cola Report for GDS4906

Date: 2019-12-25 21:54:24 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 51941 rows and 54 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4, anno = anno)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 51941    54

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_list), 
    col = get_anno_col(res_list)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
SD:skmeans 2 1.000 0.958 0.983 **
CV:skmeans 2 1.000 0.951 0.980 **
MAD:skmeans 2 1.000 0.959 0.984 **
ATC:skmeans 3 1.000 0.953 0.982 ** 2
ATC:mclust 3 0.971 0.927 0.973 **
SD:kmeans 2 0.961 0.916 0.957 **
MAD:kmeans 2 0.961 0.919 0.962 **
CV:NMF 2 0.957 0.952 0.977 **
CV:pam 3 0.937 0.894 0.942 * 2
CV:kmeans 2 0.930 0.923 0.946 *
SD:NMF 2 0.917 0.951 0.977 *
SD:pam 6 0.912 0.850 0.936 * 4
MAD:pam 4 0.911 0.902 0.957 *
ATC:kmeans 3 0.889 0.893 0.956
ATC:NMF 2 0.885 0.931 0.969
MAD:NMF 2 0.884 0.927 0.969
SD:mclust 4 0.853 0.851 0.928
ATC:pam 3 0.828 0.910 0.961
CV:mclust 4 0.820 0.836 0.926
MAD:mclust 4 0.570 0.698 0.832
ATC:hclust 2 0.439 0.700 0.864
SD:hclust 3 0.279 0.688 0.807
MAD:hclust 3 0.235 0.676 0.807
CV:hclust 3 0.216 0.614 0.774

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k  1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.9169           0.951       0.977          0.497 0.502   0.502
#> CV:NMF      2 0.9569           0.952       0.977          0.495 0.502   0.502
#> MAD:NMF     2 0.8839           0.927       0.969          0.503 0.497   0.497
#> ATC:NMF     2 0.8855           0.931       0.969          0.477 0.516   0.516
#> SD:skmeans  2 1.0000           0.958       0.983          0.507 0.493   0.493
#> CV:skmeans  2 1.0000           0.951       0.980          0.507 0.493   0.493
#> MAD:skmeans 2 1.0000           0.959       0.984          0.509 0.491   0.491
#> ATC:skmeans 2 1.0000           0.989       0.995          0.509 0.491   0.491
#> SD:mclust   2 0.3487           0.215       0.780          0.304 0.860   0.860
#> CV:mclust   2 0.4675           0.857       0.869          0.344 0.591   0.591
#> MAD:mclust  2 0.3608           0.840       0.833          0.376 0.508   0.508
#> ATC:mclust  2 0.4934           0.000       0.824          0.295 1.000   1.000
#> SD:kmeans   2 0.9608           0.916       0.957          0.503 0.497   0.497
#> CV:kmeans   2 0.9302           0.923       0.946          0.500 0.502   0.502
#> MAD:kmeans  2 0.9608           0.919       0.962          0.507 0.493   0.493
#> ATC:kmeans  2 0.7264           0.888       0.955          0.458 0.535   0.535
#> SD:pam      2 0.8486           0.893       0.960          0.508 0.491   0.491
#> CV:pam      2 0.9208           0.899       0.962          0.508 0.493   0.493
#> MAD:pam     2 0.8494           0.903       0.960          0.506 0.491   0.491
#> ATC:pam     2 0.8259           0.878       0.940          0.461 0.525   0.525
#> SD:hclust   2 0.1124           0.530       0.757          0.393 0.560   0.560
#> CV:hclust   2 0.1702           0.670       0.768          0.390 0.591   0.591
#> MAD:hclust  2 0.0935           0.624       0.780          0.424 0.502   0.502
#> ATC:hclust  2 0.4392           0.700       0.864          0.453 0.493   0.493
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.435           0.591       0.788          0.344 0.756   0.544
#> CV:NMF      3 0.521           0.713       0.849          0.350 0.757   0.546
#> MAD:NMF     3 0.568           0.754       0.858          0.329 0.766   0.559
#> ATC:NMF     3 0.826           0.870       0.941          0.410 0.764   0.562
#> SD:skmeans  3 0.887           0.915       0.936          0.321 0.778   0.575
#> CV:skmeans  3 0.710           0.913       0.925          0.324 0.755   0.541
#> MAD:skmeans 3 0.878           0.893       0.936          0.315 0.747   0.529
#> ATC:skmeans 3 1.000           0.953       0.982          0.280 0.830   0.666
#> SD:mclust   3 0.155           0.413       0.656          0.750 0.635   0.584
#> CV:mclust   3 0.399           0.588       0.756          0.664 0.672   0.490
#> MAD:mclust  3 0.239           0.618       0.683          0.469 0.857   0.742
#> ATC:mclust  3 0.971           0.927       0.973          1.232 0.342   0.342
#> SD:kmeans   3 0.400           0.601       0.701          0.301 0.820   0.647
#> CV:kmeans   3 0.436           0.588       0.718          0.310 0.785   0.593
#> MAD:kmeans  3 0.467           0.426       0.624          0.291 0.829   0.675
#> ATC:kmeans  3 0.889           0.893       0.956          0.440 0.660   0.440
#> SD:pam      3 0.583           0.421       0.694          0.315 0.681   0.436
#> CV:pam      3 0.937           0.894       0.942          0.296 0.802   0.615
#> MAD:pam     3 0.472           0.512       0.789          0.309 0.737   0.513
#> ATC:pam     3 0.828           0.910       0.961          0.359 0.720   0.528
#> SD:hclust   3 0.279           0.688       0.807          0.458 0.706   0.542
#> CV:hclust   3 0.216           0.614       0.774          0.479 0.659   0.475
#> MAD:hclust  3 0.235           0.676       0.807          0.383 0.862   0.724
#> ATC:hclust  3 0.550           0.680       0.862          0.396 0.713   0.499
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.649           0.692       0.838         0.1349 0.798   0.474
#> CV:NMF      4 0.642           0.695       0.839         0.1354 0.853   0.588
#> MAD:NMF     4 0.539           0.568       0.764         0.1329 0.834   0.548
#> ATC:NMF     4 0.666           0.738       0.874         0.0816 0.936   0.806
#> SD:skmeans  4 0.863           0.894       0.934         0.1344 0.862   0.608
#> CV:skmeans  4 0.887           0.916       0.938         0.1330 0.853   0.587
#> MAD:skmeans 4 0.754           0.822       0.888         0.1348 0.846   0.572
#> ATC:skmeans 4 0.851           0.790       0.918         0.0989 0.932   0.809
#> SD:mclust   4 0.853           0.851       0.928         0.3837 0.670   0.417
#> CV:mclust   4 0.820           0.836       0.926         0.2631 0.841   0.606
#> MAD:mclust  4 0.570           0.698       0.832         0.3135 0.725   0.439
#> ATC:mclust  4 0.758           0.630       0.755         0.1113 0.823   0.532
#> SD:kmeans   4 0.623           0.789       0.830         0.1447 0.849   0.589
#> CV:kmeans   4 0.591           0.761       0.824         0.1410 0.808   0.502
#> MAD:kmeans  4 0.621           0.716       0.792         0.1429 0.771   0.463
#> ATC:kmeans  4 0.648           0.658       0.794         0.1238 0.855   0.597
#> SD:pam      4 0.921           0.855       0.940         0.1357 0.846   0.570
#> CV:pam      4 0.856           0.896       0.945         0.1364 0.875   0.650
#> MAD:pam     4 0.911           0.902       0.957         0.1473 0.751   0.389
#> ATC:pam     4 0.724           0.844       0.866         0.1669 0.869   0.656
#> SD:hclust   4 0.443           0.473       0.657         0.1577 0.771   0.518
#> CV:hclust   4 0.359           0.653       0.712         0.1712 0.886   0.705
#> MAD:hclust  4 0.370           0.498       0.664         0.1842 0.941   0.837
#> ATC:hclust  4 0.608           0.534       0.736         0.1305 0.913   0.764
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.591           0.550       0.755         0.0640 0.832   0.438
#> CV:NMF      5 0.604           0.644       0.764         0.0652 0.845   0.466
#> MAD:NMF     5 0.576           0.353       0.650         0.0638 0.850   0.519
#> ATC:NMF     5 0.627           0.612       0.799         0.0715 0.843   0.508
#> SD:skmeans  5 0.872           0.851       0.920         0.0650 0.899   0.615
#> CV:skmeans  5 0.785           0.792       0.882         0.0627 0.915   0.668
#> MAD:skmeans 5 0.856           0.835       0.916         0.0674 0.883   0.567
#> ATC:skmeans 5 0.773           0.687       0.845         0.0509 0.958   0.859
#> SD:mclust   5 0.703           0.781       0.844         0.0631 0.834   0.486
#> CV:mclust   5 0.670           0.557       0.764         0.0735 0.899   0.663
#> MAD:mclust  5 0.682           0.632       0.786         0.0879 0.865   0.540
#> ATC:mclust  5 0.789           0.832       0.914         0.0146 0.808   0.448
#> SD:kmeans   5 0.721           0.725       0.809         0.0685 0.904   0.636
#> CV:kmeans   5 0.675           0.659       0.767         0.0674 0.934   0.735
#> MAD:kmeans  5 0.733           0.752       0.831         0.0729 0.883   0.570
#> ATC:kmeans  5 0.667           0.592       0.777         0.0715 0.890   0.601
#> SD:pam      5 0.817           0.728       0.857         0.0593 0.935   0.745
#> CV:pam      5 0.813           0.833       0.874         0.0680 0.945   0.783
#> MAD:pam     5 0.821           0.790       0.896         0.0569 0.921   0.690
#> ATC:pam     5 0.744           0.805       0.885         0.0716 0.958   0.831
#> SD:hclust   5 0.510           0.527       0.706         0.1160 0.782   0.454
#> CV:hclust   5 0.452           0.459       0.657         0.0920 0.813   0.474
#> MAD:hclust  5 0.513           0.440       0.693         0.1056 0.766   0.400
#> ATC:hclust  5 0.604           0.620       0.749         0.0486 0.832   0.511
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.642           0.553       0.748         0.0369 0.866   0.453
#> CV:NMF      6 0.681           0.589       0.753         0.0374 0.902   0.557
#> MAD:NMF     6 0.660           0.536       0.736         0.0395 0.814   0.367
#> ATC:NMF     6 0.647           0.545       0.759         0.0437 0.929   0.695
#> SD:skmeans  6 0.789           0.630       0.808         0.0372 0.956   0.778
#> CV:skmeans  6 0.771           0.634       0.804         0.0386 0.969   0.841
#> MAD:skmeans 6 0.806           0.668       0.810         0.0372 0.953   0.761
#> ATC:skmeans 6 0.720           0.663       0.826         0.0382 0.959   0.849
#> SD:mclust   6 0.764           0.655       0.797         0.0457 0.971   0.861
#> CV:mclust   6 0.673           0.515       0.707         0.0449 0.899   0.605
#> MAD:mclust  6 0.750           0.658       0.822         0.0433 0.932   0.690
#> ATC:mclust  6 0.774           0.735       0.870         0.0727 0.902   0.667
#> SD:kmeans   6 0.727           0.621       0.752         0.0396 0.943   0.739
#> CV:kmeans   6 0.725           0.614       0.766         0.0419 0.936   0.699
#> MAD:kmeans  6 0.751           0.658       0.808         0.0408 0.966   0.825
#> ATC:kmeans  6 0.675           0.508       0.734         0.0396 0.925   0.677
#> SD:pam      6 0.912           0.850       0.936         0.0452 0.947   0.742
#> CV:pam      6 0.851           0.781       0.900         0.0472 0.948   0.745
#> MAD:pam     6 0.871           0.745       0.891         0.0468 0.899   0.552
#> ATC:pam     6 0.718           0.730       0.861         0.0220 0.989   0.946
#> SD:hclust   6 0.576           0.517       0.723         0.0595 0.797   0.412
#> CV:hclust   6 0.569           0.609       0.726         0.0765 0.922   0.685
#> MAD:hclust  6 0.588           0.468       0.632         0.0557 0.790   0.321
#> ATC:hclust  6 0.685           0.630       0.769         0.0549 0.962   0.835

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Test to known annotations

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res_list, k = 2)
#>              n disease.state(p) individual(p) protocol(p) other(p) k
#> SD:NMF      54           0.2071         0.826    1.07e-05    0.686 2
#> CV:NMF      54           0.2071         0.826    1.07e-05    0.686 2
#> MAD:NMF     52           0.2912         0.892    2.38e-06    0.803 2
#> ATC:NMF     53           0.5690         0.591    1.12e-03    0.617 2
#> SD:skmeans  53           0.5145         0.996    1.76e-08    0.446 2
#> CV:skmeans  52           0.4271         0.992    2.92e-08    0.493 2
#> MAD:skmeans 52           0.5924         0.992    2.84e-08    0.592 2
#> ATC:skmeans 54           0.6047         0.465    5.66e-02    0.856 2
#> SD:mclust   31           0.0113         0.335    3.18e-02    0.515 2
#> CV:mclust   52           0.9241         0.776    1.17e-04    1.000 2
#> MAD:mclust  52           0.1277         0.934    1.26e-06    0.610 2
#> ATC:mclust   0               NA            NA          NA       NA 2
#> SD:kmeans   52           0.2912         0.979    1.31e-07    0.592 2
#> CV:kmeans   53           0.2457         0.968    3.22e-07    0.639 2
#> MAD:kmeans  52           0.5924         0.992    2.84e-08    0.592 2
#> ATC:kmeans  50           0.3483         0.344    3.92e-02    0.299 2
#> SD:pam      51           0.4676         0.634    1.26e-03    0.151 2
#> CV:pam      50           0.7394         0.578    1.85e-03    0.404 2
#> MAD:pam     52           0.3789         0.529    2.21e-03    0.183 2
#> ATC:pam     51           0.3408         0.728    8.77e-04    0.382 2
#> SD:hclust   39           0.3474         0.657    2.31e-04    1.000 2
#> CV:hclust   50           0.1689         0.957    6.51e-06    0.551 2
#> MAD:hclust  43           0.2744         0.520    4.54e-04    0.929 2
#> ATC:hclust  47           0.4727         0.410    2.84e-02    0.543 2
test_to_known_factors(res_list, k = 3)
#>              n disease.state(p) individual(p) protocol(p) other(p) k
#> SD:NMF      42         1.11e-01        0.3641    4.12e-05  0.71220 3
#> CV:NMF      46         1.53e-01        0.4872    7.42e-06  0.70705 3
#> MAD:NMF     51         5.84e-02        0.3490    8.43e-06  0.65483 3
#> ATC:NMF     51         3.73e-01        0.4199    3.80e-04  0.10927 3
#> SD:skmeans  54         1.42e-01        0.8084    1.84e-07  0.47590 3
#> CV:skmeans  54         9.36e-02        0.8155    5.54e-07  0.39917 3
#> MAD:skmeans 51         2.02e-01        0.7105    6.43e-07  0.30021 3
#> ATC:skmeans 52         1.65e-01        0.5003    3.09e-03  0.04214 3
#> SD:mclust   34         1.29e-02        0.4791    1.92e-04  0.50207 3
#> CV:mclust   41         1.35e-01        0.3797    2.17e-05  0.49450 3
#> MAD:mclust  40         3.32e-05        0.4734    2.19e-06  0.07649 3
#> ATC:mclust  51         4.54e-01        0.4275    4.20e-03  0.16901 3
#> SD:kmeans   47         2.25e-01        0.5509    1.38e-06  0.36256 3
#> CV:kmeans   48         1.62e-01        0.6369    2.92e-06  0.67059 3
#> MAD:kmeans  28         1.67e-01        0.6397    3.09e-04  1.00000 3
#> ATC:kmeans  49         2.57e-01        0.3962    3.64e-03  0.17809 3
#> SD:pam      17               NA            NA          NA       NA 3
#> CV:pam      52         4.35e-01        0.0936    1.18e-03  0.00941 3
#> MAD:pam     34         3.80e-02        0.3851    1.83e-04  0.24468 3
#> ATC:pam     53         2.29e-01        0.3835    5.52e-04  0.09660 3
#> SD:hclust   46         2.01e-04        0.2743    2.81e-03  0.14790 3
#> CV:hclust   45         1.04e-04        0.2603    9.45e-05  0.19017 3
#> MAD:hclust  50         2.06e-04        0.3780    2.62e-04  0.35781 3
#> ATC:hclust  42         1.51e-01        0.2602    3.13e-03  0.16388 3
test_to_known_factors(res_list, k = 4)
#>              n disease.state(p) individual(p) protocol(p) other(p) k
#> SD:NMF      46         0.000552        0.3713    8.12e-05   0.0221 4
#> CV:NMF      48         0.004563        0.3205    2.80e-05   0.0937 4
#> MAD:NMF     36         0.000955        0.2071    9.66e-04   0.1239 4
#> ATC:NMF     46         0.154812        0.7067    9.82e-04   0.1208 4
#> SD:skmeans  52         0.000141        0.7098    1.49e-07   0.2016 4
#> CV:skmeans  54         0.000591        0.7511    2.60e-07   0.1678 4
#> MAD:skmeans 52         0.000141        0.7098    1.49e-07   0.2016 4
#> ATC:skmeans 46         0.025302        0.1798    2.30e-03   0.0240 4
#> SD:mclust   49         0.000201        0.3027    8.73e-05   0.1409 4
#> CV:mclust   50         0.001368        0.4592    1.77e-04   0.2552 4
#> MAD:mclust  46         0.000124        0.3518    3.43e-05   0.2156 4
#> ATC:mclust  44         0.094504        0.3769    9.75e-04   0.0356 4
#> SD:kmeans   52         0.000304        0.5982    2.38e-06   0.1479 4
#> CV:kmeans   52         0.000304        0.5982    2.38e-06   0.1479 4
#> MAD:kmeans  50         0.000587        0.6547    1.41e-06   0.1687 4
#> ATC:kmeans  48         0.194094        0.1898    3.17e-02   0.0715 4
#> SD:pam      47         0.104982        0.2781    5.48e-05   0.0368 4
#> CV:pam      53         0.468660        0.3829    3.69e-05   0.0302 4
#> MAD:pam     52         0.072421        0.2879    1.23e-04   0.0383 4
#> ATC:pam     53         0.051116        0.2469    1.13e-04   0.0137 4
#> SD:hclust   34         0.001140        0.6746    3.01e-05   0.1568 4
#> CV:hclust   46         0.000209        0.0218    3.30e-04   0.0198 4
#> MAD:hclust  31         0.001706        0.3980    9.86e-05   0.0531 4
#> ATC:hclust  37         0.143567        0.3661    1.53e-02   0.0888 4
test_to_known_factors(res_list, k = 5)
#>              n disease.state(p) individual(p) protocol(p) other(p) k
#> SD:NMF      36         9.51e-03        0.3528    3.57e-03  0.36632 5
#> CV:NMF      45         1.16e-03        0.4018    1.25e-04  0.18451 5
#> MAD:NMF     23         2.65e-03        0.2685    7.78e-01  0.40697 5
#> ATC:NMF     37         6.00e-02        0.7074    2.24e-05  0.08693 5
#> SD:skmeans  51         3.95e-05        0.1910    7.61e-06  0.07089 5
#> CV:skmeans  49         9.02e-05        0.3295    7.61e-06  0.09783 5
#> MAD:skmeans 50         1.76e-05        0.1896    1.17e-05  0.05464 5
#> ATC:skmeans 43         4.05e-02        0.0715    1.65e-03  0.03452 5
#> SD:mclust   50         4.56e-05        0.4263    5.02e-05  0.23931 5
#> CV:mclust   29         3.98e-04        0.3123    6.51e-04  0.16276 5
#> MAD:mclust  41         9.93e-06        0.3335    2.00e-04  0.07270 5
#> ATC:mclust  51         2.02e-01        0.6311    2.23e-05  0.22670 5
#> SD:kmeans   46         6.53e-05        0.4170    3.05e-05  0.08302 5
#> CV:kmeans   45         2.08e-04        0.4103    2.88e-05  0.12558 5
#> MAD:kmeans  51         2.54e-04        0.2499    1.56e-05  0.18695 5
#> ATC:kmeans  40         4.04e-02        0.5451    1.60e-03  0.00976 5
#> SD:pam      44         7.85e-02        0.4106    8.10e-05  0.09554 5
#> CV:pam      52         1.67e-01        0.2525    1.73e-04  0.00216 5
#> MAD:pam     48         1.14e-02        0.3662    1.74e-04  0.01031 5
#> ATC:pam     50         1.44e-01        0.2386    2.51e-04  0.04781 5
#> SD:hclust   24         2.50e-05        0.0871    3.83e-02  0.13734 5
#> CV:hclust   27         4.04e-04        0.7112    1.79e-04  0.18535 5
#> MAD:hclust  17         5.43e-03        0.1350    6.50e-02  0.13567 5
#> ATC:hclust  38         7.94e-02        0.4254    2.21e-02  0.11562 5
test_to_known_factors(res_list, k = 6)
#>              n disease.state(p) individual(p) protocol(p) other(p) k
#> SD:NMF      37         2.62e-03        0.5171    6.83e-04 6.83e-02 6
#> CV:NMF      42         5.27e-04        0.1871    2.06e-03 2.68e-02 6
#> MAD:NMF     37         2.06e-04        0.4434    3.29e-04 2.11e-01 6
#> ATC:NMF     35         1.06e-01        0.4374    1.74e-04 1.05e-01 6
#> SD:skmeans  41         4.67e-05        0.4206    2.29e-04 3.17e-02 6
#> CV:skmeans  41         7.20e-05        0.6225    9.13e-05 3.17e-02 6
#> MAD:skmeans 40         1.13e-05        0.3937    3.79e-04 1.85e-02 6
#> ATC:skmeans 43         1.20e-01        0.3257    3.44e-04 2.30e-02 6
#> SD:mclust   36         1.22e-04        0.5370    8.84e-04 1.60e-01 6
#> CV:mclust   34         1.16e-04        0.2505    6.43e-03 3.56e-02 6
#> MAD:mclust  43         3.84e-05        0.4787    1.90e-04 1.94e-02 6
#> ATC:mclust  49         3.88e-01        0.6404    4.37e-05 1.21e-01 6
#> SD:kmeans   46         3.48e-04        0.2419    1.06e-04 5.24e-02 6
#> CV:kmeans   42         2.81e-04        0.4343    1.69e-04 1.35e-03 6
#> MAD:kmeans  43         4.00e-04        0.5472    3.61e-04 2.86e-02 6
#> ATC:kmeans  35         1.01e-01        0.5023    8.11e-04 1.24e-02 6
#> SD:pam      49         3.77e-02        0.2642    1.94e-05 1.20e-02 6
#> CV:pam      47         4.25e-02        0.2707    3.60e-04 8.25e-05 6
#> MAD:pam     46         3.42e-02        0.3032    1.61e-05 2.04e-03 6
#> ATC:pam     48         7.44e-02        0.1650    3.25e-04 2.04e-02 6
#> SD:hclust   38         9.48e-05        0.0171    5.55e-04 1.60e-02 6
#> CV:hclust   43         7.70e-05        0.0664    4.69e-04 2.74e-02 6
#> MAD:hclust  29         4.47e-04        0.0180    1.89e-02 4.66e-02 6
#> ATC:hclust  39         1.28e-01        0.3463    3.99e-02 7.44e-02 6

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.112           0.530       0.757         0.3930 0.560   0.560
#> 3 3 0.279           0.688       0.807         0.4585 0.706   0.542
#> 4 4 0.443           0.473       0.657         0.1577 0.771   0.518
#> 5 5 0.510           0.527       0.706         0.1160 0.782   0.454
#> 6 6 0.576           0.517       0.723         0.0595 0.797   0.412

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM680053     2   0.886      0.258 0.304 0.696
#> GSM680062     2   0.886      0.258 0.304 0.696
#> GSM680054     2   0.886      0.258 0.304 0.696
#> GSM680063     2   0.886      0.258 0.304 0.696
#> GSM680055     2   0.886      0.258 0.304 0.696
#> GSM680064     1   0.936      0.665 0.648 0.352
#> GSM680056     2   0.991     -0.233 0.444 0.556
#> GSM680065     2   0.991     -0.233 0.444 0.556
#> GSM680057     2   0.373      0.693 0.072 0.928
#> GSM680066     1   0.943      0.663 0.640 0.360
#> GSM680058     2   0.295      0.667 0.052 0.948
#> GSM680067     2   0.833      0.559 0.264 0.736
#> GSM680059     2   0.295      0.667 0.052 0.948
#> GSM680068     1   0.943      0.663 0.640 0.360
#> GSM680060     1   0.995      0.530 0.540 0.460
#> GSM680069     1   0.995      0.530 0.540 0.460
#> GSM680061     2   0.833      0.559 0.264 0.736
#> GSM680070     1   0.943      0.663 0.640 0.360
#> GSM680071     1   0.994      0.538 0.544 0.456
#> GSM680077     1   0.983      0.580 0.576 0.424
#> GSM680072     2   0.295      0.667 0.052 0.948
#> GSM680078     1   0.958      0.639 0.620 0.380
#> GSM680073     2   0.295      0.667 0.052 0.948
#> GSM680079     1   0.936      0.665 0.648 0.352
#> GSM680074     2   0.295      0.667 0.052 0.948
#> GSM680080     2   0.295      0.667 0.052 0.948
#> GSM680075     2   0.605      0.658 0.148 0.852
#> GSM680081     2   0.574      0.653 0.136 0.864
#> GSM680076     1   1.000      0.468 0.512 0.488
#> GSM680082     1   1.000      0.468 0.512 0.488
#> GSM680029     2   0.373      0.688 0.072 0.928
#> GSM680041     1   0.295      0.509 0.948 0.052
#> GSM680035     2   0.295      0.691 0.052 0.948
#> GSM680047     1   0.443      0.503 0.908 0.092
#> GSM680036     2   0.402      0.683 0.080 0.920
#> GSM680048     2   0.952      0.430 0.372 0.628
#> GSM680037     2   0.295      0.691 0.052 0.948
#> GSM680049     1   0.295      0.509 0.948 0.052
#> GSM680038     2   0.430      0.690 0.088 0.912
#> GSM680050     1   0.981      0.582 0.580 0.420
#> GSM680039     2   0.343      0.697 0.064 0.936
#> GSM680051     2   0.876      0.536 0.296 0.704
#> GSM680040     2   0.295      0.691 0.052 0.948
#> GSM680052     2   0.952      0.430 0.372 0.628
#> GSM680030     2   0.373      0.693 0.072 0.928
#> GSM680042     1   0.295      0.509 0.948 0.052
#> GSM680031     2   0.814      0.579 0.252 0.748
#> GSM680043     2   0.814      0.579 0.252 0.748
#> GSM680032     2   0.917      0.289 0.332 0.668
#> GSM680044     2   0.917      0.289 0.332 0.668
#> GSM680033     2   0.295      0.691 0.052 0.948
#> GSM680045     2   0.925      0.473 0.340 0.660
#> GSM680034     2   0.373      0.693 0.072 0.928
#> GSM680046     2   0.925      0.473 0.340 0.660

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM680053     1  0.6291      0.395 0.532 0.468 0.000
#> GSM680062     1  0.6291      0.395 0.532 0.468 0.000
#> GSM680054     1  0.6291      0.395 0.532 0.468 0.000
#> GSM680063     1  0.6291      0.395 0.532 0.468 0.000
#> GSM680055     1  0.6291      0.395 0.532 0.468 0.000
#> GSM680064     1  0.4892      0.692 0.840 0.048 0.112
#> GSM680056     1  0.5147      0.716 0.800 0.180 0.020
#> GSM680065     1  0.5147      0.716 0.800 0.180 0.020
#> GSM680057     2  0.3472      0.797 0.040 0.904 0.056
#> GSM680066     1  0.5094      0.695 0.832 0.056 0.112
#> GSM680058     2  0.2096      0.779 0.052 0.944 0.004
#> GSM680067     2  0.6854      0.666 0.068 0.716 0.216
#> GSM680059     2  0.2096      0.779 0.052 0.944 0.004
#> GSM680068     1  0.5191      0.695 0.828 0.060 0.112
#> GSM680060     1  0.2772      0.705 0.916 0.080 0.004
#> GSM680069     1  0.2682      0.705 0.920 0.076 0.004
#> GSM680061     2  0.6854      0.666 0.068 0.716 0.216
#> GSM680070     1  0.5094      0.695 0.832 0.056 0.112
#> GSM680071     1  0.2590      0.703 0.924 0.072 0.004
#> GSM680077     1  0.0829      0.689 0.984 0.012 0.004
#> GSM680072     2  0.2096      0.779 0.052 0.944 0.004
#> GSM680078     1  0.5722      0.701 0.804 0.084 0.112
#> GSM680073     2  0.2096      0.779 0.052 0.944 0.004
#> GSM680079     1  0.4892      0.692 0.840 0.048 0.112
#> GSM680074     2  0.2096      0.779 0.052 0.944 0.004
#> GSM680080     2  0.2096      0.779 0.052 0.944 0.004
#> GSM680075     2  0.5623      0.506 0.280 0.716 0.004
#> GSM680081     2  0.5497      0.495 0.292 0.708 0.000
#> GSM680076     1  0.3193      0.695 0.896 0.100 0.004
#> GSM680082     1  0.3193      0.695 0.896 0.100 0.004
#> GSM680029     2  0.3030      0.770 0.092 0.904 0.004
#> GSM680041     3  0.0237      0.975 0.000 0.004 0.996
#> GSM680035     2  0.2537      0.777 0.080 0.920 0.000
#> GSM680047     3  0.2414      0.921 0.020 0.040 0.940
#> GSM680036     2  0.3425      0.751 0.112 0.884 0.004
#> GSM680048     2  0.7992      0.583 0.080 0.592 0.328
#> GSM680037     2  0.2537      0.777 0.080 0.920 0.000
#> GSM680049     3  0.0237      0.975 0.000 0.004 0.996
#> GSM680038     2  0.3888      0.797 0.064 0.888 0.048
#> GSM680050     1  0.1877      0.684 0.956 0.012 0.032
#> GSM680039     2  0.3112      0.793 0.056 0.916 0.028
#> GSM680051     2  0.7411      0.672 0.076 0.668 0.256
#> GSM680040     2  0.2448      0.779 0.076 0.924 0.000
#> GSM680052     2  0.7992      0.583 0.080 0.592 0.328
#> GSM680030     2  0.3797      0.795 0.052 0.892 0.056
#> GSM680042     3  0.0237      0.975 0.000 0.004 0.996
#> GSM680031     2  0.7047      0.711 0.084 0.712 0.204
#> GSM680043     2  0.7047      0.711 0.084 0.712 0.204
#> GSM680032     1  0.8056      0.384 0.532 0.400 0.068
#> GSM680044     1  0.8056      0.384 0.532 0.400 0.068
#> GSM680033     2  0.2448      0.779 0.076 0.924 0.000
#> GSM680045     2  0.8285      0.604 0.112 0.600 0.288
#> GSM680034     2  0.3472      0.797 0.040 0.904 0.056
#> GSM680046     2  0.8285      0.604 0.112 0.600 0.288

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM680053     3  0.5994     0.3610 0.068 0.296 0.636 0.000
#> GSM680062     3  0.5994     0.3610 0.068 0.296 0.636 0.000
#> GSM680054     3  0.5994     0.3610 0.068 0.296 0.636 0.000
#> GSM680063     3  0.5994     0.3610 0.068 0.296 0.636 0.000
#> GSM680055     3  0.5994     0.3610 0.068 0.296 0.636 0.000
#> GSM680064     1  0.4244     0.6937 0.804 0.000 0.160 0.036
#> GSM680056     3  0.5175    -0.2227 0.328 0.012 0.656 0.004
#> GSM680065     3  0.5175    -0.2227 0.328 0.012 0.656 0.004
#> GSM680057     2  0.4012     0.6376 0.000 0.800 0.184 0.016
#> GSM680066     1  0.4613     0.6922 0.792 0.008 0.164 0.036
#> GSM680058     2  0.0524     0.6525 0.004 0.988 0.008 0.000
#> GSM680067     2  0.4831     0.3102 0.000 0.704 0.280 0.016
#> GSM680059     2  0.1109     0.6592 0.004 0.968 0.028 0.000
#> GSM680068     1  0.4739     0.6899 0.788 0.012 0.164 0.036
#> GSM680060     1  0.6044     0.5810 0.528 0.044 0.428 0.000
#> GSM680069     1  0.5971     0.5807 0.532 0.040 0.428 0.000
#> GSM680061     2  0.4831     0.3102 0.000 0.704 0.280 0.016
#> GSM680070     1  0.4613     0.6922 0.792 0.008 0.164 0.036
#> GSM680071     1  0.5964     0.5855 0.536 0.040 0.424 0.000
#> GSM680077     1  0.2281     0.6570 0.904 0.000 0.096 0.000
#> GSM680072     2  0.0524     0.6525 0.004 0.988 0.008 0.000
#> GSM680078     1  0.5036     0.6706 0.760 0.012 0.192 0.036
#> GSM680073     2  0.1305     0.6560 0.004 0.960 0.036 0.000
#> GSM680079     1  0.4244     0.6937 0.804 0.000 0.160 0.036
#> GSM680074     2  0.0524     0.6525 0.004 0.988 0.008 0.000
#> GSM680080     2  0.0524     0.6525 0.004 0.988 0.008 0.000
#> GSM680075     2  0.6396     0.2420 0.076 0.564 0.360 0.000
#> GSM680081     2  0.6451     0.2103 0.072 0.524 0.404 0.000
#> GSM680076     1  0.5756     0.5763 0.568 0.032 0.400 0.000
#> GSM680082     1  0.5756     0.5763 0.568 0.032 0.400 0.000
#> GSM680029     2  0.4690     0.5941 0.012 0.712 0.276 0.000
#> GSM680041     4  0.0000     0.9711 0.000 0.000 0.000 1.000
#> GSM680035     2  0.4222     0.5985 0.000 0.728 0.272 0.000
#> GSM680047     4  0.1824     0.9106 0.004 0.000 0.060 0.936
#> GSM680036     2  0.4844     0.5638 0.012 0.688 0.300 0.000
#> GSM680048     3  0.7280     0.0409 0.004 0.384 0.480 0.132
#> GSM680037     2  0.4222     0.5985 0.000 0.728 0.272 0.000
#> GSM680049     4  0.0000     0.9711 0.000 0.000 0.000 1.000
#> GSM680038     2  0.3925     0.6450 0.000 0.808 0.176 0.016
#> GSM680050     1  0.3182     0.6462 0.876 0.000 0.096 0.028
#> GSM680039     2  0.4485     0.6280 0.000 0.740 0.248 0.012
#> GSM680051     3  0.6561    -0.1094 0.004 0.460 0.472 0.064
#> GSM680040     2  0.4193     0.6018 0.000 0.732 0.268 0.000
#> GSM680052     3  0.7280     0.0409 0.004 0.384 0.480 0.132
#> GSM680030     2  0.4356     0.6290 0.004 0.780 0.200 0.016
#> GSM680042     4  0.0000     0.9711 0.000 0.000 0.000 1.000
#> GSM680031     3  0.5464    -0.1606 0.004 0.492 0.496 0.008
#> GSM680043     3  0.5464    -0.1606 0.004 0.492 0.496 0.008
#> GSM680032     3  0.7984     0.2653 0.264 0.232 0.488 0.016
#> GSM680044     3  0.7984     0.2653 0.264 0.232 0.488 0.016
#> GSM680033     2  0.4193     0.6018 0.000 0.732 0.268 0.000
#> GSM680045     3  0.7547     0.0514 0.056 0.392 0.492 0.060
#> GSM680034     2  0.4012     0.6376 0.000 0.800 0.184 0.016
#> GSM680046     3  0.7547     0.0514 0.056 0.392 0.492 0.060

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM680053     3  0.6380     0.1927 0.136 0.324 0.528 0.012 0.000
#> GSM680062     3  0.6380     0.1927 0.136 0.324 0.528 0.012 0.000
#> GSM680054     3  0.6380     0.1927 0.136 0.324 0.528 0.012 0.000
#> GSM680063     3  0.6380     0.1927 0.136 0.324 0.528 0.012 0.000
#> GSM680055     3  0.6380     0.1927 0.136 0.324 0.528 0.012 0.000
#> GSM680064     1  0.0162     0.8453 0.996 0.000 0.004 0.000 0.000
#> GSM680056     2  0.6276     0.5122 0.176 0.584 0.228 0.012 0.000
#> GSM680065     2  0.6276     0.5122 0.176 0.584 0.228 0.012 0.000
#> GSM680057     3  0.4593     0.0924 0.000 0.004 0.512 0.480 0.004
#> GSM680066     1  0.0798     0.8479 0.976 0.008 0.016 0.000 0.000
#> GSM680058     3  0.4367     0.3901 0.004 0.000 0.580 0.416 0.000
#> GSM680067     4  0.2351     0.4819 0.000 0.016 0.088 0.896 0.000
#> GSM680059     3  0.3949     0.4181 0.004 0.000 0.696 0.300 0.000
#> GSM680068     1  0.0898     0.8461 0.972 0.008 0.020 0.000 0.000
#> GSM680060     2  0.2344     0.7562 0.064 0.904 0.000 0.032 0.000
#> GSM680069     2  0.2331     0.7580 0.064 0.908 0.004 0.024 0.000
#> GSM680061     4  0.2351     0.4819 0.000 0.016 0.088 0.896 0.000
#> GSM680070     1  0.0798     0.8479 0.976 0.008 0.016 0.000 0.000
#> GSM680071     2  0.2171     0.7573 0.064 0.912 0.000 0.024 0.000
#> GSM680077     1  0.4331     0.4506 0.596 0.400 0.000 0.004 0.000
#> GSM680072     3  0.4367     0.3901 0.004 0.000 0.580 0.416 0.000
#> GSM680078     1  0.1282     0.8218 0.952 0.004 0.044 0.000 0.000
#> GSM680073     3  0.4009     0.4187 0.004 0.000 0.684 0.312 0.000
#> GSM680079     1  0.0162     0.8453 0.996 0.000 0.004 0.000 0.000
#> GSM680074     3  0.4375     0.3881 0.004 0.000 0.576 0.420 0.000
#> GSM680080     3  0.4375     0.3881 0.004 0.000 0.576 0.420 0.000
#> GSM680075     3  0.5778     0.4528 0.068 0.164 0.692 0.076 0.000
#> GSM680081     3  0.4665     0.4310 0.056 0.168 0.756 0.020 0.000
#> GSM680076     2  0.1851     0.6921 0.000 0.912 0.000 0.088 0.000
#> GSM680082     2  0.1851     0.6921 0.000 0.912 0.000 0.088 0.000
#> GSM680029     3  0.1538     0.4792 0.008 0.008 0.948 0.036 0.000
#> GSM680041     5  0.0000     0.9701 0.000 0.000 0.000 0.000 1.000
#> GSM680035     3  0.0794     0.4586 0.000 0.000 0.972 0.028 0.000
#> GSM680047     5  0.1717     0.9083 0.008 0.000 0.052 0.004 0.936
#> GSM680036     3  0.2467     0.4914 0.016 0.024 0.908 0.052 0.000
#> GSM680048     4  0.6658     0.7504 0.008 0.016 0.336 0.516 0.124
#> GSM680037     3  0.0794     0.4586 0.000 0.000 0.972 0.028 0.000
#> GSM680049     5  0.0000     0.9701 0.000 0.000 0.000 0.000 1.000
#> GSM680038     3  0.4835     0.1627 0.004 0.008 0.528 0.456 0.004
#> GSM680050     1  0.5033     0.4283 0.568 0.400 0.000 0.004 0.028
#> GSM680039     3  0.3039     0.3635 0.000 0.000 0.808 0.192 0.000
#> GSM680051     4  0.5870     0.7060 0.008 0.016 0.372 0.556 0.048
#> GSM680040     3  0.0510     0.4648 0.000 0.000 0.984 0.016 0.000
#> GSM680052     4  0.6658     0.7504 0.008 0.016 0.336 0.516 0.124
#> GSM680030     3  0.4595     0.0954 0.000 0.004 0.504 0.488 0.004
#> GSM680042     5  0.0000     0.9701 0.000 0.000 0.000 0.000 1.000
#> GSM680031     4  0.4997     0.6980 0.008 0.016 0.468 0.508 0.000
#> GSM680043     4  0.4997     0.6980 0.008 0.016 0.468 0.508 0.000
#> GSM680032     3  0.7872     0.0474 0.328 0.192 0.400 0.076 0.004
#> GSM680044     3  0.7872     0.0474 0.328 0.192 0.400 0.076 0.004
#> GSM680033     3  0.0510     0.4648 0.000 0.000 0.984 0.016 0.000
#> GSM680045     4  0.6896     0.7502 0.084 0.016 0.340 0.520 0.040
#> GSM680034     3  0.4593     0.0924 0.000 0.004 0.512 0.480 0.004
#> GSM680046     4  0.6896     0.7502 0.084 0.016 0.340 0.520 0.040

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM680053     5  0.6061     0.5386 0.072 0.064 0.388 0.000 0.476 0.000
#> GSM680062     5  0.6061     0.5386 0.072 0.064 0.388 0.000 0.476 0.000
#> GSM680054     5  0.6061     0.5386 0.072 0.064 0.388 0.000 0.476 0.000
#> GSM680063     5  0.6061     0.5386 0.072 0.064 0.388 0.000 0.476 0.000
#> GSM680055     5  0.6061     0.5386 0.072 0.064 0.388 0.000 0.476 0.000
#> GSM680064     1  0.0000     0.6862 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM680056     5  0.5950     0.5176 0.112 0.044 0.108 0.000 0.672 0.064
#> GSM680065     5  0.5950     0.5176 0.112 0.044 0.108 0.000 0.672 0.064
#> GSM680057     2  0.3881     0.3009 0.000 0.600 0.396 0.000 0.004 0.000
#> GSM680066     1  0.0696     0.6922 0.980 0.008 0.004 0.000 0.004 0.004
#> GSM680058     3  0.4344     0.5051 0.000 0.060 0.720 0.004 0.212 0.004
#> GSM680067     2  0.4576     0.4524 0.000 0.716 0.208 0.004 0.052 0.020
#> GSM680059     3  0.4186     0.5450 0.000 0.080 0.728 0.000 0.192 0.000
#> GSM680068     1  0.0810     0.6914 0.976 0.008 0.008 0.000 0.004 0.004
#> GSM680060     5  0.4420     0.0736 0.008 0.012 0.008 0.000 0.624 0.348
#> GSM680069     5  0.4223     0.0795 0.008 0.008 0.004 0.000 0.632 0.348
#> GSM680061     2  0.4576     0.4524 0.000 0.716 0.208 0.004 0.052 0.020
#> GSM680070     1  0.0696     0.6922 0.980 0.008 0.004 0.000 0.004 0.004
#> GSM680071     5  0.4236     0.0721 0.008 0.008 0.004 0.000 0.628 0.352
#> GSM680077     1  0.4975     0.2482 0.596 0.000 0.000 0.000 0.092 0.312
#> GSM680072     3  0.4344     0.5051 0.000 0.060 0.720 0.004 0.212 0.004
#> GSM680078     1  0.1312     0.6794 0.956 0.008 0.020 0.000 0.012 0.004
#> GSM680073     3  0.4008     0.5469 0.000 0.064 0.740 0.000 0.196 0.000
#> GSM680079     1  0.0000     0.6862 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM680074     3  0.4399     0.5044 0.000 0.064 0.716 0.004 0.212 0.004
#> GSM680080     3  0.4399     0.5044 0.000 0.064 0.716 0.004 0.212 0.004
#> GSM680075     3  0.6196     0.3050 0.048 0.064 0.556 0.000 0.304 0.028
#> GSM680081     3  0.6829     0.3041 0.048 0.184 0.536 0.000 0.200 0.032
#> GSM680076     6  0.0777     1.0000 0.000 0.000 0.004 0.000 0.024 0.972
#> GSM680082     6  0.0777     1.0000 0.000 0.000 0.004 0.000 0.024 0.972
#> GSM680029     3  0.4030     0.5592 0.000 0.172 0.748 0.000 0.080 0.000
#> GSM680041     4  0.0146     0.9652 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM680035     3  0.3468     0.5165 0.000 0.284 0.712 0.000 0.004 0.000
#> GSM680047     4  0.1644     0.8942 0.012 0.052 0.004 0.932 0.000 0.000
#> GSM680036     3  0.4371     0.5380 0.008 0.132 0.740 0.000 0.120 0.000
#> GSM680048     2  0.3702     0.6285 0.012 0.808 0.056 0.120 0.004 0.000
#> GSM680037     3  0.3468     0.5165 0.000 0.284 0.712 0.000 0.004 0.000
#> GSM680049     4  0.0146     0.9652 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM680038     2  0.4620     0.1873 0.000 0.532 0.428 0.000 0.040 0.000
#> GSM680050     1  0.5605     0.2205 0.568 0.000 0.000 0.028 0.092 0.312
#> GSM680039     3  0.3937     0.2292 0.000 0.424 0.572 0.000 0.004 0.000
#> GSM680051     2  0.3493     0.6313 0.012 0.828 0.108 0.044 0.008 0.000
#> GSM680040     3  0.3405     0.5286 0.000 0.272 0.724 0.000 0.004 0.000
#> GSM680052     2  0.3702     0.6285 0.012 0.808 0.056 0.120 0.004 0.000
#> GSM680030     2  0.4411     0.2740 0.000 0.576 0.400 0.000 0.012 0.012
#> GSM680042     4  0.0146     0.9652 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM680031     2  0.3053     0.5947 0.012 0.812 0.172 0.000 0.004 0.000
#> GSM680043     2  0.3053     0.5947 0.012 0.812 0.172 0.000 0.004 0.000
#> GSM680032     1  0.8424     0.0549 0.332 0.144 0.244 0.000 0.076 0.204
#> GSM680044     1  0.8424     0.0549 0.332 0.144 0.244 0.000 0.076 0.204
#> GSM680033     3  0.3405     0.5286 0.000 0.272 0.724 0.000 0.004 0.000
#> GSM680045     2  0.3871     0.6299 0.088 0.812 0.060 0.036 0.004 0.000
#> GSM680034     2  0.3881     0.3009 0.000 0.600 0.396 0.000 0.004 0.000
#> GSM680046     2  0.3871     0.6299 0.088 0.812 0.060 0.036 0.004 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) individual(p) protocol(p) other(p) k
#> SD:hclust 39         3.47e-01        0.6569    2.31e-04    1.000 2
#> SD:hclust 46         2.01e-04        0.2743    2.81e-03    0.148 3
#> SD:hclust 34         1.14e-03        0.6746    3.01e-05    0.157 4
#> SD:hclust 24         2.50e-05        0.0871    3.83e-02    0.137 5
#> SD:hclust 38         9.48e-05        0.0171    5.55e-04    0.016 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.961           0.916       0.957         0.5028 0.497   0.497
#> 3 3 0.400           0.601       0.701         0.3014 0.820   0.647
#> 4 4 0.623           0.789       0.830         0.1447 0.849   0.589
#> 5 5 0.721           0.725       0.809         0.0685 0.904   0.636
#> 6 6 0.727           0.621       0.752         0.0396 0.943   0.739

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM680053     2  0.0672     0.9537 0.008 0.992
#> GSM680062     1  0.9977     0.0176 0.528 0.472
#> GSM680054     2  0.0000     0.9548 0.000 1.000
#> GSM680063     2  0.9909     0.1832 0.444 0.556
#> GSM680055     2  0.0672     0.9537 0.008 0.992
#> GSM680064     1  0.2043     0.9598 0.968 0.032
#> GSM680056     1  0.2603     0.9550 0.956 0.044
#> GSM680065     1  0.2236     0.9593 0.964 0.036
#> GSM680057     2  0.2043     0.9500 0.032 0.968
#> GSM680066     1  0.1843     0.9605 0.972 0.028
#> GSM680058     2  0.0938     0.9534 0.012 0.988
#> GSM680067     2  0.2236     0.9480 0.036 0.964
#> GSM680059     2  0.1184     0.9549 0.016 0.984
#> GSM680068     1  0.1843     0.9605 0.972 0.028
#> GSM680060     2  0.0938     0.9534 0.012 0.988
#> GSM680069     2  0.7139     0.7488 0.196 0.804
#> GSM680061     2  0.2236     0.9480 0.036 0.964
#> GSM680070     1  0.2236     0.9593 0.964 0.036
#> GSM680071     2  0.7219     0.7504 0.200 0.800
#> GSM680077     1  0.2236     0.9593 0.964 0.036
#> GSM680072     2  0.0000     0.9548 0.000 1.000
#> GSM680078     1  0.2236     0.9593 0.964 0.036
#> GSM680073     2  0.0672     0.9537 0.008 0.992
#> GSM680079     1  0.2236     0.9593 0.964 0.036
#> GSM680074     2  0.0938     0.9534 0.012 0.988
#> GSM680080     2  0.0000     0.9548 0.000 1.000
#> GSM680075     2  0.0672     0.9537 0.008 0.992
#> GSM680081     2  0.0672     0.9537 0.008 0.992
#> GSM680076     2  0.0376     0.9546 0.004 0.996
#> GSM680082     1  0.2043     0.9599 0.968 0.032
#> GSM680029     2  0.0938     0.9546 0.012 0.988
#> GSM680041     1  0.0672     0.9570 0.992 0.008
#> GSM680035     2  0.1843     0.9541 0.028 0.972
#> GSM680047     1  0.0376     0.9584 0.996 0.004
#> GSM680036     2  0.0672     0.9537 0.008 0.992
#> GSM680048     1  0.0672     0.9570 0.992 0.008
#> GSM680037     2  0.1843     0.9541 0.028 0.972
#> GSM680049     1  0.0672     0.9570 0.992 0.008
#> GSM680038     2  0.2043     0.9500 0.032 0.968
#> GSM680050     1  0.1414     0.9594 0.980 0.020
#> GSM680039     2  0.1843     0.9514 0.028 0.972
#> GSM680051     1  0.0672     0.9570 0.992 0.008
#> GSM680040     2  0.1843     0.9541 0.028 0.972
#> GSM680052     1  0.0672     0.9570 0.992 0.008
#> GSM680030     2  0.2043     0.9500 0.032 0.968
#> GSM680042     1  0.0376     0.9584 0.996 0.004
#> GSM680031     2  0.1843     0.9541 0.028 0.972
#> GSM680043     1  0.0376     0.9592 0.996 0.004
#> GSM680032     1  0.2236     0.9593 0.964 0.036
#> GSM680044     1  0.1184     0.9590 0.984 0.016
#> GSM680033     2  0.1843     0.9541 0.028 0.972
#> GSM680045     1  0.0000     0.9588 1.000 0.000
#> GSM680034     2  0.2236     0.9480 0.036 0.964
#> GSM680046     1  0.0376     0.9584 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM680053     3  0.6271      0.614 0.088 0.140 0.772
#> GSM680062     3  0.6808      0.543 0.084 0.184 0.732
#> GSM680054     3  0.5926     -0.193 0.000 0.356 0.644
#> GSM680063     3  0.6625      0.565 0.080 0.176 0.744
#> GSM680055     3  0.6271      0.614 0.088 0.140 0.772
#> GSM680064     1  0.2959      0.747 0.900 0.100 0.000
#> GSM680056     1  0.8937      0.230 0.540 0.152 0.308
#> GSM680065     1  0.4677      0.718 0.840 0.132 0.028
#> GSM680057     3  0.6308     -0.742 0.000 0.492 0.508
#> GSM680066     1  0.4128      0.719 0.856 0.012 0.132
#> GSM680058     2  0.6244      0.759 0.000 0.560 0.440
#> GSM680067     2  0.5733      0.659 0.000 0.676 0.324
#> GSM680059     3  0.3482      0.529 0.000 0.128 0.872
#> GSM680068     1  0.2636      0.747 0.932 0.020 0.048
#> GSM680060     2  0.6235      0.758 0.000 0.564 0.436
#> GSM680069     3  0.8474      0.436 0.252 0.144 0.604
#> GSM680061     2  0.5785      0.667 0.000 0.668 0.332
#> GSM680070     1  0.1525      0.740 0.964 0.004 0.032
#> GSM680071     2  0.7642      0.322 0.248 0.660 0.092
#> GSM680077     1  0.2031      0.736 0.952 0.016 0.032
#> GSM680072     2  0.6286      0.739 0.000 0.536 0.464
#> GSM680078     1  0.5115      0.631 0.796 0.016 0.188
#> GSM680073     3  0.4399      0.465 0.000 0.188 0.812
#> GSM680079     1  0.1289      0.741 0.968 0.000 0.032
#> GSM680074     2  0.6286      0.752 0.000 0.536 0.464
#> GSM680080     2  0.6291      0.749 0.000 0.532 0.468
#> GSM680075     3  0.4369      0.641 0.040 0.096 0.864
#> GSM680081     3  0.3459      0.649 0.096 0.012 0.892
#> GSM680076     2  0.8314      0.690 0.092 0.556 0.352
#> GSM680082     1  0.1877      0.737 0.956 0.012 0.032
#> GSM680029     3  0.1163      0.674 0.028 0.000 0.972
#> GSM680041     1  0.6735      0.729 0.564 0.424 0.012
#> GSM680035     3  0.0424      0.668 0.000 0.008 0.992
#> GSM680047     1  0.8570      0.705 0.476 0.428 0.096
#> GSM680036     3  0.3550      0.657 0.024 0.080 0.896
#> GSM680048     1  0.8608      0.709 0.488 0.412 0.100
#> GSM680037     3  0.0475      0.671 0.004 0.004 0.992
#> GSM680049     1  0.6490      0.737 0.628 0.360 0.012
#> GSM680038     2  0.6295      0.735 0.000 0.528 0.472
#> GSM680050     1  0.2165      0.752 0.936 0.064 0.000
#> GSM680039     3  0.6252     -0.668 0.000 0.444 0.556
#> GSM680051     1  0.8608      0.709 0.488 0.412 0.100
#> GSM680040     3  0.0424      0.668 0.000 0.008 0.992
#> GSM680052     1  0.8608      0.709 0.488 0.412 0.100
#> GSM680030     2  0.6309      0.719 0.000 0.504 0.496
#> GSM680042     1  0.6701      0.733 0.576 0.412 0.012
#> GSM680031     3  0.0237      0.670 0.000 0.004 0.996
#> GSM680043     1  0.8394      0.722 0.576 0.316 0.108
#> GSM680032     1  0.3148      0.734 0.916 0.048 0.036
#> GSM680044     1  0.8464      0.731 0.596 0.272 0.132
#> GSM680033     3  0.0592      0.664 0.000 0.012 0.988
#> GSM680045     1  0.8394      0.722 0.576 0.316 0.108
#> GSM680034     2  0.6126      0.592 0.000 0.600 0.400
#> GSM680046     1  0.7533      0.738 0.600 0.348 0.052

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM680053     3   0.562      0.739 0.044 0.072 0.768 0.116
#> GSM680062     3   0.590      0.732 0.048 0.060 0.744 0.148
#> GSM680054     2   0.706      0.369 0.016 0.544 0.352 0.088
#> GSM680063     3   0.587      0.731 0.048 0.064 0.748 0.140
#> GSM680055     3   0.577      0.736 0.048 0.076 0.760 0.116
#> GSM680064     1   0.380      0.810 0.832 0.012 0.008 0.148
#> GSM680056     1   0.776      0.536 0.612 0.076 0.148 0.164
#> GSM680065     1   0.596      0.673 0.724 0.020 0.088 0.168
#> GSM680057     2   0.336      0.817 0.000 0.824 0.176 0.000
#> GSM680066     1   0.329      0.838 0.884 0.016 0.020 0.080
#> GSM680058     2   0.149      0.844 0.000 0.952 0.044 0.004
#> GSM680067     2   0.323      0.811 0.000 0.880 0.048 0.072
#> GSM680059     3   0.464      0.691 0.004 0.208 0.764 0.024
#> GSM680068     1   0.252      0.852 0.908 0.016 0.000 0.076
#> GSM680060     2   0.121      0.843 0.000 0.964 0.032 0.004
#> GSM680069     3   0.848      0.381 0.288 0.084 0.500 0.128
#> GSM680061     2   0.324      0.812 0.000 0.880 0.052 0.068
#> GSM680070     1   0.182      0.862 0.936 0.004 0.000 0.060
#> GSM680071     2   0.638      0.637 0.060 0.720 0.084 0.136
#> GSM680077     1   0.198      0.864 0.940 0.016 0.004 0.040
#> GSM680072     2   0.293      0.827 0.004 0.896 0.076 0.024
#> GSM680078     1   0.192      0.852 0.944 0.004 0.024 0.028
#> GSM680073     3   0.600      0.661 0.032 0.284 0.660 0.024
#> GSM680079     1   0.166      0.864 0.944 0.004 0.000 0.052
#> GSM680074     2   0.236      0.840 0.000 0.920 0.056 0.024
#> GSM680080     2   0.236      0.840 0.000 0.920 0.056 0.024
#> GSM680075     3   0.578      0.738 0.044 0.208 0.720 0.028
#> GSM680081     3   0.320      0.791 0.036 0.060 0.892 0.012
#> GSM680076     2   0.274      0.821 0.052 0.912 0.012 0.024
#> GSM680082     1   0.168      0.866 0.948 0.012 0.000 0.040
#> GSM680029     3   0.267      0.798 0.020 0.060 0.912 0.008
#> GSM680041     4   0.326      0.857 0.108 0.008 0.012 0.872
#> GSM680035     3   0.280      0.798 0.020 0.060 0.908 0.012
#> GSM680047     4   0.299      0.892 0.100 0.004 0.012 0.884
#> GSM680036     3   0.517      0.756 0.036 0.088 0.796 0.080
#> GSM680048     4   0.368      0.907 0.120 0.016 0.012 0.852
#> GSM680037     3   0.280      0.798 0.020 0.060 0.908 0.012
#> GSM680049     4   0.363      0.885 0.184 0.004 0.000 0.812
#> GSM680038     2   0.292      0.827 0.000 0.860 0.140 0.000
#> GSM680050     1   0.345      0.829 0.864 0.012 0.012 0.112
#> GSM680039     2   0.472      0.661 0.004 0.672 0.324 0.000
#> GSM680051     4   0.410      0.906 0.112 0.016 0.032 0.840
#> GSM680040     3   0.280      0.798 0.020 0.060 0.908 0.012
#> GSM680052     4   0.410      0.906 0.112 0.016 0.032 0.840
#> GSM680030     2   0.340      0.822 0.004 0.832 0.164 0.000
#> GSM680042     4   0.363      0.883 0.144 0.008 0.008 0.840
#> GSM680031     3   0.280      0.798 0.020 0.060 0.908 0.012
#> GSM680043     4   0.556      0.843 0.228 0.016 0.040 0.716
#> GSM680032     1   0.194      0.857 0.944 0.008 0.016 0.032
#> GSM680044     4   0.551      0.792 0.284 0.020 0.016 0.680
#> GSM680033     3   0.280      0.798 0.020 0.060 0.908 0.012
#> GSM680045     4   0.544      0.861 0.196 0.016 0.048 0.740
#> GSM680034     2   0.500      0.770 0.000 0.768 0.148 0.084
#> GSM680046     4   0.433      0.895 0.172 0.016 0.012 0.800

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM680053     5  0.4783     0.6885 0.008 0.008 0.372 0.004 0.608
#> GSM680062     5  0.5413     0.7126 0.012 0.008 0.340 0.032 0.608
#> GSM680054     5  0.6458     0.4598 0.000 0.280 0.224 0.000 0.496
#> GSM680063     5  0.5413     0.7126 0.012 0.008 0.340 0.032 0.608
#> GSM680055     5  0.5041     0.7164 0.012 0.008 0.328 0.016 0.636
#> GSM680064     1  0.4113     0.8200 0.804 0.004 0.004 0.108 0.080
#> GSM680056     5  0.4812     0.6098 0.172 0.004 0.048 0.024 0.752
#> GSM680065     5  0.4268     0.4504 0.268 0.000 0.000 0.024 0.708
#> GSM680057     2  0.3280     0.7707 0.000 0.824 0.160 0.004 0.012
#> GSM680066     1  0.2056     0.8932 0.928 0.008 0.008 0.048 0.008
#> GSM680058     2  0.2011     0.8181 0.000 0.928 0.020 0.008 0.044
#> GSM680067     2  0.1467     0.8133 0.004 0.956 0.016 0.016 0.008
#> GSM680059     3  0.5746     0.5962 0.000 0.148 0.692 0.044 0.116
#> GSM680068     1  0.1877     0.8940 0.932 0.004 0.004 0.052 0.008
#> GSM680060     2  0.1549     0.8193 0.000 0.944 0.016 0.000 0.040
#> GSM680069     5  0.5120     0.6866 0.068 0.012 0.156 0.020 0.744
#> GSM680061     2  0.1340     0.8137 0.004 0.960 0.016 0.016 0.004
#> GSM680070     1  0.0833     0.9104 0.976 0.000 0.004 0.016 0.004
#> GSM680071     2  0.4841     0.2329 0.004 0.520 0.004 0.008 0.464
#> GSM680077     1  0.3106     0.8757 0.856 0.008 0.020 0.000 0.116
#> GSM680072     2  0.5232     0.7076 0.000 0.704 0.040 0.044 0.212
#> GSM680078     1  0.1369     0.9097 0.956 0.000 0.008 0.008 0.028
#> GSM680073     3  0.6987     0.4252 0.000 0.168 0.528 0.044 0.260
#> GSM680079     1  0.2290     0.9067 0.920 0.004 0.016 0.016 0.044
#> GSM680074     2  0.4038     0.7777 0.000 0.808 0.032 0.028 0.132
#> GSM680080     2  0.4038     0.7777 0.000 0.808 0.032 0.028 0.132
#> GSM680075     3  0.6461     0.4392 0.000 0.104 0.584 0.044 0.268
#> GSM680081     3  0.1404     0.7418 0.028 0.004 0.956 0.004 0.008
#> GSM680076     2  0.4795     0.7477 0.036 0.764 0.012 0.028 0.160
#> GSM680082     1  0.1717     0.9029 0.936 0.008 0.004 0.000 0.052
#> GSM680029     3  0.1685     0.7572 0.004 0.016 0.948 0.016 0.016
#> GSM680041     4  0.2694     0.8344 0.032 0.000 0.004 0.888 0.076
#> GSM680035     3  0.1093     0.7677 0.004 0.020 0.968 0.004 0.004
#> GSM680047     4  0.2308     0.8465 0.036 0.000 0.004 0.912 0.048
#> GSM680036     5  0.4994     0.4937 0.000 0.008 0.464 0.016 0.512
#> GSM680048     4  0.2291     0.8548 0.048 0.012 0.000 0.916 0.024
#> GSM680037     3  0.1093     0.7677 0.004 0.020 0.968 0.004 0.004
#> GSM680049     4  0.3002     0.8418 0.076 0.000 0.004 0.872 0.048
#> GSM680038     2  0.3435     0.7718 0.000 0.820 0.156 0.004 0.020
#> GSM680050     1  0.4184     0.8528 0.808 0.008 0.016 0.044 0.124
#> GSM680039     3  0.4437    -0.0106 0.000 0.464 0.532 0.004 0.000
#> GSM680051     4  0.2309     0.8507 0.036 0.028 0.012 0.920 0.004
#> GSM680040     3  0.0932     0.7683 0.004 0.020 0.972 0.004 0.000
#> GSM680052     4  0.2246     0.8530 0.048 0.020 0.008 0.920 0.004
#> GSM680030     2  0.3674     0.7679 0.008 0.816 0.152 0.004 0.020
#> GSM680042     4  0.2740     0.8396 0.044 0.000 0.004 0.888 0.064
#> GSM680031     3  0.1093     0.7677 0.004 0.020 0.968 0.004 0.004
#> GSM680043     4  0.6082     0.5087 0.352 0.024 0.048 0.564 0.012
#> GSM680032     1  0.2359     0.8946 0.912 0.008 0.004 0.016 0.060
#> GSM680044     4  0.6154     0.3881 0.408 0.028 0.012 0.512 0.040
#> GSM680033     3  0.0932     0.7683 0.004 0.020 0.972 0.004 0.000
#> GSM680045     4  0.5178     0.7505 0.180 0.024 0.052 0.732 0.012
#> GSM680034     2  0.3820     0.7553 0.004 0.816 0.132 0.044 0.004
#> GSM680046     4  0.3153     0.8412 0.076 0.024 0.012 0.876 0.012

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5 p6
#> GSM680053     5  0.3536     0.7254 0.000 0.008 0.252 0.000 0.736 NA
#> GSM680062     5  0.3944     0.7347 0.004 0.008 0.240 0.012 0.732 NA
#> GSM680054     5  0.5792     0.6294 0.000 0.180 0.136 0.004 0.632 NA
#> GSM680063     5  0.3944     0.7347 0.004 0.008 0.240 0.012 0.732 NA
#> GSM680055     5  0.3357     0.7400 0.000 0.008 0.224 0.000 0.764 NA
#> GSM680064     1  0.6618     0.4926 0.540 0.000 0.000 0.192 0.116 NA
#> GSM680056     5  0.2495     0.6772 0.052 0.000 0.012 0.004 0.896 NA
#> GSM680065     5  0.2651     0.6430 0.088 0.000 0.000 0.004 0.872 NA
#> GSM680057     2  0.5484     0.6783 0.000 0.568 0.148 0.004 0.000 NA
#> GSM680066     1  0.2044     0.7022 0.920 0.000 0.008 0.028 0.004 NA
#> GSM680058     2  0.3328     0.7154 0.000 0.788 0.008 0.000 0.012 NA
#> GSM680067     2  0.4618     0.7165 0.000 0.652 0.008 0.032 0.008 NA
#> GSM680059     3  0.5555     0.5037 0.004 0.280 0.592 0.000 0.016 NA
#> GSM680068     1  0.1755     0.7052 0.932 0.000 0.008 0.028 0.000 NA
#> GSM680060     2  0.3766     0.7179 0.000 0.684 0.000 0.000 0.012 NA
#> GSM680069     5  0.3492     0.7265 0.028 0.004 0.084 0.000 0.836 NA
#> GSM680061     2  0.4159     0.7209 0.000 0.672 0.008 0.020 0.000 NA
#> GSM680070     1  0.1857     0.7240 0.928 0.000 0.000 0.012 0.032 NA
#> GSM680071     5  0.5911     0.0576 0.000 0.280 0.000 0.000 0.468 NA
#> GSM680077     1  0.5594     0.6001 0.548 0.000 0.000 0.008 0.136 NA
#> GSM680072     2  0.4024     0.5097 0.000 0.784 0.020 0.000 0.080 NA
#> GSM680078     1  0.2084     0.7188 0.916 0.000 0.016 0.000 0.044 NA
#> GSM680073     2  0.7093    -0.3573 0.004 0.380 0.372 0.000 0.120 NA
#> GSM680079     1  0.5148     0.6504 0.636 0.000 0.000 0.016 0.092 NA
#> GSM680074     2  0.0363     0.6592 0.000 0.988 0.012 0.000 0.000 NA
#> GSM680080     2  0.0363     0.6592 0.000 0.988 0.012 0.000 0.000 NA
#> GSM680075     3  0.7177     0.3112 0.008 0.284 0.448 0.000 0.136 NA
#> GSM680081     3  0.0622     0.7863 0.012 0.000 0.980 0.000 0.000 NA
#> GSM680076     2  0.2786     0.6002 0.024 0.864 0.000 0.000 0.012 NA
#> GSM680082     1  0.3465     0.7151 0.812 0.000 0.000 0.008 0.048 NA
#> GSM680029     3  0.1707     0.7587 0.004 0.000 0.928 0.000 0.012 NA
#> GSM680041     4  0.2795     0.8061 0.000 0.000 0.000 0.856 0.044 NA
#> GSM680035     3  0.0000     0.7950 0.000 0.000 1.000 0.000 0.000 NA
#> GSM680047     4  0.2653     0.8136 0.004 0.000 0.000 0.868 0.028 NA
#> GSM680036     5  0.5434     0.5340 0.004 0.012 0.324 0.000 0.572 NA
#> GSM680048     4  0.0291     0.8157 0.004 0.000 0.000 0.992 0.004 NA
#> GSM680037     3  0.0000     0.7950 0.000 0.000 1.000 0.000 0.000 NA
#> GSM680049     4  0.2492     0.8127 0.004 0.000 0.000 0.876 0.020 NA
#> GSM680038     2  0.5907     0.6805 0.000 0.556 0.140 0.004 0.020 NA
#> GSM680050     1  0.6091     0.5820 0.500 0.000 0.000 0.028 0.144 NA
#> GSM680039     3  0.5828    -0.0572 0.000 0.272 0.516 0.004 0.000 NA
#> GSM680051     4  0.1679     0.8035 0.028 0.008 0.000 0.936 0.000 NA
#> GSM680040     3  0.0000     0.7950 0.000 0.000 1.000 0.000 0.000 NA
#> GSM680052     4  0.1743     0.8038 0.028 0.008 0.000 0.936 0.004 NA
#> GSM680030     2  0.5732     0.6716 0.004 0.524 0.144 0.004 0.000 NA
#> GSM680042     4  0.2795     0.8061 0.000 0.000 0.000 0.856 0.044 NA
#> GSM680031     3  0.0291     0.7908 0.000 0.004 0.992 0.000 0.004 NA
#> GSM680043     1  0.5943     0.1481 0.524 0.012 0.048 0.368 0.004 NA
#> GSM680032     1  0.3249     0.7078 0.836 0.000 0.000 0.008 0.060 NA
#> GSM680044     1  0.5647     0.2747 0.556 0.000 0.004 0.328 0.020 NA
#> GSM680033     3  0.0000     0.7950 0.000 0.000 1.000 0.000 0.000 NA
#> GSM680045     4  0.6101     0.0662 0.408 0.012 0.056 0.476 0.004 NA
#> GSM680034     2  0.6476     0.6596 0.012 0.516 0.124 0.048 0.000 NA
#> GSM680046     4  0.3414     0.7034 0.140 0.008 0.000 0.812 0.000 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) individual(p) protocol(p) other(p) k
#> SD:kmeans 52         2.91e-01         0.979    1.31e-07   0.5925 2
#> SD:kmeans 47         2.25e-01         0.551    1.38e-06   0.3626 3
#> SD:kmeans 52         3.04e-04         0.598    2.38e-06   0.1479 4
#> SD:kmeans 46         6.53e-05         0.417    3.05e-05   0.0830 5
#> SD:kmeans 46         3.48e-04         0.242    1.06e-04   0.0524 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.958       0.983         0.5074 0.493   0.493
#> 3 3 0.887           0.915       0.936         0.3205 0.778   0.575
#> 4 4 0.863           0.894       0.934         0.1344 0.862   0.608
#> 5 5 0.872           0.851       0.920         0.0650 0.899   0.615
#> 6 6 0.789           0.630       0.808         0.0372 0.956   0.778

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM680053     2  0.0000      0.974 0.000 1.000
#> GSM680062     1  0.0376      0.987 0.996 0.004
#> GSM680054     2  0.0000      0.974 0.000 1.000
#> GSM680063     1  0.7219      0.738 0.800 0.200
#> GSM680055     2  0.0000      0.974 0.000 1.000
#> GSM680064     1  0.0000      0.991 1.000 0.000
#> GSM680056     1  0.0000      0.991 1.000 0.000
#> GSM680065     1  0.0000      0.991 1.000 0.000
#> GSM680057     2  0.0000      0.974 0.000 1.000
#> GSM680066     1  0.0000      0.991 1.000 0.000
#> GSM680058     2  0.0000      0.974 0.000 1.000
#> GSM680067     2  0.0000      0.974 0.000 1.000
#> GSM680059     2  0.0000      0.974 0.000 1.000
#> GSM680068     1  0.0000      0.991 1.000 0.000
#> GSM680060     2  0.0000      0.974 0.000 1.000
#> GSM680069     2  0.9552      0.406 0.376 0.624
#> GSM680061     2  0.0000      0.974 0.000 1.000
#> GSM680070     1  0.0000      0.991 1.000 0.000
#> GSM680071     2  0.9087      0.524 0.324 0.676
#> GSM680077     1  0.0000      0.991 1.000 0.000
#> GSM680072     2  0.0000      0.974 0.000 1.000
#> GSM680078     1  0.0000      0.991 1.000 0.000
#> GSM680073     2  0.0000      0.974 0.000 1.000
#> GSM680079     1  0.0000      0.991 1.000 0.000
#> GSM680074     2  0.0000      0.974 0.000 1.000
#> GSM680080     2  0.0000      0.974 0.000 1.000
#> GSM680075     2  0.0000      0.974 0.000 1.000
#> GSM680081     2  0.0000      0.974 0.000 1.000
#> GSM680076     2  0.0000      0.974 0.000 1.000
#> GSM680082     1  0.0000      0.991 1.000 0.000
#> GSM680029     2  0.0000      0.974 0.000 1.000
#> GSM680041     1  0.0000      0.991 1.000 0.000
#> GSM680035     2  0.0000      0.974 0.000 1.000
#> GSM680047     1  0.0000      0.991 1.000 0.000
#> GSM680036     2  0.0000      0.974 0.000 1.000
#> GSM680048     1  0.0000      0.991 1.000 0.000
#> GSM680037     2  0.0000      0.974 0.000 1.000
#> GSM680049     1  0.0000      0.991 1.000 0.000
#> GSM680038     2  0.0000      0.974 0.000 1.000
#> GSM680050     1  0.0000      0.991 1.000 0.000
#> GSM680039     2  0.0000      0.974 0.000 1.000
#> GSM680051     1  0.0000      0.991 1.000 0.000
#> GSM680040     2  0.0000      0.974 0.000 1.000
#> GSM680052     1  0.0000      0.991 1.000 0.000
#> GSM680030     2  0.0000      0.974 0.000 1.000
#> GSM680042     1  0.0000      0.991 1.000 0.000
#> GSM680031     2  0.0000      0.974 0.000 1.000
#> GSM680043     1  0.0000      0.991 1.000 0.000
#> GSM680032     1  0.0000      0.991 1.000 0.000
#> GSM680044     1  0.0000      0.991 1.000 0.000
#> GSM680033     2  0.0000      0.974 0.000 1.000
#> GSM680045     1  0.0000      0.991 1.000 0.000
#> GSM680034     2  0.0000      0.974 0.000 1.000
#> GSM680046     1  0.0000      0.991 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM680053     3  0.2066      0.919 0.000 0.060 0.940
#> GSM680062     3  0.2448      0.883 0.076 0.000 0.924
#> GSM680054     2  0.5431      0.586 0.000 0.716 0.284
#> GSM680063     3  0.2651      0.893 0.060 0.012 0.928
#> GSM680055     3  0.1860      0.917 0.000 0.052 0.948
#> GSM680064     1  0.2356      0.951 0.928 0.000 0.072
#> GSM680056     3  0.1964      0.847 0.056 0.000 0.944
#> GSM680065     1  0.3192      0.929 0.888 0.000 0.112
#> GSM680057     2  0.0424      0.950 0.000 0.992 0.008
#> GSM680066     1  0.2261      0.951 0.932 0.000 0.068
#> GSM680058     2  0.1031      0.946 0.000 0.976 0.024
#> GSM680067     2  0.2165      0.903 0.064 0.936 0.000
#> GSM680059     3  0.5733      0.661 0.000 0.324 0.676
#> GSM680068     1  0.2066      0.953 0.940 0.000 0.060
#> GSM680060     2  0.0592      0.950 0.000 0.988 0.012
#> GSM680069     3  0.0424      0.882 0.008 0.000 0.992
#> GSM680061     2  0.0592      0.944 0.012 0.988 0.000
#> GSM680070     1  0.2261      0.951 0.932 0.000 0.068
#> GSM680071     2  0.3349      0.873 0.004 0.888 0.108
#> GSM680077     1  0.2448      0.949 0.924 0.000 0.076
#> GSM680072     2  0.1163      0.944 0.000 0.972 0.028
#> GSM680078     1  0.4842      0.793 0.776 0.000 0.224
#> GSM680073     3  0.5621      0.670 0.000 0.308 0.692
#> GSM680079     1  0.2356      0.950 0.928 0.000 0.072
#> GSM680074     2  0.0424      0.950 0.000 0.992 0.008
#> GSM680080     2  0.0424      0.950 0.000 0.992 0.008
#> GSM680075     3  0.2356      0.921 0.000 0.072 0.928
#> GSM680081     3  0.1711      0.893 0.008 0.032 0.960
#> GSM680076     2  0.1315      0.941 0.008 0.972 0.020
#> GSM680082     1  0.2448      0.949 0.924 0.000 0.076
#> GSM680029     3  0.2711      0.921 0.000 0.088 0.912
#> GSM680041     1  0.0661      0.955 0.988 0.008 0.004
#> GSM680035     3  0.3116      0.917 0.000 0.108 0.892
#> GSM680047     1  0.0661      0.955 0.988 0.008 0.004
#> GSM680036     3  0.2165      0.920 0.000 0.064 0.936
#> GSM680048     1  0.0424      0.956 0.992 0.008 0.000
#> GSM680037     3  0.3038      0.918 0.000 0.104 0.896
#> GSM680049     1  0.0424      0.956 0.992 0.008 0.000
#> GSM680038     2  0.0592      0.950 0.000 0.988 0.012
#> GSM680050     1  0.2165      0.953 0.936 0.000 0.064
#> GSM680039     2  0.0424      0.950 0.000 0.992 0.008
#> GSM680051     1  0.0424      0.956 0.992 0.008 0.000
#> GSM680040     3  0.3116      0.917 0.000 0.108 0.892
#> GSM680052     1  0.0424      0.956 0.992 0.008 0.000
#> GSM680030     2  0.0000      0.949 0.000 1.000 0.000
#> GSM680042     1  0.0661      0.955 0.988 0.008 0.004
#> GSM680031     3  0.3038      0.918 0.000 0.104 0.896
#> GSM680043     1  0.0424      0.956 0.992 0.008 0.000
#> GSM680032     1  0.2537      0.947 0.920 0.000 0.080
#> GSM680044     1  0.0237      0.956 0.996 0.004 0.000
#> GSM680033     3  0.3192      0.915 0.000 0.112 0.888
#> GSM680045     1  0.0424      0.956 0.992 0.008 0.000
#> GSM680034     2  0.1753      0.918 0.048 0.952 0.000
#> GSM680046     1  0.0424      0.956 0.992 0.008 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM680053     3  0.2281     0.8863 0.096 0.000 0.904 0.000
#> GSM680062     4  0.6792    -0.0156 0.096 0.000 0.428 0.476
#> GSM680054     2  0.4444     0.8085 0.072 0.808 0.120 0.000
#> GSM680063     3  0.6415     0.4719 0.100 0.000 0.612 0.288
#> GSM680055     3  0.2530     0.8778 0.112 0.000 0.888 0.000
#> GSM680064     1  0.2973     0.9090 0.856 0.000 0.000 0.144
#> GSM680056     1  0.1733     0.8817 0.948 0.000 0.024 0.028
#> GSM680065     1  0.1510     0.8859 0.956 0.000 0.016 0.028
#> GSM680057     2  0.0336     0.9573 0.000 0.992 0.008 0.000
#> GSM680066     1  0.2844     0.9134 0.900 0.000 0.052 0.048
#> GSM680058     2  0.0000     0.9591 0.000 1.000 0.000 0.000
#> GSM680067     2  0.0336     0.9564 0.000 0.992 0.000 0.008
#> GSM680059     3  0.1867     0.8997 0.000 0.072 0.928 0.000
#> GSM680068     1  0.2345     0.9298 0.900 0.000 0.000 0.100
#> GSM680060     2  0.0000     0.9591 0.000 1.000 0.000 0.000
#> GSM680069     1  0.2715     0.8247 0.892 0.004 0.100 0.004
#> GSM680061     2  0.0000     0.9591 0.000 1.000 0.000 0.000
#> GSM680070     1  0.2149     0.9353 0.912 0.000 0.000 0.088
#> GSM680071     2  0.2923     0.8968 0.080 0.896 0.016 0.008
#> GSM680077     1  0.2011     0.9356 0.920 0.000 0.000 0.080
#> GSM680072     2  0.1022     0.9452 0.000 0.968 0.032 0.000
#> GSM680078     1  0.2282     0.9276 0.924 0.000 0.024 0.052
#> GSM680073     3  0.2408     0.8729 0.000 0.104 0.896 0.000
#> GSM680079     1  0.2149     0.9353 0.912 0.000 0.000 0.088
#> GSM680074     2  0.0000     0.9591 0.000 1.000 0.000 0.000
#> GSM680080     2  0.0000     0.9591 0.000 1.000 0.000 0.000
#> GSM680075     3  0.1174     0.9254 0.012 0.020 0.968 0.000
#> GSM680081     3  0.1637     0.9019 0.060 0.000 0.940 0.000
#> GSM680076     2  0.0336     0.9562 0.008 0.992 0.000 0.000
#> GSM680082     1  0.2149     0.9353 0.912 0.000 0.000 0.088
#> GSM680029     3  0.0524     0.9257 0.008 0.004 0.988 0.000
#> GSM680041     4  0.0188     0.9332 0.004 0.000 0.000 0.996
#> GSM680035     3  0.0592     0.9286 0.000 0.016 0.984 0.000
#> GSM680047     4  0.0188     0.9332 0.004 0.000 0.000 0.996
#> GSM680036     3  0.1940     0.8967 0.076 0.000 0.924 0.000
#> GSM680048     4  0.0000     0.9346 0.000 0.000 0.000 1.000
#> GSM680037     3  0.0592     0.9286 0.000 0.016 0.984 0.000
#> GSM680049     4  0.0000     0.9346 0.000 0.000 0.000 1.000
#> GSM680038     2  0.0188     0.9583 0.000 0.996 0.004 0.000
#> GSM680050     1  0.3610     0.8526 0.800 0.000 0.000 0.200
#> GSM680039     2  0.3074     0.8304 0.000 0.848 0.152 0.000
#> GSM680051     4  0.0000     0.9346 0.000 0.000 0.000 1.000
#> GSM680040     3  0.0592     0.9286 0.000 0.016 0.984 0.000
#> GSM680052     4  0.0000     0.9346 0.000 0.000 0.000 1.000
#> GSM680030     2  0.0188     0.9584 0.000 0.996 0.004 0.000
#> GSM680042     4  0.0188     0.9332 0.004 0.000 0.000 0.996
#> GSM680031     3  0.0592     0.9286 0.000 0.016 0.984 0.000
#> GSM680043     4  0.1118     0.9166 0.036 0.000 0.000 0.964
#> GSM680032     1  0.2266     0.9352 0.912 0.004 0.000 0.084
#> GSM680044     4  0.1557     0.9011 0.056 0.000 0.000 0.944
#> GSM680033     3  0.0592     0.9286 0.000 0.016 0.984 0.000
#> GSM680045     4  0.0817     0.9242 0.024 0.000 0.000 0.976
#> GSM680034     2  0.2266     0.8986 0.000 0.912 0.004 0.084
#> GSM680046     4  0.0469     0.9306 0.012 0.000 0.000 0.988

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM680053     5  0.1544      0.841 0.000 0.000 0.068 0.000 0.932
#> GSM680062     5  0.1918      0.839 0.000 0.000 0.036 0.036 0.928
#> GSM680054     5  0.4169      0.609 0.000 0.240 0.028 0.000 0.732
#> GSM680063     5  0.1809      0.842 0.000 0.000 0.060 0.012 0.928
#> GSM680055     5  0.1478      0.842 0.000 0.000 0.064 0.000 0.936
#> GSM680064     1  0.3412      0.820 0.820 0.000 0.000 0.152 0.028
#> GSM680056     5  0.1430      0.832 0.052 0.000 0.000 0.004 0.944
#> GSM680065     5  0.3689      0.610 0.256 0.000 0.000 0.004 0.740
#> GSM680057     2  0.1710      0.909 0.004 0.940 0.040 0.000 0.016
#> GSM680066     1  0.0867      0.939 0.976 0.000 0.008 0.008 0.008
#> GSM680058     2  0.0404      0.926 0.000 0.988 0.000 0.000 0.012
#> GSM680067     2  0.1267      0.917 0.004 0.960 0.000 0.024 0.012
#> GSM680059     3  0.1764      0.874 0.000 0.064 0.928 0.000 0.008
#> GSM680068     1  0.0579      0.942 0.984 0.000 0.000 0.008 0.008
#> GSM680060     2  0.0510      0.925 0.000 0.984 0.000 0.000 0.016
#> GSM680069     5  0.1502      0.832 0.056 0.000 0.004 0.000 0.940
#> GSM680061     2  0.0727      0.923 0.004 0.980 0.000 0.004 0.012
#> GSM680070     1  0.0290      0.943 0.992 0.000 0.000 0.008 0.000
#> GSM680071     2  0.4270      0.484 0.004 0.656 0.000 0.004 0.336
#> GSM680077     1  0.0727      0.940 0.980 0.004 0.000 0.004 0.012
#> GSM680072     2  0.1757      0.903 0.004 0.936 0.012 0.000 0.048
#> GSM680078     1  0.0324      0.942 0.992 0.000 0.004 0.004 0.000
#> GSM680073     3  0.4522      0.723 0.004 0.192 0.744 0.000 0.060
#> GSM680079     1  0.0451      0.943 0.988 0.000 0.000 0.008 0.004
#> GSM680074     2  0.0510      0.925 0.000 0.984 0.000 0.000 0.016
#> GSM680080     2  0.0510      0.925 0.000 0.984 0.000 0.000 0.016
#> GSM680075     3  0.3397      0.827 0.004 0.068 0.848 0.000 0.080
#> GSM680081     3  0.1205      0.877 0.040 0.000 0.956 0.000 0.004
#> GSM680076     2  0.0703      0.924 0.000 0.976 0.000 0.000 0.024
#> GSM680082     1  0.0579      0.943 0.984 0.000 0.000 0.008 0.008
#> GSM680029     3  0.0162      0.900 0.004 0.000 0.996 0.000 0.000
#> GSM680041     4  0.0162      0.942 0.000 0.000 0.000 0.996 0.004
#> GSM680035     3  0.0162      0.902 0.000 0.000 0.996 0.000 0.004
#> GSM680047     4  0.0000      0.944 0.000 0.000 0.000 1.000 0.000
#> GSM680036     5  0.4551      0.228 0.004 0.004 0.436 0.000 0.556
#> GSM680048     4  0.0000      0.944 0.000 0.000 0.000 1.000 0.000
#> GSM680037     3  0.0162      0.902 0.000 0.000 0.996 0.000 0.004
#> GSM680049     4  0.0000      0.944 0.000 0.000 0.000 1.000 0.000
#> GSM680038     2  0.1403      0.919 0.000 0.952 0.024 0.000 0.024
#> GSM680050     1  0.4240      0.718 0.736 0.000 0.000 0.228 0.036
#> GSM680039     3  0.4553      0.489 0.004 0.328 0.652 0.000 0.016
#> GSM680051     4  0.0324      0.940 0.000 0.004 0.000 0.992 0.004
#> GSM680040     3  0.0162      0.902 0.000 0.000 0.996 0.000 0.004
#> GSM680052     4  0.0000      0.944 0.000 0.000 0.000 1.000 0.000
#> GSM680030     2  0.1547      0.913 0.004 0.948 0.032 0.000 0.016
#> GSM680042     4  0.0000      0.944 0.000 0.000 0.000 1.000 0.000
#> GSM680031     3  0.0162      0.902 0.000 0.000 0.996 0.000 0.004
#> GSM680043     4  0.3289      0.797 0.172 0.000 0.004 0.816 0.008
#> GSM680032     1  0.0566      0.938 0.984 0.000 0.000 0.004 0.012
#> GSM680044     4  0.4156      0.616 0.288 0.000 0.004 0.700 0.008
#> GSM680033     3  0.0162      0.902 0.000 0.000 0.996 0.000 0.004
#> GSM680045     4  0.1492      0.918 0.040 0.000 0.004 0.948 0.008
#> GSM680034     2  0.4465      0.766 0.004 0.780 0.052 0.148 0.016
#> GSM680046     4  0.0324      0.942 0.004 0.000 0.000 0.992 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM680053     5  0.1219     0.8150 0.000 0.000 0.048 0.000 0.948 0.004
#> GSM680062     5  0.2112     0.8086 0.000 0.000 0.036 0.020 0.916 0.028
#> GSM680054     5  0.4350     0.6227 0.000 0.188 0.020 0.000 0.736 0.056
#> GSM680063     5  0.1572     0.8157 0.000 0.000 0.036 0.000 0.936 0.028
#> GSM680055     5  0.0891     0.8187 0.000 0.000 0.024 0.000 0.968 0.008
#> GSM680064     1  0.4438     0.6630 0.712 0.000 0.000 0.224 0.024 0.040
#> GSM680056     5  0.1745     0.8031 0.012 0.000 0.000 0.000 0.920 0.068
#> GSM680065     5  0.4255     0.6067 0.224 0.000 0.000 0.000 0.708 0.068
#> GSM680057     2  0.1088     0.5828 0.000 0.960 0.024 0.000 0.000 0.016
#> GSM680066     1  0.2003     0.8527 0.884 0.000 0.000 0.000 0.000 0.116
#> GSM680058     2  0.3810     0.1494 0.000 0.572 0.000 0.000 0.000 0.428
#> GSM680067     2  0.1082     0.5870 0.000 0.956 0.000 0.004 0.000 0.040
#> GSM680059     3  0.3888     0.3705 0.000 0.016 0.672 0.000 0.000 0.312
#> GSM680068     1  0.2003     0.8491 0.884 0.000 0.000 0.000 0.000 0.116
#> GSM680060     2  0.3371     0.3957 0.000 0.708 0.000 0.000 0.000 0.292
#> GSM680069     5  0.2009     0.7993 0.008 0.004 0.000 0.000 0.904 0.084
#> GSM680061     2  0.0632     0.5877 0.000 0.976 0.000 0.000 0.000 0.024
#> GSM680070     1  0.0935     0.8725 0.964 0.000 0.000 0.000 0.004 0.032
#> GSM680071     2  0.6554     0.1324 0.016 0.416 0.000 0.008 0.328 0.232
#> GSM680077     1  0.1572     0.8619 0.936 0.000 0.000 0.000 0.028 0.036
#> GSM680072     6  0.4780     0.0847 0.000 0.364 0.016 0.000 0.032 0.588
#> GSM680078     1  0.1732     0.8703 0.920 0.000 0.004 0.000 0.004 0.072
#> GSM680073     6  0.5531     0.3699 0.000 0.060 0.344 0.000 0.040 0.556
#> GSM680079     1  0.0820     0.8700 0.972 0.000 0.000 0.000 0.012 0.016
#> GSM680074     2  0.3857     0.0528 0.000 0.532 0.000 0.000 0.000 0.468
#> GSM680080     2  0.3860     0.0399 0.000 0.528 0.000 0.000 0.000 0.472
#> GSM680075     6  0.5259     0.0519 0.008 0.008 0.452 0.000 0.052 0.480
#> GSM680081     3  0.1401     0.8836 0.020 0.004 0.948 0.000 0.000 0.028
#> GSM680076     6  0.4205    -0.1442 0.016 0.420 0.000 0.000 0.000 0.564
#> GSM680082     1  0.1588     0.8665 0.924 0.000 0.000 0.000 0.004 0.072
#> GSM680029     3  0.1267     0.8732 0.000 0.000 0.940 0.000 0.000 0.060
#> GSM680041     4  0.0547     0.8671 0.000 0.000 0.000 0.980 0.000 0.020
#> GSM680035     3  0.0291     0.9092 0.000 0.004 0.992 0.000 0.004 0.000
#> GSM680047     4  0.0260     0.8698 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM680036     5  0.5896     0.1722 0.000 0.000 0.324 0.000 0.456 0.220
#> GSM680048     4  0.0260     0.8704 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM680037     3  0.0260     0.9093 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM680049     4  0.0260     0.8697 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM680038     2  0.2544     0.5531 0.000 0.864 0.012 0.000 0.004 0.120
#> GSM680050     1  0.5113     0.5457 0.628 0.000 0.000 0.288 0.036 0.048
#> GSM680039     2  0.4184    -0.0548 0.000 0.504 0.484 0.000 0.000 0.012
#> GSM680051     4  0.0993     0.8656 0.000 0.012 0.000 0.964 0.000 0.024
#> GSM680040     3  0.0000     0.9092 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680052     4  0.0632     0.8679 0.000 0.000 0.000 0.976 0.000 0.024
#> GSM680030     2  0.2069     0.5719 0.004 0.908 0.020 0.000 0.000 0.068
#> GSM680042     4  0.0458     0.8686 0.000 0.000 0.000 0.984 0.000 0.016
#> GSM680031     3  0.1124     0.8868 0.000 0.000 0.956 0.000 0.008 0.036
#> GSM680043     4  0.6047     0.5267 0.220 0.000 0.016 0.544 0.004 0.216
#> GSM680032     1  0.2405     0.8511 0.880 0.004 0.000 0.000 0.016 0.100
#> GSM680044     4  0.6108     0.3731 0.272 0.000 0.000 0.488 0.012 0.228
#> GSM680033     3  0.0291     0.9091 0.000 0.000 0.992 0.000 0.004 0.004
#> GSM680045     4  0.4427     0.7501 0.044 0.000 0.020 0.728 0.004 0.204
#> GSM680034     2  0.3224     0.5056 0.000 0.848 0.036 0.084 0.000 0.032
#> GSM680046     4  0.2357     0.8324 0.012 0.000 0.000 0.872 0.000 0.116

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) individual(p) protocol(p) other(p) k
#> SD:skmeans 53         5.14e-01         0.996    1.76e-08   0.4455 2
#> SD:skmeans 54         1.42e-01         0.808    1.84e-07   0.4759 3
#> SD:skmeans 52         1.41e-04         0.710    1.49e-07   0.2016 4
#> SD:skmeans 51         3.95e-05         0.191    7.61e-06   0.0709 5
#> SD:skmeans 41         4.67e-05         0.421    2.29e-04   0.0317 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.849           0.893       0.960         0.5084 0.491   0.491
#> 3 3 0.583           0.421       0.694         0.3152 0.681   0.436
#> 4 4 0.921           0.855       0.940         0.1357 0.846   0.570
#> 5 5 0.817           0.728       0.857         0.0593 0.935   0.745
#> 6 6 0.912           0.850       0.936         0.0452 0.947   0.742

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 4

There is also optional best \(k\) = 4 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM680053     1  0.0000     0.9561 1.000 0.000
#> GSM680062     1  0.0000     0.9561 1.000 0.000
#> GSM680054     2  0.0000     0.9555 0.000 1.000
#> GSM680063     1  0.0000     0.9561 1.000 0.000
#> GSM680055     1  0.0000     0.9561 1.000 0.000
#> GSM680064     1  0.0000     0.9561 1.000 0.000
#> GSM680056     1  0.0000     0.9561 1.000 0.000
#> GSM680065     1  0.0000     0.9561 1.000 0.000
#> GSM680057     2  0.0000     0.9555 0.000 1.000
#> GSM680066     2  0.0000     0.9555 0.000 1.000
#> GSM680058     2  0.0000     0.9555 0.000 1.000
#> GSM680067     2  0.0000     0.9555 0.000 1.000
#> GSM680059     2  0.0672     0.9492 0.008 0.992
#> GSM680068     1  0.0000     0.9561 1.000 0.000
#> GSM680060     2  0.0000     0.9555 0.000 1.000
#> GSM680069     1  0.0000     0.9561 1.000 0.000
#> GSM680061     2  0.0000     0.9555 0.000 1.000
#> GSM680070     1  0.0000     0.9561 1.000 0.000
#> GSM680071     2  0.6438     0.7879 0.164 0.836
#> GSM680077     1  0.9944     0.1414 0.544 0.456
#> GSM680072     2  0.0000     0.9555 0.000 1.000
#> GSM680078     1  0.0000     0.9561 1.000 0.000
#> GSM680073     2  0.8443     0.6124 0.272 0.728
#> GSM680079     1  0.0000     0.9561 1.000 0.000
#> GSM680074     2  0.0000     0.9555 0.000 1.000
#> GSM680080     2  0.0000     0.9555 0.000 1.000
#> GSM680075     1  0.0000     0.9561 1.000 0.000
#> GSM680081     2  0.0000     0.9555 0.000 1.000
#> GSM680076     2  0.0000     0.9555 0.000 1.000
#> GSM680082     2  0.0000     0.9555 0.000 1.000
#> GSM680029     1  0.7453     0.7086 0.788 0.212
#> GSM680041     1  0.0000     0.9561 1.000 0.000
#> GSM680035     2  0.0000     0.9555 0.000 1.000
#> GSM680047     1  0.0000     0.9561 1.000 0.000
#> GSM680036     2  0.9996     0.0265 0.488 0.512
#> GSM680048     1  0.0000     0.9561 1.000 0.000
#> GSM680037     1  0.0000     0.9561 1.000 0.000
#> GSM680049     1  0.9909     0.1624 0.556 0.444
#> GSM680038     2  0.0000     0.9555 0.000 1.000
#> GSM680050     1  0.0000     0.9561 1.000 0.000
#> GSM680039     2  0.0000     0.9555 0.000 1.000
#> GSM680051     2  0.5059     0.8511 0.112 0.888
#> GSM680040     2  0.0000     0.9555 0.000 1.000
#> GSM680052     1  0.0000     0.9561 1.000 0.000
#> GSM680030     2  0.0000     0.9555 0.000 1.000
#> GSM680042     1  0.0000     0.9561 1.000 0.000
#> GSM680031     1  0.0000     0.9561 1.000 0.000
#> GSM680043     1  0.0000     0.9561 1.000 0.000
#> GSM680032     2  0.0000     0.9555 0.000 1.000
#> GSM680044     1  0.0000     0.9561 1.000 0.000
#> GSM680033     2  0.0000     0.9555 0.000 1.000
#> GSM680045     1  0.0000     0.9561 1.000 0.000
#> GSM680034     2  0.0000     0.9555 0.000 1.000
#> GSM680046     1  0.0000     0.9561 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM680053     3  0.1031     0.4805 0.000 0.024 0.976
#> GSM680062     3  0.3276     0.4329 0.068 0.024 0.908
#> GSM680054     2  0.1163     0.9151 0.000 0.972 0.028
#> GSM680063     3  0.1411     0.4754 0.000 0.036 0.964
#> GSM680055     3  0.1031     0.4805 0.000 0.024 0.976
#> GSM680064     1  0.6286     0.1772 0.536 0.000 0.464
#> GSM680056     3  0.2165     0.4552 0.000 0.064 0.936
#> GSM680065     3  0.0892     0.4805 0.000 0.020 0.980
#> GSM680057     2  0.0000     0.9292 0.000 1.000 0.000
#> GSM680066     2  0.2945     0.8710 0.004 0.908 0.088
#> GSM680058     2  0.0000     0.9292 0.000 1.000 0.000
#> GSM680067     2  0.0000     0.9292 0.000 1.000 0.000
#> GSM680059     1  0.9615    -0.0505 0.456 0.220 0.324
#> GSM680068     1  0.0000     0.0826 1.000 0.000 0.000
#> GSM680060     2  0.0000     0.9292 0.000 1.000 0.000
#> GSM680069     3  0.0747     0.4798 0.000 0.016 0.984
#> GSM680061     2  0.0000     0.9292 0.000 1.000 0.000
#> GSM680070     1  0.6154     0.1582 0.592 0.000 0.408
#> GSM680071     2  0.3619     0.7867 0.000 0.864 0.136
#> GSM680077     2  0.6062     0.3234 0.000 0.616 0.384
#> GSM680072     2  0.1781     0.9096 0.020 0.960 0.020
#> GSM680078     3  0.6274     0.3121 0.456 0.000 0.544
#> GSM680073     1  0.9136    -0.1647 0.456 0.144 0.400
#> GSM680079     3  0.6307     0.2978 0.488 0.000 0.512
#> GSM680074     2  0.0000     0.9292 0.000 1.000 0.000
#> GSM680080     2  0.0000     0.9292 0.000 1.000 0.000
#> GSM680075     3  0.6274     0.3121 0.456 0.000 0.544
#> GSM680081     1  0.9615    -0.0505 0.456 0.220 0.324
#> GSM680076     2  0.0000     0.9292 0.000 1.000 0.000
#> GSM680082     1  0.6274    -0.0594 0.544 0.456 0.000
#> GSM680029     3  0.7169     0.2864 0.456 0.024 0.520
#> GSM680041     3  0.6008     0.0691 0.372 0.000 0.628
#> GSM680035     1  0.9615    -0.0505 0.456 0.220 0.324
#> GSM680047     3  0.5926     0.0982 0.356 0.000 0.644
#> GSM680036     3  0.6931     0.2976 0.456 0.016 0.528
#> GSM680048     3  0.5926     0.0982 0.356 0.000 0.644
#> GSM680037     3  0.6654     0.3064 0.456 0.008 0.536
#> GSM680049     1  0.9151     0.2158 0.544 0.228 0.228
#> GSM680038     2  0.0000     0.9292 0.000 1.000 0.000
#> GSM680050     3  0.8067     0.1489 0.188 0.160 0.652
#> GSM680039     2  0.2711     0.8723 0.000 0.912 0.088
#> GSM680051     1  0.6641    -0.0408 0.544 0.448 0.008
#> GSM680040     1  0.9568    -0.0648 0.456 0.208 0.336
#> GSM680052     1  0.6274     0.1867 0.544 0.000 0.456
#> GSM680030     2  0.0000     0.9292 0.000 1.000 0.000
#> GSM680042     1  0.6274     0.1867 0.544 0.000 0.456
#> GSM680031     3  0.6527     0.3281 0.404 0.008 0.588
#> GSM680043     1  0.6274     0.1867 0.544 0.000 0.456
#> GSM680032     2  0.3120     0.8744 0.012 0.908 0.080
#> GSM680044     3  0.5760     0.1327 0.328 0.000 0.672
#> GSM680033     1  0.9615    -0.0505 0.456 0.220 0.324
#> GSM680045     1  0.6274     0.1867 0.544 0.000 0.456
#> GSM680034     2  0.2796     0.8551 0.092 0.908 0.000
#> GSM680046     1  0.6274     0.1867 0.544 0.000 0.456

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM680053     1  0.0000      0.924 1.000 0.000 0.000 0.000
#> GSM680062     1  0.0000      0.924 1.000 0.000 0.000 0.000
#> GSM680054     2  0.4843      0.330 0.396 0.604 0.000 0.000
#> GSM680063     1  0.0000      0.924 1.000 0.000 0.000 0.000
#> GSM680055     1  0.0000      0.924 1.000 0.000 0.000 0.000
#> GSM680064     4  0.0000      0.998 0.000 0.000 0.000 1.000
#> GSM680056     1  0.0000      0.924 1.000 0.000 0.000 0.000
#> GSM680065     1  0.0000      0.924 1.000 0.000 0.000 0.000
#> GSM680057     2  0.0000      0.852 0.000 1.000 0.000 0.000
#> GSM680066     2  0.5827      0.294 0.000 0.532 0.436 0.032
#> GSM680058     2  0.0000      0.852 0.000 1.000 0.000 0.000
#> GSM680067     2  0.0000      0.852 0.000 1.000 0.000 0.000
#> GSM680059     3  0.0000      0.991 0.000 0.000 1.000 0.000
#> GSM680068     4  0.0000      0.998 0.000 0.000 0.000 1.000
#> GSM680060     2  0.0000      0.852 0.000 1.000 0.000 0.000
#> GSM680069     1  0.0524      0.918 0.988 0.008 0.004 0.000
#> GSM680061     2  0.0000      0.852 0.000 1.000 0.000 0.000
#> GSM680070     4  0.0707      0.979 0.020 0.000 0.000 0.980
#> GSM680071     2  0.0188      0.849 0.004 0.996 0.000 0.000
#> GSM680077     1  0.4985      0.126 0.532 0.468 0.000 0.000
#> GSM680072     2  0.0000      0.852 0.000 1.000 0.000 0.000
#> GSM680078     3  0.0000      0.991 0.000 0.000 1.000 0.000
#> GSM680073     3  0.0000      0.991 0.000 0.000 1.000 0.000
#> GSM680079     3  0.0188      0.988 0.004 0.000 0.996 0.000
#> GSM680074     2  0.0000      0.852 0.000 1.000 0.000 0.000
#> GSM680080     2  0.0000      0.852 0.000 1.000 0.000 0.000
#> GSM680075     3  0.0000      0.991 0.000 0.000 1.000 0.000
#> GSM680081     3  0.0000      0.991 0.000 0.000 1.000 0.000
#> GSM680076     2  0.0000      0.852 0.000 1.000 0.000 0.000
#> GSM680082     4  0.0000      0.998 0.000 0.000 0.000 1.000
#> GSM680029     3  0.0000      0.991 0.000 0.000 1.000 0.000
#> GSM680041     1  0.4713      0.422 0.640 0.000 0.000 0.360
#> GSM680035     3  0.0000      0.991 0.000 0.000 1.000 0.000
#> GSM680047     1  0.0336      0.922 0.992 0.000 0.000 0.008
#> GSM680036     3  0.0000      0.991 0.000 0.000 1.000 0.000
#> GSM680048     1  0.0336      0.922 0.992 0.000 0.000 0.008
#> GSM680037     3  0.0000      0.991 0.000 0.000 1.000 0.000
#> GSM680049     4  0.0000      0.998 0.000 0.000 0.000 1.000
#> GSM680038     2  0.0000      0.852 0.000 1.000 0.000 0.000
#> GSM680050     1  0.0336      0.922 0.992 0.000 0.000 0.008
#> GSM680039     2  0.4985      0.247 0.000 0.532 0.468 0.000
#> GSM680051     4  0.0000      0.998 0.000 0.000 0.000 1.000
#> GSM680040     3  0.0000      0.991 0.000 0.000 1.000 0.000
#> GSM680052     4  0.0000      0.998 0.000 0.000 0.000 1.000
#> GSM680030     2  0.0000      0.852 0.000 1.000 0.000 0.000
#> GSM680042     4  0.0000      0.998 0.000 0.000 0.000 1.000
#> GSM680031     3  0.2281      0.891 0.096 0.000 0.904 0.000
#> GSM680043     4  0.0000      0.998 0.000 0.000 0.000 1.000
#> GSM680032     2  0.6644      0.435 0.008 0.572 0.344 0.076
#> GSM680044     1  0.0000      0.924 1.000 0.000 0.000 0.000
#> GSM680033     3  0.0000      0.991 0.000 0.000 1.000 0.000
#> GSM680045     4  0.0000      0.998 0.000 0.000 0.000 1.000
#> GSM680034     2  0.4985      0.191 0.000 0.532 0.000 0.468
#> GSM680046     4  0.0000      0.998 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM680053     5  0.0000   0.867856 0.000 0.000 0.000 0.000 1.000
#> GSM680062     5  0.0000   0.867856 0.000 0.000 0.000 0.000 1.000
#> GSM680054     2  0.2020   0.701478 0.000 0.900 0.000 0.000 0.100
#> GSM680063     5  0.0000   0.867856 0.000 0.000 0.000 0.000 1.000
#> GSM680055     5  0.0000   0.867856 0.000 0.000 0.000 0.000 1.000
#> GSM680064     1  0.1671   0.134810 0.924 0.000 0.000 0.076 0.000
#> GSM680056     1  0.4305   0.000699 0.512 0.000 0.000 0.000 0.488
#> GSM680065     1  0.4305   0.000699 0.512 0.000 0.000 0.000 0.488
#> GSM680057     2  0.0000   0.752657 0.000 1.000 0.000 0.000 0.000
#> GSM680066     2  0.3635   0.665154 0.040 0.836 0.108 0.016 0.000
#> GSM680058     2  0.4138   0.656576 0.000 0.616 0.000 0.384 0.000
#> GSM680067     2  0.3949   0.670966 0.000 0.668 0.000 0.332 0.000
#> GSM680059     3  0.0162   0.985365 0.000 0.000 0.996 0.004 0.000
#> GSM680068     4  0.4201   0.960804 0.408 0.000 0.000 0.592 0.000
#> GSM680060     2  0.4074   0.663637 0.000 0.636 0.000 0.364 0.000
#> GSM680069     5  0.1731   0.811332 0.060 0.004 0.004 0.000 0.932
#> GSM680061     2  0.0000   0.752657 0.000 1.000 0.000 0.000 0.000
#> GSM680070     4  0.4561   0.850298 0.488 0.000 0.000 0.504 0.008
#> GSM680071     1  0.6787  -0.003602 0.380 0.288 0.000 0.332 0.000
#> GSM680077     1  0.6503   0.434484 0.616 0.132 0.000 0.196 0.056
#> GSM680072     2  0.4138   0.656576 0.000 0.616 0.000 0.384 0.000
#> GSM680078     3  0.0000   0.988941 0.000 0.000 1.000 0.000 0.000
#> GSM680073     3  0.0000   0.988941 0.000 0.000 1.000 0.000 0.000
#> GSM680079     1  0.4415   0.102211 0.552 0.000 0.444 0.000 0.004
#> GSM680074     2  0.4138   0.656576 0.000 0.616 0.000 0.384 0.000
#> GSM680080     2  0.1270   0.749080 0.000 0.948 0.000 0.052 0.000
#> GSM680075     3  0.0000   0.988941 0.000 0.000 1.000 0.000 0.000
#> GSM680081     3  0.0000   0.988941 0.000 0.000 1.000 0.000 0.000
#> GSM680076     2  0.5360   0.619053 0.060 0.556 0.000 0.384 0.000
#> GSM680082     1  0.0000   0.256828 1.000 0.000 0.000 0.000 0.000
#> GSM680029     3  0.0000   0.988941 0.000 0.000 1.000 0.000 0.000
#> GSM680041     5  0.4840   0.400179 0.040 0.000 0.000 0.320 0.640
#> GSM680035     3  0.0000   0.988941 0.000 0.000 1.000 0.000 0.000
#> GSM680047     5  0.0290   0.864583 0.000 0.000 0.000 0.008 0.992
#> GSM680036     3  0.0000   0.988941 0.000 0.000 1.000 0.000 0.000
#> GSM680048     5  0.0290   0.864583 0.000 0.000 0.000 0.008 0.992
#> GSM680037     3  0.0000   0.988941 0.000 0.000 1.000 0.000 0.000
#> GSM680049     4  0.4138   0.978621 0.384 0.000 0.000 0.616 0.000
#> GSM680038     2  0.0000   0.752657 0.000 1.000 0.000 0.000 0.000
#> GSM680050     5  0.4425  -0.026756 0.452 0.000 0.000 0.004 0.544
#> GSM680039     2  0.2773   0.646241 0.000 0.836 0.164 0.000 0.000
#> GSM680051     4  0.4138   0.978621 0.384 0.000 0.000 0.616 0.000
#> GSM680040     3  0.0000   0.988941 0.000 0.000 1.000 0.000 0.000
#> GSM680052     4  0.4138   0.978621 0.384 0.000 0.000 0.616 0.000
#> GSM680030     2  0.0000   0.752657 0.000 1.000 0.000 0.000 0.000
#> GSM680042     4  0.4138   0.978621 0.384 0.000 0.000 0.616 0.000
#> GSM680031     3  0.1965   0.873759 0.000 0.000 0.904 0.000 0.096
#> GSM680043     4  0.4288   0.975551 0.384 0.000 0.000 0.612 0.004
#> GSM680032     2  0.4451   0.357275 0.340 0.644 0.016 0.000 0.000
#> GSM680044     5  0.0000   0.867856 0.000 0.000 0.000 0.000 1.000
#> GSM680033     3  0.0000   0.988941 0.000 0.000 1.000 0.000 0.000
#> GSM680045     4  0.4138   0.978621 0.384 0.000 0.000 0.616 0.000
#> GSM680034     2  0.2773   0.647384 0.000 0.836 0.000 0.164 0.000
#> GSM680046     4  0.4138   0.978621 0.384 0.000 0.000 0.616 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM680053     5  0.0000      0.917 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM680062     5  0.0000      0.917 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM680054     2  0.0000      0.895 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM680063     5  0.0000      0.917 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM680055     5  0.0000      0.917 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM680064     1  0.1204      0.800 0.944 0.000 0.000 0.056 0.000 0.000
#> GSM680056     1  0.2969      0.718 0.776 0.000 0.000 0.000 0.224 0.000
#> GSM680065     1  0.2969      0.718 0.776 0.000 0.000 0.000 0.224 0.000
#> GSM680057     2  0.0000      0.895 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM680066     2  0.1003      0.875 0.028 0.964 0.004 0.004 0.000 0.000
#> GSM680058     6  0.0260      0.872 0.000 0.008 0.000 0.000 0.000 0.992
#> GSM680067     2  0.3695      0.305 0.000 0.624 0.000 0.000 0.000 0.376
#> GSM680059     3  0.0146      0.987 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM680068     4  0.0865      0.948 0.036 0.000 0.000 0.964 0.000 0.000
#> GSM680060     6  0.2135      0.791 0.000 0.128 0.000 0.000 0.000 0.872
#> GSM680069     5  0.2703      0.713 0.172 0.000 0.004 0.000 0.824 0.000
#> GSM680061     2  0.0000      0.895 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM680070     4  0.2772      0.782 0.180 0.000 0.000 0.816 0.004 0.000
#> GSM680071     1  0.5653      0.135 0.468 0.156 0.000 0.000 0.000 0.376
#> GSM680077     1  0.0146      0.810 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM680072     6  0.0260      0.872 0.000 0.008 0.000 0.000 0.000 0.992
#> GSM680078     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680073     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680079     1  0.0713      0.805 0.972 0.000 0.028 0.000 0.000 0.000
#> GSM680074     6  0.0260      0.872 0.000 0.008 0.000 0.000 0.000 0.992
#> GSM680080     6  0.3659      0.396 0.000 0.364 0.000 0.000 0.000 0.636
#> GSM680075     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680081     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680076     6  0.0632      0.857 0.024 0.000 0.000 0.000 0.000 0.976
#> GSM680082     1  0.0260      0.810 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM680029     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680041     5  0.3647      0.438 0.000 0.000 0.000 0.360 0.640 0.000
#> GSM680035     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680047     5  0.0146      0.915 0.000 0.000 0.000 0.004 0.996 0.000
#> GSM680036     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680048     5  0.0146      0.915 0.000 0.000 0.000 0.004 0.996 0.000
#> GSM680037     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680049     4  0.0000      0.972 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM680038     2  0.0000      0.895 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM680050     1  0.2668      0.751 0.828 0.000 0.000 0.004 0.168 0.000
#> GSM680039     2  0.0260      0.890 0.000 0.992 0.008 0.000 0.000 0.000
#> GSM680051     4  0.0000      0.972 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM680040     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680052     4  0.0000      0.972 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM680030     2  0.0000      0.895 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM680042     4  0.0000      0.972 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM680031     3  0.1765      0.890 0.000 0.000 0.904 0.000 0.096 0.000
#> GSM680043     4  0.0146      0.969 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM680032     2  0.3874      0.410 0.356 0.636 0.000 0.000 0.000 0.008
#> GSM680044     5  0.0000      0.917 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM680033     3  0.0000      0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680045     4  0.0000      0.972 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM680034     2  0.0260      0.891 0.000 0.992 0.000 0.008 0.000 0.000
#> GSM680046     4  0.0000      0.972 0.000 0.000 0.000 1.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) individual(p) protocol(p) other(p) k
#> SD:pam 51           0.4676         0.634    1.26e-03   0.1511 2
#> SD:pam 17               NA            NA          NA       NA 3
#> SD:pam 47           0.1050         0.278    5.48e-05   0.0368 4
#> SD:pam 44           0.0785         0.411    8.10e-05   0.0955 5
#> SD:pam 49           0.0377         0.264    1.94e-05   0.0120 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.349           0.215       0.780         0.3044 0.860   0.860
#> 3 3 0.155           0.413       0.656         0.7497 0.635   0.584
#> 4 4 0.853           0.851       0.928         0.3837 0.670   0.417
#> 5 5 0.703           0.781       0.844         0.0631 0.834   0.486
#> 6 6 0.764           0.655       0.797         0.0457 0.971   0.861

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM680053     2  0.0000      0.616 0.000 1.000
#> GSM680062     2  0.0000      0.616 0.000 1.000
#> GSM680054     2  0.0000      0.616 0.000 1.000
#> GSM680063     2  0.0000      0.616 0.000 1.000
#> GSM680055     2  0.0000      0.616 0.000 1.000
#> GSM680064     2  0.9963     -0.760 0.464 0.536
#> GSM680056     2  0.9922     -0.734 0.448 0.552
#> GSM680065     2  0.9963     -0.760 0.464 0.536
#> GSM680057     2  0.0000      0.616 0.000 1.000
#> GSM680066     2  0.0000      0.616 0.000 1.000
#> GSM680058     2  0.0000      0.616 0.000 1.000
#> GSM680067     2  0.0000      0.616 0.000 1.000
#> GSM680059     2  0.0000      0.616 0.000 1.000
#> GSM680068     2  0.9963     -0.760 0.464 0.536
#> GSM680060     2  0.0000      0.616 0.000 1.000
#> GSM680069     2  0.0000      0.616 0.000 1.000
#> GSM680061     2  0.0000      0.616 0.000 1.000
#> GSM680070     2  0.9963     -0.760 0.464 0.536
#> GSM680071     2  0.4431      0.489 0.092 0.908
#> GSM680077     2  0.9963     -0.760 0.464 0.536
#> GSM680072     2  0.0938      0.605 0.012 0.988
#> GSM680078     2  0.2948      0.553 0.052 0.948
#> GSM680073     2  0.0000      0.616 0.000 1.000
#> GSM680079     2  0.9963     -0.760 0.464 0.536
#> GSM680074     2  0.0000      0.616 0.000 1.000
#> GSM680080     2  0.0938      0.605 0.012 0.988
#> GSM680075     2  0.0000      0.616 0.000 1.000
#> GSM680081     2  0.0000      0.616 0.000 1.000
#> GSM680076     2  0.0000      0.616 0.000 1.000
#> GSM680082     2  0.9963     -0.760 0.464 0.536
#> GSM680029     2  0.0000      0.616 0.000 1.000
#> GSM680041     2  0.9963     -0.760 0.464 0.536
#> GSM680035     2  0.9754      0.240 0.408 0.592
#> GSM680047     1  0.9998      0.849 0.508 0.492
#> GSM680036     2  0.0000      0.616 0.000 1.000
#> GSM680048     1  0.9815      0.821 0.580 0.420
#> GSM680037     2  0.9393      0.274 0.356 0.644
#> GSM680049     2  0.9963     -0.760 0.464 0.536
#> GSM680038     2  0.0000      0.616 0.000 1.000
#> GSM680050     2  0.9963     -0.760 0.464 0.536
#> GSM680039     2  0.0000      0.616 0.000 1.000
#> GSM680051     2  0.9754     -0.503 0.408 0.592
#> GSM680040     2  0.9754      0.240 0.408 0.592
#> GSM680052     1  0.9996      0.777 0.512 0.488
#> GSM680030     2  0.0000      0.616 0.000 1.000
#> GSM680042     2  0.9963     -0.760 0.464 0.536
#> GSM680031     2  0.9754      0.240 0.408 0.592
#> GSM680043     2  0.9922     -0.704 0.448 0.552
#> GSM680032     2  0.9087     -0.354 0.324 0.676
#> GSM680044     2  0.6048      0.368 0.148 0.852
#> GSM680033     2  0.9754      0.240 0.408 0.592
#> GSM680045     2  0.7299      0.323 0.204 0.796
#> GSM680034     2  0.0000      0.616 0.000 1.000
#> GSM680046     1  0.9996      0.855 0.512 0.488

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM680053     2  0.0592     0.6107 0.012 0.988 0.000
#> GSM680062     2  0.2796     0.5785 0.092 0.908 0.000
#> GSM680054     2  0.4139     0.6186 0.016 0.860 0.124
#> GSM680063     2  0.1411     0.6074 0.036 0.964 0.000
#> GSM680055     2  0.0237     0.6113 0.004 0.996 0.000
#> GSM680064     1  0.5560     0.6289 0.700 0.300 0.000
#> GSM680056     1  0.5905     0.6100 0.648 0.352 0.000
#> GSM680065     1  0.5560     0.6289 0.700 0.300 0.000
#> GSM680057     2  0.6931     0.5643 0.032 0.640 0.328
#> GSM680066     2  0.4931     0.3799 0.232 0.768 0.000
#> GSM680058     2  0.7291     0.5394 0.040 0.604 0.356
#> GSM680067     2  0.8157     0.4928 0.076 0.540 0.384
#> GSM680059     2  0.1031     0.6093 0.024 0.976 0.000
#> GSM680068     1  0.6079     0.5745 0.612 0.388 0.000
#> GSM680060     2  0.8058     0.5028 0.072 0.552 0.376
#> GSM680069     2  0.4346     0.4704 0.184 0.816 0.000
#> GSM680061     2  0.8180     0.4910 0.076 0.532 0.392
#> GSM680070     1  0.5560     0.6289 0.700 0.300 0.000
#> GSM680071     2  0.9450     0.3383 0.212 0.492 0.296
#> GSM680077     1  0.6172     0.6275 0.680 0.308 0.012
#> GSM680072     2  0.5254     0.5952 0.000 0.736 0.264
#> GSM680078     2  0.6045    -0.1105 0.380 0.620 0.000
#> GSM680073     2  0.0000     0.6124 0.000 1.000 0.000
#> GSM680079     1  0.5560     0.6289 0.700 0.300 0.000
#> GSM680074     2  0.8071     0.5005 0.072 0.548 0.380
#> GSM680080     2  0.7567     0.5213 0.048 0.576 0.376
#> GSM680075     2  0.0424     0.6102 0.008 0.992 0.000
#> GSM680081     2  0.0237     0.6113 0.004 0.996 0.000
#> GSM680076     2  0.8037     0.5047 0.076 0.572 0.352
#> GSM680082     1  0.6019     0.6210 0.700 0.288 0.012
#> GSM680029     2  0.0892     0.6093 0.020 0.980 0.000
#> GSM680041     1  0.9247    -0.5946 0.452 0.156 0.392
#> GSM680035     2  0.7657     0.4311 0.208 0.676 0.116
#> GSM680047     1  0.9256    -0.6278 0.444 0.156 0.400
#> GSM680036     2  0.0237     0.6120 0.004 0.996 0.000
#> GSM680048     3  0.8848     1.0000 0.372 0.124 0.504
#> GSM680037     2  0.7613     0.4340 0.204 0.680 0.116
#> GSM680049     1  0.9724    -0.0822 0.448 0.252 0.300
#> GSM680038     2  0.6452     0.5948 0.036 0.712 0.252
#> GSM680050     1  0.6313     0.5408 0.676 0.308 0.016
#> GSM680039     2  0.3889     0.6178 0.032 0.884 0.084
#> GSM680051     3  0.8848     1.0000 0.372 0.124 0.504
#> GSM680040     2  0.7657     0.4311 0.208 0.676 0.116
#> GSM680052     3  0.8848     1.0000 0.372 0.124 0.504
#> GSM680030     2  0.7107     0.5585 0.036 0.624 0.340
#> GSM680042     1  0.9560    -0.3646 0.452 0.204 0.344
#> GSM680031     2  0.7657     0.4311 0.208 0.676 0.116
#> GSM680043     2  0.9889    -0.3951 0.296 0.408 0.296
#> GSM680032     2  0.6079    -0.0359 0.388 0.612 0.000
#> GSM680044     2  0.6008     0.0616 0.372 0.628 0.000
#> GSM680033     2  0.7657     0.4311 0.208 0.676 0.116
#> GSM680045     2  0.9962    -0.4633 0.304 0.376 0.320
#> GSM680034     2  0.8000     0.5193 0.076 0.580 0.344
#> GSM680046     1  0.9256    -0.6278 0.444 0.156 0.400

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM680053     3  0.0817      0.879 0.024 0.000 0.976 0.000
#> GSM680062     3  0.1297      0.881 0.020 0.016 0.964 0.000
#> GSM680054     3  0.4431      0.584 0.000 0.304 0.696 0.000
#> GSM680063     3  0.1406      0.881 0.024 0.016 0.960 0.000
#> GSM680055     3  0.1867      0.856 0.072 0.000 0.928 0.000
#> GSM680064     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> GSM680056     1  0.0592      0.978 0.984 0.000 0.016 0.000
#> GSM680065     1  0.0592      0.978 0.984 0.000 0.016 0.000
#> GSM680057     2  0.0895      0.888 0.000 0.976 0.020 0.004
#> GSM680066     3  0.6883      0.484 0.260 0.156 0.584 0.000
#> GSM680058     2  0.0592      0.890 0.000 0.984 0.016 0.000
#> GSM680067     2  0.0707      0.889 0.000 0.980 0.000 0.020
#> GSM680059     3  0.1118      0.875 0.000 0.036 0.964 0.000
#> GSM680068     1  0.0188      0.984 0.996 0.000 0.004 0.000
#> GSM680060     2  0.0000      0.895 0.000 1.000 0.000 0.000
#> GSM680069     3  0.4500      0.586 0.316 0.000 0.684 0.000
#> GSM680061     2  0.0707      0.889 0.000 0.980 0.000 0.020
#> GSM680070     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> GSM680071     2  0.4866      0.354 0.404 0.596 0.000 0.000
#> GSM680077     1  0.0707      0.974 0.980 0.020 0.000 0.000
#> GSM680072     3  0.4977      0.177 0.000 0.460 0.540 0.000
#> GSM680078     1  0.0469      0.978 0.988 0.000 0.012 0.000
#> GSM680073     3  0.0895      0.880 0.020 0.004 0.976 0.000
#> GSM680079     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> GSM680074     2  0.0000      0.895 0.000 1.000 0.000 0.000
#> GSM680080     2  0.0000      0.895 0.000 1.000 0.000 0.000
#> GSM680075     3  0.0817      0.879 0.024 0.000 0.976 0.000
#> GSM680081     3  0.1406      0.881 0.024 0.016 0.960 0.000
#> GSM680076     2  0.0592      0.889 0.016 0.984 0.000 0.000
#> GSM680082     1  0.0707      0.974 0.980 0.020 0.000 0.000
#> GSM680029     3  0.0707      0.880 0.020 0.000 0.980 0.000
#> GSM680041     4  0.0927      0.967 0.008 0.016 0.000 0.976
#> GSM680035     3  0.0592      0.879 0.000 0.016 0.984 0.000
#> GSM680047     4  0.0336      0.971 0.008 0.000 0.000 0.992
#> GSM680036     3  0.0817      0.879 0.024 0.000 0.976 0.000
#> GSM680048     4  0.0000      0.971 0.000 0.000 0.000 1.000
#> GSM680037     3  0.0592      0.879 0.000 0.016 0.984 0.000
#> GSM680049     4  0.1042      0.964 0.008 0.020 0.000 0.972
#> GSM680038     3  0.5165      0.135 0.000 0.484 0.512 0.004
#> GSM680050     1  0.0707      0.974 0.980 0.020 0.000 0.000
#> GSM680039     3  0.1305      0.874 0.000 0.036 0.960 0.004
#> GSM680051     4  0.0000      0.971 0.000 0.000 0.000 1.000
#> GSM680040     3  0.0592      0.879 0.000 0.016 0.984 0.000
#> GSM680052     4  0.0000      0.971 0.000 0.000 0.000 1.000
#> GSM680030     2  0.4382      0.485 0.000 0.704 0.296 0.000
#> GSM680042     4  0.0927      0.967 0.008 0.016 0.000 0.976
#> GSM680031     3  0.0592      0.879 0.000 0.016 0.984 0.000
#> GSM680043     4  0.0921      0.956 0.000 0.000 0.028 0.972
#> GSM680032     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> GSM680044     3  0.3280      0.822 0.124 0.016 0.860 0.000
#> GSM680033     3  0.0592      0.879 0.000 0.016 0.984 0.000
#> GSM680045     4  0.2469      0.868 0.000 0.000 0.108 0.892
#> GSM680034     2  0.3088      0.789 0.000 0.864 0.008 0.128
#> GSM680046     4  0.0336      0.971 0.008 0.000 0.000 0.992

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM680053     5  0.0162      0.811 0.004 0.000 0.000 0.000 0.996
#> GSM680062     5  0.1517      0.806 0.004 0.012 0.028 0.004 0.952
#> GSM680054     2  0.5575      0.571 0.000 0.612 0.108 0.000 0.280
#> GSM680063     5  0.1267      0.807 0.004 0.012 0.024 0.000 0.960
#> GSM680055     5  0.0290      0.812 0.008 0.000 0.000 0.000 0.992
#> GSM680064     1  0.0510      0.940 0.984 0.000 0.000 0.000 0.016
#> GSM680056     1  0.2329      0.864 0.876 0.000 0.000 0.000 0.124
#> GSM680065     1  0.1043      0.930 0.960 0.000 0.000 0.000 0.040
#> GSM680057     2  0.4879      0.673 0.000 0.720 0.124 0.000 0.156
#> GSM680066     5  0.5754      0.505 0.260 0.136 0.000 0.000 0.604
#> GSM680058     2  0.0798      0.719 0.008 0.976 0.016 0.000 0.000
#> GSM680067     2  0.3810      0.697 0.000 0.788 0.176 0.036 0.000
#> GSM680059     2  0.6170      0.356 0.000 0.524 0.320 0.000 0.156
#> GSM680068     1  0.2970      0.798 0.828 0.004 0.000 0.000 0.168
#> GSM680060     2  0.0290      0.716 0.008 0.992 0.000 0.000 0.000
#> GSM680069     5  0.1671      0.781 0.076 0.000 0.000 0.000 0.924
#> GSM680061     2  0.3810      0.697 0.000 0.788 0.176 0.036 0.000
#> GSM680070     1  0.0510      0.940 0.984 0.000 0.000 0.000 0.016
#> GSM680071     2  0.4359      0.361 0.412 0.584 0.000 0.000 0.004
#> GSM680077     1  0.0162      0.933 0.996 0.000 0.004 0.000 0.000
#> GSM680072     2  0.4793      0.674 0.000 0.708 0.076 0.000 0.216
#> GSM680078     5  0.3707      0.536 0.284 0.000 0.000 0.000 0.716
#> GSM680073     2  0.5341      0.326 0.000 0.504 0.052 0.000 0.444
#> GSM680079     1  0.0510      0.940 0.984 0.000 0.000 0.000 0.016
#> GSM680074     2  0.0290      0.716 0.008 0.992 0.000 0.000 0.000
#> GSM680080     2  0.0798      0.715 0.000 0.976 0.016 0.000 0.008
#> GSM680075     5  0.2964      0.706 0.000 0.120 0.024 0.000 0.856
#> GSM680081     5  0.2102      0.776 0.004 0.012 0.068 0.000 0.916
#> GSM680076     2  0.1121      0.712 0.044 0.956 0.000 0.000 0.000
#> GSM680082     1  0.0162      0.933 0.996 0.000 0.004 0.000 0.000
#> GSM680029     5  0.3366      0.534 0.000 0.004 0.212 0.000 0.784
#> GSM680041     4  0.1924      0.950 0.064 0.000 0.008 0.924 0.004
#> GSM680035     3  0.3039      0.993 0.000 0.000 0.808 0.000 0.192
#> GSM680047     4  0.1638      0.951 0.064 0.000 0.004 0.932 0.000
#> GSM680036     5  0.0566      0.807 0.000 0.004 0.012 0.000 0.984
#> GSM680048     4  0.0000      0.947 0.000 0.000 0.000 1.000 0.000
#> GSM680037     3  0.3177      0.980 0.000 0.000 0.792 0.000 0.208
#> GSM680049     4  0.2084      0.949 0.064 0.004 0.008 0.920 0.004
#> GSM680038     2  0.5059      0.655 0.000 0.700 0.124 0.000 0.176
#> GSM680050     1  0.0451      0.938 0.988 0.004 0.000 0.000 0.008
#> GSM680039     2  0.6425      0.297 0.000 0.476 0.336 0.000 0.188
#> GSM680051     4  0.0000      0.947 0.000 0.000 0.000 1.000 0.000
#> GSM680040     3  0.3039      0.993 0.000 0.000 0.808 0.000 0.192
#> GSM680052     4  0.0000      0.947 0.000 0.000 0.000 1.000 0.000
#> GSM680030     2  0.4964      0.668 0.000 0.712 0.132 0.000 0.156
#> GSM680042     4  0.1924      0.950 0.064 0.000 0.008 0.924 0.004
#> GSM680031     3  0.3074      0.992 0.000 0.000 0.804 0.000 0.196
#> GSM680043     4  0.1124      0.929 0.000 0.000 0.004 0.960 0.036
#> GSM680032     1  0.2763      0.828 0.848 0.004 0.000 0.000 0.148
#> GSM680044     5  0.4700      0.692 0.076 0.012 0.024 0.100 0.788
#> GSM680033     3  0.3039      0.993 0.000 0.000 0.808 0.000 0.192
#> GSM680045     4  0.0865      0.937 0.000 0.000 0.004 0.972 0.024
#> GSM680034     2  0.5895      0.608 0.000 0.588 0.260 0.152 0.000
#> GSM680046     4  0.1638      0.951 0.064 0.000 0.004 0.932 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM680053     5  0.0692     0.8497 0.000 0.000 0.004 0.000 0.976 0.020
#> GSM680062     5  0.1198     0.8496 0.004 0.004 0.020 0.000 0.960 0.012
#> GSM680054     2  0.6992     0.1990 0.000 0.440 0.288 0.000 0.172 0.100
#> GSM680063     5  0.0696     0.8526 0.004 0.004 0.008 0.000 0.980 0.004
#> GSM680055     5  0.0260     0.8527 0.008 0.000 0.000 0.000 0.992 0.000
#> GSM680064     1  0.0767     0.9127 0.976 0.000 0.004 0.000 0.008 0.012
#> GSM680056     1  0.3650     0.6033 0.716 0.000 0.004 0.000 0.272 0.008
#> GSM680065     1  0.0951     0.9096 0.968 0.000 0.004 0.000 0.020 0.008
#> GSM680057     2  0.3867     0.3983 0.000 0.688 0.296 0.000 0.004 0.012
#> GSM680066     5  0.4756     0.4273 0.332 0.056 0.000 0.000 0.608 0.004
#> GSM680058     2  0.4351     0.1475 0.008 0.516 0.004 0.000 0.004 0.468
#> GSM680067     2  0.1461     0.3215 0.000 0.940 0.016 0.000 0.000 0.044
#> GSM680059     6  0.6550     0.2507 0.000 0.256 0.348 0.000 0.024 0.372
#> GSM680068     1  0.2320     0.8208 0.864 0.000 0.000 0.000 0.132 0.004
#> GSM680060     2  0.4222     0.1499 0.008 0.516 0.004 0.000 0.000 0.472
#> GSM680069     5  0.0458     0.8518 0.016 0.000 0.000 0.000 0.984 0.000
#> GSM680061     2  0.1461     0.3215 0.000 0.940 0.016 0.000 0.000 0.044
#> GSM680070     1  0.0260     0.9142 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM680071     2  0.5921     0.0682 0.400 0.432 0.000 0.000 0.008 0.160
#> GSM680077     1  0.0547     0.9097 0.980 0.000 0.000 0.000 0.000 0.020
#> GSM680072     6  0.4582     0.1349 0.000 0.356 0.008 0.000 0.032 0.604
#> GSM680078     5  0.2178     0.7887 0.132 0.000 0.000 0.000 0.868 0.000
#> GSM680073     6  0.6137     0.3682 0.000 0.252 0.008 0.000 0.280 0.460
#> GSM680079     1  0.0260     0.9142 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM680074     2  0.4091     0.1428 0.008 0.520 0.000 0.000 0.000 0.472
#> GSM680080     2  0.4097     0.0934 0.008 0.500 0.000 0.000 0.000 0.492
#> GSM680075     5  0.3976     0.6437 0.000 0.052 0.004 0.000 0.748 0.196
#> GSM680081     5  0.1759     0.8274 0.004 0.004 0.064 0.000 0.924 0.004
#> GSM680076     2  0.4093     0.1382 0.008 0.516 0.000 0.000 0.000 0.476
#> GSM680082     1  0.0547     0.9097 0.980 0.000 0.000 0.000 0.000 0.020
#> GSM680029     5  0.2706     0.7318 0.000 0.000 0.160 0.000 0.832 0.008
#> GSM680041     4  0.4291     0.7896 0.052 0.000 0.000 0.680 0.000 0.268
#> GSM680035     3  0.0547     0.9987 0.000 0.000 0.980 0.000 0.020 0.000
#> GSM680047     4  0.1682     0.8769 0.052 0.000 0.000 0.928 0.000 0.020
#> GSM680036     5  0.0692     0.8497 0.000 0.000 0.004 0.000 0.976 0.020
#> GSM680048     4  0.0000     0.8812 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM680037     3  0.0632     0.9947 0.000 0.000 0.976 0.000 0.024 0.000
#> GSM680049     4  0.4469     0.7814 0.052 0.004 0.000 0.668 0.000 0.276
#> GSM680038     2  0.4113     0.3872 0.000 0.668 0.308 0.000 0.016 0.008
#> GSM680050     1  0.0436     0.9118 0.988 0.004 0.000 0.004 0.000 0.004
#> GSM680039     2  0.4072     0.2599 0.000 0.544 0.448 0.000 0.008 0.000
#> GSM680051     4  0.0000     0.8812 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM680040     3  0.0547     0.9987 0.000 0.000 0.980 0.000 0.020 0.000
#> GSM680052     4  0.0000     0.8812 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM680030     2  0.3772     0.3980 0.000 0.692 0.296 0.000 0.008 0.004
#> GSM680042     4  0.4291     0.7896 0.052 0.000 0.000 0.680 0.000 0.268
#> GSM680031     3  0.0547     0.9987 0.000 0.000 0.980 0.000 0.020 0.000
#> GSM680043     4  0.1225     0.8653 0.000 0.000 0.000 0.952 0.036 0.012
#> GSM680032     1  0.2562     0.7800 0.828 0.000 0.000 0.000 0.172 0.000
#> GSM680044     5  0.4951     0.6680 0.092 0.004 0.016 0.156 0.720 0.012
#> GSM680033     3  0.0547     0.9987 0.000 0.000 0.980 0.000 0.020 0.000
#> GSM680045     4  0.1297     0.8627 0.000 0.000 0.000 0.948 0.040 0.012
#> GSM680034     2  0.2728     0.3591 0.000 0.864 0.100 0.032 0.000 0.004
#> GSM680046     4  0.1682     0.8769 0.052 0.000 0.000 0.928 0.000 0.020

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) individual(p) protocol(p) other(p) k
#> SD:mclust 31         1.13e-02         0.335    3.18e-02    0.515 2
#> SD:mclust 34         1.29e-02         0.479    1.92e-04    0.502 3
#> SD:mclust 49         2.01e-04         0.303    8.73e-05    0.141 4
#> SD:mclust 50         4.56e-05         0.426    5.02e-05    0.239 5
#> SD:mclust 36         1.22e-04         0.537    8.84e-04    0.160 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.917           0.951       0.977         0.4973 0.502   0.502
#> 3 3 0.435           0.591       0.788         0.3444 0.756   0.544
#> 4 4 0.649           0.692       0.838         0.1349 0.798   0.474
#> 5 5 0.591           0.550       0.755         0.0640 0.832   0.438
#> 6 6 0.642           0.553       0.748         0.0369 0.866   0.453

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM680053     2  0.0000      0.978 0.000 1.000
#> GSM680062     1  0.8955      0.557 0.688 0.312
#> GSM680054     2  0.0000      0.978 0.000 1.000
#> GSM680063     2  0.7528      0.728 0.216 0.784
#> GSM680055     2  0.0000      0.978 0.000 1.000
#> GSM680064     1  0.0000      0.971 1.000 0.000
#> GSM680056     1  0.2236      0.948 0.964 0.036
#> GSM680065     1  0.0000      0.971 1.000 0.000
#> GSM680057     2  0.0000      0.978 0.000 1.000
#> GSM680066     2  0.3431      0.925 0.064 0.936
#> GSM680058     2  0.0000      0.978 0.000 1.000
#> GSM680067     2  0.6343      0.814 0.160 0.840
#> GSM680059     2  0.0000      0.978 0.000 1.000
#> GSM680068     1  0.0000      0.971 1.000 0.000
#> GSM680060     2  0.0000      0.978 0.000 1.000
#> GSM680069     2  0.4939      0.879 0.108 0.892
#> GSM680061     2  0.0000      0.978 0.000 1.000
#> GSM680070     1  0.0000      0.971 1.000 0.000
#> GSM680071     1  0.2603      0.942 0.956 0.044
#> GSM680077     1  0.0000      0.971 1.000 0.000
#> GSM680072     2  0.0000      0.978 0.000 1.000
#> GSM680078     2  0.4161      0.905 0.084 0.916
#> GSM680073     2  0.0000      0.978 0.000 1.000
#> GSM680079     1  0.0000      0.971 1.000 0.000
#> GSM680074     2  0.0000      0.978 0.000 1.000
#> GSM680080     2  0.0000      0.978 0.000 1.000
#> GSM680075     2  0.0000      0.978 0.000 1.000
#> GSM680081     2  0.0000      0.978 0.000 1.000
#> GSM680076     2  0.0000      0.978 0.000 1.000
#> GSM680082     1  0.0000      0.971 1.000 0.000
#> GSM680029     2  0.0000      0.978 0.000 1.000
#> GSM680041     1  0.0000      0.971 1.000 0.000
#> GSM680035     2  0.0000      0.978 0.000 1.000
#> GSM680047     1  0.0000      0.971 1.000 0.000
#> GSM680036     2  0.0000      0.978 0.000 1.000
#> GSM680048     1  0.0000      0.971 1.000 0.000
#> GSM680037     2  0.0000      0.978 0.000 1.000
#> GSM680049     1  0.0000      0.971 1.000 0.000
#> GSM680038     2  0.0000      0.978 0.000 1.000
#> GSM680050     1  0.0000      0.971 1.000 0.000
#> GSM680039     2  0.0000      0.978 0.000 1.000
#> GSM680051     1  0.0000      0.971 1.000 0.000
#> GSM680040     2  0.0000      0.978 0.000 1.000
#> GSM680052     1  0.0000      0.971 1.000 0.000
#> GSM680030     2  0.0000      0.978 0.000 1.000
#> GSM680042     1  0.0000      0.971 1.000 0.000
#> GSM680031     2  0.0000      0.978 0.000 1.000
#> GSM680043     1  0.0000      0.971 1.000 0.000
#> GSM680032     1  0.4431      0.894 0.908 0.092
#> GSM680044     1  0.0938      0.964 0.988 0.012
#> GSM680033     2  0.0000      0.978 0.000 1.000
#> GSM680045     1  0.5059      0.873 0.888 0.112
#> GSM680034     2  0.0000      0.978 0.000 1.000
#> GSM680046     1  0.0000      0.971 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM680053     3  0.3941    0.62175 0.000 0.156 0.844
#> GSM680062     3  0.5726    0.57927 0.216 0.024 0.760
#> GSM680054     2  0.6062    0.16951 0.000 0.616 0.384
#> GSM680063     3  0.5944    0.64416 0.120 0.088 0.792
#> GSM680055     3  0.3551    0.56827 0.000 0.132 0.868
#> GSM680064     1  0.2878    0.81574 0.904 0.000 0.096
#> GSM680056     3  0.8675   -0.13490 0.388 0.108 0.504
#> GSM680065     1  0.6195    0.71102 0.704 0.020 0.276
#> GSM680057     2  0.3551    0.64032 0.000 0.868 0.132
#> GSM680066     3  0.8454    0.13203 0.088 0.432 0.480
#> GSM680058     2  0.1753    0.67138 0.000 0.952 0.048
#> GSM680067     2  0.5538    0.62141 0.116 0.812 0.072
#> GSM680059     3  0.6079    0.45792 0.000 0.388 0.612
#> GSM680068     1  0.2625    0.81853 0.916 0.000 0.084
#> GSM680060     2  0.2959    0.64332 0.000 0.900 0.100
#> GSM680069     3  0.7851    0.24622 0.100 0.256 0.644
#> GSM680061     2  0.2796    0.66662 0.000 0.908 0.092
#> GSM680070     1  0.3941    0.79789 0.844 0.000 0.156
#> GSM680071     2  0.9178    0.23871 0.240 0.540 0.220
#> GSM680077     1  0.8799    0.58390 0.584 0.196 0.220
#> GSM680072     2  0.5058    0.49638 0.000 0.756 0.244
#> GSM680078     3  0.4056    0.56576 0.032 0.092 0.876
#> GSM680073     2  0.6215    0.00216 0.000 0.572 0.428
#> GSM680079     1  0.4834    0.77242 0.792 0.004 0.204
#> GSM680074     2  0.0424    0.68362 0.000 0.992 0.008
#> GSM680080     2  0.0424    0.68353 0.000 0.992 0.008
#> GSM680075     3  0.4555    0.55186 0.000 0.200 0.800
#> GSM680081     3  0.4702    0.67012 0.000 0.212 0.788
#> GSM680076     2  0.4291    0.57733 0.000 0.820 0.180
#> GSM680082     1  0.7344    0.70893 0.696 0.100 0.204
#> GSM680029     3  0.4887    0.66686 0.000 0.228 0.772
#> GSM680041     1  0.0000    0.82470 1.000 0.000 0.000
#> GSM680035     3  0.4796    0.66671 0.000 0.220 0.780
#> GSM680047     1  0.0592    0.82372 0.988 0.000 0.012
#> GSM680036     3  0.4974    0.62372 0.000 0.236 0.764
#> GSM680048     1  0.0592    0.82372 0.988 0.000 0.012
#> GSM680037     3  0.4750    0.66882 0.000 0.216 0.784
#> GSM680049     1  0.0000    0.82470 1.000 0.000 0.000
#> GSM680038     2  0.5016    0.53178 0.000 0.760 0.240
#> GSM680050     1  0.4121    0.79309 0.832 0.000 0.168
#> GSM680039     2  0.6204    0.08896 0.000 0.576 0.424
#> GSM680051     1  0.2400    0.80596 0.932 0.004 0.064
#> GSM680040     3  0.4796    0.66671 0.000 0.220 0.780
#> GSM680052     1  0.2066    0.80851 0.940 0.000 0.060
#> GSM680030     2  0.2711    0.66917 0.000 0.912 0.088
#> GSM680042     1  0.0000    0.82470 1.000 0.000 0.000
#> GSM680031     3  0.4750    0.66882 0.000 0.216 0.784
#> GSM680043     1  0.6448    0.40808 0.636 0.012 0.352
#> GSM680032     1  0.7576    0.65962 0.648 0.076 0.276
#> GSM680044     1  0.3192    0.77355 0.888 0.000 0.112
#> GSM680033     3  0.4842    0.66369 0.000 0.224 0.776
#> GSM680045     1  0.7534    0.15423 0.532 0.040 0.428
#> GSM680034     2  0.6229    0.45193 0.020 0.700 0.280
#> GSM680046     1  0.1163    0.82018 0.972 0.000 0.028

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM680053     3  0.4252     0.6182 0.252 0.004 0.744 0.000
#> GSM680062     3  0.1936     0.7716 0.032 0.000 0.940 0.028
#> GSM680054     3  0.7618     0.3529 0.284 0.244 0.472 0.000
#> GSM680063     3  0.2142     0.7665 0.056 0.000 0.928 0.016
#> GSM680055     1  0.4401     0.4769 0.724 0.004 0.272 0.000
#> GSM680064     1  0.4933     0.3523 0.568 0.000 0.000 0.432
#> GSM680056     1  0.1209     0.7732 0.964 0.000 0.032 0.004
#> GSM680065     1  0.1356     0.7877 0.960 0.000 0.008 0.032
#> GSM680057     2  0.1297     0.8419 0.000 0.964 0.020 0.016
#> GSM680066     3  0.9022     0.0802 0.060 0.300 0.372 0.268
#> GSM680058     2  0.1970     0.8389 0.060 0.932 0.008 0.000
#> GSM680067     2  0.2654     0.7919 0.000 0.888 0.004 0.108
#> GSM680059     3  0.2048     0.7638 0.008 0.064 0.928 0.000
#> GSM680068     4  0.3560     0.7974 0.140 0.004 0.012 0.844
#> GSM680060     2  0.1022     0.8458 0.032 0.968 0.000 0.000
#> GSM680069     1  0.1890     0.7542 0.936 0.008 0.056 0.000
#> GSM680061     2  0.1398     0.8347 0.000 0.956 0.004 0.040
#> GSM680070     1  0.4761     0.5541 0.664 0.004 0.000 0.332
#> GSM680071     1  0.2999     0.6993 0.864 0.132 0.000 0.004
#> GSM680077     1  0.1510     0.7845 0.956 0.016 0.000 0.028
#> GSM680072     2  0.5879     0.5994 0.248 0.672 0.080 0.000
#> GSM680078     1  0.3982     0.5779 0.776 0.000 0.220 0.004
#> GSM680073     3  0.7645     0.3390 0.264 0.268 0.468 0.000
#> GSM680079     1  0.3610     0.7209 0.800 0.000 0.000 0.200
#> GSM680074     2  0.0804     0.8464 0.012 0.980 0.008 0.000
#> GSM680080     2  0.1767     0.8448 0.044 0.944 0.012 0.000
#> GSM680075     3  0.5512     0.1597 0.488 0.016 0.496 0.000
#> GSM680081     3  0.0376     0.7841 0.000 0.004 0.992 0.004
#> GSM680076     2  0.3311     0.7587 0.172 0.828 0.000 0.000
#> GSM680082     1  0.3351     0.7559 0.844 0.008 0.000 0.148
#> GSM680029     3  0.0336     0.7823 0.008 0.000 0.992 0.000
#> GSM680041     4  0.2868     0.8036 0.136 0.000 0.000 0.864
#> GSM680035     3  0.0524     0.7843 0.000 0.004 0.988 0.008
#> GSM680047     4  0.1411     0.8715 0.020 0.000 0.020 0.960
#> GSM680036     3  0.4372     0.6075 0.268 0.004 0.728 0.000
#> GSM680048     4  0.0672     0.8701 0.008 0.000 0.008 0.984
#> GSM680037     3  0.0524     0.7843 0.000 0.004 0.988 0.008
#> GSM680049     4  0.1824     0.8516 0.060 0.004 0.000 0.936
#> GSM680038     2  0.5120     0.6628 0.044 0.752 0.196 0.008
#> GSM680050     1  0.4277     0.6344 0.720 0.000 0.000 0.280
#> GSM680039     3  0.6976     0.2994 0.000 0.320 0.544 0.136
#> GSM680051     4  0.1575     0.8638 0.004 0.012 0.028 0.956
#> GSM680040     3  0.0804     0.7839 0.000 0.012 0.980 0.008
#> GSM680052     4  0.0921     0.8677 0.000 0.000 0.028 0.972
#> GSM680030     2  0.1377     0.8451 0.008 0.964 0.020 0.008
#> GSM680042     4  0.3074     0.7803 0.152 0.000 0.000 0.848
#> GSM680031     3  0.0804     0.7834 0.000 0.008 0.980 0.012
#> GSM680043     4  0.3870     0.7176 0.000 0.004 0.208 0.788
#> GSM680032     1  0.1978     0.7877 0.928 0.004 0.000 0.068
#> GSM680044     4  0.3828     0.8343 0.068 0.000 0.084 0.848
#> GSM680033     3  0.0804     0.7839 0.000 0.012 0.980 0.008
#> GSM680045     4  0.4594     0.6075 0.000 0.008 0.280 0.712
#> GSM680034     2  0.5938     0.0316 0.000 0.488 0.036 0.476
#> GSM680046     4  0.0524     0.8691 0.004 0.000 0.008 0.988

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM680053     5  0.3262     0.7329 0.000 0.000 0.124 0.036 0.840
#> GSM680062     5  0.5649     0.4929 0.000 0.000 0.108 0.296 0.596
#> GSM680054     5  0.3649     0.7547 0.000 0.064 0.032 0.056 0.848
#> GSM680063     5  0.5592     0.5879 0.000 0.000 0.144 0.220 0.636
#> GSM680055     5  0.2586     0.7555 0.012 0.000 0.084 0.012 0.892
#> GSM680064     1  0.4088     0.4980 0.776 0.000 0.000 0.168 0.056
#> GSM680056     5  0.1857     0.7499 0.060 0.000 0.004 0.008 0.928
#> GSM680065     5  0.4594     0.4989 0.284 0.000 0.000 0.036 0.680
#> GSM680057     2  0.1732     0.7632 0.000 0.920 0.000 0.080 0.000
#> GSM680066     1  0.5158     0.4670 0.632 0.008 0.316 0.044 0.000
#> GSM680058     2  0.2648     0.7113 0.000 0.848 0.000 0.000 0.152
#> GSM680067     2  0.2020     0.7534 0.000 0.900 0.000 0.100 0.000
#> GSM680059     3  0.0775     0.6831 0.004 0.008 0.980 0.004 0.004
#> GSM680068     1  0.3130     0.6516 0.856 0.000 0.096 0.048 0.000
#> GSM680060     2  0.1671     0.7576 0.000 0.924 0.000 0.000 0.076
#> GSM680069     5  0.3188     0.7319 0.100 0.000 0.012 0.028 0.860
#> GSM680061     2  0.1478     0.7663 0.000 0.936 0.000 0.064 0.000
#> GSM680070     1  0.0865     0.6840 0.972 0.000 0.024 0.004 0.000
#> GSM680071     5  0.4945     0.6707 0.056 0.148 0.000 0.044 0.752
#> GSM680077     1  0.3384     0.6586 0.864 0.012 0.012 0.032 0.080
#> GSM680072     2  0.4900     0.2542 0.004 0.564 0.000 0.020 0.412
#> GSM680078     1  0.6529     0.2687 0.468 0.000 0.408 0.032 0.092
#> GSM680073     3  0.7912    -0.0280 0.016 0.280 0.356 0.036 0.312
#> GSM680079     1  0.0510     0.6856 0.984 0.000 0.016 0.000 0.000
#> GSM680074     2  0.0609     0.7685 0.000 0.980 0.000 0.000 0.020
#> GSM680080     2  0.0794     0.7683 0.000 0.972 0.000 0.000 0.028
#> GSM680075     3  0.6005     0.3154 0.060 0.016 0.652 0.032 0.240
#> GSM680081     3  0.1885     0.6895 0.020 0.000 0.932 0.044 0.004
#> GSM680076     2  0.3769     0.7075 0.100 0.828 0.004 0.004 0.064
#> GSM680082     1  0.1603     0.6828 0.948 0.012 0.004 0.004 0.032
#> GSM680029     3  0.1251     0.6916 0.000 0.000 0.956 0.008 0.036
#> GSM680041     4  0.5748     0.3998 0.116 0.000 0.000 0.584 0.300
#> GSM680035     3  0.5026     0.6423 0.000 0.000 0.656 0.280 0.064
#> GSM680047     4  0.4132     0.4653 0.020 0.000 0.000 0.720 0.260
#> GSM680036     5  0.3090     0.7454 0.000 0.000 0.104 0.040 0.856
#> GSM680048     4  0.4297     0.6077 0.164 0.000 0.000 0.764 0.072
#> GSM680037     3  0.4536     0.6800 0.000 0.000 0.712 0.240 0.048
#> GSM680049     1  0.5283    -0.1811 0.508 0.000 0.000 0.444 0.048
#> GSM680038     5  0.5430     0.5982 0.000 0.192 0.000 0.148 0.660
#> GSM680050     1  0.0898     0.6791 0.972 0.000 0.000 0.008 0.020
#> GSM680039     2  0.6725    -0.0125 0.000 0.400 0.256 0.344 0.000
#> GSM680051     4  0.1618     0.6214 0.008 0.000 0.008 0.944 0.040
#> GSM680040     3  0.4248     0.6873 0.000 0.000 0.728 0.240 0.032
#> GSM680052     4  0.2850     0.6290 0.092 0.000 0.036 0.872 0.000
#> GSM680030     2  0.3806     0.6901 0.000 0.804 0.004 0.040 0.152
#> GSM680042     4  0.5752     0.2207 0.412 0.000 0.000 0.500 0.088
#> GSM680031     3  0.3109     0.6893 0.000 0.000 0.800 0.200 0.000
#> GSM680043     4  0.6036     0.3085 0.144 0.000 0.308 0.548 0.000
#> GSM680032     1  0.4408     0.5589 0.752 0.008 0.004 0.032 0.204
#> GSM680044     1  0.6803    -0.2277 0.412 0.004 0.172 0.404 0.008
#> GSM680033     3  0.4250     0.6811 0.000 0.000 0.720 0.252 0.028
#> GSM680045     4  0.5455     0.3615 0.036 0.040 0.268 0.656 0.000
#> GSM680034     2  0.4655     0.2161 0.000 0.512 0.012 0.476 0.000
#> GSM680046     4  0.4108     0.4747 0.308 0.000 0.008 0.684 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM680053     5  0.3898     0.6132 0.004 0.000 0.048 0.004 0.768 0.176
#> GSM680062     4  0.7068    -0.0103 0.008 0.000 0.056 0.400 0.308 0.228
#> GSM680054     5  0.2856     0.6935 0.004 0.032 0.036 0.004 0.884 0.040
#> GSM680063     5  0.6716     0.1829 0.000 0.000 0.072 0.164 0.464 0.300
#> GSM680055     5  0.3482     0.6887 0.032 0.004 0.024 0.004 0.836 0.100
#> GSM680064     4  0.3281     0.6694 0.200 0.000 0.000 0.784 0.012 0.004
#> GSM680056     5  0.3248     0.6946 0.144 0.000 0.008 0.008 0.824 0.016
#> GSM680065     5  0.4416     0.4485 0.372 0.000 0.000 0.008 0.600 0.020
#> GSM680057     3  0.5110     0.3362 0.004 0.324 0.600 0.000 0.012 0.060
#> GSM680066     1  0.5855     0.3905 0.576 0.012 0.288 0.024 0.000 0.100
#> GSM680058     2  0.2679     0.6600 0.000 0.864 0.000 0.000 0.096 0.040
#> GSM680067     2  0.4287     0.5425 0.008 0.748 0.188 0.008 0.004 0.044
#> GSM680059     6  0.4707     0.4584 0.004 0.040 0.308 0.004 0.004 0.640
#> GSM680068     1  0.6171     0.5121 0.600 0.000 0.164 0.132 0.000 0.104
#> GSM680060     2  0.3352     0.6428 0.032 0.836 0.004 0.000 0.108 0.020
#> GSM680069     5  0.3627     0.6735 0.224 0.000 0.000 0.004 0.752 0.020
#> GSM680061     2  0.4333     0.4808 0.008 0.708 0.240 0.004 0.000 0.040
#> GSM680070     1  0.2173     0.7451 0.904 0.000 0.000 0.064 0.004 0.028
#> GSM680071     5  0.4848     0.5725 0.300 0.032 0.000 0.004 0.640 0.024
#> GSM680077     1  0.2077     0.7161 0.920 0.008 0.000 0.008 0.040 0.024
#> GSM680072     2  0.5386     0.4231 0.004 0.604 0.000 0.000 0.204 0.188
#> GSM680078     6  0.6177     0.4488 0.224 0.036 0.040 0.012 0.064 0.624
#> GSM680073     2  0.6165     0.0260 0.004 0.428 0.020 0.000 0.140 0.408
#> GSM680079     1  0.3253     0.7282 0.832 0.000 0.000 0.096 0.004 0.068
#> GSM680074     2  0.1168     0.6700 0.000 0.956 0.000 0.000 0.016 0.028
#> GSM680080     2  0.1408     0.6696 0.000 0.944 0.000 0.000 0.020 0.036
#> GSM680075     6  0.4978     0.6228 0.024 0.036 0.092 0.000 0.108 0.740
#> GSM680081     3  0.4470     0.5260 0.076 0.000 0.752 0.004 0.024 0.144
#> GSM680076     2  0.3754     0.6115 0.076 0.812 0.004 0.000 0.016 0.092
#> GSM680082     1  0.3129     0.7108 0.868 0.048 0.000 0.040 0.012 0.032
#> GSM680029     3  0.4472    -0.0676 0.000 0.000 0.496 0.000 0.028 0.476
#> GSM680041     4  0.1542     0.7928 0.000 0.000 0.008 0.936 0.052 0.004
#> GSM680035     3  0.3566     0.5772 0.000 0.000 0.812 0.008 0.076 0.104
#> GSM680047     4  0.2479     0.7746 0.000 0.000 0.028 0.892 0.064 0.016
#> GSM680036     5  0.3242     0.6580 0.000 0.004 0.032 0.000 0.816 0.148
#> GSM680048     4  0.0551     0.8004 0.004 0.000 0.004 0.984 0.008 0.000
#> GSM680037     3  0.3946     0.4987 0.000 0.000 0.748 0.012 0.032 0.208
#> GSM680049     4  0.1686     0.7914 0.064 0.000 0.012 0.924 0.000 0.000
#> GSM680038     5  0.4408     0.6405 0.004 0.048 0.056 0.024 0.796 0.072
#> GSM680050     1  0.2925     0.7205 0.856 0.000 0.000 0.104 0.024 0.016
#> GSM680039     3  0.4007     0.5352 0.000 0.176 0.764 0.008 0.004 0.048
#> GSM680051     3  0.5034     0.3067 0.000 0.000 0.580 0.356 0.024 0.040
#> GSM680040     3  0.3159     0.5704 0.000 0.000 0.820 0.008 0.020 0.152
#> GSM680052     4  0.1845     0.7894 0.008 0.000 0.072 0.916 0.000 0.004
#> GSM680030     2  0.7895     0.1604 0.028 0.360 0.272 0.008 0.248 0.084
#> GSM680042     4  0.1340     0.7986 0.040 0.000 0.000 0.948 0.008 0.004
#> GSM680031     3  0.3686     0.5251 0.004 0.000 0.772 0.012 0.016 0.196
#> GSM680043     3  0.5271     0.4048 0.024 0.008 0.648 0.248 0.000 0.072
#> GSM680032     1  0.6109     0.5534 0.676 0.120 0.012 0.044 0.068 0.080
#> GSM680044     4  0.4703     0.7098 0.080 0.048 0.028 0.776 0.004 0.064
#> GSM680033     3  0.2476     0.5872 0.000 0.000 0.880 0.004 0.024 0.092
#> GSM680045     4  0.4364     0.4091 0.004 0.000 0.364 0.608 0.000 0.024
#> GSM680034     3  0.5480     0.4255 0.004 0.260 0.636 0.044 0.008 0.048
#> GSM680046     4  0.2848     0.7684 0.036 0.000 0.104 0.856 0.000 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) individual(p) protocol(p) other(p) k
#> SD:NMF 54         0.207125         0.826    1.07e-05   0.6858 2
#> SD:NMF 42         0.110602         0.364    4.12e-05   0.7122 3
#> SD:NMF 46         0.000552         0.371    8.12e-05   0.0221 4
#> SD:NMF 36         0.009513         0.353    3.57e-03   0.3663 5
#> SD:NMF 37         0.002622         0.517    6.83e-04   0.0683 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.170           0.670       0.768         0.3902 0.591   0.591
#> 3 3 0.216           0.614       0.774         0.4792 0.659   0.475
#> 4 4 0.359           0.653       0.712         0.1712 0.886   0.705
#> 5 5 0.452           0.459       0.657         0.0920 0.813   0.474
#> 6 6 0.569           0.609       0.726         0.0765 0.922   0.685

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM680053     2  0.8713      0.672 0.292 0.708
#> GSM680062     2  0.8713      0.672 0.292 0.708
#> GSM680054     2  0.8499      0.685 0.276 0.724
#> GSM680063     2  0.8713      0.672 0.292 0.708
#> GSM680055     2  0.8713      0.672 0.292 0.708
#> GSM680064     1  0.6712      0.656 0.824 0.176
#> GSM680056     2  0.8813      0.663 0.300 0.700
#> GSM680065     2  0.8813      0.663 0.300 0.700
#> GSM680057     2  0.2778      0.766 0.048 0.952
#> GSM680066     1  0.9323      0.583 0.652 0.348
#> GSM680058     2  0.1184      0.760 0.016 0.984
#> GSM680067     2  0.1414      0.758 0.020 0.980
#> GSM680059     2  0.0000      0.764 0.000 1.000
#> GSM680068     1  0.9286      0.591 0.656 0.344
#> GSM680060     2  0.7745      0.685 0.228 0.772
#> GSM680069     2  0.7745      0.685 0.228 0.772
#> GSM680061     2  0.1414      0.758 0.020 0.980
#> GSM680070     1  0.9286      0.591 0.656 0.344
#> GSM680071     2  0.7745      0.685 0.228 0.772
#> GSM680077     2  0.9522      0.422 0.372 0.628
#> GSM680072     2  0.0376      0.764 0.004 0.996
#> GSM680078     1  0.9248      0.575 0.660 0.340
#> GSM680073     2  0.4690      0.759 0.100 0.900
#> GSM680079     1  0.6973      0.651 0.812 0.188
#> GSM680074     2  0.0376      0.764 0.004 0.996
#> GSM680080     2  0.0376      0.764 0.004 0.996
#> GSM680075     2  0.4939      0.758 0.108 0.892
#> GSM680081     2  0.5629      0.740 0.132 0.868
#> GSM680076     2  0.9209      0.505 0.336 0.664
#> GSM680082     2  0.9209      0.505 0.336 0.664
#> GSM680029     2  0.6623      0.751 0.172 0.828
#> GSM680041     1  0.3114      0.664 0.944 0.056
#> GSM680035     2  0.5408      0.740 0.124 0.876
#> GSM680047     1  0.6247      0.693 0.844 0.156
#> GSM680036     2  0.6623      0.753 0.172 0.828
#> GSM680048     1  0.9427      0.648 0.640 0.360
#> GSM680037     2  0.5408      0.740 0.124 0.876
#> GSM680049     1  0.2778      0.658 0.952 0.048
#> GSM680038     2  0.2778      0.773 0.048 0.952
#> GSM680050     2  0.9661      0.379 0.392 0.608
#> GSM680039     2  0.4161      0.765 0.084 0.916
#> GSM680051     1  0.9815      0.572 0.580 0.420
#> GSM680040     2  0.3879      0.764 0.076 0.924
#> GSM680052     1  0.9661      0.619 0.608 0.392
#> GSM680030     2  0.3114      0.770 0.056 0.944
#> GSM680042     1  0.3114      0.664 0.944 0.056
#> GSM680031     2  0.3584      0.764 0.068 0.932
#> GSM680043     2  0.3584      0.764 0.068 0.932
#> GSM680032     2  0.9427      0.376 0.360 0.640
#> GSM680044     2  0.9427      0.376 0.360 0.640
#> GSM680033     2  0.3879      0.764 0.076 0.924
#> GSM680045     1  0.9732      0.606 0.596 0.404
#> GSM680034     2  0.2778      0.766 0.048 0.952
#> GSM680046     1  0.9710      0.612 0.600 0.400

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM680053     3  0.5397      0.615 0.000 0.280 0.720
#> GSM680062     3  0.5397      0.615 0.000 0.280 0.720
#> GSM680054     3  0.5988      0.467 0.000 0.368 0.632
#> GSM680063     3  0.5397      0.615 0.000 0.280 0.720
#> GSM680055     3  0.5397      0.615 0.000 0.280 0.720
#> GSM680064     3  0.6675      0.205 0.404 0.012 0.584
#> GSM680056     3  0.5618      0.628 0.008 0.260 0.732
#> GSM680065     3  0.5618      0.628 0.008 0.260 0.732
#> GSM680057     2  0.3009      0.803 0.028 0.920 0.052
#> GSM680066     3  0.9389      0.335 0.352 0.180 0.468
#> GSM680058     2  0.2414      0.796 0.020 0.940 0.040
#> GSM680067     2  0.2443      0.794 0.028 0.940 0.032
#> GSM680059     2  0.1031      0.807 0.000 0.976 0.024
#> GSM680068     3  0.9328      0.330 0.356 0.172 0.472
#> GSM680060     3  0.6698      0.590 0.036 0.280 0.684
#> GSM680069     3  0.6698      0.590 0.036 0.280 0.684
#> GSM680061     2  0.2443      0.794 0.028 0.940 0.032
#> GSM680070     3  0.9328      0.330 0.356 0.172 0.472
#> GSM680071     3  0.6698      0.590 0.036 0.280 0.684
#> GSM680077     3  0.3412      0.550 0.000 0.124 0.876
#> GSM680072     2  0.1529      0.803 0.000 0.960 0.040
#> GSM680078     3  0.9447      0.342 0.348 0.188 0.464
#> GSM680073     2  0.3752      0.732 0.000 0.856 0.144
#> GSM680079     3  0.6566      0.232 0.376 0.012 0.612
#> GSM680074     2  0.1411      0.804 0.000 0.964 0.036
#> GSM680080     2  0.1411      0.804 0.000 0.964 0.036
#> GSM680075     2  0.3941      0.718 0.000 0.844 0.156
#> GSM680081     2  0.4002      0.752 0.000 0.840 0.160
#> GSM680076     3  0.4473      0.573 0.008 0.164 0.828
#> GSM680082     3  0.4413      0.573 0.008 0.160 0.832
#> GSM680029     2  0.4452      0.705 0.000 0.808 0.192
#> GSM680041     1  0.0000      0.630 1.000 0.000 0.000
#> GSM680035     2  0.3816      0.759 0.000 0.852 0.148
#> GSM680047     1  0.3532      0.668 0.884 0.108 0.008
#> GSM680036     2  0.5016      0.622 0.000 0.760 0.240
#> GSM680048     1  0.7218      0.681 0.652 0.296 0.052
#> GSM680037     2  0.3816      0.759 0.000 0.852 0.148
#> GSM680049     1  0.0424      0.625 0.992 0.000 0.008
#> GSM680038     2  0.5223      0.706 0.024 0.800 0.176
#> GSM680050     3  0.5138      0.545 0.052 0.120 0.828
#> GSM680039     2  0.2955      0.798 0.008 0.912 0.080
#> GSM680051     1  0.7658      0.640 0.588 0.356 0.056
#> GSM680040     2  0.2537      0.795 0.000 0.920 0.080
#> GSM680052     1  0.7425      0.677 0.620 0.328 0.052
#> GSM680030     2  0.4683      0.753 0.024 0.836 0.140
#> GSM680042     1  0.0000      0.630 1.000 0.000 0.000
#> GSM680031     2  0.3045      0.802 0.020 0.916 0.064
#> GSM680043     2  0.3045      0.802 0.020 0.916 0.064
#> GSM680032     2  0.9247     -0.199 0.156 0.452 0.392
#> GSM680044     2  0.9247     -0.199 0.156 0.452 0.392
#> GSM680033     2  0.2537      0.795 0.000 0.920 0.080
#> GSM680045     1  0.7492      0.664 0.608 0.340 0.052
#> GSM680034     2  0.3009      0.803 0.028 0.920 0.052
#> GSM680046     1  0.7470      0.670 0.612 0.336 0.052

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM680053     1  0.7456      0.563 0.488 0.316 0.196 0.000
#> GSM680062     1  0.7456      0.563 0.488 0.316 0.196 0.000
#> GSM680054     1  0.7688      0.534 0.456 0.260 0.284 0.000
#> GSM680063     1  0.7456      0.563 0.488 0.316 0.196 0.000
#> GSM680055     1  0.7456      0.563 0.488 0.316 0.196 0.000
#> GSM680064     1  0.5953      0.312 0.692 0.092 0.004 0.212
#> GSM680056     1  0.7629      0.549 0.488 0.332 0.172 0.008
#> GSM680065     1  0.7629      0.549 0.488 0.332 0.172 0.008
#> GSM680057     3  0.4401      0.736 0.068 0.084 0.832 0.016
#> GSM680066     1  0.6720      0.494 0.684 0.040 0.116 0.160
#> GSM680058     3  0.4294      0.748 0.052 0.104 0.832 0.012
#> GSM680067     3  0.3935      0.738 0.060 0.060 0.860 0.020
#> GSM680059     3  0.3229      0.771 0.072 0.048 0.880 0.000
#> GSM680068     1  0.6616      0.492 0.692 0.040 0.108 0.160
#> GSM680060     2  0.3319      0.811 0.036 0.888 0.060 0.016
#> GSM680069     2  0.3319      0.811 0.036 0.888 0.060 0.016
#> GSM680061     3  0.3935      0.738 0.060 0.060 0.860 0.020
#> GSM680070     1  0.6616      0.492 0.692 0.040 0.108 0.160
#> GSM680071     2  0.3319      0.811 0.036 0.888 0.060 0.016
#> GSM680077     2  0.3764      0.756 0.216 0.784 0.000 0.000
#> GSM680072     3  0.3978      0.750 0.056 0.108 0.836 0.000
#> GSM680078     1  0.6942      0.493 0.672 0.048 0.128 0.152
#> GSM680073     3  0.5165      0.684 0.168 0.080 0.752 0.000
#> GSM680079     1  0.5674      0.309 0.724 0.096 0.004 0.176
#> GSM680074     3  0.4072      0.739 0.052 0.120 0.828 0.000
#> GSM680080     3  0.4072      0.739 0.052 0.120 0.828 0.000
#> GSM680075     3  0.5314      0.671 0.176 0.084 0.740 0.000
#> GSM680081     3  0.3870      0.696 0.208 0.004 0.788 0.000
#> GSM680076     2  0.2401      0.823 0.092 0.904 0.004 0.000
#> GSM680082     2  0.2216      0.822 0.092 0.908 0.000 0.000
#> GSM680029     3  0.4818      0.629 0.216 0.036 0.748 0.000
#> GSM680041     4  0.0188      0.641 0.004 0.000 0.000 0.996
#> GSM680035     3  0.3610      0.708 0.200 0.000 0.800 0.000
#> GSM680047     4  0.2899      0.693 0.004 0.004 0.112 0.880
#> GSM680036     3  0.5716      0.526 0.252 0.068 0.680 0.000
#> GSM680048     4  0.6217      0.717 0.052 0.016 0.288 0.644
#> GSM680037     3  0.3610      0.708 0.200 0.000 0.800 0.000
#> GSM680049     4  0.0469      0.635 0.012 0.000 0.000 0.988
#> GSM680038     3  0.6499      0.626 0.156 0.148 0.680 0.016
#> GSM680050     2  0.4994      0.740 0.208 0.744 0.000 0.048
#> GSM680039     3  0.3160      0.760 0.120 0.004 0.868 0.008
#> GSM680051     4  0.6656      0.682 0.056 0.020 0.344 0.580
#> GSM680040     3  0.2760      0.753 0.128 0.000 0.872 0.000
#> GSM680052     4  0.6467      0.713 0.052 0.020 0.316 0.612
#> GSM680030     3  0.5926      0.664 0.144 0.112 0.728 0.016
#> GSM680042     4  0.0188      0.641 0.004 0.000 0.000 0.996
#> GSM680031     3  0.3255      0.755 0.092 0.016 0.880 0.012
#> GSM680043     3  0.3255      0.755 0.092 0.016 0.880 0.012
#> GSM680032     1  0.7437      0.353 0.516 0.080 0.368 0.036
#> GSM680044     1  0.7437      0.353 0.516 0.080 0.368 0.036
#> GSM680033     3  0.2760      0.753 0.128 0.000 0.872 0.000
#> GSM680045     4  0.6734      0.698 0.068 0.020 0.316 0.596
#> GSM680034     3  0.4401      0.736 0.068 0.084 0.832 0.016
#> GSM680046     4  0.6670      0.706 0.064 0.020 0.316 0.600

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM680053     5  0.8490     0.2996 0.276 0.168 0.268 0.000 0.288
#> GSM680062     5  0.8490     0.2996 0.276 0.168 0.268 0.000 0.288
#> GSM680054     3  0.8461    -0.2705 0.244 0.180 0.336 0.000 0.240
#> GSM680063     5  0.8490     0.2996 0.276 0.168 0.268 0.000 0.288
#> GSM680055     5  0.8490     0.2996 0.276 0.168 0.268 0.000 0.288
#> GSM680064     1  0.1788     0.7460 0.932 0.004 0.000 0.056 0.008
#> GSM680056     5  0.8601     0.2983 0.280 0.168 0.244 0.004 0.304
#> GSM680065     5  0.8601     0.2983 0.280 0.168 0.244 0.004 0.304
#> GSM680057     2  0.4108     0.7211 0.000 0.684 0.308 0.008 0.000
#> GSM680066     1  0.3516     0.8513 0.812 0.004 0.164 0.020 0.000
#> GSM680058     3  0.4736    -0.1948 0.000 0.404 0.576 0.000 0.020
#> GSM680067     2  0.3700     0.6891 0.000 0.752 0.240 0.008 0.000
#> GSM680059     3  0.1728     0.4767 0.000 0.036 0.940 0.004 0.020
#> GSM680068     1  0.3435     0.8575 0.820 0.004 0.156 0.020 0.000
#> GSM680060     5  0.3786     0.4384 0.016 0.204 0.000 0.004 0.776
#> GSM680069     5  0.3786     0.4384 0.016 0.204 0.000 0.004 0.776
#> GSM680061     2  0.3700     0.6891 0.000 0.752 0.240 0.008 0.000
#> GSM680070     1  0.3435     0.8575 0.820 0.004 0.156 0.020 0.000
#> GSM680071     5  0.3786     0.4384 0.016 0.204 0.000 0.004 0.776
#> GSM680077     5  0.3607     0.3146 0.244 0.004 0.000 0.000 0.752
#> GSM680072     3  0.4675    -0.1125 0.000 0.380 0.600 0.000 0.020
#> GSM680078     1  0.3461     0.8248 0.812 0.000 0.168 0.016 0.004
#> GSM680073     3  0.4338     0.4924 0.068 0.072 0.808 0.000 0.052
#> GSM680079     1  0.1377     0.7466 0.956 0.004 0.000 0.020 0.020
#> GSM680074     3  0.4752    -0.1863 0.000 0.412 0.568 0.000 0.020
#> GSM680080     3  0.4752    -0.1863 0.000 0.412 0.568 0.000 0.020
#> GSM680075     3  0.4531     0.4909 0.072 0.072 0.796 0.000 0.060
#> GSM680081     3  0.3210     0.5315 0.092 0.040 0.860 0.000 0.008
#> GSM680076     5  0.0932     0.4355 0.020 0.004 0.004 0.000 0.972
#> GSM680082     5  0.0865     0.4343 0.024 0.004 0.000 0.000 0.972
#> GSM680029     3  0.4060     0.5288 0.120 0.032 0.812 0.000 0.036
#> GSM680041     4  0.0162     0.6792 0.004 0.000 0.000 0.996 0.000
#> GSM680035     3  0.2871     0.5336 0.088 0.040 0.872 0.000 0.000
#> GSM680047     4  0.3073     0.7133 0.004 0.052 0.076 0.868 0.000
#> GSM680036     3  0.5022     0.4879 0.136 0.060 0.752 0.000 0.052
#> GSM680048     4  0.6050     0.7237 0.024 0.216 0.128 0.632 0.000
#> GSM680037     3  0.2871     0.5336 0.088 0.040 0.872 0.000 0.000
#> GSM680049     4  0.0794     0.6696 0.028 0.000 0.000 0.972 0.000
#> GSM680038     2  0.6299     0.3575 0.044 0.464 0.444 0.004 0.044
#> GSM680050     5  0.4608     0.2997 0.260 0.004 0.000 0.036 0.700
#> GSM680039     3  0.2885     0.5033 0.052 0.064 0.880 0.004 0.000
#> GSM680051     4  0.6370     0.6787 0.020 0.260 0.144 0.576 0.000
#> GSM680040     3  0.1591     0.5382 0.052 0.004 0.940 0.004 0.000
#> GSM680052     4  0.6155     0.7138 0.020 0.240 0.132 0.608 0.000
#> GSM680030     2  0.5202     0.5976 0.012 0.636 0.316 0.004 0.032
#> GSM680042     4  0.0162     0.6792 0.004 0.000 0.000 0.996 0.000
#> GSM680031     3  0.4245     0.3067 0.024 0.224 0.744 0.008 0.000
#> GSM680043     3  0.4245     0.3067 0.024 0.224 0.744 0.008 0.000
#> GSM680032     3  0.7923    -0.0179 0.352 0.176 0.388 0.008 0.076
#> GSM680044     3  0.7923    -0.0179 0.352 0.176 0.388 0.008 0.076
#> GSM680033     3  0.1830     0.5362 0.052 0.012 0.932 0.004 0.000
#> GSM680045     4  0.6436     0.7006 0.028 0.236 0.148 0.588 0.000
#> GSM680034     2  0.4108     0.7211 0.000 0.684 0.308 0.008 0.000
#> GSM680046     4  0.6389     0.7069 0.028 0.240 0.140 0.592 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM680053     5  0.2277     0.8290 0.032 0.000 0.076 0.000 0.892 0.000
#> GSM680062     5  0.2277     0.8290 0.032 0.000 0.076 0.000 0.892 0.000
#> GSM680054     5  0.3399     0.7495 0.020 0.024 0.140 0.000 0.816 0.000
#> GSM680063     5  0.2277     0.8290 0.032 0.000 0.076 0.000 0.892 0.000
#> GSM680055     5  0.2277     0.8290 0.032 0.000 0.076 0.000 0.892 0.000
#> GSM680064     1  0.1382     0.7875 0.948 0.000 0.000 0.036 0.008 0.008
#> GSM680056     5  0.1930     0.8180 0.036 0.000 0.048 0.000 0.916 0.000
#> GSM680065     5  0.1930     0.8180 0.036 0.000 0.048 0.000 0.916 0.000
#> GSM680057     2  0.3841     0.7011 0.000 0.764 0.168 0.000 0.068 0.000
#> GSM680066     1  0.3462     0.8678 0.816 0.004 0.080 0.000 0.100 0.000
#> GSM680058     3  0.4962     0.0802 0.004 0.412 0.536 0.000 0.040 0.008
#> GSM680067     2  0.1901     0.6214 0.000 0.912 0.076 0.004 0.008 0.000
#> GSM680059     3  0.0976     0.5795 0.000 0.008 0.968 0.000 0.016 0.008
#> GSM680068     1  0.3324     0.8763 0.824 0.004 0.060 0.000 0.112 0.000
#> GSM680060     6  0.5463     0.6453 0.000 0.148 0.000 0.000 0.312 0.540
#> GSM680069     6  0.5463     0.6453 0.000 0.148 0.000 0.000 0.312 0.540
#> GSM680061     2  0.1901     0.6214 0.000 0.912 0.076 0.004 0.008 0.000
#> GSM680070     1  0.3324     0.8763 0.824 0.004 0.060 0.000 0.112 0.000
#> GSM680071     6  0.5463     0.6453 0.000 0.148 0.000 0.000 0.312 0.540
#> GSM680077     6  0.3641     0.5986 0.248 0.000 0.000 0.000 0.020 0.732
#> GSM680072     3  0.5025     0.1501 0.004 0.384 0.556 0.000 0.048 0.008
#> GSM680078     1  0.3370     0.8404 0.812 0.000 0.064 0.000 0.124 0.000
#> GSM680073     3  0.3806     0.5104 0.004 0.008 0.724 0.000 0.256 0.008
#> GSM680079     1  0.0717     0.7884 0.976 0.000 0.000 0.000 0.008 0.016
#> GSM680074     3  0.4863     0.0848 0.004 0.428 0.528 0.000 0.032 0.008
#> GSM680080     3  0.4863     0.0848 0.004 0.428 0.528 0.000 0.032 0.008
#> GSM680075     3  0.4087     0.4569 0.004 0.008 0.668 0.000 0.312 0.008
#> GSM680081     3  0.3490     0.5423 0.000 0.008 0.724 0.000 0.268 0.000
#> GSM680076     6  0.1176     0.6786 0.020 0.000 0.000 0.000 0.024 0.956
#> GSM680082     6  0.1261     0.6783 0.024 0.000 0.000 0.000 0.024 0.952
#> GSM680029     3  0.3758     0.5206 0.008 0.000 0.668 0.000 0.324 0.000
#> GSM680041     4  0.0146     0.6747 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM680035     3  0.3073     0.5981 0.000 0.008 0.788 0.000 0.204 0.000
#> GSM680047     4  0.2891     0.7148 0.000 0.036 0.060 0.872 0.032 0.000
#> GSM680036     3  0.4063     0.3519 0.004 0.004 0.572 0.000 0.420 0.000
#> GSM680048     4  0.5847     0.7312 0.000 0.172 0.104 0.632 0.092 0.000
#> GSM680037     3  0.3073     0.5981 0.000 0.008 0.788 0.000 0.204 0.000
#> GSM680049     4  0.0777     0.6621 0.024 0.000 0.000 0.972 0.004 0.000
#> GSM680038     2  0.6078     0.2815 0.000 0.420 0.352 0.000 0.224 0.004
#> GSM680050     6  0.4268     0.5840 0.264 0.000 0.000 0.036 0.008 0.692
#> GSM680039     3  0.3384     0.5965 0.000 0.068 0.812 0.000 0.120 0.000
#> GSM680051     4  0.6323     0.6944 0.000 0.216 0.112 0.568 0.104 0.000
#> GSM680040     3  0.2191     0.6192 0.000 0.004 0.876 0.000 0.120 0.000
#> GSM680052     4  0.6090     0.7228 0.000 0.196 0.108 0.600 0.096 0.000
#> GSM680030     2  0.5276     0.5790 0.000 0.604 0.188 0.000 0.208 0.000
#> GSM680042     4  0.0146     0.6747 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM680031     3  0.4383     0.4096 0.000 0.176 0.716 0.000 0.108 0.000
#> GSM680043     3  0.4383     0.4096 0.000 0.176 0.716 0.000 0.108 0.000
#> GSM680032     5  0.7071     0.3320 0.264 0.056 0.212 0.000 0.452 0.016
#> GSM680044     5  0.7071     0.3320 0.264 0.056 0.212 0.000 0.452 0.016
#> GSM680033     3  0.2489     0.6194 0.000 0.012 0.860 0.000 0.128 0.000
#> GSM680045     4  0.6615     0.7088 0.016 0.196 0.116 0.572 0.100 0.000
#> GSM680034     2  0.3841     0.7011 0.000 0.764 0.168 0.000 0.068 0.000
#> GSM680046     4  0.6581     0.7149 0.016 0.196 0.108 0.576 0.104 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) individual(p) protocol(p) other(p) k
#> CV:hclust 50         0.168948        0.9565    6.51e-06   0.5512 2
#> CV:hclust 45         0.000104        0.2603    9.45e-05   0.1902 3
#> CV:hclust 46         0.000209        0.0218    3.30e-04   0.0198 4
#> CV:hclust 27         0.000404        0.7112    1.79e-04   0.1853 5
#> CV:hclust 43         0.000077        0.0664    4.69e-04   0.0274 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.930           0.923       0.946         0.5003 0.502   0.502
#> 3 3 0.436           0.588       0.718         0.3099 0.785   0.593
#> 4 4 0.591           0.761       0.824         0.1410 0.808   0.502
#> 5 5 0.675           0.659       0.767         0.0674 0.934   0.735
#> 6 6 0.725           0.614       0.766         0.0419 0.936   0.699

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM680053     2  0.1184      0.938 0.016 0.984
#> GSM680062     2  0.9944      0.262 0.456 0.544
#> GSM680054     2  0.1414      0.941 0.020 0.980
#> GSM680063     2  0.8207      0.708 0.256 0.744
#> GSM680055     2  0.1184      0.938 0.016 0.984
#> GSM680064     1  0.2043      0.965 0.968 0.032
#> GSM680056     1  0.5294      0.908 0.880 0.120
#> GSM680065     1  0.3114      0.957 0.944 0.056
#> GSM680057     2  0.3274      0.934 0.060 0.940
#> GSM680066     1  0.3274      0.957 0.940 0.060
#> GSM680058     2  0.1184      0.938 0.016 0.984
#> GSM680067     2  0.3114      0.935 0.056 0.944
#> GSM680059     2  0.0938      0.941 0.012 0.988
#> GSM680068     1  0.1843      0.965 0.972 0.028
#> GSM680060     2  0.1414      0.937 0.020 0.980
#> GSM680069     2  0.6343      0.810 0.160 0.840
#> GSM680061     2  0.3114      0.935 0.056 0.944
#> GSM680070     1  0.2043      0.964 0.968 0.032
#> GSM680071     2  0.7602      0.747 0.220 0.780
#> GSM680077     1  0.3114      0.956 0.944 0.056
#> GSM680072     2  0.0672      0.938 0.008 0.992
#> GSM680078     1  0.4022      0.953 0.920 0.080
#> GSM680073     2  0.0938      0.937 0.012 0.988
#> GSM680079     1  0.3114      0.956 0.944 0.056
#> GSM680074     2  0.1184      0.938 0.016 0.984
#> GSM680080     2  0.0938      0.937 0.012 0.988
#> GSM680075     2  0.0938      0.937 0.012 0.988
#> GSM680081     2  0.2778      0.939 0.048 0.952
#> GSM680076     2  0.1184      0.935 0.016 0.984
#> GSM680082     1  0.3114      0.956 0.944 0.056
#> GSM680029     2  0.1184      0.940 0.016 0.984
#> GSM680041     1  0.0938      0.964 0.988 0.012
#> GSM680035     2  0.2948      0.937 0.052 0.948
#> GSM680047     1  0.1184      0.964 0.984 0.016
#> GSM680036     2  0.1184      0.938 0.016 0.984
#> GSM680048     1  0.1633      0.964 0.976 0.024
#> GSM680037     2  0.2948      0.937 0.052 0.948
#> GSM680049     1  0.0672      0.963 0.992 0.008
#> GSM680038     2  0.2236      0.939 0.036 0.964
#> GSM680050     1  0.2778      0.957 0.952 0.048
#> GSM680039     2  0.3114      0.934 0.056 0.944
#> GSM680051     1  0.2043      0.961 0.968 0.032
#> GSM680040     2  0.2948      0.937 0.052 0.948
#> GSM680052     1  0.2043      0.961 0.968 0.032
#> GSM680030     2  0.3114      0.937 0.056 0.944
#> GSM680042     1  0.0672      0.964 0.992 0.008
#> GSM680031     2  0.2948      0.937 0.052 0.948
#> GSM680043     1  0.1843      0.962 0.972 0.028
#> GSM680032     1  0.3274      0.957 0.940 0.060
#> GSM680044     1  0.2043      0.963 0.968 0.032
#> GSM680033     2  0.2948      0.937 0.052 0.948
#> GSM680045     1  0.2778      0.950 0.952 0.048
#> GSM680034     2  0.3274      0.934 0.060 0.940
#> GSM680046     1  0.0938      0.964 0.988 0.012

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM680053     3   0.280     0.6413 0.016 0.060 0.924
#> GSM680062     3   0.683     0.5365 0.148 0.112 0.740
#> GSM680054     3   0.571    -0.1798 0.000 0.320 0.680
#> GSM680063     3   0.453     0.6318 0.052 0.088 0.860
#> GSM680055     3   0.280     0.6413 0.016 0.060 0.924
#> GSM680064     1   0.572     0.7529 0.704 0.292 0.004
#> GSM680056     3   0.958     0.0784 0.216 0.320 0.464
#> GSM680065     1   0.774     0.7243 0.608 0.324 0.068
#> GSM680057     2   0.615     0.6479 0.000 0.592 0.408
#> GSM680066     1   0.910     0.6559 0.456 0.404 0.140
#> GSM680058     2   0.631     0.6609 0.000 0.508 0.492
#> GSM680067     2   0.848     0.5732 0.224 0.612 0.164
#> GSM680059     3   0.319     0.6309 0.000 0.112 0.888
#> GSM680068     1   0.742     0.7473 0.632 0.312 0.056
#> GSM680060     2   0.630     0.6687 0.000 0.520 0.480
#> GSM680069     3   0.576     0.5131 0.028 0.208 0.764
#> GSM680061     2   0.852     0.5940 0.208 0.612 0.180
#> GSM680070     1   0.749     0.7433 0.620 0.324 0.056
#> GSM680071     2   0.680     0.4183 0.072 0.724 0.204
#> GSM680077     1   0.762     0.7363 0.596 0.348 0.056
#> GSM680072     3   0.581    -0.2843 0.000 0.336 0.664
#> GSM680078     3   0.952     0.0482 0.212 0.312 0.476
#> GSM680073     3   0.141     0.6204 0.000 0.036 0.964
#> GSM680079     1   0.754     0.7424 0.612 0.332 0.056
#> GSM680074     2   0.631     0.6606 0.000 0.512 0.488
#> GSM680080     2   0.631     0.6573 0.000 0.508 0.492
#> GSM680075     3   0.153     0.6362 0.000 0.040 0.960
#> GSM680081     3   0.348     0.6514 0.000 0.128 0.872
#> GSM680076     2   0.632     0.6015 0.008 0.636 0.356
#> GSM680082     1   0.749     0.7412 0.608 0.340 0.052
#> GSM680029     3   0.263     0.6612 0.000 0.084 0.916
#> GSM680041     1   0.175     0.7546 0.952 0.048 0.000
#> GSM680035     3   0.364     0.6447 0.004 0.124 0.872
#> GSM680047     1   0.389     0.7339 0.880 0.096 0.024
#> GSM680036     3   0.164     0.6421 0.000 0.044 0.956
#> GSM680048     1   0.380     0.7349 0.884 0.092 0.024
#> GSM680037     3   0.364     0.6447 0.004 0.124 0.872
#> GSM680049     1   0.103     0.7615 0.976 0.024 0.000
#> GSM680038     3   0.631    -0.6949 0.000 0.492 0.508
#> GSM680050     1   0.607     0.7470 0.676 0.316 0.008
#> GSM680039     2   0.623     0.6142 0.000 0.564 0.436
#> GSM680051     1   0.432     0.7215 0.860 0.112 0.028
#> GSM680040     3   0.364     0.6447 0.004 0.124 0.872
#> GSM680052     1   0.432     0.7215 0.860 0.112 0.028
#> GSM680030     2   0.624     0.6674 0.000 0.560 0.440
#> GSM680042     1   0.153     0.7566 0.960 0.040 0.000
#> GSM680031     3   0.364     0.6447 0.004 0.124 0.872
#> GSM680043     1   0.668     0.6927 0.748 0.152 0.100
#> GSM680032     1   0.772     0.7363 0.612 0.320 0.068
#> GSM680044     1   0.492     0.7519 0.844 0.080 0.076
#> GSM680033     3   0.364     0.6447 0.004 0.124 0.872
#> GSM680045     1   0.669     0.6896 0.748 0.148 0.104
#> GSM680034     2   0.873     0.5824 0.208 0.592 0.200
#> GSM680046     1   0.303     0.7472 0.912 0.076 0.012

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM680053     3  0.5789      0.745 0.116 0.120 0.744 0.020
#> GSM680062     3  0.6237      0.742 0.116 0.096 0.732 0.056
#> GSM680054     2  0.6566      0.295 0.056 0.552 0.380 0.012
#> GSM680063     3  0.6027      0.743 0.116 0.116 0.736 0.032
#> GSM680055     3  0.5789      0.745 0.116 0.120 0.744 0.020
#> GSM680064     1  0.4408      0.756 0.756 0.008 0.004 0.232
#> GSM680056     1  0.6659      0.585 0.696 0.116 0.140 0.048
#> GSM680065     1  0.5101      0.721 0.800 0.036 0.072 0.092
#> GSM680057     2  0.4364      0.798 0.004 0.792 0.180 0.024
#> GSM680066     1  0.5199      0.753 0.764 0.004 0.088 0.144
#> GSM680058     2  0.1767      0.813 0.000 0.944 0.044 0.012
#> GSM680067     2  0.4535      0.792 0.000 0.804 0.112 0.084
#> GSM680059     3  0.4333      0.752 0.032 0.148 0.812 0.008
#> GSM680068     1  0.3538      0.804 0.832 0.004 0.004 0.160
#> GSM680060     2  0.0804      0.814 0.000 0.980 0.012 0.008
#> GSM680069     1  0.7790     -0.141 0.436 0.128 0.412 0.024
#> GSM680061     2  0.4469      0.794 0.000 0.808 0.112 0.080
#> GSM680070     1  0.3355      0.805 0.836 0.004 0.000 0.160
#> GSM680071     2  0.4484      0.731 0.052 0.836 0.072 0.040
#> GSM680077     1  0.3519      0.812 0.852 0.016 0.004 0.128
#> GSM680072     2  0.5679      0.573 0.068 0.716 0.208 0.008
#> GSM680078     1  0.3558      0.761 0.872 0.008 0.072 0.048
#> GSM680073     3  0.6624      0.728 0.128 0.220 0.644 0.008
#> GSM680079     1  0.3105      0.811 0.856 0.000 0.004 0.140
#> GSM680074     2  0.2923      0.816 0.016 0.896 0.080 0.008
#> GSM680080     2  0.2923      0.816 0.016 0.896 0.080 0.008
#> GSM680075     3  0.6574      0.735 0.132 0.208 0.652 0.008
#> GSM680081     3  0.2563      0.805 0.012 0.060 0.916 0.012
#> GSM680076     2  0.2790      0.789 0.072 0.904 0.012 0.012
#> GSM680082     1  0.3606      0.811 0.840 0.020 0.000 0.140
#> GSM680029     3  0.2652      0.804 0.028 0.056 0.912 0.004
#> GSM680041     4  0.1786      0.878 0.036 0.008 0.008 0.948
#> GSM680035     3  0.2515      0.806 0.004 0.072 0.912 0.012
#> GSM680047     4  0.1151      0.892 0.000 0.008 0.024 0.968
#> GSM680036     3  0.5620      0.759 0.120 0.120 0.748 0.012
#> GSM680048     4  0.1174      0.896 0.012 0.000 0.020 0.968
#> GSM680037     3  0.2515      0.806 0.004 0.072 0.912 0.012
#> GSM680049     4  0.2053      0.873 0.072 0.004 0.000 0.924
#> GSM680038     2  0.3599      0.801 0.020 0.868 0.092 0.020
#> GSM680050     1  0.4527      0.786 0.780 0.020 0.008 0.192
#> GSM680039     2  0.5085      0.707 0.004 0.688 0.292 0.016
#> GSM680051     4  0.1821      0.889 0.008 0.012 0.032 0.948
#> GSM680040     3  0.2515      0.806 0.004 0.072 0.912 0.012
#> GSM680052     4  0.1398      0.893 0.004 0.000 0.040 0.956
#> GSM680030     2  0.3855      0.808 0.004 0.820 0.164 0.012
#> GSM680042     4  0.2221      0.874 0.044 0.016 0.008 0.932
#> GSM680031     3  0.2515      0.806 0.004 0.072 0.912 0.012
#> GSM680043     4  0.5632      0.742 0.084 0.008 0.176 0.732
#> GSM680032     1  0.3823      0.802 0.852 0.028 0.012 0.108
#> GSM680044     4  0.5165      0.734 0.180 0.012 0.048 0.760
#> GSM680033     3  0.2515      0.806 0.004 0.072 0.912 0.012
#> GSM680045     4  0.4698      0.772 0.032 0.008 0.180 0.780
#> GSM680034     2  0.5257      0.780 0.004 0.756 0.160 0.080
#> GSM680046     4  0.1488      0.894 0.032 0.000 0.012 0.956

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM680053     5  0.5554      0.558 0.004 0.028 0.452 0.016 0.500
#> GSM680062     5  0.5922      0.556 0.004 0.028 0.452 0.036 0.480
#> GSM680054     2  0.6685     -0.124 0.000 0.388 0.236 0.000 0.376
#> GSM680063     5  0.5718      0.554 0.004 0.028 0.464 0.024 0.480
#> GSM680055     5  0.5756      0.568 0.012 0.028 0.444 0.016 0.500
#> GSM680064     1  0.3806      0.822 0.812 0.000 0.000 0.104 0.084
#> GSM680056     5  0.5805      0.349 0.304 0.008 0.048 0.024 0.616
#> GSM680065     5  0.4907     -0.156 0.488 0.000 0.000 0.024 0.488
#> GSM680057     2  0.3373      0.732 0.000 0.816 0.168 0.008 0.008
#> GSM680066     1  0.3171      0.850 0.872 0.004 0.060 0.056 0.008
#> GSM680058     2  0.2125      0.747 0.000 0.920 0.024 0.004 0.052
#> GSM680067     2  0.3893      0.736 0.004 0.820 0.100 0.072 0.004
#> GSM680059     3  0.5888      0.523 0.020 0.144 0.652 0.000 0.184
#> GSM680068     1  0.2213      0.869 0.912 0.004 0.008 0.072 0.004
#> GSM680060     2  0.1831      0.748 0.000 0.920 0.004 0.000 0.076
#> GSM680069     5  0.6703      0.550 0.176 0.016 0.208 0.016 0.584
#> GSM680061     2  0.3705      0.740 0.004 0.832 0.100 0.060 0.004
#> GSM680070     1  0.0955      0.880 0.968 0.000 0.000 0.028 0.004
#> GSM680071     2  0.4551      0.422 0.004 0.556 0.000 0.004 0.436
#> GSM680077     1  0.3559      0.861 0.844 0.012 0.012 0.020 0.112
#> GSM680072     2  0.6300      0.426 0.020 0.552 0.092 0.004 0.332
#> GSM680078     1  0.3294      0.824 0.868 0.012 0.036 0.008 0.076
#> GSM680073     3  0.6878      0.242 0.020 0.168 0.440 0.000 0.372
#> GSM680079     1  0.2978      0.872 0.880 0.004 0.012 0.024 0.080
#> GSM680074     2  0.3680      0.714 0.004 0.820 0.032 0.004 0.140
#> GSM680080     2  0.3680      0.714 0.004 0.820 0.032 0.004 0.140
#> GSM680075     3  0.6812      0.256 0.024 0.148 0.464 0.000 0.364
#> GSM680081     3  0.0798      0.741 0.016 0.008 0.976 0.000 0.000
#> GSM680076     2  0.4019      0.679 0.028 0.768 0.000 0.004 0.200
#> GSM680082     1  0.3068      0.870 0.876 0.032 0.000 0.020 0.072
#> GSM680029     3  0.2889      0.702 0.016 0.020 0.880 0.000 0.084
#> GSM680041     4  0.2077      0.831 0.008 0.000 0.000 0.908 0.084
#> GSM680035     3  0.0671      0.759 0.000 0.016 0.980 0.004 0.000
#> GSM680047     4  0.1502      0.839 0.004 0.000 0.000 0.940 0.056
#> GSM680036     5  0.5481      0.355 0.016 0.032 0.456 0.000 0.496
#> GSM680048     4  0.1205      0.841 0.004 0.000 0.000 0.956 0.040
#> GSM680037     3  0.0671      0.759 0.000 0.016 0.980 0.004 0.000
#> GSM680049     4  0.2694      0.820 0.040 0.000 0.000 0.884 0.076
#> GSM680038     2  0.3731      0.725 0.000 0.816 0.072 0.000 0.112
#> GSM680050     1  0.4240      0.838 0.792 0.008 0.012 0.036 0.152
#> GSM680039     2  0.4523      0.554 0.000 0.640 0.344 0.012 0.004
#> GSM680051     4  0.1018      0.837 0.000 0.016 0.016 0.968 0.000
#> GSM680040     3  0.0671      0.759 0.000 0.016 0.980 0.004 0.000
#> GSM680052     4  0.0912      0.838 0.000 0.016 0.012 0.972 0.000
#> GSM680030     2  0.3815      0.736 0.000 0.804 0.156 0.008 0.032
#> GSM680042     4  0.2189      0.831 0.012 0.000 0.000 0.904 0.084
#> GSM680031     3  0.0960      0.753 0.000 0.016 0.972 0.004 0.008
#> GSM680043     4  0.6523      0.557 0.128 0.016 0.264 0.580 0.012
#> GSM680032     1  0.3806      0.834 0.824 0.020 0.004 0.024 0.128
#> GSM680044     4  0.6553      0.368 0.328 0.004 0.056 0.548 0.064
#> GSM680033     3  0.0671      0.759 0.000 0.016 0.980 0.004 0.000
#> GSM680045     4  0.5599      0.611 0.052 0.016 0.264 0.656 0.012
#> GSM680034     2  0.4384      0.723 0.004 0.784 0.136 0.068 0.008
#> GSM680046     4  0.1686      0.831 0.036 0.012 0.004 0.944 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM680053     5  0.4470     0.6332 0.000 0.012 0.300 0.000 0.656 0.032
#> GSM680062     5  0.4813     0.6418 0.000 0.008 0.284 0.028 0.656 0.024
#> GSM680054     5  0.6517     0.4073 0.000 0.280 0.188 0.000 0.484 0.048
#> GSM680063     5  0.4759     0.6415 0.000 0.008 0.288 0.024 0.656 0.024
#> GSM680055     5  0.4416     0.6392 0.000 0.012 0.288 0.000 0.668 0.032
#> GSM680064     1  0.5873     0.4927 0.612 0.000 0.000 0.216 0.076 0.096
#> GSM680056     5  0.3209     0.5772 0.124 0.004 0.028 0.004 0.836 0.004
#> GSM680065     5  0.3183     0.5203 0.196 0.000 0.004 0.004 0.792 0.004
#> GSM680057     2  0.2039     0.7655 0.000 0.908 0.072 0.000 0.016 0.004
#> GSM680066     1  0.2432     0.7262 0.908 0.024 0.020 0.036 0.004 0.008
#> GSM680058     2  0.2450     0.7301 0.000 0.868 0.000 0.000 0.016 0.116
#> GSM680067     2  0.1225     0.7693 0.000 0.952 0.012 0.036 0.000 0.000
#> GSM680059     3  0.5090    -0.2971 0.004 0.028 0.528 0.004 0.016 0.420
#> GSM680068     1  0.1585     0.7307 0.940 0.004 0.004 0.044 0.004 0.004
#> GSM680060     2  0.2201     0.7483 0.000 0.896 0.000 0.000 0.028 0.076
#> GSM680069     5  0.3607     0.6057 0.100 0.008 0.072 0.000 0.816 0.004
#> GSM680061     2  0.1151     0.7707 0.000 0.956 0.012 0.032 0.000 0.000
#> GSM680070     1  0.0146     0.7403 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM680071     5  0.5453     0.0695 0.004 0.376 0.000 0.004 0.520 0.096
#> GSM680077     1  0.5198     0.6180 0.608 0.000 0.000 0.000 0.152 0.240
#> GSM680072     6  0.5933     0.2178 0.000 0.320 0.040 0.000 0.104 0.536
#> GSM680078     1  0.3748     0.6784 0.824 0.000 0.036 0.008 0.048 0.084
#> GSM680073     6  0.6495     0.5889 0.008 0.040 0.320 0.004 0.128 0.500
#> GSM680079     1  0.4431     0.6642 0.704 0.000 0.000 0.000 0.096 0.200
#> GSM680074     2  0.4089     0.4667 0.000 0.632 0.004 0.000 0.012 0.352
#> GSM680080     2  0.4089     0.4667 0.000 0.632 0.004 0.000 0.012 0.352
#> GSM680075     6  0.6397     0.5340 0.008 0.028 0.360 0.004 0.128 0.472
#> GSM680081     3  0.0146     0.8590 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM680076     2  0.4841     0.2773 0.012 0.504 0.000 0.000 0.032 0.452
#> GSM680082     1  0.3253     0.7228 0.832 0.004 0.000 0.000 0.068 0.096
#> GSM680029     3  0.3178     0.6245 0.004 0.000 0.816 0.004 0.016 0.160
#> GSM680041     4  0.2917     0.7661 0.004 0.000 0.000 0.852 0.040 0.104
#> GSM680035     3  0.0146     0.8590 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM680047     4  0.2094     0.7832 0.000 0.000 0.000 0.900 0.020 0.080
#> GSM680036     5  0.6191     0.2523 0.000 0.012 0.348 0.004 0.456 0.180
#> GSM680048     4  0.0291     0.7931 0.004 0.000 0.000 0.992 0.000 0.004
#> GSM680037     3  0.0146     0.8590 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM680049     4  0.3198     0.7612 0.032 0.000 0.000 0.844 0.024 0.100
#> GSM680038     2  0.2918     0.7559 0.000 0.868 0.064 0.000 0.048 0.020
#> GSM680050     1  0.6034     0.5591 0.500 0.000 0.000 0.016 0.176 0.308
#> GSM680039     2  0.3323     0.6086 0.000 0.752 0.240 0.000 0.008 0.000
#> GSM680051     4  0.1390     0.7882 0.016 0.032 0.000 0.948 0.004 0.000
#> GSM680040     3  0.0146     0.8590 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM680052     4  0.1401     0.7883 0.020 0.028 0.000 0.948 0.004 0.000
#> GSM680030     2  0.2520     0.7674 0.000 0.888 0.068 0.000 0.012 0.032
#> GSM680042     4  0.3281     0.7592 0.008 0.004 0.000 0.832 0.036 0.120
#> GSM680031     3  0.0779     0.8392 0.000 0.008 0.976 0.000 0.008 0.008
#> GSM680043     4  0.7123     0.3035 0.244 0.044 0.220 0.468 0.012 0.012
#> GSM680032     1  0.4279     0.6967 0.768 0.016 0.000 0.004 0.108 0.104
#> GSM680044     1  0.6477    -0.0238 0.452 0.020 0.024 0.416 0.028 0.060
#> GSM680033     3  0.0146     0.8590 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM680045     4  0.6985     0.3689 0.204 0.044 0.228 0.500 0.012 0.012
#> GSM680034     2  0.2457     0.7615 0.000 0.896 0.056 0.036 0.008 0.004
#> GSM680046     4  0.2065     0.7725 0.052 0.032 0.000 0.912 0.004 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) individual(p) protocol(p) other(p) k
#> CV:kmeans 53         0.245708         0.968    3.22e-07  0.63939 2
#> CV:kmeans 48         0.162335         0.637    2.92e-06  0.67059 3
#> CV:kmeans 52         0.000304         0.598    2.38e-06  0.14785 4
#> CV:kmeans 45         0.000208         0.410    2.88e-05  0.12558 5
#> CV:kmeans 42         0.000281         0.434    1.69e-04  0.00135 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.951       0.980         0.5070 0.493   0.493
#> 3 3 0.710           0.913       0.925         0.3244 0.755   0.541
#> 4 4 0.887           0.916       0.938         0.1330 0.853   0.587
#> 5 5 0.785           0.792       0.882         0.0627 0.915   0.668
#> 6 6 0.771           0.634       0.804         0.0386 0.969   0.841

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM680053     2  0.0000      0.975 0.000 1.000
#> GSM680062     1  0.1843      0.957 0.972 0.028
#> GSM680054     2  0.0000      0.975 0.000 1.000
#> GSM680063     1  0.9393      0.427 0.644 0.356
#> GSM680055     2  0.0000      0.975 0.000 1.000
#> GSM680064     1  0.0000      0.983 1.000 0.000
#> GSM680056     1  0.0376      0.980 0.996 0.004
#> GSM680065     1  0.0000      0.983 1.000 0.000
#> GSM680057     2  0.0000      0.975 0.000 1.000
#> GSM680066     1  0.0000      0.983 1.000 0.000
#> GSM680058     2  0.0000      0.975 0.000 1.000
#> GSM680067     2  0.0938      0.965 0.012 0.988
#> GSM680059     2  0.0000      0.975 0.000 1.000
#> GSM680068     1  0.0000      0.983 1.000 0.000
#> GSM680060     2  0.0000      0.975 0.000 1.000
#> GSM680069     2  0.9460      0.433 0.364 0.636
#> GSM680061     2  0.0000      0.975 0.000 1.000
#> GSM680070     1  0.0000      0.983 1.000 0.000
#> GSM680071     2  0.8763      0.579 0.296 0.704
#> GSM680077     1  0.0000      0.983 1.000 0.000
#> GSM680072     2  0.0000      0.975 0.000 1.000
#> GSM680078     1  0.0000      0.983 1.000 0.000
#> GSM680073     2  0.0000      0.975 0.000 1.000
#> GSM680079     1  0.0000      0.983 1.000 0.000
#> GSM680074     2  0.0000      0.975 0.000 1.000
#> GSM680080     2  0.0000      0.975 0.000 1.000
#> GSM680075     2  0.0000      0.975 0.000 1.000
#> GSM680081     2  0.0000      0.975 0.000 1.000
#> GSM680076     2  0.0000      0.975 0.000 1.000
#> GSM680082     1  0.0000      0.983 1.000 0.000
#> GSM680029     2  0.0000      0.975 0.000 1.000
#> GSM680041     1  0.0000      0.983 1.000 0.000
#> GSM680035     2  0.0000      0.975 0.000 1.000
#> GSM680047     1  0.0000      0.983 1.000 0.000
#> GSM680036     2  0.0000      0.975 0.000 1.000
#> GSM680048     1  0.0000      0.983 1.000 0.000
#> GSM680037     2  0.0000      0.975 0.000 1.000
#> GSM680049     1  0.0000      0.983 1.000 0.000
#> GSM680038     2  0.0000      0.975 0.000 1.000
#> GSM680050     1  0.0000      0.983 1.000 0.000
#> GSM680039     2  0.0000      0.975 0.000 1.000
#> GSM680051     1  0.0000      0.983 1.000 0.000
#> GSM680040     2  0.0000      0.975 0.000 1.000
#> GSM680052     1  0.0000      0.983 1.000 0.000
#> GSM680030     2  0.0000      0.975 0.000 1.000
#> GSM680042     1  0.0000      0.983 1.000 0.000
#> GSM680031     2  0.0000      0.975 0.000 1.000
#> GSM680043     1  0.0000      0.983 1.000 0.000
#> GSM680032     1  0.0000      0.983 1.000 0.000
#> GSM680044     1  0.0000      0.983 1.000 0.000
#> GSM680033     2  0.0000      0.975 0.000 1.000
#> GSM680045     1  0.0000      0.983 1.000 0.000
#> GSM680034     2  0.0000      0.975 0.000 1.000
#> GSM680046     1  0.0000      0.983 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM680053     3  0.0592      0.931 0.000 0.012 0.988
#> GSM680062     3  0.3539      0.862 0.012 0.100 0.888
#> GSM680054     2  0.4702      0.849 0.000 0.788 0.212
#> GSM680063     3  0.1832      0.921 0.008 0.036 0.956
#> GSM680055     3  0.0829      0.931 0.004 0.012 0.984
#> GSM680064     1  0.0237      0.932 0.996 0.000 0.004
#> GSM680056     3  0.4692      0.809 0.168 0.012 0.820
#> GSM680065     1  0.1031      0.925 0.976 0.000 0.024
#> GSM680057     2  0.3267      0.928 0.000 0.884 0.116
#> GSM680066     1  0.1399      0.922 0.968 0.004 0.028
#> GSM680058     2  0.3192      0.930 0.000 0.888 0.112
#> GSM680067     2  0.0829      0.880 0.004 0.984 0.012
#> GSM680059     3  0.1163      0.931 0.000 0.028 0.972
#> GSM680068     1  0.0424      0.932 0.992 0.000 0.008
#> GSM680060     2  0.3530      0.923 0.032 0.900 0.068
#> GSM680069     3  0.3845      0.850 0.116 0.012 0.872
#> GSM680061     2  0.1129      0.885 0.004 0.976 0.020
#> GSM680070     1  0.0592      0.931 0.988 0.000 0.012
#> GSM680071     2  0.3752      0.872 0.096 0.884 0.020
#> GSM680077     1  0.0592      0.931 0.988 0.000 0.012
#> GSM680072     2  0.4178      0.890 0.000 0.828 0.172
#> GSM680078     3  0.5982      0.589 0.328 0.004 0.668
#> GSM680073     3  0.1411      0.928 0.000 0.036 0.964
#> GSM680079     1  0.0592      0.931 0.988 0.000 0.012
#> GSM680074     2  0.3267      0.926 0.000 0.884 0.116
#> GSM680080     2  0.3267      0.926 0.000 0.884 0.116
#> GSM680075     3  0.0747      0.931 0.000 0.016 0.984
#> GSM680081     3  0.2031      0.922 0.032 0.016 0.952
#> GSM680076     2  0.3618      0.880 0.104 0.884 0.012
#> GSM680082     1  0.0592      0.931 0.988 0.000 0.012
#> GSM680029     3  0.0747      0.933 0.000 0.016 0.984
#> GSM680041     1  0.3267      0.936 0.884 0.116 0.000
#> GSM680035     3  0.1031      0.933 0.000 0.024 0.976
#> GSM680047     1  0.3267      0.936 0.884 0.116 0.000
#> GSM680036     3  0.0747      0.931 0.000 0.016 0.984
#> GSM680048     1  0.3267      0.936 0.884 0.116 0.000
#> GSM680037     3  0.1031      0.933 0.000 0.024 0.976
#> GSM680049     1  0.3192      0.937 0.888 0.112 0.000
#> GSM680038     2  0.3192      0.930 0.000 0.888 0.112
#> GSM680050     1  0.0237      0.932 0.996 0.000 0.004
#> GSM680039     2  0.3412      0.927 0.000 0.876 0.124
#> GSM680051     1  0.3682      0.934 0.876 0.116 0.008
#> GSM680040     3  0.1031      0.933 0.000 0.024 0.976
#> GSM680052     1  0.3682      0.934 0.876 0.116 0.008
#> GSM680030     2  0.2959      0.930 0.000 0.900 0.100
#> GSM680042     1  0.3116      0.937 0.892 0.108 0.000
#> GSM680031     3  0.1031      0.933 0.000 0.024 0.976
#> GSM680043     1  0.3682      0.934 0.876 0.116 0.008
#> GSM680032     1  0.0829      0.930 0.984 0.004 0.012
#> GSM680044     1  0.2878      0.938 0.904 0.096 0.000
#> GSM680033     3  0.1031      0.933 0.000 0.024 0.976
#> GSM680045     1  0.3682      0.934 0.876 0.116 0.008
#> GSM680034     2  0.0829      0.880 0.004 0.984 0.012
#> GSM680046     1  0.3267      0.936 0.884 0.116 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM680053     3  0.3067      0.905 0.084 0.024 0.888 0.004
#> GSM680062     4  0.5967      0.564 0.080 0.004 0.236 0.680
#> GSM680054     2  0.4944      0.750 0.072 0.768 0.160 0.000
#> GSM680063     3  0.5648      0.745 0.088 0.012 0.740 0.160
#> GSM680055     3  0.3264      0.898 0.096 0.024 0.876 0.004
#> GSM680064     1  0.3311      0.880 0.828 0.000 0.000 0.172
#> GSM680056     1  0.2715      0.869 0.916 0.016 0.032 0.036
#> GSM680065     1  0.1492      0.895 0.956 0.004 0.004 0.036
#> GSM680057     2  0.0707      0.954 0.000 0.980 0.020 0.000
#> GSM680066     1  0.2751      0.916 0.904 0.000 0.040 0.056
#> GSM680058     2  0.0336      0.951 0.000 0.992 0.008 0.000
#> GSM680067     2  0.1174      0.951 0.000 0.968 0.020 0.012
#> GSM680059     3  0.1118      0.942 0.000 0.036 0.964 0.000
#> GSM680068     1  0.2281      0.921 0.904 0.000 0.000 0.096
#> GSM680060     2  0.0188      0.953 0.000 0.996 0.004 0.000
#> GSM680069     1  0.3663      0.818 0.864 0.020 0.096 0.020
#> GSM680061     2  0.0895      0.953 0.000 0.976 0.020 0.004
#> GSM680070     1  0.1940      0.929 0.924 0.000 0.000 0.076
#> GSM680071     2  0.2231      0.920 0.044 0.932 0.012 0.012
#> GSM680077     1  0.1792      0.929 0.932 0.000 0.000 0.068
#> GSM680072     2  0.3441      0.848 0.024 0.856 0.120 0.000
#> GSM680078     1  0.2174      0.907 0.928 0.000 0.052 0.020
#> GSM680073     3  0.2032      0.937 0.028 0.036 0.936 0.000
#> GSM680079     1  0.1940      0.929 0.924 0.000 0.000 0.076
#> GSM680074     2  0.0336      0.955 0.000 0.992 0.008 0.000
#> GSM680080     2  0.0336      0.955 0.000 0.992 0.008 0.000
#> GSM680075     3  0.1677      0.938 0.040 0.012 0.948 0.000
#> GSM680081     3  0.1452      0.934 0.036 0.008 0.956 0.000
#> GSM680076     2  0.0707      0.948 0.020 0.980 0.000 0.000
#> GSM680082     1  0.1940      0.929 0.924 0.000 0.000 0.076
#> GSM680029     3  0.0937      0.946 0.012 0.012 0.976 0.000
#> GSM680041     4  0.0188      0.950 0.004 0.000 0.000 0.996
#> GSM680035     3  0.0469      0.948 0.000 0.012 0.988 0.000
#> GSM680047     4  0.0000      0.952 0.000 0.000 0.000 1.000
#> GSM680036     3  0.2174      0.926 0.052 0.020 0.928 0.000
#> GSM680048     4  0.0000      0.952 0.000 0.000 0.000 1.000
#> GSM680037     3  0.0469      0.948 0.000 0.012 0.988 0.000
#> GSM680049     4  0.0188      0.952 0.004 0.000 0.000 0.996
#> GSM680038     2  0.0188      0.953 0.000 0.996 0.004 0.000
#> GSM680050     1  0.3764      0.824 0.784 0.000 0.000 0.216
#> GSM680039     2  0.1867      0.927 0.000 0.928 0.072 0.000
#> GSM680051     4  0.0000      0.952 0.000 0.000 0.000 1.000
#> GSM680040     3  0.0469      0.948 0.000 0.012 0.988 0.000
#> GSM680052     4  0.0000      0.952 0.000 0.000 0.000 1.000
#> GSM680030     2  0.0707      0.954 0.000 0.980 0.020 0.000
#> GSM680042     4  0.0188      0.952 0.004 0.000 0.000 0.996
#> GSM680031     3  0.0469      0.948 0.000 0.012 0.988 0.000
#> GSM680043     4  0.1798      0.932 0.040 0.000 0.016 0.944
#> GSM680032     1  0.2088      0.929 0.928 0.004 0.004 0.064
#> GSM680044     4  0.1302      0.933 0.044 0.000 0.000 0.956
#> GSM680033     3  0.0469      0.948 0.000 0.012 0.988 0.000
#> GSM680045     4  0.1624      0.935 0.028 0.000 0.020 0.952
#> GSM680034     2  0.1297      0.950 0.000 0.964 0.020 0.016
#> GSM680046     4  0.0817      0.944 0.024 0.000 0.000 0.976

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM680053     5  0.2690      0.700 0.000 0.000 0.156 0.000 0.844
#> GSM680062     5  0.4469      0.667 0.000 0.000 0.096 0.148 0.756
#> GSM680054     5  0.5500      0.247 0.000 0.376 0.072 0.000 0.552
#> GSM680063     5  0.3681      0.706 0.000 0.000 0.148 0.044 0.808
#> GSM680055     5  0.2488      0.713 0.004 0.000 0.124 0.000 0.872
#> GSM680064     1  0.3574      0.781 0.804 0.000 0.000 0.168 0.028
#> GSM680056     5  0.3053      0.682 0.164 0.000 0.008 0.000 0.828
#> GSM680065     5  0.4278      0.162 0.452 0.000 0.000 0.000 0.548
#> GSM680057     2  0.1357      0.861 0.000 0.948 0.048 0.000 0.004
#> GSM680066     1  0.1710      0.903 0.944 0.000 0.020 0.024 0.012
#> GSM680058     2  0.1410      0.869 0.000 0.940 0.000 0.000 0.060
#> GSM680067     2  0.1883      0.856 0.000 0.932 0.012 0.048 0.008
#> GSM680059     3  0.3037      0.823 0.000 0.040 0.860 0.000 0.100
#> GSM680068     1  0.1205      0.903 0.956 0.000 0.000 0.040 0.004
#> GSM680060     2  0.0963      0.872 0.000 0.964 0.000 0.000 0.036
#> GSM680069     5  0.3111      0.698 0.144 0.004 0.012 0.000 0.840
#> GSM680061     2  0.1356      0.865 0.000 0.956 0.012 0.028 0.004
#> GSM680070     1  0.0579      0.911 0.984 0.000 0.000 0.008 0.008
#> GSM680071     2  0.4642      0.499 0.020 0.648 0.000 0.004 0.328
#> GSM680077     1  0.0510      0.909 0.984 0.000 0.000 0.000 0.016
#> GSM680072     2  0.4114      0.688 0.000 0.732 0.024 0.000 0.244
#> GSM680078     1  0.2228      0.864 0.912 0.000 0.040 0.000 0.048
#> GSM680073     3  0.5807      0.596 0.008 0.128 0.628 0.000 0.236
#> GSM680079     1  0.0566      0.910 0.984 0.000 0.000 0.004 0.012
#> GSM680074     2  0.1341      0.869 0.000 0.944 0.000 0.000 0.056
#> GSM680080     2  0.1478      0.867 0.000 0.936 0.000 0.000 0.064
#> GSM680075     3  0.5241      0.650 0.012 0.064 0.672 0.000 0.252
#> GSM680081     3  0.1012      0.877 0.020 0.000 0.968 0.000 0.012
#> GSM680076     2  0.2616      0.851 0.036 0.888 0.000 0.000 0.076
#> GSM680082     1  0.0290      0.909 0.992 0.000 0.000 0.000 0.008
#> GSM680029     3  0.1571      0.866 0.000 0.004 0.936 0.000 0.060
#> GSM680041     4  0.0451      0.944 0.004 0.000 0.000 0.988 0.008
#> GSM680035     3  0.0404      0.886 0.000 0.000 0.988 0.000 0.012
#> GSM680047     4  0.0324      0.945 0.004 0.000 0.000 0.992 0.004
#> GSM680036     5  0.4726      0.191 0.000 0.020 0.400 0.000 0.580
#> GSM680048     4  0.0162      0.945 0.004 0.000 0.000 0.996 0.000
#> GSM680037     3  0.0404      0.886 0.000 0.000 0.988 0.000 0.012
#> GSM680049     4  0.1041      0.933 0.032 0.000 0.000 0.964 0.004
#> GSM680038     2  0.1205      0.869 0.000 0.956 0.004 0.000 0.040
#> GSM680050     1  0.4404      0.669 0.712 0.000 0.000 0.252 0.036
#> GSM680039     2  0.4327      0.450 0.000 0.632 0.360 0.000 0.008
#> GSM680051     4  0.0324      0.944 0.000 0.004 0.000 0.992 0.004
#> GSM680040     3  0.0162      0.886 0.000 0.000 0.996 0.000 0.004
#> GSM680052     4  0.0000      0.945 0.000 0.000 0.000 1.000 0.000
#> GSM680030     2  0.1369      0.867 0.008 0.956 0.028 0.000 0.008
#> GSM680042     4  0.0693      0.943 0.012 0.000 0.000 0.980 0.008
#> GSM680031     3  0.0794      0.879 0.000 0.000 0.972 0.000 0.028
#> GSM680043     4  0.3950      0.834 0.076 0.000 0.080 0.824 0.020
#> GSM680032     1  0.1041      0.902 0.964 0.000 0.000 0.004 0.032
#> GSM680044     4  0.3985      0.741 0.196 0.000 0.004 0.772 0.028
#> GSM680033     3  0.0404      0.886 0.000 0.000 0.988 0.000 0.012
#> GSM680045     4  0.2131      0.905 0.008 0.000 0.056 0.920 0.016
#> GSM680034     2  0.2992      0.826 0.000 0.876 0.044 0.072 0.008
#> GSM680046     4  0.0324      0.943 0.004 0.000 0.000 0.992 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM680053     5  0.1549     0.7626 0.000 0.000 0.044 0.000 0.936 0.020
#> GSM680062     5  0.2669     0.7402 0.000 0.000 0.032 0.072 0.880 0.016
#> GSM680054     5  0.5157     0.4145 0.000 0.284 0.024 0.000 0.624 0.068
#> GSM680063     5  0.1838     0.7622 0.000 0.000 0.040 0.020 0.928 0.012
#> GSM680055     5  0.1370     0.7652 0.004 0.000 0.036 0.000 0.948 0.012
#> GSM680064     1  0.4563     0.6483 0.700 0.000 0.000 0.232 0.028 0.040
#> GSM680056     5  0.2461     0.7488 0.044 0.000 0.000 0.004 0.888 0.064
#> GSM680065     5  0.4822     0.4242 0.308 0.000 0.000 0.004 0.620 0.068
#> GSM680057     2  0.1049     0.6379 0.000 0.960 0.032 0.000 0.000 0.008
#> GSM680066     1  0.2669     0.8192 0.864 0.000 0.024 0.004 0.000 0.108
#> GSM680058     2  0.3742     0.4080 0.000 0.648 0.000 0.000 0.004 0.348
#> GSM680067     2  0.1708     0.6374 0.000 0.932 0.004 0.024 0.000 0.040
#> GSM680059     3  0.3903     0.4527 0.000 0.012 0.680 0.000 0.004 0.304
#> GSM680068     1  0.2009     0.8334 0.904 0.000 0.000 0.008 0.004 0.084
#> GSM680060     2  0.3330     0.5029 0.000 0.716 0.000 0.000 0.000 0.284
#> GSM680069     5  0.2772     0.7457 0.040 0.000 0.000 0.004 0.864 0.092
#> GSM680061     2  0.1232     0.6422 0.000 0.956 0.004 0.016 0.000 0.024
#> GSM680070     1  0.1285     0.8393 0.944 0.000 0.000 0.004 0.000 0.052
#> GSM680071     2  0.6633     0.1265 0.016 0.396 0.000 0.008 0.308 0.272
#> GSM680077     1  0.1644     0.8303 0.932 0.000 0.000 0.000 0.028 0.040
#> GSM680072     6  0.5678     0.2037 0.000 0.296 0.036 0.000 0.092 0.576
#> GSM680078     1  0.3461     0.7566 0.804 0.000 0.036 0.000 0.008 0.152
#> GSM680073     6  0.5746     0.3432 0.004 0.036 0.344 0.000 0.072 0.544
#> GSM680079     1  0.0748     0.8377 0.976 0.000 0.000 0.004 0.004 0.016
#> GSM680074     2  0.3727     0.3286 0.000 0.612 0.000 0.000 0.000 0.388
#> GSM680080     2  0.3890     0.2931 0.000 0.596 0.000 0.000 0.004 0.400
#> GSM680075     6  0.5581     0.1854 0.008 0.016 0.408 0.000 0.068 0.500
#> GSM680081     3  0.1080     0.8739 0.004 0.004 0.960 0.000 0.000 0.032
#> GSM680076     6  0.4820    -0.3154 0.036 0.464 0.000 0.000 0.008 0.492
#> GSM680082     1  0.1895     0.8289 0.912 0.000 0.000 0.000 0.016 0.072
#> GSM680029     3  0.2810     0.7457 0.000 0.004 0.832 0.000 0.008 0.156
#> GSM680041     4  0.0520     0.8641 0.000 0.000 0.000 0.984 0.008 0.008
#> GSM680035     3  0.0964     0.8823 0.000 0.012 0.968 0.000 0.016 0.004
#> GSM680047     4  0.0291     0.8653 0.000 0.000 0.000 0.992 0.004 0.004
#> GSM680036     5  0.6140     0.0702 0.000 0.008 0.260 0.000 0.460 0.272
#> GSM680048     4  0.0260     0.8666 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM680037     3  0.0603     0.8857 0.000 0.000 0.980 0.000 0.016 0.004
#> GSM680049     4  0.1151     0.8555 0.032 0.000 0.000 0.956 0.000 0.012
#> GSM680038     2  0.3240     0.5926 0.000 0.820 0.008 0.000 0.028 0.144
#> GSM680050     1  0.5481     0.5116 0.596 0.000 0.000 0.296 0.044 0.064
#> GSM680039     2  0.4206     0.2447 0.000 0.620 0.356 0.000 0.000 0.024
#> GSM680051     4  0.1003     0.8639 0.000 0.016 0.000 0.964 0.000 0.020
#> GSM680040     3  0.0520     0.8834 0.000 0.000 0.984 0.000 0.008 0.008
#> GSM680052     4  0.0790     0.8642 0.000 0.000 0.000 0.968 0.000 0.032
#> GSM680030     2  0.2150     0.6241 0.004 0.912 0.016 0.004 0.004 0.060
#> GSM680042     4  0.1332     0.8553 0.012 0.000 0.000 0.952 0.008 0.028
#> GSM680031     3  0.1624     0.8557 0.000 0.004 0.936 0.000 0.020 0.040
#> GSM680043     4  0.7279     0.5055 0.172 0.008 0.124 0.516 0.016 0.164
#> GSM680032     1  0.4380     0.7631 0.764 0.020 0.000 0.012 0.060 0.144
#> GSM680044     4  0.6120     0.5028 0.224 0.000 0.016 0.580 0.024 0.156
#> GSM680033     3  0.0458     0.8858 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM680045     4  0.5464     0.7301 0.036 0.012 0.088 0.704 0.016 0.144
#> GSM680034     2  0.2919     0.5973 0.000 0.872 0.044 0.044 0.000 0.040
#> GSM680046     4  0.2527     0.8363 0.032 0.000 0.000 0.880 0.004 0.084

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) individual(p) protocol(p) other(p) k
#> CV:skmeans 52         4.27e-01         0.992    2.92e-08   0.4929 2
#> CV:skmeans 54         9.36e-02         0.816    5.54e-07   0.3992 3
#> CV:skmeans 54         5.91e-04         0.751    2.60e-07   0.1678 4
#> CV:skmeans 49         9.02e-05         0.330    7.61e-06   0.0978 5
#> CV:skmeans 41         7.20e-05         0.623    9.13e-05   0.0317 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.921           0.899       0.962         0.5077 0.493   0.493
#> 3 3 0.937           0.894       0.942         0.2961 0.802   0.615
#> 4 4 0.856           0.896       0.945         0.1364 0.875   0.650
#> 5 5 0.813           0.833       0.874         0.0680 0.945   0.783
#> 6 6 0.851           0.781       0.900         0.0472 0.948   0.745

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM680053     1  0.0000     0.9514 1.000 0.000
#> GSM680062     1  0.0000     0.9514 1.000 0.000
#> GSM680054     2  0.0000     0.9673 0.000 1.000
#> GSM680063     1  0.0000     0.9514 1.000 0.000
#> GSM680055     1  0.0000     0.9514 1.000 0.000
#> GSM680064     1  0.0000     0.9514 1.000 0.000
#> GSM680056     1  0.0000     0.9514 1.000 0.000
#> GSM680065     1  0.0000     0.9514 1.000 0.000
#> GSM680057     2  0.0000     0.9673 0.000 1.000
#> GSM680066     2  0.0000     0.9673 0.000 1.000
#> GSM680058     2  0.0000     0.9673 0.000 1.000
#> GSM680067     2  0.0000     0.9673 0.000 1.000
#> GSM680059     2  0.4939     0.8624 0.108 0.892
#> GSM680068     1  0.0000     0.9514 1.000 0.000
#> GSM680060     2  0.0000     0.9673 0.000 1.000
#> GSM680069     1  0.0000     0.9514 1.000 0.000
#> GSM680061     2  0.0000     0.9673 0.000 1.000
#> GSM680070     1  0.0000     0.9514 1.000 0.000
#> GSM680071     2  0.4562     0.8755 0.096 0.904
#> GSM680077     2  0.9963     0.0986 0.464 0.536
#> GSM680072     2  0.2603     0.9322 0.044 0.956
#> GSM680078     1  0.0000     0.9514 1.000 0.000
#> GSM680073     1  0.2423     0.9167 0.960 0.040
#> GSM680079     1  0.0000     0.9514 1.000 0.000
#> GSM680074     2  0.0000     0.9673 0.000 1.000
#> GSM680080     2  0.0000     0.9673 0.000 1.000
#> GSM680075     1  0.0000     0.9514 1.000 0.000
#> GSM680081     2  0.0000     0.9673 0.000 1.000
#> GSM680076     2  0.0000     0.9673 0.000 1.000
#> GSM680082     2  0.0000     0.9673 0.000 1.000
#> GSM680029     1  0.9866     0.2349 0.568 0.432
#> GSM680041     1  0.0000     0.9514 1.000 0.000
#> GSM680035     2  0.0000     0.9673 0.000 1.000
#> GSM680047     1  0.0000     0.9514 1.000 0.000
#> GSM680036     1  0.9248     0.4860 0.660 0.340
#> GSM680048     1  0.0000     0.9514 1.000 0.000
#> GSM680037     1  0.0376     0.9482 0.996 0.004
#> GSM680049     1  0.9996     0.0583 0.512 0.488
#> GSM680038     2  0.0000     0.9673 0.000 1.000
#> GSM680050     1  0.0000     0.9514 1.000 0.000
#> GSM680039     2  0.0000     0.9673 0.000 1.000
#> GSM680051     2  0.1633     0.9491 0.024 0.976
#> GSM680040     2  0.0000     0.9673 0.000 1.000
#> GSM680052     1  0.0000     0.9514 1.000 0.000
#> GSM680030     2  0.0000     0.9673 0.000 1.000
#> GSM680042     1  0.0000     0.9514 1.000 0.000
#> GSM680031     1  0.0000     0.9514 1.000 0.000
#> GSM680043     1  0.0000     0.9514 1.000 0.000
#> GSM680032     2  0.0000     0.9673 0.000 1.000
#> GSM680044     1  0.0000     0.9514 1.000 0.000
#> GSM680033     2  0.0000     0.9673 0.000 1.000
#> GSM680045     1  0.0000     0.9514 1.000 0.000
#> GSM680034     2  0.0000     0.9673 0.000 1.000
#> GSM680046     1  0.0000     0.9514 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM680053     1  0.1267     0.9439 0.972 0.004 0.024
#> GSM680062     1  0.1267     0.9439 0.972 0.004 0.024
#> GSM680054     2  0.0592     0.9424 0.000 0.988 0.012
#> GSM680063     1  0.1267     0.9439 0.972 0.004 0.024
#> GSM680055     1  0.1267     0.9439 0.972 0.004 0.024
#> GSM680064     1  0.2165     0.9153 0.936 0.000 0.064
#> GSM680056     1  0.1399     0.9438 0.968 0.004 0.028
#> GSM680065     1  0.1399     0.9438 0.968 0.004 0.028
#> GSM680057     2  0.0000     0.9485 0.000 1.000 0.000
#> GSM680066     2  0.0237     0.9468 0.000 0.996 0.004
#> GSM680058     2  0.0000     0.9485 0.000 1.000 0.000
#> GSM680067     2  0.0237     0.9471 0.004 0.996 0.000
#> GSM680059     3  0.3045     0.9181 0.020 0.064 0.916
#> GSM680068     3  0.4062     0.7781 0.164 0.000 0.836
#> GSM680060     2  0.0000     0.9485 0.000 1.000 0.000
#> GSM680069     1  0.1163     0.9431 0.972 0.000 0.028
#> GSM680061     2  0.0000     0.9485 0.000 1.000 0.000
#> GSM680070     1  0.2796     0.8989 0.908 0.000 0.092
#> GSM680071     2  0.2878     0.8657 0.096 0.904 0.000
#> GSM680077     2  0.7969     0.2024 0.396 0.540 0.064
#> GSM680072     2  0.3623     0.8749 0.032 0.896 0.072
#> GSM680078     3  0.1031     0.9153 0.024 0.000 0.976
#> GSM680073     3  0.2165     0.9148 0.064 0.000 0.936
#> GSM680079     3  0.1643     0.9120 0.044 0.000 0.956
#> GSM680074     2  0.0000     0.9485 0.000 1.000 0.000
#> GSM680080     2  0.0000     0.9485 0.000 1.000 0.000
#> GSM680075     3  0.2165     0.9148 0.064 0.000 0.936
#> GSM680081     3  0.2711     0.9028 0.000 0.088 0.912
#> GSM680076     2  0.0000     0.9485 0.000 1.000 0.000
#> GSM680082     2  0.3310     0.8890 0.028 0.908 0.064
#> GSM680029     3  0.2681     0.9234 0.028 0.040 0.932
#> GSM680041     1  0.0000     0.9441 1.000 0.000 0.000
#> GSM680035     2  0.0747     0.9400 0.000 0.984 0.016
#> GSM680047     1  0.0000     0.9441 1.000 0.000 0.000
#> GSM680036     3  0.2879     0.9207 0.024 0.052 0.924
#> GSM680048     1  0.0592     0.9452 0.988 0.000 0.012
#> GSM680037     3  0.2165     0.9148 0.064 0.000 0.936
#> GSM680049     1  0.8045     0.0905 0.504 0.432 0.064
#> GSM680038     2  0.0000     0.9485 0.000 1.000 0.000
#> GSM680050     1  0.1860     0.9361 0.948 0.000 0.052
#> GSM680039     2  0.0000     0.9485 0.000 1.000 0.000
#> GSM680051     2  0.2879     0.9008 0.052 0.924 0.024
#> GSM680040     3  0.2537     0.9080 0.000 0.080 0.920
#> GSM680052     1  0.1031     0.9379 0.976 0.000 0.024
#> GSM680030     2  0.0000     0.9485 0.000 1.000 0.000
#> GSM680042     1  0.1289     0.9350 0.968 0.000 0.032
#> GSM680031     1  0.1163     0.9431 0.972 0.000 0.028
#> GSM680043     1  0.1031     0.9379 0.976 0.000 0.024
#> GSM680032     2  0.2096     0.9184 0.004 0.944 0.052
#> GSM680044     1  0.0747     0.9453 0.984 0.000 0.016
#> GSM680033     3  0.5465     0.6564 0.000 0.288 0.712
#> GSM680045     1  0.1031     0.9379 0.976 0.000 0.024
#> GSM680034     2  0.0237     0.9471 0.004 0.996 0.000
#> GSM680046     1  0.1031     0.9379 0.976 0.000 0.024

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM680053     1  0.0000      0.962 1.000 0.000 0.000 0.000
#> GSM680062     1  0.0000      0.962 1.000 0.000 0.000 0.000
#> GSM680054     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> GSM680063     1  0.0000      0.962 1.000 0.000 0.000 0.000
#> GSM680055     1  0.0000      0.962 1.000 0.000 0.000 0.000
#> GSM680064     4  0.0000      0.857 0.000 0.000 0.000 1.000
#> GSM680056     1  0.0336      0.957 0.992 0.000 0.000 0.008
#> GSM680065     1  0.0592      0.953 0.984 0.000 0.000 0.016
#> GSM680057     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> GSM680066     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> GSM680058     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> GSM680067     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> GSM680059     3  0.0000      0.952 0.000 0.000 1.000 0.000
#> GSM680068     4  0.0336      0.854 0.000 0.000 0.008 0.992
#> GSM680060     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> GSM680069     1  0.0000      0.962 1.000 0.000 0.000 0.000
#> GSM680061     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> GSM680070     4  0.0000      0.857 0.000 0.000 0.000 1.000
#> GSM680071     2  0.2281      0.867 0.096 0.904 0.000 0.000
#> GSM680077     2  0.7417      0.326 0.284 0.508 0.000 0.208
#> GSM680072     2  0.2830      0.878 0.040 0.900 0.060 0.000
#> GSM680078     3  0.0000      0.952 0.000 0.000 1.000 0.000
#> GSM680073     3  0.0000      0.952 0.000 0.000 1.000 0.000
#> GSM680079     3  0.3649      0.763 0.000 0.000 0.796 0.204
#> GSM680074     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> GSM680080     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> GSM680075     3  0.0000      0.952 0.000 0.000 1.000 0.000
#> GSM680081     3  0.0000      0.952 0.000 0.000 1.000 0.000
#> GSM680076     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> GSM680082     4  0.0000      0.857 0.000 0.000 0.000 1.000
#> GSM680029     3  0.0000      0.952 0.000 0.000 1.000 0.000
#> GSM680041     1  0.3610      0.716 0.800 0.000 0.000 0.200
#> GSM680035     2  0.0469      0.944 0.000 0.988 0.012 0.000
#> GSM680047     1  0.1637      0.909 0.940 0.000 0.000 0.060
#> GSM680036     3  0.0000      0.952 0.000 0.000 1.000 0.000
#> GSM680048     1  0.0000      0.962 1.000 0.000 0.000 0.000
#> GSM680037     3  0.0000      0.952 0.000 0.000 1.000 0.000
#> GSM680049     4  0.0000      0.857 0.000 0.000 0.000 1.000
#> GSM680038     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> GSM680050     1  0.2469      0.856 0.892 0.000 0.000 0.108
#> GSM680039     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> GSM680051     4  0.3688      0.728 0.000 0.208 0.000 0.792
#> GSM680040     3  0.0000      0.952 0.000 0.000 1.000 0.000
#> GSM680052     4  0.3688      0.828 0.208 0.000 0.000 0.792
#> GSM680030     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> GSM680042     4  0.3528      0.833 0.192 0.000 0.000 0.808
#> GSM680031     1  0.0000      0.962 1.000 0.000 0.000 0.000
#> GSM680043     4  0.3688      0.828 0.208 0.000 0.000 0.792
#> GSM680032     2  0.3444      0.781 0.000 0.816 0.000 0.184
#> GSM680044     1  0.0000      0.962 1.000 0.000 0.000 0.000
#> GSM680033     3  0.3873      0.694 0.000 0.228 0.772 0.000
#> GSM680045     4  0.3688      0.828 0.208 0.000 0.000 0.792
#> GSM680034     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> GSM680046     4  0.3688      0.828 0.208 0.000 0.000 0.792

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM680053     5  0.0000      0.919 0.000 0.000 0.000 0.000 1.000
#> GSM680062     5  0.0000      0.919 0.000 0.000 0.000 0.000 1.000
#> GSM680054     1  0.0162      0.837 0.996 0.000 0.000 0.000 0.004
#> GSM680063     5  0.0000      0.919 0.000 0.000 0.000 0.000 1.000
#> GSM680055     5  0.0000      0.919 0.000 0.000 0.000 0.000 1.000
#> GSM680064     4  0.3039      0.800 0.000 0.192 0.000 0.808 0.000
#> GSM680056     5  0.2280      0.866 0.000 0.120 0.000 0.000 0.880
#> GSM680065     5  0.2439      0.864 0.000 0.120 0.000 0.004 0.876
#> GSM680057     1  0.0000      0.839 1.000 0.000 0.000 0.000 0.000
#> GSM680066     1  0.0324      0.835 0.992 0.000 0.004 0.004 0.000
#> GSM680058     2  0.4015      0.914 0.348 0.652 0.000 0.000 0.000
#> GSM680067     1  0.1851      0.739 0.912 0.088 0.000 0.000 0.000
#> GSM680059     3  0.0000      0.945 0.000 0.000 1.000 0.000 0.000
#> GSM680068     4  0.2233      0.846 0.000 0.104 0.004 0.892 0.000
#> GSM680060     2  0.3999      0.916 0.344 0.656 0.000 0.000 0.000
#> GSM680069     5  0.0000      0.919 0.000 0.000 0.000 0.000 1.000
#> GSM680061     1  0.0000      0.839 1.000 0.000 0.000 0.000 0.000
#> GSM680070     4  0.2389      0.841 0.000 0.116 0.000 0.880 0.004
#> GSM680071     1  0.4457      0.553 0.756 0.152 0.000 0.000 0.092
#> GSM680077     1  0.7529      0.215 0.428 0.348 0.000 0.080 0.144
#> GSM680072     2  0.4736      0.895 0.312 0.656 0.004 0.000 0.028
#> GSM680078     3  0.0000      0.945 0.000 0.000 1.000 0.000 0.000
#> GSM680073     3  0.0000      0.945 0.000 0.000 1.000 0.000 0.000
#> GSM680079     3  0.4847      0.664 0.000 0.216 0.704 0.080 0.000
#> GSM680074     2  0.3999      0.916 0.344 0.656 0.000 0.000 0.000
#> GSM680080     2  0.4242      0.815 0.428 0.572 0.000 0.000 0.000
#> GSM680075     3  0.0000      0.945 0.000 0.000 1.000 0.000 0.000
#> GSM680081     3  0.0000      0.945 0.000 0.000 1.000 0.000 0.000
#> GSM680076     2  0.3242      0.788 0.216 0.784 0.000 0.000 0.000
#> GSM680082     4  0.3999      0.680 0.000 0.344 0.000 0.656 0.000
#> GSM680029     3  0.0000      0.945 0.000 0.000 1.000 0.000 0.000
#> GSM680041     5  0.3913      0.595 0.000 0.000 0.000 0.324 0.676
#> GSM680035     1  0.0609      0.824 0.980 0.000 0.020 0.000 0.000
#> GSM680047     5  0.2966      0.807 0.000 0.000 0.000 0.184 0.816
#> GSM680036     3  0.0000      0.945 0.000 0.000 1.000 0.000 0.000
#> GSM680048     5  0.1908      0.874 0.000 0.000 0.000 0.092 0.908
#> GSM680037     3  0.0000      0.945 0.000 0.000 1.000 0.000 0.000
#> GSM680049     4  0.0162      0.860 0.004 0.000 0.000 0.996 0.000
#> GSM680038     1  0.0510      0.827 0.984 0.016 0.000 0.000 0.000
#> GSM680050     5  0.3012      0.849 0.000 0.104 0.000 0.036 0.860
#> GSM680039     1  0.0000      0.839 1.000 0.000 0.000 0.000 0.000
#> GSM680051     4  0.1908      0.827 0.092 0.000 0.000 0.908 0.000
#> GSM680040     3  0.0000      0.945 0.000 0.000 1.000 0.000 0.000
#> GSM680052     4  0.2077      0.860 0.008 0.000 0.000 0.908 0.084
#> GSM680030     1  0.0000      0.839 1.000 0.000 0.000 0.000 0.000
#> GSM680042     4  0.1544      0.863 0.000 0.000 0.000 0.932 0.068
#> GSM680031     5  0.0000      0.919 0.000 0.000 0.000 0.000 1.000
#> GSM680043     4  0.2966      0.819 0.000 0.000 0.000 0.816 0.184
#> GSM680032     1  0.5004      0.478 0.672 0.256 0.000 0.072 0.000
#> GSM680044     5  0.0000      0.919 0.000 0.000 0.000 0.000 1.000
#> GSM680033     3  0.3336      0.684 0.228 0.000 0.772 0.000 0.000
#> GSM680045     4  0.3093      0.829 0.008 0.000 0.000 0.824 0.168
#> GSM680034     1  0.0000      0.839 1.000 0.000 0.000 0.000 0.000
#> GSM680046     4  0.2077      0.860 0.008 0.000 0.000 0.908 0.084

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM680053     5  0.0000      0.831 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM680062     5  0.0000      0.831 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM680054     2  0.0260      0.898 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM680063     5  0.0000      0.831 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM680055     5  0.0000      0.831 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM680064     1  0.3634      0.329 0.644 0.000 0.000 0.356 0.000 0.000
#> GSM680056     1  0.3868      0.248 0.504 0.000 0.000 0.000 0.496 0.000
#> GSM680065     1  0.3868      0.248 0.504 0.000 0.000 0.000 0.496 0.000
#> GSM680057     2  0.0000      0.901 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM680066     2  0.0260      0.898 0.000 0.992 0.008 0.000 0.000 0.000
#> GSM680058     6  0.1327      0.922 0.000 0.064 0.000 0.000 0.000 0.936
#> GSM680067     2  0.2048      0.807 0.000 0.880 0.000 0.000 0.000 0.120
#> GSM680059     3  0.0000      0.969 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680068     4  0.2941      0.739 0.220 0.000 0.000 0.780 0.000 0.000
#> GSM680060     6  0.0865      0.939 0.000 0.036 0.000 0.000 0.000 0.964
#> GSM680069     5  0.0000      0.831 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM680061     2  0.0000      0.901 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM680070     4  0.3189      0.718 0.236 0.000 0.000 0.760 0.004 0.000
#> GSM680071     2  0.6597      0.128 0.324 0.472 0.000 0.000 0.084 0.120
#> GSM680077     1  0.0000      0.653 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM680072     6  0.0806      0.935 0.000 0.020 0.000 0.000 0.008 0.972
#> GSM680078     3  0.0000      0.969 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680073     3  0.0000      0.969 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680079     1  0.1610      0.634 0.916 0.000 0.084 0.000 0.000 0.000
#> GSM680074     6  0.0713      0.938 0.000 0.028 0.000 0.000 0.000 0.972
#> GSM680080     6  0.2300      0.850 0.000 0.144 0.000 0.000 0.000 0.856
#> GSM680075     3  0.0000      0.969 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680081     3  0.0000      0.969 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680076     6  0.1267      0.888 0.060 0.000 0.000 0.000 0.000 0.940
#> GSM680082     1  0.1257      0.652 0.952 0.000 0.000 0.020 0.000 0.028
#> GSM680029     3  0.0000      0.969 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680041     5  0.3774      0.472 0.000 0.000 0.000 0.408 0.592 0.000
#> GSM680035     2  0.0458      0.893 0.000 0.984 0.016 0.000 0.000 0.000
#> GSM680047     5  0.3351      0.626 0.000 0.000 0.000 0.288 0.712 0.000
#> GSM680036     3  0.0000      0.969 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680048     5  0.2697      0.702 0.000 0.000 0.000 0.188 0.812 0.000
#> GSM680037     3  0.0000      0.969 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680049     4  0.0458      0.849 0.016 0.000 0.000 0.984 0.000 0.000
#> GSM680038     2  0.0363      0.896 0.000 0.988 0.000 0.000 0.000 0.012
#> GSM680050     5  0.3930      0.214 0.420 0.000 0.000 0.004 0.576 0.000
#> GSM680039     2  0.0000      0.901 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM680051     4  0.0713      0.848 0.000 0.028 0.000 0.972 0.000 0.000
#> GSM680040     3  0.0000      0.969 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680052     4  0.0806      0.856 0.000 0.008 0.000 0.972 0.020 0.000
#> GSM680030     2  0.0000      0.901 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM680042     4  0.0000      0.849 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM680031     5  0.0146      0.828 0.000 0.000 0.004 0.000 0.996 0.000
#> GSM680043     4  0.2912      0.728 0.000 0.000 0.000 0.784 0.216 0.000
#> GSM680032     2  0.4196      0.486 0.332 0.640 0.000 0.000 0.000 0.028
#> GSM680044     5  0.0000      0.831 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM680033     3  0.2996      0.687 0.000 0.228 0.772 0.000 0.000 0.000
#> GSM680045     4  0.2933      0.745 0.000 0.004 0.000 0.796 0.200 0.000
#> GSM680034     2  0.0000      0.901 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM680046     4  0.0891      0.856 0.000 0.008 0.000 0.968 0.024 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) individual(p) protocol(p) other(p) k
#> CV:pam 50           0.7394        0.5783    1.85e-03 4.04e-01 2
#> CV:pam 52           0.4354        0.0936    1.18e-03 9.41e-03 3
#> CV:pam 53           0.4687        0.3829    3.69e-05 3.02e-02 4
#> CV:pam 52           0.1666        0.2525    1.73e-04 2.16e-03 5
#> CV:pam 47           0.0425        0.2707    3.60e-04 8.25e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.467           0.857       0.869         0.3444 0.591   0.591
#> 3 3 0.399           0.588       0.756         0.6639 0.672   0.490
#> 4 4 0.820           0.836       0.926         0.2631 0.841   0.606
#> 5 5 0.670           0.557       0.764         0.0735 0.899   0.663
#> 6 6 0.673           0.515       0.707         0.0449 0.899   0.605

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM680053     2  0.0938      0.906 0.012 0.988
#> GSM680062     2  0.0000      0.909 0.000 1.000
#> GSM680054     2  0.2423      0.898 0.040 0.960
#> GSM680063     2  0.0000      0.909 0.000 1.000
#> GSM680055     2  0.0000      0.909 0.000 1.000
#> GSM680064     1  0.8661      0.935 0.712 0.288
#> GSM680056     1  0.9833      0.803 0.576 0.424
#> GSM680065     1  0.8763      0.937 0.704 0.296
#> GSM680057     2  0.1843      0.904 0.028 0.972
#> GSM680066     2  0.0000      0.909 0.000 1.000
#> GSM680058     2  0.1843      0.904 0.028 0.972
#> GSM680067     2  0.1414      0.907 0.020 0.980
#> GSM680059     2  0.1843      0.895 0.028 0.972
#> GSM680068     1  0.9460      0.895 0.636 0.364
#> GSM680060     2  0.1414      0.907 0.020 0.980
#> GSM680069     2  0.0000      0.909 0.000 1.000
#> GSM680061     2  0.1414      0.907 0.020 0.980
#> GSM680070     1  0.8763      0.937 0.704 0.296
#> GSM680071     2  0.1414      0.907 0.020 0.980
#> GSM680077     1  0.8499      0.931 0.724 0.276
#> GSM680072     2  0.1633      0.907 0.024 0.976
#> GSM680078     2  0.0000      0.909 0.000 1.000
#> GSM680073     2  0.0000      0.909 0.000 1.000
#> GSM680079     1  0.8763      0.937 0.704 0.296
#> GSM680074     2  0.1414      0.907 0.020 0.980
#> GSM680080     2  0.1633      0.907 0.024 0.976
#> GSM680075     2  0.0000      0.909 0.000 1.000
#> GSM680081     2  0.0000      0.909 0.000 1.000
#> GSM680076     2  0.1414      0.907 0.020 0.980
#> GSM680082     1  0.8499      0.931 0.724 0.276
#> GSM680029     2  0.0938      0.906 0.012 0.988
#> GSM680041     1  0.8661      0.935 0.712 0.288
#> GSM680035     2  0.8207      0.637 0.256 0.744
#> GSM680047     1  0.9522      0.885 0.628 0.372
#> GSM680036     2  0.0938      0.906 0.012 0.988
#> GSM680048     1  0.9815      0.815 0.580 0.420
#> GSM680037     2  0.6801      0.729 0.180 0.820
#> GSM680049     1  0.8443      0.929 0.728 0.272
#> GSM680038     2  0.1843      0.904 0.028 0.972
#> GSM680050     1  0.8499      0.931 0.724 0.276
#> GSM680039     2  0.0000      0.909 0.000 1.000
#> GSM680051     2  0.8443      0.310 0.272 0.728
#> GSM680040     2  0.8207      0.637 0.256 0.744
#> GSM680052     2  0.8499      0.295 0.276 0.724
#> GSM680030     2  0.1843      0.904 0.028 0.972
#> GSM680042     1  0.8661      0.935 0.712 0.288
#> GSM680031     2  0.7528      0.686 0.216 0.784
#> GSM680043     2  0.0000      0.909 0.000 1.000
#> GSM680032     2  0.6623      0.631 0.172 0.828
#> GSM680044     2  0.0376      0.907 0.004 0.996
#> GSM680033     2  0.8207      0.637 0.256 0.744
#> GSM680045     2  0.0000      0.909 0.000 1.000
#> GSM680034     2  0.0938      0.909 0.012 0.988
#> GSM680046     1  0.9522      0.885 0.628 0.372

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM680053     3  0.1643      0.739 0.044 0.000 0.956
#> GSM680062     3  0.2200      0.732 0.056 0.004 0.940
#> GSM680054     3  0.5247      0.400 0.008 0.224 0.768
#> GSM680063     3  0.2096      0.735 0.052 0.004 0.944
#> GSM680055     3  0.2096      0.734 0.052 0.004 0.944
#> GSM680064     1  0.6381      0.727 0.648 0.340 0.012
#> GSM680056     1  0.7238      0.727 0.628 0.328 0.044
#> GSM680065     1  0.6651      0.729 0.640 0.340 0.020
#> GSM680057     3  0.7578     -0.637 0.040 0.460 0.500
#> GSM680066     3  0.5480      0.426 0.264 0.004 0.732
#> GSM680058     2  0.6822      0.669 0.012 0.508 0.480
#> GSM680067     2  0.7442      0.830 0.048 0.604 0.348
#> GSM680059     3  0.1163      0.734 0.028 0.000 0.972
#> GSM680068     1  0.6890      0.729 0.632 0.340 0.028
#> GSM680060     2  0.6427      0.814 0.012 0.640 0.348
#> GSM680069     3  0.5292      0.490 0.228 0.008 0.764
#> GSM680061     2  0.7328      0.832 0.044 0.612 0.344
#> GSM680070     1  0.6651      0.729 0.640 0.340 0.020
#> GSM680071     2  0.9962      0.456 0.292 0.364 0.344
#> GSM680077     1  0.6104      0.724 0.648 0.348 0.004
#> GSM680072     3  0.5024      0.398 0.004 0.220 0.776
#> GSM680078     3  0.8171      0.328 0.172 0.184 0.644
#> GSM680073     3  0.1878      0.738 0.044 0.004 0.952
#> GSM680079     1  0.6381      0.727 0.648 0.340 0.012
#> GSM680074     2  0.6104      0.803 0.004 0.648 0.348
#> GSM680080     2  0.6521      0.644 0.004 0.504 0.492
#> GSM680075     3  0.1878      0.738 0.044 0.004 0.952
#> GSM680081     3  0.1643      0.739 0.044 0.000 0.956
#> GSM680076     2  0.7442      0.832 0.048 0.604 0.348
#> GSM680082     1  0.6104      0.724 0.648 0.348 0.004
#> GSM680029     3  0.1529      0.739 0.040 0.000 0.960
#> GSM680041     1  0.2866      0.709 0.916 0.008 0.076
#> GSM680035     3  0.0661      0.711 0.004 0.008 0.988
#> GSM680047     1  0.3412      0.696 0.876 0.000 0.124
#> GSM680036     3  0.1643      0.739 0.044 0.000 0.956
#> GSM680048     1  0.3826      0.693 0.868 0.008 0.124
#> GSM680037     3  0.0661      0.711 0.004 0.008 0.988
#> GSM680049     1  0.2749      0.708 0.924 0.012 0.064
#> GSM680038     3  0.7065     -0.235 0.032 0.352 0.616
#> GSM680050     1  0.7847      0.732 0.588 0.344 0.068
#> GSM680039     3  0.5069      0.570 0.044 0.128 0.828
#> GSM680051     1  0.4755      0.664 0.808 0.008 0.184
#> GSM680040     3  0.0661      0.711 0.004 0.008 0.988
#> GSM680052     1  0.4164      0.688 0.848 0.008 0.144
#> GSM680030     3  0.6905     -0.540 0.016 0.440 0.544
#> GSM680042     1  0.2680      0.709 0.924 0.008 0.068
#> GSM680031     3  0.0848      0.714 0.008 0.008 0.984
#> GSM680043     1  0.6678      0.158 0.512 0.008 0.480
#> GSM680032     1  0.6498      0.236 0.596 0.008 0.396
#> GSM680044     1  0.6513      0.178 0.520 0.004 0.476
#> GSM680033     3  0.0661      0.711 0.004 0.008 0.988
#> GSM680045     3  0.6189      0.248 0.364 0.004 0.632
#> GSM680034     2  0.7582      0.811 0.048 0.572 0.380
#> GSM680046     1  0.3644      0.694 0.872 0.004 0.124

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM680053     3  0.0921     0.8902 0.028 0.000 0.972 0.000
#> GSM680062     3  0.1388     0.8872 0.028 0.000 0.960 0.012
#> GSM680054     3  0.4304     0.6278 0.000 0.284 0.716 0.000
#> GSM680063     3  0.1388     0.8872 0.028 0.000 0.960 0.012
#> GSM680055     3  0.1388     0.8872 0.028 0.000 0.960 0.012
#> GSM680064     1  0.0000     0.9406 1.000 0.000 0.000 0.000
#> GSM680056     1  0.2867     0.8619 0.884 0.000 0.104 0.012
#> GSM680065     1  0.0469     0.9384 0.988 0.000 0.000 0.012
#> GSM680057     2  0.0336     0.9382 0.000 0.992 0.008 0.000
#> GSM680066     3  0.6270     0.5992 0.212 0.096 0.680 0.012
#> GSM680058     2  0.0469     0.9357 0.000 0.988 0.012 0.000
#> GSM680067     2  0.0000     0.9406 0.000 1.000 0.000 0.000
#> GSM680059     3  0.0336     0.8877 0.008 0.000 0.992 0.000
#> GSM680068     1  0.0804     0.9367 0.980 0.000 0.008 0.012
#> GSM680060     2  0.0000     0.9406 0.000 1.000 0.000 0.000
#> GSM680069     3  0.2805     0.8436 0.100 0.000 0.888 0.012
#> GSM680061     2  0.0000     0.9406 0.000 1.000 0.000 0.000
#> GSM680070     1  0.0188     0.9412 0.996 0.000 0.000 0.004
#> GSM680071     2  0.5028     0.3536 0.400 0.596 0.004 0.000
#> GSM680077     1  0.0188     0.9396 0.996 0.004 0.000 0.000
#> GSM680072     3  0.4647     0.6165 0.008 0.288 0.704 0.000
#> GSM680078     1  0.3625     0.7940 0.828 0.000 0.160 0.012
#> GSM680073     3  0.0921     0.8902 0.028 0.000 0.972 0.000
#> GSM680079     1  0.0188     0.9412 0.996 0.000 0.000 0.004
#> GSM680074     2  0.0000     0.9406 0.000 1.000 0.000 0.000
#> GSM680080     2  0.0188     0.9394 0.004 0.996 0.000 0.000
#> GSM680075     3  0.0921     0.8902 0.028 0.000 0.972 0.000
#> GSM680081     3  0.0921     0.8902 0.028 0.000 0.972 0.000
#> GSM680076     2  0.0921     0.9193 0.028 0.972 0.000 0.000
#> GSM680082     1  0.0188     0.9396 0.996 0.004 0.000 0.000
#> GSM680029     3  0.0817     0.8902 0.024 0.000 0.976 0.000
#> GSM680041     4  0.1398     0.8985 0.040 0.004 0.000 0.956
#> GSM680035     3  0.0000     0.8860 0.000 0.000 1.000 0.000
#> GSM680047     4  0.0000     0.9109 0.000 0.000 0.000 1.000
#> GSM680036     3  0.0921     0.8902 0.028 0.000 0.972 0.000
#> GSM680048     4  0.0000     0.9109 0.000 0.000 0.000 1.000
#> GSM680037     3  0.0000     0.8860 0.000 0.000 1.000 0.000
#> GSM680049     4  0.1398     0.8985 0.040 0.004 0.000 0.956
#> GSM680038     3  0.4989     0.1865 0.000 0.472 0.528 0.000
#> GSM680050     1  0.0188     0.9396 0.996 0.004 0.000 0.000
#> GSM680039     3  0.1716     0.8651 0.000 0.064 0.936 0.000
#> GSM680051     4  0.0000     0.9109 0.000 0.000 0.000 1.000
#> GSM680040     3  0.0000     0.8860 0.000 0.000 1.000 0.000
#> GSM680052     4  0.0000     0.9109 0.000 0.000 0.000 1.000
#> GSM680030     2  0.1940     0.8715 0.000 0.924 0.076 0.000
#> GSM680042     4  0.1398     0.8985 0.040 0.004 0.000 0.956
#> GSM680031     3  0.0000     0.8860 0.000 0.000 1.000 0.000
#> GSM680043     4  0.5119     0.0819 0.004 0.000 0.440 0.556
#> GSM680032     1  0.3217     0.8339 0.860 0.000 0.128 0.012
#> GSM680044     3  0.3308     0.8316 0.036 0.000 0.872 0.092
#> GSM680033     3  0.0000     0.8860 0.000 0.000 1.000 0.000
#> GSM680045     3  0.5212     0.2537 0.008 0.000 0.572 0.420
#> GSM680034     2  0.0000     0.9406 0.000 1.000 0.000 0.000
#> GSM680046     4  0.0000     0.9109 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM680053     5  0.4225     0.2987 0.004 0.000 0.364 0.000 0.632
#> GSM680062     5  0.5781     0.3574 0.008 0.000 0.260 0.112 0.620
#> GSM680054     5  0.4497     0.0642 0.000 0.352 0.016 0.000 0.632
#> GSM680063     5  0.4102     0.3824 0.004 0.000 0.300 0.004 0.692
#> GSM680055     5  0.4375     0.3029 0.004 0.000 0.364 0.004 0.628
#> GSM680064     1  0.1591     0.8736 0.940 0.004 0.052 0.004 0.000
#> GSM680056     1  0.3812     0.7508 0.796 0.000 0.168 0.004 0.032
#> GSM680065     1  0.0955     0.8724 0.968 0.000 0.028 0.004 0.000
#> GSM680057     2  0.3408     0.7519 0.004 0.840 0.008 0.020 0.128
#> GSM680066     1  0.7339     0.0798 0.484 0.036 0.188 0.008 0.284
#> GSM680058     2  0.3478     0.7734 0.032 0.844 0.016 0.000 0.108
#> GSM680067     2  0.2142     0.7812 0.000 0.920 0.028 0.048 0.004
#> GSM680059     5  0.4270    -0.1408 0.004 0.004 0.336 0.000 0.656
#> GSM680068     1  0.1798     0.8736 0.928 0.004 0.064 0.004 0.000
#> GSM680060     2  0.3193     0.7791 0.032 0.852 0.112 0.000 0.004
#> GSM680069     5  0.6346     0.1802 0.160 0.000 0.320 0.004 0.516
#> GSM680061     2  0.1828     0.7837 0.000 0.936 0.028 0.032 0.004
#> GSM680070     1  0.1518     0.8741 0.944 0.004 0.048 0.004 0.000
#> GSM680071     2  0.5051     0.3934 0.392 0.576 0.024 0.008 0.000
#> GSM680077     1  0.0671     0.8717 0.980 0.004 0.016 0.000 0.000
#> GSM680072     3  0.6811     0.0867 0.000 0.336 0.360 0.000 0.304
#> GSM680078     1  0.4382     0.6905 0.700 0.000 0.276 0.004 0.020
#> GSM680073     3  0.4507     0.3259 0.004 0.004 0.580 0.000 0.412
#> GSM680079     1  0.1571     0.8744 0.936 0.004 0.060 0.000 0.000
#> GSM680074     2  0.3276     0.7717 0.032 0.836 0.132 0.000 0.000
#> GSM680080     2  0.3396     0.7726 0.028 0.832 0.136 0.000 0.004
#> GSM680075     3  0.4490     0.3244 0.004 0.004 0.588 0.000 0.404
#> GSM680081     5  0.4044     0.4033 0.012 0.004 0.252 0.000 0.732
#> GSM680076     2  0.3759     0.7548 0.056 0.808 0.136 0.000 0.000
#> GSM680082     1  0.0671     0.8717 0.980 0.004 0.016 0.000 0.000
#> GSM680029     5  0.4264     0.2602 0.004 0.000 0.376 0.000 0.620
#> GSM680041     4  0.4734     0.7330 0.108 0.000 0.160 0.732 0.000
#> GSM680035     5  0.0510     0.4475 0.000 0.000 0.016 0.000 0.984
#> GSM680047     4  0.0609     0.8082 0.000 0.000 0.020 0.980 0.000
#> GSM680036     5  0.4321     0.2219 0.004 0.000 0.396 0.000 0.600
#> GSM680048     4  0.0162     0.8084 0.000 0.000 0.004 0.996 0.000
#> GSM680037     5  0.0963     0.4538 0.000 0.000 0.036 0.000 0.964
#> GSM680049     4  0.4888     0.7315 0.108 0.004 0.160 0.728 0.000
#> GSM680038     2  0.5065     0.2267 0.000 0.524 0.008 0.020 0.448
#> GSM680050     1  0.0613     0.8731 0.984 0.004 0.004 0.008 0.000
#> GSM680039     5  0.5282    -0.0359 0.004 0.440 0.024 0.008 0.524
#> GSM680051     4  0.0324     0.8078 0.000 0.004 0.004 0.992 0.000
#> GSM680040     5  0.0510     0.4505 0.000 0.000 0.016 0.000 0.984
#> GSM680052     4  0.0324     0.8078 0.000 0.004 0.004 0.992 0.000
#> GSM680030     2  0.3674     0.7318 0.004 0.816 0.008 0.020 0.152
#> GSM680042     4  0.4734     0.7330 0.108 0.000 0.160 0.732 0.000
#> GSM680031     5  0.0162     0.4527 0.000 0.000 0.004 0.000 0.996
#> GSM680043     4  0.4835     0.4104 0.000 0.016 0.016 0.648 0.320
#> GSM680032     1  0.2234     0.8545 0.916 0.004 0.060 0.004 0.016
#> GSM680044     5  0.7439     0.2518 0.104 0.004 0.172 0.176 0.544
#> GSM680033     5  0.0609     0.4444 0.000 0.000 0.020 0.000 0.980
#> GSM680045     4  0.4882     0.2520 0.000 0.012 0.012 0.588 0.388
#> GSM680034     2  0.3857     0.7648 0.000 0.832 0.028 0.052 0.088
#> GSM680046     4  0.0771     0.8081 0.000 0.004 0.020 0.976 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5 p6
#> GSM680053     5  0.1350     0.6555 0.020 0.000 0.020 0.000 0.952 NA
#> GSM680062     5  0.5189     0.5300 0.012 0.000 0.108 0.144 0.704 NA
#> GSM680054     5  0.6125    -0.3490 0.000 0.312 0.340 0.000 0.348 NA
#> GSM680063     5  0.3088     0.6213 0.004 0.004 0.064 0.028 0.868 NA
#> GSM680055     5  0.1036     0.6570 0.024 0.000 0.008 0.004 0.964 NA
#> GSM680064     1  0.3067     0.8152 0.868 0.016 0.024 0.012 0.004 NA
#> GSM680056     1  0.5598     0.6155 0.648 0.004 0.044 0.028 0.240 NA
#> GSM680065     1  0.2543     0.8245 0.904 0.004 0.024 0.012 0.024 NA
#> GSM680057     3  0.4810    -0.3420 0.000 0.420 0.536 0.000 0.032 NA
#> GSM680066     1  0.6013     0.2426 0.496 0.028 0.028 0.032 0.404 NA
#> GSM680058     2  0.4130     0.4926 0.000 0.672 0.300 0.000 0.024 NA
#> GSM680067     2  0.5754     0.4902 0.000 0.476 0.380 0.008 0.000 NA
#> GSM680059     5  0.6633     0.2539 0.004 0.020 0.224 0.004 0.416 NA
#> GSM680068     1  0.2015     0.8257 0.916 0.012 0.000 0.000 0.056 NA
#> GSM680060     2  0.1349     0.6291 0.000 0.940 0.056 0.000 0.004 NA
#> GSM680069     5  0.4318     0.5479 0.180 0.004 0.020 0.028 0.756 NA
#> GSM680061     2  0.5694     0.4948 0.000 0.484 0.368 0.004 0.000 NA
#> GSM680070     1  0.0964     0.8304 0.968 0.012 0.000 0.000 0.004 NA
#> GSM680071     2  0.6479     0.3992 0.316 0.500 0.136 0.024 0.024 NA
#> GSM680077     1  0.0767     0.8313 0.976 0.012 0.004 0.000 0.000 NA
#> GSM680072     2  0.7233     0.1785 0.000 0.444 0.136 0.004 0.160 NA
#> GSM680078     1  0.5385     0.2354 0.480 0.004 0.016 0.028 0.456 NA
#> GSM680073     5  0.5205     0.5359 0.024 0.020 0.036 0.004 0.660 NA
#> GSM680079     1  0.1390     0.8274 0.948 0.004 0.016 0.000 0.000 NA
#> GSM680074     2  0.0692     0.6238 0.000 0.976 0.020 0.000 0.000 NA
#> GSM680080     2  0.1485     0.6127 0.000 0.944 0.024 0.000 0.004 NA
#> GSM680075     5  0.4997     0.5419 0.024 0.020 0.024 0.004 0.672 NA
#> GSM680081     5  0.2573     0.5582 0.008 0.000 0.132 0.004 0.856 NA
#> GSM680076     2  0.0146     0.6267 0.004 0.996 0.000 0.000 0.000 NA
#> GSM680082     1  0.0837     0.8311 0.972 0.020 0.004 0.000 0.000 NA
#> GSM680029     5  0.1857     0.6423 0.004 0.000 0.028 0.000 0.924 NA
#> GSM680041     4  0.4786     0.6237 0.044 0.004 0.000 0.540 0.000 NA
#> GSM680035     3  0.5182     0.3704 0.000 0.000 0.532 0.000 0.372 NA
#> GSM680047     4  0.0790     0.7816 0.000 0.000 0.000 0.968 0.000 NA
#> GSM680036     5  0.1718     0.6561 0.020 0.000 0.020 0.000 0.936 NA
#> GSM680048     4  0.0146     0.7834 0.000 0.000 0.000 0.996 0.004 NA
#> GSM680037     3  0.5187     0.2866 0.000 0.000 0.472 0.000 0.440 NA
#> GSM680049     4  0.4903     0.6126 0.044 0.008 0.000 0.524 0.000 NA
#> GSM680038     3  0.5943     0.0534 0.000 0.304 0.508 0.000 0.176 NA
#> GSM680050     1  0.0837     0.8320 0.972 0.020 0.004 0.000 0.004 NA
#> GSM680039     3  0.5434     0.0277 0.000 0.312 0.544 0.000 0.144 NA
#> GSM680051     4  0.0405     0.7822 0.000 0.000 0.004 0.988 0.008 NA
#> GSM680040     3  0.5212     0.3687 0.000 0.000 0.532 0.000 0.368 NA
#> GSM680052     4  0.0405     0.7822 0.000 0.000 0.004 0.988 0.008 NA
#> GSM680030     3  0.5157    -0.3367 0.000 0.416 0.524 0.012 0.040 NA
#> GSM680042     4  0.4780     0.6243 0.044 0.004 0.000 0.544 0.000 NA
#> GSM680031     3  0.5175     0.3155 0.000 0.000 0.492 0.000 0.420 NA
#> GSM680043     4  0.4832     0.5814 0.000 0.004 0.088 0.728 0.144 NA
#> GSM680032     1  0.3121     0.8007 0.868 0.012 0.020 0.028 0.068 NA
#> GSM680044     5  0.6981     0.4194 0.088 0.004 0.136 0.180 0.560 NA
#> GSM680033     3  0.5182     0.3704 0.000 0.000 0.532 0.000 0.372 NA
#> GSM680045     4  0.4753     0.5633 0.000 0.000 0.096 0.724 0.148 NA
#> GSM680034     2  0.5807     0.4430 0.000 0.440 0.428 0.016 0.000 NA
#> GSM680046     4  0.0865     0.7815 0.000 0.000 0.000 0.964 0.000 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) individual(p) protocol(p) other(p) k
#> CV:mclust 52         0.924063         0.776    1.17e-04   1.0000 2
#> CV:mclust 41         0.134749         0.380    2.17e-05   0.4945 3
#> CV:mclust 50         0.001368         0.459    1.77e-04   0.2552 4
#> CV:mclust 29         0.000398         0.312    6.51e-04   0.1628 5
#> CV:mclust 34         0.000116         0.250    6.43e-03   0.0356 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.957           0.952       0.977         0.4952 0.502   0.502
#> 3 3 0.521           0.713       0.849         0.3499 0.757   0.546
#> 4 4 0.642           0.695       0.839         0.1354 0.853   0.588
#> 5 5 0.604           0.644       0.764         0.0652 0.845   0.466
#> 6 6 0.681           0.589       0.753         0.0374 0.902   0.557

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM680053     2  0.0000      0.986 0.000 1.000
#> GSM680062     1  0.8955      0.578 0.688 0.312
#> GSM680054     2  0.0000      0.986 0.000 1.000
#> GSM680063     2  0.5059      0.868 0.112 0.888
#> GSM680055     2  0.0000      0.986 0.000 1.000
#> GSM680064     1  0.0000      0.963 1.000 0.000
#> GSM680056     1  0.3879      0.907 0.924 0.076
#> GSM680065     1  0.0000      0.963 1.000 0.000
#> GSM680057     2  0.0000      0.986 0.000 1.000
#> GSM680066     2  0.0938      0.976 0.012 0.988
#> GSM680058     2  0.0000      0.986 0.000 1.000
#> GSM680067     2  0.7528      0.724 0.216 0.784
#> GSM680059     2  0.0000      0.986 0.000 1.000
#> GSM680068     1  0.0000      0.963 1.000 0.000
#> GSM680060     2  0.0000      0.986 0.000 1.000
#> GSM680069     2  0.3584      0.921 0.068 0.932
#> GSM680061     2  0.0000      0.986 0.000 1.000
#> GSM680070     1  0.0000      0.963 1.000 0.000
#> GSM680071     1  0.3879      0.908 0.924 0.076
#> GSM680077     1  0.0000      0.963 1.000 0.000
#> GSM680072     2  0.0000      0.986 0.000 1.000
#> GSM680078     2  0.0376      0.982 0.004 0.996
#> GSM680073     2  0.0000      0.986 0.000 1.000
#> GSM680079     1  0.0000      0.963 1.000 0.000
#> GSM680074     2  0.0000      0.986 0.000 1.000
#> GSM680080     2  0.0000      0.986 0.000 1.000
#> GSM680075     2  0.0000      0.986 0.000 1.000
#> GSM680081     2  0.0000      0.986 0.000 1.000
#> GSM680076     2  0.0000      0.986 0.000 1.000
#> GSM680082     1  0.0000      0.963 1.000 0.000
#> GSM680029     2  0.0000      0.986 0.000 1.000
#> GSM680041     1  0.0000      0.963 1.000 0.000
#> GSM680035     2  0.0000      0.986 0.000 1.000
#> GSM680047     1  0.0000      0.963 1.000 0.000
#> GSM680036     2  0.0000      0.986 0.000 1.000
#> GSM680048     1  0.0000      0.963 1.000 0.000
#> GSM680037     2  0.0000      0.986 0.000 1.000
#> GSM680049     1  0.0000      0.963 1.000 0.000
#> GSM680038     2  0.0000      0.986 0.000 1.000
#> GSM680050     1  0.0000      0.963 1.000 0.000
#> GSM680039     2  0.0000      0.986 0.000 1.000
#> GSM680051     1  0.0000      0.963 1.000 0.000
#> GSM680040     2  0.0000      0.986 0.000 1.000
#> GSM680052     1  0.0000      0.963 1.000 0.000
#> GSM680030     2  0.0000      0.986 0.000 1.000
#> GSM680042     1  0.0000      0.963 1.000 0.000
#> GSM680031     2  0.0000      0.986 0.000 1.000
#> GSM680043     1  0.0376      0.961 0.996 0.004
#> GSM680032     1  0.3431      0.916 0.936 0.064
#> GSM680044     1  0.0672      0.958 0.992 0.008
#> GSM680033     2  0.0000      0.986 0.000 1.000
#> GSM680045     1  0.8386      0.658 0.732 0.268
#> GSM680034     2  0.0000      0.986 0.000 1.000
#> GSM680046     1  0.0000      0.963 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM680053     3  0.2878      0.756 0.000 0.096 0.904
#> GSM680062     3  0.4047      0.733 0.148 0.004 0.848
#> GSM680054     3  0.6204      0.356 0.000 0.424 0.576
#> GSM680063     3  0.3583      0.803 0.044 0.056 0.900
#> GSM680055     3  0.2448      0.753 0.000 0.076 0.924
#> GSM680064     1  0.0892      0.880 0.980 0.000 0.020
#> GSM680056     3  0.9375      0.190 0.308 0.196 0.496
#> GSM680065     1  0.4662      0.829 0.844 0.032 0.124
#> GSM680057     2  0.3551      0.716 0.000 0.868 0.132
#> GSM680066     2  0.7555      0.150 0.040 0.520 0.440
#> GSM680058     2  0.1753      0.746 0.000 0.952 0.048
#> GSM680067     2  0.4921      0.680 0.164 0.816 0.020
#> GSM680059     3  0.3551      0.803 0.000 0.132 0.868
#> GSM680068     1  0.1289      0.876 0.968 0.000 0.032
#> GSM680060     2  0.2537      0.731 0.000 0.920 0.080
#> GSM680069     3  0.7457      0.478 0.104 0.208 0.688
#> GSM680061     2  0.2590      0.745 0.004 0.924 0.072
#> GSM680070     1  0.2860      0.862 0.912 0.004 0.084
#> GSM680071     2  0.8790      0.179 0.328 0.540 0.132
#> GSM680077     1  0.7680      0.670 0.680 0.188 0.132
#> GSM680072     2  0.6225      0.036 0.000 0.568 0.432
#> GSM680078     3  0.1031      0.779 0.000 0.024 0.976
#> GSM680073     3  0.4291      0.771 0.000 0.180 0.820
#> GSM680079     1  0.3771      0.846 0.876 0.012 0.112
#> GSM680074     2  0.1289      0.756 0.000 0.968 0.032
#> GSM680080     2  0.1643      0.754 0.000 0.956 0.044
#> GSM680075     3  0.2448      0.770 0.000 0.076 0.924
#> GSM680081     3  0.3619      0.805 0.000 0.136 0.864
#> GSM680076     2  0.3551      0.692 0.000 0.868 0.132
#> GSM680082     1  0.6460      0.762 0.764 0.124 0.112
#> GSM680029     3  0.3267      0.807 0.000 0.116 0.884
#> GSM680041     1  0.0000      0.880 1.000 0.000 0.000
#> GSM680035     3  0.3619      0.805 0.000 0.136 0.864
#> GSM680047     1  0.0000      0.880 1.000 0.000 0.000
#> GSM680036     3  0.2878      0.799 0.000 0.096 0.904
#> GSM680048     1  0.0000      0.880 1.000 0.000 0.000
#> GSM680037     3  0.3619      0.805 0.000 0.136 0.864
#> GSM680049     1  0.0000      0.880 1.000 0.000 0.000
#> GSM680038     2  0.4399      0.667 0.000 0.812 0.188
#> GSM680050     1  0.3030      0.859 0.904 0.004 0.092
#> GSM680039     2  0.5678      0.491 0.000 0.684 0.316
#> GSM680051     1  0.1774      0.869 0.960 0.024 0.016
#> GSM680040     3  0.3619      0.805 0.000 0.136 0.864
#> GSM680052     1  0.1482      0.872 0.968 0.020 0.012
#> GSM680030     2  0.1031      0.755 0.000 0.976 0.024
#> GSM680042     1  0.0237      0.880 0.996 0.000 0.004
#> GSM680031     3  0.3784      0.803 0.004 0.132 0.864
#> GSM680043     1  0.6897      0.615 0.712 0.068 0.220
#> GSM680032     1  0.6783      0.748 0.744 0.116 0.140
#> GSM680044     1  0.0747      0.879 0.984 0.000 0.016
#> GSM680033     3  0.3752      0.799 0.000 0.144 0.856
#> GSM680045     1  0.8117      0.282 0.552 0.076 0.372
#> GSM680034     2  0.4963      0.658 0.008 0.792 0.200
#> GSM680046     1  0.0747      0.877 0.984 0.016 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM680053     3  0.4331     0.6436 0.288 0.000 0.712 0.000
#> GSM680062     3  0.2335     0.8016 0.020 0.000 0.920 0.060
#> GSM680054     3  0.7846     0.1885 0.300 0.296 0.404 0.000
#> GSM680063     3  0.1722     0.8173 0.048 0.000 0.944 0.008
#> GSM680055     1  0.4643     0.2789 0.656 0.000 0.344 0.000
#> GSM680064     4  0.4933     0.2197 0.432 0.000 0.000 0.568
#> GSM680056     1  0.1847     0.7729 0.940 0.004 0.052 0.004
#> GSM680065     1  0.1824     0.7809 0.936 0.000 0.004 0.060
#> GSM680057     2  0.2329     0.8294 0.000 0.916 0.012 0.072
#> GSM680066     4  0.8792     0.1371 0.048 0.236 0.324 0.392
#> GSM680058     2  0.1389     0.8333 0.048 0.952 0.000 0.000
#> GSM680067     2  0.3219     0.7772 0.000 0.836 0.000 0.164
#> GSM680059     3  0.0927     0.8276 0.008 0.016 0.976 0.000
#> GSM680068     4  0.4035     0.7258 0.176 0.000 0.020 0.804
#> GSM680060     2  0.0921     0.8380 0.028 0.972 0.000 0.000
#> GSM680069     1  0.2466     0.7525 0.916 0.028 0.056 0.000
#> GSM680061     2  0.2589     0.8109 0.000 0.884 0.000 0.116
#> GSM680070     1  0.5126     0.0893 0.552 0.004 0.000 0.444
#> GSM680071     1  0.4235     0.6485 0.792 0.188 0.004 0.016
#> GSM680077     1  0.1767     0.7778 0.944 0.044 0.000 0.012
#> GSM680072     2  0.6273     0.5318 0.248 0.644 0.108 0.000
#> GSM680078     3  0.4776     0.4934 0.376 0.000 0.624 0.000
#> GSM680073     3  0.5532     0.6645 0.228 0.068 0.704 0.000
#> GSM680079     1  0.3668     0.6837 0.808 0.000 0.004 0.188
#> GSM680074     2  0.0921     0.8380 0.028 0.972 0.000 0.000
#> GSM680080     2  0.1109     0.8380 0.028 0.968 0.004 0.000
#> GSM680075     3  0.5055     0.5274 0.368 0.008 0.624 0.000
#> GSM680081     3  0.0967     0.8292 0.004 0.004 0.976 0.016
#> GSM680076     2  0.3873     0.6745 0.228 0.772 0.000 0.000
#> GSM680082     1  0.2546     0.7655 0.900 0.008 0.000 0.092
#> GSM680029     3  0.0376     0.8284 0.004 0.004 0.992 0.000
#> GSM680041     4  0.3311     0.7303 0.172 0.000 0.000 0.828
#> GSM680035     3  0.0779     0.8295 0.000 0.004 0.980 0.016
#> GSM680047     4  0.2125     0.7804 0.076 0.000 0.004 0.920
#> GSM680036     3  0.3975     0.6966 0.240 0.000 0.760 0.000
#> GSM680048     4  0.0895     0.7818 0.020 0.004 0.000 0.976
#> GSM680037     3  0.0779     0.8295 0.000 0.004 0.980 0.016
#> GSM680049     4  0.2814     0.7600 0.132 0.000 0.000 0.868
#> GSM680038     2  0.3938     0.7879 0.080 0.852 0.060 0.008
#> GSM680050     1  0.3873     0.6278 0.772 0.000 0.000 0.228
#> GSM680039     2  0.6871     0.5608 0.000 0.592 0.240 0.168
#> GSM680051     4  0.1471     0.7714 0.004 0.024 0.012 0.960
#> GSM680040     3  0.0779     0.8295 0.000 0.004 0.980 0.016
#> GSM680052     4  0.1520     0.7692 0.000 0.020 0.024 0.956
#> GSM680030     2  0.1139     0.8396 0.008 0.972 0.008 0.012
#> GSM680042     4  0.3444     0.7193 0.184 0.000 0.000 0.816
#> GSM680031     3  0.1209     0.8226 0.000 0.004 0.964 0.032
#> GSM680043     4  0.3901     0.6802 0.004 0.012 0.168 0.816
#> GSM680032     1  0.1576     0.7848 0.948 0.000 0.004 0.048
#> GSM680044     4  0.2928     0.7734 0.108 0.000 0.012 0.880
#> GSM680033     3  0.0927     0.8285 0.000 0.008 0.976 0.016
#> GSM680045     4  0.4741     0.6156 0.000 0.028 0.228 0.744
#> GSM680034     2  0.4485     0.6868 0.000 0.740 0.012 0.248
#> GSM680046     4  0.0000     0.7801 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM680053     5  0.3132     0.6811 0.000 0.000 0.172 0.008 0.820
#> GSM680062     5  0.6358     0.2742 0.000 0.000 0.180 0.328 0.492
#> GSM680054     5  0.3122     0.7238 0.000 0.120 0.024 0.004 0.852
#> GSM680063     5  0.5565     0.5336 0.000 0.000 0.216 0.144 0.640
#> GSM680055     5  0.3086     0.7277 0.040 0.000 0.092 0.004 0.864
#> GSM680064     1  0.5131     0.1936 0.588 0.000 0.000 0.364 0.048
#> GSM680056     5  0.2006     0.7291 0.072 0.000 0.000 0.012 0.916
#> GSM680065     5  0.4193     0.5620 0.256 0.000 0.000 0.024 0.720
#> GSM680057     2  0.2536     0.7889 0.000 0.868 0.004 0.128 0.000
#> GSM680066     1  0.5751     0.4200 0.568 0.008 0.356 0.064 0.004
#> GSM680058     2  0.3961     0.5600 0.016 0.736 0.000 0.000 0.248
#> GSM680067     2  0.2773     0.7721 0.000 0.836 0.000 0.164 0.000
#> GSM680059     3  0.0566     0.7922 0.004 0.000 0.984 0.000 0.012
#> GSM680068     1  0.4859     0.6420 0.732 0.000 0.112 0.152 0.004
#> GSM680060     2  0.1608     0.7825 0.000 0.928 0.000 0.000 0.072
#> GSM680069     5  0.2462     0.7229 0.112 0.000 0.008 0.000 0.880
#> GSM680061     2  0.1851     0.7976 0.000 0.912 0.000 0.088 0.000
#> GSM680070     1  0.2758     0.7331 0.888 0.000 0.024 0.076 0.012
#> GSM680071     5  0.5077     0.6743 0.156 0.108 0.000 0.012 0.724
#> GSM680077     1  0.1731     0.7391 0.932 0.004 0.004 0.000 0.060
#> GSM680072     5  0.5166     0.3987 0.044 0.348 0.004 0.000 0.604
#> GSM680078     1  0.5109     0.2456 0.504 0.000 0.460 0.000 0.036
#> GSM680073     3  0.6750     0.0251 0.068 0.068 0.476 0.000 0.388
#> GSM680079     1  0.2444     0.7465 0.912 0.000 0.028 0.036 0.024
#> GSM680074     2  0.1741     0.7874 0.040 0.936 0.000 0.000 0.024
#> GSM680080     2  0.2304     0.7816 0.048 0.908 0.000 0.000 0.044
#> GSM680075     3  0.4675     0.4887 0.044 0.004 0.704 0.000 0.248
#> GSM680081     3  0.1808     0.8079 0.012 0.000 0.936 0.044 0.008
#> GSM680076     2  0.5039     0.6388 0.184 0.700 0.000 0.000 0.116
#> GSM680082     1  0.1983     0.7312 0.924 0.008 0.000 0.008 0.060
#> GSM680029     3  0.0609     0.7996 0.000 0.000 0.980 0.000 0.020
#> GSM680041     4  0.4637     0.6535 0.100 0.000 0.000 0.740 0.160
#> GSM680035     3  0.3595     0.8041 0.000 0.000 0.816 0.140 0.044
#> GSM680047     4  0.3612     0.6723 0.028 0.000 0.000 0.800 0.172
#> GSM680036     5  0.2891     0.6811 0.000 0.000 0.176 0.000 0.824
#> GSM680048     4  0.3209     0.7215 0.068 0.008 0.000 0.864 0.060
#> GSM680037     3  0.2813     0.8219 0.000 0.000 0.876 0.084 0.040
#> GSM680049     4  0.4687     0.5706 0.288 0.000 0.000 0.672 0.040
#> GSM680038     5  0.4517     0.6373 0.008 0.208 0.004 0.036 0.744
#> GSM680050     1  0.2153     0.7397 0.916 0.000 0.000 0.044 0.040
#> GSM680039     2  0.5190     0.6457 0.000 0.680 0.088 0.228 0.004
#> GSM680051     4  0.2217     0.7017 0.000 0.044 0.012 0.920 0.024
#> GSM680040     3  0.3115     0.8181 0.000 0.000 0.852 0.112 0.036
#> GSM680052     4  0.1569     0.7027 0.004 0.044 0.008 0.944 0.000
#> GSM680030     2  0.4108     0.7568 0.044 0.808 0.004 0.016 0.128
#> GSM680042     4  0.4617     0.6249 0.224 0.000 0.000 0.716 0.060
#> GSM680031     3  0.2964     0.7797 0.000 0.004 0.840 0.152 0.004
#> GSM680043     4  0.5679     0.2775 0.028 0.032 0.352 0.584 0.004
#> GSM680032     1  0.3289     0.6633 0.816 0.004 0.000 0.008 0.172
#> GSM680044     4  0.5732     0.6158 0.236 0.000 0.052 0.660 0.052
#> GSM680033     3  0.3432     0.8081 0.000 0.000 0.828 0.132 0.040
#> GSM680045     4  0.5169     0.4245 0.004 0.052 0.284 0.656 0.004
#> GSM680034     2  0.4065     0.6779 0.000 0.720 0.016 0.264 0.000
#> GSM680046     4  0.2904     0.7006 0.112 0.008 0.008 0.868 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM680053     5  0.3548     0.7619 0.004 0.000 0.048 0.000 0.796 0.152
#> GSM680062     4  0.6359     0.2873 0.004 0.000 0.072 0.528 0.296 0.100
#> GSM680054     5  0.3371     0.7886 0.004 0.040 0.044 0.000 0.848 0.064
#> GSM680063     5  0.5138     0.6506 0.000 0.000 0.068 0.052 0.680 0.200
#> GSM680055     5  0.3590     0.7835 0.024 0.000 0.032 0.000 0.808 0.136
#> GSM680064     4  0.2809     0.6727 0.168 0.000 0.000 0.824 0.004 0.004
#> GSM680056     5  0.2658     0.7878 0.080 0.000 0.000 0.008 0.876 0.036
#> GSM680065     5  0.4023     0.6468 0.240 0.000 0.000 0.004 0.720 0.036
#> GSM680057     3  0.4850     0.1574 0.004 0.456 0.508 0.012 0.012 0.008
#> GSM680066     1  0.6121     0.5150 0.596 0.032 0.252 0.040 0.000 0.080
#> GSM680058     2  0.4636     0.5080 0.000 0.692 0.000 0.000 0.160 0.148
#> GSM680067     2  0.3013     0.5531 0.004 0.848 0.116 0.024 0.000 0.008
#> GSM680059     6  0.4034     0.4801 0.000 0.020 0.328 0.000 0.000 0.652
#> GSM680068     1  0.5455     0.6534 0.660 0.000 0.100 0.184 0.000 0.056
#> GSM680060     2  0.2948     0.6009 0.012 0.860 0.000 0.000 0.084 0.044
#> GSM680069     5  0.1957     0.7938 0.112 0.000 0.000 0.000 0.888 0.000
#> GSM680061     2  0.2485     0.5789 0.004 0.884 0.088 0.020 0.000 0.004
#> GSM680070     1  0.1707     0.7908 0.928 0.000 0.004 0.056 0.000 0.012
#> GSM680071     5  0.4044     0.7267 0.200 0.028 0.000 0.004 0.752 0.016
#> GSM680077     1  0.2001     0.7705 0.924 0.012 0.000 0.004 0.032 0.028
#> GSM680072     6  0.5939    -0.1367 0.000 0.372 0.000 0.000 0.216 0.412
#> GSM680078     6  0.4667     0.5273 0.132 0.000 0.108 0.000 0.028 0.732
#> GSM680073     6  0.4668     0.4663 0.004 0.120 0.040 0.000 0.088 0.748
#> GSM680079     1  0.2944     0.7770 0.856 0.000 0.000 0.068 0.004 0.072
#> GSM680074     2  0.3073     0.5851 0.000 0.788 0.000 0.000 0.008 0.204
#> GSM680080     2  0.3533     0.5610 0.004 0.748 0.000 0.000 0.012 0.236
#> GSM680075     6  0.4494     0.6092 0.016 0.016 0.156 0.000 0.060 0.752
#> GSM680081     3  0.2222     0.6931 0.040 0.000 0.908 0.000 0.012 0.040
#> GSM680076     2  0.4762     0.5208 0.060 0.668 0.000 0.000 0.016 0.256
#> GSM680082     1  0.3508     0.7368 0.828 0.008 0.000 0.020 0.032 0.112
#> GSM680029     6  0.4096     0.1900 0.000 0.000 0.484 0.000 0.008 0.508
#> GSM680041     4  0.1003     0.7899 0.016 0.000 0.000 0.964 0.020 0.000
#> GSM680035     3  0.1562     0.7116 0.000 0.000 0.940 0.004 0.024 0.032
#> GSM680047     4  0.1251     0.7893 0.000 0.000 0.012 0.956 0.024 0.008
#> GSM680036     5  0.3293     0.7717 0.008 0.000 0.040 0.000 0.824 0.128
#> GSM680048     4  0.0622     0.7910 0.012 0.000 0.000 0.980 0.008 0.000
#> GSM680037     3  0.2070     0.6578 0.000 0.000 0.892 0.000 0.008 0.100
#> GSM680049     4  0.1387     0.7763 0.068 0.000 0.000 0.932 0.000 0.000
#> GSM680038     5  0.3181     0.7721 0.012 0.052 0.024 0.004 0.868 0.040
#> GSM680050     1  0.2602     0.7803 0.884 0.000 0.000 0.072 0.024 0.020
#> GSM680039     3  0.4917     0.4187 0.000 0.328 0.616 0.028 0.008 0.020
#> GSM680051     4  0.6209    -0.0907 0.000 0.092 0.432 0.432 0.020 0.024
#> GSM680040     3  0.1700     0.6874 0.000 0.000 0.916 0.000 0.004 0.080
#> GSM680052     4  0.2806     0.7548 0.000 0.056 0.060 0.872 0.000 0.012
#> GSM680030     2  0.8050     0.2612 0.040 0.380 0.180 0.000 0.236 0.164
#> GSM680042     4  0.0935     0.7869 0.032 0.000 0.000 0.964 0.004 0.000
#> GSM680031     3  0.2202     0.6961 0.000 0.012 0.904 0.008 0.004 0.072
#> GSM680043     3  0.6212     0.3503 0.020 0.100 0.556 0.288 0.000 0.036
#> GSM680032     1  0.5373     0.6224 0.680 0.016 0.000 0.024 0.112 0.168
#> GSM680044     4  0.3626     0.7251 0.060 0.004 0.004 0.820 0.008 0.104
#> GSM680033     3  0.1338     0.7144 0.000 0.004 0.952 0.004 0.008 0.032
#> GSM680045     4  0.5359     0.4871 0.012 0.076 0.268 0.628 0.000 0.016
#> GSM680034     2  0.4915    -0.2482 0.004 0.488 0.468 0.028 0.000 0.012
#> GSM680046     4  0.2044     0.7827 0.028 0.004 0.040 0.920 0.000 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) individual(p) protocol(p) other(p) k
#> CV:NMF 54         0.207125         0.826    1.07e-05   0.6858 2
#> CV:NMF 46         0.152692         0.487    7.42e-06   0.7071 3
#> CV:NMF 48         0.004563         0.321    2.80e-05   0.0937 4
#> CV:NMF 45         0.001156         0.402    1.25e-04   0.1845 5
#> CV:NMF 42         0.000527         0.187    2.06e-03   0.0268 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k  1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.0935           0.624       0.780         0.4238 0.502   0.502
#> 3 3 0.2345           0.676       0.807         0.3833 0.862   0.724
#> 4 4 0.3695           0.498       0.664         0.1842 0.941   0.837
#> 5 5 0.5128           0.440       0.693         0.1056 0.766   0.400
#> 6 6 0.5878           0.468       0.632         0.0557 0.790   0.321

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM680053     1  0.9850      0.475 0.572 0.428
#> GSM680062     1  0.9833      0.482 0.576 0.424
#> GSM680054     1  0.9866      0.466 0.568 0.432
#> GSM680063     1  0.9833      0.482 0.576 0.424
#> GSM680055     1  0.9850      0.475 0.572 0.428
#> GSM680064     1  0.4690      0.716 0.900 0.100
#> GSM680056     1  0.6887      0.716 0.816 0.184
#> GSM680065     1  0.6887      0.716 0.816 0.184
#> GSM680057     2  0.8081      0.708 0.248 0.752
#> GSM680066     1  0.4815      0.718 0.896 0.104
#> GSM680058     2  0.0000      0.726 0.000 1.000
#> GSM680067     2  0.6048      0.704 0.148 0.852
#> GSM680059     2  0.0938      0.732 0.012 0.988
#> GSM680068     1  0.4815      0.718 0.896 0.104
#> GSM680060     1  0.9552      0.566 0.624 0.376
#> GSM680069     1  0.9552      0.566 0.624 0.376
#> GSM680061     2  0.6048      0.704 0.148 0.852
#> GSM680070     1  0.4815      0.718 0.896 0.104
#> GSM680071     1  0.9170      0.623 0.668 0.332
#> GSM680077     1  0.7883      0.703 0.764 0.236
#> GSM680072     2  0.0000      0.726 0.000 1.000
#> GSM680078     1  0.4815      0.718 0.896 0.104
#> GSM680073     2  0.4690      0.718 0.100 0.900
#> GSM680079     1  0.4690      0.716 0.900 0.100
#> GSM680074     2  0.0000      0.726 0.000 1.000
#> GSM680080     2  0.0000      0.726 0.000 1.000
#> GSM680075     2  0.9710      0.308 0.400 0.600
#> GSM680081     2  0.8909      0.608 0.308 0.692
#> GSM680076     1  0.9552      0.587 0.624 0.376
#> GSM680082     1  0.9552      0.587 0.624 0.376
#> GSM680029     2  0.8763      0.532 0.296 0.704
#> GSM680041     1  0.0000      0.649 1.000 0.000
#> GSM680035     2  0.6623      0.735 0.172 0.828
#> GSM680047     1  0.0000      0.649 1.000 0.000
#> GSM680036     2  0.8813      0.523 0.300 0.700
#> GSM680048     1  0.9552      0.395 0.624 0.376
#> GSM680037     2  0.6623      0.735 0.172 0.828
#> GSM680049     1  0.0000      0.649 1.000 0.000
#> GSM680038     2  0.7056      0.739 0.192 0.808
#> GSM680050     1  0.7883      0.703 0.764 0.236
#> GSM680039     2  0.6438      0.763 0.164 0.836
#> GSM680051     1  0.9983      0.113 0.524 0.476
#> GSM680040     2  0.5519      0.759 0.128 0.872
#> GSM680052     1  0.9552      0.395 0.624 0.376
#> GSM680030     2  0.8081      0.708 0.248 0.752
#> GSM680042     1  0.0000      0.649 1.000 0.000
#> GSM680031     2  0.8909      0.607 0.308 0.692
#> GSM680043     2  0.8955      0.606 0.312 0.688
#> GSM680032     1  0.7219      0.708 0.800 0.200
#> GSM680044     1  0.7219      0.708 0.800 0.200
#> GSM680033     2  0.5629      0.761 0.132 0.868
#> GSM680045     1  0.9686      0.389 0.604 0.396
#> GSM680034     2  0.8081      0.708 0.248 0.752
#> GSM680046     1  0.9686      0.389 0.604 0.396

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM680053     3  0.5591      0.611 0.000 0.304 0.696
#> GSM680062     3  0.5560      0.617 0.000 0.300 0.700
#> GSM680054     3  0.5905      0.522 0.000 0.352 0.648
#> GSM680063     3  0.5560      0.617 0.000 0.300 0.700
#> GSM680055     3  0.5591      0.611 0.000 0.304 0.696
#> GSM680064     3  0.2537      0.791 0.080 0.000 0.920
#> GSM680056     3  0.0983      0.801 0.004 0.016 0.980
#> GSM680065     3  0.0983      0.801 0.004 0.016 0.980
#> GSM680057     2  0.6834      0.716 0.112 0.740 0.148
#> GSM680066     3  0.2772      0.793 0.080 0.004 0.916
#> GSM680058     2  0.0747      0.725 0.000 0.984 0.016
#> GSM680067     2  0.4291      0.597 0.152 0.840 0.008
#> GSM680059     2  0.0892      0.732 0.000 0.980 0.020
#> GSM680068     3  0.2955      0.793 0.080 0.008 0.912
#> GSM680060     3  0.4887      0.701 0.000 0.228 0.772
#> GSM680069     3  0.4887      0.701 0.000 0.228 0.772
#> GSM680061     2  0.4291      0.597 0.152 0.840 0.008
#> GSM680070     3  0.2772      0.793 0.080 0.004 0.916
#> GSM680071     3  0.4346      0.742 0.000 0.184 0.816
#> GSM680077     3  0.2400      0.788 0.004 0.064 0.932
#> GSM680072     2  0.0747      0.725 0.000 0.984 0.016
#> GSM680078     3  0.2772      0.793 0.080 0.004 0.916
#> GSM680073     2  0.3340      0.714 0.000 0.880 0.120
#> GSM680079     3  0.2537      0.791 0.080 0.000 0.920
#> GSM680074     2  0.0237      0.723 0.000 0.996 0.004
#> GSM680080     2  0.0237      0.723 0.000 0.996 0.004
#> GSM680075     2  0.6244      0.344 0.000 0.560 0.440
#> GSM680081     2  0.6008      0.618 0.004 0.664 0.332
#> GSM680076     3  0.5024      0.716 0.004 0.220 0.776
#> GSM680082     3  0.5024      0.716 0.004 0.220 0.776
#> GSM680029     2  0.5810      0.547 0.000 0.664 0.336
#> GSM680041     1  0.0237      0.657 0.996 0.000 0.004
#> GSM680035     2  0.4346      0.746 0.000 0.816 0.184
#> GSM680047     1  0.0237      0.657 0.996 0.000 0.004
#> GSM680036     2  0.5859      0.532 0.000 0.656 0.344
#> GSM680048     1  0.7710      0.526 0.576 0.368 0.056
#> GSM680037     2  0.4346      0.746 0.000 0.816 0.184
#> GSM680049     1  0.0237      0.657 0.996 0.000 0.004
#> GSM680038     2  0.5883      0.723 0.092 0.796 0.112
#> GSM680050     3  0.2400      0.788 0.004 0.064 0.932
#> GSM680039     2  0.5094      0.765 0.040 0.824 0.136
#> GSM680051     1  0.7752      0.272 0.496 0.456 0.048
#> GSM680040     2  0.3851      0.764 0.004 0.860 0.136
#> GSM680052     1  0.7710      0.526 0.576 0.368 0.056
#> GSM680030     2  0.6834      0.716 0.112 0.740 0.148
#> GSM680042     1  0.0237      0.657 0.996 0.000 0.004
#> GSM680031     2  0.7731      0.650 0.108 0.664 0.228
#> GSM680043     2  0.7796      0.644 0.112 0.660 0.228
#> GSM680032     3  0.5304      0.782 0.068 0.108 0.824
#> GSM680044     3  0.5304      0.782 0.068 0.108 0.824
#> GSM680033     2  0.4033      0.764 0.008 0.856 0.136
#> GSM680045     1  0.8586      0.488 0.520 0.376 0.104
#> GSM680034     2  0.6834      0.716 0.112 0.740 0.148
#> GSM680046     1  0.8586      0.488 0.520 0.376 0.104

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM680053     1  0.7599     0.3136 0.424 0.200 0.376 0.000
#> GSM680062     1  0.7595     0.3158 0.428 0.200 0.372 0.000
#> GSM680054     1  0.7953     0.2797 0.416 0.192 0.380 0.012
#> GSM680063     1  0.7595     0.3158 0.428 0.200 0.372 0.000
#> GSM680055     1  0.7599     0.3136 0.424 0.200 0.376 0.000
#> GSM680064     1  0.0188     0.4802 0.996 0.000 0.000 0.004
#> GSM680056     1  0.4957     0.0626 0.656 0.336 0.004 0.004
#> GSM680065     1  0.4957     0.0626 0.656 0.336 0.004 0.004
#> GSM680057     3  0.6914     0.6094 0.076 0.200 0.664 0.060
#> GSM680066     1  0.0376     0.4840 0.992 0.000 0.004 0.004
#> GSM680058     3  0.4012     0.6475 0.000 0.184 0.800 0.016
#> GSM680067     3  0.6737     0.4018 0.004 0.408 0.508 0.080
#> GSM680059     3  0.1716     0.6844 0.000 0.064 0.936 0.000
#> GSM680068     1  0.0524     0.4833 0.988 0.000 0.008 0.004
#> GSM680060     2  0.5936     0.8305 0.324 0.620 0.056 0.000
#> GSM680069     2  0.5936     0.8305 0.324 0.620 0.056 0.000
#> GSM680061     3  0.6737     0.4018 0.004 0.408 0.508 0.080
#> GSM680070     1  0.0376     0.4840 0.992 0.000 0.004 0.004
#> GSM680071     2  0.5560     0.7308 0.392 0.584 0.024 0.000
#> GSM680077     1  0.4985    -0.4508 0.532 0.468 0.000 0.000
#> GSM680072     3  0.4012     0.6475 0.000 0.184 0.800 0.016
#> GSM680078     1  0.0376     0.4840 0.992 0.000 0.004 0.004
#> GSM680073     3  0.4155     0.6634 0.072 0.100 0.828 0.000
#> GSM680079     1  0.0188     0.4802 0.996 0.000 0.000 0.004
#> GSM680074     3  0.3881     0.6511 0.000 0.172 0.812 0.016
#> GSM680080     3  0.3881     0.6511 0.000 0.172 0.812 0.016
#> GSM680075     3  0.6429     0.3654 0.324 0.088 0.588 0.000
#> GSM680081     3  0.5489     0.5745 0.240 0.060 0.700 0.000
#> GSM680076     2  0.5339     0.8281 0.272 0.688 0.040 0.000
#> GSM680082     2  0.5339     0.8281 0.272 0.688 0.040 0.000
#> GSM680029     3  0.5318     0.5239 0.196 0.072 0.732 0.000
#> GSM680041     4  0.1302     0.5768 0.044 0.000 0.000 0.956
#> GSM680035     3  0.2983     0.6835 0.068 0.040 0.892 0.000
#> GSM680047     4  0.1302     0.5768 0.044 0.000 0.000 0.956
#> GSM680036     3  0.5421     0.5135 0.200 0.076 0.724 0.000
#> GSM680048     4  0.8936     0.5494 0.076 0.236 0.240 0.448
#> GSM680037     3  0.2983     0.6835 0.068 0.040 0.892 0.000
#> GSM680049     4  0.1302     0.5768 0.044 0.000 0.000 0.956
#> GSM680038     3  0.6578     0.6223 0.056 0.200 0.684 0.060
#> GSM680050     1  0.4985    -0.4508 0.532 0.468 0.000 0.000
#> GSM680039     3  0.4273     0.6901 0.052 0.044 0.848 0.056
#> GSM680051     4  0.8598     0.3822 0.036 0.244 0.308 0.412
#> GSM680040     3  0.1854     0.6947 0.048 0.012 0.940 0.000
#> GSM680052     4  0.8936     0.5494 0.076 0.236 0.240 0.448
#> GSM680030     3  0.6914     0.6094 0.076 0.200 0.664 0.060
#> GSM680042     4  0.1302     0.5768 0.044 0.000 0.000 0.956
#> GSM680031     3  0.7946     0.4316 0.192 0.252 0.528 0.028
#> GSM680043     3  0.7987     0.4172 0.192 0.260 0.520 0.028
#> GSM680032     1  0.3372     0.4373 0.868 0.036 0.096 0.000
#> GSM680044     1  0.3372     0.4373 0.868 0.036 0.096 0.000
#> GSM680033     3  0.1975     0.6953 0.048 0.016 0.936 0.000
#> GSM680045     4  0.9646     0.5139 0.148 0.236 0.248 0.368
#> GSM680034     3  0.6914     0.6094 0.076 0.200 0.664 0.060
#> GSM680046     4  0.9646     0.5139 0.148 0.236 0.248 0.368

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM680053     3  0.6956     0.2871 0.240 0.012 0.440 0.000 0.308
#> GSM680062     3  0.6971     0.2829 0.244 0.012 0.436 0.000 0.308
#> GSM680054     3  0.8025     0.2716 0.232 0.100 0.392 0.000 0.276
#> GSM680063     3  0.6971     0.2829 0.244 0.012 0.436 0.000 0.308
#> GSM680055     3  0.6956     0.2871 0.240 0.012 0.440 0.000 0.308
#> GSM680064     1  0.0000     0.9204 1.000 0.000 0.000 0.000 0.000
#> GSM680056     5  0.5059     0.2657 0.400 0.012 0.012 0.004 0.572
#> GSM680065     5  0.5059     0.2657 0.400 0.012 0.012 0.004 0.572
#> GSM680057     2  0.5232     0.4189 0.008 0.492 0.472 0.000 0.028
#> GSM680066     1  0.0162     0.9239 0.996 0.000 0.004 0.000 0.000
#> GSM680058     3  0.4736     0.2759 0.000 0.404 0.576 0.000 0.020
#> GSM680067     2  0.2674     0.4276 0.000 0.868 0.120 0.000 0.012
#> GSM680059     3  0.2471     0.4044 0.000 0.136 0.864 0.000 0.000
#> GSM680068     1  0.0324     0.9214 0.992 0.004 0.004 0.000 0.000
#> GSM680060     5  0.5275     0.6754 0.108 0.132 0.032 0.000 0.728
#> GSM680069     5  0.5275     0.6754 0.108 0.132 0.032 0.000 0.728
#> GSM680061     2  0.2674     0.4276 0.000 0.868 0.120 0.000 0.012
#> GSM680070     1  0.0162     0.9239 0.996 0.000 0.004 0.000 0.000
#> GSM680071     5  0.2804     0.6695 0.068 0.044 0.004 0.000 0.884
#> GSM680077     5  0.5672     0.4519 0.368 0.088 0.000 0.000 0.544
#> GSM680072     3  0.4736     0.2759 0.000 0.404 0.576 0.000 0.020
#> GSM680078     1  0.0162     0.9239 0.996 0.000 0.004 0.000 0.000
#> GSM680073     3  0.4394     0.4529 0.000 0.136 0.764 0.000 0.100
#> GSM680079     1  0.0000     0.9204 1.000 0.000 0.000 0.000 0.000
#> GSM680074     3  0.4464     0.2741 0.000 0.408 0.584 0.000 0.008
#> GSM680080     3  0.4464     0.2741 0.000 0.408 0.584 0.000 0.008
#> GSM680075     3  0.6151     0.3943 0.120 0.028 0.620 0.000 0.232
#> GSM680081     3  0.5386     0.3584 0.116 0.040 0.724 0.000 0.120
#> GSM680076     5  0.3239     0.6759 0.012 0.156 0.004 0.000 0.828
#> GSM680082     5  0.3239     0.6759 0.012 0.156 0.004 0.000 0.828
#> GSM680029     3  0.4147     0.4878 0.056 0.012 0.796 0.000 0.136
#> GSM680041     4  0.0000     0.7241 0.000 0.000 0.000 1.000 0.000
#> GSM680035     3  0.1623     0.4651 0.016 0.016 0.948 0.000 0.020
#> GSM680047     4  0.0000     0.7241 0.000 0.000 0.000 1.000 0.000
#> GSM680036     3  0.4255     0.4872 0.060 0.012 0.788 0.000 0.140
#> GSM680048     4  0.7211     0.0407 0.044 0.356 0.140 0.456 0.004
#> GSM680037     3  0.1623     0.4651 0.016 0.016 0.948 0.000 0.020
#> GSM680049     4  0.0162     0.7230 0.000 0.004 0.000 0.996 0.000
#> GSM680038     2  0.5222     0.3820 0.008 0.512 0.452 0.000 0.028
#> GSM680050     5  0.5672     0.4519 0.368 0.088 0.000 0.000 0.544
#> GSM680039     3  0.2891     0.2556 0.000 0.176 0.824 0.000 0.000
#> GSM680051     2  0.7070     0.0629 0.024 0.436 0.196 0.344 0.000
#> GSM680040     3  0.0404     0.4511 0.000 0.012 0.988 0.000 0.000
#> GSM680052     4  0.7211     0.0407 0.044 0.356 0.140 0.456 0.004
#> GSM680030     2  0.5232     0.4189 0.008 0.492 0.472 0.000 0.028
#> GSM680042     4  0.0000     0.7241 0.000 0.000 0.000 1.000 0.000
#> GSM680031     3  0.7026    -0.3393 0.168 0.376 0.428 0.000 0.028
#> GSM680043     3  0.7031    -0.3488 0.168 0.384 0.420 0.000 0.028
#> GSM680032     1  0.4074     0.7655 0.820 0.036 0.092 0.000 0.052
#> GSM680044     1  0.4074     0.7655 0.820 0.036 0.092 0.000 0.052
#> GSM680033     3  0.0510     0.4480 0.000 0.016 0.984 0.000 0.000
#> GSM680045     2  0.8173    -0.0724 0.144 0.360 0.144 0.348 0.004
#> GSM680034     2  0.5232     0.4189 0.008 0.492 0.472 0.000 0.028
#> GSM680046     2  0.8173    -0.0724 0.144 0.360 0.144 0.348 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM680053     5  0.4488     0.5905 0.016 0.004 0.432 0.000 0.544 0.004
#> GSM680062     5  0.4559     0.5930 0.020 0.004 0.428 0.000 0.544 0.004
#> GSM680054     5  0.5495     0.5112 0.012 0.096 0.368 0.000 0.524 0.000
#> GSM680063     5  0.4559     0.5930 0.020 0.004 0.428 0.000 0.544 0.004
#> GSM680055     5  0.4488     0.5905 0.016 0.004 0.432 0.000 0.544 0.004
#> GSM680064     1  0.0458     0.9107 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM680056     5  0.3844     0.3561 0.108 0.000 0.004 0.004 0.792 0.092
#> GSM680065     5  0.3844     0.3561 0.108 0.000 0.004 0.004 0.792 0.092
#> GSM680057     3  0.7467    -0.1225 0.000 0.316 0.328 0.272 0.064 0.020
#> GSM680066     1  0.0260     0.9162 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM680058     2  0.4531     0.5428 0.000 0.608 0.352 0.000 0.036 0.004
#> GSM680067     2  0.3969     0.3612 0.000 0.644 0.008 0.344 0.004 0.000
#> GSM680059     3  0.3583     0.2510 0.000 0.260 0.728 0.004 0.008 0.000
#> GSM680068     1  0.0146     0.9140 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM680060     6  0.5519     0.5323 0.084 0.012 0.012 0.004 0.272 0.616
#> GSM680069     6  0.5519     0.5323 0.084 0.012 0.012 0.004 0.272 0.616
#> GSM680061     2  0.3969     0.3612 0.000 0.644 0.008 0.344 0.004 0.000
#> GSM680070     1  0.0260     0.9162 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM680071     5  0.4122    -0.3928 0.000 0.004 0.000 0.004 0.520 0.472
#> GSM680077     6  0.3912     0.4768 0.340 0.000 0.000 0.000 0.012 0.648
#> GSM680072     2  0.4531     0.5428 0.000 0.608 0.352 0.000 0.036 0.004
#> GSM680078     1  0.0146     0.9164 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM680073     3  0.5165     0.2480 0.000 0.256 0.628 0.004 0.108 0.004
#> GSM680079     1  0.0458     0.9107 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM680074     2  0.4353     0.5418 0.000 0.612 0.360 0.000 0.024 0.004
#> GSM680080     2  0.4353     0.5418 0.000 0.612 0.360 0.000 0.024 0.004
#> GSM680075     3  0.6275     0.2587 0.052 0.012 0.592 0.004 0.224 0.116
#> GSM680081     3  0.5119     0.4206 0.056 0.000 0.720 0.008 0.104 0.112
#> GSM680076     6  0.1152     0.6663 0.004 0.000 0.000 0.000 0.044 0.952
#> GSM680082     6  0.1152     0.6663 0.004 0.000 0.000 0.000 0.044 0.952
#> GSM680029     3  0.3561     0.3642 0.004 0.012 0.776 0.004 0.200 0.004
#> GSM680041     4  0.5239     0.4428 0.000 0.248 0.000 0.600 0.152 0.000
#> GSM680035     3  0.1082     0.5386 0.000 0.000 0.956 0.004 0.040 0.000
#> GSM680047     4  0.5239     0.4428 0.000 0.248 0.000 0.600 0.152 0.000
#> GSM680036     3  0.3620     0.3513 0.004 0.012 0.768 0.004 0.208 0.004
#> GSM680048     4  0.2963     0.5504 0.036 0.000 0.096 0.856 0.012 0.000
#> GSM680037     3  0.1082     0.5386 0.000 0.000 0.956 0.004 0.040 0.000
#> GSM680049     4  0.5208     0.4435 0.000 0.248 0.000 0.604 0.148 0.000
#> GSM680038     2  0.7395     0.0608 0.000 0.384 0.284 0.248 0.064 0.020
#> GSM680050     6  0.3912     0.4768 0.340 0.000 0.000 0.000 0.012 0.648
#> GSM680039     3  0.4378     0.4017 0.000 0.108 0.760 0.104 0.028 0.000
#> GSM680051     4  0.5031     0.4733 0.016 0.068 0.132 0.736 0.044 0.004
#> GSM680040     3  0.0405     0.5577 0.000 0.008 0.988 0.004 0.000 0.000
#> GSM680052     4  0.2963     0.5504 0.036 0.000 0.096 0.856 0.012 0.000
#> GSM680030     3  0.7467    -0.1225 0.000 0.316 0.328 0.272 0.064 0.020
#> GSM680042     4  0.5239     0.4428 0.000 0.248 0.000 0.600 0.152 0.000
#> GSM680031     4  0.7599     0.1167 0.152 0.036 0.368 0.376 0.052 0.016
#> GSM680043     4  0.7597     0.1350 0.152 0.036 0.360 0.384 0.052 0.016
#> GSM680032     1  0.4328     0.7585 0.800 0.004 0.072 0.020 0.056 0.048
#> GSM680044     1  0.4328     0.7585 0.800 0.004 0.072 0.020 0.056 0.048
#> GSM680033     3  0.0520     0.5579 0.000 0.008 0.984 0.008 0.000 0.000
#> GSM680045     4  0.4423     0.5292 0.140 0.000 0.096 0.748 0.012 0.004
#> GSM680034     3  0.7467    -0.1225 0.000 0.316 0.328 0.272 0.064 0.020
#> GSM680046     4  0.4423     0.5292 0.140 0.000 0.096 0.748 0.012 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) individual(p) protocol(p) other(p) k
#> MAD:hclust 43         0.274425         0.520    4.54e-04   0.9287 2
#> MAD:hclust 50         0.000206         0.378    2.62e-04   0.3578 3
#> MAD:hclust 31         0.001706         0.398    9.86e-05   0.0531 4
#> MAD:hclust 17         0.005429         0.135    6.50e-02   0.1357 5
#> MAD:hclust 29         0.000447         0.018    1.89e-02   0.0466 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.961           0.919       0.962         0.5072 0.493   0.493
#> 3 3 0.467           0.426       0.624         0.2911 0.829   0.675
#> 4 4 0.621           0.716       0.792         0.1429 0.771   0.463
#> 5 5 0.733           0.752       0.831         0.0729 0.883   0.570
#> 6 6 0.751           0.658       0.808         0.0408 0.966   0.825

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM680053     2  0.0376     0.9508 0.004 0.996
#> GSM680062     1  0.5408     0.8670 0.876 0.124
#> GSM680054     2  0.0376     0.9508 0.004 0.996
#> GSM680063     1  0.7376     0.7566 0.792 0.208
#> GSM680055     2  0.0376     0.9508 0.004 0.996
#> GSM680064     1  0.1633     0.9736 0.976 0.024
#> GSM680056     1  0.1843     0.9729 0.972 0.028
#> GSM680065     1  0.1843     0.9729 0.972 0.028
#> GSM680057     2  0.1633     0.9491 0.024 0.976
#> GSM680066     1  0.1184     0.9753 0.984 0.016
#> GSM680058     2  0.0938     0.9507 0.012 0.988
#> GSM680067     2  0.1843     0.9479 0.028 0.972
#> GSM680059     2  0.0938     0.9512 0.012 0.988
#> GSM680068     1  0.1184     0.9753 0.984 0.016
#> GSM680060     2  0.0938     0.9507 0.012 0.988
#> GSM680069     2  0.9998    -0.0145 0.492 0.508
#> GSM680061     2  0.1843     0.9479 0.028 0.972
#> GSM680070     1  0.1414     0.9747 0.980 0.020
#> GSM680071     2  1.0000    -0.0159 0.496 0.504
#> GSM680077     1  0.1633     0.9736 0.976 0.024
#> GSM680072     2  0.0376     0.9508 0.004 0.996
#> GSM680078     1  0.1843     0.9729 0.972 0.028
#> GSM680073     2  0.0376     0.9508 0.004 0.996
#> GSM680079     1  0.1843     0.9729 0.972 0.028
#> GSM680074     2  0.0938     0.9507 0.012 0.988
#> GSM680080     2  0.0672     0.9506 0.008 0.992
#> GSM680075     2  0.0376     0.9508 0.004 0.996
#> GSM680081     2  0.0672     0.9509 0.008 0.992
#> GSM680076     2  0.0672     0.9506 0.008 0.992
#> GSM680082     1  0.1633     0.9736 0.976 0.024
#> GSM680029     2  0.0376     0.9508 0.004 0.996
#> GSM680041     1  0.0672     0.9745 0.992 0.008
#> GSM680035     2  0.1414     0.9504 0.020 0.980
#> GSM680047     1  0.0672     0.9745 0.992 0.008
#> GSM680036     2  0.0376     0.9508 0.004 0.996
#> GSM680048     1  0.0000     0.9748 1.000 0.000
#> GSM680037     2  0.1414     0.9504 0.020 0.980
#> GSM680049     1  0.0376     0.9737 0.996 0.004
#> GSM680038     2  0.1414     0.9505 0.020 0.980
#> GSM680050     1  0.1414     0.9745 0.980 0.020
#> GSM680039     2  0.1843     0.9479 0.028 0.972
#> GSM680051     1  0.0000     0.9748 1.000 0.000
#> GSM680040     2  0.1414     0.9504 0.020 0.980
#> GSM680052     1  0.0000     0.9748 1.000 0.000
#> GSM680030     2  0.1633     0.9491 0.024 0.976
#> GSM680042     1  0.0672     0.9745 0.992 0.008
#> GSM680031     2  0.1414     0.9504 0.020 0.980
#> GSM680043     1  0.0376     0.9737 0.996 0.004
#> GSM680032     1  0.1843     0.9729 0.972 0.028
#> GSM680044     1  0.0376     0.9754 0.996 0.004
#> GSM680033     2  0.1843     0.9499 0.028 0.972
#> GSM680045     1  0.0376     0.9737 0.996 0.004
#> GSM680034     2  0.1843     0.9479 0.028 0.972
#> GSM680046     1  0.0376     0.9737 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM680053     3  0.6940     0.3940 0.068 0.224 0.708
#> GSM680062     3  0.8784     0.2859 0.124 0.352 0.524
#> GSM680054     3  0.5431     0.2552 0.000 0.284 0.716
#> GSM680063     3  0.8784     0.2859 0.124 0.352 0.524
#> GSM680055     3  0.7339     0.3850 0.088 0.224 0.688
#> GSM680064     1  0.4233     0.7648 0.836 0.160 0.004
#> GSM680056     1  0.9776     0.1622 0.440 0.284 0.276
#> GSM680065     1  0.5681     0.7054 0.748 0.236 0.016
#> GSM680057     3  0.6225    -0.5823 0.000 0.432 0.568
#> GSM680066     1  0.2550     0.7839 0.932 0.012 0.056
#> GSM680058     2  0.6521     0.5724 0.004 0.500 0.496
#> GSM680067     2  0.6260     0.6215 0.000 0.552 0.448
#> GSM680059     3  0.4291     0.2572 0.008 0.152 0.840
#> GSM680068     1  0.2050     0.7934 0.952 0.028 0.020
#> GSM680060     2  0.6521     0.5724 0.004 0.500 0.496
#> GSM680069     3  0.9429     0.2638 0.264 0.232 0.504
#> GSM680061     2  0.6274     0.6227 0.000 0.544 0.456
#> GSM680070     1  0.0829     0.7890 0.984 0.004 0.012
#> GSM680071     2  0.7381     0.0901 0.244 0.676 0.080
#> GSM680077     1  0.1337     0.7868 0.972 0.016 0.012
#> GSM680072     3  0.6513    -0.5698 0.004 0.476 0.520
#> GSM680078     1  0.2446     0.7809 0.936 0.012 0.052
#> GSM680073     3  0.4883     0.2680 0.004 0.208 0.788
#> GSM680079     1  0.0983     0.7889 0.980 0.004 0.016
#> GSM680074     3  0.6521    -0.6421 0.004 0.492 0.504
#> GSM680080     3  0.6521    -0.6421 0.004 0.492 0.504
#> GSM680075     3  0.4768     0.4407 0.052 0.100 0.848
#> GSM680081     3  0.4409     0.3962 0.172 0.004 0.824
#> GSM680076     2  0.6825     0.5754 0.012 0.496 0.492
#> GSM680082     1  0.1015     0.7890 0.980 0.008 0.012
#> GSM680029     3  0.1585     0.4634 0.028 0.008 0.964
#> GSM680041     1  0.6260     0.7499 0.552 0.448 0.000
#> GSM680035     3  0.0661     0.4576 0.008 0.004 0.988
#> GSM680047     1  0.7722     0.7447 0.520 0.432 0.048
#> GSM680036     3  0.4485     0.4439 0.020 0.136 0.844
#> GSM680048     1  0.7517     0.7673 0.588 0.364 0.048
#> GSM680037     3  0.0661     0.4576 0.008 0.004 0.988
#> GSM680049     1  0.5760     0.7845 0.672 0.328 0.000
#> GSM680038     3  0.6295    -0.6141 0.000 0.472 0.528
#> GSM680050     1  0.4121     0.7819 0.832 0.168 0.000
#> GSM680039     3  0.6398    -0.5616 0.004 0.416 0.580
#> GSM680051     1  0.7676     0.7654 0.584 0.360 0.056
#> GSM680040     3  0.0661     0.4576 0.008 0.004 0.988
#> GSM680052     1  0.7676     0.7654 0.584 0.360 0.056
#> GSM680030     3  0.6225    -0.5823 0.000 0.432 0.568
#> GSM680042     1  0.6192     0.7621 0.580 0.420 0.000
#> GSM680031     3  0.0661     0.4576 0.008 0.004 0.988
#> GSM680043     1  0.7180     0.7689 0.672 0.268 0.060
#> GSM680032     1  0.1015     0.7881 0.980 0.008 0.012
#> GSM680044     1  0.6542     0.7870 0.736 0.204 0.060
#> GSM680033     3  0.0848     0.4541 0.008 0.008 0.984
#> GSM680045     1  0.7246     0.7692 0.664 0.276 0.060
#> GSM680034     2  0.6676     0.5872 0.008 0.516 0.476
#> GSM680046     1  0.6062     0.7799 0.708 0.276 0.016

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM680053     3  0.5466     0.6400 0.220 0.068 0.712 0.000
#> GSM680062     3  0.6392     0.6083 0.232 0.052 0.676 0.040
#> GSM680054     3  0.7332     0.2121 0.164 0.356 0.480 0.000
#> GSM680063     3  0.6317     0.6116 0.232 0.048 0.680 0.040
#> GSM680055     3  0.5565     0.6327 0.232 0.068 0.700 0.000
#> GSM680064     1  0.5038     0.6573 0.684 0.000 0.020 0.296
#> GSM680056     1  0.6367     0.4174 0.692 0.032 0.200 0.076
#> GSM680065     1  0.5113     0.5036 0.760 0.000 0.152 0.088
#> GSM680057     2  0.3402     0.8214 0.000 0.832 0.164 0.004
#> GSM680066     1  0.5185     0.7564 0.728 0.032 0.008 0.232
#> GSM680058     2  0.1356     0.8424 0.008 0.960 0.032 0.000
#> GSM680067     2  0.3353     0.8191 0.004 0.880 0.060 0.056
#> GSM680059     3  0.4804     0.6174 0.016 0.276 0.708 0.000
#> GSM680068     1  0.5126     0.7550 0.728 0.028 0.008 0.236
#> GSM680060     2  0.0657     0.8413 0.004 0.984 0.012 0.000
#> GSM680069     1  0.6461    -0.0158 0.564 0.068 0.364 0.004
#> GSM680061     2  0.3241     0.8255 0.004 0.884 0.072 0.040
#> GSM680070     1  0.4895     0.7628 0.740 0.020 0.008 0.232
#> GSM680071     2  0.7912     0.3132 0.296 0.520 0.152 0.032
#> GSM680077     1  0.4192     0.7607 0.780 0.008 0.004 0.208
#> GSM680072     2  0.3803     0.7268 0.032 0.836 0.132 0.000
#> GSM680078     1  0.4514     0.7662 0.756 0.008 0.008 0.228
#> GSM680073     3  0.5548     0.5967 0.032 0.340 0.628 0.000
#> GSM680079     1  0.4088     0.7639 0.764 0.000 0.004 0.232
#> GSM680074     2  0.1798     0.8423 0.016 0.944 0.040 0.000
#> GSM680080     2  0.1798     0.8423 0.016 0.944 0.040 0.000
#> GSM680075     3  0.5170     0.6949 0.048 0.228 0.724 0.000
#> GSM680081     3  0.4162     0.6979 0.088 0.052 0.844 0.016
#> GSM680076     2  0.1151     0.8352 0.024 0.968 0.008 0.000
#> GSM680082     1  0.4788     0.7640 0.744 0.016 0.008 0.232
#> GSM680029     3  0.3680     0.7302 0.012 0.120 0.852 0.016
#> GSM680041     4  0.3342     0.7684 0.100 0.000 0.032 0.868
#> GSM680035     3  0.3575     0.7279 0.004 0.124 0.852 0.020
#> GSM680047     4  0.1545     0.8592 0.040 0.000 0.008 0.952
#> GSM680036     3  0.5361     0.6702 0.148 0.108 0.744 0.000
#> GSM680048     4  0.0376     0.8861 0.004 0.004 0.000 0.992
#> GSM680037     3  0.3519     0.7291 0.004 0.120 0.856 0.020
#> GSM680049     4  0.0817     0.8813 0.024 0.000 0.000 0.976
#> GSM680038     2  0.2773     0.8347 0.000 0.880 0.116 0.004
#> GSM680050     1  0.5339     0.6303 0.624 0.000 0.020 0.356
#> GSM680039     2  0.4372     0.7208 0.000 0.728 0.268 0.004
#> GSM680051     4  0.0376     0.8839 0.000 0.004 0.004 0.992
#> GSM680040     3  0.3575     0.7279 0.004 0.124 0.852 0.020
#> GSM680052     4  0.0564     0.8856 0.004 0.004 0.004 0.988
#> GSM680030     2  0.3355     0.8237 0.000 0.836 0.160 0.004
#> GSM680042     4  0.2222     0.8543 0.060 0.000 0.016 0.924
#> GSM680031     3  0.3575     0.7279 0.004 0.124 0.852 0.020
#> GSM680043     4  0.4374     0.7427 0.168 0.024 0.008 0.800
#> GSM680032     1  0.4879     0.7651 0.744 0.016 0.012 0.228
#> GSM680044     4  0.4709     0.6922 0.200 0.024 0.008 0.768
#> GSM680033     3  0.3575     0.7279 0.004 0.124 0.852 0.020
#> GSM680045     4  0.3341     0.8313 0.084 0.024 0.012 0.880
#> GSM680034     2  0.4565     0.7918 0.000 0.796 0.140 0.064
#> GSM680046     4  0.2125     0.8714 0.052 0.012 0.004 0.932

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM680053     5  0.3949      0.706 0.000 0.004 0.300 0.000 0.696
#> GSM680062     5  0.4395      0.731 0.012 0.000 0.272 0.012 0.704
#> GSM680054     5  0.5590      0.663 0.000 0.156 0.204 0.000 0.640
#> GSM680063     5  0.4395      0.731 0.012 0.000 0.272 0.012 0.704
#> GSM680055     5  0.3511      0.756 0.012 0.004 0.184 0.000 0.800
#> GSM680064     1  0.4599      0.739 0.768 0.004 0.012 0.064 0.152
#> GSM680056     5  0.3497      0.706 0.140 0.000 0.012 0.020 0.828
#> GSM680065     5  0.3516      0.675 0.164 0.004 0.000 0.020 0.812
#> GSM680057     2  0.3554      0.757 0.000 0.776 0.216 0.004 0.004
#> GSM680066     1  0.1412      0.830 0.952 0.004 0.000 0.008 0.036
#> GSM680058     2  0.2980      0.798 0.000 0.884 0.024 0.036 0.056
#> GSM680067     2  0.1757      0.799 0.000 0.936 0.048 0.012 0.004
#> GSM680059     3  0.5617      0.669 0.000 0.180 0.696 0.052 0.072
#> GSM680068     1  0.1412      0.830 0.952 0.004 0.000 0.008 0.036
#> GSM680060     2  0.1725      0.805 0.000 0.936 0.020 0.000 0.044
#> GSM680069     5  0.3222      0.736 0.108 0.004 0.036 0.000 0.852
#> GSM680061     2  0.1764      0.802 0.000 0.928 0.064 0.008 0.000
#> GSM680070     1  0.0867      0.841 0.976 0.008 0.000 0.008 0.008
#> GSM680071     5  0.4505      0.551 0.020 0.244 0.000 0.016 0.720
#> GSM680077     1  0.1924      0.832 0.924 0.004 0.008 0.000 0.064
#> GSM680072     2  0.5007      0.723 0.004 0.748 0.036 0.052 0.160
#> GSM680078     1  0.0703      0.845 0.976 0.000 0.000 0.000 0.024
#> GSM680073     3  0.6906      0.554 0.004 0.228 0.572 0.052 0.144
#> GSM680079     1  0.1616      0.845 0.948 0.004 0.008 0.008 0.032
#> GSM680074     2  0.3908      0.783 0.004 0.832 0.028 0.040 0.096
#> GSM680080     2  0.3908      0.783 0.004 0.832 0.028 0.040 0.096
#> GSM680075     3  0.6564      0.534 0.000 0.128 0.600 0.052 0.220
#> GSM680081     3  0.1408      0.806 0.044 0.000 0.948 0.000 0.008
#> GSM680076     2  0.3964      0.781 0.012 0.832 0.020 0.040 0.096
#> GSM680082     1  0.1041      0.845 0.964 0.000 0.000 0.004 0.032
#> GSM680029     3  0.1503      0.840 0.000 0.020 0.952 0.008 0.020
#> GSM680041     4  0.2139      0.889 0.012 0.000 0.012 0.920 0.056
#> GSM680035     3  0.0609      0.849 0.000 0.020 0.980 0.000 0.000
#> GSM680047     4  0.2253      0.910 0.036 0.000 0.016 0.920 0.028
#> GSM680036     5  0.4852      0.548 0.000 0.008 0.380 0.016 0.596
#> GSM680048     4  0.2285      0.919 0.052 0.024 0.004 0.916 0.004
#> GSM680037     3  0.0609      0.849 0.000 0.020 0.980 0.000 0.000
#> GSM680049     4  0.2026      0.915 0.056 0.000 0.012 0.924 0.008
#> GSM680038     2  0.3719      0.762 0.000 0.776 0.208 0.004 0.012
#> GSM680050     1  0.5549      0.699 0.700 0.004 0.020 0.116 0.160
#> GSM680039     2  0.4446      0.279 0.000 0.520 0.476 0.004 0.000
#> GSM680051     4  0.2301      0.917 0.048 0.028 0.004 0.916 0.004
#> GSM680040     3  0.0609      0.849 0.000 0.020 0.980 0.000 0.000
#> GSM680052     4  0.2374      0.918 0.052 0.028 0.004 0.912 0.004
#> GSM680030     2  0.3554      0.757 0.000 0.776 0.216 0.004 0.004
#> GSM680042     4  0.2228      0.910 0.040 0.000 0.012 0.920 0.028
#> GSM680031     3  0.0771      0.847 0.000 0.020 0.976 0.000 0.004
#> GSM680043     1  0.5989      0.237 0.556 0.032 0.004 0.364 0.044
#> GSM680032     1  0.0880      0.845 0.968 0.000 0.000 0.000 0.032
#> GSM680044     1  0.5757      0.269 0.568 0.028 0.000 0.360 0.044
#> GSM680033     3  0.0609      0.849 0.000 0.020 0.980 0.000 0.000
#> GSM680045     4  0.5353      0.690 0.228 0.032 0.004 0.692 0.044
#> GSM680034     2  0.3427      0.747 0.000 0.796 0.192 0.012 0.000
#> GSM680046     4  0.3938      0.863 0.104 0.032 0.000 0.824 0.040

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM680053     5  0.2378     0.7975 0.000 0.000 0.152 0.000 0.848 0.000
#> GSM680062     5  0.2520     0.7971 0.000 0.000 0.152 0.000 0.844 0.004
#> GSM680054     5  0.3960     0.7556 0.000 0.072 0.128 0.000 0.784 0.016
#> GSM680063     5  0.2520     0.7971 0.000 0.000 0.152 0.000 0.844 0.004
#> GSM680055     5  0.1765     0.8039 0.000 0.000 0.096 0.000 0.904 0.000
#> GSM680064     1  0.5583     0.6547 0.660 0.000 0.000 0.156 0.076 0.108
#> GSM680056     5  0.2721     0.7542 0.040 0.004 0.000 0.000 0.868 0.088
#> GSM680065     5  0.3079     0.7386 0.056 0.004 0.000 0.000 0.844 0.096
#> GSM680057     2  0.3020     0.6620 0.000 0.812 0.176 0.004 0.004 0.004
#> GSM680066     1  0.2056     0.7729 0.904 0.000 0.000 0.004 0.012 0.080
#> GSM680058     2  0.4107     0.4906 0.000 0.688 0.000 0.004 0.028 0.280
#> GSM680067     2  0.1312     0.6871 0.000 0.956 0.020 0.004 0.012 0.008
#> GSM680059     3  0.5308    -0.3379 0.000 0.068 0.516 0.004 0.008 0.404
#> GSM680068     1  0.2056     0.7729 0.904 0.000 0.000 0.004 0.012 0.080
#> GSM680060     2  0.1844     0.6720 0.000 0.924 0.000 0.004 0.024 0.048
#> GSM680069     5  0.2344     0.7722 0.028 0.000 0.008 0.000 0.896 0.068
#> GSM680061     2  0.0777     0.6903 0.000 0.972 0.024 0.004 0.000 0.000
#> GSM680070     1  0.0935     0.7959 0.964 0.000 0.000 0.004 0.000 0.032
#> GSM680071     5  0.4871     0.5200 0.000 0.224 0.000 0.000 0.652 0.124
#> GSM680077     1  0.3500     0.7239 0.768 0.000 0.000 0.000 0.028 0.204
#> GSM680072     6  0.5952     0.2334 0.000 0.332 0.028 0.000 0.124 0.516
#> GSM680078     1  0.0653     0.7957 0.980 0.000 0.004 0.004 0.000 0.012
#> GSM680073     6  0.6587     0.6116 0.000 0.096 0.280 0.004 0.104 0.516
#> GSM680079     1  0.3178     0.7463 0.804 0.000 0.000 0.004 0.016 0.176
#> GSM680074     2  0.4365     0.3853 0.004 0.612 0.012 0.000 0.008 0.364
#> GSM680080     2  0.4365     0.3853 0.004 0.612 0.012 0.000 0.008 0.364
#> GSM680075     6  0.6397     0.4660 0.000 0.032 0.364 0.004 0.152 0.448
#> GSM680081     3  0.1053     0.7731 0.020 0.000 0.964 0.000 0.004 0.012
#> GSM680076     2  0.4418     0.3531 0.012 0.592 0.004 0.000 0.008 0.384
#> GSM680082     1  0.1364     0.7909 0.944 0.000 0.004 0.004 0.000 0.048
#> GSM680029     3  0.2099     0.7092 0.000 0.004 0.904 0.004 0.008 0.080
#> GSM680041     4  0.0547     0.8637 0.000 0.000 0.000 0.980 0.020 0.000
#> GSM680035     3  0.0291     0.8007 0.000 0.004 0.992 0.000 0.004 0.000
#> GSM680047     4  0.0520     0.8696 0.008 0.000 0.000 0.984 0.008 0.000
#> GSM680036     5  0.5020     0.5530 0.000 0.000 0.220 0.004 0.648 0.128
#> GSM680048     4  0.2375     0.8688 0.012 0.012 0.000 0.888 0.000 0.088
#> GSM680037     3  0.0291     0.8007 0.000 0.004 0.992 0.000 0.004 0.000
#> GSM680049     4  0.0508     0.8698 0.012 0.000 0.000 0.984 0.004 0.000
#> GSM680038     2  0.3387     0.6612 0.000 0.808 0.160 0.004 0.016 0.012
#> GSM680050     1  0.6350     0.5900 0.548 0.000 0.000 0.152 0.068 0.232
#> GSM680039     3  0.3989     0.0431 0.000 0.468 0.528 0.004 0.000 0.000
#> GSM680051     4  0.2056     0.8700 0.004 0.012 0.000 0.904 0.000 0.080
#> GSM680040     3  0.0291     0.8007 0.000 0.004 0.992 0.000 0.004 0.000
#> GSM680052     4  0.2426     0.8676 0.012 0.012 0.000 0.884 0.000 0.092
#> GSM680030     2  0.3020     0.6620 0.000 0.812 0.176 0.004 0.004 0.004
#> GSM680042     4  0.0622     0.8680 0.008 0.000 0.000 0.980 0.012 0.000
#> GSM680031     3  0.0291     0.8007 0.000 0.004 0.992 0.000 0.004 0.000
#> GSM680043     1  0.6314     0.3292 0.544 0.028 0.000 0.244 0.012 0.172
#> GSM680032     1  0.0862     0.7950 0.972 0.000 0.004 0.008 0.000 0.016
#> GSM680044     1  0.5860     0.3828 0.576 0.008 0.000 0.236 0.012 0.168
#> GSM680033     3  0.0291     0.8007 0.000 0.004 0.992 0.000 0.004 0.000
#> GSM680045     4  0.6412     0.4370 0.268 0.028 0.000 0.520 0.012 0.172
#> GSM680034     2  0.3048     0.6577 0.000 0.824 0.152 0.004 0.000 0.020
#> GSM680046     4  0.4988     0.7451 0.076 0.028 0.000 0.712 0.012 0.172

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) individual(p) protocol(p) other(p) k
#> MAD:kmeans 52         0.592410         0.992    2.84e-08   0.5921 2
#> MAD:kmeans 28         0.167064         0.640    3.09e-04   1.0000 3
#> MAD:kmeans 50         0.000587         0.655    1.41e-06   0.1687 4
#> MAD:kmeans 51         0.000254         0.250    1.56e-05   0.1870 5
#> MAD:kmeans 43         0.000400         0.547    3.61e-04   0.0286 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.959       0.984         0.5088 0.491   0.491
#> 3 3 0.878           0.893       0.936         0.3146 0.747   0.529
#> 4 4 0.754           0.822       0.888         0.1348 0.846   0.572
#> 5 5 0.856           0.835       0.916         0.0674 0.883   0.567
#> 6 6 0.806           0.668       0.810         0.0372 0.953   0.761

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM680053     2   0.000      1.000 0.000 1.000
#> GSM680062     1   0.000      0.967 1.000 0.000
#> GSM680054     2   0.000      1.000 0.000 1.000
#> GSM680063     1   0.000      0.967 1.000 0.000
#> GSM680055     2   0.000      1.000 0.000 1.000
#> GSM680064     1   0.000      0.967 1.000 0.000
#> GSM680056     1   0.000      0.967 1.000 0.000
#> GSM680065     1   0.000      0.967 1.000 0.000
#> GSM680057     2   0.000      1.000 0.000 1.000
#> GSM680066     1   0.000      0.967 1.000 0.000
#> GSM680058     2   0.000      1.000 0.000 1.000
#> GSM680067     2   0.000      1.000 0.000 1.000
#> GSM680059     2   0.000      1.000 0.000 1.000
#> GSM680068     1   0.000      0.967 1.000 0.000
#> GSM680060     2   0.000      1.000 0.000 1.000
#> GSM680069     1   0.978      0.324 0.588 0.412
#> GSM680061     2   0.000      1.000 0.000 1.000
#> GSM680070     1   0.000      0.967 1.000 0.000
#> GSM680071     1   0.987      0.269 0.568 0.432
#> GSM680077     1   0.000      0.967 1.000 0.000
#> GSM680072     2   0.000      1.000 0.000 1.000
#> GSM680078     1   0.000      0.967 1.000 0.000
#> GSM680073     2   0.000      1.000 0.000 1.000
#> GSM680079     1   0.000      0.967 1.000 0.000
#> GSM680074     2   0.000      1.000 0.000 1.000
#> GSM680080     2   0.000      1.000 0.000 1.000
#> GSM680075     2   0.000      1.000 0.000 1.000
#> GSM680081     2   0.000      1.000 0.000 1.000
#> GSM680076     2   0.000      1.000 0.000 1.000
#> GSM680082     1   0.000      0.967 1.000 0.000
#> GSM680029     2   0.000      1.000 0.000 1.000
#> GSM680041     1   0.000      0.967 1.000 0.000
#> GSM680035     2   0.000      1.000 0.000 1.000
#> GSM680047     1   0.000      0.967 1.000 0.000
#> GSM680036     2   0.000      1.000 0.000 1.000
#> GSM680048     1   0.000      0.967 1.000 0.000
#> GSM680037     2   0.000      1.000 0.000 1.000
#> GSM680049     1   0.000      0.967 1.000 0.000
#> GSM680038     2   0.000      1.000 0.000 1.000
#> GSM680050     1   0.000      0.967 1.000 0.000
#> GSM680039     2   0.000      1.000 0.000 1.000
#> GSM680051     1   0.000      0.967 1.000 0.000
#> GSM680040     2   0.000      1.000 0.000 1.000
#> GSM680052     1   0.000      0.967 1.000 0.000
#> GSM680030     2   0.000      1.000 0.000 1.000
#> GSM680042     1   0.000      0.967 1.000 0.000
#> GSM680031     2   0.000      1.000 0.000 1.000
#> GSM680043     1   0.000      0.967 1.000 0.000
#> GSM680032     1   0.000      0.967 1.000 0.000
#> GSM680044     1   0.000      0.967 1.000 0.000
#> GSM680033     2   0.000      1.000 0.000 1.000
#> GSM680045     1   0.000      0.967 1.000 0.000
#> GSM680034     2   0.000      1.000 0.000 1.000
#> GSM680046     1   0.000      0.967 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM680053     3  0.1031     0.8838 0.000 0.024 0.976
#> GSM680062     3  0.1905     0.8644 0.028 0.016 0.956
#> GSM680054     2  0.6307     0.0464 0.000 0.512 0.488
#> GSM680063     3  0.1163     0.8743 0.028 0.000 0.972
#> GSM680055     3  0.0892     0.8827 0.000 0.020 0.980
#> GSM680064     1  0.1289     0.9712 0.968 0.000 0.032
#> GSM680056     3  0.3482     0.7640 0.128 0.000 0.872
#> GSM680065     1  0.3412     0.8995 0.876 0.000 0.124
#> GSM680057     2  0.0747     0.9408 0.000 0.984 0.016
#> GSM680066     1  0.1163     0.9713 0.972 0.000 0.028
#> GSM680058     2  0.0747     0.9408 0.000 0.984 0.016
#> GSM680067     2  0.1163     0.9105 0.028 0.972 0.000
#> GSM680059     3  0.6180     0.4223 0.000 0.416 0.584
#> GSM680068     1  0.1031     0.9718 0.976 0.000 0.024
#> GSM680060     2  0.0747     0.9408 0.000 0.984 0.016
#> GSM680069     3  0.0747     0.8626 0.016 0.000 0.984
#> GSM680061     2  0.0000     0.9328 0.000 1.000 0.000
#> GSM680070     1  0.1163     0.9713 0.972 0.000 0.028
#> GSM680071     2  0.4068     0.8300 0.016 0.864 0.120
#> GSM680077     1  0.1289     0.9704 0.968 0.000 0.032
#> GSM680072     2  0.1163     0.9349 0.000 0.972 0.028
#> GSM680078     1  0.1860     0.9599 0.948 0.000 0.052
#> GSM680073     3  0.6180     0.4173 0.000 0.416 0.584
#> GSM680079     1  0.1289     0.9704 0.968 0.000 0.032
#> GSM680074     2  0.0747     0.9408 0.000 0.984 0.016
#> GSM680080     2  0.0747     0.9408 0.000 0.984 0.016
#> GSM680075     3  0.2261     0.8911 0.000 0.068 0.932
#> GSM680081     3  0.2804     0.8843 0.016 0.060 0.924
#> GSM680076     2  0.0747     0.9318 0.016 0.984 0.000
#> GSM680082     1  0.1289     0.9704 0.968 0.000 0.032
#> GSM680029     3  0.2711     0.8898 0.000 0.088 0.912
#> GSM680041     1  0.2152     0.9558 0.948 0.016 0.036
#> GSM680035     3  0.3116     0.8844 0.000 0.108 0.892
#> GSM680047     1  0.1170     0.9709 0.976 0.016 0.008
#> GSM680036     3  0.1289     0.8857 0.000 0.032 0.968
#> GSM680048     1  0.0747     0.9729 0.984 0.016 0.000
#> GSM680037     3  0.2959     0.8871 0.000 0.100 0.900
#> GSM680049     1  0.0747     0.9729 0.984 0.016 0.000
#> GSM680038     2  0.0747     0.9408 0.000 0.984 0.016
#> GSM680050     1  0.1289     0.9712 0.968 0.000 0.032
#> GSM680039     2  0.0747     0.9408 0.000 0.984 0.016
#> GSM680051     1  0.0747     0.9729 0.984 0.016 0.000
#> GSM680040     3  0.3267     0.8797 0.000 0.116 0.884
#> GSM680052     1  0.0747     0.9729 0.984 0.016 0.000
#> GSM680030     2  0.0747     0.9408 0.000 0.984 0.016
#> GSM680042     1  0.0983     0.9720 0.980 0.016 0.004
#> GSM680031     3  0.3116     0.8844 0.000 0.108 0.892
#> GSM680043     1  0.0747     0.9729 0.984 0.016 0.000
#> GSM680032     1  0.1411     0.9692 0.964 0.000 0.036
#> GSM680044     1  0.0747     0.9729 0.984 0.016 0.000
#> GSM680033     3  0.3340     0.8768 0.000 0.120 0.880
#> GSM680045     1  0.0747     0.9729 0.984 0.016 0.000
#> GSM680034     2  0.0892     0.9177 0.020 0.980 0.000
#> GSM680046     1  0.0747     0.9729 0.984 0.016 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM680053     3  0.4447      0.799 0.044 0.008 0.812 0.136
#> GSM680062     4  0.5807      0.221 0.044 0.000 0.344 0.612
#> GSM680054     2  0.6627      0.574 0.016 0.644 0.244 0.096
#> GSM680063     4  0.6074     -0.130 0.044 0.000 0.456 0.500
#> GSM680055     3  0.4447      0.799 0.044 0.008 0.812 0.136
#> GSM680064     1  0.3123      0.830 0.844 0.000 0.000 0.156
#> GSM680056     1  0.4679      0.748 0.772 0.000 0.044 0.184
#> GSM680065     1  0.4323      0.759 0.788 0.000 0.028 0.184
#> GSM680057     2  0.0921      0.923 0.000 0.972 0.028 0.000
#> GSM680066     1  0.1624      0.875 0.952 0.000 0.020 0.028
#> GSM680058     2  0.0188      0.929 0.000 0.996 0.004 0.000
#> GSM680067     2  0.0672      0.928 0.000 0.984 0.008 0.008
#> GSM680059     3  0.3123      0.834 0.000 0.156 0.844 0.000
#> GSM680068     1  0.1474      0.872 0.948 0.000 0.000 0.052
#> GSM680060     2  0.0188      0.929 0.000 0.996 0.004 0.000
#> GSM680069     1  0.5631      0.707 0.732 0.004 0.108 0.156
#> GSM680061     2  0.0336      0.928 0.000 0.992 0.008 0.000
#> GSM680070     1  0.1118      0.882 0.964 0.000 0.000 0.036
#> GSM680071     2  0.6130      0.702 0.092 0.724 0.032 0.152
#> GSM680077     1  0.0707      0.882 0.980 0.000 0.000 0.020
#> GSM680072     2  0.2053      0.886 0.000 0.924 0.072 0.004
#> GSM680078     1  0.0817      0.883 0.976 0.000 0.000 0.024
#> GSM680073     3  0.3583      0.811 0.000 0.180 0.816 0.004
#> GSM680079     1  0.1118      0.882 0.964 0.000 0.000 0.036
#> GSM680074     2  0.0000      0.929 0.000 1.000 0.000 0.000
#> GSM680080     2  0.0000      0.929 0.000 1.000 0.000 0.000
#> GSM680075     3  0.2896      0.888 0.056 0.032 0.904 0.008
#> GSM680081     3  0.2831      0.840 0.120 0.004 0.876 0.000
#> GSM680076     2  0.0592      0.923 0.016 0.984 0.000 0.000
#> GSM680082     1  0.1118      0.882 0.964 0.000 0.000 0.036
#> GSM680029     3  0.1284      0.907 0.012 0.024 0.964 0.000
#> GSM680041     4  0.1022      0.778 0.032 0.000 0.000 0.968
#> GSM680035     3  0.1022      0.910 0.000 0.032 0.968 0.000
#> GSM680047     4  0.2281      0.827 0.096 0.000 0.000 0.904
#> GSM680036     3  0.2940      0.855 0.012 0.008 0.892 0.088
#> GSM680048     4  0.2868      0.843 0.136 0.000 0.000 0.864
#> GSM680037     3  0.1022      0.910 0.000 0.032 0.968 0.000
#> GSM680049     4  0.2973      0.842 0.144 0.000 0.000 0.856
#> GSM680038     2  0.0336      0.929 0.000 0.992 0.008 0.000
#> GSM680050     1  0.4356      0.662 0.708 0.000 0.000 0.292
#> GSM680039     2  0.3266      0.804 0.000 0.832 0.168 0.000
#> GSM680051     4  0.2868      0.843 0.136 0.000 0.000 0.864
#> GSM680040     3  0.1022      0.910 0.000 0.032 0.968 0.000
#> GSM680052     4  0.2868      0.843 0.136 0.000 0.000 0.864
#> GSM680030     2  0.0921      0.923 0.000 0.972 0.028 0.000
#> GSM680042     4  0.2281      0.827 0.096 0.000 0.000 0.904
#> GSM680031     3  0.1022      0.910 0.000 0.032 0.968 0.000
#> GSM680043     4  0.3528      0.821 0.192 0.000 0.000 0.808
#> GSM680032     1  0.0921      0.884 0.972 0.000 0.000 0.028
#> GSM680044     4  0.3649      0.812 0.204 0.000 0.000 0.796
#> GSM680033     3  0.1022      0.910 0.000 0.032 0.968 0.000
#> GSM680045     4  0.3400      0.829 0.180 0.000 0.000 0.820
#> GSM680034     2  0.1624      0.917 0.000 0.952 0.028 0.020
#> GSM680046     4  0.3400      0.829 0.180 0.000 0.000 0.820

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM680053     5  0.0963     0.8436 0.000 0.000 0.036 0.000 0.964
#> GSM680062     5  0.0992     0.8446 0.000 0.000 0.008 0.024 0.968
#> GSM680054     5  0.3821     0.6908 0.000 0.216 0.020 0.000 0.764
#> GSM680063     5  0.0807     0.8479 0.000 0.000 0.012 0.012 0.976
#> GSM680055     5  0.0794     0.8464 0.000 0.000 0.028 0.000 0.972
#> GSM680064     1  0.4264     0.7087 0.744 0.000 0.000 0.212 0.044
#> GSM680056     5  0.1041     0.8457 0.032 0.000 0.000 0.004 0.964
#> GSM680065     5  0.2338     0.7895 0.112 0.000 0.000 0.004 0.884
#> GSM680057     2  0.2455     0.9033 0.008 0.896 0.088 0.004 0.004
#> GSM680066     1  0.0451     0.9263 0.988 0.000 0.004 0.008 0.000
#> GSM680058     2  0.0451     0.9472 0.000 0.988 0.004 0.000 0.008
#> GSM680067     2  0.0889     0.9447 0.004 0.976 0.004 0.012 0.004
#> GSM680059     3  0.2249     0.8265 0.000 0.096 0.896 0.000 0.008
#> GSM680068     1  0.0290     0.9271 0.992 0.000 0.000 0.008 0.000
#> GSM680060     2  0.0290     0.9472 0.000 0.992 0.000 0.000 0.008
#> GSM680069     5  0.0794     0.8471 0.028 0.000 0.000 0.000 0.972
#> GSM680061     2  0.0902     0.9451 0.004 0.976 0.008 0.008 0.004
#> GSM680070     1  0.0290     0.9271 0.992 0.000 0.000 0.008 0.000
#> GSM680071     5  0.4664     0.2426 0.004 0.436 0.000 0.008 0.552
#> GSM680077     1  0.0486     0.9243 0.988 0.004 0.000 0.004 0.004
#> GSM680072     2  0.2104     0.8985 0.000 0.916 0.024 0.000 0.060
#> GSM680078     1  0.0451     0.9263 0.988 0.000 0.004 0.008 0.000
#> GSM680073     3  0.4563     0.6827 0.000 0.244 0.708 0.000 0.048
#> GSM680079     1  0.0451     0.9261 0.988 0.000 0.000 0.008 0.004
#> GSM680074     2  0.0451     0.9472 0.000 0.988 0.004 0.000 0.008
#> GSM680080     2  0.0451     0.9472 0.000 0.988 0.004 0.000 0.008
#> GSM680075     3  0.4279     0.7440 0.004 0.108 0.784 0.000 0.104
#> GSM680081     3  0.1608     0.8321 0.072 0.000 0.928 0.000 0.000
#> GSM680076     2  0.0451     0.9472 0.000 0.988 0.004 0.000 0.008
#> GSM680082     1  0.0290     0.9271 0.992 0.000 0.000 0.008 0.000
#> GSM680029     3  0.0290     0.8700 0.000 0.000 0.992 0.000 0.008
#> GSM680041     4  0.0510     0.9271 0.000 0.000 0.000 0.984 0.016
#> GSM680035     3  0.0451     0.8707 0.004 0.000 0.988 0.000 0.008
#> GSM680047     4  0.0290     0.9315 0.000 0.000 0.000 0.992 0.008
#> GSM680036     5  0.4235     0.4629 0.000 0.008 0.336 0.000 0.656
#> GSM680048     4  0.0162     0.9331 0.004 0.000 0.000 0.996 0.000
#> GSM680037     3  0.0451     0.8707 0.004 0.000 0.988 0.000 0.008
#> GSM680049     4  0.0290     0.9325 0.008 0.000 0.000 0.992 0.000
#> GSM680038     2  0.1492     0.9362 0.008 0.948 0.040 0.000 0.004
#> GSM680050     1  0.5022     0.4950 0.620 0.000 0.000 0.332 0.048
#> GSM680039     3  0.4719     0.0992 0.004 0.452 0.536 0.004 0.004
#> GSM680051     4  0.0162     0.9308 0.000 0.004 0.000 0.996 0.000
#> GSM680040     3  0.0290     0.8711 0.000 0.000 0.992 0.000 0.008
#> GSM680052     4  0.0162     0.9331 0.004 0.000 0.000 0.996 0.000
#> GSM680030     2  0.2396     0.9057 0.008 0.900 0.084 0.004 0.004
#> GSM680042     4  0.0290     0.9315 0.000 0.000 0.000 0.992 0.008
#> GSM680031     3  0.0404     0.8705 0.000 0.000 0.988 0.000 0.012
#> GSM680043     4  0.3863     0.6878 0.248 0.000 0.000 0.740 0.012
#> GSM680032     1  0.0613     0.9172 0.984 0.000 0.004 0.008 0.004
#> GSM680044     4  0.4040     0.6371 0.276 0.000 0.000 0.712 0.012
#> GSM680033     3  0.0290     0.8711 0.000 0.000 0.992 0.000 0.008
#> GSM680045     4  0.1281     0.9170 0.032 0.000 0.000 0.956 0.012
#> GSM680034     2  0.3586     0.8656 0.008 0.844 0.092 0.052 0.004
#> GSM680046     4  0.0510     0.9303 0.016 0.000 0.000 0.984 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM680053     5  0.0622     0.8417 0.000 0.000 0.008 0.000 0.980 0.012
#> GSM680062     5  0.1307     0.8396 0.000 0.000 0.008 0.008 0.952 0.032
#> GSM680054     5  0.2917     0.7811 0.000 0.104 0.004 0.000 0.852 0.040
#> GSM680063     5  0.1307     0.8396 0.000 0.000 0.008 0.008 0.952 0.032
#> GSM680055     5  0.0260     0.8425 0.000 0.000 0.008 0.000 0.992 0.000
#> GSM680064     1  0.5327     0.5240 0.616 0.000 0.000 0.280 0.032 0.072
#> GSM680056     5  0.1843     0.8326 0.004 0.004 0.000 0.000 0.912 0.080
#> GSM680065     5  0.3317     0.7974 0.080 0.004 0.000 0.000 0.828 0.088
#> GSM680057     6  0.4332     0.9049 0.000 0.352 0.032 0.000 0.000 0.616
#> GSM680066     1  0.1588     0.8577 0.924 0.000 0.000 0.000 0.004 0.072
#> GSM680058     2  0.2562     0.4099 0.000 0.828 0.000 0.000 0.000 0.172
#> GSM680067     6  0.3727     0.8695 0.000 0.388 0.000 0.000 0.000 0.612
#> GSM680059     3  0.3967     0.4338 0.000 0.356 0.632 0.000 0.000 0.012
#> GSM680068     1  0.1700     0.8540 0.916 0.000 0.000 0.000 0.004 0.080
#> GSM680060     2  0.3647    -0.1175 0.000 0.640 0.000 0.000 0.000 0.360
#> GSM680069     5  0.2766     0.8246 0.012 0.028 0.000 0.000 0.868 0.092
#> GSM680061     6  0.3727     0.8793 0.000 0.388 0.000 0.000 0.000 0.612
#> GSM680070     1  0.0790     0.8727 0.968 0.000 0.000 0.000 0.000 0.032
#> GSM680071     5  0.5688     0.4279 0.000 0.264 0.000 0.000 0.524 0.212
#> GSM680077     1  0.0790     0.8727 0.968 0.000 0.000 0.000 0.000 0.032
#> GSM680072     2  0.1168     0.4506 0.000 0.956 0.016 0.000 0.028 0.000
#> GSM680078     1  0.0935     0.8738 0.964 0.004 0.000 0.000 0.000 0.032
#> GSM680073     2  0.4637     0.1587 0.000 0.636 0.316 0.000 0.024 0.024
#> GSM680079     1  0.0547     0.8744 0.980 0.000 0.000 0.000 0.000 0.020
#> GSM680074     2  0.2378     0.4502 0.000 0.848 0.000 0.000 0.000 0.152
#> GSM680080     2  0.2340     0.4544 0.000 0.852 0.000 0.000 0.000 0.148
#> GSM680075     2  0.5778    -0.0643 0.008 0.528 0.368 0.000 0.048 0.048
#> GSM680081     3  0.2250     0.7864 0.064 0.000 0.896 0.000 0.000 0.040
#> GSM680076     2  0.2454     0.4573 0.000 0.840 0.000 0.000 0.000 0.160
#> GSM680082     1  0.0713     0.8748 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM680029     3  0.1686     0.8085 0.000 0.064 0.924 0.000 0.000 0.012
#> GSM680041     4  0.0858     0.8770 0.000 0.000 0.000 0.968 0.004 0.028
#> GSM680035     3  0.0000     0.8448 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680047     4  0.0458     0.8837 0.000 0.000 0.000 0.984 0.000 0.016
#> GSM680036     5  0.6309     0.3461 0.000 0.252 0.224 0.000 0.496 0.028
#> GSM680048     4  0.0547     0.8850 0.000 0.000 0.000 0.980 0.000 0.020
#> GSM680037     3  0.0146     0.8439 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM680049     4  0.0363     0.8854 0.000 0.000 0.000 0.988 0.000 0.012
#> GSM680038     2  0.4098    -0.6900 0.000 0.496 0.008 0.000 0.000 0.496
#> GSM680050     1  0.5761     0.3728 0.536 0.000 0.000 0.344 0.040 0.080
#> GSM680039     3  0.5731    -0.1773 0.000 0.168 0.448 0.000 0.000 0.384
#> GSM680051     4  0.0260     0.8858 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM680040     3  0.0000     0.8448 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680052     4  0.0458     0.8856 0.000 0.000 0.000 0.984 0.000 0.016
#> GSM680030     6  0.4344     0.9031 0.000 0.356 0.032 0.000 0.000 0.612
#> GSM680042     4  0.0547     0.8824 0.000 0.000 0.000 0.980 0.000 0.020
#> GSM680031     3  0.0405     0.8414 0.000 0.000 0.988 0.000 0.004 0.008
#> GSM680043     4  0.5420     0.5162 0.272 0.000 0.000 0.580 0.004 0.144
#> GSM680032     1  0.2122     0.8514 0.900 0.008 0.000 0.000 0.008 0.084
#> GSM680044     4  0.5586     0.5271 0.252 0.000 0.000 0.584 0.012 0.152
#> GSM680033     3  0.0000     0.8448 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680045     4  0.3275     0.8141 0.036 0.000 0.000 0.816 0.004 0.144
#> GSM680034     6  0.4685     0.8540 0.000 0.300 0.040 0.016 0.000 0.644
#> GSM680046     4  0.2149     0.8540 0.004 0.000 0.000 0.888 0.004 0.104

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) individual(p) protocol(p) other(p) k
#> MAD:skmeans 52         5.92e-01         0.992    2.84e-08   0.5921 2
#> MAD:skmeans 51         2.02e-01         0.710    6.43e-07   0.3002 3
#> MAD:skmeans 52         1.41e-04         0.710    1.49e-07   0.2016 4
#> MAD:skmeans 50         1.76e-05         0.190    1.17e-05   0.0546 5
#> MAD:skmeans 40         1.13e-05         0.394    3.79e-04   0.0185 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.849           0.903       0.960         0.5063 0.491   0.491
#> 3 3 0.472           0.512       0.789         0.3090 0.737   0.513
#> 4 4 0.911           0.902       0.957         0.1473 0.751   0.389
#> 5 5 0.821           0.790       0.896         0.0569 0.921   0.690
#> 6 6 0.871           0.745       0.891         0.0468 0.899   0.552

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM680053     1  0.0376      0.974 0.996 0.004
#> GSM680062     1  0.0376      0.974 0.996 0.004
#> GSM680054     2  0.2778      0.902 0.048 0.952
#> GSM680063     1  0.0376      0.974 0.996 0.004
#> GSM680055     1  0.0376      0.974 0.996 0.004
#> GSM680064     1  0.0000      0.975 1.000 0.000
#> GSM680056     1  0.0376      0.974 0.996 0.004
#> GSM680065     1  0.0000      0.975 1.000 0.000
#> GSM680057     2  0.0000      0.935 0.000 1.000
#> GSM680066     2  0.0000      0.935 0.000 1.000
#> GSM680058     2  0.0000      0.935 0.000 1.000
#> GSM680067     2  0.0000      0.935 0.000 1.000
#> GSM680059     2  0.1414      0.922 0.020 0.980
#> GSM680068     1  0.0000      0.975 1.000 0.000
#> GSM680060     2  0.0000      0.935 0.000 1.000
#> GSM680069     1  0.0376      0.974 0.996 0.004
#> GSM680061     2  0.0000      0.935 0.000 1.000
#> GSM680070     1  0.0000      0.975 1.000 0.000
#> GSM680071     2  0.9954      0.167 0.460 0.540
#> GSM680077     2  0.9933      0.221 0.452 0.548
#> GSM680072     2  0.0000      0.935 0.000 1.000
#> GSM680078     1  0.0000      0.975 1.000 0.000
#> GSM680073     2  0.7453      0.720 0.212 0.788
#> GSM680079     1  0.0000      0.975 1.000 0.000
#> GSM680074     2  0.0000      0.935 0.000 1.000
#> GSM680080     2  0.0000      0.935 0.000 1.000
#> GSM680075     1  0.0672      0.971 0.992 0.008
#> GSM680081     2  0.0000      0.935 0.000 1.000
#> GSM680076     2  0.0000      0.935 0.000 1.000
#> GSM680082     2  0.2948      0.900 0.052 0.948
#> GSM680029     1  0.5842      0.830 0.860 0.140
#> GSM680041     1  0.0000      0.975 1.000 0.000
#> GSM680035     2  0.0000      0.935 0.000 1.000
#> GSM680047     1  0.0000      0.975 1.000 0.000
#> GSM680036     1  0.6712      0.777 0.824 0.176
#> GSM680048     1  0.0000      0.975 1.000 0.000
#> GSM680037     1  0.0376      0.974 0.996 0.004
#> GSM680049     1  0.8267      0.629 0.740 0.260
#> GSM680038     2  0.0000      0.935 0.000 1.000
#> GSM680050     1  0.0000      0.975 1.000 0.000
#> GSM680039     2  0.0000      0.935 0.000 1.000
#> GSM680051     2  0.8813      0.567 0.300 0.700
#> GSM680040     2  0.0000      0.935 0.000 1.000
#> GSM680052     1  0.0000      0.975 1.000 0.000
#> GSM680030     2  0.0000      0.935 0.000 1.000
#> GSM680042     1  0.0000      0.975 1.000 0.000
#> GSM680031     1  0.1414      0.961 0.980 0.020
#> GSM680043     1  0.0000      0.975 1.000 0.000
#> GSM680032     2  0.0000      0.935 0.000 1.000
#> GSM680044     1  0.0000      0.975 1.000 0.000
#> GSM680033     2  0.0000      0.935 0.000 1.000
#> GSM680045     1  0.0000      0.975 1.000 0.000
#> GSM680034     2  0.0000      0.935 0.000 1.000
#> GSM680046     1  0.0000      0.975 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM680053     3  0.2486     0.6594 0.060 0.008 0.932
#> GSM680062     3  0.4136     0.6065 0.116 0.020 0.864
#> GSM680054     2  0.4605     0.4980 0.000 0.796 0.204
#> GSM680063     3  0.6887     0.4847 0.060 0.236 0.704
#> GSM680055     3  0.2486     0.6594 0.060 0.008 0.932
#> GSM680064     1  0.4605     0.7082 0.796 0.000 0.204
#> GSM680056     3  0.4725     0.6296 0.060 0.088 0.852
#> GSM680065     3  0.2261     0.6548 0.068 0.000 0.932
#> GSM680057     2  0.0000     0.7157 0.000 1.000 0.000
#> GSM680066     3  0.9710    -0.0499 0.220 0.372 0.408
#> GSM680058     2  0.0000     0.7157 0.000 1.000 0.000
#> GSM680067     2  0.0000     0.7157 0.000 1.000 0.000
#> GSM680059     3  0.6308    -0.2117 0.000 0.492 0.508
#> GSM680068     1  0.2066     0.6874 0.940 0.000 0.060
#> GSM680060     2  0.0000     0.7157 0.000 1.000 0.000
#> GSM680069     3  0.7092     0.5173 0.084 0.208 0.708
#> GSM680061     2  0.0000     0.7157 0.000 1.000 0.000
#> GSM680070     1  0.0000     0.7230 1.000 0.000 0.000
#> GSM680071     2  0.6129     0.2785 0.008 0.668 0.324
#> GSM680077     2  0.9137     0.1874 0.276 0.536 0.188
#> GSM680072     2  0.0592     0.7079 0.000 0.988 0.012
#> GSM680078     3  0.4702     0.5657 0.212 0.000 0.788
#> GSM680073     3  0.6111     0.0787 0.000 0.396 0.604
#> GSM680079     3  0.5968     0.4049 0.364 0.000 0.636
#> GSM680074     2  0.0000     0.7157 0.000 1.000 0.000
#> GSM680080     2  0.0000     0.7157 0.000 1.000 0.000
#> GSM680075     3  0.0747     0.6760 0.000 0.016 0.984
#> GSM680081     2  0.6309     0.1588 0.000 0.504 0.496
#> GSM680076     2  0.0000     0.7157 0.000 1.000 0.000
#> GSM680082     1  0.2066     0.6932 0.940 0.060 0.000
#> GSM680029     3  0.4796     0.4830 0.000 0.220 0.780
#> GSM680041     1  0.6180     0.5314 0.584 0.000 0.416
#> GSM680035     2  0.6309     0.1588 0.000 0.504 0.496
#> GSM680047     1  0.6302     0.4429 0.520 0.000 0.480
#> GSM680036     3  0.1964     0.6754 0.000 0.056 0.944
#> GSM680048     1  0.6302     0.4429 0.520 0.000 0.480
#> GSM680037     3  0.1031     0.6766 0.000 0.024 0.976
#> GSM680049     1  0.1753     0.7021 0.952 0.048 0.000
#> GSM680038     2  0.0000     0.7157 0.000 1.000 0.000
#> GSM680050     3  0.8675    -0.2930 0.388 0.108 0.504
#> GSM680039     2  0.6126     0.3090 0.000 0.600 0.400
#> GSM680051     1  0.5803     0.5597 0.736 0.248 0.016
#> GSM680040     2  0.6309     0.1588 0.000 0.504 0.496
#> GSM680052     1  0.4702     0.7137 0.788 0.000 0.212
#> GSM680030     2  0.0000     0.7157 0.000 1.000 0.000
#> GSM680042     1  0.4702     0.7137 0.788 0.000 0.212
#> GSM680031     3  0.3043     0.6629 0.008 0.084 0.908
#> GSM680043     1  0.0000     0.7230 1.000 0.000 0.000
#> GSM680032     2  0.8102     0.2789 0.076 0.556 0.368
#> GSM680044     1  0.6302     0.4429 0.520 0.000 0.480
#> GSM680033     2  0.6309     0.1588 0.000 0.504 0.496
#> GSM680045     1  0.4702     0.7137 0.788 0.000 0.212
#> GSM680034     2  0.6180     0.2007 0.416 0.584 0.000
#> GSM680046     1  0.0000     0.7230 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM680053     1  0.0592     0.9160 0.984 0.000 0.016 0.000
#> GSM680062     1  0.0000     0.9198 1.000 0.000 0.000 0.000
#> GSM680054     1  0.4877     0.3020 0.592 0.408 0.000 0.000
#> GSM680063     1  0.0000     0.9198 1.000 0.000 0.000 0.000
#> GSM680055     1  0.0592     0.9160 0.984 0.000 0.016 0.000
#> GSM680064     4  0.3649     0.7424 0.204 0.000 0.000 0.796
#> GSM680056     1  0.0000     0.9198 1.000 0.000 0.000 0.000
#> GSM680065     1  0.0000     0.9198 1.000 0.000 0.000 0.000
#> GSM680057     2  0.0188     0.9547 0.000 0.996 0.004 0.000
#> GSM680066     3  0.2949     0.8922 0.000 0.088 0.888 0.024
#> GSM680058     2  0.0000     0.9566 0.000 1.000 0.000 0.000
#> GSM680067     2  0.0000     0.9566 0.000 1.000 0.000 0.000
#> GSM680059     3  0.0000     0.9615 0.000 0.000 1.000 0.000
#> GSM680068     4  0.0000     0.9678 0.000 0.000 0.000 1.000
#> GSM680060     2  0.0000     0.9566 0.000 1.000 0.000 0.000
#> GSM680069     1  0.4771     0.7034 0.768 0.036 0.192 0.004
#> GSM680061     2  0.0188     0.9547 0.000 0.996 0.004 0.000
#> GSM680070     4  0.0188     0.9667 0.004 0.000 0.000 0.996
#> GSM680071     2  0.0188     0.9537 0.004 0.996 0.000 0.000
#> GSM680077     2  0.5285     0.0736 0.468 0.524 0.000 0.008
#> GSM680072     2  0.0000     0.9566 0.000 1.000 0.000 0.000
#> GSM680078     3  0.0188     0.9603 0.000 0.000 0.996 0.004
#> GSM680073     3  0.1022     0.9457 0.000 0.032 0.968 0.000
#> GSM680079     3  0.0779     0.9535 0.016 0.000 0.980 0.004
#> GSM680074     2  0.0000     0.9566 0.000 1.000 0.000 0.000
#> GSM680080     2  0.0000     0.9566 0.000 1.000 0.000 0.000
#> GSM680075     3  0.0000     0.9615 0.000 0.000 1.000 0.000
#> GSM680081     3  0.0000     0.9615 0.000 0.000 1.000 0.000
#> GSM680076     2  0.0000     0.9566 0.000 1.000 0.000 0.000
#> GSM680082     4  0.0592     0.9582 0.016 0.000 0.000 0.984
#> GSM680029     3  0.0000     0.9615 0.000 0.000 1.000 0.000
#> GSM680041     1  0.3486     0.7425 0.812 0.000 0.000 0.188
#> GSM680035     3  0.0000     0.9615 0.000 0.000 1.000 0.000
#> GSM680047     1  0.0707     0.9155 0.980 0.000 0.000 0.020
#> GSM680036     3  0.0188     0.9606 0.000 0.004 0.996 0.000
#> GSM680048     1  0.0707     0.9156 0.980 0.000 0.000 0.020
#> GSM680037     3  0.0188     0.9601 0.004 0.000 0.996 0.000
#> GSM680049     4  0.0000     0.9678 0.000 0.000 0.000 1.000
#> GSM680038     2  0.0000     0.9566 0.000 1.000 0.000 0.000
#> GSM680050     1  0.0000     0.9198 1.000 0.000 0.000 0.000
#> GSM680039     3  0.3074     0.8381 0.000 0.152 0.848 0.000
#> GSM680051     4  0.0188     0.9665 0.000 0.000 0.004 0.996
#> GSM680040     3  0.0000     0.9615 0.000 0.000 1.000 0.000
#> GSM680052     4  0.0188     0.9673 0.004 0.000 0.000 0.996
#> GSM680030     2  0.0188     0.9547 0.000 0.996 0.004 0.000
#> GSM680042     4  0.0188     0.9673 0.004 0.000 0.000 0.996
#> GSM680031     3  0.1557     0.9261 0.056 0.000 0.944 0.000
#> GSM680043     4  0.0000     0.9678 0.000 0.000 0.000 1.000
#> GSM680032     3  0.4999     0.8070 0.012 0.100 0.792 0.096
#> GSM680044     1  0.0592     0.9167 0.984 0.000 0.000 0.016
#> GSM680033     3  0.0188     0.9607 0.000 0.004 0.996 0.000
#> GSM680045     4  0.0188     0.9673 0.004 0.000 0.000 0.996
#> GSM680034     4  0.2334     0.8834 0.000 0.088 0.004 0.908
#> GSM680046     4  0.0000     0.9678 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM680053     5  0.0000      0.813 0.000 0.000 0.000 0.000 1.000
#> GSM680062     5  0.0000      0.813 0.000 0.000 0.000 0.000 1.000
#> GSM680054     5  0.4949      0.306 0.032 0.396 0.000 0.000 0.572
#> GSM680063     5  0.0000      0.813 0.000 0.000 0.000 0.000 1.000
#> GSM680055     5  0.0000      0.813 0.000 0.000 0.000 0.000 1.000
#> GSM680064     1  0.3630      0.600 0.780 0.000 0.000 0.204 0.016
#> GSM680056     1  0.4300      0.312 0.524 0.000 0.000 0.000 0.476
#> GSM680065     1  0.4300      0.312 0.524 0.000 0.000 0.000 0.476
#> GSM680057     2  0.0880      0.927 0.032 0.968 0.000 0.000 0.000
#> GSM680066     3  0.5665      0.599 0.184 0.140 0.664 0.012 0.000
#> GSM680058     2  0.2074      0.923 0.104 0.896 0.000 0.000 0.000
#> GSM680067     2  0.0000      0.934 0.000 1.000 0.000 0.000 0.000
#> GSM680059     3  0.0000      0.938 0.000 0.000 1.000 0.000 0.000
#> GSM680068     4  0.2516      0.842 0.140 0.000 0.000 0.860 0.000
#> GSM680060     2  0.0703      0.936 0.024 0.976 0.000 0.000 0.000
#> GSM680069     5  0.7107     -0.327 0.376 0.036 0.160 0.000 0.428
#> GSM680061     2  0.0880      0.927 0.032 0.968 0.000 0.000 0.000
#> GSM680070     4  0.2966      0.798 0.184 0.000 0.000 0.816 0.000
#> GSM680071     2  0.0963      0.919 0.036 0.964 0.000 0.000 0.000
#> GSM680077     1  0.2513      0.638 0.876 0.008 0.000 0.000 0.116
#> GSM680072     2  0.2074      0.923 0.104 0.896 0.000 0.000 0.000
#> GSM680078     3  0.1608      0.888 0.072 0.000 0.928 0.000 0.000
#> GSM680073     3  0.1121      0.910 0.000 0.044 0.956 0.000 0.000
#> GSM680079     1  0.2605      0.617 0.852 0.000 0.148 0.000 0.000
#> GSM680074     2  0.2074      0.923 0.104 0.896 0.000 0.000 0.000
#> GSM680080     2  0.2230      0.924 0.116 0.884 0.000 0.000 0.000
#> GSM680075     3  0.0000      0.938 0.000 0.000 1.000 0.000 0.000
#> GSM680081     3  0.0000      0.938 0.000 0.000 1.000 0.000 0.000
#> GSM680076     2  0.2074      0.923 0.104 0.896 0.000 0.000 0.000
#> GSM680082     1  0.2471      0.625 0.864 0.000 0.000 0.136 0.000
#> GSM680029     3  0.0000      0.938 0.000 0.000 1.000 0.000 0.000
#> GSM680041     5  0.2891      0.627 0.000 0.000 0.000 0.176 0.824
#> GSM680035     3  0.0000      0.938 0.000 0.000 1.000 0.000 0.000
#> GSM680047     5  0.0510      0.807 0.000 0.000 0.000 0.016 0.984
#> GSM680036     3  0.0510      0.931 0.000 0.016 0.984 0.000 0.000
#> GSM680048     5  0.0510      0.807 0.000 0.000 0.000 0.016 0.984
#> GSM680037     3  0.0000      0.938 0.000 0.000 1.000 0.000 0.000
#> GSM680049     4  0.0000      0.936 0.000 0.000 0.000 1.000 0.000
#> GSM680038     2  0.1041      0.925 0.032 0.964 0.004 0.000 0.000
#> GSM680050     1  0.4489      0.375 0.572 0.000 0.000 0.008 0.420
#> GSM680039     3  0.3694      0.740 0.032 0.172 0.796 0.000 0.000
#> GSM680051     4  0.0000      0.936 0.000 0.000 0.000 1.000 0.000
#> GSM680040     3  0.0000      0.938 0.000 0.000 1.000 0.000 0.000
#> GSM680052     4  0.0000      0.936 0.000 0.000 0.000 1.000 0.000
#> GSM680030     2  0.0880      0.927 0.032 0.968 0.000 0.000 0.000
#> GSM680042     4  0.0000      0.936 0.000 0.000 0.000 1.000 0.000
#> GSM680031     3  0.1341      0.898 0.000 0.000 0.944 0.000 0.056
#> GSM680043     4  0.0404      0.931 0.000 0.000 0.000 0.988 0.012
#> GSM680032     1  0.5754      0.389 0.588 0.120 0.292 0.000 0.000
#> GSM680044     5  0.0000      0.813 0.000 0.000 0.000 0.000 1.000
#> GSM680033     3  0.0000      0.938 0.000 0.000 1.000 0.000 0.000
#> GSM680045     4  0.0162      0.935 0.000 0.000 0.000 0.996 0.004
#> GSM680034     4  0.3366      0.757 0.032 0.140 0.000 0.828 0.000
#> GSM680046     4  0.0000      0.936 0.000 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM680053     5  0.0000     0.7702 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM680062     5  0.0000     0.7702 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM680054     2  0.0000     0.8607 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM680063     5  0.0000     0.7702 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM680055     5  0.0000     0.7702 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM680064     1  0.3073     0.6637 0.840 0.000 0.000 0.080 0.080 0.000
#> GSM680056     1  0.3727     0.4177 0.612 0.000 0.000 0.000 0.388 0.000
#> GSM680065     1  0.3727     0.4177 0.612 0.000 0.000 0.000 0.388 0.000
#> GSM680057     2  0.0000     0.8607 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM680066     2  0.4067     0.5908 0.260 0.700 0.040 0.000 0.000 0.000
#> GSM680058     6  0.0000     0.8658 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM680067     2  0.3833     0.1185 0.000 0.556 0.000 0.000 0.000 0.444
#> GSM680059     3  0.0000     0.9862 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680068     4  0.3175     0.7533 0.256 0.000 0.000 0.744 0.000 0.000
#> GSM680060     6  0.2340     0.7526 0.000 0.148 0.000 0.000 0.000 0.852
#> GSM680069     5  0.6120    -0.0287 0.364 0.000 0.172 0.000 0.448 0.016
#> GSM680061     2  0.0000     0.8607 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM680070     4  0.3531     0.6756 0.328 0.000 0.000 0.672 0.000 0.000
#> GSM680071     1  0.5329     0.0215 0.452 0.104 0.000 0.000 0.000 0.444
#> GSM680077     1  0.0000     0.7071 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM680072     6  0.0000     0.8658 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM680078     3  0.1204     0.9405 0.056 0.000 0.944 0.000 0.000 0.000
#> GSM680073     3  0.0632     0.9697 0.000 0.000 0.976 0.000 0.000 0.024
#> GSM680079     1  0.0547     0.6995 0.980 0.000 0.020 0.000 0.000 0.000
#> GSM680074     6  0.0000     0.8658 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM680080     6  0.3659     0.3657 0.000 0.364 0.000 0.000 0.000 0.636
#> GSM680075     3  0.0000     0.9862 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680081     3  0.0000     0.9862 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680076     6  0.0000     0.8658 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM680082     1  0.0000     0.7071 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM680029     3  0.0000     0.9862 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680041     5  0.3175     0.6093 0.000 0.000 0.000 0.256 0.744 0.000
#> GSM680035     3  0.0000     0.9862 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680047     5  0.3050     0.6552 0.000 0.000 0.000 0.236 0.764 0.000
#> GSM680036     3  0.0146     0.9843 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM680048     5  0.2527     0.6944 0.000 0.000 0.000 0.168 0.832 0.000
#> GSM680037     3  0.0000     0.9862 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680049     4  0.0000     0.8761 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM680038     2  0.0146     0.8588 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM680050     5  0.4407    -0.1111 0.480 0.000 0.000 0.024 0.496 0.000
#> GSM680039     2  0.0146     0.8586 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM680051     4  0.0000     0.8761 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM680040     3  0.0000     0.9862 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680052     4  0.1075     0.8607 0.000 0.000 0.000 0.952 0.048 0.000
#> GSM680030     2  0.0000     0.8607 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM680042     4  0.0000     0.8761 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM680031     3  0.1204     0.9376 0.000 0.000 0.944 0.000 0.056 0.000
#> GSM680043     4  0.3403     0.7769 0.212 0.000 0.000 0.768 0.020 0.000
#> GSM680032     2  0.3482     0.4995 0.316 0.684 0.000 0.000 0.000 0.000
#> GSM680044     5  0.0000     0.7702 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM680033     3  0.0146     0.9840 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM680045     4  0.1444     0.8458 0.000 0.000 0.000 0.928 0.072 0.000
#> GSM680034     2  0.0000     0.8607 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM680046     4  0.0000     0.8761 0.000 0.000 0.000 1.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) individual(p) protocol(p) other(p) k
#> MAD:pam 52           0.3789         0.529    2.21e-03  0.18345 2
#> MAD:pam 34           0.0380         0.385    1.83e-04  0.24468 3
#> MAD:pam 52           0.0724         0.288    1.23e-04  0.03830 4
#> MAD:pam 48           0.0114         0.366    1.74e-04  0.01031 5
#> MAD:pam 46           0.0342         0.303    1.61e-05  0.00204 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.361           0.840       0.833         0.3762 0.508   0.508
#> 3 3 0.239           0.618       0.683         0.4691 0.857   0.742
#> 4 4 0.570           0.698       0.832         0.3135 0.725   0.439
#> 5 5 0.682           0.632       0.786         0.0879 0.865   0.540
#> 6 6 0.750           0.658       0.822         0.0433 0.932   0.690

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM680053     2  0.7139      0.924 0.196 0.804
#> GSM680062     2  0.7299      0.915 0.204 0.796
#> GSM680054     2  0.7139      0.924 0.196 0.804
#> GSM680063     2  0.7139      0.924 0.196 0.804
#> GSM680055     2  0.7139      0.924 0.196 0.804
#> GSM680064     1  0.6887      0.874 0.816 0.184
#> GSM680056     1  0.6887      0.874 0.816 0.184
#> GSM680065     1  0.6887      0.874 0.816 0.184
#> GSM680057     2  0.7139      0.924 0.196 0.804
#> GSM680066     2  0.9248      0.660 0.340 0.660
#> GSM680058     2  0.7139      0.924 0.196 0.804
#> GSM680067     2  0.7139      0.924 0.196 0.804
#> GSM680059     2  0.7139      0.924 0.196 0.804
#> GSM680068     1  0.6887      0.874 0.816 0.184
#> GSM680060     2  0.7139      0.924 0.196 0.804
#> GSM680069     2  0.7139      0.924 0.196 0.804
#> GSM680061     2  0.7139      0.924 0.196 0.804
#> GSM680070     1  0.6887      0.874 0.816 0.184
#> GSM680071     2  0.9635      0.517 0.388 0.612
#> GSM680077     1  0.6887      0.874 0.816 0.184
#> GSM680072     2  0.7139      0.924 0.196 0.804
#> GSM680078     1  0.9732      0.394 0.596 0.404
#> GSM680073     2  0.7139      0.924 0.196 0.804
#> GSM680079     1  0.6887      0.874 0.816 0.184
#> GSM680074     2  0.7139      0.924 0.196 0.804
#> GSM680080     2  0.7139      0.924 0.196 0.804
#> GSM680075     2  0.7139      0.924 0.196 0.804
#> GSM680081     2  0.7139      0.924 0.196 0.804
#> GSM680076     2  0.7139      0.924 0.196 0.804
#> GSM680082     1  0.6887      0.874 0.816 0.184
#> GSM680029     2  0.7139      0.924 0.196 0.804
#> GSM680041     1  0.5629      0.862 0.868 0.132
#> GSM680035     2  0.0000      0.728 0.000 1.000
#> GSM680047     1  0.4562      0.846 0.904 0.096
#> GSM680036     2  0.7139      0.924 0.196 0.804
#> GSM680048     1  0.0000      0.773 1.000 0.000
#> GSM680037     2  0.0376      0.733 0.004 0.996
#> GSM680049     1  0.6712      0.873 0.824 0.176
#> GSM680038     2  0.6438      0.899 0.164 0.836
#> GSM680050     1  0.6887      0.874 0.816 0.184
#> GSM680039     2  0.6247      0.892 0.156 0.844
#> GSM680051     1  0.0000      0.773 1.000 0.000
#> GSM680040     2  0.0000      0.728 0.000 1.000
#> GSM680052     1  0.0000      0.773 1.000 0.000
#> GSM680030     2  0.6247      0.892 0.156 0.844
#> GSM680042     1  0.6148      0.869 0.848 0.152
#> GSM680031     2  0.0376      0.733 0.004 0.996
#> GSM680043     1  0.2948      0.810 0.948 0.052
#> GSM680032     1  0.9866      0.278 0.568 0.432
#> GSM680044     1  0.8144      0.779 0.748 0.252
#> GSM680033     2  0.0000      0.728 0.000 1.000
#> GSM680045     1  0.4161      0.806 0.916 0.084
#> GSM680034     2  0.7139      0.924 0.196 0.804
#> GSM680046     1  0.4431      0.844 0.908 0.092

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM680053     2  0.6518     0.5633 0.004 0.512 0.484
#> GSM680062     2  0.7835     0.4961 0.052 0.492 0.456
#> GSM680054     2  0.6823     0.6036 0.036 0.668 0.296
#> GSM680063     2  0.7075     0.5313 0.020 0.492 0.488
#> GSM680055     2  0.6678     0.5607 0.008 0.512 0.480
#> GSM680064     3  0.7821     0.9490 0.176 0.152 0.672
#> GSM680056     3  0.7766     0.9502 0.176 0.148 0.676
#> GSM680065     3  0.7766     0.9502 0.176 0.148 0.676
#> GSM680057     2  0.3764     0.5578 0.040 0.892 0.068
#> GSM680066     2  0.9041     0.3070 0.140 0.488 0.372
#> GSM680058     2  0.5581     0.5649 0.040 0.792 0.168
#> GSM680067     2  0.5414     0.4658 0.212 0.772 0.016
#> GSM680059     2  0.6267     0.5739 0.000 0.548 0.452
#> GSM680068     3  0.7869     0.9456 0.180 0.152 0.668
#> GSM680060     2  0.5798     0.5541 0.040 0.776 0.184
#> GSM680069     2  0.7757     0.4952 0.048 0.488 0.464
#> GSM680061     2  0.5414     0.4658 0.212 0.772 0.016
#> GSM680070     3  0.7772     0.9500 0.172 0.152 0.676
#> GSM680071     2  0.8515    -0.2148 0.092 0.476 0.432
#> GSM680077     3  0.7766     0.9502 0.176 0.148 0.676
#> GSM680072     2  0.6698     0.6014 0.036 0.684 0.280
#> GSM680078     3  0.7059     0.8359 0.112 0.164 0.724
#> GSM680073     2  0.6302     0.5697 0.000 0.520 0.480
#> GSM680079     3  0.7772     0.9500 0.172 0.152 0.676
#> GSM680074     2  0.5798     0.5541 0.040 0.776 0.184
#> GSM680080     2  0.5635     0.5601 0.036 0.784 0.180
#> GSM680075     2  0.6302     0.5697 0.000 0.520 0.480
#> GSM680081     2  0.6516     0.5672 0.004 0.516 0.480
#> GSM680076     2  0.5741     0.5539 0.036 0.776 0.188
#> GSM680082     3  0.7759     0.9486 0.180 0.144 0.676
#> GSM680029     2  0.6302     0.5697 0.000 0.520 0.480
#> GSM680041     1  0.3921     0.8612 0.884 0.036 0.080
#> GSM680035     2  0.6225     0.4394 0.000 0.568 0.432
#> GSM680047     1  0.3921     0.8612 0.884 0.036 0.080
#> GSM680036     2  0.6302     0.5697 0.000 0.520 0.480
#> GSM680048     1  0.0424     0.8442 0.992 0.008 0.000
#> GSM680037     2  0.6225     0.4394 0.000 0.568 0.432
#> GSM680049     1  0.6291     0.6700 0.768 0.152 0.080
#> GSM680038     2  0.5407     0.5946 0.040 0.804 0.156
#> GSM680050     3  0.8849     0.7485 0.292 0.152 0.556
#> GSM680039     2  0.5466     0.5719 0.040 0.800 0.160
#> GSM680051     1  0.0424     0.8442 0.992 0.008 0.000
#> GSM680040     2  0.6225     0.4394 0.000 0.568 0.432
#> GSM680052     1  0.0424     0.8442 0.992 0.008 0.000
#> GSM680030     2  0.1950     0.5331 0.040 0.952 0.008
#> GSM680042     1  0.4745     0.8305 0.852 0.068 0.080
#> GSM680031     2  0.6225     0.4394 0.000 0.568 0.432
#> GSM680043     1  0.5566     0.7053 0.812 0.080 0.108
#> GSM680032     2  0.9367    -0.0311 0.168 0.428 0.404
#> GSM680044     2  0.9433     0.1417 0.184 0.460 0.356
#> GSM680033     2  0.6225     0.4394 0.000 0.568 0.432
#> GSM680045     1  0.4477     0.7780 0.864 0.068 0.068
#> GSM680034     2  0.5414     0.4658 0.212 0.772 0.016
#> GSM680046     1  0.3921     0.8612 0.884 0.036 0.080

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM680053     3  0.4540      0.734 0.196 0.032 0.772 0.000
#> GSM680062     3  0.5250      0.609 0.316 0.024 0.660 0.000
#> GSM680054     3  0.6748      0.439 0.112 0.328 0.560 0.000
#> GSM680063     3  0.5206      0.621 0.308 0.024 0.668 0.000
#> GSM680055     3  0.5816      0.497 0.392 0.036 0.572 0.000
#> GSM680064     1  0.1284      0.826 0.964 0.024 0.012 0.000
#> GSM680056     1  0.2036      0.799 0.936 0.032 0.032 0.000
#> GSM680065     1  0.0707      0.823 0.980 0.000 0.020 0.000
#> GSM680057     2  0.3853      0.769 0.020 0.820 0.160 0.000
#> GSM680066     1  0.5721      0.539 0.660 0.284 0.056 0.000
#> GSM680058     2  0.3533      0.768 0.056 0.864 0.080 0.000
#> GSM680067     2  0.4918      0.771 0.044 0.812 0.088 0.056
#> GSM680059     3  0.6098      0.564 0.068 0.316 0.616 0.000
#> GSM680068     1  0.1871      0.823 0.948 0.024 0.012 0.016
#> GSM680060     2  0.1824      0.794 0.060 0.936 0.004 0.000
#> GSM680069     1  0.4737      0.488 0.728 0.020 0.252 0.000
#> GSM680061     2  0.4457      0.781 0.024 0.832 0.088 0.056
#> GSM680070     1  0.0921      0.827 0.972 0.028 0.000 0.000
#> GSM680071     1  0.4950      0.276 0.620 0.376 0.004 0.000
#> GSM680077     1  0.2149      0.787 0.912 0.088 0.000 0.000
#> GSM680072     2  0.6265     -0.270 0.056 0.500 0.444 0.000
#> GSM680078     1  0.0524      0.826 0.988 0.004 0.008 0.000
#> GSM680073     3  0.6205      0.698 0.136 0.196 0.668 0.000
#> GSM680079     1  0.0000      0.826 1.000 0.000 0.000 0.000
#> GSM680074     2  0.1576      0.795 0.048 0.948 0.004 0.000
#> GSM680080     2  0.1824      0.791 0.060 0.936 0.004 0.000
#> GSM680075     3  0.5994      0.704 0.152 0.156 0.692 0.000
#> GSM680081     3  0.4996      0.735 0.192 0.056 0.752 0.000
#> GSM680076     2  0.2149      0.792 0.088 0.912 0.000 0.000
#> GSM680082     1  0.2011      0.791 0.920 0.080 0.000 0.000
#> GSM680029     3  0.5122      0.739 0.164 0.080 0.756 0.000
#> GSM680041     4  0.3088      0.909 0.060 0.052 0.000 0.888
#> GSM680035     3  0.1022      0.708 0.000 0.032 0.968 0.000
#> GSM680047     4  0.1637      0.932 0.060 0.000 0.000 0.940
#> GSM680036     3  0.4881      0.732 0.196 0.048 0.756 0.000
#> GSM680048     4  0.0000      0.929 0.000 0.000 0.000 1.000
#> GSM680037     3  0.1022      0.708 0.000 0.032 0.968 0.000
#> GSM680049     4  0.3810      0.871 0.060 0.092 0.000 0.848
#> GSM680038     3  0.5550      0.119 0.020 0.428 0.552 0.000
#> GSM680050     1  0.2530      0.787 0.896 0.100 0.000 0.004
#> GSM680039     3  0.4008      0.570 0.000 0.244 0.756 0.000
#> GSM680051     4  0.0000      0.929 0.000 0.000 0.000 1.000
#> GSM680040     3  0.1022      0.708 0.000 0.032 0.968 0.000
#> GSM680052     4  0.0000      0.929 0.000 0.000 0.000 1.000
#> GSM680030     2  0.4991      0.450 0.004 0.608 0.388 0.000
#> GSM680042     4  0.3398      0.895 0.060 0.068 0.000 0.872
#> GSM680031     3  0.1022      0.708 0.000 0.032 0.968 0.000
#> GSM680043     4  0.1305      0.936 0.036 0.000 0.004 0.960
#> GSM680032     1  0.1004      0.826 0.972 0.024 0.004 0.000
#> GSM680044     1  0.8064     -0.244 0.408 0.024 0.404 0.164
#> GSM680033     3  0.1022      0.708 0.000 0.032 0.968 0.000
#> GSM680045     4  0.0469      0.933 0.012 0.000 0.000 0.988
#> GSM680034     2  0.5180      0.770 0.040 0.796 0.096 0.068
#> GSM680046     4  0.1637      0.932 0.060 0.000 0.000 0.940

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM680053     5  0.4171     0.7790 0.052 0.028 0.112 0.000 0.808
#> GSM680062     5  0.5394     0.7334 0.136 0.008 0.152 0.004 0.700
#> GSM680054     2  0.6695     0.2214 0.000 0.428 0.308 0.000 0.264
#> GSM680063     5  0.5237     0.7337 0.156 0.008 0.132 0.000 0.704
#> GSM680055     5  0.4410     0.7400 0.160 0.028 0.036 0.000 0.776
#> GSM680064     1  0.0486     0.7902 0.988 0.000 0.004 0.004 0.004
#> GSM680056     1  0.4101     0.4400 0.664 0.004 0.000 0.000 0.332
#> GSM680065     1  0.2852     0.6859 0.828 0.000 0.000 0.000 0.172
#> GSM680057     2  0.6021     0.3935 0.000 0.476 0.408 0.000 0.116
#> GSM680066     1  0.7640     0.0934 0.400 0.320 0.044 0.004 0.232
#> GSM680058     2  0.3044     0.6088 0.004 0.840 0.148 0.000 0.008
#> GSM680067     2  0.6272     0.5507 0.000 0.652 0.088 0.088 0.172
#> GSM680059     2  0.4494     0.3964 0.000 0.608 0.380 0.000 0.012
#> GSM680068     1  0.2284     0.7580 0.912 0.000 0.028 0.056 0.004
#> GSM680060     2  0.0992     0.6169 0.024 0.968 0.000 0.000 0.008
#> GSM680069     5  0.3430     0.6637 0.220 0.004 0.000 0.000 0.776
#> GSM680061     2  0.6272     0.5507 0.000 0.652 0.088 0.088 0.172
#> GSM680070     1  0.0613     0.7900 0.984 0.000 0.004 0.004 0.008
#> GSM680071     1  0.5708     0.2412 0.528 0.384 0.000 0.000 0.088
#> GSM680077     1  0.0162     0.7885 0.996 0.000 0.000 0.000 0.004
#> GSM680072     2  0.5004     0.5633 0.000 0.692 0.216 0.000 0.092
#> GSM680078     1  0.3837     0.4482 0.692 0.000 0.000 0.000 0.308
#> GSM680073     2  0.6996     0.4011 0.044 0.532 0.244 0.000 0.180
#> GSM680079     1  0.0486     0.7902 0.988 0.000 0.004 0.004 0.004
#> GSM680074     2  0.0324     0.6184 0.004 0.992 0.000 0.000 0.004
#> GSM680080     2  0.0324     0.6184 0.004 0.992 0.000 0.000 0.004
#> GSM680075     5  0.5723     0.7059 0.048 0.148 0.108 0.000 0.696
#> GSM680081     5  0.6220     0.5142 0.076 0.028 0.368 0.000 0.528
#> GSM680076     2  0.1732     0.6035 0.080 0.920 0.000 0.000 0.000
#> GSM680082     1  0.0162     0.7885 0.996 0.000 0.000 0.000 0.004
#> GSM680029     5  0.5382     0.5461 0.016 0.040 0.340 0.000 0.604
#> GSM680041     4  0.1956     0.8824 0.076 0.000 0.000 0.916 0.008
#> GSM680035     3  0.0162     0.8508 0.000 0.000 0.996 0.000 0.004
#> GSM680047     4  0.1671     0.8836 0.076 0.000 0.000 0.924 0.000
#> GSM680036     5  0.4184     0.7790 0.048 0.032 0.112 0.000 0.808
#> GSM680048     4  0.0000     0.8828 0.000 0.000 0.000 1.000 0.000
#> GSM680037     3  0.0162     0.8508 0.000 0.000 0.996 0.000 0.004
#> GSM680049     4  0.2295     0.8743 0.088 0.004 0.000 0.900 0.008
#> GSM680038     2  0.5803     0.3808 0.000 0.488 0.420 0.000 0.092
#> GSM680050     1  0.0968     0.7879 0.972 0.000 0.012 0.012 0.004
#> GSM680039     3  0.5574    -0.3682 0.000 0.416 0.512 0.000 0.072
#> GSM680051     4  0.0000     0.8828 0.000 0.000 0.000 1.000 0.000
#> GSM680040     3  0.0162     0.8508 0.000 0.000 0.996 0.000 0.004
#> GSM680052     4  0.0000     0.8828 0.000 0.000 0.000 1.000 0.000
#> GSM680030     2  0.5998     0.3757 0.000 0.464 0.424 0.000 0.112
#> GSM680042     4  0.2249     0.8709 0.096 0.000 0.000 0.896 0.008
#> GSM680031     3  0.0162     0.8508 0.000 0.000 0.996 0.000 0.004
#> GSM680043     4  0.0566     0.8796 0.004 0.000 0.012 0.984 0.000
#> GSM680032     1  0.3001     0.7050 0.844 0.000 0.008 0.004 0.144
#> GSM680044     4  0.8567    -0.2164 0.276 0.008 0.132 0.312 0.272
#> GSM680033     3  0.0162     0.8508 0.000 0.000 0.996 0.000 0.004
#> GSM680045     4  0.0404     0.8795 0.000 0.000 0.012 0.988 0.000
#> GSM680034     2  0.7672     0.4679 0.000 0.456 0.284 0.092 0.168
#> GSM680046     4  0.1671     0.8836 0.076 0.000 0.000 0.924 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM680053     5  0.1096     0.7975 0.004 0.020 0.008 0.000 0.964 0.004
#> GSM680062     5  0.2476     0.7828 0.036 0.004 0.020 0.000 0.900 0.040
#> GSM680054     5  0.6276     0.1542 0.008 0.288 0.300 0.000 0.404 0.000
#> GSM680063     5  0.2476     0.7828 0.036 0.004 0.020 0.000 0.900 0.040
#> GSM680055     5  0.0806     0.7958 0.008 0.020 0.000 0.000 0.972 0.000
#> GSM680064     1  0.2266     0.7649 0.880 0.000 0.000 0.000 0.012 0.108
#> GSM680056     1  0.5220     0.3541 0.528 0.000 0.000 0.000 0.372 0.100
#> GSM680065     1  0.3657     0.7217 0.792 0.000 0.000 0.000 0.108 0.100
#> GSM680057     3  0.5779     0.1007 0.000 0.188 0.472 0.000 0.000 0.340
#> GSM680066     1  0.5445     0.4105 0.592 0.036 0.008 0.004 0.324 0.036
#> GSM680058     2  0.0622     0.7680 0.012 0.980 0.000 0.000 0.008 0.000
#> GSM680067     6  0.4520     0.8504 0.000 0.228 0.076 0.004 0.000 0.692
#> GSM680059     2  0.4919     0.2254 0.008 0.528 0.424 0.000 0.036 0.004
#> GSM680068     1  0.2535     0.7679 0.892 0.004 0.000 0.048 0.048 0.008
#> GSM680060     2  0.0717     0.7673 0.016 0.976 0.000 0.000 0.008 0.000
#> GSM680069     5  0.2531     0.7076 0.128 0.004 0.000 0.000 0.860 0.008
#> GSM680061     6  0.4520     0.8504 0.000 0.228 0.076 0.004 0.000 0.692
#> GSM680070     1  0.0806     0.7816 0.972 0.000 0.000 0.000 0.020 0.008
#> GSM680071     1  0.5011     0.3979 0.580 0.348 0.000 0.000 0.064 0.008
#> GSM680077     1  0.2554     0.7578 0.876 0.004 0.000 0.000 0.028 0.092
#> GSM680072     2  0.2288     0.6900 0.000 0.876 0.004 0.000 0.116 0.004
#> GSM680078     1  0.4136     0.3005 0.560 0.000 0.000 0.000 0.428 0.012
#> GSM680073     2  0.4227    -0.0866 0.004 0.500 0.000 0.000 0.488 0.008
#> GSM680079     1  0.0622     0.7795 0.980 0.000 0.000 0.000 0.008 0.012
#> GSM680074     2  0.0363     0.7697 0.012 0.988 0.000 0.000 0.000 0.000
#> GSM680080     2  0.0363     0.7697 0.012 0.988 0.000 0.000 0.000 0.000
#> GSM680075     5  0.3626     0.5239 0.004 0.288 0.000 0.000 0.704 0.004
#> GSM680081     5  0.4734     0.7270 0.036 0.024 0.164 0.000 0.740 0.036
#> GSM680076     2  0.0363     0.7697 0.012 0.988 0.000 0.000 0.000 0.000
#> GSM680082     1  0.1633     0.7753 0.932 0.000 0.000 0.000 0.024 0.044
#> GSM680029     5  0.3691     0.7359 0.020 0.024 0.172 0.000 0.784 0.000
#> GSM680041     4  0.2000     0.8885 0.048 0.000 0.000 0.916 0.004 0.032
#> GSM680035     3  0.0000     0.7050 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680047     4  0.1434     0.8923 0.048 0.000 0.000 0.940 0.000 0.012
#> GSM680036     5  0.1413     0.7929 0.004 0.036 0.008 0.000 0.948 0.004
#> GSM680048     4  0.0000     0.8925 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM680037     3  0.0000     0.7050 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680049     4  0.2895     0.8661 0.052 0.024 0.000 0.876 0.004 0.044
#> GSM680038     3  0.5911     0.2566 0.008 0.128 0.524 0.000 0.012 0.328
#> GSM680050     1  0.0912     0.7786 0.972 0.012 0.008 0.000 0.004 0.004
#> GSM680039     3  0.4575     0.5033 0.000 0.124 0.696 0.000 0.000 0.180
#> GSM680051     4  0.0000     0.8925 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM680040     3  0.0000     0.7050 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680052     4  0.0146     0.8928 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM680030     3  0.5431     0.2383 0.000 0.132 0.524 0.000 0.000 0.344
#> GSM680042     4  0.2144     0.8872 0.048 0.004 0.000 0.912 0.004 0.032
#> GSM680031     3  0.0000     0.7050 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680043     4  0.0551     0.8895 0.000 0.000 0.008 0.984 0.004 0.004
#> GSM680032     1  0.3052     0.6907 0.780 0.000 0.000 0.000 0.216 0.004
#> GSM680044     4  0.6857    -0.0257 0.124 0.004 0.020 0.416 0.392 0.044
#> GSM680033     3  0.0000     0.7050 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680045     4  0.0551     0.8895 0.000 0.000 0.008 0.984 0.004 0.004
#> GSM680034     6  0.5524     0.6171 0.000 0.144 0.252 0.012 0.000 0.592
#> GSM680046     4  0.1594     0.8904 0.052 0.000 0.000 0.932 0.000 0.016

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) individual(p) protocol(p) other(p) k
#> MAD:mclust 52         1.28e-01         0.934    1.26e-06   0.6100 2
#> MAD:mclust 40         3.32e-05         0.473    2.19e-06   0.0765 3
#> MAD:mclust 46         1.24e-04         0.352    3.43e-05   0.2156 4
#> MAD:mclust 41         9.93e-06         0.334    2.00e-04   0.0727 5
#> MAD:mclust 43         3.84e-05         0.479    1.90e-04   0.0194 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.884           0.927       0.969         0.5025 0.497   0.497
#> 3 3 0.568           0.754       0.858         0.3285 0.766   0.559
#> 4 4 0.539           0.568       0.764         0.1329 0.834   0.548
#> 5 5 0.576           0.353       0.650         0.0638 0.850   0.519
#> 6 6 0.660           0.536       0.736         0.0395 0.814   0.367

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM680053     2  0.0000      0.966 0.000 1.000
#> GSM680062     1  0.6343      0.807 0.840 0.160
#> GSM680054     2  0.0000      0.966 0.000 1.000
#> GSM680063     1  0.9427      0.446 0.640 0.360
#> GSM680055     2  0.0000      0.966 0.000 1.000
#> GSM680064     1  0.0000      0.965 1.000 0.000
#> GSM680056     1  0.0000      0.965 1.000 0.000
#> GSM680065     1  0.0000      0.965 1.000 0.000
#> GSM680057     2  0.0000      0.966 0.000 1.000
#> GSM680066     2  0.3879      0.900 0.076 0.924
#> GSM680058     2  0.0000      0.966 0.000 1.000
#> GSM680067     2  0.7745      0.704 0.228 0.772
#> GSM680059     2  0.0000      0.966 0.000 1.000
#> GSM680068     1  0.0000      0.965 1.000 0.000
#> GSM680060     2  0.0000      0.966 0.000 1.000
#> GSM680069     2  0.7950      0.674 0.240 0.760
#> GSM680061     2  0.0000      0.966 0.000 1.000
#> GSM680070     1  0.0000      0.965 1.000 0.000
#> GSM680071     1  0.2948      0.924 0.948 0.052
#> GSM680077     1  0.0938      0.957 0.988 0.012
#> GSM680072     2  0.0000      0.966 0.000 1.000
#> GSM680078     2  0.9393      0.431 0.356 0.644
#> GSM680073     2  0.0000      0.966 0.000 1.000
#> GSM680079     1  0.0000      0.965 1.000 0.000
#> GSM680074     2  0.0000      0.966 0.000 1.000
#> GSM680080     2  0.0000      0.966 0.000 1.000
#> GSM680075     2  0.0000      0.966 0.000 1.000
#> GSM680081     2  0.0000      0.966 0.000 1.000
#> GSM680076     2  0.0000      0.966 0.000 1.000
#> GSM680082     1  0.0000      0.965 1.000 0.000
#> GSM680029     2  0.0000      0.966 0.000 1.000
#> GSM680041     1  0.0000      0.965 1.000 0.000
#> GSM680035     2  0.0000      0.966 0.000 1.000
#> GSM680047     1  0.0000      0.965 1.000 0.000
#> GSM680036     2  0.0000      0.966 0.000 1.000
#> GSM680048     1  0.0000      0.965 1.000 0.000
#> GSM680037     2  0.0000      0.966 0.000 1.000
#> GSM680049     1  0.0000      0.965 1.000 0.000
#> GSM680038     2  0.0000      0.966 0.000 1.000
#> GSM680050     1  0.0000      0.965 1.000 0.000
#> GSM680039     2  0.0000      0.966 0.000 1.000
#> GSM680051     1  0.0000      0.965 1.000 0.000
#> GSM680040     2  0.0000      0.966 0.000 1.000
#> GSM680052     1  0.0000      0.965 1.000 0.000
#> GSM680030     2  0.0000      0.966 0.000 1.000
#> GSM680042     1  0.0000      0.965 1.000 0.000
#> GSM680031     2  0.0000      0.966 0.000 1.000
#> GSM680043     1  0.0000      0.965 1.000 0.000
#> GSM680032     1  0.6712      0.781 0.824 0.176
#> GSM680044     1  0.0376      0.963 0.996 0.004
#> GSM680033     2  0.0000      0.966 0.000 1.000
#> GSM680045     1  0.0000      0.965 1.000 0.000
#> GSM680034     2  0.1414      0.950 0.020 0.980
#> GSM680046     1  0.0000      0.965 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM680053     3  0.0592     0.7939 0.000 0.012 0.988
#> GSM680062     3  0.2860     0.7718 0.084 0.004 0.912
#> GSM680054     3  0.4931     0.6685 0.000 0.232 0.768
#> GSM680063     3  0.1860     0.7838 0.052 0.000 0.948
#> GSM680055     3  0.0592     0.7938 0.000 0.012 0.988
#> GSM680064     1  0.2356     0.8860 0.928 0.000 0.072
#> GSM680056     3  0.4842     0.6164 0.224 0.000 0.776
#> GSM680065     1  0.6026     0.5407 0.624 0.000 0.376
#> GSM680057     2  0.0592     0.8270 0.000 0.988 0.012
#> GSM680066     2  0.6882     0.6363 0.096 0.732 0.172
#> GSM680058     2  0.3192     0.7943 0.000 0.888 0.112
#> GSM680067     2  0.2301     0.8109 0.060 0.936 0.004
#> GSM680059     2  0.6252     0.0666 0.000 0.556 0.444
#> GSM680068     1  0.1636     0.8896 0.964 0.016 0.020
#> GSM680060     2  0.2711     0.8110 0.000 0.912 0.088
#> GSM680069     3  0.5331     0.6931 0.076 0.100 0.824
#> GSM680061     2  0.0424     0.8262 0.008 0.992 0.000
#> GSM680070     1  0.1585     0.8882 0.964 0.008 0.028
#> GSM680071     1  0.9561     0.2423 0.428 0.196 0.376
#> GSM680077     1  0.5526     0.7943 0.792 0.036 0.172
#> GSM680072     3  0.5621     0.5991 0.000 0.308 0.692
#> GSM680078     3  0.4589     0.6863 0.172 0.008 0.820
#> GSM680073     3  0.5291     0.6977 0.000 0.268 0.732
#> GSM680079     1  0.2860     0.8722 0.912 0.004 0.084
#> GSM680074     2  0.1753     0.8278 0.000 0.952 0.048
#> GSM680080     2  0.1964     0.8265 0.000 0.944 0.056
#> GSM680075     3  0.1643     0.7987 0.000 0.044 0.956
#> GSM680081     3  0.5058     0.7529 0.000 0.244 0.756
#> GSM680076     2  0.3769     0.7962 0.016 0.880 0.104
#> GSM680082     1  0.1765     0.8875 0.956 0.004 0.040
#> GSM680029     3  0.4346     0.7814 0.000 0.184 0.816
#> GSM680041     1  0.1411     0.8908 0.964 0.000 0.036
#> GSM680035     3  0.4750     0.7717 0.000 0.216 0.784
#> GSM680047     1  0.1832     0.8912 0.956 0.008 0.036
#> GSM680036     3  0.1860     0.7974 0.000 0.052 0.948
#> GSM680048     1  0.1877     0.8914 0.956 0.012 0.032
#> GSM680037     3  0.4702     0.7737 0.000 0.212 0.788
#> GSM680049     1  0.0424     0.8896 0.992 0.008 0.000
#> GSM680038     2  0.6235    -0.0822 0.000 0.564 0.436
#> GSM680050     1  0.1989     0.8883 0.948 0.004 0.048
#> GSM680039     2  0.2537     0.7867 0.000 0.920 0.080
#> GSM680051     1  0.2443     0.8891 0.940 0.028 0.032
#> GSM680040     3  0.5016     0.7556 0.000 0.240 0.760
#> GSM680052     1  0.2056     0.8910 0.952 0.024 0.024
#> GSM680030     2  0.1031     0.8252 0.000 0.976 0.024
#> GSM680042     1  0.1289     0.8910 0.968 0.000 0.032
#> GSM680031     3  0.4931     0.7621 0.000 0.232 0.768
#> GSM680043     1  0.3554     0.8499 0.900 0.064 0.036
#> GSM680032     1  0.5848     0.6917 0.720 0.012 0.268
#> GSM680044     1  0.1751     0.8925 0.960 0.012 0.028
#> GSM680033     3  0.5138     0.7433 0.000 0.252 0.748
#> GSM680045     1  0.6594     0.7009 0.756 0.128 0.116
#> GSM680034     2  0.3043     0.7879 0.084 0.908 0.008
#> GSM680046     1  0.0892     0.8880 0.980 0.020 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM680053     3  0.4746    0.25471 0.368 0.000 0.632 0.000
#> GSM680062     3  0.2926    0.79607 0.056 0.000 0.896 0.048
#> GSM680054     1  0.6521    0.22896 0.512 0.076 0.412 0.000
#> GSM680063     3  0.4716    0.63411 0.196 0.000 0.764 0.040
#> GSM680055     1  0.4585    0.44104 0.668 0.000 0.332 0.000
#> GSM680064     4  0.5320    0.39517 0.416 0.000 0.012 0.572
#> GSM680056     1  0.3463    0.61492 0.864 0.000 0.096 0.040
#> GSM680065     1  0.3597    0.51295 0.836 0.000 0.016 0.148
#> GSM680057     2  0.0657    0.75310 0.004 0.984 0.012 0.000
#> GSM680066     2  0.9021    0.17040 0.140 0.444 0.120 0.296
#> GSM680058     2  0.4635    0.61098 0.268 0.720 0.012 0.000
#> GSM680067     2  0.0707    0.75121 0.000 0.980 0.000 0.020
#> GSM680059     3  0.5072    0.64788 0.052 0.208 0.740 0.000
#> GSM680068     4  0.4092    0.67121 0.184 0.008 0.008 0.800
#> GSM680060     2  0.2647    0.73580 0.120 0.880 0.000 0.000
#> GSM680069     1  0.3043    0.61214 0.876 0.004 0.112 0.008
#> GSM680061     2  0.0895    0.75068 0.000 0.976 0.004 0.020
#> GSM680070     4  0.5125    0.47052 0.388 0.008 0.000 0.604
#> GSM680071     1  0.3489    0.60023 0.884 0.048 0.028 0.040
#> GSM680077     1  0.2809    0.56390 0.904 0.028 0.004 0.064
#> GSM680072     1  0.7515    0.00714 0.448 0.364 0.188 0.000
#> GSM680078     1  0.5962    0.47744 0.660 0.000 0.260 0.080
#> GSM680073     1  0.7469    0.14807 0.432 0.176 0.392 0.000
#> GSM680079     4  0.5303    0.36474 0.448 0.004 0.004 0.544
#> GSM680074     2  0.2546    0.74259 0.092 0.900 0.008 0.000
#> GSM680080     2  0.3937    0.69673 0.188 0.800 0.012 0.000
#> GSM680075     1  0.5478    0.40403 0.628 0.028 0.344 0.000
#> GSM680081     3  0.2486    0.83961 0.048 0.028 0.920 0.004
#> GSM680076     2  0.3837    0.68139 0.224 0.776 0.000 0.000
#> GSM680082     1  0.5300   -0.14090 0.580 0.012 0.000 0.408
#> GSM680029     3  0.1488    0.82841 0.032 0.012 0.956 0.000
#> GSM680041     4  0.3108    0.71955 0.112 0.000 0.016 0.872
#> GSM680035     3  0.1004    0.85051 0.004 0.024 0.972 0.000
#> GSM680047     4  0.3497    0.70979 0.036 0.000 0.104 0.860
#> GSM680036     1  0.4996    0.13919 0.516 0.000 0.484 0.000
#> GSM680048     4  0.1911    0.73067 0.004 0.020 0.032 0.944
#> GSM680037     3  0.1151    0.85187 0.000 0.024 0.968 0.008
#> GSM680049     4  0.1209    0.73239 0.032 0.004 0.000 0.964
#> GSM680038     2  0.6809    0.36162 0.116 0.552 0.332 0.000
#> GSM680050     4  0.5151    0.34668 0.464 0.004 0.000 0.532
#> GSM680039     2  0.6307    0.45010 0.000 0.620 0.288 0.092
#> GSM680051     4  0.3862    0.69640 0.004 0.060 0.084 0.852
#> GSM680040     3  0.1452    0.85052 0.000 0.036 0.956 0.008
#> GSM680052     4  0.3004    0.71242 0.000 0.060 0.048 0.892
#> GSM680030     2  0.2467    0.74039 0.004 0.920 0.052 0.024
#> GSM680042     4  0.2737    0.71860 0.104 0.000 0.008 0.888
#> GSM680031     3  0.1706    0.84759 0.000 0.036 0.948 0.016
#> GSM680043     4  0.6437    0.57927 0.032 0.076 0.208 0.684
#> GSM680032     1  0.4431    0.20449 0.696 0.000 0.000 0.304
#> GSM680044     4  0.3505    0.72553 0.048 0.000 0.088 0.864
#> GSM680033     3  0.2174    0.83451 0.000 0.052 0.928 0.020
#> GSM680045     4  0.6707    0.37165 0.004 0.100 0.312 0.584
#> GSM680034     2  0.5312    0.53060 0.000 0.692 0.040 0.268
#> GSM680046     4  0.2186    0.72833 0.012 0.048 0.008 0.932

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM680053     5  0.3667     0.6234 0.048 0.000 0.140 0.000 0.812
#> GSM680062     5  0.7350     0.3211 0.276 0.000 0.080 0.144 0.500
#> GSM680054     5  0.2845     0.6913 0.048 0.032 0.028 0.000 0.892
#> GSM680063     5  0.6464     0.4630 0.256 0.000 0.104 0.048 0.592
#> GSM680055     5  0.1579     0.6909 0.024 0.000 0.032 0.000 0.944
#> GSM680064     4  0.5287     0.2841 0.260 0.000 0.000 0.648 0.092
#> GSM680056     5  0.1608     0.6897 0.072 0.000 0.000 0.000 0.928
#> GSM680065     5  0.6016     0.2802 0.236 0.000 0.000 0.184 0.580
#> GSM680057     2  0.1430     0.7527 0.052 0.944 0.004 0.000 0.000
#> GSM680066     1  0.7785    -0.3694 0.380 0.064 0.252 0.304 0.000
#> GSM680058     2  0.3684     0.5210 0.000 0.720 0.000 0.000 0.280
#> GSM680067     2  0.1410     0.7510 0.060 0.940 0.000 0.000 0.000
#> GSM680059     3  0.1106     0.5797 0.012 0.024 0.964 0.000 0.000
#> GSM680068     4  0.5382     0.2354 0.336 0.000 0.072 0.592 0.000
#> GSM680060     2  0.2583     0.7009 0.004 0.864 0.000 0.000 0.132
#> GSM680069     5  0.2840     0.6697 0.108 0.012 0.004 0.004 0.872
#> GSM680061     2  0.1608     0.7480 0.072 0.928 0.000 0.000 0.000
#> GSM680070     4  0.4588     0.2797 0.380 0.000 0.016 0.604 0.000
#> GSM680071     5  0.4308     0.6266 0.072 0.128 0.000 0.012 0.788
#> GSM680077     4  0.6595     0.2194 0.416 0.032 0.004 0.464 0.084
#> GSM680072     5  0.5114     0.1157 0.024 0.424 0.008 0.000 0.544
#> GSM680078     3  0.7163    -0.1764 0.400 0.000 0.412 0.140 0.048
#> GSM680073     5  0.7704     0.1757 0.056 0.252 0.312 0.000 0.380
#> GSM680079     4  0.4917     0.2728 0.384 0.000 0.024 0.588 0.004
#> GSM680074     2  0.1041     0.7471 0.004 0.964 0.000 0.000 0.032
#> GSM680080     2  0.1697     0.7402 0.008 0.932 0.000 0.000 0.060
#> GSM680075     3  0.6915     0.1376 0.200 0.036 0.536 0.000 0.228
#> GSM680081     3  0.2006     0.5818 0.072 0.000 0.916 0.012 0.000
#> GSM680076     2  0.3215     0.6971 0.092 0.852 0.000 0.000 0.056
#> GSM680082     4  0.4985     0.2793 0.392 0.016 0.000 0.580 0.012
#> GSM680029     3  0.0609     0.5932 0.000 0.000 0.980 0.000 0.020
#> GSM680041     4  0.6448    -0.0483 0.228 0.000 0.000 0.500 0.272
#> GSM680035     3  0.5584     0.5427 0.324 0.000 0.584 0.000 0.092
#> GSM680047     4  0.6450    -0.1838 0.384 0.000 0.000 0.436 0.180
#> GSM680036     5  0.2388     0.6812 0.028 0.000 0.072 0.000 0.900
#> GSM680048     4  0.4905    -0.0827 0.336 0.000 0.000 0.624 0.040
#> GSM680037     3  0.4957     0.5737 0.332 0.000 0.624 0.000 0.044
#> GSM680049     4  0.1012     0.2370 0.020 0.000 0.000 0.968 0.012
#> GSM680038     5  0.5691     0.4997 0.144 0.196 0.008 0.000 0.652
#> GSM680050     4  0.4849     0.2930 0.360 0.000 0.000 0.608 0.032
#> GSM680039     2  0.6490     0.2672 0.344 0.492 0.156 0.008 0.000
#> GSM680051     1  0.5518    -0.2304 0.540 0.000 0.024 0.408 0.028
#> GSM680040     3  0.4540     0.5913 0.320 0.000 0.656 0.000 0.024
#> GSM680052     4  0.5106    -0.2679 0.456 0.000 0.036 0.508 0.000
#> GSM680030     2  0.5618     0.4363 0.136 0.628 0.000 0.000 0.236
#> GSM680042     4  0.3702     0.1905 0.084 0.000 0.000 0.820 0.096
#> GSM680031     3  0.3582     0.6113 0.224 0.000 0.768 0.000 0.008
#> GSM680043     4  0.6738    -0.1107 0.308 0.004 0.236 0.452 0.000
#> GSM680032     4  0.6451     0.2227 0.388 0.004 0.000 0.452 0.156
#> GSM680044     4  0.4430     0.1197 0.076 0.000 0.172 0.752 0.000
#> GSM680033     3  0.4639     0.5778 0.344 0.000 0.632 0.000 0.024
#> GSM680045     4  0.7446    -0.2317 0.340 0.036 0.244 0.380 0.000
#> GSM680034     2  0.6092     0.3223 0.380 0.524 0.020 0.076 0.000
#> GSM680046     4  0.2891     0.1149 0.176 0.000 0.000 0.824 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM680053     5  0.4874    0.45075 0.000 0.000 0.084 0.004 0.636 0.276
#> GSM680062     4  0.6145    0.39803 0.000 0.004 0.036 0.568 0.184 0.208
#> GSM680054     5  0.3634    0.66353 0.000 0.060 0.048 0.004 0.832 0.056
#> GSM680063     4  0.7101    0.01678 0.000 0.004 0.060 0.372 0.292 0.272
#> GSM680055     5  0.4466    0.64925 0.016 0.008 0.064 0.008 0.764 0.140
#> GSM680064     4  0.4496    0.33065 0.408 0.000 0.000 0.564 0.020 0.008
#> GSM680056     5  0.3718    0.68033 0.136 0.000 0.020 0.016 0.808 0.020
#> GSM680065     5  0.4731    0.17939 0.472 0.000 0.000 0.016 0.492 0.020
#> GSM680057     3  0.5497    0.34947 0.000 0.336 0.556 0.000 0.020 0.088
#> GSM680066     1  0.5478    0.65109 0.696 0.028 0.120 0.024 0.004 0.128
#> GSM680058     2  0.3990    0.54953 0.000 0.688 0.000 0.000 0.284 0.028
#> GSM680067     2  0.4146    0.63899 0.008 0.800 0.052 0.036 0.004 0.100
#> GSM680059     6  0.5015    0.25526 0.000 0.092 0.288 0.004 0.000 0.616
#> GSM680068     1  0.4642    0.73497 0.748 0.000 0.076 0.060 0.000 0.116
#> GSM680060     2  0.3596    0.67604 0.012 0.792 0.000 0.000 0.164 0.032
#> GSM680069     5  0.3043    0.67994 0.140 0.008 0.000 0.000 0.832 0.020
#> GSM680061     2  0.5312    0.51997 0.008 0.688 0.156 0.024 0.004 0.120
#> GSM680070     1  0.2375    0.84121 0.896 0.000 0.000 0.036 0.008 0.060
#> GSM680071     5  0.3562    0.68073 0.112 0.040 0.000 0.016 0.824 0.008
#> GSM680077     1  0.2552    0.82853 0.900 0.024 0.000 0.012 0.036 0.028
#> GSM680072     2  0.5740    0.19569 0.000 0.512 0.004 0.000 0.316 0.168
#> GSM680078     6  0.5538   -0.06517 0.384 0.012 0.048 0.008 0.012 0.536
#> GSM680073     6  0.6475    0.09193 0.004 0.372 0.028 0.000 0.176 0.420
#> GSM680079     1  0.2483    0.84058 0.892 0.004 0.000 0.044 0.004 0.056
#> GSM680074     2  0.0653    0.71227 0.004 0.980 0.000 0.000 0.012 0.004
#> GSM680080     2  0.1511    0.71123 0.004 0.940 0.000 0.000 0.044 0.012
#> GSM680075     6  0.6408    0.47066 0.032 0.112 0.104 0.000 0.128 0.624
#> GSM680081     3  0.4005    0.55374 0.084 0.024 0.816 0.004 0.020 0.052
#> GSM680076     2  0.1555    0.70231 0.040 0.940 0.000 0.000 0.008 0.012
#> GSM680082     1  0.1148    0.83891 0.960 0.016 0.000 0.020 0.004 0.000
#> GSM680029     3  0.3984    0.28133 0.000 0.000 0.596 0.000 0.008 0.396
#> GSM680041     4  0.2389    0.72608 0.016 0.000 0.020 0.904 0.052 0.008
#> GSM680035     3  0.2917    0.58797 0.000 0.000 0.872 0.040 0.048 0.040
#> GSM680047     4  0.1245    0.72841 0.000 0.000 0.032 0.952 0.016 0.000
#> GSM680036     5  0.3855    0.65845 0.004 0.016 0.076 0.008 0.816 0.080
#> GSM680048     4  0.1370    0.73551 0.036 0.000 0.004 0.948 0.012 0.000
#> GSM680037     3  0.3473    0.55770 0.000 0.000 0.812 0.040 0.012 0.136
#> GSM680049     4  0.3293    0.68530 0.196 0.000 0.004 0.788 0.008 0.004
#> GSM680038     5  0.5670    0.52847 0.004 0.080 0.168 0.036 0.680 0.032
#> GSM680050     1  0.2154    0.82577 0.908 0.004 0.000 0.064 0.020 0.004
#> GSM680039     3  0.5252    0.53389 0.008 0.152 0.704 0.028 0.008 0.100
#> GSM680051     4  0.5022    0.00719 0.008 0.000 0.452 0.500 0.016 0.024
#> GSM680040     3  0.2748    0.58817 0.004 0.000 0.872 0.020 0.012 0.092
#> GSM680052     4  0.0632    0.73082 0.000 0.000 0.024 0.976 0.000 0.000
#> GSM680030     3  0.7484    0.15311 0.012 0.212 0.396 0.028 0.312 0.040
#> GSM680042     4  0.2306    0.72898 0.092 0.000 0.000 0.888 0.016 0.004
#> GSM680031     3  0.4528    0.39124 0.004 0.000 0.624 0.024 0.008 0.340
#> GSM680043     3  0.6569    0.02967 0.052 0.004 0.436 0.372 0.000 0.136
#> GSM680032     1  0.4189    0.72824 0.808 0.048 0.036 0.008 0.084 0.016
#> GSM680044     4  0.3465    0.71185 0.084 0.004 0.008 0.828 0.000 0.076
#> GSM680033     3  0.3144    0.57065 0.004 0.000 0.832 0.020 0.008 0.136
#> GSM680045     4  0.5014    0.56316 0.028 0.004 0.196 0.692 0.000 0.080
#> GSM680034     3  0.6507    0.37754 0.008 0.268 0.544 0.064 0.004 0.112
#> GSM680046     4  0.3676    0.70497 0.120 0.000 0.052 0.808 0.000 0.020

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) individual(p) protocol(p) other(p) k
#> MAD:NMF 52         0.291172         0.892    2.38e-06    0.803 2
#> MAD:NMF 51         0.058420         0.349    8.43e-06    0.655 3
#> MAD:NMF 36         0.000955         0.207    9.66e-04    0.124 4
#> MAD:NMF 23         0.002650         0.268    7.78e-01    0.407 5
#> MAD:NMF 37         0.000206         0.443    3.29e-04    0.211 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.439           0.700       0.864         0.4526 0.493   0.493
#> 3 3 0.550           0.680       0.862         0.3955 0.713   0.499
#> 4 4 0.608           0.534       0.736         0.1305 0.913   0.764
#> 5 5 0.604           0.620       0.749         0.0486 0.832   0.511
#> 6 6 0.685           0.630       0.769         0.0549 0.962   0.835

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM680053     2   0.925      0.615 0.340 0.660
#> GSM680062     2   0.991      0.367 0.444 0.556
#> GSM680054     2   0.000      0.766 0.000 1.000
#> GSM680063     2   0.163      0.768 0.024 0.976
#> GSM680055     1   0.506      0.806 0.888 0.112
#> GSM680064     1   0.000      0.854 1.000 0.000
#> GSM680056     1   0.952      0.319 0.628 0.372
#> GSM680065     1   0.000      0.854 1.000 0.000
#> GSM680057     2   0.000      0.766 0.000 1.000
#> GSM680066     1   0.278      0.843 0.952 0.048
#> GSM680058     1   0.925      0.426 0.660 0.340
#> GSM680067     2   0.163      0.768 0.024 0.976
#> GSM680059     2   0.932      0.605 0.348 0.652
#> GSM680068     1   0.000      0.854 1.000 0.000
#> GSM680060     1   0.000      0.854 1.000 0.000
#> GSM680069     1   0.311      0.840 0.944 0.056
#> GSM680061     2   0.000      0.766 0.000 1.000
#> GSM680070     1   0.000      0.854 1.000 0.000
#> GSM680071     1   0.000      0.854 1.000 0.000
#> GSM680077     1   0.000      0.854 1.000 0.000
#> GSM680072     2   0.932      0.605 0.348 0.652
#> GSM680078     1   0.000      0.854 1.000 0.000
#> GSM680073     1   0.839      0.591 0.732 0.268
#> GSM680079     1   0.000      0.854 1.000 0.000
#> GSM680074     2   0.932      0.605 0.348 0.652
#> GSM680080     2   0.932      0.605 0.348 0.652
#> GSM680075     1   0.000      0.854 1.000 0.000
#> GSM680081     2   0.260      0.765 0.044 0.956
#> GSM680076     1   0.909      0.473 0.676 0.324
#> GSM680082     1   0.000      0.854 1.000 0.000
#> GSM680029     1   0.552      0.792 0.872 0.128
#> GSM680041     1   0.443      0.820 0.908 0.092
#> GSM680035     2   0.000      0.766 0.000 1.000
#> GSM680047     1   0.000      0.854 1.000 0.000
#> GSM680036     1   0.343      0.836 0.936 0.064
#> GSM680048     1   0.998     -0.105 0.528 0.472
#> GSM680037     2   0.000      0.766 0.000 1.000
#> GSM680049     1   0.482      0.812 0.896 0.104
#> GSM680038     2   0.932      0.605 0.348 0.652
#> GSM680050     1   0.000      0.854 1.000 0.000
#> GSM680039     2   0.866      0.659 0.288 0.712
#> GSM680051     1   0.998     -0.105 0.528 0.472
#> GSM680040     2   0.753      0.701 0.216 0.784
#> GSM680052     2   0.929      0.610 0.344 0.656
#> GSM680030     2   0.163      0.768 0.024 0.976
#> GSM680042     1   0.184      0.848 0.972 0.028
#> GSM680031     2   0.000      0.766 0.000 1.000
#> GSM680043     2   0.000      0.766 0.000 1.000
#> GSM680032     1   0.706      0.718 0.808 0.192
#> GSM680044     2   0.991      0.367 0.444 0.556
#> GSM680033     2   0.000      0.766 0.000 1.000
#> GSM680045     2   0.913      0.627 0.328 0.672
#> GSM680034     2   0.000      0.766 0.000 1.000
#> GSM680046     1   0.000      0.854 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM680053     2  0.0592      0.750 0.000 0.988 0.012
#> GSM680062     2  0.2796      0.710 0.092 0.908 0.000
#> GSM680054     3  0.0000      0.982 0.000 0.000 1.000
#> GSM680063     2  0.6204      0.199 0.000 0.576 0.424
#> GSM680055     1  0.6225      0.369 0.568 0.432 0.000
#> GSM680064     1  0.0000      0.829 1.000 0.000 0.000
#> GSM680056     2  0.5431      0.485 0.284 0.716 0.000
#> GSM680065     1  0.0000      0.829 1.000 0.000 0.000
#> GSM680057     3  0.3412      0.836 0.000 0.124 0.876
#> GSM680066     1  0.5138      0.674 0.748 0.252 0.000
#> GSM680058     2  0.5678      0.407 0.316 0.684 0.000
#> GSM680067     2  0.6204      0.199 0.000 0.576 0.424
#> GSM680059     2  0.0237      0.751 0.000 0.996 0.004
#> GSM680068     1  0.0000      0.829 1.000 0.000 0.000
#> GSM680060     1  0.1031      0.828 0.976 0.024 0.000
#> GSM680069     1  0.5291      0.656 0.732 0.268 0.000
#> GSM680061     3  0.0000      0.982 0.000 0.000 1.000
#> GSM680070     1  0.2165      0.819 0.936 0.064 0.000
#> GSM680071     1  0.0747      0.829 0.984 0.016 0.000
#> GSM680077     1  0.0000      0.829 1.000 0.000 0.000
#> GSM680072     2  0.0237      0.751 0.000 0.996 0.004
#> GSM680078     1  0.0000      0.829 1.000 0.000 0.000
#> GSM680073     2  0.6045      0.225 0.380 0.620 0.000
#> GSM680079     1  0.0000      0.829 1.000 0.000 0.000
#> GSM680074     2  0.0237      0.751 0.000 0.996 0.004
#> GSM680080     2  0.0237      0.751 0.000 0.996 0.004
#> GSM680075     1  0.0000      0.829 1.000 0.000 0.000
#> GSM680081     2  0.6192      0.240 0.000 0.580 0.420
#> GSM680076     2  0.5733      0.373 0.324 0.676 0.000
#> GSM680082     1  0.1964      0.822 0.944 0.056 0.000
#> GSM680029     1  0.6295      0.264 0.528 0.472 0.000
#> GSM680041     1  0.5968      0.512 0.636 0.364 0.000
#> GSM680035     3  0.0000      0.982 0.000 0.000 1.000
#> GSM680047     1  0.0000      0.829 1.000 0.000 0.000
#> GSM680036     1  0.5291      0.652 0.732 0.268 0.000
#> GSM680048     2  0.4654      0.614 0.208 0.792 0.000
#> GSM680037     3  0.0000      0.982 0.000 0.000 1.000
#> GSM680049     1  0.6180      0.410 0.584 0.416 0.000
#> GSM680038     2  0.0237      0.751 0.000 0.996 0.004
#> GSM680050     1  0.2356      0.816 0.928 0.072 0.000
#> GSM680039     2  0.2796      0.711 0.000 0.908 0.092
#> GSM680051     2  0.4654      0.614 0.208 0.792 0.000
#> GSM680040     2  0.4002      0.647 0.000 0.840 0.160
#> GSM680052     2  0.0424      0.751 0.000 0.992 0.008
#> GSM680030     2  0.6204      0.199 0.000 0.576 0.424
#> GSM680042     1  0.4654      0.722 0.792 0.208 0.000
#> GSM680031     3  0.0000      0.982 0.000 0.000 1.000
#> GSM680043     3  0.0000      0.982 0.000 0.000 1.000
#> GSM680032     2  0.6286     -0.118 0.464 0.536 0.000
#> GSM680044     2  0.2796      0.710 0.092 0.908 0.000
#> GSM680033     3  0.0000      0.982 0.000 0.000 1.000
#> GSM680045     2  0.1031      0.748 0.000 0.976 0.024
#> GSM680034     3  0.0000      0.982 0.000 0.000 1.000
#> GSM680046     1  0.0000      0.829 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM680053     2  0.1792     0.6132 0.000 0.932 0.000 0.068
#> GSM680062     2  0.3024     0.5579 0.000 0.852 0.000 0.148
#> GSM680054     3  0.0000     0.8446 0.000 0.000 1.000 0.000
#> GSM680063     2  0.6722     0.1989 0.000 0.500 0.092 0.408
#> GSM680055     4  0.7408     0.5665 0.172 0.364 0.000 0.464
#> GSM680064     1  0.0000     0.8478 1.000 0.000 0.000 0.000
#> GSM680056     2  0.5599     0.1831 0.040 0.644 0.000 0.316
#> GSM680065     1  0.0000     0.8478 1.000 0.000 0.000 0.000
#> GSM680057     3  0.6607     0.6926 0.000 0.112 0.592 0.296
#> GSM680066     1  0.7681    -0.4880 0.404 0.216 0.000 0.380
#> GSM680058     2  0.5070     0.0719 0.008 0.620 0.000 0.372
#> GSM680067     2  0.6722     0.1989 0.000 0.500 0.092 0.408
#> GSM680059     2  0.0336     0.6213 0.000 0.992 0.000 0.008
#> GSM680068     1  0.0000     0.8478 1.000 0.000 0.000 0.000
#> GSM680060     1  0.0817     0.8340 0.976 0.024 0.000 0.000
#> GSM680069     4  0.7706     0.4673 0.364 0.224 0.000 0.412
#> GSM680061     3  0.0000     0.8446 0.000 0.000 1.000 0.000
#> GSM680070     1  0.4100     0.6997 0.824 0.048 0.000 0.128
#> GSM680071     1  0.0592     0.8394 0.984 0.016 0.000 0.000
#> GSM680077     1  0.0000     0.8478 1.000 0.000 0.000 0.000
#> GSM680072     2  0.0921     0.6165 0.000 0.972 0.000 0.028
#> GSM680078     1  0.0000     0.8478 1.000 0.000 0.000 0.000
#> GSM680073     2  0.4961    -0.1398 0.000 0.552 0.000 0.448
#> GSM680079     1  0.0000     0.8478 1.000 0.000 0.000 0.000
#> GSM680074     2  0.0336     0.6213 0.000 0.992 0.000 0.008
#> GSM680080     2  0.0336     0.6213 0.000 0.992 0.000 0.008
#> GSM680075     1  0.0000     0.8478 1.000 0.000 0.000 0.000
#> GSM680081     4  0.6633    -0.3625 0.000 0.416 0.084 0.500
#> GSM680076     2  0.4830     0.0177 0.000 0.608 0.000 0.392
#> GSM680082     1  0.3787     0.7182 0.840 0.036 0.000 0.124
#> GSM680029     4  0.7175     0.4963 0.136 0.404 0.000 0.460
#> GSM680041     4  0.7653     0.6055 0.240 0.300 0.000 0.460
#> GSM680035     3  0.4697     0.7892 0.000 0.000 0.644 0.356
#> GSM680047     1  0.0000     0.8478 1.000 0.000 0.000 0.000
#> GSM680036     4  0.7535     0.4958 0.336 0.200 0.000 0.464
#> GSM680048     2  0.5067     0.4295 0.048 0.736 0.000 0.216
#> GSM680037     3  0.4697     0.7892 0.000 0.000 0.644 0.356
#> GSM680049     4  0.7494     0.5824 0.188 0.352 0.000 0.460
#> GSM680038     2  0.1022     0.6159 0.000 0.968 0.000 0.032
#> GSM680050     1  0.4578     0.6446 0.788 0.052 0.000 0.160
#> GSM680039     2  0.3074     0.5562 0.000 0.848 0.000 0.152
#> GSM680051     2  0.5067     0.4295 0.048 0.736 0.000 0.216
#> GSM680040     2  0.4406     0.4592 0.000 0.700 0.000 0.300
#> GSM680052     2  0.1716     0.6172 0.000 0.936 0.000 0.064
#> GSM680030     2  0.6764     0.1973 0.000 0.500 0.096 0.404
#> GSM680042     1  0.7365    -0.3636 0.440 0.160 0.000 0.400
#> GSM680031     3  0.0000     0.8446 0.000 0.000 1.000 0.000
#> GSM680043     3  0.4697     0.7892 0.000 0.000 0.644 0.356
#> GSM680032     2  0.7135    -0.4610 0.132 0.468 0.000 0.400
#> GSM680044     2  0.3024     0.5579 0.000 0.852 0.000 0.148
#> GSM680033     3  0.0000     0.8446 0.000 0.000 1.000 0.000
#> GSM680045     2  0.2011     0.6110 0.000 0.920 0.000 0.080
#> GSM680034     3  0.0000     0.8446 0.000 0.000 1.000 0.000
#> GSM680046     1  0.0000     0.8478 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM680053     2  0.4437      0.616 0.000 0.664 0.020 0.316 0.000
#> GSM680062     2  0.4262      0.412 0.000 0.560 0.000 0.440 0.000
#> GSM680054     5  0.0000      0.863 0.000 0.000 0.000 0.000 1.000
#> GSM680063     2  0.4457      0.280 0.000 0.656 0.328 0.012 0.004
#> GSM680055     4  0.2873      0.626 0.120 0.020 0.000 0.860 0.000
#> GSM680064     1  0.0451      0.923 0.988 0.008 0.004 0.000 0.000
#> GSM680056     4  0.4325      0.248 0.004 0.300 0.012 0.684 0.000
#> GSM680065     1  0.0324      0.924 0.992 0.004 0.004 0.000 0.000
#> GSM680057     5  0.6403      0.131 0.000 0.232 0.256 0.000 0.512
#> GSM680066     4  0.4283      0.458 0.348 0.000 0.008 0.644 0.000
#> GSM680058     4  0.2930      0.378 0.000 0.164 0.004 0.832 0.000
#> GSM680067     2  0.4457      0.280 0.000 0.656 0.328 0.012 0.004
#> GSM680059     2  0.4410      0.606 0.000 0.556 0.004 0.440 0.000
#> GSM680068     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> GSM680060     1  0.1341      0.903 0.944 0.000 0.000 0.056 0.000
#> GSM680069     4  0.4108      0.523 0.308 0.000 0.008 0.684 0.000
#> GSM680061     5  0.1544      0.815 0.000 0.000 0.068 0.000 0.932
#> GSM680070     1  0.3388      0.748 0.792 0.000 0.008 0.200 0.000
#> GSM680071     1  0.1197      0.907 0.952 0.000 0.000 0.048 0.000
#> GSM680077     1  0.0510      0.921 0.984 0.000 0.000 0.016 0.000
#> GSM680072     2  0.4434      0.587 0.000 0.536 0.004 0.460 0.000
#> GSM680078     1  0.0451      0.923 0.988 0.008 0.004 0.000 0.000
#> GSM680073     4  0.1952      0.491 0.000 0.084 0.004 0.912 0.000
#> GSM680079     1  0.0451      0.923 0.988 0.008 0.004 0.000 0.000
#> GSM680074     2  0.4410      0.606 0.000 0.556 0.004 0.440 0.000
#> GSM680080     2  0.4410      0.606 0.000 0.556 0.004 0.440 0.000
#> GSM680075     1  0.0613      0.923 0.984 0.008 0.004 0.004 0.000
#> GSM680081     2  0.3932      0.158 0.000 0.672 0.328 0.000 0.000
#> GSM680076     4  0.2763      0.400 0.000 0.148 0.004 0.848 0.000
#> GSM680082     1  0.3246      0.766 0.808 0.000 0.008 0.184 0.000
#> GSM680029     4  0.3267      0.617 0.112 0.044 0.000 0.844 0.000
#> GSM680041     4  0.5011      0.618 0.176 0.088 0.012 0.724 0.000
#> GSM680035     3  0.1341      1.000 0.000 0.000 0.944 0.000 0.056
#> GSM680047     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> GSM680036     4  0.3730      0.494 0.288 0.000 0.000 0.712 0.000
#> GSM680048     4  0.4989     -0.166 0.016 0.456 0.008 0.520 0.000
#> GSM680037     3  0.1341      1.000 0.000 0.000 0.944 0.000 0.056
#> GSM680049     4  0.5046      0.625 0.148 0.112 0.012 0.728 0.000
#> GSM680038     2  0.4437      0.582 0.000 0.532 0.004 0.464 0.000
#> GSM680050     1  0.3700      0.678 0.752 0.000 0.008 0.240 0.000
#> GSM680039     2  0.4948      0.596 0.000 0.676 0.068 0.256 0.000
#> GSM680051     4  0.4989     -0.166 0.016 0.456 0.008 0.520 0.000
#> GSM680040     2  0.4219      0.559 0.000 0.780 0.116 0.104 0.000
#> GSM680052     2  0.3990      0.595 0.000 0.688 0.004 0.308 0.000
#> GSM680030     2  0.4557      0.280 0.000 0.656 0.324 0.012 0.008
#> GSM680042     4  0.6048      0.282 0.376 0.088 0.012 0.524 0.000
#> GSM680031     5  0.0000      0.863 0.000 0.000 0.000 0.000 1.000
#> GSM680043     3  0.1341      1.000 0.000 0.000 0.944 0.000 0.056
#> GSM680032     4  0.4569      0.570 0.104 0.148 0.000 0.748 0.000
#> GSM680044     2  0.4262      0.412 0.000 0.560 0.000 0.440 0.000
#> GSM680033     5  0.0162      0.862 0.000 0.000 0.004 0.000 0.996
#> GSM680045     2  0.4318      0.612 0.000 0.688 0.020 0.292 0.000
#> GSM680034     5  0.0000      0.863 0.000 0.000 0.000 0.000 1.000
#> GSM680046     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM680053     2  0.5631      0.558 0.000 0.528 0.000 0.188 0.000 0.284
#> GSM680062     2  0.5900      0.412 0.000 0.448 0.000 0.336 0.000 0.216
#> GSM680054     5  0.0000      0.877 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM680063     6  0.4635      0.698 0.000 0.336 0.056 0.000 0.000 0.608
#> GSM680055     4  0.2762      0.567 0.000 0.196 0.000 0.804 0.000 0.000
#> GSM680064     1  0.0405      0.910 0.988 0.004 0.000 0.008 0.000 0.000
#> GSM680056     4  0.5184      0.164 0.000 0.296 0.000 0.584 0.000 0.120
#> GSM680065     1  0.0508      0.911 0.984 0.004 0.000 0.012 0.000 0.000
#> GSM680057     5  0.5587      0.175 0.000 0.040 0.056 0.000 0.508 0.396
#> GSM680066     4  0.3622      0.516 0.212 0.024 0.000 0.760 0.000 0.004
#> GSM680058     4  0.3864      0.232 0.000 0.480 0.000 0.520 0.000 0.000
#> GSM680067     6  0.4635      0.698 0.000 0.336 0.056 0.000 0.000 0.608
#> GSM680059     2  0.2135      0.646 0.000 0.872 0.000 0.128 0.000 0.000
#> GSM680068     1  0.0713      0.915 0.972 0.000 0.000 0.028 0.000 0.000
#> GSM680060     1  0.1843      0.897 0.912 0.004 0.000 0.080 0.000 0.004
#> GSM680069     4  0.3492      0.541 0.176 0.032 0.000 0.788 0.000 0.004
#> GSM680061     5  0.1720      0.838 0.000 0.000 0.032 0.000 0.928 0.040
#> GSM680070     1  0.3050      0.759 0.764 0.000 0.000 0.236 0.000 0.000
#> GSM680071     1  0.1588      0.901 0.924 0.000 0.000 0.072 0.000 0.004
#> GSM680077     1  0.0865      0.913 0.964 0.000 0.000 0.036 0.000 0.000
#> GSM680072     2  0.2340      0.637 0.000 0.852 0.000 0.148 0.000 0.000
#> GSM680078     1  0.0551      0.910 0.984 0.004 0.000 0.008 0.000 0.004
#> GSM680073     4  0.3756      0.394 0.000 0.400 0.000 0.600 0.000 0.000
#> GSM680079     1  0.0405      0.910 0.988 0.004 0.000 0.008 0.000 0.000
#> GSM680074     2  0.2135      0.646 0.000 0.872 0.000 0.128 0.000 0.000
#> GSM680080     2  0.2135      0.646 0.000 0.872 0.000 0.128 0.000 0.000
#> GSM680075     1  0.0603      0.911 0.980 0.000 0.000 0.016 0.000 0.004
#> GSM680081     6  0.2629      0.442 0.000 0.040 0.092 0.000 0.000 0.868
#> GSM680076     4  0.3854      0.260 0.000 0.464 0.000 0.536 0.000 0.000
#> GSM680082     1  0.2912      0.777 0.784 0.000 0.000 0.216 0.000 0.000
#> GSM680029     4  0.3265      0.542 0.000 0.248 0.000 0.748 0.000 0.004
#> GSM680041     4  0.0363      0.565 0.012 0.000 0.000 0.988 0.000 0.000
#> GSM680035     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680047     1  0.0858      0.915 0.968 0.000 0.000 0.028 0.000 0.004
#> GSM680036     4  0.4706      0.524 0.156 0.144 0.000 0.696 0.000 0.004
#> GSM680048     4  0.5783     -0.118 0.000 0.280 0.000 0.500 0.000 0.220
#> GSM680037     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680049     4  0.1471      0.564 0.004 0.064 0.000 0.932 0.000 0.000
#> GSM680038     2  0.2378      0.631 0.000 0.848 0.000 0.152 0.000 0.000
#> GSM680050     1  0.3266      0.703 0.728 0.000 0.000 0.272 0.000 0.000
#> GSM680039     2  0.4641      0.372 0.000 0.684 0.000 0.116 0.000 0.200
#> GSM680051     4  0.5783     -0.118 0.000 0.280 0.000 0.500 0.000 0.220
#> GSM680040     6  0.3578      0.186 0.000 0.340 0.000 0.000 0.000 0.660
#> GSM680052     2  0.5868      0.519 0.000 0.472 0.000 0.224 0.000 0.304
#> GSM680030     6  0.4769      0.696 0.000 0.336 0.056 0.000 0.004 0.604
#> GSM680042     4  0.2883      0.454 0.212 0.000 0.000 0.788 0.000 0.000
#> GSM680031     5  0.0000      0.877 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM680043     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680032     4  0.3670      0.484 0.000 0.284 0.000 0.704 0.000 0.012
#> GSM680044     2  0.5900      0.412 0.000 0.448 0.000 0.336 0.000 0.216
#> GSM680033     5  0.0146      0.876 0.000 0.000 0.004 0.000 0.996 0.000
#> GSM680045     2  0.5869      0.468 0.000 0.416 0.000 0.196 0.000 0.388
#> GSM680034     5  0.0000      0.877 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM680046     1  0.0858      0.915 0.968 0.000 0.000 0.028 0.000 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) individual(p) protocol(p) other(p) k
#> ATC:hclust 47           0.4727         0.410     0.02837   0.5428 2
#> ATC:hclust 42           0.1512         0.260     0.00313   0.1639 3
#> ATC:hclust 37           0.1436         0.366     0.01531   0.0888 4
#> ATC:hclust 38           0.0794         0.425     0.02212   0.1156 5
#> ATC:hclust 39           0.1283         0.346     0.03993   0.0744 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.726           0.888       0.955         0.4576 0.535   0.535
#> 3 3 0.889           0.893       0.956         0.4399 0.660   0.440
#> 4 4 0.648           0.658       0.794         0.1238 0.855   0.597
#> 5 5 0.667           0.592       0.777         0.0715 0.890   0.601
#> 6 6 0.675           0.508       0.734         0.0396 0.925   0.677

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM680053     2  0.6247      0.825 0.156 0.844
#> GSM680062     1  0.0938      0.952 0.988 0.012
#> GSM680054     2  0.0000      0.924 0.000 1.000
#> GSM680063     2  0.0000      0.924 0.000 1.000
#> GSM680055     1  0.0000      0.961 1.000 0.000
#> GSM680064     1  0.0000      0.961 1.000 0.000
#> GSM680056     1  0.0000      0.961 1.000 0.000
#> GSM680065     1  0.0000      0.961 1.000 0.000
#> GSM680057     2  0.0000      0.924 0.000 1.000
#> GSM680066     1  0.0000      0.961 1.000 0.000
#> GSM680058     1  0.0000      0.961 1.000 0.000
#> GSM680067     2  0.0000      0.924 0.000 1.000
#> GSM680059     1  0.9552      0.347 0.624 0.376
#> GSM680068     1  0.0000      0.961 1.000 0.000
#> GSM680060     1  0.0000      0.961 1.000 0.000
#> GSM680069     1  0.0000      0.961 1.000 0.000
#> GSM680061     2  0.0000      0.924 0.000 1.000
#> GSM680070     1  0.0000      0.961 1.000 0.000
#> GSM680071     1  0.0000      0.961 1.000 0.000
#> GSM680077     1  0.0000      0.961 1.000 0.000
#> GSM680072     1  0.1184      0.948 0.984 0.016
#> GSM680078     1  0.0000      0.961 1.000 0.000
#> GSM680073     1  0.0000      0.961 1.000 0.000
#> GSM680079     1  0.0000      0.961 1.000 0.000
#> GSM680074     2  0.7745      0.731 0.228 0.772
#> GSM680080     1  0.9552      0.347 0.624 0.376
#> GSM680075     1  0.0000      0.961 1.000 0.000
#> GSM680081     2  0.0000      0.924 0.000 1.000
#> GSM680076     1  0.0938      0.952 0.988 0.012
#> GSM680082     1  0.0000      0.961 1.000 0.000
#> GSM680029     1  0.0000      0.961 1.000 0.000
#> GSM680041     1  0.0000      0.961 1.000 0.000
#> GSM680035     2  0.0000      0.924 0.000 1.000
#> GSM680047     1  0.0000      0.961 1.000 0.000
#> GSM680036     1  0.0000      0.961 1.000 0.000
#> GSM680048     1  0.0000      0.961 1.000 0.000
#> GSM680037     2  0.0000      0.924 0.000 1.000
#> GSM680049     1  0.0000      0.961 1.000 0.000
#> GSM680038     1  0.9552      0.347 0.624 0.376
#> GSM680050     1  0.0000      0.961 1.000 0.000
#> GSM680039     2  0.5519      0.850 0.128 0.872
#> GSM680051     1  0.0000      0.961 1.000 0.000
#> GSM680040     2  0.5519      0.850 0.128 0.872
#> GSM680052     2  0.9977      0.143 0.472 0.528
#> GSM680030     2  0.0000      0.924 0.000 1.000
#> GSM680042     1  0.0000      0.961 1.000 0.000
#> GSM680031     2  0.0000      0.924 0.000 1.000
#> GSM680043     2  0.0000      0.924 0.000 1.000
#> GSM680032     1  0.0000      0.961 1.000 0.000
#> GSM680044     1  0.0938      0.952 0.988 0.012
#> GSM680033     2  0.0000      0.924 0.000 1.000
#> GSM680045     2  0.6343      0.821 0.160 0.840
#> GSM680034     2  0.0000      0.924 0.000 1.000
#> GSM680046     1  0.0000      0.961 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM680053     2  0.0000      0.932 0.000 1.000 0.000
#> GSM680062     2  0.0424      0.936 0.008 0.992 0.000
#> GSM680054     3  0.0000      0.998 0.000 0.000 1.000
#> GSM680063     3  0.0000      0.998 0.000 0.000 1.000
#> GSM680055     2  0.0424      0.936 0.008 0.992 0.000
#> GSM680064     1  0.0000      0.936 1.000 0.000 0.000
#> GSM680056     2  0.3192      0.840 0.112 0.888 0.000
#> GSM680065     1  0.0000      0.936 1.000 0.000 0.000
#> GSM680057     3  0.0000      0.998 0.000 0.000 1.000
#> GSM680066     1  0.4555      0.712 0.800 0.200 0.000
#> GSM680058     2  0.0424      0.936 0.008 0.992 0.000
#> GSM680067     3  0.0000      0.998 0.000 0.000 1.000
#> GSM680059     2  0.0424      0.936 0.008 0.992 0.000
#> GSM680068     1  0.0000      0.936 1.000 0.000 0.000
#> GSM680060     1  0.0000      0.936 1.000 0.000 0.000
#> GSM680069     2  0.5948      0.451 0.360 0.640 0.000
#> GSM680061     3  0.0000      0.998 0.000 0.000 1.000
#> GSM680070     1  0.0000      0.936 1.000 0.000 0.000
#> GSM680071     1  0.0000      0.936 1.000 0.000 0.000
#> GSM680077     1  0.0000      0.936 1.000 0.000 0.000
#> GSM680072     2  0.0424      0.936 0.008 0.992 0.000
#> GSM680078     1  0.0000      0.936 1.000 0.000 0.000
#> GSM680073     2  0.0424      0.936 0.008 0.992 0.000
#> GSM680079     1  0.0000      0.936 1.000 0.000 0.000
#> GSM680074     2  0.0424      0.932 0.000 0.992 0.008
#> GSM680080     2  0.0424      0.936 0.008 0.992 0.000
#> GSM680075     1  0.0000      0.936 1.000 0.000 0.000
#> GSM680081     3  0.0424      0.995 0.000 0.008 0.992
#> GSM680076     2  0.0424      0.936 0.008 0.992 0.000
#> GSM680082     1  0.0000      0.936 1.000 0.000 0.000
#> GSM680029     2  0.0424      0.936 0.008 0.992 0.000
#> GSM680041     1  0.5988      0.382 0.632 0.368 0.000
#> GSM680035     3  0.0424      0.995 0.000 0.008 0.992
#> GSM680047     1  0.0000      0.936 1.000 0.000 0.000
#> GSM680036     1  0.6095      0.330 0.608 0.392 0.000
#> GSM680048     2  0.5882      0.478 0.348 0.652 0.000
#> GSM680037     3  0.0424      0.995 0.000 0.008 0.992
#> GSM680049     2  0.6192      0.292 0.420 0.580 0.000
#> GSM680038     2  0.0424      0.936 0.008 0.992 0.000
#> GSM680050     1  0.0000      0.936 1.000 0.000 0.000
#> GSM680039     2  0.0424      0.932 0.000 0.992 0.008
#> GSM680051     2  0.0424      0.936 0.008 0.992 0.000
#> GSM680040     2  0.0000      0.932 0.000 1.000 0.000
#> GSM680052     2  0.0000      0.932 0.000 1.000 0.000
#> GSM680030     3  0.0000      0.998 0.000 0.000 1.000
#> GSM680042     1  0.0000      0.936 1.000 0.000 0.000
#> GSM680031     3  0.0000      0.998 0.000 0.000 1.000
#> GSM680043     3  0.0424      0.995 0.000 0.008 0.992
#> GSM680032     2  0.0424      0.936 0.008 0.992 0.000
#> GSM680044     2  0.0424      0.936 0.008 0.992 0.000
#> GSM680033     3  0.0000      0.998 0.000 0.000 1.000
#> GSM680045     2  0.0000      0.932 0.000 1.000 0.000
#> GSM680034     3  0.0000      0.998 0.000 0.000 1.000
#> GSM680046     1  0.0000      0.936 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM680053     2  0.2216      0.642 0.000 0.908 0.000 0.092
#> GSM680062     2  0.4955      0.650 0.000 0.556 0.000 0.444
#> GSM680054     3  0.0000      0.872 0.000 0.000 1.000 0.000
#> GSM680063     3  0.4454      0.763 0.000 0.308 0.692 0.000
#> GSM680055     4  0.4941     -0.313 0.000 0.436 0.000 0.564
#> GSM680064     1  0.0188      0.861 0.996 0.000 0.000 0.004
#> GSM680056     4  0.3653      0.536 0.028 0.128 0.000 0.844
#> GSM680065     1  0.0592      0.863 0.984 0.000 0.000 0.016
#> GSM680057     3  0.1940      0.864 0.000 0.076 0.924 0.000
#> GSM680066     4  0.4372      0.475 0.268 0.004 0.000 0.728
#> GSM680058     2  0.4933      0.615 0.000 0.568 0.000 0.432
#> GSM680067     3  0.4500      0.763 0.000 0.316 0.684 0.000
#> GSM680059     2  0.4543      0.744 0.000 0.676 0.000 0.324
#> GSM680068     1  0.0000      0.862 1.000 0.000 0.000 0.000
#> GSM680060     1  0.4990      0.527 0.640 0.008 0.000 0.352
#> GSM680069     4  0.3308      0.626 0.092 0.036 0.000 0.872
#> GSM680061     3  0.0000      0.872 0.000 0.000 1.000 0.000
#> GSM680070     1  0.4624      0.554 0.660 0.000 0.000 0.340
#> GSM680071     1  0.2081      0.853 0.916 0.000 0.000 0.084
#> GSM680077     1  0.1118      0.860 0.964 0.000 0.000 0.036
#> GSM680072     2  0.4585      0.740 0.000 0.668 0.000 0.332
#> GSM680078     1  0.1118      0.861 0.964 0.000 0.000 0.036
#> GSM680073     2  0.4907      0.636 0.000 0.580 0.000 0.420
#> GSM680079     1  0.0188      0.861 0.996 0.000 0.000 0.004
#> GSM680074     2  0.4431      0.742 0.000 0.696 0.000 0.304
#> GSM680080     2  0.4543      0.744 0.000 0.676 0.000 0.324
#> GSM680075     1  0.1302      0.860 0.956 0.000 0.000 0.044
#> GSM680081     3  0.6253      0.727 0.000 0.372 0.564 0.064
#> GSM680076     2  0.4776      0.696 0.000 0.624 0.000 0.376
#> GSM680082     1  0.4164      0.664 0.736 0.000 0.000 0.264
#> GSM680029     4  0.4989     -0.424 0.000 0.472 0.000 0.528
#> GSM680041     4  0.3400      0.610 0.180 0.000 0.000 0.820
#> GSM680035     3  0.3547      0.845 0.000 0.072 0.864 0.064
#> GSM680047     1  0.1474      0.860 0.948 0.000 0.000 0.052
#> GSM680036     4  0.5228      0.550 0.120 0.124 0.000 0.756
#> GSM680048     4  0.4037      0.637 0.136 0.040 0.000 0.824
#> GSM680037     3  0.3687      0.846 0.000 0.080 0.856 0.064
#> GSM680049     4  0.5070      0.627 0.192 0.060 0.000 0.748
#> GSM680038     2  0.4543      0.744 0.000 0.676 0.000 0.324
#> GSM680050     4  0.4996     -0.187 0.484 0.000 0.000 0.516
#> GSM680039     2  0.2149      0.643 0.000 0.912 0.000 0.088
#> GSM680051     4  0.3219      0.481 0.000 0.164 0.000 0.836
#> GSM680040     2  0.1302      0.604 0.000 0.956 0.000 0.044
#> GSM680052     2  0.3801      0.583 0.000 0.780 0.000 0.220
#> GSM680030     3  0.4431      0.767 0.000 0.304 0.696 0.000
#> GSM680042     1  0.4643      0.548 0.656 0.000 0.000 0.344
#> GSM680031     3  0.0000      0.872 0.000 0.000 1.000 0.000
#> GSM680043     3  0.3617      0.846 0.000 0.076 0.860 0.064
#> GSM680032     4  0.3688      0.357 0.000 0.208 0.000 0.792
#> GSM680044     2  0.4999      0.576 0.000 0.508 0.000 0.492
#> GSM680033     3  0.0000      0.872 0.000 0.000 1.000 0.000
#> GSM680045     2  0.3172      0.531 0.000 0.840 0.000 0.160
#> GSM680034     3  0.0000      0.872 0.000 0.000 1.000 0.000
#> GSM680046     1  0.1118      0.861 0.964 0.000 0.000 0.036

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM680053     2  0.4552    -0.1565 0.000 0.524 0.000 0.008 0.468
#> GSM680062     2  0.4141     0.5532 0.000 0.736 0.000 0.236 0.028
#> GSM680054     3  0.0290     0.8518 0.000 0.000 0.992 0.008 0.000
#> GSM680063     5  0.4949     0.5332 0.000 0.032 0.396 0.000 0.572
#> GSM680055     2  0.4748     0.4697 0.000 0.660 0.000 0.300 0.040
#> GSM680064     1  0.1364     0.7977 0.952 0.000 0.000 0.012 0.036
#> GSM680056     4  0.3878     0.7626 0.012 0.144 0.000 0.808 0.036
#> GSM680065     1  0.2482     0.7940 0.892 0.000 0.000 0.024 0.084
#> GSM680057     3  0.3336     0.5587 0.000 0.000 0.772 0.000 0.228
#> GSM680066     4  0.4731     0.7430 0.088 0.048 0.000 0.780 0.084
#> GSM680058     2  0.3183     0.6474 0.000 0.828 0.000 0.156 0.016
#> GSM680067     5  0.4940     0.5346 0.000 0.032 0.392 0.000 0.576
#> GSM680059     2  0.0162     0.6876 0.000 0.996 0.000 0.000 0.004
#> GSM680068     1  0.0579     0.8025 0.984 0.000 0.000 0.008 0.008
#> GSM680060     1  0.7098     0.4978 0.532 0.052 0.000 0.216 0.200
#> GSM680069     4  0.4826     0.7676 0.048 0.104 0.000 0.772 0.076
#> GSM680061     3  0.0000     0.8520 0.000 0.000 1.000 0.000 0.000
#> GSM680070     1  0.5650     0.0336 0.468 0.000 0.000 0.456 0.076
#> GSM680071     1  0.4627     0.7411 0.732 0.000 0.000 0.080 0.188
#> GSM680077     1  0.2676     0.7852 0.884 0.000 0.000 0.036 0.080
#> GSM680072     2  0.0324     0.6899 0.000 0.992 0.000 0.004 0.004
#> GSM680078     1  0.2193     0.7947 0.900 0.000 0.000 0.008 0.092
#> GSM680073     2  0.3055     0.6559 0.000 0.840 0.000 0.144 0.016
#> GSM680079     1  0.1364     0.7977 0.952 0.000 0.000 0.012 0.036
#> GSM680074     2  0.0510     0.6794 0.000 0.984 0.000 0.000 0.016
#> GSM680080     2  0.0162     0.6876 0.000 0.996 0.000 0.000 0.004
#> GSM680075     1  0.3476     0.7744 0.804 0.000 0.000 0.020 0.176
#> GSM680081     5  0.4511     0.4598 0.000 0.012 0.260 0.020 0.708
#> GSM680076     2  0.1408     0.6925 0.000 0.948 0.000 0.044 0.008
#> GSM680082     1  0.5616     0.2515 0.536 0.000 0.000 0.384 0.080
#> GSM680029     2  0.3779     0.6008 0.000 0.776 0.000 0.200 0.024
#> GSM680041     4  0.2728     0.8029 0.040 0.068 0.000 0.888 0.004
#> GSM680035     3  0.4335     0.7629 0.000 0.000 0.760 0.072 0.168
#> GSM680047     1  0.2473     0.7991 0.896 0.000 0.000 0.032 0.072
#> GSM680036     2  0.7170     0.0886 0.040 0.468 0.000 0.316 0.176
#> GSM680048     4  0.2972     0.8026 0.040 0.084 0.000 0.872 0.004
#> GSM680037     3  0.4409     0.7591 0.000 0.000 0.752 0.072 0.176
#> GSM680049     4  0.4001     0.7919 0.048 0.104 0.000 0.820 0.028
#> GSM680038     2  0.0162     0.6876 0.000 0.996 0.000 0.000 0.004
#> GSM680050     4  0.5205     0.5808 0.200 0.008 0.000 0.696 0.096
#> GSM680039     2  0.4268    -0.0885 0.000 0.556 0.000 0.000 0.444
#> GSM680051     4  0.3309     0.7616 0.000 0.128 0.000 0.836 0.036
#> GSM680040     5  0.4559     0.0502 0.000 0.480 0.000 0.008 0.512
#> GSM680052     2  0.6647    -0.1326 0.000 0.392 0.000 0.224 0.384
#> GSM680030     5  0.4622     0.4608 0.000 0.012 0.440 0.000 0.548
#> GSM680042     4  0.5506     0.0821 0.404 0.000 0.000 0.528 0.068
#> GSM680031     3  0.0162     0.8523 0.000 0.000 0.996 0.004 0.000
#> GSM680043     3  0.4335     0.7629 0.000 0.000 0.760 0.072 0.168
#> GSM680032     4  0.3724     0.6841 0.000 0.204 0.000 0.776 0.020
#> GSM680044     2  0.4546     0.4726 0.000 0.668 0.000 0.304 0.028
#> GSM680033     3  0.0000     0.8520 0.000 0.000 1.000 0.000 0.000
#> GSM680045     5  0.6235     0.1614 0.000 0.344 0.000 0.156 0.500
#> GSM680034     3  0.0290     0.8518 0.000 0.000 0.992 0.008 0.000
#> GSM680046     1  0.1942     0.8008 0.920 0.000 0.000 0.012 0.068

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM680053     5  0.5372     0.4881 0.000 0.324 0.000 0.044 0.584 0.048
#> GSM680062     2  0.5592     0.3944 0.000 0.568 0.000 0.304 0.108 0.020
#> GSM680054     3  0.5412     0.7953 0.000 0.000 0.580 0.016 0.096 0.308
#> GSM680063     5  0.3193     0.5105 0.000 0.008 0.112 0.004 0.840 0.036
#> GSM680055     2  0.5377     0.4666 0.000 0.596 0.000 0.288 0.016 0.100
#> GSM680064     1  0.0865     0.6084 0.964 0.000 0.000 0.000 0.000 0.036
#> GSM680056     4  0.3063     0.6625 0.000 0.076 0.000 0.856 0.016 0.052
#> GSM680065     1  0.2556     0.5437 0.864 0.000 0.000 0.008 0.008 0.120
#> GSM680057     5  0.5999    -0.2660 0.000 0.000 0.276 0.004 0.476 0.244
#> GSM680066     4  0.4873     0.5583 0.020 0.048 0.000 0.676 0.008 0.248
#> GSM680058     2  0.2766     0.7108 0.000 0.868 0.000 0.092 0.012 0.028
#> GSM680067     5  0.3193     0.5105 0.000 0.008 0.112 0.004 0.840 0.036
#> GSM680059     2  0.0937     0.7297 0.000 0.960 0.000 0.000 0.040 0.000
#> GSM680068     1  0.1625     0.6084 0.928 0.000 0.000 0.000 0.012 0.060
#> GSM680060     6  0.7097     0.0000 0.280 0.100 0.000 0.120 0.020 0.480
#> GSM680069     4  0.4569     0.5824 0.004 0.084 0.000 0.708 0.004 0.200
#> GSM680061     3  0.5133     0.7956 0.000 0.000 0.580 0.000 0.108 0.312
#> GSM680070     4  0.6341    -0.1512 0.364 0.000 0.000 0.372 0.012 0.252
#> GSM680071     1  0.4662    -0.1959 0.496 0.000 0.000 0.032 0.004 0.468
#> GSM680077     1  0.3359     0.4801 0.784 0.000 0.000 0.012 0.008 0.196
#> GSM680072     2  0.0291     0.7391 0.000 0.992 0.000 0.004 0.004 0.000
#> GSM680078     1  0.2513     0.5700 0.852 0.000 0.000 0.000 0.008 0.140
#> GSM680073     2  0.2766     0.7108 0.000 0.868 0.000 0.092 0.012 0.028
#> GSM680079     1  0.0865     0.6084 0.964 0.000 0.000 0.000 0.000 0.036
#> GSM680074     2  0.1204     0.7155 0.000 0.944 0.000 0.000 0.056 0.000
#> GSM680080     2  0.0937     0.7297 0.000 0.960 0.000 0.000 0.040 0.000
#> GSM680075     1  0.3547     0.3530 0.696 0.000 0.000 0.000 0.004 0.300
#> GSM680081     5  0.4422     0.4482 0.000 0.000 0.284 0.020 0.672 0.024
#> GSM680076     2  0.0508     0.7408 0.000 0.984 0.000 0.012 0.000 0.004
#> GSM680082     1  0.6195    -0.1346 0.464 0.000 0.000 0.280 0.012 0.244
#> GSM680029     2  0.3800     0.6487 0.000 0.780 0.000 0.164 0.012 0.044
#> GSM680041     4  0.2789     0.6876 0.008 0.036 0.000 0.880 0.012 0.064
#> GSM680035     3  0.0458     0.6605 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM680047     1  0.5057     0.4502 0.692 0.000 0.000 0.088 0.040 0.180
#> GSM680036     2  0.6659    -0.0623 0.020 0.444 0.000 0.204 0.016 0.316
#> GSM680048     4  0.2402     0.6914 0.004 0.044 0.000 0.900 0.008 0.044
#> GSM680037     3  0.0692     0.6557 0.000 0.000 0.976 0.000 0.020 0.004
#> GSM680049     4  0.2630     0.6899 0.008 0.060 0.000 0.888 0.008 0.036
#> GSM680038     2  0.0937     0.7297 0.000 0.960 0.000 0.000 0.040 0.000
#> GSM680050     4  0.5251     0.4447 0.124 0.000 0.000 0.632 0.012 0.232
#> GSM680039     5  0.3975     0.3263 0.000 0.452 0.000 0.000 0.544 0.004
#> GSM680051     4  0.2317     0.6743 0.000 0.064 0.000 0.900 0.016 0.020
#> GSM680040     5  0.5889     0.5136 0.000 0.292 0.032 0.036 0.588 0.052
#> GSM680052     5  0.6720     0.3498 0.000 0.232 0.000 0.284 0.436 0.048
#> GSM680030     5  0.4433     0.3565 0.000 0.000 0.112 0.004 0.724 0.160
#> GSM680042     4  0.6034     0.1639 0.272 0.000 0.000 0.516 0.016 0.196
#> GSM680031     3  0.5044     0.7966 0.000 0.000 0.584 0.000 0.096 0.320
#> GSM680043     3  0.0603     0.6582 0.000 0.000 0.980 0.000 0.016 0.004
#> GSM680032     4  0.3092     0.6457 0.000 0.120 0.000 0.840 0.012 0.028
#> GSM680044     2  0.5488     0.3889 0.000 0.548 0.000 0.348 0.084 0.020
#> GSM680033     3  0.5133     0.7956 0.000 0.000 0.580 0.000 0.108 0.312
#> GSM680045     5  0.6419     0.5165 0.000 0.204 0.012 0.144 0.576 0.064
#> GSM680034     3  0.5412     0.7953 0.000 0.000 0.580 0.016 0.096 0.308
#> GSM680046     1  0.3976     0.5415 0.768 0.000 0.000 0.020 0.040 0.172

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) individual(p) protocol(p) other(p) k
#> ATC:kmeans 50           0.3483         0.344    0.039170  0.29908 2
#> ATC:kmeans 49           0.2572         0.396    0.003640  0.17809 3
#> ATC:kmeans 48           0.1941         0.190    0.031670  0.07147 4
#> ATC:kmeans 40           0.0404         0.545    0.001600  0.00976 5
#> ATC:kmeans 35           0.1014         0.502    0.000811  0.01241 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.989       0.995         0.5087 0.491   0.491
#> 3 3 1.000           0.953       0.982         0.2795 0.830   0.666
#> 4 4 0.851           0.790       0.918         0.0989 0.932   0.809
#> 5 5 0.773           0.687       0.845         0.0509 0.958   0.859
#> 6 6 0.720           0.663       0.826         0.0382 0.959   0.849

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM680053     2   0.000      0.990 0.000 1.000
#> GSM680062     2   0.000      0.990 0.000 1.000
#> GSM680054     2   0.000      0.990 0.000 1.000
#> GSM680063     2   0.000      0.990 0.000 1.000
#> GSM680055     1   0.000      1.000 1.000 0.000
#> GSM680064     1   0.000      1.000 1.000 0.000
#> GSM680056     1   0.000      1.000 1.000 0.000
#> GSM680065     1   0.000      1.000 1.000 0.000
#> GSM680057     2   0.000      0.990 0.000 1.000
#> GSM680066     1   0.000      1.000 1.000 0.000
#> GSM680058     1   0.000      1.000 1.000 0.000
#> GSM680067     2   0.000      0.990 0.000 1.000
#> GSM680059     2   0.000      0.990 0.000 1.000
#> GSM680068     1   0.000      1.000 1.000 0.000
#> GSM680060     1   0.000      1.000 1.000 0.000
#> GSM680069     1   0.000      1.000 1.000 0.000
#> GSM680061     2   0.000      0.990 0.000 1.000
#> GSM680070     1   0.000      1.000 1.000 0.000
#> GSM680071     1   0.000      1.000 1.000 0.000
#> GSM680077     1   0.000      1.000 1.000 0.000
#> GSM680072     2   0.000      0.990 0.000 1.000
#> GSM680078     1   0.000      1.000 1.000 0.000
#> GSM680073     1   0.000      1.000 1.000 0.000
#> GSM680079     1   0.000      1.000 1.000 0.000
#> GSM680074     2   0.000      0.990 0.000 1.000
#> GSM680080     2   0.000      0.990 0.000 1.000
#> GSM680075     1   0.000      1.000 1.000 0.000
#> GSM680081     2   0.000      0.990 0.000 1.000
#> GSM680076     2   0.802      0.677 0.244 0.756
#> GSM680082     1   0.000      1.000 1.000 0.000
#> GSM680029     1   0.000      1.000 1.000 0.000
#> GSM680041     1   0.000      1.000 1.000 0.000
#> GSM680035     2   0.000      0.990 0.000 1.000
#> GSM680047     1   0.000      1.000 1.000 0.000
#> GSM680036     1   0.000      1.000 1.000 0.000
#> GSM680048     1   0.000      1.000 1.000 0.000
#> GSM680037     2   0.000      0.990 0.000 1.000
#> GSM680049     1   0.000      1.000 1.000 0.000
#> GSM680038     2   0.000      0.990 0.000 1.000
#> GSM680050     1   0.000      1.000 1.000 0.000
#> GSM680039     2   0.000      0.990 0.000 1.000
#> GSM680051     1   0.000      1.000 1.000 0.000
#> GSM680040     2   0.000      0.990 0.000 1.000
#> GSM680052     2   0.000      0.990 0.000 1.000
#> GSM680030     2   0.000      0.990 0.000 1.000
#> GSM680042     1   0.000      1.000 1.000 0.000
#> GSM680031     2   0.000      0.990 0.000 1.000
#> GSM680043     2   0.000      0.990 0.000 1.000
#> GSM680032     1   0.000      1.000 1.000 0.000
#> GSM680044     2   0.000      0.990 0.000 1.000
#> GSM680033     2   0.000      0.990 0.000 1.000
#> GSM680045     2   0.000      0.990 0.000 1.000
#> GSM680034     2   0.000      0.990 0.000 1.000
#> GSM680046     1   0.000      1.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2 p3
#> GSM680053     3   0.000      1.000 0.000 0.000  1
#> GSM680062     2   0.000      0.983 0.000 1.000  0
#> GSM680054     3   0.000      1.000 0.000 0.000  1
#> GSM680063     3   0.000      1.000 0.000 0.000  1
#> GSM680055     1   0.611      0.351 0.604 0.396  0
#> GSM680064     1   0.000      0.963 1.000 0.000  0
#> GSM680056     1   0.000      0.963 1.000 0.000  0
#> GSM680065     1   0.000      0.963 1.000 0.000  0
#> GSM680057     3   0.000      1.000 0.000 0.000  1
#> GSM680066     1   0.000      0.963 1.000 0.000  0
#> GSM680058     2   0.000      0.983 0.000 1.000  0
#> GSM680067     3   0.000      1.000 0.000 0.000  1
#> GSM680059     2   0.000      0.983 0.000 1.000  0
#> GSM680068     1   0.000      0.963 1.000 0.000  0
#> GSM680060     1   0.000      0.963 1.000 0.000  0
#> GSM680069     1   0.000      0.963 1.000 0.000  0
#> GSM680061     3   0.000      1.000 0.000 0.000  1
#> GSM680070     1   0.000      0.963 1.000 0.000  0
#> GSM680071     1   0.000      0.963 1.000 0.000  0
#> GSM680077     1   0.000      0.963 1.000 0.000  0
#> GSM680072     2   0.000      0.983 0.000 1.000  0
#> GSM680078     1   0.000      0.963 1.000 0.000  0
#> GSM680073     2   0.000      0.983 0.000 1.000  0
#> GSM680079     1   0.000      0.963 1.000 0.000  0
#> GSM680074     2   0.000      0.983 0.000 1.000  0
#> GSM680080     2   0.000      0.983 0.000 1.000  0
#> GSM680075     1   0.000      0.963 1.000 0.000  0
#> GSM680081     3   0.000      1.000 0.000 0.000  1
#> GSM680076     2   0.000      0.983 0.000 1.000  0
#> GSM680082     1   0.000      0.963 1.000 0.000  0
#> GSM680029     2   0.388      0.811 0.152 0.848  0
#> GSM680041     1   0.000      0.963 1.000 0.000  0
#> GSM680035     3   0.000      1.000 0.000 0.000  1
#> GSM680047     1   0.000      0.963 1.000 0.000  0
#> GSM680036     1   0.610      0.361 0.608 0.392  0
#> GSM680048     1   0.000      0.963 1.000 0.000  0
#> GSM680037     3   0.000      1.000 0.000 0.000  1
#> GSM680049     1   0.000      0.963 1.000 0.000  0
#> GSM680038     2   0.000      0.983 0.000 1.000  0
#> GSM680050     1   0.000      0.963 1.000 0.000  0
#> GSM680039     3   0.000      1.000 0.000 0.000  1
#> GSM680051     1   0.000      0.963 1.000 0.000  0
#> GSM680040     3   0.000      1.000 0.000 0.000  1
#> GSM680052     3   0.000      1.000 0.000 0.000  1
#> GSM680030     3   0.000      1.000 0.000 0.000  1
#> GSM680042     1   0.000      0.963 1.000 0.000  0
#> GSM680031     3   0.000      1.000 0.000 0.000  1
#> GSM680043     3   0.000      1.000 0.000 0.000  1
#> GSM680032     1   0.186      0.915 0.948 0.052  0
#> GSM680044     2   0.000      0.983 0.000 1.000  0
#> GSM680033     3   0.000      1.000 0.000 0.000  1
#> GSM680045     3   0.000      1.000 0.000 0.000  1
#> GSM680034     3   0.000      1.000 0.000 0.000  1
#> GSM680046     1   0.000      0.963 1.000 0.000  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM680053     3  0.0000     0.9770 0.000 0.000 1.000 0.000
#> GSM680062     2  0.4730     0.4045 0.000 0.636 0.000 0.364
#> GSM680054     3  0.0000     0.9770 0.000 0.000 1.000 0.000
#> GSM680063     3  0.0000     0.9770 0.000 0.000 1.000 0.000
#> GSM680055     1  0.5599     0.4505 0.672 0.276 0.000 0.052
#> GSM680064     1  0.0000     0.8624 1.000 0.000 0.000 0.000
#> GSM680056     4  0.4941     0.3206 0.436 0.000 0.000 0.564
#> GSM680065     1  0.0469     0.8602 0.988 0.000 0.000 0.012
#> GSM680057     3  0.0000     0.9770 0.000 0.000 1.000 0.000
#> GSM680066     1  0.0188     0.8620 0.996 0.000 0.000 0.004
#> GSM680058     2  0.0592     0.9103 0.000 0.984 0.000 0.016
#> GSM680067     3  0.0000     0.9770 0.000 0.000 1.000 0.000
#> GSM680059     2  0.0000     0.9162 0.000 1.000 0.000 0.000
#> GSM680068     1  0.0000     0.8624 1.000 0.000 0.000 0.000
#> GSM680060     1  0.1389     0.8353 0.952 0.000 0.000 0.048
#> GSM680069     1  0.0921     0.8531 0.972 0.000 0.000 0.028
#> GSM680061     3  0.0000     0.9770 0.000 0.000 1.000 0.000
#> GSM680070     1  0.0336     0.8608 0.992 0.000 0.000 0.008
#> GSM680071     1  0.0921     0.8502 0.972 0.000 0.000 0.028
#> GSM680077     1  0.0188     0.8620 0.996 0.000 0.000 0.004
#> GSM680072     2  0.0000     0.9162 0.000 1.000 0.000 0.000
#> GSM680078     1  0.0000     0.8624 1.000 0.000 0.000 0.000
#> GSM680073     2  0.0592     0.9103 0.000 0.984 0.000 0.016
#> GSM680079     1  0.0000     0.8624 1.000 0.000 0.000 0.000
#> GSM680074     2  0.0000     0.9162 0.000 1.000 0.000 0.000
#> GSM680080     2  0.0000     0.9162 0.000 1.000 0.000 0.000
#> GSM680075     1  0.1389     0.8353 0.952 0.000 0.000 0.048
#> GSM680081     3  0.0000     0.9770 0.000 0.000 1.000 0.000
#> GSM680076     2  0.0336     0.9141 0.000 0.992 0.000 0.008
#> GSM680082     1  0.0336     0.8608 0.992 0.000 0.000 0.008
#> GSM680029     2  0.4532     0.6360 0.156 0.792 0.000 0.052
#> GSM680041     1  0.5000    -0.2186 0.500 0.000 0.000 0.500
#> GSM680035     3  0.0000     0.9770 0.000 0.000 1.000 0.000
#> GSM680047     1  0.0188     0.8616 0.996 0.000 0.000 0.004
#> GSM680036     1  0.5434     0.4916 0.696 0.252 0.000 0.052
#> GSM680048     1  0.4977    -0.0935 0.540 0.000 0.000 0.460
#> GSM680037     3  0.0000     0.9770 0.000 0.000 1.000 0.000
#> GSM680049     4  0.2149     0.6178 0.088 0.000 0.000 0.912
#> GSM680038     2  0.0000     0.9162 0.000 1.000 0.000 0.000
#> GSM680050     1  0.0469     0.8587 0.988 0.000 0.000 0.012
#> GSM680039     3  0.0707     0.9595 0.000 0.020 0.980 0.000
#> GSM680051     4  0.4730     0.4095 0.364 0.000 0.000 0.636
#> GSM680040     3  0.0000     0.9770 0.000 0.000 1.000 0.000
#> GSM680052     3  0.4643     0.5084 0.000 0.000 0.656 0.344
#> GSM680030     3  0.0000     0.9770 0.000 0.000 1.000 0.000
#> GSM680042     1  0.3649     0.6054 0.796 0.000 0.000 0.204
#> GSM680031     3  0.0000     0.9770 0.000 0.000 1.000 0.000
#> GSM680043     3  0.0000     0.9770 0.000 0.000 1.000 0.000
#> GSM680032     4  0.4008     0.6259 0.244 0.000 0.000 0.756
#> GSM680044     4  0.4304     0.2899 0.000 0.284 0.000 0.716
#> GSM680033     3  0.0000     0.9770 0.000 0.000 1.000 0.000
#> GSM680045     3  0.0707     0.9615 0.000 0.000 0.980 0.020
#> GSM680034     3  0.0000     0.9770 0.000 0.000 1.000 0.000
#> GSM680046     1  0.0188     0.8616 0.996 0.000 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM680053     3  0.2740    0.86664 0.000 0.004 0.888 0.044 0.064
#> GSM680062     4  0.5559    0.23965 0.000 0.344 0.000 0.572 0.084
#> GSM680054     3  0.0000    0.94536 0.000 0.000 1.000 0.000 0.000
#> GSM680063     3  0.0000    0.94536 0.000 0.000 1.000 0.000 0.000
#> GSM680055     5  0.6496   -0.11666 0.404 0.132 0.000 0.012 0.452
#> GSM680064     1  0.0162    0.80212 0.996 0.000 0.000 0.000 0.004
#> GSM680056     5  0.6328    0.49112 0.228 0.000 0.000 0.244 0.528
#> GSM680065     1  0.0000    0.80241 1.000 0.000 0.000 0.000 0.000
#> GSM680057     3  0.0000    0.94536 0.000 0.000 1.000 0.000 0.000
#> GSM680066     1  0.0000    0.80241 1.000 0.000 0.000 0.000 0.000
#> GSM680058     2  0.2852    0.80711 0.000 0.828 0.000 0.000 0.172
#> GSM680067     3  0.0000    0.94536 0.000 0.000 1.000 0.000 0.000
#> GSM680059     2  0.0290    0.87354 0.000 0.992 0.000 0.008 0.000
#> GSM680068     1  0.0162    0.80212 0.996 0.000 0.000 0.000 0.004
#> GSM680060     1  0.3508    0.59937 0.748 0.000 0.000 0.000 0.252
#> GSM680069     1  0.2179    0.74680 0.888 0.000 0.000 0.000 0.112
#> GSM680061     3  0.0000    0.94536 0.000 0.000 1.000 0.000 0.000
#> GSM680070     1  0.0404    0.80005 0.988 0.000 0.000 0.000 0.012
#> GSM680071     1  0.2230    0.74554 0.884 0.000 0.000 0.000 0.116
#> GSM680077     1  0.0000    0.80241 1.000 0.000 0.000 0.000 0.000
#> GSM680072     2  0.0162    0.87504 0.000 0.996 0.000 0.000 0.004
#> GSM680078     1  0.1043    0.79222 0.960 0.000 0.000 0.000 0.040
#> GSM680073     2  0.2813    0.80978 0.000 0.832 0.000 0.000 0.168
#> GSM680079     1  0.0000    0.80241 1.000 0.000 0.000 0.000 0.000
#> GSM680074     2  0.0609    0.87136 0.000 0.980 0.000 0.020 0.000
#> GSM680080     2  0.0451    0.87332 0.000 0.988 0.000 0.008 0.004
#> GSM680075     1  0.3452    0.60637 0.756 0.000 0.000 0.000 0.244
#> GSM680081     3  0.0703    0.93908 0.000 0.000 0.976 0.024 0.000
#> GSM680076     2  0.1981    0.86284 0.000 0.924 0.000 0.028 0.048
#> GSM680082     1  0.0703    0.79558 0.976 0.000 0.000 0.000 0.024
#> GSM680029     2  0.5284    0.50083 0.056 0.568 0.000 0.000 0.376
#> GSM680041     1  0.6175    0.01073 0.508 0.000 0.000 0.148 0.344
#> GSM680035     3  0.0703    0.93908 0.000 0.000 0.976 0.024 0.000
#> GSM680047     1  0.2351    0.76139 0.896 0.000 0.000 0.016 0.088
#> GSM680036     1  0.6248   -0.00805 0.468 0.148 0.000 0.000 0.384
#> GSM680048     1  0.6049    0.25886 0.576 0.000 0.000 0.192 0.232
#> GSM680037     3  0.0703    0.93908 0.000 0.000 0.976 0.024 0.000
#> GSM680049     5  0.6266    0.43704 0.152 0.000 0.000 0.376 0.472
#> GSM680038     2  0.0609    0.87136 0.000 0.980 0.000 0.020 0.000
#> GSM680050     1  0.1608    0.76007 0.928 0.000 0.000 0.000 0.072
#> GSM680039     3  0.3454    0.72792 0.000 0.156 0.816 0.028 0.000
#> GSM680051     4  0.6635   -0.30353 0.360 0.000 0.000 0.416 0.224
#> GSM680040     3  0.1831    0.90490 0.000 0.000 0.920 0.076 0.004
#> GSM680052     4  0.4464    0.06095 0.000 0.000 0.408 0.584 0.008
#> GSM680030     3  0.0000    0.94536 0.000 0.000 1.000 0.000 0.000
#> GSM680042     1  0.4806    0.41972 0.688 0.000 0.000 0.060 0.252
#> GSM680031     3  0.0000    0.94536 0.000 0.000 1.000 0.000 0.000
#> GSM680043     3  0.0703    0.93908 0.000 0.000 0.976 0.024 0.000
#> GSM680032     5  0.6422    0.50694 0.196 0.000 0.000 0.316 0.488
#> GSM680044     4  0.4424    0.28415 0.000 0.224 0.000 0.728 0.048
#> GSM680033     3  0.0000    0.94536 0.000 0.000 1.000 0.000 0.000
#> GSM680045     3  0.3966    0.50698 0.000 0.000 0.664 0.336 0.000
#> GSM680034     3  0.0000    0.94536 0.000 0.000 1.000 0.000 0.000
#> GSM680046     1  0.1877    0.78001 0.924 0.000 0.000 0.012 0.064

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM680053     3  0.4196     0.7254 0.000 0.000 0.776 0.104 0.092 0.028
#> GSM680062     4  0.5774     0.3440 0.000 0.236 0.004 0.616 0.092 0.052
#> GSM680054     3  0.0000     0.8942 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680063     3  0.0363     0.8881 0.000 0.000 0.988 0.012 0.000 0.000
#> GSM680055     5  0.4404     0.5739 0.224 0.044 0.000 0.008 0.716 0.008
#> GSM680064     1  0.0000     0.8012 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM680056     6  0.5639     0.5710 0.180 0.000 0.000 0.036 0.156 0.628
#> GSM680065     1  0.0820     0.7983 0.972 0.000 0.000 0.000 0.012 0.016
#> GSM680057     3  0.0000     0.8942 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680066     1  0.0458     0.8018 0.984 0.000 0.000 0.000 0.016 0.000
#> GSM680058     2  0.3668     0.5920 0.000 0.668 0.000 0.004 0.328 0.000
#> GSM680067     3  0.0000     0.8942 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680059     2  0.0146     0.8416 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM680068     1  0.0146     0.8012 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM680060     1  0.4138     0.4226 0.656 0.000 0.000 0.004 0.320 0.020
#> GSM680069     1  0.3014     0.7126 0.832 0.000 0.000 0.000 0.132 0.036
#> GSM680061     3  0.0000     0.8942 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680070     1  0.0146     0.8013 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM680071     1  0.2544     0.7366 0.864 0.000 0.000 0.004 0.120 0.012
#> GSM680077     1  0.0260     0.8014 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM680072     2  0.1265     0.8371 0.000 0.948 0.000 0.008 0.044 0.000
#> GSM680078     1  0.1320     0.7922 0.948 0.000 0.000 0.000 0.036 0.016
#> GSM680073     2  0.3789     0.5969 0.000 0.668 0.000 0.004 0.324 0.004
#> GSM680079     1  0.0146     0.8012 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM680074     2  0.0622     0.8383 0.000 0.980 0.000 0.012 0.008 0.000
#> GSM680080     2  0.1088     0.8328 0.000 0.960 0.000 0.016 0.024 0.000
#> GSM680075     1  0.3903     0.4561 0.680 0.000 0.000 0.004 0.304 0.012
#> GSM680081     3  0.3141     0.8262 0.000 0.000 0.852 0.084 0.040 0.024
#> GSM680076     2  0.3310     0.7822 0.000 0.824 0.000 0.016 0.132 0.028
#> GSM680082     1  0.0458     0.7977 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM680029     5  0.4049     0.1512 0.020 0.332 0.000 0.000 0.648 0.000
#> GSM680041     1  0.5368    -0.0912 0.468 0.000 0.000 0.040 0.036 0.456
#> GSM680035     3  0.2402     0.8523 0.000 0.000 0.896 0.060 0.032 0.012
#> GSM680047     1  0.3795     0.6899 0.800 0.000 0.000 0.020 0.060 0.120
#> GSM680036     5  0.4735     0.5756 0.296 0.076 0.000 0.000 0.628 0.000
#> GSM680048     1  0.6228     0.1195 0.508 0.000 0.000 0.112 0.056 0.324
#> GSM680037     3  0.2918     0.8339 0.000 0.000 0.864 0.084 0.032 0.020
#> GSM680049     6  0.3101     0.6046 0.148 0.000 0.000 0.032 0.000 0.820
#> GSM680038     2  0.0725     0.8380 0.000 0.976 0.000 0.012 0.012 0.000
#> GSM680050     1  0.1957     0.7331 0.888 0.000 0.000 0.000 0.000 0.112
#> GSM680039     3  0.4220     0.5225 0.000 0.228 0.724 0.032 0.012 0.004
#> GSM680051     6  0.7105     0.2393 0.312 0.000 0.000 0.268 0.072 0.348
#> GSM680040     3  0.5044     0.6518 0.000 0.008 0.692 0.204 0.064 0.032
#> GSM680052     4  0.3593     0.4232 0.000 0.000 0.208 0.764 0.004 0.024
#> GSM680030     3  0.0000     0.8942 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680042     1  0.3758     0.4193 0.668 0.000 0.000 0.000 0.008 0.324
#> GSM680031     3  0.0000     0.8942 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680043     3  0.2990     0.8313 0.000 0.000 0.860 0.084 0.036 0.020
#> GSM680032     6  0.4198     0.6003 0.128 0.000 0.000 0.020 0.084 0.768
#> GSM680044     4  0.6092     0.2716 0.000 0.168 0.000 0.568 0.044 0.220
#> GSM680033     3  0.0000     0.8942 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680045     4  0.5238    -0.1562 0.000 0.000 0.464 0.468 0.044 0.024
#> GSM680034     3  0.0000     0.8942 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680046     1  0.2932     0.7407 0.860 0.000 0.000 0.012 0.040 0.088

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) individual(p) protocol(p) other(p) k
#> ATC:skmeans 54           0.6047        0.4652    0.056590   0.8556 2
#> ATC:skmeans 52           0.1649        0.5003    0.003088   0.0421 3
#> ATC:skmeans 46           0.0253        0.1798    0.002295   0.0240 4
#> ATC:skmeans 43           0.0405        0.0715    0.001653   0.0345 5
#> ATC:skmeans 43           0.1199        0.3257    0.000344   0.0230 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.826           0.878       0.940         0.4606 0.525   0.525
#> 3 3 0.828           0.910       0.961         0.3592 0.720   0.528
#> 4 4 0.724           0.844       0.866         0.1669 0.869   0.656
#> 5 5 0.744           0.805       0.885         0.0716 0.958   0.831
#> 6 6 0.718           0.730       0.861         0.0220 0.989   0.946

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM680053     2   0.295      0.950 0.052 0.948
#> GSM680062     2   0.295      0.950 0.052 0.948
#> GSM680054     2   0.000      0.940 0.000 1.000
#> GSM680063     2   0.000      0.940 0.000 1.000
#> GSM680055     2   0.430      0.922 0.088 0.912
#> GSM680064     1   0.000      0.917 1.000 0.000
#> GSM680056     1   0.850      0.611 0.724 0.276
#> GSM680065     1   0.000      0.917 1.000 0.000
#> GSM680057     2   0.000      0.940 0.000 1.000
#> GSM680066     1   0.000      0.917 1.000 0.000
#> GSM680058     2   0.295      0.950 0.052 0.948
#> GSM680067     2   0.000      0.940 0.000 1.000
#> GSM680059     2   0.295      0.950 0.052 0.948
#> GSM680068     1   0.000      0.917 1.000 0.000
#> GSM680060     1   0.985      0.200 0.572 0.428
#> GSM680069     1   1.000     -0.027 0.504 0.496
#> GSM680061     2   0.000      0.940 0.000 1.000
#> GSM680070     1   0.000      0.917 1.000 0.000
#> GSM680071     1   0.000      0.917 1.000 0.000
#> GSM680077     1   0.000      0.917 1.000 0.000
#> GSM680072     2   0.295      0.950 0.052 0.948
#> GSM680078     1   0.000      0.917 1.000 0.000
#> GSM680073     2   0.295      0.950 0.052 0.948
#> GSM680079     1   0.000      0.917 1.000 0.000
#> GSM680074     2   0.295      0.950 0.052 0.948
#> GSM680080     2   0.295      0.950 0.052 0.948
#> GSM680075     1   0.000      0.917 1.000 0.000
#> GSM680081     2   0.000      0.940 0.000 1.000
#> GSM680076     2   0.295      0.950 0.052 0.948
#> GSM680082     1   0.000      0.917 1.000 0.000
#> GSM680029     2   0.311      0.947 0.056 0.944
#> GSM680041     1   0.402      0.857 0.920 0.080
#> GSM680035     2   0.000      0.940 0.000 1.000
#> GSM680047     1   0.000      0.917 1.000 0.000
#> GSM680036     2   0.861      0.653 0.284 0.716
#> GSM680048     2   0.952      0.451 0.372 0.628
#> GSM680037     2   0.000      0.940 0.000 1.000
#> GSM680049     1   0.615      0.782 0.848 0.152
#> GSM680038     2   0.295      0.950 0.052 0.948
#> GSM680050     1   0.000      0.917 1.000 0.000
#> GSM680039     2   0.295      0.950 0.052 0.948
#> GSM680051     2   0.529      0.890 0.120 0.880
#> GSM680040     2   0.295      0.950 0.052 0.948
#> GSM680052     2   0.295      0.950 0.052 0.948
#> GSM680030     2   0.000      0.940 0.000 1.000
#> GSM680042     1   0.000      0.917 1.000 0.000
#> GSM680031     2   0.000      0.940 0.000 1.000
#> GSM680043     2   0.000      0.940 0.000 1.000
#> GSM680032     2   0.529      0.890 0.120 0.880
#> GSM680044     2   0.295      0.950 0.052 0.948
#> GSM680033     2   0.000      0.940 0.000 1.000
#> GSM680045     2   0.295      0.950 0.052 0.948
#> GSM680034     2   0.000      0.940 0.000 1.000
#> GSM680046     1   0.000      0.917 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM680053     2   0.000      0.942 0.000 1.000 0.000
#> GSM680062     2   0.000      0.942 0.000 1.000 0.000
#> GSM680054     3   0.000      0.956 0.000 0.000 1.000
#> GSM680063     2   0.388      0.799 0.000 0.848 0.152
#> GSM680055     2   0.000      0.942 0.000 1.000 0.000
#> GSM680064     1   0.000      0.971 1.000 0.000 0.000
#> GSM680056     2   0.418      0.783 0.172 0.828 0.000
#> GSM680065     1   0.000      0.971 1.000 0.000 0.000
#> GSM680057     3   0.000      0.956 0.000 0.000 1.000
#> GSM680066     1   0.319      0.852 0.888 0.112 0.000
#> GSM680058     2   0.000      0.942 0.000 1.000 0.000
#> GSM680067     2   0.562      0.557 0.000 0.692 0.308
#> GSM680059     2   0.000      0.942 0.000 1.000 0.000
#> GSM680068     1   0.000      0.971 1.000 0.000 0.000
#> GSM680060     2   0.514      0.700 0.252 0.748 0.000
#> GSM680069     2   0.164      0.913 0.044 0.956 0.000
#> GSM680061     3   0.000      0.956 0.000 0.000 1.000
#> GSM680070     1   0.000      0.971 1.000 0.000 0.000
#> GSM680071     1   0.000      0.971 1.000 0.000 0.000
#> GSM680077     1   0.000      0.971 1.000 0.000 0.000
#> GSM680072     2   0.000      0.942 0.000 1.000 0.000
#> GSM680078     1   0.000      0.971 1.000 0.000 0.000
#> GSM680073     2   0.000      0.942 0.000 1.000 0.000
#> GSM680079     1   0.000      0.971 1.000 0.000 0.000
#> GSM680074     2   0.000      0.942 0.000 1.000 0.000
#> GSM680080     2   0.000      0.942 0.000 1.000 0.000
#> GSM680075     1   0.000      0.971 1.000 0.000 0.000
#> GSM680081     2   0.000      0.942 0.000 1.000 0.000
#> GSM680076     2   0.000      0.942 0.000 1.000 0.000
#> GSM680082     1   0.000      0.971 1.000 0.000 0.000
#> GSM680029     2   0.000      0.942 0.000 1.000 0.000
#> GSM680041     2   0.518      0.672 0.256 0.744 0.000
#> GSM680035     3   0.000      0.956 0.000 0.000 1.000
#> GSM680047     1   0.129      0.939 0.968 0.032 0.000
#> GSM680036     2   0.455      0.766 0.200 0.800 0.000
#> GSM680048     2   0.175      0.910 0.048 0.952 0.000
#> GSM680037     3   0.000      0.956 0.000 0.000 1.000
#> GSM680049     1   0.455      0.738 0.800 0.200 0.000
#> GSM680038     2   0.000      0.942 0.000 1.000 0.000
#> GSM680050     1   0.000      0.971 1.000 0.000 0.000
#> GSM680039     2   0.000      0.942 0.000 1.000 0.000
#> GSM680051     2   0.000      0.942 0.000 1.000 0.000
#> GSM680040     2   0.000      0.942 0.000 1.000 0.000
#> GSM680052     2   0.000      0.942 0.000 1.000 0.000
#> GSM680030     3   0.576      0.483 0.000 0.328 0.672
#> GSM680042     1   0.000      0.971 1.000 0.000 0.000
#> GSM680031     3   0.000      0.956 0.000 0.000 1.000
#> GSM680043     3   0.000      0.956 0.000 0.000 1.000
#> GSM680032     2   0.000      0.942 0.000 1.000 0.000
#> GSM680044     2   0.000      0.942 0.000 1.000 0.000
#> GSM680033     3   0.000      0.956 0.000 0.000 1.000
#> GSM680045     2   0.000      0.942 0.000 1.000 0.000
#> GSM680034     3   0.000      0.956 0.000 0.000 1.000
#> GSM680046     1   0.000      0.971 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM680053     4  0.0000      0.900 0.000 0.000 0.000 1.000
#> GSM680062     4  0.0000      0.900 0.000 0.000 0.000 1.000
#> GSM680054     3  0.0000      0.962 0.000 0.000 1.000 0.000
#> GSM680063     4  0.3372      0.764 0.000 0.036 0.096 0.868
#> GSM680055     4  0.0469      0.896 0.000 0.012 0.000 0.988
#> GSM680064     1  0.4356      0.832 0.708 0.292 0.000 0.000
#> GSM680056     4  0.0524      0.896 0.004 0.008 0.000 0.988
#> GSM680065     1  0.0469      0.883 0.988 0.012 0.000 0.000
#> GSM680057     3  0.1022      0.948 0.000 0.032 0.968 0.000
#> GSM680066     1  0.1978      0.845 0.928 0.004 0.000 0.068
#> GSM680058     2  0.4585      0.876 0.000 0.668 0.000 0.332
#> GSM680067     4  0.5472      0.519 0.000 0.044 0.280 0.676
#> GSM680059     2  0.4605      0.876 0.000 0.664 0.000 0.336
#> GSM680068     1  0.2973      0.872 0.856 0.144 0.000 0.000
#> GSM680060     2  0.3893      0.502 0.196 0.796 0.000 0.008
#> GSM680069     2  0.5773      0.817 0.044 0.620 0.000 0.336
#> GSM680061     3  0.0000      0.962 0.000 0.000 1.000 0.000
#> GSM680070     1  0.0188      0.881 0.996 0.004 0.000 0.000
#> GSM680071     1  0.1211      0.882 0.960 0.040 0.000 0.000
#> GSM680077     1  0.0000      0.882 1.000 0.000 0.000 0.000
#> GSM680072     2  0.4605      0.876 0.000 0.664 0.000 0.336
#> GSM680078     1  0.4356      0.832 0.708 0.292 0.000 0.000
#> GSM680073     2  0.4585      0.876 0.000 0.668 0.000 0.332
#> GSM680079     1  0.4356      0.832 0.708 0.292 0.000 0.000
#> GSM680074     2  0.4605      0.876 0.000 0.664 0.000 0.336
#> GSM680080     2  0.4985      0.662 0.000 0.532 0.000 0.468
#> GSM680075     1  0.4713      0.784 0.640 0.360 0.000 0.000
#> GSM680081     4  0.1118      0.876 0.000 0.036 0.000 0.964
#> GSM680076     2  0.4605      0.876 0.000 0.664 0.000 0.336
#> GSM680082     1  0.0188      0.881 0.996 0.004 0.000 0.000
#> GSM680029     2  0.4564      0.874 0.000 0.672 0.000 0.328
#> GSM680041     4  0.3088      0.764 0.128 0.008 0.000 0.864
#> GSM680035     3  0.0000      0.962 0.000 0.000 1.000 0.000
#> GSM680047     1  0.4465      0.844 0.800 0.144 0.000 0.056
#> GSM680036     2  0.6147      0.690 0.200 0.672 0.000 0.128
#> GSM680048     4  0.2048      0.837 0.064 0.008 0.000 0.928
#> GSM680037     3  0.0707      0.954 0.000 0.020 0.980 0.000
#> GSM680049     1  0.3626      0.712 0.812 0.004 0.000 0.184
#> GSM680038     4  0.4250      0.276 0.000 0.276 0.000 0.724
#> GSM680050     1  0.0188      0.881 0.996 0.004 0.000 0.000
#> GSM680039     4  0.0336      0.895 0.000 0.008 0.000 0.992
#> GSM680051     4  0.0524      0.896 0.004 0.008 0.000 0.988
#> GSM680040     4  0.0336      0.895 0.000 0.008 0.000 0.992
#> GSM680052     4  0.0000      0.900 0.000 0.000 0.000 1.000
#> GSM680030     3  0.5219      0.637 0.000 0.044 0.712 0.244
#> GSM680042     1  0.0188      0.881 0.996 0.004 0.000 0.000
#> GSM680031     3  0.0000      0.962 0.000 0.000 1.000 0.000
#> GSM680043     3  0.0000      0.962 0.000 0.000 1.000 0.000
#> GSM680032     4  0.0000      0.900 0.000 0.000 0.000 1.000
#> GSM680044     4  0.0000      0.900 0.000 0.000 0.000 1.000
#> GSM680033     3  0.0000      0.962 0.000 0.000 1.000 0.000
#> GSM680045     4  0.0000      0.900 0.000 0.000 0.000 1.000
#> GSM680034     3  0.0000      0.962 0.000 0.000 1.000 0.000
#> GSM680046     1  0.4008      0.848 0.756 0.244 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM680053     5  0.0162      0.868 0.000 0.004 0.000 0.000 0.996
#> GSM680062     5  0.0162      0.868 0.000 0.004 0.000 0.000 0.996
#> GSM680054     3  0.0000      0.927 0.000 0.000 1.000 0.000 0.000
#> GSM680063     5  0.2806      0.772 0.000 0.152 0.000 0.004 0.844
#> GSM680055     5  0.1410      0.854 0.000 0.060 0.000 0.000 0.940
#> GSM680064     4  0.0794      0.877 0.028 0.000 0.000 0.972 0.000
#> GSM680056     5  0.1341      0.855 0.000 0.056 0.000 0.000 0.944
#> GSM680065     1  0.1121      0.890 0.956 0.000 0.000 0.044 0.000
#> GSM680057     3  0.2536      0.841 0.000 0.128 0.868 0.004 0.000
#> GSM680066     1  0.2592      0.842 0.892 0.052 0.000 0.000 0.056
#> GSM680058     2  0.2813      0.845 0.000 0.832 0.000 0.000 0.168
#> GSM680067     5  0.6232      0.477 0.000 0.280 0.164 0.004 0.552
#> GSM680059     2  0.3109      0.854 0.000 0.800 0.000 0.000 0.200
#> GSM680068     1  0.3039      0.731 0.808 0.000 0.000 0.192 0.000
#> GSM680060     2  0.5008      0.522 0.152 0.708 0.000 0.140 0.000
#> GSM680069     2  0.5435      0.538 0.072 0.576 0.000 0.000 0.352
#> GSM680061     3  0.0000      0.927 0.000 0.000 1.000 0.000 0.000
#> GSM680070     1  0.0000      0.912 1.000 0.000 0.000 0.000 0.000
#> GSM680071     1  0.1410      0.877 0.940 0.000 0.000 0.060 0.000
#> GSM680077     1  0.0000      0.912 1.000 0.000 0.000 0.000 0.000
#> GSM680072     2  0.3109      0.854 0.000 0.800 0.000 0.000 0.200
#> GSM680078     4  0.0162      0.885 0.004 0.000 0.000 0.996 0.000
#> GSM680073     2  0.3109      0.854 0.000 0.800 0.000 0.000 0.200
#> GSM680079     4  0.0162      0.885 0.004 0.000 0.000 0.996 0.000
#> GSM680074     2  0.3109      0.854 0.000 0.800 0.000 0.000 0.200
#> GSM680080     2  0.4268      0.463 0.000 0.556 0.000 0.000 0.444
#> GSM680075     4  0.0162      0.885 0.004 0.000 0.000 0.996 0.000
#> GSM680081     5  0.2763      0.773 0.000 0.148 0.000 0.004 0.848
#> GSM680076     2  0.3109      0.854 0.000 0.800 0.000 0.000 0.200
#> GSM680082     1  0.0000      0.912 1.000 0.000 0.000 0.000 0.000
#> GSM680029     2  0.2690      0.839 0.000 0.844 0.000 0.000 0.156
#> GSM680041     5  0.3102      0.797 0.084 0.056 0.000 0.000 0.860
#> GSM680035     3  0.0000      0.927 0.000 0.000 1.000 0.000 0.000
#> GSM680047     4  0.4045      0.532 0.356 0.000 0.000 0.644 0.000
#> GSM680036     2  0.3098      0.683 0.148 0.836 0.000 0.000 0.016
#> GSM680048     5  0.1740      0.849 0.012 0.056 0.000 0.000 0.932
#> GSM680037     3  0.1124      0.907 0.000 0.036 0.960 0.004 0.000
#> GSM680049     1  0.3695      0.691 0.800 0.036 0.000 0.000 0.164
#> GSM680038     5  0.4060      0.206 0.000 0.360 0.000 0.000 0.640
#> GSM680050     1  0.0162      0.911 0.996 0.004 0.000 0.000 0.000
#> GSM680039     5  0.2516      0.739 0.000 0.140 0.000 0.000 0.860
#> GSM680051     5  0.1502      0.854 0.004 0.056 0.000 0.000 0.940
#> GSM680040     5  0.1043      0.849 0.000 0.040 0.000 0.000 0.960
#> GSM680052     5  0.0162      0.868 0.000 0.004 0.000 0.000 0.996
#> GSM680030     3  0.6488      0.428 0.000 0.284 0.512 0.004 0.200
#> GSM680042     1  0.0000      0.912 1.000 0.000 0.000 0.000 0.000
#> GSM680031     3  0.0000      0.927 0.000 0.000 1.000 0.000 0.000
#> GSM680043     3  0.0000      0.927 0.000 0.000 1.000 0.000 0.000
#> GSM680032     5  0.0404      0.865 0.000 0.012 0.000 0.000 0.988
#> GSM680044     5  0.0162      0.868 0.000 0.004 0.000 0.000 0.996
#> GSM680033     3  0.0000      0.927 0.000 0.000 1.000 0.000 0.000
#> GSM680045     5  0.0162      0.868 0.000 0.004 0.000 0.000 0.996
#> GSM680034     3  0.0000      0.927 0.000 0.000 1.000 0.000 0.000
#> GSM680046     4  0.2852      0.782 0.172 0.000 0.000 0.828 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM680053     5  0.0146      0.817 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM680062     5  0.0146      0.817 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM680054     3  0.0000      0.861 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680063     5  0.4377      0.439 0.000 0.120 0.000 0.000 0.720 0.160
#> GSM680055     5  0.1765      0.783 0.000 0.096 0.000 0.000 0.904 0.000
#> GSM680064     4  0.0777      0.833 0.024 0.000 0.000 0.972 0.000 0.004
#> GSM680056     5  0.1610      0.787 0.000 0.084 0.000 0.000 0.916 0.000
#> GSM680065     1  0.1225      0.889 0.952 0.000 0.000 0.036 0.000 0.012
#> GSM680057     3  0.3787      0.686 0.000 0.100 0.780 0.000 0.000 0.120
#> GSM680066     1  0.2786      0.802 0.860 0.084 0.000 0.000 0.056 0.000
#> GSM680058     2  0.2300      0.815 0.000 0.856 0.000 0.000 0.144 0.000
#> GSM680067     5  0.7440     -0.205 0.000 0.220 0.220 0.000 0.392 0.168
#> GSM680059     2  0.3043      0.833 0.000 0.792 0.000 0.000 0.200 0.008
#> GSM680068     1  0.2871      0.728 0.804 0.004 0.000 0.192 0.000 0.000
#> GSM680060     2  0.3961      0.561 0.124 0.764 0.000 0.112 0.000 0.000
#> GSM680069     2  0.4671      0.555 0.068 0.628 0.000 0.000 0.304 0.000
#> GSM680061     3  0.0000      0.861 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680070     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM680071     1  0.1204      0.879 0.944 0.000 0.000 0.056 0.000 0.000
#> GSM680077     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM680072     2  0.3043      0.833 0.000 0.792 0.000 0.000 0.200 0.008
#> GSM680078     4  0.0000      0.843 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM680073     2  0.2793      0.832 0.000 0.800 0.000 0.000 0.200 0.000
#> GSM680079     4  0.0000      0.843 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM680074     2  0.3043      0.833 0.000 0.792 0.000 0.000 0.200 0.008
#> GSM680080     2  0.4067      0.472 0.000 0.548 0.000 0.000 0.444 0.008
#> GSM680075     4  0.0000      0.843 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM680081     6  0.2664      0.000 0.000 0.000 0.000 0.000 0.184 0.816
#> GSM680076     2  0.3043      0.833 0.000 0.792 0.000 0.000 0.200 0.008
#> GSM680082     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM680029     2  0.2135      0.805 0.000 0.872 0.000 0.000 0.128 0.000
#> GSM680041     5  0.3475      0.702 0.080 0.084 0.000 0.000 0.824 0.012
#> GSM680035     3  0.2219      0.808 0.000 0.000 0.864 0.000 0.000 0.136
#> GSM680047     4  0.3996      0.522 0.352 0.004 0.000 0.636 0.000 0.008
#> GSM680036     2  0.2494      0.669 0.120 0.864 0.000 0.000 0.016 0.000
#> GSM680048     5  0.1866      0.780 0.008 0.084 0.000 0.000 0.908 0.000
#> GSM680037     3  0.3053      0.795 0.000 0.020 0.812 0.000 0.000 0.168
#> GSM680049     1  0.3699      0.670 0.788 0.040 0.000 0.000 0.160 0.012
#> GSM680038     5  0.3861      0.177 0.000 0.352 0.000 0.000 0.640 0.008
#> GSM680050     1  0.0363      0.906 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM680039     5  0.2212      0.715 0.000 0.112 0.000 0.000 0.880 0.008
#> GSM680051     5  0.1610      0.787 0.000 0.084 0.000 0.000 0.916 0.000
#> GSM680040     5  0.0713      0.806 0.000 0.028 0.000 0.000 0.972 0.000
#> GSM680052     5  0.0146      0.817 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM680030     3  0.6711      0.203 0.000 0.224 0.512 0.000 0.096 0.168
#> GSM680042     1  0.0363      0.906 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM680031     3  0.0000      0.861 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680043     3  0.2378      0.801 0.000 0.000 0.848 0.000 0.000 0.152
#> GSM680032     5  0.0547      0.813 0.000 0.020 0.000 0.000 0.980 0.000
#> GSM680044     5  0.0146      0.817 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM680033     3  0.0000      0.861 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680045     5  0.0146      0.817 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM680034     3  0.0000      0.861 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM680046     4  0.2703      0.738 0.172 0.004 0.000 0.824 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) individual(p) protocol(p) other(p) k
#> ATC:pam 51           0.3408         0.728    0.000877   0.3823 2
#> ATC:pam 53           0.2290         0.383    0.000552   0.0966 3
#> ATC:pam 53           0.0511         0.247    0.000113   0.0137 4
#> ATC:pam 50           0.1443         0.239    0.000251   0.0478 5
#> ATC:pam 48           0.0744         0.165    0.000325   0.0204 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.493           0.000       0.824         0.2947 1.000   1.000
#> 3 3 0.971           0.927       0.973         1.2322 0.342   0.342
#> 4 4 0.758           0.630       0.755         0.1113 0.823   0.532
#> 5 5 0.789           0.832       0.914         0.0146 0.808   0.448
#> 6 6 0.774           0.735       0.870         0.0727 0.902   0.667

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM680053     2  0.0000          0 0.000 1.000
#> GSM680062     2  0.0376          0 0.004 0.996
#> GSM680054     2  0.1843          0 0.028 0.972
#> GSM680063     2  0.1843          0 0.028 0.972
#> GSM680055     2  0.0000          0 0.000 1.000
#> GSM680064     2  0.9833          0 0.424 0.576
#> GSM680056     2  0.9988          0 0.480 0.520
#> GSM680065     2  0.9983          0 0.476 0.524
#> GSM680057     2  0.1843          0 0.028 0.972
#> GSM680066     2  0.0672          0 0.008 0.992
#> GSM680058     2  0.9983          0 0.476 0.524
#> GSM680067     2  0.1843          0 0.028 0.972
#> GSM680059     2  0.9983          0 0.476 0.524
#> GSM680068     2  0.0672          0 0.008 0.992
#> GSM680060     2  0.0000          0 0.000 1.000
#> GSM680069     2  0.0672          0 0.008 0.992
#> GSM680061     2  0.1843          0 0.028 0.972
#> GSM680070     2  0.9998          0 0.492 0.508
#> GSM680071     2  0.0376          0 0.004 0.996
#> GSM680077     2  0.9988          0 0.480 0.520
#> GSM680072     2  0.9983          0 0.476 0.524
#> GSM680078     2  0.0000          0 0.000 1.000
#> GSM680073     2  0.9944          0 0.456 0.544
#> GSM680079     2  0.9933          0 0.452 0.548
#> GSM680074     2  0.9983          0 0.476 0.524
#> GSM680080     2  0.6712          0 0.176 0.824
#> GSM680075     2  0.0000          0 0.000 1.000
#> GSM680081     2  0.1843          0 0.028 0.972
#> GSM680076     2  0.0000          0 0.000 1.000
#> GSM680082     2  1.0000          0 0.496 0.504
#> GSM680029     2  0.9983          0 0.476 0.524
#> GSM680041     2  1.0000          0 0.496 0.504
#> GSM680035     2  0.1843          0 0.028 0.972
#> GSM680047     2  0.0000          0 0.000 1.000
#> GSM680036     2  0.9983          0 0.476 0.524
#> GSM680048     2  0.0000          0 0.000 1.000
#> GSM680037     2  0.1843          0 0.028 0.972
#> GSM680049     2  0.0000          0 0.000 1.000
#> GSM680038     2  0.9983          0 0.476 0.524
#> GSM680050     2  1.0000          0 0.496 0.504
#> GSM680039     2  0.9248          0 0.340 0.660
#> GSM680051     2  0.0000          0 0.000 1.000
#> GSM680040     2  0.0000          0 0.000 1.000
#> GSM680052     2  0.0000          0 0.000 1.000
#> GSM680030     2  0.1843          0 0.028 0.972
#> GSM680042     2  1.0000          0 0.496 0.504
#> GSM680031     2  0.1843          0 0.028 0.972
#> GSM680043     2  0.1843          0 0.028 0.972
#> GSM680032     2  0.0000          0 0.000 1.000
#> GSM680044     2  0.0000          0 0.000 1.000
#> GSM680033     2  0.1843          0 0.028 0.972
#> GSM680045     2  0.0000          0 0.000 1.000
#> GSM680034     2  0.1843          0 0.028 0.972
#> GSM680046     2  0.0000          0 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM680053     2  0.0237      0.955 0.000 0.996 0.004
#> GSM680062     2  0.0000      0.957 0.000 1.000 0.000
#> GSM680054     3  0.0000      1.000 0.000 0.000 1.000
#> GSM680063     3  0.0000      1.000 0.000 0.000 1.000
#> GSM680055     2  0.0000      0.957 0.000 1.000 0.000
#> GSM680064     1  0.0000      0.960 1.000 0.000 0.000
#> GSM680056     2  0.0237      0.955 0.004 0.996 0.000
#> GSM680065     1  0.0000      0.960 1.000 0.000 0.000
#> GSM680057     3  0.0000      1.000 0.000 0.000 1.000
#> GSM680066     1  0.5810      0.476 0.664 0.336 0.000
#> GSM680058     2  0.0000      0.957 0.000 1.000 0.000
#> GSM680067     3  0.0000      1.000 0.000 0.000 1.000
#> GSM680059     2  0.0000      0.957 0.000 1.000 0.000
#> GSM680068     1  0.0000      0.960 1.000 0.000 0.000
#> GSM680060     1  0.0892      0.942 0.980 0.020 0.000
#> GSM680069     2  0.1031      0.939 0.024 0.976 0.000
#> GSM680061     3  0.0000      1.000 0.000 0.000 1.000
#> GSM680070     1  0.0000      0.960 1.000 0.000 0.000
#> GSM680071     1  0.0000      0.960 1.000 0.000 0.000
#> GSM680077     1  0.0000      0.960 1.000 0.000 0.000
#> GSM680072     2  0.0000      0.957 0.000 1.000 0.000
#> GSM680078     1  0.0000      0.960 1.000 0.000 0.000
#> GSM680073     2  0.0000      0.957 0.000 1.000 0.000
#> GSM680079     1  0.0000      0.960 1.000 0.000 0.000
#> GSM680074     2  0.0000      0.957 0.000 1.000 0.000
#> GSM680080     2  0.0000      0.957 0.000 1.000 0.000
#> GSM680075     1  0.0000      0.960 1.000 0.000 0.000
#> GSM680081     3  0.0000      1.000 0.000 0.000 1.000
#> GSM680076     2  0.0000      0.957 0.000 1.000 0.000
#> GSM680082     1  0.0000      0.960 1.000 0.000 0.000
#> GSM680029     2  0.0000      0.957 0.000 1.000 0.000
#> GSM680041     1  0.4504      0.740 0.804 0.196 0.000
#> GSM680035     3  0.0000      1.000 0.000 0.000 1.000
#> GSM680047     1  0.0000      0.960 1.000 0.000 0.000
#> GSM680036     2  0.2066      0.903 0.060 0.940 0.000
#> GSM680048     2  0.5785      0.481 0.332 0.668 0.000
#> GSM680037     3  0.0000      1.000 0.000 0.000 1.000
#> GSM680049     2  0.6307      0.010 0.488 0.512 0.000
#> GSM680038     2  0.0000      0.957 0.000 1.000 0.000
#> GSM680050     1  0.0000      0.960 1.000 0.000 0.000
#> GSM680039     2  0.0000      0.957 0.000 1.000 0.000
#> GSM680051     2  0.0237      0.955 0.004 0.996 0.000
#> GSM680040     2  0.0237      0.955 0.000 0.996 0.004
#> GSM680052     2  0.0237      0.955 0.000 0.996 0.004
#> GSM680030     3  0.0000      1.000 0.000 0.000 1.000
#> GSM680042     1  0.0000      0.960 1.000 0.000 0.000
#> GSM680031     3  0.0000      1.000 0.000 0.000 1.000
#> GSM680043     3  0.0000      1.000 0.000 0.000 1.000
#> GSM680032     2  0.0237      0.955 0.004 0.996 0.000
#> GSM680044     2  0.0000      0.957 0.000 1.000 0.000
#> GSM680033     3  0.0000      1.000 0.000 0.000 1.000
#> GSM680045     2  0.0237      0.955 0.000 0.996 0.004
#> GSM680034     3  0.0000      1.000 0.000 0.000 1.000
#> GSM680046     1  0.0000      0.960 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM680053     2  0.6946     0.8299 0.396 0.524 0.040 0.040
#> GSM680062     2  0.5643     0.8663 0.428 0.548 0.000 0.024
#> GSM680054     3  0.0000     0.8782 0.000 0.000 1.000 0.000
#> GSM680063     3  0.0000     0.8782 0.000 0.000 1.000 0.000
#> GSM680055     2  0.6330     0.8407 0.448 0.492 0.000 0.060
#> GSM680064     1  0.4967     0.5741 0.548 0.000 0.000 0.452
#> GSM680056     4  0.0000     0.7396 0.000 0.000 0.000 1.000
#> GSM680065     1  0.4972     0.5657 0.544 0.000 0.000 0.456
#> GSM680057     3  0.0000     0.8782 0.000 0.000 1.000 0.000
#> GSM680066     4  0.0188     0.7368 0.004 0.000 0.000 0.996
#> GSM680058     2  0.5378     0.8767 0.448 0.540 0.000 0.012
#> GSM680067     3  0.0000     0.8782 0.000 0.000 1.000 0.000
#> GSM680059     2  0.5132     0.8776 0.448 0.548 0.000 0.004
#> GSM680068     1  0.4967     0.5741 0.548 0.000 0.000 0.452
#> GSM680060     1  0.4485    -0.0791 0.772 0.028 0.000 0.200
#> GSM680069     4  0.0000     0.7396 0.000 0.000 0.000 1.000
#> GSM680061     3  0.0000     0.8782 0.000 0.000 1.000 0.000
#> GSM680070     4  0.3801     0.3966 0.220 0.000 0.000 0.780
#> GSM680071     1  0.4967     0.5741 0.548 0.000 0.000 0.452
#> GSM680077     1  0.4967     0.5741 0.548 0.000 0.000 0.452
#> GSM680072     2  0.5132     0.8776 0.448 0.548 0.000 0.004
#> GSM680078     1  0.4967     0.5741 0.548 0.000 0.000 0.452
#> GSM680073     2  0.5483     0.8752 0.448 0.536 0.000 0.016
#> GSM680079     1  0.4967     0.5741 0.548 0.000 0.000 0.452
#> GSM680074     2  0.5132     0.8776 0.448 0.548 0.000 0.004
#> GSM680080     2  0.5132     0.8776 0.448 0.548 0.000 0.004
#> GSM680075     1  0.0592     0.1276 0.984 0.000 0.000 0.016
#> GSM680081     3  0.4967     0.6983 0.000 0.452 0.548 0.000
#> GSM680076     2  0.5378     0.8767 0.448 0.540 0.000 0.012
#> GSM680082     4  0.4977    -0.4181 0.460 0.000 0.000 0.540
#> GSM680029     2  0.5483     0.8752 0.448 0.536 0.000 0.016
#> GSM680041     4  0.0000     0.7396 0.000 0.000 0.000 1.000
#> GSM680035     3  0.4967     0.6983 0.000 0.452 0.548 0.000
#> GSM680047     1  0.4961     0.5716 0.552 0.000 0.000 0.448
#> GSM680036     1  0.7117    -0.4125 0.448 0.128 0.000 0.424
#> GSM680048     4  0.0707     0.7299 0.000 0.020 0.000 0.980
#> GSM680037     3  0.4967     0.6983 0.000 0.452 0.548 0.000
#> GSM680049     4  0.0000     0.7396 0.000 0.000 0.000 1.000
#> GSM680038     2  0.5132     0.8776 0.448 0.548 0.000 0.004
#> GSM680050     4  0.0188     0.7368 0.004 0.000 0.000 0.996
#> GSM680039     2  0.5132     0.8776 0.448 0.548 0.000 0.004
#> GSM680051     4  0.3074     0.5774 0.000 0.152 0.000 0.848
#> GSM680040     2  0.2124     0.4235 0.000 0.932 0.040 0.028
#> GSM680052     4  0.5317     0.1443 0.004 0.460 0.004 0.532
#> GSM680030     3  0.0000     0.8782 0.000 0.000 1.000 0.000
#> GSM680042     4  0.4697    -0.0610 0.356 0.000 0.000 0.644
#> GSM680031     3  0.0000     0.8782 0.000 0.000 1.000 0.000
#> GSM680043     3  0.4967     0.6983 0.000 0.452 0.548 0.000
#> GSM680032     4  0.1452     0.7105 0.008 0.036 0.000 0.956
#> GSM680044     2  0.6077    -0.0740 0.044 0.496 0.000 0.460
#> GSM680033     3  0.0000     0.8782 0.000 0.000 1.000 0.000
#> GSM680045     2  0.3634     0.3765 0.000 0.856 0.048 0.096
#> GSM680034     3  0.0000     0.8782 0.000 0.000 1.000 0.000
#> GSM680046     1  0.4961     0.5716 0.552 0.000 0.000 0.448

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM680053     2  0.5537     0.6027 0.200 0.692 0.000 0.048 0.060
#> GSM680062     2  0.4898     0.3347 0.376 0.592 0.000 0.032 0.000
#> GSM680054     5  0.0000     0.9994 0.000 0.000 0.000 0.000 1.000
#> GSM680063     5  0.0000     0.9994 0.000 0.000 0.000 0.000 1.000
#> GSM680055     2  0.2389     0.8136 0.116 0.880 0.000 0.004 0.000
#> GSM680064     1  0.4400     0.7371 0.736 0.000 0.052 0.212 0.000
#> GSM680056     1  0.0404     0.8924 0.988 0.012 0.000 0.000 0.000
#> GSM680065     1  0.1121     0.8886 0.956 0.000 0.000 0.044 0.000
#> GSM680057     5  0.0000     0.9994 0.000 0.000 0.000 0.000 1.000
#> GSM680066     1  0.0162     0.8920 0.996 0.000 0.004 0.000 0.000
#> GSM680058     2  0.0000     0.8964 0.000 1.000 0.000 0.000 0.000
#> GSM680067     5  0.0162     0.9954 0.000 0.000 0.004 0.000 0.996
#> GSM680059     2  0.0000     0.8964 0.000 1.000 0.000 0.000 0.000
#> GSM680068     1  0.4065     0.7136 0.720 0.000 0.016 0.264 0.000
#> GSM680060     2  0.4186     0.7555 0.128 0.796 0.012 0.064 0.000
#> GSM680069     1  0.0510     0.8884 0.984 0.000 0.000 0.016 0.000
#> GSM680061     5  0.0000     0.9994 0.000 0.000 0.000 0.000 1.000
#> GSM680070     1  0.0693     0.8923 0.980 0.000 0.008 0.012 0.000
#> GSM680071     1  0.2127     0.8622 0.892 0.000 0.000 0.108 0.000
#> GSM680077     1  0.2286     0.8538 0.888 0.000 0.004 0.108 0.000
#> GSM680072     2  0.0000     0.8964 0.000 1.000 0.000 0.000 0.000
#> GSM680078     1  0.3636     0.7209 0.728 0.000 0.000 0.272 0.000
#> GSM680073     2  0.0162     0.8952 0.004 0.996 0.000 0.000 0.000
#> GSM680079     1  0.4400     0.7371 0.736 0.000 0.052 0.212 0.000
#> GSM680074     2  0.0000     0.8964 0.000 1.000 0.000 0.000 0.000
#> GSM680080     2  0.0000     0.8964 0.000 1.000 0.000 0.000 0.000
#> GSM680075     2  0.3863     0.7345 0.052 0.796 0.000 0.152 0.000
#> GSM680081     3  0.1544     0.8175 0.000 0.000 0.932 0.000 0.068
#> GSM680076     2  0.0000     0.8964 0.000 1.000 0.000 0.000 0.000
#> GSM680082     1  0.1205     0.8872 0.956 0.000 0.004 0.040 0.000
#> GSM680029     2  0.0162     0.8952 0.004 0.996 0.000 0.000 0.000
#> GSM680041     1  0.0162     0.8920 0.996 0.000 0.004 0.000 0.000
#> GSM680035     3  0.1792     0.8291 0.000 0.000 0.916 0.000 0.084
#> GSM680047     4  0.2124     0.7522 0.096 0.000 0.004 0.900 0.000
#> GSM680036     2  0.1082     0.8778 0.028 0.964 0.008 0.000 0.000
#> GSM680048     1  0.0955     0.8870 0.968 0.028 0.000 0.004 0.000
#> GSM680037     3  0.1792     0.8291 0.000 0.000 0.916 0.000 0.084
#> GSM680049     1  0.0404     0.8924 0.988 0.012 0.000 0.000 0.000
#> GSM680038     2  0.0000     0.8964 0.000 1.000 0.000 0.000 0.000
#> GSM680050     1  0.0162     0.8920 0.996 0.000 0.004 0.000 0.000
#> GSM680039     2  0.0000     0.8964 0.000 1.000 0.000 0.000 0.000
#> GSM680051     1  0.2344     0.8513 0.904 0.064 0.000 0.032 0.000
#> GSM680040     4  0.4778     0.3619 0.000 0.020 0.196 0.736 0.048
#> GSM680052     1  0.2735     0.8365 0.880 0.084 0.000 0.036 0.000
#> GSM680030     5  0.0000     0.9994 0.000 0.000 0.000 0.000 1.000
#> GSM680042     1  0.0451     0.8929 0.988 0.000 0.004 0.008 0.000
#> GSM680031     5  0.0000     0.9994 0.000 0.000 0.000 0.000 1.000
#> GSM680043     3  0.1792     0.8291 0.000 0.000 0.916 0.000 0.084
#> GSM680032     1  0.1579     0.8752 0.944 0.024 0.000 0.032 0.000
#> GSM680044     1  0.4248     0.6566 0.728 0.240 0.000 0.032 0.000
#> GSM680033     5  0.0000     0.9994 0.000 0.000 0.000 0.000 1.000
#> GSM680045     3  0.7855     0.0333 0.208 0.040 0.460 0.264 0.028
#> GSM680034     5  0.0000     0.9994 0.000 0.000 0.000 0.000 1.000
#> GSM680046     4  0.2127     0.7446 0.108 0.000 0.000 0.892 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM680053     4  0.5336    0.18819 0.000 0.244 0.000 0.588 0.000 0.168
#> GSM680062     4  0.3672    0.32089 0.000 0.368 0.000 0.632 0.000 0.000
#> GSM680054     5  0.0858    0.96760 0.000 0.000 0.004 0.000 0.968 0.028
#> GSM680063     5  0.0777    0.97377 0.000 0.004 0.000 0.000 0.972 0.024
#> GSM680055     2  0.2838    0.74290 0.000 0.808 0.000 0.188 0.000 0.004
#> GSM680064     1  0.3634    0.78452 0.696 0.000 0.000 0.008 0.000 0.296
#> GSM680056     4  0.2806    0.73133 0.004 0.016 0.000 0.844 0.000 0.136
#> GSM680065     4  0.4795    0.61125 0.072 0.000 0.000 0.604 0.000 0.324
#> GSM680057     5  0.0547    0.97560 0.000 0.000 0.000 0.000 0.980 0.020
#> GSM680066     4  0.0632    0.71930 0.000 0.000 0.000 0.976 0.000 0.024
#> GSM680058     2  0.0363    0.92715 0.000 0.988 0.000 0.012 0.000 0.000
#> GSM680067     5  0.1075    0.95762 0.000 0.000 0.000 0.000 0.952 0.048
#> GSM680059     2  0.0000    0.93037 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM680068     1  0.3575    0.78599 0.708 0.000 0.000 0.008 0.000 0.284
#> GSM680060     2  0.4244    0.72342 0.060 0.772 0.000 0.128 0.000 0.040
#> GSM680069     4  0.0000    0.70967 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM680061     5  0.0146    0.97813 0.000 0.000 0.004 0.000 0.996 0.000
#> GSM680070     4  0.4018    0.64882 0.020 0.000 0.000 0.656 0.000 0.324
#> GSM680071     4  0.3806    0.62587 0.164 0.000 0.000 0.768 0.000 0.068
#> GSM680077     4  0.6130   -0.00977 0.336 0.000 0.000 0.340 0.000 0.324
#> GSM680072     2  0.0000    0.93037 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM680078     1  0.3874    0.76374 0.732 0.000 0.000 0.040 0.000 0.228
#> GSM680073     2  0.0260    0.92866 0.000 0.992 0.000 0.008 0.000 0.000
#> GSM680079     1  0.3867    0.76858 0.660 0.000 0.000 0.012 0.000 0.328
#> GSM680074     2  0.0000    0.93037 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM680080     2  0.0000    0.93037 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM680075     2  0.3769    0.69075 0.188 0.768 0.000 0.008 0.000 0.036
#> GSM680081     3  0.1245    0.78392 0.000 0.000 0.952 0.000 0.016 0.032
#> GSM680076     2  0.0000    0.93037 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM680082     4  0.5057    0.57584 0.096 0.000 0.000 0.580 0.000 0.324
#> GSM680029     2  0.0713    0.91825 0.000 0.972 0.000 0.028 0.000 0.000
#> GSM680041     4  0.2668    0.72296 0.004 0.000 0.000 0.828 0.000 0.168
#> GSM680035     3  0.0458    0.80739 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM680047     1  0.0146    0.55135 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM680036     2  0.1116    0.91037 0.004 0.960 0.000 0.028 0.000 0.008
#> GSM680048     4  0.0937    0.72353 0.000 0.000 0.000 0.960 0.000 0.040
#> GSM680037     3  0.0458    0.80739 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM680049     4  0.3895    0.67622 0.004 0.016 0.000 0.696 0.000 0.284
#> GSM680038     2  0.0000    0.93037 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM680050     4  0.3489    0.67472 0.004 0.000 0.000 0.708 0.000 0.288
#> GSM680039     2  0.0146    0.92861 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM680051     4  0.0363    0.70843 0.000 0.012 0.000 0.988 0.000 0.000
#> GSM680040     6  0.5192    0.00000 0.292 0.024 0.068 0.000 0.000 0.616
#> GSM680052     4  0.1720    0.68830 0.000 0.040 0.000 0.928 0.000 0.032
#> GSM680030     5  0.0632    0.97453 0.000 0.000 0.000 0.000 0.976 0.024
#> GSM680042     4  0.3938    0.65186 0.016 0.000 0.000 0.660 0.000 0.324
#> GSM680031     5  0.0146    0.97813 0.000 0.000 0.004 0.000 0.996 0.000
#> GSM680043     3  0.0458    0.80739 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM680032     4  0.0458    0.70745 0.000 0.016 0.000 0.984 0.000 0.000
#> GSM680044     4  0.2969    0.55664 0.000 0.224 0.000 0.776 0.000 0.000
#> GSM680033     5  0.0146    0.97813 0.000 0.000 0.004 0.000 0.996 0.000
#> GSM680045     3  0.7182   -0.04064 0.048 0.028 0.448 0.216 0.000 0.260
#> GSM680034     5  0.0858    0.96760 0.000 0.000 0.004 0.000 0.968 0.028
#> GSM680046     1  0.0000    0.55900 1.000 0.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) individual(p) protocol(p) other(p) k
#> ATC:mclust  0               NA            NA          NA       NA 2
#> ATC:mclust 51           0.4544         0.428    4.20e-03   0.1690 3
#> ATC:mclust 44           0.0945         0.377    9.75e-04   0.0356 4
#> ATC:mclust 51           0.2023         0.631    2.23e-05   0.2267 5
#> ATC:mclust 49           0.3884         0.640    4.37e-05   0.1215 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.885           0.931       0.969         0.4774 0.516   0.516
#> 3 3 0.826           0.870       0.941         0.4101 0.764   0.562
#> 4 4 0.666           0.738       0.874         0.0816 0.936   0.806
#> 5 5 0.627           0.612       0.799         0.0715 0.843   0.508
#> 6 6 0.647           0.545       0.759         0.0437 0.929   0.695

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM680053     2  0.0000      0.979 0.000 1.000
#> GSM680062     2  0.0000      0.979 0.000 1.000
#> GSM680054     2  0.0000      0.979 0.000 1.000
#> GSM680063     2  0.0000      0.979 0.000 1.000
#> GSM680055     2  0.0376      0.975 0.004 0.996
#> GSM680064     1  0.0000      0.946 1.000 0.000
#> GSM680056     2  0.9881      0.141 0.436 0.564
#> GSM680065     1  0.0000      0.946 1.000 0.000
#> GSM680057     2  0.0000      0.979 0.000 1.000
#> GSM680066     1  0.7376      0.772 0.792 0.208
#> GSM680058     2  0.0000      0.979 0.000 1.000
#> GSM680067     2  0.0000      0.979 0.000 1.000
#> GSM680059     2  0.0000      0.979 0.000 1.000
#> GSM680068     1  0.0000      0.946 1.000 0.000
#> GSM680060     1  0.1843      0.934 0.972 0.028
#> GSM680069     1  0.8327      0.689 0.736 0.264
#> GSM680061     2  0.0000      0.979 0.000 1.000
#> GSM680070     1  0.0000      0.946 1.000 0.000
#> GSM680071     1  0.0000      0.946 1.000 0.000
#> GSM680077     1  0.0000      0.946 1.000 0.000
#> GSM680072     2  0.0000      0.979 0.000 1.000
#> GSM680078     1  0.0000      0.946 1.000 0.000
#> GSM680073     2  0.0000      0.979 0.000 1.000
#> GSM680079     1  0.0000      0.946 1.000 0.000
#> GSM680074     2  0.0000      0.979 0.000 1.000
#> GSM680080     2  0.0000      0.979 0.000 1.000
#> GSM680075     1  0.0000      0.946 1.000 0.000
#> GSM680081     2  0.0000      0.979 0.000 1.000
#> GSM680076     2  0.0000      0.979 0.000 1.000
#> GSM680082     1  0.0000      0.946 1.000 0.000
#> GSM680029     2  0.0000      0.979 0.000 1.000
#> GSM680041     1  0.1184      0.940 0.984 0.016
#> GSM680035     2  0.0000      0.979 0.000 1.000
#> GSM680047     1  0.0000      0.946 1.000 0.000
#> GSM680036     1  0.3584      0.907 0.932 0.068
#> GSM680048     1  0.7950      0.728 0.760 0.240
#> GSM680037     2  0.0000      0.979 0.000 1.000
#> GSM680049     1  0.7056      0.791 0.808 0.192
#> GSM680038     2  0.0000      0.979 0.000 1.000
#> GSM680050     1  0.0938      0.942 0.988 0.012
#> GSM680039     2  0.0000      0.979 0.000 1.000
#> GSM680051     2  0.1414      0.960 0.020 0.980
#> GSM680040     2  0.0000      0.979 0.000 1.000
#> GSM680052     2  0.0000      0.979 0.000 1.000
#> GSM680030     2  0.0000      0.979 0.000 1.000
#> GSM680042     1  0.0000      0.946 1.000 0.000
#> GSM680031     2  0.0000      0.979 0.000 1.000
#> GSM680043     2  0.0000      0.979 0.000 1.000
#> GSM680032     2  0.6438      0.781 0.164 0.836
#> GSM680044     2  0.0000      0.979 0.000 1.000
#> GSM680033     2  0.0000      0.979 0.000 1.000
#> GSM680045     2  0.0000      0.979 0.000 1.000
#> GSM680034     2  0.0000      0.979 0.000 1.000
#> GSM680046     1  0.0000      0.946 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM680053     3  0.1289      0.921 0.000 0.032 0.968
#> GSM680062     2  0.1411      0.952 0.000 0.964 0.036
#> GSM680054     3  0.0237      0.936 0.000 0.004 0.996
#> GSM680063     3  0.4974      0.694 0.000 0.236 0.764
#> GSM680055     2  0.0237      0.978 0.000 0.996 0.004
#> GSM680064     1  0.0000      0.902 1.000 0.000 0.000
#> GSM680056     1  0.5706      0.536 0.680 0.000 0.320
#> GSM680065     1  0.0237      0.901 0.996 0.004 0.000
#> GSM680057     3  0.2066      0.900 0.000 0.060 0.940
#> GSM680066     1  0.2878      0.841 0.904 0.000 0.096
#> GSM680058     2  0.0000      0.977 0.000 1.000 0.000
#> GSM680067     3  0.0000      0.938 0.000 0.000 1.000
#> GSM680059     2  0.0237      0.978 0.000 0.996 0.004
#> GSM680068     1  0.0000      0.902 1.000 0.000 0.000
#> GSM680060     1  0.6180      0.300 0.584 0.416 0.000
#> GSM680069     1  0.6267      0.282 0.548 0.452 0.000
#> GSM680061     3  0.0000      0.938 0.000 0.000 1.000
#> GSM680070     1  0.0000      0.902 1.000 0.000 0.000
#> GSM680071     1  0.0237      0.901 0.996 0.004 0.000
#> GSM680077     1  0.0000      0.902 1.000 0.000 0.000
#> GSM680072     2  0.0237      0.978 0.000 0.996 0.004
#> GSM680078     1  0.0237      0.901 0.996 0.004 0.000
#> GSM680073     2  0.0000      0.977 0.000 1.000 0.000
#> GSM680079     1  0.0000      0.902 1.000 0.000 0.000
#> GSM680074     2  0.0237      0.978 0.000 0.996 0.004
#> GSM680080     2  0.0237      0.978 0.000 0.996 0.004
#> GSM680075     1  0.0592      0.898 0.988 0.012 0.000
#> GSM680081     3  0.0000      0.938 0.000 0.000 1.000
#> GSM680076     2  0.0000      0.977 0.000 1.000 0.000
#> GSM680082     1  0.0000      0.902 1.000 0.000 0.000
#> GSM680029     2  0.0000      0.977 0.000 1.000 0.000
#> GSM680041     1  0.4062      0.796 0.836 0.164 0.000
#> GSM680035     3  0.0000      0.938 0.000 0.000 1.000
#> GSM680047     1  0.0000      0.902 1.000 0.000 0.000
#> GSM680036     2  0.0000      0.977 0.000 1.000 0.000
#> GSM680048     1  0.3989      0.826 0.864 0.124 0.012
#> GSM680037     3  0.0000      0.938 0.000 0.000 1.000
#> GSM680049     1  0.4555      0.757 0.800 0.200 0.000
#> GSM680038     2  0.0237      0.978 0.000 0.996 0.004
#> GSM680050     1  0.2537      0.862 0.920 0.080 0.000
#> GSM680039     2  0.0747      0.970 0.000 0.984 0.016
#> GSM680051     3  0.7864      0.370 0.332 0.072 0.596
#> GSM680040     3  0.0000      0.938 0.000 0.000 1.000
#> GSM680052     3  0.0892      0.927 0.000 0.020 0.980
#> GSM680030     3  0.5397      0.631 0.000 0.280 0.720
#> GSM680042     1  0.0000      0.902 1.000 0.000 0.000
#> GSM680031     3  0.0000      0.938 0.000 0.000 1.000
#> GSM680043     3  0.0000      0.938 0.000 0.000 1.000
#> GSM680032     2  0.4784      0.711 0.200 0.796 0.004
#> GSM680044     2  0.0424      0.976 0.000 0.992 0.008
#> GSM680033     3  0.0000      0.938 0.000 0.000 1.000
#> GSM680045     3  0.0000      0.938 0.000 0.000 1.000
#> GSM680034     3  0.0000      0.938 0.000 0.000 1.000
#> GSM680046     1  0.0000      0.902 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM680053     3  0.2670      0.863 0.000 0.024 0.904 0.072
#> GSM680062     2  0.4388      0.774 0.000 0.808 0.060 0.132
#> GSM680054     3  0.0469      0.881 0.000 0.012 0.988 0.000
#> GSM680063     3  0.3074      0.764 0.000 0.152 0.848 0.000
#> GSM680055     2  0.2530      0.835 0.000 0.888 0.000 0.112
#> GSM680064     1  0.0000      0.808 1.000 0.000 0.000 0.000
#> GSM680056     1  0.5562      0.145 0.524 0.004 0.460 0.012
#> GSM680065     1  0.0000      0.808 1.000 0.000 0.000 0.000
#> GSM680057     3  0.1302      0.868 0.000 0.044 0.956 0.000
#> GSM680066     1  0.2197      0.793 0.936 0.024 0.028 0.012
#> GSM680058     2  0.0188      0.883 0.000 0.996 0.000 0.004
#> GSM680067     3  0.1452      0.869 0.000 0.036 0.956 0.008
#> GSM680059     2  0.0469      0.883 0.000 0.988 0.000 0.012
#> GSM680068     1  0.0336      0.806 0.992 0.000 0.000 0.008
#> GSM680060     4  0.5189      0.294 0.012 0.372 0.000 0.616
#> GSM680069     1  0.5183      0.366 0.584 0.408 0.000 0.008
#> GSM680061     3  0.0336      0.881 0.000 0.008 0.992 0.000
#> GSM680070     1  0.0336      0.807 0.992 0.000 0.000 0.008
#> GSM680071     1  0.1677      0.790 0.948 0.012 0.000 0.040
#> GSM680077     1  0.0000      0.808 1.000 0.000 0.000 0.000
#> GSM680072     2  0.0921      0.879 0.000 0.972 0.000 0.028
#> GSM680078     1  0.2216      0.768 0.908 0.000 0.000 0.092
#> GSM680073     2  0.1398      0.878 0.000 0.956 0.040 0.004
#> GSM680079     1  0.0000      0.808 1.000 0.000 0.000 0.000
#> GSM680074     2  0.1398      0.878 0.000 0.956 0.040 0.004
#> GSM680080     2  0.2081      0.855 0.000 0.916 0.000 0.084
#> GSM680075     1  0.5035      0.560 0.744 0.204 0.000 0.052
#> GSM680081     3  0.1792      0.870 0.000 0.000 0.932 0.068
#> GSM680076     2  0.2714      0.824 0.000 0.884 0.112 0.004
#> GSM680082     1  0.0000      0.808 1.000 0.000 0.000 0.000
#> GSM680029     2  0.1118      0.878 0.000 0.964 0.000 0.036
#> GSM680041     1  0.5070      0.632 0.748 0.192 0.000 0.060
#> GSM680035     3  0.1792      0.870 0.000 0.000 0.932 0.068
#> GSM680047     4  0.2530      0.652 0.112 0.000 0.000 0.888
#> GSM680036     2  0.1637      0.867 0.000 0.940 0.000 0.060
#> GSM680048     1  0.7250      0.140 0.504 0.160 0.000 0.336
#> GSM680037     3  0.2973      0.819 0.000 0.000 0.856 0.144
#> GSM680049     1  0.3933      0.665 0.792 0.200 0.000 0.008
#> GSM680038     2  0.1118      0.881 0.000 0.964 0.036 0.000
#> GSM680050     1  0.2859      0.752 0.880 0.112 0.000 0.008
#> GSM680039     2  0.1706      0.879 0.000 0.948 0.036 0.016
#> GSM680051     4  0.5182      0.661 0.024 0.112 0.076 0.788
#> GSM680040     4  0.4283      0.445 0.000 0.004 0.256 0.740
#> GSM680052     3  0.5148      0.599 0.000 0.208 0.736 0.056
#> GSM680030     3  0.2921      0.783 0.000 0.140 0.860 0.000
#> GSM680042     1  0.0817      0.805 0.976 0.024 0.000 0.000
#> GSM680031     3  0.0707      0.882 0.000 0.000 0.980 0.020
#> GSM680043     3  0.1940      0.870 0.000 0.000 0.924 0.076
#> GSM680032     2  0.6988      0.303 0.332 0.560 0.096 0.012
#> GSM680044     2  0.3052      0.796 0.000 0.860 0.136 0.004
#> GSM680033     3  0.0921      0.881 0.000 0.000 0.972 0.028
#> GSM680045     3  0.4830      0.484 0.000 0.000 0.608 0.392
#> GSM680034     3  0.0336      0.881 0.000 0.008 0.992 0.000
#> GSM680046     4  0.4790      0.343 0.380 0.000 0.000 0.620

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM680053     3  0.1285      0.918 0.000 0.004 0.956 0.004 0.036
#> GSM680062     2  0.5624      0.363 0.000 0.648 0.004 0.208 0.140
#> GSM680054     3  0.1012      0.920 0.000 0.020 0.968 0.000 0.012
#> GSM680063     2  0.4874      0.285 0.000 0.588 0.388 0.008 0.016
#> GSM680055     5  0.3837      0.569 0.020 0.156 0.008 0.008 0.808
#> GSM680064     1  0.0451      0.715 0.988 0.000 0.000 0.004 0.008
#> GSM680056     3  0.3897      0.705 0.204 0.000 0.768 0.000 0.028
#> GSM680065     1  0.0609      0.713 0.980 0.000 0.000 0.000 0.020
#> GSM680057     3  0.1630      0.912 0.000 0.036 0.944 0.004 0.016
#> GSM680066     1  0.6770      0.476 0.552 0.176 0.004 0.244 0.024
#> GSM680058     2  0.3766      0.280 0.000 0.728 0.004 0.000 0.268
#> GSM680067     2  0.5878      0.278 0.004 0.596 0.320 0.056 0.024
#> GSM680059     2  0.2471      0.550 0.000 0.864 0.000 0.000 0.136
#> GSM680068     1  0.3282      0.667 0.804 0.000 0.000 0.188 0.008
#> GSM680060     5  0.2104      0.506 0.000 0.060 0.000 0.024 0.916
#> GSM680069     1  0.5354      0.483 0.644 0.272 0.000 0.004 0.080
#> GSM680061     3  0.3815      0.699 0.000 0.220 0.764 0.004 0.012
#> GSM680070     1  0.4336      0.576 0.700 0.012 0.000 0.280 0.008
#> GSM680071     1  0.4588      0.417 0.668 0.012 0.000 0.012 0.308
#> GSM680077     1  0.1502      0.716 0.940 0.000 0.000 0.056 0.004
#> GSM680072     5  0.4307      0.390 0.000 0.496 0.000 0.000 0.504
#> GSM680078     1  0.5008      0.496 0.644 0.000 0.000 0.056 0.300
#> GSM680073     2  0.1484      0.630 0.000 0.944 0.008 0.000 0.048
#> GSM680079     1  0.0290      0.715 0.992 0.000 0.000 0.000 0.008
#> GSM680074     2  0.1205      0.632 0.000 0.956 0.004 0.000 0.040
#> GSM680080     5  0.4527      0.477 0.000 0.392 0.000 0.012 0.596
#> GSM680075     5  0.4707      0.179 0.392 0.020 0.000 0.000 0.588
#> GSM680081     3  0.0671      0.922 0.000 0.000 0.980 0.016 0.004
#> GSM680076     2  0.0162      0.633 0.000 0.996 0.000 0.000 0.004
#> GSM680082     1  0.1502      0.717 0.940 0.004 0.000 0.056 0.000
#> GSM680029     5  0.4452      0.371 0.000 0.496 0.004 0.000 0.500
#> GSM680041     1  0.7253      0.293 0.496 0.172 0.000 0.276 0.056
#> GSM680035     3  0.0771      0.922 0.000 0.000 0.976 0.020 0.004
#> GSM680047     4  0.2763      0.695 0.004 0.000 0.000 0.848 0.148
#> GSM680036     5  0.4651      0.540 0.020 0.372 0.000 0.000 0.608
#> GSM680048     4  0.4681      0.659 0.084 0.188 0.000 0.728 0.000
#> GSM680037     3  0.0771      0.922 0.000 0.000 0.976 0.020 0.004
#> GSM680049     1  0.6775      0.230 0.432 0.388 0.004 0.168 0.008
#> GSM680038     2  0.1557      0.629 0.000 0.940 0.008 0.000 0.052
#> GSM680050     1  0.3648      0.653 0.792 0.188 0.000 0.016 0.004
#> GSM680039     2  0.4407      0.410 0.000 0.724 0.012 0.020 0.244
#> GSM680051     4  0.2773      0.728 0.000 0.112 0.000 0.868 0.020
#> GSM680040     3  0.4057      0.777 0.000 0.000 0.792 0.120 0.088
#> GSM680052     4  0.5046      0.245 0.000 0.432 0.020 0.540 0.008
#> GSM680030     3  0.1597      0.909 0.000 0.048 0.940 0.000 0.012
#> GSM680042     1  0.3497      0.684 0.836 0.048 0.000 0.112 0.004
#> GSM680031     3  0.0324      0.924 0.000 0.004 0.992 0.004 0.000
#> GSM680043     3  0.1281      0.917 0.000 0.000 0.956 0.032 0.012
#> GSM680032     2  0.4460      0.180 0.392 0.600 0.004 0.000 0.004
#> GSM680044     2  0.1314      0.623 0.000 0.960 0.012 0.016 0.012
#> GSM680033     3  0.0854      0.924 0.000 0.012 0.976 0.008 0.004
#> GSM680045     4  0.1834      0.706 0.008 0.004 0.032 0.940 0.016
#> GSM680034     3  0.0671      0.924 0.000 0.016 0.980 0.000 0.004
#> GSM680046     4  0.3885      0.638 0.176 0.000 0.000 0.784 0.040

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM680053     3  0.2625    0.83699 0.000 0.000 0.872 0.000 0.056 0.072
#> GSM680062     4  0.5417    0.24150 0.000 0.428 0.004 0.496 0.028 0.044
#> GSM680054     3  0.1332    0.87366 0.000 0.012 0.952 0.000 0.008 0.028
#> GSM680063     2  0.5054    0.24146 0.000 0.628 0.296 0.012 0.008 0.056
#> GSM680055     5  0.4383    0.49221 0.004 0.052 0.052 0.020 0.796 0.076
#> GSM680064     1  0.0713    0.60210 0.972 0.000 0.000 0.028 0.000 0.000
#> GSM680056     3  0.5326    0.58675 0.160 0.000 0.664 0.000 0.032 0.144
#> GSM680065     1  0.0405    0.60418 0.988 0.000 0.000 0.000 0.008 0.004
#> GSM680057     3  0.1218    0.87419 0.000 0.028 0.956 0.000 0.004 0.012
#> GSM680066     6  0.5019    0.41324 0.176 0.076 0.000 0.012 0.028 0.708
#> GSM680058     2  0.4881    0.24669 0.000 0.588 0.000 0.000 0.336 0.076
#> GSM680067     6  0.5059    0.50288 0.004 0.168 0.176 0.000 0.000 0.652
#> GSM680059     2  0.4854    0.52817 0.000 0.664 0.000 0.000 0.152 0.184
#> GSM680068     1  0.4289    0.43830 0.680 0.000 0.000 0.040 0.004 0.276
#> GSM680060     5  0.2551    0.52140 0.004 0.012 0.000 0.004 0.872 0.108
#> GSM680069     1  0.7190    0.00361 0.404 0.108 0.000 0.000 0.204 0.284
#> GSM680061     3  0.4140    0.64926 0.000 0.152 0.744 0.000 0.000 0.104
#> GSM680070     1  0.5112    0.28884 0.580 0.028 0.000 0.032 0.004 0.356
#> GSM680071     1  0.5691    0.21925 0.504 0.016 0.000 0.000 0.372 0.108
#> GSM680077     1  0.2814    0.54961 0.820 0.000 0.000 0.000 0.008 0.172
#> GSM680072     5  0.4443    0.39946 0.000 0.368 0.000 0.000 0.596 0.036
#> GSM680078     1  0.5932    0.21923 0.444 0.000 0.000 0.124 0.412 0.020
#> GSM680073     2  0.1391    0.70294 0.000 0.944 0.000 0.000 0.040 0.016
#> GSM680079     1  0.0260    0.60477 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM680074     2  0.3413    0.66607 0.000 0.812 0.000 0.000 0.080 0.108
#> GSM680080     5  0.5649    0.41938 0.000 0.232 0.000 0.000 0.536 0.232
#> GSM680075     5  0.3543    0.39722 0.248 0.004 0.000 0.004 0.740 0.004
#> GSM680081     3  0.2118    0.85611 0.000 0.000 0.888 0.000 0.008 0.104
#> GSM680076     2  0.1812    0.69734 0.000 0.912 0.000 0.000 0.008 0.080
#> GSM680082     1  0.1049    0.60222 0.960 0.000 0.000 0.008 0.000 0.032
#> GSM680029     5  0.4217    0.17476 0.000 0.464 0.000 0.004 0.524 0.008
#> GSM680041     4  0.6127    0.56220 0.216 0.108 0.000 0.604 0.012 0.060
#> GSM680035     3  0.1444    0.86878 0.000 0.000 0.928 0.000 0.000 0.072
#> GSM680047     4  0.1088    0.59422 0.000 0.000 0.000 0.960 0.024 0.016
#> GSM680036     5  0.4039    0.56182 0.016 0.248 0.000 0.004 0.720 0.012
#> GSM680048     4  0.4110    0.64123 0.052 0.148 0.000 0.772 0.000 0.028
#> GSM680037     3  0.1267    0.87141 0.000 0.000 0.940 0.000 0.000 0.060
#> GSM680049     4  0.6824    0.22439 0.324 0.312 0.008 0.332 0.000 0.024
#> GSM680038     2  0.1152    0.70138 0.000 0.952 0.000 0.000 0.044 0.004
#> GSM680050     1  0.4128    0.53091 0.780 0.140 0.000 0.040 0.004 0.036
#> GSM680039     2  0.4962    0.51961 0.000 0.684 0.020 0.032 0.236 0.028
#> GSM680051     4  0.1542    0.63068 0.000 0.052 0.004 0.936 0.000 0.008
#> GSM680040     3  0.4491    0.73719 0.000 0.000 0.744 0.048 0.048 0.160
#> GSM680052     4  0.4951    0.40755 0.000 0.384 0.016 0.560 0.000 0.040
#> GSM680030     3  0.2186    0.85806 0.000 0.048 0.908 0.000 0.008 0.036
#> GSM680042     1  0.4241    0.06995 0.608 0.024 0.000 0.368 0.000 0.000
#> GSM680031     3  0.0260    0.87716 0.000 0.000 0.992 0.000 0.000 0.008
#> GSM680043     3  0.2300    0.83435 0.000 0.000 0.856 0.000 0.000 0.144
#> GSM680032     1  0.4671    0.02891 0.496 0.476 0.004 0.004 0.008 0.012
#> GSM680044     2  0.2288    0.66229 0.000 0.896 0.000 0.072 0.004 0.028
#> GSM680033     3  0.0260    0.87787 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM680045     4  0.4107    0.41764 0.004 0.000 0.028 0.688 0.000 0.280
#> GSM680034     3  0.0909    0.87630 0.000 0.020 0.968 0.000 0.000 0.012
#> GSM680046     4  0.3130    0.59661 0.144 0.000 0.000 0.824 0.004 0.028

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) individual(p) protocol(p) other(p) k
#> ATC:NMF 53            0.569         0.591    1.12e-03   0.6170 2
#> ATC:NMF 51            0.373         0.420    3.80e-04   0.1093 3
#> ATC:NMF 46            0.155         0.707    9.82e-04   0.1208 4
#> ATC:NMF 37            0.060         0.707    2.24e-05   0.0869 5
#> ATC:NMF 35            0.106         0.437    1.74e-04   0.1049 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0