cola Report for GDS4926

Date: 2019-12-25 21:54:27 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 51941 rows and 60 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4, anno = anno)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 51941    60

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_list), 
    col = get_anno_col(res_list)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
SD:hclust 2 1.000 0.994 0.997 **
SD:kmeans 2 1.000 0.995 0.996 **
SD:pam 2 1.000 0.998 0.998 **
SD:mclust 2 1.000 0.973 0.988 **
CV:kmeans 2 1.000 0.982 0.985 **
CV:mclust 2 1.000 0.988 0.994 **
MAD:hclust 2 1.000 0.978 0.975 **
MAD:mclust 2 1.000 0.999 1.000 **
ATC:pam 5 1.000 0.957 0.984 ** 2,4
ATC:NMF 2 1.000 1.000 1.000 **
SD:NMF 2 0.996 0.938 0.975 **
ATC:kmeans 5 0.979 0.945 0.913 ** 2
ATC:hclust 4 0.954 0.963 0.966 ** 2
ATC:skmeans 6 0.947 0.922 0.938 * 3,5
ATC:mclust 6 0.946 0.795 0.899 * 3,4,5
MAD:kmeans 3 0.402 0.739 0.842
MAD:NMF 3 0.355 0.635 0.802
MAD:pam 3 0.342 0.768 0.841
CV:hclust 3 0.330 0.855 0.883
CV:pam 4 0.298 0.545 0.689
CV:NMF 3 0.260 0.537 0.750
SD:skmeans 2 0.207 0.658 0.829
MAD:skmeans 2 0.060 0.632 0.795
CV:skmeans 2 0.030 0.606 0.760

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k  1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.9962           0.938       0.975          0.294 0.718   0.718
#> CV:NMF      2 0.7895           0.872       0.946          0.367 0.636   0.636
#> MAD:NMF     2 0.6792           0.874       0.942          0.396 0.587   0.587
#> ATC:NMF     2 1.0000           1.000       1.000          0.236 0.765   0.765
#> SD:skmeans  2 0.2068           0.658       0.829          0.502 0.494   0.494
#> CV:skmeans  2 0.0301           0.606       0.760          0.503 0.548   0.548
#> MAD:skmeans 2 0.0595           0.632       0.795          0.505 0.501   0.501
#> ATC:skmeans 2 0.6053           0.863       0.933          0.397 0.602   0.602
#> SD:mclust   2 1.0000           0.973       0.988          0.252 0.765   0.765
#> CV:mclust   2 1.0000           0.988       0.994          0.244 0.765   0.765
#> MAD:mclust  2 1.0000           0.999       1.000          0.236 0.765   0.765
#> ATC:mclust  2 0.5051           0.850       0.910          0.317 0.765   0.765
#> SD:kmeans   2 1.0000           0.995       0.996          0.239 0.765   0.765
#> CV:kmeans   2 1.0000           0.982       0.985          0.250 0.765   0.765
#> MAD:kmeans  2 0.5465           0.876       0.919          0.313 0.765   0.765
#> ATC:kmeans  2 1.0000           1.000       1.000          0.236 0.765   0.765
#> SD:pam      2 1.0000           0.998       0.998          0.237 0.765   0.765
#> CV:pam      2 0.0144           0.346       0.652          0.446 0.537   0.537
#> MAD:pam     2 0.1165           0.478       0.728          0.444 0.497   0.497
#> ATC:pam     2 1.0000           1.000       1.000          0.236 0.765   0.765
#> SD:hclust   2 1.0000           0.994       0.997          0.239 0.765   0.765
#> CV:hclust   2 0.7544           0.969       0.950          0.231 0.765   0.765
#> MAD:hclust  2 1.0000           0.978       0.975          0.245 0.765   0.765
#> ATC:hclust  2 1.0000           1.000       1.000          0.236 0.765   0.765
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.390           0.678       0.831          1.086 0.629   0.492
#> CV:NMF      3 0.260           0.537       0.750          0.673 0.681   0.524
#> MAD:NMF     3 0.355           0.635       0.802          0.564 0.664   0.480
#> ATC:NMF     3 0.767           0.886       0.946          1.563 0.620   0.504
#> SD:skmeans  3 0.138           0.398       0.657          0.329 0.708   0.481
#> CV:skmeans  3 0.101           0.220       0.552          0.335 0.681   0.471
#> MAD:skmeans 3 0.115           0.281       0.597          0.326 0.667   0.436
#> ATC:skmeans 3 1.000           0.991       0.997          0.567 0.716   0.550
#> SD:mclust   3 0.393           0.334       0.656          1.255 0.729   0.645
#> CV:mclust   3 0.354           0.458       0.776          1.393 0.619   0.501
#> MAD:mclust  3 0.489           0.735       0.855          1.535 0.623   0.507
#> ATC:mclust  3 0.946           0.944       0.971          0.915 0.584   0.469
#> SD:kmeans   3 0.519           0.750       0.872          1.473 0.618   0.501
#> CV:kmeans   3 0.289           0.593       0.777          1.358 0.619   0.501
#> MAD:kmeans  3 0.402           0.739       0.842          0.917 0.627   0.513
#> ATC:kmeans  3 0.620           0.669       0.800          1.444 0.664   0.561
#> SD:pam      3 0.276           0.648       0.776          1.521 0.619   0.501
#> CV:pam      3 0.224           0.543       0.707          0.369 0.623   0.421
#> MAD:pam     3 0.342           0.768       0.841          0.377 0.736   0.539
#> ATC:pam     3 0.857           0.885       0.954          1.581 0.623   0.507
#> SD:hclust   3 0.417           0.829       0.885          0.627 0.944   0.926
#> CV:hclust   3 0.330           0.855       0.883          0.635 0.944   0.926
#> MAD:hclust  3 0.272           0.575       0.788          0.942 0.892   0.858
#> ATC:hclust  3 0.840           0.928       0.970          1.504 0.632   0.519
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.483           0.539       0.714         0.1950 0.734   0.404
#> CV:NMF      4 0.375           0.501       0.682         0.1966 0.711   0.376
#> MAD:NMF     4 0.462           0.527       0.750         0.1887 0.743   0.418
#> ATC:NMF     4 0.750           0.773       0.923         0.0321 0.985   0.960
#> SD:skmeans  4 0.231           0.317       0.588         0.1298 0.834   0.564
#> CV:skmeans  4 0.157           0.186       0.483         0.1271 0.733   0.369
#> MAD:skmeans 4 0.165           0.277       0.535         0.1282 0.769   0.441
#> ATC:skmeans 4 0.841           0.946       0.858         0.1398 0.847   0.603
#> SD:mclust   4 0.506           0.640       0.815         0.2351 0.638   0.351
#> CV:mclust   4 0.409           0.642       0.788         0.2180 0.718   0.397
#> MAD:mclust  4 0.624           0.769       0.871         0.2160 0.756   0.451
#> ATC:mclust  4 0.911           0.909       0.958         0.2297 0.801   0.528
#> SD:kmeans   4 0.506           0.700       0.805         0.2144 0.837   0.597
#> CV:kmeans   4 0.388           0.543       0.715         0.2234 0.793   0.513
#> MAD:kmeans  4 0.536           0.609       0.797         0.2130 0.790   0.512
#> ATC:kmeans  4 0.597           0.830       0.801         0.1953 0.808   0.562
#> SD:pam      4 0.312           0.476       0.684         0.1739 0.856   0.647
#> CV:pam      4 0.298           0.545       0.689         0.1756 0.832   0.590
#> MAD:pam     4 0.402           0.659       0.770         0.1736 0.869   0.675
#> ATC:pam     4 0.923           0.903       0.959         0.2176 0.831   0.585
#> SD:hclust   4 0.295           0.622       0.794         0.2730 0.971   0.959
#> CV:hclust   4 0.261           0.758       0.814         0.2931 0.999   0.999
#> MAD:hclust  4 0.289           0.444       0.682         0.2425 0.693   0.550
#> ATC:hclust  4 0.954           0.963       0.966         0.0730 0.962   0.903
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.523           0.480       0.689         0.0792 0.855   0.511
#> CV:NMF      5 0.465           0.431       0.653         0.0798 0.825   0.438
#> MAD:NMF     5 0.511           0.434       0.686         0.0765 0.854   0.514
#> ATC:NMF     5 0.635           0.758       0.827         0.1616 0.840   0.599
#> SD:skmeans  5 0.299           0.296       0.546         0.0683 0.895   0.635
#> CV:skmeans  5 0.222           0.181       0.445         0.0662 0.808   0.388
#> MAD:skmeans 5 0.288           0.260       0.503         0.0660 0.846   0.493
#> ATC:skmeans 5 1.000           0.975       0.977         0.0917 0.982   0.925
#> SD:mclust   5 0.548           0.669       0.769         0.0986 0.950   0.811
#> CV:mclust   5 0.580           0.722       0.785         0.0903 0.918   0.718
#> MAD:mclust  5 0.638           0.700       0.795         0.0782 0.960   0.846
#> ATC:mclust  5 0.981           0.964       0.976         0.0401 0.964   0.860
#> SD:kmeans   5 0.613           0.600       0.780         0.0861 0.972   0.896
#> CV:kmeans   5 0.482           0.489       0.661         0.0775 0.895   0.644
#> MAD:kmeans  5 0.610           0.562       0.747         0.0827 0.888   0.609
#> ATC:kmeans  5 0.979           0.945       0.913         0.1016 0.949   0.806
#> SD:pam      5 0.341           0.398       0.650         0.0469 0.956   0.853
#> CV:pam      5 0.340           0.518       0.691         0.0455 0.990   0.964
#> MAD:pam     5 0.508           0.671       0.758         0.0675 0.938   0.799
#> ATC:pam     5 1.000           0.957       0.984         0.0490 0.964   0.861
#> SD:hclust   5 0.308           0.530       0.711         0.3069 0.667   0.518
#> CV:hclust   5 0.293           0.422       0.695         0.2624 0.851   0.789
#> MAD:hclust  5 0.289           0.561       0.730         0.1831 0.779   0.511
#> ATC:hclust  5 0.845           0.920       0.922         0.0688 0.991   0.975
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.580           0.445       0.621         0.0433 0.918   0.654
#> CV:NMF      6 0.507           0.397       0.574         0.0419 0.957   0.799
#> MAD:NMF     6 0.556           0.466       0.654         0.0433 0.934   0.712
#> ATC:NMF     6 0.657           0.809       0.844         0.0590 0.906   0.673
#> SD:skmeans  6 0.409           0.201       0.494         0.0425 0.932   0.708
#> CV:skmeans  6 0.297           0.182       0.421         0.0409 0.889   0.534
#> MAD:skmeans 6 0.397           0.247       0.463         0.0416 0.835   0.380
#> ATC:skmeans 6 0.947           0.922       0.938         0.0413 0.969   0.860
#> SD:mclust   6 0.670           0.600       0.770         0.0584 0.931   0.702
#> CV:mclust   6 0.595           0.564       0.707         0.0534 0.908   0.628
#> MAD:mclust  6 0.721           0.672       0.801         0.0550 0.921   0.657
#> ATC:mclust  6 0.946           0.795       0.899         0.0295 0.982   0.922
#> SD:kmeans   6 0.657           0.533       0.735         0.0498 0.937   0.754
#> CV:kmeans   6 0.562           0.423       0.630         0.0524 0.895   0.594
#> MAD:kmeans  6 0.660           0.603       0.716         0.0466 0.950   0.778
#> ATC:kmeans  6 0.879           0.859       0.874         0.0531 1.000   1.000
#> SD:pam      6 0.359           0.438       0.648         0.0204 0.982   0.933
#> CV:pam      6 0.361           0.513       0.671         0.0228 1.000   1.000
#> MAD:pam     6 0.537           0.558       0.736         0.0231 0.946   0.799
#> ATC:pam     6 1.000           0.957       0.984         0.0116 0.991   0.959
#> SD:hclust   6 0.340           0.428       0.674         0.1289 0.946   0.857
#> CV:hclust   6 0.307           0.337       0.620         0.1443 0.766   0.598
#> MAD:hclust  6 0.402           0.450       0.691         0.0915 0.947   0.824
#> ATC:hclust  6 0.825           0.956       0.914         0.1255 0.864   0.612

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Test to known annotations

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res_list, k = 2)
#>              n agent(p)  time(p)  dose(p) k
#> SD:NMF      58   0.2227 8.27e-02 7.65e-08 2
#> CV:NMF      56   0.1018 1.78e-01 2.60e-06 2
#> MAD:NMF     56   0.2074 1.51e-03 4.37e-03 2
#> ATC:NMF     60   0.2963 9.95e-02 1.87e-07 2
#> SD:skmeans  46   0.0704 1.85e-04 1.10e-03 2
#> CV:skmeans  47   0.0648 5.22e-03 4.58e-04 2
#> MAD:skmeans 46   0.2365 4.31e-06 7.29e-02 2
#> ATC:skmeans 57   0.0833 7.41e-01 1.41e-10 2
#> SD:mclust   60   0.2963 9.95e-02 1.87e-07 2
#> CV:mclust   60   0.2963 9.95e-02 1.87e-07 2
#> MAD:mclust  60   0.2963 9.95e-02 1.87e-07 2
#> ATC:mclust  56   0.2584 1.55e-01 2.01e-11 2
#> SD:kmeans   60   0.2963 9.95e-02 1.87e-07 2
#> CV:kmeans   60   0.2963 9.95e-02 1.87e-07 2
#> MAD:kmeans  60   0.2963 9.95e-02 1.87e-07 2
#> ATC:kmeans  60   0.2963 9.95e-02 1.87e-07 2
#> SD:pam      60   0.2963 9.95e-02 1.87e-07 2
#> CV:pam      18       NA       NA       NA 2
#> MAD:pam     40   1.0000 1.15e-06 9.73e-01 2
#> ATC:pam     60   0.2963 9.95e-02 1.87e-07 2
#> SD:hclust   60   0.2963 9.95e-02 1.87e-07 2
#> CV:hclust   60   0.2963 9.95e-02 1.87e-07 2
#> MAD:hclust  60   0.2963 9.95e-02 1.87e-07 2
#> ATC:hclust  60   0.2963 9.95e-02 1.87e-07 2
test_to_known_factors(res_list, k = 3)
#>              n agent(p)  time(p)  dose(p) k
#> SD:NMF      51    0.222 4.60e-07 6.02e-07 3
#> CV:NMF      40    0.129 1.51e-01 2.56e-04 3
#> MAD:NMF     51    0.267 6.75e-02 8.79e-05 3
#> ATC:NMF     59    0.294 7.17e-10 5.55e-06 3
#> SD:skmeans  26    0.116 1.25e-04 1.65e-04 3
#> CV:skmeans   8       NA       NA       NA 3
#> MAD:skmeans  9       NA       NA       NA 3
#> ATC:skmeans 60    0.151 6.73e-09 3.99e-10 3
#> SD:mclust   18    0.557 7.05e-01 1.23e-03 3
#> CV:mclust   35    0.153 3.11e-05 5.58e-05 3
#> MAD:mclust  54    0.293 7.76e-08 3.01e-05 3
#> ATC:mclust  60    0.153 9.44e-10 4.66e-10 3
#> SD:kmeans   52    0.272 6.80e-08 1.48e-06 3
#> CV:kmeans   46    0.164 2.83e-05 7.25e-07 3
#> MAD:kmeans  56    0.268 1.85e-06 2.51e-05 3
#> ATC:kmeans  41    0.298 1.48e-10 2.00e-06 3
#> SD:pam      53    0.280 2.14e-08 1.56e-06 3
#> CV:pam      41    0.133 7.73e-03 2.35e-04 3
#> MAD:pam     55    0.280 1.28e-07 2.74e-05 3
#> ATC:pam     58    0.292 1.22e-09 1.87e-06 3
#> SD:hclust   60    0.223 2.38e-01 1.91e-06 3
#> CV:hclust   58    0.278 1.04e-01 5.11e-08 3
#> MAD:hclust  49    0.243 2.76e-01 5.67e-05 3
#> ATC:hclust  60    0.264 1.39e-07 3.12e-06 3
test_to_known_factors(res_list, k = 4)
#>              n agent(p)  time(p)  dose(p) k
#> SD:NMF      33    0.467 3.17e-07 6.93e-04 4
#> CV:NMF      35    0.350 2.84e-04 1.77e-04 4
#> MAD:NMF     39    0.488 1.69e-06 1.82e-03 4
#> ATC:NMF     52    0.272 4.04e-10 3.87e-05 4
#> SD:skmeans   8       NA       NA       NA 4
#> CV:skmeans   8       NA       NA       NA 4
#> MAD:skmeans  8       NA       NA       NA 4
#> ATC:skmeans 59    0.277 6.80e-17 3.18e-08 4
#> SD:mclust   45    0.421 3.28e-07 5.67e-05 4
#> CV:mclust   49    0.400 4.59e-06 4.28e-05 4
#> MAD:mclust  54    0.405 4.14e-08 4.24e-04 4
#> ATC:mclust  56    0.467 1.71e-19 1.20e-07 4
#> SD:kmeans   52    0.435 3.05e-10 2.46e-05 4
#> CV:kmeans   40    0.387 2.11e-07 4.52e-05 4
#> MAD:kmeans  48    0.589 2.37e-06 2.14e-03 4
#> ATC:kmeans  55    0.452 5.90e-18 1.69e-07 4
#> SD:pam      34    0.397 2.73e-07 8.54e-04 4
#> CV:pam      39    0.160 1.09e-04 1.41e-03 4
#> MAD:pam     48    0.548 3.31e-07 2.10e-03 4
#> ATC:pam     56    0.444 2.27e-19 1.50e-05 4
#> SD:hclust   46    0.296 3.61e-01 4.73e-08 4
#> CV:hclust   58    0.278 1.04e-01 5.11e-08 4
#> MAD:hclust  29    0.232 4.03e-04 1.23e-03 4
#> ATC:hclust  60    0.286 3.05e-10 1.96e-08 4
test_to_known_factors(res_list, k = 5)
#>              n agent(p)  time(p)  dose(p) k
#> SD:NMF      25   0.4067 2.25e-05 3.96e-04 5
#> CV:NMF      24   0.4164 9.12e-05 2.95e-03 5
#> MAD:NMF     25   0.4413 5.35e-05 3.67e-02 5
#> ATC:NMF     56   0.3425 3.35e-19 1.05e-04 5
#> SD:skmeans   8       NA       NA       NA 5
#> CV:skmeans   8       NA       NA       NA 5
#> MAD:skmeans  8       NA       NA       NA 5
#> ATC:skmeans 60   0.4409 1.97e-17 5.23e-07 5
#> SD:mclust   51   0.6243 4.21e-08 8.64e-04 5
#> CV:mclust   54   0.4965 6.59e-07 3.37e-04 5
#> MAD:mclust  55   0.5514 1.66e-09 6.73e-04 5
#> ATC:mclust  60   0.4409 9.81e-20 5.23e-07 5
#> SD:kmeans   44   0.4047 3.47e-08 7.14e-05 5
#> CV:kmeans   29   0.4680 7.87e-05 2.44e-03 5
#> MAD:kmeans  42   0.3677 2.84e-06 7.44e-03 5
#> ATC:kmeans  59   0.4248 3.86e-18 7.19e-07 5
#> SD:pam      21   0.0616 2.82e-05 5.31e-03 5
#> CV:pam      37   0.0518 4.19e-04 1.32e-03 5
#> MAD:pam     48   0.6263 4.83e-07 7.57e-03 5
#> ATC:pam     58   0.4108 7.16e-19 1.05e-06 5
#> SD:hclust   37   0.1598 8.83e-08 5.66e-06 5
#> CV:hclust   16   1.0000 1.00e+00 3.02e-03 5
#> MAD:hclust  41   0.3495 1.33e-04 5.63e-04 5
#> ATC:hclust  60   0.4358 1.28e-11 4.58e-07 5
test_to_known_factors(res_list, k = 6)
#>              n agent(p)  time(p)  dose(p) k
#> SD:NMF      18   0.3247 4.02e-02 7.15e-03 6
#> CV:NMF      17   0.5058 2.21e-01 1.93e-03 6
#> MAD:NMF     25   0.5702 4.69e-05 3.95e-02 6
#> ATC:NMF     58   0.4108 7.16e-19 1.05e-06 6
#> SD:skmeans   8       NA       NA       NA 6
#> CV:skmeans   8       NA       NA       NA 6
#> MAD:skmeans  8       NA       NA       NA 6
#> ATC:skmeans 58   0.2755 9.48e-18 1.09e-08 6
#> SD:mclust   41   0.6732 4.94e-10 1.82e-03 6
#> CV:mclust   34   0.4802 3.64e-09 1.79e-04 6
#> MAD:mclust  50   0.5767 2.22e-09 1.15e-03 6
#> ATC:mclust  50   0.2456 3.55e-15 4.85e-06 6
#> SD:kmeans   36   0.4655 1.80e-06 3.18e-03 6
#> CV:kmeans   22   0.0255 4.33e-04 2.03e-03 6
#> MAD:kmeans  46   0.3758 8.16e-09 3.73e-03 6
#> ATC:kmeans  59   0.4248 3.86e-18 7.19e-07 6
#> SD:pam      31   0.5438 8.59e-07 2.21e-03 6
#> CV:pam      38   0.1317 4.58e-04 1.72e-03 6
#> MAD:pam     29   0.1186 1.30e-03 8.46e-03 6
#> ATC:pam     58   0.5545 3.27e-20 1.35e-05 6
#> SD:hclust   27   0.2381 7.54e-06 6.04e-04 6
#> CV:hclust   10   0.4292 6.28e-01 6.74e-03 6
#> MAD:hclust  21   0.4091 4.27e-01 3.17e-04 6
#> ATC:hclust  60   0.5787 7.05e-20 6.02e-06 6

Results for each method


SD:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 60 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.994       0.997          0.239 0.765   0.765
#> 3 3 0.417           0.829       0.885          0.627 0.944   0.926
#> 4 4 0.295           0.622       0.794          0.273 0.971   0.959
#> 5 5 0.308           0.530       0.711          0.307 0.667   0.518
#> 6 6 0.340           0.428       0.674          0.129 0.946   0.857

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM439987     1   0.000      0.997 1.000 0.000
#> GSM439988     1   0.000      0.997 1.000 0.000
#> GSM439989     1   0.000      0.997 1.000 0.000
#> GSM439990     1   0.000      0.997 1.000 0.000
#> GSM439991     1   0.000      0.997 1.000 0.000
#> GSM439992     1   0.000      0.997 1.000 0.000
#> GSM439993     1   0.000      0.997 1.000 0.000
#> GSM439994     1   0.000      0.997 1.000 0.000
#> GSM439995     1   0.000      0.997 1.000 0.000
#> GSM439996     1   0.000      0.997 1.000 0.000
#> GSM439997     1   0.000      0.997 1.000 0.000
#> GSM439998     1   0.000      0.997 1.000 0.000
#> GSM440035     1   0.000      0.997 1.000 0.000
#> GSM440036     1   0.000      0.997 1.000 0.000
#> GSM440037     1   0.000      0.997 1.000 0.000
#> GSM440038     1   0.000      0.997 1.000 0.000
#> GSM440011     1   0.000      0.997 1.000 0.000
#> GSM440012     1   0.000      0.997 1.000 0.000
#> GSM440013     1   0.000      0.997 1.000 0.000
#> GSM440014     1   0.000      0.997 1.000 0.000
#> GSM439999     1   0.000      0.997 1.000 0.000
#> GSM440000     1   0.000      0.997 1.000 0.000
#> GSM440001     1   0.000      0.997 1.000 0.000
#> GSM440002     1   0.000      0.997 1.000 0.000
#> GSM440023     1   0.000      0.997 1.000 0.000
#> GSM440024     1   0.141      0.978 0.980 0.020
#> GSM440025     1   0.443      0.901 0.908 0.092
#> GSM440026     1   0.311      0.942 0.944 0.056
#> GSM440039     1   0.000      0.997 1.000 0.000
#> GSM440040     1   0.000      0.997 1.000 0.000
#> GSM440041     1   0.000      0.997 1.000 0.000
#> GSM440042     1   0.000      0.997 1.000 0.000
#> GSM440015     1   0.000      0.997 1.000 0.000
#> GSM440016     1   0.000      0.997 1.000 0.000
#> GSM440017     1   0.000      0.997 1.000 0.000
#> GSM440018     1   0.000      0.997 1.000 0.000
#> GSM440003     1   0.000      0.997 1.000 0.000
#> GSM440004     1   0.000      0.997 1.000 0.000
#> GSM440005     1   0.000      0.997 1.000 0.000
#> GSM440006     1   0.000      0.997 1.000 0.000
#> GSM440027     2   0.000      0.997 0.000 1.000
#> GSM440028     2   0.000      0.997 0.000 1.000
#> GSM440029     2   0.000      0.997 0.000 1.000
#> GSM440030     2   0.000      0.997 0.000 1.000
#> GSM440043     1   0.000      0.997 1.000 0.000
#> GSM440044     1   0.000      0.997 1.000 0.000
#> GSM440045     1   0.000      0.997 1.000 0.000
#> GSM440046     1   0.000      0.997 1.000 0.000
#> GSM440019     1   0.000      0.997 1.000 0.000
#> GSM440020     1   0.000      0.997 1.000 0.000
#> GSM440021     1   0.000      0.997 1.000 0.000
#> GSM440022     1   0.000      0.997 1.000 0.000
#> GSM440007     1   0.000      0.997 1.000 0.000
#> GSM440008     1   0.000      0.997 1.000 0.000
#> GSM440009     1   0.000      0.997 1.000 0.000
#> GSM440010     1   0.000      0.997 1.000 0.000
#> GSM440031     2   0.000      0.997 0.000 1.000
#> GSM440032     2   0.000      0.997 0.000 1.000
#> GSM440033     2   0.000      0.997 0.000 1.000
#> GSM440034     2   0.141      0.979 0.020 0.980

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM439987     1   0.484      0.746 0.776 0.000 0.224
#> GSM439988     1   0.369      0.835 0.860 0.000 0.140
#> GSM439989     1   0.450      0.780 0.804 0.000 0.196
#> GSM439990     1   0.455      0.785 0.800 0.000 0.200
#> GSM439991     1   0.400      0.827 0.840 0.000 0.160
#> GSM439992     1   0.341      0.821 0.876 0.000 0.124
#> GSM439993     1   0.141      0.847 0.964 0.000 0.036
#> GSM439994     1   0.418      0.806 0.828 0.000 0.172
#> GSM439995     1   0.207      0.847 0.940 0.000 0.060
#> GSM439996     1   0.164      0.846 0.956 0.000 0.044
#> GSM439997     1   0.245      0.850 0.924 0.000 0.076
#> GSM439998     1   0.141      0.845 0.964 0.000 0.036
#> GSM440035     1   0.394      0.813 0.844 0.000 0.156
#> GSM440036     1   0.424      0.791 0.824 0.000 0.176
#> GSM440037     1   0.406      0.809 0.836 0.000 0.164
#> GSM440038     1   0.450      0.782 0.804 0.000 0.196
#> GSM440011     1   0.525      0.681 0.736 0.000 0.264
#> GSM440012     1   0.375      0.817 0.856 0.000 0.144
#> GSM440013     1   0.484      0.760 0.776 0.000 0.224
#> GSM440014     1   0.440      0.800 0.812 0.000 0.188
#> GSM439999     1   0.445      0.795 0.808 0.000 0.192
#> GSM440000     1   0.388      0.815 0.848 0.000 0.152
#> GSM440001     1   0.450      0.789 0.804 0.000 0.196
#> GSM440002     1   0.455      0.769 0.800 0.000 0.200
#> GSM440023     1   0.406      0.813 0.836 0.000 0.164
#> GSM440024     1   0.552      0.633 0.728 0.004 0.268
#> GSM440025     1   0.595      0.633 0.764 0.040 0.196
#> GSM440026     3   0.615      0.536 0.356 0.004 0.640
#> GSM440039     1   0.440      0.768 0.812 0.000 0.188
#> GSM440040     1   0.280      0.854 0.908 0.000 0.092
#> GSM440041     1   0.153      0.854 0.960 0.000 0.040
#> GSM440042     1   0.288      0.851 0.904 0.000 0.096
#> GSM440015     1   0.304      0.833 0.896 0.000 0.104
#> GSM440016     1   0.271      0.857 0.912 0.000 0.088
#> GSM440017     1   0.186      0.854 0.948 0.000 0.052
#> GSM440018     1   0.254      0.850 0.920 0.000 0.080
#> GSM440003     1   0.394      0.800 0.844 0.000 0.156
#> GSM440004     1   0.348      0.826 0.872 0.000 0.128
#> GSM440005     1   0.207      0.852 0.940 0.000 0.060
#> GSM440006     1   0.245      0.858 0.924 0.000 0.076
#> GSM440027     2   0.000      0.992 0.000 1.000 0.000
#> GSM440028     2   0.000      0.992 0.000 1.000 0.000
#> GSM440029     2   0.000      0.992 0.000 1.000 0.000
#> GSM440030     2   0.000      0.992 0.000 1.000 0.000
#> GSM440043     1   0.216      0.841 0.936 0.000 0.064
#> GSM440044     1   0.175      0.847 0.952 0.000 0.048
#> GSM440045     1   0.226      0.841 0.932 0.000 0.068
#> GSM440046     1   0.196      0.840 0.944 0.000 0.056
#> GSM440019     1   0.207      0.849 0.940 0.000 0.060
#> GSM440020     1   0.186      0.842 0.948 0.000 0.052
#> GSM440021     1   0.236      0.850 0.928 0.000 0.072
#> GSM440022     1   0.175      0.844 0.952 0.000 0.048
#> GSM440007     3   0.559      0.627 0.304 0.000 0.696
#> GSM440008     1   0.207      0.838 0.940 0.000 0.060
#> GSM440009     1   0.226      0.854 0.932 0.000 0.068
#> GSM440010     1   0.186      0.850 0.948 0.000 0.052
#> GSM440031     2   0.000      0.992 0.000 1.000 0.000
#> GSM440032     2   0.000      0.992 0.000 1.000 0.000
#> GSM440033     2   0.000      0.992 0.000 1.000 0.000
#> GSM440034     2   0.236      0.941 0.000 0.928 0.072

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM439987     1   0.535      0.288 0.560 0.000 0.012 0.428
#> GSM439988     1   0.496      0.610 0.684 0.000 0.016 0.300
#> GSM439989     1   0.495      0.469 0.620 0.000 0.004 0.376
#> GSM439990     1   0.523      0.450 0.604 0.000 0.012 0.384
#> GSM439991     1   0.531      0.563 0.648 0.000 0.024 0.328
#> GSM439992     1   0.492      0.657 0.776 0.000 0.088 0.136
#> GSM439993     1   0.252      0.716 0.908 0.000 0.016 0.076
#> GSM439994     1   0.475      0.625 0.716 0.000 0.016 0.268
#> GSM439995     1   0.234      0.715 0.912 0.000 0.008 0.080
#> GSM439996     1   0.218      0.714 0.924 0.000 0.012 0.064
#> GSM439997     1   0.255      0.721 0.900 0.000 0.008 0.092
#> GSM439998     1   0.131      0.715 0.960 0.000 0.004 0.036
#> GSM440035     1   0.566      0.582 0.688 0.000 0.068 0.244
#> GSM440036     1   0.569      0.504 0.648 0.000 0.048 0.304
#> GSM440037     1   0.477      0.572 0.684 0.000 0.008 0.308
#> GSM440038     1   0.521      0.365 0.572 0.000 0.008 0.420
#> GSM440011     4   0.551     -0.427 0.476 0.000 0.016 0.508
#> GSM440012     1   0.472      0.602 0.708 0.000 0.012 0.280
#> GSM440013     1   0.487      0.419 0.596 0.000 0.000 0.404
#> GSM440014     1   0.504      0.532 0.652 0.000 0.012 0.336
#> GSM439999     1   0.519      0.494 0.616 0.000 0.012 0.372
#> GSM440000     1   0.470      0.587 0.696 0.000 0.008 0.296
#> GSM440001     1   0.495      0.498 0.620 0.000 0.004 0.376
#> GSM440002     1   0.559      0.365 0.572 0.000 0.024 0.404
#> GSM440023     1   0.484      0.597 0.688 0.000 0.012 0.300
#> GSM440024     1   0.535      0.263 0.556 0.000 0.012 0.432
#> GSM440025     1   0.581      0.451 0.644 0.036 0.008 0.312
#> GSM440026     4   0.316     -0.202 0.064 0.000 0.052 0.884
#> GSM440039     1   0.501      0.461 0.636 0.000 0.008 0.356
#> GSM440040     1   0.439      0.677 0.752 0.000 0.012 0.236
#> GSM440041     1   0.316      0.725 0.872 0.000 0.020 0.108
#> GSM440042     1   0.414      0.704 0.816 0.000 0.040 0.144
#> GSM440015     1   0.369      0.679 0.792 0.000 0.000 0.208
#> GSM440016     1   0.354      0.717 0.828 0.000 0.008 0.164
#> GSM440017     1   0.261      0.725 0.896 0.000 0.008 0.096
#> GSM440018     1   0.294      0.717 0.868 0.000 0.004 0.128
#> GSM440003     1   0.419      0.647 0.764 0.000 0.008 0.228
#> GSM440004     1   0.398      0.667 0.776 0.000 0.004 0.220
#> GSM440005     1   0.337      0.719 0.864 0.000 0.028 0.108
#> GSM440006     1   0.367      0.717 0.824 0.000 0.012 0.164
#> GSM440027     2   0.000      0.988 0.000 1.000 0.000 0.000
#> GSM440028     2   0.000      0.988 0.000 1.000 0.000 0.000
#> GSM440029     2   0.000      0.988 0.000 1.000 0.000 0.000
#> GSM440030     2   0.000      0.988 0.000 1.000 0.000 0.000
#> GSM440043     1   0.233      0.711 0.916 0.000 0.012 0.072
#> GSM440044     1   0.172      0.718 0.936 0.000 0.000 0.064
#> GSM440045     1   0.220      0.715 0.916 0.000 0.004 0.080
#> GSM440046     1   0.261      0.708 0.900 0.000 0.012 0.088
#> GSM440019     1   0.244      0.721 0.916 0.000 0.024 0.060
#> GSM440020     1   0.174      0.714 0.940 0.000 0.004 0.056
#> GSM440021     1   0.305      0.717 0.860 0.000 0.004 0.136
#> GSM440022     1   0.194      0.716 0.936 0.000 0.012 0.052
#> GSM440007     3   0.121      0.000 0.032 0.000 0.964 0.004
#> GSM440008     1   0.247      0.707 0.908 0.000 0.012 0.080
#> GSM440009     1   0.350      0.718 0.844 0.000 0.016 0.140
#> GSM440010     1   0.291      0.721 0.888 0.000 0.020 0.092
#> GSM440031     2   0.000      0.988 0.000 1.000 0.000 0.000
#> GSM440032     2   0.000      0.988 0.000 1.000 0.000 0.000
#> GSM440033     2   0.000      0.988 0.000 1.000 0.000 0.000
#> GSM440034     2   0.212      0.914 0.000 0.924 0.008 0.068

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM439987     1  0.5824     0.4929 0.608 0.000 0.224 0.000 0.168
#> GSM439988     1  0.5490     0.5156 0.592 0.000 0.324 0.000 0.084
#> GSM439989     1  0.4397     0.6181 0.696 0.000 0.276 0.000 0.028
#> GSM439990     1  0.4276     0.6242 0.724 0.000 0.244 0.000 0.032
#> GSM439991     3  0.6569    -0.0229 0.404 0.000 0.432 0.008 0.156
#> GSM439992     1  0.7439     0.0397 0.380 0.000 0.372 0.044 0.204
#> GSM439993     3  0.5279     0.4532 0.268 0.000 0.652 0.004 0.076
#> GSM439994     3  0.5982     0.3628 0.284 0.000 0.580 0.004 0.132
#> GSM439995     3  0.2409     0.6697 0.068 0.000 0.900 0.000 0.032
#> GSM439996     3  0.4712     0.5560 0.216 0.000 0.720 0.004 0.060
#> GSM439997     3  0.3085     0.6708 0.116 0.000 0.852 0.000 0.032
#> GSM439998     3  0.2505     0.6625 0.092 0.000 0.888 0.000 0.020
#> GSM440035     1  0.6564     0.2313 0.580 0.000 0.160 0.032 0.228
#> GSM440036     1  0.5899     0.2869 0.644 0.000 0.124 0.020 0.212
#> GSM440037     1  0.5185     0.4994 0.568 0.000 0.384 0.000 0.048
#> GSM440038     1  0.5612     0.5868 0.624 0.000 0.248 0.000 0.128
#> GSM440011     1  0.6153     0.3974 0.560 0.000 0.208 0.000 0.232
#> GSM440012     1  0.5338     0.4516 0.544 0.000 0.400 0.000 0.056
#> GSM440013     1  0.5441     0.5551 0.596 0.000 0.324 0.000 0.080
#> GSM440014     1  0.4900     0.6063 0.656 0.000 0.300 0.004 0.040
#> GSM439999     1  0.4687     0.6133 0.672 0.000 0.288 0.000 0.040
#> GSM440000     1  0.5019     0.4643 0.568 0.000 0.396 0.000 0.036
#> GSM440001     1  0.5309     0.5872 0.656 0.000 0.240 0.000 0.104
#> GSM440002     1  0.5716     0.2734 0.616 0.000 0.144 0.000 0.240
#> GSM440023     1  0.5939     0.4111 0.492 0.000 0.400 0.000 0.108
#> GSM440024     1  0.6486     0.4312 0.472 0.000 0.324 0.000 0.204
#> GSM440025     3  0.7036    -0.2624 0.368 0.032 0.440 0.000 0.160
#> GSM440026     5  0.4956     0.0000 0.312 0.000 0.040 0.004 0.644
#> GSM440039     3  0.6402     0.2204 0.252 0.000 0.536 0.004 0.208
#> GSM440040     1  0.6372     0.1331 0.428 0.000 0.408 0.000 0.164
#> GSM440041     3  0.5419     0.5670 0.192 0.000 0.680 0.008 0.120
#> GSM440042     3  0.6421     0.3302 0.244 0.000 0.560 0.012 0.184
#> GSM440015     3  0.4624     0.5916 0.144 0.000 0.744 0.000 0.112
#> GSM440016     3  0.4552     0.5204 0.264 0.000 0.696 0.000 0.040
#> GSM440017     3  0.4818     0.4881 0.284 0.000 0.672 0.004 0.040
#> GSM440018     3  0.2920     0.6498 0.132 0.000 0.852 0.000 0.016
#> GSM440003     3  0.5143     0.5293 0.168 0.000 0.704 0.004 0.124
#> GSM440004     3  0.4583     0.5861 0.144 0.000 0.756 0.004 0.096
#> GSM440005     3  0.6223     0.1689 0.328 0.000 0.512 0.000 0.160
#> GSM440006     3  0.5832     0.3248 0.340 0.000 0.560 0.004 0.096
#> GSM440027     2  0.0000     0.9878 0.000 1.000 0.000 0.000 0.000
#> GSM440028     2  0.0000     0.9878 0.000 1.000 0.000 0.000 0.000
#> GSM440029     2  0.0000     0.9878 0.000 1.000 0.000 0.000 0.000
#> GSM440030     2  0.0000     0.9878 0.000 1.000 0.000 0.000 0.000
#> GSM440043     3  0.1701     0.6703 0.048 0.000 0.936 0.000 0.016
#> GSM440044     3  0.3608     0.6430 0.148 0.000 0.812 0.000 0.040
#> GSM440045     3  0.2535     0.6714 0.076 0.000 0.892 0.000 0.032
#> GSM440046     3  0.2153     0.6647 0.044 0.000 0.916 0.000 0.040
#> GSM440019     3  0.4833     0.6090 0.168 0.000 0.736 0.008 0.088
#> GSM440020     3  0.2426     0.6720 0.064 0.000 0.900 0.000 0.036
#> GSM440021     3  0.3236     0.6466 0.152 0.000 0.828 0.000 0.020
#> GSM440022     3  0.2325     0.6713 0.068 0.000 0.904 0.000 0.028
#> GSM440007     4  0.0162     0.0000 0.000 0.000 0.004 0.996 0.000
#> GSM440008     3  0.1997     0.6653 0.036 0.000 0.924 0.000 0.040
#> GSM440009     3  0.4930     0.6158 0.144 0.000 0.716 0.000 0.140
#> GSM440010     3  0.4982     0.5666 0.200 0.000 0.700 0.000 0.100
#> GSM440031     2  0.0000     0.9878 0.000 1.000 0.000 0.000 0.000
#> GSM440032     2  0.0000     0.9878 0.000 1.000 0.000 0.000 0.000
#> GSM440033     2  0.0000     0.9878 0.000 1.000 0.000 0.000 0.000
#> GSM440034     2  0.1732     0.9097 0.000 0.920 0.000 0.000 0.080

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM439987     1  0.6061     0.4058 0.612 0.000 0.096 0.132 0.160 0.000
#> GSM439988     1  0.6216     0.3882 0.560 0.000 0.180 0.208 0.052 0.000
#> GSM439989     1  0.3973     0.5628 0.780 0.000 0.148 0.048 0.024 0.000
#> GSM439990     1  0.4139     0.5613 0.776 0.000 0.136 0.052 0.036 0.000
#> GSM439991     3  0.7700    -0.2086 0.244 0.000 0.308 0.284 0.160 0.004
#> GSM439992     4  0.7167     0.1772 0.176 0.000 0.156 0.524 0.116 0.028
#> GSM439993     3  0.6331    -0.0386 0.236 0.000 0.408 0.344 0.008 0.004
#> GSM439994     3  0.6986     0.2190 0.172 0.000 0.504 0.188 0.132 0.004
#> GSM439995     3  0.2251     0.5864 0.052 0.000 0.904 0.036 0.008 0.000
#> GSM439996     3  0.5975     0.2766 0.164 0.000 0.524 0.296 0.012 0.004
#> GSM439997     3  0.4091     0.5724 0.100 0.000 0.772 0.116 0.012 0.000
#> GSM439998     3  0.4225     0.5399 0.084 0.000 0.748 0.160 0.008 0.000
#> GSM440035     1  0.6837    -0.0978 0.412 0.000 0.036 0.380 0.148 0.024
#> GSM440036     1  0.6639     0.1128 0.504 0.000 0.044 0.300 0.132 0.020
#> GSM440037     1  0.5450     0.4967 0.640 0.000 0.232 0.064 0.064 0.000
#> GSM440038     1  0.5153     0.5354 0.688 0.000 0.144 0.036 0.132 0.000
#> GSM440011     1  0.5962     0.3246 0.596 0.000 0.096 0.076 0.232 0.000
#> GSM440012     1  0.5496     0.4700 0.608 0.000 0.276 0.072 0.044 0.000
#> GSM440013     1  0.5303     0.5033 0.636 0.000 0.240 0.024 0.100 0.000
#> GSM440014     1  0.4754     0.5554 0.728 0.000 0.168 0.056 0.044 0.004
#> GSM439999     1  0.4712     0.5592 0.732 0.000 0.144 0.084 0.040 0.000
#> GSM440000     1  0.5392     0.4772 0.624 0.000 0.264 0.068 0.044 0.000
#> GSM440001     1  0.5563     0.4989 0.668 0.000 0.124 0.120 0.088 0.000
#> GSM440002     1  0.6384     0.1575 0.524 0.000 0.048 0.224 0.204 0.000
#> GSM440023     1  0.6083     0.4260 0.572 0.000 0.256 0.092 0.080 0.000
#> GSM440024     1  0.6811     0.3335 0.492 0.000 0.176 0.096 0.236 0.000
#> GSM440025     1  0.7449     0.2299 0.400 0.024 0.328 0.100 0.148 0.000
#> GSM440026     5  0.3109     0.0000 0.224 0.000 0.004 0.000 0.772 0.000
#> GSM440039     3  0.6780     0.2184 0.220 0.000 0.476 0.072 0.232 0.000
#> GSM440040     1  0.6777    -0.2106 0.412 0.000 0.144 0.364 0.080 0.000
#> GSM440041     3  0.6148     0.2862 0.148 0.000 0.528 0.292 0.028 0.004
#> GSM440042     3  0.6715    -0.1425 0.092 0.000 0.424 0.388 0.088 0.008
#> GSM440015     3  0.5410     0.5090 0.128 0.000 0.680 0.072 0.120 0.000
#> GSM440016     3  0.5604     0.3770 0.280 0.000 0.588 0.104 0.028 0.000
#> GSM440017     3  0.6077     0.2366 0.248 0.000 0.488 0.256 0.004 0.004
#> GSM440018     3  0.3813     0.5618 0.124 0.000 0.800 0.048 0.028 0.000
#> GSM440003     3  0.5398     0.4748 0.132 0.000 0.672 0.052 0.144 0.000
#> GSM440004     3  0.4923     0.5227 0.116 0.000 0.720 0.048 0.116 0.000
#> GSM440005     4  0.6537     0.1399 0.264 0.000 0.280 0.428 0.028 0.000
#> GSM440006     3  0.6960    -0.0589 0.280 0.000 0.360 0.312 0.044 0.004
#> GSM440027     2  0.0000     0.9867 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440028     2  0.0000     0.9867 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440029     2  0.0000     0.9867 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440030     2  0.0000     0.9867 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440043     3  0.2213     0.5833 0.032 0.000 0.908 0.048 0.012 0.000
#> GSM440044     3  0.4798     0.4495 0.096 0.000 0.664 0.236 0.004 0.000
#> GSM440045     3  0.2540     0.5870 0.044 0.000 0.892 0.044 0.020 0.000
#> GSM440046     3  0.1844     0.5832 0.040 0.000 0.928 0.016 0.016 0.000
#> GSM440019     3  0.6063     0.2708 0.108 0.000 0.524 0.328 0.036 0.004
#> GSM440020     3  0.3330     0.5712 0.056 0.000 0.828 0.108 0.008 0.000
#> GSM440021     3  0.3956     0.5567 0.132 0.000 0.788 0.052 0.028 0.000
#> GSM440022     3  0.2979     0.5811 0.056 0.000 0.852 0.088 0.004 0.000
#> GSM440007     6  0.0146     0.0000 0.000 0.000 0.004 0.000 0.000 0.996
#> GSM440008     3  0.1605     0.5832 0.032 0.000 0.940 0.012 0.016 0.000
#> GSM440009     3  0.5695     0.4234 0.100 0.000 0.632 0.204 0.064 0.000
#> GSM440010     3  0.5834     0.1501 0.132 0.000 0.532 0.316 0.020 0.000
#> GSM440031     2  0.0000     0.9867 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440032     2  0.0000     0.9867 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440033     2  0.0000     0.9867 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440034     2  0.1858     0.9013 0.000 0.912 0.000 0.012 0.076 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n agent(p)  time(p)  dose(p) k
#> SD:hclust 60    0.296 9.95e-02 1.87e-07 2
#> SD:hclust 60    0.223 2.38e-01 1.91e-06 3
#> SD:hclust 46    0.296 3.61e-01 4.73e-08 4
#> SD:hclust 37    0.160 8.83e-08 5.66e-06 5
#> SD:hclust 27    0.238 7.54e-06 6.04e-04 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 60 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.995       0.996         0.2387 0.765   0.765
#> 3 3 0.519           0.750       0.872         1.4728 0.618   0.501
#> 4 4 0.506           0.700       0.805         0.2144 0.837   0.597
#> 5 5 0.613           0.600       0.780         0.0861 0.972   0.896
#> 6 6 0.657           0.533       0.735         0.0498 0.937   0.754

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM439987     1  0.0938      0.992 0.988 0.012
#> GSM439988     1  0.0938      0.992 0.988 0.012
#> GSM439989     1  0.0938      0.992 0.988 0.012
#> GSM439990     1  0.0938      0.992 0.988 0.012
#> GSM439991     1  0.0000      0.995 1.000 0.000
#> GSM439992     1  0.0000      0.995 1.000 0.000
#> GSM439993     1  0.0000      0.995 1.000 0.000
#> GSM439994     1  0.0000      0.995 1.000 0.000
#> GSM439995     1  0.0000      0.995 1.000 0.000
#> GSM439996     1  0.0000      0.995 1.000 0.000
#> GSM439997     1  0.0000      0.995 1.000 0.000
#> GSM439998     1  0.0000      0.995 1.000 0.000
#> GSM440035     1  0.0938      0.992 0.988 0.012
#> GSM440036     1  0.0938      0.992 0.988 0.012
#> GSM440037     1  0.0938      0.992 0.988 0.012
#> GSM440038     1  0.0938      0.992 0.988 0.012
#> GSM440011     1  0.0938      0.992 0.988 0.012
#> GSM440012     1  0.0938      0.992 0.988 0.012
#> GSM440013     1  0.0938      0.992 0.988 0.012
#> GSM440014     1  0.0938      0.992 0.988 0.012
#> GSM439999     1  0.0672      0.994 0.992 0.008
#> GSM440000     1  0.0938      0.992 0.988 0.012
#> GSM440001     1  0.0938      0.992 0.988 0.012
#> GSM440002     1  0.0672      0.994 0.992 0.008
#> GSM440023     1  0.0938      0.992 0.988 0.012
#> GSM440024     1  0.0938      0.992 0.988 0.012
#> GSM440025     1  0.0938      0.992 0.988 0.012
#> GSM440026     1  0.0938      0.992 0.988 0.012
#> GSM440039     1  0.0000      0.995 1.000 0.000
#> GSM440040     1  0.0000      0.995 1.000 0.000
#> GSM440041     1  0.0000      0.995 1.000 0.000
#> GSM440042     1  0.0000      0.995 1.000 0.000
#> GSM440015     1  0.0000      0.995 1.000 0.000
#> GSM440016     1  0.0000      0.995 1.000 0.000
#> GSM440017     1  0.0000      0.995 1.000 0.000
#> GSM440018     1  0.0000      0.995 1.000 0.000
#> GSM440003     1  0.0000      0.995 1.000 0.000
#> GSM440004     1  0.0000      0.995 1.000 0.000
#> GSM440005     1  0.0000      0.995 1.000 0.000
#> GSM440006     1  0.0000      0.995 1.000 0.000
#> GSM440027     2  0.0000      1.000 0.000 1.000
#> GSM440028     2  0.0000      1.000 0.000 1.000
#> GSM440029     2  0.0000      1.000 0.000 1.000
#> GSM440030     2  0.0000      1.000 0.000 1.000
#> GSM440043     1  0.0000      0.995 1.000 0.000
#> GSM440044     1  0.0000      0.995 1.000 0.000
#> GSM440045     1  0.0000      0.995 1.000 0.000
#> GSM440046     1  0.0000      0.995 1.000 0.000
#> GSM440019     1  0.0000      0.995 1.000 0.000
#> GSM440020     1  0.0000      0.995 1.000 0.000
#> GSM440021     1  0.0000      0.995 1.000 0.000
#> GSM440022     1  0.0000      0.995 1.000 0.000
#> GSM440007     1  0.0000      0.995 1.000 0.000
#> GSM440008     1  0.0000      0.995 1.000 0.000
#> GSM440009     1  0.0000      0.995 1.000 0.000
#> GSM440010     1  0.0000      0.995 1.000 0.000
#> GSM440031     2  0.0000      1.000 0.000 1.000
#> GSM440032     2  0.0000      1.000 0.000 1.000
#> GSM440033     2  0.0000      1.000 0.000 1.000
#> GSM440034     2  0.0000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM439987     1  0.2066     0.8663 0.940 0.000 0.060
#> GSM439988     1  0.2261     0.8670 0.932 0.000 0.068
#> GSM439989     1  0.2066     0.8665 0.940 0.000 0.060
#> GSM439990     1  0.2261     0.8671 0.932 0.000 0.068
#> GSM439991     1  0.4235     0.7871 0.824 0.000 0.176
#> GSM439992     1  0.3267     0.8419 0.884 0.000 0.116
#> GSM439993     1  0.6252     0.3151 0.556 0.000 0.444
#> GSM439994     3  0.4605     0.6849 0.204 0.000 0.796
#> GSM439995     3  0.0592     0.8191 0.012 0.000 0.988
#> GSM439996     3  0.5905     0.3796 0.352 0.000 0.648
#> GSM439997     3  0.0424     0.8193 0.008 0.000 0.992
#> GSM439998     3  0.0000     0.8186 0.000 0.000 1.000
#> GSM440035     1  0.2165     0.8619 0.936 0.000 0.064
#> GSM440036     1  0.2066     0.8624 0.940 0.000 0.060
#> GSM440037     1  0.4931     0.7598 0.768 0.000 0.232
#> GSM440038     1  0.2537     0.8599 0.920 0.000 0.080
#> GSM440011     1  0.2165     0.8663 0.936 0.000 0.064
#> GSM440012     1  0.5706     0.6266 0.680 0.000 0.320
#> GSM440013     1  0.2356     0.8666 0.928 0.000 0.072
#> GSM440014     1  0.2066     0.8665 0.940 0.000 0.060
#> GSM439999     1  0.1964     0.8657 0.944 0.000 0.056
#> GSM440000     1  0.5397     0.6986 0.720 0.000 0.280
#> GSM440001     1  0.1964     0.8656 0.944 0.000 0.056
#> GSM440002     1  0.1860     0.8647 0.948 0.000 0.052
#> GSM440023     1  0.4504     0.8035 0.804 0.000 0.196
#> GSM440024     1  0.4002     0.8348 0.840 0.000 0.160
#> GSM440025     1  0.6126     0.4360 0.600 0.000 0.400
#> GSM440026     1  0.5905     0.4319 0.648 0.000 0.352
#> GSM440039     3  0.5591     0.5422 0.304 0.000 0.696
#> GSM440040     1  0.2878     0.8601 0.904 0.000 0.096
#> GSM440041     3  0.6309    -0.1261 0.496 0.000 0.504
#> GSM440042     3  0.6309    -0.0548 0.496 0.000 0.504
#> GSM440015     3  0.3192     0.7801 0.112 0.000 0.888
#> GSM440016     3  0.1031     0.8168 0.024 0.000 0.976
#> GSM440017     3  0.6244     0.0359 0.440 0.000 0.560
#> GSM440018     3  0.1031     0.8165 0.024 0.000 0.976
#> GSM440003     3  0.4121     0.7248 0.168 0.000 0.832
#> GSM440004     3  0.1411     0.8129 0.036 0.000 0.964
#> GSM440005     1  0.4399     0.8123 0.812 0.000 0.188
#> GSM440006     1  0.4842     0.7558 0.776 0.000 0.224
#> GSM440027     2  0.0000     0.9973 0.000 1.000 0.000
#> GSM440028     2  0.0424     0.9963 0.008 0.992 0.000
#> GSM440029     2  0.0000     0.9973 0.000 1.000 0.000
#> GSM440030     2  0.0237     0.9971 0.004 0.996 0.000
#> GSM440043     3  0.0237     0.8186 0.004 0.000 0.996
#> GSM440044     3  0.0237     0.8189 0.004 0.000 0.996
#> GSM440045     3  0.0000     0.8186 0.000 0.000 1.000
#> GSM440046     3  0.0592     0.8191 0.012 0.000 0.988
#> GSM440019     3  0.5465     0.5552 0.288 0.000 0.712
#> GSM440020     3  0.0000     0.8186 0.000 0.000 1.000
#> GSM440021     3  0.0592     0.8182 0.012 0.000 0.988
#> GSM440022     3  0.0237     0.8186 0.004 0.000 0.996
#> GSM440007     3  0.6095     0.3783 0.392 0.000 0.608
#> GSM440008     3  0.0424     0.8193 0.008 0.000 0.992
#> GSM440009     3  0.2711     0.7861 0.088 0.000 0.912
#> GSM440010     3  0.4452     0.6736 0.192 0.000 0.808
#> GSM440031     2  0.0237     0.9971 0.004 0.996 0.000
#> GSM440032     2  0.0000     0.9973 0.000 1.000 0.000
#> GSM440033     2  0.0747     0.9912 0.016 0.984 0.000
#> GSM440034     2  0.0237     0.9968 0.004 0.996 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM439987     1  0.2198      0.702 0.920 0.000 0.008 0.072
#> GSM439988     1  0.4019      0.707 0.792 0.000 0.012 0.196
#> GSM439989     1  0.3351      0.730 0.844 0.000 0.008 0.148
#> GSM439990     1  0.3032      0.733 0.868 0.000 0.008 0.124
#> GSM439991     1  0.5607     -0.122 0.496 0.000 0.020 0.484
#> GSM439992     4  0.4422      0.504 0.256 0.000 0.008 0.736
#> GSM439993     4  0.5222      0.718 0.112 0.000 0.132 0.756
#> GSM439994     3  0.5585      0.641 0.204 0.000 0.712 0.084
#> GSM439995     3  0.0707      0.860 0.000 0.000 0.980 0.020
#> GSM439996     4  0.5935      0.721 0.080 0.000 0.256 0.664
#> GSM439997     3  0.1209      0.857 0.004 0.000 0.964 0.032
#> GSM439998     3  0.4790      0.147 0.000 0.000 0.620 0.380
#> GSM440035     1  0.4360      0.633 0.744 0.000 0.008 0.248
#> GSM440036     1  0.3972      0.669 0.788 0.000 0.008 0.204
#> GSM440037     1  0.6618      0.523 0.604 0.000 0.124 0.272
#> GSM440038     1  0.2399      0.734 0.920 0.000 0.032 0.048
#> GSM440011     1  0.2329      0.706 0.916 0.000 0.012 0.072
#> GSM440012     1  0.6994      0.447 0.560 0.000 0.152 0.288
#> GSM440013     1  0.2742      0.730 0.900 0.000 0.024 0.076
#> GSM440014     1  0.2976      0.733 0.872 0.000 0.008 0.120
#> GSM439999     1  0.2859      0.737 0.880 0.000 0.008 0.112
#> GSM440000     1  0.6992      0.456 0.564 0.000 0.156 0.280
#> GSM440001     1  0.2048      0.729 0.928 0.000 0.008 0.064
#> GSM440002     1  0.2799      0.693 0.884 0.000 0.008 0.108
#> GSM440023     1  0.6477      0.541 0.620 0.000 0.116 0.264
#> GSM440024     1  0.6337      0.439 0.552 0.000 0.068 0.380
#> GSM440025     1  0.7474      0.336 0.496 0.000 0.212 0.292
#> GSM440026     1  0.4300      0.652 0.820 0.000 0.088 0.092
#> GSM440039     3  0.5565      0.590 0.260 0.000 0.684 0.056
#> GSM440040     4  0.5442      0.527 0.288 0.000 0.040 0.672
#> GSM440041     4  0.5742      0.718 0.120 0.000 0.168 0.712
#> GSM440042     4  0.5807      0.666 0.160 0.000 0.132 0.708
#> GSM440015     3  0.4234      0.761 0.132 0.000 0.816 0.052
#> GSM440016     3  0.3435      0.757 0.036 0.000 0.864 0.100
#> GSM440017     4  0.6827      0.646 0.128 0.000 0.304 0.568
#> GSM440018     3  0.0937      0.855 0.012 0.000 0.976 0.012
#> GSM440003     3  0.3521      0.794 0.084 0.000 0.864 0.052
#> GSM440004     3  0.2586      0.826 0.048 0.000 0.912 0.040
#> GSM440005     4  0.5328      0.632 0.212 0.000 0.064 0.724
#> GSM440006     4  0.5256      0.648 0.204 0.000 0.064 0.732
#> GSM440027     2  0.0469      0.988 0.000 0.988 0.000 0.012
#> GSM440028     2  0.1302      0.984 0.000 0.956 0.000 0.044
#> GSM440029     2  0.0188      0.987 0.000 0.996 0.000 0.004
#> GSM440030     2  0.0817      0.987 0.000 0.976 0.000 0.024
#> GSM440043     3  0.0707      0.860 0.000 0.000 0.980 0.020
#> GSM440044     3  0.3486      0.670 0.000 0.000 0.812 0.188
#> GSM440045     3  0.0921      0.858 0.000 0.000 0.972 0.028
#> GSM440046     3  0.0469      0.859 0.000 0.000 0.988 0.012
#> GSM440019     4  0.4833      0.729 0.032 0.000 0.228 0.740
#> GSM440020     3  0.1389      0.847 0.000 0.000 0.952 0.048
#> GSM440021     3  0.0336      0.859 0.000 0.000 0.992 0.008
#> GSM440022     3  0.0707      0.858 0.000 0.000 0.980 0.020
#> GSM440007     4  0.4638      0.701 0.060 0.000 0.152 0.788
#> GSM440008     3  0.0469      0.859 0.000 0.000 0.988 0.012
#> GSM440009     4  0.6395      0.228 0.064 0.000 0.460 0.476
#> GSM440010     4  0.6044      0.451 0.044 0.000 0.428 0.528
#> GSM440031     2  0.0469      0.988 0.000 0.988 0.000 0.012
#> GSM440032     2  0.0592      0.988 0.000 0.984 0.000 0.016
#> GSM440033     2  0.1452      0.970 0.008 0.956 0.000 0.036
#> GSM440034     2  0.0469      0.986 0.000 0.988 0.000 0.012

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM439987     1  0.5053     0.3115 0.624 0.000 0.000 0.052 0.324
#> GSM439988     1  0.3516     0.6295 0.836 0.000 0.004 0.108 0.052
#> GSM439989     1  0.1901     0.6452 0.928 0.000 0.004 0.056 0.012
#> GSM439990     1  0.2157     0.6457 0.920 0.000 0.004 0.040 0.036
#> GSM439991     5  0.6512     0.0000 0.200 0.000 0.000 0.348 0.452
#> GSM439992     4  0.5104     0.0635 0.068 0.000 0.000 0.648 0.284
#> GSM439993     4  0.2507     0.5727 0.044 0.000 0.020 0.908 0.028
#> GSM439994     3  0.6079     0.5577 0.084 0.000 0.624 0.040 0.252
#> GSM439995     3  0.0798     0.8544 0.000 0.000 0.976 0.016 0.008
#> GSM439996     4  0.4363     0.5819 0.040 0.000 0.120 0.796 0.044
#> GSM439997     3  0.2144     0.8296 0.000 0.000 0.912 0.068 0.020
#> GSM439998     4  0.5236     0.1690 0.000 0.000 0.464 0.492 0.044
#> GSM440035     1  0.6238    -0.1721 0.476 0.000 0.000 0.148 0.376
#> GSM440036     1  0.5702     0.2385 0.576 0.000 0.000 0.104 0.320
#> GSM440037     1  0.5756     0.5561 0.676 0.000 0.056 0.204 0.064
#> GSM440038     1  0.2811     0.6361 0.876 0.000 0.012 0.012 0.100
#> GSM440011     1  0.3809     0.5015 0.736 0.000 0.000 0.008 0.256
#> GSM440012     1  0.5838     0.5404 0.660 0.000 0.056 0.224 0.060
#> GSM440013     1  0.2967     0.6142 0.868 0.000 0.016 0.012 0.104
#> GSM440014     1  0.3002     0.6370 0.872 0.000 0.004 0.048 0.076
#> GSM439999     1  0.1564     0.6421 0.948 0.000 0.004 0.024 0.024
#> GSM440000     1  0.5783     0.5454 0.668 0.000 0.056 0.216 0.060
#> GSM440001     1  0.3639     0.5600 0.812 0.000 0.000 0.044 0.144
#> GSM440002     1  0.5425     0.0479 0.520 0.000 0.000 0.060 0.420
#> GSM440023     1  0.5723     0.5507 0.672 0.000 0.032 0.204 0.092
#> GSM440024     1  0.6411     0.4597 0.564 0.000 0.020 0.276 0.140
#> GSM440025     1  0.7044     0.4748 0.572 0.000 0.140 0.196 0.092
#> GSM440026     1  0.5821     0.3836 0.600 0.000 0.072 0.020 0.308
#> GSM440039     3  0.6227     0.5292 0.144 0.000 0.612 0.024 0.220
#> GSM440040     4  0.4747     0.3976 0.148 0.000 0.012 0.752 0.088
#> GSM440041     4  0.5007     0.5528 0.100 0.000 0.040 0.756 0.104
#> GSM440042     4  0.5403     0.0261 0.052 0.000 0.020 0.648 0.280
#> GSM440015     3  0.5050     0.7143 0.076 0.000 0.720 0.016 0.188
#> GSM440016     3  0.4744     0.6995 0.088 0.000 0.780 0.080 0.052
#> GSM440017     4  0.5895     0.5207 0.108 0.000 0.140 0.688 0.064
#> GSM440018     3  0.1299     0.8535 0.012 0.000 0.960 0.008 0.020
#> GSM440003     3  0.4136     0.7785 0.052 0.000 0.800 0.016 0.132
#> GSM440004     3  0.3059     0.8160 0.028 0.000 0.860 0.004 0.108
#> GSM440005     4  0.4604     0.4910 0.076 0.000 0.024 0.776 0.124
#> GSM440006     4  0.4238     0.5126 0.104 0.000 0.016 0.800 0.080
#> GSM440027     2  0.0162     0.9811 0.000 0.996 0.000 0.000 0.004
#> GSM440028     2  0.1041     0.9750 0.000 0.964 0.000 0.004 0.032
#> GSM440029     2  0.0162     0.9813 0.000 0.996 0.000 0.000 0.004
#> GSM440030     2  0.0290     0.9805 0.000 0.992 0.000 0.000 0.008
#> GSM440043     3  0.0579     0.8552 0.000 0.000 0.984 0.008 0.008
#> GSM440044     3  0.4434     0.6326 0.000 0.000 0.736 0.208 0.056
#> GSM440045     3  0.0671     0.8551 0.000 0.000 0.980 0.004 0.016
#> GSM440046     3  0.0162     0.8545 0.000 0.000 0.996 0.004 0.000
#> GSM440019     4  0.3052     0.5524 0.016 0.000 0.036 0.876 0.072
#> GSM440020     3  0.2848     0.8024 0.000 0.000 0.868 0.104 0.028
#> GSM440021     3  0.1750     0.8457 0.000 0.000 0.936 0.028 0.036
#> GSM440022     3  0.0912     0.8543 0.000 0.000 0.972 0.012 0.016
#> GSM440007     4  0.4798     0.2452 0.000 0.000 0.024 0.580 0.396
#> GSM440008     3  0.0162     0.8545 0.000 0.000 0.996 0.004 0.000
#> GSM440009     4  0.6361     0.4144 0.056 0.000 0.232 0.616 0.096
#> GSM440010     4  0.5912     0.4761 0.020 0.000 0.248 0.628 0.104
#> GSM440031     2  0.0162     0.9811 0.000 0.996 0.000 0.000 0.004
#> GSM440032     2  0.0162     0.9814 0.000 0.996 0.000 0.004 0.000
#> GSM440033     2  0.2020     0.9297 0.000 0.900 0.000 0.000 0.100
#> GSM440034     2  0.0880     0.9748 0.000 0.968 0.000 0.000 0.032

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM439987     5  0.2489      0.576 0.128 0.000 0.000 0.000 0.860 0.012
#> GSM439988     1  0.4674      0.489 0.664 0.000 0.000 0.032 0.276 0.028
#> GSM439989     1  0.4133      0.588 0.720 0.000 0.000 0.012 0.236 0.032
#> GSM439990     1  0.4077      0.570 0.692 0.000 0.000 0.012 0.280 0.016
#> GSM439991     5  0.6345     -0.138 0.028 0.000 0.000 0.240 0.488 0.244
#> GSM439992     4  0.5869     -0.325 0.032 0.000 0.000 0.568 0.132 0.268
#> GSM439993     4  0.3040      0.382 0.080 0.000 0.012 0.864 0.012 0.032
#> GSM439994     3  0.6778      0.404 0.020 0.000 0.488 0.032 0.228 0.232
#> GSM439995     3  0.0862      0.795 0.008 0.000 0.972 0.004 0.000 0.016
#> GSM439996     4  0.4284      0.397 0.120 0.000 0.064 0.772 0.000 0.044
#> GSM439997     3  0.4385      0.689 0.020 0.000 0.764 0.132 0.008 0.076
#> GSM439998     4  0.6002      0.162 0.064 0.000 0.376 0.492 0.000 0.068
#> GSM440035     5  0.6433      0.409 0.168 0.000 0.000 0.100 0.564 0.168
#> GSM440036     5  0.5015      0.555 0.140 0.000 0.004 0.060 0.720 0.076
#> GSM440037     1  0.3112      0.661 0.856 0.000 0.028 0.092 0.008 0.016
#> GSM440038     1  0.4316      0.517 0.704 0.000 0.008 0.004 0.248 0.036
#> GSM440011     5  0.4900      0.388 0.272 0.000 0.000 0.004 0.636 0.088
#> GSM440012     1  0.2255      0.661 0.892 0.000 0.016 0.088 0.000 0.004
#> GSM440013     1  0.5744      0.251 0.528 0.000 0.024 0.000 0.344 0.104
#> GSM440014     1  0.4027      0.544 0.672 0.000 0.000 0.008 0.308 0.012
#> GSM439999     1  0.4468      0.495 0.640 0.000 0.000 0.004 0.316 0.040
#> GSM440000     1  0.2800      0.658 0.860 0.000 0.036 0.100 0.004 0.000
#> GSM440001     5  0.4701      0.127 0.396 0.000 0.000 0.004 0.560 0.040
#> GSM440002     5  0.2797      0.593 0.076 0.000 0.000 0.016 0.872 0.036
#> GSM440023     1  0.3257      0.652 0.856 0.000 0.016 0.076 0.020 0.032
#> GSM440024     1  0.4313      0.608 0.768 0.000 0.000 0.108 0.032 0.092
#> GSM440025     1  0.4980      0.596 0.752 0.000 0.092 0.064 0.040 0.052
#> GSM440026     5  0.6313      0.296 0.256 0.000 0.024 0.004 0.508 0.208
#> GSM440039     3  0.5659      0.471 0.004 0.000 0.548 0.004 0.300 0.144
#> GSM440040     4  0.4679      0.272 0.048 0.000 0.004 0.740 0.152 0.056
#> GSM440041     4  0.5424      0.328 0.216 0.000 0.016 0.648 0.012 0.108
#> GSM440042     4  0.6245     -0.309 0.028 0.000 0.000 0.504 0.196 0.272
#> GSM440015     3  0.5719      0.653 0.028 0.000 0.656 0.024 0.168 0.124
#> GSM440016     3  0.4926      0.627 0.180 0.000 0.712 0.072 0.012 0.024
#> GSM440017     4  0.5333      0.348 0.224 0.000 0.076 0.652 0.000 0.048
#> GSM440018     3  0.1434      0.795 0.028 0.000 0.948 0.012 0.012 0.000
#> GSM440003     3  0.4608      0.691 0.024 0.000 0.732 0.000 0.096 0.148
#> GSM440004     3  0.4216      0.722 0.024 0.000 0.772 0.004 0.060 0.140
#> GSM440005     4  0.5358      0.234 0.100 0.000 0.008 0.704 0.100 0.088
#> GSM440006     4  0.4401      0.315 0.128 0.000 0.000 0.756 0.028 0.088
#> GSM440027     2  0.0692      0.974 0.000 0.976 0.000 0.000 0.004 0.020
#> GSM440028     2  0.0982      0.969 0.004 0.968 0.000 0.004 0.004 0.020
#> GSM440029     2  0.0508      0.974 0.000 0.984 0.000 0.000 0.004 0.012
#> GSM440030     2  0.0146      0.974 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM440043     3  0.1223      0.794 0.008 0.000 0.960 0.012 0.004 0.016
#> GSM440044     3  0.5181      0.501 0.004 0.000 0.644 0.232 0.008 0.112
#> GSM440045     3  0.1628      0.792 0.008 0.000 0.940 0.012 0.004 0.036
#> GSM440046     3  0.0436      0.795 0.004 0.000 0.988 0.004 0.000 0.004
#> GSM440019     4  0.3051      0.313 0.020 0.000 0.016 0.860 0.012 0.092
#> GSM440020     3  0.4389      0.665 0.028 0.000 0.748 0.160 0.000 0.064
#> GSM440021     3  0.2756      0.763 0.020 0.000 0.876 0.072 0.000 0.032
#> GSM440022     3  0.1794      0.793 0.016 0.000 0.932 0.024 0.000 0.028
#> GSM440007     6  0.5273      0.000 0.020 0.000 0.004 0.384 0.048 0.544
#> GSM440008     3  0.0551      0.795 0.008 0.000 0.984 0.004 0.000 0.004
#> GSM440009     4  0.6686      0.189 0.068 0.000 0.176 0.572 0.028 0.156
#> GSM440010     4  0.6578      0.112 0.032 0.000 0.232 0.548 0.032 0.156
#> GSM440031     2  0.0146      0.975 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM440032     2  0.0291      0.974 0.000 0.992 0.000 0.004 0.000 0.004
#> GSM440033     2  0.2456      0.917 0.004 0.880 0.000 0.004 0.012 0.100
#> GSM440034     2  0.1340      0.967 0.004 0.948 0.000 0.000 0.008 0.040

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n agent(p)  time(p)  dose(p) k
#> SD:kmeans 60    0.296 9.95e-02 1.87e-07 2
#> SD:kmeans 52    0.272 6.80e-08 1.48e-06 3
#> SD:kmeans 52    0.435 3.05e-10 2.46e-05 4
#> SD:kmeans 44    0.405 3.47e-08 7.14e-05 5
#> SD:kmeans 36    0.465 1.80e-06 3.18e-03 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 60 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.207           0.658       0.829         0.5019 0.494   0.494
#> 3 3 0.138           0.398       0.657         0.3294 0.708   0.481
#> 4 4 0.231           0.317       0.588         0.1298 0.834   0.564
#> 5 5 0.299           0.296       0.546         0.0683 0.895   0.635
#> 6 6 0.409           0.201       0.494         0.0425 0.932   0.708

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM439987     1  0.2423      0.817 0.960 0.040
#> GSM439988     1  0.2423      0.817 0.960 0.040
#> GSM439989     1  0.0376      0.805 0.996 0.004
#> GSM439990     1  0.1414      0.813 0.980 0.020
#> GSM439991     1  0.2603      0.816 0.956 0.044
#> GSM439992     1  0.0938      0.810 0.988 0.012
#> GSM439993     1  0.2236      0.815 0.964 0.036
#> GSM439994     1  0.9881      0.180 0.564 0.436
#> GSM439995     2  0.5408      0.761 0.124 0.876
#> GSM439996     1  0.7602      0.711 0.780 0.220
#> GSM439997     2  0.9795      0.385 0.416 0.584
#> GSM439998     2  0.9661      0.455 0.392 0.608
#> GSM440035     1  0.1633      0.813 0.976 0.024
#> GSM440036     1  0.0376      0.806 0.996 0.004
#> GSM440037     1  0.6247      0.778 0.844 0.156
#> GSM440038     1  0.8016      0.676 0.756 0.244
#> GSM440011     1  0.3879      0.812 0.924 0.076
#> GSM440012     1  0.8144      0.669 0.748 0.252
#> GSM440013     1  0.7528      0.707 0.784 0.216
#> GSM440014     1  0.1414      0.814 0.980 0.020
#> GSM439999     1  0.0938      0.809 0.988 0.012
#> GSM440000     1  0.9286      0.496 0.656 0.344
#> GSM440001     1  0.0000      0.804 1.000 0.000
#> GSM440002     1  0.2236      0.816 0.964 0.036
#> GSM440023     1  0.9922      0.177 0.552 0.448
#> GSM440024     1  0.9896      0.231 0.560 0.440
#> GSM440025     2  0.7056      0.715 0.192 0.808
#> GSM440026     2  0.9000      0.563 0.316 0.684
#> GSM440039     1  0.9815      0.215 0.580 0.420
#> GSM440040     1  0.3431      0.815 0.936 0.064
#> GSM440041     1  0.7453      0.723 0.788 0.212
#> GSM440042     1  0.4939      0.803 0.892 0.108
#> GSM440015     2  0.9954      0.281 0.460 0.540
#> GSM440016     2  0.9635      0.452 0.388 0.612
#> GSM440017     1  0.6623      0.759 0.828 0.172
#> GSM440018     2  0.6438      0.742 0.164 0.836
#> GSM440003     2  0.9608      0.484 0.384 0.616
#> GSM440004     2  0.7602      0.709 0.220 0.780
#> GSM440005     1  0.3733      0.814 0.928 0.072
#> GSM440006     1  0.5946      0.785 0.856 0.144
#> GSM440027     2  0.0000      0.767 0.000 1.000
#> GSM440028     2  0.0000      0.767 0.000 1.000
#> GSM440029     2  0.0000      0.767 0.000 1.000
#> GSM440030     2  0.0000      0.767 0.000 1.000
#> GSM440043     2  0.2603      0.771 0.044 0.956
#> GSM440044     2  0.9996      0.159 0.488 0.512
#> GSM440045     2  0.6343      0.747 0.160 0.840
#> GSM440046     2  0.3584      0.770 0.068 0.932
#> GSM440019     1  0.7376      0.723 0.792 0.208
#> GSM440020     2  0.9491      0.504 0.368 0.632
#> GSM440021     2  0.6887      0.732 0.184 0.816
#> GSM440022     2  0.4815      0.766 0.104 0.896
#> GSM440007     1  0.9661      0.360 0.608 0.392
#> GSM440008     2  0.1184      0.768 0.016 0.984
#> GSM440009     2  0.9580      0.457 0.380 0.620
#> GSM440010     2  0.9993      0.113 0.484 0.516
#> GSM440031     2  0.0000      0.767 0.000 1.000
#> GSM440032     2  0.0000      0.767 0.000 1.000
#> GSM440033     2  0.0000      0.767 0.000 1.000
#> GSM440034     2  0.0000      0.767 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM439987     1  0.4782    0.62139 0.820 0.016 0.164
#> GSM439988     1  0.6446    0.60676 0.736 0.052 0.212
#> GSM439989     1  0.4683    0.63643 0.836 0.024 0.140
#> GSM439990     1  0.5406    0.63063 0.780 0.020 0.200
#> GSM439991     1  0.6379    0.58152 0.712 0.032 0.256
#> GSM439992     1  0.6105    0.57815 0.724 0.024 0.252
#> GSM439993     1  0.7091    0.41528 0.560 0.024 0.416
#> GSM439994     3  0.8784    0.18774 0.368 0.120 0.512
#> GSM439995     3  0.8141    0.50711 0.116 0.260 0.624
#> GSM439996     3  0.6881   -0.09667 0.388 0.020 0.592
#> GSM439997     3  0.7880    0.48884 0.168 0.164 0.668
#> GSM439998     3  0.8484    0.43834 0.196 0.188 0.616
#> GSM440035     1  0.4539    0.63025 0.836 0.016 0.148
#> GSM440036     1  0.5506    0.62474 0.764 0.016 0.220
#> GSM440037     1  0.7442    0.47967 0.588 0.044 0.368
#> GSM440038     1  0.8080    0.46313 0.640 0.128 0.232
#> GSM440011     1  0.6984    0.57051 0.720 0.088 0.192
#> GSM440012     1  0.9409    0.18707 0.460 0.180 0.360
#> GSM440013     1  0.7274    0.50933 0.644 0.052 0.304
#> GSM440014     1  0.5581    0.62550 0.792 0.040 0.168
#> GSM439999     1  0.5171    0.63357 0.784 0.012 0.204
#> GSM440000     1  0.9428    0.07579 0.428 0.176 0.396
#> GSM440001     1  0.3826    0.63958 0.868 0.008 0.124
#> GSM440002     1  0.5574    0.62059 0.784 0.032 0.184
#> GSM440023     2  0.9423    0.00367 0.320 0.484 0.196
#> GSM440024     2  0.9663   -0.15208 0.372 0.416 0.212
#> GSM440025     2  0.8148    0.35351 0.200 0.644 0.156
#> GSM440026     2  0.8825    0.18272 0.288 0.560 0.152
#> GSM440039     1  0.8995    0.01740 0.492 0.136 0.372
#> GSM440040     1  0.6852    0.57191 0.664 0.036 0.300
#> GSM440041     3  0.9088   -0.03241 0.396 0.140 0.464
#> GSM440042     1  0.7948    0.31836 0.520 0.060 0.420
#> GSM440015     3  0.9221    0.38256 0.284 0.192 0.524
#> GSM440016     3  0.8894    0.40047 0.236 0.192 0.572
#> GSM440017     3  0.7164   -0.26366 0.452 0.024 0.524
#> GSM440018     2  0.9059   -0.21034 0.136 0.456 0.408
#> GSM440003     3  0.9509    0.29473 0.336 0.200 0.464
#> GSM440004     3  0.9260    0.30422 0.160 0.376 0.464
#> GSM440005     1  0.7806    0.45913 0.584 0.064 0.352
#> GSM440006     1  0.8144    0.33709 0.544 0.076 0.380
#> GSM440027     2  0.0000    0.70681 0.000 1.000 0.000
#> GSM440028     2  0.0000    0.70681 0.000 1.000 0.000
#> GSM440029     2  0.0000    0.70681 0.000 1.000 0.000
#> GSM440030     2  0.0237    0.70324 0.000 0.996 0.004
#> GSM440043     3  0.7748    0.17613 0.048 0.452 0.500
#> GSM440044     3  0.8880    0.36867 0.268 0.168 0.564
#> GSM440045     3  0.8652    0.48161 0.140 0.284 0.576
#> GSM440046     3  0.8046    0.29172 0.068 0.396 0.536
#> GSM440019     3  0.7793   -0.10406 0.424 0.052 0.524
#> GSM440020     3  0.7199    0.51155 0.108 0.180 0.712
#> GSM440021     3  0.7222    0.51748 0.084 0.220 0.696
#> GSM440022     3  0.7958    0.32945 0.064 0.392 0.544
#> GSM440007     3  0.9531    0.16035 0.344 0.200 0.456
#> GSM440008     2  0.7023    0.19972 0.032 0.624 0.344
#> GSM440009     3  0.9489    0.39979 0.192 0.352 0.456
#> GSM440010     3  0.9889    0.29944 0.292 0.300 0.408
#> GSM440031     2  0.0000    0.70681 0.000 1.000 0.000
#> GSM440032     2  0.0000    0.70681 0.000 1.000 0.000
#> GSM440033     2  0.0000    0.70681 0.000 1.000 0.000
#> GSM440034     2  0.0000    0.70681 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM439987     1   0.607    0.42665 0.712 0.012 0.140 0.136
#> GSM439988     1   0.678    0.36422 0.624 0.024 0.080 0.272
#> GSM439989     1   0.563    0.43885 0.720 0.012 0.056 0.212
#> GSM439990     1   0.648    0.41381 0.684 0.028 0.092 0.196
#> GSM439991     1   0.782    0.11683 0.480 0.024 0.140 0.356
#> GSM439992     1   0.760    0.12210 0.452 0.024 0.108 0.416
#> GSM439993     4   0.674    0.27300 0.256 0.000 0.144 0.600
#> GSM439994     3   0.810    0.13697 0.280 0.032 0.504 0.184
#> GSM439995     3   0.671    0.41666 0.068 0.132 0.700 0.100
#> GSM439996     4   0.746    0.29245 0.148 0.016 0.284 0.552
#> GSM439997     3   0.795    0.17846 0.132 0.048 0.540 0.280
#> GSM439998     3   0.872   -0.03291 0.128 0.088 0.424 0.360
#> GSM440035     1   0.695    0.36846 0.632 0.024 0.112 0.232
#> GSM440036     1   0.624    0.42570 0.680 0.016 0.080 0.224
#> GSM440037     1   0.844    0.14364 0.452 0.060 0.140 0.348
#> GSM440038     1   0.785    0.30864 0.572 0.044 0.172 0.212
#> GSM440011     1   0.742    0.37404 0.620 0.044 0.140 0.196
#> GSM440012     1   0.855   -0.00596 0.408 0.056 0.156 0.380
#> GSM440013     1   0.772    0.30282 0.564 0.028 0.220 0.188
#> GSM440014     1   0.695    0.38187 0.608 0.012 0.124 0.256
#> GSM439999     1   0.578    0.43172 0.696 0.000 0.092 0.212
#> GSM440000     4   0.897   -0.07418 0.352 0.092 0.156 0.400
#> GSM440001     1   0.496    0.45363 0.776 0.012 0.044 0.168
#> GSM440002     1   0.713    0.37691 0.604 0.016 0.140 0.240
#> GSM440023     2   0.924   -0.04064 0.288 0.408 0.104 0.200
#> GSM440024     2   0.900   -0.05579 0.204 0.412 0.076 0.308
#> GSM440025     2   0.847    0.31216 0.128 0.552 0.136 0.184
#> GSM440026     2   0.848    0.22126 0.260 0.520 0.104 0.116
#> GSM440039     3   0.827    0.06818 0.360 0.028 0.424 0.188
#> GSM440040     1   0.770    0.12873 0.484 0.012 0.164 0.340
#> GSM440041     4   0.840    0.30477 0.240 0.064 0.176 0.520
#> GSM440042     4   0.797    0.13806 0.292 0.008 0.252 0.448
#> GSM440015     3   0.887    0.19163 0.264 0.076 0.456 0.204
#> GSM440016     3   0.897    0.10866 0.196 0.080 0.432 0.292
#> GSM440017     4   0.787    0.28650 0.240 0.020 0.216 0.524
#> GSM440018     3   0.883    0.32107 0.100 0.256 0.484 0.160
#> GSM440003     3   0.911    0.27383 0.212 0.136 0.472 0.180
#> GSM440004     3   0.903    0.33581 0.132 0.192 0.484 0.192
#> GSM440005     1   0.738    0.15906 0.464 0.016 0.104 0.416
#> GSM440006     4   0.818    0.21458 0.268 0.056 0.148 0.528
#> GSM440027     2   0.000    0.77676 0.000 1.000 0.000 0.000
#> GSM440028     2   0.000    0.77676 0.000 1.000 0.000 0.000
#> GSM440029     2   0.000    0.77676 0.000 1.000 0.000 0.000
#> GSM440030     2   0.000    0.77676 0.000 1.000 0.000 0.000
#> GSM440043     3   0.734    0.40829 0.032 0.216 0.612 0.140
#> GSM440044     3   0.844    0.01484 0.212 0.036 0.448 0.304
#> GSM440045     3   0.751    0.36922 0.088 0.084 0.624 0.204
#> GSM440046     3   0.684    0.42699 0.056 0.180 0.676 0.088
#> GSM440019     4   0.777    0.33909 0.196 0.020 0.248 0.536
#> GSM440020     3   0.657    0.29225 0.032 0.056 0.640 0.272
#> GSM440021     3   0.705    0.29410 0.048 0.064 0.612 0.276
#> GSM440022     3   0.770    0.38443 0.048 0.164 0.596 0.192
#> GSM440007     4   0.927    0.25284 0.252 0.092 0.264 0.392
#> GSM440008     3   0.774    0.32122 0.040 0.380 0.484 0.096
#> GSM440009     3   0.980    0.00195 0.160 0.240 0.304 0.296
#> GSM440010     4   0.976    0.09861 0.240 0.152 0.292 0.316
#> GSM440031     2   0.000    0.77676 0.000 1.000 0.000 0.000
#> GSM440032     2   0.000    0.77676 0.000 1.000 0.000 0.000
#> GSM440033     2   0.000    0.77676 0.000 1.000 0.000 0.000
#> GSM440034     2   0.000    0.77676 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM439987     1  0.6693     0.3861 0.616 0.012 0.056 0.104 0.212
#> GSM439988     1  0.7795     0.1485 0.476 0.028 0.040 0.208 0.248
#> GSM439989     1  0.6314     0.2295 0.656 0.004 0.060 0.124 0.156
#> GSM439990     1  0.6749     0.1988 0.616 0.016 0.040 0.160 0.168
#> GSM439991     1  0.8155     0.0912 0.404 0.008 0.096 0.288 0.204
#> GSM439992     4  0.7666     0.0962 0.344 0.008 0.084 0.440 0.124
#> GSM439993     4  0.6480     0.3109 0.144 0.020 0.084 0.668 0.084
#> GSM439994     3  0.8808     0.1438 0.200 0.016 0.352 0.216 0.216
#> GSM439995     3  0.7145     0.3813 0.040 0.044 0.604 0.164 0.148
#> GSM439996     4  0.7066     0.2836 0.076 0.008 0.184 0.588 0.144
#> GSM439997     3  0.8005     0.2865 0.076 0.044 0.512 0.228 0.140
#> GSM439998     4  0.8269     0.0951 0.088 0.040 0.296 0.444 0.132
#> GSM440035     1  0.7476     0.3463 0.536 0.008 0.080 0.192 0.184
#> GSM440036     1  0.7111     0.3344 0.568 0.004 0.072 0.200 0.156
#> GSM440037     5  0.8338     0.2388 0.336 0.036 0.056 0.208 0.364
#> GSM440038     1  0.7657     0.0194 0.500 0.032 0.072 0.096 0.300
#> GSM440011     1  0.7483     0.2754 0.552 0.028 0.068 0.120 0.232
#> GSM440012     5  0.8274     0.2549 0.332 0.020 0.068 0.228 0.352
#> GSM440013     1  0.7840     0.1691 0.504 0.024 0.144 0.080 0.248
#> GSM440014     1  0.7324     0.2802 0.576 0.020 0.072 0.144 0.188
#> GSM439999     1  0.6188     0.2571 0.648 0.004 0.036 0.124 0.188
#> GSM440000     5  0.9037     0.2576 0.276 0.044 0.140 0.196 0.344
#> GSM440001     1  0.6033     0.3347 0.656 0.004 0.024 0.152 0.164
#> GSM440002     1  0.7077     0.3821 0.596 0.016 0.064 0.148 0.176
#> GSM440023     2  0.8922    -0.2585 0.252 0.364 0.040 0.124 0.220
#> GSM440024     5  0.9398     0.1247 0.236 0.220 0.056 0.192 0.296
#> GSM440025     2  0.8447     0.1411 0.104 0.492 0.088 0.100 0.216
#> GSM440026     2  0.9180    -0.1011 0.228 0.372 0.124 0.072 0.204
#> GSM440039     3  0.8314     0.2244 0.256 0.024 0.404 0.072 0.244
#> GSM440040     4  0.7303     0.1994 0.260 0.012 0.072 0.540 0.116
#> GSM440041     4  0.8629     0.1172 0.196 0.028 0.128 0.412 0.236
#> GSM440042     4  0.8452     0.2283 0.220 0.016 0.152 0.428 0.184
#> GSM440015     3  0.8380     0.2788 0.168 0.024 0.424 0.108 0.276
#> GSM440016     3  0.9360    -0.0303 0.168 0.092 0.320 0.128 0.292
#> GSM440017     4  0.8093     0.0494 0.204 0.008 0.100 0.436 0.252
#> GSM440018     3  0.8759     0.3093 0.080 0.156 0.448 0.096 0.220
#> GSM440003     3  0.8671     0.3036 0.132 0.052 0.432 0.128 0.256
#> GSM440004     3  0.8399     0.3602 0.072 0.112 0.472 0.088 0.256
#> GSM440005     4  0.7376     0.1167 0.272 0.008 0.060 0.512 0.148
#> GSM440006     4  0.8136     0.2391 0.176 0.028 0.100 0.492 0.204
#> GSM440027     2  0.0290     0.8045 0.000 0.992 0.000 0.000 0.008
#> GSM440028     2  0.0000     0.8071 0.000 1.000 0.000 0.000 0.000
#> GSM440029     2  0.0000     0.8071 0.000 1.000 0.000 0.000 0.000
#> GSM440030     2  0.0162     0.8049 0.000 0.996 0.004 0.000 0.000
#> GSM440043     3  0.6846     0.4158 0.044 0.088 0.656 0.120 0.092
#> GSM440044     3  0.8490     0.0741 0.120 0.044 0.432 0.284 0.120
#> GSM440045     3  0.7263     0.3475 0.048 0.048 0.600 0.168 0.136
#> GSM440046     3  0.5758     0.4386 0.060 0.068 0.728 0.024 0.120
#> GSM440019     4  0.8445     0.2754 0.148 0.036 0.220 0.464 0.132
#> GSM440020     3  0.7864     0.2102 0.072 0.024 0.496 0.248 0.160
#> GSM440021     3  0.7607     0.2784 0.020 0.052 0.516 0.204 0.208
#> GSM440022     3  0.7392     0.3811 0.024 0.136 0.588 0.152 0.100
#> GSM440007     4  0.8687     0.1676 0.152 0.028 0.248 0.404 0.168
#> GSM440008     3  0.7529     0.3447 0.024 0.236 0.544 0.076 0.120
#> GSM440009     4  0.9575     0.1303 0.128 0.124 0.248 0.320 0.180
#> GSM440010     4  0.9429     0.1523 0.128 0.112 0.196 0.364 0.200
#> GSM440031     2  0.0162     0.8053 0.000 0.996 0.000 0.000 0.004
#> GSM440032     2  0.0000     0.8071 0.000 1.000 0.000 0.000 0.000
#> GSM440033     2  0.0000     0.8071 0.000 1.000 0.000 0.000 0.000
#> GSM440034     2  0.0162     0.8058 0.000 0.996 0.000 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM439987     6  0.6006    0.24294 0.152 0.008 0.052 0.056 0.060 0.672
#> GSM439988     1  0.8115    0.06981 0.400 0.028 0.028 0.164 0.104 0.276
#> GSM439989     1  0.6801    0.17329 0.492 0.012 0.020 0.076 0.064 0.336
#> GSM439990     1  0.7428    0.09928 0.432 0.000 0.040 0.100 0.112 0.316
#> GSM439991     6  0.7730    0.06815 0.076 0.016 0.032 0.240 0.184 0.452
#> GSM439992     4  0.8450    0.11498 0.164 0.024 0.036 0.372 0.168 0.236
#> GSM439993     4  0.6091    0.20589 0.140 0.000 0.060 0.656 0.048 0.096
#> GSM439994     3  0.8508   -0.00649 0.044 0.008 0.268 0.164 0.264 0.252
#> GSM439995     3  0.6541    0.27551 0.024 0.048 0.644 0.112 0.120 0.052
#> GSM439996     4  0.6889    0.15189 0.124 0.028 0.112 0.612 0.092 0.032
#> GSM439997     3  0.8101    0.11089 0.068 0.008 0.376 0.252 0.232 0.064
#> GSM439998     4  0.7582   -0.02020 0.052 0.024 0.288 0.456 0.144 0.036
#> GSM440035     6  0.7656    0.12472 0.188 0.004 0.032 0.168 0.136 0.472
#> GSM440036     6  0.7451    0.09263 0.220 0.004 0.028 0.120 0.140 0.488
#> GSM440037     1  0.6869    0.25888 0.604 0.012 0.068 0.116 0.056 0.144
#> GSM440038     1  0.7669    0.07411 0.432 0.020 0.056 0.064 0.100 0.328
#> GSM440011     6  0.7153    0.12562 0.244 0.008 0.048 0.048 0.132 0.520
#> GSM440012     1  0.7052    0.26061 0.588 0.020 0.052 0.168 0.100 0.072
#> GSM440013     6  0.8007   -0.00756 0.348 0.020 0.096 0.044 0.124 0.368
#> GSM440014     1  0.7178    0.07274 0.424 0.004 0.028 0.100 0.080 0.364
#> GSM439999     1  0.6988    0.13766 0.496 0.004 0.024 0.080 0.100 0.296
#> GSM440000     1  0.7352    0.26316 0.580 0.024 0.092 0.108 0.116 0.080
#> GSM440001     6  0.7012    0.00376 0.336 0.012 0.016 0.092 0.076 0.468
#> GSM440002     6  0.5979    0.21637 0.120 0.008 0.060 0.052 0.076 0.684
#> GSM440023     2  0.9020   -0.22235 0.164 0.352 0.048 0.128 0.224 0.084
#> GSM440024     1  0.9185    0.08846 0.316 0.224 0.036 0.164 0.132 0.128
#> GSM440025     2  0.8387    0.01619 0.208 0.440 0.060 0.076 0.164 0.052
#> GSM440026     2  0.8792   -0.20282 0.100 0.328 0.072 0.040 0.172 0.288
#> GSM440039     6  0.8032   -0.10006 0.076 0.008 0.308 0.048 0.212 0.348
#> GSM440040     4  0.8060    0.13466 0.124 0.012 0.036 0.400 0.160 0.268
#> GSM440041     4  0.8730    0.06946 0.252 0.024 0.084 0.344 0.192 0.104
#> GSM440042     4  0.8867    0.02290 0.128 0.016 0.104 0.324 0.228 0.200
#> GSM440015     3  0.8504    0.09993 0.056 0.032 0.344 0.080 0.208 0.280
#> GSM440016     3  0.8726    0.10330 0.280 0.024 0.336 0.116 0.160 0.084
#> GSM440017     4  0.8332    0.12682 0.212 0.012 0.120 0.428 0.128 0.100
#> GSM440018     3  0.9119    0.12406 0.176 0.104 0.384 0.088 0.152 0.096
#> GSM440003     3  0.8330    0.17905 0.084 0.040 0.436 0.060 0.224 0.156
#> GSM440004     3  0.7972    0.22701 0.084 0.072 0.460 0.024 0.256 0.104
#> GSM440005     4  0.8849    0.06489 0.164 0.028 0.072 0.324 0.148 0.264
#> GSM440006     4  0.8167    0.15431 0.156 0.012 0.064 0.448 0.144 0.176
#> GSM440027     2  0.0000    0.78689 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440028     2  0.0363    0.78137 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM440029     2  0.0000    0.78689 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440030     2  0.0405    0.78046 0.000 0.988 0.004 0.000 0.008 0.000
#> GSM440043     3  0.7259    0.28044 0.036 0.076 0.572 0.092 0.180 0.044
#> GSM440044     3  0.8617   -0.03148 0.076 0.024 0.336 0.180 0.288 0.096
#> GSM440045     3  0.6464    0.26724 0.048 0.036 0.640 0.088 0.160 0.028
#> GSM440046     3  0.5332    0.31563 0.036 0.044 0.748 0.032 0.080 0.060
#> GSM440019     4  0.8287    0.07332 0.108 0.012 0.144 0.444 0.184 0.108
#> GSM440020     3  0.7350    0.16392 0.044 0.004 0.452 0.268 0.192 0.040
#> GSM440021     3  0.8094    0.12759 0.112 0.020 0.432 0.232 0.164 0.040
#> GSM440022     3  0.7786    0.20807 0.068 0.068 0.496 0.144 0.204 0.020
#> GSM440007     4  0.8412    0.00944 0.056 0.032 0.128 0.428 0.148 0.208
#> GSM440008     3  0.7037    0.15272 0.024 0.220 0.540 0.084 0.124 0.008
#> GSM440009     5  0.9396    0.12884 0.056 0.120 0.244 0.216 0.252 0.112
#> GSM440010     5  0.9395    0.07018 0.132 0.092 0.132 0.260 0.292 0.092
#> GSM440031     2  0.0000    0.78689 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440032     2  0.0000    0.78689 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440033     2  0.0000    0.78689 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440034     2  0.0000    0.78689 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n agent(p)  time(p)  dose(p) k
#> SD:skmeans 46   0.0704 0.000185 0.001099 2
#> SD:skmeans 26   0.1157 0.000125 0.000165 3
#> SD:skmeans  8       NA       NA       NA 4
#> SD:skmeans  8       NA       NA       NA 5
#> SD:skmeans  8       NA       NA       NA 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 60 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.998       0.998         0.2368 0.765   0.765
#> 3 3 0.276           0.648       0.776         1.5212 0.619   0.501
#> 4 4 0.312           0.476       0.684         0.1739 0.856   0.647
#> 5 5 0.341           0.398       0.650         0.0469 0.956   0.853
#> 6 6 0.359           0.438       0.648         0.0204 0.982   0.933

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM439987     1  0.0000      0.998 1.000 0.000
#> GSM439988     1  0.0000      0.998 1.000 0.000
#> GSM439989     1  0.0000      0.998 1.000 0.000
#> GSM439990     1  0.0000      0.998 1.000 0.000
#> GSM439991     1  0.0376      0.997 0.996 0.004
#> GSM439992     1  0.0000      0.998 1.000 0.000
#> GSM439993     1  0.0000      0.998 1.000 0.000
#> GSM439994     1  0.0376      0.997 0.996 0.004
#> GSM439995     1  0.0376      0.997 0.996 0.004
#> GSM439996     1  0.0376      0.997 0.996 0.004
#> GSM439997     1  0.0000      0.998 1.000 0.000
#> GSM439998     1  0.0376      0.997 0.996 0.004
#> GSM440035     1  0.0376      0.997 0.996 0.004
#> GSM440036     1  0.0000      0.998 1.000 0.000
#> GSM440037     1  0.0000      0.998 1.000 0.000
#> GSM440038     1  0.0000      0.998 1.000 0.000
#> GSM440011     1  0.0376      0.997 0.996 0.004
#> GSM440012     1  0.0000      0.998 1.000 0.000
#> GSM440013     1  0.0376      0.997 0.996 0.004
#> GSM440014     1  0.0000      0.998 1.000 0.000
#> GSM439999     1  0.0000      0.998 1.000 0.000
#> GSM440000     1  0.0000      0.998 1.000 0.000
#> GSM440001     1  0.0000      0.998 1.000 0.000
#> GSM440002     1  0.0000      0.998 1.000 0.000
#> GSM440023     1  0.0000      0.998 1.000 0.000
#> GSM440024     1  0.0938      0.988 0.988 0.012
#> GSM440025     1  0.0000      0.998 1.000 0.000
#> GSM440026     1  0.0000      0.998 1.000 0.000
#> GSM440039     1  0.0000      0.998 1.000 0.000
#> GSM440040     1  0.0000      0.998 1.000 0.000
#> GSM440041     1  0.0000      0.998 1.000 0.000
#> GSM440042     1  0.0376      0.997 0.996 0.004
#> GSM440015     1  0.0000      0.998 1.000 0.000
#> GSM440016     1  0.0376      0.997 0.996 0.004
#> GSM440017     1  0.0000      0.998 1.000 0.000
#> GSM440018     1  0.0000      0.998 1.000 0.000
#> GSM440003     1  0.0000      0.998 1.000 0.000
#> GSM440004     1  0.0000      0.998 1.000 0.000
#> GSM440005     1  0.0376      0.997 0.996 0.004
#> GSM440006     1  0.0376      0.997 0.996 0.004
#> GSM440027     2  0.0376      0.998 0.004 0.996
#> GSM440028     2  0.0000      0.998 0.000 1.000
#> GSM440029     2  0.0376      0.998 0.004 0.996
#> GSM440030     2  0.0376      0.998 0.004 0.996
#> GSM440043     1  0.0376      0.997 0.996 0.004
#> GSM440044     1  0.0376      0.997 0.996 0.004
#> GSM440045     1  0.0376      0.997 0.996 0.004
#> GSM440046     1  0.0000      0.998 1.000 0.000
#> GSM440019     1  0.0000      0.998 1.000 0.000
#> GSM440020     1  0.0376      0.997 0.996 0.004
#> GSM440021     1  0.0000      0.998 1.000 0.000
#> GSM440022     1  0.0376      0.997 0.996 0.004
#> GSM440007     1  0.0376      0.997 0.996 0.004
#> GSM440008     1  0.0000      0.998 1.000 0.000
#> GSM440009     1  0.0000      0.998 1.000 0.000
#> GSM440010     1  0.0000      0.998 1.000 0.000
#> GSM440031     2  0.0000      0.998 0.000 1.000
#> GSM440032     2  0.0000      0.998 0.000 1.000
#> GSM440033     2  0.0000      0.998 0.000 1.000
#> GSM440034     2  0.0376      0.998 0.004 0.996

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM439987     1   0.334     0.7320 0.880 0.000 0.120
#> GSM439988     1   0.506     0.7001 0.756 0.000 0.244
#> GSM439989     1   0.550     0.5570 0.708 0.000 0.292
#> GSM439990     1   0.245     0.7066 0.924 0.000 0.076
#> GSM439991     3   0.620     0.5442 0.424 0.000 0.576
#> GSM439992     1   0.628     0.0922 0.540 0.000 0.460
#> GSM439993     1   0.288     0.7016 0.904 0.000 0.096
#> GSM439994     3   0.553     0.5354 0.296 0.000 0.704
#> GSM439995     3   0.312     0.6949 0.108 0.000 0.892
#> GSM439996     3   0.497     0.5708 0.236 0.000 0.764
#> GSM439997     3   0.445     0.6946 0.192 0.000 0.808
#> GSM439998     3   0.455     0.6226 0.200 0.000 0.800
#> GSM440035     1   0.484     0.6310 0.776 0.000 0.224
#> GSM440036     1   0.369     0.7294 0.860 0.000 0.140
#> GSM440037     1   0.514     0.7019 0.748 0.000 0.252
#> GSM440038     1   0.540     0.6471 0.720 0.000 0.280
#> GSM440011     1   0.489     0.6920 0.772 0.000 0.228
#> GSM440012     1   0.536     0.6991 0.724 0.000 0.276
#> GSM440013     1   0.435     0.7084 0.816 0.000 0.184
#> GSM440014     1   0.280     0.7246 0.908 0.000 0.092
#> GSM439999     1   0.455     0.7195 0.800 0.000 0.200
#> GSM440000     1   0.559     0.6152 0.696 0.000 0.304
#> GSM440001     1   0.153     0.7175 0.960 0.000 0.040
#> GSM440002     1   0.400     0.7126 0.840 0.000 0.160
#> GSM440023     1   0.226     0.7352 0.932 0.000 0.068
#> GSM440024     1   0.636     0.4314 0.628 0.008 0.364
#> GSM440025     1   0.445     0.7294 0.808 0.000 0.192
#> GSM440026     3   0.619     0.3334 0.420 0.000 0.580
#> GSM440039     1   0.514     0.6533 0.748 0.000 0.252
#> GSM440040     1   0.546     0.5268 0.712 0.000 0.288
#> GSM440041     3   0.533     0.5458 0.272 0.000 0.728
#> GSM440042     3   0.630    -0.2521 0.484 0.000 0.516
#> GSM440015     3   0.576     0.5932 0.328 0.000 0.672
#> GSM440016     3   0.597     0.5113 0.364 0.000 0.636
#> GSM440017     3   0.630     0.4707 0.476 0.000 0.524
#> GSM440018     3   0.579     0.5961 0.332 0.000 0.668
#> GSM440003     3   0.502     0.6731 0.240 0.000 0.760
#> GSM440004     1   0.571     0.6611 0.680 0.000 0.320
#> GSM440005     1   0.617     0.2236 0.588 0.000 0.412
#> GSM440006     3   0.583     0.5059 0.340 0.000 0.660
#> GSM440027     2   0.000     1.0000 0.000 1.000 0.000
#> GSM440028     2   0.000     1.0000 0.000 1.000 0.000
#> GSM440029     2   0.000     1.0000 0.000 1.000 0.000
#> GSM440030     2   0.000     1.0000 0.000 1.000 0.000
#> GSM440043     3   0.506     0.6501 0.244 0.000 0.756
#> GSM440044     3   0.327     0.6869 0.116 0.000 0.884
#> GSM440045     3   0.518     0.6609 0.256 0.000 0.744
#> GSM440046     3   0.562     0.6168 0.308 0.000 0.692
#> GSM440019     3   0.621     0.2614 0.428 0.000 0.572
#> GSM440020     3   0.304     0.6581 0.104 0.000 0.896
#> GSM440021     3   0.388     0.6790 0.152 0.000 0.848
#> GSM440022     3   0.271     0.6885 0.088 0.000 0.912
#> GSM440007     3   0.271     0.6580 0.088 0.000 0.912
#> GSM440008     3   0.394     0.6831 0.156 0.000 0.844
#> GSM440009     3   0.565     0.6479 0.312 0.000 0.688
#> GSM440010     3   0.579     0.6099 0.332 0.000 0.668
#> GSM440031     2   0.000     1.0000 0.000 1.000 0.000
#> GSM440032     2   0.000     1.0000 0.000 1.000 0.000
#> GSM440033     2   0.000     1.0000 0.000 1.000 0.000
#> GSM440034     2   0.000     1.0000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM439987     1   0.535     0.1166 0.556 0.000 0.012 0.432
#> GSM439988     1   0.448     0.5280 0.796 0.000 0.152 0.052
#> GSM439989     1   0.730     0.0243 0.448 0.000 0.152 0.400
#> GSM439990     1   0.506     0.4343 0.692 0.000 0.024 0.284
#> GSM439991     4   0.583     0.3921 0.172 0.000 0.124 0.704
#> GSM439992     4   0.789     0.1672 0.304 0.000 0.316 0.380
#> GSM439993     4   0.618     0.2359 0.428 0.000 0.052 0.520
#> GSM439994     3   0.660     0.5039 0.328 0.000 0.572 0.100
#> GSM439995     3   0.440     0.6572 0.152 0.000 0.800 0.048
#> GSM439996     3   0.514    -0.0303 0.008 0.000 0.600 0.392
#> GSM439997     3   0.523     0.6344 0.168 0.000 0.748 0.084
#> GSM439998     3   0.508     0.3703 0.032 0.000 0.708 0.260
#> GSM440035     1   0.620     0.3578 0.544 0.000 0.056 0.400
#> GSM440036     4   0.552     0.3559 0.276 0.000 0.048 0.676
#> GSM440037     1   0.259     0.5605 0.904 0.000 0.080 0.016
#> GSM440038     1   0.274     0.5492 0.900 0.000 0.076 0.024
#> GSM440011     1   0.418     0.5335 0.820 0.000 0.052 0.128
#> GSM440012     1   0.439     0.5435 0.812 0.000 0.116 0.072
#> GSM440013     1   0.707     0.2150 0.468 0.000 0.124 0.408
#> GSM440014     1   0.451     0.5052 0.756 0.000 0.020 0.224
#> GSM439999     1   0.525     0.5165 0.736 0.000 0.068 0.196
#> GSM440000     1   0.241     0.5475 0.908 0.000 0.084 0.008
#> GSM440001     4   0.405     0.3609 0.188 0.000 0.016 0.796
#> GSM440002     1   0.547     0.0490 0.548 0.000 0.016 0.436
#> GSM440023     1   0.386     0.5131 0.828 0.000 0.028 0.144
#> GSM440024     1   0.818    -0.1476 0.360 0.008 0.300 0.332
#> GSM440025     1   0.369     0.5619 0.856 0.000 0.068 0.076
#> GSM440026     3   0.676     0.4202 0.400 0.000 0.504 0.096
#> GSM440039     1   0.706    -0.0669 0.496 0.000 0.128 0.376
#> GSM440040     1   0.744    -0.2935 0.440 0.000 0.172 0.388
#> GSM440041     3   0.579    -0.2117 0.032 0.000 0.552 0.416
#> GSM440042     1   0.721     0.1984 0.516 0.000 0.324 0.160
#> GSM440015     3   0.617     0.5847 0.348 0.000 0.588 0.064
#> GSM440016     3   0.763     0.1211 0.244 0.000 0.468 0.288
#> GSM440017     4   0.734     0.4218 0.204 0.000 0.272 0.524
#> GSM440018     3   0.612     0.5825 0.372 0.000 0.572 0.056
#> GSM440003     3   0.511     0.6410 0.252 0.000 0.712 0.036
#> GSM440004     1   0.646     0.3819 0.632 0.000 0.240 0.128
#> GSM440005     4   0.757     0.4117 0.276 0.000 0.240 0.484
#> GSM440006     4   0.661     0.3019 0.080 0.000 0.444 0.476
#> GSM440027     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> GSM440028     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> GSM440029     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> GSM440030     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> GSM440043     3   0.566     0.6274 0.244 0.000 0.688 0.068
#> GSM440044     3   0.314     0.6426 0.100 0.000 0.876 0.024
#> GSM440045     3   0.592     0.6379 0.272 0.000 0.656 0.072
#> GSM440046     3   0.600     0.6022 0.324 0.000 0.616 0.060
#> GSM440019     4   0.734     0.4159 0.156 0.000 0.412 0.432
#> GSM440020     3   0.293     0.5989 0.048 0.000 0.896 0.056
#> GSM440021     3   0.415     0.6404 0.160 0.000 0.808 0.032
#> GSM440022     3   0.390     0.6407 0.132 0.000 0.832 0.036
#> GSM440007     3   0.174     0.5609 0.004 0.000 0.940 0.056
#> GSM440008     3   0.389     0.6572 0.184 0.000 0.804 0.012
#> GSM440009     3   0.709     0.4397 0.208 0.000 0.568 0.224
#> GSM440010     3   0.669     0.5631 0.352 0.000 0.548 0.100
#> GSM440031     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> GSM440032     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> GSM440033     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> GSM440034     2   0.000     1.0000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM439987     4  0.6851    -0.0101 0.412 0.000 0.084 0.444 0.060
#> GSM439988     1  0.4389     0.5427 0.768 0.000 0.176 0.036 0.020
#> GSM439989     1  0.7616     0.0430 0.432 0.000 0.172 0.320 0.076
#> GSM439990     1  0.4654     0.4497 0.704 0.000 0.012 0.256 0.028
#> GSM439991     4  0.5868     0.2746 0.056 0.000 0.120 0.688 0.136
#> GSM439992     4  0.8461     0.0889 0.264 0.000 0.284 0.292 0.160
#> GSM439993     4  0.5389     0.2349 0.400 0.000 0.036 0.552 0.012
#> GSM439994     3  0.6421     0.1728 0.240 0.000 0.608 0.060 0.092
#> GSM439995     3  0.4153     0.5072 0.104 0.000 0.812 0.052 0.032
#> GSM439996     3  0.5035     0.0307 0.008 0.000 0.548 0.424 0.020
#> GSM439997     3  0.4117     0.5241 0.116 0.000 0.788 0.096 0.000
#> GSM439998     3  0.4428     0.3974 0.020 0.000 0.692 0.284 0.004
#> GSM440035     1  0.6566     0.3920 0.576 0.000 0.048 0.268 0.108
#> GSM440036     4  0.5842     0.3613 0.216 0.000 0.064 0.664 0.056
#> GSM440037     1  0.3496     0.5594 0.840 0.000 0.116 0.028 0.016
#> GSM440038     1  0.3816     0.5292 0.824 0.000 0.120 0.028 0.028
#> GSM440011     1  0.5644     0.5030 0.716 0.000 0.096 0.100 0.088
#> GSM440012     1  0.4655     0.5574 0.764 0.000 0.140 0.080 0.016
#> GSM440013     1  0.7947     0.2219 0.392 0.000 0.128 0.332 0.148
#> GSM440014     1  0.4900     0.5235 0.744 0.000 0.028 0.168 0.060
#> GSM439999     1  0.5591     0.5271 0.716 0.000 0.072 0.128 0.084
#> GSM440000     1  0.3127     0.5283 0.848 0.000 0.128 0.020 0.004
#> GSM440001     4  0.4644     0.3632 0.116 0.000 0.020 0.772 0.092
#> GSM440002     1  0.6832    -0.0869 0.436 0.000 0.092 0.420 0.052
#> GSM440023     1  0.4237     0.4966 0.772 0.000 0.076 0.152 0.000
#> GSM440024     1  0.7204    -0.0848 0.384 0.008 0.252 0.348 0.008
#> GSM440025     1  0.3997     0.5718 0.820 0.000 0.092 0.068 0.020
#> GSM440026     5  0.7651     0.0000 0.224 0.000 0.344 0.056 0.376
#> GSM440039     1  0.8126    -0.2313 0.384 0.000 0.192 0.296 0.128
#> GSM440040     4  0.7221     0.2560 0.368 0.000 0.228 0.380 0.024
#> GSM440041     3  0.5637    -0.1435 0.032 0.000 0.496 0.448 0.024
#> GSM440042     1  0.7577     0.0771 0.460 0.000 0.304 0.140 0.096
#> GSM440015     3  0.5692     0.3484 0.256 0.000 0.648 0.064 0.032
#> GSM440016     3  0.7186     0.1495 0.184 0.000 0.488 0.284 0.044
#> GSM440017     4  0.6325     0.3317 0.176 0.000 0.256 0.560 0.008
#> GSM440018     3  0.5466     0.3480 0.276 0.000 0.648 0.052 0.024
#> GSM440003     3  0.5325     0.3795 0.168 0.000 0.716 0.032 0.084
#> GSM440004     1  0.7492     0.0554 0.488 0.000 0.280 0.108 0.124
#> GSM440005     4  0.7149     0.3858 0.252 0.000 0.236 0.480 0.032
#> GSM440006     4  0.6218     0.2464 0.076 0.000 0.412 0.488 0.024
#> GSM440027     2  0.0000     0.9994 0.000 1.000 0.000 0.000 0.000
#> GSM440028     2  0.0000     0.9994 0.000 1.000 0.000 0.000 0.000
#> GSM440029     2  0.0000     0.9994 0.000 1.000 0.000 0.000 0.000
#> GSM440030     2  0.0000     0.9994 0.000 1.000 0.000 0.000 0.000
#> GSM440043     3  0.5868     0.2562 0.120 0.000 0.688 0.056 0.136
#> GSM440044     3  0.2002     0.4985 0.028 0.000 0.932 0.020 0.020
#> GSM440045     3  0.5164     0.4498 0.164 0.000 0.732 0.060 0.044
#> GSM440046     3  0.6105     0.2849 0.224 0.000 0.640 0.052 0.084
#> GSM440019     4  0.6727     0.3640 0.156 0.000 0.376 0.452 0.016
#> GSM440020     3  0.2866     0.4819 0.020 0.000 0.884 0.076 0.020
#> GSM440021     3  0.2812     0.5198 0.096 0.000 0.876 0.024 0.004
#> GSM440022     3  0.4760     0.3701 0.052 0.000 0.772 0.052 0.124
#> GSM440007     3  0.4791     0.1453 0.008 0.000 0.616 0.016 0.360
#> GSM440008     3  0.2864     0.5185 0.104 0.000 0.872 0.012 0.012
#> GSM440009     3  0.6699     0.3003 0.140 0.000 0.584 0.224 0.052
#> GSM440010     3  0.6382     0.2887 0.252 0.000 0.604 0.088 0.056
#> GSM440031     2  0.0000     0.9994 0.000 1.000 0.000 0.000 0.000
#> GSM440032     2  0.0000     0.9994 0.000 1.000 0.000 0.000 0.000
#> GSM440033     2  0.0000     0.9994 0.000 1.000 0.000 0.000 0.000
#> GSM440034     2  0.0162     0.9955 0.000 0.996 0.000 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM439987     4  0.6777    0.00454 0.404 0.000 0.076 0.424 0.060 0.036
#> GSM439988     1  0.4082    0.54076 0.768 0.000 0.172 0.036 0.012 0.012
#> GSM439989     1  0.7367    0.06693 0.384 0.000 0.168 0.348 0.076 0.024
#> GSM439990     1  0.4834    0.44969 0.660 0.000 0.020 0.276 0.036 0.008
#> GSM439991     4  0.6064    0.09294 0.044 0.000 0.108 0.644 0.164 0.040
#> GSM439992     5  0.8802    0.00109 0.168 0.000 0.140 0.232 0.284 0.176
#> GSM439993     4  0.5322    0.26193 0.368 0.000 0.040 0.560 0.016 0.016
#> GSM439994     3  0.5859    0.41323 0.224 0.000 0.604 0.028 0.136 0.008
#> GSM439995     3  0.4046    0.62498 0.080 0.000 0.808 0.040 0.060 0.012
#> GSM439996     3  0.4767   -0.00234 0.004 0.000 0.528 0.432 0.032 0.004
#> GSM439997     3  0.3693    0.62643 0.116 0.000 0.796 0.084 0.004 0.000
#> GSM439998     3  0.4201    0.40714 0.020 0.000 0.688 0.280 0.008 0.004
#> GSM440035     1  0.6997    0.33310 0.532 0.000 0.056 0.240 0.112 0.060
#> GSM440036     4  0.5826    0.26724 0.220 0.000 0.060 0.636 0.064 0.020
#> GSM440037     1  0.3266    0.56042 0.840 0.000 0.108 0.032 0.016 0.004
#> GSM440038     1  0.3931    0.54645 0.812 0.000 0.104 0.032 0.028 0.024
#> GSM440011     1  0.5658    0.48678 0.696 0.000 0.088 0.104 0.080 0.032
#> GSM440012     1  0.4597    0.55529 0.752 0.000 0.128 0.088 0.016 0.016
#> GSM440013     1  0.7498    0.17726 0.364 0.000 0.140 0.324 0.164 0.008
#> GSM440014     1  0.4872    0.50721 0.728 0.000 0.036 0.160 0.064 0.012
#> GSM439999     1  0.5860    0.50320 0.672 0.000 0.076 0.132 0.092 0.028
#> GSM440000     1  0.2333    0.54069 0.872 0.000 0.120 0.004 0.004 0.000
#> GSM440001     4  0.4490    0.22901 0.088 0.000 0.016 0.776 0.084 0.036
#> GSM440002     1  0.6815   -0.08465 0.444 0.000 0.088 0.376 0.060 0.032
#> GSM440023     1  0.3905    0.50441 0.780 0.000 0.076 0.136 0.008 0.000
#> GSM440024     1  0.6556   -0.05446 0.392 0.008 0.236 0.352 0.004 0.008
#> GSM440025     1  0.3661    0.56361 0.824 0.000 0.080 0.068 0.024 0.004
#> GSM440026     5  0.6147    0.07113 0.156 0.000 0.244 0.016 0.564 0.020
#> GSM440039     1  0.7706   -0.08487 0.356 0.000 0.200 0.268 0.168 0.008
#> GSM440040     4  0.6653    0.24605 0.368 0.000 0.228 0.376 0.016 0.012
#> GSM440041     3  0.5136   -0.16652 0.028 0.000 0.480 0.464 0.024 0.004
#> GSM440042     1  0.7266    0.13939 0.448 0.000 0.308 0.096 0.120 0.028
#> GSM440015     3  0.4941    0.55728 0.264 0.000 0.656 0.036 0.044 0.000
#> GSM440016     3  0.6557    0.19706 0.184 0.000 0.504 0.260 0.048 0.004
#> GSM440017     4  0.5840    0.33038 0.160 0.000 0.260 0.560 0.020 0.000
#> GSM440018     3  0.4659    0.56132 0.288 0.000 0.656 0.024 0.032 0.000
#> GSM440003     3  0.4759    0.58646 0.180 0.000 0.712 0.016 0.088 0.004
#> GSM440004     1  0.6875    0.19907 0.472 0.000 0.284 0.084 0.156 0.004
#> GSM440005     4  0.6573    0.34205 0.244 0.000 0.240 0.480 0.028 0.008
#> GSM440006     4  0.6033    0.25955 0.076 0.000 0.400 0.480 0.028 0.016
#> GSM440027     2  0.0000    0.99698 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440028     2  0.0000    0.99698 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440029     2  0.0000    0.99698 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440030     2  0.0000    0.99698 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440043     3  0.4982    0.51770 0.120 0.000 0.688 0.020 0.172 0.000
#> GSM440044     3  0.2077    0.60622 0.032 0.000 0.920 0.012 0.032 0.004
#> GSM440045     3  0.4496    0.61678 0.168 0.000 0.744 0.032 0.052 0.004
#> GSM440046     3  0.5439    0.53779 0.232 0.000 0.632 0.020 0.112 0.004
#> GSM440019     4  0.6381    0.30779 0.152 0.000 0.352 0.460 0.032 0.004
#> GSM440020     3  0.3039    0.56346 0.028 0.000 0.864 0.076 0.028 0.004
#> GSM440021     3  0.2843    0.62020 0.104 0.000 0.860 0.028 0.004 0.004
#> GSM440022     3  0.4120    0.53103 0.044 0.000 0.760 0.024 0.172 0.000
#> GSM440007     6  0.3428    0.00000 0.000 0.000 0.304 0.000 0.000 0.696
#> GSM440008     3  0.2712    0.63132 0.108 0.000 0.864 0.012 0.016 0.000
#> GSM440009     3  0.6042    0.48030 0.144 0.000 0.592 0.204 0.060 0.000
#> GSM440010     3  0.5563    0.53889 0.264 0.000 0.612 0.064 0.060 0.000
#> GSM440031     2  0.0000    0.99698 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440032     2  0.0000    0.99698 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440033     2  0.0146    0.99457 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM440034     2  0.0551    0.98241 0.000 0.984 0.000 0.004 0.008 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n agent(p)  time(p)  dose(p) k
#> SD:pam 60   0.2963 9.95e-02 1.87e-07 2
#> SD:pam 53   0.2801 2.14e-08 1.56e-06 3
#> SD:pam 34   0.3968 2.73e-07 8.54e-04 4
#> SD:pam 21   0.0616 2.82e-05 5.31e-03 5
#> SD:pam 31   0.5438 8.59e-07 2.21e-03 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 60 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.973       0.988         0.2525 0.765   0.765
#> 3 3 0.393           0.334       0.656         1.2553 0.729   0.645
#> 4 4 0.506           0.640       0.815         0.2351 0.638   0.351
#> 5 5 0.548           0.669       0.769         0.0986 0.950   0.811
#> 6 6 0.670           0.600       0.770         0.0584 0.931   0.702

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM439987     1  0.0000      0.986 1.000 0.000
#> GSM439988     1  0.0000      0.986 1.000 0.000
#> GSM439989     1  0.0000      0.986 1.000 0.000
#> GSM439990     1  0.0000      0.986 1.000 0.000
#> GSM439991     1  0.0000      0.986 1.000 0.000
#> GSM439992     1  0.0000      0.986 1.000 0.000
#> GSM439993     1  0.0000      0.986 1.000 0.000
#> GSM439994     1  0.0000      0.986 1.000 0.000
#> GSM439995     1  0.0000      0.986 1.000 0.000
#> GSM439996     1  0.0000      0.986 1.000 0.000
#> GSM439997     1  0.0000      0.986 1.000 0.000
#> GSM439998     1  0.0000      0.986 1.000 0.000
#> GSM440035     1  0.0000      0.986 1.000 0.000
#> GSM440036     1  0.0000      0.986 1.000 0.000
#> GSM440037     1  0.0000      0.986 1.000 0.000
#> GSM440038     1  0.0000      0.986 1.000 0.000
#> GSM440011     1  0.0000      0.986 1.000 0.000
#> GSM440012     1  0.0000      0.986 1.000 0.000
#> GSM440013     1  0.0000      0.986 1.000 0.000
#> GSM440014     1  0.0000      0.986 1.000 0.000
#> GSM439999     1  0.0000      0.986 1.000 0.000
#> GSM440000     1  0.0376      0.982 0.996 0.004
#> GSM440001     1  0.0000      0.986 1.000 0.000
#> GSM440002     1  0.0000      0.986 1.000 0.000
#> GSM440023     1  0.7745      0.718 0.772 0.228
#> GSM440024     1  0.7815      0.712 0.768 0.232
#> GSM440025     1  0.7883      0.705 0.764 0.236
#> GSM440026     1  0.1843      0.960 0.972 0.028
#> GSM440039     1  0.0000      0.986 1.000 0.000
#> GSM440040     1  0.0000      0.986 1.000 0.000
#> GSM440041     1  0.0000      0.986 1.000 0.000
#> GSM440042     1  0.0000      0.986 1.000 0.000
#> GSM440015     1  0.0000      0.986 1.000 0.000
#> GSM440016     1  0.0000      0.986 1.000 0.000
#> GSM440017     1  0.0000      0.986 1.000 0.000
#> GSM440018     1  0.0000      0.986 1.000 0.000
#> GSM440003     1  0.0000      0.986 1.000 0.000
#> GSM440004     1  0.0000      0.986 1.000 0.000
#> GSM440005     1  0.0000      0.986 1.000 0.000
#> GSM440006     1  0.0000      0.986 1.000 0.000
#> GSM440027     2  0.0000      1.000 0.000 1.000
#> GSM440028     2  0.0000      1.000 0.000 1.000
#> GSM440029     2  0.0000      1.000 0.000 1.000
#> GSM440030     2  0.0000      1.000 0.000 1.000
#> GSM440043     1  0.0000      0.986 1.000 0.000
#> GSM440044     1  0.0000      0.986 1.000 0.000
#> GSM440045     1  0.0000      0.986 1.000 0.000
#> GSM440046     1  0.0000      0.986 1.000 0.000
#> GSM440019     1  0.0000      0.986 1.000 0.000
#> GSM440020     1  0.0000      0.986 1.000 0.000
#> GSM440021     1  0.0000      0.986 1.000 0.000
#> GSM440022     1  0.0000      0.986 1.000 0.000
#> GSM440007     1  0.0000      0.986 1.000 0.000
#> GSM440008     1  0.0000      0.986 1.000 0.000
#> GSM440009     1  0.0000      0.986 1.000 0.000
#> GSM440010     1  0.0000      0.986 1.000 0.000
#> GSM440031     2  0.0000      1.000 0.000 1.000
#> GSM440032     2  0.0000      1.000 0.000 1.000
#> GSM440033     2  0.0000      1.000 0.000 1.000
#> GSM440034     2  0.0000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1 p2    p3
#> GSM439987     1   0.630     0.4130 0.516  0 0.484
#> GSM439988     1   0.460     0.4633 0.796  0 0.204
#> GSM439989     1   0.631     0.4036 0.508  0 0.492
#> GSM439990     1   0.630     0.4083 0.516  0 0.484
#> GSM439991     1   0.543     0.4449 0.716  0 0.284
#> GSM439992     1   0.382     0.4595 0.852  0 0.148
#> GSM439993     1   0.129     0.4038 0.968  0 0.032
#> GSM439994     1   0.628    -0.2882 0.540  0 0.460
#> GSM439995     3   0.631     0.7528 0.492  0 0.508
#> GSM439996     1   0.141     0.3787 0.964  0 0.036
#> GSM439997     3   0.631     0.7419 0.500  0 0.500
#> GSM439998     1   0.627    -0.6893 0.544  0 0.456
#> GSM440035     1   0.626     0.4228 0.552  0 0.448
#> GSM440036     1   0.627     0.4182 0.544  0 0.456
#> GSM440037     1   0.388     0.4256 0.848  0 0.152
#> GSM440038     1   0.599     0.4371 0.632  0 0.368
#> GSM440011     1   0.629     0.4198 0.532  0 0.468
#> GSM440012     1   0.388     0.3230 0.848  0 0.152
#> GSM440013     1   0.588     0.4402 0.652  0 0.348
#> GSM440014     1   0.631     0.4048 0.508  0 0.492
#> GSM439999     1   0.631     0.4036 0.508  0 0.492
#> GSM440000     1   0.460     0.3058 0.796  0 0.204
#> GSM440001     1   0.631     0.4031 0.508  0 0.492
#> GSM440002     3   0.631    -0.4645 0.496  0 0.504
#> GSM440023     1   0.597    -0.1099 0.636  0 0.364
#> GSM440024     1   0.583     0.0311 0.660  0 0.340
#> GSM440025     1   0.626    -0.3701 0.552  0 0.448
#> GSM440026     3   0.613     0.2564 0.400  0 0.600
#> GSM440039     1   0.620    -0.1589 0.576  0 0.424
#> GSM440040     1   0.280     0.4528 0.908  0 0.092
#> GSM440041     1   0.116     0.3874 0.972  0 0.028
#> GSM440042     1   0.304     0.4295 0.896  0 0.104
#> GSM440015     1   0.630    -0.4499 0.516  0 0.484
#> GSM440016     1   0.627    -0.6877 0.548  0 0.452
#> GSM440017     1   0.164     0.3850 0.956  0 0.044
#> GSM440018     3   0.631     0.7528 0.492  0 0.508
#> GSM440003     3   0.617     0.6141 0.412  0 0.588
#> GSM440004     3   0.619     0.6583 0.420  0 0.580
#> GSM440005     1   0.296     0.4504 0.900  0 0.100
#> GSM440006     1   0.164     0.4267 0.956  0 0.044
#> GSM440027     2   0.000     1.0000 0.000  1 0.000
#> GSM440028     2   0.000     1.0000 0.000  1 0.000
#> GSM440029     2   0.000     1.0000 0.000  1 0.000
#> GSM440030     2   0.000     1.0000 0.000  1 0.000
#> GSM440043     3   0.631     0.7528 0.492  0 0.508
#> GSM440044     1   0.614    -0.6000 0.596  0 0.404
#> GSM440045     3   0.631     0.7528 0.492  0 0.508
#> GSM440046     3   0.631     0.7528 0.492  0 0.508
#> GSM440019     1   0.207     0.3450 0.940  0 0.060
#> GSM440020     1   0.629    -0.7114 0.536  0 0.464
#> GSM440021     1   0.631    -0.7507 0.508  0 0.492
#> GSM440022     3   0.631     0.7528 0.492  0 0.508
#> GSM440007     1   0.382     0.1574 0.852  0 0.148
#> GSM440008     3   0.631     0.7528 0.492  0 0.508
#> GSM440009     1   0.623    -0.6612 0.564  0 0.436
#> GSM440010     1   0.583    -0.4249 0.660  0 0.340
#> GSM440031     2   0.000     1.0000 0.000  1 0.000
#> GSM440032     2   0.000     1.0000 0.000  1 0.000
#> GSM440033     2   0.000     1.0000 0.000  1 0.000
#> GSM440034     2   0.000     1.0000 0.000  1 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1 p2    p3    p4
#> GSM439987     1  0.1520      0.768 0.956  0 0.024 0.020
#> GSM439988     4  0.5657      0.180 0.436  0 0.024 0.540
#> GSM439989     1  0.1302      0.777 0.956  0 0.000 0.044
#> GSM439990     1  0.1398      0.778 0.956  0 0.004 0.040
#> GSM439991     1  0.5746      0.263 0.572  0 0.032 0.396
#> GSM439992     4  0.3813      0.675 0.148  0 0.024 0.828
#> GSM439993     4  0.1661      0.732 0.004  0 0.052 0.944
#> GSM439994     3  0.7400      0.272 0.172  0 0.468 0.360
#> GSM439995     3  0.0188      0.707 0.000  0 0.996 0.004
#> GSM439996     4  0.2888      0.709 0.004  0 0.124 0.872
#> GSM439997     3  0.1557      0.706 0.000  0 0.944 0.056
#> GSM439998     3  0.4643      0.423 0.000  0 0.656 0.344
#> GSM440035     1  0.3764      0.672 0.784  0 0.000 0.216
#> GSM440036     1  0.3172      0.710 0.840  0 0.000 0.160
#> GSM440037     4  0.5932      0.674 0.172  0 0.132 0.696
#> GSM440038     1  0.6074      0.401 0.648  0 0.084 0.268
#> GSM440011     1  0.2660      0.749 0.908  0 0.036 0.056
#> GSM440012     4  0.4880      0.669 0.052  0 0.188 0.760
#> GSM440013     1  0.6733      0.208 0.564  0 0.112 0.324
#> GSM440014     1  0.1211      0.778 0.960  0 0.000 0.040
#> GSM439999     1  0.1211      0.777 0.960  0 0.000 0.040
#> GSM440000     4  0.5820      0.603 0.080  0 0.240 0.680
#> GSM440001     1  0.0921      0.777 0.972  0 0.000 0.028
#> GSM440002     1  0.0376      0.768 0.992  0 0.004 0.004
#> GSM440023     4  0.6970      0.488 0.168  0 0.256 0.576
#> GSM440024     4  0.6473      0.580 0.168  0 0.188 0.644
#> GSM440025     4  0.6240      0.391 0.076  0 0.320 0.604
#> GSM440026     1  0.7811     -0.227 0.380  0 0.252 0.368
#> GSM440039     3  0.7345      0.297 0.168  0 0.484 0.348
#> GSM440040     4  0.4057      0.719 0.152  0 0.032 0.816
#> GSM440041     4  0.2973      0.737 0.020  0 0.096 0.884
#> GSM440042     4  0.2670      0.729 0.052  0 0.040 0.908
#> GSM440015     3  0.6894      0.379 0.120  0 0.536 0.344
#> GSM440016     3  0.4977      0.182 0.000  0 0.540 0.460
#> GSM440017     4  0.4356      0.709 0.048  0 0.148 0.804
#> GSM440018     3  0.4134      0.595 0.000  0 0.740 0.260
#> GSM440003     3  0.6039      0.431 0.056  0 0.596 0.348
#> GSM440004     3  0.4797      0.580 0.020  0 0.720 0.260
#> GSM440005     4  0.3958      0.680 0.160  0 0.024 0.816
#> GSM440006     4  0.1610      0.733 0.016  0 0.032 0.952
#> GSM440027     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM440028     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM440029     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM440030     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM440043     3  0.0336      0.709 0.000  0 0.992 0.008
#> GSM440044     3  0.5126      0.245 0.004  0 0.552 0.444
#> GSM440045     3  0.0336      0.709 0.000  0 0.992 0.008
#> GSM440046     3  0.0188      0.707 0.000  0 0.996 0.004
#> GSM440019     4  0.2530      0.708 0.000  0 0.112 0.888
#> GSM440020     3  0.1389      0.704 0.000  0 0.952 0.048
#> GSM440021     3  0.1302      0.707 0.000  0 0.956 0.044
#> GSM440022     3  0.0336      0.707 0.000  0 0.992 0.008
#> GSM440007     4  0.2469      0.723 0.000  0 0.108 0.892
#> GSM440008     3  0.0707      0.709 0.000  0 0.980 0.020
#> GSM440009     3  0.4454      0.530 0.000  0 0.692 0.308
#> GSM440010     4  0.4585      0.481 0.000  0 0.332 0.668
#> GSM440031     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM440032     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM440033     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM440034     2  0.0000      1.000 0.000  1 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1 p2    p3    p4    p5
#> GSM439987     1  0.2848      0.759 0.840  0 0.000 0.004 0.156
#> GSM439988     4  0.5943      0.128 0.444  0 0.008 0.468 0.080
#> GSM439989     1  0.0880      0.804 0.968  0 0.000 0.032 0.000
#> GSM439990     1  0.0854      0.806 0.976  0 0.004 0.012 0.008
#> GSM439991     1  0.6537      0.298 0.508  0 0.004 0.268 0.220
#> GSM439992     4  0.4808      0.592 0.168  0 0.000 0.724 0.108
#> GSM439993     4  0.3427      0.697 0.008  0 0.128 0.836 0.028
#> GSM439994     5  0.6903      0.724 0.120  0 0.196 0.096 0.588
#> GSM439995     3  0.0963      0.726 0.000  0 0.964 0.000 0.036
#> GSM439996     4  0.4033      0.621 0.004  0 0.212 0.760 0.024
#> GSM439997     3  0.2110      0.713 0.000  0 0.912 0.016 0.072
#> GSM439998     3  0.4909      0.253 0.000  0 0.588 0.380 0.032
#> GSM440035     1  0.3771      0.696 0.796  0 0.000 0.164 0.040
#> GSM440036     1  0.3106      0.737 0.844  0 0.000 0.132 0.024
#> GSM440037     4  0.6395      0.636 0.164  0 0.088 0.644 0.104
#> GSM440038     1  0.5143      0.635 0.696  0 0.008 0.084 0.212
#> GSM440011     1  0.3471      0.751 0.820  0 0.012 0.012 0.156
#> GSM440012     4  0.5110      0.686 0.060  0 0.116 0.752 0.072
#> GSM440013     1  0.6149      0.349 0.536  0 0.008 0.116 0.340
#> GSM440014     1  0.0693      0.807 0.980  0 0.000 0.012 0.008
#> GSM439999     1  0.0510      0.805 0.984  0 0.000 0.016 0.000
#> GSM440000     4  0.6204      0.647 0.096  0 0.124 0.668 0.112
#> GSM440001     1  0.0162      0.803 0.996  0 0.000 0.004 0.000
#> GSM440002     1  0.1965      0.784 0.904  0 0.000 0.000 0.096
#> GSM440023     4  0.6796      0.544 0.056  0 0.112 0.548 0.284
#> GSM440024     4  0.6376      0.555 0.072  0 0.056 0.580 0.292
#> GSM440025     4  0.6778      0.501 0.044  0 0.124 0.536 0.296
#> GSM440026     5  0.6212      0.148 0.272  0 0.036 0.092 0.600
#> GSM440039     5  0.6545      0.726 0.112  0 0.160 0.096 0.632
#> GSM440040     4  0.4086      0.685 0.152  0 0.024 0.796 0.028
#> GSM440041     4  0.3556      0.710 0.012  0 0.104 0.840 0.044
#> GSM440042     4  0.4424      0.614 0.044  0 0.020 0.772 0.164
#> GSM440015     5  0.6274      0.724 0.060  0 0.240 0.080 0.620
#> GSM440016     3  0.5622      0.127 0.000  0 0.508 0.416 0.076
#> GSM440017     4  0.4415      0.689 0.020  0 0.156 0.776 0.048
#> GSM440018     3  0.4591      0.566 0.000  0 0.748 0.132 0.120
#> GSM440003     5  0.6015      0.689 0.032  0 0.276 0.080 0.612
#> GSM440004     5  0.5690      0.416 0.004  0 0.436 0.068 0.492
#> GSM440005     4  0.3895      0.676 0.132  0 0.012 0.812 0.044
#> GSM440006     4  0.3165      0.709 0.032  0 0.044 0.876 0.048
#> GSM440027     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM440028     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM440029     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM440030     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM440043     3  0.0162      0.733 0.000  0 0.996 0.000 0.004
#> GSM440044     3  0.5125      0.208 0.000  0 0.544 0.416 0.040
#> GSM440045     3  0.0671      0.734 0.000  0 0.980 0.004 0.016
#> GSM440046     3  0.1270      0.717 0.000  0 0.948 0.000 0.052
#> GSM440019     4  0.3577      0.654 0.000  0 0.160 0.808 0.032
#> GSM440020     3  0.1549      0.725 0.000  0 0.944 0.040 0.016
#> GSM440021     3  0.1597      0.724 0.000  0 0.940 0.048 0.012
#> GSM440022     3  0.0579      0.732 0.000  0 0.984 0.008 0.008
#> GSM440007     4  0.3527      0.694 0.000  0 0.116 0.828 0.056
#> GSM440008     3  0.1197      0.720 0.000  0 0.952 0.000 0.048
#> GSM440009     3  0.5887      0.397 0.008  0 0.588 0.300 0.104
#> GSM440010     4  0.5039      0.590 0.000  0 0.244 0.676 0.080
#> GSM440031     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM440032     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM440033     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM440034     2  0.0000      1.000 0.000  1 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1 p2    p3    p4    p5    p6
#> GSM439987     1  0.3324     0.7689 0.824  0 0.000 0.004 0.112 0.060
#> GSM439988     5  0.6153     0.2458 0.408  0 0.000 0.160 0.412 0.020
#> GSM439989     1  0.1555     0.7809 0.932  0 0.000 0.004 0.060 0.004
#> GSM439990     1  0.1511     0.7857 0.940  0 0.000 0.004 0.044 0.012
#> GSM439991     1  0.7144     0.2749 0.444  0 0.000 0.144 0.160 0.252
#> GSM439992     4  0.6837    -0.0223 0.128  0 0.000 0.464 0.296 0.112
#> GSM439993     4  0.1555     0.5470 0.000  0 0.040 0.940 0.012 0.008
#> GSM439994     6  0.3711     0.8453 0.068  0 0.056 0.024 0.020 0.832
#> GSM439995     3  0.1074     0.7545 0.000  0 0.960 0.000 0.012 0.028
#> GSM439996     4  0.3852     0.4450 0.000  0 0.240 0.732 0.016 0.012
#> GSM439997     3  0.2586     0.7259 0.000  0 0.868 0.000 0.032 0.100
#> GSM439998     3  0.5074     0.2637 0.000  0 0.564 0.372 0.024 0.040
#> GSM440035     1  0.4589     0.6685 0.744  0 0.000 0.092 0.128 0.036
#> GSM440036     1  0.3840     0.7206 0.808  0 0.004 0.092 0.076 0.020
#> GSM440037     5  0.7513     0.3207 0.104  0 0.064 0.344 0.408 0.080
#> GSM440038     1  0.4006     0.7488 0.792  0 0.004 0.020 0.116 0.068
#> GSM440011     1  0.3419     0.7674 0.824  0 0.000 0.008 0.096 0.072
#> GSM440012     4  0.6425    -0.0298 0.008  0 0.072 0.508 0.324 0.088
#> GSM440013     1  0.5690     0.5043 0.572  0 0.000 0.028 0.108 0.292
#> GSM440014     1  0.1462     0.7852 0.936  0 0.000 0.008 0.056 0.000
#> GSM439999     1  0.1434     0.7831 0.940  0 0.000 0.012 0.048 0.000
#> GSM440000     5  0.6939     0.2419 0.032  0 0.072 0.372 0.436 0.088
#> GSM440001     1  0.1003     0.7871 0.964  0 0.000 0.004 0.028 0.004
#> GSM440002     1  0.2822     0.7755 0.856  0 0.000 0.004 0.108 0.032
#> GSM440023     5  0.5112     0.5803 0.028  0 0.044 0.136 0.728 0.064
#> GSM440024     5  0.4398     0.5549 0.044  0 0.012 0.164 0.756 0.024
#> GSM440025     5  0.5195     0.5495 0.016  0 0.044 0.180 0.700 0.060
#> GSM440026     1  0.6336     0.4124 0.476  0 0.004 0.016 0.268 0.236
#> GSM440039     6  0.3559     0.8264 0.080  0 0.032 0.024 0.024 0.840
#> GSM440040     4  0.6041     0.0639 0.088  0 0.012 0.544 0.320 0.036
#> GSM440041     4  0.3691     0.5244 0.016  0 0.028 0.824 0.104 0.028
#> GSM440042     4  0.5693     0.3132 0.032  0 0.016 0.604 0.068 0.280
#> GSM440015     6  0.3427     0.8616 0.040  0 0.092 0.016 0.012 0.840
#> GSM440016     4  0.5990     0.2051 0.000  0 0.320 0.532 0.044 0.104
#> GSM440017     4  0.4030     0.5157 0.004  0 0.100 0.800 0.052 0.044
#> GSM440018     3  0.6060     0.3488 0.000  0 0.504 0.320 0.024 0.152
#> GSM440003     6  0.3087     0.8570 0.020  0 0.088 0.012 0.020 0.860
#> GSM440004     6  0.3724     0.6623 0.000  0 0.268 0.004 0.012 0.716
#> GSM440005     4  0.5799    -0.1125 0.096  0 0.016 0.516 0.364 0.008
#> GSM440006     4  0.3700     0.4715 0.016  0 0.004 0.784 0.176 0.020
#> GSM440027     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> GSM440028     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> GSM440029     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> GSM440030     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> GSM440043     3  0.0000     0.7590 0.000  0 1.000 0.000 0.000 0.000
#> GSM440044     3  0.5511     0.0794 0.000  0 0.468 0.444 0.032 0.056
#> GSM440045     3  0.1409     0.7597 0.000  0 0.948 0.008 0.012 0.032
#> GSM440046     3  0.1838     0.7350 0.000  0 0.916 0.000 0.016 0.068
#> GSM440019     4  0.3593     0.4818 0.004  0 0.176 0.788 0.024 0.008
#> GSM440020     3  0.2024     0.7525 0.000  0 0.920 0.036 0.016 0.028
#> GSM440021     3  0.2170     0.7457 0.000  0 0.908 0.060 0.016 0.016
#> GSM440022     3  0.0665     0.7574 0.000  0 0.980 0.008 0.004 0.008
#> GSM440007     4  0.2541     0.5412 0.000  0 0.024 0.892 0.052 0.032
#> GSM440008     3  0.1391     0.7467 0.000  0 0.944 0.000 0.016 0.040
#> GSM440009     3  0.6788     0.0369 0.000  0 0.408 0.360 0.160 0.072
#> GSM440010     4  0.4813     0.4792 0.000  0 0.112 0.736 0.080 0.072
#> GSM440031     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> GSM440032     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> GSM440033     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> GSM440034     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n agent(p)  time(p)  dose(p) k
#> SD:mclust 60    0.296 9.95e-02 1.87e-07 2
#> SD:mclust 18    0.557 7.05e-01 1.23e-03 3
#> SD:mclust 45    0.421 3.28e-07 5.67e-05 4
#> SD:mclust 51    0.624 4.21e-08 8.64e-04 5
#> SD:mclust 41    0.673 4.94e-10 1.82e-03 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 60 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.996           0.938       0.975         0.2940 0.718   0.718
#> 3 3 0.390           0.678       0.831         1.0859 0.629   0.492
#> 4 4 0.483           0.539       0.714         0.1950 0.734   0.404
#> 5 5 0.523           0.480       0.689         0.0792 0.855   0.511
#> 6 6 0.580           0.445       0.621         0.0433 0.918   0.654

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM439987     1  0.0000     0.9781 1.000 0.000
#> GSM439988     1  0.0000     0.9781 1.000 0.000
#> GSM439989     1  0.0000     0.9781 1.000 0.000
#> GSM439990     1  0.0000     0.9781 1.000 0.000
#> GSM439991     1  0.0000     0.9781 1.000 0.000
#> GSM439992     1  0.0000     0.9781 1.000 0.000
#> GSM439993     1  0.0000     0.9781 1.000 0.000
#> GSM439994     1  0.0000     0.9781 1.000 0.000
#> GSM439995     1  0.1184     0.9675 0.984 0.016
#> GSM439996     1  0.0000     0.9781 1.000 0.000
#> GSM439997     1  0.0000     0.9781 1.000 0.000
#> GSM439998     1  0.0000     0.9781 1.000 0.000
#> GSM440035     1  0.0000     0.9781 1.000 0.000
#> GSM440036     1  0.0000     0.9781 1.000 0.000
#> GSM440037     1  0.0000     0.9781 1.000 0.000
#> GSM440038     1  0.0000     0.9781 1.000 0.000
#> GSM440011     1  0.0000     0.9781 1.000 0.000
#> GSM440012     1  0.0000     0.9781 1.000 0.000
#> GSM440013     1  0.0000     0.9781 1.000 0.000
#> GSM440014     1  0.0000     0.9781 1.000 0.000
#> GSM439999     1  0.0000     0.9781 1.000 0.000
#> GSM440000     1  0.0000     0.9781 1.000 0.000
#> GSM440001     1  0.0000     0.9781 1.000 0.000
#> GSM440002     1  0.0000     0.9781 1.000 0.000
#> GSM440023     1  0.2948     0.9367 0.948 0.052
#> GSM440024     1  0.2236     0.9502 0.964 0.036
#> GSM440025     2  0.9608     0.3613 0.384 0.616
#> GSM440026     1  0.9977     0.0633 0.528 0.472
#> GSM440039     1  0.0000     0.9781 1.000 0.000
#> GSM440040     1  0.0000     0.9781 1.000 0.000
#> GSM440041     1  0.0000     0.9781 1.000 0.000
#> GSM440042     1  0.0000     0.9781 1.000 0.000
#> GSM440015     1  0.0000     0.9781 1.000 0.000
#> GSM440016     1  0.0000     0.9781 1.000 0.000
#> GSM440017     1  0.0000     0.9781 1.000 0.000
#> GSM440018     1  0.2423     0.9477 0.960 0.040
#> GSM440003     1  0.0000     0.9781 1.000 0.000
#> GSM440004     1  0.2043     0.9549 0.968 0.032
#> GSM440005     1  0.0000     0.9781 1.000 0.000
#> GSM440006     1  0.0000     0.9781 1.000 0.000
#> GSM440027     2  0.0000     0.9468 0.000 1.000
#> GSM440028     2  0.0000     0.9468 0.000 1.000
#> GSM440029     2  0.0000     0.9468 0.000 1.000
#> GSM440030     2  0.0000     0.9468 0.000 1.000
#> GSM440043     1  0.8081     0.6633 0.752 0.248
#> GSM440044     1  0.0000     0.9781 1.000 0.000
#> GSM440045     1  0.0000     0.9781 1.000 0.000
#> GSM440046     1  0.2778     0.9405 0.952 0.048
#> GSM440019     1  0.0000     0.9781 1.000 0.000
#> GSM440020     1  0.0000     0.9781 1.000 0.000
#> GSM440021     1  0.0376     0.9755 0.996 0.004
#> GSM440022     1  0.3274     0.9287 0.940 0.060
#> GSM440007     1  0.0000     0.9781 1.000 0.000
#> GSM440008     2  0.3879     0.8849 0.076 0.924
#> GSM440009     1  0.1184     0.9675 0.984 0.016
#> GSM440010     1  0.0376     0.9755 0.996 0.004
#> GSM440031     2  0.0000     0.9468 0.000 1.000
#> GSM440032     2  0.0000     0.9468 0.000 1.000
#> GSM440033     2  0.0000     0.9468 0.000 1.000
#> GSM440034     2  0.0000     0.9468 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM439987     1  0.2261     0.7821 0.932 0.000 0.068
#> GSM439988     1  0.2448     0.7918 0.924 0.000 0.076
#> GSM439989     1  0.1289     0.7942 0.968 0.000 0.032
#> GSM439990     1  0.1860     0.7936 0.948 0.000 0.052
#> GSM439991     1  0.3551     0.7719 0.868 0.000 0.132
#> GSM439992     1  0.4654     0.7259 0.792 0.000 0.208
#> GSM439993     1  0.6309     0.0862 0.500 0.000 0.500
#> GSM439994     3  0.5988     0.5334 0.368 0.000 0.632
#> GSM439995     3  0.1585     0.7413 0.028 0.008 0.964
#> GSM439996     3  0.5216     0.5745 0.260 0.000 0.740
#> GSM439997     3  0.1163     0.7412 0.028 0.000 0.972
#> GSM439998     3  0.2796     0.7284 0.092 0.000 0.908
#> GSM440035     1  0.1647     0.7924 0.960 0.004 0.036
#> GSM440036     1  0.2261     0.7979 0.932 0.000 0.068
#> GSM440037     1  0.4702     0.7225 0.788 0.000 0.212
#> GSM440038     1  0.2625     0.7857 0.916 0.000 0.084
#> GSM440011     1  0.2066     0.7821 0.940 0.000 0.060
#> GSM440012     1  0.6026     0.4632 0.624 0.000 0.376
#> GSM440013     1  0.4178     0.7184 0.828 0.000 0.172
#> GSM440014     1  0.1860     0.7916 0.948 0.000 0.052
#> GSM439999     1  0.1643     0.7957 0.956 0.000 0.044
#> GSM440000     1  0.5810     0.5601 0.664 0.000 0.336
#> GSM440001     1  0.1163     0.7930 0.972 0.000 0.028
#> GSM440002     1  0.1964     0.7814 0.944 0.000 0.056
#> GSM440023     1  0.7412     0.6322 0.696 0.192 0.112
#> GSM440024     1  0.6157     0.7105 0.780 0.128 0.092
#> GSM440025     2  0.4782     0.7869 0.164 0.820 0.016
#> GSM440026     1  0.8350     0.1651 0.532 0.380 0.088
#> GSM440039     3  0.6192     0.4452 0.420 0.000 0.580
#> GSM440040     1  0.4750     0.7182 0.784 0.000 0.216
#> GSM440041     1  0.5621     0.5946 0.692 0.000 0.308
#> GSM440042     3  0.6252     0.1645 0.444 0.000 0.556
#> GSM440015     3  0.5835     0.5529 0.340 0.000 0.660
#> GSM440016     3  0.3482     0.7353 0.128 0.000 0.872
#> GSM440017     3  0.6267     0.0883 0.452 0.000 0.548
#> GSM440018     3  0.4136     0.7291 0.116 0.020 0.864
#> GSM440003     3  0.6168     0.4538 0.412 0.000 0.588
#> GSM440004     3  0.5406     0.6597 0.200 0.020 0.780
#> GSM440005     1  0.4887     0.7068 0.772 0.000 0.228
#> GSM440006     1  0.5138     0.6575 0.748 0.000 0.252
#> GSM440027     2  0.0000     0.9723 0.000 1.000 0.000
#> GSM440028     2  0.0237     0.9714 0.000 0.996 0.004
#> GSM440029     2  0.0000     0.9723 0.000 1.000 0.000
#> GSM440030     2  0.0592     0.9673 0.000 0.988 0.012
#> GSM440043     3  0.2682     0.7139 0.004 0.076 0.920
#> GSM440044     3  0.2959     0.7324 0.100 0.000 0.900
#> GSM440045     3  0.2448     0.7444 0.076 0.000 0.924
#> GSM440046     3  0.2297     0.7368 0.036 0.020 0.944
#> GSM440019     3  0.5497     0.5689 0.292 0.000 0.708
#> GSM440020     3  0.0892     0.7388 0.020 0.000 0.980
#> GSM440021     3  0.2096     0.7421 0.052 0.004 0.944
#> GSM440022     3  0.1620     0.7361 0.012 0.024 0.964
#> GSM440007     3  0.6309    -0.1023 0.500 0.000 0.500
#> GSM440008     3  0.4654     0.5931 0.000 0.208 0.792
#> GSM440009     3  0.4931     0.6835 0.212 0.004 0.784
#> GSM440010     3  0.6648     0.3865 0.364 0.016 0.620
#> GSM440031     2  0.0237     0.9712 0.000 0.996 0.004
#> GSM440032     2  0.0000     0.9723 0.000 1.000 0.000
#> GSM440033     2  0.0661     0.9686 0.008 0.988 0.004
#> GSM440034     2  0.0424     0.9696 0.008 0.992 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM439987     1  0.2469    0.61129 0.892 0.000 0.000 0.108
#> GSM439988     4  0.5391    0.07883 0.380 0.004 0.012 0.604
#> GSM439989     1  0.4790    0.44660 0.620 0.000 0.000 0.380
#> GSM439990     1  0.5057    0.47019 0.648 0.000 0.012 0.340
#> GSM439991     1  0.5252    0.45139 0.644 0.000 0.020 0.336
#> GSM439992     4  0.5272    0.35535 0.288 0.000 0.032 0.680
#> GSM439993     4  0.4706    0.53795 0.028 0.000 0.224 0.748
#> GSM439994     1  0.6488    0.03884 0.500 0.004 0.436 0.060
#> GSM439995     3  0.1297    0.78200 0.020 0.000 0.964 0.016
#> GSM439996     4  0.4977   -0.00317 0.000 0.000 0.460 0.540
#> GSM439997     3  0.2706    0.78548 0.020 0.000 0.900 0.080
#> GSM439998     3  0.4632    0.56482 0.004 0.000 0.688 0.308
#> GSM440035     1  0.4941    0.37238 0.564 0.000 0.000 0.436
#> GSM440036     1  0.5070    0.47557 0.620 0.000 0.008 0.372
#> GSM440037     4  0.5903    0.26798 0.332 0.000 0.052 0.616
#> GSM440038     1  0.3625    0.59945 0.828 0.000 0.012 0.160
#> GSM440011     1  0.2011    0.60548 0.920 0.000 0.000 0.080
#> GSM440012     4  0.6033    0.48846 0.204 0.000 0.116 0.680
#> GSM440013     1  0.3803    0.58466 0.836 0.000 0.032 0.132
#> GSM440014     1  0.4072    0.55977 0.748 0.000 0.000 0.252
#> GSM439999     1  0.4746    0.45752 0.632 0.000 0.000 0.368
#> GSM440000     4  0.6558    0.33663 0.296 0.000 0.108 0.596
#> GSM440001     1  0.4713    0.47468 0.640 0.000 0.000 0.360
#> GSM440002     1  0.2868    0.60887 0.864 0.000 0.000 0.136
#> GSM440023     4  0.8014    0.20555 0.180 0.308 0.024 0.488
#> GSM440024     4  0.6723    0.29382 0.196 0.188 0.000 0.616
#> GSM440025     2  0.3994    0.85610 0.056 0.848 0.008 0.088
#> GSM440026     1  0.3169    0.53049 0.884 0.084 0.028 0.004
#> GSM440039     1  0.5857    0.34755 0.636 0.000 0.308 0.056
#> GSM440040     4  0.4589    0.50925 0.168 0.000 0.048 0.784
#> GSM440041     4  0.4301    0.57148 0.064 0.000 0.120 0.816
#> GSM440042     4  0.7286    0.16389 0.156 0.000 0.364 0.480
#> GSM440015     1  0.5526    0.14149 0.564 0.000 0.416 0.020
#> GSM440016     3  0.5213    0.67146 0.052 0.000 0.724 0.224
#> GSM440017     4  0.5712    0.45547 0.048 0.000 0.308 0.644
#> GSM440018     3  0.4072    0.71132 0.120 0.000 0.828 0.052
#> GSM440003     1  0.6272    0.04077 0.512 0.016 0.444 0.028
#> GSM440004     3  0.6252    0.25485 0.388 0.032 0.564 0.016
#> GSM440005     4  0.4549    0.46739 0.188 0.000 0.036 0.776
#> GSM440006     4  0.4444    0.53916 0.120 0.000 0.072 0.808
#> GSM440027     2  0.0188    0.96730 0.000 0.996 0.004 0.000
#> GSM440028     2  0.0469    0.96678 0.000 0.988 0.000 0.012
#> GSM440029     2  0.0592    0.96580 0.000 0.984 0.000 0.016
#> GSM440030     2  0.1890    0.93154 0.008 0.936 0.056 0.000
#> GSM440043     3  0.1943    0.77593 0.032 0.008 0.944 0.016
#> GSM440044     3  0.3975    0.67465 0.000 0.000 0.760 0.240
#> GSM440045     3  0.2342    0.78644 0.008 0.000 0.912 0.080
#> GSM440046     3  0.3060    0.73720 0.088 0.008 0.888 0.016
#> GSM440019     4  0.5576   -0.05816 0.020 0.000 0.444 0.536
#> GSM440020     3  0.2888    0.76771 0.004 0.000 0.872 0.124
#> GSM440021     3  0.4158    0.68725 0.008 0.000 0.768 0.224
#> GSM440022     3  0.1807    0.78781 0.008 0.000 0.940 0.052
#> GSM440007     4  0.5900    0.44348 0.076 0.000 0.260 0.664
#> GSM440008     3  0.1962    0.77784 0.008 0.024 0.944 0.024
#> GSM440009     3  0.6713    0.34762 0.064 0.012 0.536 0.388
#> GSM440010     4  0.5893    0.23335 0.024 0.012 0.364 0.600
#> GSM440031     2  0.0469    0.96557 0.000 0.988 0.012 0.000
#> GSM440032     2  0.0336    0.96675 0.000 0.992 0.008 0.000
#> GSM440033     2  0.0921    0.96129 0.000 0.972 0.000 0.028
#> GSM440034     2  0.0336    0.96731 0.000 0.992 0.000 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM439987     5  0.4717     0.4079 0.244 0.000 0.004 0.048 0.704
#> GSM439988     1  0.4946     0.4423 0.704 0.000 0.004 0.216 0.076
#> GSM439989     1  0.4897     0.5070 0.688 0.000 0.004 0.056 0.252
#> GSM439990     1  0.4939     0.4614 0.676 0.000 0.008 0.044 0.272
#> GSM439991     4  0.5950     0.0833 0.072 0.000 0.012 0.468 0.448
#> GSM439992     4  0.4947     0.5040 0.076 0.000 0.016 0.732 0.176
#> GSM439993     4  0.6728     0.4467 0.264 0.000 0.240 0.488 0.008
#> GSM439994     5  0.5309     0.4104 0.008 0.000 0.244 0.080 0.668
#> GSM439995     3  0.2445     0.7030 0.020 0.000 0.908 0.016 0.056
#> GSM439996     3  0.6639    -0.1281 0.188 0.000 0.408 0.400 0.004
#> GSM439997     3  0.3457     0.6971 0.016 0.000 0.852 0.084 0.048
#> GSM439998     3  0.5727     0.4830 0.140 0.000 0.656 0.192 0.012
#> GSM440035     4  0.6563     0.0131 0.208 0.000 0.000 0.436 0.356
#> GSM440036     5  0.6647     0.0817 0.304 0.000 0.000 0.252 0.444
#> GSM440037     1  0.3586     0.5275 0.848 0.000 0.048 0.080 0.024
#> GSM440038     1  0.4925     0.3101 0.624 0.000 0.012 0.020 0.344
#> GSM440011     5  0.5090     0.3392 0.316 0.000 0.008 0.040 0.636
#> GSM440012     1  0.3832     0.4633 0.824 0.000 0.104 0.060 0.012
#> GSM440013     5  0.6260     0.2187 0.368 0.000 0.036 0.068 0.528
#> GSM440014     1  0.5452     0.2933 0.556 0.000 0.004 0.056 0.384
#> GSM439999     1  0.5316     0.4686 0.632 0.000 0.000 0.084 0.284
#> GSM440000     1  0.4013     0.5093 0.824 0.004 0.104 0.040 0.028
#> GSM440001     1  0.5599     0.4160 0.580 0.000 0.000 0.092 0.328
#> GSM440002     5  0.5324     0.3992 0.204 0.000 0.000 0.128 0.668
#> GSM440023     1  0.6755     0.2669 0.528 0.312 0.012 0.132 0.016
#> GSM440024     1  0.6283     0.3879 0.648 0.128 0.008 0.180 0.036
#> GSM440025     2  0.5548     0.4453 0.324 0.616 0.012 0.032 0.016
#> GSM440026     5  0.4715     0.4704 0.168 0.048 0.016 0.008 0.760
#> GSM440039     5  0.4940     0.4933 0.020 0.000 0.192 0.060 0.728
#> GSM440040     4  0.6351     0.4134 0.328 0.000 0.056 0.556 0.060
#> GSM440041     4  0.6962     0.3616 0.372 0.000 0.148 0.448 0.032
#> GSM440042     4  0.7090     0.4343 0.048 0.000 0.188 0.524 0.240
#> GSM440015     5  0.5562     0.3998 0.056 0.000 0.300 0.020 0.624
#> GSM440016     3  0.6015     0.3520 0.356 0.000 0.552 0.068 0.024
#> GSM440017     1  0.6994    -0.1962 0.432 0.000 0.300 0.256 0.012
#> GSM440018     3  0.5550     0.5560 0.212 0.004 0.680 0.016 0.088
#> GSM440003     5  0.6032     0.2841 0.044 0.008 0.340 0.032 0.576
#> GSM440004     3  0.5586     0.1147 0.036 0.000 0.532 0.020 0.412
#> GSM440005     4  0.5950     0.3982 0.328 0.000 0.028 0.580 0.064
#> GSM440006     4  0.6204     0.5080 0.260 0.000 0.080 0.612 0.048
#> GSM440027     2  0.0486     0.9340 0.000 0.988 0.004 0.004 0.004
#> GSM440028     2  0.0693     0.9335 0.012 0.980 0.000 0.008 0.000
#> GSM440029     2  0.0290     0.9344 0.008 0.992 0.000 0.000 0.000
#> GSM440030     2  0.1280     0.9203 0.000 0.960 0.024 0.008 0.008
#> GSM440043     3  0.2802     0.6959 0.008 0.008 0.888 0.016 0.080
#> GSM440044     3  0.4960     0.5410 0.008 0.000 0.680 0.264 0.048
#> GSM440045     3  0.3455     0.6994 0.020 0.000 0.856 0.060 0.064
#> GSM440046     3  0.3066     0.6663 0.012 0.004 0.860 0.008 0.116
#> GSM440019     4  0.5510     0.2991 0.044 0.000 0.312 0.620 0.024
#> GSM440020     3  0.3154     0.6854 0.024 0.000 0.860 0.104 0.012
#> GSM440021     3  0.4073     0.6220 0.104 0.000 0.800 0.092 0.004
#> GSM440022     3  0.2434     0.7047 0.008 0.000 0.908 0.048 0.036
#> GSM440007     4  0.5354     0.5517 0.068 0.000 0.112 0.736 0.084
#> GSM440008     3  0.2690     0.7001 0.028 0.024 0.908 0.016 0.024
#> GSM440009     3  0.7459     0.0171 0.064 0.012 0.420 0.396 0.108
#> GSM440010     4  0.6630     0.4161 0.140 0.008 0.236 0.588 0.028
#> GSM440031     2  0.0727     0.9329 0.000 0.980 0.004 0.012 0.004
#> GSM440032     2  0.0404     0.9336 0.000 0.988 0.000 0.012 0.000
#> GSM440033     2  0.1522     0.9179 0.012 0.944 0.000 0.044 0.000
#> GSM440034     2  0.0451     0.9348 0.008 0.988 0.000 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5 p6
#> GSM439987     5  0.4287    0.47372 0.132 0.000 0.008 0.036 0.776 NA
#> GSM439988     1  0.6166    0.41695 0.600 0.000 0.004 0.184 0.140 NA
#> GSM439989     1  0.5752    0.37872 0.596 0.004 0.000 0.060 0.276 NA
#> GSM439990     1  0.4874    0.34265 0.620 0.004 0.000 0.024 0.324 NA
#> GSM439991     4  0.6614    0.15130 0.020 0.000 0.012 0.400 0.372 NA
#> GSM439992     4  0.4947    0.49616 0.024 0.000 0.004 0.704 0.096 NA
#> GSM439993     4  0.5656    0.42410 0.208 0.000 0.104 0.632 0.000 NA
#> GSM439994     5  0.6281    0.16222 0.000 0.000 0.352 0.048 0.476 NA
#> GSM439995     3  0.2638    0.69783 0.016 0.000 0.896 0.020 0.036 NA
#> GSM439996     4  0.6982    0.16968 0.204 0.000 0.296 0.420 0.000 NA
#> GSM439997     3  0.3884    0.68432 0.020 0.000 0.820 0.064 0.024 NA
#> GSM439998     3  0.6529    0.30165 0.164 0.000 0.536 0.216 0.000 NA
#> GSM440035     4  0.7063    0.00814 0.100 0.000 0.000 0.372 0.360 NA
#> GSM440036     5  0.7328    0.16671 0.188 0.000 0.008 0.236 0.444 NA
#> GSM440037     1  0.3510    0.49614 0.848 0.000 0.020 0.044 0.036 NA
#> GSM440038     1  0.5403    0.18598 0.540 0.000 0.008 0.012 0.376 NA
#> GSM440011     5  0.5158    0.40689 0.220 0.000 0.008 0.024 0.672 NA
#> GSM440012     1  0.3158    0.45854 0.856 0.000 0.060 0.032 0.000 NA
#> GSM440013     5  0.5997    0.32378 0.268 0.000 0.024 0.036 0.592 NA
#> GSM440014     1  0.5939    0.16707 0.456 0.000 0.000 0.048 0.420 NA
#> GSM439999     1  0.5608    0.35225 0.580 0.000 0.000 0.072 0.304 NA
#> GSM440000     1  0.3334    0.48637 0.856 0.000 0.052 0.012 0.040 NA
#> GSM440001     1  0.6777    0.11857 0.400 0.000 0.000 0.116 0.384 NA
#> GSM440002     5  0.5307    0.44685 0.088 0.000 0.004 0.128 0.700 NA
#> GSM440023     1  0.7779    0.28320 0.416 0.320 0.008 0.092 0.064 NA
#> GSM440024     1  0.6612    0.41203 0.604 0.124 0.004 0.076 0.032 NA
#> GSM440025     1  0.6617    0.07054 0.432 0.408 0.016 0.016 0.024 NA
#> GSM440026     5  0.4786    0.49559 0.092 0.020 0.040 0.000 0.756 NA
#> GSM440039     5  0.6045    0.34797 0.020 0.000 0.276 0.036 0.580 NA
#> GSM440040     4  0.6078    0.41795 0.176 0.000 0.008 0.620 0.072 NA
#> GSM440041     1  0.7369   -0.16239 0.384 0.000 0.080 0.324 0.016 NA
#> GSM440042     4  0.6470    0.46672 0.016 0.000 0.080 0.588 0.132 NA
#> GSM440015     5  0.5977    0.33993 0.076 0.000 0.308 0.000 0.548 NA
#> GSM440016     1  0.6489   -0.13561 0.440 0.004 0.412 0.048 0.016 NA
#> GSM440017     1  0.6829    0.06435 0.476 0.000 0.228 0.216 0.000 NA
#> GSM440018     3  0.6540    0.45970 0.252 0.008 0.564 0.012 0.076 NA
#> GSM440003     3  0.6414   -0.07874 0.020 0.000 0.420 0.020 0.412 NA
#> GSM440004     3  0.5884    0.21057 0.040 0.000 0.544 0.000 0.316 NA
#> GSM440005     4  0.6497    0.37319 0.184 0.000 0.008 0.576 0.096 NA
#> GSM440006     4  0.6085    0.43725 0.204 0.000 0.020 0.596 0.024 NA
#> GSM440027     2  0.0363    0.97169 0.000 0.988 0.000 0.000 0.000 NA
#> GSM440028     2  0.0632    0.96919 0.000 0.976 0.000 0.000 0.000 NA
#> GSM440029     2  0.0717    0.96877 0.016 0.976 0.000 0.000 0.000 NA
#> GSM440030     2  0.1863    0.93148 0.000 0.920 0.036 0.000 0.000 NA
#> GSM440043     3  0.2975    0.70100 0.012 0.004 0.872 0.012 0.024 NA
#> GSM440044     3  0.5942    0.38495 0.016 0.000 0.568 0.268 0.012 NA
#> GSM440045     3  0.4015    0.69606 0.024 0.000 0.816 0.040 0.048 NA
#> GSM440046     3  0.3173    0.67587 0.020 0.004 0.856 0.000 0.072 NA
#> GSM440019     4  0.5062    0.50933 0.028 0.000 0.156 0.700 0.004 NA
#> GSM440020     3  0.4129    0.64513 0.032 0.000 0.784 0.096 0.000 NA
#> GSM440021     3  0.5296    0.53884 0.148 0.000 0.688 0.092 0.000 NA
#> GSM440022     3  0.3347    0.69293 0.028 0.000 0.848 0.060 0.004 NA
#> GSM440007     4  0.6125    0.48804 0.024 0.008 0.064 0.568 0.032 NA
#> GSM440008     3  0.3405    0.69608 0.032 0.012 0.860 0.016 0.024 NA
#> GSM440009     4  0.7974    0.17867 0.036 0.036 0.308 0.392 0.052 NA
#> GSM440010     4  0.7378    0.47364 0.084 0.012 0.164 0.520 0.032 NA
#> GSM440031     2  0.0458    0.97133 0.000 0.984 0.000 0.000 0.000 NA
#> GSM440032     2  0.0547    0.97144 0.000 0.980 0.000 0.000 0.000 NA
#> GSM440033     2  0.1555    0.94931 0.008 0.940 0.000 0.012 0.000 NA
#> GSM440034     2  0.0508    0.97095 0.004 0.984 0.000 0.000 0.000 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n agent(p)  time(p)  dose(p) k
#> SD:NMF 58    0.223 8.27e-02 7.65e-08 2
#> SD:NMF 51    0.222 4.60e-07 6.02e-07 3
#> SD:NMF 33    0.467 3.17e-07 6.93e-04 4
#> SD:NMF 25    0.407 2.25e-05 3.96e-04 5
#> SD:NMF 18    0.325 4.02e-02 7.15e-03 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 60 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.754           0.969       0.950          0.231 0.765   0.765
#> 3 3 0.330           0.855       0.883          0.635 0.944   0.926
#> 4 4 0.261           0.758       0.814          0.293 0.999   0.999
#> 5 5 0.293           0.422       0.695          0.262 0.851   0.789
#> 6 6 0.307           0.337       0.620          0.144 0.766   0.598

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM439987     1  0.2236      0.970 0.964 0.036
#> GSM439988     1  0.1414      0.975 0.980 0.020
#> GSM439989     1  0.0938      0.974 0.988 0.012
#> GSM439990     1  0.1184      0.975 0.984 0.016
#> GSM439991     1  0.2236      0.971 0.964 0.036
#> GSM439992     1  0.1843      0.975 0.972 0.028
#> GSM439993     1  0.1414      0.975 0.980 0.020
#> GSM439994     1  0.2778      0.966 0.952 0.048
#> GSM439995     1  0.1414      0.974 0.980 0.020
#> GSM439996     1  0.1184      0.974 0.984 0.016
#> GSM439997     1  0.2778      0.968 0.952 0.048
#> GSM439998     1  0.1843      0.975 0.972 0.028
#> GSM440035     1  0.1843      0.975 0.972 0.028
#> GSM440036     1  0.1843      0.974 0.972 0.028
#> GSM440037     1  0.0938      0.975 0.988 0.012
#> GSM440038     1  0.3114      0.965 0.944 0.056
#> GSM440011     1  0.3114      0.965 0.944 0.056
#> GSM440012     1  0.1184      0.975 0.984 0.016
#> GSM440013     1  0.1633      0.975 0.976 0.024
#> GSM440014     1  0.0938      0.976 0.988 0.012
#> GSM439999     1  0.1414      0.974 0.980 0.020
#> GSM440000     1  0.0672      0.975 0.992 0.008
#> GSM440001     1  0.2043      0.974 0.968 0.032
#> GSM440002     1  0.2778      0.969 0.952 0.048
#> GSM440023     1  0.0938      0.976 0.988 0.012
#> GSM440024     1  0.2603      0.970 0.956 0.044
#> GSM440025     1  0.5629      0.836 0.868 0.132
#> GSM440026     1  0.4939      0.914 0.892 0.108
#> GSM440039     1  0.2043      0.973 0.968 0.032
#> GSM440040     1  0.2778      0.970 0.952 0.048
#> GSM440041     1  0.1843      0.973 0.972 0.028
#> GSM440042     1  0.1843      0.974 0.972 0.028
#> GSM440015     1  0.2043      0.973 0.968 0.032
#> GSM440016     1  0.0938      0.974 0.988 0.012
#> GSM440017     1  0.0938      0.975 0.988 0.012
#> GSM440018     1  0.0672      0.975 0.992 0.008
#> GSM440003     1  0.1633      0.974 0.976 0.024
#> GSM440004     1  0.1633      0.974 0.976 0.024
#> GSM440005     1  0.1633      0.975 0.976 0.024
#> GSM440006     1  0.1184      0.975 0.984 0.016
#> GSM440027     2  0.6343      0.993 0.160 0.840
#> GSM440028     2  0.6343      0.993 0.160 0.840
#> GSM440029     2  0.6623      0.982 0.172 0.828
#> GSM440030     2  0.6343      0.993 0.160 0.840
#> GSM440043     1  0.1414      0.974 0.980 0.020
#> GSM440044     1  0.0672      0.975 0.992 0.008
#> GSM440045     1  0.2043      0.976 0.968 0.032
#> GSM440046     1  0.0672      0.975 0.992 0.008
#> GSM440019     1  0.1414      0.976 0.980 0.020
#> GSM440020     1  0.1184      0.976 0.984 0.016
#> GSM440021     1  0.0672      0.975 0.992 0.008
#> GSM440022     1  0.1633      0.973 0.976 0.024
#> GSM440007     1  0.6343      0.814 0.840 0.160
#> GSM440008     1  0.0938      0.976 0.988 0.012
#> GSM440009     1  0.3274      0.962 0.940 0.060
#> GSM440010     1  0.1843      0.974 0.972 0.028
#> GSM440031     2  0.6343      0.993 0.160 0.840
#> GSM440032     2  0.6343      0.993 0.160 0.840
#> GSM440033     2  0.6343      0.993 0.160 0.840
#> GSM440034     2  0.6887      0.972 0.184 0.816

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM439987     1   0.487     0.8307 0.828 0.028 0.144
#> GSM439988     1   0.353     0.8910 0.892 0.016 0.092
#> GSM439989     1   0.323     0.8934 0.908 0.020 0.072
#> GSM439990     1   0.328     0.8937 0.908 0.024 0.068
#> GSM439991     1   0.546     0.7997 0.788 0.028 0.184
#> GSM439992     1   0.411     0.8520 0.844 0.004 0.152
#> GSM439993     1   0.367     0.8845 0.888 0.020 0.092
#> GSM439994     1   0.551     0.8091 0.800 0.044 0.156
#> GSM439995     1   0.304     0.8831 0.920 0.036 0.044
#> GSM439996     1   0.337     0.8848 0.904 0.024 0.072
#> GSM439997     1   0.294     0.8909 0.916 0.012 0.072
#> GSM439998     1   0.295     0.8938 0.920 0.020 0.060
#> GSM440035     1   0.414     0.8851 0.860 0.016 0.124
#> GSM440036     1   0.455     0.8707 0.844 0.024 0.132
#> GSM440037     1   0.270     0.8960 0.928 0.016 0.056
#> GSM440038     1   0.440     0.8662 0.856 0.028 0.116
#> GSM440011     1   0.544     0.7534 0.784 0.024 0.192
#> GSM440012     1   0.265     0.8935 0.928 0.012 0.060
#> GSM440013     1   0.377     0.8789 0.888 0.028 0.084
#> GSM440014     1   0.305     0.8910 0.916 0.020 0.064
#> GSM439999     1   0.327     0.8926 0.904 0.016 0.080
#> GSM440000     1   0.238     0.8921 0.940 0.016 0.044
#> GSM440001     1   0.331     0.8957 0.908 0.028 0.064
#> GSM440002     1   0.630     0.7585 0.744 0.048 0.208
#> GSM440023     1   0.308     0.8961 0.916 0.024 0.060
#> GSM440024     1   0.471     0.8656 0.844 0.036 0.120
#> GSM440025     1   0.606     0.6498 0.760 0.196 0.044
#> GSM440026     3   0.847     0.0722 0.452 0.088 0.460
#> GSM440039     1   0.448     0.8341 0.844 0.020 0.136
#> GSM440040     1   0.481     0.8568 0.832 0.028 0.140
#> GSM440041     1   0.371     0.8875 0.892 0.032 0.076
#> GSM440042     1   0.518     0.8336 0.808 0.028 0.164
#> GSM440015     1   0.440     0.8633 0.864 0.044 0.092
#> GSM440016     1   0.279     0.8932 0.928 0.028 0.044
#> GSM440017     1   0.309     0.8886 0.912 0.016 0.072
#> GSM440018     1   0.260     0.8900 0.932 0.016 0.052
#> GSM440003     1   0.397     0.8657 0.876 0.024 0.100
#> GSM440004     1   0.389     0.8739 0.884 0.032 0.084
#> GSM440005     1   0.399     0.8843 0.872 0.020 0.108
#> GSM440006     1   0.294     0.8894 0.916 0.012 0.072
#> GSM440027     2   0.141     0.9713 0.036 0.964 0.000
#> GSM440028     2   0.164     0.9687 0.044 0.956 0.000
#> GSM440029     2   0.286     0.9275 0.084 0.912 0.004
#> GSM440030     2   0.141     0.9713 0.036 0.964 0.000
#> GSM440043     1   0.355     0.8798 0.900 0.036 0.064
#> GSM440044     1   0.294     0.8946 0.916 0.012 0.072
#> GSM440045     1   0.313     0.8919 0.916 0.032 0.052
#> GSM440046     1   0.298     0.8819 0.920 0.024 0.056
#> GSM440019     1   0.313     0.8900 0.904 0.008 0.088
#> GSM440020     1   0.183     0.8910 0.956 0.008 0.036
#> GSM440021     1   0.260     0.8930 0.932 0.016 0.052
#> GSM440022     1   0.368     0.8882 0.896 0.044 0.060
#> GSM440007     3   0.400     0.1644 0.116 0.016 0.868
#> GSM440008     1   0.277     0.8858 0.928 0.024 0.048
#> GSM440009     1   0.473     0.8674 0.840 0.032 0.128
#> GSM440010     1   0.447     0.8751 0.852 0.028 0.120
#> GSM440031     2   0.164     0.9689 0.044 0.956 0.000
#> GSM440032     2   0.141     0.9713 0.036 0.964 0.000
#> GSM440033     2   0.141     0.9713 0.036 0.964 0.000
#> GSM440034     2   0.304     0.9109 0.084 0.908 0.008

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM439987     1  0.4937      0.677 0.660 0.004 0.004 0.332
#> GSM439988     1  0.3450      0.815 0.836 0.000 0.008 0.156
#> GSM439989     1  0.3583      0.800 0.816 0.000 0.004 0.180
#> GSM439990     1  0.3545      0.802 0.828 0.000 0.008 0.164
#> GSM439991     1  0.5182      0.641 0.632 0.008 0.004 0.356
#> GSM439992     1  0.5864      0.643 0.664 0.000 0.072 0.264
#> GSM439993     1  0.3016      0.806 0.872 0.004 0.004 0.120
#> GSM439994     1  0.5598      0.636 0.636 0.004 0.028 0.332
#> GSM439995     1  0.3855      0.789 0.820 0.012 0.004 0.164
#> GSM439996     1  0.2586      0.807 0.900 0.004 0.004 0.092
#> GSM439997     1  0.3569      0.802 0.804 0.000 0.000 0.196
#> GSM439998     1  0.3157      0.812 0.852 0.004 0.000 0.144
#> GSM440035     1  0.4553      0.791 0.780 0.000 0.040 0.180
#> GSM440036     1  0.4745      0.760 0.756 0.000 0.036 0.208
#> GSM440037     1  0.3340      0.813 0.848 0.004 0.004 0.144
#> GSM440038     1  0.4792      0.727 0.680 0.000 0.008 0.312
#> GSM440011     1  0.5611      0.521 0.564 0.000 0.024 0.412
#> GSM440012     1  0.3534      0.812 0.840 0.004 0.008 0.148
#> GSM440013     1  0.4631      0.749 0.728 0.004 0.008 0.260
#> GSM440014     1  0.4034      0.798 0.804 0.004 0.012 0.180
#> GSM439999     1  0.3768      0.798 0.808 0.000 0.008 0.184
#> GSM440000     1  0.3272      0.812 0.860 0.004 0.008 0.128
#> GSM440001     1  0.3990      0.796 0.808 0.004 0.012 0.176
#> GSM440002     1  0.5404      0.635 0.644 0.000 0.028 0.328
#> GSM440023     1  0.3272      0.818 0.860 0.004 0.008 0.128
#> GSM440024     1  0.4508      0.785 0.764 0.004 0.016 0.216
#> GSM440025     1  0.6420      0.617 0.664 0.172 0.004 0.160
#> GSM440026     4  0.4344      0.000 0.108 0.000 0.076 0.816
#> GSM440039     1  0.4819      0.663 0.652 0.004 0.000 0.344
#> GSM440040     1  0.4452      0.743 0.732 0.000 0.008 0.260
#> GSM440041     1  0.4034      0.790 0.796 0.004 0.008 0.192
#> GSM440042     1  0.5669      0.571 0.620 0.004 0.028 0.348
#> GSM440015     1  0.4540      0.760 0.740 0.004 0.008 0.248
#> GSM440016     1  0.2795      0.818 0.896 0.004 0.012 0.088
#> GSM440017     1  0.2401      0.811 0.904 0.004 0.000 0.092
#> GSM440018     1  0.3534      0.807 0.840 0.004 0.008 0.148
#> GSM440003     1  0.4401      0.742 0.724 0.004 0.000 0.272
#> GSM440004     1  0.4756      0.762 0.756 0.008 0.020 0.216
#> GSM440005     1  0.3182      0.807 0.860 0.004 0.004 0.132
#> GSM440006     1  0.2676      0.816 0.896 0.000 0.012 0.092
#> GSM440027     2  0.0000      0.946 0.000 1.000 0.000 0.000
#> GSM440028     2  0.0804      0.943 0.008 0.980 0.000 0.012
#> GSM440029     2  0.2739      0.861 0.060 0.904 0.000 0.036
#> GSM440030     2  0.0188      0.946 0.000 0.996 0.000 0.004
#> GSM440043     1  0.4258      0.791 0.812 0.020 0.012 0.156
#> GSM440044     1  0.2480      0.815 0.904 0.000 0.008 0.088
#> GSM440045     1  0.3545      0.808 0.828 0.008 0.000 0.164
#> GSM440046     1  0.3808      0.785 0.808 0.004 0.004 0.184
#> GSM440019     1  0.3208      0.813 0.848 0.000 0.004 0.148
#> GSM440020     1  0.2831      0.812 0.876 0.000 0.004 0.120
#> GSM440021     1  0.3484      0.812 0.844 0.004 0.008 0.144
#> GSM440022     1  0.3824      0.805 0.844 0.024 0.008 0.124
#> GSM440007     3  0.0895      0.000 0.004 0.000 0.976 0.020
#> GSM440008     1  0.3823      0.795 0.824 0.008 0.008 0.160
#> GSM440009     1  0.4522      0.719 0.680 0.000 0.000 0.320
#> GSM440010     1  0.4201      0.778 0.788 0.004 0.012 0.196
#> GSM440031     2  0.0524      0.945 0.008 0.988 0.000 0.004
#> GSM440032     2  0.0000      0.946 0.000 1.000 0.000 0.000
#> GSM440033     2  0.0000      0.946 0.000 1.000 0.000 0.000
#> GSM440034     2  0.3239      0.838 0.052 0.880 0.000 0.068

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM439987     3  0.6383    -0.0305 0.328 0.000 0.488 0.000 0.184
#> GSM439988     3  0.4921     0.3475 0.320 0.000 0.640 0.004 0.036
#> GSM439989     3  0.5008     0.3987 0.300 0.000 0.644 0.000 0.056
#> GSM439990     3  0.5053     0.3759 0.324 0.000 0.624 0.000 0.052
#> GSM439991     3  0.6498    -0.1433 0.340 0.000 0.460 0.000 0.200
#> GSM439992     1  0.6788     0.2400 0.524 0.000 0.268 0.024 0.184
#> GSM439993     3  0.4681     0.4265 0.260 0.000 0.696 0.004 0.040
#> GSM439994     3  0.6694    -0.0213 0.260 0.000 0.496 0.008 0.236
#> GSM439995     3  0.4220     0.4941 0.092 0.000 0.788 0.004 0.116
#> GSM439996     3  0.4064     0.4827 0.216 0.000 0.756 0.004 0.024
#> GSM439997     3  0.4761     0.4826 0.144 0.000 0.732 0.000 0.124
#> GSM439998     3  0.4333     0.5030 0.188 0.000 0.752 0.000 0.060
#> GSM440035     1  0.5724     0.3298 0.516 0.000 0.412 0.008 0.064
#> GSM440036     1  0.5432     0.3750 0.564 0.000 0.376 0.004 0.056
#> GSM440037     3  0.4573     0.4659 0.256 0.000 0.700 0.000 0.044
#> GSM440038     3  0.6206     0.2126 0.296 0.000 0.532 0.000 0.172
#> GSM440011     3  0.6554    -0.0259 0.252 0.000 0.476 0.000 0.272
#> GSM440012     3  0.4488     0.4826 0.212 0.000 0.736 0.004 0.048
#> GSM440013     3  0.5659     0.3074 0.280 0.000 0.604 0.000 0.116
#> GSM440014     3  0.5114     0.3643 0.340 0.000 0.608 0.000 0.052
#> GSM439999     3  0.4920     0.3788 0.308 0.000 0.644 0.000 0.048
#> GSM440000     3  0.4209     0.4822 0.224 0.000 0.744 0.004 0.028
#> GSM440001     3  0.5195     0.2385 0.388 0.000 0.564 0.000 0.048
#> GSM440002     1  0.6321     0.4069 0.524 0.000 0.312 0.004 0.160
#> GSM440023     3  0.4883     0.4092 0.300 0.000 0.652 0.000 0.048
#> GSM440024     3  0.5752     0.3698 0.240 0.000 0.612 0.000 0.148
#> GSM440025     3  0.7117     0.1984 0.172 0.164 0.568 0.000 0.096
#> GSM440026     5  0.4007     0.0000 0.076 0.000 0.084 0.020 0.820
#> GSM440039     3  0.6076     0.2409 0.196 0.000 0.572 0.000 0.232
#> GSM440040     1  0.6070     0.0534 0.440 0.000 0.440 0.000 0.120
#> GSM440041     3  0.5685     0.3816 0.236 0.000 0.640 0.008 0.116
#> GSM440042     1  0.7022     0.2390 0.404 0.000 0.340 0.012 0.244
#> GSM440015     3  0.5693     0.3858 0.188 0.000 0.644 0.004 0.164
#> GSM440016     3  0.4198     0.5116 0.172 0.000 0.776 0.008 0.044
#> GSM440017     3  0.3550     0.5137 0.184 0.000 0.796 0.000 0.020
#> GSM440018     3  0.3812     0.5236 0.092 0.000 0.824 0.008 0.076
#> GSM440003     3  0.5339     0.3910 0.152 0.000 0.672 0.000 0.176
#> GSM440004     3  0.5258     0.4552 0.108 0.000 0.704 0.012 0.176
#> GSM440005     3  0.4866     0.2082 0.392 0.000 0.580 0.000 0.028
#> GSM440006     3  0.4557     0.4457 0.264 0.000 0.700 0.004 0.032
#> GSM440027     2  0.0162     0.9536 0.004 0.996 0.000 0.000 0.000
#> GSM440028     2  0.0740     0.9509 0.008 0.980 0.004 0.000 0.008
#> GSM440029     2  0.2649     0.8798 0.016 0.900 0.036 0.000 0.048
#> GSM440030     2  0.0162     0.9535 0.004 0.996 0.000 0.000 0.000
#> GSM440043     3  0.4833     0.4836 0.140 0.008 0.756 0.008 0.088
#> GSM440044     3  0.4281     0.4884 0.172 0.000 0.768 0.004 0.056
#> GSM440045     3  0.4444     0.5158 0.136 0.000 0.760 0.000 0.104
#> GSM440046     3  0.3924     0.4975 0.068 0.000 0.808 0.004 0.120
#> GSM440019     3  0.4958     0.4700 0.252 0.000 0.684 0.004 0.060
#> GSM440020     3  0.4293     0.5161 0.160 0.000 0.772 0.004 0.064
#> GSM440021     3  0.3620     0.5313 0.112 0.000 0.832 0.008 0.048
#> GSM440022     3  0.4755     0.4444 0.180 0.008 0.744 0.004 0.064
#> GSM440007     4  0.0000     0.0000 0.000 0.000 0.000 1.000 0.000
#> GSM440008     3  0.4085     0.5118 0.084 0.004 0.812 0.008 0.092
#> GSM440009     3  0.6124     0.2936 0.200 0.000 0.564 0.000 0.236
#> GSM440010     3  0.6112     0.2299 0.300 0.000 0.572 0.012 0.116
#> GSM440031     2  0.0613     0.9516 0.004 0.984 0.008 0.000 0.004
#> GSM440032     2  0.0162     0.9536 0.004 0.996 0.000 0.000 0.000
#> GSM440033     2  0.0324     0.9525 0.004 0.992 0.000 0.000 0.004
#> GSM440034     2  0.3149     0.8598 0.020 0.872 0.036 0.000 0.072

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM439987     1  0.7233     0.2953 0.388 0.000 0.304 0.116 0.192 0.000
#> GSM439988     1  0.5273     0.2447 0.536 0.000 0.388 0.052 0.024 0.000
#> GSM439989     3  0.5991    -0.2569 0.416 0.000 0.464 0.056 0.060 0.004
#> GSM439990     1  0.5807     0.2651 0.464 0.000 0.432 0.052 0.048 0.004
#> GSM439991     1  0.7556     0.0950 0.332 0.000 0.292 0.188 0.188 0.000
#> GSM439992     4  0.5037     0.5607 0.160 0.000 0.136 0.684 0.020 0.000
#> GSM439993     3  0.5864     0.2483 0.324 0.000 0.528 0.124 0.024 0.000
#> GSM439994     3  0.7592    -0.0720 0.196 0.000 0.384 0.188 0.228 0.004
#> GSM439995     3  0.4498     0.4373 0.056 0.000 0.768 0.100 0.072 0.004
#> GSM439996     3  0.5510     0.3140 0.292 0.000 0.584 0.104 0.020 0.000
#> GSM439997     3  0.5542     0.3741 0.156 0.000 0.664 0.076 0.104 0.000
#> GSM439998     3  0.5717     0.3770 0.244 0.000 0.616 0.088 0.048 0.004
#> GSM440035     1  0.5700     0.2403 0.592 0.000 0.168 0.220 0.020 0.000
#> GSM440036     1  0.4744     0.3021 0.712 0.000 0.100 0.168 0.020 0.000
#> GSM440037     3  0.5747    -0.0187 0.396 0.000 0.496 0.056 0.052 0.000
#> GSM440038     1  0.6469     0.2869 0.444 0.000 0.344 0.040 0.172 0.000
#> GSM440011     1  0.6991     0.3228 0.368 0.000 0.280 0.060 0.292 0.000
#> GSM440012     3  0.5192     0.0665 0.364 0.000 0.564 0.036 0.036 0.000
#> GSM440013     3  0.6425    -0.2680 0.384 0.000 0.432 0.052 0.132 0.000
#> GSM440014     1  0.5855     0.2345 0.460 0.000 0.432 0.056 0.048 0.004
#> GSM439999     1  0.5723     0.2204 0.472 0.000 0.424 0.048 0.056 0.000
#> GSM440000     3  0.5165     0.0632 0.380 0.000 0.552 0.032 0.036 0.000
#> GSM440001     1  0.5470     0.3810 0.580 0.000 0.320 0.048 0.052 0.000
#> GSM440002     1  0.6557     0.1596 0.544 0.000 0.104 0.200 0.152 0.000
#> GSM440023     1  0.5372     0.2283 0.496 0.000 0.424 0.056 0.024 0.000
#> GSM440024     3  0.6842    -0.0155 0.344 0.000 0.420 0.084 0.152 0.000
#> GSM440025     3  0.7703     0.0226 0.280 0.164 0.416 0.044 0.096 0.000
#> GSM440026     5  0.1945     0.0000 0.016 0.000 0.056 0.004 0.920 0.004
#> GSM440039     3  0.6571     0.1272 0.212 0.000 0.516 0.068 0.204 0.000
#> GSM440040     1  0.6432     0.3295 0.556 0.000 0.216 0.112 0.116 0.000
#> GSM440041     3  0.6795     0.2700 0.224 0.000 0.508 0.192 0.068 0.008
#> GSM440042     4  0.6045     0.5595 0.096 0.000 0.208 0.600 0.096 0.000
#> GSM440015     3  0.5943     0.2639 0.204 0.000 0.604 0.060 0.132 0.000
#> GSM440016     3  0.5471     0.0904 0.356 0.000 0.548 0.068 0.028 0.000
#> GSM440017     3  0.5055     0.3302 0.280 0.000 0.636 0.056 0.028 0.000
#> GSM440018     3  0.3348     0.4336 0.100 0.000 0.836 0.028 0.036 0.000
#> GSM440003     3  0.5797     0.2922 0.152 0.000 0.632 0.064 0.152 0.000
#> GSM440004     3  0.5543     0.3434 0.112 0.000 0.672 0.064 0.148 0.004
#> GSM440005     1  0.6094     0.2101 0.512 0.000 0.308 0.152 0.028 0.000
#> GSM440006     3  0.6005     0.2165 0.344 0.000 0.508 0.112 0.036 0.000
#> GSM440027     2  0.0146     0.9575 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM440028     2  0.0622     0.9552 0.000 0.980 0.000 0.012 0.008 0.000
#> GSM440029     2  0.2529     0.8930 0.012 0.900 0.024 0.020 0.044 0.000
#> GSM440030     2  0.0146     0.9577 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM440043     3  0.4085     0.4426 0.068 0.008 0.804 0.072 0.048 0.000
#> GSM440044     3  0.5447     0.3745 0.252 0.000 0.612 0.116 0.020 0.000
#> GSM440045     3  0.5006     0.4408 0.128 0.000 0.724 0.080 0.064 0.004
#> GSM440046     3  0.3920     0.4359 0.048 0.000 0.812 0.064 0.072 0.004
#> GSM440019     3  0.6158     0.3180 0.276 0.000 0.544 0.128 0.052 0.000
#> GSM440020     3  0.5052     0.4280 0.168 0.000 0.700 0.080 0.052 0.000
#> GSM440021     3  0.3646     0.4280 0.120 0.000 0.812 0.032 0.036 0.000
#> GSM440022     3  0.5063     0.4120 0.104 0.008 0.696 0.176 0.012 0.004
#> GSM440007     6  0.0146     0.0000 0.000 0.000 0.004 0.000 0.000 0.996
#> GSM440008     3  0.3726     0.4502 0.040 0.004 0.824 0.076 0.056 0.000
#> GSM440009     3  0.7110     0.2360 0.196 0.000 0.468 0.164 0.172 0.000
#> GSM440010     3  0.7160     0.1594 0.288 0.000 0.412 0.212 0.084 0.004
#> GSM440031     2  0.0551     0.9560 0.000 0.984 0.004 0.008 0.004 0.000
#> GSM440032     2  0.0146     0.9575 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM440033     2  0.0520     0.9533 0.000 0.984 0.000 0.008 0.008 0.000
#> GSM440034     2  0.2886     0.8697 0.012 0.872 0.012 0.024 0.080 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n agent(p) time(p)  dose(p) k
#> CV:hclust 60    0.296  0.0995 1.87e-07 2
#> CV:hclust 58    0.278  0.1038 5.11e-08 3
#> CV:hclust 58    0.278  0.1038 5.11e-08 4
#> CV:hclust 16    1.000  1.0000 3.02e-03 5
#> CV:hclust 10    0.429  0.6283 6.74e-03 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 60 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.982       0.985         0.2498 0.765   0.765
#> 3 3 0.289           0.593       0.777         1.3583 0.619   0.501
#> 4 4 0.388           0.543       0.715         0.2234 0.793   0.513
#> 5 5 0.482           0.489       0.661         0.0775 0.895   0.644
#> 6 6 0.562           0.423       0.630         0.0524 0.895   0.594

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM439987     1  0.0672      0.984 0.992 0.008
#> GSM439988     1  0.0672      0.984 0.992 0.008
#> GSM439989     1  0.0672      0.984 0.992 0.008
#> GSM439990     1  0.0376      0.984 0.996 0.004
#> GSM439991     1  0.0000      0.984 1.000 0.000
#> GSM439992     1  0.0000      0.984 1.000 0.000
#> GSM439993     1  0.0000      0.984 1.000 0.000
#> GSM439994     1  0.1414      0.980 0.980 0.020
#> GSM439995     1  0.2948      0.963 0.948 0.052
#> GSM439996     1  0.0000      0.984 1.000 0.000
#> GSM439997     1  0.2043      0.975 0.968 0.032
#> GSM439998     1  0.0376      0.984 0.996 0.004
#> GSM440035     1  0.0000      0.984 1.000 0.000
#> GSM440036     1  0.0672      0.984 0.992 0.008
#> GSM440037     1  0.0376      0.984 0.996 0.004
#> GSM440038     1  0.0672      0.984 0.992 0.008
#> GSM440011     1  0.0672      0.984 0.992 0.008
#> GSM440012     1  0.0376      0.984 0.996 0.004
#> GSM440013     1  0.0938      0.983 0.988 0.012
#> GSM440014     1  0.0672      0.984 0.992 0.008
#> GSM439999     1  0.0672      0.984 0.992 0.008
#> GSM440000     1  0.0376      0.984 0.996 0.004
#> GSM440001     1  0.0376      0.984 0.996 0.004
#> GSM440002     1  0.0672      0.984 0.992 0.008
#> GSM440023     1  0.0376      0.984 0.996 0.004
#> GSM440024     1  0.0376      0.984 0.996 0.004
#> GSM440025     1  0.3274      0.962 0.940 0.060
#> GSM440026     1  0.2948      0.965 0.948 0.052
#> GSM440039     1  0.2043      0.977 0.968 0.032
#> GSM440040     1  0.0000      0.984 1.000 0.000
#> GSM440041     1  0.0000      0.984 1.000 0.000
#> GSM440042     1  0.0000      0.984 1.000 0.000
#> GSM440015     1  0.2236      0.976 0.964 0.036
#> GSM440016     1  0.2236      0.974 0.964 0.036
#> GSM440017     1  0.0000      0.984 1.000 0.000
#> GSM440018     1  0.2236      0.975 0.964 0.036
#> GSM440003     1  0.2778      0.968 0.952 0.048
#> GSM440004     1  0.2948      0.965 0.948 0.052
#> GSM440005     1  0.0000      0.984 1.000 0.000
#> GSM440006     1  0.0000      0.984 1.000 0.000
#> GSM440027     2  0.0000      1.000 0.000 1.000
#> GSM440028     2  0.0000      1.000 0.000 1.000
#> GSM440029     2  0.0000      1.000 0.000 1.000
#> GSM440030     2  0.0000      1.000 0.000 1.000
#> GSM440043     1  0.2948      0.963 0.948 0.052
#> GSM440044     1  0.0376      0.984 0.996 0.004
#> GSM440045     1  0.2778      0.966 0.952 0.048
#> GSM440046     1  0.2778      0.968 0.952 0.048
#> GSM440019     1  0.0000      0.984 1.000 0.000
#> GSM440020     1  0.1414      0.980 0.980 0.020
#> GSM440021     1  0.2043      0.975 0.968 0.032
#> GSM440022     1  0.2778      0.966 0.952 0.048
#> GSM440007     1  0.0376      0.984 0.996 0.004
#> GSM440008     1  0.3114      0.960 0.944 0.056
#> GSM440009     1  0.1633      0.980 0.976 0.024
#> GSM440010     1  0.0672      0.984 0.992 0.008
#> GSM440031     2  0.0000      1.000 0.000 1.000
#> GSM440032     2  0.0000      1.000 0.000 1.000
#> GSM440033     2  0.0000      1.000 0.000 1.000
#> GSM440034     2  0.0000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM439987     1  0.3192      0.677 0.888 0.000 0.112
#> GSM439988     1  0.4702      0.706 0.788 0.000 0.212
#> GSM439989     1  0.3551      0.714 0.868 0.000 0.132
#> GSM439990     1  0.4399      0.704 0.812 0.000 0.188
#> GSM439991     1  0.3038      0.670 0.896 0.000 0.104
#> GSM439992     1  0.2959      0.718 0.900 0.000 0.100
#> GSM439993     1  0.5785      0.545 0.668 0.000 0.332
#> GSM439994     3  0.5968      0.501 0.364 0.000 0.636
#> GSM439995     3  0.2448      0.667 0.076 0.000 0.924
#> GSM439996     3  0.6309     -0.213 0.496 0.000 0.504
#> GSM439997     3  0.4002      0.662 0.160 0.000 0.840
#> GSM439998     3  0.5529      0.416 0.296 0.000 0.704
#> GSM440035     1  0.2165      0.719 0.936 0.000 0.064
#> GSM440036     1  0.1163      0.711 0.972 0.000 0.028
#> GSM440037     1  0.6286      0.312 0.536 0.000 0.464
#> GSM440038     1  0.4399      0.666 0.812 0.000 0.188
#> GSM440011     1  0.2537      0.690 0.920 0.000 0.080
#> GSM440012     3  0.6308     -0.291 0.492 0.000 0.508
#> GSM440013     1  0.4399      0.659 0.812 0.000 0.188
#> GSM440014     1  0.3686      0.718 0.860 0.000 0.140
#> GSM439999     1  0.3412      0.716 0.876 0.000 0.124
#> GSM440000     1  0.6309      0.250 0.500 0.000 0.500
#> GSM440001     1  0.2959      0.710 0.900 0.000 0.100
#> GSM440002     1  0.1860      0.685 0.948 0.000 0.052
#> GSM440023     1  0.5431      0.649 0.716 0.000 0.284
#> GSM440024     1  0.6045      0.480 0.620 0.000 0.380
#> GSM440025     3  0.5948      0.303 0.360 0.000 0.640
#> GSM440026     3  0.6180      0.414 0.416 0.000 0.584
#> GSM440039     3  0.6154      0.443 0.408 0.000 0.592
#> GSM440040     1  0.4291      0.696 0.820 0.000 0.180
#> GSM440041     1  0.6314      0.429 0.604 0.004 0.392
#> GSM440042     1  0.5465      0.527 0.712 0.000 0.288
#> GSM440015     3  0.5760      0.560 0.328 0.000 0.672
#> GSM440016     3  0.4974      0.544 0.236 0.000 0.764
#> GSM440017     3  0.6302     -0.215 0.480 0.000 0.520
#> GSM440018     3  0.2711      0.667 0.088 0.000 0.912
#> GSM440003     3  0.5810      0.511 0.336 0.000 0.664
#> GSM440004     3  0.4842      0.614 0.224 0.000 0.776
#> GSM440005     1  0.5216      0.644 0.740 0.000 0.260
#> GSM440006     1  0.5760      0.549 0.672 0.000 0.328
#> GSM440027     2  0.0424      0.998 0.000 0.992 0.008
#> GSM440028     2  0.0237      0.995 0.000 0.996 0.004
#> GSM440029     2  0.0424      0.998 0.000 0.992 0.008
#> GSM440030     2  0.0424      0.998 0.000 0.992 0.008
#> GSM440043     3  0.3879      0.663 0.152 0.000 0.848
#> GSM440044     3  0.5591      0.483 0.304 0.000 0.696
#> GSM440045     3  0.3192      0.669 0.112 0.000 0.888
#> GSM440046     3  0.2537      0.671 0.080 0.000 0.920
#> GSM440019     1  0.6045      0.460 0.620 0.000 0.380
#> GSM440020     3  0.3619      0.656 0.136 0.000 0.864
#> GSM440021     3  0.2537      0.657 0.080 0.000 0.920
#> GSM440022     3  0.3340      0.665 0.120 0.000 0.880
#> GSM440007     1  0.5902      0.508 0.680 0.004 0.316
#> GSM440008     3  0.1860      0.663 0.052 0.000 0.948
#> GSM440009     3  0.5902      0.562 0.316 0.004 0.680
#> GSM440010     3  0.6521     -0.156 0.496 0.004 0.500
#> GSM440031     2  0.0424      0.998 0.000 0.992 0.008
#> GSM440032     2  0.0424      0.998 0.000 0.992 0.008
#> GSM440033     2  0.1031      0.987 0.000 0.976 0.024
#> GSM440034     2  0.0424      0.998 0.000 0.992 0.008

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM439987     1  0.3088     0.6045 0.888 0.000 0.052 0.060
#> GSM439988     1  0.5954     0.4256 0.604 0.000 0.052 0.344
#> GSM439989     1  0.5723     0.5753 0.684 0.000 0.072 0.244
#> GSM439990     1  0.6326     0.5039 0.636 0.000 0.108 0.256
#> GSM439991     1  0.6123     0.1475 0.572 0.000 0.056 0.372
#> GSM439992     4  0.5331     0.2479 0.332 0.000 0.024 0.644
#> GSM439993     4  0.4869     0.5260 0.132 0.000 0.088 0.780
#> GSM439994     3  0.6323     0.5823 0.272 0.000 0.628 0.100
#> GSM439995     3  0.2040     0.7122 0.012 0.004 0.936 0.048
#> GSM439996     4  0.5607     0.5404 0.072 0.004 0.208 0.716
#> GSM439997     3  0.5174     0.6691 0.092 0.000 0.756 0.152
#> GSM439998     4  0.6337     0.4394 0.072 0.000 0.360 0.568
#> GSM440035     1  0.5233     0.4563 0.648 0.000 0.020 0.332
#> GSM440036     1  0.4018     0.5508 0.772 0.000 0.004 0.224
#> GSM440037     4  0.7847     0.2080 0.360 0.004 0.220 0.416
#> GSM440038     1  0.5330     0.5820 0.748 0.000 0.120 0.132
#> GSM440011     1  0.3107     0.6116 0.884 0.000 0.036 0.080
#> GSM440012     4  0.7875     0.2050 0.328 0.000 0.288 0.384
#> GSM440013     1  0.5071     0.5574 0.772 0.004 0.144 0.080
#> GSM440014     1  0.5657     0.5839 0.688 0.000 0.068 0.244
#> GSM439999     1  0.5056     0.6027 0.732 0.000 0.044 0.224
#> GSM440000     4  0.7706     0.1852 0.348 0.000 0.228 0.424
#> GSM440001     1  0.4800     0.6319 0.760 0.000 0.044 0.196
#> GSM440002     1  0.3547     0.5515 0.840 0.000 0.016 0.144
#> GSM440023     1  0.6785     0.1747 0.484 0.000 0.096 0.420
#> GSM440024     4  0.7221     0.2893 0.308 0.000 0.168 0.524
#> GSM440025     3  0.7871    -0.1921 0.240 0.004 0.436 0.320
#> GSM440026     3  0.6451     0.3519 0.404 0.000 0.524 0.072
#> GSM440039     3  0.5668     0.5954 0.300 0.000 0.652 0.048
#> GSM440040     4  0.5411     0.3192 0.312 0.000 0.032 0.656
#> GSM440041     4  0.5985     0.5191 0.168 0.000 0.140 0.692
#> GSM440042     4  0.6649     0.1965 0.340 0.000 0.100 0.560
#> GSM440015     3  0.5074     0.6769 0.236 0.000 0.724 0.040
#> GSM440016     3  0.7001     0.2447 0.148 0.004 0.584 0.264
#> GSM440017     4  0.6613     0.5005 0.116 0.000 0.288 0.596
#> GSM440018     3  0.2761     0.7126 0.048 0.000 0.904 0.048
#> GSM440003     3  0.4914     0.6711 0.208 0.000 0.748 0.044
#> GSM440004     3  0.3598     0.7088 0.124 0.000 0.848 0.028
#> GSM440005     4  0.5228     0.3949 0.268 0.000 0.036 0.696
#> GSM440006     4  0.5122     0.5220 0.164 0.000 0.080 0.756
#> GSM440027     2  0.0336     0.9911 0.000 0.992 0.008 0.000
#> GSM440028     2  0.0524     0.9900 0.004 0.988 0.000 0.008
#> GSM440029     2  0.0336     0.9884 0.000 0.992 0.008 0.000
#> GSM440030     2  0.0376     0.9911 0.000 0.992 0.004 0.004
#> GSM440043     3  0.3194     0.7220 0.052 0.004 0.888 0.056
#> GSM440044     4  0.6889     0.2202 0.108 0.000 0.396 0.496
#> GSM440045     3  0.2500     0.7215 0.044 0.000 0.916 0.040
#> GSM440046     3  0.2521     0.7231 0.064 0.000 0.912 0.024
#> GSM440019     4  0.5160     0.5303 0.136 0.000 0.104 0.760
#> GSM440020     3  0.4426     0.6274 0.024 0.000 0.772 0.204
#> GSM440021     3  0.3638     0.6704 0.032 0.000 0.848 0.120
#> GSM440022     3  0.3612     0.6949 0.012 0.004 0.840 0.144
#> GSM440007     4  0.5823     0.2520 0.348 0.000 0.044 0.608
#> GSM440008     3  0.2731     0.7105 0.028 0.004 0.908 0.060
#> GSM440009     3  0.7623    -0.0133 0.204 0.000 0.416 0.380
#> GSM440010     4  0.7085     0.4228 0.232 0.000 0.200 0.568
#> GSM440031     2  0.0376     0.9911 0.000 0.992 0.004 0.004
#> GSM440032     2  0.0336     0.9911 0.000 0.992 0.008 0.000
#> GSM440033     2  0.1296     0.9792 0.004 0.964 0.004 0.028
#> GSM440034     2  0.0564     0.9893 0.004 0.988 0.004 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM439987     1  0.4072    0.39953 0.776 0.000 0.020 0.016 0.188
#> GSM439988     1  0.6774    0.32541 0.524 0.000 0.056 0.324 0.096
#> GSM439989     1  0.5237    0.48950 0.660 0.000 0.056 0.272 0.012
#> GSM439990     1  0.5687    0.41295 0.580 0.000 0.052 0.348 0.020
#> GSM439991     5  0.7020    0.26991 0.412 0.000 0.048 0.120 0.420
#> GSM439992     5  0.6214    0.54805 0.132 0.000 0.012 0.288 0.568
#> GSM439993     4  0.4808    0.36884 0.040 0.000 0.028 0.736 0.196
#> GSM439994     3  0.6979    0.25678 0.280 0.000 0.476 0.020 0.224
#> GSM439995     3  0.2249    0.72342 0.008 0.000 0.896 0.096 0.000
#> GSM439996     4  0.4366    0.47116 0.004 0.000 0.124 0.776 0.096
#> GSM439997     3  0.6100    0.58518 0.116 0.000 0.640 0.208 0.036
#> GSM439998     4  0.4275    0.47057 0.024 0.000 0.228 0.740 0.008
#> GSM440035     1  0.6434   -0.06540 0.444 0.000 0.004 0.152 0.400
#> GSM440036     1  0.5623    0.34943 0.596 0.000 0.000 0.104 0.300
#> GSM440037     4  0.6939    0.28142 0.288 0.000 0.132 0.528 0.052
#> GSM440038     1  0.5157    0.52979 0.736 0.000 0.060 0.156 0.048
#> GSM440011     1  0.4107    0.43883 0.804 0.000 0.024 0.040 0.132
#> GSM440012     4  0.6700    0.29943 0.272 0.000 0.180 0.528 0.020
#> GSM440013     1  0.5306    0.50238 0.736 0.000 0.124 0.084 0.056
#> GSM440014     1  0.5789    0.48829 0.628 0.000 0.044 0.280 0.048
#> GSM439999     1  0.5133    0.53451 0.700 0.000 0.036 0.228 0.036
#> GSM440000     4  0.6678    0.27880 0.304 0.000 0.124 0.536 0.036
#> GSM440001     1  0.5354    0.55081 0.700 0.000 0.020 0.188 0.092
#> GSM440002     1  0.5166    0.22322 0.660 0.000 0.024 0.032 0.284
#> GSM440023     4  0.6630    0.08965 0.364 0.000 0.048 0.504 0.084
#> GSM440024     4  0.6207    0.42383 0.200 0.000 0.096 0.644 0.060
#> GSM440025     4  0.7289    0.25996 0.216 0.000 0.304 0.444 0.036
#> GSM440026     1  0.7203   -0.11219 0.428 0.000 0.356 0.036 0.180
#> GSM440039     3  0.5994    0.47316 0.324 0.000 0.572 0.016 0.088
#> GSM440040     4  0.6395    0.14027 0.192 0.000 0.008 0.552 0.248
#> GSM440041     4  0.5059    0.42838 0.044 0.000 0.084 0.752 0.120
#> GSM440042     5  0.7404    0.56902 0.176 0.000 0.068 0.268 0.488
#> GSM440015     3  0.5789    0.60274 0.256 0.000 0.644 0.052 0.048
#> GSM440016     3  0.5790    0.01568 0.092 0.000 0.500 0.408 0.000
#> GSM440017     4  0.3646    0.51032 0.032 0.000 0.140 0.820 0.008
#> GSM440018     3  0.2793    0.71773 0.036 0.000 0.876 0.088 0.000
#> GSM440003     3  0.5162    0.60502 0.236 0.000 0.692 0.024 0.048
#> GSM440004     3  0.4356    0.67566 0.180 0.000 0.768 0.028 0.024
#> GSM440005     4  0.5694    0.30850 0.112 0.000 0.012 0.648 0.228
#> GSM440006     4  0.5374    0.36518 0.060 0.000 0.044 0.708 0.188
#> GSM440027     2  0.0324    0.98017 0.004 0.992 0.000 0.000 0.004
#> GSM440028     2  0.0290    0.98060 0.000 0.992 0.000 0.000 0.008
#> GSM440029     2  0.0693    0.97515 0.000 0.980 0.012 0.000 0.008
#> GSM440030     2  0.0162    0.98073 0.000 0.996 0.000 0.000 0.004
#> GSM440043     3  0.3097    0.72875 0.032 0.000 0.876 0.068 0.024
#> GSM440044     4  0.6908    0.17520 0.024 0.000 0.356 0.456 0.164
#> GSM440045     3  0.2437    0.72726 0.032 0.000 0.904 0.060 0.004
#> GSM440046     3  0.2502    0.73113 0.024 0.000 0.904 0.060 0.012
#> GSM440019     4  0.4636    0.38432 0.012 0.000 0.064 0.752 0.172
#> GSM440020     3  0.4366    0.51322 0.000 0.000 0.664 0.320 0.016
#> GSM440021     3  0.4001    0.63512 0.020 0.000 0.768 0.204 0.008
#> GSM440022     3  0.3776    0.70405 0.012 0.000 0.820 0.128 0.040
#> GSM440007     5  0.4379    0.52639 0.044 0.000 0.012 0.180 0.764
#> GSM440008     3  0.2330    0.72220 0.004 0.004 0.900 0.088 0.004
#> GSM440009     4  0.8098   -0.10400 0.192 0.000 0.296 0.388 0.124
#> GSM440010     4  0.7708    0.00427 0.116 0.000 0.144 0.464 0.276
#> GSM440031     2  0.0162    0.98073 0.000 0.996 0.000 0.000 0.004
#> GSM440032     2  0.0324    0.98017 0.004 0.992 0.000 0.000 0.004
#> GSM440033     2  0.2331    0.92559 0.020 0.900 0.000 0.000 0.080
#> GSM440034     2  0.0912    0.97365 0.000 0.972 0.012 0.000 0.016

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM439987     5  0.5542      0.101 0.400 0.000 0.020 0.012 0.516 0.052
#> GSM439988     1  0.6547      0.382 0.596 0.000 0.036 0.152 0.156 0.060
#> GSM439989     1  0.4205      0.512 0.800 0.000 0.028 0.076 0.072 0.024
#> GSM439990     1  0.4804      0.524 0.752 0.000 0.044 0.128 0.048 0.028
#> GSM439991     5  0.6359     -0.121 0.080 0.000 0.016 0.072 0.556 0.276
#> GSM439992     6  0.6528      0.438 0.060 0.000 0.012 0.228 0.148 0.552
#> GSM439993     4  0.4638      0.456 0.032 0.000 0.008 0.744 0.064 0.152
#> GSM439994     5  0.6879      0.126 0.032 0.000 0.344 0.028 0.436 0.160
#> GSM439995     3  0.1872      0.679 0.008 0.004 0.920 0.064 0.004 0.000
#> GSM439996     4  0.4574      0.521 0.060 0.000 0.080 0.772 0.012 0.076
#> GSM439997     3  0.6383      0.434 0.020 0.000 0.556 0.240 0.152 0.032
#> GSM439998     4  0.4590      0.482 0.092 0.000 0.176 0.720 0.008 0.004
#> GSM440035     6  0.7498      0.108 0.304 0.000 0.000 0.148 0.220 0.328
#> GSM440036     1  0.6985     -0.100 0.392 0.000 0.000 0.068 0.308 0.232
#> GSM440037     1  0.5797      0.243 0.504 0.000 0.092 0.380 0.012 0.012
#> GSM440038     1  0.5481      0.338 0.656 0.000 0.056 0.040 0.228 0.020
#> GSM440011     1  0.5356     -0.100 0.468 0.000 0.012 0.016 0.464 0.040
#> GSM440012     1  0.5468      0.233 0.492 0.000 0.128 0.380 0.000 0.000
#> GSM440013     1  0.6165      0.219 0.572 0.000 0.092 0.032 0.276 0.028
#> GSM440014     1  0.5169      0.504 0.736 0.000 0.032 0.092 0.080 0.060
#> GSM439999     1  0.3321      0.501 0.856 0.000 0.016 0.036 0.064 0.028
#> GSM440000     1  0.5449      0.283 0.536 0.000 0.084 0.364 0.000 0.016
#> GSM440001     1  0.6003      0.169 0.552 0.000 0.008 0.084 0.312 0.044
#> GSM440002     5  0.5893      0.164 0.288 0.000 0.000 0.020 0.540 0.152
#> GSM440023     1  0.6227      0.307 0.528 0.000 0.052 0.336 0.024 0.060
#> GSM440024     4  0.6468     -0.111 0.400 0.000 0.048 0.456 0.036 0.060
#> GSM440025     1  0.7001      0.134 0.408 0.000 0.236 0.304 0.016 0.036
#> GSM440026     5  0.7030      0.252 0.096 0.000 0.292 0.028 0.488 0.096
#> GSM440039     3  0.5530      0.283 0.064 0.000 0.552 0.012 0.356 0.016
#> GSM440040     4  0.6913      0.222 0.108 0.000 0.008 0.520 0.172 0.192
#> GSM440041     4  0.5999      0.476 0.168 0.000 0.032 0.648 0.052 0.100
#> GSM440042     6  0.7076      0.319 0.032 0.000 0.028 0.200 0.368 0.372
#> GSM440015     3  0.6077      0.365 0.084 0.000 0.560 0.040 0.300 0.016
#> GSM440016     3  0.6488     -0.110 0.328 0.000 0.384 0.272 0.012 0.004
#> GSM440017     4  0.4259      0.482 0.128 0.000 0.104 0.756 0.000 0.012
#> GSM440018     3  0.2766      0.672 0.060 0.000 0.872 0.060 0.008 0.000
#> GSM440003     3  0.5391      0.445 0.088 0.000 0.624 0.012 0.264 0.012
#> GSM440004     3  0.4869      0.524 0.044 0.000 0.688 0.028 0.232 0.008
#> GSM440005     4  0.6659      0.340 0.140 0.000 0.012 0.564 0.100 0.184
#> GSM440006     4  0.5614      0.469 0.092 0.000 0.028 0.688 0.052 0.140
#> GSM440027     2  0.0146      0.972 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM440028     2  0.0291      0.973 0.000 0.992 0.000 0.000 0.004 0.004
#> GSM440029     2  0.1057      0.959 0.004 0.968 0.008 0.004 0.012 0.004
#> GSM440030     2  0.0291      0.973 0.000 0.992 0.000 0.000 0.004 0.004
#> GSM440043     3  0.3106      0.668 0.008 0.000 0.864 0.064 0.044 0.020
#> GSM440044     4  0.7570      0.258 0.048 0.000 0.296 0.428 0.084 0.144
#> GSM440045     3  0.3080      0.670 0.040 0.000 0.872 0.044 0.028 0.016
#> GSM440046     3  0.1448      0.680 0.016 0.000 0.948 0.024 0.012 0.000
#> GSM440019     4  0.5903      0.385 0.040 0.000 0.048 0.664 0.096 0.152
#> GSM440020     3  0.4887      0.348 0.000 0.000 0.572 0.376 0.032 0.020
#> GSM440021     3  0.4152      0.540 0.044 0.000 0.712 0.240 0.000 0.004
#> GSM440022     3  0.3538      0.653 0.004 0.000 0.824 0.108 0.016 0.048
#> GSM440007     6  0.3528      0.427 0.028 0.000 0.004 0.092 0.044 0.832
#> GSM440008     3  0.1307      0.681 0.008 0.000 0.952 0.032 0.000 0.008
#> GSM440009     4  0.8052      0.105 0.076 0.000 0.184 0.392 0.256 0.092
#> GSM440010     4  0.8472      0.109 0.124 0.000 0.140 0.360 0.140 0.236
#> GSM440031     2  0.0291      0.973 0.000 0.992 0.000 0.000 0.004 0.004
#> GSM440032     2  0.0146      0.972 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM440033     2  0.2866      0.879 0.004 0.860 0.000 0.000 0.084 0.052
#> GSM440034     2  0.0862      0.965 0.000 0.972 0.004 0.000 0.016 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n agent(p)  time(p)  dose(p) k
#> CV:kmeans 60   0.2963 9.95e-02 1.87e-07 2
#> CV:kmeans 46   0.1637 2.83e-05 7.25e-07 3
#> CV:kmeans 40   0.3870 2.11e-07 4.52e-05 4
#> CV:kmeans 29   0.4680 7.87e-05 2.44e-03 5
#> CV:kmeans 22   0.0255 4.33e-04 2.03e-03 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 60 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k  1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.0301           0.606       0.760         0.5033 0.548   0.548
#> 3 3 0.1009           0.220       0.552         0.3345 0.681   0.471
#> 4 4 0.1566           0.186       0.483         0.1271 0.733   0.369
#> 5 5 0.2224           0.181       0.445         0.0662 0.808   0.388
#> 6 6 0.2970           0.182       0.421         0.0409 0.889   0.534

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM439987     1  0.6887      0.717 0.816 0.184
#> GSM439988     1  0.7056      0.717 0.808 0.192
#> GSM439989     1  0.5519      0.717 0.872 0.128
#> GSM439990     1  0.5629      0.718 0.868 0.132
#> GSM439991     1  0.4939      0.714 0.892 0.108
#> GSM439992     1  0.4431      0.709 0.908 0.092
#> GSM439993     1  0.3431      0.699 0.936 0.064
#> GSM439994     1  0.9850      0.411 0.572 0.428
#> GSM439995     2  0.8016      0.656 0.244 0.756
#> GSM439996     1  0.7528      0.706 0.784 0.216
#> GSM439997     1  1.0000      0.130 0.500 0.500
#> GSM439998     1  0.9775      0.511 0.588 0.412
#> GSM440035     1  0.5519      0.717 0.872 0.128
#> GSM440036     1  0.5059      0.710 0.888 0.112
#> GSM440037     1  0.9000      0.643 0.684 0.316
#> GSM440038     1  0.9491      0.569 0.632 0.368
#> GSM440011     1  0.8081      0.691 0.752 0.248
#> GSM440012     1  0.9833      0.448 0.576 0.424
#> GSM440013     1  0.8861      0.649 0.696 0.304
#> GSM440014     1  0.6801      0.718 0.820 0.180
#> GSM439999     1  0.4939      0.711 0.892 0.108
#> GSM440000     1  0.9732      0.496 0.596 0.404
#> GSM440001     1  0.4562      0.707 0.904 0.096
#> GSM440002     1  0.7602      0.707 0.780 0.220
#> GSM440023     1  0.9996      0.280 0.512 0.488
#> GSM440024     1  0.9896      0.447 0.560 0.440
#> GSM440025     2  0.7139      0.695 0.196 0.804
#> GSM440026     2  0.8608      0.530 0.284 0.716
#> GSM440039     1  0.9963      0.276 0.536 0.464
#> GSM440040     1  0.6712      0.720 0.824 0.176
#> GSM440041     1  0.9209      0.617 0.664 0.336
#> GSM440042     1  0.5842      0.719 0.860 0.140
#> GSM440015     1  0.9922      0.353 0.552 0.448
#> GSM440016     2  0.9661      0.259 0.392 0.608
#> GSM440017     1  0.6801      0.716 0.820 0.180
#> GSM440018     2  0.8386      0.614 0.268 0.732
#> GSM440003     1  1.0000      0.201 0.500 0.500
#> GSM440004     2  0.8608      0.612 0.284 0.716
#> GSM440005     1  0.6531      0.721 0.832 0.168
#> GSM440006     1  0.7299      0.713 0.796 0.204
#> GSM440027     2  0.0000      0.775 0.000 1.000
#> GSM440028     2  0.0672      0.775 0.008 0.992
#> GSM440029     2  0.0376      0.774 0.004 0.996
#> GSM440030     2  0.0376      0.774 0.004 0.996
#> GSM440043     2  0.7299      0.705 0.204 0.796
#> GSM440044     1  0.9000      0.636 0.684 0.316
#> GSM440045     2  0.8955      0.533 0.312 0.688
#> GSM440046     2  0.8081      0.673 0.248 0.752
#> GSM440019     1  0.6148      0.719 0.848 0.152
#> GSM440020     1  1.0000      0.177 0.500 0.500
#> GSM440021     2  0.9209      0.501 0.336 0.664
#> GSM440022     2  0.8661      0.586 0.288 0.712
#> GSM440007     1  0.9323      0.587 0.652 0.348
#> GSM440008     2  0.5178      0.758 0.116 0.884
#> GSM440009     1  0.9983      0.280 0.524 0.476
#> GSM440010     1  0.9977      0.389 0.528 0.472
#> GSM440031     2  0.0000      0.775 0.000 1.000
#> GSM440032     2  0.0000      0.775 0.000 1.000
#> GSM440033     2  0.1184      0.775 0.016 0.984
#> GSM440034     2  0.0000      0.775 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM439987     1  0.6211    0.36996 0.736 0.036 0.228
#> GSM439988     1  0.8179    0.24911 0.564 0.084 0.352
#> GSM439989     1  0.7698    0.29891 0.624 0.072 0.304
#> GSM439990     1  0.7189    0.32738 0.656 0.052 0.292
#> GSM439991     1  0.7238    0.33717 0.628 0.044 0.328
#> GSM439992     1  0.6653    0.33897 0.680 0.032 0.288
#> GSM439993     1  0.7329    0.22422 0.544 0.032 0.424
#> GSM439994     1  0.9616   -0.00382 0.420 0.204 0.376
#> GSM439995     3  0.8840    0.08162 0.116 0.428 0.456
#> GSM439996     3  0.8202    0.03873 0.328 0.092 0.580
#> GSM439997     3  0.9325    0.19520 0.252 0.228 0.520
#> GSM439998     3  0.9286    0.11759 0.312 0.184 0.504
#> GSM440035     1  0.7569    0.33655 0.664 0.088 0.248
#> GSM440036     1  0.6496    0.36668 0.736 0.056 0.208
#> GSM440037     3  0.9627    0.04881 0.396 0.204 0.400
#> GSM440038     1  0.9527    0.09085 0.480 0.220 0.300
#> GSM440011     1  0.8172    0.29670 0.616 0.112 0.272
#> GSM440012     3  0.9479    0.10038 0.348 0.192 0.460
#> GSM440013     1  0.9198    0.14261 0.532 0.200 0.268
#> GSM440014     1  0.7545    0.30751 0.652 0.076 0.272
#> GSM439999     1  0.6154    0.37149 0.752 0.044 0.204
#> GSM440000     3  0.9770    0.10762 0.368 0.232 0.400
#> GSM440001     1  0.6897    0.35942 0.668 0.040 0.292
#> GSM440002     1  0.6869    0.34612 0.688 0.048 0.264
#> GSM440023     1  0.9930   -0.11224 0.368 0.356 0.276
#> GSM440024     3  0.9996    0.13873 0.324 0.328 0.348
#> GSM440025     2  0.8587    0.33133 0.148 0.592 0.260
#> GSM440026     2  0.9680   -0.05668 0.300 0.456 0.244
#> GSM440039     1  0.9369   -0.01042 0.424 0.168 0.408
#> GSM440040     1  0.8625    0.22332 0.560 0.124 0.316
#> GSM440041     3  0.9541    0.05877 0.384 0.192 0.424
#> GSM440042     1  0.7838    0.20124 0.488 0.052 0.460
#> GSM440015     3  0.9625    0.02901 0.388 0.204 0.408
#> GSM440016     3  0.9783    0.20527 0.300 0.264 0.436
#> GSM440017     3  0.8382   -0.06648 0.424 0.084 0.492
#> GSM440018     2  0.9009    0.02754 0.132 0.464 0.404
#> GSM440003     3  0.9792    0.04772 0.372 0.236 0.392
#> GSM440004     3  0.9773    0.19594 0.236 0.352 0.412
#> GSM440005     1  0.6956    0.33685 0.660 0.040 0.300
#> GSM440006     3  0.8310   -0.12298 0.420 0.080 0.500
#> GSM440027     2  0.0592    0.70582 0.000 0.988 0.012
#> GSM440028     2  0.1878    0.70150 0.004 0.952 0.044
#> GSM440029     2  0.1337    0.70300 0.012 0.972 0.016
#> GSM440030     2  0.0747    0.70518 0.000 0.984 0.016
#> GSM440043     2  0.8730    0.14385 0.112 0.500 0.388
#> GSM440044     3  0.8887   -0.00728 0.388 0.124 0.488
#> GSM440045     3  0.8702    0.26532 0.140 0.292 0.568
#> GSM440046     3  0.8884    0.00540 0.120 0.420 0.460
#> GSM440019     3  0.8326   -0.12380 0.432 0.080 0.488
#> GSM440020     3  0.8799    0.20642 0.220 0.196 0.584
#> GSM440021     3  0.8776    0.29249 0.144 0.296 0.560
#> GSM440022     2  0.9108   -0.07693 0.140 0.444 0.416
#> GSM440007     3  0.8637   -0.17960 0.448 0.100 0.452
#> GSM440008     2  0.7948    0.36533 0.080 0.600 0.320
#> GSM440009     1  0.9974   -0.13024 0.368 0.324 0.308
#> GSM440010     1  0.9702   -0.04305 0.416 0.220 0.364
#> GSM440031     2  0.0424    0.70552 0.000 0.992 0.008
#> GSM440032     2  0.0983    0.70528 0.004 0.980 0.016
#> GSM440033     2  0.2383    0.69367 0.016 0.940 0.044
#> GSM440034     2  0.1620    0.70330 0.012 0.964 0.024

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM439987     1  0.6788    0.26426 0.680 0.040 0.132 0.148
#> GSM439988     4  0.9021   -0.04968 0.344 0.088 0.172 0.396
#> GSM439989     1  0.7833    0.07620 0.444 0.036 0.108 0.412
#> GSM439990     1  0.7711    0.12434 0.488 0.012 0.168 0.332
#> GSM439991     1  0.7782    0.17769 0.556 0.032 0.164 0.248
#> GSM439992     4  0.7952   -0.02278 0.360 0.028 0.144 0.468
#> GSM439993     4  0.7570    0.14865 0.236 0.024 0.168 0.572
#> GSM439994     1  0.8939    0.06373 0.412 0.088 0.340 0.160
#> GSM439995     3  0.7715    0.35947 0.100 0.244 0.588 0.068
#> GSM439996     4  0.8038    0.21088 0.136 0.044 0.308 0.512
#> GSM439997     3  0.9330    0.15366 0.208 0.124 0.424 0.244
#> GSM439998     3  0.8929   -0.07116 0.104 0.132 0.388 0.376
#> GSM440035     1  0.8105    0.15739 0.516 0.052 0.132 0.300
#> GSM440036     1  0.8121    0.15737 0.512 0.052 0.132 0.304
#> GSM440037     4  0.8834    0.08508 0.280 0.064 0.216 0.440
#> GSM440038     1  0.9041    0.12847 0.468 0.108 0.208 0.216
#> GSM440011     1  0.7219    0.26854 0.648 0.052 0.128 0.172
#> GSM440012     4  0.9201    0.15352 0.196 0.096 0.316 0.392
#> GSM440013     1  0.9165    0.15163 0.420 0.092 0.224 0.264
#> GSM440014     4  0.8532   -0.09784 0.380 0.048 0.172 0.400
#> GSM439999     1  0.7842    0.13548 0.484 0.024 0.144 0.348
#> GSM440000     4  0.9024    0.12186 0.176 0.100 0.276 0.448
#> GSM440001     1  0.7488    0.13108 0.480 0.020 0.108 0.392
#> GSM440002     1  0.7153    0.24338 0.608 0.016 0.156 0.220
#> GSM440023     4  0.9891    0.06657 0.212 0.276 0.204 0.308
#> GSM440024     4  0.9797    0.03223 0.180 0.272 0.212 0.336
#> GSM440025     2  0.8957    0.05775 0.160 0.500 0.180 0.160
#> GSM440026     2  0.9502   -0.23585 0.284 0.372 0.220 0.124
#> GSM440039     3  0.8170    0.00818 0.412 0.080 0.428 0.080
#> GSM440040     4  0.8443    0.04934 0.344 0.052 0.156 0.448
#> GSM440041     4  0.9140    0.15466 0.240 0.100 0.220 0.440
#> GSM440042     1  0.8274    0.08108 0.456 0.036 0.172 0.336
#> GSM440015     1  0.9297    0.00171 0.364 0.112 0.344 0.180
#> GSM440016     3  0.9613    0.06186 0.152 0.192 0.352 0.304
#> GSM440017     4  0.7979    0.20178 0.176 0.028 0.284 0.512
#> GSM440018     3  0.8821    0.30520 0.128 0.280 0.476 0.116
#> GSM440003     3  0.9726    0.14486 0.244 0.192 0.368 0.196
#> GSM440004     3  0.9236    0.19846 0.300 0.144 0.416 0.140
#> GSM440005     4  0.7765    0.09489 0.244 0.044 0.140 0.572
#> GSM440006     4  0.8391    0.14103 0.240 0.040 0.236 0.484
#> GSM440027     2  0.0657    0.70772 0.000 0.984 0.012 0.004
#> GSM440028     2  0.0712    0.70787 0.004 0.984 0.008 0.004
#> GSM440029     2  0.1262    0.70405 0.008 0.968 0.016 0.008
#> GSM440030     2  0.0469    0.70734 0.000 0.988 0.012 0.000
#> GSM440043     3  0.8999    0.33203 0.140 0.268 0.464 0.128
#> GSM440044     3  0.9104   -0.06064 0.248 0.072 0.388 0.292
#> GSM440045     3  0.7864    0.32195 0.104 0.144 0.612 0.140
#> GSM440046     3  0.8063    0.36284 0.128 0.220 0.572 0.080
#> GSM440019     4  0.8370    0.10605 0.260 0.036 0.228 0.476
#> GSM440020     3  0.8561    0.11195 0.112 0.104 0.496 0.288
#> GSM440021     3  0.8035    0.23130 0.080 0.128 0.576 0.216
#> GSM440022     3  0.9136    0.26667 0.120 0.304 0.424 0.152
#> GSM440007     4  0.9042   -0.00399 0.348 0.072 0.212 0.368
#> GSM440008     2  0.8359   -0.23399 0.060 0.420 0.396 0.124
#> GSM440009     2  0.9971   -0.39254 0.268 0.272 0.216 0.244
#> GSM440010     4  0.9587    0.08151 0.252 0.136 0.240 0.372
#> GSM440031     2  0.0469    0.70741 0.000 0.988 0.012 0.000
#> GSM440032     2  0.0336    0.70788 0.000 0.992 0.008 0.000
#> GSM440033     2  0.2197    0.68468 0.000 0.928 0.048 0.024
#> GSM440034     2  0.1443    0.70152 0.004 0.960 0.028 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM439987     1  0.7489   0.085935 0.540 0.012 0.112 0.232 0.104
#> GSM439988     1  0.8651   0.063415 0.424 0.048 0.092 0.232 0.204
#> GSM439989     1  0.8483   0.100493 0.408 0.024 0.100 0.232 0.236
#> GSM439990     1  0.7800   0.158859 0.512 0.020 0.076 0.204 0.188
#> GSM439991     4  0.7825   0.135645 0.244 0.004 0.120 0.480 0.152
#> GSM439992     4  0.6955   0.201127 0.172 0.000 0.068 0.572 0.188
#> GSM439993     4  0.8048   0.104972 0.136 0.016 0.096 0.408 0.344
#> GSM439994     3  0.8749   0.063369 0.176 0.036 0.372 0.296 0.120
#> GSM439995     3  0.7877   0.255820 0.072 0.148 0.556 0.064 0.160
#> GSM439996     5  0.7918   0.131818 0.096 0.020 0.172 0.204 0.508
#> GSM439997     3  0.9211   0.063541 0.144 0.068 0.320 0.160 0.308
#> GSM439998     5  0.8110   0.131200 0.096 0.060 0.240 0.096 0.508
#> GSM440035     4  0.7866   0.056565 0.300 0.024 0.080 0.472 0.124
#> GSM440036     4  0.7167  -0.027200 0.400 0.000 0.068 0.424 0.108
#> GSM440037     5  0.8942  -0.066231 0.300 0.032 0.176 0.164 0.328
#> GSM440038     1  0.7989   0.175305 0.532 0.036 0.180 0.132 0.120
#> GSM440011     1  0.7880   0.112588 0.536 0.040 0.140 0.200 0.084
#> GSM440012     1  0.9132  -0.008607 0.324 0.064 0.192 0.116 0.304
#> GSM440013     1  0.8470   0.104498 0.440 0.024 0.188 0.216 0.132
#> GSM440014     1  0.7621   0.094661 0.480 0.024 0.040 0.292 0.164
#> GSM439999     1  0.7551   0.168128 0.560 0.024 0.080 0.160 0.176
#> GSM440000     1  0.9323  -0.000218 0.312 0.064 0.204 0.148 0.272
#> GSM440001     1  0.7996   0.078165 0.464 0.028 0.076 0.292 0.140
#> GSM440002     4  0.7552   0.010769 0.372 0.008 0.116 0.428 0.076
#> GSM440023     1  0.9473  -0.011126 0.296 0.216 0.064 0.204 0.220
#> GSM440024     5  0.9748   0.113590 0.164 0.232 0.132 0.176 0.296
#> GSM440025     2  0.9199  -0.022525 0.124 0.416 0.188 0.136 0.136
#> GSM440026     2  0.9302  -0.158196 0.176 0.360 0.188 0.208 0.068
#> GSM440039     3  0.8468   0.095279 0.240 0.036 0.432 0.204 0.088
#> GSM440040     4  0.8525   0.148856 0.200 0.032 0.108 0.432 0.228
#> GSM440041     5  0.8997   0.060507 0.192 0.100 0.080 0.220 0.408
#> GSM440042     4  0.8695   0.149495 0.140 0.036 0.196 0.428 0.200
#> GSM440015     1  0.9340  -0.059583 0.288 0.076 0.280 0.240 0.116
#> GSM440016     5  0.9152   0.037063 0.232 0.112 0.276 0.060 0.320
#> GSM440017     5  0.7401   0.123889 0.136 0.028 0.100 0.144 0.592
#> GSM440018     3  0.8667   0.184526 0.128 0.188 0.468 0.064 0.152
#> GSM440003     3  0.9202   0.156843 0.184 0.144 0.408 0.168 0.096
#> GSM440004     3  0.8522   0.242968 0.188 0.112 0.492 0.076 0.132
#> GSM440005     4  0.8140   0.132664 0.168 0.024 0.072 0.408 0.328
#> GSM440006     4  0.8508   0.075081 0.116 0.024 0.168 0.384 0.308
#> GSM440027     2  0.1074   0.760326 0.000 0.968 0.016 0.012 0.004
#> GSM440028     2  0.1507   0.754937 0.000 0.952 0.012 0.024 0.012
#> GSM440029     2  0.1372   0.757306 0.000 0.956 0.024 0.004 0.016
#> GSM440030     2  0.1116   0.759223 0.004 0.964 0.028 0.004 0.000
#> GSM440043     3  0.7786   0.282097 0.052 0.216 0.544 0.068 0.120
#> GSM440044     4  0.9054   0.060369 0.144 0.036 0.232 0.304 0.284
#> GSM440045     3  0.7788   0.242566 0.084 0.076 0.568 0.092 0.180
#> GSM440046     3  0.7728   0.310148 0.088 0.148 0.584 0.084 0.096
#> GSM440019     4  0.8176   0.131009 0.132 0.036 0.076 0.408 0.348
#> GSM440020     3  0.8119   0.065083 0.060 0.036 0.384 0.148 0.372
#> GSM440021     3  0.8258   0.112886 0.100 0.064 0.436 0.076 0.324
#> GSM440022     3  0.9067   0.203381 0.080 0.188 0.420 0.144 0.168
#> GSM440007     4  0.8632   0.161439 0.172 0.036 0.144 0.440 0.208
#> GSM440008     2  0.8070  -0.247032 0.036 0.392 0.384 0.096 0.092
#> GSM440009     5  0.9676   0.001790 0.136 0.132 0.204 0.216 0.312
#> GSM440010     4  0.9315   0.033203 0.168 0.064 0.172 0.312 0.284
#> GSM440031     2  0.0727   0.760524 0.004 0.980 0.012 0.004 0.000
#> GSM440032     2  0.0671   0.761249 0.000 0.980 0.016 0.000 0.004
#> GSM440033     2  0.2260   0.739801 0.004 0.920 0.016 0.012 0.048
#> GSM440034     2  0.1898   0.752959 0.008 0.940 0.024 0.012 0.016

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM439987     1  0.8062    0.15783 0.372 0.008 0.084 0.192 0.292 0.052
#> GSM439988     1  0.8598    0.03127 0.368 0.028 0.056 0.252 0.132 0.164
#> GSM439989     1  0.7109    0.17828 0.572 0.012 0.044 0.152 0.080 0.140
#> GSM439990     1  0.6856    0.17963 0.576 0.004 0.032 0.124 0.088 0.176
#> GSM439991     4  0.7702    0.12503 0.136 0.008 0.072 0.480 0.232 0.072
#> GSM439992     4  0.6979    0.18087 0.172 0.008 0.040 0.576 0.120 0.084
#> GSM439993     4  0.6691    0.15567 0.096 0.000 0.028 0.540 0.072 0.264
#> GSM439994     5  0.8832    0.01399 0.080 0.032 0.236 0.252 0.308 0.092
#> GSM439995     3  0.7556    0.17331 0.068 0.132 0.572 0.060 0.092 0.076
#> GSM439996     6  0.8121    0.03959 0.064 0.016 0.160 0.284 0.076 0.400
#> GSM439997     5  0.8963   -0.06642 0.056 0.052 0.252 0.112 0.300 0.228
#> GSM439998     6  0.8778    0.09499 0.136 0.048 0.100 0.152 0.140 0.424
#> GSM440035     4  0.7918   -0.04415 0.348 0.012 0.032 0.356 0.140 0.112
#> GSM440036     1  0.7895    0.05370 0.376 0.004 0.048 0.328 0.124 0.120
#> GSM440037     6  0.8671    0.05770 0.276 0.020 0.104 0.132 0.116 0.352
#> GSM440038     1  0.8746    0.13010 0.404 0.036 0.112 0.096 0.184 0.168
#> GSM440011     1  0.8495    0.17996 0.412 0.020 0.108 0.156 0.212 0.092
#> GSM440012     6  0.8318    0.09506 0.288 0.044 0.116 0.072 0.072 0.408
#> GSM440013     1  0.8854    0.13478 0.360 0.040 0.164 0.088 0.244 0.104
#> GSM440014     1  0.8654    0.11225 0.384 0.024 0.092 0.156 0.112 0.232
#> GSM439999     1  0.6477    0.17671 0.656 0.020 0.056 0.072 0.092 0.104
#> GSM440000     6  0.8705    0.09866 0.268 0.024 0.144 0.108 0.100 0.356
#> GSM440001     1  0.8568    0.10285 0.368 0.036 0.040 0.184 0.244 0.128
#> GSM440002     1  0.7963    0.07824 0.376 0.028 0.092 0.276 0.216 0.012
#> GSM440023     1  0.9381   -0.01397 0.260 0.188 0.056 0.200 0.080 0.216
#> GSM440024     6  0.9550    0.07558 0.124 0.188 0.076 0.144 0.172 0.296
#> GSM440025     2  0.9195   -0.20159 0.084 0.328 0.124 0.060 0.204 0.200
#> GSM440026     5  0.8941   -0.02161 0.144 0.272 0.200 0.036 0.288 0.060
#> GSM440039     3  0.8550    0.03292 0.116 0.036 0.360 0.116 0.304 0.068
#> GSM440040     4  0.8076    0.10745 0.204 0.020 0.064 0.468 0.120 0.124
#> GSM440041     6  0.9094    0.04680 0.144 0.068 0.068 0.252 0.136 0.332
#> GSM440042     4  0.8156    0.11134 0.120 0.008 0.112 0.416 0.260 0.084
#> GSM440015     3  0.9187    0.00514 0.152 0.056 0.288 0.084 0.280 0.140
#> GSM440016     6  0.9367    0.10949 0.248 0.088 0.224 0.088 0.092 0.260
#> GSM440017     6  0.8210    0.09756 0.144 0.012 0.108 0.144 0.128 0.464
#> GSM440018     3  0.8483    0.16024 0.072 0.140 0.428 0.040 0.100 0.220
#> GSM440003     3  0.9592    0.02455 0.148 0.112 0.300 0.132 0.200 0.108
#> GSM440004     3  0.8381    0.11766 0.104 0.088 0.412 0.028 0.264 0.104
#> GSM440005     4  0.7886    0.06970 0.288 0.000 0.048 0.384 0.104 0.176
#> GSM440006     4  0.8432    0.05542 0.120 0.016 0.056 0.356 0.176 0.276
#> GSM440027     2  0.1129    0.84545 0.008 0.964 0.012 0.000 0.012 0.004
#> GSM440028     2  0.2107    0.82893 0.004 0.920 0.044 0.004 0.012 0.016
#> GSM440029     2  0.2094    0.83305 0.004 0.924 0.020 0.008 0.012 0.032
#> GSM440030     2  0.1642    0.83930 0.004 0.944 0.024 0.004 0.012 0.012
#> GSM440043     3  0.7585    0.15373 0.028 0.148 0.544 0.048 0.124 0.108
#> GSM440044     4  0.9035    0.07016 0.128 0.024 0.240 0.316 0.164 0.128
#> GSM440045     3  0.8557    0.13398 0.084 0.052 0.436 0.112 0.212 0.104
#> GSM440046     3  0.5896    0.19184 0.036 0.088 0.708 0.040 0.052 0.076
#> GSM440019     4  0.8255    0.13333 0.092 0.036 0.056 0.452 0.172 0.192
#> GSM440020     6  0.8482   -0.02298 0.040 0.032 0.268 0.120 0.176 0.364
#> GSM440021     3  0.8436    0.04236 0.096 0.048 0.368 0.068 0.096 0.324
#> GSM440022     3  0.9209    0.08061 0.064 0.128 0.364 0.128 0.180 0.136
#> GSM440007     4  0.8721    0.13431 0.112 0.020 0.132 0.392 0.184 0.160
#> GSM440008     3  0.8315    0.13176 0.032 0.268 0.356 0.016 0.164 0.164
#> GSM440009     3  0.9926   -0.07772 0.128 0.148 0.208 0.192 0.172 0.152
#> GSM440010     4  0.9533    0.05172 0.236 0.056 0.144 0.252 0.160 0.152
#> GSM440031     2  0.0837    0.84418 0.004 0.972 0.020 0.000 0.004 0.000
#> GSM440032     2  0.1736    0.84055 0.004 0.936 0.020 0.000 0.032 0.008
#> GSM440033     2  0.2101    0.83807 0.012 0.924 0.008 0.004 0.024 0.028
#> GSM440034     2  0.3293    0.79842 0.004 0.860 0.064 0.024 0.036 0.012

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n agent(p) time(p)  dose(p) k
#> CV:skmeans 47   0.0648 0.00522 0.000458 2
#> CV:skmeans  8       NA      NA       NA 3
#> CV:skmeans  8       NA      NA       NA 4
#> CV:skmeans  8       NA      NA       NA 5
#> CV:skmeans  8       NA      NA       NA 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 60 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k  1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.0144           0.346       0.652         0.4458 0.537   0.537
#> 3 3 0.2243           0.543       0.707         0.3689 0.623   0.421
#> 4 4 0.2982           0.545       0.689         0.1756 0.832   0.590
#> 5 5 0.3402           0.518       0.691         0.0455 0.990   0.964
#> 6 6 0.3609           0.513       0.671         0.0228 1.000   1.000

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM439987     2   0.999     0.4790 0.484 0.516
#> GSM439988     2   0.939     0.6564 0.356 0.644
#> GSM439989     2   0.966     0.5862 0.392 0.608
#> GSM439990     2   0.891     0.6809 0.308 0.692
#> GSM439991     1   0.904    -0.2115 0.680 0.320
#> GSM439992     1   0.998    -0.3894 0.524 0.476
#> GSM439993     2   0.891     0.6639 0.308 0.692
#> GSM439994     1   0.518     0.4956 0.884 0.116
#> GSM439995     1   0.653     0.4461 0.832 0.168
#> GSM439996     2   0.992     0.5574 0.448 0.552
#> GSM439997     1   0.993    -0.3344 0.548 0.452
#> GSM439998     2   1.000     0.4400 0.492 0.508
#> GSM440035     2   0.958     0.6287 0.380 0.620
#> GSM440036     2   0.983     0.6389 0.424 0.576
#> GSM440037     1   0.904     0.2811 0.680 0.320
#> GSM440038     2   1.000     0.2592 0.492 0.508
#> GSM440011     1   0.802     0.3607 0.756 0.244
#> GSM440012     1   0.999    -0.2314 0.520 0.480
#> GSM440013     2   0.985     0.6033 0.428 0.572
#> GSM440014     2   0.995     0.5337 0.460 0.540
#> GSM439999     2   0.963     0.6344 0.388 0.612
#> GSM440000     1   0.917     0.3298 0.668 0.332
#> GSM440001     2   0.932     0.6513 0.348 0.652
#> GSM440002     1   0.714     0.4363 0.804 0.196
#> GSM440023     2   0.975     0.5430 0.408 0.592
#> GSM440024     2   0.821     0.6706 0.256 0.744
#> GSM440025     1   0.971     0.1159 0.600 0.400
#> GSM440026     1   0.469     0.4977 0.900 0.100
#> GSM440039     1   0.529     0.4655 0.880 0.120
#> GSM440040     1   0.981    -0.2818 0.580 0.420
#> GSM440041     2   0.978     0.5578 0.412 0.588
#> GSM440042     1   0.891     0.2646 0.692 0.308
#> GSM440015     1   0.839     0.4003 0.732 0.268
#> GSM440016     1   1.000    -0.4391 0.508 0.492
#> GSM440017     1   0.995    -0.4775 0.540 0.460
#> GSM440018     1   0.506     0.4829 0.888 0.112
#> GSM440003     1   0.909     0.0389 0.676 0.324
#> GSM440004     1   1.000    -0.3890 0.504 0.496
#> GSM440005     2   0.963     0.6733 0.388 0.612
#> GSM440006     2   0.952     0.5984 0.372 0.628
#> GSM440027     1   0.978     0.3886 0.588 0.412
#> GSM440028     1   0.993     0.3584 0.548 0.452
#> GSM440029     1   0.952     0.4099 0.628 0.372
#> GSM440030     1   0.917     0.4172 0.668 0.332
#> GSM440043     1   0.295     0.4914 0.948 0.052
#> GSM440044     1   0.988    -0.2936 0.564 0.436
#> GSM440045     1   0.278     0.4972 0.952 0.048
#> GSM440046     1   0.563     0.4805 0.868 0.132
#> GSM440019     2   0.913     0.6565 0.328 0.672
#> GSM440020     1   0.909     0.1961 0.676 0.324
#> GSM440021     1   0.788     0.3555 0.764 0.236
#> GSM440022     1   0.671     0.4565 0.824 0.176
#> GSM440007     1   0.895     0.2063 0.688 0.312
#> GSM440008     1   0.552     0.4812 0.872 0.128
#> GSM440009     2   0.988     0.6360 0.436 0.564
#> GSM440010     1   0.204     0.4987 0.968 0.032
#> GSM440031     1   0.946     0.4004 0.636 0.364
#> GSM440032     1   0.939     0.4121 0.644 0.356
#> GSM440033     1   0.949     0.4019 0.632 0.368
#> GSM440034     1   0.949     0.4094 0.632 0.368

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM439987     1   0.658     0.5313 0.724 0.052 0.224
#> GSM439988     1   0.584     0.5894 0.688 0.004 0.308
#> GSM439989     1   0.655     0.5328 0.616 0.012 0.372
#> GSM439990     1   0.341     0.6240 0.876 0.000 0.124
#> GSM439991     1   0.853     0.3139 0.536 0.104 0.360
#> GSM439992     1   0.676     0.5000 0.620 0.020 0.360
#> GSM439993     1   0.129     0.6248 0.968 0.000 0.032
#> GSM439994     3   0.593     0.6178 0.124 0.084 0.792
#> GSM439995     3   0.512     0.5802 0.152 0.032 0.816
#> GSM439996     1   0.647     0.5018 0.632 0.012 0.356
#> GSM439997     1   0.627     0.3306 0.548 0.000 0.452
#> GSM439998     1   0.606     0.5147 0.656 0.004 0.340
#> GSM440035     1   0.581     0.5971 0.796 0.072 0.132
#> GSM440036     1   0.507     0.6362 0.792 0.012 0.196
#> GSM440037     3   0.750     0.3425 0.384 0.044 0.572
#> GSM440038     3   0.683    -0.1743 0.492 0.012 0.496
#> GSM440011     3   0.874     0.3707 0.340 0.124 0.536
#> GSM440012     1   0.631     0.3380 0.604 0.004 0.392
#> GSM440013     1   0.676     0.5528 0.744 0.108 0.148
#> GSM440014     1   0.470     0.5705 0.788 0.000 0.212
#> GSM439999     1   0.543     0.5861 0.716 0.000 0.284
#> GSM440000     3   0.610     0.4195 0.320 0.008 0.672
#> GSM440001     1   0.171     0.6277 0.960 0.008 0.032
#> GSM440002     3   0.738     0.2130 0.452 0.032 0.516
#> GSM440023     1   0.528     0.5430 0.752 0.004 0.244
#> GSM440024     1   0.453     0.6365 0.824 0.008 0.168
#> GSM440025     1   0.753     0.1012 0.532 0.040 0.428
#> GSM440026     3   0.609     0.6190 0.124 0.092 0.784
#> GSM440039     3   0.805     0.5216 0.264 0.108 0.628
#> GSM440040     1   0.680     0.3739 0.584 0.016 0.400
#> GSM440041     1   0.599     0.5561 0.704 0.012 0.284
#> GSM440042     3   0.792     0.2291 0.460 0.056 0.484
#> GSM440015     3   0.636     0.3646 0.336 0.012 0.652
#> GSM440016     1   0.604     0.4894 0.620 0.000 0.380
#> GSM440017     1   0.585     0.5494 0.720 0.012 0.268
#> GSM440018     3   0.304     0.6214 0.104 0.000 0.896
#> GSM440003     3   0.668     0.5073 0.216 0.060 0.724
#> GSM440004     1   0.678     0.4771 0.616 0.020 0.364
#> GSM440005     1   0.649     0.6291 0.752 0.076 0.172
#> GSM440006     1   0.575     0.5642 0.700 0.004 0.296
#> GSM440027     2   0.205     0.9213 0.028 0.952 0.020
#> GSM440028     2   0.118     0.9170 0.012 0.976 0.012
#> GSM440029     2   0.595     0.7892 0.052 0.776 0.172
#> GSM440030     2   0.364     0.8847 0.004 0.872 0.124
#> GSM440043     3   0.547     0.6152 0.072 0.112 0.816
#> GSM440044     3   0.648     0.0352 0.392 0.008 0.600
#> GSM440045     3   0.464     0.6232 0.044 0.104 0.852
#> GSM440046     3   0.346     0.6242 0.096 0.012 0.892
#> GSM440019     1   0.545     0.6221 0.760 0.012 0.228
#> GSM440020     3   0.559     0.4385 0.276 0.004 0.720
#> GSM440021     3   0.445     0.4988 0.192 0.000 0.808
#> GSM440022     3   0.733     0.5816 0.180 0.116 0.704
#> GSM440007     3   0.603     0.4566 0.244 0.024 0.732
#> GSM440008     3   0.199     0.6244 0.048 0.004 0.948
#> GSM440009     1   0.681     0.5875 0.716 0.064 0.220
#> GSM440010     3   0.558     0.6234 0.084 0.104 0.812
#> GSM440031     2   0.149     0.9188 0.016 0.968 0.016
#> GSM440032     2   0.295     0.8965 0.004 0.908 0.088
#> GSM440033     2   0.132     0.9074 0.008 0.972 0.020
#> GSM440034     2   0.369     0.8982 0.056 0.896 0.048

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM439987     4  0.7182     0.2093 0.356 0.004 0.128 0.512
#> GSM439988     1  0.7225     0.1341 0.496 0.000 0.152 0.352
#> GSM439989     4  0.7660     0.1787 0.368 0.004 0.184 0.444
#> GSM439990     1  0.5741     0.2631 0.536 0.004 0.020 0.440
#> GSM439991     4  0.6075     0.4751 0.052 0.008 0.304 0.636
#> GSM439992     4  0.7006     0.4924 0.204 0.000 0.216 0.580
#> GSM439993     4  0.2530     0.5839 0.112 0.000 0.000 0.888
#> GSM439994     3  0.5201     0.5508 0.220 0.004 0.732 0.044
#> GSM439995     3  0.6341     0.6168 0.096 0.056 0.724 0.124
#> GSM439996     4  0.4425     0.6253 0.036 0.004 0.160 0.800
#> GSM439997     4  0.6640     0.3010 0.096 0.000 0.352 0.552
#> GSM439998     4  0.3497     0.6334 0.036 0.000 0.104 0.860
#> GSM440035     1  0.6437     0.5563 0.624 0.004 0.092 0.280
#> GSM440036     4  0.5306     0.5937 0.152 0.008 0.080 0.760
#> GSM440037     1  0.5646     0.6348 0.708 0.000 0.204 0.088
#> GSM440038     1  0.5412     0.6262 0.736 0.000 0.168 0.096
#> GSM440011     1  0.6046     0.4371 0.640 0.012 0.304 0.044
#> GSM440012     1  0.5875     0.6408 0.684 0.000 0.092 0.224
#> GSM440013     4  0.7981     0.2496 0.252 0.012 0.264 0.472
#> GSM440014     1  0.5897     0.5917 0.656 0.004 0.056 0.284
#> GSM439999     1  0.5716     0.6292 0.700 0.000 0.088 0.212
#> GSM440000     1  0.4063     0.6063 0.808 0.004 0.172 0.016
#> GSM440001     4  0.3107     0.5996 0.080 0.000 0.036 0.884
#> GSM440002     3  0.7960     0.0356 0.248 0.004 0.380 0.368
#> GSM440023     1  0.5517     0.5766 0.648 0.000 0.036 0.316
#> GSM440024     4  0.6041     0.2642 0.332 0.000 0.060 0.608
#> GSM440025     1  0.5888     0.6292 0.704 0.004 0.192 0.100
#> GSM440026     3  0.4593     0.6271 0.096 0.016 0.820 0.068
#> GSM440039     3  0.6748     0.4371 0.184 0.012 0.648 0.156
#> GSM440040     4  0.7510     0.4313 0.252 0.004 0.220 0.524
#> GSM440041     4  0.3793     0.6317 0.044 0.000 0.112 0.844
#> GSM440042     1  0.6945     0.5641 0.608 0.008 0.240 0.144
#> GSM440015     3  0.7661     0.2393 0.192 0.004 0.464 0.340
#> GSM440016     4  0.5179     0.5780 0.052 0.000 0.220 0.728
#> GSM440017     4  0.3392     0.6255 0.056 0.000 0.072 0.872
#> GSM440018     3  0.5315     0.6273 0.224 0.004 0.724 0.048
#> GSM440003     3  0.6715     0.4814 0.220 0.008 0.636 0.136
#> GSM440004     4  0.7811     0.1229 0.260 0.000 0.336 0.404
#> GSM440005     4  0.6933     0.5028 0.216 0.012 0.148 0.624
#> GSM440006     4  0.4791     0.6312 0.080 0.000 0.136 0.784
#> GSM440027     2  0.0336     0.9386 0.000 0.992 0.008 0.000
#> GSM440028     2  0.0524     0.9391 0.004 0.988 0.008 0.000
#> GSM440029     2  0.4086     0.8291 0.076 0.840 0.080 0.004
#> GSM440030     2  0.0707     0.9360 0.000 0.980 0.020 0.000
#> GSM440043     3  0.3509     0.6144 0.088 0.012 0.872 0.028
#> GSM440044     3  0.6865     0.1975 0.112 0.000 0.524 0.364
#> GSM440045     3  0.3775     0.6373 0.080 0.016 0.864 0.040
#> GSM440046     3  0.5129     0.6388 0.180 0.004 0.756 0.060
#> GSM440019     4  0.5361     0.6152 0.148 0.000 0.108 0.744
#> GSM440020     3  0.7301     0.3677 0.236 0.000 0.536 0.228
#> GSM440021     3  0.6783     0.4763 0.144 0.004 0.616 0.236
#> GSM440022     3  0.6139     0.3606 0.316 0.016 0.628 0.040
#> GSM440007     3  0.5990     0.5564 0.188 0.000 0.688 0.124
#> GSM440008     3  0.4465     0.6381 0.144 0.000 0.800 0.056
#> GSM440009     4  0.7309     0.4594 0.172 0.008 0.256 0.564
#> GSM440010     3  0.4711     0.6442 0.128 0.012 0.804 0.056
#> GSM440031     2  0.0376     0.9382 0.004 0.992 0.004 0.000
#> GSM440032     2  0.0859     0.9367 0.008 0.980 0.008 0.004
#> GSM440033     2  0.2928     0.8655 0.012 0.880 0.108 0.000
#> GSM440034     2  0.2727     0.8962 0.084 0.900 0.012 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM439987     4  0.7756     0.2229 0.320 0.000 0.140 0.428 0.112
#> GSM439988     1  0.6681     0.1656 0.520 0.000 0.108 0.332 0.040
#> GSM439989     4  0.6939     0.1939 0.376 0.000 0.144 0.448 0.032
#> GSM439990     1  0.4912     0.2786 0.572 0.000 0.016 0.404 0.008
#> GSM439991     4  0.6742     0.4467 0.032 0.000 0.256 0.548 0.164
#> GSM439992     4  0.7230     0.5024 0.188 0.000 0.164 0.552 0.096
#> GSM439993     4  0.3197     0.5996 0.116 0.000 0.008 0.852 0.024
#> GSM439994     3  0.5786     0.5139 0.208 0.000 0.656 0.020 0.116
#> GSM439995     3  0.6175     0.4993 0.072 0.052 0.688 0.160 0.028
#> GSM439996     4  0.3257     0.6282 0.024 0.000 0.104 0.856 0.016
#> GSM439997     4  0.5616     0.3749 0.040 0.000 0.300 0.624 0.036
#> GSM439998     4  0.2177     0.6352 0.004 0.000 0.080 0.908 0.008
#> GSM440035     1  0.5818     0.6139 0.684 0.000 0.060 0.176 0.080
#> GSM440036     4  0.5888     0.6039 0.144 0.000 0.064 0.688 0.104
#> GSM440037     1  0.4772     0.6691 0.760 0.000 0.132 0.088 0.020
#> GSM440038     1  0.5304     0.6276 0.740 0.000 0.104 0.092 0.064
#> GSM440011     1  0.5789     0.4865 0.612 0.000 0.260 0.004 0.124
#> GSM440012     1  0.5119     0.6546 0.696 0.000 0.080 0.216 0.008
#> GSM440013     4  0.7907     0.2377 0.224 0.000 0.284 0.404 0.088
#> GSM440014     1  0.4360     0.6550 0.752 0.000 0.064 0.184 0.000
#> GSM439999     1  0.4086     0.6809 0.812 0.000 0.052 0.112 0.024
#> GSM440000     1  0.3037     0.6556 0.864 0.000 0.100 0.032 0.004
#> GSM440001     4  0.4060     0.6127 0.068 0.000 0.016 0.812 0.104
#> GSM440002     3  0.8031     0.2185 0.172 0.000 0.420 0.272 0.136
#> GSM440023     1  0.4573     0.6092 0.688 0.000 0.028 0.280 0.004
#> GSM440024     4  0.6045     0.2131 0.352 0.000 0.032 0.556 0.060
#> GSM440025     1  0.5948     0.6224 0.664 0.000 0.200 0.080 0.056
#> GSM440026     3  0.5340     0.5161 0.068 0.004 0.736 0.052 0.140
#> GSM440039     3  0.6158     0.4514 0.120 0.000 0.668 0.076 0.136
#> GSM440040     4  0.7075     0.4525 0.264 0.000 0.188 0.508 0.040
#> GSM440041     4  0.2590     0.6344 0.028 0.000 0.060 0.900 0.012
#> GSM440042     1  0.6728     0.5367 0.600 0.000 0.208 0.100 0.092
#> GSM440015     3  0.6851     0.3383 0.152 0.000 0.488 0.332 0.028
#> GSM440016     4  0.4784     0.5657 0.056 0.000 0.204 0.728 0.012
#> GSM440017     4  0.2369     0.6277 0.056 0.000 0.032 0.908 0.004
#> GSM440018     3  0.4854     0.5434 0.172 0.000 0.740 0.072 0.016
#> GSM440003     3  0.7313     0.2665 0.252 0.000 0.508 0.172 0.068
#> GSM440004     4  0.7555     0.0712 0.188 0.000 0.344 0.408 0.060
#> GSM440005     4  0.6529     0.4746 0.240 0.000 0.132 0.588 0.040
#> GSM440006     4  0.4526     0.6251 0.064 0.000 0.080 0.796 0.060
#> GSM440027     2  0.0162     0.9210 0.000 0.996 0.004 0.000 0.000
#> GSM440028     2  0.0162     0.9203 0.000 0.996 0.004 0.000 0.000
#> GSM440029     2  0.3409     0.7722 0.052 0.836 0.112 0.000 0.000
#> GSM440030     2  0.0162     0.9208 0.000 0.996 0.004 0.000 0.000
#> GSM440043     3  0.3454     0.5144 0.044 0.000 0.856 0.024 0.076
#> GSM440044     3  0.7015     0.0503 0.096 0.000 0.436 0.404 0.064
#> GSM440045     3  0.2833     0.5316 0.028 0.000 0.892 0.028 0.052
#> GSM440046     3  0.5282     0.5474 0.184 0.000 0.716 0.052 0.048
#> GSM440019     4  0.4980     0.6114 0.168 0.000 0.060 0.740 0.032
#> GSM440020     3  0.7488     0.1886 0.276 0.000 0.408 0.276 0.040
#> GSM440021     3  0.6426     0.3960 0.100 0.000 0.576 0.284 0.040
#> GSM440022     3  0.5553     0.3619 0.268 0.000 0.640 0.012 0.080
#> GSM440007     5  0.5797     0.0000 0.060 0.000 0.156 0.092 0.692
#> GSM440008     3  0.4821     0.5187 0.112 0.000 0.764 0.096 0.028
#> GSM440009     4  0.7446     0.4572 0.200 0.000 0.184 0.520 0.096
#> GSM440010     3  0.4153     0.5562 0.068 0.000 0.820 0.056 0.056
#> GSM440031     2  0.0000     0.9195 0.000 1.000 0.000 0.000 0.000
#> GSM440032     2  0.0727     0.9170 0.012 0.980 0.004 0.000 0.004
#> GSM440033     2  0.3704     0.7845 0.004 0.828 0.116 0.004 0.048
#> GSM440034     2  0.2625     0.8717 0.056 0.900 0.016 0.000 0.028

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5 p6
#> GSM439987     4  0.7411     0.2030 0.280 0.000 0.116 0.404 0.008 NA
#> GSM439988     1  0.5762     0.1838 0.584 0.000 0.056 0.304 0.040 NA
#> GSM439989     4  0.7196     0.1779 0.344 0.000 0.140 0.424 0.048 NA
#> GSM439990     1  0.5022     0.3052 0.556 0.000 0.012 0.392 0.012 NA
#> GSM439991     4  0.6020     0.4118 0.012 0.000 0.248 0.512 0.000 NA
#> GSM439992     4  0.7697     0.2208 0.140 0.000 0.124 0.360 0.032 NA
#> GSM439993     4  0.2858     0.5899 0.088 0.000 0.004 0.868 0.012 NA
#> GSM439994     3  0.5839     0.5608 0.176 0.000 0.632 0.024 0.020 NA
#> GSM439995     3  0.6473     0.5794 0.104 0.048 0.640 0.148 0.028 NA
#> GSM439996     4  0.3297     0.6051 0.028 0.000 0.092 0.848 0.020 NA
#> GSM439997     4  0.5370     0.3495 0.048 0.000 0.280 0.628 0.020 NA
#> GSM439998     4  0.2571     0.6211 0.024 0.000 0.060 0.892 0.020 NA
#> GSM440035     1  0.5901     0.6092 0.664 0.000 0.056 0.160 0.040 NA
#> GSM440036     4  0.5867     0.5752 0.104 0.000 0.040 0.664 0.040 NA
#> GSM440037     1  0.4459     0.6855 0.756 0.000 0.128 0.092 0.008 NA
#> GSM440038     1  0.4720     0.6584 0.772 0.000 0.056 0.052 0.040 NA
#> GSM440011     1  0.5885     0.4882 0.552 0.000 0.264 0.004 0.012 NA
#> GSM440012     1  0.4971     0.6526 0.688 0.000 0.080 0.208 0.016 NA
#> GSM440013     4  0.7378     0.2496 0.176 0.000 0.320 0.404 0.024 NA
#> GSM440014     1  0.4235     0.6600 0.760 0.000 0.048 0.168 0.016 NA
#> GSM439999     1  0.4040     0.6840 0.808 0.000 0.036 0.096 0.020 NA
#> GSM440000     1  0.2247     0.6779 0.904 0.000 0.060 0.012 0.024 NA
#> GSM440001     4  0.3750     0.6037 0.052 0.000 0.020 0.816 0.008 NA
#> GSM440002     3  0.7348     0.2200 0.136 0.000 0.420 0.260 0.004 NA
#> GSM440023     1  0.4491     0.6155 0.676 0.000 0.036 0.272 0.000 NA
#> GSM440024     4  0.5769     0.1869 0.368 0.000 0.032 0.532 0.016 NA
#> GSM440025     1  0.5598     0.6141 0.664 0.000 0.200 0.072 0.036 NA
#> GSM440026     3  0.5347     0.5226 0.040 0.000 0.684 0.032 0.044 NA
#> GSM440039     3  0.5606     0.5015 0.064 0.000 0.684 0.072 0.024 NA
#> GSM440040     4  0.6963     0.4516 0.244 0.000 0.144 0.516 0.028 NA
#> GSM440041     4  0.2393     0.6202 0.028 0.000 0.048 0.904 0.012 NA
#> GSM440042     1  0.6836     0.5271 0.552 0.000 0.216 0.104 0.028 NA
#> GSM440015     3  0.7147     0.3556 0.172 0.000 0.440 0.308 0.052 NA
#> GSM440016     4  0.4866     0.5338 0.060 0.000 0.192 0.712 0.020 NA
#> GSM440017     4  0.1564     0.6130 0.040 0.000 0.024 0.936 0.000 NA
#> GSM440018     3  0.5290     0.6036 0.168 0.000 0.700 0.068 0.044 NA
#> GSM440003     3  0.7318     0.3512 0.292 0.000 0.444 0.168 0.048 NA
#> GSM440004     4  0.7408     0.0437 0.188 0.000 0.324 0.396 0.036 NA
#> GSM440005     4  0.6070     0.4509 0.252 0.000 0.116 0.584 0.016 NA
#> GSM440006     4  0.4756     0.6170 0.084 0.000 0.064 0.768 0.048 NA
#> GSM440027     2  0.0146     0.8874 0.000 0.996 0.004 0.000 0.000 NA
#> GSM440028     2  0.0146     0.8869 0.000 0.996 0.004 0.000 0.000 NA
#> GSM440029     2  0.3044     0.7466 0.048 0.836 0.116 0.000 0.000 NA
#> GSM440030     2  0.0146     0.8872 0.000 0.996 0.004 0.000 0.000 NA
#> GSM440043     3  0.2918     0.5606 0.020 0.000 0.880 0.028 0.020 NA
#> GSM440044     3  0.7456     0.0749 0.124 0.000 0.384 0.368 0.076 NA
#> GSM440045     3  0.2972     0.5822 0.028 0.000 0.880 0.036 0.028 NA
#> GSM440046     3  0.5404     0.6066 0.152 0.000 0.704 0.052 0.036 NA
#> GSM440019     4  0.5056     0.5906 0.196 0.000 0.036 0.704 0.028 NA
#> GSM440020     3  0.7327     0.2220 0.284 0.000 0.384 0.260 0.044 NA
#> GSM440021     3  0.6886     0.4208 0.148 0.000 0.504 0.264 0.064 NA
#> GSM440022     3  0.5013     0.4255 0.212 0.000 0.692 0.012 0.028 NA
#> GSM440007     5  0.2521     0.0000 0.032 0.000 0.056 0.020 0.892 NA
#> GSM440008     3  0.5479     0.5874 0.148 0.000 0.696 0.076 0.056 NA
#> GSM440009     4  0.6964     0.4438 0.208 0.000 0.156 0.512 0.008 NA
#> GSM440010     3  0.3594     0.6069 0.060 0.000 0.836 0.068 0.012 NA
#> GSM440031     2  0.0000     0.8860 0.000 1.000 0.000 0.000 0.000 NA
#> GSM440032     2  0.0653     0.8830 0.012 0.980 0.004 0.000 0.000 NA
#> GSM440033     2  0.5452     0.5065 0.000 0.616 0.140 0.000 0.016 NA
#> GSM440034     2  0.2958     0.8217 0.060 0.876 0.016 0.000 0.024 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n agent(p)  time(p)  dose(p) k
#> CV:pam 18       NA       NA       NA 2
#> CV:pam 41   0.1331 0.007732 0.000235 3
#> CV:pam 39   0.1602 0.000109 0.001413 4
#> CV:pam 37   0.0518 0.000419 0.001318 5
#> CV:pam 38   0.1317 0.000458 0.001717 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 60 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.988       0.994         0.2438 0.765   0.765
#> 3 3 0.354           0.458       0.776         1.3935 0.619   0.501
#> 4 4 0.409           0.642       0.788         0.2180 0.718   0.397
#> 5 5 0.580           0.722       0.785         0.0903 0.918   0.718
#> 6 6 0.595           0.564       0.707         0.0534 0.908   0.628

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM439987     1  0.0000      0.993 1.000 0.000
#> GSM439988     1  0.0000      0.993 1.000 0.000
#> GSM439989     1  0.0000      0.993 1.000 0.000
#> GSM439990     1  0.0000      0.993 1.000 0.000
#> GSM439991     1  0.0000      0.993 1.000 0.000
#> GSM439992     1  0.0000      0.993 1.000 0.000
#> GSM439993     1  0.0000      0.993 1.000 0.000
#> GSM439994     1  0.0000      0.993 1.000 0.000
#> GSM439995     1  0.0000      0.993 1.000 0.000
#> GSM439996     1  0.0000      0.993 1.000 0.000
#> GSM439997     1  0.0000      0.993 1.000 0.000
#> GSM439998     1  0.0000      0.993 1.000 0.000
#> GSM440035     1  0.0000      0.993 1.000 0.000
#> GSM440036     1  0.0000      0.993 1.000 0.000
#> GSM440037     1  0.0000      0.993 1.000 0.000
#> GSM440038     1  0.0000      0.993 1.000 0.000
#> GSM440011     1  0.0000      0.993 1.000 0.000
#> GSM440012     1  0.0000      0.993 1.000 0.000
#> GSM440013     1  0.0000      0.993 1.000 0.000
#> GSM440014     1  0.0000      0.993 1.000 0.000
#> GSM439999     1  0.0000      0.993 1.000 0.000
#> GSM440000     1  0.0376      0.990 0.996 0.004
#> GSM440001     1  0.0000      0.993 1.000 0.000
#> GSM440002     1  0.0000      0.993 1.000 0.000
#> GSM440023     1  0.4815      0.889 0.896 0.104
#> GSM440024     1  0.5178      0.875 0.884 0.116
#> GSM440025     1  0.5178      0.875 0.884 0.116
#> GSM440026     1  0.0376      0.990 0.996 0.004
#> GSM440039     1  0.0000      0.993 1.000 0.000
#> GSM440040     1  0.0000      0.993 1.000 0.000
#> GSM440041     1  0.0000      0.993 1.000 0.000
#> GSM440042     1  0.0938      0.983 0.988 0.012
#> GSM440015     1  0.0000      0.993 1.000 0.000
#> GSM440016     1  0.0000      0.993 1.000 0.000
#> GSM440017     1  0.0000      0.993 1.000 0.000
#> GSM440018     1  0.0000      0.993 1.000 0.000
#> GSM440003     1  0.0000      0.993 1.000 0.000
#> GSM440004     1  0.0000      0.993 1.000 0.000
#> GSM440005     1  0.0000      0.993 1.000 0.000
#> GSM440006     1  0.0000      0.993 1.000 0.000
#> GSM440027     2  0.0000      0.999 0.000 1.000
#> GSM440028     2  0.0000      0.999 0.000 1.000
#> GSM440029     2  0.0672      0.992 0.008 0.992
#> GSM440030     2  0.0000      0.999 0.000 1.000
#> GSM440043     1  0.0000      0.993 1.000 0.000
#> GSM440044     1  0.0000      0.993 1.000 0.000
#> GSM440045     1  0.0000      0.993 1.000 0.000
#> GSM440046     1  0.0000      0.993 1.000 0.000
#> GSM440019     1  0.0000      0.993 1.000 0.000
#> GSM440020     1  0.0000      0.993 1.000 0.000
#> GSM440021     1  0.0000      0.993 1.000 0.000
#> GSM440022     1  0.0000      0.993 1.000 0.000
#> GSM440007     1  0.0000      0.993 1.000 0.000
#> GSM440008     1  0.0376      0.990 0.996 0.004
#> GSM440009     1  0.0000      0.993 1.000 0.000
#> GSM440010     1  0.0000      0.993 1.000 0.000
#> GSM440031     2  0.0000      0.999 0.000 1.000
#> GSM440032     2  0.0000      0.999 0.000 1.000
#> GSM440033     2  0.0000      0.999 0.000 1.000
#> GSM440034     2  0.0000      0.999 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM439987     1  0.3192     0.6244 0.888 0.000 0.112
#> GSM439988     1  0.6235    -0.0266 0.564 0.000 0.436
#> GSM439989     1  0.3038     0.6246 0.896 0.000 0.104
#> GSM439990     1  0.3482     0.6180 0.872 0.000 0.128
#> GSM439991     1  0.2537     0.6261 0.920 0.000 0.080
#> GSM439992     1  0.3879     0.5316 0.848 0.000 0.152
#> GSM439993     3  0.6309     0.1761 0.496 0.000 0.504
#> GSM439994     3  0.6307    -0.1662 0.488 0.000 0.512
#> GSM439995     3  0.0000     0.5842 0.000 0.000 1.000
#> GSM439996     3  0.6215     0.3088 0.428 0.000 0.572
#> GSM439997     3  0.2537     0.5822 0.080 0.000 0.920
#> GSM439998     3  0.5254     0.4974 0.264 0.000 0.736
#> GSM440035     1  0.1289     0.6086 0.968 0.000 0.032
#> GSM440036     1  0.0892     0.6091 0.980 0.000 0.020
#> GSM440037     3  0.6225     0.2854 0.432 0.000 0.568
#> GSM440038     1  0.4178     0.5834 0.828 0.000 0.172
#> GSM440011     1  0.2537     0.6251 0.920 0.000 0.080
#> GSM440012     3  0.5859     0.4179 0.344 0.000 0.656
#> GSM440013     1  0.5291     0.5035 0.732 0.000 0.268
#> GSM440014     1  0.3267     0.6234 0.884 0.000 0.116
#> GSM439999     1  0.2796     0.6257 0.908 0.000 0.092
#> GSM440000     3  0.6126     0.3443 0.400 0.000 0.600
#> GSM440001     1  0.2796     0.6269 0.908 0.000 0.092
#> GSM440002     1  0.2356     0.6256 0.928 0.000 0.072
#> GSM440023     3  0.6204     0.3100 0.424 0.000 0.576
#> GSM440024     3  0.6215     0.3075 0.428 0.000 0.572
#> GSM440025     3  0.4750     0.5419 0.216 0.000 0.784
#> GSM440026     1  0.6235     0.2200 0.564 0.000 0.436
#> GSM440039     1  0.6260     0.1701 0.552 0.000 0.448
#> GSM440040     1  0.6235    -0.0973 0.564 0.000 0.436
#> GSM440041     1  0.6291    -0.1670 0.532 0.000 0.468
#> GSM440042     1  0.3816     0.5825 0.852 0.000 0.148
#> GSM440015     1  0.6280     0.1863 0.540 0.000 0.460
#> GSM440016     3  0.3619     0.5782 0.136 0.000 0.864
#> GSM440017     3  0.6008     0.3766 0.372 0.000 0.628
#> GSM440018     3  0.0237     0.5825 0.004 0.000 0.996
#> GSM440003     3  0.6267    -0.1115 0.452 0.000 0.548
#> GSM440004     3  0.6225    -0.0845 0.432 0.000 0.568
#> GSM440005     1  0.6204    -0.0989 0.576 0.000 0.424
#> GSM440006     1  0.6267    -0.1296 0.548 0.000 0.452
#> GSM440027     2  0.0000     0.9939 0.000 1.000 0.000
#> GSM440028     2  0.0000     0.9939 0.000 1.000 0.000
#> GSM440029     2  0.1399     0.9686 0.004 0.968 0.028
#> GSM440030     2  0.0000     0.9939 0.000 1.000 0.000
#> GSM440043     3  0.1964     0.5858 0.056 0.000 0.944
#> GSM440044     3  0.6095     0.3887 0.392 0.000 0.608
#> GSM440045     3  0.1031     0.5860 0.024 0.000 0.976
#> GSM440046     3  0.0424     0.5830 0.008 0.000 0.992
#> GSM440019     1  0.6302    -0.1906 0.520 0.000 0.480
#> GSM440020     3  0.3038     0.5786 0.104 0.000 0.896
#> GSM440021     3  0.0892     0.5897 0.020 0.000 0.980
#> GSM440022     3  0.1964     0.5914 0.056 0.000 0.944
#> GSM440007     1  0.6180    -0.0596 0.584 0.000 0.416
#> GSM440008     3  0.0000     0.5842 0.000 0.000 1.000
#> GSM440009     3  0.5650     0.4697 0.312 0.000 0.688
#> GSM440010     3  0.6291     0.2545 0.468 0.000 0.532
#> GSM440031     2  0.0000     0.9939 0.000 1.000 0.000
#> GSM440032     2  0.0000     0.9939 0.000 1.000 0.000
#> GSM440033     2  0.0000     0.9939 0.000 1.000 0.000
#> GSM440034     2  0.0661     0.9875 0.004 0.988 0.008

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM439987     1  0.2376     0.7007 0.916 0.000 0.016 0.068
#> GSM439988     4  0.5781     0.5600 0.252 0.000 0.072 0.676
#> GSM439989     1  0.4707     0.6593 0.760 0.000 0.036 0.204
#> GSM439990     1  0.5775     0.6145 0.696 0.000 0.092 0.212
#> GSM439991     1  0.3108     0.6941 0.872 0.000 0.016 0.112
#> GSM439992     4  0.5452     0.0192 0.428 0.000 0.016 0.556
#> GSM439993     4  0.3778     0.7532 0.052 0.000 0.100 0.848
#> GSM439994     1  0.6458     0.1946 0.520 0.000 0.408 0.072
#> GSM439995     3  0.0376     0.8096 0.004 0.000 0.992 0.004
#> GSM439996     4  0.4706     0.7046 0.028 0.000 0.224 0.748
#> GSM439997     3  0.4565     0.7086 0.140 0.000 0.796 0.064
#> GSM439998     4  0.4830     0.5396 0.000 0.000 0.392 0.608
#> GSM440035     1  0.4855     0.5302 0.644 0.000 0.004 0.352
#> GSM440036     1  0.4500     0.5743 0.684 0.000 0.000 0.316
#> GSM440037     4  0.4731     0.7511 0.060 0.000 0.160 0.780
#> GSM440038     1  0.5556     0.6649 0.720 0.000 0.092 0.188
#> GSM440011     1  0.2918     0.6928 0.876 0.000 0.008 0.116
#> GSM440012     4  0.5235     0.7123 0.048 0.000 0.236 0.716
#> GSM440013     1  0.5102     0.6812 0.764 0.000 0.136 0.100
#> GSM440014     1  0.4820     0.6740 0.772 0.000 0.060 0.168
#> GSM439999     1  0.4436     0.6570 0.764 0.000 0.020 0.216
#> GSM440000     4  0.4920     0.7371 0.052 0.000 0.192 0.756
#> GSM440001     1  0.4818     0.6527 0.748 0.000 0.036 0.216
#> GSM440002     1  0.1356     0.6899 0.960 0.000 0.008 0.032
#> GSM440023     4  0.5352     0.7284 0.092 0.000 0.168 0.740
#> GSM440024     4  0.4969     0.7336 0.088 0.000 0.140 0.772
#> GSM440025     4  0.6454     0.3237 0.076 0.000 0.380 0.544
#> GSM440026     1  0.6004     0.4719 0.648 0.000 0.276 0.076
#> GSM440039     1  0.6203     0.3287 0.592 0.000 0.340 0.068
#> GSM440040     4  0.3659     0.7162 0.136 0.000 0.024 0.840
#> GSM440041     4  0.2840     0.7516 0.044 0.000 0.056 0.900
#> GSM440042     4  0.6438    -0.1794 0.436 0.000 0.068 0.496
#> GSM440015     1  0.6887     0.3263 0.528 0.000 0.356 0.116
#> GSM440016     3  0.5861    -0.3036 0.032 0.000 0.488 0.480
#> GSM440017     4  0.4888     0.7201 0.036 0.000 0.224 0.740
#> GSM440018     3  0.2224     0.8083 0.040 0.000 0.928 0.032
#> GSM440003     1  0.6642     0.1398 0.492 0.000 0.424 0.084
#> GSM440004     3  0.6275    -0.1063 0.460 0.000 0.484 0.056
#> GSM440005     4  0.2813     0.7240 0.080 0.000 0.024 0.896
#> GSM440006     4  0.3156     0.7480 0.068 0.000 0.048 0.884
#> GSM440027     2  0.0000     0.9903 0.000 1.000 0.000 0.000
#> GSM440028     2  0.0188     0.9895 0.000 0.996 0.004 0.000
#> GSM440029     2  0.1356     0.9597 0.008 0.960 0.032 0.000
#> GSM440030     2  0.0000     0.9903 0.000 1.000 0.000 0.000
#> GSM440043     3  0.2699     0.7981 0.028 0.000 0.904 0.068
#> GSM440044     4  0.4737     0.6476 0.020 0.000 0.252 0.728
#> GSM440045     3  0.2473     0.7936 0.080 0.000 0.908 0.012
#> GSM440046     3  0.1743     0.8058 0.056 0.000 0.940 0.004
#> GSM440019     4  0.4022     0.7471 0.068 0.000 0.096 0.836
#> GSM440020     3  0.3117     0.7686 0.028 0.000 0.880 0.092
#> GSM440021     3  0.1305     0.8018 0.004 0.000 0.960 0.036
#> GSM440022     3  0.1716     0.8063 0.000 0.000 0.936 0.064
#> GSM440007     4  0.3279     0.7212 0.096 0.000 0.032 0.872
#> GSM440008     3  0.0188     0.8098 0.004 0.000 0.996 0.000
#> GSM440009     4  0.6586     0.3051 0.088 0.000 0.368 0.544
#> GSM440010     4  0.3176     0.7532 0.036 0.000 0.084 0.880
#> GSM440031     2  0.0188     0.9895 0.000 0.996 0.004 0.000
#> GSM440032     2  0.0000     0.9903 0.000 1.000 0.000 0.000
#> GSM440033     2  0.0000     0.9903 0.000 1.000 0.000 0.000
#> GSM440034     2  0.0592     0.9793 0.016 0.984 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM439987     1  0.4010     0.7147 0.784 0.000 0.000 0.056 0.160
#> GSM439988     4  0.4837     0.5145 0.348 0.000 0.020 0.624 0.008
#> GSM439989     1  0.2095     0.7461 0.920 0.000 0.008 0.060 0.012
#> GSM439990     1  0.3829     0.7110 0.828 0.000 0.060 0.096 0.016
#> GSM439991     1  0.4193     0.6731 0.720 0.000 0.000 0.024 0.256
#> GSM439992     1  0.5337     0.1992 0.508 0.000 0.000 0.440 0.052
#> GSM439993     4  0.3477     0.7438 0.024 0.000 0.088 0.852 0.036
#> GSM439994     5  0.4883     0.8597 0.152 0.000 0.104 0.008 0.736
#> GSM439995     3  0.0324     0.8641 0.004 0.000 0.992 0.000 0.004
#> GSM439996     4  0.4686     0.7044 0.016 0.000 0.196 0.740 0.048
#> GSM439997     3  0.5366     0.7013 0.092 0.000 0.728 0.048 0.132
#> GSM439998     4  0.4507     0.6086 0.004 0.000 0.340 0.644 0.012
#> GSM440035     1  0.3727     0.6969 0.768 0.000 0.000 0.216 0.016
#> GSM440036     1  0.3848     0.7207 0.788 0.000 0.000 0.172 0.040
#> GSM440037     4  0.4185     0.7468 0.084 0.000 0.112 0.796 0.008
#> GSM440038     1  0.5553     0.6349 0.672 0.000 0.028 0.072 0.228
#> GSM440011     1  0.4558     0.6937 0.724 0.000 0.000 0.060 0.216
#> GSM440012     4  0.4356     0.7132 0.024 0.000 0.200 0.756 0.020
#> GSM440013     1  0.6329     0.3836 0.592 0.000 0.064 0.064 0.280
#> GSM440014     1  0.2627     0.7469 0.900 0.000 0.012 0.044 0.044
#> GSM439999     1  0.1549     0.7549 0.944 0.000 0.000 0.040 0.016
#> GSM440000     4  0.4494     0.7347 0.048 0.000 0.164 0.768 0.020
#> GSM440001     1  0.1484     0.7557 0.944 0.000 0.008 0.048 0.000
#> GSM440002     1  0.3789     0.6890 0.760 0.000 0.000 0.016 0.224
#> GSM440023     4  0.5499     0.7315 0.112 0.000 0.128 0.716 0.044
#> GSM440024     4  0.4303     0.7357 0.116 0.000 0.068 0.796 0.020
#> GSM440025     4  0.7048     0.3894 0.152 0.000 0.308 0.496 0.044
#> GSM440026     5  0.5274     0.6188 0.268 0.000 0.048 0.020 0.664
#> GSM440039     5  0.3736     0.7797 0.072 0.000 0.064 0.024 0.840
#> GSM440040     4  0.3300     0.6854 0.204 0.000 0.000 0.792 0.004
#> GSM440041     4  0.2747     0.7369 0.088 0.000 0.012 0.884 0.016
#> GSM440042     4  0.7413    -0.1326 0.324 0.000 0.032 0.384 0.260
#> GSM440015     5  0.5631     0.8304 0.172 0.000 0.088 0.044 0.696
#> GSM440016     4  0.6038     0.2609 0.072 0.000 0.452 0.460 0.016
#> GSM440017     4  0.4290     0.7181 0.016 0.000 0.184 0.768 0.032
#> GSM440018     3  0.2069     0.8653 0.076 0.000 0.912 0.000 0.012
#> GSM440003     5  0.5295     0.8562 0.160 0.000 0.124 0.012 0.704
#> GSM440004     5  0.5200     0.8298 0.140 0.000 0.156 0.004 0.700
#> GSM440005     4  0.2720     0.7199 0.096 0.000 0.004 0.880 0.020
#> GSM440006     4  0.3648     0.7240 0.128 0.000 0.020 0.828 0.024
#> GSM440027     2  0.0000     0.9934 0.000 1.000 0.000 0.000 0.000
#> GSM440028     2  0.0000     0.9934 0.000 1.000 0.000 0.000 0.000
#> GSM440029     2  0.1299     0.9640 0.008 0.960 0.020 0.000 0.012
#> GSM440030     2  0.0000     0.9934 0.000 1.000 0.000 0.000 0.000
#> GSM440043     3  0.3918     0.8297 0.080 0.000 0.828 0.068 0.024
#> GSM440044     4  0.4474     0.6420 0.028 0.000 0.216 0.740 0.016
#> GSM440045     3  0.3376     0.8370 0.108 0.000 0.848 0.012 0.032
#> GSM440046     3  0.2623     0.8585 0.096 0.000 0.884 0.004 0.016
#> GSM440019     4  0.4062     0.7410 0.084 0.000 0.068 0.820 0.028
#> GSM440020     3  0.3495     0.8207 0.024 0.000 0.844 0.108 0.024
#> GSM440021     3  0.1280     0.8551 0.008 0.000 0.960 0.024 0.008
#> GSM440022     3  0.2214     0.8560 0.004 0.000 0.916 0.052 0.028
#> GSM440007     4  0.4880     0.6699 0.180 0.000 0.028 0.740 0.052
#> GSM440008     3  0.0609     0.8714 0.020 0.000 0.980 0.000 0.000
#> GSM440009     4  0.7239     0.0121 0.136 0.000 0.404 0.404 0.056
#> GSM440010     4  0.3320     0.7387 0.096 0.000 0.032 0.856 0.016
#> GSM440031     2  0.0000     0.9934 0.000 1.000 0.000 0.000 0.000
#> GSM440032     2  0.0000     0.9934 0.000 1.000 0.000 0.000 0.000
#> GSM440033     2  0.0000     0.9934 0.000 1.000 0.000 0.000 0.000
#> GSM440034     2  0.0451     0.9870 0.004 0.988 0.000 0.000 0.008

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM439987     1  0.3321    0.63708 0.844 0.000 0.032 0.092 0.004 0.028
#> GSM439988     6  0.5850    0.45766 0.092 0.000 0.164 0.072 0.016 0.656
#> GSM439989     1  0.6018    0.65433 0.516 0.000 0.020 0.136 0.004 0.324
#> GSM439990     1  0.6795    0.63159 0.500 0.000 0.040 0.096 0.052 0.312
#> GSM439991     1  0.4247    0.47819 0.752 0.000 0.008 0.164 0.004 0.072
#> GSM439992     6  0.6855    0.23726 0.172 0.000 0.272 0.076 0.004 0.476
#> GSM439993     3  0.2730    0.42636 0.008 0.000 0.872 0.004 0.024 0.092
#> GSM439994     4  0.2002    0.77788 0.040 0.000 0.000 0.920 0.028 0.012
#> GSM439995     5  0.0291    0.83442 0.004 0.000 0.004 0.000 0.992 0.000
#> GSM439996     3  0.3121    0.44001 0.004 0.000 0.836 0.000 0.116 0.044
#> GSM439997     5  0.5075    0.65385 0.020 0.000 0.036 0.232 0.680 0.032
#> GSM439998     3  0.4066    0.42094 0.000 0.000 0.692 0.000 0.272 0.036
#> GSM440035     1  0.5954    0.56218 0.508 0.000 0.112 0.032 0.000 0.348
#> GSM440036     1  0.5359    0.60504 0.580 0.000 0.092 0.008 0.004 0.316
#> GSM440037     6  0.5892    0.18304 0.008 0.000 0.428 0.012 0.108 0.444
#> GSM440038     1  0.6033    0.62961 0.636 0.000 0.052 0.156 0.020 0.136
#> GSM440011     1  0.2614    0.61192 0.888 0.000 0.036 0.052 0.000 0.024
#> GSM440012     3  0.6055   -0.07503 0.004 0.000 0.452 0.004 0.188 0.352
#> GSM440013     1  0.6237    0.39609 0.508 0.000 0.036 0.360 0.032 0.064
#> GSM440014     1  0.6260    0.66321 0.520 0.000 0.020 0.140 0.016 0.304
#> GSM439999     1  0.5543    0.67432 0.552 0.000 0.008 0.128 0.000 0.312
#> GSM440000     3  0.5809   -0.20354 0.008 0.000 0.428 0.000 0.140 0.424
#> GSM440001     1  0.5765    0.67544 0.564 0.000 0.008 0.124 0.012 0.292
#> GSM440002     1  0.1377    0.58757 0.952 0.000 0.004 0.024 0.004 0.016
#> GSM440023     6  0.5540    0.44022 0.016 0.000 0.228 0.016 0.104 0.636
#> GSM440024     6  0.5646    0.45228 0.020 0.000 0.284 0.036 0.052 0.608
#> GSM440025     6  0.7083    0.28895 0.012 0.000 0.216 0.112 0.160 0.500
#> GSM440026     1  0.5378    0.20858 0.524 0.000 0.008 0.400 0.016 0.052
#> GSM440039     4  0.3261    0.68384 0.172 0.000 0.000 0.804 0.012 0.012
#> GSM440040     6  0.5439    0.41448 0.060 0.000 0.356 0.024 0.004 0.556
#> GSM440041     3  0.4647    0.22620 0.020 0.000 0.640 0.016 0.008 0.316
#> GSM440042     4  0.7695    0.00682 0.100 0.000 0.328 0.380 0.040 0.152
#> GSM440015     4  0.2870    0.76213 0.044 0.000 0.024 0.884 0.020 0.028
#> GSM440016     3  0.6438    0.29628 0.016 0.000 0.524 0.076 0.312 0.072
#> GSM440017     3  0.3852    0.43014 0.000 0.000 0.764 0.004 0.180 0.052
#> GSM440018     5  0.4868    0.66698 0.008 0.000 0.172 0.080 0.716 0.024
#> GSM440003     4  0.2239    0.77410 0.040 0.000 0.004 0.912 0.028 0.016
#> GSM440004     4  0.1483    0.77260 0.012 0.000 0.000 0.944 0.036 0.008
#> GSM440005     6  0.4354    0.28541 0.004 0.000 0.476 0.008 0.004 0.508
#> GSM440006     3  0.4610    0.26789 0.036 0.000 0.696 0.024 0.004 0.240
#> GSM440027     2  0.0000    0.98721 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440028     2  0.0260    0.98579 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM440029     2  0.1767    0.94573 0.000 0.932 0.000 0.012 0.036 0.020
#> GSM440030     2  0.0000    0.98721 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440043     5  0.4021    0.80452 0.016 0.000 0.048 0.080 0.812 0.044
#> GSM440044     3  0.4789    0.36041 0.008 0.000 0.704 0.008 0.188 0.092
#> GSM440045     5  0.3739    0.79573 0.012 0.000 0.016 0.140 0.804 0.028
#> GSM440046     5  0.2654    0.81905 0.008 0.000 0.004 0.116 0.864 0.008
#> GSM440019     3  0.3382    0.42081 0.020 0.000 0.848 0.036 0.016 0.080
#> GSM440020     5  0.3457    0.80991 0.004 0.000 0.124 0.024 0.824 0.024
#> GSM440021     5  0.1655    0.82602 0.004 0.000 0.044 0.004 0.936 0.012
#> GSM440022     5  0.2611    0.82228 0.000 0.000 0.092 0.016 0.876 0.016
#> GSM440007     3  0.5810    0.13503 0.044 0.000 0.532 0.056 0.008 0.360
#> GSM440008     5  0.0870    0.83883 0.000 0.000 0.012 0.012 0.972 0.004
#> GSM440009     3  0.7435    0.18163 0.048 0.000 0.452 0.056 0.200 0.244
#> GSM440010     3  0.4701    0.23770 0.012 0.000 0.608 0.012 0.016 0.352
#> GSM440031     2  0.0000    0.98721 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440032     2  0.0000    0.98721 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440033     2  0.0260    0.98579 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM440034     2  0.0806    0.97544 0.000 0.972 0.000 0.008 0.000 0.020

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n agent(p)  time(p)  dose(p) k
#> CV:mclust 60    0.296 9.95e-02 1.87e-07 2
#> CV:mclust 35    0.153 3.11e-05 5.58e-05 3
#> CV:mclust 49    0.400 4.59e-06 4.28e-05 4
#> CV:mclust 54    0.496 6.59e-07 3.37e-04 5
#> CV:mclust 34    0.480 3.64e-09 1.79e-04 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 60 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.789           0.872       0.946         0.3671 0.636   0.636
#> 3 3 0.260           0.537       0.750         0.6731 0.681   0.524
#> 4 4 0.375           0.501       0.682         0.1966 0.711   0.376
#> 5 5 0.465           0.431       0.653         0.0798 0.825   0.438
#> 6 6 0.507           0.397       0.574         0.0419 0.957   0.799

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM439987     1  0.0000     0.9550 1.000 0.000
#> GSM439988     1  0.0000     0.9550 1.000 0.000
#> GSM439989     1  0.0000     0.9550 1.000 0.000
#> GSM439990     1  0.0000     0.9550 1.000 0.000
#> GSM439991     1  0.0000     0.9550 1.000 0.000
#> GSM439992     1  0.0000     0.9550 1.000 0.000
#> GSM439993     1  0.0000     0.9550 1.000 0.000
#> GSM439994     1  0.1184     0.9465 0.984 0.016
#> GSM439995     2  0.9608     0.4446 0.384 0.616
#> GSM439996     1  0.0000     0.9550 1.000 0.000
#> GSM439997     1  0.0376     0.9533 0.996 0.004
#> GSM439998     1  0.0672     0.9513 0.992 0.008
#> GSM440035     1  0.0000     0.9550 1.000 0.000
#> GSM440036     1  0.0000     0.9550 1.000 0.000
#> GSM440037     1  0.0376     0.9533 0.996 0.004
#> GSM440038     1  0.0000     0.9550 1.000 0.000
#> GSM440011     1  0.0000     0.9550 1.000 0.000
#> GSM440012     1  0.0000     0.9550 1.000 0.000
#> GSM440013     1  0.0000     0.9550 1.000 0.000
#> GSM440014     1  0.0000     0.9550 1.000 0.000
#> GSM439999     1  0.0000     0.9550 1.000 0.000
#> GSM440000     1  0.0000     0.9550 1.000 0.000
#> GSM440001     1  0.0000     0.9550 1.000 0.000
#> GSM440002     1  0.0000     0.9550 1.000 0.000
#> GSM440023     1  0.1633     0.9410 0.976 0.024
#> GSM440024     1  0.4562     0.8746 0.904 0.096
#> GSM440025     2  0.5519     0.8176 0.128 0.872
#> GSM440026     2  0.9248     0.5637 0.340 0.660
#> GSM440039     1  0.0672     0.9514 0.992 0.008
#> GSM440040     1  0.0000     0.9550 1.000 0.000
#> GSM440041     1  0.0000     0.9550 1.000 0.000
#> GSM440042     1  0.0000     0.9550 1.000 0.000
#> GSM440015     1  0.0376     0.9533 0.996 0.004
#> GSM440016     1  0.4939     0.8615 0.892 0.108
#> GSM440017     1  0.0000     0.9550 1.000 0.000
#> GSM440018     2  0.8813     0.6398 0.300 0.700
#> GSM440003     1  0.2603     0.9253 0.956 0.044
#> GSM440004     1  0.9686     0.2596 0.604 0.396
#> GSM440005     1  0.0000     0.9550 1.000 0.000
#> GSM440006     1  0.0000     0.9550 1.000 0.000
#> GSM440027     2  0.0000     0.8853 0.000 1.000
#> GSM440028     2  0.0000     0.8853 0.000 1.000
#> GSM440029     2  0.0000     0.8853 0.000 1.000
#> GSM440030     2  0.0000     0.8853 0.000 1.000
#> GSM440043     2  0.8144     0.7040 0.252 0.748
#> GSM440044     1  0.0938     0.9493 0.988 0.012
#> GSM440045     1  0.4431     0.8796 0.908 0.092
#> GSM440046     1  0.9323     0.3967 0.652 0.348
#> GSM440019     1  0.0000     0.9550 1.000 0.000
#> GSM440020     1  0.0376     0.9533 0.996 0.004
#> GSM440021     1  0.4562     0.8735 0.904 0.096
#> GSM440022     1  0.9993    -0.0679 0.516 0.484
#> GSM440007     1  0.0000     0.9550 1.000 0.000
#> GSM440008     2  0.0376     0.8840 0.004 0.996
#> GSM440009     1  0.2948     0.9174 0.948 0.052
#> GSM440010     1  0.0672     0.9515 0.992 0.008
#> GSM440031     2  0.0000     0.8853 0.000 1.000
#> GSM440032     2  0.0000     0.8853 0.000 1.000
#> GSM440033     2  0.0000     0.8853 0.000 1.000
#> GSM440034     2  0.0000     0.8853 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM439987     3  0.5760     0.2398 0.328 0.000 0.672
#> GSM439988     1  0.4399     0.6603 0.812 0.000 0.188
#> GSM439989     1  0.5948     0.5368 0.640 0.000 0.360
#> GSM439990     1  0.5327     0.6073 0.728 0.000 0.272
#> GSM439991     3  0.6008     0.0709 0.372 0.000 0.628
#> GSM439992     1  0.5760     0.5956 0.672 0.000 0.328
#> GSM439993     1  0.1964     0.6529 0.944 0.000 0.056
#> GSM439994     3  0.2959     0.5741 0.100 0.000 0.900
#> GSM439995     3  0.8896     0.3777 0.172 0.264 0.564
#> GSM439996     1  0.3425     0.6191 0.884 0.004 0.112
#> GSM439997     3  0.6510     0.3866 0.364 0.012 0.624
#> GSM439998     1  0.3896     0.6324 0.864 0.008 0.128
#> GSM440035     1  0.5591     0.5972 0.696 0.000 0.304
#> GSM440036     1  0.6095     0.4910 0.608 0.000 0.392
#> GSM440037     1  0.2772     0.6703 0.916 0.004 0.080
#> GSM440038     1  0.6302     0.2265 0.520 0.000 0.480
#> GSM440011     3  0.5810     0.2022 0.336 0.000 0.664
#> GSM440012     1  0.3193     0.6477 0.896 0.004 0.100
#> GSM440013     3  0.5882     0.2776 0.348 0.000 0.652
#> GSM440014     1  0.6267     0.3804 0.548 0.000 0.452
#> GSM439999     1  0.6111     0.5046 0.604 0.000 0.396
#> GSM440000     1  0.3349     0.6589 0.888 0.004 0.108
#> GSM440001     1  0.5835     0.5610 0.660 0.000 0.340
#> GSM440002     3  0.5859     0.1644 0.344 0.000 0.656
#> GSM440023     1  0.4807     0.6442 0.848 0.060 0.092
#> GSM440024     1  0.6583     0.5879 0.756 0.136 0.108
#> GSM440025     2  0.5222     0.7213 0.144 0.816 0.040
#> GSM440026     3  0.5393     0.5437 0.044 0.148 0.808
#> GSM440039     3  0.2165     0.5851 0.064 0.000 0.936
#> GSM440040     1  0.4121     0.6745 0.832 0.000 0.168
#> GSM440041     1  0.4805     0.6692 0.812 0.012 0.176
#> GSM440042     1  0.6299     0.1411 0.524 0.000 0.476
#> GSM440015     3  0.3412     0.5723 0.124 0.000 0.876
#> GSM440016     1  0.7512     0.4568 0.656 0.076 0.268
#> GSM440017     1  0.3340     0.6598 0.880 0.000 0.120
#> GSM440018     3  0.9286     0.2950 0.184 0.312 0.504
#> GSM440003     3  0.3607     0.5860 0.112 0.008 0.880
#> GSM440004     3  0.3993     0.5912 0.052 0.064 0.884
#> GSM440005     1  0.3551     0.6798 0.868 0.000 0.132
#> GSM440006     1  0.3941     0.6742 0.844 0.000 0.156
#> GSM440027     2  0.1411     0.9069 0.000 0.964 0.036
#> GSM440028     2  0.0592     0.9009 0.012 0.988 0.000
#> GSM440029     2  0.0475     0.9041 0.004 0.992 0.004
#> GSM440030     2  0.2165     0.8916 0.000 0.936 0.064
#> GSM440043     3  0.8111     0.4153 0.112 0.264 0.624
#> GSM440044     1  0.6669     0.0964 0.524 0.008 0.468
#> GSM440045     3  0.5894     0.5448 0.220 0.028 0.752
#> GSM440046     3  0.6875     0.5456 0.196 0.080 0.724
#> GSM440019     1  0.5178     0.6232 0.744 0.000 0.256
#> GSM440020     3  0.6309     0.1303 0.500 0.000 0.500
#> GSM440021     1  0.7123     0.1407 0.604 0.032 0.364
#> GSM440022     3  0.8663     0.3757 0.364 0.112 0.524
#> GSM440007     1  0.5327     0.6281 0.728 0.000 0.272
#> GSM440008     2  0.8222     0.3905 0.092 0.576 0.332
#> GSM440009     1  0.7583     0.0571 0.492 0.040 0.468
#> GSM440010     1  0.4172     0.6617 0.840 0.004 0.156
#> GSM440031     2  0.1411     0.9076 0.000 0.964 0.036
#> GSM440032     2  0.1163     0.9078 0.000 0.972 0.028
#> GSM440033     2  0.0892     0.8971 0.020 0.980 0.000
#> GSM440034     2  0.1647     0.9056 0.004 0.960 0.036

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM439987     1   0.339     0.6160 0.872 0.000 0.072 0.056
#> GSM439988     4   0.632     0.2943 0.300 0.004 0.076 0.620
#> GSM439989     1   0.620     0.4070 0.580 0.000 0.064 0.356
#> GSM439990     1   0.649     0.2321 0.492 0.000 0.072 0.436
#> GSM439991     1   0.543     0.5700 0.740 0.000 0.140 0.120
#> GSM439992     4   0.719     0.2752 0.328 0.000 0.156 0.516
#> GSM439993     4   0.464     0.5887 0.044 0.000 0.180 0.776
#> GSM439994     1   0.559     0.2680 0.600 0.004 0.376 0.020
#> GSM439995     3   0.507     0.5993 0.036 0.156 0.780 0.028
#> GSM439996     4   0.490     0.4101 0.008 0.000 0.332 0.660
#> GSM439997     3   0.495     0.5944 0.092 0.004 0.784 0.120
#> GSM439998     4   0.526     0.3408 0.008 0.004 0.376 0.612
#> GSM440035     1   0.624     0.2764 0.548 0.000 0.060 0.392
#> GSM440036     1   0.547     0.4603 0.656 0.000 0.036 0.308
#> GSM440037     4   0.555     0.5899 0.116 0.004 0.140 0.740
#> GSM440038     1   0.577     0.5457 0.704 0.000 0.104 0.192
#> GSM440011     1   0.404     0.6114 0.836 0.000 0.076 0.088
#> GSM440012     4   0.594     0.5163 0.064 0.004 0.268 0.664
#> GSM440013     1   0.561     0.5842 0.724 0.000 0.156 0.120
#> GSM440014     1   0.577     0.5062 0.672 0.000 0.068 0.260
#> GSM439999     1   0.617     0.3058 0.556 0.000 0.056 0.388
#> GSM440000     4   0.564     0.5711 0.088 0.004 0.184 0.724
#> GSM440001     1   0.634     0.3826 0.568 0.000 0.072 0.360
#> GSM440002     1   0.340     0.6048 0.868 0.000 0.040 0.092
#> GSM440023     4   0.757     0.4168 0.216 0.068 0.104 0.612
#> GSM440024     4   0.715     0.5198 0.100 0.128 0.100 0.672
#> GSM440025     2   0.685     0.6009 0.060 0.668 0.072 0.200
#> GSM440026     1   0.587     0.4803 0.708 0.072 0.208 0.012
#> GSM440039     1   0.534     0.2763 0.600 0.000 0.384 0.016
#> GSM440040     4   0.597     0.5264 0.212 0.012 0.076 0.700
#> GSM440041     4   0.571     0.5969 0.092 0.012 0.160 0.736
#> GSM440042     3   0.776     0.0472 0.248 0.000 0.424 0.328
#> GSM440015     1   0.545     0.4196 0.676 0.004 0.288 0.032
#> GSM440016     3   0.784     0.0480 0.080 0.056 0.464 0.400
#> GSM440017     4   0.573     0.4953 0.048 0.000 0.312 0.640
#> GSM440018     3   0.702     0.5631 0.080 0.128 0.680 0.112
#> GSM440003     1   0.590     0.0559 0.492 0.008 0.480 0.020
#> GSM440004     3   0.610    -0.0436 0.460 0.036 0.500 0.004
#> GSM440005     4   0.538     0.5272 0.196 0.000 0.076 0.728
#> GSM440006     4   0.616     0.5379 0.104 0.000 0.240 0.656
#> GSM440027     2   0.121     0.9266 0.000 0.964 0.032 0.004
#> GSM440028     2   0.136     0.9169 0.004 0.964 0.012 0.020
#> GSM440029     2   0.130     0.9217 0.000 0.964 0.016 0.020
#> GSM440030     2   0.156     0.9122 0.000 0.944 0.056 0.000
#> GSM440043     3   0.681     0.5713 0.072 0.168 0.684 0.076
#> GSM440044     3   0.637     0.3635 0.084 0.000 0.592 0.324
#> GSM440045     3   0.545     0.5977 0.144 0.016 0.760 0.080
#> GSM440046     3   0.506     0.5892 0.120 0.048 0.796 0.036
#> GSM440019     4   0.705     0.2919 0.128 0.000 0.372 0.500
#> GSM440020     3   0.458     0.5262 0.020 0.000 0.748 0.232
#> GSM440021     3   0.546     0.4035 0.016 0.012 0.660 0.312
#> GSM440022     3   0.512     0.5540 0.012 0.020 0.724 0.244
#> GSM440007     4   0.744     0.2661 0.328 0.000 0.188 0.484
#> GSM440008     3   0.582     0.5534 0.004 0.204 0.704 0.088
#> GSM440009     3   0.746     0.2580 0.120 0.020 0.532 0.328
#> GSM440010     4   0.630     0.5458 0.096 0.012 0.216 0.676
#> GSM440031     2   0.112     0.9242 0.000 0.964 0.036 0.000
#> GSM440032     2   0.121     0.9250 0.000 0.964 0.032 0.004
#> GSM440033     2   0.212     0.8897 0.000 0.924 0.008 0.068
#> GSM440034     2   0.111     0.9260 0.008 0.972 0.016 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM439987     5   0.478     0.5466 0.116 0.000 0.024 0.096 0.764
#> GSM439988     1   0.591     0.3765 0.676 0.008 0.024 0.168 0.124
#> GSM439989     1   0.626     0.2349 0.532 0.000 0.024 0.088 0.356
#> GSM439990     1   0.618     0.3436 0.608 0.000 0.060 0.060 0.272
#> GSM439991     5   0.580     0.2242 0.028 0.000 0.044 0.376 0.552
#> GSM439992     4   0.527     0.4734 0.080 0.000 0.036 0.724 0.160
#> GSM439993     4   0.637     0.2994 0.368 0.000 0.148 0.480 0.004
#> GSM439994     5   0.548     0.4257 0.004 0.004 0.288 0.072 0.632
#> GSM439995     3   0.363     0.7094 0.056 0.056 0.856 0.008 0.024
#> GSM439996     1   0.701    -0.2219 0.372 0.000 0.276 0.344 0.008
#> GSM439997     3   0.590     0.6288 0.076 0.000 0.680 0.172 0.072
#> GSM439998     1   0.676    -0.0310 0.480 0.000 0.312 0.196 0.012
#> GSM440035     4   0.702     0.0495 0.228 0.004 0.008 0.416 0.344
#> GSM440036     5   0.746     0.0813 0.292 0.004 0.028 0.268 0.408
#> GSM440037     1   0.410     0.4062 0.824 0.004 0.076 0.068 0.028
#> GSM440038     5   0.678     0.0264 0.420 0.000 0.092 0.048 0.440
#> GSM440011     5   0.512     0.5040 0.156 0.000 0.012 0.112 0.720
#> GSM440012     1   0.451     0.3888 0.772 0.004 0.156 0.056 0.012
#> GSM440013     5   0.610     0.5294 0.172 0.004 0.088 0.064 0.672
#> GSM440014     1   0.669     0.0572 0.460 0.004 0.044 0.076 0.416
#> GSM439999     1   0.598     0.2155 0.520 0.000 0.016 0.072 0.392
#> GSM440000     1   0.446     0.4075 0.792 0.008 0.128 0.052 0.020
#> GSM440001     1   0.684     0.1911 0.496 0.004 0.044 0.096 0.360
#> GSM440002     5   0.484     0.5045 0.072 0.008 0.004 0.176 0.740
#> GSM440023     1   0.674     0.2934 0.624 0.056 0.064 0.220 0.036
#> GSM440024     1   0.716     0.2423 0.596 0.116 0.056 0.200 0.032
#> GSM440025     2   0.673     0.3042 0.360 0.520 0.064 0.032 0.024
#> GSM440026     5   0.434     0.5657 0.020 0.020 0.104 0.044 0.812
#> GSM440039     5   0.494     0.4698 0.000 0.008 0.284 0.040 0.668
#> GSM440040     4   0.676     0.1839 0.412 0.004 0.040 0.456 0.088
#> GSM440041     4   0.702     0.2977 0.364 0.028 0.060 0.500 0.048
#> GSM440042     4   0.711     0.3626 0.068 0.000 0.208 0.548 0.176
#> GSM440015     5   0.538     0.5682 0.060 0.008 0.192 0.028 0.712
#> GSM440016     1   0.720     0.1176 0.500 0.044 0.352 0.048 0.056
#> GSM440017     1   0.646     0.2083 0.584 0.000 0.240 0.148 0.028
#> GSM440018     3   0.600     0.6228 0.180 0.060 0.684 0.012 0.064
#> GSM440003     5   0.602     0.2977 0.024 0.012 0.376 0.040 0.548
#> GSM440004     5   0.570     0.1563 0.024 0.028 0.436 0.004 0.508
#> GSM440005     1   0.589    -0.0837 0.516 0.004 0.036 0.416 0.028
#> GSM440006     4   0.652     0.3450 0.368 0.000 0.104 0.500 0.028
#> GSM440027     2   0.184     0.8967 0.004 0.936 0.044 0.004 0.012
#> GSM440028     2   0.208     0.8810 0.024 0.928 0.016 0.032 0.000
#> GSM440029     2   0.187     0.8929 0.036 0.936 0.016 0.012 0.000
#> GSM440030     2   0.199     0.8784 0.004 0.916 0.076 0.000 0.004
#> GSM440043     3   0.626     0.6457 0.048 0.092 0.704 0.064 0.092
#> GSM440044     3   0.637     0.3578 0.068 0.000 0.548 0.336 0.048
#> GSM440045     3   0.515     0.6879 0.056 0.020 0.768 0.048 0.108
#> GSM440046     3   0.368     0.6555 0.032 0.012 0.832 0.004 0.120
#> GSM440019     4   0.683     0.4669 0.140 0.000 0.236 0.568 0.056
#> GSM440020     3   0.574     0.6051 0.084 0.004 0.680 0.200 0.032
#> GSM440021     3   0.589     0.5190 0.220 0.004 0.628 0.144 0.004
#> GSM440022     3   0.554     0.6643 0.132 0.012 0.720 0.112 0.024
#> GSM440007     4   0.633     0.4594 0.108 0.000 0.072 0.644 0.176
#> GSM440008     3   0.488     0.6882 0.088 0.080 0.784 0.024 0.024
#> GSM440009     4   0.783     0.2071 0.084 0.028 0.296 0.484 0.108
#> GSM440010     4   0.693     0.4540 0.212 0.016 0.144 0.588 0.040
#> GSM440031     2   0.120     0.8991 0.000 0.956 0.040 0.004 0.000
#> GSM440032     2   0.112     0.9003 0.000 0.964 0.028 0.004 0.004
#> GSM440033     2   0.166     0.8841 0.024 0.940 0.000 0.036 0.000
#> GSM440034     2   0.157     0.8986 0.004 0.952 0.020 0.008 0.016

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM439987     5   0.455    0.42691 0.104 0.000 0.012 0.040 0.768 0.076
#> GSM439988     1   0.722    0.26404 0.492 0.000 0.012 0.156 0.164 0.176
#> GSM439989     1   0.704    0.25338 0.476 0.000 0.028 0.076 0.304 0.116
#> GSM439990     1   0.697    0.29862 0.492 0.000 0.052 0.036 0.288 0.132
#> GSM439991     5   0.704    0.04530 0.020 0.000 0.044 0.356 0.396 0.184
#> GSM439992     4   0.433    0.42913 0.008 0.000 0.032 0.780 0.084 0.096
#> GSM439993     4   0.681    0.37011 0.244 0.000 0.124 0.524 0.012 0.096
#> GSM439994     5   0.703    0.27333 0.008 0.004 0.264 0.108 0.492 0.124
#> GSM439995     3   0.392    0.66549 0.064 0.040 0.828 0.008 0.016 0.044
#> GSM439996     4   0.693    0.16096 0.320 0.000 0.280 0.348 0.000 0.052
#> GSM439997     3   0.649    0.59079 0.064 0.004 0.636 0.128 0.068 0.100
#> GSM439998     1   0.710   -0.05632 0.412 0.004 0.324 0.168 0.000 0.092
#> GSM440035     4   0.754    0.05996 0.112 0.004 0.004 0.376 0.236 0.268
#> GSM440036     5   0.740    0.13997 0.140 0.000 0.004 0.212 0.420 0.224
#> GSM440037     1   0.527    0.39556 0.740 0.008 0.072 0.092 0.040 0.048
#> GSM440038     5   0.721   -0.00180 0.356 0.004 0.024 0.060 0.412 0.144
#> GSM440011     5   0.519    0.40275 0.116 0.000 0.000 0.096 0.704 0.084
#> GSM440012     1   0.369    0.41185 0.816 0.004 0.124 0.008 0.016 0.032
#> GSM440013     5   0.648    0.39193 0.168 0.000 0.064 0.056 0.616 0.096
#> GSM440014     5   0.708   -0.13703 0.372 0.000 0.020 0.048 0.380 0.180
#> GSM439999     1   0.679    0.24628 0.456 0.000 0.016 0.052 0.340 0.136
#> GSM440000     1   0.467    0.41158 0.776 0.000 0.072 0.056 0.036 0.060
#> GSM440001     1   0.725    0.17171 0.404 0.000 0.016 0.088 0.340 0.152
#> GSM440002     5   0.605    0.36832 0.036 0.004 0.004 0.164 0.600 0.192
#> GSM440023     1   0.843    0.26292 0.452 0.072 0.056 0.160 0.076 0.184
#> GSM440024     1   0.725    0.23312 0.560 0.076 0.028 0.180 0.032 0.124
#> GSM440025     2   0.771   -0.00373 0.348 0.396 0.060 0.012 0.056 0.128
#> GSM440026     5   0.575    0.45947 0.060 0.012 0.092 0.008 0.676 0.152
#> GSM440039     5   0.610    0.31425 0.008 0.000 0.292 0.028 0.544 0.128
#> GSM440040     4   0.686    0.32519 0.236 0.000 0.020 0.512 0.056 0.176
#> GSM440041     4   0.714    0.31019 0.320 0.016 0.052 0.452 0.012 0.148
#> GSM440042     4   0.697    0.34795 0.036 0.004 0.160 0.572 0.120 0.108
#> GSM440015     5   0.577    0.46640 0.052 0.000 0.172 0.016 0.656 0.104
#> GSM440016     1   0.718    0.14749 0.504 0.028 0.300 0.044 0.052 0.072
#> GSM440017     1   0.614    0.24075 0.608 0.000 0.196 0.116 0.008 0.072
#> GSM440018     3   0.643    0.50849 0.244 0.036 0.580 0.000 0.068 0.072
#> GSM440003     5   0.734    0.14382 0.036 0.016 0.380 0.036 0.392 0.140
#> GSM440004     5   0.669    0.07439 0.044 0.016 0.420 0.012 0.420 0.088
#> GSM440005     4   0.711    0.09616 0.312 0.004 0.008 0.424 0.060 0.192
#> GSM440006     4   0.777    0.35489 0.300 0.008 0.124 0.412 0.032 0.124
#> GSM440027     2   0.131    0.87284 0.004 0.952 0.028 0.000 0.000 0.016
#> GSM440028     2   0.205    0.86632 0.004 0.916 0.024 0.004 0.000 0.052
#> GSM440029     2   0.261    0.85599 0.056 0.888 0.028 0.000 0.000 0.028
#> GSM440030     2   0.209    0.85534 0.004 0.908 0.064 0.000 0.000 0.024
#> GSM440043     3   0.600    0.59230 0.024 0.092 0.696 0.040 0.072 0.076
#> GSM440044     3   0.710    0.29445 0.084 0.008 0.500 0.288 0.028 0.092
#> GSM440045     3   0.554    0.64959 0.076 0.012 0.728 0.056 0.056 0.072
#> GSM440046     3   0.408    0.61077 0.028 0.012 0.808 0.008 0.100 0.044
#> GSM440019     4   0.644    0.41972 0.104 0.000 0.196 0.600 0.032 0.068
#> GSM440020     3   0.579    0.57888 0.084 0.000 0.664 0.156 0.016 0.080
#> GSM440021     3   0.580    0.49246 0.288 0.004 0.584 0.060 0.000 0.064
#> GSM440022     3   0.577    0.60808 0.084 0.028 0.688 0.128 0.004 0.068
#> GSM440007     4   0.694    0.36576 0.040 0.008 0.056 0.524 0.092 0.280
#> GSM440008     3   0.459    0.65987 0.092 0.080 0.776 0.016 0.008 0.028
#> GSM440009     4   0.833    0.31193 0.080 0.032 0.212 0.448 0.096 0.132
#> GSM440010     4   0.718    0.43558 0.156 0.004 0.100 0.532 0.028 0.180
#> GSM440031     2   0.168    0.87270 0.008 0.936 0.032 0.000 0.000 0.024
#> GSM440032     2   0.143    0.87125 0.008 0.952 0.016 0.000 0.008 0.016
#> GSM440033     2   0.214    0.85243 0.016 0.908 0.000 0.012 0.000 0.064
#> GSM440034     2   0.198    0.86648 0.008 0.928 0.020 0.000 0.020 0.024

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n agent(p)  time(p)  dose(p) k
#> CV:NMF 56    0.102 1.78e-01 2.60e-06 2
#> CV:NMF 40    0.129 1.51e-01 2.56e-04 3
#> CV:NMF 35    0.350 2.84e-04 1.77e-04 4
#> CV:NMF 24    0.416 9.12e-05 2.95e-03 5
#> CV:NMF 17    0.506 2.21e-01 1.93e-03 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 60 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.978       0.975         0.2452 0.765   0.765
#> 3 3 0.272           0.575       0.788         0.9423 0.892   0.858
#> 4 4 0.289           0.444       0.682         0.2425 0.693   0.550
#> 5 5 0.289           0.561       0.730         0.1831 0.779   0.511
#> 6 6 0.402           0.450       0.691         0.0915 0.947   0.824

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM439987     1  0.0938      0.985 0.988 0.012
#> GSM439988     1  0.1184      0.985 0.984 0.016
#> GSM439989     1  0.0672      0.985 0.992 0.008
#> GSM439990     1  0.0938      0.984 0.988 0.012
#> GSM439991     1  0.2043      0.984 0.968 0.032
#> GSM439992     1  0.1414      0.985 0.980 0.020
#> GSM439993     1  0.0938      0.985 0.988 0.012
#> GSM439994     1  0.2236      0.979 0.964 0.036
#> GSM439995     1  0.2236      0.979 0.964 0.036
#> GSM439996     1  0.1414      0.984 0.980 0.020
#> GSM439997     1  0.2236      0.978 0.964 0.036
#> GSM439998     1  0.1414      0.985 0.980 0.020
#> GSM440035     1  0.1184      0.986 0.984 0.016
#> GSM440036     1  0.0938      0.985 0.988 0.012
#> GSM440037     1  0.1633      0.984 0.976 0.024
#> GSM440038     1  0.1633      0.983 0.976 0.024
#> GSM440011     1  0.1843      0.981 0.972 0.028
#> GSM440012     1  0.0938      0.985 0.988 0.012
#> GSM440013     1  0.1633      0.984 0.976 0.024
#> GSM440014     1  0.1843      0.983 0.972 0.028
#> GSM439999     1  0.1184      0.986 0.984 0.016
#> GSM440000     1  0.1184      0.985 0.984 0.016
#> GSM440001     1  0.0672      0.985 0.992 0.008
#> GSM440002     1  0.0938      0.985 0.988 0.012
#> GSM440023     1  0.1414      0.986 0.980 0.020
#> GSM440024     1  0.0376      0.985 0.996 0.004
#> GSM440025     1  0.3733      0.939 0.928 0.072
#> GSM440026     1  0.2236      0.979 0.964 0.036
#> GSM440039     1  0.2043      0.984 0.968 0.032
#> GSM440040     1  0.1184      0.986 0.984 0.016
#> GSM440041     1  0.0672      0.985 0.992 0.008
#> GSM440042     1  0.1184      0.986 0.984 0.016
#> GSM440015     1  0.1633      0.984 0.976 0.024
#> GSM440016     1  0.1184      0.986 0.984 0.016
#> GSM440017     1  0.1184      0.985 0.984 0.016
#> GSM440018     1  0.1633      0.984 0.976 0.024
#> GSM440003     1  0.2423      0.980 0.960 0.040
#> GSM440004     1  0.2043      0.982 0.968 0.032
#> GSM440005     1  0.0376      0.985 0.996 0.004
#> GSM440006     1  0.0376      0.985 0.996 0.004
#> GSM440027     2  0.1633      0.969 0.024 0.976
#> GSM440028     2  0.3114      0.947 0.056 0.944
#> GSM440029     2  0.2043      0.966 0.032 0.968
#> GSM440030     2  0.1633      0.969 0.024 0.976
#> GSM440043     1  0.0938      0.985 0.988 0.012
#> GSM440044     1  0.1184      0.985 0.984 0.016
#> GSM440045     1  0.1633      0.982 0.976 0.024
#> GSM440046     1  0.1843      0.981 0.972 0.028
#> GSM440019     1  0.0938      0.986 0.988 0.012
#> GSM440020     1  0.1414      0.983 0.980 0.020
#> GSM440021     1  0.1414      0.983 0.980 0.020
#> GSM440022     1  0.1414      0.983 0.980 0.020
#> GSM440007     1  0.1633      0.980 0.976 0.024
#> GSM440008     1  0.2778      0.974 0.952 0.048
#> GSM440009     1  0.1843      0.978 0.972 0.028
#> GSM440010     1  0.1633      0.985 0.976 0.024
#> GSM440031     2  0.1633      0.969 0.024 0.976
#> GSM440032     2  0.1633      0.969 0.024 0.976
#> GSM440033     2  0.1633      0.969 0.024 0.976
#> GSM440034     2  0.6887      0.802 0.184 0.816

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM439987     1  0.6298      0.112 0.608 0.004 0.388
#> GSM439988     1  0.4602      0.607 0.832 0.016 0.152
#> GSM439989     1  0.3038      0.641 0.896 0.000 0.104
#> GSM439990     1  0.3349      0.631 0.888 0.004 0.108
#> GSM439991     1  0.6869     -0.121 0.560 0.016 0.424
#> GSM439992     1  0.5656      0.503 0.712 0.004 0.284
#> GSM439993     1  0.3030      0.646 0.904 0.004 0.092
#> GSM439994     3  0.6941      0.413 0.464 0.016 0.520
#> GSM439995     1  0.5858      0.549 0.740 0.020 0.240
#> GSM439996     1  0.3375      0.641 0.892 0.008 0.100
#> GSM439997     1  0.5843      0.559 0.732 0.016 0.252
#> GSM439998     1  0.4750      0.604 0.784 0.000 0.216
#> GSM440035     1  0.5291      0.526 0.732 0.000 0.268
#> GSM440036     1  0.5815      0.423 0.692 0.004 0.304
#> GSM440037     1  0.3618      0.638 0.884 0.012 0.104
#> GSM440038     1  0.5986      0.451 0.704 0.012 0.284
#> GSM440011     1  0.6819     -0.337 0.512 0.012 0.476
#> GSM440012     1  0.2945      0.642 0.908 0.004 0.088
#> GSM440013     1  0.6318      0.223 0.636 0.008 0.356
#> GSM440014     1  0.4575      0.612 0.812 0.004 0.184
#> GSM439999     1  0.4172      0.615 0.840 0.004 0.156
#> GSM440000     1  0.3213      0.645 0.900 0.008 0.092
#> GSM440001     1  0.5115      0.546 0.768 0.004 0.228
#> GSM440002     1  0.6318      0.328 0.636 0.008 0.356
#> GSM440023     1  0.4059      0.648 0.860 0.012 0.128
#> GSM440024     1  0.2959      0.640 0.900 0.000 0.100
#> GSM440025     1  0.5944      0.587 0.784 0.064 0.152
#> GSM440026     3  0.6470      0.591 0.356 0.012 0.632
#> GSM440039     3  0.6973      0.536 0.416 0.020 0.564
#> GSM440040     1  0.4033      0.617 0.856 0.008 0.136
#> GSM440041     1  0.3038      0.659 0.896 0.000 0.104
#> GSM440042     1  0.5873      0.507 0.684 0.004 0.312
#> GSM440015     1  0.6008      0.403 0.664 0.004 0.332
#> GSM440016     1  0.4353      0.657 0.836 0.008 0.156
#> GSM440017     1  0.3454      0.645 0.888 0.008 0.104
#> GSM440018     1  0.5881      0.553 0.728 0.016 0.256
#> GSM440003     1  0.6570      0.504 0.680 0.028 0.292
#> GSM440004     1  0.6629      0.330 0.624 0.016 0.360
#> GSM440005     1  0.3573      0.644 0.876 0.004 0.120
#> GSM440006     1  0.3454      0.644 0.888 0.008 0.104
#> GSM440027     2  0.0237      0.964 0.004 0.996 0.000
#> GSM440028     2  0.2031      0.938 0.032 0.952 0.016
#> GSM440029     2  0.0592      0.959 0.012 0.988 0.000
#> GSM440030     2  0.0237      0.964 0.004 0.996 0.000
#> GSM440043     1  0.5698      0.544 0.736 0.012 0.252
#> GSM440044     1  0.4834      0.612 0.792 0.004 0.204
#> GSM440045     1  0.5956      0.550 0.720 0.016 0.264
#> GSM440046     1  0.6053      0.532 0.720 0.020 0.260
#> GSM440019     1  0.4002      0.645 0.840 0.000 0.160
#> GSM440020     1  0.5578      0.561 0.748 0.012 0.240
#> GSM440021     1  0.4805      0.630 0.812 0.012 0.176
#> GSM440022     1  0.5247      0.566 0.768 0.008 0.224
#> GSM440007     3  0.5480      0.385 0.264 0.004 0.732
#> GSM440008     1  0.6337      0.514 0.708 0.028 0.264
#> GSM440009     1  0.5939      0.581 0.748 0.028 0.224
#> GSM440010     1  0.4805      0.645 0.812 0.012 0.176
#> GSM440031     2  0.0237      0.964 0.004 0.996 0.000
#> GSM440032     2  0.0237      0.964 0.004 0.996 0.000
#> GSM440033     2  0.0237      0.964 0.004 0.996 0.000
#> GSM440034     2  0.5260      0.769 0.092 0.828 0.080

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM439987     1  0.7002    0.09175 0.492 0.000 0.388 0.120
#> GSM439988     1  0.4498    0.57262 0.808 0.008 0.140 0.044
#> GSM439989     1  0.3108    0.59963 0.872 0.000 0.112 0.016
#> GSM439990     1  0.2924    0.59550 0.884 0.000 0.100 0.016
#> GSM439991     3  0.7147   -0.00545 0.400 0.004 0.480 0.116
#> GSM439992     1  0.6383    0.37272 0.612 0.000 0.292 0.096
#> GSM439993     1  0.3763    0.54288 0.832 0.000 0.144 0.024
#> GSM439994     3  0.6877    0.26423 0.232 0.004 0.608 0.156
#> GSM439995     3  0.5452    0.50527 0.428 0.016 0.556 0.000
#> GSM439996     1  0.4140    0.51999 0.812 0.004 0.160 0.024
#> GSM439997     3  0.5783    0.46657 0.440 0.012 0.536 0.012
#> GSM439998     1  0.5408   -0.40910 0.500 0.000 0.488 0.012
#> GSM440035     1  0.6172    0.44223 0.632 0.000 0.284 0.084
#> GSM440036     1  0.6248    0.43758 0.644 0.000 0.252 0.104
#> GSM440037     1  0.2853    0.60222 0.900 0.008 0.076 0.016
#> GSM440038     1  0.6488    0.35284 0.616 0.008 0.296 0.080
#> GSM440011     3  0.7459    0.10895 0.352 0.004 0.484 0.160
#> GSM440012     1  0.2238    0.59846 0.920 0.004 0.072 0.004
#> GSM440013     1  0.6894    0.14101 0.512 0.000 0.376 0.112
#> GSM440014     1  0.4467    0.55685 0.788 0.000 0.172 0.040
#> GSM439999     1  0.3597    0.58590 0.836 0.000 0.148 0.016
#> GSM440000     1  0.2456    0.60053 0.916 0.008 0.068 0.008
#> GSM440001     1  0.5221    0.52325 0.732 0.000 0.208 0.060
#> GSM440002     1  0.6784    0.26801 0.528 0.000 0.368 0.104
#> GSM440023     1  0.3172    0.59853 0.872 0.004 0.112 0.012
#> GSM440024     1  0.2142    0.59989 0.928 0.000 0.056 0.016
#> GSM440025     1  0.6109    0.45057 0.696 0.056 0.220 0.028
#> GSM440026     3  0.6684    0.04359 0.140 0.004 0.628 0.228
#> GSM440039     3  0.6864    0.21260 0.192 0.004 0.616 0.188
#> GSM440040     1  0.4499    0.56505 0.792 0.000 0.160 0.048
#> GSM440041     1  0.4842    0.48677 0.760 0.000 0.192 0.048
#> GSM440042     3  0.6498    0.19110 0.440 0.000 0.488 0.072
#> GSM440015     1  0.6755   -0.26140 0.456 0.000 0.452 0.092
#> GSM440016     1  0.4522    0.31667 0.728 0.004 0.264 0.004
#> GSM440017     1  0.4095    0.52448 0.804 0.000 0.172 0.024
#> GSM440018     3  0.5691    0.46830 0.460 0.008 0.520 0.012
#> GSM440003     3  0.6216    0.49099 0.408 0.016 0.548 0.028
#> GSM440004     3  0.6528    0.46126 0.316 0.008 0.600 0.076
#> GSM440005     1  0.4290    0.55894 0.800 0.000 0.164 0.036
#> GSM440006     1  0.3219    0.59687 0.868 0.000 0.112 0.020
#> GSM440027     2  0.0000    0.95179 0.000 1.000 0.000 0.000
#> GSM440028     2  0.1820    0.91250 0.020 0.944 0.000 0.036
#> GSM440029     2  0.0336    0.94472 0.008 0.992 0.000 0.000
#> GSM440030     2  0.0000    0.95179 0.000 1.000 0.000 0.000
#> GSM440043     3  0.5852    0.51038 0.428 0.008 0.544 0.020
#> GSM440044     1  0.5570   -0.26724 0.540 0.000 0.440 0.020
#> GSM440045     3  0.5640    0.49988 0.424 0.008 0.556 0.012
#> GSM440046     3  0.5712    0.52090 0.404 0.012 0.572 0.012
#> GSM440019     1  0.5249    0.44155 0.708 0.000 0.248 0.044
#> GSM440020     3  0.5558    0.48190 0.444 0.008 0.540 0.008
#> GSM440021     1  0.5544    0.11723 0.640 0.008 0.332 0.020
#> GSM440022     3  0.5691    0.47984 0.460 0.008 0.520 0.012
#> GSM440007     4  0.4004    0.00000 0.024 0.000 0.164 0.812
#> GSM440008     3  0.6118    0.51495 0.404 0.024 0.556 0.016
#> GSM440009     3  0.7061    0.23235 0.444 0.012 0.460 0.084
#> GSM440010     1  0.6279    0.12890 0.588 0.004 0.348 0.060
#> GSM440031     2  0.0000    0.95179 0.000 1.000 0.000 0.000
#> GSM440032     2  0.0000    0.95179 0.000 1.000 0.000 0.000
#> GSM440033     2  0.0000    0.95179 0.000 1.000 0.000 0.000
#> GSM440034     2  0.4475    0.71117 0.044 0.824 0.112 0.020

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM439987     4   0.622     0.4365 0.364 0.000 0.148 0.488 0.000
#> GSM439988     1   0.520     0.5554 0.724 0.008 0.104 0.156 0.008
#> GSM439989     1   0.504     0.6229 0.704 0.000 0.160 0.136 0.000
#> GSM439990     1   0.504     0.6210 0.704 0.000 0.160 0.136 0.000
#> GSM439991     4   0.656     0.5234 0.292 0.000 0.188 0.512 0.008
#> GSM439992     1   0.760     0.1699 0.464 0.000 0.248 0.216 0.072
#> GSM439993     1   0.482     0.6231 0.700 0.000 0.252 0.020 0.028
#> GSM439994     4   0.550     0.4756 0.076 0.000 0.288 0.628 0.008
#> GSM439995     3   0.173     0.7437 0.044 0.004 0.940 0.008 0.004
#> GSM439996     1   0.497     0.5616 0.652 0.000 0.304 0.008 0.036
#> GSM439997     3   0.296     0.7431 0.084 0.000 0.868 0.048 0.000
#> GSM439998     3   0.349     0.7079 0.148 0.000 0.824 0.016 0.012
#> GSM440035     1   0.664     0.2227 0.528 0.000 0.160 0.292 0.020
#> GSM440036     1   0.515     0.1840 0.624 0.000 0.024 0.332 0.020
#> GSM440037     1   0.513     0.6468 0.720 0.004 0.184 0.080 0.012
#> GSM440038     1   0.629     0.1577 0.492 0.000 0.164 0.344 0.000
#> GSM440011     4   0.563     0.5826 0.220 0.000 0.132 0.644 0.004
#> GSM440012     1   0.462     0.6440 0.736 0.004 0.196 0.064 0.000
#> GSM440013     4   0.648     0.2709 0.372 0.000 0.148 0.472 0.008
#> GSM440014     1   0.576     0.5685 0.620 0.000 0.204 0.176 0.000
#> GSM439999     1   0.527     0.6014 0.680 0.000 0.156 0.164 0.000
#> GSM440000     1   0.477     0.6460 0.720 0.004 0.208 0.068 0.000
#> GSM440001     1   0.565     0.3936 0.636 0.000 0.104 0.252 0.008
#> GSM440002     4   0.604     0.3044 0.408 0.000 0.092 0.492 0.008
#> GSM440023     1   0.501     0.6420 0.712 0.004 0.204 0.076 0.004
#> GSM440024     1   0.380     0.6506 0.808 0.000 0.152 0.028 0.012
#> GSM440025     1   0.706     0.4551 0.548 0.052 0.276 0.112 0.012
#> GSM440026     4   0.316     0.4561 0.044 0.000 0.092 0.860 0.004
#> GSM440039     4   0.472     0.5569 0.104 0.000 0.148 0.744 0.004
#> GSM440040     1   0.461     0.5630 0.764 0.000 0.140 0.084 0.012
#> GSM440041     1   0.616     0.3782 0.528 0.000 0.376 0.032 0.064
#> GSM440042     3   0.685     0.2178 0.188 0.000 0.512 0.276 0.024
#> GSM440015     3   0.628     0.2583 0.188 0.000 0.524 0.288 0.000
#> GSM440016     3   0.504    -0.0614 0.452 0.004 0.520 0.024 0.000
#> GSM440017     1   0.494     0.5532 0.652 0.000 0.308 0.012 0.028
#> GSM440018     3   0.347     0.7305 0.116 0.000 0.836 0.044 0.004
#> GSM440003     3   0.407     0.7024 0.064 0.008 0.820 0.096 0.012
#> GSM440004     3   0.475     0.5034 0.040 0.000 0.684 0.272 0.004
#> GSM440005     1   0.491     0.5555 0.724 0.000 0.204 0.052 0.020
#> GSM440006     1   0.426     0.6450 0.780 0.000 0.160 0.048 0.012
#> GSM440027     2   0.000     0.9572 0.000 1.000 0.000 0.000 0.000
#> GSM440028     2   0.176     0.9185 0.020 0.944 0.004 0.008 0.024
#> GSM440029     2   0.029     0.9519 0.008 0.992 0.000 0.000 0.000
#> GSM440030     2   0.000     0.9572 0.000 1.000 0.000 0.000 0.000
#> GSM440043     3   0.212     0.7420 0.044 0.000 0.924 0.020 0.012
#> GSM440044     3   0.426     0.6498 0.192 0.000 0.764 0.032 0.012
#> GSM440045     3   0.238     0.7405 0.048 0.000 0.912 0.028 0.012
#> GSM440046     3   0.193     0.7348 0.016 0.000 0.928 0.052 0.004
#> GSM440019     1   0.685     0.2745 0.472 0.000 0.380 0.092 0.056
#> GSM440020     3   0.201     0.7467 0.060 0.000 0.920 0.020 0.000
#> GSM440021     3   0.480     0.2670 0.360 0.000 0.616 0.012 0.012
#> GSM440022     3   0.188     0.7452 0.064 0.000 0.924 0.000 0.012
#> GSM440007     5   0.165     0.0000 0.004 0.000 0.028 0.024 0.944
#> GSM440008     3   0.186     0.7346 0.028 0.012 0.940 0.016 0.004
#> GSM440009     3   0.634     0.5588 0.188 0.012 0.644 0.124 0.032
#> GSM440010     3   0.670     0.2354 0.340 0.000 0.520 0.080 0.060
#> GSM440031     2   0.000     0.9572 0.000 1.000 0.000 0.000 0.000
#> GSM440032     2   0.000     0.9572 0.000 1.000 0.000 0.000 0.000
#> GSM440033     2   0.000     0.9572 0.000 1.000 0.000 0.000 0.000
#> GSM440034     2   0.418     0.7478 0.024 0.820 0.100 0.044 0.012

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM439987     4  0.7154    -0.0451 0.236 0.000 0.096 0.408 0.000 0.260
#> GSM439988     1  0.5689     0.1360 0.612 0.004 0.048 0.064 0.004 0.268
#> GSM439989     1  0.4975     0.4057 0.720 0.000 0.076 0.076 0.000 0.128
#> GSM439990     1  0.4864     0.4079 0.732 0.000 0.076 0.080 0.000 0.112
#> GSM439991     4  0.6961     0.1409 0.168 0.000 0.104 0.456 0.000 0.272
#> GSM439992     1  0.7824     0.0156 0.416 0.000 0.100 0.192 0.048 0.244
#> GSM439993     1  0.4996     0.4589 0.688 0.000 0.164 0.000 0.020 0.128
#> GSM439994     4  0.5219     0.4251 0.040 0.000 0.184 0.676 0.000 0.100
#> GSM439995     3  0.1672     0.7338 0.048 0.000 0.932 0.004 0.000 0.016
#> GSM439996     1  0.5455     0.4325 0.624 0.000 0.188 0.000 0.016 0.172
#> GSM439997     3  0.2935     0.7284 0.068 0.000 0.868 0.032 0.000 0.032
#> GSM439998     3  0.4052     0.6887 0.144 0.000 0.780 0.008 0.012 0.056
#> GSM440035     6  0.7255     0.4416 0.344 0.000 0.124 0.120 0.012 0.400
#> GSM440036     6  0.5871     0.4879 0.340 0.000 0.012 0.132 0.004 0.512
#> GSM440037     1  0.4377     0.4570 0.768 0.000 0.088 0.044 0.000 0.100
#> GSM440038     1  0.6641    -0.0924 0.480 0.000 0.096 0.308 0.000 0.116
#> GSM440011     4  0.5203     0.3786 0.168 0.000 0.056 0.688 0.000 0.088
#> GSM440012     1  0.4114     0.4700 0.784 0.000 0.108 0.032 0.000 0.076
#> GSM440013     4  0.6868    -0.1262 0.316 0.000 0.084 0.436 0.000 0.164
#> GSM440014     1  0.5931     0.3339 0.628 0.000 0.108 0.108 0.000 0.156
#> GSM439999     1  0.5279     0.3611 0.692 0.000 0.068 0.112 0.000 0.128
#> GSM440000     1  0.4312     0.4689 0.768 0.000 0.120 0.036 0.000 0.076
#> GSM440001     1  0.6472    -0.3179 0.468 0.000 0.068 0.120 0.000 0.344
#> GSM440002     6  0.6669     0.2669 0.200 0.000 0.048 0.320 0.000 0.432
#> GSM440023     1  0.4630     0.4663 0.748 0.000 0.100 0.032 0.004 0.116
#> GSM440024     1  0.3077     0.4876 0.860 0.000 0.040 0.032 0.000 0.068
#> GSM440025     1  0.7030     0.3117 0.556 0.048 0.208 0.096 0.004 0.088
#> GSM440026     4  0.1275     0.4548 0.016 0.000 0.016 0.956 0.000 0.012
#> GSM440039     4  0.3956     0.4844 0.056 0.000 0.100 0.804 0.004 0.036
#> GSM440040     1  0.5394     0.2128 0.588 0.000 0.056 0.040 0.000 0.316
#> GSM440041     1  0.6387     0.3464 0.544 0.000 0.192 0.012 0.032 0.220
#> GSM440042     3  0.7679    -0.0427 0.148 0.000 0.344 0.288 0.008 0.212
#> GSM440015     3  0.6662     0.2286 0.164 0.000 0.484 0.280 0.000 0.072
#> GSM440016     1  0.5119     0.0619 0.480 0.000 0.456 0.012 0.000 0.052
#> GSM440017     1  0.5419     0.4317 0.628 0.000 0.196 0.000 0.016 0.160
#> GSM440018     3  0.3398     0.7133 0.120 0.000 0.824 0.040 0.000 0.016
#> GSM440003     3  0.4148     0.6831 0.060 0.000 0.792 0.100 0.004 0.044
#> GSM440004     3  0.4271     0.5026 0.028 0.000 0.672 0.292 0.000 0.008
#> GSM440005     1  0.5214     0.1627 0.516 0.000 0.068 0.004 0.004 0.408
#> GSM440006     1  0.4045     0.4733 0.792 0.000 0.064 0.040 0.000 0.104
#> GSM440027     2  0.0000     0.9586 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440028     2  0.1836     0.9168 0.020 0.936 0.004 0.008 0.008 0.024
#> GSM440029     2  0.0260     0.9542 0.008 0.992 0.000 0.000 0.000 0.000
#> GSM440030     2  0.0000     0.9586 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440043     3  0.1767     0.7320 0.036 0.000 0.932 0.020 0.000 0.012
#> GSM440044     3  0.5158     0.6067 0.172 0.000 0.692 0.020 0.012 0.104
#> GSM440045     3  0.2298     0.7317 0.032 0.000 0.912 0.024 0.008 0.024
#> GSM440046     3  0.1768     0.7259 0.012 0.000 0.932 0.044 0.008 0.004
#> GSM440019     1  0.7366     0.2275 0.472 0.000 0.208 0.080 0.032 0.208
#> GSM440020     3  0.2481     0.7342 0.060 0.000 0.896 0.008 0.008 0.028
#> GSM440021     3  0.5691     0.2078 0.344 0.000 0.540 0.004 0.020 0.092
#> GSM440022     3  0.1972     0.7346 0.056 0.000 0.916 0.004 0.000 0.024
#> GSM440007     5  0.0291     0.0000 0.004 0.000 0.000 0.004 0.992 0.000
#> GSM440008     3  0.1836     0.7255 0.024 0.008 0.936 0.004 0.008 0.020
#> GSM440009     3  0.7034     0.4321 0.120 0.008 0.512 0.084 0.016 0.260
#> GSM440010     3  0.7334     0.0895 0.280 0.000 0.392 0.024 0.052 0.252
#> GSM440031     2  0.0000     0.9586 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440032     2  0.0000     0.9586 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440033     2  0.0146     0.9571 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM440034     2  0.3989     0.7698 0.012 0.816 0.080 0.056 0.004 0.032

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n agent(p)  time(p)  dose(p) k
#> MAD:hclust 60    0.296 0.099491 1.87e-07 2
#> MAD:hclust 49    0.243 0.276101 5.67e-05 3
#> MAD:hclust 29    0.232 0.000403 1.23e-03 4
#> MAD:hclust 41    0.350 0.000133 5.63e-04 5
#> MAD:hclust 21    0.409 0.426985 3.17e-04 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 60 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.546           0.876       0.919         0.3128 0.765   0.765
#> 3 3 0.402           0.739       0.842         0.9165 0.627   0.513
#> 4 4 0.536           0.609       0.797         0.2130 0.790   0.512
#> 5 5 0.610           0.562       0.747         0.0827 0.888   0.609
#> 6 6 0.660           0.603       0.716         0.0466 0.950   0.778

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM439987     1  0.1633      0.907 0.976 0.024
#> GSM439988     1  0.2236      0.905 0.964 0.036
#> GSM439989     1  0.2043      0.906 0.968 0.032
#> GSM439990     1  0.1633      0.908 0.976 0.024
#> GSM439991     1  0.0376      0.906 0.996 0.004
#> GSM439992     1  0.0672      0.906 0.992 0.008
#> GSM439993     1  0.1184      0.906 0.984 0.016
#> GSM439994     1  0.4690      0.868 0.900 0.100
#> GSM439995     1  0.8909      0.673 0.692 0.308
#> GSM439996     1  0.0938      0.906 0.988 0.012
#> GSM439997     1  0.7219      0.794 0.800 0.200
#> GSM439998     1  0.4562      0.877 0.904 0.096
#> GSM440035     1  0.0938      0.907 0.988 0.012
#> GSM440036     1  0.1633      0.907 0.976 0.024
#> GSM440037     1  0.2236      0.905 0.964 0.036
#> GSM440038     1  0.2043      0.907 0.968 0.032
#> GSM440011     1  0.1633      0.907 0.976 0.024
#> GSM440012     1  0.2236      0.905 0.964 0.036
#> GSM440013     1  0.1633      0.907 0.976 0.024
#> GSM440014     1  0.1843      0.907 0.972 0.028
#> GSM439999     1  0.1633      0.907 0.976 0.024
#> GSM440000     1  0.2236      0.905 0.964 0.036
#> GSM440001     1  0.1633      0.907 0.976 0.024
#> GSM440002     1  0.1633      0.907 0.976 0.024
#> GSM440023     1  0.2236      0.905 0.964 0.036
#> GSM440024     1  0.2236      0.905 0.964 0.036
#> GSM440025     1  0.3431      0.901 0.936 0.064
#> GSM440026     1  0.6531      0.840 0.832 0.168
#> GSM440039     1  0.5946      0.849 0.856 0.144
#> GSM440040     1  0.1633      0.907 0.976 0.024
#> GSM440041     1  0.1184      0.906 0.984 0.016
#> GSM440042     1  0.0376      0.904 0.996 0.004
#> GSM440015     1  0.4815      0.868 0.896 0.104
#> GSM440016     1  0.1414      0.908 0.980 0.020
#> GSM440017     1  0.1414      0.907 0.980 0.020
#> GSM440018     1  0.9000      0.673 0.684 0.316
#> GSM440003     1  0.6531      0.831 0.832 0.168
#> GSM440004     1  0.8909      0.678 0.692 0.308
#> GSM440005     1  0.2043      0.906 0.968 0.032
#> GSM440006     1  0.1633      0.907 0.976 0.024
#> GSM440027     2  0.0376      0.999 0.004 0.996
#> GSM440028     2  0.0376      0.999 0.004 0.996
#> GSM440029     2  0.0376      0.999 0.004 0.996
#> GSM440030     2  0.0000      0.995 0.000 1.000
#> GSM440043     1  0.8909      0.673 0.692 0.308
#> GSM440044     1  0.1414      0.902 0.980 0.020
#> GSM440045     1  0.8608      0.704 0.716 0.284
#> GSM440046     1  0.8909      0.673 0.692 0.308
#> GSM440019     1  0.1184      0.906 0.984 0.016
#> GSM440020     1  0.8144      0.741 0.748 0.252
#> GSM440021     1  0.5737      0.854 0.864 0.136
#> GSM440022     1  0.8909      0.673 0.692 0.308
#> GSM440007     1  0.1414      0.906 0.980 0.020
#> GSM440008     1  0.9000      0.661 0.684 0.316
#> GSM440009     1  0.6531      0.829 0.832 0.168
#> GSM440010     1  0.1184      0.906 0.984 0.016
#> GSM440031     2  0.0376      0.999 0.004 0.996
#> GSM440032     2  0.0376      0.999 0.004 0.996
#> GSM440033     2  0.0376      0.999 0.004 0.996
#> GSM440034     2  0.0376      0.999 0.004 0.996

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM439987     1  0.4121      0.636 0.832 0.000 0.168
#> GSM439988     1  0.3412      0.769 0.876 0.000 0.124
#> GSM439989     1  0.1031      0.752 0.976 0.000 0.024
#> GSM439990     1  0.1289      0.749 0.968 0.000 0.032
#> GSM439991     1  0.5291      0.482 0.732 0.000 0.268
#> GSM439992     1  0.3619      0.768 0.864 0.000 0.136
#> GSM439993     1  0.5397      0.708 0.720 0.000 0.280
#> GSM439994     3  0.5678      0.638 0.316 0.000 0.684
#> GSM439995     3  0.1647      0.807 0.036 0.004 0.960
#> GSM439996     1  0.5859      0.638 0.656 0.000 0.344
#> GSM439997     3  0.1765      0.805 0.040 0.004 0.956
#> GSM439998     3  0.3816      0.716 0.148 0.000 0.852
#> GSM440035     1  0.3619      0.709 0.864 0.000 0.136
#> GSM440036     1  0.2066      0.730 0.940 0.000 0.060
#> GSM440037     1  0.4555      0.758 0.800 0.000 0.200
#> GSM440038     1  0.3551      0.700 0.868 0.000 0.132
#> GSM440011     1  0.4121      0.637 0.832 0.000 0.168
#> GSM440012     1  0.5058      0.738 0.756 0.000 0.244
#> GSM440013     1  0.3816      0.670 0.852 0.000 0.148
#> GSM440014     1  0.1163      0.749 0.972 0.000 0.028
#> GSM439999     1  0.1031      0.745 0.976 0.000 0.024
#> GSM440000     1  0.4931      0.742 0.768 0.000 0.232
#> GSM440001     1  0.2066      0.731 0.940 0.000 0.060
#> GSM440002     1  0.3941      0.649 0.844 0.000 0.156
#> GSM440023     1  0.3038      0.770 0.896 0.000 0.104
#> GSM440024     1  0.4654      0.756 0.792 0.000 0.208
#> GSM440025     1  0.5591      0.693 0.696 0.000 0.304
#> GSM440026     3  0.6111      0.534 0.396 0.000 0.604
#> GSM440039     3  0.5882      0.603 0.348 0.000 0.652
#> GSM440040     1  0.4796      0.750 0.780 0.000 0.220
#> GSM440041     1  0.5650      0.682 0.688 0.000 0.312
#> GSM440042     3  0.5497      0.646 0.292 0.000 0.708
#> GSM440015     3  0.5760      0.632 0.328 0.000 0.672
#> GSM440016     1  0.6299      0.303 0.524 0.000 0.476
#> GSM440017     1  0.5291      0.720 0.732 0.000 0.268
#> GSM440018     3  0.2301      0.806 0.060 0.004 0.936
#> GSM440003     3  0.5178      0.692 0.256 0.000 0.744
#> GSM440004     3  0.4842      0.710 0.224 0.000 0.776
#> GSM440005     1  0.5098      0.735 0.752 0.000 0.248
#> GSM440006     1  0.4555      0.755 0.800 0.000 0.200
#> GSM440027     2  0.0000      0.998 0.000 1.000 0.000
#> GSM440028     2  0.0237      0.998 0.000 0.996 0.004
#> GSM440029     2  0.0000      0.998 0.000 1.000 0.000
#> GSM440030     2  0.0000      0.998 0.000 1.000 0.000
#> GSM440043     3  0.2096      0.804 0.052 0.004 0.944
#> GSM440044     3  0.2066      0.797 0.060 0.000 0.940
#> GSM440045     3  0.2096      0.803 0.052 0.004 0.944
#> GSM440046     3  0.2096      0.804 0.052 0.004 0.944
#> GSM440019     1  0.6154      0.496 0.592 0.000 0.408
#> GSM440020     3  0.1989      0.801 0.048 0.004 0.948
#> GSM440021     3  0.4291      0.668 0.180 0.000 0.820
#> GSM440022     3  0.2200      0.806 0.056 0.004 0.940
#> GSM440007     3  0.5497      0.566 0.292 0.000 0.708
#> GSM440008     3  0.1832      0.807 0.036 0.008 0.956
#> GSM440009     3  0.2860      0.795 0.084 0.004 0.912
#> GSM440010     3  0.5810      0.383 0.336 0.000 0.664
#> GSM440031     2  0.0000      0.998 0.000 1.000 0.000
#> GSM440032     2  0.0000      0.998 0.000 1.000 0.000
#> GSM440033     2  0.0592      0.994 0.000 0.988 0.012
#> GSM440034     2  0.0237      0.998 0.000 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM439987     1  0.2676    0.65365 0.896 0.000 0.012 0.092
#> GSM439988     4  0.4917    0.48281 0.336 0.000 0.008 0.656
#> GSM439989     4  0.5155    0.16428 0.468 0.000 0.004 0.528
#> GSM439990     1  0.5165   -0.14959 0.512 0.000 0.004 0.484
#> GSM439991     1  0.5256    0.50162 0.700 0.000 0.040 0.260
#> GSM439992     4  0.3876    0.63675 0.124 0.000 0.040 0.836
#> GSM439993     4  0.2060    0.69628 0.016 0.000 0.052 0.932
#> GSM439994     1  0.5398    0.19151 0.580 0.000 0.404 0.016
#> GSM439995     3  0.1124    0.80738 0.012 0.004 0.972 0.012
#> GSM439996     4  0.3443    0.66045 0.016 0.000 0.136 0.848
#> GSM439997     3  0.2007    0.80998 0.020 0.004 0.940 0.036
#> GSM439998     3  0.4594    0.64623 0.008 0.000 0.712 0.280
#> GSM440035     1  0.4399    0.60004 0.768 0.000 0.020 0.212
#> GSM440036     1  0.3751    0.60671 0.800 0.000 0.004 0.196
#> GSM440037     4  0.4903    0.62348 0.248 0.000 0.028 0.724
#> GSM440038     1  0.4100    0.63393 0.816 0.000 0.036 0.148
#> GSM440011     1  0.2882    0.65563 0.892 0.000 0.024 0.084
#> GSM440012     4  0.5458    0.62414 0.236 0.000 0.060 0.704
#> GSM440013     1  0.3763    0.64617 0.832 0.000 0.024 0.144
#> GSM440014     1  0.5155   -0.08917 0.528 0.000 0.004 0.468
#> GSM439999     1  0.4955    0.00185 0.556 0.000 0.000 0.444
#> GSM440000     4  0.5074    0.63538 0.236 0.000 0.040 0.724
#> GSM440001     1  0.3937    0.60960 0.800 0.000 0.012 0.188
#> GSM440002     1  0.2635    0.65390 0.904 0.000 0.020 0.076
#> GSM440023     4  0.5108    0.53575 0.308 0.000 0.020 0.672
#> GSM440024     4  0.4361    0.65078 0.208 0.000 0.020 0.772
#> GSM440025     4  0.5710    0.65646 0.192 0.000 0.100 0.708
#> GSM440026     1  0.3937    0.57899 0.800 0.000 0.188 0.012
#> GSM440039     1  0.5038    0.36097 0.652 0.000 0.336 0.012
#> GSM440040     4  0.2984    0.69331 0.084 0.000 0.028 0.888
#> GSM440041     4  0.2489    0.69267 0.020 0.000 0.068 0.912
#> GSM440042     3  0.7878    0.13538 0.324 0.000 0.384 0.292
#> GSM440015     1  0.5607    0.01573 0.496 0.000 0.484 0.020
#> GSM440016     4  0.6350    0.40803 0.072 0.000 0.364 0.564
#> GSM440017     4  0.3548    0.70193 0.068 0.000 0.068 0.864
#> GSM440018     3  0.1707    0.80257 0.024 0.004 0.952 0.020
#> GSM440003     3  0.4607    0.62320 0.204 0.004 0.768 0.024
#> GSM440004     3  0.4841    0.52339 0.272 0.004 0.712 0.012
#> GSM440005     4  0.2466    0.70282 0.056 0.000 0.028 0.916
#> GSM440006     4  0.2813    0.68607 0.080 0.000 0.024 0.896
#> GSM440027     2  0.0376    0.99381 0.004 0.992 0.004 0.000
#> GSM440028     2  0.0376    0.99381 0.004 0.992 0.004 0.000
#> GSM440029     2  0.0188    0.99431 0.000 0.996 0.004 0.000
#> GSM440030     2  0.0188    0.99431 0.000 0.996 0.004 0.000
#> GSM440043     3  0.0844    0.80756 0.012 0.004 0.980 0.004
#> GSM440044     3  0.3088    0.77361 0.008 0.000 0.864 0.128
#> GSM440045     3  0.1082    0.81085 0.004 0.004 0.972 0.020
#> GSM440046     3  0.0967    0.80638 0.016 0.004 0.976 0.004
#> GSM440019     4  0.4010    0.60721 0.028 0.000 0.156 0.816
#> GSM440020     3  0.1474    0.81024 0.000 0.000 0.948 0.052
#> GSM440021     3  0.4356    0.61493 0.000 0.000 0.708 0.292
#> GSM440022     3  0.1675    0.80963 0.004 0.004 0.948 0.044
#> GSM440007     4  0.7372   -0.25687 0.160 0.000 0.420 0.420
#> GSM440008     3  0.0844    0.80756 0.012 0.004 0.980 0.004
#> GSM440009     3  0.4903    0.67905 0.028 0.000 0.724 0.248
#> GSM440010     3  0.6330    0.26563 0.060 0.000 0.492 0.448
#> GSM440031     2  0.0188    0.99431 0.000 0.996 0.004 0.000
#> GSM440032     2  0.0376    0.99381 0.004 0.992 0.004 0.000
#> GSM440033     2  0.1452    0.97112 0.036 0.956 0.000 0.008
#> GSM440034     2  0.0376    0.99381 0.004 0.992 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM439987     1  0.3373    0.70530 0.848 0.000 0.004 0.056 0.092
#> GSM439988     5  0.4599    0.53675 0.156 0.000 0.000 0.100 0.744
#> GSM439989     5  0.3847    0.56725 0.180 0.000 0.000 0.036 0.784
#> GSM439990     5  0.3852    0.55162 0.220 0.000 0.000 0.020 0.760
#> GSM439991     1  0.4387    0.57772 0.704 0.000 0.016 0.272 0.008
#> GSM439992     4  0.5555    0.51150 0.072 0.000 0.008 0.608 0.312
#> GSM439993     5  0.4889   -0.39659 0.016 0.000 0.004 0.476 0.504
#> GSM439994     1  0.5036    0.59485 0.704 0.000 0.200 0.092 0.004
#> GSM439995     3  0.0566    0.81272 0.000 0.000 0.984 0.004 0.012
#> GSM439996     4  0.5904    0.38188 0.012 0.000 0.068 0.464 0.456
#> GSM439997     3  0.3019    0.78465 0.012 0.000 0.864 0.108 0.016
#> GSM439998     3  0.5314    0.49675 0.004 0.000 0.632 0.296 0.068
#> GSM440035     1  0.5811    0.54224 0.596 0.000 0.000 0.264 0.140
#> GSM440036     1  0.5526    0.59692 0.648 0.000 0.000 0.200 0.152
#> GSM440037     5  0.1956    0.60354 0.052 0.000 0.008 0.012 0.928
#> GSM440038     1  0.5409    0.21660 0.504 0.000 0.016 0.028 0.452
#> GSM440011     1  0.3248    0.70520 0.852 0.000 0.004 0.040 0.104
#> GSM440012     5  0.2178    0.59600 0.024 0.000 0.048 0.008 0.920
#> GSM440013     1  0.4708    0.65737 0.732 0.000 0.008 0.060 0.200
#> GSM440014     5  0.4712    0.46579 0.268 0.000 0.000 0.048 0.684
#> GSM439999     5  0.4506    0.44835 0.296 0.000 0.000 0.028 0.676
#> GSM440000     5  0.2036    0.59801 0.028 0.000 0.036 0.008 0.928
#> GSM440001     1  0.5382    0.58930 0.656 0.000 0.000 0.120 0.224
#> GSM440002     1  0.3234    0.70400 0.852 0.000 0.000 0.084 0.064
#> GSM440023     5  0.2331    0.60096 0.064 0.000 0.004 0.024 0.908
#> GSM440024     5  0.1329    0.57223 0.008 0.000 0.004 0.032 0.956
#> GSM440025     5  0.3275    0.52973 0.008 0.000 0.064 0.068 0.860
#> GSM440026     1  0.4674    0.66696 0.780 0.000 0.096 0.088 0.036
#> GSM440039     1  0.4801    0.62035 0.724 0.000 0.204 0.064 0.008
#> GSM440040     4  0.5295    0.25971 0.048 0.000 0.000 0.488 0.464
#> GSM440041     4  0.5114    0.45595 0.008 0.000 0.024 0.544 0.424
#> GSM440042     4  0.7483    0.00842 0.316 0.000 0.152 0.456 0.076
#> GSM440015     1  0.5790    0.21872 0.508 0.000 0.424 0.048 0.020
#> GSM440016     5  0.5659    0.11414 0.024 0.000 0.408 0.036 0.532
#> GSM440017     5  0.5561   -0.11985 0.028 0.000 0.036 0.340 0.596
#> GSM440018     3  0.0579    0.80871 0.000 0.000 0.984 0.008 0.008
#> GSM440003     3  0.5240    0.50761 0.232 0.000 0.688 0.060 0.020
#> GSM440004     3  0.5205    0.40359 0.284 0.000 0.656 0.044 0.016
#> GSM440005     5  0.5295   -0.30547 0.048 0.000 0.000 0.464 0.488
#> GSM440006     5  0.5504   -0.33468 0.064 0.000 0.000 0.448 0.488
#> GSM440027     2  0.0324    0.98467 0.000 0.992 0.000 0.004 0.004
#> GSM440028     2  0.1356    0.98167 0.004 0.956 0.000 0.028 0.012
#> GSM440029     2  0.0324    0.98451 0.004 0.992 0.000 0.004 0.000
#> GSM440030     2  0.0992    0.98268 0.000 0.968 0.000 0.024 0.008
#> GSM440043     3  0.0451    0.81203 0.000 0.000 0.988 0.008 0.004
#> GSM440044     3  0.3579    0.68943 0.000 0.000 0.756 0.240 0.004
#> GSM440045     3  0.0566    0.81377 0.000 0.000 0.984 0.012 0.004
#> GSM440046     3  0.0404    0.81296 0.000 0.000 0.988 0.012 0.000
#> GSM440019     4  0.5600    0.52720 0.020 0.000 0.044 0.576 0.360
#> GSM440020     3  0.1991    0.80082 0.004 0.000 0.916 0.076 0.004
#> GSM440021     3  0.4558    0.63024 0.000 0.000 0.740 0.180 0.080
#> GSM440022     3  0.1845    0.80533 0.000 0.000 0.928 0.056 0.016
#> GSM440007     4  0.5992    0.48623 0.124 0.000 0.132 0.680 0.064
#> GSM440008     3  0.0290    0.81338 0.000 0.000 0.992 0.008 0.000
#> GSM440009     3  0.5754    0.29740 0.032 0.000 0.516 0.420 0.032
#> GSM440010     4  0.6135    0.48882 0.056 0.000 0.192 0.652 0.100
#> GSM440031     2  0.0898    0.98310 0.000 0.972 0.000 0.020 0.008
#> GSM440032     2  0.0000    0.98476 0.000 1.000 0.000 0.000 0.000
#> GSM440033     2  0.1483    0.97299 0.008 0.952 0.000 0.028 0.012
#> GSM440034     2  0.0324    0.98451 0.004 0.992 0.000 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5 p6
#> GSM439987     5  0.3364     0.6318 0.068 0.000 0.000 0.012 0.832 NA
#> GSM439988     1  0.6170     0.4521 0.584 0.000 0.000 0.120 0.212 NA
#> GSM439989     1  0.4234     0.6429 0.724 0.000 0.000 0.028 0.224 NA
#> GSM439990     1  0.3798     0.6489 0.748 0.000 0.000 0.004 0.216 NA
#> GSM439991     5  0.5507     0.5218 0.004 0.000 0.004 0.152 0.592 NA
#> GSM439992     4  0.4884     0.6108 0.092 0.000 0.008 0.740 0.052 NA
#> GSM439993     4  0.4396     0.5549 0.332 0.000 0.004 0.636 0.004 NA
#> GSM439994     5  0.5356     0.5841 0.000 0.000 0.060 0.020 0.488 NA
#> GSM439995     3  0.1429     0.7872 0.000 0.000 0.940 0.004 0.004 NA
#> GSM439996     4  0.5175     0.5799 0.288 0.000 0.068 0.620 0.000 NA
#> GSM439997     3  0.3401     0.7579 0.004 0.000 0.832 0.104 0.012 NA
#> GSM439998     3  0.5001     0.5700 0.028 0.000 0.660 0.248 0.000 NA
#> GSM440035     5  0.6000     0.4485 0.068 0.000 0.000 0.164 0.608 NA
#> GSM440036     5  0.5513     0.4560 0.088 0.000 0.000 0.136 0.672 NA
#> GSM440037     1  0.1167     0.6707 0.960 0.000 0.008 0.020 0.012 NA
#> GSM440038     1  0.5575     0.2464 0.528 0.000 0.008 0.012 0.372 NA
#> GSM440011     5  0.4621     0.6464 0.056 0.000 0.000 0.012 0.676 NA
#> GSM440012     1  0.1003     0.6646 0.964 0.000 0.016 0.020 0.000 NA
#> GSM440013     5  0.6049     0.5870 0.132 0.000 0.004 0.056 0.600 NA
#> GSM440014     1  0.4532     0.5946 0.672 0.000 0.000 0.024 0.276 NA
#> GSM439999     1  0.4240     0.5931 0.672 0.000 0.000 0.016 0.296 NA
#> GSM440000     1  0.1138     0.6663 0.960 0.000 0.012 0.024 0.004 NA
#> GSM440001     5  0.5508     0.4119 0.180 0.000 0.000 0.076 0.660 NA
#> GSM440002     5  0.2976     0.6310 0.020 0.000 0.000 0.020 0.852 NA
#> GSM440023     1  0.2507     0.6687 0.900 0.000 0.008 0.044 0.028 NA
#> GSM440024     1  0.1843     0.6412 0.912 0.000 0.004 0.080 0.004 NA
#> GSM440025     1  0.3752     0.5865 0.804 0.000 0.076 0.108 0.008 NA
#> GSM440026     5  0.4808     0.6045 0.004 0.000 0.036 0.004 0.540 NA
#> GSM440039     5  0.5368     0.5856 0.000 0.000 0.116 0.000 0.508 NA
#> GSM440040     4  0.5721     0.5527 0.252 0.000 0.000 0.604 0.052 NA
#> GSM440041     4  0.5208     0.5917 0.288 0.000 0.024 0.624 0.004 NA
#> GSM440042     4  0.7380    -0.0294 0.036 0.000 0.056 0.376 0.176 NA
#> GSM440015     5  0.6651     0.3616 0.016 0.000 0.272 0.008 0.380 NA
#> GSM440016     1  0.5525     0.3029 0.592 0.000 0.304 0.072 0.024 NA
#> GSM440017     1  0.5341    -0.3722 0.476 0.000 0.040 0.456 0.020 NA
#> GSM440018     3  0.2201     0.7769 0.036 0.000 0.904 0.000 0.004 NA
#> GSM440003     3  0.6323     0.2933 0.016 0.000 0.548 0.024 0.180 NA
#> GSM440004     3  0.6326    -0.0437 0.012 0.000 0.432 0.004 0.212 NA
#> GSM440005     4  0.6136     0.5110 0.288 0.000 0.000 0.540 0.052 NA
#> GSM440006     4  0.5540     0.5443 0.292 0.000 0.004 0.600 0.040 NA
#> GSM440027     2  0.0508     0.9729 0.000 0.984 0.000 0.004 0.000 NA
#> GSM440028     2  0.1606     0.9625 0.000 0.932 0.004 0.008 0.000 NA
#> GSM440029     2  0.0000     0.9731 0.000 1.000 0.000 0.000 0.000 NA
#> GSM440030     2  0.1268     0.9664 0.000 0.952 0.004 0.008 0.000 NA
#> GSM440043     3  0.1152     0.7880 0.000 0.000 0.952 0.000 0.004 NA
#> GSM440044     3  0.4400     0.6675 0.020 0.000 0.736 0.180 0.000 NA
#> GSM440045     3  0.1251     0.7869 0.024 0.000 0.956 0.008 0.000 NA
#> GSM440046     3  0.1285     0.7839 0.000 0.000 0.944 0.000 0.004 NA
#> GSM440019     4  0.4147     0.6338 0.132 0.000 0.032 0.776 0.000 NA
#> GSM440020     3  0.2785     0.7678 0.028 0.000 0.876 0.068 0.000 NA
#> GSM440021     3  0.4032     0.6950 0.084 0.000 0.780 0.120 0.000 NA
#> GSM440022     3  0.1405     0.7888 0.004 0.000 0.948 0.024 0.000 NA
#> GSM440007     4  0.6332     0.4393 0.020 0.000 0.108 0.568 0.048 NA
#> GSM440008     3  0.1349     0.7884 0.004 0.000 0.940 0.000 0.000 NA
#> GSM440009     3  0.6025     0.3118 0.012 0.000 0.492 0.352 0.008 NA
#> GSM440010     4  0.6475     0.4855 0.024 0.000 0.128 0.588 0.064 NA
#> GSM440031     2  0.0972     0.9693 0.000 0.964 0.000 0.008 0.000 NA
#> GSM440032     2  0.0291     0.9722 0.000 0.992 0.000 0.004 0.000 NA
#> GSM440033     2  0.1732     0.9394 0.000 0.920 0.000 0.004 0.004 NA
#> GSM440034     2  0.0458     0.9720 0.000 0.984 0.000 0.000 0.000 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n agent(p)  time(p)  dose(p) k
#> MAD:kmeans 60    0.296 9.95e-02 1.87e-07 2
#> MAD:kmeans 56    0.268 1.85e-06 2.51e-05 3
#> MAD:kmeans 48    0.589 2.37e-06 2.14e-03 4
#> MAD:kmeans 42    0.368 2.84e-06 7.44e-03 5
#> MAD:kmeans 46    0.376 8.16e-09 3.73e-03 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 60 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k  1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.0595           0.632       0.795         0.5047 0.501   0.501
#> 3 3 0.1147           0.281       0.597         0.3259 0.667   0.436
#> 4 4 0.1654           0.277       0.535         0.1282 0.769   0.441
#> 5 5 0.2876           0.260       0.503         0.0660 0.846   0.493
#> 6 6 0.3972           0.247       0.463         0.0416 0.835   0.380

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM439987     1  0.6712     0.7584 0.824 0.176
#> GSM439988     1  0.5408     0.7756 0.876 0.124
#> GSM439989     1  0.3733     0.7650 0.928 0.072
#> GSM439990     1  0.3879     0.7634 0.924 0.076
#> GSM439991     1  0.6531     0.7628 0.832 0.168
#> GSM439992     1  0.5059     0.7801 0.888 0.112
#> GSM439993     1  0.4161     0.7666 0.916 0.084
#> GSM439994     2  0.9881     0.2581 0.436 0.564
#> GSM439995     2  0.6343     0.7362 0.160 0.840
#> GSM439996     1  0.6531     0.7615 0.832 0.168
#> GSM439997     2  0.9044     0.5552 0.320 0.680
#> GSM439998     1  0.9993     0.0961 0.516 0.484
#> GSM440035     1  0.6148     0.7731 0.848 0.152
#> GSM440036     1  0.5737     0.7779 0.864 0.136
#> GSM440037     1  0.6048     0.7746 0.852 0.148
#> GSM440038     1  0.9732     0.4173 0.596 0.404
#> GSM440011     1  0.7299     0.7467 0.796 0.204
#> GSM440012     1  0.8713     0.6584 0.708 0.292
#> GSM440013     1  0.8608     0.6349 0.716 0.284
#> GSM440014     1  0.3431     0.7634 0.936 0.064
#> GSM439999     1  0.2423     0.7473 0.960 0.040
#> GSM440000     1  0.6247     0.7714 0.844 0.156
#> GSM440001     1  0.4298     0.7700 0.912 0.088
#> GSM440002     1  0.6973     0.7493 0.812 0.188
#> GSM440023     1  0.9209     0.6088 0.664 0.336
#> GSM440024     1  0.7602     0.7384 0.780 0.220
#> GSM440025     2  0.9993     0.0173 0.484 0.516
#> GSM440026     2  0.9323     0.4589 0.348 0.652
#> GSM440039     2  0.9815     0.3015 0.420 0.580
#> GSM440040     1  0.5946     0.7788 0.856 0.144
#> GSM440041     1  0.6438     0.7707 0.836 0.164
#> GSM440042     1  0.9710     0.4085 0.600 0.400
#> GSM440015     2  0.9954     0.2234 0.460 0.540
#> GSM440016     1  0.9896     0.2637 0.560 0.440
#> GSM440017     1  0.5178     0.7779 0.884 0.116
#> GSM440018     2  0.7056     0.7130 0.192 0.808
#> GSM440003     2  0.9248     0.4926 0.340 0.660
#> GSM440004     2  0.6247     0.7363 0.156 0.844
#> GSM440005     1  0.6048     0.7758 0.852 0.148
#> GSM440006     1  0.6048     0.7782 0.852 0.148
#> GSM440027     2  0.0672     0.7601 0.008 0.992
#> GSM440028     2  0.1184     0.7618 0.016 0.984
#> GSM440029     2  0.0938     0.7612 0.012 0.988
#> GSM440030     2  0.0376     0.7591 0.004 0.996
#> GSM440043     2  0.4690     0.7589 0.100 0.900
#> GSM440044     1  0.9909     0.2315 0.556 0.444
#> GSM440045     2  0.7219     0.7109 0.200 0.800
#> GSM440046     2  0.4431     0.7584 0.092 0.908
#> GSM440019     1  0.8909     0.6052 0.692 0.308
#> GSM440020     2  0.8443     0.6459 0.272 0.728
#> GSM440021     2  0.9393     0.4465 0.356 0.644
#> GSM440022     2  0.6438     0.7327 0.164 0.836
#> GSM440007     1  0.9944     0.2399 0.544 0.456
#> GSM440008     2  0.0672     0.7592 0.008 0.992
#> GSM440009     2  0.8763     0.5724 0.296 0.704
#> GSM440010     1  0.9970     0.1940 0.532 0.468
#> GSM440031     2  0.0672     0.7601 0.008 0.992
#> GSM440032     2  0.0376     0.7591 0.004 0.996
#> GSM440033     2  0.1184     0.7617 0.016 0.984
#> GSM440034     2  0.0672     0.7597 0.008 0.992

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM439987     3  0.7597  -0.111045 0.384 0.048 0.568
#> GSM439988     1  0.7564   0.440446 0.672 0.096 0.232
#> GSM439989     1  0.7164   0.408327 0.640 0.044 0.316
#> GSM439990     1  0.7310   0.369131 0.600 0.040 0.360
#> GSM439991     3  0.7600   0.000367 0.344 0.056 0.600
#> GSM439992     1  0.7622   0.359861 0.608 0.060 0.332
#> GSM439993     1  0.5292   0.462079 0.800 0.028 0.172
#> GSM439994     3  0.8199   0.337747 0.160 0.200 0.640
#> GSM439995     3  0.8581  -0.017447 0.096 0.444 0.460
#> GSM439996     1  0.6950   0.399547 0.692 0.056 0.252
#> GSM439997     3  0.9537   0.295546 0.224 0.296 0.480
#> GSM439998     1  0.9653  -0.060300 0.448 0.224 0.328
#> GSM440035     3  0.8268  -0.176737 0.440 0.076 0.484
#> GSM440036     1  0.8199   0.232618 0.488 0.072 0.440
#> GSM440037     1  0.7259   0.445710 0.680 0.072 0.248
#> GSM440038     3  0.9664  -0.001680 0.332 0.224 0.444
#> GSM440011     3  0.7600   0.008764 0.344 0.056 0.600
#> GSM440012     1  0.8163   0.379608 0.628 0.124 0.248
#> GSM440013     3  0.8895   0.011607 0.392 0.124 0.484
#> GSM440014     1  0.7319   0.302880 0.548 0.032 0.420
#> GSM439999     1  0.6661   0.361286 0.588 0.012 0.400
#> GSM440000     1  0.8028   0.406935 0.616 0.096 0.288
#> GSM440001     1  0.7382   0.282532 0.512 0.032 0.456
#> GSM440002     3  0.8516   0.025144 0.328 0.112 0.560
#> GSM440023     1  0.9527   0.102916 0.436 0.372 0.192
#> GSM440024     1  0.8061   0.420354 0.652 0.156 0.192
#> GSM440025     1  0.9527   0.052045 0.436 0.372 0.192
#> GSM440026     3  0.9328   0.257103 0.172 0.356 0.472
#> GSM440039     3  0.7525   0.321095 0.108 0.208 0.684
#> GSM440040     1  0.6936   0.454107 0.704 0.064 0.232
#> GSM440041     1  0.8196   0.343137 0.608 0.108 0.284
#> GSM440042     3  0.9119   0.055280 0.368 0.148 0.484
#> GSM440015     3  0.8309   0.336020 0.180 0.188 0.632
#> GSM440016     1  0.9537  -0.018761 0.428 0.192 0.380
#> GSM440017     1  0.6245   0.454156 0.760 0.060 0.180
#> GSM440018     2  0.9287   0.099788 0.188 0.508 0.304
#> GSM440003     3  0.9337   0.302356 0.208 0.280 0.512
#> GSM440004     3  0.7796   0.215255 0.056 0.392 0.552
#> GSM440005     1  0.6922   0.452732 0.720 0.080 0.200
#> GSM440006     1  0.7047   0.449484 0.712 0.084 0.204
#> GSM440027     2  0.0592   0.741289 0.000 0.988 0.012
#> GSM440028     2  0.1337   0.738723 0.016 0.972 0.012
#> GSM440029     2  0.0424   0.743643 0.008 0.992 0.000
#> GSM440030     2  0.0000   0.743813 0.000 1.000 0.000
#> GSM440043     3  0.8690  -0.025782 0.104 0.440 0.456
#> GSM440044     3  0.8477   0.140745 0.380 0.096 0.524
#> GSM440045     3  0.9863   0.217311 0.260 0.340 0.400
#> GSM440046     2  0.8460   0.061200 0.088 0.472 0.440
#> GSM440019     1  0.8065   0.292788 0.604 0.092 0.304
#> GSM440020     3  0.9804   0.259718 0.272 0.296 0.432
#> GSM440021     1  0.9648  -0.023462 0.464 0.244 0.292
#> GSM440022     2  0.9098   0.066388 0.148 0.492 0.360
#> GSM440007     3  0.9334  -0.001889 0.408 0.164 0.428
#> GSM440008     2  0.6977   0.516352 0.076 0.712 0.212
#> GSM440009     2  0.9374   0.051767 0.192 0.492 0.316
#> GSM440010     1  0.9871  -0.060200 0.376 0.256 0.368
#> GSM440031     2  0.0237   0.743519 0.000 0.996 0.004
#> GSM440032     2  0.0237   0.744111 0.000 0.996 0.004
#> GSM440033     2  0.2550   0.708317 0.040 0.936 0.024
#> GSM440034     2  0.0892   0.741304 0.000 0.980 0.020

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM439987     1  0.7041    0.33408 0.644 0.028 0.156 0.172
#> GSM439988     4  0.8254   -0.01506 0.392 0.080 0.088 0.440
#> GSM439989     1  0.7594    0.14033 0.488 0.032 0.096 0.384
#> GSM439990     1  0.6854    0.15398 0.568 0.028 0.056 0.348
#> GSM439991     1  0.8192    0.17832 0.500 0.032 0.220 0.248
#> GSM439992     4  0.7977    0.04782 0.396 0.024 0.152 0.428
#> GSM439993     4  0.6433    0.26651 0.172 0.016 0.128 0.684
#> GSM439994     3  0.8007    0.14050 0.368 0.064 0.480 0.088
#> GSM439995     3  0.8084    0.44169 0.100 0.240 0.564 0.096
#> GSM439996     4  0.6625    0.27488 0.092 0.024 0.224 0.660
#> GSM439997     3  0.8996    0.36049 0.136 0.148 0.480 0.236
#> GSM439998     3  0.8905    0.06726 0.120 0.112 0.392 0.376
#> GSM440035     1  0.7965    0.21293 0.548 0.044 0.156 0.252
#> GSM440036     1  0.7933    0.18872 0.520 0.048 0.116 0.316
#> GSM440037     4  0.7879    0.00465 0.400 0.044 0.100 0.456
#> GSM440038     1  0.8882    0.19936 0.480 0.108 0.156 0.256
#> GSM440011     1  0.7547    0.32153 0.608 0.048 0.208 0.136
#> GSM440012     4  0.8510    0.11387 0.300 0.056 0.172 0.472
#> GSM440013     1  0.8370    0.24612 0.504 0.060 0.280 0.156
#> GSM440014     1  0.7760    0.13747 0.512 0.028 0.132 0.328
#> GSM439999     1  0.6614    0.16914 0.568 0.008 0.072 0.352
#> GSM440000     4  0.8373    0.10682 0.296 0.052 0.164 0.488
#> GSM440001     1  0.7576    0.28337 0.580 0.036 0.132 0.252
#> GSM440002     1  0.7911    0.29401 0.576 0.052 0.196 0.176
#> GSM440023     4  0.9620    0.03722 0.284 0.264 0.124 0.328
#> GSM440024     4  0.8068    0.18415 0.264 0.096 0.088 0.552
#> GSM440025     4  0.9608    0.07748 0.188 0.320 0.152 0.340
#> GSM440026     1  0.8940    0.10398 0.460 0.232 0.224 0.084
#> GSM440039     3  0.8349    0.13196 0.384 0.112 0.436 0.068
#> GSM440040     4  0.7682    0.16435 0.320 0.052 0.088 0.540
#> GSM440041     4  0.7532    0.26300 0.180 0.032 0.192 0.596
#> GSM440042     3  0.9342    0.08317 0.276 0.088 0.348 0.288
#> GSM440015     3  0.8740    0.21874 0.316 0.112 0.460 0.112
#> GSM440016     4  0.9436    0.06333 0.280 0.100 0.272 0.348
#> GSM440017     4  0.7515    0.20979 0.248 0.020 0.164 0.568
#> GSM440018     3  0.8700    0.30715 0.108 0.356 0.432 0.104
#> GSM440003     3  0.9171    0.32693 0.256 0.168 0.448 0.128
#> GSM440004     3  0.8412    0.39733 0.188 0.200 0.536 0.076
#> GSM440005     4  0.7941    0.13779 0.328 0.060 0.096 0.516
#> GSM440006     4  0.8063    0.20756 0.244 0.064 0.136 0.556
#> GSM440027     2  0.1004    0.82202 0.004 0.972 0.024 0.000
#> GSM440028     2  0.0895    0.82288 0.000 0.976 0.020 0.004
#> GSM440029     2  0.0524    0.82249 0.000 0.988 0.008 0.004
#> GSM440030     2  0.0779    0.81995 0.000 0.980 0.016 0.004
#> GSM440043     3  0.7374    0.46314 0.096 0.176 0.644 0.084
#> GSM440044     3  0.8640    0.26346 0.228 0.068 0.492 0.212
#> GSM440045     3  0.8230    0.43275 0.108 0.164 0.576 0.152
#> GSM440046     3  0.7372    0.46269 0.092 0.260 0.600 0.048
#> GSM440019     4  0.9066    0.17334 0.236 0.080 0.260 0.424
#> GSM440020     3  0.8192    0.40506 0.072 0.168 0.560 0.200
#> GSM440021     3  0.8639    0.10898 0.092 0.112 0.412 0.384
#> GSM440022     3  0.8797    0.41854 0.104 0.288 0.472 0.136
#> GSM440007     3  0.9570    0.02173 0.260 0.116 0.320 0.304
#> GSM440008     2  0.6372   -0.08034 0.020 0.504 0.448 0.028
#> GSM440009     2  0.9284   -0.24005 0.144 0.404 0.308 0.144
#> GSM440010     4  0.9700    0.06435 0.196 0.180 0.256 0.368
#> GSM440031     2  0.0895    0.82200 0.000 0.976 0.020 0.004
#> GSM440032     2  0.0336    0.82348 0.000 0.992 0.008 0.000
#> GSM440033     2  0.2124    0.79207 0.000 0.932 0.040 0.028
#> GSM440034     2  0.1631    0.81123 0.008 0.956 0.020 0.016

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM439987     1  0.6702    0.30572 0.640 0.020 0.092 0.072 0.176
#> GSM439988     5  0.8153    0.17907 0.212 0.064 0.060 0.160 0.504
#> GSM439989     5  0.7846    0.07244 0.332 0.044 0.036 0.144 0.444
#> GSM439990     5  0.7495    0.07755 0.368 0.012 0.072 0.104 0.444
#> GSM439991     1  0.7859    0.15676 0.496 0.016 0.108 0.252 0.128
#> GSM439992     4  0.8429   -0.07772 0.268 0.028 0.068 0.368 0.268
#> GSM439993     5  0.7043    0.09026 0.060 0.020 0.056 0.428 0.436
#> GSM439994     1  0.8357    0.08563 0.424 0.060 0.324 0.112 0.080
#> GSM439995     3  0.6440    0.38742 0.056 0.140 0.676 0.096 0.032
#> GSM439996     5  0.8389   -0.02530 0.104 0.024 0.156 0.352 0.364
#> GSM439997     3  0.9012    0.15901 0.140 0.100 0.412 0.244 0.104
#> GSM439998     4  0.8231    0.01901 0.052 0.040 0.336 0.392 0.180
#> GSM440035     1  0.8390    0.15423 0.428 0.016 0.124 0.216 0.216
#> GSM440036     1  0.8326    0.10339 0.404 0.032 0.072 0.184 0.308
#> GSM440037     5  0.6309    0.28464 0.156 0.020 0.060 0.088 0.676
#> GSM440038     1  0.8667    0.10258 0.408 0.060 0.108 0.124 0.300
#> GSM440011     1  0.6635    0.29328 0.660 0.028 0.104 0.068 0.140
#> GSM440012     5  0.7298    0.26858 0.136 0.048 0.064 0.144 0.608
#> GSM440013     1  0.8346    0.23099 0.472 0.028 0.184 0.128 0.188
#> GSM440014     5  0.7899    0.04730 0.312 0.020 0.064 0.160 0.444
#> GSM439999     1  0.7353   -0.02248 0.420 0.008 0.060 0.112 0.400
#> GSM440000     5  0.6387    0.29864 0.124 0.016 0.084 0.100 0.676
#> GSM440001     1  0.6861    0.15316 0.528 0.004 0.028 0.152 0.288
#> GSM440002     1  0.7874    0.30048 0.544 0.032 0.128 0.128 0.168
#> GSM440023     5  0.9250    0.12403 0.192 0.240 0.060 0.160 0.348
#> GSM440024     5  0.8357    0.24149 0.184 0.096 0.060 0.160 0.500
#> GSM440025     5  0.9263    0.05781 0.076 0.212 0.128 0.224 0.360
#> GSM440026     1  0.8688    0.17924 0.456 0.200 0.168 0.116 0.060
#> GSM440039     1  0.7624    0.13576 0.496 0.056 0.308 0.104 0.036
#> GSM440040     5  0.8295    0.14091 0.164 0.036 0.072 0.316 0.412
#> GSM440041     4  0.8379   -0.05785 0.116 0.040 0.108 0.416 0.320
#> GSM440042     4  0.8760    0.06556 0.296 0.052 0.180 0.380 0.092
#> GSM440015     3  0.8103   -0.00381 0.336 0.024 0.416 0.140 0.084
#> GSM440016     5  0.8683    0.02857 0.140 0.040 0.344 0.124 0.352
#> GSM440017     5  0.8326    0.12288 0.148 0.028 0.096 0.328 0.400
#> GSM440018     3  0.8917    0.21385 0.076 0.336 0.348 0.100 0.140
#> GSM440003     3  0.9020    0.14248 0.236 0.092 0.404 0.176 0.092
#> GSM440004     3  0.7596    0.29292 0.200 0.136 0.560 0.064 0.040
#> GSM440005     5  0.8102    0.14670 0.188 0.028 0.056 0.312 0.416
#> GSM440006     5  0.7760    0.10467 0.132 0.016 0.068 0.368 0.416
#> GSM440027     2  0.0613    0.95887 0.008 0.984 0.004 0.004 0.000
#> GSM440028     2  0.1960    0.94012 0.012 0.936 0.028 0.020 0.004
#> GSM440029     2  0.0693    0.95846 0.000 0.980 0.012 0.000 0.008
#> GSM440030     2  0.1300    0.94905 0.000 0.956 0.028 0.016 0.000
#> GSM440043     3  0.6009    0.39491 0.072 0.084 0.716 0.100 0.028
#> GSM440044     3  0.8115    0.11975 0.116 0.028 0.460 0.288 0.108
#> GSM440045     3  0.6985    0.35682 0.048 0.088 0.644 0.132 0.088
#> GSM440046     3  0.7469    0.37201 0.152 0.128 0.588 0.100 0.032
#> GSM440019     4  0.8176    0.13821 0.144 0.028 0.124 0.492 0.212
#> GSM440020     3  0.7830    0.22322 0.044 0.084 0.524 0.248 0.100
#> GSM440021     3  0.9109   -0.00599 0.064 0.100 0.308 0.224 0.304
#> GSM440022     3  0.8566    0.31027 0.088 0.176 0.484 0.168 0.084
#> GSM440007     4  0.9190    0.12807 0.204 0.064 0.168 0.380 0.184
#> GSM440008     3  0.7307    0.26842 0.020 0.388 0.448 0.096 0.048
#> GSM440009     4  0.8914   -0.07957 0.088 0.280 0.244 0.336 0.052
#> GSM440010     4  0.9186    0.19110 0.176 0.100 0.200 0.404 0.120
#> GSM440031     2  0.0162    0.95896 0.000 0.996 0.004 0.000 0.000
#> GSM440032     2  0.0912    0.95761 0.000 0.972 0.012 0.016 0.000
#> GSM440033     2  0.1875    0.93931 0.008 0.940 0.016 0.028 0.008
#> GSM440034     2  0.1538    0.94393 0.008 0.948 0.036 0.008 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM439987     1  0.7147     0.0973 0.404 0.008 0.044 0.068 0.404 0.072
#> GSM439988     1  0.8482    -0.0189 0.348 0.044 0.036 0.228 0.084 0.260
#> GSM439989     1  0.7312    -0.0067 0.540 0.028 0.028 0.156 0.064 0.184
#> GSM439990     1  0.7526     0.0372 0.480 0.008 0.020 0.140 0.140 0.212
#> GSM439991     5  0.7679     0.0569 0.176 0.008 0.064 0.176 0.496 0.080
#> GSM439992     4  0.8459     0.1357 0.196 0.024 0.064 0.404 0.204 0.108
#> GSM439993     4  0.6780     0.1615 0.184 0.004 0.048 0.588 0.068 0.108
#> GSM439994     5  0.6864     0.3071 0.088 0.036 0.176 0.064 0.604 0.032
#> GSM439995     3  0.7414     0.2700 0.016 0.100 0.548 0.068 0.184 0.084
#> GSM439996     4  0.7253     0.1687 0.108 0.016 0.104 0.580 0.068 0.124
#> GSM439997     3  0.8532     0.2436 0.060 0.052 0.440 0.184 0.144 0.120
#> GSM439998     3  0.8152     0.0267 0.072 0.020 0.368 0.316 0.056 0.168
#> GSM440035     1  0.8699     0.1314 0.376 0.024 0.084 0.176 0.220 0.120
#> GSM440036     1  0.8003     0.1909 0.488 0.020 0.068 0.168 0.148 0.108
#> GSM440037     6  0.7908     0.1638 0.344 0.016 0.048 0.192 0.052 0.348
#> GSM440038     1  0.8075     0.0988 0.404 0.028 0.056 0.048 0.200 0.264
#> GSM440011     1  0.6924     0.0486 0.420 0.012 0.028 0.056 0.408 0.076
#> GSM440012     6  0.7484     0.2215 0.340 0.008 0.056 0.192 0.024 0.380
#> GSM440013     1  0.8658     0.1197 0.348 0.028 0.096 0.104 0.296 0.128
#> GSM440014     1  0.7721     0.1071 0.524 0.024 0.056 0.124 0.104 0.168
#> GSM439999     1  0.7400     0.0631 0.496 0.000 0.040 0.112 0.140 0.212
#> GSM440000     6  0.7796     0.2016 0.348 0.024 0.060 0.160 0.032 0.376
#> GSM440001     1  0.7751     0.2044 0.496 0.032 0.028 0.184 0.168 0.092
#> GSM440002     5  0.7983    -0.0935 0.356 0.020 0.056 0.096 0.372 0.100
#> GSM440023     1  0.9305    -0.0660 0.252 0.188 0.044 0.196 0.084 0.236
#> GSM440024     6  0.8463     0.1367 0.296 0.048 0.040 0.220 0.068 0.328
#> GSM440025     6  0.9468     0.0725 0.144 0.200 0.084 0.168 0.096 0.308
#> GSM440026     5  0.8012     0.2104 0.096 0.188 0.064 0.040 0.500 0.112
#> GSM440039     5  0.7719     0.2681 0.156 0.048 0.172 0.040 0.520 0.064
#> GSM440040     4  0.7493     0.1185 0.232 0.012 0.024 0.464 0.068 0.200
#> GSM440041     4  0.8039     0.1493 0.096 0.016 0.116 0.480 0.100 0.192
#> GSM440042     5  0.8552     0.0577 0.104 0.020 0.156 0.268 0.368 0.084
#> GSM440015     5  0.8241     0.1523 0.176 0.028 0.312 0.044 0.360 0.080
#> GSM440016     6  0.9346     0.0419 0.224 0.040 0.212 0.136 0.124 0.264
#> GSM440017     4  0.7800     0.0603 0.228 0.016 0.048 0.444 0.056 0.208
#> GSM440018     3  0.9136     0.1856 0.064 0.204 0.356 0.092 0.116 0.168
#> GSM440003     5  0.9122     0.0834 0.108 0.092 0.280 0.068 0.316 0.136
#> GSM440004     5  0.8039     0.0592 0.060 0.096 0.344 0.032 0.388 0.080
#> GSM440005     4  0.8378     0.0894 0.276 0.036 0.052 0.396 0.100 0.140
#> GSM440006     4  0.7108     0.1551 0.172 0.020 0.028 0.568 0.084 0.128
#> GSM440027     2  0.0881     0.9519 0.000 0.972 0.012 0.000 0.008 0.008
#> GSM440028     2  0.2309     0.9205 0.000 0.908 0.016 0.012 0.012 0.052
#> GSM440029     2  0.1003     0.9492 0.004 0.964 0.004 0.000 0.000 0.028
#> GSM440030     2  0.0551     0.9517 0.000 0.984 0.008 0.000 0.004 0.004
#> GSM440043     3  0.6690     0.3138 0.032 0.076 0.636 0.052 0.140 0.064
#> GSM440044     3  0.7975     0.2233 0.112 0.012 0.496 0.132 0.140 0.108
#> GSM440045     3  0.6934     0.3603 0.032 0.064 0.616 0.088 0.060 0.140
#> GSM440046     3  0.6931     0.2527 0.020 0.080 0.564 0.032 0.232 0.072
#> GSM440019     4  0.8033     0.2358 0.056 0.032 0.136 0.496 0.156 0.124
#> GSM440020     3  0.7052     0.3498 0.020 0.044 0.572 0.184 0.052 0.128
#> GSM440021     3  0.8232     0.1325 0.060 0.036 0.400 0.228 0.048 0.228
#> GSM440022     3  0.7656     0.3082 0.032 0.148 0.548 0.072 0.092 0.108
#> GSM440007     4  0.9382     0.1020 0.092 0.060 0.180 0.300 0.188 0.180
#> GSM440008     3  0.7347     0.2537 0.032 0.304 0.488 0.040 0.064 0.072
#> GSM440009     4  0.9678    -0.0624 0.068 0.184 0.216 0.228 0.140 0.164
#> GSM440010     4  0.9518     0.1040 0.128 0.056 0.216 0.256 0.144 0.200
#> GSM440031     2  0.0551     0.9515 0.000 0.984 0.004 0.000 0.004 0.008
#> GSM440032     2  0.0951     0.9493 0.000 0.968 0.008 0.004 0.000 0.020
#> GSM440033     2  0.2239     0.9206 0.004 0.912 0.016 0.028 0.000 0.040
#> GSM440034     2  0.2145     0.9268 0.004 0.916 0.028 0.000 0.012 0.040

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n agent(p)  time(p) dose(p) k
#> MAD:skmeans 46    0.237 4.31e-06  0.0729 2
#> MAD:skmeans  9       NA       NA      NA 3
#> MAD:skmeans  8       NA       NA      NA 4
#> MAD:skmeans  8       NA       NA      NA 5
#> MAD:skmeans  8       NA       NA      NA 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 60 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.117           0.478       0.728         0.4442 0.497   0.497
#> 3 3 0.342           0.768       0.841         0.3773 0.736   0.539
#> 4 4 0.402           0.659       0.770         0.1736 0.869   0.675
#> 5 5 0.508           0.671       0.758         0.0675 0.938   0.799
#> 6 6 0.537           0.558       0.736         0.0231 0.946   0.799

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM439987     1  0.7528     0.5442 0.784 0.216
#> GSM439988     1  0.3114     0.6983 0.944 0.056
#> GSM439989     1  0.8955     0.3466 0.688 0.312
#> GSM439990     1  0.0376     0.6903 0.996 0.004
#> GSM439991     2  0.8955     0.6416 0.312 0.688
#> GSM439992     1  0.4690     0.6848 0.900 0.100
#> GSM439993     1  0.4298     0.6896 0.912 0.088
#> GSM439994     2  0.9754     0.4246 0.408 0.592
#> GSM439995     2  0.6438     0.6276 0.164 0.836
#> GSM439996     1  0.9993    -0.1303 0.516 0.484
#> GSM439997     2  0.8207     0.6582 0.256 0.744
#> GSM439998     2  0.8555     0.6478 0.280 0.720
#> GSM440035     1  0.2423     0.6957 0.960 0.040
#> GSM440036     1  0.8763     0.4171 0.704 0.296
#> GSM440037     1  0.2948     0.6957 0.948 0.052
#> GSM440038     1  0.1414     0.6957 0.980 0.020
#> GSM440011     1  0.2948     0.6901 0.948 0.052
#> GSM440012     1  0.3431     0.6941 0.936 0.064
#> GSM440013     1  0.4690     0.6664 0.900 0.100
#> GSM440014     1  0.3584     0.6605 0.932 0.068
#> GSM439999     1  0.0376     0.6889 0.996 0.004
#> GSM440000     1  0.2423     0.6973 0.960 0.040
#> GSM440001     1  0.4161     0.6881 0.916 0.084
#> GSM440002     1  0.8661     0.3976 0.712 0.288
#> GSM440023     1  0.3733     0.6849 0.928 0.072
#> GSM440024     1  0.3584     0.6991 0.932 0.068
#> GSM440025     1  0.3584     0.6947 0.932 0.068
#> GSM440026     2  0.9170     0.6269 0.332 0.668
#> GSM440039     1  0.9427     0.2674 0.640 0.360
#> GSM440040     1  0.5294     0.6586 0.880 0.120
#> GSM440041     1  0.9977    -0.1823 0.528 0.472
#> GSM440042     1  0.8386     0.4850 0.732 0.268
#> GSM440015     1  0.9998    -0.2538 0.508 0.492
#> GSM440016     1  0.9732     0.0417 0.596 0.404
#> GSM440017     2  0.9358     0.5696 0.352 0.648
#> GSM440018     2  0.9248     0.6064 0.340 0.660
#> GSM440003     2  0.9491     0.5735 0.368 0.632
#> GSM440004     1  0.9710     0.1901 0.600 0.400
#> GSM440005     1  0.2423     0.6954 0.960 0.040
#> GSM440006     1  0.9460     0.2047 0.636 0.364
#> GSM440027     2  0.9775     0.0191 0.412 0.588
#> GSM440028     2  0.9866    -0.0215 0.432 0.568
#> GSM440029     2  0.9170     0.1879 0.332 0.668
#> GSM440030     2  0.2043     0.5207 0.032 0.968
#> GSM440043     2  0.8267     0.6550 0.260 0.740
#> GSM440044     2  0.8813     0.6316 0.300 0.700
#> GSM440045     2  0.8267     0.6541 0.260 0.740
#> GSM440046     2  0.8443     0.6549 0.272 0.728
#> GSM440019     1  0.9922    -0.0595 0.552 0.448
#> GSM440020     1  0.9998    -0.1743 0.508 0.492
#> GSM440021     2  0.9866     0.3675 0.432 0.568
#> GSM440022     2  0.9286     0.5860 0.344 0.656
#> GSM440007     2  0.8813     0.6420 0.300 0.700
#> GSM440008     2  0.8207     0.6555 0.256 0.744
#> GSM440009     2  0.8267     0.6349 0.260 0.740
#> GSM440010     2  0.9323     0.5721 0.348 0.652
#> GSM440031     2  0.9460     0.1256 0.364 0.636
#> GSM440032     2  0.1633     0.5224 0.024 0.976
#> GSM440033     2  0.2603     0.5136 0.044 0.956
#> GSM440034     2  0.8909     0.2372 0.308 0.692

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM439987     1  0.4654     0.7193 0.792 0.000 0.208
#> GSM439988     1  0.3941     0.8053 0.844 0.000 0.156
#> GSM439989     1  0.6274    -0.0502 0.544 0.000 0.456
#> GSM439990     1  0.1163     0.8163 0.972 0.000 0.028
#> GSM439991     3  0.3752     0.8040 0.144 0.000 0.856
#> GSM439992     1  0.3482     0.8107 0.872 0.000 0.128
#> GSM439993     1  0.4178     0.7894 0.828 0.000 0.172
#> GSM439994     3  0.6082     0.5445 0.296 0.012 0.692
#> GSM439995     3  0.2056     0.8146 0.024 0.024 0.952
#> GSM439996     3  0.4121     0.7753 0.168 0.000 0.832
#> GSM439997     3  0.1860     0.8229 0.052 0.000 0.948
#> GSM439998     3  0.1289     0.8195 0.032 0.000 0.968
#> GSM440035     1  0.2356     0.8125 0.928 0.000 0.072
#> GSM440036     1  0.5098     0.6867 0.752 0.000 0.248
#> GSM440037     1  0.3412     0.8158 0.876 0.000 0.124
#> GSM440038     1  0.2448     0.8282 0.924 0.000 0.076
#> GSM440011     1  0.2096     0.8192 0.944 0.004 0.052
#> GSM440012     1  0.3879     0.8052 0.848 0.000 0.152
#> GSM440013     1  0.4291     0.7632 0.820 0.000 0.180
#> GSM440014     1  0.1267     0.8098 0.972 0.004 0.024
#> GSM439999     1  0.0237     0.8090 0.996 0.000 0.004
#> GSM440000     1  0.2537     0.8259 0.920 0.000 0.080
#> GSM440001     1  0.3752     0.8111 0.856 0.000 0.144
#> GSM440002     1  0.5016     0.7010 0.760 0.000 0.240
#> GSM440023     1  0.4489     0.8126 0.856 0.036 0.108
#> GSM440024     1  0.3267     0.8275 0.884 0.000 0.116
#> GSM440025     1  0.3816     0.8064 0.852 0.000 0.148
#> GSM440026     3  0.4291     0.8010 0.152 0.008 0.840
#> GSM440039     1  0.6111     0.5140 0.604 0.000 0.396
#> GSM440040     1  0.4235     0.7664 0.824 0.000 0.176
#> GSM440041     3  0.5431     0.7185 0.284 0.000 0.716
#> GSM440042     1  0.5529     0.7181 0.704 0.000 0.296
#> GSM440015     3  0.6062     0.3913 0.384 0.000 0.616
#> GSM440016     3  0.6295     0.3172 0.472 0.000 0.528
#> GSM440017     3  0.3918     0.8102 0.140 0.004 0.856
#> GSM440018     3  0.4834     0.7426 0.204 0.004 0.792
#> GSM440003     3  0.4235     0.7813 0.176 0.000 0.824
#> GSM440004     1  0.6274     0.4702 0.544 0.000 0.456
#> GSM440005     1  0.2796     0.8238 0.908 0.000 0.092
#> GSM440006     3  0.6215     0.4166 0.428 0.000 0.572
#> GSM440027     2  0.0000     0.9941 0.000 1.000 0.000
#> GSM440028     2  0.0983     0.9832 0.004 0.980 0.016
#> GSM440029     2  0.0000     0.9941 0.000 1.000 0.000
#> GSM440030     2  0.0592     0.9873 0.000 0.988 0.012
#> GSM440043     3  0.0892     0.8149 0.020 0.000 0.980
#> GSM440044     3  0.1289     0.8203 0.032 0.000 0.968
#> GSM440045     3  0.1163     0.8173 0.028 0.000 0.972
#> GSM440046     3  0.1163     0.8196 0.028 0.000 0.972
#> GSM440019     3  0.5431     0.6701 0.284 0.000 0.716
#> GSM440020     3  0.4504     0.7518 0.196 0.000 0.804
#> GSM440021     3  0.4178     0.7775 0.172 0.000 0.828
#> GSM440022     3  0.3896     0.7749 0.128 0.008 0.864
#> GSM440007     3  0.2796     0.8135 0.092 0.000 0.908
#> GSM440008     3  0.1163     0.8178 0.028 0.000 0.972
#> GSM440009     3  0.6622     0.7551 0.164 0.088 0.748
#> GSM440010     3  0.3771     0.8201 0.112 0.012 0.876
#> GSM440031     2  0.0000     0.9941 0.000 1.000 0.000
#> GSM440032     2  0.0000     0.9941 0.000 1.000 0.000
#> GSM440033     2  0.0424     0.9904 0.000 0.992 0.008
#> GSM440034     2  0.0000     0.9941 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM439987     1  0.7058    0.49567 0.572 0.000 0.200 0.228
#> GSM439988     1  0.3498    0.78456 0.832 0.000 0.160 0.008
#> GSM439989     3  0.6686    0.23984 0.388 0.000 0.520 0.092
#> GSM439990     1  0.1724    0.79837 0.948 0.000 0.020 0.032
#> GSM439991     3  0.6560    0.16659 0.076 0.000 0.464 0.460
#> GSM439992     1  0.4037    0.78178 0.832 0.000 0.112 0.056
#> GSM439993     1  0.5132    0.75453 0.748 0.000 0.184 0.068
#> GSM439994     4  0.4475    0.68562 0.080 0.004 0.100 0.816
#> GSM439995     4  0.5678    0.00507 0.004 0.016 0.480 0.500
#> GSM439996     3  0.3399    0.62728 0.040 0.000 0.868 0.092
#> GSM439997     3  0.5010    0.59580 0.024 0.000 0.700 0.276
#> GSM439998     3  0.3958    0.64314 0.024 0.000 0.816 0.160
#> GSM440035     1  0.3818    0.78397 0.844 0.000 0.048 0.108
#> GSM440036     1  0.7184    0.40955 0.524 0.000 0.160 0.316
#> GSM440037     1  0.3617    0.79724 0.860 0.000 0.064 0.076
#> GSM440038     1  0.2739    0.80858 0.904 0.000 0.060 0.036
#> GSM440011     1  0.2988    0.78381 0.876 0.000 0.012 0.112
#> GSM440012     1  0.3271    0.79316 0.856 0.000 0.132 0.012
#> GSM440013     1  0.6040    0.54058 0.648 0.000 0.080 0.272
#> GSM440014     1  0.3245    0.78920 0.880 0.000 0.064 0.056
#> GSM439999     1  0.1635    0.79269 0.948 0.000 0.008 0.044
#> GSM440000     1  0.2300    0.80543 0.924 0.000 0.048 0.028
#> GSM440001     1  0.6788    0.62023 0.608 0.000 0.204 0.188
#> GSM440002     4  0.4502    0.58197 0.236 0.000 0.016 0.748
#> GSM440023     1  0.3978    0.79897 0.856 0.032 0.084 0.028
#> GSM440024     1  0.3978    0.78591 0.796 0.000 0.192 0.012
#> GSM440025     1  0.3547    0.78768 0.840 0.000 0.144 0.016
#> GSM440026     4  0.5420    0.63518 0.048 0.008 0.220 0.724
#> GSM440039     4  0.5018    0.67187 0.144 0.000 0.088 0.768
#> GSM440040     1  0.4746    0.72751 0.776 0.000 0.168 0.056
#> GSM440041     3  0.5470    0.61203 0.168 0.000 0.732 0.100
#> GSM440042     1  0.6123    0.40893 0.572 0.000 0.056 0.372
#> GSM440015     4  0.4940    0.69107 0.128 0.000 0.096 0.776
#> GSM440016     3  0.6701    0.32342 0.328 0.000 0.564 0.108
#> GSM440017     3  0.3279    0.63907 0.032 0.000 0.872 0.096
#> GSM440018     3  0.7156    0.45107 0.184 0.004 0.576 0.236
#> GSM440003     3  0.6248    0.43735 0.104 0.000 0.644 0.252
#> GSM440004     4  0.4890    0.68474 0.080 0.000 0.144 0.776
#> GSM440005     1  0.3501    0.80162 0.848 0.000 0.132 0.020
#> GSM440006     3  0.5420    0.44522 0.352 0.000 0.624 0.024
#> GSM440027     2  0.0000    0.99172 0.000 1.000 0.000 0.000
#> GSM440028     2  0.0844    0.98035 0.004 0.980 0.004 0.012
#> GSM440029     2  0.0000    0.99172 0.000 1.000 0.000 0.000
#> GSM440030     2  0.0469    0.98445 0.000 0.988 0.000 0.012
#> GSM440043     3  0.4981    0.31370 0.000 0.000 0.536 0.464
#> GSM440044     3  0.3052    0.63564 0.004 0.000 0.860 0.136
#> GSM440045     3  0.3498    0.62558 0.008 0.000 0.832 0.160
#> GSM440046     4  0.4720    0.51034 0.004 0.000 0.324 0.672
#> GSM440019     3  0.4136    0.60393 0.196 0.000 0.788 0.016
#> GSM440020     3  0.4834    0.62499 0.120 0.000 0.784 0.096
#> GSM440021     3  0.4301    0.63809 0.120 0.000 0.816 0.064
#> GSM440022     3  0.6726    0.29676 0.100 0.000 0.536 0.364
#> GSM440007     3  0.5212    0.62810 0.068 0.000 0.740 0.192
#> GSM440008     3  0.4855    0.55456 0.020 0.000 0.712 0.268
#> GSM440009     3  0.6442    0.59579 0.068 0.076 0.716 0.140
#> GSM440010     3  0.5212    0.64336 0.080 0.004 0.760 0.156
#> GSM440031     2  0.0000    0.99172 0.000 1.000 0.000 0.000
#> GSM440032     2  0.0000    0.99172 0.000 1.000 0.000 0.000
#> GSM440033     2  0.0779    0.97831 0.004 0.980 0.000 0.016
#> GSM440034     2  0.0000    0.99172 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM439987     5  0.3498    0.74919 0.132 0.000 0.024 0.012 0.832
#> GSM439988     1  0.2929    0.78220 0.840 0.000 0.152 0.008 0.000
#> GSM439989     3  0.6598    0.26613 0.368 0.000 0.488 0.024 0.120
#> GSM439990     1  0.1952    0.79535 0.912 0.000 0.000 0.004 0.084
#> GSM439991     5  0.5753    0.41892 0.016 0.000 0.136 0.188 0.660
#> GSM439992     1  0.4113    0.76758 0.820 0.000 0.084 0.044 0.052
#> GSM439993     1  0.5279    0.69918 0.724 0.000 0.140 0.028 0.108
#> GSM439994     4  0.3833    0.68145 0.040 0.000 0.096 0.832 0.032
#> GSM439995     3  0.5596    0.00698 0.008 0.020 0.500 0.452 0.020
#> GSM439996     3  0.5272    0.63895 0.044 0.000 0.720 0.060 0.176
#> GSM439997     3  0.4899    0.61583 0.020 0.000 0.736 0.180 0.064
#> GSM439998     3  0.2736    0.66849 0.024 0.000 0.892 0.068 0.016
#> GSM440035     1  0.5016    0.71007 0.732 0.000 0.016 0.092 0.160
#> GSM440036     5  0.4642    0.72599 0.120 0.000 0.044 0.056 0.780
#> GSM440037     1  0.2378    0.80409 0.908 0.000 0.064 0.016 0.012
#> GSM440038     1  0.2075    0.80611 0.924 0.000 0.032 0.004 0.040
#> GSM440011     1  0.4734    0.67752 0.732 0.000 0.020 0.040 0.208
#> GSM440012     1  0.2177    0.80017 0.908 0.000 0.080 0.008 0.004
#> GSM440013     1  0.6404    0.42537 0.560 0.000 0.088 0.312 0.040
#> GSM440014     1  0.3626    0.76945 0.816 0.000 0.012 0.020 0.152
#> GSM439999     1  0.2548    0.78365 0.876 0.000 0.004 0.004 0.116
#> GSM440000     1  0.1653    0.80396 0.944 0.000 0.024 0.028 0.004
#> GSM440001     5  0.4483    0.72353 0.156 0.000 0.052 0.020 0.772
#> GSM440002     4  0.6806    0.32562 0.100 0.000 0.060 0.536 0.304
#> GSM440023     1  0.3006    0.80367 0.888 0.020 0.056 0.028 0.008
#> GSM440024     1  0.4375    0.72185 0.768 0.000 0.072 0.004 0.156
#> GSM440025     1  0.3122    0.79296 0.852 0.004 0.120 0.024 0.000
#> GSM440026     4  0.5947    0.59867 0.024 0.012 0.212 0.664 0.088
#> GSM440039     4  0.5785    0.64391 0.096 0.000 0.088 0.704 0.112
#> GSM440040     1  0.4657    0.69926 0.756 0.000 0.172 0.024 0.048
#> GSM440041     3  0.6393    0.62883 0.144 0.000 0.636 0.060 0.160
#> GSM440042     1  0.6288    0.45077 0.584 0.000 0.100 0.284 0.032
#> GSM440015     4  0.4930    0.67411 0.060 0.000 0.084 0.768 0.088
#> GSM440016     3  0.8030    0.34644 0.228 0.000 0.424 0.120 0.228
#> GSM440017     3  0.4471    0.63785 0.016 0.000 0.752 0.036 0.196
#> GSM440018     3  0.6392    0.48505 0.200 0.004 0.588 0.196 0.012
#> GSM440003     3  0.6079    0.48847 0.052 0.000 0.644 0.220 0.084
#> GSM440004     4  0.3934    0.69582 0.060 0.000 0.104 0.820 0.016
#> GSM440005     1  0.4089    0.77751 0.804 0.000 0.100 0.008 0.088
#> GSM440006     3  0.5739    0.48640 0.308 0.000 0.596 0.008 0.088
#> GSM440027     2  0.0000    0.98941 0.000 1.000 0.000 0.000 0.000
#> GSM440028     2  0.1016    0.97828 0.008 0.972 0.004 0.012 0.004
#> GSM440029     2  0.0000    0.98941 0.000 1.000 0.000 0.000 0.000
#> GSM440030     2  0.0727    0.98099 0.000 0.980 0.004 0.012 0.004
#> GSM440043     3  0.4450    0.30519 0.000 0.000 0.508 0.488 0.004
#> GSM440044     3  0.3463    0.64848 0.016 0.000 0.820 0.156 0.008
#> GSM440045     3  0.2784    0.65398 0.016 0.000 0.872 0.108 0.004
#> GSM440046     4  0.3205    0.66107 0.004 0.000 0.176 0.816 0.004
#> GSM440019     3  0.4280    0.63129 0.192 0.000 0.764 0.016 0.028
#> GSM440020     3  0.4316    0.64300 0.120 0.000 0.772 0.108 0.000
#> GSM440021     3  0.3242    0.65633 0.116 0.000 0.844 0.040 0.000
#> GSM440022     3  0.5825    0.28728 0.080 0.000 0.488 0.428 0.004
#> GSM440007     3  0.4843    0.64616 0.020 0.000 0.756 0.120 0.104
#> GSM440008     3  0.4037    0.61044 0.028 0.000 0.776 0.188 0.008
#> GSM440009     3  0.6910    0.62840 0.056 0.068 0.652 0.100 0.124
#> GSM440010     3  0.5502    0.64340 0.064 0.000 0.700 0.188 0.048
#> GSM440031     2  0.0324    0.98753 0.000 0.992 0.000 0.004 0.004
#> GSM440032     2  0.0000    0.98941 0.000 1.000 0.000 0.000 0.000
#> GSM440033     2  0.0833    0.97402 0.004 0.976 0.000 0.016 0.004
#> GSM440034     2  0.0000    0.98941 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM439987     6   0.262     0.7251 0.104 0.000 0.008 0.004 0.012 0.872
#> GSM439988     1   0.277     0.7741 0.816 0.000 0.180 0.004 0.000 0.000
#> GSM439989     3   0.673     0.0503 0.352 0.000 0.460 0.012 0.092 0.084
#> GSM439990     1   0.219     0.7909 0.904 0.000 0.000 0.004 0.060 0.032
#> GSM439991     6   0.517     0.5193 0.020 0.000 0.092 0.116 0.048 0.724
#> GSM439992     1   0.442     0.7516 0.788 0.000 0.076 0.020 0.056 0.060
#> GSM439993     1   0.528     0.6921 0.704 0.000 0.104 0.004 0.076 0.112
#> GSM439994     4   0.356     0.4902 0.024 0.000 0.064 0.844 0.036 0.032
#> GSM439995     4   0.595     0.0112 0.008 0.016 0.432 0.464 0.064 0.016
#> GSM439996     3   0.554     0.4387 0.028 0.000 0.680 0.040 0.076 0.176
#> GSM439997     3   0.520     0.4112 0.012 0.000 0.712 0.144 0.076 0.056
#> GSM439998     3   0.291     0.4892 0.012 0.000 0.876 0.052 0.048 0.012
#> GSM440035     1   0.540     0.6898 0.700 0.000 0.012 0.096 0.064 0.128
#> GSM440036     6   0.529     0.6524 0.072 0.000 0.024 0.036 0.168 0.700
#> GSM440037     1   0.209     0.7996 0.920 0.000 0.032 0.008 0.032 0.008
#> GSM440038     1   0.226     0.8019 0.912 0.000 0.028 0.004 0.020 0.036
#> GSM440011     1   0.480     0.6872 0.724 0.000 0.016 0.036 0.040 0.184
#> GSM440012     1   0.159     0.7956 0.924 0.000 0.072 0.000 0.000 0.004
#> GSM440013     1   0.627     0.4013 0.528 0.000 0.076 0.328 0.048 0.020
#> GSM440014     1   0.408     0.7588 0.788 0.000 0.004 0.020 0.084 0.104
#> GSM439999     1   0.290     0.7841 0.868 0.000 0.004 0.008 0.048 0.072
#> GSM440000     1   0.171     0.7967 0.940 0.000 0.016 0.024 0.012 0.008
#> GSM440001     6   0.411     0.6953 0.124 0.000 0.024 0.008 0.056 0.788
#> GSM440002     4   0.778     0.1086 0.112 0.000 0.064 0.456 0.144 0.224
#> GSM440023     1   0.307     0.8016 0.876 0.012 0.048 0.012 0.040 0.012
#> GSM440024     1   0.399     0.7122 0.772 0.000 0.056 0.004 0.008 0.160
#> GSM440025     1   0.322     0.7869 0.828 0.004 0.136 0.008 0.024 0.000
#> GSM440026     4   0.657     0.3836 0.024 0.008 0.212 0.592 0.088 0.076
#> GSM440039     4   0.579     0.4314 0.080 0.000 0.060 0.680 0.040 0.140
#> GSM440040     1   0.502     0.6931 0.720 0.000 0.144 0.008 0.084 0.044
#> GSM440041     3   0.635     0.4405 0.132 0.000 0.624 0.040 0.060 0.144
#> GSM440042     1   0.720     0.4154 0.540 0.000 0.088 0.184 0.128 0.060
#> GSM440015     4   0.486     0.4667 0.056 0.000 0.064 0.760 0.088 0.032
#> GSM440016     3   0.764     0.1568 0.236 0.000 0.412 0.124 0.020 0.208
#> GSM440017     3   0.510     0.4339 0.012 0.000 0.680 0.020 0.072 0.216
#> GSM440018     3   0.633     0.2783 0.204 0.004 0.592 0.136 0.052 0.012
#> GSM440003     3   0.592     0.1997 0.052 0.000 0.636 0.212 0.028 0.072
#> GSM440004     4   0.469     0.4872 0.060 0.000 0.108 0.760 0.060 0.012
#> GSM440005     1   0.427     0.7732 0.784 0.000 0.100 0.008 0.032 0.076
#> GSM440006     3   0.563     0.2791 0.292 0.000 0.588 0.000 0.056 0.064
#> GSM440027     2   0.000     0.9729 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440028     2   0.177     0.9568 0.008 0.932 0.000 0.012 0.044 0.004
#> GSM440029     2   0.000     0.9729 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440030     2   0.155     0.9599 0.000 0.940 0.004 0.008 0.044 0.004
#> GSM440043     4   0.459    -0.1151 0.000 0.000 0.476 0.488 0.036 0.000
#> GSM440044     3   0.350     0.4398 0.012 0.000 0.804 0.160 0.012 0.012
#> GSM440045     3   0.211     0.4823 0.012 0.000 0.900 0.084 0.000 0.004
#> GSM440046     4   0.316     0.4877 0.000 0.000 0.144 0.824 0.024 0.008
#> GSM440019     3   0.372     0.4516 0.176 0.000 0.784 0.008 0.012 0.020
#> GSM440020     3   0.361     0.4428 0.096 0.000 0.796 0.108 0.000 0.000
#> GSM440021     3   0.246     0.4885 0.096 0.000 0.876 0.028 0.000 0.000
#> GSM440022     4   0.570    -0.0390 0.068 0.000 0.444 0.452 0.036 0.000
#> GSM440007     5   0.543     0.0000 0.008 0.000 0.400 0.056 0.520 0.016
#> GSM440008     3   0.393     0.4283 0.012 0.000 0.780 0.156 0.048 0.004
#> GSM440009     3   0.664     0.4158 0.056 0.064 0.644 0.076 0.032 0.128
#> GSM440010     3   0.576     0.4028 0.036 0.000 0.668 0.168 0.088 0.040
#> GSM440031     2   0.130     0.9629 0.000 0.948 0.000 0.004 0.044 0.004
#> GSM440032     2   0.000     0.9729 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440033     2   0.133     0.9492 0.000 0.948 0.000 0.020 0.032 0.000
#> GSM440034     2   0.000     0.9729 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n agent(p)  time(p)  dose(p) k
#> MAD:pam 40    1.000 1.15e-06 9.73e-01 2
#> MAD:pam 55    0.280 1.28e-07 2.74e-05 3
#> MAD:pam 48    0.548 3.31e-07 2.10e-03 4
#> MAD:pam 48    0.626 4.83e-07 7.57e-03 5
#> MAD:pam 29    0.119 1.30e-03 8.46e-03 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 60 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.999       1.000         0.2361 0.765   0.765
#> 3 3 0.489           0.735       0.855         1.5347 0.623   0.507
#> 4 4 0.624           0.769       0.871         0.2160 0.756   0.451
#> 5 5 0.638           0.700       0.795         0.0782 0.960   0.846
#> 6 6 0.721           0.672       0.801         0.0550 0.921   0.657

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM439987     1  0.0000      1.000 1.000 0.000
#> GSM439988     1  0.0000      1.000 1.000 0.000
#> GSM439989     1  0.0000      1.000 1.000 0.000
#> GSM439990     1  0.0000      1.000 1.000 0.000
#> GSM439991     1  0.0000      1.000 1.000 0.000
#> GSM439992     1  0.0000      1.000 1.000 0.000
#> GSM439993     1  0.0000      1.000 1.000 0.000
#> GSM439994     1  0.0000      1.000 1.000 0.000
#> GSM439995     1  0.0000      1.000 1.000 0.000
#> GSM439996     1  0.0000      1.000 1.000 0.000
#> GSM439997     1  0.0000      1.000 1.000 0.000
#> GSM439998     1  0.0000      1.000 1.000 0.000
#> GSM440035     1  0.0000      1.000 1.000 0.000
#> GSM440036     1  0.0000      1.000 1.000 0.000
#> GSM440037     1  0.0000      1.000 1.000 0.000
#> GSM440038     1  0.0000      1.000 1.000 0.000
#> GSM440011     1  0.0000      1.000 1.000 0.000
#> GSM440012     1  0.0000      1.000 1.000 0.000
#> GSM440013     1  0.0000      1.000 1.000 0.000
#> GSM440014     1  0.0000      1.000 1.000 0.000
#> GSM439999     1  0.0000      1.000 1.000 0.000
#> GSM440000     1  0.0000      1.000 1.000 0.000
#> GSM440001     1  0.0000      1.000 1.000 0.000
#> GSM440002     1  0.0000      1.000 1.000 0.000
#> GSM440023     1  0.0376      0.996 0.996 0.004
#> GSM440024     1  0.0000      1.000 1.000 0.000
#> GSM440025     1  0.0000      1.000 1.000 0.000
#> GSM440026     1  0.0000      1.000 1.000 0.000
#> GSM440039     1  0.0000      1.000 1.000 0.000
#> GSM440040     1  0.0000      1.000 1.000 0.000
#> GSM440041     1  0.0000      1.000 1.000 0.000
#> GSM440042     1  0.0000      1.000 1.000 0.000
#> GSM440015     1  0.0000      1.000 1.000 0.000
#> GSM440016     1  0.0000      1.000 1.000 0.000
#> GSM440017     1  0.0000      1.000 1.000 0.000
#> GSM440018     1  0.0000      1.000 1.000 0.000
#> GSM440003     1  0.0000      1.000 1.000 0.000
#> GSM440004     1  0.0000      1.000 1.000 0.000
#> GSM440005     1  0.0000      1.000 1.000 0.000
#> GSM440006     1  0.0000      1.000 1.000 0.000
#> GSM440027     2  0.0000      1.000 0.000 1.000
#> GSM440028     2  0.0000      1.000 0.000 1.000
#> GSM440029     2  0.0000      1.000 0.000 1.000
#> GSM440030     2  0.0000      1.000 0.000 1.000
#> GSM440043     1  0.0000      1.000 1.000 0.000
#> GSM440044     1  0.0000      1.000 1.000 0.000
#> GSM440045     1  0.0000      1.000 1.000 0.000
#> GSM440046     1  0.0000      1.000 1.000 0.000
#> GSM440019     1  0.0000      1.000 1.000 0.000
#> GSM440020     1  0.0000      1.000 1.000 0.000
#> GSM440021     1  0.0000      1.000 1.000 0.000
#> GSM440022     1  0.0000      1.000 1.000 0.000
#> GSM440007     1  0.0000      1.000 1.000 0.000
#> GSM440008     1  0.0672      0.992 0.992 0.008
#> GSM440009     1  0.0376      0.996 0.996 0.004
#> GSM440010     1  0.0000      1.000 1.000 0.000
#> GSM440031     2  0.0000      1.000 0.000 1.000
#> GSM440032     2  0.0000      1.000 0.000 1.000
#> GSM440033     2  0.0000      1.000 0.000 1.000
#> GSM440034     2  0.0000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM439987     1  0.1031      0.762 0.976 0.000 0.024
#> GSM439988     1  0.5098      0.746 0.752 0.000 0.248
#> GSM439989     1  0.1753      0.773 0.952 0.000 0.048
#> GSM439990     1  0.0747      0.763 0.984 0.000 0.016
#> GSM439991     1  0.2711      0.730 0.912 0.000 0.088
#> GSM439992     1  0.4062      0.766 0.836 0.000 0.164
#> GSM439993     1  0.5968      0.634 0.636 0.000 0.364
#> GSM439994     3  0.5621      0.589 0.308 0.000 0.692
#> GSM439995     3  0.0237      0.812 0.004 0.000 0.996
#> GSM439996     1  0.6309      0.329 0.504 0.000 0.496
#> GSM439997     3  0.0000      0.812 0.000 0.000 1.000
#> GSM439998     3  0.2448      0.774 0.076 0.000 0.924
#> GSM440035     1  0.1753      0.770 0.952 0.000 0.048
#> GSM440036     1  0.1411      0.770 0.964 0.000 0.036
#> GSM440037     1  0.5216      0.737 0.740 0.000 0.260
#> GSM440038     1  0.3116      0.719 0.892 0.000 0.108
#> GSM440011     1  0.1031      0.762 0.976 0.000 0.024
#> GSM440012     1  0.5621      0.702 0.692 0.000 0.308
#> GSM440013     1  0.1860      0.768 0.948 0.000 0.052
#> GSM440014     1  0.0892      0.762 0.980 0.000 0.020
#> GSM439999     1  0.0892      0.762 0.980 0.000 0.020
#> GSM440000     1  0.5291      0.729 0.732 0.000 0.268
#> GSM440001     1  0.0892      0.762 0.980 0.000 0.020
#> GSM440002     1  0.1031      0.762 0.976 0.000 0.024
#> GSM440023     1  0.5431      0.731 0.716 0.000 0.284
#> GSM440024     1  0.5254      0.731 0.736 0.000 0.264
#> GSM440025     1  0.6154      0.579 0.592 0.000 0.408
#> GSM440026     1  0.4931      0.524 0.768 0.000 0.232
#> GSM440039     3  0.6204      0.424 0.424 0.000 0.576
#> GSM440040     1  0.5254      0.736 0.736 0.000 0.264
#> GSM440041     1  0.6126      0.575 0.600 0.000 0.400
#> GSM440042     3  0.6062      0.486 0.384 0.000 0.616
#> GSM440015     3  0.5882      0.557 0.348 0.000 0.652
#> GSM440016     3  0.5948      0.239 0.360 0.000 0.640
#> GSM440017     1  0.5926      0.650 0.644 0.000 0.356
#> GSM440018     3  0.0592      0.812 0.012 0.000 0.988
#> GSM440003     3  0.4555      0.707 0.200 0.000 0.800
#> GSM440004     3  0.5016      0.644 0.240 0.000 0.760
#> GSM440005     1  0.5138      0.739 0.748 0.000 0.252
#> GSM440006     1  0.5138      0.743 0.748 0.000 0.252
#> GSM440027     2  0.0000      1.000 0.000 1.000 0.000
#> GSM440028     2  0.0000      1.000 0.000 1.000 0.000
#> GSM440029     2  0.0000      1.000 0.000 1.000 0.000
#> GSM440030     2  0.0000      1.000 0.000 1.000 0.000
#> GSM440043     3  0.0000      0.812 0.000 0.000 1.000
#> GSM440044     3  0.2165      0.790 0.064 0.000 0.936
#> GSM440045     3  0.0237      0.811 0.004 0.000 0.996
#> GSM440046     3  0.0237      0.812 0.004 0.000 0.996
#> GSM440019     3  0.5988      0.202 0.368 0.000 0.632
#> GSM440020     3  0.0237      0.812 0.004 0.000 0.996
#> GSM440021     3  0.0592      0.811 0.012 0.000 0.988
#> GSM440022     3  0.0237      0.811 0.004 0.000 0.996
#> GSM440007     3  0.3267      0.765 0.116 0.000 0.884
#> GSM440008     3  0.0237      0.812 0.000 0.004 0.996
#> GSM440009     3  0.1289      0.806 0.032 0.000 0.968
#> GSM440010     3  0.5397      0.451 0.280 0.000 0.720
#> GSM440031     2  0.0000      1.000 0.000 1.000 0.000
#> GSM440032     2  0.0000      1.000 0.000 1.000 0.000
#> GSM440033     2  0.0000      1.000 0.000 1.000 0.000
#> GSM440034     2  0.0000      1.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM439987     1  0.1637     0.8487 0.940 0.000 0.000 0.060
#> GSM439988     4  0.1970     0.8051 0.060 0.000 0.008 0.932
#> GSM439989     1  0.4605     0.5904 0.664 0.000 0.000 0.336
#> GSM439990     1  0.3219     0.8183 0.836 0.000 0.000 0.164
#> GSM439991     1  0.1913     0.8464 0.940 0.000 0.020 0.040
#> GSM439992     4  0.6110     0.2257 0.368 0.000 0.056 0.576
#> GSM439993     4  0.3681     0.7562 0.008 0.000 0.176 0.816
#> GSM439994     1  0.3672     0.7640 0.824 0.000 0.164 0.012
#> GSM439995     3  0.0000     0.8639 0.000 0.000 1.000 0.000
#> GSM439996     4  0.4730     0.5049 0.000 0.000 0.364 0.636
#> GSM439997     3  0.0336     0.8633 0.000 0.000 0.992 0.008
#> GSM439998     3  0.2216     0.8137 0.000 0.000 0.908 0.092
#> GSM440035     1  0.3895     0.8111 0.804 0.000 0.012 0.184
#> GSM440036     1  0.2921     0.8375 0.860 0.000 0.000 0.140
#> GSM440037     4  0.0921     0.8133 0.028 0.000 0.000 0.972
#> GSM440038     1  0.2578     0.8474 0.912 0.000 0.036 0.052
#> GSM440011     1  0.1474     0.8482 0.948 0.000 0.000 0.052
#> GSM440012     4  0.1888     0.8176 0.016 0.000 0.044 0.940
#> GSM440013     1  0.3249     0.8374 0.852 0.000 0.008 0.140
#> GSM440014     1  0.2760     0.8386 0.872 0.000 0.000 0.128
#> GSM439999     1  0.2589     0.8424 0.884 0.000 0.000 0.116
#> GSM440000     4  0.1406     0.8180 0.024 0.000 0.016 0.960
#> GSM440001     1  0.2973     0.8327 0.856 0.000 0.000 0.144
#> GSM440002     1  0.0817     0.8422 0.976 0.000 0.000 0.024
#> GSM440023     4  0.2197     0.8154 0.048 0.000 0.024 0.928
#> GSM440024     4  0.1584     0.8174 0.036 0.000 0.012 0.952
#> GSM440025     4  0.3881     0.7463 0.016 0.000 0.172 0.812
#> GSM440026     1  0.1109     0.8335 0.968 0.000 0.028 0.004
#> GSM440039     1  0.2773     0.8028 0.880 0.000 0.116 0.004
#> GSM440040     4  0.2131     0.8190 0.032 0.000 0.036 0.932
#> GSM440041     4  0.4454     0.6048 0.000 0.000 0.308 0.692
#> GSM440042     1  0.7380     0.4454 0.512 0.000 0.288 0.200
#> GSM440015     1  0.3991     0.7592 0.808 0.000 0.172 0.020
#> GSM440016     4  0.4697     0.5954 0.008 0.000 0.296 0.696
#> GSM440017     4  0.2999     0.7851 0.004 0.000 0.132 0.864
#> GSM440018     3  0.2944     0.7894 0.004 0.000 0.868 0.128
#> GSM440003     3  0.7469     0.0861 0.368 0.000 0.452 0.180
#> GSM440004     1  0.5355     0.4930 0.620 0.000 0.360 0.020
#> GSM440005     4  0.1284     0.8184 0.024 0.000 0.012 0.964
#> GSM440006     4  0.3216     0.8056 0.076 0.000 0.044 0.880
#> GSM440027     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM440028     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM440029     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM440030     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM440043     3  0.0000     0.8639 0.000 0.000 1.000 0.000
#> GSM440044     3  0.1807     0.8430 0.008 0.000 0.940 0.052
#> GSM440045     3  0.0000     0.8639 0.000 0.000 1.000 0.000
#> GSM440046     3  0.0000     0.8639 0.000 0.000 1.000 0.000
#> GSM440019     4  0.5105     0.3206 0.004 0.000 0.432 0.564
#> GSM440020     3  0.0000     0.8639 0.000 0.000 1.000 0.000
#> GSM440021     3  0.1211     0.8523 0.000 0.000 0.960 0.040
#> GSM440022     3  0.0188     0.8635 0.000 0.000 0.996 0.004
#> GSM440007     3  0.5590     0.5526 0.064 0.000 0.692 0.244
#> GSM440008     3  0.0376     0.8632 0.000 0.004 0.992 0.004
#> GSM440009     3  0.2546     0.8214 0.008 0.000 0.900 0.092
#> GSM440010     3  0.5000    -0.1416 0.000 0.000 0.504 0.496
#> GSM440031     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM440032     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM440033     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM440034     2  0.0000     1.0000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1 p2    p3    p4    p5
#> GSM439987     1  0.0703   0.737029 0.976  0 0.000 0.000 0.024
#> GSM439988     4  0.3353   0.641994 0.196  0 0.000 0.796 0.008
#> GSM439989     1  0.4298   0.542983 0.640  0 0.000 0.352 0.008
#> GSM439990     1  0.3300   0.733471 0.792  0 0.000 0.204 0.004
#> GSM439991     1  0.3924   0.633193 0.800  0 0.012 0.032 0.156
#> GSM439992     4  0.5443   0.390749 0.316  0 0.020 0.620 0.044
#> GSM439993     4  0.3890   0.708925 0.000  0 0.012 0.736 0.252
#> GSM439994     5  0.5136   0.722760 0.260  0 0.080 0.000 0.660
#> GSM439995     3  0.0703   0.792476 0.000  0 0.976 0.000 0.024
#> GSM439996     4  0.5762   0.616485 0.000  0 0.144 0.608 0.248
#> GSM439997     3  0.0162   0.794501 0.000  0 0.996 0.000 0.004
#> GSM439998     3  0.5305   0.604659 0.000  0 0.672 0.132 0.196
#> GSM440035     1  0.4003   0.735732 0.780  0 0.004 0.180 0.036
#> GSM440036     1  0.2536   0.772082 0.868  0 0.000 0.128 0.004
#> GSM440037     4  0.1831   0.758396 0.076  0 0.000 0.920 0.004
#> GSM440038     1  0.3191   0.712131 0.868  0 0.016 0.040 0.076
#> GSM440011     1  0.0963   0.730170 0.964  0 0.000 0.000 0.036
#> GSM440012     4  0.2177   0.761880 0.008  0 0.004 0.908 0.080
#> GSM440013     1  0.2446   0.732173 0.900  0 0.000 0.044 0.056
#> GSM440014     1  0.2970   0.756393 0.828  0 0.000 0.168 0.004
#> GSM439999     1  0.2890   0.763541 0.836  0 0.000 0.160 0.004
#> GSM440000     4  0.1836   0.766666 0.032  0 0.000 0.932 0.036
#> GSM440001     1  0.2583   0.772893 0.864  0 0.000 0.132 0.004
#> GSM440002     1  0.1544   0.704696 0.932  0 0.000 0.000 0.068
#> GSM440023     4  0.2886   0.728643 0.116  0 0.004 0.864 0.016
#> GSM440024     4  0.1798   0.762705 0.064  0 0.004 0.928 0.004
#> GSM440025     4  0.4849   0.658418 0.012  0 0.164 0.740 0.084
#> GSM440026     1  0.4383  -0.134413 0.572  0 0.004 0.000 0.424
#> GSM440039     5  0.4639   0.574198 0.368  0 0.020 0.000 0.612
#> GSM440040     4  0.3476   0.760330 0.076  0 0.000 0.836 0.088
#> GSM440041     4  0.5088   0.671542 0.000  0 0.080 0.668 0.252
#> GSM440042     5  0.8278   0.358578 0.204  0 0.252 0.160 0.384
#> GSM440015     5  0.5694   0.730051 0.260  0 0.104 0.008 0.628
#> GSM440016     4  0.6166   0.511163 0.016  0 0.232 0.604 0.148
#> GSM440017     4  0.3805   0.740073 0.016  0 0.008 0.784 0.192
#> GSM440018     3  0.3021   0.755856 0.004  0 0.872 0.064 0.060
#> GSM440003     3  0.6527  -0.147279 0.100  0 0.476 0.028 0.396
#> GSM440004     5  0.5854   0.664752 0.160  0 0.240 0.000 0.600
#> GSM440005     4  0.1943   0.764767 0.056  0 0.000 0.924 0.020
#> GSM440006     4  0.4179   0.719591 0.152  0 0.000 0.776 0.072
#> GSM440027     2  0.0000   1.000000 0.000  1 0.000 0.000 0.000
#> GSM440028     2  0.0000   1.000000 0.000  1 0.000 0.000 0.000
#> GSM440029     2  0.0000   1.000000 0.000  1 0.000 0.000 0.000
#> GSM440030     2  0.0000   1.000000 0.000  1 0.000 0.000 0.000
#> GSM440043     3  0.0794   0.791503 0.000  0 0.972 0.000 0.028
#> GSM440044     3  0.3215   0.751281 0.000  0 0.852 0.056 0.092
#> GSM440045     3  0.0404   0.794523 0.000  0 0.988 0.000 0.012
#> GSM440046     3  0.0963   0.788024 0.000  0 0.964 0.000 0.036
#> GSM440019     4  0.6361   0.539537 0.008  0 0.184 0.556 0.252
#> GSM440020     3  0.0566   0.795556 0.000  0 0.984 0.004 0.012
#> GSM440021     3  0.4385   0.679633 0.000  0 0.752 0.068 0.180
#> GSM440022     3  0.1331   0.795862 0.000  0 0.952 0.008 0.040
#> GSM440007     3  0.6315   0.531534 0.036  0 0.624 0.168 0.172
#> GSM440008     3  0.0880   0.792110 0.000  0 0.968 0.000 0.032
#> GSM440009     3  0.3426   0.754762 0.012  0 0.852 0.052 0.084
#> GSM440010     3  0.7004  -0.000504 0.020  0 0.420 0.368 0.192
#> GSM440031     2  0.0000   1.000000 0.000  1 0.000 0.000 0.000
#> GSM440032     2  0.0000   1.000000 0.000  1 0.000 0.000 0.000
#> GSM440033     2  0.0000   1.000000 0.000  1 0.000 0.000 0.000
#> GSM440034     2  0.0000   1.000000 0.000  1 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM439987     1  0.1644      0.823 0.932 0.000 0.000 0.052 0.004 0.012
#> GSM439988     5  0.2070      0.677 0.092 0.000 0.000 0.000 0.896 0.012
#> GSM439989     1  0.3789      0.547 0.660 0.000 0.000 0.000 0.332 0.008
#> GSM439990     1  0.1858      0.821 0.904 0.000 0.000 0.000 0.092 0.004
#> GSM439991     1  0.3858      0.524 0.680 0.000 0.004 0.308 0.004 0.004
#> GSM439992     5  0.6608      0.371 0.280 0.000 0.004 0.052 0.492 0.172
#> GSM439993     6  0.3774      0.360 0.000 0.000 0.000 0.008 0.328 0.664
#> GSM439994     4  0.1194      0.747 0.032 0.000 0.008 0.956 0.004 0.000
#> GSM439995     3  0.0692      0.788 0.000 0.000 0.976 0.004 0.000 0.020
#> GSM439996     6  0.4158      0.504 0.000 0.000 0.044 0.008 0.224 0.724
#> GSM439997     3  0.2697      0.763 0.000 0.000 0.812 0.000 0.000 0.188
#> GSM439998     3  0.4165      0.507 0.000 0.000 0.536 0.000 0.012 0.452
#> GSM440035     1  0.3995      0.774 0.808 0.000 0.008 0.072 0.076 0.036
#> GSM440036     1  0.2118      0.823 0.888 0.000 0.000 0.000 0.104 0.008
#> GSM440037     5  0.1686      0.726 0.012 0.000 0.000 0.000 0.924 0.064
#> GSM440038     1  0.2652      0.807 0.868 0.000 0.000 0.104 0.020 0.008
#> GSM440011     1  0.1625      0.819 0.928 0.000 0.000 0.060 0.000 0.012
#> GSM440012     5  0.3738      0.511 0.004 0.000 0.000 0.004 0.680 0.312
#> GSM440013     1  0.3335      0.811 0.844 0.000 0.000 0.068 0.056 0.032
#> GSM440014     1  0.1732      0.827 0.920 0.000 0.000 0.004 0.072 0.004
#> GSM439999     1  0.1265      0.830 0.948 0.000 0.000 0.000 0.044 0.008
#> GSM440000     5  0.2520      0.688 0.004 0.000 0.000 0.000 0.844 0.152
#> GSM440001     1  0.1615      0.831 0.928 0.000 0.000 0.004 0.064 0.004
#> GSM440002     1  0.2263      0.804 0.884 0.000 0.000 0.100 0.000 0.016
#> GSM440023     5  0.1409      0.715 0.032 0.000 0.000 0.008 0.948 0.012
#> GSM440024     5  0.1578      0.726 0.012 0.000 0.000 0.004 0.936 0.048
#> GSM440025     5  0.5321      0.223 0.008 0.000 0.056 0.012 0.540 0.384
#> GSM440026     1  0.4238      0.334 0.540 0.000 0.000 0.444 0.000 0.016
#> GSM440039     4  0.2149      0.697 0.104 0.000 0.000 0.888 0.004 0.004
#> GSM440040     5  0.3998      0.589 0.036 0.000 0.000 0.004 0.724 0.236
#> GSM440041     6  0.3602      0.505 0.004 0.000 0.004 0.008 0.240 0.744
#> GSM440042     4  0.6880      0.378 0.080 0.000 0.108 0.488 0.020 0.304
#> GSM440015     4  0.2257      0.745 0.076 0.000 0.004 0.900 0.008 0.012
#> GSM440016     6  0.4163      0.573 0.012 0.000 0.068 0.012 0.128 0.780
#> GSM440017     6  0.4178      0.115 0.008 0.000 0.000 0.004 0.428 0.560
#> GSM440018     6  0.4528     -0.046 0.000 0.000 0.428 0.020 0.008 0.544
#> GSM440003     4  0.6530      0.443 0.068 0.000 0.144 0.528 0.004 0.256
#> GSM440004     4  0.2825      0.714 0.012 0.000 0.136 0.844 0.000 0.008
#> GSM440005     5  0.1588      0.724 0.004 0.000 0.000 0.000 0.924 0.072
#> GSM440006     5  0.5155      0.523 0.128 0.000 0.000 0.004 0.624 0.244
#> GSM440027     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440028     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440029     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440030     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440043     3  0.0291      0.787 0.000 0.000 0.992 0.004 0.000 0.004
#> GSM440044     3  0.3652      0.681 0.000 0.000 0.672 0.004 0.000 0.324
#> GSM440045     3  0.1327      0.796 0.000 0.000 0.936 0.000 0.000 0.064
#> GSM440046     3  0.0405      0.785 0.000 0.000 0.988 0.008 0.000 0.004
#> GSM440019     6  0.3204      0.578 0.004 0.000 0.032 0.000 0.144 0.820
#> GSM440020     3  0.2664      0.775 0.000 0.000 0.816 0.000 0.000 0.184
#> GSM440021     3  0.3756      0.609 0.000 0.000 0.600 0.000 0.000 0.400
#> GSM440022     3  0.1753      0.793 0.000 0.000 0.912 0.004 0.000 0.084
#> GSM440007     6  0.5539      0.329 0.024 0.000 0.256 0.076 0.016 0.628
#> GSM440008     3  0.0146      0.786 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM440009     3  0.5187      0.258 0.012 0.000 0.480 0.024 0.020 0.464
#> GSM440010     6  0.4858      0.533 0.024 0.000 0.140 0.028 0.068 0.740
#> GSM440031     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440032     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM440033     2  0.0146      0.997 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM440034     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n agent(p)  time(p)  dose(p) k
#> MAD:mclust 60    0.296 9.95e-02 1.87e-07 2
#> MAD:mclust 54    0.293 7.76e-08 3.01e-05 3
#> MAD:mclust 54    0.405 4.14e-08 4.24e-04 4
#> MAD:mclust 55    0.551 1.66e-09 6.73e-04 5
#> MAD:mclust 50    0.577 2.22e-09 1.15e-03 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 60 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.679           0.874       0.942         0.3959 0.587   0.587
#> 3 3 0.355           0.635       0.802         0.5644 0.664   0.480
#> 4 4 0.462           0.527       0.750         0.1887 0.743   0.418
#> 5 5 0.511           0.434       0.686         0.0765 0.854   0.514
#> 6 6 0.556           0.466       0.654         0.0433 0.934   0.712

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM439987     1  0.0000      0.962 1.000 0.000
#> GSM439988     1  0.0000      0.962 1.000 0.000
#> GSM439989     1  0.0000      0.962 1.000 0.000
#> GSM439990     1  0.0000      0.962 1.000 0.000
#> GSM439991     1  0.0000      0.962 1.000 0.000
#> GSM439992     1  0.0000      0.962 1.000 0.000
#> GSM439993     1  0.0000      0.962 1.000 0.000
#> GSM439994     1  0.0000      0.962 1.000 0.000
#> GSM439995     2  0.6712      0.804 0.176 0.824
#> GSM439996     1  0.0000      0.962 1.000 0.000
#> GSM439997     1  0.5178      0.839 0.884 0.116
#> GSM439998     1  0.0000      0.962 1.000 0.000
#> GSM440035     1  0.0000      0.962 1.000 0.000
#> GSM440036     1  0.0000      0.962 1.000 0.000
#> GSM440037     1  0.0000      0.962 1.000 0.000
#> GSM440038     1  0.2043      0.937 0.968 0.032
#> GSM440011     1  0.0000      0.962 1.000 0.000
#> GSM440012     1  0.0000      0.962 1.000 0.000
#> GSM440013     1  0.0000      0.962 1.000 0.000
#> GSM440014     1  0.0000      0.962 1.000 0.000
#> GSM439999     1  0.0000      0.962 1.000 0.000
#> GSM440000     1  0.0000      0.962 1.000 0.000
#> GSM440001     1  0.0000      0.962 1.000 0.000
#> GSM440002     1  0.0000      0.962 1.000 0.000
#> GSM440023     1  0.3879      0.893 0.924 0.076
#> GSM440024     1  0.0000      0.962 1.000 0.000
#> GSM440025     1  0.8763      0.512 0.704 0.296
#> GSM440026     2  0.9896      0.336 0.440 0.560
#> GSM440039     1  0.1414      0.948 0.980 0.020
#> GSM440040     1  0.0000      0.962 1.000 0.000
#> GSM440041     1  0.0000      0.962 1.000 0.000
#> GSM440042     1  0.0000      0.962 1.000 0.000
#> GSM440015     1  0.0376      0.960 0.996 0.004
#> GSM440016     1  0.0000      0.962 1.000 0.000
#> GSM440017     1  0.0000      0.962 1.000 0.000
#> GSM440018     2  0.6887      0.800 0.184 0.816
#> GSM440003     1  0.4690      0.862 0.900 0.100
#> GSM440004     2  0.7528      0.774 0.216 0.784
#> GSM440005     1  0.0000      0.962 1.000 0.000
#> GSM440006     1  0.0000      0.962 1.000 0.000
#> GSM440027     2  0.0000      0.860 0.000 1.000
#> GSM440028     2  0.0000      0.860 0.000 1.000
#> GSM440029     2  0.0000      0.860 0.000 1.000
#> GSM440030     2  0.0000      0.860 0.000 1.000
#> GSM440043     2  0.8713      0.673 0.292 0.708
#> GSM440044     1  0.0000      0.962 1.000 0.000
#> GSM440045     1  0.9427      0.331 0.640 0.360
#> GSM440046     2  0.7056      0.793 0.192 0.808
#> GSM440019     1  0.0000      0.962 1.000 0.000
#> GSM440020     1  0.8955      0.469 0.688 0.312
#> GSM440021     1  0.0938      0.954 0.988 0.012
#> GSM440022     2  0.6623      0.808 0.172 0.828
#> GSM440007     1  0.0376      0.960 0.996 0.004
#> GSM440008     2  0.0000      0.860 0.000 1.000
#> GSM440009     2  0.9963      0.250 0.464 0.536
#> GSM440010     1  0.0672      0.957 0.992 0.008
#> GSM440031     2  0.0000      0.860 0.000 1.000
#> GSM440032     2  0.0000      0.860 0.000 1.000
#> GSM440033     2  0.0000      0.860 0.000 1.000
#> GSM440034     2  0.0000      0.860 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM439987     3  0.5810     0.4617 0.336 0.000 0.664
#> GSM439988     1  0.2749     0.7959 0.924 0.012 0.064
#> GSM439989     1  0.3816     0.7756 0.852 0.000 0.148
#> GSM439990     1  0.4842     0.7338 0.776 0.000 0.224
#> GSM439991     3  0.5988     0.3385 0.368 0.000 0.632
#> GSM439992     1  0.4887     0.7458 0.772 0.000 0.228
#> GSM439993     1  0.1964     0.7973 0.944 0.000 0.056
#> GSM439994     3  0.1989     0.6876 0.048 0.004 0.948
#> GSM439995     3  0.5772     0.5020 0.024 0.220 0.756
#> GSM439996     1  0.2945     0.7762 0.908 0.004 0.088
#> GSM439997     3  0.5455     0.6481 0.184 0.028 0.788
#> GSM439998     1  0.5285     0.6866 0.752 0.004 0.244
#> GSM440035     1  0.5948     0.5249 0.640 0.000 0.360
#> GSM440036     1  0.5650     0.6129 0.688 0.000 0.312
#> GSM440037     1  0.1129     0.7985 0.976 0.004 0.020
#> GSM440038     3  0.7232     0.1179 0.428 0.028 0.544
#> GSM440011     3  0.5397     0.5389 0.280 0.000 0.720
#> GSM440012     1  0.1860     0.7956 0.948 0.000 0.052
#> GSM440013     3  0.5621     0.5259 0.308 0.000 0.692
#> GSM440014     1  0.5178     0.7015 0.744 0.000 0.256
#> GSM439999     1  0.5216     0.6965 0.740 0.000 0.260
#> GSM440000     1  0.1399     0.7999 0.968 0.004 0.028
#> GSM440001     1  0.5497     0.6527 0.708 0.000 0.292
#> GSM440002     3  0.5560     0.5126 0.300 0.000 0.700
#> GSM440023     1  0.5069     0.7157 0.828 0.128 0.044
#> GSM440024     1  0.2313     0.7872 0.944 0.032 0.024
#> GSM440025     1  0.6488     0.6164 0.744 0.192 0.064
#> GSM440026     3  0.5174     0.6488 0.076 0.092 0.832
#> GSM440039     3  0.2339     0.6815 0.048 0.012 0.940
#> GSM440040     1  0.1529     0.8016 0.960 0.000 0.040
#> GSM440041     1  0.2261     0.7999 0.932 0.000 0.068
#> GSM440042     3  0.5706     0.5050 0.320 0.000 0.680
#> GSM440015     3  0.1860     0.6912 0.052 0.000 0.948
#> GSM440016     1  0.5905     0.5190 0.648 0.000 0.352
#> GSM440017     1  0.2165     0.8043 0.936 0.000 0.064
#> GSM440018     3  0.7581    -0.0748 0.040 0.464 0.496
#> GSM440003     3  0.3587     0.6940 0.088 0.020 0.892
#> GSM440004     3  0.3610     0.6284 0.016 0.096 0.888
#> GSM440005     1  0.1877     0.7997 0.956 0.012 0.032
#> GSM440006     1  0.2772     0.8048 0.916 0.004 0.080
#> GSM440027     2  0.1289     0.8495 0.000 0.968 0.032
#> GSM440028     2  0.1163     0.8455 0.028 0.972 0.000
#> GSM440029     2  0.1267     0.8473 0.024 0.972 0.004
#> GSM440030     2  0.2165     0.8309 0.000 0.936 0.064
#> GSM440043     3  0.6255     0.5209 0.048 0.204 0.748
#> GSM440044     3  0.6126     0.4142 0.352 0.004 0.644
#> GSM440045     3  0.6191     0.6367 0.140 0.084 0.776
#> GSM440046     3  0.5466     0.5592 0.040 0.160 0.800
#> GSM440019     1  0.3573     0.7861 0.876 0.004 0.120
#> GSM440020     3  0.7673     0.5683 0.236 0.100 0.664
#> GSM440021     1  0.5643     0.6842 0.760 0.020 0.220
#> GSM440022     3  0.8494     0.2428 0.108 0.336 0.556
#> GSM440007     1  0.6267     0.3057 0.548 0.000 0.452
#> GSM440008     2  0.6169     0.4347 0.004 0.636 0.360
#> GSM440009     2  0.9956    -0.1900 0.292 0.372 0.336
#> GSM440010     1  0.4555     0.7643 0.800 0.000 0.200
#> GSM440031     2  0.1289     0.8498 0.000 0.968 0.032
#> GSM440032     2  0.0747     0.8514 0.000 0.984 0.016
#> GSM440033     2  0.2096     0.8264 0.052 0.944 0.004
#> GSM440034     2  0.1482     0.8509 0.012 0.968 0.020

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM439987     1  0.3681     0.5864 0.816 0.000 0.008 0.176
#> GSM439988     4  0.4898     0.5394 0.184 0.024 0.020 0.772
#> GSM439989     4  0.4730     0.2376 0.364 0.000 0.000 0.636
#> GSM439990     4  0.5508    -0.1219 0.476 0.000 0.016 0.508
#> GSM439991     1  0.5432     0.5773 0.740 0.000 0.136 0.124
#> GSM439992     4  0.6041     0.3121 0.332 0.000 0.060 0.608
#> GSM439993     4  0.3791     0.5785 0.004 0.000 0.200 0.796
#> GSM439994     1  0.4661     0.4162 0.724 0.008 0.264 0.004
#> GSM439995     3  0.2718     0.7287 0.056 0.020 0.912 0.012
#> GSM439996     4  0.5553     0.0619 0.012 0.004 0.452 0.532
#> GSM439997     3  0.2297     0.7460 0.044 0.004 0.928 0.024
#> GSM439998     3  0.5133     0.5593 0.024 0.004 0.704 0.268
#> GSM440035     1  0.6451     0.2503 0.524 0.000 0.072 0.404
#> GSM440036     1  0.5028     0.3476 0.596 0.004 0.000 0.400
#> GSM440037     4  0.3575     0.6072 0.124 0.004 0.020 0.852
#> GSM440038     1  0.4910     0.5561 0.756 0.024 0.012 0.208
#> GSM440011     1  0.3105     0.5932 0.856 0.000 0.004 0.140
#> GSM440012     4  0.4499     0.6231 0.048 0.000 0.160 0.792
#> GSM440013     1  0.3444     0.5801 0.816 0.000 0.000 0.184
#> GSM440014     1  0.5292     0.1120 0.512 0.000 0.008 0.480
#> GSM439999     1  0.5281     0.1747 0.528 0.000 0.008 0.464
#> GSM440000     4  0.3796     0.6255 0.100 0.004 0.044 0.852
#> GSM440001     1  0.5294     0.1748 0.508 0.000 0.008 0.484
#> GSM440002     1  0.3142     0.5980 0.860 0.000 0.008 0.132
#> GSM440023     4  0.5990     0.4960 0.156 0.136 0.004 0.704
#> GSM440024     4  0.4353     0.5758 0.116 0.060 0.004 0.820
#> GSM440025     4  0.7193     0.4869 0.036 0.236 0.108 0.620
#> GSM440026     1  0.2099     0.5861 0.936 0.020 0.040 0.004
#> GSM440039     1  0.3870     0.4824 0.788 0.004 0.208 0.000
#> GSM440040     4  0.2500     0.6382 0.040 0.000 0.044 0.916
#> GSM440041     4  0.5316     0.3945 0.016 0.008 0.308 0.668
#> GSM440042     3  0.7002     0.2064 0.352 0.000 0.520 0.128
#> GSM440015     1  0.5536     0.1880 0.592 0.024 0.384 0.000
#> GSM440016     3  0.6542     0.1024 0.076 0.000 0.496 0.428
#> GSM440017     4  0.3554     0.6314 0.020 0.000 0.136 0.844
#> GSM440018     3  0.6780     0.5496 0.112 0.236 0.636 0.016
#> GSM440003     1  0.5827     0.0135 0.532 0.032 0.436 0.000
#> GSM440004     1  0.6640     0.0155 0.508 0.072 0.416 0.004
#> GSM440005     4  0.3093     0.6188 0.092 0.004 0.020 0.884
#> GSM440006     4  0.3612     0.6229 0.100 0.000 0.044 0.856
#> GSM440027     2  0.0895     0.9596 0.020 0.976 0.004 0.000
#> GSM440028     2  0.1617     0.9565 0.008 0.956 0.012 0.024
#> GSM440029     2  0.1492     0.9553 0.004 0.956 0.004 0.036
#> GSM440030     2  0.2363     0.9227 0.024 0.920 0.056 0.000
#> GSM440043     3  0.3595     0.7128 0.084 0.040 0.868 0.008
#> GSM440044     3  0.3245     0.7231 0.028 0.000 0.872 0.100
#> GSM440045     3  0.2364     0.7480 0.028 0.008 0.928 0.036
#> GSM440046     3  0.4181     0.6707 0.128 0.052 0.820 0.000
#> GSM440019     4  0.5345     0.1346 0.012 0.000 0.428 0.560
#> GSM440020     3  0.2457     0.7358 0.008 0.004 0.912 0.076
#> GSM440021     3  0.5041     0.5961 0.016 0.012 0.724 0.248
#> GSM440022     3  0.2810     0.7447 0.016 0.036 0.912 0.036
#> GSM440007     3  0.7023     0.5370 0.188 0.004 0.596 0.212
#> GSM440008     3  0.5508     0.5724 0.056 0.252 0.692 0.000
#> GSM440009     3  0.7162     0.5774 0.020 0.236 0.608 0.136
#> GSM440010     4  0.6448     0.1777 0.060 0.004 0.408 0.528
#> GSM440031     2  0.0804     0.9627 0.012 0.980 0.008 0.000
#> GSM440032     2  0.0859     0.9637 0.008 0.980 0.008 0.004
#> GSM440033     2  0.2365     0.9263 0.004 0.920 0.012 0.064
#> GSM440034     2  0.0859     0.9639 0.008 0.980 0.008 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM439987     1  0.4339     0.5742 0.772 0.000 0.012 0.048 0.168
#> GSM439988     5  0.6397     0.3441 0.112 0.032 0.000 0.280 0.576
#> GSM439989     5  0.4536     0.4476 0.240 0.000 0.000 0.048 0.712
#> GSM439990     5  0.4733     0.2923 0.348 0.000 0.000 0.028 0.624
#> GSM439991     1  0.5779     0.2211 0.532 0.000 0.056 0.396 0.016
#> GSM439992     4  0.7096     0.3176 0.220 0.000 0.052 0.532 0.196
#> GSM439993     4  0.5857     0.2307 0.000 0.000 0.096 0.460 0.444
#> GSM439994     1  0.5054     0.4197 0.696 0.000 0.216 0.084 0.004
#> GSM439995     3  0.3402     0.6515 0.044 0.044 0.872 0.028 0.012
#> GSM439996     4  0.6703     0.4039 0.000 0.000 0.296 0.428 0.276
#> GSM439997     3  0.3573     0.6212 0.032 0.004 0.836 0.120 0.008
#> GSM439998     3  0.5941     0.2102 0.000 0.000 0.584 0.256 0.160
#> GSM440035     1  0.6614     0.1298 0.440 0.000 0.016 0.408 0.136
#> GSM440036     1  0.6497     0.3603 0.556 0.016 0.000 0.176 0.252
#> GSM440037     5  0.2282     0.5341 0.036 0.008 0.004 0.032 0.920
#> GSM440038     1  0.5908     0.1859 0.520 0.020 0.024 0.020 0.416
#> GSM440011     1  0.3256     0.5752 0.832 0.004 0.000 0.016 0.148
#> GSM440012     5  0.4076     0.4721 0.016 0.004 0.108 0.056 0.816
#> GSM440013     1  0.5795     0.4672 0.632 0.008 0.008 0.088 0.264
#> GSM440014     5  0.4949     0.1682 0.396 0.000 0.000 0.032 0.572
#> GSM439999     5  0.5077     0.1086 0.428 0.000 0.000 0.036 0.536
#> GSM440000     5  0.2450     0.5246 0.028 0.000 0.032 0.028 0.912
#> GSM440001     1  0.6125     0.2221 0.500 0.000 0.000 0.136 0.364
#> GSM440002     1  0.3268     0.5975 0.856 0.000 0.004 0.060 0.080
#> GSM440023     5  0.6771     0.3773 0.068 0.180 0.000 0.156 0.596
#> GSM440024     5  0.3861     0.5104 0.036 0.020 0.004 0.112 0.828
#> GSM440025     5  0.6324     0.4389 0.028 0.104 0.084 0.092 0.692
#> GSM440026     1  0.2895     0.5938 0.896 0.016 0.016 0.024 0.048
#> GSM440039     1  0.4629     0.5241 0.764 0.004 0.148 0.076 0.008
#> GSM440040     4  0.5270     0.1854 0.028 0.000 0.012 0.548 0.412
#> GSM440041     5  0.6596    -0.3615 0.004 0.000 0.180 0.392 0.424
#> GSM440042     4  0.7777     0.0368 0.292 0.000 0.324 0.328 0.056
#> GSM440015     1  0.6210     0.0925 0.540 0.012 0.372 0.048 0.028
#> GSM440016     5  0.6501     0.1510 0.048 0.000 0.304 0.088 0.560
#> GSM440017     5  0.5753     0.1910 0.008 0.004 0.104 0.244 0.640
#> GSM440018     3  0.7465     0.4593 0.048 0.152 0.576 0.048 0.176
#> GSM440003     3  0.6736     0.0931 0.420 0.024 0.468 0.044 0.044
#> GSM440004     3  0.6563     0.0239 0.448 0.028 0.452 0.028 0.044
#> GSM440005     5  0.5596    -0.0128 0.036 0.012 0.004 0.444 0.504
#> GSM440006     4  0.6129     0.2254 0.060 0.004 0.024 0.524 0.388
#> GSM440027     2  0.0833     0.9573 0.004 0.976 0.000 0.016 0.004
#> GSM440028     2  0.2444     0.9402 0.000 0.904 0.012 0.068 0.016
#> GSM440029     2  0.1659     0.9569 0.004 0.948 0.008 0.024 0.016
#> GSM440030     2  0.2032     0.9272 0.004 0.924 0.052 0.020 0.000
#> GSM440043     3  0.3186     0.6506 0.060 0.028 0.880 0.020 0.012
#> GSM440044     3  0.4235     0.5471 0.020 0.000 0.764 0.196 0.020
#> GSM440045     3  0.2444     0.6484 0.004 0.004 0.908 0.056 0.028
#> GSM440046     3  0.3191     0.6446 0.064 0.040 0.872 0.024 0.000
#> GSM440019     4  0.5981     0.4933 0.004 0.000 0.236 0.600 0.160
#> GSM440020     3  0.3076     0.6225 0.000 0.008 0.868 0.088 0.036
#> GSM440021     3  0.5630     0.2889 0.004 0.000 0.612 0.096 0.288
#> GSM440022     3  0.3440     0.6439 0.012 0.028 0.864 0.076 0.020
#> GSM440007     4  0.6975     0.1714 0.148 0.000 0.340 0.476 0.036
#> GSM440008     3  0.4704     0.5839 0.004 0.180 0.752 0.048 0.016
#> GSM440009     3  0.6739     0.0616 0.016 0.108 0.440 0.424 0.012
#> GSM440010     4  0.6531     0.4892 0.044 0.012 0.216 0.624 0.104
#> GSM440031     2  0.0854     0.9548 0.004 0.976 0.008 0.012 0.000
#> GSM440032     2  0.1404     0.9567 0.004 0.956 0.008 0.028 0.004
#> GSM440033     2  0.2331     0.9277 0.000 0.900 0.000 0.080 0.020
#> GSM440034     2  0.1362     0.9572 0.008 0.960 0.004 0.012 0.016

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5 p6
#> GSM439987     5  0.5450     0.5065 0.172 0.000 0.004 0.032 0.660 NA
#> GSM439988     1  0.6998     0.2039 0.464 0.016 0.000 0.256 0.052 NA
#> GSM439989     1  0.4026     0.5521 0.780 0.000 0.000 0.040 0.144 NA
#> GSM439990     1  0.5017     0.4922 0.684 0.000 0.004 0.032 0.216 NA
#> GSM439991     5  0.6507     0.1798 0.004 0.000 0.040 0.284 0.492 NA
#> GSM439992     4  0.6305     0.4437 0.084 0.000 0.024 0.624 0.144 NA
#> GSM439993     4  0.5870     0.3286 0.312 0.000 0.048 0.560 0.004 NA
#> GSM439994     5  0.6145     0.4252 0.012 0.004 0.176 0.068 0.628 NA
#> GSM439995     3  0.3071     0.6684 0.004 0.008 0.864 0.008 0.040 NA
#> GSM439996     4  0.6360     0.4401 0.180 0.000 0.152 0.572 0.000 NA
#> GSM439997     3  0.4868     0.6011 0.004 0.000 0.724 0.148 0.036 NA
#> GSM439998     3  0.5813     0.2218 0.048 0.000 0.504 0.380 0.000 NA
#> GSM440035     4  0.7766    -0.0908 0.096 0.000 0.024 0.312 0.304 NA
#> GSM440036     5  0.7670     0.2651 0.232 0.012 0.004 0.124 0.404 NA
#> GSM440037     1  0.2711     0.5763 0.880 0.000 0.000 0.056 0.016 NA
#> GSM440038     1  0.5613     0.1477 0.524 0.004 0.012 0.004 0.376 NA
#> GSM440011     5  0.4433     0.4848 0.212 0.004 0.000 0.012 0.720 NA
#> GSM440012     1  0.4040     0.5307 0.808 0.000 0.068 0.060 0.008 NA
#> GSM440013     5  0.6071     0.3371 0.292 0.004 0.008 0.036 0.564 NA
#> GSM440014     1  0.5449     0.3133 0.580 0.000 0.000 0.020 0.308 NA
#> GSM439999     1  0.4933     0.3713 0.624 0.000 0.000 0.024 0.308 NA
#> GSM440000     1  0.3447     0.5600 0.848 0.004 0.016 0.068 0.012 NA
#> GSM440001     5  0.7273     0.2438 0.280 0.000 0.004 0.120 0.420 NA
#> GSM440002     5  0.5354     0.5443 0.112 0.004 0.004 0.056 0.700 NA
#> GSM440023     1  0.7702     0.3201 0.492 0.132 0.000 0.164 0.076 NA
#> GSM440024     1  0.4700     0.5235 0.760 0.028 0.000 0.120 0.032 NA
#> GSM440025     1  0.7196     0.3577 0.556 0.120 0.068 0.136 0.000 NA
#> GSM440026     5  0.3647     0.5560 0.048 0.012 0.032 0.004 0.840 NA
#> GSM440039     5  0.4990     0.4902 0.016 0.004 0.172 0.012 0.712 NA
#> GSM440040     4  0.6497     0.3004 0.212 0.000 0.008 0.496 0.028 NA
#> GSM440041     4  0.6207     0.3948 0.236 0.000 0.092 0.580 0.004 NA
#> GSM440042     4  0.7498     0.2333 0.020 0.000 0.160 0.444 0.244 NA
#> GSM440015     5  0.6406     0.0536 0.052 0.000 0.356 0.008 0.480 NA
#> GSM440016     1  0.6673     0.2794 0.532 0.000 0.280 0.072 0.028 NA
#> GSM440017     1  0.6666     0.1221 0.492 0.000 0.084 0.312 0.008 NA
#> GSM440018     3  0.6895     0.4988 0.164 0.088 0.592 0.008 0.048 NA
#> GSM440003     3  0.6393     0.2513 0.024 0.004 0.488 0.008 0.332 NA
#> GSM440004     3  0.6534     0.1314 0.032 0.028 0.460 0.004 0.388 NA
#> GSM440005     4  0.6604     0.1424 0.312 0.000 0.004 0.432 0.028 NA
#> GSM440006     4  0.6567     0.3413 0.236 0.004 0.008 0.524 0.036 NA
#> GSM440027     2  0.1862     0.9422 0.008 0.932 0.012 0.000 0.016 NA
#> GSM440028     2  0.1667     0.9382 0.008 0.936 0.004 0.008 0.000 NA
#> GSM440029     2  0.1592     0.9455 0.016 0.944 0.012 0.004 0.000 NA
#> GSM440030     2  0.2507     0.8966 0.000 0.892 0.060 0.000 0.020 NA
#> GSM440043     3  0.3018     0.6688 0.004 0.000 0.868 0.024 0.044 NA
#> GSM440044     3  0.5146     0.4956 0.000 0.000 0.644 0.260 0.036 NA
#> GSM440045     3  0.3685     0.6583 0.028 0.004 0.836 0.072 0.012 NA
#> GSM440046     3  0.3158     0.6559 0.000 0.008 0.844 0.000 0.084 NA
#> GSM440019     4  0.4982     0.5079 0.052 0.004 0.128 0.736 0.008 NA
#> GSM440020     3  0.4621     0.6022 0.016 0.000 0.732 0.152 0.004 NA
#> GSM440021     3  0.6484     0.3192 0.208 0.000 0.536 0.184 0.000 NA
#> GSM440022     3  0.4201     0.6552 0.012 0.024 0.808 0.088 0.020 NA
#> GSM440007     4  0.7504     0.3202 0.024 0.000 0.188 0.416 0.092 NA
#> GSM440008     3  0.4213     0.6387 0.012 0.080 0.800 0.016 0.012 NA
#> GSM440009     4  0.7283     0.1486 0.012 0.056 0.304 0.472 0.036 NA
#> GSM440010     4  0.5920     0.4851 0.028 0.004 0.120 0.648 0.028 NA
#> GSM440031     2  0.0767     0.9479 0.004 0.976 0.008 0.000 0.000 NA
#> GSM440032     2  0.0972     0.9485 0.000 0.964 0.008 0.000 0.000 NA
#> GSM440033     2  0.2508     0.9079 0.016 0.884 0.000 0.016 0.000 NA
#> GSM440034     2  0.1413     0.9459 0.000 0.948 0.008 0.004 0.004 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n agent(p)  time(p)  dose(p) k
#> MAD:NMF 56    0.207 1.51e-03 4.37e-03 2
#> MAD:NMF 51    0.267 6.75e-02 8.79e-05 3
#> MAD:NMF 39    0.488 1.69e-06 1.82e-03 4
#> MAD:NMF 25    0.441 5.35e-05 3.67e-02 5
#> MAD:NMF 25    0.570 4.69e-05 3.95e-02 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 60 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.2358 0.765   0.765
#> 3 3 0.840           0.928       0.970         1.5044 0.632   0.519
#> 4 4 0.954           0.963       0.966         0.0730 0.962   0.903
#> 5 5 0.845           0.920       0.922         0.0688 0.991   0.975
#> 6 6 0.825           0.956       0.914         0.1255 0.864   0.612

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> GSM439987     1       0          1  1  0
#> GSM439988     1       0          1  1  0
#> GSM439989     1       0          1  1  0
#> GSM439990     1       0          1  1  0
#> GSM439991     1       0          1  1  0
#> GSM439992     1       0          1  1  0
#> GSM439993     1       0          1  1  0
#> GSM439994     1       0          1  1  0
#> GSM439995     1       0          1  1  0
#> GSM439996     1       0          1  1  0
#> GSM439997     1       0          1  1  0
#> GSM439998     1       0          1  1  0
#> GSM440035     1       0          1  1  0
#> GSM440036     1       0          1  1  0
#> GSM440037     1       0          1  1  0
#> GSM440038     1       0          1  1  0
#> GSM440011     1       0          1  1  0
#> GSM440012     1       0          1  1  0
#> GSM440013     1       0          1  1  0
#> GSM440014     1       0          1  1  0
#> GSM439999     1       0          1  1  0
#> GSM440000     1       0          1  1  0
#> GSM440001     1       0          1  1  0
#> GSM440002     1       0          1  1  0
#> GSM440023     1       0          1  1  0
#> GSM440024     1       0          1  1  0
#> GSM440025     1       0          1  1  0
#> GSM440026     1       0          1  1  0
#> GSM440039     1       0          1  1  0
#> GSM440040     1       0          1  1  0
#> GSM440041     1       0          1  1  0
#> GSM440042     1       0          1  1  0
#> GSM440015     1       0          1  1  0
#> GSM440016     1       0          1  1  0
#> GSM440017     1       0          1  1  0
#> GSM440018     1       0          1  1  0
#> GSM440003     1       0          1  1  0
#> GSM440004     1       0          1  1  0
#> GSM440005     1       0          1  1  0
#> GSM440006     1       0          1  1  0
#> GSM440027     2       0          1  0  1
#> GSM440028     2       0          1  0  1
#> GSM440029     2       0          1  0  1
#> GSM440030     2       0          1  0  1
#> GSM440043     1       0          1  1  0
#> GSM440044     1       0          1  1  0
#> GSM440045     1       0          1  1  0
#> GSM440046     1       0          1  1  0
#> GSM440019     1       0          1  1  0
#> GSM440020     1       0          1  1  0
#> GSM440021     1       0          1  1  0
#> GSM440022     1       0          1  1  0
#> GSM440007     1       0          1  1  0
#> GSM440008     1       0          1  1  0
#> GSM440009     1       0          1  1  0
#> GSM440010     1       0          1  1  0
#> GSM440031     2       0          1  0  1
#> GSM440032     2       0          1  0  1
#> GSM440033     2       0          1  0  1
#> GSM440034     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1 p2    p3
#> GSM439987     1   0.000      0.996 1.000  0 0.000
#> GSM439988     1   0.000      0.996 1.000  0 0.000
#> GSM439989     1   0.000      0.996 1.000  0 0.000
#> GSM439990     1   0.000      0.996 1.000  0 0.000
#> GSM439991     1   0.000      0.996 1.000  0 0.000
#> GSM439992     1   0.000      0.996 1.000  0 0.000
#> GSM439993     1   0.000      0.996 1.000  0 0.000
#> GSM439994     1   0.000      0.996 1.000  0 0.000
#> GSM439995     3   0.000      0.880 0.000  0 1.000
#> GSM439996     3   0.400      0.747 0.160  0 0.840
#> GSM439997     3   0.000      0.880 0.000  0 1.000
#> GSM439998     3   0.000      0.880 0.000  0 1.000
#> GSM440035     1   0.000      0.996 1.000  0 0.000
#> GSM440036     1   0.000      0.996 1.000  0 0.000
#> GSM440037     1   0.000      0.996 1.000  0 0.000
#> GSM440038     1   0.000      0.996 1.000  0 0.000
#> GSM440011     1   0.000      0.996 1.000  0 0.000
#> GSM440012     1   0.000      0.996 1.000  0 0.000
#> GSM440013     1   0.000      0.996 1.000  0 0.000
#> GSM440014     1   0.000      0.996 1.000  0 0.000
#> GSM439999     1   0.000      0.996 1.000  0 0.000
#> GSM440000     1   0.000      0.996 1.000  0 0.000
#> GSM440001     1   0.000      0.996 1.000  0 0.000
#> GSM440002     1   0.000      0.996 1.000  0 0.000
#> GSM440023     3   0.588      0.553 0.348  0 0.652
#> GSM440024     3   0.588      0.553 0.348  0 0.652
#> GSM440025     3   0.588      0.553 0.348  0 0.652
#> GSM440026     3   0.588      0.553 0.348  0 0.652
#> GSM440039     1   0.000      0.996 1.000  0 0.000
#> GSM440040     1   0.000      0.996 1.000  0 0.000
#> GSM440041     1   0.000      0.996 1.000  0 0.000
#> GSM440042     1   0.000      0.996 1.000  0 0.000
#> GSM440015     1   0.000      0.996 1.000  0 0.000
#> GSM440016     1   0.000      0.996 1.000  0 0.000
#> GSM440017     1   0.000      0.996 1.000  0 0.000
#> GSM440018     3   0.000      0.880 0.000  0 1.000
#> GSM440003     1   0.000      0.996 1.000  0 0.000
#> GSM440004     1   0.141      0.961 0.964  0 0.036
#> GSM440005     1   0.141      0.961 0.964  0 0.036
#> GSM440006     1   0.141      0.961 0.964  0 0.036
#> GSM440027     2   0.000      1.000 0.000  1 0.000
#> GSM440028     2   0.000      1.000 0.000  1 0.000
#> GSM440029     2   0.000      1.000 0.000  1 0.000
#> GSM440030     2   0.000      1.000 0.000  1 0.000
#> GSM440043     3   0.000      0.880 0.000  0 1.000
#> GSM440044     3   0.000      0.880 0.000  0 1.000
#> GSM440045     3   0.000      0.880 0.000  0 1.000
#> GSM440046     3   0.000      0.880 0.000  0 1.000
#> GSM440019     3   0.412      0.740 0.168  0 0.832
#> GSM440020     3   0.000      0.880 0.000  0 1.000
#> GSM440021     3   0.000      0.880 0.000  0 1.000
#> GSM440022     3   0.000      0.880 0.000  0 1.000
#> GSM440007     3   0.000      0.880 0.000  0 1.000
#> GSM440008     3   0.000      0.880 0.000  0 1.000
#> GSM440009     3   0.000      0.880 0.000  0 1.000
#> GSM440010     3   0.000      0.880 0.000  0 1.000
#> GSM440031     2   0.000      1.000 0.000  1 0.000
#> GSM440032     2   0.000      1.000 0.000  1 0.000
#> GSM440033     2   0.000      1.000 0.000  1 0.000
#> GSM440034     2   0.000      1.000 0.000  1 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1  p2    p3  p4
#> GSM439987     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM439988     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM439989     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM439990     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM439991     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM439992     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM439993     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM439994     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM439995     3   0.000      0.961 0.000 0.0 1.000 0.0
#> GSM439996     3   0.317      0.688 0.160 0.0 0.840 0.0
#> GSM439997     3   0.000      0.961 0.000 0.0 1.000 0.0
#> GSM439998     3   0.000      0.961 0.000 0.0 1.000 0.0
#> GSM440035     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM440036     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM440037     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM440038     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM440011     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM440012     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM440013     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM440014     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM439999     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM440000     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM440001     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM440002     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM440023     4   0.361      1.000 0.000 0.0 0.200 0.8
#> GSM440024     4   0.361      1.000 0.000 0.0 0.200 0.8
#> GSM440025     4   0.361      1.000 0.000 0.0 0.200 0.8
#> GSM440026     4   0.361      1.000 0.000 0.0 0.200 0.8
#> GSM440039     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM440040     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM440041     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM440042     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM440015     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM440016     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM440017     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM440018     3   0.000      0.961 0.000 0.0 1.000 0.0
#> GSM440003     1   0.000      0.996 1.000 0.0 0.000 0.0
#> GSM440004     1   0.112      0.960 0.964 0.0 0.036 0.0
#> GSM440005     1   0.112      0.960 0.964 0.0 0.036 0.0
#> GSM440006     1   0.112      0.960 0.964 0.0 0.036 0.0
#> GSM440027     2   0.000      0.904 0.000 1.0 0.000 0.0
#> GSM440028     2   0.000      0.904 0.000 1.0 0.000 0.0
#> GSM440029     2   0.000      0.904 0.000 1.0 0.000 0.0
#> GSM440030     2   0.000      0.904 0.000 1.0 0.000 0.0
#> GSM440043     3   0.000      0.961 0.000 0.0 1.000 0.0
#> GSM440044     3   0.000      0.961 0.000 0.0 1.000 0.0
#> GSM440045     3   0.000      0.961 0.000 0.0 1.000 0.0
#> GSM440046     3   0.000      0.961 0.000 0.0 1.000 0.0
#> GSM440019     3   0.327      0.672 0.168 0.0 0.832 0.0
#> GSM440020     3   0.000      0.961 0.000 0.0 1.000 0.0
#> GSM440021     3   0.000      0.961 0.000 0.0 1.000 0.0
#> GSM440022     3   0.000      0.961 0.000 0.0 1.000 0.0
#> GSM440007     3   0.000      0.961 0.000 0.0 1.000 0.0
#> GSM440008     3   0.000      0.961 0.000 0.0 1.000 0.0
#> GSM440009     3   0.000      0.961 0.000 0.0 1.000 0.0
#> GSM440010     3   0.000      0.961 0.000 0.0 1.000 0.0
#> GSM440031     2   0.361      0.904 0.000 0.8 0.000 0.2
#> GSM440032     2   0.361      0.904 0.000 0.8 0.000 0.2
#> GSM440033     2   0.361      0.904 0.000 0.8 0.000 0.2
#> GSM440034     2   0.361      0.904 0.000 0.8 0.000 0.2

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4 p5
#> GSM439987     1   0.000      0.883 1.000 0.000 0.000 0.000  0
#> GSM439988     1   0.000      0.883 1.000 0.000 0.000 0.000  0
#> GSM439989     1   0.000      0.883 1.000 0.000 0.000 0.000  0
#> GSM439990     1   0.000      0.883 1.000 0.000 0.000 0.000  0
#> GSM439991     1   0.331      0.871 0.776 0.000 0.000 0.224  0
#> GSM439992     1   0.331      0.871 0.776 0.000 0.000 0.224  0
#> GSM439993     1   0.331      0.871 0.776 0.000 0.000 0.224  0
#> GSM439994     1   0.331      0.871 0.776 0.000 0.000 0.224  0
#> GSM439995     3   0.000      0.971 0.000 0.000 1.000 0.000  0
#> GSM439996     3   0.311      0.764 0.140 0.000 0.840 0.020  0
#> GSM439997     3   0.000      0.971 0.000 0.000 1.000 0.000  0
#> GSM439998     3   0.000      0.971 0.000 0.000 1.000 0.000  0
#> GSM440035     1   0.000      0.883 1.000 0.000 0.000 0.000  0
#> GSM440036     1   0.000      0.883 1.000 0.000 0.000 0.000  0
#> GSM440037     1   0.000      0.883 1.000 0.000 0.000 0.000  0
#> GSM440038     1   0.000      0.883 1.000 0.000 0.000 0.000  0
#> GSM440011     1   0.000      0.883 1.000 0.000 0.000 0.000  0
#> GSM440012     1   0.000      0.883 1.000 0.000 0.000 0.000  0
#> GSM440013     1   0.000      0.883 1.000 0.000 0.000 0.000  0
#> GSM440014     1   0.000      0.883 1.000 0.000 0.000 0.000  0
#> GSM439999     1   0.000      0.883 1.000 0.000 0.000 0.000  0
#> GSM440000     1   0.000      0.883 1.000 0.000 0.000 0.000  0
#> GSM440001     1   0.000      0.883 1.000 0.000 0.000 0.000  0
#> GSM440002     1   0.000      0.883 1.000 0.000 0.000 0.000  0
#> GSM440023     5   0.000      1.000 0.000 0.000 0.000 0.000  1
#> GSM440024     5   0.000      1.000 0.000 0.000 0.000 0.000  1
#> GSM440025     5   0.000      1.000 0.000 0.000 0.000 0.000  1
#> GSM440026     5   0.000      1.000 0.000 0.000 0.000 0.000  1
#> GSM440039     1   0.331      0.871 0.776 0.000 0.000 0.224  0
#> GSM440040     1   0.331      0.871 0.776 0.000 0.000 0.224  0
#> GSM440041     1   0.331      0.871 0.776 0.000 0.000 0.224  0
#> GSM440042     1   0.331      0.871 0.776 0.000 0.000 0.224  0
#> GSM440015     1   0.331      0.871 0.776 0.000 0.000 0.224  0
#> GSM440016     1   0.331      0.871 0.776 0.000 0.000 0.224  0
#> GSM440017     1   0.331      0.871 0.776 0.000 0.000 0.224  0
#> GSM440018     3   0.000      0.971 0.000 0.000 1.000 0.000  0
#> GSM440003     1   0.331      0.871 0.776 0.000 0.000 0.224  0
#> GSM440004     1   0.421      0.846 0.740 0.000 0.036 0.224  0
#> GSM440005     1   0.421      0.846 0.740 0.000 0.036 0.224  0
#> GSM440006     1   0.421      0.846 0.740 0.000 0.036 0.224  0
#> GSM440027     2   0.000      1.000 0.000 1.000 0.000 0.000  0
#> GSM440028     2   0.000      1.000 0.000 1.000 0.000 0.000  0
#> GSM440029     2   0.000      1.000 0.000 1.000 0.000 0.000  0
#> GSM440030     2   0.000      1.000 0.000 1.000 0.000 0.000  0
#> GSM440043     3   0.000      0.971 0.000 0.000 1.000 0.000  0
#> GSM440044     3   0.000      0.971 0.000 0.000 1.000 0.000  0
#> GSM440045     3   0.000      0.971 0.000 0.000 1.000 0.000  0
#> GSM440046     3   0.000      0.971 0.000 0.000 1.000 0.000  0
#> GSM440019     3   0.324      0.753 0.144 0.000 0.832 0.024  0
#> GSM440020     3   0.000      0.971 0.000 0.000 1.000 0.000  0
#> GSM440021     3   0.000      0.971 0.000 0.000 1.000 0.000  0
#> GSM440022     3   0.000      0.971 0.000 0.000 1.000 0.000  0
#> GSM440007     3   0.000      0.971 0.000 0.000 1.000 0.000  0
#> GSM440008     3   0.000      0.971 0.000 0.000 1.000 0.000  0
#> GSM440009     3   0.000      0.971 0.000 0.000 1.000 0.000  0
#> GSM440010     3   0.000      0.971 0.000 0.000 1.000 0.000  0
#> GSM440031     4   0.331      1.000 0.000 0.224 0.000 0.776  0
#> GSM440032     4   0.331      1.000 0.000 0.224 0.000 0.776  0
#> GSM440033     4   0.331      1.000 0.000 0.224 0.000 0.776  0
#> GSM440034     4   0.331      1.000 0.000 0.224 0.000 0.776  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1 p2    p3    p4 p5 p6
#> GSM439987     1  0.3050      1.000 0.764  0 0.000 0.236  0  0
#> GSM439988     1  0.3050      1.000 0.764  0 0.000 0.236  0  0
#> GSM439989     1  0.3050      1.000 0.764  0 0.000 0.236  0  0
#> GSM439990     1  0.3050      1.000 0.764  0 0.000 0.236  0  0
#> GSM439991     4  0.0000      0.990 0.000  0 0.000 1.000  0  0
#> GSM439992     4  0.0000      0.990 0.000  0 0.000 1.000  0  0
#> GSM439993     4  0.0000      0.990 0.000  0 0.000 1.000  0  0
#> GSM439994     4  0.0000      0.990 0.000  0 0.000 1.000  0  0
#> GSM439995     3  0.0000      0.903 0.000  0 1.000 0.000  0  0
#> GSM439996     3  0.2454      0.762 0.000  0 0.840 0.160  0  0
#> GSM439997     3  0.0000      0.903 0.000  0 1.000 0.000  0  0
#> GSM439998     3  0.0000      0.903 0.000  0 1.000 0.000  0  0
#> GSM440035     1  0.3050      1.000 0.764  0 0.000 0.236  0  0
#> GSM440036     1  0.3050      1.000 0.764  0 0.000 0.236  0  0
#> GSM440037     1  0.3050      1.000 0.764  0 0.000 0.236  0  0
#> GSM440038     1  0.3050      1.000 0.764  0 0.000 0.236  0  0
#> GSM440011     1  0.3050      1.000 0.764  0 0.000 0.236  0  0
#> GSM440012     1  0.3050      1.000 0.764  0 0.000 0.236  0  0
#> GSM440013     1  0.3050      1.000 0.764  0 0.000 0.236  0  0
#> GSM440014     1  0.3050      1.000 0.764  0 0.000 0.236  0  0
#> GSM439999     1  0.3050      1.000 0.764  0 0.000 0.236  0  0
#> GSM440000     1  0.3050      1.000 0.764  0 0.000 0.236  0  0
#> GSM440001     1  0.3050      1.000 0.764  0 0.000 0.236  0  0
#> GSM440002     1  0.3050      1.000 0.764  0 0.000 0.236  0  0
#> GSM440023     5  0.0000      1.000 0.000  0 0.000 0.000  1  0
#> GSM440024     5  0.0000      1.000 0.000  0 0.000 0.000  1  0
#> GSM440025     5  0.0000      1.000 0.000  0 0.000 0.000  1  0
#> GSM440026     5  0.0000      1.000 0.000  0 0.000 0.000  1  0
#> GSM440039     4  0.0000      0.990 0.000  0 0.000 1.000  0  0
#> GSM440040     4  0.0000      0.990 0.000  0 0.000 1.000  0  0
#> GSM440041     4  0.0000      0.990 0.000  0 0.000 1.000  0  0
#> GSM440042     4  0.0000      0.990 0.000  0 0.000 1.000  0  0
#> GSM440015     4  0.0000      0.990 0.000  0 0.000 1.000  0  0
#> GSM440016     4  0.0000      0.990 0.000  0 0.000 1.000  0  0
#> GSM440017     4  0.0000      0.990 0.000  0 0.000 1.000  0  0
#> GSM440018     3  0.2996      0.811 0.228  0 0.772 0.000  0  0
#> GSM440003     4  0.0000      0.990 0.000  0 0.000 1.000  0  0
#> GSM440004     4  0.0865      0.959 0.000  0 0.036 0.964  0  0
#> GSM440005     4  0.0865      0.959 0.000  0 0.036 0.964  0  0
#> GSM440006     4  0.0865      0.959 0.000  0 0.036 0.964  0  0
#> GSM440027     2  0.0000      1.000 0.000  1 0.000 0.000  0  0
#> GSM440028     2  0.0000      1.000 0.000  1 0.000 0.000  0  0
#> GSM440029     2  0.0000      1.000 0.000  1 0.000 0.000  0  0
#> GSM440030     2  0.0000      1.000 0.000  1 0.000 0.000  0  0
#> GSM440043     3  0.0000      0.903 0.000  0 1.000 0.000  0  0
#> GSM440044     3  0.0000      0.903 0.000  0 1.000 0.000  0  0
#> GSM440045     3  0.0000      0.903 0.000  0 1.000 0.000  0  0
#> GSM440046     3  0.0000      0.903 0.000  0 1.000 0.000  0  0
#> GSM440019     3  0.2527      0.752 0.000  0 0.832 0.168  0  0
#> GSM440020     3  0.0000      0.903 0.000  0 1.000 0.000  0  0
#> GSM440021     3  0.0000      0.903 0.000  0 1.000 0.000  0  0
#> GSM440022     3  0.0000      0.903 0.000  0 1.000 0.000  0  0
#> GSM440007     3  0.3050      0.807 0.236  0 0.764 0.000  0  0
#> GSM440008     3  0.3050      0.807 0.236  0 0.764 0.000  0  0
#> GSM440009     3  0.3050      0.807 0.236  0 0.764 0.000  0  0
#> GSM440010     3  0.3050      0.807 0.236  0 0.764 0.000  0  0
#> GSM440031     6  0.0000      1.000 0.000  0 0.000 0.000  0  1
#> GSM440032     6  0.0000      1.000 0.000  0 0.000 0.000  0  1
#> GSM440033     6  0.0000      1.000 0.000  0 0.000 0.000  0  1
#> GSM440034     6  0.0000      1.000 0.000  0 0.000 0.000  0  1

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n agent(p)  time(p)  dose(p) k
#> ATC:hclust 60    0.296 9.95e-02 1.87e-07 2
#> ATC:hclust 60    0.264 1.39e-07 3.12e-06 3
#> ATC:hclust 60    0.286 3.05e-10 1.96e-08 4
#> ATC:hclust 60    0.436 1.28e-11 4.58e-07 5
#> ATC:hclust 60    0.579 7.05e-20 6.02e-06 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 60 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.2358 0.765   0.765
#> 3 3 0.620           0.669       0.800         1.4445 0.664   0.561
#> 4 4 0.597           0.830       0.801         0.1953 0.808   0.562
#> 5 5 0.979           0.945       0.913         0.1016 0.949   0.806
#> 6 6 0.879           0.859       0.874         0.0531 1.000   1.000

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> GSM439987     1       0          1  1  0
#> GSM439988     1       0          1  1  0
#> GSM439989     1       0          1  1  0
#> GSM439990     1       0          1  1  0
#> GSM439991     1       0          1  1  0
#> GSM439992     1       0          1  1  0
#> GSM439993     1       0          1  1  0
#> GSM439994     1       0          1  1  0
#> GSM439995     1       0          1  1  0
#> GSM439996     1       0          1  1  0
#> GSM439997     1       0          1  1  0
#> GSM439998     1       0          1  1  0
#> GSM440035     1       0          1  1  0
#> GSM440036     1       0          1  1  0
#> GSM440037     1       0          1  1  0
#> GSM440038     1       0          1  1  0
#> GSM440011     1       0          1  1  0
#> GSM440012     1       0          1  1  0
#> GSM440013     1       0          1  1  0
#> GSM440014     1       0          1  1  0
#> GSM439999     1       0          1  1  0
#> GSM440000     1       0          1  1  0
#> GSM440001     1       0          1  1  0
#> GSM440002     1       0          1  1  0
#> GSM440023     1       0          1  1  0
#> GSM440024     1       0          1  1  0
#> GSM440025     1       0          1  1  0
#> GSM440026     1       0          1  1  0
#> GSM440039     1       0          1  1  0
#> GSM440040     1       0          1  1  0
#> GSM440041     1       0          1  1  0
#> GSM440042     1       0          1  1  0
#> GSM440015     1       0          1  1  0
#> GSM440016     1       0          1  1  0
#> GSM440017     1       0          1  1  0
#> GSM440018     1       0          1  1  0
#> GSM440003     1       0          1  1  0
#> GSM440004     1       0          1  1  0
#> GSM440005     1       0          1  1  0
#> GSM440006     1       0          1  1  0
#> GSM440027     2       0          1  0  1
#> GSM440028     2       0          1  0  1
#> GSM440029     2       0          1  0  1
#> GSM440030     2       0          1  0  1
#> GSM440043     1       0          1  1  0
#> GSM440044     1       0          1  1  0
#> GSM440045     1       0          1  1  0
#> GSM440046     1       0          1  1  0
#> GSM440019     1       0          1  1  0
#> GSM440020     1       0          1  1  0
#> GSM440021     1       0          1  1  0
#> GSM440022     1       0          1  1  0
#> GSM440007     1       0          1  1  0
#> GSM440008     1       0          1  1  0
#> GSM440009     1       0          1  1  0
#> GSM440010     1       0          1  1  0
#> GSM440031     2       0          1  0  1
#> GSM440032     2       0          1  0  1
#> GSM440033     2       0          1  0  1
#> GSM440034     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM439987     1   0.186     0.9620 0.948 0.000 0.052
#> GSM439988     1   0.186     0.9620 0.948 0.000 0.052
#> GSM439989     1   0.186     0.9620 0.948 0.000 0.052
#> GSM439990     1   0.186     0.9620 0.948 0.000 0.052
#> GSM439991     3   0.631     0.2942 0.496 0.000 0.504
#> GSM439992     1   0.620    -0.0821 0.576 0.000 0.424
#> GSM439993     3   0.631     0.2942 0.496 0.000 0.504
#> GSM439994     3   0.631     0.3021 0.492 0.000 0.508
#> GSM439995     3   0.000     0.6828 0.000 0.000 1.000
#> GSM439996     3   0.000     0.6828 0.000 0.000 1.000
#> GSM439997     3   0.000     0.6828 0.000 0.000 1.000
#> GSM439998     3   0.000     0.6828 0.000 0.000 1.000
#> GSM440035     1   0.186     0.9620 0.948 0.000 0.052
#> GSM440036     1   0.186     0.9620 0.948 0.000 0.052
#> GSM440037     1   0.186     0.9620 0.948 0.000 0.052
#> GSM440038     1   0.186     0.9620 0.948 0.000 0.052
#> GSM440011     1   0.186     0.9620 0.948 0.000 0.052
#> GSM440012     1   0.186     0.9620 0.948 0.000 0.052
#> GSM440013     1   0.186     0.9620 0.948 0.000 0.052
#> GSM440014     1   0.186     0.9620 0.948 0.000 0.052
#> GSM439999     1   0.186     0.9620 0.948 0.000 0.052
#> GSM440000     1   0.186     0.9620 0.948 0.000 0.052
#> GSM440001     1   0.186     0.9620 0.948 0.000 0.052
#> GSM440002     1   0.186     0.9620 0.948 0.000 0.052
#> GSM440023     3   0.626     0.2220 0.448 0.000 0.552
#> GSM440024     3   0.626     0.2220 0.448 0.000 0.552
#> GSM440025     3   0.626     0.2220 0.448 0.000 0.552
#> GSM440026     3   0.626     0.2220 0.448 0.000 0.552
#> GSM440039     3   0.631     0.2942 0.496 0.000 0.504
#> GSM440040     3   0.631     0.2942 0.496 0.000 0.504
#> GSM440041     3   0.631     0.2942 0.496 0.000 0.504
#> GSM440042     3   0.631     0.2942 0.496 0.000 0.504
#> GSM440015     3   0.624     0.3760 0.440 0.000 0.560
#> GSM440016     3   0.630     0.3293 0.476 0.000 0.524
#> GSM440017     3   0.631     0.2942 0.496 0.000 0.504
#> GSM440018     3   0.000     0.6828 0.000 0.000 1.000
#> GSM440003     3   0.630     0.3293 0.476 0.000 0.524
#> GSM440004     3   0.627     0.3622 0.452 0.000 0.548
#> GSM440005     3   0.631     0.3020 0.492 0.000 0.508
#> GSM440006     3   0.629     0.3466 0.464 0.000 0.536
#> GSM440027     2   0.000     0.9916 0.000 1.000 0.000
#> GSM440028     2   0.000     0.9916 0.000 1.000 0.000
#> GSM440029     2   0.000     0.9916 0.000 1.000 0.000
#> GSM440030     2   0.000     0.9916 0.000 1.000 0.000
#> GSM440043     3   0.000     0.6828 0.000 0.000 1.000
#> GSM440044     3   0.000     0.6828 0.000 0.000 1.000
#> GSM440045     3   0.000     0.6828 0.000 0.000 1.000
#> GSM440046     3   0.000     0.6828 0.000 0.000 1.000
#> GSM440019     3   0.000     0.6828 0.000 0.000 1.000
#> GSM440020     3   0.000     0.6828 0.000 0.000 1.000
#> GSM440021     3   0.000     0.6828 0.000 0.000 1.000
#> GSM440022     3   0.000     0.6828 0.000 0.000 1.000
#> GSM440007     3   0.000     0.6828 0.000 0.000 1.000
#> GSM440008     3   0.000     0.6828 0.000 0.000 1.000
#> GSM440009     3   0.000     0.6828 0.000 0.000 1.000
#> GSM440010     3   0.000     0.6828 0.000 0.000 1.000
#> GSM440031     2   0.116     0.9916 0.028 0.972 0.000
#> GSM440032     2   0.116     0.9916 0.028 0.972 0.000
#> GSM440033     2   0.116     0.9916 0.028 0.972 0.000
#> GSM440034     2   0.116     0.9916 0.028 0.972 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM439987     1  0.0336      0.997 0.992 0.000 0.008 0.000
#> GSM439988     1  0.0672      0.994 0.984 0.000 0.008 0.008
#> GSM439989     1  0.0336      0.997 0.992 0.000 0.008 0.000
#> GSM439990     1  0.0336      0.997 0.992 0.000 0.008 0.000
#> GSM439991     4  0.7304      0.773 0.208 0.000 0.260 0.532
#> GSM439992     4  0.7310      0.727 0.256 0.000 0.212 0.532
#> GSM439993     4  0.7304      0.773 0.208 0.000 0.260 0.532
#> GSM439994     4  0.7304      0.773 0.208 0.000 0.260 0.532
#> GSM439995     3  0.0000      0.933 0.000 0.000 1.000 0.000
#> GSM439996     3  0.3486      0.637 0.000 0.000 0.812 0.188
#> GSM439997     3  0.0188      0.932 0.000 0.000 0.996 0.004
#> GSM439998     3  0.0188      0.932 0.000 0.000 0.996 0.004
#> GSM440035     1  0.0336      0.997 0.992 0.000 0.008 0.000
#> GSM440036     1  0.0336      0.997 0.992 0.000 0.008 0.000
#> GSM440037     1  0.0672      0.994 0.984 0.000 0.008 0.008
#> GSM440038     1  0.0672      0.994 0.984 0.000 0.008 0.008
#> GSM440011     1  0.0336      0.997 0.992 0.000 0.008 0.000
#> GSM440012     1  0.0672      0.994 0.984 0.000 0.008 0.008
#> GSM440013     1  0.0336      0.997 0.992 0.000 0.008 0.000
#> GSM440014     1  0.0336      0.997 0.992 0.000 0.008 0.000
#> GSM439999     1  0.0336      0.997 0.992 0.000 0.008 0.000
#> GSM440000     1  0.0672      0.994 0.984 0.000 0.008 0.008
#> GSM440001     1  0.0336      0.997 0.992 0.000 0.008 0.000
#> GSM440002     1  0.0336      0.997 0.992 0.000 0.008 0.000
#> GSM440023     4  0.7485     -0.023 0.192 0.000 0.336 0.472
#> GSM440024     4  0.7485     -0.023 0.192 0.000 0.336 0.472
#> GSM440025     4  0.7485     -0.023 0.192 0.000 0.336 0.472
#> GSM440026     4  0.7485     -0.023 0.192 0.000 0.336 0.472
#> GSM440039     4  0.7304      0.773 0.208 0.000 0.260 0.532
#> GSM440040     4  0.7304      0.773 0.208 0.000 0.260 0.532
#> GSM440041     4  0.7304      0.773 0.208 0.000 0.260 0.532
#> GSM440042     4  0.7304      0.773 0.208 0.000 0.260 0.532
#> GSM440015     4  0.7248      0.753 0.184 0.000 0.284 0.532
#> GSM440016     4  0.7271      0.763 0.192 0.000 0.276 0.532
#> GSM440017     4  0.7304      0.773 0.208 0.000 0.260 0.532
#> GSM440018     3  0.0921      0.912 0.000 0.000 0.972 0.028
#> GSM440003     4  0.7271      0.762 0.192 0.000 0.276 0.532
#> GSM440004     4  0.7271      0.763 0.192 0.000 0.276 0.532
#> GSM440005     4  0.7289      0.769 0.200 0.000 0.268 0.532
#> GSM440006     4  0.7271      0.763 0.192 0.000 0.276 0.532
#> GSM440027     2  0.2124      0.973 0.008 0.924 0.000 0.068
#> GSM440028     2  0.1940      0.973 0.000 0.924 0.000 0.076
#> GSM440029     2  0.2124      0.973 0.008 0.924 0.000 0.068
#> GSM440030     2  0.1940      0.973 0.000 0.924 0.000 0.076
#> GSM440043     3  0.0000      0.933 0.000 0.000 1.000 0.000
#> GSM440044     3  0.0188      0.932 0.000 0.000 0.996 0.004
#> GSM440045     3  0.0000      0.933 0.000 0.000 1.000 0.000
#> GSM440046     3  0.0000      0.933 0.000 0.000 1.000 0.000
#> GSM440019     3  0.4776      0.120 0.000 0.000 0.624 0.376
#> GSM440020     3  0.0000      0.933 0.000 0.000 1.000 0.000
#> GSM440021     3  0.0000      0.933 0.000 0.000 1.000 0.000
#> GSM440022     3  0.0000      0.933 0.000 0.000 1.000 0.000
#> GSM440007     3  0.1022      0.916 0.000 0.000 0.968 0.032
#> GSM440008     3  0.1022      0.916 0.000 0.000 0.968 0.032
#> GSM440009     3  0.1022      0.916 0.000 0.000 0.968 0.032
#> GSM440010     3  0.1022      0.916 0.000 0.000 0.968 0.032
#> GSM440031     2  0.0000      0.974 0.000 1.000 0.000 0.000
#> GSM440032     2  0.0000      0.974 0.000 1.000 0.000 0.000
#> GSM440033     2  0.0000      0.974 0.000 1.000 0.000 0.000
#> GSM440034     2  0.0000      0.974 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM439987     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000
#> GSM439988     1  0.2054      0.945 0.920 0.000 0.000 0.028 0.052
#> GSM439989     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000
#> GSM439990     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000
#> GSM439991     4  0.3849      0.950 0.084 0.000 0.060 0.832 0.024
#> GSM439992     4  0.3715      0.910 0.112 0.000 0.032 0.832 0.024
#> GSM439993     4  0.3849      0.950 0.084 0.000 0.060 0.832 0.024
#> GSM439994     4  0.3856      0.949 0.080 0.000 0.064 0.832 0.024
#> GSM439995     3  0.0290      0.963 0.000 0.000 0.992 0.008 0.000
#> GSM439996     3  0.2654      0.883 0.000 0.000 0.888 0.064 0.048
#> GSM439997     3  0.1444      0.947 0.000 0.000 0.948 0.012 0.040
#> GSM439998     3  0.1444      0.947 0.000 0.000 0.948 0.012 0.040
#> GSM440035     1  0.0451      0.963 0.988 0.000 0.000 0.008 0.004
#> GSM440036     1  0.0451      0.963 0.988 0.000 0.000 0.008 0.004
#> GSM440037     1  0.2054      0.945 0.920 0.000 0.000 0.028 0.052
#> GSM440038     1  0.2054      0.945 0.920 0.000 0.000 0.028 0.052
#> GSM440011     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000
#> GSM440012     1  0.2054      0.945 0.920 0.000 0.000 0.028 0.052
#> GSM440013     1  0.0290      0.966 0.992 0.000 0.000 0.008 0.000
#> GSM440014     1  0.1626      0.953 0.940 0.000 0.000 0.016 0.044
#> GSM439999     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000
#> GSM440000     1  0.2054      0.945 0.920 0.000 0.000 0.028 0.052
#> GSM440001     1  0.0451      0.963 0.988 0.000 0.000 0.008 0.004
#> GSM440002     1  0.0451      0.963 0.988 0.000 0.000 0.008 0.004
#> GSM440023     5  0.4489      0.998 0.084 0.000 0.092 0.032 0.792
#> GSM440024     5  0.4489      0.998 0.084 0.000 0.092 0.032 0.792
#> GSM440025     5  0.4642      0.995 0.084 0.000 0.092 0.040 0.784
#> GSM440026     5  0.4489      0.998 0.084 0.000 0.092 0.032 0.792
#> GSM440039     4  0.3169      0.950 0.084 0.000 0.060 0.856 0.000
#> GSM440040     4  0.3849      0.950 0.084 0.000 0.060 0.832 0.024
#> GSM440041     4  0.3849      0.950 0.084 0.000 0.060 0.832 0.024
#> GSM440042     4  0.3849      0.950 0.084 0.000 0.060 0.832 0.024
#> GSM440015     4  0.3180      0.944 0.068 0.000 0.076 0.856 0.000
#> GSM440016     4  0.3180      0.949 0.076 0.000 0.068 0.856 0.000
#> GSM440017     4  0.3169      0.950 0.084 0.000 0.060 0.856 0.000
#> GSM440018     3  0.1872      0.939 0.000 0.000 0.928 0.052 0.020
#> GSM440003     4  0.3181      0.947 0.072 0.000 0.072 0.856 0.000
#> GSM440004     4  0.3337      0.945 0.072 0.000 0.064 0.856 0.008
#> GSM440005     4  0.3333      0.946 0.076 0.000 0.060 0.856 0.008
#> GSM440006     4  0.3337      0.945 0.072 0.000 0.064 0.856 0.008
#> GSM440027     2  0.0162      0.942 0.000 0.996 0.000 0.000 0.004
#> GSM440028     2  0.0162      0.942 0.000 0.996 0.000 0.004 0.000
#> GSM440029     2  0.0162      0.942 0.000 0.996 0.000 0.000 0.004
#> GSM440030     2  0.0162      0.942 0.000 0.996 0.000 0.004 0.000
#> GSM440043     3  0.0290      0.963 0.000 0.000 0.992 0.008 0.000
#> GSM440044     3  0.1444      0.947 0.000 0.000 0.948 0.012 0.040
#> GSM440045     3  0.0290      0.963 0.000 0.000 0.992 0.008 0.000
#> GSM440046     3  0.0290      0.963 0.000 0.000 0.992 0.008 0.000
#> GSM440019     4  0.5353      0.446 0.000 0.000 0.360 0.576 0.064
#> GSM440020     3  0.0290      0.963 0.000 0.000 0.992 0.008 0.000
#> GSM440021     3  0.0290      0.963 0.000 0.000 0.992 0.008 0.000
#> GSM440022     3  0.0290      0.963 0.000 0.000 0.992 0.008 0.000
#> GSM440007     3  0.1579      0.943 0.000 0.000 0.944 0.032 0.024
#> GSM440008     3  0.1493      0.943 0.000 0.000 0.948 0.028 0.024
#> GSM440009     3  0.1579      0.943 0.000 0.000 0.944 0.032 0.024
#> GSM440010     3  0.1579      0.943 0.000 0.000 0.944 0.032 0.024
#> GSM440031     2  0.2726      0.943 0.000 0.884 0.000 0.064 0.052
#> GSM440032     2  0.2726      0.943 0.000 0.884 0.000 0.064 0.052
#> GSM440033     2  0.2726      0.943 0.000 0.884 0.000 0.064 0.052
#> GSM440034     2  0.2729      0.942 0.000 0.884 0.000 0.060 0.056

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5 p6
#> GSM439987     1  0.0000      0.911 1.000 0.000 0.000 0.000 0.000 NA
#> GSM439988     1  0.2793      0.855 0.800 0.000 0.000 0.000 0.000 NA
#> GSM439989     1  0.0000      0.911 1.000 0.000 0.000 0.000 0.000 NA
#> GSM439990     1  0.0000      0.911 1.000 0.000 0.000 0.000 0.000 NA
#> GSM439991     4  0.1341      0.840 0.028 0.000 0.024 0.948 0.000 NA
#> GSM439992     4  0.1843      0.825 0.032 0.000 0.016 0.932 0.004 NA
#> GSM439993     4  0.1341      0.840 0.028 0.000 0.024 0.948 0.000 NA
#> GSM439994     4  0.1341      0.840 0.028 0.000 0.024 0.948 0.000 NA
#> GSM439995     3  0.0146      0.880 0.000 0.000 0.996 0.000 0.000 NA
#> GSM439996     3  0.3707      0.805 0.000 0.000 0.792 0.028 0.024 NA
#> GSM439997     3  0.3166      0.824 0.000 0.000 0.816 0.004 0.024 NA
#> GSM439998     3  0.3166      0.824 0.000 0.000 0.816 0.004 0.024 NA
#> GSM440035     1  0.0922      0.903 0.968 0.000 0.000 0.004 0.004 NA
#> GSM440036     1  0.0777      0.903 0.972 0.000 0.000 0.004 0.000 NA
#> GSM440037     1  0.2941      0.845 0.780 0.000 0.000 0.000 0.000 NA
#> GSM440038     1  0.3052      0.846 0.780 0.000 0.000 0.000 0.004 NA
#> GSM440011     1  0.0000      0.911 1.000 0.000 0.000 0.000 0.000 NA
#> GSM440012     1  0.2941      0.845 0.780 0.000 0.000 0.000 0.000 NA
#> GSM440013     1  0.0146      0.911 0.996 0.000 0.000 0.000 0.004 NA
#> GSM440014     1  0.2668      0.865 0.828 0.000 0.000 0.000 0.004 NA
#> GSM439999     1  0.0000      0.911 1.000 0.000 0.000 0.000 0.000 NA
#> GSM440000     1  0.2941      0.845 0.780 0.000 0.000 0.000 0.000 NA
#> GSM440001     1  0.1036      0.902 0.964 0.000 0.000 0.004 0.008 NA
#> GSM440002     1  0.1036      0.902 0.964 0.000 0.000 0.004 0.008 NA
#> GSM440023     5  0.2074      0.992 0.036 0.000 0.048 0.000 0.912 NA
#> GSM440024     5  0.1930      0.992 0.036 0.000 0.048 0.000 0.916 NA
#> GSM440025     5  0.2217      0.990 0.036 0.000 0.048 0.004 0.908 NA
#> GSM440026     5  0.2693      0.984 0.036 0.000 0.048 0.004 0.888 NA
#> GSM440039     4  0.4153      0.846 0.028 0.000 0.024 0.736 0.000 NA
#> GSM440040     4  0.1341      0.840 0.028 0.000 0.024 0.948 0.000 NA
#> GSM440041     4  0.1341      0.840 0.028 0.000 0.024 0.948 0.000 NA
#> GSM440042     4  0.1341      0.840 0.028 0.000 0.024 0.948 0.000 NA
#> GSM440015     4  0.4132      0.844 0.016 0.000 0.036 0.736 0.000 NA
#> GSM440016     4  0.4285      0.840 0.024 0.000 0.028 0.716 0.000 NA
#> GSM440017     4  0.4153      0.846 0.028 0.000 0.024 0.736 0.000 NA
#> GSM440018     3  0.3620      0.580 0.000 0.000 0.648 0.000 0.000 NA
#> GSM440003     4  0.4146      0.845 0.020 0.000 0.032 0.736 0.000 NA
#> GSM440004     4  0.4532      0.822 0.024 0.000 0.028 0.672 0.000 NA
#> GSM440005     4  0.4532      0.822 0.024 0.000 0.028 0.672 0.000 NA
#> GSM440006     4  0.4532      0.822 0.024 0.000 0.028 0.672 0.000 NA
#> GSM440027     2  0.0363      0.903 0.000 0.988 0.000 0.000 0.012 NA
#> GSM440028     2  0.0405      0.903 0.000 0.988 0.000 0.004 0.000 NA
#> GSM440029     2  0.0363      0.903 0.000 0.988 0.000 0.000 0.012 NA
#> GSM440030     2  0.0520      0.903 0.000 0.984 0.000 0.008 0.000 NA
#> GSM440043     3  0.0000      0.880 0.000 0.000 1.000 0.000 0.000 NA
#> GSM440044     3  0.3166      0.824 0.000 0.000 0.816 0.004 0.024 NA
#> GSM440045     3  0.0937      0.875 0.000 0.000 0.960 0.000 0.000 NA
#> GSM440046     3  0.0000      0.880 0.000 0.000 1.000 0.000 0.000 NA
#> GSM440019     4  0.6090      0.304 0.000 0.000 0.260 0.528 0.024 NA
#> GSM440020     3  0.0937      0.875 0.000 0.000 0.960 0.000 0.000 NA
#> GSM440021     3  0.0000      0.880 0.000 0.000 1.000 0.000 0.000 NA
#> GSM440022     3  0.0000      0.880 0.000 0.000 1.000 0.000 0.000 NA
#> GSM440007     3  0.2932      0.826 0.000 0.000 0.820 0.000 0.016 NA
#> GSM440008     3  0.2473      0.825 0.000 0.000 0.856 0.000 0.008 NA
#> GSM440009     3  0.2932      0.826 0.000 0.000 0.820 0.000 0.016 NA
#> GSM440010     3  0.2932      0.826 0.000 0.000 0.820 0.000 0.016 NA
#> GSM440031     2  0.3390      0.904 0.000 0.816 0.000 0.028 0.016 NA
#> GSM440032     2  0.3390      0.904 0.000 0.816 0.000 0.028 0.016 NA
#> GSM440033     2  0.3390      0.904 0.000 0.816 0.000 0.028 0.016 NA
#> GSM440034     2  0.3550      0.902 0.000 0.812 0.000 0.032 0.024 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n agent(p)  time(p)  dose(p) k
#> ATC:kmeans 60    0.296 9.95e-02 1.87e-07 2
#> ATC:kmeans 41    0.298 1.48e-10 2.00e-06 3
#> ATC:kmeans 55    0.452 5.90e-18 1.69e-07 4
#> ATC:kmeans 59    0.425 3.86e-18 7.19e-07 5
#> ATC:kmeans 59    0.425 3.86e-18 7.19e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 60 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.605           0.863       0.933         0.3970 0.602   0.602
#> 3 3 1.000           0.991       0.997         0.5665 0.716   0.550
#> 4 4 0.841           0.946       0.858         0.1398 0.847   0.603
#> 5 5 1.000           0.975       0.977         0.0917 0.982   0.925
#> 6 6 0.947           0.922       0.938         0.0413 0.969   0.860

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 3 5

There is also optional best \(k\) = 3 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM439987     1   0.000      0.937 1.000 0.000
#> GSM439988     1   0.000      0.937 1.000 0.000
#> GSM439989     1   0.000      0.937 1.000 0.000
#> GSM439990     1   0.000      0.937 1.000 0.000
#> GSM439991     1   0.000      0.937 1.000 0.000
#> GSM439992     1   0.000      0.937 1.000 0.000
#> GSM439993     1   0.000      0.937 1.000 0.000
#> GSM439994     1   0.000      0.937 1.000 0.000
#> GSM439995     1   0.722      0.782 0.800 0.200
#> GSM439996     1   0.000      0.937 1.000 0.000
#> GSM439997     1   0.722      0.782 0.800 0.200
#> GSM439998     1   0.722      0.782 0.800 0.200
#> GSM440035     1   0.000      0.937 1.000 0.000
#> GSM440036     1   0.000      0.937 1.000 0.000
#> GSM440037     1   0.000      0.937 1.000 0.000
#> GSM440038     1   0.000      0.937 1.000 0.000
#> GSM440011     1   0.000      0.937 1.000 0.000
#> GSM440012     1   0.000      0.937 1.000 0.000
#> GSM440013     1   0.000      0.937 1.000 0.000
#> GSM440014     1   0.000      0.937 1.000 0.000
#> GSM439999     1   0.000      0.937 1.000 0.000
#> GSM440000     1   0.000      0.937 1.000 0.000
#> GSM440001     1   0.000      0.937 1.000 0.000
#> GSM440002     1   0.000      0.937 1.000 0.000
#> GSM440023     2   0.722      0.760 0.200 0.800
#> GSM440024     2   0.722      0.760 0.200 0.800
#> GSM440025     2   0.722      0.760 0.200 0.800
#> GSM440026     2   0.722      0.760 0.200 0.800
#> GSM440039     1   0.000      0.937 1.000 0.000
#> GSM440040     1   0.000      0.937 1.000 0.000
#> GSM440041     1   0.000      0.937 1.000 0.000
#> GSM440042     1   0.000      0.937 1.000 0.000
#> GSM440015     1   0.000      0.937 1.000 0.000
#> GSM440016     1   0.000      0.937 1.000 0.000
#> GSM440017     1   0.000      0.937 1.000 0.000
#> GSM440018     1   0.714      0.785 0.804 0.196
#> GSM440003     1   0.000      0.937 1.000 0.000
#> GSM440004     1   0.000      0.937 1.000 0.000
#> GSM440005     1   0.000      0.937 1.000 0.000
#> GSM440006     1   0.000      0.937 1.000 0.000
#> GSM440027     2   0.000      0.860 0.000 1.000
#> GSM440028     2   0.000      0.860 0.000 1.000
#> GSM440029     2   0.000      0.860 0.000 1.000
#> GSM440030     2   0.000      0.860 0.000 1.000
#> GSM440043     1   0.722      0.782 0.800 0.200
#> GSM440044     1   0.706      0.789 0.808 0.192
#> GSM440045     1   0.722      0.782 0.800 0.200
#> GSM440046     1   0.722      0.782 0.800 0.200
#> GSM440019     1   0.000      0.937 1.000 0.000
#> GSM440020     1   0.722      0.782 0.800 0.200
#> GSM440021     1   0.722      0.782 0.800 0.200
#> GSM440022     1   0.722      0.782 0.800 0.200
#> GSM440007     2   0.925      0.480 0.340 0.660
#> GSM440008     2   0.925      0.480 0.340 0.660
#> GSM440009     2   0.921      0.488 0.336 0.664
#> GSM440010     2   0.000      0.860 0.000 1.000
#> GSM440031     2   0.000      0.860 0.000 1.000
#> GSM440032     2   0.000      0.860 0.000 1.000
#> GSM440033     2   0.000      0.860 0.000 1.000
#> GSM440034     2   0.000      0.860 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1 p2    p3
#> GSM439987     1   0.000      1.000 1.000  0 0.000
#> GSM439988     1   0.000      1.000 1.000  0 0.000
#> GSM439989     1   0.000      1.000 1.000  0 0.000
#> GSM439990     1   0.000      1.000 1.000  0 0.000
#> GSM439991     1   0.000      1.000 1.000  0 0.000
#> GSM439992     1   0.000      1.000 1.000  0 0.000
#> GSM439993     1   0.000      1.000 1.000  0 0.000
#> GSM439994     1   0.000      1.000 1.000  0 0.000
#> GSM439995     3   0.000      0.984 0.000  0 1.000
#> GSM439996     3   0.000      0.984 0.000  0 1.000
#> GSM439997     3   0.000      0.984 0.000  0 1.000
#> GSM439998     3   0.000      0.984 0.000  0 1.000
#> GSM440035     1   0.000      1.000 1.000  0 0.000
#> GSM440036     1   0.000      1.000 1.000  0 0.000
#> GSM440037     1   0.000      1.000 1.000  0 0.000
#> GSM440038     1   0.000      1.000 1.000  0 0.000
#> GSM440011     1   0.000      1.000 1.000  0 0.000
#> GSM440012     1   0.000      1.000 1.000  0 0.000
#> GSM440013     1   0.000      1.000 1.000  0 0.000
#> GSM440014     1   0.000      1.000 1.000  0 0.000
#> GSM439999     1   0.000      1.000 1.000  0 0.000
#> GSM440000     1   0.000      1.000 1.000  0 0.000
#> GSM440001     1   0.000      1.000 1.000  0 0.000
#> GSM440002     1   0.000      1.000 1.000  0 0.000
#> GSM440023     2   0.000      1.000 0.000  1 0.000
#> GSM440024     2   0.000      1.000 0.000  1 0.000
#> GSM440025     2   0.000      1.000 0.000  1 0.000
#> GSM440026     2   0.000      1.000 0.000  1 0.000
#> GSM440039     1   0.000      1.000 1.000  0 0.000
#> GSM440040     1   0.000      1.000 1.000  0 0.000
#> GSM440041     1   0.000      1.000 1.000  0 0.000
#> GSM440042     1   0.000      1.000 1.000  0 0.000
#> GSM440015     1   0.000      1.000 1.000  0 0.000
#> GSM440016     1   0.000      1.000 1.000  0 0.000
#> GSM440017     1   0.000      1.000 1.000  0 0.000
#> GSM440018     3   0.000      0.984 0.000  0 1.000
#> GSM440003     1   0.000      1.000 1.000  0 0.000
#> GSM440004     1   0.000      1.000 1.000  0 0.000
#> GSM440005     1   0.000      1.000 1.000  0 0.000
#> GSM440006     1   0.000      1.000 1.000  0 0.000
#> GSM440027     2   0.000      1.000 0.000  1 0.000
#> GSM440028     2   0.000      1.000 0.000  1 0.000
#> GSM440029     2   0.000      1.000 0.000  1 0.000
#> GSM440030     2   0.000      1.000 0.000  1 0.000
#> GSM440043     3   0.000      0.984 0.000  0 1.000
#> GSM440044     3   0.000      0.984 0.000  0 1.000
#> GSM440045     3   0.000      0.984 0.000  0 1.000
#> GSM440046     3   0.000      0.984 0.000  0 1.000
#> GSM440019     3   0.445      0.732 0.192  0 0.808
#> GSM440020     3   0.000      0.984 0.000  0 1.000
#> GSM440021     3   0.000      0.984 0.000  0 1.000
#> GSM440022     3   0.000      0.984 0.000  0 1.000
#> GSM440007     3   0.000      0.984 0.000  0 1.000
#> GSM440008     3   0.000      0.984 0.000  0 1.000
#> GSM440009     3   0.000      0.984 0.000  0 1.000
#> GSM440010     3   0.000      0.984 0.000  0 1.000
#> GSM440031     2   0.000      1.000 0.000  1 0.000
#> GSM440032     2   0.000      1.000 0.000  1 0.000
#> GSM440033     2   0.000      1.000 0.000  1 0.000
#> GSM440034     2   0.000      1.000 0.000  1 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM439987     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM439988     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM439989     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM439990     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM439991     4  0.4888      0.954 0.412 0.000 0.000 0.588
#> GSM439992     4  0.4888      0.954 0.412 0.000 0.000 0.588
#> GSM439993     4  0.4888      0.954 0.412 0.000 0.000 0.588
#> GSM439994     4  0.4888      0.954 0.412 0.000 0.000 0.588
#> GSM439995     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> GSM439996     3  0.1022      0.964 0.000 0.000 0.968 0.032
#> GSM439997     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> GSM439998     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> GSM440035     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM440036     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM440037     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM440038     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM440011     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM440012     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM440013     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM440014     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM439999     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM440000     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM440001     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM440002     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM440023     2  0.1118      0.761 0.036 0.964 0.000 0.000
#> GSM440024     2  0.1118      0.761 0.036 0.964 0.000 0.000
#> GSM440025     2  0.1118      0.761 0.036 0.964 0.000 0.000
#> GSM440026     2  0.1118      0.761 0.036 0.964 0.000 0.000
#> GSM440039     4  0.4888      0.954 0.412 0.000 0.000 0.588
#> GSM440040     4  0.4888      0.954 0.412 0.000 0.000 0.588
#> GSM440041     4  0.4888      0.954 0.412 0.000 0.000 0.588
#> GSM440042     4  0.4888      0.954 0.412 0.000 0.000 0.588
#> GSM440015     4  0.4888      0.954 0.412 0.000 0.000 0.588
#> GSM440016     4  0.4888      0.954 0.412 0.000 0.000 0.588
#> GSM440017     4  0.4888      0.954 0.412 0.000 0.000 0.588
#> GSM440018     3  0.0469      0.986 0.000 0.000 0.988 0.012
#> GSM440003     4  0.4888      0.954 0.412 0.000 0.000 0.588
#> GSM440004     4  0.4888      0.954 0.412 0.000 0.000 0.588
#> GSM440005     4  0.4888      0.954 0.412 0.000 0.000 0.588
#> GSM440006     4  0.4888      0.954 0.412 0.000 0.000 0.588
#> GSM440027     2  0.4888      0.887 0.000 0.588 0.000 0.412
#> GSM440028     2  0.4888      0.887 0.000 0.588 0.000 0.412
#> GSM440029     2  0.4888      0.887 0.000 0.588 0.000 0.412
#> GSM440030     2  0.4888      0.887 0.000 0.588 0.000 0.412
#> GSM440043     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> GSM440044     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> GSM440045     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> GSM440046     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> GSM440019     4  0.7341      0.379 0.164 0.000 0.360 0.476
#> GSM440020     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> GSM440021     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> GSM440022     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> GSM440007     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> GSM440008     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> GSM440009     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> GSM440010     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> GSM440031     2  0.4888      0.887 0.000 0.588 0.000 0.412
#> GSM440032     2  0.4888      0.887 0.000 0.588 0.000 0.412
#> GSM440033     2  0.4888      0.887 0.000 0.588 0.000 0.412
#> GSM440034     2  0.4888      0.887 0.000 0.588 0.000 0.412

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM439987     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM439988     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM439989     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM439990     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM439991     4  0.0963      0.988 0.036 0.000 0.000 0.964 0.000
#> GSM439992     4  0.0963      0.988 0.036 0.000 0.000 0.964 0.000
#> GSM439993     4  0.0963      0.988 0.036 0.000 0.000 0.964 0.000
#> GSM439994     4  0.0963      0.988 0.036 0.000 0.000 0.964 0.000
#> GSM439995     3  0.0000      0.958 0.000 0.000 1.000 0.000 0.000
#> GSM439996     3  0.2966      0.747 0.000 0.000 0.816 0.184 0.000
#> GSM439997     3  0.0162      0.957 0.000 0.000 0.996 0.004 0.000
#> GSM439998     3  0.0162      0.957 0.000 0.000 0.996 0.004 0.000
#> GSM440035     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM440036     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM440037     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM440038     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM440011     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM440012     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM440013     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM440014     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM439999     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM440000     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM440001     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM440002     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM440023     5  0.0703      1.000 0.000 0.024 0.000 0.000 0.976
#> GSM440024     5  0.0703      1.000 0.000 0.024 0.000 0.000 0.976
#> GSM440025     5  0.0703      1.000 0.000 0.024 0.000 0.000 0.976
#> GSM440026     5  0.0703      1.000 0.000 0.024 0.000 0.000 0.976
#> GSM440039     4  0.0963      0.988 0.036 0.000 0.000 0.964 0.000
#> GSM440040     4  0.0963      0.988 0.036 0.000 0.000 0.964 0.000
#> GSM440041     4  0.0963      0.988 0.036 0.000 0.000 0.964 0.000
#> GSM440042     4  0.0963      0.988 0.036 0.000 0.000 0.964 0.000
#> GSM440015     4  0.0963      0.988 0.036 0.000 0.000 0.964 0.000
#> GSM440016     4  0.0963      0.988 0.036 0.000 0.000 0.964 0.000
#> GSM440017     4  0.0963      0.988 0.036 0.000 0.000 0.964 0.000
#> GSM440018     3  0.2536      0.837 0.000 0.000 0.868 0.128 0.004
#> GSM440003     4  0.0963      0.988 0.036 0.000 0.000 0.964 0.000
#> GSM440004     4  0.0963      0.988 0.036 0.000 0.000 0.964 0.000
#> GSM440005     4  0.0963      0.988 0.036 0.000 0.000 0.964 0.000
#> GSM440006     4  0.0963      0.988 0.036 0.000 0.000 0.964 0.000
#> GSM440027     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM440028     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM440029     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM440030     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM440043     3  0.0000      0.958 0.000 0.000 1.000 0.000 0.000
#> GSM440044     3  0.0162      0.957 0.000 0.000 0.996 0.004 0.000
#> GSM440045     3  0.0000      0.958 0.000 0.000 1.000 0.000 0.000
#> GSM440046     3  0.0000      0.958 0.000 0.000 1.000 0.000 0.000
#> GSM440019     4  0.2605      0.797 0.000 0.000 0.148 0.852 0.000
#> GSM440020     3  0.0000      0.958 0.000 0.000 1.000 0.000 0.000
#> GSM440021     3  0.0000      0.958 0.000 0.000 1.000 0.000 0.000
#> GSM440022     3  0.0000      0.958 0.000 0.000 1.000 0.000 0.000
#> GSM440007     3  0.1661      0.937 0.000 0.000 0.940 0.036 0.024
#> GSM440008     3  0.1661      0.937 0.000 0.000 0.940 0.036 0.024
#> GSM440009     3  0.1661      0.937 0.000 0.000 0.940 0.036 0.024
#> GSM440010     3  0.1661      0.937 0.000 0.000 0.940 0.036 0.024
#> GSM440031     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM440032     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM440033     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM440034     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1 p2    p3    p4 p5    p6
#> GSM439987     1  0.0000      1.000  1  0 0.000 0.000  0 0.000
#> GSM439988     1  0.0000      1.000  1  0 0.000 0.000  0 0.000
#> GSM439989     1  0.0000      1.000  1  0 0.000 0.000  0 0.000
#> GSM439990     1  0.0000      1.000  1  0 0.000 0.000  0 0.000
#> GSM439991     4  0.0000      0.948  0  0 0.000 1.000  0 0.000
#> GSM439992     4  0.0146      0.947  0  0 0.000 0.996  0 0.004
#> GSM439993     4  0.0000      0.948  0  0 0.000 1.000  0 0.000
#> GSM439994     4  0.0000      0.948  0  0 0.000 1.000  0 0.000
#> GSM439995     3  0.1141      0.895  0  0 0.948 0.000  0 0.052
#> GSM439996     3  0.2706      0.800  0  0 0.860 0.036  0 0.104
#> GSM439997     3  0.1910      0.852  0  0 0.892 0.000  0 0.108
#> GSM439998     3  0.1814      0.851  0  0 0.900 0.000  0 0.100
#> GSM440035     1  0.0000      1.000  1  0 0.000 0.000  0 0.000
#> GSM440036     1  0.0000      1.000  1  0 0.000 0.000  0 0.000
#> GSM440037     1  0.0000      1.000  1  0 0.000 0.000  0 0.000
#> GSM440038     1  0.0000      1.000  1  0 0.000 0.000  0 0.000
#> GSM440011     1  0.0000      1.000  1  0 0.000 0.000  0 0.000
#> GSM440012     1  0.0000      1.000  1  0 0.000 0.000  0 0.000
#> GSM440013     1  0.0000      1.000  1  0 0.000 0.000  0 0.000
#> GSM440014     1  0.0000      1.000  1  0 0.000 0.000  0 0.000
#> GSM439999     1  0.0000      1.000  1  0 0.000 0.000  0 0.000
#> GSM440000     1  0.0000      1.000  1  0 0.000 0.000  0 0.000
#> GSM440001     1  0.0000      1.000  1  0 0.000 0.000  0 0.000
#> GSM440002     1  0.0000      1.000  1  0 0.000 0.000  0 0.000
#> GSM440023     5  0.0000      1.000  0  0 0.000 0.000  1 0.000
#> GSM440024     5  0.0000      1.000  0  0 0.000 0.000  1 0.000
#> GSM440025     5  0.0000      1.000  0  0 0.000 0.000  1 0.000
#> GSM440026     5  0.0000      1.000  0  0 0.000 0.000  1 0.000
#> GSM440039     4  0.0363      0.947  0  0 0.000 0.988  0 0.012
#> GSM440040     4  0.0000      0.948  0  0 0.000 1.000  0 0.000
#> GSM440041     4  0.0146      0.947  0  0 0.000 0.996  0 0.004
#> GSM440042     4  0.0000      0.948  0  0 0.000 1.000  0 0.000
#> GSM440015     4  0.0363      0.947  0  0 0.000 0.988  0 0.012
#> GSM440016     4  0.0632      0.943  0  0 0.000 0.976  0 0.024
#> GSM440017     4  0.0363      0.946  0  0 0.000 0.988  0 0.012
#> GSM440018     6  0.4975      0.183  0  0 0.428 0.068  0 0.504
#> GSM440003     4  0.0260      0.947  0  0 0.000 0.992  0 0.008
#> GSM440004     4  0.2135      0.875  0  0 0.000 0.872  0 0.128
#> GSM440005     4  0.1444      0.913  0  0 0.000 0.928  0 0.072
#> GSM440006     4  0.1910      0.888  0  0 0.000 0.892  0 0.108
#> GSM440027     2  0.0000      1.000  0  1 0.000 0.000  0 0.000
#> GSM440028     2  0.0000      1.000  0  1 0.000 0.000  0 0.000
#> GSM440029     2  0.0000      1.000  0  1 0.000 0.000  0 0.000
#> GSM440030     2  0.0000      1.000  0  1 0.000 0.000  0 0.000
#> GSM440043     3  0.1141      0.890  0  0 0.948 0.000  0 0.052
#> GSM440044     3  0.1814      0.849  0  0 0.900 0.000  0 0.100
#> GSM440045     3  0.0458      0.897  0  0 0.984 0.000  0 0.016
#> GSM440046     3  0.1204      0.887  0  0 0.944 0.000  0 0.056
#> GSM440019     4  0.5012      0.350  0  0 0.300 0.600  0 0.100
#> GSM440020     3  0.0000      0.894  0  0 1.000 0.000  0 0.000
#> GSM440021     3  0.1075      0.892  0  0 0.952 0.000  0 0.048
#> GSM440022     3  0.1141      0.890  0  0 0.948 0.000  0 0.052
#> GSM440007     6  0.3288      0.807  0  0 0.276 0.000  0 0.724
#> GSM440008     6  0.3464      0.756  0  0 0.312 0.000  0 0.688
#> GSM440009     6  0.3288      0.807  0  0 0.276 0.000  0 0.724
#> GSM440010     6  0.3266      0.807  0  0 0.272 0.000  0 0.728
#> GSM440031     2  0.0000      1.000  0  1 0.000 0.000  0 0.000
#> GSM440032     2  0.0000      1.000  0  1 0.000 0.000  0 0.000
#> GSM440033     2  0.0000      1.000  0  1 0.000 0.000  0 0.000
#> GSM440034     2  0.0000      1.000  0  1 0.000 0.000  0 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n agent(p)  time(p)  dose(p) k
#> ATC:skmeans 57   0.0833 7.41e-01 1.41e-10 2
#> ATC:skmeans 60   0.1507 6.73e-09 3.99e-10 3
#> ATC:skmeans 59   0.2766 6.80e-17 3.18e-08 4
#> ATC:skmeans 60   0.4409 1.97e-17 5.23e-07 5
#> ATC:skmeans 58   0.2755 9.48e-18 1.09e-08 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 60 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.2358 0.765   0.765
#> 3 3 0.857           0.885       0.954         1.5807 0.623   0.507
#> 4 4 0.923           0.903       0.959         0.2176 0.831   0.585
#> 5 5 1.000           0.957       0.984         0.0490 0.964   0.861
#> 6 6 1.000           0.957       0.984         0.0116 0.991   0.959

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 4

There is also optional best \(k\) = 2 4 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> GSM439987     1       0          1  1  0
#> GSM439988     1       0          1  1  0
#> GSM439989     1       0          1  1  0
#> GSM439990     1       0          1  1  0
#> GSM439991     1       0          1  1  0
#> GSM439992     1       0          1  1  0
#> GSM439993     1       0          1  1  0
#> GSM439994     1       0          1  1  0
#> GSM439995     1       0          1  1  0
#> GSM439996     1       0          1  1  0
#> GSM439997     1       0          1  1  0
#> GSM439998     1       0          1  1  0
#> GSM440035     1       0          1  1  0
#> GSM440036     1       0          1  1  0
#> GSM440037     1       0          1  1  0
#> GSM440038     1       0          1  1  0
#> GSM440011     1       0          1  1  0
#> GSM440012     1       0          1  1  0
#> GSM440013     1       0          1  1  0
#> GSM440014     1       0          1  1  0
#> GSM439999     1       0          1  1  0
#> GSM440000     1       0          1  1  0
#> GSM440001     1       0          1  1  0
#> GSM440002     1       0          1  1  0
#> GSM440023     1       0          1  1  0
#> GSM440024     1       0          1  1  0
#> GSM440025     1       0          1  1  0
#> GSM440026     1       0          1  1  0
#> GSM440039     1       0          1  1  0
#> GSM440040     1       0          1  1  0
#> GSM440041     1       0          1  1  0
#> GSM440042     1       0          1  1  0
#> GSM440015     1       0          1  1  0
#> GSM440016     1       0          1  1  0
#> GSM440017     1       0          1  1  0
#> GSM440018     1       0          1  1  0
#> GSM440003     1       0          1  1  0
#> GSM440004     1       0          1  1  0
#> GSM440005     1       0          1  1  0
#> GSM440006     1       0          1  1  0
#> GSM440027     2       0          1  0  1
#> GSM440028     2       0          1  0  1
#> GSM440029     2       0          1  0  1
#> GSM440030     2       0          1  0  1
#> GSM440043     1       0          1  1  0
#> GSM440044     1       0          1  1  0
#> GSM440045     1       0          1  1  0
#> GSM440046     1       0          1  1  0
#> GSM440019     1       0          1  1  0
#> GSM440020     1       0          1  1  0
#> GSM440021     1       0          1  1  0
#> GSM440022     1       0          1  1  0
#> GSM440007     1       0          1  1  0
#> GSM440008     1       0          1  1  0
#> GSM440009     1       0          1  1  0
#> GSM440010     1       0          1  1  0
#> GSM440031     2       0          1  0  1
#> GSM440032     2       0          1  0  1
#> GSM440033     2       0          1  0  1
#> GSM440034     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1 p2    p3
#> GSM439987     1  0.0000      0.908 1.000  0 0.000
#> GSM439988     1  0.0000      0.908 1.000  0 0.000
#> GSM439989     1  0.0000      0.908 1.000  0 0.000
#> GSM439990     1  0.0000      0.908 1.000  0 0.000
#> GSM439991     3  0.4887      0.699 0.228  0 0.772
#> GSM439992     1  0.2537      0.854 0.920  0 0.080
#> GSM439993     3  0.1529      0.920 0.040  0 0.960
#> GSM439994     3  0.0747      0.941 0.016  0 0.984
#> GSM439995     3  0.0000      0.952 0.000  0 1.000
#> GSM439996     3  0.0000      0.952 0.000  0 1.000
#> GSM439997     3  0.0000      0.952 0.000  0 1.000
#> GSM439998     3  0.0000      0.952 0.000  0 1.000
#> GSM440035     1  0.0000      0.908 1.000  0 0.000
#> GSM440036     1  0.0000      0.908 1.000  0 0.000
#> GSM440037     1  0.0000      0.908 1.000  0 0.000
#> GSM440038     1  0.0000      0.908 1.000  0 0.000
#> GSM440011     1  0.0000      0.908 1.000  0 0.000
#> GSM440012     1  0.0000      0.908 1.000  0 0.000
#> GSM440013     1  0.0000      0.908 1.000  0 0.000
#> GSM440014     1  0.0000      0.908 1.000  0 0.000
#> GSM439999     1  0.0000      0.908 1.000  0 0.000
#> GSM440000     1  0.0000      0.908 1.000  0 0.000
#> GSM440001     1  0.0000      0.908 1.000  0 0.000
#> GSM440002     1  0.0000      0.908 1.000  0 0.000
#> GSM440023     1  0.5859      0.530 0.656  0 0.344
#> GSM440024     1  0.6274      0.259 0.544  0 0.456
#> GSM440025     1  0.5948      0.502 0.640  0 0.360
#> GSM440026     1  0.4750      0.712 0.784  0 0.216
#> GSM440039     1  0.2261      0.864 0.932  0 0.068
#> GSM440040     3  0.5138      0.664 0.252  0 0.748
#> GSM440041     3  0.0237      0.949 0.004  0 0.996
#> GSM440042     3  0.4178      0.776 0.172  0 0.828
#> GSM440015     3  0.0000      0.952 0.000  0 1.000
#> GSM440016     3  0.0000      0.952 0.000  0 1.000
#> GSM440017     1  0.2356      0.862 0.928  0 0.072
#> GSM440018     3  0.0000      0.952 0.000  0 1.000
#> GSM440003     3  0.0237      0.949 0.004  0 0.996
#> GSM440004     3  0.0000      0.952 0.000  0 1.000
#> GSM440005     3  0.6235      0.109 0.436  0 0.564
#> GSM440006     3  0.0424      0.947 0.008  0 0.992
#> GSM440027     2  0.0000      1.000 0.000  1 0.000
#> GSM440028     2  0.0000      1.000 0.000  1 0.000
#> GSM440029     2  0.0000      1.000 0.000  1 0.000
#> GSM440030     2  0.0000      1.000 0.000  1 0.000
#> GSM440043     3  0.0000      0.952 0.000  0 1.000
#> GSM440044     3  0.0000      0.952 0.000  0 1.000
#> GSM440045     3  0.0000      0.952 0.000  0 1.000
#> GSM440046     3  0.0000      0.952 0.000  0 1.000
#> GSM440019     3  0.0000      0.952 0.000  0 1.000
#> GSM440020     3  0.0000      0.952 0.000  0 1.000
#> GSM440021     3  0.0000      0.952 0.000  0 1.000
#> GSM440022     3  0.0000      0.952 0.000  0 1.000
#> GSM440007     3  0.0000      0.952 0.000  0 1.000
#> GSM440008     3  0.0000      0.952 0.000  0 1.000
#> GSM440009     3  0.0000      0.952 0.000  0 1.000
#> GSM440010     3  0.0000      0.952 0.000  0 1.000
#> GSM440031     2  0.0000      1.000 0.000  1 0.000
#> GSM440032     2  0.0000      1.000 0.000  1 0.000
#> GSM440033     2  0.0000      1.000 0.000  1 0.000
#> GSM440034     2  0.0000      1.000 0.000  1 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1 p2    p3    p4
#> GSM439987     1  0.0000      0.915 1.000  0 0.000 0.000
#> GSM439988     1  0.0000      0.915 1.000  0 0.000 0.000
#> GSM439989     1  0.0000      0.915 1.000  0 0.000 0.000
#> GSM439990     1  0.0000      0.915 1.000  0 0.000 0.000
#> GSM439991     4  0.0000      1.000 0.000  0 0.000 1.000
#> GSM439992     4  0.0000      1.000 0.000  0 0.000 1.000
#> GSM439993     4  0.0000      1.000 0.000  0 0.000 1.000
#> GSM439994     4  0.0000      1.000 0.000  0 0.000 1.000
#> GSM439995     3  0.0000      0.931 0.000  0 1.000 0.000
#> GSM439996     3  0.2469      0.838 0.000  0 0.892 0.108
#> GSM439997     3  0.0000      0.931 0.000  0 1.000 0.000
#> GSM439998     3  0.0000      0.931 0.000  0 1.000 0.000
#> GSM440035     1  0.0000      0.915 1.000  0 0.000 0.000
#> GSM440036     1  0.0000      0.915 1.000  0 0.000 0.000
#> GSM440037     1  0.0000      0.915 1.000  0 0.000 0.000
#> GSM440038     1  0.0000      0.915 1.000  0 0.000 0.000
#> GSM440011     1  0.0000      0.915 1.000  0 0.000 0.000
#> GSM440012     1  0.0000      0.915 1.000  0 0.000 0.000
#> GSM440013     1  0.0000      0.915 1.000  0 0.000 0.000
#> GSM440014     1  0.0000      0.915 1.000  0 0.000 0.000
#> GSM439999     1  0.0000      0.915 1.000  0 0.000 0.000
#> GSM440000     1  0.0000      0.915 1.000  0 0.000 0.000
#> GSM440001     1  0.0000      0.915 1.000  0 0.000 0.000
#> GSM440002     1  0.0000      0.915 1.000  0 0.000 0.000
#> GSM440023     1  0.5966      0.564 0.648  0 0.280 0.072
#> GSM440024     1  0.6750      0.367 0.540  0 0.356 0.104
#> GSM440025     1  0.6000      0.442 0.592  0 0.356 0.052
#> GSM440026     1  0.5031      0.686 0.740  0 0.212 0.048
#> GSM440039     4  0.0000      1.000 0.000  0 0.000 1.000
#> GSM440040     4  0.0000      1.000 0.000  0 0.000 1.000
#> GSM440041     4  0.0000      1.000 0.000  0 0.000 1.000
#> GSM440042     4  0.0000      1.000 0.000  0 0.000 1.000
#> GSM440015     4  0.0000      1.000 0.000  0 0.000 1.000
#> GSM440016     4  0.0000      1.000 0.000  0 0.000 1.000
#> GSM440017     4  0.0000      1.000 0.000  0 0.000 1.000
#> GSM440018     3  0.4933      0.301 0.000  0 0.568 0.432
#> GSM440003     4  0.0000      1.000 0.000  0 0.000 1.000
#> GSM440004     4  0.0000      1.000 0.000  0 0.000 1.000
#> GSM440005     4  0.0000      1.000 0.000  0 0.000 1.000
#> GSM440006     4  0.0000      1.000 0.000  0 0.000 1.000
#> GSM440027     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM440028     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM440029     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM440030     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM440043     3  0.0000      0.931 0.000  0 1.000 0.000
#> GSM440044     3  0.0336      0.925 0.000  0 0.992 0.008
#> GSM440045     3  0.0000      0.931 0.000  0 1.000 0.000
#> GSM440046     3  0.0000      0.931 0.000  0 1.000 0.000
#> GSM440019     3  0.4925      0.311 0.000  0 0.572 0.428
#> GSM440020     3  0.0000      0.931 0.000  0 1.000 0.000
#> GSM440021     3  0.0000      0.931 0.000  0 1.000 0.000
#> GSM440022     3  0.0000      0.931 0.000  0 1.000 0.000
#> GSM440007     3  0.0000      0.931 0.000  0 1.000 0.000
#> GSM440008     3  0.0000      0.931 0.000  0 1.000 0.000
#> GSM440009     3  0.0000      0.931 0.000  0 1.000 0.000
#> GSM440010     3  0.0000      0.931 0.000  0 1.000 0.000
#> GSM440031     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM440032     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM440033     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM440034     2  0.0000      1.000 0.000  1 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1 p2    p3    p4 p5
#> GSM439987     1  0.0000      1.000  1  0 0.000 0.000  0
#> GSM439988     1  0.0000      1.000  1  0 0.000 0.000  0
#> GSM439989     1  0.0000      1.000  1  0 0.000 0.000  0
#> GSM439990     1  0.0000      1.000  1  0 0.000 0.000  0
#> GSM439991     4  0.0000      1.000  0  0 0.000 1.000  0
#> GSM439992     4  0.0000      1.000  0  0 0.000 1.000  0
#> GSM439993     4  0.0000      1.000  0  0 0.000 1.000  0
#> GSM439994     4  0.0000      1.000  0  0 0.000 1.000  0
#> GSM439995     3  0.0000      0.926  0  0 1.000 0.000  0
#> GSM439996     3  0.1608      0.857  0  0 0.928 0.072  0
#> GSM439997     3  0.0000      0.926  0  0 1.000 0.000  0
#> GSM439998     3  0.0000      0.926  0  0 1.000 0.000  0
#> GSM440035     1  0.0000      1.000  1  0 0.000 0.000  0
#> GSM440036     1  0.0000      1.000  1  0 0.000 0.000  0
#> GSM440037     1  0.0000      1.000  1  0 0.000 0.000  0
#> GSM440038     1  0.0000      1.000  1  0 0.000 0.000  0
#> GSM440011     1  0.0000      1.000  1  0 0.000 0.000  0
#> GSM440012     1  0.0000      1.000  1  0 0.000 0.000  0
#> GSM440013     1  0.0000      1.000  1  0 0.000 0.000  0
#> GSM440014     1  0.0000      1.000  1  0 0.000 0.000  0
#> GSM439999     1  0.0000      1.000  1  0 0.000 0.000  0
#> GSM440000     1  0.0000      1.000  1  0 0.000 0.000  0
#> GSM440001     1  0.0000      1.000  1  0 0.000 0.000  0
#> GSM440002     1  0.0000      1.000  1  0 0.000 0.000  0
#> GSM440023     5  0.0000      1.000  0  0 0.000 0.000  1
#> GSM440024     5  0.0000      1.000  0  0 0.000 0.000  1
#> GSM440025     5  0.0000      1.000  0  0 0.000 0.000  1
#> GSM440026     5  0.0000      1.000  0  0 0.000 0.000  1
#> GSM440039     4  0.0000      1.000  0  0 0.000 1.000  0
#> GSM440040     4  0.0000      1.000  0  0 0.000 1.000  0
#> GSM440041     4  0.0000      1.000  0  0 0.000 1.000  0
#> GSM440042     4  0.0000      1.000  0  0 0.000 1.000  0
#> GSM440015     4  0.0000      1.000  0  0 0.000 1.000  0
#> GSM440016     4  0.0000      1.000  0  0 0.000 1.000  0
#> GSM440017     4  0.0000      1.000  0  0 0.000 1.000  0
#> GSM440018     3  0.4242      0.294  0  0 0.572 0.428  0
#> GSM440003     4  0.0000      1.000  0  0 0.000 1.000  0
#> GSM440004     4  0.0000      1.000  0  0 0.000 1.000  0
#> GSM440005     4  0.0000      1.000  0  0 0.000 1.000  0
#> GSM440006     4  0.0000      1.000  0  0 0.000 1.000  0
#> GSM440027     2  0.0000      1.000  0  1 0.000 0.000  0
#> GSM440028     2  0.0000      1.000  0  1 0.000 0.000  0
#> GSM440029     2  0.0000      1.000  0  1 0.000 0.000  0
#> GSM440030     2  0.0000      1.000  0  1 0.000 0.000  0
#> GSM440043     3  0.0000      0.926  0  0 1.000 0.000  0
#> GSM440044     3  0.0162      0.923  0  0 0.996 0.004  0
#> GSM440045     3  0.0000      0.926  0  0 1.000 0.000  0
#> GSM440046     3  0.0000      0.926  0  0 1.000 0.000  0
#> GSM440019     3  0.4256      0.280  0  0 0.564 0.436  0
#> GSM440020     3  0.0000      0.926  0  0 1.000 0.000  0
#> GSM440021     3  0.0000      0.926  0  0 1.000 0.000  0
#> GSM440022     3  0.0000      0.926  0  0 1.000 0.000  0
#> GSM440007     3  0.0000      0.926  0  0 1.000 0.000  0
#> GSM440008     3  0.0000      0.926  0  0 1.000 0.000  0
#> GSM440009     3  0.0000      0.926  0  0 1.000 0.000  0
#> GSM440010     3  0.0000      0.926  0  0 1.000 0.000  0
#> GSM440031     2  0.0000      1.000  0  1 0.000 0.000  0
#> GSM440032     2  0.0000      1.000  0  1 0.000 0.000  0
#> GSM440033     2  0.0000      1.000  0  1 0.000 0.000  0
#> GSM440034     2  0.0000      1.000  0  1 0.000 0.000  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1 p2    p3    p4 p5 p6
#> GSM439987     1  0.0000      1.000  1  0 0.000 0.000  0  0
#> GSM439988     1  0.0000      1.000  1  0 0.000 0.000  0  0
#> GSM439989     1  0.0000      1.000  1  0 0.000 0.000  0  0
#> GSM439990     1  0.0000      1.000  1  0 0.000 0.000  0  0
#> GSM439991     4  0.0000      1.000  0  0 0.000 1.000  0  0
#> GSM439992     4  0.0000      1.000  0  0 0.000 1.000  0  0
#> GSM439993     4  0.0000      1.000  0  0 0.000 1.000  0  0
#> GSM439994     4  0.0000      1.000  0  0 0.000 1.000  0  0
#> GSM439995     3  0.0000      0.926  0  0 1.000 0.000  0  0
#> GSM439996     3  0.1444      0.857  0  0 0.928 0.072  0  0
#> GSM439997     3  0.0000      0.926  0  0 1.000 0.000  0  0
#> GSM439998     3  0.0000      0.926  0  0 1.000 0.000  0  0
#> GSM440035     1  0.0000      1.000  1  0 0.000 0.000  0  0
#> GSM440036     1  0.0000      1.000  1  0 0.000 0.000  0  0
#> GSM440037     1  0.0000      1.000  1  0 0.000 0.000  0  0
#> GSM440038     1  0.0000      1.000  1  0 0.000 0.000  0  0
#> GSM440011     1  0.0000      1.000  1  0 0.000 0.000  0  0
#> GSM440012     1  0.0000      1.000  1  0 0.000 0.000  0  0
#> GSM440013     1  0.0000      1.000  1  0 0.000 0.000  0  0
#> GSM440014     1  0.0000      1.000  1  0 0.000 0.000  0  0
#> GSM439999     1  0.0000      1.000  1  0 0.000 0.000  0  0
#> GSM440000     1  0.0000      1.000  1  0 0.000 0.000  0  0
#> GSM440001     1  0.0000      1.000  1  0 0.000 0.000  0  0
#> GSM440002     1  0.0000      1.000  1  0 0.000 0.000  0  0
#> GSM440023     5  0.0000      1.000  0  0 0.000 0.000  1  0
#> GSM440024     5  0.0000      1.000  0  0 0.000 0.000  1  0
#> GSM440025     5  0.0000      1.000  0  0 0.000 0.000  1  0
#> GSM440026     5  0.0000      1.000  0  0 0.000 0.000  1  0
#> GSM440039     4  0.0000      1.000  0  0 0.000 1.000  0  0
#> GSM440040     4  0.0000      1.000  0  0 0.000 1.000  0  0
#> GSM440041     4  0.0000      1.000  0  0 0.000 1.000  0  0
#> GSM440042     4  0.0000      1.000  0  0 0.000 1.000  0  0
#> GSM440015     4  0.0000      1.000  0  0 0.000 1.000  0  0
#> GSM440016     4  0.0000      1.000  0  0 0.000 1.000  0  0
#> GSM440017     4  0.0000      1.000  0  0 0.000 1.000  0  0
#> GSM440018     3  0.3810      0.294  0  0 0.572 0.428  0  0
#> GSM440003     4  0.0000      1.000  0  0 0.000 1.000  0  0
#> GSM440004     4  0.0000      1.000  0  0 0.000 1.000  0  0
#> GSM440005     4  0.0000      1.000  0  0 0.000 1.000  0  0
#> GSM440006     4  0.0000      1.000  0  0 0.000 1.000  0  0
#> GSM440027     2  0.0000      1.000  0  1 0.000 0.000  0  0
#> GSM440028     2  0.0000      1.000  0  1 0.000 0.000  0  0
#> GSM440029     2  0.0000      1.000  0  1 0.000 0.000  0  0
#> GSM440030     2  0.0000      1.000  0  1 0.000 0.000  0  0
#> GSM440043     3  0.0000      0.926  0  0 1.000 0.000  0  0
#> GSM440044     3  0.0146      0.923  0  0 0.996 0.004  0  0
#> GSM440045     3  0.0000      0.926  0  0 1.000 0.000  0  0
#> GSM440046     3  0.0000      0.926  0  0 1.000 0.000  0  0
#> GSM440019     3  0.3823      0.280  0  0 0.564 0.436  0  0
#> GSM440020     3  0.0000      0.926  0  0 1.000 0.000  0  0
#> GSM440021     3  0.0000      0.926  0  0 1.000 0.000  0  0
#> GSM440022     3  0.0000      0.926  0  0 1.000 0.000  0  0
#> GSM440007     3  0.0000      0.926  0  0 1.000 0.000  0  0
#> GSM440008     3  0.0000      0.926  0  0 1.000 0.000  0  0
#> GSM440009     3  0.0000      0.926  0  0 1.000 0.000  0  0
#> GSM440010     3  0.0000      0.926  0  0 1.000 0.000  0  0
#> GSM440031     6  0.0000      1.000  0  0 0.000 0.000  0  1
#> GSM440032     6  0.0000      1.000  0  0 0.000 0.000  0  1
#> GSM440033     6  0.0000      1.000  0  0 0.000 0.000  0  1
#> GSM440034     6  0.0000      1.000  0  0 0.000 0.000  0  1

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n agent(p)  time(p)  dose(p) k
#> ATC:pam 60    0.296 9.95e-02 1.87e-07 2
#> ATC:pam 58    0.292 1.22e-09 1.87e-06 3
#> ATC:pam 56    0.444 2.27e-19 1.50e-05 4
#> ATC:pam 58    0.411 7.16e-19 1.05e-06 5
#> ATC:pam 58    0.555 3.27e-20 1.35e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 60 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.505           0.850       0.910         0.3175 0.765   0.765
#> 3 3 0.946           0.944       0.971         0.9150 0.584   0.469
#> 4 4 0.911           0.909       0.958         0.2297 0.801   0.528
#> 5 5 0.981           0.964       0.976         0.0401 0.964   0.860
#> 6 6 0.946           0.795       0.899         0.0295 0.982   0.922

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 3 4 5

There is also optional best \(k\) = 3 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM439987     1   0.730      0.813 0.796 0.204
#> GSM439988     1   0.730      0.813 0.796 0.204
#> GSM439989     1   0.730      0.813 0.796 0.204
#> GSM439990     1   0.730      0.813 0.796 0.204
#> GSM439991     1   0.000      0.886 1.000 0.000
#> GSM439992     1   0.000      0.886 1.000 0.000
#> GSM439993     1   0.000      0.886 1.000 0.000
#> GSM439994     1   0.000      0.886 1.000 0.000
#> GSM439995     1   0.000      0.886 1.000 0.000
#> GSM439996     1   0.000      0.886 1.000 0.000
#> GSM439997     1   0.000      0.886 1.000 0.000
#> GSM439998     1   0.000      0.886 1.000 0.000
#> GSM440035     1   0.730      0.813 0.796 0.204
#> GSM440036     1   0.730      0.813 0.796 0.204
#> GSM440037     1   0.730      0.813 0.796 0.204
#> GSM440038     1   0.730      0.813 0.796 0.204
#> GSM440011     1   0.730      0.813 0.796 0.204
#> GSM440012     1   0.730      0.813 0.796 0.204
#> GSM440013     1   0.730      0.813 0.796 0.204
#> GSM440014     1   0.730      0.813 0.796 0.204
#> GSM439999     1   0.730      0.813 0.796 0.204
#> GSM440000     1   0.730      0.813 0.796 0.204
#> GSM440001     1   0.730      0.813 0.796 0.204
#> GSM440002     1   0.730      0.813 0.796 0.204
#> GSM440023     1   0.983      0.465 0.576 0.424
#> GSM440024     1   0.983      0.465 0.576 0.424
#> GSM440025     1   0.983      0.465 0.576 0.424
#> GSM440026     1   0.983      0.465 0.576 0.424
#> GSM440039     1   0.000      0.886 1.000 0.000
#> GSM440040     1   0.000      0.886 1.000 0.000
#> GSM440041     1   0.000      0.886 1.000 0.000
#> GSM440042     1   0.000      0.886 1.000 0.000
#> GSM440015     1   0.000      0.886 1.000 0.000
#> GSM440016     1   0.000      0.886 1.000 0.000
#> GSM440017     1   0.000      0.886 1.000 0.000
#> GSM440018     1   0.000      0.886 1.000 0.000
#> GSM440003     1   0.000      0.886 1.000 0.000
#> GSM440004     1   0.000      0.886 1.000 0.000
#> GSM440005     1   0.000      0.886 1.000 0.000
#> GSM440006     1   0.000      0.886 1.000 0.000
#> GSM440027     2   0.118      0.997 0.016 0.984
#> GSM440028     2   0.118      0.997 0.016 0.984
#> GSM440029     2   0.118      0.997 0.016 0.984
#> GSM440030     2   0.118      0.997 0.016 0.984
#> GSM440043     1   0.000      0.886 1.000 0.000
#> GSM440044     1   0.000      0.886 1.000 0.000
#> GSM440045     1   0.000      0.886 1.000 0.000
#> GSM440046     1   0.000      0.886 1.000 0.000
#> GSM440019     1   0.000      0.886 1.000 0.000
#> GSM440020     1   0.000      0.886 1.000 0.000
#> GSM440021     1   0.000      0.886 1.000 0.000
#> GSM440022     1   0.000      0.886 1.000 0.000
#> GSM440007     1   0.402      0.832 0.920 0.080
#> GSM440008     1   0.388      0.836 0.924 0.076
#> GSM440009     1   0.402      0.832 0.920 0.080
#> GSM440010     1   0.402      0.832 0.920 0.080
#> GSM440031     2   0.141      0.997 0.020 0.980
#> GSM440032     2   0.141      0.997 0.020 0.980
#> GSM440033     2   0.141      0.997 0.020 0.980
#> GSM440034     2   0.141      0.997 0.020 0.980

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM439987     1  0.0000      1.000 1.000 0.000 0.000
#> GSM439988     1  0.0000      1.000 1.000 0.000 0.000
#> GSM439989     1  0.0000      1.000 1.000 0.000 0.000
#> GSM439990     1  0.0000      1.000 1.000 0.000 0.000
#> GSM439991     3  0.0237      0.998 0.000 0.004 0.996
#> GSM439992     3  0.0237      0.998 0.000 0.004 0.996
#> GSM439993     3  0.0237      0.998 0.000 0.004 0.996
#> GSM439994     3  0.0237      0.998 0.000 0.004 0.996
#> GSM439995     3  0.0000      0.998 0.000 0.000 1.000
#> GSM439996     3  0.0000      0.998 0.000 0.000 1.000
#> GSM439997     3  0.0000      0.998 0.000 0.000 1.000
#> GSM439998     3  0.0000      0.998 0.000 0.000 1.000
#> GSM440035     1  0.0000      1.000 1.000 0.000 0.000
#> GSM440036     1  0.0000      1.000 1.000 0.000 0.000
#> GSM440037     1  0.0000      1.000 1.000 0.000 0.000
#> GSM440038     1  0.0000      1.000 1.000 0.000 0.000
#> GSM440011     1  0.0000      1.000 1.000 0.000 0.000
#> GSM440012     1  0.0000      1.000 1.000 0.000 0.000
#> GSM440013     1  0.0000      1.000 1.000 0.000 0.000
#> GSM440014     1  0.0000      1.000 1.000 0.000 0.000
#> GSM439999     1  0.0000      1.000 1.000 0.000 0.000
#> GSM440000     1  0.0000      1.000 1.000 0.000 0.000
#> GSM440001     1  0.0000      1.000 1.000 0.000 0.000
#> GSM440002     1  0.0000      1.000 1.000 0.000 0.000
#> GSM440023     2  0.6154      0.504 0.408 0.592 0.000
#> GSM440024     2  0.6154      0.504 0.408 0.592 0.000
#> GSM440025     2  0.6154      0.504 0.408 0.592 0.000
#> GSM440026     2  0.6154      0.504 0.408 0.592 0.000
#> GSM440039     3  0.0237      0.998 0.000 0.004 0.996
#> GSM440040     3  0.0237      0.998 0.000 0.004 0.996
#> GSM440041     3  0.0237      0.998 0.000 0.004 0.996
#> GSM440042     3  0.0237      0.998 0.000 0.004 0.996
#> GSM440015     3  0.0237      0.998 0.000 0.004 0.996
#> GSM440016     3  0.0237      0.998 0.000 0.004 0.996
#> GSM440017     3  0.0237      0.998 0.000 0.004 0.996
#> GSM440018     3  0.0000      0.998 0.000 0.000 1.000
#> GSM440003     3  0.0237      0.998 0.000 0.004 0.996
#> GSM440004     3  0.0237      0.998 0.000 0.004 0.996
#> GSM440005     3  0.0237      0.998 0.000 0.004 0.996
#> GSM440006     3  0.0237      0.998 0.000 0.004 0.996
#> GSM440027     2  0.0237      0.841 0.004 0.996 0.000
#> GSM440028     2  0.0237      0.841 0.004 0.996 0.000
#> GSM440029     2  0.0237      0.841 0.004 0.996 0.000
#> GSM440030     2  0.0237      0.841 0.004 0.996 0.000
#> GSM440043     3  0.0000      0.998 0.000 0.000 1.000
#> GSM440044     3  0.0000      0.998 0.000 0.000 1.000
#> GSM440045     3  0.0000      0.998 0.000 0.000 1.000
#> GSM440046     3  0.0000      0.998 0.000 0.000 1.000
#> GSM440019     3  0.0000      0.998 0.000 0.000 1.000
#> GSM440020     3  0.0000      0.998 0.000 0.000 1.000
#> GSM440021     3  0.0000      0.998 0.000 0.000 1.000
#> GSM440022     3  0.0000      0.998 0.000 0.000 1.000
#> GSM440007     3  0.0237      0.996 0.000 0.004 0.996
#> GSM440008     3  0.0000      0.998 0.000 0.000 1.000
#> GSM440009     3  0.0237      0.996 0.000 0.004 0.996
#> GSM440010     3  0.0237      0.996 0.000 0.004 0.996
#> GSM440031     2  0.0237      0.841 0.004 0.996 0.000
#> GSM440032     2  0.0237      0.841 0.004 0.996 0.000
#> GSM440033     2  0.0237      0.841 0.004 0.996 0.000
#> GSM440034     2  0.0237      0.841 0.004 0.996 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM439987     1  0.0188      0.900 0.996 0.000 0.000 0.004
#> GSM439988     1  0.0188      0.900 0.996 0.000 0.000 0.004
#> GSM439989     1  0.0188      0.900 0.996 0.000 0.000 0.004
#> GSM439990     1  0.0188      0.900 0.996 0.000 0.000 0.004
#> GSM439991     4  0.0524      0.979 0.004 0.000 0.008 0.988
#> GSM439992     4  0.0524      0.979 0.004 0.000 0.008 0.988
#> GSM439993     4  0.0524      0.979 0.004 0.000 0.008 0.988
#> GSM439994     4  0.0469      0.975 0.000 0.000 0.012 0.988
#> GSM439995     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM439996     3  0.0188      0.980 0.000 0.000 0.996 0.004
#> GSM439997     3  0.0376      0.977 0.004 0.000 0.992 0.004
#> GSM439998     3  0.0376      0.977 0.004 0.000 0.992 0.004
#> GSM440035     1  0.0188      0.900 0.996 0.000 0.000 0.004
#> GSM440036     1  0.0188      0.900 0.996 0.000 0.000 0.004
#> GSM440037     1  0.0188      0.900 0.996 0.000 0.000 0.004
#> GSM440038     1  0.0188      0.900 0.996 0.000 0.000 0.004
#> GSM440011     1  0.0188      0.900 0.996 0.000 0.000 0.004
#> GSM440012     1  0.0188      0.900 0.996 0.000 0.000 0.004
#> GSM440013     1  0.0188      0.900 0.996 0.000 0.000 0.004
#> GSM440014     1  0.0188      0.900 0.996 0.000 0.000 0.004
#> GSM439999     1  0.0188      0.900 0.996 0.000 0.000 0.004
#> GSM440000     1  0.0376      0.897 0.992 0.004 0.000 0.004
#> GSM440001     1  0.0188      0.900 0.996 0.000 0.000 0.004
#> GSM440002     1  0.0188      0.900 0.996 0.000 0.000 0.004
#> GSM440023     1  0.5345      0.343 0.560 0.428 0.000 0.012
#> GSM440024     1  0.5345      0.343 0.560 0.428 0.000 0.012
#> GSM440025     1  0.5345      0.343 0.560 0.428 0.000 0.012
#> GSM440026     1  0.5345      0.343 0.560 0.428 0.000 0.012
#> GSM440039     4  0.0524      0.979 0.004 0.000 0.008 0.988
#> GSM440040     4  0.0524      0.979 0.004 0.000 0.008 0.988
#> GSM440041     4  0.0524      0.979 0.004 0.000 0.008 0.988
#> GSM440042     4  0.0524      0.979 0.004 0.000 0.008 0.988
#> GSM440015     4  0.0469      0.975 0.000 0.000 0.012 0.988
#> GSM440016     4  0.0524      0.979 0.004 0.000 0.008 0.988
#> GSM440017     4  0.0524      0.979 0.004 0.000 0.008 0.988
#> GSM440018     4  0.4164      0.630 0.000 0.000 0.264 0.736
#> GSM440003     4  0.0524      0.979 0.004 0.000 0.008 0.988
#> GSM440004     4  0.0524      0.979 0.004 0.000 0.008 0.988
#> GSM440005     4  0.0524      0.979 0.004 0.000 0.008 0.988
#> GSM440006     4  0.0524      0.979 0.004 0.000 0.008 0.988
#> GSM440027     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM440028     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM440029     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM440030     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM440043     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM440044     3  0.0188      0.980 0.000 0.000 0.996 0.004
#> GSM440045     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM440046     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM440019     3  0.3688      0.728 0.000 0.000 0.792 0.208
#> GSM440020     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM440021     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM440022     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM440007     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM440008     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM440009     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM440010     3  0.0000      0.982 0.000 0.000 1.000 0.000
#> GSM440031     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM440032     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM440033     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM440034     2  0.0000      1.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM439987     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM439988     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM439989     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM439990     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM439991     4  0.0000      0.984 0.000 0.000 0.000 1.000 0.000
#> GSM439992     4  0.0000      0.984 0.000 0.000 0.000 1.000 0.000
#> GSM439993     4  0.0000      0.984 0.000 0.000 0.000 1.000 0.000
#> GSM439994     4  0.0000      0.984 0.000 0.000 0.000 1.000 0.000
#> GSM439995     3  0.0000      0.976 0.000 0.000 1.000 0.000 0.000
#> GSM439996     3  0.0703      0.974 0.000 0.000 0.976 0.000 0.024
#> GSM439997     3  0.0703      0.974 0.000 0.000 0.976 0.000 0.024
#> GSM439998     3  0.0703      0.974 0.000 0.000 0.976 0.000 0.024
#> GSM440035     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM440036     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM440037     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM440038     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM440011     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM440012     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM440013     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM440014     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM439999     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM440000     1  0.0162      0.996 0.996 0.000 0.000 0.000 0.004
#> GSM440001     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM440002     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM440023     5  0.0703      1.000 0.024 0.000 0.000 0.000 0.976
#> GSM440024     5  0.0703      1.000 0.024 0.000 0.000 0.000 0.976
#> GSM440025     5  0.0703      1.000 0.024 0.000 0.000 0.000 0.976
#> GSM440026     5  0.0703      1.000 0.024 0.000 0.000 0.000 0.976
#> GSM440039     4  0.0000      0.984 0.000 0.000 0.000 1.000 0.000
#> GSM440040     4  0.0000      0.984 0.000 0.000 0.000 1.000 0.000
#> GSM440041     4  0.0000      0.984 0.000 0.000 0.000 1.000 0.000
#> GSM440042     4  0.0000      0.984 0.000 0.000 0.000 1.000 0.000
#> GSM440015     4  0.0000      0.984 0.000 0.000 0.000 1.000 0.000
#> GSM440016     4  0.0000      0.984 0.000 0.000 0.000 1.000 0.000
#> GSM440017     4  0.0000      0.984 0.000 0.000 0.000 1.000 0.000
#> GSM440018     4  0.3196      0.729 0.000 0.000 0.192 0.804 0.004
#> GSM440003     4  0.0000      0.984 0.000 0.000 0.000 1.000 0.000
#> GSM440004     4  0.0000      0.984 0.000 0.000 0.000 1.000 0.000
#> GSM440005     4  0.0000      0.984 0.000 0.000 0.000 1.000 0.000
#> GSM440006     4  0.0000      0.984 0.000 0.000 0.000 1.000 0.000
#> GSM440027     2  0.3039      0.864 0.000 0.808 0.000 0.000 0.192
#> GSM440028     2  0.3039      0.864 0.000 0.808 0.000 0.000 0.192
#> GSM440029     2  0.3039      0.864 0.000 0.808 0.000 0.000 0.192
#> GSM440030     2  0.3039      0.864 0.000 0.808 0.000 0.000 0.192
#> GSM440043     3  0.0000      0.976 0.000 0.000 1.000 0.000 0.000
#> GSM440044     3  0.0703      0.974 0.000 0.000 0.976 0.000 0.024
#> GSM440045     3  0.0000      0.976 0.000 0.000 1.000 0.000 0.000
#> GSM440046     3  0.0000      0.976 0.000 0.000 1.000 0.000 0.000
#> GSM440019     3  0.3409      0.772 0.000 0.000 0.816 0.160 0.024
#> GSM440020     3  0.0000      0.976 0.000 0.000 1.000 0.000 0.000
#> GSM440021     3  0.0000      0.976 0.000 0.000 1.000 0.000 0.000
#> GSM440022     3  0.0000      0.976 0.000 0.000 1.000 0.000 0.000
#> GSM440007     3  0.0703      0.974 0.000 0.000 0.976 0.000 0.024
#> GSM440008     3  0.0000      0.976 0.000 0.000 1.000 0.000 0.000
#> GSM440009     3  0.0703      0.974 0.000 0.000 0.976 0.000 0.024
#> GSM440010     3  0.0703      0.974 0.000 0.000 0.976 0.000 0.024
#> GSM440031     2  0.0000      0.877 0.000 1.000 0.000 0.000 0.000
#> GSM440032     2  0.0000      0.877 0.000 1.000 0.000 0.000 0.000
#> GSM440033     2  0.0000      0.877 0.000 1.000 0.000 0.000 0.000
#> GSM440034     2  0.0000      0.877 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1    p2    p3    p4 p5    p6
#> GSM439987     1   0.000      1.000  1 0.000 0.000 0.000  0 0.000
#> GSM439988     1   0.000      1.000  1 0.000 0.000 0.000  0 0.000
#> GSM439989     1   0.000      1.000  1 0.000 0.000 0.000  0 0.000
#> GSM439990     1   0.000      1.000  1 0.000 0.000 0.000  0 0.000
#> GSM439991     4   0.000      1.000  0 0.000 0.000 1.000  0 0.000
#> GSM439992     4   0.000      1.000  0 0.000 0.000 1.000  0 0.000
#> GSM439993     4   0.000      1.000  0 0.000 0.000 1.000  0 0.000
#> GSM439994     4   0.000      1.000  0 0.000 0.000 1.000  0 0.000
#> GSM439995     3   0.374      0.413  0 0.000 0.608 0.000  0 0.392
#> GSM439996     3   0.000      0.658  0 0.000 1.000 0.000  0 0.000
#> GSM439997     3   0.000      0.658  0 0.000 1.000 0.000  0 0.000
#> GSM439998     3   0.000      0.658  0 0.000 1.000 0.000  0 0.000
#> GSM440035     1   0.000      1.000  1 0.000 0.000 0.000  0 0.000
#> GSM440036     1   0.000      1.000  1 0.000 0.000 0.000  0 0.000
#> GSM440037     1   0.000      1.000  1 0.000 0.000 0.000  0 0.000
#> GSM440038     1   0.000      1.000  1 0.000 0.000 0.000  0 0.000
#> GSM440011     1   0.000      1.000  1 0.000 0.000 0.000  0 0.000
#> GSM440012     1   0.000      1.000  1 0.000 0.000 0.000  0 0.000
#> GSM440013     1   0.000      1.000  1 0.000 0.000 0.000  0 0.000
#> GSM440014     1   0.000      1.000  1 0.000 0.000 0.000  0 0.000
#> GSM439999     1   0.000      1.000  1 0.000 0.000 0.000  0 0.000
#> GSM440000     1   0.000      1.000  1 0.000 0.000 0.000  0 0.000
#> GSM440001     1   0.000      1.000  1 0.000 0.000 0.000  0 0.000
#> GSM440002     1   0.000      1.000  1 0.000 0.000 0.000  0 0.000
#> GSM440023     5   0.000      1.000  0 0.000 0.000 0.000  1 0.000
#> GSM440024     5   0.000      1.000  0 0.000 0.000 0.000  1 0.000
#> GSM440025     5   0.000      1.000  0 0.000 0.000 0.000  1 0.000
#> GSM440026     5   0.000      1.000  0 0.000 0.000 0.000  1 0.000
#> GSM440039     4   0.000      1.000  0 0.000 0.000 1.000  0 0.000
#> GSM440040     4   0.000      1.000  0 0.000 0.000 1.000  0 0.000
#> GSM440041     4   0.000      1.000  0 0.000 0.000 1.000  0 0.000
#> GSM440042     4   0.000      1.000  0 0.000 0.000 1.000  0 0.000
#> GSM440015     4   0.000      1.000  0 0.000 0.000 1.000  0 0.000
#> GSM440016     4   0.000      1.000  0 0.000 0.000 1.000  0 0.000
#> GSM440017     4   0.000      1.000  0 0.000 0.000 1.000  0 0.000
#> GSM440018     6   0.418     -0.123  0 0.000 0.012 0.488  0 0.500
#> GSM440003     4   0.000      1.000  0 0.000 0.000 1.000  0 0.000
#> GSM440004     4   0.000      1.000  0 0.000 0.000 1.000  0 0.000
#> GSM440005     4   0.000      1.000  0 0.000 0.000 1.000  0 0.000
#> GSM440006     4   0.000      1.000  0 0.000 0.000 1.000  0 0.000
#> GSM440027     2   0.000      0.735  0 1.000 0.000 0.000  0 0.000
#> GSM440028     2   0.000      0.735  0 1.000 0.000 0.000  0 0.000
#> GSM440029     2   0.000      0.735  0 1.000 0.000 0.000  0 0.000
#> GSM440030     2   0.000      0.735  0 1.000 0.000 0.000  0 0.000
#> GSM440043     6   0.387     -0.593  0 0.000 0.500 0.000  0 0.500
#> GSM440044     3   0.000      0.658  0 0.000 1.000 0.000  0 0.000
#> GSM440045     3   0.376      0.402  0 0.000 0.600 0.000  0 0.400
#> GSM440046     3   0.377      0.396  0 0.000 0.596 0.000  0 0.404
#> GSM440019     3   0.249      0.421  0 0.000 0.836 0.164  0 0.000
#> GSM440020     3   0.374      0.413  0 0.000 0.608 0.000  0 0.392
#> GSM440021     3   0.382      0.337  0 0.000 0.568 0.000  0 0.432
#> GSM440022     3   0.377      0.397  0 0.000 0.596 0.000  0 0.404
#> GSM440007     3   0.026      0.656  0 0.000 0.992 0.000  0 0.008
#> GSM440008     3   0.387      0.182  0 0.000 0.508 0.000  0 0.492
#> GSM440009     3   0.026      0.656  0 0.000 0.992 0.000  0 0.008
#> GSM440010     3   0.026      0.656  0 0.000 0.992 0.000  0 0.008
#> GSM440031     2   0.387      0.735  0 0.508 0.000 0.000  0 0.492
#> GSM440032     2   0.387      0.735  0 0.508 0.000 0.000  0 0.492
#> GSM440033     2   0.387      0.735  0 0.508 0.000 0.000  0 0.492
#> GSM440034     2   0.387      0.735  0 0.508 0.000 0.000  0 0.492

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n agent(p)  time(p)  dose(p) k
#> ATC:mclust 56    0.258 1.55e-01 2.01e-11 2
#> ATC:mclust 60    0.153 9.44e-10 4.66e-10 3
#> ATC:mclust 56    0.467 1.71e-19 1.20e-07 4
#> ATC:mclust 60    0.441 9.81e-20 5.23e-07 5
#> ATC:mclust 50    0.246 3.55e-15 4.85e-06 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 60 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.2358 0.765   0.765
#> 3 3 0.767           0.886       0.946         1.5629 0.620   0.504
#> 4 4 0.750           0.773       0.923         0.0321 0.985   0.960
#> 5 5 0.635           0.758       0.827         0.1616 0.840   0.599
#> 6 6 0.657           0.809       0.844         0.0590 0.906   0.673

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> GSM439987     1       0          1  1  0
#> GSM439988     1       0          1  1  0
#> GSM439989     1       0          1  1  0
#> GSM439990     1       0          1  1  0
#> GSM439991     1       0          1  1  0
#> GSM439992     1       0          1  1  0
#> GSM439993     1       0          1  1  0
#> GSM439994     1       0          1  1  0
#> GSM439995     1       0          1  1  0
#> GSM439996     1       0          1  1  0
#> GSM439997     1       0          1  1  0
#> GSM439998     1       0          1  1  0
#> GSM440035     1       0          1  1  0
#> GSM440036     1       0          1  1  0
#> GSM440037     1       0          1  1  0
#> GSM440038     1       0          1  1  0
#> GSM440011     1       0          1  1  0
#> GSM440012     1       0          1  1  0
#> GSM440013     1       0          1  1  0
#> GSM440014     1       0          1  1  0
#> GSM439999     1       0          1  1  0
#> GSM440000     1       0          1  1  0
#> GSM440001     1       0          1  1  0
#> GSM440002     1       0          1  1  0
#> GSM440023     1       0          1  1  0
#> GSM440024     1       0          1  1  0
#> GSM440025     1       0          1  1  0
#> GSM440026     1       0          1  1  0
#> GSM440039     1       0          1  1  0
#> GSM440040     1       0          1  1  0
#> GSM440041     1       0          1  1  0
#> GSM440042     1       0          1  1  0
#> GSM440015     1       0          1  1  0
#> GSM440016     1       0          1  1  0
#> GSM440017     1       0          1  1  0
#> GSM440018     1       0          1  1  0
#> GSM440003     1       0          1  1  0
#> GSM440004     1       0          1  1  0
#> GSM440005     1       0          1  1  0
#> GSM440006     1       0          1  1  0
#> GSM440027     2       0          1  0  1
#> GSM440028     2       0          1  0  1
#> GSM440029     2       0          1  0  1
#> GSM440030     2       0          1  0  1
#> GSM440043     1       0          1  1  0
#> GSM440044     1       0          1  1  0
#> GSM440045     1       0          1  1  0
#> GSM440046     1       0          1  1  0
#> GSM440019     1       0          1  1  0
#> GSM440020     1       0          1  1  0
#> GSM440021     1       0          1  1  0
#> GSM440022     1       0          1  1  0
#> GSM440007     1       0          1  1  0
#> GSM440008     1       0          1  1  0
#> GSM440009     1       0          1  1  0
#> GSM440010     1       0          1  1  0
#> GSM440031     2       0          1  0  1
#> GSM440032     2       0          1  0  1
#> GSM440033     2       0          1  0  1
#> GSM440034     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1 p2    p3
#> GSM439987     1  0.0237      0.932 0.996  0 0.004
#> GSM439988     1  0.0237      0.932 0.996  0 0.004
#> GSM439989     1  0.0237      0.932 0.996  0 0.004
#> GSM439990     1  0.0237      0.932 0.996  0 0.004
#> GSM439991     3  0.5327      0.688 0.272  0 0.728
#> GSM439992     1  0.5733      0.504 0.676  0 0.324
#> GSM439993     3  0.3941      0.836 0.156  0 0.844
#> GSM439994     3  0.2261      0.899 0.068  0 0.932
#> GSM439995     3  0.0000      0.917 0.000  0 1.000
#> GSM439996     3  0.0237      0.917 0.004  0 0.996
#> GSM439997     3  0.0000      0.917 0.000  0 1.000
#> GSM439998     3  0.0000      0.917 0.000  0 1.000
#> GSM440035     1  0.0237      0.932 0.996  0 0.004
#> GSM440036     1  0.0237      0.932 0.996  0 0.004
#> GSM440037     1  0.0237      0.932 0.996  0 0.004
#> GSM440038     1  0.0237      0.932 0.996  0 0.004
#> GSM440011     1  0.0237      0.932 0.996  0 0.004
#> GSM440012     1  0.0237      0.932 0.996  0 0.004
#> GSM440013     1  0.0237      0.932 0.996  0 0.004
#> GSM440014     1  0.0237      0.932 0.996  0 0.004
#> GSM439999     1  0.0237      0.932 0.996  0 0.004
#> GSM440000     1  0.0237      0.932 0.996  0 0.004
#> GSM440001     1  0.0237      0.932 0.996  0 0.004
#> GSM440002     1  0.0237      0.932 0.996  0 0.004
#> GSM440023     1  0.0237      0.932 0.996  0 0.004
#> GSM440024     1  0.0237      0.932 0.996  0 0.004
#> GSM440025     1  0.0237      0.932 0.996  0 0.004
#> GSM440026     1  0.0000      0.927 1.000  0 0.000
#> GSM440039     1  0.5560      0.556 0.700  0 0.300
#> GSM440040     3  0.5706      0.597 0.320  0 0.680
#> GSM440041     3  0.3192      0.874 0.112  0 0.888
#> GSM440042     3  0.4235      0.816 0.176  0 0.824
#> GSM440015     3  0.1860      0.906 0.052  0 0.948
#> GSM440016     3  0.3116      0.877 0.108  0 0.892
#> GSM440017     1  0.5968      0.403 0.636  0 0.364
#> GSM440018     3  0.1753      0.907 0.048  0 0.952
#> GSM440003     3  0.2165      0.901 0.064  0 0.936
#> GSM440004     3  0.5397      0.675 0.280  0 0.720
#> GSM440005     1  0.5016      0.663 0.760  0 0.240
#> GSM440006     3  0.4974      0.744 0.236  0 0.764
#> GSM440027     2  0.0000      1.000 0.000  1 0.000
#> GSM440028     2  0.0000      1.000 0.000  1 0.000
#> GSM440029     2  0.0000      1.000 0.000  1 0.000
#> GSM440030     2  0.0000      1.000 0.000  1 0.000
#> GSM440043     3  0.0000      0.917 0.000  0 1.000
#> GSM440044     3  0.0000      0.917 0.000  0 1.000
#> GSM440045     3  0.0000      0.917 0.000  0 1.000
#> GSM440046     3  0.0000      0.917 0.000  0 1.000
#> GSM440019     3  0.0592      0.916 0.012  0 0.988
#> GSM440020     3  0.0000      0.917 0.000  0 1.000
#> GSM440021     3  0.0000      0.917 0.000  0 1.000
#> GSM440022     3  0.0000      0.917 0.000  0 1.000
#> GSM440007     3  0.0000      0.917 0.000  0 1.000
#> GSM440008     3  0.0000      0.917 0.000  0 1.000
#> GSM440009     3  0.0000      0.917 0.000  0 1.000
#> GSM440010     3  0.0000      0.917 0.000  0 1.000
#> GSM440031     2  0.0000      1.000 0.000  1 0.000
#> GSM440032     2  0.0000      1.000 0.000  1 0.000
#> GSM440033     2  0.0000      1.000 0.000  1 0.000
#> GSM440034     2  0.0000      1.000 0.000  1 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM439987     1  0.0188     0.8994 0.996 0.000 0.004 0.000
#> GSM439988     1  0.0376     0.8985 0.992 0.000 0.004 0.004
#> GSM439989     1  0.0188     0.8994 0.996 0.000 0.004 0.000
#> GSM439990     1  0.0188     0.8994 0.996 0.000 0.004 0.000
#> GSM439991     3  0.5337     0.4067 0.260 0.000 0.696 0.044
#> GSM439992     1  0.5992     0.0593 0.516 0.000 0.444 0.040
#> GSM439993     3  0.4224     0.6084 0.144 0.000 0.812 0.044
#> GSM439994     3  0.3144     0.7091 0.072 0.000 0.884 0.044
#> GSM439995     3  0.0592     0.8025 0.000 0.000 0.984 0.016
#> GSM439996     3  0.0188     0.8072 0.000 0.000 0.996 0.004
#> GSM439997     3  0.0000     0.8078 0.000 0.000 1.000 0.000
#> GSM439998     3  0.0469     0.8051 0.000 0.000 0.988 0.012
#> GSM440035     1  0.1042     0.8899 0.972 0.000 0.008 0.020
#> GSM440036     1  0.0657     0.8962 0.984 0.000 0.004 0.012
#> GSM440037     1  0.0469     0.8933 0.988 0.000 0.000 0.012
#> GSM440038     1  0.0657     0.8956 0.984 0.000 0.004 0.012
#> GSM440011     1  0.0188     0.8994 0.996 0.000 0.004 0.000
#> GSM440012     1  0.0804     0.8933 0.980 0.000 0.008 0.012
#> GSM440013     1  0.0188     0.8994 0.996 0.000 0.004 0.000
#> GSM440014     1  0.0188     0.8994 0.996 0.000 0.004 0.000
#> GSM439999     1  0.0188     0.8994 0.996 0.000 0.004 0.000
#> GSM440000     1  0.0657     0.8909 0.984 0.000 0.004 0.012
#> GSM440001     1  0.0895     0.8924 0.976 0.000 0.004 0.020
#> GSM440002     1  0.0779     0.8945 0.980 0.000 0.004 0.016
#> GSM440023     1  0.0779     0.8959 0.980 0.000 0.004 0.016
#> GSM440024     1  0.0779     0.8959 0.980 0.000 0.004 0.016
#> GSM440025     1  0.0779     0.8959 0.980 0.000 0.004 0.016
#> GSM440026     1  0.1118     0.8836 0.964 0.000 0.000 0.036
#> GSM440039     1  0.5713     0.3418 0.620 0.000 0.340 0.040
#> GSM440040     3  0.5657     0.2953 0.312 0.000 0.644 0.044
#> GSM440041     3  0.3587     0.6709 0.104 0.000 0.856 0.040
#> GSM440042     3  0.4920     0.5221 0.192 0.000 0.756 0.052
#> GSM440015     3  0.0804     0.8039 0.008 0.000 0.980 0.012
#> GSM440016     3  0.1109     0.7929 0.028 0.000 0.968 0.004
#> GSM440017     1  0.5827     0.2051 0.568 0.000 0.396 0.036
#> GSM440018     4  0.5600     0.0000 0.020 0.000 0.468 0.512
#> GSM440003     3  0.1182     0.7963 0.016 0.000 0.968 0.016
#> GSM440004     3  0.5227     0.4191 0.256 0.000 0.704 0.040
#> GSM440005     1  0.5106     0.5484 0.720 0.000 0.240 0.040
#> GSM440006     3  0.5056     0.4759 0.224 0.000 0.732 0.044
#> GSM440027     2  0.0188     0.9943 0.000 0.996 0.000 0.004
#> GSM440028     2  0.0188     0.9943 0.000 0.996 0.000 0.004
#> GSM440029     2  0.0000     0.9954 0.000 1.000 0.000 0.000
#> GSM440030     2  0.0000     0.9954 0.000 1.000 0.000 0.000
#> GSM440043     3  0.0817     0.7935 0.000 0.000 0.976 0.024
#> GSM440044     3  0.0000     0.8078 0.000 0.000 1.000 0.000
#> GSM440045     3  0.0592     0.8025 0.000 0.000 0.984 0.016
#> GSM440046     3  0.0817     0.7935 0.000 0.000 0.976 0.024
#> GSM440019     3  0.0895     0.8017 0.004 0.000 0.976 0.020
#> GSM440020     3  0.0592     0.8025 0.000 0.000 0.984 0.016
#> GSM440021     3  0.0817     0.7935 0.000 0.000 0.976 0.024
#> GSM440022     3  0.0592     0.8025 0.000 0.000 0.984 0.016
#> GSM440007     3  0.0469     0.8046 0.000 0.000 0.988 0.012
#> GSM440008     3  0.0707     0.7988 0.000 0.000 0.980 0.020
#> GSM440009     3  0.0000     0.8078 0.000 0.000 1.000 0.000
#> GSM440010     3  0.0188     0.8073 0.000 0.000 0.996 0.004
#> GSM440031     2  0.0469     0.9937 0.000 0.988 0.000 0.012
#> GSM440032     2  0.0188     0.9954 0.000 0.996 0.000 0.004
#> GSM440033     2  0.0336     0.9948 0.000 0.992 0.000 0.008
#> GSM440034     2  0.0469     0.9937 0.000 0.988 0.000 0.012

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4 p5
#> GSM439987     1  0.1121     0.8361 0.956 0.000 0.000 0.044 NA
#> GSM439988     1  0.0162     0.8319 0.996 0.000 0.000 0.004 NA
#> GSM439989     1  0.1502     0.8340 0.940 0.000 0.000 0.056 NA
#> GSM439990     1  0.1408     0.8367 0.948 0.000 0.000 0.044 NA
#> GSM439991     4  0.4998     0.8239 0.104 0.000 0.196 0.700 NA
#> GSM439992     4  0.5348     0.7868 0.200 0.000 0.108 0.684 NA
#> GSM439993     4  0.4756     0.7429 0.044 0.000 0.288 0.668 NA
#> GSM439994     4  0.4457     0.5806 0.012 0.000 0.368 0.620 NA
#> GSM439995     3  0.0579     0.8088 0.000 0.000 0.984 0.008 NA
#> GSM439996     3  0.3409     0.7275 0.000 0.000 0.816 0.160 NA
#> GSM439997     3  0.2616     0.7938 0.000 0.000 0.888 0.076 NA
#> GSM439998     3  0.3165     0.7678 0.000 0.000 0.848 0.116 NA
#> GSM440035     1  0.3607     0.6815 0.752 0.000 0.000 0.244 NA
#> GSM440036     1  0.3266     0.7362 0.796 0.000 0.000 0.200 NA
#> GSM440037     1  0.1012     0.8214 0.968 0.000 0.000 0.020 NA
#> GSM440038     1  0.0807     0.8253 0.976 0.000 0.000 0.012 NA
#> GSM440011     1  0.1571     0.8326 0.936 0.000 0.000 0.060 NA
#> GSM440012     1  0.1211     0.8180 0.960 0.000 0.000 0.024 NA
#> GSM440013     1  0.0955     0.8359 0.968 0.000 0.000 0.028 NA
#> GSM440014     1  0.1121     0.8365 0.956 0.000 0.000 0.044 NA
#> GSM439999     1  0.1557     0.8359 0.940 0.000 0.000 0.052 NA
#> GSM440000     1  0.2209     0.7938 0.912 0.000 0.000 0.056 NA
#> GSM440001     1  0.3508     0.6759 0.748 0.000 0.000 0.252 NA
#> GSM440002     1  0.3398     0.7196 0.780 0.000 0.000 0.216 NA
#> GSM440023     1  0.5423     0.5914 0.548 0.000 0.000 0.064 NA
#> GSM440024     1  0.5261     0.5740 0.528 0.000 0.000 0.048 NA
#> GSM440025     1  0.4980     0.6196 0.584 0.000 0.000 0.036 NA
#> GSM440026     1  0.5751     0.5845 0.540 0.000 0.000 0.096 NA
#> GSM440039     4  0.5211     0.7230 0.256 0.000 0.076 0.664 NA
#> GSM440040     4  0.5304     0.8213 0.128 0.000 0.168 0.696 NA
#> GSM440041     4  0.4540     0.6878 0.024 0.000 0.320 0.656 NA
#> GSM440042     4  0.4728     0.7954 0.060 0.000 0.240 0.700 NA
#> GSM440015     3  0.4880     0.4604 0.004 0.000 0.660 0.296 NA
#> GSM440016     3  0.4438     0.2438 0.004 0.000 0.608 0.384 NA
#> GSM440017     4  0.5745     0.7547 0.252 0.000 0.124 0.620 NA
#> GSM440018     3  0.7798     0.2779 0.120 0.000 0.460 0.160 NA
#> GSM440003     3  0.4684    -0.0331 0.004 0.000 0.536 0.452 NA
#> GSM440004     4  0.5436     0.8207 0.116 0.000 0.216 0.664 NA
#> GSM440005     4  0.5064     0.6924 0.260 0.000 0.056 0.676 NA
#> GSM440006     4  0.4958     0.8138 0.084 0.000 0.224 0.692 NA
#> GSM440027     2  0.0609     0.9890 0.000 0.980 0.000 0.000 NA
#> GSM440028     2  0.0703     0.9867 0.000 0.976 0.000 0.000 NA
#> GSM440029     2  0.0290     0.9936 0.000 0.992 0.000 0.000 NA
#> GSM440030     2  0.0162     0.9942 0.000 0.996 0.000 0.000 NA
#> GSM440043     3  0.1106     0.7973 0.000 0.000 0.964 0.012 NA
#> GSM440044     3  0.2769     0.7855 0.000 0.000 0.876 0.092 NA
#> GSM440045     3  0.0000     0.8075 0.000 0.000 1.000 0.000 NA
#> GSM440046     3  0.1117     0.7977 0.000 0.000 0.964 0.016 NA
#> GSM440019     3  0.4114     0.5588 0.000 0.000 0.712 0.272 NA
#> GSM440020     3  0.0404     0.8066 0.000 0.000 0.988 0.000 NA
#> GSM440021     3  0.2104     0.7660 0.000 0.000 0.916 0.024 NA
#> GSM440022     3  0.0671     0.8087 0.000 0.000 0.980 0.004 NA
#> GSM440007     3  0.1915     0.8065 0.000 0.000 0.928 0.040 NA
#> GSM440008     3  0.0898     0.7997 0.000 0.000 0.972 0.008 NA
#> GSM440009     3  0.2491     0.7976 0.000 0.000 0.896 0.068 NA
#> GSM440010     3  0.1750     0.8070 0.000 0.000 0.936 0.036 NA
#> GSM440031     2  0.0000     0.9945 0.000 1.000 0.000 0.000 NA
#> GSM440032     2  0.0000     0.9945 0.000 1.000 0.000 0.000 NA
#> GSM440033     2  0.0000     0.9945 0.000 1.000 0.000 0.000 NA
#> GSM440034     2  0.0162     0.9935 0.000 0.996 0.000 0.004 NA

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM439987     1  0.2060     0.8560 0.900 0.000 0.000 0.084 0.000 0.016
#> GSM439988     1  0.2213     0.8391 0.908 0.000 0.000 0.048 0.012 0.032
#> GSM439989     1  0.1901     0.8580 0.912 0.000 0.000 0.076 0.004 0.008
#> GSM439990     1  0.1845     0.8583 0.916 0.000 0.000 0.072 0.008 0.004
#> GSM439991     4  0.2848     0.8413 0.060 0.000 0.056 0.872 0.004 0.008
#> GSM439992     4  0.3150     0.8287 0.076 0.000 0.036 0.860 0.012 0.016
#> GSM439993     4  0.2933     0.8396 0.032 0.000 0.108 0.852 0.000 0.008
#> GSM439994     4  0.3647     0.8238 0.028 0.000 0.132 0.812 0.008 0.020
#> GSM439995     3  0.0964     0.8494 0.000 0.000 0.968 0.016 0.004 0.012
#> GSM439996     3  0.3972     0.6434 0.000 0.000 0.740 0.220 0.024 0.016
#> GSM439997     3  0.3116     0.8274 0.004 0.000 0.864 0.056 0.036 0.040
#> GSM439998     3  0.3308     0.8159 0.000 0.000 0.844 0.080 0.032 0.044
#> GSM440035     1  0.3700     0.7529 0.792 0.000 0.000 0.156 0.020 0.032
#> GSM440036     1  0.3272     0.7864 0.820 0.000 0.000 0.144 0.016 0.020
#> GSM440037     1  0.2515     0.7804 0.888 0.000 0.000 0.016 0.024 0.072
#> GSM440038     1  0.2151     0.7976 0.912 0.000 0.000 0.016 0.024 0.048
#> GSM440011     1  0.1531     0.8582 0.928 0.000 0.000 0.068 0.004 0.000
#> GSM440012     1  0.2894     0.7582 0.864 0.000 0.000 0.020 0.028 0.088
#> GSM440013     1  0.1333     0.8544 0.944 0.000 0.000 0.048 0.008 0.000
#> GSM440014     1  0.1781     0.8573 0.924 0.000 0.000 0.060 0.008 0.008
#> GSM439999     1  0.1728     0.8546 0.924 0.000 0.000 0.064 0.008 0.004
#> GSM440000     1  0.3351     0.6450 0.800 0.000 0.000 0.004 0.028 0.168
#> GSM440001     1  0.3977     0.7375 0.788 0.000 0.000 0.132 0.040 0.040
#> GSM440002     1  0.4110     0.7301 0.784 0.000 0.000 0.120 0.052 0.044
#> GSM440023     5  0.4728     0.9586 0.324 0.000 0.000 0.056 0.616 0.004
#> GSM440024     5  0.4555     0.9508 0.308 0.000 0.000 0.048 0.640 0.004
#> GSM440025     5  0.4721     0.9562 0.324 0.000 0.000 0.048 0.620 0.008
#> GSM440026     5  0.5202     0.9302 0.320 0.000 0.000 0.080 0.588 0.012
#> GSM440039     4  0.3190     0.8124 0.116 0.000 0.028 0.840 0.004 0.012
#> GSM440040     4  0.2885     0.8376 0.068 0.000 0.044 0.872 0.008 0.008
#> GSM440041     4  0.3283     0.8200 0.020 0.000 0.140 0.824 0.004 0.012
#> GSM440042     4  0.2692     0.8415 0.036 0.000 0.072 0.880 0.004 0.008
#> GSM440015     4  0.5068     0.6132 0.012 0.000 0.284 0.640 0.016 0.048
#> GSM440016     4  0.5042     0.7656 0.060 0.000 0.176 0.708 0.008 0.048
#> GSM440017     4  0.3640     0.8060 0.132 0.000 0.044 0.808 0.004 0.012
#> GSM440018     6  0.5807     0.0000 0.124 0.000 0.180 0.028 0.024 0.644
#> GSM440003     4  0.4499     0.7624 0.028 0.000 0.196 0.732 0.008 0.036
#> GSM440004     4  0.5953     0.7037 0.124 0.000 0.116 0.664 0.064 0.032
#> GSM440005     4  0.4271     0.7559 0.152 0.000 0.024 0.772 0.028 0.024
#> GSM440006     4  0.5633     0.7492 0.084 0.000 0.124 0.696 0.056 0.040
#> GSM440027     2  0.0146     0.9806 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM440028     2  0.0363     0.9782 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM440029     2  0.0146     0.9806 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM440030     2  0.0363     0.9782 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM440043     3  0.1585     0.8392 0.000 0.000 0.940 0.012 0.012 0.036
#> GSM440044     3  0.3101     0.8115 0.000 0.000 0.852 0.092 0.024 0.032
#> GSM440045     3  0.1275     0.8467 0.000 0.000 0.956 0.016 0.012 0.016
#> GSM440046     3  0.1657     0.8352 0.000 0.000 0.936 0.012 0.012 0.040
#> GSM440019     3  0.4786     0.0562 0.000 0.000 0.516 0.444 0.016 0.024
#> GSM440020     3  0.1269     0.8451 0.000 0.000 0.956 0.012 0.012 0.020
#> GSM440021     3  0.2699     0.7607 0.000 0.000 0.856 0.012 0.008 0.124
#> GSM440022     3  0.0767     0.8496 0.000 0.000 0.976 0.012 0.008 0.004
#> GSM440007     3  0.2032     0.8412 0.000 0.000 0.920 0.020 0.024 0.036
#> GSM440008     3  0.1320     0.8321 0.000 0.000 0.948 0.000 0.016 0.036
#> GSM440009     3  0.3260     0.8221 0.004 0.000 0.856 0.048 0.044 0.048
#> GSM440010     3  0.2401     0.8348 0.000 0.000 0.900 0.020 0.036 0.044
#> GSM440031     2  0.0909     0.9788 0.000 0.968 0.000 0.000 0.012 0.020
#> GSM440032     2  0.0820     0.9800 0.000 0.972 0.000 0.000 0.012 0.016
#> GSM440033     2  0.0820     0.9800 0.000 0.972 0.000 0.000 0.012 0.016
#> GSM440034     2  0.1074     0.9745 0.000 0.960 0.000 0.000 0.012 0.028

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n agent(p)  time(p)  dose(p) k
#> ATC:NMF 60    0.296 9.95e-02 1.87e-07 2
#> ATC:NMF 59    0.294 7.17e-10 5.55e-06 3
#> ATC:NMF 52    0.272 4.04e-10 3.87e-05 4
#> ATC:NMF 56    0.342 3.35e-19 1.05e-04 5
#> ATC:NMF 58    0.411 7.16e-19 1.05e-06 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0