0.424
#> GSM1068547     1  0.0520    0.44338 0.984 0.000 0.000 0.008 0.008 0.000
#> GSM1068548     4  0.4905    0.65910 0.176 0.020 0.000 0.716 0.072 0.016
#> GSM1068549     6  0.0146    0.76186 0.000 0.000 0.000 0.000 0.004 0.996
#> GSM1068550     4  0.2871    0.70191 0.192 0.004 0.000 0.804 0.000 0.000
#> GSM1068551     2  0.4907    0.61060 0.020 0.636 0.000 0.292 0.052 0.000
#> GSM1068552     4  0.1682    0.71982 0.000 0.052 0.000 0.928 0.020 0.000
#> GSM1068555     2  0.1285    0.79372 0.000 0.944 0.000 0.004 0.052 0.000
#> GSM1068556     4  0.4988    0.13202 0.068 0.000 0.000 0.484 0.000 0.448
#> GSM1068557     2  0.4895    0.40915 0.412 0.540 0.000 0.024 0.024 0.000
#> GSM1068560     4  0.3918    0.68839 0.248 0.004 0.000 0.724 0.020 0.004
#> GSM1068561     1  0.4932    0.05174 0.616 0.060 0.000 0.012 0.312 0.000
#> GSM1068562     6  0.3854    0.00729 0.000 0.000 0.000 0.464 0.000 0.536
#> GSM1068563     6  0.3288    0.48426 0.000 0.000 0.000 0.276 0.000 0.724
#> GSM1068565     2  0.3586    0.72157 0.000 0.756 0.000 0.216 0.028 0.000
#> GSM1068529     6  0.1785    0.74136 0.016 0.000 0.000 0.008 0.048 0.928
#> GSM1068530     5  0.5823    0.45093 0.372 0.000 0.188 0.000 0.440 0.000
#> GSM1068534     6  0.6702    0.08805 0.408 0.052 0.000 0.040 0.072 0.428
#> GSM1068536     1  0.2613    0.40652 0.848 0.000 0.000 0.012 0.140 0.000
#> GSM1068541     1  0.6561    0.15824 0.432 0.048 0.000 0.352 0.168 0.000
#> GSM1068553     4  0.1524    0.72227 0.008 0.000 0.000 0.932 0.000 0.060
#> GSM1068554     4  0.0993    0.72900 0.000 0.024 0.000 0.964 0.000 0.012
#> GSM1068558     6  0.5252    0.47893 0.032 0.036 0.000 0.004 0.360 0.568
#> GSM1068559     6  0.0000    0.76242 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068564     4  0.2871    0.68189 0.004 0.192 0.000 0.804 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#>         n disease.state(p) gender(p) k
#> CV:pam 93          0.42806     1.000 2
#> CV:pam 91          0.19282     0.528 3
#> CV:pam 60          0.01864     0.333 4
#> CV:pam 92          0.04909     0.410 5
#> CV:pam 70          0.00349     0.261 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 38950 rows and 108 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.970       0.973         0.4600 0.529   0.529
#> 3 3 0.777           0.885       0.925         0.1633 0.890   0.802
#> 4 4 0.554           0.573       0.736         0.2639 0.777   0.539
#> 5 5 0.564           0.603       0.749         0.1021 0.824   0.498
#> 6 6 0.672           0.624       0.796         0.0644 0.892   0.616
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1068478     1  0.1843      0.985 0.972 0.028
#> GSM1068479     1  0.0672      0.975 0.992 0.008
#> GSM1068481     1  0.0000      0.973 1.000 0.000
#> GSM1068482     1  0.0000      0.973 1.000 0.000
#> GSM1068483     1  0.1843      0.985 0.972 0.028
#> GSM1068486     1  0.0000      0.973 1.000 0.000
#> GSM1068487     2  0.0000      0.971 0.000 1.000
#> GSM1068488     1  0.2236      0.985 0.964 0.036
#> GSM1068490     2  0.0000      0.971 0.000 1.000
#> GSM1068491     1  0.0672      0.975 0.992 0.008
#> GSM1068492     1  0.2948      0.943 0.948 0.052
#> GSM1068493     1  0.2236      0.985 0.964 0.036
#> GSM1068494     1  0.1843      0.985 0.972 0.028
#> GSM1068495     1  0.2236      0.985 0.964 0.036
#> GSM1068496     1  0.1633      0.985 0.976 0.024
#> GSM1068498     1  0.2043      0.985 0.968 0.032
#> GSM1068499     1  0.1633      0.985 0.976 0.024
#> GSM1068500     1  0.1843      0.985 0.972 0.028
#> GSM1068502     1  0.0672      0.975 0.992 0.008
#> GSM1068503     2  0.0938      0.976 0.012 0.988
#> GSM1068505     2  0.0938      0.976 0.012 0.988
#> GSM1068506     2  0.0938      0.976 0.012 0.988
#> GSM1068507     2  0.1414      0.972 0.020 0.980
#> GSM1068508     2  0.1184      0.974 0.016 0.984
#> GSM1068510     2  0.0938      0.976 0.012 0.988
#> GSM1068512     1  0.2236      0.985 0.964 0.036
#> GSM1068513     2  0.0938      0.976 0.012 0.988
#> GSM1068514     1  0.0672      0.975 0.992 0.008
#> GSM1068517     1  0.2236      0.985 0.964 0.036
#> GSM1068518     1  0.2236      0.985 0.964 0.036
#> GSM1068520     1  0.1843      0.985 0.972 0.028
#> GSM1068521     1  0.1843      0.985 0.972 0.028
#> GSM1068522     2  0.0938      0.976 0.012 0.988
#> GSM1068524     2  0.0938      0.976 0.012 0.988
#> GSM1068527     2  0.0938      0.976 0.012 0.988
#> GSM1068480     1  0.0000      0.973 1.000 0.000
#> GSM1068484     2  0.0938      0.976 0.012 0.988
#> GSM1068485     1  0.0000      0.973 1.000 0.000
#> GSM1068489     2  0.0938      0.976 0.012 0.988
#> GSM1068497     1  0.2043      0.985 0.968 0.032
#> GSM1068501     2  0.0938      0.976 0.012 0.988
#> GSM1068504     2  0.0000      0.971 0.000 1.000
#> GSM1068509     1  0.2043      0.985 0.968 0.032
#> GSM1068511     1  0.1633      0.985 0.976 0.024
#> GSM1068515     1  0.2236      0.985 0.964 0.036
#> GSM1068516     1  0.2236      0.985 0.964 0.036
#> GSM1068519     1  0.1843      0.985 0.972 0.028
#> GSM1068523     2  0.0000      0.971 0.000 1.000
#> GSM1068525     2  0.1843      0.966 0.028 0.972
#> GSM1068526     2  0.0938      0.976 0.012 0.988
#> GSM1068458     1  0.1843      0.985 0.972 0.028
#> GSM1068459     1  0.0000      0.973 1.000 0.000
#> GSM1068460     1  0.2236      0.985 0.964 0.036
#> GSM1068461     1  0.0000      0.973 1.000 0.000
#> GSM1068464     2  0.8713      0.590 0.292 0.708
#> GSM1068468     1  0.2236      0.985 0.964 0.036
#> GSM1068472     1  0.2236      0.985 0.964 0.036
#> GSM1068473     2  0.0000      0.971 0.000 1.000
#> GSM1068474     2  0.0000      0.971 0.000 1.000
#> GSM1068476     1  0.0672      0.975 0.992 0.008
#> GSM1068477     1  0.2236      0.985 0.964 0.036
#> GSM1068462     1  0.2236      0.985 0.964 0.036
#> GSM1068463     1  0.0000      0.973 1.000 0.000
#> GSM1068465     1  0.2236      0.985 0.964 0.036
#> GSM1068466     1  0.1843      0.985 0.972 0.028
#> GSM1068467     1  0.2236      0.985 0.964 0.036
#> GSM1068469     1  0.2236      0.985 0.964 0.036
#> GSM1068470     2  0.0000      0.971 0.000 1.000
#> GSM1068471     2  0.5059      0.877 0.112 0.888
#> GSM1068475     2  0.0000      0.971 0.000 1.000
#> GSM1068528     1  0.0376      0.975 0.996 0.004
#> GSM1068531     1  0.1843      0.985 0.972 0.028
#> GSM1068532     1  0.1843      0.985 0.972 0.028
#> GSM1068533     1  0.1843      0.985 0.972 0.028
#> GSM1068535     1  0.2236      0.985 0.964 0.036
#> GSM1068537     1  0.1843      0.985 0.972 0.028
#> GSM1068538     1  0.1843      0.985 0.972 0.028
#> GSM1068539     1  0.2236      0.985 0.964 0.036
#> GSM1068540     1  0.1843      0.985 0.972 0.028
#> GSM1068542     2  0.0938      0.976 0.012 0.988
#> GSM1068543     2  0.3114      0.942 0.056 0.944
#> GSM1068544     1  0.0000      0.973 1.000 0.000
#> GSM1068545     2  0.0938      0.976 0.012 0.988
#> GSM1068546     1  0.0000      0.973 1.000 0.000
#> GSM1068547     1  0.1843      0.985 0.972 0.028
#> GSM1068548     2  0.1843      0.966 0.028 0.972
#> GSM1068549     1  0.0000      0.973 1.000 0.000
#> GSM1068550     2  0.0938      0.976 0.012 0.988
#> GSM1068551     2  0.0000      0.971 0.000 1.000
#> GSM1068552     2  0.0938      0.976 0.012 0.988
#> GSM1068555     2  0.6887      0.780 0.184 0.816
#> GSM1068556     2  0.4815      0.894 0.104 0.896
#> GSM1068557     1  0.2236      0.985 0.964 0.036
#> GSM1068560     2  0.0938      0.976 0.012 0.988
#> GSM1068561     1  0.2236      0.985 0.964 0.036
#> GSM1068562     2  0.0938      0.976 0.012 0.988
#> GSM1068563     1  0.6887      0.806 0.816 0.184
#> GSM1068565     2  0.0000      0.971 0.000 1.000
#> GSM1068529     1  0.2043      0.985 0.968 0.032
#> GSM1068530     1  0.1843      0.985 0.972 0.028
#> GSM1068534     1  0.2236      0.985 0.964 0.036
#> GSM1068536     1  0.2236      0.985 0.964 0.036
#> GSM1068541     1  0.2236      0.985 0.964 0.036
#> GSM1068553     2  0.1414      0.972 0.020 0.980
#> GSM1068554     2  0.0938      0.976 0.012 0.988
#> GSM1068558     1  0.0672      0.975 0.992 0.008
#> GSM1068559     1  0.1633      0.983 0.976 0.024
#> GSM1068564     2  0.0938      0.976 0.012 0.988
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1068478     3  0.0747      0.945 0.016 0.000 0.984
#> GSM1068479     3  0.3610      0.914 0.096 0.016 0.888
#> GSM1068481     3  0.3192      0.914 0.112 0.000 0.888
#> GSM1068482     3  0.2959      0.915 0.100 0.000 0.900
#> GSM1068483     3  0.0747      0.945 0.016 0.000 0.984
#> GSM1068486     3  0.2959      0.915 0.100 0.000 0.900
#> GSM1068487     1  0.3966      0.936 0.876 0.100 0.024
#> GSM1068488     3  0.1774      0.939 0.016 0.024 0.960
#> GSM1068490     1  0.4335      0.926 0.864 0.100 0.036
#> GSM1068491     3  0.3610      0.914 0.096 0.016 0.888
#> GSM1068492     3  0.4174      0.904 0.092 0.036 0.872
#> GSM1068493     3  0.0237      0.945 0.004 0.000 0.996
#> GSM1068494     3  0.0829      0.944 0.012 0.004 0.984
#> GSM1068495     3  0.0829      0.944 0.012 0.004 0.984
#> GSM1068496     3  0.2625      0.926 0.084 0.000 0.916
#> GSM1068498     3  0.0747      0.945 0.016 0.000 0.984
#> GSM1068499     3  0.1411      0.940 0.036 0.000 0.964
#> GSM1068500     3  0.1031      0.944 0.024 0.000 0.976
#> GSM1068502     3  0.3610      0.914 0.096 0.016 0.888
#> GSM1068503     2  0.5728      0.641 0.196 0.772 0.032
#> GSM1068505     2  0.0000      0.892 0.000 1.000 0.000
#> GSM1068506     2  0.0000      0.892 0.000 1.000 0.000
#> GSM1068507     2  0.0983      0.887 0.004 0.980 0.016
#> GSM1068508     2  0.2955      0.817 0.008 0.912 0.080
#> GSM1068510     2  0.5815      0.476 0.004 0.692 0.304
#> GSM1068512     3  0.2845      0.909 0.012 0.068 0.920
#> GSM1068513     2  0.2056      0.870 0.024 0.952 0.024
#> GSM1068514     3  0.3415      0.924 0.080 0.020 0.900
#> GSM1068517     3  0.0829      0.945 0.012 0.004 0.984
#> GSM1068518     3  0.1015      0.944 0.012 0.008 0.980
#> GSM1068520     3  0.1031      0.944 0.024 0.000 0.976
#> GSM1068521     3  0.1267      0.944 0.024 0.004 0.972
#> GSM1068522     2  0.0237      0.892 0.004 0.996 0.000
#> GSM1068524     1  0.8743      0.171 0.452 0.440 0.108
#> GSM1068527     2  0.0000      0.892 0.000 1.000 0.000
#> GSM1068480     3  0.2959      0.915 0.100 0.000 0.900
#> GSM1068484     2  0.0983      0.887 0.004 0.980 0.016
#> GSM1068485     3  0.3192      0.914 0.112 0.000 0.888
#> GSM1068489     2  0.0000      0.892 0.000 1.000 0.000
#> GSM1068497     3  0.0747      0.945 0.016 0.000 0.984
#> GSM1068501     2  0.0000      0.892 0.000 1.000 0.000
#> GSM1068504     1  0.3966      0.936 0.876 0.100 0.024
#> GSM1068509     3  0.0592      0.944 0.012 0.000 0.988
#> GSM1068511     3  0.0983      0.945 0.016 0.004 0.980
#> GSM1068515     3  0.0237      0.945 0.000 0.004 0.996
#> GSM1068516     3  0.0983      0.943 0.016 0.004 0.980
#> GSM1068519     3  0.0983      0.944 0.016 0.004 0.980
#> GSM1068523     1  0.3966      0.936 0.876 0.100 0.024
#> GSM1068525     2  0.5988      0.476 0.008 0.688 0.304
#> GSM1068526     2  0.0983      0.887 0.004 0.980 0.016
#> GSM1068458     3  0.1267      0.944 0.024 0.004 0.972
#> GSM1068459     3  0.3192      0.914 0.112 0.000 0.888
#> GSM1068460     3  0.1337      0.942 0.012 0.016 0.972
#> GSM1068461     3  0.2959      0.915 0.100 0.000 0.900
#> GSM1068464     1  0.4786      0.849 0.844 0.044 0.112
#> GSM1068468     3  0.0475      0.944 0.004 0.004 0.992
#> GSM1068472     3  0.0237      0.945 0.000 0.004 0.996
#> GSM1068473     1  0.3966      0.936 0.876 0.100 0.024
#> GSM1068474     1  0.3966      0.936 0.876 0.100 0.024
#> GSM1068476     3  0.3610      0.914 0.096 0.016 0.888
#> GSM1068477     3  0.6228      0.345 0.372 0.004 0.624
#> GSM1068462     3  0.0661      0.944 0.008 0.004 0.988
#> GSM1068463     3  0.3192      0.914 0.112 0.000 0.888
#> GSM1068465     3  0.1015      0.944 0.012 0.008 0.980
#> GSM1068466     3  0.1031      0.944 0.024 0.000 0.976
#> GSM1068467     3  0.0475      0.944 0.004 0.004 0.992
#> GSM1068469     3  0.0475      0.945 0.004 0.004 0.992
#> GSM1068470     1  0.3966      0.936 0.876 0.100 0.024
#> GSM1068471     1  0.4179      0.893 0.876 0.052 0.072
#> GSM1068475     1  0.3966      0.936 0.876 0.100 0.024
#> GSM1068528     3  0.2711      0.925 0.088 0.000 0.912
#> GSM1068531     3  0.1267      0.944 0.024 0.004 0.972
#> GSM1068532     3  0.1267      0.944 0.024 0.004 0.972
#> GSM1068533     3  0.1267      0.944 0.024 0.004 0.972
#> GSM1068535     3  0.1015      0.944 0.012 0.008 0.980
#> GSM1068537     3  0.1267      0.944 0.024 0.004 0.972
#> GSM1068538     3  0.1267      0.944 0.024 0.004 0.972
#> GSM1068539     3  0.2031      0.932 0.016 0.032 0.952
#> GSM1068540     3  0.1267      0.944 0.024 0.004 0.972
#> GSM1068542     2  0.0000      0.892 0.000 1.000 0.000
#> GSM1068543     3  0.6421      0.250 0.004 0.424 0.572
#> GSM1068544     3  0.3192      0.914 0.112 0.000 0.888
#> GSM1068545     2  0.0237      0.892 0.004 0.996 0.000
#> GSM1068546     3  0.2959      0.915 0.100 0.000 0.900
#> GSM1068547     3  0.1267      0.944 0.024 0.004 0.972
#> GSM1068548     2  0.0000      0.892 0.000 1.000 0.000
#> GSM1068549     3  0.2959      0.915 0.100 0.000 0.900
#> GSM1068550     2  0.0000      0.892 0.000 1.000 0.000
#> GSM1068551     1  0.3966      0.936 0.876 0.100 0.024
#> GSM1068552     2  0.0237      0.892 0.004 0.996 0.000
#> GSM1068555     1  0.4121      0.882 0.876 0.040 0.084
#> GSM1068556     2  0.6345      0.325 0.004 0.596 0.400
#> GSM1068557     3  0.0475      0.944 0.004 0.004 0.992
#> GSM1068560     2  0.0000      0.892 0.000 1.000 0.000
#> GSM1068561     3  0.0237      0.945 0.000 0.004 0.996
#> GSM1068562     2  0.0983      0.887 0.004 0.980 0.016
#> GSM1068563     2  0.2866      0.825 0.008 0.916 0.076
#> GSM1068565     1  0.3966      0.936 0.876 0.100 0.024
#> GSM1068529     3  0.1765      0.942 0.040 0.004 0.956
#> GSM1068530     3  0.1267      0.944 0.024 0.004 0.972
#> GSM1068534     3  0.1015      0.944 0.012 0.008 0.980
#> GSM1068536     3  0.0829      0.944 0.012 0.004 0.984
#> GSM1068541     3  0.1015      0.944 0.012 0.008 0.980
#> GSM1068553     3  0.5058      0.705 0.000 0.244 0.756
#> GSM1068554     2  0.1765      0.867 0.004 0.956 0.040
#> GSM1068558     3  0.3610      0.914 0.096 0.016 0.888
#> GSM1068559     3  0.3530      0.922 0.068 0.032 0.900
#> GSM1068564     2  0.0237      0.892 0.004 0.996 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1068478     1  0.4647      0.556 0.704 0.008 0.288 0.000
#> GSM1068479     3  0.3056      0.353 0.000 0.040 0.888 0.072
#> GSM1068481     1  0.5256      0.449 0.596 0.012 0.392 0.000
#> GSM1068482     1  0.5511      0.293 0.500 0.016 0.484 0.000
#> GSM1068483     1  0.4356      0.562 0.708 0.000 0.292 0.000
#> GSM1068486     3  0.5395      0.299 0.184 0.084 0.732 0.000
#> GSM1068487     2  0.2081      0.957 0.000 0.916 0.000 0.084
#> GSM1068488     3  0.6726      0.333 0.124 0.000 0.584 0.292
#> GSM1068490     2  0.2266      0.956 0.004 0.912 0.000 0.084
#> GSM1068491     3  0.2943      0.349 0.000 0.076 0.892 0.032
#> GSM1068492     3  0.3659      0.338 0.000 0.024 0.840 0.136
#> GSM1068493     3  0.5960      0.378 0.420 0.016 0.548 0.016
#> GSM1068494     1  0.5256      0.336 0.596 0.012 0.392 0.000
#> GSM1068495     3  0.6066      0.388 0.424 0.016 0.540 0.020
#> GSM1068496     1  0.4406      0.561 0.700 0.000 0.300 0.000
#> GSM1068498     1  0.5596      0.471 0.632 0.036 0.332 0.000
#> GSM1068499     1  0.4522      0.559 0.680 0.000 0.320 0.000
#> GSM1068500     1  0.4164      0.582 0.736 0.000 0.264 0.000
#> GSM1068502     3  0.3398      0.354 0.000 0.060 0.872 0.068
#> GSM1068503     4  0.4590      0.774 0.000 0.148 0.060 0.792
#> GSM1068505     4  0.0000      0.920 0.000 0.000 0.000 1.000
#> GSM1068506     4  0.0000      0.920 0.000 0.000 0.000 1.000
#> GSM1068507     4  0.1305      0.909 0.036 0.000 0.004 0.960
#> GSM1068508     4  0.2497      0.888 0.020 0.016 0.040 0.924
#> GSM1068510     4  0.3399      0.846 0.000 0.040 0.092 0.868
#> GSM1068512     3  0.7109      0.292 0.144 0.000 0.520 0.336
#> GSM1068513     4  0.1722      0.908 0.000 0.048 0.008 0.944
#> GSM1068514     3  0.5255      0.382 0.064 0.036 0.788 0.112
#> GSM1068517     1  0.6176      0.335 0.572 0.060 0.368 0.000
#> GSM1068518     3  0.6326      0.425 0.376 0.000 0.556 0.068
#> GSM1068520     1  0.3907      0.587 0.768 0.000 0.232 0.000
#> GSM1068521     1  0.4277      0.562 0.720 0.000 0.280 0.000
#> GSM1068522     4  0.1209      0.915 0.000 0.032 0.004 0.964
#> GSM1068524     2  0.7156      0.217 0.000 0.476 0.136 0.388
#> GSM1068527     4  0.0000      0.920 0.000 0.000 0.000 1.000
#> GSM1068480     3  0.6425     -0.239 0.424 0.068 0.508 0.000
#> GSM1068484     4  0.1305      0.914 0.000 0.036 0.004 0.960
#> GSM1068485     3  0.5781     -0.316 0.484 0.028 0.488 0.000
#> GSM1068489     4  0.0000      0.920 0.000 0.000 0.000 1.000
#> GSM1068497     1  0.5677      0.466 0.628 0.040 0.332 0.000
#> GSM1068501     4  0.0921      0.917 0.000 0.028 0.000 0.972
#> GSM1068504     2  0.2197      0.958 0.000 0.916 0.004 0.080
#> GSM1068509     3  0.5570      0.363 0.440 0.000 0.540 0.020
#> GSM1068511     3  0.5746      0.015 0.444 0.020 0.532 0.004
#> GSM1068515     3  0.6185      0.396 0.404 0.032 0.552 0.012
#> GSM1068516     3  0.6404      0.424 0.388 0.004 0.548 0.060
#> GSM1068519     1  0.4957      0.470 0.684 0.000 0.300 0.016
#> GSM1068523     2  0.2197      0.958 0.000 0.916 0.004 0.080
#> GSM1068525     4  0.5874      0.664 0.024 0.060 0.196 0.720
#> GSM1068526     4  0.1305      0.914 0.000 0.036 0.004 0.960
#> GSM1068458     1  0.4222      0.550 0.728 0.000 0.272 0.000
#> GSM1068459     1  0.5407      0.297 0.504 0.012 0.484 0.000
#> GSM1068460     3  0.6262      0.413 0.400 0.000 0.540 0.060
#> GSM1068461     3  0.6400     -0.217 0.408 0.068 0.524 0.000
#> GSM1068464     2  0.2528      0.950 0.008 0.908 0.004 0.080
#> GSM1068468     3  0.6409      0.407 0.364 0.076 0.560 0.000
#> GSM1068472     3  0.6286      0.396 0.384 0.064 0.552 0.000
#> GSM1068473     2  0.2081      0.957 0.000 0.916 0.000 0.084
#> GSM1068474     2  0.2081      0.957 0.000 0.916 0.000 0.084
#> GSM1068476     3  0.2965      0.349 0.000 0.072 0.892 0.036
#> GSM1068477     3  0.8068      0.245 0.236 0.312 0.440 0.012
#> GSM1068462     3  0.6454      0.411 0.344 0.084 0.572 0.000
#> GSM1068463     1  0.5402      0.318 0.516 0.012 0.472 0.000
#> GSM1068465     3  0.6066      0.388 0.424 0.016 0.540 0.020
#> GSM1068466     1  0.3764      0.586 0.784 0.000 0.216 0.000
#> GSM1068467     3  0.6386      0.399 0.376 0.072 0.552 0.000
#> GSM1068469     1  0.6121      0.388 0.588 0.060 0.352 0.000
#> GSM1068470     2  0.2197      0.958 0.000 0.916 0.004 0.080
#> GSM1068471     2  0.2197      0.958 0.000 0.916 0.004 0.080
#> GSM1068475     2  0.2197      0.958 0.000 0.916 0.004 0.080
#> GSM1068528     1  0.4500      0.548 0.684 0.000 0.316 0.000
#> GSM1068531     1  0.0469      0.538 0.988 0.000 0.012 0.000
#> GSM1068532     1  0.0707      0.542 0.980 0.000 0.020 0.000
#> GSM1068533     1  0.0469      0.538 0.988 0.000 0.012 0.000
#> GSM1068535     3  0.6337      0.413 0.380 0.000 0.552 0.068
#> GSM1068537     1  0.0469      0.538 0.988 0.000 0.012 0.000
#> GSM1068538     1  0.0469      0.538 0.988 0.000 0.012 0.000
#> GSM1068539     3  0.6625      0.427 0.388 0.016 0.544 0.052
#> GSM1068540     1  0.0469      0.538 0.988 0.000 0.012 0.000
#> GSM1068542     4  0.0000      0.920 0.000 0.000 0.000 1.000
#> GSM1068543     4  0.4094      0.794 0.056 0.000 0.116 0.828
#> GSM1068544     1  0.5231      0.461 0.604 0.012 0.384 0.000
#> GSM1068545     4  0.0188      0.921 0.000 0.000 0.004 0.996
#> GSM1068546     3  0.6537     -0.241 0.424 0.076 0.500 0.000
#> GSM1068547     1  0.5186      0.360 0.640 0.000 0.344 0.016
#> GSM1068548     4  0.0895      0.916 0.020 0.000 0.004 0.976
#> GSM1068549     3  0.4297      0.329 0.096 0.084 0.820 0.000
#> GSM1068550     4  0.0000      0.920 0.000 0.000 0.000 1.000
#> GSM1068551     2  0.2081      0.957 0.000 0.916 0.000 0.084
#> GSM1068552     4  0.0188      0.921 0.000 0.000 0.004 0.996
#> GSM1068555     2  0.2706      0.944 0.000 0.900 0.020 0.080
#> GSM1068556     4  0.3090      0.856 0.056 0.000 0.056 0.888
#> GSM1068557     3  0.6554      0.416 0.376 0.056 0.556 0.012
#> GSM1068560     4  0.0000      0.920 0.000 0.000 0.000 1.000
#> GSM1068561     3  0.6525      0.421 0.388 0.024 0.552 0.036
#> GSM1068562     4  0.1471      0.918 0.012 0.024 0.004 0.960
#> GSM1068563     4  0.3547      0.812 0.072 0.000 0.064 0.864
#> GSM1068565     2  0.2081      0.957 0.000 0.916 0.000 0.084
#> GSM1068529     3  0.6505      0.428 0.360 0.012 0.572 0.056
#> GSM1068530     1  0.0469      0.538 0.988 0.000 0.012 0.000
#> GSM1068534     3  0.6212      0.418 0.380 0.000 0.560 0.060
#> GSM1068536     3  0.5888      0.389 0.424 0.000 0.540 0.036
#> GSM1068541     3  0.6120      0.383 0.416 0.040 0.540 0.004
#> GSM1068553     4  0.4459      0.697 0.032 0.000 0.188 0.780
#> GSM1068554     4  0.1584      0.914 0.000 0.036 0.012 0.952
#> GSM1068558     3  0.2515      0.337 0.004 0.072 0.912 0.012
#> GSM1068559     3  0.6205      0.375 0.096 0.016 0.696 0.192
#> GSM1068564     4  0.0188      0.921 0.000 0.000 0.004 0.996
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1068478     5  0.6414   -0.00103 0.400 0.016 0.112 0.000 0.472
#> GSM1068479     5  0.6822    0.03430 0.028 0.040 0.384 0.052 0.496
#> GSM1068481     3  0.3081    0.76210 0.056 0.004 0.868 0.000 0.072
#> GSM1068482     3  0.2842    0.76858 0.044 0.012 0.888 0.000 0.056
#> GSM1068483     1  0.6868    0.31122 0.428 0.008 0.228 0.000 0.336
#> GSM1068486     3  0.5326    0.24270 0.012 0.028 0.496 0.000 0.464
#> GSM1068487     2  0.1410    0.95937 0.000 0.940 0.000 0.060 0.000
#> GSM1068488     4  0.5456    0.11185 0.000 0.000 0.060 0.484 0.456
#> GSM1068490     2  0.1478    0.95609 0.000 0.936 0.000 0.064 0.000
#> GSM1068491     5  0.6660    0.02085 0.028 0.044 0.396 0.036 0.496
#> GSM1068492     5  0.6918    0.04147 0.028 0.036 0.384 0.064 0.488
#> GSM1068493     5  0.4428    0.62822 0.072 0.044 0.016 0.052 0.816
#> GSM1068494     5  0.6685    0.15700 0.280 0.000 0.284 0.000 0.436
#> GSM1068495     5  0.5154    0.62748 0.068 0.084 0.012 0.068 0.768
#> GSM1068496     1  0.6037   -0.00764 0.456 0.004 0.440 0.000 0.100
#> GSM1068498     5  0.5888    0.53017 0.072 0.128 0.108 0.000 0.692
#> GSM1068499     5  0.6469    0.31898 0.252 0.004 0.220 0.000 0.524
#> GSM1068500     1  0.6798    0.33965 0.436 0.004 0.252 0.000 0.308
#> GSM1068502     5  0.6822    0.03430 0.028 0.040 0.384 0.052 0.496
#> GSM1068503     4  0.5951    0.61727 0.000 0.208 0.020 0.640 0.132
#> GSM1068505     4  0.0000    0.86463 0.000 0.000 0.000 1.000 0.000
#> GSM1068506     4  0.0000    0.86463 0.000 0.000 0.000 1.000 0.000
#> GSM1068507     4  0.2338    0.84794 0.000 0.004 0.000 0.884 0.112
#> GSM1068508     4  0.3646    0.80901 0.000 0.036 0.004 0.816 0.144
#> GSM1068510     4  0.3674    0.81050 0.004 0.008 0.020 0.816 0.152
#> GSM1068512     4  0.4735    0.20162 0.000 0.000 0.016 0.524 0.460
#> GSM1068513     4  0.2919    0.84786 0.000 0.024 0.004 0.868 0.104
#> GSM1068514     5  0.7513    0.14339 0.016 0.028 0.376 0.180 0.400
#> GSM1068517     5  0.5421    0.56021 0.056 0.140 0.080 0.000 0.724
#> GSM1068518     5  0.3387    0.57835 0.004 0.000 0.004 0.196 0.796
#> GSM1068520     5  0.5527    0.00608 0.472 0.012 0.040 0.000 0.476
#> GSM1068521     5  0.5187    0.04709 0.460 0.004 0.032 0.000 0.504
#> GSM1068522     4  0.1168    0.86724 0.000 0.008 0.000 0.960 0.032
#> GSM1068524     2  0.6506    0.39717 0.004 0.568 0.020 0.272 0.136
#> GSM1068527     4  0.0000    0.86463 0.000 0.000 0.000 1.000 0.000
#> GSM1068480     3  0.2331    0.76504 0.024 0.004 0.908 0.000 0.064
#> GSM1068484     4  0.0798    0.86704 0.000 0.008 0.000 0.976 0.016
#> GSM1068485     3  0.2820    0.76712 0.056 0.004 0.884 0.000 0.056
#> GSM1068489     4  0.0000    0.86463 0.000 0.000 0.000 1.000 0.000
#> GSM1068497     5  0.5836    0.53178 0.060 0.140 0.108 0.000 0.692
#> GSM1068501     4  0.0290    0.86315 0.000 0.008 0.000 0.992 0.000
#> GSM1068504     2  0.1410    0.95937 0.000 0.940 0.000 0.060 0.000
#> GSM1068509     5  0.4004    0.58002 0.164 0.000 0.012 0.032 0.792
#> GSM1068511     3  0.6744    0.33162 0.164 0.020 0.500 0.000 0.316
#> GSM1068515     5  0.4199    0.62793 0.036 0.100 0.012 0.032 0.820
#> GSM1068516     5  0.3132    0.59230 0.008 0.000 0.000 0.172 0.820
#> GSM1068519     5  0.5330    0.04059 0.480 0.012 0.028 0.000 0.480
#> GSM1068523     2  0.1410    0.95937 0.000 0.940 0.000 0.060 0.000
#> GSM1068525     4  0.4944    0.67677 0.004 0.020 0.032 0.708 0.236
#> GSM1068526     4  0.0290    0.86315 0.000 0.008 0.000 0.992 0.000
#> GSM1068458     5  0.5166    0.10291 0.436 0.004 0.032 0.000 0.528
#> GSM1068459     3  0.2954    0.76509 0.064 0.004 0.876 0.000 0.056
#> GSM1068460     5  0.4993    0.59830 0.060 0.012 0.012 0.176 0.740
#> GSM1068461     3  0.3031    0.74100 0.020 0.004 0.856 0.000 0.120
#> GSM1068464     2  0.1809    0.94743 0.000 0.928 0.000 0.060 0.012
#> GSM1068468     5  0.3538    0.61782 0.000 0.128 0.012 0.028 0.832
#> GSM1068472     5  0.3919    0.61975 0.008 0.128 0.016 0.028 0.820
#> GSM1068473     2  0.1410    0.95937 0.000 0.940 0.000 0.060 0.000
#> GSM1068474     2  0.1410    0.95937 0.000 0.940 0.000 0.060 0.000
#> GSM1068476     5  0.6660    0.02085 0.028 0.044 0.396 0.036 0.496
#> GSM1068477     5  0.5782    0.51467 0.020 0.284 0.020 0.040 0.636
#> GSM1068462     5  0.3992    0.61413 0.000 0.128 0.032 0.028 0.812
#> GSM1068463     3  0.2954    0.76509 0.064 0.004 0.876 0.000 0.056
#> GSM1068465     5  0.5213    0.62582 0.072 0.084 0.012 0.068 0.764
#> GSM1068466     5  0.5787    0.00105 0.456 0.016 0.052 0.000 0.476
#> GSM1068467     5  0.3695    0.61936 0.004 0.128 0.012 0.028 0.828
#> GSM1068469     5  0.5255    0.55959 0.044 0.128 0.092 0.000 0.736
#> GSM1068470     2  0.1410    0.95937 0.000 0.940 0.000 0.060 0.000
#> GSM1068471     2  0.1410    0.95937 0.000 0.940 0.000 0.060 0.000
#> GSM1068475     2  0.1410    0.95937 0.000 0.940 0.000 0.060 0.000
#> GSM1068528     3  0.5905   -0.01291 0.420 0.004 0.488 0.000 0.088
#> GSM1068531     1  0.1041    0.78238 0.964 0.004 0.000 0.000 0.032
#> GSM1068532     1  0.1041    0.78195 0.964 0.000 0.004 0.000 0.032
#> GSM1068533     1  0.1121    0.78069 0.956 0.000 0.000 0.000 0.044
#> GSM1068535     5  0.7221    0.32623 0.048 0.004 0.260 0.172 0.516
#> GSM1068537     1  0.1041    0.78195 0.964 0.000 0.004 0.000 0.032
#> GSM1068538     1  0.1041    0.78195 0.964 0.000 0.004 0.000 0.032
#> GSM1068539     5  0.4352    0.61563 0.036 0.040 0.000 0.132 0.792
#> GSM1068540     1  0.1281    0.77913 0.956 0.012 0.000 0.000 0.032
#> GSM1068542     4  0.0000    0.86463 0.000 0.000 0.000 1.000 0.000
#> GSM1068543     4  0.3608    0.80353 0.000 0.000 0.040 0.812 0.148
#> GSM1068544     3  0.3743    0.72109 0.096 0.004 0.824 0.000 0.076
#> GSM1068545     4  0.2230    0.84500 0.000 0.000 0.000 0.884 0.116
#> GSM1068546     3  0.3146    0.76263 0.040 0.028 0.876 0.000 0.056
#> GSM1068547     5  0.5175    0.08954 0.464 0.012 0.020 0.000 0.504
#> GSM1068548     4  0.0162    0.86485 0.000 0.000 0.000 0.996 0.004
#> GSM1068549     3  0.5083    0.32976 0.004 0.028 0.540 0.000 0.428
#> GSM1068550     4  0.0000    0.86463 0.000 0.000 0.000 1.000 0.000
#> GSM1068551     2  0.1410    0.95937 0.000 0.940 0.000 0.060 0.000
#> GSM1068552     4  0.0000    0.86463 0.000 0.000 0.000 1.000 0.000
#> GSM1068555     2  0.2278    0.92400 0.000 0.908 0.000 0.060 0.032
#> GSM1068556     4  0.2886    0.82298 0.000 0.000 0.008 0.844 0.148
#> GSM1068557     5  0.3926    0.61988 0.000 0.112 0.020 0.048 0.820
#> GSM1068560     4  0.0000    0.86463 0.000 0.000 0.000 1.000 0.000
#> GSM1068561     5  0.3670    0.62562 0.004 0.088 0.004 0.068 0.836
#> GSM1068562     4  0.0992    0.86731 0.000 0.008 0.000 0.968 0.024
#> GSM1068563     4  0.1544    0.85798 0.000 0.000 0.000 0.932 0.068
#> GSM1068565     2  0.1410    0.95937 0.000 0.940 0.000 0.060 0.000
#> GSM1068529     5  0.5316    0.50714 0.000 0.004 0.152 0.156 0.688
#> GSM1068530     1  0.1492    0.77961 0.948 0.004 0.008 0.000 0.040
#> GSM1068534     5  0.5258    0.54792 0.012 0.000 0.124 0.156 0.708
#> GSM1068536     5  0.4787    0.58613 0.148 0.012 0.012 0.064 0.764
#> GSM1068541     5  0.5107    0.62176 0.064 0.116 0.012 0.044 0.764
#> GSM1068553     4  0.3274    0.73623 0.000 0.000 0.000 0.780 0.220
#> GSM1068554     4  0.2563    0.84305 0.000 0.008 0.000 0.872 0.120
#> GSM1068558     5  0.5631   -0.10553 0.008 0.044 0.456 0.004 0.488
#> GSM1068559     5  0.7374    0.21233 0.008 0.016 0.280 0.292 0.404
#> GSM1068564     4  0.0510    0.86779 0.000 0.000 0.000 0.984 0.016
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1068478     5  0.5091     0.2001 0.364 0.000 0.076 0.000 0.556 0.004
#> GSM1068479     6  0.4212     0.8147 0.000 0.024 0.056 0.016 0.116 0.788
#> GSM1068481     3  0.0146     0.8901 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM1068482     3  0.1151     0.8822 0.000 0.000 0.956 0.000 0.012 0.032
#> GSM1068483     1  0.5992     0.2724 0.420 0.000 0.240 0.000 0.340 0.000
#> GSM1068486     3  0.6213     0.0139 0.008 0.000 0.432 0.000 0.296 0.264
#> GSM1068487     2  0.0508     0.8855 0.000 0.984 0.000 0.012 0.000 0.004
#> GSM1068488     4  0.6148     0.2546 0.000 0.012 0.008 0.512 0.288 0.180
#> GSM1068490     2  0.0363     0.8865 0.000 0.988 0.000 0.012 0.000 0.000
#> GSM1068491     6  0.4122     0.8132 0.000 0.024 0.056 0.012 0.116 0.792
#> GSM1068492     6  0.4376     0.8118 0.000 0.024 0.056 0.024 0.116 0.780
#> GSM1068493     5  0.1887     0.6509 0.028 0.004 0.024 0.008 0.932 0.004
#> GSM1068494     1  0.6122     0.1089 0.484 0.000 0.104 0.024 0.376 0.012
#> GSM1068495     5  0.1180     0.6536 0.012 0.012 0.000 0.016 0.960 0.000
#> GSM1068496     1  0.4578     0.4999 0.624 0.000 0.320 0.000 0.056 0.000
#> GSM1068498     5  0.5388     0.4814 0.088 0.016 0.044 0.000 0.692 0.160
#> GSM1068499     5  0.5418     0.1161 0.368 0.000 0.124 0.000 0.508 0.000
#> GSM1068500     1  0.5993     0.3656 0.440 0.000 0.272 0.000 0.288 0.000
#> GSM1068502     6  0.4212     0.8147 0.000 0.024 0.056 0.016 0.116 0.788
#> GSM1068503     2  0.6570     0.0224 0.000 0.468 0.012 0.360 0.064 0.096
#> GSM1068505     4  0.0146     0.8361 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM1068506     4  0.0260     0.8355 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM1068507     4  0.3045     0.7820 0.000 0.000 0.000 0.840 0.060 0.100
#> GSM1068508     4  0.5274     0.5822 0.000 0.220 0.000 0.660 0.060 0.060
#> GSM1068510     4  0.3449     0.7616 0.000 0.000 0.000 0.808 0.076 0.116
#> GSM1068512     4  0.5971     0.2886 0.004 0.004 0.012 0.528 0.316 0.136
#> GSM1068513     4  0.4543     0.7232 0.000 0.112 0.000 0.756 0.056 0.076
#> GSM1068514     6  0.5816     0.7209 0.000 0.024 0.056 0.132 0.120 0.668
#> GSM1068517     5  0.4958     0.5431 0.024 0.048 0.040 0.000 0.728 0.160
#> GSM1068518     5  0.5590     0.2452 0.000 0.000 0.028 0.320 0.564 0.088
#> GSM1068520     5  0.4528     0.0838 0.428 0.000 0.020 0.000 0.544 0.008
#> GSM1068521     5  0.4046     0.2474 0.368 0.000 0.004 0.000 0.620 0.008
#> GSM1068522     4  0.1780     0.8304 0.000 0.028 0.000 0.932 0.028 0.012
#> GSM1068524     2  0.4752     0.6030 0.000 0.756 0.012 0.068 0.060 0.104
#> GSM1068527     4  0.0000     0.8357 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068480     3  0.1500     0.8762 0.000 0.000 0.936 0.000 0.012 0.052
#> GSM1068484     4  0.1074     0.8372 0.000 0.000 0.000 0.960 0.028 0.012
#> GSM1068485     3  0.0146     0.8901 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM1068489     4  0.0146     0.8361 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM1068497     5  0.5388     0.4814 0.088 0.016 0.044 0.000 0.692 0.160
#> GSM1068501     4  0.0260     0.8355 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM1068504     2  0.0508     0.8855 0.000 0.984 0.000 0.012 0.000 0.004
#> GSM1068509     5  0.2507     0.6329 0.072 0.000 0.004 0.004 0.888 0.032
#> GSM1068511     5  0.6540     0.0963 0.156 0.000 0.372 0.004 0.428 0.040
#> GSM1068515     5  0.1621     0.6547 0.012 0.008 0.020 0.016 0.944 0.000
#> GSM1068516     5  0.4959     0.4160 0.000 0.000 0.020 0.224 0.672 0.084
#> GSM1068519     1  0.4294     0.2627 0.592 0.000 0.008 0.012 0.388 0.000
#> GSM1068523     2  0.0291     0.8884 0.000 0.992 0.000 0.004 0.000 0.004
#> GSM1068525     4  0.6201     0.4864 0.000 0.072 0.016 0.600 0.088 0.224
#> GSM1068526     4  0.0146     0.8371 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM1068458     5  0.4009     0.2698 0.356 0.000 0.004 0.000 0.632 0.008
#> GSM1068459     3  0.0291     0.8901 0.004 0.000 0.992 0.000 0.000 0.004
#> GSM1068460     5  0.3073     0.5277 0.008 0.000 0.000 0.204 0.788 0.000
#> GSM1068461     3  0.2531     0.8139 0.000 0.000 0.856 0.000 0.012 0.132
#> GSM1068464     2  0.0405     0.8867 0.000 0.988 0.000 0.004 0.000 0.008
#> GSM1068468     5  0.5006     0.4093 0.000 0.292 0.032 0.000 0.632 0.044
#> GSM1068472     5  0.1977     0.6502 0.000 0.040 0.032 0.000 0.920 0.008
#> GSM1068473     2  0.0508     0.8855 0.000 0.984 0.000 0.012 0.000 0.004
#> GSM1068474     2  0.0146     0.8881 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM1068476     6  0.4122     0.8132 0.000 0.024 0.056 0.012 0.116 0.792
#> GSM1068477     2  0.5260     0.1036 0.000 0.516 0.000 0.008 0.400 0.076
#> GSM1068462     5  0.5977     0.1949 0.000 0.360 0.032 0.000 0.496 0.112
#> GSM1068463     3  0.0146     0.8901 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM1068465     5  0.1508     0.6545 0.016 0.012 0.000 0.020 0.948 0.004
#> GSM1068466     5  0.4751     0.0223 0.448 0.000 0.032 0.000 0.512 0.008
#> GSM1068467     5  0.4327     0.5024 0.000 0.240 0.032 0.000 0.708 0.020
#> GSM1068469     5  0.6202     0.5154 0.024 0.144 0.092 0.000 0.636 0.104
#> GSM1068470     2  0.0146     0.8863 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM1068471     2  0.0000     0.8867 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068475     2  0.0146     0.8863 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM1068528     1  0.4581     0.3018 0.516 0.000 0.448 0.000 0.036 0.000
#> GSM1068531     1  0.0146     0.7087 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM1068532     1  0.0363     0.7054 0.988 0.000 0.012 0.000 0.000 0.000
#> GSM1068533     1  0.0146     0.7087 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM1068535     4  0.6138     0.1930 0.016 0.000 0.020 0.480 0.380 0.104
#> GSM1068537     1  0.0363     0.7054 0.988 0.000 0.012 0.000 0.000 0.000
#> GSM1068538     1  0.0363     0.7054 0.988 0.000 0.012 0.000 0.000 0.000
#> GSM1068539     5  0.2218     0.6245 0.000 0.012 0.000 0.104 0.884 0.000
#> GSM1068540     1  0.0146     0.7087 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM1068542     4  0.0000     0.8357 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068543     4  0.3630     0.7646 0.000 0.000 0.020 0.816 0.064 0.100
#> GSM1068544     3  0.0146     0.8901 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM1068545     4  0.3510     0.7723 0.000 0.096 0.000 0.828 0.044 0.032
#> GSM1068546     3  0.1930     0.8683 0.012 0.000 0.924 0.000 0.028 0.036
#> GSM1068547     1  0.3828     0.1776 0.560 0.000 0.000 0.000 0.440 0.000
#> GSM1068548     4  0.0000     0.8357 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068549     6  0.6259     0.0557 0.008 0.000 0.332 0.000 0.260 0.400
#> GSM1068550     4  0.0146     0.8354 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM1068551     2  0.0146     0.8881 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM1068552     4  0.0405     0.8371 0.000 0.000 0.000 0.988 0.004 0.008
#> GSM1068555     2  0.0458     0.8835 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM1068556     4  0.3297     0.7772 0.000 0.000 0.008 0.832 0.060 0.100
#> GSM1068557     5  0.3911     0.6011 0.000 0.032 0.032 0.024 0.816 0.096
#> GSM1068560     4  0.0000     0.8357 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068561     5  0.3388     0.6220 0.004 0.012 0.024 0.032 0.852 0.076
#> GSM1068562     4  0.0993     0.8369 0.000 0.000 0.000 0.964 0.024 0.012
#> GSM1068563     4  0.1511     0.8331 0.000 0.004 0.000 0.940 0.044 0.012
#> GSM1068565     2  0.0291     0.8884 0.000 0.992 0.000 0.004 0.000 0.004
#> GSM1068529     5  0.5364     0.4774 0.000 0.008 0.048 0.128 0.692 0.124
#> GSM1068530     1  0.0260     0.7089 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM1068534     5  0.5783     0.3030 0.000 0.000 0.032 0.256 0.584 0.128
#> GSM1068536     5  0.1812     0.6261 0.080 0.000 0.000 0.008 0.912 0.000
#> GSM1068541     5  0.1180     0.6536 0.012 0.012 0.000 0.016 0.960 0.000
#> GSM1068553     4  0.3372     0.7615 0.000 0.000 0.000 0.816 0.084 0.100
#> GSM1068554     4  0.3045     0.7840 0.000 0.000 0.000 0.840 0.060 0.100
#> GSM1068558     6  0.4304     0.7701 0.000 0.024 0.092 0.004 0.108 0.772
#> GSM1068559     6  0.6857     0.1890 0.000 0.024 0.052 0.376 0.120 0.428
#> GSM1068564     4  0.1218     0.8372 0.000 0.004 0.000 0.956 0.028 0.012
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#>             n disease.state(p) gender(p) k
#> CV:mclust 108         0.762869     1.000 2
#> CV:mclust 102         0.020389     0.783 3
#> CV:mclust  57         0.003318     0.223 4
#> CV:mclust  80         0.000833     0.406 5
#> CV:mclust  77         0.001699     0.577 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 38950 rows and 108 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.850           0.916       0.963         0.4891 0.509   0.509
#> 3 3 0.516           0.563       0.758         0.3286 0.786   0.612
#> 4 4 0.659           0.771       0.861         0.1368 0.738   0.414
#> 5 5 0.661           0.649       0.812         0.0624 0.952   0.816
#> 6 6 0.684           0.608       0.790         0.0427 0.921   0.672
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1068478     1  0.0000      0.950 1.000 0.000
#> GSM1068479     2  0.0000      0.968 0.000 1.000
#> GSM1068481     1  0.0000      0.950 1.000 0.000
#> GSM1068482     1  0.0000      0.950 1.000 0.000
#> GSM1068483     1  0.0000      0.950 1.000 0.000
#> GSM1068486     1  0.0000      0.950 1.000 0.000
#> GSM1068487     2  0.0000      0.968 0.000 1.000
#> GSM1068488     2  0.4815      0.871 0.104 0.896
#> GSM1068490     2  0.0000      0.968 0.000 1.000
#> GSM1068491     2  0.4562      0.880 0.096 0.904
#> GSM1068492     2  0.0000      0.968 0.000 1.000
#> GSM1068493     1  0.0000      0.950 1.000 0.000
#> GSM1068494     1  0.0000      0.950 1.000 0.000
#> GSM1068495     1  0.9209      0.534 0.664 0.336
#> GSM1068496     1  0.0000      0.950 1.000 0.000
#> GSM1068498     1  0.7056      0.772 0.808 0.192
#> GSM1068499     1  0.0000      0.950 1.000 0.000
#> GSM1068500     1  0.0000      0.950 1.000 0.000
#> GSM1068502     2  0.0000      0.968 0.000 1.000
#> GSM1068503     2  0.0000      0.968 0.000 1.000
#> GSM1068505     2  0.0000      0.968 0.000 1.000
#> GSM1068506     2  0.0000      0.968 0.000 1.000
#> GSM1068507     2  0.0000      0.968 0.000 1.000
#> GSM1068508     2  0.0000      0.968 0.000 1.000
#> GSM1068510     2  0.0000      0.968 0.000 1.000
#> GSM1068512     2  0.7674      0.713 0.224 0.776
#> GSM1068513     2  0.0000      0.968 0.000 1.000
#> GSM1068514     2  0.0000      0.968 0.000 1.000
#> GSM1068517     2  0.3879      0.899 0.076 0.924
#> GSM1068518     1  0.6048      0.817 0.852 0.148
#> GSM1068520     1  0.0000      0.950 1.000 0.000
#> GSM1068521     1  0.0000      0.950 1.000 0.000
#> GSM1068522     2  0.0000      0.968 0.000 1.000
#> GSM1068524     2  0.0000      0.968 0.000 1.000
#> GSM1068527     2  0.0000      0.968 0.000 1.000
#> GSM1068480     1  0.0000      0.950 1.000 0.000
#> GSM1068484     2  0.0000      0.968 0.000 1.000
#> GSM1068485     1  0.0000      0.950 1.000 0.000
#> GSM1068489     2  0.0000      0.968 0.000 1.000
#> GSM1068497     1  0.7056      0.772 0.808 0.192
#> GSM1068501     2  0.0000      0.968 0.000 1.000
#> GSM1068504     2  0.0000      0.968 0.000 1.000
#> GSM1068509     1  0.0000      0.950 1.000 0.000
#> GSM1068511     1  0.0000      0.950 1.000 0.000
#> GSM1068515     1  0.6887      0.784 0.816 0.184
#> GSM1068516     2  0.0938      0.959 0.012 0.988
#> GSM1068519     1  0.0000      0.950 1.000 0.000
#> GSM1068523     2  0.0000      0.968 0.000 1.000
#> GSM1068525     2  0.0000      0.968 0.000 1.000
#> GSM1068526     2  0.0000      0.968 0.000 1.000
#> GSM1068458     1  0.0000      0.950 1.000 0.000
#> GSM1068459     1  0.0000      0.950 1.000 0.000
#> GSM1068460     2  0.9209      0.510 0.336 0.664
#> GSM1068461     1  0.0000      0.950 1.000 0.000
#> GSM1068464     2  0.0000      0.968 0.000 1.000
#> GSM1068468     2  0.0000      0.968 0.000 1.000
#> GSM1068472     1  0.9608      0.426 0.616 0.384
#> GSM1068473     2  0.0000      0.968 0.000 1.000
#> GSM1068474     2  0.0000      0.968 0.000 1.000
#> GSM1068476     2  0.0000      0.968 0.000 1.000
#> GSM1068477     2  0.0000      0.968 0.000 1.000
#> GSM1068462     2  0.0000      0.968 0.000 1.000
#> GSM1068463     1  0.0000      0.950 1.000 0.000
#> GSM1068465     1  0.6148      0.819 0.848 0.152
#> GSM1068466     1  0.0000      0.950 1.000 0.000
#> GSM1068467     2  0.0000      0.968 0.000 1.000
#> GSM1068469     2  0.9775      0.251 0.412 0.588
#> GSM1068470     2  0.0000      0.968 0.000 1.000
#> GSM1068471     2  0.0000      0.968 0.000 1.000
#> GSM1068475     2  0.0000      0.968 0.000 1.000
#> GSM1068528     1  0.0000      0.950 1.000 0.000
#> GSM1068531     1  0.0000      0.950 1.000 0.000
#> GSM1068532     1  0.0000      0.950 1.000 0.000
#> GSM1068533     1  0.0000      0.950 1.000 0.000
#> GSM1068535     1  0.0000      0.950 1.000 0.000
#> GSM1068537     1  0.0000      0.950 1.000 0.000
#> GSM1068538     1  0.0000      0.950 1.000 0.000
#> GSM1068539     2  0.0000      0.968 0.000 1.000
#> GSM1068540     1  0.0000      0.950 1.000 0.000
#> GSM1068542     2  0.0000      0.968 0.000 1.000
#> GSM1068543     2  0.0000      0.968 0.000 1.000
#> GSM1068544     1  0.0000      0.950 1.000 0.000
#> GSM1068545     2  0.0000      0.968 0.000 1.000
#> GSM1068546     1  0.0000      0.950 1.000 0.000
#> GSM1068547     1  0.0000      0.950 1.000 0.000
#> GSM1068548     2  0.0000      0.968 0.000 1.000
#> GSM1068549     1  0.0000      0.950 1.000 0.000
#> GSM1068550     2  0.0000      0.968 0.000 1.000
#> GSM1068551     2  0.0000      0.968 0.000 1.000
#> GSM1068552     2  0.0000      0.968 0.000 1.000
#> GSM1068555     2  0.0000      0.968 0.000 1.000
#> GSM1068556     2  0.6623      0.787 0.172 0.828
#> GSM1068557     2  0.0000      0.968 0.000 1.000
#> GSM1068560     2  0.0000      0.968 0.000 1.000
#> GSM1068561     2  0.8763      0.559 0.296 0.704
#> GSM1068562     2  0.0000      0.968 0.000 1.000
#> GSM1068563     2  0.0672      0.962 0.008 0.992
#> GSM1068565     2  0.0000      0.968 0.000 1.000
#> GSM1068529     1  0.9909      0.257 0.556 0.444
#> GSM1068530     1  0.0000      0.950 1.000 0.000
#> GSM1068534     1  0.2778      0.916 0.952 0.048
#> GSM1068536     1  0.2236      0.925 0.964 0.036
#> GSM1068541     2  0.0376      0.965 0.004 0.996
#> GSM1068553     2  0.0000      0.968 0.000 1.000
#> GSM1068554     2  0.0000      0.968 0.000 1.000
#> GSM1068558     2  0.4298      0.885 0.088 0.912
#> GSM1068559     2  0.0000      0.968 0.000 1.000
#> GSM1068564     2  0.0000      0.968 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1068478     1  0.5760     0.7839 0.672 0.000 0.328
#> GSM1068479     2  0.6442    -0.0205 0.004 0.564 0.432
#> GSM1068481     1  0.6062     0.7746 0.616 0.000 0.384
#> GSM1068482     3  0.3551     0.3447 0.132 0.000 0.868
#> GSM1068483     1  0.5926     0.7901 0.644 0.000 0.356
#> GSM1068486     3  0.3325     0.5751 0.020 0.076 0.904
#> GSM1068487     2  0.4452     0.6911 0.192 0.808 0.000
#> GSM1068488     3  0.6416     0.4806 0.008 0.376 0.616
#> GSM1068490     2  0.3482     0.6980 0.128 0.872 0.000
#> GSM1068491     3  0.6476     0.3137 0.004 0.448 0.548
#> GSM1068492     2  0.6140     0.0908 0.000 0.596 0.404
#> GSM1068493     1  0.6154     0.7531 0.592 0.000 0.408
#> GSM1068494     3  0.5905    -0.3394 0.352 0.000 0.648
#> GSM1068495     1  0.4505     0.5834 0.860 0.048 0.092
#> GSM1068496     1  0.5948     0.7899 0.640 0.000 0.360
#> GSM1068498     1  0.1163     0.5225 0.972 0.028 0.000
#> GSM1068499     1  0.6111     0.7724 0.604 0.000 0.396
#> GSM1068500     1  0.5926     0.7901 0.644 0.000 0.356
#> GSM1068502     2  0.5070     0.5118 0.004 0.772 0.224
#> GSM1068503     2  0.0475     0.6944 0.004 0.992 0.004
#> GSM1068505     2  0.1163     0.6877 0.000 0.972 0.028
#> GSM1068506     2  0.1832     0.6881 0.008 0.956 0.036
#> GSM1068507     2  0.4062     0.5843 0.000 0.836 0.164
#> GSM1068508     2  0.4346     0.6934 0.184 0.816 0.000
#> GSM1068510     2  0.6045     0.1405 0.000 0.620 0.380
#> GSM1068512     3  0.7013     0.4974 0.028 0.364 0.608
#> GSM1068513     2  0.1182     0.6951 0.012 0.976 0.012
#> GSM1068514     3  0.6008     0.4689 0.000 0.372 0.628
#> GSM1068517     1  0.4654     0.3156 0.792 0.208 0.000
#> GSM1068518     3  0.8261     0.3921 0.080 0.396 0.524
#> GSM1068520     1  0.5882     0.7897 0.652 0.000 0.348
#> GSM1068521     1  0.5905     0.7901 0.648 0.000 0.352
#> GSM1068522     2  0.1643     0.6981 0.044 0.956 0.000
#> GSM1068524     2  0.1636     0.6948 0.016 0.964 0.020
#> GSM1068527     2  0.4291     0.5644 0.000 0.820 0.180
#> GSM1068480     3  0.3941     0.2778 0.156 0.000 0.844
#> GSM1068484     2  0.2448     0.6689 0.000 0.924 0.076
#> GSM1068485     1  0.6154     0.7654 0.592 0.000 0.408
#> GSM1068489     2  0.2625     0.6635 0.000 0.916 0.084
#> GSM1068497     1  0.0892     0.5294 0.980 0.020 0.000
#> GSM1068501     2  0.2550     0.6820 0.012 0.932 0.056
#> GSM1068504     2  0.5760     0.6284 0.328 0.672 0.000
#> GSM1068509     1  0.5859     0.7776 0.656 0.000 0.344
#> GSM1068511     3  0.4172     0.3019 0.156 0.004 0.840
#> GSM1068515     1  0.4281     0.4709 0.872 0.072 0.056
#> GSM1068516     2  0.7107     0.6367 0.196 0.712 0.092
#> GSM1068519     1  0.5948     0.7899 0.640 0.000 0.360
#> GSM1068523     2  0.5905     0.6127 0.352 0.648 0.000
#> GSM1068525     2  0.5122     0.5485 0.012 0.788 0.200
#> GSM1068526     2  0.4121     0.5861 0.000 0.832 0.168
#> GSM1068458     1  0.5882     0.7897 0.652 0.000 0.348
#> GSM1068459     1  0.6286     0.6871 0.536 0.000 0.464
#> GSM1068460     1  0.7972     0.4485 0.644 0.240 0.116
#> GSM1068461     3  0.4683     0.3634 0.140 0.024 0.836
#> GSM1068464     2  0.4452     0.6901 0.192 0.808 0.000
#> GSM1068468     2  0.5706     0.6351 0.320 0.680 0.000
#> GSM1068472     1  0.4712     0.4872 0.848 0.108 0.044
#> GSM1068473     2  0.5016     0.6762 0.240 0.760 0.000
#> GSM1068474     2  0.5497     0.6512 0.292 0.708 0.000
#> GSM1068476     2  0.6305    -0.1768 0.000 0.516 0.484
#> GSM1068477     2  0.5016     0.6745 0.240 0.760 0.000
#> GSM1068462     2  0.6975     0.6004 0.356 0.616 0.028
#> GSM1068463     1  0.6126     0.7621 0.600 0.000 0.400
#> GSM1068465     1  0.4235     0.6616 0.824 0.000 0.176
#> GSM1068466     1  0.5529     0.7685 0.704 0.000 0.296
#> GSM1068467     2  0.6984     0.5324 0.420 0.560 0.020
#> GSM1068469     1  0.4861     0.3244 0.800 0.192 0.008
#> GSM1068470     2  0.5926     0.6093 0.356 0.644 0.000
#> GSM1068471     2  0.5882     0.6157 0.348 0.652 0.000
#> GSM1068475     2  0.5905     0.6127 0.352 0.648 0.000
#> GSM1068528     1  0.5948     0.7899 0.640 0.000 0.360
#> GSM1068531     1  0.5948     0.7899 0.640 0.000 0.360
#> GSM1068532     1  0.5968     0.7882 0.636 0.000 0.364
#> GSM1068533     1  0.5948     0.7899 0.640 0.000 0.360
#> GSM1068535     3  0.7605     0.5919 0.124 0.192 0.684
#> GSM1068537     1  0.5948     0.7899 0.640 0.000 0.360
#> GSM1068538     1  0.5948     0.7899 0.640 0.000 0.360
#> GSM1068539     2  0.5529     0.6467 0.296 0.704 0.000
#> GSM1068540     1  0.5948     0.7899 0.640 0.000 0.360
#> GSM1068542     2  0.2878     0.6499 0.000 0.904 0.096
#> GSM1068543     2  0.6291    -0.1537 0.000 0.532 0.468
#> GSM1068544     1  0.5968     0.7882 0.636 0.000 0.364
#> GSM1068545     2  0.3816     0.6962 0.148 0.852 0.000
#> GSM1068546     3  0.3412     0.3594 0.124 0.000 0.876
#> GSM1068547     1  0.5882     0.7897 0.652 0.000 0.348
#> GSM1068548     2  0.3192     0.6369 0.000 0.888 0.112
#> GSM1068549     3  0.5431     0.5591 0.000 0.284 0.716
#> GSM1068550     2  0.1163     0.6877 0.000 0.972 0.028
#> GSM1068551     2  0.4605     0.6867 0.204 0.796 0.000
#> GSM1068552     2  0.1529     0.6833 0.000 0.960 0.040
#> GSM1068555     2  0.5835     0.6216 0.340 0.660 0.000
#> GSM1068556     3  0.7049     0.3300 0.020 0.452 0.528
#> GSM1068557     2  0.4654     0.6856 0.208 0.792 0.000
#> GSM1068560     2  0.1860     0.6778 0.000 0.948 0.052
#> GSM1068561     1  0.9908    -0.1869 0.372 0.268 0.360
#> GSM1068562     2  0.3116     0.6403 0.000 0.892 0.108
#> GSM1068563     2  0.2173     0.6844 0.008 0.944 0.048
#> GSM1068565     2  0.5465     0.6535 0.288 0.712 0.000
#> GSM1068529     3  0.7756     0.5232 0.128 0.200 0.672
#> GSM1068530     1  0.5926     0.7901 0.644 0.000 0.356
#> GSM1068534     3  0.3112     0.5666 0.028 0.056 0.916
#> GSM1068536     1  0.4504     0.7027 0.804 0.000 0.196
#> GSM1068541     1  0.5835    -0.0849 0.660 0.340 0.000
#> GSM1068553     2  0.6291    -0.1422 0.000 0.532 0.468
#> GSM1068554     2  0.4750     0.5225 0.000 0.784 0.216
#> GSM1068558     3  0.6126     0.4923 0.004 0.352 0.644
#> GSM1068559     2  0.6286    -0.1125 0.000 0.536 0.464
#> GSM1068564     2  0.4974     0.6733 0.236 0.764 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1068478     1  0.0927      0.891 0.976 0.008 0.016 0.000
#> GSM1068479     3  0.2816      0.804 0.000 0.036 0.900 0.064
#> GSM1068481     1  0.4770      0.610 0.700 0.012 0.288 0.000
#> GSM1068482     3  0.3662      0.728 0.148 0.012 0.836 0.004
#> GSM1068483     1  0.1406      0.888 0.960 0.016 0.024 0.000
#> GSM1068486     3  0.1575      0.811 0.004 0.012 0.956 0.028
#> GSM1068487     2  0.3907      0.737 0.000 0.768 0.000 0.232
#> GSM1068488     4  0.2281      0.823 0.000 0.000 0.096 0.904
#> GSM1068490     2  0.4164      0.692 0.000 0.736 0.000 0.264
#> GSM1068491     3  0.2021      0.811 0.000 0.012 0.932 0.056
#> GSM1068492     3  0.6186      0.415 0.000 0.064 0.584 0.352
#> GSM1068493     1  0.5339      0.606 0.688 0.040 0.272 0.000
#> GSM1068494     1  0.3215      0.826 0.876 0.000 0.032 0.092
#> GSM1068495     1  0.2670      0.847 0.904 0.072 0.000 0.024
#> GSM1068496     1  0.0895      0.891 0.976 0.004 0.020 0.000
#> GSM1068498     2  0.4304      0.549 0.284 0.716 0.000 0.000
#> GSM1068499     1  0.4283      0.815 0.820 0.048 0.128 0.004
#> GSM1068500     1  0.1388      0.888 0.960 0.012 0.028 0.000
#> GSM1068502     3  0.6820      0.260 0.000 0.364 0.528 0.108
#> GSM1068503     4  0.3942      0.715 0.000 0.236 0.000 0.764
#> GSM1068505     4  0.1510      0.874 0.016 0.028 0.000 0.956
#> GSM1068506     4  0.1890      0.873 0.008 0.056 0.000 0.936
#> GSM1068507     4  0.1118      0.877 0.000 0.036 0.000 0.964
#> GSM1068508     4  0.4222      0.661 0.000 0.272 0.000 0.728
#> GSM1068510     4  0.1256      0.870 0.000 0.008 0.028 0.964
#> GSM1068512     4  0.1576      0.850 0.004 0.000 0.048 0.948
#> GSM1068513     4  0.3311      0.794 0.000 0.172 0.000 0.828
#> GSM1068514     3  0.2831      0.794 0.000 0.004 0.876 0.120
#> GSM1068517     2  0.1824      0.790 0.060 0.936 0.000 0.004
#> GSM1068518     4  0.6025      0.433 0.332 0.012 0.036 0.620
#> GSM1068520     1  0.0188      0.892 0.996 0.004 0.000 0.000
#> GSM1068521     1  0.0000      0.892 1.000 0.000 0.000 0.000
#> GSM1068522     4  0.3311      0.795 0.000 0.172 0.000 0.828
#> GSM1068524     4  0.4382      0.609 0.000 0.296 0.000 0.704
#> GSM1068527     4  0.0672      0.872 0.008 0.000 0.008 0.984
#> GSM1068480     3  0.1396      0.797 0.004 0.032 0.960 0.004
#> GSM1068484     4  0.2174      0.872 0.000 0.052 0.020 0.928
#> GSM1068485     3  0.5036      0.523 0.280 0.024 0.696 0.000
#> GSM1068489     4  0.1837      0.862 0.000 0.028 0.028 0.944
#> GSM1068497     2  0.4470      0.667 0.172 0.792 0.032 0.004
#> GSM1068501     4  0.1936      0.870 0.000 0.028 0.032 0.940
#> GSM1068504     2  0.1576      0.821 0.000 0.948 0.004 0.048
#> GSM1068509     1  0.4090      0.816 0.844 0.096 0.048 0.012
#> GSM1068511     3  0.5813      0.427 0.320 0.016 0.640 0.024
#> GSM1068515     2  0.4687      0.701 0.084 0.812 0.092 0.012
#> GSM1068516     4  0.6908      0.470 0.072 0.284 0.032 0.612
#> GSM1068519     1  0.2807      0.859 0.912 0.016 0.032 0.040
#> GSM1068523     2  0.2313      0.810 0.000 0.924 0.032 0.044
#> GSM1068525     4  0.4663      0.780 0.000 0.148 0.064 0.788
#> GSM1068526     4  0.0927      0.871 0.000 0.008 0.016 0.976
#> GSM1068458     1  0.0188      0.891 0.996 0.000 0.000 0.004
#> GSM1068459     1  0.4866      0.366 0.596 0.000 0.404 0.000
#> GSM1068460     1  0.4454      0.527 0.692 0.000 0.000 0.308
#> GSM1068461     3  0.1593      0.811 0.016 0.004 0.956 0.024
#> GSM1068464     2  0.3749      0.801 0.000 0.840 0.032 0.128
#> GSM1068468     2  0.1557      0.821 0.000 0.944 0.000 0.056
#> GSM1068472     2  0.2870      0.804 0.044 0.908 0.012 0.036
#> GSM1068473     2  0.4277      0.669 0.000 0.720 0.000 0.280
#> GSM1068474     2  0.3266      0.792 0.000 0.832 0.000 0.168
#> GSM1068476     3  0.3099      0.795 0.000 0.020 0.876 0.104
#> GSM1068477     2  0.3837      0.746 0.000 0.776 0.000 0.224
#> GSM1068462     2  0.1584      0.798 0.000 0.952 0.036 0.012
#> GSM1068463     1  0.4122      0.698 0.760 0.004 0.236 0.000
#> GSM1068465     1  0.5797      0.693 0.716 0.200 0.072 0.012
#> GSM1068466     1  0.1798      0.881 0.944 0.040 0.016 0.000
#> GSM1068467     2  0.1617      0.804 0.008 0.956 0.024 0.012
#> GSM1068469     2  0.1488      0.793 0.032 0.956 0.012 0.000
#> GSM1068470     2  0.1474      0.821 0.000 0.948 0.000 0.052
#> GSM1068471     2  0.2131      0.808 0.000 0.932 0.032 0.036
#> GSM1068475     2  0.1389      0.821 0.000 0.952 0.000 0.048
#> GSM1068528     1  0.1004      0.890 0.972 0.004 0.024 0.000
#> GSM1068531     1  0.0469      0.890 0.988 0.000 0.000 0.012
#> GSM1068532     1  0.0804      0.891 0.980 0.000 0.008 0.012
#> GSM1068533     1  0.0188      0.891 0.996 0.000 0.000 0.004
#> GSM1068535     4  0.4599      0.592 0.248 0.000 0.016 0.736
#> GSM1068537     1  0.0779      0.892 0.980 0.000 0.016 0.004
#> GSM1068538     1  0.0592      0.888 0.984 0.000 0.000 0.016
#> GSM1068539     2  0.7091      0.590 0.224 0.568 0.000 0.208
#> GSM1068540     1  0.0524      0.892 0.988 0.000 0.008 0.004
#> GSM1068542     4  0.0937      0.876 0.012 0.012 0.000 0.976
#> GSM1068543     4  0.1211      0.856 0.000 0.000 0.040 0.960
#> GSM1068544     1  0.1004      0.891 0.972 0.004 0.024 0.000
#> GSM1068545     4  0.3649      0.762 0.000 0.204 0.000 0.796
#> GSM1068546     3  0.2222      0.796 0.060 0.000 0.924 0.016
#> GSM1068547     1  0.0707      0.887 0.980 0.000 0.000 0.020
#> GSM1068548     4  0.0657      0.876 0.004 0.012 0.000 0.984
#> GSM1068549     3  0.1489      0.813 0.000 0.004 0.952 0.044
#> GSM1068550     4  0.1706      0.874 0.016 0.036 0.000 0.948
#> GSM1068551     2  0.3873      0.742 0.000 0.772 0.000 0.228
#> GSM1068552     4  0.1302      0.876 0.000 0.044 0.000 0.956
#> GSM1068555     2  0.1637      0.821 0.000 0.940 0.000 0.060
#> GSM1068556     4  0.1118      0.858 0.000 0.000 0.036 0.964
#> GSM1068557     2  0.3636      0.786 0.000 0.820 0.008 0.172
#> GSM1068560     4  0.0895      0.877 0.004 0.020 0.000 0.976
#> GSM1068561     2  0.8445      0.334 0.088 0.512 0.276 0.124
#> GSM1068562     4  0.1209      0.877 0.000 0.032 0.004 0.964
#> GSM1068563     4  0.2266      0.857 0.004 0.084 0.000 0.912
#> GSM1068565     2  0.3649      0.765 0.000 0.796 0.000 0.204
#> GSM1068529     3  0.5484      0.687 0.000 0.164 0.732 0.104
#> GSM1068530     1  0.0000      0.892 1.000 0.000 0.000 0.000
#> GSM1068534     3  0.6097      0.711 0.088 0.104 0.744 0.064
#> GSM1068536     1  0.3517      0.829 0.868 0.088 0.040 0.004
#> GSM1068541     2  0.4828      0.707 0.160 0.788 0.032 0.020
#> GSM1068553     4  0.0817      0.865 0.000 0.000 0.024 0.976
#> GSM1068554     4  0.1151      0.873 0.000 0.008 0.024 0.968
#> GSM1068558     3  0.2179      0.815 0.000 0.012 0.924 0.064
#> GSM1068559     3  0.5630      0.443 0.000 0.032 0.608 0.360
#> GSM1068564     4  0.4008      0.804 0.000 0.148 0.032 0.820
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1068478     1  0.1195     0.8258 0.960 0.012 0.000 0.000 0.028
#> GSM1068479     3  0.1399     0.7652 0.000 0.028 0.952 0.020 0.000
#> GSM1068481     1  0.3117     0.7752 0.860 0.004 0.100 0.000 0.036
#> GSM1068482     3  0.6349     0.3038 0.244 0.000 0.524 0.000 0.232
#> GSM1068483     1  0.1894     0.8090 0.920 0.008 0.000 0.000 0.072
#> GSM1068486     3  0.2674     0.7020 0.004 0.000 0.856 0.000 0.140
#> GSM1068487     2  0.1410     0.8157 0.000 0.940 0.000 0.060 0.000
#> GSM1068488     4  0.4937     0.6341 0.000 0.000 0.064 0.672 0.264
#> GSM1068490     2  0.2179     0.7841 0.000 0.888 0.000 0.112 0.000
#> GSM1068491     3  0.1300     0.7661 0.000 0.016 0.956 0.028 0.000
#> GSM1068492     3  0.5055     0.5900 0.000 0.056 0.744 0.152 0.048
#> GSM1068493     1  0.4878     0.6409 0.724 0.076 0.008 0.000 0.192
#> GSM1068494     1  0.5213     0.5004 0.652 0.000 0.004 0.068 0.276
#> GSM1068495     1  0.5500     0.5085 0.648 0.212 0.000 0.000 0.140
#> GSM1068496     1  0.0510     0.8283 0.984 0.000 0.000 0.000 0.016
#> GSM1068498     2  0.4612     0.5577 0.232 0.712 0.000 0.000 0.056
#> GSM1068499     1  0.4594     0.4888 0.624 0.008 0.008 0.000 0.360
#> GSM1068500     1  0.1205     0.8214 0.956 0.000 0.004 0.000 0.040
#> GSM1068502     3  0.4305     0.5895 0.000 0.200 0.748 0.052 0.000
#> GSM1068503     4  0.4575     0.4816 0.000 0.328 0.000 0.648 0.024
#> GSM1068505     4  0.2116     0.7597 0.000 0.008 0.004 0.912 0.076
#> GSM1068506     4  0.2597     0.7475 0.004 0.040 0.000 0.896 0.060
#> GSM1068507     4  0.2592     0.7380 0.000 0.056 0.000 0.892 0.052
#> GSM1068508     4  0.5828     0.3831 0.000 0.380 0.000 0.520 0.100
#> GSM1068510     4  0.2796     0.7481 0.000 0.008 0.008 0.868 0.116
#> GSM1068512     4  0.3544     0.7240 0.004 0.004 0.004 0.792 0.196
#> GSM1068513     4  0.3970     0.5928 0.000 0.236 0.000 0.744 0.020
#> GSM1068514     3  0.1041     0.7660 0.000 0.004 0.964 0.032 0.000
#> GSM1068517     2  0.2426     0.7873 0.036 0.900 0.000 0.000 0.064
#> GSM1068518     4  0.6950    -0.0586 0.320 0.004 0.000 0.360 0.316
#> GSM1068520     1  0.1093     0.8295 0.968 0.004 0.004 0.004 0.020
#> GSM1068521     1  0.1652     0.8274 0.944 0.004 0.004 0.008 0.040
#> GSM1068522     4  0.3527     0.6604 0.000 0.172 0.000 0.804 0.024
#> GSM1068524     2  0.6132     0.0525 0.000 0.508 0.000 0.352 0.140
#> GSM1068527     4  0.3861     0.6511 0.000 0.000 0.004 0.712 0.284
#> GSM1068480     3  0.5447     0.1863 0.060 0.000 0.500 0.000 0.440
#> GSM1068484     4  0.4451     0.6116 0.000 0.016 0.000 0.644 0.340
#> GSM1068485     3  0.3123     0.6313 0.184 0.000 0.812 0.000 0.004
#> GSM1068489     4  0.2629     0.7291 0.000 0.000 0.004 0.860 0.136
#> GSM1068497     2  0.4884     0.5956 0.152 0.720 0.000 0.000 0.128
#> GSM1068501     4  0.3534     0.5541 0.000 0.000 0.000 0.744 0.256
#> GSM1068504     2  0.1310     0.8247 0.000 0.956 0.000 0.020 0.024
#> GSM1068509     1  0.4659     0.1674 0.496 0.000 0.000 0.012 0.492
#> GSM1068511     5  0.5546     0.4503 0.188 0.000 0.108 0.020 0.684
#> GSM1068515     5  0.5278     0.4512 0.156 0.148 0.000 0.004 0.692
#> GSM1068516     5  0.5965    -0.1017 0.072 0.008 0.004 0.408 0.508
#> GSM1068519     1  0.5486     0.5290 0.624 0.000 0.004 0.084 0.288
#> GSM1068523     2  0.3779     0.6509 0.000 0.752 0.000 0.012 0.236
#> GSM1068525     5  0.4718     0.0976 0.000 0.016 0.008 0.340 0.636
#> GSM1068526     4  0.2017     0.7619 0.000 0.008 0.000 0.912 0.080
#> GSM1068458     1  0.2536     0.8035 0.900 0.000 0.004 0.052 0.044
#> GSM1068459     1  0.3462     0.7086 0.792 0.000 0.196 0.000 0.012
#> GSM1068460     1  0.5418     0.4092 0.608 0.000 0.004 0.320 0.068
#> GSM1068461     3  0.0162     0.7596 0.004 0.000 0.996 0.000 0.000
#> GSM1068464     2  0.2068     0.7992 0.000 0.904 0.000 0.092 0.004
#> GSM1068468     2  0.0671     0.8235 0.000 0.980 0.000 0.016 0.004
#> GSM1068472     2  0.1018     0.8189 0.016 0.968 0.000 0.000 0.016
#> GSM1068473     2  0.3690     0.6509 0.000 0.764 0.000 0.224 0.012
#> GSM1068474     2  0.1571     0.8152 0.000 0.936 0.000 0.060 0.004
#> GSM1068476     3  0.1978     0.7579 0.000 0.024 0.928 0.044 0.004
#> GSM1068477     2  0.2011     0.8009 0.000 0.908 0.000 0.088 0.004
#> GSM1068462     2  0.3003     0.7095 0.000 0.812 0.000 0.000 0.188
#> GSM1068463     1  0.3628     0.6866 0.772 0.000 0.216 0.000 0.012
#> GSM1068465     5  0.3675     0.5001 0.216 0.008 0.000 0.004 0.772
#> GSM1068466     1  0.0771     0.8305 0.976 0.004 0.000 0.000 0.020
#> GSM1068467     2  0.1043     0.8194 0.000 0.960 0.000 0.000 0.040
#> GSM1068469     2  0.2464     0.7805 0.016 0.888 0.000 0.000 0.096
#> GSM1068470     2  0.0955     0.8207 0.000 0.968 0.000 0.004 0.028
#> GSM1068471     2  0.2964     0.7643 0.000 0.856 0.000 0.024 0.120
#> GSM1068475     2  0.0579     0.8237 0.000 0.984 0.000 0.008 0.008
#> GSM1068528     1  0.0510     0.8281 0.984 0.000 0.000 0.000 0.016
#> GSM1068531     1  0.1828     0.8202 0.936 0.000 0.004 0.032 0.028
#> GSM1068532     1  0.1106     0.8288 0.964 0.000 0.000 0.012 0.024
#> GSM1068533     1  0.2075     0.8149 0.924 0.000 0.004 0.040 0.032
#> GSM1068535     4  0.3701     0.6506 0.112 0.000 0.004 0.824 0.060
#> GSM1068537     1  0.0579     0.8304 0.984 0.000 0.000 0.008 0.008
#> GSM1068538     1  0.2459     0.8058 0.904 0.000 0.004 0.052 0.040
#> GSM1068539     2  0.6322     0.4969 0.140 0.640 0.004 0.040 0.176
#> GSM1068540     1  0.0794     0.8304 0.972 0.000 0.000 0.000 0.028
#> GSM1068542     4  0.1518     0.7401 0.004 0.000 0.004 0.944 0.048
#> GSM1068543     4  0.3554     0.7037 0.004 0.000 0.004 0.776 0.216
#> GSM1068544     1  0.0451     0.8298 0.988 0.000 0.008 0.000 0.004
#> GSM1068545     4  0.5032     0.6260 0.000 0.220 0.000 0.688 0.092
#> GSM1068546     3  0.3704     0.6954 0.088 0.000 0.820 0.000 0.092
#> GSM1068547     1  0.2464     0.8106 0.904 0.000 0.004 0.048 0.044
#> GSM1068548     4  0.1544     0.7629 0.000 0.000 0.000 0.932 0.068
#> GSM1068549     3  0.0324     0.7606 0.004 0.000 0.992 0.004 0.000
#> GSM1068550     4  0.2899     0.7490 0.004 0.004 0.004 0.856 0.132
#> GSM1068551     2  0.0963     0.8218 0.000 0.964 0.000 0.036 0.000
#> GSM1068552     4  0.2054     0.7543 0.000 0.028 0.000 0.920 0.052
#> GSM1068555     2  0.1444     0.8194 0.000 0.948 0.000 0.012 0.040
#> GSM1068556     4  0.3586     0.6821 0.000 0.000 0.000 0.736 0.264
#> GSM1068557     2  0.0798     0.8231 0.000 0.976 0.000 0.008 0.016
#> GSM1068560     4  0.3928     0.6501 0.000 0.000 0.004 0.700 0.296
#> GSM1068561     5  0.6416     0.1324 0.076 0.396 0.004 0.028 0.496
#> GSM1068562     4  0.3783     0.6966 0.000 0.008 0.000 0.740 0.252
#> GSM1068563     4  0.3427     0.7517 0.004 0.056 0.000 0.844 0.096
#> GSM1068565     2  0.1197     0.8187 0.000 0.952 0.000 0.048 0.000
#> GSM1068529     5  0.4435     0.5159 0.008 0.000 0.092 0.124 0.776
#> GSM1068530     1  0.0162     0.8291 0.996 0.000 0.000 0.000 0.004
#> GSM1068534     5  0.4299     0.5176 0.036 0.000 0.104 0.056 0.804
#> GSM1068536     1  0.4063     0.6078 0.708 0.012 0.000 0.000 0.280
#> GSM1068541     2  0.6739    -0.0813 0.260 0.392 0.000 0.000 0.348
#> GSM1068553     4  0.1851     0.7519 0.000 0.000 0.000 0.912 0.088
#> GSM1068554     4  0.2890     0.7088 0.000 0.004 0.000 0.836 0.160
#> GSM1068558     5  0.5128     0.1717 0.000 0.000 0.344 0.052 0.604
#> GSM1068559     3  0.5869     0.4612 0.000 0.020 0.656 0.160 0.164
#> GSM1068564     4  0.4277     0.7027 0.000 0.076 0.000 0.768 0.156
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1068478     1  0.1628     0.8153 0.940 0.008 0.000 0.004 0.036 0.012
#> GSM1068479     3  0.0767     0.7549 0.000 0.008 0.976 0.012 0.000 0.004
#> GSM1068481     1  0.3951     0.7249 0.796 0.004 0.104 0.004 0.084 0.008
#> GSM1068482     3  0.6203    -0.0517 0.232 0.000 0.404 0.000 0.356 0.008
#> GSM1068483     1  0.3020     0.7286 0.812 0.004 0.000 0.004 0.176 0.004
#> GSM1068486     3  0.4472     0.5248 0.008 0.000 0.700 0.064 0.228 0.000
#> GSM1068487     2  0.1588     0.8206 0.000 0.924 0.000 0.072 0.000 0.004
#> GSM1068488     6  0.1911     0.6676 0.004 0.000 0.020 0.036 0.012 0.928
#> GSM1068490     2  0.3163     0.7236 0.000 0.780 0.000 0.212 0.004 0.004
#> GSM1068491     3  0.0976     0.7552 0.000 0.008 0.968 0.016 0.000 0.008
#> GSM1068492     3  0.5140     0.4495 0.000 0.024 0.628 0.068 0.000 0.280
#> GSM1068493     1  0.5468     0.5366 0.648 0.136 0.004 0.004 0.192 0.016
#> GSM1068494     6  0.4741     0.4007 0.244 0.000 0.012 0.016 0.040 0.688
#> GSM1068495     6  0.6726     0.0573 0.344 0.200 0.000 0.004 0.040 0.412
#> GSM1068496     1  0.0653     0.8195 0.980 0.000 0.000 0.004 0.012 0.004
#> GSM1068498     2  0.4130     0.5622 0.200 0.744 0.000 0.004 0.044 0.008
#> GSM1068499     1  0.5277     0.3954 0.556 0.012 0.004 0.016 0.380 0.032
#> GSM1068500     1  0.2431     0.7642 0.860 0.000 0.000 0.008 0.132 0.000
#> GSM1068502     3  0.4006     0.5981 0.000 0.136 0.772 0.084 0.000 0.008
#> GSM1068503     4  0.5160     0.4007 0.000 0.324 0.000 0.592 0.016 0.068
#> GSM1068505     4  0.3934     0.5580 0.000 0.000 0.000 0.616 0.008 0.376
#> GSM1068506     4  0.4749     0.3939 0.004 0.020 0.000 0.536 0.012 0.428
#> GSM1068507     4  0.2345     0.6768 0.000 0.028 0.004 0.904 0.012 0.052
#> GSM1068508     6  0.6208     0.1312 0.000 0.320 0.000 0.204 0.016 0.460
#> GSM1068510     4  0.4946     0.6047 0.000 0.000 0.008 0.656 0.100 0.236
#> GSM1068512     6  0.3701     0.5441 0.012 0.000 0.008 0.184 0.016 0.780
#> GSM1068513     4  0.3159     0.6553 0.000 0.108 0.000 0.836 0.004 0.052
#> GSM1068514     3  0.0837     0.7527 0.000 0.004 0.972 0.004 0.000 0.020
#> GSM1068517     2  0.1950     0.7841 0.020 0.924 0.000 0.004 0.044 0.008
#> GSM1068518     6  0.1562     0.6604 0.032 0.000 0.000 0.004 0.024 0.940
#> GSM1068520     1  0.0551     0.8212 0.984 0.000 0.000 0.008 0.004 0.004
#> GSM1068521     1  0.1887     0.8122 0.924 0.000 0.000 0.016 0.012 0.048
#> GSM1068522     4  0.2591     0.6747 0.000 0.064 0.000 0.880 0.004 0.052
#> GSM1068524     2  0.5447     0.0398 0.000 0.496 0.000 0.052 0.032 0.420
#> GSM1068527     6  0.1010     0.6668 0.000 0.000 0.000 0.036 0.004 0.960
#> GSM1068480     5  0.4612     0.1780 0.012 0.000 0.384 0.008 0.584 0.012
#> GSM1068484     6  0.2066     0.6573 0.000 0.000 0.000 0.072 0.024 0.904
#> GSM1068485     3  0.2002     0.7012 0.076 0.000 0.908 0.000 0.004 0.012
#> GSM1068489     4  0.5343     0.5896 0.000 0.000 0.000 0.580 0.156 0.264
#> GSM1068497     2  0.3961     0.6662 0.096 0.792 0.000 0.004 0.096 0.012
#> GSM1068501     4  0.4707     0.5615 0.000 0.000 0.000 0.660 0.244 0.096
#> GSM1068504     2  0.1268     0.8233 0.000 0.952 0.000 0.036 0.008 0.004
#> GSM1068509     1  0.5539     0.2583 0.504 0.000 0.000 0.020 0.396 0.080
#> GSM1068511     5  0.4902     0.5552 0.184 0.000 0.028 0.016 0.716 0.056
#> GSM1068515     5  0.2255     0.6161 0.044 0.024 0.000 0.024 0.908 0.000
#> GSM1068516     6  0.4247     0.5856 0.040 0.020 0.000 0.028 0.128 0.784
#> GSM1068519     1  0.6331     0.4151 0.560 0.000 0.000 0.104 0.232 0.104
#> GSM1068523     2  0.4403     0.5930 0.000 0.708 0.000 0.000 0.196 0.096
#> GSM1068525     6  0.2126     0.6618 0.000 0.004 0.000 0.020 0.072 0.904
#> GSM1068526     4  0.4457     0.4302 0.000 0.008 0.000 0.544 0.016 0.432
#> GSM1068458     1  0.2673     0.7777 0.856 0.008 0.000 0.128 0.004 0.004
#> GSM1068459     1  0.4047     0.6384 0.732 0.000 0.232 0.012 0.016 0.008
#> GSM1068460     1  0.4770     0.5579 0.672 0.000 0.000 0.100 0.004 0.224
#> GSM1068461     3  0.0508     0.7496 0.004 0.000 0.984 0.012 0.000 0.000
#> GSM1068464     2  0.2704     0.7752 0.000 0.844 0.000 0.140 0.000 0.016
#> GSM1068468     2  0.1501     0.8175 0.000 0.924 0.000 0.076 0.000 0.000
#> GSM1068472     2  0.2032     0.8106 0.036 0.920 0.000 0.024 0.020 0.000
#> GSM1068473     2  0.4413     0.0911 0.000 0.496 0.000 0.484 0.012 0.008
#> GSM1068474     2  0.1958     0.8080 0.000 0.896 0.000 0.100 0.000 0.004
#> GSM1068476     3  0.0891     0.7529 0.000 0.008 0.968 0.024 0.000 0.000
#> GSM1068477     2  0.2006     0.8047 0.000 0.892 0.000 0.104 0.000 0.004
#> GSM1068462     2  0.3454     0.6668 0.000 0.768 0.000 0.024 0.208 0.000
#> GSM1068463     1  0.4076     0.5952 0.704 0.000 0.268 0.012 0.008 0.008
#> GSM1068465     5  0.2898     0.6311 0.068 0.000 0.004 0.016 0.872 0.040
#> GSM1068466     1  0.1371     0.8192 0.948 0.004 0.000 0.004 0.040 0.004
#> GSM1068467     2  0.0692     0.8147 0.000 0.976 0.000 0.004 0.020 0.000
#> GSM1068469     2  0.3142     0.7149 0.016 0.820 0.000 0.004 0.156 0.004
#> GSM1068470     2  0.0622     0.8140 0.000 0.980 0.000 0.000 0.012 0.008
#> GSM1068471     2  0.4364     0.6906 0.000 0.732 0.000 0.112 0.152 0.004
#> GSM1068475     2  0.0777     0.8206 0.000 0.972 0.000 0.024 0.000 0.004
#> GSM1068528     1  0.0717     0.8200 0.976 0.000 0.000 0.008 0.016 0.000
#> GSM1068531     1  0.1219     0.8188 0.948 0.000 0.000 0.048 0.004 0.000
#> GSM1068532     1  0.0777     0.8211 0.972 0.000 0.000 0.024 0.000 0.004
#> GSM1068533     1  0.1901     0.8091 0.912 0.000 0.000 0.076 0.004 0.008
#> GSM1068535     4  0.4067     0.6121 0.108 0.000 0.000 0.784 0.024 0.084
#> GSM1068537     1  0.0806     0.8184 0.972 0.000 0.000 0.020 0.000 0.008
#> GSM1068538     1  0.2110     0.8010 0.900 0.000 0.000 0.084 0.004 0.012
#> GSM1068539     6  0.5165     0.4965 0.112 0.160 0.000 0.004 0.032 0.692
#> GSM1068540     1  0.1410     0.8182 0.944 0.000 0.000 0.004 0.008 0.044
#> GSM1068542     4  0.3691     0.6538 0.008 0.000 0.000 0.724 0.008 0.260
#> GSM1068543     6  0.1644     0.6587 0.004 0.000 0.000 0.076 0.000 0.920
#> GSM1068544     1  0.1003     0.8217 0.964 0.000 0.028 0.004 0.000 0.004
#> GSM1068545     6  0.6490    -0.1826 0.000 0.212 0.000 0.356 0.028 0.404
#> GSM1068546     3  0.7231     0.3216 0.092 0.000 0.500 0.208 0.172 0.028
#> GSM1068547     1  0.1672     0.8158 0.932 0.000 0.000 0.048 0.004 0.016
#> GSM1068548     4  0.4364     0.5369 0.000 0.004 0.000 0.608 0.024 0.364
#> GSM1068549     3  0.0000     0.7503 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068550     6  0.3703     0.3026 0.004 0.004 0.000 0.304 0.000 0.688
#> GSM1068551     2  0.2036     0.8182 0.000 0.912 0.000 0.064 0.008 0.016
#> GSM1068552     4  0.3970     0.6500 0.000 0.016 0.000 0.712 0.012 0.260
#> GSM1068555     2  0.1341     0.8068 0.000 0.948 0.000 0.000 0.024 0.028
#> GSM1068556     6  0.1863     0.6355 0.000 0.000 0.000 0.104 0.000 0.896
#> GSM1068557     2  0.0767     0.8170 0.000 0.976 0.000 0.004 0.012 0.008
#> GSM1068560     6  0.0790     0.6673 0.000 0.000 0.000 0.032 0.000 0.968
#> GSM1068561     5  0.6830     0.1962 0.076 0.360 0.000 0.008 0.432 0.124
#> GSM1068562     6  0.1958     0.6425 0.000 0.000 0.000 0.100 0.004 0.896
#> GSM1068563     6  0.5245    -0.2373 0.008 0.044 0.000 0.460 0.012 0.476
#> GSM1068565     2  0.1285     0.8213 0.000 0.944 0.000 0.052 0.000 0.004
#> GSM1068529     6  0.5252     0.5321 0.020 0.012 0.120 0.016 0.116 0.716
#> GSM1068530     1  0.1059     0.8215 0.964 0.000 0.000 0.016 0.004 0.016
#> GSM1068534     5  0.1917     0.6222 0.016 0.000 0.016 0.004 0.928 0.036
#> GSM1068536     1  0.4718     0.5622 0.664 0.020 0.000 0.008 0.280 0.028
#> GSM1068541     5  0.6757     0.1700 0.332 0.204 0.000 0.020 0.424 0.020
#> GSM1068553     4  0.3412     0.6431 0.000 0.000 0.000 0.808 0.064 0.128
#> GSM1068554     4  0.3448     0.6518 0.000 0.000 0.004 0.816 0.108 0.072
#> GSM1068558     5  0.4892     0.4838 0.000 0.000 0.176 0.020 0.696 0.108
#> GSM1068559     3  0.5065     0.5625 0.000 0.004 0.708 0.036 0.136 0.116
#> GSM1068564     4  0.6111     0.5835 0.000 0.044 0.000 0.568 0.192 0.196
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#>          n disease.state(p) gender(p) k
#> CV:NMF 105         0.730975    1.0000 2
#> CV:NMF  81         0.306899    0.8571 3
#> CV:NMF 100         0.002697    0.4353 4
#> CV:NMF  90         0.000921    0.0160 5
#> CV:NMF  86         0.023660    0.0282 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 38950 rows and 108 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.206           0.216       0.600         0.4088 0.506   0.506
#> 3 3 0.360           0.662       0.826         0.3522 0.530   0.374
#> 4 4 0.343           0.517       0.752         0.1257 0.927   0.864
#> 5 5 0.400           0.380       0.671         0.1143 0.852   0.696
#> 6 6 0.431           0.424       0.649         0.0771 0.881   0.672
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1068478     1  0.9087  -0.165787 0.676 0.324
#> GSM1068479     2  0.4562   0.126534 0.096 0.904
#> GSM1068481     1  0.9977   0.305208 0.528 0.472
#> GSM1068482     1  0.9977   0.305208 0.528 0.472
#> GSM1068483     1  0.4939   0.359130 0.892 0.108
#> GSM1068486     2  0.9988  -0.318921 0.480 0.520
#> GSM1068487     2  0.9977   0.677530 0.472 0.528
#> GSM1068488     2  0.9993   0.536035 0.484 0.516
#> GSM1068490     2  0.9977   0.677530 0.472 0.528
#> GSM1068491     2  0.3431   0.138415 0.064 0.936
#> GSM1068492     2  0.3274   0.143353 0.060 0.940
#> GSM1068493     1  0.9248   0.035970 0.660 0.340
#> GSM1068494     1  0.9661   0.314500 0.608 0.392
#> GSM1068495     1  0.9970  -0.565130 0.532 0.468
#> GSM1068496     1  0.9460   0.273800 0.636 0.364
#> GSM1068498     1  0.9087  -0.165787 0.676 0.324
#> GSM1068499     1  0.6148   0.355284 0.848 0.152
#> GSM1068500     1  0.4939   0.359130 0.892 0.108
#> GSM1068502     2  0.3274   0.143353 0.060 0.940
#> GSM1068503     2  0.9977   0.677530 0.472 0.528
#> GSM1068505     1  0.9963  -0.591008 0.536 0.464
#> GSM1068506     2  0.9983   0.674121 0.476 0.524
#> GSM1068507     2  0.9996   0.592143 0.488 0.512
#> GSM1068508     1  0.9209  -0.204906 0.664 0.336
#> GSM1068510     1  0.9996  -0.464581 0.512 0.488
#> GSM1068512     1  0.9732  -0.170090 0.596 0.404
#> GSM1068513     2  1.0000   0.605157 0.496 0.504
#> GSM1068514     2  0.9963   0.001669 0.464 0.536
#> GSM1068517     1  0.9087  -0.165787 0.676 0.324
#> GSM1068518     1  0.9815   0.182725 0.580 0.420
#> GSM1068520     1  0.3431   0.315619 0.936 0.064
#> GSM1068521     1  0.3114   0.323219 0.944 0.056
#> GSM1068522     2  0.9977   0.677530 0.472 0.528
#> GSM1068524     2  0.9993   0.644793 0.484 0.516
#> GSM1068527     1  0.9209  -0.236091 0.664 0.336
#> GSM1068480     1  0.9970   0.305964 0.532 0.468
#> GSM1068484     2  0.9944   0.561136 0.456 0.544
#> GSM1068485     1  0.9977   0.305208 0.528 0.472
#> GSM1068489     2  0.9988   0.669616 0.480 0.520
#> GSM1068497     1  0.9087  -0.165787 0.676 0.324
#> GSM1068501     1  0.9988  -0.468805 0.520 0.480
#> GSM1068504     2  0.9977   0.677530 0.472 0.528
#> GSM1068509     1  0.9608   0.258788 0.616 0.384
#> GSM1068511     2  0.9988  -0.111226 0.480 0.520
#> GSM1068515     1  0.8555  -0.000141 0.720 0.280
#> GSM1068516     2  0.9933   0.109554 0.452 0.548
#> GSM1068519     1  0.3274   0.363989 0.940 0.060
#> GSM1068523     2  0.9977   0.677530 0.472 0.528
#> GSM1068525     2  0.9922   0.572487 0.448 0.552
#> GSM1068526     2  0.9977   0.670840 0.472 0.528
#> GSM1068458     1  0.0376   0.364829 0.996 0.004
#> GSM1068459     1  0.9977   0.305208 0.528 0.472
#> GSM1068460     1  0.9970  -0.598228 0.532 0.468
#> GSM1068461     1  0.9977   0.305208 0.528 0.472
#> GSM1068464     2  0.9977   0.677530 0.472 0.528
#> GSM1068468     1  0.9977  -0.533416 0.528 0.472
#> GSM1068472     1  0.9661  -0.293668 0.608 0.392
#> GSM1068473     2  0.9977   0.677530 0.472 0.528
#> GSM1068474     2  0.9977   0.677530 0.472 0.528
#> GSM1068476     2  0.6712  -0.020957 0.176 0.824
#> GSM1068477     2  0.9977   0.677530 0.472 0.528
#> GSM1068462     1  0.9427  -0.189890 0.640 0.360
#> GSM1068463     1  0.9977   0.305208 0.528 0.472
#> GSM1068465     1  0.9209  -0.204906 0.664 0.336
#> GSM1068466     1  0.2043   0.349223 0.968 0.032
#> GSM1068467     1  0.9977  -0.533416 0.528 0.472
#> GSM1068469     1  0.9393  -0.194165 0.644 0.356
#> GSM1068470     2  0.9977   0.677530 0.472 0.528
#> GSM1068471     2  0.9977   0.677530 0.472 0.528
#> GSM1068475     2  0.9977   0.677530 0.472 0.528
#> GSM1068528     1  0.9732   0.315436 0.596 0.404
#> GSM1068531     1  0.0672   0.365365 0.992 0.008
#> GSM1068532     1  0.0672   0.364641 0.992 0.008
#> GSM1068533     1  0.0376   0.364829 0.996 0.004
#> GSM1068535     1  0.9993  -0.346079 0.516 0.484
#> GSM1068537     1  0.0000   0.363132 1.000 0.000
#> GSM1068538     1  0.0938   0.365805 0.988 0.012
#> GSM1068539     1  0.9970  -0.565130 0.532 0.468
#> GSM1068540     1  0.0000   0.363132 1.000 0.000
#> GSM1068542     2  1.0000   0.642171 0.500 0.500
#> GSM1068543     2  0.9996   0.565538 0.488 0.512
#> GSM1068544     1  0.9963   0.306437 0.536 0.464
#> GSM1068545     2  0.9983   0.674121 0.476 0.524
#> GSM1068546     1  0.9977   0.305208 0.528 0.472
#> GSM1068547     1  0.3431   0.315619 0.936 0.064
#> GSM1068548     1  0.9996  -0.639018 0.512 0.488
#> GSM1068549     1  0.9977   0.305208 0.528 0.472
#> GSM1068550     2  0.9988   0.665376 0.480 0.520
#> GSM1068551     2  0.9977   0.677530 0.472 0.528
#> GSM1068552     2  0.9977   0.677530 0.472 0.528
#> GSM1068555     2  0.9977   0.677530 0.472 0.528
#> GSM1068556     2  0.9996   0.565538 0.488 0.512
#> GSM1068557     1  0.9954  -0.500423 0.540 0.460
#> GSM1068560     1  0.9209  -0.236091 0.664 0.336
#> GSM1068561     1  0.9833  -0.443074 0.576 0.424
#> GSM1068562     2  0.9993   0.661196 0.484 0.516
#> GSM1068563     2  0.9983   0.674121 0.476 0.524
#> GSM1068565     2  0.9977   0.677530 0.472 0.528
#> GSM1068529     1  0.9944   0.171378 0.544 0.456
#> GSM1068530     1  0.0000   0.363132 1.000 0.000
#> GSM1068534     1  0.9944   0.171378 0.544 0.456
#> GSM1068536     1  0.9286  -0.267104 0.656 0.344
#> GSM1068541     1  0.9983  -0.606731 0.524 0.476
#> GSM1068553     2  1.0000   0.392987 0.496 0.504
#> GSM1068554     1  0.9993  -0.463972 0.516 0.484
#> GSM1068558     2  0.9580  -0.110692 0.380 0.620
#> GSM1068559     2  0.8555   0.158750 0.280 0.720
#> GSM1068564     2  0.9977   0.677530 0.472 0.528
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1068478     2  0.5785     0.5327 0.332 0.668 0.000
#> GSM1068479     2  0.6451     0.2369 0.004 0.560 0.436
#> GSM1068481     3  0.0592     0.8460 0.012 0.000 0.988
#> GSM1068482     3  0.0747     0.8448 0.016 0.000 0.984
#> GSM1068483     1  0.7441     0.6714 0.700 0.136 0.164
#> GSM1068486     3  0.2339     0.8042 0.012 0.048 0.940
#> GSM1068487     2  0.0000     0.7908 0.000 1.000 0.000
#> GSM1068488     2  0.4413     0.7677 0.036 0.860 0.104
#> GSM1068490     2  0.0000     0.7908 0.000 1.000 0.000
#> GSM1068491     2  0.6432     0.2629 0.004 0.568 0.428
#> GSM1068492     2  0.6421     0.2744 0.004 0.572 0.424
#> GSM1068493     2  0.8825     0.4065 0.296 0.556 0.148
#> GSM1068494     3  0.6247     0.6080 0.212 0.044 0.744
#> GSM1068495     2  0.4413     0.7631 0.104 0.860 0.036
#> GSM1068496     1  0.9840     0.2116 0.408 0.256 0.336
#> GSM1068498     2  0.5785     0.5327 0.332 0.668 0.000
#> GSM1068499     1  0.7076     0.5949 0.684 0.060 0.256
#> GSM1068500     1  0.7441     0.6714 0.700 0.136 0.164
#> GSM1068502     2  0.6421     0.2744 0.004 0.572 0.424
#> GSM1068503     2  0.0000     0.7908 0.000 1.000 0.000
#> GSM1068505     2  0.3482     0.7565 0.128 0.872 0.000
#> GSM1068506     2  0.0892     0.7915 0.020 0.980 0.000
#> GSM1068507     2  0.3472     0.7859 0.056 0.904 0.040
#> GSM1068508     2  0.5733     0.5621 0.324 0.676 0.000
#> GSM1068510     2  0.5408     0.7365 0.052 0.812 0.136
#> GSM1068512     2  0.8275     0.4943 0.296 0.596 0.108
#> GSM1068513     2  0.3009     0.7872 0.052 0.920 0.028
#> GSM1068514     2  0.9028     0.4246 0.168 0.540 0.292
#> GSM1068517     2  0.5785     0.5327 0.332 0.668 0.000
#> GSM1068518     2  0.9912     0.0578 0.300 0.400 0.300
#> GSM1068520     1  0.3752     0.7639 0.856 0.144 0.000
#> GSM1068521     1  0.3619     0.7698 0.864 0.136 0.000
#> GSM1068522     2  0.0237     0.7906 0.004 0.996 0.000
#> GSM1068524     2  0.1525     0.7906 0.004 0.964 0.032
#> GSM1068527     2  0.7337     0.5534 0.300 0.644 0.056
#> GSM1068480     3  0.1031     0.8404 0.024 0.000 0.976
#> GSM1068484     2  0.3769     0.7705 0.016 0.880 0.104
#> GSM1068485     3  0.0592     0.8460 0.012 0.000 0.988
#> GSM1068489     2  0.1031     0.7909 0.024 0.976 0.000
#> GSM1068497     2  0.5785     0.5327 0.332 0.668 0.000
#> GSM1068501     2  0.5403     0.7382 0.060 0.816 0.124
#> GSM1068504     2  0.0000     0.7908 0.000 1.000 0.000
#> GSM1068509     1  0.9987     0.1509 0.348 0.308 0.344
#> GSM1068511     2  0.7828     0.1913 0.052 0.500 0.448
#> GSM1068515     2  0.6941     0.2149 0.464 0.520 0.016
#> GSM1068516     2  0.8743     0.4962 0.156 0.576 0.268
#> GSM1068519     1  0.4390     0.7210 0.840 0.012 0.148
#> GSM1068523     2  0.0000     0.7908 0.000 1.000 0.000
#> GSM1068525     2  0.3610     0.7732 0.016 0.888 0.096
#> GSM1068526     2  0.1129     0.7920 0.020 0.976 0.004
#> GSM1068458     1  0.0983     0.8047 0.980 0.016 0.004
#> GSM1068459     3  0.0592     0.8460 0.012 0.000 0.988
#> GSM1068460     2  0.3482     0.7541 0.128 0.872 0.000
#> GSM1068461     3  0.0237     0.8438 0.004 0.000 0.996
#> GSM1068464     2  0.0000     0.7908 0.000 1.000 0.000
#> GSM1068468     2  0.3921     0.7604 0.112 0.872 0.016
#> GSM1068472     2  0.6217     0.6123 0.264 0.712 0.024
#> GSM1068473     2  0.0000     0.7908 0.000 1.000 0.000
#> GSM1068474     2  0.0000     0.7908 0.000 1.000 0.000
#> GSM1068476     3  0.6489     0.0739 0.004 0.456 0.540
#> GSM1068477     2  0.0237     0.7906 0.004 0.996 0.000
#> GSM1068462     2  0.6501     0.5393 0.316 0.664 0.020
#> GSM1068463     3  0.0592     0.8460 0.012 0.000 0.988
#> GSM1068465     2  0.5733     0.5621 0.324 0.676 0.000
#> GSM1068466     1  0.3193     0.7892 0.896 0.100 0.004
#> GSM1068467     2  0.3921     0.7604 0.112 0.872 0.016
#> GSM1068469     2  0.6369     0.5428 0.316 0.668 0.016
#> GSM1068470     2  0.0000     0.7908 0.000 1.000 0.000
#> GSM1068471     2  0.0000     0.7908 0.000 1.000 0.000
#> GSM1068475     2  0.0000     0.7908 0.000 1.000 0.000
#> GSM1068528     3  0.4700     0.6821 0.180 0.008 0.812
#> GSM1068531     1  0.0661     0.7941 0.988 0.008 0.004
#> GSM1068532     1  0.1170     0.8040 0.976 0.016 0.008
#> GSM1068533     1  0.0983     0.8047 0.980 0.016 0.004
#> GSM1068535     2  0.7615     0.6322 0.148 0.688 0.164
#> GSM1068537     1  0.0747     0.8040 0.984 0.016 0.000
#> GSM1068538     1  0.1337     0.8040 0.972 0.016 0.012
#> GSM1068539     2  0.4413     0.7631 0.104 0.860 0.036
#> GSM1068540     1  0.1129     0.8047 0.976 0.020 0.004
#> GSM1068542     2  0.1964     0.7886 0.056 0.944 0.000
#> GSM1068543     2  0.4339     0.7725 0.048 0.868 0.084
#> GSM1068544     3  0.0892     0.8422 0.020 0.000 0.980
#> GSM1068545     2  0.0892     0.7915 0.020 0.980 0.000
#> GSM1068546     3  0.0424     0.8395 0.008 0.000 0.992
#> GSM1068547     1  0.3752     0.7639 0.856 0.144 0.000
#> GSM1068548     2  0.2448     0.7834 0.076 0.924 0.000
#> GSM1068549     3  0.0237     0.8438 0.004 0.000 0.996
#> GSM1068550     2  0.1399     0.7922 0.028 0.968 0.004
#> GSM1068551     2  0.0000     0.7908 0.000 1.000 0.000
#> GSM1068552     2  0.0592     0.7904 0.012 0.988 0.000
#> GSM1068555     2  0.0000     0.7908 0.000 1.000 0.000
#> GSM1068556     2  0.4339     0.7725 0.048 0.868 0.084
#> GSM1068557     2  0.4915     0.7448 0.132 0.832 0.036
#> GSM1068560     2  0.7337     0.5534 0.300 0.644 0.056
#> GSM1068561     2  0.5884     0.7290 0.148 0.788 0.064
#> GSM1068562     2  0.1525     0.7918 0.032 0.964 0.004
#> GSM1068563     2  0.0892     0.7915 0.020 0.980 0.000
#> GSM1068565     2  0.0000     0.7908 0.000 1.000 0.000
#> GSM1068529     2  0.9873     0.0931 0.268 0.404 0.328
#> GSM1068530     1  0.0747     0.8040 0.984 0.016 0.000
#> GSM1068534     2  0.9873     0.0931 0.268 0.404 0.328
#> GSM1068536     2  0.7208     0.5700 0.308 0.644 0.048
#> GSM1068541     2  0.2625     0.7792 0.084 0.916 0.000
#> GSM1068553     2  0.6181     0.7083 0.072 0.772 0.156
#> GSM1068554     2  0.5471     0.7354 0.060 0.812 0.128
#> GSM1068558     3  0.6676    -0.1097 0.008 0.476 0.516
#> GSM1068559     2  0.8456     0.4107 0.108 0.564 0.328
#> GSM1068564     2  0.0592     0.7904 0.012 0.988 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1068478     2  0.5897    0.30929 0.284 0.656 0.004 0.056
#> GSM1068479     2  0.7384   -0.10738 0.000 0.476 0.172 0.352
#> GSM1068481     3  0.0000    0.86807 0.000 0.000 1.000 0.000
#> GSM1068482     3  0.2704    0.84570 0.000 0.000 0.876 0.124
#> GSM1068483     1  0.6982    0.56043 0.664 0.124 0.168 0.044
#> GSM1068486     3  0.3367    0.80235 0.000 0.028 0.864 0.108
#> GSM1068487     2  0.0469    0.65427 0.000 0.988 0.000 0.012
#> GSM1068488     2  0.5232    0.49365 0.012 0.644 0.004 0.340
#> GSM1068490     2  0.0469    0.65343 0.000 0.988 0.000 0.012
#> GSM1068491     2  0.7385   -0.09102 0.000 0.484 0.176 0.340
#> GSM1068492     2  0.7314   -0.08214 0.000 0.488 0.164 0.348
#> GSM1068493     2  0.8573   -0.00221 0.252 0.516 0.116 0.116
#> GSM1068494     4  0.7566   -0.29245 0.172 0.004 0.360 0.464
#> GSM1068495     2  0.4419    0.58184 0.088 0.820 0.004 0.088
#> GSM1068496     1  0.9554   -0.43162 0.360 0.196 0.140 0.304
#> GSM1068498     2  0.5897    0.30929 0.284 0.656 0.004 0.056
#> GSM1068499     1  0.7255    0.50442 0.636 0.040 0.152 0.172
#> GSM1068500     1  0.6982    0.56043 0.664 0.124 0.168 0.044
#> GSM1068502     2  0.7314   -0.08214 0.000 0.488 0.164 0.348
#> GSM1068503     2  0.0469    0.65427 0.000 0.988 0.000 0.012
#> GSM1068505     2  0.4444    0.62498 0.120 0.808 0.000 0.072
#> GSM1068506     2  0.3495    0.64082 0.016 0.844 0.000 0.140
#> GSM1068507     2  0.4440    0.64242 0.044 0.832 0.028 0.096
#> GSM1068508     2  0.5921    0.33519 0.288 0.652 0.004 0.056
#> GSM1068510     2  0.6641    0.46564 0.032 0.620 0.052 0.296
#> GSM1068512     2  0.8044    0.01731 0.272 0.508 0.028 0.192
#> GSM1068513     2  0.3843    0.64711 0.040 0.860 0.016 0.084
#> GSM1068514     2  0.8723   -0.32962 0.136 0.432 0.084 0.348
#> GSM1068517     2  0.5897    0.30929 0.284 0.656 0.004 0.056
#> GSM1068518     4  0.9398    0.58024 0.256 0.304 0.096 0.344
#> GSM1068520     1  0.3447    0.71104 0.852 0.128 0.000 0.020
#> GSM1068521     1  0.3280    0.71848 0.860 0.124 0.000 0.016
#> GSM1068522     2  0.2125    0.65454 0.004 0.920 0.000 0.076
#> GSM1068524     2  0.1940    0.64792 0.000 0.924 0.000 0.076
#> GSM1068527     2  0.7122    0.30023 0.272 0.568 0.004 0.156
#> GSM1068480     3  0.4730    0.64117 0.000 0.000 0.636 0.364
#> GSM1068484     2  0.4699    0.51304 0.000 0.676 0.004 0.320
#> GSM1068485     3  0.0336    0.86704 0.000 0.000 0.992 0.008
#> GSM1068489     2  0.3900    0.63169 0.020 0.816 0.000 0.164
#> GSM1068497     2  0.5897    0.30929 0.284 0.656 0.004 0.056
#> GSM1068501     2  0.6739    0.47249 0.040 0.624 0.052 0.284
#> GSM1068504     2  0.0469    0.65338 0.000 0.988 0.000 0.012
#> GSM1068509     4  0.9685    0.47250 0.304 0.236 0.140 0.320
#> GSM1068511     4  0.8338    0.49707 0.032 0.276 0.224 0.468
#> GSM1068515     2  0.6848    0.04412 0.420 0.504 0.020 0.056
#> GSM1068516     2  0.8453   -0.15844 0.124 0.492 0.080 0.304
#> GSM1068519     1  0.4570    0.69689 0.804 0.004 0.060 0.132
#> GSM1068523     2  0.0469    0.65054 0.000 0.988 0.000 0.012
#> GSM1068525     2  0.4608    0.52903 0.000 0.692 0.004 0.304
#> GSM1068526     2  0.3992    0.62507 0.008 0.800 0.004 0.188
#> GSM1068458     1  0.1229    0.80005 0.968 0.008 0.004 0.020
#> GSM1068459     3  0.0000    0.86807 0.000 0.000 1.000 0.000
#> GSM1068460     2  0.4458    0.62234 0.116 0.808 0.000 0.076
#> GSM1068461     3  0.4331    0.77378 0.000 0.000 0.712 0.288
#> GSM1068464     2  0.0336    0.65258 0.000 0.992 0.000 0.008
#> GSM1068468     2  0.3902    0.59754 0.092 0.856 0.020 0.032
#> GSM1068472     2  0.5897    0.40025 0.232 0.700 0.028 0.040
#> GSM1068473     2  0.0592    0.65477 0.000 0.984 0.000 0.016
#> GSM1068474     2  0.0469    0.65427 0.000 0.988 0.000 0.012
#> GSM1068476     2  0.7818   -0.23033 0.000 0.408 0.324 0.268
#> GSM1068477     2  0.2125    0.65454 0.004 0.920 0.000 0.076
#> GSM1068462     2  0.6321    0.31647 0.272 0.652 0.024 0.052
#> GSM1068463     3  0.0000    0.86807 0.000 0.000 1.000 0.000
#> GSM1068465     2  0.5921    0.33519 0.288 0.652 0.004 0.056
#> GSM1068466     1  0.3382    0.75771 0.876 0.080 0.004 0.040
#> GSM1068467     2  0.3806    0.59706 0.092 0.860 0.020 0.028
#> GSM1068469     2  0.6223    0.31993 0.272 0.656 0.020 0.052
#> GSM1068470     2  0.0336    0.65140 0.000 0.992 0.000 0.008
#> GSM1068471     2  0.0336    0.65258 0.000 0.992 0.000 0.008
#> GSM1068475     2  0.0469    0.65162 0.000 0.988 0.000 0.012
#> GSM1068528     3  0.3870    0.72056 0.164 0.008 0.820 0.008
#> GSM1068531     1  0.0336    0.78993 0.992 0.000 0.000 0.008
#> GSM1068532     1  0.0992    0.79959 0.976 0.008 0.004 0.012
#> GSM1068533     1  0.1229    0.80005 0.968 0.008 0.004 0.020
#> GSM1068535     2  0.8110    0.31221 0.124 0.536 0.064 0.276
#> GSM1068537     1  0.0672    0.79926 0.984 0.008 0.000 0.008
#> GSM1068538     1  0.1007    0.79981 0.976 0.008 0.008 0.008
#> GSM1068539     2  0.4419    0.58184 0.088 0.820 0.004 0.088
#> GSM1068540     1  0.1124    0.79976 0.972 0.012 0.004 0.012
#> GSM1068542     2  0.4552    0.62370 0.044 0.784 0.000 0.172
#> GSM1068543     2  0.5427    0.49492 0.020 0.640 0.004 0.336
#> GSM1068544     3  0.0524    0.86555 0.008 0.000 0.988 0.004
#> GSM1068545     2  0.3495    0.64082 0.016 0.844 0.000 0.140
#> GSM1068546     3  0.3810    0.81994 0.008 0.000 0.804 0.188
#> GSM1068547     1  0.3447    0.71104 0.852 0.128 0.000 0.020
#> GSM1068548     2  0.4820    0.61641 0.060 0.772 0.000 0.168
#> GSM1068549     3  0.4331    0.77378 0.000 0.000 0.712 0.288
#> GSM1068550     2  0.4201    0.62045 0.012 0.788 0.004 0.196
#> GSM1068551     2  0.0469    0.65054 0.000 0.988 0.000 0.012
#> GSM1068552     2  0.3450    0.63466 0.008 0.836 0.000 0.156
#> GSM1068555     2  0.0469    0.65054 0.000 0.988 0.000 0.012
#> GSM1068556     2  0.5427    0.49492 0.020 0.640 0.004 0.336
#> GSM1068557     2  0.4800    0.57389 0.108 0.812 0.032 0.048
#> GSM1068560     2  0.7122    0.30023 0.272 0.568 0.004 0.156
#> GSM1068561     2  0.5871    0.51752 0.120 0.728 0.012 0.140
#> GSM1068562     2  0.4317    0.61890 0.016 0.784 0.004 0.196
#> GSM1068563     2  0.3495    0.64082 0.016 0.844 0.000 0.140
#> GSM1068565     2  0.0336    0.65449 0.000 0.992 0.000 0.008
#> GSM1068529     4  0.9483    0.61571 0.224 0.304 0.116 0.356
#> GSM1068530     1  0.0672    0.79926 0.984 0.008 0.000 0.008
#> GSM1068534     4  0.9483    0.61571 0.224 0.304 0.116 0.356
#> GSM1068536     2  0.7122    0.31495 0.272 0.568 0.004 0.156
#> GSM1068541     2  0.4401    0.64330 0.076 0.812 0.000 0.112
#> GSM1068553     2  0.7287    0.40080 0.052 0.576 0.064 0.308
#> GSM1068554     2  0.6832    0.46274 0.040 0.616 0.056 0.288
#> GSM1068558     4  0.7644    0.47517 0.000 0.272 0.260 0.468
#> GSM1068559     2  0.8946   -0.16034 0.100 0.468 0.176 0.256
#> GSM1068564     2  0.3498    0.63314 0.008 0.832 0.000 0.160
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1068478     2  0.6251    0.32224 0.084 0.600 0.000 0.272 0.044
#> GSM1068479     5  0.7688    0.16019 0.000 0.352 0.096 0.144 0.408
#> GSM1068481     3  0.0609    0.83827 0.000 0.000 0.980 0.000 0.020
#> GSM1068482     3  0.2424    0.81918 0.000 0.000 0.868 0.000 0.132
#> GSM1068483     1  0.8174    0.52457 0.528 0.092 0.132 0.180 0.068
#> GSM1068486     3  0.3467    0.77994 0.000 0.004 0.832 0.036 0.128
#> GSM1068487     2  0.0404    0.49081 0.000 0.988 0.000 0.012 0.000
#> GSM1068488     4  0.6409    0.63696 0.008 0.420 0.000 0.440 0.132
#> GSM1068490     2  0.0404    0.49447 0.000 0.988 0.000 0.012 0.000
#> GSM1068491     5  0.7677    0.16995 0.000 0.352 0.092 0.148 0.408
#> GSM1068492     5  0.7522    0.17125 0.000 0.356 0.076 0.148 0.420
#> GSM1068493     2  0.8512    0.09414 0.092 0.468 0.088 0.248 0.104
#> GSM1068494     5  0.7608   -0.18517 0.160 0.000 0.280 0.092 0.468
#> GSM1068495     2  0.4636    0.44021 0.036 0.768 0.000 0.152 0.044
#> GSM1068496     5  0.9479    0.34136 0.224 0.132 0.092 0.232 0.320
#> GSM1068498     2  0.6251    0.32224 0.084 0.600 0.000 0.272 0.044
#> GSM1068499     1  0.7712    0.43872 0.528 0.032 0.060 0.224 0.156
#> GSM1068500     1  0.8174    0.52457 0.528 0.092 0.132 0.180 0.068
#> GSM1068502     5  0.7522    0.17125 0.000 0.356 0.076 0.148 0.420
#> GSM1068503     2  0.0404    0.49081 0.000 0.988 0.000 0.012 0.000
#> GSM1068505     2  0.5109    0.17817 0.096 0.708 0.000 0.188 0.008
#> GSM1068506     2  0.4156    0.07354 0.004 0.700 0.000 0.288 0.008
#> GSM1068507     2  0.3787    0.36976 0.008 0.784 0.004 0.196 0.008
#> GSM1068508     2  0.6417    0.34809 0.140 0.596 0.000 0.232 0.032
#> GSM1068510     4  0.5095    0.72381 0.000 0.400 0.000 0.560 0.040
#> GSM1068512     2  0.8225   -0.20944 0.176 0.372 0.000 0.296 0.156
#> GSM1068513     2  0.3086    0.38675 0.004 0.816 0.000 0.180 0.000
#> GSM1068514     4  0.8452   -0.27112 0.048 0.296 0.040 0.312 0.304
#> GSM1068517     2  0.6251    0.32224 0.084 0.600 0.000 0.272 0.044
#> GSM1068518     5  0.9081    0.40482 0.124 0.220 0.048 0.296 0.312
#> GSM1068520     1  0.4021    0.73021 0.808 0.108 0.000 0.076 0.008
#> GSM1068521     1  0.3911    0.73588 0.816 0.104 0.000 0.072 0.008
#> GSM1068522     2  0.2648    0.35154 0.000 0.848 0.000 0.152 0.000
#> GSM1068524     2  0.2871    0.46314 0.000 0.872 0.000 0.088 0.040
#> GSM1068527     2  0.7684   -0.26251 0.220 0.428 0.000 0.284 0.068
#> GSM1068480     3  0.4974    0.49890 0.000 0.000 0.508 0.028 0.464
#> GSM1068484     2  0.6215   -0.62361 0.000 0.448 0.000 0.412 0.140
#> GSM1068485     3  0.1197    0.83046 0.000 0.000 0.952 0.000 0.048
#> GSM1068489     2  0.4066   -0.01251 0.004 0.672 0.000 0.324 0.000
#> GSM1068497     2  0.6251    0.32224 0.084 0.600 0.000 0.272 0.044
#> GSM1068501     4  0.5033    0.72035 0.004 0.400 0.000 0.568 0.028
#> GSM1068504     2  0.0162    0.49429 0.000 0.996 0.000 0.004 0.000
#> GSM1068509     5  0.9400    0.43260 0.172 0.160 0.080 0.256 0.332
#> GSM1068511     5  0.8432    0.32620 0.032 0.080 0.192 0.300 0.396
#> GSM1068515     2  0.7497    0.15435 0.220 0.468 0.004 0.260 0.048
#> GSM1068516     2  0.8095   -0.21019 0.052 0.420 0.028 0.204 0.296
#> GSM1068519     1  0.4605    0.66727 0.732 0.000 0.000 0.192 0.076
#> GSM1068523     2  0.1251    0.49936 0.000 0.956 0.000 0.036 0.008
#> GSM1068525     2  0.6233   -0.60111 0.000 0.460 0.000 0.396 0.144
#> GSM1068526     2  0.4268   -0.08786 0.000 0.648 0.000 0.344 0.008
#> GSM1068458     1  0.3169    0.77016 0.840 0.000 0.004 0.140 0.016
#> GSM1068459     3  0.0000    0.83708 0.000 0.000 1.000 0.000 0.000
#> GSM1068460     2  0.5264    0.14147 0.100 0.700 0.000 0.188 0.012
#> GSM1068461     3  0.4570    0.71909 0.000 0.000 0.632 0.020 0.348
#> GSM1068464     2  0.0162    0.49549 0.000 0.996 0.000 0.004 0.000
#> GSM1068468     2  0.4098    0.47211 0.020 0.808 0.004 0.132 0.036
#> GSM1068472     2  0.6238    0.39102 0.084 0.652 0.012 0.208 0.044
#> GSM1068473     2  0.0510    0.48941 0.000 0.984 0.000 0.016 0.000
#> GSM1068474     2  0.0404    0.49081 0.000 0.988 0.000 0.012 0.000
#> GSM1068476     2  0.8234   -0.39763 0.000 0.316 0.284 0.112 0.288
#> GSM1068477     2  0.2648    0.35154 0.000 0.848 0.000 0.152 0.000
#> GSM1068462     2  0.6541    0.32648 0.084 0.600 0.004 0.252 0.060
#> GSM1068463     3  0.0609    0.83827 0.000 0.000 0.980 0.000 0.020
#> GSM1068465     2  0.6417    0.34809 0.140 0.596 0.000 0.232 0.032
#> GSM1068466     1  0.4896    0.72395 0.752 0.060 0.004 0.160 0.024
#> GSM1068467     2  0.3911    0.47325 0.020 0.824 0.004 0.116 0.036
#> GSM1068469     2  0.6423    0.33320 0.084 0.608 0.004 0.252 0.052
#> GSM1068470     2  0.0794    0.49863 0.000 0.972 0.000 0.028 0.000
#> GSM1068471     2  0.0162    0.49549 0.000 0.996 0.000 0.004 0.000
#> GSM1068475     2  0.0609    0.49762 0.000 0.980 0.000 0.020 0.000
#> GSM1068528     3  0.3799    0.72204 0.144 0.000 0.812 0.012 0.032
#> GSM1068531     1  0.0992    0.77935 0.968 0.000 0.000 0.024 0.008
#> GSM1068532     1  0.0579    0.79309 0.984 0.000 0.000 0.008 0.008
#> GSM1068533     1  0.3169    0.77016 0.840 0.000 0.004 0.140 0.016
#> GSM1068535     4  0.6672    0.63968 0.084 0.324 0.004 0.540 0.048
#> GSM1068537     1  0.0290    0.79352 0.992 0.000 0.000 0.000 0.008
#> GSM1068538     1  0.0613    0.79364 0.984 0.000 0.004 0.008 0.004
#> GSM1068539     2  0.4636    0.44021 0.036 0.768 0.000 0.152 0.044
#> GSM1068540     1  0.0727    0.79403 0.980 0.004 0.004 0.000 0.012
#> GSM1068542     2  0.5020   -0.15083 0.020 0.620 0.000 0.344 0.016
#> GSM1068543     4  0.6429    0.65248 0.016 0.420 0.000 0.452 0.112
#> GSM1068544     3  0.0579    0.83677 0.008 0.000 0.984 0.000 0.008
#> GSM1068545     2  0.4156    0.07354 0.004 0.700 0.000 0.288 0.008
#> GSM1068546     3  0.4555    0.76724 0.000 0.000 0.732 0.068 0.200
#> GSM1068547     1  0.4021    0.73021 0.808 0.108 0.000 0.076 0.008
#> GSM1068548     2  0.5371   -0.17351 0.036 0.612 0.000 0.332 0.020
#> GSM1068549     3  0.4575    0.72051 0.000 0.000 0.648 0.024 0.328
#> GSM1068550     2  0.4586   -0.10293 0.004 0.644 0.000 0.336 0.016
#> GSM1068551     2  0.1124    0.49929 0.000 0.960 0.000 0.036 0.004
#> GSM1068552     2  0.3876    0.00304 0.000 0.684 0.000 0.316 0.000
#> GSM1068555     2  0.1251    0.49936 0.000 0.956 0.000 0.036 0.008
#> GSM1068556     4  0.6429    0.65248 0.016 0.420 0.000 0.452 0.112
#> GSM1068557     2  0.4865    0.45132 0.020 0.756 0.008 0.160 0.056
#> GSM1068560     2  0.7684   -0.26251 0.220 0.428 0.000 0.284 0.068
#> GSM1068561     2  0.5898    0.37160 0.048 0.676 0.008 0.204 0.064
#> GSM1068562     2  0.4749   -0.14069 0.008 0.628 0.000 0.348 0.016
#> GSM1068563     2  0.4156    0.07354 0.004 0.700 0.000 0.288 0.008
#> GSM1068565     2  0.0609    0.49422 0.000 0.980 0.000 0.020 0.000
#> GSM1068529     5  0.8982    0.42855 0.092 0.216 0.060 0.292 0.340
#> GSM1068530     1  0.0290    0.79352 0.992 0.000 0.000 0.000 0.008
#> GSM1068534     5  0.8982    0.42855 0.092 0.216 0.060 0.292 0.340
#> GSM1068536     2  0.7283    0.09323 0.192 0.508 0.000 0.240 0.060
#> GSM1068541     2  0.4786    0.29261 0.020 0.696 0.000 0.260 0.024
#> GSM1068553     4  0.5309    0.71134 0.008 0.352 0.004 0.600 0.036
#> GSM1068554     4  0.5088    0.72536 0.004 0.392 0.000 0.572 0.032
#> GSM1068558     5  0.7744    0.30035 0.000 0.092 0.212 0.236 0.460
#> GSM1068559     2  0.9029   -0.38141 0.052 0.356 0.116 0.220 0.256
#> GSM1068564     2  0.3895   -0.00496 0.000 0.680 0.000 0.320 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1068478     2  0.4701    0.08895 0.036 0.524 0.000 0.004 0.436 0.000
#> GSM1068479     4  0.7550    0.62219 0.000 0.200 0.040 0.452 0.084 0.224
#> GSM1068481     3  0.0790    0.79343 0.000 0.000 0.968 0.032 0.000 0.000
#> GSM1068482     3  0.3198    0.75937 0.000 0.000 0.844 0.100 0.032 0.024
#> GSM1068483     1  0.7296    0.42771 0.472 0.072 0.120 0.032 0.296 0.008
#> GSM1068486     3  0.3792    0.69488 0.000 0.000 0.780 0.160 0.008 0.052
#> GSM1068487     2  0.0692    0.59661 0.000 0.976 0.000 0.000 0.004 0.020
#> GSM1068488     6  0.6071    0.55184 0.000 0.224 0.000 0.056 0.140 0.580
#> GSM1068490     2  0.0717    0.59880 0.000 0.976 0.000 0.000 0.008 0.016
#> GSM1068491     4  0.7958    0.63259 0.000 0.200 0.052 0.404 0.112 0.232
#> GSM1068492     4  0.7759    0.62957 0.000 0.200 0.032 0.416 0.120 0.232
#> GSM1068493     5  0.7035    0.15444 0.052 0.400 0.084 0.024 0.420 0.020
#> GSM1068494     5  0.8438   -0.19073 0.116 0.000 0.240 0.260 0.300 0.084
#> GSM1068495     2  0.4460    0.44424 0.020 0.728 0.000 0.004 0.200 0.048
#> GSM1068496     5  0.7864    0.46143 0.160 0.076 0.088 0.076 0.536 0.064
#> GSM1068498     2  0.4701    0.08895 0.036 0.524 0.000 0.004 0.436 0.000
#> GSM1068499     1  0.7395    0.34737 0.468 0.004 0.056 0.060 0.288 0.124
#> GSM1068500     1  0.7296    0.42771 0.472 0.072 0.120 0.032 0.296 0.008
#> GSM1068502     4  0.7759    0.62957 0.000 0.200 0.032 0.416 0.120 0.232
#> GSM1068503     2  0.0692    0.59661 0.000 0.976 0.000 0.000 0.004 0.020
#> GSM1068505     2  0.5798    0.28372 0.068 0.612 0.000 0.012 0.052 0.256
#> GSM1068506     2  0.4364    0.21217 0.004 0.608 0.000 0.000 0.024 0.364
#> GSM1068507     2  0.4178    0.48105 0.000 0.728 0.000 0.004 0.060 0.208
#> GSM1068508     2  0.6128    0.08946 0.088 0.516 0.000 0.004 0.340 0.052
#> GSM1068510     6  0.4563    0.53596 0.000 0.232 0.000 0.040 0.028 0.700
#> GSM1068512     5  0.7751    0.10935 0.112 0.240 0.000 0.020 0.352 0.276
#> GSM1068513     2  0.3683    0.49477 0.000 0.764 0.000 0.000 0.044 0.192
#> GSM1068514     5  0.8354    0.14683 0.028 0.176 0.040 0.108 0.376 0.272
#> GSM1068517     2  0.4701    0.08895 0.036 0.524 0.000 0.004 0.436 0.000
#> GSM1068518     5  0.7862    0.49808 0.072 0.124 0.044 0.076 0.528 0.156
#> GSM1068520     1  0.4641    0.68758 0.764 0.068 0.000 0.020 0.112 0.036
#> GSM1068521     1  0.4469    0.69194 0.776 0.068 0.000 0.016 0.104 0.036
#> GSM1068522     2  0.3109    0.43857 0.000 0.772 0.000 0.000 0.004 0.224
#> GSM1068524     2  0.3515    0.55908 0.000 0.828 0.000 0.024 0.084 0.064
#> GSM1068527     6  0.8090    0.24499 0.152 0.288 0.000 0.036 0.196 0.328
#> GSM1068480     3  0.6578    0.44467 0.000 0.000 0.460 0.260 0.240 0.040
#> GSM1068484     6  0.6219    0.52535 0.000 0.260 0.000 0.052 0.144 0.544
#> GSM1068485     3  0.1418    0.78324 0.000 0.000 0.944 0.032 0.024 0.000
#> GSM1068489     2  0.4024    0.17666 0.004 0.592 0.000 0.000 0.004 0.400
#> GSM1068497     2  0.4701    0.08895 0.036 0.524 0.000 0.004 0.436 0.000
#> GSM1068501     6  0.4133    0.54106 0.000 0.232 0.000 0.020 0.024 0.724
#> GSM1068504     2  0.0508    0.59860 0.000 0.984 0.000 0.000 0.004 0.012
#> GSM1068509     5  0.8025    0.49525 0.120 0.080 0.076 0.092 0.532 0.100
#> GSM1068511     6  0.7620   -0.13715 0.012 0.008 0.156 0.116 0.332 0.376
#> GSM1068515     5  0.6427    0.08366 0.144 0.388 0.000 0.024 0.432 0.012
#> GSM1068516     5  0.7675    0.27985 0.028 0.364 0.024 0.076 0.388 0.120
#> GSM1068519     1  0.5600    0.59089 0.648 0.000 0.000 0.052 0.160 0.140
#> GSM1068523     2  0.1471    0.58888 0.000 0.932 0.000 0.004 0.064 0.000
#> GSM1068525     6  0.6295    0.50978 0.000 0.272 0.000 0.052 0.148 0.528
#> GSM1068526     2  0.4238    0.04873 0.000 0.540 0.000 0.000 0.016 0.444
#> GSM1068458     1  0.3409    0.71266 0.788 0.000 0.004 0.024 0.184 0.000
#> GSM1068459     3  0.0000    0.79339 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068460     2  0.5884    0.23956 0.072 0.600 0.000 0.012 0.052 0.264
#> GSM1068461     4  0.4083   -0.54796 0.000 0.000 0.460 0.532 0.008 0.000
#> GSM1068464     2  0.0717    0.59822 0.000 0.976 0.000 0.000 0.008 0.016
#> GSM1068468     2  0.3599    0.49183 0.004 0.764 0.000 0.004 0.212 0.016
#> GSM1068472     2  0.5028    0.19494 0.036 0.584 0.008 0.004 0.360 0.008
#> GSM1068473     2  0.0777    0.59576 0.000 0.972 0.000 0.000 0.004 0.024
#> GSM1068474     2  0.0692    0.59661 0.000 0.976 0.000 0.000 0.004 0.020
#> GSM1068476     4  0.7973    0.51941 0.000 0.188 0.224 0.364 0.024 0.200
#> GSM1068477     2  0.3109    0.43857 0.000 0.772 0.000 0.000 0.004 0.224
#> GSM1068462     2  0.4928    0.08102 0.036 0.520 0.000 0.008 0.432 0.004
#> GSM1068463     3  0.0790    0.79343 0.000 0.000 0.968 0.032 0.000 0.000
#> GSM1068465     2  0.6128    0.08946 0.088 0.516 0.000 0.004 0.340 0.052
#> GSM1068466     1  0.4944    0.65340 0.692 0.048 0.004 0.024 0.224 0.008
#> GSM1068467     2  0.3354    0.49387 0.004 0.780 0.000 0.004 0.204 0.008
#> GSM1068469     2  0.4914    0.09922 0.036 0.532 0.000 0.008 0.420 0.004
#> GSM1068470     2  0.0865    0.59691 0.000 0.964 0.000 0.000 0.036 0.000
#> GSM1068471     2  0.0717    0.59822 0.000 0.976 0.000 0.000 0.008 0.016
#> GSM1068475     2  0.0777    0.59979 0.000 0.972 0.000 0.000 0.024 0.004
#> GSM1068528     3  0.3661    0.68428 0.136 0.000 0.804 0.024 0.036 0.000
#> GSM1068531     1  0.1777    0.74023 0.932 0.000 0.000 0.032 0.024 0.012
#> GSM1068532     1  0.1369    0.75217 0.952 0.000 0.000 0.016 0.016 0.016
#> GSM1068533     1  0.3409    0.71266 0.788 0.000 0.004 0.024 0.184 0.000
#> GSM1068535     6  0.5341    0.47288 0.060 0.168 0.000 0.032 0.040 0.700
#> GSM1068537     1  0.1078    0.75403 0.964 0.000 0.000 0.016 0.012 0.008
#> GSM1068538     1  0.1007    0.75397 0.968 0.000 0.004 0.016 0.004 0.008
#> GSM1068539     2  0.4460    0.44424 0.020 0.728 0.000 0.004 0.200 0.048
#> GSM1068540     1  0.1519    0.75576 0.948 0.004 0.004 0.008 0.028 0.008
#> GSM1068542     2  0.5059    0.00873 0.012 0.512 0.000 0.008 0.032 0.436
#> GSM1068543     6  0.5575    0.56634 0.000 0.224 0.000 0.036 0.116 0.624
#> GSM1068544     3  0.0520    0.79360 0.008 0.000 0.984 0.000 0.008 0.000
#> GSM1068545     2  0.4364    0.21217 0.004 0.608 0.000 0.000 0.024 0.364
#> GSM1068546     3  0.5149    0.58294 0.000 0.000 0.580 0.348 0.036 0.036
#> GSM1068547     1  0.4641    0.68758 0.764 0.068 0.000 0.020 0.112 0.036
#> GSM1068548     2  0.5280   -0.02127 0.012 0.504 0.000 0.008 0.048 0.428
#> GSM1068549     3  0.4227    0.45749 0.000 0.000 0.500 0.488 0.008 0.004
#> GSM1068550     2  0.4636    0.02520 0.000 0.532 0.000 0.004 0.032 0.432
#> GSM1068551     2  0.1411    0.58996 0.000 0.936 0.000 0.004 0.060 0.000
#> GSM1068552     2  0.3890    0.16619 0.000 0.596 0.000 0.000 0.004 0.400
#> GSM1068555     2  0.1327    0.58868 0.000 0.936 0.000 0.000 0.064 0.000
#> GSM1068556     6  0.5575    0.56634 0.000 0.224 0.000 0.036 0.116 0.624
#> GSM1068557     2  0.4383    0.43290 0.004 0.700 0.004 0.012 0.256 0.024
#> GSM1068560     6  0.8090    0.24499 0.152 0.288 0.000 0.036 0.196 0.328
#> GSM1068561     2  0.5845    0.33339 0.024 0.632 0.008 0.020 0.228 0.088
#> GSM1068562     2  0.4709   -0.01524 0.000 0.516 0.000 0.004 0.036 0.444
#> GSM1068563     2  0.4364    0.21217 0.004 0.608 0.000 0.000 0.024 0.364
#> GSM1068565     2  0.0914    0.60005 0.000 0.968 0.000 0.000 0.016 0.016
#> GSM1068529     5  0.7851    0.50449 0.052 0.116 0.056 0.092 0.532 0.152
#> GSM1068530     1  0.0976    0.75443 0.968 0.000 0.000 0.008 0.016 0.008
#> GSM1068534     5  0.7851    0.50449 0.052 0.116 0.056 0.092 0.532 0.152
#> GSM1068536     2  0.7555    0.05094 0.144 0.448 0.000 0.024 0.232 0.152
#> GSM1068541     2  0.5524    0.37141 0.016 0.600 0.000 0.000 0.136 0.248
#> GSM1068553     6  0.4082    0.51981 0.000 0.192 0.000 0.028 0.028 0.752
#> GSM1068554     6  0.4159    0.54169 0.000 0.224 0.000 0.024 0.024 0.728
#> GSM1068558     6  0.7880   -0.26081 0.000 0.012 0.164 0.264 0.256 0.304
#> GSM1068559     4  0.8975    0.33788 0.020 0.196 0.076 0.260 0.188 0.260
#> GSM1068564     2  0.3899    0.16045 0.000 0.592 0.000 0.000 0.004 0.404
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#>             n disease.state(p) gender(p) k
#> MAD:hclust 34               NA        NA 2
#> MAD:hclust 90           0.7972    0.4806 3
#> MAD:hclust 72           0.8407    0.3911 4
#> MAD:hclust 34           0.5412    0.5637 5
#> MAD:hclust 53           0.0841    0.0821 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 38950 rows and 108 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.695           0.876       0.936         0.4636 0.551   0.551
#> 3 3 0.427           0.590       0.770         0.3451 0.796   0.649
#> 4 4 0.820           0.864       0.913         0.1692 0.772   0.499
#> 5 5 0.692           0.651       0.789         0.0774 0.955   0.839
#> 6 6 0.678           0.538       0.705         0.0476 0.892   0.586
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1068478     1  0.6973      0.784 0.812 0.188
#> GSM1068479     2  0.3114      0.894 0.056 0.944
#> GSM1068481     1  0.0376      0.947 0.996 0.004
#> GSM1068482     1  0.0376      0.947 0.996 0.004
#> GSM1068483     1  0.0000      0.948 1.000 0.000
#> GSM1068486     1  0.0376      0.947 0.996 0.004
#> GSM1068487     2  0.0000      0.921 0.000 1.000
#> GSM1068488     2  0.5294      0.859 0.120 0.880
#> GSM1068490     2  0.0000      0.921 0.000 1.000
#> GSM1068491     1  0.7528      0.700 0.784 0.216
#> GSM1068492     2  0.3431      0.892 0.064 0.936
#> GSM1068493     2  0.7602      0.714 0.220 0.780
#> GSM1068494     1  0.0000      0.948 1.000 0.000
#> GSM1068495     2  0.0376      0.922 0.004 0.996
#> GSM1068496     1  0.0000      0.948 1.000 0.000
#> GSM1068498     2  0.7528      0.725 0.216 0.784
#> GSM1068499     1  0.0000      0.948 1.000 0.000
#> GSM1068500     1  0.0000      0.948 1.000 0.000
#> GSM1068502     2  0.3114      0.894 0.056 0.944
#> GSM1068503     2  0.0000      0.921 0.000 1.000
#> GSM1068505     2  0.0376      0.922 0.004 0.996
#> GSM1068506     2  0.0376      0.922 0.004 0.996
#> GSM1068507     2  0.2423      0.908 0.040 0.960
#> GSM1068508     2  0.0376      0.922 0.004 0.996
#> GSM1068510     2  0.0000      0.921 0.000 1.000
#> GSM1068512     2  0.8909      0.642 0.308 0.692
#> GSM1068513     2  0.0000      0.921 0.000 1.000
#> GSM1068514     2  0.7453      0.776 0.212 0.788
#> GSM1068517     2  0.1633      0.914 0.024 0.976
#> GSM1068518     2  0.4298      0.882 0.088 0.912
#> GSM1068520     1  0.3114      0.927 0.944 0.056
#> GSM1068521     1  0.3114      0.927 0.944 0.056
#> GSM1068522     2  0.0376      0.922 0.004 0.996
#> GSM1068524     2  0.0000      0.921 0.000 1.000
#> GSM1068527     2  0.6438      0.819 0.164 0.836
#> GSM1068480     1  0.0376      0.947 0.996 0.004
#> GSM1068484     2  0.0376      0.922 0.004 0.996
#> GSM1068485     1  0.0376      0.947 0.996 0.004
#> GSM1068489     2  0.0938      0.920 0.012 0.988
#> GSM1068497     2  0.7528      0.725 0.216 0.784
#> GSM1068501     2  0.0376      0.922 0.004 0.996
#> GSM1068504     2  0.0000      0.921 0.000 1.000
#> GSM1068509     1  0.1184      0.944 0.984 0.016
#> GSM1068511     1  0.9710      0.203 0.600 0.400
#> GSM1068515     1  0.7674      0.733 0.776 0.224
#> GSM1068516     2  0.1414      0.918 0.020 0.980
#> GSM1068519     1  0.3114      0.927 0.944 0.056
#> GSM1068523     2  0.0376      0.922 0.004 0.996
#> GSM1068525     2  0.0000      0.921 0.000 1.000
#> GSM1068526     2  0.2236      0.911 0.036 0.964
#> GSM1068458     1  0.1843      0.940 0.972 0.028
#> GSM1068459     1  0.0376      0.947 0.996 0.004
#> GSM1068460     2  0.6438      0.825 0.164 0.836
#> GSM1068461     1  0.0376      0.947 0.996 0.004
#> GSM1068464     2  0.0000      0.921 0.000 1.000
#> GSM1068468     2  0.0000      0.921 0.000 1.000
#> GSM1068472     2  0.0000      0.921 0.000 1.000
#> GSM1068473     2  0.0000      0.921 0.000 1.000
#> GSM1068474     2  0.0000      0.921 0.000 1.000
#> GSM1068476     2  0.9661      0.460 0.392 0.608
#> GSM1068477     2  0.0376      0.922 0.004 0.996
#> GSM1068462     2  0.0000      0.921 0.000 1.000
#> GSM1068463     1  0.0376      0.947 0.996 0.004
#> GSM1068465     2  0.7219      0.747 0.200 0.800
#> GSM1068466     1  0.3114      0.927 0.944 0.056
#> GSM1068467     2  0.0000      0.921 0.000 1.000
#> GSM1068469     2  0.7883      0.689 0.236 0.764
#> GSM1068470     2  0.0376      0.922 0.004 0.996
#> GSM1068471     2  0.0000      0.921 0.000 1.000
#> GSM1068475     2  0.0000      0.921 0.000 1.000
#> GSM1068528     1  0.0000      0.948 1.000 0.000
#> GSM1068531     1  0.3114      0.927 0.944 0.056
#> GSM1068532     1  0.0000      0.948 1.000 0.000
#> GSM1068533     1  0.0000      0.948 1.000 0.000
#> GSM1068535     1  0.3431      0.922 0.936 0.064
#> GSM1068537     1  0.0000      0.948 1.000 0.000
#> GSM1068538     1  0.0000      0.948 1.000 0.000
#> GSM1068539     2  0.0376      0.922 0.004 0.996
#> GSM1068540     1  0.3114      0.927 0.944 0.056
#> GSM1068542     2  0.2236      0.911 0.036 0.964
#> GSM1068543     2  0.7528      0.775 0.216 0.784
#> GSM1068544     1  0.0000      0.948 1.000 0.000
#> GSM1068545     2  0.0376      0.922 0.004 0.996
#> GSM1068546     1  0.0376      0.947 0.996 0.004
#> GSM1068547     1  0.3114      0.927 0.944 0.056
#> GSM1068548     2  0.4431      0.879 0.092 0.908
#> GSM1068549     1  0.0376      0.947 0.996 0.004
#> GSM1068550     2  0.0376      0.922 0.004 0.996
#> GSM1068551     2  0.0376      0.922 0.004 0.996
#> GSM1068552     2  0.0376      0.922 0.004 0.996
#> GSM1068555     2  0.0000      0.921 0.000 1.000
#> GSM1068556     2  0.7528      0.775 0.216 0.784
#> GSM1068557     2  0.0000      0.921 0.000 1.000
#> GSM1068560     2  0.4431      0.879 0.092 0.908
#> GSM1068561     2  0.0376      0.922 0.004 0.996
#> GSM1068562     2  0.2778      0.906 0.048 0.952
#> GSM1068563     2  0.1843      0.915 0.028 0.972
#> GSM1068565     2  0.0376      0.922 0.004 0.996
#> GSM1068529     2  0.7602      0.767 0.220 0.780
#> GSM1068530     1  0.3114      0.927 0.944 0.056
#> GSM1068534     2  0.9881      0.382 0.436 0.564
#> GSM1068536     2  0.8955      0.614 0.312 0.688
#> GSM1068541     2  0.0376      0.922 0.004 0.996
#> GSM1068553     2  0.6343      0.823 0.160 0.840
#> GSM1068554     2  0.0376      0.921 0.004 0.996
#> GSM1068558     2  0.6801      0.810 0.180 0.820
#> GSM1068559     2  0.9286      0.569 0.344 0.656
#> GSM1068564     2  0.0376      0.922 0.004 0.996
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1068478     1  0.1878    0.80025 0.952 0.044 0.004
#> GSM1068479     2  0.5835    0.27940 0.000 0.660 0.340
#> GSM1068481     3  0.5098    0.64183 0.248 0.000 0.752
#> GSM1068482     3  0.5138    0.64078 0.252 0.000 0.748
#> GSM1068483     1  0.1964    0.78976 0.944 0.000 0.056
#> GSM1068486     3  0.5058    0.64307 0.244 0.000 0.756
#> GSM1068487     2  0.0237    0.70435 0.000 0.996 0.004
#> GSM1068488     2  0.9745    0.40238 0.232 0.420 0.348
#> GSM1068490     2  0.0237    0.70435 0.000 0.996 0.004
#> GSM1068491     3  0.5406    0.63224 0.200 0.020 0.780
#> GSM1068492     3  0.6192   -0.13846 0.000 0.420 0.580
#> GSM1068493     2  0.6452    0.51846 0.088 0.760 0.152
#> GSM1068494     1  0.4796    0.63637 0.780 0.000 0.220
#> GSM1068495     2  0.8213    0.61211 0.228 0.632 0.140
#> GSM1068496     1  0.3941    0.69674 0.844 0.000 0.156
#> GSM1068498     2  0.6786    0.00272 0.448 0.540 0.012
#> GSM1068499     1  0.4555    0.63191 0.800 0.000 0.200
#> GSM1068500     1  0.2066    0.78703 0.940 0.000 0.060
#> GSM1068502     2  0.6008    0.25180 0.000 0.628 0.372
#> GSM1068503     2  0.1031    0.70549 0.000 0.976 0.024
#> GSM1068505     2  0.8926    0.58153 0.192 0.568 0.240
#> GSM1068506     2  0.8063    0.63299 0.132 0.644 0.224
#> GSM1068507     2  0.7558    0.65752 0.124 0.688 0.188
#> GSM1068508     2  0.0661    0.70531 0.008 0.988 0.004
#> GSM1068510     2  0.6699    0.65942 0.044 0.700 0.256
#> GSM1068512     2  0.9971    0.30091 0.352 0.352 0.296
#> GSM1068513     2  0.0747    0.70617 0.000 0.984 0.016
#> GSM1068514     3  0.7267    0.14963 0.064 0.268 0.668
#> GSM1068517     2  0.6600    0.19187 0.384 0.604 0.012
#> GSM1068518     2  0.9829    0.38881 0.352 0.400 0.248
#> GSM1068520     1  0.0000    0.81899 1.000 0.000 0.000
#> GSM1068521     1  0.0747    0.81525 0.984 0.000 0.016
#> GSM1068522     2  0.1860    0.70486 0.000 0.948 0.052
#> GSM1068524     2  0.1529    0.70780 0.000 0.960 0.040
#> GSM1068527     1  0.9412    0.04211 0.508 0.244 0.248
#> GSM1068480     3  0.5098    0.64294 0.248 0.000 0.752
#> GSM1068484     2  0.6482    0.66326 0.040 0.716 0.244
#> GSM1068485     3  0.5138    0.64078 0.252 0.000 0.748
#> GSM1068489     2  0.8886    0.58466 0.188 0.572 0.240
#> GSM1068497     2  0.6632    0.17052 0.392 0.596 0.012
#> GSM1068501     2  0.7062    0.65532 0.068 0.696 0.236
#> GSM1068504     2  0.0237    0.70435 0.000 0.996 0.004
#> GSM1068509     1  0.1163    0.81436 0.972 0.000 0.028
#> GSM1068511     3  0.9659   -0.04376 0.340 0.220 0.440
#> GSM1068515     1  0.4121    0.65534 0.832 0.168 0.000
#> GSM1068516     2  0.9191    0.57262 0.208 0.536 0.256
#> GSM1068519     1  0.0892    0.81602 0.980 0.000 0.020
#> GSM1068523     2  0.0661    0.70544 0.004 0.988 0.008
#> GSM1068525     2  0.6187    0.66643 0.028 0.724 0.248
#> GSM1068526     2  0.8511    0.60941 0.152 0.604 0.244
#> GSM1068458     1  0.0747    0.81457 0.984 0.000 0.016
#> GSM1068459     3  0.5138    0.64078 0.252 0.000 0.748
#> GSM1068460     1  0.6034    0.64011 0.780 0.068 0.152
#> GSM1068461     3  0.5098    0.64183 0.248 0.000 0.752
#> GSM1068464     2  0.0237    0.70435 0.000 0.996 0.004
#> GSM1068468     2  0.1015    0.70236 0.012 0.980 0.008
#> GSM1068472     2  0.1015    0.70236 0.012 0.980 0.008
#> GSM1068473     2  0.0237    0.70435 0.000 0.996 0.004
#> GSM1068474     2  0.0237    0.70435 0.000 0.996 0.004
#> GSM1068476     3  0.3850    0.58447 0.088 0.028 0.884
#> GSM1068477     2  0.0237    0.70482 0.004 0.996 0.000
#> GSM1068462     2  0.2116    0.68278 0.012 0.948 0.040
#> GSM1068463     3  0.5138    0.64078 0.252 0.000 0.748
#> GSM1068465     1  0.6621    0.61029 0.752 0.148 0.100
#> GSM1068466     1  0.0000    0.81899 1.000 0.000 0.000
#> GSM1068467     2  0.1015    0.70236 0.012 0.980 0.008
#> GSM1068469     2  0.6467    0.18760 0.388 0.604 0.008
#> GSM1068470     2  0.0237    0.70592 0.000 0.996 0.004
#> GSM1068471     2  0.0237    0.70435 0.000 0.996 0.004
#> GSM1068475     2  0.0000    0.70511 0.000 1.000 0.000
#> GSM1068528     1  0.5363    0.47444 0.724 0.000 0.276
#> GSM1068531     1  0.0237    0.81831 0.996 0.000 0.004
#> GSM1068532     1  0.1643    0.80231 0.956 0.000 0.044
#> GSM1068533     1  0.1529    0.80349 0.960 0.000 0.040
#> GSM1068535     1  0.9455    0.12396 0.488 0.208 0.304
#> GSM1068537     1  0.1529    0.80349 0.960 0.000 0.040
#> GSM1068538     1  0.1529    0.80349 0.960 0.000 0.040
#> GSM1068539     2  0.7702    0.64783 0.180 0.680 0.140
#> GSM1068540     1  0.0892    0.81602 0.980 0.000 0.020
#> GSM1068542     2  0.9411    0.52142 0.252 0.508 0.240
#> GSM1068543     2  0.9744    0.44615 0.256 0.444 0.300
#> GSM1068544     3  0.5216    0.63129 0.260 0.000 0.740
#> GSM1068545     2  0.4636    0.69824 0.036 0.848 0.116
#> GSM1068546     3  0.5098    0.64294 0.248 0.000 0.752
#> GSM1068547     1  0.1860    0.78990 0.948 0.000 0.052
#> GSM1068548     2  0.9484    0.50750 0.264 0.496 0.240
#> GSM1068549     3  0.5098    0.64294 0.248 0.000 0.752
#> GSM1068550     2  0.9040    0.57091 0.204 0.556 0.240
#> GSM1068551     2  0.0237    0.70592 0.000 0.996 0.004
#> GSM1068552     2  0.6481    0.66770 0.048 0.728 0.224
#> GSM1068555     2  0.0661    0.70544 0.004 0.988 0.008
#> GSM1068556     2  0.9698    0.45948 0.256 0.456 0.288
#> GSM1068557     2  0.1015    0.70253 0.012 0.980 0.008
#> GSM1068560     2  0.9702    0.47280 0.300 0.452 0.248
#> GSM1068561     2  0.5481    0.68008 0.108 0.816 0.076
#> GSM1068562     2  0.8607    0.60422 0.152 0.592 0.256
#> GSM1068563     2  0.8392    0.61560 0.148 0.616 0.236
#> GSM1068565     2  0.0000    0.70511 0.000 1.000 0.000
#> GSM1068529     3  0.7975    0.21333 0.140 0.204 0.656
#> GSM1068530     1  0.0000    0.81899 1.000 0.000 0.000
#> GSM1068534     3  0.9840   -0.15348 0.336 0.256 0.408
#> GSM1068536     1  0.5932    0.63895 0.780 0.056 0.164
#> GSM1068541     2  0.7944    0.52765 0.296 0.616 0.088
#> GSM1068553     2  0.9510    0.50458 0.264 0.492 0.244
#> GSM1068554     2  0.7053    0.65496 0.064 0.692 0.244
#> GSM1068558     3  0.5413    0.38387 0.036 0.164 0.800
#> GSM1068559     3  0.6850    0.40783 0.072 0.208 0.720
#> GSM1068564     2  0.6168    0.67017 0.036 0.740 0.224
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1068478     1  0.2515      0.894 0.912 0.072 0.012 0.004
#> GSM1068479     2  0.3962      0.825 0.000 0.832 0.124 0.044
#> GSM1068481     3  0.0707      0.990 0.020 0.000 0.980 0.000
#> GSM1068482     3  0.1042      0.989 0.020 0.000 0.972 0.008
#> GSM1068483     1  0.1256      0.925 0.964 0.028 0.008 0.000
#> GSM1068486     3  0.0707      0.990 0.020 0.000 0.980 0.000
#> GSM1068487     2  0.2053      0.899 0.000 0.924 0.004 0.072
#> GSM1068488     4  0.1114      0.902 0.016 0.004 0.008 0.972
#> GSM1068490     2  0.2053      0.899 0.000 0.924 0.004 0.072
#> GSM1068491     3  0.0779      0.978 0.004 0.016 0.980 0.000
#> GSM1068492     4  0.4095      0.808 0.004 0.028 0.148 0.820
#> GSM1068493     2  0.2310      0.869 0.016 0.932 0.032 0.020
#> GSM1068494     1  0.7092      0.264 0.540 0.040 0.052 0.368
#> GSM1068495     4  0.5887      0.381 0.020 0.392 0.012 0.576
#> GSM1068496     1  0.2684      0.902 0.912 0.060 0.016 0.012
#> GSM1068498     2  0.2433      0.853 0.060 0.920 0.012 0.008
#> GSM1068499     1  0.3637      0.866 0.864 0.052 0.080 0.004
#> GSM1068500     1  0.1256      0.925 0.964 0.028 0.008 0.000
#> GSM1068502     2  0.4322      0.797 0.000 0.804 0.152 0.044
#> GSM1068503     2  0.2125      0.898 0.000 0.920 0.004 0.076
#> GSM1068505     4  0.1151      0.902 0.008 0.024 0.000 0.968
#> GSM1068506     4  0.2408      0.856 0.000 0.104 0.000 0.896
#> GSM1068507     4  0.4607      0.589 0.004 0.276 0.004 0.716
#> GSM1068508     2  0.1909      0.899 0.008 0.940 0.004 0.048
#> GSM1068510     4  0.0937      0.901 0.000 0.012 0.012 0.976
#> GSM1068512     4  0.1929      0.899 0.036 0.024 0.000 0.940
#> GSM1068513     2  0.2266      0.898 0.000 0.912 0.004 0.084
#> GSM1068514     4  0.3380      0.825 0.004 0.008 0.136 0.852
#> GSM1068517     2  0.2231      0.864 0.044 0.932 0.012 0.012
#> GSM1068518     4  0.2748      0.877 0.020 0.072 0.004 0.904
#> GSM1068520     1  0.0376      0.932 0.992 0.000 0.004 0.004
#> GSM1068521     1  0.0188      0.931 0.996 0.000 0.000 0.004
#> GSM1068522     2  0.3751      0.795 0.000 0.800 0.004 0.196
#> GSM1068524     2  0.4795      0.654 0.000 0.696 0.012 0.292
#> GSM1068527     4  0.4079      0.781 0.180 0.020 0.000 0.800
#> GSM1068480     3  0.1004      0.987 0.024 0.000 0.972 0.004
#> GSM1068484     4  0.1042      0.902 0.008 0.020 0.000 0.972
#> GSM1068485     3  0.0707      0.990 0.020 0.000 0.980 0.000
#> GSM1068489     4  0.0895      0.902 0.004 0.020 0.000 0.976
#> GSM1068497     2  0.2186      0.862 0.048 0.932 0.012 0.008
#> GSM1068501     4  0.0927      0.900 0.000 0.016 0.008 0.976
#> GSM1068504     2  0.1867      0.900 0.000 0.928 0.000 0.072
#> GSM1068509     1  0.2589      0.899 0.912 0.044 0.000 0.044
#> GSM1068511     4  0.1958      0.895 0.028 0.008 0.020 0.944
#> GSM1068515     1  0.2988      0.864 0.876 0.112 0.000 0.012
#> GSM1068516     4  0.2853      0.875 0.016 0.076 0.008 0.900
#> GSM1068519     1  0.0336      0.931 0.992 0.000 0.000 0.008
#> GSM1068523     2  0.1575      0.891 0.004 0.956 0.012 0.028
#> GSM1068525     4  0.1229      0.902 0.008 0.020 0.004 0.968
#> GSM1068526     4  0.1004      0.901 0.004 0.024 0.000 0.972
#> GSM1068458     1  0.0524      0.931 0.988 0.000 0.008 0.004
#> GSM1068459     3  0.1042      0.989 0.020 0.000 0.972 0.008
#> GSM1068460     1  0.1151      0.923 0.968 0.000 0.008 0.024
#> GSM1068461     3  0.0895      0.989 0.020 0.004 0.976 0.000
#> GSM1068464     2  0.2053      0.899 0.000 0.924 0.004 0.072
#> GSM1068468     2  0.1004      0.893 0.000 0.972 0.004 0.024
#> GSM1068472     2  0.1004      0.894 0.000 0.972 0.004 0.024
#> GSM1068473     2  0.2053      0.899 0.000 0.924 0.004 0.072
#> GSM1068474     2  0.1867      0.900 0.000 0.928 0.000 0.072
#> GSM1068476     3  0.0779      0.975 0.000 0.016 0.980 0.004
#> GSM1068477     2  0.1557      0.901 0.000 0.944 0.000 0.056
#> GSM1068462     2  0.0672      0.886 0.000 0.984 0.008 0.008
#> GSM1068463     3  0.0895      0.990 0.020 0.000 0.976 0.004
#> GSM1068465     1  0.2040      0.911 0.936 0.048 0.004 0.012
#> GSM1068466     1  0.0712      0.931 0.984 0.004 0.008 0.004
#> GSM1068467     2  0.0524      0.887 0.000 0.988 0.004 0.008
#> GSM1068469     2  0.1396      0.873 0.032 0.960 0.004 0.004
#> GSM1068470     2  0.2238      0.900 0.004 0.920 0.004 0.072
#> GSM1068471     2  0.1867      0.900 0.000 0.928 0.000 0.072
#> GSM1068475     2  0.1867      0.900 0.000 0.928 0.000 0.072
#> GSM1068528     1  0.4540      0.678 0.740 0.008 0.248 0.004
#> GSM1068531     1  0.0524      0.931 0.988 0.000 0.004 0.008
#> GSM1068532     1  0.0672      0.930 0.984 0.000 0.008 0.008
#> GSM1068533     1  0.0672      0.930 0.984 0.000 0.008 0.008
#> GSM1068535     4  0.1902      0.877 0.064 0.000 0.004 0.932
#> GSM1068537     1  0.0524      0.930 0.988 0.000 0.008 0.004
#> GSM1068538     1  0.0672      0.930 0.984 0.000 0.008 0.008
#> GSM1068539     4  0.5751      0.417 0.016 0.380 0.012 0.592
#> GSM1068540     1  0.0188      0.931 0.996 0.000 0.000 0.004
#> GSM1068542     4  0.1406      0.902 0.016 0.024 0.000 0.960
#> GSM1068543     4  0.1284      0.902 0.024 0.012 0.000 0.964
#> GSM1068544     3  0.1256      0.983 0.028 0.000 0.964 0.008
#> GSM1068545     2  0.5313      0.249 0.004 0.536 0.004 0.456
#> GSM1068546     3  0.1297      0.982 0.016 0.000 0.964 0.020
#> GSM1068547     1  0.0592      0.929 0.984 0.000 0.000 0.016
#> GSM1068548     4  0.1520      0.902 0.024 0.020 0.000 0.956
#> GSM1068549     3  0.0779      0.988 0.016 0.004 0.980 0.000
#> GSM1068550     4  0.1151      0.902 0.008 0.024 0.000 0.968
#> GSM1068551     2  0.2311      0.899 0.004 0.916 0.004 0.076
#> GSM1068552     4  0.2345      0.856 0.000 0.100 0.000 0.900
#> GSM1068555     2  0.1471      0.889 0.004 0.960 0.012 0.024
#> GSM1068556     4  0.1284      0.902 0.024 0.012 0.000 0.964
#> GSM1068557     2  0.1247      0.885 0.004 0.968 0.012 0.016
#> GSM1068560     4  0.2546      0.894 0.028 0.044 0.008 0.920
#> GSM1068561     2  0.5257      0.514 0.012 0.680 0.012 0.296
#> GSM1068562     4  0.1174      0.903 0.012 0.020 0.000 0.968
#> GSM1068563     4  0.2530      0.858 0.004 0.100 0.000 0.896
#> GSM1068565     2  0.1978      0.900 0.000 0.928 0.004 0.068
#> GSM1068529     4  0.3626      0.857 0.012 0.056 0.060 0.872
#> GSM1068530     1  0.0376      0.932 0.992 0.000 0.004 0.004
#> GSM1068534     4  0.2870      0.875 0.020 0.052 0.020 0.908
#> GSM1068536     1  0.3614      0.869 0.872 0.048 0.012 0.068
#> GSM1068541     2  0.5579      0.462 0.028 0.640 0.004 0.328
#> GSM1068553     4  0.1082      0.899 0.020 0.004 0.004 0.972
#> GSM1068554     4  0.0927      0.900 0.000 0.016 0.008 0.976
#> GSM1068558     4  0.3863      0.791 0.004 0.008 0.176 0.812
#> GSM1068559     4  0.5131      0.639 0.000 0.028 0.280 0.692
#> GSM1068564     4  0.2647      0.836 0.000 0.120 0.000 0.880
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1068478     1  0.4403    0.45107 0.560 0.004 0.000 0.000 0.436
#> GSM1068479     2  0.3875    0.65065 0.000 0.816 0.048 0.012 0.124
#> GSM1068481     3  0.0290    0.95996 0.008 0.000 0.992 0.000 0.000
#> GSM1068482     3  0.0693    0.95806 0.008 0.000 0.980 0.000 0.012
#> GSM1068483     1  0.2445    0.81194 0.884 0.004 0.004 0.000 0.108
#> GSM1068486     3  0.0451    0.96002 0.004 0.000 0.988 0.000 0.008
#> GSM1068487     2  0.0510    0.76044 0.000 0.984 0.000 0.016 0.000
#> GSM1068488     4  0.3635    0.67988 0.000 0.000 0.004 0.748 0.248
#> GSM1068490     2  0.0510    0.76044 0.000 0.984 0.000 0.016 0.000
#> GSM1068491     3  0.2929    0.88307 0.000 0.012 0.856 0.004 0.128
#> GSM1068492     4  0.5837    0.55410 0.000 0.016 0.068 0.564 0.352
#> GSM1068493     5  0.5083   -0.23748 0.008 0.476 0.020 0.000 0.496
#> GSM1068494     5  0.7332    0.09750 0.248 0.000 0.036 0.272 0.444
#> GSM1068495     5  0.5183    0.53326 0.016 0.072 0.000 0.212 0.700
#> GSM1068496     1  0.5554    0.50617 0.568 0.000 0.068 0.004 0.360
#> GSM1068498     2  0.5176    0.17414 0.040 0.492 0.000 0.000 0.468
#> GSM1068499     1  0.6335    0.46146 0.528 0.000 0.144 0.008 0.320
#> GSM1068500     1  0.2445    0.81194 0.884 0.004 0.004 0.000 0.108
#> GSM1068502     2  0.4422    0.60505 0.000 0.776 0.068 0.012 0.144
#> GSM1068503     2  0.2561    0.64861 0.000 0.856 0.000 0.144 0.000
#> GSM1068505     4  0.1983    0.67816 0.008 0.008 0.000 0.924 0.060
#> GSM1068506     4  0.2616    0.63400 0.000 0.100 0.000 0.880 0.020
#> GSM1068507     4  0.5630    0.30318 0.004 0.288 0.000 0.612 0.096
#> GSM1068508     2  0.4499    0.56342 0.008 0.684 0.000 0.016 0.292
#> GSM1068510     4  0.4288    0.66294 0.000 0.032 0.004 0.740 0.224
#> GSM1068512     4  0.3741    0.66524 0.000 0.004 0.000 0.732 0.264
#> GSM1068513     2  0.2914    0.70538 0.000 0.872 0.000 0.052 0.076
#> GSM1068514     4  0.5406    0.58304 0.000 0.008 0.052 0.592 0.348
#> GSM1068517     2  0.5176    0.17414 0.040 0.492 0.000 0.000 0.468
#> GSM1068518     4  0.4899    0.34348 0.012 0.008 0.000 0.524 0.456
#> GSM1068520     1  0.0865    0.83319 0.972 0.004 0.000 0.000 0.024
#> GSM1068521     1  0.1908    0.82066 0.908 0.000 0.000 0.000 0.092
#> GSM1068522     2  0.4927    0.32588 0.000 0.652 0.000 0.296 0.052
#> GSM1068524     2  0.5144    0.45884 0.000 0.692 0.000 0.132 0.176
#> GSM1068527     4  0.5383    0.56945 0.084 0.004 0.000 0.644 0.268
#> GSM1068480     3  0.0865    0.95555 0.000 0.000 0.972 0.004 0.024
#> GSM1068484     4  0.3196    0.69084 0.000 0.004 0.000 0.804 0.192
#> GSM1068485     3  0.0324    0.95996 0.004 0.000 0.992 0.000 0.004
#> GSM1068489     4  0.1557    0.68670 0.000 0.008 0.000 0.940 0.052
#> GSM1068497     2  0.5176    0.17414 0.040 0.492 0.000 0.000 0.468
#> GSM1068501     4  0.3420    0.65079 0.000 0.036 0.004 0.836 0.124
#> GSM1068504     2  0.0510    0.76044 0.000 0.984 0.000 0.016 0.000
#> GSM1068509     1  0.4794    0.55902 0.624 0.000 0.000 0.032 0.344
#> GSM1068511     4  0.3883    0.68352 0.000 0.004 0.008 0.744 0.244
#> GSM1068515     1  0.4584    0.68999 0.732 0.032 0.000 0.016 0.220
#> GSM1068516     4  0.4585    0.48834 0.004 0.008 0.000 0.592 0.396
#> GSM1068519     1  0.2011    0.81656 0.908 0.000 0.004 0.000 0.088
#> GSM1068523     2  0.3857    0.54085 0.000 0.688 0.000 0.000 0.312
#> GSM1068525     4  0.3550    0.67241 0.000 0.004 0.000 0.760 0.236
#> GSM1068526     4  0.0798    0.69225 0.000 0.008 0.000 0.976 0.016
#> GSM1068458     1  0.0932    0.83254 0.972 0.004 0.000 0.004 0.020
#> GSM1068459     3  0.0693    0.95806 0.008 0.000 0.980 0.000 0.012
#> GSM1068460     1  0.1662    0.83155 0.936 0.004 0.000 0.004 0.056
#> GSM1068461     3  0.1041    0.95313 0.004 0.000 0.964 0.000 0.032
#> GSM1068464     2  0.0404    0.75994 0.000 0.988 0.000 0.012 0.000
#> GSM1068468     2  0.2604    0.73648 0.004 0.880 0.004 0.004 0.108
#> GSM1068472     2  0.2445    0.73397 0.000 0.884 0.004 0.004 0.108
#> GSM1068473     2  0.0510    0.76044 0.000 0.984 0.000 0.016 0.000
#> GSM1068474     2  0.0510    0.76044 0.000 0.984 0.000 0.016 0.000
#> GSM1068476     3  0.2881    0.88633 0.000 0.012 0.860 0.004 0.124
#> GSM1068477     2  0.1300    0.76048 0.000 0.956 0.000 0.016 0.028
#> GSM1068462     2  0.2945    0.71956 0.004 0.852 0.004 0.004 0.136
#> GSM1068463     3  0.0579    0.95867 0.008 0.000 0.984 0.000 0.008
#> GSM1068465     1  0.3607    0.72596 0.752 0.004 0.000 0.000 0.244
#> GSM1068466     1  0.0865    0.83319 0.972 0.004 0.000 0.000 0.024
#> GSM1068467     2  0.2497    0.73670 0.000 0.880 0.004 0.004 0.112
#> GSM1068469     2  0.3652    0.65735 0.012 0.784 0.004 0.000 0.200
#> GSM1068470     2  0.3055    0.71036 0.000 0.840 0.000 0.016 0.144
#> GSM1068471     2  0.0510    0.76044 0.000 0.984 0.000 0.016 0.000
#> GSM1068475     2  0.0510    0.76044 0.000 0.984 0.000 0.016 0.000
#> GSM1068528     1  0.5389    0.22131 0.508 0.000 0.436 0.000 0.056
#> GSM1068531     1  0.0162    0.83177 0.996 0.000 0.000 0.004 0.000
#> GSM1068532     1  0.0960    0.82799 0.972 0.000 0.008 0.004 0.016
#> GSM1068533     1  0.1016    0.82794 0.972 0.004 0.008 0.004 0.012
#> GSM1068535     4  0.3845    0.63529 0.060 0.000 0.004 0.812 0.124
#> GSM1068537     1  0.0740    0.82788 0.980 0.000 0.008 0.004 0.008
#> GSM1068538     1  0.0854    0.82791 0.976 0.000 0.008 0.004 0.012
#> GSM1068539     5  0.5269    0.51926 0.016 0.072 0.000 0.224 0.688
#> GSM1068540     1  0.1544    0.82366 0.932 0.000 0.000 0.000 0.068
#> GSM1068542     4  0.1087    0.69084 0.008 0.008 0.000 0.968 0.016
#> GSM1068543     4  0.3048    0.69547 0.000 0.004 0.000 0.820 0.176
#> GSM1068544     3  0.0693    0.95669 0.012 0.000 0.980 0.000 0.008
#> GSM1068545     4  0.5845    0.00992 0.000 0.352 0.000 0.540 0.108
#> GSM1068546     3  0.1365    0.94252 0.004 0.000 0.952 0.004 0.040
#> GSM1068547     1  0.0833    0.83357 0.976 0.004 0.000 0.004 0.016
#> GSM1068548     4  0.1200    0.69010 0.008 0.012 0.000 0.964 0.016
#> GSM1068549     3  0.1544    0.93391 0.000 0.000 0.932 0.000 0.068
#> GSM1068550     4  0.0898    0.69289 0.000 0.008 0.000 0.972 0.020
#> GSM1068551     2  0.2777    0.72557 0.000 0.864 0.000 0.016 0.120
#> GSM1068552     4  0.3304    0.55597 0.000 0.168 0.000 0.816 0.016
#> GSM1068555     2  0.3857    0.54085 0.000 0.688 0.000 0.000 0.312
#> GSM1068556     4  0.2763    0.70172 0.000 0.004 0.000 0.848 0.148
#> GSM1068557     2  0.4594    0.22106 0.004 0.508 0.004 0.000 0.484
#> GSM1068560     4  0.4478    0.53792 0.008 0.004 0.000 0.628 0.360
#> GSM1068561     5  0.5751    0.46513 0.008 0.240 0.000 0.120 0.632
#> GSM1068562     4  0.3196    0.69458 0.000 0.004 0.000 0.804 0.192
#> GSM1068563     4  0.3058    0.64668 0.000 0.096 0.000 0.860 0.044
#> GSM1068565     2  0.1701    0.75565 0.000 0.936 0.000 0.016 0.048
#> GSM1068529     4  0.4774    0.44283 0.000 0.004 0.012 0.540 0.444
#> GSM1068530     1  0.0324    0.83235 0.992 0.000 0.000 0.004 0.004
#> GSM1068534     4  0.3817    0.67131 0.000 0.004 0.004 0.740 0.252
#> GSM1068536     1  0.5508    0.38420 0.552 0.004 0.000 0.060 0.384
#> GSM1068541     5  0.7725    0.27707 0.056 0.256 0.000 0.324 0.364
#> GSM1068553     4  0.2770    0.66390 0.008 0.000 0.004 0.864 0.124
#> GSM1068554     4  0.3372    0.65016 0.000 0.036 0.004 0.840 0.120
#> GSM1068558     4  0.5304    0.57702 0.000 0.004 0.052 0.592 0.352
#> GSM1068559     4  0.6122    0.50212 0.000 0.004 0.124 0.528 0.344
#> GSM1068564     4  0.4548    0.44332 0.000 0.232 0.000 0.716 0.052
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1068478     5  0.4185     0.1635 0.332 0.000 0.000 0.020 0.644 0.004
#> GSM1068479     2  0.6030     0.4523 0.000 0.616 0.016 0.220 0.088 0.060
#> GSM1068481     3  0.0508     0.8939 0.000 0.000 0.984 0.012 0.004 0.000
#> GSM1068482     3  0.0458     0.8937 0.000 0.000 0.984 0.016 0.000 0.000
#> GSM1068483     1  0.4421     0.6334 0.684 0.000 0.004 0.056 0.256 0.000
#> GSM1068486     3  0.0260     0.8948 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM1068487     2  0.0146     0.7351 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM1068488     6  0.1524     0.5387 0.000 0.000 0.000 0.060 0.008 0.932
#> GSM1068490     2  0.0000     0.7352 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068491     3  0.5154     0.6998 0.000 0.008 0.672 0.208 0.096 0.016
#> GSM1068492     6  0.5961     0.4048 0.000 0.044 0.016 0.240 0.092 0.608
#> GSM1068493     5  0.6322     0.3953 0.000 0.284 0.012 0.048 0.544 0.112
#> GSM1068494     6  0.6219     0.3499 0.080 0.000 0.028 0.072 0.204 0.616
#> GSM1068495     5  0.4867     0.4466 0.008 0.028 0.000 0.024 0.644 0.296
#> GSM1068496     5  0.8381     0.2109 0.176 0.000 0.124 0.088 0.328 0.284
#> GSM1068498     5  0.4040     0.4081 0.032 0.280 0.000 0.000 0.688 0.000
#> GSM1068499     5  0.8596     0.1784 0.212 0.000 0.164 0.088 0.304 0.232
#> GSM1068500     1  0.4421     0.6334 0.684 0.000 0.004 0.056 0.256 0.000
#> GSM1068502     2  0.6335     0.4182 0.000 0.592 0.016 0.216 0.092 0.084
#> GSM1068503     2  0.2544     0.6511 0.000 0.852 0.000 0.140 0.004 0.004
#> GSM1068505     4  0.4379     0.6375 0.004 0.020 0.000 0.576 0.000 0.400
#> GSM1068506     4  0.5556     0.5770 0.000 0.056 0.000 0.488 0.036 0.420
#> GSM1068507     4  0.6532     0.4305 0.000 0.260 0.000 0.472 0.040 0.228
#> GSM1068508     2  0.4644     0.3590 0.004 0.584 0.000 0.024 0.380 0.008
#> GSM1068510     6  0.5724    -0.3965 0.000 0.052 0.000 0.424 0.052 0.472
#> GSM1068512     6  0.1950     0.5393 0.000 0.000 0.000 0.064 0.024 0.912
#> GSM1068513     2  0.3834     0.5922 0.000 0.768 0.000 0.184 0.036 0.012
#> GSM1068514     6  0.5084     0.4297 0.000 0.004 0.012 0.260 0.080 0.644
#> GSM1068517     5  0.3816     0.3885 0.016 0.296 0.000 0.000 0.688 0.000
#> GSM1068518     6  0.3789     0.5069 0.004 0.000 0.000 0.040 0.196 0.760
#> GSM1068520     1  0.1594     0.8350 0.932 0.000 0.000 0.016 0.052 0.000
#> GSM1068521     1  0.3332     0.7659 0.808 0.000 0.000 0.048 0.144 0.000
#> GSM1068522     2  0.4600    -0.0900 0.000 0.500 0.000 0.468 0.004 0.028
#> GSM1068524     2  0.4621     0.5336 0.000 0.724 0.000 0.016 0.112 0.148
#> GSM1068527     6  0.5432     0.4247 0.064 0.000 0.000 0.156 0.108 0.672
#> GSM1068480     3  0.2422     0.8697 0.000 0.000 0.896 0.052 0.040 0.012
#> GSM1068484     6  0.2261     0.4650 0.000 0.004 0.000 0.104 0.008 0.884
#> GSM1068485     3  0.0260     0.8945 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM1068489     4  0.4010     0.6287 0.000 0.008 0.000 0.584 0.000 0.408
#> GSM1068497     5  0.3867     0.3869 0.012 0.296 0.000 0.004 0.688 0.000
#> GSM1068501     4  0.5633     0.5970 0.000 0.060 0.000 0.552 0.048 0.340
#> GSM1068504     2  0.0146     0.7351 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM1068509     6  0.7353    -0.1764 0.292 0.000 0.004 0.088 0.276 0.340
#> GSM1068511     6  0.2320     0.5372 0.000 0.000 0.004 0.080 0.024 0.892
#> GSM1068515     1  0.5133     0.3081 0.524 0.020 0.000 0.044 0.412 0.000
#> GSM1068516     6  0.2730     0.5348 0.000 0.000 0.000 0.012 0.152 0.836
#> GSM1068519     1  0.3521     0.7535 0.812 0.000 0.000 0.060 0.120 0.008
#> GSM1068523     2  0.4625     0.3781 0.000 0.604 0.000 0.020 0.356 0.020
#> GSM1068525     6  0.1257     0.5482 0.000 0.000 0.000 0.020 0.028 0.952
#> GSM1068526     6  0.4701    -0.5769 0.000 0.008 0.000 0.480 0.028 0.484
#> GSM1068458     1  0.1594     0.8366 0.932 0.000 0.000 0.016 0.052 0.000
#> GSM1068459     3  0.0405     0.8945 0.000 0.000 0.988 0.008 0.004 0.000
#> GSM1068460     1  0.2019     0.8282 0.900 0.000 0.000 0.012 0.088 0.000
#> GSM1068461     3  0.1003     0.8920 0.000 0.000 0.964 0.016 0.020 0.000
#> GSM1068464     2  0.0520     0.7342 0.000 0.984 0.000 0.008 0.008 0.000
#> GSM1068468     2  0.4077     0.5875 0.000 0.724 0.000 0.044 0.228 0.004
#> GSM1068472     2  0.3741     0.5991 0.000 0.756 0.000 0.032 0.208 0.004
#> GSM1068473     2  0.0146     0.7351 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM1068474     2  0.0000     0.7352 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068476     3  0.5111     0.7035 0.000 0.008 0.672 0.208 0.100 0.012
#> GSM1068477     2  0.1858     0.7217 0.000 0.912 0.000 0.012 0.076 0.000
#> GSM1068462     2  0.4163     0.5744 0.000 0.716 0.000 0.048 0.232 0.004
#> GSM1068463     3  0.0508     0.8939 0.000 0.000 0.984 0.012 0.004 0.000
#> GSM1068465     1  0.4614     0.3923 0.548 0.000 0.000 0.032 0.416 0.004
#> GSM1068466     1  0.1719     0.8341 0.924 0.000 0.000 0.016 0.060 0.000
#> GSM1068467     2  0.3997     0.5963 0.000 0.736 0.000 0.044 0.216 0.004
#> GSM1068469     2  0.4493     0.3782 0.000 0.612 0.000 0.044 0.344 0.000
#> GSM1068470     2  0.3401     0.6217 0.000 0.776 0.000 0.016 0.204 0.004
#> GSM1068471     2  0.0000     0.7352 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068475     2  0.0508     0.7343 0.000 0.984 0.000 0.004 0.012 0.000
#> GSM1068528     3  0.5422     0.4463 0.276 0.000 0.624 0.048 0.044 0.008
#> GSM1068531     1  0.0520     0.8382 0.984 0.000 0.000 0.008 0.008 0.000
#> GSM1068532     1  0.2221     0.8113 0.908 0.000 0.004 0.044 0.040 0.004
#> GSM1068533     1  0.0837     0.8389 0.972 0.000 0.004 0.020 0.004 0.000
#> GSM1068535     4  0.5633     0.5665 0.048 0.000 0.000 0.536 0.056 0.360
#> GSM1068537     1  0.1138     0.8329 0.960 0.000 0.004 0.012 0.024 0.000
#> GSM1068538     1  0.0767     0.8369 0.976 0.000 0.004 0.012 0.008 0.000
#> GSM1068539     5  0.4933     0.4244 0.008 0.028 0.000 0.024 0.628 0.312
#> GSM1068540     1  0.2595     0.7933 0.872 0.000 0.000 0.044 0.084 0.000
#> GSM1068542     4  0.4828     0.5505 0.004 0.008 0.000 0.492 0.028 0.468
#> GSM1068543     6  0.2432     0.4617 0.000 0.000 0.000 0.100 0.024 0.876
#> GSM1068544     3  0.0692     0.8873 0.004 0.000 0.976 0.020 0.000 0.000
#> GSM1068545     4  0.7367     0.3773 0.000 0.276 0.000 0.384 0.140 0.200
#> GSM1068546     3  0.1572     0.8824 0.000 0.000 0.936 0.036 0.028 0.000
#> GSM1068547     1  0.1007     0.8406 0.956 0.000 0.000 0.000 0.044 0.000
#> GSM1068548     4  0.5152     0.5521 0.008 0.016 0.000 0.488 0.032 0.456
#> GSM1068549     3  0.3063     0.8351 0.000 0.000 0.840 0.092 0.068 0.000
#> GSM1068550     6  0.4701    -0.5769 0.000 0.008 0.000 0.480 0.028 0.484
#> GSM1068551     2  0.3393     0.6312 0.000 0.784 0.000 0.020 0.192 0.004
#> GSM1068552     4  0.6206     0.5826 0.000 0.148 0.000 0.480 0.032 0.340
#> GSM1068555     2  0.4710     0.3661 0.000 0.596 0.000 0.020 0.360 0.024
#> GSM1068556     6  0.3394     0.2852 0.000 0.000 0.000 0.200 0.024 0.776
#> GSM1068557     5  0.4960     0.2949 0.000 0.336 0.000 0.020 0.600 0.044
#> GSM1068560     6  0.4832     0.4425 0.012 0.000 0.000 0.132 0.160 0.696
#> GSM1068561     5  0.5631     0.5152 0.004 0.104 0.000 0.028 0.608 0.256
#> GSM1068562     6  0.2831     0.4107 0.000 0.000 0.000 0.136 0.024 0.840
#> GSM1068563     6  0.5490    -0.4649 0.000 0.052 0.000 0.404 0.036 0.508
#> GSM1068565     2  0.1779     0.7199 0.000 0.920 0.000 0.016 0.064 0.000
#> GSM1068529     6  0.3862     0.5282 0.000 0.000 0.000 0.096 0.132 0.772
#> GSM1068530     1  0.0291     0.8399 0.992 0.000 0.000 0.004 0.004 0.000
#> GSM1068534     6  0.1408     0.5518 0.000 0.000 0.000 0.036 0.020 0.944
#> GSM1068536     5  0.5636    -0.0322 0.428 0.000 0.000 0.012 0.456 0.104
#> GSM1068541     5  0.6860     0.3684 0.044 0.108 0.000 0.232 0.548 0.068
#> GSM1068553     4  0.4939     0.5993 0.004 0.004 0.000 0.552 0.048 0.392
#> GSM1068554     4  0.5622     0.5950 0.000 0.060 0.000 0.556 0.048 0.336
#> GSM1068558     6  0.4288     0.5075 0.000 0.000 0.020 0.148 0.076 0.756
#> GSM1068559     6  0.5602     0.4277 0.000 0.000 0.080 0.216 0.068 0.636
#> GSM1068564     4  0.6313     0.5411 0.000 0.236 0.000 0.496 0.028 0.240
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#>              n disease.state(p) gender(p) k
#> MAD:kmeans 105          0.77262     0.330 2
#> MAD:kmeans  86          0.85051     0.697 3
#> MAD:kmeans 103          0.00304     0.552 4
#> MAD:kmeans  88          0.00403     0.746 5
#> MAD:kmeans  69          0.00576     0.162 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 38950 rows and 108 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.674           0.817       0.927         0.5035 0.498   0.498
#> 3 3 0.479           0.539       0.745         0.3271 0.721   0.505
#> 4 4 0.854           0.818       0.919         0.1285 0.796   0.490
#> 5 5 0.740           0.629       0.769         0.0631 0.894   0.614
#> 6 6 0.722           0.547       0.754         0.0391 0.888   0.531
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1068478     1  0.6247     0.7796 0.844 0.156
#> GSM1068479     2  0.0000     0.9085 0.000 1.000
#> GSM1068481     1  0.0000     0.9214 1.000 0.000
#> GSM1068482     1  0.0000     0.9214 1.000 0.000
#> GSM1068483     1  0.0000     0.9214 1.000 0.000
#> GSM1068486     1  0.0000     0.9214 1.000 0.000
#> GSM1068487     2  0.0000     0.9085 0.000 1.000
#> GSM1068488     2  0.8081     0.6700 0.248 0.752
#> GSM1068490     2  0.0000     0.9085 0.000 1.000
#> GSM1068491     1  0.0376     0.9187 0.996 0.004
#> GSM1068492     2  0.1184     0.8997 0.016 0.984
#> GSM1068493     1  0.7453     0.7106 0.788 0.212
#> GSM1068494     1  0.0000     0.9214 1.000 0.000
#> GSM1068495     2  0.0376     0.9061 0.004 0.996
#> GSM1068496     1  0.0000     0.9214 1.000 0.000
#> GSM1068498     1  0.9710     0.3562 0.600 0.400
#> GSM1068499     1  0.0000     0.9214 1.000 0.000
#> GSM1068500     1  0.0000     0.9214 1.000 0.000
#> GSM1068502     2  0.0000     0.9085 0.000 1.000
#> GSM1068503     2  0.0000     0.9085 0.000 1.000
#> GSM1068505     2  0.0000     0.9085 0.000 1.000
#> GSM1068506     2  0.0000     0.9085 0.000 1.000
#> GSM1068507     2  0.5294     0.8190 0.120 0.880
#> GSM1068508     2  0.0000     0.9085 0.000 1.000
#> GSM1068510     2  0.0000     0.9085 0.000 1.000
#> GSM1068512     1  0.7950     0.6275 0.760 0.240
#> GSM1068513     2  0.0000     0.9085 0.000 1.000
#> GSM1068514     2  0.9710     0.3816 0.400 0.600
#> GSM1068517     2  0.9944     0.0943 0.456 0.544
#> GSM1068518     1  0.3879     0.8581 0.924 0.076
#> GSM1068520     1  0.0000     0.9214 1.000 0.000
#> GSM1068521     1  0.0000     0.9214 1.000 0.000
#> GSM1068522     2  0.0000     0.9085 0.000 1.000
#> GSM1068524     2  0.0000     0.9085 0.000 1.000
#> GSM1068527     1  0.9775     0.2111 0.588 0.412
#> GSM1068480     1  0.0000     0.9214 1.000 0.000
#> GSM1068484     2  0.0000     0.9085 0.000 1.000
#> GSM1068485     1  0.0000     0.9214 1.000 0.000
#> GSM1068489     2  0.0000     0.9085 0.000 1.000
#> GSM1068497     1  0.9710     0.3562 0.600 0.400
#> GSM1068501     2  0.0000     0.9085 0.000 1.000
#> GSM1068504     2  0.0000     0.9085 0.000 1.000
#> GSM1068509     1  0.0000     0.9214 1.000 0.000
#> GSM1068511     1  0.0000     0.9214 1.000 0.000
#> GSM1068515     1  0.6973     0.7414 0.812 0.188
#> GSM1068516     2  0.2948     0.8786 0.052 0.948
#> GSM1068519     1  0.0000     0.9214 1.000 0.000
#> GSM1068523     2  0.0000     0.9085 0.000 1.000
#> GSM1068525     2  0.0000     0.9085 0.000 1.000
#> GSM1068526     2  0.4022     0.8550 0.080 0.920
#> GSM1068458     1  0.0000     0.9214 1.000 0.000
#> GSM1068459     1  0.0000     0.9214 1.000 0.000
#> GSM1068460     1  0.0938     0.9143 0.988 0.012
#> GSM1068461     1  0.0000     0.9214 1.000 0.000
#> GSM1068464     2  0.0000     0.9085 0.000 1.000
#> GSM1068468     2  0.0938     0.9010 0.012 0.988
#> GSM1068472     2  0.8499     0.5671 0.276 0.724
#> GSM1068473     2  0.0000     0.9085 0.000 1.000
#> GSM1068474     2  0.0000     0.9085 0.000 1.000
#> GSM1068476     1  0.9998    -0.0816 0.508 0.492
#> GSM1068477     2  0.0000     0.9085 0.000 1.000
#> GSM1068462     2  0.9963     0.0654 0.464 0.536
#> GSM1068463     1  0.0000     0.9214 1.000 0.000
#> GSM1068465     1  0.7674     0.6940 0.776 0.224
#> GSM1068466     1  0.0000     0.9214 1.000 0.000
#> GSM1068467     2  0.0000     0.9085 0.000 1.000
#> GSM1068469     1  0.9710     0.3562 0.600 0.400
#> GSM1068470     2  0.0000     0.9085 0.000 1.000
#> GSM1068471     2  0.0000     0.9085 0.000 1.000
#> GSM1068475     2  0.0000     0.9085 0.000 1.000
#> GSM1068528     1  0.0000     0.9214 1.000 0.000
#> GSM1068531     1  0.0000     0.9214 1.000 0.000
#> GSM1068532     1  0.0000     0.9214 1.000 0.000
#> GSM1068533     1  0.0000     0.9214 1.000 0.000
#> GSM1068535     1  0.0000     0.9214 1.000 0.000
#> GSM1068537     1  0.0000     0.9214 1.000 0.000
#> GSM1068538     1  0.0000     0.9214 1.000 0.000
#> GSM1068539     2  0.0000     0.9085 0.000 1.000
#> GSM1068540     1  0.0000     0.9214 1.000 0.000
#> GSM1068542     2  0.3879     0.8584 0.076 0.924
#> GSM1068543     2  0.9686     0.3914 0.396 0.604
#> GSM1068544     1  0.0000     0.9214 1.000 0.000
#> GSM1068545     2  0.0000     0.9085 0.000 1.000
#> GSM1068546     1  0.0000     0.9214 1.000 0.000
#> GSM1068547     1  0.0000     0.9214 1.000 0.000
#> GSM1068548     2  0.7219     0.7333 0.200 0.800
#> GSM1068549     1  0.0000     0.9214 1.000 0.000
#> GSM1068550     2  0.0000     0.9085 0.000 1.000
#> GSM1068551     2  0.0000     0.9085 0.000 1.000
#> GSM1068552     2  0.0000     0.9085 0.000 1.000
#> GSM1068555     2  0.0000     0.9085 0.000 1.000
#> GSM1068556     2  0.9710     0.3816 0.400 0.600
#> GSM1068557     2  0.0000     0.9085 0.000 1.000
#> GSM1068560     2  0.7219     0.7333 0.200 0.800
#> GSM1068561     2  0.9833     0.1995 0.424 0.576
#> GSM1068562     2  0.4562     0.8425 0.096 0.904
#> GSM1068563     2  0.2043     0.8906 0.032 0.968
#> GSM1068565     2  0.0000     0.9085 0.000 1.000
#> GSM1068529     1  0.0000     0.9214 1.000 0.000
#> GSM1068530     1  0.0000     0.9214 1.000 0.000
#> GSM1068534     1  0.0000     0.9214 1.000 0.000
#> GSM1068536     1  0.1184     0.9102 0.984 0.016
#> GSM1068541     2  0.0000     0.9085 0.000 1.000
#> GSM1068553     2  0.9661     0.4009 0.392 0.608
#> GSM1068554     2  0.0000     0.9085 0.000 1.000
#> GSM1068558     2  0.7602     0.7085 0.220 0.780
#> GSM1068559     1  0.4690     0.8301 0.900 0.100
#> GSM1068564     2  0.0000     0.9085 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1068478     1  0.2537     0.7821 0.920 0.080 0.000
#> GSM1068479     3  0.6215     0.2515 0.000 0.428 0.572
#> GSM1068481     3  0.5948     0.4623 0.360 0.000 0.640
#> GSM1068482     3  0.5948     0.4623 0.360 0.000 0.640
#> GSM1068483     1  0.2711     0.7848 0.912 0.000 0.088
#> GSM1068486     3  0.5948     0.4623 0.360 0.000 0.640
#> GSM1068487     2  0.0000     0.7022 0.000 1.000 0.000
#> GSM1068488     3  0.3253     0.5737 0.036 0.052 0.912
#> GSM1068490     2  0.0000     0.7022 0.000 1.000 0.000
#> GSM1068491     3  0.6427     0.4662 0.348 0.012 0.640
#> GSM1068492     3  0.0892     0.6095 0.000 0.020 0.980
#> GSM1068493     3  0.7188     0.1038 0.024 0.488 0.488
#> GSM1068494     1  0.5859     0.3215 0.656 0.000 0.344
#> GSM1068495     2  0.7661     0.1317 0.452 0.504 0.044
#> GSM1068496     1  0.5785     0.4051 0.668 0.000 0.332
#> GSM1068498     2  0.6302     0.0712 0.480 0.520 0.000
#> GSM1068499     1  0.5560     0.4758 0.700 0.000 0.300
#> GSM1068500     1  0.3116     0.7658 0.892 0.000 0.108
#> GSM1068502     3  0.6235     0.2386 0.000 0.436 0.564
#> GSM1068503     2  0.0237     0.7017 0.000 0.996 0.004
#> GSM1068505     2  0.9224     0.3863 0.160 0.480 0.360
#> GSM1068506     2  0.6954     0.5013 0.028 0.620 0.352
#> GSM1068507     2  0.6880     0.5918 0.108 0.736 0.156
#> GSM1068508     2  0.0592     0.7000 0.012 0.988 0.000
#> GSM1068510     3  0.5988     0.1895 0.008 0.304 0.688
#> GSM1068512     3  0.2749     0.6070 0.064 0.012 0.924
#> GSM1068513     2  0.0000     0.7022 0.000 1.000 0.000
#> GSM1068514     3  0.0424     0.6083 0.008 0.000 0.992
#> GSM1068517     2  0.6302     0.0712 0.480 0.520 0.000
#> GSM1068518     3  0.6215     0.0736 0.428 0.000 0.572
#> GSM1068520     1  0.0000     0.8434 1.000 0.000 0.000
#> GSM1068521     1  0.0000     0.8434 1.000 0.000 0.000
#> GSM1068522     2  0.2066     0.6866 0.000 0.940 0.060
#> GSM1068524     2  0.1031     0.6978 0.000 0.976 0.024
#> GSM1068527     1  0.8143     0.1716 0.560 0.080 0.360
#> GSM1068480     3  0.5948     0.4623 0.360 0.000 0.640
#> GSM1068484     2  0.5968     0.5083 0.000 0.636 0.364
#> GSM1068485     3  0.5948     0.4623 0.360 0.000 0.640
#> GSM1068489     2  0.9076     0.3911 0.144 0.488 0.368
#> GSM1068497     2  0.6302     0.0712 0.480 0.520 0.000
#> GSM1068501     2  0.8212     0.4530 0.084 0.556 0.360
#> GSM1068504     2  0.0000     0.7022 0.000 1.000 0.000
#> GSM1068509     1  0.2165     0.8027 0.936 0.000 0.064
#> GSM1068511     3  0.1643     0.6114 0.044 0.000 0.956
#> GSM1068515     1  0.3267     0.7421 0.884 0.116 0.000
#> GSM1068516     3  0.6955     0.4520 0.172 0.100 0.728
#> GSM1068519     1  0.0424     0.8391 0.992 0.000 0.008
#> GSM1068523     2  0.0000     0.7022 0.000 1.000 0.000
#> GSM1068525     2  0.5988     0.5047 0.000 0.632 0.368
#> GSM1068526     2  0.8902     0.3692 0.124 0.480 0.396
#> GSM1068458     1  0.0000     0.8434 1.000 0.000 0.000
#> GSM1068459     3  0.5948     0.4623 0.360 0.000 0.640
#> GSM1068460     1  0.0592     0.8364 0.988 0.000 0.012
#> GSM1068461     3  0.5948     0.4623 0.360 0.000 0.640
#> GSM1068464     2  0.0000     0.7022 0.000 1.000 0.000
#> GSM1068468     2  0.4469     0.6320 0.076 0.864 0.060
#> GSM1068472     2  0.4556     0.6295 0.080 0.860 0.060
#> GSM1068473     2  0.0000     0.7022 0.000 1.000 0.000
#> GSM1068474     2  0.0000     0.7022 0.000 1.000 0.000
#> GSM1068476     3  0.5919     0.5206 0.276 0.012 0.712
#> GSM1068477     2  0.0000     0.7022 0.000 1.000 0.000
#> GSM1068462     2  0.5688     0.5465 0.044 0.788 0.168
#> GSM1068463     3  0.5948     0.4623 0.360 0.000 0.640
#> GSM1068465     1  0.5058     0.5473 0.756 0.244 0.000
#> GSM1068466     1  0.0000     0.8434 1.000 0.000 0.000
#> GSM1068467     2  0.4288     0.6369 0.068 0.872 0.060
#> GSM1068469     2  0.7784     0.2168 0.388 0.556 0.056
#> GSM1068470     2  0.0000     0.7022 0.000 1.000 0.000
#> GSM1068471     2  0.0000     0.7022 0.000 1.000 0.000
#> GSM1068475     2  0.0000     0.7022 0.000 1.000 0.000
#> GSM1068528     1  0.4399     0.6736 0.812 0.000 0.188
#> GSM1068531     1  0.0000     0.8434 1.000 0.000 0.000
#> GSM1068532     1  0.0424     0.8403 0.992 0.000 0.008
#> GSM1068533     1  0.0000     0.8434 1.000 0.000 0.000
#> GSM1068535     3  0.5450     0.4579 0.228 0.012 0.760
#> GSM1068537     1  0.0000     0.8434 1.000 0.000 0.000
#> GSM1068538     1  0.0000     0.8434 1.000 0.000 0.000
#> GSM1068539     2  0.7864     0.3989 0.332 0.596 0.072
#> GSM1068540     1  0.0000     0.8434 1.000 0.000 0.000
#> GSM1068542     2  0.9224     0.3863 0.160 0.480 0.360
#> GSM1068543     3  0.4945     0.5090 0.056 0.104 0.840
#> GSM1068544     1  0.6299    -0.0695 0.524 0.000 0.476
#> GSM1068545     2  0.4291     0.6308 0.000 0.820 0.180
#> GSM1068546     3  0.5948     0.4623 0.360 0.000 0.640
#> GSM1068547     1  0.0424     0.8391 0.992 0.000 0.008
#> GSM1068548     2  0.9224     0.3863 0.160 0.480 0.360
#> GSM1068549     3  0.5948     0.4623 0.360 0.000 0.640
#> GSM1068550     2  0.9224     0.3863 0.160 0.480 0.360
#> GSM1068551     2  0.0000     0.7022 0.000 1.000 0.000
#> GSM1068552     2  0.6448     0.5100 0.012 0.636 0.352
#> GSM1068555     2  0.0000     0.7022 0.000 1.000 0.000
#> GSM1068556     3  0.5835     0.4282 0.052 0.164 0.784
#> GSM1068557     2  0.3038     0.6359 0.000 0.896 0.104
#> GSM1068560     2  0.9883     0.2789 0.260 0.380 0.360
#> GSM1068561     2  0.9198     0.2198 0.280 0.528 0.192
#> GSM1068562     2  0.7995     0.3171 0.060 0.480 0.460
#> GSM1068563     3  0.7075    -0.3279 0.020 0.488 0.492
#> GSM1068565     2  0.0000     0.7022 0.000 1.000 0.000
#> GSM1068529     3  0.1289     0.6115 0.032 0.000 0.968
#> GSM1068530     1  0.0000     0.8434 1.000 0.000 0.000
#> GSM1068534     3  0.1643     0.6110 0.044 0.000 0.956
#> GSM1068536     1  0.1031     0.8262 0.976 0.000 0.024
#> GSM1068541     2  0.6337     0.5248 0.264 0.708 0.028
#> GSM1068553     3  0.7888     0.2807 0.140 0.196 0.664
#> GSM1068554     2  0.8039     0.3804 0.064 0.508 0.428
#> GSM1068558     3  0.0000     0.6063 0.000 0.000 1.000
#> GSM1068559     3  0.5291     0.5273 0.268 0.000 0.732
#> GSM1068564     2  0.5905     0.5170 0.000 0.648 0.352
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1068478     1  0.0524     0.9103 0.988 0.008 0.004 0.000
#> GSM1068479     3  0.4454     0.5454 0.000 0.308 0.692 0.000
#> GSM1068481     3  0.0188     0.9101 0.004 0.000 0.996 0.000
#> GSM1068482     3  0.0376     0.9097 0.004 0.000 0.992 0.004
#> GSM1068483     1  0.0336     0.9139 0.992 0.000 0.008 0.000
#> GSM1068486     3  0.0188     0.9101 0.004 0.000 0.996 0.000
#> GSM1068487     2  0.0336     0.9228 0.000 0.992 0.000 0.008
#> GSM1068488     4  0.2011     0.8494 0.000 0.000 0.080 0.920
#> GSM1068490     2  0.0336     0.9228 0.000 0.992 0.000 0.008
#> GSM1068491     3  0.0188     0.9101 0.004 0.000 0.996 0.000
#> GSM1068492     3  0.2319     0.8729 0.000 0.036 0.924 0.040
#> GSM1068493     2  0.4977     0.1685 0.000 0.540 0.460 0.000
#> GSM1068494     1  0.5792     0.2441 0.552 0.000 0.416 0.032
#> GSM1068495     2  0.7221     0.4600 0.236 0.568 0.004 0.192
#> GSM1068496     3  0.4916     0.2072 0.424 0.000 0.576 0.000
#> GSM1068498     2  0.3208     0.8054 0.148 0.848 0.004 0.000
#> GSM1068499     1  0.5155     0.1176 0.528 0.000 0.468 0.004
#> GSM1068500     1  0.1118     0.8932 0.964 0.000 0.036 0.000
#> GSM1068502     3  0.4072     0.6475 0.000 0.252 0.748 0.000
#> GSM1068503     2  0.3764     0.6949 0.000 0.784 0.000 0.216
#> GSM1068505     4  0.0188     0.9034 0.000 0.004 0.000 0.996
#> GSM1068506     4  0.1211     0.8903 0.000 0.040 0.000 0.960
#> GSM1068507     4  0.6279     0.1496 0.020 0.440 0.024 0.516
#> GSM1068508     2  0.0804     0.9202 0.008 0.980 0.000 0.012
#> GSM1068510     4  0.1637     0.8696 0.000 0.000 0.060 0.940
#> GSM1068512     3  0.5987     0.1626 0.040 0.000 0.520 0.440
#> GSM1068513     2  0.0592     0.9202 0.000 0.984 0.000 0.016
#> GSM1068514     3  0.1211     0.8953 0.000 0.000 0.960 0.040
#> GSM1068517     2  0.2197     0.8732 0.080 0.916 0.004 0.000
#> GSM1068518     4  0.7997     0.0471 0.328 0.004 0.272 0.396
#> GSM1068520     1  0.0000     0.9162 1.000 0.000 0.000 0.000
#> GSM1068521     1  0.0000     0.9162 1.000 0.000 0.000 0.000
#> GSM1068522     4  0.4585     0.5173 0.000 0.332 0.000 0.668
#> GSM1068524     2  0.2401     0.8661 0.000 0.904 0.004 0.092
#> GSM1068527     4  0.4713     0.4378 0.360 0.000 0.000 0.640
#> GSM1068480     3  0.0376     0.9097 0.004 0.000 0.992 0.004
#> GSM1068484     4  0.0188     0.9034 0.000 0.004 0.000 0.996
#> GSM1068485     3  0.0188     0.9101 0.004 0.000 0.996 0.000
#> GSM1068489     4  0.0188     0.9034 0.000 0.004 0.000 0.996
#> GSM1068497     2  0.2125     0.8765 0.076 0.920 0.004 0.000
#> GSM1068501     4  0.0000     0.9025 0.000 0.000 0.000 1.000
#> GSM1068504     2  0.0336     0.9228 0.000 0.992 0.000 0.008
#> GSM1068509     1  0.0000     0.9162 1.000 0.000 0.000 0.000
#> GSM1068511     3  0.3300     0.7974 0.008 0.000 0.848 0.144
#> GSM1068515     1  0.1970     0.8635 0.932 0.060 0.008 0.000
#> GSM1068516     4  0.1452     0.8846 0.000 0.008 0.036 0.956
#> GSM1068519     1  0.0000     0.9162 1.000 0.000 0.000 0.000
#> GSM1068523     2  0.0376     0.9215 0.000 0.992 0.004 0.004
#> GSM1068525     4  0.0336     0.9031 0.000 0.008 0.000 0.992
#> GSM1068526     4  0.0188     0.9034 0.000 0.004 0.000 0.996
#> GSM1068458     1  0.0336     0.9139 0.992 0.000 0.008 0.000
#> GSM1068459     3  0.0376     0.9097 0.004 0.000 0.992 0.004
#> GSM1068460     1  0.0000     0.9162 1.000 0.000 0.000 0.000
#> GSM1068461     3  0.0188     0.9101 0.004 0.000 0.996 0.000
#> GSM1068464     2  0.0336     0.9228 0.000 0.992 0.000 0.008
#> GSM1068468     2  0.0188     0.9212 0.000 0.996 0.004 0.000
#> GSM1068472     2  0.0188     0.9212 0.000 0.996 0.004 0.000
#> GSM1068473     2  0.0336     0.9228 0.000 0.992 0.000 0.008
#> GSM1068474     2  0.0336     0.9228 0.000 0.992 0.000 0.008
#> GSM1068476     3  0.0188     0.9101 0.004 0.000 0.996 0.000
#> GSM1068477     2  0.0000     0.9218 0.000 1.000 0.000 0.000
#> GSM1068462     2  0.0469     0.9186 0.000 0.988 0.012 0.000
#> GSM1068463     3  0.0188     0.9101 0.004 0.000 0.996 0.000
#> GSM1068465     1  0.0000     0.9162 1.000 0.000 0.000 0.000
#> GSM1068466     1  0.0000     0.9162 1.000 0.000 0.000 0.000
#> GSM1068467     2  0.0188     0.9212 0.000 0.996 0.004 0.000
#> GSM1068469     2  0.1356     0.9059 0.032 0.960 0.008 0.000
#> GSM1068470     2  0.0336     0.9225 0.000 0.992 0.000 0.008
#> GSM1068471     2  0.0336     0.9228 0.000 0.992 0.000 0.008
#> GSM1068475     2  0.0336     0.9228 0.000 0.992 0.000 0.008
#> GSM1068528     1  0.4543     0.5202 0.676 0.000 0.324 0.000
#> GSM1068531     1  0.0000     0.9162 1.000 0.000 0.000 0.000
#> GSM1068532     1  0.0188     0.9154 0.996 0.000 0.004 0.000
#> GSM1068533     1  0.0336     0.9139 0.992 0.000 0.008 0.000
#> GSM1068535     4  0.1042     0.8936 0.020 0.000 0.008 0.972
#> GSM1068537     1  0.0188     0.9154 0.996 0.000 0.004 0.000
#> GSM1068538     1  0.0336     0.9139 0.992 0.000 0.008 0.000
#> GSM1068539     2  0.6691     0.3999 0.096 0.580 0.004 0.320
#> GSM1068540     1  0.0000     0.9162 1.000 0.000 0.000 0.000
#> GSM1068542     4  0.0188     0.9034 0.000 0.004 0.000 0.996
#> GSM1068543     4  0.0188     0.9014 0.000 0.000 0.004 0.996
#> GSM1068544     3  0.2081     0.8459 0.084 0.000 0.916 0.000
#> GSM1068545     4  0.3528     0.7429 0.000 0.192 0.000 0.808
#> GSM1068546     3  0.0376     0.9097 0.004 0.000 0.992 0.004
#> GSM1068547     1  0.0000     0.9162 1.000 0.000 0.000 0.000
#> GSM1068548     4  0.0524     0.9027 0.004 0.008 0.000 0.988
#> GSM1068549     3  0.0188     0.9101 0.004 0.000 0.996 0.000
#> GSM1068550     4  0.0188     0.9034 0.000 0.004 0.000 0.996
#> GSM1068551     2  0.0469     0.9217 0.000 0.988 0.000 0.012
#> GSM1068552     4  0.1118     0.8923 0.000 0.036 0.000 0.964
#> GSM1068555     2  0.0376     0.9215 0.000 0.992 0.004 0.004
#> GSM1068556     4  0.0188     0.9014 0.000 0.000 0.004 0.996
#> GSM1068557     2  0.0469     0.9197 0.000 0.988 0.012 0.000
#> GSM1068560     4  0.2586     0.8408 0.092 0.004 0.004 0.900
#> GSM1068561     2  0.4413     0.7779 0.008 0.812 0.140 0.040
#> GSM1068562     4  0.0188     0.9034 0.000 0.004 0.000 0.996
#> GSM1068563     4  0.1474     0.8834 0.000 0.052 0.000 0.948
#> GSM1068565     2  0.0336     0.9228 0.000 0.992 0.000 0.008
#> GSM1068529     3  0.0592     0.9057 0.000 0.000 0.984 0.016
#> GSM1068530     1  0.0000     0.9162 1.000 0.000 0.000 0.000
#> GSM1068534     3  0.1022     0.9000 0.000 0.000 0.968 0.032
#> GSM1068536     1  0.0376     0.9124 0.992 0.004 0.004 0.000
#> GSM1068541     1  0.7449     0.1890 0.480 0.332 0.000 0.188
#> GSM1068553     4  0.0000     0.9025 0.000 0.000 0.000 1.000
#> GSM1068554     4  0.0188     0.9024 0.000 0.000 0.004 0.996
#> GSM1068558     3  0.0817     0.9027 0.000 0.000 0.976 0.024
#> GSM1068559     3  0.0000     0.9090 0.000 0.000 1.000 0.000
#> GSM1068564     4  0.1557     0.8809 0.000 0.056 0.000 0.944
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1068478     1  0.4419   5.65e-01 0.668 0.020 0.000 0.000 0.312
#> GSM1068479     3  0.5948   5.83e-02 0.000 0.408 0.484 0.000 0.108
#> GSM1068481     3  0.0000   8.22e-01 0.000 0.000 1.000 0.000 0.000
#> GSM1068482     3  0.0162   8.21e-01 0.000 0.004 0.996 0.000 0.000
#> GSM1068483     1  0.0510   9.12e-01 0.984 0.000 0.016 0.000 0.000
#> GSM1068486     3  0.0290   8.22e-01 0.000 0.008 0.992 0.000 0.000
#> GSM1068487     2  0.4182   7.41e-01 0.000 0.600 0.000 0.000 0.400
#> GSM1068488     4  0.4986   6.72e-01 0.000 0.336 0.036 0.624 0.004
#> GSM1068490     2  0.4182   7.41e-01 0.000 0.600 0.000 0.000 0.400
#> GSM1068491     3  0.0609   8.20e-01 0.000 0.020 0.980 0.000 0.000
#> GSM1068492     3  0.4668   6.56e-01 0.000 0.276 0.688 0.028 0.008
#> GSM1068493     3  0.5604   3.42e-02 0.000 0.072 0.468 0.000 0.460
#> GSM1068494     2  0.8690  -4.01e-01 0.168 0.340 0.316 0.020 0.156
#> GSM1068495     5  0.5162   4.99e-01 0.028 0.256 0.000 0.036 0.680
#> GSM1068496     3  0.5543   5.01e-01 0.276 0.076 0.636 0.000 0.012
#> GSM1068498     5  0.1357   5.30e-01 0.048 0.004 0.000 0.000 0.948
#> GSM1068499     3  0.5264   5.24e-01 0.264 0.068 0.660 0.000 0.008
#> GSM1068500     1  0.1197   8.93e-01 0.952 0.000 0.048 0.000 0.000
#> GSM1068502     3  0.5601   6.92e-02 0.000 0.448 0.480 0.000 0.072
#> GSM1068503     2  0.6060   4.77e-01 0.000 0.576 0.000 0.208 0.216
#> GSM1068505     4  0.0290   7.99e-01 0.000 0.008 0.000 0.992 0.000
#> GSM1068506     4  0.1942   7.76e-01 0.000 0.068 0.000 0.920 0.012
#> GSM1068507     2  0.6287   2.12e-01 0.008 0.508 0.016 0.392 0.076
#> GSM1068508     5  0.4422  -8.40e-02 0.012 0.320 0.000 0.004 0.664
#> GSM1068510     4  0.4979   6.95e-01 0.000 0.228 0.028 0.708 0.036
#> GSM1068512     4  0.6590   4.78e-01 0.020 0.180 0.248 0.552 0.000
#> GSM1068513     2  0.5128   6.71e-01 0.000 0.604 0.000 0.052 0.344
#> GSM1068514     3  0.3134   7.75e-01 0.000 0.120 0.848 0.032 0.000
#> GSM1068517     5  0.0290   5.29e-01 0.008 0.000 0.000 0.000 0.992
#> GSM1068518     5  0.7844   1.82e-01 0.044 0.356 0.032 0.148 0.420
#> GSM1068520     1  0.0000   9.16e-01 1.000 0.000 0.000 0.000 0.000
#> GSM1068521     1  0.0963   9.02e-01 0.964 0.036 0.000 0.000 0.000
#> GSM1068522     2  0.5100   1.11e-01 0.000 0.516 0.000 0.448 0.036
#> GSM1068524     5  0.4585   2.17e-01 0.000 0.352 0.000 0.020 0.628
#> GSM1068527     4  0.6023   5.79e-01 0.176 0.248 0.000 0.576 0.000
#> GSM1068480     3  0.0609   8.19e-01 0.000 0.020 0.980 0.000 0.000
#> GSM1068484     4  0.3957   7.09e-01 0.000 0.280 0.000 0.712 0.008
#> GSM1068485     3  0.0000   8.22e-01 0.000 0.000 1.000 0.000 0.000
#> GSM1068489     4  0.0794   7.97e-01 0.000 0.028 0.000 0.972 0.000
#> GSM1068497     5  0.0671   5.30e-01 0.016 0.000 0.004 0.000 0.980
#> GSM1068501     4  0.2471   7.54e-01 0.000 0.136 0.000 0.864 0.000
#> GSM1068504     2  0.4182   7.41e-01 0.000 0.600 0.000 0.000 0.400
#> GSM1068509     1  0.3197   7.98e-01 0.832 0.152 0.012 0.000 0.004
#> GSM1068511     3  0.5876   4.80e-01 0.004 0.140 0.608 0.248 0.000
#> GSM1068515     1  0.1996   8.85e-01 0.932 0.008 0.016 0.004 0.040
#> GSM1068516     5  0.6489   1.39e-01 0.000 0.360 0.000 0.192 0.448
#> GSM1068519     1  0.1608   8.79e-01 0.928 0.072 0.000 0.000 0.000
#> GSM1068523     5  0.0963   5.12e-01 0.000 0.036 0.000 0.000 0.964
#> GSM1068525     4  0.5659   5.93e-01 0.000 0.320 0.000 0.580 0.100
#> GSM1068526     4  0.0162   8.00e-01 0.000 0.000 0.000 0.996 0.004
#> GSM1068458     1  0.0404   9.14e-01 0.988 0.000 0.012 0.000 0.000
#> GSM1068459     3  0.0162   8.21e-01 0.000 0.004 0.996 0.000 0.000
#> GSM1068460     1  0.0000   9.16e-01 1.000 0.000 0.000 0.000 0.000
#> GSM1068461     3  0.0404   8.21e-01 0.000 0.012 0.988 0.000 0.000
#> GSM1068464     2  0.4182   7.41e-01 0.000 0.600 0.000 0.000 0.400
#> GSM1068468     2  0.4287   6.88e-01 0.000 0.540 0.000 0.000 0.460
#> GSM1068472     2  0.4249   7.21e-01 0.000 0.568 0.000 0.000 0.432
#> GSM1068473     2  0.4321   7.39e-01 0.000 0.600 0.000 0.004 0.396
#> GSM1068474     2  0.4182   7.41e-01 0.000 0.600 0.000 0.000 0.400
#> GSM1068476     3  0.0609   8.20e-01 0.000 0.020 0.980 0.000 0.000
#> GSM1068477     2  0.4262   7.07e-01 0.000 0.560 0.000 0.000 0.440
#> GSM1068462     2  0.4434   6.80e-01 0.000 0.536 0.004 0.000 0.460
#> GSM1068463     3  0.0000   8.22e-01 0.000 0.000 1.000 0.000 0.000
#> GSM1068465     1  0.1041   9.01e-01 0.964 0.004 0.000 0.000 0.032
#> GSM1068466     1  0.0000   9.16e-01 1.000 0.000 0.000 0.000 0.000
#> GSM1068467     2  0.4294   6.78e-01 0.000 0.532 0.000 0.000 0.468
#> GSM1068469     5  0.4816  -6.39e-01 0.008 0.488 0.008 0.000 0.496
#> GSM1068470     5  0.3752  -3.23e-02 0.000 0.292 0.000 0.000 0.708
#> GSM1068471     2  0.4182   7.41e-01 0.000 0.600 0.000 0.000 0.400
#> GSM1068475     2  0.4182   7.41e-01 0.000 0.600 0.000 0.000 0.400
#> GSM1068528     1  0.4452   2.69e-05 0.500 0.000 0.496 0.000 0.004
#> GSM1068531     1  0.0000   9.16e-01 1.000 0.000 0.000 0.000 0.000
#> GSM1068532     1  0.0000   9.16e-01 1.000 0.000 0.000 0.000 0.000
#> GSM1068533     1  0.0404   9.14e-01 0.988 0.000 0.012 0.000 0.000
#> GSM1068535     4  0.2381   7.82e-01 0.052 0.036 0.004 0.908 0.000
#> GSM1068537     1  0.0000   9.16e-01 1.000 0.000 0.000 0.000 0.000
#> GSM1068538     1  0.0404   9.14e-01 0.988 0.000 0.012 0.000 0.000
#> GSM1068539     5  0.5252   4.77e-01 0.020 0.276 0.000 0.044 0.660
#> GSM1068540     1  0.0510   9.11e-01 0.984 0.016 0.000 0.000 0.000
#> GSM1068542     4  0.0000   8.00e-01 0.000 0.000 0.000 1.000 0.000
#> GSM1068543     4  0.3689   7.23e-01 0.000 0.256 0.000 0.740 0.004
#> GSM1068544     3  0.1121   8.04e-01 0.044 0.000 0.956 0.000 0.000
#> GSM1068545     4  0.5538   4.63e-01 0.000 0.144 0.000 0.644 0.212
#> GSM1068546     3  0.0290   8.22e-01 0.000 0.008 0.992 0.000 0.000
#> GSM1068547     1  0.0000   9.16e-01 1.000 0.000 0.000 0.000 0.000
#> GSM1068548     4  0.0579   8.00e-01 0.008 0.008 0.000 0.984 0.000
#> GSM1068549     3  0.0609   8.20e-01 0.000 0.020 0.980 0.000 0.000
#> GSM1068550     4  0.0510   8.01e-01 0.000 0.016 0.000 0.984 0.000
#> GSM1068551     5  0.3932  -1.58e-01 0.000 0.328 0.000 0.000 0.672
#> GSM1068552     4  0.1877   7.78e-01 0.000 0.064 0.000 0.924 0.012
#> GSM1068555     5  0.1043   5.07e-01 0.000 0.040 0.000 0.000 0.960
#> GSM1068556     4  0.3039   7.53e-01 0.000 0.192 0.000 0.808 0.000
#> GSM1068557     5  0.0404   5.22e-01 0.000 0.012 0.000 0.000 0.988
#> GSM1068560     4  0.7337   3.13e-01 0.032 0.312 0.000 0.416 0.240
#> GSM1068561     5  0.3826   5.24e-01 0.004 0.180 0.020 0.004 0.792
#> GSM1068562     4  0.4040   7.09e-01 0.000 0.276 0.000 0.712 0.012
#> GSM1068563     4  0.2864   7.72e-01 0.000 0.136 0.000 0.852 0.012
#> GSM1068565     2  0.4291   6.70e-01 0.000 0.536 0.000 0.000 0.464
#> GSM1068529     3  0.5193   6.17e-01 0.000 0.272 0.660 0.008 0.060
#> GSM1068530     1  0.0000   9.16e-01 1.000 0.000 0.000 0.000 0.000
#> GSM1068534     3  0.4618   6.74e-01 0.000 0.208 0.724 0.068 0.000
#> GSM1068536     1  0.4401   5.26e-01 0.656 0.016 0.000 0.000 0.328
#> GSM1068541     5  0.7541   9.72e-02 0.368 0.056 0.000 0.192 0.384
#> GSM1068553     4  0.0963   7.96e-01 0.000 0.036 0.000 0.964 0.000
#> GSM1068554     4  0.2377   7.56e-01 0.000 0.128 0.000 0.872 0.000
#> GSM1068558     3  0.4456   6.78e-01 0.000 0.248 0.716 0.004 0.032
#> GSM1068559     3  0.0794   8.21e-01 0.000 0.028 0.972 0.000 0.000
#> GSM1068564     4  0.2624   7.47e-01 0.000 0.116 0.000 0.872 0.012
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1068478     5  0.3950     0.0150 0.432 0.000 0.000 0.000 0.564 0.004
#> GSM1068479     2  0.5656     0.4356 0.000 0.596 0.260 0.004 0.020 0.120
#> GSM1068481     3  0.0405     0.8034 0.000 0.000 0.988 0.000 0.004 0.008
#> GSM1068482     3  0.0405     0.8028 0.000 0.000 0.988 0.000 0.004 0.008
#> GSM1068483     1  0.2202     0.8779 0.908 0.000 0.028 0.000 0.052 0.012
#> GSM1068486     3  0.0508     0.8040 0.000 0.000 0.984 0.000 0.004 0.012
#> GSM1068487     2  0.0405     0.7376 0.000 0.988 0.000 0.000 0.008 0.004
#> GSM1068488     6  0.3630     0.3130 0.000 0.000 0.020 0.196 0.012 0.772
#> GSM1068490     2  0.0291     0.7381 0.000 0.992 0.000 0.000 0.004 0.004
#> GSM1068491     3  0.2253     0.7658 0.000 0.004 0.896 0.004 0.012 0.084
#> GSM1068492     6  0.6504     0.1353 0.000 0.128 0.368 0.032 0.016 0.456
#> GSM1068493     5  0.6165     0.1986 0.000 0.116 0.392 0.000 0.452 0.040
#> GSM1068494     6  0.6919     0.3558 0.096 0.000 0.184 0.008 0.200 0.512
#> GSM1068495     5  0.3699     0.5569 0.012 0.000 0.000 0.032 0.780 0.176
#> GSM1068496     3  0.6042     0.4278 0.196 0.000 0.600 0.000 0.072 0.132
#> GSM1068498     5  0.2581     0.7115 0.020 0.120 0.000 0.000 0.860 0.000
#> GSM1068499     3  0.5384     0.4811 0.212 0.000 0.652 0.000 0.044 0.092
#> GSM1068500     1  0.3561     0.7911 0.812 0.000 0.120 0.000 0.056 0.012
#> GSM1068502     2  0.5889     0.3769 0.000 0.556 0.272 0.004 0.016 0.152
#> GSM1068503     2  0.2294     0.7006 0.000 0.896 0.000 0.076 0.020 0.008
#> GSM1068505     4  0.2949     0.5936 0.000 0.008 0.000 0.848 0.028 0.116
#> GSM1068506     4  0.2240     0.6071 0.000 0.044 0.000 0.908 0.016 0.032
#> GSM1068507     2  0.6694     0.3148 0.016 0.532 0.000 0.204 0.052 0.196
#> GSM1068508     2  0.5302    -0.0549 0.000 0.472 0.000 0.068 0.448 0.012
#> GSM1068510     6  0.6392    -0.2433 0.000 0.088 0.008 0.380 0.060 0.464
#> GSM1068512     6  0.6013     0.2103 0.020 0.000 0.088 0.396 0.016 0.480
#> GSM1068513     2  0.4650     0.5680 0.000 0.720 0.000 0.040 0.052 0.188
#> GSM1068514     6  0.4772    -0.0334 0.000 0.004 0.452 0.012 0.020 0.512
#> GSM1068517     5  0.2431     0.7106 0.008 0.132 0.000 0.000 0.860 0.000
#> GSM1068518     6  0.5777     0.3708 0.016 0.000 0.020 0.096 0.276 0.592
#> GSM1068520     1  0.0291     0.9117 0.992 0.000 0.000 0.000 0.004 0.004
#> GSM1068521     1  0.1320     0.8986 0.948 0.000 0.000 0.000 0.036 0.016
#> GSM1068522     2  0.5614     0.2127 0.000 0.548 0.000 0.344 0.036 0.072
#> GSM1068524     2  0.5645     0.1796 0.000 0.552 0.000 0.008 0.288 0.152
#> GSM1068527     4  0.6644    -0.0240 0.180 0.000 0.000 0.436 0.052 0.332
#> GSM1068480     3  0.0692     0.8033 0.000 0.000 0.976 0.000 0.004 0.020
#> GSM1068484     6  0.4262     0.1252 0.000 0.012 0.000 0.424 0.004 0.560
#> GSM1068485     3  0.0146     0.8041 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM1068489     4  0.3377     0.5573 0.000 0.000 0.000 0.784 0.028 0.188
#> GSM1068497     5  0.2362     0.7081 0.004 0.136 0.000 0.000 0.860 0.000
#> GSM1068501     4  0.5960     0.3977 0.000 0.096 0.000 0.552 0.052 0.300
#> GSM1068504     2  0.0000     0.7387 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068509     1  0.4297     0.7284 0.752 0.000 0.032 0.000 0.048 0.168
#> GSM1068511     3  0.6317    -0.2789 0.000 0.000 0.392 0.244 0.012 0.352
#> GSM1068515     1  0.3494     0.8106 0.828 0.012 0.016 0.012 0.124 0.008
#> GSM1068516     6  0.5439     0.1428 0.004 0.000 0.000 0.104 0.408 0.484
#> GSM1068519     1  0.2721     0.8482 0.868 0.000 0.004 0.000 0.040 0.088
#> GSM1068523     5  0.4029     0.5946 0.000 0.292 0.000 0.000 0.680 0.028
#> GSM1068525     6  0.4989     0.3033 0.000 0.008 0.000 0.312 0.072 0.608
#> GSM1068526     4  0.1196     0.6115 0.000 0.008 0.000 0.952 0.000 0.040
#> GSM1068458     1  0.0146     0.9122 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM1068459     3  0.0260     0.8039 0.000 0.000 0.992 0.000 0.000 0.008
#> GSM1068460     1  0.0508     0.9102 0.984 0.000 0.000 0.000 0.012 0.004
#> GSM1068461     3  0.1082     0.7958 0.000 0.000 0.956 0.000 0.004 0.040
#> GSM1068464     2  0.0717     0.7374 0.000 0.976 0.000 0.000 0.008 0.016
#> GSM1068468     2  0.3351     0.6782 0.000 0.800 0.000 0.000 0.160 0.040
#> GSM1068472     2  0.2956     0.6932 0.000 0.840 0.000 0.000 0.120 0.040
#> GSM1068473     2  0.0405     0.7376 0.000 0.988 0.000 0.000 0.008 0.004
#> GSM1068474     2  0.0000     0.7387 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068476     3  0.2255     0.7647 0.000 0.000 0.892 0.004 0.016 0.088
#> GSM1068477     2  0.2006     0.7104 0.000 0.892 0.000 0.004 0.104 0.000
#> GSM1068462     2  0.4013     0.6558 0.000 0.768 0.016 0.000 0.164 0.052
#> GSM1068463     3  0.0260     0.8039 0.000 0.000 0.992 0.000 0.000 0.008
#> GSM1068465     1  0.2907     0.8101 0.828 0.000 0.000 0.000 0.152 0.020
#> GSM1068466     1  0.0146     0.9122 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM1068467     2  0.3054     0.6882 0.000 0.828 0.000 0.000 0.136 0.036
#> GSM1068469     2  0.4184     0.5976 0.000 0.720 0.008 0.000 0.228 0.044
#> GSM1068470     2  0.3934     0.2694 0.000 0.616 0.000 0.008 0.376 0.000
#> GSM1068471     2  0.0000     0.7387 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068475     2  0.0458     0.7366 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM1068528     3  0.3954     0.4986 0.292 0.000 0.688 0.000 0.012 0.008
#> GSM1068531     1  0.0146     0.9123 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM1068532     1  0.1053     0.9049 0.964 0.000 0.012 0.000 0.004 0.020
#> GSM1068533     1  0.0146     0.9123 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM1068535     4  0.5853     0.4144 0.068 0.000 0.008 0.572 0.048 0.304
#> GSM1068537     1  0.0291     0.9120 0.992 0.000 0.004 0.000 0.000 0.004
#> GSM1068538     1  0.0291     0.9120 0.992 0.000 0.004 0.000 0.000 0.004
#> GSM1068539     5  0.3788     0.5575 0.012 0.004 0.000 0.024 0.772 0.188
#> GSM1068540     1  0.1498     0.8925 0.940 0.000 0.000 0.000 0.028 0.032
#> GSM1068542     4  0.0837     0.6155 0.000 0.004 0.000 0.972 0.004 0.020
#> GSM1068543     6  0.4096     0.0376 0.000 0.000 0.000 0.484 0.008 0.508
#> GSM1068544     3  0.1226     0.7835 0.040 0.000 0.952 0.000 0.004 0.004
#> GSM1068545     4  0.4265     0.5089 0.000 0.120 0.000 0.756 0.112 0.012
#> GSM1068546     3  0.1088     0.7956 0.000 0.000 0.960 0.000 0.016 0.024
#> GSM1068547     1  0.0146     0.9122 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM1068548     4  0.2038     0.6097 0.028 0.020 0.000 0.920 0.000 0.032
#> GSM1068549     3  0.1901     0.7766 0.000 0.000 0.912 0.004 0.008 0.076
#> GSM1068550     4  0.1542     0.6111 0.000 0.004 0.000 0.936 0.008 0.052
#> GSM1068551     2  0.3883     0.3673 0.000 0.656 0.000 0.012 0.332 0.000
#> GSM1068552     4  0.2207     0.6032 0.000 0.076 0.000 0.900 0.008 0.016
#> GSM1068555     5  0.4045     0.5603 0.000 0.312 0.000 0.000 0.664 0.024
#> GSM1068556     4  0.3841     0.1469 0.000 0.000 0.000 0.616 0.004 0.380
#> GSM1068557     5  0.3720     0.6233 0.000 0.236 0.000 0.000 0.736 0.028
#> GSM1068560     4  0.6301    -0.1668 0.020 0.000 0.000 0.400 0.192 0.388
#> GSM1068561     5  0.4047     0.6511 0.000 0.084 0.004 0.000 0.760 0.152
#> GSM1068562     4  0.4199     0.0668 0.000 0.000 0.000 0.568 0.016 0.416
#> GSM1068563     4  0.3809     0.5328 0.000 0.064 0.000 0.796 0.016 0.124
#> GSM1068565     2  0.2006     0.7004 0.000 0.892 0.000 0.004 0.104 0.000
#> GSM1068529     6  0.5318     0.2546 0.000 0.000 0.384 0.008 0.084 0.524
#> GSM1068530     1  0.0000     0.9122 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1068534     3  0.5750    -0.1912 0.000 0.000 0.456 0.092 0.024 0.428
#> GSM1068536     1  0.4697     0.1890 0.548 0.000 0.000 0.000 0.404 0.048
#> GSM1068541     4  0.7408    -0.0473 0.184 0.080 0.000 0.360 0.356 0.020
#> GSM1068553     4  0.4313     0.4819 0.000 0.000 0.000 0.668 0.048 0.284
#> GSM1068554     4  0.5851     0.4125 0.000 0.088 0.000 0.568 0.052 0.292
#> GSM1068558     6  0.4922     0.2237 0.000 0.000 0.400 0.016 0.036 0.548
#> GSM1068559     3  0.2162     0.7677 0.000 0.000 0.896 0.004 0.012 0.088
#> GSM1068564     4  0.3201     0.5715 0.000 0.148 0.000 0.820 0.008 0.024
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#>              n disease.state(p) gender(p) k
#> MAD:skmeans 96         0.837025     1.000 2
#> MAD:skmeans 65         0.312401     0.732 3
#> MAD:skmeans 97         0.005424     0.979 4
#> MAD:skmeans 86         0.000385     0.997 5
#> MAD:skmeans 70         0.003139     0.967 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 38950 rows and 108 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.338           0.391       0.713         0.4639 0.587   0.587
#> 3 3 0.331           0.485       0.763         0.3312 0.468   0.291
#> 4 4 0.455           0.514       0.740         0.1661 0.727   0.396
#> 5 5 0.581           0.458       0.704         0.0850 0.848   0.495
#> 6 6 0.678           0.667       0.819         0.0422 0.921   0.658
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1068478     1  0.0000    0.53992 1.000 0.000
#> GSM1068479     1  0.9993    0.45080 0.516 0.484
#> GSM1068481     1  0.0000    0.53992 1.000 0.000
#> GSM1068482     1  0.0000    0.53992 1.000 0.000
#> GSM1068483     1  0.0000    0.53992 1.000 0.000
#> GSM1068486     1  0.0000    0.53992 1.000 0.000
#> GSM1068487     1  0.9993    0.45080 0.516 0.484
#> GSM1068488     1  1.0000   -0.62871 0.504 0.496
#> GSM1068490     1  0.9993    0.45080 0.516 0.484
#> GSM1068491     1  0.0000    0.53992 1.000 0.000
#> GSM1068492     1  0.6887    0.49709 0.816 0.184
#> GSM1068493     1  0.2778    0.53667 0.952 0.048
#> GSM1068494     1  0.0672    0.53346 0.992 0.008
#> GSM1068495     1  0.3274    0.53252 0.940 0.060
#> GSM1068496     1  0.0000    0.53992 1.000 0.000
#> GSM1068498     1  0.9993    0.45080 0.516 0.484
#> GSM1068499     1  0.0000    0.53992 1.000 0.000
#> GSM1068500     1  0.0000    0.53992 1.000 0.000
#> GSM1068502     1  0.9993    0.45080 0.516 0.484
#> GSM1068503     2  0.6247    0.14703 0.156 0.844
#> GSM1068505     2  0.7139    0.50291 0.196 0.804
#> GSM1068506     2  0.9993    0.63457 0.484 0.516
#> GSM1068507     1  0.9977    0.27302 0.528 0.472
#> GSM1068508     2  1.0000   -0.45779 0.496 0.504
#> GSM1068510     2  0.1414    0.35615 0.020 0.980
#> GSM1068512     1  1.0000   -0.63309 0.500 0.500
#> GSM1068513     2  0.9129   -0.21971 0.328 0.672
#> GSM1068514     2  0.9977    0.61391 0.472 0.528
#> GSM1068517     1  0.9993    0.45080 0.516 0.484
#> GSM1068518     1  0.2043    0.53614 0.968 0.032
#> GSM1068520     1  0.1414    0.52204 0.980 0.020
#> GSM1068521     1  0.0376    0.53713 0.996 0.004
#> GSM1068522     2  0.0000    0.37095 0.000 1.000
#> GSM1068524     1  0.9996    0.44883 0.512 0.488
#> GSM1068527     2  0.9993    0.63457 0.484 0.516
#> GSM1068480     1  0.0000    0.53992 1.000 0.000
#> GSM1068484     2  0.7219    0.50512 0.200 0.800
#> GSM1068485     1  0.0000    0.53992 1.000 0.000
#> GSM1068489     2  0.9954    0.63063 0.460 0.540
#> GSM1068497     1  0.9993    0.45080 0.516 0.484
#> GSM1068501     2  0.0000    0.37095 0.000 1.000
#> GSM1068504     1  0.9993    0.45080 0.516 0.484
#> GSM1068509     1  0.7950    0.00786 0.760 0.240
#> GSM1068511     2  1.0000    0.61683 0.500 0.500
#> GSM1068515     1  0.0000    0.53992 1.000 0.000
#> GSM1068516     1  0.9909   -0.49373 0.556 0.444
#> GSM1068519     2  0.9993    0.63457 0.484 0.516
#> GSM1068523     1  0.9996    0.44883 0.512 0.488
#> GSM1068525     2  0.7950    0.48250 0.240 0.760
#> GSM1068526     2  0.9993    0.63457 0.484 0.516
#> GSM1068458     1  0.1633    0.51440 0.976 0.024
#> GSM1068459     1  0.0000    0.53992 1.000 0.000
#> GSM1068460     1  0.9608   -0.34995 0.616 0.384
#> GSM1068461     1  0.0000    0.53992 1.000 0.000
#> GSM1068464     1  0.9993    0.45080 0.516 0.484
#> GSM1068468     1  0.9993    0.45080 0.516 0.484
#> GSM1068472     1  0.9993    0.45080 0.516 0.484
#> GSM1068473     1  0.9996    0.44751 0.512 0.488
#> GSM1068474     1  0.9993    0.45080 0.516 0.484
#> GSM1068476     1  0.4939    0.52000 0.892 0.108
#> GSM1068477     1  0.9993    0.45080 0.516 0.484
#> GSM1068462     1  0.9993    0.45080 0.516 0.484
#> GSM1068463     1  0.0000    0.53992 1.000 0.000
#> GSM1068465     1  0.9896   -0.53994 0.560 0.440
#> GSM1068466     1  0.5408    0.33727 0.876 0.124
#> GSM1068467     1  0.9993    0.45080 0.516 0.484
#> GSM1068469     1  0.9993    0.45080 0.516 0.484
#> GSM1068470     1  0.9993    0.45080 0.516 0.484
#> GSM1068471     1  0.9993    0.45080 0.516 0.484
#> GSM1068475     1  0.9993    0.45080 0.516 0.484
#> GSM1068528     1  0.0000    0.53992 1.000 0.000
#> GSM1068531     1  1.0000   -0.62871 0.504 0.496
#> GSM1068532     2  1.0000    0.61567 0.500 0.500
#> GSM1068533     1  0.9977   -0.59573 0.528 0.472
#> GSM1068535     2  0.9993    0.63457 0.484 0.516
#> GSM1068537     2  0.9993    0.63457 0.484 0.516
#> GSM1068538     2  0.9993    0.63457 0.484 0.516
#> GSM1068539     1  0.8608    0.46787 0.716 0.284
#> GSM1068540     1  0.0376    0.53713 0.996 0.004
#> GSM1068542     2  0.9970    0.63290 0.468 0.532
#> GSM1068543     2  0.9993    0.63457 0.484 0.516
#> GSM1068544     1  0.0000    0.53992 1.000 0.000
#> GSM1068545     2  0.8861    0.35899 0.304 0.696
#> GSM1068546     1  1.0000   -0.62871 0.504 0.496
#> GSM1068547     1  0.5737    0.32645 0.864 0.136
#> GSM1068548     2  0.9993    0.63457 0.484 0.516
#> GSM1068549     1  0.0672    0.53357 0.992 0.008
#> GSM1068550     2  0.9922    0.62662 0.448 0.552
#> GSM1068551     1  0.9996    0.44883 0.512 0.488
#> GSM1068552     2  0.9248    0.57680 0.340 0.660
#> GSM1068555     1  0.9993    0.45080 0.516 0.484
#> GSM1068556     2  0.9993    0.63457 0.484 0.516
#> GSM1068557     1  0.9909    0.45297 0.556 0.444
#> GSM1068560     1  0.1633    0.51893 0.976 0.024
#> GSM1068561     1  0.3584    0.53259 0.932 0.068
#> GSM1068562     1  0.2423    0.52459 0.960 0.040
#> GSM1068563     2  0.9993    0.63457 0.484 0.516
#> GSM1068565     1  0.9993    0.45080 0.516 0.484
#> GSM1068529     1  0.0376    0.53713 0.996 0.004
#> GSM1068530     1  0.8081   -0.00680 0.752 0.248
#> GSM1068534     1  1.0000   -0.62871 0.504 0.496
#> GSM1068536     1  0.0376    0.53713 0.996 0.004
#> GSM1068541     1  0.5178    0.42443 0.884 0.116
#> GSM1068553     2  0.9993    0.63457 0.484 0.516
#> GSM1068554     2  0.0000    0.37095 0.000 1.000
#> GSM1068558     1  0.0376    0.53713 0.996 0.004
#> GSM1068559     1  0.1633    0.53749 0.976 0.024
#> GSM1068564     2  0.0000    0.37095 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1068478     1  0.2165    0.53869 0.936 0.000 0.064
#> GSM1068479     2  0.5138    0.47756 0.252 0.748 0.000
#> GSM1068481     3  0.5737    0.58580 0.256 0.012 0.732
#> GSM1068482     3  0.5216    0.59131 0.260 0.000 0.740
#> GSM1068483     1  0.6359    0.09343 0.628 0.008 0.364
#> GSM1068486     3  0.5737    0.58580 0.256 0.012 0.732
#> GSM1068487     2  0.0000    0.75661 0.000 1.000 0.000
#> GSM1068488     3  0.2866    0.60471 0.076 0.008 0.916
#> GSM1068490     2  0.0000    0.75661 0.000 1.000 0.000
#> GSM1068491     3  0.5404    0.59080 0.256 0.004 0.740
#> GSM1068492     2  0.6291    0.07526 0.000 0.532 0.468
#> GSM1068493     3  0.9423    0.24786 0.304 0.204 0.492
#> GSM1068494     3  0.5529    0.56673 0.296 0.000 0.704
#> GSM1068495     1  0.8220    0.45668 0.636 0.212 0.152
#> GSM1068496     3  0.5291    0.58708 0.268 0.000 0.732
#> GSM1068498     1  0.2261    0.54902 0.932 0.068 0.000
#> GSM1068499     3  0.5291    0.58767 0.268 0.000 0.732
#> GSM1068500     3  0.6286    0.33384 0.464 0.000 0.536
#> GSM1068502     2  0.4121    0.61431 0.000 0.832 0.168
#> GSM1068503     2  0.0000    0.75661 0.000 1.000 0.000
#> GSM1068505     3  0.8581   -0.21694 0.096 0.448 0.456
#> GSM1068506     3  0.6174    0.48700 0.064 0.168 0.768
#> GSM1068507     2  0.4002    0.63369 0.000 0.840 0.160
#> GSM1068508     2  0.3941    0.67723 0.156 0.844 0.000
#> GSM1068510     2  0.3337    0.72456 0.060 0.908 0.032
#> GSM1068512     3  0.0000    0.61882 0.000 0.000 1.000
#> GSM1068513     2  0.0000    0.75661 0.000 1.000 0.000
#> GSM1068514     3  0.5560    0.42672 0.000 0.300 0.700
#> GSM1068517     1  0.5016    0.43390 0.760 0.240 0.000
#> GSM1068518     3  0.5618    0.58896 0.260 0.008 0.732
#> GSM1068520     1  0.2625    0.53692 0.916 0.000 0.084
#> GSM1068521     1  0.2165    0.53869 0.936 0.000 0.064
#> GSM1068522     2  0.7015    0.55116 0.064 0.696 0.240
#> GSM1068524     2  0.0000    0.75661 0.000 1.000 0.000
#> GSM1068527     3  0.2959    0.59456 0.100 0.000 0.900
#> GSM1068480     3  0.5216    0.59131 0.260 0.000 0.740
#> GSM1068484     2  0.8068    0.22556 0.064 0.480 0.456
#> GSM1068485     3  0.5216    0.59131 0.260 0.000 0.740
#> GSM1068489     3  0.5285    0.54236 0.064 0.112 0.824
#> GSM1068497     1  0.5988    0.24353 0.632 0.368 0.000
#> GSM1068501     2  0.8025    0.35135 0.064 0.516 0.420
#> GSM1068504     2  0.0000    0.75661 0.000 1.000 0.000
#> GSM1068509     3  0.4887    0.61077 0.228 0.000 0.772
#> GSM1068511     3  0.0747    0.62260 0.016 0.000 0.984
#> GSM1068515     3  0.8674    0.41682 0.296 0.136 0.568
#> GSM1068516     3  0.6283    0.59133 0.176 0.064 0.760
#> GSM1068519     3  0.5098    0.44074 0.248 0.000 0.752
#> GSM1068523     2  0.5138    0.58641 0.252 0.748 0.000
#> GSM1068525     2  0.4605    0.57167 0.000 0.796 0.204
#> GSM1068526     3  0.6349    0.49810 0.092 0.140 0.768
#> GSM1068458     1  0.5968   -0.02066 0.636 0.000 0.364
#> GSM1068459     3  0.5216    0.59131 0.260 0.000 0.740
#> GSM1068460     1  0.5465    0.28619 0.712 0.000 0.288
#> GSM1068461     3  0.5737    0.58580 0.256 0.012 0.732
#> GSM1068464     2  0.0000    0.75661 0.000 1.000 0.000
#> GSM1068468     1  0.6274    0.04235 0.544 0.456 0.000
#> GSM1068472     2  0.4452    0.58527 0.192 0.808 0.000
#> GSM1068473     2  0.0000    0.75661 0.000 1.000 0.000
#> GSM1068474     2  0.0000    0.75661 0.000 1.000 0.000
#> GSM1068476     3  0.8803    0.41306 0.320 0.136 0.544
#> GSM1068477     1  0.6260    0.06234 0.552 0.448 0.000
#> GSM1068462     2  0.2066    0.73050 0.060 0.940 0.000
#> GSM1068463     3  0.5216    0.59131 0.260 0.000 0.740
#> GSM1068465     3  0.5913    0.51663 0.144 0.068 0.788
#> GSM1068466     1  0.1753    0.52440 0.952 0.000 0.048
#> GSM1068467     2  0.3192    0.69096 0.112 0.888 0.000
#> GSM1068469     1  0.6295   -0.02654 0.528 0.472 0.000
#> GSM1068470     2  0.5621    0.51332 0.308 0.692 0.000
#> GSM1068471     2  0.0000    0.75661 0.000 1.000 0.000
#> GSM1068475     2  0.0000    0.75661 0.000 1.000 0.000
#> GSM1068528     3  0.6215    0.40417 0.428 0.000 0.572
#> GSM1068531     3  0.6267    0.18473 0.452 0.000 0.548
#> GSM1068532     3  0.0747    0.62325 0.016 0.000 0.984
#> GSM1068533     3  0.6215    0.20228 0.428 0.000 0.572
#> GSM1068535     3  0.2165    0.59991 0.064 0.000 0.936
#> GSM1068537     3  0.5835    0.27124 0.340 0.000 0.660
#> GSM1068538     3  0.5785    0.28465 0.332 0.000 0.668
#> GSM1068539     1  0.5859    0.27241 0.656 0.344 0.000
#> GSM1068540     1  0.6008    0.07485 0.628 0.000 0.372
#> GSM1068542     3  0.6229    0.48258 0.064 0.172 0.764
#> GSM1068543     3  0.2165    0.59991 0.064 0.000 0.936
#> GSM1068544     1  0.6267   -0.16662 0.548 0.000 0.452
#> GSM1068545     2  0.5778    0.57478 0.032 0.768 0.200
#> GSM1068546     3  0.1411    0.62181 0.036 0.000 0.964
#> GSM1068547     1  0.5058    0.32535 0.756 0.000 0.244
#> GSM1068548     3  0.1964    0.61087 0.056 0.000 0.944
#> GSM1068549     3  0.5216    0.59131 0.260 0.000 0.740
#> GSM1068550     3  0.6119    0.49276 0.064 0.164 0.772
#> GSM1068551     2  0.5650    0.41494 0.312 0.688 0.000
#> GSM1068552     3  0.7748    0.21462 0.064 0.340 0.596
#> GSM1068555     2  0.5621    0.51332 0.308 0.692 0.000
#> GSM1068556     3  0.0237    0.61847 0.004 0.000 0.996
#> GSM1068557     2  0.6490    0.41599 0.256 0.708 0.036
#> GSM1068560     3  0.7767    0.44111 0.412 0.052 0.536
#> GSM1068561     1  0.9625   -0.00961 0.408 0.204 0.388
#> GSM1068562     3  0.5397    0.59894 0.280 0.000 0.720
#> GSM1068563     3  0.2165    0.59991 0.064 0.000 0.936
#> GSM1068565     2  0.0237    0.75542 0.004 0.996 0.000
#> GSM1068529     3  0.5216    0.59131 0.260 0.000 0.740
#> GSM1068530     1  0.6235    0.06266 0.564 0.000 0.436
#> GSM1068534     3  0.0983    0.62260 0.016 0.004 0.980
#> GSM1068536     3  0.6252    0.37184 0.444 0.000 0.556
#> GSM1068541     3  0.8765    0.41295 0.252 0.168 0.580
#> GSM1068553     3  0.2165    0.59991 0.064 0.000 0.936
#> GSM1068554     2  0.7267    0.52425 0.064 0.668 0.268
#> GSM1068558     3  0.7830    0.51086 0.136 0.196 0.668
#> GSM1068559     3  0.5728    0.59211 0.272 0.008 0.720
#> GSM1068564     2  0.7091    0.54426 0.064 0.688 0.248
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1068478     1  0.2704    0.47485 0.876 0.000 0.124 0.000
#> GSM1068479     2  0.3400    0.66578 0.000 0.820 0.180 0.000
#> GSM1068481     3  0.0707    0.62603 0.000 0.020 0.980 0.000
#> GSM1068482     3  0.3649    0.67858 0.000 0.000 0.796 0.204
#> GSM1068483     1  0.7112    0.42107 0.624 0.020 0.192 0.164
#> GSM1068486     3  0.0707    0.62603 0.000 0.020 0.980 0.000
#> GSM1068487     2  0.0000    0.75229 0.000 1.000 0.000 0.000
#> GSM1068488     4  0.4761    0.07850 0.000 0.000 0.372 0.628
#> GSM1068490     2  0.0000    0.75229 0.000 1.000 0.000 0.000
#> GSM1068491     3  0.0336    0.63305 0.000 0.008 0.992 0.000
#> GSM1068492     3  0.7375    0.39880 0.000 0.336 0.488 0.176
#> GSM1068493     2  0.8728   -0.03416 0.064 0.400 0.368 0.168
#> GSM1068494     3  0.5334    0.62053 0.036 0.000 0.680 0.284
#> GSM1068495     1  0.8153   -0.18484 0.448 0.340 0.188 0.024
#> GSM1068496     3  0.5109    0.65175 0.052 0.000 0.736 0.212
#> GSM1068498     1  0.0000    0.52660 1.000 0.000 0.000 0.000
#> GSM1068499     3  0.4175    0.67401 0.012 0.000 0.776 0.212
#> GSM1068500     1  0.7830   -0.01476 0.408 0.008 0.396 0.188
#> GSM1068502     2  0.4761    0.25607 0.000 0.628 0.372 0.000
#> GSM1068503     2  0.0000    0.75229 0.000 1.000 0.000 0.000
#> GSM1068505     4  0.2011    0.71584 0.000 0.080 0.000 0.920
#> GSM1068506     4  0.1118    0.74297 0.000 0.000 0.036 0.964
#> GSM1068507     2  0.3616    0.65676 0.000 0.852 0.036 0.112
#> GSM1068508     2  0.3123    0.69991 0.156 0.844 0.000 0.000
#> GSM1068510     2  0.5256    0.27495 0.000 0.596 0.012 0.392
#> GSM1068512     3  0.4866    0.47217 0.000 0.000 0.596 0.404
#> GSM1068513     2  0.0000    0.75229 0.000 1.000 0.000 0.000
#> GSM1068514     3  0.7007    0.53353 0.000 0.208 0.580 0.212
#> GSM1068517     1  0.7159   -0.00930 0.548 0.272 0.180 0.000
#> GSM1068518     3  0.4175    0.67512 0.000 0.012 0.776 0.212
#> GSM1068520     1  0.0000    0.52660 1.000 0.000 0.000 0.000
#> GSM1068521     1  0.0000    0.52660 1.000 0.000 0.000 0.000
#> GSM1068522     4  0.3764    0.59447 0.000 0.216 0.000 0.784
#> GSM1068524     2  0.0707    0.74626 0.000 0.980 0.000 0.020
#> GSM1068527     4  0.0000    0.74901 0.000 0.000 0.000 1.000
#> GSM1068480     3  0.3726    0.67732 0.000 0.000 0.788 0.212
#> GSM1068484     4  0.2081    0.71441 0.000 0.084 0.000 0.916
#> GSM1068485     3  0.0000    0.63680 0.000 0.000 1.000 0.000
#> GSM1068489     4  0.0000    0.74901 0.000 0.000 0.000 1.000
#> GSM1068497     1  0.7475   -0.24247 0.448 0.372 0.180 0.000
#> GSM1068501     4  0.3726    0.59709 0.000 0.212 0.000 0.788
#> GSM1068504     2  0.0000    0.75229 0.000 1.000 0.000 0.000
#> GSM1068509     4  0.4741    0.32741 0.004 0.000 0.328 0.668
#> GSM1068511     3  0.4898    0.45137 0.000 0.000 0.584 0.416
#> GSM1068515     4  0.7544   -0.08019 0.000 0.200 0.340 0.460
#> GSM1068516     4  0.3356    0.63013 0.000 0.000 0.176 0.824
#> GSM1068519     4  0.1211    0.73495 0.040 0.000 0.000 0.960
#> GSM1068523     2  0.4103    0.63281 0.256 0.744 0.000 0.000
#> GSM1068525     2  0.4586    0.59502 0.000 0.796 0.068 0.136
#> GSM1068526     4  0.2011    0.71948 0.000 0.000 0.080 0.920
#> GSM1068458     1  0.6975    0.38359 0.560 0.000 0.148 0.292
#> GSM1068459     3  0.0000    0.63680 0.000 0.000 1.000 0.000
#> GSM1068460     4  0.4312    0.64152 0.132 0.000 0.056 0.812
#> GSM1068461     3  0.0707    0.62603 0.000 0.020 0.980 0.000
#> GSM1068464     2  0.0000    0.75229 0.000 1.000 0.000 0.000
#> GSM1068468     2  0.7369    0.40133 0.324 0.496 0.180 0.000
#> GSM1068472     2  0.3172    0.68294 0.000 0.840 0.160 0.000
#> GSM1068473     2  0.0000    0.75229 0.000 1.000 0.000 0.000
#> GSM1068474     2  0.0000    0.75229 0.000 1.000 0.000 0.000
#> GSM1068476     3  0.3266    0.50742 0.000 0.000 0.832 0.168
#> GSM1068477     2  0.7449    0.35522 0.356 0.464 0.180 0.000
#> GSM1068462     2  0.1557    0.74173 0.000 0.944 0.056 0.000
#> GSM1068463     3  0.0000    0.63680 0.000 0.000 1.000 0.000
#> GSM1068465     1  0.7120    0.32793 0.564 0.000 0.224 0.212
#> GSM1068466     1  0.1471    0.52862 0.960 0.004 0.012 0.024
#> GSM1068467     2  0.2334    0.72853 0.004 0.908 0.088 0.000
#> GSM1068469     2  0.7421    0.36119 0.356 0.468 0.176 0.000
#> GSM1068470     2  0.4776    0.51554 0.376 0.624 0.000 0.000
#> GSM1068471     2  0.0000    0.75229 0.000 1.000 0.000 0.000
#> GSM1068475     2  0.0469    0.74999 0.012 0.988 0.000 0.000
#> GSM1068528     3  0.7362    0.00756 0.372 0.000 0.464 0.164
#> GSM1068531     1  0.4967    0.21201 0.548 0.000 0.000 0.452
#> GSM1068532     3  0.6883    0.51237 0.192 0.000 0.596 0.212
#> GSM1068533     1  0.6476    0.41355 0.616 0.000 0.272 0.112
#> GSM1068535     4  0.0188    0.74869 0.000 0.000 0.004 0.996
#> GSM1068537     1  0.6850    0.38184 0.600 0.000 0.212 0.188
#> GSM1068538     1  0.7196    0.34923 0.552 0.000 0.212 0.236
#> GSM1068539     1  0.8262   -0.19953 0.448 0.340 0.180 0.032
#> GSM1068540     1  0.6634    0.40832 0.624 0.000 0.212 0.164
#> GSM1068542     4  0.1792    0.72788 0.000 0.000 0.068 0.932
#> GSM1068543     4  0.1792    0.72788 0.000 0.000 0.068 0.932
#> GSM1068544     3  0.4661    0.06801 0.348 0.000 0.652 0.000
#> GSM1068545     2  0.4699    0.51344 0.004 0.676 0.000 0.320
#> GSM1068546     3  0.4697    0.24871 0.000 0.000 0.644 0.356
#> GSM1068547     1  0.4514    0.51632 0.796 0.000 0.056 0.148
#> GSM1068548     4  0.3945    0.53205 0.004 0.000 0.216 0.780
#> GSM1068549     3  0.0000    0.63680 0.000 0.000 1.000 0.000
#> GSM1068550     4  0.0000    0.74901 0.000 0.000 0.000 1.000
#> GSM1068551     2  0.4949    0.65196 0.060 0.760 0.180 0.000
#> GSM1068552     4  0.1913    0.74699 0.000 0.020 0.040 0.940
#> GSM1068555     2  0.4761    0.52007 0.372 0.628 0.000 0.000
#> GSM1068556     4  0.4103    0.46777 0.000 0.000 0.256 0.744
#> GSM1068557     2  0.5417    0.62637 0.000 0.732 0.180 0.088
#> GSM1068560     4  0.4277    0.44896 0.000 0.000 0.280 0.720
#> GSM1068561     2  0.9178    0.08194 0.140 0.392 0.340 0.128
#> GSM1068562     3  0.4382    0.63488 0.000 0.000 0.704 0.296
#> GSM1068563     4  0.2149    0.71829 0.000 0.000 0.088 0.912
#> GSM1068565     2  0.0707    0.74776 0.020 0.980 0.000 0.000
#> GSM1068529     3  0.3837    0.67467 0.000 0.000 0.776 0.224
#> GSM1068530     1  0.5906    0.47423 0.700 0.000 0.148 0.152
#> GSM1068534     3  0.4877    0.46570 0.000 0.000 0.592 0.408
#> GSM1068536     3  0.7629   -0.02707 0.392 0.000 0.404 0.204
#> GSM1068541     4  0.8985   -0.18169 0.060 0.240 0.336 0.364
#> GSM1068553     4  0.0000    0.74901 0.000 0.000 0.000 1.000
#> GSM1068554     4  0.3726    0.59709 0.000 0.212 0.000 0.788
#> GSM1068558     3  0.7007    0.52201 0.000 0.208 0.580 0.212
#> GSM1068559     3  0.4053    0.67481 0.000 0.004 0.768 0.228
#> GSM1068564     4  0.3764    0.59447 0.000 0.216 0.000 0.784
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1068478     1  0.3452    0.24505 0.756 0.000 0.244 0.000 0.000
#> GSM1068479     2  0.4182    0.40520 0.000 0.644 0.352 0.000 0.004
#> GSM1068481     3  0.4307    0.28778 0.000 0.000 0.504 0.000 0.496
#> GSM1068482     5  0.0794    0.31695 0.000 0.000 0.028 0.000 0.972
#> GSM1068483     1  0.4604    0.46855 0.584 0.008 0.004 0.000 0.404
#> GSM1068486     5  0.4307   -0.34717 0.000 0.000 0.496 0.000 0.504
#> GSM1068487     2  0.0000    0.78202 0.000 1.000 0.000 0.000 0.000
#> GSM1068488     4  0.3123    0.69887 0.000 0.000 0.012 0.828 0.160
#> GSM1068490     2  0.0162    0.78103 0.000 0.996 0.004 0.000 0.000
#> GSM1068491     3  0.2966    0.24164 0.000 0.000 0.816 0.000 0.184
#> GSM1068492     2  0.4632    0.17002 0.000 0.540 0.012 0.000 0.448
#> GSM1068493     5  0.7181    0.30836 0.044 0.152 0.384 0.000 0.420
#> GSM1068494     5  0.5143    0.49422 0.000 0.000 0.368 0.048 0.584
#> GSM1068495     3  0.6190    0.26845 0.412 0.044 0.496 0.000 0.048
#> GSM1068496     5  0.4060    0.49999 0.000 0.000 0.360 0.000 0.640
#> GSM1068498     1  0.2389    0.42200 0.880 0.004 0.116 0.000 0.000
#> GSM1068499     5  0.4171    0.48912 0.000 0.000 0.396 0.000 0.604
#> GSM1068500     5  0.6108    0.43875 0.136 0.000 0.356 0.000 0.508
#> GSM1068502     2  0.2997    0.66694 0.000 0.840 0.012 0.000 0.148
#> GSM1068503     2  0.0000    0.78202 0.000 1.000 0.000 0.000 0.000
#> GSM1068505     4  0.0290    0.83118 0.000 0.000 0.000 0.992 0.008
#> GSM1068506     4  0.2605    0.75687 0.000 0.000 0.000 0.852 0.148
#> GSM1068507     2  0.2848    0.67439 0.000 0.840 0.004 0.000 0.156
#> GSM1068508     2  0.2690    0.71032 0.156 0.844 0.000 0.000 0.000
#> GSM1068510     4  0.4455    0.17940 0.000 0.404 0.000 0.588 0.008
#> GSM1068512     5  0.3999    0.31859 0.000 0.000 0.000 0.344 0.656
#> GSM1068513     2  0.0162    0.78103 0.000 0.996 0.000 0.000 0.004
#> GSM1068514     5  0.4444    0.27819 0.000 0.364 0.012 0.000 0.624
#> GSM1068517     3  0.5596    0.25291 0.444 0.052 0.496 0.000 0.008
#> GSM1068518     5  0.4196    0.49676 0.000 0.004 0.356 0.000 0.640
#> GSM1068520     1  0.0000    0.51726 1.000 0.000 0.000 0.000 0.000
#> GSM1068521     1  0.0290    0.52161 0.992 0.000 0.000 0.008 0.000
#> GSM1068522     4  0.0609    0.82607 0.000 0.020 0.000 0.980 0.000
#> GSM1068524     2  0.0404    0.77842 0.000 0.988 0.000 0.012 0.000
#> GSM1068527     4  0.0703    0.82694 0.000 0.000 0.000 0.976 0.024
#> GSM1068480     5  0.0290    0.33744 0.000 0.000 0.008 0.000 0.992
#> GSM1068484     4  0.0579    0.83054 0.000 0.008 0.000 0.984 0.008
#> GSM1068485     3  0.4278    0.29942 0.000 0.000 0.548 0.000 0.452
#> GSM1068489     4  0.0290    0.83118 0.000 0.000 0.000 0.992 0.008
#> GSM1068497     3  0.5795    0.27914 0.412 0.092 0.496 0.000 0.000
#> GSM1068501     4  0.0290    0.82901 0.000 0.008 0.000 0.992 0.000
#> GSM1068504     2  0.0000    0.78202 0.000 1.000 0.000 0.000 0.000
#> GSM1068509     5  0.6699    0.37995 0.000 0.000 0.268 0.304 0.428
#> GSM1068511     5  0.3999    0.31859 0.000 0.000 0.000 0.344 0.656
#> GSM1068515     3  0.6644   -0.30067 0.000 0.008 0.460 0.176 0.356
#> GSM1068516     4  0.5304    0.45494 0.000 0.000 0.088 0.640 0.272
#> GSM1068519     4  0.0290    0.82800 0.000 0.000 0.000 0.992 0.008
#> GSM1068523     2  0.3612    0.61617 0.268 0.732 0.000 0.000 0.000
#> GSM1068525     2  0.3177    0.61739 0.000 0.792 0.000 0.000 0.208
#> GSM1068526     4  0.3336    0.66473 0.000 0.000 0.000 0.772 0.228
#> GSM1068458     1  0.5396    0.50208 0.588 0.000 0.000 0.072 0.340
#> GSM1068459     3  0.4307    0.28429 0.000 0.000 0.500 0.000 0.500
#> GSM1068460     4  0.2605    0.69637 0.000 0.000 0.148 0.852 0.000
#> GSM1068461     3  0.4304    0.29147 0.000 0.000 0.516 0.000 0.484
#> GSM1068464     2  0.0000    0.78202 0.000 1.000 0.000 0.000 0.000
#> GSM1068468     3  0.6465    0.27146 0.376 0.184 0.440 0.000 0.000
#> GSM1068472     2  0.3424    0.58791 0.000 0.760 0.240 0.000 0.000
#> GSM1068473     2  0.0162    0.78103 0.000 0.996 0.004 0.000 0.000
#> GSM1068474     2  0.0000    0.78202 0.000 1.000 0.000 0.000 0.000
#> GSM1068476     3  0.2674    0.24065 0.000 0.000 0.856 0.004 0.140
#> GSM1068477     3  0.6110    0.28268 0.396 0.128 0.476 0.000 0.000
#> GSM1068462     2  0.1732    0.74746 0.000 0.920 0.080 0.000 0.000
#> GSM1068463     5  0.4306   -0.34534 0.000 0.000 0.492 0.000 0.508
#> GSM1068465     5  0.4450   -0.31137 0.488 0.000 0.004 0.000 0.508
#> GSM1068466     1  0.0865    0.52843 0.972 0.000 0.000 0.024 0.004
#> GSM1068467     2  0.2971    0.68588 0.008 0.836 0.156 0.000 0.000
#> GSM1068469     3  0.6519    0.23025 0.400 0.192 0.408 0.000 0.000
#> GSM1068470     2  0.5915    0.29723 0.412 0.484 0.104 0.000 0.000
#> GSM1068471     2  0.0000    0.78202 0.000 1.000 0.000 0.000 0.000
#> GSM1068475     2  0.0000    0.78202 0.000 1.000 0.000 0.000 0.000
#> GSM1068528     3  0.5740   -0.27906 0.112 0.000 0.580 0.000 0.308
#> GSM1068531     1  0.4268    0.21163 0.556 0.000 0.000 0.444 0.000
#> GSM1068532     5  0.4639    0.00138 0.344 0.000 0.012 0.008 0.636
#> GSM1068533     1  0.6179    0.50256 0.588 0.000 0.128 0.016 0.268
#> GSM1068535     4  0.0510    0.83001 0.000 0.000 0.000 0.984 0.016
#> GSM1068537     1  0.4455    0.47828 0.588 0.000 0.000 0.008 0.404
#> GSM1068538     1  0.4455    0.47828 0.588 0.000 0.000 0.008 0.404
#> GSM1068539     3  0.6128    0.27801 0.412 0.076 0.496 0.008 0.008
#> GSM1068540     1  0.4455    0.47828 0.588 0.000 0.000 0.008 0.404
#> GSM1068542     4  0.3109    0.70346 0.000 0.000 0.000 0.800 0.200
#> GSM1068543     4  0.3109    0.70346 0.000 0.000 0.000 0.800 0.200
#> GSM1068544     3  0.5989    0.27682 0.128 0.000 0.536 0.000 0.336
#> GSM1068545     2  0.4747    0.42999 0.000 0.620 0.000 0.352 0.028
#> GSM1068546     3  0.5454    0.28028 0.000 0.000 0.488 0.060 0.452
#> GSM1068547     1  0.3565    0.58453 0.800 0.000 0.000 0.024 0.176
#> GSM1068548     4  0.4307   -0.02437 0.000 0.000 0.000 0.504 0.496
#> GSM1068549     3  0.4307    0.28670 0.000 0.000 0.504 0.000 0.496
#> GSM1068550     4  0.0290    0.83118 0.000 0.000 0.000 0.992 0.008
#> GSM1068551     2  0.5320    0.32136 0.060 0.572 0.368 0.000 0.000
#> GSM1068552     4  0.2439    0.77886 0.000 0.004 0.000 0.876 0.120
#> GSM1068555     2  0.5519    0.34886 0.412 0.520 0.068 0.000 0.000
#> GSM1068556     5  0.4304   -0.00230 0.000 0.000 0.000 0.484 0.516
#> GSM1068557     2  0.6653    0.13794 0.000 0.420 0.384 0.192 0.004
#> GSM1068560     3  0.6792   -0.29601 0.000 0.000 0.372 0.340 0.288
#> GSM1068561     3  0.7809   -0.24354 0.084 0.188 0.384 0.000 0.344
#> GSM1068562     5  0.5518    0.47456 0.000 0.000 0.384 0.072 0.544
#> GSM1068563     4  0.3177    0.70206 0.000 0.000 0.000 0.792 0.208
#> GSM1068565     2  0.0162    0.78113 0.004 0.996 0.000 0.000 0.000
#> GSM1068529     5  0.4238    0.49773 0.000 0.000 0.368 0.004 0.628
#> GSM1068530     1  0.4201    0.54165 0.664 0.000 0.000 0.008 0.328
#> GSM1068534     5  0.3999    0.31859 0.000 0.000 0.000 0.344 0.656
#> GSM1068536     5  0.5329    0.44194 0.052 0.000 0.432 0.000 0.516
#> GSM1068541     5  0.8224    0.37126 0.040 0.112 0.312 0.096 0.440
#> GSM1068553     4  0.0290    0.83118 0.000 0.000 0.000 0.992 0.008
#> GSM1068554     4  0.0290    0.82901 0.000 0.008 0.000 0.992 0.000
#> GSM1068558     5  0.5702    0.44526 0.000 0.192 0.180 0.000 0.628
#> GSM1068559     5  0.4460    0.48951 0.000 0.004 0.392 0.004 0.600
#> GSM1068564     4  0.0510    0.82670 0.000 0.016 0.000 0.984 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1068478     5  0.1141      0.756 0.052 0.000 0.000 0.000 0.948 0.000
#> GSM1068479     2  0.3240      0.692 0.000 0.812 0.000 0.000 0.148 0.040
#> GSM1068481     3  0.1610      0.769 0.000 0.000 0.916 0.000 0.000 0.084
#> GSM1068482     6  0.3765      0.326 0.000 0.000 0.404 0.000 0.000 0.596
#> GSM1068483     1  0.3245      0.652 0.764 0.008 0.000 0.000 0.000 0.228
#> GSM1068486     3  0.1814      0.761 0.000 0.000 0.900 0.000 0.000 0.100
#> GSM1068487     2  0.0000      0.845 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068488     4  0.5096      0.323 0.000 0.000 0.100 0.576 0.000 0.324
#> GSM1068490     2  0.0000      0.845 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068491     3  0.3634      0.554 0.000 0.000 0.644 0.000 0.000 0.356
#> GSM1068492     6  0.4929      0.330 0.000 0.280 0.100 0.000 0.000 0.620
#> GSM1068493     6  0.5302      0.514 0.000 0.208 0.000 0.000 0.192 0.600
#> GSM1068494     6  0.2944      0.669 0.008 0.000 0.000 0.012 0.148 0.832
#> GSM1068495     5  0.0865      0.783 0.000 0.000 0.000 0.000 0.964 0.036
#> GSM1068496     6  0.1910      0.671 0.000 0.000 0.000 0.000 0.108 0.892
#> GSM1068498     5  0.2340      0.623 0.148 0.000 0.000 0.000 0.852 0.000
#> GSM1068499     6  0.3717      0.660 0.000 0.000 0.072 0.000 0.148 0.780
#> GSM1068500     6  0.4728      0.618 0.176 0.000 0.000 0.000 0.144 0.680
#> GSM1068502     2  0.5083      0.362 0.000 0.580 0.100 0.000 0.000 0.320
#> GSM1068503     2  0.0000      0.845 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068505     4  0.0000      0.835 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068506     4  0.2340      0.760 0.000 0.000 0.000 0.852 0.000 0.148
#> GSM1068507     2  0.2416      0.714 0.000 0.844 0.000 0.000 0.000 0.156
#> GSM1068508     2  0.2416      0.724 0.000 0.844 0.000 0.000 0.156 0.000
#> GSM1068510     4  0.4100      0.238 0.000 0.388 0.008 0.600 0.000 0.004
#> GSM1068512     6  0.0865      0.636 0.000 0.000 0.000 0.036 0.000 0.964
#> GSM1068513     2  0.0000      0.845 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068514     6  0.3103      0.569 0.000 0.064 0.100 0.000 0.000 0.836
#> GSM1068517     5  0.0000      0.791 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1068518     6  0.1958      0.596 0.000 0.004 0.100 0.000 0.000 0.896
#> GSM1068520     1  0.2941      0.730 0.780 0.000 0.000 0.000 0.220 0.000
#> GSM1068521     1  0.2697      0.766 0.812 0.000 0.000 0.000 0.188 0.000
#> GSM1068522     4  0.0363      0.832 0.000 0.012 0.000 0.988 0.000 0.000
#> GSM1068524     2  0.0363      0.840 0.000 0.988 0.000 0.012 0.000 0.000
#> GSM1068527     4  0.1700      0.815 0.048 0.000 0.000 0.928 0.000 0.024
#> GSM1068480     6  0.3288      0.509 0.000 0.000 0.276 0.000 0.000 0.724
#> GSM1068484     4  0.0146      0.834 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM1068485     3  0.0000      0.767 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068489     4  0.0000      0.835 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068497     5  0.0000      0.791 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM1068501     4  0.0000      0.835 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068504     2  0.0000      0.845 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068509     6  0.5188      0.502 0.000 0.000 0.000 0.288 0.124 0.588
#> GSM1068511     6  0.1007      0.637 0.000 0.000 0.000 0.044 0.000 0.956
#> GSM1068515     6  0.5587      0.472 0.000 0.000 0.000 0.168 0.308 0.524
#> GSM1068516     4  0.4597      0.494 0.000 0.000 0.000 0.652 0.072 0.276
#> GSM1068519     4  0.0363      0.832 0.012 0.000 0.000 0.988 0.000 0.000
#> GSM1068523     2  0.3244      0.553 0.000 0.732 0.000 0.000 0.268 0.000
#> GSM1068525     2  0.2823      0.654 0.000 0.796 0.000 0.000 0.000 0.204
#> GSM1068526     4  0.2996      0.674 0.000 0.000 0.000 0.772 0.000 0.228
#> GSM1068458     1  0.3098      0.748 0.812 0.000 0.000 0.024 0.000 0.164
#> GSM1068459     3  0.1863      0.743 0.000 0.000 0.896 0.000 0.000 0.104
#> GSM1068460     4  0.1511      0.801 0.004 0.000 0.000 0.940 0.044 0.012
#> GSM1068461     3  0.0000      0.767 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068464     2  0.0000      0.845 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068468     5  0.4315      0.440 0.000 0.328 0.000 0.000 0.636 0.036
#> GSM1068472     2  0.2930      0.725 0.000 0.840 0.000 0.000 0.124 0.036
#> GSM1068473     2  0.0000      0.845 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068474     2  0.0000      0.845 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068476     3  0.4941      0.508 0.000 0.000 0.648 0.000 0.140 0.212
#> GSM1068477     5  0.3247      0.716 0.000 0.156 0.000 0.000 0.808 0.036
#> GSM1068462     2  0.1333      0.819 0.000 0.944 0.000 0.000 0.048 0.008
#> GSM1068463     3  0.1765      0.764 0.000 0.000 0.904 0.000 0.000 0.096
#> GSM1068465     6  0.3634      0.402 0.356 0.000 0.000 0.000 0.000 0.644
#> GSM1068466     1  0.2805      0.769 0.812 0.000 0.000 0.004 0.184 0.000
#> GSM1068467     2  0.1983      0.797 0.000 0.908 0.000 0.000 0.072 0.020
#> GSM1068469     5  0.0458      0.792 0.000 0.016 0.000 0.000 0.984 0.000
#> GSM1068470     5  0.3023      0.657 0.000 0.232 0.000 0.000 0.768 0.000
#> GSM1068471     2  0.0000      0.845 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068475     2  0.0000      0.845 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068528     3  0.5636     -0.166 0.000 0.000 0.428 0.000 0.148 0.424
#> GSM1068531     1  0.2730      0.732 0.808 0.000 0.000 0.192 0.000 0.000
#> GSM1068532     6  0.4892      0.313 0.272 0.000 0.100 0.000 0.000 0.628
#> GSM1068533     1  0.0363      0.840 0.988 0.000 0.012 0.000 0.000 0.000
#> GSM1068535     4  0.0146      0.834 0.000 0.000 0.004 0.996 0.000 0.000
#> GSM1068537     1  0.0146      0.844 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM1068538     1  0.0000      0.843 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1068539     5  0.1010      0.782 0.004 0.000 0.000 0.000 0.960 0.036
#> GSM1068540     1  0.0146      0.844 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM1068542     4  0.2793      0.709 0.000 0.000 0.000 0.800 0.000 0.200
#> GSM1068543     4  0.2793      0.709 0.000 0.000 0.000 0.800 0.000 0.200
#> GSM1068544     3  0.2070      0.717 0.100 0.000 0.892 0.000 0.000 0.008
#> GSM1068545     2  0.4144      0.437 0.000 0.620 0.000 0.360 0.000 0.020
#> GSM1068546     3  0.2006      0.765 0.000 0.000 0.904 0.016 0.000 0.080
#> GSM1068547     1  0.3384      0.782 0.820 0.000 0.000 0.016 0.032 0.132
#> GSM1068548     6  0.3955      0.219 0.004 0.000 0.000 0.436 0.000 0.560
#> GSM1068549     3  0.3499      0.583 0.000 0.000 0.680 0.000 0.000 0.320
#> GSM1068550     4  0.0000      0.835 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068551     2  0.3671      0.647 0.000 0.756 0.000 0.000 0.208 0.036
#> GSM1068552     4  0.2003      0.784 0.000 0.000 0.000 0.884 0.000 0.116
#> GSM1068555     5  0.3838      0.253 0.000 0.448 0.000 0.000 0.552 0.000
#> GSM1068556     6  0.3706      0.353 0.000 0.000 0.000 0.380 0.000 0.620
#> GSM1068557     2  0.5708      0.507 0.000 0.616 0.000 0.200 0.148 0.036
#> GSM1068560     4  0.5891      0.250 0.020 0.000 0.000 0.536 0.148 0.296
#> GSM1068561     6  0.5781      0.373 0.000 0.264 0.000 0.000 0.232 0.504
#> GSM1068562     6  0.5748      0.625 0.000 0.004 0.084 0.108 0.148 0.656
#> GSM1068563     4  0.2964      0.707 0.000 0.000 0.004 0.792 0.000 0.204
#> GSM1068565     2  0.0146      0.843 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM1068529     6  0.2340      0.666 0.000 0.000 0.000 0.000 0.148 0.852
#> GSM1068530     1  0.0000      0.843 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1068534     6  0.0865      0.636 0.000 0.000 0.000 0.036 0.000 0.964
#> GSM1068536     6  0.5029      0.488 0.076 0.000 0.000 0.000 0.400 0.524
#> GSM1068541     6  0.6441      0.510 0.036 0.048 0.000 0.072 0.312 0.532
#> GSM1068553     4  0.0000      0.835 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068554     4  0.0000      0.835 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068558     6  0.3978      0.637 0.000 0.160 0.000 0.000 0.084 0.756
#> GSM1068559     6  0.4492      0.648 0.000 0.000 0.100 0.016 0.148 0.736
#> GSM1068564     4  0.0146      0.834 0.000 0.004 0.000 0.996 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#>          n disease.state(p) gender(p) k
#> MAD:pam 55           0.0719     0.922 2
#> MAD:pam 67           0.0772     0.745 3
#> MAD:pam 72           0.1835     0.684 4
#> MAD:pam 47           0.0137     0.855 5
#> MAD:pam 90           0.0202     0.446 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 38950 rows and 108 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.278           0.625       0.798         0.4073 0.525   0.525
#> 3 3 0.310           0.558       0.740         0.3072 0.778   0.622
#> 4 4 0.946           0.886       0.938         0.3613 0.666   0.353
#> 5 5 0.761           0.817       0.896         0.0471 0.921   0.729
#> 6 6 0.785           0.693       0.839         0.0697 0.926   0.707
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1068478     1  0.0938     0.8144 0.988 0.012
#> GSM1068479     1  0.6438     0.7224 0.836 0.164
#> GSM1068481     1  0.0938     0.8070 0.988 0.012
#> GSM1068482     1  0.0938     0.8070 0.988 0.012
#> GSM1068483     1  0.0000     0.8146 1.000 0.000
#> GSM1068486     1  0.0938     0.8070 0.988 0.012
#> GSM1068487     2  0.9795     0.5391 0.416 0.584
#> GSM1068488     2  0.9988    -0.0231 0.480 0.520
#> GSM1068490     2  0.9522     0.5751 0.372 0.628
#> GSM1068491     1  0.4690     0.7936 0.900 0.100
#> GSM1068492     1  0.7674     0.6328 0.776 0.224
#> GSM1068493     1  0.5178     0.7725 0.884 0.116
#> GSM1068494     1  0.2603     0.8086 0.956 0.044
#> GSM1068495     1  0.9922    -0.1758 0.552 0.448
#> GSM1068496     1  0.0000     0.8146 1.000 0.000
#> GSM1068498     1  0.2603     0.8086 0.956 0.044
#> GSM1068499     1  0.0000     0.8146 1.000 0.000
#> GSM1068500     1  0.0000     0.8146 1.000 0.000
#> GSM1068502     1  0.7056     0.6837 0.808 0.192
#> GSM1068503     2  0.9795     0.5425 0.416 0.584
#> GSM1068505     2  0.3879     0.6420 0.076 0.924
#> GSM1068506     2  0.5842     0.6471 0.140 0.860
#> GSM1068507     1  0.9608     0.1330 0.616 0.384
#> GSM1068508     2  0.9881     0.5139 0.436 0.564
#> GSM1068510     2  0.9954     0.0481 0.460 0.540
#> GSM1068512     1  0.8327     0.6138 0.736 0.264
#> GSM1068513     2  0.9850     0.5250 0.428 0.572
#> GSM1068514     1  0.8555     0.5839 0.720 0.280
#> GSM1068517     1  0.4562     0.7866 0.904 0.096
#> GSM1068518     1  0.7674     0.6708 0.776 0.224
#> GSM1068520     1  0.0000     0.8146 1.000 0.000
#> GSM1068521     1  0.0000     0.8146 1.000 0.000
#> GSM1068522     2  0.5946     0.6466 0.144 0.856
#> GSM1068524     2  0.9815     0.5348 0.420 0.580
#> GSM1068527     1  0.9775     0.2797 0.588 0.412
#> GSM1068480     1  0.0938     0.8070 0.988 0.012
#> GSM1068484     2  0.3879     0.6420 0.076 0.924
#> GSM1068485     1  0.0938     0.8070 0.988 0.012
#> GSM1068489     2  0.7219     0.5634 0.200 0.800
#> GSM1068497     1  0.3584     0.8005 0.932 0.068
#> GSM1068501     2  0.4815     0.6351 0.104 0.896
#> GSM1068504     2  0.9522     0.5751 0.372 0.628
#> GSM1068509     1  0.4562     0.7861 0.904 0.096
#> GSM1068511     1  0.9170     0.4555 0.668 0.332
#> GSM1068515     1  0.2043     0.8114 0.968 0.032
#> GSM1068516     1  0.9209     0.4636 0.664 0.336
#> GSM1068519     1  0.0000     0.8146 1.000 0.000
#> GSM1068523     2  0.9522     0.5751 0.372 0.628
#> GSM1068525     2  0.3879     0.6420 0.076 0.924
#> GSM1068526     2  0.3879     0.6420 0.076 0.924
#> GSM1068458     1  0.0000     0.8146 1.000 0.000
#> GSM1068459     1  0.0938     0.8070 0.988 0.012
#> GSM1068460     1  0.5408     0.7663 0.876 0.124
#> GSM1068461     1  0.0938     0.8070 0.988 0.012
#> GSM1068464     2  0.9608     0.5670 0.384 0.616
#> GSM1068468     1  0.9286     0.3009 0.656 0.344
#> GSM1068472     1  0.6343     0.7275 0.840 0.160
#> GSM1068473     2  0.9522     0.5751 0.372 0.628
#> GSM1068474     2  0.9522     0.5751 0.372 0.628
#> GSM1068476     1  0.5408     0.7802 0.876 0.124
#> GSM1068477     2  0.9881     0.5139 0.436 0.564
#> GSM1068462     1  0.5294     0.7694 0.880 0.120
#> GSM1068463     1  0.0938     0.8070 0.988 0.012
#> GSM1068465     1  0.5178     0.7725 0.884 0.116
#> GSM1068466     1  0.0000     0.8146 1.000 0.000
#> GSM1068467     1  0.6712     0.7078 0.824 0.176
#> GSM1068469     1  0.3431     0.8021 0.936 0.064
#> GSM1068470     2  0.9522     0.5751 0.372 0.628
#> GSM1068471     2  0.9522     0.5751 0.372 0.628
#> GSM1068475     2  0.9522     0.5751 0.372 0.628
#> GSM1068528     1  0.0000     0.8146 1.000 0.000
#> GSM1068531     1  0.0000     0.8146 1.000 0.000
#> GSM1068532     1  0.0000     0.8146 1.000 0.000
#> GSM1068533     1  0.0000     0.8146 1.000 0.000
#> GSM1068535     1  0.9963     0.1163 0.536 0.464
#> GSM1068537     1  0.0000     0.8146 1.000 0.000
#> GSM1068538     1  0.0000     0.8146 1.000 0.000
#> GSM1068539     2  0.9881     0.5139 0.436 0.564
#> GSM1068540     1  0.0000     0.8146 1.000 0.000
#> GSM1068542     2  0.4161     0.6409 0.084 0.916
#> GSM1068543     2  0.9944     0.0510 0.456 0.544
#> GSM1068544     1  0.0938     0.8070 0.988 0.012
#> GSM1068545     2  0.9754     0.5469 0.408 0.592
#> GSM1068546     1  0.0938     0.8070 0.988 0.012
#> GSM1068547     1  0.1184     0.8141 0.984 0.016
#> GSM1068548     2  0.4939     0.6334 0.108 0.892
#> GSM1068549     1  0.0938     0.8070 0.988 0.012
#> GSM1068550     2  0.4022     0.6416 0.080 0.920
#> GSM1068551     2  0.9522     0.5751 0.372 0.628
#> GSM1068552     2  0.3879     0.6420 0.076 0.924
#> GSM1068555     2  0.9522     0.5751 0.372 0.628
#> GSM1068556     2  0.9963     0.0269 0.464 0.536
#> GSM1068557     1  0.9286     0.2978 0.656 0.344
#> GSM1068560     2  0.6712     0.6202 0.176 0.824
#> GSM1068561     1  0.8608     0.4883 0.716 0.284
#> GSM1068562     2  0.3879     0.6420 0.076 0.924
#> GSM1068563     2  0.3879     0.6420 0.076 0.924
#> GSM1068565     2  0.9522     0.5751 0.372 0.628
#> GSM1068529     1  0.6343     0.7419 0.840 0.160
#> GSM1068530     1  0.0000     0.8146 1.000 0.000
#> GSM1068534     1  0.5737     0.7605 0.864 0.136
#> GSM1068536     1  0.5408     0.7663 0.876 0.124
#> GSM1068541     1  0.9795    -0.0248 0.584 0.416
#> GSM1068553     1  0.9983     0.1009 0.524 0.476
#> GSM1068554     2  0.9661     0.2237 0.392 0.608
#> GSM1068558     1  0.8909     0.5178 0.692 0.308
#> GSM1068559     1  0.5737     0.7548 0.864 0.136
#> GSM1068564     2  0.3879     0.6420 0.076 0.924
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1068478     1  0.0237     0.6679 0.996 0.004 0.000
#> GSM1068479     1  0.6994     0.4022 0.556 0.424 0.020
#> GSM1068481     1  0.6244     0.5676 0.560 0.000 0.440
#> GSM1068482     1  0.6244     0.5676 0.560 0.000 0.440
#> GSM1068483     1  0.0000     0.6677 1.000 0.000 0.000
#> GSM1068486     1  0.6244     0.5676 0.560 0.000 0.440
#> GSM1068487     2  0.6952    -0.8596 0.016 0.504 0.480
#> GSM1068488     2  0.5591     0.5300 0.304 0.696 0.000
#> GSM1068490     3  0.6625     0.9948 0.008 0.440 0.552
#> GSM1068491     1  0.7770     0.5715 0.560 0.056 0.384
#> GSM1068492     2  0.7074    -0.2239 0.480 0.500 0.020
#> GSM1068493     1  0.6126     0.4517 0.600 0.400 0.000
#> GSM1068494     1  0.1774     0.6655 0.960 0.016 0.024
#> GSM1068495     1  0.5968     0.4093 0.636 0.364 0.000
#> GSM1068496     1  0.0000     0.6677 1.000 0.000 0.000
#> GSM1068498     1  0.5254     0.5826 0.736 0.264 0.000
#> GSM1068499     1  0.0424     0.6675 0.992 0.008 0.000
#> GSM1068500     1  0.0000     0.6677 1.000 0.000 0.000
#> GSM1068502     1  0.7013     0.3861 0.548 0.432 0.020
#> GSM1068503     2  0.1999     0.5409 0.036 0.952 0.012
#> GSM1068505     2  0.2878     0.6304 0.096 0.904 0.000
#> GSM1068506     2  0.1964     0.6105 0.056 0.944 0.000
#> GSM1068507     2  0.6180     0.3005 0.416 0.584 0.000
#> GSM1068508     1  0.6280     0.3365 0.540 0.460 0.000
#> GSM1068510     2  0.5541     0.4885 0.252 0.740 0.008
#> GSM1068512     2  0.6295     0.1750 0.472 0.528 0.000
#> GSM1068513     2  0.6719     0.3192 0.204 0.728 0.068
#> GSM1068514     1  0.7067     0.0395 0.512 0.468 0.020
#> GSM1068517     1  0.6026     0.4819 0.624 0.376 0.000
#> GSM1068518     1  0.6267     0.1308 0.548 0.452 0.000
#> GSM1068520     1  0.0424     0.6653 0.992 0.000 0.008
#> GSM1068521     1  0.0424     0.6653 0.992 0.000 0.008
#> GSM1068522     2  0.0000     0.5256 0.000 1.000 0.000
#> GSM1068524     2  0.4768     0.4561 0.100 0.848 0.052
#> GSM1068527     2  0.5363     0.5675 0.276 0.724 0.000
#> GSM1068480     1  0.6244     0.5676 0.560 0.000 0.440
#> GSM1068484     2  0.1289     0.5814 0.032 0.968 0.000
#> GSM1068485     1  0.6244     0.5676 0.560 0.000 0.440
#> GSM1068489     2  0.2711     0.6310 0.088 0.912 0.000
#> GSM1068497     1  0.6026     0.4819 0.624 0.376 0.000
#> GSM1068501     2  0.2796     0.6363 0.092 0.908 0.000
#> GSM1068504     3  0.6625     0.9948 0.008 0.440 0.552
#> GSM1068509     1  0.1031     0.6656 0.976 0.024 0.000
#> GSM1068511     2  0.6308     0.0767 0.492 0.508 0.000
#> GSM1068515     1  0.4605     0.5930 0.796 0.204 0.000
#> GSM1068516     2  0.4452     0.6169 0.192 0.808 0.000
#> GSM1068519     1  0.0237     0.6666 0.996 0.000 0.004
#> GSM1068523     3  0.6625     0.9948 0.008 0.440 0.552
#> GSM1068525     2  0.1643     0.5561 0.044 0.956 0.000
#> GSM1068526     2  0.2711     0.6310 0.088 0.912 0.000
#> GSM1068458     1  0.0424     0.6653 0.992 0.000 0.008
#> GSM1068459     1  0.6244     0.5676 0.560 0.000 0.440
#> GSM1068460     1  0.3715     0.6323 0.868 0.128 0.004
#> GSM1068461     1  0.6244     0.5676 0.560 0.000 0.440
#> GSM1068464     3  0.7360     0.9414 0.032 0.440 0.528
#> GSM1068468     1  0.6244     0.3862 0.560 0.440 0.000
#> GSM1068472     1  0.6244     0.3862 0.560 0.440 0.000
#> GSM1068473     3  0.6625     0.9948 0.008 0.440 0.552
#> GSM1068474     3  0.6625     0.9948 0.008 0.440 0.552
#> GSM1068476     1  0.8264     0.5675 0.556 0.088 0.356
#> GSM1068477     1  0.6244     0.3862 0.560 0.440 0.000
#> GSM1068462     1  0.6192     0.4214 0.580 0.420 0.000
#> GSM1068463     1  0.6244     0.5676 0.560 0.000 0.440
#> GSM1068465     1  0.4033     0.6299 0.856 0.136 0.008
#> GSM1068466     1  0.0424     0.6653 0.992 0.000 0.008
#> GSM1068467     1  0.6244     0.3862 0.560 0.440 0.000
#> GSM1068469     1  0.6079     0.4683 0.612 0.388 0.000
#> GSM1068470     3  0.6625     0.9948 0.008 0.440 0.552
#> GSM1068471     3  0.6625     0.9948 0.008 0.440 0.552
#> GSM1068475     3  0.6625     0.9948 0.008 0.440 0.552
#> GSM1068528     1  0.0000     0.6677 1.000 0.000 0.000
#> GSM1068531     1  0.0424     0.6653 0.992 0.000 0.008
#> GSM1068532     1  0.0237     0.6666 0.996 0.000 0.004
#> GSM1068533     1  0.0424     0.6653 0.992 0.000 0.008
#> GSM1068535     2  0.6309     0.1289 0.496 0.504 0.000
#> GSM1068537     1  0.0424     0.6653 0.992 0.000 0.008
#> GSM1068538     1  0.0424     0.6653 0.992 0.000 0.008
#> GSM1068539     2  0.6235     0.2603 0.436 0.564 0.000
#> GSM1068540     1  0.0424     0.6653 0.992 0.000 0.008
#> GSM1068542     2  0.2796     0.6305 0.092 0.908 0.000
#> GSM1068543     2  0.3752     0.6395 0.144 0.856 0.000
#> GSM1068544     1  0.6168     0.5771 0.588 0.000 0.412
#> GSM1068545     2  0.3038     0.5449 0.104 0.896 0.000
#> GSM1068546     1  0.6244     0.5676 0.560 0.000 0.440
#> GSM1068547     1  0.0424     0.6653 0.992 0.000 0.008
#> GSM1068548     2  0.3038     0.6251 0.104 0.896 0.000
#> GSM1068549     1  0.6244     0.5676 0.560 0.000 0.440
#> GSM1068550     2  0.2878     0.6304 0.096 0.904 0.000
#> GSM1068551     3  0.6625     0.9948 0.008 0.440 0.552
#> GSM1068552     2  0.0592     0.5491 0.012 0.988 0.000
#> GSM1068555     3  0.6625     0.9948 0.008 0.440 0.552
#> GSM1068556     2  0.3482     0.6396 0.128 0.872 0.000
#> GSM1068557     1  0.6244     0.3862 0.560 0.440 0.000
#> GSM1068560     2  0.3116     0.6230 0.108 0.892 0.000
#> GSM1068561     1  0.6215     0.3857 0.572 0.428 0.000
#> GSM1068562     2  0.2796     0.6334 0.092 0.908 0.000
#> GSM1068563     2  0.2625     0.6300 0.084 0.916 0.000
#> GSM1068565     3  0.6625     0.9948 0.008 0.440 0.552
#> GSM1068529     1  0.6140     0.3168 0.596 0.404 0.000
#> GSM1068530     1  0.0424     0.6653 0.992 0.000 0.008
#> GSM1068534     1  0.6026     0.3639 0.624 0.376 0.000
#> GSM1068536     1  0.3192     0.6397 0.888 0.112 0.000
#> GSM1068541     1  0.5905     0.4451 0.648 0.352 0.000
#> GSM1068553     2  0.5948     0.4836 0.360 0.640 0.000
#> GSM1068554     2  0.3116     0.6307 0.108 0.892 0.000
#> GSM1068558     2  0.7049     0.1170 0.452 0.528 0.020
#> GSM1068559     1  0.5926     0.4090 0.644 0.356 0.000
#> GSM1068564     2  0.0000     0.5256 0.000 1.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1068478     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM1068479     2  0.0188      0.865 0.000 0.996 0.000 0.004
#> GSM1068481     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM1068482     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM1068483     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM1068486     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM1068487     2  0.2281      0.884 0.000 0.904 0.000 0.096
#> GSM1068488     4  0.0188      0.941 0.000 0.004 0.000 0.996
#> GSM1068490     2  0.2216      0.885 0.000 0.908 0.000 0.092
#> GSM1068491     3  0.2401      0.899 0.000 0.092 0.904 0.004
#> GSM1068492     4  0.1716      0.921 0.000 0.064 0.000 0.936
#> GSM1068493     2  0.0188      0.865 0.000 0.996 0.000 0.004
#> GSM1068494     1  0.4772      0.780 0.808 0.068 0.016 0.108
#> GSM1068495     4  0.5607      0.101 0.020 0.488 0.000 0.492
#> GSM1068496     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM1068498     2  0.2401      0.843 0.092 0.904 0.000 0.004
#> GSM1068499     1  0.1661      0.915 0.944 0.000 0.052 0.004
#> GSM1068500     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM1068502     2  0.0707      0.871 0.000 0.980 0.000 0.020
#> GSM1068503     2  0.4543      0.652 0.000 0.676 0.000 0.324
#> GSM1068505     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> GSM1068506     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> GSM1068507     4  0.2216      0.907 0.000 0.092 0.000 0.908
#> GSM1068508     2  0.2281      0.884 0.000 0.904 0.000 0.096
#> GSM1068510     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> GSM1068512     4  0.2216      0.907 0.000 0.092 0.000 0.908
#> GSM1068513     2  0.4996      0.276 0.000 0.516 0.000 0.484
#> GSM1068514     4  0.2216      0.907 0.000 0.092 0.000 0.908
#> GSM1068517     2  0.2053      0.853 0.072 0.924 0.000 0.004
#> GSM1068518     4  0.2216      0.907 0.000 0.092 0.000 0.908
#> GSM1068520     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM1068521     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM1068522     4  0.1389      0.904 0.000 0.048 0.000 0.952
#> GSM1068524     2  0.4730      0.578 0.000 0.636 0.000 0.364
#> GSM1068527     4  0.1489      0.913 0.044 0.004 0.000 0.952
#> GSM1068480     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM1068484     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> GSM1068485     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM1068489     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> GSM1068497     2  0.2401      0.843 0.092 0.904 0.000 0.004
#> GSM1068501     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> GSM1068504     2  0.2281      0.884 0.000 0.904 0.000 0.096
#> GSM1068509     1  0.2676      0.877 0.896 0.092 0.000 0.012
#> GSM1068511     4  0.2216      0.907 0.000 0.092 0.000 0.908
#> GSM1068515     1  0.4509      0.559 0.708 0.288 0.000 0.004
#> GSM1068516     4  0.2216      0.907 0.000 0.092 0.000 0.908
#> GSM1068519     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM1068523     2  0.2216      0.885 0.000 0.908 0.000 0.092
#> GSM1068525     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> GSM1068526     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> GSM1068458     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM1068459     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM1068460     1  0.2401      0.883 0.904 0.092 0.000 0.004
#> GSM1068461     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM1068464     2  0.2216      0.885 0.000 0.908 0.000 0.092
#> GSM1068468     2  0.0188      0.865 0.000 0.996 0.000 0.004
#> GSM1068472     2  0.0188      0.865 0.000 0.996 0.000 0.004
#> GSM1068473     2  0.2216      0.885 0.000 0.908 0.000 0.092
#> GSM1068474     2  0.2216      0.885 0.000 0.908 0.000 0.092
#> GSM1068476     3  0.2676      0.893 0.000 0.092 0.896 0.012
#> GSM1068477     2  0.0188      0.865 0.000 0.996 0.000 0.004
#> GSM1068462     2  0.0188      0.865 0.000 0.996 0.000 0.004
#> GSM1068463     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM1068465     1  0.2401      0.883 0.904 0.092 0.000 0.004
#> GSM1068466     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM1068467     2  0.0188      0.865 0.000 0.996 0.000 0.004
#> GSM1068469     2  0.2401      0.843 0.092 0.904 0.000 0.004
#> GSM1068470     2  0.2216      0.885 0.000 0.908 0.000 0.092
#> GSM1068471     2  0.2216      0.885 0.000 0.908 0.000 0.092
#> GSM1068475     2  0.2216      0.885 0.000 0.908 0.000 0.092
#> GSM1068528     1  0.0188      0.952 0.996 0.000 0.004 0.000
#> GSM1068531     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM1068532     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM1068533     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM1068535     4  0.2216      0.907 0.000 0.092 0.000 0.908
#> GSM1068537     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM1068538     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM1068539     4  0.3400      0.835 0.000 0.180 0.000 0.820
#> GSM1068540     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM1068542     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> GSM1068543     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> GSM1068544     3  0.0188      0.979 0.004 0.000 0.996 0.000
#> GSM1068545     2  0.4994      0.252 0.000 0.520 0.000 0.480
#> GSM1068546     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM1068547     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM1068548     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> GSM1068549     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM1068550     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> GSM1068551     2  0.2216      0.885 0.000 0.908 0.000 0.092
#> GSM1068552     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> GSM1068555     2  0.2216      0.885 0.000 0.908 0.000 0.092
#> GSM1068556     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> GSM1068557     2  0.0188      0.865 0.000 0.996 0.000 0.004
#> GSM1068560     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> GSM1068561     2  0.4277      0.569 0.000 0.720 0.000 0.280
#> GSM1068562     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> GSM1068563     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> GSM1068565     2  0.2216      0.885 0.000 0.908 0.000 0.092
#> GSM1068529     4  0.2216      0.907 0.000 0.092 0.000 0.908
#> GSM1068530     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM1068534     4  0.2216      0.907 0.000 0.092 0.000 0.908
#> GSM1068536     1  0.2401      0.883 0.904 0.092 0.000 0.004
#> GSM1068541     2  0.0469      0.863 0.000 0.988 0.000 0.012
#> GSM1068553     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> GSM1068554     4  0.0000      0.942 0.000 0.000 0.000 1.000
#> GSM1068558     4  0.1867      0.917 0.000 0.072 0.000 0.928
#> GSM1068559     4  0.2216      0.907 0.000 0.092 0.000 0.908
#> GSM1068564     4  0.0000      0.942 0.000 0.000 0.000 1.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1068478     1  0.3242     0.7385 0.784 0.000 0.000 0.000 0.216
#> GSM1068479     2  0.3710     0.7180 0.000 0.808 0.000 0.144 0.048
#> GSM1068481     3  0.0000     0.9514 0.000 0.000 1.000 0.000 0.000
#> GSM1068482     3  0.0000     0.9514 0.000 0.000 1.000 0.000 0.000
#> GSM1068483     1  0.3039     0.7665 0.808 0.000 0.000 0.000 0.192
#> GSM1068486     3  0.0000     0.9514 0.000 0.000 1.000 0.000 0.000
#> GSM1068487     2  0.2648     0.8101 0.000 0.848 0.000 0.152 0.000
#> GSM1068488     4  0.1310     0.8926 0.000 0.024 0.000 0.956 0.020
#> GSM1068490     2  0.1043     0.9077 0.000 0.960 0.000 0.040 0.000
#> GSM1068491     3  0.4149     0.6939 0.000 0.004 0.792 0.124 0.080
#> GSM1068492     4  0.2446     0.8700 0.000 0.056 0.000 0.900 0.044
#> GSM1068493     5  0.3016     0.7140 0.000 0.020 0.000 0.132 0.848
#> GSM1068494     1  0.4027     0.7118 0.800 0.000 0.012 0.144 0.044
#> GSM1068495     4  0.4752     0.5180 0.000 0.036 0.000 0.648 0.316
#> GSM1068496     1  0.0865     0.8927 0.972 0.000 0.000 0.004 0.024
#> GSM1068498     5  0.2627     0.7507 0.044 0.044 0.000 0.012 0.900
#> GSM1068499     1  0.2011     0.8459 0.908 0.000 0.088 0.004 0.000
#> GSM1068500     1  0.2852     0.7863 0.828 0.000 0.000 0.000 0.172
#> GSM1068502     2  0.3681     0.7196 0.000 0.808 0.000 0.148 0.044
#> GSM1068503     2  0.2852     0.7898 0.000 0.828 0.000 0.172 0.000
#> GSM1068505     4  0.1216     0.8960 0.000 0.020 0.000 0.960 0.020
#> GSM1068506     4  0.1211     0.8959 0.000 0.024 0.000 0.960 0.016
#> GSM1068507     4  0.1341     0.8867 0.000 0.000 0.000 0.944 0.056
#> GSM1068508     5  0.6392     0.1564 0.000 0.400 0.000 0.168 0.432
#> GSM1068510     4  0.1741     0.8856 0.000 0.024 0.000 0.936 0.040
#> GSM1068512     4  0.1410     0.8858 0.000 0.000 0.000 0.940 0.060
#> GSM1068513     4  0.4552     0.0112 0.000 0.468 0.000 0.524 0.008
#> GSM1068514     4  0.2077     0.8769 0.000 0.040 0.000 0.920 0.040
#> GSM1068517     5  0.1682     0.7552 0.004 0.044 0.000 0.012 0.940
#> GSM1068518     4  0.1544     0.8833 0.000 0.000 0.000 0.932 0.068
#> GSM1068520     1  0.0000     0.9015 1.000 0.000 0.000 0.000 0.000
#> GSM1068521     1  0.0000     0.9015 1.000 0.000 0.000 0.000 0.000
#> GSM1068522     4  0.3928     0.5401 0.000 0.296 0.000 0.700 0.004
#> GSM1068524     2  0.3086     0.7801 0.000 0.816 0.000 0.180 0.004
#> GSM1068527     4  0.2153     0.8773 0.040 0.000 0.000 0.916 0.044
#> GSM1068480     3  0.0000     0.9514 0.000 0.000 1.000 0.000 0.000
#> GSM1068484     4  0.0992     0.8972 0.000 0.024 0.000 0.968 0.008
#> GSM1068485     3  0.0000     0.9514 0.000 0.000 1.000 0.000 0.000
#> GSM1068489     4  0.1018     0.8975 0.000 0.016 0.000 0.968 0.016
#> GSM1068497     5  0.2627     0.7507 0.044 0.044 0.000 0.012 0.900
#> GSM1068501     4  0.0510     0.8993 0.000 0.016 0.000 0.984 0.000
#> GSM1068504     2  0.2179     0.8533 0.000 0.888 0.000 0.112 0.000
#> GSM1068509     1  0.2992     0.8128 0.868 0.000 0.000 0.064 0.068
#> GSM1068511     4  0.1478     0.8847 0.000 0.000 0.000 0.936 0.064
#> GSM1068515     5  0.3599     0.6686 0.160 0.008 0.000 0.020 0.812
#> GSM1068516     4  0.1478     0.8847 0.000 0.000 0.000 0.936 0.064
#> GSM1068519     1  0.0000     0.9015 1.000 0.000 0.000 0.000 0.000
#> GSM1068523     2  0.1043     0.9077 0.000 0.960 0.000 0.040 0.000
#> GSM1068525     4  0.0992     0.8990 0.000 0.024 0.000 0.968 0.008
#> GSM1068526     4  0.1117     0.8965 0.000 0.020 0.000 0.964 0.016
#> GSM1068458     1  0.0000     0.9015 1.000 0.000 0.000 0.000 0.000
#> GSM1068459     3  0.0000     0.9514 0.000 0.000 1.000 0.000 0.000
#> GSM1068460     1  0.3980     0.7060 0.796 0.000 0.000 0.128 0.076
#> GSM1068461     3  0.0000     0.9514 0.000 0.000 1.000 0.000 0.000
#> GSM1068464     2  0.1043     0.9077 0.000 0.960 0.000 0.040 0.000
#> GSM1068468     5  0.4428     0.6906 0.000 0.268 0.000 0.032 0.700
#> GSM1068472     5  0.4141     0.7075 0.000 0.248 0.000 0.024 0.728
#> GSM1068473     2  0.1043     0.9077 0.000 0.960 0.000 0.040 0.000
#> GSM1068474     2  0.1043     0.9077 0.000 0.960 0.000 0.040 0.000
#> GSM1068476     3  0.4670     0.6780 0.000 0.040 0.768 0.148 0.044
#> GSM1068477     5  0.5843     0.5196 0.000 0.304 0.000 0.124 0.572
#> GSM1068462     5  0.3942     0.7165 0.000 0.232 0.000 0.020 0.748
#> GSM1068463     3  0.0000     0.9514 0.000 0.000 1.000 0.000 0.000
#> GSM1068465     1  0.4747     0.1706 0.496 0.000 0.000 0.016 0.488
#> GSM1068466     1  0.0880     0.8905 0.968 0.000 0.000 0.000 0.032
#> GSM1068467     5  0.4229     0.6825 0.000 0.276 0.000 0.020 0.704
#> GSM1068469     5  0.3556     0.7542 0.044 0.104 0.000 0.012 0.840
#> GSM1068470     2  0.1043     0.9077 0.000 0.960 0.000 0.040 0.000
#> GSM1068471     2  0.1043     0.9077 0.000 0.960 0.000 0.040 0.000
#> GSM1068475     2  0.1043     0.9077 0.000 0.960 0.000 0.040 0.000
#> GSM1068528     1  0.0162     0.9003 0.996 0.000 0.004 0.000 0.000
#> GSM1068531     1  0.0000     0.9015 1.000 0.000 0.000 0.000 0.000
#> GSM1068532     1  0.0000     0.9015 1.000 0.000 0.000 0.000 0.000
#> GSM1068533     1  0.0000     0.9015 1.000 0.000 0.000 0.000 0.000
#> GSM1068535     4  0.1270     0.8876 0.000 0.000 0.000 0.948 0.052
#> GSM1068537     1  0.0000     0.9015 1.000 0.000 0.000 0.000 0.000
#> GSM1068538     1  0.0000     0.9015 1.000 0.000 0.000 0.000 0.000
#> GSM1068539     4  0.2628     0.8623 0.000 0.028 0.000 0.884 0.088
#> GSM1068540     1  0.0000     0.9015 1.000 0.000 0.000 0.000 0.000
#> GSM1068542     4  0.1216     0.8960 0.000 0.020 0.000 0.960 0.020
#> GSM1068543     4  0.0162     0.8996 0.000 0.000 0.000 0.996 0.004
#> GSM1068544     3  0.0162     0.9476 0.004 0.000 0.996 0.000 0.000
#> GSM1068545     4  0.4390     0.1712 0.000 0.428 0.000 0.568 0.004
#> GSM1068546     3  0.0000     0.9514 0.000 0.000 1.000 0.000 0.000
#> GSM1068547     1  0.0324     0.8986 0.992 0.000 0.000 0.004 0.004
#> GSM1068548     4  0.1216     0.8960 0.000 0.020 0.000 0.960 0.020
#> GSM1068549     3  0.0000     0.9514 0.000 0.000 1.000 0.000 0.000
#> GSM1068550     4  0.1216     0.8960 0.000 0.020 0.000 0.960 0.020
#> GSM1068551     2  0.1043     0.9077 0.000 0.960 0.000 0.040 0.000
#> GSM1068552     4  0.1168     0.8944 0.000 0.032 0.000 0.960 0.008
#> GSM1068555     2  0.1043     0.9077 0.000 0.960 0.000 0.040 0.000
#> GSM1068556     4  0.0162     0.8998 0.000 0.004 0.000 0.996 0.000
#> GSM1068557     5  0.5504     0.6642 0.000 0.224 0.000 0.132 0.644
#> GSM1068560     4  0.1216     0.8960 0.000 0.020 0.000 0.960 0.020
#> GSM1068561     4  0.4726     0.3649 0.000 0.020 0.000 0.580 0.400
#> GSM1068562     4  0.0798     0.8989 0.000 0.016 0.000 0.976 0.008
#> GSM1068563     4  0.1117     0.8965 0.000 0.020 0.000 0.964 0.016
#> GSM1068565     2  0.1043     0.9077 0.000 0.960 0.000 0.040 0.000
#> GSM1068529     4  0.1965     0.8745 0.000 0.000 0.000 0.904 0.096
#> GSM1068530     1  0.0000     0.9015 1.000 0.000 0.000 0.000 0.000
#> GSM1068534     4  0.1671     0.8818 0.000 0.000 0.000 0.924 0.076
#> GSM1068536     1  0.3946     0.7190 0.800 0.000 0.000 0.120 0.080
#> GSM1068541     5  0.3578     0.7220 0.000 0.048 0.000 0.132 0.820
#> GSM1068553     4  0.0162     0.8996 0.000 0.000 0.000 0.996 0.004
#> GSM1068554     4  0.0162     0.8996 0.000 0.000 0.000 0.996 0.004
#> GSM1068558     4  0.2153     0.8750 0.000 0.040 0.000 0.916 0.044
#> GSM1068559     4  0.1965     0.8745 0.000 0.000 0.000 0.904 0.096
#> GSM1068564     4  0.1168     0.8944 0.000 0.032 0.000 0.960 0.008
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1068478     1  0.2941     0.7488 0.780 0.000 0.000 0.000 0.220 0.000
#> GSM1068479     4  0.4193     0.4986 0.000 0.272 0.000 0.684 0.000 0.044
#> GSM1068481     3  0.0000     0.9812 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068482     3  0.0000     0.9812 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068483     1  0.3247     0.7954 0.808 0.000 0.000 0.036 0.156 0.000
#> GSM1068486     3  0.0790     0.9509 0.000 0.000 0.968 0.032 0.000 0.000
#> GSM1068487     2  0.0260     0.8905 0.000 0.992 0.000 0.008 0.000 0.000
#> GSM1068488     6  0.3728     0.5521 0.000 0.000 0.000 0.344 0.004 0.652
#> GSM1068490     2  0.0000     0.8955 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068491     4  0.3944     0.1755 0.000 0.000 0.428 0.568 0.000 0.004
#> GSM1068492     4  0.3283     0.5699 0.000 0.036 0.000 0.804 0.000 0.160
#> GSM1068493     5  0.4302     0.5691 0.000 0.036 0.000 0.292 0.668 0.004
#> GSM1068494     1  0.2577     0.8686 0.896 0.000 0.048 0.024 0.008 0.024
#> GSM1068495     6  0.5738    -0.1457 0.000 0.004 0.000 0.144 0.424 0.428
#> GSM1068496     1  0.2500     0.8852 0.896 0.000 0.032 0.036 0.036 0.000
#> GSM1068498     5  0.0146     0.7851 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM1068499     1  0.2519     0.8747 0.884 0.000 0.068 0.044 0.004 0.000
#> GSM1068500     1  0.3247     0.7954 0.808 0.000 0.000 0.036 0.156 0.000
#> GSM1068502     4  0.3584     0.4463 0.000 0.308 0.000 0.688 0.000 0.004
#> GSM1068503     2  0.0520     0.8853 0.000 0.984 0.000 0.008 0.000 0.008
#> GSM1068505     6  0.0363     0.6505 0.000 0.000 0.000 0.012 0.000 0.988
#> GSM1068506     6  0.0146     0.6566 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM1068507     6  0.3944     0.5287 0.000 0.000 0.000 0.428 0.004 0.568
#> GSM1068508     2  0.6851    -0.0536 0.000 0.428 0.000 0.132 0.340 0.100
#> GSM1068510     6  0.4371     0.4683 0.000 0.028 0.000 0.392 0.000 0.580
#> GSM1068512     6  0.3944     0.5287 0.000 0.000 0.000 0.428 0.004 0.568
#> GSM1068513     6  0.4449     0.0370 0.000 0.440 0.000 0.028 0.000 0.532
#> GSM1068514     4  0.3428     0.3855 0.000 0.000 0.000 0.696 0.000 0.304
#> GSM1068517     5  0.0146     0.7851 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM1068518     6  0.3601     0.5741 0.000 0.000 0.000 0.312 0.004 0.684
#> GSM1068520     1  0.0790     0.9043 0.968 0.000 0.000 0.032 0.000 0.000
#> GSM1068521     1  0.0146     0.9081 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM1068522     2  0.3634     0.3559 0.000 0.644 0.000 0.000 0.000 0.356
#> GSM1068524     2  0.0405     0.8865 0.000 0.988 0.000 0.008 0.000 0.004
#> GSM1068527     6  0.2588     0.6217 0.024 0.000 0.000 0.092 0.008 0.876
#> GSM1068480     3  0.0000     0.9812 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068484     6  0.2376     0.6499 0.000 0.068 0.000 0.044 0.000 0.888
#> GSM1068485     3  0.0000     0.9812 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068489     6  0.0458     0.6594 0.000 0.000 0.000 0.016 0.000 0.984
#> GSM1068497     5  0.0146     0.7851 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM1068501     6  0.1082     0.6660 0.000 0.000 0.000 0.040 0.004 0.956
#> GSM1068504     2  0.0146     0.8934 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM1068509     1  0.2839     0.8549 0.876 0.000 0.000 0.032 0.052 0.040
#> GSM1068511     6  0.3944     0.5287 0.000 0.000 0.000 0.428 0.004 0.568
#> GSM1068515     5  0.1321     0.7825 0.020 0.000 0.000 0.024 0.952 0.004
#> GSM1068516     6  0.3841     0.5585 0.000 0.000 0.000 0.380 0.004 0.616
#> GSM1068519     1  0.0725     0.9072 0.976 0.000 0.000 0.012 0.012 0.000
#> GSM1068523     2  0.0146     0.8938 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM1068525     6  0.5076     0.4886 0.000 0.248 0.000 0.132 0.000 0.620
#> GSM1068526     6  0.0937     0.6612 0.000 0.000 0.000 0.040 0.000 0.960
#> GSM1068458     1  0.0865     0.9034 0.964 0.000 0.000 0.036 0.000 0.000
#> GSM1068459     3  0.0000     0.9812 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068460     1  0.5536     0.4631 0.608 0.000 0.000 0.072 0.272 0.048
#> GSM1068461     3  0.0000     0.9812 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068464     2  0.0000     0.8955 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068468     5  0.4166     0.7569 0.000 0.160 0.000 0.088 0.748 0.004
#> GSM1068472     5  0.4131     0.7595 0.000 0.156 0.000 0.088 0.752 0.004
#> GSM1068473     2  0.0000     0.8955 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068474     2  0.0000     0.8955 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068476     4  0.4305     0.4548 0.000 0.000 0.260 0.684 0.000 0.056
#> GSM1068477     5  0.3955     0.7589 0.000 0.132 0.000 0.092 0.772 0.004
#> GSM1068462     5  0.3563     0.7887 0.000 0.100 0.000 0.088 0.808 0.004
#> GSM1068463     3  0.0000     0.9812 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068465     5  0.4577     0.4390 0.272 0.000 0.000 0.072 0.656 0.000
#> GSM1068466     1  0.1320     0.9009 0.948 0.000 0.000 0.036 0.016 0.000
#> GSM1068467     5  0.3806     0.7739 0.000 0.136 0.000 0.088 0.776 0.000
#> GSM1068469     5  0.1398     0.7897 0.000 0.052 0.000 0.008 0.940 0.000
#> GSM1068470     2  0.0000     0.8955 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068471     2  0.0000     0.8955 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068475     2  0.0000     0.8955 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068528     1  0.1010     0.9033 0.960 0.000 0.004 0.036 0.000 0.000
#> GSM1068531     1  0.0622     0.9073 0.980 0.000 0.000 0.012 0.008 0.000
#> GSM1068532     1  0.0363     0.9074 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM1068533     1  0.0000     0.9077 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1068535     6  0.3915     0.5351 0.000 0.000 0.000 0.412 0.004 0.584
#> GSM1068537     1  0.0363     0.9074 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM1068538     1  0.0363     0.9074 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM1068539     6  0.3164     0.5797 0.000 0.004 0.000 0.140 0.032 0.824
#> GSM1068540     1  0.0622     0.9073 0.980 0.000 0.000 0.012 0.008 0.000
#> GSM1068542     6  0.0260     0.6523 0.000 0.000 0.000 0.008 0.000 0.992
#> GSM1068543     6  0.3728     0.5521 0.000 0.000 0.000 0.344 0.004 0.652
#> GSM1068544     3  0.1556     0.8964 0.080 0.000 0.920 0.000 0.000 0.000
#> GSM1068545     2  0.4402     0.2513 0.000 0.564 0.000 0.020 0.004 0.412
#> GSM1068546     3  0.0000     0.9812 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068547     1  0.0632     0.9057 0.976 0.000 0.000 0.000 0.024 0.000
#> GSM1068548     6  0.0291     0.6535 0.000 0.000 0.000 0.004 0.004 0.992
#> GSM1068549     3  0.0713     0.9557 0.000 0.000 0.972 0.028 0.000 0.000
#> GSM1068550     6  0.0363     0.6505 0.000 0.000 0.000 0.012 0.000 0.988
#> GSM1068551     2  0.0000     0.8955 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068552     6  0.3690     0.4433 0.000 0.308 0.000 0.008 0.000 0.684
#> GSM1068555     2  0.0146     0.8938 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM1068556     6  0.3109     0.6228 0.000 0.000 0.000 0.224 0.004 0.772
#> GSM1068557     5  0.3366     0.7910 0.000 0.080 0.000 0.092 0.824 0.004
#> GSM1068560     6  0.1285     0.6485 0.000 0.000 0.000 0.052 0.004 0.944
#> GSM1068561     5  0.6197    -0.0583 0.000 0.008 0.000 0.368 0.396 0.228
#> GSM1068562     6  0.2048     0.6495 0.000 0.000 0.000 0.120 0.000 0.880
#> GSM1068563     6  0.1204     0.6613 0.000 0.000 0.000 0.056 0.000 0.944
#> GSM1068565     2  0.0146     0.8938 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM1068529     6  0.3862     0.4495 0.000 0.000 0.000 0.476 0.000 0.524
#> GSM1068530     1  0.0260     0.9079 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM1068534     6  0.3944     0.5287 0.000 0.000 0.000 0.428 0.004 0.568
#> GSM1068536     1  0.5788     0.4284 0.584 0.000 0.000 0.088 0.276 0.052
#> GSM1068541     5  0.4866     0.6851 0.008 0.012 0.000 0.140 0.712 0.128
#> GSM1068553     6  0.3728     0.5521 0.000 0.000 0.000 0.344 0.004 0.652
#> GSM1068554     6  0.4373     0.5394 0.000 0.028 0.000 0.344 0.004 0.624
#> GSM1068558     4  0.3558     0.5232 0.000 0.028 0.000 0.760 0.000 0.212
#> GSM1068559     4  0.3747    -0.1937 0.000 0.000 0.000 0.604 0.000 0.396
#> GSM1068564     6  0.3684     0.4035 0.000 0.332 0.000 0.004 0.000 0.664
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#>              n disease.state(p) gender(p) k
#> MAD:mclust  92          0.84752     1.000 2
#> MAD:mclust  75          0.00806     0.542 3
#> MAD:mclust 105          0.00324     0.699 4
#> MAD:mclust 103          0.00397     0.491 5
#> MAD:mclust  88          0.02845     0.649 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 38950 rows and 108 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.842           0.895       0.957         0.4946 0.504   0.504
#> 3 3 0.606           0.745       0.868         0.2760 0.827   0.674
#> 4 4 0.683           0.813       0.886         0.1677 0.749   0.439
#> 5 5 0.643           0.634       0.777         0.0729 0.895   0.625
#> 6 6 0.669           0.632       0.778         0.0448 0.896   0.561
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1068478     1  0.2948     0.9077 0.948 0.052
#> GSM1068479     2  0.0000     0.9569 0.000 1.000
#> GSM1068481     1  0.0000     0.9468 1.000 0.000
#> GSM1068482     1  0.0000     0.9468 1.000 0.000
#> GSM1068483     1  0.0000     0.9468 1.000 0.000
#> GSM1068486     1  0.0000     0.9468 1.000 0.000
#> GSM1068487     2  0.0000     0.9569 0.000 1.000
#> GSM1068488     2  0.5842     0.8315 0.140 0.860
#> GSM1068490     2  0.0000     0.9569 0.000 1.000
#> GSM1068491     1  0.0000     0.9468 1.000 0.000
#> GSM1068492     2  0.0000     0.9569 0.000 1.000
#> GSM1068493     1  0.8327     0.6447 0.736 0.264
#> GSM1068494     1  0.0000     0.9468 1.000 0.000
#> GSM1068495     2  0.0000     0.9569 0.000 1.000
#> GSM1068496     1  0.0000     0.9468 1.000 0.000
#> GSM1068498     2  0.5519     0.8409 0.128 0.872
#> GSM1068499     1  0.0000     0.9468 1.000 0.000
#> GSM1068500     1  0.0000     0.9468 1.000 0.000
#> GSM1068502     2  0.0000     0.9569 0.000 1.000
#> GSM1068503     2  0.0000     0.9569 0.000 1.000
#> GSM1068505     2  0.0000     0.9569 0.000 1.000
#> GSM1068506     2  0.0000     0.9569 0.000 1.000
#> GSM1068507     2  0.4562     0.8797 0.096 0.904
#> GSM1068508     2  0.0000     0.9569 0.000 1.000
#> GSM1068510     2  0.0000     0.9569 0.000 1.000
#> GSM1068512     1  0.3274     0.9003 0.940 0.060
#> GSM1068513     2  0.0000     0.9569 0.000 1.000
#> GSM1068514     1  0.8955     0.5405 0.688 0.312
#> GSM1068517     2  0.0000     0.9569 0.000 1.000
#> GSM1068518     1  1.0000    -0.0130 0.504 0.496
#> GSM1068520     1  0.0000     0.9468 1.000 0.000
#> GSM1068521     1  0.0000     0.9468 1.000 0.000
#> GSM1068522     2  0.0000     0.9569 0.000 1.000
#> GSM1068524     2  0.0000     0.9569 0.000 1.000
#> GSM1068527     1  0.9993     0.0438 0.516 0.484
#> GSM1068480     1  0.0000     0.9468 1.000 0.000
#> GSM1068484     2  0.0000     0.9569 0.000 1.000
#> GSM1068485     1  0.0000     0.9468 1.000 0.000
#> GSM1068489     2  0.0000     0.9569 0.000 1.000
#> GSM1068497     2  0.2603     0.9246 0.044 0.956
#> GSM1068501     2  0.0000     0.9569 0.000 1.000
#> GSM1068504     2  0.0000     0.9569 0.000 1.000
#> GSM1068509     1  0.0000     0.9468 1.000 0.000
#> GSM1068511     1  0.0000     0.9468 1.000 0.000
#> GSM1068515     1  0.4562     0.8641 0.904 0.096
#> GSM1068516     2  0.3274     0.9140 0.060 0.940
#> GSM1068519     1  0.0000     0.9468 1.000 0.000
#> GSM1068523     2  0.0000     0.9569 0.000 1.000
#> GSM1068525     2  0.0000     0.9569 0.000 1.000
#> GSM1068526     2  0.0376     0.9546 0.004 0.996
#> GSM1068458     1  0.0000     0.9468 1.000 0.000
#> GSM1068459     1  0.0000     0.9468 1.000 0.000
#> GSM1068460     1  0.9427     0.4267 0.640 0.360
#> GSM1068461     1  0.0000     0.9468 1.000 0.000
#> GSM1068464     2  0.0000     0.9569 0.000 1.000
#> GSM1068468     2  0.0000     0.9569 0.000 1.000
#> GSM1068472     2  0.0000     0.9569 0.000 1.000
#> GSM1068473     2  0.0000     0.9569 0.000 1.000
#> GSM1068474     2  0.0000     0.9569 0.000 1.000
#> GSM1068476     1  0.1414     0.9335 0.980 0.020
#> GSM1068477     2  0.0000     0.9569 0.000 1.000
#> GSM1068462     2  0.0000     0.9569 0.000 1.000
#> GSM1068463     1  0.0000     0.9468 1.000 0.000
#> GSM1068465     2  0.7453     0.7284 0.212 0.788
#> GSM1068466     1  0.0000     0.9468 1.000 0.000
#> GSM1068467     2  0.0000     0.9569 0.000 1.000
#> GSM1068469     2  0.5946     0.8213 0.144 0.856
#> GSM1068470     2  0.0000     0.9569 0.000 1.000
#> GSM1068471     2  0.0000     0.9569 0.000 1.000
#> GSM1068475     2  0.0000     0.9569 0.000 1.000
#> GSM1068528     1  0.0000     0.9468 1.000 0.000
#> GSM1068531     1  0.0000     0.9468 1.000 0.000
#> GSM1068532     1  0.0000     0.9468 1.000 0.000
#> GSM1068533     1  0.0000     0.9468 1.000 0.000
#> GSM1068535     1  0.0000     0.9468 1.000 0.000
#> GSM1068537     1  0.0000     0.9468 1.000 0.000
#> GSM1068538     1  0.0000     0.9468 1.000 0.000
#> GSM1068539     2  0.0000     0.9569 0.000 1.000
#> GSM1068540     1  0.0000     0.9468 1.000 0.000
#> GSM1068542     2  0.0672     0.9521 0.008 0.992
#> GSM1068543     2  0.9635     0.3733 0.388 0.612
#> GSM1068544     1  0.0000     0.9468 1.000 0.000
#> GSM1068545     2  0.0000     0.9569 0.000 1.000
#> GSM1068546     1  0.0000     0.9468 1.000 0.000
#> GSM1068547     1  0.0000     0.9468 1.000 0.000
#> GSM1068548     2  0.4161     0.8909 0.084 0.916
#> GSM1068549     1  0.0000     0.9468 1.000 0.000
#> GSM1068550     2  0.0000     0.9569 0.000 1.000
#> GSM1068551     2  0.0000     0.9569 0.000 1.000
#> GSM1068552     2  0.0000     0.9569 0.000 1.000
#> GSM1068555     2  0.0000     0.9569 0.000 1.000
#> GSM1068556     2  0.9393     0.4558 0.356 0.644
#> GSM1068557     2  0.0000     0.9569 0.000 1.000
#> GSM1068560     2  0.7139     0.7563 0.196 0.804
#> GSM1068561     2  0.0376     0.9546 0.004 0.996
#> GSM1068562     2  0.1414     0.9439 0.020 0.980
#> GSM1068563     2  0.0376     0.9546 0.004 0.996
#> GSM1068565     2  0.0000     0.9569 0.000 1.000
#> GSM1068529     1  0.2423     0.9195 0.960 0.040
#> GSM1068530     1  0.0000     0.9468 1.000 0.000
#> GSM1068534     1  0.0000     0.9468 1.000 0.000
#> GSM1068536     1  0.4562     0.8677 0.904 0.096
#> GSM1068541     2  0.0000     0.9569 0.000 1.000
#> GSM1068553     2  0.9732     0.3291 0.404 0.596
#> GSM1068554     2  0.0000     0.9569 0.000 1.000
#> GSM1068558     2  0.5059     0.8633 0.112 0.888
#> GSM1068559     1  0.0672     0.9418 0.992 0.008
#> GSM1068564     2  0.0000     0.9569 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1068478     1  0.1711     0.8439 0.960 0.008 0.032
#> GSM1068479     2  0.5926     0.4614 0.000 0.644 0.356
#> GSM1068481     3  0.2625     0.8238 0.084 0.000 0.916
#> GSM1068482     3  0.2537     0.8277 0.080 0.000 0.920
#> GSM1068483     1  0.2066     0.8380 0.940 0.000 0.060
#> GSM1068486     3  0.1860     0.8341 0.052 0.000 0.948
#> GSM1068487     2  0.0892     0.8531 0.000 0.980 0.020
#> GSM1068488     3  0.8671     0.2034 0.104 0.416 0.480
#> GSM1068490     2  0.1031     0.8536 0.000 0.976 0.024
#> GSM1068491     3  0.1647     0.8338 0.036 0.004 0.960
#> GSM1068492     3  0.6126     0.2749 0.000 0.400 0.600
#> GSM1068493     3  0.8065     0.0566 0.064 0.452 0.484
#> GSM1068494     1  0.5431     0.5705 0.716 0.000 0.284
#> GSM1068495     2  0.7175     0.4118 0.376 0.592 0.032
#> GSM1068496     1  0.1643     0.8583 0.956 0.000 0.044
#> GSM1068498     1  0.6762     0.5130 0.676 0.288 0.036
#> GSM1068499     1  0.4178     0.7517 0.828 0.000 0.172
#> GSM1068500     1  0.4504     0.6896 0.804 0.000 0.196
#> GSM1068502     2  0.6140     0.3305 0.000 0.596 0.404
#> GSM1068503     2  0.1031     0.8517 0.000 0.976 0.024
#> GSM1068505     2  0.3213     0.8176 0.092 0.900 0.008
#> GSM1068506     2  0.0661     0.8555 0.008 0.988 0.004
#> GSM1068507     2  0.4351     0.7545 0.004 0.828 0.168
#> GSM1068508     2  0.2689     0.8437 0.036 0.932 0.032
#> GSM1068510     2  0.5621     0.5137 0.000 0.692 0.308
#> GSM1068512     1  0.8102     0.2622 0.556 0.368 0.076
#> GSM1068513     2  0.1163     0.8520 0.000 0.972 0.028
#> GSM1068514     3  0.2590     0.8120 0.004 0.072 0.924
#> GSM1068517     2  0.7209     0.4214 0.360 0.604 0.036
#> GSM1068518     2  0.5956     0.6502 0.264 0.720 0.016
#> GSM1068520     1  0.0592     0.8577 0.988 0.012 0.000
#> GSM1068521     1  0.0000     0.8608 1.000 0.000 0.000
#> GSM1068522     2  0.0237     0.8545 0.000 0.996 0.004
#> GSM1068524     2  0.1031     0.8523 0.000 0.976 0.024
#> GSM1068527     1  0.5597     0.6453 0.764 0.216 0.020
#> GSM1068480     3  0.2066     0.8326 0.060 0.000 0.940
#> GSM1068484     2  0.1031     0.8510 0.000 0.976 0.024
#> GSM1068485     3  0.3340     0.7978 0.120 0.000 0.880
#> GSM1068489     2  0.1267     0.8513 0.004 0.972 0.024
#> GSM1068497     2  0.7672     0.0840 0.468 0.488 0.044
#> GSM1068501     2  0.1031     0.8510 0.000 0.976 0.024
#> GSM1068504     2  0.1411     0.8545 0.000 0.964 0.036
#> GSM1068509     1  0.1289     0.8610 0.968 0.000 0.032
#> GSM1068511     3  0.5526     0.7150 0.172 0.036 0.792
#> GSM1068515     1  0.7742     0.4764 0.632 0.080 0.288
#> GSM1068516     2  0.2297     0.8462 0.036 0.944 0.020
#> GSM1068519     1  0.1411     0.8600 0.964 0.000 0.036
#> GSM1068523     2  0.2297     0.8485 0.020 0.944 0.036
#> GSM1068525     2  0.1031     0.8510 0.000 0.976 0.024
#> GSM1068526     2  0.0892     0.8517 0.000 0.980 0.020
#> GSM1068458     1  0.0424     0.8610 0.992 0.000 0.008
#> GSM1068459     3  0.2796     0.8222 0.092 0.000 0.908
#> GSM1068460     1  0.1585     0.8468 0.964 0.028 0.008
#> GSM1068461     3  0.2066     0.8326 0.060 0.000 0.940
#> GSM1068464     2  0.1878     0.8533 0.004 0.952 0.044
#> GSM1068468     2  0.2903     0.8449 0.028 0.924 0.048
#> GSM1068472     2  0.3112     0.8438 0.028 0.916 0.056
#> GSM1068473     2  0.0592     0.8548 0.000 0.988 0.012
#> GSM1068474     2  0.1878     0.8522 0.004 0.952 0.044
#> GSM1068476     3  0.2804     0.8193 0.016 0.060 0.924
#> GSM1068477     2  0.2926     0.8411 0.040 0.924 0.036
#> GSM1068462     2  0.6026     0.6791 0.024 0.732 0.244
#> GSM1068463     3  0.3816     0.7700 0.148 0.000 0.852
#> GSM1068465     1  0.4931     0.7222 0.828 0.140 0.032
#> GSM1068466     1  0.0000     0.8608 1.000 0.000 0.000
#> GSM1068467     2  0.2903     0.8449 0.028 0.924 0.048
#> GSM1068469     2  0.9001     0.4394 0.280 0.548 0.172
#> GSM1068470     2  0.2564     0.8453 0.028 0.936 0.036
#> GSM1068471     2  0.1878     0.8522 0.004 0.952 0.044
#> GSM1068475     2  0.2152     0.8496 0.016 0.948 0.036
#> GSM1068528     1  0.1964     0.8529 0.944 0.000 0.056
#> GSM1068531     1  0.1289     0.8610 0.968 0.000 0.032
#> GSM1068532     1  0.1643     0.8571 0.956 0.000 0.044
#> GSM1068533     1  0.1529     0.8598 0.960 0.000 0.040
#> GSM1068535     1  0.7192     0.2703 0.560 0.028 0.412
#> GSM1068537     1  0.1289     0.8610 0.968 0.000 0.032
#> GSM1068538     1  0.1289     0.8610 0.968 0.000 0.032
#> GSM1068539     2  0.4295     0.8156 0.104 0.864 0.032
#> GSM1068540     1  0.0892     0.8619 0.980 0.000 0.020
#> GSM1068542     2  0.5366     0.7099 0.208 0.776 0.016
#> GSM1068543     2  0.7844     0.5845 0.220 0.660 0.120
#> GSM1068544     1  0.3619     0.7933 0.864 0.000 0.136
#> GSM1068545     2  0.1905     0.8518 0.028 0.956 0.016
#> GSM1068546     3  0.2261     0.8316 0.068 0.000 0.932
#> GSM1068547     1  0.0592     0.8577 0.988 0.012 0.000
#> GSM1068548     2  0.5728     0.6381 0.272 0.720 0.008
#> GSM1068549     3  0.1860     0.8342 0.052 0.000 0.948
#> GSM1068550     2  0.2902     0.8325 0.064 0.920 0.016
#> GSM1068551     2  0.2152     0.8496 0.016 0.948 0.036
#> GSM1068552     2  0.0747     0.8526 0.000 0.984 0.016
#> GSM1068555     2  0.1832     0.8515 0.008 0.956 0.036
#> GSM1068556     2  0.6341     0.6491 0.252 0.716 0.032
#> GSM1068557     2  0.2773     0.8466 0.024 0.928 0.048
#> GSM1068560     2  0.6062     0.6256 0.276 0.708 0.016
#> GSM1068561     2  0.2448     0.8474 0.000 0.924 0.076
#> GSM1068562     2  0.1453     0.8505 0.008 0.968 0.024
#> GSM1068563     2  0.0661     0.8550 0.004 0.988 0.008
#> GSM1068565     2  0.2297     0.8485 0.020 0.944 0.036
#> GSM1068529     3  0.4209     0.7847 0.020 0.120 0.860
#> GSM1068530     1  0.0000     0.8608 1.000 0.000 0.000
#> GSM1068534     3  0.5167     0.7401 0.172 0.024 0.804
#> GSM1068536     1  0.2187     0.8375 0.948 0.028 0.024
#> GSM1068541     2  0.5574     0.7344 0.184 0.784 0.032
#> GSM1068553     2  0.9736    -0.0476 0.228 0.416 0.356
#> GSM1068554     2  0.2878     0.8190 0.000 0.904 0.096
#> GSM1068558     3  0.3038     0.7964 0.000 0.104 0.896
#> GSM1068559     3  0.2846     0.8215 0.020 0.056 0.924
#> GSM1068564     2  0.0424     0.8539 0.000 0.992 0.008
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1068478     1  0.2647    0.88499 0.880 0.120 0.000 0.000
#> GSM1068479     3  0.6079    0.00562 0.000 0.464 0.492 0.044
#> GSM1068481     3  0.2186    0.85417 0.008 0.048 0.932 0.012
#> GSM1068482     3  0.0188    0.87859 0.000 0.000 0.996 0.004
#> GSM1068483     1  0.3099    0.88732 0.876 0.104 0.020 0.000
#> GSM1068486     3  0.0469    0.87807 0.000 0.000 0.988 0.012
#> GSM1068487     2  0.4776    0.48349 0.000 0.624 0.000 0.376
#> GSM1068488     4  0.2413    0.85732 0.036 0.004 0.036 0.924
#> GSM1068490     2  0.3801    0.77880 0.000 0.780 0.000 0.220
#> GSM1068491     3  0.0188    0.87877 0.000 0.004 0.996 0.000
#> GSM1068492     3  0.5859    0.49078 0.000 0.064 0.652 0.284
#> GSM1068493     2  0.3674    0.75068 0.044 0.852 0.104 0.000
#> GSM1068494     1  0.3216    0.86630 0.880 0.000 0.044 0.076
#> GSM1068495     1  0.6383    0.41251 0.612 0.292 0.000 0.096
#> GSM1068496     1  0.1661    0.91741 0.944 0.052 0.004 0.000
#> GSM1068498     2  0.2281    0.78987 0.096 0.904 0.000 0.000
#> GSM1068499     1  0.3899    0.85251 0.840 0.052 0.108 0.000
#> GSM1068500     1  0.3556    0.88185 0.864 0.096 0.036 0.004
#> GSM1068502     3  0.6477    0.10591 0.000 0.420 0.508 0.072
#> GSM1068503     4  0.2973    0.82483 0.000 0.144 0.000 0.856
#> GSM1068505     4  0.1297    0.86592 0.020 0.016 0.000 0.964
#> GSM1068506     4  0.2149    0.86335 0.000 0.088 0.000 0.912
#> GSM1068507     4  0.1824    0.86959 0.000 0.060 0.004 0.936
#> GSM1068508     2  0.2773    0.87094 0.004 0.880 0.000 0.116
#> GSM1068510     4  0.2623    0.87008 0.000 0.064 0.028 0.908
#> GSM1068512     4  0.4632    0.59400 0.308 0.000 0.004 0.688
#> GSM1068513     4  0.4072    0.67442 0.000 0.252 0.000 0.748
#> GSM1068514     3  0.3626    0.72574 0.000 0.004 0.812 0.184
#> GSM1068517     2  0.1637    0.81724 0.060 0.940 0.000 0.000
#> GSM1068518     4  0.4149    0.80494 0.152 0.036 0.000 0.812
#> GSM1068520     1  0.1637    0.91481 0.940 0.060 0.000 0.000
#> GSM1068521     1  0.1118    0.91962 0.964 0.036 0.000 0.000
#> GSM1068522     4  0.2647    0.84239 0.000 0.120 0.000 0.880
#> GSM1068524     4  0.3266    0.79861 0.000 0.168 0.000 0.832
#> GSM1068527     4  0.4477    0.59049 0.312 0.000 0.000 0.688
#> GSM1068480     3  0.0188    0.87859 0.000 0.000 0.996 0.004
#> GSM1068484     4  0.2011    0.86587 0.000 0.080 0.000 0.920
#> GSM1068485     3  0.1510    0.86009 0.016 0.028 0.956 0.000
#> GSM1068489     4  0.1256    0.87207 0.008 0.028 0.000 0.964
#> GSM1068497     2  0.1637    0.81724 0.060 0.940 0.000 0.000
#> GSM1068501     4  0.1637    0.87204 0.000 0.060 0.000 0.940
#> GSM1068504     2  0.2921    0.85649 0.000 0.860 0.000 0.140
#> GSM1068509     1  0.1118    0.91839 0.964 0.000 0.000 0.036
#> GSM1068511     4  0.4483    0.76180 0.088 0.000 0.104 0.808
#> GSM1068515     2  0.4178    0.71784 0.140 0.824 0.016 0.020
#> GSM1068516     4  0.2549    0.86932 0.024 0.056 0.004 0.916
#> GSM1068519     1  0.1576    0.90979 0.948 0.000 0.004 0.048
#> GSM1068523     2  0.2647    0.86924 0.000 0.880 0.000 0.120
#> GSM1068525     4  0.2216    0.86133 0.000 0.092 0.000 0.908
#> GSM1068526     4  0.1474    0.87161 0.000 0.052 0.000 0.948
#> GSM1068458     1  0.2282    0.91432 0.924 0.052 0.000 0.024
#> GSM1068459     3  0.0469    0.87597 0.012 0.000 0.988 0.000
#> GSM1068460     1  0.0921    0.91941 0.972 0.000 0.000 0.028
#> GSM1068461     3  0.0000    0.87883 0.000 0.000 1.000 0.000
#> GSM1068464     2  0.2345    0.87301 0.000 0.900 0.000 0.100
#> GSM1068468     2  0.0967    0.85420 0.004 0.976 0.004 0.016
#> GSM1068472     2  0.1191    0.83856 0.024 0.968 0.004 0.004
#> GSM1068473     2  0.4331    0.67784 0.000 0.712 0.000 0.288
#> GSM1068474     2  0.2345    0.87301 0.000 0.900 0.000 0.100
#> GSM1068476     3  0.0376    0.87925 0.000 0.004 0.992 0.004
#> GSM1068477     2  0.2053    0.87094 0.004 0.924 0.000 0.072
#> GSM1068462     2  0.1411    0.82986 0.020 0.960 0.020 0.000
#> GSM1068463     3  0.0937    0.87499 0.012 0.000 0.976 0.012
#> GSM1068465     1  0.2976    0.87801 0.872 0.120 0.000 0.008
#> GSM1068466     1  0.2048    0.91305 0.928 0.064 0.000 0.008
#> GSM1068467     2  0.0712    0.84687 0.008 0.984 0.004 0.004
#> GSM1068469     2  0.1722    0.82051 0.048 0.944 0.008 0.000
#> GSM1068470     2  0.2408    0.87300 0.000 0.896 0.000 0.104
#> GSM1068471     2  0.2345    0.87301 0.000 0.900 0.000 0.100
#> GSM1068475     2  0.2281    0.87312 0.000 0.904 0.000 0.096
#> GSM1068528     1  0.2521    0.90902 0.912 0.064 0.024 0.000
#> GSM1068531     1  0.1118    0.91687 0.964 0.000 0.000 0.036
#> GSM1068532     1  0.1489    0.91224 0.952 0.000 0.004 0.044
#> GSM1068533     1  0.1584    0.92058 0.952 0.012 0.000 0.036
#> GSM1068535     4  0.3937    0.72297 0.188 0.000 0.012 0.800
#> GSM1068537     1  0.1302    0.91668 0.956 0.000 0.000 0.044
#> GSM1068538     1  0.1716    0.91166 0.936 0.000 0.000 0.064
#> GSM1068539     2  0.6495    0.59960 0.108 0.608 0.000 0.284
#> GSM1068540     1  0.0921    0.91941 0.972 0.000 0.000 0.028
#> GSM1068542     4  0.1256    0.86199 0.028 0.008 0.000 0.964
#> GSM1068543     4  0.1211    0.85997 0.040 0.000 0.000 0.960
#> GSM1068544     1  0.2644    0.90240 0.908 0.032 0.060 0.000
#> GSM1068545     4  0.4134    0.65759 0.000 0.260 0.000 0.740
#> GSM1068546     3  0.0817    0.87445 0.000 0.000 0.976 0.024
#> GSM1068547     1  0.1118    0.91687 0.964 0.000 0.000 0.036
#> GSM1068548     4  0.1716    0.84735 0.064 0.000 0.000 0.936
#> GSM1068549     3  0.0188    0.87914 0.000 0.000 0.996 0.004
#> GSM1068550     4  0.1520    0.87081 0.024 0.020 0.000 0.956
#> GSM1068551     2  0.2921    0.85693 0.000 0.860 0.000 0.140
#> GSM1068552     4  0.1940    0.86623 0.000 0.076 0.000 0.924
#> GSM1068555     2  0.2281    0.87379 0.000 0.904 0.000 0.096
#> GSM1068556     4  0.2149    0.83359 0.088 0.000 0.000 0.912
#> GSM1068557     2  0.1109    0.85940 0.000 0.968 0.004 0.028
#> GSM1068560     4  0.1807    0.86524 0.052 0.008 0.000 0.940
#> GSM1068561     2  0.4225    0.81188 0.000 0.792 0.024 0.184
#> GSM1068562     4  0.2021    0.87188 0.012 0.056 0.000 0.932
#> GSM1068563     4  0.2654    0.85159 0.000 0.108 0.004 0.888
#> GSM1068565     2  0.2647    0.86748 0.000 0.880 0.000 0.120
#> GSM1068529     3  0.4034    0.71286 0.004 0.008 0.796 0.192
#> GSM1068530     1  0.0336    0.92228 0.992 0.008 0.000 0.000
#> GSM1068534     4  0.5358    0.61091 0.048 0.000 0.252 0.700
#> GSM1068536     1  0.1151    0.92217 0.968 0.008 0.000 0.024
#> GSM1068541     2  0.3972    0.84867 0.080 0.840 0.000 0.080
#> GSM1068553     4  0.2081    0.82137 0.084 0.000 0.000 0.916
#> GSM1068554     4  0.1302    0.87273 0.000 0.044 0.000 0.956
#> GSM1068558     4  0.4998    0.08594 0.000 0.000 0.488 0.512
#> GSM1068559     3  0.0188    0.87914 0.000 0.000 0.996 0.004
#> GSM1068564     4  0.2345    0.85707 0.000 0.100 0.000 0.900
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1068478     1  0.4100     0.7439 0.764 0.192 0.000 0.000 0.044
#> GSM1068479     2  0.4886     0.1738 0.000 0.528 0.448 0.024 0.000
#> GSM1068481     3  0.3907     0.8382 0.068 0.032 0.832 0.068 0.000
#> GSM1068482     3  0.0510     0.8905 0.000 0.000 0.984 0.000 0.016
#> GSM1068483     1  0.1768     0.8485 0.924 0.072 0.000 0.004 0.000
#> GSM1068486     3  0.2632     0.8641 0.040 0.000 0.888 0.072 0.000
#> GSM1068487     2  0.5557    -0.0451 0.000 0.472 0.000 0.460 0.068
#> GSM1068488     5  0.2286     0.5701 0.000 0.000 0.004 0.108 0.888
#> GSM1068490     2  0.4727     0.1753 0.000 0.532 0.000 0.452 0.016
#> GSM1068491     3  0.0613     0.8915 0.000 0.008 0.984 0.004 0.004
#> GSM1068492     3  0.5078     0.6679 0.000 0.040 0.740 0.156 0.064
#> GSM1068493     2  0.1788     0.7951 0.056 0.932 0.004 0.000 0.008
#> GSM1068494     5  0.4415     0.1161 0.388 0.000 0.008 0.000 0.604
#> GSM1068495     5  0.5274     0.1275 0.372 0.056 0.000 0.000 0.572
#> GSM1068496     1  0.2144     0.8499 0.912 0.020 0.000 0.000 0.068
#> GSM1068498     2  0.2798     0.7348 0.140 0.852 0.000 0.000 0.008
#> GSM1068499     1  0.4888     0.6285 0.676 0.004 0.048 0.000 0.272
#> GSM1068500     1  0.1638     0.8504 0.932 0.064 0.000 0.004 0.000
#> GSM1068502     3  0.6255     0.3681 0.000 0.248 0.572 0.172 0.008
#> GSM1068503     4  0.6399     0.5155 0.000 0.196 0.000 0.496 0.308
#> GSM1068505     4  0.4807     0.4045 0.008 0.008 0.000 0.520 0.464
#> GSM1068506     4  0.3795     0.6174 0.000 0.028 0.000 0.780 0.192
#> GSM1068507     4  0.1996     0.5288 0.036 0.032 0.004 0.928 0.000
#> GSM1068508     2  0.2740     0.8077 0.000 0.876 0.000 0.096 0.028
#> GSM1068510     5  0.4701    -0.0651 0.000 0.016 0.004 0.368 0.612
#> GSM1068512     5  0.5264     0.4255 0.128 0.000 0.000 0.196 0.676
#> GSM1068513     4  0.4577     0.5664 0.000 0.176 0.000 0.740 0.084
#> GSM1068514     3  0.2074     0.8638 0.000 0.000 0.920 0.044 0.036
#> GSM1068517     2  0.2193     0.7734 0.092 0.900 0.000 0.000 0.008
#> GSM1068518     5  0.2237     0.6056 0.084 0.008 0.004 0.000 0.904
#> GSM1068520     1  0.0992     0.8600 0.968 0.024 0.000 0.008 0.000
#> GSM1068521     1  0.1571     0.8545 0.936 0.004 0.000 0.000 0.060
#> GSM1068522     4  0.1942     0.5730 0.000 0.068 0.000 0.920 0.012
#> GSM1068524     5  0.5339     0.3124 0.000 0.176 0.000 0.152 0.672
#> GSM1068527     5  0.2597     0.5967 0.092 0.000 0.000 0.024 0.884
#> GSM1068480     3  0.1341     0.8703 0.000 0.000 0.944 0.000 0.056
#> GSM1068484     5  0.2966     0.5270 0.000 0.016 0.000 0.136 0.848
#> GSM1068485     3  0.0613     0.8921 0.008 0.004 0.984 0.000 0.004
#> GSM1068489     4  0.4510     0.4656 0.000 0.008 0.000 0.560 0.432
#> GSM1068497     2  0.2358     0.7658 0.104 0.888 0.000 0.000 0.008
#> GSM1068501     4  0.4206     0.5951 0.000 0.016 0.000 0.696 0.288
#> GSM1068504     2  0.2932     0.7953 0.000 0.864 0.000 0.104 0.032
#> GSM1068509     1  0.3756     0.7039 0.744 0.000 0.000 0.008 0.248
#> GSM1068511     5  0.7467    -0.0669 0.064 0.000 0.176 0.304 0.456
#> GSM1068515     2  0.3999     0.6375 0.240 0.740 0.000 0.020 0.000
#> GSM1068516     5  0.0566     0.6189 0.012 0.004 0.000 0.000 0.984
#> GSM1068519     1  0.4289     0.7826 0.760 0.000 0.000 0.064 0.176
#> GSM1068523     2  0.3696     0.6842 0.000 0.772 0.000 0.016 0.212
#> GSM1068525     5  0.1597     0.6036 0.000 0.012 0.000 0.048 0.940
#> GSM1068526     5  0.4826    -0.3857 0.000 0.020 0.000 0.472 0.508
#> GSM1068458     1  0.4181     0.6883 0.676 0.004 0.004 0.316 0.000
#> GSM1068459     3  0.0798     0.8929 0.016 0.000 0.976 0.000 0.008
#> GSM1068460     1  0.3370     0.8329 0.824 0.000 0.000 0.148 0.028
#> GSM1068461     3  0.1579     0.8845 0.032 0.000 0.944 0.024 0.000
#> GSM1068464     2  0.3942     0.6517 0.000 0.728 0.000 0.260 0.012
#> GSM1068468     2  0.1357     0.8179 0.004 0.948 0.000 0.048 0.000
#> GSM1068472     2  0.1365     0.8181 0.004 0.952 0.004 0.040 0.000
#> GSM1068473     4  0.4803     0.0278 0.000 0.444 0.000 0.536 0.020
#> GSM1068474     2  0.3690     0.7045 0.000 0.764 0.000 0.224 0.012
#> GSM1068476     3  0.0290     0.8933 0.000 0.000 0.992 0.008 0.000
#> GSM1068477     2  0.1965     0.8120 0.000 0.904 0.000 0.096 0.000
#> GSM1068462     2  0.1393     0.8123 0.008 0.956 0.024 0.012 0.000
#> GSM1068463     3  0.4531     0.7646 0.144 0.004 0.760 0.092 0.000
#> GSM1068465     1  0.5402     0.7812 0.720 0.124 0.000 0.120 0.036
#> GSM1068466     1  0.2409     0.8549 0.900 0.032 0.000 0.068 0.000
#> GSM1068467     2  0.0451     0.8132 0.008 0.988 0.000 0.004 0.000
#> GSM1068469     2  0.1153     0.8085 0.024 0.964 0.008 0.004 0.000
#> GSM1068470     2  0.2153     0.8111 0.000 0.916 0.000 0.040 0.044
#> GSM1068471     2  0.3280     0.7557 0.000 0.812 0.000 0.176 0.012
#> GSM1068475     2  0.2573     0.8040 0.000 0.880 0.000 0.104 0.016
#> GSM1068528     1  0.0955     0.8585 0.968 0.028 0.000 0.000 0.004
#> GSM1068531     1  0.1697     0.8579 0.932 0.000 0.000 0.060 0.008
#> GSM1068532     1  0.2017     0.8531 0.912 0.000 0.000 0.080 0.008
#> GSM1068533     1  0.4166     0.6527 0.648 0.000 0.004 0.348 0.000
#> GSM1068535     4  0.4803     0.3588 0.184 0.000 0.000 0.720 0.096
#> GSM1068537     1  0.1908     0.8502 0.908 0.000 0.000 0.092 0.000
#> GSM1068538     1  0.3816     0.7106 0.696 0.000 0.000 0.304 0.000
#> GSM1068539     5  0.3359     0.5771 0.108 0.052 0.000 0.000 0.840
#> GSM1068540     1  0.1764     0.8535 0.928 0.000 0.000 0.008 0.064
#> GSM1068542     4  0.4530     0.5306 0.008 0.004 0.000 0.612 0.376
#> GSM1068543     5  0.1430     0.6057 0.004 0.000 0.000 0.052 0.944
#> GSM1068544     1  0.1168     0.8581 0.960 0.000 0.032 0.000 0.008
#> GSM1068545     4  0.6233     0.4706 0.000 0.144 0.000 0.460 0.396
#> GSM1068546     3  0.3795     0.8187 0.044 0.000 0.808 0.144 0.004
#> GSM1068547     1  0.2708     0.8541 0.884 0.000 0.000 0.072 0.044
#> GSM1068548     4  0.3562     0.5963 0.016 0.000 0.000 0.788 0.196
#> GSM1068549     3  0.0162     0.8929 0.000 0.000 0.996 0.004 0.000
#> GSM1068550     5  0.4510    -0.2460 0.000 0.008 0.000 0.432 0.560
#> GSM1068551     2  0.3297     0.7845 0.000 0.848 0.000 0.084 0.068
#> GSM1068552     4  0.5396     0.4598 0.000 0.056 0.000 0.500 0.444
#> GSM1068555     2  0.2172     0.8026 0.000 0.908 0.000 0.016 0.076
#> GSM1068556     5  0.3838     0.2761 0.004 0.000 0.000 0.280 0.716
#> GSM1068557     2  0.0798     0.8122 0.008 0.976 0.000 0.000 0.016
#> GSM1068560     5  0.0162     0.6181 0.004 0.000 0.000 0.000 0.996
#> GSM1068561     5  0.5076     0.2525 0.028 0.372 0.000 0.008 0.592
#> GSM1068562     5  0.2358     0.5673 0.000 0.008 0.000 0.104 0.888
#> GSM1068563     4  0.4972     0.5643 0.000 0.044 0.000 0.620 0.336
#> GSM1068565     2  0.2873     0.7946 0.000 0.860 0.000 0.120 0.020
#> GSM1068529     5  0.3742     0.5419 0.012 0.012 0.184 0.000 0.792
#> GSM1068530     1  0.1485     0.8609 0.948 0.000 0.000 0.020 0.032
#> GSM1068534     5  0.3516     0.5741 0.020 0.000 0.152 0.008 0.820
#> GSM1068536     1  0.3632     0.7737 0.800 0.020 0.000 0.004 0.176
#> GSM1068541     2  0.3882     0.7802 0.100 0.824 0.000 0.060 0.016
#> GSM1068553     4  0.4116     0.5105 0.028 0.000 0.004 0.756 0.212
#> GSM1068554     4  0.2699     0.5880 0.000 0.008 0.012 0.880 0.100
#> GSM1068558     5  0.3597     0.5530 0.000 0.008 0.180 0.012 0.800
#> GSM1068559     3  0.0162     0.8922 0.000 0.000 0.996 0.000 0.004
#> GSM1068564     4  0.5747     0.5028 0.000 0.088 0.000 0.504 0.408
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1068478     1  0.4631     0.4590 0.596 0.352 0.000 0.000 0.000 0.052
#> GSM1068479     3  0.4803     0.4089 0.000 0.316 0.616 0.064 0.004 0.000
#> GSM1068481     3  0.5367     0.6928 0.108 0.060 0.712 0.012 0.104 0.004
#> GSM1068482     3  0.1637     0.8068 0.056 0.000 0.932 0.004 0.004 0.004
#> GSM1068483     1  0.1398     0.7639 0.940 0.052 0.000 0.008 0.000 0.000
#> GSM1068486     3  0.2739     0.7728 0.012 0.004 0.864 0.004 0.112 0.004
#> GSM1068487     4  0.5279    -0.0109 0.000 0.416 0.000 0.500 0.076 0.008
#> GSM1068488     6  0.4543     0.0901 0.000 0.000 0.016 0.384 0.016 0.584
#> GSM1068490     2  0.5234     0.3489 0.000 0.532 0.000 0.384 0.076 0.008
#> GSM1068491     3  0.0000     0.8068 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068492     3  0.4165     0.5283 0.000 0.004 0.676 0.292 0.000 0.028
#> GSM1068493     2  0.2095     0.8051 0.040 0.916 0.028 0.000 0.000 0.016
#> GSM1068494     6  0.3166     0.6367 0.156 0.000 0.004 0.000 0.024 0.816
#> GSM1068495     6  0.4347     0.6118 0.176 0.064 0.000 0.008 0.008 0.744
#> GSM1068496     1  0.1225     0.7622 0.956 0.004 0.004 0.004 0.000 0.032
#> GSM1068498     2  0.2333     0.7846 0.060 0.900 0.000 0.004 0.004 0.032
#> GSM1068499     6  0.5443     0.3778 0.308 0.036 0.032 0.000 0.020 0.604
#> GSM1068500     1  0.1637     0.7628 0.932 0.056 0.000 0.004 0.004 0.004
#> GSM1068502     3  0.4522     0.5439 0.000 0.076 0.672 0.252 0.000 0.000
#> GSM1068503     4  0.4143     0.6749 0.000 0.064 0.000 0.788 0.052 0.096
#> GSM1068505     4  0.5574     0.4245 0.000 0.000 0.000 0.512 0.332 0.156
#> GSM1068506     4  0.0748     0.6566 0.000 0.004 0.000 0.976 0.004 0.016
#> GSM1068507     5  0.1699     0.7936 0.008 0.012 0.000 0.040 0.936 0.004
#> GSM1068508     2  0.3479     0.7790 0.004 0.796 0.000 0.172 0.008 0.020
#> GSM1068510     5  0.4430     0.7090 0.000 0.000 0.016 0.132 0.744 0.108
#> GSM1068512     4  0.6354     0.2641 0.252 0.000 0.008 0.412 0.004 0.324
#> GSM1068513     5  0.3472     0.6956 0.000 0.092 0.000 0.100 0.808 0.000
#> GSM1068514     3  0.1807     0.7950 0.000 0.000 0.920 0.060 0.000 0.020
#> GSM1068517     2  0.1788     0.8038 0.028 0.928 0.000 0.004 0.000 0.040
#> GSM1068518     6  0.1625     0.7086 0.060 0.000 0.000 0.012 0.000 0.928
#> GSM1068520     1  0.2973     0.7598 0.860 0.040 0.000 0.000 0.084 0.016
#> GSM1068521     1  0.5936     0.3229 0.504 0.032 0.000 0.000 0.108 0.356
#> GSM1068522     4  0.3301     0.5562 0.000 0.024 0.000 0.788 0.188 0.000
#> GSM1068524     6  0.5946     0.2865 0.000 0.180 0.000 0.212 0.032 0.576
#> GSM1068527     6  0.1857     0.7038 0.028 0.000 0.000 0.004 0.044 0.924
#> GSM1068480     3  0.0937     0.8037 0.000 0.000 0.960 0.000 0.000 0.040
#> GSM1068484     6  0.3073     0.5652 0.000 0.000 0.000 0.204 0.008 0.788
#> GSM1068485     3  0.0363     0.8091 0.012 0.000 0.988 0.000 0.000 0.000
#> GSM1068489     4  0.5464     0.5260 0.000 0.000 0.000 0.564 0.260 0.176
#> GSM1068497     2  0.1708     0.8067 0.024 0.932 0.000 0.004 0.000 0.040
#> GSM1068501     5  0.3435     0.7530 0.000 0.000 0.000 0.060 0.804 0.136
#> GSM1068504     2  0.3732     0.7598 0.000 0.776 0.000 0.180 0.032 0.012
#> GSM1068509     1  0.2902     0.6731 0.800 0.000 0.000 0.004 0.000 0.196
#> GSM1068511     1  0.7743    -0.1019 0.352 0.000 0.252 0.244 0.012 0.140
#> GSM1068515     2  0.2721     0.7601 0.088 0.868 0.000 0.000 0.040 0.004
#> GSM1068516     6  0.2299     0.7001 0.012 0.008 0.000 0.064 0.012 0.904
#> GSM1068519     5  0.5157     0.3245 0.096 0.000 0.000 0.000 0.544 0.360
#> GSM1068523     2  0.4146     0.5474 0.000 0.676 0.000 0.036 0.000 0.288
#> GSM1068525     6  0.2482     0.6420 0.000 0.004 0.000 0.148 0.000 0.848
#> GSM1068526     4  0.3929     0.6180 0.000 0.000 0.000 0.700 0.028 0.272
#> GSM1068458     1  0.5742     0.5666 0.580 0.008 0.000 0.156 0.248 0.008
#> GSM1068459     3  0.1788     0.7996 0.076 0.000 0.916 0.004 0.000 0.004
#> GSM1068460     1  0.5999     0.5665 0.580 0.004 0.000 0.064 0.268 0.084
#> GSM1068461     3  0.1788     0.8038 0.012 0.004 0.928 0.004 0.052 0.000
#> GSM1068464     4  0.4569    -0.1384 0.000 0.456 0.000 0.516 0.016 0.012
#> GSM1068468     2  0.1674     0.8260 0.004 0.924 0.000 0.068 0.004 0.000
#> GSM1068472     2  0.1686     0.8267 0.004 0.932 0.004 0.052 0.008 0.000
#> GSM1068473     2  0.6043     0.3620 0.000 0.488 0.000 0.240 0.264 0.008
#> GSM1068474     2  0.3210     0.7754 0.000 0.804 0.000 0.168 0.028 0.000
#> GSM1068476     3  0.1471     0.7997 0.000 0.004 0.932 0.000 0.064 0.000
#> GSM1068477     2  0.1657     0.8281 0.000 0.928 0.000 0.056 0.016 0.000
#> GSM1068462     2  0.0520     0.8248 0.000 0.984 0.000 0.008 0.008 0.000
#> GSM1068463     3  0.5193     0.5363 0.284 0.000 0.616 0.008 0.088 0.004
#> GSM1068465     1  0.5615     0.5237 0.604 0.220 0.000 0.160 0.004 0.012
#> GSM1068466     1  0.4483     0.7087 0.728 0.068 0.000 0.004 0.188 0.012
#> GSM1068467     2  0.0405     0.8247 0.000 0.988 0.000 0.008 0.004 0.000
#> GSM1068469     2  0.0551     0.8227 0.004 0.984 0.000 0.000 0.008 0.004
#> GSM1068470     2  0.2436     0.8205 0.000 0.880 0.000 0.088 0.000 0.032
#> GSM1068471     2  0.3404     0.7310 0.000 0.760 0.000 0.224 0.016 0.000
#> GSM1068475     2  0.2278     0.8085 0.000 0.868 0.000 0.128 0.004 0.000
#> GSM1068528     1  0.1950     0.7629 0.924 0.044 0.004 0.000 0.008 0.020
#> GSM1068531     1  0.3641     0.6924 0.748 0.000 0.000 0.000 0.224 0.028
#> GSM1068532     1  0.1787     0.7626 0.932 0.000 0.000 0.016 0.020 0.032
#> GSM1068533     1  0.4579     0.6716 0.696 0.000 0.000 0.092 0.208 0.004
#> GSM1068535     5  0.1350     0.7987 0.020 0.000 0.000 0.020 0.952 0.008
#> GSM1068537     1  0.1806     0.7613 0.928 0.000 0.000 0.020 0.044 0.008
#> GSM1068538     1  0.4584     0.6762 0.700 0.000 0.000 0.100 0.196 0.004
#> GSM1068539     6  0.3964     0.6701 0.092 0.064 0.000 0.024 0.012 0.808
#> GSM1068540     1  0.1753     0.7548 0.912 0.000 0.000 0.000 0.004 0.084
#> GSM1068542     4  0.4389     0.6633 0.000 0.000 0.000 0.712 0.100 0.188
#> GSM1068543     6  0.2402     0.6578 0.000 0.000 0.000 0.120 0.012 0.868
#> GSM1068544     1  0.3385     0.6889 0.816 0.008 0.148 0.000 0.016 0.012
#> GSM1068545     4  0.2955     0.6764 0.000 0.008 0.000 0.816 0.004 0.172
#> GSM1068546     5  0.3777     0.6198 0.020 0.000 0.216 0.000 0.752 0.012
#> GSM1068547     1  0.4107     0.7320 0.776 0.000 0.000 0.020 0.124 0.080
#> GSM1068548     4  0.3205     0.6424 0.040 0.000 0.000 0.852 0.036 0.072
#> GSM1068549     3  0.0547     0.8080 0.000 0.000 0.980 0.000 0.020 0.000
#> GSM1068550     4  0.3742     0.5161 0.000 0.000 0.000 0.648 0.004 0.348
#> GSM1068551     2  0.5176     0.2894 0.000 0.532 0.000 0.384 0.004 0.080
#> GSM1068552     4  0.3071     0.6746 0.000 0.000 0.000 0.804 0.016 0.180
#> GSM1068555     2  0.2558     0.7928 0.000 0.868 0.000 0.028 0.000 0.104
#> GSM1068556     4  0.4053     0.4983 0.004 0.000 0.004 0.628 0.004 0.360
#> GSM1068557     2  0.1152     0.8137 0.000 0.952 0.000 0.004 0.000 0.044
#> GSM1068560     6  0.0984     0.7045 0.008 0.000 0.000 0.012 0.012 0.968
#> GSM1068561     6  0.5227     0.4411 0.048 0.316 0.000 0.004 0.028 0.604
#> GSM1068562     6  0.2402     0.6655 0.000 0.000 0.000 0.120 0.012 0.868
#> GSM1068563     4  0.1082     0.6661 0.000 0.004 0.000 0.956 0.000 0.040
#> GSM1068565     2  0.2613     0.8001 0.000 0.848 0.000 0.140 0.000 0.012
#> GSM1068529     6  0.3918     0.5830 0.004 0.004 0.248 0.020 0.000 0.724
#> GSM1068530     1  0.0984     0.7643 0.968 0.000 0.000 0.012 0.008 0.012
#> GSM1068534     3  0.6621     0.3299 0.128 0.000 0.512 0.100 0.000 0.260
#> GSM1068536     6  0.5814     0.4038 0.268 0.060 0.000 0.004 0.072 0.596
#> GSM1068541     4  0.6326    -0.0272 0.328 0.196 0.000 0.452 0.000 0.024
#> GSM1068553     5  0.1434     0.8038 0.000 0.000 0.000 0.048 0.940 0.012
#> GSM1068554     5  0.1812     0.7959 0.000 0.000 0.000 0.080 0.912 0.008
#> GSM1068558     6  0.4002     0.5492 0.000 0.000 0.260 0.036 0.000 0.704
#> GSM1068559     3  0.1528     0.8061 0.000 0.000 0.936 0.000 0.048 0.016
#> GSM1068564     4  0.3461     0.6820 0.000 0.008 0.000 0.804 0.036 0.152
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#>           n disease.state(p) gender(p) k
#> MAD:NMF 102          0.48106     0.753 2
#> MAD:NMF  95          0.94174     0.290 3
#> MAD:NMF 102          0.00357     0.701 4
#> MAD:NMF  88          0.01708     0.483 5
#> MAD:NMF  88          0.00356     0.531 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 38950 rows and 108 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.600           0.776       0.907         0.4225 0.587   0.587
#> 3 3 0.539           0.581       0.811         0.4685 0.729   0.554
#> 4 4 0.585           0.587       0.804         0.0926 0.909   0.769
#> 5 5 0.575           0.537       0.758         0.0642 0.923   0.783
#> 6 6 0.610           0.599       0.732         0.0457 0.870   0.598
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1068478     2  0.6148     0.7717 0.152 0.848
#> GSM1068479     2  0.9323     0.4590 0.348 0.652
#> GSM1068481     2  0.2603     0.8706 0.044 0.956
#> GSM1068482     1  0.6712     0.7589 0.824 0.176
#> GSM1068483     1  0.0376     0.8667 0.996 0.004
#> GSM1068486     2  0.0672     0.8974 0.008 0.992
#> GSM1068487     2  0.0000     0.8993 0.000 1.000
#> GSM1068488     2  0.0376     0.8984 0.004 0.996
#> GSM1068490     2  0.0000     0.8993 0.000 1.000
#> GSM1068491     1  0.9635     0.3671 0.612 0.388
#> GSM1068492     2  0.0000     0.8993 0.000 1.000
#> GSM1068493     2  0.0672     0.8974 0.008 0.992
#> GSM1068494     2  0.7883     0.6683 0.236 0.764
#> GSM1068495     2  0.9552     0.4025 0.376 0.624
#> GSM1068496     2  0.2603     0.8706 0.044 0.956
#> GSM1068498     1  0.0672     0.8693 0.992 0.008
#> GSM1068499     1  0.0938     0.8697 0.988 0.012
#> GSM1068500     1  0.9922     0.2599 0.552 0.448
#> GSM1068502     2  0.0000     0.8993 0.000 1.000
#> GSM1068503     2  0.0000     0.8993 0.000 1.000
#> GSM1068505     2  0.0376     0.8984 0.004 0.996
#> GSM1068506     2  0.0000     0.8993 0.000 1.000
#> GSM1068507     2  0.0672     0.8969 0.008 0.992
#> GSM1068508     2  0.9393     0.4406 0.356 0.644
#> GSM1068510     2  0.0376     0.8984 0.004 0.996
#> GSM1068512     2  0.0000     0.8993 0.000 1.000
#> GSM1068513     2  0.0376     0.8984 0.004 0.996
#> GSM1068514     2  0.0000     0.8993 0.000 1.000
#> GSM1068517     2  0.9977     0.1149 0.472 0.528
#> GSM1068518     2  0.9988     0.0836 0.480 0.520
#> GSM1068520     1  0.6801     0.7613 0.820 0.180
#> GSM1068521     1  0.0672     0.8693 0.992 0.008
#> GSM1068522     2  0.0000     0.8993 0.000 1.000
#> GSM1068524     2  0.0376     0.8984 0.004 0.996
#> GSM1068527     2  0.0672     0.8969 0.008 0.992
#> GSM1068480     2  0.7883     0.6683 0.236 0.764
#> GSM1068484     2  0.0000     0.8993 0.000 1.000
#> GSM1068485     1  0.0938     0.8697 0.988 0.012
#> GSM1068489     2  0.0376     0.8984 0.004 0.996
#> GSM1068497     2  0.8144     0.6441 0.252 0.748
#> GSM1068501     2  0.0000     0.8993 0.000 1.000
#> GSM1068504     2  0.0000     0.8993 0.000 1.000
#> GSM1068509     1  0.0376     0.8667 0.996 0.004
#> GSM1068511     2  0.0000     0.8993 0.000 1.000
#> GSM1068515     1  0.0672     0.8693 0.992 0.008
#> GSM1068516     2  0.9552     0.4025 0.376 0.624
#> GSM1068519     1  0.0376     0.8667 0.996 0.004
#> GSM1068523     2  0.0376     0.8984 0.004 0.996
#> GSM1068525     2  0.0376     0.8984 0.004 0.996
#> GSM1068526     2  0.0000     0.8993 0.000 1.000
#> GSM1068458     1  0.0672     0.8693 0.992 0.008
#> GSM1068459     2  0.0672     0.8940 0.008 0.992
#> GSM1068460     2  0.9954     0.1463 0.460 0.540
#> GSM1068461     1  0.0672     0.8693 0.992 0.008
#> GSM1068464     2  0.0000     0.8993 0.000 1.000
#> GSM1068468     1  0.3879     0.8484 0.924 0.076
#> GSM1068472     1  0.3274     0.8560 0.940 0.060
#> GSM1068473     2  0.0000     0.8993 0.000 1.000
#> GSM1068474     2  0.0000     0.8993 0.000 1.000
#> GSM1068476     2  0.7815     0.6672 0.232 0.768
#> GSM1068477     2  0.9866     0.2389 0.432 0.568
#> GSM1068462     2  0.9944     0.1611 0.456 0.544
#> GSM1068463     1  0.9866     0.2643 0.568 0.432
#> GSM1068465     1  0.4022     0.8470 0.920 0.080
#> GSM1068466     1  0.6801     0.7613 0.820 0.180
#> GSM1068467     1  1.0000    -0.0309 0.500 0.500
#> GSM1068469     1  0.2043     0.8651 0.968 0.032
#> GSM1068470     2  0.0000     0.8993 0.000 1.000
#> GSM1068471     2  0.0000     0.8993 0.000 1.000
#> GSM1068475     2  0.0000     0.8993 0.000 1.000
#> GSM1068528     1  0.0938     0.8697 0.988 0.012
#> GSM1068531     2  0.5737     0.7753 0.136 0.864
#> GSM1068532     1  0.0376     0.8667 0.996 0.004
#> GSM1068533     1  0.8081     0.6789 0.752 0.248
#> GSM1068535     2  0.0000     0.8993 0.000 1.000
#> GSM1068537     1  0.5629     0.8076 0.868 0.132
#> GSM1068538     1  0.0376     0.8667 0.996 0.004
#> GSM1068539     2  0.9552     0.4025 0.376 0.624
#> GSM1068540     1  0.9922     0.2599 0.552 0.448
#> GSM1068542     2  0.0000     0.8993 0.000 1.000
#> GSM1068543     2  0.0376     0.8984 0.004 0.996
#> GSM1068544     1  0.0938     0.8697 0.988 0.012
#> GSM1068545     2  0.0000     0.8993 0.000 1.000
#> GSM1068546     2  0.0672     0.8974 0.008 0.992
#> GSM1068547     1  0.0376     0.8680 0.996 0.004
#> GSM1068548     2  0.0000     0.8993 0.000 1.000
#> GSM1068549     2  0.0672     0.8974 0.008 0.992
#> GSM1068550     2  0.0000     0.8993 0.000 1.000
#> GSM1068551     2  0.0000     0.8993 0.000 1.000
#> GSM1068552     2  0.0000     0.8993 0.000 1.000
#> GSM1068555     2  0.0376     0.8984 0.004 0.996
#> GSM1068556     2  0.0000     0.8993 0.000 1.000
#> GSM1068557     2  0.8443     0.6049 0.272 0.728
#> GSM1068560     2  0.0376     0.8984 0.004 0.996
#> GSM1068561     2  0.0376     0.8984 0.004 0.996
#> GSM1068562     2  0.0376     0.8984 0.004 0.996
#> GSM1068563     2  0.0000     0.8993 0.000 1.000
#> GSM1068565     2  0.0000     0.8993 0.000 1.000
#> GSM1068529     2  0.0376     0.8984 0.004 0.996
#> GSM1068530     1  0.0376     0.8667 0.996 0.004
#> GSM1068534     2  0.0376     0.8984 0.004 0.996
#> GSM1068536     2  0.8144     0.6441 0.252 0.748
#> GSM1068541     1  0.3274     0.8560 0.940 0.060
#> GSM1068553     2  0.0000     0.8993 0.000 1.000
#> GSM1068554     2  0.0000     0.8993 0.000 1.000
#> GSM1068558     2  0.0376     0.8984 0.004 0.996
#> GSM1068559     2  0.9686     0.3453 0.396 0.604
#> GSM1068564     2  0.0000     0.8993 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1068478     3  0.5435     0.5951 0.144 0.048 0.808
#> GSM1068479     2  0.9241    -0.0445 0.352 0.484 0.164
#> GSM1068481     3  0.3856     0.6085 0.040 0.072 0.888
#> GSM1068482     1  0.4178     0.6747 0.828 0.000 0.172
#> GSM1068483     1  0.0475     0.7886 0.992 0.004 0.004
#> GSM1068486     3  0.5138     0.5125 0.000 0.252 0.748
#> GSM1068487     2  0.0000     0.8076 0.000 1.000 0.000
#> GSM1068488     2  0.6154     0.3591 0.000 0.592 0.408
#> GSM1068490     2  0.0000     0.8076 0.000 1.000 0.000
#> GSM1068491     1  0.8233     0.4094 0.616 0.264 0.120
#> GSM1068492     2  0.0000     0.8076 0.000 1.000 0.000
#> GSM1068493     3  0.5138     0.5125 0.000 0.252 0.748
#> GSM1068494     3  0.6806     0.5722 0.228 0.060 0.712
#> GSM1068495     3  0.7756     0.3563 0.380 0.056 0.564
#> GSM1068496     3  0.3856     0.6085 0.040 0.072 0.888
#> GSM1068498     1  0.0237     0.7888 0.996 0.000 0.004
#> GSM1068499     1  0.0424     0.7888 0.992 0.000 0.008
#> GSM1068500     1  0.8131     0.3464 0.548 0.076 0.376
#> GSM1068502     2  0.0000     0.8076 0.000 1.000 0.000
#> GSM1068503     2  0.0000     0.8076 0.000 1.000 0.000
#> GSM1068505     2  0.2711     0.7725 0.000 0.912 0.088
#> GSM1068506     2  0.0000     0.8076 0.000 1.000 0.000
#> GSM1068507     2  0.2301     0.7831 0.004 0.936 0.060
#> GSM1068508     2  0.9338    -0.0723 0.360 0.468 0.172
#> GSM1068510     2  0.6154     0.3591 0.000 0.592 0.408
#> GSM1068512     2  0.0000     0.8076 0.000 1.000 0.000
#> GSM1068513     2  0.2711     0.7725 0.000 0.912 0.088
#> GSM1068514     2  0.0000     0.8076 0.000 1.000 0.000
#> GSM1068517     3  0.6950     0.1284 0.476 0.016 0.508
#> GSM1068518     3  0.7295     0.1015 0.484 0.028 0.488
#> GSM1068520     1  0.5375     0.6955 0.816 0.056 0.128
#> GSM1068521     1  0.0237     0.7888 0.996 0.000 0.004
#> GSM1068522     2  0.0000     0.8076 0.000 1.000 0.000
#> GSM1068524     2  0.6154     0.3591 0.000 0.592 0.408
#> GSM1068527     2  0.2301     0.7831 0.004 0.936 0.060
#> GSM1068480     3  0.6806     0.5722 0.228 0.060 0.712
#> GSM1068484     2  0.0000     0.8076 0.000 1.000 0.000
#> GSM1068485     1  0.0424     0.7888 0.992 0.000 0.008
#> GSM1068489     2  0.2711     0.7725 0.000 0.912 0.088
#> GSM1068497     3  0.6965     0.5601 0.244 0.060 0.696
#> GSM1068501     2  0.0000     0.8076 0.000 1.000 0.000
#> GSM1068504     2  0.2959     0.7597 0.000 0.900 0.100
#> GSM1068509     1  0.0475     0.7886 0.992 0.004 0.004
#> GSM1068511     2  0.2356     0.7763 0.000 0.928 0.072
#> GSM1068515     1  0.0237     0.7888 0.996 0.000 0.004
#> GSM1068516     3  0.7756     0.3563 0.380 0.056 0.564
#> GSM1068519     1  0.0475     0.7886 0.992 0.004 0.004
#> GSM1068523     2  0.6168     0.3571 0.000 0.588 0.412
#> GSM1068525     2  0.6154     0.3591 0.000 0.592 0.408
#> GSM1068526     2  0.1529     0.7957 0.000 0.960 0.040
#> GSM1068458     1  0.0237     0.7888 0.996 0.000 0.004
#> GSM1068459     3  0.2772     0.6101 0.004 0.080 0.916
#> GSM1068460     1  0.9489     0.1524 0.464 0.340 0.196
#> GSM1068461     1  0.0237     0.7888 0.996 0.000 0.004
#> GSM1068464     2  0.0000     0.8076 0.000 1.000 0.000
#> GSM1068468     1  0.2982     0.7664 0.920 0.056 0.024
#> GSM1068472     1  0.2492     0.7729 0.936 0.048 0.016
#> GSM1068473     2  0.0000     0.8076 0.000 1.000 0.000
#> GSM1068474     2  0.0000     0.8076 0.000 1.000 0.000
#> GSM1068476     2  0.9543     0.0119 0.236 0.484 0.280
#> GSM1068477     1  0.9550     0.0942 0.436 0.368 0.196
#> GSM1068462     1  0.9500     0.1453 0.460 0.344 0.196
#> GSM1068463     1  0.7610     0.0840 0.564 0.048 0.388
#> GSM1068465     1  0.3045     0.7644 0.916 0.064 0.020
#> GSM1068466     1  0.5375     0.6955 0.816 0.056 0.128
#> GSM1068467     1  0.9245     0.2222 0.504 0.320 0.176
#> GSM1068469     1  0.1620     0.7845 0.964 0.024 0.012
#> GSM1068470     2  0.2959     0.7597 0.000 0.900 0.100
#> GSM1068471     2  0.0000     0.8076 0.000 1.000 0.000
#> GSM1068475     2  0.0000     0.8076 0.000 1.000 0.000
#> GSM1068528     1  0.0424     0.7888 0.992 0.000 0.008
#> GSM1068531     3  0.5981     0.5138 0.132 0.080 0.788
#> GSM1068532     1  0.0475     0.7886 0.992 0.004 0.004
#> GSM1068533     1  0.6438     0.6277 0.748 0.064 0.188
#> GSM1068535     3  0.6244     0.1781 0.000 0.440 0.560
#> GSM1068537     1  0.4469     0.7234 0.864 0.060 0.076
#> GSM1068538     1  0.0475     0.7886 0.992 0.004 0.004
#> GSM1068539     3  0.7756     0.3563 0.380 0.056 0.564
#> GSM1068540     1  0.8131     0.3464 0.548 0.076 0.376
#> GSM1068542     2  0.0000     0.8076 0.000 1.000 0.000
#> GSM1068543     2  0.6154     0.3591 0.000 0.592 0.408
#> GSM1068544     1  0.0424     0.7888 0.992 0.000 0.008
#> GSM1068545     2  0.0000     0.8076 0.000 1.000 0.000
#> GSM1068546     3  0.2537     0.6128 0.000 0.080 0.920
#> GSM1068547     1  0.0000     0.7888 1.000 0.000 0.000
#> GSM1068548     2  0.0000     0.8076 0.000 1.000 0.000
#> GSM1068549     3  0.2537     0.6128 0.000 0.080 0.920
#> GSM1068550     2  0.0424     0.8050 0.000 0.992 0.008
#> GSM1068551     2  0.2878     0.7621 0.000 0.904 0.096
#> GSM1068552     2  0.0000     0.8076 0.000 1.000 0.000
#> GSM1068555     2  0.6168     0.3571 0.000 0.588 0.412
#> GSM1068556     2  0.2356     0.7763 0.000 0.928 0.072
#> GSM1068557     2  0.9792    -0.1113 0.276 0.436 0.288
#> GSM1068560     2  0.6168     0.3571 0.000 0.588 0.412
#> GSM1068561     3  0.6244     0.0593 0.000 0.440 0.560
#> GSM1068562     2  0.6168     0.3571 0.000 0.588 0.412
#> GSM1068563     2  0.0000     0.8076 0.000 1.000 0.000
#> GSM1068565     2  0.3192     0.7536 0.000 0.888 0.112
#> GSM1068529     3  0.6308    -0.0425 0.000 0.492 0.508
#> GSM1068530     1  0.0475     0.7886 0.992 0.004 0.004
#> GSM1068534     3  0.6308    -0.0425 0.000 0.492 0.508
#> GSM1068536     3  0.6965     0.5601 0.244 0.060 0.696
#> GSM1068541     1  0.2492     0.7729 0.936 0.048 0.016
#> GSM1068553     3  0.6244     0.1781 0.000 0.440 0.560
#> GSM1068554     2  0.0000     0.8076 0.000 1.000 0.000
#> GSM1068558     2  0.6154     0.3591 0.000 0.592 0.408
#> GSM1068559     1  0.9786    -0.0126 0.400 0.364 0.236
#> GSM1068564     2  0.0000     0.8076 0.000 1.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1068478     2  0.5667     0.4109 0.060 0.696 0.240 0.004
#> GSM1068479     4  0.7598    -0.1640 0.240 0.284 0.000 0.476
#> GSM1068481     3  0.2224     0.7251 0.032 0.040 0.928 0.000
#> GSM1068482     1  0.4220     0.6856 0.748 0.248 0.004 0.000
#> GSM1068483     1  0.0804     0.8090 0.980 0.012 0.008 0.000
#> GSM1068486     2  0.6360     0.3623 0.000 0.656 0.164 0.180
#> GSM1068487     4  0.0000     0.7778 0.000 0.000 0.000 1.000
#> GSM1068488     4  0.4985     0.3222 0.000 0.468 0.000 0.532
#> GSM1068490     4  0.0000     0.7778 0.000 0.000 0.000 1.000
#> GSM1068491     1  0.7084     0.2444 0.560 0.176 0.000 0.264
#> GSM1068492     4  0.0000     0.7778 0.000 0.000 0.000 1.000
#> GSM1068493     2  0.6360     0.3623 0.000 0.656 0.164 0.180
#> GSM1068494     2  0.1388     0.5596 0.012 0.960 0.028 0.000
#> GSM1068495     2  0.2921     0.5883 0.140 0.860 0.000 0.000
#> GSM1068496     3  0.2224     0.7251 0.032 0.040 0.928 0.000
#> GSM1068498     1  0.2973     0.7864 0.856 0.144 0.000 0.000
#> GSM1068499     1  0.2149     0.8136 0.912 0.088 0.000 0.000
#> GSM1068500     1  0.7607     0.3518 0.464 0.180 0.352 0.004
#> GSM1068502     4  0.0000     0.7778 0.000 0.000 0.000 1.000
#> GSM1068503     4  0.0000     0.7778 0.000 0.000 0.000 1.000
#> GSM1068505     4  0.2473     0.7467 0.000 0.080 0.012 0.908
#> GSM1068506     4  0.0000     0.7778 0.000 0.000 0.000 1.000
#> GSM1068507     4  0.2021     0.7562 0.000 0.056 0.012 0.932
#> GSM1068508     4  0.7659    -0.1991 0.244 0.296 0.000 0.460
#> GSM1068510     4  0.4985     0.3222 0.000 0.468 0.000 0.532
#> GSM1068512     4  0.0000     0.7778 0.000 0.000 0.000 1.000
#> GSM1068513     4  0.2473     0.7467 0.000 0.080 0.012 0.908
#> GSM1068514     4  0.0000     0.7778 0.000 0.000 0.000 1.000
#> GSM1068517     2  0.3942     0.4981 0.236 0.764 0.000 0.000
#> GSM1068518     2  0.4485     0.4873 0.248 0.740 0.000 0.012
#> GSM1068520     1  0.4948     0.7354 0.776 0.124 0.100 0.000
#> GSM1068521     1  0.1022     0.8177 0.968 0.032 0.000 0.000
#> GSM1068522     4  0.0000     0.7778 0.000 0.000 0.000 1.000
#> GSM1068524     4  0.4985     0.3222 0.000 0.468 0.000 0.532
#> GSM1068527     4  0.2021     0.7562 0.000 0.056 0.012 0.932
#> GSM1068480     2  0.1388     0.5596 0.012 0.960 0.028 0.000
#> GSM1068484     4  0.0000     0.7778 0.000 0.000 0.000 1.000
#> GSM1068485     1  0.2149     0.8136 0.912 0.088 0.000 0.000
#> GSM1068489     4  0.2473     0.7467 0.000 0.080 0.012 0.908
#> GSM1068497     2  0.0937     0.5665 0.012 0.976 0.012 0.000
#> GSM1068501     4  0.0000     0.7778 0.000 0.000 0.000 1.000
#> GSM1068504     4  0.2704     0.7187 0.000 0.124 0.000 0.876
#> GSM1068509     1  0.0804     0.8090 0.980 0.012 0.008 0.000
#> GSM1068511     4  0.2345     0.7265 0.000 0.000 0.100 0.900
#> GSM1068515     1  0.1716     0.8153 0.936 0.064 0.000 0.000
#> GSM1068516     2  0.2921     0.5883 0.140 0.860 0.000 0.000
#> GSM1068519     1  0.0804     0.8155 0.980 0.012 0.008 0.000
#> GSM1068523     4  0.4989     0.3140 0.000 0.472 0.000 0.528
#> GSM1068525     4  0.4985     0.3222 0.000 0.468 0.000 0.532
#> GSM1068526     4  0.1302     0.7653 0.000 0.044 0.000 0.956
#> GSM1068458     1  0.1637     0.8162 0.940 0.060 0.000 0.000
#> GSM1068459     3  0.0188     0.7272 0.004 0.000 0.996 0.000
#> GSM1068460     2  0.7918     0.2163 0.316 0.352 0.000 0.332
#> GSM1068461     1  0.2973     0.7864 0.856 0.144 0.000 0.000
#> GSM1068464     4  0.0000     0.7778 0.000 0.000 0.000 1.000
#> GSM1068468     1  0.3493     0.7899 0.876 0.064 0.008 0.052
#> GSM1068472     1  0.3170     0.7987 0.892 0.056 0.008 0.044
#> GSM1068473     4  0.0000     0.7778 0.000 0.000 0.000 1.000
#> GSM1068474     4  0.0000     0.7778 0.000 0.000 0.000 1.000
#> GSM1068476     4  0.7184    -0.1292 0.136 0.416 0.000 0.448
#> GSM1068477     4  0.7896    -0.3834 0.292 0.348 0.000 0.360
#> GSM1068462     2  0.7916     0.2222 0.312 0.352 0.000 0.336
#> GSM1068463     1  0.6187     0.2287 0.516 0.052 0.432 0.000
#> GSM1068465     1  0.3508     0.7848 0.872 0.060 0.004 0.064
#> GSM1068466     1  0.4948     0.7354 0.776 0.124 0.100 0.000
#> GSM1068467     1  0.7901    -0.1821 0.372 0.316 0.000 0.312
#> GSM1068469     1  0.2421     0.8136 0.924 0.048 0.008 0.020
#> GSM1068470     4  0.2704     0.7187 0.000 0.124 0.000 0.876
#> GSM1068471     4  0.0000     0.7778 0.000 0.000 0.000 1.000
#> GSM1068475     4  0.0000     0.7778 0.000 0.000 0.000 1.000
#> GSM1068528     1  0.2149     0.8136 0.912 0.088 0.000 0.000
#> GSM1068531     3  0.4153     0.6517 0.132 0.048 0.820 0.000
#> GSM1068532     1  0.0804     0.8090 0.980 0.012 0.008 0.000
#> GSM1068533     1  0.6557     0.6265 0.648 0.196 0.152 0.004
#> GSM1068535     3  0.5112     0.3436 0.000 0.008 0.608 0.384
#> GSM1068537     1  0.3324     0.7421 0.852 0.012 0.136 0.000
#> GSM1068538     1  0.0804     0.8090 0.980 0.012 0.008 0.000
#> GSM1068539     2  0.2921     0.5883 0.140 0.860 0.000 0.000
#> GSM1068540     1  0.7607     0.3518 0.464 0.180 0.352 0.004
#> GSM1068542     4  0.0000     0.7778 0.000 0.000 0.000 1.000
#> GSM1068543     4  0.4985     0.3222 0.000 0.468 0.000 0.532
#> GSM1068544     1  0.2149     0.8136 0.912 0.088 0.000 0.000
#> GSM1068545     4  0.0000     0.7778 0.000 0.000 0.000 1.000
#> GSM1068546     3  0.2530     0.7144 0.000 0.112 0.888 0.000
#> GSM1068547     1  0.1661     0.8197 0.944 0.052 0.004 0.000
#> GSM1068548     4  0.0000     0.7778 0.000 0.000 0.000 1.000
#> GSM1068549     3  0.2589     0.7121 0.000 0.116 0.884 0.000
#> GSM1068550     4  0.0336     0.7758 0.000 0.008 0.000 0.992
#> GSM1068551     4  0.2647     0.7212 0.000 0.120 0.000 0.880
#> GSM1068552     4  0.0000     0.7778 0.000 0.000 0.000 1.000
#> GSM1068555     4  0.4989     0.3140 0.000 0.472 0.000 0.528
#> GSM1068556     4  0.2345     0.7265 0.000 0.000 0.100 0.900
#> GSM1068557     2  0.7399     0.1742 0.164 0.420 0.000 0.416
#> GSM1068560     4  0.4989     0.3140 0.000 0.472 0.000 0.528
#> GSM1068561     2  0.7028     0.0140 0.000 0.496 0.124 0.380
#> GSM1068562     4  0.4989     0.3140 0.000 0.472 0.000 0.528
#> GSM1068563     4  0.0000     0.7778 0.000 0.000 0.000 1.000
#> GSM1068565     4  0.2973     0.7063 0.000 0.144 0.000 0.856
#> GSM1068529     4  0.7706     0.0717 0.000 0.228 0.348 0.424
#> GSM1068530     1  0.0804     0.8090 0.980 0.012 0.008 0.000
#> GSM1068534     4  0.7706     0.0717 0.000 0.228 0.348 0.424
#> GSM1068536     2  0.0937     0.5665 0.012 0.976 0.012 0.000
#> GSM1068541     1  0.3170     0.7987 0.892 0.056 0.008 0.044
#> GSM1068553     3  0.5112     0.3436 0.000 0.008 0.608 0.384
#> GSM1068554     4  0.0000     0.7778 0.000 0.000 0.000 1.000
#> GSM1068558     4  0.4985     0.3222 0.000 0.468 0.000 0.532
#> GSM1068559     2  0.7818     0.3197 0.256 0.388 0.000 0.356
#> GSM1068564     4  0.0000     0.7778 0.000 0.000 0.000 1.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1068478     5  0.5365     0.4984 0.020 0.060 0.228 0.004 0.688
#> GSM1068479     4  0.7197    -0.0979 0.024 0.296 0.000 0.432 0.248
#> GSM1068481     3  0.1978     0.6647 0.012 0.024 0.932 0.000 0.032
#> GSM1068482     2  0.5289     0.4802 0.128 0.688 0.004 0.000 0.180
#> GSM1068483     1  0.1544     0.7377 0.932 0.068 0.000 0.000 0.000
#> GSM1068486     5  0.5481     0.4859 0.000 0.016 0.136 0.156 0.692
#> GSM1068487     4  0.0162     0.7672 0.000 0.000 0.000 0.996 0.004
#> GSM1068488     4  0.4656     0.2764 0.000 0.012 0.000 0.508 0.480
#> GSM1068490     4  0.0162     0.7674 0.000 0.004 0.000 0.996 0.000
#> GSM1068491     2  0.8214     0.2203 0.296 0.356 0.000 0.224 0.124
#> GSM1068492     4  0.0324     0.7677 0.000 0.004 0.000 0.992 0.004
#> GSM1068493     5  0.5481     0.4859 0.000 0.016 0.136 0.156 0.692
#> GSM1068494     5  0.0404     0.6815 0.000 0.012 0.000 0.000 0.988
#> GSM1068495     5  0.2930     0.6325 0.004 0.164 0.000 0.000 0.832
#> GSM1068496     3  0.1978     0.6647 0.012 0.024 0.932 0.000 0.032
#> GSM1068498     2  0.3697     0.5265 0.100 0.820 0.000 0.000 0.080
#> GSM1068499     2  0.4132     0.4618 0.260 0.720 0.000 0.000 0.020
#> GSM1068500     1  0.7487     0.3225 0.476 0.064 0.296 0.004 0.160
#> GSM1068502     4  0.1121     0.7583 0.000 0.044 0.000 0.956 0.000
#> GSM1068503     4  0.0162     0.7672 0.000 0.000 0.000 0.996 0.004
#> GSM1068505     4  0.2464     0.7392 0.000 0.004 0.012 0.892 0.092
#> GSM1068506     4  0.0510     0.7655 0.000 0.016 0.000 0.984 0.000
#> GSM1068507     4  0.2208     0.7506 0.000 0.012 0.012 0.916 0.060
#> GSM1068508     4  0.7284    -0.0736 0.032 0.256 0.000 0.444 0.268
#> GSM1068510     4  0.4656     0.2764 0.000 0.012 0.000 0.508 0.480
#> GSM1068512     4  0.0510     0.7655 0.000 0.016 0.000 0.984 0.000
#> GSM1068513     4  0.2464     0.7392 0.000 0.004 0.012 0.892 0.092
#> GSM1068514     4  0.0162     0.7672 0.000 0.000 0.000 0.996 0.004
#> GSM1068517     5  0.4014     0.5249 0.016 0.256 0.000 0.000 0.728
#> GSM1068518     5  0.4206     0.5006 0.020 0.272 0.000 0.000 0.708
#> GSM1068520     1  0.4690     0.6703 0.780 0.080 0.040 0.000 0.100
#> GSM1068521     2  0.3796     0.4106 0.300 0.700 0.000 0.000 0.000
#> GSM1068522     4  0.0510     0.7655 0.000 0.016 0.000 0.984 0.000
#> GSM1068524     4  0.4656     0.2764 0.000 0.012 0.000 0.508 0.480
#> GSM1068527     4  0.2208     0.7506 0.000 0.012 0.012 0.916 0.060
#> GSM1068480     5  0.0404     0.6815 0.000 0.012 0.000 0.000 0.988
#> GSM1068484     4  0.1121     0.7583 0.000 0.044 0.000 0.956 0.000
#> GSM1068485     2  0.4132     0.4618 0.260 0.720 0.000 0.000 0.020
#> GSM1068489     4  0.2464     0.7392 0.000 0.004 0.012 0.892 0.092
#> GSM1068497     5  0.0794     0.6851 0.000 0.028 0.000 0.000 0.972
#> GSM1068501     4  0.0794     0.7637 0.000 0.028 0.000 0.972 0.000
#> GSM1068504     4  0.2471     0.7134 0.000 0.000 0.000 0.864 0.136
#> GSM1068509     1  0.1544     0.7377 0.932 0.068 0.000 0.000 0.000
#> GSM1068511     4  0.2519     0.7185 0.000 0.016 0.100 0.884 0.000
#> GSM1068515     2  0.2929     0.4975 0.180 0.820 0.000 0.000 0.000
#> GSM1068516     5  0.2930     0.6325 0.004 0.164 0.000 0.000 0.832
#> GSM1068519     1  0.2471     0.7033 0.864 0.136 0.000 0.000 0.000
#> GSM1068523     4  0.4449     0.2806 0.000 0.004 0.000 0.512 0.484
#> GSM1068525     4  0.4656     0.2764 0.000 0.012 0.000 0.508 0.480
#> GSM1068526     4  0.1197     0.7604 0.000 0.000 0.000 0.952 0.048
#> GSM1068458     2  0.3143     0.4839 0.204 0.796 0.000 0.000 0.000
#> GSM1068459     3  0.0000     0.6666 0.000 0.000 1.000 0.000 0.000
#> GSM1068460     2  0.7652     0.1233 0.048 0.372 0.000 0.292 0.288
#> GSM1068461     2  0.3697     0.5265 0.100 0.820 0.000 0.000 0.080
#> GSM1068464     4  0.1121     0.7583 0.000 0.044 0.000 0.956 0.000
#> GSM1068468     1  0.4713     0.6694 0.724 0.224 0.000 0.028 0.024
#> GSM1068472     1  0.4263     0.6910 0.760 0.200 0.000 0.024 0.016
#> GSM1068473     4  0.0794     0.7637 0.000 0.028 0.000 0.972 0.000
#> GSM1068474     4  0.1121     0.7583 0.000 0.044 0.000 0.956 0.000
#> GSM1068476     4  0.6661    -0.0360 0.012 0.156 0.000 0.432 0.400
#> GSM1068477     2  0.7525     0.0818 0.036 0.356 0.000 0.312 0.296
#> GSM1068462     2  0.7658     0.1196 0.048 0.368 0.000 0.296 0.288
#> GSM1068463     3  0.6902    -0.0783 0.372 0.172 0.436 0.000 0.020
#> GSM1068465     1  0.4836     0.6673 0.724 0.212 0.000 0.044 0.020
#> GSM1068466     1  0.4690     0.6703 0.780 0.080 0.040 0.000 0.100
#> GSM1068467     2  0.8132     0.1775 0.104 0.360 0.000 0.276 0.260
#> GSM1068469     1  0.3809     0.7027 0.804 0.160 0.000 0.020 0.016
#> GSM1068470     4  0.2471     0.7134 0.000 0.000 0.000 0.864 0.136
#> GSM1068471     4  0.1121     0.7583 0.000 0.044 0.000 0.956 0.000
#> GSM1068475     4  0.1121     0.7583 0.000 0.044 0.000 0.956 0.000
#> GSM1068528     2  0.4132     0.4618 0.260 0.720 0.000 0.000 0.020
#> GSM1068531     3  0.4814     0.5575 0.188 0.016 0.736 0.000 0.060
#> GSM1068532     1  0.1544     0.7377 0.932 0.068 0.000 0.000 0.000
#> GSM1068533     1  0.6521     0.5339 0.640 0.092 0.092 0.004 0.172
#> GSM1068535     3  0.4817     0.3427 0.000 0.016 0.608 0.368 0.008
#> GSM1068537     1  0.2233     0.7018 0.904 0.016 0.080 0.000 0.000
#> GSM1068538     1  0.1544     0.7377 0.932 0.068 0.000 0.000 0.000
#> GSM1068539     5  0.2930     0.6325 0.004 0.164 0.000 0.000 0.832
#> GSM1068540     1  0.7487     0.3225 0.476 0.064 0.296 0.004 0.160
#> GSM1068542     4  0.1121     0.7583 0.000 0.044 0.000 0.956 0.000
#> GSM1068543     4  0.4656     0.2764 0.000 0.012 0.000 0.508 0.480
#> GSM1068544     2  0.4132     0.4618 0.260 0.720 0.000 0.000 0.020
#> GSM1068545     4  0.1121     0.7583 0.000 0.044 0.000 0.956 0.000
#> GSM1068546     3  0.4112     0.6471 0.048 0.016 0.800 0.000 0.136
#> GSM1068547     2  0.4225     0.2139 0.364 0.632 0.000 0.000 0.004
#> GSM1068548     4  0.0609     0.7652 0.000 0.020 0.000 0.980 0.000
#> GSM1068549     3  0.4084     0.6453 0.044 0.016 0.800 0.000 0.140
#> GSM1068550     4  0.0404     0.7678 0.000 0.000 0.000 0.988 0.012
#> GSM1068551     4  0.2424     0.7158 0.000 0.000 0.000 0.868 0.132
#> GSM1068552     4  0.0000     0.7672 0.000 0.000 0.000 1.000 0.000
#> GSM1068555     4  0.4449     0.2806 0.000 0.004 0.000 0.512 0.484
#> GSM1068556     4  0.2519     0.7185 0.000 0.016 0.100 0.884 0.000
#> GSM1068557     4  0.7031    -0.1294 0.024 0.180 0.000 0.400 0.396
#> GSM1068560     4  0.4304     0.2875 0.000 0.000 0.000 0.516 0.484
#> GSM1068561     5  0.6302     0.0771 0.000 0.016 0.108 0.356 0.520
#> GSM1068562     4  0.4304     0.2875 0.000 0.000 0.000 0.516 0.484
#> GSM1068563     4  0.0609     0.7652 0.000 0.020 0.000 0.980 0.000
#> GSM1068565     4  0.2690     0.7017 0.000 0.000 0.000 0.844 0.156
#> GSM1068529     4  0.7233     0.0703 0.004 0.016 0.340 0.400 0.240
#> GSM1068530     1  0.1544     0.7377 0.932 0.068 0.000 0.000 0.000
#> GSM1068534     4  0.7233     0.0703 0.004 0.016 0.340 0.400 0.240
#> GSM1068536     5  0.0794     0.6851 0.000 0.028 0.000 0.000 0.972
#> GSM1068541     1  0.4263     0.6910 0.760 0.200 0.000 0.024 0.016
#> GSM1068553     3  0.4817     0.3427 0.000 0.016 0.608 0.368 0.008
#> GSM1068554     4  0.0794     0.7637 0.000 0.028 0.000 0.972 0.000
#> GSM1068558     4  0.4656     0.2764 0.000 0.012 0.000 0.508 0.480
#> GSM1068559     5  0.7540    -0.1086 0.036 0.320 0.000 0.308 0.336
#> GSM1068564     4  0.0000     0.7672 0.000 0.000 0.000 1.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1068478     6  0.5881     0.2694 0.000 0.000 0.216 0.276 0.004 0.504
#> GSM1068479     2  0.5646    -0.7157 0.000 0.440 0.000 0.436 0.008 0.116
#> GSM1068481     3  0.2013     0.6344 0.000 0.000 0.908 0.076 0.008 0.008
#> GSM1068482     5  0.5509     0.4861 0.040 0.000 0.000 0.336 0.564 0.060
#> GSM1068483     1  0.0000     0.7265 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1068486     6  0.5377     0.4831 0.000 0.080 0.136 0.100 0.000 0.684
#> GSM1068487     2  0.0458     0.8424 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM1068488     6  0.3725     0.5511 0.000 0.316 0.000 0.008 0.000 0.676
#> GSM1068490     2  0.0508     0.8436 0.000 0.984 0.000 0.004 0.000 0.012
#> GSM1068491     4  0.7555     0.5141 0.256 0.228 0.000 0.412 0.036 0.068
#> GSM1068492     2  0.0603     0.8433 0.000 0.980 0.000 0.004 0.000 0.016
#> GSM1068493     6  0.5377     0.4831 0.000 0.080 0.136 0.100 0.000 0.684
#> GSM1068494     6  0.3052     0.4478 0.000 0.000 0.004 0.216 0.000 0.780
#> GSM1068495     6  0.3795     0.3167 0.000 0.000 0.000 0.364 0.004 0.632
#> GSM1068496     3  0.2013     0.6344 0.000 0.000 0.908 0.076 0.008 0.008
#> GSM1068498     5  0.4261     0.5543 0.000 0.000 0.000 0.252 0.692 0.056
#> GSM1068499     5  0.5409     0.5557 0.188 0.000 0.000 0.232 0.580 0.000
#> GSM1068500     1  0.6944     0.3306 0.392 0.000 0.280 0.284 0.012 0.032
#> GSM1068502     2  0.0790     0.8334 0.000 0.968 0.000 0.032 0.000 0.000
#> GSM1068503     2  0.0458     0.8424 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM1068505     2  0.2714     0.7496 0.000 0.848 0.012 0.004 0.000 0.136
#> GSM1068506     2  0.0508     0.8398 0.000 0.984 0.000 0.012 0.004 0.000
#> GSM1068507     2  0.2525     0.7795 0.000 0.876 0.012 0.012 0.000 0.100
#> GSM1068508     4  0.5891     0.6780 0.000 0.412 0.000 0.412 0.004 0.172
#> GSM1068510     6  0.3725     0.5511 0.000 0.316 0.000 0.008 0.000 0.676
#> GSM1068512     2  0.0508     0.8398 0.000 0.984 0.000 0.012 0.004 0.000
#> GSM1068513     2  0.2714     0.7496 0.000 0.848 0.012 0.004 0.000 0.136
#> GSM1068514     2  0.0458     0.8424 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM1068517     6  0.5174     0.2360 0.000 0.000 0.000 0.368 0.096 0.536
#> GSM1068518     6  0.5235     0.2098 0.000 0.000 0.000 0.380 0.100 0.520
#> GSM1068520     1  0.4866     0.6713 0.684 0.000 0.028 0.244 0.024 0.020
#> GSM1068521     5  0.5689     0.4554 0.288 0.000 0.000 0.196 0.516 0.000
#> GSM1068522     2  0.0508     0.8398 0.000 0.984 0.000 0.012 0.004 0.000
#> GSM1068524     6  0.3725     0.5511 0.000 0.316 0.000 0.008 0.000 0.676
#> GSM1068527     2  0.2525     0.7795 0.000 0.876 0.012 0.012 0.000 0.100
#> GSM1068480     6  0.3052     0.4478 0.000 0.000 0.004 0.216 0.000 0.780
#> GSM1068484     2  0.0790     0.8334 0.000 0.968 0.000 0.032 0.000 0.000
#> GSM1068485     5  0.5409     0.5557 0.188 0.000 0.000 0.232 0.580 0.000
#> GSM1068489     2  0.2714     0.7496 0.000 0.848 0.012 0.004 0.000 0.136
#> GSM1068497     6  0.3136     0.4437 0.000 0.000 0.000 0.228 0.004 0.768
#> GSM1068501     2  0.0603     0.8405 0.000 0.980 0.000 0.016 0.004 0.000
#> GSM1068504     2  0.2664     0.6977 0.000 0.816 0.000 0.000 0.000 0.184
#> GSM1068509     1  0.0000     0.7265 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1068511     2  0.2456     0.7568 0.000 0.880 0.100 0.012 0.004 0.004
#> GSM1068515     5  0.4570     0.5842 0.092 0.000 0.000 0.228 0.680 0.000
#> GSM1068516     6  0.3795     0.3167 0.000 0.000 0.000 0.364 0.004 0.632
#> GSM1068519     1  0.1531     0.6906 0.928 0.000 0.000 0.004 0.068 0.000
#> GSM1068523     6  0.3699     0.5344 0.000 0.336 0.000 0.004 0.000 0.660
#> GSM1068525     6  0.3725     0.5511 0.000 0.316 0.000 0.008 0.000 0.676
#> GSM1068526     2  0.1501     0.8124 0.000 0.924 0.000 0.000 0.000 0.076
#> GSM1068458     5  0.5002     0.5724 0.136 0.000 0.000 0.228 0.636 0.000
#> GSM1068459     3  0.0820     0.6347 0.000 0.000 0.972 0.016 0.012 0.000
#> GSM1068460     4  0.6257     0.8463 0.004 0.296 0.000 0.524 0.040 0.136
#> GSM1068461     5  0.4261     0.5543 0.000 0.000 0.000 0.252 0.692 0.056
#> GSM1068464     2  0.0790     0.8334 0.000 0.968 0.000 0.032 0.000 0.000
#> GSM1068468     1  0.4326     0.6759 0.724 0.032 0.000 0.216 0.028 0.000
#> GSM1068472     1  0.3755     0.6973 0.768 0.028 0.000 0.192 0.012 0.000
#> GSM1068473     2  0.0603     0.8405 0.000 0.980 0.000 0.016 0.004 0.000
#> GSM1068474     2  0.0790     0.8334 0.000 0.968 0.000 0.032 0.000 0.000
#> GSM1068476     2  0.6075    -0.4411 0.000 0.396 0.000 0.280 0.000 0.324
#> GSM1068477     4  0.6141     0.8465 0.000 0.312 0.000 0.508 0.032 0.148
#> GSM1068462     4  0.6270     0.8481 0.004 0.300 0.000 0.520 0.040 0.136
#> GSM1068463     3  0.6505     0.0218 0.392 0.000 0.416 0.040 0.148 0.004
#> GSM1068465     1  0.4474     0.6724 0.724 0.048 0.000 0.200 0.028 0.000
#> GSM1068466     1  0.4866     0.6713 0.684 0.000 0.028 0.244 0.024 0.020
#> GSM1068467     4  0.6978     0.8102 0.060 0.280 0.000 0.500 0.036 0.124
#> GSM1068469     1  0.3294     0.7153 0.812 0.020 0.000 0.156 0.012 0.000
#> GSM1068470     2  0.2664     0.6977 0.000 0.816 0.000 0.000 0.000 0.184
#> GSM1068471     2  0.0790     0.8334 0.000 0.968 0.000 0.032 0.000 0.000
#> GSM1068475     2  0.0790     0.8334 0.000 0.968 0.000 0.032 0.000 0.000
#> GSM1068528     5  0.5409     0.5557 0.188 0.000 0.000 0.232 0.580 0.000
#> GSM1068531     3  0.5195     0.5626 0.128 0.000 0.716 0.096 0.016 0.044
#> GSM1068532     1  0.0146     0.7265 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM1068533     1  0.6094     0.5537 0.544 0.000 0.076 0.324 0.024 0.032
#> GSM1068535     3  0.4809     0.3283 0.000 0.348 0.604 0.020 0.004 0.024
#> GSM1068537     1  0.3109     0.6887 0.848 0.000 0.068 0.076 0.008 0.000
#> GSM1068538     1  0.0146     0.7265 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM1068539     6  0.3795     0.3167 0.000 0.000 0.000 0.364 0.004 0.632
#> GSM1068540     1  0.6944     0.3306 0.392 0.000 0.280 0.284 0.012 0.032
#> GSM1068542     2  0.0790     0.8334 0.000 0.968 0.000 0.032 0.000 0.000
#> GSM1068543     6  0.3725     0.5511 0.000 0.316 0.000 0.008 0.000 0.676
#> GSM1068544     5  0.5409     0.5557 0.188 0.000 0.000 0.232 0.580 0.000
#> GSM1068545     2  0.0790     0.8334 0.000 0.968 0.000 0.032 0.000 0.000
#> GSM1068546     3  0.4104     0.6232 0.000 0.000 0.784 0.092 0.028 0.096
#> GSM1068547     5  0.5617     0.3836 0.280 0.000 0.000 0.188 0.532 0.000
#> GSM1068548     2  0.0603     0.8393 0.000 0.980 0.000 0.016 0.004 0.000
#> GSM1068549     3  0.4102     0.6225 0.000 0.000 0.784 0.088 0.028 0.100
#> GSM1068550     2  0.0790     0.8374 0.000 0.968 0.000 0.000 0.000 0.032
#> GSM1068551     2  0.2631     0.7026 0.000 0.820 0.000 0.000 0.000 0.180
#> GSM1068552     2  0.0363     0.8431 0.000 0.988 0.000 0.000 0.000 0.012
#> GSM1068555     6  0.3699     0.5344 0.000 0.336 0.000 0.004 0.000 0.660
#> GSM1068556     2  0.2456     0.7568 0.000 0.880 0.100 0.012 0.004 0.004
#> GSM1068557     2  0.6119    -0.5371 0.000 0.364 0.000 0.324 0.000 0.312
#> GSM1068560     6  0.3742     0.5224 0.000 0.348 0.000 0.004 0.000 0.648
#> GSM1068561     6  0.4582     0.5302 0.000 0.184 0.108 0.004 0.000 0.704
#> GSM1068562     6  0.3742     0.5224 0.000 0.348 0.000 0.004 0.000 0.648
#> GSM1068563     2  0.0603     0.8393 0.000 0.980 0.000 0.016 0.004 0.000
#> GSM1068565     2  0.3023     0.6555 0.000 0.784 0.000 0.004 0.000 0.212
#> GSM1068529     6  0.6305     0.1944 0.000 0.280 0.340 0.008 0.000 0.372
#> GSM1068530     1  0.0146     0.7265 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM1068534     6  0.6305     0.1944 0.000 0.280 0.340 0.008 0.000 0.372
#> GSM1068536     6  0.3136     0.4437 0.000 0.000 0.000 0.228 0.004 0.768
#> GSM1068541     1  0.3755     0.6973 0.768 0.028 0.000 0.192 0.012 0.000
#> GSM1068553     3  0.4809     0.3283 0.000 0.348 0.604 0.020 0.004 0.024
#> GSM1068554     2  0.0603     0.8405 0.000 0.980 0.000 0.016 0.004 0.000
#> GSM1068558     6  0.3725     0.5511 0.000 0.316 0.000 0.008 0.000 0.676
#> GSM1068559     4  0.6370     0.8087 0.000 0.308 0.000 0.472 0.032 0.188
#> GSM1068564     2  0.0363     0.8431 0.000 0.988 0.000 0.000 0.000 0.012
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#>             n disease.state(p) gender(p) k
#> ATC:hclust 92            0.220     0.879 2
#> ATC:hclust 75            0.549     0.762 3
#> ATC:hclust 75            0.580     0.174 4
#> ATC:hclust 68            0.284     0.208 5
#> ATC:hclust 83            0.214     0.409 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 38950 rows and 108 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.904           0.931       0.971         0.4922 0.504   0.504
#> 3 3 0.723           0.750       0.889         0.3332 0.736   0.520
#> 4 4 0.641           0.732       0.839         0.1169 0.843   0.582
#> 5 5 0.772           0.701       0.821         0.0736 0.922   0.719
#> 6 6 0.739           0.642       0.773         0.0410 0.952   0.785
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1068478     1   0.000      0.956 1.000 0.000
#> GSM1068479     2   0.000      0.979 0.000 1.000
#> GSM1068481     1   0.917      0.537 0.668 0.332
#> GSM1068482     1   0.000      0.956 1.000 0.000
#> GSM1068483     1   0.000      0.956 1.000 0.000
#> GSM1068486     2   0.184      0.951 0.028 0.972
#> GSM1068487     2   0.000      0.979 0.000 1.000
#> GSM1068488     2   0.000      0.979 0.000 1.000
#> GSM1068490     2   0.000      0.979 0.000 1.000
#> GSM1068491     1   0.000      0.956 1.000 0.000
#> GSM1068492     2   0.000      0.979 0.000 1.000
#> GSM1068493     2   0.963      0.332 0.388 0.612
#> GSM1068494     1   0.886      0.590 0.696 0.304
#> GSM1068495     2   0.662      0.776 0.172 0.828
#> GSM1068496     1   0.000      0.956 1.000 0.000
#> GSM1068498     1   0.000      0.956 1.000 0.000
#> GSM1068499     1   0.000      0.956 1.000 0.000
#> GSM1068500     1   0.000      0.956 1.000 0.000
#> GSM1068502     2   0.000      0.979 0.000 1.000
#> GSM1068503     2   0.000      0.979 0.000 1.000
#> GSM1068505     2   0.000      0.979 0.000 1.000
#> GSM1068506     2   0.000      0.979 0.000 1.000
#> GSM1068507     2   0.000      0.979 0.000 1.000
#> GSM1068508     2   0.000      0.979 0.000 1.000
#> GSM1068510     2   0.000      0.979 0.000 1.000
#> GSM1068512     2   0.000      0.979 0.000 1.000
#> GSM1068513     2   0.000      0.979 0.000 1.000
#> GSM1068514     2   0.000      0.979 0.000 1.000
#> GSM1068517     1   0.000      0.956 1.000 0.000
#> GSM1068518     1   0.000      0.956 1.000 0.000
#> GSM1068520     1   0.000      0.956 1.000 0.000
#> GSM1068521     1   0.000      0.956 1.000 0.000
#> GSM1068522     2   0.000      0.979 0.000 1.000
#> GSM1068524     2   0.000      0.979 0.000 1.000
#> GSM1068527     2   0.000      0.979 0.000 1.000
#> GSM1068480     1   0.000      0.956 1.000 0.000
#> GSM1068484     2   0.000      0.979 0.000 1.000
#> GSM1068485     1   0.000      0.956 1.000 0.000
#> GSM1068489     2   0.000      0.979 0.000 1.000
#> GSM1068497     1   0.000      0.956 1.000 0.000
#> GSM1068501     2   0.000      0.979 0.000 1.000
#> GSM1068504     2   0.000      0.979 0.000 1.000
#> GSM1068509     1   0.000      0.956 1.000 0.000
#> GSM1068511     2   0.000      0.979 0.000 1.000
#> GSM1068515     1   0.000      0.956 1.000 0.000
#> GSM1068516     1   0.925      0.520 0.660 0.340
#> GSM1068519     1   0.000      0.956 1.000 0.000
#> GSM1068523     2   0.000      0.979 0.000 1.000
#> GSM1068525     2   0.000      0.979 0.000 1.000
#> GSM1068526     2   0.000      0.979 0.000 1.000
#> GSM1068458     1   0.000      0.956 1.000 0.000
#> GSM1068459     1   0.000      0.956 1.000 0.000
#> GSM1068460     1   0.625      0.806 0.844 0.156
#> GSM1068461     1   0.000      0.956 1.000 0.000
#> GSM1068464     2   0.000      0.979 0.000 1.000
#> GSM1068468     1   0.000      0.956 1.000 0.000
#> GSM1068472     1   0.000      0.956 1.000 0.000
#> GSM1068473     2   0.000      0.979 0.000 1.000
#> GSM1068474     2   0.000      0.979 0.000 1.000
#> GSM1068476     2   0.000      0.979 0.000 1.000
#> GSM1068477     2   0.000      0.979 0.000 1.000
#> GSM1068462     1   0.574      0.829 0.864 0.136
#> GSM1068463     1   0.000      0.956 1.000 0.000
#> GSM1068465     1   0.000      0.956 1.000 0.000
#> GSM1068466     1   0.000      0.956 1.000 0.000
#> GSM1068467     1   0.000      0.956 1.000 0.000
#> GSM1068469     1   0.000      0.956 1.000 0.000
#> GSM1068470     2   0.000      0.979 0.000 1.000
#> GSM1068471     2   0.000      0.979 0.000 1.000
#> GSM1068475     2   0.000      0.979 0.000 1.000
#> GSM1068528     1   0.000      0.956 1.000 0.000
#> GSM1068531     1   0.000      0.956 1.000 0.000
#> GSM1068532     1   0.000      0.956 1.000 0.000
#> GSM1068533     1   0.000      0.956 1.000 0.000
#> GSM1068535     2   0.000      0.979 0.000 1.000
#> GSM1068537     1   0.000      0.956 1.000 0.000
#> GSM1068538     1   0.000      0.956 1.000 0.000
#> GSM1068539     2   0.871      0.569 0.292 0.708
#> GSM1068540     1   0.000      0.956 1.000 0.000
#> GSM1068542     2   0.000      0.979 0.000 1.000
#> GSM1068543     2   0.000      0.979 0.000 1.000
#> GSM1068544     1   0.000      0.956 1.000 0.000
#> GSM1068545     2   0.000      0.979 0.000 1.000
#> GSM1068546     1   0.917      0.537 0.668 0.332
#> GSM1068547     1   0.000      0.956 1.000 0.000
#> GSM1068548     2   0.000      0.979 0.000 1.000
#> GSM1068549     1   0.000      0.956 1.000 0.000
#> GSM1068550     2   0.000      0.979 0.000 1.000
#> GSM1068551     2   0.000      0.979 0.000 1.000
#> GSM1068552     2   0.000      0.979 0.000 1.000
#> GSM1068555     2   0.000      0.979 0.000 1.000
#> GSM1068556     2   0.000      0.979 0.000 1.000
#> GSM1068557     2   0.000      0.979 0.000 1.000
#> GSM1068560     2   0.000      0.979 0.000 1.000
#> GSM1068561     2   0.000      0.979 0.000 1.000
#> GSM1068562     2   0.000      0.979 0.000 1.000
#> GSM1068563     2   0.000      0.979 0.000 1.000
#> GSM1068565     2   0.000      0.979 0.000 1.000
#> GSM1068529     2   0.000      0.979 0.000 1.000
#> GSM1068530     1   0.000      0.956 1.000 0.000
#> GSM1068534     2   0.000      0.979 0.000 1.000
#> GSM1068536     1   0.925      0.520 0.660 0.340
#> GSM1068541     1   0.000      0.956 1.000 0.000
#> GSM1068553     2   0.000      0.979 0.000 1.000
#> GSM1068554     2   0.000      0.979 0.000 1.000
#> GSM1068558     2   0.000      0.979 0.000 1.000
#> GSM1068559     2   0.895      0.526 0.312 0.688
#> GSM1068564     2   0.000      0.979 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1068478     3  0.2774     0.6896 0.072 0.008 0.920
#> GSM1068479     2  0.0424     0.9202 0.000 0.992 0.008
#> GSM1068481     3  0.1585     0.7331 0.028 0.008 0.964
#> GSM1068482     3  0.6295    -0.2542 0.472 0.000 0.528
#> GSM1068483     1  0.0000     0.9100 1.000 0.000 0.000
#> GSM1068486     3  0.1163     0.7462 0.000 0.028 0.972
#> GSM1068487     2  0.0424     0.9202 0.000 0.992 0.008
#> GSM1068488     3  0.6260     0.2895 0.000 0.448 0.552
#> GSM1068490     2  0.0424     0.9202 0.000 0.992 0.008
#> GSM1068491     1  0.1411     0.9080 0.964 0.000 0.036
#> GSM1068492     2  0.0424     0.9202 0.000 0.992 0.008
#> GSM1068493     3  0.0892     0.7445 0.000 0.020 0.980
#> GSM1068494     3  0.0237     0.7432 0.000 0.004 0.996
#> GSM1068495     3  0.0424     0.7451 0.000 0.008 0.992
#> GSM1068496     1  0.6398     0.5513 0.620 0.008 0.372
#> GSM1068498     1  0.2165     0.8854 0.936 0.000 0.064
#> GSM1068499     1  0.1031     0.9103 0.976 0.000 0.024
#> GSM1068500     1  0.6513     0.5015 0.592 0.008 0.400
#> GSM1068502     2  0.0000     0.9196 0.000 1.000 0.000
#> GSM1068503     2  0.0424     0.9202 0.000 0.992 0.008
#> GSM1068505     2  0.0000     0.9196 0.000 1.000 0.000
#> GSM1068506     2  0.0237     0.9177 0.000 0.996 0.004
#> GSM1068507     2  0.5529     0.5200 0.000 0.704 0.296
#> GSM1068508     2  0.6140     0.2149 0.000 0.596 0.404
#> GSM1068510     3  0.6026     0.4590 0.000 0.376 0.624
#> GSM1068512     2  0.0237     0.9177 0.000 0.996 0.004
#> GSM1068513     2  0.5591     0.4941 0.000 0.696 0.304
#> GSM1068514     2  0.0237     0.9201 0.000 0.996 0.004
#> GSM1068517     3  0.5905     0.3150 0.352 0.000 0.648
#> GSM1068518     3  0.3752     0.6623 0.144 0.000 0.856
#> GSM1068520     1  0.0000     0.9100 1.000 0.000 0.000
#> GSM1068521     1  0.1031     0.9103 0.976 0.000 0.024
#> GSM1068522     2  0.0000     0.9196 0.000 1.000 0.000
#> GSM1068524     3  0.6308     0.1760 0.000 0.492 0.508
#> GSM1068527     2  0.0237     0.9177 0.000 0.996 0.004
#> GSM1068480     3  0.0237     0.7409 0.004 0.000 0.996
#> GSM1068484     2  0.0424     0.9202 0.000 0.992 0.008
#> GSM1068485     1  0.0747     0.9111 0.984 0.000 0.016
#> GSM1068489     2  0.0000     0.9196 0.000 1.000 0.000
#> GSM1068497     3  0.0237     0.7409 0.004 0.000 0.996
#> GSM1068501     2  0.0000     0.9196 0.000 1.000 0.000
#> GSM1068504     2  0.6008     0.3107 0.000 0.628 0.372
#> GSM1068509     1  0.0000     0.9100 1.000 0.000 0.000
#> GSM1068511     2  0.0237     0.9177 0.000 0.996 0.004
#> GSM1068515     1  0.1031     0.9103 0.976 0.000 0.024
#> GSM1068516     3  0.0424     0.7451 0.000 0.008 0.992
#> GSM1068519     1  0.0000     0.9100 1.000 0.000 0.000
#> GSM1068523     3  0.6062     0.4484 0.000 0.384 0.616
#> GSM1068525     2  0.5948     0.3479 0.000 0.640 0.360
#> GSM1068526     2  0.0424     0.9202 0.000 0.992 0.008
#> GSM1068458     1  0.0892     0.9107 0.980 0.000 0.020
#> GSM1068459     1  0.6498     0.5090 0.596 0.008 0.396
#> GSM1068460     3  0.4744     0.6722 0.136 0.028 0.836
#> GSM1068461     1  0.1031     0.9103 0.976 0.000 0.024
#> GSM1068464     2  0.0424     0.9202 0.000 0.992 0.008
#> GSM1068468     1  0.1411     0.9080 0.964 0.000 0.036
#> GSM1068472     1  0.1964     0.8979 0.944 0.000 0.056
#> GSM1068473     2  0.0000     0.9196 0.000 1.000 0.000
#> GSM1068474     2  0.0424     0.9202 0.000 0.992 0.008
#> GSM1068476     3  0.6062     0.4484 0.000 0.384 0.616
#> GSM1068477     3  0.5529     0.5735 0.000 0.296 0.704
#> GSM1068462     3  0.5047     0.6691 0.140 0.036 0.824
#> GSM1068463     1  0.1860     0.8850 0.948 0.000 0.052
#> GSM1068465     1  0.0592     0.9090 0.988 0.000 0.012
#> GSM1068466     1  0.0000     0.9100 1.000 0.000 0.000
#> GSM1068467     1  0.4555     0.7712 0.800 0.000 0.200
#> GSM1068469     1  0.0892     0.9107 0.980 0.000 0.020
#> GSM1068470     2  0.5497     0.5191 0.000 0.708 0.292
#> GSM1068471     2  0.0424     0.9202 0.000 0.992 0.008
#> GSM1068475     2  0.0424     0.9202 0.000 0.992 0.008
#> GSM1068528     1  0.0892     0.9111 0.980 0.000 0.020
#> GSM1068531     1  0.6359     0.5642 0.628 0.008 0.364
#> GSM1068532     1  0.0000     0.9100 1.000 0.000 0.000
#> GSM1068533     1  0.4702     0.7474 0.788 0.000 0.212
#> GSM1068535     2  0.3619     0.7650 0.000 0.864 0.136
#> GSM1068537     1  0.0424     0.9083 0.992 0.000 0.008
#> GSM1068538     1  0.0000     0.9100 1.000 0.000 0.000
#> GSM1068539     3  0.0592     0.7464 0.000 0.012 0.988
#> GSM1068540     1  0.6359     0.5642 0.628 0.008 0.364
#> GSM1068542     2  0.0000     0.9196 0.000 1.000 0.000
#> GSM1068543     3  0.6299     0.2275 0.000 0.476 0.524
#> GSM1068544     1  0.1031     0.9103 0.976 0.000 0.024
#> GSM1068545     2  0.0424     0.9202 0.000 0.992 0.008
#> GSM1068546     3  0.1315     0.7357 0.020 0.008 0.972
#> GSM1068547     1  0.0424     0.9108 0.992 0.000 0.008
#> GSM1068548     2  0.0237     0.9177 0.000 0.996 0.004
#> GSM1068549     3  0.5948     0.0856 0.360 0.000 0.640
#> GSM1068550     2  0.0424     0.9202 0.000 0.992 0.008
#> GSM1068551     2  0.0424     0.9202 0.000 0.992 0.008
#> GSM1068552     2  0.0424     0.9202 0.000 0.992 0.008
#> GSM1068555     3  0.6126     0.4178 0.000 0.400 0.600
#> GSM1068556     2  0.0237     0.9177 0.000 0.996 0.004
#> GSM1068557     3  0.2796     0.7390 0.000 0.092 0.908
#> GSM1068560     3  0.6126     0.4178 0.000 0.400 0.600
#> GSM1068561     3  0.1289     0.7494 0.000 0.032 0.968
#> GSM1068562     3  0.6305     0.2023 0.000 0.484 0.516
#> GSM1068563     2  0.0237     0.9177 0.000 0.996 0.004
#> GSM1068565     2  0.4702     0.6695 0.000 0.788 0.212
#> GSM1068529     3  0.1289     0.7494 0.000 0.032 0.968
#> GSM1068530     1  0.0000     0.9100 1.000 0.000 0.000
#> GSM1068534     2  0.1289     0.8942 0.000 0.968 0.032
#> GSM1068536     3  0.0237     0.7432 0.000 0.004 0.996
#> GSM1068541     1  0.1163     0.9103 0.972 0.000 0.028
#> GSM1068553     2  0.0237     0.9177 0.000 0.996 0.004
#> GSM1068554     2  0.0000     0.9196 0.000 1.000 0.000
#> GSM1068558     3  0.6026     0.4590 0.000 0.376 0.624
#> GSM1068559     3  0.1031     0.7488 0.000 0.024 0.976
#> GSM1068564     2  0.0424     0.9202 0.000 0.992 0.008
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1068478     3  0.2466     0.6957 0.000 0.096 0.900 0.004
#> GSM1068479     4  0.3751     0.7332 0.000 0.196 0.004 0.800
#> GSM1068481     3  0.2684     0.7176 0.012 0.060 0.912 0.016
#> GSM1068482     3  0.6356     0.4170 0.308 0.088 0.604 0.000
#> GSM1068483     1  0.4248     0.7562 0.768 0.012 0.220 0.000
#> GSM1068486     3  0.4769     0.4368 0.000 0.308 0.684 0.008
#> GSM1068487     4  0.1389     0.9233 0.000 0.048 0.000 0.952
#> GSM1068488     2  0.3610     0.7406 0.000 0.800 0.000 0.200
#> GSM1068490     4  0.0592     0.9395 0.000 0.016 0.000 0.984
#> GSM1068491     1  0.5425     0.7474 0.752 0.060 0.172 0.016
#> GSM1068492     4  0.0592     0.9395 0.000 0.016 0.000 0.984
#> GSM1068493     3  0.4897     0.3966 0.000 0.332 0.660 0.008
#> GSM1068494     2  0.4830     0.3657 0.000 0.608 0.392 0.000
#> GSM1068495     2  0.3486     0.6233 0.000 0.812 0.188 0.000
#> GSM1068496     3  0.2778     0.7137 0.080 0.004 0.900 0.016
#> GSM1068498     1  0.4483     0.6768 0.808 0.104 0.088 0.000
#> GSM1068499     1  0.3323     0.7582 0.876 0.064 0.060 0.000
#> GSM1068500     3  0.3046     0.7120 0.096 0.004 0.884 0.016
#> GSM1068502     4  0.0188     0.9395 0.000 0.000 0.004 0.996
#> GSM1068503     4  0.0592     0.9395 0.000 0.016 0.000 0.984
#> GSM1068505     4  0.1677     0.9228 0.000 0.040 0.012 0.948
#> GSM1068506     4  0.0707     0.9361 0.000 0.000 0.020 0.980
#> GSM1068507     2  0.4053     0.7155 0.000 0.768 0.004 0.228
#> GSM1068508     2  0.3945     0.7261 0.000 0.780 0.004 0.216
#> GSM1068510     2  0.2973     0.7596 0.000 0.856 0.000 0.144
#> GSM1068512     4  0.1913     0.9208 0.000 0.040 0.020 0.940
#> GSM1068513     2  0.4188     0.7053 0.000 0.752 0.004 0.244
#> GSM1068514     4  0.0937     0.9403 0.000 0.012 0.012 0.976
#> GSM1068517     1  0.6613     0.4205 0.628 0.200 0.172 0.000
#> GSM1068518     2  0.6969     0.3577 0.224 0.584 0.192 0.000
#> GSM1068520     1  0.3870     0.7596 0.788 0.004 0.208 0.000
#> GSM1068521     1  0.1388     0.7843 0.960 0.012 0.028 0.000
#> GSM1068522     4  0.0469     0.9385 0.000 0.000 0.012 0.988
#> GSM1068524     2  0.3444     0.7482 0.000 0.816 0.000 0.184
#> GSM1068527     4  0.1624     0.9277 0.000 0.028 0.020 0.952
#> GSM1068480     2  0.5229     0.2692 0.008 0.564 0.428 0.000
#> GSM1068484     4  0.0592     0.9395 0.000 0.016 0.000 0.984
#> GSM1068485     1  0.2174     0.7874 0.928 0.020 0.052 0.000
#> GSM1068489     4  0.1767     0.9200 0.000 0.044 0.012 0.944
#> GSM1068497     2  0.5085     0.3547 0.008 0.616 0.376 0.000
#> GSM1068501     4  0.0469     0.9385 0.000 0.000 0.012 0.988
#> GSM1068504     2  0.3726     0.7363 0.000 0.788 0.000 0.212
#> GSM1068509     1  0.4248     0.7562 0.768 0.012 0.220 0.000
#> GSM1068511     4  0.0707     0.9361 0.000 0.000 0.020 0.980
#> GSM1068515     1  0.1837     0.7828 0.944 0.028 0.028 0.000
#> GSM1068516     2  0.3688     0.6079 0.000 0.792 0.208 0.000
#> GSM1068519     1  0.3529     0.7853 0.836 0.012 0.152 0.000
#> GSM1068523     2  0.2281     0.7554 0.000 0.904 0.000 0.096
#> GSM1068525     2  0.4040     0.7056 0.000 0.752 0.000 0.248
#> GSM1068526     4  0.2345     0.8773 0.000 0.100 0.000 0.900
#> GSM1068458     1  0.0188     0.7953 0.996 0.004 0.000 0.000
#> GSM1068459     3  0.2778     0.7137 0.080 0.004 0.900 0.016
#> GSM1068460     2  0.6966     0.5092 0.112 0.652 0.200 0.036
#> GSM1068461     1  0.3464     0.7355 0.868 0.076 0.056 0.000
#> GSM1068464     4  0.0779     0.9386 0.000 0.016 0.004 0.980
#> GSM1068468     1  0.5955     0.7346 0.732 0.060 0.168 0.040
#> GSM1068472     1  0.6240     0.7167 0.712 0.060 0.180 0.048
#> GSM1068473     4  0.0000     0.9397 0.000 0.000 0.000 1.000
#> GSM1068474     4  0.0779     0.9386 0.000 0.016 0.004 0.980
#> GSM1068476     2  0.2345     0.7564 0.000 0.900 0.000 0.100
#> GSM1068477     2  0.4389     0.7324 0.000 0.812 0.072 0.116
#> GSM1068462     2  0.7031     0.5026 0.120 0.648 0.196 0.036
#> GSM1068463     3  0.5290     0.0979 0.404 0.012 0.584 0.000
#> GSM1068465     1  0.5629     0.7364 0.724 0.052 0.208 0.016
#> GSM1068466     1  0.3945     0.7546 0.780 0.004 0.216 0.000
#> GSM1068467     1  0.6891     0.5145 0.648 0.172 0.160 0.020
#> GSM1068469     1  0.3307     0.7948 0.868 0.028 0.104 0.000
#> GSM1068470     2  0.4103     0.7012 0.000 0.744 0.000 0.256
#> GSM1068471     4  0.0592     0.9395 0.000 0.016 0.000 0.984
#> GSM1068475     4  0.0779     0.9386 0.000 0.016 0.004 0.980
#> GSM1068528     1  0.2845     0.7794 0.896 0.028 0.076 0.000
#> GSM1068531     3  0.2989     0.7077 0.100 0.004 0.884 0.012
#> GSM1068532     1  0.3718     0.7783 0.820 0.012 0.168 0.000
#> GSM1068533     3  0.3831     0.6224 0.204 0.004 0.792 0.000
#> GSM1068535     4  0.6101     0.3235 0.000 0.052 0.388 0.560
#> GSM1068537     3  0.5366    -0.0601 0.440 0.012 0.548 0.000
#> GSM1068538     1  0.3718     0.7783 0.820 0.012 0.168 0.000
#> GSM1068539     2  0.3751     0.6138 0.004 0.800 0.196 0.000
#> GSM1068540     3  0.2989     0.7077 0.100 0.004 0.884 0.012
#> GSM1068542     4  0.0188     0.9397 0.000 0.000 0.004 0.996
#> GSM1068543     2  0.3311     0.7531 0.000 0.828 0.000 0.172
#> GSM1068544     1  0.3820     0.7563 0.848 0.064 0.088 0.000
#> GSM1068545     4  0.0779     0.9386 0.000 0.016 0.004 0.980
#> GSM1068546     3  0.4567     0.4923 0.000 0.276 0.716 0.008
#> GSM1068547     1  0.2011     0.8041 0.920 0.000 0.080 0.000
#> GSM1068548     4  0.0707     0.9361 0.000 0.000 0.020 0.980
#> GSM1068549     3  0.4507     0.6394 0.044 0.168 0.788 0.000
#> GSM1068550     4  0.1388     0.9370 0.000 0.028 0.012 0.960
#> GSM1068551     4  0.4741     0.4623 0.000 0.328 0.004 0.668
#> GSM1068552     4  0.0592     0.9395 0.000 0.016 0.000 0.984
#> GSM1068555     2  0.2921     0.7601 0.000 0.860 0.000 0.140
#> GSM1068556     4  0.0707     0.9361 0.000 0.000 0.020 0.980
#> GSM1068557     2  0.3687     0.7286 0.000 0.856 0.080 0.064
#> GSM1068560     2  0.2647     0.7590 0.000 0.880 0.000 0.120
#> GSM1068561     2  0.2859     0.6987 0.000 0.880 0.112 0.008
#> GSM1068562     2  0.3311     0.7534 0.000 0.828 0.000 0.172
#> GSM1068563     4  0.0707     0.9361 0.000 0.000 0.020 0.980
#> GSM1068565     2  0.4454     0.6327 0.000 0.692 0.000 0.308
#> GSM1068529     2  0.2987     0.7023 0.000 0.880 0.104 0.016
#> GSM1068530     1  0.3718     0.7783 0.820 0.012 0.168 0.000
#> GSM1068534     4  0.4452     0.7795 0.000 0.048 0.156 0.796
#> GSM1068536     2  0.4817     0.3669 0.000 0.612 0.388 0.000
#> GSM1068541     1  0.5251     0.7620 0.768 0.052 0.160 0.020
#> GSM1068553     4  0.1474     0.9106 0.000 0.000 0.052 0.948
#> GSM1068554     4  0.0469     0.9385 0.000 0.000 0.012 0.988
#> GSM1068558     2  0.2973     0.7596 0.000 0.856 0.000 0.144
#> GSM1068559     2  0.3577     0.6546 0.000 0.832 0.156 0.012
#> GSM1068564     4  0.0592     0.9395 0.000 0.016 0.000 0.984
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1068478     3  0.1106     0.7476 0.000 0.012 0.964 0.000 0.024
#> GSM1068479     4  0.4769     0.6169 0.000 0.056 0.000 0.688 0.256
#> GSM1068481     3  0.0566     0.7570 0.000 0.004 0.984 0.000 0.012
#> GSM1068482     5  0.6740     0.2702 0.252 0.012 0.232 0.000 0.504
#> GSM1068483     1  0.1408     0.7358 0.948 0.000 0.044 0.000 0.008
#> GSM1068486     3  0.3019     0.6680 0.000 0.088 0.864 0.000 0.048
#> GSM1068487     4  0.2953     0.8146 0.000 0.144 0.000 0.844 0.012
#> GSM1068488     2  0.1243     0.8352 0.000 0.960 0.004 0.028 0.008
#> GSM1068490     4  0.1168     0.9250 0.000 0.008 0.000 0.960 0.032
#> GSM1068491     1  0.5760     0.4972 0.508 0.008 0.040 0.012 0.432
#> GSM1068492     4  0.0693     0.9289 0.000 0.008 0.000 0.980 0.012
#> GSM1068493     3  0.5167     0.3574 0.000 0.088 0.664 0.000 0.248
#> GSM1068494     5  0.6553     0.5198 0.000 0.364 0.204 0.000 0.432
#> GSM1068495     5  0.5594     0.4358 0.000 0.436 0.072 0.000 0.492
#> GSM1068496     3  0.1571     0.7716 0.060 0.000 0.936 0.000 0.004
#> GSM1068498     5  0.3876    -0.0232 0.316 0.000 0.000 0.000 0.684
#> GSM1068499     1  0.3741     0.6283 0.732 0.000 0.004 0.000 0.264
#> GSM1068500     3  0.1430     0.7717 0.052 0.000 0.944 0.000 0.004
#> GSM1068502     4  0.1638     0.9114 0.000 0.000 0.004 0.932 0.064
#> GSM1068503     4  0.0798     0.9294 0.000 0.008 0.000 0.976 0.016
#> GSM1068505     4  0.1780     0.9203 0.000 0.024 0.008 0.940 0.028
#> GSM1068506     4  0.1281     0.9241 0.000 0.000 0.012 0.956 0.032
#> GSM1068507     2  0.3916     0.7189 0.000 0.804 0.000 0.092 0.104
#> GSM1068508     2  0.3805     0.6755 0.000 0.784 0.000 0.032 0.184
#> GSM1068510     2  0.0854     0.8340 0.000 0.976 0.004 0.012 0.008
#> GSM1068512     4  0.1787     0.9205 0.000 0.016 0.012 0.940 0.032
#> GSM1068513     2  0.1992     0.8217 0.000 0.924 0.000 0.044 0.032
#> GSM1068514     4  0.1153     0.9282 0.000 0.008 0.004 0.964 0.024
#> GSM1068517     5  0.3325     0.4515 0.104 0.032 0.012 0.000 0.852
#> GSM1068518     5  0.2770     0.5456 0.020 0.076 0.016 0.000 0.888
#> GSM1068520     1  0.4149     0.7214 0.784 0.000 0.088 0.000 0.128
#> GSM1068521     1  0.3684     0.6901 0.720 0.000 0.000 0.000 0.280
#> GSM1068522     4  0.0451     0.9302 0.000 0.000 0.008 0.988 0.004
#> GSM1068524     2  0.1243     0.8352 0.000 0.960 0.004 0.028 0.008
#> GSM1068527     4  0.1787     0.9200 0.000 0.016 0.012 0.940 0.032
#> GSM1068480     5  0.6526     0.5486 0.000 0.260 0.256 0.000 0.484
#> GSM1068484     4  0.1168     0.9250 0.000 0.008 0.000 0.960 0.032
#> GSM1068485     1  0.3086     0.6877 0.816 0.000 0.004 0.000 0.180
#> GSM1068489     4  0.2352     0.9033 0.000 0.048 0.008 0.912 0.032
#> GSM1068497     5  0.6246     0.6006 0.000 0.272 0.192 0.000 0.536
#> GSM1068501     4  0.0898     0.9296 0.000 0.000 0.008 0.972 0.020
#> GSM1068504     2  0.1626     0.8290 0.000 0.940 0.000 0.044 0.016
#> GSM1068509     1  0.1701     0.7354 0.936 0.000 0.048 0.000 0.016
#> GSM1068511     4  0.1281     0.9241 0.000 0.000 0.012 0.956 0.032
#> GSM1068515     1  0.4015     0.6676 0.652 0.000 0.000 0.000 0.348
#> GSM1068516     5  0.5579     0.4613 0.000 0.420 0.072 0.000 0.508
#> GSM1068519     1  0.0162     0.7427 0.996 0.000 0.004 0.000 0.000
#> GSM1068523     2  0.0510     0.8288 0.000 0.984 0.000 0.000 0.016
#> GSM1068525     2  0.1701     0.8264 0.000 0.936 0.000 0.048 0.016
#> GSM1068526     4  0.4599     0.3501 0.000 0.384 0.000 0.600 0.016
#> GSM1068458     1  0.2813     0.7405 0.832 0.000 0.000 0.000 0.168
#> GSM1068459     3  0.1628     0.7721 0.056 0.000 0.936 0.000 0.008
#> GSM1068460     5  0.4427     0.5709 0.004 0.212 0.020 0.016 0.748
#> GSM1068461     1  0.4287     0.5275 0.540 0.000 0.000 0.000 0.460
#> GSM1068464     4  0.1638     0.9104 0.000 0.004 0.000 0.932 0.064
#> GSM1068468     1  0.6082     0.5009 0.500 0.008 0.036 0.032 0.424
#> GSM1068472     1  0.6581     0.4844 0.480 0.008 0.036 0.068 0.408
#> GSM1068473     4  0.0451     0.9304 0.000 0.000 0.004 0.988 0.008
#> GSM1068474     4  0.1704     0.9081 0.000 0.004 0.000 0.928 0.068
#> GSM1068476     2  0.1331     0.8237 0.000 0.952 0.000 0.008 0.040
#> GSM1068477     2  0.5084    -0.1626 0.000 0.488 0.008 0.020 0.484
#> GSM1068462     5  0.4488     0.5705 0.004 0.208 0.020 0.020 0.748
#> GSM1068463     3  0.4150     0.4225 0.388 0.000 0.612 0.000 0.000
#> GSM1068465     1  0.6224     0.5242 0.524 0.008 0.044 0.036 0.388
#> GSM1068466     1  0.4406     0.7079 0.764 0.000 0.108 0.000 0.128
#> GSM1068467     5  0.2537     0.4553 0.056 0.024 0.016 0.000 0.904
#> GSM1068469     1  0.4302     0.7060 0.720 0.000 0.032 0.000 0.248
#> GSM1068470     2  0.1845     0.8210 0.000 0.928 0.000 0.056 0.016
#> GSM1068471     4  0.1041     0.9256 0.000 0.004 0.000 0.964 0.032
#> GSM1068475     4  0.1764     0.9102 0.000 0.008 0.000 0.928 0.064
#> GSM1068528     1  0.3231     0.6776 0.800 0.000 0.004 0.000 0.196
#> GSM1068531     3  0.1704     0.7710 0.068 0.000 0.928 0.000 0.004
#> GSM1068532     1  0.0510     0.7420 0.984 0.000 0.016 0.000 0.000
#> GSM1068533     3  0.3688     0.6998 0.124 0.000 0.816 0.000 0.060
#> GSM1068535     3  0.5296     0.3340 0.000 0.016 0.596 0.356 0.032
#> GSM1068537     3  0.4557     0.3604 0.404 0.000 0.584 0.000 0.012
#> GSM1068538     1  0.0510     0.7420 0.984 0.000 0.016 0.000 0.000
#> GSM1068539     5  0.5579     0.4613 0.000 0.420 0.072 0.000 0.508
#> GSM1068540     3  0.1704     0.7710 0.068 0.000 0.928 0.000 0.004
#> GSM1068542     4  0.0771     0.9300 0.000 0.000 0.004 0.976 0.020
#> GSM1068543     2  0.0833     0.8362 0.000 0.976 0.004 0.016 0.004
#> GSM1068544     1  0.3662     0.6288 0.744 0.000 0.004 0.000 0.252
#> GSM1068545     4  0.1704     0.9081 0.000 0.004 0.000 0.928 0.068
#> GSM1068546     3  0.1915     0.7263 0.000 0.032 0.928 0.000 0.040
#> GSM1068547     1  0.2377     0.7465 0.872 0.000 0.000 0.000 0.128
#> GSM1068548     4  0.0798     0.9300 0.000 0.000 0.008 0.976 0.016
#> GSM1068549     3  0.4640     0.1215 0.000 0.016 0.584 0.000 0.400
#> GSM1068550     4  0.1471     0.9243 0.000 0.020 0.004 0.952 0.024
#> GSM1068551     2  0.4840     0.5055 0.000 0.688 0.000 0.248 0.064
#> GSM1068552     4  0.0693     0.9298 0.000 0.008 0.000 0.980 0.012
#> GSM1068555     2  0.0727     0.8349 0.000 0.980 0.004 0.012 0.004
#> GSM1068556     4  0.0798     0.9292 0.000 0.000 0.008 0.976 0.016
#> GSM1068557     2  0.3849     0.5177 0.000 0.752 0.016 0.000 0.232
#> GSM1068560     2  0.0451     0.8332 0.000 0.988 0.000 0.004 0.008
#> GSM1068561     2  0.2036     0.7768 0.000 0.920 0.056 0.000 0.024
#> GSM1068562     2  0.0898     0.8371 0.000 0.972 0.000 0.020 0.008
#> GSM1068563     4  0.0798     0.9300 0.000 0.000 0.008 0.976 0.016
#> GSM1068565     2  0.2236     0.8073 0.000 0.908 0.000 0.068 0.024
#> GSM1068529     2  0.2438     0.7799 0.000 0.900 0.060 0.000 0.040
#> GSM1068530     1  0.0510     0.7420 0.984 0.000 0.016 0.000 0.000
#> GSM1068534     4  0.4929     0.5911 0.000 0.016 0.260 0.688 0.036
#> GSM1068536     5  0.6706     0.5301 0.000 0.328 0.256 0.000 0.416
#> GSM1068541     1  0.6182     0.5281 0.516 0.008 0.036 0.040 0.400
#> GSM1068553     4  0.1469     0.9216 0.000 0.000 0.016 0.948 0.036
#> GSM1068554     4  0.0798     0.9291 0.000 0.000 0.008 0.976 0.016
#> GSM1068558     2  0.0854     0.8340 0.000 0.976 0.004 0.012 0.008
#> GSM1068559     2  0.5153    -0.2172 0.000 0.524 0.040 0.000 0.436
#> GSM1068564     4  0.0579     0.9292 0.000 0.008 0.000 0.984 0.008
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1068478     3  0.2420    0.69148 0.000 0.004 0.864 0.000 0.128 0.004
#> GSM1068479     4  0.5414    0.21322 0.000 0.388 0.000 0.528 0.036 0.048
#> GSM1068481     3  0.1524    0.72184 0.000 0.008 0.932 0.000 0.060 0.000
#> GSM1068482     5  0.5251    0.45418 0.108 0.124 0.072 0.000 0.696 0.000
#> GSM1068483     1  0.1564    0.66719 0.936 0.024 0.040 0.000 0.000 0.000
#> GSM1068486     3  0.4175    0.54298 0.000 0.016 0.716 0.000 0.240 0.028
#> GSM1068487     4  0.4063    0.61627 0.000 0.028 0.000 0.712 0.008 0.252
#> GSM1068488     6  0.1370    0.81406 0.000 0.012 0.000 0.004 0.036 0.948
#> GSM1068490     4  0.1957    0.84189 0.000 0.072 0.000 0.912 0.008 0.008
#> GSM1068491     2  0.5610    0.58438 0.292 0.600 0.016 0.008 0.076 0.008
#> GSM1068492     4  0.1230    0.85465 0.000 0.028 0.000 0.956 0.008 0.008
#> GSM1068493     3  0.4734    0.32521 0.000 0.016 0.604 0.000 0.348 0.032
#> GSM1068494     5  0.4094    0.67245 0.000 0.000 0.088 0.000 0.744 0.168
#> GSM1068495     5  0.3586    0.64369 0.000 0.028 0.000 0.000 0.756 0.216
#> GSM1068496     3  0.1194    0.73854 0.032 0.004 0.956 0.000 0.008 0.000
#> GSM1068498     5  0.5449    0.17033 0.188 0.240 0.000 0.000 0.572 0.000
#> GSM1068499     1  0.5051    0.60439 0.648 0.140 0.004 0.000 0.208 0.000
#> GSM1068500     3  0.1861    0.73692 0.020 0.036 0.928 0.000 0.016 0.000
#> GSM1068502     4  0.2445    0.82563 0.000 0.120 0.000 0.868 0.008 0.004
#> GSM1068503     4  0.1149    0.85565 0.000 0.024 0.000 0.960 0.008 0.008
#> GSM1068505     4  0.4307    0.79363 0.000 0.160 0.028 0.764 0.036 0.012
#> GSM1068506     4  0.3883    0.80681 0.000 0.144 0.028 0.788 0.040 0.000
#> GSM1068507     6  0.6037    0.44754 0.000 0.292 0.012 0.080 0.048 0.568
#> GSM1068508     6  0.5305    0.36716 0.000 0.344 0.000 0.052 0.032 0.572
#> GSM1068510     6  0.1155    0.81575 0.000 0.004 0.000 0.004 0.036 0.956
#> GSM1068512     4  0.4210    0.79584 0.000 0.160 0.028 0.768 0.036 0.008
#> GSM1068513     6  0.2290    0.79384 0.000 0.060 0.004 0.008 0.024 0.904
#> GSM1068514     4  0.3235    0.82652 0.000 0.124 0.024 0.832 0.020 0.000
#> GSM1068517     5  0.3373    0.48350 0.032 0.140 0.000 0.000 0.816 0.012
#> GSM1068518     5  0.4181    0.34105 0.028 0.256 0.000 0.000 0.704 0.012
#> GSM1068520     1  0.4841    0.47457 0.660 0.236 0.100 0.000 0.004 0.000
#> GSM1068521     1  0.4923    0.62319 0.656 0.176 0.000 0.000 0.168 0.000
#> GSM1068522     4  0.1230    0.85913 0.000 0.028 0.008 0.956 0.008 0.000
#> GSM1068524     6  0.1155    0.81575 0.000 0.004 0.000 0.004 0.036 0.956
#> GSM1068527     4  0.4498    0.78647 0.000 0.172 0.028 0.748 0.036 0.016
#> GSM1068480     5  0.3961    0.66735 0.000 0.000 0.112 0.000 0.764 0.124
#> GSM1068484     4  0.1781    0.84592 0.000 0.060 0.000 0.924 0.008 0.008
#> GSM1068485     1  0.4379    0.64076 0.732 0.124 0.004 0.000 0.140 0.000
#> GSM1068489     4  0.4480    0.78873 0.000 0.160 0.028 0.756 0.036 0.020
#> GSM1068497     5  0.4006    0.67453 0.000 0.008 0.084 0.000 0.772 0.136
#> GSM1068501     4  0.1657    0.85677 0.000 0.056 0.016 0.928 0.000 0.000
#> GSM1068504     6  0.1167    0.81140 0.000 0.020 0.000 0.012 0.008 0.960
#> GSM1068509     1  0.2119    0.64907 0.904 0.060 0.036 0.000 0.000 0.000
#> GSM1068511     4  0.3853    0.80839 0.000 0.148 0.028 0.788 0.036 0.000
#> GSM1068515     1  0.5520    0.53732 0.532 0.312 0.000 0.000 0.156 0.000
#> GSM1068516     5  0.3529    0.64773 0.000 0.028 0.000 0.000 0.764 0.208
#> GSM1068519     1  0.0632    0.68328 0.976 0.000 0.024 0.000 0.000 0.000
#> GSM1068523     6  0.0458    0.81757 0.000 0.000 0.000 0.000 0.016 0.984
#> GSM1068525     6  0.1382    0.81573 0.000 0.008 0.000 0.008 0.036 0.948
#> GSM1068526     6  0.5076    0.05633 0.000 0.056 0.000 0.444 0.008 0.492
#> GSM1068458     1  0.3230    0.57414 0.776 0.212 0.000 0.000 0.012 0.000
#> GSM1068459     3  0.1218    0.73771 0.028 0.012 0.956 0.000 0.004 0.000
#> GSM1068460     2  0.5128    0.46099 0.000 0.604 0.004 0.004 0.304 0.084
#> GSM1068461     1  0.5888    0.48945 0.476 0.268 0.000 0.000 0.256 0.000
#> GSM1068464     4  0.2566    0.81850 0.000 0.112 0.000 0.868 0.012 0.008
#> GSM1068468     2  0.5725    0.58628 0.292 0.600 0.016 0.032 0.056 0.004
#> GSM1068472     2  0.6075    0.57305 0.236 0.608 0.016 0.092 0.044 0.004
#> GSM1068473     4  0.0937    0.85741 0.000 0.040 0.000 0.960 0.000 0.000
#> GSM1068474     4  0.2512    0.81657 0.000 0.116 0.000 0.868 0.008 0.008
#> GSM1068476     6  0.2006    0.79371 0.000 0.080 0.000 0.000 0.016 0.904
#> GSM1068477     2  0.6520    0.09734 0.000 0.396 0.000 0.024 0.248 0.332
#> GSM1068462     2  0.5128    0.46099 0.000 0.604 0.004 0.004 0.304 0.084
#> GSM1068463     3  0.4481    0.31266 0.400 0.020 0.572 0.000 0.008 0.000
#> GSM1068465     2  0.5688    0.53242 0.320 0.584 0.024 0.028 0.040 0.004
#> GSM1068466     1  0.5430    0.38492 0.592 0.236 0.168 0.000 0.004 0.000
#> GSM1068467     2  0.4567    0.44400 0.008 0.612 0.000 0.004 0.352 0.024
#> GSM1068469     1  0.4703   -0.00457 0.532 0.432 0.016 0.000 0.020 0.000
#> GSM1068470     6  0.1350    0.80796 0.000 0.020 0.000 0.020 0.008 0.952
#> GSM1068471     4  0.1882    0.84611 0.000 0.060 0.000 0.920 0.012 0.008
#> GSM1068475     4  0.2512    0.81657 0.000 0.116 0.000 0.868 0.008 0.008
#> GSM1068528     1  0.4651    0.62993 0.700 0.124 0.004 0.000 0.172 0.000
#> GSM1068531     3  0.1832    0.73754 0.032 0.032 0.928 0.000 0.008 0.000
#> GSM1068532     1  0.0790    0.68161 0.968 0.000 0.032 0.000 0.000 0.000
#> GSM1068533     3  0.4763    0.51140 0.092 0.220 0.680 0.000 0.008 0.000
#> GSM1068535     3  0.6378    0.18649 0.000 0.172 0.488 0.300 0.040 0.000
#> GSM1068537     3  0.4900    0.24448 0.416 0.052 0.528 0.000 0.004 0.000
#> GSM1068538     1  0.0713    0.68284 0.972 0.000 0.028 0.000 0.000 0.000
#> GSM1068539     5  0.3529    0.64773 0.000 0.028 0.000 0.000 0.764 0.208
#> GSM1068540     3  0.1832    0.73588 0.032 0.032 0.928 0.000 0.008 0.000
#> GSM1068542     4  0.0891    0.85868 0.000 0.024 0.008 0.968 0.000 0.000
#> GSM1068543     6  0.1080    0.81691 0.000 0.004 0.000 0.004 0.032 0.960
#> GSM1068544     1  0.4882    0.61116 0.668 0.124 0.004 0.000 0.204 0.000
#> GSM1068545     4  0.2466    0.81901 0.000 0.112 0.000 0.872 0.008 0.008
#> GSM1068546     3  0.3309    0.64405 0.000 0.024 0.800 0.000 0.172 0.004
#> GSM1068547     1  0.3502    0.58254 0.780 0.192 0.020 0.000 0.008 0.000
#> GSM1068548     4  0.1382    0.85823 0.000 0.036 0.008 0.948 0.008 0.000
#> GSM1068549     5  0.4499    0.08252 0.000 0.032 0.428 0.000 0.540 0.000
#> GSM1068550     4  0.3359    0.82176 0.000 0.136 0.024 0.820 0.020 0.000
#> GSM1068551     6  0.4589    0.58776 0.000 0.096 0.000 0.188 0.008 0.708
#> GSM1068552     4  0.1065    0.85639 0.000 0.020 0.000 0.964 0.008 0.008
#> GSM1068555     6  0.1155    0.81575 0.000 0.004 0.000 0.004 0.036 0.956
#> GSM1068556     4  0.1757    0.85611 0.000 0.052 0.008 0.928 0.012 0.000
#> GSM1068557     6  0.5579    0.20996 0.000 0.204 0.000 0.000 0.248 0.548
#> GSM1068560     6  0.0891    0.81550 0.000 0.024 0.000 0.000 0.008 0.968
#> GSM1068561     6  0.3203    0.69406 0.000 0.024 0.004 0.000 0.160 0.812
#> GSM1068562     6  0.0951    0.81714 0.000 0.020 0.000 0.004 0.008 0.968
#> GSM1068563     4  0.1382    0.85823 0.000 0.036 0.008 0.948 0.008 0.000
#> GSM1068565     6  0.2240    0.79177 0.000 0.056 0.000 0.032 0.008 0.904
#> GSM1068529     6  0.4426    0.66486 0.000 0.060 0.044 0.000 0.140 0.756
#> GSM1068530     1  0.0713    0.68284 0.972 0.000 0.028 0.000 0.000 0.000
#> GSM1068534     4  0.6126    0.48659 0.000 0.176 0.240 0.548 0.036 0.000
#> GSM1068536     5  0.4737    0.66025 0.000 0.016 0.120 0.000 0.712 0.152
#> GSM1068541     2  0.5724    0.51524 0.340 0.564 0.016 0.032 0.044 0.004
#> GSM1068553     4  0.4066    0.79890 0.000 0.156 0.040 0.772 0.032 0.000
#> GSM1068554     4  0.1657    0.85677 0.000 0.056 0.016 0.928 0.000 0.000
#> GSM1068558     6  0.1155    0.81575 0.000 0.004 0.000 0.004 0.036 0.956
#> GSM1068559     5  0.5895    0.22793 0.000 0.208 0.000 0.000 0.436 0.356
#> GSM1068564     4  0.1230    0.85465 0.000 0.028 0.000 0.956 0.008 0.008
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#>              n disease.state(p) gender(p) k
#> ATC:kmeans 107            0.235     0.813 2
#> ATC:kmeans  91            0.563     0.964 3
#> ATC:kmeans  94            0.682     0.170 4
#> ATC:kmeans  91            0.697     0.091 5
#> ATC:kmeans  84            0.240     0.211 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 38950 rows and 108 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.997       0.999         0.5044 0.496   0.496
#> 3 3 0.963           0.956       0.979         0.3261 0.755   0.542
#> 4 4 0.973           0.928       0.970         0.1148 0.885   0.672
#> 5 5 0.926           0.839       0.935         0.0572 0.920   0.708
#> 6 6 0.819           0.716       0.830         0.0461 0.920   0.655
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 3 4
There is also optional best \(k\) = 2 3 4 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1068478     1  0.0000      0.997 1.000 0.000
#> GSM1068479     2  0.0000      1.000 0.000 1.000
#> GSM1068481     1  0.0000      0.997 1.000 0.000
#> GSM1068482     1  0.0000      0.997 1.000 0.000
#> GSM1068483     1  0.0000      0.997 1.000 0.000
#> GSM1068486     1  0.0672      0.989 0.992 0.008
#> GSM1068487     2  0.0000      1.000 0.000 1.000
#> GSM1068488     2  0.0000      1.000 0.000 1.000
#> GSM1068490     2  0.0000      1.000 0.000 1.000
#> GSM1068491     1  0.0000      0.997 1.000 0.000
#> GSM1068492     2  0.0000      1.000 0.000 1.000
#> GSM1068493     1  0.0000      0.997 1.000 0.000
#> GSM1068494     1  0.0000      0.997 1.000 0.000
#> GSM1068495     1  0.0000      0.997 1.000 0.000
#> GSM1068496     1  0.0000      0.997 1.000 0.000
#> GSM1068498     1  0.0000      0.997 1.000 0.000
#> GSM1068499     1  0.0000      0.997 1.000 0.000
#> GSM1068500     1  0.0000      0.997 1.000 0.000
#> GSM1068502     2  0.0000      1.000 0.000 1.000
#> GSM1068503     2  0.0000      1.000 0.000 1.000
#> GSM1068505     2  0.0000      1.000 0.000 1.000
#> GSM1068506     2  0.0000      1.000 0.000 1.000
#> GSM1068507     2  0.0000      1.000 0.000 1.000
#> GSM1068508     2  0.0000      1.000 0.000 1.000
#> GSM1068510     2  0.0000      1.000 0.000 1.000
#> GSM1068512     2  0.0000      1.000 0.000 1.000
#> GSM1068513     2  0.0000      1.000 0.000 1.000
#> GSM1068514     2  0.0000      1.000 0.000 1.000
#> GSM1068517     1  0.0000      0.997 1.000 0.000
#> GSM1068518     1  0.0000      0.997 1.000 0.000
#> GSM1068520     1  0.0000      0.997 1.000 0.000
#> GSM1068521     1  0.0000      0.997 1.000 0.000
#> GSM1068522     2  0.0000      1.000 0.000 1.000
#> GSM1068524     2  0.0000      1.000 0.000 1.000
#> GSM1068527     2  0.0000      1.000 0.000 1.000
#> GSM1068480     1  0.0000      0.997 1.000 0.000
#> GSM1068484     2  0.0000      1.000 0.000 1.000
#> GSM1068485     1  0.0000      0.997 1.000 0.000
#> GSM1068489     2  0.0000      1.000 0.000 1.000
#> GSM1068497     1  0.0000      0.997 1.000 0.000
#> GSM1068501     2  0.0000      1.000 0.000 1.000
#> GSM1068504     2  0.0000      1.000 0.000 1.000
#> GSM1068509     1  0.0000      0.997 1.000 0.000
#> GSM1068511     2  0.0000      1.000 0.000 1.000
#> GSM1068515     1  0.0000      0.997 1.000 0.000
#> GSM1068516     1  0.0000      0.997 1.000 0.000
#> GSM1068519     1  0.0000      0.997 1.000 0.000
#> GSM1068523     2  0.0000      1.000 0.000 1.000
#> GSM1068525     2  0.0000      1.000 0.000 1.000
#> GSM1068526     2  0.0000      1.000 0.000 1.000
#> GSM1068458     1  0.0000      0.997 1.000 0.000
#> GSM1068459     1  0.0000      0.997 1.000 0.000
#> GSM1068460     1  0.0000      0.997 1.000 0.000
#> GSM1068461     1  0.0000      0.997 1.000 0.000
#> GSM1068464     2  0.0000      1.000 0.000 1.000
#> GSM1068468     1  0.0000      0.997 1.000 0.000
#> GSM1068472     1  0.0000      0.997 1.000 0.000
#> GSM1068473     2  0.0000      1.000 0.000 1.000
#> GSM1068474     2  0.0000      1.000 0.000 1.000
#> GSM1068476     2  0.0000      1.000 0.000 1.000
#> GSM1068477     2  0.0000      1.000 0.000 1.000
#> GSM1068462     1  0.0000      0.997 1.000 0.000
#> GSM1068463     1  0.0000      0.997 1.000 0.000
#> GSM1068465     1  0.0000      0.997 1.000 0.000
#> GSM1068466     1  0.0000      0.997 1.000 0.000
#> GSM1068467     1  0.0000      0.997 1.000 0.000
#> GSM1068469     1  0.0000      0.997 1.000 0.000
#> GSM1068470     2  0.0000      1.000 0.000 1.000
#> GSM1068471     2  0.0000      1.000 0.000 1.000
#> GSM1068475     2  0.0000      1.000 0.000 1.000
#> GSM1068528     1  0.0000      0.997 1.000 0.000
#> GSM1068531     1  0.0000      0.997 1.000 0.000
#> GSM1068532     1  0.0000      0.997 1.000 0.000
#> GSM1068533     1  0.0000      0.997 1.000 0.000
#> GSM1068535     2  0.0000      1.000 0.000 1.000
#> GSM1068537     1  0.0000      0.997 1.000 0.000
#> GSM1068538     1  0.0000      0.997 1.000 0.000
#> GSM1068539     1  0.0000      0.997 1.000 0.000
#> GSM1068540     1  0.0000      0.997 1.000 0.000
#> GSM1068542     2  0.0000      1.000 0.000 1.000
#> GSM1068543     2  0.0000      1.000 0.000 1.000
#> GSM1068544     1  0.0000      0.997 1.000 0.000
#> GSM1068545     2  0.0000      1.000 0.000 1.000
#> GSM1068546     1  0.0000      0.997 1.000 0.000
#> GSM1068547     1  0.0000      0.997 1.000 0.000
#> GSM1068548     2  0.0000      1.000 0.000 1.000
#> GSM1068549     1  0.0000      0.997 1.000 0.000
#> GSM1068550     2  0.0000      1.000 0.000 1.000
#> GSM1068551     2  0.0000      1.000 0.000 1.000
#> GSM1068552     2  0.0000      1.000 0.000 1.000
#> GSM1068555     2  0.0000      1.000 0.000 1.000
#> GSM1068556     2  0.0000      1.000 0.000 1.000
#> GSM1068557     2  0.0000      1.000 0.000 1.000
#> GSM1068560     2  0.0000      1.000 0.000 1.000
#> GSM1068561     2  0.0000      1.000 0.000 1.000
#> GSM1068562     2  0.0000      1.000 0.000 1.000
#> GSM1068563     2  0.0000      1.000 0.000 1.000
#> GSM1068565     2  0.0000      1.000 0.000 1.000
#> GSM1068529     2  0.0000      1.000 0.000 1.000
#> GSM1068530     1  0.0000      0.997 1.000 0.000
#> GSM1068534     2  0.0000      1.000 0.000 1.000
#> GSM1068536     1  0.0000      0.997 1.000 0.000
#> GSM1068541     1  0.0000      0.997 1.000 0.000
#> GSM1068553     2  0.0000      1.000 0.000 1.000
#> GSM1068554     2  0.0000      1.000 0.000 1.000
#> GSM1068558     2  0.0000      1.000 0.000 1.000
#> GSM1068559     1  0.5842      0.837 0.860 0.140
#> GSM1068564     2  0.0000      1.000 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1068478     1   0.296      0.888 0.900 0.000 0.100
#> GSM1068479     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068481     1   0.489      0.717 0.772 0.000 0.228
#> GSM1068482     1   0.254      0.908 0.920 0.000 0.080
#> GSM1068483     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068486     3   0.000      0.952 0.000 0.000 1.000
#> GSM1068487     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068488     3   0.000      0.952 0.000 0.000 1.000
#> GSM1068490     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068491     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068492     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068493     3   0.263      0.886 0.084 0.000 0.916
#> GSM1068494     3   0.000      0.952 0.000 0.000 1.000
#> GSM1068495     3   0.000      0.952 0.000 0.000 1.000
#> GSM1068496     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068498     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068499     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068500     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068502     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068503     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068505     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068506     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068507     3   0.559      0.595 0.000 0.304 0.696
#> GSM1068508     3   0.280      0.885 0.000 0.092 0.908
#> GSM1068510     3   0.000      0.952 0.000 0.000 1.000
#> GSM1068512     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068513     3   0.288      0.883 0.000 0.096 0.904
#> GSM1068514     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068517     1   0.271      0.900 0.912 0.000 0.088
#> GSM1068518     1   0.590      0.471 0.648 0.000 0.352
#> GSM1068520     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068521     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068522     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068524     3   0.000      0.952 0.000 0.000 1.000
#> GSM1068527     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068480     3   0.341      0.845 0.124 0.000 0.876
#> GSM1068484     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068485     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068489     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068497     3   0.406      0.795 0.164 0.000 0.836
#> GSM1068501     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068504     3   0.000      0.952 0.000 0.000 1.000
#> GSM1068509     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068511     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068515     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068516     3   0.000      0.952 0.000 0.000 1.000
#> GSM1068519     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068523     3   0.000      0.952 0.000 0.000 1.000
#> GSM1068525     3   0.382      0.835 0.000 0.148 0.852
#> GSM1068526     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068458     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068459     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068460     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068461     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068464     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068468     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068472     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068473     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068474     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068476     3   0.000      0.952 0.000 0.000 1.000
#> GSM1068477     3   0.000      0.952 0.000 0.000 1.000
#> GSM1068462     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068463     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068465     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068466     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068467     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068469     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068470     3   0.475      0.756 0.000 0.216 0.784
#> GSM1068471     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068475     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068528     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068531     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068532     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068533     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068535     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068537     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068538     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068539     3   0.000      0.952 0.000 0.000 1.000
#> GSM1068540     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068542     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068543     3   0.000      0.952 0.000 0.000 1.000
#> GSM1068544     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068545     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068546     3   0.000      0.952 0.000 0.000 1.000
#> GSM1068547     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068548     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068549     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068550     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068551     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068552     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068555     3   0.000      0.952 0.000 0.000 1.000
#> GSM1068556     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068557     3   0.000      0.952 0.000 0.000 1.000
#> GSM1068560     3   0.000      0.952 0.000 0.000 1.000
#> GSM1068561     3   0.000      0.952 0.000 0.000 1.000
#> GSM1068562     3   0.000      0.952 0.000 0.000 1.000
#> GSM1068563     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068565     3   0.480      0.748 0.000 0.220 0.780
#> GSM1068529     3   0.000      0.952 0.000 0.000 1.000
#> GSM1068530     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068534     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068536     3   0.000      0.952 0.000 0.000 1.000
#> GSM1068541     1   0.000      0.978 1.000 0.000 0.000
#> GSM1068553     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068554     2   0.000      1.000 0.000 1.000 0.000
#> GSM1068558     3   0.000      0.952 0.000 0.000 1.000
#> GSM1068559     3   0.000      0.952 0.000 0.000 1.000
#> GSM1068564     2   0.000      1.000 0.000 1.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1068478     3  0.0000      0.907 0.000 0.000 1.000 0.000
#> GSM1068479     4  0.0804      0.968 0.008 0.012 0.000 0.980
#> GSM1068481     3  0.0188      0.907 0.004 0.000 0.996 0.000
#> GSM1068482     3  0.0000      0.907 0.000 0.000 1.000 0.000
#> GSM1068483     1  0.0336      0.966 0.992 0.000 0.008 0.000
#> GSM1068486     3  0.0469      0.904 0.000 0.012 0.988 0.000
#> GSM1068487     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068488     2  0.0000      0.983 0.000 1.000 0.000 0.000
#> GSM1068490     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068491     1  0.0000      0.967 1.000 0.000 0.000 0.000
#> GSM1068492     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068493     3  0.0000      0.907 0.000 0.000 1.000 0.000
#> GSM1068494     3  0.4697      0.452 0.000 0.356 0.644 0.000
#> GSM1068495     2  0.0469      0.976 0.000 0.988 0.012 0.000
#> GSM1068496     3  0.0469      0.906 0.012 0.000 0.988 0.000
#> GSM1068498     1  0.0336      0.964 0.992 0.000 0.008 0.000
#> GSM1068499     1  0.0469      0.966 0.988 0.000 0.012 0.000
#> GSM1068500     3  0.0469      0.906 0.012 0.000 0.988 0.000
#> GSM1068502     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068503     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068505     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068506     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068507     2  0.0000      0.983 0.000 1.000 0.000 0.000
#> GSM1068508     2  0.0000      0.983 0.000 1.000 0.000 0.000
#> GSM1068510     2  0.0000      0.983 0.000 1.000 0.000 0.000
#> GSM1068512     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068513     2  0.0000      0.983 0.000 1.000 0.000 0.000
#> GSM1068514     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068517     1  0.0469      0.961 0.988 0.000 0.012 0.000
#> GSM1068518     1  0.0469      0.961 0.988 0.000 0.012 0.000
#> GSM1068520     1  0.0336      0.966 0.992 0.000 0.008 0.000
#> GSM1068521     1  0.0188      0.966 0.996 0.000 0.004 0.000
#> GSM1068522     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068524     2  0.0000      0.983 0.000 1.000 0.000 0.000
#> GSM1068527     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068480     3  0.1557      0.877 0.000 0.056 0.944 0.000
#> GSM1068484     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068485     1  0.0336      0.966 0.992 0.000 0.008 0.000
#> GSM1068489     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068497     3  0.4382      0.574 0.000 0.296 0.704 0.000
#> GSM1068501     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068504     2  0.0000      0.983 0.000 1.000 0.000 0.000
#> GSM1068509     1  0.0336      0.966 0.992 0.000 0.008 0.000
#> GSM1068511     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068515     1  0.0188      0.966 0.996 0.000 0.004 0.000
#> GSM1068516     2  0.0469      0.976 0.000 0.988 0.012 0.000
#> GSM1068519     1  0.0336      0.966 0.992 0.000 0.008 0.000
#> GSM1068523     2  0.0000      0.983 0.000 1.000 0.000 0.000
#> GSM1068525     2  0.0000      0.983 0.000 1.000 0.000 0.000
#> GSM1068526     4  0.0188      0.983 0.000 0.004 0.000 0.996
#> GSM1068458     1  0.0000      0.967 1.000 0.000 0.000 0.000
#> GSM1068459     3  0.0336      0.906 0.008 0.000 0.992 0.000
#> GSM1068460     1  0.0188      0.966 0.996 0.000 0.004 0.000
#> GSM1068461     1  0.0188      0.966 0.996 0.000 0.004 0.000
#> GSM1068464     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068468     1  0.0000      0.967 1.000 0.000 0.000 0.000
#> GSM1068472     1  0.0000      0.967 1.000 0.000 0.000 0.000
#> GSM1068473     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068474     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068476     2  0.0000      0.983 0.000 1.000 0.000 0.000
#> GSM1068477     2  0.0336      0.977 0.008 0.992 0.000 0.000
#> GSM1068462     1  0.0188      0.966 0.996 0.000 0.004 0.000
#> GSM1068463     3  0.3801      0.672 0.220 0.000 0.780 0.000
#> GSM1068465     1  0.0000      0.967 1.000 0.000 0.000 0.000
#> GSM1068466     1  0.0336      0.966 0.992 0.000 0.008 0.000
#> GSM1068467     1  0.0188      0.966 0.996 0.000 0.004 0.000
#> GSM1068469     1  0.0000      0.967 1.000 0.000 0.000 0.000
#> GSM1068470     2  0.0000      0.983 0.000 1.000 0.000 0.000
#> GSM1068471     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068475     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068528     1  0.0469      0.966 0.988 0.000 0.012 0.000
#> GSM1068531     3  0.0469      0.906 0.012 0.000 0.988 0.000
#> GSM1068532     1  0.0336      0.966 0.992 0.000 0.008 0.000
#> GSM1068533     1  0.4989      0.142 0.528 0.000 0.472 0.000
#> GSM1068535     3  0.4877      0.282 0.000 0.000 0.592 0.408
#> GSM1068537     1  0.4643      0.480 0.656 0.000 0.344 0.000
#> GSM1068538     1  0.0336      0.966 0.992 0.000 0.008 0.000
#> GSM1068539     2  0.0469      0.976 0.000 0.988 0.012 0.000
#> GSM1068540     3  0.0469      0.906 0.012 0.000 0.988 0.000
#> GSM1068542     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068543     2  0.0000      0.983 0.000 1.000 0.000 0.000
#> GSM1068544     1  0.0469      0.966 0.988 0.000 0.012 0.000
#> GSM1068545     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068546     3  0.0469      0.904 0.000 0.012 0.988 0.000
#> GSM1068547     1  0.0000      0.967 1.000 0.000 0.000 0.000
#> GSM1068548     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068549     3  0.0000      0.907 0.000 0.000 1.000 0.000
#> GSM1068550     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068551     2  0.3172      0.779 0.000 0.840 0.000 0.160
#> GSM1068552     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068555     2  0.0000      0.983 0.000 1.000 0.000 0.000
#> GSM1068556     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068557     2  0.0000      0.983 0.000 1.000 0.000 0.000
#> GSM1068560     2  0.0000      0.983 0.000 1.000 0.000 0.000
#> GSM1068561     2  0.0188      0.981 0.000 0.996 0.004 0.000
#> GSM1068562     2  0.0000      0.983 0.000 1.000 0.000 0.000
#> GSM1068563     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068565     2  0.0000      0.983 0.000 1.000 0.000 0.000
#> GSM1068529     2  0.3074      0.804 0.000 0.848 0.152 0.000
#> GSM1068530     1  0.0336      0.966 0.992 0.000 0.008 0.000
#> GSM1068534     4  0.4804      0.347 0.000 0.000 0.384 0.616
#> GSM1068536     3  0.1557      0.877 0.000 0.056 0.944 0.000
#> GSM1068541     1  0.0000      0.967 1.000 0.000 0.000 0.000
#> GSM1068553     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068554     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> GSM1068558     2  0.0000      0.983 0.000 1.000 0.000 0.000
#> GSM1068559     2  0.0188      0.981 0.000 0.996 0.004 0.000
#> GSM1068564     4  0.0000      0.987 0.000 0.000 0.000 1.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1068478     3  0.0290    0.89656 0.000 0.000 0.992 0.000 0.008
#> GSM1068479     4  0.1173    0.96796 0.004 0.020 0.000 0.964 0.012
#> GSM1068481     3  0.0162    0.89778 0.000 0.000 0.996 0.000 0.004
#> GSM1068482     5  0.1082    0.83335 0.008 0.000 0.028 0.000 0.964
#> GSM1068483     1  0.0290    0.86912 0.992 0.000 0.008 0.000 0.000
#> GSM1068486     3  0.0404    0.89529 0.000 0.000 0.988 0.000 0.012
#> GSM1068487     4  0.0290    0.99143 0.000 0.000 0.000 0.992 0.008
#> GSM1068488     2  0.0000    0.95280 0.000 1.000 0.000 0.000 0.000
#> GSM1068490     4  0.0290    0.99143 0.000 0.000 0.000 0.992 0.008
#> GSM1068491     1  0.0162    0.86726 0.996 0.000 0.000 0.000 0.004
#> GSM1068492     4  0.0290    0.99143 0.000 0.000 0.000 0.992 0.008
#> GSM1068493     3  0.0880    0.88103 0.000 0.000 0.968 0.000 0.032
#> GSM1068494     5  0.0693    0.84008 0.000 0.008 0.012 0.000 0.980
#> GSM1068495     5  0.0609    0.83964 0.000 0.020 0.000 0.000 0.980
#> GSM1068496     3  0.0000    0.89839 0.000 0.000 1.000 0.000 0.000
#> GSM1068498     5  0.0880    0.83512 0.032 0.000 0.000 0.000 0.968
#> GSM1068499     1  0.4305    0.00639 0.512 0.000 0.000 0.000 0.488
#> GSM1068500     3  0.0000    0.89839 0.000 0.000 1.000 0.000 0.000
#> GSM1068502     4  0.0290    0.99143 0.000 0.000 0.000 0.992 0.008
#> GSM1068503     4  0.0290    0.99143 0.000 0.000 0.000 0.992 0.008
#> GSM1068505     4  0.0579    0.98611 0.000 0.008 0.000 0.984 0.008
#> GSM1068506     4  0.0290    0.98987 0.000 0.000 0.000 0.992 0.008
#> GSM1068507     2  0.0451    0.94733 0.000 0.988 0.000 0.008 0.004
#> GSM1068508     2  0.0404    0.94837 0.000 0.988 0.000 0.000 0.012
#> GSM1068510     2  0.0000    0.95280 0.000 1.000 0.000 0.000 0.000
#> GSM1068512     4  0.0579    0.98611 0.000 0.008 0.000 0.984 0.008
#> GSM1068513     2  0.0000    0.95280 0.000 1.000 0.000 0.000 0.000
#> GSM1068514     4  0.0290    0.98987 0.000 0.000 0.000 0.992 0.008
#> GSM1068517     5  0.0794    0.83712 0.028 0.000 0.000 0.000 0.972
#> GSM1068518     5  0.0794    0.83712 0.028 0.000 0.000 0.000 0.972
#> GSM1068520     1  0.0290    0.86912 0.992 0.000 0.008 0.000 0.000
#> GSM1068521     1  0.0162    0.86698 0.996 0.000 0.000 0.000 0.004
#> GSM1068522     4  0.0000    0.99153 0.000 0.000 0.000 1.000 0.000
#> GSM1068524     2  0.0000    0.95280 0.000 1.000 0.000 0.000 0.000
#> GSM1068527     4  0.0579    0.98611 0.000 0.008 0.000 0.984 0.008
#> GSM1068480     5  0.0693    0.84008 0.000 0.008 0.012 0.000 0.980
#> GSM1068484     4  0.0290    0.99143 0.000 0.000 0.000 0.992 0.008
#> GSM1068485     1  0.0162    0.86903 0.996 0.000 0.004 0.000 0.000
#> GSM1068489     4  0.0579    0.98611 0.000 0.008 0.000 0.984 0.008
#> GSM1068497     5  0.0693    0.84008 0.000 0.008 0.012 0.000 0.980
#> GSM1068501     4  0.0290    0.98987 0.000 0.000 0.000 0.992 0.008
#> GSM1068504     2  0.0290    0.94971 0.000 0.992 0.000 0.000 0.008
#> GSM1068509     1  0.0290    0.86912 0.992 0.000 0.008 0.000 0.000
#> GSM1068511     4  0.0290    0.98987 0.000 0.000 0.000 0.992 0.008
#> GSM1068515     1  0.0162    0.86698 0.996 0.000 0.000 0.000 0.004
#> GSM1068516     5  0.0609    0.83964 0.000 0.020 0.000 0.000 0.980
#> GSM1068519     1  0.0290    0.86912 0.992 0.000 0.008 0.000 0.000
#> GSM1068523     2  0.0000    0.95280 0.000 1.000 0.000 0.000 0.000
#> GSM1068525     2  0.0000    0.95280 0.000 1.000 0.000 0.000 0.000
#> GSM1068526     2  0.4455    0.30561 0.000 0.588 0.000 0.404 0.008
#> GSM1068458     1  0.0000    0.86851 1.000 0.000 0.000 0.000 0.000
#> GSM1068459     3  0.0000    0.89839 0.000 0.000 1.000 0.000 0.000
#> GSM1068460     1  0.4278    0.16332 0.548 0.000 0.000 0.000 0.452
#> GSM1068461     5  0.4300    0.02926 0.476 0.000 0.000 0.000 0.524
#> GSM1068464     4  0.0290    0.99143 0.000 0.000 0.000 0.992 0.008
#> GSM1068468     1  0.0000    0.86851 1.000 0.000 0.000 0.000 0.000
#> GSM1068472     1  0.0000    0.86851 1.000 0.000 0.000 0.000 0.000
#> GSM1068473     4  0.0000    0.99153 0.000 0.000 0.000 1.000 0.000
#> GSM1068474     4  0.0290    0.99143 0.000 0.000 0.000 0.992 0.008
#> GSM1068476     2  0.0162    0.95137 0.000 0.996 0.000 0.000 0.004
#> GSM1068477     2  0.0880    0.93520 0.000 0.968 0.000 0.000 0.032
#> GSM1068462     1  0.3913    0.47605 0.676 0.000 0.000 0.000 0.324
#> GSM1068463     3  0.3837    0.49520 0.308 0.000 0.692 0.000 0.000
#> GSM1068465     1  0.0290    0.86912 0.992 0.000 0.008 0.000 0.000
#> GSM1068466     1  0.0290    0.86912 0.992 0.000 0.008 0.000 0.000
#> GSM1068467     1  0.4045    0.40627 0.644 0.000 0.000 0.000 0.356
#> GSM1068469     1  0.0000    0.86851 1.000 0.000 0.000 0.000 0.000
#> GSM1068470     2  0.0290    0.94971 0.000 0.992 0.000 0.000 0.008
#> GSM1068471     4  0.0290    0.99143 0.000 0.000 0.000 0.992 0.008
#> GSM1068475     4  0.0290    0.99143 0.000 0.000 0.000 0.992 0.008
#> GSM1068528     1  0.3715    0.57368 0.736 0.000 0.004 0.000 0.260
#> GSM1068531     3  0.0000    0.89839 0.000 0.000 1.000 0.000 0.000
#> GSM1068532     1  0.0290    0.86912 0.992 0.000 0.008 0.000 0.000
#> GSM1068533     1  0.4219    0.28379 0.584 0.000 0.416 0.000 0.000
#> GSM1068535     3  0.3487    0.68458 0.000 0.000 0.780 0.212 0.008
#> GSM1068537     1  0.4302    0.06705 0.520 0.000 0.480 0.000 0.000
#> GSM1068538     1  0.0290    0.86912 0.992 0.000 0.008 0.000 0.000
#> GSM1068539     5  0.0609    0.83964 0.000 0.020 0.000 0.000 0.980
#> GSM1068540     3  0.0000    0.89839 0.000 0.000 1.000 0.000 0.000
#> GSM1068542     4  0.0000    0.99153 0.000 0.000 0.000 1.000 0.000
#> GSM1068543     2  0.0000    0.95280 0.000 1.000 0.000 0.000 0.000
#> GSM1068544     5  0.4403    0.14961 0.436 0.000 0.004 0.000 0.560
#> GSM1068545     4  0.0290    0.99143 0.000 0.000 0.000 0.992 0.008
#> GSM1068546     3  0.0404    0.89529 0.000 0.000 0.988 0.000 0.012
#> GSM1068547     1  0.0162    0.86903 0.996 0.000 0.004 0.000 0.000
#> GSM1068548     4  0.0000    0.99153 0.000 0.000 0.000 1.000 0.000
#> GSM1068549     5  0.4101    0.39351 0.000 0.000 0.372 0.000 0.628
#> GSM1068550     4  0.0290    0.98987 0.000 0.000 0.000 0.992 0.008
#> GSM1068551     2  0.0579    0.94391 0.000 0.984 0.000 0.008 0.008
#> GSM1068552     4  0.0290    0.99143 0.000 0.000 0.000 0.992 0.008
#> GSM1068555     2  0.0000    0.95280 0.000 1.000 0.000 0.000 0.000
#> GSM1068556     4  0.0162    0.99092 0.000 0.000 0.000 0.996 0.004
#> GSM1068557     2  0.0000    0.95280 0.000 1.000 0.000 0.000 0.000
#> GSM1068560     2  0.0000    0.95280 0.000 1.000 0.000 0.000 0.000
#> GSM1068561     2  0.0404    0.94467 0.000 0.988 0.000 0.000 0.012
#> GSM1068562     2  0.0000    0.95280 0.000 1.000 0.000 0.000 0.000
#> GSM1068563     4  0.0000    0.99153 0.000 0.000 0.000 1.000 0.000
#> GSM1068565     2  0.0290    0.94971 0.000 0.992 0.000 0.000 0.008
#> GSM1068529     2  0.4313    0.40450 0.000 0.636 0.356 0.000 0.008
#> GSM1068530     1  0.0290    0.86912 0.992 0.000 0.008 0.000 0.000
#> GSM1068534     3  0.4147    0.54737 0.000 0.000 0.676 0.316 0.008
#> GSM1068536     5  0.2358    0.76785 0.000 0.008 0.104 0.000 0.888
#> GSM1068541     1  0.0000    0.86851 1.000 0.000 0.000 0.000 0.000
#> GSM1068553     4  0.0451    0.98822 0.000 0.000 0.004 0.988 0.008
#> GSM1068554     4  0.0290    0.98987 0.000 0.000 0.000 0.992 0.008
#> GSM1068558     2  0.0000    0.95280 0.000 1.000 0.000 0.000 0.000
#> GSM1068559     5  0.4114    0.34653 0.000 0.376 0.000 0.000 0.624
#> GSM1068564     4  0.0290    0.99143 0.000 0.000 0.000 0.992 0.008
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1068478     3  0.0632      0.852 0.000 0.000 0.976 0.000 0.024 0.000
#> GSM1068479     2  0.2553      0.570 0.000 0.848 0.000 0.144 0.000 0.008
#> GSM1068481     3  0.0146      0.857 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM1068482     5  0.1635      0.893 0.020 0.020 0.020 0.000 0.940 0.000
#> GSM1068483     1  0.0405      0.833 0.988 0.004 0.008 0.000 0.000 0.000
#> GSM1068486     3  0.1563      0.835 0.000 0.012 0.932 0.000 0.056 0.000
#> GSM1068487     2  0.4566      0.810 0.000 0.652 0.000 0.280 0.000 0.068
#> GSM1068488     6  0.1918      0.861 0.000 0.008 0.000 0.088 0.000 0.904
#> GSM1068490     2  0.3607      0.937 0.000 0.652 0.000 0.348 0.000 0.000
#> GSM1068491     1  0.2664      0.789 0.816 0.184 0.000 0.000 0.000 0.000
#> GSM1068492     2  0.3672      0.921 0.000 0.632 0.000 0.368 0.000 0.000
#> GSM1068493     3  0.1951      0.822 0.000 0.016 0.908 0.000 0.076 0.000
#> GSM1068494     5  0.0603      0.910 0.000 0.004 0.000 0.000 0.980 0.016
#> GSM1068495     5  0.0547      0.908 0.000 0.000 0.000 0.000 0.980 0.020
#> GSM1068496     3  0.0260      0.856 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM1068498     5  0.2039      0.877 0.020 0.076 0.000 0.000 0.904 0.000
#> GSM1068499     1  0.4566      0.441 0.596 0.036 0.004 0.000 0.364 0.000
#> GSM1068500     3  0.0000      0.858 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068502     2  0.3634      0.924 0.000 0.644 0.000 0.356 0.000 0.000
#> GSM1068503     2  0.3607      0.926 0.000 0.652 0.000 0.348 0.000 0.000
#> GSM1068505     4  0.0508      0.645 0.000 0.004 0.000 0.984 0.000 0.012
#> GSM1068506     4  0.0000      0.646 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068507     6  0.3382      0.832 0.000 0.112 0.000 0.064 0.004 0.820
#> GSM1068508     6  0.2520      0.848 0.000 0.152 0.000 0.000 0.004 0.844
#> GSM1068510     6  0.0000      0.913 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068512     4  0.0653      0.645 0.000 0.004 0.004 0.980 0.000 0.012
#> GSM1068513     6  0.0146      0.912 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM1068514     4  0.0363      0.642 0.000 0.012 0.000 0.988 0.000 0.000
#> GSM1068517     5  0.1398      0.896 0.008 0.052 0.000 0.000 0.940 0.000
#> GSM1068518     5  0.1701      0.887 0.008 0.072 0.000 0.000 0.920 0.000
#> GSM1068520     1  0.1049      0.835 0.960 0.032 0.008 0.000 0.000 0.000
#> GSM1068521     1  0.1682      0.828 0.928 0.052 0.000 0.000 0.020 0.000
#> GSM1068522     4  0.3864     -0.507 0.000 0.480 0.000 0.520 0.000 0.000
#> GSM1068524     6  0.0000      0.913 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068527     4  0.0405      0.647 0.000 0.000 0.004 0.988 0.000 0.008
#> GSM1068480     5  0.0291      0.912 0.000 0.004 0.004 0.000 0.992 0.000
#> GSM1068484     2  0.3607      0.937 0.000 0.652 0.000 0.348 0.000 0.000
#> GSM1068485     1  0.1049      0.832 0.960 0.032 0.008 0.000 0.000 0.000
#> GSM1068489     4  0.0748      0.642 0.000 0.004 0.004 0.976 0.000 0.016
#> GSM1068497     5  0.0291      0.912 0.000 0.004 0.004 0.000 0.992 0.000
#> GSM1068501     4  0.3482      0.179 0.000 0.316 0.000 0.684 0.000 0.000
#> GSM1068504     6  0.0260      0.912 0.000 0.008 0.000 0.000 0.000 0.992
#> GSM1068509     1  0.0520      0.833 0.984 0.008 0.008 0.000 0.000 0.000
#> GSM1068511     4  0.0508      0.645 0.000 0.012 0.004 0.984 0.000 0.000
#> GSM1068515     1  0.2859      0.806 0.828 0.156 0.000 0.000 0.016 0.000
#> GSM1068516     5  0.0291      0.914 0.000 0.004 0.000 0.000 0.992 0.004
#> GSM1068519     1  0.0405      0.833 0.988 0.004 0.008 0.000 0.000 0.000
#> GSM1068523     6  0.0363      0.911 0.000 0.012 0.000 0.000 0.000 0.988
#> GSM1068525     6  0.0146      0.912 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM1068526     6  0.5399      0.424 0.000 0.208 0.000 0.208 0.000 0.584
#> GSM1068458     1  0.2003      0.824 0.884 0.116 0.000 0.000 0.000 0.000
#> GSM1068459     3  0.0000      0.858 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068460     1  0.6085      0.266 0.392 0.320 0.000 0.000 0.288 0.000
#> GSM1068461     1  0.5195      0.401 0.540 0.100 0.000 0.000 0.360 0.000
#> GSM1068464     2  0.3607      0.937 0.000 0.652 0.000 0.348 0.000 0.000
#> GSM1068468     1  0.1814      0.824 0.900 0.100 0.000 0.000 0.000 0.000
#> GSM1068472     1  0.1444      0.830 0.928 0.072 0.000 0.000 0.000 0.000
#> GSM1068473     2  0.3659      0.906 0.000 0.636 0.000 0.364 0.000 0.000
#> GSM1068474     2  0.3607      0.937 0.000 0.652 0.000 0.348 0.000 0.000
#> GSM1068476     6  0.2053      0.867 0.000 0.108 0.000 0.000 0.004 0.888
#> GSM1068477     6  0.3630      0.769 0.000 0.212 0.000 0.000 0.032 0.756
#> GSM1068462     1  0.5775      0.463 0.480 0.328 0.000 0.000 0.192 0.000
#> GSM1068463     3  0.3690      0.568 0.308 0.008 0.684 0.000 0.000 0.000
#> GSM1068465     1  0.1908      0.825 0.900 0.096 0.004 0.000 0.000 0.000
#> GSM1068466     1  0.1151      0.834 0.956 0.032 0.012 0.000 0.000 0.000
#> GSM1068467     1  0.5705      0.478 0.516 0.204 0.000 0.000 0.280 0.000
#> GSM1068469     1  0.1141      0.837 0.948 0.052 0.000 0.000 0.000 0.000
#> GSM1068470     6  0.0260      0.912 0.000 0.008 0.000 0.000 0.000 0.992
#> GSM1068471     2  0.3607      0.937 0.000 0.652 0.000 0.348 0.000 0.000
#> GSM1068475     2  0.3607      0.937 0.000 0.652 0.000 0.348 0.000 0.000
#> GSM1068528     1  0.3769      0.697 0.768 0.036 0.008 0.000 0.188 0.000
#> GSM1068531     3  0.0000      0.858 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068532     1  0.0405      0.833 0.988 0.004 0.008 0.000 0.000 0.000
#> GSM1068533     3  0.3933      0.639 0.248 0.036 0.716 0.000 0.000 0.000
#> GSM1068535     4  0.3820      0.333 0.000 0.008 0.284 0.700 0.000 0.008
#> GSM1068537     3  0.3937      0.366 0.424 0.004 0.572 0.000 0.000 0.000
#> GSM1068538     1  0.0405      0.833 0.988 0.004 0.008 0.000 0.000 0.000
#> GSM1068539     5  0.0291      0.914 0.000 0.004 0.000 0.000 0.992 0.004
#> GSM1068540     3  0.0000      0.858 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068542     4  0.3847     -0.360 0.000 0.456 0.000 0.544 0.000 0.000
#> GSM1068543     6  0.0000      0.913 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068544     1  0.4814      0.222 0.504 0.036 0.008 0.000 0.452 0.000
#> GSM1068545     2  0.3607      0.937 0.000 0.652 0.000 0.348 0.000 0.000
#> GSM1068546     3  0.0909      0.850 0.000 0.012 0.968 0.000 0.020 0.000
#> GSM1068547     1  0.0146      0.835 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM1068548     4  0.3838     -0.344 0.000 0.448 0.000 0.552 0.000 0.000
#> GSM1068549     3  0.4836      0.227 0.040 0.008 0.536 0.000 0.416 0.000
#> GSM1068550     4  0.0146      0.646 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM1068551     6  0.3555      0.646 0.000 0.280 0.000 0.008 0.000 0.712
#> GSM1068552     2  0.3620      0.922 0.000 0.648 0.000 0.352 0.000 0.000
#> GSM1068555     6  0.0000      0.913 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068556     4  0.3747     -0.148 0.000 0.396 0.000 0.604 0.000 0.000
#> GSM1068557     6  0.1700      0.883 0.000 0.080 0.000 0.000 0.004 0.916
#> GSM1068560     6  0.0260      0.912 0.000 0.008 0.000 0.000 0.000 0.992
#> GSM1068561     6  0.1462      0.882 0.000 0.008 0.000 0.000 0.056 0.936
#> GSM1068562     6  0.0000      0.913 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068563     4  0.3828     -0.349 0.000 0.440 0.000 0.560 0.000 0.000
#> GSM1068565     6  0.0363      0.911 0.000 0.012 0.000 0.000 0.000 0.988
#> GSM1068529     6  0.4347      0.716 0.000 0.008 0.152 0.072 0.012 0.756
#> GSM1068530     1  0.0405      0.833 0.988 0.004 0.008 0.000 0.000 0.000
#> GSM1068534     4  0.3736      0.368 0.000 0.008 0.268 0.716 0.000 0.008
#> GSM1068536     5  0.1524      0.867 0.000 0.008 0.060 0.000 0.932 0.000
#> GSM1068541     1  0.1663      0.827 0.912 0.088 0.000 0.000 0.000 0.000
#> GSM1068553     4  0.0820      0.643 0.000 0.016 0.012 0.972 0.000 0.000
#> GSM1068554     4  0.3482      0.179 0.000 0.316 0.000 0.684 0.000 0.000
#> GSM1068558     6  0.0000      0.913 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068559     5  0.5659      0.254 0.000 0.168 0.000 0.000 0.496 0.336
#> GSM1068564     2  0.3647      0.929 0.000 0.640 0.000 0.360 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#>               n disease.state(p) gender(p) k
#> ATC:skmeans 108            0.431     0.957 2
#> ATC:skmeans 107            0.226     0.923 3
#> ATC:skmeans 103            0.253     0.836 4
#> ATC:skmeans  95            0.325     0.242 5
#> ATC:skmeans  89            0.148     0.391 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 38950 rows and 108 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.389           0.546       0.802         0.4549 0.621   0.621
#> 3 3 0.797           0.874       0.944         0.4372 0.701   0.529
#> 4 4 0.726           0.747       0.861         0.1088 0.916   0.768
#> 5 5 0.912           0.902       0.957         0.0921 0.857   0.551
#> 6 6 0.852           0.877       0.920         0.0297 0.972   0.865
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 5
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1068478     2   0.722     0.4321 0.200 0.800
#> GSM1068479     2   0.000     0.6829 0.000 1.000
#> GSM1068481     2   0.000     0.6829 0.000 1.000
#> GSM1068482     2   0.963    -0.0569 0.388 0.612
#> GSM1068483     1   0.000     0.7032 1.000 0.000
#> GSM1068486     2   0.000     0.6829 0.000 1.000
#> GSM1068487     2   0.981     0.4965 0.420 0.580
#> GSM1068488     2   0.000     0.6829 0.000 1.000
#> GSM1068490     2   0.343     0.6581 0.064 0.936
#> GSM1068491     1   0.722     0.4116 0.800 0.200
#> GSM1068492     2   0.981     0.4965 0.420 0.580
#> GSM1068493     2   0.000     0.6829 0.000 1.000
#> GSM1068494     2   0.706     0.4463 0.192 0.808
#> GSM1068495     2   0.000     0.6829 0.000 1.000
#> GSM1068496     2   0.000     0.6829 0.000 1.000
#> GSM1068498     1   0.981     0.5074 0.580 0.420
#> GSM1068499     1   0.981     0.5074 0.580 0.420
#> GSM1068500     2   0.775     0.3770 0.228 0.772
#> GSM1068502     2   0.981     0.4965 0.420 0.580
#> GSM1068503     2   0.981     0.4965 0.420 0.580
#> GSM1068505     2   0.981     0.4965 0.420 0.580
#> GSM1068506     2   0.981     0.4965 0.420 0.580
#> GSM1068507     2   0.000     0.6829 0.000 1.000
#> GSM1068508     2   0.000     0.6829 0.000 1.000
#> GSM1068510     2   0.000     0.6829 0.000 1.000
#> GSM1068512     2   0.000     0.6829 0.000 1.000
#> GSM1068513     2   0.000     0.6829 0.000 1.000
#> GSM1068514     2   0.981     0.4965 0.420 0.580
#> GSM1068517     2   0.971    -0.0962 0.400 0.600
#> GSM1068518     2   0.943     0.0329 0.360 0.640
#> GSM1068520     1   0.981     0.5074 0.580 0.420
#> GSM1068521     1   0.552     0.6690 0.872 0.128
#> GSM1068522     2   0.981     0.4965 0.420 0.580
#> GSM1068524     2   0.000     0.6829 0.000 1.000
#> GSM1068527     2   0.981     0.4965 0.420 0.580
#> GSM1068480     2   0.730     0.4248 0.204 0.796
#> GSM1068484     2   0.981     0.4965 0.420 0.580
#> GSM1068485     1   0.981     0.5074 0.580 0.420
#> GSM1068489     2   0.980     0.4978 0.416 0.584
#> GSM1068497     2   0.958    -0.0308 0.380 0.620
#> GSM1068501     2   0.981     0.4965 0.420 0.580
#> GSM1068504     2   0.000     0.6829 0.000 1.000
#> GSM1068509     1   0.000     0.7032 1.000 0.000
#> GSM1068511     2   0.981     0.4965 0.420 0.580
#> GSM1068515     1   0.456     0.6828 0.904 0.096
#> GSM1068516     2   0.000     0.6829 0.000 1.000
#> GSM1068519     1   0.000     0.7032 1.000 0.000
#> GSM1068523     2   0.000     0.6829 0.000 1.000
#> GSM1068525     2   0.000     0.6829 0.000 1.000
#> GSM1068526     2   0.000     0.6829 0.000 1.000
#> GSM1068458     1   0.000     0.7032 1.000 0.000
#> GSM1068459     2   0.000     0.6829 0.000 1.000
#> GSM1068460     2   0.662     0.4796 0.172 0.828
#> GSM1068461     1   0.981     0.5074 0.580 0.420
#> GSM1068464     2   0.981     0.4965 0.420 0.580
#> GSM1068468     1   0.000     0.7032 1.000 0.000
#> GSM1068472     1   0.697     0.4268 0.812 0.188
#> GSM1068473     2   0.981     0.4965 0.420 0.580
#> GSM1068474     2   0.981     0.4965 0.420 0.580
#> GSM1068476     2   0.000     0.6829 0.000 1.000
#> GSM1068477     2   0.000     0.6829 0.000 1.000
#> GSM1068462     2   0.494     0.5707 0.108 0.892
#> GSM1068463     1   0.402     0.6885 0.920 0.080
#> GSM1068465     1   0.000     0.7032 1.000 0.000
#> GSM1068466     1   0.981     0.5074 0.580 0.420
#> GSM1068467     2   0.958    -0.0308 0.380 0.620
#> GSM1068469     1   0.981     0.5074 0.580 0.420
#> GSM1068470     2   0.000     0.6829 0.000 1.000
#> GSM1068471     2   0.981     0.4965 0.420 0.580
#> GSM1068475     2   0.981     0.4965 0.420 0.580
#> GSM1068528     1   0.981     0.5074 0.580 0.420
#> GSM1068531     1   0.981     0.5074 0.580 0.420
#> GSM1068532     1   0.000     0.7032 1.000 0.000
#> GSM1068533     2   0.992    -0.2415 0.448 0.552
#> GSM1068535     2   0.981     0.4965 0.420 0.580
#> GSM1068537     1   0.000     0.7032 1.000 0.000
#> GSM1068538     1   0.000     0.7032 1.000 0.000
#> GSM1068539     2   0.000     0.6829 0.000 1.000
#> GSM1068540     2   0.963    -0.0570 0.388 0.612
#> GSM1068542     2   0.981     0.4965 0.420 0.580
#> GSM1068543     2   0.000     0.6829 0.000 1.000
#> GSM1068544     1   0.981     0.5074 0.580 0.420
#> GSM1068545     2   0.981     0.4965 0.420 0.580
#> GSM1068546     2   0.000     0.6829 0.000 1.000
#> GSM1068547     1   0.000     0.7032 1.000 0.000
#> GSM1068548     2   0.981     0.4965 0.420 0.580
#> GSM1068549     2   0.958    -0.0308 0.380 0.620
#> GSM1068550     2   0.981     0.4965 0.420 0.580
#> GSM1068551     2   0.000     0.6829 0.000 1.000
#> GSM1068552     2   0.981     0.4965 0.420 0.580
#> GSM1068555     2   0.000     0.6829 0.000 1.000
#> GSM1068556     2   0.981     0.4965 0.420 0.580
#> GSM1068557     2   0.000     0.6829 0.000 1.000
#> GSM1068560     2   0.000     0.6829 0.000 1.000
#> GSM1068561     2   0.000     0.6829 0.000 1.000
#> GSM1068562     2   0.000     0.6829 0.000 1.000
#> GSM1068563     2   0.981     0.4965 0.420 0.580
#> GSM1068565     2   0.000     0.6829 0.000 1.000
#> GSM1068529     2   0.000     0.6829 0.000 1.000
#> GSM1068530     1   0.000     0.7032 1.000 0.000
#> GSM1068534     2   0.000     0.6829 0.000 1.000
#> GSM1068536     2   0.000     0.6829 0.000 1.000
#> GSM1068541     1   0.000     0.7032 1.000 0.000
#> GSM1068553     2   0.981     0.4965 0.420 0.580
#> GSM1068554     2   0.981     0.4965 0.420 0.580
#> GSM1068558     2   0.000     0.6829 0.000 1.000
#> GSM1068559     2   0.000     0.6829 0.000 1.000
#> GSM1068564     2   0.981     0.4965 0.420 0.580
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1068478     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068479     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068481     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068482     3  0.5678     0.5744 0.316 0.000 0.684
#> GSM1068483     1  0.0000     0.9900 1.000 0.000 0.000
#> GSM1068486     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068487     2  0.0000     0.9343 0.000 1.000 0.000
#> GSM1068488     3  0.4452     0.7570 0.000 0.192 0.808
#> GSM1068490     2  0.4654     0.7269 0.000 0.792 0.208
#> GSM1068491     3  0.4887     0.6690 0.000 0.228 0.772
#> GSM1068492     2  0.0000     0.9343 0.000 1.000 0.000
#> GSM1068493     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068494     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068495     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068496     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068498     1  0.0000     0.9900 1.000 0.000 0.000
#> GSM1068499     1  0.0000     0.9900 1.000 0.000 0.000
#> GSM1068500     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068502     2  0.0000     0.9343 0.000 1.000 0.000
#> GSM1068503     2  0.0000     0.9343 0.000 1.000 0.000
#> GSM1068505     2  0.0000     0.9343 0.000 1.000 0.000
#> GSM1068506     2  0.0000     0.9343 0.000 1.000 0.000
#> GSM1068507     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068508     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068510     3  0.0592     0.9067 0.000 0.012 0.988
#> GSM1068512     3  0.6079     0.4002 0.000 0.388 0.612
#> GSM1068513     3  0.4235     0.7743 0.000 0.176 0.824
#> GSM1068514     2  0.0000     0.9343 0.000 1.000 0.000
#> GSM1068517     3  0.6111     0.4131 0.396 0.000 0.604
#> GSM1068518     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068520     1  0.0000     0.9900 1.000 0.000 0.000
#> GSM1068521     1  0.0000     0.9900 1.000 0.000 0.000
#> GSM1068522     2  0.0000     0.9343 0.000 1.000 0.000
#> GSM1068524     3  0.4291     0.7703 0.000 0.180 0.820
#> GSM1068527     3  0.6140     0.4007 0.000 0.404 0.596
#> GSM1068480     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068484     2  0.0000     0.9343 0.000 1.000 0.000
#> GSM1068485     1  0.0000     0.9900 1.000 0.000 0.000
#> GSM1068489     2  0.0000     0.9343 0.000 1.000 0.000
#> GSM1068497     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068501     2  0.0000     0.9343 0.000 1.000 0.000
#> GSM1068504     3  0.5905     0.4669 0.000 0.352 0.648
#> GSM1068509     1  0.0000     0.9900 1.000 0.000 0.000
#> GSM1068511     2  0.0000     0.9343 0.000 1.000 0.000
#> GSM1068515     1  0.0000     0.9900 1.000 0.000 0.000
#> GSM1068516     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068519     1  0.0000     0.9900 1.000 0.000 0.000
#> GSM1068523     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068525     2  0.4974     0.6878 0.000 0.764 0.236
#> GSM1068526     2  0.4887     0.6998 0.000 0.772 0.228
#> GSM1068458     1  0.0000     0.9900 1.000 0.000 0.000
#> GSM1068459     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068460     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068461     1  0.0000     0.9900 1.000 0.000 0.000
#> GSM1068464     2  0.0000     0.9343 0.000 1.000 0.000
#> GSM1068468     1  0.0424     0.9827 0.992 0.008 0.000
#> GSM1068472     2  0.9522    -0.0482 0.400 0.412 0.188
#> GSM1068473     2  0.0000     0.9343 0.000 1.000 0.000
#> GSM1068474     2  0.0000     0.9343 0.000 1.000 0.000
#> GSM1068476     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068477     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068462     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068463     1  0.0000     0.9900 1.000 0.000 0.000
#> GSM1068465     1  0.4887     0.7101 0.772 0.228 0.000
#> GSM1068466     1  0.0000     0.9900 1.000 0.000 0.000
#> GSM1068467     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068469     1  0.0000     0.9900 1.000 0.000 0.000
#> GSM1068470     2  0.4887     0.6998 0.000 0.772 0.228
#> GSM1068471     2  0.0000     0.9343 0.000 1.000 0.000
#> GSM1068475     2  0.0000     0.9343 0.000 1.000 0.000
#> GSM1068528     1  0.0000     0.9900 1.000 0.000 0.000
#> GSM1068531     1  0.0000     0.9900 1.000 0.000 0.000
#> GSM1068532     1  0.0000     0.9900 1.000 0.000 0.000
#> GSM1068533     3  0.6215     0.3322 0.428 0.000 0.572
#> GSM1068535     2  0.0592     0.9251 0.000 0.988 0.012
#> GSM1068537     1  0.0000     0.9900 1.000 0.000 0.000
#> GSM1068538     1  0.0000     0.9900 1.000 0.000 0.000
#> GSM1068539     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068540     3  0.5138     0.6760 0.252 0.000 0.748
#> GSM1068542     2  0.0000     0.9343 0.000 1.000 0.000
#> GSM1068543     3  0.3551     0.8163 0.000 0.132 0.868
#> GSM1068544     1  0.0000     0.9900 1.000 0.000 0.000
#> GSM1068545     2  0.0000     0.9343 0.000 1.000 0.000
#> GSM1068546     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068547     1  0.0000     0.9900 1.000 0.000 0.000
#> GSM1068548     2  0.0000     0.9343 0.000 1.000 0.000
#> GSM1068549     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068550     2  0.0000     0.9343 0.000 1.000 0.000
#> GSM1068551     2  0.4887     0.6998 0.000 0.772 0.228
#> GSM1068552     2  0.0000     0.9343 0.000 1.000 0.000
#> GSM1068555     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068556     2  0.0000     0.9343 0.000 1.000 0.000
#> GSM1068557     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068560     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068561     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068562     3  0.4235     0.7743 0.000 0.176 0.824
#> GSM1068563     2  0.0000     0.9343 0.000 1.000 0.000
#> GSM1068565     3  0.4452     0.7569 0.000 0.192 0.808
#> GSM1068529     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068530     1  0.0000     0.9900 1.000 0.000 0.000
#> GSM1068534     2  0.4931     0.6939 0.000 0.768 0.232
#> GSM1068536     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068541     1  0.0000     0.9900 1.000 0.000 0.000
#> GSM1068553     2  0.0000     0.9343 0.000 1.000 0.000
#> GSM1068554     2  0.0000     0.9343 0.000 1.000 0.000
#> GSM1068558     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068559     3  0.0000     0.9139 0.000 0.000 1.000
#> GSM1068564     2  0.0000     0.9343 0.000 1.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1068478     3  0.4331      0.855 0.000 0.288 0.712 0.000
#> GSM1068479     2  0.1174      0.771 0.000 0.968 0.020 0.012
#> GSM1068481     3  0.4331      0.855 0.000 0.288 0.712 0.000
#> GSM1068482     2  0.5767      0.314 0.280 0.660 0.060 0.000
#> GSM1068483     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM1068486     2  0.0000      0.772 0.000 1.000 0.000 0.000
#> GSM1068487     4  0.4331      0.702 0.000 0.000 0.288 0.712
#> GSM1068488     2  0.7265      0.482 0.000 0.528 0.288 0.184
#> GSM1068490     4  0.6495      0.599 0.000 0.108 0.284 0.608
#> GSM1068491     2  0.4866      0.340 0.000 0.596 0.000 0.404
#> GSM1068492     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> GSM1068493     2  0.0000      0.772 0.000 1.000 0.000 0.000
#> GSM1068494     2  0.0000      0.772 0.000 1.000 0.000 0.000
#> GSM1068495     2  0.0000      0.772 0.000 1.000 0.000 0.000
#> GSM1068496     3  0.5055      0.836 0.000 0.256 0.712 0.032
#> GSM1068498     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM1068499     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM1068500     3  0.4331      0.855 0.000 0.288 0.712 0.000
#> GSM1068502     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> GSM1068503     4  0.0188      0.834 0.000 0.000 0.004 0.996
#> GSM1068505     4  0.0188      0.834 0.000 0.000 0.004 0.996
#> GSM1068506     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> GSM1068507     2  0.1022      0.761 0.000 0.968 0.000 0.032
#> GSM1068508     2  0.1022      0.771 0.000 0.968 0.032 0.000
#> GSM1068510     2  0.4770      0.631 0.000 0.700 0.288 0.012
#> GSM1068512     2  0.4933      0.198 0.000 0.568 0.000 0.432
#> GSM1068513     2  0.7203      0.496 0.000 0.536 0.288 0.176
#> GSM1068514     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> GSM1068517     2  0.4843      0.207 0.396 0.604 0.000 0.000
#> GSM1068518     2  0.1174      0.770 0.012 0.968 0.020 0.000
#> GSM1068520     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM1068521     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM1068522     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> GSM1068524     2  0.7235      0.489 0.000 0.532 0.288 0.180
#> GSM1068527     4  0.4907      0.103 0.000 0.420 0.000 0.580
#> GSM1068480     2  0.0000      0.772 0.000 1.000 0.000 0.000
#> GSM1068484     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> GSM1068485     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM1068489     4  0.4304      0.704 0.000 0.000 0.284 0.716
#> GSM1068497     2  0.0000      0.772 0.000 1.000 0.000 0.000
#> GSM1068501     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> GSM1068504     2  0.7458      0.422 0.000 0.500 0.288 0.212
#> GSM1068509     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM1068511     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> GSM1068515     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM1068516     2  0.0000      0.772 0.000 1.000 0.000 0.000
#> GSM1068519     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM1068523     2  0.4331      0.636 0.000 0.712 0.288 0.000
#> GSM1068525     4  0.6876      0.546 0.000 0.140 0.288 0.572
#> GSM1068526     4  0.6660      0.578 0.000 0.120 0.288 0.592
#> GSM1068458     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM1068459     3  0.4331      0.855 0.000 0.288 0.712 0.000
#> GSM1068460     2  0.0000      0.772 0.000 1.000 0.000 0.000
#> GSM1068461     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM1068464     4  0.4304      0.704 0.000 0.000 0.284 0.716
#> GSM1068468     1  0.1211      0.923 0.960 0.000 0.000 0.040
#> GSM1068472     4  0.6850      0.372 0.212 0.188 0.000 0.600
#> GSM1068473     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> GSM1068474     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> GSM1068476     2  0.1022      0.771 0.000 0.968 0.032 0.000
#> GSM1068477     2  0.1151      0.772 0.000 0.968 0.024 0.008
#> GSM1068462     2  0.0921      0.772 0.000 0.972 0.028 0.000
#> GSM1068463     3  0.4356      0.577 0.292 0.000 0.708 0.000
#> GSM1068465     1  0.4866      0.368 0.596 0.000 0.000 0.404
#> GSM1068466     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM1068467     2  0.1022      0.759 0.032 0.968 0.000 0.000
#> GSM1068469     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM1068470     4  0.6660      0.578 0.000 0.120 0.288 0.592
#> GSM1068471     4  0.1389      0.818 0.000 0.000 0.048 0.952
#> GSM1068475     4  0.4304      0.704 0.000 0.000 0.284 0.716
#> GSM1068528     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM1068531     3  0.5055      0.625 0.256 0.032 0.712 0.000
#> GSM1068532     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM1068533     3  0.5219      0.842 0.044 0.244 0.712 0.000
#> GSM1068535     4  0.5698      0.340 0.000 0.036 0.356 0.608
#> GSM1068537     3  0.4331      0.582 0.288 0.000 0.712 0.000
#> GSM1068538     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM1068539     2  0.0000      0.772 0.000 1.000 0.000 0.000
#> GSM1068540     3  0.4483      0.855 0.004 0.284 0.712 0.000
#> GSM1068542     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> GSM1068543     2  0.6793      0.554 0.000 0.580 0.288 0.132
#> GSM1068544     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM1068545     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> GSM1068546     3  0.4331      0.855 0.000 0.288 0.712 0.000
#> GSM1068547     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM1068548     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> GSM1068549     2  0.0000      0.772 0.000 1.000 0.000 0.000
#> GSM1068550     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> GSM1068551     4  0.6660      0.578 0.000 0.120 0.288 0.592
#> GSM1068552     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> GSM1068555     2  0.4331      0.636 0.000 0.712 0.288 0.000
#> GSM1068556     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> GSM1068557     2  0.0000      0.772 0.000 1.000 0.000 0.000
#> GSM1068560     2  0.1022      0.771 0.000 0.968 0.032 0.000
#> GSM1068561     2  0.0000      0.772 0.000 1.000 0.000 0.000
#> GSM1068562     2  0.7203      0.496 0.000 0.536 0.288 0.176
#> GSM1068563     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> GSM1068565     2  0.7325      0.468 0.000 0.520 0.288 0.192
#> GSM1068529     2  0.0000      0.772 0.000 1.000 0.000 0.000
#> GSM1068530     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM1068534     4  0.4866      0.346 0.000 0.404 0.000 0.596
#> GSM1068536     2  0.0000      0.772 0.000 1.000 0.000 0.000
#> GSM1068541     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM1068553     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> GSM1068554     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> GSM1068558     2  0.4331      0.636 0.000 0.712 0.288 0.000
#> GSM1068559     2  0.0000      0.772 0.000 1.000 0.000 0.000
#> GSM1068564     4  0.4304      0.704 0.000 0.000 0.284 0.716
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1068478     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068479     5  0.0510      0.935 0.000 0.000 0.000 0.016 0.984
#> GSM1068481     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068482     5  0.4988      0.549 0.284 0.000 0.060 0.000 0.656
#> GSM1068483     1  0.0404      0.961 0.988 0.000 0.012 0.000 0.000
#> GSM1068486     5  0.0000      0.948 0.000 0.000 0.000 0.000 1.000
#> GSM1068487     2  0.0000      0.928 0.000 1.000 0.000 0.000 0.000
#> GSM1068488     2  0.0000      0.928 0.000 1.000 0.000 0.000 0.000
#> GSM1068490     2  0.3177      0.788 0.000 0.792 0.000 0.208 0.000
#> GSM1068491     4  0.3210      0.712 0.000 0.000 0.000 0.788 0.212
#> GSM1068492     4  0.0162      0.928 0.000 0.004 0.000 0.996 0.000
#> GSM1068493     5  0.0000      0.948 0.000 0.000 0.000 0.000 1.000
#> GSM1068494     5  0.0000      0.948 0.000 0.000 0.000 0.000 1.000
#> GSM1068495     5  0.0000      0.948 0.000 0.000 0.000 0.000 1.000
#> GSM1068496     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068498     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000
#> GSM1068499     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000
#> GSM1068500     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068502     4  0.0000      0.928 0.000 0.000 0.000 1.000 0.000
#> GSM1068503     4  0.3039      0.731 0.000 0.192 0.000 0.808 0.000
#> GSM1068505     4  0.2732      0.779 0.000 0.160 0.000 0.840 0.000
#> GSM1068506     4  0.0162      0.928 0.000 0.004 0.000 0.996 0.000
#> GSM1068507     5  0.0000      0.948 0.000 0.000 0.000 0.000 1.000
#> GSM1068508     5  0.0000      0.948 0.000 0.000 0.000 0.000 1.000
#> GSM1068510     2  0.0162      0.928 0.000 0.996 0.000 0.000 0.004
#> GSM1068512     5  0.3766      0.628 0.000 0.004 0.000 0.268 0.728
#> GSM1068513     2  0.0404      0.926 0.000 0.988 0.000 0.000 0.012
#> GSM1068514     4  0.0162      0.928 0.000 0.004 0.000 0.996 0.000
#> GSM1068517     5  0.4171      0.382 0.396 0.000 0.000 0.000 0.604
#> GSM1068518     5  0.0000      0.948 0.000 0.000 0.000 0.000 1.000
#> GSM1068520     1  0.0404      0.961 0.988 0.000 0.012 0.000 0.000
#> GSM1068521     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000
#> GSM1068522     4  0.0000      0.928 0.000 0.000 0.000 1.000 0.000
#> GSM1068524     2  0.0000      0.928 0.000 1.000 0.000 0.000 0.000
#> GSM1068527     4  0.3300      0.720 0.000 0.004 0.000 0.792 0.204
#> GSM1068480     5  0.0000      0.948 0.000 0.000 0.000 0.000 1.000
#> GSM1068484     4  0.0000      0.928 0.000 0.000 0.000 1.000 0.000
#> GSM1068485     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000
#> GSM1068489     2  0.3177      0.784 0.000 0.792 0.000 0.208 0.000
#> GSM1068497     5  0.0000      0.948 0.000 0.000 0.000 0.000 1.000
#> GSM1068501     4  0.0162      0.928 0.000 0.004 0.000 0.996 0.000
#> GSM1068504     2  0.0162      0.928 0.000 0.996 0.000 0.000 0.004
#> GSM1068509     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000
#> GSM1068511     4  0.0162      0.928 0.000 0.004 0.000 0.996 0.000
#> GSM1068515     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000
#> GSM1068516     5  0.0000      0.948 0.000 0.000 0.000 0.000 1.000
#> GSM1068519     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000
#> GSM1068523     2  0.0703      0.919 0.000 0.976 0.000 0.000 0.024
#> GSM1068525     2  0.0000      0.928 0.000 1.000 0.000 0.000 0.000
#> GSM1068526     2  0.0703      0.921 0.000 0.976 0.000 0.024 0.000
#> GSM1068458     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000
#> GSM1068459     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068460     5  0.0000      0.948 0.000 0.000 0.000 0.000 1.000
#> GSM1068461     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000
#> GSM1068464     2  0.3366      0.759 0.000 0.768 0.000 0.232 0.000
#> GSM1068468     1  0.4192      0.306 0.596 0.000 0.000 0.404 0.000
#> GSM1068472     4  0.1484      0.888 0.008 0.000 0.000 0.944 0.048
#> GSM1068473     4  0.0000      0.928 0.000 0.000 0.000 1.000 0.000
#> GSM1068474     4  0.0000      0.928 0.000 0.000 0.000 1.000 0.000
#> GSM1068476     5  0.0000      0.948 0.000 0.000 0.000 0.000 1.000
#> GSM1068477     5  0.0000      0.948 0.000 0.000 0.000 0.000 1.000
#> GSM1068462     5  0.0000      0.948 0.000 0.000 0.000 0.000 1.000
#> GSM1068463     3  0.0162      0.996 0.004 0.000 0.996 0.000 0.000
#> GSM1068465     4  0.3177      0.698 0.208 0.000 0.000 0.792 0.000
#> GSM1068466     1  0.0404      0.961 0.988 0.000 0.012 0.000 0.000
#> GSM1068467     5  0.0000      0.948 0.000 0.000 0.000 0.000 1.000
#> GSM1068469     1  0.0404      0.958 0.988 0.000 0.000 0.000 0.012
#> GSM1068470     2  0.0000      0.928 0.000 1.000 0.000 0.000 0.000
#> GSM1068471     4  0.2074      0.842 0.000 0.104 0.000 0.896 0.000
#> GSM1068475     2  0.3177      0.788 0.000 0.792 0.000 0.208 0.000
#> GSM1068528     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000
#> GSM1068531     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068532     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000
#> GSM1068533     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068535     4  0.4410      0.225 0.000 0.004 0.440 0.556 0.000
#> GSM1068537     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068538     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000
#> GSM1068539     5  0.0000      0.948 0.000 0.000 0.000 0.000 1.000
#> GSM1068540     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068542     4  0.0000      0.928 0.000 0.000 0.000 1.000 0.000
#> GSM1068543     2  0.0162      0.928 0.000 0.996 0.000 0.000 0.004
#> GSM1068544     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000
#> GSM1068545     4  0.0000      0.928 0.000 0.000 0.000 1.000 0.000
#> GSM1068546     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068547     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000
#> GSM1068548     4  0.0000      0.928 0.000 0.000 0.000 1.000 0.000
#> GSM1068549     5  0.0162      0.945 0.000 0.000 0.004 0.000 0.996
#> GSM1068550     4  0.0609      0.919 0.000 0.020 0.000 0.980 0.000
#> GSM1068551     2  0.0703      0.923 0.000 0.976 0.000 0.024 0.000
#> GSM1068552     4  0.0290      0.926 0.000 0.008 0.000 0.992 0.000
#> GSM1068555     2  0.0162      0.928 0.000 0.996 0.000 0.000 0.004
#> GSM1068556     4  0.0162      0.928 0.000 0.004 0.000 0.996 0.000
#> GSM1068557     5  0.0000      0.948 0.000 0.000 0.000 0.000 1.000
#> GSM1068560     5  0.0000      0.948 0.000 0.000 0.000 0.000 1.000
#> GSM1068561     5  0.0000      0.948 0.000 0.000 0.000 0.000 1.000
#> GSM1068562     2  0.0609      0.922 0.000 0.980 0.000 0.000 0.020
#> GSM1068563     4  0.0000      0.928 0.000 0.000 0.000 1.000 0.000
#> GSM1068565     2  0.0798      0.924 0.000 0.976 0.000 0.008 0.016
#> GSM1068529     5  0.0000      0.948 0.000 0.000 0.000 0.000 1.000
#> GSM1068530     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000
#> GSM1068534     5  0.3366      0.707 0.000 0.004 0.000 0.212 0.784
#> GSM1068536     5  0.0000      0.948 0.000 0.000 0.000 0.000 1.000
#> GSM1068541     1  0.1851      0.874 0.912 0.000 0.000 0.088 0.000
#> GSM1068553     4  0.0162      0.928 0.000 0.004 0.000 0.996 0.000
#> GSM1068554     4  0.0162      0.928 0.000 0.004 0.000 0.996 0.000
#> GSM1068558     2  0.0162      0.928 0.000 0.996 0.000 0.000 0.004
#> GSM1068559     5  0.0000      0.948 0.000 0.000 0.000 0.000 1.000
#> GSM1068564     2  0.3143      0.788 0.000 0.796 0.000 0.204 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1068478     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068479     6  0.0632      0.948 0.000 0.000 0.000 0.024 0.000 0.976
#> GSM1068481     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068482     5  0.2701      0.834 0.028 0.000 0.004 0.000 0.864 0.104
#> GSM1068483     1  0.0260      0.922 0.992 0.000 0.008 0.000 0.000 0.000
#> GSM1068486     6  0.0000      0.970 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068487     2  0.2135      0.844 0.000 0.872 0.000 0.000 0.128 0.000
#> GSM1068488     2  0.0632      0.861 0.000 0.976 0.000 0.000 0.024 0.000
#> GSM1068490     2  0.4687      0.718 0.000 0.684 0.000 0.180 0.136 0.000
#> GSM1068491     4  0.2933      0.695 0.004 0.000 0.000 0.796 0.000 0.200
#> GSM1068492     4  0.1471      0.879 0.000 0.004 0.000 0.932 0.064 0.000
#> GSM1068493     6  0.0000      0.970 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068494     6  0.0000      0.970 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068495     6  0.0000      0.970 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068496     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068498     5  0.2219      0.942 0.136 0.000 0.000 0.000 0.864 0.000
#> GSM1068499     5  0.2219      0.942 0.136 0.000 0.000 0.000 0.864 0.000
#> GSM1068500     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068502     4  0.0000      0.884 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068503     4  0.4595      0.668 0.000 0.168 0.000 0.696 0.136 0.000
#> GSM1068505     4  0.4281      0.727 0.000 0.132 0.000 0.732 0.136 0.000
#> GSM1068506     4  0.1753      0.875 0.000 0.004 0.000 0.912 0.084 0.000
#> GSM1068507     6  0.0000      0.970 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068508     6  0.0000      0.970 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068510     2  0.0146      0.863 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM1068512     6  0.3833      0.633 0.000 0.004 0.000 0.232 0.028 0.736
#> GSM1068513     2  0.1863      0.825 0.000 0.896 0.000 0.000 0.000 0.104
#> GSM1068514     4  0.1753      0.875 0.000 0.004 0.000 0.912 0.084 0.000
#> GSM1068517     5  0.2679      0.847 0.040 0.000 0.000 0.000 0.864 0.096
#> GSM1068518     6  0.0000      0.970 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068520     1  0.0260      0.922 0.992 0.000 0.008 0.000 0.000 0.000
#> GSM1068521     5  0.2941      0.851 0.220 0.000 0.000 0.000 0.780 0.000
#> GSM1068522     4  0.2219      0.856 0.000 0.000 0.000 0.864 0.136 0.000
#> GSM1068524     2  0.0000      0.863 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068527     4  0.2738      0.716 0.000 0.004 0.000 0.820 0.000 0.176
#> GSM1068480     6  0.0000      0.970 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068484     4  0.2219      0.856 0.000 0.000 0.000 0.864 0.136 0.000
#> GSM1068485     5  0.2219      0.942 0.136 0.000 0.000 0.000 0.864 0.000
#> GSM1068489     2  0.4687      0.713 0.000 0.684 0.000 0.180 0.136 0.000
#> GSM1068497     6  0.0000      0.970 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068501     4  0.0146      0.884 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM1068504     2  0.0146      0.863 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM1068509     1  0.0000      0.924 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM1068511     4  0.0692      0.883 0.000 0.004 0.000 0.976 0.020 0.000
#> GSM1068515     1  0.0146      0.925 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM1068516     6  0.0000      0.970 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068519     1  0.2178      0.771 0.868 0.000 0.000 0.000 0.132 0.000
#> GSM1068523     2  0.2003      0.818 0.000 0.884 0.000 0.000 0.000 0.116
#> GSM1068525     2  0.0000      0.863 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068526     2  0.2623      0.838 0.000 0.852 0.000 0.016 0.132 0.000
#> GSM1068458     1  0.0146      0.925 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM1068459     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068460     6  0.0000      0.970 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068461     5  0.2219      0.942 0.136 0.000 0.000 0.000 0.864 0.000
#> GSM1068464     2  0.4756      0.691 0.000 0.664 0.000 0.224 0.112 0.000
#> GSM1068468     1  0.3804      0.280 0.576 0.000 0.000 0.424 0.000 0.000
#> GSM1068472     4  0.1434      0.848 0.012 0.000 0.000 0.940 0.000 0.048
#> GSM1068473     4  0.0000      0.884 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068474     4  0.0146      0.885 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM1068476     6  0.0000      0.970 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068477     6  0.0000      0.970 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068462     6  0.0000      0.970 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068463     3  0.0146      0.995 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM1068465     4  0.2631      0.707 0.180 0.000 0.000 0.820 0.000 0.000
#> GSM1068466     1  0.0260      0.922 0.992 0.000 0.008 0.000 0.000 0.000
#> GSM1068467     6  0.0146      0.967 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM1068469     1  0.0146      0.922 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM1068470     2  0.0000      0.863 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM1068471     4  0.3992      0.764 0.000 0.104 0.000 0.760 0.136 0.000
#> GSM1068475     2  0.4456      0.736 0.000 0.708 0.000 0.180 0.112 0.000
#> GSM1068528     5  0.2219      0.942 0.136 0.000 0.000 0.000 0.864 0.000
#> GSM1068531     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068532     1  0.0146      0.925 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM1068533     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068535     4  0.4508      0.193 0.000 0.004 0.436 0.536 0.024 0.000
#> GSM1068537     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068538     1  0.0146      0.925 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM1068539     6  0.0000      0.970 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068540     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068542     4  0.0000      0.884 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068543     2  0.0146      0.863 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM1068544     5  0.2219      0.942 0.136 0.000 0.000 0.000 0.864 0.000
#> GSM1068545     4  0.0000      0.884 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068546     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068547     1  0.0146      0.925 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM1068548     4  0.0000      0.884 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM1068549     6  0.0146      0.967 0.000 0.000 0.004 0.000 0.000 0.996
#> GSM1068550     4  0.2572      0.852 0.000 0.012 0.000 0.852 0.136 0.000
#> GSM1068551     2  0.2358      0.847 0.000 0.876 0.000 0.016 0.108 0.000
#> GSM1068552     4  0.2473      0.854 0.000 0.008 0.000 0.856 0.136 0.000
#> GSM1068555     2  0.0146      0.863 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM1068556     4  0.2362      0.856 0.000 0.004 0.000 0.860 0.136 0.000
#> GSM1068557     6  0.0000      0.970 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068560     6  0.0000      0.970 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068561     6  0.0000      0.970 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068562     2  0.2048      0.815 0.000 0.880 0.000 0.000 0.000 0.120
#> GSM1068563     4  0.0146      0.885 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM1068565     2  0.2257      0.818 0.000 0.876 0.000 0.008 0.000 0.116
#> GSM1068529     6  0.0000      0.970 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068530     1  0.0146      0.925 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM1068534     6  0.4853      0.553 0.000 0.004 0.000 0.184 0.136 0.676
#> GSM1068536     6  0.0000      0.970 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068541     1  0.1814      0.819 0.900 0.000 0.000 0.100 0.000 0.000
#> GSM1068553     4  0.0146      0.884 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM1068554     4  0.0146      0.884 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM1068558     2  0.0146      0.863 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM1068559     6  0.0000      0.970 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM1068564     2  0.4657      0.718 0.000 0.688 0.000 0.176 0.136 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#>           n disease.state(p) gender(p) k
#> ATC:pam  64            0.292     0.625 2
#> ATC:pam 102            0.631     0.243 3
#> ATC:pam  93            0.990     0.335 4
#> ATC:pam 105            0.998     0.323 5
#> ATC:pam 106            0.986     0.116 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 38950 rows and 108 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.620           0.729       0.889          0.439 0.595   0.595
#> 3 3 0.610           0.553       0.778          0.405 0.551   0.350
#> 4 4 0.670           0.800       0.870          0.107 0.785   0.515
#> 5 5 0.756           0.766       0.881          0.104 0.814   0.507
#> 6 6 0.667           0.530       0.752          0.049 0.900   0.641
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1068478     2   0.997     0.3112 0.468 0.532
#> GSM1068479     2   0.000     0.8375 0.000 1.000
#> GSM1068481     2   0.997     0.3112 0.468 0.532
#> GSM1068482     1   0.000     0.9360 1.000 0.000
#> GSM1068483     1   0.000     0.9360 1.000 0.000
#> GSM1068486     2   0.997     0.3112 0.468 0.532
#> GSM1068487     2   0.000     0.8375 0.000 1.000
#> GSM1068488     2   0.000     0.8375 0.000 1.000
#> GSM1068490     2   0.000     0.8375 0.000 1.000
#> GSM1068491     1   0.981     0.0496 0.580 0.420
#> GSM1068492     2   0.000     0.8375 0.000 1.000
#> GSM1068493     2   0.909     0.5437 0.324 0.676
#> GSM1068494     2   0.997     0.3112 0.468 0.532
#> GSM1068495     2   0.997     0.3112 0.468 0.532
#> GSM1068496     2   0.998     0.2888 0.476 0.524
#> GSM1068498     1   0.000     0.9360 1.000 0.000
#> GSM1068499     1   0.000     0.9360 1.000 0.000
#> GSM1068500     2   0.997     0.3112 0.468 0.532
#> GSM1068502     2   0.000     0.8375 0.000 1.000
#> GSM1068503     2   0.000     0.8375 0.000 1.000
#> GSM1068505     2   0.000     0.8375 0.000 1.000
#> GSM1068506     2   0.000     0.8375 0.000 1.000
#> GSM1068507     2   0.000     0.8375 0.000 1.000
#> GSM1068508     2   0.000     0.8375 0.000 1.000
#> GSM1068510     2   0.000     0.8375 0.000 1.000
#> GSM1068512     2   0.000     0.8375 0.000 1.000
#> GSM1068513     2   0.000     0.8375 0.000 1.000
#> GSM1068514     2   0.000     0.8375 0.000 1.000
#> GSM1068517     1   0.000     0.9360 1.000 0.000
#> GSM1068518     2   0.997     0.3112 0.468 0.532
#> GSM1068520     1   0.000     0.9360 1.000 0.000
#> GSM1068521     1   0.000     0.9360 1.000 0.000
#> GSM1068522     2   0.000     0.8375 0.000 1.000
#> GSM1068524     2   0.000     0.8375 0.000 1.000
#> GSM1068527     2   0.000     0.8375 0.000 1.000
#> GSM1068480     2   0.997     0.3112 0.468 0.532
#> GSM1068484     2   0.000     0.8375 0.000 1.000
#> GSM1068485     1   0.000     0.9360 1.000 0.000
#> GSM1068489     2   0.000     0.8375 0.000 1.000
#> GSM1068497     2   0.997     0.3112 0.468 0.532
#> GSM1068501     2   0.000     0.8375 0.000 1.000
#> GSM1068504     2   0.000     0.8375 0.000 1.000
#> GSM1068509     1   0.000     0.9360 1.000 0.000
#> GSM1068511     2   0.000     0.8375 0.000 1.000
#> GSM1068515     1   0.000     0.9360 1.000 0.000
#> GSM1068516     2   0.997     0.3112 0.468 0.532
#> GSM1068519     1   0.000     0.9360 1.000 0.000
#> GSM1068523     2   0.000     0.8375 0.000 1.000
#> GSM1068525     2   0.000     0.8375 0.000 1.000
#> GSM1068526     2   0.000     0.8375 0.000 1.000
#> GSM1068458     1   0.000     0.9360 1.000 0.000
#> GSM1068459     2   0.998     0.2887 0.476 0.524
#> GSM1068460     2   0.997     0.3112 0.468 0.532
#> GSM1068461     1   0.000     0.9360 1.000 0.000
#> GSM1068464     2   0.000     0.8375 0.000 1.000
#> GSM1068468     2   0.997     0.3112 0.468 0.532
#> GSM1068472     2   0.997     0.3112 0.468 0.532
#> GSM1068473     2   0.000     0.8375 0.000 1.000
#> GSM1068474     2   0.000     0.8375 0.000 1.000
#> GSM1068476     2   0.000     0.8375 0.000 1.000
#> GSM1068477     2   0.595     0.7389 0.144 0.856
#> GSM1068462     2   0.996     0.3186 0.464 0.536
#> GSM1068463     1   0.000     0.9360 1.000 0.000
#> GSM1068465     1   0.980     0.0652 0.584 0.416
#> GSM1068466     1   0.000     0.9360 1.000 0.000
#> GSM1068467     2   0.997     0.3112 0.468 0.532
#> GSM1068469     1   0.000     0.9360 1.000 0.000
#> GSM1068470     2   0.000     0.8375 0.000 1.000
#> GSM1068471     2   0.000     0.8375 0.000 1.000
#> GSM1068475     2   0.000     0.8375 0.000 1.000
#> GSM1068528     1   0.000     0.9360 1.000 0.000
#> GSM1068531     1   0.000     0.9360 1.000 0.000
#> GSM1068532     1   0.000     0.9360 1.000 0.000
#> GSM1068533     1   0.000     0.9360 1.000 0.000
#> GSM1068535     2   0.634     0.7253 0.160 0.840
#> GSM1068537     1   0.000     0.9360 1.000 0.000
#> GSM1068538     1   0.000     0.9360 1.000 0.000
#> GSM1068539     2   0.997     0.3112 0.468 0.532
#> GSM1068540     1   0.494     0.8044 0.892 0.108
#> GSM1068542     2   0.000     0.8375 0.000 1.000
#> GSM1068543     2   0.000     0.8375 0.000 1.000
#> GSM1068544     1   0.000     0.9360 1.000 0.000
#> GSM1068545     2   0.000     0.8375 0.000 1.000
#> GSM1068546     2   0.997     0.3112 0.468 0.532
#> GSM1068547     1   0.000     0.9360 1.000 0.000
#> GSM1068548     2   0.000     0.8375 0.000 1.000
#> GSM1068549     1   1.000    -0.2100 0.512 0.488
#> GSM1068550     2   0.000     0.8375 0.000 1.000
#> GSM1068551     2   0.000     0.8375 0.000 1.000
#> GSM1068552     2   0.000     0.8375 0.000 1.000
#> GSM1068555     2   0.000     0.8375 0.000 1.000
#> GSM1068556     2   0.000     0.8375 0.000 1.000
#> GSM1068557     2   0.595     0.7389 0.144 0.856
#> GSM1068560     2   0.000     0.8375 0.000 1.000
#> GSM1068561     2   0.373     0.7926 0.072 0.928
#> GSM1068562     2   0.000     0.8375 0.000 1.000
#> GSM1068563     2   0.000     0.8375 0.000 1.000
#> GSM1068565     2   0.000     0.8375 0.000 1.000
#> GSM1068529     2   0.000     0.8375 0.000 1.000
#> GSM1068530     1   0.000     0.9360 1.000 0.000
#> GSM1068534     2   0.000     0.8375 0.000 1.000
#> GSM1068536     2   0.997     0.3112 0.468 0.532
#> GSM1068541     1   0.000     0.9360 1.000 0.000
#> GSM1068553     2   0.000     0.8375 0.000 1.000
#> GSM1068554     2   0.000     0.8375 0.000 1.000
#> GSM1068558     2   0.000     0.8375 0.000 1.000
#> GSM1068559     2   0.958     0.4621 0.380 0.620
#> GSM1068564     2   0.000     0.8375 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1068478     1  0.0000    0.83532 1.000 0.000 0.000
#> GSM1068479     2  0.0424    0.89445 0.000 0.992 0.008
#> GSM1068481     1  0.0424    0.83341 0.992 0.000 0.008
#> GSM1068482     1  0.6280    0.22425 0.540 0.000 0.460
#> GSM1068483     3  0.6252   -0.03039 0.444 0.000 0.556
#> GSM1068486     1  0.0424    0.83341 0.992 0.000 0.008
#> GSM1068487     2  0.0892    0.88710 0.000 0.980 0.020
#> GSM1068488     2  0.8795    0.10293 0.112 0.444 0.444
#> GSM1068490     2  0.0000    0.89834 0.000 1.000 0.000
#> GSM1068491     1  0.3619    0.78805 0.864 0.000 0.136
#> GSM1068492     2  0.0000    0.89834 0.000 1.000 0.000
#> GSM1068493     1  0.1453    0.83362 0.968 0.024 0.008
#> GSM1068494     1  0.1453    0.83362 0.968 0.024 0.008
#> GSM1068495     1  0.1774    0.82625 0.960 0.024 0.016
#> GSM1068496     1  0.1860    0.82767 0.948 0.000 0.052
#> GSM1068498     3  0.6252   -0.03039 0.444 0.000 0.556
#> GSM1068499     3  0.6252   -0.03039 0.444 0.000 0.556
#> GSM1068500     1  0.0892    0.83532 0.980 0.000 0.020
#> GSM1068502     2  0.0000    0.89834 0.000 1.000 0.000
#> GSM1068503     2  0.0000    0.89834 0.000 1.000 0.000
#> GSM1068505     2  0.0237    0.89609 0.004 0.996 0.000
#> GSM1068506     2  0.0000    0.89834 0.000 1.000 0.000
#> GSM1068507     2  0.2339    0.85855 0.012 0.940 0.048
#> GSM1068508     2  0.2903    0.84403 0.028 0.924 0.048
#> GSM1068510     3  0.8795   -0.15722 0.112 0.444 0.444
#> GSM1068512     2  0.0000    0.89834 0.000 1.000 0.000
#> GSM1068513     3  0.8795   -0.15722 0.112 0.444 0.444
#> GSM1068514     2  0.0000    0.89834 0.000 1.000 0.000
#> GSM1068517     1  0.4931    0.66494 0.768 0.000 0.232
#> GSM1068518     1  0.1031    0.83562 0.976 0.024 0.000
#> GSM1068520     1  0.6260    0.29695 0.552 0.000 0.448
#> GSM1068521     3  0.6252   -0.03039 0.444 0.000 0.556
#> GSM1068522     2  0.0000    0.89834 0.000 1.000 0.000
#> GSM1068524     3  0.8795   -0.15722 0.112 0.444 0.444
#> GSM1068527     2  0.0000    0.89834 0.000 1.000 0.000
#> GSM1068480     1  0.1453    0.83362 0.968 0.024 0.008
#> GSM1068484     2  0.0000    0.89834 0.000 1.000 0.000
#> GSM1068485     3  0.6252   -0.03039 0.444 0.000 0.556
#> GSM1068489     2  0.4324    0.76489 0.112 0.860 0.028
#> GSM1068497     1  0.1453    0.83362 0.968 0.024 0.008
#> GSM1068501     2  0.0000    0.89834 0.000 1.000 0.000
#> GSM1068504     2  0.8795    0.10293 0.112 0.444 0.444
#> GSM1068509     1  0.4842    0.70418 0.776 0.000 0.224
#> GSM1068511     2  0.0237    0.89602 0.004 0.996 0.000
#> GSM1068515     3  0.6252   -0.03039 0.444 0.000 0.556
#> GSM1068516     1  0.1453    0.83362 0.968 0.024 0.008
#> GSM1068519     3  0.6252   -0.03039 0.444 0.000 0.556
#> GSM1068523     3  0.8795   -0.15722 0.112 0.444 0.444
#> GSM1068525     3  0.8795   -0.15722 0.112 0.444 0.444
#> GSM1068526     2  0.0424    0.89445 0.000 0.992 0.008
#> GSM1068458     3  0.6252   -0.03039 0.444 0.000 0.556
#> GSM1068459     1  0.0892    0.83532 0.980 0.000 0.020
#> GSM1068460     1  0.1453    0.83362 0.968 0.024 0.008
#> GSM1068461     3  0.6252   -0.03039 0.444 0.000 0.556
#> GSM1068464     2  0.0000    0.89834 0.000 1.000 0.000
#> GSM1068468     1  0.3619    0.78805 0.864 0.000 0.136
#> GSM1068472     1  0.4196    0.80063 0.864 0.024 0.112
#> GSM1068473     2  0.0000    0.89834 0.000 1.000 0.000
#> GSM1068474     2  0.0000    0.89834 0.000 1.000 0.000
#> GSM1068476     3  0.8795   -0.15722 0.112 0.444 0.444
#> GSM1068477     1  0.1751    0.82681 0.960 0.028 0.012
#> GSM1068462     1  0.1453    0.83362 0.968 0.024 0.008
#> GSM1068463     1  0.5560    0.57827 0.700 0.000 0.300
#> GSM1068465     1  0.3619    0.78805 0.864 0.000 0.136
#> GSM1068466     1  0.5706    0.56706 0.680 0.000 0.320
#> GSM1068467     1  0.3120    0.82283 0.908 0.012 0.080
#> GSM1068469     1  0.3619    0.78805 0.864 0.000 0.136
#> GSM1068470     3  0.8795   -0.15722 0.112 0.444 0.444
#> GSM1068471     2  0.0000    0.89834 0.000 1.000 0.000
#> GSM1068475     2  0.0000    0.89834 0.000 1.000 0.000
#> GSM1068528     3  0.6252   -0.03039 0.444 0.000 0.556
#> GSM1068531     1  0.2165    0.82326 0.936 0.000 0.064
#> GSM1068532     3  0.6252   -0.03039 0.444 0.000 0.556
#> GSM1068533     1  0.3619    0.78805 0.864 0.000 0.136
#> GSM1068535     1  0.6984   -0.00743 0.560 0.420 0.020
#> GSM1068537     1  0.5529    0.58459 0.704 0.000 0.296
#> GSM1068538     3  0.6252   -0.03039 0.444 0.000 0.556
#> GSM1068539     1  0.1453    0.83362 0.968 0.024 0.008
#> GSM1068540     1  0.2261    0.82150 0.932 0.000 0.068
#> GSM1068542     2  0.0000    0.89834 0.000 1.000 0.000
#> GSM1068543     2  0.8795    0.10293 0.112 0.444 0.444
#> GSM1068544     3  0.6252   -0.03039 0.444 0.000 0.556
#> GSM1068545     2  0.0000    0.89834 0.000 1.000 0.000
#> GSM1068546     1  0.0424    0.83341 0.992 0.000 0.008
#> GSM1068547     3  0.6252   -0.03039 0.444 0.000 0.556
#> GSM1068548     2  0.0000    0.89834 0.000 1.000 0.000
#> GSM1068549     1  0.0000    0.83532 1.000 0.000 0.000
#> GSM1068550     2  0.0000    0.89834 0.000 1.000 0.000
#> GSM1068551     2  0.1529    0.87343 0.000 0.960 0.040
#> GSM1068552     2  0.0000    0.89834 0.000 1.000 0.000
#> GSM1068555     3  0.8795   -0.15722 0.112 0.444 0.444
#> GSM1068556     2  0.0000    0.89834 0.000 1.000 0.000
#> GSM1068557     1  0.3780    0.74269 0.892 0.064 0.044
#> GSM1068560     3  0.8795   -0.15722 0.112 0.444 0.444
#> GSM1068561     3  0.8938   -0.14559 0.124 0.432 0.444
#> GSM1068562     3  0.8795   -0.15722 0.112 0.444 0.444
#> GSM1068563     2  0.0000    0.89834 0.000 1.000 0.000
#> GSM1068565     2  0.7601    0.31455 0.044 0.540 0.416
#> GSM1068529     2  0.9759    0.08192 0.284 0.444 0.272
#> GSM1068530     3  0.6252   -0.03039 0.444 0.000 0.556
#> GSM1068534     2  0.4063    0.77108 0.112 0.868 0.020
#> GSM1068536     1  0.1453    0.83362 0.968 0.024 0.008
#> GSM1068541     1  0.3619    0.78805 0.864 0.000 0.136
#> GSM1068553     2  0.5831    0.48316 0.284 0.708 0.008
#> GSM1068554     2  0.0000    0.89834 0.000 1.000 0.000
#> GSM1068558     3  0.8795   -0.15722 0.112 0.444 0.444
#> GSM1068559     1  0.1453    0.83362 0.968 0.024 0.008
#> GSM1068564     2  0.0000    0.89834 0.000 1.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1068478     3  0.2973     0.8650 0.000 0.144 0.856 0.000
#> GSM1068479     4  0.0336     0.8951 0.008 0.000 0.000 0.992
#> GSM1068481     3  0.2921     0.8680 0.000 0.140 0.860 0.000
#> GSM1068482     1  0.3249     0.7517 0.852 0.140 0.008 0.000
#> GSM1068483     1  0.0336     0.9376 0.992 0.008 0.000 0.000
#> GSM1068486     3  0.4624     0.6134 0.000 0.340 0.660 0.000
#> GSM1068487     4  0.1635     0.8809 0.008 0.000 0.044 0.948
#> GSM1068488     4  0.6286     0.7068 0.000 0.200 0.140 0.660
#> GSM1068490     4  0.0336     0.8951 0.008 0.000 0.000 0.992
#> GSM1068491     2  0.3764     0.6730 0.216 0.784 0.000 0.000
#> GSM1068492     4  0.0336     0.8951 0.008 0.000 0.000 0.992
#> GSM1068493     2  0.0000     0.7870 0.000 1.000 0.000 0.000
#> GSM1068494     2  0.2868     0.6704 0.000 0.864 0.136 0.000
#> GSM1068495     2  0.0000     0.7870 0.000 1.000 0.000 0.000
#> GSM1068496     3  0.2921     0.8680 0.000 0.140 0.860 0.000
#> GSM1068498     1  0.1474     0.8889 0.948 0.052 0.000 0.000
#> GSM1068499     1  0.0336     0.9376 0.992 0.008 0.000 0.000
#> GSM1068500     3  0.2921     0.8680 0.000 0.140 0.860 0.000
#> GSM1068502     4  0.0336     0.8927 0.000 0.008 0.000 0.992
#> GSM1068503     4  0.0336     0.8951 0.008 0.000 0.000 0.992
#> GSM1068505     4  0.0000     0.8953 0.000 0.000 0.000 1.000
#> GSM1068506     4  0.0000     0.8953 0.000 0.000 0.000 1.000
#> GSM1068507     4  0.0000     0.8953 0.000 0.000 0.000 1.000
#> GSM1068508     4  0.0524     0.8943 0.008 0.004 0.000 0.988
#> GSM1068510     4  0.6286     0.7068 0.000 0.200 0.140 0.660
#> GSM1068512     4  0.0000     0.8953 0.000 0.000 0.000 1.000
#> GSM1068513     4  0.2921     0.8402 0.000 0.000 0.140 0.860
#> GSM1068514     4  0.0000     0.8953 0.000 0.000 0.000 1.000
#> GSM1068517     2  0.4999     0.0741 0.492 0.508 0.000 0.000
#> GSM1068518     2  0.0000     0.7870 0.000 1.000 0.000 0.000
#> GSM1068520     1  0.0336     0.9376 0.992 0.008 0.000 0.000
#> GSM1068521     1  0.0336     0.9376 0.992 0.008 0.000 0.000
#> GSM1068522     4  0.0000     0.8953 0.000 0.000 0.000 1.000
#> GSM1068524     4  0.6286     0.7068 0.000 0.200 0.140 0.660
#> GSM1068527     4  0.0000     0.8953 0.000 0.000 0.000 1.000
#> GSM1068480     2  0.1940     0.7364 0.000 0.924 0.076 0.000
#> GSM1068484     4  0.0336     0.8951 0.008 0.000 0.000 0.992
#> GSM1068485     1  0.0336     0.9376 0.992 0.008 0.000 0.000
#> GSM1068489     4  0.0000     0.8953 0.000 0.000 0.000 1.000
#> GSM1068497     2  0.0000     0.7870 0.000 1.000 0.000 0.000
#> GSM1068501     4  0.0000     0.8953 0.000 0.000 0.000 1.000
#> GSM1068504     4  0.6179     0.7173 0.000 0.188 0.140 0.672
#> GSM1068509     1  0.4925     0.1682 0.572 0.428 0.000 0.000
#> GSM1068511     4  0.0000     0.8953 0.000 0.000 0.000 1.000
#> GSM1068515     1  0.0336     0.9376 0.992 0.008 0.000 0.000
#> GSM1068516     2  0.0000     0.7870 0.000 1.000 0.000 0.000
#> GSM1068519     1  0.0336     0.9376 0.992 0.008 0.000 0.000
#> GSM1068523     4  0.6275     0.7057 0.000 0.204 0.136 0.660
#> GSM1068525     4  0.5815     0.7459 0.000 0.152 0.140 0.708
#> GSM1068526     4  0.0336     0.8951 0.008 0.000 0.000 0.992
#> GSM1068458     1  0.0336     0.9376 0.992 0.008 0.000 0.000
#> GSM1068459     3  0.2921     0.8680 0.000 0.140 0.860 0.000
#> GSM1068460     2  0.2408     0.7489 0.000 0.896 0.000 0.104
#> GSM1068461     1  0.0336     0.9376 0.992 0.008 0.000 0.000
#> GSM1068464     4  0.0336     0.8951 0.008 0.000 0.000 0.992
#> GSM1068468     2  0.4843     0.7065 0.112 0.784 0.000 0.104
#> GSM1068472     2  0.3610     0.6454 0.000 0.800 0.000 0.200
#> GSM1068473     4  0.0000     0.8953 0.000 0.000 0.000 1.000
#> GSM1068474     4  0.0336     0.8951 0.008 0.000 0.000 0.992
#> GSM1068476     4  0.5705     0.6940 0.000 0.260 0.064 0.676
#> GSM1068477     2  0.2921     0.7203 0.000 0.860 0.000 0.140
#> GSM1068462     2  0.3074     0.7073 0.000 0.848 0.000 0.152
#> GSM1068463     3  0.5159     0.3987 0.364 0.012 0.624 0.000
#> GSM1068465     2  0.4948     0.6974 0.100 0.776 0.000 0.124
#> GSM1068466     1  0.5144     0.6266 0.732 0.216 0.052 0.000
#> GSM1068467     2  0.3610     0.6829 0.200 0.800 0.000 0.000
#> GSM1068469     2  0.4605     0.5062 0.336 0.664 0.000 0.000
#> GSM1068470     4  0.3249     0.8366 0.000 0.008 0.140 0.852
#> GSM1068471     4  0.0336     0.8951 0.008 0.000 0.000 0.992
#> GSM1068475     4  0.0336     0.8951 0.008 0.000 0.000 0.992
#> GSM1068528     1  0.0336     0.9376 0.992 0.008 0.000 0.000
#> GSM1068531     3  0.2921     0.8680 0.000 0.140 0.860 0.000
#> GSM1068532     1  0.0336     0.9376 0.992 0.008 0.000 0.000
#> GSM1068533     3  0.7526     0.3133 0.200 0.332 0.468 0.000
#> GSM1068535     4  0.5815     0.6697 0.000 0.140 0.152 0.708
#> GSM1068537     3  0.3351     0.7269 0.148 0.008 0.844 0.000
#> GSM1068538     1  0.0336     0.9376 0.992 0.008 0.000 0.000
#> GSM1068539     2  0.0000     0.7870 0.000 1.000 0.000 0.000
#> GSM1068540     3  0.2921     0.8680 0.000 0.140 0.860 0.000
#> GSM1068542     4  0.0000     0.8953 0.000 0.000 0.000 1.000
#> GSM1068543     4  0.6286     0.7068 0.000 0.200 0.140 0.660
#> GSM1068544     1  0.0336     0.9376 0.992 0.008 0.000 0.000
#> GSM1068545     4  0.0336     0.8951 0.008 0.000 0.000 0.992
#> GSM1068546     3  0.2921     0.8680 0.000 0.140 0.860 0.000
#> GSM1068547     1  0.0336     0.9376 0.992 0.008 0.000 0.000
#> GSM1068548     4  0.0000     0.8953 0.000 0.000 0.000 1.000
#> GSM1068549     2  0.3873     0.5591 0.000 0.772 0.228 0.000
#> GSM1068550     4  0.0000     0.8953 0.000 0.000 0.000 1.000
#> GSM1068551     4  0.0336     0.8951 0.008 0.000 0.000 0.992
#> GSM1068552     4  0.0336     0.8951 0.008 0.000 0.000 0.992
#> GSM1068555     4  0.6286     0.7068 0.000 0.200 0.140 0.660
#> GSM1068556     4  0.0000     0.8953 0.000 0.000 0.000 1.000
#> GSM1068557     2  0.1716     0.7350 0.000 0.936 0.000 0.064
#> GSM1068560     4  0.6286     0.7068 0.000 0.200 0.140 0.660
#> GSM1068561     4  0.4973     0.6169 0.000 0.348 0.008 0.644
#> GSM1068562     4  0.6286     0.7068 0.000 0.200 0.140 0.660
#> GSM1068563     4  0.0000     0.8953 0.000 0.000 0.000 1.000
#> GSM1068565     4  0.2737     0.8556 0.008 0.000 0.104 0.888
#> GSM1068529     4  0.4624     0.6338 0.000 0.340 0.000 0.660
#> GSM1068530     1  0.0336     0.9376 0.992 0.008 0.000 0.000
#> GSM1068534     4  0.1940     0.8522 0.000 0.076 0.000 0.924
#> GSM1068536     2  0.0000     0.7870 0.000 1.000 0.000 0.000
#> GSM1068541     2  0.4134     0.6342 0.260 0.740 0.000 0.000
#> GSM1068553     4  0.0817     0.8851 0.000 0.024 0.000 0.976
#> GSM1068554     4  0.0000     0.8953 0.000 0.000 0.000 1.000
#> GSM1068558     4  0.6286     0.7068 0.000 0.200 0.140 0.660
#> GSM1068559     2  0.0000     0.7870 0.000 1.000 0.000 0.000
#> GSM1068564     4  0.0336     0.8951 0.008 0.000 0.000 0.992
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1068478     3  0.1124     0.8451 0.000 0.004 0.960 0.000 0.036
#> GSM1068479     4  0.0854     0.9024 0.000 0.008 0.012 0.976 0.004
#> GSM1068481     3  0.0703     0.8546 0.000 0.000 0.976 0.000 0.024
#> GSM1068482     5  0.4464     0.2636 0.408 0.000 0.008 0.000 0.584
#> GSM1068483     1  0.0000     0.8735 1.000 0.000 0.000 0.000 0.000
#> GSM1068486     3  0.2054     0.8045 0.000 0.052 0.920 0.000 0.028
#> GSM1068487     4  0.2411     0.8169 0.000 0.108 0.008 0.884 0.000
#> GSM1068488     2  0.1357     0.8508 0.000 0.948 0.000 0.048 0.004
#> GSM1068490     4  0.0671     0.9025 0.000 0.004 0.016 0.980 0.000
#> GSM1068491     1  0.6073     0.1833 0.496 0.004 0.000 0.108 0.392
#> GSM1068492     4  0.0671     0.9032 0.000 0.004 0.016 0.980 0.000
#> GSM1068493     5  0.3997     0.7117 0.000 0.076 0.004 0.116 0.804
#> GSM1068494     5  0.2859     0.7780 0.000 0.056 0.068 0.000 0.876
#> GSM1068495     5  0.1608     0.7948 0.000 0.072 0.000 0.000 0.928
#> GSM1068496     3  0.0703     0.8546 0.000 0.000 0.976 0.000 0.024
#> GSM1068498     5  0.4249     0.2116 0.432 0.000 0.000 0.000 0.568
#> GSM1068499     1  0.0510     0.8703 0.984 0.000 0.000 0.000 0.016
#> GSM1068500     3  0.0703     0.8546 0.000 0.000 0.976 0.000 0.024
#> GSM1068502     4  0.0162     0.9030 0.000 0.000 0.000 0.996 0.004
#> GSM1068503     4  0.0671     0.9025 0.000 0.004 0.016 0.980 0.000
#> GSM1068505     4  0.0510     0.9008 0.000 0.016 0.000 0.984 0.000
#> GSM1068506     4  0.0451     0.9020 0.000 0.004 0.000 0.988 0.008
#> GSM1068507     4  0.2408     0.8393 0.000 0.092 0.000 0.892 0.016
#> GSM1068508     4  0.1267     0.8950 0.000 0.024 0.004 0.960 0.012
#> GSM1068510     2  0.1502     0.8591 0.000 0.940 0.000 0.056 0.004
#> GSM1068512     4  0.1124     0.8922 0.000 0.036 0.000 0.960 0.004
#> GSM1068513     2  0.2852     0.8621 0.000 0.828 0.000 0.172 0.000
#> GSM1068514     4  0.0162     0.9031 0.000 0.004 0.000 0.996 0.000
#> GSM1068517     5  0.3152     0.7237 0.136 0.024 0.000 0.000 0.840
#> GSM1068518     5  0.1197     0.7954 0.000 0.048 0.000 0.000 0.952
#> GSM1068520     1  0.0000     0.8735 1.000 0.000 0.000 0.000 0.000
#> GSM1068521     1  0.0404     0.8717 0.988 0.000 0.000 0.000 0.012
#> GSM1068522     4  0.0290     0.9029 0.000 0.000 0.000 0.992 0.008
#> GSM1068524     2  0.2439     0.8783 0.000 0.876 0.000 0.120 0.004
#> GSM1068527     4  0.1608     0.8617 0.000 0.072 0.000 0.928 0.000
#> GSM1068480     5  0.2592     0.7874 0.000 0.056 0.052 0.000 0.892
#> GSM1068484     4  0.0510     0.9033 0.000 0.000 0.016 0.984 0.000
#> GSM1068485     1  0.0000     0.8735 1.000 0.000 0.000 0.000 0.000
#> GSM1068489     4  0.1205     0.8881 0.000 0.040 0.000 0.956 0.004
#> GSM1068497     5  0.2291     0.7937 0.000 0.056 0.036 0.000 0.908
#> GSM1068501     4  0.1041     0.8906 0.000 0.032 0.000 0.964 0.004
#> GSM1068504     2  0.3231     0.8446 0.000 0.800 0.000 0.196 0.004
#> GSM1068509     1  0.2890     0.7587 0.836 0.004 0.000 0.000 0.160
#> GSM1068511     4  0.0992     0.8944 0.000 0.024 0.000 0.968 0.008
#> GSM1068515     1  0.0404     0.8717 0.988 0.000 0.000 0.000 0.012
#> GSM1068516     5  0.1341     0.7971 0.000 0.056 0.000 0.000 0.944
#> GSM1068519     1  0.0000     0.8735 1.000 0.000 0.000 0.000 0.000
#> GSM1068523     2  0.2629     0.8860 0.000 0.860 0.000 0.136 0.004
#> GSM1068525     2  0.2629     0.8778 0.000 0.860 0.000 0.136 0.004
#> GSM1068526     4  0.1117     0.8979 0.000 0.020 0.016 0.964 0.000
#> GSM1068458     1  0.0000     0.8735 1.000 0.000 0.000 0.000 0.000
#> GSM1068459     3  0.0703     0.8546 0.000 0.000 0.976 0.000 0.024
#> GSM1068460     5  0.4003     0.5311 0.000 0.008 0.000 0.288 0.704
#> GSM1068461     1  0.1965     0.8107 0.904 0.000 0.000 0.000 0.096
#> GSM1068464     4  0.0510     0.9033 0.000 0.000 0.016 0.984 0.000
#> GSM1068468     4  0.6110     0.0939 0.112 0.004 0.000 0.492 0.392
#> GSM1068472     4  0.4449     0.3401 0.004 0.004 0.000 0.604 0.388
#> GSM1068473     4  0.0162     0.9030 0.000 0.000 0.000 0.996 0.004
#> GSM1068474     4  0.0510     0.9033 0.000 0.000 0.016 0.984 0.000
#> GSM1068476     2  0.3809     0.7938 0.000 0.736 0.000 0.256 0.008
#> GSM1068477     4  0.4367     0.2801 0.000 0.004 0.000 0.580 0.416
#> GSM1068462     5  0.4283     0.4054 0.000 0.008 0.000 0.348 0.644
#> GSM1068463     3  0.4262     0.2148 0.440 0.000 0.560 0.000 0.000
#> GSM1068465     4  0.6477    -0.0110 0.160 0.004 0.000 0.448 0.388
#> GSM1068466     1  0.2505     0.8045 0.888 0.000 0.020 0.000 0.092
#> GSM1068467     5  0.1357     0.7699 0.048 0.004 0.000 0.000 0.948
#> GSM1068469     1  0.4166     0.4750 0.648 0.004 0.000 0.000 0.348
#> GSM1068470     2  0.3305     0.8254 0.000 0.776 0.000 0.224 0.000
#> GSM1068471     4  0.0510     0.9033 0.000 0.000 0.016 0.984 0.000
#> GSM1068475     4  0.0671     0.9025 0.000 0.004 0.016 0.980 0.000
#> GSM1068528     1  0.0404     0.8717 0.988 0.000 0.000 0.000 0.012
#> GSM1068531     3  0.0703     0.8546 0.000 0.000 0.976 0.000 0.024
#> GSM1068532     1  0.0000     0.8735 1.000 0.000 0.000 0.000 0.000
#> GSM1068533     1  0.5637     0.4160 0.604 0.000 0.284 0.000 0.112
#> GSM1068535     3  0.6357     0.4033 0.000 0.172 0.600 0.204 0.024
#> GSM1068537     3  0.4291     0.0984 0.464 0.000 0.536 0.000 0.000
#> GSM1068538     1  0.0290     0.8719 0.992 0.000 0.008 0.000 0.000
#> GSM1068539     5  0.1341     0.7971 0.000 0.056 0.000 0.000 0.944
#> GSM1068540     3  0.0703     0.8546 0.000 0.000 0.976 0.000 0.024
#> GSM1068542     4  0.0162     0.9030 0.000 0.000 0.000 0.996 0.004
#> GSM1068543     2  0.1704     0.8678 0.000 0.928 0.000 0.068 0.004
#> GSM1068544     1  0.0703     0.8664 0.976 0.000 0.000 0.000 0.024
#> GSM1068545     4  0.0510     0.9033 0.000 0.000 0.016 0.984 0.000
#> GSM1068546     3  0.0703     0.8546 0.000 0.000 0.976 0.000 0.024
#> GSM1068547     1  0.0000     0.8735 1.000 0.000 0.000 0.000 0.000
#> GSM1068548     4  0.0290     0.9029 0.000 0.000 0.000 0.992 0.008
#> GSM1068549     5  0.2871     0.7666 0.000 0.040 0.088 0.000 0.872
#> GSM1068550     4  0.0162     0.9031 0.000 0.004 0.000 0.996 0.000
#> GSM1068551     4  0.1018     0.8982 0.000 0.016 0.016 0.968 0.000
#> GSM1068552     4  0.0510     0.9033 0.000 0.000 0.016 0.984 0.000
#> GSM1068555     2  0.1892     0.8736 0.000 0.916 0.000 0.080 0.004
#> GSM1068556     4  0.0290     0.9029 0.000 0.000 0.000 0.992 0.008
#> GSM1068557     5  0.4689     0.2837 0.000 0.424 0.000 0.016 0.560
#> GSM1068560     2  0.3521     0.8170 0.000 0.764 0.000 0.232 0.004
#> GSM1068561     2  0.3724     0.8318 0.000 0.788 0.000 0.184 0.028
#> GSM1068562     2  0.2848     0.8815 0.000 0.840 0.000 0.156 0.004
#> GSM1068563     4  0.0290     0.9029 0.000 0.000 0.000 0.992 0.008
#> GSM1068565     4  0.4380     0.1877 0.000 0.376 0.008 0.616 0.000
#> GSM1068529     2  0.4054     0.8003 0.000 0.748 0.000 0.224 0.028
#> GSM1068530     1  0.0290     0.8719 0.992 0.000 0.008 0.000 0.000
#> GSM1068534     4  0.2763     0.7922 0.000 0.148 0.000 0.848 0.004
#> GSM1068536     5  0.2782     0.7879 0.000 0.072 0.048 0.000 0.880
#> GSM1068541     1  0.4644     0.3962 0.604 0.004 0.000 0.012 0.380
#> GSM1068553     4  0.2672     0.8208 0.000 0.116 0.004 0.872 0.008
#> GSM1068554     4  0.0324     0.9025 0.000 0.004 0.000 0.992 0.004
#> GSM1068558     2  0.1430     0.8554 0.000 0.944 0.000 0.052 0.004
#> GSM1068559     5  0.2020     0.7843 0.000 0.100 0.000 0.000 0.900
#> GSM1068564     4  0.0510     0.9033 0.000 0.000 0.016 0.984 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1068478     3  0.3819    0.45620 0.000 0.000 0.672 0.012 0.316 0.000
#> GSM1068479     2  0.2647    0.60236 0.000 0.868 0.000 0.088 0.000 0.044
#> GSM1068481     3  0.0790    0.77145 0.000 0.000 0.968 0.032 0.000 0.000
#> GSM1068482     5  0.6827   -0.05326 0.324 0.000 0.168 0.076 0.432 0.000
#> GSM1068483     1  0.3288    0.80657 0.724 0.000 0.000 0.276 0.000 0.000
#> GSM1068486     3  0.4180    0.66055 0.000 0.000 0.732 0.216 0.024 0.028
#> GSM1068487     2  0.4532   -0.22826 0.000 0.500 0.000 0.032 0.000 0.468
#> GSM1068488     6  0.2744    0.82156 0.000 0.144 0.000 0.016 0.000 0.840
#> GSM1068490     2  0.1714    0.63019 0.000 0.908 0.000 0.092 0.000 0.000
#> GSM1068491     5  0.6339    0.53456 0.212 0.152 0.000 0.076 0.560 0.000
#> GSM1068492     2  0.1141    0.64337 0.000 0.948 0.000 0.052 0.000 0.000
#> GSM1068493     5  0.1789    0.71741 0.000 0.000 0.032 0.000 0.924 0.044
#> GSM1068494     5  0.1821    0.71857 0.000 0.000 0.008 0.024 0.928 0.040
#> GSM1068495     5  0.0937    0.72481 0.000 0.000 0.000 0.000 0.960 0.040
#> GSM1068496     3  0.0547    0.77579 0.000 0.000 0.980 0.020 0.000 0.000
#> GSM1068498     1  0.3972    0.44440 0.680 0.000 0.000 0.004 0.300 0.016
#> GSM1068499     1  0.0937    0.77973 0.960 0.000 0.000 0.000 0.040 0.000
#> GSM1068500     3  0.0000    0.77570 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM1068502     2  0.1075    0.63832 0.000 0.952 0.000 0.048 0.000 0.000
#> GSM1068503     2  0.1556    0.63543 0.000 0.920 0.000 0.080 0.000 0.000
#> GSM1068505     2  0.5119   -0.28314 0.000 0.624 0.000 0.220 0.000 0.156
#> GSM1068506     2  0.5196   -0.41656 0.000 0.604 0.000 0.252 0.000 0.144
#> GSM1068507     2  0.1765    0.63568 0.000 0.924 0.000 0.052 0.000 0.024
#> GSM1068508     2  0.2826    0.59404 0.000 0.856 0.000 0.092 0.000 0.052
#> GSM1068510     6  0.2527    0.83971 0.000 0.168 0.000 0.000 0.000 0.832
#> GSM1068512     2  0.5314   -0.47589 0.000 0.584 0.000 0.264 0.000 0.152
#> GSM1068513     6  0.3190    0.82306 0.000 0.220 0.000 0.008 0.000 0.772
#> GSM1068514     2  0.1471    0.61593 0.000 0.932 0.000 0.064 0.000 0.004
#> GSM1068517     5  0.3515    0.55308 0.192 0.000 0.000 0.012 0.780 0.016
#> GSM1068518     5  0.0603    0.71610 0.004 0.000 0.000 0.016 0.980 0.000
#> GSM1068520     1  0.3330    0.80248 0.716 0.000 0.000 0.284 0.000 0.000
#> GSM1068521     1  0.1391    0.77284 0.944 0.000 0.000 0.000 0.040 0.016
#> GSM1068522     2  0.4757   -0.13153 0.000 0.676 0.000 0.180 0.000 0.144
#> GSM1068524     6  0.2730    0.84030 0.000 0.192 0.000 0.000 0.000 0.808
#> GSM1068527     2  0.2988    0.49234 0.000 0.828 0.000 0.144 0.000 0.028
#> GSM1068480     5  0.1821    0.71857 0.000 0.000 0.008 0.024 0.928 0.040
#> GSM1068484     2  0.1501    0.63557 0.000 0.924 0.000 0.076 0.000 0.000
#> GSM1068485     1  0.1957    0.79973 0.888 0.000 0.000 0.112 0.000 0.000
#> GSM1068489     6  0.5906   -0.51830 0.000 0.300 0.000 0.236 0.000 0.464
#> GSM1068497     5  0.1821    0.71857 0.000 0.000 0.008 0.024 0.928 0.040
#> GSM1068501     2  0.1657    0.61019 0.000 0.928 0.000 0.056 0.000 0.016
#> GSM1068504     6  0.3012    0.83803 0.000 0.196 0.000 0.008 0.000 0.796
#> GSM1068509     1  0.4373    0.73925 0.624 0.000 0.004 0.344 0.028 0.000
#> GSM1068511     2  0.5304   -0.50217 0.000 0.580 0.000 0.276 0.000 0.144
#> GSM1068515     1  0.1391    0.77284 0.944 0.000 0.000 0.000 0.040 0.016
#> GSM1068516     5  0.0937    0.72481 0.000 0.000 0.000 0.000 0.960 0.040
#> GSM1068519     1  0.3288    0.80657 0.724 0.000 0.000 0.276 0.000 0.000
#> GSM1068523     6  0.3659    0.62983 0.000 0.364 0.000 0.000 0.000 0.636
#> GSM1068525     6  0.2762    0.83986 0.000 0.196 0.000 0.000 0.000 0.804
#> GSM1068526     2  0.2499    0.61095 0.000 0.880 0.000 0.072 0.000 0.048
#> GSM1068458     1  0.0964    0.78476 0.968 0.000 0.000 0.004 0.012 0.016
#> GSM1068459     3  0.0260    0.77500 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM1068460     5  0.3983    0.63311 0.000 0.208 0.000 0.056 0.736 0.000
#> GSM1068461     1  0.1838    0.75282 0.916 0.000 0.000 0.000 0.068 0.016
#> GSM1068464     2  0.1007    0.64170 0.000 0.956 0.000 0.044 0.000 0.000
#> GSM1068468     5  0.5983    0.49370 0.076 0.296 0.000 0.072 0.556 0.000
#> GSM1068472     5  0.5127    0.42890 0.000 0.348 0.000 0.096 0.556 0.000
#> GSM1068473     2  0.1075    0.61956 0.000 0.952 0.000 0.048 0.000 0.000
#> GSM1068474     2  0.1387    0.63761 0.000 0.932 0.000 0.068 0.000 0.000
#> GSM1068476     2  0.3996   -0.28892 0.000 0.512 0.000 0.004 0.000 0.484
#> GSM1068477     5  0.5044    0.46087 0.000 0.320 0.000 0.096 0.584 0.000
#> GSM1068462     5  0.4577    0.55814 0.000 0.272 0.000 0.072 0.656 0.000
#> GSM1068463     3  0.5682    0.32556 0.208 0.000 0.524 0.268 0.000 0.000
#> GSM1068465     5  0.6467    0.55122 0.160 0.188 0.000 0.096 0.556 0.000
#> GSM1068466     1  0.3774    0.76684 0.664 0.000 0.008 0.328 0.000 0.000
#> GSM1068467     5  0.2046    0.69998 0.060 0.000 0.000 0.032 0.908 0.000
#> GSM1068469     5  0.5219    0.36681 0.340 0.000 0.000 0.108 0.552 0.000
#> GSM1068470     6  0.3287    0.82736 0.000 0.220 0.000 0.012 0.000 0.768
#> GSM1068471     2  0.0458    0.63571 0.000 0.984 0.000 0.016 0.000 0.000
#> GSM1068475     2  0.1663    0.63089 0.000 0.912 0.000 0.088 0.000 0.000
#> GSM1068528     1  0.1151    0.78451 0.956 0.000 0.000 0.012 0.032 0.000
#> GSM1068531     3  0.1007    0.77326 0.000 0.000 0.956 0.044 0.000 0.000
#> GSM1068532     1  0.3288    0.80657 0.724 0.000 0.000 0.276 0.000 0.000
#> GSM1068533     3  0.7411    0.03129 0.320 0.000 0.348 0.172 0.160 0.000
#> GSM1068535     3  0.7124    0.11547 0.000 0.112 0.408 0.308 0.000 0.172
#> GSM1068537     3  0.4980    0.51125 0.184 0.000 0.648 0.168 0.000 0.000
#> GSM1068538     1  0.3288    0.80657 0.724 0.000 0.000 0.276 0.000 0.000
#> GSM1068539     5  0.0937    0.72481 0.000 0.000 0.000 0.000 0.960 0.040
#> GSM1068540     3  0.1141    0.77215 0.000 0.000 0.948 0.052 0.000 0.000
#> GSM1068542     2  0.0632    0.63473 0.000 0.976 0.000 0.024 0.000 0.000
#> GSM1068543     6  0.2527    0.83971 0.000 0.168 0.000 0.000 0.000 0.832
#> GSM1068544     1  0.1082    0.77884 0.956 0.000 0.000 0.004 0.040 0.000
#> GSM1068545     2  0.1387    0.63761 0.000 0.932 0.000 0.068 0.000 0.000
#> GSM1068546     3  0.1151    0.76986 0.000 0.000 0.956 0.032 0.012 0.000
#> GSM1068547     1  0.3309    0.80473 0.720 0.000 0.000 0.280 0.000 0.000
#> GSM1068548     2  0.2726    0.50130 0.000 0.856 0.000 0.112 0.000 0.032
#> GSM1068549     5  0.1765    0.70150 0.000 0.000 0.052 0.024 0.924 0.000
#> GSM1068550     2  0.1910    0.58674 0.000 0.892 0.000 0.108 0.000 0.000
#> GSM1068551     2  0.2112    0.63020 0.000 0.896 0.000 0.088 0.000 0.016
#> GSM1068552     2  0.1007    0.64093 0.000 0.956 0.000 0.044 0.000 0.000
#> GSM1068555     6  0.2562    0.84058 0.000 0.172 0.000 0.000 0.000 0.828
#> GSM1068556     2  0.4569   -0.03096 0.000 0.700 0.000 0.156 0.000 0.144
#> GSM1068557     5  0.5745    0.35947 0.000 0.124 0.000 0.020 0.548 0.308
#> GSM1068560     2  0.3869   -0.31429 0.000 0.500 0.000 0.000 0.000 0.500
#> GSM1068561     6  0.6113    0.63340 0.000 0.240 0.000 0.184 0.032 0.544
#> GSM1068562     6  0.3244    0.77793 0.000 0.268 0.000 0.000 0.000 0.732
#> GSM1068563     2  0.4500    0.00628 0.000 0.708 0.000 0.148 0.000 0.144
#> GSM1068565     2  0.4389   -0.23678 0.000 0.528 0.000 0.024 0.000 0.448
#> GSM1068529     6  0.5939    0.47788 0.000 0.356 0.000 0.144 0.016 0.484
#> GSM1068530     1  0.3288    0.80657 0.724 0.000 0.000 0.276 0.000 0.000
#> GSM1068534     4  0.5765    0.00000 0.000 0.412 0.000 0.416 0.000 0.172
#> GSM1068536     5  0.1265    0.72414 0.000 0.000 0.000 0.008 0.948 0.044
#> GSM1068541     5  0.6100    0.46393 0.280 0.080 0.000 0.084 0.556 0.000
#> GSM1068553     2  0.5842   -0.83857 0.000 0.472 0.004 0.352 0.000 0.172
#> GSM1068554     2  0.2178    0.52569 0.000 0.868 0.000 0.132 0.000 0.000
#> GSM1068558     6  0.2527    0.83971 0.000 0.168 0.000 0.000 0.000 0.832
#> GSM1068559     5  0.1471    0.71995 0.000 0.000 0.000 0.004 0.932 0.064
#> GSM1068564     2  0.1075    0.62179 0.000 0.952 0.000 0.048 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#>              n disease.state(p) gender(p) k
#> ATC:mclust  84            0.804    0.9424 2
#> ATC:mclust  72            0.264    0.7307 3
#> ATC:mclust 104            0.376    0.0799 4
#> ATC:mclust  92            0.997    0.2515 5
#> ATC:mclust  80            0.958    0.1733 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 38950 rows and 108 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.968       0.987         0.4743 0.529   0.529
#> 3 3 0.500           0.530       0.756         0.3508 0.782   0.612
#> 4 4 0.614           0.640       0.815         0.0965 0.750   0.470
#> 5 5 0.647           0.679       0.832         0.0941 0.789   0.443
#> 6 6 0.566           0.473       0.639         0.0460 0.891   0.590
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> GSM1068478     1  0.0000      0.991 1.000 0.000
#> GSM1068479     2  0.0000      0.984 0.000 1.000
#> GSM1068481     2  0.9087      0.525 0.324 0.676
#> GSM1068482     1  0.0000      0.991 1.000 0.000
#> GSM1068483     1  0.0000      0.991 1.000 0.000
#> GSM1068486     2  0.0000      0.984 0.000 1.000
#> GSM1068487     2  0.0000      0.984 0.000 1.000
#> GSM1068488     2  0.0000      0.984 0.000 1.000
#> GSM1068490     2  0.0000      0.984 0.000 1.000
#> GSM1068491     1  0.0000      0.991 1.000 0.000
#> GSM1068492     2  0.0000      0.984 0.000 1.000
#> GSM1068493     2  0.0000      0.984 0.000 1.000
#> GSM1068494     2  0.6148      0.817 0.152 0.848
#> GSM1068495     2  0.0000      0.984 0.000 1.000
#> GSM1068496     1  0.0000      0.991 1.000 0.000
#> GSM1068498     1  0.0000      0.991 1.000 0.000
#> GSM1068499     1  0.0000      0.991 1.000 0.000
#> GSM1068500     1  0.0000      0.991 1.000 0.000
#> GSM1068502     2  0.0000      0.984 0.000 1.000
#> GSM1068503     2  0.0000      0.984 0.000 1.000
#> GSM1068505     2  0.0000      0.984 0.000 1.000
#> GSM1068506     2  0.0000      0.984 0.000 1.000
#> GSM1068507     2  0.0000      0.984 0.000 1.000
#> GSM1068508     2  0.0000      0.984 0.000 1.000
#> GSM1068510     2  0.0000      0.984 0.000 1.000
#> GSM1068512     2  0.0000      0.984 0.000 1.000
#> GSM1068513     2  0.0000      0.984 0.000 1.000
#> GSM1068514     2  0.0000      0.984 0.000 1.000
#> GSM1068517     1  0.0000      0.991 1.000 0.000
#> GSM1068518     1  0.1633      0.970 0.976 0.024
#> GSM1068520     1  0.0000      0.991 1.000 0.000
#> GSM1068521     1  0.0000      0.991 1.000 0.000
#> GSM1068522     2  0.0000      0.984 0.000 1.000
#> GSM1068524     2  0.0000      0.984 0.000 1.000
#> GSM1068527     2  0.0000      0.984 0.000 1.000
#> GSM1068480     1  0.6801      0.779 0.820 0.180
#> GSM1068484     2  0.0000      0.984 0.000 1.000
#> GSM1068485     1  0.0000      0.991 1.000 0.000
#> GSM1068489     2  0.0000      0.984 0.000 1.000
#> GSM1068497     1  0.3274      0.934 0.940 0.060
#> GSM1068501     2  0.0000      0.984 0.000 1.000
#> GSM1068504     2  0.0000      0.984 0.000 1.000
#> GSM1068509     1  0.0000      0.991 1.000 0.000
#> GSM1068511     2  0.0000      0.984 0.000 1.000
#> GSM1068515     1  0.0000      0.991 1.000 0.000
#> GSM1068516     2  0.0000      0.984 0.000 1.000
#> GSM1068519     1  0.0000      0.991 1.000 0.000
#> GSM1068523     2  0.0000      0.984 0.000 1.000
#> GSM1068525     2  0.0000      0.984 0.000 1.000
#> GSM1068526     2  0.0000      0.984 0.000 1.000
#> GSM1068458     1  0.0000      0.991 1.000 0.000
#> GSM1068459     1  0.0000      0.991 1.000 0.000
#> GSM1068460     2  0.9970      0.119 0.468 0.532
#> GSM1068461     1  0.0000      0.991 1.000 0.000
#> GSM1068464     2  0.0000      0.984 0.000 1.000
#> GSM1068468     1  0.0376      0.987 0.996 0.004
#> GSM1068472     1  0.4161      0.908 0.916 0.084
#> GSM1068473     2  0.0000      0.984 0.000 1.000
#> GSM1068474     2  0.0000      0.984 0.000 1.000
#> GSM1068476     2  0.0000      0.984 0.000 1.000
#> GSM1068477     2  0.0000      0.984 0.000 1.000
#> GSM1068462     2  0.4161      0.899 0.084 0.916
#> GSM1068463     1  0.0000      0.991 1.000 0.000
#> GSM1068465     1  0.0000      0.991 1.000 0.000
#> GSM1068466     1  0.0000      0.991 1.000 0.000
#> GSM1068467     1  0.0000      0.991 1.000 0.000
#> GSM1068469     1  0.0000      0.991 1.000 0.000
#> GSM1068470     2  0.0000      0.984 0.000 1.000
#> GSM1068471     2  0.0000      0.984 0.000 1.000
#> GSM1068475     2  0.0000      0.984 0.000 1.000
#> GSM1068528     1  0.0000      0.991 1.000 0.000
#> GSM1068531     1  0.0000      0.991 1.000 0.000
#> GSM1068532     1  0.0000      0.991 1.000 0.000
#> GSM1068533     1  0.0000      0.991 1.000 0.000
#> GSM1068535     2  0.0000      0.984 0.000 1.000
#> GSM1068537     1  0.0000      0.991 1.000 0.000
#> GSM1068538     1  0.0000      0.991 1.000 0.000
#> GSM1068539     2  0.0000      0.984 0.000 1.000
#> GSM1068540     1  0.0000      0.991 1.000 0.000
#> GSM1068542     2  0.0000      0.984 0.000 1.000
#> GSM1068543     2  0.0000      0.984 0.000 1.000
#> GSM1068544     1  0.0000      0.991 1.000 0.000
#> GSM1068545     2  0.0000      0.984 0.000 1.000
#> GSM1068546     2  0.2236      0.950 0.036 0.964
#> GSM1068547     1  0.0000      0.991 1.000 0.000
#> GSM1068548     2  0.0000      0.984 0.000 1.000
#> GSM1068549     1  0.0000      0.991 1.000 0.000
#> GSM1068550     2  0.0000      0.984 0.000 1.000
#> GSM1068551     2  0.0000      0.984 0.000 1.000
#> GSM1068552     2  0.0000      0.984 0.000 1.000
#> GSM1068555     2  0.0000      0.984 0.000 1.000
#> GSM1068556     2  0.0000      0.984 0.000 1.000
#> GSM1068557     2  0.0000      0.984 0.000 1.000
#> GSM1068560     2  0.0000      0.984 0.000 1.000
#> GSM1068561     2  0.0000      0.984 0.000 1.000
#> GSM1068562     2  0.0000      0.984 0.000 1.000
#> GSM1068563     2  0.0000      0.984 0.000 1.000
#> GSM1068565     2  0.0000      0.984 0.000 1.000
#> GSM1068529     2  0.0000      0.984 0.000 1.000
#> GSM1068530     1  0.0000      0.991 1.000 0.000
#> GSM1068534     2  0.0000      0.984 0.000 1.000
#> GSM1068536     2  0.0000      0.984 0.000 1.000
#> GSM1068541     1  0.0000      0.991 1.000 0.000
#> GSM1068553     2  0.0000      0.984 0.000 1.000
#> GSM1068554     2  0.0000      0.984 0.000 1.000
#> GSM1068558     2  0.0000      0.984 0.000 1.000
#> GSM1068559     2  0.0000      0.984 0.000 1.000
#> GSM1068564     2  0.0000      0.984 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> GSM1068478     1  0.5497     0.6116 0.708 0.292 0.000
#> GSM1068479     2  0.6079     0.5418 0.000 0.612 0.388
#> GSM1068481     1  0.6809     0.3146 0.524 0.464 0.012
#> GSM1068482     1  0.3116     0.7419 0.892 0.108 0.000
#> GSM1068483     3  0.6252    -0.0678 0.444 0.000 0.556
#> GSM1068486     2  0.4121     0.5075 0.168 0.832 0.000
#> GSM1068487     2  0.5216     0.6105 0.000 0.740 0.260
#> GSM1068488     2  0.0424     0.6445 0.008 0.992 0.000
#> GSM1068490     2  0.6111     0.5333 0.000 0.604 0.396
#> GSM1068491     3  0.5138     0.3758 0.252 0.000 0.748
#> GSM1068492     2  0.6154     0.5188 0.000 0.592 0.408
#> GSM1068493     2  0.3879     0.5233 0.152 0.848 0.000
#> GSM1068494     1  0.6274     0.3929 0.544 0.456 0.000
#> GSM1068495     2  0.6026     0.0604 0.376 0.624 0.000
#> GSM1068496     1  0.5785     0.5436 0.696 0.004 0.300
#> GSM1068498     1  0.0424     0.7861 0.992 0.000 0.008
#> GSM1068499     1  0.0424     0.7861 0.992 0.000 0.008
#> GSM1068500     1  0.5406     0.6659 0.780 0.020 0.200
#> GSM1068502     3  0.1163     0.6409 0.000 0.028 0.972
#> GSM1068503     2  0.6062     0.5451 0.000 0.616 0.384
#> GSM1068505     2  0.6079     0.5416 0.000 0.612 0.388
#> GSM1068506     3  0.4555     0.4785 0.000 0.200 0.800
#> GSM1068507     2  0.6045     0.5486 0.000 0.620 0.380
#> GSM1068508     2  0.4555     0.6291 0.000 0.800 0.200
#> GSM1068510     2  0.0000     0.6483 0.000 1.000 0.000
#> GSM1068512     2  0.6140     0.5239 0.000 0.596 0.404
#> GSM1068513     2  0.2165     0.6518 0.000 0.936 0.064
#> GSM1068514     2  0.6095     0.5377 0.000 0.608 0.392
#> GSM1068517     1  0.3686     0.7220 0.860 0.140 0.000
#> GSM1068518     1  0.5831     0.6161 0.708 0.284 0.008
#> GSM1068520     1  0.1529     0.7821 0.960 0.000 0.040
#> GSM1068521     1  0.0592     0.7863 0.988 0.000 0.012
#> GSM1068522     3  0.5591     0.2701 0.000 0.304 0.696
#> GSM1068524     2  0.0237     0.6498 0.000 0.996 0.004
#> GSM1068527     2  0.6252     0.4596 0.000 0.556 0.444
#> GSM1068480     1  0.6140     0.4890 0.596 0.404 0.000
#> GSM1068484     2  0.6180     0.5067 0.000 0.584 0.416
#> GSM1068485     1  0.1411     0.7831 0.964 0.000 0.036
#> GSM1068489     2  0.6026     0.5512 0.000 0.624 0.376
#> GSM1068497     1  0.6095     0.5071 0.608 0.392 0.000
#> GSM1068501     2  0.6309     0.3379 0.000 0.500 0.500
#> GSM1068504     2  0.0747     0.6516 0.000 0.984 0.016
#> GSM1068509     3  0.6008     0.1199 0.372 0.000 0.628
#> GSM1068511     3  0.3412     0.5765 0.000 0.124 0.876
#> GSM1068515     1  0.0892     0.7857 0.980 0.000 0.020
#> GSM1068516     2  0.6180    -0.0700 0.416 0.584 0.000
#> GSM1068519     1  0.3267     0.7432 0.884 0.000 0.116
#> GSM1068523     2  0.0475     0.6485 0.004 0.992 0.004
#> GSM1068525     2  0.0237     0.6498 0.000 0.996 0.004
#> GSM1068526     2  0.5560     0.5940 0.000 0.700 0.300
#> GSM1068458     1  0.1529     0.7826 0.960 0.000 0.040
#> GSM1068459     1  0.7056     0.3446 0.572 0.024 0.404
#> GSM1068460     2  0.6600     0.1265 0.384 0.604 0.012
#> GSM1068461     1  0.0592     0.7863 0.988 0.000 0.012
#> GSM1068464     3  0.6308    -0.3621 0.000 0.492 0.508
#> GSM1068468     3  0.1163     0.6452 0.028 0.000 0.972
#> GSM1068472     3  0.0237     0.6474 0.004 0.000 0.996
#> GSM1068473     3  0.5835     0.1589 0.000 0.340 0.660
#> GSM1068474     2  0.6308     0.3576 0.000 0.508 0.492
#> GSM1068476     2  0.0592     0.6513 0.000 0.988 0.012
#> GSM1068477     2  0.2625     0.6493 0.000 0.916 0.084
#> GSM1068462     2  0.5263     0.6259 0.060 0.824 0.116
#> GSM1068463     1  0.1964     0.7762 0.944 0.000 0.056
#> GSM1068465     3  0.0424     0.6473 0.008 0.000 0.992
#> GSM1068466     1  0.4399     0.6806 0.812 0.000 0.188
#> GSM1068467     1  0.0592     0.7863 0.988 0.000 0.012
#> GSM1068469     1  0.5497     0.5675 0.708 0.000 0.292
#> GSM1068470     2  0.1289     0.6522 0.000 0.968 0.032
#> GSM1068471     2  0.6280     0.4300 0.000 0.540 0.460
#> GSM1068475     2  0.6140     0.5240 0.000 0.596 0.404
#> GSM1068528     1  0.0424     0.7861 0.992 0.000 0.008
#> GSM1068531     1  0.1711     0.7844 0.960 0.008 0.032
#> GSM1068532     1  0.5678     0.5197 0.684 0.000 0.316
#> GSM1068533     1  0.1267     0.7853 0.972 0.004 0.024
#> GSM1068535     2  0.6008     0.5717 0.004 0.664 0.332
#> GSM1068537     3  0.6225    -0.0351 0.432 0.000 0.568
#> GSM1068538     3  0.6309    -0.1941 0.496 0.000 0.504
#> GSM1068539     2  0.6062     0.0366 0.384 0.616 0.000
#> GSM1068540     1  0.1711     0.7844 0.960 0.008 0.032
#> GSM1068542     3  0.3482     0.5721 0.000 0.128 0.872
#> GSM1068543     2  0.0237     0.6498 0.000 0.996 0.004
#> GSM1068544     1  0.0424     0.7861 0.992 0.000 0.008
#> GSM1068545     2  0.6291     0.4132 0.000 0.532 0.468
#> GSM1068546     1  0.6295     0.3587 0.528 0.472 0.000
#> GSM1068547     1  0.3551     0.7319 0.868 0.000 0.132
#> GSM1068548     3  0.0747     0.6443 0.000 0.016 0.984
#> GSM1068549     1  0.2537     0.7575 0.920 0.080 0.000
#> GSM1068550     2  0.6095     0.5377 0.000 0.608 0.392
#> GSM1068551     2  0.5363     0.6045 0.000 0.724 0.276
#> GSM1068552     2  0.6126     0.5288 0.000 0.600 0.400
#> GSM1068555     2  0.0000     0.6483 0.000 1.000 0.000
#> GSM1068556     3  0.5529     0.2928 0.000 0.296 0.704
#> GSM1068557     2  0.0592     0.6422 0.012 0.988 0.000
#> GSM1068560     2  0.0237     0.6498 0.000 0.996 0.004
#> GSM1068561     2  0.1163     0.6317 0.028 0.972 0.000
#> GSM1068562     2  0.0592     0.6513 0.000 0.988 0.012
#> GSM1068563     3  0.1289     0.6389 0.000 0.032 0.968
#> GSM1068565     2  0.4750     0.6248 0.000 0.784 0.216
#> GSM1068529     2  0.0424     0.6445 0.008 0.992 0.000
#> GSM1068530     1  0.6307     0.1693 0.512 0.000 0.488
#> GSM1068534     2  0.5948     0.5611 0.000 0.640 0.360
#> GSM1068536     2  0.6204    -0.1006 0.424 0.576 0.000
#> GSM1068541     3  0.2959     0.5927 0.100 0.000 0.900
#> GSM1068553     3  0.5497     0.3013 0.000 0.292 0.708
#> GSM1068554     2  0.6280     0.4300 0.000 0.540 0.460
#> GSM1068558     2  0.0424     0.6445 0.008 0.992 0.000
#> GSM1068559     2  0.1860     0.6141 0.052 0.948 0.000
#> GSM1068564     2  0.6168     0.5128 0.000 0.588 0.412
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> GSM1068478     3  0.0188     0.8007 0.004 0.000 0.996 0.000
#> GSM1068479     4  0.1706     0.8361 0.036 0.016 0.000 0.948
#> GSM1068481     3  0.0000     0.8013 0.000 0.000 1.000 0.000
#> GSM1068482     1  0.5272     0.5355 0.680 0.032 0.288 0.000
#> GSM1068483     2  0.5972     0.5223 0.304 0.632 0.064 0.000
#> GSM1068486     3  0.1305     0.7908 0.000 0.004 0.960 0.036
#> GSM1068487     4  0.0469     0.8424 0.000 0.012 0.000 0.988
#> GSM1068488     4  0.5157     0.5964 0.000 0.028 0.284 0.688
#> GSM1068490     4  0.0000     0.8427 0.000 0.000 0.000 1.000
#> GSM1068491     2  0.4699     0.5602 0.320 0.676 0.000 0.004
#> GSM1068492     4  0.0592     0.8409 0.000 0.016 0.000 0.984
#> GSM1068493     3  0.1398     0.7887 0.000 0.004 0.956 0.040
#> GSM1068494     1  0.7276     0.3541 0.524 0.148 0.324 0.004
#> GSM1068495     1  0.6821     0.4894 0.592 0.256 0.000 0.152
#> GSM1068496     3  0.3402     0.6780 0.164 0.004 0.832 0.000
#> GSM1068498     1  0.3610     0.6187 0.800 0.200 0.000 0.000
#> GSM1068499     1  0.1489     0.6102 0.952 0.004 0.044 0.000
#> GSM1068500     3  0.0000     0.8013 0.000 0.000 1.000 0.000
#> GSM1068502     2  0.4916     0.3863 0.000 0.576 0.000 0.424
#> GSM1068503     4  0.0336     0.8421 0.000 0.008 0.000 0.992
#> GSM1068505     4  0.0657     0.8414 0.000 0.012 0.004 0.984
#> GSM1068506     4  0.4103     0.5827 0.000 0.256 0.000 0.744
#> GSM1068507     4  0.0000     0.8427 0.000 0.000 0.000 1.000
#> GSM1068508     4  0.1970     0.8312 0.008 0.060 0.000 0.932
#> GSM1068510     4  0.5383     0.7102 0.000 0.128 0.128 0.744
#> GSM1068512     4  0.2483     0.8163 0.000 0.032 0.052 0.916
#> GSM1068513     4  0.1733     0.8375 0.000 0.028 0.024 0.948
#> GSM1068514     4  0.0657     0.8414 0.000 0.012 0.004 0.984
#> GSM1068517     1  0.4008     0.6112 0.756 0.244 0.000 0.000
#> GSM1068518     1  0.4767     0.5984 0.724 0.256 0.000 0.020
#> GSM1068520     1  0.6019     0.4005 0.688 0.136 0.176 0.000
#> GSM1068521     1  0.1406     0.6062 0.960 0.024 0.016 0.000
#> GSM1068522     4  0.2469     0.7898 0.000 0.108 0.000 0.892
#> GSM1068524     4  0.4252     0.7085 0.000 0.252 0.004 0.744
#> GSM1068527     4  0.2334     0.8036 0.000 0.088 0.004 0.908
#> GSM1068480     1  0.6194     0.5275 0.644 0.096 0.260 0.000
#> GSM1068484     4  0.0592     0.8409 0.000 0.016 0.000 0.984
#> GSM1068485     1  0.3550     0.5713 0.860 0.044 0.096 0.000
#> GSM1068489     4  0.0804     0.8420 0.000 0.012 0.008 0.980
#> GSM1068497     1  0.4864     0.6087 0.724 0.256 0.012 0.008
#> GSM1068501     4  0.1792     0.8189 0.000 0.068 0.000 0.932
#> GSM1068504     4  0.3400     0.7679 0.000 0.180 0.000 0.820
#> GSM1068509     2  0.4813     0.6100 0.268 0.716 0.012 0.004
#> GSM1068511     4  0.4699     0.4306 0.000 0.320 0.004 0.676
#> GSM1068515     1  0.0817     0.6078 0.976 0.024 0.000 0.000
#> GSM1068516     1  0.6054     0.5530 0.656 0.256 0.000 0.088
#> GSM1068519     1  0.5668     0.2457 0.652 0.300 0.048 0.000
#> GSM1068523     4  0.6698     0.5399 0.140 0.256 0.000 0.604
#> GSM1068525     4  0.3196     0.7929 0.000 0.136 0.008 0.856
#> GSM1068526     4  0.0000     0.8427 0.000 0.000 0.000 1.000
#> GSM1068458     1  0.2814     0.5437 0.868 0.132 0.000 0.000
#> GSM1068459     3  0.0000     0.8013 0.000 0.000 1.000 0.000
#> GSM1068460     1  0.5520     0.5797 0.696 0.244 0.000 0.060
#> GSM1068461     1  0.1305     0.6209 0.960 0.036 0.004 0.000
#> GSM1068464     4  0.1716     0.8253 0.000 0.064 0.000 0.936
#> GSM1068468     2  0.5902     0.6725 0.140 0.700 0.000 0.160
#> GSM1068472     2  0.4711     0.6517 0.024 0.740 0.000 0.236
#> GSM1068473     4  0.2281     0.8034 0.000 0.096 0.000 0.904
#> GSM1068474     4  0.1716     0.8240 0.000 0.064 0.000 0.936
#> GSM1068476     4  0.4155     0.7188 0.004 0.240 0.000 0.756
#> GSM1068477     4  0.5598     0.6714 0.076 0.220 0.000 0.704
#> GSM1068462     1  0.7700     0.2675 0.448 0.248 0.000 0.304
#> GSM1068463     3  0.5090     0.4416 0.324 0.016 0.660 0.000
#> GSM1068465     2  0.5250     0.6719 0.176 0.744 0.000 0.080
#> GSM1068466     1  0.7101     0.1618 0.504 0.136 0.360 0.000
#> GSM1068467     1  0.3982     0.6144 0.776 0.220 0.000 0.004
#> GSM1068469     1  0.3978     0.4691 0.796 0.192 0.012 0.000
#> GSM1068470     4  0.1792     0.8290 0.000 0.068 0.000 0.932
#> GSM1068471     4  0.1118     0.8342 0.000 0.036 0.000 0.964
#> GSM1068475     4  0.0336     0.8435 0.008 0.000 0.000 0.992
#> GSM1068528     1  0.3325     0.5763 0.864 0.024 0.112 0.000
#> GSM1068531     3  0.0469     0.7992 0.012 0.000 0.988 0.000
#> GSM1068532     1  0.6862    -0.1618 0.488 0.408 0.104 0.000
#> GSM1068533     3  0.3982     0.6182 0.220 0.004 0.776 0.000
#> GSM1068535     3  0.2081     0.7554 0.000 0.000 0.916 0.084
#> GSM1068537     3  0.6112     0.4749 0.248 0.096 0.656 0.000
#> GSM1068538     2  0.4961     0.3362 0.448 0.552 0.000 0.000
#> GSM1068539     1  0.6656     0.5057 0.608 0.256 0.000 0.136
#> GSM1068540     3  0.0895     0.7953 0.020 0.004 0.976 0.000
#> GSM1068542     4  0.4250     0.5556 0.000 0.276 0.000 0.724
#> GSM1068543     4  0.5109     0.6902 0.000 0.060 0.196 0.744
#> GSM1068544     1  0.2480     0.5956 0.904 0.008 0.088 0.000
#> GSM1068545     4  0.1557     0.8272 0.000 0.056 0.000 0.944
#> GSM1068546     3  0.0188     0.8014 0.000 0.000 0.996 0.004
#> GSM1068547     1  0.4908     0.2948 0.692 0.292 0.016 0.000
#> GSM1068548     2  0.4543     0.6047 0.000 0.676 0.000 0.324
#> GSM1068549     3  0.1022     0.7918 0.032 0.000 0.968 0.000
#> GSM1068550     4  0.0657     0.8414 0.000 0.012 0.004 0.984
#> GSM1068551     4  0.0817     0.8411 0.000 0.024 0.000 0.976
#> GSM1068552     4  0.0469     0.8414 0.000 0.012 0.000 0.988
#> GSM1068555     4  0.4422     0.7001 0.008 0.256 0.000 0.736
#> GSM1068556     4  0.2469     0.7886 0.000 0.108 0.000 0.892
#> GSM1068557     4  0.4546     0.6962 0.012 0.256 0.000 0.732
#> GSM1068560     4  0.3610     0.7535 0.000 0.200 0.000 0.800
#> GSM1068561     3  0.5760     0.0512 0.000 0.028 0.524 0.448
#> GSM1068562     4  0.1867     0.8275 0.000 0.072 0.000 0.928
#> GSM1068563     2  0.4500     0.6127 0.000 0.684 0.000 0.316
#> GSM1068565     4  0.1022     0.8395 0.000 0.032 0.000 0.968
#> GSM1068529     3  0.5452     0.1513 0.000 0.016 0.556 0.428
#> GSM1068530     1  0.5606    -0.2563 0.500 0.480 0.020 0.000
#> GSM1068534     3  0.4103     0.5637 0.000 0.000 0.744 0.256
#> GSM1068536     3  0.3129     0.7655 0.040 0.028 0.900 0.032
#> GSM1068541     2  0.5170     0.6531 0.228 0.724 0.000 0.048
#> GSM1068553     4  0.6690     0.2101 0.000 0.100 0.352 0.548
#> GSM1068554     4  0.1637     0.8230 0.000 0.060 0.000 0.940
#> GSM1068558     4  0.5466     0.7043 0.008 0.200 0.060 0.732
#> GSM1068559     4  0.7611     0.2480 0.268 0.256 0.000 0.476
#> GSM1068564     4  0.0592     0.8409 0.000 0.016 0.000 0.984
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> GSM1068478     3  0.1205     0.8468 0.040 0.000 0.956 0.000 0.004
#> GSM1068479     4  0.4249     0.3172 0.000 0.432 0.000 0.568 0.000
#> GSM1068481     3  0.1357     0.8432 0.048 0.000 0.948 0.000 0.004
#> GSM1068482     1  0.1408     0.7857 0.948 0.000 0.044 0.000 0.008
#> GSM1068483     1  0.4169     0.6994 0.784 0.000 0.116 0.000 0.100
#> GSM1068486     3  0.1082     0.8504 0.028 0.000 0.964 0.000 0.008
#> GSM1068487     4  0.0771     0.8499 0.000 0.020 0.000 0.976 0.004
#> GSM1068488     4  0.2465     0.8293 0.004 0.028 0.044 0.912 0.012
#> GSM1068490     4  0.1043     0.8476 0.000 0.040 0.000 0.960 0.000
#> GSM1068491     5  0.1281     0.6860 0.032 0.012 0.000 0.000 0.956
#> GSM1068492     4  0.0162     0.8496 0.000 0.004 0.000 0.996 0.000
#> GSM1068493     1  0.6025     0.4046 0.612 0.000 0.180 0.200 0.008
#> GSM1068494     2  0.4644     0.4511 0.024 0.708 0.252 0.000 0.016
#> GSM1068495     2  0.2942     0.7067 0.128 0.856 0.000 0.008 0.008
#> GSM1068496     1  0.4644     0.3824 0.604 0.000 0.380 0.012 0.004
#> GSM1068498     2  0.4350     0.4080 0.408 0.588 0.000 0.000 0.004
#> GSM1068499     1  0.0703     0.7898 0.976 0.024 0.000 0.000 0.000
#> GSM1068500     3  0.1095     0.8529 0.012 0.008 0.968 0.000 0.012
#> GSM1068502     4  0.3039     0.7244 0.000 0.000 0.000 0.808 0.192
#> GSM1068503     4  0.0404     0.8506 0.000 0.012 0.000 0.988 0.000
#> GSM1068505     4  0.0000     0.8486 0.000 0.000 0.000 1.000 0.000
#> GSM1068506     5  0.4268     0.4370 0.000 0.000 0.008 0.344 0.648
#> GSM1068507     2  0.6077    -0.0359 0.000 0.512 0.392 0.016 0.080
#> GSM1068508     2  0.2367     0.7084 0.000 0.904 0.004 0.072 0.020
#> GSM1068510     4  0.5903     0.4656 0.000 0.312 0.092 0.584 0.012
#> GSM1068512     3  0.3617     0.7609 0.000 0.028 0.840 0.104 0.028
#> GSM1068513     4  0.6286     0.4646 0.000 0.112 0.272 0.588 0.028
#> GSM1068514     4  0.0162     0.8496 0.000 0.004 0.000 0.996 0.000
#> GSM1068517     2  0.4151     0.5180 0.344 0.652 0.000 0.000 0.004
#> GSM1068518     2  0.4434     0.2796 0.460 0.536 0.000 0.000 0.004
#> GSM1068520     5  0.4478     0.5519 0.240 0.016 0.020 0.000 0.724
#> GSM1068521     1  0.1893     0.7741 0.928 0.048 0.000 0.000 0.024
#> GSM1068522     4  0.0880     0.8422 0.000 0.000 0.000 0.968 0.032
#> GSM1068524     4  0.3242     0.7758 0.000 0.172 0.000 0.816 0.012
#> GSM1068527     3  0.5097     0.7284 0.000 0.068 0.752 0.060 0.120
#> GSM1068480     3  0.6972    -0.1504 0.256 0.348 0.388 0.000 0.008
#> GSM1068484     4  0.0404     0.8503 0.000 0.012 0.000 0.988 0.000
#> GSM1068485     1  0.0451     0.7946 0.988 0.008 0.004 0.000 0.000
#> GSM1068489     4  0.3634     0.7195 0.000 0.008 0.184 0.796 0.012
#> GSM1068497     2  0.4549     0.2797 0.464 0.528 0.000 0.000 0.008
#> GSM1068501     4  0.0162     0.8477 0.000 0.000 0.000 0.996 0.004
#> GSM1068504     2  0.4242     0.1334 0.000 0.572 0.000 0.428 0.000
#> GSM1068509     1  0.3267     0.7564 0.864 0.000 0.044 0.016 0.076
#> GSM1068511     4  0.1026     0.8394 0.004 0.000 0.004 0.968 0.024
#> GSM1068515     1  0.4453     0.5448 0.724 0.228 0.000 0.000 0.048
#> GSM1068516     2  0.3521     0.6882 0.172 0.808 0.000 0.012 0.008
#> GSM1068519     1  0.2074     0.7691 0.896 0.000 0.000 0.000 0.104
#> GSM1068523     2  0.2575     0.7076 0.012 0.884 0.000 0.100 0.004
#> GSM1068525     4  0.1704     0.8382 0.000 0.068 0.000 0.928 0.004
#> GSM1068526     4  0.1410     0.8425 0.000 0.060 0.000 0.940 0.000
#> GSM1068458     5  0.4824     0.3364 0.376 0.028 0.000 0.000 0.596
#> GSM1068459     3  0.1892     0.8224 0.080 0.000 0.916 0.000 0.004
#> GSM1068460     2  0.2630     0.6666 0.016 0.892 0.012 0.000 0.080
#> GSM1068461     1  0.3861     0.4465 0.712 0.284 0.000 0.000 0.004
#> GSM1068464     4  0.3783     0.6667 0.000 0.008 0.000 0.740 0.252
#> GSM1068468     5  0.1329     0.6907 0.032 0.004 0.000 0.008 0.956
#> GSM1068472     5  0.6066     0.3394 0.124 0.000 0.000 0.388 0.488
#> GSM1068473     4  0.0162     0.8477 0.000 0.000 0.000 0.996 0.004
#> GSM1068474     4  0.4058     0.6825 0.000 0.024 0.000 0.740 0.236
#> GSM1068476     2  0.2100     0.6970 0.000 0.924 0.048 0.012 0.016
#> GSM1068477     2  0.3419     0.6575 0.016 0.804 0.000 0.180 0.000
#> GSM1068462     2  0.3164     0.7021 0.076 0.868 0.000 0.012 0.044
#> GSM1068463     1  0.3048     0.7005 0.820 0.000 0.176 0.000 0.004
#> GSM1068465     5  0.1059     0.6892 0.020 0.004 0.000 0.008 0.968
#> GSM1068466     3  0.5397     0.1594 0.032 0.012 0.488 0.000 0.468
#> GSM1068467     2  0.3491     0.6518 0.228 0.768 0.000 0.000 0.004
#> GSM1068469     1  0.1469     0.7851 0.948 0.016 0.000 0.000 0.036
#> GSM1068470     4  0.3242     0.7374 0.000 0.216 0.000 0.784 0.000
#> GSM1068471     4  0.0771     0.8487 0.000 0.004 0.000 0.976 0.020
#> GSM1068475     4  0.1341     0.8436 0.000 0.056 0.000 0.944 0.000
#> GSM1068528     1  0.0510     0.7946 0.984 0.000 0.016 0.000 0.000
#> GSM1068531     3  0.1365     0.8522 0.040 0.004 0.952 0.000 0.004
#> GSM1068532     1  0.3201     0.7575 0.852 0.000 0.052 0.000 0.096
#> GSM1068533     3  0.2597     0.8407 0.020 0.040 0.904 0.000 0.036
#> GSM1068535     3  0.0566     0.8532 0.012 0.000 0.984 0.004 0.000
#> GSM1068537     3  0.4255     0.7183 0.128 0.000 0.776 0.000 0.096
#> GSM1068538     5  0.3837     0.4647 0.308 0.000 0.000 0.000 0.692
#> GSM1068539     2  0.4979     0.6530 0.212 0.708 0.000 0.072 0.008
#> GSM1068540     3  0.1444     0.8506 0.040 0.000 0.948 0.000 0.012
#> GSM1068542     4  0.2852     0.7529 0.000 0.000 0.000 0.828 0.172
#> GSM1068543     4  0.4845     0.7373 0.000 0.124 0.108 0.752 0.016
#> GSM1068544     1  0.0671     0.7919 0.980 0.016 0.004 0.000 0.000
#> GSM1068545     4  0.3099     0.7971 0.000 0.028 0.000 0.848 0.124
#> GSM1068546     3  0.0613     0.8534 0.004 0.008 0.984 0.000 0.004
#> GSM1068547     1  0.3741     0.5783 0.732 0.004 0.000 0.000 0.264
#> GSM1068548     4  0.2230     0.7940 0.000 0.000 0.000 0.884 0.116
#> GSM1068549     3  0.1885     0.8469 0.020 0.044 0.932 0.000 0.004
#> GSM1068550     4  0.0290     0.8501 0.000 0.008 0.000 0.992 0.000
#> GSM1068551     4  0.3876     0.5911 0.000 0.316 0.000 0.684 0.000
#> GSM1068552     4  0.0162     0.8496 0.000 0.004 0.000 0.996 0.000
#> GSM1068555     2  0.3129     0.6702 0.000 0.832 0.004 0.156 0.008
#> GSM1068556     4  0.0290     0.8464 0.000 0.000 0.000 0.992 0.008
#> GSM1068557     2  0.2316     0.7085 0.000 0.916 0.036 0.036 0.012
#> GSM1068560     2  0.3113     0.6986 0.000 0.868 0.044 0.080 0.008
#> GSM1068561     3  0.3093     0.7830 0.000 0.168 0.824 0.000 0.008
#> GSM1068562     4  0.4806     0.3604 0.000 0.408 0.016 0.572 0.004
#> GSM1068563     5  0.3816     0.5371 0.000 0.000 0.000 0.304 0.696
#> GSM1068565     2  0.4370     0.4056 0.000 0.656 0.008 0.332 0.004
#> GSM1068529     3  0.3106     0.7990 0.000 0.140 0.840 0.000 0.020
#> GSM1068530     1  0.2179     0.7639 0.888 0.000 0.000 0.000 0.112
#> GSM1068534     3  0.1012     0.8502 0.000 0.000 0.968 0.020 0.012
#> GSM1068536     3  0.2612     0.8114 0.000 0.124 0.868 0.000 0.008
#> GSM1068541     5  0.2208     0.6858 0.072 0.000 0.000 0.020 0.908
#> GSM1068553     4  0.2802     0.7538 0.016 0.000 0.100 0.876 0.008
#> GSM1068554     4  0.0162     0.8477 0.000 0.000 0.000 0.996 0.004
#> GSM1068558     4  0.4394     0.6661 0.000 0.256 0.016 0.716 0.012
#> GSM1068559     2  0.1300     0.6998 0.000 0.956 0.028 0.000 0.016
#> GSM1068564     4  0.0290     0.8501 0.000 0.008 0.000 0.992 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM1068478     3  0.3799     0.6485 0.112 0.000 0.804 0.008 0.068 0.008
#> GSM1068479     2  0.7369    -0.0465 0.000 0.396 0.000 0.152 0.192 0.260
#> GSM1068481     3  0.2532     0.6789 0.032 0.000 0.884 0.008 0.076 0.000
#> GSM1068482     1  0.4988     0.5435 0.676 0.000 0.096 0.012 0.212 0.004
#> GSM1068483     1  0.5077     0.5958 0.712 0.000 0.124 0.072 0.092 0.000
#> GSM1068486     3  0.2503     0.6884 0.024 0.000 0.896 0.008 0.060 0.012
#> GSM1068487     2  0.1829     0.7379 0.000 0.920 0.000 0.012 0.004 0.064
#> GSM1068488     2  0.4710     0.6770 0.008 0.756 0.036 0.012 0.048 0.140
#> GSM1068490     2  0.2393     0.7424 0.000 0.884 0.000 0.020 0.004 0.092
#> GSM1068491     4  0.4668     0.5358 0.040 0.044 0.000 0.764 0.032 0.120
#> GSM1068492     2  0.2039     0.7497 0.000 0.908 0.000 0.016 0.004 0.072
#> GSM1068493     3  0.7687     0.0484 0.268 0.152 0.400 0.012 0.164 0.004
#> GSM1068494     6  0.5665     0.1505 0.000 0.000 0.172 0.004 0.284 0.540
#> GSM1068495     6  0.5079    -0.0496 0.048 0.008 0.000 0.004 0.416 0.524
#> GSM1068496     3  0.6130     0.3416 0.288 0.020 0.560 0.012 0.112 0.008
#> GSM1068498     5  0.4455     0.6619 0.160 0.000 0.000 0.000 0.712 0.128
#> GSM1068499     1  0.2823     0.5997 0.796 0.000 0.000 0.000 0.204 0.000
#> GSM1068500     3  0.2293     0.6925 0.004 0.000 0.896 0.016 0.004 0.080
#> GSM1068502     2  0.3317     0.6662 0.000 0.804 0.000 0.168 0.012 0.016
#> GSM1068503     2  0.1367     0.7447 0.000 0.944 0.000 0.000 0.012 0.044
#> GSM1068505     2  0.2146     0.7388 0.000 0.880 0.000 0.004 0.000 0.116
#> GSM1068506     4  0.5945     0.3620 0.008 0.328 0.044 0.560 0.012 0.048
#> GSM1068507     6  0.6284     0.1827 0.000 0.044 0.116 0.184 0.040 0.616
#> GSM1068508     6  0.6804     0.1930 0.000 0.088 0.000 0.172 0.260 0.480
#> GSM1068510     6  0.5745     0.1922 0.000 0.356 0.004 0.012 0.112 0.516
#> GSM1068512     3  0.6701     0.3781 0.000 0.136 0.584 0.120 0.024 0.136
#> GSM1068513     6  0.6515     0.0427 0.000 0.392 0.148 0.028 0.012 0.420
#> GSM1068514     2  0.1820     0.7529 0.000 0.924 0.000 0.012 0.008 0.056
#> GSM1068517     5  0.5080     0.6447 0.236 0.000 0.000 0.000 0.624 0.140
#> GSM1068518     5  0.4955     0.6533 0.204 0.000 0.000 0.004 0.660 0.132
#> GSM1068520     4  0.7585     0.0545 0.344 0.000 0.180 0.364 0.076 0.036
#> GSM1068521     1  0.4040     0.5097 0.688 0.000 0.000 0.032 0.280 0.000
#> GSM1068522     2  0.2002     0.7417 0.000 0.908 0.000 0.076 0.004 0.012
#> GSM1068524     2  0.4303     0.5015 0.000 0.640 0.000 0.012 0.016 0.332
#> GSM1068527     4  0.7538     0.2231 0.004 0.088 0.220 0.432 0.020 0.236
#> GSM1068480     5  0.6840     0.4316 0.136 0.000 0.268 0.004 0.492 0.100
#> GSM1068484     2  0.0972     0.7517 0.000 0.964 0.000 0.008 0.000 0.028
#> GSM1068485     1  0.2613     0.6599 0.848 0.000 0.012 0.000 0.140 0.000
#> GSM1068489     2  0.5116     0.5722 0.000 0.684 0.088 0.040 0.000 0.188
#> GSM1068497     5  0.5387     0.5101 0.332 0.000 0.004 0.004 0.560 0.100
#> GSM1068501     2  0.6130     0.6066 0.104 0.684 0.020 0.056 0.056 0.080
#> GSM1068504     2  0.5214     0.0982 0.000 0.480 0.000 0.008 0.068 0.444
#> GSM1068509     1  0.4194     0.6384 0.796 0.008 0.072 0.028 0.092 0.004
#> GSM1068511     2  0.3541     0.6943 0.016 0.848 0.020 0.040 0.068 0.008
#> GSM1068515     5  0.5282     0.5901 0.252 0.000 0.000 0.044 0.640 0.064
#> GSM1068516     6  0.6764     0.0220 0.196 0.048 0.000 0.004 0.312 0.440
#> GSM1068519     1  0.2461     0.6747 0.888 0.000 0.004 0.064 0.044 0.000
#> GSM1068523     6  0.4875     0.2308 0.000 0.048 0.000 0.008 0.376 0.568
#> GSM1068525     2  0.2946     0.7101 0.000 0.824 0.000 0.012 0.004 0.160
#> GSM1068526     2  0.2882     0.7011 0.000 0.812 0.000 0.008 0.000 0.180
#> GSM1068458     4  0.6004     0.0577 0.300 0.000 0.000 0.468 0.228 0.004
#> GSM1068459     3  0.3716     0.6584 0.060 0.004 0.812 0.008 0.112 0.004
#> GSM1068460     6  0.6215     0.0423 0.004 0.000 0.016 0.228 0.244 0.508
#> GSM1068461     5  0.4513     0.4284 0.368 0.000 0.000 0.004 0.596 0.032
#> GSM1068464     2  0.5132     0.5545 0.000 0.624 0.000 0.284 0.020 0.072
#> GSM1068468     4  0.3151     0.5757 0.016 0.052 0.000 0.856 0.072 0.004
#> GSM1068472     4  0.7574     0.3754 0.184 0.340 0.000 0.340 0.124 0.012
#> GSM1068473     2  0.0881     0.7433 0.000 0.972 0.000 0.012 0.008 0.008
#> GSM1068474     2  0.5037     0.5662 0.000 0.636 0.000 0.284 0.036 0.044
#> GSM1068476     6  0.3763     0.3754 0.000 0.012 0.016 0.052 0.104 0.816
#> GSM1068477     6  0.6525     0.4046 0.000 0.212 0.000 0.076 0.180 0.532
#> GSM1068462     5  0.6377     0.1182 0.004 0.012 0.000 0.236 0.432 0.316
#> GSM1068463     1  0.3958     0.6259 0.784 0.000 0.108 0.012 0.096 0.000
#> GSM1068465     4  0.1578     0.5476 0.048 0.012 0.000 0.936 0.000 0.004
#> GSM1068466     3  0.7584     0.0411 0.168 0.000 0.376 0.340 0.040 0.076
#> GSM1068467     5  0.5180     0.5740 0.076 0.000 0.000 0.048 0.676 0.200
#> GSM1068469     5  0.6472    -0.1344 0.388 0.008 0.136 0.036 0.432 0.000
#> GSM1068470     2  0.4266     0.5984 0.000 0.700 0.000 0.008 0.040 0.252
#> GSM1068471     2  0.3463     0.7189 0.000 0.816 0.000 0.120 0.008 0.056
#> GSM1068475     2  0.3659     0.7294 0.000 0.824 0.000 0.064 0.044 0.068
#> GSM1068528     1  0.3737     0.6167 0.772 0.000 0.036 0.008 0.184 0.000
#> GSM1068531     3  0.4990     0.6632 0.084 0.000 0.740 0.012 0.080 0.084
#> GSM1068532     1  0.4024     0.5990 0.772 0.000 0.016 0.152 0.060 0.000
#> GSM1068533     3  0.5033     0.6176 0.036 0.000 0.708 0.064 0.012 0.180
#> GSM1068535     3  0.4409     0.6761 0.004 0.040 0.784 0.008 0.088 0.076
#> GSM1068537     3  0.5320     0.5708 0.176 0.000 0.676 0.060 0.088 0.000
#> GSM1068538     1  0.4534     0.0686 0.492 0.000 0.000 0.476 0.032 0.000
#> GSM1068539     5  0.5835     0.5535 0.128 0.040 0.000 0.004 0.612 0.216
#> GSM1068540     3  0.1007     0.6974 0.004 0.000 0.968 0.008 0.004 0.016
#> GSM1068542     2  0.6493     0.2526 0.096 0.504 0.000 0.332 0.024 0.044
#> GSM1068543     6  0.4808    -0.1778 0.000 0.480 0.008 0.016 0.012 0.484
#> GSM1068544     1  0.3012     0.6004 0.796 0.000 0.008 0.000 0.196 0.000
#> GSM1068545     2  0.4388     0.6805 0.000 0.732 0.000 0.168 0.008 0.092
#> GSM1068546     3  0.3703     0.6684 0.000 0.000 0.800 0.012 0.060 0.128
#> GSM1068547     1  0.4136     0.5970 0.732 0.000 0.000 0.192 0.076 0.000
#> GSM1068548     2  0.3855     0.5621 0.012 0.728 0.000 0.248 0.008 0.004
#> GSM1068549     3  0.7332     0.4443 0.132 0.000 0.464 0.020 0.128 0.256
#> GSM1068550     2  0.2544     0.7229 0.000 0.852 0.000 0.004 0.004 0.140
#> GSM1068551     2  0.5478     0.4696 0.000 0.616 0.000 0.060 0.056 0.268
#> GSM1068552     2  0.1701     0.7380 0.000 0.920 0.000 0.000 0.008 0.072
#> GSM1068555     6  0.4755     0.4268 0.000 0.244 0.000 0.004 0.088 0.664
#> GSM1068556     2  0.1659     0.7378 0.004 0.940 0.000 0.020 0.028 0.008
#> GSM1068557     6  0.5975     0.2589 0.000 0.032 0.028 0.076 0.272 0.592
#> GSM1068560     6  0.4169     0.4753 0.000 0.140 0.004 0.000 0.104 0.752
#> GSM1068561     3  0.4254     0.5409 0.000 0.000 0.624 0.004 0.020 0.352
#> GSM1068562     6  0.4527    -0.0826 0.000 0.456 0.000 0.004 0.024 0.516
#> GSM1068563     4  0.4407     0.4341 0.008 0.332 0.004 0.640 0.008 0.008
#> GSM1068565     6  0.5696     0.0820 0.000 0.408 0.000 0.064 0.040 0.488
#> GSM1068529     6  0.6057    -0.2740 0.000 0.044 0.428 0.004 0.080 0.444
#> GSM1068530     1  0.1682     0.6850 0.928 0.000 0.000 0.052 0.020 0.000
#> GSM1068534     3  0.3030     0.6807 0.000 0.052 0.868 0.008 0.016 0.056
#> GSM1068536     3  0.4917     0.5916 0.004 0.000 0.660 0.012 0.068 0.256
#> GSM1068541     4  0.5425     0.4946 0.132 0.080 0.000 0.680 0.108 0.000
#> GSM1068553     2  0.7110     0.4529 0.116 0.608 0.084 0.036 0.096 0.060
#> GSM1068554     2  0.3821     0.6987 0.056 0.828 0.004 0.008 0.044 0.060
#> GSM1068558     6  0.5627     0.0523 0.000 0.412 0.000 0.012 0.104 0.472
#> GSM1068559     6  0.3208     0.3491 0.000 0.004 0.016 0.016 0.132 0.832
#> GSM1068564     2  0.0935     0.7504 0.000 0.964 0.000 0.004 0.000 0.032
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#>           n disease.state(p) gender(p) k
#> ATC:NMF 107           0.2901     1.000 2
#> ATC:NMF  80           0.3579     0.930 3
#> ATC:NMF  89           0.3112     0.576 4
#> ATC:NMF  88           0.3956     0.440 5
#> ATC:NMF  66           0.0571     0.558 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0