cola Report for GDS4431

Date: 2019-12-25 21:36:59 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 51882 rows and 146 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4, anno = anno)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 51882   146

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_list), 
    col = get_anno_col(res_list)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
SD:kmeans 2 1.000 0.975 0.989 **
CV:kmeans 2 1.000 0.966 0.987 **
ATC:skmeans 2 1.000 0.962 0.986 **
MAD:pam 2 1.000 0.968 0.986 **
CV:pam 2 0.997 0.957 0.975 **
ATC:kmeans 2 0.986 0.942 0.976 **
MAD:NMF 2 0.985 0.950 0.980 **
SD:skmeans 4 0.971 0.928 0.970 ** 2
MAD:mclust 3 0.970 0.938 0.973 ** 2
MAD:skmeans 4 0.970 0.924 0.966 ** 2
SD:pam 2 0.957 0.956 0.981 **
SD:NMF 2 0.944 0.949 0.978 *
SD:mclust 4 0.929 0.873 0.946 *
MAD:kmeans 2 0.929 0.938 0.973 *
CV:mclust 6 0.918 0.873 0.933 * 2,3
CV:skmeans 4 0.917 0.898 0.957 * 2,3
CV:NMF 3 0.916 0.912 0.951 * 2
ATC:pam 2 0.781 0.922 0.965
SD:hclust 5 0.604 0.698 0.795
ATC:NMF 4 0.577 0.711 0.823
MAD:hclust 3 0.559 0.749 0.856
ATC:hclust 2 0.525 0.830 0.915
ATC:mclust 2 0.513 0.868 0.905
CV:hclust 3 0.345 0.684 0.824

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.944           0.949       0.978          0.496 0.503   0.503
#> CV:NMF      2 1.000           0.972       0.988          0.499 0.503   0.503
#> MAD:NMF     2 0.985           0.950       0.980          0.502 0.497   0.497
#> ATC:NMF     2 0.736           0.864       0.940          0.335 0.648   0.648
#> SD:skmeans  2 1.000           0.961       0.983          0.503 0.497   0.497
#> CV:skmeans  2 1.000           0.974       0.989          0.502 0.498   0.498
#> MAD:skmeans 2 1.000           0.964       0.986          0.503 0.498   0.498
#> ATC:skmeans 2 1.000           0.962       0.986          0.496 0.504   0.504
#> SD:mclust   2 0.864           0.935       0.971          0.501 0.498   0.498
#> CV:mclust   2 1.000           0.996       0.998          0.504 0.497   0.497
#> MAD:mclust  2 1.000           0.969       0.988          0.503 0.497   0.497
#> ATC:mclust  2 0.513           0.868       0.905          0.470 0.499   0.499
#> SD:kmeans   2 1.000           0.975       0.989          0.499 0.501   0.501
#> CV:kmeans   2 1.000           0.966       0.987          0.499 0.500   0.500
#> MAD:kmeans  2 0.929           0.938       0.973          0.502 0.498   0.498
#> ATC:kmeans  2 0.986           0.942       0.976          0.466 0.531   0.531
#> SD:pam      2 0.957           0.956       0.981          0.502 0.497   0.497
#> CV:pam      2 0.997           0.957       0.975          0.501 0.498   0.498
#> MAD:pam     2 1.000           0.968       0.986          0.504 0.497   0.497
#> ATC:pam     2 0.781           0.922       0.965          0.474 0.524   0.524
#> SD:hclust   2 0.591           0.808       0.908          0.357 0.599   0.599
#> CV:hclust   2 0.456           0.819       0.888          0.352 0.679   0.679
#> MAD:hclust  2 0.375           0.678       0.857          0.397 0.582   0.582
#> ATC:hclust  2 0.525           0.830       0.915          0.425 0.551   0.551
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.656           0.818       0.902          0.267 0.841   0.694
#> CV:NMF      3 0.916           0.912       0.951          0.288 0.824   0.661
#> MAD:NMF     3 0.698           0.830       0.911          0.270 0.842   0.690
#> ATC:NMF     3 0.538           0.650       0.857          0.802 0.665   0.512
#> SD:skmeans  3 0.839           0.879       0.938          0.299 0.805   0.627
#> CV:skmeans  3 0.971           0.949       0.977          0.313 0.792   0.604
#> MAD:skmeans 3 0.733           0.830       0.905          0.292 0.786   0.598
#> ATC:skmeans 3 0.732           0.661       0.841          0.243 0.855   0.722
#> SD:mclust   3 0.822           0.906       0.953          0.238 0.746   0.549
#> CV:mclust   3 0.918           0.924       0.940          0.236 0.833   0.678
#> MAD:mclust  3 0.970           0.938       0.973          0.273 0.760   0.562
#> ATC:mclust  3 0.310           0.344       0.672          0.221 0.620   0.417
#> SD:kmeans   3 0.522           0.623       0.804          0.299 0.736   0.524
#> CV:kmeans   3 0.561           0.465       0.685          0.311 0.850   0.707
#> MAD:kmeans  3 0.567           0.657       0.816          0.299 0.770   0.570
#> ATC:kmeans  3 0.851           0.872       0.945          0.331 0.723   0.529
#> SD:pam      3 0.577           0.578       0.775          0.221 0.815   0.644
#> CV:pam      3 0.850           0.864       0.937          0.275 0.810   0.636
#> MAD:pam     3 0.730           0.782       0.905          0.299 0.789   0.597
#> ATC:pam     3 0.715           0.831       0.897          0.265 0.805   0.656
#> SD:hclust   3 0.409           0.613       0.741          0.741 0.749   0.583
#> CV:hclust   3 0.345           0.684       0.824          0.721 0.690   0.559
#> MAD:hclust  3 0.559           0.749       0.856          0.573 0.687   0.507
#> ATC:hclust  3 0.532           0.606       0.822          0.334 0.787   0.645
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.562           0.688       0.827          0.145 0.729   0.416
#> CV:NMF      4 0.569           0.634       0.818          0.137 0.756   0.438
#> MAD:NMF     4 0.614           0.718       0.853          0.133 0.725   0.400
#> ATC:NMF     4 0.577           0.711       0.823          0.214 0.778   0.490
#> SD:skmeans  4 0.971           0.928       0.970          0.154 0.796   0.493
#> CV:skmeans  4 0.917           0.898       0.957          0.140 0.863   0.623
#> MAD:skmeans 4 0.970           0.924       0.966          0.158 0.793   0.483
#> ATC:skmeans 4 0.784           0.757       0.883          0.122 0.855   0.674
#> SD:mclust   4 0.929           0.873       0.946          0.123 0.862   0.660
#> CV:mclust   4 0.748           0.798       0.901          0.121 0.910   0.771
#> MAD:mclust  4 0.800           0.829       0.917          0.107 0.902   0.740
#> ATC:mclust  4 0.491           0.581       0.762          0.211 0.691   0.390
#> SD:kmeans   4 0.692           0.773       0.876          0.132 0.770   0.451
#> CV:kmeans   4 0.824           0.876       0.928          0.139 0.736   0.408
#> MAD:kmeans  4 0.662           0.752       0.838          0.136 0.771   0.441
#> ATC:kmeans  4 0.639           0.609       0.793          0.156 0.820   0.565
#> SD:pam      4 0.631           0.663       0.837          0.141 0.885   0.699
#> CV:pam      4 0.669           0.738       0.860          0.119 0.904   0.739
#> MAD:pam     4 0.583           0.601       0.747          0.103 0.871   0.648
#> ATC:pam     4 0.678           0.547       0.796          0.204 0.837   0.619
#> SD:hclust   4 0.540           0.643       0.796          0.156 0.893   0.700
#> CV:hclust   4 0.456           0.616       0.722          0.180 0.784   0.516
#> MAD:hclust  4 0.579           0.719       0.820          0.156 0.868   0.654
#> ATC:hclust  4 0.614           0.693       0.806          0.213 0.808   0.586
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.529           0.494       0.717         0.0737 0.831   0.492
#> CV:NMF      5 0.586           0.589       0.774         0.0696 0.846   0.516
#> MAD:NMF     5 0.577           0.538       0.744         0.0741 0.860   0.565
#> ATC:NMF     5 0.570           0.617       0.773         0.0711 0.848   0.503
#> SD:skmeans  5 0.749           0.666       0.831         0.0553 0.881   0.581
#> CV:skmeans  5 0.792           0.734       0.831         0.0602 0.934   0.747
#> MAD:skmeans 5 0.736           0.683       0.806         0.0527 0.915   0.683
#> ATC:skmeans 5 0.725           0.680       0.792         0.0783 0.847   0.579
#> SD:mclust   5 0.787           0.756       0.856         0.1044 0.840   0.524
#> CV:mclust   5 0.726           0.666       0.813         0.1049 0.798   0.453
#> MAD:mclust  5 0.787           0.791       0.884         0.0665 0.902   0.697
#> ATC:mclust  5 0.628           0.699       0.818         0.0889 0.896   0.655
#> SD:kmeans   5 0.654           0.537       0.741         0.0683 0.960   0.857
#> CV:kmeans   5 0.742           0.662       0.801         0.0566 0.963   0.857
#> MAD:kmeans  5 0.655           0.532       0.705         0.0649 0.933   0.757
#> ATC:kmeans  5 0.649           0.591       0.757         0.0831 0.897   0.669
#> SD:pam      5 0.655           0.651       0.810         0.0979 0.880   0.618
#> CV:pam      5 0.816           0.857       0.907         0.0736 0.890   0.646
#> MAD:pam     5 0.671           0.651       0.817         0.0827 0.879   0.595
#> ATC:pam     5 0.679           0.554       0.701         0.0739 0.779   0.373
#> SD:hclust   5 0.604           0.698       0.795         0.0709 0.930   0.739
#> CV:hclust   5 0.575           0.661       0.798         0.0790 0.919   0.716
#> MAD:hclust  5 0.584           0.582       0.754         0.0680 0.990   0.963
#> ATC:hclust  5 0.635           0.611       0.801         0.0681 0.929   0.774
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.587           0.579       0.741         0.0441 0.867   0.507
#> CV:NMF      6 0.619           0.568       0.738         0.0387 0.914   0.649
#> MAD:NMF     6 0.636           0.586       0.762         0.0432 0.895   0.599
#> ATC:NMF     6 0.616           0.559       0.744         0.0302 0.872   0.525
#> SD:skmeans  6 0.730           0.584       0.729         0.0418 0.898   0.567
#> CV:skmeans  6 0.761           0.621       0.749         0.0391 0.920   0.651
#> MAD:skmeans 6 0.731           0.569       0.736         0.0438 0.927   0.680
#> ATC:skmeans 6 0.806           0.804       0.863         0.0488 0.897   0.609
#> SD:mclust   6 0.801           0.817       0.894         0.0526 0.855   0.466
#> CV:mclust   6 0.918           0.873       0.933         0.0500 0.882   0.543
#> MAD:mclust  6 0.786           0.771       0.847         0.0603 0.873   0.554
#> ATC:mclust  6 0.688           0.619       0.811         0.0556 0.963   0.840
#> SD:kmeans   6 0.689           0.637       0.738         0.0486 0.876   0.559
#> CV:kmeans   6 0.716           0.702       0.780         0.0408 0.910   0.644
#> MAD:kmeans  6 0.664           0.478       0.679         0.0429 0.842   0.440
#> ATC:kmeans  6 0.659           0.446       0.659         0.0530 0.822   0.399
#> SD:pam      6 0.726           0.675       0.812         0.0452 0.918   0.662
#> CV:pam      6 0.806           0.771       0.869         0.0399 0.958   0.819
#> MAD:pam     6 0.702           0.635       0.804         0.0374 0.863   0.487
#> ATC:pam     6 0.704           0.562       0.755         0.0527 0.852   0.447
#> SD:hclust   6 0.677           0.654       0.801         0.0467 0.972   0.869
#> CV:hclust   6 0.615           0.625       0.756         0.0389 1.000   1.000
#> MAD:hclust  6 0.624           0.577       0.733         0.0412 0.922   0.707
#> ATC:hclust  6 0.650           0.593       0.769         0.0658 0.915   0.695

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Test to known annotations

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res_list, k = 2)
#>               n disease.state(p) age(p) other(p) k
#> SD:NMF      143           0.7104  0.496  0.02024 2
#> CV:NMF      144           0.7870  0.312  0.00958 2
#> MAD:NMF     143           0.5714  0.167  0.00998 2
#> ATC:NMF     137           1.0000  0.394  0.10307 2
#> SD:skmeans  145           0.4662  0.216  0.01062 2
#> CV:skmeans  145           0.9624  0.400  0.00700 2
#> MAD:skmeans 143           0.8175  0.401  0.03848 2
#> ATC:skmeans 142           0.4464  0.130  0.01018 2
#> SD:mclust   142           0.4163  0.360  0.04590 2
#> CV:mclust   146           0.5188  0.481  0.14129 2
#> MAD:mclust  143           0.5788  0.421  0.08287 2
#> ATC:mclust  145           0.7037  0.305  0.01116 2
#> SD:kmeans   145           0.8491  0.316  0.01240 2
#> CV:kmeans   144           0.9055  0.406  0.01484 2
#> MAD:kmeans  144           0.7594  0.345  0.03266 2
#> ATC:kmeans  142           1.0000  0.152  0.03741 2
#> SD:pam      145           0.0867  0.448  0.06100 2
#> CV:pam      146           0.0505  0.543  0.14708 2
#> MAD:pam     144           0.0635  0.391  0.06172 2
#> ATC:pam     143           1.0000  0.106  0.05364 2
#> SD:hclust   135           1.0000  0.542  0.17042 2
#> CV:hclust   139           1.0000  0.806  0.18535 2
#> MAD:hclust  112           0.9633  0.676  0.03373 2
#> ATC:hclust  138           0.9118  0.139  0.01119 2
test_to_known_factors(res_list, k = 3)
#>               n disease.state(p) age(p) other(p) k
#> SD:NMF      137           0.5008 0.3431  0.03281 3
#> CV:NMF      143           0.5303 0.4548  0.00536 3
#> MAD:NMF     138           0.1577 0.3695  0.02688 3
#> ATC:NMF     112           0.0266 0.5070  0.78192 3
#> SD:skmeans  139           0.2837 0.4367  0.02722 3
#> CV:skmeans  143           0.0471 0.2817  0.01673 3
#> MAD:skmeans 139           0.2702 0.3966  0.01476 3
#> ATC:skmeans 101           0.2178 0.9117  0.00372 3
#> SD:mclust   144           0.4263 0.6629  0.08381 3
#> CV:mclust   145           0.9506 0.7379  0.10291 3
#> MAD:mclust  143           0.3109 0.6986  0.16297 3
#> ATC:mclust   49           0.2118 0.6934  0.57771 3
#> SD:kmeans   115           0.2975 0.6239  0.19591 3
#> CV:kmeans    64           1.0000 0.7009  0.00937 3
#> MAD:kmeans  117           0.3417 0.7174  0.06738 3
#> ATC:kmeans  135           0.9352 0.3836  0.00619 3
#> SD:pam       62               NA     NA       NA 3
#> CV:pam      136           0.1404 0.1876  0.00917 3
#> MAD:pam     130           0.3379 0.4556  0.01029 3
#> ATC:pam     138           0.3814 0.4373  0.01324 3
#> SD:hclust   122           0.6198 0.7958  0.12392 3
#> CV:hclust   121           0.0152 0.5613  0.00946 3
#> MAD:hclust  131           0.4944 0.7100  0.10620 3
#> ATC:hclust   99           0.5810 0.0868  0.01649 3
test_to_known_factors(res_list, k = 4)
#>               n disease.state(p) age(p) other(p) k
#> SD:NMF      124           0.5674 0.0948 0.067645 4
#> CV:NMF      108           0.7472 0.3728 0.171805 4
#> MAD:NMF     127           0.6634 0.2927 0.042518 4
#> ATC:NMF     131           0.0349 0.4838 0.086102 4
#> SD:skmeans  142           0.2451 0.3404 0.053056 4
#> CV:skmeans  140           0.2862 0.3537 0.076990 4
#> MAD:skmeans 139           0.2484 0.3361 0.083470 4
#> ATC:skmeans 131           0.2186 0.0121 0.007793 4
#> SD:mclust   135           0.1286 0.6205 0.025244 4
#> CV:mclust   132           0.0643 0.3752 0.296382 4
#> MAD:mclust  139           0.1744 0.3180 0.176678 4
#> ATC:mclust  114           0.0281 0.8952 0.051673 4
#> SD:kmeans   135           0.2830 0.6167 0.103383 4
#> CV:kmeans   139           0.2014 0.4354 0.074967 4
#> MAD:kmeans  131           0.1049 0.4722 0.339114 4
#> ATC:kmeans  105           0.9422 0.3328 0.033372 4
#> SD:pam      113           0.1839 0.7159 0.049517 4
#> CV:pam      131           0.0137 0.1610 0.008990 4
#> MAD:pam     116           0.7161 0.2745 0.048467 4
#> ATC:pam      80           0.4626 0.8999 0.164032 4
#> SD:hclust   125           0.0766 0.6812 0.129231 4
#> CV:hclust   113           0.0610 0.6762 0.001588 4
#> MAD:hclust  124           0.0410 0.3150 0.465558 4
#> ATC:hclust  123           0.4957 0.1787 0.000895 4
test_to_known_factors(res_list, k = 5)
#>               n disease.state(p) age(p) other(p) k
#> SD:NMF       80           0.6518  0.212  0.06674 5
#> CV:NMF      110           0.1526  0.120  0.01487 5
#> MAD:NMF     100           0.2896  0.311  0.03138 5
#> ATC:NMF     118           0.0565  0.531  0.20280 5
#> SD:skmeans  114           0.2840  0.371  0.02210 5
#> CV:skmeans  130           0.1890  0.177  0.18286 5
#> MAD:skmeans 127           0.3733  0.496  0.15324 5
#> ATC:skmeans 122           0.0667  0.105  0.03099 5
#> SD:mclust   133           0.1046  0.660  0.00902 5
#> CV:mclust   125           0.1294  0.455  0.10489 5
#> MAD:mclust  132           0.2748  0.379  0.24098 5
#> ATC:mclust  126           0.0320  0.395  0.08242 5
#> SD:kmeans    99           0.1087  0.327  0.22363 5
#> CV:kmeans   124           0.3896  0.561  0.16410 5
#> MAD:kmeans   93           0.0682  0.338  0.38991 5
#> ATC:kmeans  111           0.2063  0.178  0.09421 5
#> SD:pam      112           0.3517  0.609  0.22803 5
#> CV:pam      139           0.0198  0.329  0.19112 5
#> MAD:pam     116           0.2936  0.309  0.12255 5
#> ATC:pam      89           0.4717  0.858  0.07735 5
#> SD:hclust   121           0.0998  0.930  0.05669 5
#> CV:hclust   114           0.1196  0.765  0.00721 5
#> MAD:hclust  107           0.2172  0.570  0.32620 5
#> ATC:hclust   99           0.1729  0.525  0.01078 5
test_to_known_factors(res_list, k = 6)
#>               n disease.state(p) age(p) other(p) k
#> SD:NMF      112           0.2247  0.468  0.17653 6
#> CV:NMF      104           0.2189  0.594  0.13246 6
#> MAD:NMF     114           0.0202  0.282  0.02213 6
#> ATC:NMF      99           0.1106  0.618  0.33009 6
#> SD:skmeans  101           0.3792  0.474  0.18483 6
#> CV:skmeans  111           0.1513  0.742  0.12373 6
#> MAD:skmeans 103           0.6785  0.696  0.30741 6
#> ATC:skmeans 132           0.3295  0.151  0.07444 6
#> SD:mclust   138           0.2985  0.783  0.31969 6
#> CV:mclust   140           0.4019  0.683  0.06710 6
#> MAD:mclust  131           0.1525  0.503  0.14259 6
#> ATC:mclust  111           0.0164  0.578  0.03620 6
#> SD:kmeans   123           0.4629  0.829  0.10023 6
#> CV:kmeans   129           0.1757  0.597  0.18557 6
#> MAD:kmeans   82           0.8240  0.630  0.11749 6
#> ATC:kmeans   76           0.0549  0.870  0.03904 6
#> SD:pam      113           0.5400  0.998  0.06893 6
#> CV:pam      130           0.2480  0.648  0.15703 6
#> MAD:pam     115           0.2157  0.560  0.16655 6
#> ATC:pam     100           0.0905  0.440  0.08576 6
#> SD:hclust   114           0.1223  0.865  0.04971 6
#> CV:hclust   117           0.1019  0.753  0.01817 6
#> MAD:hclust  104           0.0269  0.461  0.61998 6
#> ATC:hclust  100           0.2227  0.699  0.00706 6

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 146 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.591           0.808       0.908         0.3572 0.599   0.599
#> 3 3 0.409           0.613       0.741         0.7413 0.749   0.583
#> 4 4 0.540           0.643       0.796         0.1560 0.893   0.700
#> 5 5 0.604           0.698       0.795         0.0709 0.930   0.739
#> 6 6 0.677           0.654       0.801         0.0467 0.972   0.869

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM627128     2  0.0000     0.9403 0.000 1.000
#> GSM627110     1  0.9087     0.7112 0.676 0.324
#> GSM627132     1  0.0000     0.7464 1.000 0.000
#> GSM627107     2  0.0000     0.9403 0.000 1.000
#> GSM627103     2  0.0000     0.9403 0.000 1.000
#> GSM627114     1  0.9661     0.6294 0.608 0.392
#> GSM627134     2  0.0000     0.9403 0.000 1.000
#> GSM627137     2  0.0000     0.9403 0.000 1.000
#> GSM627148     2  0.1633     0.9179 0.024 0.976
#> GSM627101     2  0.0000     0.9403 0.000 1.000
#> GSM627130     2  0.0000     0.9403 0.000 1.000
#> GSM627071     2  0.6973     0.6912 0.188 0.812
#> GSM627118     2  0.0000     0.9403 0.000 1.000
#> GSM627094     2  0.0000     0.9403 0.000 1.000
#> GSM627122     2  0.7745     0.6080 0.228 0.772
#> GSM627115     2  0.0000     0.9403 0.000 1.000
#> GSM627125     2  0.0000     0.9403 0.000 1.000
#> GSM627174     2  0.0000     0.9403 0.000 1.000
#> GSM627102     2  0.0000     0.9403 0.000 1.000
#> GSM627073     2  0.3431     0.8742 0.064 0.936
#> GSM627108     2  0.0000     0.9403 0.000 1.000
#> GSM627126     1  0.0000     0.7464 1.000 0.000
#> GSM627078     2  0.0000     0.9403 0.000 1.000
#> GSM627090     2  0.0000     0.9403 0.000 1.000
#> GSM627099     2  0.0000     0.9403 0.000 1.000
#> GSM627105     2  0.0000     0.9403 0.000 1.000
#> GSM627117     1  0.9815     0.5858 0.580 0.420
#> GSM627121     2  0.0000     0.9403 0.000 1.000
#> GSM627127     2  0.0000     0.9403 0.000 1.000
#> GSM627087     2  0.0000     0.9403 0.000 1.000
#> GSM627089     1  0.9795     0.5853 0.584 0.416
#> GSM627092     2  0.0000     0.9403 0.000 1.000
#> GSM627076     2  0.0000     0.9403 0.000 1.000
#> GSM627136     2  0.9427     0.2096 0.360 0.640
#> GSM627081     2  0.0000     0.9403 0.000 1.000
#> GSM627091     2  0.0000     0.9403 0.000 1.000
#> GSM627097     2  0.0000     0.9403 0.000 1.000
#> GSM627072     2  0.7376     0.6535 0.208 0.792
#> GSM627080     1  0.0000     0.7464 1.000 0.000
#> GSM627088     2  0.9970    -0.2630 0.468 0.532
#> GSM627109     1  0.8016     0.7574 0.756 0.244
#> GSM627111     1  0.0000     0.7464 1.000 0.000
#> GSM627113     1  0.8713     0.7336 0.708 0.292
#> GSM627133     2  0.0672     0.9333 0.008 0.992
#> GSM627177     1  0.9988     0.4387 0.520 0.480
#> GSM627086     2  0.0000     0.9403 0.000 1.000
#> GSM627095     1  1.0000     0.1985 0.500 0.500
#> GSM627079     2  0.7139     0.6766 0.196 0.804
#> GSM627082     2  0.0000     0.9403 0.000 1.000
#> GSM627074     1  0.8016     0.7574 0.756 0.244
#> GSM627077     1  0.9209     0.6994 0.664 0.336
#> GSM627093     1  0.8016     0.7574 0.756 0.244
#> GSM627120     2  0.0000     0.9403 0.000 1.000
#> GSM627124     2  0.0000     0.9403 0.000 1.000
#> GSM627075     2  0.0000     0.9403 0.000 1.000
#> GSM627085     2  0.0000     0.9403 0.000 1.000
#> GSM627119     1  0.8016     0.7574 0.756 0.244
#> GSM627116     1  0.9993     0.4283 0.516 0.484
#> GSM627084     2  0.9815    -0.0564 0.420 0.580
#> GSM627096     2  0.0000     0.9403 0.000 1.000
#> GSM627100     2  0.0000     0.9403 0.000 1.000
#> GSM627112     2  0.0000     0.9403 0.000 1.000
#> GSM627083     2  1.0000    -0.2259 0.500 0.500
#> GSM627098     2  0.9815    -0.0564 0.420 0.580
#> GSM627104     1  0.8016     0.7574 0.756 0.244
#> GSM627131     2  0.7139     0.6766 0.196 0.804
#> GSM627106     2  0.0000     0.9403 0.000 1.000
#> GSM627123     1  0.0672     0.7474 0.992 0.008
#> GSM627129     2  0.0000     0.9403 0.000 1.000
#> GSM627216     2  0.0672     0.9333 0.008 0.992
#> GSM627212     2  0.0000     0.9403 0.000 1.000
#> GSM627190     1  0.9815     0.5858 0.580 0.420
#> GSM627169     2  0.0000     0.9403 0.000 1.000
#> GSM627167     2  0.0000     0.9403 0.000 1.000
#> GSM627192     1  0.0000     0.7464 1.000 0.000
#> GSM627203     2  0.0000     0.9403 0.000 1.000
#> GSM627151     2  0.2603     0.8969 0.044 0.956
#> GSM627163     1  0.0000     0.7464 1.000 0.000
#> GSM627211     2  0.0000     0.9403 0.000 1.000
#> GSM627171     2  0.0000     0.9403 0.000 1.000
#> GSM627209     2  0.0000     0.9403 0.000 1.000
#> GSM627135     1  0.3431     0.7533 0.936 0.064
#> GSM627170     2  0.0000     0.9403 0.000 1.000
#> GSM627178     1  0.9993     0.4283 0.516 0.484
#> GSM627199     2  0.0000     0.9403 0.000 1.000
#> GSM627213     2  0.0000     0.9403 0.000 1.000
#> GSM627140     2  0.0000     0.9403 0.000 1.000
#> GSM627149     1  0.0672     0.7474 0.992 0.008
#> GSM627147     2  0.0000     0.9403 0.000 1.000
#> GSM627195     2  0.0000     0.9403 0.000 1.000
#> GSM627204     2  0.0000     0.9403 0.000 1.000
#> GSM627207     2  0.0000     0.9403 0.000 1.000
#> GSM627157     1  0.8955     0.7201 0.688 0.312
#> GSM627201     2  0.0000     0.9403 0.000 1.000
#> GSM627146     2  0.0000     0.9403 0.000 1.000
#> GSM627156     2  0.0000     0.9403 0.000 1.000
#> GSM627188     1  0.0000     0.7464 1.000 0.000
#> GSM627197     2  0.0000     0.9403 0.000 1.000
#> GSM627173     2  0.0000     0.9403 0.000 1.000
#> GSM627179     2  0.0000     0.9403 0.000 1.000
#> GSM627208     2  0.0938     0.9296 0.012 0.988
#> GSM627215     2  0.0000     0.9403 0.000 1.000
#> GSM627153     2  0.0000     0.9403 0.000 1.000
#> GSM627155     1  0.0000     0.7464 1.000 0.000
#> GSM627165     2  0.0000     0.9403 0.000 1.000
#> GSM627168     1  0.9129     0.7074 0.672 0.328
#> GSM627183     1  0.9491     0.6626 0.632 0.368
#> GSM627144     2  0.0000     0.9403 0.000 1.000
#> GSM627158     1  0.0000     0.7464 1.000 0.000
#> GSM627196     2  0.0000     0.9403 0.000 1.000
#> GSM627142     2  0.0000     0.9403 0.000 1.000
#> GSM627182     2  0.0938     0.9296 0.012 0.988
#> GSM627202     2  0.9522     0.1634 0.372 0.628
#> GSM627141     1  0.9522     0.6562 0.628 0.372
#> GSM627143     2  0.0000     0.9403 0.000 1.000
#> GSM627145     2  0.6531     0.7274 0.168 0.832
#> GSM627152     2  0.4939     0.8162 0.108 0.892
#> GSM627200     2  0.6531     0.7263 0.168 0.832
#> GSM627159     2  0.0000     0.9403 0.000 1.000
#> GSM627164     2  0.0000     0.9403 0.000 1.000
#> GSM627138     1  0.0000     0.7464 1.000 0.000
#> GSM627175     2  0.0000     0.9403 0.000 1.000
#> GSM627150     2  0.6973     0.6912 0.188 0.812
#> GSM627166     1  0.8713     0.7353 0.708 0.292
#> GSM627186     2  0.0000     0.9403 0.000 1.000
#> GSM627139     2  0.2603     0.8969 0.044 0.956
#> GSM627181     2  0.0000     0.9403 0.000 1.000
#> GSM627205     2  0.0000     0.9403 0.000 1.000
#> GSM627214     2  0.0000     0.9403 0.000 1.000
#> GSM627180     2  0.0000     0.9403 0.000 1.000
#> GSM627172     2  0.0000     0.9403 0.000 1.000
#> GSM627184     1  0.0000     0.7464 1.000 0.000
#> GSM627193     2  0.0000     0.9403 0.000 1.000
#> GSM627191     2  0.8955     0.3859 0.312 0.688
#> GSM627176     2  0.0000     0.9403 0.000 1.000
#> GSM627194     2  0.0000     0.9403 0.000 1.000
#> GSM627154     2  0.0000     0.9403 0.000 1.000
#> GSM627187     1  0.9815     0.5858 0.580 0.420
#> GSM627198     2  0.0000     0.9403 0.000 1.000
#> GSM627160     2  0.0000     0.9403 0.000 1.000
#> GSM627185     1  0.6887     0.7593 0.816 0.184
#> GSM627206     1  0.9795     0.5853 0.584 0.416
#> GSM627161     1  0.0000     0.7464 1.000 0.000
#> GSM627162     2  0.0376     0.9367 0.004 0.996
#> GSM627210     1  0.8016     0.7574 0.756 0.244
#> GSM627189     2  0.0000     0.9403 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM627128     2  0.4121     0.4841 0.000 0.832 0.168
#> GSM627110     1  0.5785     0.6870 0.668 0.000 0.332
#> GSM627132     1  0.0000     0.7201 1.000 0.000 0.000
#> GSM627107     3  0.3619     0.6598 0.000 0.136 0.864
#> GSM627103     2  0.6140     0.7116 0.000 0.596 0.404
#> GSM627114     1  0.6126     0.6073 0.600 0.000 0.400
#> GSM627134     2  0.2537     0.6608 0.000 0.920 0.080
#> GSM627137     2  0.5397     0.7225 0.000 0.720 0.280
#> GSM627148     3  0.2982     0.7159 0.024 0.056 0.920
#> GSM627101     2  0.2537     0.6135 0.000 0.920 0.080
#> GSM627130     2  0.4121     0.4841 0.000 0.832 0.168
#> GSM627071     3  0.5852     0.5924 0.180 0.044 0.776
#> GSM627118     2  0.2261     0.6561 0.000 0.932 0.068
#> GSM627094     2  0.6154     0.7087 0.000 0.592 0.408
#> GSM627122     3  0.6232     0.5193 0.220 0.040 0.740
#> GSM627115     2  0.6154     0.7086 0.000 0.592 0.408
#> GSM627125     2  0.4178     0.4785 0.000 0.828 0.172
#> GSM627174     2  0.6180     0.7014 0.000 0.584 0.416
#> GSM627102     2  0.6026     0.7153 0.000 0.624 0.376
#> GSM627073     3  0.3993     0.7185 0.064 0.052 0.884
#> GSM627108     2  0.6154     0.7087 0.000 0.592 0.408
#> GSM627126     1  0.0000     0.7201 1.000 0.000 0.000
#> GSM627078     2  0.0237     0.6275 0.000 0.996 0.004
#> GSM627090     3  0.2959     0.7140 0.000 0.100 0.900
#> GSM627099     2  0.6111     0.7150 0.000 0.604 0.396
#> GSM627105     2  0.4178     0.4785 0.000 0.828 0.172
#> GSM627117     1  0.6836     0.5564 0.572 0.016 0.412
#> GSM627121     3  0.3752     0.6436 0.000 0.144 0.856
#> GSM627127     2  0.1031     0.6387 0.000 0.976 0.024
#> GSM627087     2  0.6154     0.7086 0.000 0.592 0.408
#> GSM627089     1  0.6410     0.5727 0.576 0.004 0.420
#> GSM627092     2  0.5988     0.5918 0.000 0.632 0.368
#> GSM627076     3  0.3482     0.7013 0.000 0.128 0.872
#> GSM627136     3  0.6954     0.1521 0.352 0.028 0.620
#> GSM627081     3  0.3551     0.6595 0.000 0.132 0.868
#> GSM627091     2  0.6111     0.7150 0.000 0.604 0.396
#> GSM627097     2  0.3482     0.5468 0.000 0.872 0.128
#> GSM627072     3  0.4963     0.5693 0.200 0.008 0.792
#> GSM627080     1  0.0000     0.7201 1.000 0.000 0.000
#> GSM627088     3  0.7283    -0.2913 0.460 0.028 0.512
#> GSM627109     1  0.5138     0.7304 0.748 0.000 0.252
#> GSM627111     1  0.0000     0.7201 1.000 0.000 0.000
#> GSM627113     1  0.5560     0.7052 0.700 0.000 0.300
#> GSM627133     3  0.5115     0.3967 0.004 0.228 0.768
#> GSM627177     1  0.8165     0.5015 0.512 0.072 0.416
#> GSM627086     2  0.5968     0.7221 0.000 0.636 0.364
#> GSM627095     1  0.8489     0.1868 0.496 0.412 0.092
#> GSM627079     3  0.5850     0.5758 0.188 0.040 0.772
#> GSM627082     2  0.4121     0.4841 0.000 0.832 0.168
#> GSM627074     1  0.5138     0.7304 0.748 0.000 0.252
#> GSM627077     1  0.5859     0.6755 0.656 0.000 0.344
#> GSM627093     1  0.5138     0.7304 0.748 0.000 0.252
#> GSM627120     2  0.5810     0.7198 0.000 0.664 0.336
#> GSM627124     2  0.0237     0.6275 0.000 0.996 0.004
#> GSM627075     2  0.6180     0.7038 0.000 0.584 0.416
#> GSM627085     2  0.0000     0.6247 0.000 1.000 0.000
#> GSM627119     1  0.5138     0.7304 0.748 0.000 0.252
#> GSM627116     1  0.8173     0.4954 0.508 0.072 0.420
#> GSM627084     3  0.7192    -0.0809 0.412 0.028 0.560
#> GSM627096     2  0.2261     0.6561 0.000 0.932 0.068
#> GSM627100     3  0.3482     0.7013 0.000 0.128 0.872
#> GSM627112     2  0.2448     0.5767 0.000 0.924 0.076
#> GSM627083     1  0.8489     0.1868 0.496 0.412 0.092
#> GSM627098     3  0.7192    -0.0809 0.412 0.028 0.560
#> GSM627104     1  0.5138     0.7304 0.748 0.000 0.252
#> GSM627131     3  0.5850     0.5758 0.188 0.040 0.772
#> GSM627106     3  0.3551     0.6595 0.000 0.132 0.868
#> GSM627123     1  0.0424     0.7203 0.992 0.000 0.008
#> GSM627129     2  0.2959     0.6687 0.000 0.900 0.100
#> GSM627216     3  0.5115     0.3967 0.004 0.228 0.768
#> GSM627212     2  0.6111     0.7150 0.000 0.604 0.396
#> GSM627190     1  0.6836     0.5564 0.572 0.016 0.412
#> GSM627169     2  0.6235     0.6881 0.000 0.564 0.436
#> GSM627167     2  0.5465     0.6978 0.000 0.712 0.288
#> GSM627192     1  0.0000     0.7201 1.000 0.000 0.000
#> GSM627203     3  0.0592     0.7080 0.000 0.012 0.988
#> GSM627151     3  0.5454     0.6950 0.044 0.152 0.804
#> GSM627163     1  0.0000     0.7201 1.000 0.000 0.000
#> GSM627211     2  0.6154     0.7087 0.000 0.592 0.408
#> GSM627171     2  0.6180     0.7025 0.000 0.584 0.416
#> GSM627209     2  0.5363     0.7199 0.000 0.724 0.276
#> GSM627135     1  0.2261     0.7284 0.932 0.000 0.068
#> GSM627170     2  0.6062     0.7122 0.000 0.616 0.384
#> GSM627178     1  0.8173     0.4954 0.508 0.072 0.420
#> GSM627199     2  0.0000     0.6247 0.000 1.000 0.000
#> GSM627213     2  0.1643     0.6432 0.000 0.956 0.044
#> GSM627140     2  0.4062     0.6014 0.000 0.836 0.164
#> GSM627149     1  0.0424     0.7203 0.992 0.000 0.008
#> GSM627147     2  0.5397     0.6915 0.000 0.720 0.280
#> GSM627195     3  0.0592     0.7080 0.000 0.012 0.988
#> GSM627204     2  0.6154     0.7087 0.000 0.592 0.408
#> GSM627207     2  0.6154     0.7087 0.000 0.592 0.408
#> GSM627157     1  0.5706     0.6931 0.680 0.000 0.320
#> GSM627201     2  0.6180     0.7014 0.000 0.584 0.416
#> GSM627146     2  0.6154     0.7087 0.000 0.592 0.408
#> GSM627156     2  0.6235     0.6881 0.000 0.564 0.436
#> GSM627188     1  0.0000     0.7201 1.000 0.000 0.000
#> GSM627197     2  0.6154     0.7087 0.000 0.592 0.408
#> GSM627173     2  0.6154     0.7087 0.000 0.592 0.408
#> GSM627179     2  0.6140     0.7103 0.000 0.596 0.404
#> GSM627208     3  0.3349     0.6278 0.004 0.108 0.888
#> GSM627215     3  0.4346     0.4645 0.000 0.184 0.816
#> GSM627153     2  0.5363     0.7199 0.000 0.724 0.276
#> GSM627155     1  0.0000     0.7201 1.000 0.000 0.000
#> GSM627165     2  0.5431     0.7218 0.000 0.716 0.284
#> GSM627168     1  0.5810     0.6808 0.664 0.000 0.336
#> GSM627183     1  0.6228     0.6413 0.624 0.004 0.372
#> GSM627144     3  0.0424     0.7092 0.000 0.008 0.992
#> GSM627158     1  0.0000     0.7201 1.000 0.000 0.000
#> GSM627196     2  0.6154     0.7087 0.000 0.592 0.408
#> GSM627142     3  0.6299     0.1094 0.000 0.476 0.524
#> GSM627182     3  0.3349     0.6278 0.004 0.108 0.888
#> GSM627202     3  0.6899     0.0911 0.364 0.024 0.612
#> GSM627141     1  0.6045     0.6351 0.620 0.000 0.380
#> GSM627143     2  0.5733     0.6902 0.000 0.676 0.324
#> GSM627145     3  0.4413     0.6266 0.160 0.008 0.832
#> GSM627152     3  0.5811     0.6816 0.108 0.092 0.800
#> GSM627200     3  0.5466     0.6089 0.160 0.040 0.800
#> GSM627159     2  0.4121     0.4841 0.000 0.832 0.168
#> GSM627164     2  0.6180     0.7025 0.000 0.584 0.416
#> GSM627138     1  0.0000     0.7201 1.000 0.000 0.000
#> GSM627175     2  0.1860     0.6538 0.000 0.948 0.052
#> GSM627150     3  0.5852     0.5924 0.180 0.044 0.776
#> GSM627166     1  0.7064     0.7076 0.704 0.076 0.220
#> GSM627186     2  0.6244     0.6823 0.000 0.560 0.440
#> GSM627139     3  0.5454     0.6950 0.044 0.152 0.804
#> GSM627181     2  0.6154     0.7087 0.000 0.592 0.408
#> GSM627205     3  0.5529     0.0981 0.000 0.296 0.704
#> GSM627214     2  0.5560     0.7220 0.000 0.700 0.300
#> GSM627180     3  0.4346     0.4645 0.000 0.184 0.816
#> GSM627172     2  0.6026     0.7153 0.000 0.624 0.376
#> GSM627184     1  0.0000     0.7201 1.000 0.000 0.000
#> GSM627193     2  0.6154     0.7087 0.000 0.592 0.408
#> GSM627191     2  0.8742     0.0311 0.308 0.556 0.136
#> GSM627176     3  0.2796     0.7150 0.000 0.092 0.908
#> GSM627194     2  0.5706     0.7239 0.000 0.680 0.320
#> GSM627154     2  0.0000     0.6247 0.000 1.000 0.000
#> GSM627187     1  0.6836     0.5564 0.572 0.016 0.412
#> GSM627198     2  0.0000     0.6247 0.000 1.000 0.000
#> GSM627160     2  0.5291     0.4077 0.000 0.732 0.268
#> GSM627185     1  0.4399     0.7349 0.812 0.000 0.188
#> GSM627206     1  0.6410     0.5727 0.576 0.004 0.420
#> GSM627161     1  0.0000     0.7201 1.000 0.000 0.000
#> GSM627162     2  0.6442     0.4738 0.004 0.564 0.432
#> GSM627210     1  0.5138     0.7304 0.748 0.000 0.252
#> GSM627189     2  0.6154     0.7087 0.000 0.592 0.408

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM627128     4  0.1940    0.69553 0.000 0.000 0.076 0.924
#> GSM627110     1  0.4855    0.63761 0.644 0.000 0.352 0.004
#> GSM627132     1  0.0188    0.68477 0.996 0.000 0.000 0.004
#> GSM627107     3  0.4401    0.69078 0.000 0.112 0.812 0.076
#> GSM627103     2  0.1388    0.87205 0.000 0.960 0.012 0.028
#> GSM627114     1  0.5365    0.55117 0.576 0.008 0.412 0.004
#> GSM627134     4  0.5112    0.56286 0.000 0.384 0.008 0.608
#> GSM627137     2  0.3668    0.71340 0.000 0.808 0.004 0.188
#> GSM627148     3  0.4131    0.70750 0.016 0.108 0.840 0.036
#> GSM627101     4  0.4839    0.74628 0.000 0.200 0.044 0.756
#> GSM627130     4  0.2011    0.69424 0.000 0.000 0.080 0.920
#> GSM627071     3  0.4693    0.59519 0.160 0.012 0.792 0.036
#> GSM627118     4  0.5055    0.59464 0.000 0.368 0.008 0.624
#> GSM627094     2  0.0000    0.87510 0.000 1.000 0.000 0.000
#> GSM627122     3  0.4446    0.52935 0.196 0.000 0.776 0.028
#> GSM627115     2  0.1174    0.87239 0.000 0.968 0.012 0.020
#> GSM627125     4  0.2081    0.69215 0.000 0.000 0.084 0.916
#> GSM627174     2  0.1520    0.86987 0.000 0.956 0.024 0.020
#> GSM627102     2  0.2805    0.82025 0.000 0.888 0.012 0.100
#> GSM627073     3  0.4728    0.68662 0.048 0.152 0.792 0.008
#> GSM627108     2  0.0000    0.87510 0.000 1.000 0.000 0.000
#> GSM627126     1  0.0188    0.68477 0.996 0.000 0.000 0.004
#> GSM627078     4  0.3837    0.74922 0.000 0.224 0.000 0.776
#> GSM627090     3  0.2813    0.68769 0.000 0.024 0.896 0.080
#> GSM627099     2  0.1610    0.86893 0.000 0.952 0.016 0.032
#> GSM627105     4  0.2081    0.69215 0.000 0.000 0.084 0.916
#> GSM627117     1  0.6161    0.52192 0.552 0.044 0.400 0.004
#> GSM627121     3  0.4966    0.67665 0.000 0.156 0.768 0.076
#> GSM627127     4  0.4222    0.71602 0.000 0.272 0.000 0.728
#> GSM627087     2  0.1174    0.87239 0.000 0.968 0.012 0.020
#> GSM627089     1  0.5290    0.49434 0.552 0.004 0.440 0.004
#> GSM627092     2  0.7058    0.31327 0.000 0.560 0.168 0.272
#> GSM627076     3  0.3278    0.67895 0.000 0.020 0.864 0.116
#> GSM627136     3  0.5389    0.22360 0.328 0.004 0.648 0.020
#> GSM627081     3  0.4458    0.69064 0.000 0.116 0.808 0.076
#> GSM627091     2  0.1610    0.86893 0.000 0.952 0.016 0.032
#> GSM627097     4  0.6110    0.68818 0.000 0.240 0.100 0.660
#> GSM627072     3  0.4897    0.58004 0.176 0.032 0.776 0.016
#> GSM627080     1  0.0188    0.68477 0.996 0.000 0.000 0.004
#> GSM627088     3  0.5636   -0.19048 0.436 0.004 0.544 0.016
#> GSM627109     1  0.4401    0.68862 0.724 0.000 0.272 0.004
#> GSM627111     1  0.0188    0.68477 0.996 0.000 0.000 0.004
#> GSM627113     1  0.4699    0.66128 0.676 0.000 0.320 0.004
#> GSM627133     3  0.5709    0.41900 0.004 0.384 0.588 0.024
#> GSM627177     1  0.6330    0.39989 0.492 0.000 0.448 0.060
#> GSM627086     2  0.1637    0.85285 0.000 0.940 0.000 0.060
#> GSM627095     1  0.6862   -0.03789 0.492 0.020 0.056 0.432
#> GSM627079     3  0.4199    0.57810 0.164 0.000 0.804 0.032
#> GSM627082     4  0.2011    0.69424 0.000 0.000 0.080 0.920
#> GSM627074     1  0.4401    0.68862 0.724 0.000 0.272 0.004
#> GSM627077     1  0.4905    0.62344 0.632 0.000 0.364 0.004
#> GSM627093     1  0.4401    0.68862 0.724 0.000 0.272 0.004
#> GSM627120     2  0.3577    0.75496 0.000 0.832 0.012 0.156
#> GSM627124     4  0.3837    0.74922 0.000 0.224 0.000 0.776
#> GSM627075     2  0.0336    0.87334 0.000 0.992 0.008 0.000
#> GSM627085     4  0.3801    0.75056 0.000 0.220 0.000 0.780
#> GSM627119     1  0.4401    0.68862 0.724 0.000 0.272 0.004
#> GSM627116     1  0.6332    0.39184 0.488 0.000 0.452 0.060
#> GSM627084     3  0.5626    0.00711 0.388 0.004 0.588 0.020
#> GSM627096     4  0.5055    0.59464 0.000 0.368 0.008 0.624
#> GSM627100     3  0.3278    0.67895 0.000 0.020 0.864 0.116
#> GSM627112     4  0.2988    0.74468 0.000 0.112 0.012 0.876
#> GSM627083     1  0.6862   -0.03789 0.492 0.020 0.056 0.432
#> GSM627098     3  0.5626    0.00711 0.388 0.004 0.588 0.020
#> GSM627104     1  0.4401    0.68862 0.724 0.000 0.272 0.004
#> GSM627131     3  0.4199    0.57810 0.164 0.000 0.804 0.032
#> GSM627106     3  0.4458    0.69064 0.000 0.116 0.808 0.076
#> GSM627123     1  0.0524    0.68438 0.988 0.000 0.004 0.008
#> GSM627129     4  0.5440    0.55529 0.000 0.384 0.020 0.596
#> GSM627216     3  0.5709    0.41900 0.004 0.384 0.588 0.024
#> GSM627212     2  0.1610    0.86893 0.000 0.952 0.016 0.032
#> GSM627190     1  0.6161    0.52192 0.552 0.044 0.400 0.004
#> GSM627169     2  0.1109    0.86573 0.000 0.968 0.028 0.004
#> GSM627167     2  0.5623    0.48267 0.000 0.660 0.048 0.292
#> GSM627192     1  0.0188    0.68477 0.996 0.000 0.000 0.004
#> GSM627203     3  0.2675    0.70487 0.000 0.100 0.892 0.008
#> GSM627151     3  0.4811    0.68309 0.032 0.068 0.816 0.084
#> GSM627163     1  0.0188    0.68477 0.996 0.000 0.000 0.004
#> GSM627211     2  0.0000    0.87510 0.000 1.000 0.000 0.000
#> GSM627171     2  0.0779    0.87195 0.000 0.980 0.016 0.004
#> GSM627209     2  0.4535    0.51212 0.000 0.704 0.004 0.292
#> GSM627135     1  0.2101    0.69032 0.928 0.000 0.060 0.012
#> GSM627170     2  0.2675    0.84389 0.000 0.908 0.044 0.048
#> GSM627178     1  0.6332    0.39184 0.488 0.000 0.452 0.060
#> GSM627199     4  0.3801    0.75056 0.000 0.220 0.000 0.780
#> GSM627213     4  0.4608    0.68681 0.000 0.304 0.004 0.692
#> GSM627140     4  0.5827    0.55396 0.000 0.316 0.052 0.632
#> GSM627149     1  0.0524    0.68438 0.988 0.000 0.004 0.008
#> GSM627147     2  0.5786    0.43531 0.000 0.640 0.052 0.308
#> GSM627195     3  0.2675    0.70487 0.000 0.100 0.892 0.008
#> GSM627204     2  0.0000    0.87510 0.000 1.000 0.000 0.000
#> GSM627207     2  0.0000    0.87510 0.000 1.000 0.000 0.000
#> GSM627157     1  0.4800    0.64608 0.656 0.000 0.340 0.004
#> GSM627201     2  0.1520    0.86987 0.000 0.956 0.024 0.020
#> GSM627146     2  0.0188    0.87565 0.000 0.996 0.000 0.004
#> GSM627156     2  0.1109    0.86573 0.000 0.968 0.028 0.004
#> GSM627188     1  0.0188    0.68477 0.996 0.000 0.000 0.004
#> GSM627197     2  0.0188    0.87565 0.000 0.996 0.000 0.004
#> GSM627173     2  0.0000    0.87510 0.000 1.000 0.000 0.000
#> GSM627179     2  0.0927    0.87323 0.000 0.976 0.016 0.008
#> GSM627208     3  0.4391    0.64393 0.000 0.252 0.740 0.008
#> GSM627215     3  0.5038    0.51645 0.000 0.336 0.652 0.012
#> GSM627153     2  0.4535    0.51212 0.000 0.704 0.004 0.292
#> GSM627155     1  0.0188    0.68477 0.996 0.000 0.000 0.004
#> GSM627165     2  0.3893    0.69984 0.000 0.796 0.008 0.196
#> GSM627168     1  0.4872    0.63261 0.640 0.000 0.356 0.004
#> GSM627183     1  0.5178    0.58690 0.600 0.004 0.392 0.004
#> GSM627144     3  0.2611    0.70460 0.000 0.096 0.896 0.008
#> GSM627158     1  0.0188    0.68477 0.996 0.000 0.000 0.004
#> GSM627196     2  0.0000    0.87510 0.000 1.000 0.000 0.000
#> GSM627142     4  0.4989   -0.00812 0.000 0.000 0.472 0.528
#> GSM627182     3  0.4391    0.64393 0.000 0.252 0.740 0.008
#> GSM627202     3  0.5167    0.19168 0.340 0.000 0.644 0.016
#> GSM627141     1  0.5311    0.57786 0.596 0.008 0.392 0.004
#> GSM627143     2  0.5397    0.62208 0.000 0.720 0.068 0.212
#> GSM627145     3  0.4569    0.62473 0.140 0.036 0.808 0.016
#> GSM627152     3  0.5054    0.65605 0.100 0.016 0.792 0.092
#> GSM627200     3  0.4375    0.60872 0.144 0.008 0.812 0.036
#> GSM627159     4  0.2011    0.69424 0.000 0.000 0.080 0.920
#> GSM627164     2  0.0779    0.87195 0.000 0.980 0.016 0.004
#> GSM627138     1  0.0188    0.68477 0.996 0.000 0.000 0.004
#> GSM627175     4  0.4522    0.66658 0.000 0.320 0.000 0.680
#> GSM627150     3  0.4693    0.59519 0.160 0.012 0.792 0.036
#> GSM627166     1  0.5790    0.66817 0.684 0.000 0.236 0.080
#> GSM627186     2  0.1356    0.86457 0.000 0.960 0.032 0.008
#> GSM627139     3  0.4811    0.68309 0.032 0.068 0.816 0.084
#> GSM627181     2  0.0188    0.87565 0.000 0.996 0.000 0.004
#> GSM627205     3  0.5506    0.16120 0.000 0.472 0.512 0.016
#> GSM627214     2  0.4212    0.66034 0.000 0.772 0.012 0.216
#> GSM627180     3  0.5038    0.51645 0.000 0.336 0.652 0.012
#> GSM627172     2  0.2805    0.82025 0.000 0.888 0.012 0.100
#> GSM627184     1  0.0188    0.68477 0.996 0.000 0.000 0.004
#> GSM627193     2  0.0000    0.87510 0.000 1.000 0.000 0.000
#> GSM627191     4  0.7285    0.29958 0.308 0.036 0.084 0.572
#> GSM627176     3  0.2965    0.69512 0.000 0.036 0.892 0.072
#> GSM627194     2  0.3074    0.76207 0.000 0.848 0.000 0.152
#> GSM627154     4  0.3801    0.75056 0.000 0.220 0.000 0.780
#> GSM627187     1  0.6161    0.52192 0.552 0.044 0.400 0.004
#> GSM627198     4  0.3801    0.75056 0.000 0.220 0.000 0.780
#> GSM627160     4  0.5979    0.64189 0.000 0.136 0.172 0.692
#> GSM627185     1  0.3831    0.69574 0.792 0.000 0.204 0.004
#> GSM627206     1  0.5290    0.49434 0.552 0.004 0.440 0.004
#> GSM627161     1  0.0188    0.68477 0.996 0.000 0.000 0.004
#> GSM627162     2  0.7516    0.25169 0.004 0.524 0.244 0.228
#> GSM627210     1  0.4401    0.68862 0.724 0.000 0.272 0.004
#> GSM627189     2  0.0000    0.87510 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM627128     4  0.3868     0.6959 0.056 0.000 0.016 0.824 0.104
#> GSM627110     3  0.2017     0.8004 0.008 0.000 0.912 0.000 0.080
#> GSM627132     1  0.2424     0.9165 0.868 0.000 0.132 0.000 0.000
#> GSM627107     5  0.4042     0.6888 0.008 0.068 0.028 0.064 0.832
#> GSM627103     2  0.2374     0.8409 0.016 0.912 0.000 0.052 0.020
#> GSM627114     3  0.3123     0.7714 0.000 0.004 0.812 0.000 0.184
#> GSM627134     4  0.5568     0.6523 0.048 0.264 0.004 0.656 0.028
#> GSM627137     2  0.5051     0.6314 0.048 0.708 0.000 0.220 0.024
#> GSM627148     5  0.4432     0.6953 0.000 0.080 0.092 0.032 0.796
#> GSM627101     4  0.4828     0.7827 0.048 0.092 0.004 0.780 0.076
#> GSM627130     4  0.3919     0.6944 0.056 0.000 0.016 0.820 0.108
#> GSM627071     5  0.5510     0.4127 0.016 0.012 0.356 0.024 0.592
#> GSM627118     4  0.5473     0.6781 0.048 0.248 0.004 0.672 0.028
#> GSM627094     2  0.0000     0.8518 0.000 1.000 0.000 0.000 0.000
#> GSM627122     5  0.5071     0.2992 0.012 0.000 0.392 0.020 0.576
#> GSM627115     2  0.2228     0.8417 0.016 0.920 0.000 0.044 0.020
#> GSM627125     4  0.3968     0.6926 0.056 0.000 0.016 0.816 0.112
#> GSM627174     2  0.1989     0.8487 0.004 0.932 0.004 0.032 0.028
#> GSM627102     2  0.2970     0.8035 0.012 0.872 0.004 0.100 0.012
#> GSM627073     5  0.5407     0.6387 0.000 0.128 0.180 0.008 0.684
#> GSM627108     2  0.0000     0.8518 0.000 1.000 0.000 0.000 0.000
#> GSM627126     1  0.2230     0.9205 0.884 0.000 0.116 0.000 0.000
#> GSM627078     4  0.2561     0.7914 0.000 0.144 0.000 0.856 0.000
#> GSM627090     5  0.3418     0.6658 0.028 0.000 0.068 0.044 0.860
#> GSM627099     2  0.2605     0.8353 0.016 0.900 0.000 0.060 0.024
#> GSM627105     4  0.3968     0.6926 0.056 0.000 0.016 0.816 0.112
#> GSM627117     3  0.4028     0.7488 0.000 0.040 0.768 0.000 0.192
#> GSM627121     5  0.4645     0.6786 0.008 0.112 0.028 0.064 0.788
#> GSM627127     4  0.4459     0.7690 0.048 0.152 0.008 0.780 0.012
#> GSM627087     2  0.2228     0.8417 0.016 0.920 0.000 0.044 0.020
#> GSM627089     3  0.3160     0.7602 0.000 0.000 0.808 0.004 0.188
#> GSM627092     2  0.6965     0.3110 0.016 0.516 0.012 0.284 0.172
#> GSM627076     5  0.3480     0.6643 0.028 0.000 0.044 0.072 0.856
#> GSM627136     3  0.4849     0.2600 0.004 0.000 0.548 0.016 0.432
#> GSM627081     5  0.4103     0.6890 0.008 0.072 0.028 0.064 0.828
#> GSM627091     2  0.2605     0.8353 0.016 0.900 0.000 0.060 0.024
#> GSM627097     4  0.6456     0.7443 0.048 0.140 0.080 0.680 0.052
#> GSM627072     5  0.5262     0.3767 0.008 0.024 0.372 0.008 0.588
#> GSM627080     1  0.2280     0.9205 0.880 0.000 0.120 0.000 0.000
#> GSM627088     3  0.4443     0.5834 0.008 0.000 0.680 0.012 0.300
#> GSM627109     3  0.1197     0.7771 0.048 0.000 0.952 0.000 0.000
#> GSM627111     1  0.2424     0.9165 0.868 0.000 0.132 0.000 0.000
#> GSM627113     3  0.2278     0.7962 0.032 0.000 0.908 0.000 0.060
#> GSM627133     5  0.5805     0.4793 0.004 0.352 0.044 0.024 0.576
#> GSM627177     3  0.5103     0.6556 0.024 0.000 0.688 0.040 0.248
#> GSM627086     2  0.2069     0.8295 0.012 0.912 0.000 0.076 0.000
#> GSM627095     1  0.6677     0.1518 0.488 0.012 0.064 0.396 0.040
#> GSM627079     5  0.5075     0.3876 0.016 0.000 0.360 0.020 0.604
#> GSM627082     4  0.3919     0.6944 0.056 0.000 0.016 0.820 0.108
#> GSM627074     3  0.1197     0.7771 0.048 0.000 0.952 0.000 0.000
#> GSM627077     3  0.2193     0.8017 0.008 0.000 0.900 0.000 0.092
#> GSM627093     3  0.1197     0.7771 0.048 0.000 0.952 0.000 0.000
#> GSM627120     2  0.4858     0.7022 0.048 0.756 0.008 0.164 0.024
#> GSM627124     4  0.2561     0.7914 0.000 0.144 0.000 0.856 0.000
#> GSM627075     2  0.1095     0.8469 0.012 0.968 0.008 0.000 0.012
#> GSM627085     4  0.2516     0.7925 0.000 0.140 0.000 0.860 0.000
#> GSM627119     3  0.1197     0.7771 0.048 0.000 0.952 0.000 0.000
#> GSM627116     3  0.5128     0.6546 0.024 0.000 0.684 0.040 0.252
#> GSM627084     3  0.4734     0.4841 0.008 0.000 0.632 0.016 0.344
#> GSM627096     4  0.5473     0.6781 0.048 0.248 0.004 0.672 0.028
#> GSM627100     5  0.3480     0.6643 0.028 0.000 0.044 0.072 0.856
#> GSM627112     4  0.3708     0.7775 0.032 0.084 0.008 0.848 0.028
#> GSM627083     1  0.6677     0.1518 0.488 0.012 0.064 0.396 0.040
#> GSM627098     3  0.4734     0.4841 0.008 0.000 0.632 0.016 0.344
#> GSM627104     3  0.1197     0.7771 0.048 0.000 0.952 0.000 0.000
#> GSM627131     5  0.5075     0.3876 0.016 0.000 0.360 0.020 0.604
#> GSM627106     5  0.4103     0.6890 0.008 0.072 0.028 0.064 0.828
#> GSM627123     1  0.2488     0.9158 0.872 0.000 0.124 0.004 0.000
#> GSM627129     4  0.5718     0.6508 0.048 0.264 0.004 0.648 0.036
#> GSM627216     5  0.5805     0.4793 0.004 0.352 0.044 0.024 0.576
#> GSM627212     2  0.2605     0.8353 0.016 0.900 0.000 0.060 0.024
#> GSM627190     3  0.4028     0.7488 0.000 0.040 0.768 0.000 0.192
#> GSM627169     2  0.1507     0.8387 0.012 0.952 0.012 0.000 0.024
#> GSM627167     2  0.5563     0.4806 0.016 0.628 0.004 0.300 0.052
#> GSM627192     1  0.2230     0.9205 0.884 0.000 0.116 0.000 0.000
#> GSM627203     5  0.2885     0.6926 0.000 0.064 0.052 0.004 0.880
#> GSM627151     5  0.5633     0.6382 0.020 0.036 0.144 0.076 0.724
#> GSM627163     1  0.2377     0.9173 0.872 0.000 0.128 0.000 0.000
#> GSM627211     2  0.0000     0.8518 0.000 1.000 0.000 0.000 0.000
#> GSM627171     2  0.1235     0.8438 0.012 0.964 0.004 0.004 0.016
#> GSM627209     2  0.4474     0.4706 0.012 0.652 0.000 0.332 0.004
#> GSM627135     1  0.3422     0.8403 0.792 0.000 0.200 0.004 0.004
#> GSM627170     2  0.4207     0.7828 0.048 0.816 0.000 0.072 0.064
#> GSM627178     3  0.5128     0.6546 0.024 0.000 0.684 0.040 0.252
#> GSM627199     4  0.2516     0.7925 0.000 0.140 0.000 0.860 0.000
#> GSM627213     4  0.5036     0.7490 0.048 0.188 0.004 0.732 0.028
#> GSM627140     4  0.6349     0.5271 0.044 0.292 0.008 0.592 0.064
#> GSM627149     1  0.2488     0.9158 0.872 0.000 0.124 0.004 0.000
#> GSM627147     2  0.5693     0.4375 0.016 0.608 0.004 0.316 0.056
#> GSM627195     5  0.2885     0.6926 0.000 0.064 0.052 0.004 0.880
#> GSM627204     2  0.0000     0.8518 0.000 1.000 0.000 0.000 0.000
#> GSM627207     2  0.0162     0.8524 0.000 0.996 0.000 0.004 0.000
#> GSM627157     3  0.2270     0.7999 0.020 0.000 0.904 0.000 0.076
#> GSM627201     2  0.1989     0.8487 0.004 0.932 0.004 0.032 0.028
#> GSM627146     2  0.0510     0.8535 0.000 0.984 0.000 0.016 0.000
#> GSM627156     2  0.1507     0.8387 0.012 0.952 0.012 0.000 0.024
#> GSM627188     1  0.2230     0.9205 0.884 0.000 0.116 0.000 0.000
#> GSM627197     2  0.0609     0.8538 0.000 0.980 0.000 0.020 0.000
#> GSM627173     2  0.0404     0.8530 0.000 0.988 0.000 0.012 0.000
#> GSM627179     2  0.1787     0.8459 0.012 0.940 0.000 0.032 0.016
#> GSM627208     5  0.5038     0.6399 0.000 0.220 0.072 0.008 0.700
#> GSM627215     5  0.4854     0.5872 0.000 0.288 0.024 0.016 0.672
#> GSM627153     2  0.4474     0.4706 0.012 0.652 0.000 0.332 0.004
#> GSM627155     1  0.2230     0.9205 0.884 0.000 0.116 0.000 0.000
#> GSM627165     2  0.5189     0.6153 0.048 0.696 0.000 0.228 0.028
#> GSM627168     3  0.2464     0.8003 0.016 0.000 0.888 0.000 0.096
#> GSM627183     3  0.2660     0.7945 0.008 0.000 0.864 0.000 0.128
#> GSM627144     5  0.2954     0.6924 0.000 0.064 0.056 0.004 0.876
#> GSM627158     1  0.2280     0.9205 0.880 0.000 0.120 0.000 0.000
#> GSM627196     2  0.0000     0.8518 0.000 1.000 0.000 0.000 0.000
#> GSM627142     5  0.5692     0.0249 0.040 0.000 0.020 0.452 0.488
#> GSM627182     5  0.5038     0.6399 0.000 0.220 0.072 0.008 0.700
#> GSM627202     3  0.4871     0.3628 0.012 0.000 0.592 0.012 0.384
#> GSM627141     3  0.2488     0.7954 0.000 0.004 0.872 0.000 0.124
#> GSM627143     2  0.5394     0.6159 0.016 0.688 0.004 0.220 0.072
#> GSM627145     5  0.5093     0.4768 0.008 0.024 0.324 0.008 0.636
#> GSM627152     5  0.4665     0.6147 0.020 0.000 0.168 0.056 0.756
#> GSM627200     5  0.5046     0.4466 0.020 0.000 0.328 0.020 0.632
#> GSM627159     4  0.3919     0.6944 0.056 0.000 0.016 0.820 0.108
#> GSM627164     2  0.1235     0.8438 0.012 0.964 0.004 0.004 0.016
#> GSM627138     1  0.2280     0.9205 0.880 0.000 0.120 0.000 0.000
#> GSM627175     4  0.4731     0.7300 0.048 0.208 0.004 0.732 0.008
#> GSM627150     5  0.5510     0.4127 0.016 0.012 0.356 0.024 0.592
#> GSM627166     3  0.3670     0.7392 0.044 0.000 0.848 0.064 0.044
#> GSM627186     2  0.1757     0.8385 0.012 0.944 0.012 0.004 0.028
#> GSM627139     5  0.5633     0.6382 0.020 0.036 0.144 0.076 0.724
#> GSM627181     2  0.0609     0.8538 0.000 0.980 0.000 0.020 0.000
#> GSM627205     5  0.5599     0.2393 0.016 0.432 0.016 0.016 0.520
#> GSM627214     2  0.4486     0.6102 0.012 0.712 0.000 0.256 0.020
#> GSM627180     5  0.4854     0.5872 0.000 0.288 0.024 0.016 0.672
#> GSM627172     2  0.2970     0.8035 0.012 0.872 0.004 0.100 0.012
#> GSM627184     1  0.2230     0.9205 0.884 0.000 0.116 0.000 0.000
#> GSM627193     2  0.0404     0.8530 0.000 0.988 0.000 0.012 0.000
#> GSM627191     4  0.7348     0.2887 0.300 0.028 0.088 0.524 0.060
#> GSM627176     5  0.3547     0.6749 0.028 0.008 0.068 0.036 0.860
#> GSM627194     2  0.4499     0.7171 0.048 0.776 0.008 0.156 0.012
#> GSM627154     4  0.2516     0.7925 0.000 0.140 0.000 0.860 0.000
#> GSM627187     3  0.4028     0.7488 0.000 0.040 0.768 0.000 0.192
#> GSM627198     4  0.2516     0.7925 0.000 0.140 0.000 0.860 0.000
#> GSM627160     4  0.6671     0.6195 0.044 0.124 0.016 0.624 0.192
#> GSM627185     3  0.2329     0.7080 0.124 0.000 0.876 0.000 0.000
#> GSM627206     3  0.3160     0.7602 0.000 0.000 0.808 0.004 0.188
#> GSM627161     1  0.2280     0.9205 0.880 0.000 0.120 0.000 0.000
#> GSM627162     2  0.7519     0.2612 0.016 0.480 0.032 0.240 0.232
#> GSM627210     3  0.1197     0.7771 0.048 0.000 0.952 0.000 0.000
#> GSM627189     2  0.0404     0.8530 0.000 0.988 0.000 0.012 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM627128     6  0.2100     0.7244 0.000 0.000 0.000 0.112 0.004 0.884
#> GSM627110     3  0.2358     0.7959 0.000 0.000 0.876 0.000 0.108 0.016
#> GSM627132     1  0.0713     0.9058 0.972 0.000 0.028 0.000 0.000 0.000
#> GSM627107     5  0.3023     0.6768 0.000 0.000 0.000 0.032 0.828 0.140
#> GSM627103     2  0.3101     0.7958 0.000 0.832 0.000 0.136 0.012 0.020
#> GSM627114     3  0.3183     0.7713 0.000 0.004 0.788 0.000 0.200 0.008
#> GSM627134     4  0.1555     0.6554 0.000 0.040 0.000 0.940 0.008 0.012
#> GSM627137     2  0.4598     0.3319 0.000 0.504 0.000 0.464 0.004 0.028
#> GSM627148     5  0.3318     0.7149 0.000 0.040 0.048 0.004 0.852 0.056
#> GSM627101     4  0.3448     0.4955 0.000 0.000 0.000 0.716 0.004 0.280
#> GSM627130     6  0.2006     0.7308 0.000 0.000 0.000 0.104 0.004 0.892
#> GSM627071     5  0.4718     0.4281 0.000 0.000 0.316 0.000 0.616 0.068
#> GSM627118     4  0.1251     0.6632 0.000 0.024 0.000 0.956 0.008 0.012
#> GSM627094     2  0.0865     0.8235 0.000 0.964 0.000 0.036 0.000 0.000
#> GSM627122     5  0.4881     0.3412 0.000 0.000 0.336 0.000 0.588 0.076
#> GSM627115     2  0.2847     0.8014 0.000 0.852 0.000 0.120 0.012 0.016
#> GSM627125     6  0.1958     0.7323 0.000 0.000 0.000 0.100 0.004 0.896
#> GSM627174     2  0.2367     0.8125 0.000 0.888 0.000 0.088 0.008 0.016
#> GSM627102     2  0.2333     0.7706 0.000 0.884 0.000 0.024 0.000 0.092
#> GSM627073     5  0.4695     0.6560 0.000 0.084 0.144 0.012 0.740 0.020
#> GSM627108     2  0.0865     0.8235 0.000 0.964 0.000 0.036 0.000 0.000
#> GSM627126     1  0.0260     0.9108 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM627078     4  0.3337     0.6277 0.000 0.004 0.000 0.736 0.000 0.260
#> GSM627090     5  0.2805     0.6867 0.000 0.000 0.012 0.000 0.828 0.160
#> GSM627099     2  0.3457     0.7765 0.000 0.800 0.000 0.164 0.020 0.016
#> GSM627105     6  0.1958     0.7323 0.000 0.000 0.000 0.100 0.004 0.896
#> GSM627117     3  0.3956     0.7531 0.000 0.040 0.748 0.000 0.204 0.008
#> GSM627121     5  0.3878     0.6644 0.000 0.040 0.000 0.032 0.792 0.136
#> GSM627127     4  0.1610     0.6723 0.000 0.000 0.000 0.916 0.000 0.084
#> GSM627087     2  0.2847     0.8014 0.000 0.852 0.000 0.120 0.012 0.016
#> GSM627089     3  0.3023     0.7567 0.000 0.000 0.784 0.000 0.212 0.004
#> GSM627092     2  0.7020     0.2383 0.000 0.476 0.004 0.144 0.120 0.256
#> GSM627076     5  0.2730     0.6696 0.000 0.000 0.000 0.000 0.808 0.192
#> GSM627136     3  0.4695     0.2373 0.000 0.000 0.508 0.000 0.448 0.044
#> GSM627081     5  0.2983     0.6769 0.000 0.000 0.000 0.032 0.832 0.136
#> GSM627091     2  0.3457     0.7765 0.000 0.800 0.000 0.164 0.020 0.016
#> GSM627097     4  0.4042     0.5834 0.000 0.000 0.040 0.784 0.044 0.132
#> GSM627072     5  0.4224     0.3845 0.000 0.000 0.340 0.000 0.632 0.028
#> GSM627080     1  0.0260     0.9130 0.992 0.000 0.008 0.000 0.000 0.000
#> GSM627088     3  0.4282     0.5848 0.000 0.000 0.656 0.000 0.304 0.040
#> GSM627109     3  0.0000     0.7763 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627111     1  0.0713     0.9058 0.972 0.000 0.028 0.000 0.000 0.000
#> GSM627113     3  0.1802     0.7938 0.012 0.000 0.916 0.000 0.072 0.000
#> GSM627133     5  0.5849     0.4968 0.000 0.280 0.032 0.044 0.600 0.044
#> GSM627177     3  0.4931     0.6157 0.000 0.000 0.636 0.000 0.248 0.116
#> GSM627086     2  0.2871     0.7561 0.000 0.804 0.000 0.192 0.004 0.000
#> GSM627095     1  0.5733     0.0335 0.480 0.000 0.012 0.120 0.000 0.388
#> GSM627079     5  0.4798     0.4322 0.000 0.000 0.300 0.000 0.620 0.080
#> GSM627082     6  0.1958     0.7319 0.000 0.000 0.000 0.100 0.004 0.896
#> GSM627074     3  0.0000     0.7763 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627077     3  0.2494     0.7970 0.000 0.000 0.864 0.000 0.120 0.016
#> GSM627093     3  0.0000     0.7763 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627120     2  0.4470     0.6107 0.000 0.660 0.000 0.296 0.016 0.028
#> GSM627124     4  0.3337     0.6277 0.000 0.004 0.000 0.736 0.000 0.260
#> GSM627075     2  0.0622     0.8165 0.000 0.980 0.000 0.012 0.000 0.008
#> GSM627085     4  0.3221     0.6252 0.000 0.000 0.000 0.736 0.000 0.264
#> GSM627119     3  0.0000     0.7763 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627116     3  0.4952     0.6145 0.000 0.000 0.632 0.000 0.252 0.116
#> GSM627084     3  0.4506     0.4853 0.000 0.000 0.608 0.000 0.348 0.044
#> GSM627096     4  0.1251     0.6632 0.000 0.024 0.000 0.956 0.008 0.012
#> GSM627100     5  0.2730     0.6696 0.000 0.000 0.000 0.000 0.808 0.192
#> GSM627112     4  0.3868     0.1331 0.000 0.000 0.000 0.508 0.000 0.492
#> GSM627083     1  0.5733     0.0335 0.480 0.000 0.012 0.120 0.000 0.388
#> GSM627098     3  0.4506     0.4853 0.000 0.000 0.608 0.000 0.348 0.044
#> GSM627104     3  0.0000     0.7763 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627131     5  0.4798     0.4322 0.000 0.000 0.300 0.000 0.620 0.080
#> GSM627106     5  0.2983     0.6769 0.000 0.000 0.000 0.032 0.832 0.136
#> GSM627123     1  0.0622     0.9064 0.980 0.000 0.008 0.000 0.000 0.012
#> GSM627129     4  0.3317     0.5979 0.000 0.088 0.000 0.828 0.004 0.080
#> GSM627216     5  0.5849     0.4968 0.000 0.280 0.032 0.044 0.600 0.044
#> GSM627212     2  0.3457     0.7765 0.000 0.800 0.000 0.164 0.020 0.016
#> GSM627190     3  0.3956     0.7531 0.000 0.040 0.748 0.000 0.204 0.008
#> GSM627169     2  0.0924     0.8134 0.000 0.972 0.008 0.004 0.008 0.008
#> GSM627167     2  0.5454     0.4423 0.000 0.600 0.000 0.160 0.008 0.232
#> GSM627192     1  0.0000     0.9124 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627203     5  0.0405     0.7080 0.000 0.000 0.000 0.004 0.988 0.008
#> GSM627151     5  0.5395     0.6619 0.000 0.020 0.088 0.048 0.700 0.144
#> GSM627163     1  0.0632     0.9066 0.976 0.000 0.024 0.000 0.000 0.000
#> GSM627211     2  0.0790     0.8233 0.000 0.968 0.000 0.032 0.000 0.000
#> GSM627171     2  0.0508     0.8150 0.000 0.984 0.000 0.004 0.000 0.012
#> GSM627209     4  0.4723    -0.1602 0.000 0.472 0.000 0.488 0.004 0.036
#> GSM627135     1  0.2263     0.8272 0.884 0.000 0.100 0.000 0.000 0.016
#> GSM627170     2  0.5187     0.5714 0.000 0.604 0.000 0.312 0.056 0.028
#> GSM627178     3  0.4952     0.6145 0.000 0.000 0.632 0.000 0.252 0.116
#> GSM627199     4  0.3244     0.6223 0.000 0.000 0.000 0.732 0.000 0.268
#> GSM627213     4  0.2051     0.6655 0.000 0.004 0.000 0.896 0.004 0.096
#> GSM627140     6  0.5849     0.2304 0.000 0.252 0.000 0.228 0.004 0.516
#> GSM627149     1  0.0622     0.9064 0.980 0.000 0.008 0.000 0.000 0.012
#> GSM627147     2  0.5564     0.4049 0.000 0.580 0.000 0.164 0.008 0.248
#> GSM627195     5  0.0405     0.7080 0.000 0.000 0.000 0.004 0.988 0.008
#> GSM627204     2  0.0790     0.8233 0.000 0.968 0.000 0.032 0.000 0.000
#> GSM627207     2  0.0790     0.8239 0.000 0.968 0.000 0.032 0.000 0.000
#> GSM627157     3  0.1858     0.7966 0.004 0.000 0.904 0.000 0.092 0.000
#> GSM627201     2  0.2367     0.8125 0.000 0.888 0.000 0.088 0.008 0.016
#> GSM627146     2  0.1267     0.8238 0.000 0.940 0.000 0.060 0.000 0.000
#> GSM627156     2  0.0924     0.8134 0.000 0.972 0.008 0.004 0.008 0.008
#> GSM627188     1  0.0000     0.9124 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627197     2  0.1327     0.8237 0.000 0.936 0.000 0.064 0.000 0.000
#> GSM627173     2  0.1204     0.8240 0.000 0.944 0.000 0.056 0.000 0.000
#> GSM627179     2  0.2476     0.8108 0.000 0.880 0.000 0.096 0.012 0.012
#> GSM627208     5  0.4521     0.6557 0.000 0.132 0.036 0.032 0.768 0.032
#> GSM627215     5  0.5086     0.5840 0.000 0.180 0.012 0.068 0.704 0.036
#> GSM627153     4  0.4723    -0.1602 0.000 0.472 0.000 0.488 0.004 0.036
#> GSM627155     1  0.0000     0.9124 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627165     2  0.4602     0.3052 0.000 0.492 0.000 0.476 0.004 0.028
#> GSM627168     3  0.1957     0.7972 0.000 0.000 0.888 0.000 0.112 0.000
#> GSM627183     3  0.2442     0.7918 0.000 0.000 0.852 0.000 0.144 0.004
#> GSM627144     5  0.0363     0.7083 0.000 0.000 0.000 0.000 0.988 0.012
#> GSM627158     1  0.0260     0.9130 0.992 0.000 0.008 0.000 0.000 0.000
#> GSM627196     2  0.0790     0.8233 0.000 0.968 0.000 0.032 0.000 0.000
#> GSM627142     6  0.4634     0.1098 0.000 0.000 0.000 0.044 0.400 0.556
#> GSM627182     5  0.4521     0.6557 0.000 0.132 0.036 0.032 0.768 0.032
#> GSM627202     3  0.4701     0.3640 0.004 0.000 0.560 0.000 0.396 0.040
#> GSM627141     3  0.3010     0.7927 0.000 0.004 0.828 0.000 0.148 0.020
#> GSM627143     2  0.5184     0.5562 0.000 0.660 0.000 0.120 0.020 0.200
#> GSM627145     5  0.3990     0.4963 0.000 0.000 0.284 0.000 0.688 0.028
#> GSM627152     5  0.4267     0.6491 0.000 0.000 0.116 0.000 0.732 0.152
#> GSM627200     5  0.4700     0.4880 0.000 0.000 0.268 0.000 0.648 0.084
#> GSM627159     6  0.1958     0.7319 0.000 0.000 0.000 0.100 0.004 0.896
#> GSM627164     2  0.0508     0.8150 0.000 0.984 0.000 0.004 0.000 0.012
#> GSM627138     1  0.0260     0.9130 0.992 0.000 0.008 0.000 0.000 0.000
#> GSM627175     4  0.1265     0.6729 0.000 0.008 0.000 0.948 0.000 0.044
#> GSM627150     5  0.4718     0.4281 0.000 0.000 0.316 0.000 0.616 0.068
#> GSM627166     3  0.3239     0.7315 0.000 0.000 0.840 0.016 0.044 0.100
#> GSM627186     2  0.1140     0.8131 0.000 0.964 0.008 0.008 0.012 0.008
#> GSM627139     5  0.5395     0.6619 0.000 0.020 0.088 0.048 0.700 0.144
#> GSM627181     2  0.1327     0.8237 0.000 0.936 0.000 0.064 0.000 0.000
#> GSM627205     5  0.5742     0.3127 0.000 0.328 0.000 0.088 0.548 0.036
#> GSM627214     2  0.4386     0.2884 0.000 0.516 0.000 0.464 0.004 0.016
#> GSM627180     5  0.5086     0.5840 0.000 0.180 0.012 0.068 0.704 0.036
#> GSM627172     2  0.2333     0.7706 0.000 0.884 0.000 0.024 0.000 0.092
#> GSM627184     1  0.0000     0.9124 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627193     2  0.1204     0.8240 0.000 0.944 0.000 0.056 0.000 0.000
#> GSM627191     6  0.6304     0.3530 0.292 0.008 0.028 0.156 0.000 0.516
#> GSM627176     5  0.2886     0.6945 0.000 0.004 0.016 0.000 0.836 0.144
#> GSM627194     2  0.3615     0.6475 0.000 0.700 0.000 0.292 0.000 0.008
#> GSM627154     4  0.3221     0.6252 0.000 0.000 0.000 0.736 0.000 0.264
#> GSM627187     3  0.3956     0.7531 0.000 0.040 0.748 0.000 0.204 0.008
#> GSM627198     4  0.3244     0.6223 0.000 0.000 0.000 0.732 0.000 0.268
#> GSM627160     6  0.6258     0.4654 0.000 0.088 0.000 0.208 0.128 0.576
#> GSM627185     3  0.1949     0.7327 0.088 0.000 0.904 0.000 0.004 0.004
#> GSM627206     3  0.3023     0.7567 0.000 0.000 0.784 0.000 0.212 0.004
#> GSM627161     1  0.0260     0.9130 0.992 0.000 0.008 0.000 0.000 0.000
#> GSM627162     2  0.7323     0.1757 0.000 0.456 0.020 0.088 0.196 0.240
#> GSM627210     3  0.0000     0.7763 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627189     2  0.1204     0.8240 0.000 0.944 0.000 0.056 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) age(p) other(p) k
#> SD:hclust 135           1.0000  0.542   0.1704 2
#> SD:hclust 122           0.6198  0.796   0.1239 3
#> SD:hclust 125           0.0766  0.681   0.1292 4
#> SD:hclust 121           0.0998  0.930   0.0567 5
#> SD:hclust 114           0.1223  0.865   0.0497 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 146 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.975       0.989         0.4988 0.501   0.501
#> 3 3 0.522           0.623       0.804         0.2990 0.736   0.524
#> 4 4 0.692           0.773       0.876         0.1317 0.770   0.451
#> 5 5 0.654           0.537       0.741         0.0683 0.960   0.857
#> 6 6 0.689           0.637       0.738         0.0486 0.876   0.559

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM627128     2  0.0000      0.992 0.000 1.000
#> GSM627110     1  0.0000      0.986 1.000 0.000
#> GSM627132     1  0.0000      0.986 1.000 0.000
#> GSM627107     2  0.0000      0.992 0.000 1.000
#> GSM627103     2  0.0000      0.992 0.000 1.000
#> GSM627114     1  0.0000      0.986 1.000 0.000
#> GSM627134     2  0.0000      0.992 0.000 1.000
#> GSM627137     2  0.0000      0.992 0.000 1.000
#> GSM627148     1  0.0000      0.986 1.000 0.000
#> GSM627101     2  0.0000      0.992 0.000 1.000
#> GSM627130     2  0.0000      0.992 0.000 1.000
#> GSM627071     1  0.0000      0.986 1.000 0.000
#> GSM627118     2  0.0000      0.992 0.000 1.000
#> GSM627094     2  0.0000      0.992 0.000 1.000
#> GSM627122     1  0.0000      0.986 1.000 0.000
#> GSM627115     2  0.0000      0.992 0.000 1.000
#> GSM627125     2  0.0000      0.992 0.000 1.000
#> GSM627174     2  0.0000      0.992 0.000 1.000
#> GSM627102     2  0.0000      0.992 0.000 1.000
#> GSM627073     2  0.2778      0.948 0.048 0.952
#> GSM627108     2  0.0000      0.992 0.000 1.000
#> GSM627126     1  0.0000      0.986 1.000 0.000
#> GSM627078     2  0.0000      0.992 0.000 1.000
#> GSM627090     1  0.0000      0.986 1.000 0.000
#> GSM627099     2  0.0000      0.992 0.000 1.000
#> GSM627105     2  0.0000      0.992 0.000 1.000
#> GSM627117     1  0.0000      0.986 1.000 0.000
#> GSM627121     2  0.0000      0.992 0.000 1.000
#> GSM627127     2  0.0000      0.992 0.000 1.000
#> GSM627087     2  0.0000      0.992 0.000 1.000
#> GSM627089     1  0.0000      0.986 1.000 0.000
#> GSM627092     2  0.0000      0.992 0.000 1.000
#> GSM627076     1  0.0000      0.986 1.000 0.000
#> GSM627136     1  0.0000      0.986 1.000 0.000
#> GSM627081     2  0.2236      0.959 0.036 0.964
#> GSM627091     2  0.0000      0.992 0.000 1.000
#> GSM627097     2  0.0000      0.992 0.000 1.000
#> GSM627072     1  0.0000      0.986 1.000 0.000
#> GSM627080     1  0.0000      0.986 1.000 0.000
#> GSM627088     1  0.0000      0.986 1.000 0.000
#> GSM627109     1  0.0000      0.986 1.000 0.000
#> GSM627111     1  0.0000      0.986 1.000 0.000
#> GSM627113     1  0.0000      0.986 1.000 0.000
#> GSM627133     2  0.0000      0.992 0.000 1.000
#> GSM627177     1  0.0000      0.986 1.000 0.000
#> GSM627086     2  0.0000      0.992 0.000 1.000
#> GSM627095     1  0.0000      0.986 1.000 0.000
#> GSM627079     1  0.0000      0.986 1.000 0.000
#> GSM627082     2  0.8713      0.595 0.292 0.708
#> GSM627074     1  0.0000      0.986 1.000 0.000
#> GSM627077     1  0.0000      0.986 1.000 0.000
#> GSM627093     1  0.0000      0.986 1.000 0.000
#> GSM627120     2  0.0000      0.992 0.000 1.000
#> GSM627124     2  0.0000      0.992 0.000 1.000
#> GSM627075     2  0.0000      0.992 0.000 1.000
#> GSM627085     2  0.0000      0.992 0.000 1.000
#> GSM627119     1  0.0000      0.986 1.000 0.000
#> GSM627116     2  0.0000      0.992 0.000 1.000
#> GSM627084     1  0.0000      0.986 1.000 0.000
#> GSM627096     2  0.0000      0.992 0.000 1.000
#> GSM627100     1  0.0000      0.986 1.000 0.000
#> GSM627112     2  0.0000      0.992 0.000 1.000
#> GSM627083     1  0.0000      0.986 1.000 0.000
#> GSM627098     1  0.0000      0.986 1.000 0.000
#> GSM627104     1  0.0000      0.986 1.000 0.000
#> GSM627131     1  0.0000      0.986 1.000 0.000
#> GSM627106     2  0.2778      0.948 0.048 0.952
#> GSM627123     1  0.0000      0.986 1.000 0.000
#> GSM627129     2  0.0000      0.992 0.000 1.000
#> GSM627216     2  0.0000      0.992 0.000 1.000
#> GSM627212     2  0.0000      0.992 0.000 1.000
#> GSM627190     1  0.0000      0.986 1.000 0.000
#> GSM627169     2  0.0000      0.992 0.000 1.000
#> GSM627167     2  0.0000      0.992 0.000 1.000
#> GSM627192     1  0.0000      0.986 1.000 0.000
#> GSM627203     1  0.0000      0.986 1.000 0.000
#> GSM627151     2  0.0000      0.992 0.000 1.000
#> GSM627163     1  0.0000      0.986 1.000 0.000
#> GSM627211     2  0.0000      0.992 0.000 1.000
#> GSM627171     2  0.0000      0.992 0.000 1.000
#> GSM627209     2  0.0000      0.992 0.000 1.000
#> GSM627135     1  0.0000      0.986 1.000 0.000
#> GSM627170     2  0.0000      0.992 0.000 1.000
#> GSM627178     1  0.0000      0.986 1.000 0.000
#> GSM627199     2  0.0000      0.992 0.000 1.000
#> GSM627213     2  0.0000      0.992 0.000 1.000
#> GSM627140     2  0.0000      0.992 0.000 1.000
#> GSM627149     1  0.0000      0.986 1.000 0.000
#> GSM627147     2  0.0000      0.992 0.000 1.000
#> GSM627195     1  0.0672      0.979 0.992 0.008
#> GSM627204     2  0.0000      0.992 0.000 1.000
#> GSM627207     2  0.0000      0.992 0.000 1.000
#> GSM627157     1  0.0000      0.986 1.000 0.000
#> GSM627201     2  0.0000      0.992 0.000 1.000
#> GSM627146     2  0.0000      0.992 0.000 1.000
#> GSM627156     2  0.0000      0.992 0.000 1.000
#> GSM627188     1  0.0000      0.986 1.000 0.000
#> GSM627197     2  0.0000      0.992 0.000 1.000
#> GSM627173     2  0.0000      0.992 0.000 1.000
#> GSM627179     2  0.0000      0.992 0.000 1.000
#> GSM627208     2  0.0000      0.992 0.000 1.000
#> GSM627215     2  0.0000      0.992 0.000 1.000
#> GSM627153     2  0.0000      0.992 0.000 1.000
#> GSM627155     1  0.0000      0.986 1.000 0.000
#> GSM627165     2  0.0000      0.992 0.000 1.000
#> GSM627168     1  0.0000      0.986 1.000 0.000
#> GSM627183     1  0.0000      0.986 1.000 0.000
#> GSM627144     1  0.3879      0.911 0.924 0.076
#> GSM627158     1  0.0000      0.986 1.000 0.000
#> GSM627196     2  0.0000      0.992 0.000 1.000
#> GSM627142     1  0.0000      0.986 1.000 0.000
#> GSM627182     1  0.7815      0.702 0.768 0.232
#> GSM627202     1  0.0000      0.986 1.000 0.000
#> GSM627141     1  0.0000      0.986 1.000 0.000
#> GSM627143     2  0.0000      0.992 0.000 1.000
#> GSM627145     1  0.0000      0.986 1.000 0.000
#> GSM627152     1  0.0000      0.986 1.000 0.000
#> GSM627200     1  0.0000      0.986 1.000 0.000
#> GSM627159     2  0.3584      0.926 0.068 0.932
#> GSM627164     2  0.0000      0.992 0.000 1.000
#> GSM627138     1  0.0000      0.986 1.000 0.000
#> GSM627175     2  0.0000      0.992 0.000 1.000
#> GSM627150     1  0.0000      0.986 1.000 0.000
#> GSM627166     1  0.0000      0.986 1.000 0.000
#> GSM627186     2  0.0000      0.992 0.000 1.000
#> GSM627139     2  0.3274      0.936 0.060 0.940
#> GSM627181     2  0.0000      0.992 0.000 1.000
#> GSM627205     2  0.0000      0.992 0.000 1.000
#> GSM627214     2  0.0000      0.992 0.000 1.000
#> GSM627180     2  0.0000      0.992 0.000 1.000
#> GSM627172     2  0.0000      0.992 0.000 1.000
#> GSM627184     1  0.0000      0.986 1.000 0.000
#> GSM627193     2  0.0000      0.992 0.000 1.000
#> GSM627191     2  0.4815      0.885 0.104 0.896
#> GSM627176     1  0.0000      0.986 1.000 0.000
#> GSM627194     2  0.0000      0.992 0.000 1.000
#> GSM627154     2  0.0000      0.992 0.000 1.000
#> GSM627187     1  0.0000      0.986 1.000 0.000
#> GSM627198     2  0.0000      0.992 0.000 1.000
#> GSM627160     1  0.9944      0.173 0.544 0.456
#> GSM627185     1  0.0000      0.986 1.000 0.000
#> GSM627206     1  0.0000      0.986 1.000 0.000
#> GSM627161     1  0.0000      0.986 1.000 0.000
#> GSM627162     1  0.5408      0.855 0.876 0.124
#> GSM627210     1  0.0000      0.986 1.000 0.000
#> GSM627189     2  0.0000      0.992 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM627128     3  0.6625    0.17170 0.024 0.316 0.660
#> GSM627110     3  0.6280    0.07590 0.460 0.000 0.540
#> GSM627132     1  0.0000    0.78108 1.000 0.000 0.000
#> GSM627107     3  0.0424    0.60365 0.000 0.008 0.992
#> GSM627103     2  0.0424    0.86601 0.000 0.992 0.008
#> GSM627114     3  0.6305   -0.00743 0.484 0.000 0.516
#> GSM627134     2  0.6126    0.58752 0.000 0.600 0.400
#> GSM627137     2  0.0000    0.86647 0.000 1.000 0.000
#> GSM627148     3  0.4731    0.61608 0.128 0.032 0.840
#> GSM627101     2  0.6299    0.44556 0.000 0.524 0.476
#> GSM627130     3  0.6969   -0.06107 0.024 0.380 0.596
#> GSM627071     3  0.5115    0.54330 0.228 0.004 0.768
#> GSM627118     2  0.6260    0.50190 0.000 0.552 0.448
#> GSM627094     2  0.0424    0.86601 0.000 0.992 0.008
#> GSM627122     3  0.5905    0.40410 0.352 0.000 0.648
#> GSM627115     2  0.0424    0.86601 0.000 0.992 0.008
#> GSM627125     3  0.6625    0.17170 0.024 0.316 0.660
#> GSM627174     2  0.0424    0.86652 0.000 0.992 0.008
#> GSM627102     2  0.0237    0.86621 0.000 0.996 0.004
#> GSM627073     3  0.2550    0.62082 0.024 0.040 0.936
#> GSM627108     2  0.0424    0.86601 0.000 0.992 0.008
#> GSM627126     1  0.0000    0.78108 1.000 0.000 0.000
#> GSM627078     2  0.4002    0.82508 0.000 0.840 0.160
#> GSM627090     3  0.4121    0.60142 0.168 0.000 0.832
#> GSM627099     2  0.2537    0.85159 0.000 0.920 0.080
#> GSM627105     3  0.6527    0.16410 0.020 0.320 0.660
#> GSM627117     3  0.7337    0.13176 0.428 0.032 0.540
#> GSM627121     3  0.1643    0.61393 0.000 0.044 0.956
#> GSM627127     2  0.4002    0.82508 0.000 0.840 0.160
#> GSM627087     2  0.0424    0.86601 0.000 0.992 0.008
#> GSM627089     3  0.5835    0.36350 0.340 0.000 0.660
#> GSM627092     2  0.2537    0.84663 0.000 0.920 0.080
#> GSM627076     3  0.4399    0.59711 0.188 0.000 0.812
#> GSM627136     3  0.6291    0.05372 0.468 0.000 0.532
#> GSM627081     3  0.1529    0.61623 0.000 0.040 0.960
#> GSM627091     2  0.0237    0.86648 0.000 0.996 0.004
#> GSM627097     2  0.5760    0.68572 0.000 0.672 0.328
#> GSM627072     3  0.4731    0.61608 0.128 0.032 0.840
#> GSM627080     1  0.0000    0.78108 1.000 0.000 0.000
#> GSM627088     3  0.6286    0.06429 0.464 0.000 0.536
#> GSM627109     1  0.3686    0.73588 0.860 0.000 0.140
#> GSM627111     1  0.0000    0.78108 1.000 0.000 0.000
#> GSM627113     1  0.5706    0.54965 0.680 0.000 0.320
#> GSM627133     3  0.5178    0.52339 0.000 0.256 0.744
#> GSM627177     3  0.5115    0.54330 0.228 0.004 0.768
#> GSM627086     2  0.0237    0.86648 0.000 0.996 0.004
#> GSM627095     1  0.0000    0.78108 1.000 0.000 0.000
#> GSM627079     3  0.4121    0.60142 0.168 0.000 0.832
#> GSM627082     3  0.7940    0.26835 0.332 0.076 0.592
#> GSM627074     1  0.5678    0.55587 0.684 0.000 0.316
#> GSM627077     1  0.6062    0.40003 0.616 0.000 0.384
#> GSM627093     1  0.5810    0.52174 0.664 0.000 0.336
#> GSM627120     2  0.5733    0.68357 0.000 0.676 0.324
#> GSM627124     2  0.4002    0.82508 0.000 0.840 0.160
#> GSM627075     2  0.0424    0.86601 0.000 0.992 0.008
#> GSM627085     2  0.4002    0.82508 0.000 0.840 0.160
#> GSM627119     1  0.5810    0.52174 0.664 0.000 0.336
#> GSM627116     3  0.6859   -0.17782 0.016 0.420 0.564
#> GSM627084     1  0.4452    0.69424 0.808 0.000 0.192
#> GSM627096     2  0.6267    0.49407 0.000 0.548 0.452
#> GSM627100     3  0.1267    0.59912 0.024 0.004 0.972
#> GSM627112     2  0.6796    0.64224 0.024 0.632 0.344
#> GSM627083     1  0.0892    0.76060 0.980 0.000 0.020
#> GSM627098     1  0.3879    0.72900 0.848 0.000 0.152
#> GSM627104     1  0.3686    0.73588 0.860 0.000 0.140
#> GSM627131     1  0.5835    0.48679 0.660 0.000 0.340
#> GSM627106     3  0.1289    0.61540 0.000 0.032 0.968
#> GSM627123     1  0.0000    0.78108 1.000 0.000 0.000
#> GSM627129     2  0.5760    0.68540 0.000 0.672 0.328
#> GSM627216     2  0.3340    0.77532 0.000 0.880 0.120
#> GSM627212     2  0.0237    0.86648 0.000 0.996 0.004
#> GSM627190     3  0.7337    0.13176 0.428 0.032 0.540
#> GSM627169     2  0.3686    0.75250 0.000 0.860 0.140
#> GSM627167     2  0.5760    0.68486 0.000 0.672 0.328
#> GSM627192     1  0.0000    0.78108 1.000 0.000 0.000
#> GSM627203     3  0.4002    0.60542 0.160 0.000 0.840
#> GSM627151     3  0.5216    0.35190 0.000 0.260 0.740
#> GSM627163     1  0.0000    0.78108 1.000 0.000 0.000
#> GSM627211     2  0.0000    0.86647 0.000 1.000 0.000
#> GSM627171     2  0.1860    0.84142 0.000 0.948 0.052
#> GSM627209     2  0.4002    0.82508 0.000 0.840 0.160
#> GSM627135     1  0.0000    0.78108 1.000 0.000 0.000
#> GSM627170     2  0.0424    0.86601 0.000 0.992 0.008
#> GSM627178     1  0.5431    0.59069 0.716 0.000 0.284
#> GSM627199     2  0.3941    0.82676 0.000 0.844 0.156
#> GSM627213     2  0.5678    0.69882 0.000 0.684 0.316
#> GSM627140     2  0.6726    0.65965 0.024 0.644 0.332
#> GSM627149     1  0.0000    0.78108 1.000 0.000 0.000
#> GSM627147     2  0.4291    0.81615 0.000 0.820 0.180
#> GSM627195     3  0.4371    0.62144 0.108 0.032 0.860
#> GSM627204     2  0.0237    0.86648 0.000 0.996 0.004
#> GSM627207     2  0.0424    0.86601 0.000 0.992 0.008
#> GSM627157     1  0.4121    0.71811 0.832 0.000 0.168
#> GSM627201     2  0.0237    0.86648 0.000 0.996 0.004
#> GSM627146     2  0.0237    0.86648 0.000 0.996 0.004
#> GSM627156     2  0.3752    0.74736 0.000 0.856 0.144
#> GSM627188     1  0.0000    0.78108 1.000 0.000 0.000
#> GSM627197     2  0.0592    0.86456 0.000 0.988 0.012
#> GSM627173     2  0.0424    0.86601 0.000 0.992 0.008
#> GSM627179     2  0.0424    0.86601 0.000 0.992 0.008
#> GSM627208     3  0.5810    0.44516 0.000 0.336 0.664
#> GSM627215     2  0.4346    0.72920 0.000 0.816 0.184
#> GSM627153     2  0.4002    0.82508 0.000 0.840 0.160
#> GSM627155     1  0.0000    0.78108 1.000 0.000 0.000
#> GSM627165     2  0.5948    0.63800 0.000 0.640 0.360
#> GSM627168     3  0.6286    0.06578 0.464 0.000 0.536
#> GSM627183     3  0.6305   -0.00849 0.484 0.000 0.516
#> GSM627144     3  0.4591    0.61904 0.120 0.032 0.848
#> GSM627158     1  0.0000    0.78108 1.000 0.000 0.000
#> GSM627196     2  0.0237    0.86648 0.000 0.996 0.004
#> GSM627142     3  0.1647    0.59490 0.036 0.004 0.960
#> GSM627182     3  0.4291    0.58656 0.008 0.152 0.840
#> GSM627202     1  0.5882    0.46850 0.652 0.000 0.348
#> GSM627141     3  0.6307   -0.02358 0.488 0.000 0.512
#> GSM627143     2  0.4796    0.77275 0.000 0.780 0.220
#> GSM627145     3  0.4062    0.60362 0.164 0.000 0.836
#> GSM627152     3  0.4121    0.60142 0.168 0.000 0.832
#> GSM627200     1  0.6168    0.33262 0.588 0.000 0.412
#> GSM627159     3  0.7027    0.20844 0.044 0.296 0.660
#> GSM627164     2  0.0892    0.86201 0.000 0.980 0.020
#> GSM627138     1  0.1031    0.77539 0.976 0.000 0.024
#> GSM627175     2  0.4002    0.82508 0.000 0.840 0.160
#> GSM627150     3  0.4469    0.61983 0.120 0.028 0.852
#> GSM627166     1  0.5058    0.64744 0.756 0.000 0.244
#> GSM627186     2  0.3816    0.74208 0.000 0.852 0.148
#> GSM627139     3  0.1491    0.59722 0.016 0.016 0.968
#> GSM627181     2  0.0000    0.86647 0.000 1.000 0.000
#> GSM627205     2  0.0747    0.86365 0.000 0.984 0.016
#> GSM627214     2  0.2711    0.84976 0.000 0.912 0.088
#> GSM627180     3  0.1529    0.61623 0.000 0.040 0.960
#> GSM627172     2  0.0237    0.86621 0.000 0.996 0.004
#> GSM627184     1  0.0000    0.78108 1.000 0.000 0.000
#> GSM627193     2  0.0424    0.86601 0.000 0.992 0.008
#> GSM627191     1  0.9996   -0.24822 0.344 0.320 0.336
#> GSM627176     3  0.4062    0.60362 0.164 0.000 0.836
#> GSM627194     2  0.0424    0.86601 0.000 0.992 0.008
#> GSM627154     2  0.4002    0.82508 0.000 0.840 0.160
#> GSM627187     3  0.7240    0.12493 0.432 0.028 0.540
#> GSM627198     2  0.3941    0.82676 0.000 0.844 0.156
#> GSM627160     3  0.6867    0.23630 0.040 0.288 0.672
#> GSM627185     1  0.1031    0.77539 0.976 0.000 0.024
#> GSM627206     3  0.6280    0.07703 0.460 0.000 0.540
#> GSM627161     1  0.0000    0.78108 1.000 0.000 0.000
#> GSM627162     3  0.5967    0.54882 0.216 0.032 0.752
#> GSM627210     1  0.6215    0.29504 0.572 0.000 0.428
#> GSM627189     2  0.0424    0.86601 0.000 0.992 0.008

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM627128     4  0.1151      0.751 0.000 0.008 0.024 0.968
#> GSM627110     3  0.0524      0.855 0.008 0.004 0.988 0.000
#> GSM627132     1  0.0000      0.910 1.000 0.000 0.000 0.000
#> GSM627107     4  0.3610      0.591 0.000 0.000 0.200 0.800
#> GSM627103     2  0.0336      0.921 0.000 0.992 0.000 0.008
#> GSM627114     3  0.0927      0.854 0.016 0.008 0.976 0.000
#> GSM627134     4  0.3569      0.781 0.000 0.196 0.000 0.804
#> GSM627137     2  0.0592      0.919 0.000 0.984 0.000 0.016
#> GSM627148     3  0.0469      0.855 0.000 0.000 0.988 0.012
#> GSM627101     4  0.0804      0.757 0.000 0.012 0.008 0.980
#> GSM627130     4  0.0927      0.754 0.000 0.008 0.016 0.976
#> GSM627071     3  0.0927      0.856 0.008 0.000 0.976 0.016
#> GSM627118     4  0.3444      0.786 0.000 0.184 0.000 0.816
#> GSM627094     2  0.0336      0.921 0.000 0.992 0.000 0.008
#> GSM627122     3  0.4869      0.774 0.132 0.000 0.780 0.088
#> GSM627115     2  0.0188      0.921 0.000 0.996 0.000 0.004
#> GSM627125     4  0.1109      0.749 0.000 0.004 0.028 0.968
#> GSM627174     2  0.0707      0.918 0.000 0.980 0.000 0.020
#> GSM627102     2  0.0804      0.917 0.000 0.980 0.012 0.008
#> GSM627073     3  0.1867      0.842 0.000 0.000 0.928 0.072
#> GSM627108     2  0.0188      0.919 0.000 0.996 0.004 0.000
#> GSM627126     1  0.0000      0.910 1.000 0.000 0.000 0.000
#> GSM627078     4  0.4679      0.649 0.000 0.352 0.000 0.648
#> GSM627090     3  0.3356      0.792 0.000 0.000 0.824 0.176
#> GSM627099     2  0.4804      0.122 0.000 0.616 0.000 0.384
#> GSM627105     4  0.1109      0.749 0.000 0.004 0.028 0.968
#> GSM627117     3  0.0707      0.852 0.000 0.020 0.980 0.000
#> GSM627121     3  0.4866      0.440 0.000 0.000 0.596 0.404
#> GSM627127     4  0.3942      0.760 0.000 0.236 0.000 0.764
#> GSM627087     2  0.0188      0.921 0.000 0.996 0.000 0.004
#> GSM627089     3  0.0657      0.856 0.004 0.000 0.984 0.012
#> GSM627092     2  0.1724      0.895 0.000 0.948 0.020 0.032
#> GSM627076     3  0.4624      0.631 0.000 0.000 0.660 0.340
#> GSM627136     3  0.0992      0.854 0.012 0.004 0.976 0.008
#> GSM627081     3  0.3074      0.805 0.000 0.000 0.848 0.152
#> GSM627091     2  0.0707      0.918 0.000 0.980 0.000 0.020
#> GSM627097     4  0.3569      0.781 0.000 0.196 0.000 0.804
#> GSM627072     3  0.0336      0.854 0.000 0.008 0.992 0.000
#> GSM627080     1  0.0000      0.910 1.000 0.000 0.000 0.000
#> GSM627088     3  0.0992      0.854 0.012 0.004 0.976 0.008
#> GSM627109     1  0.4836      0.502 0.672 0.000 0.320 0.008
#> GSM627111     1  0.0000      0.910 1.000 0.000 0.000 0.000
#> GSM627113     3  0.4452      0.647 0.260 0.000 0.732 0.008
#> GSM627133     3  0.2149      0.810 0.000 0.088 0.912 0.000
#> GSM627177     3  0.0927      0.856 0.008 0.000 0.976 0.016
#> GSM627086     2  0.0707      0.918 0.000 0.980 0.000 0.020
#> GSM627095     1  0.0000      0.910 1.000 0.000 0.000 0.000
#> GSM627079     3  0.1867      0.846 0.000 0.000 0.928 0.072
#> GSM627082     4  0.0927      0.749 0.008 0.000 0.016 0.976
#> GSM627074     3  0.4511      0.635 0.268 0.000 0.724 0.008
#> GSM627077     3  0.4599      0.715 0.212 0.000 0.760 0.028
#> GSM627093     3  0.3401      0.768 0.152 0.000 0.840 0.008
#> GSM627120     4  0.6114      0.427 0.000 0.428 0.048 0.524
#> GSM627124     4  0.4679      0.649 0.000 0.352 0.000 0.648
#> GSM627075     2  0.0657      0.915 0.000 0.984 0.012 0.004
#> GSM627085     4  0.3942      0.760 0.000 0.236 0.000 0.764
#> GSM627119     3  0.3498      0.762 0.160 0.000 0.832 0.008
#> GSM627116     4  0.3123      0.790 0.000 0.156 0.000 0.844
#> GSM627084     3  0.5220      0.279 0.424 0.000 0.568 0.008
#> GSM627096     4  0.3400      0.787 0.000 0.180 0.000 0.820
#> GSM627100     4  0.5000     -0.262 0.000 0.000 0.496 0.504
#> GSM627112     4  0.2868      0.788 0.000 0.136 0.000 0.864
#> GSM627083     1  0.0000      0.910 1.000 0.000 0.000 0.000
#> GSM627098     1  0.5250      0.174 0.552 0.000 0.440 0.008
#> GSM627104     1  0.4877      0.490 0.664 0.000 0.328 0.008
#> GSM627131     3  0.5207      0.600 0.292 0.000 0.680 0.028
#> GSM627106     3  0.3074      0.805 0.000 0.000 0.848 0.152
#> GSM627123     1  0.0000      0.910 1.000 0.000 0.000 0.000
#> GSM627129     4  0.3528      0.782 0.000 0.192 0.000 0.808
#> GSM627216     2  0.1940      0.865 0.000 0.924 0.076 0.000
#> GSM627212     2  0.0707      0.918 0.000 0.980 0.000 0.020
#> GSM627190     3  0.0707      0.852 0.000 0.020 0.980 0.000
#> GSM627169     2  0.2888      0.809 0.000 0.872 0.124 0.004
#> GSM627167     4  0.3257      0.787 0.000 0.152 0.004 0.844
#> GSM627192     1  0.0000      0.910 1.000 0.000 0.000 0.000
#> GSM627203     3  0.3074      0.805 0.000 0.000 0.848 0.152
#> GSM627151     4  0.6597      0.474 0.000 0.108 0.304 0.588
#> GSM627163     1  0.0000      0.910 1.000 0.000 0.000 0.000
#> GSM627211     2  0.0707      0.918 0.000 0.980 0.000 0.020
#> GSM627171     2  0.1661      0.886 0.000 0.944 0.052 0.004
#> GSM627209     4  0.4713      0.637 0.000 0.360 0.000 0.640
#> GSM627135     1  0.0000      0.910 1.000 0.000 0.000 0.000
#> GSM627170     2  0.0188      0.919 0.000 0.996 0.004 0.000
#> GSM627178     3  0.5343      0.557 0.316 0.000 0.656 0.028
#> GSM627199     4  0.4713      0.637 0.000 0.360 0.000 0.640
#> GSM627213     4  0.3356      0.786 0.000 0.176 0.000 0.824
#> GSM627140     4  0.2973      0.788 0.000 0.144 0.000 0.856
#> GSM627149     1  0.0000      0.910 1.000 0.000 0.000 0.000
#> GSM627147     4  0.4800      0.634 0.000 0.340 0.004 0.656
#> GSM627195     3  0.3074      0.805 0.000 0.000 0.848 0.152
#> GSM627204     2  0.0707      0.918 0.000 0.980 0.000 0.020
#> GSM627207     2  0.0657      0.915 0.000 0.984 0.012 0.004
#> GSM627157     1  0.5268      0.119 0.540 0.000 0.452 0.008
#> GSM627201     2  0.0707      0.918 0.000 0.980 0.000 0.020
#> GSM627146     2  0.0707      0.918 0.000 0.980 0.000 0.020
#> GSM627156     2  0.2714      0.823 0.000 0.884 0.112 0.004
#> GSM627188     1  0.0000      0.910 1.000 0.000 0.000 0.000
#> GSM627197     2  0.0707      0.918 0.000 0.980 0.000 0.020
#> GSM627173     2  0.0336      0.921 0.000 0.992 0.000 0.008
#> GSM627179     2  0.0188      0.919 0.000 0.996 0.004 0.000
#> GSM627208     3  0.2760      0.769 0.000 0.128 0.872 0.000
#> GSM627215     2  0.4643      0.481 0.000 0.656 0.344 0.000
#> GSM627153     4  0.4679      0.649 0.000 0.352 0.000 0.648
#> GSM627155     1  0.0000      0.910 1.000 0.000 0.000 0.000
#> GSM627165     4  0.4999      0.583 0.000 0.328 0.012 0.660
#> GSM627168     3  0.1059      0.855 0.012 0.000 0.972 0.016
#> GSM627183     3  0.1256      0.851 0.028 0.000 0.964 0.008
#> GSM627144     3  0.2814      0.815 0.000 0.000 0.868 0.132
#> GSM627158     1  0.0000      0.910 1.000 0.000 0.000 0.000
#> GSM627196     2  0.0707      0.918 0.000 0.980 0.000 0.020
#> GSM627142     4  0.2973      0.661 0.000 0.000 0.144 0.856
#> GSM627182     3  0.0707      0.852 0.000 0.020 0.980 0.000
#> GSM627202     3  0.5113      0.603 0.292 0.000 0.684 0.024
#> GSM627141     3  0.0927      0.854 0.016 0.008 0.976 0.000
#> GSM627143     2  0.5055      0.528 0.000 0.712 0.032 0.256
#> GSM627145     3  0.0592      0.855 0.000 0.000 0.984 0.016
#> GSM627152     3  0.3486      0.791 0.000 0.000 0.812 0.188
#> GSM627200     3  0.4086      0.706 0.216 0.000 0.776 0.008
#> GSM627159     4  0.1191      0.749 0.004 0.004 0.024 0.968
#> GSM627164     2  0.1209      0.903 0.000 0.964 0.032 0.004
#> GSM627138     1  0.0000      0.910 1.000 0.000 0.000 0.000
#> GSM627175     4  0.4679      0.649 0.000 0.352 0.000 0.648
#> GSM627150     3  0.1940      0.841 0.000 0.000 0.924 0.076
#> GSM627166     3  0.4897      0.523 0.332 0.000 0.660 0.008
#> GSM627186     2  0.2999      0.799 0.000 0.864 0.132 0.004
#> GSM627139     4  0.2149      0.713 0.000 0.000 0.088 0.912
#> GSM627181     2  0.0707      0.918 0.000 0.980 0.000 0.020
#> GSM627205     2  0.0707      0.913 0.000 0.980 0.020 0.000
#> GSM627214     2  0.4730      0.187 0.000 0.636 0.000 0.364
#> GSM627180     3  0.2345      0.831 0.000 0.000 0.900 0.100
#> GSM627172     2  0.0937      0.915 0.000 0.976 0.012 0.012
#> GSM627184     1  0.0000      0.910 1.000 0.000 0.000 0.000
#> GSM627193     2  0.0188      0.919 0.000 0.996 0.004 0.000
#> GSM627191     4  0.2973      0.705 0.144 0.000 0.000 0.856
#> GSM627176     3  0.3356      0.792 0.000 0.000 0.824 0.176
#> GSM627194     2  0.0336      0.921 0.000 0.992 0.000 0.008
#> GSM627154     4  0.3942      0.760 0.000 0.236 0.000 0.764
#> GSM627187     3  0.0895      0.851 0.000 0.020 0.976 0.004
#> GSM627198     4  0.4713      0.637 0.000 0.360 0.000 0.640
#> GSM627160     4  0.0817      0.746 0.000 0.000 0.024 0.976
#> GSM627185     1  0.1743      0.865 0.940 0.000 0.056 0.004
#> GSM627206     3  0.0657      0.855 0.012 0.004 0.984 0.000
#> GSM627161     1  0.0000      0.910 1.000 0.000 0.000 0.000
#> GSM627162     3  0.0895      0.851 0.000 0.020 0.976 0.004
#> GSM627210     3  0.1890      0.840 0.056 0.000 0.936 0.008
#> GSM627189     2  0.0336      0.921 0.000 0.992 0.000 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM627128     4  0.1704    0.49766 0.004 0.000 0.000 0.928 0.068
#> GSM627110     3  0.2230    0.60987 0.000 0.000 0.884 0.000 0.116
#> GSM627132     1  0.0566    0.95554 0.984 0.000 0.004 0.000 0.012
#> GSM627107     4  0.6105   -0.39074 0.000 0.000 0.128 0.480 0.392
#> GSM627103     2  0.0609    0.78207 0.000 0.980 0.000 0.000 0.020
#> GSM627114     3  0.2561    0.59959 0.000 0.000 0.856 0.000 0.144
#> GSM627134     4  0.5664    0.60796 0.000 0.152 0.000 0.628 0.220
#> GSM627137     2  0.2020    0.77204 0.000 0.900 0.000 0.000 0.100
#> GSM627148     3  0.4060    0.36857 0.000 0.000 0.640 0.000 0.360
#> GSM627101     4  0.1041    0.52898 0.000 0.004 0.000 0.964 0.032
#> GSM627130     4  0.1704    0.49766 0.004 0.000 0.000 0.928 0.068
#> GSM627071     3  0.1908    0.61516 0.000 0.000 0.908 0.000 0.092
#> GSM627118     4  0.5602    0.60916 0.000 0.148 0.000 0.636 0.216
#> GSM627094     2  0.0404    0.78180 0.000 0.988 0.000 0.000 0.012
#> GSM627122     3  0.3696    0.60571 0.040 0.000 0.840 0.028 0.092
#> GSM627115     2  0.0609    0.78207 0.000 0.980 0.000 0.000 0.020
#> GSM627125     4  0.2536    0.44142 0.004 0.000 0.000 0.868 0.128
#> GSM627174     2  0.2712    0.71612 0.000 0.880 0.000 0.032 0.088
#> GSM627102     2  0.3689    0.69436 0.000 0.740 0.000 0.004 0.256
#> GSM627073     3  0.4902    0.22157 0.000 0.000 0.564 0.028 0.408
#> GSM627108     2  0.2068    0.76880 0.000 0.904 0.000 0.004 0.092
#> GSM627126     1  0.0000    0.95907 1.000 0.000 0.000 0.000 0.000
#> GSM627078     4  0.6463    0.51380 0.000 0.300 0.000 0.488 0.212
#> GSM627090     3  0.6146    0.04137 0.004 0.000 0.488 0.116 0.392
#> GSM627099     2  0.6507   -0.22655 0.000 0.472 0.000 0.316 0.212
#> GSM627105     4  0.2536    0.44142 0.004 0.000 0.000 0.868 0.128
#> GSM627117     3  0.2852    0.58423 0.000 0.000 0.828 0.000 0.172
#> GSM627121     5  0.6396    0.31193 0.000 0.000 0.188 0.324 0.488
#> GSM627127     4  0.6323    0.55258 0.000 0.252 0.000 0.528 0.220
#> GSM627087     2  0.0609    0.78207 0.000 0.980 0.000 0.000 0.020
#> GSM627089     3  0.2773    0.57730 0.000 0.000 0.836 0.000 0.164
#> GSM627092     2  0.4972    0.58509 0.000 0.620 0.000 0.044 0.336
#> GSM627076     4  0.6626   -0.42373 0.004 0.000 0.200 0.464 0.332
#> GSM627136     3  0.0510    0.63314 0.000 0.000 0.984 0.000 0.016
#> GSM627081     3  0.6036   -0.10658 0.000 0.000 0.452 0.116 0.432
#> GSM627091     2  0.4618    0.50215 0.000 0.724 0.000 0.068 0.208
#> GSM627097     4  0.5462    0.61093 0.000 0.136 0.000 0.652 0.212
#> GSM627072     3  0.3774    0.45951 0.000 0.000 0.704 0.000 0.296
#> GSM627080     1  0.0566    0.95554 0.984 0.000 0.004 0.000 0.012
#> GSM627088     3  0.0703    0.63203 0.000 0.000 0.976 0.000 0.024
#> GSM627109     3  0.4921    0.33713 0.340 0.000 0.620 0.000 0.040
#> GSM627111     1  0.0566    0.95554 0.984 0.000 0.004 0.000 0.012
#> GSM627113     3  0.3134    0.59996 0.120 0.000 0.848 0.000 0.032
#> GSM627133     3  0.6134   -0.00786 0.000 0.144 0.516 0.000 0.340
#> GSM627177     3  0.1851    0.62851 0.000 0.000 0.912 0.000 0.088
#> GSM627086     2  0.0955    0.77185 0.000 0.968 0.000 0.004 0.028
#> GSM627095     1  0.0162    0.95817 0.996 0.000 0.000 0.000 0.004
#> GSM627079     3  0.3671    0.49299 0.000 0.000 0.756 0.008 0.236
#> GSM627082     4  0.2172    0.49237 0.016 0.000 0.000 0.908 0.076
#> GSM627074     3  0.3317    0.59837 0.116 0.000 0.840 0.000 0.044
#> GSM627077     3  0.2595    0.62740 0.080 0.000 0.888 0.000 0.032
#> GSM627093     3  0.2729    0.61819 0.060 0.000 0.884 0.000 0.056
#> GSM627120     4  0.7178   -0.06143 0.000 0.272 0.016 0.368 0.344
#> GSM627124     4  0.6463    0.51380 0.000 0.300 0.000 0.488 0.212
#> GSM627075     2  0.3689    0.69529 0.000 0.740 0.000 0.004 0.256
#> GSM627085     4  0.6394    0.52327 0.000 0.292 0.000 0.504 0.204
#> GSM627119     3  0.2654    0.61921 0.064 0.000 0.888 0.000 0.048
#> GSM627116     4  0.5978    0.60687 0.000 0.132 0.024 0.644 0.200
#> GSM627084     3  0.4305    0.53140 0.200 0.000 0.748 0.000 0.052
#> GSM627096     4  0.5602    0.60916 0.000 0.148 0.000 0.636 0.216
#> GSM627100     4  0.6375   -0.34382 0.004 0.000 0.164 0.512 0.320
#> GSM627112     4  0.4215    0.59379 0.004 0.052 0.000 0.772 0.172
#> GSM627083     1  0.0798    0.94243 0.976 0.000 0.000 0.008 0.016
#> GSM627098     3  0.4398    0.49586 0.240 0.000 0.720 0.000 0.040
#> GSM627104     3  0.4905    0.34562 0.336 0.000 0.624 0.000 0.040
#> GSM627131     3  0.3670    0.61139 0.112 0.000 0.820 0.000 0.068
#> GSM627106     3  0.6036   -0.10658 0.000 0.000 0.452 0.116 0.432
#> GSM627123     1  0.0162    0.95817 0.996 0.000 0.000 0.000 0.004
#> GSM627129     4  0.5008    0.60748 0.000 0.140 0.000 0.708 0.152
#> GSM627216     2  0.4558    0.58586 0.000 0.728 0.064 0.000 0.208
#> GSM627212     2  0.3216    0.68369 0.000 0.848 0.000 0.044 0.108
#> GSM627190     3  0.2813    0.58556 0.000 0.000 0.832 0.000 0.168
#> GSM627169     2  0.4389    0.56630 0.000 0.624 0.004 0.004 0.368
#> GSM627167     4  0.4049    0.48984 0.000 0.056 0.000 0.780 0.164
#> GSM627192     1  0.0000    0.95907 1.000 0.000 0.000 0.000 0.000
#> GSM627203     3  0.5408    0.14126 0.000 0.000 0.532 0.060 0.408
#> GSM627151     4  0.7337    0.00331 0.000 0.056 0.336 0.448 0.160
#> GSM627163     1  0.0566    0.95554 0.984 0.000 0.004 0.000 0.012
#> GSM627211     2  0.1557    0.78180 0.000 0.940 0.000 0.008 0.052
#> GSM627171     2  0.4211    0.58093 0.000 0.636 0.000 0.004 0.360
#> GSM627209     4  0.6569    0.46607 0.000 0.336 0.000 0.448 0.216
#> GSM627135     1  0.0290    0.95632 0.992 0.000 0.000 0.000 0.008
#> GSM627170     2  0.2020    0.77135 0.000 0.900 0.000 0.000 0.100
#> GSM627178     3  0.3980    0.60077 0.128 0.000 0.796 0.000 0.076
#> GSM627199     4  0.6576    0.46081 0.000 0.340 0.000 0.444 0.216
#> GSM627213     4  0.5233    0.61194 0.000 0.128 0.000 0.680 0.192
#> GSM627140     4  0.2685    0.53372 0.000 0.028 0.000 0.880 0.092
#> GSM627149     1  0.0000    0.95907 1.000 0.000 0.000 0.000 0.000
#> GSM627147     4  0.6610    0.21729 0.000 0.280 0.000 0.460 0.260
#> GSM627195     3  0.5408    0.14126 0.000 0.000 0.532 0.060 0.408
#> GSM627204     2  0.0865    0.77329 0.000 0.972 0.000 0.004 0.024
#> GSM627207     2  0.3231    0.72589 0.000 0.800 0.000 0.004 0.196
#> GSM627157     3  0.4297    0.50231 0.236 0.000 0.728 0.000 0.036
#> GSM627201     2  0.2331    0.73170 0.000 0.900 0.000 0.020 0.080
#> GSM627146     2  0.2769    0.70996 0.000 0.876 0.000 0.032 0.092
#> GSM627156     2  0.4389    0.56630 0.000 0.624 0.004 0.004 0.368
#> GSM627188     1  0.0000    0.95907 1.000 0.000 0.000 0.000 0.000
#> GSM627197     2  0.2905    0.70196 0.000 0.868 0.000 0.036 0.096
#> GSM627173     2  0.0794    0.78241 0.000 0.972 0.000 0.000 0.028
#> GSM627179     2  0.1792    0.77393 0.000 0.916 0.000 0.000 0.084
#> GSM627208     5  0.6601    0.25457 0.000 0.248 0.292 0.000 0.460
#> GSM627215     2  0.5950    0.14055 0.000 0.592 0.188 0.000 0.220
#> GSM627153     4  0.6536    0.48769 0.000 0.320 0.000 0.464 0.216
#> GSM627155     1  0.0000    0.95907 1.000 0.000 0.000 0.000 0.000
#> GSM627165     4  0.6764   -0.01366 0.000 0.292 0.000 0.400 0.308
#> GSM627168     3  0.0794    0.63339 0.000 0.000 0.972 0.000 0.028
#> GSM627183     3  0.0703    0.63286 0.000 0.000 0.976 0.000 0.024
#> GSM627144     3  0.5148    0.13955 0.000 0.000 0.528 0.040 0.432
#> GSM627158     1  0.0324    0.95767 0.992 0.000 0.004 0.000 0.004
#> GSM627196     2  0.0865    0.77329 0.000 0.972 0.000 0.004 0.024
#> GSM627142     4  0.5789   -0.17164 0.004 0.000 0.104 0.588 0.304
#> GSM627182     3  0.3999    0.42036 0.000 0.000 0.656 0.000 0.344
#> GSM627202     3  0.3532    0.61077 0.128 0.000 0.824 0.000 0.048
#> GSM627141     3  0.2648    0.59808 0.000 0.000 0.848 0.000 0.152
#> GSM627143     2  0.6202    0.41270 0.000 0.496 0.000 0.148 0.356
#> GSM627145     3  0.3395    0.51384 0.000 0.000 0.764 0.000 0.236
#> GSM627152     3  0.6215    0.08740 0.004 0.000 0.528 0.140 0.328
#> GSM627200     3  0.2879    0.61171 0.100 0.000 0.868 0.000 0.032
#> GSM627159     4  0.1831    0.49726 0.004 0.000 0.000 0.920 0.076
#> GSM627164     2  0.4196    0.58689 0.000 0.640 0.000 0.004 0.356
#> GSM627138     1  0.0566    0.95554 0.984 0.000 0.004 0.000 0.012
#> GSM627175     4  0.6442    0.51472 0.000 0.300 0.000 0.492 0.208
#> GSM627150     3  0.4920    0.25871 0.000 0.000 0.584 0.032 0.384
#> GSM627166     3  0.3846    0.57634 0.144 0.000 0.800 0.000 0.056
#> GSM627186     2  0.4389    0.56630 0.000 0.624 0.004 0.004 0.368
#> GSM627139     4  0.4690    0.17855 0.004 0.000 0.048 0.708 0.240
#> GSM627181     2  0.2653    0.72716 0.000 0.880 0.000 0.024 0.096
#> GSM627205     2  0.3424    0.68811 0.000 0.760 0.000 0.000 0.240
#> GSM627214     2  0.5562    0.43121 0.000 0.644 0.000 0.200 0.156
#> GSM627180     3  0.5100    0.11704 0.000 0.000 0.516 0.036 0.448
#> GSM627172     2  0.3835    0.69030 0.000 0.732 0.000 0.008 0.260
#> GSM627184     1  0.0000    0.95907 1.000 0.000 0.000 0.000 0.000
#> GSM627193     2  0.1410    0.77916 0.000 0.940 0.000 0.000 0.060
#> GSM627191     4  0.2221    0.53156 0.052 0.000 0.000 0.912 0.036
#> GSM627176     3  0.6129    0.01058 0.004 0.000 0.476 0.112 0.408
#> GSM627194     2  0.0794    0.77787 0.000 0.972 0.000 0.000 0.028
#> GSM627154     4  0.6286    0.54768 0.000 0.264 0.000 0.532 0.204
#> GSM627187     3  0.3109    0.56511 0.000 0.000 0.800 0.000 0.200
#> GSM627198     4  0.6593    0.45811 0.000 0.340 0.000 0.440 0.220
#> GSM627160     4  0.1831    0.50168 0.004 0.000 0.000 0.920 0.076
#> GSM627185     1  0.5165    0.15866 0.512 0.000 0.448 0.000 0.040
#> GSM627206     3  0.2230    0.61128 0.000 0.000 0.884 0.000 0.116
#> GSM627161     1  0.0162    0.95867 0.996 0.000 0.000 0.000 0.004
#> GSM627162     3  0.4251    0.35142 0.000 0.000 0.624 0.004 0.372
#> GSM627210     3  0.2228    0.62575 0.040 0.000 0.912 0.000 0.048
#> GSM627189     2  0.0162    0.77968 0.000 0.996 0.000 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM627128     6  0.4837     0.7119 0.000 0.000 0.000 0.288 0.088 0.624
#> GSM627110     3  0.3652     0.6914 0.000 0.000 0.768 0.000 0.188 0.044
#> GSM627132     1  0.0653     0.9722 0.980 0.000 0.012 0.000 0.004 0.004
#> GSM627107     5  0.3394     0.4159 0.000 0.000 0.000 0.012 0.752 0.236
#> GSM627103     2  0.3934     0.6547 0.000 0.764 0.000 0.180 0.044 0.012
#> GSM627114     3  0.3721     0.7110 0.000 0.016 0.784 0.000 0.168 0.032
#> GSM627134     4  0.3408     0.6933 0.000 0.016 0.000 0.832 0.080 0.072
#> GSM627137     2  0.3425     0.6856 0.000 0.836 0.000 0.084 0.048 0.032
#> GSM627148     5  0.3265     0.6334 0.000 0.000 0.248 0.000 0.748 0.004
#> GSM627101     6  0.4695     0.4543 0.000 0.000 0.000 0.448 0.044 0.508
#> GSM627130     6  0.4793     0.7123 0.000 0.000 0.000 0.288 0.084 0.628
#> GSM627071     3  0.3721     0.6371 0.000 0.000 0.728 0.004 0.252 0.016
#> GSM627118     4  0.3097     0.6948 0.000 0.012 0.000 0.852 0.064 0.072
#> GSM627094     2  0.2859     0.6734 0.000 0.828 0.000 0.156 0.016 0.000
#> GSM627122     3  0.4777     0.6313 0.012 0.000 0.704 0.004 0.188 0.092
#> GSM627115     2  0.3772     0.6564 0.000 0.772 0.000 0.180 0.040 0.008
#> GSM627125     6  0.4990     0.7212 0.000 0.000 0.000 0.232 0.132 0.636
#> GSM627174     2  0.4572     0.3336 0.000 0.512 0.000 0.460 0.012 0.016
#> GSM627102     2  0.4646     0.5976 0.000 0.728 0.016 0.024 0.040 0.192
#> GSM627073     5  0.3110     0.6814 0.000 0.000 0.196 0.000 0.792 0.012
#> GSM627108     2  0.1471     0.6867 0.000 0.932 0.000 0.064 0.004 0.000
#> GSM627126     1  0.0865     0.9732 0.964 0.000 0.000 0.000 0.000 0.036
#> GSM627078     4  0.1624     0.7411 0.000 0.040 0.000 0.936 0.004 0.020
#> GSM627090     5  0.5227     0.5326 0.000 0.000 0.144 0.004 0.620 0.232
#> GSM627099     4  0.4077     0.5554 0.000 0.212 0.000 0.736 0.044 0.008
#> GSM627105     6  0.4990     0.7212 0.000 0.000 0.000 0.232 0.132 0.636
#> GSM627117     3  0.4348     0.6454 0.000 0.028 0.732 0.000 0.200 0.040
#> GSM627121     5  0.2851     0.5845 0.000 0.004 0.020 0.000 0.844 0.132
#> GSM627127     4  0.2528     0.7257 0.000 0.028 0.000 0.892 0.024 0.056
#> GSM627087     2  0.3772     0.6564 0.000 0.772 0.000 0.180 0.040 0.008
#> GSM627089     3  0.4045     0.2501 0.000 0.000 0.564 0.000 0.428 0.008
#> GSM627092     2  0.5690     0.5540 0.000 0.628 0.012 0.036 0.088 0.236
#> GSM627076     6  0.4488     0.1671 0.000 0.000 0.016 0.008 0.468 0.508
#> GSM627136     3  0.2062     0.7820 0.000 0.000 0.900 0.004 0.088 0.008
#> GSM627081     5  0.3254     0.6922 0.000 0.000 0.124 0.000 0.820 0.056
#> GSM627091     4  0.4845     0.0877 0.000 0.388 0.000 0.560 0.044 0.008
#> GSM627097     4  0.3000     0.6796 0.000 0.004 0.000 0.840 0.032 0.124
#> GSM627072     5  0.3672     0.5549 0.000 0.000 0.304 0.000 0.688 0.008
#> GSM627080     1  0.0508     0.9735 0.984 0.000 0.012 0.000 0.004 0.000
#> GSM627088     3  0.1858     0.7800 0.000 0.000 0.904 0.000 0.092 0.004
#> GSM627109     3  0.3057     0.7398 0.120 0.000 0.844 0.004 0.008 0.024
#> GSM627111     1  0.0653     0.9722 0.980 0.000 0.012 0.000 0.004 0.004
#> GSM627113     3  0.1649     0.7943 0.040 0.000 0.936 0.000 0.016 0.008
#> GSM627133     5  0.6205     0.5696 0.000 0.124 0.144 0.032 0.636 0.064
#> GSM627177     3  0.3159     0.7347 0.000 0.000 0.820 0.008 0.152 0.020
#> GSM627086     2  0.4177     0.5999 0.000 0.684 0.000 0.280 0.032 0.004
#> GSM627095     1  0.1226     0.9701 0.952 0.000 0.004 0.000 0.004 0.040
#> GSM627079     5  0.4793     0.2939 0.000 0.000 0.428 0.008 0.528 0.036
#> GSM627082     6  0.4716     0.7170 0.008 0.000 0.000 0.252 0.072 0.668
#> GSM627074     3  0.1514     0.7946 0.036 0.000 0.944 0.004 0.004 0.012
#> GSM627077     3  0.3769     0.7715 0.036 0.000 0.816 0.004 0.100 0.044
#> GSM627093     3  0.1065     0.7969 0.020 0.000 0.964 0.000 0.008 0.008
#> GSM627120     5  0.7507    -0.0910 0.000 0.284 0.008 0.108 0.364 0.236
#> GSM627124     4  0.1624     0.7411 0.000 0.040 0.000 0.936 0.004 0.020
#> GSM627075     2  0.3769     0.6200 0.000 0.776 0.012 0.000 0.036 0.176
#> GSM627085     4  0.1257     0.7413 0.000 0.028 0.000 0.952 0.000 0.020
#> GSM627119     3  0.1406     0.7965 0.020 0.000 0.952 0.004 0.008 0.016
#> GSM627116     4  0.3513     0.6627 0.000 0.004 0.020 0.824 0.036 0.116
#> GSM627084     3  0.1988     0.7836 0.072 0.000 0.912 0.004 0.004 0.008
#> GSM627096     4  0.3097     0.6948 0.000 0.012 0.000 0.852 0.064 0.072
#> GSM627100     6  0.4256     0.2959 0.000 0.000 0.012 0.004 0.420 0.564
#> GSM627112     4  0.3647     0.0822 0.000 0.000 0.000 0.640 0.000 0.360
#> GSM627083     1  0.2314     0.9326 0.900 0.000 0.008 0.012 0.008 0.072
#> GSM627098     3  0.1956     0.7751 0.080 0.000 0.908 0.000 0.008 0.004
#> GSM627104     3  0.2969     0.7444 0.112 0.000 0.852 0.004 0.008 0.024
#> GSM627131     3  0.3594     0.7710 0.040 0.000 0.836 0.008 0.072 0.044
#> GSM627106     5  0.3270     0.6892 0.000 0.000 0.120 0.000 0.820 0.060
#> GSM627123     1  0.1338     0.9715 0.952 0.000 0.008 0.004 0.004 0.032
#> GSM627129     4  0.3960     0.6526 0.000 0.016 0.000 0.784 0.072 0.128
#> GSM627216     2  0.6603     0.1750 0.000 0.440 0.020 0.084 0.396 0.060
#> GSM627212     2  0.4984     0.1800 0.000 0.476 0.000 0.468 0.048 0.008
#> GSM627190     3  0.4359     0.6428 0.000 0.024 0.724 0.000 0.212 0.040
#> GSM627169     2  0.4754     0.5869 0.000 0.704 0.028 0.000 0.068 0.200
#> GSM627167     6  0.5661     0.4187 0.000 0.104 0.004 0.236 0.036 0.620
#> GSM627192     1  0.0937     0.9718 0.960 0.000 0.000 0.000 0.000 0.040
#> GSM627203     5  0.3542     0.7052 0.000 0.000 0.160 0.000 0.788 0.052
#> GSM627151     4  0.7076     0.1763 0.000 0.008 0.124 0.472 0.268 0.128
#> GSM627163     1  0.0551     0.9730 0.984 0.000 0.008 0.000 0.004 0.004
#> GSM627211     2  0.3384     0.6675 0.000 0.800 0.000 0.168 0.024 0.008
#> GSM627171     2  0.4996     0.5806 0.000 0.688 0.024 0.004 0.080 0.204
#> GSM627209     4  0.1462     0.7381 0.000 0.056 0.000 0.936 0.008 0.000
#> GSM627135     1  0.1413     0.9701 0.948 0.000 0.008 0.004 0.004 0.036
#> GSM627170     2  0.3799     0.6735 0.000 0.804 0.000 0.080 0.096 0.020
#> GSM627178     3  0.3552     0.7713 0.040 0.000 0.840 0.008 0.060 0.052
#> GSM627199     4  0.3003     0.7079 0.000 0.084 0.000 0.860 0.028 0.028
#> GSM627213     4  0.2911     0.6282 0.000 0.000 0.000 0.832 0.024 0.144
#> GSM627140     6  0.4151     0.5689 0.000 0.024 0.004 0.276 0.004 0.692
#> GSM627149     1  0.0603     0.9766 0.980 0.000 0.004 0.000 0.000 0.016
#> GSM627147     4  0.7148     0.0302 0.000 0.300 0.004 0.320 0.060 0.316
#> GSM627195     5  0.3516     0.7056 0.000 0.000 0.164 0.000 0.788 0.048
#> GSM627204     2  0.3905     0.6151 0.000 0.716 0.000 0.256 0.024 0.004
#> GSM627207     2  0.2728     0.6513 0.000 0.872 0.008 0.000 0.040 0.080
#> GSM627157     3  0.2062     0.7728 0.088 0.000 0.900 0.000 0.004 0.008
#> GSM627201     2  0.4727     0.3912 0.000 0.552 0.000 0.408 0.028 0.012
#> GSM627146     2  0.4589     0.4360 0.000 0.580 0.000 0.384 0.028 0.008
#> GSM627156     2  0.4603     0.5908 0.000 0.712 0.020 0.000 0.068 0.200
#> GSM627188     1  0.0937     0.9718 0.960 0.000 0.000 0.000 0.000 0.040
#> GSM627197     2  0.4637     0.3884 0.000 0.556 0.000 0.408 0.028 0.008
#> GSM627173     2  0.3353     0.6704 0.000 0.804 0.000 0.160 0.032 0.004
#> GSM627179     2  0.2456     0.6869 0.000 0.888 0.000 0.076 0.028 0.008
#> GSM627208     5  0.5923     0.5449 0.000 0.176 0.104 0.004 0.632 0.084
#> GSM627215     5  0.6996     0.1798 0.000 0.284 0.052 0.116 0.500 0.048
#> GSM627153     4  0.1398     0.7396 0.000 0.052 0.000 0.940 0.008 0.000
#> GSM627155     1  0.0146     0.9759 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM627165     5  0.7112     0.0131 0.000 0.212 0.000 0.204 0.456 0.128
#> GSM627168     3  0.2871     0.7151 0.000 0.000 0.804 0.000 0.192 0.004
#> GSM627183     3  0.0937     0.7948 0.000 0.000 0.960 0.000 0.040 0.000
#> GSM627144     5  0.3602     0.7065 0.000 0.000 0.160 0.000 0.784 0.056
#> GSM627158     1  0.0291     0.9754 0.992 0.000 0.004 0.000 0.004 0.000
#> GSM627196     2  0.3905     0.6151 0.000 0.716 0.000 0.256 0.024 0.004
#> GSM627142     6  0.4509     0.5179 0.000 0.000 0.008 0.036 0.316 0.640
#> GSM627182     5  0.4793     0.5484 0.000 0.024 0.276 0.000 0.656 0.044
#> GSM627202     3  0.4193     0.7384 0.044 0.000 0.776 0.004 0.140 0.036
#> GSM627141     3  0.3630     0.7376 0.000 0.016 0.804 0.000 0.136 0.044
#> GSM627143     2  0.6307     0.5076 0.000 0.580 0.020 0.056 0.100 0.244
#> GSM627145     5  0.3804     0.5095 0.000 0.000 0.336 0.000 0.656 0.008
#> GSM627152     5  0.5464     0.5116 0.000 0.000 0.176 0.004 0.588 0.232
#> GSM627200     3  0.2405     0.7930 0.036 0.000 0.904 0.004 0.020 0.036
#> GSM627159     6  0.4692     0.7195 0.000 0.000 0.000 0.276 0.080 0.644
#> GSM627164     2  0.4898     0.5851 0.000 0.696 0.024 0.004 0.072 0.204
#> GSM627138     1  0.0837     0.9678 0.972 0.000 0.020 0.000 0.004 0.004
#> GSM627175     4  0.1693     0.7409 0.000 0.044 0.000 0.932 0.004 0.020
#> GSM627150     5  0.3259     0.6758 0.000 0.000 0.216 0.000 0.772 0.012
#> GSM627166     3  0.2478     0.7851 0.040 0.000 0.900 0.008 0.012 0.040
#> GSM627186     2  0.4856     0.5820 0.000 0.696 0.028 0.000 0.076 0.200
#> GSM627139     6  0.5021     0.5696 0.000 0.000 0.004 0.088 0.300 0.608
#> GSM627181     2  0.4518     0.5073 0.000 0.624 0.000 0.336 0.032 0.008
#> GSM627205     2  0.6088     0.3648 0.000 0.504 0.000 0.064 0.352 0.080
#> GSM627214     4  0.5628     0.3016 0.000 0.272 0.000 0.600 0.080 0.048
#> GSM627180     5  0.2768     0.6948 0.000 0.000 0.156 0.000 0.832 0.012
#> GSM627172     2  0.4922     0.5909 0.000 0.712 0.016 0.036 0.044 0.192
#> GSM627184     1  0.0547     0.9751 0.980 0.000 0.000 0.000 0.000 0.020
#> GSM627193     2  0.2558     0.6841 0.000 0.868 0.000 0.104 0.028 0.000
#> GSM627191     6  0.4284     0.6042 0.016 0.000 0.008 0.292 0.008 0.676
#> GSM627176     5  0.5248     0.5284 0.000 0.000 0.144 0.004 0.616 0.236
#> GSM627194     2  0.4326     0.6573 0.000 0.748 0.000 0.168 0.060 0.024
#> GSM627154     4  0.1168     0.7356 0.000 0.016 0.000 0.956 0.000 0.028
#> GSM627187     3  0.4653     0.6367 0.000 0.044 0.724 0.000 0.180 0.052
#> GSM627198     4  0.3104     0.7052 0.000 0.092 0.000 0.852 0.028 0.028
#> GSM627160     6  0.4586     0.7175 0.000 0.000 0.000 0.264 0.076 0.660
#> GSM627185     3  0.3510     0.6464 0.204 0.000 0.772 0.000 0.008 0.016
#> GSM627206     3  0.3778     0.6046 0.000 0.000 0.708 0.000 0.272 0.020
#> GSM627161     1  0.0291     0.9754 0.992 0.000 0.004 0.000 0.004 0.000
#> GSM627162     3  0.6986    -0.0557 0.000 0.080 0.396 0.000 0.332 0.192
#> GSM627210     3  0.1293     0.7959 0.004 0.000 0.956 0.004 0.020 0.016
#> GSM627189     2  0.3453     0.6613 0.000 0.788 0.000 0.180 0.028 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) age(p) other(p) k
#> SD:kmeans 145            0.849  0.316   0.0124 2
#> SD:kmeans 115            0.297  0.624   0.1959 3
#> SD:kmeans 135            0.283  0.617   0.1034 4
#> SD:kmeans  99            0.109  0.327   0.2236 5
#> SD:kmeans 123            0.463  0.829   0.1002 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 146 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.961       0.983         0.5026 0.497   0.497
#> 3 3 0.839           0.879       0.938         0.2992 0.805   0.627
#> 4 4 0.971           0.928       0.970         0.1538 0.796   0.493
#> 5 5 0.749           0.666       0.831         0.0553 0.881   0.581
#> 6 6 0.730           0.584       0.729         0.0418 0.898   0.567

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM627128     2  0.0000      0.993 0.000 1.000
#> GSM627110     1  0.0000      0.972 1.000 0.000
#> GSM627132     1  0.0000      0.972 1.000 0.000
#> GSM627107     2  0.0000      0.993 0.000 1.000
#> GSM627103     2  0.0000      0.993 0.000 1.000
#> GSM627114     1  0.0000      0.972 1.000 0.000
#> GSM627134     2  0.0000      0.993 0.000 1.000
#> GSM627137     2  0.0000      0.993 0.000 1.000
#> GSM627148     1  0.0000      0.972 1.000 0.000
#> GSM627101     2  0.0000      0.993 0.000 1.000
#> GSM627130     2  0.0000      0.993 0.000 1.000
#> GSM627071     1  0.0000      0.972 1.000 0.000
#> GSM627118     2  0.0000      0.993 0.000 1.000
#> GSM627094     2  0.0000      0.993 0.000 1.000
#> GSM627122     1  0.0000      0.972 1.000 0.000
#> GSM627115     2  0.0000      0.993 0.000 1.000
#> GSM627125     2  0.0000      0.993 0.000 1.000
#> GSM627174     2  0.0000      0.993 0.000 1.000
#> GSM627102     2  0.0000      0.993 0.000 1.000
#> GSM627073     1  0.8661      0.615 0.712 0.288
#> GSM627108     2  0.0000      0.993 0.000 1.000
#> GSM627126     1  0.0000      0.972 1.000 0.000
#> GSM627078     2  0.0000      0.993 0.000 1.000
#> GSM627090     1  0.0000      0.972 1.000 0.000
#> GSM627099     2  0.0000      0.993 0.000 1.000
#> GSM627105     2  0.0000      0.993 0.000 1.000
#> GSM627117     1  0.0000      0.972 1.000 0.000
#> GSM627121     2  0.0000      0.993 0.000 1.000
#> GSM627127     2  0.0000      0.993 0.000 1.000
#> GSM627087     2  0.0000      0.993 0.000 1.000
#> GSM627089     1  0.0000      0.972 1.000 0.000
#> GSM627092     2  0.0000      0.993 0.000 1.000
#> GSM627076     1  0.0000      0.972 1.000 0.000
#> GSM627136     1  0.0000      0.972 1.000 0.000
#> GSM627081     1  0.8861      0.586 0.696 0.304
#> GSM627091     2  0.0000      0.993 0.000 1.000
#> GSM627097     2  0.0000      0.993 0.000 1.000
#> GSM627072     1  0.0000      0.972 1.000 0.000
#> GSM627080     1  0.0000      0.972 1.000 0.000
#> GSM627088     1  0.0000      0.972 1.000 0.000
#> GSM627109     1  0.0000      0.972 1.000 0.000
#> GSM627111     1  0.0000      0.972 1.000 0.000
#> GSM627113     1  0.0000      0.972 1.000 0.000
#> GSM627133     2  0.0000      0.993 0.000 1.000
#> GSM627177     1  0.0000      0.972 1.000 0.000
#> GSM627086     2  0.0000      0.993 0.000 1.000
#> GSM627095     1  0.0000      0.972 1.000 0.000
#> GSM627079     1  0.0000      0.972 1.000 0.000
#> GSM627082     1  0.8661      0.610 0.712 0.288
#> GSM627074     1  0.0000      0.972 1.000 0.000
#> GSM627077     1  0.0000      0.972 1.000 0.000
#> GSM627093     1  0.0000      0.972 1.000 0.000
#> GSM627120     2  0.0000      0.993 0.000 1.000
#> GSM627124     2  0.0000      0.993 0.000 1.000
#> GSM627075     2  0.0000      0.993 0.000 1.000
#> GSM627085     2  0.0000      0.993 0.000 1.000
#> GSM627119     1  0.0000      0.972 1.000 0.000
#> GSM627116     2  0.4298      0.898 0.088 0.912
#> GSM627084     1  0.0000      0.972 1.000 0.000
#> GSM627096     2  0.0000      0.993 0.000 1.000
#> GSM627100     1  0.0000      0.972 1.000 0.000
#> GSM627112     2  0.0000      0.993 0.000 1.000
#> GSM627083     1  0.0000      0.972 1.000 0.000
#> GSM627098     1  0.0000      0.972 1.000 0.000
#> GSM627104     1  0.0000      0.972 1.000 0.000
#> GSM627131     1  0.0000      0.972 1.000 0.000
#> GSM627106     1  0.8861      0.586 0.696 0.304
#> GSM627123     1  0.0000      0.972 1.000 0.000
#> GSM627129     2  0.0000      0.993 0.000 1.000
#> GSM627216     2  0.0000      0.993 0.000 1.000
#> GSM627212     2  0.0000      0.993 0.000 1.000
#> GSM627190     1  0.0000      0.972 1.000 0.000
#> GSM627169     2  0.0000      0.993 0.000 1.000
#> GSM627167     2  0.0000      0.993 0.000 1.000
#> GSM627192     1  0.0000      0.972 1.000 0.000
#> GSM627203     1  0.0000      0.972 1.000 0.000
#> GSM627151     2  0.0000      0.993 0.000 1.000
#> GSM627163     1  0.0000      0.972 1.000 0.000
#> GSM627211     2  0.0000      0.993 0.000 1.000
#> GSM627171     2  0.0000      0.993 0.000 1.000
#> GSM627209     2  0.0000      0.993 0.000 1.000
#> GSM627135     1  0.0000      0.972 1.000 0.000
#> GSM627170     2  0.0000      0.993 0.000 1.000
#> GSM627178     1  0.0000      0.972 1.000 0.000
#> GSM627199     2  0.0000      0.993 0.000 1.000
#> GSM627213     2  0.0000      0.993 0.000 1.000
#> GSM627140     2  0.0000      0.993 0.000 1.000
#> GSM627149     1  0.0000      0.972 1.000 0.000
#> GSM627147     2  0.0000      0.993 0.000 1.000
#> GSM627195     1  0.0000      0.972 1.000 0.000
#> GSM627204     2  0.0000      0.993 0.000 1.000
#> GSM627207     2  0.0000      0.993 0.000 1.000
#> GSM627157     1  0.0000      0.972 1.000 0.000
#> GSM627201     2  0.0000      0.993 0.000 1.000
#> GSM627146     2  0.0000      0.993 0.000 1.000
#> GSM627156     2  0.0000      0.993 0.000 1.000
#> GSM627188     1  0.0000      0.972 1.000 0.000
#> GSM627197     2  0.0000      0.993 0.000 1.000
#> GSM627173     2  0.0000      0.993 0.000 1.000
#> GSM627179     2  0.0000      0.993 0.000 1.000
#> GSM627208     2  0.0000      0.993 0.000 1.000
#> GSM627215     2  0.0000      0.993 0.000 1.000
#> GSM627153     2  0.0000      0.993 0.000 1.000
#> GSM627155     1  0.0000      0.972 1.000 0.000
#> GSM627165     2  0.0000      0.993 0.000 1.000
#> GSM627168     1  0.0000      0.972 1.000 0.000
#> GSM627183     1  0.0000      0.972 1.000 0.000
#> GSM627144     1  0.0000      0.972 1.000 0.000
#> GSM627158     1  0.0000      0.972 1.000 0.000
#> GSM627196     2  0.0000      0.993 0.000 1.000
#> GSM627142     1  0.0000      0.972 1.000 0.000
#> GSM627182     1  0.0376      0.969 0.996 0.004
#> GSM627202     1  0.0000      0.972 1.000 0.000
#> GSM627141     1  0.0000      0.972 1.000 0.000
#> GSM627143     2  0.0000      0.993 0.000 1.000
#> GSM627145     1  0.0000      0.972 1.000 0.000
#> GSM627152     1  0.0000      0.972 1.000 0.000
#> GSM627200     1  0.0000      0.972 1.000 0.000
#> GSM627159     2  0.8081      0.664 0.248 0.752
#> GSM627164     2  0.0000      0.993 0.000 1.000
#> GSM627138     1  0.0000      0.972 1.000 0.000
#> GSM627175     2  0.0000      0.993 0.000 1.000
#> GSM627150     1  0.0000      0.972 1.000 0.000
#> GSM627166     1  0.0000      0.972 1.000 0.000
#> GSM627186     2  0.0000      0.993 0.000 1.000
#> GSM627139     1  0.9833      0.299 0.576 0.424
#> GSM627181     2  0.0000      0.993 0.000 1.000
#> GSM627205     2  0.0000      0.993 0.000 1.000
#> GSM627214     2  0.0000      0.993 0.000 1.000
#> GSM627180     2  0.0000      0.993 0.000 1.000
#> GSM627172     2  0.0000      0.993 0.000 1.000
#> GSM627184     1  0.0000      0.972 1.000 0.000
#> GSM627193     2  0.0000      0.993 0.000 1.000
#> GSM627191     2  0.6531      0.793 0.168 0.832
#> GSM627176     1  0.0000      0.972 1.000 0.000
#> GSM627194     2  0.0000      0.993 0.000 1.000
#> GSM627154     2  0.0000      0.993 0.000 1.000
#> GSM627187     1  0.0000      0.972 1.000 0.000
#> GSM627198     2  0.0000      0.993 0.000 1.000
#> GSM627160     1  0.8861      0.570 0.696 0.304
#> GSM627185     1  0.0000      0.972 1.000 0.000
#> GSM627206     1  0.0000      0.972 1.000 0.000
#> GSM627161     1  0.0000      0.972 1.000 0.000
#> GSM627162     1  0.0000      0.972 1.000 0.000
#> GSM627210     1  0.0000      0.972 1.000 0.000
#> GSM627189     2  0.0000      0.993 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM627128     3  0.3038      0.872 0.104 0.000 0.896
#> GSM627110     1  0.3412      0.891 0.876 0.000 0.124
#> GSM627132     1  0.0000      0.940 1.000 0.000 0.000
#> GSM627107     3  0.0237      0.891 0.000 0.004 0.996
#> GSM627103     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627114     1  0.3192      0.898 0.888 0.000 0.112
#> GSM627134     2  0.1860      0.923 0.000 0.948 0.052
#> GSM627137     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627148     3  0.2066      0.870 0.060 0.000 0.940
#> GSM627101     3  0.3340      0.819 0.000 0.120 0.880
#> GSM627130     3  0.3983      0.857 0.048 0.068 0.884
#> GSM627071     1  0.6062      0.470 0.616 0.000 0.384
#> GSM627118     2  0.5560      0.602 0.000 0.700 0.300
#> GSM627094     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627122     1  0.0000      0.940 1.000 0.000 0.000
#> GSM627115     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627125     3  0.3377      0.875 0.092 0.012 0.896
#> GSM627174     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627102     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627073     3  0.0424      0.892 0.008 0.000 0.992
#> GSM627108     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627126     1  0.0000      0.940 1.000 0.000 0.000
#> GSM627078     2  0.0747      0.944 0.000 0.984 0.016
#> GSM627090     3  0.2066      0.893 0.060 0.000 0.940
#> GSM627099     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627105     3  0.3377      0.846 0.012 0.092 0.896
#> GSM627117     1  0.3412      0.891 0.876 0.000 0.124
#> GSM627121     3  0.0000      0.891 0.000 0.000 1.000
#> GSM627127     2  0.0747      0.944 0.000 0.984 0.016
#> GSM627087     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627089     3  0.6308     -0.118 0.492 0.000 0.508
#> GSM627092     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627076     3  0.2959      0.881 0.100 0.000 0.900
#> GSM627136     1  0.1860      0.923 0.948 0.000 0.052
#> GSM627081     3  0.0000      0.891 0.000 0.000 1.000
#> GSM627091     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627097     2  0.1753      0.926 0.000 0.952 0.048
#> GSM627072     3  0.2261      0.864 0.068 0.000 0.932
#> GSM627080     1  0.0000      0.940 1.000 0.000 0.000
#> GSM627088     1  0.3192      0.898 0.888 0.000 0.112
#> GSM627109     1  0.0237      0.939 0.996 0.000 0.004
#> GSM627111     1  0.0000      0.940 1.000 0.000 0.000
#> GSM627113     1  0.3038      0.902 0.896 0.000 0.104
#> GSM627133     2  0.5733      0.542 0.000 0.676 0.324
#> GSM627177     1  0.5529      0.657 0.704 0.000 0.296
#> GSM627086     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627095     1  0.0000      0.940 1.000 0.000 0.000
#> GSM627079     3  0.2165      0.889 0.064 0.000 0.936
#> GSM627082     3  0.3412      0.860 0.124 0.000 0.876
#> GSM627074     1  0.3038      0.902 0.896 0.000 0.104
#> GSM627077     1  0.0000      0.940 1.000 0.000 0.000
#> GSM627093     1  0.3038      0.902 0.896 0.000 0.104
#> GSM627120     2  0.1163      0.938 0.000 0.972 0.028
#> GSM627124     2  0.0747      0.944 0.000 0.984 0.016
#> GSM627075     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627085     2  0.0747      0.944 0.000 0.984 0.016
#> GSM627119     1  0.3038      0.902 0.896 0.000 0.104
#> GSM627116     2  0.7481      0.400 0.048 0.596 0.356
#> GSM627084     1  0.0000      0.940 1.000 0.000 0.000
#> GSM627096     2  0.5591      0.595 0.000 0.696 0.304
#> GSM627100     3  0.2878      0.877 0.096 0.000 0.904
#> GSM627112     2  0.2860      0.893 0.004 0.912 0.084
#> GSM627083     1  0.0000      0.940 1.000 0.000 0.000
#> GSM627098     1  0.0237      0.939 0.996 0.000 0.004
#> GSM627104     1  0.0237      0.939 0.996 0.000 0.004
#> GSM627131     1  0.0000      0.940 1.000 0.000 0.000
#> GSM627106     3  0.0000      0.891 0.000 0.000 1.000
#> GSM627123     1  0.0000      0.940 1.000 0.000 0.000
#> GSM627129     2  0.1860      0.923 0.000 0.948 0.052
#> GSM627216     2  0.0747      0.940 0.000 0.984 0.016
#> GSM627212     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627190     1  0.3412      0.891 0.876 0.000 0.124
#> GSM627169     2  0.2165      0.899 0.000 0.936 0.064
#> GSM627167     2  0.1860      0.923 0.000 0.948 0.052
#> GSM627192     1  0.0000      0.940 1.000 0.000 0.000
#> GSM627203     3  0.0747      0.892 0.016 0.000 0.984
#> GSM627151     2  0.6235      0.280 0.000 0.564 0.436
#> GSM627163     1  0.0000      0.940 1.000 0.000 0.000
#> GSM627211     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627171     2  0.0424      0.945 0.000 0.992 0.008
#> GSM627209     2  0.0747      0.944 0.000 0.984 0.016
#> GSM627135     1  0.0000      0.940 1.000 0.000 0.000
#> GSM627170     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627178     1  0.0000      0.940 1.000 0.000 0.000
#> GSM627199     2  0.0747      0.944 0.000 0.984 0.016
#> GSM627213     2  0.2066      0.916 0.000 0.940 0.060
#> GSM627140     2  0.3589      0.885 0.048 0.900 0.052
#> GSM627149     1  0.0000      0.940 1.000 0.000 0.000
#> GSM627147     2  0.0424      0.947 0.000 0.992 0.008
#> GSM627195     3  0.0747      0.892 0.016 0.000 0.984
#> GSM627204     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627207     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627157     1  0.0237      0.939 0.996 0.000 0.004
#> GSM627201     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627146     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627156     2  0.2261      0.895 0.000 0.932 0.068
#> GSM627188     1  0.0000      0.940 1.000 0.000 0.000
#> GSM627197     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627173     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627179     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627208     3  0.6244      0.161 0.000 0.440 0.560
#> GSM627215     2  0.1031      0.935 0.000 0.976 0.024
#> GSM627153     2  0.0747      0.944 0.000 0.984 0.016
#> GSM627155     1  0.0000      0.940 1.000 0.000 0.000
#> GSM627165     2  0.6291      0.143 0.000 0.532 0.468
#> GSM627168     1  0.3340      0.893 0.880 0.000 0.120
#> GSM627183     1  0.3192      0.898 0.888 0.000 0.112
#> GSM627144     3  0.0747      0.892 0.016 0.000 0.984
#> GSM627158     1  0.0000      0.940 1.000 0.000 0.000
#> GSM627196     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627142     3  0.3038      0.872 0.104 0.000 0.896
#> GSM627182     3  0.2743      0.868 0.052 0.020 0.928
#> GSM627202     1  0.0000      0.940 1.000 0.000 0.000
#> GSM627141     1  0.2711      0.909 0.912 0.000 0.088
#> GSM627143     2  0.0424      0.947 0.000 0.992 0.008
#> GSM627145     3  0.2165      0.867 0.064 0.000 0.936
#> GSM627152     3  0.2959      0.881 0.100 0.000 0.900
#> GSM627200     1  0.0000      0.940 1.000 0.000 0.000
#> GSM627159     3  0.3192      0.868 0.112 0.000 0.888
#> GSM627164     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627138     1  0.0237      0.939 0.996 0.000 0.004
#> GSM627175     2  0.0747      0.944 0.000 0.984 0.016
#> GSM627150     3  0.0747      0.892 0.016 0.000 0.984
#> GSM627166     1  0.0000      0.940 1.000 0.000 0.000
#> GSM627186     2  0.2625      0.879 0.000 0.916 0.084
#> GSM627139     3  0.2878      0.877 0.096 0.000 0.904
#> GSM627181     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627205     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627214     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627180     3  0.0424      0.891 0.000 0.008 0.992
#> GSM627172     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627184     1  0.0000      0.940 1.000 0.000 0.000
#> GSM627193     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627191     1  0.2301      0.886 0.936 0.004 0.060
#> GSM627176     3  0.1031      0.894 0.024 0.000 0.976
#> GSM627194     2  0.0000      0.949 0.000 1.000 0.000
#> GSM627154     2  0.0747      0.944 0.000 0.984 0.016
#> GSM627187     1  0.3192      0.898 0.888 0.000 0.112
#> GSM627198     2  0.0747      0.944 0.000 0.984 0.016
#> GSM627160     3  0.6062      0.472 0.384 0.000 0.616
#> GSM627185     1  0.0237      0.939 0.996 0.000 0.004
#> GSM627206     1  0.3412      0.891 0.876 0.000 0.124
#> GSM627161     1  0.0000      0.940 1.000 0.000 0.000
#> GSM627162     1  0.5529      0.661 0.704 0.000 0.296
#> GSM627210     1  0.3038      0.902 0.896 0.000 0.104
#> GSM627189     2  0.0000      0.949 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM627128     4  0.0000     0.9677 0.000 0.000 0.000 1.000
#> GSM627110     3  0.0000     0.9676 0.000 0.000 1.000 0.000
#> GSM627132     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627107     3  0.0707     0.9588 0.000 0.000 0.980 0.020
#> GSM627103     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627114     3  0.0817     0.9487 0.024 0.000 0.976 0.000
#> GSM627134     4  0.0336     0.9697 0.000 0.008 0.000 0.992
#> GSM627137     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627148     3  0.0000     0.9676 0.000 0.000 1.000 0.000
#> GSM627101     4  0.0000     0.9677 0.000 0.000 0.000 1.000
#> GSM627130     4  0.0000     0.9677 0.000 0.000 0.000 1.000
#> GSM627071     3  0.0000     0.9676 0.000 0.000 1.000 0.000
#> GSM627118     4  0.0336     0.9697 0.000 0.008 0.000 0.992
#> GSM627094     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627122     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627115     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627125     4  0.0000     0.9677 0.000 0.000 0.000 1.000
#> GSM627174     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627102     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627073     3  0.0188     0.9676 0.000 0.000 0.996 0.004
#> GSM627108     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627126     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627078     4  0.0817     0.9626 0.000 0.024 0.000 0.976
#> GSM627090     3  0.0336     0.9661 0.000 0.000 0.992 0.008
#> GSM627099     2  0.4356     0.5754 0.000 0.708 0.000 0.292
#> GSM627105     4  0.0000     0.9677 0.000 0.000 0.000 1.000
#> GSM627117     3  0.0000     0.9676 0.000 0.000 1.000 0.000
#> GSM627121     3  0.0336     0.9661 0.000 0.000 0.992 0.008
#> GSM627127     4  0.0336     0.9697 0.000 0.008 0.000 0.992
#> GSM627087     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627089     3  0.0000     0.9676 0.000 0.000 1.000 0.000
#> GSM627092     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627076     3  0.0817     0.9559 0.000 0.000 0.976 0.024
#> GSM627136     1  0.0188     0.9608 0.996 0.000 0.004 0.000
#> GSM627081     3  0.0188     0.9676 0.000 0.000 0.996 0.004
#> GSM627091     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627097     4  0.0336     0.9697 0.000 0.008 0.000 0.992
#> GSM627072     3  0.0000     0.9676 0.000 0.000 1.000 0.000
#> GSM627080     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627088     3  0.5000    -0.0514 0.496 0.000 0.504 0.000
#> GSM627109     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627111     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627113     1  0.0921     0.9421 0.972 0.000 0.028 0.000
#> GSM627133     3  0.2011     0.8927 0.000 0.080 0.920 0.000
#> GSM627177     1  0.4522     0.5349 0.680 0.000 0.320 0.000
#> GSM627086     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627095     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627079     3  0.0188     0.9676 0.000 0.000 0.996 0.004
#> GSM627082     4  0.0000     0.9677 0.000 0.000 0.000 1.000
#> GSM627074     1  0.0336     0.9583 0.992 0.000 0.008 0.000
#> GSM627077     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627093     1  0.0336     0.9583 0.992 0.000 0.008 0.000
#> GSM627120     2  0.4776     0.3872 0.000 0.624 0.000 0.376
#> GSM627124     4  0.0817     0.9626 0.000 0.024 0.000 0.976
#> GSM627075     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627085     4  0.0336     0.9697 0.000 0.008 0.000 0.992
#> GSM627119     1  0.0469     0.9554 0.988 0.000 0.012 0.000
#> GSM627116     4  0.0336     0.9697 0.000 0.008 0.000 0.992
#> GSM627084     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627096     4  0.0336     0.9697 0.000 0.008 0.000 0.992
#> GSM627100     3  0.0921     0.9526 0.000 0.000 0.972 0.028
#> GSM627112     4  0.0188     0.9690 0.000 0.004 0.000 0.996
#> GSM627083     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627098     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627104     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627131     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627106     3  0.0188     0.9676 0.000 0.000 0.996 0.004
#> GSM627123     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627129     4  0.0336     0.9697 0.000 0.008 0.000 0.992
#> GSM627216     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627212     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627190     3  0.0000     0.9676 0.000 0.000 1.000 0.000
#> GSM627169     2  0.0188     0.9701 0.000 0.996 0.004 0.000
#> GSM627167     4  0.0592     0.9652 0.000 0.016 0.000 0.984
#> GSM627192     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627203     3  0.0188     0.9676 0.000 0.000 0.996 0.004
#> GSM627151     4  0.0188     0.9690 0.000 0.004 0.000 0.996
#> GSM627163     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627211     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627171     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627209     4  0.1302     0.9462 0.000 0.044 0.000 0.956
#> GSM627135     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627170     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627178     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627199     4  0.0817     0.9626 0.000 0.024 0.000 0.976
#> GSM627213     4  0.0336     0.9697 0.000 0.008 0.000 0.992
#> GSM627140     4  0.0188     0.9690 0.000 0.004 0.000 0.996
#> GSM627149     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627147     4  0.4331     0.5989 0.000 0.288 0.000 0.712
#> GSM627195     3  0.0188     0.9676 0.000 0.000 0.996 0.004
#> GSM627204     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627207     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627157     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627201     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627146     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627156     2  0.0188     0.9701 0.000 0.996 0.004 0.000
#> GSM627188     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627197     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627173     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627179     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627208     3  0.0000     0.9676 0.000 0.000 1.000 0.000
#> GSM627215     2  0.2408     0.8678 0.000 0.896 0.104 0.000
#> GSM627153     4  0.0921     0.9599 0.000 0.028 0.000 0.972
#> GSM627155     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627165     4  0.4830     0.3396 0.000 0.392 0.000 0.608
#> GSM627168     3  0.0000     0.9676 0.000 0.000 1.000 0.000
#> GSM627183     1  0.5000     0.0358 0.504 0.000 0.496 0.000
#> GSM627144     3  0.0188     0.9676 0.000 0.000 0.996 0.004
#> GSM627158     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627196     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627142     4  0.0779     0.9562 0.016 0.000 0.004 0.980
#> GSM627182     3  0.0000     0.9676 0.000 0.000 1.000 0.000
#> GSM627202     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627141     1  0.3975     0.6810 0.760 0.000 0.240 0.000
#> GSM627143     2  0.3311     0.7792 0.000 0.828 0.000 0.172
#> GSM627145     3  0.0000     0.9676 0.000 0.000 1.000 0.000
#> GSM627152     3  0.0524     0.9647 0.004 0.000 0.988 0.008
#> GSM627200     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627159     4  0.0000     0.9677 0.000 0.000 0.000 1.000
#> GSM627164     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627138     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627175     4  0.0817     0.9626 0.000 0.024 0.000 0.976
#> GSM627150     3  0.0188     0.9676 0.000 0.000 0.996 0.004
#> GSM627166     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627186     2  0.0188     0.9701 0.000 0.996 0.004 0.000
#> GSM627139     4  0.0000     0.9677 0.000 0.000 0.000 1.000
#> GSM627181     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627205     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627214     2  0.0817     0.9524 0.000 0.976 0.000 0.024
#> GSM627180     3  0.0188     0.9676 0.000 0.000 0.996 0.004
#> GSM627172     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627184     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627193     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627191     4  0.0592     0.9611 0.016 0.000 0.000 0.984
#> GSM627176     3  0.0336     0.9661 0.000 0.000 0.992 0.008
#> GSM627194     2  0.0000     0.9735 0.000 1.000 0.000 0.000
#> GSM627154     4  0.0336     0.9697 0.000 0.008 0.000 0.992
#> GSM627187     3  0.0000     0.9676 0.000 0.000 1.000 0.000
#> GSM627198     4  0.0817     0.9626 0.000 0.024 0.000 0.976
#> GSM627160     4  0.0188     0.9673 0.004 0.000 0.000 0.996
#> GSM627185     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627206     3  0.0000     0.9676 0.000 0.000 1.000 0.000
#> GSM627161     1  0.0000     0.9633 1.000 0.000 0.000 0.000
#> GSM627162     3  0.4103     0.6331 0.256 0.000 0.744 0.000
#> GSM627210     1  0.3942     0.6904 0.764 0.000 0.236 0.000
#> GSM627189     2  0.0000     0.9735 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM627128     5  0.4227    0.34444 0.000 0.000 0.000 0.420 0.580
#> GSM627110     3  0.0880    0.69981 0.000 0.000 0.968 0.000 0.032
#> GSM627132     1  0.0404    0.95540 0.988 0.000 0.012 0.000 0.000
#> GSM627107     5  0.1197    0.59288 0.000 0.000 0.048 0.000 0.952
#> GSM627103     2  0.2516    0.82314 0.000 0.860 0.000 0.140 0.000
#> GSM627114     3  0.0290    0.69108 0.000 0.008 0.992 0.000 0.000
#> GSM627134     4  0.0290    0.84191 0.000 0.000 0.000 0.992 0.008
#> GSM627137     2  0.1908    0.82852 0.000 0.908 0.000 0.092 0.000
#> GSM627148     3  0.3561    0.62723 0.000 0.000 0.740 0.000 0.260
#> GSM627101     4  0.4235    0.00802 0.000 0.000 0.000 0.576 0.424
#> GSM627130     5  0.4227    0.34444 0.000 0.000 0.000 0.420 0.580
#> GSM627071     3  0.2471    0.69584 0.000 0.000 0.864 0.000 0.136
#> GSM627118     4  0.0404    0.84056 0.000 0.000 0.000 0.988 0.012
#> GSM627094     2  0.2424    0.82541 0.000 0.868 0.000 0.132 0.000
#> GSM627122     1  0.0000    0.95776 1.000 0.000 0.000 0.000 0.000
#> GSM627115     2  0.2516    0.82314 0.000 0.860 0.000 0.140 0.000
#> GSM627125     5  0.3109    0.59924 0.000 0.000 0.000 0.200 0.800
#> GSM627174     2  0.3949    0.63027 0.000 0.668 0.000 0.332 0.000
#> GSM627102     2  0.1485    0.78602 0.000 0.948 0.032 0.000 0.020
#> GSM627073     3  0.4192    0.48550 0.000 0.000 0.596 0.000 0.404
#> GSM627108     2  0.1965    0.82869 0.000 0.904 0.000 0.096 0.000
#> GSM627126     1  0.0000    0.95776 1.000 0.000 0.000 0.000 0.000
#> GSM627078     4  0.0794    0.83939 0.000 0.028 0.000 0.972 0.000
#> GSM627090     5  0.1845    0.59415 0.016 0.000 0.056 0.000 0.928
#> GSM627099     4  0.2929    0.66907 0.000 0.180 0.000 0.820 0.000
#> GSM627105     5  0.3074    0.60171 0.000 0.000 0.000 0.196 0.804
#> GSM627117     3  0.0404    0.68975 0.000 0.012 0.988 0.000 0.000
#> GSM627121     5  0.4166    0.04612 0.000 0.004 0.348 0.000 0.648
#> GSM627127     4  0.0290    0.84191 0.000 0.000 0.000 0.992 0.008
#> GSM627087     2  0.2516    0.82314 0.000 0.860 0.000 0.140 0.000
#> GSM627089     3  0.2605    0.69176 0.000 0.000 0.852 0.000 0.148
#> GSM627092     2  0.1800    0.77890 0.000 0.932 0.048 0.000 0.020
#> GSM627076     5  0.1211    0.61459 0.016 0.000 0.024 0.000 0.960
#> GSM627136     1  0.4219    0.30527 0.584 0.000 0.416 0.000 0.000
#> GSM627081     5  0.4291   -0.26858 0.000 0.000 0.464 0.000 0.536
#> GSM627091     4  0.4227   -0.02118 0.000 0.420 0.000 0.580 0.000
#> GSM627097     4  0.0794    0.83003 0.000 0.000 0.000 0.972 0.028
#> GSM627072     3  0.2561    0.69308 0.000 0.000 0.856 0.000 0.144
#> GSM627080     1  0.0162    0.95716 0.996 0.000 0.004 0.000 0.000
#> GSM627088     3  0.1410    0.68489 0.060 0.000 0.940 0.000 0.000
#> GSM627109     1  0.2179    0.88803 0.888 0.000 0.112 0.000 0.000
#> GSM627111     1  0.0510    0.95382 0.984 0.000 0.016 0.000 0.000
#> GSM627113     3  0.4268    0.13716 0.444 0.000 0.556 0.000 0.000
#> GSM627133     3  0.4827    0.59927 0.000 0.136 0.752 0.016 0.096
#> GSM627177     3  0.3255    0.70159 0.052 0.000 0.848 0.000 0.100
#> GSM627086     2  0.2648    0.81682 0.000 0.848 0.000 0.152 0.000
#> GSM627095     1  0.0000    0.95776 1.000 0.000 0.000 0.000 0.000
#> GSM627079     3  0.4249    0.44710 0.000 0.000 0.568 0.000 0.432
#> GSM627082     5  0.5498    0.40148 0.076 0.000 0.000 0.356 0.568
#> GSM627074     3  0.4307   -0.07228 0.496 0.000 0.504 0.000 0.000
#> GSM627077     1  0.0000    0.95776 1.000 0.000 0.000 0.000 0.000
#> GSM627093     3  0.4227    0.17329 0.420 0.000 0.580 0.000 0.000
#> GSM627120     2  0.6250    0.24287 0.000 0.560 0.056 0.332 0.052
#> GSM627124     4  0.0794    0.83939 0.000 0.028 0.000 0.972 0.000
#> GSM627075     2  0.1485    0.78602 0.000 0.948 0.032 0.000 0.020
#> GSM627085     4  0.0404    0.84264 0.000 0.012 0.000 0.988 0.000
#> GSM627119     3  0.4171    0.26514 0.396 0.000 0.604 0.000 0.000
#> GSM627116     4  0.0963    0.82242 0.000 0.000 0.000 0.964 0.036
#> GSM627084     1  0.0404    0.95540 0.988 0.000 0.012 0.000 0.000
#> GSM627096     4  0.0404    0.84056 0.000 0.000 0.000 0.988 0.012
#> GSM627100     5  0.1074    0.61776 0.012 0.000 0.016 0.004 0.968
#> GSM627112     4  0.2127    0.72518 0.000 0.000 0.000 0.892 0.108
#> GSM627083     1  0.0000    0.95776 1.000 0.000 0.000 0.000 0.000
#> GSM627098     1  0.1851    0.90872 0.912 0.000 0.088 0.000 0.000
#> GSM627104     1  0.2605    0.84665 0.852 0.000 0.148 0.000 0.000
#> GSM627131     1  0.0510    0.95284 0.984 0.000 0.016 0.000 0.000
#> GSM627106     5  0.4283   -0.24905 0.000 0.000 0.456 0.000 0.544
#> GSM627123     1  0.0000    0.95776 1.000 0.000 0.000 0.000 0.000
#> GSM627129     4  0.1117    0.82928 0.000 0.016 0.000 0.964 0.020
#> GSM627216     2  0.3169    0.81049 0.000 0.856 0.060 0.084 0.000
#> GSM627212     2  0.4297    0.33347 0.000 0.528 0.000 0.472 0.000
#> GSM627190     3  0.0290    0.69108 0.000 0.008 0.992 0.000 0.000
#> GSM627169     2  0.2390    0.75999 0.000 0.896 0.084 0.000 0.020
#> GSM627167     5  0.6418    0.15366 0.000 0.172 0.000 0.408 0.420
#> GSM627192     1  0.0000    0.95776 1.000 0.000 0.000 0.000 0.000
#> GSM627203     3  0.4297    0.36974 0.000 0.000 0.528 0.000 0.472
#> GSM627151     4  0.1121    0.81998 0.000 0.000 0.000 0.956 0.044
#> GSM627163     1  0.0404    0.95540 0.988 0.000 0.012 0.000 0.000
#> GSM627211     2  0.2127    0.82903 0.000 0.892 0.000 0.108 0.000
#> GSM627171     2  0.2144    0.76913 0.000 0.912 0.068 0.000 0.020
#> GSM627209     4  0.1544    0.80619 0.000 0.068 0.000 0.932 0.000
#> GSM627135     1  0.0000    0.95776 1.000 0.000 0.000 0.000 0.000
#> GSM627170     2  0.1965    0.82892 0.000 0.904 0.000 0.096 0.000
#> GSM627178     1  0.1121    0.93596 0.956 0.000 0.044 0.000 0.000
#> GSM627199     4  0.0794    0.83939 0.000 0.028 0.000 0.972 0.000
#> GSM627213     4  0.0703    0.83314 0.000 0.000 0.000 0.976 0.024
#> GSM627140     4  0.5891   -0.17557 0.000 0.100 0.000 0.468 0.432
#> GSM627149     1  0.0000    0.95776 1.000 0.000 0.000 0.000 0.000
#> GSM627147     2  0.5504   -0.02564 0.000 0.488 0.000 0.448 0.064
#> GSM627195     3  0.4249    0.44702 0.000 0.000 0.568 0.000 0.432
#> GSM627204     2  0.2471    0.82469 0.000 0.864 0.000 0.136 0.000
#> GSM627207     2  0.0290    0.79900 0.000 0.992 0.000 0.000 0.008
#> GSM627157     1  0.2020    0.89849 0.900 0.000 0.100 0.000 0.000
#> GSM627201     2  0.3913    0.64195 0.000 0.676 0.000 0.324 0.000
#> GSM627146     2  0.3932    0.63625 0.000 0.672 0.000 0.328 0.000
#> GSM627156     2  0.2144    0.76913 0.000 0.912 0.068 0.000 0.020
#> GSM627188     1  0.0000    0.95776 1.000 0.000 0.000 0.000 0.000
#> GSM627197     2  0.4088    0.56922 0.000 0.632 0.000 0.368 0.000
#> GSM627173     2  0.2230    0.82840 0.000 0.884 0.000 0.116 0.000
#> GSM627179     2  0.2020    0.82901 0.000 0.900 0.000 0.100 0.000
#> GSM627208     3  0.3216    0.68287 0.000 0.044 0.848 0.000 0.108
#> GSM627215     2  0.6322    0.30787 0.000 0.516 0.372 0.084 0.028
#> GSM627153     4  0.1341    0.81734 0.000 0.056 0.000 0.944 0.000
#> GSM627155     1  0.0000    0.95776 1.000 0.000 0.000 0.000 0.000
#> GSM627165     5  0.6625    0.21898 0.000 0.276 0.000 0.268 0.456
#> GSM627168     3  0.1851    0.70249 0.000 0.000 0.912 0.000 0.088
#> GSM627183     3  0.2488    0.65983 0.124 0.000 0.872 0.000 0.004
#> GSM627144     3  0.4256    0.43111 0.000 0.000 0.564 0.000 0.436
#> GSM627158     1  0.0000    0.95776 1.000 0.000 0.000 0.000 0.000
#> GSM627196     2  0.2471    0.82469 0.000 0.864 0.000 0.136 0.000
#> GSM627142     5  0.1386    0.62894 0.016 0.000 0.000 0.032 0.952
#> GSM627182     3  0.2127    0.69823 0.000 0.000 0.892 0.000 0.108
#> GSM627202     1  0.0000    0.95776 1.000 0.000 0.000 0.000 0.000
#> GSM627141     3  0.4648   -0.01705 0.464 0.012 0.524 0.000 0.000
#> GSM627143     2  0.4638    0.66142 0.000 0.784 0.068 0.104 0.044
#> GSM627145     3  0.2732    0.68746 0.000 0.000 0.840 0.000 0.160
#> GSM627152     5  0.1818    0.59959 0.024 0.000 0.044 0.000 0.932
#> GSM627200     1  0.0703    0.95038 0.976 0.000 0.024 0.000 0.000
#> GSM627159     5  0.4350    0.36444 0.004 0.000 0.000 0.408 0.588
#> GSM627164     2  0.2079    0.77126 0.000 0.916 0.064 0.000 0.020
#> GSM627138     1  0.1341    0.93227 0.944 0.000 0.056 0.000 0.000
#> GSM627175     4  0.0609    0.84154 0.000 0.020 0.000 0.980 0.000
#> GSM627150     3  0.4192    0.48513 0.000 0.000 0.596 0.000 0.404
#> GSM627166     1  0.1341    0.93389 0.944 0.000 0.056 0.000 0.000
#> GSM627186     2  0.2390    0.75999 0.000 0.896 0.084 0.000 0.020
#> GSM627139     5  0.2813    0.61541 0.000 0.000 0.000 0.168 0.832
#> GSM627181     2  0.3730    0.68667 0.000 0.712 0.000 0.288 0.000
#> GSM627205     2  0.1908    0.82852 0.000 0.908 0.000 0.092 0.000
#> GSM627214     4  0.4138    0.16880 0.000 0.384 0.000 0.616 0.000
#> GSM627180     3  0.4235    0.45897 0.000 0.000 0.576 0.000 0.424
#> GSM627172     2  0.1485    0.78602 0.000 0.948 0.032 0.000 0.020
#> GSM627184     1  0.0000    0.95776 1.000 0.000 0.000 0.000 0.000
#> GSM627193     2  0.2280    0.82786 0.000 0.880 0.000 0.120 0.000
#> GSM627191     5  0.6771    0.24638 0.356 0.000 0.000 0.272 0.372
#> GSM627176     5  0.1914    0.59478 0.016 0.000 0.060 0.000 0.924
#> GSM627194     2  0.2561    0.82134 0.000 0.856 0.000 0.144 0.000
#> GSM627154     4  0.0000    0.84279 0.000 0.000 0.000 1.000 0.000
#> GSM627187     3  0.1914    0.65615 0.000 0.060 0.924 0.000 0.016
#> GSM627198     4  0.0794    0.83939 0.000 0.028 0.000 0.972 0.000
#> GSM627160     5  0.5652    0.40356 0.092 0.000 0.000 0.344 0.564
#> GSM627185     1  0.1544    0.92356 0.932 0.000 0.068 0.000 0.000
#> GSM627206     3  0.1341    0.70248 0.000 0.000 0.944 0.000 0.056
#> GSM627161     1  0.0000    0.95776 1.000 0.000 0.000 0.000 0.000
#> GSM627162     3  0.6065    0.52213 0.076 0.140 0.676 0.000 0.108
#> GSM627210     3  0.3534    0.55031 0.256 0.000 0.744 0.000 0.000
#> GSM627189     2  0.2471    0.82421 0.000 0.864 0.000 0.136 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM627128     6  0.3984     0.5318 0.000 0.000 0.000 0.336 0.016 0.648
#> GSM627110     3  0.1807     0.7311 0.000 0.000 0.920 0.000 0.060 0.020
#> GSM627132     1  0.0363     0.8799 0.988 0.000 0.012 0.000 0.000 0.000
#> GSM627107     6  0.4688     0.0921 0.000 0.000 0.016 0.020 0.420 0.544
#> GSM627103     2  0.1267     0.8458 0.000 0.940 0.000 0.060 0.000 0.000
#> GSM627114     3  0.1759     0.7314 0.000 0.004 0.924 0.004 0.064 0.004
#> GSM627134     4  0.1265     0.8564 0.000 0.044 0.000 0.948 0.008 0.000
#> GSM627137     2  0.2066     0.7995 0.000 0.908 0.000 0.040 0.052 0.000
#> GSM627148     5  0.5980     0.0512 0.000 0.000 0.292 0.000 0.444 0.264
#> GSM627101     4  0.3652     0.4243 0.000 0.000 0.000 0.720 0.016 0.264
#> GSM627130     6  0.3984     0.5318 0.000 0.000 0.000 0.336 0.016 0.648
#> GSM627071     3  0.3885     0.5741 0.000 0.000 0.736 0.000 0.220 0.044
#> GSM627118     4  0.1010     0.8541 0.000 0.036 0.000 0.960 0.000 0.004
#> GSM627094     2  0.1285     0.8440 0.000 0.944 0.000 0.052 0.004 0.000
#> GSM627122     1  0.0458     0.8747 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM627115     2  0.1141     0.8445 0.000 0.948 0.000 0.052 0.000 0.000
#> GSM627125     6  0.3171     0.6485 0.000 0.000 0.000 0.204 0.012 0.784
#> GSM627174     2  0.3431     0.7317 0.000 0.756 0.000 0.228 0.016 0.000
#> GSM627102     5  0.4177     0.1560 0.000 0.468 0.000 0.012 0.520 0.000
#> GSM627073     5  0.6188     0.1458 0.000 0.000 0.192 0.016 0.452 0.340
#> GSM627108     2  0.1151     0.8254 0.000 0.956 0.000 0.032 0.012 0.000
#> GSM627126     1  0.0000     0.8813 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627078     4  0.2312     0.8533 0.000 0.112 0.000 0.876 0.012 0.000
#> GSM627090     6  0.2504     0.5544 0.004 0.000 0.012 0.004 0.104 0.876
#> GSM627099     4  0.3578     0.4837 0.000 0.340 0.000 0.660 0.000 0.000
#> GSM627105     6  0.3171     0.6485 0.000 0.000 0.000 0.204 0.012 0.784
#> GSM627117     3  0.2093     0.7230 0.000 0.004 0.900 0.004 0.088 0.004
#> GSM627121     5  0.5715     0.0378 0.000 0.000 0.104 0.016 0.444 0.436
#> GSM627127     4  0.1349     0.8595 0.000 0.056 0.000 0.940 0.000 0.004
#> GSM627087     2  0.1141     0.8445 0.000 0.948 0.000 0.052 0.000 0.000
#> GSM627089     3  0.5065     0.4506 0.000 0.000 0.616 0.000 0.260 0.124
#> GSM627092     5  0.4644     0.2012 0.000 0.440 0.000 0.004 0.524 0.032
#> GSM627076     6  0.2214     0.5729 0.004 0.000 0.000 0.012 0.092 0.892
#> GSM627136     3  0.3528     0.4835 0.296 0.000 0.700 0.000 0.004 0.000
#> GSM627081     5  0.5960     0.0978 0.000 0.000 0.140 0.016 0.448 0.396
#> GSM627091     2  0.3851     0.1586 0.000 0.540 0.000 0.460 0.000 0.000
#> GSM627097     4  0.1218     0.8311 0.000 0.012 0.000 0.956 0.004 0.028
#> GSM627072     3  0.5446     0.3355 0.000 0.000 0.540 0.000 0.316 0.144
#> GSM627080     1  0.0260     0.8803 0.992 0.000 0.008 0.000 0.000 0.000
#> GSM627088     3  0.0551     0.7375 0.004 0.000 0.984 0.000 0.008 0.004
#> GSM627109     1  0.4067     0.3440 0.548 0.000 0.444 0.000 0.008 0.000
#> GSM627111     1  0.0363     0.8799 0.988 0.000 0.012 0.000 0.000 0.000
#> GSM627113     3  0.2092     0.7071 0.124 0.000 0.876 0.000 0.000 0.000
#> GSM627133     5  0.7430    -0.0043 0.000 0.248 0.292 0.024 0.376 0.060
#> GSM627177     3  0.3386     0.6340 0.008 0.000 0.788 0.000 0.188 0.016
#> GSM627086     2  0.1812     0.8433 0.000 0.912 0.000 0.080 0.008 0.000
#> GSM627095     1  0.0000     0.8813 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627079     6  0.6122    -0.1542 0.000 0.000 0.312 0.000 0.328 0.360
#> GSM627082     6  0.4978     0.5663 0.072 0.000 0.000 0.268 0.016 0.644
#> GSM627074     3  0.2631     0.6662 0.152 0.000 0.840 0.000 0.008 0.000
#> GSM627077     1  0.1036     0.8724 0.964 0.000 0.024 0.000 0.004 0.008
#> GSM627093     3  0.2191     0.7048 0.120 0.000 0.876 0.000 0.004 0.000
#> GSM627120     5  0.6613     0.2094 0.000 0.248 0.004 0.168 0.516 0.064
#> GSM627124     4  0.2312     0.8533 0.000 0.112 0.000 0.876 0.012 0.000
#> GSM627075     5  0.3999     0.1403 0.000 0.496 0.000 0.004 0.500 0.000
#> GSM627085     4  0.1643     0.8622 0.000 0.068 0.000 0.924 0.008 0.000
#> GSM627119     3  0.2212     0.7100 0.112 0.000 0.880 0.000 0.008 0.000
#> GSM627116     4  0.2014     0.8309 0.000 0.016 0.024 0.924 0.004 0.032
#> GSM627084     1  0.0363     0.8799 0.988 0.000 0.012 0.000 0.000 0.000
#> GSM627096     4  0.0935     0.8521 0.000 0.032 0.000 0.964 0.000 0.004
#> GSM627100     6  0.1442     0.5955 0.004 0.000 0.000 0.012 0.040 0.944
#> GSM627112     4  0.2003     0.7151 0.000 0.000 0.000 0.884 0.000 0.116
#> GSM627083     1  0.0000     0.8813 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627098     1  0.3464     0.5920 0.688 0.000 0.312 0.000 0.000 0.000
#> GSM627104     3  0.4093    -0.1954 0.476 0.000 0.516 0.000 0.008 0.000
#> GSM627131     1  0.2389     0.8097 0.864 0.000 0.128 0.000 0.000 0.008
#> GSM627106     5  0.5912     0.0874 0.000 0.000 0.132 0.016 0.448 0.404
#> GSM627123     1  0.0000     0.8813 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627129     4  0.2358     0.7879 0.000 0.028 0.000 0.900 0.016 0.056
#> GSM627216     2  0.3339     0.7439 0.000 0.824 0.008 0.048 0.120 0.000
#> GSM627212     2  0.3659     0.4623 0.000 0.636 0.000 0.364 0.000 0.000
#> GSM627190     3  0.1876     0.7284 0.000 0.004 0.916 0.004 0.072 0.004
#> GSM627169     5  0.4225     0.1657 0.000 0.480 0.008 0.004 0.508 0.000
#> GSM627167     5  0.6250    -0.1676 0.000 0.068 0.000 0.088 0.468 0.376
#> GSM627192     1  0.0000     0.8813 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627203     5  0.6073     0.1147 0.000 0.000 0.160 0.016 0.440 0.384
#> GSM627151     4  0.2384     0.8343 0.000 0.056 0.000 0.896 0.008 0.040
#> GSM627163     1  0.0363     0.8799 0.988 0.000 0.012 0.000 0.000 0.000
#> GSM627211     2  0.1719     0.8402 0.000 0.924 0.000 0.060 0.016 0.000
#> GSM627171     5  0.4222     0.1685 0.000 0.472 0.008 0.004 0.516 0.000
#> GSM627209     4  0.2446     0.8437 0.000 0.124 0.000 0.864 0.012 0.000
#> GSM627135     1  0.0000     0.8813 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627170     2  0.1995     0.8128 0.000 0.912 0.000 0.052 0.036 0.000
#> GSM627178     1  0.3381     0.7240 0.772 0.000 0.212 0.000 0.008 0.008
#> GSM627199     4  0.2312     0.8533 0.000 0.112 0.000 0.876 0.012 0.000
#> GSM627213     4  0.0891     0.8343 0.000 0.008 0.000 0.968 0.000 0.024
#> GSM627140     6  0.6639     0.2355 0.024 0.032 0.000 0.124 0.404 0.416
#> GSM627149     1  0.0000     0.8813 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627147     5  0.7002     0.1192 0.000 0.180 0.000 0.228 0.472 0.120
#> GSM627195     5  0.6152     0.1382 0.000 0.000 0.180 0.016 0.448 0.356
#> GSM627204     2  0.2006     0.8413 0.000 0.904 0.000 0.080 0.016 0.000
#> GSM627207     2  0.2562     0.5690 0.000 0.828 0.000 0.000 0.172 0.000
#> GSM627157     1  0.3797     0.3982 0.580 0.000 0.420 0.000 0.000 0.000
#> GSM627201     2  0.3023     0.7480 0.000 0.784 0.000 0.212 0.004 0.000
#> GSM627146     2  0.3136     0.7353 0.000 0.768 0.000 0.228 0.004 0.000
#> GSM627156     5  0.4225     0.1657 0.000 0.480 0.008 0.004 0.508 0.000
#> GSM627188     1  0.0000     0.8813 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627197     2  0.3564     0.6796 0.000 0.724 0.000 0.264 0.012 0.000
#> GSM627173     2  0.1584     0.8440 0.000 0.928 0.000 0.064 0.008 0.000
#> GSM627179     2  0.1196     0.8329 0.000 0.952 0.000 0.040 0.008 0.000
#> GSM627208     5  0.6096    -0.1993 0.000 0.016 0.416 0.016 0.448 0.104
#> GSM627215     2  0.5039     0.3851 0.000 0.604 0.028 0.032 0.332 0.004
#> GSM627153     4  0.2357     0.8507 0.000 0.116 0.000 0.872 0.012 0.000
#> GSM627155     1  0.0000     0.8813 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627165     6  0.7473     0.1896 0.000 0.224 0.000 0.316 0.140 0.320
#> GSM627168     3  0.1863     0.7257 0.000 0.000 0.920 0.000 0.044 0.036
#> GSM627183     3  0.0363     0.7368 0.012 0.000 0.988 0.000 0.000 0.000
#> GSM627144     5  0.5965     0.1129 0.000 0.000 0.224 0.000 0.408 0.368
#> GSM627158     1  0.0000     0.8813 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627196     2  0.2006     0.8413 0.000 0.904 0.000 0.080 0.016 0.000
#> GSM627142     6  0.2265     0.6302 0.024 0.000 0.000 0.076 0.004 0.896
#> GSM627182     3  0.5372     0.2500 0.000 0.000 0.484 0.000 0.404 0.112
#> GSM627202     1  0.1049     0.8698 0.960 0.000 0.032 0.000 0.000 0.008
#> GSM627141     3  0.4224     0.6394 0.192 0.004 0.744 0.004 0.052 0.004
#> GSM627143     5  0.5372     0.2304 0.000 0.388 0.004 0.012 0.528 0.068
#> GSM627145     3  0.5634     0.2644 0.000 0.000 0.492 0.000 0.348 0.160
#> GSM627152     6  0.2504     0.5544 0.004 0.000 0.012 0.004 0.104 0.876
#> GSM627200     1  0.2994     0.7376 0.788 0.000 0.208 0.000 0.000 0.004
#> GSM627159     6  0.4224     0.5561 0.012 0.000 0.000 0.312 0.016 0.660
#> GSM627164     5  0.4222     0.1685 0.000 0.472 0.008 0.004 0.516 0.000
#> GSM627138     1  0.1957     0.8209 0.888 0.000 0.112 0.000 0.000 0.000
#> GSM627175     4  0.2170     0.8570 0.000 0.100 0.000 0.888 0.012 0.000
#> GSM627150     5  0.6212     0.1478 0.000 0.000 0.200 0.016 0.452 0.332
#> GSM627166     1  0.4004     0.5031 0.620 0.000 0.368 0.000 0.012 0.000
#> GSM627186     5  0.4225     0.1657 0.000 0.480 0.008 0.004 0.508 0.000
#> GSM627139     6  0.2794     0.6463 0.004 0.000 0.000 0.144 0.012 0.840
#> GSM627181     2  0.3141     0.7656 0.000 0.788 0.000 0.200 0.012 0.000
#> GSM627205     2  0.3455     0.6823 0.000 0.784 0.000 0.036 0.180 0.000
#> GSM627214     4  0.4269     0.2132 0.000 0.412 0.000 0.568 0.020 0.000
#> GSM627180     5  0.6131     0.1374 0.000 0.000 0.176 0.016 0.452 0.356
#> GSM627172     5  0.4177     0.1560 0.000 0.468 0.000 0.012 0.520 0.000
#> GSM627184     1  0.0000     0.8813 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627193     2  0.1141     0.8445 0.000 0.948 0.000 0.052 0.000 0.000
#> GSM627191     1  0.5801     0.2686 0.572 0.000 0.000 0.120 0.032 0.276
#> GSM627176     6  0.2451     0.5540 0.004 0.000 0.008 0.004 0.108 0.876
#> GSM627194     2  0.1471     0.8460 0.000 0.932 0.000 0.064 0.004 0.000
#> GSM627154     4  0.1398     0.8614 0.000 0.052 0.000 0.940 0.008 0.000
#> GSM627187     3  0.2765     0.6899 0.000 0.004 0.840 0.004 0.148 0.004
#> GSM627198     4  0.2357     0.8507 0.000 0.116 0.000 0.872 0.012 0.000
#> GSM627160     6  0.4901     0.5592 0.060 0.000 0.000 0.284 0.016 0.640
#> GSM627185     1  0.3592     0.5356 0.656 0.000 0.344 0.000 0.000 0.000
#> GSM627206     3  0.1950     0.7251 0.000 0.000 0.912 0.000 0.064 0.024
#> GSM627161     1  0.0000     0.8813 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627162     5  0.5138     0.0332 0.000 0.052 0.316 0.004 0.608 0.020
#> GSM627210     3  0.1812     0.7236 0.080 0.000 0.912 0.000 0.008 0.000
#> GSM627189     2  0.1204     0.8453 0.000 0.944 0.000 0.056 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) age(p) other(p) k
#> SD:skmeans 145            0.466  0.216   0.0106 2
#> SD:skmeans 139            0.284  0.437   0.0272 3
#> SD:skmeans 142            0.245  0.340   0.0531 4
#> SD:skmeans 114            0.284  0.371   0.0221 5
#> SD:skmeans 101            0.379  0.474   0.1848 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 146 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.957           0.956       0.981         0.5024 0.497   0.497
#> 3 3 0.577           0.578       0.775         0.2207 0.815   0.644
#> 4 4 0.631           0.663       0.837         0.1405 0.885   0.699
#> 5 5 0.655           0.651       0.810         0.0979 0.880   0.618
#> 6 6 0.726           0.675       0.812         0.0452 0.918   0.662

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM627128     1  0.0000      0.975 1.000 0.000
#> GSM627110     1  0.0000      0.975 1.000 0.000
#> GSM627132     1  0.0000      0.975 1.000 0.000
#> GSM627107     1  0.0000      0.975 1.000 0.000
#> GSM627103     2  0.0000      0.985 0.000 1.000
#> GSM627114     1  0.0000      0.975 1.000 0.000
#> GSM627134     2  0.0000      0.985 0.000 1.000
#> GSM627137     2  0.0000      0.985 0.000 1.000
#> GSM627148     1  0.0672      0.968 0.992 0.008
#> GSM627101     1  0.8555      0.624 0.720 0.280
#> GSM627130     1  0.0000      0.975 1.000 0.000
#> GSM627071     1  0.2603      0.936 0.956 0.044
#> GSM627118     2  0.0000      0.985 0.000 1.000
#> GSM627094     2  0.0000      0.985 0.000 1.000
#> GSM627122     1  0.0000      0.975 1.000 0.000
#> GSM627115     2  0.0000      0.985 0.000 1.000
#> GSM627125     1  0.0000      0.975 1.000 0.000
#> GSM627174     2  0.0000      0.985 0.000 1.000
#> GSM627102     2  0.0000      0.985 0.000 1.000
#> GSM627073     1  0.0000      0.975 1.000 0.000
#> GSM627108     2  0.0000      0.985 0.000 1.000
#> GSM627126     1  0.0000      0.975 1.000 0.000
#> GSM627078     2  0.0000      0.985 0.000 1.000
#> GSM627090     1  0.0000      0.975 1.000 0.000
#> GSM627099     2  0.0000      0.985 0.000 1.000
#> GSM627105     1  0.0000      0.975 1.000 0.000
#> GSM627117     2  0.0000      0.985 0.000 1.000
#> GSM627121     2  0.6801      0.781 0.180 0.820
#> GSM627127     2  0.0000      0.985 0.000 1.000
#> GSM627087     2  0.0000      0.985 0.000 1.000
#> GSM627089     1  0.0000      0.975 1.000 0.000
#> GSM627092     2  0.0000      0.985 0.000 1.000
#> GSM627076     1  0.0000      0.975 1.000 0.000
#> GSM627136     1  0.0000      0.975 1.000 0.000
#> GSM627081     2  0.2236      0.953 0.036 0.964
#> GSM627091     2  0.0000      0.985 0.000 1.000
#> GSM627097     2  0.0000      0.985 0.000 1.000
#> GSM627072     1  0.0000      0.975 1.000 0.000
#> GSM627080     1  0.0000      0.975 1.000 0.000
#> GSM627088     1  0.9970      0.136 0.532 0.468
#> GSM627109     1  0.0000      0.975 1.000 0.000
#> GSM627111     1  0.0000      0.975 1.000 0.000
#> GSM627113     1  0.0000      0.975 1.000 0.000
#> GSM627133     2  0.0000      0.985 0.000 1.000
#> GSM627177     1  0.8267      0.659 0.740 0.260
#> GSM627086     2  0.0000      0.985 0.000 1.000
#> GSM627095     1  0.0000      0.975 1.000 0.000
#> GSM627079     1  0.0000      0.975 1.000 0.000
#> GSM627082     1  0.0000      0.975 1.000 0.000
#> GSM627074     1  0.6247      0.810 0.844 0.156
#> GSM627077     1  0.0000      0.975 1.000 0.000
#> GSM627093     2  0.5519      0.850 0.128 0.872
#> GSM627120     2  0.0000      0.985 0.000 1.000
#> GSM627124     2  0.0000      0.985 0.000 1.000
#> GSM627075     2  0.0000      0.985 0.000 1.000
#> GSM627085     2  0.0000      0.985 0.000 1.000
#> GSM627119     1  0.0000      0.975 1.000 0.000
#> GSM627116     2  0.2603      0.945 0.044 0.956
#> GSM627084     1  0.0000      0.975 1.000 0.000
#> GSM627096     2  0.0000      0.985 0.000 1.000
#> GSM627100     1  0.0000      0.975 1.000 0.000
#> GSM627112     1  0.8861      0.578 0.696 0.304
#> GSM627083     1  0.0000      0.975 1.000 0.000
#> GSM627098     1  0.0000      0.975 1.000 0.000
#> GSM627104     2  0.0000      0.985 0.000 1.000
#> GSM627131     1  0.0000      0.975 1.000 0.000
#> GSM627106     1  0.0000      0.975 1.000 0.000
#> GSM627123     1  0.0000      0.975 1.000 0.000
#> GSM627129     2  0.0000      0.985 0.000 1.000
#> GSM627216     2  0.0000      0.985 0.000 1.000
#> GSM627212     2  0.0000      0.985 0.000 1.000
#> GSM627190     2  0.0000      0.985 0.000 1.000
#> GSM627169     2  0.0000      0.985 0.000 1.000
#> GSM627167     2  0.0000      0.985 0.000 1.000
#> GSM627192     1  0.0000      0.975 1.000 0.000
#> GSM627203     1  0.0000      0.975 1.000 0.000
#> GSM627151     2  0.0000      0.985 0.000 1.000
#> GSM627163     1  0.0000      0.975 1.000 0.000
#> GSM627211     2  0.0000      0.985 0.000 1.000
#> GSM627171     2  0.0000      0.985 0.000 1.000
#> GSM627209     2  0.0000      0.985 0.000 1.000
#> GSM627135     1  0.0000      0.975 1.000 0.000
#> GSM627170     2  0.0000      0.985 0.000 1.000
#> GSM627178     1  0.0000      0.975 1.000 0.000
#> GSM627199     2  0.0000      0.985 0.000 1.000
#> GSM627213     2  0.0000      0.985 0.000 1.000
#> GSM627140     2  0.8144      0.660 0.252 0.748
#> GSM627149     1  0.0000      0.975 1.000 0.000
#> GSM627147     2  0.0000      0.985 0.000 1.000
#> GSM627195     1  0.0000      0.975 1.000 0.000
#> GSM627204     2  0.0000      0.985 0.000 1.000
#> GSM627207     2  0.0000      0.985 0.000 1.000
#> GSM627157     1  0.0000      0.975 1.000 0.000
#> GSM627201     2  0.0000      0.985 0.000 1.000
#> GSM627146     2  0.0000      0.985 0.000 1.000
#> GSM627156     2  0.0000      0.985 0.000 1.000
#> GSM627188     1  0.0000      0.975 1.000 0.000
#> GSM627197     2  0.0000      0.985 0.000 1.000
#> GSM627173     2  0.0000      0.985 0.000 1.000
#> GSM627179     2  0.0000      0.985 0.000 1.000
#> GSM627208     2  0.0000      0.985 0.000 1.000
#> GSM627215     2  0.0000      0.985 0.000 1.000
#> GSM627153     2  0.0000      0.985 0.000 1.000
#> GSM627155     1  0.0000      0.975 1.000 0.000
#> GSM627165     2  0.0000      0.985 0.000 1.000
#> GSM627168     1  0.0000      0.975 1.000 0.000
#> GSM627183     1  0.0000      0.975 1.000 0.000
#> GSM627144     2  0.8327      0.645 0.264 0.736
#> GSM627158     1  0.0000      0.975 1.000 0.000
#> GSM627196     2  0.0000      0.985 0.000 1.000
#> GSM627142     1  0.0000      0.975 1.000 0.000
#> GSM627182     2  0.0000      0.985 0.000 1.000
#> GSM627202     1  0.0000      0.975 1.000 0.000
#> GSM627141     1  0.0000      0.975 1.000 0.000
#> GSM627143     2  0.0000      0.985 0.000 1.000
#> GSM627145     1  0.0000      0.975 1.000 0.000
#> GSM627152     1  0.0000      0.975 1.000 0.000
#> GSM627200     1  0.0000      0.975 1.000 0.000
#> GSM627159     1  0.0000      0.975 1.000 0.000
#> GSM627164     2  0.0000      0.985 0.000 1.000
#> GSM627138     1  0.0000      0.975 1.000 0.000
#> GSM627175     2  0.0000      0.985 0.000 1.000
#> GSM627150     1  0.0000      0.975 1.000 0.000
#> GSM627166     2  0.0376      0.982 0.004 0.996
#> GSM627186     2  0.0000      0.985 0.000 1.000
#> GSM627139     1  0.0000      0.975 1.000 0.000
#> GSM627181     2  0.0000      0.985 0.000 1.000
#> GSM627205     2  0.0000      0.985 0.000 1.000
#> GSM627214     2  0.0000      0.985 0.000 1.000
#> GSM627180     2  0.0672      0.978 0.008 0.992
#> GSM627172     2  0.0000      0.985 0.000 1.000
#> GSM627184     1  0.0000      0.975 1.000 0.000
#> GSM627193     2  0.0000      0.985 0.000 1.000
#> GSM627191     1  0.0000      0.975 1.000 0.000
#> GSM627176     1  0.0000      0.975 1.000 0.000
#> GSM627194     2  0.0000      0.985 0.000 1.000
#> GSM627154     2  0.0000      0.985 0.000 1.000
#> GSM627187     2  0.0000      0.985 0.000 1.000
#> GSM627198     2  0.0000      0.985 0.000 1.000
#> GSM627160     1  0.0000      0.975 1.000 0.000
#> GSM627185     1  0.0000      0.975 1.000 0.000
#> GSM627206     1  0.0000      0.975 1.000 0.000
#> GSM627161     1  0.0000      0.975 1.000 0.000
#> GSM627162     1  0.6148      0.818 0.848 0.152
#> GSM627210     2  0.6148      0.820 0.152 0.848
#> GSM627189     2  0.0000      0.985 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM627128     3  0.5621     0.3875 0.000 0.308 0.692
#> GSM627110     1  0.6111     0.3764 0.604 0.000 0.396
#> GSM627132     3  0.6267     0.2135 0.452 0.000 0.548
#> GSM627107     3  0.7147     0.4101 0.228 0.076 0.696
#> GSM627103     2  0.1643     0.9063 0.044 0.956 0.000
#> GSM627114     1  0.5760     0.4261 0.672 0.000 0.328
#> GSM627134     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627137     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627148     1  0.6057     0.4258 0.656 0.004 0.340
#> GSM627101     3  0.5882     0.3405 0.000 0.348 0.652
#> GSM627130     3  0.5591     0.3895 0.000 0.304 0.696
#> GSM627071     1  0.6771     0.3034 0.548 0.012 0.440
#> GSM627118     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627094     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627122     3  0.5650     0.3950 0.312 0.000 0.688
#> GSM627115     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627125     3  0.7451     0.4169 0.144 0.156 0.700
#> GSM627174     2  0.2356     0.8735 0.072 0.928 0.000
#> GSM627102     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627073     3  0.5815     0.3903 0.304 0.004 0.692
#> GSM627108     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627126     3  0.5988     0.2701 0.368 0.000 0.632
#> GSM627078     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627090     3  0.5560     0.3976 0.300 0.000 0.700
#> GSM627099     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627105     3  0.7298     0.4141 0.100 0.200 0.700
#> GSM627117     1  0.6204     0.3064 0.576 0.424 0.000
#> GSM627121     1  0.8022     0.3798 0.544 0.388 0.068
#> GSM627127     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627087     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627089     1  0.5926     0.4038 0.644 0.000 0.356
#> GSM627092     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627076     3  0.5560     0.3976 0.300 0.000 0.700
#> GSM627136     3  0.6209     0.2893 0.368 0.004 0.628
#> GSM627081     2  0.6879     0.0807 0.428 0.556 0.016
#> GSM627091     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627097     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627072     1  0.6267     0.2971 0.548 0.000 0.452
#> GSM627080     3  0.6267     0.2135 0.452 0.000 0.548
#> GSM627088     1  0.8094     0.4423 0.636 0.124 0.240
#> GSM627109     1  0.4002     0.2266 0.840 0.000 0.160
#> GSM627111     1  0.5733     0.0890 0.676 0.000 0.324
#> GSM627113     1  0.5760     0.4261 0.672 0.000 0.328
#> GSM627133     2  0.1643     0.9063 0.044 0.956 0.000
#> GSM627177     1  0.7940     0.3164 0.524 0.060 0.416
#> GSM627086     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627095     3  0.1529     0.4215 0.040 0.000 0.960
#> GSM627079     3  0.5560     0.3976 0.300 0.000 0.700
#> GSM627082     3  0.0592     0.4390 0.000 0.012 0.988
#> GSM627074     1  0.7531     0.4521 0.672 0.092 0.236
#> GSM627077     3  0.5560     0.4008 0.300 0.000 0.700
#> GSM627093     1  0.5760     0.4212 0.672 0.328 0.000
#> GSM627120     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627124     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627075     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627085     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627119     1  0.5760     0.4261 0.672 0.000 0.328
#> GSM627116     2  0.2537     0.8639 0.000 0.920 0.080
#> GSM627084     3  0.9684    -0.0997 0.340 0.224 0.436
#> GSM627096     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627100     3  0.5560     0.3976 0.300 0.000 0.700
#> GSM627112     3  0.5988     0.3212 0.000 0.368 0.632
#> GSM627083     3  0.5650     0.3850 0.000 0.312 0.688
#> GSM627098     1  0.5968     0.3956 0.636 0.000 0.364
#> GSM627104     2  0.6215     0.2213 0.428 0.572 0.000
#> GSM627131     3  0.5650     0.3950 0.312 0.000 0.688
#> GSM627106     3  0.5733     0.3649 0.324 0.000 0.676
#> GSM627123     3  0.0592     0.4355 0.012 0.000 0.988
#> GSM627129     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627216     2  0.4452     0.6833 0.192 0.808 0.000
#> GSM627212     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627190     1  0.5859     0.4153 0.656 0.344 0.000
#> GSM627169     2  0.1643     0.9063 0.044 0.956 0.000
#> GSM627167     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627192     3  0.5835     0.2877 0.340 0.000 0.660
#> GSM627203     3  0.5733     0.3649 0.324 0.000 0.676
#> GSM627151     2  0.1643     0.9020 0.000 0.956 0.044
#> GSM627163     1  0.5859     0.0606 0.656 0.000 0.344
#> GSM627211     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627171     2  0.6299    -0.0237 0.476 0.524 0.000
#> GSM627209     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627135     3  0.2448     0.4325 0.076 0.000 0.924
#> GSM627170     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627178     3  0.5650     0.3950 0.312 0.000 0.688
#> GSM627199     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627213     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627140     2  0.5254     0.5742 0.000 0.736 0.264
#> GSM627149     3  0.6204     0.2338 0.424 0.000 0.576
#> GSM627147     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627195     3  0.5760     0.3574 0.328 0.000 0.672
#> GSM627204     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627207     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627157     1  0.4842     0.1640 0.776 0.000 0.224
#> GSM627201     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627146     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627156     2  0.1643     0.9063 0.044 0.956 0.000
#> GSM627188     3  0.5835     0.2877 0.340 0.000 0.660
#> GSM627197     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627173     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627179     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627208     1  0.6779     0.2555 0.544 0.444 0.012
#> GSM627215     2  0.1163     0.9198 0.028 0.972 0.000
#> GSM627153     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627155     3  0.6267     0.2135 0.452 0.000 0.548
#> GSM627165     2  0.0592     0.9300 0.000 0.988 0.012
#> GSM627168     1  0.6045     0.3785 0.620 0.000 0.380
#> GSM627183     1  0.6079     0.3759 0.612 0.000 0.388
#> GSM627144     1  0.7660     0.3503 0.548 0.404 0.048
#> GSM627158     3  0.6267     0.2135 0.452 0.000 0.548
#> GSM627196     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627142     3  0.5560     0.3976 0.300 0.000 0.700
#> GSM627182     1  0.6779     0.2555 0.544 0.444 0.012
#> GSM627202     3  0.3340     0.3821 0.120 0.000 0.880
#> GSM627141     1  0.6421     0.3296 0.572 0.004 0.424
#> GSM627143     2  0.1643     0.9063 0.044 0.956 0.000
#> GSM627145     1  0.6295     0.2484 0.528 0.000 0.472
#> GSM627152     3  0.5560     0.3976 0.300 0.000 0.700
#> GSM627200     3  0.5650     0.3950 0.312 0.000 0.688
#> GSM627159     3  0.5560     0.3912 0.000 0.300 0.700
#> GSM627164     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627138     1  0.5733     0.0890 0.676 0.000 0.324
#> GSM627175     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627150     3  0.5882     0.3139 0.348 0.000 0.652
#> GSM627166     2  0.5760     0.4616 0.328 0.672 0.000
#> GSM627186     2  0.5560     0.5158 0.300 0.700 0.000
#> GSM627139     3  0.6857     0.4041 0.052 0.252 0.696
#> GSM627181     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627205     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627214     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627180     2  0.6647     0.2302 0.396 0.592 0.012
#> GSM627172     2  0.1643     0.9020 0.000 0.956 0.044
#> GSM627184     3  0.5835     0.2877 0.340 0.000 0.660
#> GSM627193     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627191     3  0.5650     0.3850 0.000 0.312 0.688
#> GSM627176     1  0.6280     0.2831 0.540 0.000 0.460
#> GSM627194     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627154     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627187     1  0.5760     0.4212 0.672 0.328 0.000
#> GSM627198     2  0.0000     0.9391 0.000 1.000 0.000
#> GSM627160     3  0.5650     0.3850 0.000 0.312 0.688
#> GSM627185     1  0.5098     0.1488 0.752 0.000 0.248
#> GSM627206     1  0.5760     0.4261 0.672 0.000 0.328
#> GSM627161     3  0.6235     0.2257 0.436 0.000 0.564
#> GSM627162     1  0.9146     0.2852 0.472 0.148 0.380
#> GSM627210     1  0.7418     0.4386 0.672 0.248 0.080
#> GSM627189     2  0.0000     0.9391 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM627128     4  0.0000     0.6254 0.000 0.000 0.000 1.000
#> GSM627110     3  0.0336     0.6806 0.000 0.000 0.992 0.008
#> GSM627132     1  0.1022     0.8888 0.968 0.000 0.032 0.000
#> GSM627107     4  0.2814     0.5554 0.000 0.000 0.132 0.868
#> GSM627103     2  0.2011     0.9024 0.000 0.920 0.000 0.080
#> GSM627114     3  0.1716     0.6852 0.064 0.000 0.936 0.000
#> GSM627134     2  0.2081     0.9018 0.000 0.916 0.000 0.084
#> GSM627137     2  0.0000     0.9221 0.000 1.000 0.000 0.000
#> GSM627148     3  0.0000     0.6793 0.000 0.000 1.000 0.000
#> GSM627101     4  0.5581     0.4697 0.032 0.144 0.064 0.760
#> GSM627130     4  0.0000     0.6254 0.000 0.000 0.000 1.000
#> GSM627071     3  0.3975     0.5389 0.000 0.000 0.760 0.240
#> GSM627118     2  0.4459     0.8182 0.032 0.780 0.000 0.188
#> GSM627094     2  0.0000     0.9221 0.000 1.000 0.000 0.000
#> GSM627122     4  0.4888     0.2862 0.000 0.000 0.412 0.588
#> GSM627115     2  0.0000     0.9221 0.000 1.000 0.000 0.000
#> GSM627125     4  0.1716     0.6026 0.000 0.000 0.064 0.936
#> GSM627174     2  0.2530     0.8304 0.000 0.888 0.112 0.000
#> GSM627102     2  0.2797     0.9045 0.032 0.900 0.000 0.068
#> GSM627073     4  0.4994     0.1493 0.000 0.000 0.480 0.520
#> GSM627108     2  0.0000     0.9221 0.000 1.000 0.000 0.000
#> GSM627126     1  0.3542     0.8141 0.852 0.000 0.028 0.120
#> GSM627078     2  0.3082     0.8977 0.032 0.884 0.000 0.084
#> GSM627090     4  0.3942     0.5120 0.000 0.000 0.236 0.764
#> GSM627099     2  0.0188     0.9217 0.000 0.996 0.000 0.004
#> GSM627105     4  0.1716     0.6026 0.000 0.000 0.064 0.936
#> GSM627117     3  0.1978     0.6696 0.004 0.068 0.928 0.000
#> GSM627121     3  0.6477     0.1434 0.000 0.072 0.508 0.420
#> GSM627127     2  0.0188     0.9217 0.000 0.996 0.000 0.004
#> GSM627087     2  0.0000     0.9221 0.000 1.000 0.000 0.000
#> GSM627089     3  0.2623     0.6828 0.064 0.000 0.908 0.028
#> GSM627092     2  0.0000     0.9221 0.000 1.000 0.000 0.000
#> GSM627076     4  0.2408     0.5943 0.000 0.000 0.104 0.896
#> GSM627136     4  0.4989     0.1733 0.000 0.000 0.472 0.528
#> GSM627081     3  0.7352     0.1573 0.000 0.176 0.496 0.328
#> GSM627091     2  0.0000     0.9221 0.000 1.000 0.000 0.000
#> GSM627097     2  0.2011     0.9024 0.000 0.920 0.000 0.080
#> GSM627072     3  0.1022     0.6709 0.000 0.000 0.968 0.032
#> GSM627080     1  0.1022     0.8888 0.968 0.000 0.032 0.000
#> GSM627088     3  0.5111     0.6084 0.052 0.020 0.780 0.148
#> GSM627109     3  0.7082     0.2445 0.368 0.000 0.500 0.132
#> GSM627111     1  0.1022     0.8888 0.968 0.000 0.032 0.000
#> GSM627113     3  0.5292     0.5382 0.064 0.000 0.728 0.208
#> GSM627133     2  0.4352     0.8336 0.000 0.816 0.104 0.080
#> GSM627177     3  0.4745     0.5626 0.000 0.036 0.756 0.208
#> GSM627086     2  0.1022     0.9167 0.032 0.968 0.000 0.000
#> GSM627095     4  0.5724     0.1969 0.424 0.000 0.028 0.548
#> GSM627079     4  0.4830     0.3206 0.000 0.000 0.392 0.608
#> GSM627082     4  0.0000     0.6254 0.000 0.000 0.000 1.000
#> GSM627074     3  0.1716     0.6852 0.064 0.000 0.936 0.000
#> GSM627077     4  0.4907     0.2750 0.000 0.000 0.420 0.580
#> GSM627093     3  0.1716     0.6852 0.064 0.000 0.936 0.000
#> GSM627120     2  0.2011     0.9024 0.000 0.920 0.000 0.080
#> GSM627124     2  0.3013     0.8990 0.032 0.888 0.000 0.080
#> GSM627075     2  0.0000     0.9221 0.000 1.000 0.000 0.000
#> GSM627085     2  0.1209     0.9161 0.032 0.964 0.000 0.004
#> GSM627119     3  0.1716     0.6852 0.064 0.000 0.936 0.000
#> GSM627116     2  0.3610     0.7980 0.000 0.800 0.000 0.200
#> GSM627084     4  0.5408     0.0960 0.000 0.012 0.488 0.500
#> GSM627096     2  0.4459     0.8182 0.032 0.780 0.000 0.188
#> GSM627100     4  0.0592     0.6231 0.000 0.000 0.016 0.984
#> GSM627112     4  0.5784     0.0511 0.032 0.412 0.000 0.556
#> GSM627083     4  0.6570     0.3678 0.008 0.340 0.072 0.580
#> GSM627098     3  0.6376     0.0107 0.064 0.000 0.504 0.432
#> GSM627104     3  0.5951     0.4021 0.064 0.300 0.636 0.000
#> GSM627131     4  0.4916     0.2684 0.000 0.000 0.424 0.576
#> GSM627106     4  0.4972     0.0401 0.000 0.000 0.456 0.544
#> GSM627123     4  0.4916     0.2368 0.424 0.000 0.000 0.576
#> GSM627129     2  0.2011     0.9024 0.000 0.920 0.000 0.080
#> GSM627216     2  0.6065     0.5691 0.000 0.644 0.276 0.080
#> GSM627212     2  0.0000     0.9221 0.000 1.000 0.000 0.000
#> GSM627190     3  0.2179     0.6860 0.064 0.012 0.924 0.000
#> GSM627169     2  0.3873     0.7300 0.000 0.772 0.228 0.000
#> GSM627167     2  0.3082     0.8977 0.032 0.884 0.000 0.084
#> GSM627192     1  0.2281     0.8374 0.904 0.000 0.000 0.096
#> GSM627203     4  0.4977     0.0331 0.000 0.000 0.460 0.540
#> GSM627151     2  0.3444     0.8114 0.000 0.816 0.000 0.184
#> GSM627163     1  0.1022     0.8888 0.968 0.000 0.032 0.000
#> GSM627211     2  0.1022     0.9167 0.032 0.968 0.000 0.000
#> GSM627171     3  0.4454     0.4672 0.000 0.308 0.692 0.000
#> GSM627209     2  0.1610     0.9167 0.032 0.952 0.000 0.016
#> GSM627135     4  0.6552     0.3675 0.328 0.000 0.096 0.576
#> GSM627170     2  0.0000     0.9221 0.000 1.000 0.000 0.000
#> GSM627178     4  0.4916     0.2684 0.000 0.000 0.424 0.576
#> GSM627199     2  0.3013     0.8990 0.032 0.888 0.000 0.080
#> GSM627213     2  0.4459     0.8182 0.032 0.780 0.000 0.188
#> GSM627140     2  0.4746     0.5438 0.000 0.632 0.000 0.368
#> GSM627149     1  0.1109     0.8753 0.968 0.000 0.004 0.028
#> GSM627147     2  0.0000     0.9221 0.000 1.000 0.000 0.000
#> GSM627195     3  0.4454     0.3766 0.000 0.000 0.692 0.308
#> GSM627204     2  0.1022     0.9167 0.032 0.968 0.000 0.000
#> GSM627207     2  0.0000     0.9221 0.000 1.000 0.000 0.000
#> GSM627157     1  0.4998    -0.0932 0.512 0.000 0.488 0.000
#> GSM627201     2  0.1022     0.9167 0.032 0.968 0.000 0.000
#> GSM627146     2  0.0000     0.9221 0.000 1.000 0.000 0.000
#> GSM627156     2  0.3837     0.7363 0.000 0.776 0.224 0.000
#> GSM627188     1  0.2281     0.8374 0.904 0.000 0.000 0.096
#> GSM627197     2  0.0000     0.9221 0.000 1.000 0.000 0.000
#> GSM627173     2  0.0000     0.9221 0.000 1.000 0.000 0.000
#> GSM627179     2  0.0000     0.9221 0.000 1.000 0.000 0.000
#> GSM627208     3  0.1022     0.6740 0.000 0.032 0.968 0.000
#> GSM627215     2  0.2197     0.9017 0.000 0.916 0.004 0.080
#> GSM627153     2  0.3013     0.8999 0.032 0.888 0.000 0.080
#> GSM627155     1  0.1022     0.8888 0.968 0.000 0.032 0.000
#> GSM627165     2  0.3948     0.8532 0.000 0.840 0.064 0.096
#> GSM627168     3  0.6389    -0.0141 0.064 0.000 0.488 0.448
#> GSM627183     3  0.4267     0.5845 0.024 0.000 0.788 0.188
#> GSM627144     3  0.3749     0.5865 0.000 0.032 0.840 0.128
#> GSM627158     1  0.1022     0.8888 0.968 0.000 0.032 0.000
#> GSM627196     2  0.1022     0.9167 0.032 0.968 0.000 0.000
#> GSM627142     4  0.0000     0.6254 0.000 0.000 0.000 1.000
#> GSM627182     3  0.1022     0.6740 0.000 0.032 0.968 0.000
#> GSM627202     4  0.5167     0.1359 0.488 0.000 0.004 0.508
#> GSM627141     3  0.5233     0.2868 0.020 0.000 0.648 0.332
#> GSM627143     2  0.4352     0.7796 0.000 0.816 0.080 0.104
#> GSM627145     3  0.3444     0.5636 0.000 0.000 0.816 0.184
#> GSM627152     4  0.2281     0.5947 0.000 0.000 0.096 0.904
#> GSM627200     4  0.4916     0.2684 0.000 0.000 0.424 0.576
#> GSM627159     4  0.0000     0.6254 0.000 0.000 0.000 1.000
#> GSM627164     2  0.0000     0.9221 0.000 1.000 0.000 0.000
#> GSM627138     1  0.1022     0.8888 0.968 0.000 0.032 0.000
#> GSM627175     2  0.1209     0.9161 0.032 0.964 0.000 0.004
#> GSM627150     3  0.3837     0.5096 0.000 0.000 0.776 0.224
#> GSM627166     3  0.6862     0.2283 0.000 0.408 0.488 0.104
#> GSM627186     3  0.4843     0.3310 0.000 0.396 0.604 0.000
#> GSM627139     4  0.0336     0.6246 0.000 0.008 0.000 0.992
#> GSM627181     2  0.1022     0.9167 0.032 0.968 0.000 0.000
#> GSM627205     2  0.0000     0.9221 0.000 1.000 0.000 0.000
#> GSM627214     2  0.3013     0.8990 0.032 0.888 0.000 0.080
#> GSM627180     3  0.5788     0.3825 0.000 0.228 0.688 0.084
#> GSM627172     2  0.4984     0.8207 0.032 0.784 0.028 0.156
#> GSM627184     1  0.2281     0.8374 0.904 0.000 0.000 0.096
#> GSM627193     2  0.0000     0.9221 0.000 1.000 0.000 0.000
#> GSM627191     4  0.3975     0.4699 0.000 0.240 0.000 0.760
#> GSM627176     3  0.4916     0.1946 0.000 0.000 0.576 0.424
#> GSM627194     2  0.0000     0.9221 0.000 1.000 0.000 0.000
#> GSM627154     2  0.3694     0.8544 0.032 0.844 0.000 0.124
#> GSM627187     3  0.1716     0.6852 0.064 0.000 0.936 0.000
#> GSM627198     2  0.1022     0.9167 0.032 0.968 0.000 0.000
#> GSM627160     4  0.2760     0.5662 0.000 0.128 0.000 0.872
#> GSM627185     1  0.5759     0.5749 0.688 0.000 0.232 0.080
#> GSM627206     3  0.1716     0.6852 0.064 0.000 0.936 0.000
#> GSM627161     1  0.1182     0.8829 0.968 0.000 0.016 0.016
#> GSM627162     3  0.5035     0.5143 0.000 0.052 0.744 0.204
#> GSM627210     3  0.1716     0.6852 0.064 0.000 0.936 0.000
#> GSM627189     2  0.0000     0.9221 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM627128     5  0.3039     0.5958 0.000 0.000 0.000 0.192 0.808
#> GSM627110     3  0.0000     0.7046 0.000 0.000 1.000 0.000 0.000
#> GSM627132     1  0.0000     0.9114 1.000 0.000 0.000 0.000 0.000
#> GSM627107     5  0.4704     0.4798 0.000 0.000 0.112 0.152 0.736
#> GSM627103     2  0.0000     0.8963 0.000 1.000 0.000 0.000 0.000
#> GSM627114     3  0.1197     0.7082 0.048 0.000 0.952 0.000 0.000
#> GSM627134     2  0.2516     0.7546 0.000 0.860 0.000 0.140 0.000
#> GSM627137     2  0.0000     0.8963 0.000 1.000 0.000 0.000 0.000
#> GSM627148     3  0.2068     0.6673 0.000 0.000 0.904 0.004 0.092
#> GSM627101     4  0.1626     0.5689 0.000 0.000 0.044 0.940 0.016
#> GSM627130     5  0.3837     0.5406 0.000 0.000 0.000 0.308 0.692
#> GSM627071     3  0.3491     0.5383 0.000 0.000 0.768 0.004 0.228
#> GSM627118     4  0.2813     0.8144 0.000 0.168 0.000 0.832 0.000
#> GSM627094     2  0.0000     0.8963 0.000 1.000 0.000 0.000 0.000
#> GSM627122     5  0.4114     0.3996 0.000 0.000 0.376 0.000 0.624
#> GSM627115     2  0.0162     0.8939 0.000 0.996 0.000 0.004 0.000
#> GSM627125     5  0.4902     0.5164 0.000 0.000 0.048 0.304 0.648
#> GSM627174     2  0.3048     0.6554 0.000 0.820 0.176 0.004 0.000
#> GSM627102     4  0.4138     0.7898 0.000 0.384 0.000 0.616 0.000
#> GSM627073     3  0.4306    -0.1333 0.000 0.000 0.508 0.000 0.492
#> GSM627108     2  0.0000     0.8963 0.000 1.000 0.000 0.000 0.000
#> GSM627126     1  0.2424     0.8040 0.868 0.000 0.000 0.000 0.132
#> GSM627078     4  0.3395     0.8428 0.000 0.236 0.000 0.764 0.000
#> GSM627090     5  0.1205     0.5959 0.000 0.000 0.040 0.004 0.956
#> GSM627099     2  0.2561     0.7502 0.000 0.856 0.000 0.144 0.000
#> GSM627105     5  0.4902     0.5164 0.000 0.000 0.048 0.304 0.648
#> GSM627117     3  0.1197     0.6963 0.000 0.048 0.952 0.000 0.000
#> GSM627121     3  0.6924     0.1545 0.000 0.176 0.432 0.020 0.372
#> GSM627127     2  0.2561     0.7502 0.000 0.856 0.000 0.144 0.000
#> GSM627087     2  0.0162     0.8939 0.000 0.996 0.000 0.004 0.000
#> GSM627089     3  0.2464     0.7005 0.048 0.000 0.904 0.004 0.044
#> GSM627092     2  0.0000     0.8963 0.000 1.000 0.000 0.000 0.000
#> GSM627076     5  0.0162     0.6091 0.000 0.000 0.000 0.004 0.996
#> GSM627136     5  0.4201     0.3472 0.000 0.000 0.408 0.000 0.592
#> GSM627081     3  0.6750     0.1358 0.000 0.216 0.412 0.004 0.368
#> GSM627091     2  0.0162     0.8939 0.000 0.996 0.000 0.004 0.000
#> GSM627097     2  0.0162     0.8939 0.000 0.996 0.000 0.004 0.000
#> GSM627072     3  0.0510     0.7025 0.000 0.000 0.984 0.000 0.016
#> GSM627080     1  0.0000     0.9114 1.000 0.000 0.000 0.000 0.000
#> GSM627088     3  0.4427     0.5868 0.040 0.020 0.768 0.000 0.172
#> GSM627109     3  0.6615     0.1200 0.388 0.000 0.424 0.004 0.184
#> GSM627111     1  0.0000     0.9114 1.000 0.000 0.000 0.000 0.000
#> GSM627113     3  0.4607     0.5108 0.048 0.000 0.720 0.004 0.228
#> GSM627133     2  0.0000     0.8963 0.000 1.000 0.000 0.000 0.000
#> GSM627177     3  0.3812     0.5602 0.000 0.024 0.772 0.000 0.204
#> GSM627086     4  0.3876     0.8515 0.000 0.316 0.000 0.684 0.000
#> GSM627095     5  0.4114     0.3543 0.376 0.000 0.000 0.000 0.624
#> GSM627079     5  0.3999     0.4185 0.000 0.000 0.344 0.000 0.656
#> GSM627082     5  0.2813     0.6031 0.000 0.000 0.000 0.168 0.832
#> GSM627074     3  0.1357     0.7079 0.048 0.000 0.948 0.004 0.000
#> GSM627077     5  0.4088     0.4081 0.000 0.000 0.368 0.000 0.632
#> GSM627093     3  0.1357     0.7079 0.048 0.000 0.948 0.004 0.000
#> GSM627120     2  0.0000     0.8963 0.000 1.000 0.000 0.000 0.000
#> GSM627124     4  0.3876     0.8515 0.000 0.316 0.000 0.684 0.000
#> GSM627075     2  0.0000     0.8963 0.000 1.000 0.000 0.000 0.000
#> GSM627085     4  0.2852     0.8167 0.000 0.172 0.000 0.828 0.000
#> GSM627119     3  0.1357     0.7079 0.048 0.000 0.948 0.004 0.000
#> GSM627116     2  0.3283     0.7271 0.000 0.832 0.000 0.140 0.028
#> GSM627084     5  0.4350     0.3387 0.000 0.004 0.408 0.000 0.588
#> GSM627096     4  0.2813     0.8144 0.000 0.168 0.000 0.832 0.000
#> GSM627100     5  0.0324     0.6084 0.000 0.000 0.004 0.004 0.992
#> GSM627112     4  0.0510     0.6233 0.000 0.016 0.000 0.984 0.000
#> GSM627083     5  0.4114     0.3718 0.000 0.376 0.000 0.000 0.624
#> GSM627098     5  0.5383     0.2753 0.048 0.000 0.408 0.004 0.540
#> GSM627104     3  0.5292     0.3371 0.048 0.368 0.580 0.004 0.000
#> GSM627131     5  0.4251     0.4011 0.000 0.000 0.372 0.004 0.624
#> GSM627106     5  0.4359     0.0541 0.000 0.000 0.412 0.004 0.584
#> GSM627123     5  0.4114     0.3543 0.376 0.000 0.000 0.000 0.624
#> GSM627129     2  0.0000     0.8963 0.000 1.000 0.000 0.000 0.000
#> GSM627216     2  0.3366     0.5975 0.000 0.768 0.232 0.000 0.000
#> GSM627212     2  0.0000     0.8963 0.000 1.000 0.000 0.000 0.000
#> GSM627190     3  0.1197     0.7082 0.048 0.000 0.952 0.000 0.000
#> GSM627169     2  0.2929     0.6832 0.000 0.820 0.180 0.000 0.000
#> GSM627167     4  0.3752     0.8505 0.000 0.292 0.000 0.708 0.000
#> GSM627192     1  0.1197     0.8821 0.952 0.000 0.000 0.000 0.048
#> GSM627203     5  0.4464     0.0612 0.000 0.000 0.408 0.008 0.584
#> GSM627151     2  0.0000     0.8963 0.000 1.000 0.000 0.000 0.000
#> GSM627163     1  0.0000     0.9114 1.000 0.000 0.000 0.000 0.000
#> GSM627211     4  0.4030     0.8295 0.000 0.352 0.000 0.648 0.000
#> GSM627171     3  0.3816     0.4839 0.000 0.304 0.696 0.000 0.000
#> GSM627209     4  0.3796     0.8541 0.000 0.300 0.000 0.700 0.000
#> GSM627135     5  0.5139     0.4254 0.316 0.000 0.060 0.000 0.624
#> GSM627170     2  0.0000     0.8963 0.000 1.000 0.000 0.000 0.000
#> GSM627178     5  0.4251     0.4011 0.000 0.000 0.372 0.004 0.624
#> GSM627199     4  0.3876     0.8515 0.000 0.316 0.000 0.684 0.000
#> GSM627213     2  0.4305    -0.3873 0.000 0.512 0.000 0.488 0.000
#> GSM627140     2  0.5236     0.5084 0.000 0.684 0.000 0.164 0.152
#> GSM627149     1  0.0000     0.9114 1.000 0.000 0.000 0.000 0.000
#> GSM627147     2  0.0000     0.8963 0.000 1.000 0.000 0.000 0.000
#> GSM627195     3  0.4211     0.3230 0.000 0.000 0.636 0.004 0.360
#> GSM627204     4  0.4101     0.8096 0.000 0.372 0.000 0.628 0.000
#> GSM627207     2  0.0000     0.8963 0.000 1.000 0.000 0.000 0.000
#> GSM627157     1  0.4192     0.1483 0.596 0.000 0.404 0.000 0.000
#> GSM627201     4  0.4287     0.6478 0.000 0.460 0.000 0.540 0.000
#> GSM627146     2  0.0000     0.8963 0.000 1.000 0.000 0.000 0.000
#> GSM627156     2  0.2929     0.6832 0.000 0.820 0.180 0.000 0.000
#> GSM627188     1  0.1197     0.8821 0.952 0.000 0.000 0.000 0.048
#> GSM627197     2  0.0000     0.8963 0.000 1.000 0.000 0.000 0.000
#> GSM627173     2  0.0000     0.8963 0.000 1.000 0.000 0.000 0.000
#> GSM627179     2  0.0000     0.8963 0.000 1.000 0.000 0.000 0.000
#> GSM627208     3  0.2011     0.6699 0.000 0.000 0.908 0.004 0.088
#> GSM627215     2  0.0162     0.8930 0.000 0.996 0.004 0.000 0.000
#> GSM627153     4  0.3210     0.8349 0.000 0.212 0.000 0.788 0.000
#> GSM627155     1  0.0000     0.9114 1.000 0.000 0.000 0.000 0.000
#> GSM627165     2  0.3625     0.7295 0.000 0.840 0.048 0.016 0.096
#> GSM627168     5  0.5261     0.2462 0.048 0.000 0.424 0.000 0.528
#> GSM627183     3  0.3812     0.5607 0.024 0.000 0.772 0.000 0.204
#> GSM627144     3  0.2179     0.6621 0.000 0.000 0.896 0.004 0.100
#> GSM627158     1  0.0000     0.9114 1.000 0.000 0.000 0.000 0.000
#> GSM627196     4  0.3895     0.8500 0.000 0.320 0.000 0.680 0.000
#> GSM627142     5  0.1851     0.6143 0.000 0.000 0.000 0.088 0.912
#> GSM627182     3  0.0000     0.7046 0.000 0.000 1.000 0.000 0.000
#> GSM627202     5  0.4235     0.3035 0.424 0.000 0.000 0.000 0.576
#> GSM627141     3  0.4527     0.0973 0.012 0.000 0.596 0.000 0.392
#> GSM627143     2  0.0000     0.8963 0.000 1.000 0.000 0.000 0.000
#> GSM627145     3  0.3039     0.5651 0.000 0.000 0.808 0.000 0.192
#> GSM627152     5  0.0162     0.6091 0.000 0.000 0.000 0.004 0.996
#> GSM627200     5  0.4114     0.3996 0.000 0.000 0.376 0.000 0.624
#> GSM627159     5  0.2813     0.6031 0.000 0.000 0.000 0.168 0.832
#> GSM627164     2  0.0000     0.8963 0.000 1.000 0.000 0.000 0.000
#> GSM627138     1  0.0000     0.9114 1.000 0.000 0.000 0.000 0.000
#> GSM627175     4  0.2891     0.8191 0.000 0.176 0.000 0.824 0.000
#> GSM627150     3  0.3990     0.4597 0.000 0.000 0.688 0.004 0.308
#> GSM627166     2  0.4350     0.1744 0.000 0.588 0.408 0.004 0.000
#> GSM627186     3  0.4219     0.2367 0.000 0.416 0.584 0.000 0.000
#> GSM627139     5  0.1443     0.6098 0.000 0.044 0.004 0.004 0.948
#> GSM627181     4  0.4249     0.7132 0.000 0.432 0.000 0.568 0.000
#> GSM627205     2  0.0000     0.8963 0.000 1.000 0.000 0.000 0.000
#> GSM627214     4  0.4088     0.8142 0.000 0.368 0.000 0.632 0.000
#> GSM627180     3  0.3804     0.6216 0.000 0.056 0.832 0.020 0.092
#> GSM627172     4  0.4114     0.8058 0.000 0.376 0.000 0.624 0.000
#> GSM627184     1  0.1197     0.8821 0.952 0.000 0.000 0.000 0.048
#> GSM627193     2  0.0000     0.8963 0.000 1.000 0.000 0.000 0.000
#> GSM627191     5  0.5290     0.3976 0.000 0.076 0.000 0.300 0.624
#> GSM627176     5  0.4437    -0.0181 0.000 0.000 0.464 0.004 0.532
#> GSM627194     2  0.0000     0.8963 0.000 1.000 0.000 0.000 0.000
#> GSM627154     4  0.2852     0.8167 0.000 0.172 0.000 0.828 0.000
#> GSM627187     3  0.1197     0.7082 0.048 0.000 0.952 0.000 0.000
#> GSM627198     4  0.3857     0.8519 0.000 0.312 0.000 0.688 0.000
#> GSM627160     5  0.4779     0.5337 0.000 0.200 0.000 0.084 0.716
#> GSM627185     1  0.5038     0.6057 0.716 0.000 0.152 0.004 0.128
#> GSM627206     3  0.1197     0.7082 0.048 0.000 0.952 0.000 0.000
#> GSM627161     1  0.0000     0.9114 1.000 0.000 0.000 0.000 0.000
#> GSM627162     3  0.4618     0.4705 0.000 0.068 0.724 0.000 0.208
#> GSM627210     3  0.1357     0.7079 0.048 0.000 0.948 0.004 0.000
#> GSM627189     2  0.0000     0.8963 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM627128     6  0.1995    0.48695 0.000 0.000 0.000 0.036 0.052 0.912
#> GSM627110     3  0.0146    0.74537 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM627132     1  0.0000    0.94606 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627107     5  0.4801    0.53670 0.000 0.000 0.040 0.072 0.716 0.172
#> GSM627103     2  0.0000    0.91761 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627114     3  0.0000    0.74510 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627134     2  0.2003    0.82477 0.000 0.884 0.000 0.116 0.000 0.000
#> GSM627137     2  0.0000    0.91761 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627148     5  0.3747    0.76992 0.000 0.000 0.396 0.000 0.604 0.000
#> GSM627101     6  0.5705   -0.05098 0.000 0.000 0.000 0.380 0.164 0.456
#> GSM627130     6  0.3123    0.44619 0.000 0.000 0.000 0.112 0.056 0.832
#> GSM627071     3  0.0972    0.74901 0.000 0.000 0.964 0.000 0.008 0.028
#> GSM627118     4  0.0632    0.74101 0.000 0.024 0.000 0.976 0.000 0.000
#> GSM627094     2  0.0000    0.91761 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627122     6  0.3851   -0.01510 0.000 0.000 0.460 0.000 0.000 0.540
#> GSM627115     2  0.1814    0.84777 0.000 0.900 0.000 0.100 0.000 0.000
#> GSM627125     6  0.5029    0.20691 0.000 0.000 0.000 0.112 0.276 0.612
#> GSM627174     2  0.3309    0.51567 0.000 0.720 0.280 0.000 0.000 0.000
#> GSM627102     4  0.3288    0.80424 0.000 0.276 0.000 0.724 0.000 0.000
#> GSM627073     5  0.5196    0.40379 0.000 0.000 0.144 0.000 0.604 0.252
#> GSM627108     2  0.0000    0.91761 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627126     1  0.1267    0.87802 0.940 0.000 0.000 0.000 0.000 0.060
#> GSM627078     4  0.2340    0.80595 0.000 0.148 0.000 0.852 0.000 0.000
#> GSM627090     6  0.3843    0.19659 0.000 0.000 0.000 0.000 0.452 0.548
#> GSM627099     2  0.2762    0.75161 0.000 0.804 0.000 0.196 0.000 0.000
#> GSM627105     6  0.5029    0.20691 0.000 0.000 0.000 0.112 0.276 0.612
#> GSM627117     3  0.0000    0.74510 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627121     5  0.3534    0.89233 0.000 0.000 0.276 0.000 0.716 0.008
#> GSM627127     2  0.2762    0.75161 0.000 0.804 0.000 0.196 0.000 0.000
#> GSM627087     2  0.1814    0.84777 0.000 0.900 0.000 0.100 0.000 0.000
#> GSM627089     3  0.1957    0.63155 0.000 0.000 0.888 0.000 0.112 0.000
#> GSM627092     2  0.0000    0.91761 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627076     6  0.3854    0.17705 0.000 0.000 0.000 0.000 0.464 0.536
#> GSM627136     3  0.3857    0.15958 0.000 0.000 0.532 0.000 0.000 0.468
#> GSM627081     5  0.3351    0.90193 0.000 0.000 0.288 0.000 0.712 0.000
#> GSM627091     2  0.1814    0.84777 0.000 0.900 0.000 0.100 0.000 0.000
#> GSM627097     2  0.1814    0.84777 0.000 0.900 0.000 0.100 0.000 0.000
#> GSM627072     3  0.1141    0.70883 0.000 0.000 0.948 0.000 0.052 0.000
#> GSM627080     1  0.0000    0.94606 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627088     3  0.0935    0.74707 0.000 0.004 0.964 0.000 0.000 0.032
#> GSM627109     3  0.4695    0.68411 0.032 0.000 0.692 0.000 0.232 0.044
#> GSM627111     1  0.0000    0.94606 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627113     3  0.3619    0.71887 0.000 0.000 0.744 0.000 0.232 0.024
#> GSM627133     2  0.0000    0.91761 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627177     3  0.0777    0.74647 0.000 0.004 0.972 0.000 0.000 0.024
#> GSM627086     4  0.2941    0.82096 0.000 0.220 0.000 0.780 0.000 0.000
#> GSM627095     6  0.3851    0.18753 0.460 0.000 0.000 0.000 0.000 0.540
#> GSM627079     6  0.5197    0.25449 0.000 0.000 0.320 0.000 0.112 0.568
#> GSM627082     6  0.1657    0.49224 0.000 0.000 0.000 0.016 0.056 0.928
#> GSM627074     3  0.3023    0.72235 0.000 0.000 0.768 0.000 0.232 0.000
#> GSM627077     6  0.3843   -0.00054 0.000 0.000 0.452 0.000 0.000 0.548
#> GSM627093     3  0.3023    0.72235 0.000 0.000 0.768 0.000 0.232 0.000
#> GSM627120     2  0.0000    0.91761 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627124     4  0.2883    0.81972 0.000 0.212 0.000 0.788 0.000 0.000
#> GSM627075     2  0.0000    0.91761 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627085     4  0.0458    0.73502 0.000 0.016 0.000 0.984 0.000 0.000
#> GSM627119     3  0.3023    0.72235 0.000 0.000 0.768 0.000 0.232 0.000
#> GSM627116     2  0.2383    0.82202 0.000 0.880 0.000 0.096 0.000 0.024
#> GSM627084     3  0.3725    0.53379 0.000 0.008 0.676 0.000 0.000 0.316
#> GSM627096     4  0.1564    0.72013 0.000 0.024 0.000 0.936 0.000 0.040
#> GSM627100     6  0.3854    0.16762 0.000 0.000 0.000 0.000 0.464 0.536
#> GSM627112     4  0.4925    0.18831 0.000 0.004 0.000 0.504 0.052 0.440
#> GSM627083     6  0.3851    0.16821 0.000 0.460 0.000 0.000 0.000 0.540
#> GSM627098     3  0.3725    0.53583 0.000 0.000 0.676 0.000 0.008 0.316
#> GSM627104     3  0.4142    0.68569 0.000 0.056 0.712 0.000 0.232 0.000
#> GSM627131     6  0.4076   -0.01139 0.000 0.000 0.452 0.000 0.008 0.540
#> GSM627106     5  0.3351    0.90193 0.000 0.000 0.288 0.000 0.712 0.000
#> GSM627123     6  0.3851    0.18753 0.460 0.000 0.000 0.000 0.000 0.540
#> GSM627129     2  0.0000    0.91761 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627216     2  0.2340    0.76471 0.000 0.852 0.148 0.000 0.000 0.000
#> GSM627212     2  0.0458    0.90998 0.000 0.984 0.000 0.016 0.000 0.000
#> GSM627190     3  0.0000    0.74510 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627169     2  0.0713    0.89994 0.000 0.972 0.028 0.000 0.000 0.000
#> GSM627167     4  0.3151    0.82021 0.000 0.252 0.000 0.748 0.000 0.000
#> GSM627192     1  0.0000    0.94606 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627203     5  0.3351    0.90193 0.000 0.000 0.288 0.000 0.712 0.000
#> GSM627151     2  0.0000    0.91761 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627163     1  0.0000    0.94606 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627211     4  0.3309    0.79923 0.000 0.280 0.000 0.720 0.000 0.000
#> GSM627171     3  0.1610    0.71279 0.000 0.084 0.916 0.000 0.000 0.000
#> GSM627209     4  0.2340    0.81229 0.000 0.148 0.000 0.852 0.000 0.000
#> GSM627135     6  0.5071    0.29573 0.376 0.000 0.084 0.000 0.000 0.540
#> GSM627170     2  0.0260    0.91420 0.000 0.992 0.000 0.008 0.000 0.000
#> GSM627178     3  0.5870    0.29251 0.000 0.000 0.460 0.000 0.212 0.328
#> GSM627199     4  0.3151    0.82031 0.000 0.252 0.000 0.748 0.000 0.000
#> GSM627213     2  0.5242   -0.14502 0.000 0.516 0.000 0.384 0.000 0.100
#> GSM627140     6  0.5019    0.18725 0.000 0.344 0.000 0.016 0.052 0.588
#> GSM627149     1  0.0000    0.94606 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627147     2  0.0000    0.91761 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627195     5  0.3351    0.90193 0.000 0.000 0.288 0.000 0.712 0.000
#> GSM627204     4  0.3592    0.74385 0.000 0.344 0.000 0.656 0.000 0.000
#> GSM627207     2  0.0865    0.88823 0.000 0.964 0.000 0.036 0.000 0.000
#> GSM627157     3  0.3547    0.56085 0.332 0.000 0.668 0.000 0.000 0.000
#> GSM627201     4  0.3592    0.63943 0.000 0.344 0.000 0.656 0.000 0.000
#> GSM627146     2  0.0000    0.91761 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627156     2  0.0713    0.89994 0.000 0.972 0.028 0.000 0.000 0.000
#> GSM627188     1  0.0000    0.94606 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627197     2  0.0000    0.91761 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627173     2  0.0000    0.91761 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627179     2  0.0000    0.91761 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627208     5  0.3531    0.87512 0.000 0.000 0.328 0.000 0.672 0.000
#> GSM627215     2  0.0146    0.91557 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM627153     4  0.1863    0.79253 0.000 0.104 0.000 0.896 0.000 0.000
#> GSM627155     1  0.0000    0.94606 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627165     2  0.4344    0.44766 0.000 0.628 0.000 0.036 0.336 0.000
#> GSM627168     3  0.3464    0.54549 0.000 0.000 0.688 0.000 0.000 0.312
#> GSM627183     3  0.1204    0.73931 0.000 0.000 0.944 0.000 0.000 0.056
#> GSM627144     5  0.3464    0.88823 0.000 0.000 0.312 0.000 0.688 0.000
#> GSM627158     1  0.0000    0.94606 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627196     4  0.3244    0.81407 0.000 0.268 0.000 0.732 0.000 0.000
#> GSM627142     6  0.0000    0.50737 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM627182     3  0.0260    0.74198 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM627202     6  0.3851    0.18753 0.460 0.000 0.000 0.000 0.000 0.540
#> GSM627141     3  0.3221    0.60078 0.000 0.000 0.736 0.000 0.000 0.264
#> GSM627143     2  0.0000    0.91761 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627145     3  0.4247    0.26464 0.000 0.000 0.700 0.000 0.240 0.060
#> GSM627152     6  0.5057    0.29010 0.000 0.000 0.088 0.000 0.352 0.560
#> GSM627200     6  0.3851   -0.01510 0.000 0.000 0.460 0.000 0.000 0.540
#> GSM627159     6  0.1657    0.49224 0.000 0.000 0.000 0.016 0.056 0.928
#> GSM627164     2  0.0000    0.91761 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627138     1  0.0000    0.94606 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627175     4  0.0547    0.73896 0.000 0.020 0.000 0.980 0.000 0.000
#> GSM627150     5  0.3351    0.90193 0.000 0.000 0.288 0.000 0.712 0.000
#> GSM627166     3  0.4503    0.66869 0.000 0.084 0.684 0.000 0.232 0.000
#> GSM627186     3  0.3428    0.50028 0.000 0.304 0.696 0.000 0.000 0.000
#> GSM627139     6  0.4872    0.31967 0.000 0.064 0.004 0.000 0.336 0.596
#> GSM627181     4  0.3765    0.64185 0.000 0.404 0.000 0.596 0.000 0.000
#> GSM627205     2  0.0000    0.91761 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627214     4  0.3578    0.74898 0.000 0.340 0.000 0.660 0.000 0.000
#> GSM627180     5  0.3351    0.90193 0.000 0.000 0.288 0.000 0.712 0.000
#> GSM627172     4  0.3499    0.77332 0.000 0.320 0.000 0.680 0.000 0.000
#> GSM627184     1  0.0000    0.94606 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627193     2  0.0000    0.91761 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627191     6  0.4837    0.33009 0.000 0.088 0.000 0.288 0.000 0.624
#> GSM627176     3  0.3602    0.53682 0.000 0.000 0.784 0.000 0.160 0.056
#> GSM627194     2  0.0000    0.91761 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627154     4  0.0458    0.73502 0.000 0.016 0.000 0.984 0.000 0.000
#> GSM627187     3  0.0000    0.74510 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627198     4  0.2178    0.79995 0.000 0.132 0.000 0.868 0.000 0.000
#> GSM627160     6  0.3490    0.43616 0.000 0.268 0.000 0.000 0.008 0.724
#> GSM627185     1  0.6849    0.12142 0.440 0.000 0.268 0.000 0.228 0.064
#> GSM627206     3  0.0260    0.74198 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM627161     1  0.0000    0.94606 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627162     3  0.2988    0.71232 0.000 0.028 0.828 0.000 0.000 0.144
#> GSM627210     3  0.3023    0.72235 0.000 0.000 0.768 0.000 0.232 0.000
#> GSM627189     2  0.0000    0.91761 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) age(p) other(p) k
#> SD:pam 145           0.0867  0.448   0.0610 2
#> SD:pam  62               NA     NA       NA 3
#> SD:pam 113           0.1839  0.716   0.0495 4
#> SD:pam 112           0.3517  0.609   0.2280 5
#> SD:pam 113           0.5400  0.998   0.0689 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 146 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.864           0.935       0.971         0.5007 0.498   0.498
#> 3 3 0.822           0.906       0.953         0.2378 0.746   0.549
#> 4 4 0.929           0.873       0.946         0.1234 0.862   0.660
#> 5 5 0.787           0.756       0.856         0.1044 0.840   0.524
#> 6 6 0.801           0.817       0.894         0.0526 0.855   0.466

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM627128     2  0.6438      0.819 0.164 0.836
#> GSM627110     1  0.0000      0.985 1.000 0.000
#> GSM627132     1  0.0000      0.985 1.000 0.000
#> GSM627107     2  0.9963      0.210 0.464 0.536
#> GSM627103     2  0.0000      0.955 0.000 1.000
#> GSM627114     1  0.0000      0.985 1.000 0.000
#> GSM627134     2  0.0000      0.955 0.000 1.000
#> GSM627137     2  0.0000      0.955 0.000 1.000
#> GSM627148     1  0.0000      0.985 1.000 0.000
#> GSM627101     2  0.6438      0.819 0.164 0.836
#> GSM627130     2  0.6438      0.819 0.164 0.836
#> GSM627071     1  0.0000      0.985 1.000 0.000
#> GSM627118     2  0.0376      0.953 0.004 0.996
#> GSM627094     2  0.0000      0.955 0.000 1.000
#> GSM627122     1  0.0000      0.985 1.000 0.000
#> GSM627115     2  0.0000      0.955 0.000 1.000
#> GSM627125     2  0.6438      0.819 0.164 0.836
#> GSM627174     2  0.0376      0.953 0.004 0.996
#> GSM627102     2  0.0000      0.955 0.000 1.000
#> GSM627073     1  0.4562      0.883 0.904 0.096
#> GSM627108     2  0.0000      0.955 0.000 1.000
#> GSM627126     1  0.0000      0.985 1.000 0.000
#> GSM627078     2  0.0000      0.955 0.000 1.000
#> GSM627090     1  0.0000      0.985 1.000 0.000
#> GSM627099     2  0.0000      0.955 0.000 1.000
#> GSM627105     2  0.6438      0.819 0.164 0.836
#> GSM627117     1  0.0000      0.985 1.000 0.000
#> GSM627121     2  0.9850      0.319 0.428 0.572
#> GSM627127     2  0.0000      0.955 0.000 1.000
#> GSM627087     2  0.0000      0.955 0.000 1.000
#> GSM627089     1  0.0000      0.985 1.000 0.000
#> GSM627092     2  0.0000      0.955 0.000 1.000
#> GSM627076     1  0.0376      0.982 0.996 0.004
#> GSM627136     1  0.0000      0.985 1.000 0.000
#> GSM627081     1  0.0376      0.982 0.996 0.004
#> GSM627091     2  0.0000      0.955 0.000 1.000
#> GSM627097     2  0.0000      0.955 0.000 1.000
#> GSM627072     1  0.0000      0.985 1.000 0.000
#> GSM627080     1  0.0000      0.985 1.000 0.000
#> GSM627088     1  0.0000      0.985 1.000 0.000
#> GSM627109     1  0.0000      0.985 1.000 0.000
#> GSM627111     1  0.0000      0.985 1.000 0.000
#> GSM627113     1  0.0000      0.985 1.000 0.000
#> GSM627133     2  0.0376      0.953 0.004 0.996
#> GSM627177     1  0.4815      0.872 0.896 0.104
#> GSM627086     2  0.0000      0.955 0.000 1.000
#> GSM627095     1  0.0000      0.985 1.000 0.000
#> GSM627079     1  0.0000      0.985 1.000 0.000
#> GSM627082     2  0.6438      0.819 0.164 0.836
#> GSM627074     1  0.0000      0.985 1.000 0.000
#> GSM627077     1  0.0000      0.985 1.000 0.000
#> GSM627093     1  0.0000      0.985 1.000 0.000
#> GSM627120     2  0.0000      0.955 0.000 1.000
#> GSM627124     2  0.0000      0.955 0.000 1.000
#> GSM627075     2  0.0000      0.955 0.000 1.000
#> GSM627085     2  0.0000      0.955 0.000 1.000
#> GSM627119     1  0.0000      0.985 1.000 0.000
#> GSM627116     2  0.0000      0.955 0.000 1.000
#> GSM627084     1  0.0000      0.985 1.000 0.000
#> GSM627096     2  0.0000      0.955 0.000 1.000
#> GSM627100     1  0.2423      0.947 0.960 0.040
#> GSM627112     2  0.0000      0.955 0.000 1.000
#> GSM627083     1  0.8813      0.539 0.700 0.300
#> GSM627098     1  0.0000      0.985 1.000 0.000
#> GSM627104     1  0.0000      0.985 1.000 0.000
#> GSM627131     1  0.0000      0.985 1.000 0.000
#> GSM627106     1  0.0376      0.982 0.996 0.004
#> GSM627123     1  0.0000      0.985 1.000 0.000
#> GSM627129     2  0.0000      0.955 0.000 1.000
#> GSM627216     2  0.0000      0.955 0.000 1.000
#> GSM627212     2  0.0000      0.955 0.000 1.000
#> GSM627190     1  0.0000      0.985 1.000 0.000
#> GSM627169     2  0.0000      0.955 0.000 1.000
#> GSM627167     2  0.0000      0.955 0.000 1.000
#> GSM627192     1  0.0000      0.985 1.000 0.000
#> GSM627203     1  0.0376      0.982 0.996 0.004
#> GSM627151     2  0.1843      0.936 0.028 0.972
#> GSM627163     1  0.0000      0.985 1.000 0.000
#> GSM627211     2  0.0000      0.955 0.000 1.000
#> GSM627171     2  0.0000      0.955 0.000 1.000
#> GSM627209     2  0.0000      0.955 0.000 1.000
#> GSM627135     1  0.0000      0.985 1.000 0.000
#> GSM627170     2  0.0000      0.955 0.000 1.000
#> GSM627178     1  0.0000      0.985 1.000 0.000
#> GSM627199     2  0.0000      0.955 0.000 1.000
#> GSM627213     2  0.0000      0.955 0.000 1.000
#> GSM627140     2  0.2603      0.924 0.044 0.956
#> GSM627149     1  0.0000      0.985 1.000 0.000
#> GSM627147     2  0.0000      0.955 0.000 1.000
#> GSM627195     1  0.0376      0.982 0.996 0.004
#> GSM627204     2  0.0000      0.955 0.000 1.000
#> GSM627207     2  0.0000      0.955 0.000 1.000
#> GSM627157     1  0.0000      0.985 1.000 0.000
#> GSM627201     2  0.0000      0.955 0.000 1.000
#> GSM627146     2  0.0000      0.955 0.000 1.000
#> GSM627156     2  0.0000      0.955 0.000 1.000
#> GSM627188     1  0.0000      0.985 1.000 0.000
#> GSM627197     2  0.0000      0.955 0.000 1.000
#> GSM627173     2  0.0000      0.955 0.000 1.000
#> GSM627179     2  0.0000      0.955 0.000 1.000
#> GSM627208     1  0.9427      0.391 0.640 0.360
#> GSM627215     2  0.0000      0.955 0.000 1.000
#> GSM627153     2  0.0000      0.955 0.000 1.000
#> GSM627155     1  0.0000      0.985 1.000 0.000
#> GSM627165     2  0.6438      0.819 0.164 0.836
#> GSM627168     1  0.0000      0.985 1.000 0.000
#> GSM627183     1  0.0000      0.985 1.000 0.000
#> GSM627144     1  0.0376      0.982 0.996 0.004
#> GSM627158     1  0.0000      0.985 1.000 0.000
#> GSM627196     2  0.0000      0.955 0.000 1.000
#> GSM627142     1  0.1184      0.971 0.984 0.016
#> GSM627182     1  0.0376      0.982 0.996 0.004
#> GSM627202     1  0.0000      0.985 1.000 0.000
#> GSM627141     1  0.0000      0.985 1.000 0.000
#> GSM627143     2  0.0000      0.955 0.000 1.000
#> GSM627145     1  0.0000      0.985 1.000 0.000
#> GSM627152     1  0.0376      0.982 0.996 0.004
#> GSM627200     1  0.0000      0.985 1.000 0.000
#> GSM627159     2  0.6438      0.819 0.164 0.836
#> GSM627164     2  0.0000      0.955 0.000 1.000
#> GSM627138     1  0.0000      0.985 1.000 0.000
#> GSM627175     2  0.0000      0.955 0.000 1.000
#> GSM627150     1  0.0376      0.982 0.996 0.004
#> GSM627166     1  0.0000      0.985 1.000 0.000
#> GSM627186     2  0.0000      0.955 0.000 1.000
#> GSM627139     2  0.6438      0.819 0.164 0.836
#> GSM627181     2  0.0000      0.955 0.000 1.000
#> GSM627205     2  0.0000      0.955 0.000 1.000
#> GSM627214     2  0.0000      0.955 0.000 1.000
#> GSM627180     2  0.9944      0.236 0.456 0.544
#> GSM627172     2  0.0000      0.955 0.000 1.000
#> GSM627184     1  0.0000      0.985 1.000 0.000
#> GSM627193     2  0.0000      0.955 0.000 1.000
#> GSM627191     2  0.6531      0.815 0.168 0.832
#> GSM627176     1  0.0376      0.982 0.996 0.004
#> GSM627194     2  0.0000      0.955 0.000 1.000
#> GSM627154     2  0.0000      0.955 0.000 1.000
#> GSM627187     1  0.0000      0.985 1.000 0.000
#> GSM627198     2  0.0000      0.955 0.000 1.000
#> GSM627160     2  0.7376      0.764 0.208 0.792
#> GSM627185     1  0.0000      0.985 1.000 0.000
#> GSM627206     1  0.0000      0.985 1.000 0.000
#> GSM627161     1  0.0000      0.985 1.000 0.000
#> GSM627162     1  0.0376      0.982 0.996 0.004
#> GSM627210     1  0.0000      0.985 1.000 0.000
#> GSM627189     2  0.0000      0.955 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM627128     3  0.4002      0.778 0.000 0.160 0.840
#> GSM627110     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627132     1  0.2878      0.892 0.904 0.000 0.096
#> GSM627107     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627103     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627114     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627134     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627137     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627148     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627101     2  0.2711      0.895 0.000 0.912 0.088
#> GSM627130     3  0.4235      0.758 0.000 0.176 0.824
#> GSM627071     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627118     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627094     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627122     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627115     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627125     3  0.3879      0.787 0.000 0.152 0.848
#> GSM627174     2  0.1753      0.940 0.000 0.952 0.048
#> GSM627102     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627073     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627108     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627126     1  0.0000      0.874 1.000 0.000 0.000
#> GSM627078     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627090     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627099     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627105     3  0.4002      0.778 0.000 0.160 0.840
#> GSM627117     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627121     3  0.1163      0.905 0.000 0.028 0.972
#> GSM627127     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627087     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627089     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627092     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627076     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627136     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627081     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627091     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627097     2  0.1163      0.960 0.000 0.972 0.028
#> GSM627072     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627080     1  0.2878      0.892 0.904 0.000 0.096
#> GSM627088     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627109     1  0.4121      0.860 0.832 0.000 0.168
#> GSM627111     1  0.3116      0.890 0.892 0.000 0.108
#> GSM627113     1  0.5706      0.694 0.680 0.000 0.320
#> GSM627133     3  0.4887      0.684 0.000 0.228 0.772
#> GSM627177     3  0.0424      0.920 0.000 0.008 0.992
#> GSM627086     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627095     1  0.0000      0.874 1.000 0.000 0.000
#> GSM627079     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627082     3  0.4966      0.808 0.100 0.060 0.840
#> GSM627074     1  0.6045      0.579 0.620 0.000 0.380
#> GSM627077     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627093     3  0.5988      0.249 0.368 0.000 0.632
#> GSM627120     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627124     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627075     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627085     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627119     3  0.5291      0.533 0.268 0.000 0.732
#> GSM627116     3  0.6026      0.445 0.000 0.376 0.624
#> GSM627084     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627096     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627100     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627112     2  0.2261      0.919 0.000 0.932 0.068
#> GSM627083     1  0.5992      0.651 0.716 0.016 0.268
#> GSM627098     1  0.5591      0.718 0.696 0.000 0.304
#> GSM627104     1  0.4842      0.787 0.776 0.000 0.224
#> GSM627131     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627106     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627123     1  0.3686      0.877 0.860 0.000 0.140
#> GSM627129     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627216     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627212     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627190     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627169     2  0.1964      0.933 0.000 0.944 0.056
#> GSM627167     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627192     1  0.0000      0.874 1.000 0.000 0.000
#> GSM627203     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627151     3  0.3941      0.783 0.000 0.156 0.844
#> GSM627163     1  0.0000      0.874 1.000 0.000 0.000
#> GSM627211     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627171     2  0.0747      0.972 0.000 0.984 0.016
#> GSM627209     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627135     1  0.0000      0.874 1.000 0.000 0.000
#> GSM627170     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627178     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627199     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627213     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627140     2  0.3816      0.813 0.000 0.852 0.148
#> GSM627149     1  0.2625      0.891 0.916 0.000 0.084
#> GSM627147     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627195     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627204     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627207     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627157     1  0.4842      0.814 0.776 0.000 0.224
#> GSM627201     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627146     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627156     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627188     1  0.0000      0.874 1.000 0.000 0.000
#> GSM627197     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627173     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627179     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627208     3  0.2165      0.870 0.000 0.064 0.936
#> GSM627215     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627153     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627155     1  0.0237      0.875 0.996 0.000 0.004
#> GSM627165     2  0.2165      0.923 0.000 0.936 0.064
#> GSM627168     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627183     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627144     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627158     1  0.2878      0.892 0.904 0.000 0.096
#> GSM627196     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627142     3  0.1163      0.905 0.000 0.028 0.972
#> GSM627182     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627202     3  0.0424      0.919 0.008 0.000 0.992
#> GSM627141     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627143     2  0.2625      0.899 0.000 0.916 0.084
#> GSM627145     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627152     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627200     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627159     3  0.4475      0.787 0.016 0.144 0.840
#> GSM627164     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627138     1  0.3116      0.890 0.892 0.000 0.108
#> GSM627175     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627150     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627166     3  0.5650      0.533 0.312 0.000 0.688
#> GSM627186     2  0.2959      0.880 0.000 0.900 0.100
#> GSM627139     3  0.3482      0.812 0.000 0.128 0.872
#> GSM627181     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627205     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627214     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627180     3  0.0592      0.917 0.000 0.012 0.988
#> GSM627172     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627184     1  0.0000      0.874 1.000 0.000 0.000
#> GSM627193     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627191     3  0.6634      0.704 0.104 0.144 0.752
#> GSM627176     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627194     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627154     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627187     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627198     2  0.0000      0.986 0.000 1.000 0.000
#> GSM627160     3  0.4443      0.825 0.052 0.084 0.864
#> GSM627185     1  0.3619      0.879 0.864 0.000 0.136
#> GSM627206     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627161     1  0.2878      0.892 0.904 0.000 0.096
#> GSM627162     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627210     3  0.0000      0.925 0.000 0.000 1.000
#> GSM627189     2  0.0000      0.986 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM627128     4  0.0000     0.8178 0.000 0.000 0.000 1.000
#> GSM627110     3  0.0000     0.9337 0.000 0.000 1.000 0.000
#> GSM627132     1  0.0000     0.9425 1.000 0.000 0.000 0.000
#> GSM627107     4  0.0817     0.8297 0.000 0.000 0.024 0.976
#> GSM627103     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627114     3  0.0000     0.9337 0.000 0.000 1.000 0.000
#> GSM627134     2  0.0188     0.9796 0.000 0.996 0.000 0.004
#> GSM627137     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627148     4  0.3219     0.7695 0.000 0.000 0.164 0.836
#> GSM627101     4  0.4989     0.0720 0.000 0.472 0.000 0.528
#> GSM627130     4  0.0000     0.8178 0.000 0.000 0.000 1.000
#> GSM627071     3  0.0000     0.9337 0.000 0.000 1.000 0.000
#> GSM627118     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627094     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627122     3  0.0000     0.9337 0.000 0.000 1.000 0.000
#> GSM627115     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627125     4  0.0000     0.8178 0.000 0.000 0.000 1.000
#> GSM627174     2  0.0707     0.9710 0.000 0.980 0.000 0.020
#> GSM627102     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627073     4  0.1716     0.8377 0.000 0.000 0.064 0.936
#> GSM627108     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627126     1  0.0000     0.9425 1.000 0.000 0.000 0.000
#> GSM627078     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627090     3  0.4585     0.4703 0.000 0.000 0.668 0.332
#> GSM627099     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627105     4  0.0000     0.8178 0.000 0.000 0.000 1.000
#> GSM627117     3  0.0000     0.9337 0.000 0.000 1.000 0.000
#> GSM627121     4  0.1022     0.8326 0.000 0.000 0.032 0.968
#> GSM627127     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627087     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627089     3  0.0000     0.9337 0.000 0.000 1.000 0.000
#> GSM627092     2  0.0707     0.9710 0.000 0.980 0.000 0.020
#> GSM627076     4  0.4661     0.4812 0.000 0.000 0.348 0.652
#> GSM627136     3  0.0000     0.9337 0.000 0.000 1.000 0.000
#> GSM627081     4  0.1716     0.8377 0.000 0.000 0.064 0.936
#> GSM627091     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627097     2  0.0817     0.9684 0.000 0.976 0.000 0.024
#> GSM627072     4  0.4605     0.5358 0.000 0.000 0.336 0.664
#> GSM627080     1  0.0000     0.9425 1.000 0.000 0.000 0.000
#> GSM627088     3  0.0000     0.9337 0.000 0.000 1.000 0.000
#> GSM627109     3  0.4877     0.2396 0.408 0.000 0.592 0.000
#> GSM627111     1  0.0000     0.9425 1.000 0.000 0.000 0.000
#> GSM627113     3  0.0000     0.9337 0.000 0.000 1.000 0.000
#> GSM627133     4  0.5793     0.3828 0.000 0.384 0.036 0.580
#> GSM627177     3  0.1474     0.8949 0.000 0.000 0.948 0.052
#> GSM627086     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627095     1  0.4925     0.2557 0.572 0.000 0.428 0.000
#> GSM627079     3  0.4888     0.2547 0.000 0.000 0.588 0.412
#> GSM627082     4  0.2704     0.7622 0.000 0.000 0.124 0.876
#> GSM627074     3  0.0000     0.9337 0.000 0.000 1.000 0.000
#> GSM627077     3  0.0000     0.9337 0.000 0.000 1.000 0.000
#> GSM627093     3  0.0000     0.9337 0.000 0.000 1.000 0.000
#> GSM627120     2  0.0817     0.9684 0.000 0.976 0.000 0.024
#> GSM627124     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627075     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627085     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627119     3  0.0000     0.9337 0.000 0.000 1.000 0.000
#> GSM627116     4  0.5126     0.2143 0.000 0.444 0.004 0.552
#> GSM627084     3  0.0000     0.9337 0.000 0.000 1.000 0.000
#> GSM627096     2  0.0336     0.9782 0.000 0.992 0.000 0.008
#> GSM627100     4  0.1637     0.8303 0.000 0.000 0.060 0.940
#> GSM627112     2  0.1867     0.9284 0.000 0.928 0.000 0.072
#> GSM627083     3  0.1118     0.9020 0.036 0.000 0.964 0.000
#> GSM627098     3  0.0000     0.9337 0.000 0.000 1.000 0.000
#> GSM627104     3  0.0336     0.9278 0.008 0.000 0.992 0.000
#> GSM627131     3  0.0000     0.9337 0.000 0.000 1.000 0.000
#> GSM627106     4  0.1474     0.8369 0.000 0.000 0.052 0.948
#> GSM627123     3  0.1716     0.8728 0.064 0.000 0.936 0.000
#> GSM627129     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627216     2  0.0707     0.9710 0.000 0.980 0.000 0.020
#> GSM627212     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627190     3  0.0000     0.9337 0.000 0.000 1.000 0.000
#> GSM627169     2  0.1042     0.9653 0.000 0.972 0.008 0.020
#> GSM627167     2  0.0817     0.9684 0.000 0.976 0.000 0.024
#> GSM627192     1  0.0000     0.9425 1.000 0.000 0.000 0.000
#> GSM627203     4  0.2149     0.8251 0.000 0.000 0.088 0.912
#> GSM627151     4  0.4949     0.6690 0.000 0.180 0.060 0.760
#> GSM627163     1  0.0000     0.9425 1.000 0.000 0.000 0.000
#> GSM627211     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627171     2  0.0817     0.9684 0.000 0.976 0.000 0.024
#> GSM627209     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627135     1  0.1474     0.8989 0.948 0.000 0.052 0.000
#> GSM627170     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627178     3  0.0000     0.9337 0.000 0.000 1.000 0.000
#> GSM627199     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627213     2  0.0188     0.9792 0.000 0.996 0.000 0.004
#> GSM627140     2  0.1716     0.9357 0.000 0.936 0.000 0.064
#> GSM627149     1  0.0000     0.9425 1.000 0.000 0.000 0.000
#> GSM627147     2  0.0469     0.9756 0.000 0.988 0.000 0.012
#> GSM627195     4  0.1716     0.8377 0.000 0.000 0.064 0.936
#> GSM627204     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627207     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627157     3  0.0817     0.9140 0.024 0.000 0.976 0.000
#> GSM627201     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627146     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627156     2  0.0336     0.9776 0.000 0.992 0.000 0.008
#> GSM627188     1  0.0000     0.9425 1.000 0.000 0.000 0.000
#> GSM627197     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627173     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627179     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627208     2  0.5808     0.1089 0.000 0.544 0.032 0.424
#> GSM627215     2  0.0817     0.9684 0.000 0.976 0.000 0.024
#> GSM627153     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627155     1  0.0000     0.9425 1.000 0.000 0.000 0.000
#> GSM627165     2  0.3528     0.7517 0.000 0.808 0.000 0.192
#> GSM627168     3  0.0000     0.9337 0.000 0.000 1.000 0.000
#> GSM627183     3  0.0000     0.9337 0.000 0.000 1.000 0.000
#> GSM627144     4  0.1716     0.8377 0.000 0.000 0.064 0.936
#> GSM627158     1  0.0000     0.9425 1.000 0.000 0.000 0.000
#> GSM627196     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627142     4  0.1716     0.8291 0.000 0.000 0.064 0.936
#> GSM627182     4  0.2081     0.8302 0.000 0.000 0.084 0.916
#> GSM627202     3  0.0000     0.9337 0.000 0.000 1.000 0.000
#> GSM627141     3  0.0000     0.9337 0.000 0.000 1.000 0.000
#> GSM627143     2  0.1118     0.9586 0.000 0.964 0.000 0.036
#> GSM627145     3  0.1792     0.8775 0.000 0.000 0.932 0.068
#> GSM627152     3  0.4382     0.5429 0.000 0.000 0.704 0.296
#> GSM627200     3  0.0000     0.9337 0.000 0.000 1.000 0.000
#> GSM627159     4  0.0000     0.8178 0.000 0.000 0.000 1.000
#> GSM627164     2  0.0707     0.9710 0.000 0.980 0.000 0.020
#> GSM627138     1  0.0000     0.9425 1.000 0.000 0.000 0.000
#> GSM627175     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627150     4  0.1716     0.8377 0.000 0.000 0.064 0.936
#> GSM627166     3  0.0000     0.9337 0.000 0.000 1.000 0.000
#> GSM627186     2  0.0707     0.9710 0.000 0.980 0.000 0.020
#> GSM627139     4  0.1022     0.8328 0.000 0.000 0.032 0.968
#> GSM627181     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627205     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627214     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627180     4  0.1716     0.8377 0.000 0.000 0.064 0.936
#> GSM627172     2  0.0188     0.9795 0.000 0.996 0.000 0.004
#> GSM627184     1  0.0000     0.9425 1.000 0.000 0.000 0.000
#> GSM627193     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627191     3  0.2266     0.8660 0.000 0.004 0.912 0.084
#> GSM627176     3  0.4989     0.0436 0.000 0.000 0.528 0.472
#> GSM627194     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627154     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627187     3  0.0000     0.9337 0.000 0.000 1.000 0.000
#> GSM627198     2  0.0000     0.9812 0.000 1.000 0.000 0.000
#> GSM627160     4  0.4877     0.2738 0.000 0.000 0.408 0.592
#> GSM627185     1  0.4040     0.6658 0.752 0.000 0.248 0.000
#> GSM627206     3  0.0000     0.9337 0.000 0.000 1.000 0.000
#> GSM627161     1  0.0000     0.9425 1.000 0.000 0.000 0.000
#> GSM627162     3  0.0592     0.9209 0.000 0.000 0.984 0.016
#> GSM627210     3  0.0000     0.9337 0.000 0.000 1.000 0.000
#> GSM627189     2  0.0000     0.9812 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM627128     5  0.4210      0.557 0.000 0.000 0.000 0.412 0.588
#> GSM627110     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> GSM627132     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000
#> GSM627107     5  0.0000      0.853 0.000 0.000 0.000 0.000 1.000
#> GSM627103     2  0.4302     -0.461 0.000 0.520 0.000 0.480 0.000
#> GSM627114     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> GSM627134     4  0.4114      0.617 0.000 0.376 0.000 0.624 0.000
#> GSM627137     2  0.0290      0.916 0.000 0.992 0.000 0.008 0.000
#> GSM627148     5  0.0963      0.868 0.000 0.000 0.036 0.000 0.964
#> GSM627101     4  0.1205      0.437 0.000 0.004 0.000 0.956 0.040
#> GSM627130     4  0.4307     -0.470 0.000 0.000 0.000 0.504 0.496
#> GSM627071     3  0.3039      0.772 0.000 0.000 0.808 0.000 0.192
#> GSM627118     4  0.4227      0.480 0.000 0.420 0.000 0.580 0.000
#> GSM627094     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> GSM627122     3  0.2074      0.876 0.000 0.000 0.896 0.000 0.104
#> GSM627115     2  0.0162      0.915 0.000 0.996 0.000 0.004 0.000
#> GSM627125     5  0.4171      0.570 0.000 0.000 0.000 0.396 0.604
#> GSM627174     4  0.4192      0.605 0.000 0.404 0.000 0.596 0.000
#> GSM627102     2  0.1121      0.904 0.000 0.956 0.000 0.044 0.000
#> GSM627073     5  0.0963      0.868 0.000 0.000 0.036 0.000 0.964
#> GSM627108     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> GSM627126     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000
#> GSM627078     2  0.2605      0.823 0.000 0.852 0.000 0.148 0.000
#> GSM627090     5  0.2127      0.825 0.000 0.000 0.108 0.000 0.892
#> GSM627099     2  0.1671      0.888 0.000 0.924 0.000 0.076 0.000
#> GSM627105     5  0.4182      0.567 0.000 0.000 0.000 0.400 0.600
#> GSM627117     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> GSM627121     5  0.1364      0.865 0.000 0.000 0.036 0.012 0.952
#> GSM627127     2  0.2329      0.842 0.000 0.876 0.000 0.124 0.000
#> GSM627087     2  0.0609      0.909 0.000 0.980 0.000 0.020 0.000
#> GSM627089     3  0.1908      0.885 0.000 0.000 0.908 0.000 0.092
#> GSM627092     4  0.4210      0.606 0.000 0.412 0.000 0.588 0.000
#> GSM627076     5  0.0290      0.857 0.000 0.000 0.008 0.000 0.992
#> GSM627136     3  0.0162      0.934 0.000 0.000 0.996 0.000 0.004
#> GSM627081     5  0.0963      0.868 0.000 0.000 0.036 0.000 0.964
#> GSM627091     2  0.0510      0.915 0.000 0.984 0.000 0.016 0.000
#> GSM627097     4  0.3932      0.619 0.000 0.328 0.000 0.672 0.000
#> GSM627072     5  0.1043      0.867 0.000 0.000 0.040 0.000 0.960
#> GSM627080     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000
#> GSM627088     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> GSM627109     3  0.1851      0.871 0.088 0.000 0.912 0.000 0.000
#> GSM627111     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000
#> GSM627113     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> GSM627133     4  0.6046      0.285 0.000 0.056 0.036 0.560 0.348
#> GSM627177     3  0.4046      0.592 0.000 0.000 0.696 0.008 0.296
#> GSM627086     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> GSM627095     3  0.3837      0.598 0.308 0.000 0.692 0.000 0.000
#> GSM627079     5  0.1608      0.851 0.000 0.000 0.072 0.000 0.928
#> GSM627082     4  0.6571     -0.410 0.000 0.000 0.204 0.404 0.392
#> GSM627074     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> GSM627077     3  0.1792      0.892 0.000 0.000 0.916 0.000 0.084
#> GSM627093     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> GSM627120     4  0.4192      0.610 0.000 0.404 0.000 0.596 0.000
#> GSM627124     2  0.2179      0.862 0.000 0.888 0.000 0.112 0.000
#> GSM627075     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> GSM627085     2  0.2179      0.847 0.000 0.888 0.000 0.112 0.000
#> GSM627119     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> GSM627116     4  0.2260      0.520 0.000 0.064 0.000 0.908 0.028
#> GSM627084     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> GSM627096     4  0.3796      0.619 0.000 0.300 0.000 0.700 0.000
#> GSM627100     5  0.0000      0.853 0.000 0.000 0.000 0.000 1.000
#> GSM627112     4  0.0404      0.479 0.000 0.012 0.000 0.988 0.000
#> GSM627083     3  0.3090      0.845 0.104 0.000 0.856 0.040 0.000
#> GSM627098     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> GSM627104     3  0.0963      0.907 0.036 0.000 0.964 0.000 0.000
#> GSM627131     3  0.1965      0.882 0.000 0.000 0.904 0.000 0.096
#> GSM627106     5  0.0963      0.868 0.000 0.000 0.036 0.000 0.964
#> GSM627123     3  0.2605      0.831 0.148 0.000 0.852 0.000 0.000
#> GSM627129     4  0.4030      0.618 0.000 0.352 0.000 0.648 0.000
#> GSM627216     4  0.4262      0.595 0.000 0.440 0.000 0.560 0.000
#> GSM627212     2  0.1608      0.886 0.000 0.928 0.000 0.072 0.000
#> GSM627190     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> GSM627169     4  0.4302      0.539 0.000 0.480 0.000 0.520 0.000
#> GSM627167     4  0.3913      0.619 0.000 0.324 0.000 0.676 0.000
#> GSM627192     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000
#> GSM627203     5  0.0963      0.868 0.000 0.000 0.036 0.000 0.964
#> GSM627151     4  0.5941      0.224 0.000 0.044 0.036 0.544 0.376
#> GSM627163     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000
#> GSM627211     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> GSM627171     4  0.4262      0.595 0.000 0.440 0.000 0.560 0.000
#> GSM627209     2  0.1270      0.903 0.000 0.948 0.000 0.052 0.000
#> GSM627135     1  0.3796      0.526 0.700 0.000 0.300 0.000 0.000
#> GSM627170     2  0.1270      0.887 0.000 0.948 0.000 0.052 0.000
#> GSM627178     3  0.1792      0.892 0.000 0.000 0.916 0.000 0.084
#> GSM627199     2  0.1732      0.875 0.000 0.920 0.000 0.080 0.000
#> GSM627213     4  0.3876      0.608 0.000 0.316 0.000 0.684 0.000
#> GSM627140     4  0.2074      0.559 0.000 0.104 0.000 0.896 0.000
#> GSM627149     1  0.0162      0.959 0.996 0.000 0.004 0.000 0.000
#> GSM627147     4  0.4015      0.617 0.000 0.348 0.000 0.652 0.000
#> GSM627195     5  0.0963      0.868 0.000 0.000 0.036 0.000 0.964
#> GSM627204     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> GSM627207     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> GSM627157     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> GSM627201     2  0.0290      0.916 0.000 0.992 0.000 0.008 0.000
#> GSM627146     2  0.0290      0.916 0.000 0.992 0.000 0.008 0.000
#> GSM627156     4  0.4302      0.537 0.000 0.480 0.000 0.520 0.000
#> GSM627188     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000
#> GSM627197     2  0.0880      0.909 0.000 0.968 0.000 0.032 0.000
#> GSM627173     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> GSM627179     2  0.0162      0.915 0.000 0.996 0.000 0.004 0.000
#> GSM627208     4  0.5900      0.254 0.000 0.044 0.036 0.560 0.360
#> GSM627215     4  0.4403      0.597 0.000 0.436 0.004 0.560 0.000
#> GSM627153     2  0.1851      0.883 0.000 0.912 0.000 0.088 0.000
#> GSM627155     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000
#> GSM627165     4  0.4171      0.611 0.000 0.396 0.000 0.604 0.000
#> GSM627168     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> GSM627183     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> GSM627144     5  0.0963      0.868 0.000 0.000 0.036 0.000 0.964
#> GSM627158     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000
#> GSM627196     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> GSM627142     5  0.1043      0.839 0.000 0.000 0.000 0.040 0.960
#> GSM627182     5  0.4270      0.657 0.000 0.000 0.048 0.204 0.748
#> GSM627202     3  0.1478      0.904 0.000 0.000 0.936 0.000 0.064
#> GSM627141     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> GSM627143     4  0.4808      0.612 0.000 0.400 0.024 0.576 0.000
#> GSM627145     5  0.1908      0.838 0.000 0.000 0.092 0.000 0.908
#> GSM627152     5  0.4171      0.354 0.000 0.000 0.396 0.000 0.604
#> GSM627200     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> GSM627159     5  0.4182      0.567 0.000 0.000 0.000 0.400 0.600
#> GSM627164     4  0.4262      0.595 0.000 0.440 0.000 0.560 0.000
#> GSM627138     1  0.2074      0.865 0.896 0.000 0.104 0.000 0.000
#> GSM627175     2  0.2074      0.849 0.000 0.896 0.000 0.104 0.000
#> GSM627150     5  0.0963      0.868 0.000 0.000 0.036 0.000 0.964
#> GSM627166     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> GSM627186     4  0.4287      0.570 0.000 0.460 0.000 0.540 0.000
#> GSM627139     5  0.0510      0.862 0.000 0.000 0.016 0.000 0.984
#> GSM627181     2  0.0880      0.909 0.000 0.968 0.000 0.032 0.000
#> GSM627205     4  0.4262      0.595 0.000 0.440 0.000 0.560 0.000
#> GSM627214     2  0.2424      0.817 0.000 0.868 0.000 0.132 0.000
#> GSM627180     5  0.4479      0.566 0.000 0.000 0.036 0.264 0.700
#> GSM627172     4  0.4297      0.519 0.000 0.472 0.000 0.528 0.000
#> GSM627184     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000
#> GSM627193     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> GSM627191     4  0.4305     -0.374 0.000 0.000 0.488 0.512 0.000
#> GSM627176     5  0.1851      0.841 0.000 0.000 0.088 0.000 0.912
#> GSM627194     2  0.0162      0.915 0.000 0.996 0.000 0.004 0.000
#> GSM627154     2  0.3983      0.395 0.000 0.660 0.000 0.340 0.000
#> GSM627187     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> GSM627198     2  0.1908      0.863 0.000 0.908 0.000 0.092 0.000
#> GSM627160     4  0.6233     -0.320 0.000 0.000 0.168 0.520 0.312
#> GSM627185     3  0.3561      0.641 0.260 0.000 0.740 0.000 0.000
#> GSM627206     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> GSM627161     1  0.0000      0.962 1.000 0.000 0.000 0.000 0.000
#> GSM627162     3  0.2104      0.884 0.000 0.000 0.916 0.024 0.060
#> GSM627210     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> GSM627189     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM627128     6  0.1387     0.9354 0.000 0.000 0.000 0.000 0.068 0.932
#> GSM627110     3  0.0547     0.8935 0.000 0.000 0.980 0.000 0.020 0.000
#> GSM627132     1  0.0146     0.9449 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM627107     5  0.0603     0.8573 0.000 0.000 0.000 0.016 0.980 0.004
#> GSM627103     2  0.1075     0.8887 0.000 0.952 0.000 0.048 0.000 0.000
#> GSM627114     3  0.0146     0.8955 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM627134     4  0.1719     0.8467 0.000 0.060 0.000 0.924 0.000 0.016
#> GSM627137     2  0.2969     0.6094 0.000 0.776 0.000 0.224 0.000 0.000
#> GSM627148     5  0.0000     0.8597 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM627101     6  0.2199     0.8504 0.000 0.020 0.000 0.088 0.000 0.892
#> GSM627130     6  0.1367     0.9287 0.000 0.000 0.000 0.012 0.044 0.944
#> GSM627071     3  0.3907     0.3500 0.000 0.000 0.588 0.004 0.408 0.000
#> GSM627118     4  0.2358     0.8634 0.000 0.108 0.000 0.876 0.000 0.016
#> GSM627094     2  0.0000     0.9073 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627122     5  0.4461     0.2369 0.000 0.000 0.404 0.032 0.564 0.000
#> GSM627115     2  0.0000     0.9073 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627125     6  0.1387     0.9354 0.000 0.000 0.000 0.000 0.068 0.932
#> GSM627174     4  0.3139     0.7900 0.000 0.160 0.000 0.812 0.000 0.028
#> GSM627102     4  0.3843     0.4452 0.000 0.452 0.000 0.548 0.000 0.000
#> GSM627073     5  0.0603     0.8573 0.000 0.000 0.000 0.016 0.980 0.004
#> GSM627108     2  0.0000     0.9073 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627126     1  0.0000     0.9451 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627078     4  0.2664     0.8664 0.000 0.184 0.000 0.816 0.000 0.000
#> GSM627090     5  0.1633     0.8477 0.000 0.000 0.024 0.044 0.932 0.000
#> GSM627099     4  0.2664     0.8664 0.000 0.184 0.000 0.816 0.000 0.000
#> GSM627105     6  0.1387     0.9354 0.000 0.000 0.000 0.000 0.068 0.932
#> GSM627117     3  0.0458     0.8948 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM627121     5  0.1349     0.8396 0.000 0.000 0.000 0.056 0.940 0.004
#> GSM627127     4  0.2664     0.8664 0.000 0.184 0.000 0.816 0.000 0.000
#> GSM627087     2  0.0000     0.9073 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627089     3  0.4256     0.1293 0.000 0.000 0.520 0.016 0.464 0.000
#> GSM627092     4  0.3175     0.6425 0.000 0.256 0.000 0.744 0.000 0.000
#> GSM627076     5  0.1152     0.8545 0.000 0.000 0.004 0.044 0.952 0.000
#> GSM627136     3  0.0632     0.8924 0.000 0.000 0.976 0.000 0.024 0.000
#> GSM627081     5  0.0508     0.8580 0.000 0.000 0.000 0.012 0.984 0.004
#> GSM627091     2  0.3023     0.5979 0.000 0.768 0.000 0.232 0.000 0.000
#> GSM627097     4  0.1219     0.8369 0.000 0.048 0.000 0.948 0.000 0.004
#> GSM627072     5  0.2092     0.7648 0.000 0.000 0.124 0.000 0.876 0.000
#> GSM627080     1  0.0146     0.9449 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM627088     3  0.0458     0.8948 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM627109     3  0.0713     0.8798 0.028 0.000 0.972 0.000 0.000 0.000
#> GSM627111     1  0.0146     0.9449 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM627113     3  0.0000     0.8949 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627133     5  0.5369     0.5268 0.000 0.220 0.000 0.104 0.644 0.032
#> GSM627177     3  0.4318     0.2136 0.000 0.000 0.532 0.020 0.448 0.000
#> GSM627086     2  0.0000     0.9073 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627095     1  0.2219     0.8261 0.864 0.000 0.136 0.000 0.000 0.000
#> GSM627079     5  0.1152     0.8545 0.000 0.000 0.004 0.044 0.952 0.000
#> GSM627082     6  0.1341     0.9084 0.000 0.000 0.024 0.000 0.028 0.948
#> GSM627074     3  0.0000     0.8949 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627077     3  0.3261     0.7051 0.000 0.000 0.780 0.016 0.204 0.000
#> GSM627093     3  0.0000     0.8949 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627120     4  0.3518     0.7385 0.000 0.092 0.000 0.804 0.104 0.000
#> GSM627124     4  0.2664     0.8664 0.000 0.184 0.000 0.816 0.000 0.000
#> GSM627075     2  0.0000     0.9073 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627085     4  0.2664     0.8664 0.000 0.184 0.000 0.816 0.000 0.000
#> GSM627119     3  0.0000     0.8949 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627116     4  0.1957     0.7936 0.000 0.000 0.000 0.888 0.000 0.112
#> GSM627084     3  0.0260     0.8958 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM627096     4  0.2060     0.8576 0.000 0.084 0.000 0.900 0.000 0.016
#> GSM627100     5  0.2842     0.7860 0.000 0.000 0.000 0.044 0.852 0.104
#> GSM627112     4  0.2135     0.7826 0.000 0.000 0.000 0.872 0.000 0.128
#> GSM627083     1  0.4571     0.7318 0.756 0.000 0.136 0.060 0.008 0.040
#> GSM627098     3  0.0000     0.8949 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627104     3  0.0000     0.8949 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627131     3  0.3688     0.6211 0.000 0.000 0.724 0.020 0.256 0.000
#> GSM627106     5  0.0508     0.8580 0.000 0.000 0.000 0.012 0.984 0.004
#> GSM627123     1  0.2454     0.7963 0.840 0.000 0.160 0.000 0.000 0.000
#> GSM627129     4  0.2163     0.8602 0.000 0.092 0.000 0.892 0.000 0.016
#> GSM627216     2  0.2633     0.8361 0.000 0.864 0.000 0.104 0.000 0.032
#> GSM627212     2  0.3782     0.0244 0.000 0.588 0.000 0.412 0.000 0.000
#> GSM627190     3  0.0458     0.8948 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM627169     2  0.2436     0.8494 0.000 0.880 0.000 0.088 0.000 0.032
#> GSM627167     4  0.1858     0.8548 0.000 0.076 0.000 0.912 0.000 0.012
#> GSM627192     1  0.0000     0.9451 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627203     5  0.0937     0.8554 0.000 0.000 0.000 0.040 0.960 0.000
#> GSM627151     5  0.4101     0.5371 0.000 0.000 0.000 0.308 0.664 0.028
#> GSM627163     1  0.0000     0.9451 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627211     2  0.0146     0.9053 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM627171     2  0.2436     0.8494 0.000 0.880 0.000 0.088 0.000 0.032
#> GSM627209     4  0.2664     0.8664 0.000 0.184 0.000 0.816 0.000 0.000
#> GSM627135     1  0.1610     0.8815 0.916 0.000 0.084 0.000 0.000 0.000
#> GSM627170     2  0.0363     0.9032 0.000 0.988 0.000 0.012 0.000 0.000
#> GSM627178     3  0.2994     0.7164 0.000 0.000 0.788 0.004 0.208 0.000
#> GSM627199     4  0.2664     0.8664 0.000 0.184 0.000 0.816 0.000 0.000
#> GSM627213     4  0.2358     0.8639 0.000 0.108 0.000 0.876 0.000 0.016
#> GSM627140     4  0.2100     0.7951 0.000 0.004 0.000 0.884 0.000 0.112
#> GSM627149     1  0.0458     0.9374 0.984 0.000 0.016 0.000 0.000 0.000
#> GSM627147     4  0.1556     0.8548 0.000 0.080 0.000 0.920 0.000 0.000
#> GSM627195     5  0.0291     0.8592 0.000 0.000 0.000 0.004 0.992 0.004
#> GSM627204     2  0.0000     0.9073 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627207     2  0.0000     0.9073 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627157     3  0.0000     0.8949 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627201     2  0.2048     0.7944 0.000 0.880 0.000 0.120 0.000 0.000
#> GSM627146     2  0.1765     0.8245 0.000 0.904 0.000 0.096 0.000 0.000
#> GSM627156     2  0.2436     0.8494 0.000 0.880 0.000 0.088 0.000 0.032
#> GSM627188     1  0.0000     0.9451 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627197     4  0.3390     0.7590 0.000 0.296 0.000 0.704 0.000 0.000
#> GSM627173     2  0.0000     0.9073 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627179     2  0.0000     0.9073 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627208     5  0.5935     0.2208 0.000 0.376 0.000 0.104 0.488 0.032
#> GSM627215     2  0.2633     0.8361 0.000 0.864 0.000 0.104 0.000 0.032
#> GSM627153     4  0.2664     0.8664 0.000 0.184 0.000 0.816 0.000 0.000
#> GSM627155     1  0.0000     0.9451 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627165     4  0.3919     0.7681 0.000 0.072 0.000 0.788 0.124 0.016
#> GSM627168     3  0.0547     0.8940 0.000 0.000 0.980 0.000 0.020 0.000
#> GSM627183     3  0.0000     0.8949 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627144     5  0.0146     0.8593 0.000 0.000 0.000 0.000 0.996 0.004
#> GSM627158     1  0.0146     0.9449 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM627196     2  0.0000     0.9073 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627142     6  0.3938     0.7218 0.000 0.000 0.000 0.044 0.228 0.728
#> GSM627182     5  0.4121     0.6965 0.000 0.000 0.156 0.048 0.768 0.028
#> GSM627202     3  0.2358     0.8096 0.000 0.000 0.876 0.016 0.108 0.000
#> GSM627141     3  0.0260     0.8958 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM627143     4  0.3933     0.5239 0.000 0.308 0.000 0.676 0.008 0.008
#> GSM627145     5  0.1549     0.8512 0.000 0.000 0.020 0.044 0.936 0.000
#> GSM627152     5  0.1934     0.8375 0.000 0.000 0.040 0.044 0.916 0.000
#> GSM627200     3  0.0000     0.8949 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627159     6  0.1204     0.9336 0.000 0.000 0.000 0.000 0.056 0.944
#> GSM627164     2  0.2436     0.8494 0.000 0.880 0.000 0.088 0.000 0.032
#> GSM627138     3  0.3742     0.4318 0.348 0.000 0.648 0.004 0.000 0.000
#> GSM627175     4  0.2664     0.8664 0.000 0.184 0.000 0.816 0.000 0.000
#> GSM627150     5  0.0000     0.8597 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM627166     3  0.0260     0.8958 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM627186     2  0.2436     0.8494 0.000 0.880 0.000 0.088 0.000 0.032
#> GSM627139     5  0.1141     0.8440 0.000 0.000 0.000 0.000 0.948 0.052
#> GSM627181     4  0.3578     0.6919 0.000 0.340 0.000 0.660 0.000 0.000
#> GSM627205     2  0.2263     0.8484 0.000 0.884 0.000 0.100 0.000 0.016
#> GSM627214     4  0.2527     0.8677 0.000 0.168 0.000 0.832 0.000 0.000
#> GSM627180     5  0.1657     0.8307 0.000 0.000 0.000 0.056 0.928 0.016
#> GSM627172     4  0.2020     0.8477 0.000 0.096 0.000 0.896 0.000 0.008
#> GSM627184     1  0.0000     0.9451 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627193     2  0.0000     0.9073 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627191     4  0.3207     0.7665 0.000 0.000 0.044 0.828 0.004 0.124
#> GSM627176     5  0.1007     0.8542 0.000 0.000 0.000 0.044 0.956 0.000
#> GSM627194     2  0.0000     0.9073 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627154     4  0.2454     0.8680 0.000 0.160 0.000 0.840 0.000 0.000
#> GSM627187     3  0.0458     0.8948 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM627198     4  0.2664     0.8664 0.000 0.184 0.000 0.816 0.000 0.000
#> GSM627160     4  0.5082     0.5348 0.000 0.000 0.004 0.648 0.160 0.188
#> GSM627185     3  0.0865     0.8735 0.036 0.000 0.964 0.000 0.000 0.000
#> GSM627206     3  0.0458     0.8948 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM627161     1  0.0146     0.9449 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM627162     3  0.2011     0.8483 0.000 0.000 0.912 0.004 0.064 0.020
#> GSM627210     3  0.0260     0.8958 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM627189     2  0.0000     0.9073 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) age(p) other(p) k
#> SD:mclust 142            0.416  0.360  0.04590 2
#> SD:mclust 144            0.426  0.663  0.08381 3
#> SD:mclust 135            0.129  0.620  0.02524 4
#> SD:mclust 133            0.105  0.660  0.00902 5
#> SD:mclust 138            0.298  0.783  0.31969 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 146 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.944           0.949       0.978         0.4959 0.503   0.503
#> 3 3 0.656           0.818       0.902         0.2669 0.841   0.694
#> 4 4 0.562           0.688       0.827         0.1455 0.729   0.416
#> 5 5 0.529           0.494       0.717         0.0737 0.831   0.492
#> 6 6 0.587           0.579       0.741         0.0441 0.867   0.507

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM627128     2  0.2948      0.933 0.052 0.948
#> GSM627110     1  0.0000      0.971 1.000 0.000
#> GSM627132     1  0.0000      0.971 1.000 0.000
#> GSM627107     2  0.0000      0.982 0.000 1.000
#> GSM627103     2  0.0000      0.982 0.000 1.000
#> GSM627114     1  0.0000      0.971 1.000 0.000
#> GSM627134     2  0.0000      0.982 0.000 1.000
#> GSM627137     2  0.0000      0.982 0.000 1.000
#> GSM627148     1  0.3584      0.913 0.932 0.068
#> GSM627101     2  0.0000      0.982 0.000 1.000
#> GSM627130     2  0.0000      0.982 0.000 1.000
#> GSM627071     1  0.2423      0.939 0.960 0.040
#> GSM627118     2  0.0000      0.982 0.000 1.000
#> GSM627094     2  0.0000      0.982 0.000 1.000
#> GSM627122     1  0.0000      0.971 1.000 0.000
#> GSM627115     2  0.0000      0.982 0.000 1.000
#> GSM627125     2  0.4690      0.881 0.100 0.900
#> GSM627174     2  0.0000      0.982 0.000 1.000
#> GSM627102     2  0.0000      0.982 0.000 1.000
#> GSM627073     2  0.0000      0.982 0.000 1.000
#> GSM627108     2  0.0000      0.982 0.000 1.000
#> GSM627126     1  0.0000      0.971 1.000 0.000
#> GSM627078     2  0.0000      0.982 0.000 1.000
#> GSM627090     1  0.0000      0.971 1.000 0.000
#> GSM627099     2  0.0000      0.982 0.000 1.000
#> GSM627105     2  0.0000      0.982 0.000 1.000
#> GSM627117     1  0.6887      0.780 0.816 0.184
#> GSM627121     2  0.0000      0.982 0.000 1.000
#> GSM627127     2  0.0000      0.982 0.000 1.000
#> GSM627087     2  0.0000      0.982 0.000 1.000
#> GSM627089     1  0.0000      0.971 1.000 0.000
#> GSM627092     2  0.0000      0.982 0.000 1.000
#> GSM627076     1  0.0000      0.971 1.000 0.000
#> GSM627136     1  0.0376      0.968 0.996 0.004
#> GSM627081     2  0.0938      0.971 0.012 0.988
#> GSM627091     2  0.0000      0.982 0.000 1.000
#> GSM627097     2  0.0000      0.982 0.000 1.000
#> GSM627072     1  0.8443      0.639 0.728 0.272
#> GSM627080     1  0.0000      0.971 1.000 0.000
#> GSM627088     1  0.0000      0.971 1.000 0.000
#> GSM627109     1  0.0000      0.971 1.000 0.000
#> GSM627111     1  0.0000      0.971 1.000 0.000
#> GSM627113     1  0.0000      0.971 1.000 0.000
#> GSM627133     2  0.0000      0.982 0.000 1.000
#> GSM627177     2  0.9000      0.530 0.316 0.684
#> GSM627086     2  0.0000      0.982 0.000 1.000
#> GSM627095     1  0.0000      0.971 1.000 0.000
#> GSM627079     1  0.0000      0.971 1.000 0.000
#> GSM627082     1  0.0000      0.971 1.000 0.000
#> GSM627074     1  0.0000      0.971 1.000 0.000
#> GSM627077     1  0.0000      0.971 1.000 0.000
#> GSM627093     1  0.0000      0.971 1.000 0.000
#> GSM627120     2  0.0000      0.982 0.000 1.000
#> GSM627124     2  0.0000      0.982 0.000 1.000
#> GSM627075     2  0.0000      0.982 0.000 1.000
#> GSM627085     2  0.0000      0.982 0.000 1.000
#> GSM627119     1  0.0000      0.971 1.000 0.000
#> GSM627116     2  0.0000      0.982 0.000 1.000
#> GSM627084     1  0.0000      0.971 1.000 0.000
#> GSM627096     2  0.0000      0.982 0.000 1.000
#> GSM627100     1  0.0000      0.971 1.000 0.000
#> GSM627112     2  0.0000      0.982 0.000 1.000
#> GSM627083     1  0.0376      0.968 0.996 0.004
#> GSM627098     1  0.0000      0.971 1.000 0.000
#> GSM627104     1  0.0000      0.971 1.000 0.000
#> GSM627131     1  0.0000      0.971 1.000 0.000
#> GSM627106     2  0.3584      0.917 0.068 0.932
#> GSM627123     1  0.0000      0.971 1.000 0.000
#> GSM627129     2  0.0000      0.982 0.000 1.000
#> GSM627216     2  0.0000      0.982 0.000 1.000
#> GSM627212     2  0.0000      0.982 0.000 1.000
#> GSM627190     1  0.5178      0.865 0.884 0.116
#> GSM627169     2  0.0000      0.982 0.000 1.000
#> GSM627167     2  0.0000      0.982 0.000 1.000
#> GSM627192     1  0.0000      0.971 1.000 0.000
#> GSM627203     1  0.0000      0.971 1.000 0.000
#> GSM627151     2  0.0000      0.982 0.000 1.000
#> GSM627163     1  0.0000      0.971 1.000 0.000
#> GSM627211     2  0.0000      0.982 0.000 1.000
#> GSM627171     2  0.0000      0.982 0.000 1.000
#> GSM627209     2  0.0000      0.982 0.000 1.000
#> GSM627135     1  0.0000      0.971 1.000 0.000
#> GSM627170     2  0.0000      0.982 0.000 1.000
#> GSM627178     1  0.0000      0.971 1.000 0.000
#> GSM627199     2  0.0000      0.982 0.000 1.000
#> GSM627213     2  0.0000      0.982 0.000 1.000
#> GSM627140     2  0.0000      0.982 0.000 1.000
#> GSM627149     1  0.0000      0.971 1.000 0.000
#> GSM627147     2  0.0000      0.982 0.000 1.000
#> GSM627195     1  0.6531      0.801 0.832 0.168
#> GSM627204     2  0.0000      0.982 0.000 1.000
#> GSM627207     2  0.0000      0.982 0.000 1.000
#> GSM627157     1  0.0000      0.971 1.000 0.000
#> GSM627201     2  0.0000      0.982 0.000 1.000
#> GSM627146     2  0.0000      0.982 0.000 1.000
#> GSM627156     2  0.0000      0.982 0.000 1.000
#> GSM627188     1  0.0000      0.971 1.000 0.000
#> GSM627197     2  0.0000      0.982 0.000 1.000
#> GSM627173     2  0.0000      0.982 0.000 1.000
#> GSM627179     2  0.0000      0.982 0.000 1.000
#> GSM627208     2  0.0000      0.982 0.000 1.000
#> GSM627215     2  0.0000      0.982 0.000 1.000
#> GSM627153     2  0.0000      0.982 0.000 1.000
#> GSM627155     1  0.0000      0.971 1.000 0.000
#> GSM627165     2  0.0000      0.982 0.000 1.000
#> GSM627168     1  0.0000      0.971 1.000 0.000
#> GSM627183     1  0.0000      0.971 1.000 0.000
#> GSM627144     2  0.9580      0.374 0.380 0.620
#> GSM627158     1  0.0000      0.971 1.000 0.000
#> GSM627196     2  0.0000      0.982 0.000 1.000
#> GSM627142     1  0.0000      0.971 1.000 0.000
#> GSM627182     2  0.0000      0.982 0.000 1.000
#> GSM627202     1  0.0000      0.971 1.000 0.000
#> GSM627141     1  0.0000      0.971 1.000 0.000
#> GSM627143     2  0.0000      0.982 0.000 1.000
#> GSM627145     1  0.0000      0.971 1.000 0.000
#> GSM627152     1  0.0000      0.971 1.000 0.000
#> GSM627200     1  0.0000      0.971 1.000 0.000
#> GSM627159     1  0.0000      0.971 1.000 0.000
#> GSM627164     2  0.0000      0.982 0.000 1.000
#> GSM627138     1  0.0000      0.971 1.000 0.000
#> GSM627175     2  0.0000      0.982 0.000 1.000
#> GSM627150     1  0.4939      0.873 0.892 0.108
#> GSM627166     1  0.0000      0.971 1.000 0.000
#> GSM627186     2  0.0000      0.982 0.000 1.000
#> GSM627139     2  0.6712      0.782 0.176 0.824
#> GSM627181     2  0.0000      0.982 0.000 1.000
#> GSM627205     2  0.0000      0.982 0.000 1.000
#> GSM627214     2  0.0000      0.982 0.000 1.000
#> GSM627180     2  0.0000      0.982 0.000 1.000
#> GSM627172     2  0.0000      0.982 0.000 1.000
#> GSM627184     1  0.0000      0.971 1.000 0.000
#> GSM627193     2  0.0000      0.982 0.000 1.000
#> GSM627191     1  0.9881      0.238 0.564 0.436
#> GSM627176     1  0.0000      0.971 1.000 0.000
#> GSM627194     2  0.0000      0.982 0.000 1.000
#> GSM627154     2  0.0000      0.982 0.000 1.000
#> GSM627187     1  0.1633      0.952 0.976 0.024
#> GSM627198     2  0.0000      0.982 0.000 1.000
#> GSM627160     1  0.9635      0.385 0.612 0.388
#> GSM627185     1  0.0000      0.971 1.000 0.000
#> GSM627206     1  0.0000      0.971 1.000 0.000
#> GSM627161     1  0.0000      0.971 1.000 0.000
#> GSM627162     2  0.8386      0.626 0.268 0.732
#> GSM627210     1  0.0376      0.968 0.996 0.004
#> GSM627189     2  0.0000      0.982 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM627128     3  0.1163     0.8241 0.000 0.028 0.972
#> GSM627110     1  0.0237     0.8927 0.996 0.004 0.000
#> GSM627132     1  0.3879     0.8826 0.848 0.000 0.152
#> GSM627107     2  0.1031     0.8842 0.024 0.976 0.000
#> GSM627103     2  0.0000     0.8891 0.000 1.000 0.000
#> GSM627114     1  0.0237     0.8927 0.996 0.004 0.000
#> GSM627134     2  0.0237     0.8892 0.000 0.996 0.004
#> GSM627137     2  0.0237     0.8892 0.000 0.996 0.004
#> GSM627148     1  0.0747     0.8852 0.984 0.016 0.000
#> GSM627101     3  0.3879     0.8053 0.000 0.152 0.848
#> GSM627130     3  0.3267     0.8193 0.000 0.116 0.884
#> GSM627071     1  0.0892     0.8826 0.980 0.020 0.000
#> GSM627118     2  0.0237     0.8892 0.000 0.996 0.004
#> GSM627094     2  0.0000     0.8891 0.000 1.000 0.000
#> GSM627122     1  0.4002     0.8782 0.840 0.000 0.160
#> GSM627115     2  0.3267     0.8464 0.116 0.884 0.000
#> GSM627125     3  0.1031     0.8233 0.000 0.024 0.976
#> GSM627174     2  0.0237     0.8892 0.000 0.996 0.004
#> GSM627102     2  0.0237     0.8892 0.000 0.996 0.004
#> GSM627073     2  0.3879     0.8246 0.152 0.848 0.000
#> GSM627108     2  0.0237     0.8888 0.004 0.996 0.000
#> GSM627126     1  0.4452     0.8516 0.808 0.000 0.192
#> GSM627078     2  0.6225     0.0804 0.000 0.568 0.432
#> GSM627090     1  0.3686     0.8864 0.860 0.000 0.140
#> GSM627099     2  0.0237     0.8892 0.000 0.996 0.004
#> GSM627105     3  0.3482     0.8159 0.000 0.128 0.872
#> GSM627117     1  0.1860     0.8522 0.948 0.052 0.000
#> GSM627121     2  0.3686     0.8328 0.140 0.860 0.000
#> GSM627127     2  0.3340     0.7903 0.000 0.880 0.120
#> GSM627087     2  0.3267     0.8464 0.116 0.884 0.000
#> GSM627089     1  0.0237     0.8927 0.996 0.004 0.000
#> GSM627092     2  0.0237     0.8892 0.000 0.996 0.004
#> GSM627076     1  0.3941     0.8806 0.844 0.000 0.156
#> GSM627136     1  0.0237     0.8927 0.996 0.004 0.000
#> GSM627081     2  0.4062     0.8142 0.164 0.836 0.000
#> GSM627091     2  0.0237     0.8892 0.000 0.996 0.004
#> GSM627097     2  0.4931     0.6222 0.000 0.768 0.232
#> GSM627072     1  0.4121     0.6897 0.832 0.168 0.000
#> GSM627080     1  0.3879     0.8826 0.848 0.000 0.152
#> GSM627088     1  0.0237     0.8927 0.996 0.004 0.000
#> GSM627109     1  0.3412     0.8901 0.876 0.000 0.124
#> GSM627111     1  0.3879     0.8826 0.848 0.000 0.152
#> GSM627113     1  0.0000     0.8932 1.000 0.000 0.000
#> GSM627133     2  0.3879     0.8246 0.152 0.848 0.000
#> GSM627177     2  0.7283     0.2456 0.460 0.512 0.028
#> GSM627086     2  0.0237     0.8892 0.000 0.996 0.004
#> GSM627095     3  0.5968     0.2463 0.364 0.000 0.636
#> GSM627079     1  0.3482     0.8893 0.872 0.000 0.128
#> GSM627082     3  0.0000     0.8138 0.000 0.000 1.000
#> GSM627074     1  0.0237     0.8927 0.996 0.004 0.000
#> GSM627077     1  0.3816     0.8843 0.852 0.000 0.148
#> GSM627093     1  0.0237     0.8927 0.996 0.004 0.000
#> GSM627120     2  0.0237     0.8888 0.004 0.996 0.000
#> GSM627124     3  0.5882     0.5616 0.000 0.348 0.652
#> GSM627075     2  0.0237     0.8888 0.004 0.996 0.000
#> GSM627085     2  0.6302    -0.1303 0.000 0.520 0.480
#> GSM627119     1  0.0237     0.8927 0.996 0.004 0.000
#> GSM627116     3  0.5968     0.5340 0.000 0.364 0.636
#> GSM627084     1  0.3879     0.8826 0.848 0.000 0.152
#> GSM627096     2  0.0424     0.8871 0.000 0.992 0.008
#> GSM627100     1  0.4235     0.8665 0.824 0.000 0.176
#> GSM627112     3  0.3816     0.8077 0.000 0.148 0.852
#> GSM627083     3  0.0000     0.8138 0.000 0.000 1.000
#> GSM627098     1  0.0892     0.8949 0.980 0.000 0.020
#> GSM627104     1  0.0237     0.8927 0.996 0.004 0.000
#> GSM627131     1  0.3752     0.8857 0.856 0.000 0.144
#> GSM627106     2  0.5216     0.7011 0.260 0.740 0.000
#> GSM627123     1  0.4062     0.8756 0.836 0.000 0.164
#> GSM627129     2  0.0237     0.8892 0.000 0.996 0.004
#> GSM627216     2  0.3816     0.8274 0.148 0.852 0.000
#> GSM627212     2  0.0237     0.8892 0.000 0.996 0.004
#> GSM627190     1  0.1411     0.8689 0.964 0.036 0.000
#> GSM627169     2  0.3879     0.8246 0.152 0.848 0.000
#> GSM627167     2  0.3686     0.7636 0.000 0.860 0.140
#> GSM627192     3  0.1289     0.7949 0.032 0.000 0.968
#> GSM627203     1  0.0237     0.8927 0.996 0.004 0.000
#> GSM627151     2  0.0237     0.8892 0.000 0.996 0.004
#> GSM627163     1  0.3941     0.8806 0.844 0.000 0.156
#> GSM627211     2  0.0237     0.8892 0.000 0.996 0.004
#> GSM627171     2  0.3619     0.8352 0.136 0.864 0.000
#> GSM627209     2  0.0237     0.8892 0.000 0.996 0.004
#> GSM627135     1  0.4121     0.8728 0.832 0.000 0.168
#> GSM627170     2  0.1289     0.8815 0.032 0.968 0.000
#> GSM627178     1  0.3941     0.8806 0.844 0.000 0.156
#> GSM627199     3  0.4002     0.8002 0.000 0.160 0.840
#> GSM627213     3  0.3941     0.8033 0.000 0.156 0.844
#> GSM627140     3  0.3816     0.8077 0.000 0.148 0.852
#> GSM627149     1  0.4002     0.8782 0.840 0.000 0.160
#> GSM627147     2  0.0592     0.8850 0.000 0.988 0.012
#> GSM627195     1  0.1753     0.8570 0.952 0.048 0.000
#> GSM627204     2  0.0237     0.8892 0.000 0.996 0.004
#> GSM627207     2  0.2448     0.8648 0.076 0.924 0.000
#> GSM627157     1  0.2796     0.8945 0.908 0.000 0.092
#> GSM627201     2  0.0237     0.8892 0.000 0.996 0.004
#> GSM627146     2  0.0237     0.8892 0.000 0.996 0.004
#> GSM627156     2  0.3879     0.8246 0.152 0.848 0.000
#> GSM627188     3  0.0892     0.8027 0.020 0.000 0.980
#> GSM627197     2  0.0237     0.8892 0.000 0.996 0.004
#> GSM627173     2  0.0237     0.8892 0.000 0.996 0.004
#> GSM627179     2  0.0237     0.8888 0.004 0.996 0.000
#> GSM627208     2  0.3879     0.8246 0.152 0.848 0.000
#> GSM627215     2  0.3816     0.8274 0.148 0.852 0.000
#> GSM627153     2  0.0424     0.8871 0.000 0.992 0.008
#> GSM627155     1  0.4121     0.8728 0.832 0.000 0.168
#> GSM627165     2  0.0000     0.8891 0.000 1.000 0.000
#> GSM627168     1  0.0237     0.8927 0.996 0.004 0.000
#> GSM627183     1  0.0237     0.8927 0.996 0.004 0.000
#> GSM627144     1  0.5138     0.5443 0.748 0.252 0.000
#> GSM627158     1  0.3879     0.8826 0.848 0.000 0.152
#> GSM627196     2  0.0237     0.8892 0.000 0.996 0.004
#> GSM627142     3  0.5810     0.3272 0.336 0.000 0.664
#> GSM627182     2  0.4062     0.8145 0.164 0.836 0.000
#> GSM627202     1  0.3879     0.8826 0.848 0.000 0.152
#> GSM627141     1  0.0237     0.8927 0.996 0.004 0.000
#> GSM627143     2  0.1163     0.8830 0.028 0.972 0.000
#> GSM627145     1  0.0237     0.8927 0.996 0.004 0.000
#> GSM627152     1  0.3816     0.8843 0.852 0.000 0.148
#> GSM627200     1  0.2625     0.8952 0.916 0.000 0.084
#> GSM627159     3  0.0000     0.8138 0.000 0.000 1.000
#> GSM627164     2  0.2796     0.8581 0.092 0.908 0.000
#> GSM627138     1  0.3816     0.8843 0.852 0.000 0.148
#> GSM627175     2  0.3482     0.7799 0.000 0.872 0.128
#> GSM627150     1  0.1289     0.8727 0.968 0.032 0.000
#> GSM627166     1  0.3816     0.8843 0.852 0.000 0.148
#> GSM627186     2  0.3879     0.8246 0.152 0.848 0.000
#> GSM627139     2  0.8065     0.4176 0.092 0.604 0.304
#> GSM627181     2  0.0237     0.8892 0.000 0.996 0.004
#> GSM627205     2  0.3551     0.8377 0.132 0.868 0.000
#> GSM627214     2  0.0237     0.8892 0.000 0.996 0.004
#> GSM627180     2  0.3879     0.8246 0.152 0.848 0.000
#> GSM627172     2  0.0237     0.8892 0.000 0.996 0.004
#> GSM627184     3  0.5529     0.4309 0.296 0.000 0.704
#> GSM627193     2  0.3686     0.8328 0.140 0.860 0.000
#> GSM627191     3  0.0592     0.8197 0.000 0.012 0.988
#> GSM627176     1  0.0424     0.8942 0.992 0.000 0.008
#> GSM627194     2  0.0237     0.8892 0.000 0.996 0.004
#> GSM627154     3  0.4346     0.7819 0.000 0.184 0.816
#> GSM627187     1  0.0747     0.8853 0.984 0.016 0.000
#> GSM627198     3  0.6260     0.3242 0.000 0.448 0.552
#> GSM627160     3  0.0829     0.8183 0.004 0.012 0.984
#> GSM627185     1  0.2625     0.8952 0.916 0.000 0.084
#> GSM627206     1  0.0237     0.8927 0.996 0.004 0.000
#> GSM627161     1  0.3879     0.8826 0.848 0.000 0.152
#> GSM627162     2  0.6244     0.3907 0.440 0.560 0.000
#> GSM627210     1  0.0237     0.8927 0.996 0.004 0.000
#> GSM627189     2  0.0237     0.8892 0.000 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM627128     4  0.0188     0.8744 0.000 0.000 0.004 0.996
#> GSM627110     1  0.4981     0.1697 0.536 0.000 0.464 0.000
#> GSM627132     1  0.0921     0.8007 0.972 0.000 0.028 0.000
#> GSM627107     3  0.1833     0.7069 0.000 0.032 0.944 0.024
#> GSM627103     2  0.1302     0.8702 0.000 0.956 0.044 0.000
#> GSM627114     3  0.3400     0.6039 0.180 0.000 0.820 0.000
#> GSM627134     2  0.5712     0.2884 0.000 0.584 0.384 0.032
#> GSM627137     2  0.5256     0.2944 0.000 0.596 0.392 0.012
#> GSM627148     3  0.1489     0.6969 0.044 0.004 0.952 0.000
#> GSM627101     4  0.1042     0.8694 0.000 0.008 0.020 0.972
#> GSM627130     4  0.0336     0.8748 0.000 0.000 0.008 0.992
#> GSM627071     1  0.5489     0.5324 0.664 0.296 0.040 0.000
#> GSM627118     2  0.3716     0.8340 0.000 0.852 0.096 0.052
#> GSM627094     2  0.0469     0.8720 0.000 0.988 0.012 0.000
#> GSM627122     1  0.4898     0.7048 0.716 0.000 0.260 0.024
#> GSM627115     2  0.0376     0.8695 0.004 0.992 0.004 0.000
#> GSM627125     4  0.3172     0.7462 0.000 0.000 0.160 0.840
#> GSM627174     2  0.0804     0.8707 0.012 0.980 0.008 0.000
#> GSM627102     3  0.5548     0.3818 0.000 0.388 0.588 0.024
#> GSM627073     3  0.3448     0.7162 0.004 0.168 0.828 0.000
#> GSM627108     2  0.2281     0.8507 0.000 0.904 0.096 0.000
#> GSM627126     1  0.1994     0.7841 0.936 0.004 0.008 0.052
#> GSM627078     2  0.3245     0.8200 0.028 0.872 0.000 0.100
#> GSM627090     3  0.4567     0.5024 0.244 0.000 0.740 0.016
#> GSM627099     2  0.0524     0.8716 0.004 0.988 0.008 0.000
#> GSM627105     4  0.4964     0.3199 0.000 0.004 0.380 0.616
#> GSM627117     3  0.2915     0.6989 0.080 0.028 0.892 0.000
#> GSM627121     3  0.2002     0.7098 0.000 0.044 0.936 0.020
#> GSM627127     2  0.1489     0.8578 0.004 0.952 0.000 0.044
#> GSM627087     2  0.0524     0.8682 0.008 0.988 0.004 0.000
#> GSM627089     3  0.4961     0.0354 0.448 0.000 0.552 0.000
#> GSM627092     3  0.4642     0.6590 0.000 0.240 0.740 0.020
#> GSM627076     3  0.4839     0.5587 0.184 0.000 0.764 0.052
#> GSM627136     3  0.3978     0.6096 0.192 0.012 0.796 0.000
#> GSM627081     3  0.1022     0.7119 0.000 0.032 0.968 0.000
#> GSM627091     2  0.0188     0.8684 0.004 0.996 0.000 0.000
#> GSM627097     2  0.3498     0.7301 0.160 0.832 0.000 0.008
#> GSM627072     3  0.4920     0.6722 0.164 0.068 0.768 0.000
#> GSM627080     1  0.0921     0.8003 0.972 0.000 0.028 0.000
#> GSM627088     1  0.3674     0.7874 0.848 0.036 0.116 0.000
#> GSM627109     1  0.1557     0.7668 0.944 0.056 0.000 0.000
#> GSM627111     1  0.1474     0.8048 0.948 0.000 0.052 0.000
#> GSM627113     1  0.1211     0.8031 0.960 0.000 0.040 0.000
#> GSM627133     2  0.3245     0.8355 0.028 0.872 0.100 0.000
#> GSM627177     2  0.4843     0.3117 0.396 0.604 0.000 0.000
#> GSM627086     2  0.1743     0.8685 0.004 0.940 0.056 0.000
#> GSM627095     1  0.3780     0.7040 0.832 0.016 0.004 0.148
#> GSM627079     1  0.2675     0.7961 0.892 0.008 0.100 0.000
#> GSM627082     4  0.0188     0.8744 0.000 0.000 0.004 0.996
#> GSM627074     1  0.2623     0.7760 0.908 0.064 0.028 0.000
#> GSM627077     1  0.3024     0.7900 0.852 0.000 0.148 0.000
#> GSM627093     1  0.2926     0.7862 0.896 0.056 0.048 0.000
#> GSM627120     3  0.4323     0.6912 0.000 0.204 0.776 0.020
#> GSM627124     2  0.3307     0.8116 0.028 0.868 0.000 0.104
#> GSM627075     2  0.4955     0.1262 0.000 0.556 0.444 0.000
#> GSM627085     2  0.1798     0.8534 0.016 0.944 0.000 0.040
#> GSM627119     1  0.3479     0.7034 0.840 0.148 0.012 0.000
#> GSM627116     2  0.4262     0.6289 0.236 0.756 0.000 0.008
#> GSM627084     1  0.4795     0.6834 0.696 0.000 0.292 0.012
#> GSM627096     2  0.4864     0.7856 0.008 0.788 0.060 0.144
#> GSM627100     3  0.4236     0.6377 0.088 0.000 0.824 0.088
#> GSM627112     4  0.1867     0.8319 0.000 0.072 0.000 0.928
#> GSM627083     4  0.1489     0.8492 0.044 0.004 0.000 0.952
#> GSM627098     1  0.1940     0.8056 0.924 0.000 0.076 0.000
#> GSM627104     1  0.4877     0.2688 0.592 0.408 0.000 0.000
#> GSM627131     1  0.1004     0.8003 0.972 0.004 0.024 0.000
#> GSM627106     3  0.0524     0.7057 0.004 0.008 0.988 0.000
#> GSM627123     1  0.4238     0.7746 0.796 0.000 0.176 0.028
#> GSM627129     3  0.4957     0.6827 0.000 0.204 0.748 0.048
#> GSM627216     2  0.3088     0.8250 0.008 0.864 0.128 0.000
#> GSM627212     2  0.0592     0.8728 0.000 0.984 0.016 0.000
#> GSM627190     3  0.3873     0.7066 0.096 0.060 0.844 0.000
#> GSM627169     3  0.4304     0.6273 0.000 0.284 0.716 0.000
#> GSM627167     3  0.6071     0.6206 0.000 0.144 0.684 0.172
#> GSM627192     1  0.5125     0.3623 0.616 0.004 0.004 0.376
#> GSM627203     3  0.4820     0.4506 0.296 0.012 0.692 0.000
#> GSM627151     2  0.1792     0.8300 0.068 0.932 0.000 0.000
#> GSM627163     1  0.0927     0.7968 0.976 0.000 0.016 0.008
#> GSM627211     2  0.2469     0.8395 0.000 0.892 0.108 0.000
#> GSM627171     3  0.3528     0.7060 0.000 0.192 0.808 0.000
#> GSM627209     2  0.2742     0.8559 0.000 0.900 0.076 0.024
#> GSM627135     1  0.1042     0.7846 0.972 0.020 0.000 0.008
#> GSM627170     3  0.4713     0.4902 0.000 0.360 0.640 0.000
#> GSM627178     1  0.3402     0.6751 0.832 0.164 0.000 0.004
#> GSM627199     2  0.4608     0.5512 0.004 0.692 0.000 0.304
#> GSM627213     4  0.4283     0.5796 0.000 0.256 0.004 0.740
#> GSM627140     4  0.1978     0.8452 0.000 0.004 0.068 0.928
#> GSM627149     1  0.4868     0.7507 0.748 0.000 0.212 0.040
#> GSM627147     3  0.6912     0.5311 0.000 0.192 0.592 0.216
#> GSM627195     3  0.7021     0.3086 0.400 0.120 0.480 0.000
#> GSM627204     2  0.1389     0.8695 0.000 0.952 0.048 0.000
#> GSM627207     3  0.4877     0.3772 0.000 0.408 0.592 0.000
#> GSM627157     1  0.2647     0.8001 0.880 0.000 0.120 0.000
#> GSM627201     2  0.1637     0.8657 0.000 0.940 0.060 0.000
#> GSM627146     2  0.0188     0.8708 0.000 0.996 0.004 0.000
#> GSM627156     3  0.3873     0.6850 0.000 0.228 0.772 0.000
#> GSM627188     4  0.5152     0.4327 0.316 0.000 0.020 0.664
#> GSM627197     2  0.1209     0.8733 0.000 0.964 0.032 0.004
#> GSM627173     2  0.0469     0.8723 0.000 0.988 0.012 0.000
#> GSM627179     2  0.2081     0.8565 0.000 0.916 0.084 0.000
#> GSM627208     3  0.3726     0.6968 0.000 0.212 0.788 0.000
#> GSM627215     2  0.2489     0.8670 0.020 0.912 0.068 0.000
#> GSM627153     2  0.3144     0.8523 0.000 0.884 0.072 0.044
#> GSM627155     1  0.4417     0.7696 0.796 0.000 0.160 0.044
#> GSM627165     3  0.4464     0.6859 0.000 0.208 0.768 0.024
#> GSM627168     1  0.3975     0.7420 0.760 0.000 0.240 0.000
#> GSM627183     1  0.2266     0.8048 0.912 0.004 0.084 0.000
#> GSM627144     3  0.3128     0.7012 0.076 0.040 0.884 0.000
#> GSM627158     1  0.3933     0.7682 0.792 0.000 0.200 0.008
#> GSM627196     2  0.1389     0.8695 0.000 0.952 0.048 0.000
#> GSM627142     3  0.6834     0.0488 0.100 0.000 0.476 0.424
#> GSM627182     3  0.3991     0.7164 0.020 0.172 0.808 0.000
#> GSM627202     1  0.4456     0.6904 0.716 0.000 0.280 0.004
#> GSM627141     3  0.4830     0.2158 0.392 0.000 0.608 0.000
#> GSM627143     3  0.4139     0.7038 0.000 0.176 0.800 0.024
#> GSM627145     3  0.4677     0.4250 0.316 0.004 0.680 0.000
#> GSM627152     3  0.5355     0.2563 0.360 0.000 0.620 0.020
#> GSM627200     1  0.2081     0.8056 0.916 0.000 0.084 0.000
#> GSM627159     4  0.0188     0.8744 0.000 0.000 0.004 0.996
#> GSM627164     3  0.3831     0.6996 0.000 0.204 0.792 0.004
#> GSM627138     1  0.3726     0.7640 0.788 0.000 0.212 0.000
#> GSM627175     2  0.3542     0.8275 0.000 0.852 0.028 0.120
#> GSM627150     3  0.5496     0.5964 0.232 0.064 0.704 0.000
#> GSM627166     1  0.5132     0.1528 0.548 0.448 0.000 0.004
#> GSM627186     3  0.3975     0.6747 0.000 0.240 0.760 0.000
#> GSM627139     3  0.4286     0.6971 0.020 0.056 0.840 0.084
#> GSM627181     2  0.4307     0.7321 0.000 0.784 0.192 0.024
#> GSM627205     3  0.3873     0.6845 0.000 0.228 0.772 0.000
#> GSM627214     3  0.5172     0.6312 0.000 0.260 0.704 0.036
#> GSM627180     3  0.3626     0.7123 0.004 0.184 0.812 0.000
#> GSM627172     3  0.5763     0.6554 0.000 0.204 0.700 0.096
#> GSM627184     1  0.5816     0.3490 0.572 0.000 0.036 0.392
#> GSM627193     2  0.1022     0.8701 0.000 0.968 0.032 0.000
#> GSM627191     4  0.0707     0.8651 0.020 0.000 0.000 0.980
#> GSM627176     3  0.1978     0.6825 0.068 0.000 0.928 0.004
#> GSM627194     2  0.0336     0.8714 0.000 0.992 0.008 0.000
#> GSM627154     2  0.4244     0.6961 0.032 0.800 0.000 0.168
#> GSM627187     3  0.1557     0.6906 0.056 0.000 0.944 0.000
#> GSM627198     2  0.2714     0.8352 0.000 0.884 0.004 0.112
#> GSM627160     4  0.0336     0.8748 0.000 0.000 0.008 0.992
#> GSM627185     1  0.0000     0.7940 1.000 0.000 0.000 0.000
#> GSM627206     3  0.4866     0.1649 0.404 0.000 0.596 0.000
#> GSM627161     1  0.4059     0.7668 0.788 0.000 0.200 0.012
#> GSM627162     3  0.1629     0.7088 0.024 0.024 0.952 0.000
#> GSM627210     1  0.4372     0.5628 0.728 0.268 0.004 0.000
#> GSM627189     2  0.0336     0.8714 0.000 0.992 0.008 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM627128     4  0.1956     0.8017 0.000 0.008 0.000 0.916 0.076
#> GSM627110     5  0.5936     0.4298 0.160 0.020 0.172 0.000 0.648
#> GSM627132     1  0.2676     0.7410 0.884 0.000 0.036 0.000 0.080
#> GSM627107     3  0.5439     0.2645 0.000 0.024 0.660 0.056 0.260
#> GSM627103     2  0.0000     0.7692 0.000 1.000 0.000 0.000 0.000
#> GSM627114     3  0.4370     0.2694 0.056 0.000 0.744 0.000 0.200
#> GSM627134     5  0.6952     0.3101 0.000 0.312 0.060 0.112 0.516
#> GSM627137     2  0.4220     0.3701 0.000 0.688 0.300 0.004 0.008
#> GSM627148     5  0.4574     0.3326 0.012 0.000 0.412 0.000 0.576
#> GSM627101     4  0.1618     0.8122 0.000 0.008 0.008 0.944 0.040
#> GSM627130     4  0.1012     0.8102 0.000 0.000 0.020 0.968 0.012
#> GSM627071     1  0.7236     0.3488 0.500 0.268 0.040 0.004 0.188
#> GSM627118     5  0.6799     0.1016 0.000 0.400 0.020 0.152 0.428
#> GSM627094     2  0.0404     0.7685 0.000 0.988 0.012 0.000 0.000
#> GSM627122     5  0.6315     0.2727 0.260 0.000 0.172 0.008 0.560
#> GSM627115     2  0.1211     0.7672 0.000 0.960 0.024 0.000 0.016
#> GSM627125     4  0.4347     0.5914 0.000 0.004 0.024 0.716 0.256
#> GSM627174     2  0.1628     0.7648 0.056 0.936 0.008 0.000 0.000
#> GSM627102     2  0.4826    -0.1729 0.000 0.508 0.472 0.020 0.000
#> GSM627073     5  0.4651     0.4946 0.008 0.028 0.248 0.004 0.712
#> GSM627108     2  0.2127     0.7131 0.000 0.892 0.108 0.000 0.000
#> GSM627126     1  0.1560     0.7322 0.948 0.000 0.004 0.028 0.020
#> GSM627078     2  0.3293     0.7401 0.028 0.860 0.004 0.096 0.012
#> GSM627090     3  0.5390    -0.0254 0.076 0.000 0.600 0.000 0.324
#> GSM627099     2  0.4177     0.6820 0.000 0.804 0.020 0.060 0.116
#> GSM627105     4  0.5760     0.3538 0.000 0.008 0.080 0.572 0.340
#> GSM627117     3  0.5437     0.2429 0.012 0.052 0.608 0.000 0.328
#> GSM627121     3  0.5133     0.3382 0.000 0.048 0.704 0.028 0.220
#> GSM627127     2  0.6511     0.4168 0.004 0.588 0.020 0.180 0.208
#> GSM627087     2  0.1310     0.7655 0.000 0.956 0.020 0.000 0.024
#> GSM627089     5  0.4665     0.4829 0.048 0.000 0.260 0.000 0.692
#> GSM627092     3  0.5434     0.3860 0.000 0.408 0.540 0.008 0.044
#> GSM627076     5  0.5272     0.4221 0.008 0.000 0.328 0.048 0.616
#> GSM627136     5  0.3612     0.5152 0.008 0.000 0.228 0.000 0.764
#> GSM627081     5  0.5003     0.2714 0.000 0.016 0.400 0.012 0.572
#> GSM627091     2  0.3047     0.7404 0.004 0.884 0.020 0.036 0.056
#> GSM627097     2  0.8203     0.3107 0.140 0.500 0.036 0.120 0.204
#> GSM627072     5  0.3239     0.5509 0.012 0.004 0.156 0.000 0.828
#> GSM627080     1  0.2505     0.7370 0.888 0.000 0.020 0.000 0.092
#> GSM627088     1  0.5577     0.6868 0.700 0.040 0.092 0.000 0.168
#> GSM627109     1  0.3905     0.6644 0.752 0.004 0.012 0.000 0.232
#> GSM627111     1  0.2769     0.7421 0.876 0.000 0.092 0.000 0.032
#> GSM627113     1  0.3527     0.7161 0.804 0.000 0.024 0.000 0.172
#> GSM627133     5  0.4922     0.1954 0.004 0.424 0.020 0.000 0.552
#> GSM627177     5  0.7691     0.2138 0.208 0.336 0.024 0.024 0.408
#> GSM627086     2  0.0854     0.7702 0.000 0.976 0.012 0.004 0.008
#> GSM627095     1  0.2700     0.6992 0.884 0.000 0.024 0.088 0.004
#> GSM627079     5  0.1885     0.5549 0.044 0.020 0.000 0.004 0.932
#> GSM627082     4  0.1549     0.7986 0.016 0.000 0.040 0.944 0.000
#> GSM627074     1  0.5131     0.4209 0.532 0.008 0.024 0.000 0.436
#> GSM627077     1  0.5113     0.5458 0.620 0.000 0.056 0.000 0.324
#> GSM627093     1  0.5079     0.6603 0.704 0.024 0.048 0.000 0.224
#> GSM627120     3  0.5559     0.3565 0.008 0.440 0.508 0.004 0.040
#> GSM627124     2  0.3405     0.7391 0.052 0.860 0.004 0.072 0.012
#> GSM627075     2  0.4786     0.1837 0.012 0.620 0.356 0.000 0.012
#> GSM627085     2  0.4382     0.6788 0.008 0.780 0.016 0.164 0.032
#> GSM627119     1  0.5223     0.6084 0.680 0.068 0.012 0.000 0.240
#> GSM627116     5  0.7550     0.0740 0.108 0.404 0.024 0.052 0.412
#> GSM627084     1  0.6105     0.4987 0.480 0.000 0.392 0.000 0.128
#> GSM627096     5  0.6883     0.1460 0.000 0.340 0.012 0.208 0.440
#> GSM627100     3  0.5944    -0.0016 0.012 0.000 0.552 0.084 0.352
#> GSM627112     4  0.2206     0.7816 0.004 0.068 0.000 0.912 0.016
#> GSM627083     1  0.5412     0.1536 0.520 0.000 0.048 0.428 0.004
#> GSM627098     1  0.3810     0.7129 0.788 0.000 0.036 0.000 0.176
#> GSM627104     1  0.3521     0.6603 0.824 0.144 0.008 0.000 0.024
#> GSM627131     5  0.4637    -0.1923 0.452 0.000 0.012 0.000 0.536
#> GSM627106     5  0.5012     0.2767 0.000 0.016 0.404 0.012 0.568
#> GSM627123     1  0.5317     0.7260 0.728 0.000 0.144 0.044 0.084
#> GSM627129     3  0.8540     0.2154 0.000 0.220 0.288 0.204 0.288
#> GSM627216     2  0.1568     0.7615 0.000 0.944 0.036 0.000 0.020
#> GSM627212     2  0.3227     0.7351 0.000 0.868 0.020 0.040 0.072
#> GSM627190     3  0.4982     0.4093 0.016 0.076 0.728 0.000 0.180
#> GSM627169     3  0.4811     0.2602 0.008 0.472 0.512 0.000 0.008
#> GSM627167     3  0.6941     0.4705 0.000 0.224 0.532 0.208 0.036
#> GSM627192     1  0.3760     0.6595 0.784 0.000 0.028 0.188 0.000
#> GSM627203     5  0.2305     0.5639 0.012 0.000 0.092 0.000 0.896
#> GSM627151     2  0.6624     0.1342 0.052 0.504 0.024 0.032 0.388
#> GSM627163     1  0.0671     0.7320 0.980 0.000 0.000 0.004 0.016
#> GSM627211     2  0.2127     0.7172 0.000 0.892 0.108 0.000 0.000
#> GSM627171     3  0.4066     0.4797 0.004 0.324 0.672 0.000 0.000
#> GSM627209     2  0.2859     0.7445 0.000 0.876 0.016 0.096 0.012
#> GSM627135     1  0.1492     0.7294 0.948 0.000 0.008 0.004 0.040
#> GSM627170     2  0.4933     0.4108 0.000 0.692 0.228 0.000 0.080
#> GSM627178     1  0.5120     0.5937 0.680 0.056 0.012 0.000 0.252
#> GSM627199     2  0.4050     0.6892 0.036 0.784 0.000 0.172 0.008
#> GSM627213     4  0.3612     0.6723 0.000 0.172 0.000 0.800 0.028
#> GSM627140     4  0.3388     0.6987 0.008 0.000 0.200 0.792 0.000
#> GSM627149     1  0.6422     0.5896 0.532 0.000 0.352 0.056 0.060
#> GSM627147     3  0.7159     0.3689 0.000 0.272 0.448 0.256 0.024
#> GSM627195     5  0.1808     0.5657 0.020 0.004 0.040 0.000 0.936
#> GSM627204     2  0.0510     0.7680 0.000 0.984 0.016 0.000 0.000
#> GSM627207     2  0.4242    -0.0265 0.000 0.572 0.428 0.000 0.000
#> GSM627157     1  0.4162     0.7090 0.768 0.000 0.056 0.000 0.176
#> GSM627201     2  0.0510     0.7682 0.000 0.984 0.016 0.000 0.000
#> GSM627146     2  0.0486     0.7705 0.004 0.988 0.004 0.004 0.000
#> GSM627156     3  0.4735     0.3046 0.000 0.460 0.524 0.000 0.016
#> GSM627188     1  0.5287     0.5472 0.656 0.000 0.080 0.260 0.004
#> GSM627197     2  0.0771     0.7701 0.000 0.976 0.004 0.020 0.000
#> GSM627173     2  0.1830     0.7412 0.008 0.924 0.068 0.000 0.000
#> GSM627179     2  0.1197     0.7585 0.000 0.952 0.048 0.000 0.000
#> GSM627208     3  0.6398     0.4844 0.000 0.300 0.500 0.000 0.200
#> GSM627215     5  0.5061     0.1489 0.000 0.444 0.008 0.020 0.528
#> GSM627153     2  0.3120     0.7349 0.000 0.856 0.012 0.116 0.016
#> GSM627155     1  0.5138     0.7088 0.732 0.000 0.168 0.056 0.044
#> GSM627165     3  0.6665     0.4329 0.000 0.348 0.504 0.032 0.116
#> GSM627168     1  0.6424     0.4898 0.508 0.000 0.240 0.000 0.252
#> GSM627183     5  0.4106     0.3470 0.256 0.000 0.020 0.000 0.724
#> GSM627144     5  0.2909     0.5208 0.000 0.012 0.140 0.000 0.848
#> GSM627158     1  0.5382     0.6686 0.644 0.000 0.252 0.000 0.104
#> GSM627196     2  0.0510     0.7680 0.000 0.984 0.016 0.000 0.000
#> GSM627142     5  0.6120     0.4349 0.008 0.000 0.172 0.224 0.596
#> GSM627182     5  0.6104     0.0939 0.008 0.096 0.432 0.000 0.464
#> GSM627202     5  0.6806    -0.0767 0.296 0.000 0.348 0.000 0.356
#> GSM627141     3  0.5129    -0.0261 0.328 0.020 0.628 0.000 0.024
#> GSM627143     3  0.5646     0.5381 0.000 0.272 0.640 0.028 0.060
#> GSM627145     5  0.2773     0.5614 0.020 0.000 0.112 0.000 0.868
#> GSM627152     5  0.2673     0.5655 0.028 0.000 0.072 0.008 0.892
#> GSM627200     5  0.4576    -0.0548 0.376 0.000 0.016 0.000 0.608
#> GSM627159     4  0.1525     0.8023 0.012 0.000 0.036 0.948 0.004
#> GSM627164     3  0.4196     0.4519 0.000 0.356 0.640 0.000 0.004
#> GSM627138     1  0.6170     0.5519 0.524 0.000 0.320 0.000 0.156
#> GSM627175     2  0.3167     0.7264 0.000 0.836 0.008 0.148 0.008
#> GSM627150     5  0.4181     0.5107 0.016 0.008 0.240 0.000 0.736
#> GSM627166     1  0.5054     0.5590 0.732 0.168 0.024 0.000 0.076
#> GSM627186     3  0.4892     0.2377 0.004 0.488 0.492 0.000 0.016
#> GSM627139     5  0.5528     0.3974 0.000 0.012 0.204 0.112 0.672
#> GSM627181     2  0.2629     0.6775 0.000 0.860 0.136 0.004 0.000
#> GSM627205     2  0.6628    -0.3589 0.000 0.408 0.372 0.000 0.220
#> GSM627214     2  0.6605     0.0475 0.000 0.524 0.344 0.076 0.056
#> GSM627180     5  0.5081     0.4956 0.000 0.092 0.140 0.028 0.740
#> GSM627172     3  0.5352     0.3383 0.004 0.392 0.556 0.048 0.000
#> GSM627184     1  0.5737     0.5451 0.620 0.000 0.104 0.268 0.008
#> GSM627193     2  0.1197     0.7536 0.000 0.952 0.048 0.000 0.000
#> GSM627191     4  0.4635     0.6446 0.180 0.004 0.064 0.748 0.004
#> GSM627176     3  0.4039     0.2415 0.008 0.000 0.720 0.004 0.268
#> GSM627194     2  0.2381     0.7435 0.052 0.908 0.036 0.000 0.004
#> GSM627154     2  0.5469     0.3678 0.020 0.600 0.008 0.348 0.024
#> GSM627187     3  0.3093     0.4307 0.016 0.032 0.872 0.000 0.080
#> GSM627198     2  0.2850     0.7488 0.036 0.872 0.000 0.092 0.000
#> GSM627160     4  0.3435     0.7601 0.004 0.000 0.020 0.820 0.156
#> GSM627185     1  0.1673     0.7383 0.944 0.008 0.016 0.000 0.032
#> GSM627206     3  0.7027    -0.0547 0.280 0.028 0.488 0.000 0.204
#> GSM627161     1  0.5384     0.6523 0.632 0.000 0.288 0.004 0.076
#> GSM627162     3  0.2928     0.4148 0.012 0.008 0.876 0.008 0.096
#> GSM627210     5  0.6300     0.0161 0.376 0.088 0.024 0.000 0.512
#> GSM627189     2  0.0898     0.7685 0.008 0.972 0.020 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM627128     6  0.2743     0.6822 0.000 0.032 0.000 0.028 0.060 0.880
#> GSM627110     4  0.3730     0.5370 0.008 0.000 0.160 0.784 0.048 0.000
#> GSM627132     1  0.1267     0.7400 0.940 0.000 0.000 0.000 0.060 0.000
#> GSM627107     5  0.5755     0.6373 0.028 0.068 0.192 0.004 0.664 0.044
#> GSM627103     2  0.1405     0.7602 0.000 0.948 0.024 0.024 0.004 0.000
#> GSM627114     5  0.5492     0.5413 0.140 0.008 0.272 0.000 0.580 0.000
#> GSM627134     2  0.6095     0.2839 0.000 0.504 0.008 0.032 0.356 0.100
#> GSM627137     3  0.5667     0.5787 0.000 0.332 0.536 0.120 0.004 0.008
#> GSM627148     5  0.2585     0.7475 0.024 0.012 0.084 0.000 0.880 0.000
#> GSM627101     6  0.3150     0.6446 0.000 0.112 0.000 0.012 0.036 0.840
#> GSM627130     6  0.0748     0.6939 0.004 0.000 0.016 0.000 0.004 0.976
#> GSM627071     2  0.5987     0.0101 0.336 0.424 0.000 0.000 0.240 0.000
#> GSM627118     2  0.6711     0.2602 0.000 0.476 0.008 0.068 0.320 0.128
#> GSM627094     2  0.2001     0.7394 0.008 0.912 0.068 0.012 0.000 0.000
#> GSM627122     5  0.2720     0.7125 0.112 0.000 0.008 0.008 0.864 0.008
#> GSM627115     2  0.3634     0.7122 0.000 0.808 0.064 0.116 0.012 0.000
#> GSM627125     6  0.3452     0.6528 0.000 0.000 0.024 0.036 0.116 0.824
#> GSM627174     2  0.2807     0.7368 0.088 0.868 0.028 0.016 0.000 0.000
#> GSM627102     3  0.4941     0.5742 0.008 0.364 0.588 0.020 0.004 0.016
#> GSM627073     5  0.3200     0.7142 0.000 0.092 0.060 0.008 0.840 0.000
#> GSM627108     2  0.2520     0.6735 0.000 0.844 0.152 0.004 0.000 0.000
#> GSM627126     1  0.2282     0.7138 0.904 0.000 0.004 0.052 0.004 0.036
#> GSM627078     2  0.2472     0.7479 0.024 0.900 0.004 0.012 0.004 0.056
#> GSM627090     5  0.5984     0.4515 0.084 0.000 0.368 0.040 0.504 0.004
#> GSM627099     2  0.4339     0.6827 0.000 0.772 0.000 0.108 0.056 0.064
#> GSM627105     6  0.4826     0.5984 0.000 0.016 0.056 0.048 0.136 0.744
#> GSM627117     3  0.5933     0.4130 0.004 0.016 0.548 0.276 0.156 0.000
#> GSM627121     5  0.5320     0.5728 0.016 0.076 0.260 0.000 0.636 0.012
#> GSM627127     4  0.4792     0.4962 0.004 0.160 0.004 0.732 0.032 0.068
#> GSM627087     2  0.3540     0.7204 0.000 0.812 0.036 0.132 0.020 0.000
#> GSM627089     5  0.2212     0.7156 0.112 0.000 0.008 0.000 0.880 0.000
#> GSM627092     3  0.4269     0.5683 0.000 0.044 0.760 0.168 0.012 0.016
#> GSM627076     5  0.4457     0.7129 0.024 0.000 0.108 0.044 0.780 0.044
#> GSM627136     5  0.3147     0.7298 0.008 0.004 0.108 0.036 0.844 0.000
#> GSM627081     5  0.3205     0.7364 0.008 0.020 0.108 0.008 0.848 0.008
#> GSM627091     2  0.3854     0.6794 0.000 0.780 0.000 0.164 0.028 0.028
#> GSM627097     4  0.2488     0.5735 0.024 0.036 0.036 0.900 0.000 0.004
#> GSM627072     5  0.1225     0.7345 0.000 0.000 0.012 0.036 0.952 0.000
#> GSM627080     1  0.1989     0.7368 0.916 0.000 0.004 0.028 0.052 0.000
#> GSM627088     1  0.4483     0.6330 0.672 0.020 0.020 0.004 0.284 0.000
#> GSM627109     1  0.3905     0.6825 0.776 0.004 0.008 0.048 0.164 0.000
#> GSM627111     1  0.1636     0.7386 0.936 0.000 0.036 0.004 0.024 0.000
#> GSM627113     1  0.2762     0.7169 0.804 0.000 0.000 0.000 0.196 0.000
#> GSM627133     4  0.6019     0.3498 0.000 0.332 0.020 0.496 0.152 0.000
#> GSM627177     2  0.7066     0.0983 0.220 0.456 0.000 0.064 0.248 0.012
#> GSM627086     2  0.0790     0.7532 0.000 0.968 0.032 0.000 0.000 0.000
#> GSM627095     1  0.3666     0.6868 0.820 0.000 0.032 0.064 0.000 0.084
#> GSM627079     5  0.4029     0.5596 0.016 0.016 0.000 0.216 0.744 0.008
#> GSM627082     6  0.1401     0.6869 0.020 0.000 0.028 0.004 0.000 0.948
#> GSM627074     4  0.3983     0.5937 0.104 0.008 0.020 0.800 0.068 0.000
#> GSM627077     4  0.6492     0.0897 0.276 0.000 0.028 0.444 0.252 0.000
#> GSM627093     4  0.4960     0.5516 0.176 0.024 0.064 0.716 0.020 0.000
#> GSM627120     3  0.6079     0.6616 0.004 0.260 0.584 0.040 0.104 0.008
#> GSM627124     2  0.2424     0.7493 0.028 0.904 0.004 0.012 0.004 0.048
#> GSM627075     3  0.5444     0.5799 0.000 0.208 0.576 0.216 0.000 0.000
#> GSM627085     2  0.3192     0.7312 0.008 0.856 0.004 0.044 0.008 0.080
#> GSM627119     1  0.4687     0.6594 0.704 0.028 0.004 0.044 0.220 0.000
#> GSM627116     4  0.7441     0.3551 0.064 0.276 0.004 0.480 0.084 0.092
#> GSM627084     1  0.5657     0.5248 0.580 0.000 0.312 0.008 0.064 0.036
#> GSM627096     2  0.6872     0.1953 0.000 0.440 0.004 0.064 0.312 0.180
#> GSM627100     5  0.4542     0.6932 0.012 0.000 0.148 0.004 0.736 0.100
#> GSM627112     6  0.2063     0.6817 0.000 0.060 0.000 0.020 0.008 0.912
#> GSM627083     6  0.5984     0.3195 0.312 0.000 0.048 0.100 0.000 0.540
#> GSM627098     1  0.2805     0.7232 0.812 0.000 0.000 0.004 0.184 0.000
#> GSM627104     1  0.3252     0.6112 0.816 0.156 0.008 0.016 0.004 0.000
#> GSM627131     1  0.5682     0.3166 0.460 0.000 0.000 0.160 0.380 0.000
#> GSM627106     5  0.2964     0.7318 0.000 0.012 0.116 0.008 0.852 0.012
#> GSM627123     1  0.7200     0.4122 0.508 0.000 0.160 0.212 0.032 0.088
#> GSM627129     6  0.8334    -0.0722 0.000 0.112 0.312 0.144 0.108 0.324
#> GSM627216     2  0.1909     0.7565 0.000 0.920 0.052 0.004 0.024 0.000
#> GSM627212     2  0.2497     0.7489 0.000 0.896 0.000 0.040 0.032 0.032
#> GSM627190     3  0.5294     0.3689 0.004 0.028 0.584 0.048 0.336 0.000
#> GSM627169     3  0.3901     0.6174 0.000 0.096 0.768 0.136 0.000 0.000
#> GSM627167     3  0.6591     0.4498 0.008 0.148 0.512 0.000 0.056 0.276
#> GSM627192     1  0.3479     0.6905 0.812 0.000 0.024 0.024 0.000 0.140
#> GSM627203     5  0.1858     0.7215 0.000 0.000 0.012 0.076 0.912 0.000
#> GSM627151     4  0.3200     0.5789 0.004 0.104 0.000 0.844 0.036 0.012
#> GSM627163     1  0.1340     0.7198 0.948 0.000 0.008 0.040 0.004 0.000
#> GSM627211     2  0.2482     0.6813 0.000 0.848 0.148 0.004 0.000 0.000
#> GSM627171     3  0.4149     0.6715 0.000 0.212 0.728 0.004 0.056 0.000
#> GSM627209     2  0.1974     0.7528 0.000 0.920 0.020 0.000 0.012 0.048
#> GSM627135     1  0.3571     0.6481 0.788 0.000 0.008 0.180 0.016 0.008
#> GSM627170     2  0.4782     0.4412 0.000 0.680 0.216 0.008 0.096 0.000
#> GSM627178     1  0.4365     0.6651 0.744 0.016 0.008 0.048 0.184 0.000
#> GSM627199     2  0.3022     0.7325 0.024 0.852 0.004 0.012 0.000 0.108
#> GSM627213     6  0.3770     0.5861 0.000 0.156 0.000 0.036 0.020 0.788
#> GSM627140     6  0.4289     0.3911 0.024 0.000 0.340 0.004 0.000 0.632
#> GSM627149     1  0.7090     0.4561 0.472 0.000 0.304 0.032 0.072 0.120
#> GSM627147     3  0.6832     0.5585 0.008 0.124 0.560 0.060 0.028 0.220
#> GSM627195     5  0.2438     0.7152 0.020 0.008 0.004 0.076 0.892 0.000
#> GSM627204     2  0.1007     0.7487 0.000 0.956 0.044 0.000 0.000 0.000
#> GSM627207     2  0.4093    -0.0101 0.000 0.584 0.404 0.000 0.012 0.000
#> GSM627157     1  0.2668     0.7254 0.828 0.000 0.000 0.004 0.168 0.000
#> GSM627201     2  0.0858     0.7542 0.000 0.968 0.028 0.000 0.004 0.000
#> GSM627146     2  0.1515     0.7577 0.008 0.944 0.020 0.028 0.000 0.000
#> GSM627156     3  0.4733     0.6108 0.000 0.344 0.608 0.020 0.028 0.000
#> GSM627188     1  0.4761     0.5361 0.648 0.000 0.056 0.012 0.000 0.284
#> GSM627197     2  0.1251     0.7595 0.000 0.956 0.008 0.024 0.000 0.012
#> GSM627173     2  0.2257     0.7411 0.020 0.904 0.060 0.016 0.000 0.000
#> GSM627179     2  0.2070     0.7243 0.000 0.892 0.100 0.000 0.008 0.000
#> GSM627208     5  0.5755     0.2016 0.000 0.296 0.204 0.000 0.500 0.000
#> GSM627215     2  0.5345     0.2226 0.000 0.520 0.012 0.048 0.408 0.012
#> GSM627153     2  0.2230     0.7502 0.000 0.904 0.016 0.000 0.016 0.064
#> GSM627155     1  0.4088     0.7151 0.804 0.000 0.088 0.012 0.040 0.056
#> GSM627165     3  0.6437     0.5719 0.000 0.116 0.572 0.236 0.052 0.024
#> GSM627168     1  0.4905     0.3292 0.524 0.000 0.052 0.004 0.420 0.000
#> GSM627183     5  0.3529     0.5914 0.208 0.000 0.000 0.028 0.764 0.000
#> GSM627144     4  0.4847     0.5062 0.000 0.000 0.124 0.656 0.220 0.000
#> GSM627158     1  0.3707     0.7263 0.808 0.000 0.076 0.008 0.104 0.004
#> GSM627196     2  0.1075     0.7478 0.000 0.952 0.048 0.000 0.000 0.000
#> GSM627142     5  0.3178     0.7040 0.008 0.012 0.004 0.008 0.836 0.132
#> GSM627182     5  0.4624     0.6424 0.020 0.176 0.084 0.000 0.720 0.000
#> GSM627202     5  0.3950     0.5437 0.240 0.000 0.040 0.000 0.720 0.000
#> GSM627141     3  0.5336     0.3058 0.124 0.000 0.664 0.176 0.036 0.000
#> GSM627143     3  0.4783     0.6667 0.004 0.156 0.720 0.000 0.100 0.020
#> GSM627145     5  0.1767     0.7354 0.012 0.000 0.020 0.036 0.932 0.000
#> GSM627152     5  0.4423     0.3875 0.008 0.000 0.024 0.312 0.652 0.004
#> GSM627200     4  0.4330     0.5886 0.056 0.000 0.044 0.764 0.136 0.000
#> GSM627159     6  0.1401     0.6886 0.020 0.000 0.028 0.004 0.000 0.948
#> GSM627164     3  0.4427     0.6572 0.000 0.292 0.660 0.000 0.044 0.004
#> GSM627138     1  0.5357     0.5634 0.588 0.000 0.136 0.004 0.272 0.000
#> GSM627175     2  0.2149     0.7427 0.000 0.888 0.004 0.004 0.000 0.104
#> GSM627150     5  0.1426     0.7442 0.028 0.016 0.008 0.000 0.948 0.000
#> GSM627166     4  0.4533     0.0170 0.468 0.024 0.004 0.504 0.000 0.000
#> GSM627186     3  0.4706     0.6649 0.004 0.280 0.660 0.044 0.012 0.000
#> GSM627139     4  0.7429     0.1845 0.000 0.000 0.168 0.392 0.240 0.200
#> GSM627181     2  0.2020     0.7246 0.000 0.896 0.096 0.000 0.000 0.008
#> GSM627205     2  0.6501    -0.2864 0.000 0.380 0.332 0.020 0.268 0.000
#> GSM627214     2  0.3730     0.6595 0.000 0.812 0.076 0.000 0.088 0.024
#> GSM627180     5  0.4068     0.6719 0.000 0.100 0.036 0.044 0.804 0.016
#> GSM627172     3  0.5308     0.5028 0.008 0.400 0.536 0.004 0.024 0.028
#> GSM627184     1  0.4409     0.6213 0.708 0.000 0.048 0.008 0.004 0.232
#> GSM627193     2  0.2373     0.7309 0.004 0.888 0.084 0.024 0.000 0.000
#> GSM627191     6  0.4647     0.5943 0.124 0.000 0.084 0.048 0.000 0.744
#> GSM627176     3  0.5460     0.3271 0.012 0.000 0.628 0.092 0.252 0.016
#> GSM627194     2  0.5250     0.4955 0.016 0.632 0.108 0.244 0.000 0.000
#> GSM627154     2  0.3966     0.6847 0.016 0.784 0.004 0.036 0.004 0.156
#> GSM627187     3  0.3529     0.5684 0.000 0.036 0.788 0.004 0.172 0.000
#> GSM627198     2  0.2687     0.7502 0.016 0.884 0.008 0.020 0.000 0.072
#> GSM627160     6  0.5889     0.3063 0.008 0.000 0.080 0.308 0.040 0.564
#> GSM627185     1  0.1793     0.7308 0.928 0.000 0.004 0.032 0.036 0.000
#> GSM627206     5  0.6023     0.3513 0.296 0.052 0.104 0.000 0.548 0.000
#> GSM627161     1  0.4557     0.7083 0.756 0.000 0.124 0.016 0.088 0.016
#> GSM627162     3  0.3733     0.5698 0.004 0.024 0.784 0.008 0.176 0.004
#> GSM627210     1  0.6507     0.3168 0.484 0.048 0.004 0.148 0.316 0.000
#> GSM627189     2  0.2826     0.7324 0.000 0.856 0.052 0.092 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) age(p) other(p) k
#> SD:NMF 143            0.710 0.4959   0.0202 2
#> SD:NMF 137            0.501 0.3431   0.0328 3
#> SD:NMF 124            0.567 0.0948   0.0676 4
#> SD:NMF  80            0.652 0.2115   0.0667 5
#> SD:NMF 112            0.225 0.4684   0.1765 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 146 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.456           0.819       0.888         0.3523 0.679   0.679
#> 3 3 0.345           0.684       0.824         0.7209 0.690   0.559
#> 4 4 0.456           0.616       0.722         0.1796 0.784   0.516
#> 5 5 0.575           0.661       0.798         0.0790 0.919   0.716
#> 6 6 0.615           0.625       0.756         0.0389 1.000   1.000

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM627128     2  0.0376     0.8692 0.004 0.996
#> GSM627110     2  0.9552     0.5883 0.376 0.624
#> GSM627132     1  0.0376     0.8914 0.996 0.004
#> GSM627107     2  0.0376     0.8692 0.004 0.996
#> GSM627103     2  0.4161     0.8891 0.084 0.916
#> GSM627114     2  0.9635     0.5640 0.388 0.612
#> GSM627134     2  0.0000     0.8709 0.000 1.000
#> GSM627137     2  0.0672     0.8745 0.008 0.992
#> GSM627148     2  0.8207     0.7805 0.256 0.744
#> GSM627101     2  0.0376     0.8692 0.004 0.996
#> GSM627130     2  0.0376     0.8692 0.004 0.996
#> GSM627071     2  0.8016     0.7930 0.244 0.756
#> GSM627118     2  0.0376     0.8692 0.004 0.996
#> GSM627094     2  0.5178     0.8829 0.116 0.884
#> GSM627122     2  0.8207     0.7813 0.256 0.744
#> GSM627115     2  0.4161     0.8891 0.084 0.916
#> GSM627125     2  0.0376     0.8692 0.004 0.996
#> GSM627174     2  0.3431     0.8887 0.064 0.936
#> GSM627102     2  0.4022     0.8901 0.080 0.920
#> GSM627073     2  0.7453     0.8234 0.212 0.788
#> GSM627108     2  0.5178     0.8829 0.116 0.884
#> GSM627126     1  0.0938     0.8915 0.988 0.012
#> GSM627078     2  0.0376     0.8692 0.004 0.996
#> GSM627090     2  0.3879     0.8891 0.076 0.924
#> GSM627099     2  0.2236     0.8838 0.036 0.964
#> GSM627105     2  0.0376     0.8692 0.004 0.996
#> GSM627117     2  0.7883     0.8055 0.236 0.764
#> GSM627121     2  0.0376     0.8692 0.004 0.996
#> GSM627127     2  0.0376     0.8692 0.004 0.996
#> GSM627087     2  0.4161     0.8891 0.084 0.916
#> GSM627089     2  0.8608     0.7443 0.284 0.716
#> GSM627092     2  0.4022     0.8899 0.080 0.920
#> GSM627076     2  0.3114     0.8881 0.056 0.944
#> GSM627136     2  0.9248     0.6599 0.340 0.660
#> GSM627081     2  0.0376     0.8692 0.004 0.996
#> GSM627091     2  0.2236     0.8838 0.036 0.964
#> GSM627097     2  0.4161     0.8550 0.084 0.916
#> GSM627072     2  0.8661     0.7411 0.288 0.712
#> GSM627080     1  0.0376     0.8914 0.996 0.004
#> GSM627088     2  0.9248     0.6603 0.340 0.660
#> GSM627109     1  0.0672     0.8926 0.992 0.008
#> GSM627111     1  0.0376     0.8914 0.996 0.004
#> GSM627113     1  0.8016     0.6097 0.756 0.244
#> GSM627133     2  0.4431     0.8881 0.092 0.908
#> GSM627177     2  0.9580     0.4835 0.380 0.620
#> GSM627086     2  0.3584     0.8896 0.068 0.932
#> GSM627095     1  0.0938     0.8915 0.988 0.012
#> GSM627079     2  0.7950     0.7977 0.240 0.760
#> GSM627082     2  0.0376     0.8692 0.004 0.996
#> GSM627074     1  0.1414     0.8863 0.980 0.020
#> GSM627077     2  0.9608     0.5726 0.384 0.616
#> GSM627093     1  0.1414     0.8863 0.980 0.020
#> GSM627120     2  0.2948     0.8858 0.052 0.948
#> GSM627124     2  0.0376     0.8692 0.004 0.996
#> GSM627075     2  0.5178     0.8829 0.116 0.884
#> GSM627085     2  0.0376     0.8692 0.004 0.996
#> GSM627119     1  0.0672     0.8926 0.992 0.008
#> GSM627116     2  0.9580     0.4835 0.380 0.620
#> GSM627084     2  0.9323     0.6461 0.348 0.652
#> GSM627096     2  0.0376     0.8692 0.004 0.996
#> GSM627100     2  0.3114     0.8881 0.056 0.944
#> GSM627112     2  0.0672     0.8681 0.008 0.992
#> GSM627083     1  0.9963     0.0276 0.536 0.464
#> GSM627098     2  0.9323     0.6461 0.348 0.652
#> GSM627104     1  0.0672     0.8926 0.992 0.008
#> GSM627131     2  0.8081     0.7905 0.248 0.752
#> GSM627106     2  0.0376     0.8692 0.004 0.996
#> GSM627123     1  0.0938     0.8914 0.988 0.012
#> GSM627129     2  0.0376     0.8728 0.004 0.996
#> GSM627216     2  0.4431     0.8881 0.092 0.908
#> GSM627212     2  0.4298     0.8888 0.088 0.912
#> GSM627190     2  0.7815     0.8093 0.232 0.768
#> GSM627169     2  0.5842     0.8743 0.140 0.860
#> GSM627167     2  0.2948     0.8877 0.052 0.948
#> GSM627192     1  0.0938     0.8915 0.988 0.012
#> GSM627203     2  0.5946     0.8716 0.144 0.856
#> GSM627151     2  0.4815     0.8856 0.104 0.896
#> GSM627163     1  0.0376     0.8914 0.996 0.004
#> GSM627211     2  0.5178     0.8829 0.116 0.884
#> GSM627171     2  0.5059     0.8841 0.112 0.888
#> GSM627209     2  0.0938     0.8759 0.012 0.988
#> GSM627135     1  0.5519     0.7975 0.872 0.128
#> GSM627170     2  0.2043     0.8828 0.032 0.968
#> GSM627178     2  0.9580     0.4835 0.380 0.620
#> GSM627199     2  0.0376     0.8692 0.004 0.996
#> GSM627213     2  0.0376     0.8692 0.004 0.996
#> GSM627140     2  0.4562     0.8563 0.096 0.904
#> GSM627149     1  0.0938     0.8914 0.988 0.012
#> GSM627147     2  0.3879     0.8898 0.076 0.924
#> GSM627195     2  0.5946     0.8716 0.144 0.856
#> GSM627204     2  0.5178     0.8829 0.116 0.884
#> GSM627207     2  0.5178     0.8829 0.116 0.884
#> GSM627157     1  0.9850     0.0845 0.572 0.428
#> GSM627201     2  0.3431     0.8887 0.064 0.936
#> GSM627146     2  0.2948     0.8881 0.052 0.948
#> GSM627156     2  0.5842     0.8743 0.140 0.860
#> GSM627188     1  0.0938     0.8915 0.988 0.012
#> GSM627197     2  0.2236     0.8836 0.036 0.964
#> GSM627173     2  0.5178     0.8829 0.116 0.884
#> GSM627179     2  0.4298     0.8888 0.088 0.912
#> GSM627208     2  0.5737     0.8755 0.136 0.864
#> GSM627215     2  0.4815     0.8875 0.104 0.896
#> GSM627153     2  0.0938     0.8759 0.012 0.988
#> GSM627155     1  0.0672     0.8924 0.992 0.008
#> GSM627165     2  0.0672     0.8745 0.008 0.992
#> GSM627168     1  0.9954    -0.0554 0.540 0.460
#> GSM627183     2  0.8813     0.7232 0.300 0.700
#> GSM627144     2  0.5946     0.8716 0.144 0.856
#> GSM627158     1  0.0376     0.8914 0.996 0.004
#> GSM627196     2  0.5178     0.8829 0.116 0.884
#> GSM627142     2  0.0376     0.8692 0.004 0.996
#> GSM627182     2  0.5737     0.8755 0.136 0.864
#> GSM627202     1  0.9850     0.0845 0.572 0.428
#> GSM627141     2  0.9522     0.5976 0.372 0.628
#> GSM627143     2  0.3733     0.8900 0.072 0.928
#> GSM627145     2  0.7883     0.8008 0.236 0.764
#> GSM627152     2  0.7528     0.8190 0.216 0.784
#> GSM627200     2  0.8327     0.7741 0.264 0.736
#> GSM627159     2  0.0376     0.8692 0.004 0.996
#> GSM627164     2  0.5059     0.8848 0.112 0.888
#> GSM627138     1  0.0376     0.8914 0.996 0.004
#> GSM627175     2  0.0376     0.8692 0.004 0.996
#> GSM627150     2  0.8016     0.7930 0.244 0.756
#> GSM627166     1  0.8555     0.6107 0.720 0.280
#> GSM627186     2  0.5842     0.8743 0.140 0.860
#> GSM627139     2  0.4815     0.8856 0.104 0.896
#> GSM627181     2  0.2236     0.8836 0.036 0.964
#> GSM627205     2  0.4431     0.8881 0.092 0.908
#> GSM627214     2  0.0672     0.8744 0.008 0.992
#> GSM627180     2  0.4815     0.8875 0.104 0.896
#> GSM627172     2  0.4022     0.8901 0.080 0.920
#> GSM627184     1  0.0672     0.8924 0.992 0.008
#> GSM627193     2  0.5178     0.8829 0.116 0.884
#> GSM627191     2  0.4562     0.8479 0.096 0.904
#> GSM627176     2  0.6343     0.8646 0.160 0.840
#> GSM627194     2  0.4690     0.8875 0.100 0.900
#> GSM627154     2  0.0376     0.8692 0.004 0.996
#> GSM627187     2  0.7815     0.8093 0.232 0.768
#> GSM627198     2  0.0376     0.8692 0.004 0.996
#> GSM627160     2  0.4562     0.8563 0.096 0.904
#> GSM627185     1  0.0672     0.8926 0.992 0.008
#> GSM627206     2  0.8608     0.7443 0.284 0.716
#> GSM627161     1  0.0376     0.8914 0.996 0.004
#> GSM627162     2  0.6148     0.8691 0.152 0.848
#> GSM627210     1  0.0672     0.8926 0.992 0.008
#> GSM627189     2  0.5178     0.8829 0.116 0.884

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM627128     3  0.2066     0.7923 0.000 0.060 0.940
#> GSM627110     2  0.5158     0.6718 0.232 0.764 0.004
#> GSM627132     1  0.0000     0.9283 1.000 0.000 0.000
#> GSM627107     3  0.4555     0.7448 0.000 0.200 0.800
#> GSM627103     2  0.4887     0.6891 0.000 0.772 0.228
#> GSM627114     2  0.5058     0.6600 0.244 0.756 0.000
#> GSM627134     3  0.2711     0.7802 0.000 0.088 0.912
#> GSM627137     2  0.6235     0.3529 0.000 0.564 0.436
#> GSM627148     2  0.4063     0.7336 0.112 0.868 0.020
#> GSM627101     3  0.1163     0.7970 0.000 0.028 0.972
#> GSM627130     3  0.3192     0.7704 0.000 0.112 0.888
#> GSM627071     2  0.3832     0.7363 0.100 0.880 0.020
#> GSM627118     3  0.1031     0.7977 0.000 0.024 0.976
#> GSM627094     2  0.3686     0.7339 0.000 0.860 0.140
#> GSM627122     2  0.5334     0.7238 0.120 0.820 0.060
#> GSM627115     2  0.4842     0.6925 0.000 0.776 0.224
#> GSM627125     3  0.3192     0.7704 0.000 0.112 0.888
#> GSM627174     2  0.5058     0.6706 0.000 0.756 0.244
#> GSM627102     2  0.5650     0.5889 0.000 0.688 0.312
#> GSM627073     2  0.3530     0.7448 0.068 0.900 0.032
#> GSM627108     2  0.3686     0.7339 0.000 0.860 0.140
#> GSM627126     1  0.0475     0.9295 0.992 0.004 0.004
#> GSM627078     3  0.0592     0.7961 0.000 0.012 0.988
#> GSM627090     2  0.6798     0.1797 0.016 0.584 0.400
#> GSM627099     2  0.6045     0.4823 0.000 0.620 0.380
#> GSM627105     3  0.3192     0.7704 0.000 0.112 0.888
#> GSM627117     2  0.3459     0.7446 0.096 0.892 0.012
#> GSM627121     3  0.4555     0.7448 0.000 0.200 0.800
#> GSM627127     3  0.0424     0.7943 0.000 0.008 0.992
#> GSM627087     2  0.4842     0.6925 0.000 0.776 0.224
#> GSM627089     2  0.4411     0.7223 0.140 0.844 0.016
#> GSM627092     2  0.4346     0.7046 0.000 0.816 0.184
#> GSM627076     2  0.6633     0.0315 0.008 0.548 0.444
#> GSM627136     2  0.5122     0.6906 0.200 0.788 0.012
#> GSM627081     3  0.4555     0.7448 0.000 0.200 0.800
#> GSM627091     2  0.6045     0.4823 0.000 0.620 0.380
#> GSM627097     3  0.6982     0.6280 0.072 0.220 0.708
#> GSM627072     2  0.4164     0.7225 0.144 0.848 0.008
#> GSM627080     1  0.0000     0.9283 1.000 0.000 0.000
#> GSM627088     2  0.5122     0.6905 0.200 0.788 0.012
#> GSM627109     1  0.0592     0.9292 0.988 0.012 0.000
#> GSM627111     1  0.0000     0.9283 1.000 0.000 0.000
#> GSM627113     1  0.5988     0.3298 0.632 0.368 0.000
#> GSM627133     2  0.4062     0.7332 0.000 0.836 0.164
#> GSM627177     2  0.9539     0.2576 0.336 0.460 0.204
#> GSM627086     2  0.5497     0.6213 0.000 0.708 0.292
#> GSM627095     1  0.0475     0.9295 0.992 0.004 0.004
#> GSM627079     2  0.5576     0.7172 0.104 0.812 0.084
#> GSM627082     3  0.3192     0.7704 0.000 0.112 0.888
#> GSM627074     1  0.1753     0.9063 0.952 0.048 0.000
#> GSM627077     2  0.5420     0.6647 0.240 0.752 0.008
#> GSM627093     1  0.1753     0.9063 0.952 0.048 0.000
#> GSM627120     2  0.6274     0.2975 0.000 0.544 0.456
#> GSM627124     3  0.0592     0.7961 0.000 0.012 0.988
#> GSM627075     2  0.3619     0.7352 0.000 0.864 0.136
#> GSM627085     3  0.0592     0.7961 0.000 0.012 0.988
#> GSM627119     1  0.0747     0.9275 0.984 0.016 0.000
#> GSM627116     2  0.9539     0.2576 0.336 0.460 0.204
#> GSM627084     2  0.5220     0.6845 0.208 0.780 0.012
#> GSM627096     3  0.1031     0.7977 0.000 0.024 0.976
#> GSM627100     3  0.6647     0.3119 0.008 0.452 0.540
#> GSM627112     3  0.0829     0.7958 0.004 0.012 0.984
#> GSM627083     1  0.8227     0.1894 0.536 0.080 0.384
#> GSM627098     2  0.5220     0.6845 0.208 0.780 0.012
#> GSM627104     1  0.0592     0.9292 0.988 0.012 0.000
#> GSM627131     2  0.5481     0.7181 0.108 0.816 0.076
#> GSM627106     3  0.4555     0.7448 0.000 0.200 0.800
#> GSM627123     1  0.0892     0.9265 0.980 0.020 0.000
#> GSM627129     3  0.3551     0.7524 0.000 0.132 0.868
#> GSM627216     2  0.4062     0.7332 0.000 0.836 0.164
#> GSM627212     2  0.4750     0.6989 0.000 0.784 0.216
#> GSM627190     2  0.3377     0.7455 0.092 0.896 0.012
#> GSM627169     2  0.1129     0.7512 0.004 0.976 0.020
#> GSM627167     2  0.6026     0.4622 0.000 0.624 0.376
#> GSM627192     1  0.0475     0.9295 0.992 0.004 0.004
#> GSM627203     2  0.1529     0.7462 0.000 0.960 0.040
#> GSM627151     2  0.6651     0.5028 0.024 0.656 0.320
#> GSM627163     1  0.0000     0.9283 1.000 0.000 0.000
#> GSM627211     2  0.3686     0.7339 0.000 0.860 0.140
#> GSM627171     2  0.3482     0.7423 0.000 0.872 0.128
#> GSM627209     3  0.6204     0.1274 0.000 0.424 0.576
#> GSM627135     1  0.4519     0.8026 0.852 0.116 0.032
#> GSM627170     2  0.5859     0.5453 0.000 0.656 0.344
#> GSM627178     2  0.9539     0.2576 0.336 0.460 0.204
#> GSM627199     3  0.2066     0.7873 0.000 0.060 0.940
#> GSM627213     3  0.1163     0.7973 0.000 0.028 0.972
#> GSM627140     3  0.7851     0.4513 0.080 0.304 0.616
#> GSM627149     1  0.0592     0.9295 0.988 0.012 0.000
#> GSM627147     2  0.4555     0.6910 0.000 0.800 0.200
#> GSM627195     2  0.1529     0.7462 0.000 0.960 0.040
#> GSM627204     2  0.3686     0.7339 0.000 0.860 0.140
#> GSM627207     2  0.3686     0.7339 0.000 0.860 0.140
#> GSM627157     2  0.6754     0.3116 0.432 0.556 0.012
#> GSM627201     2  0.5058     0.6706 0.000 0.756 0.244
#> GSM627146     3  0.6111     0.2950 0.000 0.396 0.604
#> GSM627156     2  0.1129     0.7512 0.004 0.976 0.020
#> GSM627188     1  0.0475     0.9295 0.992 0.004 0.004
#> GSM627197     3  0.5785     0.4730 0.000 0.332 0.668
#> GSM627173     2  0.3686     0.7339 0.000 0.860 0.140
#> GSM627179     2  0.4750     0.6989 0.000 0.784 0.216
#> GSM627208     2  0.1753     0.7524 0.000 0.952 0.048
#> GSM627215     2  0.3267     0.7471 0.000 0.884 0.116
#> GSM627153     3  0.6204     0.1274 0.000 0.424 0.576
#> GSM627155     1  0.0237     0.9296 0.996 0.004 0.000
#> GSM627165     2  0.6244     0.3410 0.000 0.560 0.440
#> GSM627168     2  0.6661     0.3905 0.400 0.588 0.012
#> GSM627183     2  0.4353     0.7154 0.156 0.836 0.008
#> GSM627144     2  0.1529     0.7462 0.000 0.960 0.040
#> GSM627158     1  0.0424     0.9293 0.992 0.008 0.000
#> GSM627196     2  0.3686     0.7339 0.000 0.860 0.140
#> GSM627142     3  0.3482     0.7673 0.000 0.128 0.872
#> GSM627182     2  0.1753     0.7524 0.000 0.952 0.048
#> GSM627202     2  0.6754     0.3116 0.432 0.556 0.012
#> GSM627141     2  0.4887     0.6746 0.228 0.772 0.000
#> GSM627143     2  0.5378     0.6688 0.008 0.756 0.236
#> GSM627145     2  0.3933     0.7360 0.092 0.880 0.028
#> GSM627152     2  0.6023     0.7060 0.092 0.788 0.120
#> GSM627200     2  0.5677     0.7130 0.124 0.804 0.072
#> GSM627159     3  0.3192     0.7704 0.000 0.112 0.888
#> GSM627164     2  0.3116     0.7476 0.000 0.892 0.108
#> GSM627138     1  0.1289     0.9184 0.968 0.032 0.000
#> GSM627175     3  0.0424     0.7943 0.000 0.008 0.992
#> GSM627150     2  0.3832     0.7363 0.100 0.880 0.020
#> GSM627166     1  0.7524     0.6019 0.688 0.196 0.116
#> GSM627186     2  0.1129     0.7512 0.004 0.976 0.020
#> GSM627139     2  0.6651     0.5028 0.024 0.656 0.320
#> GSM627181     3  0.5785     0.4730 0.000 0.332 0.668
#> GSM627205     2  0.4399     0.7243 0.000 0.812 0.188
#> GSM627214     3  0.6154     0.2151 0.000 0.408 0.592
#> GSM627180     2  0.3267     0.7471 0.000 0.884 0.116
#> GSM627172     2  0.5650     0.5889 0.000 0.688 0.312
#> GSM627184     1  0.0237     0.9296 0.996 0.004 0.000
#> GSM627193     2  0.3686     0.7339 0.000 0.860 0.140
#> GSM627191     3  0.7031     0.6486 0.088 0.196 0.716
#> GSM627176     2  0.4369     0.7415 0.040 0.864 0.096
#> GSM627194     2  0.4750     0.7013 0.000 0.784 0.216
#> GSM627154     3  0.0592     0.7961 0.000 0.012 0.988
#> GSM627187     2  0.3377     0.7455 0.092 0.896 0.012
#> GSM627198     3  0.2066     0.7873 0.000 0.060 0.940
#> GSM627160     3  0.7851     0.4513 0.080 0.304 0.616
#> GSM627185     1  0.0424     0.9299 0.992 0.008 0.000
#> GSM627206     2  0.4411     0.7223 0.140 0.844 0.016
#> GSM627161     1  0.0424     0.9293 0.992 0.008 0.000
#> GSM627162     2  0.3406     0.7582 0.028 0.904 0.068
#> GSM627210     1  0.0747     0.9275 0.984 0.016 0.000
#> GSM627189     2  0.3686     0.7339 0.000 0.860 0.140

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM627128     4  0.3557     0.7290 0.000 0.108 0.036 0.856
#> GSM627110     3  0.4799     0.7126 0.224 0.032 0.744 0.000
#> GSM627132     1  0.0000     0.9242 1.000 0.000 0.000 0.000
#> GSM627107     4  0.3710     0.6514 0.000 0.004 0.192 0.804
#> GSM627103     2  0.3606     0.7227 0.000 0.840 0.140 0.020
#> GSM627114     3  0.5596     0.7012 0.236 0.068 0.696 0.000
#> GSM627134     4  0.5112     0.6489 0.000 0.384 0.008 0.608
#> GSM627137     2  0.4875     0.5625 0.000 0.772 0.068 0.160
#> GSM627148     3  0.3674     0.7301 0.104 0.044 0.852 0.000
#> GSM627101     4  0.4609     0.7365 0.000 0.224 0.024 0.752
#> GSM627130     4  0.2593     0.7026 0.000 0.004 0.104 0.892
#> GSM627071     3  0.3399     0.7264 0.092 0.040 0.868 0.000
#> GSM627118     4  0.4836     0.7179 0.000 0.320 0.008 0.672
#> GSM627094     2  0.3610     0.7078 0.000 0.800 0.200 0.000
#> GSM627122     3  0.4011     0.7295 0.112 0.020 0.844 0.024
#> GSM627115     2  0.3658     0.7231 0.000 0.836 0.144 0.020
#> GSM627125     4  0.2654     0.7018 0.000 0.004 0.108 0.888
#> GSM627174     2  0.3948     0.7212 0.000 0.828 0.136 0.036
#> GSM627102     2  0.5855     0.6763 0.000 0.704 0.160 0.136
#> GSM627073     3  0.4301     0.6686 0.064 0.120 0.816 0.000
#> GSM627108     2  0.3610     0.7078 0.000 0.800 0.200 0.000
#> GSM627126     1  0.0524     0.9242 0.988 0.008 0.000 0.004
#> GSM627078     4  0.4331     0.7312 0.000 0.288 0.000 0.712
#> GSM627090     3  0.5004     0.1566 0.000 0.004 0.604 0.392
#> GSM627099     2  0.3919     0.6267 0.000 0.840 0.056 0.104
#> GSM627105     4  0.2654     0.7018 0.000 0.004 0.108 0.888
#> GSM627117     3  0.6750    -0.0204 0.092 0.436 0.472 0.000
#> GSM627121     4  0.3710     0.6514 0.000 0.004 0.192 0.804
#> GSM627127     4  0.4522     0.7212 0.000 0.320 0.000 0.680
#> GSM627087     2  0.3658     0.7231 0.000 0.836 0.144 0.020
#> GSM627089     3  0.3984     0.7324 0.132 0.040 0.828 0.000
#> GSM627092     2  0.6640     0.5178 0.000 0.552 0.352 0.096
#> GSM627076     3  0.5112     0.0402 0.000 0.004 0.560 0.436
#> GSM627136     3  0.5321     0.7198 0.192 0.064 0.740 0.004
#> GSM627081     4  0.3710     0.6514 0.000 0.004 0.192 0.804
#> GSM627091     2  0.3919     0.6267 0.000 0.840 0.056 0.104
#> GSM627097     4  0.8785     0.5227 0.072 0.232 0.224 0.472
#> GSM627072     3  0.4123     0.7323 0.136 0.044 0.820 0.000
#> GSM627080     1  0.0188     0.9244 0.996 0.000 0.000 0.004
#> GSM627088     3  0.5250     0.7218 0.192 0.060 0.744 0.004
#> GSM627109     1  0.0469     0.9239 0.988 0.000 0.012 0.000
#> GSM627111     1  0.0000     0.9242 1.000 0.000 0.000 0.000
#> GSM627113     1  0.4936     0.2444 0.624 0.004 0.372 0.000
#> GSM627133     2  0.5298     0.5510 0.000 0.612 0.372 0.016
#> GSM627177     3  0.8030     0.2954 0.332 0.056 0.504 0.108
#> GSM627086     2  0.4332     0.6987 0.000 0.816 0.112 0.072
#> GSM627095     1  0.0524     0.9242 0.988 0.008 0.000 0.004
#> GSM627079     3  0.3829     0.7207 0.096 0.012 0.856 0.036
#> GSM627082     4  0.2593     0.7026 0.000 0.004 0.104 0.892
#> GSM627074     1  0.1489     0.8983 0.952 0.004 0.044 0.000
#> GSM627077     3  0.4775     0.7092 0.232 0.028 0.740 0.000
#> GSM627093     1  0.1489     0.8983 0.952 0.004 0.044 0.000
#> GSM627120     2  0.6855     0.5157 0.000 0.580 0.144 0.276
#> GSM627124     4  0.4331     0.7312 0.000 0.288 0.000 0.712
#> GSM627075     2  0.3649     0.7053 0.000 0.796 0.204 0.000
#> GSM627085     4  0.4382     0.7294 0.000 0.296 0.000 0.704
#> GSM627119     1  0.0657     0.9221 0.984 0.004 0.012 0.000
#> GSM627116     3  0.8030     0.2954 0.332 0.056 0.504 0.108
#> GSM627084     3  0.5398     0.7176 0.200 0.064 0.732 0.004
#> GSM627096     4  0.4836     0.7179 0.000 0.320 0.008 0.672
#> GSM627100     4  0.5151     0.1927 0.000 0.004 0.464 0.532
#> GSM627112     4  0.4841     0.7331 0.004 0.272 0.012 0.712
#> GSM627083     1  0.8195     0.2189 0.532 0.196 0.048 0.224
#> GSM627098     3  0.5398     0.7176 0.200 0.064 0.732 0.004
#> GSM627104     1  0.0469     0.9239 0.988 0.000 0.012 0.000
#> GSM627131     3  0.3798     0.7236 0.100 0.012 0.856 0.032
#> GSM627106     4  0.3710     0.6514 0.000 0.004 0.192 0.804
#> GSM627123     1  0.1229     0.9183 0.968 0.004 0.020 0.008
#> GSM627129     4  0.5329     0.5782 0.000 0.420 0.012 0.568
#> GSM627216     2  0.5298     0.5510 0.000 0.612 0.372 0.016
#> GSM627212     2  0.4010     0.7238 0.000 0.816 0.156 0.028
#> GSM627190     3  0.6705    -0.0324 0.088 0.440 0.472 0.000
#> GSM627169     2  0.4920     0.4953 0.004 0.628 0.368 0.000
#> GSM627167     2  0.6513     0.6143 0.000 0.640 0.176 0.184
#> GSM627192     1  0.0524     0.9242 0.988 0.008 0.000 0.004
#> GSM627203     3  0.2125     0.6680 0.000 0.076 0.920 0.004
#> GSM627151     3  0.7510     0.3679 0.024 0.180 0.584 0.212
#> GSM627163     1  0.0000     0.9242 1.000 0.000 0.000 0.000
#> GSM627211     2  0.3610     0.7078 0.000 0.800 0.200 0.000
#> GSM627171     2  0.4422     0.6805 0.000 0.736 0.256 0.008
#> GSM627209     2  0.5786     0.3035 0.000 0.640 0.052 0.308
#> GSM627135     1  0.3812     0.7927 0.848 0.008 0.116 0.028
#> GSM627170     2  0.3903     0.6610 0.000 0.844 0.080 0.076
#> GSM627178     3  0.8030     0.2954 0.332 0.056 0.504 0.108
#> GSM627199     4  0.4713     0.6794 0.000 0.360 0.000 0.640
#> GSM627213     4  0.4857     0.7150 0.000 0.324 0.008 0.668
#> GSM627140     2  0.8300    -0.1692 0.080 0.436 0.092 0.392
#> GSM627149     1  0.0859     0.9239 0.980 0.004 0.008 0.008
#> GSM627147     2  0.6819     0.5147 0.000 0.540 0.348 0.112
#> GSM627195     3  0.2125     0.6680 0.000 0.076 0.920 0.004
#> GSM627204     2  0.3610     0.7078 0.000 0.800 0.200 0.000
#> GSM627207     2  0.3610     0.7078 0.000 0.800 0.200 0.000
#> GSM627157     3  0.5220     0.4040 0.424 0.008 0.568 0.000
#> GSM627201     2  0.3948     0.7212 0.000 0.828 0.136 0.036
#> GSM627146     2  0.6263     0.1227 0.000 0.576 0.068 0.356
#> GSM627156     2  0.4920     0.4953 0.004 0.628 0.368 0.000
#> GSM627188     1  0.0524     0.9242 0.988 0.008 0.000 0.004
#> GSM627197     2  0.5980    -0.1037 0.000 0.560 0.044 0.396
#> GSM627173     2  0.3610     0.7078 0.000 0.800 0.200 0.000
#> GSM627179     2  0.4010     0.7238 0.000 0.816 0.156 0.028
#> GSM627208     3  0.4585     0.2728 0.000 0.332 0.668 0.000
#> GSM627215     2  0.5406     0.3060 0.000 0.508 0.480 0.012
#> GSM627153     2  0.5786     0.3035 0.000 0.640 0.052 0.308
#> GSM627155     1  0.0524     0.9245 0.988 0.004 0.000 0.008
#> GSM627165     2  0.4920     0.5566 0.000 0.768 0.068 0.164
#> GSM627168     3  0.5138     0.4607 0.392 0.008 0.600 0.000
#> GSM627183     3  0.4274     0.7312 0.148 0.044 0.808 0.000
#> GSM627144     3  0.2197     0.6662 0.000 0.080 0.916 0.004
#> GSM627158     1  0.0524     0.9241 0.988 0.000 0.008 0.004
#> GSM627196     2  0.3610     0.7078 0.000 0.800 0.200 0.000
#> GSM627142     4  0.2831     0.6976 0.000 0.004 0.120 0.876
#> GSM627182     3  0.4585     0.2728 0.000 0.332 0.668 0.000
#> GSM627202     3  0.5220     0.4040 0.424 0.008 0.568 0.000
#> GSM627141     3  0.5466     0.7095 0.220 0.068 0.712 0.000
#> GSM627143     2  0.6385     0.6402 0.008 0.640 0.268 0.084
#> GSM627145     3  0.3082     0.7248 0.084 0.032 0.884 0.000
#> GSM627152     3  0.4348     0.7037 0.088 0.012 0.832 0.068
#> GSM627200     3  0.4036     0.7261 0.116 0.012 0.840 0.032
#> GSM627159     4  0.2593     0.7026 0.000 0.004 0.104 0.892
#> GSM627164     2  0.5003     0.6214 0.000 0.676 0.308 0.016
#> GSM627138     1  0.1398     0.9044 0.956 0.000 0.040 0.004
#> GSM627175     4  0.4522     0.7212 0.000 0.320 0.000 0.680
#> GSM627150     3  0.3399     0.7264 0.092 0.040 0.868 0.000
#> GSM627166     1  0.6422     0.5779 0.684 0.052 0.216 0.048
#> GSM627186     2  0.4920     0.4953 0.004 0.628 0.368 0.000
#> GSM627139     3  0.7510     0.3679 0.024 0.180 0.584 0.212
#> GSM627181     2  0.5980    -0.1037 0.000 0.560 0.044 0.396
#> GSM627205     2  0.4963     0.6644 0.000 0.696 0.284 0.020
#> GSM627214     2  0.5847     0.2342 0.000 0.628 0.052 0.320
#> GSM627180     2  0.5406     0.3060 0.000 0.508 0.480 0.012
#> GSM627172     2  0.5855     0.6763 0.000 0.704 0.160 0.136
#> GSM627184     1  0.0524     0.9245 0.988 0.004 0.000 0.008
#> GSM627193     2  0.3610     0.7078 0.000 0.800 0.200 0.000
#> GSM627191     4  0.8193     0.4501 0.088 0.352 0.080 0.480
#> GSM627176     3  0.5911     0.5047 0.024 0.208 0.712 0.056
#> GSM627194     2  0.4552     0.7255 0.000 0.784 0.172 0.044
#> GSM627154     4  0.4382     0.7294 0.000 0.296 0.000 0.704
#> GSM627187     3  0.6705    -0.0324 0.088 0.440 0.472 0.000
#> GSM627198     4  0.4713     0.6794 0.000 0.360 0.000 0.640
#> GSM627160     2  0.8344    -0.1759 0.080 0.432 0.096 0.392
#> GSM627185     1  0.0336     0.9247 0.992 0.000 0.008 0.000
#> GSM627206     3  0.3984     0.7324 0.132 0.040 0.828 0.000
#> GSM627161     1  0.0524     0.9241 0.988 0.000 0.008 0.004
#> GSM627162     2  0.6255     0.4469 0.028 0.568 0.384 0.020
#> GSM627210     1  0.0657     0.9221 0.984 0.004 0.012 0.000
#> GSM627189     2  0.3610     0.7078 0.000 0.800 0.200 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM627128     5  0.4268      0.203 0.000 0.000 0.000 0.444 0.556
#> GSM627110     3  0.3748      0.750 0.164 0.020 0.804 0.000 0.012
#> GSM627132     1  0.0162      0.893 0.996 0.000 0.000 0.000 0.004
#> GSM627107     5  0.3169      0.789 0.000 0.000 0.060 0.084 0.856
#> GSM627103     2  0.2361      0.734 0.000 0.892 0.012 0.096 0.000
#> GSM627114     3  0.5294      0.721 0.168 0.096 0.716 0.004 0.016
#> GSM627134     4  0.3392      0.740 0.000 0.080 0.008 0.852 0.060
#> GSM627137     2  0.4670      0.512 0.000 0.648 0.016 0.328 0.008
#> GSM627148     3  0.2060      0.771 0.052 0.016 0.924 0.000 0.008
#> GSM627101     4  0.4327      0.339 0.000 0.008 0.000 0.632 0.360
#> GSM627130     5  0.2280      0.780 0.000 0.000 0.000 0.120 0.880
#> GSM627071     3  0.1651      0.765 0.036 0.012 0.944 0.000 0.008
#> GSM627118     4  0.2457      0.746 0.000 0.016 0.008 0.900 0.076
#> GSM627094     2  0.0579      0.745 0.000 0.984 0.008 0.008 0.000
#> GSM627122     3  0.2972      0.757 0.064 0.004 0.880 0.004 0.048
#> GSM627115     2  0.2305      0.735 0.000 0.896 0.012 0.092 0.000
#> GSM627125     5  0.2230      0.781 0.000 0.000 0.000 0.116 0.884
#> GSM627174     2  0.3513      0.725 0.000 0.828 0.036 0.132 0.004
#> GSM627102     2  0.4847      0.615 0.000 0.708 0.040 0.236 0.016
#> GSM627073     3  0.2956      0.731 0.020 0.096 0.872 0.000 0.012
#> GSM627108     2  0.0579      0.745 0.000 0.984 0.008 0.008 0.000
#> GSM627126     1  0.1651      0.889 0.944 0.000 0.012 0.008 0.036
#> GSM627078     4  0.2270      0.746 0.000 0.020 0.000 0.904 0.076
#> GSM627090     5  0.4826      0.187 0.000 0.000 0.472 0.020 0.508
#> GSM627099     2  0.4359      0.569 0.000 0.692 0.016 0.288 0.004
#> GSM627105     5  0.2230      0.781 0.000 0.000 0.000 0.116 0.884
#> GSM627117     2  0.5951      0.380 0.060 0.588 0.324 0.004 0.024
#> GSM627121     5  0.3169      0.789 0.000 0.000 0.060 0.084 0.856
#> GSM627127     4  0.1725      0.753 0.000 0.020 0.000 0.936 0.044
#> GSM627087     2  0.2305      0.735 0.000 0.896 0.012 0.092 0.000
#> GSM627089     3  0.2228      0.772 0.076 0.012 0.908 0.000 0.004
#> GSM627092     2  0.6218      0.615 0.000 0.644 0.200 0.092 0.064
#> GSM627076     5  0.4861      0.305 0.000 0.000 0.428 0.024 0.548
#> GSM627136     3  0.4872      0.751 0.124 0.084 0.764 0.004 0.024
#> GSM627081     5  0.3169      0.789 0.000 0.000 0.060 0.084 0.856
#> GSM627091     2  0.4359      0.569 0.000 0.692 0.016 0.288 0.004
#> GSM627097     4  0.7496      0.342 0.020 0.048 0.216 0.528 0.188
#> GSM627072     3  0.2270      0.773 0.072 0.016 0.908 0.000 0.004
#> GSM627080     1  0.0324      0.893 0.992 0.000 0.000 0.004 0.004
#> GSM627088     3  0.4872      0.752 0.124 0.084 0.764 0.004 0.024
#> GSM627109     1  0.1914      0.875 0.924 0.000 0.060 0.000 0.016
#> GSM627111     1  0.0162      0.893 0.996 0.000 0.000 0.000 0.004
#> GSM627113     1  0.4510      0.149 0.560 0.000 0.432 0.000 0.008
#> GSM627133     2  0.5129      0.630 0.000 0.684 0.248 0.052 0.016
#> GSM627177     3  0.7167      0.435 0.248 0.000 0.536 0.080 0.136
#> GSM627086     2  0.3171      0.672 0.000 0.816 0.008 0.176 0.000
#> GSM627095     1  0.1651      0.889 0.944 0.000 0.012 0.008 0.036
#> GSM627079     3  0.3170      0.745 0.052 0.004 0.868 0.004 0.072
#> GSM627082     5  0.2329      0.778 0.000 0.000 0.000 0.124 0.876
#> GSM627074     1  0.2464      0.847 0.888 0.000 0.096 0.000 0.016
#> GSM627077     3  0.3693      0.751 0.168 0.012 0.804 0.000 0.016
#> GSM627093     1  0.2464      0.847 0.888 0.000 0.096 0.000 0.016
#> GSM627120     2  0.5843      0.503 0.000 0.636 0.008 0.168 0.188
#> GSM627124     4  0.2270      0.746 0.000 0.020 0.000 0.904 0.076
#> GSM627075     2  0.0579      0.745 0.000 0.984 0.008 0.008 0.000
#> GSM627085     4  0.2036      0.752 0.000 0.024 0.000 0.920 0.056
#> GSM627119     1  0.1981      0.873 0.920 0.000 0.064 0.000 0.016
#> GSM627116     3  0.7167      0.435 0.248 0.000 0.536 0.080 0.136
#> GSM627084     3  0.5015      0.747 0.132 0.088 0.752 0.004 0.024
#> GSM627096     4  0.2457      0.746 0.000 0.016 0.008 0.900 0.076
#> GSM627100     5  0.4890      0.494 0.000 0.000 0.332 0.040 0.628
#> GSM627112     4  0.2338      0.718 0.000 0.004 0.000 0.884 0.112
#> GSM627083     1  0.7432      0.201 0.500 0.064 0.024 0.320 0.092
#> GSM627098     3  0.5015      0.747 0.132 0.088 0.752 0.004 0.024
#> GSM627104     1  0.1914      0.875 0.924 0.000 0.060 0.000 0.016
#> GSM627131     3  0.3043      0.749 0.052 0.004 0.876 0.004 0.064
#> GSM627106     5  0.3169      0.789 0.000 0.000 0.060 0.084 0.856
#> GSM627123     1  0.1799      0.891 0.940 0.000 0.028 0.012 0.020
#> GSM627129     4  0.4093      0.717 0.000 0.124 0.008 0.800 0.068
#> GSM627216     2  0.5129      0.630 0.000 0.684 0.248 0.052 0.016
#> GSM627212     2  0.2248      0.736 0.000 0.900 0.012 0.088 0.000
#> GSM627190     2  0.5869      0.387 0.060 0.592 0.324 0.004 0.020
#> GSM627169     2  0.3594      0.686 0.000 0.804 0.172 0.004 0.020
#> GSM627167     2  0.5887      0.560 0.000 0.640 0.048 0.252 0.060
#> GSM627192     1  0.1651      0.889 0.944 0.000 0.012 0.008 0.036
#> GSM627203     3  0.2230      0.720 0.000 0.044 0.912 0.000 0.044
#> GSM627151     3  0.7557      0.363 0.004 0.176 0.536 0.136 0.148
#> GSM627163     1  0.0404      0.893 0.988 0.000 0.000 0.000 0.012
#> GSM627211     2  0.0579      0.745 0.000 0.984 0.008 0.008 0.000
#> GSM627171     2  0.2409      0.744 0.000 0.908 0.060 0.012 0.020
#> GSM627209     2  0.5222      0.180 0.000 0.512 0.008 0.452 0.028
#> GSM627135     1  0.4469      0.755 0.776 0.000 0.148 0.020 0.056
#> GSM627170     2  0.4245      0.627 0.000 0.736 0.020 0.236 0.008
#> GSM627178     3  0.7167      0.435 0.248 0.000 0.536 0.080 0.136
#> GSM627199     4  0.2193      0.748 0.000 0.060 0.000 0.912 0.028
#> GSM627213     4  0.2364      0.750 0.000 0.020 0.008 0.908 0.064
#> GSM627140     4  0.7351      0.420 0.052 0.284 0.024 0.528 0.112
#> GSM627149     1  0.1314      0.895 0.960 0.000 0.016 0.012 0.012
#> GSM627147     2  0.6373      0.603 0.000 0.632 0.196 0.108 0.064
#> GSM627195     3  0.2230      0.720 0.000 0.044 0.912 0.000 0.044
#> GSM627204     2  0.0579      0.745 0.000 0.984 0.008 0.008 0.000
#> GSM627207     2  0.0579      0.745 0.000 0.984 0.008 0.008 0.000
#> GSM627157     3  0.4354      0.473 0.368 0.000 0.624 0.000 0.008
#> GSM627201     2  0.3513      0.725 0.000 0.828 0.036 0.132 0.004
#> GSM627146     4  0.4658      0.242 0.000 0.432 0.004 0.556 0.008
#> GSM627156     2  0.3594      0.686 0.000 0.804 0.172 0.004 0.020
#> GSM627188     1  0.1651      0.889 0.944 0.000 0.012 0.008 0.036
#> GSM627197     4  0.4491      0.421 0.000 0.364 0.004 0.624 0.008
#> GSM627173     2  0.0579      0.745 0.000 0.984 0.008 0.008 0.000
#> GSM627179     2  0.2248      0.736 0.000 0.900 0.012 0.088 0.000
#> GSM627208     3  0.4430      0.329 0.000 0.360 0.628 0.000 0.012
#> GSM627215     2  0.5482      0.418 0.000 0.572 0.372 0.040 0.016
#> GSM627153     2  0.5222      0.180 0.000 0.512 0.008 0.452 0.028
#> GSM627155     1  0.1173      0.891 0.964 0.000 0.004 0.012 0.020
#> GSM627165     2  0.4774      0.507 0.000 0.644 0.016 0.328 0.012
#> GSM627168     3  0.4323      0.530 0.332 0.000 0.656 0.000 0.012
#> GSM627183     3  0.2577      0.772 0.084 0.016 0.892 0.000 0.008
#> GSM627144     3  0.2228      0.720 0.000 0.048 0.912 0.000 0.040
#> GSM627158     1  0.0727      0.895 0.980 0.000 0.012 0.004 0.004
#> GSM627196     2  0.0579      0.745 0.000 0.984 0.008 0.008 0.000
#> GSM627142     5  0.2462      0.786 0.000 0.000 0.008 0.112 0.880
#> GSM627182     3  0.4430      0.329 0.000 0.360 0.628 0.000 0.012
#> GSM627202     3  0.4354      0.473 0.368 0.000 0.624 0.000 0.008
#> GSM627141     3  0.5033      0.734 0.156 0.092 0.736 0.004 0.012
#> GSM627143     2  0.5897      0.667 0.008 0.684 0.140 0.140 0.028
#> GSM627145     3  0.1483      0.760 0.028 0.008 0.952 0.000 0.012
#> GSM627152     3  0.3727      0.721 0.048 0.004 0.832 0.008 0.108
#> GSM627200     3  0.3180      0.752 0.064 0.004 0.868 0.004 0.060
#> GSM627159     5  0.2329      0.778 0.000 0.000 0.000 0.124 0.876
#> GSM627164     2  0.3553      0.721 0.000 0.832 0.128 0.016 0.024
#> GSM627138     1  0.1282      0.883 0.952 0.000 0.044 0.004 0.000
#> GSM627175     4  0.1725      0.753 0.000 0.020 0.000 0.936 0.044
#> GSM627150     3  0.1651      0.765 0.036 0.012 0.944 0.000 0.008
#> GSM627166     1  0.6394      0.485 0.592 0.000 0.272 0.076 0.060
#> GSM627186     2  0.3594      0.686 0.000 0.804 0.172 0.004 0.020
#> GSM627139     3  0.7557      0.363 0.004 0.176 0.536 0.136 0.148
#> GSM627181     4  0.4491      0.421 0.000 0.364 0.004 0.624 0.008
#> GSM627205     2  0.4333      0.705 0.000 0.784 0.144 0.056 0.016
#> GSM627214     2  0.5897      0.110 0.000 0.476 0.008 0.440 0.076
#> GSM627180     2  0.5482      0.418 0.000 0.572 0.372 0.040 0.016
#> GSM627172     2  0.4847      0.615 0.000 0.708 0.040 0.236 0.016
#> GSM627184     1  0.1173      0.891 0.964 0.000 0.004 0.012 0.020
#> GSM627193     2  0.0579      0.745 0.000 0.984 0.008 0.008 0.000
#> GSM627191     4  0.7372      0.543 0.052 0.156 0.044 0.588 0.160
#> GSM627176     3  0.6487      0.446 0.020 0.280 0.580 0.012 0.108
#> GSM627194     2  0.2305      0.741 0.000 0.896 0.012 0.092 0.000
#> GSM627154     4  0.2036      0.752 0.000 0.024 0.000 0.920 0.056
#> GSM627187     2  0.5869      0.387 0.060 0.592 0.324 0.004 0.020
#> GSM627198     4  0.2193      0.748 0.000 0.060 0.000 0.912 0.028
#> GSM627160     4  0.7411      0.425 0.052 0.280 0.028 0.528 0.112
#> GSM627185     1  0.0898      0.894 0.972 0.000 0.020 0.000 0.008
#> GSM627206     3  0.2228      0.772 0.076 0.012 0.908 0.000 0.004
#> GSM627161     1  0.0727      0.895 0.980 0.000 0.012 0.004 0.004
#> GSM627162     2  0.5175      0.621 0.016 0.700 0.236 0.016 0.032
#> GSM627210     1  0.1981      0.873 0.920 0.000 0.064 0.000 0.016
#> GSM627189     2  0.0579      0.745 0.000 0.984 0.008 0.008 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3    p4    p5    p6
#> GSM627128     6  0.3945     0.2295 0.000 0.000 NA 0.380 0.000 0.612
#> GSM627110     5  0.3577     0.7390 0.056 0.004 NA 0.000 0.808 0.004
#> GSM627132     1  0.1531     0.7642 0.928 0.000 NA 0.000 0.000 0.004
#> GSM627107     6  0.2434     0.7992 0.000 0.000 NA 0.032 0.056 0.896
#> GSM627103     2  0.2510     0.7188 0.000 0.884 NA 0.080 0.008 0.000
#> GSM627114     5  0.4993     0.6985 0.064 0.060 NA 0.000 0.704 0.000
#> GSM627134     4  0.4047     0.6926 0.000 0.080 NA 0.804 0.008 0.072
#> GSM627137     2  0.4833     0.5275 0.000 0.640 NA 0.288 0.012 0.000
#> GSM627148     5  0.1268     0.7586 0.000 0.008 NA 0.000 0.952 0.004
#> GSM627101     4  0.4395     0.2632 0.000 0.000 NA 0.568 0.000 0.404
#> GSM627130     6  0.1082     0.7950 0.000 0.000 NA 0.040 0.000 0.956
#> GSM627071     5  0.0603     0.7525 0.000 0.000 NA 0.000 0.980 0.004
#> GSM627118     4  0.3216     0.6988 0.000 0.012 NA 0.848 0.008 0.096
#> GSM627094     2  0.0291     0.7305 0.000 0.992 NA 0.000 0.004 0.000
#> GSM627122     5  0.2335     0.7456 0.024 0.000 NA 0.000 0.904 0.028
#> GSM627115     2  0.2456     0.7197 0.000 0.888 NA 0.076 0.008 0.000
#> GSM627125     6  0.1010     0.7959 0.000 0.000 NA 0.036 0.000 0.960
#> GSM627174     2  0.3835     0.7113 0.000 0.796 NA 0.116 0.016 0.000
#> GSM627102     2  0.5339     0.5625 0.000 0.652 NA 0.188 0.016 0.004
#> GSM627073     5  0.2176     0.7235 0.000 0.080 NA 0.000 0.896 0.000
#> GSM627108     2  0.0291     0.7305 0.000 0.992 NA 0.000 0.004 0.000
#> GSM627126     1  0.3632     0.7369 0.752 0.000 NA 0.004 0.008 0.008
#> GSM627078     4  0.3253     0.7097 0.000 0.004 NA 0.832 0.000 0.068
#> GSM627090     6  0.5111     0.2125 0.000 0.000 NA 0.004 0.436 0.492
#> GSM627099     2  0.4495     0.5755 0.000 0.676 NA 0.276 0.012 0.004
#> GSM627105     6  0.1010     0.7959 0.000 0.000 NA 0.036 0.000 0.960
#> GSM627117     2  0.6207     0.4180 0.016 0.508 NA 0.004 0.216 0.000
#> GSM627121     6  0.2434     0.7992 0.000 0.000 NA 0.032 0.056 0.896
#> GSM627127     4  0.1801     0.7122 0.000 0.004 NA 0.924 0.000 0.056
#> GSM627087     2  0.2456     0.7197 0.000 0.888 NA 0.076 0.008 0.000
#> GSM627089     5  0.1327     0.7573 0.000 0.000 NA 0.000 0.936 0.000
#> GSM627092     2  0.6879     0.5638 0.000 0.568 NA 0.080 0.128 0.044
#> GSM627076     6  0.5058     0.3293 0.000 0.000 NA 0.004 0.392 0.536
#> GSM627136     5  0.4254     0.7286 0.032 0.052 NA 0.000 0.760 0.000
#> GSM627081     6  0.2434     0.7992 0.000 0.000 NA 0.032 0.056 0.896
#> GSM627091     2  0.4495     0.5755 0.000 0.676 NA 0.276 0.012 0.004
#> GSM627097     4  0.7773     0.3977 0.000 0.052 NA 0.456 0.144 0.140
#> GSM627072     5  0.1668     0.7597 0.008 0.004 NA 0.000 0.928 0.000
#> GSM627080     1  0.0713     0.7711 0.972 0.000 NA 0.000 0.000 0.000
#> GSM627088     5  0.4274     0.7313 0.036 0.056 NA 0.000 0.764 0.000
#> GSM627109     1  0.4264     0.6979 0.732 0.000 NA 0.000 0.080 0.004
#> GSM627111     1  0.1411     0.7633 0.936 0.000 NA 0.000 0.000 0.004
#> GSM627113     1  0.5296    -0.0488 0.452 0.000 NA 0.000 0.448 0.000
#> GSM627133     2  0.5414     0.5872 0.000 0.640 NA 0.040 0.244 0.004
#> GSM627177     5  0.7119     0.3902 0.116 0.000 NA 0.032 0.464 0.076
#> GSM627086     2  0.3128     0.6679 0.000 0.812 NA 0.168 0.008 0.000
#> GSM627095     1  0.3632     0.7369 0.752 0.000 NA 0.004 0.008 0.008
#> GSM627079     5  0.2532     0.7351 0.020 0.000 NA 0.000 0.892 0.052
#> GSM627082     6  0.1152     0.7935 0.000 0.000 NA 0.044 0.000 0.952
#> GSM627074     1  0.4694     0.6640 0.684 0.000 NA 0.000 0.100 0.004
#> GSM627077     5  0.3368     0.7432 0.060 0.000 NA 0.000 0.820 0.004
#> GSM627093     1  0.4694     0.6640 0.684 0.000 NA 0.000 0.100 0.004
#> GSM627120     2  0.5464     0.5196 0.000 0.636 NA 0.116 0.012 0.224
#> GSM627124     4  0.3253     0.7097 0.000 0.004 NA 0.832 0.000 0.068
#> GSM627075     2  0.0551     0.7302 0.000 0.984 NA 0.004 0.008 0.000
#> GSM627085     4  0.3047     0.7167 0.000 0.008 NA 0.852 0.000 0.060
#> GSM627119     1  0.4313     0.6946 0.728 0.000 NA 0.000 0.084 0.004
#> GSM627116     5  0.7119     0.3902 0.116 0.000 NA 0.032 0.464 0.076
#> GSM627084     5  0.4451     0.7238 0.036 0.056 NA 0.000 0.744 0.000
#> GSM627096     4  0.3216     0.6988 0.000 0.012 NA 0.848 0.008 0.096
#> GSM627100     6  0.4773     0.5107 0.000 0.000 NA 0.004 0.296 0.632
#> GSM627112     4  0.3782     0.6873 0.000 0.000 NA 0.780 0.000 0.096
#> GSM627083     1  0.7961     0.1432 0.416 0.052 NA 0.264 0.016 0.064
#> GSM627098     5  0.4451     0.7238 0.036 0.056 NA 0.000 0.744 0.000
#> GSM627104     1  0.4264     0.6979 0.732 0.000 NA 0.000 0.080 0.004
#> GSM627131     5  0.2401     0.7386 0.020 0.000 NA 0.000 0.900 0.044
#> GSM627106     6  0.2434     0.7992 0.000 0.000 NA 0.032 0.056 0.896
#> GSM627123     1  0.3799     0.7460 0.756 0.000 NA 0.000 0.024 0.012
#> GSM627129     4  0.4771     0.6703 0.000 0.112 NA 0.748 0.008 0.084
#> GSM627216     2  0.5414     0.5872 0.000 0.640 NA 0.040 0.244 0.004
#> GSM627212     2  0.2549     0.7213 0.000 0.884 NA 0.072 0.008 0.000
#> GSM627190     2  0.6191     0.4246 0.016 0.512 NA 0.004 0.216 0.000
#> GSM627169     2  0.4149     0.6466 0.000 0.728 NA 0.004 0.056 0.000
#> GSM627167     2  0.6510     0.5157 0.000 0.572 NA 0.200 0.024 0.048
#> GSM627192     1  0.3632     0.7369 0.752 0.000 NA 0.004 0.008 0.008
#> GSM627203     5  0.2750     0.6951 0.000 0.000 NA 0.000 0.844 0.020
#> GSM627151     5  0.7911     0.3223 0.000 0.128 NA 0.108 0.472 0.128
#> GSM627163     1  0.1970     0.7663 0.900 0.000 NA 0.000 0.000 0.008
#> GSM627211     2  0.0291     0.7305 0.000 0.992 NA 0.000 0.004 0.000
#> GSM627171     2  0.2747     0.7173 0.000 0.860 NA 0.000 0.028 0.004
#> GSM627209     2  0.5136     0.2349 0.000 0.512 NA 0.432 0.008 0.032
#> GSM627135     1  0.5638     0.6619 0.576 0.000 NA 0.008 0.108 0.012
#> GSM627170     2  0.4404     0.6259 0.000 0.724 NA 0.196 0.012 0.000
#> GSM627178     5  0.7119     0.3902 0.116 0.000 NA 0.032 0.464 0.076
#> GSM627199     4  0.3174     0.7118 0.000 0.040 NA 0.840 0.000 0.012
#> GSM627213     4  0.3051     0.7058 0.000 0.016 NA 0.864 0.008 0.076
#> GSM627140     4  0.7744     0.4149 0.036 0.244 NA 0.448 0.020 0.060
#> GSM627149     1  0.3231     0.7582 0.800 0.000 NA 0.000 0.012 0.008
#> GSM627147     2  0.7019     0.5491 0.000 0.556 NA 0.096 0.128 0.044
#> GSM627195     5  0.2750     0.6951 0.000 0.000 NA 0.000 0.844 0.020
#> GSM627204     2  0.0291     0.7305 0.000 0.992 NA 0.000 0.004 0.000
#> GSM627207     2  0.0291     0.7305 0.000 0.992 NA 0.000 0.004 0.000
#> GSM627157     5  0.4764     0.5169 0.272 0.000 NA 0.000 0.640 0.000
#> GSM627201     2  0.3835     0.7113 0.000 0.796 NA 0.116 0.016 0.000
#> GSM627146     4  0.4547     0.2322 0.000 0.420 NA 0.552 0.004 0.004
#> GSM627156     2  0.4149     0.6466 0.000 0.728 NA 0.004 0.056 0.000
#> GSM627188     1  0.3632     0.7369 0.752 0.000 NA 0.004 0.008 0.008
#> GSM627197     4  0.4349     0.4188 0.000 0.340 NA 0.632 0.004 0.004
#> GSM627173     2  0.0291     0.7305 0.000 0.992 NA 0.000 0.004 0.000
#> GSM627179     2  0.2549     0.7213 0.000 0.884 NA 0.072 0.008 0.000
#> GSM627208     5  0.4713     0.3606 0.000 0.320 NA 0.000 0.620 0.004
#> GSM627215     2  0.5774     0.3690 0.000 0.524 NA 0.032 0.364 0.004
#> GSM627153     2  0.5136     0.2349 0.000 0.512 NA 0.432 0.008 0.032
#> GSM627155     1  0.3230     0.7418 0.776 0.000 NA 0.000 0.000 0.012
#> GSM627165     2  0.4969     0.5228 0.000 0.636 NA 0.288 0.012 0.004
#> GSM627168     5  0.4503     0.5665 0.240 0.000 NA 0.000 0.680 0.000
#> GSM627183     5  0.1901     0.7578 0.008 0.004 NA 0.000 0.912 0.000
#> GSM627144     5  0.3037     0.6860 0.000 0.000 NA 0.000 0.808 0.016
#> GSM627158     1  0.2214     0.7700 0.892 0.000 NA 0.000 0.012 0.004
#> GSM627196     2  0.0291     0.7305 0.000 0.992 NA 0.000 0.004 0.000
#> GSM627142     6  0.1049     0.7989 0.000 0.000 NA 0.032 0.008 0.960
#> GSM627182     5  0.4713     0.3606 0.000 0.320 NA 0.000 0.620 0.004
#> GSM627202     5  0.4764     0.5169 0.272 0.000 NA 0.000 0.640 0.000
#> GSM627141     5  0.4760     0.7092 0.052 0.060 NA 0.000 0.724 0.000
#> GSM627143     2  0.6366     0.6259 0.000 0.620 NA 0.108 0.104 0.024
#> GSM627145     5  0.0363     0.7510 0.000 0.000 NA 0.000 0.988 0.000
#> GSM627152     5  0.3091     0.7138 0.020 0.000 NA 0.000 0.852 0.092
#> GSM627200     5  0.2570     0.7411 0.032 0.000 NA 0.000 0.892 0.040
#> GSM627159     6  0.1152     0.7935 0.000 0.000 NA 0.044 0.000 0.952
#> GSM627164     2  0.4101     0.6900 0.000 0.776 NA 0.008 0.072 0.008
#> GSM627138     1  0.2213     0.7637 0.904 0.000 NA 0.000 0.048 0.004
#> GSM627175     4  0.1801     0.7122 0.000 0.004 NA 0.924 0.000 0.056
#> GSM627150     5  0.0603     0.7525 0.000 0.000 NA 0.000 0.980 0.004
#> GSM627166     1  0.6596     0.3770 0.420 0.000 NA 0.028 0.212 0.004
#> GSM627186     2  0.4149     0.6466 0.000 0.728 NA 0.004 0.056 0.000
#> GSM627139     5  0.7911     0.3223 0.000 0.128 NA 0.108 0.472 0.128
#> GSM627181     4  0.4349     0.4188 0.000 0.340 NA 0.632 0.004 0.004
#> GSM627205     2  0.4727     0.6743 0.000 0.740 NA 0.044 0.140 0.004
#> GSM627214     2  0.6005     0.1922 0.000 0.480 NA 0.396 0.008 0.084
#> GSM627180     2  0.5774     0.3690 0.000 0.524 NA 0.032 0.364 0.004
#> GSM627172     2  0.5339     0.5625 0.000 0.652 NA 0.188 0.016 0.004
#> GSM627184     1  0.3230     0.7418 0.776 0.000 NA 0.000 0.000 0.012
#> GSM627193     2  0.0291     0.7305 0.000 0.992 NA 0.000 0.004 0.000
#> GSM627191     4  0.7706     0.5342 0.036 0.132 NA 0.508 0.028 0.100
#> GSM627176     5  0.7064     0.3969 0.008 0.204 NA 0.004 0.480 0.072
#> GSM627194     2  0.2308     0.7283 0.000 0.896 NA 0.076 0.016 0.000
#> GSM627154     4  0.3047     0.7167 0.000 0.008 NA 0.852 0.000 0.060
#> GSM627187     2  0.6191     0.4246 0.016 0.512 NA 0.004 0.216 0.000
#> GSM627198     4  0.3174     0.7118 0.000 0.040 NA 0.840 0.000 0.012
#> GSM627160     4  0.7797     0.4198 0.036 0.240 NA 0.448 0.024 0.060
#> GSM627185     1  0.2476     0.7580 0.880 0.000 NA 0.000 0.024 0.004
#> GSM627206     5  0.1327     0.7573 0.000 0.000 NA 0.000 0.936 0.000
#> GSM627161     1  0.2214     0.7700 0.892 0.000 NA 0.000 0.012 0.004
#> GSM627162     2  0.5569     0.6007 0.004 0.640 NA 0.012 0.156 0.008
#> GSM627210     1  0.4313     0.6946 0.728 0.000 NA 0.000 0.084 0.004
#> GSM627189     2  0.0291     0.7305 0.000 0.992 NA 0.000 0.004 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) age(p) other(p) k
#> CV:hclust 139           1.0000  0.806  0.18535 2
#> CV:hclust 121           0.0152  0.561  0.00946 3
#> CV:hclust 113           0.0610  0.676  0.00159 4
#> CV:hclust 114           0.1196  0.765  0.00721 5
#> CV:hclust 117           0.1019  0.753  0.01817 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 146 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.966       0.987         0.4989 0.500   0.500
#> 3 3 0.561           0.465       0.685         0.3114 0.850   0.707
#> 4 4 0.824           0.876       0.928         0.1395 0.736   0.408
#> 5 5 0.742           0.662       0.801         0.0566 0.963   0.857
#> 6 6 0.716           0.702       0.780         0.0408 0.910   0.644

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM627128     2  0.0000      0.995 0.000 1.000
#> GSM627110     1  0.0000      0.976 1.000 0.000
#> GSM627132     1  0.0000      0.976 1.000 0.000
#> GSM627107     2  0.0000      0.995 0.000 1.000
#> GSM627103     2  0.0000      0.995 0.000 1.000
#> GSM627114     1  0.0000      0.976 1.000 0.000
#> GSM627134     2  0.0000      0.995 0.000 1.000
#> GSM627137     2  0.0000      0.995 0.000 1.000
#> GSM627148     1  0.0000      0.976 1.000 0.000
#> GSM627101     2  0.0000      0.995 0.000 1.000
#> GSM627130     2  0.0000      0.995 0.000 1.000
#> GSM627071     1  0.0000      0.976 1.000 0.000
#> GSM627118     2  0.0000      0.995 0.000 1.000
#> GSM627094     2  0.0000      0.995 0.000 1.000
#> GSM627122     1  0.0000      0.976 1.000 0.000
#> GSM627115     2  0.0000      0.995 0.000 1.000
#> GSM627125     2  0.0000      0.995 0.000 1.000
#> GSM627174     2  0.0000      0.995 0.000 1.000
#> GSM627102     2  0.0000      0.995 0.000 1.000
#> GSM627073     2  0.2603      0.950 0.044 0.956
#> GSM627108     2  0.0000      0.995 0.000 1.000
#> GSM627126     1  0.0000      0.976 1.000 0.000
#> GSM627078     2  0.0000      0.995 0.000 1.000
#> GSM627090     1  0.0000      0.976 1.000 0.000
#> GSM627099     2  0.0000      0.995 0.000 1.000
#> GSM627105     2  0.0000      0.995 0.000 1.000
#> GSM627117     1  0.0000      0.976 1.000 0.000
#> GSM627121     2  0.0000      0.995 0.000 1.000
#> GSM627127     2  0.0000      0.995 0.000 1.000
#> GSM627087     2  0.0000      0.995 0.000 1.000
#> GSM627089     1  0.0000      0.976 1.000 0.000
#> GSM627092     2  0.0000      0.995 0.000 1.000
#> GSM627076     1  0.0000      0.976 1.000 0.000
#> GSM627136     1  0.0000      0.976 1.000 0.000
#> GSM627081     2  0.0000      0.995 0.000 1.000
#> GSM627091     2  0.0000      0.995 0.000 1.000
#> GSM627097     2  0.0000      0.995 0.000 1.000
#> GSM627072     1  0.0000      0.976 1.000 0.000
#> GSM627080     1  0.0000      0.976 1.000 0.000
#> GSM627088     1  0.0000      0.976 1.000 0.000
#> GSM627109     1  0.0000      0.976 1.000 0.000
#> GSM627111     1  0.0000      0.976 1.000 0.000
#> GSM627113     1  0.0000      0.976 1.000 0.000
#> GSM627133     2  0.0000      0.995 0.000 1.000
#> GSM627177     1  0.0000      0.976 1.000 0.000
#> GSM627086     2  0.0000      0.995 0.000 1.000
#> GSM627095     1  0.0000      0.976 1.000 0.000
#> GSM627079     1  0.0000      0.976 1.000 0.000
#> GSM627082     2  0.0000      0.995 0.000 1.000
#> GSM627074     1  0.0000      0.976 1.000 0.000
#> GSM627077     1  0.0000      0.976 1.000 0.000
#> GSM627093     1  0.0000      0.976 1.000 0.000
#> GSM627120     2  0.0000      0.995 0.000 1.000
#> GSM627124     2  0.0000      0.995 0.000 1.000
#> GSM627075     2  0.0000      0.995 0.000 1.000
#> GSM627085     2  0.0000      0.995 0.000 1.000
#> GSM627119     1  0.0000      0.976 1.000 0.000
#> GSM627116     2  0.0000      0.995 0.000 1.000
#> GSM627084     1  0.0000      0.976 1.000 0.000
#> GSM627096     2  0.0000      0.995 0.000 1.000
#> GSM627100     1  0.8267      0.654 0.740 0.260
#> GSM627112     2  0.0000      0.995 0.000 1.000
#> GSM627083     1  0.5294      0.854 0.880 0.120
#> GSM627098     1  0.0000      0.976 1.000 0.000
#> GSM627104     1  0.0000      0.976 1.000 0.000
#> GSM627131     1  0.0000      0.976 1.000 0.000
#> GSM627106     2  0.0000      0.995 0.000 1.000
#> GSM627123     1  0.0000      0.976 1.000 0.000
#> GSM627129     2  0.0000      0.995 0.000 1.000
#> GSM627216     2  0.0000      0.995 0.000 1.000
#> GSM627212     2  0.0000      0.995 0.000 1.000
#> GSM627190     1  0.0000      0.976 1.000 0.000
#> GSM627169     1  0.9963      0.152 0.536 0.464
#> GSM627167     2  0.0000      0.995 0.000 1.000
#> GSM627192     1  0.0000      0.976 1.000 0.000
#> GSM627203     1  0.0000      0.976 1.000 0.000
#> GSM627151     2  0.0000      0.995 0.000 1.000
#> GSM627163     1  0.0000      0.976 1.000 0.000
#> GSM627211     2  0.0000      0.995 0.000 1.000
#> GSM627171     2  0.0000      0.995 0.000 1.000
#> GSM627209     2  0.0000      0.995 0.000 1.000
#> GSM627135     1  0.0000      0.976 1.000 0.000
#> GSM627170     2  0.0000      0.995 0.000 1.000
#> GSM627178     1  0.0000      0.976 1.000 0.000
#> GSM627199     2  0.0000      0.995 0.000 1.000
#> GSM627213     2  0.0000      0.995 0.000 1.000
#> GSM627140     2  0.0000      0.995 0.000 1.000
#> GSM627149     1  0.0000      0.976 1.000 0.000
#> GSM627147     2  0.0000      0.995 0.000 1.000
#> GSM627195     1  0.1184      0.962 0.984 0.016
#> GSM627204     2  0.0000      0.995 0.000 1.000
#> GSM627207     2  0.0000      0.995 0.000 1.000
#> GSM627157     1  0.0000      0.976 1.000 0.000
#> GSM627201     2  0.0000      0.995 0.000 1.000
#> GSM627146     2  0.0000      0.995 0.000 1.000
#> GSM627156     2  0.0000      0.995 0.000 1.000
#> GSM627188     1  0.0000      0.976 1.000 0.000
#> GSM627197     2  0.0000      0.995 0.000 1.000
#> GSM627173     2  0.0000      0.995 0.000 1.000
#> GSM627179     2  0.0000      0.995 0.000 1.000
#> GSM627208     2  0.0000      0.995 0.000 1.000
#> GSM627215     2  0.0000      0.995 0.000 1.000
#> GSM627153     2  0.0000      0.995 0.000 1.000
#> GSM627155     1  0.0000      0.976 1.000 0.000
#> GSM627165     2  0.0000      0.995 0.000 1.000
#> GSM627168     1  0.0000      0.976 1.000 0.000
#> GSM627183     1  0.0000      0.976 1.000 0.000
#> GSM627144     1  0.0000      0.976 1.000 0.000
#> GSM627158     1  0.0000      0.976 1.000 0.000
#> GSM627196     2  0.0000      0.995 0.000 1.000
#> GSM627142     1  0.8144      0.667 0.748 0.252
#> GSM627182     1  0.0000      0.976 1.000 0.000
#> GSM627202     1  0.0000      0.976 1.000 0.000
#> GSM627141     1  0.0000      0.976 1.000 0.000
#> GSM627143     2  0.0000      0.995 0.000 1.000
#> GSM627145     1  0.0000      0.976 1.000 0.000
#> GSM627152     1  0.0000      0.976 1.000 0.000
#> GSM627200     1  0.0000      0.976 1.000 0.000
#> GSM627159     2  0.0000      0.995 0.000 1.000
#> GSM627164     2  0.0000      0.995 0.000 1.000
#> GSM627138     1  0.0000      0.976 1.000 0.000
#> GSM627175     2  0.0000      0.995 0.000 1.000
#> GSM627150     1  0.0938      0.965 0.988 0.012
#> GSM627166     1  0.0000      0.976 1.000 0.000
#> GSM627186     1  0.9963      0.152 0.536 0.464
#> GSM627139     2  0.0000      0.995 0.000 1.000
#> GSM627181     2  0.0000      0.995 0.000 1.000
#> GSM627205     2  0.0000      0.995 0.000 1.000
#> GSM627214     2  0.0000      0.995 0.000 1.000
#> GSM627180     2  0.0000      0.995 0.000 1.000
#> GSM627172     2  0.0000      0.995 0.000 1.000
#> GSM627184     1  0.0000      0.976 1.000 0.000
#> GSM627193     2  0.0000      0.995 0.000 1.000
#> GSM627191     2  0.0000      0.995 0.000 1.000
#> GSM627176     1  0.0000      0.976 1.000 0.000
#> GSM627194     2  0.0000      0.995 0.000 1.000
#> GSM627154     2  0.0000      0.995 0.000 1.000
#> GSM627187     1  0.0000      0.976 1.000 0.000
#> GSM627198     2  0.0000      0.995 0.000 1.000
#> GSM627160     2  0.8763      0.562 0.296 0.704
#> GSM627185     1  0.0000      0.976 1.000 0.000
#> GSM627206     1  0.0000      0.976 1.000 0.000
#> GSM627161     1  0.0000      0.976 1.000 0.000
#> GSM627162     1  0.0000      0.976 1.000 0.000
#> GSM627210     1  0.0000      0.976 1.000 0.000
#> GSM627189     2  0.0000      0.995 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM627128     2  0.5760    0.21251 0.000 0.672 0.328
#> GSM627110     1  0.5098    0.71618 0.752 0.000 0.248
#> GSM627132     1  0.0000    0.80486 1.000 0.000 0.000
#> GSM627107     2  0.6291   -0.13687 0.000 0.532 0.468
#> GSM627103     2  0.6280    0.48227 0.000 0.540 0.460
#> GSM627114     1  0.5098    0.71618 0.752 0.000 0.248
#> GSM627134     2  0.0592    0.52032 0.000 0.988 0.012
#> GSM627137     2  0.6244    0.49792 0.000 0.560 0.440
#> GSM627148     1  0.6280    0.41220 0.540 0.000 0.460
#> GSM627101     2  0.5291    0.28110 0.000 0.732 0.268
#> GSM627130     2  0.5650    0.23781 0.000 0.688 0.312
#> GSM627071     1  0.6168    0.50711 0.588 0.000 0.412
#> GSM627118     2  0.4654    0.35098 0.000 0.792 0.208
#> GSM627094     2  0.6295    0.47093 0.000 0.528 0.472
#> GSM627122     3  0.6944   -0.33595 0.468 0.016 0.516
#> GSM627115     2  0.6305    0.45808 0.000 0.516 0.484
#> GSM627125     2  0.5760    0.21251 0.000 0.672 0.328
#> GSM627174     2  0.6244    0.49792 0.000 0.560 0.440
#> GSM627102     2  0.6244    0.49792 0.000 0.560 0.440
#> GSM627073     3  0.9340    0.22315 0.264 0.220 0.516
#> GSM627108     2  0.6305    0.45808 0.000 0.516 0.484
#> GSM627126     1  0.2165    0.78225 0.936 0.000 0.064
#> GSM627078     2  0.0237    0.52743 0.000 0.996 0.004
#> GSM627090     3  0.6897   -0.27943 0.436 0.016 0.548
#> GSM627099     2  0.2261    0.52818 0.000 0.932 0.068
#> GSM627105     2  0.5760    0.21251 0.000 0.672 0.328
#> GSM627117     1  0.5098    0.71618 0.752 0.000 0.248
#> GSM627121     2  0.6308   -0.17965 0.000 0.508 0.492
#> GSM627127     2  0.0000    0.52607 0.000 1.000 0.000
#> GSM627087     2  0.6305    0.45808 0.000 0.516 0.484
#> GSM627089     1  0.6095    0.54085 0.608 0.000 0.392
#> GSM627092     2  0.6305    0.45808 0.000 0.516 0.484
#> GSM627076     3  0.9208    0.18955 0.244 0.220 0.536
#> GSM627136     1  0.5098    0.71618 0.752 0.000 0.248
#> GSM627081     3  0.7578    0.21056 0.040 0.460 0.500
#> GSM627091     2  0.6244    0.49792 0.000 0.560 0.440
#> GSM627097     2  0.1031    0.51378 0.000 0.976 0.024
#> GSM627072     1  0.6215    0.47805 0.572 0.000 0.428
#> GSM627080     1  0.0747    0.80135 0.984 0.000 0.016
#> GSM627088     1  0.5098    0.71618 0.752 0.000 0.248
#> GSM627109     1  0.0000    0.80486 1.000 0.000 0.000
#> GSM627111     1  0.0000    0.80486 1.000 0.000 0.000
#> GSM627113     1  0.1643    0.80404 0.956 0.000 0.044
#> GSM627133     3  0.6512   -0.01612 0.024 0.300 0.676
#> GSM627177     1  0.6180    0.49995 0.584 0.000 0.416
#> GSM627086     2  0.6244    0.49792 0.000 0.560 0.440
#> GSM627095     1  0.2066    0.78365 0.940 0.000 0.060
#> GSM627079     1  0.6955    0.30487 0.496 0.016 0.488
#> GSM627082     2  0.5760    0.21251 0.000 0.672 0.328
#> GSM627074     1  0.0237    0.80568 0.996 0.000 0.004
#> GSM627077     1  0.3686    0.78214 0.860 0.000 0.140
#> GSM627093     1  0.0592    0.80634 0.988 0.000 0.012
#> GSM627120     2  0.3192    0.46518 0.000 0.888 0.112
#> GSM627124     2  0.0747    0.52999 0.000 0.984 0.016
#> GSM627075     2  0.6305    0.45808 0.000 0.516 0.484
#> GSM627085     2  0.0237    0.52743 0.000 0.996 0.004
#> GSM627119     1  0.0592    0.80634 0.988 0.000 0.012
#> GSM627116     2  0.4555    0.36334 0.000 0.800 0.200
#> GSM627084     1  0.0237    0.80568 0.996 0.000 0.004
#> GSM627096     2  0.4654    0.35098 0.000 0.792 0.208
#> GSM627100     3  0.6299    0.15076 0.000 0.476 0.524
#> GSM627112     2  0.3879    0.42413 0.000 0.848 0.152
#> GSM627083     1  0.3406    0.75896 0.904 0.028 0.068
#> GSM627098     1  0.0424    0.80616 0.992 0.000 0.008
#> GSM627104     1  0.0000    0.80486 1.000 0.000 0.000
#> GSM627131     1  0.5291    0.69652 0.732 0.000 0.268
#> GSM627106     3  0.7665    0.21600 0.044 0.456 0.500
#> GSM627123     1  0.2165    0.78225 0.936 0.000 0.064
#> GSM627129     2  0.0000    0.52607 0.000 1.000 0.000
#> GSM627216     3  0.6026   -0.18621 0.000 0.376 0.624
#> GSM627212     2  0.6244    0.49792 0.000 0.560 0.440
#> GSM627190     1  0.5098    0.71618 0.752 0.000 0.248
#> GSM627169     3  0.7218   -0.01113 0.052 0.296 0.652
#> GSM627167     2  0.2537    0.47769 0.000 0.920 0.080
#> GSM627192     1  0.2261    0.77994 0.932 0.000 0.068
#> GSM627203     3  0.8984    0.00681 0.368 0.136 0.496
#> GSM627151     2  0.3686    0.51424 0.000 0.860 0.140
#> GSM627163     1  0.0424    0.80347 0.992 0.000 0.008
#> GSM627211     2  0.6244    0.49792 0.000 0.560 0.440
#> GSM627171     3  0.5948   -0.14729 0.000 0.360 0.640
#> GSM627209     2  0.0747    0.52999 0.000 0.984 0.016
#> GSM627135     1  0.2165    0.78225 0.936 0.000 0.064
#> GSM627170     2  0.6305    0.45808 0.000 0.516 0.484
#> GSM627178     1  0.3686    0.77933 0.860 0.000 0.140
#> GSM627199     2  0.4750    0.51266 0.000 0.784 0.216
#> GSM627213     2  0.1964    0.49459 0.000 0.944 0.056
#> GSM627140     2  0.2356    0.48541 0.000 0.928 0.072
#> GSM627149     1  0.2165    0.78225 0.936 0.000 0.064
#> GSM627147     2  0.6225    0.49907 0.000 0.568 0.432
#> GSM627195     3  0.9229    0.09238 0.336 0.168 0.496
#> GSM627204     2  0.6244    0.49792 0.000 0.560 0.440
#> GSM627207     2  0.6305    0.45808 0.000 0.516 0.484
#> GSM627157     1  0.0424    0.80616 0.992 0.000 0.008
#> GSM627201     2  0.6244    0.49792 0.000 0.560 0.440
#> GSM627146     2  0.6244    0.49792 0.000 0.560 0.440
#> GSM627156     3  0.6769   -0.05999 0.028 0.320 0.652
#> GSM627188     1  0.2261    0.77994 0.932 0.000 0.068
#> GSM627197     2  0.6244    0.49792 0.000 0.560 0.440
#> GSM627173     2  0.6295    0.47093 0.000 0.528 0.472
#> GSM627179     2  0.6305    0.45808 0.000 0.516 0.484
#> GSM627208     3  0.6847    0.08541 0.060 0.232 0.708
#> GSM627215     3  0.6026   -0.18621 0.000 0.376 0.624
#> GSM627153     2  0.0747    0.52999 0.000 0.984 0.016
#> GSM627155     1  0.2261    0.77994 0.932 0.000 0.068
#> GSM627165     2  0.2796    0.46768 0.000 0.908 0.092
#> GSM627168     1  0.5397    0.68798 0.720 0.000 0.280
#> GSM627183     1  0.4654    0.74135 0.792 0.000 0.208
#> GSM627144     1  0.6955    0.30719 0.496 0.016 0.488
#> GSM627158     1  0.0892    0.80012 0.980 0.000 0.020
#> GSM627196     2  0.6244    0.49792 0.000 0.560 0.440
#> GSM627142     3  0.6307    0.13347 0.000 0.488 0.512
#> GSM627182     3  0.6192    0.29864 0.176 0.060 0.764
#> GSM627202     1  0.4399    0.76574 0.812 0.000 0.188
#> GSM627141     1  0.5098    0.71618 0.752 0.000 0.248
#> GSM627143     2  0.5988    0.48657 0.000 0.632 0.368
#> GSM627145     1  0.6215    0.47805 0.572 0.000 0.428
#> GSM627152     3  0.6948   -0.33613 0.472 0.016 0.512
#> GSM627200     1  0.3619    0.77759 0.864 0.000 0.136
#> GSM627159     2  0.5760    0.21251 0.000 0.672 0.328
#> GSM627164     3  0.6215   -0.31557 0.000 0.428 0.572
#> GSM627138     1  0.0000    0.80486 1.000 0.000 0.000
#> GSM627175     2  0.0237    0.52743 0.000 0.996 0.004
#> GSM627150     3  0.9229    0.09238 0.336 0.168 0.496
#> GSM627166     1  0.0000    0.80486 1.000 0.000 0.000
#> GSM627186     3  0.7218   -0.01113 0.052 0.296 0.652
#> GSM627139     2  0.6180    0.02701 0.000 0.584 0.416
#> GSM627181     2  0.6244    0.49792 0.000 0.560 0.440
#> GSM627205     2  0.6307    0.45206 0.000 0.512 0.488
#> GSM627214     2  0.0747    0.52999 0.000 0.984 0.016
#> GSM627180     3  0.6806    0.28811 0.060 0.228 0.712
#> GSM627172     2  0.6244    0.49792 0.000 0.560 0.440
#> GSM627184     1  0.2261    0.77994 0.932 0.000 0.068
#> GSM627193     2  0.6307    0.45172 0.000 0.512 0.488
#> GSM627191     2  0.4002    0.41685 0.000 0.840 0.160
#> GSM627176     3  0.6654   -0.32150 0.456 0.008 0.536
#> GSM627194     2  0.6280    0.48227 0.000 0.540 0.460
#> GSM627154     2  0.0000    0.52607 0.000 1.000 0.000
#> GSM627187     1  0.5058    0.71860 0.756 0.000 0.244
#> GSM627198     2  0.0747    0.52999 0.000 0.984 0.016
#> GSM627160     2  0.5902    0.22725 0.004 0.680 0.316
#> GSM627185     1  0.0000    0.80486 1.000 0.000 0.000
#> GSM627206     1  0.5678    0.64769 0.684 0.000 0.316
#> GSM627161     1  0.1860    0.78841 0.948 0.000 0.052
#> GSM627162     1  0.5058    0.71883 0.756 0.000 0.244
#> GSM627210     1  0.1529    0.80457 0.960 0.000 0.040
#> GSM627189     2  0.6295    0.47093 0.000 0.528 0.472

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM627128     4  0.0779     0.8799 0.004 0.000 0.016 0.980
#> GSM627110     3  0.1004     0.9022 0.024 0.004 0.972 0.000
#> GSM627132     1  0.0188     0.9320 0.996 0.000 0.004 0.000
#> GSM627107     4  0.1474     0.8678 0.000 0.000 0.052 0.948
#> GSM627103     2  0.0188     0.9705 0.000 0.996 0.000 0.004
#> GSM627114     3  0.1576     0.8939 0.048 0.004 0.948 0.000
#> GSM627134     4  0.3024     0.8964 0.000 0.148 0.000 0.852
#> GSM627137     2  0.0188     0.9705 0.000 0.996 0.000 0.004
#> GSM627148     3  0.0000     0.9061 0.000 0.000 1.000 0.000
#> GSM627101     4  0.0804     0.8874 0.000 0.008 0.012 0.980
#> GSM627130     4  0.0376     0.8804 0.004 0.000 0.004 0.992
#> GSM627071     3  0.0000     0.9061 0.000 0.000 1.000 0.000
#> GSM627118     4  0.1489     0.9021 0.000 0.044 0.004 0.952
#> GSM627094     2  0.0000     0.9705 0.000 1.000 0.000 0.000
#> GSM627122     3  0.2714     0.8598 0.004 0.000 0.884 0.112
#> GSM627115     2  0.0000     0.9705 0.000 1.000 0.000 0.000
#> GSM627125     4  0.0779     0.8799 0.004 0.000 0.016 0.980
#> GSM627174     2  0.0336     0.9694 0.000 0.992 0.000 0.008
#> GSM627102     2  0.0000     0.9705 0.000 1.000 0.000 0.000
#> GSM627073     3  0.0707     0.9033 0.000 0.000 0.980 0.020
#> GSM627108     2  0.0000     0.9705 0.000 1.000 0.000 0.000
#> GSM627126     1  0.0817     0.9290 0.976 0.000 0.000 0.024
#> GSM627078     4  0.3024     0.8964 0.000 0.148 0.000 0.852
#> GSM627090     3  0.2714     0.8574 0.004 0.000 0.884 0.112
#> GSM627099     4  0.3873     0.8143 0.000 0.228 0.000 0.772
#> GSM627105     4  0.0779     0.8799 0.004 0.000 0.016 0.980
#> GSM627117     3  0.1576     0.8939 0.048 0.004 0.948 0.000
#> GSM627121     3  0.4981     0.2003 0.000 0.000 0.536 0.464
#> GSM627127     4  0.3024     0.8964 0.000 0.148 0.000 0.852
#> GSM627087     2  0.0000     0.9705 0.000 1.000 0.000 0.000
#> GSM627089     3  0.0000     0.9061 0.000 0.000 1.000 0.000
#> GSM627092     2  0.0000     0.9705 0.000 1.000 0.000 0.000
#> GSM627076     3  0.2999     0.8441 0.004 0.000 0.864 0.132
#> GSM627136     3  0.1389     0.8951 0.048 0.000 0.952 0.000
#> GSM627081     3  0.2589     0.8558 0.000 0.000 0.884 0.116
#> GSM627091     2  0.0336     0.9694 0.000 0.992 0.000 0.008
#> GSM627097     4  0.2973     0.8978 0.000 0.144 0.000 0.856
#> GSM627072     3  0.0000     0.9061 0.000 0.000 1.000 0.000
#> GSM627080     1  0.0188     0.9320 0.996 0.000 0.004 0.000
#> GSM627088     3  0.0895     0.9030 0.020 0.004 0.976 0.000
#> GSM627109     1  0.0188     0.9320 0.996 0.000 0.004 0.000
#> GSM627111     1  0.0188     0.9320 0.996 0.000 0.004 0.000
#> GSM627113     3  0.4697     0.4243 0.356 0.000 0.644 0.000
#> GSM627133     3  0.3649     0.7200 0.000 0.204 0.796 0.000
#> GSM627177     3  0.0000     0.9061 0.000 0.000 1.000 0.000
#> GSM627086     2  0.0188     0.9705 0.000 0.996 0.000 0.004
#> GSM627095     1  0.0469     0.9309 0.988 0.000 0.000 0.012
#> GSM627079     3  0.1302     0.8959 0.000 0.000 0.956 0.044
#> GSM627082     4  0.0376     0.8804 0.004 0.000 0.004 0.992
#> GSM627074     1  0.2973     0.8265 0.856 0.000 0.144 0.000
#> GSM627077     3  0.2737     0.8595 0.104 0.000 0.888 0.008
#> GSM627093     1  0.4978     0.4047 0.612 0.004 0.384 0.000
#> GSM627120     4  0.2271     0.9075 0.000 0.076 0.008 0.916
#> GSM627124     4  0.3024     0.8964 0.000 0.148 0.000 0.852
#> GSM627075     2  0.0000     0.9705 0.000 1.000 0.000 0.000
#> GSM627085     4  0.3024     0.8964 0.000 0.148 0.000 0.852
#> GSM627119     1  0.4843     0.3759 0.604 0.000 0.396 0.000
#> GSM627116     4  0.2530     0.9068 0.000 0.100 0.004 0.896
#> GSM627084     1  0.1637     0.8990 0.940 0.000 0.060 0.000
#> GSM627096     4  0.1489     0.9021 0.000 0.044 0.004 0.952
#> GSM627100     4  0.5028     0.2217 0.004 0.000 0.400 0.596
#> GSM627112     4  0.1489     0.9006 0.004 0.044 0.000 0.952
#> GSM627083     1  0.1118     0.9219 0.964 0.000 0.000 0.036
#> GSM627098     1  0.3400     0.7787 0.820 0.000 0.180 0.000
#> GSM627104     1  0.0188     0.9320 0.996 0.000 0.004 0.000
#> GSM627131     3  0.2565     0.8787 0.056 0.000 0.912 0.032
#> GSM627106     3  0.2589     0.8558 0.000 0.000 0.884 0.116
#> GSM627123     1  0.0707     0.9304 0.980 0.000 0.000 0.020
#> GSM627129     4  0.2868     0.9002 0.000 0.136 0.000 0.864
#> GSM627216     2  0.1022     0.9478 0.000 0.968 0.032 0.000
#> GSM627212     2  0.0336     0.9694 0.000 0.992 0.000 0.008
#> GSM627190     3  0.1489     0.8958 0.044 0.004 0.952 0.000
#> GSM627169     2  0.3278     0.8432 0.020 0.864 0.116 0.000
#> GSM627167     4  0.2081     0.9077 0.000 0.084 0.000 0.916
#> GSM627192     1  0.0817     0.9290 0.976 0.000 0.000 0.024
#> GSM627203     3  0.1637     0.8889 0.000 0.000 0.940 0.060
#> GSM627151     4  0.6906     0.6043 0.000 0.264 0.156 0.580
#> GSM627163     1  0.0188     0.9320 0.996 0.000 0.004 0.000
#> GSM627211     2  0.0188     0.9705 0.000 0.996 0.000 0.004
#> GSM627171     2  0.2149     0.8958 0.000 0.912 0.088 0.000
#> GSM627209     4  0.3024     0.8964 0.000 0.148 0.000 0.852
#> GSM627135     1  0.0707     0.9304 0.980 0.000 0.000 0.020
#> GSM627170     2  0.0336     0.9694 0.000 0.992 0.000 0.008
#> GSM627178     3  0.5768     0.0818 0.456 0.000 0.516 0.028
#> GSM627199     4  0.3764     0.8298 0.000 0.216 0.000 0.784
#> GSM627213     4  0.2281     0.9074 0.000 0.096 0.000 0.904
#> GSM627140     4  0.1978     0.9052 0.004 0.068 0.000 0.928
#> GSM627149     1  0.0707     0.9304 0.980 0.000 0.000 0.020
#> GSM627147     2  0.0707     0.9595 0.000 0.980 0.000 0.020
#> GSM627195     3  0.1474     0.8925 0.000 0.000 0.948 0.052
#> GSM627204     2  0.0188     0.9705 0.000 0.996 0.000 0.004
#> GSM627207     2  0.0000     0.9705 0.000 1.000 0.000 0.000
#> GSM627157     1  0.3649     0.7465 0.796 0.000 0.204 0.000
#> GSM627201     2  0.0336     0.9694 0.000 0.992 0.000 0.008
#> GSM627146     2  0.0336     0.9694 0.000 0.992 0.000 0.008
#> GSM627156     2  0.2589     0.8649 0.000 0.884 0.116 0.000
#> GSM627188     1  0.0817     0.9290 0.976 0.000 0.000 0.024
#> GSM627197     2  0.0336     0.9694 0.000 0.992 0.000 0.008
#> GSM627173     2  0.0000     0.9705 0.000 1.000 0.000 0.000
#> GSM627179     2  0.0000     0.9705 0.000 1.000 0.000 0.000
#> GSM627208     3  0.0707     0.9019 0.000 0.020 0.980 0.000
#> GSM627215     2  0.1635     0.9406 0.000 0.948 0.044 0.008
#> GSM627153     4  0.3024     0.8964 0.000 0.148 0.000 0.852
#> GSM627155     1  0.0817     0.9290 0.976 0.000 0.000 0.024
#> GSM627165     4  0.2345     0.9023 0.000 0.100 0.000 0.900
#> GSM627168     3  0.0188     0.9059 0.004 0.000 0.996 0.000
#> GSM627183     3  0.1474     0.8930 0.052 0.000 0.948 0.000
#> GSM627144     3  0.0000     0.9061 0.000 0.000 1.000 0.000
#> GSM627158     1  0.0188     0.9320 0.996 0.000 0.004 0.000
#> GSM627196     2  0.0188     0.9705 0.000 0.996 0.000 0.004
#> GSM627142     4  0.1209     0.8727 0.004 0.000 0.032 0.964
#> GSM627182     3  0.0188     0.9056 0.000 0.004 0.996 0.000
#> GSM627202     3  0.2376     0.8777 0.068 0.000 0.916 0.016
#> GSM627141     3  0.1576     0.8939 0.048 0.004 0.948 0.000
#> GSM627143     2  0.3545     0.7646 0.000 0.828 0.008 0.164
#> GSM627145     3  0.0000     0.9061 0.000 0.000 1.000 0.000
#> GSM627152     3  0.2654     0.8618 0.004 0.000 0.888 0.108
#> GSM627200     3  0.1867     0.8828 0.072 0.000 0.928 0.000
#> GSM627159     4  0.0376     0.8804 0.004 0.000 0.004 0.992
#> GSM627164     2  0.2081     0.8998 0.000 0.916 0.084 0.000
#> GSM627138     1  0.0188     0.9320 0.996 0.000 0.004 0.000
#> GSM627175     4  0.3024     0.8964 0.000 0.148 0.000 0.852
#> GSM627150     3  0.1022     0.8998 0.000 0.000 0.968 0.032
#> GSM627166     1  0.1118     0.9159 0.964 0.000 0.036 0.000
#> GSM627186     2  0.3278     0.8432 0.020 0.864 0.116 0.000
#> GSM627139     4  0.1489     0.8670 0.004 0.000 0.044 0.952
#> GSM627181     2  0.0336     0.9694 0.000 0.992 0.000 0.008
#> GSM627205     2  0.0336     0.9694 0.000 0.992 0.000 0.008
#> GSM627214     4  0.3024     0.8964 0.000 0.148 0.000 0.852
#> GSM627180     3  0.0188     0.9055 0.000 0.000 0.996 0.004
#> GSM627172     2  0.0000     0.9705 0.000 1.000 0.000 0.000
#> GSM627184     1  0.0817     0.9290 0.976 0.000 0.000 0.024
#> GSM627193     2  0.0000     0.9705 0.000 1.000 0.000 0.000
#> GSM627191     4  0.1356     0.8968 0.008 0.032 0.000 0.960
#> GSM627176     3  0.0895     0.9042 0.004 0.000 0.976 0.020
#> GSM627194     2  0.0188     0.9705 0.000 0.996 0.000 0.004
#> GSM627154     4  0.2973     0.8978 0.000 0.144 0.000 0.856
#> GSM627187     3  0.1576     0.8939 0.048 0.004 0.948 0.000
#> GSM627198     4  0.3024     0.8964 0.000 0.148 0.000 0.852
#> GSM627160     4  0.1114     0.8890 0.008 0.016 0.004 0.972
#> GSM627185     1  0.0188     0.9320 0.996 0.000 0.004 0.000
#> GSM627206     3  0.0469     0.9049 0.012 0.000 0.988 0.000
#> GSM627161     1  0.0707     0.9304 0.980 0.000 0.000 0.020
#> GSM627162     3  0.1305     0.8989 0.036 0.004 0.960 0.000
#> GSM627210     3  0.4961     0.1404 0.448 0.000 0.552 0.000
#> GSM627189     2  0.0188     0.9705 0.000 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM627128     4  0.4434     0.2796 0.000 0.000 0.004 0.536 0.460
#> GSM627110     3  0.4887     0.5970 0.284 0.004 0.668 0.000 0.044
#> GSM627132     1  0.3790     0.7224 0.724 0.000 0.004 0.000 0.272
#> GSM627107     5  0.6041     0.8092 0.000 0.000 0.356 0.128 0.516
#> GSM627103     2  0.1430     0.8925 0.000 0.944 0.000 0.052 0.004
#> GSM627114     3  0.4887     0.5962 0.284 0.004 0.668 0.000 0.044
#> GSM627134     4  0.1774     0.7658 0.000 0.052 0.000 0.932 0.016
#> GSM627137     2  0.1597     0.8927 0.000 0.940 0.000 0.048 0.012
#> GSM627148     3  0.0404     0.7074 0.000 0.000 0.988 0.000 0.012
#> GSM627101     4  0.4256     0.3327 0.000 0.000 0.000 0.564 0.436
#> GSM627130     4  0.4287     0.2903 0.000 0.000 0.000 0.540 0.460
#> GSM627071     3  0.0898     0.7123 0.020 0.000 0.972 0.000 0.008
#> GSM627118     4  0.1041     0.7540 0.000 0.004 0.000 0.964 0.032
#> GSM627094     2  0.1281     0.8947 0.000 0.956 0.000 0.032 0.012
#> GSM627122     3  0.2331     0.6593 0.000 0.000 0.900 0.020 0.080
#> GSM627115     2  0.1251     0.8948 0.000 0.956 0.000 0.036 0.008
#> GSM627125     4  0.4446     0.2374 0.000 0.000 0.004 0.520 0.476
#> GSM627174     2  0.3123     0.8329 0.000 0.828 0.000 0.160 0.012
#> GSM627102     2  0.2011     0.8669 0.000 0.908 0.000 0.004 0.088
#> GSM627073     3  0.1638     0.6804 0.000 0.000 0.932 0.004 0.064
#> GSM627108     2  0.0671     0.8887 0.000 0.980 0.000 0.004 0.016
#> GSM627126     1  0.4101     0.7191 0.664 0.000 0.004 0.000 0.332
#> GSM627078     4  0.1522     0.7714 0.000 0.044 0.000 0.944 0.012
#> GSM627090     3  0.4132     0.2251 0.000 0.000 0.720 0.020 0.260
#> GSM627099     4  0.2624     0.7182 0.000 0.116 0.000 0.872 0.012
#> GSM627105     4  0.4446     0.2374 0.000 0.000 0.004 0.520 0.476
#> GSM627117     3  0.5883     0.5517 0.296 0.016 0.600 0.000 0.088
#> GSM627121     3  0.5204    -0.3786 0.000 0.000 0.580 0.052 0.368
#> GSM627127     4  0.0963     0.7733 0.000 0.036 0.000 0.964 0.000
#> GSM627087     2  0.1251     0.8948 0.000 0.956 0.000 0.036 0.008
#> GSM627089     3  0.0000     0.7105 0.000 0.000 1.000 0.000 0.000
#> GSM627092     2  0.2445     0.8524 0.000 0.884 0.004 0.004 0.108
#> GSM627076     5  0.5168     0.6780 0.000 0.000 0.452 0.040 0.508
#> GSM627136     3  0.4672     0.6008 0.284 0.004 0.680 0.000 0.032
#> GSM627081     3  0.4058     0.3018 0.000 0.000 0.740 0.024 0.236
#> GSM627091     2  0.3013     0.8334 0.000 0.832 0.000 0.160 0.008
#> GSM627097     4  0.1168     0.7731 0.000 0.032 0.000 0.960 0.008
#> GSM627072     3  0.0451     0.7124 0.008 0.000 0.988 0.000 0.004
#> GSM627080     1  0.3684     0.7218 0.720 0.000 0.000 0.000 0.280
#> GSM627088     3  0.4725     0.6014 0.280 0.004 0.680 0.000 0.036
#> GSM627109     1  0.0404     0.6604 0.988 0.000 0.012 0.000 0.000
#> GSM627111     1  0.3636     0.7218 0.728 0.000 0.000 0.000 0.272
#> GSM627113     1  0.4560    -0.2656 0.508 0.000 0.484 0.000 0.008
#> GSM627133     2  0.5640     0.1045 0.000 0.496 0.436 0.004 0.064
#> GSM627177     3  0.1059     0.7120 0.020 0.000 0.968 0.004 0.008
#> GSM627086     2  0.2411     0.8694 0.000 0.884 0.000 0.108 0.008
#> GSM627095     1  0.3949     0.7187 0.668 0.000 0.000 0.000 0.332
#> GSM627079     3  0.1808     0.6860 0.004 0.000 0.936 0.020 0.040
#> GSM627082     4  0.4306     0.2805 0.000 0.000 0.000 0.508 0.492
#> GSM627074     1  0.3519     0.4634 0.776 0.000 0.216 0.000 0.008
#> GSM627077     3  0.2616     0.6908 0.100 0.000 0.880 0.000 0.020
#> GSM627093     1  0.5107     0.0939 0.596 0.000 0.356 0.000 0.048
#> GSM627120     4  0.3910     0.6998 0.000 0.040 0.012 0.808 0.140
#> GSM627124     4  0.1701     0.7701 0.000 0.048 0.000 0.936 0.016
#> GSM627075     2  0.1608     0.8711 0.000 0.928 0.000 0.000 0.072
#> GSM627085     4  0.1282     0.7717 0.000 0.044 0.000 0.952 0.004
#> GSM627119     1  0.4298     0.1712 0.640 0.000 0.352 0.000 0.008
#> GSM627116     4  0.1211     0.7714 0.000 0.024 0.000 0.960 0.016
#> GSM627084     1  0.2909     0.5664 0.848 0.000 0.140 0.000 0.012
#> GSM627096     4  0.1041     0.7540 0.000 0.004 0.000 0.964 0.032
#> GSM627100     5  0.5685     0.7794 0.000 0.000 0.396 0.084 0.520
#> GSM627112     4  0.2719     0.7063 0.000 0.004 0.000 0.852 0.144
#> GSM627083     1  0.4735     0.6934 0.624 0.000 0.004 0.020 0.352
#> GSM627098     1  0.3957     0.3574 0.712 0.000 0.280 0.000 0.008
#> GSM627104     1  0.0404     0.6604 0.988 0.000 0.012 0.000 0.000
#> GSM627131     3  0.2144     0.6932 0.068 0.000 0.912 0.000 0.020
#> GSM627106     3  0.4114     0.2753 0.000 0.000 0.732 0.024 0.244
#> GSM627123     1  0.4084     0.7204 0.668 0.000 0.004 0.000 0.328
#> GSM627129     4  0.1597     0.7709 0.000 0.048 0.000 0.940 0.012
#> GSM627216     2  0.2761     0.8740 0.000 0.896 0.048 0.028 0.028
#> GSM627212     2  0.3013     0.8334 0.000 0.832 0.000 0.160 0.008
#> GSM627190     3  0.5883     0.5517 0.296 0.016 0.600 0.000 0.088
#> GSM627169     2  0.2984     0.8354 0.000 0.860 0.032 0.000 0.108
#> GSM627167     4  0.4067     0.5793 0.000 0.008 0.000 0.692 0.300
#> GSM627192     1  0.4101     0.7191 0.664 0.000 0.004 0.000 0.332
#> GSM627203     3  0.2390     0.6477 0.000 0.000 0.896 0.020 0.084
#> GSM627151     4  0.5252     0.5382 0.000 0.208 0.056 0.704 0.032
#> GSM627163     1  0.3684     0.7218 0.720 0.000 0.000 0.000 0.280
#> GSM627211     2  0.1469     0.8949 0.000 0.948 0.000 0.036 0.016
#> GSM627171     2  0.3002     0.8350 0.000 0.856 0.028 0.000 0.116
#> GSM627209     4  0.1740     0.7654 0.000 0.056 0.000 0.932 0.012
#> GSM627135     1  0.4084     0.7204 0.668 0.000 0.004 0.000 0.328
#> GSM627170     2  0.2260     0.8872 0.000 0.908 0.000 0.064 0.028
#> GSM627178     3  0.4315     0.4361 0.276 0.000 0.700 0.000 0.024
#> GSM627199     4  0.2448     0.7389 0.000 0.088 0.000 0.892 0.020
#> GSM627213     4  0.1403     0.7651 0.000 0.024 0.000 0.952 0.024
#> GSM627140     4  0.4484     0.5881 0.000 0.024 0.000 0.668 0.308
#> GSM627149     1  0.4084     0.7204 0.668 0.000 0.004 0.000 0.328
#> GSM627147     2  0.4088     0.7793 0.000 0.776 0.000 0.168 0.056
#> GSM627195     3  0.2331     0.6526 0.000 0.000 0.900 0.020 0.080
#> GSM627204     2  0.1469     0.8949 0.000 0.948 0.000 0.036 0.016
#> GSM627207     2  0.0703     0.8860 0.000 0.976 0.000 0.000 0.024
#> GSM627157     1  0.3790     0.3783 0.724 0.000 0.272 0.000 0.004
#> GSM627201     2  0.3013     0.8334 0.000 0.832 0.000 0.160 0.008
#> GSM627146     2  0.2624     0.8645 0.000 0.872 0.000 0.116 0.012
#> GSM627156     2  0.2984     0.8354 0.000 0.860 0.032 0.000 0.108
#> GSM627188     1  0.4101     0.7191 0.664 0.000 0.004 0.000 0.332
#> GSM627197     2  0.3318     0.8132 0.000 0.808 0.000 0.180 0.012
#> GSM627173     2  0.0771     0.8899 0.000 0.976 0.000 0.004 0.020
#> GSM627179     2  0.1124     0.8951 0.000 0.960 0.000 0.036 0.004
#> GSM627208     3  0.4737     0.4715 0.000 0.224 0.708 0.000 0.068
#> GSM627215     2  0.4216     0.8247 0.000 0.808 0.100 0.064 0.028
#> GSM627153     4  0.1670     0.7675 0.000 0.052 0.000 0.936 0.012
#> GSM627155     1  0.4101     0.7191 0.664 0.000 0.004 0.000 0.332
#> GSM627165     4  0.5060     0.5797 0.000 0.092 0.000 0.684 0.224
#> GSM627168     3  0.0162     0.7116 0.000 0.000 0.996 0.000 0.004
#> GSM627183     3  0.4127     0.5974 0.312 0.000 0.680 0.000 0.008
#> GSM627144     3  0.1571     0.6915 0.000 0.004 0.936 0.000 0.060
#> GSM627158     1  0.4009     0.7218 0.684 0.000 0.004 0.000 0.312
#> GSM627196     2  0.1469     0.8949 0.000 0.948 0.000 0.036 0.016
#> GSM627142     5  0.6205     0.8042 0.000 0.000 0.332 0.156 0.512
#> GSM627182     3  0.2844     0.6943 0.032 0.016 0.888 0.000 0.064
#> GSM627202     3  0.1800     0.6919 0.048 0.000 0.932 0.000 0.020
#> GSM627141     3  0.5080     0.5896 0.284 0.004 0.656 0.000 0.056
#> GSM627143     2  0.5331     0.7016 0.000 0.712 0.020 0.144 0.124
#> GSM627145     3  0.0162     0.7094 0.000 0.000 0.996 0.000 0.004
#> GSM627152     3  0.3016     0.5824 0.000 0.000 0.848 0.020 0.132
#> GSM627200     3  0.4564     0.5245 0.372 0.000 0.612 0.000 0.016
#> GSM627159     4  0.4297     0.2713 0.000 0.000 0.000 0.528 0.472
#> GSM627164     2  0.3073     0.8345 0.000 0.856 0.024 0.004 0.116
#> GSM627138     1  0.2077     0.6638 0.920 0.000 0.040 0.000 0.040
#> GSM627175     4  0.0963     0.7733 0.000 0.036 0.000 0.964 0.000
#> GSM627150     3  0.2079     0.6694 0.000 0.000 0.916 0.020 0.064
#> GSM627166     1  0.2719     0.5603 0.852 0.000 0.144 0.000 0.004
#> GSM627186     2  0.2984     0.8354 0.000 0.860 0.032 0.000 0.108
#> GSM627139     5  0.6175     0.3815 0.000 0.000 0.152 0.332 0.516
#> GSM627181     2  0.3318     0.8132 0.000 0.808 0.000 0.180 0.012
#> GSM627205     2  0.2260     0.8872 0.000 0.908 0.000 0.064 0.028
#> GSM627214     4  0.1965     0.7622 0.000 0.052 0.000 0.924 0.024
#> GSM627180     3  0.1731     0.6818 0.000 0.004 0.932 0.004 0.060
#> GSM627172     2  0.2011     0.8669 0.000 0.908 0.000 0.004 0.088
#> GSM627184     1  0.4101     0.7191 0.664 0.000 0.004 0.000 0.332
#> GSM627193     2  0.1211     0.8935 0.000 0.960 0.000 0.024 0.016
#> GSM627191     4  0.4047     0.5830 0.004 0.000 0.000 0.676 0.320
#> GSM627176     3  0.2124     0.6751 0.000 0.004 0.900 0.000 0.096
#> GSM627194     2  0.1809     0.8896 0.000 0.928 0.000 0.060 0.012
#> GSM627154     4  0.1124     0.7732 0.000 0.036 0.000 0.960 0.004
#> GSM627187     3  0.6477     0.5160 0.296 0.040 0.564 0.000 0.100
#> GSM627198     4  0.1774     0.7680 0.000 0.052 0.000 0.932 0.016
#> GSM627160     4  0.4253     0.5672 0.000 0.004 0.004 0.660 0.332
#> GSM627185     1  0.0162     0.6626 0.996 0.000 0.004 0.000 0.000
#> GSM627206     3  0.1251     0.7107 0.036 0.000 0.956 0.000 0.008
#> GSM627161     1  0.4047     0.7214 0.676 0.000 0.004 0.000 0.320
#> GSM627162     3  0.6544     0.5128 0.292 0.040 0.560 0.000 0.108
#> GSM627210     1  0.4425     0.0441 0.600 0.000 0.392 0.000 0.008
#> GSM627189     2  0.1568     0.8950 0.000 0.944 0.000 0.036 0.020

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM627128     6  0.3756     0.6363 0.000 0.000 0.000 0.352 0.004 0.644
#> GSM627110     3  0.4587     0.5331 0.000 0.000 0.596 0.000 0.356 0.048
#> GSM627132     1  0.3231     0.7726 0.784 0.000 0.200 0.000 0.000 0.016
#> GSM627107     6  0.4914     0.3162 0.000 0.000 0.004 0.052 0.428 0.516
#> GSM627103     2  0.1555     0.8352 0.000 0.940 0.012 0.040 0.000 0.008
#> GSM627114     3  0.4466     0.5624 0.000 0.000 0.620 0.000 0.336 0.044
#> GSM627134     4  0.2546     0.7683 0.000 0.040 0.020 0.896 0.004 0.040
#> GSM627137     2  0.1464     0.8398 0.000 0.944 0.004 0.036 0.000 0.016
#> GSM627148     5  0.1151     0.8019 0.000 0.000 0.032 0.000 0.956 0.012
#> GSM627101     6  0.3965     0.5967 0.000 0.000 0.004 0.376 0.004 0.616
#> GSM627130     6  0.3620     0.6336 0.000 0.000 0.000 0.352 0.000 0.648
#> GSM627071     5  0.2266     0.7885 0.000 0.000 0.108 0.000 0.880 0.012
#> GSM627118     4  0.1616     0.7776 0.000 0.000 0.020 0.932 0.000 0.048
#> GSM627094     2  0.1261     0.8393 0.000 0.952 0.000 0.024 0.000 0.024
#> GSM627122     5  0.3555     0.7832 0.012 0.000 0.068 0.004 0.824 0.092
#> GSM627115     2  0.1149     0.8379 0.000 0.960 0.008 0.024 0.000 0.008
#> GSM627125     6  0.3636     0.6617 0.000 0.000 0.000 0.320 0.004 0.676
#> GSM627174     2  0.3743     0.7669 0.000 0.788 0.028 0.160 0.000 0.024
#> GSM627102     2  0.4563     0.7307 0.000 0.712 0.152 0.004 0.000 0.132
#> GSM627073     5  0.1116     0.7958 0.000 0.000 0.008 0.004 0.960 0.028
#> GSM627108     2  0.0632     0.8352 0.000 0.976 0.000 0.000 0.000 0.024
#> GSM627126     1  0.0622     0.9317 0.980 0.000 0.000 0.008 0.000 0.012
#> GSM627078     4  0.0603     0.7990 0.000 0.016 0.000 0.980 0.000 0.004
#> GSM627090     5  0.3572     0.7015 0.000 0.000 0.032 0.000 0.764 0.204
#> GSM627099     4  0.3348     0.6804 0.000 0.152 0.016 0.812 0.000 0.020
#> GSM627105     6  0.3636     0.6617 0.000 0.000 0.000 0.320 0.004 0.676
#> GSM627117     3  0.4781     0.6070 0.004 0.008 0.660 0.000 0.268 0.060
#> GSM627121     5  0.3788     0.4713 0.000 0.000 0.004 0.012 0.704 0.280
#> GSM627127     4  0.0862     0.7992 0.000 0.016 0.004 0.972 0.000 0.008
#> GSM627087     2  0.1251     0.8374 0.000 0.956 0.012 0.024 0.000 0.008
#> GSM627089     5  0.2146     0.7799 0.000 0.000 0.116 0.000 0.880 0.004
#> GSM627092     2  0.4833     0.7188 0.000 0.692 0.168 0.004 0.004 0.132
#> GSM627076     6  0.3955     0.4400 0.004 0.000 0.008 0.000 0.340 0.648
#> GSM627136     3  0.4844     0.3669 0.000 0.000 0.504 0.000 0.440 0.056
#> GSM627081     5  0.2810     0.6924 0.000 0.000 0.004 0.008 0.832 0.156
#> GSM627091     2  0.2944     0.7808 0.000 0.832 0.012 0.148 0.000 0.008
#> GSM627097     4  0.1296     0.7922 0.000 0.004 0.012 0.952 0.000 0.032
#> GSM627072     5  0.2121     0.7855 0.000 0.000 0.096 0.000 0.892 0.012
#> GSM627080     1  0.2070     0.8669 0.892 0.000 0.100 0.000 0.000 0.008
#> GSM627088     3  0.4660     0.4274 0.000 0.000 0.540 0.000 0.416 0.044
#> GSM627109     3  0.3874     0.3686 0.356 0.000 0.636 0.000 0.000 0.008
#> GSM627111     1  0.3201     0.7619 0.780 0.000 0.208 0.000 0.000 0.012
#> GSM627113     3  0.4455     0.6939 0.072 0.000 0.728 0.000 0.184 0.016
#> GSM627133     5  0.6059     0.1168 0.000 0.396 0.048 0.012 0.484 0.060
#> GSM627177     5  0.2651     0.7875 0.000 0.000 0.112 0.000 0.860 0.028
#> GSM627086     2  0.2473     0.8099 0.000 0.876 0.012 0.104 0.000 0.008
#> GSM627095     1  0.0520     0.9316 0.984 0.000 0.000 0.008 0.000 0.008
#> GSM627079     5  0.2471     0.8021 0.000 0.000 0.056 0.004 0.888 0.052
#> GSM627082     6  0.3938     0.6378 0.016 0.000 0.000 0.324 0.000 0.660
#> GSM627074     3  0.3765     0.6733 0.156 0.000 0.780 0.000 0.060 0.004
#> GSM627077     5  0.5222     0.5013 0.020 0.000 0.264 0.004 0.636 0.076
#> GSM627093     3  0.3516     0.7078 0.096 0.000 0.812 0.000 0.088 0.004
#> GSM627120     4  0.5930     0.5482 0.000 0.060 0.032 0.660 0.092 0.156
#> GSM627124     4  0.0692     0.7992 0.000 0.020 0.000 0.976 0.000 0.004
#> GSM627075     2  0.3953     0.7571 0.000 0.764 0.132 0.000 0.000 0.104
#> GSM627085     4  0.0603     0.7990 0.000 0.016 0.000 0.980 0.000 0.004
#> GSM627119     3  0.3927     0.7025 0.120 0.000 0.776 0.000 0.100 0.004
#> GSM627116     4  0.1851     0.7786 0.000 0.004 0.012 0.924 0.004 0.056
#> GSM627084     3  0.4851     0.6535 0.196 0.000 0.708 0.004 0.044 0.048
#> GSM627096     4  0.1616     0.7776 0.000 0.000 0.020 0.932 0.000 0.048
#> GSM627100     6  0.3652     0.5655 0.000 0.000 0.000 0.016 0.264 0.720
#> GSM627112     4  0.2778     0.6378 0.000 0.000 0.008 0.824 0.000 0.168
#> GSM627083     1  0.2303     0.8740 0.904 0.000 0.024 0.020 0.000 0.052
#> GSM627098     3  0.4315     0.6972 0.144 0.000 0.744 0.000 0.104 0.008
#> GSM627104     3  0.3874     0.3686 0.356 0.000 0.636 0.000 0.000 0.008
#> GSM627131     5  0.4046     0.7500 0.016 0.000 0.128 0.004 0.784 0.068
#> GSM627106     5  0.2848     0.6866 0.000 0.000 0.004 0.008 0.828 0.160
#> GSM627123     1  0.0146     0.9325 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM627129     4  0.2262     0.7797 0.000 0.036 0.020 0.908 0.000 0.036
#> GSM627216     2  0.3909     0.7746 0.000 0.812 0.016 0.032 0.104 0.036
#> GSM627212     2  0.2944     0.7808 0.000 0.832 0.012 0.148 0.000 0.008
#> GSM627190     3  0.4806     0.5936 0.004 0.004 0.636 0.000 0.296 0.060
#> GSM627169     2  0.5171     0.6828 0.000 0.652 0.196 0.000 0.012 0.140
#> GSM627167     4  0.4727     0.1669 0.000 0.008 0.036 0.568 0.000 0.388
#> GSM627192     1  0.0622     0.9317 0.980 0.000 0.000 0.008 0.000 0.012
#> GSM627203     5  0.1555     0.7934 0.000 0.000 0.004 0.004 0.932 0.060
#> GSM627151     4  0.6020     0.5061 0.000 0.188 0.028 0.640 0.068 0.076
#> GSM627163     1  0.2912     0.8065 0.816 0.000 0.172 0.000 0.000 0.012
#> GSM627211     2  0.1245     0.8373 0.000 0.952 0.000 0.016 0.000 0.032
#> GSM627171     2  0.5240     0.6964 0.000 0.660 0.168 0.004 0.012 0.156
#> GSM627209     4  0.1218     0.7973 0.000 0.028 0.004 0.956 0.000 0.012
#> GSM627135     1  0.0767     0.9272 0.976 0.000 0.008 0.004 0.000 0.012
#> GSM627170     2  0.3332     0.8068 0.000 0.856 0.012 0.044 0.052 0.036
#> GSM627178     5  0.5338     0.6245 0.076 0.000 0.172 0.004 0.684 0.064
#> GSM627199     4  0.2573     0.7542 0.000 0.064 0.008 0.884 0.000 0.044
#> GSM627213     4  0.1196     0.7804 0.000 0.008 0.000 0.952 0.000 0.040
#> GSM627140     4  0.7011     0.1319 0.072 0.020 0.132 0.460 0.000 0.316
#> GSM627149     1  0.0363     0.9314 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM627147     2  0.6138     0.6584 0.000 0.608 0.140 0.124 0.000 0.128
#> GSM627195     5  0.1219     0.7941 0.000 0.000 0.000 0.004 0.948 0.048
#> GSM627204     2  0.1498     0.8399 0.000 0.940 0.000 0.032 0.000 0.028
#> GSM627207     2  0.0865     0.8335 0.000 0.964 0.000 0.000 0.000 0.036
#> GSM627157     3  0.4526     0.6936 0.152 0.000 0.728 0.000 0.108 0.012
#> GSM627201     2  0.2982     0.7777 0.000 0.828 0.012 0.152 0.000 0.008
#> GSM627146     2  0.2633     0.8099 0.000 0.864 0.004 0.112 0.000 0.020
#> GSM627156     2  0.5144     0.6863 0.000 0.656 0.192 0.000 0.012 0.140
#> GSM627188     1  0.0622     0.9317 0.980 0.000 0.000 0.008 0.000 0.012
#> GSM627197     2  0.3455     0.7367 0.000 0.776 0.004 0.200 0.000 0.020
#> GSM627173     2  0.1152     0.8344 0.000 0.952 0.000 0.004 0.000 0.044
#> GSM627179     2  0.0547     0.8395 0.000 0.980 0.000 0.020 0.000 0.000
#> GSM627208     5  0.5089     0.5979 0.000 0.120 0.068 0.008 0.724 0.080
#> GSM627215     2  0.4599     0.7253 0.000 0.752 0.016 0.044 0.152 0.036
#> GSM627153     4  0.1218     0.7973 0.000 0.028 0.004 0.956 0.000 0.012
#> GSM627155     1  0.0146     0.9325 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM627165     4  0.6456     0.4042 0.000 0.088 0.020 0.584 0.092 0.216
#> GSM627168     5  0.2593     0.7529 0.000 0.000 0.148 0.000 0.844 0.008
#> GSM627183     3  0.4205     0.4618 0.000 0.000 0.564 0.000 0.420 0.016
#> GSM627144     5  0.1995     0.8057 0.000 0.000 0.036 0.000 0.912 0.052
#> GSM627158     1  0.0622     0.9288 0.980 0.000 0.008 0.000 0.000 0.012
#> GSM627196     2  0.1498     0.8399 0.000 0.940 0.000 0.032 0.000 0.028
#> GSM627142     6  0.3938     0.6140 0.000 0.000 0.000 0.044 0.228 0.728
#> GSM627182     5  0.3493     0.7007 0.000 0.000 0.136 0.000 0.800 0.064
#> GSM627202     5  0.3837     0.7590 0.020 0.000 0.124 0.000 0.796 0.060
#> GSM627141     3  0.4585     0.5823 0.000 0.000 0.632 0.000 0.308 0.060
#> GSM627143     2  0.6792     0.5611 0.000 0.532 0.184 0.120 0.004 0.160
#> GSM627145     5  0.1753     0.7955 0.000 0.000 0.084 0.000 0.912 0.004
#> GSM627152     5  0.3185     0.7835 0.004 0.000 0.048 0.000 0.832 0.116
#> GSM627200     3  0.5334     0.4740 0.024 0.000 0.548 0.000 0.368 0.060
#> GSM627159     6  0.3563     0.6489 0.000 0.000 0.000 0.336 0.000 0.664
#> GSM627164     2  0.5071     0.6997 0.000 0.668 0.168 0.000 0.012 0.152
#> GSM627138     3  0.4015     0.3794 0.372 0.000 0.616 0.000 0.000 0.012
#> GSM627175     4  0.0862     0.7992 0.000 0.016 0.004 0.972 0.000 0.008
#> GSM627150     5  0.0508     0.8018 0.000 0.000 0.000 0.004 0.984 0.012
#> GSM627166     3  0.4248     0.6100 0.212 0.000 0.732 0.004 0.040 0.012
#> GSM627186     2  0.5198     0.6802 0.000 0.648 0.200 0.000 0.012 0.140
#> GSM627139     6  0.5443     0.6216 0.000 0.000 0.020 0.120 0.244 0.616
#> GSM627181     2  0.3534     0.7357 0.000 0.772 0.004 0.200 0.000 0.024
#> GSM627205     2  0.3870     0.7890 0.000 0.824 0.020 0.044 0.072 0.040
#> GSM627214     4  0.2879     0.7557 0.000 0.052 0.020 0.876 0.004 0.048
#> GSM627180     5  0.1503     0.7898 0.000 0.000 0.016 0.008 0.944 0.032
#> GSM627172     2  0.4707     0.7270 0.000 0.704 0.152 0.008 0.000 0.136
#> GSM627184     1  0.0260     0.9319 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM627193     2  0.1092     0.8400 0.000 0.960 0.000 0.020 0.000 0.020
#> GSM627191     4  0.5896     0.1552 0.104 0.000 0.036 0.532 0.000 0.328
#> GSM627176     5  0.3456     0.7810 0.004 0.000 0.076 0.000 0.816 0.104
#> GSM627194     2  0.2007     0.8379 0.000 0.920 0.012 0.036 0.000 0.032
#> GSM627154     4  0.0603     0.7990 0.000 0.016 0.000 0.980 0.000 0.004
#> GSM627187     3  0.4359     0.6176 0.004 0.016 0.748 0.000 0.168 0.064
#> GSM627198     4  0.1261     0.7946 0.000 0.024 0.000 0.952 0.000 0.024
#> GSM627160     4  0.6602     0.0992 0.096 0.000 0.092 0.484 0.004 0.324
#> GSM627185     3  0.3967     0.3669 0.356 0.000 0.632 0.000 0.000 0.012
#> GSM627206     5  0.2988     0.7333 0.000 0.000 0.152 0.000 0.824 0.024
#> GSM627161     1  0.0508     0.9300 0.984 0.000 0.004 0.000 0.000 0.012
#> GSM627162     3  0.5232     0.5286 0.004 0.020 0.672 0.000 0.172 0.132
#> GSM627210     3  0.3930     0.7104 0.104 0.000 0.776 0.000 0.116 0.004
#> GSM627189     2  0.1418     0.8396 0.000 0.944 0.000 0.024 0.000 0.032

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) age(p) other(p) k
#> CV:kmeans 144            0.905  0.406  0.01484 2
#> CV:kmeans  64            1.000  0.701  0.00937 3
#> CV:kmeans 139            0.201  0.435  0.07497 4
#> CV:kmeans 124            0.390  0.561  0.16410 5
#> CV:kmeans 129            0.176  0.597  0.18557 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 146 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.974       0.989         0.5020 0.498   0.498
#> 3 3 0.971           0.949       0.977         0.3134 0.792   0.604
#> 4 4 0.917           0.898       0.957         0.1403 0.863   0.623
#> 5 5 0.792           0.734       0.831         0.0602 0.934   0.747
#> 6 6 0.761           0.621       0.749         0.0391 0.920   0.651

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM627128     2  0.0000      0.992 0.000 1.000
#> GSM627110     1  0.0000      0.985 1.000 0.000
#> GSM627132     1  0.0000      0.985 1.000 0.000
#> GSM627107     2  0.0000      0.992 0.000 1.000
#> GSM627103     2  0.0000      0.992 0.000 1.000
#> GSM627114     1  0.0000      0.985 1.000 0.000
#> GSM627134     2  0.0000      0.992 0.000 1.000
#> GSM627137     2  0.0000      0.992 0.000 1.000
#> GSM627148     1  0.0000      0.985 1.000 0.000
#> GSM627101     2  0.0000      0.992 0.000 1.000
#> GSM627130     2  0.0000      0.992 0.000 1.000
#> GSM627071     1  0.0000      0.985 1.000 0.000
#> GSM627118     2  0.0000      0.992 0.000 1.000
#> GSM627094     2  0.0000      0.992 0.000 1.000
#> GSM627122     1  0.0000      0.985 1.000 0.000
#> GSM627115     2  0.0000      0.992 0.000 1.000
#> GSM627125     2  0.0000      0.992 0.000 1.000
#> GSM627174     2  0.0000      0.992 0.000 1.000
#> GSM627102     2  0.0000      0.992 0.000 1.000
#> GSM627073     1  0.8713      0.584 0.708 0.292
#> GSM627108     2  0.0000      0.992 0.000 1.000
#> GSM627126     1  0.0000      0.985 1.000 0.000
#> GSM627078     2  0.0000      0.992 0.000 1.000
#> GSM627090     1  0.0000      0.985 1.000 0.000
#> GSM627099     2  0.0000      0.992 0.000 1.000
#> GSM627105     2  0.0000      0.992 0.000 1.000
#> GSM627117     1  0.0000      0.985 1.000 0.000
#> GSM627121     2  0.0000      0.992 0.000 1.000
#> GSM627127     2  0.0000      0.992 0.000 1.000
#> GSM627087     2  0.0000      0.992 0.000 1.000
#> GSM627089     1  0.0000      0.985 1.000 0.000
#> GSM627092     2  0.0000      0.992 0.000 1.000
#> GSM627076     1  0.0000      0.985 1.000 0.000
#> GSM627136     1  0.0000      0.985 1.000 0.000
#> GSM627081     2  0.5294      0.866 0.120 0.880
#> GSM627091     2  0.0000      0.992 0.000 1.000
#> GSM627097     2  0.0000      0.992 0.000 1.000
#> GSM627072     1  0.0000      0.985 1.000 0.000
#> GSM627080     1  0.0000      0.985 1.000 0.000
#> GSM627088     1  0.0000      0.985 1.000 0.000
#> GSM627109     1  0.0000      0.985 1.000 0.000
#> GSM627111     1  0.0000      0.985 1.000 0.000
#> GSM627113     1  0.0000      0.985 1.000 0.000
#> GSM627133     2  0.0376      0.988 0.004 0.996
#> GSM627177     1  0.0000      0.985 1.000 0.000
#> GSM627086     2  0.0000      0.992 0.000 1.000
#> GSM627095     1  0.0000      0.985 1.000 0.000
#> GSM627079     1  0.0000      0.985 1.000 0.000
#> GSM627082     2  0.0000      0.992 0.000 1.000
#> GSM627074     1  0.0000      0.985 1.000 0.000
#> GSM627077     1  0.0000      0.985 1.000 0.000
#> GSM627093     1  0.0000      0.985 1.000 0.000
#> GSM627120     2  0.0000      0.992 0.000 1.000
#> GSM627124     2  0.0000      0.992 0.000 1.000
#> GSM627075     2  0.0000      0.992 0.000 1.000
#> GSM627085     2  0.0000      0.992 0.000 1.000
#> GSM627119     1  0.0000      0.985 1.000 0.000
#> GSM627116     2  0.0000      0.992 0.000 1.000
#> GSM627084     1  0.0000      0.985 1.000 0.000
#> GSM627096     2  0.0000      0.992 0.000 1.000
#> GSM627100     1  0.0000      0.985 1.000 0.000
#> GSM627112     2  0.0000      0.992 0.000 1.000
#> GSM627083     1  0.3733      0.915 0.928 0.072
#> GSM627098     1  0.0000      0.985 1.000 0.000
#> GSM627104     1  0.0000      0.985 1.000 0.000
#> GSM627131     1  0.0000      0.985 1.000 0.000
#> GSM627106     2  0.7745      0.710 0.228 0.772
#> GSM627123     1  0.0000      0.985 1.000 0.000
#> GSM627129     2  0.0000      0.992 0.000 1.000
#> GSM627216     2  0.0000      0.992 0.000 1.000
#> GSM627212     2  0.0000      0.992 0.000 1.000
#> GSM627190     1  0.0000      0.985 1.000 0.000
#> GSM627169     1  0.5629      0.847 0.868 0.132
#> GSM627167     2  0.0000      0.992 0.000 1.000
#> GSM627192     1  0.0000      0.985 1.000 0.000
#> GSM627203     1  0.0000      0.985 1.000 0.000
#> GSM627151     2  0.0000      0.992 0.000 1.000
#> GSM627163     1  0.0000      0.985 1.000 0.000
#> GSM627211     2  0.0000      0.992 0.000 1.000
#> GSM627171     2  0.0000      0.992 0.000 1.000
#> GSM627209     2  0.0000      0.992 0.000 1.000
#> GSM627135     1  0.0000      0.985 1.000 0.000
#> GSM627170     2  0.0000      0.992 0.000 1.000
#> GSM627178     1  0.0000      0.985 1.000 0.000
#> GSM627199     2  0.0000      0.992 0.000 1.000
#> GSM627213     2  0.0000      0.992 0.000 1.000
#> GSM627140     2  0.0000      0.992 0.000 1.000
#> GSM627149     1  0.0000      0.985 1.000 0.000
#> GSM627147     2  0.0000      0.992 0.000 1.000
#> GSM627195     1  0.0000      0.985 1.000 0.000
#> GSM627204     2  0.0000      0.992 0.000 1.000
#> GSM627207     2  0.0000      0.992 0.000 1.000
#> GSM627157     1  0.0000      0.985 1.000 0.000
#> GSM627201     2  0.0000      0.992 0.000 1.000
#> GSM627146     2  0.0000      0.992 0.000 1.000
#> GSM627156     2  0.0000      0.992 0.000 1.000
#> GSM627188     1  0.0000      0.985 1.000 0.000
#> GSM627197     2  0.0000      0.992 0.000 1.000
#> GSM627173     2  0.0000      0.992 0.000 1.000
#> GSM627179     2  0.0000      0.992 0.000 1.000
#> GSM627208     2  0.6148      0.823 0.152 0.848
#> GSM627215     2  0.0000      0.992 0.000 1.000
#> GSM627153     2  0.0000      0.992 0.000 1.000
#> GSM627155     1  0.0000      0.985 1.000 0.000
#> GSM627165     2  0.0000      0.992 0.000 1.000
#> GSM627168     1  0.0000      0.985 1.000 0.000
#> GSM627183     1  0.0000      0.985 1.000 0.000
#> GSM627144     1  0.0000      0.985 1.000 0.000
#> GSM627158     1  0.0000      0.985 1.000 0.000
#> GSM627196     2  0.0000      0.992 0.000 1.000
#> GSM627142     1  0.0000      0.985 1.000 0.000
#> GSM627182     1  0.0000      0.985 1.000 0.000
#> GSM627202     1  0.0000      0.985 1.000 0.000
#> GSM627141     1  0.0000      0.985 1.000 0.000
#> GSM627143     2  0.0000      0.992 0.000 1.000
#> GSM627145     1  0.0000      0.985 1.000 0.000
#> GSM627152     1  0.0000      0.985 1.000 0.000
#> GSM627200     1  0.0000      0.985 1.000 0.000
#> GSM627159     2  0.0000      0.992 0.000 1.000
#> GSM627164     2  0.0000      0.992 0.000 1.000
#> GSM627138     1  0.0000      0.985 1.000 0.000
#> GSM627175     2  0.0000      0.992 0.000 1.000
#> GSM627150     1  0.0000      0.985 1.000 0.000
#> GSM627166     1  0.0000      0.985 1.000 0.000
#> GSM627186     1  0.4690      0.885 0.900 0.100
#> GSM627139     2  0.1184      0.977 0.016 0.984
#> GSM627181     2  0.0000      0.992 0.000 1.000
#> GSM627205     2  0.0000      0.992 0.000 1.000
#> GSM627214     2  0.0000      0.992 0.000 1.000
#> GSM627180     2  0.4298      0.903 0.088 0.912
#> GSM627172     2  0.0000      0.992 0.000 1.000
#> GSM627184     1  0.0000      0.985 1.000 0.000
#> GSM627193     2  0.0000      0.992 0.000 1.000
#> GSM627191     2  0.0000      0.992 0.000 1.000
#> GSM627176     1  0.0000      0.985 1.000 0.000
#> GSM627194     2  0.0000      0.992 0.000 1.000
#> GSM627154     2  0.0000      0.992 0.000 1.000
#> GSM627187     1  0.0000      0.985 1.000 0.000
#> GSM627198     2  0.0000      0.992 0.000 1.000
#> GSM627160     1  0.9909      0.212 0.556 0.444
#> GSM627185     1  0.0000      0.985 1.000 0.000
#> GSM627206     1  0.0000      0.985 1.000 0.000
#> GSM627161     1  0.0000      0.985 1.000 0.000
#> GSM627162     1  0.0000      0.985 1.000 0.000
#> GSM627210     1  0.0000      0.985 1.000 0.000
#> GSM627189     2  0.0000      0.992 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM627128     3  0.0000      0.975 0.000 0.000 1.000
#> GSM627110     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627132     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627107     3  0.0000      0.975 0.000 0.000 1.000
#> GSM627103     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627114     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627134     3  0.0592      0.974 0.000 0.012 0.988
#> GSM627137     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627148     1  0.0237      0.979 0.996 0.000 0.004
#> GSM627101     3  0.0000      0.975 0.000 0.000 1.000
#> GSM627130     3  0.0000      0.975 0.000 0.000 1.000
#> GSM627071     1  0.0237      0.979 0.996 0.000 0.004
#> GSM627118     3  0.0000      0.975 0.000 0.000 1.000
#> GSM627094     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627122     1  0.0747      0.972 0.984 0.000 0.016
#> GSM627115     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627125     3  0.0000      0.975 0.000 0.000 1.000
#> GSM627174     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627102     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627073     1  0.7069      0.089 0.508 0.020 0.472
#> GSM627108     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627126     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627078     3  0.0747      0.972 0.000 0.016 0.984
#> GSM627090     1  0.0892      0.969 0.980 0.000 0.020
#> GSM627099     3  0.2625      0.909 0.000 0.084 0.916
#> GSM627105     3  0.0000      0.975 0.000 0.000 1.000
#> GSM627117     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627121     3  0.0000      0.975 0.000 0.000 1.000
#> GSM627127     3  0.0592      0.974 0.000 0.012 0.988
#> GSM627087     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627089     1  0.0237      0.979 0.996 0.000 0.004
#> GSM627092     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627076     1  0.4842      0.726 0.776 0.000 0.224
#> GSM627136     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627081     3  0.0000      0.975 0.000 0.000 1.000
#> GSM627091     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627097     3  0.0424      0.975 0.000 0.008 0.992
#> GSM627072     1  0.0237      0.979 0.996 0.000 0.004
#> GSM627080     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627088     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627109     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627111     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627113     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627133     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627177     1  0.0237      0.979 0.996 0.000 0.004
#> GSM627086     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627095     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627079     1  0.0747      0.972 0.984 0.000 0.016
#> GSM627082     3  0.0000      0.975 0.000 0.000 1.000
#> GSM627074     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627077     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627093     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627120     3  0.0424      0.975 0.000 0.008 0.992
#> GSM627124     3  0.0747      0.972 0.000 0.016 0.984
#> GSM627075     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627085     3  0.0747      0.972 0.000 0.016 0.984
#> GSM627119     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627116     3  0.0237      0.975 0.000 0.004 0.996
#> GSM627084     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627096     3  0.0000      0.975 0.000 0.000 1.000
#> GSM627100     3  0.0000      0.975 0.000 0.000 1.000
#> GSM627112     3  0.0237      0.975 0.000 0.004 0.996
#> GSM627083     3  0.5650      0.554 0.312 0.000 0.688
#> GSM627098     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627104     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627131     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627106     3  0.0000      0.975 0.000 0.000 1.000
#> GSM627123     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627129     3  0.0592      0.974 0.000 0.012 0.988
#> GSM627216     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627212     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627190     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627169     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627167     3  0.0237      0.975 0.000 0.004 0.996
#> GSM627192     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627203     1  0.1529      0.951 0.960 0.000 0.040
#> GSM627151     3  0.3116      0.879 0.000 0.108 0.892
#> GSM627163     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627211     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627171     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627209     3  0.0747      0.972 0.000 0.016 0.984
#> GSM627135     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627170     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627178     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627199     3  0.4887      0.705 0.000 0.228 0.772
#> GSM627213     3  0.0424      0.975 0.000 0.008 0.992
#> GSM627140     3  0.0592      0.974 0.000 0.012 0.988
#> GSM627149     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627147     2  0.3941      0.797 0.000 0.844 0.156
#> GSM627195     1  0.3879      0.827 0.848 0.000 0.152
#> GSM627204     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627207     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627157     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627201     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627146     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627156     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627188     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627197     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627173     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627179     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627208     2  0.0237      0.966 0.000 0.996 0.004
#> GSM627215     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627153     3  0.0747      0.972 0.000 0.016 0.984
#> GSM627155     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627165     3  0.0592      0.974 0.000 0.012 0.988
#> GSM627168     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627183     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627144     1  0.0747      0.972 0.984 0.000 0.016
#> GSM627158     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627196     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627142     3  0.0000      0.975 0.000 0.000 1.000
#> GSM627182     2  0.6247      0.385 0.376 0.620 0.004
#> GSM627202     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627141     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627143     2  0.5835      0.480 0.000 0.660 0.340
#> GSM627145     1  0.0237      0.979 0.996 0.000 0.004
#> GSM627152     1  0.0747      0.972 0.984 0.000 0.016
#> GSM627200     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627159     3  0.0000      0.975 0.000 0.000 1.000
#> GSM627164     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627138     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627175     3  0.0747      0.972 0.000 0.016 0.984
#> GSM627150     1  0.3686      0.842 0.860 0.000 0.140
#> GSM627166     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627186     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627139     3  0.0000      0.975 0.000 0.000 1.000
#> GSM627181     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627205     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627214     3  0.0892      0.969 0.000 0.020 0.980
#> GSM627180     2  0.5618      0.644 0.008 0.732 0.260
#> GSM627172     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627184     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627193     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627191     3  0.0237      0.974 0.004 0.000 0.996
#> GSM627176     1  0.0592      0.974 0.988 0.000 0.012
#> GSM627194     2  0.0000      0.970 0.000 1.000 0.000
#> GSM627154     3  0.0592      0.974 0.000 0.012 0.988
#> GSM627187     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627198     3  0.0747      0.972 0.000 0.016 0.984
#> GSM627160     3  0.0237      0.974 0.004 0.000 0.996
#> GSM627185     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627206     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627161     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627162     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627210     1  0.0000      0.981 1.000 0.000 0.000
#> GSM627189     2  0.0000      0.970 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM627128     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627110     3  0.4992    -0.0328 0.476 0.000 0.524 0.000
#> GSM627132     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627107     3  0.3726     0.6877 0.000 0.000 0.788 0.212
#> GSM627103     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627114     1  0.4661     0.5184 0.652 0.000 0.348 0.000
#> GSM627134     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627137     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627148     3  0.0000     0.9052 0.000 0.000 1.000 0.000
#> GSM627101     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627130     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627071     3  0.0000     0.9052 0.000 0.000 1.000 0.000
#> GSM627118     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627094     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627122     3  0.4746     0.4648 0.368 0.000 0.632 0.000
#> GSM627115     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627125     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627174     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627102     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627073     3  0.0000     0.9052 0.000 0.000 1.000 0.000
#> GSM627108     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627126     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627078     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627090     3  0.0000     0.9052 0.000 0.000 1.000 0.000
#> GSM627099     4  0.0469     0.9706 0.000 0.012 0.000 0.988
#> GSM627105     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627117     1  0.3726     0.7376 0.788 0.000 0.212 0.000
#> GSM627121     3  0.1022     0.8854 0.000 0.000 0.968 0.032
#> GSM627127     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627087     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627089     3  0.0000     0.9052 0.000 0.000 1.000 0.000
#> GSM627092     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627076     3  0.0000     0.9052 0.000 0.000 1.000 0.000
#> GSM627136     1  0.2216     0.8679 0.908 0.000 0.092 0.000
#> GSM627081     3  0.0000     0.9052 0.000 0.000 1.000 0.000
#> GSM627091     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627097     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627072     3  0.0000     0.9052 0.000 0.000 1.000 0.000
#> GSM627080     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627088     1  0.4643     0.5266 0.656 0.000 0.344 0.000
#> GSM627109     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627111     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627113     1  0.0921     0.9191 0.972 0.000 0.028 0.000
#> GSM627133     2  0.3356     0.7658 0.000 0.824 0.176 0.000
#> GSM627177     3  0.3444     0.7367 0.184 0.000 0.816 0.000
#> GSM627086     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627095     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627079     3  0.0000     0.9052 0.000 0.000 1.000 0.000
#> GSM627082     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627074     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627077     1  0.0188     0.9347 0.996 0.000 0.004 0.000
#> GSM627093     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627120     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627124     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627075     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627085     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627119     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627116     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627084     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627096     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627100     3  0.2814     0.7944 0.000 0.000 0.868 0.132
#> GSM627112     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627083     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627098     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627104     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627131     3  0.4916     0.3348 0.424 0.000 0.576 0.000
#> GSM627106     3  0.0000     0.9052 0.000 0.000 1.000 0.000
#> GSM627123     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627129     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627216     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627212     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627190     1  0.4564     0.5578 0.672 0.000 0.328 0.000
#> GSM627169     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627167     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627192     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627203     3  0.0000     0.9052 0.000 0.000 1.000 0.000
#> GSM627151     4  0.0707     0.9628 0.000 0.020 0.000 0.980
#> GSM627163     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627211     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627171     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627209     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627135     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627170     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627178     1  0.2589     0.8242 0.884 0.000 0.116 0.000
#> GSM627199     4  0.0188     0.9782 0.000 0.004 0.000 0.996
#> GSM627213     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627140     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627149     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627147     2  0.4746     0.4222 0.000 0.632 0.000 0.368
#> GSM627195     3  0.0000     0.9052 0.000 0.000 1.000 0.000
#> GSM627204     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627207     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627157     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627201     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627146     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627156     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627188     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627197     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627173     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627179     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627208     3  0.2530     0.8137 0.000 0.112 0.888 0.000
#> GSM627215     2  0.0188     0.9717 0.000 0.996 0.004 0.000
#> GSM627153     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627155     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627165     4  0.0921     0.9545 0.000 0.028 0.000 0.972
#> GSM627168     3  0.0000     0.9052 0.000 0.000 1.000 0.000
#> GSM627183     1  0.4624     0.5350 0.660 0.000 0.340 0.000
#> GSM627144     3  0.0000     0.9052 0.000 0.000 1.000 0.000
#> GSM627158     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627196     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627142     4  0.4967     0.1386 0.000 0.000 0.452 0.548
#> GSM627182     3  0.0000     0.9052 0.000 0.000 1.000 0.000
#> GSM627202     3  0.4941     0.3057 0.436 0.000 0.564 0.000
#> GSM627141     1  0.3726     0.7376 0.788 0.000 0.212 0.000
#> GSM627143     2  0.4454     0.5545 0.000 0.692 0.000 0.308
#> GSM627145     3  0.0000     0.9052 0.000 0.000 1.000 0.000
#> GSM627152     3  0.1118     0.8832 0.036 0.000 0.964 0.000
#> GSM627200     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627159     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627164     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627138     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627175     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627150     3  0.0000     0.9052 0.000 0.000 1.000 0.000
#> GSM627166     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627186     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627139     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627181     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627205     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627214     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627180     3  0.0000     0.9052 0.000 0.000 1.000 0.000
#> GSM627172     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627184     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627193     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627191     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627176     3  0.2345     0.8349 0.100 0.000 0.900 0.000
#> GSM627194     2  0.0000     0.9754 0.000 1.000 0.000 0.000
#> GSM627154     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627187     1  0.3726     0.7376 0.788 0.000 0.212 0.000
#> GSM627198     4  0.0000     0.9815 0.000 0.000 0.000 1.000
#> GSM627160     4  0.2081     0.8906 0.084 0.000 0.000 0.916
#> GSM627185     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627206     3  0.0000     0.9052 0.000 0.000 1.000 0.000
#> GSM627161     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627162     1  0.1022     0.9161 0.968 0.000 0.032 0.000
#> GSM627210     1  0.0000     0.9371 1.000 0.000 0.000 0.000
#> GSM627189     2  0.0000     0.9754 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM627128     4  0.1908    0.88101 0.000 0.000 0.000 0.908 0.092
#> GSM627110     3  0.1341    0.70451 0.000 0.000 0.944 0.000 0.056
#> GSM627132     1  0.3774    0.62461 0.704 0.000 0.296 0.000 0.000
#> GSM627107     5  0.0290    0.76806 0.000 0.000 0.000 0.008 0.992
#> GSM627103     2  0.0162    0.90625 0.000 0.996 0.000 0.004 0.000
#> GSM627114     3  0.1502    0.70650 0.004 0.000 0.940 0.000 0.056
#> GSM627134     4  0.0162    0.91319 0.000 0.004 0.000 0.996 0.000
#> GSM627137     2  0.0290    0.90581 0.000 0.992 0.000 0.008 0.000
#> GSM627148     5  0.3816    0.64454 0.000 0.000 0.304 0.000 0.696
#> GSM627101     4  0.1341    0.89584 0.000 0.000 0.000 0.944 0.056
#> GSM627130     4  0.1908    0.88101 0.000 0.000 0.000 0.908 0.092
#> GSM627071     5  0.4118    0.60195 0.004 0.000 0.336 0.000 0.660
#> GSM627118     4  0.0000    0.91283 0.000 0.000 0.000 1.000 0.000
#> GSM627094     2  0.0000    0.90617 0.000 1.000 0.000 0.000 0.000
#> GSM627122     5  0.4350    0.32610 0.408 0.000 0.000 0.004 0.588
#> GSM627115     2  0.0000    0.90617 0.000 1.000 0.000 0.000 0.000
#> GSM627125     4  0.3684    0.71525 0.000 0.000 0.000 0.720 0.280
#> GSM627174     2  0.1121    0.89491 0.000 0.956 0.000 0.044 0.000
#> GSM627102     2  0.2020    0.86473 0.000 0.900 0.100 0.000 0.000
#> GSM627073     5  0.2424    0.78300 0.000 0.000 0.132 0.000 0.868
#> GSM627108     2  0.0000    0.90617 0.000 1.000 0.000 0.000 0.000
#> GSM627126     1  0.0000    0.77313 1.000 0.000 0.000 0.000 0.000
#> GSM627078     4  0.0162    0.91319 0.000 0.004 0.000 0.996 0.000
#> GSM627090     5  0.0609    0.76636 0.020 0.000 0.000 0.000 0.980
#> GSM627099     4  0.2516    0.79763 0.000 0.140 0.000 0.860 0.000
#> GSM627105     4  0.3684    0.71525 0.000 0.000 0.000 0.720 0.280
#> GSM627117     3  0.0162    0.71163 0.000 0.004 0.996 0.000 0.000
#> GSM627121     5  0.1410    0.79443 0.000 0.000 0.060 0.000 0.940
#> GSM627127     4  0.0162    0.91319 0.000 0.004 0.000 0.996 0.000
#> GSM627087     2  0.0162    0.90625 0.000 0.996 0.000 0.004 0.000
#> GSM627089     5  0.3857    0.63529 0.000 0.000 0.312 0.000 0.688
#> GSM627092     2  0.3143    0.79318 0.000 0.796 0.204 0.000 0.000
#> GSM627076     5  0.2179    0.71720 0.100 0.000 0.000 0.004 0.896
#> GSM627136     3  0.3462    0.62760 0.196 0.000 0.792 0.000 0.012
#> GSM627081     5  0.1608    0.79678 0.000 0.000 0.072 0.000 0.928
#> GSM627091     2  0.1121    0.89491 0.000 0.956 0.000 0.044 0.000
#> GSM627097     4  0.0000    0.91283 0.000 0.000 0.000 1.000 0.000
#> GSM627072     5  0.4030    0.58171 0.000 0.000 0.352 0.000 0.648
#> GSM627080     1  0.1671    0.75462 0.924 0.000 0.076 0.000 0.000
#> GSM627088     3  0.2079    0.70666 0.020 0.000 0.916 0.000 0.064
#> GSM627109     1  0.3999    0.57402 0.656 0.000 0.344 0.000 0.000
#> GSM627111     1  0.3966    0.58352 0.664 0.000 0.336 0.000 0.000
#> GSM627113     3  0.3857    0.45621 0.312 0.000 0.688 0.000 0.000
#> GSM627133     2  0.5488    0.49552 0.000 0.608 0.300 0.000 0.092
#> GSM627177     5  0.4497    0.56457 0.016 0.000 0.352 0.000 0.632
#> GSM627086     2  0.1043    0.89635 0.000 0.960 0.000 0.040 0.000
#> GSM627095     1  0.0000    0.77313 1.000 0.000 0.000 0.000 0.000
#> GSM627079     5  0.1965    0.79667 0.000 0.000 0.096 0.000 0.904
#> GSM627082     4  0.3759    0.82398 0.092 0.000 0.000 0.816 0.092
#> GSM627074     3  0.4088    0.30288 0.368 0.000 0.632 0.000 0.000
#> GSM627077     1  0.1205    0.76667 0.956 0.000 0.040 0.000 0.004
#> GSM627093     3  0.2813    0.64185 0.168 0.000 0.832 0.000 0.000
#> GSM627120     4  0.0798    0.91018 0.000 0.008 0.000 0.976 0.016
#> GSM627124     4  0.0162    0.91319 0.000 0.004 0.000 0.996 0.000
#> GSM627075     2  0.1965    0.86688 0.000 0.904 0.096 0.000 0.000
#> GSM627085     4  0.0162    0.91319 0.000 0.004 0.000 0.996 0.000
#> GSM627119     3  0.3895    0.43870 0.320 0.000 0.680 0.000 0.000
#> GSM627116     4  0.0000    0.91283 0.000 0.000 0.000 1.000 0.000
#> GSM627084     1  0.3752    0.62816 0.708 0.000 0.292 0.000 0.000
#> GSM627096     4  0.0000    0.91283 0.000 0.000 0.000 1.000 0.000
#> GSM627100     5  0.0771    0.76415 0.020 0.000 0.000 0.004 0.976
#> GSM627112     4  0.0880    0.90337 0.000 0.000 0.000 0.968 0.032
#> GSM627083     1  0.0000    0.77313 1.000 0.000 0.000 0.000 0.000
#> GSM627098     1  0.4126    0.51530 0.620 0.000 0.380 0.000 0.000
#> GSM627104     1  0.3999    0.57402 0.656 0.000 0.344 0.000 0.000
#> GSM627131     1  0.4735   -0.02012 0.524 0.000 0.016 0.000 0.460
#> GSM627106     5  0.1608    0.79678 0.000 0.000 0.072 0.000 0.928
#> GSM627123     1  0.0000    0.77313 1.000 0.000 0.000 0.000 0.000
#> GSM627129     4  0.0162    0.91319 0.000 0.004 0.000 0.996 0.000
#> GSM627216     2  0.0324    0.90453 0.000 0.992 0.004 0.000 0.004
#> GSM627212     2  0.1121    0.89491 0.000 0.956 0.000 0.044 0.000
#> GSM627190     3  0.0290    0.71296 0.000 0.000 0.992 0.000 0.008
#> GSM627169     2  0.3774    0.70178 0.000 0.704 0.296 0.000 0.000
#> GSM627167     4  0.1792    0.88418 0.000 0.000 0.000 0.916 0.084
#> GSM627192     1  0.0000    0.77313 1.000 0.000 0.000 0.000 0.000
#> GSM627203     5  0.1792    0.79741 0.000 0.000 0.084 0.000 0.916
#> GSM627151     4  0.0703    0.90271 0.000 0.024 0.000 0.976 0.000
#> GSM627163     1  0.2329    0.73342 0.876 0.000 0.124 0.000 0.000
#> GSM627211     2  0.0000    0.90617 0.000 1.000 0.000 0.000 0.000
#> GSM627171     2  0.3480    0.75420 0.000 0.752 0.248 0.000 0.000
#> GSM627209     4  0.0162    0.91319 0.000 0.004 0.000 0.996 0.000
#> GSM627135     1  0.0000    0.77313 1.000 0.000 0.000 0.000 0.000
#> GSM627170     2  0.0290    0.90581 0.000 0.992 0.000 0.008 0.000
#> GSM627178     1  0.0898    0.76533 0.972 0.000 0.008 0.000 0.020
#> GSM627199     4  0.0404    0.90989 0.000 0.012 0.000 0.988 0.000
#> GSM627213     4  0.0000    0.91283 0.000 0.000 0.000 1.000 0.000
#> GSM627140     4  0.5440    0.67760 0.236 0.000 0.020 0.672 0.072
#> GSM627149     1  0.0000    0.77313 1.000 0.000 0.000 0.000 0.000
#> GSM627147     2  0.4425    0.58424 0.000 0.680 0.024 0.296 0.000
#> GSM627195     5  0.1851    0.79725 0.000 0.000 0.088 0.000 0.912
#> GSM627204     2  0.0000    0.90617 0.000 1.000 0.000 0.000 0.000
#> GSM627207     2  0.0162    0.90493 0.000 0.996 0.004 0.000 0.000
#> GSM627157     1  0.4227    0.42245 0.580 0.000 0.420 0.000 0.000
#> GSM627201     2  0.1121    0.89491 0.000 0.956 0.000 0.044 0.000
#> GSM627146     2  0.1121    0.89491 0.000 0.956 0.000 0.044 0.000
#> GSM627156     2  0.3684    0.72069 0.000 0.720 0.280 0.000 0.000
#> GSM627188     1  0.0000    0.77313 1.000 0.000 0.000 0.000 0.000
#> GSM627197     2  0.1121    0.89491 0.000 0.956 0.000 0.044 0.000
#> GSM627173     2  0.0000    0.90617 0.000 1.000 0.000 0.000 0.000
#> GSM627179     2  0.0000    0.90617 0.000 1.000 0.000 0.000 0.000
#> GSM627208     3  0.5255   -0.03711 0.000 0.052 0.560 0.000 0.388
#> GSM627215     2  0.2859    0.81919 0.000 0.876 0.056 0.000 0.068
#> GSM627153     4  0.0162    0.91319 0.000 0.004 0.000 0.996 0.000
#> GSM627155     1  0.0000    0.77313 1.000 0.000 0.000 0.000 0.000
#> GSM627165     4  0.3954    0.75499 0.000 0.036 0.000 0.772 0.192
#> GSM627168     5  0.4227    0.45542 0.000 0.000 0.420 0.000 0.580
#> GSM627183     3  0.4548    0.64117 0.128 0.000 0.752 0.000 0.120
#> GSM627144     5  0.2605    0.77166 0.000 0.000 0.148 0.000 0.852
#> GSM627158     1  0.0000    0.77313 1.000 0.000 0.000 0.000 0.000
#> GSM627196     2  0.0162    0.90625 0.000 0.996 0.000 0.004 0.000
#> GSM627142     5  0.4577    0.57480 0.108 0.000 0.000 0.144 0.748
#> GSM627182     3  0.4182   -0.01053 0.000 0.000 0.600 0.000 0.400
#> GSM627202     1  0.4542    0.00208 0.536 0.000 0.008 0.000 0.456
#> GSM627141     3  0.0865    0.72240 0.024 0.000 0.972 0.000 0.004
#> GSM627143     2  0.6666    0.37021 0.000 0.476 0.232 0.288 0.004
#> GSM627145     5  0.3857    0.63544 0.000 0.000 0.312 0.000 0.688
#> GSM627152     5  0.2179    0.71315 0.112 0.000 0.000 0.000 0.888
#> GSM627200     1  0.4150    0.46723 0.612 0.000 0.388 0.000 0.000
#> GSM627159     4  0.2193    0.87769 0.008 0.000 0.000 0.900 0.092
#> GSM627164     2  0.3424    0.76193 0.000 0.760 0.240 0.000 0.000
#> GSM627138     1  0.4101    0.53029 0.628 0.000 0.372 0.000 0.000
#> GSM627175     4  0.0162    0.91319 0.000 0.004 0.000 0.996 0.000
#> GSM627150     5  0.1965    0.79667 0.000 0.000 0.096 0.000 0.904
#> GSM627166     1  0.2813    0.71283 0.832 0.000 0.168 0.000 0.000
#> GSM627186     2  0.3796    0.69671 0.000 0.700 0.300 0.000 0.000
#> GSM627139     4  0.3949    0.68549 0.004 0.000 0.000 0.696 0.300
#> GSM627181     2  0.1121    0.89491 0.000 0.956 0.000 0.044 0.000
#> GSM627205     2  0.0404    0.90498 0.000 0.988 0.000 0.012 0.000
#> GSM627214     4  0.0290    0.91173 0.000 0.008 0.000 0.992 0.000
#> GSM627180     5  0.2020    0.79577 0.000 0.000 0.100 0.000 0.900
#> GSM627172     2  0.2074    0.86242 0.000 0.896 0.104 0.000 0.000
#> GSM627184     1  0.0000    0.77313 1.000 0.000 0.000 0.000 0.000
#> GSM627193     2  0.0000    0.90617 0.000 1.000 0.000 0.000 0.000
#> GSM627191     4  0.5308    0.59238 0.304 0.000 0.000 0.620 0.076
#> GSM627176     5  0.4410    0.62020 0.112 0.000 0.124 0.000 0.764
#> GSM627194     2  0.0162    0.90625 0.000 0.996 0.000 0.004 0.000
#> GSM627154     4  0.0162    0.91319 0.000 0.004 0.000 0.996 0.000
#> GSM627187     3  0.0324    0.71358 0.004 0.004 0.992 0.000 0.000
#> GSM627198     4  0.0162    0.91319 0.000 0.004 0.000 0.996 0.000
#> GSM627160     4  0.5723    0.42712 0.388 0.000 0.004 0.532 0.076
#> GSM627185     1  0.3999    0.57402 0.656 0.000 0.344 0.000 0.000
#> GSM627206     3  0.4306   -0.25399 0.000 0.000 0.508 0.000 0.492
#> GSM627161     1  0.0000    0.77313 1.000 0.000 0.000 0.000 0.000
#> GSM627162     3  0.2179    0.66062 0.100 0.004 0.896 0.000 0.000
#> GSM627210     3  0.3876    0.44802 0.316 0.000 0.684 0.000 0.000
#> GSM627189     2  0.0000    0.90617 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM627128     4  0.6607     0.3677 0.000 0.000 0.160 0.436 0.056 0.348
#> GSM627110     3  0.3187     0.6417 0.004 0.000 0.796 0.000 0.188 0.012
#> GSM627132     1  0.3101     0.5512 0.756 0.000 0.244 0.000 0.000 0.000
#> GSM627107     5  0.4965     0.4999 0.000 0.000 0.156 0.004 0.664 0.176
#> GSM627103     2  0.0260     0.9103 0.000 0.992 0.000 0.008 0.000 0.000
#> GSM627114     3  0.3187     0.6433 0.004 0.000 0.796 0.000 0.188 0.012
#> GSM627134     4  0.0405     0.7963 0.000 0.000 0.000 0.988 0.004 0.008
#> GSM627137     2  0.0520     0.9089 0.000 0.984 0.000 0.008 0.000 0.008
#> GSM627148     5  0.2668     0.6801 0.000 0.000 0.168 0.000 0.828 0.004
#> GSM627101     4  0.4239     0.6561 0.000 0.000 0.016 0.740 0.052 0.192
#> GSM627130     4  0.6612     0.3636 0.000 0.000 0.160 0.432 0.056 0.352
#> GSM627071     5  0.3394     0.6369 0.000 0.000 0.236 0.000 0.752 0.012
#> GSM627118     4  0.0405     0.7963 0.000 0.000 0.000 0.988 0.004 0.008
#> GSM627094     2  0.0146     0.9096 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM627122     1  0.7514     0.0155 0.400 0.000 0.172 0.004 0.236 0.188
#> GSM627115     2  0.0291     0.9097 0.000 0.992 0.000 0.004 0.000 0.004
#> GSM627125     4  0.7232     0.2813 0.000 0.000 0.160 0.356 0.132 0.352
#> GSM627174     2  0.2053     0.8572 0.000 0.888 0.000 0.108 0.000 0.004
#> GSM627102     6  0.4364     0.6044 0.000 0.364 0.024 0.004 0.000 0.608
#> GSM627073     5  0.1700     0.7129 0.000 0.000 0.080 0.000 0.916 0.004
#> GSM627108     2  0.0146     0.9061 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM627126     1  0.0146     0.7507 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM627078     4  0.0291     0.7967 0.000 0.004 0.000 0.992 0.000 0.004
#> GSM627090     5  0.5650     0.4262 0.004 0.000 0.172 0.004 0.572 0.248
#> GSM627099     4  0.3298     0.5309 0.000 0.236 0.000 0.756 0.000 0.008
#> GSM627105     4  0.7232     0.2813 0.000 0.000 0.160 0.356 0.132 0.352
#> GSM627117     3  0.3517     0.6589 0.004 0.004 0.812 0.000 0.052 0.128
#> GSM627121     5  0.2679     0.6562 0.000 0.000 0.040 0.000 0.864 0.096
#> GSM627127     4  0.0146     0.7969 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM627087     2  0.0405     0.9103 0.000 0.988 0.000 0.008 0.000 0.004
#> GSM627089     5  0.2941     0.6534 0.000 0.000 0.220 0.000 0.780 0.000
#> GSM627092     6  0.4538     0.6289 0.000 0.340 0.048 0.000 0.000 0.612
#> GSM627076     5  0.6616     0.3041 0.044 0.000 0.168 0.004 0.448 0.336
#> GSM627136     3  0.3857     0.7180 0.152 0.000 0.768 0.000 0.080 0.000
#> GSM627081     5  0.0508     0.7052 0.000 0.000 0.004 0.000 0.984 0.012
#> GSM627091     2  0.2100     0.8480 0.000 0.884 0.000 0.112 0.000 0.004
#> GSM627097     4  0.0000     0.7969 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM627072     5  0.3151     0.6257 0.000 0.000 0.252 0.000 0.748 0.000
#> GSM627080     1  0.1007     0.7402 0.956 0.000 0.044 0.000 0.000 0.000
#> GSM627088     3  0.3152     0.6397 0.004 0.000 0.792 0.000 0.196 0.008
#> GSM627109     1  0.3810     0.1585 0.572 0.000 0.428 0.000 0.000 0.000
#> GSM627111     1  0.3747     0.2469 0.604 0.000 0.396 0.000 0.000 0.000
#> GSM627113     3  0.3714     0.7005 0.196 0.000 0.760 0.000 0.044 0.000
#> GSM627133     2  0.5627     0.2918 0.000 0.540 0.084 0.000 0.348 0.028
#> GSM627177     5  0.3790     0.6063 0.004 0.000 0.264 0.000 0.716 0.016
#> GSM627086     2  0.1644     0.8804 0.000 0.920 0.000 0.076 0.000 0.004
#> GSM627095     1  0.0146     0.7507 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM627079     5  0.1701     0.7158 0.000 0.000 0.072 0.000 0.920 0.008
#> GSM627082     4  0.7411     0.2993 0.044 0.000 0.160 0.372 0.056 0.368
#> GSM627074     3  0.3499     0.5466 0.320 0.000 0.680 0.000 0.000 0.000
#> GSM627077     1  0.1788     0.7275 0.916 0.000 0.076 0.000 0.004 0.004
#> GSM627093     3  0.2883     0.6834 0.212 0.000 0.788 0.000 0.000 0.000
#> GSM627120     4  0.3305     0.7270 0.000 0.000 0.012 0.832 0.048 0.108
#> GSM627124     4  0.0291     0.7967 0.000 0.004 0.000 0.992 0.000 0.004
#> GSM627075     6  0.4254     0.5490 0.000 0.404 0.020 0.000 0.000 0.576
#> GSM627085     4  0.0146     0.7969 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM627119     3  0.3101     0.6640 0.244 0.000 0.756 0.000 0.000 0.000
#> GSM627116     4  0.0363     0.7943 0.000 0.000 0.000 0.988 0.000 0.012
#> GSM627084     1  0.3464     0.4368 0.688 0.000 0.312 0.000 0.000 0.000
#> GSM627096     4  0.0405     0.7963 0.000 0.000 0.000 0.988 0.004 0.008
#> GSM627100     5  0.5954     0.3231 0.004 0.000 0.168 0.004 0.468 0.356
#> GSM627112     4  0.1814     0.7515 0.000 0.000 0.000 0.900 0.000 0.100
#> GSM627083     1  0.0748     0.7402 0.976 0.000 0.004 0.004 0.000 0.016
#> GSM627098     3  0.3851     0.1947 0.460 0.000 0.540 0.000 0.000 0.000
#> GSM627104     1  0.3833     0.1044 0.556 0.000 0.444 0.000 0.000 0.000
#> GSM627131     1  0.5128     0.4386 0.636 0.000 0.116 0.000 0.240 0.008
#> GSM627106     5  0.0508     0.7052 0.000 0.000 0.004 0.000 0.984 0.012
#> GSM627123     1  0.0000     0.7509 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627129     4  0.0405     0.7963 0.000 0.000 0.000 0.988 0.004 0.008
#> GSM627216     2  0.1168     0.8932 0.000 0.956 0.000 0.000 0.028 0.016
#> GSM627212     2  0.2006     0.8570 0.000 0.892 0.000 0.104 0.000 0.004
#> GSM627190     3  0.3383     0.6615 0.004 0.004 0.812 0.000 0.148 0.032
#> GSM627169     6  0.4887     0.6349 0.000 0.324 0.080 0.000 0.000 0.596
#> GSM627167     6  0.5998    -0.3353 0.000 0.000 0.148 0.380 0.016 0.456
#> GSM627192     1  0.0146     0.7507 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM627203     5  0.0858     0.7138 0.000 0.000 0.028 0.000 0.968 0.004
#> GSM627151     4  0.2170     0.7087 0.000 0.100 0.000 0.888 0.000 0.012
#> GSM627163     1  0.1501     0.7210 0.924 0.000 0.076 0.000 0.000 0.000
#> GSM627211     2  0.0405     0.9069 0.000 0.988 0.000 0.004 0.000 0.008
#> GSM627171     6  0.4700     0.6290 0.000 0.340 0.060 0.000 0.000 0.600
#> GSM627209     4  0.0291     0.7967 0.000 0.004 0.000 0.992 0.000 0.004
#> GSM627135     1  0.0146     0.7510 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM627170     2  0.1053     0.9039 0.000 0.964 0.000 0.012 0.020 0.004
#> GSM627178     1  0.1922     0.7331 0.924 0.000 0.040 0.000 0.024 0.012
#> GSM627199     4  0.1092     0.7809 0.000 0.020 0.000 0.960 0.000 0.020
#> GSM627213     4  0.0000     0.7969 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM627140     6  0.4184     0.3418 0.120 0.000 0.004 0.124 0.000 0.752
#> GSM627149     1  0.0000     0.7509 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627147     6  0.4480     0.6048 0.000 0.304 0.004 0.044 0.000 0.648
#> GSM627195     5  0.1082     0.7152 0.000 0.000 0.040 0.000 0.956 0.004
#> GSM627204     2  0.0291     0.9087 0.000 0.992 0.000 0.004 0.000 0.004
#> GSM627207     2  0.1327     0.8460 0.000 0.936 0.000 0.000 0.000 0.064
#> GSM627157     3  0.3823     0.2738 0.436 0.000 0.564 0.000 0.000 0.000
#> GSM627201     2  0.1814     0.8625 0.000 0.900 0.000 0.100 0.000 0.000
#> GSM627146     2  0.1327     0.8893 0.000 0.936 0.000 0.064 0.000 0.000
#> GSM627156     6  0.4887     0.6349 0.000 0.324 0.080 0.000 0.000 0.596
#> GSM627188     1  0.0146     0.7507 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM627197     2  0.2118     0.8592 0.000 0.888 0.000 0.104 0.000 0.008
#> GSM627173     2  0.0260     0.9039 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM627179     2  0.0146     0.9096 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM627208     5  0.4478     0.5392 0.000 0.024 0.296 0.000 0.660 0.020
#> GSM627215     2  0.3141     0.6878 0.000 0.788 0.000 0.000 0.200 0.012
#> GSM627153     4  0.0291     0.7967 0.000 0.004 0.000 0.992 0.000 0.004
#> GSM627155     1  0.0000     0.7509 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627165     4  0.5044     0.6308 0.000 0.020 0.012 0.708 0.148 0.112
#> GSM627168     5  0.3789     0.3673 0.000 0.000 0.416 0.000 0.584 0.000
#> GSM627183     3  0.3511     0.6354 0.024 0.000 0.760 0.000 0.216 0.000
#> GSM627144     5  0.1908     0.7126 0.000 0.000 0.096 0.000 0.900 0.004
#> GSM627158     1  0.0458     0.7491 0.984 0.000 0.016 0.000 0.000 0.000
#> GSM627196     2  0.0291     0.9087 0.000 0.992 0.000 0.004 0.000 0.004
#> GSM627142     6  0.7791    -0.2394 0.052 0.000 0.168 0.084 0.340 0.356
#> GSM627182     5  0.4026     0.4952 0.000 0.000 0.348 0.000 0.636 0.016
#> GSM627202     1  0.4710     0.4712 0.668 0.000 0.084 0.000 0.244 0.004
#> GSM627141     3  0.3684     0.7034 0.048 0.000 0.812 0.000 0.112 0.028
#> GSM627143     6  0.5204     0.6187 0.000 0.236 0.052 0.056 0.000 0.656
#> GSM627145     5  0.2793     0.6648 0.000 0.000 0.200 0.000 0.800 0.000
#> GSM627152     5  0.6812     0.3664 0.084 0.000 0.168 0.004 0.500 0.244
#> GSM627200     1  0.3833     0.0650 0.556 0.000 0.444 0.000 0.000 0.000
#> GSM627159     4  0.6617     0.3598 0.000 0.000 0.160 0.428 0.056 0.356
#> GSM627164     6  0.4687     0.6319 0.000 0.336 0.060 0.000 0.000 0.604
#> GSM627138     3  0.3867     0.0954 0.488 0.000 0.512 0.000 0.000 0.000
#> GSM627175     4  0.0291     0.7967 0.000 0.004 0.000 0.992 0.000 0.004
#> GSM627150     5  0.1204     0.7158 0.000 0.000 0.056 0.000 0.944 0.000
#> GSM627166     1  0.2706     0.6546 0.832 0.000 0.160 0.000 0.000 0.008
#> GSM627186     6  0.4887     0.6349 0.000 0.324 0.080 0.000 0.000 0.596
#> GSM627139     6  0.7553    -0.2766 0.004 0.000 0.168 0.300 0.172 0.356
#> GSM627181     2  0.2218     0.8567 0.000 0.884 0.000 0.104 0.000 0.012
#> GSM627205     2  0.1511     0.8934 0.000 0.944 0.000 0.012 0.032 0.012
#> GSM627214     4  0.0603     0.7948 0.000 0.000 0.000 0.980 0.004 0.016
#> GSM627180     5  0.1584     0.7151 0.000 0.000 0.064 0.000 0.928 0.008
#> GSM627172     6  0.4475     0.6112 0.004 0.356 0.024 0.004 0.000 0.612
#> GSM627184     1  0.0146     0.7493 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM627193     2  0.0000     0.9074 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627191     4  0.7779     0.1527 0.280 0.000 0.152 0.292 0.008 0.268
#> GSM627176     5  0.6933     0.3257 0.076 0.000 0.180 0.004 0.456 0.284
#> GSM627194     2  0.0547     0.9088 0.000 0.980 0.000 0.020 0.000 0.000
#> GSM627154     4  0.0146     0.7969 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM627187     3  0.3043     0.6162 0.000 0.004 0.796 0.000 0.004 0.196
#> GSM627198     4  0.0291     0.7967 0.000 0.004 0.000 0.992 0.000 0.004
#> GSM627160     1  0.8130    -0.0913 0.340 0.000 0.152 0.200 0.040 0.268
#> GSM627185     1  0.3828     0.1121 0.560 0.000 0.440 0.000 0.000 0.000
#> GSM627206     5  0.4067     0.2836 0.000 0.000 0.444 0.000 0.548 0.008
#> GSM627161     1  0.0260     0.7507 0.992 0.000 0.008 0.000 0.000 0.000
#> GSM627162     6  0.4360     0.1102 0.012 0.004 0.404 0.000 0.004 0.576
#> GSM627210     3  0.3076     0.6686 0.240 0.000 0.760 0.000 0.000 0.000
#> GSM627189     2  0.0146     0.9096 0.000 0.996 0.000 0.004 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) age(p) other(p) k
#> CV:skmeans 145           0.9624  0.400   0.0070 2
#> CV:skmeans 143           0.0471  0.282   0.0167 3
#> CV:skmeans 140           0.2862  0.354   0.0770 4
#> CV:skmeans 130           0.1890  0.177   0.1829 5
#> CV:skmeans 111           0.1513  0.742   0.1237 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 146 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.997           0.957       0.975         0.5008 0.498   0.498
#> 3 3 0.850           0.864       0.937         0.2747 0.810   0.636
#> 4 4 0.669           0.738       0.860         0.1189 0.904   0.739
#> 5 5 0.816           0.857       0.907         0.0736 0.890   0.646
#> 6 6 0.806           0.771       0.869         0.0399 0.958   0.819

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM627128     1  0.3733      0.943 0.928 0.072
#> GSM627110     1  0.0000      0.970 1.000 0.000
#> GSM627132     1  0.0000      0.970 1.000 0.000
#> GSM627107     1  0.3733      0.943 0.928 0.072
#> GSM627103     2  0.0000      0.979 0.000 1.000
#> GSM627114     1  0.0000      0.970 1.000 0.000
#> GSM627134     2  0.0000      0.979 0.000 1.000
#> GSM627137     2  0.0000      0.979 0.000 1.000
#> GSM627148     1  0.4161      0.908 0.916 0.084
#> GSM627101     1  0.3733      0.943 0.928 0.072
#> GSM627130     1  0.3733      0.943 0.928 0.072
#> GSM627071     1  0.2603      0.957 0.956 0.044
#> GSM627118     2  0.0000      0.979 0.000 1.000
#> GSM627094     2  0.0000      0.979 0.000 1.000
#> GSM627122     1  0.0938      0.967 0.988 0.012
#> GSM627115     2  0.0000      0.979 0.000 1.000
#> GSM627125     1  0.3733      0.943 0.928 0.072
#> GSM627174     2  0.0000      0.979 0.000 1.000
#> GSM627102     2  0.0000      0.979 0.000 1.000
#> GSM627073     1  0.3431      0.947 0.936 0.064
#> GSM627108     2  0.0000      0.979 0.000 1.000
#> GSM627126     1  0.0000      0.970 1.000 0.000
#> GSM627078     2  0.0000      0.979 0.000 1.000
#> GSM627090     1  0.0000      0.970 1.000 0.000
#> GSM627099     2  0.0000      0.979 0.000 1.000
#> GSM627105     1  0.3733      0.943 0.928 0.072
#> GSM627117     2  0.3733      0.924 0.072 0.928
#> GSM627121     1  0.3431      0.947 0.936 0.064
#> GSM627127     2  0.0000      0.979 0.000 1.000
#> GSM627087     2  0.0000      0.979 0.000 1.000
#> GSM627089     1  0.0000      0.970 1.000 0.000
#> GSM627092     2  0.0000      0.979 0.000 1.000
#> GSM627076     1  0.0000      0.970 1.000 0.000
#> GSM627136     1  0.0000      0.970 1.000 0.000
#> GSM627081     1  0.5842      0.874 0.860 0.140
#> GSM627091     2  0.0000      0.979 0.000 1.000
#> GSM627097     2  0.0000      0.979 0.000 1.000
#> GSM627072     1  0.1184      0.966 0.984 0.016
#> GSM627080     1  0.0000      0.970 1.000 0.000
#> GSM627088     2  0.8499      0.660 0.276 0.724
#> GSM627109     1  0.0000      0.970 1.000 0.000
#> GSM627111     1  0.0000      0.970 1.000 0.000
#> GSM627113     1  0.0000      0.970 1.000 0.000
#> GSM627133     2  0.0000      0.979 0.000 1.000
#> GSM627177     1  0.3431      0.948 0.936 0.064
#> GSM627086     2  0.0000      0.979 0.000 1.000
#> GSM627095     1  0.0000      0.970 1.000 0.000
#> GSM627079     1  0.0376      0.969 0.996 0.004
#> GSM627082     1  0.3733      0.943 0.928 0.072
#> GSM627074     2  0.6048      0.851 0.148 0.852
#> GSM627077     1  0.0000      0.970 1.000 0.000
#> GSM627093     2  0.3733      0.924 0.072 0.928
#> GSM627120     2  0.0000      0.979 0.000 1.000
#> GSM627124     2  0.0000      0.979 0.000 1.000
#> GSM627075     2  0.0000      0.979 0.000 1.000
#> GSM627085     2  0.0000      0.979 0.000 1.000
#> GSM627119     1  0.5519      0.856 0.872 0.128
#> GSM627116     2  0.8386      0.621 0.268 0.732
#> GSM627084     1  0.0376      0.969 0.996 0.004
#> GSM627096     2  0.0938      0.971 0.012 0.988
#> GSM627100     1  0.3114      0.951 0.944 0.056
#> GSM627112     1  0.7528      0.772 0.784 0.216
#> GSM627083     1  0.1633      0.964 0.976 0.024
#> GSM627098     1  0.0000      0.970 1.000 0.000
#> GSM627104     2  0.3733      0.924 0.072 0.928
#> GSM627131     1  0.0000      0.970 1.000 0.000
#> GSM627106     1  0.3431      0.947 0.936 0.064
#> GSM627123     1  0.0000      0.970 1.000 0.000
#> GSM627129     2  0.0000      0.979 0.000 1.000
#> GSM627216     2  0.0000      0.979 0.000 1.000
#> GSM627212     2  0.0000      0.979 0.000 1.000
#> GSM627190     2  0.3733      0.924 0.072 0.928
#> GSM627169     2  0.0672      0.974 0.008 0.992
#> GSM627167     2  0.0000      0.979 0.000 1.000
#> GSM627192     1  0.0000      0.970 1.000 0.000
#> GSM627203     1  0.2778      0.954 0.952 0.048
#> GSM627151     2  0.0000      0.979 0.000 1.000
#> GSM627163     1  0.0000      0.970 1.000 0.000
#> GSM627211     2  0.0000      0.979 0.000 1.000
#> GSM627171     2  0.0672      0.974 0.008 0.992
#> GSM627209     2  0.0000      0.979 0.000 1.000
#> GSM627135     1  0.0000      0.970 1.000 0.000
#> GSM627170     2  0.0000      0.979 0.000 1.000
#> GSM627178     1  0.0000      0.970 1.000 0.000
#> GSM627199     2  0.0000      0.979 0.000 1.000
#> GSM627213     2  0.0000      0.979 0.000 1.000
#> GSM627140     2  0.0000      0.979 0.000 1.000
#> GSM627149     1  0.0000      0.970 1.000 0.000
#> GSM627147     2  0.0000      0.979 0.000 1.000
#> GSM627195     1  0.2778      0.954 0.952 0.048
#> GSM627204     2  0.0000      0.979 0.000 1.000
#> GSM627207     2  0.0000      0.979 0.000 1.000
#> GSM627157     1  0.0000      0.970 1.000 0.000
#> GSM627201     2  0.0000      0.979 0.000 1.000
#> GSM627146     2  0.0000      0.979 0.000 1.000
#> GSM627156     2  0.0000      0.979 0.000 1.000
#> GSM627188     1  0.0000      0.970 1.000 0.000
#> GSM627197     2  0.0000      0.979 0.000 1.000
#> GSM627173     2  0.0000      0.979 0.000 1.000
#> GSM627179     2  0.0000      0.979 0.000 1.000
#> GSM627208     2  0.0672      0.974 0.008 0.992
#> GSM627215     2  0.0000      0.979 0.000 1.000
#> GSM627153     2  0.0000      0.979 0.000 1.000
#> GSM627155     1  0.0000      0.970 1.000 0.000
#> GSM627165     2  0.0000      0.979 0.000 1.000
#> GSM627168     1  0.0000      0.970 1.000 0.000
#> GSM627183     1  0.0000      0.970 1.000 0.000
#> GSM627144     2  0.7056      0.770 0.192 0.808
#> GSM627158     1  0.0000      0.970 1.000 0.000
#> GSM627196     2  0.0000      0.979 0.000 1.000
#> GSM627142     1  0.3431      0.947 0.936 0.064
#> GSM627182     2  0.0672      0.974 0.008 0.992
#> GSM627202     1  0.0000      0.970 1.000 0.000
#> GSM627141     1  0.0000      0.970 1.000 0.000
#> GSM627143     2  0.0000      0.979 0.000 1.000
#> GSM627145     1  0.0000      0.970 1.000 0.000
#> GSM627152     1  0.0000      0.970 1.000 0.000
#> GSM627200     1  0.0000      0.970 1.000 0.000
#> GSM627159     1  0.3733      0.943 0.928 0.072
#> GSM627164     2  0.0000      0.979 0.000 1.000
#> GSM627138     1  0.0000      0.970 1.000 0.000
#> GSM627175     2  0.0000      0.979 0.000 1.000
#> GSM627150     1  0.3431      0.947 0.936 0.064
#> GSM627166     2  0.2236      0.955 0.036 0.964
#> GSM627186     2  0.0672      0.974 0.008 0.992
#> GSM627139     1  0.3733      0.943 0.928 0.072
#> GSM627181     2  0.0000      0.979 0.000 1.000
#> GSM627205     2  0.0000      0.979 0.000 1.000
#> GSM627214     2  0.0000      0.979 0.000 1.000
#> GSM627180     2  0.1184      0.968 0.016 0.984
#> GSM627172     2  0.0000      0.979 0.000 1.000
#> GSM627184     1  0.0000      0.970 1.000 0.000
#> GSM627193     2  0.0000      0.979 0.000 1.000
#> GSM627191     1  0.3733      0.943 0.928 0.072
#> GSM627176     1  0.0376      0.969 0.996 0.004
#> GSM627194     2  0.0000      0.979 0.000 1.000
#> GSM627154     2  0.0000      0.979 0.000 1.000
#> GSM627187     2  0.3733      0.924 0.072 0.928
#> GSM627198     2  0.0000      0.979 0.000 1.000
#> GSM627160     1  0.4298      0.930 0.912 0.088
#> GSM627185     1  0.0000      0.970 1.000 0.000
#> GSM627206     1  0.0000      0.970 1.000 0.000
#> GSM627161     1  0.0000      0.970 1.000 0.000
#> GSM627162     2  0.5946      0.852 0.144 0.856
#> GSM627210     2  0.3879      0.921 0.076 0.924
#> GSM627189     2  0.0000      0.979 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM627128     3  0.1860   0.887952 0.000 0.052 0.948
#> GSM627110     1  0.2066   0.845860 0.940 0.000 0.060
#> GSM627132     1  0.0000   0.849084 1.000 0.000 0.000
#> GSM627107     3  0.0237   0.904979 0.000 0.004 0.996
#> GSM627103     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627114     1  0.1753   0.849527 0.952 0.000 0.048
#> GSM627134     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627137     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627148     1  0.1964   0.846963 0.944 0.000 0.056
#> GSM627101     3  0.1753   0.889624 0.000 0.048 0.952
#> GSM627130     3  0.1753   0.889624 0.000 0.048 0.952
#> GSM627071     3  0.2810   0.896817 0.036 0.036 0.928
#> GSM627118     2  0.0237   0.978620 0.000 0.996 0.004
#> GSM627094     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627122     3  0.2356   0.885802 0.072 0.000 0.928
#> GSM627115     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627125     3  0.0424   0.905074 0.000 0.008 0.992
#> GSM627174     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627102     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627073     3  0.2165   0.886993 0.000 0.064 0.936
#> GSM627108     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627126     1  0.6308   0.000962 0.508 0.000 0.492
#> GSM627078     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627090     3  0.0000   0.904887 0.000 0.000 1.000
#> GSM627099     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627105     3  0.0592   0.904707 0.000 0.012 0.988
#> GSM627117     1  0.4339   0.792281 0.868 0.084 0.048
#> GSM627121     3  0.0000   0.904887 0.000 0.000 1.000
#> GSM627127     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627087     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627089     1  0.6252   0.258587 0.556 0.000 0.444
#> GSM627092     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627076     3  0.0000   0.904887 0.000 0.000 1.000
#> GSM627136     3  0.6280   0.010073 0.460 0.000 0.540
#> GSM627081     3  0.2537   0.856198 0.000 0.080 0.920
#> GSM627091     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627097     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627072     3  0.5760   0.444948 0.328 0.000 0.672
#> GSM627080     1  0.0000   0.849084 1.000 0.000 0.000
#> GSM627088     1  0.7391   0.633968 0.696 0.196 0.108
#> GSM627109     1  0.0000   0.849084 1.000 0.000 0.000
#> GSM627111     1  0.0000   0.849084 1.000 0.000 0.000
#> GSM627113     1  0.1643   0.849941 0.956 0.000 0.044
#> GSM627133     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627177     3  0.2774   0.881411 0.008 0.072 0.920
#> GSM627086     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627095     1  0.6308   0.000962 0.508 0.000 0.492
#> GSM627079     3  0.2356   0.885802 0.072 0.000 0.928
#> GSM627082     3  0.2116   0.891902 0.040 0.012 0.948
#> GSM627074     1  0.0424   0.849968 0.992 0.000 0.008
#> GSM627077     3  0.2448   0.885731 0.076 0.000 0.924
#> GSM627093     1  0.1753   0.849527 0.952 0.000 0.048
#> GSM627120     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627124     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627075     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627085     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627119     1  0.1753   0.849527 0.952 0.000 0.048
#> GSM627116     2  0.5291   0.611063 0.000 0.732 0.268
#> GSM627084     1  0.6935   0.369352 0.604 0.024 0.372
#> GSM627096     2  0.0592   0.971428 0.000 0.988 0.012
#> GSM627100     3  0.0000   0.904887 0.000 0.000 1.000
#> GSM627112     3  0.4931   0.685028 0.000 0.232 0.768
#> GSM627083     3  0.4075   0.882134 0.072 0.048 0.880
#> GSM627098     1  0.1753   0.849527 0.952 0.000 0.048
#> GSM627104     1  0.0237   0.849533 0.996 0.000 0.004
#> GSM627131     3  0.2356   0.885802 0.072 0.000 0.928
#> GSM627106     3  0.0000   0.904887 0.000 0.000 1.000
#> GSM627123     1  0.6267   0.145801 0.548 0.000 0.452
#> GSM627129     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627216     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627212     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627190     1  0.1753   0.849527 0.952 0.000 0.048
#> GSM627169     2  0.0237   0.978161 0.000 0.996 0.004
#> GSM627167     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627192     3  0.3412   0.867862 0.124 0.000 0.876
#> GSM627203     3  0.0747   0.901333 0.016 0.000 0.984
#> GSM627151     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627163     1  0.0000   0.849084 1.000 0.000 0.000
#> GSM627211     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627171     2  0.1529   0.943415 0.000 0.960 0.040
#> GSM627209     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627135     3  0.3267   0.872225 0.116 0.000 0.884
#> GSM627170     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627178     3  0.2356   0.885802 0.072 0.000 0.928
#> GSM627199     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627213     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627140     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627149     1  0.6079   0.307619 0.612 0.000 0.388
#> GSM627147     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627195     3  0.0000   0.904887 0.000 0.000 1.000
#> GSM627204     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627207     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627157     1  0.0000   0.849084 1.000 0.000 0.000
#> GSM627201     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627146     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627156     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627188     3  0.3340   0.870423 0.120 0.000 0.880
#> GSM627197     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627173     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627179     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627208     2  0.1964   0.929148 0.000 0.944 0.056
#> GSM627215     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627153     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627155     1  0.0000   0.849084 1.000 0.000 0.000
#> GSM627165     2  0.1411   0.951583 0.000 0.964 0.036
#> GSM627168     1  0.3482   0.799717 0.872 0.000 0.128
#> GSM627183     1  0.4178   0.765053 0.828 0.000 0.172
#> GSM627144     2  0.6054   0.730468 0.052 0.768 0.180
#> GSM627158     1  0.0000   0.849084 1.000 0.000 0.000
#> GSM627196     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627142     3  0.0000   0.904887 0.000 0.000 1.000
#> GSM627182     2  0.1860   0.932208 0.000 0.948 0.052
#> GSM627202     1  0.6079   0.307619 0.612 0.000 0.388
#> GSM627141     1  0.4291   0.756892 0.820 0.000 0.180
#> GSM627143     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627145     3  0.2537   0.881333 0.080 0.000 0.920
#> GSM627152     3  0.0000   0.904887 0.000 0.000 1.000
#> GSM627200     3  0.2537   0.881528 0.080 0.000 0.920
#> GSM627159     3  0.1753   0.889624 0.000 0.048 0.952
#> GSM627164     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627138     1  0.0000   0.849084 1.000 0.000 0.000
#> GSM627175     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627150     3  0.2066   0.889658 0.000 0.060 0.940
#> GSM627166     2  0.6451   0.327856 0.384 0.608 0.008
#> GSM627186     2  0.0237   0.978161 0.000 0.996 0.004
#> GSM627139     3  0.2711   0.871359 0.000 0.088 0.912
#> GSM627181     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627205     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627214     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627180     2  0.2261   0.919534 0.000 0.932 0.068
#> GSM627172     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627184     3  0.3482   0.854884 0.128 0.000 0.872
#> GSM627193     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627191     3  0.3340   0.839685 0.000 0.120 0.880
#> GSM627176     3  0.0000   0.904887 0.000 0.000 1.000
#> GSM627194     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627154     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627187     1  0.1753   0.849527 0.952 0.000 0.048
#> GSM627198     2  0.0000   0.981616 0.000 1.000 0.000
#> GSM627160     3  0.3551   0.826164 0.000 0.132 0.868
#> GSM627185     1  0.0000   0.849084 1.000 0.000 0.000
#> GSM627206     1  0.1753   0.849527 0.952 0.000 0.048
#> GSM627161     1  0.0237   0.848567 0.996 0.000 0.004
#> GSM627162     1  0.7872   0.577547 0.652 0.236 0.112
#> GSM627210     1  0.1753   0.849527 0.952 0.000 0.048
#> GSM627189     2  0.0000   0.981616 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM627128     4  0.2281     0.7073 0.000 0.000 0.096 0.904
#> GSM627110     1  0.3946     0.7734 0.812 0.000 0.168 0.020
#> GSM627132     1  0.0000     0.7768 1.000 0.000 0.000 0.000
#> GSM627107     4  0.3688     0.5327 0.000 0.000 0.208 0.792
#> GSM627103     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627114     1  0.3806     0.7766 0.824 0.000 0.156 0.020
#> GSM627134     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627137     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627148     1  0.6391     0.5428 0.588 0.000 0.328 0.084
#> GSM627101     4  0.0707     0.7281 0.000 0.000 0.020 0.980
#> GSM627130     4  0.2281     0.7073 0.000 0.000 0.096 0.904
#> GSM627071     3  0.0376     0.7440 0.004 0.004 0.992 0.000
#> GSM627118     4  0.3074     0.8345 0.000 0.152 0.000 0.848
#> GSM627094     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627122     3  0.3266     0.6437 0.168 0.000 0.832 0.000
#> GSM627115     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627125     4  0.1022     0.7222 0.000 0.000 0.032 0.968
#> GSM627174     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627102     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627073     3  0.0336     0.7441 0.000 0.000 0.992 0.008
#> GSM627108     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627126     1  0.4907     0.0770 0.580 0.000 0.420 0.000
#> GSM627078     4  0.3726     0.8439 0.000 0.212 0.000 0.788
#> GSM627090     3  0.2589     0.7432 0.000 0.000 0.884 0.116
#> GSM627099     4  0.4040     0.8156 0.000 0.248 0.000 0.752
#> GSM627105     4  0.1022     0.7222 0.000 0.000 0.032 0.968
#> GSM627117     1  0.5763     0.7243 0.740 0.084 0.156 0.020
#> GSM627121     3  0.4933     0.3784 0.000 0.000 0.568 0.432
#> GSM627127     4  0.3688     0.8477 0.000 0.208 0.000 0.792
#> GSM627087     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627089     3  0.5183    -0.0729 0.408 0.000 0.584 0.008
#> GSM627092     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627076     3  0.3311     0.7261 0.000 0.000 0.828 0.172
#> GSM627136     3  0.4898     0.0382 0.416 0.000 0.584 0.000
#> GSM627081     3  0.5074     0.6569 0.000 0.040 0.724 0.236
#> GSM627091     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627097     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627072     3  0.4121     0.5270 0.184 0.000 0.796 0.020
#> GSM627080     1  0.0000     0.7768 1.000 0.000 0.000 0.000
#> GSM627088     1  0.6984     0.6212 0.636 0.148 0.196 0.020
#> GSM627109     1  0.0000     0.7768 1.000 0.000 0.000 0.000
#> GSM627111     1  0.0000     0.7768 1.000 0.000 0.000 0.000
#> GSM627113     1  0.3554     0.7815 0.844 0.000 0.136 0.020
#> GSM627133     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627177     3  0.0524     0.7442 0.004 0.008 0.988 0.000
#> GSM627086     2  0.0336     0.9273 0.000 0.992 0.000 0.008
#> GSM627095     1  0.4916     0.0680 0.576 0.000 0.424 0.000
#> GSM627079     3  0.0336     0.7428 0.008 0.000 0.992 0.000
#> GSM627082     3  0.4543     0.5964 0.000 0.000 0.676 0.324
#> GSM627074     1  0.3037     0.7842 0.880 0.000 0.100 0.020
#> GSM627077     3  0.3266     0.6471 0.168 0.000 0.832 0.000
#> GSM627093     1  0.3806     0.7766 0.824 0.000 0.156 0.020
#> GSM627120     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627124     2  0.0921     0.9129 0.000 0.972 0.000 0.028
#> GSM627075     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627085     4  0.3649     0.8484 0.000 0.204 0.000 0.796
#> GSM627119     1  0.3806     0.7766 0.824 0.000 0.156 0.020
#> GSM627116     4  0.5894     0.5647 0.000 0.392 0.040 0.568
#> GSM627084     1  0.5992     0.2631 0.516 0.040 0.444 0.000
#> GSM627096     4  0.3751     0.8499 0.000 0.196 0.004 0.800
#> GSM627100     3  0.3400     0.7221 0.000 0.000 0.820 0.180
#> GSM627112     4  0.4199     0.8369 0.000 0.164 0.032 0.804
#> GSM627083     3  0.6149     0.5937 0.144 0.180 0.676 0.000
#> GSM627098     1  0.3356     0.7728 0.824 0.000 0.176 0.000
#> GSM627104     1  0.1109     0.7817 0.968 0.000 0.028 0.004
#> GSM627131     3  0.3266     0.6437 0.168 0.000 0.832 0.000
#> GSM627106     3  0.3311     0.7259 0.000 0.000 0.828 0.172
#> GSM627123     1  0.4776     0.2062 0.624 0.000 0.376 0.000
#> GSM627129     2  0.0469     0.9242 0.000 0.988 0.000 0.012
#> GSM627216     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627212     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627190     1  0.3806     0.7766 0.824 0.000 0.156 0.020
#> GSM627169     2  0.1520     0.8924 0.000 0.956 0.024 0.020
#> GSM627167     2  0.4948    -0.0838 0.000 0.560 0.000 0.440
#> GSM627192     3  0.4643     0.5464 0.344 0.000 0.656 0.000
#> GSM627203     3  0.3266     0.7277 0.000 0.000 0.832 0.168
#> GSM627151     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627163     1  0.0000     0.7768 1.000 0.000 0.000 0.000
#> GSM627211     2  0.0188     0.9296 0.000 0.996 0.000 0.004
#> GSM627171     2  0.3074     0.7591 0.000 0.848 0.152 0.000
#> GSM627209     2  0.0336     0.9273 0.000 0.992 0.000 0.008
#> GSM627135     3  0.4040     0.6108 0.248 0.000 0.752 0.000
#> GSM627170     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627178     3  0.0336     0.7428 0.008 0.000 0.992 0.000
#> GSM627199     2  0.1389     0.8940 0.000 0.952 0.000 0.048
#> GSM627213     4  0.3610     0.8498 0.000 0.200 0.000 0.800
#> GSM627140     2  0.0469     0.9240 0.000 0.988 0.000 0.012
#> GSM627149     1  0.4040     0.4805 0.752 0.000 0.248 0.000
#> GSM627147     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627195     3  0.2149     0.7244 0.000 0.000 0.912 0.088
#> GSM627204     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627207     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627157     1  0.0000     0.7768 1.000 0.000 0.000 0.000
#> GSM627201     2  0.0336     0.9273 0.000 0.992 0.000 0.008
#> GSM627146     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627156     2  0.0707     0.9161 0.000 0.980 0.000 0.020
#> GSM627188     3  0.4643     0.5464 0.344 0.000 0.656 0.000
#> GSM627197     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627173     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627179     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627208     2  0.6374     0.4068 0.000 0.592 0.324 0.084
#> GSM627215     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627153     4  0.4250     0.7887 0.000 0.276 0.000 0.724
#> GSM627155     1  0.0000     0.7768 1.000 0.000 0.000 0.000
#> GSM627165     2  0.3498     0.7505 0.000 0.832 0.008 0.160
#> GSM627168     1  0.4522     0.6428 0.680 0.000 0.320 0.000
#> GSM627183     1  0.4642     0.7303 0.740 0.000 0.240 0.020
#> GSM627144     2  0.5970     0.5344 0.000 0.668 0.244 0.088
#> GSM627158     1  0.0000     0.7768 1.000 0.000 0.000 0.000
#> GSM627196     2  0.0336     0.9273 0.000 0.992 0.000 0.008
#> GSM627142     3  0.3172     0.7173 0.000 0.000 0.840 0.160
#> GSM627182     2  0.5773     0.4676 0.000 0.632 0.320 0.048
#> GSM627202     1  0.4040     0.4805 0.752 0.000 0.248 0.000
#> GSM627141     1  0.4767     0.7145 0.724 0.000 0.256 0.020
#> GSM627143     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627145     3  0.1059     0.7402 0.012 0.000 0.972 0.016
#> GSM627152     3  0.2469     0.7436 0.000 0.000 0.892 0.108
#> GSM627200     3  0.3448     0.6412 0.168 0.000 0.828 0.004
#> GSM627159     3  0.4543     0.5964 0.000 0.000 0.676 0.324
#> GSM627164     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627138     1  0.0000     0.7768 1.000 0.000 0.000 0.000
#> GSM627175     4  0.3610     0.8499 0.000 0.200 0.000 0.800
#> GSM627150     3  0.1792     0.7322 0.000 0.000 0.932 0.068
#> GSM627166     2  0.6859     0.0580 0.380 0.512 0.108 0.000
#> GSM627186     2  0.3099     0.7955 0.000 0.876 0.104 0.020
#> GSM627139     3  0.5875     0.5419 0.000 0.104 0.692 0.204
#> GSM627181     2  0.0336     0.9273 0.000 0.992 0.000 0.008
#> GSM627205     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627214     2  0.0707     0.9188 0.000 0.980 0.000 0.020
#> GSM627180     2  0.5466     0.5788 0.000 0.712 0.220 0.068
#> GSM627172     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627184     3  0.4776     0.5120 0.376 0.000 0.624 0.000
#> GSM627193     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627191     3  0.4699     0.4621 0.000 0.320 0.676 0.004
#> GSM627176     3  0.1474     0.7375 0.000 0.000 0.948 0.052
#> GSM627194     2  0.0000     0.9316 0.000 1.000 0.000 0.000
#> GSM627154     4  0.3569     0.8502 0.000 0.196 0.000 0.804
#> GSM627187     1  0.3806     0.7766 0.824 0.000 0.156 0.020
#> GSM627198     2  0.1474     0.8901 0.000 0.948 0.000 0.052
#> GSM627160     3  0.4741     0.4500 0.000 0.328 0.668 0.004
#> GSM627185     1  0.0000     0.7768 1.000 0.000 0.000 0.000
#> GSM627206     1  0.5152     0.6244 0.664 0.000 0.316 0.020
#> GSM627161     1  0.0188     0.7755 0.996 0.000 0.004 0.000
#> GSM627162     1  0.7264     0.5461 0.604 0.216 0.160 0.020
#> GSM627210     1  0.3806     0.7766 0.824 0.000 0.156 0.020
#> GSM627189     2  0.0000     0.9316 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM627128     4  0.2891     0.8011 0.000 0.000 0.000 0.824 0.176
#> GSM627110     3  0.0992     0.8840 0.024 0.000 0.968 0.000 0.008
#> GSM627132     1  0.0000     0.9419 1.000 0.000 0.000 0.000 0.000
#> GSM627107     4  0.3577     0.7781 0.000 0.000 0.032 0.808 0.160
#> GSM627103     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627114     3  0.0880     0.8848 0.032 0.000 0.968 0.000 0.000
#> GSM627134     2  0.0794     0.9420 0.000 0.972 0.000 0.028 0.000
#> GSM627137     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627148     3  0.2859     0.8022 0.000 0.000 0.876 0.056 0.068
#> GSM627101     4  0.2595     0.8210 0.000 0.000 0.032 0.888 0.080
#> GSM627130     4  0.2561     0.8227 0.000 0.000 0.000 0.856 0.144
#> GSM627071     5  0.2230     0.8768 0.000 0.000 0.116 0.000 0.884
#> GSM627118     4  0.1444     0.8658 0.000 0.040 0.000 0.948 0.012
#> GSM627094     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627122     5  0.2230     0.8768 0.000 0.000 0.116 0.000 0.884
#> GSM627115     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627125     4  0.2879     0.8129 0.000 0.000 0.032 0.868 0.100
#> GSM627174     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627102     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627073     5  0.2574     0.8786 0.000 0.000 0.112 0.012 0.876
#> GSM627108     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627126     1  0.4030     0.4501 0.648 0.000 0.000 0.000 0.352
#> GSM627078     4  0.1851     0.8716 0.000 0.088 0.000 0.912 0.000
#> GSM627090     5  0.0798     0.8606 0.000 0.000 0.008 0.016 0.976
#> GSM627099     4  0.3366     0.7633 0.000 0.232 0.000 0.768 0.000
#> GSM627105     4  0.2824     0.8148 0.000 0.000 0.032 0.872 0.096
#> GSM627117     3  0.0880     0.8848 0.032 0.000 0.968 0.000 0.000
#> GSM627121     5  0.5052     0.1784 0.000 0.000 0.036 0.412 0.552
#> GSM627127     4  0.2329     0.8587 0.000 0.124 0.000 0.876 0.000
#> GSM627087     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627089     3  0.5652     0.4443 0.036 0.000 0.616 0.040 0.308
#> GSM627092     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627076     5  0.2209     0.8321 0.000 0.000 0.032 0.056 0.912
#> GSM627136     5  0.2763     0.8626 0.000 0.004 0.148 0.000 0.848
#> GSM627081     5  0.4514     0.7225 0.000 0.040 0.040 0.140 0.780
#> GSM627091     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627097     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627072     3  0.0880     0.8747 0.000 0.000 0.968 0.000 0.032
#> GSM627080     1  0.0000     0.9419 1.000 0.000 0.000 0.000 0.000
#> GSM627088     3  0.5458     0.2419 0.020 0.420 0.532 0.000 0.028
#> GSM627109     1  0.0000     0.9419 1.000 0.000 0.000 0.000 0.000
#> GSM627111     1  0.0000     0.9419 1.000 0.000 0.000 0.000 0.000
#> GSM627113     3  0.1732     0.8579 0.080 0.000 0.920 0.000 0.000
#> GSM627133     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627177     5  0.2389     0.8774 0.000 0.004 0.116 0.000 0.880
#> GSM627086     2  0.0510     0.9509 0.000 0.984 0.000 0.016 0.000
#> GSM627095     1  0.1965     0.8711 0.904 0.000 0.000 0.000 0.096
#> GSM627079     5  0.2230     0.8768 0.000 0.000 0.116 0.000 0.884
#> GSM627082     5  0.1608     0.8431 0.000 0.000 0.000 0.072 0.928
#> GSM627074     3  0.1410     0.8698 0.060 0.000 0.940 0.000 0.000
#> GSM627077     5  0.2864     0.8739 0.024 0.000 0.112 0.000 0.864
#> GSM627093     3  0.0963     0.8837 0.036 0.000 0.964 0.000 0.000
#> GSM627120     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627124     2  0.2561     0.8346 0.000 0.856 0.000 0.144 0.000
#> GSM627075     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627085     4  0.1732     0.8738 0.000 0.080 0.000 0.920 0.000
#> GSM627119     3  0.0963     0.8837 0.036 0.000 0.964 0.000 0.000
#> GSM627116     4  0.5102     0.5096 0.000 0.376 0.000 0.580 0.044
#> GSM627084     5  0.3640     0.8661 0.024 0.036 0.100 0.000 0.840
#> GSM627096     4  0.1732     0.8738 0.000 0.080 0.000 0.920 0.000
#> GSM627100     5  0.2278     0.8296 0.000 0.000 0.032 0.060 0.908
#> GSM627112     4  0.1648     0.8647 0.000 0.040 0.000 0.940 0.020
#> GSM627083     5  0.2605     0.7852 0.000 0.148 0.000 0.000 0.852
#> GSM627098     5  0.3719     0.8556 0.068 0.000 0.116 0.000 0.816
#> GSM627104     1  0.4161     0.3072 0.608 0.000 0.392 0.000 0.000
#> GSM627131     5  0.2338     0.8770 0.004 0.000 0.112 0.000 0.884
#> GSM627106     5  0.2520     0.8372 0.000 0.000 0.048 0.056 0.896
#> GSM627123     1  0.0794     0.9255 0.972 0.000 0.000 0.000 0.028
#> GSM627129     2  0.0609     0.9469 0.000 0.980 0.000 0.020 0.000
#> GSM627216     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627212     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627190     3  0.0880     0.8848 0.032 0.000 0.968 0.000 0.000
#> GSM627169     3  0.2280     0.7792 0.000 0.120 0.880 0.000 0.000
#> GSM627167     2  0.4291    -0.0399 0.000 0.536 0.000 0.464 0.000
#> GSM627192     1  0.0963     0.9209 0.964 0.000 0.000 0.000 0.036
#> GSM627203     5  0.2520     0.8372 0.000 0.000 0.048 0.056 0.896
#> GSM627151     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627163     1  0.0162     0.9404 0.996 0.000 0.000 0.000 0.004
#> GSM627211     2  0.0162     0.9577 0.000 0.996 0.000 0.004 0.000
#> GSM627171     2  0.2424     0.8193 0.000 0.868 0.132 0.000 0.000
#> GSM627209     2  0.2280     0.8596 0.000 0.880 0.000 0.120 0.000
#> GSM627135     5  0.3234     0.8617 0.064 0.000 0.084 0.000 0.852
#> GSM627170     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627178     5  0.2230     0.8768 0.000 0.000 0.116 0.000 0.884
#> GSM627199     2  0.2179     0.8662 0.000 0.888 0.000 0.112 0.000
#> GSM627213     4  0.2074     0.8675 0.000 0.104 0.000 0.896 0.000
#> GSM627140     2  0.0404     0.9524 0.000 0.988 0.000 0.012 0.000
#> GSM627149     1  0.0000     0.9419 1.000 0.000 0.000 0.000 0.000
#> GSM627147     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627195     3  0.5284     0.2410 0.000 0.000 0.568 0.056 0.376
#> GSM627204     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627207     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627157     1  0.0000     0.9419 1.000 0.000 0.000 0.000 0.000
#> GSM627201     2  0.0290     0.9556 0.000 0.992 0.000 0.008 0.000
#> GSM627146     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627156     3  0.2605     0.7386 0.000 0.148 0.852 0.000 0.000
#> GSM627188     1  0.0963     0.9209 0.964 0.000 0.000 0.000 0.036
#> GSM627197     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627173     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627179     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627208     3  0.0000     0.8758 0.000 0.000 1.000 0.000 0.000
#> GSM627215     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627153     4  0.2690     0.8252 0.000 0.156 0.000 0.844 0.000
#> GSM627155     1  0.0162     0.9404 0.996 0.000 0.000 0.000 0.004
#> GSM627165     2  0.4062     0.7779 0.000 0.820 0.032 0.056 0.092
#> GSM627168     5  0.3115     0.8676 0.036 0.000 0.112 0.000 0.852
#> GSM627183     3  0.3521     0.6465 0.004 0.000 0.764 0.000 0.232
#> GSM627144     3  0.1992     0.8344 0.000 0.000 0.924 0.044 0.032
#> GSM627158     1  0.0000     0.9419 1.000 0.000 0.000 0.000 0.000
#> GSM627196     2  0.0290     0.9556 0.000 0.992 0.000 0.008 0.000
#> GSM627142     5  0.0703     0.8594 0.000 0.000 0.000 0.024 0.976
#> GSM627182     3  0.1568     0.8656 0.000 0.020 0.944 0.000 0.036
#> GSM627202     1  0.0000     0.9419 1.000 0.000 0.000 0.000 0.000
#> GSM627141     3  0.1106     0.8796 0.012 0.000 0.964 0.000 0.024
#> GSM627143     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627145     5  0.2890     0.8590 0.000 0.000 0.160 0.004 0.836
#> GSM627152     5  0.0324     0.8627 0.000 0.000 0.004 0.004 0.992
#> GSM627200     5  0.3123     0.8375 0.004 0.000 0.184 0.000 0.812
#> GSM627159     5  0.1671     0.8411 0.000 0.000 0.000 0.076 0.924
#> GSM627164     2  0.0162     0.9570 0.000 0.996 0.004 0.000 0.000
#> GSM627138     1  0.0000     0.9419 1.000 0.000 0.000 0.000 0.000
#> GSM627175     4  0.1478     0.8726 0.000 0.064 0.000 0.936 0.000
#> GSM627150     5  0.3527     0.8506 0.000 0.000 0.116 0.056 0.828
#> GSM627166     2  0.2361     0.8490 0.000 0.892 0.096 0.000 0.012
#> GSM627186     3  0.1197     0.8594 0.000 0.048 0.952 0.000 0.000
#> GSM627139     5  0.3243     0.8287 0.000 0.092 0.012 0.036 0.860
#> GSM627181     2  0.0290     0.9556 0.000 0.992 0.000 0.008 0.000
#> GSM627205     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627214     2  0.0880     0.9400 0.000 0.968 0.000 0.032 0.000
#> GSM627180     2  0.5141     0.6862 0.000 0.748 0.120 0.052 0.080
#> GSM627172     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627184     1  0.0609     0.9324 0.980 0.000 0.000 0.000 0.020
#> GSM627193     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627191     5  0.3099     0.7990 0.000 0.124 0.000 0.028 0.848
#> GSM627176     5  0.3595     0.8631 0.000 0.000 0.140 0.044 0.816
#> GSM627194     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000
#> GSM627154     4  0.1671     0.8741 0.000 0.076 0.000 0.924 0.000
#> GSM627187     3  0.0880     0.8848 0.032 0.000 0.968 0.000 0.000
#> GSM627198     2  0.2773     0.8105 0.000 0.836 0.000 0.164 0.000
#> GSM627160     5  0.2773     0.7672 0.000 0.164 0.000 0.000 0.836
#> GSM627185     1  0.0000     0.9419 1.000 0.000 0.000 0.000 0.000
#> GSM627206     3  0.0963     0.8837 0.036 0.000 0.964 0.000 0.000
#> GSM627161     1  0.0000     0.9419 1.000 0.000 0.000 0.000 0.000
#> GSM627162     3  0.1012     0.8778 0.000 0.012 0.968 0.000 0.020
#> GSM627210     3  0.0880     0.8848 0.032 0.000 0.968 0.000 0.000
#> GSM627189     2  0.0000     0.9597 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM627128     4  0.5169    0.45577 0.000 0.000 0.000 0.588 0.120 0.292
#> GSM627110     3  0.0000    0.82336 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627132     1  0.0000    0.91963 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627107     5  0.2176    0.63033 0.000 0.000 0.000 0.080 0.896 0.024
#> GSM627103     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627114     3  0.0146    0.82421 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM627134     2  0.1327    0.89246 0.000 0.936 0.000 0.064 0.000 0.000
#> GSM627137     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627148     5  0.3823    0.42321 0.000 0.000 0.436 0.000 0.564 0.000
#> GSM627101     4  0.4134    0.54315 0.000 0.000 0.000 0.656 0.316 0.028
#> GSM627130     4  0.4045    0.63268 0.000 0.000 0.000 0.756 0.120 0.124
#> GSM627071     6  0.3253    0.77468 0.000 0.000 0.192 0.000 0.020 0.788
#> GSM627118     4  0.0000    0.74415 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM627094     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627122     6  0.2257    0.82962 0.000 0.000 0.116 0.000 0.008 0.876
#> GSM627115     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627125     4  0.4664    0.46210 0.000 0.000 0.000 0.584 0.364 0.052
#> GSM627174     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627102     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627073     6  0.5386    0.29158 0.000 0.000 0.120 0.000 0.368 0.512
#> GSM627108     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627126     1  0.3737    0.37601 0.608 0.000 0.000 0.000 0.000 0.392
#> GSM627078     4  0.0146    0.74374 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM627090     6  0.2805    0.78271 0.000 0.000 0.004 0.000 0.184 0.812
#> GSM627099     4  0.3446    0.53158 0.000 0.308 0.000 0.692 0.000 0.000
#> GSM627105     4  0.4362    0.45140 0.000 0.000 0.000 0.584 0.388 0.028
#> GSM627117     3  0.0000    0.82336 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627121     5  0.2398    0.72198 0.000 0.000 0.080 0.004 0.888 0.028
#> GSM627127     4  0.3101    0.59269 0.000 0.244 0.000 0.756 0.000 0.000
#> GSM627087     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627089     5  0.5739    0.52754 0.004 0.000 0.284 0.000 0.528 0.184
#> GSM627092     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627076     6  0.3136    0.72168 0.000 0.000 0.004 0.000 0.228 0.768
#> GSM627136     6  0.2697    0.79361 0.000 0.000 0.188 0.000 0.000 0.812
#> GSM627081     5  0.3058    0.76103 0.000 0.008 0.136 0.004 0.836 0.016
#> GSM627091     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627097     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627072     3  0.0000    0.82336 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627080     1  0.0000    0.91963 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627088     3  0.4334    0.19488 0.000 0.408 0.568 0.000 0.000 0.024
#> GSM627109     1  0.2910    0.82055 0.852 0.000 0.000 0.000 0.080 0.068
#> GSM627111     1  0.0000    0.91963 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627113     3  0.4002    0.76027 0.052 0.000 0.800 0.000 0.080 0.068
#> GSM627133     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627177     6  0.3296    0.78093 0.000 0.008 0.188 0.000 0.012 0.792
#> GSM627086     2  0.2416    0.80235 0.000 0.844 0.000 0.156 0.000 0.000
#> GSM627095     1  0.2454    0.79318 0.840 0.000 0.000 0.000 0.000 0.160
#> GSM627079     6  0.2257    0.82962 0.000 0.000 0.116 0.000 0.008 0.876
#> GSM627082     6  0.2302    0.79619 0.000 0.000 0.000 0.008 0.120 0.872
#> GSM627074     3  0.3742    0.76975 0.036 0.000 0.816 0.000 0.080 0.068
#> GSM627077     6  0.2542    0.83409 0.044 0.000 0.080 0.000 0.000 0.876
#> GSM627093     3  0.3597    0.77472 0.028 0.000 0.824 0.000 0.080 0.068
#> GSM627120     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627124     2  0.3804    0.35791 0.000 0.576 0.000 0.424 0.000 0.000
#> GSM627075     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627085     4  0.0000    0.74415 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM627119     3  0.3597    0.77472 0.028 0.000 0.824 0.000 0.080 0.068
#> GSM627116     4  0.5339    0.37088 0.000 0.404 0.000 0.488 0.000 0.108
#> GSM627084     6  0.2917    0.82649 0.048 0.040 0.040 0.000 0.000 0.872
#> GSM627096     4  0.0000    0.74415 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM627100     5  0.3847   -0.02383 0.000 0.000 0.000 0.000 0.544 0.456
#> GSM627112     4  0.0972    0.73800 0.000 0.000 0.000 0.964 0.028 0.008
#> GSM627083     6  0.1765    0.78303 0.000 0.096 0.000 0.000 0.000 0.904
#> GSM627098     6  0.1780    0.82722 0.028 0.000 0.048 0.000 0.000 0.924
#> GSM627104     1  0.5994    0.33883 0.552 0.000 0.300 0.000 0.080 0.068
#> GSM627131     6  0.2588    0.83405 0.024 0.000 0.092 0.000 0.008 0.876
#> GSM627106     5  0.3065    0.76695 0.000 0.000 0.152 0.000 0.820 0.028
#> GSM627123     1  0.0000    0.91963 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627129     2  0.0363    0.93081 0.000 0.988 0.000 0.012 0.000 0.000
#> GSM627216     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627212     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627190     3  0.0000    0.82336 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627169     3  0.2527    0.70807 0.000 0.168 0.832 0.000 0.000 0.000
#> GSM627167     4  0.3828    0.21410 0.000 0.440 0.000 0.560 0.000 0.000
#> GSM627192     1  0.0713    0.91032 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM627203     5  0.3065    0.76695 0.000 0.000 0.152 0.000 0.820 0.028
#> GSM627151     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627163     1  0.0713    0.91032 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM627211     2  0.0632    0.92338 0.000 0.976 0.000 0.024 0.000 0.000
#> GSM627171     2  0.2883    0.68848 0.000 0.788 0.212 0.000 0.000 0.000
#> GSM627209     2  0.3782    0.38478 0.000 0.588 0.000 0.412 0.000 0.000
#> GSM627135     6  0.2106    0.81767 0.064 0.000 0.032 0.000 0.000 0.904
#> GSM627170     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627178     6  0.1599    0.82390 0.024 0.000 0.028 0.000 0.008 0.940
#> GSM627199     2  0.3126    0.68605 0.000 0.752 0.000 0.248 0.000 0.000
#> GSM627213     4  0.1141    0.73219 0.000 0.052 0.000 0.948 0.000 0.000
#> GSM627140     2  0.0146    0.93614 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM627149     1  0.0000    0.91963 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627147     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627195     5  0.2902    0.75165 0.000 0.000 0.196 0.000 0.800 0.004
#> GSM627204     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627207     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627157     1  0.0000    0.91963 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627201     2  0.1610    0.87426 0.000 0.916 0.000 0.084 0.000 0.000
#> GSM627146     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627156     3  0.2730    0.67293 0.000 0.192 0.808 0.000 0.000 0.000
#> GSM627188     1  0.0713    0.91032 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM627197     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627173     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627179     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627208     3  0.0260    0.81971 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM627215     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627153     4  0.0865    0.73296 0.000 0.036 0.000 0.964 0.000 0.000
#> GSM627155     1  0.0713    0.91032 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM627165     5  0.3993    0.05332 0.000 0.476 0.000 0.000 0.520 0.004
#> GSM627168     6  0.3475    0.81026 0.028 0.000 0.140 0.000 0.020 0.812
#> GSM627183     3  0.2793    0.57953 0.000 0.000 0.800 0.000 0.000 0.200
#> GSM627144     3  0.2219    0.68326 0.000 0.000 0.864 0.000 0.136 0.000
#> GSM627158     1  0.0000    0.91963 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627196     2  0.1863    0.85518 0.000 0.896 0.000 0.104 0.000 0.000
#> GSM627142     6  0.1765    0.80903 0.000 0.000 0.000 0.000 0.096 0.904
#> GSM627182     3  0.0363    0.81682 0.000 0.000 0.988 0.000 0.012 0.000
#> GSM627202     1  0.0000    0.91963 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627141     3  0.0909    0.82251 0.020 0.000 0.968 0.000 0.000 0.012
#> GSM627143     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627145     6  0.6076   -0.00109 0.000 0.000 0.272 0.000 0.344 0.384
#> GSM627152     6  0.2146    0.81304 0.000 0.000 0.004 0.000 0.116 0.880
#> GSM627200     6  0.3279    0.78654 0.028 0.000 0.176 0.000 0.000 0.796
#> GSM627159     6  0.2494    0.79188 0.000 0.000 0.000 0.016 0.120 0.864
#> GSM627164     2  0.0146    0.93596 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM627138     1  0.0000    0.91963 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627175     4  0.0000    0.74415 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM627150     5  0.3284    0.76141 0.000 0.000 0.168 0.000 0.800 0.032
#> GSM627166     2  0.3652    0.76020 0.000 0.816 0.020 0.000 0.080 0.084
#> GSM627186     3  0.2378    0.72741 0.000 0.152 0.848 0.000 0.000 0.000
#> GSM627139     6  0.2663    0.80216 0.000 0.084 0.028 0.000 0.012 0.876
#> GSM627181     2  0.1075    0.90546 0.000 0.952 0.000 0.048 0.000 0.000
#> GSM627205     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627214     2  0.2854    0.74004 0.000 0.792 0.000 0.208 0.000 0.000
#> GSM627180     5  0.3481    0.74196 0.000 0.048 0.160 0.000 0.792 0.000
#> GSM627172     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627184     1  0.0713    0.91032 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM627193     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627191     6  0.2542    0.80049 0.000 0.044 0.000 0.080 0.000 0.876
#> GSM627176     6  0.4466    0.69911 0.000 0.000 0.176 0.000 0.116 0.708
#> GSM627194     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627154     4  0.0000    0.74415 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM627187     3  0.0146    0.82424 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM627198     2  0.3810    0.34875 0.000 0.572 0.000 0.428 0.000 0.000
#> GSM627160     6  0.2178    0.74797 0.000 0.132 0.000 0.000 0.000 0.868
#> GSM627185     1  0.2856    0.82380 0.856 0.000 0.000 0.000 0.076 0.068
#> GSM627206     3  0.0858    0.82142 0.028 0.000 0.968 0.000 0.004 0.000
#> GSM627161     1  0.0000    0.91963 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627162     3  0.1958    0.77785 0.004 0.100 0.896 0.000 0.000 0.000
#> GSM627210     3  0.3520    0.77642 0.024 0.000 0.828 0.000 0.080 0.068
#> GSM627189     2  0.0000    0.93872 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) age(p) other(p) k
#> CV:pam 146           0.0505  0.543  0.14708 2
#> CV:pam 136           0.1404  0.188  0.00917 3
#> CV:pam 131           0.0137  0.161  0.00899 4
#> CV:pam 139           0.0198  0.329  0.19112 5
#> CV:pam 130           0.2480  0.648  0.15703 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 146 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.996       0.998          0.504 0.497   0.497
#> 3 3 0.918           0.924       0.940          0.236 0.833   0.678
#> 4 4 0.748           0.798       0.901          0.121 0.910   0.771
#> 5 5 0.726           0.666       0.813          0.105 0.798   0.453
#> 6 6 0.918           0.873       0.933          0.050 0.882   0.543

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM627128     2   0.000      0.998 0.000 1.000
#> GSM627110     1   0.000      0.998 1.000 0.000
#> GSM627132     1   0.000      0.998 1.000 0.000
#> GSM627107     1   0.000      0.998 1.000 0.000
#> GSM627103     2   0.000      0.998 0.000 1.000
#> GSM627114     1   0.000      0.998 1.000 0.000
#> GSM627134     2   0.000      0.998 0.000 1.000
#> GSM627137     2   0.000      0.998 0.000 1.000
#> GSM627148     1   0.000      0.998 1.000 0.000
#> GSM627101     2   0.000      0.998 0.000 1.000
#> GSM627130     2   0.000      0.998 0.000 1.000
#> GSM627071     1   0.000      0.998 1.000 0.000
#> GSM627118     2   0.000      0.998 0.000 1.000
#> GSM627094     2   0.000      0.998 0.000 1.000
#> GSM627122     1   0.000      0.998 1.000 0.000
#> GSM627115     2   0.000      0.998 0.000 1.000
#> GSM627125     2   0.000      0.998 0.000 1.000
#> GSM627174     2   0.000      0.998 0.000 1.000
#> GSM627102     2   0.000      0.998 0.000 1.000
#> GSM627073     1   0.000      0.998 1.000 0.000
#> GSM627108     2   0.000      0.998 0.000 1.000
#> GSM627126     1   0.000      0.998 1.000 0.000
#> GSM627078     2   0.000      0.998 0.000 1.000
#> GSM627090     1   0.000      0.998 1.000 0.000
#> GSM627099     2   0.000      0.998 0.000 1.000
#> GSM627105     2   0.000      0.998 0.000 1.000
#> GSM627117     1   0.000      0.998 1.000 0.000
#> GSM627121     1   0.118      0.983 0.984 0.016
#> GSM627127     2   0.000      0.998 0.000 1.000
#> GSM627087     2   0.000      0.998 0.000 1.000
#> GSM627089     1   0.000      0.998 1.000 0.000
#> GSM627092     2   0.000      0.998 0.000 1.000
#> GSM627076     1   0.000      0.998 1.000 0.000
#> GSM627136     1   0.000      0.998 1.000 0.000
#> GSM627081     1   0.000      0.998 1.000 0.000
#> GSM627091     2   0.000      0.998 0.000 1.000
#> GSM627097     2   0.000      0.998 0.000 1.000
#> GSM627072     1   0.000      0.998 1.000 0.000
#> GSM627080     1   0.000      0.998 1.000 0.000
#> GSM627088     1   0.000      0.998 1.000 0.000
#> GSM627109     1   0.000      0.998 1.000 0.000
#> GSM627111     1   0.000      0.998 1.000 0.000
#> GSM627113     1   0.000      0.998 1.000 0.000
#> GSM627133     2   0.000      0.998 0.000 1.000
#> GSM627177     1   0.295      0.947 0.948 0.052
#> GSM627086     2   0.000      0.998 0.000 1.000
#> GSM627095     1   0.000      0.998 1.000 0.000
#> GSM627079     1   0.000      0.998 1.000 0.000
#> GSM627082     2   0.000      0.998 0.000 1.000
#> GSM627074     1   0.000      0.998 1.000 0.000
#> GSM627077     1   0.000      0.998 1.000 0.000
#> GSM627093     1   0.000      0.998 1.000 0.000
#> GSM627120     2   0.000      0.998 0.000 1.000
#> GSM627124     2   0.000      0.998 0.000 1.000
#> GSM627075     2   0.000      0.998 0.000 1.000
#> GSM627085     2   0.000      0.998 0.000 1.000
#> GSM627119     1   0.000      0.998 1.000 0.000
#> GSM627116     2   0.000      0.998 0.000 1.000
#> GSM627084     1   0.000      0.998 1.000 0.000
#> GSM627096     2   0.000      0.998 0.000 1.000
#> GSM627100     1   0.000      0.998 1.000 0.000
#> GSM627112     2   0.000      0.998 0.000 1.000
#> GSM627083     2   0.625      0.816 0.156 0.844
#> GSM627098     1   0.000      0.998 1.000 0.000
#> GSM627104     1   0.000      0.998 1.000 0.000
#> GSM627131     1   0.000      0.998 1.000 0.000
#> GSM627106     1   0.000      0.998 1.000 0.000
#> GSM627123     1   0.000      0.998 1.000 0.000
#> GSM627129     2   0.000      0.998 0.000 1.000
#> GSM627216     2   0.000      0.998 0.000 1.000
#> GSM627212     2   0.000      0.998 0.000 1.000
#> GSM627190     1   0.000      0.998 1.000 0.000
#> GSM627169     2   0.000      0.998 0.000 1.000
#> GSM627167     2   0.000      0.998 0.000 1.000
#> GSM627192     1   0.000      0.998 1.000 0.000
#> GSM627203     1   0.000      0.998 1.000 0.000
#> GSM627151     2   0.000      0.998 0.000 1.000
#> GSM627163     1   0.000      0.998 1.000 0.000
#> GSM627211     2   0.000      0.998 0.000 1.000
#> GSM627171     2   0.000      0.998 0.000 1.000
#> GSM627209     2   0.000      0.998 0.000 1.000
#> GSM627135     1   0.000      0.998 1.000 0.000
#> GSM627170     2   0.000      0.998 0.000 1.000
#> GSM627178     1   0.000      0.998 1.000 0.000
#> GSM627199     2   0.000      0.998 0.000 1.000
#> GSM627213     2   0.000      0.998 0.000 1.000
#> GSM627140     2   0.000      0.998 0.000 1.000
#> GSM627149     1   0.000      0.998 1.000 0.000
#> GSM627147     2   0.000      0.998 0.000 1.000
#> GSM627195     1   0.000      0.998 1.000 0.000
#> GSM627204     2   0.000      0.998 0.000 1.000
#> GSM627207     2   0.000      0.998 0.000 1.000
#> GSM627157     1   0.000      0.998 1.000 0.000
#> GSM627201     2   0.000      0.998 0.000 1.000
#> GSM627146     2   0.000      0.998 0.000 1.000
#> GSM627156     2   0.000      0.998 0.000 1.000
#> GSM627188     1   0.000      0.998 1.000 0.000
#> GSM627197     2   0.000      0.998 0.000 1.000
#> GSM627173     2   0.000      0.998 0.000 1.000
#> GSM627179     2   0.000      0.998 0.000 1.000
#> GSM627208     1   0.000      0.998 1.000 0.000
#> GSM627215     2   0.000      0.998 0.000 1.000
#> GSM627153     2   0.000      0.998 0.000 1.000
#> GSM627155     1   0.000      0.998 1.000 0.000
#> GSM627165     2   0.000      0.998 0.000 1.000
#> GSM627168     1   0.000      0.998 1.000 0.000
#> GSM627183     1   0.000      0.998 1.000 0.000
#> GSM627144     1   0.000      0.998 1.000 0.000
#> GSM627158     1   0.000      0.998 1.000 0.000
#> GSM627196     2   0.000      0.998 0.000 1.000
#> GSM627142     1   0.224      0.964 0.964 0.036
#> GSM627182     1   0.000      0.998 1.000 0.000
#> GSM627202     1   0.000      0.998 1.000 0.000
#> GSM627141     1   0.000      0.998 1.000 0.000
#> GSM627143     2   0.000      0.998 0.000 1.000
#> GSM627145     1   0.000      0.998 1.000 0.000
#> GSM627152     1   0.000      0.998 1.000 0.000
#> GSM627200     1   0.000      0.998 1.000 0.000
#> GSM627159     2   0.000      0.998 0.000 1.000
#> GSM627164     2   0.000      0.998 0.000 1.000
#> GSM627138     1   0.000      0.998 1.000 0.000
#> GSM627175     2   0.000      0.998 0.000 1.000
#> GSM627150     1   0.000      0.998 1.000 0.000
#> GSM627166     1   0.000      0.998 1.000 0.000
#> GSM627186     2   0.000      0.998 0.000 1.000
#> GSM627139     2   0.000      0.998 0.000 1.000
#> GSM627181     2   0.000      0.998 0.000 1.000
#> GSM627205     2   0.000      0.998 0.000 1.000
#> GSM627214     2   0.000      0.998 0.000 1.000
#> GSM627180     1   0.242      0.960 0.960 0.040
#> GSM627172     2   0.000      0.998 0.000 1.000
#> GSM627184     1   0.000      0.998 1.000 0.000
#> GSM627193     2   0.000      0.998 0.000 1.000
#> GSM627191     2   0.000      0.998 0.000 1.000
#> GSM627176     1   0.000      0.998 1.000 0.000
#> GSM627194     2   0.000      0.998 0.000 1.000
#> GSM627154     2   0.000      0.998 0.000 1.000
#> GSM627187     1   0.000      0.998 1.000 0.000
#> GSM627198     2   0.000      0.998 0.000 1.000
#> GSM627160     2   0.000      0.998 0.000 1.000
#> GSM627185     1   0.000      0.998 1.000 0.000
#> GSM627206     1   0.000      0.998 1.000 0.000
#> GSM627161     1   0.000      0.998 1.000 0.000
#> GSM627162     1   0.000      0.998 1.000 0.000
#> GSM627210     1   0.000      0.998 1.000 0.000
#> GSM627189     2   0.000      0.998 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM627128     2  0.2261      0.902 0.000 0.932 0.068
#> GSM627110     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627132     1  0.2537      0.965 0.920 0.000 0.080
#> GSM627107     2  0.4974      0.697 0.000 0.764 0.236
#> GSM627103     2  0.2448      0.938 0.076 0.924 0.000
#> GSM627114     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627134     2  0.0237      0.939 0.004 0.996 0.000
#> GSM627137     2  0.2448      0.938 0.076 0.924 0.000
#> GSM627148     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627101     2  0.0237      0.939 0.000 0.996 0.004
#> GSM627130     2  0.1860      0.914 0.000 0.948 0.052
#> GSM627071     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627118     2  0.0237      0.939 0.004 0.996 0.000
#> GSM627094     2  0.2448      0.938 0.076 0.924 0.000
#> GSM627122     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627115     2  0.2448      0.938 0.076 0.924 0.000
#> GSM627125     2  0.2261      0.902 0.000 0.932 0.068
#> GSM627174     2  0.2537      0.903 0.000 0.920 0.080
#> GSM627102     2  0.2682      0.938 0.076 0.920 0.004
#> GSM627073     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627108     2  0.2448      0.938 0.076 0.924 0.000
#> GSM627126     1  0.2537      0.965 0.920 0.000 0.080
#> GSM627078     2  0.0237      0.939 0.004 0.996 0.000
#> GSM627090     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627099     2  0.0237      0.939 0.004 0.996 0.000
#> GSM627105     2  0.2261      0.902 0.000 0.932 0.068
#> GSM627117     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627121     3  0.3879      0.789 0.000 0.152 0.848
#> GSM627127     2  0.0237      0.939 0.004 0.996 0.000
#> GSM627087     2  0.2448      0.938 0.076 0.924 0.000
#> GSM627089     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627092     2  0.2845      0.937 0.068 0.920 0.012
#> GSM627076     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627136     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627081     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627091     2  0.2448      0.938 0.076 0.924 0.000
#> GSM627097     2  0.0237      0.939 0.000 0.996 0.004
#> GSM627072     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627080     1  0.2537      0.965 0.920 0.000 0.080
#> GSM627088     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627109     1  0.2537      0.965 0.920 0.000 0.080
#> GSM627111     1  0.2537      0.965 0.920 0.000 0.080
#> GSM627113     1  0.6008      0.571 0.628 0.000 0.372
#> GSM627133     3  0.5111      0.732 0.024 0.168 0.808
#> GSM627177     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627086     2  0.2448      0.938 0.076 0.924 0.000
#> GSM627095     1  0.2537      0.965 0.920 0.000 0.080
#> GSM627079     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627082     2  0.2261      0.902 0.000 0.932 0.068
#> GSM627074     1  0.2537      0.965 0.920 0.000 0.080
#> GSM627077     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627093     1  0.3551      0.927 0.868 0.000 0.132
#> GSM627120     2  0.0237      0.939 0.004 0.996 0.000
#> GSM627124     2  0.0237      0.939 0.004 0.996 0.000
#> GSM627075     2  0.2448      0.938 0.076 0.924 0.000
#> GSM627085     2  0.0237      0.939 0.004 0.996 0.000
#> GSM627119     1  0.3482      0.931 0.872 0.000 0.128
#> GSM627116     2  0.0237      0.939 0.000 0.996 0.004
#> GSM627084     1  0.4121      0.894 0.832 0.000 0.168
#> GSM627096     2  0.0237      0.939 0.004 0.996 0.000
#> GSM627100     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627112     2  0.0237      0.939 0.000 0.996 0.004
#> GSM627083     2  0.7523      0.560 0.260 0.660 0.080
#> GSM627098     1  0.3267      0.940 0.884 0.000 0.116
#> GSM627104     1  0.2537      0.965 0.920 0.000 0.080
#> GSM627131     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627106     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627123     1  0.2537      0.965 0.920 0.000 0.080
#> GSM627129     2  0.0237      0.939 0.004 0.996 0.000
#> GSM627216     2  0.2682      0.937 0.076 0.920 0.004
#> GSM627212     2  0.2448      0.938 0.076 0.924 0.000
#> GSM627190     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627169     3  0.5216      0.612 0.000 0.260 0.740
#> GSM627167     2  0.0237      0.939 0.004 0.996 0.000
#> GSM627192     1  0.2537      0.965 0.920 0.000 0.080
#> GSM627203     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627151     2  0.2537      0.903 0.000 0.920 0.080
#> GSM627163     1  0.2537      0.965 0.920 0.000 0.080
#> GSM627211     2  0.2448      0.938 0.076 0.924 0.000
#> GSM627171     2  0.6209      0.460 0.004 0.628 0.368
#> GSM627209     2  0.0237      0.939 0.004 0.996 0.000
#> GSM627135     1  0.2537      0.965 0.920 0.000 0.080
#> GSM627170     2  0.2448      0.938 0.076 0.924 0.000
#> GSM627178     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627199     2  0.0237      0.939 0.000 0.996 0.004
#> GSM627213     2  0.0237      0.939 0.004 0.996 0.000
#> GSM627140     2  0.0592      0.938 0.000 0.988 0.012
#> GSM627149     1  0.2537      0.965 0.920 0.000 0.080
#> GSM627147     2  0.0237      0.939 0.000 0.996 0.004
#> GSM627195     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627204     2  0.2448      0.938 0.076 0.924 0.000
#> GSM627207     2  0.2448      0.938 0.076 0.924 0.000
#> GSM627157     1  0.2537      0.965 0.920 0.000 0.080
#> GSM627201     2  0.2448      0.938 0.076 0.924 0.000
#> GSM627146     2  0.2448      0.938 0.076 0.924 0.000
#> GSM627156     3  0.6284      0.528 0.016 0.304 0.680
#> GSM627188     1  0.2537      0.965 0.920 0.000 0.080
#> GSM627197     2  0.2448      0.938 0.076 0.924 0.000
#> GSM627173     2  0.2682      0.938 0.076 0.920 0.004
#> GSM627179     2  0.2448      0.938 0.076 0.924 0.000
#> GSM627208     3  0.0237      0.965 0.000 0.004 0.996
#> GSM627215     2  0.2682      0.937 0.076 0.920 0.004
#> GSM627153     2  0.0237      0.939 0.004 0.996 0.000
#> GSM627155     1  0.2537      0.965 0.920 0.000 0.080
#> GSM627165     2  0.0237      0.939 0.000 0.996 0.004
#> GSM627168     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627183     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627144     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627158     1  0.2537      0.965 0.920 0.000 0.080
#> GSM627196     2  0.2448      0.938 0.076 0.924 0.000
#> GSM627142     3  0.0237      0.965 0.000 0.004 0.996
#> GSM627182     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627202     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627141     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627143     2  0.2066      0.918 0.000 0.940 0.060
#> GSM627145     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627152     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627200     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627159     2  0.2261      0.902 0.000 0.932 0.068
#> GSM627164     2  0.4095      0.914 0.064 0.880 0.056
#> GSM627138     1  0.2537      0.965 0.920 0.000 0.080
#> GSM627175     2  0.0237      0.939 0.004 0.996 0.000
#> GSM627150     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627166     1  0.3941      0.907 0.844 0.000 0.156
#> GSM627186     3  0.2537      0.871 0.000 0.080 0.920
#> GSM627139     2  0.5785      0.563 0.000 0.668 0.332
#> GSM627181     2  0.2537      0.938 0.080 0.920 0.000
#> GSM627205     2  0.2804      0.938 0.060 0.924 0.016
#> GSM627214     2  0.0237      0.939 0.004 0.996 0.000
#> GSM627180     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627172     2  0.2682      0.906 0.004 0.920 0.076
#> GSM627184     1  0.2537      0.965 0.920 0.000 0.080
#> GSM627193     2  0.2448      0.938 0.076 0.924 0.000
#> GSM627191     2  0.2261      0.907 0.000 0.932 0.068
#> GSM627176     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627194     2  0.2448      0.938 0.076 0.924 0.000
#> GSM627154     2  0.0237      0.939 0.004 0.996 0.000
#> GSM627187     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627198     2  0.0237      0.939 0.004 0.996 0.000
#> GSM627160     2  0.3686      0.853 0.000 0.860 0.140
#> GSM627185     1  0.2537      0.965 0.920 0.000 0.080
#> GSM627206     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627161     1  0.2537      0.965 0.920 0.000 0.080
#> GSM627162     3  0.0000      0.969 0.000 0.000 1.000
#> GSM627210     1  0.5835      0.638 0.660 0.000 0.340
#> GSM627189     2  0.2448      0.938 0.076 0.924 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM627128     4  0.2345     0.8991 0.000 0.100 0.000 0.900
#> GSM627110     3  0.0000     0.9225 0.000 0.000 1.000 0.000
#> GSM627132     1  0.0000     0.9102 1.000 0.000 0.000 0.000
#> GSM627107     4  0.0188     0.8117 0.000 0.000 0.004 0.996
#> GSM627103     2  0.0000     0.8434 0.000 1.000 0.000 0.000
#> GSM627114     3  0.0000     0.9225 0.000 0.000 1.000 0.000
#> GSM627134     2  0.3311     0.7517 0.000 0.828 0.000 0.172
#> GSM627137     2  0.0000     0.8434 0.000 1.000 0.000 0.000
#> GSM627148     3  0.1389     0.9180 0.000 0.000 0.952 0.048
#> GSM627101     4  0.2216     0.9009 0.000 0.092 0.000 0.908
#> GSM627130     4  0.2345     0.8991 0.000 0.100 0.000 0.900
#> GSM627071     3  0.0707     0.9218 0.000 0.000 0.980 0.020
#> GSM627118     4  0.4804     0.3072 0.000 0.384 0.000 0.616
#> GSM627094     2  0.0000     0.8434 0.000 1.000 0.000 0.000
#> GSM627122     3  0.0000     0.9225 0.000 0.000 1.000 0.000
#> GSM627115     2  0.0000     0.8434 0.000 1.000 0.000 0.000
#> GSM627125     4  0.1211     0.8703 0.000 0.040 0.000 0.960
#> GSM627174     2  0.0336     0.8421 0.000 0.992 0.000 0.008
#> GSM627102     2  0.0000     0.8434 0.000 1.000 0.000 0.000
#> GSM627073     3  0.2760     0.8890 0.000 0.000 0.872 0.128
#> GSM627108     2  0.0000     0.8434 0.000 1.000 0.000 0.000
#> GSM627126     1  0.0000     0.9102 1.000 0.000 0.000 0.000
#> GSM627078     2  0.4406     0.6019 0.000 0.700 0.000 0.300
#> GSM627090     3  0.2081     0.9067 0.000 0.000 0.916 0.084
#> GSM627099     2  0.2011     0.8133 0.000 0.920 0.000 0.080
#> GSM627105     4  0.1389     0.8779 0.000 0.048 0.000 0.952
#> GSM627117     3  0.0000     0.9225 0.000 0.000 1.000 0.000
#> GSM627121     3  0.3873     0.7971 0.000 0.000 0.772 0.228
#> GSM627127     2  0.4925     0.3372 0.000 0.572 0.000 0.428
#> GSM627087     2  0.0000     0.8434 0.000 1.000 0.000 0.000
#> GSM627089     3  0.0336     0.9225 0.000 0.000 0.992 0.008
#> GSM627092     2  0.0469     0.8409 0.000 0.988 0.000 0.012
#> GSM627076     3  0.2814     0.8871 0.000 0.000 0.868 0.132
#> GSM627136     3  0.0000     0.9225 0.000 0.000 1.000 0.000
#> GSM627081     3  0.2973     0.8796 0.000 0.000 0.856 0.144
#> GSM627091     2  0.0000     0.8434 0.000 1.000 0.000 0.000
#> GSM627097     2  0.2760     0.7850 0.000 0.872 0.000 0.128
#> GSM627072     3  0.1302     0.9188 0.000 0.000 0.956 0.044
#> GSM627080     1  0.0000     0.9102 1.000 0.000 0.000 0.000
#> GSM627088     3  0.0000     0.9225 0.000 0.000 1.000 0.000
#> GSM627109     1  0.0000     0.9102 1.000 0.000 0.000 0.000
#> GSM627111     1  0.0000     0.9102 1.000 0.000 0.000 0.000
#> GSM627113     3  0.4907     0.0936 0.420 0.000 0.580 0.000
#> GSM627133     3  0.4881     0.7094 0.000 0.196 0.756 0.048
#> GSM627177     3  0.0921     0.9210 0.000 0.000 0.972 0.028
#> GSM627086     2  0.0000     0.8434 0.000 1.000 0.000 0.000
#> GSM627095     1  0.0000     0.9102 1.000 0.000 0.000 0.000
#> GSM627079     3  0.1302     0.9193 0.000 0.000 0.956 0.044
#> GSM627082     4  0.3435     0.8761 0.000 0.100 0.036 0.864
#> GSM627074     1  0.3123     0.8246 0.844 0.000 0.156 0.000
#> GSM627077     3  0.0000     0.9225 0.000 0.000 1.000 0.000
#> GSM627093     1  0.3764     0.7808 0.784 0.000 0.216 0.000
#> GSM627120     2  0.3172     0.7620 0.000 0.840 0.000 0.160
#> GSM627124     2  0.2216     0.8055 0.000 0.908 0.000 0.092
#> GSM627075     2  0.0000     0.8434 0.000 1.000 0.000 0.000
#> GSM627085     2  0.4761     0.4718 0.000 0.628 0.000 0.372
#> GSM627119     1  0.3801     0.7765 0.780 0.000 0.220 0.000
#> GSM627116     2  0.1716     0.8199 0.000 0.936 0.000 0.064
#> GSM627084     1  0.3942     0.7575 0.764 0.000 0.236 0.000
#> GSM627096     2  0.4989     0.1932 0.000 0.528 0.000 0.472
#> GSM627100     3  0.3688     0.8186 0.000 0.000 0.792 0.208
#> GSM627112     2  0.4933     0.3271 0.000 0.568 0.000 0.432
#> GSM627083     2  0.6104     0.1113 0.472 0.488 0.036 0.004
#> GSM627098     1  0.3726     0.7845 0.788 0.000 0.212 0.000
#> GSM627104     1  0.0000     0.9102 1.000 0.000 0.000 0.000
#> GSM627131     3  0.0000     0.9225 0.000 0.000 1.000 0.000
#> GSM627106     3  0.2973     0.8796 0.000 0.000 0.856 0.144
#> GSM627123     1  0.0000     0.9102 1.000 0.000 0.000 0.000
#> GSM627129     2  0.4477     0.5835 0.000 0.688 0.000 0.312
#> GSM627216     2  0.0000     0.8434 0.000 1.000 0.000 0.000
#> GSM627212     2  0.0000     0.8434 0.000 1.000 0.000 0.000
#> GSM627190     3  0.0000     0.9225 0.000 0.000 1.000 0.000
#> GSM627169     2  0.4999     0.0328 0.000 0.508 0.492 0.000
#> GSM627167     2  0.4830     0.4261 0.000 0.608 0.000 0.392
#> GSM627192     1  0.0000     0.9102 1.000 0.000 0.000 0.000
#> GSM627203     3  0.2760     0.8890 0.000 0.000 0.872 0.128
#> GSM627151     2  0.0524     0.8412 0.000 0.988 0.004 0.008
#> GSM627163     1  0.0000     0.9102 1.000 0.000 0.000 0.000
#> GSM627211     2  0.0000     0.8434 0.000 1.000 0.000 0.000
#> GSM627171     2  0.3486     0.6539 0.000 0.812 0.188 0.000
#> GSM627209     2  0.3024     0.7716 0.000 0.852 0.000 0.148
#> GSM627135     1  0.0000     0.9102 1.000 0.000 0.000 0.000
#> GSM627170     2  0.0000     0.8434 0.000 1.000 0.000 0.000
#> GSM627178     3  0.0000     0.9225 0.000 0.000 1.000 0.000
#> GSM627199     2  0.1637     0.8219 0.000 0.940 0.000 0.060
#> GSM627213     2  0.4925     0.3372 0.000 0.572 0.000 0.428
#> GSM627140     2  0.3279     0.7875 0.000 0.872 0.032 0.096
#> GSM627149     1  0.0000     0.9102 1.000 0.000 0.000 0.000
#> GSM627147     2  0.0469     0.8409 0.000 0.988 0.000 0.012
#> GSM627195     3  0.2868     0.8846 0.000 0.000 0.864 0.136
#> GSM627204     2  0.0000     0.8434 0.000 1.000 0.000 0.000
#> GSM627207     2  0.0000     0.8434 0.000 1.000 0.000 0.000
#> GSM627157     1  0.3688     0.7881 0.792 0.000 0.208 0.000
#> GSM627201     2  0.0000     0.8434 0.000 1.000 0.000 0.000
#> GSM627146     2  0.0000     0.8434 0.000 1.000 0.000 0.000
#> GSM627156     2  0.4193     0.4905 0.000 0.732 0.268 0.000
#> GSM627188     1  0.0000     0.9102 1.000 0.000 0.000 0.000
#> GSM627197     2  0.0000     0.8434 0.000 1.000 0.000 0.000
#> GSM627173     2  0.0000     0.8434 0.000 1.000 0.000 0.000
#> GSM627179     2  0.0000     0.8434 0.000 1.000 0.000 0.000
#> GSM627208     3  0.3308     0.8841 0.000 0.036 0.872 0.092
#> GSM627215     2  0.0000     0.8434 0.000 1.000 0.000 0.000
#> GSM627153     2  0.3801     0.7050 0.000 0.780 0.000 0.220
#> GSM627155     1  0.0000     0.9102 1.000 0.000 0.000 0.000
#> GSM627165     2  0.4543     0.5704 0.000 0.676 0.000 0.324
#> GSM627168     3  0.0000     0.9225 0.000 0.000 1.000 0.000
#> GSM627183     3  0.0000     0.9225 0.000 0.000 1.000 0.000
#> GSM627144     3  0.2704     0.8908 0.000 0.000 0.876 0.124
#> GSM627158     1  0.0000     0.9102 1.000 0.000 0.000 0.000
#> GSM627196     2  0.0000     0.8434 0.000 1.000 0.000 0.000
#> GSM627142     3  0.3486     0.8335 0.000 0.000 0.812 0.188
#> GSM627182     3  0.1722     0.9166 0.000 0.008 0.944 0.048
#> GSM627202     3  0.0000     0.9225 0.000 0.000 1.000 0.000
#> GSM627141     3  0.0000     0.9225 0.000 0.000 1.000 0.000
#> GSM627143     2  0.1118     0.8324 0.000 0.964 0.000 0.036
#> GSM627145     3  0.1389     0.9180 0.000 0.000 0.952 0.048
#> GSM627152     3  0.0817     0.9217 0.000 0.000 0.976 0.024
#> GSM627200     3  0.0000     0.9225 0.000 0.000 1.000 0.000
#> GSM627159     4  0.2281     0.9008 0.000 0.096 0.000 0.904
#> GSM627164     2  0.0188     0.8410 0.000 0.996 0.004 0.000
#> GSM627138     1  0.2149     0.8674 0.912 0.000 0.088 0.000
#> GSM627175     2  0.4925     0.3372 0.000 0.572 0.000 0.428
#> GSM627150     3  0.2760     0.8890 0.000 0.000 0.872 0.128
#> GSM627166     1  0.2868     0.8384 0.864 0.000 0.136 0.000
#> GSM627186     3  0.4250     0.5694 0.000 0.276 0.724 0.000
#> GSM627139     3  0.4163     0.8022 0.000 0.076 0.828 0.096
#> GSM627181     2  0.0000     0.8434 0.000 1.000 0.000 0.000
#> GSM627205     2  0.0188     0.8428 0.000 0.996 0.000 0.004
#> GSM627214     2  0.3688     0.7174 0.000 0.792 0.000 0.208
#> GSM627180     3  0.2760     0.8890 0.000 0.000 0.872 0.128
#> GSM627172     2  0.0336     0.8420 0.000 0.992 0.000 0.008
#> GSM627184     1  0.0000     0.9102 1.000 0.000 0.000 0.000
#> GSM627193     2  0.0000     0.8434 0.000 1.000 0.000 0.000
#> GSM627191     2  0.4149     0.7447 0.000 0.812 0.036 0.152
#> GSM627176     3  0.0000     0.9225 0.000 0.000 1.000 0.000
#> GSM627194     2  0.0000     0.8434 0.000 1.000 0.000 0.000
#> GSM627154     2  0.4925     0.3372 0.000 0.572 0.000 0.428
#> GSM627187     3  0.0000     0.9225 0.000 0.000 1.000 0.000
#> GSM627198     2  0.4304     0.6255 0.000 0.716 0.000 0.284
#> GSM627160     2  0.5217     0.6498 0.000 0.756 0.136 0.108
#> GSM627185     1  0.0000     0.9102 1.000 0.000 0.000 0.000
#> GSM627206     3  0.0000     0.9225 0.000 0.000 1.000 0.000
#> GSM627161     1  0.0000     0.9102 1.000 0.000 0.000 0.000
#> GSM627162     3  0.0000     0.9225 0.000 0.000 1.000 0.000
#> GSM627210     1  0.4955     0.3624 0.556 0.000 0.444 0.000
#> GSM627189     2  0.0000     0.8434 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM627128     4  0.0000   0.569585 0.000 0.000 0.000 1.000 0.000
#> GSM627110     3  0.0000   0.743789 0.000 0.000 1.000 0.000 0.000
#> GSM627132     1  0.0404   0.915926 0.988 0.000 0.012 0.000 0.000
#> GSM627107     5  0.3837   0.547004 0.000 0.000 0.000 0.308 0.692
#> GSM627103     2  0.0000   0.847614 0.000 1.000 0.000 0.000 0.000
#> GSM627114     3  0.0000   0.743789 0.000 0.000 1.000 0.000 0.000
#> GSM627134     4  0.6817   0.507683 0.000 0.344 0.000 0.348 0.308
#> GSM627137     2  0.1608   0.814806 0.000 0.928 0.000 0.000 0.072
#> GSM627148     5  0.4101   0.734530 0.000 0.000 0.372 0.000 0.628
#> GSM627101     4  0.0000   0.569585 0.000 0.000 0.000 1.000 0.000
#> GSM627130     4  0.0000   0.569585 0.000 0.000 0.000 1.000 0.000
#> GSM627071     3  0.4294  -0.381574 0.000 0.000 0.532 0.000 0.468
#> GSM627118     4  0.5568   0.800827 0.000 0.096 0.000 0.596 0.308
#> GSM627094     2  0.0000   0.847614 0.000 1.000 0.000 0.000 0.000
#> GSM627122     5  0.4150   0.710494 0.000 0.000 0.388 0.000 0.612
#> GSM627115     2  0.0000   0.847614 0.000 1.000 0.000 0.000 0.000
#> GSM627125     4  0.0162   0.566439 0.000 0.000 0.000 0.996 0.004
#> GSM627174     2  0.3274   0.673214 0.000 0.780 0.000 0.000 0.220
#> GSM627102     2  0.1270   0.823305 0.000 0.948 0.000 0.000 0.052
#> GSM627073     5  0.3876   0.788165 0.000 0.000 0.316 0.000 0.684
#> GSM627108     2  0.0000   0.847614 0.000 1.000 0.000 0.000 0.000
#> GSM627126     1  0.0000   0.922300 1.000 0.000 0.000 0.000 0.000
#> GSM627078     4  0.5896   0.808579 0.000 0.128 0.000 0.564 0.308
#> GSM627090     5  0.3837   0.791280 0.000 0.000 0.308 0.000 0.692
#> GSM627099     2  0.3990   0.541765 0.000 0.688 0.000 0.004 0.308
#> GSM627105     4  0.0162   0.566439 0.000 0.000 0.000 0.996 0.004
#> GSM627117     3  0.0000   0.743789 0.000 0.000 1.000 0.000 0.000
#> GSM627121     5  0.4847   0.745817 0.000 0.000 0.240 0.068 0.692
#> GSM627127     4  0.5820   0.810692 0.000 0.120 0.000 0.572 0.308
#> GSM627087     2  0.0000   0.847614 0.000 1.000 0.000 0.000 0.000
#> GSM627089     5  0.4249   0.633522 0.000 0.000 0.432 0.000 0.568
#> GSM627092     2  0.1608   0.814418 0.000 0.928 0.000 0.000 0.072
#> GSM627076     5  0.4297   0.563582 0.000 0.000 0.020 0.288 0.692
#> GSM627136     3  0.2377   0.619331 0.000 0.000 0.872 0.000 0.128
#> GSM627081     5  0.3837   0.791280 0.000 0.000 0.308 0.000 0.692
#> GSM627091     2  0.0162   0.846443 0.000 0.996 0.000 0.000 0.004
#> GSM627097     4  0.6352   0.773174 0.000 0.188 0.000 0.504 0.308
#> GSM627072     5  0.4227   0.651419 0.000 0.000 0.420 0.000 0.580
#> GSM627080     1  0.0000   0.922300 1.000 0.000 0.000 0.000 0.000
#> GSM627088     3  0.0963   0.717805 0.000 0.000 0.964 0.000 0.036
#> GSM627109     1  0.3752   0.644557 0.708 0.000 0.292 0.000 0.000
#> GSM627111     1  0.1908   0.860453 0.908 0.000 0.092 0.000 0.000
#> GSM627113     3  0.0000   0.743789 0.000 0.000 1.000 0.000 0.000
#> GSM627133     2  0.6093   0.185899 0.000 0.568 0.240 0.000 0.192
#> GSM627177     3  0.4300  -0.407911 0.000 0.000 0.524 0.000 0.476
#> GSM627086     2  0.0000   0.847614 0.000 1.000 0.000 0.000 0.000
#> GSM627095     1  0.0000   0.922300 1.000 0.000 0.000 0.000 0.000
#> GSM627079     5  0.3857   0.790734 0.000 0.000 0.312 0.000 0.688
#> GSM627082     4  0.0000   0.569585 0.000 0.000 0.000 1.000 0.000
#> GSM627074     3  0.3395   0.484280 0.236 0.000 0.764 0.000 0.000
#> GSM627077     3  0.3730   0.311729 0.000 0.000 0.712 0.000 0.288
#> GSM627093     3  0.0000   0.743789 0.000 0.000 1.000 0.000 0.000
#> GSM627120     2  0.6778  -0.409836 0.000 0.392 0.000 0.296 0.312
#> GSM627124     4  0.6670   0.688183 0.000 0.256 0.000 0.436 0.308
#> GSM627075     2  0.0000   0.847614 0.000 1.000 0.000 0.000 0.000
#> GSM627085     4  0.5820   0.810692 0.000 0.120 0.000 0.572 0.308
#> GSM627119     3  0.0703   0.729216 0.024 0.000 0.976 0.000 0.000
#> GSM627116     4  0.6562   0.731680 0.000 0.228 0.000 0.464 0.308
#> GSM627084     3  0.2648   0.614203 0.152 0.000 0.848 0.000 0.000
#> GSM627096     4  0.5740   0.808277 0.000 0.112 0.000 0.580 0.308
#> GSM627100     5  0.3837   0.547004 0.000 0.000 0.000 0.308 0.692
#> GSM627112     4  0.5781   0.809786 0.000 0.116 0.000 0.576 0.308
#> GSM627083     1  0.2127   0.786286 0.892 0.108 0.000 0.000 0.000
#> GSM627098     3  0.0000   0.743789 0.000 0.000 1.000 0.000 0.000
#> GSM627104     1  0.4192   0.457705 0.596 0.000 0.404 0.000 0.000
#> GSM627131     3  0.3949   0.170587 0.000 0.000 0.668 0.000 0.332
#> GSM627106     5  0.3837   0.791280 0.000 0.000 0.308 0.000 0.692
#> GSM627123     1  0.0000   0.922300 1.000 0.000 0.000 0.000 0.000
#> GSM627129     4  0.6275   0.782083 0.000 0.176 0.000 0.516 0.308
#> GSM627216     2  0.0000   0.847614 0.000 1.000 0.000 0.000 0.000
#> GSM627212     2  0.1965   0.796461 0.000 0.904 0.000 0.000 0.096
#> GSM627190     3  0.0000   0.743789 0.000 0.000 1.000 0.000 0.000
#> GSM627169     2  0.1908   0.765308 0.000 0.908 0.092 0.000 0.000
#> GSM627167     4  0.5820   0.810692 0.000 0.120 0.000 0.572 0.308
#> GSM627192     1  0.0000   0.922300 1.000 0.000 0.000 0.000 0.000
#> GSM627203     5  0.3837   0.791280 0.000 0.000 0.308 0.000 0.692
#> GSM627151     2  0.4398   0.614031 0.000 0.720 0.040 0.000 0.240
#> GSM627163     1  0.0000   0.922300 1.000 0.000 0.000 0.000 0.000
#> GSM627211     2  0.0000   0.847614 0.000 1.000 0.000 0.000 0.000
#> GSM627171     2  0.1544   0.798341 0.000 0.932 0.068 0.000 0.000
#> GSM627209     2  0.6796  -0.443813 0.000 0.380 0.000 0.312 0.308
#> GSM627135     1  0.0000   0.922300 1.000 0.000 0.000 0.000 0.000
#> GSM627170     2  0.0000   0.847614 0.000 1.000 0.000 0.000 0.000
#> GSM627178     3  0.4576  -0.000698 0.016 0.000 0.608 0.000 0.376
#> GSM627199     2  0.6817  -0.528367 0.000 0.348 0.000 0.344 0.308
#> GSM627213     4  0.5820   0.810692 0.000 0.120 0.000 0.572 0.308
#> GSM627140     4  0.6525   0.740920 0.000 0.220 0.000 0.472 0.308
#> GSM627149     1  0.0000   0.922300 1.000 0.000 0.000 0.000 0.000
#> GSM627147     2  0.3837   0.547965 0.000 0.692 0.000 0.000 0.308
#> GSM627195     5  0.3837   0.791280 0.000 0.000 0.308 0.000 0.692
#> GSM627204     2  0.0000   0.847614 0.000 1.000 0.000 0.000 0.000
#> GSM627207     2  0.0000   0.847614 0.000 1.000 0.000 0.000 0.000
#> GSM627157     3  0.1478   0.696630 0.064 0.000 0.936 0.000 0.000
#> GSM627201     2  0.2377   0.770206 0.000 0.872 0.000 0.000 0.128
#> GSM627146     2  0.0162   0.846443 0.000 0.996 0.000 0.000 0.004
#> GSM627156     2  0.0000   0.847614 0.000 1.000 0.000 0.000 0.000
#> GSM627188     1  0.0000   0.922300 1.000 0.000 0.000 0.000 0.000
#> GSM627197     2  0.3424   0.647828 0.000 0.760 0.000 0.000 0.240
#> GSM627173     2  0.0000   0.847614 0.000 1.000 0.000 0.000 0.000
#> GSM627179     2  0.0000   0.847614 0.000 1.000 0.000 0.000 0.000
#> GSM627208     5  0.6745   0.376979 0.000 0.280 0.312 0.000 0.408
#> GSM627215     2  0.0000   0.847614 0.000 1.000 0.000 0.000 0.000
#> GSM627153     4  0.6399   0.766047 0.000 0.196 0.000 0.496 0.308
#> GSM627155     1  0.0000   0.922300 1.000 0.000 0.000 0.000 0.000
#> GSM627165     4  0.6820   0.504756 0.000 0.344 0.000 0.344 0.312
#> GSM627168     3  0.3612   0.364874 0.000 0.000 0.732 0.000 0.268
#> GSM627183     3  0.0000   0.743789 0.000 0.000 1.000 0.000 0.000
#> GSM627144     5  0.3857   0.790734 0.000 0.000 0.312 0.000 0.688
#> GSM627158     1  0.0000   0.922300 1.000 0.000 0.000 0.000 0.000
#> GSM627196     2  0.0000   0.847614 0.000 1.000 0.000 0.000 0.000
#> GSM627142     5  0.4088   0.500429 0.000 0.000 0.000 0.368 0.632
#> GSM627182     3  0.4242  -0.236951 0.000 0.000 0.572 0.000 0.428
#> GSM627202     3  0.3913   0.197893 0.000 0.000 0.676 0.000 0.324
#> GSM627141     3  0.0000   0.743789 0.000 0.000 1.000 0.000 0.000
#> GSM627143     2  0.3864   0.686014 0.000 0.784 0.008 0.020 0.188
#> GSM627145     5  0.4101   0.733225 0.000 0.000 0.372 0.000 0.628
#> GSM627152     5  0.4171   0.689582 0.000 0.000 0.396 0.000 0.604
#> GSM627200     3  0.0000   0.743789 0.000 0.000 1.000 0.000 0.000
#> GSM627159     4  0.0000   0.569585 0.000 0.000 0.000 1.000 0.000
#> GSM627164     2  0.0000   0.847614 0.000 1.000 0.000 0.000 0.000
#> GSM627138     3  0.3837   0.295189 0.308 0.000 0.692 0.000 0.000
#> GSM627175     4  0.5820   0.810692 0.000 0.120 0.000 0.572 0.308
#> GSM627150     5  0.3857   0.790734 0.000 0.000 0.312 0.000 0.688
#> GSM627166     3  0.4101   0.149240 0.372 0.000 0.628 0.000 0.000
#> GSM627186     2  0.1732   0.773122 0.000 0.920 0.080 0.000 0.000
#> GSM627139     5  0.4314   0.630243 0.000 0.016 0.196 0.028 0.760
#> GSM627181     2  0.3837   0.547965 0.000 0.692 0.000 0.000 0.308
#> GSM627205     2  0.0000   0.847614 0.000 1.000 0.000 0.000 0.000
#> GSM627214     2  0.6683  -0.289660 0.000 0.432 0.000 0.260 0.308
#> GSM627180     5  0.3857   0.790734 0.000 0.000 0.312 0.000 0.688
#> GSM627172     2  0.1043   0.832611 0.000 0.960 0.000 0.000 0.040
#> GSM627184     1  0.0000   0.922300 1.000 0.000 0.000 0.000 0.000
#> GSM627193     2  0.0000   0.847614 0.000 1.000 0.000 0.000 0.000
#> GSM627191     4  0.6002   0.804022 0.000 0.140 0.000 0.552 0.308
#> GSM627176     5  0.4304   0.490879 0.000 0.000 0.484 0.000 0.516
#> GSM627194     2  0.0000   0.847614 0.000 1.000 0.000 0.000 0.000
#> GSM627154     4  0.5820   0.810692 0.000 0.120 0.000 0.572 0.308
#> GSM627187     3  0.0000   0.743789 0.000 0.000 1.000 0.000 0.000
#> GSM627198     4  0.5967   0.805750 0.000 0.136 0.000 0.556 0.308
#> GSM627160     4  0.6486   0.750273 0.000 0.212 0.000 0.480 0.308
#> GSM627185     1  0.4192   0.457666 0.596 0.000 0.404 0.000 0.000
#> GSM627206     3  0.3210   0.492956 0.000 0.000 0.788 0.000 0.212
#> GSM627161     1  0.0000   0.922300 1.000 0.000 0.000 0.000 0.000
#> GSM627162     3  0.0000   0.743789 0.000 0.000 1.000 0.000 0.000
#> GSM627210     3  0.0404   0.737300 0.012 0.000 0.988 0.000 0.000
#> GSM627189     2  0.0000   0.847614 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM627128     6  0.1204     0.9188 0.000 0.000 0.000 0.056 0.000 0.944
#> GSM627110     3  0.0937     0.8892 0.000 0.000 0.960 0.000 0.040 0.000
#> GSM627132     1  0.3240     0.6534 0.752 0.000 0.244 0.000 0.000 0.004
#> GSM627107     5  0.1092     0.8809 0.000 0.000 0.000 0.020 0.960 0.020
#> GSM627103     2  0.0291     0.9427 0.000 0.992 0.000 0.004 0.004 0.000
#> GSM627114     3  0.0458     0.9031 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM627134     4  0.1226     0.9468 0.000 0.040 0.004 0.952 0.004 0.000
#> GSM627137     2  0.0865     0.9264 0.000 0.964 0.000 0.036 0.000 0.000
#> GSM627148     5  0.0865     0.8978 0.000 0.000 0.036 0.000 0.964 0.000
#> GSM627101     6  0.1444     0.9094 0.000 0.000 0.000 0.072 0.000 0.928
#> GSM627130     6  0.1204     0.9188 0.000 0.000 0.000 0.056 0.000 0.944
#> GSM627071     5  0.2562     0.8305 0.000 0.000 0.172 0.000 0.828 0.000
#> GSM627118     4  0.0717     0.9406 0.000 0.008 0.000 0.976 0.000 0.016
#> GSM627094     2  0.0291     0.9434 0.000 0.992 0.004 0.004 0.000 0.000
#> GSM627122     5  0.1700     0.8893 0.000 0.000 0.024 0.000 0.928 0.048
#> GSM627115     2  0.0291     0.9434 0.000 0.992 0.004 0.004 0.000 0.000
#> GSM627125     6  0.1349     0.9190 0.000 0.000 0.000 0.056 0.004 0.940
#> GSM627174     2  0.3997    -0.0712 0.000 0.508 0.000 0.488 0.004 0.000
#> GSM627102     2  0.2482     0.7903 0.000 0.848 0.000 0.148 0.004 0.000
#> GSM627073     5  0.0547     0.8927 0.000 0.000 0.000 0.020 0.980 0.000
#> GSM627108     2  0.0405     0.9430 0.000 0.988 0.008 0.004 0.000 0.000
#> GSM627126     1  0.0000     0.9676 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627078     4  0.0547     0.9528 0.000 0.020 0.000 0.980 0.000 0.000
#> GSM627090     5  0.1528     0.8888 0.000 0.000 0.016 0.000 0.936 0.048
#> GSM627099     4  0.1700     0.9166 0.000 0.080 0.004 0.916 0.000 0.000
#> GSM627105     6  0.1349     0.9190 0.000 0.000 0.000 0.056 0.004 0.940
#> GSM627117     3  0.0363     0.9037 0.000 0.000 0.988 0.000 0.012 0.000
#> GSM627121     5  0.0806     0.8878 0.000 0.000 0.000 0.020 0.972 0.008
#> GSM627127     4  0.0547     0.9528 0.000 0.020 0.000 0.980 0.000 0.000
#> GSM627087     2  0.0146     0.9433 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM627089     5  0.1204     0.8939 0.000 0.000 0.056 0.000 0.944 0.000
#> GSM627092     2  0.0405     0.9400 0.000 0.988 0.000 0.008 0.004 0.000
#> GSM627076     5  0.1625     0.8819 0.000 0.000 0.012 0.000 0.928 0.060
#> GSM627136     3  0.3868    -0.1451 0.000 0.000 0.504 0.000 0.496 0.000
#> GSM627081     5  0.0547     0.8927 0.000 0.000 0.000 0.020 0.980 0.000
#> GSM627091     2  0.0146     0.9433 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM627097     4  0.1003     0.9509 0.000 0.028 0.000 0.964 0.004 0.004
#> GSM627072     5  0.1411     0.8923 0.000 0.000 0.060 0.004 0.936 0.000
#> GSM627080     1  0.0146     0.9668 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM627088     3  0.3797     0.1595 0.000 0.000 0.580 0.000 0.420 0.000
#> GSM627109     3  0.2320     0.7982 0.132 0.000 0.864 0.000 0.000 0.004
#> GSM627111     3  0.3769     0.4080 0.356 0.000 0.640 0.000 0.000 0.004
#> GSM627113     3  0.0508     0.9037 0.004 0.000 0.984 0.000 0.012 0.000
#> GSM627133     2  0.3074     0.6947 0.000 0.792 0.000 0.004 0.200 0.004
#> GSM627177     5  0.2562     0.8265 0.000 0.000 0.172 0.000 0.828 0.000
#> GSM627086     2  0.0260     0.9422 0.000 0.992 0.000 0.008 0.000 0.000
#> GSM627095     1  0.0000     0.9676 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627079     5  0.0717     0.8970 0.000 0.000 0.016 0.000 0.976 0.008
#> GSM627082     6  0.1349     0.9182 0.000 0.000 0.000 0.056 0.004 0.940
#> GSM627074     3  0.0717     0.8982 0.016 0.000 0.976 0.000 0.008 0.000
#> GSM627077     5  0.3714     0.7964 0.000 0.000 0.196 0.000 0.760 0.044
#> GSM627093     3  0.0508     0.9037 0.004 0.000 0.984 0.000 0.012 0.000
#> GSM627120     4  0.2814     0.8806 0.000 0.080 0.004 0.864 0.052 0.000
#> GSM627124     4  0.0858     0.9517 0.000 0.028 0.000 0.968 0.004 0.000
#> GSM627075     2  0.0291     0.9434 0.000 0.992 0.004 0.004 0.000 0.000
#> GSM627085     4  0.0547     0.9528 0.000 0.020 0.000 0.980 0.000 0.000
#> GSM627119     3  0.0508     0.9037 0.004 0.000 0.984 0.000 0.012 0.000
#> GSM627116     4  0.1116     0.9509 0.000 0.028 0.000 0.960 0.004 0.008
#> GSM627084     3  0.0405     0.9032 0.004 0.000 0.988 0.000 0.008 0.000
#> GSM627096     4  0.0603     0.9499 0.000 0.016 0.000 0.980 0.000 0.004
#> GSM627100     6  0.4167     0.2864 0.000 0.000 0.000 0.020 0.368 0.612
#> GSM627112     4  0.1053     0.9489 0.000 0.020 0.000 0.964 0.004 0.012
#> GSM627083     1  0.2145     0.8612 0.912 0.020 0.000 0.056 0.004 0.008
#> GSM627098     3  0.0363     0.9037 0.000 0.000 0.988 0.000 0.012 0.000
#> GSM627104     3  0.2006     0.8273 0.104 0.000 0.892 0.000 0.000 0.004
#> GSM627131     5  0.3618     0.8128 0.000 0.000 0.176 0.000 0.776 0.048
#> GSM627106     5  0.0547     0.8927 0.000 0.000 0.000 0.020 0.980 0.000
#> GSM627123     1  0.0146     0.9668 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM627129     4  0.0547     0.9528 0.000 0.020 0.000 0.980 0.000 0.000
#> GSM627216     2  0.0146     0.9417 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM627212     2  0.0713     0.9285 0.000 0.972 0.000 0.028 0.000 0.000
#> GSM627190     3  0.0458     0.9031 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM627169     2  0.0653     0.9346 0.000 0.980 0.012 0.000 0.004 0.004
#> GSM627167     4  0.0692     0.9525 0.000 0.020 0.000 0.976 0.004 0.000
#> GSM627192     1  0.0000     0.9676 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627203     5  0.0458     0.8937 0.000 0.000 0.000 0.016 0.984 0.000
#> GSM627151     4  0.3606     0.6867 0.000 0.256 0.000 0.728 0.016 0.000
#> GSM627163     1  0.0146     0.9668 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM627211     2  0.0146     0.9433 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM627171     2  0.0508     0.9371 0.000 0.984 0.000 0.000 0.012 0.004
#> GSM627209     4  0.1267     0.9352 0.000 0.060 0.000 0.940 0.000 0.000
#> GSM627135     1  0.0000     0.9676 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627170     2  0.0653     0.9390 0.000 0.980 0.004 0.012 0.004 0.000
#> GSM627178     5  0.3272     0.8533 0.004 0.000 0.124 0.000 0.824 0.048
#> GSM627199     4  0.1285     0.9422 0.000 0.052 0.000 0.944 0.004 0.000
#> GSM627213     4  0.0547     0.9528 0.000 0.020 0.000 0.980 0.000 0.000
#> GSM627140     4  0.1003     0.9509 0.000 0.028 0.000 0.964 0.004 0.004
#> GSM627149     1  0.0000     0.9676 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627147     4  0.1858     0.9078 0.000 0.092 0.000 0.904 0.004 0.000
#> GSM627195     5  0.0547     0.8927 0.000 0.000 0.000 0.020 0.980 0.000
#> GSM627204     2  0.0291     0.9434 0.000 0.992 0.004 0.004 0.000 0.000
#> GSM627207     2  0.0291     0.9434 0.000 0.992 0.004 0.004 0.000 0.000
#> GSM627157     3  0.0520     0.9020 0.008 0.000 0.984 0.000 0.008 0.000
#> GSM627201     2  0.1219     0.9117 0.000 0.948 0.004 0.048 0.000 0.000
#> GSM627146     2  0.0146     0.9433 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM627156     2  0.0436     0.9407 0.000 0.988 0.004 0.000 0.004 0.004
#> GSM627188     1  0.0000     0.9676 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627197     4  0.3151     0.6940 0.000 0.252 0.000 0.748 0.000 0.000
#> GSM627173     2  0.0551     0.9428 0.000 0.984 0.008 0.004 0.004 0.000
#> GSM627179     2  0.0146     0.9433 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM627208     5  0.4194     0.5106 0.000 0.308 0.008 0.020 0.664 0.000
#> GSM627215     2  0.0146     0.9417 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM627153     4  0.0547     0.9528 0.000 0.020 0.000 0.980 0.000 0.000
#> GSM627155     1  0.0000     0.9676 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627165     4  0.1493     0.9370 0.000 0.056 0.004 0.936 0.004 0.000
#> GSM627168     5  0.2491     0.8392 0.000 0.000 0.164 0.000 0.836 0.000
#> GSM627183     3  0.1556     0.8486 0.000 0.000 0.920 0.000 0.080 0.000
#> GSM627144     5  0.0405     0.8951 0.000 0.000 0.004 0.008 0.988 0.000
#> GSM627158     1  0.0146     0.9668 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM627196     2  0.0291     0.9434 0.000 0.992 0.004 0.004 0.000 0.000
#> GSM627142     6  0.1010     0.8601 0.000 0.000 0.004 0.000 0.036 0.960
#> GSM627182     5  0.2624     0.8416 0.000 0.004 0.148 0.004 0.844 0.000
#> GSM627202     5  0.3651     0.8126 0.000 0.000 0.180 0.000 0.772 0.048
#> GSM627141     3  0.0458     0.9031 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM627143     2  0.4086     0.0581 0.000 0.528 0.000 0.464 0.008 0.000
#> GSM627145     5  0.0937     0.8973 0.000 0.000 0.040 0.000 0.960 0.000
#> GSM627152     5  0.1528     0.8888 0.000 0.000 0.016 0.000 0.936 0.048
#> GSM627200     3  0.1075     0.8808 0.000 0.000 0.952 0.000 0.048 0.000
#> GSM627159     6  0.1349     0.9182 0.000 0.000 0.000 0.056 0.004 0.940
#> GSM627164     2  0.0260     0.9405 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM627138     3  0.0858     0.8868 0.028 0.000 0.968 0.000 0.000 0.004
#> GSM627175     4  0.0547     0.9528 0.000 0.020 0.000 0.980 0.000 0.000
#> GSM627150     5  0.0547     0.8927 0.000 0.000 0.000 0.020 0.980 0.000
#> GSM627166     3  0.0777     0.8956 0.024 0.000 0.972 0.000 0.004 0.000
#> GSM627186     2  0.0551     0.9382 0.000 0.984 0.008 0.000 0.004 0.004
#> GSM627139     5  0.1760     0.8544 0.000 0.020 0.000 0.048 0.928 0.004
#> GSM627181     4  0.1556     0.9179 0.000 0.080 0.000 0.920 0.000 0.000
#> GSM627205     2  0.0436     0.9425 0.000 0.988 0.004 0.004 0.004 0.000
#> GSM627214     4  0.1219     0.9433 0.000 0.048 0.004 0.948 0.000 0.000
#> GSM627180     5  0.0458     0.8937 0.000 0.000 0.000 0.016 0.984 0.000
#> GSM627172     2  0.1531     0.8843 0.000 0.928 0.000 0.068 0.004 0.000
#> GSM627184     1  0.0000     0.9676 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627193     2  0.0405     0.9430 0.000 0.988 0.008 0.004 0.000 0.000
#> GSM627191     4  0.1053     0.9489 0.000 0.020 0.000 0.964 0.004 0.012
#> GSM627176     5  0.0891     0.8983 0.000 0.000 0.024 0.000 0.968 0.008
#> GSM627194     2  0.0146     0.9433 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM627154     4  0.0547     0.9528 0.000 0.020 0.000 0.980 0.000 0.000
#> GSM627187     3  0.0363     0.9037 0.000 0.000 0.988 0.000 0.012 0.000
#> GSM627198     4  0.0547     0.9528 0.000 0.020 0.000 0.980 0.000 0.000
#> GSM627160     4  0.1096     0.9489 0.000 0.020 0.004 0.964 0.004 0.008
#> GSM627185     3  0.1806     0.8413 0.088 0.000 0.908 0.000 0.000 0.004
#> GSM627206     5  0.3175     0.7287 0.000 0.000 0.256 0.000 0.744 0.000
#> GSM627161     1  0.0146     0.9668 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM627162     3  0.0458     0.9028 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM627210     3  0.0363     0.9037 0.000 0.000 0.988 0.000 0.012 0.000
#> GSM627189     2  0.0291     0.9434 0.000 0.992 0.004 0.004 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) age(p) other(p) k
#> CV:mclust 146           0.5188  0.481   0.1413 2
#> CV:mclust 145           0.9506  0.738   0.1029 3
#> CV:mclust 132           0.0643  0.375   0.2964 4
#> CV:mclust 125           0.1294  0.455   0.1049 5
#> CV:mclust 140           0.4019  0.683   0.0671 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 146 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.972       0.988         0.4990 0.503   0.503
#> 3 3 0.916           0.912       0.951         0.2881 0.824   0.661
#> 4 4 0.569           0.634       0.818         0.1365 0.756   0.438
#> 5 5 0.586           0.589       0.774         0.0696 0.846   0.516
#> 6 6 0.619           0.568       0.738         0.0387 0.914   0.649

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM627128     2  0.0000      0.983 0.000 1.000
#> GSM627110     1  0.0000      0.994 1.000 0.000
#> GSM627132     1  0.0000      0.994 1.000 0.000
#> GSM627107     2  0.0000      0.983 0.000 1.000
#> GSM627103     2  0.0000      0.983 0.000 1.000
#> GSM627114     1  0.0000      0.994 1.000 0.000
#> GSM627134     2  0.0000      0.983 0.000 1.000
#> GSM627137     2  0.0000      0.983 0.000 1.000
#> GSM627148     1  0.0000      0.994 1.000 0.000
#> GSM627101     2  0.0000      0.983 0.000 1.000
#> GSM627130     2  0.0000      0.983 0.000 1.000
#> GSM627071     1  0.0000      0.994 1.000 0.000
#> GSM627118     2  0.0000      0.983 0.000 1.000
#> GSM627094     2  0.0000      0.983 0.000 1.000
#> GSM627122     1  0.0000      0.994 1.000 0.000
#> GSM627115     2  0.0000      0.983 0.000 1.000
#> GSM627125     2  0.0672      0.976 0.008 0.992
#> GSM627174     2  0.0000      0.983 0.000 1.000
#> GSM627102     2  0.0000      0.983 0.000 1.000
#> GSM627073     2  0.2778      0.940 0.048 0.952
#> GSM627108     2  0.0000      0.983 0.000 1.000
#> GSM627126     1  0.0000      0.994 1.000 0.000
#> GSM627078     2  0.0000      0.983 0.000 1.000
#> GSM627090     1  0.0000      0.994 1.000 0.000
#> GSM627099     2  0.0000      0.983 0.000 1.000
#> GSM627105     2  0.0000      0.983 0.000 1.000
#> GSM627117     1  0.0000      0.994 1.000 0.000
#> GSM627121     2  0.0000      0.983 0.000 1.000
#> GSM627127     2  0.0000      0.983 0.000 1.000
#> GSM627087     2  0.0000      0.983 0.000 1.000
#> GSM627089     1  0.0000      0.994 1.000 0.000
#> GSM627092     2  0.0000      0.983 0.000 1.000
#> GSM627076     1  0.0000      0.994 1.000 0.000
#> GSM627136     1  0.0000      0.994 1.000 0.000
#> GSM627081     2  0.1184      0.970 0.016 0.984
#> GSM627091     2  0.0000      0.983 0.000 1.000
#> GSM627097     2  0.0000      0.983 0.000 1.000
#> GSM627072     1  0.0376      0.991 0.996 0.004
#> GSM627080     1  0.0000      0.994 1.000 0.000
#> GSM627088     1  0.0000      0.994 1.000 0.000
#> GSM627109     1  0.0000      0.994 1.000 0.000
#> GSM627111     1  0.0000      0.994 1.000 0.000
#> GSM627113     1  0.0000      0.994 1.000 0.000
#> GSM627133     2  0.0000      0.983 0.000 1.000
#> GSM627177     2  0.9866      0.253 0.432 0.568
#> GSM627086     2  0.0000      0.983 0.000 1.000
#> GSM627095     1  0.0000      0.994 1.000 0.000
#> GSM627079     1  0.0000      0.994 1.000 0.000
#> GSM627082     1  0.0376      0.991 0.996 0.004
#> GSM627074     1  0.0000      0.994 1.000 0.000
#> GSM627077     1  0.0000      0.994 1.000 0.000
#> GSM627093     1  0.0000      0.994 1.000 0.000
#> GSM627120     2  0.0000      0.983 0.000 1.000
#> GSM627124     2  0.0000      0.983 0.000 1.000
#> GSM627075     2  0.0000      0.983 0.000 1.000
#> GSM627085     2  0.0000      0.983 0.000 1.000
#> GSM627119     1  0.0000      0.994 1.000 0.000
#> GSM627116     2  0.0000      0.983 0.000 1.000
#> GSM627084     1  0.0000      0.994 1.000 0.000
#> GSM627096     2  0.0000      0.983 0.000 1.000
#> GSM627100     1  0.0000      0.994 1.000 0.000
#> GSM627112     2  0.0000      0.983 0.000 1.000
#> GSM627083     1  0.4298      0.903 0.912 0.088
#> GSM627098     1  0.0000      0.994 1.000 0.000
#> GSM627104     1  0.0000      0.994 1.000 0.000
#> GSM627131     1  0.0000      0.994 1.000 0.000
#> GSM627106     2  0.8016      0.682 0.244 0.756
#> GSM627123     1  0.0000      0.994 1.000 0.000
#> GSM627129     2  0.0000      0.983 0.000 1.000
#> GSM627216     2  0.0000      0.983 0.000 1.000
#> GSM627212     2  0.0000      0.983 0.000 1.000
#> GSM627190     1  0.0000      0.994 1.000 0.000
#> GSM627169     2  0.0000      0.983 0.000 1.000
#> GSM627167     2  0.0000      0.983 0.000 1.000
#> GSM627192     1  0.0000      0.994 1.000 0.000
#> GSM627203     1  0.0000      0.994 1.000 0.000
#> GSM627151     2  0.0000      0.983 0.000 1.000
#> GSM627163     1  0.0000      0.994 1.000 0.000
#> GSM627211     2  0.0000      0.983 0.000 1.000
#> GSM627171     2  0.0000      0.983 0.000 1.000
#> GSM627209     2  0.0000      0.983 0.000 1.000
#> GSM627135     1  0.0000      0.994 1.000 0.000
#> GSM627170     2  0.0000      0.983 0.000 1.000
#> GSM627178     1  0.0000      0.994 1.000 0.000
#> GSM627199     2  0.0000      0.983 0.000 1.000
#> GSM627213     2  0.0000      0.983 0.000 1.000
#> GSM627140     2  0.0000      0.983 0.000 1.000
#> GSM627149     1  0.0000      0.994 1.000 0.000
#> GSM627147     2  0.0000      0.983 0.000 1.000
#> GSM627195     1  0.0000      0.994 1.000 0.000
#> GSM627204     2  0.0000      0.983 0.000 1.000
#> GSM627207     2  0.0000      0.983 0.000 1.000
#> GSM627157     1  0.0000      0.994 1.000 0.000
#> GSM627201     2  0.0000      0.983 0.000 1.000
#> GSM627146     2  0.0000      0.983 0.000 1.000
#> GSM627156     2  0.0000      0.983 0.000 1.000
#> GSM627188     1  0.0000      0.994 1.000 0.000
#> GSM627197     2  0.0000      0.983 0.000 1.000
#> GSM627173     2  0.0000      0.983 0.000 1.000
#> GSM627179     2  0.0000      0.983 0.000 1.000
#> GSM627208     2  0.0000      0.983 0.000 1.000
#> GSM627215     2  0.0000      0.983 0.000 1.000
#> GSM627153     2  0.0000      0.983 0.000 1.000
#> GSM627155     1  0.0000      0.994 1.000 0.000
#> GSM627165     2  0.0000      0.983 0.000 1.000
#> GSM627168     1  0.0000      0.994 1.000 0.000
#> GSM627183     1  0.0000      0.994 1.000 0.000
#> GSM627144     1  0.0938      0.984 0.988 0.012
#> GSM627158     1  0.0000      0.994 1.000 0.000
#> GSM627196     2  0.0000      0.983 0.000 1.000
#> GSM627142     1  0.0000      0.994 1.000 0.000
#> GSM627182     2  0.2423      0.948 0.040 0.960
#> GSM627202     1  0.0000      0.994 1.000 0.000
#> GSM627141     1  0.0000      0.994 1.000 0.000
#> GSM627143     2  0.0000      0.983 0.000 1.000
#> GSM627145     1  0.0000      0.994 1.000 0.000
#> GSM627152     1  0.0000      0.994 1.000 0.000
#> GSM627200     1  0.0000      0.994 1.000 0.000
#> GSM627159     1  0.5842      0.837 0.860 0.140
#> GSM627164     2  0.0000      0.983 0.000 1.000
#> GSM627138     1  0.0000      0.994 1.000 0.000
#> GSM627175     2  0.0000      0.983 0.000 1.000
#> GSM627150     1  0.1184      0.980 0.984 0.016
#> GSM627166     1  0.0000      0.994 1.000 0.000
#> GSM627186     2  0.0000      0.983 0.000 1.000
#> GSM627139     2  0.4298      0.897 0.088 0.912
#> GSM627181     2  0.0000      0.983 0.000 1.000
#> GSM627205     2  0.0000      0.983 0.000 1.000
#> GSM627214     2  0.0000      0.983 0.000 1.000
#> GSM627180     2  0.0000      0.983 0.000 1.000
#> GSM627172     2  0.0000      0.983 0.000 1.000
#> GSM627184     1  0.0000      0.994 1.000 0.000
#> GSM627193     2  0.0000      0.983 0.000 1.000
#> GSM627191     2  0.2603      0.944 0.044 0.956
#> GSM627176     1  0.0000      0.994 1.000 0.000
#> GSM627194     2  0.0000      0.983 0.000 1.000
#> GSM627154     2  0.0000      0.983 0.000 1.000
#> GSM627187     1  0.0000      0.994 1.000 0.000
#> GSM627198     2  0.0000      0.983 0.000 1.000
#> GSM627160     2  0.9850      0.263 0.428 0.572
#> GSM627185     1  0.0000      0.994 1.000 0.000
#> GSM627206     1  0.0000      0.994 1.000 0.000
#> GSM627161     1  0.0000      0.994 1.000 0.000
#> GSM627162     1  0.4431      0.899 0.908 0.092
#> GSM627210     1  0.0000      0.994 1.000 0.000
#> GSM627189     2  0.0000      0.983 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM627128     3  0.0000      0.917 0.000 0.000 1.000
#> GSM627110     1  0.1163      0.952 0.972 0.028 0.000
#> GSM627132     1  0.0424      0.955 0.992 0.000 0.008
#> GSM627107     2  0.1411      0.954 0.000 0.964 0.036
#> GSM627103     2  0.0892      0.958 0.000 0.980 0.020
#> GSM627114     1  0.1289      0.950 0.968 0.032 0.000
#> GSM627134     2  0.1529      0.952 0.000 0.960 0.040
#> GSM627137     2  0.1163      0.957 0.000 0.972 0.028
#> GSM627148     1  0.1529      0.946 0.960 0.040 0.000
#> GSM627101     3  0.0592      0.917 0.000 0.012 0.988
#> GSM627130     3  0.0000      0.917 0.000 0.000 1.000
#> GSM627071     1  0.1031      0.953 0.976 0.024 0.000
#> GSM627118     2  0.1860      0.943 0.000 0.948 0.052
#> GSM627094     2  0.0892      0.958 0.000 0.980 0.020
#> GSM627122     1  0.1753      0.936 0.952 0.000 0.048
#> GSM627115     2  0.0000      0.954 0.000 1.000 0.000
#> GSM627125     3  0.0000      0.917 0.000 0.000 1.000
#> GSM627174     2  0.1289      0.956 0.000 0.968 0.032
#> GSM627102     2  0.1529      0.952 0.000 0.960 0.040
#> GSM627073     2  0.1753      0.919 0.048 0.952 0.000
#> GSM627108     2  0.0237      0.955 0.000 0.996 0.004
#> GSM627126     1  0.4504      0.772 0.804 0.000 0.196
#> GSM627078     3  0.2356      0.886 0.000 0.072 0.928
#> GSM627090     1  0.0424      0.955 0.992 0.000 0.008
#> GSM627099     2  0.1163      0.957 0.000 0.972 0.028
#> GSM627105     3  0.0237      0.918 0.000 0.004 0.996
#> GSM627117     1  0.2066      0.932 0.940 0.060 0.000
#> GSM627121     2  0.0424      0.950 0.008 0.992 0.000
#> GSM627127     3  0.6204      0.295 0.000 0.424 0.576
#> GSM627087     2  0.0000      0.954 0.000 1.000 0.000
#> GSM627089     1  0.1031      0.953 0.976 0.024 0.000
#> GSM627092     2  0.1031      0.958 0.000 0.976 0.024
#> GSM627076     1  0.1753      0.936 0.952 0.000 0.048
#> GSM627136     1  0.0747      0.955 0.984 0.016 0.000
#> GSM627081     2  0.1643      0.923 0.044 0.956 0.000
#> GSM627091     2  0.1163      0.957 0.000 0.972 0.028
#> GSM627097     3  0.4974      0.702 0.000 0.236 0.764
#> GSM627072     1  0.3879      0.831 0.848 0.152 0.000
#> GSM627080     1  0.0892      0.952 0.980 0.000 0.020
#> GSM627088     1  0.1411      0.948 0.964 0.036 0.000
#> GSM627109     1  0.0424      0.955 0.992 0.000 0.008
#> GSM627111     1  0.0424      0.955 0.992 0.000 0.008
#> GSM627113     1  0.0592      0.955 0.988 0.012 0.000
#> GSM627133     2  0.0892      0.943 0.020 0.980 0.000
#> GSM627177     2  0.6204      0.290 0.424 0.576 0.000
#> GSM627086     2  0.1163      0.957 0.000 0.972 0.028
#> GSM627095     1  0.5650      0.572 0.688 0.000 0.312
#> GSM627079     1  0.0424      0.955 0.992 0.000 0.008
#> GSM627082     3  0.0892      0.909 0.020 0.000 0.980
#> GSM627074     1  0.1031      0.953 0.976 0.024 0.000
#> GSM627077     1  0.0424      0.955 0.992 0.000 0.008
#> GSM627093     1  0.1529      0.946 0.960 0.040 0.000
#> GSM627120     2  0.1289      0.956 0.000 0.968 0.032
#> GSM627124     3  0.1031      0.914 0.000 0.024 0.976
#> GSM627075     2  0.0237      0.955 0.000 0.996 0.004
#> GSM627085     3  0.1411      0.909 0.000 0.036 0.964
#> GSM627119     1  0.1163      0.952 0.972 0.028 0.000
#> GSM627116     3  0.0747      0.917 0.000 0.016 0.984
#> GSM627084     1  0.0592      0.955 0.988 0.000 0.012
#> GSM627096     2  0.5098      0.679 0.000 0.752 0.248
#> GSM627100     1  0.4702      0.752 0.788 0.000 0.212
#> GSM627112     3  0.0424      0.918 0.000 0.008 0.992
#> GSM627083     3  0.0892      0.909 0.020 0.000 0.980
#> GSM627098     1  0.0000      0.956 1.000 0.000 0.000
#> GSM627104     1  0.0592      0.955 0.988 0.012 0.000
#> GSM627131     1  0.0747      0.953 0.984 0.000 0.016
#> GSM627106     2  0.4452      0.730 0.192 0.808 0.000
#> GSM627123     1  0.1289      0.946 0.968 0.000 0.032
#> GSM627129     2  0.1643      0.949 0.000 0.956 0.044
#> GSM627216     2  0.0592      0.948 0.012 0.988 0.000
#> GSM627212     2  0.1163      0.957 0.000 0.972 0.028
#> GSM627190     1  0.2448      0.919 0.924 0.076 0.000
#> GSM627169     2  0.0892      0.943 0.020 0.980 0.000
#> GSM627167     3  0.6260      0.212 0.000 0.448 0.552
#> GSM627192     3  0.2165      0.880 0.064 0.000 0.936
#> GSM627203     1  0.0747      0.955 0.984 0.016 0.000
#> GSM627151     2  0.1163      0.957 0.000 0.972 0.028
#> GSM627163     1  0.1031      0.950 0.976 0.000 0.024
#> GSM627211     2  0.1289      0.956 0.000 0.968 0.032
#> GSM627171     2  0.0424      0.950 0.008 0.992 0.000
#> GSM627209     2  0.1753      0.947 0.000 0.952 0.048
#> GSM627135     1  0.1860      0.934 0.948 0.000 0.052
#> GSM627170     2  0.0000      0.954 0.000 1.000 0.000
#> GSM627178     1  0.1031      0.950 0.976 0.000 0.024
#> GSM627199     3  0.1031      0.914 0.000 0.024 0.976
#> GSM627213     3  0.0892      0.915 0.000 0.020 0.980
#> GSM627140     3  0.0424      0.918 0.000 0.008 0.992
#> GSM627149     1  0.1529      0.942 0.960 0.000 0.040
#> GSM627147     2  0.3619      0.855 0.000 0.864 0.136
#> GSM627195     1  0.2448      0.919 0.924 0.076 0.000
#> GSM627204     2  0.1163      0.957 0.000 0.972 0.028
#> GSM627207     2  0.0000      0.954 0.000 1.000 0.000
#> GSM627157     1  0.0000      0.956 1.000 0.000 0.000
#> GSM627201     2  0.1163      0.957 0.000 0.972 0.028
#> GSM627146     2  0.1163      0.957 0.000 0.972 0.028
#> GSM627156     2  0.0747      0.946 0.016 0.984 0.000
#> GSM627188     3  0.2165      0.880 0.064 0.000 0.936
#> GSM627197     2  0.1529      0.952 0.000 0.960 0.040
#> GSM627173     2  0.0892      0.958 0.000 0.980 0.020
#> GSM627179     2  0.0424      0.956 0.000 0.992 0.008
#> GSM627208     2  0.1031      0.940 0.024 0.976 0.000
#> GSM627215     2  0.0424      0.950 0.008 0.992 0.000
#> GSM627153     2  0.2356      0.927 0.000 0.928 0.072
#> GSM627155     1  0.1860      0.934 0.948 0.000 0.052
#> GSM627165     2  0.1163      0.957 0.000 0.972 0.028
#> GSM627168     1  0.0747      0.955 0.984 0.016 0.000
#> GSM627183     1  0.0747      0.955 0.984 0.016 0.000
#> GSM627144     1  0.2959      0.894 0.900 0.100 0.000
#> GSM627158     1  0.0892      0.952 0.980 0.000 0.020
#> GSM627196     2  0.1163      0.957 0.000 0.972 0.028
#> GSM627142     3  0.1163      0.903 0.028 0.000 0.972
#> GSM627182     2  0.1964      0.911 0.056 0.944 0.000
#> GSM627202     1  0.0592      0.955 0.988 0.000 0.012
#> GSM627141     1  0.1163      0.952 0.972 0.028 0.000
#> GSM627143     2  0.1163      0.958 0.000 0.972 0.028
#> GSM627145     1  0.1163      0.952 0.972 0.028 0.000
#> GSM627152     1  0.0892      0.952 0.980 0.000 0.020
#> GSM627200     1  0.0424      0.955 0.992 0.000 0.008
#> GSM627159     3  0.0892      0.909 0.020 0.000 0.980
#> GSM627164     2  0.0000      0.954 0.000 1.000 0.000
#> GSM627138     1  0.0424      0.955 0.992 0.000 0.008
#> GSM627175     3  0.4842      0.719 0.000 0.224 0.776
#> GSM627150     1  0.2261      0.926 0.932 0.068 0.000
#> GSM627166     1  0.0592      0.955 0.988 0.000 0.012
#> GSM627186     2  0.0892      0.943 0.020 0.980 0.000
#> GSM627139     3  0.5408      0.807 0.052 0.136 0.812
#> GSM627181     2  0.1289      0.956 0.000 0.968 0.032
#> GSM627205     2  0.0000      0.954 0.000 1.000 0.000
#> GSM627214     2  0.1289      0.956 0.000 0.968 0.032
#> GSM627180     2  0.0747      0.946 0.016 0.984 0.000
#> GSM627172     2  0.1860      0.943 0.000 0.948 0.052
#> GSM627184     3  0.4555      0.723 0.200 0.000 0.800
#> GSM627193     2  0.0424      0.950 0.008 0.992 0.000
#> GSM627191     3  0.0237      0.916 0.004 0.000 0.996
#> GSM627176     1  0.0424      0.955 0.992 0.000 0.008
#> GSM627194     2  0.0892      0.958 0.000 0.980 0.020
#> GSM627154     3  0.0892      0.915 0.000 0.020 0.980
#> GSM627187     1  0.1860      0.938 0.948 0.052 0.000
#> GSM627198     3  0.2165      0.891 0.000 0.064 0.936
#> GSM627160     3  0.0424      0.915 0.008 0.000 0.992
#> GSM627185     1  0.0000      0.956 1.000 0.000 0.000
#> GSM627206     1  0.1163      0.952 0.972 0.028 0.000
#> GSM627161     1  0.0892      0.952 0.980 0.000 0.020
#> GSM627162     1  0.4235      0.798 0.824 0.176 0.000
#> GSM627210     1  0.1163      0.952 0.972 0.028 0.000
#> GSM627189     2  0.0892      0.958 0.000 0.980 0.020

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM627128     4  0.0376     0.8458 0.000 0.004 0.004 0.992
#> GSM627110     1  0.4967     0.2297 0.548 0.000 0.452 0.000
#> GSM627132     1  0.0336     0.8228 0.992 0.000 0.008 0.000
#> GSM627107     3  0.1629     0.6822 0.000 0.024 0.952 0.024
#> GSM627103     2  0.0469     0.8287 0.000 0.988 0.012 0.000
#> GSM627114     3  0.3688     0.5503 0.208 0.000 0.792 0.000
#> GSM627134     2  0.2676     0.7845 0.000 0.896 0.092 0.012
#> GSM627137     2  0.4500     0.4618 0.000 0.684 0.316 0.000
#> GSM627148     3  0.1489     0.6693 0.044 0.004 0.952 0.000
#> GSM627101     4  0.0592     0.8422 0.000 0.016 0.000 0.984
#> GSM627130     4  0.0000     0.8468 0.000 0.000 0.000 1.000
#> GSM627071     1  0.7050     0.4151 0.568 0.252 0.180 0.000
#> GSM627118     2  0.5188     0.6890 0.000 0.756 0.096 0.148
#> GSM627094     2  0.0188     0.8289 0.000 0.996 0.004 0.000
#> GSM627122     1  0.6491     0.2271 0.496 0.000 0.432 0.072
#> GSM627115     2  0.0188     0.8289 0.000 0.996 0.004 0.000
#> GSM627125     4  0.1211     0.8279 0.000 0.000 0.040 0.960
#> GSM627174     2  0.0336     0.8292 0.000 0.992 0.008 0.000
#> GSM627102     2  0.5158    -0.0118 0.000 0.524 0.472 0.004
#> GSM627073     3  0.6581     0.6090 0.144 0.232 0.624 0.000
#> GSM627108     2  0.1474     0.8118 0.000 0.948 0.052 0.000
#> GSM627126     1  0.1940     0.7854 0.924 0.000 0.000 0.076
#> GSM627078     2  0.3975     0.6363 0.000 0.760 0.000 0.240
#> GSM627090     3  0.3597     0.6006 0.148 0.000 0.836 0.016
#> GSM627099     2  0.1151     0.8260 0.000 0.968 0.024 0.008
#> GSM627105     4  0.1824     0.8126 0.000 0.004 0.060 0.936
#> GSM627117     3  0.4940     0.6635 0.128 0.096 0.776 0.000
#> GSM627121     3  0.0657     0.6798 0.000 0.012 0.984 0.004
#> GSM627127     2  0.2530     0.7764 0.000 0.888 0.000 0.112
#> GSM627087     2  0.0188     0.8289 0.000 0.996 0.004 0.000
#> GSM627089     3  0.4761     0.2176 0.372 0.000 0.628 0.000
#> GSM627092     3  0.4790     0.4161 0.000 0.380 0.620 0.000
#> GSM627076     3  0.4956     0.5764 0.108 0.000 0.776 0.116
#> GSM627136     3  0.4621     0.4706 0.284 0.008 0.708 0.000
#> GSM627081     3  0.1109     0.6841 0.004 0.028 0.968 0.000
#> GSM627091     2  0.0376     0.8287 0.000 0.992 0.004 0.004
#> GSM627097     2  0.3501     0.7459 0.020 0.848 0.000 0.132
#> GSM627072     3  0.6134     0.5501 0.236 0.104 0.660 0.000
#> GSM627080     1  0.0469     0.8231 0.988 0.000 0.012 0.000
#> GSM627088     1  0.4163     0.7113 0.792 0.020 0.188 0.000
#> GSM627109     1  0.0524     0.8202 0.988 0.008 0.004 0.000
#> GSM627111     1  0.0469     0.8231 0.988 0.000 0.012 0.000
#> GSM627113     1  0.0469     0.8225 0.988 0.000 0.012 0.000
#> GSM627133     2  0.1209     0.8257 0.004 0.964 0.032 0.000
#> GSM627177     2  0.7003     0.0596 0.424 0.460 0.116 0.000
#> GSM627086     2  0.0336     0.8292 0.000 0.992 0.008 0.000
#> GSM627095     1  0.3764     0.6206 0.784 0.000 0.000 0.216
#> GSM627079     1  0.3942     0.6672 0.764 0.000 0.236 0.000
#> GSM627082     4  0.0336     0.8475 0.008 0.000 0.000 0.992
#> GSM627074     1  0.0804     0.8220 0.980 0.008 0.012 0.000
#> GSM627077     1  0.2011     0.8144 0.920 0.000 0.080 0.000
#> GSM627093     1  0.1256     0.8235 0.964 0.008 0.028 0.000
#> GSM627120     3  0.4746     0.5373 0.000 0.304 0.688 0.008
#> GSM627124     2  0.4053     0.6422 0.004 0.768 0.000 0.228
#> GSM627075     2  0.4713     0.3576 0.000 0.640 0.360 0.000
#> GSM627085     2  0.3583     0.7082 0.000 0.816 0.004 0.180
#> GSM627119     1  0.1174     0.8205 0.968 0.012 0.020 0.000
#> GSM627116     2  0.7072     0.4629 0.212 0.624 0.020 0.144
#> GSM627084     1  0.5143     0.5237 0.628 0.000 0.360 0.012
#> GSM627096     2  0.6324     0.4166 0.000 0.584 0.076 0.340
#> GSM627100     3  0.3853     0.5975 0.020 0.000 0.820 0.160
#> GSM627112     4  0.0592     0.8416 0.000 0.016 0.000 0.984
#> GSM627083     4  0.0707     0.8434 0.020 0.000 0.000 0.980
#> GSM627098     1  0.1211     0.8225 0.960 0.000 0.040 0.000
#> GSM627104     1  0.1022     0.8087 0.968 0.032 0.000 0.000
#> GSM627131     1  0.1792     0.8145 0.932 0.000 0.068 0.000
#> GSM627106     3  0.1042     0.6761 0.020 0.008 0.972 0.000
#> GSM627123     1  0.3991     0.7834 0.832 0.000 0.120 0.048
#> GSM627129     2  0.7402     0.1678 0.000 0.500 0.308 0.192
#> GSM627216     2  0.0469     0.8287 0.000 0.988 0.012 0.000
#> GSM627212     2  0.0779     0.8285 0.000 0.980 0.016 0.004
#> GSM627190     3  0.4718     0.6787 0.092 0.116 0.792 0.000
#> GSM627169     3  0.4804     0.4044 0.000 0.384 0.616 0.000
#> GSM627167     3  0.6396     0.3454 0.000 0.076 0.564 0.360
#> GSM627192     4  0.4977     0.2202 0.460 0.000 0.000 0.540
#> GSM627203     3  0.4643     0.2869 0.344 0.000 0.656 0.000
#> GSM627151     2  0.0844     0.8267 0.004 0.980 0.012 0.004
#> GSM627163     1  0.0000     0.8212 1.000 0.000 0.000 0.000
#> GSM627211     2  0.0707     0.8275 0.000 0.980 0.020 0.000
#> GSM627171     3  0.2589     0.6794 0.000 0.116 0.884 0.000
#> GSM627209     2  0.1042     0.8274 0.000 0.972 0.008 0.020
#> GSM627135     1  0.0524     0.8180 0.988 0.008 0.000 0.004
#> GSM627170     2  0.4888     0.2329 0.000 0.588 0.412 0.000
#> GSM627178     1  0.1610     0.8100 0.952 0.032 0.016 0.000
#> GSM627199     4  0.4564     0.4097 0.000 0.328 0.000 0.672
#> GSM627213     4  0.3486     0.6671 0.000 0.188 0.000 0.812
#> GSM627140     4  0.0336     0.8475 0.008 0.000 0.000 0.992
#> GSM627149     1  0.5067     0.7109 0.736 0.000 0.216 0.048
#> GSM627147     3  0.7806     0.2307 0.004 0.208 0.408 0.380
#> GSM627195     1  0.7253    -0.1570 0.432 0.144 0.424 0.000
#> GSM627204     2  0.0188     0.8295 0.000 0.996 0.004 0.000
#> GSM627207     2  0.4916     0.1720 0.000 0.576 0.424 0.000
#> GSM627157     1  0.1792     0.8194 0.932 0.000 0.068 0.000
#> GSM627201     2  0.0336     0.8292 0.000 0.992 0.008 0.000
#> GSM627146     2  0.0000     0.8291 0.000 1.000 0.000 0.000
#> GSM627156     3  0.4624     0.4898 0.000 0.340 0.660 0.000
#> GSM627188     4  0.4722     0.5564 0.300 0.000 0.008 0.692
#> GSM627197     2  0.0895     0.8282 0.000 0.976 0.020 0.004
#> GSM627173     2  0.1022     0.8212 0.000 0.968 0.032 0.000
#> GSM627179     2  0.0707     0.8275 0.000 0.980 0.020 0.000
#> GSM627208     3  0.3907     0.6080 0.000 0.232 0.768 0.000
#> GSM627215     2  0.2334     0.7894 0.004 0.908 0.088 0.000
#> GSM627153     2  0.1722     0.8203 0.000 0.944 0.008 0.048
#> GSM627155     1  0.3972     0.7758 0.840 0.000 0.080 0.080
#> GSM627165     3  0.4933     0.2932 0.000 0.432 0.568 0.000
#> GSM627168     1  0.4855     0.4684 0.600 0.000 0.400 0.000
#> GSM627183     1  0.2704     0.7854 0.876 0.000 0.124 0.000
#> GSM627144     3  0.0707     0.6716 0.020 0.000 0.980 0.000
#> GSM627158     1  0.3355     0.7721 0.836 0.000 0.160 0.004
#> GSM627196     2  0.0336     0.8292 0.000 0.992 0.008 0.000
#> GSM627142     4  0.4741     0.4303 0.000 0.004 0.328 0.668
#> GSM627182     3  0.5532     0.6295 0.068 0.228 0.704 0.000
#> GSM627202     1  0.4781     0.5846 0.660 0.000 0.336 0.004
#> GSM627141     3  0.4584     0.4100 0.300 0.004 0.696 0.000
#> GSM627143     3  0.4353     0.6125 0.000 0.232 0.756 0.012
#> GSM627145     3  0.4972     0.0759 0.456 0.000 0.544 0.000
#> GSM627152     3  0.5256     0.1551 0.392 0.000 0.596 0.012
#> GSM627200     1  0.1940     0.8152 0.924 0.000 0.076 0.000
#> GSM627159     4  0.0188     0.8476 0.004 0.000 0.000 0.996
#> GSM627164     3  0.3123     0.6678 0.000 0.156 0.844 0.000
#> GSM627138     1  0.3801     0.7328 0.780 0.000 0.220 0.000
#> GSM627175     2  0.3764     0.6784 0.000 0.784 0.000 0.216
#> GSM627150     3  0.6603     0.3851 0.328 0.100 0.572 0.000
#> GSM627166     1  0.3942     0.5670 0.764 0.236 0.000 0.000
#> GSM627186     3  0.4843     0.3861 0.000 0.396 0.604 0.000
#> GSM627139     3  0.5408     0.0419 0.000 0.012 0.500 0.488
#> GSM627181     2  0.3142     0.7445 0.000 0.860 0.132 0.008
#> GSM627205     3  0.4985     0.1875 0.000 0.468 0.532 0.000
#> GSM627214     2  0.4212     0.6310 0.000 0.772 0.216 0.012
#> GSM627180     3  0.4877     0.3689 0.000 0.408 0.592 0.000
#> GSM627172     3  0.7122     0.4307 0.004 0.304 0.552 0.140
#> GSM627184     4  0.5189     0.4046 0.372 0.000 0.012 0.616
#> GSM627193     2  0.1557     0.8037 0.000 0.944 0.056 0.000
#> GSM627191     4  0.0336     0.8475 0.008 0.000 0.000 0.992
#> GSM627176     3  0.2179     0.6596 0.064 0.000 0.924 0.012
#> GSM627194     2  0.0592     0.8274 0.000 0.984 0.016 0.000
#> GSM627154     2  0.4889     0.4334 0.000 0.636 0.004 0.360
#> GSM627187     3  0.1824     0.6619 0.060 0.004 0.936 0.000
#> GSM627198     2  0.4222     0.6016 0.000 0.728 0.000 0.272
#> GSM627160     4  0.0188     0.8476 0.004 0.000 0.000 0.996
#> GSM627185     1  0.0000     0.8212 1.000 0.000 0.000 0.000
#> GSM627206     3  0.4304     0.4265 0.284 0.000 0.716 0.000
#> GSM627161     1  0.3810     0.7506 0.804 0.000 0.188 0.008
#> GSM627162     3  0.2714     0.6343 0.112 0.004 0.884 0.000
#> GSM627210     1  0.2413     0.7842 0.916 0.064 0.020 0.000
#> GSM627189     2  0.0592     0.8273 0.000 0.984 0.016 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM627128     4  0.2504     0.7648 0.000 0.040 0.000 0.896 0.064
#> GSM627110     3  0.6934     0.0825 0.352 0.012 0.420 0.000 0.216
#> GSM627132     1  0.0771     0.8582 0.976 0.000 0.004 0.000 0.020
#> GSM627107     5  0.2617     0.7355 0.000 0.036 0.032 0.028 0.904
#> GSM627103     2  0.1251     0.7131 0.000 0.956 0.036 0.000 0.008
#> GSM627114     5  0.5027     0.5378 0.056 0.000 0.304 0.000 0.640
#> GSM627134     2  0.5454     0.0718 0.000 0.488 0.000 0.060 0.452
#> GSM627137     2  0.4410    -0.1855 0.000 0.556 0.440 0.000 0.004
#> GSM627148     5  0.2046     0.7374 0.016 0.000 0.068 0.000 0.916
#> GSM627101     4  0.2914     0.7461 0.000 0.076 0.000 0.872 0.052
#> GSM627130     4  0.0898     0.7828 0.000 0.000 0.020 0.972 0.008
#> GSM627071     5  0.6267     0.4961 0.224 0.236 0.000 0.000 0.540
#> GSM627118     5  0.5534     0.0849 0.000 0.424 0.000 0.068 0.508
#> GSM627094     2  0.2130     0.6839 0.012 0.908 0.080 0.000 0.000
#> GSM627122     5  0.2273     0.7500 0.048 0.008 0.008 0.016 0.920
#> GSM627115     2  0.2102     0.6938 0.012 0.916 0.068 0.000 0.004
#> GSM627125     4  0.2069     0.7697 0.000 0.012 0.000 0.912 0.076
#> GSM627174     2  0.1605     0.7124 0.004 0.944 0.040 0.012 0.000
#> GSM627102     3  0.5336     0.4289 0.000 0.428 0.528 0.036 0.008
#> GSM627073     5  0.2389     0.7093 0.000 0.116 0.004 0.000 0.880
#> GSM627108     2  0.2930     0.6047 0.000 0.832 0.164 0.000 0.004
#> GSM627126     1  0.2575     0.7998 0.884 0.004 0.012 0.100 0.000
#> GSM627078     2  0.4374     0.5655 0.000 0.700 0.000 0.272 0.028
#> GSM627090     3  0.5121    -0.3076 0.028 0.000 0.500 0.004 0.468
#> GSM627099     2  0.3771     0.6754 0.000 0.804 0.004 0.036 0.156
#> GSM627105     4  0.3409     0.7077 0.000 0.024 0.000 0.816 0.160
#> GSM627117     3  0.5550     0.6040 0.092 0.120 0.720 0.000 0.068
#> GSM627121     5  0.3478     0.7149 0.004 0.016 0.124 0.016 0.840
#> GSM627127     2  0.4750     0.5969 0.000 0.712 0.012 0.236 0.040
#> GSM627087     2  0.1605     0.7122 0.004 0.944 0.040 0.000 0.012
#> GSM627089     5  0.2570     0.7302 0.084 0.000 0.028 0.000 0.888
#> GSM627092     3  0.4470     0.5031 0.000 0.372 0.616 0.000 0.012
#> GSM627076     5  0.4272     0.6546 0.020 0.000 0.212 0.016 0.752
#> GSM627136     5  0.3159     0.7314 0.088 0.000 0.056 0.000 0.856
#> GSM627081     5  0.2045     0.7430 0.004 0.020 0.044 0.004 0.928
#> GSM627091     2  0.2429     0.7143 0.000 0.904 0.008 0.020 0.068
#> GSM627097     2  0.5724     0.5666 0.120 0.692 0.028 0.156 0.004
#> GSM627072     5  0.1596     0.7504 0.012 0.028 0.012 0.000 0.948
#> GSM627080     1  0.0510     0.8576 0.984 0.000 0.000 0.000 0.016
#> GSM627088     1  0.4200     0.5431 0.672 0.004 0.004 0.000 0.320
#> GSM627109     1  0.1331     0.8563 0.952 0.000 0.008 0.000 0.040
#> GSM627111     1  0.1117     0.8577 0.964 0.000 0.020 0.000 0.016
#> GSM627113     1  0.1792     0.8518 0.916 0.000 0.000 0.000 0.084
#> GSM627133     2  0.4069     0.6628 0.012 0.796 0.044 0.000 0.148
#> GSM627177     5  0.6404     0.2850 0.092 0.360 0.008 0.016 0.524
#> GSM627086     2  0.1697     0.7182 0.000 0.932 0.000 0.008 0.060
#> GSM627095     1  0.3819     0.6910 0.772 0.004 0.016 0.208 0.000
#> GSM627079     5  0.3563     0.7354 0.092 0.060 0.000 0.008 0.840
#> GSM627082     4  0.0609     0.7819 0.000 0.000 0.020 0.980 0.000
#> GSM627074     1  0.1710     0.8535 0.940 0.004 0.016 0.000 0.040
#> GSM627077     1  0.2753     0.8194 0.856 0.000 0.008 0.000 0.136
#> GSM627093     1  0.3726     0.7936 0.840 0.036 0.088 0.000 0.036
#> GSM627120     3  0.6072     0.4359 0.000 0.396 0.512 0.020 0.072
#> GSM627124     2  0.4202     0.6292 0.012 0.744 0.000 0.228 0.016
#> GSM627075     3  0.4306     0.3382 0.000 0.492 0.508 0.000 0.000
#> GSM627085     2  0.5573     0.4423 0.000 0.612 0.008 0.304 0.076
#> GSM627119     1  0.1740     0.8541 0.932 0.000 0.012 0.000 0.056
#> GSM627116     2  0.7549     0.2362 0.056 0.484 0.012 0.292 0.156
#> GSM627084     3  0.6192    -0.2659 0.428 0.000 0.480 0.056 0.036
#> GSM627096     5  0.5861     0.1205 0.000 0.400 0.000 0.100 0.500
#> GSM627100     5  0.4758     0.6714 0.008 0.000 0.160 0.088 0.744
#> GSM627112     4  0.1331     0.7751 0.000 0.040 0.000 0.952 0.008
#> GSM627083     4  0.2367     0.7540 0.072 0.004 0.020 0.904 0.000
#> GSM627098     1  0.2583     0.8261 0.864 0.000 0.004 0.000 0.132
#> GSM627104     1  0.1405     0.8485 0.956 0.020 0.008 0.000 0.016
#> GSM627131     5  0.4288     0.3394 0.384 0.000 0.004 0.000 0.612
#> GSM627106     5  0.1843     0.7436 0.004 0.012 0.044 0.004 0.936
#> GSM627123     1  0.4860     0.7495 0.756 0.000 0.088 0.132 0.024
#> GSM627129     2  0.6858     0.3808 0.000 0.516 0.028 0.280 0.176
#> GSM627216     2  0.2278     0.7165 0.000 0.908 0.032 0.000 0.060
#> GSM627212     2  0.2812     0.7072 0.000 0.876 0.004 0.024 0.096
#> GSM627190     3  0.6662     0.5016 0.064 0.128 0.600 0.000 0.208
#> GSM627169     3  0.4299     0.4941 0.000 0.388 0.608 0.000 0.004
#> GSM627167     4  0.5868     0.4784 0.000 0.016 0.248 0.628 0.108
#> GSM627192     1  0.4571     0.5222 0.664 0.004 0.020 0.312 0.000
#> GSM627203     5  0.1483     0.7509 0.028 0.012 0.008 0.000 0.952
#> GSM627151     2  0.3767     0.6994 0.048 0.848 0.012 0.020 0.072
#> GSM627163     1  0.0566     0.8566 0.984 0.000 0.004 0.000 0.012
#> GSM627211     2  0.2798     0.6385 0.000 0.852 0.140 0.000 0.008
#> GSM627171     3  0.2915     0.6035 0.000 0.116 0.860 0.000 0.024
#> GSM627209     2  0.3532     0.6966 0.000 0.832 0.000 0.076 0.092
#> GSM627135     1  0.0902     0.8532 0.976 0.008 0.008 0.004 0.004
#> GSM627170     2  0.4649     0.5869 0.000 0.716 0.064 0.000 0.220
#> GSM627178     1  0.1757     0.8553 0.936 0.004 0.012 0.000 0.048
#> GSM627199     4  0.4283     0.3382 0.008 0.348 0.000 0.644 0.000
#> GSM627213     4  0.4777     0.4368 0.000 0.292 0.000 0.664 0.044
#> GSM627140     4  0.1851     0.7512 0.000 0.000 0.088 0.912 0.000
#> GSM627149     3  0.7430    -0.3497 0.392 0.000 0.396 0.144 0.068
#> GSM627147     3  0.7288     0.4816 0.000 0.240 0.496 0.212 0.052
#> GSM627195     5  0.2673     0.7478 0.044 0.060 0.004 0.000 0.892
#> GSM627204     2  0.1124     0.7112 0.004 0.960 0.036 0.000 0.000
#> GSM627207     2  0.4798    -0.2200 0.000 0.540 0.440 0.000 0.020
#> GSM627157     1  0.2966     0.8187 0.848 0.000 0.016 0.000 0.136
#> GSM627201     2  0.1442     0.7199 0.000 0.952 0.012 0.004 0.032
#> GSM627146     2  0.0955     0.7140 0.004 0.968 0.028 0.000 0.000
#> GSM627156     3  0.4848     0.4496 0.000 0.420 0.556 0.000 0.024
#> GSM627188     4  0.4686     0.2612 0.384 0.000 0.020 0.596 0.000
#> GSM627197     2  0.1809     0.7047 0.000 0.928 0.060 0.012 0.000
#> GSM627173     2  0.3318     0.5684 0.012 0.808 0.180 0.000 0.000
#> GSM627179     2  0.2409     0.7053 0.000 0.900 0.068 0.000 0.032
#> GSM627208     5  0.4114     0.6613 0.000 0.164 0.060 0.000 0.776
#> GSM627215     5  0.5072     0.0375 0.000 0.456 0.008 0.020 0.516
#> GSM627153     2  0.4322     0.6666 0.000 0.768 0.000 0.144 0.088
#> GSM627155     1  0.5244     0.6869 0.708 0.000 0.116 0.164 0.012
#> GSM627165     3  0.4881     0.3765 0.000 0.460 0.520 0.004 0.016
#> GSM627168     5  0.5987     0.2982 0.324 0.000 0.132 0.000 0.544
#> GSM627183     5  0.3305     0.6352 0.224 0.000 0.000 0.000 0.776
#> GSM627144     5  0.4047     0.4759 0.004 0.000 0.320 0.000 0.676
#> GSM627158     1  0.4498     0.7789 0.772 0.000 0.108 0.008 0.112
#> GSM627196     2  0.1216     0.7171 0.000 0.960 0.020 0.000 0.020
#> GSM627142     5  0.3559     0.6603 0.000 0.012 0.008 0.176 0.804
#> GSM627182     5  0.3450     0.7255 0.012 0.096 0.044 0.000 0.848
#> GSM627202     5  0.5816     0.4112 0.280 0.000 0.132 0.000 0.588
#> GSM627141     3  0.4557     0.5138 0.160 0.044 0.768 0.000 0.028
#> GSM627143     3  0.5414     0.5840 0.000 0.228 0.684 0.048 0.040
#> GSM627145     5  0.2027     0.7505 0.040 0.024 0.008 0.000 0.928
#> GSM627152     5  0.3021     0.7255 0.060 0.000 0.064 0.004 0.872
#> GSM627200     1  0.2848     0.8111 0.840 0.000 0.004 0.000 0.156
#> GSM627159     4  0.0609     0.7819 0.000 0.000 0.020 0.980 0.000
#> GSM627164     3  0.4179     0.6058 0.000 0.152 0.776 0.000 0.072
#> GSM627138     1  0.6245     0.5123 0.544 0.000 0.236 0.000 0.220
#> GSM627175     2  0.4350     0.5980 0.000 0.704 0.000 0.268 0.028
#> GSM627150     5  0.1704     0.7364 0.004 0.068 0.000 0.000 0.928
#> GSM627166     1  0.1525     0.8361 0.948 0.036 0.012 0.000 0.004
#> GSM627186     3  0.4434     0.3975 0.000 0.460 0.536 0.000 0.004
#> GSM627139     4  0.5225     0.2997 0.000 0.024 0.016 0.576 0.384
#> GSM627181     2  0.2723     0.6509 0.000 0.864 0.124 0.000 0.012
#> GSM627205     2  0.5393     0.1675 0.000 0.504 0.056 0.000 0.440
#> GSM627214     2  0.4714     0.6010 0.000 0.712 0.008 0.044 0.236
#> GSM627180     5  0.2806     0.6778 0.000 0.152 0.000 0.004 0.844
#> GSM627172     3  0.5988     0.5303 0.000 0.300 0.584 0.104 0.012
#> GSM627184     4  0.4709     0.3063 0.364 0.000 0.024 0.612 0.000
#> GSM627193     2  0.2886     0.6208 0.008 0.844 0.148 0.000 0.000
#> GSM627191     4  0.1399     0.7728 0.028 0.000 0.020 0.952 0.000
#> GSM627176     3  0.4025     0.3902 0.012 0.000 0.780 0.024 0.184
#> GSM627194     2  0.3242     0.5807 0.012 0.816 0.172 0.000 0.000
#> GSM627154     2  0.5687     0.1315 0.000 0.496 0.004 0.432 0.068
#> GSM627187     3  0.3405     0.5361 0.012 0.036 0.848 0.000 0.104
#> GSM627198     2  0.4025     0.6006 0.008 0.748 0.012 0.232 0.000
#> GSM627160     4  0.0609     0.7819 0.000 0.000 0.020 0.980 0.000
#> GSM627185     1  0.0727     0.8564 0.980 0.004 0.004 0.000 0.012
#> GSM627206     5  0.5339     0.5953 0.116 0.000 0.224 0.000 0.660
#> GSM627161     1  0.6201     0.6098 0.596 0.000 0.272 0.028 0.104
#> GSM627162     3  0.2963     0.5362 0.016 0.012 0.876 0.004 0.092
#> GSM627210     1  0.2900     0.8282 0.876 0.020 0.012 0.000 0.092
#> GSM627189     2  0.2674     0.6501 0.012 0.868 0.120 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM627128     6  0.2380     0.7020 0.000 0.016 0.000 0.048 0.036 0.900
#> GSM627110     4  0.6046     0.2097 0.108 0.000 0.352 0.500 0.040 0.000
#> GSM627132     1  0.1010     0.7688 0.960 0.000 0.000 0.004 0.036 0.000
#> GSM627107     5  0.2649     0.7457 0.000 0.048 0.032 0.020 0.892 0.008
#> GSM627103     2  0.1049     0.7327 0.000 0.960 0.032 0.008 0.000 0.000
#> GSM627114     5  0.4498     0.6584 0.080 0.000 0.188 0.012 0.720 0.000
#> GSM627134     2  0.6246     0.3280 0.000 0.544 0.008 0.044 0.284 0.120
#> GSM627137     2  0.4857    -0.2518 0.000 0.524 0.424 0.048 0.000 0.004
#> GSM627148     5  0.1410     0.7504 0.004 0.000 0.044 0.008 0.944 0.000
#> GSM627101     6  0.2859     0.6928 0.000 0.060 0.000 0.020 0.048 0.872
#> GSM627130     6  0.0436     0.7062 0.000 0.000 0.004 0.004 0.004 0.988
#> GSM627071     5  0.5928     0.4535 0.184 0.216 0.000 0.028 0.572 0.000
#> GSM627118     2  0.7271     0.0612 0.000 0.388 0.012 0.080 0.332 0.188
#> GSM627094     2  0.1333     0.7216 0.000 0.944 0.048 0.008 0.000 0.000
#> GSM627122     5  0.3551     0.7492 0.056 0.008 0.032 0.024 0.852 0.028
#> GSM627115     2  0.1863     0.7243 0.000 0.920 0.044 0.036 0.000 0.000
#> GSM627125     6  0.3400     0.6732 0.000 0.004 0.008 0.064 0.092 0.832
#> GSM627174     2  0.2208     0.7300 0.016 0.912 0.052 0.008 0.000 0.012
#> GSM627102     3  0.4828     0.5280 0.000 0.384 0.568 0.016 0.000 0.032
#> GSM627073     5  0.3546     0.6887 0.000 0.128 0.056 0.008 0.808 0.000
#> GSM627108     2  0.2520     0.6607 0.000 0.844 0.152 0.000 0.004 0.000
#> GSM627126     1  0.1500     0.7590 0.936 0.000 0.000 0.012 0.000 0.052
#> GSM627078     2  0.3423     0.6667 0.008 0.812 0.000 0.016 0.012 0.152
#> GSM627090     5  0.5961     0.2654 0.004 0.000 0.388 0.188 0.420 0.000
#> GSM627099     2  0.4451     0.6323 0.000 0.760 0.008 0.136 0.072 0.024
#> GSM627105     6  0.3764     0.6578 0.000 0.004 0.008 0.084 0.100 0.804
#> GSM627117     3  0.5594     0.3071 0.072 0.036 0.612 0.272 0.008 0.000
#> GSM627121     5  0.3097     0.7360 0.000 0.020 0.112 0.012 0.848 0.008
#> GSM627127     4  0.6303     0.1647 0.000 0.348 0.004 0.384 0.004 0.260
#> GSM627087     2  0.1562     0.7331 0.000 0.940 0.024 0.032 0.004 0.000
#> GSM627089     5  0.1630     0.7454 0.024 0.000 0.016 0.020 0.940 0.000
#> GSM627092     3  0.3689     0.5188 0.000 0.072 0.800 0.120 0.008 0.000
#> GSM627076     5  0.5765     0.5584 0.000 0.000 0.196 0.136 0.620 0.048
#> GSM627136     5  0.4189     0.7035 0.048 0.000 0.148 0.028 0.772 0.004
#> GSM627081     5  0.1579     0.7513 0.000 0.020 0.024 0.008 0.944 0.004
#> GSM627091     2  0.3855     0.5969 0.000 0.760 0.008 0.204 0.016 0.012
#> GSM627097     4  0.5706     0.5624 0.036 0.164 0.036 0.672 0.000 0.092
#> GSM627072     5  0.1606     0.7462 0.008 0.000 0.004 0.056 0.932 0.000
#> GSM627080     1  0.0914     0.7675 0.968 0.000 0.000 0.016 0.016 0.000
#> GSM627088     1  0.4661     0.4267 0.628 0.008 0.028 0.008 0.328 0.000
#> GSM627109     1  0.2509     0.7451 0.876 0.000 0.000 0.088 0.036 0.000
#> GSM627111     1  0.0870     0.7676 0.972 0.000 0.004 0.012 0.012 0.000
#> GSM627113     1  0.2301     0.7571 0.884 0.000 0.000 0.020 0.096 0.000
#> GSM627133     4  0.5224     0.5152 0.000 0.300 0.024 0.608 0.068 0.000
#> GSM627177     5  0.6277     0.3213 0.040 0.284 0.000 0.144 0.528 0.004
#> GSM627086     2  0.0862     0.7337 0.000 0.972 0.008 0.004 0.016 0.000
#> GSM627095     1  0.2540     0.7362 0.872 0.000 0.004 0.020 0.000 0.104
#> GSM627079     5  0.4231     0.6156 0.020 0.024 0.000 0.248 0.708 0.000
#> GSM627082     6  0.0862     0.7002 0.016 0.000 0.004 0.008 0.000 0.972
#> GSM627074     4  0.4590     0.3136 0.308 0.004 0.020 0.648 0.020 0.000
#> GSM627077     1  0.4459     0.6400 0.708 0.000 0.004 0.084 0.204 0.000
#> GSM627093     1  0.6392    -0.0295 0.428 0.028 0.188 0.356 0.000 0.000
#> GSM627120     2  0.6504    -0.2422 0.004 0.456 0.396 0.028 0.084 0.032
#> GSM627124     2  0.3312     0.6798 0.020 0.828 0.000 0.012 0.008 0.132
#> GSM627075     3  0.5223     0.4798 0.000 0.396 0.508 0.096 0.000 0.000
#> GSM627085     2  0.5078     0.3414 0.000 0.608 0.000 0.052 0.024 0.316
#> GSM627119     1  0.3107     0.7277 0.832 0.000 0.000 0.116 0.052 0.000
#> GSM627116     4  0.6470     0.4323 0.016 0.168 0.000 0.584 0.068 0.164
#> GSM627084     1  0.4818     0.4927 0.600 0.000 0.348 0.004 0.008 0.040
#> GSM627096     2  0.7441    -0.0171 0.000 0.352 0.012 0.088 0.328 0.220
#> GSM627100     5  0.3789     0.7300 0.000 0.000 0.060 0.056 0.816 0.068
#> GSM627112     6  0.1168     0.7081 0.000 0.016 0.000 0.028 0.000 0.956
#> GSM627083     6  0.3264     0.5738 0.184 0.000 0.008 0.012 0.000 0.796
#> GSM627098     1  0.2520     0.7556 0.872 0.000 0.012 0.008 0.108 0.000
#> GSM627104     1  0.1453     0.7629 0.944 0.008 0.000 0.040 0.008 0.000
#> GSM627131     5  0.6163     0.1598 0.316 0.004 0.000 0.268 0.412 0.000
#> GSM627106     5  0.1414     0.7515 0.000 0.012 0.020 0.012 0.952 0.004
#> GSM627123     1  0.6618     0.4797 0.560 0.000 0.224 0.108 0.016 0.092
#> GSM627129     6  0.7186     0.2679 0.000 0.304 0.128 0.060 0.044 0.464
#> GSM627216     2  0.1592     0.7344 0.000 0.940 0.020 0.008 0.032 0.000
#> GSM627212     2  0.2942     0.7009 0.000 0.856 0.004 0.100 0.036 0.004
#> GSM627190     3  0.5978     0.3815 0.060 0.044 0.604 0.032 0.260 0.000
#> GSM627169     3  0.3782     0.5629 0.004 0.140 0.784 0.072 0.000 0.000
#> GSM627167     6  0.5716     0.4775 0.000 0.064 0.244 0.016 0.048 0.628
#> GSM627192     1  0.2884     0.7114 0.824 0.000 0.004 0.008 0.000 0.164
#> GSM627203     5  0.2773     0.7174 0.008 0.004 0.000 0.152 0.836 0.000
#> GSM627151     4  0.4763     0.5611 0.016 0.256 0.020 0.684 0.020 0.004
#> GSM627163     1  0.0405     0.7648 0.988 0.000 0.000 0.008 0.000 0.004
#> GSM627211     2  0.1910     0.6990 0.000 0.892 0.108 0.000 0.000 0.000
#> GSM627171     3  0.5554     0.5922 0.004 0.268 0.616 0.048 0.064 0.000
#> GSM627209     2  0.2965     0.7118 0.000 0.864 0.008 0.008 0.036 0.084
#> GSM627135     1  0.1528     0.7621 0.936 0.000 0.000 0.048 0.000 0.016
#> GSM627170     2  0.4060     0.6201 0.000 0.764 0.116 0.004 0.116 0.000
#> GSM627178     1  0.3411     0.7173 0.816 0.004 0.000 0.120 0.060 0.000
#> GSM627199     6  0.4654     0.2461 0.020 0.400 0.000 0.016 0.000 0.564
#> GSM627213     6  0.3561     0.6402 0.000 0.120 0.000 0.056 0.012 0.812
#> GSM627140     6  0.2655     0.6474 0.004 0.000 0.140 0.008 0.000 0.848
#> GSM627149     1  0.7637     0.2657 0.400 0.000 0.292 0.156 0.024 0.128
#> GSM627147     3  0.5732     0.3857 0.000 0.072 0.592 0.020 0.024 0.292
#> GSM627195     5  0.3938     0.6847 0.020 0.032 0.000 0.184 0.764 0.000
#> GSM627204     2  0.0858     0.7310 0.000 0.968 0.028 0.004 0.000 0.000
#> GSM627207     2  0.3702     0.4782 0.000 0.720 0.264 0.004 0.012 0.000
#> GSM627157     1  0.2581     0.7485 0.856 0.000 0.000 0.016 0.128 0.000
#> GSM627201     2  0.0777     0.7332 0.000 0.972 0.024 0.000 0.004 0.000
#> GSM627146     2  0.0458     0.7315 0.000 0.984 0.000 0.016 0.000 0.000
#> GSM627156     3  0.3975     0.5100 0.000 0.392 0.600 0.000 0.008 0.000
#> GSM627188     1  0.3791     0.5862 0.688 0.000 0.004 0.008 0.000 0.300
#> GSM627197     2  0.1498     0.7268 0.000 0.940 0.028 0.032 0.000 0.000
#> GSM627173     2  0.2699     0.6674 0.008 0.864 0.108 0.020 0.000 0.000
#> GSM627179     2  0.1787     0.7230 0.000 0.920 0.068 0.008 0.004 0.000
#> GSM627208     5  0.5025     0.5736 0.000 0.204 0.128 0.008 0.660 0.000
#> GSM627215     2  0.5539    -0.0190 0.000 0.456 0.020 0.064 0.456 0.004
#> GSM627153     2  0.3275     0.6852 0.000 0.820 0.000 0.008 0.032 0.140
#> GSM627155     1  0.3884     0.7282 0.812 0.000 0.020 0.064 0.012 0.092
#> GSM627165     3  0.5865     0.4465 0.000 0.400 0.464 0.116 0.000 0.020
#> GSM627168     5  0.5003     0.5210 0.252 0.000 0.044 0.044 0.660 0.000
#> GSM627183     5  0.3612     0.6713 0.168 0.000 0.000 0.052 0.780 0.000
#> GSM627144     4  0.4877     0.4440 0.000 0.008 0.188 0.680 0.124 0.000
#> GSM627158     1  0.2246     0.7670 0.908 0.000 0.012 0.020 0.056 0.004
#> GSM627196     2  0.0777     0.7313 0.000 0.972 0.024 0.004 0.000 0.000
#> GSM627142     5  0.3390     0.6679 0.000 0.008 0.000 0.012 0.780 0.200
#> GSM627182     5  0.3992     0.6941 0.008 0.136 0.072 0.004 0.780 0.000
#> GSM627202     5  0.3910     0.6857 0.140 0.000 0.028 0.044 0.788 0.000
#> GSM627141     3  0.4371     0.3486 0.208 0.008 0.732 0.028 0.024 0.000
#> GSM627143     3  0.5180     0.6031 0.004 0.300 0.628 0.012 0.024 0.032
#> GSM627145     5  0.1483     0.7509 0.008 0.000 0.012 0.036 0.944 0.000
#> GSM627152     5  0.5330     0.1445 0.012 0.000 0.044 0.456 0.476 0.012
#> GSM627200     4  0.5062     0.4366 0.224 0.000 0.040 0.672 0.064 0.000
#> GSM627159     6  0.1554     0.7021 0.008 0.000 0.004 0.044 0.004 0.940
#> GSM627164     3  0.4436     0.6227 0.000 0.272 0.676 0.008 0.044 0.000
#> GSM627138     1  0.4976     0.5960 0.656 0.000 0.072 0.020 0.252 0.000
#> GSM627175     2  0.3463     0.6212 0.000 0.748 0.000 0.008 0.004 0.240
#> GSM627150     5  0.1768     0.7497 0.004 0.044 0.008 0.012 0.932 0.000
#> GSM627166     1  0.4199     0.4037 0.620 0.016 0.000 0.360 0.004 0.000
#> GSM627186     3  0.4453     0.5794 0.004 0.340 0.628 0.020 0.008 0.000
#> GSM627139     6  0.6495     0.3955 0.000 0.012 0.052 0.180 0.200 0.556
#> GSM627181     2  0.1429     0.7240 0.000 0.940 0.052 0.004 0.000 0.004
#> GSM627205     2  0.5492     0.4960 0.000 0.640 0.136 0.032 0.192 0.000
#> GSM627214     2  0.4037     0.6584 0.000 0.792 0.084 0.004 0.100 0.020
#> GSM627180     5  0.4360     0.6671 0.000 0.112 0.024 0.084 0.772 0.008
#> GSM627172     3  0.5699     0.4768 0.004 0.372 0.520 0.008 0.008 0.088
#> GSM627184     1  0.4555     0.5179 0.616 0.000 0.004 0.040 0.000 0.340
#> GSM627193     2  0.2358     0.6731 0.000 0.876 0.108 0.016 0.000 0.000
#> GSM627191     6  0.1624     0.6914 0.044 0.000 0.008 0.012 0.000 0.936
#> GSM627176     3  0.4857     0.2789 0.000 0.000 0.676 0.208 0.108 0.008
#> GSM627194     2  0.4352     0.5276 0.000 0.724 0.148 0.128 0.000 0.000
#> GSM627154     6  0.5219     0.1974 0.000 0.416 0.000 0.056 0.016 0.512
#> GSM627187     3  0.2663     0.5091 0.012 0.012 0.884 0.016 0.076 0.000
#> GSM627198     2  0.4625     0.4822 0.008 0.656 0.012 0.028 0.000 0.296
#> GSM627160     6  0.4846     0.4243 0.004 0.000 0.084 0.244 0.004 0.664
#> GSM627185     1  0.0508     0.7662 0.984 0.000 0.000 0.012 0.004 0.000
#> GSM627206     5  0.5142     0.6665 0.112 0.008 0.064 0.096 0.720 0.000
#> GSM627161     1  0.4223     0.7177 0.780 0.000 0.060 0.108 0.052 0.000
#> GSM627162     3  0.2044     0.5064 0.004 0.004 0.908 0.008 0.076 0.000
#> GSM627210     1  0.5292     0.3782 0.560 0.004 0.000 0.332 0.104 0.000
#> GSM627189     2  0.3607     0.6252 0.000 0.796 0.092 0.112 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) age(p) other(p) k
#> CV:NMF 144            0.787  0.312  0.00958 2
#> CV:NMF 143            0.530  0.455  0.00536 3
#> CV:NMF 108            0.747  0.373  0.17180 4
#> CV:NMF 110            0.153  0.120  0.01487 5
#> CV:NMF 104            0.219  0.594  0.13246 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 146 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.375           0.678       0.857         0.3969 0.582   0.582
#> 3 3 0.559           0.749       0.856         0.5730 0.687   0.507
#> 4 4 0.579           0.719       0.820         0.1558 0.868   0.654
#> 5 5 0.584           0.582       0.754         0.0680 0.990   0.963
#> 6 6 0.624           0.577       0.733         0.0412 0.922   0.707

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM627128     2  0.5408      0.774 0.124 0.876
#> GSM627110     1  0.9044      0.571 0.680 0.320
#> GSM627132     1  0.0000      0.751 1.000 0.000
#> GSM627107     2  0.9000      0.538 0.316 0.684
#> GSM627103     2  0.0000      0.826 0.000 1.000
#> GSM627114     1  0.9710      0.436 0.600 0.400
#> GSM627134     2  0.1184      0.825 0.016 0.984
#> GSM627137     2  0.0000      0.826 0.000 1.000
#> GSM627148     2  0.9129      0.517 0.328 0.672
#> GSM627101     2  0.3733      0.804 0.072 0.928
#> GSM627130     2  0.5519      0.772 0.128 0.872
#> GSM627071     2  0.9732      0.324 0.404 0.596
#> GSM627118     2  0.1184      0.825 0.016 0.984
#> GSM627094     2  0.0000      0.826 0.000 1.000
#> GSM627122     2  0.9710      0.341 0.400 0.600
#> GSM627115     2  0.0000      0.826 0.000 1.000
#> GSM627125     2  0.5408      0.774 0.124 0.876
#> GSM627174     2  0.0000      0.826 0.000 1.000
#> GSM627102     2  0.0376      0.826 0.004 0.996
#> GSM627073     2  0.9323      0.474 0.348 0.652
#> GSM627108     2  0.0000      0.826 0.000 1.000
#> GSM627126     1  0.0000      0.751 1.000 0.000
#> GSM627078     2  0.0000      0.826 0.000 1.000
#> GSM627090     2  0.9522      0.422 0.372 0.628
#> GSM627099     2  0.0000      0.826 0.000 1.000
#> GSM627105     2  0.5408      0.774 0.124 0.876
#> GSM627117     1  0.9775      0.411 0.588 0.412
#> GSM627121     2  0.8955      0.546 0.312 0.688
#> GSM627127     2  0.0000      0.826 0.000 1.000
#> GSM627087     2  0.0000      0.826 0.000 1.000
#> GSM627089     1  0.9833      0.374 0.576 0.424
#> GSM627092     2  0.2778      0.816 0.048 0.952
#> GSM627076     2  0.9460      0.441 0.364 0.636
#> GSM627136     1  0.9896      0.318 0.560 0.440
#> GSM627081     2  0.9000      0.538 0.316 0.684
#> GSM627091     2  0.0000      0.826 0.000 1.000
#> GSM627097     2  0.4298      0.797 0.088 0.912
#> GSM627072     2  0.9896      0.196 0.440 0.560
#> GSM627080     1  0.0000      0.751 1.000 0.000
#> GSM627088     1  0.9732      0.426 0.596 0.404
#> GSM627109     1  0.0672      0.753 0.992 0.008
#> GSM627111     1  0.0000      0.751 1.000 0.000
#> GSM627113     1  0.8909      0.584 0.692 0.308
#> GSM627133     2  0.6531      0.731 0.168 0.832
#> GSM627177     1  0.8016      0.640 0.756 0.244
#> GSM627086     2  0.0000      0.826 0.000 1.000
#> GSM627095     2  0.9460      0.415 0.364 0.636
#> GSM627079     2  0.9732      0.329 0.404 0.596
#> GSM627082     2  0.5519      0.772 0.128 0.872
#> GSM627074     1  0.6048      0.713 0.852 0.148
#> GSM627077     1  1.0000      0.086 0.504 0.496
#> GSM627093     1  0.6048      0.713 0.852 0.148
#> GSM627120     2  0.1414      0.825 0.020 0.980
#> GSM627124     2  0.0000      0.826 0.000 1.000
#> GSM627075     2  0.0000      0.826 0.000 1.000
#> GSM627085     2  0.0000      0.826 0.000 1.000
#> GSM627119     1  0.0938      0.754 0.988 0.012
#> GSM627116     1  0.8016      0.640 0.756 0.244
#> GSM627084     1  0.9732      0.426 0.596 0.404
#> GSM627096     2  0.1184      0.825 0.016 0.984
#> GSM627100     2  0.9460      0.441 0.364 0.636
#> GSM627112     2  0.1414      0.825 0.020 0.980
#> GSM627083     2  0.9460      0.415 0.364 0.636
#> GSM627098     1  0.9732      0.426 0.596 0.404
#> GSM627104     1  0.0672      0.753 0.992 0.008
#> GSM627131     2  0.9732      0.329 0.404 0.596
#> GSM627106     2  0.9000      0.538 0.316 0.684
#> GSM627123     1  0.0938      0.753 0.988 0.012
#> GSM627129     2  0.1414      0.824 0.020 0.980
#> GSM627216     2  0.6531      0.731 0.168 0.832
#> GSM627212     2  0.0000      0.826 0.000 1.000
#> GSM627190     1  0.9775      0.411 0.588 0.412
#> GSM627169     2  0.0000      0.826 0.000 1.000
#> GSM627167     2  0.1633      0.823 0.024 0.976
#> GSM627192     1  0.0000      0.751 1.000 0.000
#> GSM627203     2  0.9358      0.467 0.352 0.648
#> GSM627151     2  0.5059      0.784 0.112 0.888
#> GSM627163     1  0.0000      0.751 1.000 0.000
#> GSM627211     2  0.0000      0.826 0.000 1.000
#> GSM627171     2  0.0000      0.826 0.000 1.000
#> GSM627209     2  0.0000      0.826 0.000 1.000
#> GSM627135     1  0.0938      0.753 0.988 0.012
#> GSM627170     2  0.0938      0.826 0.012 0.988
#> GSM627178     1  0.8016      0.640 0.756 0.244
#> GSM627199     2  0.0000      0.826 0.000 1.000
#> GSM627213     2  0.1184      0.825 0.016 0.984
#> GSM627140     2  0.2603      0.818 0.044 0.956
#> GSM627149     1  0.0938      0.753 0.988 0.012
#> GSM627147     2  0.1633      0.823 0.024 0.976
#> GSM627195     2  0.9358      0.467 0.352 0.648
#> GSM627204     2  0.0000      0.826 0.000 1.000
#> GSM627207     2  0.0000      0.826 0.000 1.000
#> GSM627157     1  0.9044      0.569 0.680 0.320
#> GSM627201     2  0.0000      0.826 0.000 1.000
#> GSM627146     2  0.0000      0.826 0.000 1.000
#> GSM627156     2  0.0000      0.826 0.000 1.000
#> GSM627188     1  0.0000      0.751 1.000 0.000
#> GSM627197     2  0.0000      0.826 0.000 1.000
#> GSM627173     2  0.0000      0.826 0.000 1.000
#> GSM627179     2  0.0000      0.826 0.000 1.000
#> GSM627208     2  0.8713      0.581 0.292 0.708
#> GSM627215     2  0.8016      0.646 0.244 0.756
#> GSM627153     2  0.0000      0.826 0.000 1.000
#> GSM627155     1  0.0000      0.751 1.000 0.000
#> GSM627165     2  0.0000      0.826 0.000 1.000
#> GSM627168     1  0.9044      0.569 0.680 0.320
#> GSM627183     1  0.9491      0.495 0.632 0.368
#> GSM627144     2  0.9460      0.439 0.364 0.636
#> GSM627158     1  0.0000      0.751 1.000 0.000
#> GSM627196     2  0.0000      0.826 0.000 1.000
#> GSM627142     2  0.6973      0.720 0.188 0.812
#> GSM627182     2  0.8713      0.581 0.292 0.708
#> GSM627202     2  0.9815      0.270 0.420 0.580
#> GSM627141     1  0.9732      0.428 0.596 0.404
#> GSM627143     2  0.1633      0.824 0.024 0.976
#> GSM627145     2  0.9732      0.329 0.404 0.596
#> GSM627152     2  0.9552      0.411 0.376 0.624
#> GSM627200     2  0.9686      0.353 0.396 0.604
#> GSM627159     2  0.5519      0.772 0.128 0.872
#> GSM627164     2  0.0000      0.826 0.000 1.000
#> GSM627138     1  0.0000      0.751 1.000 0.000
#> GSM627175     2  0.0000      0.826 0.000 1.000
#> GSM627150     2  0.9732      0.324 0.404 0.596
#> GSM627166     1  0.3584      0.741 0.932 0.068
#> GSM627186     2  0.0000      0.826 0.000 1.000
#> GSM627139     2  0.5059      0.784 0.112 0.888
#> GSM627181     2  0.0000      0.826 0.000 1.000
#> GSM627205     2  0.7299      0.694 0.204 0.796
#> GSM627214     2  0.0000      0.826 0.000 1.000
#> GSM627180     2  0.8016      0.646 0.244 0.756
#> GSM627172     2  0.0376      0.826 0.004 0.996
#> GSM627184     1  0.0000      0.751 1.000 0.000
#> GSM627193     2  0.0000      0.826 0.000 1.000
#> GSM627191     2  0.9323      0.450 0.348 0.652
#> GSM627176     2  0.9491      0.433 0.368 0.632
#> GSM627194     2  0.0000      0.826 0.000 1.000
#> GSM627154     2  0.0000      0.826 0.000 1.000
#> GSM627187     1  0.9775      0.411 0.588 0.412
#> GSM627198     2  0.0000      0.826 0.000 1.000
#> GSM627160     2  0.5059      0.785 0.112 0.888
#> GSM627185     1  0.0938      0.753 0.988 0.012
#> GSM627206     1  0.9833      0.374 0.576 0.424
#> GSM627161     1  0.0000      0.751 1.000 0.000
#> GSM627162     2  0.2778      0.816 0.048 0.952
#> GSM627210     1  0.0938      0.754 0.988 0.012
#> GSM627189     2  0.0000      0.826 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM627128     2  0.6260      0.328 0.000 0.552 0.448
#> GSM627110     3  0.6008      0.509 0.372 0.000 0.628
#> GSM627132     1  0.0000      0.914 1.000 0.000 0.000
#> GSM627107     3  0.3532      0.751 0.008 0.108 0.884
#> GSM627103     2  0.1289      0.871 0.000 0.968 0.032
#> GSM627114     3  0.5553      0.669 0.272 0.004 0.724
#> GSM627134     2  0.4346      0.762 0.000 0.816 0.184
#> GSM627137     2  0.1031      0.870 0.000 0.976 0.024
#> GSM627148     3  0.3120      0.766 0.012 0.080 0.908
#> GSM627101     2  0.5678      0.608 0.000 0.684 0.316
#> GSM627130     2  0.6468      0.332 0.004 0.552 0.444
#> GSM627071     3  0.4217      0.778 0.100 0.032 0.868
#> GSM627118     2  0.4555      0.751 0.000 0.800 0.200
#> GSM627094     2  0.1289      0.871 0.000 0.968 0.032
#> GSM627122     3  0.3502      0.778 0.084 0.020 0.896
#> GSM627115     2  0.1289      0.871 0.000 0.968 0.032
#> GSM627125     2  0.6260      0.328 0.000 0.552 0.448
#> GSM627174     2  0.1289      0.871 0.000 0.968 0.032
#> GSM627102     2  0.1411      0.871 0.000 0.964 0.036
#> GSM627073     3  0.3499      0.774 0.028 0.072 0.900
#> GSM627108     2  0.1289      0.871 0.000 0.968 0.032
#> GSM627126     1  0.0592      0.919 0.988 0.000 0.012
#> GSM627078     2  0.1289      0.854 0.000 0.968 0.032
#> GSM627090     3  0.2269      0.775 0.040 0.016 0.944
#> GSM627099     2  0.1289      0.871 0.000 0.968 0.032
#> GSM627105     2  0.6260      0.328 0.000 0.552 0.448
#> GSM627117     3  0.5656      0.678 0.264 0.008 0.728
#> GSM627121     3  0.3965      0.738 0.008 0.132 0.860
#> GSM627127     2  0.1289      0.854 0.000 0.968 0.032
#> GSM627087     2  0.1289      0.871 0.000 0.968 0.032
#> GSM627089     3  0.5404      0.685 0.256 0.004 0.740
#> GSM627092     2  0.5835      0.571 0.000 0.660 0.340
#> GSM627076     3  0.2050      0.775 0.028 0.020 0.952
#> GSM627136     3  0.5158      0.706 0.232 0.004 0.764
#> GSM627081     3  0.3532      0.751 0.008 0.108 0.884
#> GSM627091     2  0.1289      0.871 0.000 0.968 0.032
#> GSM627097     2  0.4609      0.800 0.052 0.856 0.092
#> GSM627072     3  0.3607      0.768 0.112 0.008 0.880
#> GSM627080     1  0.0424      0.916 0.992 0.000 0.008
#> GSM627088     3  0.6033      0.598 0.336 0.004 0.660
#> GSM627109     1  0.0892      0.918 0.980 0.000 0.020
#> GSM627111     1  0.0000      0.914 1.000 0.000 0.000
#> GSM627113     3  0.6298      0.495 0.388 0.004 0.608
#> GSM627133     3  0.5621      0.523 0.000 0.308 0.692
#> GSM627177     1  0.5845      0.587 0.688 0.004 0.308
#> GSM627086     2  0.0747      0.868 0.000 0.984 0.016
#> GSM627095     2  0.9299      0.309 0.324 0.496 0.180
#> GSM627079     3  0.2866      0.774 0.076 0.008 0.916
#> GSM627082     2  0.6451      0.353 0.004 0.560 0.436
#> GSM627074     1  0.4555      0.750 0.800 0.000 0.200
#> GSM627077     3  0.5220      0.727 0.208 0.012 0.780
#> GSM627093     1  0.4555      0.750 0.800 0.000 0.200
#> GSM627120     2  0.3879      0.801 0.000 0.848 0.152
#> GSM627124     2  0.1289      0.854 0.000 0.968 0.032
#> GSM627075     2  0.1289      0.871 0.000 0.968 0.032
#> GSM627085     2  0.1289      0.854 0.000 0.968 0.032
#> GSM627119     1  0.1031      0.918 0.976 0.000 0.024
#> GSM627116     1  0.5845      0.587 0.688 0.004 0.308
#> GSM627084     3  0.6033      0.598 0.336 0.004 0.660
#> GSM627096     2  0.4555      0.751 0.000 0.800 0.200
#> GSM627100     3  0.2050      0.775 0.028 0.020 0.952
#> GSM627112     2  0.5070      0.721 0.004 0.772 0.224
#> GSM627083     2  0.9299      0.309 0.324 0.496 0.180
#> GSM627098     3  0.6033      0.598 0.336 0.004 0.660
#> GSM627104     1  0.0892      0.918 0.980 0.000 0.020
#> GSM627131     3  0.2866      0.774 0.076 0.008 0.916
#> GSM627106     3  0.3532      0.751 0.008 0.108 0.884
#> GSM627123     1  0.1860      0.905 0.948 0.000 0.052
#> GSM627129     2  0.4452      0.758 0.000 0.808 0.192
#> GSM627216     3  0.5621      0.523 0.000 0.308 0.692
#> GSM627212     2  0.1289      0.871 0.000 0.968 0.032
#> GSM627190     3  0.5656      0.678 0.264 0.008 0.728
#> GSM627169     2  0.1411      0.870 0.000 0.964 0.036
#> GSM627167     2  0.2165      0.863 0.000 0.936 0.064
#> GSM627192     1  0.0592      0.919 0.988 0.000 0.012
#> GSM627203     3  0.1877      0.773 0.012 0.032 0.956
#> GSM627151     3  0.6984      0.202 0.020 0.420 0.560
#> GSM627163     1  0.0000      0.914 1.000 0.000 0.000
#> GSM627211     2  0.1289      0.871 0.000 0.968 0.032
#> GSM627171     2  0.1529      0.869 0.000 0.960 0.040
#> GSM627209     2  0.0892      0.866 0.000 0.980 0.020
#> GSM627135     1  0.1647      0.912 0.960 0.004 0.036
#> GSM627170     2  0.1753      0.866 0.000 0.952 0.048
#> GSM627178     1  0.5845      0.587 0.688 0.004 0.308
#> GSM627199     2  0.1031      0.855 0.000 0.976 0.024
#> GSM627213     2  0.4399      0.761 0.000 0.812 0.188
#> GSM627140     2  0.5461      0.701 0.008 0.748 0.244
#> GSM627149     1  0.1860      0.905 0.948 0.000 0.052
#> GSM627147     2  0.2165      0.863 0.000 0.936 0.064
#> GSM627195     3  0.1877      0.773 0.012 0.032 0.956
#> GSM627204     2  0.1289      0.871 0.000 0.968 0.032
#> GSM627207     2  0.1289      0.871 0.000 0.968 0.032
#> GSM627157     3  0.6247      0.521 0.376 0.004 0.620
#> GSM627201     2  0.1289      0.871 0.000 0.968 0.032
#> GSM627146     2  0.1031      0.869 0.000 0.976 0.024
#> GSM627156     2  0.1411      0.870 0.000 0.964 0.036
#> GSM627188     1  0.0592      0.919 0.988 0.000 0.012
#> GSM627197     2  0.1031      0.869 0.000 0.976 0.024
#> GSM627173     2  0.1163      0.871 0.000 0.972 0.028
#> GSM627179     2  0.1289      0.871 0.000 0.968 0.032
#> GSM627208     3  0.4475      0.737 0.016 0.144 0.840
#> GSM627215     3  0.4452      0.696 0.000 0.192 0.808
#> GSM627153     2  0.0892      0.866 0.000 0.980 0.020
#> GSM627155     1  0.0592      0.919 0.988 0.000 0.012
#> GSM627165     2  0.1163      0.871 0.000 0.972 0.028
#> GSM627168     3  0.6247      0.521 0.376 0.004 0.620
#> GSM627183     3  0.5956      0.609 0.324 0.004 0.672
#> GSM627144     3  0.1182      0.771 0.012 0.012 0.976
#> GSM627158     1  0.0592      0.917 0.988 0.000 0.012
#> GSM627196     2  0.1289      0.871 0.000 0.968 0.032
#> GSM627142     3  0.6651      0.353 0.020 0.340 0.640
#> GSM627182     3  0.4475      0.737 0.016 0.144 0.840
#> GSM627202     3  0.4209      0.772 0.120 0.020 0.860
#> GSM627141     3  0.5553      0.670 0.272 0.004 0.724
#> GSM627143     2  0.4351      0.795 0.004 0.828 0.168
#> GSM627145     3  0.2774      0.774 0.072 0.008 0.920
#> GSM627152     3  0.2152      0.777 0.036 0.016 0.948
#> GSM627200     3  0.3272      0.776 0.080 0.016 0.904
#> GSM627159     2  0.6451      0.353 0.004 0.560 0.436
#> GSM627164     2  0.1529      0.869 0.000 0.960 0.040
#> GSM627138     1  0.2165      0.893 0.936 0.000 0.064
#> GSM627175     2  0.1163      0.856 0.000 0.972 0.028
#> GSM627150     3  0.4217      0.778 0.100 0.032 0.868
#> GSM627166     1  0.3425      0.863 0.884 0.004 0.112
#> GSM627186     2  0.1529      0.869 0.000 0.960 0.040
#> GSM627139     3  0.6984      0.202 0.020 0.420 0.560
#> GSM627181     2  0.1031      0.869 0.000 0.976 0.024
#> GSM627205     3  0.6079      0.348 0.000 0.388 0.612
#> GSM627214     2  0.1163      0.869 0.000 0.972 0.028
#> GSM627180     3  0.4452      0.696 0.000 0.192 0.808
#> GSM627172     2  0.1411      0.871 0.000 0.964 0.036
#> GSM627184     1  0.0592      0.919 0.988 0.000 0.012
#> GSM627193     2  0.1289      0.871 0.000 0.968 0.032
#> GSM627191     2  0.9287      0.336 0.304 0.508 0.188
#> GSM627176     3  0.2176      0.776 0.032 0.020 0.948
#> GSM627194     2  0.1289      0.871 0.000 0.968 0.032
#> GSM627154     2  0.1289      0.854 0.000 0.968 0.032
#> GSM627187     3  0.5656      0.678 0.264 0.008 0.728
#> GSM627198     2  0.1289      0.854 0.000 0.968 0.032
#> GSM627160     2  0.6345      0.458 0.004 0.596 0.400
#> GSM627185     1  0.1163      0.917 0.972 0.000 0.028
#> GSM627206     3  0.5404      0.685 0.256 0.004 0.740
#> GSM627161     1  0.0592      0.917 0.988 0.000 0.012
#> GSM627162     2  0.5859      0.564 0.000 0.656 0.344
#> GSM627210     1  0.1031      0.918 0.976 0.000 0.024
#> GSM627189     2  0.1289      0.871 0.000 0.968 0.032

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM627128     4  0.2611      0.619 0.000 0.008 0.096 0.896
#> GSM627110     3  0.6505      0.489 0.360 0.012 0.572 0.056
#> GSM627132     1  0.0000      0.923 1.000 0.000 0.000 0.000
#> GSM627107     3  0.4322      0.697 0.000 0.044 0.804 0.152
#> GSM627103     2  0.0657      0.890 0.000 0.984 0.004 0.012
#> GSM627114     3  0.4134      0.707 0.260 0.000 0.740 0.000
#> GSM627134     4  0.5786      0.599 0.000 0.308 0.052 0.640
#> GSM627137     2  0.3024      0.798 0.000 0.852 0.000 0.148
#> GSM627148     3  0.3555      0.747 0.004 0.048 0.868 0.080
#> GSM627101     4  0.5309      0.656 0.000 0.164 0.092 0.744
#> GSM627130     4  0.2401      0.617 0.000 0.004 0.092 0.904
#> GSM627071     3  0.4108      0.792 0.092 0.012 0.844 0.052
#> GSM627118     4  0.5815      0.612 0.000 0.288 0.060 0.652
#> GSM627094     2  0.0000      0.890 0.000 1.000 0.000 0.000
#> GSM627122     3  0.3392      0.788 0.072 0.000 0.872 0.056
#> GSM627115     2  0.0657      0.890 0.000 0.984 0.004 0.012
#> GSM627125     4  0.2466      0.615 0.000 0.004 0.096 0.900
#> GSM627174     2  0.1743      0.881 0.000 0.940 0.004 0.056
#> GSM627102     2  0.1557      0.878 0.000 0.944 0.000 0.056
#> GSM627073     3  0.3166      0.774 0.024 0.056 0.896 0.024
#> GSM627108     2  0.0000      0.890 0.000 1.000 0.000 0.000
#> GSM627126     1  0.0592      0.924 0.984 0.000 0.000 0.016
#> GSM627078     4  0.4961      0.358 0.000 0.448 0.000 0.552
#> GSM627090     3  0.3598      0.757 0.028 0.000 0.848 0.124
#> GSM627099     2  0.2197      0.866 0.000 0.916 0.004 0.080
#> GSM627105     4  0.2466      0.615 0.000 0.004 0.096 0.900
#> GSM627117     3  0.4252      0.713 0.252 0.004 0.744 0.000
#> GSM627121     3  0.4534      0.698 0.000 0.068 0.800 0.132
#> GSM627127     4  0.4981      0.313 0.000 0.464 0.000 0.536
#> GSM627087     2  0.0657      0.890 0.000 0.984 0.004 0.012
#> GSM627089     3  0.4008      0.720 0.244 0.000 0.756 0.000
#> GSM627092     4  0.7325      0.427 0.000 0.368 0.160 0.472
#> GSM627076     3  0.3647      0.740 0.016 0.000 0.832 0.152
#> GSM627136     3  0.4284      0.736 0.224 0.000 0.764 0.012
#> GSM627081     3  0.4322      0.697 0.000 0.044 0.804 0.152
#> GSM627091     2  0.2197      0.866 0.000 0.916 0.004 0.080
#> GSM627097     4  0.6703      0.462 0.052 0.380 0.020 0.548
#> GSM627072     3  0.3143      0.786 0.100 0.000 0.876 0.024
#> GSM627080     1  0.0469      0.923 0.988 0.000 0.012 0.000
#> GSM627088     3  0.5110      0.642 0.328 0.000 0.656 0.016
#> GSM627109     1  0.0707      0.924 0.980 0.000 0.020 0.000
#> GSM627111     1  0.0000      0.923 1.000 0.000 0.000 0.000
#> GSM627113     3  0.4776      0.559 0.376 0.000 0.624 0.000
#> GSM627133     3  0.5522      0.488 0.000 0.288 0.668 0.044
#> GSM627177     1  0.5816      0.646 0.688 0.000 0.224 0.088
#> GSM627086     2  0.3610      0.720 0.000 0.800 0.000 0.200
#> GSM627095     4  0.7256      0.405 0.320 0.084 0.032 0.564
#> GSM627079     3  0.2908      0.788 0.064 0.000 0.896 0.040
#> GSM627082     4  0.2412      0.622 0.000 0.008 0.084 0.908
#> GSM627074     1  0.4763      0.791 0.800 0.012 0.132 0.056
#> GSM627077     3  0.4446      0.753 0.196 0.000 0.776 0.028
#> GSM627093     1  0.4763      0.791 0.800 0.012 0.132 0.056
#> GSM627120     2  0.5280      0.627 0.000 0.752 0.128 0.120
#> GSM627124     4  0.4961      0.358 0.000 0.448 0.000 0.552
#> GSM627075     2  0.0000      0.890 0.000 1.000 0.000 0.000
#> GSM627085     4  0.4961      0.358 0.000 0.448 0.000 0.552
#> GSM627119     1  0.0817      0.923 0.976 0.000 0.024 0.000
#> GSM627116     1  0.5816      0.646 0.688 0.000 0.224 0.088
#> GSM627084     3  0.5110      0.642 0.328 0.000 0.656 0.016
#> GSM627096     4  0.5815      0.612 0.000 0.288 0.060 0.652
#> GSM627100     3  0.3647      0.740 0.016 0.000 0.832 0.152
#> GSM627112     4  0.4831      0.645 0.000 0.208 0.040 0.752
#> GSM627083     4  0.7256      0.405 0.320 0.084 0.032 0.564
#> GSM627098     3  0.5110      0.642 0.328 0.000 0.656 0.016
#> GSM627104     1  0.0707      0.924 0.980 0.000 0.020 0.000
#> GSM627131     3  0.2908      0.788 0.064 0.000 0.896 0.040
#> GSM627106     3  0.4322      0.697 0.000 0.044 0.804 0.152
#> GSM627123     1  0.1833      0.915 0.944 0.000 0.024 0.032
#> GSM627129     4  0.5836      0.604 0.000 0.304 0.056 0.640
#> GSM627216     3  0.5522      0.488 0.000 0.288 0.668 0.044
#> GSM627212     2  0.2197      0.866 0.000 0.916 0.004 0.080
#> GSM627190     3  0.4252      0.713 0.252 0.004 0.744 0.000
#> GSM627169     2  0.0188      0.890 0.000 0.996 0.004 0.000
#> GSM627167     2  0.3157      0.795 0.000 0.852 0.004 0.144
#> GSM627192     1  0.0592      0.924 0.984 0.000 0.000 0.016
#> GSM627203     3  0.1004      0.770 0.000 0.004 0.972 0.024
#> GSM627151     4  0.7611      0.215 0.016 0.128 0.412 0.444
#> GSM627163     1  0.0000      0.923 1.000 0.000 0.000 0.000
#> GSM627211     2  0.0000      0.890 0.000 1.000 0.000 0.000
#> GSM627171     2  0.0336      0.888 0.000 0.992 0.008 0.000
#> GSM627209     2  0.3975      0.654 0.000 0.760 0.000 0.240
#> GSM627135     1  0.1452      0.916 0.956 0.000 0.008 0.036
#> GSM627170     2  0.3117      0.842 0.000 0.880 0.028 0.092
#> GSM627178     1  0.5816      0.646 0.688 0.000 0.224 0.088
#> GSM627199     4  0.4981      0.319 0.000 0.464 0.000 0.536
#> GSM627213     4  0.5742      0.604 0.000 0.300 0.052 0.648
#> GSM627140     4  0.5834      0.598 0.008 0.288 0.044 0.660
#> GSM627149     1  0.1833      0.915 0.944 0.000 0.024 0.032
#> GSM627147     2  0.3208      0.792 0.000 0.848 0.004 0.148
#> GSM627195     3  0.1004      0.770 0.000 0.004 0.972 0.024
#> GSM627204     2  0.0000      0.890 0.000 1.000 0.000 0.000
#> GSM627207     2  0.0000      0.890 0.000 1.000 0.000 0.000
#> GSM627157     3  0.4730      0.581 0.364 0.000 0.636 0.000
#> GSM627201     2  0.1743      0.881 0.000 0.940 0.004 0.056
#> GSM627146     2  0.1118      0.886 0.000 0.964 0.000 0.036
#> GSM627156     2  0.0188      0.890 0.000 0.996 0.004 0.000
#> GSM627188     1  0.0592      0.924 0.984 0.000 0.000 0.016
#> GSM627197     2  0.1118      0.886 0.000 0.964 0.000 0.036
#> GSM627173     2  0.0336      0.891 0.000 0.992 0.000 0.008
#> GSM627179     2  0.0336      0.890 0.000 0.992 0.000 0.008
#> GSM627208     3  0.3908      0.719 0.008 0.116 0.844 0.032
#> GSM627215     3  0.4544      0.655 0.000 0.164 0.788 0.048
#> GSM627153     2  0.3975      0.654 0.000 0.760 0.000 0.240
#> GSM627155     1  0.0592      0.924 0.984 0.000 0.000 0.016
#> GSM627165     2  0.3208      0.796 0.000 0.848 0.004 0.148
#> GSM627168     3  0.4730      0.581 0.364 0.000 0.636 0.000
#> GSM627183     3  0.4477      0.658 0.312 0.000 0.688 0.000
#> GSM627144     3  0.2021      0.767 0.000 0.012 0.932 0.056
#> GSM627158     1  0.0592      0.923 0.984 0.000 0.016 0.000
#> GSM627196     2  0.0000      0.890 0.000 1.000 0.000 0.000
#> GSM627142     4  0.5464      0.246 0.020 0.004 0.344 0.632
#> GSM627182     3  0.3908      0.719 0.008 0.116 0.844 0.032
#> GSM627202     3  0.3978      0.786 0.108 0.000 0.836 0.056
#> GSM627141     3  0.4134      0.706 0.260 0.000 0.740 0.000
#> GSM627143     2  0.5896      0.361 0.004 0.648 0.052 0.296
#> GSM627145     3  0.2443      0.789 0.060 0.000 0.916 0.024
#> GSM627152     3  0.3763      0.749 0.024 0.000 0.832 0.144
#> GSM627200     3  0.3239      0.789 0.068 0.000 0.880 0.052
#> GSM627159     4  0.2412      0.622 0.000 0.008 0.084 0.908
#> GSM627164     2  0.0336      0.888 0.000 0.992 0.008 0.000
#> GSM627138     1  0.1792      0.891 0.932 0.000 0.068 0.000
#> GSM627175     2  0.4866      0.178 0.000 0.596 0.000 0.404
#> GSM627150     3  0.4108      0.792 0.092 0.012 0.844 0.052
#> GSM627166     1  0.3156      0.880 0.884 0.000 0.068 0.048
#> GSM627186     2  0.0469      0.886 0.000 0.988 0.012 0.000
#> GSM627139     4  0.7611      0.215 0.016 0.128 0.412 0.444
#> GSM627181     2  0.1118      0.886 0.000 0.964 0.000 0.036
#> GSM627205     3  0.5613      0.300 0.000 0.380 0.592 0.028
#> GSM627214     2  0.3725      0.745 0.000 0.812 0.008 0.180
#> GSM627180     3  0.4544      0.655 0.000 0.164 0.788 0.048
#> GSM627172     2  0.1557      0.878 0.000 0.944 0.000 0.056
#> GSM627184     1  0.0592      0.924 0.984 0.000 0.000 0.016
#> GSM627193     2  0.0000      0.890 0.000 1.000 0.000 0.000
#> GSM627191     4  0.7460      0.440 0.300 0.100 0.036 0.564
#> GSM627176     3  0.4082      0.746 0.020 0.008 0.820 0.152
#> GSM627194     2  0.2081      0.861 0.000 0.916 0.000 0.084
#> GSM627154     4  0.4961      0.358 0.000 0.448 0.000 0.552
#> GSM627187     3  0.4252      0.713 0.252 0.004 0.744 0.000
#> GSM627198     4  0.4955      0.366 0.000 0.444 0.000 0.556
#> GSM627160     4  0.6725      0.619 0.004 0.180 0.184 0.632
#> GSM627185     1  0.0921      0.922 0.972 0.000 0.028 0.000
#> GSM627206     3  0.4008      0.720 0.244 0.000 0.756 0.000
#> GSM627161     1  0.0592      0.923 0.984 0.000 0.016 0.000
#> GSM627162     4  0.7375      0.458 0.000 0.348 0.172 0.480
#> GSM627210     1  0.0817      0.923 0.976 0.000 0.024 0.000
#> GSM627189     2  0.0000      0.890 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM627128     4  0.5249    -0.1217 0.000 0.004 0.036 0.508 0.452
#> GSM627110     3  0.6163     0.4301 0.164 0.000 0.536 0.000 0.300
#> GSM627132     1  0.0963     0.8444 0.964 0.000 0.000 0.000 0.036
#> GSM627107     3  0.4660     0.5167 0.000 0.016 0.728 0.036 0.220
#> GSM627103     2  0.3141     0.8027 0.000 0.852 0.000 0.108 0.040
#> GSM627114     3  0.4365     0.6721 0.116 0.000 0.768 0.000 0.116
#> GSM627134     4  0.3617     0.4535 0.000 0.060 0.012 0.840 0.088
#> GSM627137     2  0.5180     0.6168 0.000 0.624 0.000 0.312 0.064
#> GSM627148     3  0.3769     0.6173 0.004 0.028 0.796 0.000 0.172
#> GSM627101     4  0.4482     0.2648 0.000 0.004 0.032 0.712 0.252
#> GSM627130     4  0.5109    -0.1342 0.000 0.000 0.036 0.504 0.460
#> GSM627071     3  0.3053     0.7035 0.044 0.000 0.872 0.008 0.076
#> GSM627118     4  0.3855     0.4374 0.000 0.044 0.020 0.824 0.112
#> GSM627094     2  0.0865     0.8151 0.000 0.972 0.000 0.024 0.004
#> GSM627122     3  0.3151     0.6831 0.036 0.000 0.876 0.032 0.056
#> GSM627115     2  0.3141     0.8027 0.000 0.852 0.000 0.108 0.040
#> GSM627125     4  0.5106    -0.1353 0.000 0.000 0.036 0.508 0.456
#> GSM627174     2  0.3868     0.7886 0.000 0.800 0.000 0.140 0.060
#> GSM627102     2  0.2580     0.7966 0.000 0.892 0.000 0.064 0.044
#> GSM627073     3  0.3359     0.6804 0.012 0.040 0.868 0.012 0.068
#> GSM627108     2  0.0865     0.8151 0.000 0.972 0.000 0.024 0.004
#> GSM627126     1  0.1121     0.8396 0.956 0.000 0.000 0.000 0.044
#> GSM627078     4  0.3123     0.4904 0.000 0.184 0.000 0.812 0.004
#> GSM627090     3  0.3962     0.5940 0.012 0.000 0.800 0.036 0.152
#> GSM627099     2  0.4325     0.7380 0.000 0.736 0.000 0.220 0.044
#> GSM627105     4  0.5106    -0.1353 0.000 0.000 0.036 0.508 0.456
#> GSM627117     3  0.4425     0.6756 0.112 0.004 0.772 0.000 0.112
#> GSM627121     3  0.4862     0.5326 0.000 0.036 0.724 0.028 0.212
#> GSM627127     4  0.3231     0.4811 0.000 0.196 0.000 0.800 0.004
#> GSM627087     2  0.3141     0.8027 0.000 0.852 0.000 0.108 0.040
#> GSM627089     3  0.4171     0.6790 0.104 0.000 0.784 0.000 0.112
#> GSM627092     4  0.8185     0.1415 0.000 0.260 0.112 0.356 0.272
#> GSM627076     3  0.3883     0.5559 0.000 0.000 0.780 0.036 0.184
#> GSM627136     3  0.4144     0.6872 0.100 0.000 0.800 0.008 0.092
#> GSM627081     3  0.4660     0.5167 0.000 0.016 0.728 0.036 0.220
#> GSM627091     2  0.4325     0.7380 0.000 0.736 0.000 0.220 0.044
#> GSM627097     4  0.6959     0.4400 0.040 0.196 0.012 0.580 0.172
#> GSM627072     3  0.2390     0.7046 0.032 0.000 0.912 0.012 0.044
#> GSM627080     1  0.1195     0.8425 0.960 0.000 0.012 0.000 0.028
#> GSM627088     3  0.5376     0.6227 0.196 0.000 0.688 0.012 0.104
#> GSM627109     1  0.3844     0.8040 0.792 0.000 0.044 0.000 0.164
#> GSM627111     1  0.0963     0.8444 0.964 0.000 0.000 0.000 0.036
#> GSM627113     3  0.5408     0.5686 0.228 0.000 0.652 0.000 0.120
#> GSM627133     3  0.6133     0.3717 0.000 0.236 0.620 0.028 0.116
#> GSM627177     1  0.6816     0.5561 0.552 0.000 0.188 0.036 0.224
#> GSM627086     2  0.5160     0.5801 0.000 0.608 0.000 0.336 0.056
#> GSM627095     4  0.7516     0.0570 0.300 0.016 0.020 0.428 0.236
#> GSM627079     3  0.2696     0.6884 0.032 0.000 0.900 0.028 0.040
#> GSM627082     4  0.5039    -0.1168 0.000 0.000 0.032 0.512 0.456
#> GSM627074     1  0.5644     0.6700 0.584 0.000 0.100 0.000 0.316
#> GSM627077     3  0.4567     0.6868 0.100 0.000 0.784 0.028 0.088
#> GSM627093     1  0.5644     0.6700 0.584 0.000 0.100 0.000 0.316
#> GSM627120     2  0.7062     0.5274 0.000 0.556 0.116 0.236 0.092
#> GSM627124     4  0.3123     0.4904 0.000 0.184 0.000 0.812 0.004
#> GSM627075     2  0.1124     0.8021 0.000 0.960 0.000 0.004 0.036
#> GSM627085     4  0.3123     0.4904 0.000 0.184 0.000 0.812 0.004
#> GSM627119     1  0.3914     0.8023 0.788 0.000 0.048 0.000 0.164
#> GSM627116     1  0.6816     0.5561 0.552 0.000 0.188 0.036 0.224
#> GSM627084     3  0.5376     0.6227 0.196 0.000 0.688 0.012 0.104
#> GSM627096     4  0.3855     0.4374 0.000 0.044 0.020 0.824 0.112
#> GSM627100     3  0.3883     0.5559 0.000 0.000 0.780 0.036 0.184
#> GSM627112     4  0.3004     0.4121 0.000 0.020 0.008 0.864 0.108
#> GSM627083     4  0.7516     0.0570 0.300 0.016 0.020 0.428 0.236
#> GSM627098     3  0.5376     0.6227 0.196 0.000 0.688 0.012 0.104
#> GSM627104     1  0.3844     0.8040 0.792 0.000 0.044 0.000 0.164
#> GSM627131     3  0.2696     0.6884 0.032 0.000 0.900 0.028 0.040
#> GSM627106     3  0.4660     0.5167 0.000 0.016 0.728 0.036 0.220
#> GSM627123     1  0.2060     0.8356 0.924 0.000 0.016 0.008 0.052
#> GSM627129     4  0.3738     0.4519 0.000 0.064 0.012 0.832 0.092
#> GSM627216     3  0.6133     0.3717 0.000 0.236 0.620 0.028 0.116
#> GSM627212     2  0.4325     0.7380 0.000 0.736 0.000 0.220 0.044
#> GSM627190     3  0.4425     0.6756 0.112 0.004 0.772 0.000 0.112
#> GSM627169     2  0.1285     0.8019 0.000 0.956 0.004 0.004 0.036
#> GSM627167     2  0.4364     0.7078 0.000 0.768 0.000 0.120 0.112
#> GSM627192     1  0.1121     0.8396 0.956 0.000 0.000 0.000 0.044
#> GSM627203     3  0.2052     0.6713 0.000 0.004 0.912 0.004 0.080
#> GSM627151     4  0.7603    -0.5054 0.008 0.028 0.340 0.364 0.260
#> GSM627163     1  0.0794     0.8419 0.972 0.000 0.000 0.000 0.028
#> GSM627211     2  0.0898     0.8099 0.000 0.972 0.000 0.008 0.020
#> GSM627171     2  0.1443     0.8027 0.000 0.948 0.004 0.004 0.044
#> GSM627209     2  0.5330     0.4799 0.000 0.548 0.000 0.396 0.056
#> GSM627135     1  0.2116     0.8379 0.912 0.000 0.004 0.008 0.076
#> GSM627170     2  0.5559     0.6946 0.000 0.664 0.016 0.228 0.092
#> GSM627178     1  0.6816     0.5561 0.552 0.000 0.188 0.036 0.224
#> GSM627199     4  0.3388     0.4836 0.000 0.200 0.000 0.792 0.008
#> GSM627213     4  0.3426     0.4531 0.000 0.052 0.012 0.852 0.084
#> GSM627140     4  0.6813     0.3093 0.008 0.172 0.020 0.548 0.252
#> GSM627149     1  0.2060     0.8356 0.924 0.000 0.016 0.008 0.052
#> GSM627147     2  0.4454     0.7029 0.000 0.760 0.000 0.128 0.112
#> GSM627195     3  0.2052     0.6713 0.000 0.004 0.912 0.004 0.080
#> GSM627204     2  0.0898     0.8099 0.000 0.972 0.000 0.008 0.020
#> GSM627207     2  0.0771     0.8088 0.000 0.976 0.000 0.004 0.020
#> GSM627157     3  0.5341     0.5842 0.212 0.000 0.664 0.000 0.124
#> GSM627201     2  0.3868     0.7886 0.000 0.800 0.000 0.140 0.060
#> GSM627146     2  0.2389     0.8009 0.000 0.880 0.000 0.116 0.004
#> GSM627156     2  0.1285     0.8019 0.000 0.956 0.004 0.004 0.036
#> GSM627188     1  0.1121     0.8396 0.956 0.000 0.000 0.000 0.044
#> GSM627197     2  0.2389     0.8009 0.000 0.880 0.000 0.116 0.004
#> GSM627173     2  0.1831     0.8121 0.000 0.920 0.000 0.076 0.004
#> GSM627179     2  0.2236     0.8142 0.000 0.908 0.000 0.068 0.024
#> GSM627208     3  0.3955     0.6084 0.000 0.084 0.800 0.000 0.116
#> GSM627215     3  0.5077     0.5364 0.000 0.120 0.736 0.020 0.124
#> GSM627153     2  0.5330     0.4799 0.000 0.548 0.000 0.396 0.056
#> GSM627155     1  0.1121     0.8396 0.956 0.000 0.000 0.000 0.044
#> GSM627165     2  0.5330     0.6134 0.000 0.620 0.004 0.312 0.064
#> GSM627168     3  0.5341     0.5842 0.212 0.000 0.664 0.000 0.124
#> GSM627183     3  0.4855     0.6397 0.168 0.000 0.720 0.000 0.112
#> GSM627144     3  0.3123     0.6273 0.000 0.000 0.812 0.004 0.184
#> GSM627158     1  0.1117     0.8430 0.964 0.000 0.016 0.000 0.020
#> GSM627196     2  0.0898     0.8099 0.000 0.972 0.000 0.008 0.020
#> GSM627142     5  0.6910     0.0000 0.004 0.000 0.292 0.312 0.392
#> GSM627182     3  0.3955     0.6084 0.000 0.084 0.800 0.000 0.116
#> GSM627202     3  0.3649     0.6920 0.056 0.000 0.848 0.032 0.064
#> GSM627141     3  0.4365     0.6718 0.116 0.000 0.768 0.000 0.116
#> GSM627143     2  0.6742     0.3323 0.000 0.552 0.032 0.244 0.172
#> GSM627145     3  0.2082     0.6985 0.024 0.000 0.928 0.016 0.032
#> GSM627152     3  0.3848     0.5689 0.000 0.000 0.788 0.040 0.172
#> GSM627200     3  0.3170     0.6827 0.036 0.000 0.876 0.040 0.048
#> GSM627159     4  0.5039    -0.1168 0.000 0.000 0.032 0.512 0.456
#> GSM627164     2  0.1443     0.8027 0.000 0.948 0.004 0.004 0.044
#> GSM627138     1  0.2782     0.8176 0.880 0.000 0.072 0.000 0.048
#> GSM627175     4  0.4907     0.2137 0.000 0.292 0.000 0.656 0.052
#> GSM627150     3  0.3053     0.7035 0.044 0.000 0.872 0.008 0.076
#> GSM627166     1  0.5065     0.7579 0.692 0.000 0.068 0.008 0.232
#> GSM627186     2  0.1492     0.8018 0.000 0.948 0.008 0.004 0.040
#> GSM627139     4  0.7603    -0.5054 0.008 0.028 0.340 0.364 0.260
#> GSM627181     2  0.2389     0.8009 0.000 0.880 0.000 0.116 0.004
#> GSM627205     3  0.6469     0.2152 0.000 0.300 0.564 0.044 0.092
#> GSM627214     2  0.5516     0.5881 0.000 0.608 0.000 0.296 0.096
#> GSM627180     3  0.5077     0.5364 0.000 0.120 0.736 0.020 0.124
#> GSM627172     2  0.2580     0.7966 0.000 0.892 0.000 0.064 0.044
#> GSM627184     1  0.1121     0.8396 0.956 0.000 0.000 0.000 0.044
#> GSM627193     2  0.1041     0.8153 0.000 0.964 0.000 0.032 0.004
#> GSM627191     4  0.7630     0.0711 0.284 0.024 0.020 0.436 0.236
#> GSM627176     3  0.4360     0.5277 0.008 0.000 0.728 0.024 0.240
#> GSM627194     2  0.4558     0.7321 0.000 0.724 0.000 0.216 0.060
#> GSM627154     4  0.3123     0.4904 0.000 0.184 0.000 0.812 0.004
#> GSM627187     3  0.4425     0.6756 0.112 0.004 0.772 0.000 0.112
#> GSM627198     4  0.3123     0.4898 0.000 0.184 0.000 0.812 0.004
#> GSM627160     4  0.7619    -0.0486 0.004 0.088 0.136 0.464 0.308
#> GSM627185     1  0.3365     0.8221 0.836 0.000 0.044 0.000 0.120
#> GSM627206     3  0.4171     0.6790 0.104 0.000 0.784 0.000 0.112
#> GSM627161     1  0.1117     0.8430 0.964 0.000 0.016 0.000 0.020
#> GSM627162     4  0.8166     0.1170 0.000 0.232 0.116 0.368 0.284
#> GSM627210     1  0.3914     0.8023 0.788 0.000 0.048 0.000 0.164
#> GSM627189     2  0.1041     0.8153 0.000 0.964 0.000 0.032 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM627128     6  0.1065     0.6032 0.000 0.000 0.008 0.020 0.008 0.964
#> GSM627110     5  0.4517     0.3458 0.004 0.000 0.464 0.016 0.512 0.004
#> GSM627132     1  0.2562     0.8067 0.828 0.000 0.172 0.000 0.000 0.000
#> GSM627107     5  0.4766     0.6574 0.000 0.000 0.072 0.044 0.724 0.160
#> GSM627103     2  0.3847     0.5759 0.000 0.644 0.008 0.348 0.000 0.000
#> GSM627114     5  0.3604     0.6841 0.012 0.000 0.216 0.012 0.760 0.000
#> GSM627134     4  0.5287     0.0898 0.000 0.028 0.028 0.500 0.008 0.436
#> GSM627137     4  0.4411     0.1322 0.000 0.356 0.028 0.612 0.000 0.004
#> GSM627148     5  0.4195     0.7126 0.000 0.016 0.060 0.032 0.796 0.096
#> GSM627101     6  0.5060     0.2899 0.000 0.000 0.060 0.324 0.016 0.600
#> GSM627130     6  0.1109     0.6050 0.004 0.000 0.012 0.016 0.004 0.964
#> GSM627071     5  0.3151     0.7521 0.004 0.000 0.072 0.016 0.856 0.052
#> GSM627118     4  0.5537     0.0795 0.000 0.016 0.056 0.500 0.012 0.416
#> GSM627094     2  0.2135     0.7479 0.000 0.872 0.000 0.128 0.000 0.000
#> GSM627122     5  0.2981     0.7351 0.008 0.000 0.040 0.000 0.852 0.100
#> GSM627115     2  0.3847     0.5759 0.000 0.644 0.008 0.348 0.000 0.000
#> GSM627125     6  0.0976     0.6043 0.000 0.000 0.008 0.016 0.008 0.968
#> GSM627174     2  0.3804     0.5523 0.000 0.656 0.008 0.336 0.000 0.000
#> GSM627102     2  0.2249     0.7266 0.000 0.900 0.004 0.064 0.000 0.032
#> GSM627073     5  0.3228     0.7406 0.000 0.024 0.068 0.032 0.860 0.016
#> GSM627108     2  0.2135     0.7479 0.000 0.872 0.000 0.128 0.000 0.000
#> GSM627126     1  0.0146     0.8369 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM627078     4  0.3570     0.4603 0.000 0.004 0.016 0.752 0.000 0.228
#> GSM627090     5  0.3418     0.6947 0.008 0.000 0.016 0.000 0.784 0.192
#> GSM627099     2  0.4634     0.2959 0.000 0.496 0.008 0.472 0.000 0.024
#> GSM627105     6  0.0976     0.6043 0.000 0.000 0.008 0.016 0.008 0.968
#> GSM627117     5  0.3679     0.6888 0.008 0.004 0.208 0.016 0.764 0.000
#> GSM627121     5  0.5104     0.6616 0.000 0.016 0.072 0.052 0.724 0.136
#> GSM627127     4  0.3590     0.4660 0.000 0.004 0.032 0.776 0.000 0.188
#> GSM627087     2  0.3847     0.5759 0.000 0.644 0.008 0.348 0.000 0.000
#> GSM627089     5  0.3341     0.6928 0.004 0.000 0.208 0.012 0.776 0.000
#> GSM627092     6  0.8002     0.2587 0.000 0.252 0.076 0.156 0.104 0.412
#> GSM627076     5  0.3454     0.6739 0.004 0.000 0.012 0.000 0.760 0.224
#> GSM627136     5  0.3321     0.7103 0.008 0.000 0.180 0.000 0.796 0.016
#> GSM627081     5  0.4766     0.6574 0.000 0.000 0.072 0.044 0.724 0.160
#> GSM627091     2  0.4634     0.2959 0.000 0.496 0.008 0.472 0.000 0.024
#> GSM627097     4  0.5580     0.2065 0.052 0.008 0.024 0.552 0.004 0.360
#> GSM627072     5  0.2451     0.7480 0.004 0.000 0.068 0.000 0.888 0.040
#> GSM627080     1  0.2982     0.8112 0.828 0.000 0.152 0.008 0.012 0.000
#> GSM627088     5  0.4762     0.6386 0.060 0.000 0.232 0.004 0.688 0.016
#> GSM627109     3  0.4378     0.6845 0.328 0.000 0.632 0.000 0.040 0.000
#> GSM627111     1  0.2562     0.8067 0.828 0.000 0.172 0.000 0.000 0.000
#> GSM627113     5  0.4867     0.5587 0.076 0.000 0.272 0.008 0.644 0.000
#> GSM627133     5  0.5787     0.5098 0.000 0.208 0.080 0.088 0.624 0.000
#> GSM627177     3  0.6921     0.6464 0.244 0.000 0.484 0.004 0.180 0.088
#> GSM627086     4  0.3852     0.2063 0.000 0.324 0.012 0.664 0.000 0.000
#> GSM627095     6  0.6103     0.4356 0.328 0.008 0.012 0.136 0.004 0.512
#> GSM627079     5  0.2476     0.7407 0.008 0.000 0.032 0.000 0.888 0.072
#> GSM627082     6  0.1109     0.6048 0.004 0.000 0.012 0.016 0.004 0.964
#> GSM627074     3  0.3782     0.6875 0.116 0.000 0.796 0.004 0.080 0.004
#> GSM627077     5  0.4324     0.7129 0.012 0.000 0.168 0.004 0.748 0.068
#> GSM627093     3  0.3782     0.6875 0.116 0.000 0.796 0.004 0.080 0.004
#> GSM627120     4  0.6456     0.0270 0.000 0.372 0.040 0.460 0.116 0.012
#> GSM627124     4  0.3570     0.4603 0.000 0.004 0.016 0.752 0.000 0.228
#> GSM627075     2  0.0000     0.7514 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627085     4  0.3653     0.4589 0.000 0.004 0.020 0.748 0.000 0.228
#> GSM627119     3  0.4424     0.6893 0.324 0.000 0.632 0.000 0.044 0.000
#> GSM627116     3  0.6921     0.6464 0.244 0.000 0.484 0.004 0.180 0.088
#> GSM627084     5  0.4762     0.6386 0.060 0.000 0.232 0.004 0.688 0.016
#> GSM627096     4  0.5537     0.0795 0.000 0.016 0.056 0.500 0.012 0.416
#> GSM627100     5  0.3454     0.6739 0.004 0.000 0.012 0.000 0.760 0.224
#> GSM627112     6  0.4787     0.0714 0.004 0.000 0.032 0.456 0.004 0.504
#> GSM627083     6  0.6103     0.4356 0.328 0.008 0.012 0.136 0.004 0.512
#> GSM627098     5  0.4762     0.6386 0.060 0.000 0.232 0.004 0.688 0.016
#> GSM627104     3  0.4392     0.6798 0.332 0.000 0.628 0.000 0.040 0.000
#> GSM627131     5  0.2476     0.7407 0.008 0.000 0.032 0.000 0.888 0.072
#> GSM627106     5  0.4766     0.6574 0.000 0.000 0.072 0.044 0.724 0.160
#> GSM627123     1  0.2265     0.8277 0.912 0.000 0.032 0.004 0.024 0.028
#> GSM627129     4  0.5292     0.0734 0.000 0.032 0.024 0.488 0.008 0.448
#> GSM627216     5  0.5787     0.5098 0.000 0.208 0.080 0.088 0.624 0.000
#> GSM627212     2  0.4634     0.2959 0.000 0.496 0.008 0.472 0.000 0.024
#> GSM627190     5  0.3679     0.6888 0.008 0.004 0.208 0.016 0.764 0.000
#> GSM627169     2  0.0146     0.7507 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM627167     2  0.4178     0.6025 0.000 0.764 0.012 0.104 0.000 0.120
#> GSM627192     1  0.0146     0.8369 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM627203     5  0.1949     0.7349 0.000 0.000 0.088 0.004 0.904 0.004
#> GSM627151     6  0.7405     0.3723 0.008 0.016 0.064 0.192 0.312 0.408
#> GSM627163     1  0.2092     0.8195 0.876 0.000 0.124 0.000 0.000 0.000
#> GSM627211     2  0.0790     0.7588 0.000 0.968 0.000 0.032 0.000 0.000
#> GSM627171     2  0.0551     0.7503 0.000 0.984 0.008 0.004 0.004 0.000
#> GSM627209     4  0.3809     0.3248 0.000 0.264 0.012 0.716 0.000 0.008
#> GSM627135     1  0.2657     0.7648 0.880 0.000 0.076 0.000 0.024 0.020
#> GSM627170     4  0.5065    -0.0714 0.000 0.400 0.052 0.536 0.012 0.000
#> GSM627178     3  0.6921     0.6464 0.244 0.000 0.484 0.004 0.180 0.088
#> GSM627199     4  0.3976     0.4661 0.000 0.020 0.020 0.740 0.000 0.220
#> GSM627213     4  0.5154     0.0884 0.000 0.020 0.028 0.504 0.008 0.440
#> GSM627140     6  0.5946     0.3541 0.008 0.160 0.024 0.196 0.004 0.608
#> GSM627149     1  0.2265     0.8277 0.912 0.000 0.032 0.004 0.024 0.028
#> GSM627147     2  0.4263     0.5942 0.000 0.756 0.012 0.108 0.000 0.124
#> GSM627195     5  0.1949     0.7349 0.000 0.000 0.088 0.004 0.904 0.004
#> GSM627204     2  0.0790     0.7588 0.000 0.968 0.000 0.032 0.000 0.000
#> GSM627207     2  0.0713     0.7580 0.000 0.972 0.000 0.028 0.000 0.000
#> GSM627157     5  0.4717     0.5792 0.064 0.000 0.272 0.008 0.656 0.000
#> GSM627201     2  0.3804     0.5523 0.000 0.656 0.008 0.336 0.000 0.000
#> GSM627146     2  0.3290     0.6860 0.000 0.744 0.000 0.252 0.000 0.004
#> GSM627156     2  0.0146     0.7507 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM627188     1  0.0146     0.8369 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM627197     2  0.3290     0.6860 0.000 0.744 0.000 0.252 0.000 0.004
#> GSM627173     2  0.2912     0.7158 0.000 0.784 0.000 0.216 0.000 0.000
#> GSM627179     2  0.3371     0.6431 0.000 0.708 0.000 0.292 0.000 0.000
#> GSM627208     5  0.4165     0.6895 0.000 0.056 0.108 0.052 0.784 0.000
#> GSM627215     5  0.5106     0.6425 0.000 0.088 0.108 0.080 0.720 0.004
#> GSM627153     4  0.3809     0.3248 0.000 0.264 0.012 0.716 0.000 0.008
#> GSM627155     1  0.0146     0.8369 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM627165     4  0.4534     0.1397 0.000 0.352 0.028 0.612 0.004 0.004
#> GSM627168     5  0.4717     0.5792 0.064 0.000 0.272 0.008 0.656 0.000
#> GSM627183     5  0.4130     0.6461 0.036 0.000 0.240 0.008 0.716 0.000
#> GSM627144     5  0.3087     0.6967 0.000 0.000 0.176 0.012 0.808 0.004
#> GSM627158     1  0.2834     0.8232 0.848 0.000 0.128 0.008 0.016 0.000
#> GSM627196     2  0.0790     0.7588 0.000 0.968 0.000 0.032 0.000 0.000
#> GSM627142     6  0.3691     0.4517 0.008 0.000 0.008 0.000 0.260 0.724
#> GSM627182     5  0.4165     0.6895 0.000 0.056 0.108 0.052 0.784 0.000
#> GSM627202     5  0.3400     0.7383 0.004 0.000 0.064 0.008 0.832 0.092
#> GSM627141     5  0.3596     0.6840 0.008 0.000 0.216 0.016 0.760 0.000
#> GSM627143     2  0.6358     0.2456 0.000 0.552 0.028 0.136 0.024 0.260
#> GSM627145     5  0.1794     0.7484 0.000 0.000 0.036 0.000 0.924 0.040
#> GSM627152     5  0.3488     0.6847 0.004 0.000 0.016 0.000 0.764 0.216
#> GSM627200     5  0.2841     0.7374 0.012 0.000 0.032 0.000 0.864 0.092
#> GSM627159     6  0.1109     0.6048 0.004 0.000 0.012 0.016 0.004 0.964
#> GSM627164     2  0.0551     0.7503 0.000 0.984 0.008 0.004 0.004 0.000
#> GSM627138     1  0.4044     0.7047 0.756 0.000 0.176 0.008 0.060 0.000
#> GSM627175     4  0.1991     0.4839 0.000 0.012 0.024 0.920 0.000 0.044
#> GSM627150     5  0.3151     0.7521 0.004 0.000 0.072 0.016 0.856 0.052
#> GSM627166     3  0.5289     0.7011 0.300 0.000 0.612 0.004 0.052 0.032
#> GSM627186     2  0.0405     0.7500 0.000 0.988 0.000 0.008 0.004 0.000
#> GSM627139     6  0.7405     0.3723 0.008 0.016 0.064 0.192 0.312 0.408
#> GSM627181     2  0.3290     0.6860 0.000 0.744 0.000 0.252 0.000 0.004
#> GSM627205     5  0.6477     0.3825 0.000 0.180 0.064 0.204 0.548 0.004
#> GSM627214     4  0.4871     0.1974 0.000 0.324 0.024 0.616 0.000 0.036
#> GSM627180     5  0.5106     0.6425 0.000 0.088 0.108 0.080 0.720 0.004
#> GSM627172     2  0.2249     0.7266 0.000 0.900 0.004 0.064 0.000 0.032
#> GSM627184     1  0.0146     0.8369 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM627193     2  0.2300     0.7424 0.000 0.856 0.000 0.144 0.000 0.000
#> GSM627191     6  0.6276     0.4372 0.308 0.016 0.012 0.144 0.004 0.516
#> GSM627176     5  0.4649     0.6521 0.004 0.000 0.100 0.008 0.716 0.172
#> GSM627194     4  0.4407    -0.2336 0.000 0.480 0.024 0.496 0.000 0.000
#> GSM627154     4  0.3653     0.4589 0.000 0.004 0.020 0.748 0.000 0.228
#> GSM627187     5  0.3679     0.6888 0.008 0.004 0.208 0.016 0.764 0.000
#> GSM627198     4  0.3761     0.4618 0.000 0.008 0.020 0.744 0.000 0.228
#> GSM627160     6  0.6546     0.4708 0.004 0.064 0.032 0.176 0.120 0.604
#> GSM627185     1  0.4523     0.1891 0.592 0.000 0.372 0.004 0.032 0.000
#> GSM627206     5  0.3341     0.6928 0.004 0.000 0.208 0.012 0.776 0.000
#> GSM627161     1  0.2834     0.8232 0.848 0.000 0.128 0.008 0.016 0.000
#> GSM627162     6  0.8025     0.2906 0.000 0.224 0.080 0.164 0.108 0.424
#> GSM627210     3  0.4424     0.6893 0.324 0.000 0.632 0.000 0.044 0.000
#> GSM627189     2  0.2300     0.7424 0.000 0.856 0.000 0.144 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) age(p) other(p) k
#> MAD:hclust 112           0.9633  0.676   0.0337 2
#> MAD:hclust 131           0.4944  0.710   0.1062 3
#> MAD:hclust 124           0.0410  0.315   0.4656 4
#> MAD:hclust 107           0.2172  0.570   0.3262 5
#> MAD:hclust 104           0.0269  0.461   0.6200 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 146 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.929           0.938       0.973         0.5019 0.498   0.498
#> 3 3 0.567           0.657       0.816         0.2988 0.770   0.570
#> 4 4 0.662           0.752       0.838         0.1363 0.771   0.441
#> 5 5 0.655           0.532       0.705         0.0649 0.933   0.757
#> 6 6 0.664           0.478       0.679         0.0429 0.842   0.440

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM627128     2  0.8081      0.694 0.248 0.752
#> GSM627110     1  0.0000      0.987 1.000 0.000
#> GSM627132     1  0.0000      0.987 1.000 0.000
#> GSM627107     2  0.8909      0.594 0.308 0.692
#> GSM627103     2  0.0000      0.957 0.000 1.000
#> GSM627114     1  0.0000      0.987 1.000 0.000
#> GSM627134     2  0.0000      0.957 0.000 1.000
#> GSM627137     2  0.0000      0.957 0.000 1.000
#> GSM627148     1  0.0000      0.987 1.000 0.000
#> GSM627101     2  0.0000      0.957 0.000 1.000
#> GSM627130     2  0.0000      0.957 0.000 1.000
#> GSM627071     1  0.0000      0.987 1.000 0.000
#> GSM627118     2  0.0000      0.957 0.000 1.000
#> GSM627094     2  0.0000      0.957 0.000 1.000
#> GSM627122     1  0.0000      0.987 1.000 0.000
#> GSM627115     2  0.0000      0.957 0.000 1.000
#> GSM627125     2  0.7883      0.712 0.236 0.764
#> GSM627174     2  0.0000      0.957 0.000 1.000
#> GSM627102     2  0.0000      0.957 0.000 1.000
#> GSM627073     1  0.3584      0.917 0.932 0.068
#> GSM627108     2  0.0000      0.957 0.000 1.000
#> GSM627126     1  0.0000      0.987 1.000 0.000
#> GSM627078     2  0.0000      0.957 0.000 1.000
#> GSM627090     1  0.0000      0.987 1.000 0.000
#> GSM627099     2  0.0000      0.957 0.000 1.000
#> GSM627105     2  0.6148      0.817 0.152 0.848
#> GSM627117     1  0.0000      0.987 1.000 0.000
#> GSM627121     2  0.8909      0.594 0.308 0.692
#> GSM627127     2  0.0000      0.957 0.000 1.000
#> GSM627087     2  0.0000      0.957 0.000 1.000
#> GSM627089     1  0.0000      0.987 1.000 0.000
#> GSM627092     2  0.0000      0.957 0.000 1.000
#> GSM627076     1  0.0000      0.987 1.000 0.000
#> GSM627136     1  0.0000      0.987 1.000 0.000
#> GSM627081     1  0.3584      0.917 0.932 0.068
#> GSM627091     2  0.0000      0.957 0.000 1.000
#> GSM627097     2  0.0000      0.957 0.000 1.000
#> GSM627072     1  0.0000      0.987 1.000 0.000
#> GSM627080     1  0.0000      0.987 1.000 0.000
#> GSM627088     1  0.0000      0.987 1.000 0.000
#> GSM627109     1  0.0000      0.987 1.000 0.000
#> GSM627111     1  0.0000      0.987 1.000 0.000
#> GSM627113     1  0.0000      0.987 1.000 0.000
#> GSM627133     2  0.0376      0.954 0.004 0.996
#> GSM627177     1  0.0000      0.987 1.000 0.000
#> GSM627086     2  0.0000      0.957 0.000 1.000
#> GSM627095     1  0.0000      0.987 1.000 0.000
#> GSM627079     1  0.0000      0.987 1.000 0.000
#> GSM627082     2  0.9209      0.539 0.336 0.664
#> GSM627074     1  0.0000      0.987 1.000 0.000
#> GSM627077     1  0.0000      0.987 1.000 0.000
#> GSM627093     1  0.0000      0.987 1.000 0.000
#> GSM627120     2  0.0000      0.957 0.000 1.000
#> GSM627124     2  0.0000      0.957 0.000 1.000
#> GSM627075     2  0.0000      0.957 0.000 1.000
#> GSM627085     2  0.0000      0.957 0.000 1.000
#> GSM627119     1  0.0000      0.987 1.000 0.000
#> GSM627116     2  0.8267      0.674 0.260 0.740
#> GSM627084     1  0.0000      0.987 1.000 0.000
#> GSM627096     2  0.0000      0.957 0.000 1.000
#> GSM627100     1  0.0000      0.987 1.000 0.000
#> GSM627112     2  0.0000      0.957 0.000 1.000
#> GSM627083     2  0.8267      0.675 0.260 0.740
#> GSM627098     1  0.0000      0.987 1.000 0.000
#> GSM627104     1  0.0000      0.987 1.000 0.000
#> GSM627131     1  0.0000      0.987 1.000 0.000
#> GSM627106     1  0.3584      0.917 0.932 0.068
#> GSM627123     1  0.0000      0.987 1.000 0.000
#> GSM627129     2  0.0000      0.957 0.000 1.000
#> GSM627216     2  0.0000      0.957 0.000 1.000
#> GSM627212     2  0.0000      0.957 0.000 1.000
#> GSM627190     1  0.0000      0.987 1.000 0.000
#> GSM627169     2  0.0000      0.957 0.000 1.000
#> GSM627167     2  0.0000      0.957 0.000 1.000
#> GSM627192     1  0.0000      0.987 1.000 0.000
#> GSM627203     1  0.0000      0.987 1.000 0.000
#> GSM627151     2  0.0938      0.948 0.012 0.988
#> GSM627163     1  0.0000      0.987 1.000 0.000
#> GSM627211     2  0.0000      0.957 0.000 1.000
#> GSM627171     2  0.0000      0.957 0.000 1.000
#> GSM627209     2  0.0000      0.957 0.000 1.000
#> GSM627135     1  0.0000      0.987 1.000 0.000
#> GSM627170     2  0.0000      0.957 0.000 1.000
#> GSM627178     1  0.0000      0.987 1.000 0.000
#> GSM627199     2  0.0000      0.957 0.000 1.000
#> GSM627213     2  0.0000      0.957 0.000 1.000
#> GSM627140     2  0.0000      0.957 0.000 1.000
#> GSM627149     1  0.0000      0.987 1.000 0.000
#> GSM627147     2  0.0000      0.957 0.000 1.000
#> GSM627195     1  0.0000      0.987 1.000 0.000
#> GSM627204     2  0.0000      0.957 0.000 1.000
#> GSM627207     2  0.0000      0.957 0.000 1.000
#> GSM627157     1  0.0000      0.987 1.000 0.000
#> GSM627201     2  0.0000      0.957 0.000 1.000
#> GSM627146     2  0.0000      0.957 0.000 1.000
#> GSM627156     2  0.0000      0.957 0.000 1.000
#> GSM627188     1  0.0000      0.987 1.000 0.000
#> GSM627197     2  0.0000      0.957 0.000 1.000
#> GSM627173     2  0.0000      0.957 0.000 1.000
#> GSM627179     2  0.0000      0.957 0.000 1.000
#> GSM627208     2  0.7528      0.735 0.216 0.784
#> GSM627215     2  0.0000      0.957 0.000 1.000
#> GSM627153     2  0.0000      0.957 0.000 1.000
#> GSM627155     1  0.0000      0.987 1.000 0.000
#> GSM627165     2  0.0000      0.957 0.000 1.000
#> GSM627168     1  0.0000      0.987 1.000 0.000
#> GSM627183     1  0.0000      0.987 1.000 0.000
#> GSM627144     1  0.0000      0.987 1.000 0.000
#> GSM627158     1  0.0000      0.987 1.000 0.000
#> GSM627196     2  0.0000      0.957 0.000 1.000
#> GSM627142     1  0.0000      0.987 1.000 0.000
#> GSM627182     1  0.0000      0.987 1.000 0.000
#> GSM627202     1  0.0000      0.987 1.000 0.000
#> GSM627141     1  0.0000      0.987 1.000 0.000
#> GSM627143     2  0.0000      0.957 0.000 1.000
#> GSM627145     1  0.0000      0.987 1.000 0.000
#> GSM627152     1  0.0000      0.987 1.000 0.000
#> GSM627200     1  0.0000      0.987 1.000 0.000
#> GSM627159     2  0.9209      0.539 0.336 0.664
#> GSM627164     2  0.0000      0.957 0.000 1.000
#> GSM627138     1  0.0000      0.987 1.000 0.000
#> GSM627175     2  0.0000      0.957 0.000 1.000
#> GSM627150     1  0.0000      0.987 1.000 0.000
#> GSM627166     1  0.0000      0.987 1.000 0.000
#> GSM627186     2  0.0000      0.957 0.000 1.000
#> GSM627139     2  0.9922      0.256 0.448 0.552
#> GSM627181     2  0.0000      0.957 0.000 1.000
#> GSM627205     2  0.0000      0.957 0.000 1.000
#> GSM627214     2  0.0000      0.957 0.000 1.000
#> GSM627180     1  0.9580      0.339 0.620 0.380
#> GSM627172     2  0.0000      0.957 0.000 1.000
#> GSM627184     1  0.0000      0.987 1.000 0.000
#> GSM627193     2  0.0000      0.957 0.000 1.000
#> GSM627191     2  0.2236      0.929 0.036 0.964
#> GSM627176     1  0.0000      0.987 1.000 0.000
#> GSM627194     2  0.0000      0.957 0.000 1.000
#> GSM627154     2  0.0000      0.957 0.000 1.000
#> GSM627187     1  0.0000      0.987 1.000 0.000
#> GSM627198     2  0.0000      0.957 0.000 1.000
#> GSM627160     1  0.8016      0.657 0.756 0.244
#> GSM627185     1  0.0000      0.987 1.000 0.000
#> GSM627206     1  0.0000      0.987 1.000 0.000
#> GSM627161     1  0.0000      0.987 1.000 0.000
#> GSM627162     1  0.0000      0.987 1.000 0.000
#> GSM627210     1  0.0000      0.987 1.000 0.000
#> GSM627189     2  0.0000      0.957 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM627128     3  0.3572     0.5818 0.060 0.040 0.900
#> GSM627110     1  0.6154     0.3016 0.592 0.000 0.408
#> GSM627132     1  0.0000     0.7525 1.000 0.000 0.000
#> GSM627107     3  0.1964     0.6125 0.056 0.000 0.944
#> GSM627103     2  0.0237     0.8675 0.000 0.996 0.004
#> GSM627114     1  0.6126     0.3215 0.600 0.000 0.400
#> GSM627134     2  0.6225     0.5836 0.000 0.568 0.432
#> GSM627137     2  0.0000     0.8680 0.000 1.000 0.000
#> GSM627148     3  0.5785     0.5351 0.332 0.000 0.668
#> GSM627101     3  0.6062    -0.2154 0.000 0.384 0.616
#> GSM627130     3  0.4725     0.5471 0.060 0.088 0.852
#> GSM627071     3  0.6295     0.1911 0.472 0.000 0.528
#> GSM627118     2  0.6235     0.5768 0.000 0.564 0.436
#> GSM627094     2  0.0237     0.8675 0.000 0.996 0.004
#> GSM627122     3  0.6295     0.3037 0.472 0.000 0.528
#> GSM627115     2  0.0237     0.8675 0.000 0.996 0.004
#> GSM627125     3  0.3337     0.5857 0.060 0.032 0.908
#> GSM627174     2  0.0000     0.8680 0.000 1.000 0.000
#> GSM627102     2  0.0000     0.8680 0.000 1.000 0.000
#> GSM627073     3  0.5016     0.6172 0.240 0.000 0.760
#> GSM627108     2  0.0237     0.8675 0.000 0.996 0.004
#> GSM627126     1  0.2261     0.7187 0.932 0.000 0.068
#> GSM627078     2  0.4654     0.8061 0.000 0.792 0.208
#> GSM627090     3  0.5835     0.5699 0.340 0.000 0.660
#> GSM627099     2  0.4121     0.8246 0.000 0.832 0.168
#> GSM627105     3  0.3456     0.5840 0.060 0.036 0.904
#> GSM627117     1  0.6168     0.2942 0.588 0.000 0.412
#> GSM627121     3  0.3112     0.6158 0.056 0.028 0.916
#> GSM627127     2  0.4750     0.8016 0.000 0.784 0.216
#> GSM627087     2  0.0237     0.8675 0.000 0.996 0.004
#> GSM627089     3  0.6308     0.0995 0.492 0.000 0.508
#> GSM627092     2  0.2356     0.8452 0.000 0.928 0.072
#> GSM627076     3  0.5291     0.5836 0.268 0.000 0.732
#> GSM627136     1  0.6140     0.3129 0.596 0.000 0.404
#> GSM627081     3  0.4887     0.6222 0.228 0.000 0.772
#> GSM627091     2  0.0000     0.8680 0.000 1.000 0.000
#> GSM627097     2  0.6026     0.6729 0.000 0.624 0.376
#> GSM627072     3  0.6154     0.3825 0.408 0.000 0.592
#> GSM627080     1  0.0592     0.7497 0.988 0.000 0.012
#> GSM627088     1  0.6140     0.3129 0.596 0.000 0.404
#> GSM627109     1  0.1411     0.7527 0.964 0.000 0.036
#> GSM627111     1  0.0000     0.7525 1.000 0.000 0.000
#> GSM627113     1  0.3116     0.7331 0.892 0.000 0.108
#> GSM627133     3  0.7262     0.4660 0.044 0.332 0.624
#> GSM627177     3  0.6295     0.1911 0.472 0.000 0.528
#> GSM627086     2  0.0000     0.8680 0.000 1.000 0.000
#> GSM627095     1  0.2356     0.7152 0.928 0.000 0.072
#> GSM627079     3  0.5988     0.4726 0.368 0.000 0.632
#> GSM627082     3  0.3690     0.5698 0.100 0.016 0.884
#> GSM627074     1  0.2878     0.7384 0.904 0.000 0.096
#> GSM627077     1  0.5882     0.3503 0.652 0.000 0.348
#> GSM627093     1  0.2878     0.7384 0.904 0.000 0.096
#> GSM627120     2  0.5859     0.7004 0.000 0.656 0.344
#> GSM627124     2  0.4654     0.8061 0.000 0.792 0.208
#> GSM627075     2  0.0237     0.8675 0.000 0.996 0.004
#> GSM627085     2  0.4654     0.8061 0.000 0.792 0.208
#> GSM627119     1  0.3038     0.7350 0.896 0.000 0.104
#> GSM627116     3  0.6297     0.4472 0.060 0.184 0.756
#> GSM627084     1  0.0424     0.7508 0.992 0.000 0.008
#> GSM627096     2  0.6235     0.5768 0.000 0.564 0.436
#> GSM627100     3  0.4842     0.6045 0.224 0.000 0.776
#> GSM627112     2  0.6962     0.6072 0.020 0.568 0.412
#> GSM627083     1  0.7065     0.2782 0.644 0.040 0.316
#> GSM627098     1  0.2165     0.7468 0.936 0.000 0.064
#> GSM627104     1  0.1964     0.7481 0.944 0.000 0.056
#> GSM627131     1  0.3340     0.7116 0.880 0.000 0.120
#> GSM627106     3  0.4750     0.6260 0.216 0.000 0.784
#> GSM627123     1  0.2261     0.7187 0.932 0.000 0.068
#> GSM627129     2  0.5835     0.7051 0.000 0.660 0.340
#> GSM627216     2  0.0237     0.8675 0.000 0.996 0.004
#> GSM627212     2  0.0000     0.8680 0.000 1.000 0.000
#> GSM627190     1  0.6168     0.2942 0.588 0.000 0.412
#> GSM627169     2  0.0424     0.8663 0.000 0.992 0.008
#> GSM627167     2  0.5882     0.6990 0.000 0.652 0.348
#> GSM627192     1  0.2356     0.7152 0.928 0.000 0.072
#> GSM627203     3  0.5650     0.5645 0.312 0.000 0.688
#> GSM627151     3  0.5138     0.3514 0.000 0.252 0.748
#> GSM627163     1  0.0592     0.7497 0.988 0.000 0.012
#> GSM627211     2  0.0000     0.8680 0.000 1.000 0.000
#> GSM627171     2  0.0424     0.8663 0.000 0.992 0.008
#> GSM627209     2  0.4291     0.8194 0.000 0.820 0.180
#> GSM627135     1  0.2261     0.7187 0.932 0.000 0.068
#> GSM627170     2  0.0237     0.8675 0.000 0.996 0.004
#> GSM627178     1  0.1753     0.7508 0.952 0.000 0.048
#> GSM627199     2  0.4121     0.8242 0.000 0.832 0.168
#> GSM627213     2  0.5810     0.7100 0.000 0.664 0.336
#> GSM627140     2  0.6962     0.6072 0.020 0.568 0.412
#> GSM627149     1  0.2261     0.7187 0.932 0.000 0.068
#> GSM627147     2  0.5291     0.7687 0.000 0.732 0.268
#> GSM627195     3  0.5591     0.5722 0.304 0.000 0.696
#> GSM627204     2  0.0000     0.8680 0.000 1.000 0.000
#> GSM627207     2  0.0237     0.8675 0.000 0.996 0.004
#> GSM627157     1  0.2356     0.7457 0.928 0.000 0.072
#> GSM627201     2  0.0000     0.8680 0.000 1.000 0.000
#> GSM627146     2  0.0000     0.8680 0.000 1.000 0.000
#> GSM627156     2  0.0424     0.8663 0.000 0.992 0.008
#> GSM627188     1  0.2356     0.7152 0.928 0.000 0.072
#> GSM627197     2  0.0000     0.8680 0.000 1.000 0.000
#> GSM627173     2  0.0237     0.8675 0.000 0.996 0.004
#> GSM627179     2  0.0237     0.8675 0.000 0.996 0.004
#> GSM627208     3  0.7528     0.4923 0.072 0.280 0.648
#> GSM627215     2  0.6111     0.2891 0.000 0.604 0.396
#> GSM627153     2  0.4654     0.8061 0.000 0.792 0.208
#> GSM627155     1  0.2261     0.7187 0.932 0.000 0.068
#> GSM627165     2  0.6079     0.6467 0.000 0.612 0.388
#> GSM627168     1  0.6140     0.3129 0.596 0.000 0.404
#> GSM627183     1  0.6062     0.3591 0.616 0.000 0.384
#> GSM627144     3  0.5591     0.5720 0.304 0.000 0.696
#> GSM627158     1  0.0592     0.7497 0.988 0.000 0.012
#> GSM627196     2  0.0000     0.8680 0.000 1.000 0.000
#> GSM627142     3  0.4504     0.6070 0.196 0.000 0.804
#> GSM627182     3  0.5968     0.4837 0.364 0.000 0.636
#> GSM627202     1  0.5529     0.4624 0.704 0.000 0.296
#> GSM627141     1  0.6126     0.3215 0.600 0.000 0.400
#> GSM627143     2  0.4235     0.8107 0.000 0.824 0.176
#> GSM627145     3  0.6126     0.4025 0.400 0.000 0.600
#> GSM627152     3  0.5859     0.5686 0.344 0.000 0.656
#> GSM627200     1  0.3412     0.7095 0.876 0.000 0.124
#> GSM627159     3  0.3678     0.5776 0.080 0.028 0.892
#> GSM627164     2  0.0424     0.8663 0.000 0.992 0.008
#> GSM627138     1  0.1753     0.7520 0.952 0.000 0.048
#> GSM627175     2  0.4654     0.8061 0.000 0.792 0.208
#> GSM627150     3  0.5621     0.5697 0.308 0.000 0.692
#> GSM627166     1  0.0592     0.7533 0.988 0.000 0.012
#> GSM627186     2  0.0747     0.8620 0.000 0.984 0.016
#> GSM627139     3  0.2486     0.5918 0.060 0.008 0.932
#> GSM627181     2  0.0000     0.8680 0.000 1.000 0.000
#> GSM627205     2  0.2261     0.8441 0.000 0.932 0.068
#> GSM627214     2  0.3752     0.8332 0.000 0.856 0.144
#> GSM627180     3  0.4654     0.6274 0.208 0.000 0.792
#> GSM627172     2  0.0000     0.8680 0.000 1.000 0.000
#> GSM627184     1  0.2356     0.7152 0.928 0.000 0.072
#> GSM627193     2  0.0237     0.8675 0.000 0.996 0.004
#> GSM627191     2  0.8489     0.5000 0.092 0.496 0.412
#> GSM627176     3  0.5785     0.5779 0.332 0.000 0.668
#> GSM627194     2  0.0237     0.8675 0.000 0.996 0.004
#> GSM627154     2  0.4750     0.8016 0.000 0.784 0.216
#> GSM627187     1  0.6168     0.2942 0.588 0.000 0.412
#> GSM627198     2  0.4121     0.8242 0.000 0.832 0.168
#> GSM627160     3  0.3856     0.5757 0.072 0.040 0.888
#> GSM627185     1  0.2066     0.7472 0.940 0.000 0.060
#> GSM627206     1  0.6154     0.3016 0.592 0.000 0.408
#> GSM627161     1  0.0892     0.7463 0.980 0.000 0.020
#> GSM627162     3  0.6215     0.3176 0.428 0.000 0.572
#> GSM627210     1  0.3192     0.7311 0.888 0.000 0.112
#> GSM627189     2  0.0237     0.8675 0.000 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM627128     4  0.3464     0.6681 0.056 0.000 0.076 0.868
#> GSM627110     3  0.2149     0.7896 0.088 0.000 0.912 0.000
#> GSM627132     1  0.1867     0.8521 0.928 0.000 0.072 0.000
#> GSM627107     3  0.5405     0.6296 0.004 0.024 0.660 0.312
#> GSM627103     2  0.1022     0.9128 0.000 0.968 0.000 0.032
#> GSM627114     3  0.2593     0.7793 0.104 0.000 0.892 0.004
#> GSM627134     4  0.4549     0.7259 0.000 0.188 0.036 0.776
#> GSM627137     2  0.1635     0.9095 0.008 0.948 0.000 0.044
#> GSM627148     3  0.0336     0.8159 0.000 0.000 0.992 0.008
#> GSM627101     4  0.2730     0.6827 0.016 0.000 0.088 0.896
#> GSM627130     4  0.3245     0.6715 0.056 0.000 0.064 0.880
#> GSM627071     3  0.2060     0.8102 0.052 0.000 0.932 0.016
#> GSM627118     4  0.3958     0.7354 0.000 0.144 0.032 0.824
#> GSM627094     2  0.1398     0.9114 0.004 0.956 0.000 0.040
#> GSM627122     3  0.5266     0.7693 0.108 0.000 0.752 0.140
#> GSM627115     2  0.1022     0.9128 0.000 0.968 0.000 0.032
#> GSM627125     4  0.3464     0.6681 0.056 0.000 0.076 0.868
#> GSM627174     2  0.2053     0.9025 0.004 0.924 0.000 0.072
#> GSM627102     2  0.1732     0.9054 0.008 0.948 0.004 0.040
#> GSM627073     3  0.3088     0.8033 0.000 0.008 0.864 0.128
#> GSM627108     2  0.0188     0.9094 0.004 0.996 0.000 0.000
#> GSM627126     1  0.1854     0.8294 0.940 0.000 0.012 0.048
#> GSM627078     4  0.5080     0.4984 0.004 0.420 0.000 0.576
#> GSM627090     3  0.4104     0.7794 0.028 0.000 0.808 0.164
#> GSM627099     4  0.5132     0.4406 0.004 0.448 0.000 0.548
#> GSM627105     4  0.3464     0.6681 0.056 0.000 0.076 0.868
#> GSM627117     3  0.3030     0.7890 0.076 0.028 0.892 0.004
#> GSM627121     3  0.4579     0.7552 0.000 0.032 0.768 0.200
#> GSM627127     4  0.4372     0.6845 0.004 0.268 0.000 0.728
#> GSM627087     2  0.1022     0.9128 0.000 0.968 0.000 0.032
#> GSM627089     3  0.1824     0.8047 0.060 0.000 0.936 0.004
#> GSM627092     2  0.2186     0.8816 0.008 0.932 0.012 0.048
#> GSM627076     3  0.5386     0.7072 0.056 0.000 0.708 0.236
#> GSM627136     3  0.2466     0.7886 0.096 0.000 0.900 0.004
#> GSM627081     3  0.3636     0.7847 0.000 0.008 0.820 0.172
#> GSM627091     2  0.2466     0.8824 0.004 0.900 0.000 0.096
#> GSM627097     4  0.3649     0.7214 0.000 0.204 0.000 0.796
#> GSM627072     3  0.1209     0.8125 0.032 0.000 0.964 0.004
#> GSM627080     1  0.1716     0.8520 0.936 0.000 0.064 0.000
#> GSM627088     3  0.2408     0.7807 0.104 0.000 0.896 0.000
#> GSM627109     1  0.3074     0.8436 0.848 0.000 0.152 0.000
#> GSM627111     1  0.1867     0.8521 0.928 0.000 0.072 0.000
#> GSM627113     1  0.4761     0.6045 0.628 0.000 0.372 0.000
#> GSM627133     3  0.2892     0.7909 0.000 0.068 0.896 0.036
#> GSM627177     3  0.2142     0.8096 0.056 0.000 0.928 0.016
#> GSM627086     2  0.1978     0.9046 0.004 0.928 0.000 0.068
#> GSM627095     1  0.1854     0.8294 0.940 0.000 0.012 0.048
#> GSM627079     3  0.2805     0.8104 0.012 0.000 0.888 0.100
#> GSM627082     4  0.3323     0.6721 0.060 0.000 0.064 0.876
#> GSM627074     1  0.4304     0.7433 0.716 0.000 0.284 0.000
#> GSM627077     3  0.5010     0.5595 0.276 0.000 0.700 0.024
#> GSM627093     1  0.4643     0.6616 0.656 0.000 0.344 0.000
#> GSM627120     2  0.6991     0.0195 0.000 0.540 0.136 0.324
#> GSM627124     4  0.5080     0.4984 0.004 0.420 0.000 0.576
#> GSM627075     2  0.1229     0.8992 0.008 0.968 0.004 0.020
#> GSM627085     4  0.4584     0.6570 0.004 0.300 0.000 0.696
#> GSM627119     1  0.4830     0.5699 0.608 0.000 0.392 0.000
#> GSM627116     4  0.3360     0.7325 0.004 0.084 0.036 0.876
#> GSM627084     1  0.3172     0.8417 0.840 0.000 0.160 0.000
#> GSM627096     4  0.3907     0.7357 0.000 0.140 0.032 0.828
#> GSM627100     3  0.5508     0.6885 0.056 0.000 0.692 0.252
#> GSM627112     4  0.3143     0.7365 0.024 0.100 0.000 0.876
#> GSM627083     4  0.4977     0.2322 0.460 0.000 0.000 0.540
#> GSM627098     1  0.3356     0.8341 0.824 0.000 0.176 0.000
#> GSM627104     1  0.3266     0.8381 0.832 0.000 0.168 0.000
#> GSM627131     1  0.5311     0.6382 0.648 0.000 0.328 0.024
#> GSM627106     3  0.3636     0.7847 0.000 0.008 0.820 0.172
#> GSM627123     1  0.1854     0.8294 0.940 0.000 0.012 0.048
#> GSM627129     4  0.4420     0.7086 0.000 0.240 0.012 0.748
#> GSM627216     2  0.2578     0.8780 0.000 0.912 0.052 0.036
#> GSM627212     2  0.2266     0.8941 0.004 0.912 0.000 0.084
#> GSM627190     3  0.3030     0.7890 0.076 0.028 0.892 0.004
#> GSM627169     2  0.2927     0.8427 0.008 0.900 0.068 0.024
#> GSM627167     4  0.4540     0.7043 0.004 0.248 0.008 0.740
#> GSM627192     1  0.1854     0.8294 0.940 0.000 0.012 0.048
#> GSM627203     3  0.2973     0.7968 0.000 0.000 0.856 0.144
#> GSM627151     4  0.3970     0.7227 0.000 0.084 0.076 0.840
#> GSM627163     1  0.1716     0.8520 0.936 0.000 0.064 0.000
#> GSM627211     2  0.1902     0.9062 0.004 0.932 0.000 0.064
#> GSM627171     2  0.1739     0.8910 0.008 0.952 0.016 0.024
#> GSM627209     4  0.5132     0.4406 0.004 0.448 0.000 0.548
#> GSM627135     1  0.1677     0.8318 0.948 0.000 0.012 0.040
#> GSM627170     2  0.1617     0.8989 0.008 0.956 0.012 0.024
#> GSM627178     1  0.4898     0.7428 0.716 0.000 0.260 0.024
#> GSM627199     4  0.5143     0.4218 0.004 0.456 0.000 0.540
#> GSM627213     4  0.3873     0.7106 0.000 0.228 0.000 0.772
#> GSM627140     4  0.4680     0.7263 0.048 0.160 0.004 0.788
#> GSM627149     1  0.1854     0.8294 0.940 0.000 0.012 0.048
#> GSM627147     4  0.5210     0.6360 0.008 0.332 0.008 0.652
#> GSM627195     3  0.2868     0.7999 0.000 0.000 0.864 0.136
#> GSM627204     2  0.1978     0.9046 0.004 0.928 0.000 0.068
#> GSM627207     2  0.1339     0.8973 0.008 0.964 0.004 0.024
#> GSM627157     1  0.3649     0.8144 0.796 0.000 0.204 0.000
#> GSM627201     2  0.2053     0.9025 0.004 0.924 0.000 0.072
#> GSM627146     2  0.2053     0.9025 0.004 0.924 0.000 0.072
#> GSM627156     2  0.2927     0.8427 0.008 0.900 0.068 0.024
#> GSM627188     1  0.1854     0.8294 0.940 0.000 0.012 0.048
#> GSM627197     2  0.2125     0.8997 0.004 0.920 0.000 0.076
#> GSM627173     2  0.1661     0.9103 0.004 0.944 0.000 0.052
#> GSM627179     2  0.0376     0.9103 0.004 0.992 0.000 0.004
#> GSM627208     3  0.3344     0.7782 0.008 0.092 0.876 0.024
#> GSM627215     3  0.5865     0.4283 0.000 0.340 0.612 0.048
#> GSM627153     4  0.5112     0.4669 0.004 0.436 0.000 0.560
#> GSM627155     1  0.1854     0.8294 0.940 0.000 0.012 0.048
#> GSM627165     4  0.6148     0.2728 0.000 0.468 0.048 0.484
#> GSM627168     3  0.2334     0.7906 0.088 0.000 0.908 0.004
#> GSM627183     3  0.2589     0.7723 0.116 0.000 0.884 0.000
#> GSM627144     3  0.2408     0.8091 0.000 0.000 0.896 0.104
#> GSM627158     1  0.1109     0.8458 0.968 0.000 0.028 0.004
#> GSM627196     2  0.1978     0.9046 0.004 0.928 0.000 0.068
#> GSM627142     3  0.6242     0.4117 0.056 0.000 0.520 0.424
#> GSM627182     3  0.2673     0.8014 0.020 0.048 0.916 0.016
#> GSM627202     3  0.5560     0.2224 0.392 0.000 0.584 0.024
#> GSM627141     3  0.2593     0.7793 0.104 0.000 0.892 0.004
#> GSM627143     2  0.3172     0.8421 0.008 0.884 0.020 0.088
#> GSM627145     3  0.1398     0.8107 0.040 0.000 0.956 0.004
#> GSM627152     3  0.3900     0.7841 0.020 0.000 0.816 0.164
#> GSM627200     1  0.4661     0.6413 0.652 0.000 0.348 0.000
#> GSM627159     4  0.3323     0.6721 0.060 0.000 0.064 0.876
#> GSM627164     2  0.1739     0.8910 0.008 0.952 0.016 0.024
#> GSM627138     1  0.2921     0.8462 0.860 0.000 0.140 0.000
#> GSM627175     4  0.5080     0.4984 0.004 0.420 0.000 0.576
#> GSM627150     3  0.2469     0.8088 0.000 0.000 0.892 0.108
#> GSM627166     1  0.3219     0.8395 0.836 0.000 0.164 0.000
#> GSM627186     2  0.3279     0.8165 0.008 0.880 0.088 0.024
#> GSM627139     4  0.3533     0.6645 0.056 0.000 0.080 0.864
#> GSM627181     2  0.2053     0.9025 0.004 0.924 0.000 0.072
#> GSM627205     2  0.1958     0.8875 0.008 0.944 0.028 0.020
#> GSM627214     2  0.3626     0.7389 0.000 0.812 0.004 0.184
#> GSM627180     3  0.3401     0.7929 0.000 0.008 0.840 0.152
#> GSM627172     2  0.1822     0.9040 0.008 0.944 0.004 0.044
#> GSM627184     1  0.1854     0.8294 0.940 0.000 0.012 0.048
#> GSM627193     2  0.0707     0.9130 0.000 0.980 0.000 0.020
#> GSM627191     4  0.4655     0.6803 0.160 0.040 0.008 0.792
#> GSM627176     3  0.4057     0.7808 0.028 0.000 0.812 0.160
#> GSM627194     2  0.1489     0.9110 0.004 0.952 0.000 0.044
#> GSM627154     4  0.4372     0.6845 0.004 0.268 0.000 0.728
#> GSM627187     3  0.3030     0.7890 0.076 0.028 0.892 0.004
#> GSM627198     4  0.5143     0.4218 0.004 0.456 0.000 0.540
#> GSM627160     4  0.3247     0.6741 0.060 0.000 0.060 0.880
#> GSM627185     1  0.3074     0.8436 0.848 0.000 0.152 0.000
#> GSM627206     3  0.2281     0.7875 0.096 0.000 0.904 0.000
#> GSM627161     1  0.1510     0.8433 0.956 0.000 0.028 0.016
#> GSM627162     3  0.3187     0.7967 0.028 0.052 0.896 0.024
#> GSM627210     3  0.4933    -0.0185 0.432 0.000 0.568 0.000
#> GSM627189     2  0.1824     0.9078 0.004 0.936 0.000 0.060

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM627128     4  0.4858     0.1525 0.008 0.000 0.012 0.556 0.424
#> GSM627110     3  0.1877     0.6288 0.012 0.000 0.924 0.000 0.064
#> GSM627132     1  0.1012     0.8299 0.968 0.000 0.020 0.000 0.012
#> GSM627107     5  0.5738     0.6026 0.004 0.000 0.292 0.104 0.600
#> GSM627103     2  0.1571     0.7463 0.000 0.936 0.000 0.060 0.004
#> GSM627114     3  0.2813     0.6161 0.024 0.000 0.868 0.000 0.108
#> GSM627134     4  0.3485     0.5660 0.000 0.048 0.000 0.828 0.124
#> GSM627137     2  0.1981     0.7434 0.000 0.920 0.000 0.016 0.064
#> GSM627148     3  0.3461     0.5528 0.000 0.004 0.772 0.000 0.224
#> GSM627101     4  0.4517     0.2328 0.000 0.000 0.012 0.600 0.388
#> GSM627130     4  0.4844     0.1742 0.012 0.000 0.008 0.564 0.416
#> GSM627071     3  0.2953     0.6214 0.028 0.000 0.868 0.004 0.100
#> GSM627118     4  0.2871     0.5771 0.000 0.040 0.000 0.872 0.088
#> GSM627094     2  0.1638     0.7452 0.000 0.932 0.000 0.064 0.004
#> GSM627122     3  0.5295     0.4855 0.096 0.000 0.684 0.008 0.212
#> GSM627115     2  0.1341     0.7469 0.000 0.944 0.000 0.056 0.000
#> GSM627125     4  0.4891     0.0843 0.008 0.000 0.012 0.532 0.448
#> GSM627174     2  0.3730     0.5648 0.000 0.712 0.000 0.288 0.000
#> GSM627102     2  0.3476     0.7060 0.000 0.804 0.000 0.020 0.176
#> GSM627073     3  0.4260     0.4463 0.004 0.000 0.680 0.008 0.308
#> GSM627108     2  0.1444     0.7463 0.000 0.948 0.000 0.012 0.040
#> GSM627126     1  0.0912     0.8268 0.972 0.000 0.000 0.016 0.012
#> GSM627078     4  0.3895     0.4113 0.000 0.320 0.000 0.680 0.000
#> GSM627090     3  0.4852     0.2873 0.012 0.000 0.624 0.016 0.348
#> GSM627099     4  0.4138     0.2878 0.000 0.384 0.000 0.616 0.000
#> GSM627105     4  0.4891     0.0843 0.008 0.000 0.012 0.532 0.448
#> GSM627117     3  0.3127     0.6087 0.020 0.004 0.848 0.000 0.128
#> GSM627121     5  0.5227     0.0361 0.000 0.008 0.460 0.028 0.504
#> GSM627127     4  0.3143     0.5385 0.000 0.204 0.000 0.796 0.000
#> GSM627087     2  0.1341     0.7469 0.000 0.944 0.000 0.056 0.000
#> GSM627089     3  0.2777     0.6082 0.016 0.000 0.864 0.000 0.120
#> GSM627092     2  0.4520     0.6375 0.000 0.684 0.000 0.032 0.284
#> GSM627076     5  0.6261     0.6088 0.012 0.000 0.320 0.124 0.544
#> GSM627136     3  0.1300     0.6257 0.028 0.000 0.956 0.000 0.016
#> GSM627081     3  0.4517     0.3226 0.004 0.000 0.616 0.008 0.372
#> GSM627091     2  0.4219     0.3288 0.000 0.584 0.000 0.416 0.000
#> GSM627097     4  0.2514     0.5804 0.000 0.044 0.000 0.896 0.060
#> GSM627072     3  0.2605     0.5950 0.000 0.000 0.852 0.000 0.148
#> GSM627080     1  0.0807     0.8313 0.976 0.000 0.012 0.000 0.012
#> GSM627088     3  0.2423     0.6188 0.024 0.000 0.896 0.000 0.080
#> GSM627109     1  0.4975     0.6510 0.668 0.000 0.276 0.004 0.052
#> GSM627111     1  0.1012     0.8299 0.968 0.000 0.020 0.000 0.012
#> GSM627113     3  0.4965     0.2994 0.304 0.000 0.644 0.000 0.052
#> GSM627133     3  0.4886     0.5053 0.000 0.036 0.648 0.004 0.312
#> GSM627177     3  0.3304     0.6195 0.028 0.000 0.840 0.004 0.128
#> GSM627086     2  0.2561     0.7109 0.000 0.856 0.000 0.144 0.000
#> GSM627095     1  0.0912     0.8268 0.972 0.000 0.000 0.016 0.012
#> GSM627079     3  0.3282     0.5608 0.008 0.000 0.804 0.000 0.188
#> GSM627082     4  0.5163     0.1600 0.028 0.000 0.008 0.556 0.408
#> GSM627074     3  0.5473    -0.0962 0.416 0.000 0.520 0.000 0.064
#> GSM627077     3  0.4298     0.5543 0.184 0.000 0.756 0.000 0.060
#> GSM627093     3  0.5312     0.3792 0.248 0.000 0.652 0.000 0.100
#> GSM627120     2  0.7370     0.2712 0.000 0.416 0.052 0.168 0.364
#> GSM627124     4  0.3895     0.4113 0.000 0.320 0.000 0.680 0.000
#> GSM627075     2  0.3132     0.7067 0.000 0.820 0.000 0.008 0.172
#> GSM627085     4  0.3684     0.4628 0.000 0.280 0.000 0.720 0.000
#> GSM627119     3  0.5100     0.3893 0.256 0.000 0.672 0.004 0.068
#> GSM627116     4  0.2666     0.5638 0.004 0.016 0.012 0.896 0.072
#> GSM627084     1  0.5080     0.5989 0.628 0.000 0.316 0.000 0.056
#> GSM627096     4  0.2793     0.5760 0.000 0.036 0.000 0.876 0.088
#> GSM627100     5  0.6268     0.6481 0.012 0.000 0.276 0.144 0.568
#> GSM627112     4  0.2753     0.5439 0.008 0.012 0.000 0.876 0.104
#> GSM627083     1  0.4528     0.5292 0.728 0.000 0.000 0.212 0.060
#> GSM627098     1  0.5142     0.5519 0.600 0.000 0.348 0.000 0.052
#> GSM627104     1  0.4975     0.6510 0.668 0.000 0.276 0.004 0.052
#> GSM627131     3  0.5672     0.3320 0.312 0.000 0.584 0.000 0.104
#> GSM627106     3  0.4530     0.3140 0.004 0.000 0.612 0.008 0.376
#> GSM627123     1  0.0912     0.8274 0.972 0.000 0.000 0.016 0.012
#> GSM627129     4  0.3861     0.5598 0.000 0.068 0.000 0.804 0.128
#> GSM627216     2  0.6098     0.6055 0.000 0.648 0.100 0.048 0.204
#> GSM627212     2  0.4211     0.4428 0.000 0.636 0.000 0.360 0.004
#> GSM627190     3  0.3031     0.6120 0.020 0.004 0.856 0.000 0.120
#> GSM627169     2  0.4695     0.6284 0.000 0.672 0.024 0.008 0.296
#> GSM627167     4  0.5744     0.3607 0.000 0.092 0.000 0.528 0.380
#> GSM627192     1  0.0912     0.8268 0.972 0.000 0.000 0.016 0.012
#> GSM627203     3  0.4299     0.4002 0.004 0.000 0.672 0.008 0.316
#> GSM627151     4  0.3969     0.5166 0.004 0.016 0.032 0.812 0.136
#> GSM627163     1  0.0807     0.8313 0.976 0.000 0.012 0.000 0.012
#> GSM627211     2  0.2249     0.7381 0.000 0.896 0.000 0.096 0.008
#> GSM627171     2  0.4582     0.6369 0.000 0.684 0.016 0.012 0.288
#> GSM627209     4  0.4045     0.3521 0.000 0.356 0.000 0.644 0.000
#> GSM627135     1  0.0807     0.8285 0.976 0.000 0.000 0.012 0.012
#> GSM627170     2  0.2824     0.7300 0.000 0.864 0.000 0.020 0.116
#> GSM627178     3  0.5960    -0.1526 0.444 0.000 0.460 0.004 0.092
#> GSM627199     4  0.4015     0.3690 0.000 0.348 0.000 0.652 0.000
#> GSM627213     4  0.2446     0.5808 0.000 0.044 0.000 0.900 0.056
#> GSM627140     4  0.5188     0.3717 0.000 0.056 0.000 0.600 0.344
#> GSM627149     1  0.1018     0.8253 0.968 0.000 0.000 0.016 0.016
#> GSM627147     4  0.6030     0.4357 0.000 0.224 0.000 0.580 0.196
#> GSM627195     3  0.4299     0.4083 0.004 0.000 0.672 0.008 0.316
#> GSM627204     2  0.2674     0.7143 0.000 0.856 0.000 0.140 0.004
#> GSM627207     2  0.3013     0.7123 0.000 0.832 0.000 0.008 0.160
#> GSM627157     1  0.5308     0.3971 0.532 0.000 0.416 0.000 0.052
#> GSM627201     2  0.3661     0.5789 0.000 0.724 0.000 0.276 0.000
#> GSM627146     2  0.3636     0.5838 0.000 0.728 0.000 0.272 0.000
#> GSM627156     2  0.4695     0.6287 0.000 0.672 0.024 0.008 0.296
#> GSM627188     1  0.0912     0.8268 0.972 0.000 0.000 0.016 0.012
#> GSM627197     2  0.3661     0.5789 0.000 0.724 0.000 0.276 0.000
#> GSM627173     2  0.2124     0.7367 0.000 0.900 0.000 0.096 0.004
#> GSM627179     2  0.1469     0.7466 0.000 0.948 0.000 0.016 0.036
#> GSM627208     3  0.5375     0.4339 0.000 0.076 0.604 0.000 0.320
#> GSM627215     3  0.7300     0.2103 0.000 0.196 0.476 0.048 0.280
#> GSM627153     4  0.4015     0.3689 0.000 0.348 0.000 0.652 0.000
#> GSM627155     1  0.0912     0.8268 0.972 0.000 0.000 0.016 0.012
#> GSM627165     4  0.7147     0.1592 0.000 0.332 0.012 0.336 0.320
#> GSM627168     3  0.1403     0.6283 0.024 0.000 0.952 0.000 0.024
#> GSM627183     3  0.2228     0.6105 0.040 0.000 0.912 0.000 0.048
#> GSM627144     3  0.3906     0.4688 0.004 0.000 0.704 0.000 0.292
#> GSM627158     1  0.0404     0.8318 0.988 0.000 0.012 0.000 0.000
#> GSM627196     2  0.2674     0.7143 0.000 0.856 0.000 0.140 0.004
#> GSM627142     5  0.6103     0.5251 0.012 0.000 0.132 0.264 0.592
#> GSM627182     3  0.3969     0.5398 0.000 0.004 0.692 0.000 0.304
#> GSM627202     3  0.5275     0.4807 0.276 0.000 0.640 0.000 0.084
#> GSM627141     3  0.2964     0.6119 0.024 0.000 0.856 0.000 0.120
#> GSM627143     2  0.5107     0.5976 0.000 0.632 0.008 0.040 0.320
#> GSM627145     3  0.2648     0.5870 0.000 0.000 0.848 0.000 0.152
#> GSM627152     3  0.4822     0.2986 0.012 0.000 0.632 0.016 0.340
#> GSM627200     3  0.4990     0.2753 0.324 0.000 0.628 0.000 0.048
#> GSM627159     4  0.5014     0.1628 0.020 0.000 0.008 0.560 0.412
#> GSM627164     2  0.4561     0.6391 0.000 0.688 0.016 0.012 0.284
#> GSM627138     1  0.3750     0.7110 0.756 0.000 0.232 0.000 0.012
#> GSM627175     4  0.3983     0.3816 0.000 0.340 0.000 0.660 0.000
#> GSM627150     3  0.4111     0.4705 0.004 0.000 0.708 0.008 0.280
#> GSM627166     1  0.5409     0.5429 0.588 0.000 0.348 0.004 0.060
#> GSM627186     2  0.4715     0.6258 0.000 0.668 0.024 0.008 0.300
#> GSM627139     5  0.5002    -0.1123 0.008 0.000 0.016 0.484 0.492
#> GSM627181     2  0.3274     0.6438 0.000 0.780 0.000 0.220 0.000
#> GSM627205     2  0.4573     0.6721 0.000 0.728 0.020 0.024 0.228
#> GSM627214     2  0.5593     0.4058 0.000 0.572 0.000 0.340 0.088
#> GSM627180     3  0.4484     0.3873 0.004 0.004 0.636 0.004 0.352
#> GSM627172     2  0.3550     0.7029 0.000 0.796 0.000 0.020 0.184
#> GSM627184     1  0.0912     0.8268 0.972 0.000 0.000 0.016 0.012
#> GSM627193     2  0.1043     0.7480 0.000 0.960 0.000 0.040 0.000
#> GSM627191     4  0.5669     0.3077 0.088 0.008 0.000 0.612 0.292
#> GSM627176     3  0.4841     0.2611 0.008 0.000 0.600 0.016 0.376
#> GSM627194     2  0.2020     0.7360 0.000 0.900 0.000 0.100 0.000
#> GSM627154     4  0.3177     0.5354 0.000 0.208 0.000 0.792 0.000
#> GSM627187     3  0.3594     0.5847 0.020 0.004 0.804 0.000 0.172
#> GSM627198     4  0.4015     0.3690 0.000 0.348 0.000 0.652 0.000
#> GSM627160     4  0.5006     0.1692 0.020 0.000 0.008 0.564 0.408
#> GSM627185     1  0.4777     0.6619 0.680 0.000 0.268 0.000 0.052
#> GSM627206     3  0.2331     0.6311 0.020 0.000 0.900 0.000 0.080
#> GSM627161     1  0.0324     0.8313 0.992 0.000 0.004 0.000 0.004
#> GSM627162     3  0.5031     0.4691 0.000 0.036 0.656 0.012 0.296
#> GSM627210     3  0.4741     0.4851 0.204 0.000 0.724 0.004 0.068
#> GSM627189     2  0.1965     0.7354 0.000 0.904 0.000 0.096 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM627128     6  0.2620    0.72717 0.024 0.000 0.000 0.040 0.048 0.888
#> GSM627110     3  0.4310    0.28024 0.000 0.012 0.512 0.004 0.472 0.000
#> GSM627132     1  0.2473    0.84435 0.856 0.008 0.136 0.000 0.000 0.000
#> GSM627107     5  0.3695    0.46333 0.000 0.000 0.000 0.016 0.712 0.272
#> GSM627103     2  0.4819    0.48761 0.000 0.596 0.032 0.356 0.008 0.008
#> GSM627114     3  0.5025    0.37577 0.000 0.064 0.532 0.004 0.400 0.000
#> GSM627134     4  0.5516    0.06764 0.000 0.004 0.028 0.528 0.056 0.384
#> GSM627137     2  0.3670    0.58974 0.000 0.736 0.024 0.240 0.000 0.000
#> GSM627148     5  0.2019    0.61693 0.000 0.000 0.088 0.012 0.900 0.000
#> GSM627101     6  0.3172    0.65556 0.000 0.000 0.000 0.148 0.036 0.816
#> GSM627130     6  0.2685    0.72680 0.024 0.000 0.000 0.052 0.040 0.884
#> GSM627071     5  0.4502   -0.09515 0.008 0.004 0.428 0.000 0.548 0.012
#> GSM627118     4  0.5225    0.06359 0.000 0.004 0.024 0.520 0.036 0.416
#> GSM627094     2  0.4057    0.46622 0.000 0.600 0.012 0.388 0.000 0.000
#> GSM627122     5  0.6027    0.22652 0.072 0.000 0.296 0.000 0.552 0.080
#> GSM627115     2  0.4808    0.49278 0.000 0.600 0.032 0.352 0.008 0.008
#> GSM627125     6  0.3051    0.72056 0.024 0.000 0.000 0.032 0.088 0.856
#> GSM627174     4  0.4346    0.20888 0.000 0.288 0.020 0.676 0.008 0.008
#> GSM627102     2  0.4406    0.60090 0.004 0.772 0.088 0.096 0.000 0.040
#> GSM627073     5  0.1536    0.63935 0.000 0.000 0.040 0.016 0.940 0.004
#> GSM627108     2  0.3634    0.55910 0.000 0.696 0.008 0.296 0.000 0.000
#> GSM627126     1  0.1168    0.90394 0.956 0.000 0.016 0.000 0.000 0.028
#> GSM627078     4  0.1858    0.58120 0.000 0.004 0.000 0.904 0.000 0.092
#> GSM627090     5  0.4739    0.56822 0.024 0.004 0.060 0.000 0.708 0.204
#> GSM627099     4  0.2998    0.56518 0.000 0.028 0.032 0.872 0.008 0.060
#> GSM627105     6  0.3051    0.72056 0.024 0.000 0.000 0.032 0.088 0.856
#> GSM627117     3  0.5035    0.38890 0.000 0.068 0.548 0.004 0.380 0.000
#> GSM627121     5  0.3370    0.60765 0.000 0.012 0.012 0.020 0.828 0.128
#> GSM627127     4  0.3817    0.44335 0.000 0.008 0.016 0.744 0.004 0.228
#> GSM627087     2  0.4808    0.49278 0.000 0.600 0.032 0.352 0.008 0.008
#> GSM627089     5  0.3323    0.43303 0.000 0.000 0.240 0.000 0.752 0.008
#> GSM627092     2  0.4568    0.56109 0.004 0.768 0.104 0.020 0.016 0.088
#> GSM627076     5  0.5055    0.21138 0.024 0.004 0.024 0.000 0.512 0.436
#> GSM627136     3  0.3830    0.48371 0.000 0.000 0.620 0.004 0.376 0.000
#> GSM627081     5  0.1594    0.64774 0.000 0.000 0.000 0.016 0.932 0.052
#> GSM627091     4  0.3720    0.46465 0.000 0.132 0.032 0.808 0.008 0.020
#> GSM627097     4  0.4660   -0.01527 0.004 0.000 0.024 0.508 0.004 0.460
#> GSM627072     5  0.3265    0.43048 0.000 0.000 0.248 0.004 0.748 0.000
#> GSM627080     1  0.1958    0.86848 0.896 0.004 0.100 0.000 0.000 0.000
#> GSM627088     3  0.4274    0.50730 0.000 0.024 0.636 0.004 0.336 0.000
#> GSM627109     3  0.3647    0.53970 0.232 0.004 0.748 0.000 0.004 0.012
#> GSM627111     1  0.2473    0.84435 0.856 0.008 0.136 0.000 0.000 0.000
#> GSM627113     3  0.4086    0.65105 0.088 0.004 0.768 0.000 0.136 0.004
#> GSM627133     5  0.5711    0.45200 0.004 0.128 0.148 0.036 0.668 0.016
#> GSM627177     3  0.4531    0.29398 0.008 0.004 0.520 0.000 0.456 0.012
#> GSM627086     4  0.4091   -0.28048 0.000 0.472 0.008 0.520 0.000 0.000
#> GSM627095     1  0.1245    0.90318 0.952 0.000 0.016 0.000 0.000 0.032
#> GSM627079     5  0.3869    0.46432 0.004 0.004 0.240 0.000 0.732 0.020
#> GSM627082     6  0.2755    0.72352 0.056 0.000 0.000 0.036 0.028 0.880
#> GSM627074     3  0.3708    0.64660 0.124 0.004 0.800 0.000 0.068 0.004
#> GSM627077     3  0.5690    0.22818 0.072 0.004 0.460 0.000 0.440 0.024
#> GSM627093     3  0.3174    0.64980 0.056 0.000 0.836 0.000 0.104 0.004
#> GSM627120     2  0.8026    0.15967 0.004 0.432 0.108 0.072 0.236 0.148
#> GSM627124     4  0.1858    0.58120 0.000 0.004 0.000 0.904 0.000 0.092
#> GSM627075     2  0.3873    0.61020 0.004 0.808 0.084 0.080 0.000 0.024
#> GSM627085     4  0.2100    0.56925 0.000 0.000 0.004 0.884 0.000 0.112
#> GSM627119     3  0.3873    0.64921 0.068 0.004 0.796 0.000 0.120 0.012
#> GSM627116     4  0.5386   -0.06787 0.004 0.004 0.060 0.468 0.008 0.456
#> GSM627084     3  0.4127    0.54889 0.252 0.004 0.712 0.000 0.024 0.008
#> GSM627096     4  0.5230    0.06058 0.000 0.004 0.024 0.516 0.036 0.420
#> GSM627100     5  0.4925    0.17228 0.016 0.004 0.024 0.000 0.500 0.456
#> GSM627112     6  0.4127    0.29784 0.008 0.000 0.004 0.400 0.000 0.588
#> GSM627083     1  0.3191    0.74316 0.812 0.000 0.012 0.012 0.000 0.164
#> GSM627098     3  0.3652    0.61640 0.196 0.004 0.768 0.000 0.032 0.000
#> GSM627104     3  0.3728    0.54346 0.228 0.008 0.748 0.000 0.004 0.012
#> GSM627131     3  0.5586    0.46589 0.084 0.004 0.576 0.000 0.312 0.024
#> GSM627106     5  0.1657    0.64684 0.000 0.000 0.000 0.016 0.928 0.056
#> GSM627123     1  0.1074    0.90261 0.960 0.000 0.012 0.000 0.000 0.028
#> GSM627129     6  0.5478    0.00782 0.000 0.008 0.032 0.448 0.036 0.476
#> GSM627216     2  0.7177    0.32807 0.004 0.440 0.060 0.176 0.304 0.016
#> GSM627212     4  0.4194    0.38549 0.000 0.196 0.032 0.748 0.008 0.016
#> GSM627190     3  0.5051    0.37786 0.000 0.068 0.540 0.004 0.388 0.000
#> GSM627169     2  0.3464    0.59571 0.004 0.832 0.116 0.012 0.012 0.024
#> GSM627167     6  0.6470    0.51672 0.004 0.220 0.068 0.128 0.008 0.572
#> GSM627192     1  0.1168    0.90394 0.956 0.000 0.016 0.000 0.000 0.028
#> GSM627203     5  0.1988    0.65043 0.004 0.004 0.024 0.000 0.920 0.048
#> GSM627151     4  0.6039   -0.06985 0.004 0.004 0.036 0.448 0.076 0.432
#> GSM627163     1  0.2445    0.85578 0.868 0.008 0.120 0.000 0.000 0.004
#> GSM627211     2  0.3975    0.38123 0.000 0.544 0.004 0.452 0.000 0.000
#> GSM627171     2  0.3679    0.59293 0.004 0.824 0.112 0.016 0.016 0.028
#> GSM627209     4  0.1956    0.58587 0.000 0.008 0.004 0.908 0.000 0.080
#> GSM627135     1  0.1176    0.90492 0.956 0.000 0.020 0.000 0.000 0.024
#> GSM627170     2  0.5493    0.54062 0.000 0.636 0.028 0.252 0.068 0.016
#> GSM627178     3  0.5375    0.57778 0.120 0.004 0.672 0.000 0.168 0.036
#> GSM627199     4  0.2056    0.58432 0.000 0.012 0.004 0.904 0.000 0.080
#> GSM627213     4  0.4374    0.02107 0.000 0.000 0.016 0.532 0.004 0.448
#> GSM627140     6  0.6003    0.59802 0.032 0.128 0.068 0.112 0.000 0.660
#> GSM627149     1  0.0993    0.90232 0.964 0.000 0.012 0.000 0.000 0.024
#> GSM627147     6  0.7390    0.24892 0.004 0.308 0.076 0.228 0.008 0.376
#> GSM627195     5  0.1596    0.65220 0.004 0.004 0.008 0.008 0.944 0.032
#> GSM627204     4  0.3999   -0.31698 0.000 0.496 0.004 0.500 0.000 0.000
#> GSM627207     2  0.2740    0.61613 0.000 0.852 0.028 0.120 0.000 0.000
#> GSM627157     3  0.3760    0.63348 0.184 0.004 0.768 0.000 0.044 0.000
#> GSM627201     4  0.4541    0.08244 0.000 0.344 0.024 0.620 0.008 0.004
#> GSM627146     4  0.3967    0.07613 0.000 0.356 0.012 0.632 0.000 0.000
#> GSM627156     2  0.3555    0.59443 0.004 0.828 0.116 0.012 0.016 0.024
#> GSM627188     1  0.1074    0.90401 0.960 0.000 0.012 0.000 0.000 0.028
#> GSM627197     4  0.3601    0.17126 0.000 0.312 0.004 0.684 0.000 0.000
#> GSM627173     2  0.4051    0.40978 0.000 0.560 0.008 0.432 0.000 0.000
#> GSM627179     2  0.4078    0.56543 0.000 0.700 0.016 0.272 0.004 0.008
#> GSM627208     5  0.5241    0.46344 0.000 0.160 0.116 0.028 0.688 0.008
#> GSM627215     5  0.6583    0.35357 0.000 0.212 0.068 0.124 0.572 0.024
#> GSM627153     4  0.1897    0.58430 0.000 0.004 0.004 0.908 0.000 0.084
#> GSM627155     1  0.0951    0.90433 0.968 0.004 0.008 0.000 0.000 0.020
#> GSM627165     6  0.8095    0.25870 0.000 0.248 0.036 0.184 0.176 0.356
#> GSM627168     3  0.4091    0.31672 0.000 0.000 0.520 0.000 0.472 0.008
#> GSM627183     3  0.3266    0.59270 0.000 0.000 0.728 0.000 0.272 0.000
#> GSM627144     5  0.2272    0.64845 0.000 0.004 0.056 0.000 0.900 0.040
#> GSM627158     1  0.1219    0.89353 0.948 0.004 0.048 0.000 0.000 0.000
#> GSM627196     4  0.3999   -0.31698 0.000 0.496 0.004 0.500 0.000 0.000
#> GSM627142     6  0.4886    0.22610 0.032 0.000 0.024 0.000 0.348 0.596
#> GSM627182     5  0.4575    0.46020 0.000 0.060 0.192 0.020 0.724 0.004
#> GSM627202     5  0.5813   -0.23247 0.092 0.004 0.436 0.000 0.448 0.020
#> GSM627141     3  0.5043    0.38620 0.000 0.068 0.544 0.004 0.384 0.000
#> GSM627143     2  0.5269    0.50014 0.004 0.720 0.116 0.028 0.028 0.104
#> GSM627145     5  0.3141    0.49762 0.000 0.000 0.200 0.000 0.788 0.012
#> GSM627152     5  0.5082    0.55643 0.024 0.004 0.100 0.000 0.688 0.184
#> GSM627200     3  0.4938    0.59961 0.080 0.000 0.680 0.000 0.216 0.024
#> GSM627159     6  0.2777    0.72904 0.036 0.000 0.000 0.036 0.048 0.880
#> GSM627164     2  0.3588    0.59468 0.004 0.828 0.112 0.012 0.016 0.028
#> GSM627138     1  0.4214    0.04006 0.528 0.008 0.460 0.000 0.004 0.000
#> GSM627175     4  0.1806    0.58320 0.000 0.004 0.000 0.908 0.000 0.088
#> GSM627150     5  0.1667    0.64101 0.004 0.000 0.044 0.008 0.936 0.008
#> GSM627166     3  0.3798    0.60635 0.188 0.004 0.772 0.000 0.020 0.016
#> GSM627186     2  0.3690    0.59015 0.004 0.820 0.120 0.016 0.016 0.024
#> GSM627139     6  0.3114    0.70314 0.024 0.000 0.004 0.016 0.108 0.848
#> GSM627181     4  0.3899   -0.08484 0.000 0.404 0.004 0.592 0.000 0.000
#> GSM627205     2  0.6540    0.49050 0.000 0.584 0.056 0.164 0.168 0.028
#> GSM627214     4  0.5702    0.38683 0.000 0.208 0.032 0.652 0.032 0.076
#> GSM627180     5  0.1959    0.63870 0.000 0.000 0.032 0.020 0.924 0.024
#> GSM627172     2  0.4592    0.59856 0.004 0.764 0.088 0.100 0.004 0.040
#> GSM627184     1  0.0806    0.90407 0.972 0.000 0.008 0.000 0.000 0.020
#> GSM627193     2  0.3927    0.52072 0.000 0.644 0.012 0.344 0.000 0.000
#> GSM627191     6  0.4197    0.67788 0.092 0.004 0.028 0.092 0.000 0.784
#> GSM627176     5  0.4711    0.57053 0.024 0.004 0.060 0.000 0.712 0.200
#> GSM627194     2  0.4442    0.37545 0.000 0.536 0.020 0.440 0.000 0.004
#> GSM627154     4  0.2772    0.49733 0.000 0.000 0.004 0.816 0.000 0.180
#> GSM627187     3  0.5260    0.40124 0.000 0.096 0.552 0.004 0.348 0.000
#> GSM627198     4  0.2002    0.58510 0.000 0.012 0.004 0.908 0.000 0.076
#> GSM627160     6  0.2427    0.72607 0.040 0.000 0.008 0.032 0.016 0.904
#> GSM627185     3  0.3560    0.50356 0.256 0.008 0.732 0.000 0.000 0.004
#> GSM627206     5  0.4467   -0.27126 0.000 0.020 0.480 0.004 0.496 0.000
#> GSM627161     1  0.1010    0.89937 0.960 0.004 0.036 0.000 0.000 0.000
#> GSM627162     3  0.6781    0.02923 0.004 0.208 0.400 0.004 0.352 0.032
#> GSM627210     3  0.3845    0.64495 0.052 0.004 0.792 0.000 0.140 0.012
#> GSM627189     2  0.4152    0.38969 0.000 0.548 0.012 0.440 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) age(p) other(p) k
#> MAD:kmeans 144           0.7594  0.345   0.0327 2
#> MAD:kmeans 117           0.3417  0.717   0.0674 3
#> MAD:kmeans 131           0.1049  0.472   0.3391 4
#> MAD:kmeans  93           0.0682  0.338   0.3899 5
#> MAD:kmeans  82           0.8240  0.630   0.1175 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 146 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.964       0.986         0.5032 0.498   0.498
#> 3 3 0.733           0.830       0.905         0.2923 0.786   0.598
#> 4 4 0.970           0.924       0.966         0.1581 0.793   0.483
#> 5 5 0.736           0.683       0.806         0.0527 0.915   0.683
#> 6 6 0.731           0.569       0.736         0.0438 0.927   0.680

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM627128     2  0.0376      0.973 0.004 0.996
#> GSM627110     1  0.0000      0.995 1.000 0.000
#> GSM627132     1  0.0000      0.995 1.000 0.000
#> GSM627107     2  0.8861      0.577 0.304 0.696
#> GSM627103     2  0.0000      0.976 0.000 1.000
#> GSM627114     1  0.0000      0.995 1.000 0.000
#> GSM627134     2  0.0000      0.976 0.000 1.000
#> GSM627137     2  0.0000      0.976 0.000 1.000
#> GSM627148     1  0.0000      0.995 1.000 0.000
#> GSM627101     2  0.0000      0.976 0.000 1.000
#> GSM627130     2  0.0000      0.976 0.000 1.000
#> GSM627071     1  0.0000      0.995 1.000 0.000
#> GSM627118     2  0.0000      0.976 0.000 1.000
#> GSM627094     2  0.0000      0.976 0.000 1.000
#> GSM627122     1  0.0000      0.995 1.000 0.000
#> GSM627115     2  0.0000      0.976 0.000 1.000
#> GSM627125     2  0.0376      0.973 0.004 0.996
#> GSM627174     2  0.0000      0.976 0.000 1.000
#> GSM627102     2  0.0000      0.976 0.000 1.000
#> GSM627073     1  0.0000      0.995 1.000 0.000
#> GSM627108     2  0.0000      0.976 0.000 1.000
#> GSM627126     1  0.0000      0.995 1.000 0.000
#> GSM627078     2  0.0000      0.976 0.000 1.000
#> GSM627090     1  0.0000      0.995 1.000 0.000
#> GSM627099     2  0.0000      0.976 0.000 1.000
#> GSM627105     2  0.0000      0.976 0.000 1.000
#> GSM627117     1  0.0000      0.995 1.000 0.000
#> GSM627121     2  0.8955      0.562 0.312 0.688
#> GSM627127     2  0.0000      0.976 0.000 1.000
#> GSM627087     2  0.0000      0.976 0.000 1.000
#> GSM627089     1  0.0000      0.995 1.000 0.000
#> GSM627092     2  0.0000      0.976 0.000 1.000
#> GSM627076     1  0.0000      0.995 1.000 0.000
#> GSM627136     1  0.0000      0.995 1.000 0.000
#> GSM627081     1  0.0000      0.995 1.000 0.000
#> GSM627091     2  0.0000      0.976 0.000 1.000
#> GSM627097     2  0.0000      0.976 0.000 1.000
#> GSM627072     1  0.0000      0.995 1.000 0.000
#> GSM627080     1  0.0000      0.995 1.000 0.000
#> GSM627088     1  0.0000      0.995 1.000 0.000
#> GSM627109     1  0.0000      0.995 1.000 0.000
#> GSM627111     1  0.0000      0.995 1.000 0.000
#> GSM627113     1  0.0000      0.995 1.000 0.000
#> GSM627133     2  0.1633      0.955 0.024 0.976
#> GSM627177     1  0.0000      0.995 1.000 0.000
#> GSM627086     2  0.0000      0.976 0.000 1.000
#> GSM627095     1  0.0000      0.995 1.000 0.000
#> GSM627079     1  0.0000      0.995 1.000 0.000
#> GSM627082     2  0.0376      0.973 0.004 0.996
#> GSM627074     1  0.0000      0.995 1.000 0.000
#> GSM627077     1  0.0000      0.995 1.000 0.000
#> GSM627093     1  0.0000      0.995 1.000 0.000
#> GSM627120     2  0.0000      0.976 0.000 1.000
#> GSM627124     2  0.0000      0.976 0.000 1.000
#> GSM627075     2  0.0000      0.976 0.000 1.000
#> GSM627085     2  0.0000      0.976 0.000 1.000
#> GSM627119     1  0.0000      0.995 1.000 0.000
#> GSM627116     2  0.9635      0.373 0.388 0.612
#> GSM627084     1  0.0000      0.995 1.000 0.000
#> GSM627096     2  0.0000      0.976 0.000 1.000
#> GSM627100     1  0.0000      0.995 1.000 0.000
#> GSM627112     2  0.0000      0.976 0.000 1.000
#> GSM627083     2  0.0938      0.966 0.012 0.988
#> GSM627098     1  0.0000      0.995 1.000 0.000
#> GSM627104     1  0.0000      0.995 1.000 0.000
#> GSM627131     1  0.0000      0.995 1.000 0.000
#> GSM627106     1  0.0000      0.995 1.000 0.000
#> GSM627123     1  0.0000      0.995 1.000 0.000
#> GSM627129     2  0.0000      0.976 0.000 1.000
#> GSM627216     2  0.0000      0.976 0.000 1.000
#> GSM627212     2  0.0000      0.976 0.000 1.000
#> GSM627190     1  0.0000      0.995 1.000 0.000
#> GSM627169     2  0.0000      0.976 0.000 1.000
#> GSM627167     2  0.0000      0.976 0.000 1.000
#> GSM627192     1  0.0000      0.995 1.000 0.000
#> GSM627203     1  0.0000      0.995 1.000 0.000
#> GSM627151     2  0.0000      0.976 0.000 1.000
#> GSM627163     1  0.0000      0.995 1.000 0.000
#> GSM627211     2  0.0000      0.976 0.000 1.000
#> GSM627171     2  0.0000      0.976 0.000 1.000
#> GSM627209     2  0.0000      0.976 0.000 1.000
#> GSM627135     1  0.0000      0.995 1.000 0.000
#> GSM627170     2  0.0000      0.976 0.000 1.000
#> GSM627178     1  0.0000      0.995 1.000 0.000
#> GSM627199     2  0.0000      0.976 0.000 1.000
#> GSM627213     2  0.0000      0.976 0.000 1.000
#> GSM627140     2  0.0000      0.976 0.000 1.000
#> GSM627149     1  0.0000      0.995 1.000 0.000
#> GSM627147     2  0.0000      0.976 0.000 1.000
#> GSM627195     1  0.0000      0.995 1.000 0.000
#> GSM627204     2  0.0000      0.976 0.000 1.000
#> GSM627207     2  0.0000      0.976 0.000 1.000
#> GSM627157     1  0.0000      0.995 1.000 0.000
#> GSM627201     2  0.0000      0.976 0.000 1.000
#> GSM627146     2  0.0000      0.976 0.000 1.000
#> GSM627156     2  0.0000      0.976 0.000 1.000
#> GSM627188     1  0.0000      0.995 1.000 0.000
#> GSM627197     2  0.0000      0.976 0.000 1.000
#> GSM627173     2  0.0000      0.976 0.000 1.000
#> GSM627179     2  0.0000      0.976 0.000 1.000
#> GSM627208     2  0.9323      0.487 0.348 0.652
#> GSM627215     2  0.0000      0.976 0.000 1.000
#> GSM627153     2  0.0000      0.976 0.000 1.000
#> GSM627155     1  0.0000      0.995 1.000 0.000
#> GSM627165     2  0.0000      0.976 0.000 1.000
#> GSM627168     1  0.0000      0.995 1.000 0.000
#> GSM627183     1  0.0000      0.995 1.000 0.000
#> GSM627144     1  0.0000      0.995 1.000 0.000
#> GSM627158     1  0.0000      0.995 1.000 0.000
#> GSM627196     2  0.0000      0.976 0.000 1.000
#> GSM627142     1  0.0000      0.995 1.000 0.000
#> GSM627182     1  0.0000      0.995 1.000 0.000
#> GSM627202     1  0.0000      0.995 1.000 0.000
#> GSM627141     1  0.0000      0.995 1.000 0.000
#> GSM627143     2  0.0000      0.976 0.000 1.000
#> GSM627145     1  0.0000      0.995 1.000 0.000
#> GSM627152     1  0.0000      0.995 1.000 0.000
#> GSM627200     1  0.0000      0.995 1.000 0.000
#> GSM627159     2  0.0376      0.973 0.004 0.996
#> GSM627164     2  0.0000      0.976 0.000 1.000
#> GSM627138     1  0.0000      0.995 1.000 0.000
#> GSM627175     2  0.0000      0.976 0.000 1.000
#> GSM627150     1  0.0000      0.995 1.000 0.000
#> GSM627166     1  0.0000      0.995 1.000 0.000
#> GSM627186     2  0.0000      0.976 0.000 1.000
#> GSM627139     2  0.9580      0.413 0.380 0.620
#> GSM627181     2  0.0000      0.976 0.000 1.000
#> GSM627205     2  0.0000      0.976 0.000 1.000
#> GSM627214     2  0.0000      0.976 0.000 1.000
#> GSM627180     1  0.0376      0.991 0.996 0.004
#> GSM627172     2  0.0000      0.976 0.000 1.000
#> GSM627184     1  0.0000      0.995 1.000 0.000
#> GSM627193     2  0.0000      0.976 0.000 1.000
#> GSM627191     2  0.0000      0.976 0.000 1.000
#> GSM627176     1  0.0000      0.995 1.000 0.000
#> GSM627194     2  0.0000      0.976 0.000 1.000
#> GSM627154     2  0.0000      0.976 0.000 1.000
#> GSM627187     1  0.0000      0.995 1.000 0.000
#> GSM627198     2  0.0000      0.976 0.000 1.000
#> GSM627160     1  0.9087      0.504 0.676 0.324
#> GSM627185     1  0.0000      0.995 1.000 0.000
#> GSM627206     1  0.0000      0.995 1.000 0.000
#> GSM627161     1  0.0000      0.995 1.000 0.000
#> GSM627162     1  0.0000      0.995 1.000 0.000
#> GSM627210     1  0.0000      0.995 1.000 0.000
#> GSM627189     2  0.0000      0.976 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM627128     3  0.2959      0.764 0.100 0.000 0.900
#> GSM627110     1  0.3551      0.823 0.868 0.000 0.132
#> GSM627132     1  0.0000      0.856 1.000 0.000 0.000
#> GSM627107     3  0.1031      0.780 0.024 0.000 0.976
#> GSM627103     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627114     1  0.3551      0.823 0.868 0.000 0.132
#> GSM627134     2  0.0892      0.961 0.000 0.980 0.020
#> GSM627137     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627148     3  0.4399      0.752 0.188 0.000 0.812
#> GSM627101     3  0.3816      0.689 0.000 0.148 0.852
#> GSM627130     3  0.4256      0.745 0.096 0.036 0.868
#> GSM627071     3  0.6299      0.210 0.476 0.000 0.524
#> GSM627118     2  0.3412      0.868 0.000 0.876 0.124
#> GSM627094     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627122     1  0.5216      0.619 0.740 0.000 0.260
#> GSM627115     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627125     3  0.3112      0.763 0.096 0.004 0.900
#> GSM627174     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627102     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627073     3  0.3752      0.782 0.144 0.000 0.856
#> GSM627108     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627126     1  0.3412      0.787 0.876 0.000 0.124
#> GSM627078     2  0.0747      0.963 0.000 0.984 0.016
#> GSM627090     3  0.4555      0.785 0.200 0.000 0.800
#> GSM627099     2  0.0592      0.964 0.000 0.988 0.012
#> GSM627105     3  0.3112      0.763 0.096 0.004 0.900
#> GSM627117     1  0.3551      0.823 0.868 0.000 0.132
#> GSM627121     3  0.3116      0.786 0.108 0.000 0.892
#> GSM627127     2  0.0892      0.961 0.000 0.980 0.020
#> GSM627087     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627089     3  0.6267      0.290 0.452 0.000 0.548
#> GSM627092     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627076     3  0.3267      0.767 0.116 0.000 0.884
#> GSM627136     1  0.2625      0.848 0.916 0.000 0.084
#> GSM627081     3  0.3686      0.783 0.140 0.000 0.860
#> GSM627091     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627097     2  0.2959      0.892 0.000 0.900 0.100
#> GSM627072     3  0.6126      0.434 0.400 0.000 0.600
#> GSM627080     1  0.0747      0.853 0.984 0.000 0.016
#> GSM627088     1  0.3412      0.828 0.876 0.000 0.124
#> GSM627109     1  0.1289      0.857 0.968 0.000 0.032
#> GSM627111     1  0.0000      0.856 1.000 0.000 0.000
#> GSM627113     1  0.2878      0.842 0.904 0.000 0.096
#> GSM627133     2  0.7451      0.221 0.040 0.564 0.396
#> GSM627177     1  0.5560      0.550 0.700 0.000 0.300
#> GSM627086     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627095     1  0.3412      0.787 0.876 0.000 0.124
#> GSM627079     3  0.4178      0.769 0.172 0.000 0.828
#> GSM627082     3  0.3551      0.746 0.132 0.000 0.868
#> GSM627074     1  0.2625      0.848 0.916 0.000 0.084
#> GSM627077     1  0.0237      0.855 0.996 0.000 0.004
#> GSM627093     1  0.2878      0.842 0.904 0.000 0.096
#> GSM627120     2  0.1031      0.960 0.000 0.976 0.024
#> GSM627124     2  0.0747      0.963 0.000 0.984 0.016
#> GSM627075     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627085     2  0.0747      0.963 0.000 0.984 0.016
#> GSM627119     1  0.2878      0.842 0.904 0.000 0.096
#> GSM627116     3  0.9645      0.142 0.380 0.208 0.412
#> GSM627084     1  0.1289      0.846 0.968 0.000 0.032
#> GSM627096     2  0.3412      0.868 0.000 0.876 0.124
#> GSM627100     3  0.3192      0.768 0.112 0.000 0.888
#> GSM627112     2  0.6001      0.741 0.052 0.772 0.176
#> GSM627083     1  0.4326      0.756 0.844 0.012 0.144
#> GSM627098     1  0.2261      0.853 0.932 0.000 0.068
#> GSM627104     1  0.2261      0.853 0.932 0.000 0.068
#> GSM627131     1  0.0000      0.856 1.000 0.000 0.000
#> GSM627106     3  0.3686      0.783 0.140 0.000 0.860
#> GSM627123     1  0.3412      0.787 0.876 0.000 0.124
#> GSM627129     2  0.0892      0.961 0.000 0.980 0.020
#> GSM627216     2  0.0237      0.965 0.000 0.996 0.004
#> GSM627212     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627190     1  0.3551      0.823 0.868 0.000 0.132
#> GSM627169     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627167     2  0.0892      0.961 0.000 0.980 0.020
#> GSM627192     1  0.3412      0.787 0.876 0.000 0.124
#> GSM627203     3  0.3752      0.782 0.144 0.000 0.856
#> GSM627151     2  0.3816      0.841 0.000 0.852 0.148
#> GSM627163     1  0.0892      0.851 0.980 0.000 0.020
#> GSM627211     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627171     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627209     2  0.0747      0.963 0.000 0.984 0.016
#> GSM627135     1  0.3412      0.787 0.876 0.000 0.124
#> GSM627170     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627178     1  0.0747      0.853 0.984 0.000 0.016
#> GSM627199     2  0.0747      0.963 0.000 0.984 0.016
#> GSM627213     2  0.0892      0.961 0.000 0.980 0.020
#> GSM627140     2  0.5435      0.785 0.048 0.808 0.144
#> GSM627149     1  0.3412      0.787 0.876 0.000 0.124
#> GSM627147     2  0.0424      0.965 0.000 0.992 0.008
#> GSM627195     3  0.3752      0.782 0.144 0.000 0.856
#> GSM627204     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627207     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627157     1  0.2261      0.853 0.932 0.000 0.068
#> GSM627201     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627146     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627156     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627188     1  0.3412      0.787 0.876 0.000 0.124
#> GSM627197     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627173     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627179     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627208     3  0.7327      0.671 0.132 0.160 0.708
#> GSM627215     2  0.2878      0.879 0.000 0.904 0.096
#> GSM627153     2  0.0747      0.963 0.000 0.984 0.016
#> GSM627155     1  0.3412      0.787 0.876 0.000 0.124
#> GSM627165     2  0.5254      0.663 0.000 0.736 0.264
#> GSM627168     1  0.3551      0.823 0.868 0.000 0.132
#> GSM627183     1  0.3340      0.831 0.880 0.000 0.120
#> GSM627144     3  0.3752      0.782 0.144 0.000 0.856
#> GSM627158     1  0.0892      0.851 0.980 0.000 0.020
#> GSM627196     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627142     3  0.3192      0.767 0.112 0.000 0.888
#> GSM627182     3  0.5988      0.504 0.368 0.000 0.632
#> GSM627202     1  0.0000      0.856 1.000 0.000 0.000
#> GSM627141     1  0.3267      0.833 0.884 0.000 0.116
#> GSM627143     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627145     3  0.5948      0.520 0.360 0.000 0.640
#> GSM627152     3  0.4605      0.784 0.204 0.000 0.796
#> GSM627200     1  0.0000      0.856 1.000 0.000 0.000
#> GSM627159     3  0.3551      0.746 0.132 0.000 0.868
#> GSM627164     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627138     1  0.2261      0.853 0.932 0.000 0.068
#> GSM627175     2  0.0747      0.963 0.000 0.984 0.016
#> GSM627150     3  0.3752      0.782 0.144 0.000 0.856
#> GSM627166     1  0.0747      0.853 0.984 0.000 0.016
#> GSM627186     2  0.0237      0.965 0.000 0.996 0.004
#> GSM627139     3  0.2959      0.764 0.100 0.000 0.900
#> GSM627181     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627205     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627214     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627180     3  0.3619      0.783 0.136 0.000 0.864
#> GSM627172     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627184     1  0.3412      0.787 0.876 0.000 0.124
#> GSM627193     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627191     1  0.9108      0.234 0.520 0.316 0.164
#> GSM627176     3  0.4555      0.785 0.200 0.000 0.800
#> GSM627194     2  0.0000      0.967 0.000 1.000 0.000
#> GSM627154     2  0.0892      0.961 0.000 0.980 0.020
#> GSM627187     1  0.3551      0.823 0.868 0.000 0.132
#> GSM627198     2  0.0747      0.963 0.000 0.984 0.016
#> GSM627160     1  0.6280      0.126 0.540 0.000 0.460
#> GSM627185     1  0.2261      0.853 0.932 0.000 0.068
#> GSM627206     1  0.3551      0.823 0.868 0.000 0.132
#> GSM627161     1  0.1753      0.837 0.952 0.000 0.048
#> GSM627162     1  0.4931      0.705 0.768 0.000 0.232
#> GSM627210     1  0.2878      0.842 0.904 0.000 0.096
#> GSM627189     2  0.0000      0.967 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM627128     4  0.0469      0.951 0.000 0.000 0.012 0.988
#> GSM627110     3  0.0592      0.945 0.016 0.000 0.984 0.000
#> GSM627132     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM627107     3  0.0188      0.947 0.000 0.000 0.996 0.004
#> GSM627103     2  0.0336      0.981 0.000 0.992 0.000 0.008
#> GSM627114     3  0.1118      0.933 0.036 0.000 0.964 0.000
#> GSM627134     4  0.0336      0.955 0.000 0.008 0.000 0.992
#> GSM627137     2  0.0000      0.979 0.000 1.000 0.000 0.000
#> GSM627148     3  0.0000      0.947 0.000 0.000 1.000 0.000
#> GSM627101     4  0.0469      0.951 0.000 0.000 0.012 0.988
#> GSM627130     4  0.0469      0.951 0.000 0.000 0.012 0.988
#> GSM627071     3  0.1118      0.933 0.036 0.000 0.964 0.000
#> GSM627118     4  0.0188      0.955 0.000 0.004 0.000 0.996
#> GSM627094     2  0.0336      0.981 0.000 0.992 0.000 0.008
#> GSM627122     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM627115     2  0.0336      0.981 0.000 0.992 0.000 0.008
#> GSM627125     4  0.0592      0.949 0.000 0.000 0.016 0.984
#> GSM627174     2  0.0336      0.981 0.000 0.992 0.000 0.008
#> GSM627102     2  0.0000      0.979 0.000 1.000 0.000 0.000
#> GSM627073     3  0.0188      0.947 0.000 0.000 0.996 0.004
#> GSM627108     2  0.0188      0.980 0.000 0.996 0.000 0.004
#> GSM627126     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM627078     4  0.1389      0.938 0.000 0.048 0.000 0.952
#> GSM627090     3  0.0188      0.947 0.000 0.000 0.996 0.004
#> GSM627099     4  0.2814      0.864 0.000 0.132 0.000 0.868
#> GSM627105     4  0.0592      0.949 0.000 0.000 0.016 0.984
#> GSM627117     3  0.1118      0.933 0.036 0.000 0.964 0.000
#> GSM627121     3  0.0188      0.947 0.000 0.000 0.996 0.004
#> GSM627127     4  0.0336      0.955 0.000 0.008 0.000 0.992
#> GSM627087     2  0.0336      0.981 0.000 0.992 0.000 0.008
#> GSM627089     3  0.0592      0.945 0.016 0.000 0.984 0.000
#> GSM627092     2  0.0000      0.979 0.000 1.000 0.000 0.000
#> GSM627076     3  0.0188      0.947 0.000 0.000 0.996 0.004
#> GSM627136     1  0.0188      0.970 0.996 0.000 0.004 0.000
#> GSM627081     3  0.0188      0.947 0.000 0.000 0.996 0.004
#> GSM627091     2  0.0592      0.976 0.000 0.984 0.000 0.016
#> GSM627097     4  0.0188      0.955 0.000 0.004 0.000 0.996
#> GSM627072     3  0.0469      0.946 0.012 0.000 0.988 0.000
#> GSM627080     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM627088     3  0.4790      0.397 0.380 0.000 0.620 0.000
#> GSM627109     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM627111     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM627113     1  0.0707      0.957 0.980 0.000 0.020 0.000
#> GSM627133     3  0.1059      0.934 0.000 0.016 0.972 0.012
#> GSM627177     1  0.4661      0.428 0.652 0.000 0.348 0.000
#> GSM627086     2  0.0469      0.979 0.000 0.988 0.000 0.012
#> GSM627095     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM627079     3  0.0188      0.947 0.000 0.000 0.996 0.004
#> GSM627082     4  0.0469      0.951 0.000 0.000 0.012 0.988
#> GSM627074     1  0.0188      0.970 0.996 0.000 0.004 0.000
#> GSM627077     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM627093     1  0.0188      0.970 0.996 0.000 0.004 0.000
#> GSM627120     2  0.3123      0.797 0.000 0.844 0.000 0.156
#> GSM627124     4  0.1389      0.938 0.000 0.048 0.000 0.952
#> GSM627075     2  0.0000      0.979 0.000 1.000 0.000 0.000
#> GSM627085     4  0.0336      0.955 0.000 0.008 0.000 0.992
#> GSM627119     1  0.0188      0.970 0.996 0.000 0.004 0.000
#> GSM627116     4  0.0188      0.953 0.004 0.000 0.000 0.996
#> GSM627084     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM627096     4  0.0188      0.955 0.000 0.004 0.000 0.996
#> GSM627100     3  0.0188      0.947 0.000 0.000 0.996 0.004
#> GSM627112     4  0.0188      0.955 0.000 0.004 0.000 0.996
#> GSM627083     1  0.1398      0.933 0.956 0.004 0.000 0.040
#> GSM627098     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM627104     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM627131     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM627106     3  0.0188      0.947 0.000 0.000 0.996 0.004
#> GSM627123     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM627129     4  0.0469      0.955 0.000 0.012 0.000 0.988
#> GSM627216     2  0.0336      0.981 0.000 0.992 0.000 0.008
#> GSM627212     2  0.0469      0.979 0.000 0.988 0.000 0.012
#> GSM627190     3  0.0592      0.945 0.016 0.000 0.984 0.000
#> GSM627169     2  0.0000      0.979 0.000 1.000 0.000 0.000
#> GSM627167     4  0.0592      0.953 0.000 0.016 0.000 0.984
#> GSM627192     1  0.0188      0.970 0.996 0.000 0.000 0.004
#> GSM627203     3  0.0188      0.947 0.000 0.000 0.996 0.004
#> GSM627151     4  0.0188      0.955 0.000 0.004 0.000 0.996
#> GSM627163     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM627211     2  0.0336      0.981 0.000 0.992 0.000 0.008
#> GSM627171     2  0.0000      0.979 0.000 1.000 0.000 0.000
#> GSM627209     4  0.2469      0.889 0.000 0.108 0.000 0.892
#> GSM627135     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM627170     2  0.0000      0.979 0.000 1.000 0.000 0.000
#> GSM627178     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM627199     4  0.1716      0.928 0.000 0.064 0.000 0.936
#> GSM627213     4  0.0188      0.955 0.000 0.004 0.000 0.996
#> GSM627140     4  0.0469      0.953 0.000 0.012 0.000 0.988
#> GSM627149     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM627147     4  0.2868      0.859 0.000 0.136 0.000 0.864
#> GSM627195     3  0.0188      0.947 0.000 0.000 0.996 0.004
#> GSM627204     2  0.0336      0.981 0.000 0.992 0.000 0.008
#> GSM627207     2  0.0000      0.979 0.000 1.000 0.000 0.000
#> GSM627157     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM627201     2  0.0336      0.981 0.000 0.992 0.000 0.008
#> GSM627146     2  0.0336      0.981 0.000 0.992 0.000 0.008
#> GSM627156     2  0.0000      0.979 0.000 1.000 0.000 0.000
#> GSM627188     1  0.0188      0.970 0.996 0.000 0.000 0.004
#> GSM627197     2  0.0336      0.981 0.000 0.992 0.000 0.008
#> GSM627173     2  0.0336      0.981 0.000 0.992 0.000 0.008
#> GSM627179     2  0.0336      0.981 0.000 0.992 0.000 0.008
#> GSM627208     3  0.0592      0.942 0.000 0.016 0.984 0.000
#> GSM627215     2  0.5204      0.374 0.000 0.612 0.376 0.012
#> GSM627153     4  0.2081      0.912 0.000 0.084 0.000 0.916
#> GSM627155     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM627165     4  0.5488      0.201 0.000 0.452 0.016 0.532
#> GSM627168     3  0.0592      0.945 0.016 0.000 0.984 0.000
#> GSM627183     1  0.4998     -0.013 0.512 0.000 0.488 0.000
#> GSM627144     3  0.0000      0.947 0.000 0.000 1.000 0.000
#> GSM627158     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM627196     2  0.0336      0.981 0.000 0.992 0.000 0.008
#> GSM627142     3  0.3224      0.833 0.016 0.000 0.864 0.120
#> GSM627182     3  0.0469      0.946 0.012 0.000 0.988 0.000
#> GSM627202     1  0.0188      0.970 0.996 0.000 0.004 0.000
#> GSM627141     3  0.4992      0.124 0.476 0.000 0.524 0.000
#> GSM627143     2  0.0000      0.979 0.000 1.000 0.000 0.000
#> GSM627145     3  0.0469      0.946 0.012 0.000 0.988 0.000
#> GSM627152     3  0.0188      0.947 0.000 0.000 0.996 0.004
#> GSM627200     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM627159     4  0.0469      0.951 0.000 0.000 0.012 0.988
#> GSM627164     2  0.0000      0.979 0.000 1.000 0.000 0.000
#> GSM627138     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM627175     4  0.1389      0.938 0.000 0.048 0.000 0.952
#> GSM627150     3  0.0188      0.947 0.000 0.000 0.996 0.004
#> GSM627166     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM627186     2  0.0188      0.977 0.000 0.996 0.004 0.000
#> GSM627139     4  0.0592      0.949 0.000 0.000 0.016 0.984
#> GSM627181     2  0.0336      0.981 0.000 0.992 0.000 0.008
#> GSM627205     2  0.0000      0.979 0.000 1.000 0.000 0.000
#> GSM627214     2  0.0707      0.973 0.000 0.980 0.000 0.020
#> GSM627180     3  0.0188      0.947 0.000 0.000 0.996 0.004
#> GSM627172     2  0.0000      0.979 0.000 1.000 0.000 0.000
#> GSM627184     1  0.0188      0.970 0.996 0.000 0.000 0.004
#> GSM627193     2  0.0336      0.981 0.000 0.992 0.000 0.008
#> GSM627191     4  0.0524      0.952 0.004 0.008 0.000 0.988
#> GSM627176     3  0.0188      0.947 0.000 0.000 0.996 0.004
#> GSM627194     2  0.0336      0.981 0.000 0.992 0.000 0.008
#> GSM627154     4  0.0336      0.955 0.000 0.008 0.000 0.992
#> GSM627187     3  0.1118      0.933 0.036 0.000 0.964 0.000
#> GSM627198     4  0.1792      0.925 0.000 0.068 0.000 0.932
#> GSM627160     4  0.2741      0.875 0.096 0.000 0.012 0.892
#> GSM627185     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM627206     3  0.0592      0.945 0.016 0.000 0.984 0.000
#> GSM627161     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> GSM627162     3  0.5112      0.363 0.384 0.008 0.608 0.000
#> GSM627210     1  0.0921      0.949 0.972 0.000 0.028 0.000
#> GSM627189     2  0.0336      0.981 0.000 0.992 0.000 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM627128     5  0.2605     0.7003 0.000 0.000 0.000 0.148 0.852
#> GSM627110     3  0.2611     0.7888 0.072 0.000 0.896 0.016 0.016
#> GSM627132     1  0.0290     0.8904 0.992 0.000 0.008 0.000 0.000
#> GSM627107     5  0.4074     0.4201 0.000 0.000 0.364 0.000 0.636
#> GSM627103     2  0.0703     0.7193 0.000 0.976 0.000 0.024 0.000
#> GSM627114     3  0.3399     0.7737 0.080 0.000 0.856 0.048 0.016
#> GSM627134     4  0.5519     0.7627 0.000 0.204 0.000 0.648 0.148
#> GSM627137     2  0.1197     0.7241 0.000 0.952 0.000 0.048 0.000
#> GSM627148     3  0.1270     0.7975 0.000 0.000 0.948 0.000 0.052
#> GSM627101     5  0.3715     0.5524 0.000 0.004 0.000 0.260 0.736
#> GSM627130     5  0.2648     0.6968 0.000 0.000 0.000 0.152 0.848
#> GSM627071     3  0.1041     0.8066 0.032 0.000 0.964 0.000 0.004
#> GSM627118     4  0.5546     0.7446 0.000 0.172 0.000 0.648 0.180
#> GSM627094     2  0.0609     0.7210 0.000 0.980 0.000 0.020 0.000
#> GSM627122     1  0.2233     0.8628 0.892 0.000 0.004 0.000 0.104
#> GSM627115     2  0.0609     0.7206 0.000 0.980 0.000 0.020 0.000
#> GSM627125     5  0.1544     0.7381 0.000 0.000 0.000 0.068 0.932
#> GSM627174     2  0.3612     0.3479 0.000 0.732 0.000 0.268 0.000
#> GSM627102     2  0.3966     0.6342 0.000 0.664 0.000 0.336 0.000
#> GSM627073     3  0.2377     0.7687 0.000 0.000 0.872 0.000 0.128
#> GSM627108     2  0.0609     0.7257 0.000 0.980 0.000 0.020 0.000
#> GSM627126     1  0.1792     0.8741 0.916 0.000 0.000 0.000 0.084
#> GSM627078     4  0.4620     0.7566 0.000 0.320 0.000 0.652 0.028
#> GSM627090     5  0.4030     0.4114 0.000 0.000 0.352 0.000 0.648
#> GSM627099     4  0.4030     0.7220 0.000 0.352 0.000 0.648 0.000
#> GSM627105     5  0.1544     0.7381 0.000 0.000 0.000 0.068 0.932
#> GSM627117     3  0.4344     0.7413 0.080 0.004 0.800 0.100 0.016
#> GSM627121     3  0.3857     0.5059 0.000 0.000 0.688 0.000 0.312
#> GSM627127     4  0.5450     0.7687 0.000 0.216 0.000 0.652 0.132
#> GSM627087     2  0.0609     0.7206 0.000 0.980 0.000 0.020 0.000
#> GSM627089     3  0.0566     0.8078 0.012 0.000 0.984 0.000 0.004
#> GSM627092     2  0.4235     0.6279 0.000 0.656 0.000 0.336 0.008
#> GSM627076     5  0.3109     0.6381 0.000 0.000 0.200 0.000 0.800
#> GSM627136     1  0.3343     0.7693 0.812 0.000 0.172 0.000 0.016
#> GSM627081     3  0.3242     0.6801 0.000 0.000 0.784 0.000 0.216
#> GSM627091     4  0.4305     0.4292 0.000 0.488 0.000 0.512 0.000
#> GSM627097     4  0.5398     0.6812 0.000 0.112 0.000 0.648 0.240
#> GSM627072     3  0.0162     0.8075 0.004 0.000 0.996 0.000 0.000
#> GSM627080     1  0.0451     0.8915 0.988 0.000 0.004 0.000 0.008
#> GSM627088     3  0.3943     0.7061 0.184 0.000 0.784 0.016 0.016
#> GSM627109     1  0.1281     0.8822 0.956 0.000 0.032 0.000 0.012
#> GSM627111     1  0.0451     0.8899 0.988 0.000 0.008 0.000 0.004
#> GSM627113     1  0.4482     0.4860 0.636 0.000 0.348 0.000 0.016
#> GSM627133     3  0.1739     0.7978 0.000 0.032 0.940 0.024 0.004
#> GSM627177     3  0.3689     0.5959 0.256 0.000 0.740 0.000 0.004
#> GSM627086     2  0.1270     0.6983 0.000 0.948 0.000 0.052 0.000
#> GSM627095     1  0.1792     0.8741 0.916 0.000 0.000 0.000 0.084
#> GSM627079     3  0.2674     0.7633 0.004 0.000 0.856 0.000 0.140
#> GSM627082     5  0.2824     0.7098 0.020 0.000 0.000 0.116 0.864
#> GSM627074     1  0.3562     0.7418 0.788 0.000 0.196 0.000 0.016
#> GSM627077     1  0.1364     0.8907 0.952 0.000 0.012 0.000 0.036
#> GSM627093     1  0.4288     0.6491 0.720 0.000 0.256 0.008 0.016
#> GSM627120     2  0.5258     0.5547 0.000 0.564 0.020 0.396 0.020
#> GSM627124     4  0.4620     0.7566 0.000 0.320 0.000 0.652 0.028
#> GSM627075     2  0.3949     0.6333 0.000 0.668 0.000 0.332 0.000
#> GSM627085     4  0.4620     0.7566 0.000 0.320 0.000 0.652 0.028
#> GSM627119     1  0.4435     0.5122 0.648 0.000 0.336 0.000 0.016
#> GSM627116     4  0.5332     0.6298 0.004 0.080 0.000 0.648 0.268
#> GSM627084     1  0.0290     0.8911 0.992 0.000 0.000 0.000 0.008
#> GSM627096     4  0.5546     0.7446 0.000 0.172 0.000 0.648 0.180
#> GSM627100     5  0.3109     0.6381 0.000 0.000 0.200 0.000 0.800
#> GSM627112     4  0.5084     0.5142 0.000 0.052 0.000 0.616 0.332
#> GSM627083     1  0.2424     0.8401 0.868 0.000 0.000 0.000 0.132
#> GSM627098     1  0.1701     0.8741 0.936 0.000 0.048 0.000 0.016
#> GSM627104     1  0.1549     0.8777 0.944 0.000 0.040 0.000 0.016
#> GSM627131     1  0.1836     0.8909 0.932 0.000 0.032 0.000 0.036
#> GSM627106     3  0.3242     0.6801 0.000 0.000 0.784 0.000 0.216
#> GSM627123     1  0.1965     0.8681 0.904 0.000 0.000 0.000 0.096
#> GSM627129     4  0.5478     0.7300 0.000 0.164 0.000 0.656 0.180
#> GSM627216     2  0.1579     0.7145 0.000 0.944 0.024 0.032 0.000
#> GSM627212     2  0.4304    -0.3969 0.000 0.516 0.000 0.484 0.000
#> GSM627190     3  0.3605     0.7680 0.080 0.000 0.844 0.060 0.016
#> GSM627169     2  0.4015     0.6258 0.000 0.652 0.000 0.348 0.000
#> GSM627167     5  0.5295     0.4306 0.000 0.048 0.000 0.464 0.488
#> GSM627192     1  0.1851     0.8724 0.912 0.000 0.000 0.000 0.088
#> GSM627203     3  0.3039     0.7103 0.000 0.000 0.808 0.000 0.192
#> GSM627151     4  0.5450     0.6977 0.000 0.124 0.000 0.648 0.228
#> GSM627163     1  0.0162     0.8910 0.996 0.000 0.000 0.000 0.004
#> GSM627211     2  0.0290     0.7244 0.000 0.992 0.000 0.008 0.000
#> GSM627171     2  0.4015     0.6258 0.000 0.652 0.000 0.348 0.000
#> GSM627209     4  0.4166     0.7274 0.000 0.348 0.000 0.648 0.004
#> GSM627135     1  0.1792     0.8741 0.916 0.000 0.000 0.000 0.084
#> GSM627170     2  0.1043     0.7242 0.000 0.960 0.000 0.040 0.000
#> GSM627178     1  0.1364     0.8911 0.952 0.000 0.012 0.000 0.036
#> GSM627199     4  0.4491     0.7502 0.000 0.328 0.000 0.652 0.020
#> GSM627213     4  0.5464     0.7025 0.000 0.128 0.000 0.648 0.224
#> GSM627140     5  0.4684     0.4899 0.004 0.008 0.000 0.452 0.536
#> GSM627149     1  0.1965     0.8681 0.904 0.000 0.000 0.000 0.096
#> GSM627147     4  0.5589     0.1259 0.000 0.244 0.000 0.628 0.128
#> GSM627195     3  0.2561     0.7579 0.000 0.000 0.856 0.000 0.144
#> GSM627204     2  0.0794     0.7171 0.000 0.972 0.000 0.028 0.000
#> GSM627207     2  0.3508     0.6596 0.000 0.748 0.000 0.252 0.000
#> GSM627157     1  0.1845     0.8701 0.928 0.000 0.056 0.000 0.016
#> GSM627201     2  0.3508     0.3863 0.000 0.748 0.000 0.252 0.000
#> GSM627146     2  0.3534     0.3772 0.000 0.744 0.000 0.256 0.000
#> GSM627156     2  0.4015     0.6258 0.000 0.652 0.000 0.348 0.000
#> GSM627188     1  0.1965     0.8681 0.904 0.000 0.000 0.000 0.096
#> GSM627197     2  0.3752     0.2813 0.000 0.708 0.000 0.292 0.000
#> GSM627173     2  0.0510     0.7225 0.000 0.984 0.000 0.016 0.000
#> GSM627179     2  0.0290     0.7257 0.000 0.992 0.000 0.008 0.000
#> GSM627208     3  0.1018     0.8054 0.000 0.016 0.968 0.016 0.000
#> GSM627215     3  0.5099     0.1550 0.000 0.440 0.528 0.028 0.004
#> GSM627153     4  0.4151     0.7326 0.000 0.344 0.000 0.652 0.004
#> GSM627155     1  0.1851     0.8724 0.912 0.000 0.000 0.000 0.088
#> GSM627165     2  0.6437    -0.0041 0.000 0.464 0.004 0.156 0.376
#> GSM627168     3  0.2270     0.7909 0.076 0.000 0.904 0.000 0.020
#> GSM627183     3  0.3942     0.6604 0.232 0.000 0.748 0.000 0.020
#> GSM627144     3  0.2516     0.7597 0.000 0.000 0.860 0.000 0.140
#> GSM627158     1  0.0963     0.8888 0.964 0.000 0.000 0.000 0.036
#> GSM627196     2  0.0794     0.7171 0.000 0.972 0.000 0.028 0.000
#> GSM627142     5  0.1410     0.7311 0.000 0.000 0.060 0.000 0.940
#> GSM627182     3  0.0510     0.8070 0.000 0.000 0.984 0.016 0.000
#> GSM627202     1  0.1836     0.8909 0.932 0.000 0.032 0.000 0.036
#> GSM627141     3  0.5706     0.5886 0.236 0.000 0.648 0.100 0.016
#> GSM627143     2  0.4166     0.6235 0.000 0.648 0.000 0.348 0.004
#> GSM627145     3  0.0451     0.8074 0.004 0.000 0.988 0.000 0.008
#> GSM627152     5  0.4763     0.4159 0.032 0.000 0.336 0.000 0.632
#> GSM627200     1  0.1914     0.8816 0.924 0.000 0.060 0.000 0.016
#> GSM627159     5  0.2439     0.7149 0.004 0.000 0.000 0.120 0.876
#> GSM627164     2  0.4015     0.6258 0.000 0.652 0.000 0.348 0.000
#> GSM627138     1  0.1774     0.8722 0.932 0.000 0.052 0.000 0.016
#> GSM627175     4  0.4620     0.7566 0.000 0.320 0.000 0.652 0.028
#> GSM627150     3  0.2377     0.7687 0.000 0.000 0.872 0.000 0.128
#> GSM627166     1  0.0290     0.8904 0.992 0.000 0.008 0.000 0.000
#> GSM627186     2  0.4166     0.6233 0.000 0.648 0.004 0.348 0.000
#> GSM627139     5  0.1502     0.7389 0.000 0.000 0.004 0.056 0.940
#> GSM627181     2  0.2891     0.5320 0.000 0.824 0.000 0.176 0.000
#> GSM627205     2  0.1557     0.7212 0.000 0.940 0.008 0.052 0.000
#> GSM627214     2  0.4060     0.0350 0.000 0.640 0.000 0.360 0.000
#> GSM627180     3  0.2690     0.7455 0.000 0.000 0.844 0.000 0.156
#> GSM627172     2  0.3966     0.6342 0.000 0.664 0.000 0.336 0.000
#> GSM627184     1  0.1965     0.8681 0.904 0.000 0.000 0.000 0.096
#> GSM627193     2  0.0404     0.7232 0.000 0.988 0.000 0.012 0.000
#> GSM627191     5  0.4630     0.6278 0.116 0.000 0.000 0.140 0.744
#> GSM627176     5  0.3990     0.4932 0.000 0.000 0.308 0.004 0.688
#> GSM627194     2  0.0703     0.7193 0.000 0.976 0.000 0.024 0.000
#> GSM627154     4  0.5181     0.7696 0.000 0.268 0.000 0.652 0.080
#> GSM627187     3  0.4892     0.7031 0.080 0.004 0.752 0.148 0.016
#> GSM627198     4  0.4491     0.7502 0.000 0.328 0.000 0.652 0.020
#> GSM627160     5  0.3176     0.7002 0.064 0.000 0.000 0.080 0.856
#> GSM627185     1  0.1300     0.8820 0.956 0.000 0.028 0.000 0.016
#> GSM627206     3  0.2378     0.7933 0.064 0.000 0.908 0.012 0.016
#> GSM627161     1  0.1544     0.8801 0.932 0.000 0.000 0.000 0.068
#> GSM627162     4  0.8248    -0.4180 0.216 0.016 0.344 0.348 0.076
#> GSM627210     1  0.4640     0.3518 0.584 0.000 0.400 0.000 0.016
#> GSM627189     2  0.0703     0.7193 0.000 0.976 0.000 0.024 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM627128     6  0.4171    0.67715 0.008 0.000 0.000 0.236 0.040 0.716
#> GSM627110     3  0.1663    0.63490 0.000 0.000 0.912 0.000 0.088 0.000
#> GSM627132     1  0.1814    0.83914 0.900 0.000 0.100 0.000 0.000 0.000
#> GSM627107     5  0.3533    0.43210 0.000 0.000 0.012 0.004 0.748 0.236
#> GSM627103     2  0.0632    0.65737 0.000 0.976 0.000 0.024 0.000 0.000
#> GSM627114     3  0.1471    0.65201 0.000 0.000 0.932 0.000 0.064 0.004
#> GSM627134     4  0.2719    0.79637 0.000 0.072 0.000 0.876 0.040 0.012
#> GSM627137     2  0.1390    0.65403 0.000 0.948 0.000 0.004 0.016 0.032
#> GSM627148     5  0.3499    0.62640 0.000 0.000 0.320 0.000 0.680 0.000
#> GSM627101     4  0.4561   -0.14185 0.000 0.000 0.000 0.536 0.036 0.428
#> GSM627130     6  0.4039    0.66610 0.008 0.000 0.000 0.248 0.028 0.716
#> GSM627071     3  0.3969    0.12158 0.008 0.000 0.644 0.004 0.344 0.000
#> GSM627118     4  0.2247    0.79392 0.000 0.060 0.000 0.904 0.024 0.012
#> GSM627094     2  0.0547    0.65702 0.000 0.980 0.000 0.020 0.000 0.000
#> GSM627122     1  0.1563    0.82904 0.932 0.000 0.012 0.000 0.000 0.056
#> GSM627115     2  0.0632    0.65737 0.000 0.976 0.000 0.024 0.000 0.000
#> GSM627125     6  0.4559    0.68810 0.008 0.000 0.000 0.184 0.096 0.712
#> GSM627174     2  0.3351    0.34072 0.000 0.712 0.000 0.288 0.000 0.000
#> GSM627102     2  0.7393    0.37941 0.000 0.412 0.028 0.060 0.224 0.276
#> GSM627073     5  0.2996    0.69270 0.000 0.000 0.228 0.000 0.772 0.000
#> GSM627108     2  0.0000    0.65923 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627126     1  0.0260    0.85602 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM627078     4  0.2996    0.78669 0.000 0.228 0.000 0.772 0.000 0.000
#> GSM627090     6  0.5661    0.41184 0.040 0.000 0.056 0.004 0.364 0.536
#> GSM627099     4  0.3330    0.72156 0.000 0.284 0.000 0.716 0.000 0.000
#> GSM627105     6  0.4559    0.68810 0.008 0.000 0.000 0.184 0.096 0.712
#> GSM627117     3  0.1155    0.65537 0.000 0.000 0.956 0.004 0.036 0.004
#> GSM627121     5  0.3828    0.63753 0.000 0.000 0.100 0.000 0.776 0.124
#> GSM627127     4  0.2266    0.80944 0.000 0.108 0.000 0.880 0.000 0.012
#> GSM627087     2  0.0632    0.65737 0.000 0.976 0.000 0.024 0.000 0.000
#> GSM627089     3  0.3782   -0.09274 0.000 0.000 0.588 0.000 0.412 0.000
#> GSM627092     2  0.7374    0.34647 0.000 0.392 0.036 0.044 0.224 0.304
#> GSM627076     6  0.5117    0.56342 0.036 0.000 0.004 0.036 0.300 0.624
#> GSM627136     3  0.3198    0.51247 0.260 0.000 0.740 0.000 0.000 0.000
#> GSM627081     5  0.3822    0.67286 0.000 0.000 0.128 0.000 0.776 0.096
#> GSM627091     4  0.3862    0.35032 0.000 0.476 0.000 0.524 0.000 0.000
#> GSM627097     4  0.1921    0.75594 0.000 0.032 0.000 0.916 0.000 0.052
#> GSM627072     3  0.3854   -0.26775 0.000 0.000 0.536 0.000 0.464 0.000
#> GSM627080     1  0.1204    0.85367 0.944 0.000 0.056 0.000 0.000 0.000
#> GSM627088     3  0.1261    0.67380 0.024 0.000 0.952 0.000 0.024 0.000
#> GSM627109     1  0.3489    0.66249 0.708 0.000 0.288 0.004 0.000 0.000
#> GSM627111     1  0.1910    0.83540 0.892 0.000 0.108 0.000 0.000 0.000
#> GSM627113     3  0.2558    0.66188 0.156 0.000 0.840 0.000 0.004 0.000
#> GSM627133     5  0.6153    0.47524 0.004 0.132 0.328 0.016 0.512 0.008
#> GSM627177     3  0.4197    0.31981 0.032 0.000 0.680 0.004 0.284 0.000
#> GSM627086     2  0.1387    0.63659 0.000 0.932 0.000 0.068 0.000 0.000
#> GSM627095     1  0.0260    0.85602 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM627079     5  0.3862    0.54764 0.000 0.000 0.388 0.000 0.608 0.004
#> GSM627082     6  0.4461    0.67999 0.068 0.000 0.000 0.204 0.012 0.716
#> GSM627074     3  0.3109    0.55592 0.224 0.000 0.772 0.004 0.000 0.000
#> GSM627077     1  0.2593    0.80495 0.844 0.000 0.148 0.000 0.000 0.008
#> GSM627093     3  0.2491    0.64738 0.164 0.000 0.836 0.000 0.000 0.000
#> GSM627120     5  0.7415   -0.32920 0.000 0.316 0.028 0.048 0.344 0.264
#> GSM627124     4  0.3023    0.78412 0.000 0.232 0.000 0.768 0.000 0.000
#> GSM627075     2  0.7206    0.38149 0.000 0.428 0.028 0.044 0.224 0.276
#> GSM627085     4  0.2527    0.80817 0.000 0.168 0.000 0.832 0.000 0.000
#> GSM627119     3  0.2402    0.66576 0.140 0.000 0.856 0.004 0.000 0.000
#> GSM627116     4  0.2103    0.71619 0.012 0.000 0.020 0.912 0.000 0.056
#> GSM627084     1  0.1141    0.85354 0.948 0.000 0.052 0.000 0.000 0.000
#> GSM627096     4  0.2186    0.79164 0.000 0.056 0.000 0.908 0.024 0.012
#> GSM627100     6  0.5013    0.57442 0.028 0.000 0.004 0.040 0.292 0.636
#> GSM627112     4  0.2668    0.59556 0.000 0.004 0.000 0.828 0.000 0.168
#> GSM627083     1  0.0993    0.83936 0.964 0.000 0.000 0.012 0.000 0.024
#> GSM627098     3  0.3868   -0.19799 0.492 0.000 0.508 0.000 0.000 0.000
#> GSM627104     1  0.3961    0.34457 0.556 0.000 0.440 0.004 0.000 0.000
#> GSM627131     1  0.3161    0.74475 0.776 0.000 0.216 0.000 0.000 0.008
#> GSM627106     5  0.3832    0.66419 0.000 0.000 0.120 0.000 0.776 0.104
#> GSM627123     1  0.0260    0.85602 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM627129     4  0.3125    0.76961 0.000 0.064 0.000 0.856 0.024 0.056
#> GSM627216     2  0.3445    0.59193 0.004 0.816 0.004 0.024 0.144 0.008
#> GSM627212     2  0.3854   -0.22024 0.000 0.536 0.000 0.464 0.000 0.000
#> GSM627190     3  0.1471    0.65201 0.000 0.000 0.932 0.000 0.064 0.004
#> GSM627169     2  0.7484    0.36640 0.000 0.404 0.048 0.044 0.224 0.280
#> GSM627167     6  0.5696    0.29286 0.000 0.028 0.000 0.148 0.220 0.604
#> GSM627192     1  0.0260    0.85602 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM627203     5  0.4014    0.68011 0.000 0.000 0.148 0.000 0.756 0.096
#> GSM627151     4  0.2340    0.75767 0.004 0.056 0.000 0.896 0.000 0.044
#> GSM627163     1  0.1327    0.85109 0.936 0.000 0.064 0.000 0.000 0.000
#> GSM627211     2  0.0935    0.65679 0.000 0.964 0.000 0.032 0.004 0.000
#> GSM627171     2  0.7484    0.36895 0.000 0.404 0.044 0.048 0.224 0.280
#> GSM627209     4  0.3023    0.78412 0.000 0.232 0.000 0.768 0.000 0.000
#> GSM627135     1  0.0000    0.85640 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627170     2  0.1686    0.64073 0.000 0.924 0.000 0.012 0.064 0.000
#> GSM627178     1  0.2544    0.81327 0.852 0.000 0.140 0.004 0.000 0.004
#> GSM627199     4  0.3050    0.77970 0.000 0.236 0.000 0.764 0.000 0.000
#> GSM627213     4  0.1700    0.77636 0.000 0.048 0.000 0.928 0.000 0.024
#> GSM627140     6  0.5704    0.34544 0.032 0.004 0.004 0.108 0.224 0.628
#> GSM627149     1  0.0260    0.85602 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM627147     6  0.7107   -0.00938 0.000 0.084 0.000 0.336 0.216 0.364
#> GSM627195     5  0.3543    0.70161 0.000 0.000 0.200 0.000 0.768 0.032
#> GSM627204     2  0.1267    0.64545 0.000 0.940 0.000 0.060 0.000 0.000
#> GSM627207     2  0.3830    0.59473 0.000 0.788 0.000 0.044 0.020 0.148
#> GSM627157     3  0.3857   -0.11326 0.468 0.000 0.532 0.000 0.000 0.000
#> GSM627201     2  0.3175    0.39224 0.000 0.744 0.000 0.256 0.000 0.000
#> GSM627146     2  0.3221    0.38669 0.000 0.736 0.000 0.264 0.000 0.000
#> GSM627156     2  0.7435    0.36933 0.000 0.408 0.044 0.044 0.224 0.280
#> GSM627188     1  0.0260    0.85602 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM627197     2  0.3531    0.24199 0.000 0.672 0.000 0.328 0.000 0.000
#> GSM627173     2  0.1082    0.65490 0.000 0.956 0.000 0.040 0.004 0.000
#> GSM627179     2  0.0000    0.65923 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627208     5  0.4537    0.51150 0.000 0.020 0.384 0.000 0.584 0.012
#> GSM627215     5  0.5317    0.04699 0.004 0.464 0.020 0.036 0.472 0.004
#> GSM627153     4  0.3023    0.78412 0.000 0.232 0.000 0.768 0.000 0.000
#> GSM627155     1  0.0260    0.85602 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM627165     2  0.7474   -0.12931 0.000 0.328 0.000 0.312 0.144 0.216
#> GSM627168     3  0.1918    0.64647 0.008 0.000 0.904 0.000 0.088 0.000
#> GSM627183     3  0.1713    0.67626 0.044 0.000 0.928 0.000 0.028 0.000
#> GSM627144     5  0.4392    0.61363 0.000 0.000 0.332 0.000 0.628 0.040
#> GSM627158     1  0.0458    0.85753 0.984 0.000 0.016 0.000 0.000 0.000
#> GSM627196     2  0.1267    0.64545 0.000 0.940 0.000 0.060 0.000 0.000
#> GSM627142     6  0.5076    0.64193 0.032 0.000 0.000 0.084 0.208 0.676
#> GSM627182     5  0.4057    0.44268 0.000 0.000 0.436 0.000 0.556 0.008
#> GSM627202     1  0.3424    0.74564 0.780 0.000 0.196 0.000 0.020 0.004
#> GSM627141     3  0.1786    0.67093 0.032 0.000 0.932 0.004 0.028 0.004
#> GSM627143     2  0.7528    0.33007 0.000 0.376 0.048 0.044 0.224 0.308
#> GSM627145     5  0.3867    0.32840 0.000 0.000 0.488 0.000 0.512 0.000
#> GSM627152     6  0.5722    0.39787 0.044 0.000 0.068 0.000 0.360 0.528
#> GSM627200     1  0.3244    0.67939 0.732 0.000 0.268 0.000 0.000 0.000
#> GSM627159     6  0.4465    0.68673 0.032 0.000 0.000 0.216 0.036 0.716
#> GSM627164     2  0.7433    0.37166 0.000 0.408 0.040 0.048 0.224 0.280
#> GSM627138     1  0.3866    0.19619 0.516 0.000 0.484 0.000 0.000 0.000
#> GSM627175     4  0.2996    0.78669 0.000 0.228 0.000 0.772 0.000 0.000
#> GSM627150     5  0.3023    0.69164 0.000 0.000 0.232 0.000 0.768 0.000
#> GSM627166     1  0.3189    0.73298 0.760 0.000 0.236 0.004 0.000 0.000
#> GSM627186     2  0.7575    0.35987 0.000 0.396 0.056 0.044 0.224 0.280
#> GSM627139     6  0.4681    0.68695 0.012 0.000 0.000 0.176 0.104 0.708
#> GSM627181     2  0.2854    0.48155 0.000 0.792 0.000 0.208 0.000 0.000
#> GSM627205     2  0.3357    0.58704 0.000 0.816 0.000 0.020 0.144 0.020
#> GSM627214     2  0.4555   -0.04094 0.000 0.548 0.000 0.420 0.028 0.004
#> GSM627180     5  0.3620    0.70276 0.000 0.000 0.184 0.000 0.772 0.044
#> GSM627172     2  0.7393    0.37941 0.000 0.412 0.028 0.060 0.224 0.276
#> GSM627184     1  0.0260    0.85602 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM627193     2  0.0458    0.65809 0.000 0.984 0.000 0.016 0.000 0.000
#> GSM627191     6  0.6600    0.41804 0.336 0.000 0.000 0.140 0.068 0.456
#> GSM627176     6  0.5720    0.47315 0.040 0.000 0.060 0.008 0.328 0.564
#> GSM627194     2  0.0937    0.64880 0.000 0.960 0.000 0.040 0.000 0.000
#> GSM627154     4  0.2260    0.81354 0.000 0.140 0.000 0.860 0.000 0.000
#> GSM627187     3  0.1707    0.64942 0.000 0.000 0.928 0.004 0.056 0.012
#> GSM627198     4  0.3023    0.78412 0.000 0.232 0.000 0.768 0.000 0.000
#> GSM627160     6  0.4736    0.65644 0.140 0.000 0.000 0.164 0.004 0.692
#> GSM627185     1  0.3747    0.44818 0.604 0.000 0.396 0.000 0.000 0.000
#> GSM627206     3  0.2300    0.59260 0.000 0.000 0.856 0.000 0.144 0.000
#> GSM627161     1  0.0458    0.85753 0.984 0.000 0.016 0.000 0.000 0.000
#> GSM627162     3  0.7254    0.04639 0.004 0.012 0.348 0.044 0.312 0.280
#> GSM627210     3  0.2278    0.66947 0.128 0.000 0.868 0.004 0.000 0.000
#> GSM627189     2  0.0632    0.65624 0.000 0.976 0.000 0.024 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>               n disease.state(p) age(p) other(p) k
#> MAD:skmeans 143            0.817  0.401   0.0385 2
#> MAD:skmeans 139            0.270  0.397   0.0148 3
#> MAD:skmeans 139            0.248  0.336   0.0835 4
#> MAD:skmeans 127            0.373  0.496   0.1532 5
#> MAD:skmeans 103            0.679  0.696   0.3074 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 146 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.968       0.986         0.5036 0.497   0.497
#> 3 3 0.730           0.782       0.905         0.2988 0.789   0.597
#> 4 4 0.583           0.601       0.747         0.1026 0.871   0.648
#> 5 5 0.671           0.651       0.817         0.0827 0.879   0.595
#> 6 6 0.702           0.635       0.804         0.0374 0.863   0.487

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM627128     1  0.0000      0.981 1.000 0.000
#> GSM627110     1  0.0000      0.981 1.000 0.000
#> GSM627132     1  0.0000      0.981 1.000 0.000
#> GSM627107     1  0.0000      0.981 1.000 0.000
#> GSM627103     2  0.0000      0.992 0.000 1.000
#> GSM627114     1  0.0000      0.981 1.000 0.000
#> GSM627134     2  0.0000      0.992 0.000 1.000
#> GSM627137     2  0.0000      0.992 0.000 1.000
#> GSM627148     1  0.0000      0.981 1.000 0.000
#> GSM627101     1  0.0000      0.981 1.000 0.000
#> GSM627130     1  0.0000      0.981 1.000 0.000
#> GSM627071     1  0.0000      0.981 1.000 0.000
#> GSM627118     2  0.0000      0.992 0.000 1.000
#> GSM627094     2  0.0000      0.992 0.000 1.000
#> GSM627122     1  0.0000      0.981 1.000 0.000
#> GSM627115     2  0.0000      0.992 0.000 1.000
#> GSM627125     1  0.0000      0.981 1.000 0.000
#> GSM627174     2  0.0000      0.992 0.000 1.000
#> GSM627102     2  0.0000      0.992 0.000 1.000
#> GSM627073     1  0.0000      0.981 1.000 0.000
#> GSM627108     2  0.0000      0.992 0.000 1.000
#> GSM627126     1  0.0000      0.981 1.000 0.000
#> GSM627078     2  0.0000      0.992 0.000 1.000
#> GSM627090     1  0.0000      0.981 1.000 0.000
#> GSM627099     2  0.0000      0.992 0.000 1.000
#> GSM627105     1  0.0000      0.981 1.000 0.000
#> GSM627117     2  0.0000      0.992 0.000 1.000
#> GSM627121     1  0.7299      0.747 0.796 0.204
#> GSM627127     2  0.0000      0.992 0.000 1.000
#> GSM627087     2  0.0000      0.992 0.000 1.000
#> GSM627089     1  0.0000      0.981 1.000 0.000
#> GSM627092     2  0.0000      0.992 0.000 1.000
#> GSM627076     1  0.0000      0.981 1.000 0.000
#> GSM627136     1  0.0000      0.981 1.000 0.000
#> GSM627081     1  0.8608      0.613 0.716 0.284
#> GSM627091     2  0.0000      0.992 0.000 1.000
#> GSM627097     2  0.0000      0.992 0.000 1.000
#> GSM627072     1  0.0000      0.981 1.000 0.000
#> GSM627080     1  0.0000      0.981 1.000 0.000
#> GSM627088     1  0.3114      0.929 0.944 0.056
#> GSM627109     1  0.0000      0.981 1.000 0.000
#> GSM627111     1  0.0000      0.981 1.000 0.000
#> GSM627113     1  0.0000      0.981 1.000 0.000
#> GSM627133     2  0.0000      0.992 0.000 1.000
#> GSM627177     1  0.0000      0.981 1.000 0.000
#> GSM627086     2  0.0000      0.992 0.000 1.000
#> GSM627095     1  0.0000      0.981 1.000 0.000
#> GSM627079     1  0.0000      0.981 1.000 0.000
#> GSM627082     1  0.0000      0.981 1.000 0.000
#> GSM627074     1  0.5059      0.869 0.888 0.112
#> GSM627077     1  0.0000      0.981 1.000 0.000
#> GSM627093     2  0.4690      0.885 0.100 0.900
#> GSM627120     2  0.0000      0.992 0.000 1.000
#> GSM627124     2  0.0000      0.992 0.000 1.000
#> GSM627075     2  0.0000      0.992 0.000 1.000
#> GSM627085     2  0.0000      0.992 0.000 1.000
#> GSM627119     1  0.0000      0.981 1.000 0.000
#> GSM627116     2  0.9323      0.456 0.348 0.652
#> GSM627084     1  0.0000      0.981 1.000 0.000
#> GSM627096     2  0.0000      0.992 0.000 1.000
#> GSM627100     1  0.0000      0.981 1.000 0.000
#> GSM627112     1  0.8327      0.647 0.736 0.264
#> GSM627083     1  0.0000      0.981 1.000 0.000
#> GSM627098     1  0.0000      0.981 1.000 0.000
#> GSM627104     2  0.0000      0.992 0.000 1.000
#> GSM627131     1  0.0000      0.981 1.000 0.000
#> GSM627106     1  0.0000      0.981 1.000 0.000
#> GSM627123     1  0.0000      0.981 1.000 0.000
#> GSM627129     2  0.0000      0.992 0.000 1.000
#> GSM627216     2  0.0000      0.992 0.000 1.000
#> GSM627212     2  0.0000      0.992 0.000 1.000
#> GSM627190     2  0.4022      0.909 0.080 0.920
#> GSM627169     2  0.0000      0.992 0.000 1.000
#> GSM627167     2  0.0000      0.992 0.000 1.000
#> GSM627192     1  0.0000      0.981 1.000 0.000
#> GSM627203     1  0.0000      0.981 1.000 0.000
#> GSM627151     2  0.0000      0.992 0.000 1.000
#> GSM627163     1  0.0000      0.981 1.000 0.000
#> GSM627211     2  0.0000      0.992 0.000 1.000
#> GSM627171     2  0.0000      0.992 0.000 1.000
#> GSM627209     2  0.0000      0.992 0.000 1.000
#> GSM627135     1  0.0000      0.981 1.000 0.000
#> GSM627170     2  0.0000      0.992 0.000 1.000
#> GSM627178     1  0.0000      0.981 1.000 0.000
#> GSM627199     2  0.0000      0.992 0.000 1.000
#> GSM627213     2  0.0000      0.992 0.000 1.000
#> GSM627140     2  0.0000      0.992 0.000 1.000
#> GSM627149     1  0.0000      0.981 1.000 0.000
#> GSM627147     2  0.0000      0.992 0.000 1.000
#> GSM627195     1  0.0000      0.981 1.000 0.000
#> GSM627204     2  0.0000      0.992 0.000 1.000
#> GSM627207     2  0.0000      0.992 0.000 1.000
#> GSM627157     1  0.0000      0.981 1.000 0.000
#> GSM627201     2  0.0000      0.992 0.000 1.000
#> GSM627146     2  0.0000      0.992 0.000 1.000
#> GSM627156     2  0.0000      0.992 0.000 1.000
#> GSM627188     1  0.0000      0.981 1.000 0.000
#> GSM627197     2  0.0000      0.992 0.000 1.000
#> GSM627173     2  0.0000      0.992 0.000 1.000
#> GSM627179     2  0.0000      0.992 0.000 1.000
#> GSM627208     2  0.0000      0.992 0.000 1.000
#> GSM627215     2  0.0000      0.992 0.000 1.000
#> GSM627153     2  0.0000      0.992 0.000 1.000
#> GSM627155     1  0.0000      0.981 1.000 0.000
#> GSM627165     2  0.0000      0.992 0.000 1.000
#> GSM627168     1  0.0000      0.981 1.000 0.000
#> GSM627183     1  0.0000      0.981 1.000 0.000
#> GSM627144     1  0.9815      0.291 0.580 0.420
#> GSM627158     1  0.0000      0.981 1.000 0.000
#> GSM627196     2  0.0000      0.992 0.000 1.000
#> GSM627142     1  0.0000      0.981 1.000 0.000
#> GSM627182     2  0.0000      0.992 0.000 1.000
#> GSM627202     1  0.0000      0.981 1.000 0.000
#> GSM627141     1  0.0000      0.981 1.000 0.000
#> GSM627143     2  0.0000      0.992 0.000 1.000
#> GSM627145     1  0.0000      0.981 1.000 0.000
#> GSM627152     1  0.0000      0.981 1.000 0.000
#> GSM627200     1  0.0000      0.981 1.000 0.000
#> GSM627159     1  0.0000      0.981 1.000 0.000
#> GSM627164     2  0.0000      0.992 0.000 1.000
#> GSM627138     1  0.0000      0.981 1.000 0.000
#> GSM627175     2  0.0000      0.992 0.000 1.000
#> GSM627150     1  0.0000      0.981 1.000 0.000
#> GSM627166     2  0.0672      0.984 0.008 0.992
#> GSM627186     2  0.0000      0.992 0.000 1.000
#> GSM627139     1  0.0000      0.981 1.000 0.000
#> GSM627181     2  0.0000      0.992 0.000 1.000
#> GSM627205     2  0.0000      0.992 0.000 1.000
#> GSM627214     2  0.0000      0.992 0.000 1.000
#> GSM627180     1  0.3114      0.930 0.944 0.056
#> GSM627172     2  0.0000      0.992 0.000 1.000
#> GSM627184     1  0.0000      0.981 1.000 0.000
#> GSM627193     2  0.0000      0.992 0.000 1.000
#> GSM627191     1  0.0000      0.981 1.000 0.000
#> GSM627176     1  0.0000      0.981 1.000 0.000
#> GSM627194     2  0.0000      0.992 0.000 1.000
#> GSM627154     2  0.0000      0.992 0.000 1.000
#> GSM627187     2  0.2423      0.953 0.040 0.960
#> GSM627198     2  0.0000      0.992 0.000 1.000
#> GSM627160     1  0.0000      0.981 1.000 0.000
#> GSM627185     1  0.0000      0.981 1.000 0.000
#> GSM627206     1  0.0000      0.981 1.000 0.000
#> GSM627161     1  0.0000      0.981 1.000 0.000
#> GSM627162     1  0.0376      0.977 0.996 0.004
#> GSM627210     1  0.0938      0.971 0.988 0.012
#> GSM627189     2  0.0000      0.992 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM627128     3  0.0000      0.892 0.000 0.000 1.000
#> GSM627110     1  0.0892      0.789 0.980 0.000 0.020
#> GSM627132     1  0.6291     -0.130 0.532 0.000 0.468
#> GSM627107     3  0.0000      0.892 0.000 0.000 1.000
#> GSM627103     2  0.5058      0.661 0.244 0.756 0.000
#> GSM627114     1  0.0000      0.790 1.000 0.000 0.000
#> GSM627134     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627137     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627148     1  0.0592      0.788 0.988 0.000 0.012
#> GSM627101     3  0.0237      0.891 0.000 0.004 0.996
#> GSM627130     3  0.0000      0.892 0.000 0.000 1.000
#> GSM627071     1  0.6260      0.332 0.552 0.000 0.448
#> GSM627118     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627094     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627122     3  0.0424      0.891 0.008 0.000 0.992
#> GSM627115     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627125     3  0.0000      0.892 0.000 0.000 1.000
#> GSM627174     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627102     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627073     3  0.0000      0.892 0.000 0.000 1.000
#> GSM627108     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627126     3  0.3941      0.771 0.156 0.000 0.844
#> GSM627078     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627090     3  0.0000      0.892 0.000 0.000 1.000
#> GSM627099     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627105     3  0.0000      0.892 0.000 0.000 1.000
#> GSM627117     1  0.3038      0.746 0.896 0.104 0.000
#> GSM627121     1  0.8425      0.446 0.540 0.096 0.364
#> GSM627127     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627087     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627089     1  0.3816      0.707 0.852 0.000 0.148
#> GSM627092     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627076     3  0.0000      0.892 0.000 0.000 1.000
#> GSM627136     3  0.3941      0.771 0.156 0.000 0.844
#> GSM627081     1  0.8975      0.369 0.484 0.132 0.384
#> GSM627091     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627097     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627072     1  0.6244      0.351 0.560 0.000 0.440
#> GSM627080     3  0.6244      0.348 0.440 0.000 0.560
#> GSM627088     1  0.1643      0.783 0.956 0.000 0.044
#> GSM627109     1  0.0892      0.788 0.980 0.000 0.020
#> GSM627111     1  0.0892      0.788 0.980 0.000 0.020
#> GSM627113     1  0.0747      0.789 0.984 0.000 0.016
#> GSM627133     2  0.5327      0.617 0.272 0.728 0.000
#> GSM627177     1  0.6786      0.330 0.540 0.012 0.448
#> GSM627086     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627095     3  0.3816      0.780 0.148 0.000 0.852
#> GSM627079     3  0.0000      0.892 0.000 0.000 1.000
#> GSM627082     3  0.0592      0.887 0.000 0.012 0.988
#> GSM627074     1  0.0000      0.790 1.000 0.000 0.000
#> GSM627077     3  0.0592      0.891 0.012 0.000 0.988
#> GSM627093     1  0.0000      0.790 1.000 0.000 0.000
#> GSM627120     2  0.2537      0.871 0.080 0.920 0.000
#> GSM627124     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627075     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627085     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627119     1  0.0000      0.790 1.000 0.000 0.000
#> GSM627116     2  0.6244      0.254 0.000 0.560 0.440
#> GSM627084     1  0.5591      0.557 0.696 0.000 0.304
#> GSM627096     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627100     3  0.0000      0.892 0.000 0.000 1.000
#> GSM627112     3  0.5327      0.547 0.000 0.272 0.728
#> GSM627083     3  0.0592      0.887 0.000 0.012 0.988
#> GSM627098     1  0.1289      0.786 0.968 0.000 0.032
#> GSM627104     1  0.0237      0.790 0.996 0.004 0.000
#> GSM627131     3  0.0592      0.891 0.012 0.000 0.988
#> GSM627106     3  0.0000      0.892 0.000 0.000 1.000
#> GSM627123     3  0.1643      0.876 0.044 0.000 0.956
#> GSM627129     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627216     2  0.4235      0.764 0.176 0.824 0.000
#> GSM627212     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627190     1  0.0000      0.790 1.000 0.000 0.000
#> GSM627169     2  0.5327      0.619 0.272 0.728 0.000
#> GSM627167     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627192     3  0.0592      0.891 0.012 0.000 0.988
#> GSM627203     3  0.1163      0.882 0.028 0.000 0.972
#> GSM627151     2  0.5291      0.638 0.000 0.732 0.268
#> GSM627163     1  0.1529      0.778 0.960 0.000 0.040
#> GSM627211     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627171     1  0.6305      0.109 0.516 0.484 0.000
#> GSM627209     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627135     3  0.0592      0.891 0.012 0.000 0.988
#> GSM627170     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627178     3  0.1860      0.870 0.052 0.000 0.948
#> GSM627199     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627213     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627140     2  0.4974      0.683 0.000 0.764 0.236
#> GSM627149     3  0.4796      0.695 0.220 0.000 0.780
#> GSM627147     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627195     3  0.1163      0.879 0.028 0.000 0.972
#> GSM627204     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627207     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627157     1  0.0892      0.788 0.980 0.000 0.020
#> GSM627201     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627146     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627156     2  0.5327      0.619 0.272 0.728 0.000
#> GSM627188     3  0.0592      0.891 0.012 0.000 0.988
#> GSM627197     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627173     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627179     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627208     1  0.6745      0.254 0.560 0.428 0.012
#> GSM627215     2  0.5016      0.667 0.240 0.760 0.000
#> GSM627153     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627155     3  0.6225      0.364 0.432 0.000 0.568
#> GSM627165     2  0.0592      0.932 0.000 0.988 0.012
#> GSM627168     1  0.3551      0.727 0.868 0.000 0.132
#> GSM627183     1  0.4702      0.657 0.788 0.000 0.212
#> GSM627144     1  0.8685      0.535 0.584 0.156 0.260
#> GSM627158     3  0.6244      0.348 0.440 0.000 0.560
#> GSM627196     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627142     3  0.0000      0.892 0.000 0.000 1.000
#> GSM627182     1  0.6745      0.254 0.560 0.428 0.012
#> GSM627202     3  0.5465      0.599 0.288 0.000 0.712
#> GSM627141     1  0.1753      0.779 0.952 0.000 0.048
#> GSM627143     2  0.5843      0.626 0.252 0.732 0.016
#> GSM627145     3  0.2066      0.852 0.060 0.000 0.940
#> GSM627152     3  0.0000      0.892 0.000 0.000 1.000
#> GSM627200     3  0.0592      0.891 0.012 0.000 0.988
#> GSM627159     3  0.0000      0.892 0.000 0.000 1.000
#> GSM627164     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627138     1  0.0892      0.788 0.980 0.000 0.020
#> GSM627175     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627150     3  0.0892      0.883 0.020 0.000 0.980
#> GSM627166     1  0.6161      0.576 0.708 0.272 0.020
#> GSM627186     1  0.6295      0.127 0.528 0.472 0.000
#> GSM627139     3  0.0000      0.892 0.000 0.000 1.000
#> GSM627181     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627205     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627214     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627180     3  0.6441      0.455 0.276 0.028 0.696
#> GSM627172     2  0.4521      0.754 0.004 0.816 0.180
#> GSM627184     3  0.0747      0.890 0.016 0.000 0.984
#> GSM627193     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627191     3  0.0592      0.887 0.000 0.012 0.988
#> GSM627176     3  0.6299     -0.167 0.476 0.000 0.524
#> GSM627194     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627154     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627187     1  0.0000      0.790 1.000 0.000 0.000
#> GSM627198     2  0.0000      0.943 0.000 1.000 0.000
#> GSM627160     3  0.0592      0.887 0.000 0.012 0.988
#> GSM627185     1  0.0000      0.790 1.000 0.000 0.000
#> GSM627206     1  0.0000      0.790 1.000 0.000 0.000
#> GSM627161     3  0.5733      0.549 0.324 0.000 0.676
#> GSM627162     1  0.6113      0.557 0.688 0.012 0.300
#> GSM627210     1  0.0000      0.790 1.000 0.000 0.000
#> GSM627189     2  0.0000      0.943 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM627128     3  0.0000     0.7547 0.000 0.000 1.000 0.000
#> GSM627110     1  0.1284     0.6661 0.964 0.000 0.012 0.024
#> GSM627132     1  0.7768     0.1584 0.428 0.000 0.260 0.312
#> GSM627107     3  0.3583     0.6919 0.004 0.000 0.816 0.180
#> GSM627103     2  0.0657     0.8123 0.004 0.984 0.012 0.000
#> GSM627114     1  0.0000     0.6698 1.000 0.000 0.000 0.000
#> GSM627134     2  0.0469     0.8133 0.000 0.988 0.012 0.000
#> GSM627137     2  0.0000     0.8194 0.000 1.000 0.000 0.000
#> GSM627148     1  0.3400     0.6017 0.820 0.000 0.000 0.180
#> GSM627101     4  0.4477     0.0941 0.000 0.000 0.312 0.688
#> GSM627130     3  0.0000     0.7547 0.000 0.000 1.000 0.000
#> GSM627071     1  0.5000     0.0123 0.504 0.000 0.496 0.000
#> GSM627118     4  0.6425     0.8063 0.000 0.424 0.068 0.508
#> GSM627094     2  0.0000     0.8194 0.000 1.000 0.000 0.000
#> GSM627122     3  0.2647     0.7301 0.120 0.000 0.880 0.000
#> GSM627115     2  0.0000     0.8194 0.000 1.000 0.000 0.000
#> GSM627125     3  0.3356     0.6945 0.000 0.000 0.824 0.176
#> GSM627174     2  0.0469     0.8103 0.012 0.988 0.000 0.000
#> GSM627102     4  0.5168     0.8811 0.000 0.492 0.004 0.504
#> GSM627073     3  0.4731     0.7153 0.160 0.000 0.780 0.060
#> GSM627108     2  0.0000     0.8194 0.000 1.000 0.000 0.000
#> GSM627126     3  0.6461     0.5388 0.144 0.000 0.640 0.216
#> GSM627078     4  0.5406     0.8799 0.000 0.480 0.012 0.508
#> GSM627090     3  0.2450     0.7536 0.072 0.000 0.912 0.016
#> GSM627099     2  0.2469     0.6441 0.000 0.892 0.000 0.108
#> GSM627105     3  0.3400     0.6916 0.000 0.000 0.820 0.180
#> GSM627117     1  0.2408     0.6387 0.896 0.104 0.000 0.000
#> GSM627121     1  0.9173     0.1740 0.392 0.100 0.328 0.180
#> GSM627127     2  0.0000     0.8194 0.000 1.000 0.000 0.000
#> GSM627087     2  0.0000     0.8194 0.000 1.000 0.000 0.000
#> GSM627089     1  0.2973     0.5896 0.856 0.000 0.144 0.000
#> GSM627092     2  0.0000     0.8194 0.000 1.000 0.000 0.000
#> GSM627076     3  0.3758     0.7399 0.048 0.000 0.848 0.104
#> GSM627136     3  0.4643     0.5086 0.344 0.000 0.656 0.000
#> GSM627081     1  0.9416     0.2244 0.396 0.136 0.288 0.180
#> GSM627091     2  0.0000     0.8194 0.000 1.000 0.000 0.000
#> GSM627097     2  0.0469     0.8133 0.000 0.988 0.012 0.000
#> GSM627072     1  0.6568     0.2487 0.572 0.000 0.332 0.096
#> GSM627080     1  0.7768     0.1584 0.428 0.000 0.260 0.312
#> GSM627088     1  0.2216     0.6439 0.908 0.000 0.092 0.000
#> GSM627109     1  0.3311     0.6302 0.828 0.000 0.000 0.172
#> GSM627111     1  0.4477     0.5584 0.688 0.000 0.000 0.312
#> GSM627113     1  0.2976     0.6465 0.872 0.000 0.008 0.120
#> GSM627133     2  0.1059     0.8038 0.016 0.972 0.012 0.000
#> GSM627177     1  0.5000     0.0123 0.504 0.000 0.496 0.000
#> GSM627086     4  0.4999     0.8836 0.000 0.492 0.000 0.508
#> GSM627095     3  0.5979     0.5963 0.136 0.000 0.692 0.172
#> GSM627079     3  0.3123     0.7186 0.156 0.000 0.844 0.000
#> GSM627082     3  0.0000     0.7547 0.000 0.000 1.000 0.000
#> GSM627074     1  0.0000     0.6698 1.000 0.000 0.000 0.000
#> GSM627077     3  0.2741     0.7491 0.096 0.000 0.892 0.012
#> GSM627093     1  0.0000     0.6698 1.000 0.000 0.000 0.000
#> GSM627120     2  0.0469     0.8133 0.000 0.988 0.012 0.000
#> GSM627124     4  0.5406     0.8799 0.000 0.480 0.012 0.508
#> GSM627075     2  0.0000     0.8194 0.000 1.000 0.000 0.000
#> GSM627085     4  0.4999     0.8836 0.000 0.492 0.000 0.508
#> GSM627119     1  0.0000     0.6698 1.000 0.000 0.000 0.000
#> GSM627116     2  0.5007     0.1445 0.008 0.636 0.356 0.000
#> GSM627084     1  0.6007     0.2729 0.548 0.044 0.408 0.000
#> GSM627096     4  0.6425     0.8063 0.000 0.424 0.068 0.508
#> GSM627100     3  0.3257     0.7090 0.004 0.000 0.844 0.152
#> GSM627112     4  0.7407     0.5880 0.000 0.288 0.204 0.508
#> GSM627083     3  0.3577     0.6578 0.012 0.156 0.832 0.000
#> GSM627098     1  0.2868     0.6242 0.864 0.000 0.136 0.000
#> GSM627104     1  0.3024     0.6038 0.852 0.148 0.000 0.000
#> GSM627131     3  0.3311     0.7080 0.172 0.000 0.828 0.000
#> GSM627106     3  0.5811     0.6428 0.116 0.000 0.704 0.180
#> GSM627123     3  0.4459     0.6979 0.032 0.000 0.780 0.188
#> GSM627129     2  0.0469     0.8133 0.000 0.988 0.012 0.000
#> GSM627216     2  0.0937     0.8070 0.012 0.976 0.012 0.000
#> GSM627212     2  0.0000     0.8194 0.000 1.000 0.000 0.000
#> GSM627190     1  0.0000     0.6698 1.000 0.000 0.000 0.000
#> GSM627169     2  0.1716     0.7497 0.064 0.936 0.000 0.000
#> GSM627167     4  0.5508     0.8777 0.000 0.476 0.016 0.508
#> GSM627192     3  0.4477     0.6240 0.000 0.000 0.688 0.312
#> GSM627203     3  0.5811     0.6428 0.116 0.000 0.704 0.180
#> GSM627151     2  0.0817     0.8035 0.000 0.976 0.024 0.000
#> GSM627163     1  0.5322     0.5361 0.660 0.000 0.028 0.312
#> GSM627211     4  0.4999     0.8836 0.000 0.492 0.000 0.508
#> GSM627171     2  0.4855     0.1958 0.400 0.600 0.000 0.000
#> GSM627209     4  0.4999     0.8836 0.000 0.492 0.000 0.508
#> GSM627135     3  0.4046     0.7303 0.048 0.000 0.828 0.124
#> GSM627170     2  0.0000     0.8194 0.000 1.000 0.000 0.000
#> GSM627178     3  0.3764     0.6908 0.216 0.000 0.784 0.000
#> GSM627199     4  0.5167     0.8842 0.000 0.488 0.004 0.508
#> GSM627213     2  0.5851    -0.1237 0.000 0.660 0.068 0.272
#> GSM627140     2  0.2011     0.7262 0.000 0.920 0.080 0.000
#> GSM627149     3  0.7519     0.3439 0.208 0.000 0.480 0.312
#> GSM627147     2  0.4543    -0.2932 0.000 0.676 0.000 0.324
#> GSM627195     3  0.6550     0.5762 0.184 0.000 0.636 0.180
#> GSM627204     4  0.5000     0.8781 0.000 0.496 0.000 0.504
#> GSM627207     2  0.3569     0.3675 0.000 0.804 0.000 0.196
#> GSM627157     1  0.4406     0.5659 0.700 0.000 0.000 0.300
#> GSM627201     2  0.4999    -0.8625 0.000 0.508 0.000 0.492
#> GSM627146     2  0.0000     0.8194 0.000 1.000 0.000 0.000
#> GSM627156     2  0.2081     0.7194 0.084 0.916 0.000 0.000
#> GSM627188     3  0.4477     0.6240 0.000 0.000 0.688 0.312
#> GSM627197     2  0.0188     0.8163 0.000 0.996 0.000 0.004
#> GSM627173     2  0.0000     0.8194 0.000 1.000 0.000 0.000
#> GSM627179     2  0.0000     0.8194 0.000 1.000 0.000 0.000
#> GSM627208     1  0.7026     0.4346 0.572 0.248 0.000 0.180
#> GSM627215     2  0.0657     0.8123 0.004 0.984 0.012 0.000
#> GSM627153     4  0.5294     0.8831 0.000 0.484 0.008 0.508
#> GSM627155     1  0.7795     0.1415 0.420 0.000 0.268 0.312
#> GSM627165     2  0.4079     0.5234 0.000 0.800 0.020 0.180
#> GSM627168     1  0.3942     0.5370 0.764 0.000 0.236 0.000
#> GSM627183     1  0.3486     0.5783 0.812 0.000 0.188 0.000
#> GSM627144     1  0.9077     0.3449 0.484 0.156 0.180 0.180
#> GSM627158     1  0.7768     0.1584 0.428 0.000 0.260 0.312
#> GSM627196     4  0.4999     0.8836 0.000 0.492 0.000 0.508
#> GSM627142     3  0.0188     0.7550 0.004 0.000 0.996 0.000
#> GSM627182     1  0.7026     0.4346 0.572 0.248 0.000 0.180
#> GSM627202     3  0.7503     0.3149 0.276 0.000 0.496 0.228
#> GSM627141     1  0.1637     0.6583 0.940 0.000 0.060 0.000
#> GSM627143     2  0.0927     0.8014 0.016 0.976 0.008 0.000
#> GSM627145     3  0.5312     0.6550 0.236 0.000 0.712 0.052
#> GSM627152     3  0.1743     0.7559 0.056 0.000 0.940 0.004
#> GSM627200     3  0.3311     0.7080 0.172 0.000 0.828 0.000
#> GSM627159     3  0.0000     0.7547 0.000 0.000 1.000 0.000
#> GSM627164     2  0.0000     0.8194 0.000 1.000 0.000 0.000
#> GSM627138     1  0.4477     0.5584 0.688 0.000 0.000 0.312
#> GSM627175     4  0.4999     0.8836 0.000 0.492 0.000 0.508
#> GSM627150     3  0.6750     0.6095 0.208 0.000 0.612 0.180
#> GSM627166     1  0.5320     0.1769 0.572 0.416 0.012 0.000
#> GSM627186     2  0.4564     0.3356 0.328 0.672 0.000 0.000
#> GSM627139     3  0.0000     0.7547 0.000 0.000 1.000 0.000
#> GSM627181     2  0.4992    -0.8245 0.000 0.524 0.000 0.476
#> GSM627205     2  0.0000     0.8194 0.000 1.000 0.000 0.000
#> GSM627214     4  0.5409     0.8654 0.000 0.492 0.012 0.496
#> GSM627180     1  0.8608     0.0186 0.424 0.052 0.344 0.180
#> GSM627172     2  0.5427    -0.6654 0.000 0.568 0.016 0.416
#> GSM627184     3  0.4655     0.6214 0.004 0.000 0.684 0.312
#> GSM627193     2  0.0000     0.8194 0.000 1.000 0.000 0.000
#> GSM627191     3  0.2345     0.7018 0.000 0.100 0.900 0.000
#> GSM627176     3  0.7338     0.0409 0.376 0.000 0.464 0.160
#> GSM627194     2  0.0000     0.8194 0.000 1.000 0.000 0.000
#> GSM627154     4  0.5294     0.8830 0.000 0.484 0.008 0.508
#> GSM627187     1  0.0000     0.6698 1.000 0.000 0.000 0.000
#> GSM627198     4  0.4999     0.8836 0.000 0.492 0.000 0.508
#> GSM627160     3  0.1118     0.7458 0.000 0.036 0.964 0.000
#> GSM627185     1  0.4477     0.5584 0.688 0.000 0.000 0.312
#> GSM627206     1  0.0000     0.6698 1.000 0.000 0.000 0.000
#> GSM627161     3  0.7896     0.0970 0.312 0.000 0.376 0.312
#> GSM627162     1  0.4697     0.3580 0.644 0.000 0.356 0.000
#> GSM627210     1  0.0000     0.6698 1.000 0.000 0.000 0.000
#> GSM627189     2  0.0000     0.8194 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM627128     5  0.0510    0.74013 0.000 0.000 0.000 0.016 0.984
#> GSM627110     3  0.3421    0.61797 0.204 0.000 0.788 0.000 0.008
#> GSM627132     1  0.0000    0.73306 1.000 0.000 0.000 0.000 0.000
#> GSM627107     5  0.4252    0.48593 0.000 0.000 0.340 0.008 0.652
#> GSM627103     2  0.0000    0.88424 0.000 1.000 0.000 0.000 0.000
#> GSM627114     3  0.3983    0.59886 0.340 0.000 0.660 0.000 0.000
#> GSM627134     2  0.0290    0.88124 0.000 0.992 0.000 0.008 0.000
#> GSM627137     2  0.0000    0.88424 0.000 1.000 0.000 0.000 0.000
#> GSM627148     3  0.0404    0.58561 0.000 0.000 0.988 0.000 0.012
#> GSM627101     4  0.3970    0.67808 0.000 0.000 0.224 0.752 0.024
#> GSM627130     5  0.0703    0.73932 0.000 0.000 0.000 0.024 0.976
#> GSM627071     5  0.4138    0.43411 0.000 0.000 0.384 0.000 0.616
#> GSM627118     4  0.1851    0.86002 0.000 0.088 0.000 0.912 0.000
#> GSM627094     2  0.0000    0.88424 0.000 1.000 0.000 0.000 0.000
#> GSM627122     5  0.2690    0.70461 0.000 0.000 0.156 0.000 0.844
#> GSM627115     2  0.0963    0.86585 0.000 0.964 0.000 0.036 0.000
#> GSM627125     5  0.3877    0.62437 0.000 0.000 0.212 0.024 0.764
#> GSM627174     2  0.0162    0.88254 0.000 0.996 0.004 0.000 0.000
#> GSM627102     4  0.3143    0.83651 0.000 0.204 0.000 0.796 0.000
#> GSM627073     5  0.3534    0.68426 0.000 0.000 0.256 0.000 0.744
#> GSM627108     2  0.0000    0.88424 0.000 1.000 0.000 0.000 0.000
#> GSM627126     1  0.4305    0.04791 0.512 0.000 0.000 0.000 0.488
#> GSM627078     4  0.0510    0.84704 0.000 0.016 0.000 0.984 0.000
#> GSM627090     5  0.0510    0.74059 0.000 0.000 0.016 0.000 0.984
#> GSM627099     2  0.3480    0.66169 0.000 0.752 0.000 0.248 0.000
#> GSM627105     5  0.4338    0.55916 0.000 0.000 0.280 0.024 0.696
#> GSM627117     3  0.4928    0.59025 0.284 0.056 0.660 0.000 0.000
#> GSM627121     3  0.5702    0.11849 0.000 0.104 0.576 0.000 0.320
#> GSM627127     2  0.2179    0.81125 0.000 0.888 0.000 0.112 0.000
#> GSM627087     2  0.1197    0.85844 0.000 0.952 0.000 0.048 0.000
#> GSM627089     3  0.4424    0.60942 0.224 0.000 0.728 0.000 0.048
#> GSM627092     2  0.0000    0.88424 0.000 1.000 0.000 0.000 0.000
#> GSM627076     5  0.1965    0.71149 0.000 0.000 0.096 0.000 0.904
#> GSM627136     5  0.5182    0.56629 0.112 0.000 0.208 0.000 0.680
#> GSM627081     3  0.5954    0.17940 0.000 0.152 0.576 0.000 0.272
#> GSM627091     2  0.2074    0.81667 0.000 0.896 0.000 0.104 0.000
#> GSM627097     2  0.2127    0.81403 0.000 0.892 0.000 0.108 0.000
#> GSM627072     3  0.2561    0.55728 0.000 0.000 0.856 0.000 0.144
#> GSM627080     1  0.0000    0.73306 1.000 0.000 0.000 0.000 0.000
#> GSM627088     3  0.6758    0.33854 0.336 0.000 0.392 0.000 0.272
#> GSM627109     1  0.3366    0.35920 0.768 0.000 0.232 0.000 0.000
#> GSM627111     1  0.0000    0.73306 1.000 0.000 0.000 0.000 0.000
#> GSM627113     1  0.4938    0.06853 0.640 0.000 0.312 0.000 0.048
#> GSM627133     2  0.0162    0.88247 0.000 0.996 0.004 0.000 0.000
#> GSM627177     5  0.4161    0.41745 0.000 0.000 0.392 0.000 0.608
#> GSM627086     4  0.3109    0.83831 0.000 0.200 0.000 0.800 0.000
#> GSM627095     5  0.3561    0.58458 0.260 0.000 0.000 0.000 0.740
#> GSM627079     5  0.2605    0.70833 0.000 0.000 0.148 0.000 0.852
#> GSM627082     5  0.0510    0.74013 0.000 0.000 0.000 0.016 0.984
#> GSM627074     3  0.3983    0.59886 0.340 0.000 0.660 0.000 0.000
#> GSM627077     5  0.1121    0.74438 0.000 0.000 0.044 0.000 0.956
#> GSM627093     3  0.3983    0.59886 0.340 0.000 0.660 0.000 0.000
#> GSM627120     2  0.0000    0.88424 0.000 1.000 0.000 0.000 0.000
#> GSM627124     4  0.1197    0.85586 0.000 0.048 0.000 0.952 0.000
#> GSM627075     2  0.0000    0.88424 0.000 1.000 0.000 0.000 0.000
#> GSM627085     4  0.0510    0.84704 0.000 0.016 0.000 0.984 0.000
#> GSM627119     3  0.3983    0.59886 0.340 0.000 0.660 0.000 0.000
#> GSM627116     2  0.4370    0.45186 0.000 0.656 0.004 0.008 0.332
#> GSM627084     5  0.5423    0.48710 0.112 0.000 0.244 0.000 0.644
#> GSM627096     4  0.1851    0.86002 0.000 0.088 0.000 0.912 0.000
#> GSM627100     5  0.2732    0.67019 0.000 0.000 0.160 0.000 0.840
#> GSM627112     4  0.0290    0.83740 0.000 0.008 0.000 0.992 0.000
#> GSM627083     5  0.2690    0.65316 0.000 0.156 0.000 0.000 0.844
#> GSM627098     5  0.6667    0.00347 0.328 0.000 0.244 0.000 0.428
#> GSM627104     3  0.6576    0.35097 0.340 0.216 0.444 0.000 0.000
#> GSM627131     5  0.2690    0.70461 0.000 0.000 0.156 0.000 0.844
#> GSM627106     5  0.4305    0.25057 0.000 0.000 0.488 0.000 0.512
#> GSM627123     5  0.3242    0.61382 0.216 0.000 0.000 0.000 0.784
#> GSM627129     2  0.0000    0.88424 0.000 1.000 0.000 0.000 0.000
#> GSM627216     2  0.0000    0.88424 0.000 1.000 0.000 0.000 0.000
#> GSM627212     2  0.2020    0.81986 0.000 0.900 0.000 0.100 0.000
#> GSM627190     3  0.3949    0.60136 0.332 0.000 0.668 0.000 0.000
#> GSM627169     2  0.3395    0.66856 0.000 0.764 0.236 0.000 0.000
#> GSM627167     4  0.3039    0.83730 0.000 0.192 0.000 0.808 0.000
#> GSM627192     1  0.3983    0.47945 0.660 0.000 0.000 0.000 0.340
#> GSM627203     5  0.4305    0.25057 0.000 0.000 0.488 0.000 0.512
#> GSM627151     2  0.0000    0.88424 0.000 1.000 0.000 0.000 0.000
#> GSM627163     1  0.0000    0.73306 1.000 0.000 0.000 0.000 0.000
#> GSM627211     4  0.2605    0.85848 0.000 0.148 0.000 0.852 0.000
#> GSM627171     2  0.3480    0.61649 0.000 0.752 0.248 0.000 0.000
#> GSM627209     4  0.0703    0.85029 0.000 0.024 0.000 0.976 0.000
#> GSM627135     5  0.3289    0.69550 0.108 0.000 0.048 0.000 0.844
#> GSM627170     2  0.0000    0.88424 0.000 1.000 0.000 0.000 0.000
#> GSM627178     5  0.3691    0.68918 0.040 0.000 0.156 0.000 0.804
#> GSM627199     4  0.2471    0.84907 0.000 0.136 0.000 0.864 0.000
#> GSM627213     2  0.4307   -0.05931 0.000 0.504 0.000 0.496 0.000
#> GSM627140     2  0.0510    0.87503 0.000 0.984 0.000 0.016 0.000
#> GSM627149     1  0.2690    0.66560 0.844 0.000 0.000 0.000 0.156
#> GSM627147     2  0.3966    0.36372 0.000 0.664 0.000 0.336 0.000
#> GSM627195     3  0.3452    0.35038 0.000 0.000 0.756 0.000 0.244
#> GSM627204     4  0.3336    0.81604 0.000 0.228 0.000 0.772 0.000
#> GSM627207     2  0.3074    0.66986 0.000 0.804 0.000 0.196 0.000
#> GSM627157     1  0.1043    0.69614 0.960 0.000 0.040 0.000 0.000
#> GSM627201     4  0.2891    0.82185 0.000 0.176 0.000 0.824 0.000
#> GSM627146     2  0.0000    0.88424 0.000 1.000 0.000 0.000 0.000
#> GSM627156     2  0.3612    0.62946 0.000 0.732 0.268 0.000 0.000
#> GSM627188     1  0.3983    0.47945 0.660 0.000 0.000 0.000 0.340
#> GSM627197     2  0.0162    0.88229 0.000 0.996 0.000 0.004 0.000
#> GSM627173     2  0.0000    0.88424 0.000 1.000 0.000 0.000 0.000
#> GSM627179     2  0.0000    0.88424 0.000 1.000 0.000 0.000 0.000
#> GSM627208     3  0.0000    0.59071 0.000 0.000 1.000 0.000 0.000
#> GSM627215     2  0.0000    0.88424 0.000 1.000 0.000 0.000 0.000
#> GSM627153     4  0.0510    0.84704 0.000 0.016 0.000 0.984 0.000
#> GSM627155     1  0.0162    0.73252 0.996 0.000 0.000 0.000 0.004
#> GSM627165     2  0.4173    0.65847 0.000 0.748 0.224 0.016 0.012
#> GSM627168     5  0.6443    0.20523 0.248 0.000 0.248 0.000 0.504
#> GSM627183     3  0.6758    0.22094 0.272 0.000 0.392 0.000 0.336
#> GSM627144     3  0.1965    0.53224 0.000 0.000 0.904 0.000 0.096
#> GSM627158     1  0.0000    0.73306 1.000 0.000 0.000 0.000 0.000
#> GSM627196     4  0.3177    0.83286 0.000 0.208 0.000 0.792 0.000
#> GSM627142     5  0.0404    0.73992 0.000 0.000 0.000 0.012 0.988
#> GSM627182     3  0.0000    0.59071 0.000 0.000 1.000 0.000 0.000
#> GSM627202     1  0.4305   -0.03658 0.512 0.000 0.000 0.000 0.488
#> GSM627141     3  0.4973    0.58341 0.320 0.000 0.632 0.000 0.048
#> GSM627143     2  0.0000    0.88424 0.000 1.000 0.000 0.000 0.000
#> GSM627145     5  0.4088    0.52932 0.000 0.000 0.368 0.000 0.632
#> GSM627152     5  0.0162    0.74092 0.000 0.000 0.004 0.000 0.996
#> GSM627200     5  0.2690    0.70461 0.000 0.000 0.156 0.000 0.844
#> GSM627159     5  0.0510    0.74013 0.000 0.000 0.000 0.016 0.984
#> GSM627164     2  0.0000    0.88424 0.000 1.000 0.000 0.000 0.000
#> GSM627138     1  0.0000    0.73306 1.000 0.000 0.000 0.000 0.000
#> GSM627175     4  0.0510    0.84704 0.000 0.016 0.000 0.984 0.000
#> GSM627150     3  0.4242   -0.27665 0.000 0.000 0.572 0.000 0.428
#> GSM627166     2  0.5739    0.38626 0.128 0.624 0.244 0.000 0.004
#> GSM627186     2  0.4297    0.17313 0.000 0.528 0.472 0.000 0.000
#> GSM627139     5  0.0162    0.74040 0.000 0.000 0.000 0.004 0.996
#> GSM627181     4  0.3774    0.72788 0.000 0.296 0.000 0.704 0.000
#> GSM627205     2  0.0000    0.88424 0.000 1.000 0.000 0.000 0.000
#> GSM627214     4  0.3508    0.79016 0.000 0.252 0.000 0.748 0.000
#> GSM627180     3  0.2604    0.53750 0.000 0.020 0.896 0.012 0.072
#> GSM627172     4  0.4291    0.33574 0.000 0.464 0.000 0.536 0.000
#> GSM627184     1  0.3966    0.48570 0.664 0.000 0.000 0.000 0.336
#> GSM627193     2  0.0000    0.88424 0.000 1.000 0.000 0.000 0.000
#> GSM627191     5  0.3182    0.68059 0.000 0.032 0.000 0.124 0.844
#> GSM627176     5  0.4015    0.49921 0.000 0.000 0.348 0.000 0.652
#> GSM627194     2  0.0000    0.88424 0.000 1.000 0.000 0.000 0.000
#> GSM627154     4  0.0510    0.84704 0.000 0.016 0.000 0.984 0.000
#> GSM627187     3  0.3983    0.59886 0.340 0.000 0.660 0.000 0.000
#> GSM627198     4  0.0703    0.85029 0.000 0.024 0.000 0.976 0.000
#> GSM627160     5  0.1914    0.72341 0.000 0.060 0.000 0.016 0.924
#> GSM627185     1  0.0000    0.73306 1.000 0.000 0.000 0.000 0.000
#> GSM627206     3  0.3983    0.59886 0.340 0.000 0.660 0.000 0.000
#> GSM627161     1  0.1851    0.69827 0.912 0.000 0.000 0.000 0.088
#> GSM627162     3  0.5779    0.17984 0.092 0.000 0.508 0.000 0.400
#> GSM627210     3  0.3983    0.59886 0.340 0.000 0.660 0.000 0.000
#> GSM627189     2  0.0000    0.88424 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM627128     6  0.0603     0.5932 0.016 0.000 0.000 0.000 0.004 0.980
#> GSM627110     3  0.2473     0.6909 0.008 0.000 0.856 0.000 0.136 0.000
#> GSM627132     1  0.2562     0.7890 0.828 0.000 0.172 0.000 0.000 0.000
#> GSM627107     5  0.2048     0.6260 0.000 0.000 0.000 0.000 0.880 0.120
#> GSM627103     2  0.0000     0.8868 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627114     3  0.2048     0.6936 0.000 0.000 0.880 0.000 0.120 0.000
#> GSM627134     2  0.0363     0.8824 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM627137     2  0.0260     0.8854 0.000 0.992 0.000 0.008 0.000 0.000
#> GSM627148     5  0.1610     0.6973 0.000 0.000 0.084 0.000 0.916 0.000
#> GSM627101     6  0.5065     0.3458 0.000 0.000 0.000 0.172 0.192 0.636
#> GSM627130     6  0.0865     0.5922 0.000 0.000 0.000 0.000 0.036 0.964
#> GSM627071     3  0.6081     0.5554 0.156 0.000 0.584 0.000 0.056 0.204
#> GSM627118     4  0.1168     0.7851 0.000 0.028 0.000 0.956 0.016 0.000
#> GSM627094     2  0.0000     0.8868 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627122     6  0.6258    -0.2458 0.156 0.000 0.400 0.000 0.028 0.416
#> GSM627115     2  0.1204     0.8553 0.000 0.944 0.000 0.056 0.000 0.000
#> GSM627125     6  0.2300     0.5189 0.000 0.000 0.000 0.000 0.144 0.856
#> GSM627174     2  0.0508     0.8809 0.000 0.984 0.012 0.004 0.000 0.000
#> GSM627102     4  0.3302     0.7563 0.004 0.232 0.000 0.760 0.000 0.004
#> GSM627073     5  0.4700     0.5186 0.128 0.000 0.008 0.000 0.704 0.160
#> GSM627108     2  0.0146     0.8863 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM627126     1  0.3017     0.5384 0.816 0.000 0.000 0.000 0.020 0.164
#> GSM627078     4  0.0000     0.7834 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM627090     5  0.5565     0.2415 0.152 0.000 0.000 0.000 0.508 0.340
#> GSM627099     2  0.3998     0.5058 0.000 0.644 0.000 0.340 0.016 0.000
#> GSM627105     6  0.3126     0.3968 0.000 0.000 0.000 0.000 0.248 0.752
#> GSM627117     3  0.2494     0.6934 0.000 0.016 0.864 0.000 0.120 0.000
#> GSM627121     5  0.0748     0.7142 0.000 0.004 0.016 0.000 0.976 0.004
#> GSM627127     2  0.3290     0.7008 0.000 0.776 0.000 0.208 0.016 0.000
#> GSM627087     2  0.1444     0.8435 0.000 0.928 0.000 0.072 0.000 0.000
#> GSM627089     3  0.2623     0.6938 0.000 0.000 0.852 0.000 0.132 0.016
#> GSM627092     2  0.0436     0.8844 0.004 0.988 0.000 0.004 0.000 0.004
#> GSM627076     5  0.5016     0.2758 0.076 0.000 0.000 0.000 0.532 0.392
#> GSM627136     3  0.6936     0.4266 0.156 0.000 0.460 0.000 0.108 0.276
#> GSM627081     5  0.0603     0.7119 0.000 0.004 0.016 0.000 0.980 0.000
#> GSM627091     2  0.2883     0.7105 0.000 0.788 0.000 0.212 0.000 0.000
#> GSM627097     2  0.2883     0.7086 0.000 0.788 0.000 0.212 0.000 0.000
#> GSM627072     3  0.4296     0.5967 0.052 0.000 0.700 0.000 0.244 0.004
#> GSM627080     1  0.2562     0.7890 0.828 0.000 0.172 0.000 0.000 0.000
#> GSM627088     3  0.4403     0.6836 0.004 0.004 0.740 0.000 0.124 0.128
#> GSM627109     3  0.2697     0.5291 0.188 0.000 0.812 0.000 0.000 0.000
#> GSM627111     1  0.2562     0.7890 0.828 0.000 0.172 0.000 0.000 0.000
#> GSM627113     3  0.2383     0.6349 0.096 0.000 0.880 0.000 0.000 0.024
#> GSM627133     2  0.0146     0.8858 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM627177     3  0.6656     0.5945 0.156 0.012 0.572 0.000 0.124 0.136
#> GSM627086     4  0.3076     0.7556 0.000 0.240 0.000 0.760 0.000 0.000
#> GSM627095     1  0.4144     0.2107 0.620 0.000 0.000 0.000 0.020 0.360
#> GSM627079     6  0.7337     0.0911 0.156 0.000 0.212 0.000 0.216 0.416
#> GSM627082     6  0.0547     0.5949 0.000 0.000 0.000 0.000 0.020 0.980
#> GSM627074     3  0.0000     0.6866 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627077     3  0.6187     0.3107 0.160 0.000 0.456 0.000 0.024 0.360
#> GSM627093     3  0.0000     0.6866 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627120     2  0.0000     0.8868 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627124     4  0.1387     0.7946 0.000 0.068 0.000 0.932 0.000 0.000
#> GSM627075     2  0.0291     0.8844 0.004 0.992 0.000 0.000 0.000 0.004
#> GSM627085     4  0.0000     0.7834 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM627119     3  0.0000     0.6866 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627116     2  0.3309     0.6649 0.000 0.788 0.004 0.000 0.016 0.192
#> GSM627084     3  0.6101     0.4848 0.156 0.012 0.560 0.000 0.020 0.252
#> GSM627096     4  0.2756     0.7275 0.000 0.028 0.000 0.872 0.016 0.084
#> GSM627100     5  0.4228     0.3475 0.020 0.000 0.000 0.000 0.588 0.392
#> GSM627112     6  0.4076     0.1404 0.000 0.000 0.000 0.364 0.016 0.620
#> GSM627083     2  0.6188    -0.2045 0.168 0.428 0.000 0.000 0.020 0.384
#> GSM627098     3  0.3983     0.6098 0.012 0.000 0.720 0.000 0.020 0.248
#> GSM627104     3  0.1444     0.6652 0.000 0.072 0.928 0.000 0.000 0.000
#> GSM627131     3  0.6163     0.3162 0.156 0.000 0.460 0.000 0.024 0.360
#> GSM627106     5  0.0914     0.7177 0.000 0.000 0.016 0.000 0.968 0.016
#> GSM627123     1  0.4533     0.2872 0.632 0.000 0.020 0.000 0.020 0.328
#> GSM627129     2  0.0000     0.8868 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627216     2  0.0000     0.8868 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627212     2  0.2823     0.7196 0.000 0.796 0.000 0.204 0.000 0.000
#> GSM627190     3  0.2048     0.6936 0.000 0.000 0.880 0.000 0.120 0.000
#> GSM627169     2  0.2333     0.7879 0.004 0.872 0.120 0.000 0.000 0.004
#> GSM627167     4  0.3848     0.6775 0.004 0.040 0.000 0.752 0.000 0.204
#> GSM627192     1  0.0146     0.7040 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM627203     5  0.0914     0.7177 0.000 0.000 0.016 0.000 0.968 0.016
#> GSM627151     2  0.0000     0.8868 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627163     1  0.2454     0.7862 0.840 0.000 0.160 0.000 0.000 0.000
#> GSM627211     4  0.2300     0.7888 0.000 0.144 0.000 0.856 0.000 0.000
#> GSM627171     3  0.4230     0.2923 0.004 0.444 0.544 0.004 0.000 0.004
#> GSM627209     4  0.0000     0.7834 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM627135     1  0.5086     0.1362 0.572 0.000 0.048 0.000 0.020 0.360
#> GSM627170     2  0.0146     0.8863 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM627178     3  0.5515     0.4668 0.128 0.000 0.608 0.000 0.020 0.244
#> GSM627199     4  0.2883     0.7602 0.000 0.212 0.000 0.788 0.000 0.000
#> GSM627213     4  0.6351     0.1821 0.000 0.344 0.000 0.408 0.016 0.232
#> GSM627140     6  0.3782     0.2354 0.004 0.360 0.000 0.000 0.000 0.636
#> GSM627149     1  0.2454     0.7881 0.840 0.000 0.160 0.000 0.000 0.000
#> GSM627147     2  0.4100     0.1840 0.004 0.612 0.000 0.376 0.004 0.004
#> GSM627195     5  0.1225     0.7127 0.000 0.000 0.036 0.000 0.952 0.012
#> GSM627204     4  0.3126     0.7505 0.000 0.248 0.000 0.752 0.000 0.000
#> GSM627207     2  0.3756     0.3873 0.004 0.676 0.000 0.316 0.000 0.004
#> GSM627157     1  0.3309     0.6878 0.720 0.000 0.280 0.000 0.000 0.000
#> GSM627201     4  0.1501     0.7797 0.000 0.076 0.000 0.924 0.000 0.000
#> GSM627146     2  0.0146     0.8863 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM627156     2  0.2504     0.7710 0.004 0.856 0.136 0.000 0.000 0.004
#> GSM627188     1  0.0146     0.7040 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM627197     2  0.0363     0.8840 0.000 0.988 0.000 0.012 0.000 0.000
#> GSM627173     2  0.0000     0.8868 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627179     2  0.0146     0.8863 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM627208     5  0.2454     0.6539 0.000 0.000 0.160 0.000 0.840 0.000
#> GSM627215     2  0.0000     0.8868 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627153     4  0.0000     0.7834 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM627155     1  0.2454     0.7862 0.840 0.000 0.160 0.000 0.000 0.000
#> GSM627165     2  0.4326     0.5201 0.000 0.656 0.000 0.044 0.300 0.000
#> GSM627168     3  0.3770     0.6186 0.000 0.000 0.728 0.000 0.028 0.244
#> GSM627183     3  0.5307     0.6625 0.044 0.000 0.676 0.000 0.124 0.156
#> GSM627144     5  0.2219     0.6673 0.000 0.000 0.136 0.000 0.864 0.000
#> GSM627158     1  0.2562     0.7890 0.828 0.000 0.172 0.000 0.000 0.000
#> GSM627196     4  0.3023     0.7591 0.000 0.232 0.000 0.768 0.000 0.000
#> GSM627142     6  0.3247     0.5205 0.156 0.000 0.000 0.000 0.036 0.808
#> GSM627182     3  0.3371     0.5611 0.000 0.000 0.708 0.000 0.292 0.000
#> GSM627202     1  0.5503     0.5517 0.552 0.000 0.172 0.000 0.000 0.276
#> GSM627141     3  0.2488     0.7012 0.004 0.000 0.864 0.000 0.124 0.008
#> GSM627143     2  0.0000     0.8868 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627145     5  0.7318     0.0547 0.128 0.000 0.260 0.000 0.396 0.216
#> GSM627152     5  0.6508     0.1241 0.156 0.000 0.048 0.000 0.432 0.364
#> GSM627200     3  0.6163     0.3162 0.156 0.000 0.460 0.000 0.024 0.360
#> GSM627159     6  0.0547     0.5949 0.000 0.000 0.000 0.000 0.020 0.980
#> GSM627164     2  0.0436     0.8844 0.004 0.988 0.000 0.004 0.000 0.004
#> GSM627138     1  0.2562     0.7890 0.828 0.000 0.172 0.000 0.000 0.000
#> GSM627175     4  0.0000     0.7834 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM627150     5  0.2066     0.6982 0.000 0.000 0.024 0.000 0.904 0.072
#> GSM627166     3  0.3601     0.4586 0.004 0.312 0.684 0.000 0.000 0.000
#> GSM627186     3  0.4103     0.1893 0.004 0.448 0.544 0.000 0.000 0.004
#> GSM627139     6  0.4671     0.3908 0.156 0.000 0.000 0.000 0.156 0.688
#> GSM627181     4  0.3371     0.7142 0.000 0.292 0.000 0.708 0.000 0.000
#> GSM627205     2  0.0146     0.8863 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM627214     4  0.3351     0.7214 0.000 0.288 0.000 0.712 0.000 0.000
#> GSM627180     5  0.1003     0.7139 0.000 0.000 0.020 0.000 0.964 0.016
#> GSM627172     4  0.4093     0.4096 0.004 0.440 0.000 0.552 0.000 0.004
#> GSM627184     1  0.0291     0.7073 0.992 0.000 0.004 0.000 0.000 0.004
#> GSM627193     2  0.0000     0.8868 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627191     6  0.5346     0.4747 0.164 0.020 0.000 0.112 0.020 0.684
#> GSM627176     3  0.6071     0.5143 0.024 0.000 0.516 0.000 0.296 0.164
#> GSM627194     2  0.0000     0.8868 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627154     4  0.0146     0.7821 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM627187     3  0.2048     0.6936 0.000 0.000 0.880 0.000 0.120 0.000
#> GSM627198     4  0.0000     0.7834 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM627160     6  0.4734     0.4199 0.060 0.224 0.000 0.000 0.024 0.692
#> GSM627185     1  0.3371     0.7264 0.708 0.000 0.292 0.000 0.000 0.000
#> GSM627206     3  0.2048     0.6936 0.000 0.000 0.880 0.000 0.120 0.000
#> GSM627161     1  0.2562     0.7890 0.828 0.000 0.172 0.000 0.000 0.000
#> GSM627162     3  0.5263     0.5977 0.160 0.012 0.688 0.000 0.024 0.116
#> GSM627210     3  0.0000     0.6866 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627189     2  0.0000     0.8868 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n disease.state(p) age(p) other(p) k
#> MAD:pam 144           0.0635  0.391   0.0617 2
#> MAD:pam 130           0.3379  0.456   0.0103 3
#> MAD:pam 116           0.7161  0.275   0.0485 4
#> MAD:pam 116           0.2936  0.309   0.1225 5
#> MAD:pam 115           0.2157  0.560   0.1665 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 146 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.969       0.988         0.5031 0.497   0.497
#> 3 3 0.970           0.938       0.973         0.2733 0.760   0.562
#> 4 4 0.800           0.829       0.917         0.1069 0.902   0.740
#> 5 5 0.787           0.791       0.884         0.0665 0.902   0.697
#> 6 6 0.786           0.771       0.847         0.0603 0.873   0.554

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM627128     2   0.000      0.986 0.000 1.000
#> GSM627110     1   0.000      0.989 1.000 0.000
#> GSM627132     1   0.000      0.989 1.000 0.000
#> GSM627107     2   0.980      0.290 0.416 0.584
#> GSM627103     2   0.000      0.986 0.000 1.000
#> GSM627114     1   0.000      0.989 1.000 0.000
#> GSM627134     2   0.000      0.986 0.000 1.000
#> GSM627137     2   0.000      0.986 0.000 1.000
#> GSM627148     1   0.000      0.989 1.000 0.000
#> GSM627101     2   0.000      0.986 0.000 1.000
#> GSM627130     2   0.000      0.986 0.000 1.000
#> GSM627071     1   0.000      0.989 1.000 0.000
#> GSM627118     2   0.000      0.986 0.000 1.000
#> GSM627094     2   0.000      0.986 0.000 1.000
#> GSM627122     1   0.000      0.989 1.000 0.000
#> GSM627115     2   0.000      0.986 0.000 1.000
#> GSM627125     2   0.000      0.986 0.000 1.000
#> GSM627174     2   0.000      0.986 0.000 1.000
#> GSM627102     2   0.000      0.986 0.000 1.000
#> GSM627073     1   0.000      0.989 1.000 0.000
#> GSM627108     2   0.000      0.986 0.000 1.000
#> GSM627126     1   0.000      0.989 1.000 0.000
#> GSM627078     2   0.000      0.986 0.000 1.000
#> GSM627090     1   0.000      0.989 1.000 0.000
#> GSM627099     2   0.000      0.986 0.000 1.000
#> GSM627105     2   0.000      0.986 0.000 1.000
#> GSM627117     1   0.000      0.989 1.000 0.000
#> GSM627121     2   0.961      0.377 0.384 0.616
#> GSM627127     2   0.000      0.986 0.000 1.000
#> GSM627087     2   0.000      0.986 0.000 1.000
#> GSM627089     1   0.000      0.989 1.000 0.000
#> GSM627092     2   0.000      0.986 0.000 1.000
#> GSM627076     1   0.000      0.989 1.000 0.000
#> GSM627136     1   0.000      0.989 1.000 0.000
#> GSM627081     1   0.000      0.989 1.000 0.000
#> GSM627091     2   0.000      0.986 0.000 1.000
#> GSM627097     2   0.000      0.986 0.000 1.000
#> GSM627072     1   0.000      0.989 1.000 0.000
#> GSM627080     1   0.000      0.989 1.000 0.000
#> GSM627088     1   0.000      0.989 1.000 0.000
#> GSM627109     1   0.000      0.989 1.000 0.000
#> GSM627111     1   0.000      0.989 1.000 0.000
#> GSM627113     1   0.000      0.989 1.000 0.000
#> GSM627133     2   0.242      0.946 0.040 0.960
#> GSM627177     1   0.000      0.989 1.000 0.000
#> GSM627086     2   0.000      0.986 0.000 1.000
#> GSM627095     1   0.000      0.989 1.000 0.000
#> GSM627079     1   0.000      0.989 1.000 0.000
#> GSM627082     2   0.000      0.986 0.000 1.000
#> GSM627074     1   0.000      0.989 1.000 0.000
#> GSM627077     1   0.000      0.989 1.000 0.000
#> GSM627093     1   0.000      0.989 1.000 0.000
#> GSM627120     2   0.000      0.986 0.000 1.000
#> GSM627124     2   0.000      0.986 0.000 1.000
#> GSM627075     2   0.000      0.986 0.000 1.000
#> GSM627085     2   0.000      0.986 0.000 1.000
#> GSM627119     1   0.000      0.989 1.000 0.000
#> GSM627116     2   0.000      0.986 0.000 1.000
#> GSM627084     1   0.000      0.989 1.000 0.000
#> GSM627096     2   0.000      0.986 0.000 1.000
#> GSM627100     1   0.000      0.989 1.000 0.000
#> GSM627112     2   0.000      0.986 0.000 1.000
#> GSM627083     1   0.952      0.402 0.628 0.372
#> GSM627098     1   0.000      0.989 1.000 0.000
#> GSM627104     1   0.000      0.989 1.000 0.000
#> GSM627131     1   0.000      0.989 1.000 0.000
#> GSM627106     1   0.000      0.989 1.000 0.000
#> GSM627123     1   0.000      0.989 1.000 0.000
#> GSM627129     2   0.000      0.986 0.000 1.000
#> GSM627216     2   0.000      0.986 0.000 1.000
#> GSM627212     2   0.000      0.986 0.000 1.000
#> GSM627190     1   0.000      0.989 1.000 0.000
#> GSM627169     2   0.000      0.986 0.000 1.000
#> GSM627167     2   0.000      0.986 0.000 1.000
#> GSM627192     1   0.000      0.989 1.000 0.000
#> GSM627203     1   0.000      0.989 1.000 0.000
#> GSM627151     2   0.000      0.986 0.000 1.000
#> GSM627163     1   0.000      0.989 1.000 0.000
#> GSM627211     2   0.000      0.986 0.000 1.000
#> GSM627171     2   0.000      0.986 0.000 1.000
#> GSM627209     2   0.000      0.986 0.000 1.000
#> GSM627135     1   0.000      0.989 1.000 0.000
#> GSM627170     2   0.000      0.986 0.000 1.000
#> GSM627178     1   0.000      0.989 1.000 0.000
#> GSM627199     2   0.000      0.986 0.000 1.000
#> GSM627213     2   0.000      0.986 0.000 1.000
#> GSM627140     2   0.000      0.986 0.000 1.000
#> GSM627149     1   0.000      0.989 1.000 0.000
#> GSM627147     2   0.000      0.986 0.000 1.000
#> GSM627195     1   0.000      0.989 1.000 0.000
#> GSM627204     2   0.000      0.986 0.000 1.000
#> GSM627207     2   0.000      0.986 0.000 1.000
#> GSM627157     1   0.000      0.989 1.000 0.000
#> GSM627201     2   0.000      0.986 0.000 1.000
#> GSM627146     2   0.000      0.986 0.000 1.000
#> GSM627156     2   0.000      0.986 0.000 1.000
#> GSM627188     1   0.000      0.989 1.000 0.000
#> GSM627197     2   0.000      0.986 0.000 1.000
#> GSM627173     2   0.000      0.986 0.000 1.000
#> GSM627179     2   0.000      0.986 0.000 1.000
#> GSM627208     1   0.653      0.794 0.832 0.168
#> GSM627215     2   0.000      0.986 0.000 1.000
#> GSM627153     2   0.000      0.986 0.000 1.000
#> GSM627155     1   0.000      0.989 1.000 0.000
#> GSM627165     2   0.000      0.986 0.000 1.000
#> GSM627168     1   0.000      0.989 1.000 0.000
#> GSM627183     1   0.000      0.989 1.000 0.000
#> GSM627144     1   0.000      0.989 1.000 0.000
#> GSM627158     1   0.000      0.989 1.000 0.000
#> GSM627196     2   0.000      0.986 0.000 1.000
#> GSM627142     1   0.000      0.989 1.000 0.000
#> GSM627182     1   0.000      0.989 1.000 0.000
#> GSM627202     1   0.000      0.989 1.000 0.000
#> GSM627141     1   0.000      0.989 1.000 0.000
#> GSM627143     2   0.000      0.986 0.000 1.000
#> GSM627145     1   0.000      0.989 1.000 0.000
#> GSM627152     1   0.000      0.989 1.000 0.000
#> GSM627200     1   0.000      0.989 1.000 0.000
#> GSM627159     2   0.000      0.986 0.000 1.000
#> GSM627164     2   0.000      0.986 0.000 1.000
#> GSM627138     1   0.000      0.989 1.000 0.000
#> GSM627175     2   0.000      0.986 0.000 1.000
#> GSM627150     1   0.000      0.989 1.000 0.000
#> GSM627166     1   0.000      0.989 1.000 0.000
#> GSM627186     2   0.000      0.986 0.000 1.000
#> GSM627139     2   0.000      0.986 0.000 1.000
#> GSM627181     2   0.000      0.986 0.000 1.000
#> GSM627205     2   0.000      0.986 0.000 1.000
#> GSM627214     2   0.000      0.986 0.000 1.000
#> GSM627180     1   0.781      0.696 0.768 0.232
#> GSM627172     2   0.000      0.986 0.000 1.000
#> GSM627184     1   0.000      0.989 1.000 0.000
#> GSM627193     2   0.000      0.986 0.000 1.000
#> GSM627191     2   0.000      0.986 0.000 1.000
#> GSM627176     1   0.000      0.989 1.000 0.000
#> GSM627194     2   0.000      0.986 0.000 1.000
#> GSM627154     2   0.000      0.986 0.000 1.000
#> GSM627187     1   0.000      0.989 1.000 0.000
#> GSM627198     2   0.000      0.986 0.000 1.000
#> GSM627160     2   0.738      0.732 0.208 0.792
#> GSM627185     1   0.000      0.989 1.000 0.000
#> GSM627206     1   0.000      0.989 1.000 0.000
#> GSM627161     1   0.000      0.989 1.000 0.000
#> GSM627162     1   0.000      0.989 1.000 0.000
#> GSM627210     1   0.000      0.989 1.000 0.000
#> GSM627189     2   0.000      0.986 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM627128     3  0.1774     0.9122 0.016 0.024 0.960
#> GSM627110     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627132     1  0.0747     0.9705 0.984 0.000 0.016
#> GSM627107     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627103     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627114     3  0.0592     0.9306 0.012 0.000 0.988
#> GSM627134     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627137     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627148     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627101     2  0.1585     0.9632 0.008 0.964 0.028
#> GSM627130     3  0.6823     0.0912 0.012 0.484 0.504
#> GSM627071     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627118     2  0.0237     0.9936 0.004 0.996 0.000
#> GSM627094     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627122     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627115     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627125     3  0.0747     0.9280 0.016 0.000 0.984
#> GSM627174     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627102     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627073     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627108     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627126     1  0.0000     0.9661 1.000 0.000 0.000
#> GSM627078     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627090     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627099     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627105     3  0.1170     0.9240 0.016 0.008 0.976
#> GSM627117     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627121     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627127     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627087     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627089     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627092     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627076     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627136     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627081     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627091     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627097     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627072     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627080     1  0.0747     0.9705 0.984 0.000 0.016
#> GSM627088     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627109     1  0.0747     0.9705 0.984 0.000 0.016
#> GSM627111     1  0.0747     0.9705 0.984 0.000 0.016
#> GSM627113     1  0.2796     0.9115 0.908 0.000 0.092
#> GSM627133     3  0.0747     0.9263 0.000 0.016 0.984
#> GSM627177     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627086     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627095     1  0.0000     0.9661 1.000 0.000 0.000
#> GSM627079     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627082     3  0.4862     0.7623 0.020 0.160 0.820
#> GSM627074     1  0.1163     0.9655 0.972 0.000 0.028
#> GSM627077     3  0.0592     0.9312 0.012 0.000 0.988
#> GSM627093     1  0.1529     0.9582 0.960 0.000 0.040
#> GSM627120     2  0.0424     0.9891 0.000 0.992 0.008
#> GSM627124     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627075     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627085     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627119     1  0.1753     0.9522 0.952 0.000 0.048
#> GSM627116     3  0.6869     0.2831 0.016 0.424 0.560
#> GSM627084     1  0.2537     0.9189 0.920 0.000 0.080
#> GSM627096     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627100     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627112     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627083     1  0.5393     0.7878 0.808 0.148 0.044
#> GSM627098     1  0.1411     0.9608 0.964 0.000 0.036
#> GSM627104     1  0.0000     0.9661 1.000 0.000 0.000
#> GSM627131     3  0.4062     0.7783 0.164 0.000 0.836
#> GSM627106     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627123     1  0.0747     0.9705 0.984 0.000 0.016
#> GSM627129     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627216     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627212     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627190     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627169     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627167     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627192     1  0.0000     0.9661 1.000 0.000 0.000
#> GSM627203     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627151     3  0.5431     0.6150 0.000 0.284 0.716
#> GSM627163     1  0.0000     0.9661 1.000 0.000 0.000
#> GSM627211     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627171     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627209     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627135     1  0.0000     0.9661 1.000 0.000 0.000
#> GSM627170     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627178     1  0.4931     0.7158 0.768 0.000 0.232
#> GSM627199     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627213     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627140     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627149     1  0.0747     0.9705 0.984 0.000 0.016
#> GSM627147     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627195     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627204     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627207     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627157     1  0.1031     0.9674 0.976 0.000 0.024
#> GSM627201     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627146     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627156     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627188     1  0.0000     0.9661 1.000 0.000 0.000
#> GSM627197     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627173     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627179     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627208     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627215     2  0.1529     0.9558 0.000 0.960 0.040
#> GSM627153     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627155     1  0.0747     0.9705 0.984 0.000 0.016
#> GSM627165     2  0.0237     0.9936 0.004 0.996 0.000
#> GSM627168     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627183     3  0.0892     0.9249 0.020 0.000 0.980
#> GSM627144     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627158     1  0.0747     0.9705 0.984 0.000 0.016
#> GSM627196     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627142     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627182     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627202     3  0.4931     0.6705 0.232 0.000 0.768
#> GSM627141     3  0.0237     0.9356 0.004 0.000 0.996
#> GSM627143     2  0.1031     0.9727 0.000 0.976 0.024
#> GSM627145     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627152     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627200     3  0.4399     0.7379 0.188 0.000 0.812
#> GSM627159     3  0.1774     0.9119 0.016 0.024 0.960
#> GSM627164     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627138     1  0.0747     0.9705 0.984 0.000 0.016
#> GSM627175     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627150     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627166     1  0.0237     0.9667 0.996 0.000 0.004
#> GSM627186     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627139     3  0.0747     0.9263 0.000 0.016 0.984
#> GSM627181     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627205     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627214     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627180     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627172     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627184     1  0.0000     0.9661 1.000 0.000 0.000
#> GSM627193     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627191     2  0.2599     0.9297 0.016 0.932 0.052
#> GSM627176     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627194     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627154     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627187     3  0.0424     0.9332 0.008 0.000 0.992
#> GSM627198     2  0.0000     0.9969 0.000 1.000 0.000
#> GSM627160     3  0.4782     0.7599 0.016 0.164 0.820
#> GSM627185     1  0.0747     0.9705 0.984 0.000 0.016
#> GSM627206     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627161     1  0.0747     0.9705 0.984 0.000 0.016
#> GSM627162     3  0.0000     0.9378 0.000 0.000 1.000
#> GSM627210     3  0.6295     0.0582 0.472 0.000 0.528
#> GSM627189     2  0.0000     0.9969 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM627128     4  0.0000     0.7897 0.000 0.000 0.000 1.000
#> GSM627110     3  0.0000     0.9072 0.000 0.000 1.000 0.000
#> GSM627132     1  0.0000     0.9044 1.000 0.000 0.000 0.000
#> GSM627107     4  0.3569     0.6536 0.000 0.000 0.196 0.804
#> GSM627103     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627114     3  0.0000     0.9072 0.000 0.000 1.000 0.000
#> GSM627134     2  0.4564     0.5606 0.000 0.672 0.000 0.328
#> GSM627137     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627148     3  0.1940     0.8906 0.000 0.000 0.924 0.076
#> GSM627101     4  0.0469     0.7938 0.000 0.012 0.000 0.988
#> GSM627130     4  0.1118     0.7936 0.000 0.036 0.000 0.964
#> GSM627071     3  0.0000     0.9072 0.000 0.000 1.000 0.000
#> GSM627118     2  0.4382     0.6191 0.000 0.704 0.000 0.296
#> GSM627094     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627122     3  0.0000     0.9072 0.000 0.000 1.000 0.000
#> GSM627115     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627125     4  0.0000     0.7897 0.000 0.000 0.000 1.000
#> GSM627174     2  0.1474     0.8985 0.000 0.948 0.000 0.052
#> GSM627102     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627073     3  0.3123     0.8447 0.000 0.000 0.844 0.156
#> GSM627108     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627126     1  0.0000     0.9044 1.000 0.000 0.000 0.000
#> GSM627078     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627090     3  0.1211     0.9030 0.000 0.000 0.960 0.040
#> GSM627099     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627105     4  0.0000     0.7897 0.000 0.000 0.000 1.000
#> GSM627117     3  0.0000     0.9072 0.000 0.000 1.000 0.000
#> GSM627121     4  0.4955     0.0604 0.000 0.000 0.444 0.556
#> GSM627127     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627087     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627089     3  0.0000     0.9072 0.000 0.000 1.000 0.000
#> GSM627092     2  0.3024     0.8184 0.000 0.852 0.000 0.148
#> GSM627076     3  0.2408     0.8794 0.000 0.000 0.896 0.104
#> GSM627136     3  0.0000     0.9072 0.000 0.000 1.000 0.000
#> GSM627081     3  0.3123     0.8447 0.000 0.000 0.844 0.156
#> GSM627091     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627097     2  0.4898     0.3414 0.000 0.584 0.000 0.416
#> GSM627072     3  0.1022     0.9047 0.000 0.000 0.968 0.032
#> GSM627080     1  0.0000     0.9044 1.000 0.000 0.000 0.000
#> GSM627088     3  0.0000     0.9072 0.000 0.000 1.000 0.000
#> GSM627109     1  0.0000     0.9044 1.000 0.000 0.000 0.000
#> GSM627111     1  0.0000     0.9044 1.000 0.000 0.000 0.000
#> GSM627113     1  0.4585     0.6062 0.668 0.000 0.332 0.000
#> GSM627133     3  0.4655     0.6100 0.000 0.004 0.684 0.312
#> GSM627177     3  0.0000     0.9072 0.000 0.000 1.000 0.000
#> GSM627086     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627095     1  0.0000     0.9044 1.000 0.000 0.000 0.000
#> GSM627079     3  0.1211     0.9030 0.000 0.000 0.960 0.040
#> GSM627082     4  0.1398     0.7916 0.004 0.040 0.000 0.956
#> GSM627074     1  0.3907     0.7374 0.768 0.000 0.232 0.000
#> GSM627077     3  0.0000     0.9072 0.000 0.000 1.000 0.000
#> GSM627093     1  0.5000     0.1679 0.504 0.000 0.496 0.000
#> GSM627120     2  0.4522     0.5763 0.000 0.680 0.000 0.320
#> GSM627124     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627075     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627085     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627119     3  0.4761     0.2861 0.372 0.000 0.628 0.000
#> GSM627116     4  0.3790     0.7526 0.000 0.164 0.016 0.820
#> GSM627084     3  0.3123     0.7546 0.156 0.000 0.844 0.000
#> GSM627096     4  0.4522     0.5009 0.000 0.320 0.000 0.680
#> GSM627100     3  0.3172     0.8434 0.000 0.000 0.840 0.160
#> GSM627112     4  0.4331     0.5845 0.000 0.288 0.000 0.712
#> GSM627083     4  0.7464     0.3373 0.344 0.028 0.100 0.528
#> GSM627098     1  0.3907     0.7378 0.768 0.000 0.232 0.000
#> GSM627104     1  0.1557     0.8747 0.944 0.000 0.056 0.000
#> GSM627131     3  0.1211     0.8797 0.040 0.000 0.960 0.000
#> GSM627106     3  0.3266     0.8359 0.000 0.000 0.832 0.168
#> GSM627123     1  0.0921     0.8927 0.972 0.000 0.028 0.000
#> GSM627129     2  0.3024     0.8177 0.000 0.852 0.000 0.148
#> GSM627216     2  0.2868     0.8295 0.000 0.864 0.000 0.136
#> GSM627212     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627190     3  0.0000     0.9072 0.000 0.000 1.000 0.000
#> GSM627169     2  0.1022     0.9102 0.000 0.968 0.000 0.032
#> GSM627167     2  0.3764     0.7404 0.000 0.784 0.000 0.216
#> GSM627192     1  0.0000     0.9044 1.000 0.000 0.000 0.000
#> GSM627203     3  0.2921     0.8567 0.000 0.000 0.860 0.140
#> GSM627151     4  0.4677     0.7431 0.000 0.176 0.048 0.776
#> GSM627163     1  0.0000     0.9044 1.000 0.000 0.000 0.000
#> GSM627211     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627171     2  0.1557     0.8961 0.000 0.944 0.000 0.056
#> GSM627209     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627135     1  0.0000     0.9044 1.000 0.000 0.000 0.000
#> GSM627170     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627178     3  0.4761     0.3086 0.372 0.000 0.628 0.000
#> GSM627199     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627213     2  0.1118     0.9059 0.000 0.964 0.000 0.036
#> GSM627140     2  0.4624     0.5356 0.000 0.660 0.000 0.340
#> GSM627149     1  0.0000     0.9044 1.000 0.000 0.000 0.000
#> GSM627147     2  0.1716     0.8906 0.000 0.936 0.000 0.064
#> GSM627195     3  0.3074     0.8477 0.000 0.000 0.848 0.152
#> GSM627204     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627207     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627157     1  0.3688     0.7621 0.792 0.000 0.208 0.000
#> GSM627201     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627146     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627156     2  0.1022     0.9102 0.000 0.968 0.000 0.032
#> GSM627188     1  0.0000     0.9044 1.000 0.000 0.000 0.000
#> GSM627197     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627173     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627179     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627208     3  0.3925     0.8134 0.000 0.016 0.808 0.176
#> GSM627215     2  0.4277     0.6473 0.000 0.720 0.000 0.280
#> GSM627153     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627155     1  0.0000     0.9044 1.000 0.000 0.000 0.000
#> GSM627165     2  0.4877     0.3991 0.000 0.592 0.000 0.408
#> GSM627168     3  0.0000     0.9072 0.000 0.000 1.000 0.000
#> GSM627183     3  0.0000     0.9072 0.000 0.000 1.000 0.000
#> GSM627144     3  0.2973     0.8538 0.000 0.000 0.856 0.144
#> GSM627158     1  0.0000     0.9044 1.000 0.000 0.000 0.000
#> GSM627196     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627142     3  0.3873     0.7720 0.000 0.000 0.772 0.228
#> GSM627182     3  0.2647     0.8687 0.000 0.000 0.880 0.120
#> GSM627202     3  0.0000     0.9072 0.000 0.000 1.000 0.000
#> GSM627141     3  0.0000     0.9072 0.000 0.000 1.000 0.000
#> GSM627143     2  0.4222     0.6586 0.000 0.728 0.000 0.272
#> GSM627145     3  0.1022     0.9043 0.000 0.000 0.968 0.032
#> GSM627152     3  0.1302     0.9019 0.000 0.000 0.956 0.044
#> GSM627200     3  0.0000     0.9072 0.000 0.000 1.000 0.000
#> GSM627159     4  0.0336     0.7930 0.000 0.008 0.000 0.992
#> GSM627164     2  0.1637     0.8937 0.000 0.940 0.000 0.060
#> GSM627138     1  0.1940     0.8630 0.924 0.000 0.076 0.000
#> GSM627175     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627150     3  0.3024     0.8508 0.000 0.000 0.852 0.148
#> GSM627166     1  0.3610     0.7501 0.800 0.000 0.200 0.000
#> GSM627186     2  0.1474     0.8985 0.000 0.948 0.000 0.052
#> GSM627139     4  0.1867     0.7682 0.000 0.000 0.072 0.928
#> GSM627181     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627205     2  0.3074     0.8165 0.000 0.848 0.000 0.152
#> GSM627214     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627180     3  0.3528     0.8119 0.000 0.000 0.808 0.192
#> GSM627172     2  0.0188     0.9240 0.000 0.996 0.000 0.004
#> GSM627184     1  0.0000     0.9044 1.000 0.000 0.000 0.000
#> GSM627193     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627191     4  0.3123     0.7478 0.000 0.156 0.000 0.844
#> GSM627176     3  0.1557     0.8981 0.000 0.000 0.944 0.056
#> GSM627194     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627154     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627187     3  0.0000     0.9072 0.000 0.000 1.000 0.000
#> GSM627198     2  0.0000     0.9258 0.000 1.000 0.000 0.000
#> GSM627160     4  0.5573     0.5866 0.000 0.052 0.272 0.676
#> GSM627185     1  0.0188     0.9029 0.996 0.000 0.004 0.000
#> GSM627206     3  0.0000     0.9072 0.000 0.000 1.000 0.000
#> GSM627161     1  0.0000     0.9044 1.000 0.000 0.000 0.000
#> GSM627162     3  0.0817     0.9054 0.000 0.000 0.976 0.024
#> GSM627210     3  0.0000     0.9072 0.000 0.000 1.000 0.000
#> GSM627189     2  0.0000     0.9258 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM627128     4  0.0794     0.7906 0.000 0.000 0.000 0.972 0.028
#> GSM627110     3  0.0290     0.8295 0.000 0.000 0.992 0.000 0.008
#> GSM627132     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.000
#> GSM627107     5  0.1668     0.8948 0.000 0.000 0.028 0.032 0.940
#> GSM627103     2  0.1894     0.8757 0.000 0.920 0.000 0.008 0.072
#> GSM627114     3  0.0000     0.8316 0.000 0.000 1.000 0.000 0.000
#> GSM627134     2  0.4398     0.6804 0.000 0.720 0.000 0.240 0.040
#> GSM627137     2  0.0162     0.8873 0.000 0.996 0.000 0.004 0.000
#> GSM627148     5  0.2074     0.9529 0.000 0.000 0.104 0.000 0.896
#> GSM627101     4  0.0880     0.7903 0.000 0.000 0.000 0.968 0.032
#> GSM627130     4  0.0794     0.7906 0.000 0.000 0.000 0.972 0.028
#> GSM627071     3  0.4126     0.3282 0.000 0.000 0.620 0.000 0.380
#> GSM627118     2  0.5049     0.0449 0.000 0.488 0.000 0.480 0.032
#> GSM627094     2  0.0963     0.8824 0.000 0.964 0.000 0.000 0.036
#> GSM627122     3  0.3816     0.5053 0.000 0.000 0.696 0.000 0.304
#> GSM627115     2  0.0963     0.8824 0.000 0.964 0.000 0.000 0.036
#> GSM627125     4  0.1197     0.7780 0.000 0.000 0.000 0.952 0.048
#> GSM627174     2  0.2077     0.8747 0.000 0.920 0.000 0.040 0.040
#> GSM627102     2  0.0451     0.8878 0.000 0.988 0.000 0.008 0.004
#> GSM627073     5  0.2020     0.9525 0.000 0.000 0.100 0.000 0.900
#> GSM627108     2  0.0963     0.8824 0.000 0.964 0.000 0.000 0.036
#> GSM627126     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.000
#> GSM627078     2  0.1121     0.8799 0.000 0.956 0.000 0.044 0.000
#> GSM627090     5  0.2424     0.9370 0.000 0.000 0.132 0.000 0.868
#> GSM627099     2  0.0794     0.8845 0.000 0.972 0.000 0.028 0.000
#> GSM627105     4  0.0880     0.7889 0.000 0.000 0.000 0.968 0.032
#> GSM627117     3  0.0000     0.8316 0.000 0.000 1.000 0.000 0.000
#> GSM627121     5  0.1732     0.9401 0.000 0.000 0.080 0.000 0.920
#> GSM627127     2  0.1478     0.8703 0.000 0.936 0.000 0.064 0.000
#> GSM627087     2  0.0963     0.8824 0.000 0.964 0.000 0.000 0.036
#> GSM627089     3  0.3661     0.5547 0.000 0.000 0.724 0.000 0.276
#> GSM627092     2  0.3477     0.8011 0.000 0.824 0.000 0.136 0.040
#> GSM627076     5  0.2074     0.9505 0.000 0.000 0.104 0.000 0.896
#> GSM627136     3  0.0963     0.8163 0.000 0.000 0.964 0.000 0.036
#> GSM627081     5  0.2020     0.9525 0.000 0.000 0.100 0.000 0.900
#> GSM627091     2  0.0290     0.8872 0.000 0.992 0.000 0.008 0.000
#> GSM627097     2  0.5100     0.1650 0.000 0.516 0.000 0.448 0.036
#> GSM627072     5  0.2074     0.9529 0.000 0.000 0.104 0.000 0.896
#> GSM627080     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.000
#> GSM627088     3  0.0000     0.8316 0.000 0.000 1.000 0.000 0.000
#> GSM627109     1  0.3534     0.6194 0.744 0.000 0.256 0.000 0.000
#> GSM627111     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.000
#> GSM627113     3  0.1043     0.8179 0.040 0.000 0.960 0.000 0.000
#> GSM627133     5  0.4409     0.7695 0.000 0.060 0.064 0.072 0.804
#> GSM627177     3  0.4138     0.3173 0.000 0.000 0.616 0.000 0.384
#> GSM627086     2  0.0963     0.8824 0.000 0.964 0.000 0.000 0.036
#> GSM627095     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.000
#> GSM627079     5  0.3210     0.8454 0.000 0.000 0.212 0.000 0.788
#> GSM627082     4  0.0794     0.7906 0.000 0.000 0.000 0.972 0.028
#> GSM627074     3  0.1410     0.8012 0.060 0.000 0.940 0.000 0.000
#> GSM627077     3  0.3661     0.5547 0.000 0.000 0.724 0.000 0.276
#> GSM627093     3  0.0794     0.8244 0.028 0.000 0.972 0.000 0.000
#> GSM627120     2  0.4284     0.7176 0.000 0.752 0.004 0.204 0.040
#> GSM627124     2  0.0880     0.8838 0.000 0.968 0.000 0.032 0.000
#> GSM627075     2  0.0963     0.8824 0.000 0.964 0.000 0.000 0.036
#> GSM627085     2  0.1270     0.8763 0.000 0.948 0.000 0.052 0.000
#> GSM627119     3  0.0794     0.8244 0.028 0.000 0.972 0.000 0.000
#> GSM627116     4  0.2813     0.7373 0.000 0.168 0.000 0.832 0.000
#> GSM627084     3  0.0404     0.8300 0.012 0.000 0.988 0.000 0.000
#> GSM627096     4  0.4908     0.3822 0.000 0.356 0.000 0.608 0.036
#> GSM627100     5  0.1732     0.9397 0.000 0.000 0.080 0.000 0.920
#> GSM627112     4  0.3177     0.7153 0.000 0.208 0.000 0.792 0.000
#> GSM627083     1  0.4210     0.3288 0.588 0.000 0.000 0.412 0.000
#> GSM627098     3  0.1121     0.8146 0.044 0.000 0.956 0.000 0.000
#> GSM627104     3  0.4294     0.0855 0.468 0.000 0.532 0.000 0.000
#> GSM627131     3  0.4475     0.5765 0.032 0.000 0.692 0.000 0.276
#> GSM627106     5  0.2020     0.9525 0.000 0.000 0.100 0.000 0.900
#> GSM627123     1  0.2929     0.7282 0.820 0.000 0.180 0.000 0.000
#> GSM627129     2  0.4054     0.7343 0.000 0.760 0.000 0.204 0.036
#> GSM627216     2  0.3420     0.8330 0.000 0.840 0.000 0.084 0.076
#> GSM627212     2  0.0703     0.8857 0.000 0.976 0.000 0.024 0.000
#> GSM627190     3  0.0000     0.8316 0.000 0.000 1.000 0.000 0.000
#> GSM627169     2  0.2535     0.8652 0.000 0.892 0.000 0.032 0.076
#> GSM627167     2  0.4946     0.4240 0.000 0.596 0.000 0.368 0.036
#> GSM627192     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.000
#> GSM627203     5  0.2074     0.9529 0.000 0.000 0.104 0.000 0.896
#> GSM627151     4  0.7446     0.3260 0.000 0.324 0.052 0.432 0.192
#> GSM627163     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.000
#> GSM627211     2  0.0000     0.8872 0.000 1.000 0.000 0.000 0.000
#> GSM627171     2  0.2694     0.8613 0.000 0.884 0.000 0.040 0.076
#> GSM627209     2  0.0794     0.8845 0.000 0.972 0.000 0.028 0.000
#> GSM627135     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.000
#> GSM627170     2  0.2491     0.8674 0.000 0.896 0.000 0.036 0.068
#> GSM627178     3  0.4425     0.4009 0.392 0.000 0.600 0.000 0.008
#> GSM627199     2  0.0880     0.8838 0.000 0.968 0.000 0.032 0.000
#> GSM627213     2  0.4410     0.1820 0.000 0.556 0.000 0.440 0.004
#> GSM627140     4  0.4101     0.3974 0.000 0.372 0.000 0.628 0.000
#> GSM627149     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.000
#> GSM627147     2  0.3115     0.8348 0.000 0.852 0.000 0.112 0.036
#> GSM627195     5  0.2074     0.9529 0.000 0.000 0.104 0.000 0.896
#> GSM627204     2  0.0963     0.8824 0.000 0.964 0.000 0.000 0.036
#> GSM627207     2  0.0963     0.8824 0.000 0.964 0.000 0.000 0.036
#> GSM627157     3  0.1792     0.7779 0.084 0.000 0.916 0.000 0.000
#> GSM627201     2  0.0000     0.8872 0.000 1.000 0.000 0.000 0.000
#> GSM627146     2  0.0000     0.8872 0.000 1.000 0.000 0.000 0.000
#> GSM627156     2  0.2694     0.8613 0.000 0.884 0.000 0.040 0.076
#> GSM627188     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.000
#> GSM627197     2  0.0703     0.8854 0.000 0.976 0.000 0.024 0.000
#> GSM627173     2  0.0963     0.8824 0.000 0.964 0.000 0.000 0.036
#> GSM627179     2  0.0963     0.8824 0.000 0.964 0.000 0.000 0.036
#> GSM627208     5  0.1544     0.9295 0.000 0.000 0.068 0.000 0.932
#> GSM627215     2  0.4874     0.7352 0.000 0.756 0.056 0.148 0.040
#> GSM627153     2  0.0794     0.8845 0.000 0.972 0.000 0.028 0.000
#> GSM627155     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.000
#> GSM627165     2  0.5323     0.5128 0.000 0.624 0.000 0.296 0.080
#> GSM627168     3  0.1270     0.8062 0.000 0.000 0.948 0.000 0.052
#> GSM627183     3  0.0000     0.8316 0.000 0.000 1.000 0.000 0.000
#> GSM627144     5  0.2074     0.9529 0.000 0.000 0.104 0.000 0.896
#> GSM627158     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.000
#> GSM627196     2  0.0963     0.8824 0.000 0.964 0.000 0.000 0.036
#> GSM627142     5  0.2830     0.8710 0.000 0.000 0.044 0.080 0.876
#> GSM627182     5  0.2329     0.9424 0.000 0.000 0.124 0.000 0.876
#> GSM627202     3  0.4374     0.5795 0.028 0.000 0.700 0.000 0.272
#> GSM627141     3  0.0000     0.8316 0.000 0.000 1.000 0.000 0.000
#> GSM627143     2  0.4562     0.7492 0.000 0.764 0.028 0.168 0.040
#> GSM627145     5  0.2732     0.9101 0.000 0.000 0.160 0.000 0.840
#> GSM627152     5  0.3366     0.8120 0.000 0.000 0.232 0.000 0.768
#> GSM627200     3  0.0000     0.8316 0.000 0.000 1.000 0.000 0.000
#> GSM627159     4  0.0794     0.7906 0.000 0.000 0.000 0.972 0.028
#> GSM627164     2  0.2708     0.8605 0.000 0.884 0.000 0.044 0.072
#> GSM627138     3  0.3366     0.6332 0.232 0.000 0.768 0.000 0.000
#> GSM627175     2  0.1270     0.8763 0.000 0.948 0.000 0.052 0.000
#> GSM627150     5  0.2074     0.9529 0.000 0.000 0.104 0.000 0.896
#> GSM627166     3  0.4045     0.3958 0.356 0.000 0.644 0.000 0.000
#> GSM627186     2  0.2694     0.8613 0.000 0.884 0.000 0.040 0.076
#> GSM627139     4  0.3048     0.6938 0.000 0.000 0.004 0.820 0.176
#> GSM627181     2  0.0609     0.8861 0.000 0.980 0.000 0.020 0.000
#> GSM627205     2  0.3803     0.7834 0.000 0.804 0.000 0.140 0.056
#> GSM627214     2  0.0880     0.8851 0.000 0.968 0.000 0.032 0.000
#> GSM627180     5  0.1965     0.9507 0.000 0.000 0.096 0.000 0.904
#> GSM627172     2  0.1117     0.8870 0.000 0.964 0.000 0.020 0.016
#> GSM627184     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.000
#> GSM627193     2  0.0963     0.8824 0.000 0.964 0.000 0.000 0.036
#> GSM627191     4  0.2561     0.7505 0.000 0.144 0.000 0.856 0.000
#> GSM627176     5  0.2280     0.9458 0.000 0.000 0.120 0.000 0.880
#> GSM627194     2  0.0963     0.8824 0.000 0.964 0.000 0.000 0.036
#> GSM627154     2  0.2424     0.8116 0.000 0.868 0.000 0.132 0.000
#> GSM627187     3  0.0000     0.8316 0.000 0.000 1.000 0.000 0.000
#> GSM627198     2  0.0880     0.8838 0.000 0.968 0.000 0.032 0.000
#> GSM627160     4  0.1331     0.7741 0.000 0.000 0.040 0.952 0.008
#> GSM627185     3  0.4300     0.0574 0.476 0.000 0.524 0.000 0.000
#> GSM627206     3  0.0290     0.8295 0.000 0.000 0.992 0.000 0.008
#> GSM627161     1  0.0162     0.9367 0.996 0.000 0.004 0.000 0.000
#> GSM627162     3  0.1661     0.8043 0.000 0.000 0.940 0.024 0.036
#> GSM627210     3  0.0000     0.8316 0.000 0.000 1.000 0.000 0.000
#> GSM627189     2  0.0963     0.8824 0.000 0.964 0.000 0.000 0.036

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM627128     6  0.0291     0.9860 0.000 0.000 0.000 0.004 0.004 0.992
#> GSM627110     3  0.0547     0.8470 0.000 0.020 0.980 0.000 0.000 0.000
#> GSM627132     1  0.0363     0.9202 0.988 0.000 0.012 0.000 0.000 0.000
#> GSM627107     5  0.0146     0.8157 0.000 0.000 0.000 0.004 0.996 0.000
#> GSM627103     2  0.3151     0.9417 0.000 0.748 0.000 0.252 0.000 0.000
#> GSM627114     3  0.0146     0.8509 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM627134     4  0.0603     0.8343 0.000 0.016 0.000 0.980 0.000 0.004
#> GSM627137     4  0.3330     0.3898 0.000 0.284 0.000 0.716 0.000 0.000
#> GSM627148     5  0.0717     0.8185 0.000 0.016 0.008 0.000 0.976 0.000
#> GSM627101     6  0.0820     0.9700 0.000 0.016 0.000 0.012 0.000 0.972
#> GSM627130     6  0.0260     0.9853 0.000 0.000 0.000 0.008 0.000 0.992
#> GSM627071     3  0.5104     0.1552 0.000 0.088 0.540 0.000 0.372 0.000
#> GSM627118     4  0.0717     0.8335 0.000 0.016 0.000 0.976 0.000 0.008
#> GSM627094     2  0.3198     0.9458 0.000 0.740 0.000 0.260 0.000 0.000
#> GSM627122     5  0.3938     0.7853 0.000 0.228 0.044 0.000 0.728 0.000
#> GSM627115     2  0.3198     0.9458 0.000 0.740 0.000 0.260 0.000 0.000
#> GSM627125     6  0.0692     0.9794 0.000 0.000 0.000 0.004 0.020 0.976
#> GSM627174     4  0.2165     0.7566 0.000 0.108 0.000 0.884 0.000 0.008
#> GSM627102     4  0.2969     0.5519 0.000 0.224 0.000 0.776 0.000 0.000
#> GSM627073     5  0.0000     0.8169 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM627108     2  0.3198     0.9458 0.000 0.740 0.000 0.260 0.000 0.000
#> GSM627126     1  0.0000     0.9294 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627078     4  0.0260     0.8371 0.000 0.008 0.000 0.992 0.000 0.000
#> GSM627090     5  0.3463     0.7961 0.000 0.240 0.008 0.000 0.748 0.004
#> GSM627099     4  0.0260     0.8371 0.000 0.008 0.000 0.992 0.000 0.000
#> GSM627105     6  0.0692     0.9794 0.000 0.000 0.000 0.004 0.020 0.976
#> GSM627117     3  0.0146     0.8509 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM627121     5  0.0000     0.8169 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM627127     4  0.0260     0.8371 0.000 0.008 0.000 0.992 0.000 0.000
#> GSM627087     2  0.3151     0.9441 0.000 0.748 0.000 0.252 0.000 0.000
#> GSM627089     5  0.5944     0.2012 0.000 0.216 0.384 0.000 0.400 0.000
#> GSM627092     4  0.1556     0.7938 0.000 0.080 0.000 0.920 0.000 0.000
#> GSM627076     5  0.3354     0.7964 0.000 0.240 0.004 0.000 0.752 0.004
#> GSM627136     3  0.0692     0.8435 0.000 0.004 0.976 0.000 0.020 0.000
#> GSM627081     5  0.0000     0.8169 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM627091     4  0.2664     0.6306 0.000 0.184 0.000 0.816 0.000 0.000
#> GSM627097     4  0.2631     0.6870 0.000 0.000 0.000 0.820 0.000 0.180
#> GSM627072     5  0.2981     0.7218 0.000 0.020 0.160 0.000 0.820 0.000
#> GSM627080     1  0.0000     0.9294 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627088     3  0.0146     0.8509 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM627109     3  0.3634     0.4287 0.356 0.000 0.644 0.000 0.000 0.000
#> GSM627111     1  0.2664     0.7014 0.816 0.000 0.184 0.000 0.000 0.000
#> GSM627113     3  0.0000     0.8507 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627133     5  0.2980     0.6440 0.000 0.192 0.000 0.008 0.800 0.000
#> GSM627177     3  0.4709     0.1899 0.000 0.040 0.556 0.004 0.400 0.000
#> GSM627086     2  0.3198     0.9458 0.000 0.740 0.000 0.260 0.000 0.000
#> GSM627095     1  0.0146     0.9281 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM627079     5  0.3731     0.7919 0.000 0.240 0.020 0.000 0.736 0.004
#> GSM627082     6  0.0146     0.9854 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM627074     3  0.0146     0.8501 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM627077     3  0.5917    -0.2051 0.000 0.208 0.404 0.000 0.388 0.000
#> GSM627093     3  0.0146     0.8501 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM627120     4  0.3158     0.6800 0.000 0.020 0.000 0.812 0.164 0.004
#> GSM627124     4  0.0260     0.8371 0.000 0.008 0.000 0.992 0.000 0.000
#> GSM627075     2  0.3198     0.9458 0.000 0.740 0.000 0.260 0.000 0.000
#> GSM627085     4  0.0260     0.8371 0.000 0.008 0.000 0.992 0.000 0.000
#> GSM627119     3  0.0146     0.8501 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM627116     4  0.3221     0.5595 0.000 0.000 0.000 0.736 0.000 0.264
#> GSM627084     3  0.0146     0.8501 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM627096     4  0.1320     0.8195 0.000 0.016 0.000 0.948 0.000 0.036
#> GSM627100     5  0.3354     0.7964 0.000 0.240 0.004 0.000 0.752 0.004
#> GSM627112     4  0.3515     0.4722 0.000 0.000 0.000 0.676 0.000 0.324
#> GSM627083     1  0.5464     0.2656 0.564 0.000 0.000 0.176 0.000 0.260
#> GSM627098     3  0.0146     0.8501 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM627104     3  0.0858     0.8356 0.028 0.004 0.968 0.000 0.000 0.000
#> GSM627131     3  0.5911    -0.1092 0.000 0.212 0.432 0.000 0.356 0.000
#> GSM627106     5  0.0000     0.8169 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM627123     1  0.0458     0.9187 0.984 0.000 0.016 0.000 0.000 0.000
#> GSM627129     4  0.0458     0.8346 0.000 0.016 0.000 0.984 0.000 0.000
#> GSM627216     2  0.3151     0.9371 0.000 0.748 0.000 0.252 0.000 0.000
#> GSM627212     4  0.2730     0.6007 0.000 0.192 0.000 0.808 0.000 0.000
#> GSM627190     3  0.0146     0.8509 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM627169     2  0.3126     0.9402 0.000 0.752 0.000 0.248 0.000 0.000
#> GSM627167     4  0.0717     0.8335 0.000 0.016 0.000 0.976 0.000 0.008
#> GSM627192     1  0.0000     0.9294 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627203     5  0.3023     0.7997 0.000 0.232 0.000 0.000 0.768 0.000
#> GSM627151     4  0.5615     0.3946 0.000 0.016 0.000 0.600 0.184 0.200
#> GSM627163     1  0.0000     0.9294 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627211     2  0.3684     0.7829 0.000 0.628 0.000 0.372 0.000 0.000
#> GSM627171     2  0.3151     0.9371 0.000 0.748 0.000 0.252 0.000 0.000
#> GSM627209     4  0.0260     0.8371 0.000 0.008 0.000 0.992 0.000 0.000
#> GSM627135     1  0.0146     0.9281 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM627170     2  0.3151     0.9371 0.000 0.748 0.000 0.252 0.000 0.000
#> GSM627178     1  0.4737     0.6306 0.712 0.152 0.120 0.000 0.016 0.000
#> GSM627199     4  0.0260     0.8371 0.000 0.008 0.000 0.992 0.000 0.000
#> GSM627213     4  0.0405     0.8365 0.000 0.008 0.000 0.988 0.000 0.004
#> GSM627140     4  0.3221     0.5595 0.000 0.000 0.000 0.736 0.000 0.264
#> GSM627149     1  0.0146     0.9281 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM627147     4  0.0458     0.8346 0.000 0.016 0.000 0.984 0.000 0.000
#> GSM627195     5  0.0000     0.8169 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM627204     2  0.3198     0.9458 0.000 0.740 0.000 0.260 0.000 0.000
#> GSM627207     2  0.3198     0.9458 0.000 0.740 0.000 0.260 0.000 0.000
#> GSM627157     3  0.0291     0.8487 0.004 0.004 0.992 0.000 0.000 0.000
#> GSM627201     4  0.3854    -0.3959 0.000 0.464 0.000 0.536 0.000 0.000
#> GSM627146     2  0.3869     0.4780 0.000 0.500 0.000 0.500 0.000 0.000
#> GSM627156     2  0.3126     0.9402 0.000 0.752 0.000 0.248 0.000 0.000
#> GSM627188     1  0.0000     0.9294 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627197     4  0.1075     0.8111 0.000 0.048 0.000 0.952 0.000 0.000
#> GSM627173     2  0.3198     0.9458 0.000 0.740 0.000 0.260 0.000 0.000
#> GSM627179     2  0.3198     0.9458 0.000 0.740 0.000 0.260 0.000 0.000
#> GSM627208     5  0.2978     0.7440 0.000 0.052 0.084 0.008 0.856 0.000
#> GSM627215     2  0.5134     0.3060 0.000 0.524 0.000 0.088 0.388 0.000
#> GSM627153     4  0.0260     0.8371 0.000 0.008 0.000 0.992 0.000 0.000
#> GSM627155     1  0.0000     0.9294 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627165     4  0.0603     0.8343 0.000 0.016 0.000 0.980 0.000 0.004
#> GSM627168     3  0.1341     0.8289 0.000 0.024 0.948 0.000 0.028 0.000
#> GSM627183     3  0.0363     0.8496 0.000 0.012 0.988 0.000 0.000 0.000
#> GSM627144     5  0.0000     0.8169 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM627158     1  0.0000     0.9294 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627196     2  0.3198     0.9458 0.000 0.740 0.000 0.260 0.000 0.000
#> GSM627142     5  0.5690     0.6267 0.000 0.240 0.004 0.004 0.568 0.184
#> GSM627182     5  0.3309     0.5191 0.000 0.000 0.280 0.000 0.720 0.000
#> GSM627202     3  0.5844     0.0596 0.000 0.216 0.476 0.000 0.308 0.000
#> GSM627141     3  0.0146     0.8509 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM627143     4  0.3023     0.6064 0.000 0.212 0.000 0.784 0.000 0.004
#> GSM627145     5  0.3694     0.7937 0.000 0.232 0.028 0.000 0.740 0.000
#> GSM627152     5  0.3559     0.7950 0.000 0.240 0.012 0.000 0.744 0.004
#> GSM627200     3  0.0458     0.8476 0.000 0.016 0.984 0.000 0.000 0.000
#> GSM627159     6  0.0146     0.9854 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM627164     2  0.3126     0.9402 0.000 0.752 0.000 0.248 0.000 0.000
#> GSM627138     3  0.3023     0.6442 0.232 0.000 0.768 0.000 0.000 0.000
#> GSM627175     4  0.0260     0.8371 0.000 0.008 0.000 0.992 0.000 0.000
#> GSM627150     5  0.0146     0.8173 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM627166     3  0.3163     0.6127 0.232 0.004 0.764 0.000 0.000 0.000
#> GSM627186     2  0.3126     0.9402 0.000 0.752 0.000 0.248 0.000 0.000
#> GSM627139     5  0.3240     0.6526 0.000 0.000 0.000 0.004 0.752 0.244
#> GSM627181     4  0.1714     0.7680 0.000 0.092 0.000 0.908 0.000 0.000
#> GSM627205     2  0.3151     0.9371 0.000 0.748 0.000 0.252 0.000 0.000
#> GSM627214     4  0.0547     0.8354 0.000 0.020 0.000 0.980 0.000 0.000
#> GSM627180     5  0.0000     0.8169 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM627172     4  0.0363     0.8351 0.000 0.012 0.000 0.988 0.000 0.000
#> GSM627184     1  0.0000     0.9294 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627193     2  0.3198     0.9458 0.000 0.740 0.000 0.260 0.000 0.000
#> GSM627191     4  0.3221     0.5595 0.000 0.000 0.000 0.736 0.000 0.264
#> GSM627176     5  0.3323     0.7971 0.000 0.240 0.008 0.000 0.752 0.000
#> GSM627194     2  0.3198     0.9458 0.000 0.740 0.000 0.260 0.000 0.000
#> GSM627154     4  0.0260     0.8371 0.000 0.008 0.000 0.992 0.000 0.000
#> GSM627187     3  0.0260     0.8506 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM627198     4  0.0260     0.8371 0.000 0.008 0.000 0.992 0.000 0.000
#> GSM627160     4  0.5185     0.2912 0.000 0.000 0.000 0.564 0.108 0.328
#> GSM627185     3  0.0858     0.8356 0.028 0.004 0.968 0.000 0.000 0.000
#> GSM627206     3  0.0508     0.8477 0.000 0.004 0.984 0.000 0.012 0.000
#> GSM627161     1  0.0000     0.9294 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627162     3  0.2879     0.6977 0.000 0.004 0.816 0.004 0.176 0.000
#> GSM627210     3  0.0260     0.8506 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM627189     2  0.3198     0.9458 0.000 0.740 0.000 0.260 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) age(p) other(p) k
#> MAD:mclust 143            0.579  0.421   0.0829 2
#> MAD:mclust 143            0.311  0.699   0.1630 3
#> MAD:mclust 139            0.174  0.318   0.1767 4
#> MAD:mclust 132            0.275  0.379   0.2410 5
#> MAD:mclust 131            0.152  0.503   0.1426 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 146 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.985           0.950       0.980         0.5025 0.497   0.497
#> 3 3 0.698           0.830       0.911         0.2700 0.842   0.690
#> 4 4 0.614           0.718       0.853         0.1329 0.725   0.400
#> 5 5 0.577           0.538       0.744         0.0741 0.860   0.565
#> 6 6 0.636           0.586       0.762         0.0432 0.895   0.599

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM627128     2  0.8016     0.6708 0.244 0.756
#> GSM627110     1  0.0000     0.9739 1.000 0.000
#> GSM627132     1  0.0000     0.9739 1.000 0.000
#> GSM627107     2  0.3431     0.9238 0.064 0.936
#> GSM627103     2  0.0000     0.9834 0.000 1.000
#> GSM627114     1  0.0000     0.9739 1.000 0.000
#> GSM627134     2  0.0000     0.9834 0.000 1.000
#> GSM627137     2  0.0000     0.9834 0.000 1.000
#> GSM627148     1  0.0000     0.9739 1.000 0.000
#> GSM627101     2  0.0000     0.9834 0.000 1.000
#> GSM627130     2  0.0000     0.9834 0.000 1.000
#> GSM627071     1  0.0000     0.9739 1.000 0.000
#> GSM627118     2  0.0000     0.9834 0.000 1.000
#> GSM627094     2  0.0000     0.9834 0.000 1.000
#> GSM627122     1  0.0000     0.9739 1.000 0.000
#> GSM627115     2  0.0000     0.9834 0.000 1.000
#> GSM627125     2  0.5946     0.8280 0.144 0.856
#> GSM627174     2  0.0000     0.9834 0.000 1.000
#> GSM627102     2  0.0000     0.9834 0.000 1.000
#> GSM627073     1  0.8713     0.5900 0.708 0.292
#> GSM627108     2  0.0000     0.9834 0.000 1.000
#> GSM627126     1  0.0000     0.9739 1.000 0.000
#> GSM627078     2  0.0000     0.9834 0.000 1.000
#> GSM627090     1  0.0000     0.9739 1.000 0.000
#> GSM627099     2  0.0000     0.9834 0.000 1.000
#> GSM627105     2  0.0000     0.9834 0.000 1.000
#> GSM627117     1  0.0000     0.9739 1.000 0.000
#> GSM627121     2  0.3274     0.9279 0.060 0.940
#> GSM627127     2  0.0000     0.9834 0.000 1.000
#> GSM627087     2  0.0000     0.9834 0.000 1.000
#> GSM627089     1  0.0000     0.9739 1.000 0.000
#> GSM627092     2  0.0000     0.9834 0.000 1.000
#> GSM627076     1  0.0000     0.9739 1.000 0.000
#> GSM627136     1  0.0000     0.9739 1.000 0.000
#> GSM627081     1  0.9963     0.1376 0.536 0.464
#> GSM627091     2  0.0000     0.9834 0.000 1.000
#> GSM627097     2  0.0000     0.9834 0.000 1.000
#> GSM627072     1  0.0000     0.9739 1.000 0.000
#> GSM627080     1  0.0000     0.9739 1.000 0.000
#> GSM627088     1  0.0000     0.9739 1.000 0.000
#> GSM627109     1  0.0000     0.9739 1.000 0.000
#> GSM627111     1  0.0000     0.9739 1.000 0.000
#> GSM627113     1  0.0000     0.9739 1.000 0.000
#> GSM627133     2  0.0000     0.9834 0.000 1.000
#> GSM627177     1  0.0000     0.9739 1.000 0.000
#> GSM627086     2  0.0000     0.9834 0.000 1.000
#> GSM627095     1  0.0000     0.9739 1.000 0.000
#> GSM627079     1  0.0000     0.9739 1.000 0.000
#> GSM627082     1  0.0376     0.9705 0.996 0.004
#> GSM627074     1  0.0000     0.9739 1.000 0.000
#> GSM627077     1  0.0000     0.9739 1.000 0.000
#> GSM627093     1  0.0000     0.9739 1.000 0.000
#> GSM627120     2  0.0000     0.9834 0.000 1.000
#> GSM627124     2  0.0000     0.9834 0.000 1.000
#> GSM627075     2  0.0000     0.9834 0.000 1.000
#> GSM627085     2  0.0000     0.9834 0.000 1.000
#> GSM627119     1  0.0000     0.9739 1.000 0.000
#> GSM627116     2  0.1414     0.9659 0.020 0.980
#> GSM627084     1  0.0000     0.9739 1.000 0.000
#> GSM627096     2  0.0000     0.9834 0.000 1.000
#> GSM627100     1  0.0000     0.9739 1.000 0.000
#> GSM627112     2  0.0000     0.9834 0.000 1.000
#> GSM627083     1  0.5842     0.8304 0.860 0.140
#> GSM627098     1  0.0000     0.9739 1.000 0.000
#> GSM627104     1  0.0000     0.9739 1.000 0.000
#> GSM627131     1  0.0000     0.9739 1.000 0.000
#> GSM627106     1  0.8661     0.5975 0.712 0.288
#> GSM627123     1  0.0000     0.9739 1.000 0.000
#> GSM627129     2  0.0000     0.9834 0.000 1.000
#> GSM627216     2  0.0000     0.9834 0.000 1.000
#> GSM627212     2  0.0000     0.9834 0.000 1.000
#> GSM627190     1  0.0000     0.9739 1.000 0.000
#> GSM627169     2  0.0000     0.9834 0.000 1.000
#> GSM627167     2  0.0000     0.9834 0.000 1.000
#> GSM627192     1  0.0000     0.9739 1.000 0.000
#> GSM627203     1  0.0000     0.9739 1.000 0.000
#> GSM627151     2  0.0000     0.9834 0.000 1.000
#> GSM627163     1  0.0000     0.9739 1.000 0.000
#> GSM627211     2  0.0000     0.9834 0.000 1.000
#> GSM627171     2  0.0000     0.9834 0.000 1.000
#> GSM627209     2  0.0000     0.9834 0.000 1.000
#> GSM627135     1  0.0000     0.9739 1.000 0.000
#> GSM627170     2  0.0000     0.9834 0.000 1.000
#> GSM627178     1  0.0000     0.9739 1.000 0.000
#> GSM627199     2  0.0000     0.9834 0.000 1.000
#> GSM627213     2  0.0000     0.9834 0.000 1.000
#> GSM627140     2  0.0000     0.9834 0.000 1.000
#> GSM627149     1  0.0000     0.9739 1.000 0.000
#> GSM627147     2  0.0000     0.9834 0.000 1.000
#> GSM627195     1  0.0000     0.9739 1.000 0.000
#> GSM627204     2  0.0000     0.9834 0.000 1.000
#> GSM627207     2  0.0000     0.9834 0.000 1.000
#> GSM627157     1  0.0000     0.9739 1.000 0.000
#> GSM627201     2  0.0000     0.9834 0.000 1.000
#> GSM627146     2  0.0000     0.9834 0.000 1.000
#> GSM627156     2  0.0000     0.9834 0.000 1.000
#> GSM627188     1  0.0000     0.9739 1.000 0.000
#> GSM627197     2  0.0000     0.9834 0.000 1.000
#> GSM627173     2  0.0000     0.9834 0.000 1.000
#> GSM627179     2  0.0000     0.9834 0.000 1.000
#> GSM627208     2  0.0000     0.9834 0.000 1.000
#> GSM627215     2  0.0000     0.9834 0.000 1.000
#> GSM627153     2  0.0000     0.9834 0.000 1.000
#> GSM627155     1  0.0000     0.9739 1.000 0.000
#> GSM627165     2  0.0000     0.9834 0.000 1.000
#> GSM627168     1  0.0000     0.9739 1.000 0.000
#> GSM627183     1  0.0000     0.9739 1.000 0.000
#> GSM627144     1  0.0000     0.9739 1.000 0.000
#> GSM627158     1  0.0000     0.9739 1.000 0.000
#> GSM627196     2  0.0000     0.9834 0.000 1.000
#> GSM627142     1  0.0000     0.9739 1.000 0.000
#> GSM627182     1  0.9323     0.4709 0.652 0.348
#> GSM627202     1  0.0000     0.9739 1.000 0.000
#> GSM627141     1  0.0000     0.9739 1.000 0.000
#> GSM627143     2  0.0000     0.9834 0.000 1.000
#> GSM627145     1  0.0000     0.9739 1.000 0.000
#> GSM627152     1  0.0000     0.9739 1.000 0.000
#> GSM627200     1  0.0000     0.9739 1.000 0.000
#> GSM627159     1  0.3274     0.9180 0.940 0.060
#> GSM627164     2  0.0000     0.9834 0.000 1.000
#> GSM627138     1  0.0000     0.9739 1.000 0.000
#> GSM627175     2  0.0000     0.9834 0.000 1.000
#> GSM627150     1  0.0000     0.9739 1.000 0.000
#> GSM627166     1  0.0000     0.9739 1.000 0.000
#> GSM627186     2  0.0000     0.9834 0.000 1.000
#> GSM627139     2  1.0000    -0.0118 0.496 0.504
#> GSM627181     2  0.0000     0.9834 0.000 1.000
#> GSM627205     2  0.0000     0.9834 0.000 1.000
#> GSM627214     2  0.0000     0.9834 0.000 1.000
#> GSM627180     2  0.3733     0.9154 0.072 0.928
#> GSM627172     2  0.0000     0.9834 0.000 1.000
#> GSM627184     1  0.0000     0.9739 1.000 0.000
#> GSM627193     2  0.0000     0.9834 0.000 1.000
#> GSM627191     2  0.4161     0.9018 0.084 0.916
#> GSM627176     1  0.0000     0.9739 1.000 0.000
#> GSM627194     2  0.0000     0.9834 0.000 1.000
#> GSM627154     2  0.0000     0.9834 0.000 1.000
#> GSM627187     1  0.0000     0.9739 1.000 0.000
#> GSM627198     2  0.0000     0.9834 0.000 1.000
#> GSM627160     1  0.6531     0.7929 0.832 0.168
#> GSM627185     1  0.0000     0.9739 1.000 0.000
#> GSM627206     1  0.0000     0.9739 1.000 0.000
#> GSM627161     1  0.0000     0.9739 1.000 0.000
#> GSM627162     1  0.0000     0.9739 1.000 0.000
#> GSM627210     1  0.0000     0.9739 1.000 0.000
#> GSM627189     2  0.0000     0.9834 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM627128     3  0.0237     0.8385 0.000 0.004 0.996
#> GSM627110     1  0.0237     0.8851 0.996 0.004 0.000
#> GSM627132     1  0.4235     0.8447 0.824 0.000 0.176
#> GSM627107     2  0.4702     0.7206 0.212 0.788 0.000
#> GSM627103     2  0.0000     0.9248 0.000 1.000 0.000
#> GSM627114     1  0.0424     0.8834 0.992 0.008 0.000
#> GSM627134     2  0.0424     0.9241 0.000 0.992 0.008
#> GSM627137     2  0.0237     0.9248 0.000 0.996 0.004
#> GSM627148     1  0.0237     0.8851 0.996 0.004 0.000
#> GSM627101     3  0.4062     0.7957 0.000 0.164 0.836
#> GSM627130     3  0.1289     0.8427 0.000 0.032 0.968
#> GSM627071     1  0.0237     0.8867 0.996 0.000 0.004
#> GSM627118     2  0.0424     0.9241 0.000 0.992 0.008
#> GSM627094     2  0.0000     0.9248 0.000 1.000 0.000
#> GSM627122     1  0.4346     0.8397 0.816 0.000 0.184
#> GSM627115     2  0.1643     0.9044 0.044 0.956 0.000
#> GSM627125     3  0.0237     0.8385 0.000 0.004 0.996
#> GSM627174     2  0.0424     0.9241 0.000 0.992 0.008
#> GSM627102     2  0.0424     0.9241 0.000 0.992 0.008
#> GSM627073     1  0.4842     0.6227 0.776 0.224 0.000
#> GSM627108     2  0.0237     0.9239 0.004 0.996 0.000
#> GSM627126     1  0.4796     0.8078 0.780 0.000 0.220
#> GSM627078     3  0.5678     0.6083 0.000 0.316 0.684
#> GSM627090     1  0.3267     0.8707 0.884 0.000 0.116
#> GSM627099     2  0.0424     0.9241 0.000 0.992 0.008
#> GSM627105     3  0.1964     0.8402 0.000 0.056 0.944
#> GSM627117     1  0.0424     0.8834 0.992 0.008 0.000
#> GSM627121     2  0.5254     0.6822 0.264 0.736 0.000
#> GSM627127     2  0.6008     0.3197 0.000 0.628 0.372
#> GSM627087     2  0.1964     0.8968 0.056 0.944 0.000
#> GSM627089     1  0.0000     0.8862 1.000 0.000 0.000
#> GSM627092     2  0.0000     0.9248 0.000 1.000 0.000
#> GSM627076     1  0.4399     0.8367 0.812 0.000 0.188
#> GSM627136     1  0.0237     0.8867 0.996 0.000 0.004
#> GSM627081     1  0.5882     0.3810 0.652 0.348 0.000
#> GSM627091     2  0.0424     0.9241 0.000 0.992 0.008
#> GSM627097     3  0.4399     0.7799 0.000 0.188 0.812
#> GSM627072     1  0.0237     0.8851 0.996 0.004 0.000
#> GSM627080     1  0.4235     0.8447 0.824 0.000 0.176
#> GSM627088     1  0.0424     0.8834 0.992 0.008 0.000
#> GSM627109     1  0.3340     0.8694 0.880 0.000 0.120
#> GSM627111     1  0.3816     0.8590 0.852 0.000 0.148
#> GSM627113     1  0.0237     0.8867 0.996 0.000 0.004
#> GSM627133     2  0.4291     0.7907 0.180 0.820 0.000
#> GSM627177     1  0.1753     0.8845 0.952 0.000 0.048
#> GSM627086     2  0.0000     0.9248 0.000 1.000 0.000
#> GSM627095     3  0.5760     0.3460 0.328 0.000 0.672
#> GSM627079     1  0.2537     0.8793 0.920 0.000 0.080
#> GSM627082     3  0.0000     0.8366 0.000 0.000 1.000
#> GSM627074     1  0.0000     0.8862 1.000 0.000 0.000
#> GSM627077     1  0.3551     0.8651 0.868 0.000 0.132
#> GSM627093     1  0.0424     0.8834 0.992 0.008 0.000
#> GSM627120     2  0.0892     0.9174 0.020 0.980 0.000
#> GSM627124     3  0.4399     0.7793 0.000 0.188 0.812
#> GSM627075     2  0.0000     0.9248 0.000 1.000 0.000
#> GSM627085     3  0.4974     0.7305 0.000 0.236 0.764
#> GSM627119     1  0.0000     0.8862 1.000 0.000 0.000
#> GSM627116     3  0.0424     0.8395 0.000 0.008 0.992
#> GSM627084     1  0.4235     0.8447 0.824 0.000 0.176
#> GSM627096     2  0.1529     0.9022 0.000 0.960 0.040
#> GSM627100     1  0.4504     0.8303 0.804 0.000 0.196
#> GSM627112     3  0.3116     0.8243 0.000 0.108 0.892
#> GSM627083     3  0.0000     0.8366 0.000 0.000 1.000
#> GSM627098     1  0.0592     0.8870 0.988 0.000 0.012
#> GSM627104     1  0.0000     0.8862 1.000 0.000 0.000
#> GSM627131     1  0.4235     0.8447 0.824 0.000 0.176
#> GSM627106     1  0.4346     0.6807 0.816 0.184 0.000
#> GSM627123     1  0.4399     0.8367 0.812 0.000 0.188
#> GSM627129     2  0.0424     0.9241 0.000 0.992 0.008
#> GSM627216     2  0.3941     0.8150 0.156 0.844 0.000
#> GSM627212     2  0.0237     0.9248 0.000 0.996 0.004
#> GSM627190     1  0.0424     0.8834 0.992 0.008 0.000
#> GSM627169     2  0.4235     0.7950 0.176 0.824 0.000
#> GSM627167     2  0.6180     0.1333 0.000 0.584 0.416
#> GSM627192     3  0.2261     0.7869 0.068 0.000 0.932
#> GSM627203     1  0.0237     0.8867 0.996 0.000 0.004
#> GSM627151     2  0.0424     0.9241 0.000 0.992 0.008
#> GSM627163     1  0.4291     0.8423 0.820 0.000 0.180
#> GSM627211     2  0.0424     0.9241 0.000 0.992 0.008
#> GSM627171     2  0.2878     0.8676 0.096 0.904 0.000
#> GSM627209     2  0.0424     0.9241 0.000 0.992 0.008
#> GSM627135     1  0.4750     0.8117 0.784 0.000 0.216
#> GSM627170     2  0.0747     0.9193 0.016 0.984 0.000
#> GSM627178     1  0.4346     0.8397 0.816 0.000 0.184
#> GSM627199     3  0.4399     0.7785 0.000 0.188 0.812
#> GSM627213     3  0.4235     0.7876 0.000 0.176 0.824
#> GSM627140     3  0.2878     0.8289 0.000 0.096 0.904
#> GSM627149     1  0.4452     0.8337 0.808 0.000 0.192
#> GSM627147     2  0.1163     0.9108 0.000 0.972 0.028
#> GSM627195     1  0.0237     0.8851 0.996 0.004 0.000
#> GSM627204     2  0.0237     0.9248 0.000 0.996 0.004
#> GSM627207     2  0.0237     0.9239 0.004 0.996 0.000
#> GSM627157     1  0.1860     0.8841 0.948 0.000 0.052
#> GSM627201     2  0.0237     0.9248 0.000 0.996 0.004
#> GSM627146     2  0.0237     0.9248 0.000 0.996 0.004
#> GSM627156     2  0.4178     0.7991 0.172 0.828 0.000
#> GSM627188     3  0.1529     0.8108 0.040 0.000 0.960
#> GSM627197     2  0.0424     0.9241 0.000 0.992 0.008
#> GSM627173     2  0.0000     0.9248 0.000 1.000 0.000
#> GSM627179     2  0.0237     0.9239 0.004 0.996 0.000
#> GSM627208     2  0.4399     0.7820 0.188 0.812 0.000
#> GSM627215     2  0.4002     0.8111 0.160 0.840 0.000
#> GSM627153     2  0.0424     0.9241 0.000 0.992 0.008
#> GSM627155     1  0.4702     0.8156 0.788 0.000 0.212
#> GSM627165     2  0.0237     0.9248 0.000 0.996 0.004
#> GSM627168     1  0.0000     0.8862 1.000 0.000 0.000
#> GSM627183     1  0.0237     0.8867 0.996 0.000 0.004
#> GSM627144     1  0.0592     0.8812 0.988 0.012 0.000
#> GSM627158     1  0.4291     0.8423 0.820 0.000 0.180
#> GSM627196     2  0.0424     0.9241 0.000 0.992 0.008
#> GSM627142     1  0.5810     0.6457 0.664 0.000 0.336
#> GSM627182     1  0.6252     0.0642 0.556 0.444 0.000
#> GSM627202     1  0.4121     0.8492 0.832 0.000 0.168
#> GSM627141     1  0.0237     0.8851 0.996 0.004 0.000
#> GSM627143     2  0.1643     0.9045 0.044 0.956 0.000
#> GSM627145     1  0.0000     0.8862 1.000 0.000 0.000
#> GSM627152     1  0.3879     0.8569 0.848 0.000 0.152
#> GSM627200     1  0.3116     0.8727 0.892 0.000 0.108
#> GSM627159     3  0.0000     0.8366 0.000 0.000 1.000
#> GSM627164     2  0.0237     0.9239 0.004 0.996 0.000
#> GSM627138     1  0.3038     0.8737 0.896 0.000 0.104
#> GSM627175     2  0.1964     0.8866 0.000 0.944 0.056
#> GSM627150     1  0.0000     0.8862 1.000 0.000 0.000
#> GSM627166     1  0.4002     0.8533 0.840 0.000 0.160
#> GSM627186     2  0.4235     0.7950 0.176 0.824 0.000
#> GSM627139     3  0.5928     0.4190 0.296 0.008 0.696
#> GSM627181     2  0.0424     0.9241 0.000 0.992 0.008
#> GSM627205     2  0.2165     0.8914 0.064 0.936 0.000
#> GSM627214     2  0.0424     0.9241 0.000 0.992 0.008
#> GSM627180     2  0.5016     0.7173 0.240 0.760 0.000
#> GSM627172     2  0.0592     0.9225 0.000 0.988 0.012
#> GSM627184     3  0.5835     0.3100 0.340 0.000 0.660
#> GSM627193     2  0.2878     0.8675 0.096 0.904 0.000
#> GSM627191     3  0.0237     0.8385 0.000 0.004 0.996
#> GSM627176     1  0.1031     0.8869 0.976 0.000 0.024
#> GSM627194     2  0.0000     0.9248 0.000 1.000 0.000
#> GSM627154     3  0.4291     0.7847 0.000 0.180 0.820
#> GSM627187     1  0.0424     0.8834 0.992 0.008 0.000
#> GSM627198     3  0.6274     0.2978 0.000 0.456 0.544
#> GSM627160     3  0.0000     0.8366 0.000 0.000 1.000
#> GSM627185     1  0.1643     0.8850 0.956 0.000 0.044
#> GSM627206     1  0.0237     0.8851 0.996 0.004 0.000
#> GSM627161     1  0.4291     0.8423 0.820 0.000 0.180
#> GSM627162     1  0.0592     0.8812 0.988 0.012 0.000
#> GSM627210     1  0.0237     0.8851 0.996 0.004 0.000
#> GSM627189     2  0.0000     0.9248 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM627128     4  0.0592     0.8737 0.000 0.000 0.016 0.984
#> GSM627110     3  0.4250     0.5635 0.276 0.000 0.724 0.000
#> GSM627132     1  0.0707     0.8529 0.980 0.000 0.020 0.000
#> GSM627107     3  0.0707     0.7107 0.000 0.020 0.980 0.000
#> GSM627103     2  0.0469     0.8897 0.000 0.988 0.012 0.000
#> GSM627114     3  0.3400     0.6662 0.180 0.000 0.820 0.000
#> GSM627134     2  0.5070     0.3015 0.000 0.620 0.372 0.008
#> GSM627137     2  0.3528     0.7295 0.000 0.808 0.192 0.000
#> GSM627148     3  0.1637     0.7218 0.060 0.000 0.940 0.000
#> GSM627101     4  0.1302     0.8625 0.000 0.000 0.044 0.956
#> GSM627130     4  0.0469     0.8740 0.000 0.000 0.012 0.988
#> GSM627071     1  0.3935     0.8152 0.840 0.060 0.100 0.000
#> GSM627118     2  0.2489     0.8580 0.000 0.912 0.068 0.020
#> GSM627094     2  0.0000     0.8905 0.000 1.000 0.000 0.000
#> GSM627122     1  0.5093     0.5463 0.640 0.000 0.348 0.012
#> GSM627115     2  0.0336     0.8898 0.008 0.992 0.000 0.000
#> GSM627125     4  0.2408     0.8094 0.000 0.000 0.104 0.896
#> GSM627174     2  0.0804     0.8884 0.012 0.980 0.000 0.008
#> GSM627102     2  0.4781     0.4745 0.000 0.660 0.336 0.004
#> GSM627073     3  0.3919     0.7220 0.104 0.056 0.840 0.000
#> GSM627108     2  0.0817     0.8872 0.000 0.976 0.024 0.000
#> GSM627126     1  0.1042     0.8469 0.972 0.000 0.008 0.020
#> GSM627078     2  0.2760     0.8144 0.000 0.872 0.000 0.128
#> GSM627090     3  0.3831     0.6349 0.204 0.000 0.792 0.004
#> GSM627099     2  0.0524     0.8896 0.008 0.988 0.000 0.004
#> GSM627105     4  0.3764     0.6727 0.000 0.000 0.216 0.784
#> GSM627117     3  0.1716     0.7213 0.064 0.000 0.936 0.000
#> GSM627121     3  0.0707     0.7107 0.000 0.020 0.980 0.000
#> GSM627127     2  0.1510     0.8778 0.016 0.956 0.000 0.028
#> GSM627087     2  0.0336     0.8898 0.008 0.992 0.000 0.000
#> GSM627089     3  0.4697     0.4065 0.356 0.000 0.644 0.000
#> GSM627092     3  0.4888     0.2914 0.000 0.412 0.588 0.000
#> GSM627076     3  0.4986     0.5921 0.216 0.000 0.740 0.044
#> GSM627136     3  0.4164     0.5890 0.264 0.000 0.736 0.000
#> GSM627081     3  0.0895     0.7134 0.004 0.020 0.976 0.000
#> GSM627091     2  0.0927     0.8855 0.016 0.976 0.000 0.008
#> GSM627097     2  0.5382     0.6579 0.132 0.744 0.000 0.124
#> GSM627072     3  0.3726     0.6489 0.212 0.000 0.788 0.000
#> GSM627080     1  0.0707     0.8529 0.980 0.000 0.020 0.000
#> GSM627088     1  0.2973     0.8188 0.856 0.000 0.144 0.000
#> GSM627109     1  0.0657     0.8446 0.984 0.012 0.004 0.000
#> GSM627111     1  0.0707     0.8529 0.980 0.000 0.020 0.000
#> GSM627113     1  0.0921     0.8536 0.972 0.000 0.028 0.000
#> GSM627133     2  0.1356     0.8865 0.008 0.960 0.032 0.000
#> GSM627177     1  0.4955     0.5479 0.728 0.244 0.024 0.004
#> GSM627086     2  0.0592     0.8889 0.000 0.984 0.016 0.000
#> GSM627095     1  0.2589     0.7860 0.884 0.000 0.000 0.116
#> GSM627079     1  0.3764     0.7297 0.784 0.000 0.216 0.000
#> GSM627082     4  0.0524     0.8738 0.004 0.000 0.008 0.988
#> GSM627074     1  0.0895     0.8404 0.976 0.020 0.004 0.000
#> GSM627077     1  0.4477     0.6210 0.688 0.000 0.312 0.000
#> GSM627093     1  0.1629     0.8475 0.952 0.024 0.024 0.000
#> GSM627120     3  0.3837     0.6306 0.000 0.224 0.776 0.000
#> GSM627124     2  0.3208     0.7898 0.004 0.848 0.000 0.148
#> GSM627075     2  0.4222     0.6011 0.000 0.728 0.272 0.000
#> GSM627085     2  0.1624     0.8771 0.020 0.952 0.000 0.028
#> GSM627119     1  0.0927     0.8448 0.976 0.016 0.008 0.000
#> GSM627116     2  0.5760     0.2025 0.448 0.524 0.000 0.028
#> GSM627084     1  0.3975     0.7531 0.760 0.000 0.240 0.000
#> GSM627096     2  0.4238     0.7479 0.000 0.796 0.028 0.176
#> GSM627100     3  0.3764     0.6914 0.072 0.000 0.852 0.076
#> GSM627112     4  0.0469     0.8664 0.000 0.012 0.000 0.988
#> GSM627083     4  0.0921     0.8626 0.028 0.000 0.000 0.972
#> GSM627098     1  0.1211     0.8538 0.960 0.000 0.040 0.000
#> GSM627104     1  0.1557     0.8118 0.944 0.056 0.000 0.000
#> GSM627131     1  0.0921     0.8536 0.972 0.000 0.028 0.000
#> GSM627106     3  0.0524     0.7170 0.008 0.004 0.988 0.000
#> GSM627123     1  0.4538     0.7646 0.760 0.000 0.216 0.024
#> GSM627129     3  0.5672     0.5605 0.000 0.276 0.668 0.056
#> GSM627216     2  0.1389     0.8766 0.000 0.952 0.048 0.000
#> GSM627212     2  0.0524     0.8906 0.000 0.988 0.008 0.004
#> GSM627190     3  0.2149     0.7194 0.088 0.000 0.912 0.000
#> GSM627169     3  0.4998     0.0416 0.000 0.488 0.512 0.000
#> GSM627167     3  0.6112     0.0891 0.004 0.040 0.544 0.412
#> GSM627192     1  0.3266     0.7273 0.832 0.000 0.000 0.168
#> GSM627203     3  0.4008     0.5999 0.244 0.000 0.756 0.000
#> GSM627151     2  0.3161     0.7911 0.124 0.864 0.000 0.012
#> GSM627163     1  0.0657     0.8505 0.984 0.000 0.012 0.004
#> GSM627211     2  0.1209     0.8837 0.000 0.964 0.032 0.004
#> GSM627171     3  0.3172     0.6627 0.000 0.160 0.840 0.000
#> GSM627209     2  0.1174     0.8886 0.000 0.968 0.020 0.012
#> GSM627135     1  0.0376     0.8453 0.992 0.004 0.000 0.004
#> GSM627170     3  0.4977     0.1642 0.000 0.460 0.540 0.000
#> GSM627178     1  0.0967     0.8409 0.976 0.016 0.004 0.004
#> GSM627199     2  0.4584     0.5575 0.004 0.696 0.000 0.300
#> GSM627213     4  0.3356     0.6982 0.000 0.176 0.000 0.824
#> GSM627140     4  0.0895     0.8729 0.004 0.000 0.020 0.976
#> GSM627149     1  0.5055     0.7251 0.712 0.000 0.256 0.032
#> GSM627147     4  0.7545     0.1057 0.000 0.192 0.368 0.440
#> GSM627195     3  0.4697     0.4271 0.356 0.000 0.644 0.000
#> GSM627204     2  0.0524     0.8909 0.000 0.988 0.008 0.004
#> GSM627207     2  0.4761     0.3829 0.000 0.628 0.372 0.000
#> GSM627157     1  0.1716     0.8520 0.936 0.000 0.064 0.000
#> GSM627201     2  0.0707     0.8878 0.000 0.980 0.020 0.000
#> GSM627146     2  0.0524     0.8894 0.008 0.988 0.000 0.004
#> GSM627156     3  0.3975     0.6128 0.000 0.240 0.760 0.000
#> GSM627188     4  0.5229     0.1479 0.428 0.000 0.008 0.564
#> GSM627197     2  0.0937     0.8911 0.000 0.976 0.012 0.012
#> GSM627173     2  0.0469     0.8894 0.012 0.988 0.000 0.000
#> GSM627179     2  0.0707     0.8878 0.000 0.980 0.020 0.000
#> GSM627208     3  0.3649     0.6469 0.000 0.204 0.796 0.000
#> GSM627215     2  0.1940     0.8601 0.000 0.924 0.076 0.000
#> GSM627153     2  0.1174     0.8886 0.000 0.968 0.020 0.012
#> GSM627155     1  0.3863     0.8172 0.828 0.000 0.144 0.028
#> GSM627165     3  0.4720     0.5035 0.000 0.324 0.672 0.004
#> GSM627168     1  0.4193     0.7200 0.732 0.000 0.268 0.000
#> GSM627183     1  0.1867     0.8509 0.928 0.000 0.072 0.000
#> GSM627144     3  0.1118     0.7189 0.036 0.000 0.964 0.000
#> GSM627158     1  0.3688     0.7789 0.792 0.000 0.208 0.000
#> GSM627196     2  0.0336     0.8902 0.000 0.992 0.008 0.000
#> GSM627142     3  0.6248     0.4993 0.100 0.000 0.640 0.260
#> GSM627182     3  0.3948     0.7179 0.064 0.096 0.840 0.000
#> GSM627202     1  0.4500     0.6526 0.684 0.000 0.316 0.000
#> GSM627141     3  0.3400     0.6667 0.180 0.000 0.820 0.000
#> GSM627143     3  0.2647     0.6840 0.000 0.120 0.880 0.000
#> GSM627145     3  0.4605     0.4620 0.336 0.000 0.664 0.000
#> GSM627152     3  0.4936     0.4509 0.316 0.000 0.672 0.012
#> GSM627200     1  0.2868     0.8240 0.864 0.000 0.136 0.000
#> GSM627159     4  0.0524     0.8738 0.004 0.000 0.008 0.988
#> GSM627164     3  0.3400     0.6506 0.000 0.180 0.820 0.000
#> GSM627138     1  0.4072     0.7391 0.748 0.000 0.252 0.000
#> GSM627175     2  0.1356     0.8879 0.000 0.960 0.008 0.032
#> GSM627150     3  0.4103     0.6067 0.256 0.000 0.744 0.000
#> GSM627166     1  0.3016     0.7376 0.872 0.120 0.004 0.004
#> GSM627186     3  0.4277     0.5694 0.000 0.280 0.720 0.000
#> GSM627139     3  0.4079     0.6245 0.020 0.000 0.800 0.180
#> GSM627181     2  0.1489     0.8775 0.000 0.952 0.044 0.004
#> GSM627205     3  0.4164     0.5923 0.000 0.264 0.736 0.000
#> GSM627214     3  0.4936     0.4507 0.000 0.372 0.624 0.004
#> GSM627180     3  0.4286     0.7031 0.052 0.136 0.812 0.000
#> GSM627172     3  0.6761     0.4592 0.004 0.252 0.612 0.132
#> GSM627184     1  0.5436     0.4535 0.620 0.000 0.024 0.356
#> GSM627193     2  0.0188     0.8902 0.004 0.996 0.000 0.000
#> GSM627191     4  0.0376     0.8727 0.004 0.000 0.004 0.992
#> GSM627176     3  0.1022     0.7185 0.032 0.000 0.968 0.000
#> GSM627194     2  0.0592     0.8875 0.016 0.984 0.000 0.000
#> GSM627154     2  0.4599     0.6656 0.028 0.760 0.000 0.212
#> GSM627187     3  0.1389     0.7203 0.048 0.000 0.952 0.000
#> GSM627198     2  0.1637     0.8732 0.000 0.940 0.000 0.060
#> GSM627160     4  0.0779     0.8738 0.004 0.000 0.016 0.980
#> GSM627185     1  0.0707     0.8529 0.980 0.000 0.020 0.000
#> GSM627206     3  0.4500     0.4750 0.316 0.000 0.684 0.000
#> GSM627161     1  0.3764     0.7721 0.784 0.000 0.216 0.000
#> GSM627162     3  0.1118     0.7180 0.036 0.000 0.964 0.000
#> GSM627210     1  0.1209     0.8331 0.964 0.032 0.004 0.000
#> GSM627189     2  0.0592     0.8875 0.016 0.984 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM627128     4  0.1798     0.7435 0.000 0.004 0.004 0.928 0.064
#> GSM627110     5  0.4850     0.5578 0.076 0.000 0.224 0.000 0.700
#> GSM627132     1  0.1648     0.7791 0.940 0.000 0.020 0.000 0.040
#> GSM627107     5  0.5506     0.3858 0.000 0.032 0.292 0.040 0.636
#> GSM627103     2  0.0960     0.7642 0.004 0.972 0.016 0.000 0.008
#> GSM627114     3  0.5509    -0.1004 0.064 0.000 0.472 0.000 0.464
#> GSM627134     5  0.6192     0.3393 0.000 0.240 0.020 0.136 0.604
#> GSM627137     2  0.3039     0.5716 0.000 0.808 0.192 0.000 0.000
#> GSM627148     5  0.3242     0.5880 0.012 0.000 0.172 0.000 0.816
#> GSM627101     4  0.2142     0.7403 0.000 0.028 0.004 0.920 0.048
#> GSM627130     4  0.1628     0.7531 0.000 0.000 0.056 0.936 0.008
#> GSM627071     1  0.5566     0.6035 0.644 0.060 0.024 0.000 0.272
#> GSM627118     5  0.7458     0.0884 0.000 0.352 0.060 0.168 0.420
#> GSM627094     2  0.0693     0.7602 0.012 0.980 0.008 0.000 0.000
#> GSM627122     5  0.4967     0.5035 0.220 0.000 0.060 0.012 0.708
#> GSM627115     2  0.1857     0.7596 0.004 0.928 0.060 0.000 0.008
#> GSM627125     4  0.3662     0.5635 0.000 0.000 0.004 0.744 0.252
#> GSM627174     2  0.2331     0.7489 0.068 0.908 0.016 0.008 0.000
#> GSM627102     2  0.4451    -0.1827 0.000 0.504 0.492 0.004 0.000
#> GSM627073     5  0.1644     0.6499 0.000 0.004 0.048 0.008 0.940
#> GSM627108     2  0.1478     0.7326 0.000 0.936 0.064 0.000 0.000
#> GSM627126     1  0.1493     0.7508 0.948 0.000 0.024 0.028 0.000
#> GSM627078     2  0.3427     0.7256 0.028 0.836 0.008 0.128 0.000
#> GSM627090     5  0.5140     0.4062 0.040 0.000 0.328 0.008 0.624
#> GSM627099     2  0.4928     0.6728 0.000 0.768 0.072 0.096 0.064
#> GSM627105     4  0.4607     0.4330 0.000 0.004 0.020 0.656 0.320
#> GSM627117     5  0.5944    -0.0397 0.052 0.024 0.456 0.000 0.468
#> GSM627121     5  0.5149     0.3193 0.000 0.020 0.356 0.020 0.604
#> GSM627127     2  0.6955     0.4315 0.000 0.556 0.164 0.224 0.056
#> GSM627087     2  0.1830     0.7567 0.004 0.932 0.052 0.000 0.012
#> GSM627089     5  0.3532     0.6148 0.092 0.000 0.076 0.000 0.832
#> GSM627092     3  0.4961     0.3038 0.000 0.448 0.524 0.000 0.028
#> GSM627076     5  0.4025     0.6068 0.016 0.000 0.156 0.032 0.796
#> GSM627136     5  0.1195     0.6536 0.012 0.000 0.028 0.000 0.960
#> GSM627081     5  0.2237     0.6369 0.000 0.008 0.084 0.004 0.904
#> GSM627091     2  0.3678     0.7296 0.004 0.848 0.064 0.064 0.020
#> GSM627097     2  0.8399     0.2462 0.096 0.452 0.176 0.240 0.036
#> GSM627072     5  0.0162     0.6530 0.000 0.000 0.004 0.000 0.996
#> GSM627080     1  0.1549     0.7781 0.944 0.000 0.016 0.000 0.040
#> GSM627088     1  0.4295     0.6990 0.740 0.000 0.044 0.000 0.216
#> GSM627109     1  0.2069     0.7753 0.912 0.000 0.012 0.000 0.076
#> GSM627111     1  0.1741     0.7773 0.936 0.000 0.040 0.000 0.024
#> GSM627113     1  0.2824     0.7711 0.864 0.000 0.020 0.000 0.116
#> GSM627133     2  0.6396     0.0746 0.004 0.460 0.148 0.000 0.388
#> GSM627177     1  0.7363     0.3153 0.484 0.176 0.024 0.020 0.296
#> GSM627086     2  0.0566     0.7612 0.004 0.984 0.012 0.000 0.000
#> GSM627095     1  0.2928     0.7272 0.872 0.000 0.064 0.064 0.000
#> GSM627079     5  0.3766     0.6059 0.036 0.004 0.112 0.016 0.832
#> GSM627082     4  0.2464     0.7400 0.016 0.000 0.096 0.888 0.000
#> GSM627074     1  0.4833     0.7051 0.736 0.004 0.136 0.000 0.124
#> GSM627077     5  0.5115    -0.2356 0.480 0.000 0.036 0.000 0.484
#> GSM627093     1  0.3260     0.7684 0.856 0.004 0.056 0.000 0.084
#> GSM627120     3  0.6767     0.4874 0.000 0.368 0.428 0.008 0.196
#> GSM627124     2  0.3456     0.7311 0.036 0.844 0.012 0.108 0.000
#> GSM627075     2  0.4135     0.2374 0.000 0.656 0.340 0.000 0.004
#> GSM627085     2  0.4322     0.6933 0.016 0.780 0.048 0.156 0.000
#> GSM627119     1  0.2784     0.7718 0.872 0.004 0.016 0.000 0.108
#> GSM627116     1  0.9526    -0.0117 0.320 0.256 0.156 0.100 0.168
#> GSM627084     1  0.4622     0.7201 0.712 0.000 0.240 0.004 0.044
#> GSM627096     5  0.7439     0.1302 0.000 0.276 0.056 0.204 0.464
#> GSM627100     5  0.4305     0.5582 0.000 0.000 0.200 0.052 0.748
#> GSM627112     4  0.1235     0.7456 0.004 0.016 0.012 0.964 0.004
#> GSM627083     4  0.5717     0.3311 0.324 0.000 0.104 0.572 0.000
#> GSM627098     1  0.2707     0.7753 0.876 0.000 0.024 0.000 0.100
#> GSM627104     1  0.1074     0.7658 0.968 0.016 0.004 0.000 0.012
#> GSM627131     1  0.4297     0.6431 0.692 0.000 0.020 0.000 0.288
#> GSM627106     5  0.2116     0.6404 0.000 0.004 0.076 0.008 0.912
#> GSM627123     1  0.4746     0.7422 0.756 0.000 0.164 0.032 0.048
#> GSM627129     4  0.8376    -0.0179 0.000 0.236 0.148 0.324 0.292
#> GSM627216     2  0.1310     0.7580 0.000 0.956 0.020 0.000 0.024
#> GSM627212     2  0.3143     0.7404 0.000 0.872 0.044 0.068 0.016
#> GSM627190     3  0.5526    -0.0372 0.040 0.012 0.484 0.000 0.464
#> GSM627169     3  0.4906     0.2501 0.000 0.480 0.496 0.000 0.024
#> GSM627167     3  0.7697     0.2762 0.000 0.140 0.444 0.308 0.108
#> GSM627192     1  0.3812     0.7013 0.812 0.000 0.096 0.092 0.000
#> GSM627203     5  0.1124     0.6487 0.004 0.000 0.036 0.000 0.960
#> GSM627151     2  0.8363     0.3518 0.072 0.500 0.164 0.080 0.184
#> GSM627163     1  0.0324     0.7653 0.992 0.000 0.004 0.000 0.004
#> GSM627211     2  0.1043     0.7491 0.000 0.960 0.040 0.000 0.000
#> GSM627171     3  0.5358     0.5919 0.000 0.248 0.648 0.000 0.104
#> GSM627209     2  0.2124     0.7485 0.000 0.900 0.004 0.096 0.000
#> GSM627135     1  0.1306     0.7649 0.960 0.000 0.008 0.016 0.016
#> GSM627170     2  0.4660     0.4761 0.000 0.728 0.080 0.000 0.192
#> GSM627178     1  0.2597     0.7729 0.884 0.000 0.024 0.000 0.092
#> GSM627199     2  0.4494     0.6432 0.028 0.728 0.012 0.232 0.000
#> GSM627213     4  0.3190     0.6513 0.000 0.140 0.008 0.840 0.012
#> GSM627140     4  0.3798     0.7017 0.024 0.012 0.160 0.804 0.000
#> GSM627149     1  0.6061     0.5562 0.540 0.000 0.372 0.044 0.044
#> GSM627147     3  0.7532     0.2238 0.000 0.236 0.384 0.336 0.044
#> GSM627195     5  0.2172     0.6381 0.016 0.000 0.076 0.000 0.908
#> GSM627204     2  0.0566     0.7589 0.004 0.984 0.012 0.000 0.000
#> GSM627207     2  0.4288     0.2354 0.000 0.664 0.324 0.000 0.012
#> GSM627157     1  0.2795     0.7748 0.872 0.000 0.028 0.000 0.100
#> GSM627201     2  0.0290     0.7593 0.000 0.992 0.008 0.000 0.000
#> GSM627146     2  0.1186     0.7650 0.008 0.964 0.020 0.008 0.000
#> GSM627156     2  0.5509    -0.3497 0.000 0.472 0.464 0.000 0.064
#> GSM627188     1  0.6022     0.4013 0.564 0.000 0.156 0.280 0.000
#> GSM627197     2  0.1444     0.7638 0.000 0.948 0.012 0.040 0.000
#> GSM627173     2  0.1582     0.7500 0.028 0.944 0.028 0.000 0.000
#> GSM627179     2  0.0703     0.7551 0.000 0.976 0.024 0.000 0.000
#> GSM627208     5  0.6100     0.0882 0.000 0.184 0.252 0.000 0.564
#> GSM627215     5  0.5239     0.3805 0.000 0.284 0.052 0.012 0.652
#> GSM627153     2  0.2439     0.7402 0.000 0.876 0.004 0.120 0.000
#> GSM627155     1  0.4542     0.6917 0.724 0.000 0.232 0.036 0.008
#> GSM627165     2  0.6551    -0.3448 0.000 0.440 0.428 0.024 0.108
#> GSM627168     1  0.5423     0.6193 0.644 0.000 0.112 0.000 0.244
#> GSM627183     5  0.4510    -0.0505 0.432 0.000 0.008 0.000 0.560
#> GSM627144     5  0.2929     0.6001 0.000 0.000 0.180 0.000 0.820
#> GSM627158     1  0.5013     0.7032 0.680 0.000 0.240 0.000 0.080
#> GSM627196     2  0.0566     0.7589 0.004 0.984 0.012 0.000 0.000
#> GSM627142     5  0.3922     0.5990 0.000 0.000 0.040 0.180 0.780
#> GSM627182     5  0.4472     0.5458 0.024 0.032 0.184 0.000 0.760
#> GSM627202     1  0.6478     0.1622 0.420 0.000 0.184 0.000 0.396
#> GSM627141     3  0.5752     0.3139 0.164 0.004 0.636 0.000 0.196
#> GSM627143     3  0.5973     0.5711 0.000 0.216 0.616 0.008 0.160
#> GSM627145     5  0.0579     0.6544 0.008 0.000 0.008 0.000 0.984
#> GSM627152     5  0.3077     0.6405 0.028 0.000 0.100 0.008 0.864
#> GSM627200     1  0.5873     0.4975 0.564 0.000 0.124 0.000 0.312
#> GSM627159     4  0.2305     0.7421 0.012 0.000 0.092 0.896 0.000
#> GSM627164     3  0.5702     0.5391 0.000 0.320 0.576 0.000 0.104
#> GSM627138     1  0.6109     0.5547 0.556 0.000 0.272 0.000 0.172
#> GSM627175     2  0.2230     0.7438 0.000 0.884 0.000 0.116 0.000
#> GSM627150     5  0.1901     0.6493 0.012 0.000 0.056 0.004 0.928
#> GSM627166     1  0.3272     0.7169 0.856 0.032 0.100 0.000 0.012
#> GSM627186     3  0.5236     0.3062 0.000 0.464 0.492 0.000 0.044
#> GSM627139     5  0.5064     0.4545 0.000 0.000 0.088 0.232 0.680
#> GSM627181     2  0.1484     0.7435 0.000 0.944 0.048 0.008 0.000
#> GSM627205     5  0.6552    -0.1802 0.000 0.348 0.208 0.000 0.444
#> GSM627214     2  0.5963     0.2935 0.000 0.656 0.188 0.032 0.124
#> GSM627180     5  0.2075     0.6361 0.000 0.040 0.032 0.004 0.924
#> GSM627172     3  0.4946     0.4326 0.000 0.348 0.620 0.016 0.016
#> GSM627184     1  0.5500     0.5550 0.648 0.000 0.140 0.212 0.000
#> GSM627193     2  0.1251     0.7555 0.008 0.956 0.036 0.000 0.000
#> GSM627191     4  0.3390     0.7204 0.060 0.000 0.100 0.840 0.000
#> GSM627176     3  0.4786     0.2127 0.012 0.000 0.620 0.012 0.356
#> GSM627194     2  0.1893     0.7603 0.024 0.928 0.048 0.000 0.000
#> GSM627154     2  0.5646     0.5165 0.036 0.628 0.044 0.292 0.000
#> GSM627187     3  0.4540     0.3723 0.024 0.008 0.700 0.000 0.268
#> GSM627198     2  0.3368     0.7384 0.016 0.844 0.020 0.120 0.000
#> GSM627160     4  0.3790     0.7284 0.012 0.000 0.136 0.816 0.036
#> GSM627185     1  0.1281     0.7768 0.956 0.000 0.012 0.000 0.032
#> GSM627206     5  0.6788     0.0431 0.320 0.000 0.296 0.000 0.384
#> GSM627161     1  0.5219     0.6709 0.644 0.000 0.288 0.004 0.064
#> GSM627162     3  0.5156     0.3406 0.044 0.008 0.660 0.004 0.284
#> GSM627210     1  0.4781     0.6887 0.724 0.012 0.052 0.000 0.212
#> GSM627189     2  0.1725     0.7615 0.020 0.936 0.044 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM627128     6  0.2696     0.6899 0.004 0.012 0.000 0.044 0.056 0.884
#> GSM627110     4  0.4183     0.5536 0.020 0.000 0.148 0.764 0.068 0.000
#> GSM627132     1  0.1700     0.7770 0.916 0.000 0.000 0.004 0.080 0.000
#> GSM627107     5  0.3096     0.6910 0.008 0.040 0.040 0.012 0.876 0.024
#> GSM627103     2  0.0837     0.8142 0.000 0.972 0.004 0.020 0.000 0.004
#> GSM627114     5  0.3857     0.6445 0.084 0.000 0.112 0.012 0.792 0.000
#> GSM627134     5  0.6474     0.1265 0.000 0.384 0.008 0.052 0.448 0.108
#> GSM627137     2  0.5502    -0.2694 0.000 0.484 0.408 0.100 0.000 0.008
#> GSM627148     5  0.1321     0.7035 0.024 0.000 0.020 0.004 0.952 0.000
#> GSM627101     6  0.5086     0.4630 0.000 0.084 0.004 0.016 0.236 0.660
#> GSM627130     6  0.2002     0.7197 0.008 0.000 0.056 0.000 0.020 0.916
#> GSM627071     5  0.4916    -0.0119 0.436 0.044 0.000 0.008 0.512 0.000
#> GSM627118     5  0.7047     0.0891 0.000 0.364 0.004 0.100 0.392 0.140
#> GSM627094     2  0.1629     0.8052 0.004 0.940 0.024 0.028 0.000 0.004
#> GSM627122     5  0.1866     0.6898 0.084 0.000 0.000 0.008 0.908 0.000
#> GSM627115     2  0.2662     0.7825 0.000 0.856 0.024 0.120 0.000 0.000
#> GSM627125     6  0.3687     0.6966 0.004 0.000 0.044 0.064 0.060 0.828
#> GSM627174     2  0.2662     0.7719 0.108 0.868 0.012 0.004 0.000 0.008
#> GSM627102     3  0.5047     0.3968 0.000 0.428 0.516 0.032 0.000 0.024
#> GSM627073     5  0.1148     0.7068 0.000 0.016 0.020 0.004 0.960 0.000
#> GSM627108     2  0.1812     0.7770 0.000 0.912 0.080 0.008 0.000 0.000
#> GSM627126     1  0.1850     0.7486 0.924 0.000 0.008 0.052 0.000 0.016
#> GSM627078     2  0.2824     0.7930 0.020 0.872 0.004 0.020 0.000 0.084
#> GSM627090     5  0.5484     0.3629 0.024 0.000 0.372 0.072 0.532 0.000
#> GSM627099     2  0.5314     0.6045 0.000 0.652 0.004 0.232 0.032 0.080
#> GSM627105     6  0.3682     0.6732 0.004 0.000 0.020 0.088 0.068 0.820
#> GSM627117     3  0.5561     0.2435 0.012 0.004 0.500 0.400 0.084 0.000
#> GSM627121     5  0.3202     0.6852 0.008 0.056 0.060 0.004 0.860 0.012
#> GSM627127     4  0.5713     0.3857 0.000 0.204 0.004 0.608 0.020 0.164
#> GSM627087     2  0.2538     0.7816 0.000 0.860 0.016 0.124 0.000 0.000
#> GSM627089     5  0.1462     0.6951 0.056 0.000 0.000 0.008 0.936 0.000
#> GSM627092     3  0.4030     0.4883 0.000 0.024 0.728 0.236 0.004 0.008
#> GSM627076     5  0.5142     0.6050 0.024 0.000 0.100 0.092 0.732 0.052
#> GSM627136     5  0.2866     0.6835 0.024 0.000 0.020 0.092 0.864 0.000
#> GSM627081     5  0.0767     0.7056 0.000 0.000 0.012 0.008 0.976 0.004
#> GSM627091     2  0.4305     0.6574 0.000 0.704 0.004 0.236 0.000 0.056
#> GSM627097     4  0.2910     0.6323 0.028 0.048 0.004 0.876 0.000 0.044
#> GSM627072     5  0.1313     0.7044 0.016 0.000 0.004 0.028 0.952 0.000
#> GSM627080     1  0.1500     0.7763 0.936 0.000 0.000 0.012 0.052 0.000
#> GSM627088     1  0.3903     0.6200 0.680 0.000 0.012 0.004 0.304 0.000
#> GSM627109     1  0.2263     0.7658 0.896 0.000 0.000 0.056 0.048 0.000
#> GSM627111     1  0.1942     0.7784 0.916 0.000 0.008 0.012 0.064 0.000
#> GSM627113     1  0.2669     0.7574 0.836 0.000 0.000 0.008 0.156 0.000
#> GSM627133     4  0.4681     0.5307 0.000 0.188 0.016 0.708 0.088 0.000
#> GSM627177     1  0.7631     0.1671 0.416 0.232 0.004 0.064 0.248 0.036
#> GSM627086     2  0.0508     0.8087 0.000 0.984 0.012 0.004 0.000 0.000
#> GSM627095     1  0.3142     0.7255 0.848 0.000 0.044 0.016 0.000 0.092
#> GSM627079     5  0.4117     0.5101 0.020 0.000 0.004 0.264 0.704 0.008
#> GSM627082     6  0.2126     0.7107 0.020 0.000 0.072 0.004 0.000 0.904
#> GSM627074     4  0.3698     0.5517 0.240 0.004 0.004 0.740 0.012 0.000
#> GSM627077     5  0.5885     0.1923 0.332 0.000 0.024 0.124 0.520 0.000
#> GSM627093     4  0.4679     0.2129 0.396 0.008 0.024 0.568 0.004 0.000
#> GSM627120     5  0.6897    -0.2475 0.008 0.308 0.296 0.012 0.364 0.012
#> GSM627124     2  0.2932     0.7930 0.028 0.868 0.004 0.020 0.000 0.080
#> GSM627075     3  0.5290     0.4448 0.000 0.392 0.504 0.104 0.000 0.000
#> GSM627085     2  0.3839     0.7440 0.012 0.792 0.008 0.040 0.000 0.148
#> GSM627119     1  0.3159     0.7588 0.832 0.000 0.000 0.068 0.100 0.000
#> GSM627116     4  0.5897     0.5503 0.148 0.076 0.004 0.668 0.020 0.084
#> GSM627084     1  0.4353     0.6973 0.720 0.000 0.228 0.012 0.028 0.012
#> GSM627096     5  0.7276     0.0923 0.000 0.320 0.004 0.096 0.376 0.204
#> GSM627100     5  0.2722     0.6958 0.012 0.000 0.024 0.020 0.888 0.056
#> GSM627112     6  0.1551     0.7027 0.008 0.020 0.004 0.016 0.004 0.948
#> GSM627083     6  0.4357     0.5347 0.224 0.000 0.076 0.000 0.000 0.700
#> GSM627098     1  0.2624     0.7619 0.844 0.000 0.004 0.004 0.148 0.000
#> GSM627104     1  0.1592     0.7576 0.944 0.016 0.000 0.024 0.012 0.004
#> GSM627131     1  0.4634     0.6510 0.692 0.000 0.000 0.164 0.144 0.000
#> GSM627106     5  0.0912     0.7057 0.000 0.004 0.012 0.008 0.972 0.004
#> GSM627123     1  0.6628     0.3274 0.484 0.000 0.260 0.208 0.004 0.044
#> GSM627129     6  0.8426     0.1233 0.004 0.104 0.204 0.224 0.096 0.368
#> GSM627216     2  0.2094     0.8116 0.000 0.920 0.016 0.032 0.028 0.004
#> GSM627212     2  0.2714     0.7905 0.000 0.872 0.004 0.060 0.000 0.064
#> GSM627190     5  0.5265     0.0966 0.028 0.000 0.408 0.044 0.520 0.000
#> GSM627169     3  0.3946     0.5826 0.000 0.088 0.772 0.136 0.004 0.000
#> GSM627167     6  0.6624     0.0609 0.000 0.100 0.376 0.012 0.064 0.448
#> GSM627192     1  0.3075     0.7312 0.848 0.000 0.032 0.008 0.004 0.108
#> GSM627203     5  0.2655     0.6554 0.008 0.000 0.000 0.140 0.848 0.004
#> GSM627151     4  0.2607     0.6456 0.036 0.052 0.000 0.892 0.012 0.008
#> GSM627163     1  0.1003     0.7590 0.964 0.000 0.004 0.028 0.000 0.004
#> GSM627211     2  0.1444     0.7857 0.000 0.928 0.072 0.000 0.000 0.000
#> GSM627171     3  0.4883     0.6197 0.012 0.240 0.676 0.008 0.064 0.000
#> GSM627209     2  0.2114     0.8012 0.000 0.904 0.012 0.008 0.000 0.076
#> GSM627135     1  0.2326     0.7432 0.888 0.000 0.008 0.092 0.000 0.012
#> GSM627170     2  0.4403     0.6144 0.000 0.744 0.044 0.040 0.172 0.000
#> GSM627178     1  0.2630     0.7600 0.872 0.000 0.000 0.064 0.064 0.000
#> GSM627199     2  0.4688     0.6777 0.064 0.712 0.004 0.020 0.000 0.200
#> GSM627213     6  0.3130     0.6476 0.000 0.080 0.004 0.044 0.016 0.856
#> GSM627140     6  0.3954     0.5380 0.016 0.004 0.296 0.000 0.000 0.684
#> GSM627149     1  0.6418     0.3786 0.448 0.000 0.404 0.028 0.032 0.088
#> GSM627147     3  0.6360     0.2959 0.000 0.072 0.548 0.076 0.016 0.288
#> GSM627195     5  0.3362     0.6393 0.016 0.008 0.008 0.156 0.812 0.000
#> GSM627204     2  0.0622     0.8090 0.000 0.980 0.012 0.008 0.000 0.000
#> GSM627207     2  0.3673     0.5010 0.000 0.736 0.244 0.004 0.016 0.000
#> GSM627157     1  0.2553     0.7609 0.848 0.000 0.000 0.008 0.144 0.000
#> GSM627201     2  0.0603     0.8080 0.000 0.980 0.016 0.004 0.000 0.000
#> GSM627146     2  0.1218     0.8130 0.000 0.956 0.004 0.028 0.000 0.012
#> GSM627156     3  0.4927     0.3201 0.000 0.468 0.484 0.016 0.032 0.000
#> GSM627188     1  0.5171     0.5155 0.616 0.000 0.104 0.008 0.000 0.272
#> GSM627197     2  0.2074     0.8090 0.000 0.912 0.004 0.036 0.000 0.048
#> GSM627173     2  0.2402     0.7969 0.040 0.904 0.020 0.032 0.000 0.004
#> GSM627179     2  0.2164     0.7891 0.000 0.908 0.060 0.020 0.012 0.000
#> GSM627208     5  0.4247     0.5791 0.008 0.184 0.060 0.004 0.744 0.000
#> GSM627215     5  0.5680     0.2324 0.000 0.384 0.008 0.056 0.520 0.032
#> GSM627153     2  0.2367     0.7961 0.000 0.888 0.016 0.008 0.000 0.088
#> GSM627155     1  0.4946     0.7179 0.736 0.000 0.140 0.020 0.056 0.048
#> GSM627165     3  0.6743     0.4216 0.000 0.140 0.464 0.336 0.028 0.032
#> GSM627168     1  0.4754     0.4326 0.568 0.000 0.032 0.012 0.388 0.000
#> GSM627183     5  0.3956     0.4139 0.292 0.000 0.000 0.024 0.684 0.000
#> GSM627144     4  0.3565     0.5956 0.004 0.000 0.096 0.808 0.092 0.000
#> GSM627158     1  0.3794     0.7526 0.792 0.000 0.080 0.008 0.120 0.000
#> GSM627196     2  0.0508     0.8087 0.000 0.984 0.012 0.004 0.000 0.000
#> GSM627142     5  0.2182     0.6940 0.016 0.004 0.000 0.004 0.904 0.072
#> GSM627182     5  0.3051     0.6926 0.024 0.064 0.036 0.008 0.868 0.000
#> GSM627202     5  0.4144     0.5393 0.224 0.000 0.032 0.016 0.728 0.000
#> GSM627141     3  0.3526     0.5064 0.088 0.000 0.820 0.012 0.080 0.000
#> GSM627143     3  0.5065     0.6228 0.008 0.196 0.688 0.000 0.088 0.020
#> GSM627145     5  0.1672     0.7009 0.016 0.000 0.004 0.048 0.932 0.000
#> GSM627152     4  0.4912     0.2899 0.020 0.000 0.024 0.564 0.388 0.004
#> GSM627200     4  0.4011     0.6243 0.144 0.000 0.028 0.780 0.048 0.000
#> GSM627159     6  0.1845     0.7144 0.004 0.000 0.072 0.008 0.000 0.916
#> GSM627164     3  0.5114     0.5695 0.004 0.328 0.596 0.004 0.064 0.004
#> GSM627138     1  0.5409     0.5650 0.584 0.000 0.124 0.008 0.284 0.000
#> GSM627175     2  0.2053     0.7952 0.004 0.888 0.000 0.000 0.000 0.108
#> GSM627150     5  0.0922     0.7054 0.024 0.000 0.004 0.004 0.968 0.000
#> GSM627166     1  0.3788     0.5397 0.704 0.012 0.004 0.280 0.000 0.000
#> GSM627186     3  0.4372     0.6252 0.004 0.292 0.668 0.032 0.004 0.000
#> GSM627139     4  0.6171     0.4613 0.004 0.000 0.072 0.600 0.144 0.180
#> GSM627181     2  0.1080     0.8057 0.000 0.960 0.032 0.004 0.000 0.004
#> GSM627205     2  0.6658     0.0247 0.000 0.436 0.128 0.056 0.372 0.008
#> GSM627214     2  0.4265     0.6755 0.000 0.776 0.040 0.008 0.136 0.040
#> GSM627180     5  0.3020     0.6672 0.000 0.060 0.008 0.060 0.864 0.008
#> GSM627172     2  0.5494    -0.2765 0.008 0.476 0.452 0.008 0.016 0.040
#> GSM627184     1  0.5368     0.6235 0.668 0.000 0.100 0.012 0.024 0.196
#> GSM627193     2  0.1649     0.8037 0.000 0.932 0.032 0.036 0.000 0.000
#> GSM627191     6  0.3006     0.6855 0.064 0.000 0.092 0.000 0.000 0.844
#> GSM627176     3  0.3495     0.5028 0.004 0.000 0.808 0.128 0.060 0.000
#> GSM627194     2  0.3230     0.7775 0.016 0.844 0.056 0.084 0.000 0.000
#> GSM627154     2  0.4962     0.5974 0.028 0.656 0.008 0.036 0.000 0.272
#> GSM627187     3  0.2955     0.5233 0.004 0.008 0.816 0.000 0.172 0.000
#> GSM627198     2  0.4056     0.7645 0.028 0.788 0.004 0.052 0.000 0.128
#> GSM627160     4  0.6104     0.0981 0.008 0.004 0.112 0.472 0.016 0.388
#> GSM627185     1  0.1625     0.7771 0.928 0.000 0.000 0.012 0.060 0.000
#> GSM627206     5  0.4644     0.5520 0.196 0.000 0.080 0.016 0.708 0.000
#> GSM627161     1  0.4685     0.7278 0.728 0.000 0.152 0.012 0.100 0.008
#> GSM627162     3  0.3704     0.5326 0.008 0.008 0.796 0.024 0.160 0.004
#> GSM627210     1  0.4201     0.7110 0.756 0.008 0.000 0.104 0.132 0.000
#> GSM627189     2  0.2756     0.7950 0.016 0.872 0.028 0.084 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n disease.state(p) age(p) other(p) k
#> MAD:NMF 143           0.5714  0.167  0.00998 2
#> MAD:NMF 138           0.1577  0.369  0.02688 3
#> MAD:NMF 127           0.6634  0.293  0.04252 4
#> MAD:NMF 100           0.2896  0.311  0.03138 5
#> MAD:NMF 114           0.0202  0.282  0.02213 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 146 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.525           0.830       0.915         0.4255 0.551   0.551
#> 3 3 0.532           0.606       0.822         0.3342 0.787   0.645
#> 4 4 0.614           0.693       0.806         0.2133 0.808   0.586
#> 5 5 0.635           0.611       0.801         0.0681 0.929   0.774
#> 6 6 0.650           0.593       0.769         0.0658 0.915   0.695

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM627128     2  0.2778      0.900 0.048 0.952
#> GSM627110     1  0.9129      0.604 0.672 0.328
#> GSM627132     1  0.0000      0.848 1.000 0.000
#> GSM627107     2  0.0000      0.924 0.000 1.000
#> GSM627103     2  0.0000      0.924 0.000 1.000
#> GSM627114     1  0.9323      0.573 0.652 0.348
#> GSM627134     2  0.0000      0.924 0.000 1.000
#> GSM627137     2  0.0000      0.924 0.000 1.000
#> GSM627148     2  0.2423      0.905 0.040 0.960
#> GSM627101     2  0.0000      0.924 0.000 1.000
#> GSM627130     2  0.2778      0.900 0.048 0.952
#> GSM627071     2  0.7139      0.768 0.196 0.804
#> GSM627118     2  0.0000      0.924 0.000 1.000
#> GSM627094     2  0.0000      0.924 0.000 1.000
#> GSM627122     1  0.8909      0.642 0.692 0.308
#> GSM627115     2  0.0000      0.924 0.000 1.000
#> GSM627125     2  0.0000      0.924 0.000 1.000
#> GSM627174     1  0.9833      0.398 0.576 0.424
#> GSM627102     2  0.6048      0.826 0.148 0.852
#> GSM627073     2  0.0000      0.924 0.000 1.000
#> GSM627108     2  0.0000      0.924 0.000 1.000
#> GSM627126     1  0.0000      0.848 1.000 0.000
#> GSM627078     2  0.0000      0.924 0.000 1.000
#> GSM627090     2  0.9248      0.481 0.340 0.660
#> GSM627099     2  0.0000      0.924 0.000 1.000
#> GSM627105     2  0.0000      0.924 0.000 1.000
#> GSM627117     2  0.6623      0.801 0.172 0.828
#> GSM627121     2  0.0000      0.924 0.000 1.000
#> GSM627127     2  0.0000      0.924 0.000 1.000
#> GSM627087     2  0.0000      0.924 0.000 1.000
#> GSM627089     2  0.7674      0.726 0.224 0.776
#> GSM627092     2  0.6048      0.826 0.148 0.852
#> GSM627076     2  0.9248      0.481 0.340 0.660
#> GSM627136     1  0.9608      0.499 0.616 0.384
#> GSM627081     2  0.0000      0.924 0.000 1.000
#> GSM627091     2  0.0000      0.924 0.000 1.000
#> GSM627097     2  0.0376      0.923 0.004 0.996
#> GSM627072     2  0.5737      0.834 0.136 0.864
#> GSM627080     1  0.0000      0.848 1.000 0.000
#> GSM627088     1  0.9580      0.507 0.620 0.380
#> GSM627109     1  0.0000      0.848 1.000 0.000
#> GSM627111     1  0.0000      0.848 1.000 0.000
#> GSM627113     1  0.1414      0.850 0.980 0.020
#> GSM627133     2  0.0000      0.924 0.000 1.000
#> GSM627177     2  0.7139      0.768 0.196 0.804
#> GSM627086     2  0.0000      0.924 0.000 1.000
#> GSM627095     1  0.0000      0.848 1.000 0.000
#> GSM627079     2  0.8267      0.660 0.260 0.740
#> GSM627082     1  0.8327      0.698 0.736 0.264
#> GSM627074     1  0.1414      0.850 0.980 0.020
#> GSM627077     1  0.3431      0.840 0.936 0.064
#> GSM627093     1  0.1414      0.850 0.980 0.020
#> GSM627120     2  0.0000      0.924 0.000 1.000
#> GSM627124     2  0.0000      0.924 0.000 1.000
#> GSM627075     2  0.0000      0.924 0.000 1.000
#> GSM627085     2  0.0000      0.924 0.000 1.000
#> GSM627119     1  0.1414      0.850 0.980 0.020
#> GSM627116     2  0.5737      0.837 0.136 0.864
#> GSM627084     1  0.6801      0.777 0.820 0.180
#> GSM627096     2  0.0000      0.924 0.000 1.000
#> GSM627100     2  0.7674      0.726 0.224 0.776
#> GSM627112     2  0.6712      0.798 0.176 0.824
#> GSM627083     1  0.7139      0.765 0.804 0.196
#> GSM627098     1  0.4298      0.830 0.912 0.088
#> GSM627104     1  0.0000      0.848 1.000 0.000
#> GSM627131     1  0.3431      0.840 0.936 0.064
#> GSM627106     2  0.0000      0.924 0.000 1.000
#> GSM627123     1  0.1184      0.850 0.984 0.016
#> GSM627129     2  0.0000      0.924 0.000 1.000
#> GSM627216     2  0.0000      0.924 0.000 1.000
#> GSM627212     2  0.0000      0.924 0.000 1.000
#> GSM627190     2  0.6623      0.802 0.172 0.828
#> GSM627169     2  0.6048      0.826 0.148 0.852
#> GSM627167     2  0.0000      0.924 0.000 1.000
#> GSM627192     1  0.0000      0.848 1.000 0.000
#> GSM627203     2  0.4815      0.864 0.104 0.896
#> GSM627151     2  0.3733      0.886 0.072 0.928
#> GSM627163     1  0.0000      0.848 1.000 0.000
#> GSM627211     2  0.0000      0.924 0.000 1.000
#> GSM627171     2  0.0376      0.923 0.004 0.996
#> GSM627209     2  0.0000      0.924 0.000 1.000
#> GSM627135     1  0.1184      0.850 0.984 0.016
#> GSM627170     2  0.0000      0.924 0.000 1.000
#> GSM627178     1  0.1414      0.850 0.980 0.020
#> GSM627199     2  0.6048      0.826 0.148 0.852
#> GSM627213     2  0.0000      0.924 0.000 1.000
#> GSM627140     2  0.7139      0.773 0.196 0.804
#> GSM627149     1  0.1184      0.850 0.984 0.016
#> GSM627147     2  0.6048      0.826 0.148 0.852
#> GSM627195     2  0.0000      0.924 0.000 1.000
#> GSM627204     2  0.0000      0.924 0.000 1.000
#> GSM627207     2  0.0000      0.924 0.000 1.000
#> GSM627157     1  0.1414      0.850 0.980 0.020
#> GSM627201     2  0.0000      0.924 0.000 1.000
#> GSM627146     2  0.0000      0.924 0.000 1.000
#> GSM627156     2  0.0000      0.924 0.000 1.000
#> GSM627188     1  0.0000      0.848 1.000 0.000
#> GSM627197     2  0.0000      0.924 0.000 1.000
#> GSM627173     2  0.6048      0.826 0.148 0.852
#> GSM627179     2  0.0000      0.924 0.000 1.000
#> GSM627208     2  0.0000      0.924 0.000 1.000
#> GSM627215     2  0.0000      0.924 0.000 1.000
#> GSM627153     2  0.0000      0.924 0.000 1.000
#> GSM627155     1  0.0000      0.848 1.000 0.000
#> GSM627165     2  0.0000      0.924 0.000 1.000
#> GSM627168     1  0.9608      0.497 0.616 0.384
#> GSM627183     1  0.9286      0.582 0.656 0.344
#> GSM627144     2  0.0000      0.924 0.000 1.000
#> GSM627158     1  0.0000      0.848 1.000 0.000
#> GSM627196     2  0.0000      0.924 0.000 1.000
#> GSM627142     2  0.9248      0.481 0.340 0.660
#> GSM627182     2  0.0000      0.924 0.000 1.000
#> GSM627202     1  0.3431      0.840 0.936 0.064
#> GSM627141     1  0.9323      0.573 0.652 0.348
#> GSM627143     2  0.6623      0.801 0.172 0.828
#> GSM627145     2  0.6712      0.795 0.176 0.824
#> GSM627152     1  0.8713      0.659 0.708 0.292
#> GSM627200     1  0.6343      0.790 0.840 0.160
#> GSM627159     1  0.9970      0.248 0.532 0.468
#> GSM627164     2  0.6048      0.826 0.148 0.852
#> GSM627138     1  0.0000      0.848 1.000 0.000
#> GSM627175     2  0.0000      0.924 0.000 1.000
#> GSM627150     2  0.0000      0.924 0.000 1.000
#> GSM627166     1  0.1414      0.850 0.980 0.020
#> GSM627186     2  0.6247      0.818 0.156 0.844
#> GSM627139     2  0.2778      0.901 0.048 0.952
#> GSM627181     2  0.0000      0.924 0.000 1.000
#> GSM627205     2  0.0000      0.924 0.000 1.000
#> GSM627214     2  0.0000      0.924 0.000 1.000
#> GSM627180     2  0.0000      0.924 0.000 1.000
#> GSM627172     2  0.6048      0.826 0.148 0.852
#> GSM627184     1  0.0000      0.848 1.000 0.000
#> GSM627193     2  0.0000      0.924 0.000 1.000
#> GSM627191     1  0.7815      0.731 0.768 0.232
#> GSM627176     1  0.9129      0.604 0.672 0.328
#> GSM627194     2  0.0000      0.924 0.000 1.000
#> GSM627154     2  0.0000      0.924 0.000 1.000
#> GSM627187     2  0.6801      0.793 0.180 0.820
#> GSM627198     2  0.0000      0.924 0.000 1.000
#> GSM627160     1  0.9248      0.589 0.660 0.340
#> GSM627185     1  0.0000      0.848 1.000 0.000
#> GSM627206     2  0.9710      0.283 0.400 0.600
#> GSM627161     1  0.0000      0.848 1.000 0.000
#> GSM627162     2  0.7528      0.742 0.216 0.784
#> GSM627210     1  0.7883      0.715 0.764 0.236
#> GSM627189     2  0.0000      0.924 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM627128     2  0.5216    0.68641 0.000 0.740 0.260
#> GSM627110     3  0.5608    0.52992 0.120 0.072 0.808
#> GSM627132     1  0.0000    0.93999 1.000 0.000 0.000
#> GSM627107     2  0.0000    0.85323 0.000 1.000 0.000
#> GSM627103     2  0.2356    0.84343 0.000 0.928 0.072
#> GSM627114     3  0.4165    0.54138 0.076 0.048 0.876
#> GSM627134     2  0.1163    0.85306 0.000 0.972 0.028
#> GSM627137     2  0.0000    0.85323 0.000 1.000 0.000
#> GSM627148     2  0.4346    0.76673 0.000 0.816 0.184
#> GSM627101     2  0.0000    0.85323 0.000 1.000 0.000
#> GSM627130     2  0.5254    0.68227 0.000 0.736 0.264
#> GSM627071     3  0.6295   -0.12339 0.000 0.472 0.528
#> GSM627118     2  0.0000    0.85323 0.000 1.000 0.000
#> GSM627094     2  0.0592    0.85535 0.000 0.988 0.012
#> GSM627122     3  0.3805    0.53580 0.092 0.024 0.884
#> GSM627115     2  0.0424    0.85473 0.000 0.992 0.008
#> GSM627125     2  0.3482    0.81496 0.000 0.872 0.128
#> GSM627174     3  0.1753    0.54891 0.000 0.048 0.952
#> GSM627102     2  0.6307    0.24096 0.000 0.512 0.488
#> GSM627073     2  0.2356    0.84403 0.000 0.928 0.072
#> GSM627108     2  0.0424    0.85473 0.000 0.992 0.008
#> GSM627126     1  0.0000    0.93999 1.000 0.000 0.000
#> GSM627078     2  0.3879    0.80080 0.000 0.848 0.152
#> GSM627090     3  0.5529    0.36406 0.000 0.296 0.704
#> GSM627099     2  0.0000    0.85323 0.000 1.000 0.000
#> GSM627105     2  0.3482    0.81496 0.000 0.872 0.128
#> GSM627117     3  0.6307   -0.18544 0.000 0.488 0.512
#> GSM627121     2  0.0000    0.85323 0.000 1.000 0.000
#> GSM627127     2  0.0237    0.85432 0.000 0.996 0.004
#> GSM627087     2  0.0424    0.85473 0.000 0.992 0.008
#> GSM627089     3  0.6215    0.02325 0.000 0.428 0.572
#> GSM627092     2  0.6307    0.24096 0.000 0.512 0.488
#> GSM627076     3  0.5529    0.36406 0.000 0.296 0.704
#> GSM627136     3  0.2313    0.54972 0.024 0.032 0.944
#> GSM627081     2  0.0000    0.85323 0.000 1.000 0.000
#> GSM627091     2  0.0424    0.85473 0.000 0.992 0.008
#> GSM627097     2  0.3752    0.80306 0.000 0.856 0.144
#> GSM627072     2  0.6154    0.42321 0.000 0.592 0.408
#> GSM627080     1  0.0000    0.93999 1.000 0.000 0.000
#> GSM627088     3  0.2689    0.55054 0.032 0.036 0.932
#> GSM627109     3  0.6215    0.15040 0.428 0.000 0.572
#> GSM627111     1  0.0000    0.93999 1.000 0.000 0.000
#> GSM627113     3  0.6062    0.23241 0.384 0.000 0.616
#> GSM627133     2  0.1163    0.85306 0.000 0.972 0.028
#> GSM627177     3  0.6295   -0.12339 0.000 0.472 0.528
#> GSM627086     2  0.0000    0.85323 0.000 1.000 0.000
#> GSM627095     3  0.6305    0.00878 0.484 0.000 0.516
#> GSM627079     3  0.6140    0.11217 0.000 0.404 0.596
#> GSM627082     3  0.3989    0.50753 0.124 0.012 0.864
#> GSM627074     3  0.6095    0.22722 0.392 0.000 0.608
#> GSM627077     3  0.5650    0.34276 0.312 0.000 0.688
#> GSM627093     3  0.6095    0.22722 0.392 0.000 0.608
#> GSM627120     2  0.0592    0.85521 0.000 0.988 0.012
#> GSM627124     2  0.3879    0.80080 0.000 0.848 0.152
#> GSM627075     2  0.0424    0.85473 0.000 0.992 0.008
#> GSM627085     2  0.3619    0.81220 0.000 0.864 0.136
#> GSM627119     3  0.6095    0.22722 0.392 0.000 0.608
#> GSM627116     2  0.5810    0.55978 0.000 0.664 0.336
#> GSM627084     3  0.4504    0.45671 0.196 0.000 0.804
#> GSM627096     2  0.0000    0.85323 0.000 1.000 0.000
#> GSM627100     3  0.6192    0.04658 0.000 0.420 0.580
#> GSM627112     3  0.6274   -0.09225 0.000 0.456 0.544
#> GSM627083     3  0.4291    0.46790 0.180 0.000 0.820
#> GSM627098     3  0.5465    0.37088 0.288 0.000 0.712
#> GSM627104     3  0.6215    0.15040 0.428 0.000 0.572
#> GSM627131     3  0.5650    0.34276 0.312 0.000 0.688
#> GSM627106     2  0.0000    0.85323 0.000 1.000 0.000
#> GSM627123     1  0.5138    0.65676 0.748 0.000 0.252
#> GSM627129     2  0.2356    0.84343 0.000 0.928 0.072
#> GSM627216     2  0.1163    0.85306 0.000 0.972 0.028
#> GSM627212     2  0.0424    0.85473 0.000 0.992 0.008
#> GSM627190     3  0.6307   -0.18626 0.000 0.488 0.512
#> GSM627169     2  0.6307    0.24096 0.000 0.512 0.488
#> GSM627167     2  0.2711    0.83766 0.000 0.912 0.088
#> GSM627192     1  0.0000    0.93999 1.000 0.000 0.000
#> GSM627203     2  0.5431    0.64099 0.000 0.716 0.284
#> GSM627151     2  0.5098    0.69819 0.000 0.752 0.248
#> GSM627163     1  0.0000    0.93999 1.000 0.000 0.000
#> GSM627211     2  0.0424    0.85473 0.000 0.992 0.008
#> GSM627171     2  0.4399    0.77100 0.000 0.812 0.188
#> GSM627209     2  0.1163    0.85389 0.000 0.972 0.028
#> GSM627135     1  0.5138    0.65676 0.748 0.000 0.252
#> GSM627170     2  0.0000    0.85323 0.000 1.000 0.000
#> GSM627178     3  0.6008    0.25283 0.372 0.000 0.628
#> GSM627199     2  0.6307    0.24096 0.000 0.512 0.488
#> GSM627213     2  0.2356    0.84343 0.000 0.928 0.072
#> GSM627140     3  0.6225   -0.01034 0.000 0.432 0.568
#> GSM627149     1  0.4452    0.74830 0.808 0.000 0.192
#> GSM627147     2  0.6307    0.24096 0.000 0.512 0.488
#> GSM627195     2  0.1289    0.85215 0.000 0.968 0.032
#> GSM627204     2  0.0424    0.85473 0.000 0.992 0.008
#> GSM627207     2  0.0424    0.85473 0.000 0.992 0.008
#> GSM627157     3  0.6062    0.23241 0.384 0.000 0.616
#> GSM627201     2  0.0000    0.85323 0.000 1.000 0.000
#> GSM627146     2  0.2711    0.83837 0.000 0.912 0.088
#> GSM627156     2  0.3551    0.79363 0.000 0.868 0.132
#> GSM627188     1  0.0000    0.93999 1.000 0.000 0.000
#> GSM627197     2  0.2066    0.84868 0.000 0.940 0.060
#> GSM627173     2  0.6307    0.24096 0.000 0.512 0.488
#> GSM627179     2  0.0424    0.85473 0.000 0.992 0.008
#> GSM627208     2  0.0000    0.85323 0.000 1.000 0.000
#> GSM627215     2  0.1163    0.85306 0.000 0.972 0.028
#> GSM627153     2  0.1163    0.85389 0.000 0.972 0.028
#> GSM627155     1  0.0000    0.93999 1.000 0.000 0.000
#> GSM627165     2  0.0000    0.85323 0.000 1.000 0.000
#> GSM627168     3  0.3692    0.55247 0.048 0.056 0.896
#> GSM627183     3  0.3213    0.54591 0.060 0.028 0.912
#> GSM627144     2  0.2261    0.84431 0.000 0.932 0.068
#> GSM627158     1  0.0000    0.93999 1.000 0.000 0.000
#> GSM627196     2  0.0424    0.85473 0.000 0.992 0.008
#> GSM627142     3  0.5497    0.37056 0.000 0.292 0.708
#> GSM627182     2  0.1964    0.84912 0.000 0.944 0.056
#> GSM627202     3  0.5650    0.34276 0.312 0.000 0.688
#> GSM627141     3  0.4165    0.54138 0.076 0.048 0.876
#> GSM627143     2  0.6309    0.20338 0.000 0.504 0.496
#> GSM627145     2  0.6305    0.23327 0.000 0.516 0.484
#> GSM627152     3  0.5069    0.52117 0.128 0.044 0.828
#> GSM627200     3  0.4750    0.44319 0.216 0.000 0.784
#> GSM627159     3  0.2796    0.54520 0.000 0.092 0.908
#> GSM627164     2  0.6307    0.24096 0.000 0.512 0.488
#> GSM627138     1  0.0000    0.93999 1.000 0.000 0.000
#> GSM627175     2  0.0000    0.85323 0.000 1.000 0.000
#> GSM627150     2  0.3267    0.82298 0.000 0.884 0.116
#> GSM627166     3  0.6095    0.22722 0.392 0.000 0.608
#> GSM627186     2  0.6308    0.22533 0.000 0.508 0.492
#> GSM627139     2  0.4842    0.72550 0.000 0.776 0.224
#> GSM627181     2  0.0000    0.85323 0.000 1.000 0.000
#> GSM627205     2  0.0000    0.85323 0.000 1.000 0.000
#> GSM627214     2  0.0000    0.85323 0.000 1.000 0.000
#> GSM627180     2  0.2165    0.84682 0.000 0.936 0.064
#> GSM627172     2  0.6307    0.24096 0.000 0.512 0.488
#> GSM627184     1  0.0000    0.93999 1.000 0.000 0.000
#> GSM627193     2  0.0424    0.85473 0.000 0.992 0.008
#> GSM627191     3  0.3752    0.48703 0.144 0.000 0.856
#> GSM627176     3  0.5608    0.52992 0.120 0.072 0.808
#> GSM627194     2  0.0747    0.85514 0.000 0.984 0.016
#> GSM627154     2  0.3619    0.81220 0.000 0.864 0.136
#> GSM627187     3  0.6267   -0.07801 0.000 0.452 0.548
#> GSM627198     2  0.2711    0.83837 0.000 0.912 0.088
#> GSM627160     3  0.4146    0.54422 0.080 0.044 0.876
#> GSM627185     3  0.6308   -0.02650 0.492 0.000 0.508
#> GSM627206     3  0.5016    0.46432 0.000 0.240 0.760
#> GSM627161     1  0.0000    0.93999 1.000 0.000 0.000
#> GSM627162     3  0.6180    0.05294 0.000 0.416 0.584
#> GSM627210     3  0.6756    0.44030 0.232 0.056 0.712
#> GSM627189     2  0.0424    0.85473 0.000 0.992 0.008

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM627128     4  0.4855      0.283 0.000 0.400 0.000 0.600
#> GSM627110     3  0.4661      0.556 0.000 0.000 0.652 0.348
#> GSM627132     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> GSM627107     2  0.0336      0.858 0.000 0.992 0.000 0.008
#> GSM627103     2  0.3688      0.737 0.000 0.792 0.000 0.208
#> GSM627114     3  0.4830      0.561 0.000 0.000 0.608 0.392
#> GSM627134     2  0.2530      0.812 0.000 0.888 0.000 0.112
#> GSM627137     2  0.0000      0.858 0.000 1.000 0.000 0.000
#> GSM627148     4  0.5229      0.207 0.000 0.428 0.008 0.564
#> GSM627101     2  0.0336      0.858 0.000 0.992 0.000 0.008
#> GSM627130     4  0.4830      0.306 0.000 0.392 0.000 0.608
#> GSM627071     4  0.4071      0.724 0.000 0.064 0.104 0.832
#> GSM627118     2  0.0000      0.858 0.000 1.000 0.000 0.000
#> GSM627094     2  0.1302      0.857 0.000 0.956 0.000 0.044
#> GSM627122     3  0.4643      0.616 0.000 0.000 0.656 0.344
#> GSM627115     2  0.1211      0.857 0.000 0.960 0.000 0.040
#> GSM627125     2  0.4961      0.258 0.000 0.552 0.000 0.448
#> GSM627174     3  0.4972      0.446 0.000 0.000 0.544 0.456
#> GSM627102     4  0.1584      0.754 0.000 0.036 0.012 0.952
#> GSM627073     2  0.3400      0.763 0.000 0.820 0.000 0.180
#> GSM627108     2  0.1211      0.857 0.000 0.960 0.000 0.040
#> GSM627126     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> GSM627078     2  0.4830      0.469 0.000 0.608 0.000 0.392
#> GSM627090     4  0.4630      0.492 0.000 0.016 0.252 0.732
#> GSM627099     2  0.0000      0.858 0.000 1.000 0.000 0.000
#> GSM627105     2  0.4961      0.258 0.000 0.552 0.000 0.448
#> GSM627117     4  0.2586      0.752 0.000 0.040 0.048 0.912
#> GSM627121     2  0.0336      0.858 0.000 0.992 0.000 0.008
#> GSM627127     2  0.0188      0.859 0.000 0.996 0.000 0.004
#> GSM627087     2  0.1211      0.857 0.000 0.960 0.000 0.040
#> GSM627089     4  0.3694      0.703 0.000 0.032 0.124 0.844
#> GSM627092     4  0.1677      0.754 0.000 0.040 0.012 0.948
#> GSM627076     4  0.4630      0.492 0.000 0.016 0.252 0.732
#> GSM627136     3  0.4941      0.482 0.000 0.000 0.564 0.436
#> GSM627081     2  0.0336      0.858 0.000 0.992 0.000 0.008
#> GSM627091     2  0.1211      0.857 0.000 0.960 0.000 0.040
#> GSM627097     2  0.4981      0.200 0.000 0.536 0.000 0.464
#> GSM627072     4  0.5594      0.661 0.000 0.192 0.092 0.716
#> GSM627080     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> GSM627088     3  0.4941      0.473 0.000 0.000 0.564 0.436
#> GSM627109     3  0.2589      0.640 0.116 0.000 0.884 0.000
#> GSM627111     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> GSM627113     3  0.1867      0.668 0.072 0.000 0.928 0.000
#> GSM627133     2  0.2530      0.812 0.000 0.888 0.000 0.112
#> GSM627177     4  0.4071      0.724 0.000 0.064 0.104 0.832
#> GSM627086     2  0.0000      0.858 0.000 1.000 0.000 0.000
#> GSM627095     3  0.3801      0.526 0.220 0.000 0.780 0.000
#> GSM627079     4  0.4589      0.668 0.000 0.048 0.168 0.784
#> GSM627082     3  0.4277      0.667 0.000 0.000 0.720 0.280
#> GSM627074     3  0.1940      0.673 0.076 0.000 0.924 0.000
#> GSM627077     3  0.1938      0.718 0.012 0.000 0.936 0.052
#> GSM627093     3  0.1940      0.673 0.076 0.000 0.924 0.000
#> GSM627120     2  0.1302      0.854 0.000 0.956 0.000 0.044
#> GSM627124     2  0.4830      0.469 0.000 0.608 0.000 0.392
#> GSM627075     2  0.1211      0.857 0.000 0.960 0.000 0.040
#> GSM627085     2  0.4776      0.508 0.000 0.624 0.000 0.376
#> GSM627119     3  0.2125      0.674 0.076 0.000 0.920 0.004
#> GSM627116     4  0.5966      0.518 0.000 0.316 0.060 0.624
#> GSM627084     3  0.3649      0.720 0.000 0.000 0.796 0.204
#> GSM627096     2  0.0000      0.858 0.000 1.000 0.000 0.000
#> GSM627100     4  0.3497      0.695 0.000 0.024 0.124 0.852
#> GSM627112     4  0.1305      0.725 0.000 0.004 0.036 0.960
#> GSM627083     3  0.3726      0.711 0.000 0.000 0.788 0.212
#> GSM627098     3  0.2402      0.724 0.012 0.000 0.912 0.076
#> GSM627104     3  0.2589      0.640 0.116 0.000 0.884 0.000
#> GSM627131     3  0.1938      0.718 0.012 0.000 0.936 0.052
#> GSM627106     2  0.0336      0.858 0.000 0.992 0.000 0.008
#> GSM627123     1  0.4989      0.306 0.528 0.000 0.472 0.000
#> GSM627129     2  0.3726      0.732 0.000 0.788 0.000 0.212
#> GSM627216     2  0.2530      0.812 0.000 0.888 0.000 0.112
#> GSM627212     2  0.1211      0.857 0.000 0.960 0.000 0.040
#> GSM627190     4  0.2408      0.750 0.000 0.036 0.044 0.920
#> GSM627169     4  0.1584      0.754 0.000 0.036 0.012 0.952
#> GSM627167     2  0.3942      0.708 0.000 0.764 0.000 0.236
#> GSM627192     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> GSM627203     4  0.5475      0.529 0.000 0.308 0.036 0.656
#> GSM627151     4  0.5244      0.317 0.000 0.388 0.012 0.600
#> GSM627163     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> GSM627211     2  0.1211      0.857 0.000 0.960 0.000 0.040
#> GSM627171     2  0.4898      0.391 0.000 0.584 0.000 0.416
#> GSM627209     2  0.1302      0.851 0.000 0.956 0.000 0.044
#> GSM627135     1  0.4989      0.306 0.528 0.000 0.472 0.000
#> GSM627170     2  0.0000      0.858 0.000 1.000 0.000 0.000
#> GSM627178     3  0.1637      0.675 0.060 0.000 0.940 0.000
#> GSM627199     4  0.1584      0.754 0.000 0.036 0.012 0.952
#> GSM627213     2  0.3726      0.732 0.000 0.788 0.000 0.212
#> GSM627140     4  0.1557      0.712 0.000 0.000 0.056 0.944
#> GSM627149     1  0.4746      0.509 0.632 0.000 0.368 0.000
#> GSM627147     4  0.1677      0.754 0.000 0.040 0.012 0.948
#> GSM627195     2  0.2704      0.803 0.000 0.876 0.000 0.124
#> GSM627204     2  0.1211      0.857 0.000 0.960 0.000 0.040
#> GSM627207     2  0.1211      0.857 0.000 0.960 0.000 0.040
#> GSM627157     3  0.1867      0.668 0.072 0.000 0.928 0.000
#> GSM627201     2  0.0000      0.858 0.000 1.000 0.000 0.000
#> GSM627146     2  0.4008      0.710 0.000 0.756 0.000 0.244
#> GSM627156     2  0.4008      0.678 0.000 0.756 0.000 0.244
#> GSM627188     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> GSM627197     2  0.3649      0.756 0.000 0.796 0.000 0.204
#> GSM627173     4  0.1584      0.754 0.000 0.036 0.012 0.952
#> GSM627179     2  0.1211      0.857 0.000 0.960 0.000 0.040
#> GSM627208     2  0.0188      0.858 0.000 0.996 0.000 0.004
#> GSM627215     2  0.2530      0.812 0.000 0.888 0.000 0.112
#> GSM627153     2  0.1302      0.851 0.000 0.956 0.000 0.044
#> GSM627155     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> GSM627165     2  0.0000      0.858 0.000 1.000 0.000 0.000
#> GSM627168     3  0.5132      0.459 0.004 0.000 0.548 0.448
#> GSM627183     3  0.4843      0.548 0.000 0.000 0.604 0.396
#> GSM627144     2  0.4746      0.458 0.000 0.632 0.000 0.368
#> GSM627158     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> GSM627196     2  0.1211      0.857 0.000 0.960 0.000 0.040
#> GSM627142     4  0.4576      0.482 0.000 0.012 0.260 0.728
#> GSM627182     2  0.3024      0.791 0.000 0.852 0.000 0.148
#> GSM627202     3  0.1938      0.718 0.012 0.000 0.936 0.052
#> GSM627141     3  0.4830      0.561 0.000 0.000 0.608 0.392
#> GSM627143     4  0.2926      0.753 0.000 0.056 0.048 0.896
#> GSM627145     4  0.4487      0.723 0.000 0.100 0.092 0.808
#> GSM627152     3  0.4608      0.618 0.004 0.000 0.692 0.304
#> GSM627200     3  0.3539      0.730 0.004 0.000 0.820 0.176
#> GSM627159     4  0.5163     -0.272 0.000 0.004 0.480 0.516
#> GSM627164     4  0.1584      0.754 0.000 0.036 0.012 0.952
#> GSM627138     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> GSM627175     2  0.0000      0.858 0.000 1.000 0.000 0.000
#> GSM627150     2  0.4454      0.584 0.000 0.692 0.000 0.308
#> GSM627166     3  0.1940      0.673 0.076 0.000 0.924 0.000
#> GSM627186     4  0.2124      0.755 0.000 0.040 0.028 0.932
#> GSM627139     4  0.5353      0.196 0.000 0.432 0.012 0.556
#> GSM627181     2  0.0000      0.858 0.000 1.000 0.000 0.000
#> GSM627205     2  0.0000      0.858 0.000 1.000 0.000 0.000
#> GSM627214     2  0.0000      0.858 0.000 1.000 0.000 0.000
#> GSM627180     2  0.3219      0.779 0.000 0.836 0.000 0.164
#> GSM627172     4  0.1584      0.754 0.000 0.036 0.012 0.952
#> GSM627184     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> GSM627193     2  0.1211      0.857 0.000 0.960 0.000 0.040
#> GSM627191     3  0.4040      0.690 0.000 0.000 0.752 0.248
#> GSM627176     3  0.4661      0.556 0.000 0.000 0.652 0.348
#> GSM627194     2  0.1389      0.857 0.000 0.952 0.000 0.048
#> GSM627154     2  0.4776      0.508 0.000 0.624 0.000 0.376
#> GSM627187     4  0.1661      0.722 0.000 0.004 0.052 0.944
#> GSM627198     2  0.4008      0.710 0.000 0.756 0.000 0.244
#> GSM627160     3  0.4950      0.565 0.004 0.000 0.620 0.376
#> GSM627185     3  0.3975      0.507 0.240 0.000 0.760 0.000
#> GSM627206     4  0.4980      0.375 0.000 0.016 0.304 0.680
#> GSM627161     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> GSM627162     4  0.2530      0.676 0.000 0.004 0.100 0.896
#> GSM627210     3  0.5631      0.648 0.072 0.000 0.696 0.232
#> GSM627189     2  0.1211      0.857 0.000 0.960 0.000 0.040

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM627128     4  0.6208    0.36777 0.000 0.376 0.000 0.480 0.144
#> GSM627110     3  0.6238    0.10878 0.000 0.000 0.476 0.148 0.376
#> GSM627132     1  0.0000    0.89205 1.000 0.000 0.000 0.000 0.000
#> GSM627107     2  0.0510    0.85014 0.000 0.984 0.000 0.016 0.000
#> GSM627103     2  0.3715    0.67092 0.000 0.736 0.000 0.260 0.004
#> GSM627114     5  0.3697    0.66722 0.000 0.000 0.100 0.080 0.820
#> GSM627134     2  0.2583    0.78465 0.000 0.864 0.000 0.132 0.004
#> GSM627137     2  0.0000    0.85201 0.000 1.000 0.000 0.000 0.000
#> GSM627148     4  0.4585    0.37166 0.000 0.352 0.000 0.628 0.020
#> GSM627101     2  0.0510    0.85014 0.000 0.984 0.000 0.016 0.000
#> GSM627130     4  0.6282    0.38472 0.000 0.368 0.000 0.476 0.156
#> GSM627071     4  0.4384    0.38070 0.000 0.016 0.000 0.660 0.324
#> GSM627118     2  0.0000    0.85201 0.000 1.000 0.000 0.000 0.000
#> GSM627094     2  0.1341    0.84875 0.000 0.944 0.000 0.056 0.000
#> GSM627122     5  0.3555    0.65053 0.000 0.000 0.124 0.052 0.824
#> GSM627115     2  0.1197    0.84896 0.000 0.952 0.000 0.048 0.000
#> GSM627125     4  0.4747   -0.07212 0.000 0.484 0.000 0.500 0.016
#> GSM627174     5  0.2864    0.65130 0.000 0.000 0.024 0.112 0.864
#> GSM627102     4  0.2338    0.57804 0.000 0.000 0.004 0.884 0.112
#> GSM627073     2  0.3720    0.70634 0.000 0.760 0.000 0.228 0.012
#> GSM627108     2  0.1121    0.84867 0.000 0.956 0.000 0.044 0.000
#> GSM627126     1  0.0000    0.89205 1.000 0.000 0.000 0.000 0.000
#> GSM627078     2  0.4533    0.35640 0.000 0.544 0.000 0.448 0.008
#> GSM627090     5  0.4613    0.22895 0.000 0.004 0.008 0.408 0.580
#> GSM627099     2  0.0000    0.85201 0.000 1.000 0.000 0.000 0.000
#> GSM627105     4  0.4747   -0.07212 0.000 0.484 0.000 0.500 0.016
#> GSM627117     4  0.3920    0.49750 0.000 0.004 0.004 0.724 0.268
#> GSM627121     2  0.0510    0.85014 0.000 0.984 0.000 0.016 0.000
#> GSM627127     2  0.0162    0.85251 0.000 0.996 0.000 0.004 0.000
#> GSM627087     2  0.1197    0.84896 0.000 0.952 0.000 0.048 0.000
#> GSM627089     4  0.4299    0.28957 0.000 0.004 0.000 0.608 0.388
#> GSM627092     4  0.2497    0.57941 0.000 0.004 0.004 0.880 0.112
#> GSM627076     5  0.4613    0.22895 0.000 0.004 0.008 0.408 0.580
#> GSM627136     5  0.3479    0.66575 0.000 0.000 0.084 0.080 0.836
#> GSM627081     2  0.0510    0.85014 0.000 0.984 0.000 0.016 0.000
#> GSM627091     2  0.1270    0.84906 0.000 0.948 0.000 0.052 0.000
#> GSM627097     4  0.4740   -0.00835 0.000 0.468 0.000 0.516 0.016
#> GSM627072     4  0.5531    0.43031 0.000 0.120 0.000 0.632 0.248
#> GSM627080     1  0.0000    0.89205 1.000 0.000 0.000 0.000 0.000
#> GSM627088     5  0.3291    0.67352 0.000 0.000 0.064 0.088 0.848
#> GSM627109     3  0.1282    0.68900 0.044 0.000 0.952 0.000 0.004
#> GSM627111     1  0.0000    0.89205 1.000 0.000 0.000 0.000 0.000
#> GSM627113     3  0.3888    0.66417 0.056 0.000 0.796 0.000 0.148
#> GSM627133     2  0.2629    0.78315 0.000 0.860 0.000 0.136 0.004
#> GSM627177     4  0.4384    0.38070 0.000 0.016 0.000 0.660 0.324
#> GSM627086     2  0.0000    0.85201 0.000 1.000 0.000 0.000 0.000
#> GSM627095     3  0.3141    0.61471 0.152 0.000 0.832 0.000 0.016
#> GSM627079     4  0.4288    0.23321 0.000 0.004 0.000 0.612 0.384
#> GSM627082     5  0.2629    0.57606 0.000 0.000 0.136 0.004 0.860
#> GSM627074     3  0.0324    0.68862 0.004 0.000 0.992 0.000 0.004
#> GSM627077     3  0.4283    0.32089 0.000 0.000 0.544 0.000 0.456
#> GSM627093     3  0.0324    0.68862 0.004 0.000 0.992 0.000 0.004
#> GSM627120     2  0.1831    0.83690 0.000 0.920 0.000 0.076 0.004
#> GSM627124     2  0.4533    0.35640 0.000 0.544 0.000 0.448 0.008
#> GSM627075     2  0.1121    0.84867 0.000 0.956 0.000 0.044 0.000
#> GSM627085     2  0.4510    0.39829 0.000 0.560 0.000 0.432 0.008
#> GSM627119     3  0.1116    0.68622 0.004 0.000 0.964 0.004 0.028
#> GSM627116     4  0.5515    0.49162 0.000 0.260 0.000 0.628 0.112
#> GSM627084     5  0.4161    0.39318 0.000 0.000 0.280 0.016 0.704
#> GSM627096     2  0.0000    0.85201 0.000 1.000 0.000 0.000 0.000
#> GSM627100     4  0.4397    0.20429 0.000 0.004 0.000 0.564 0.432
#> GSM627112     4  0.3491    0.48280 0.000 0.000 0.004 0.768 0.228
#> GSM627083     5  0.3177    0.48379 0.000 0.000 0.208 0.000 0.792
#> GSM627098     3  0.4304    0.23903 0.000 0.000 0.516 0.000 0.484
#> GSM627104     3  0.1282    0.68900 0.044 0.000 0.952 0.000 0.004
#> GSM627131     3  0.4278    0.32758 0.000 0.000 0.548 0.000 0.452
#> GSM627106     2  0.0510    0.85014 0.000 0.984 0.000 0.016 0.000
#> GSM627123     1  0.5524    0.17050 0.516 0.000 0.416 0.000 0.068
#> GSM627129     2  0.3741    0.66517 0.000 0.732 0.000 0.264 0.004
#> GSM627216     2  0.2583    0.78465 0.000 0.864 0.000 0.132 0.004
#> GSM627212     2  0.1121    0.84867 0.000 0.956 0.000 0.044 0.000
#> GSM627190     4  0.3010    0.55484 0.000 0.000 0.004 0.824 0.172
#> GSM627169     4  0.2338    0.57804 0.000 0.000 0.004 0.884 0.112
#> GSM627167     2  0.3884    0.63947 0.000 0.708 0.000 0.288 0.004
#> GSM627192     1  0.0000    0.89205 1.000 0.000 0.000 0.000 0.000
#> GSM627203     4  0.5091    0.51153 0.000 0.236 0.000 0.676 0.088
#> GSM627151     4  0.4905    0.40995 0.000 0.336 0.000 0.624 0.040
#> GSM627163     1  0.0000    0.89205 1.000 0.000 0.000 0.000 0.000
#> GSM627211     2  0.1121    0.84867 0.000 0.956 0.000 0.044 0.000
#> GSM627171     2  0.5019    0.29775 0.000 0.532 0.000 0.436 0.032
#> GSM627209     2  0.1892    0.82642 0.000 0.916 0.000 0.080 0.004
#> GSM627135     1  0.5524    0.17050 0.516 0.000 0.416 0.000 0.068
#> GSM627170     2  0.0000    0.85201 0.000 1.000 0.000 0.000 0.000
#> GSM627178     3  0.3608    0.66491 0.040 0.000 0.812 0.000 0.148
#> GSM627199     4  0.2439    0.57600 0.000 0.000 0.004 0.876 0.120
#> GSM627213     2  0.3741    0.66517 0.000 0.732 0.000 0.264 0.004
#> GSM627140     4  0.3790    0.44583 0.000 0.000 0.004 0.724 0.272
#> GSM627149     1  0.5139    0.41686 0.624 0.000 0.316 0.000 0.060
#> GSM627147     4  0.2548    0.57860 0.000 0.004 0.004 0.876 0.116
#> GSM627195     2  0.2843    0.77175 0.000 0.848 0.000 0.144 0.008
#> GSM627204     2  0.1121    0.84867 0.000 0.956 0.000 0.044 0.000
#> GSM627207     2  0.1121    0.84867 0.000 0.956 0.000 0.044 0.000
#> GSM627157     3  0.3888    0.66417 0.056 0.000 0.796 0.000 0.148
#> GSM627201     2  0.0162    0.85219 0.000 0.996 0.000 0.004 0.000
#> GSM627146     2  0.3949    0.63999 0.000 0.696 0.000 0.300 0.004
#> GSM627156     2  0.3807    0.65732 0.000 0.748 0.000 0.240 0.012
#> GSM627188     1  0.0000    0.89205 1.000 0.000 0.000 0.000 0.000
#> GSM627197     2  0.3662    0.70046 0.000 0.744 0.000 0.252 0.004
#> GSM627173     4  0.2439    0.57600 0.000 0.000 0.004 0.876 0.120
#> GSM627179     2  0.1121    0.84867 0.000 0.956 0.000 0.044 0.000
#> GSM627208     2  0.0404    0.85072 0.000 0.988 0.000 0.012 0.000
#> GSM627215     2  0.2583    0.78465 0.000 0.864 0.000 0.132 0.004
#> GSM627153     2  0.1892    0.82642 0.000 0.916 0.000 0.080 0.004
#> GSM627155     1  0.0000    0.89205 1.000 0.000 0.000 0.000 0.000
#> GSM627165     2  0.0000    0.85201 0.000 1.000 0.000 0.000 0.000
#> GSM627168     5  0.4457    0.66001 0.000 0.000 0.124 0.116 0.760
#> GSM627183     5  0.3639    0.67013 0.000 0.000 0.100 0.076 0.824
#> GSM627144     2  0.4321    0.33576 0.000 0.600 0.000 0.396 0.004
#> GSM627158     1  0.0000    0.89205 1.000 0.000 0.000 0.000 0.000
#> GSM627196     2  0.1121    0.84867 0.000 0.956 0.000 0.044 0.000
#> GSM627142     5  0.4553    0.25759 0.000 0.004 0.008 0.384 0.604
#> GSM627182     2  0.3282    0.74921 0.000 0.804 0.000 0.188 0.008
#> GSM627202     3  0.4283    0.32089 0.000 0.000 0.544 0.000 0.456
#> GSM627141     5  0.3697    0.66722 0.000 0.000 0.100 0.080 0.820
#> GSM627143     4  0.3720    0.51112 0.000 0.012 0.000 0.760 0.228
#> GSM627145     4  0.4380    0.42866 0.000 0.032 0.000 0.708 0.260
#> GSM627152     3  0.5901    0.16349 0.000 0.000 0.496 0.104 0.400
#> GSM627200     5  0.4909    0.12257 0.000 0.000 0.412 0.028 0.560
#> GSM627159     5  0.2886    0.64935 0.000 0.000 0.008 0.148 0.844
#> GSM627164     4  0.2439    0.57600 0.000 0.000 0.004 0.876 0.120
#> GSM627138     1  0.0000    0.89205 1.000 0.000 0.000 0.000 0.000
#> GSM627175     2  0.0000    0.85201 0.000 1.000 0.000 0.000 0.000
#> GSM627150     2  0.4470    0.46160 0.000 0.616 0.000 0.372 0.012
#> GSM627166     3  0.0324    0.68862 0.004 0.000 0.992 0.000 0.004
#> GSM627186     4  0.2674    0.57265 0.000 0.000 0.004 0.856 0.140
#> GSM627139     4  0.5080    0.33466 0.000 0.368 0.000 0.588 0.044
#> GSM627181     2  0.0000    0.85201 0.000 1.000 0.000 0.000 0.000
#> GSM627205     2  0.0290    0.85229 0.000 0.992 0.000 0.008 0.000
#> GSM627214     2  0.0000    0.85201 0.000 1.000 0.000 0.000 0.000
#> GSM627180     2  0.3519    0.72542 0.000 0.776 0.000 0.216 0.008
#> GSM627172     4  0.2439    0.57600 0.000 0.000 0.004 0.876 0.120
#> GSM627184     1  0.0000    0.89205 1.000 0.000 0.000 0.000 0.000
#> GSM627193     2  0.1197    0.84896 0.000 0.952 0.000 0.048 0.000
#> GSM627191     5  0.2813    0.54523 0.000 0.000 0.168 0.000 0.832
#> GSM627176     3  0.6238    0.10878 0.000 0.000 0.476 0.148 0.376
#> GSM627194     2  0.1341    0.84964 0.000 0.944 0.000 0.056 0.000
#> GSM627154     2  0.4510    0.39829 0.000 0.560 0.000 0.432 0.008
#> GSM627187     4  0.3835    0.46150 0.000 0.000 0.008 0.732 0.260
#> GSM627198     2  0.3949    0.63999 0.000 0.696 0.000 0.300 0.004
#> GSM627160     5  0.5379    0.40443 0.000 0.000 0.268 0.096 0.636
#> GSM627185     3  0.3318    0.58749 0.180 0.000 0.808 0.000 0.012
#> GSM627206     5  0.4547    0.26504 0.000 0.000 0.012 0.400 0.588
#> GSM627161     1  0.0000    0.89205 1.000 0.000 0.000 0.000 0.000
#> GSM627162     4  0.4506    0.37255 0.000 0.000 0.028 0.676 0.296
#> GSM627210     3  0.4901    0.47049 0.004 0.000 0.716 0.084 0.196
#> GSM627189     2  0.1197    0.84896 0.000 0.952 0.000 0.048 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM627128     5  0.5375     0.4765 0.000 0.128 0.000 0.268 0.596 0.008
#> GSM627110     3  0.6514     0.1960 0.000 0.000 0.464 0.272 0.036 0.228
#> GSM627132     1  0.0000     0.8932 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627107     2  0.1957     0.7723 0.000 0.888 0.000 0.000 0.112 0.000
#> GSM627103     2  0.4818     0.3253 0.000 0.572 0.000 0.064 0.364 0.000
#> GSM627114     6  0.3258     0.6461 0.000 0.000 0.016 0.120 0.032 0.832
#> GSM627134     2  0.3578     0.5065 0.000 0.660 0.000 0.000 0.340 0.000
#> GSM627137     2  0.0260     0.8056 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM627148     5  0.4818     0.3799 0.000 0.100 0.000 0.232 0.664 0.004
#> GSM627101     2  0.1957     0.7723 0.000 0.888 0.000 0.000 0.112 0.000
#> GSM627130     5  0.5533     0.4677 0.000 0.124 0.000 0.272 0.588 0.016
#> GSM627071     5  0.5481     0.2146 0.000 0.000 0.000 0.176 0.560 0.264
#> GSM627118     2  0.0260     0.8056 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM627094     2  0.2003     0.7993 0.000 0.912 0.000 0.044 0.044 0.000
#> GSM627122     6  0.3965     0.6495 0.000 0.000 0.060 0.108 0.036 0.796
#> GSM627115     2  0.1863     0.8006 0.000 0.920 0.000 0.044 0.036 0.000
#> GSM627125     5  0.3896     0.5448 0.000 0.204 0.000 0.052 0.744 0.000
#> GSM627174     6  0.3627     0.6147 0.000 0.000 0.004 0.224 0.020 0.752
#> GSM627102     4  0.1765     0.8692 0.000 0.000 0.000 0.904 0.096 0.000
#> GSM627073     5  0.3868    -0.2035 0.000 0.496 0.000 0.000 0.504 0.000
#> GSM627108     2  0.1007     0.8031 0.000 0.956 0.000 0.044 0.000 0.000
#> GSM627126     1  0.0000     0.8932 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627078     5  0.5629     0.1254 0.000 0.404 0.000 0.148 0.448 0.000
#> GSM627090     6  0.5969     0.3096 0.000 0.000 0.000 0.240 0.324 0.436
#> GSM627099     2  0.0260     0.8056 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM627105     5  0.3896     0.5448 0.000 0.204 0.000 0.052 0.744 0.000
#> GSM627117     4  0.4890     0.6763 0.000 0.000 0.000 0.660 0.160 0.180
#> GSM627121     2  0.1957     0.7723 0.000 0.888 0.000 0.000 0.112 0.000
#> GSM627127     2  0.0458     0.8068 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM627087     2  0.1863     0.8006 0.000 0.920 0.000 0.044 0.036 0.000
#> GSM627089     5  0.5786     0.0879 0.000 0.000 0.000 0.208 0.492 0.300
#> GSM627092     4  0.1908     0.8671 0.000 0.004 0.000 0.900 0.096 0.000
#> GSM627076     6  0.5969     0.3096 0.000 0.000 0.000 0.240 0.324 0.436
#> GSM627136     6  0.4844     0.6342 0.000 0.000 0.068 0.176 0.044 0.712
#> GSM627081     2  0.2003     0.7711 0.000 0.884 0.000 0.000 0.116 0.000
#> GSM627091     2  0.1934     0.8002 0.000 0.916 0.000 0.044 0.040 0.000
#> GSM627097     5  0.3892     0.5427 0.000 0.188 0.000 0.060 0.752 0.000
#> GSM627072     5  0.5598     0.3439 0.000 0.044 0.000 0.108 0.628 0.220
#> GSM627080     1  0.0000     0.8932 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627088     6  0.4432     0.6402 0.000 0.000 0.044 0.184 0.036 0.736
#> GSM627109     3  0.1082     0.7199 0.040 0.000 0.956 0.000 0.004 0.000
#> GSM627111     1  0.0000     0.8932 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627113     3  0.5072     0.5880 0.056 0.000 0.652 0.000 0.036 0.256
#> GSM627133     2  0.3592     0.5014 0.000 0.656 0.000 0.000 0.344 0.000
#> GSM627177     5  0.5481     0.2146 0.000 0.000 0.000 0.176 0.560 0.264
#> GSM627086     2  0.0458     0.8070 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM627095     3  0.4514     0.6539 0.148 0.000 0.744 0.000 0.032 0.076
#> GSM627079     5  0.5583     0.0840 0.000 0.000 0.000 0.156 0.508 0.336
#> GSM627082     6  0.0858     0.6154 0.000 0.000 0.000 0.004 0.028 0.968
#> GSM627074     3  0.0000     0.7203 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627077     6  0.4389     0.1333 0.000 0.000 0.372 0.000 0.032 0.596
#> GSM627093     3  0.0000     0.7203 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627120     2  0.2730     0.7256 0.000 0.808 0.000 0.000 0.192 0.000
#> GSM627124     5  0.5629     0.1254 0.000 0.404 0.000 0.148 0.448 0.000
#> GSM627075     2  0.1007     0.8031 0.000 0.956 0.000 0.044 0.000 0.000
#> GSM627085     5  0.5635     0.0738 0.000 0.420 0.000 0.148 0.432 0.000
#> GSM627119     3  0.0777     0.7153 0.000 0.000 0.972 0.004 0.000 0.024
#> GSM627116     5  0.4832     0.4457 0.000 0.044 0.000 0.156 0.720 0.080
#> GSM627084     6  0.3649     0.5560 0.000 0.000 0.136 0.020 0.040 0.804
#> GSM627096     2  0.0260     0.8056 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM627100     5  0.5998    -0.0408 0.000 0.000 0.000 0.264 0.436 0.300
#> GSM627112     4  0.1461     0.8054 0.000 0.000 0.000 0.940 0.016 0.044
#> GSM627083     6  0.1625     0.5814 0.000 0.000 0.060 0.000 0.012 0.928
#> GSM627098     6  0.4306     0.2095 0.000 0.000 0.344 0.000 0.032 0.624
#> GSM627104     3  0.1082     0.7199 0.040 0.000 0.956 0.000 0.004 0.000
#> GSM627131     6  0.4400     0.1232 0.000 0.000 0.376 0.000 0.032 0.592
#> GSM627106     2  0.2003     0.7711 0.000 0.884 0.000 0.000 0.116 0.000
#> GSM627123     1  0.6085     0.2194 0.516 0.000 0.312 0.000 0.032 0.140
#> GSM627129     2  0.4828     0.3149 0.000 0.568 0.000 0.064 0.368 0.000
#> GSM627216     2  0.3578     0.5065 0.000 0.660 0.000 0.000 0.340 0.000
#> GSM627212     2  0.1007     0.8031 0.000 0.956 0.000 0.044 0.000 0.000
#> GSM627190     4  0.3384     0.8403 0.000 0.000 0.000 0.812 0.120 0.068
#> GSM627169     4  0.1714     0.8701 0.000 0.000 0.000 0.908 0.092 0.000
#> GSM627167     2  0.4638     0.4159 0.000 0.636 0.000 0.068 0.296 0.000
#> GSM627192     1  0.0000     0.8932 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627203     5  0.3791     0.4569 0.000 0.032 0.000 0.104 0.808 0.056
#> GSM627151     5  0.5406     0.4468 0.000 0.132 0.000 0.248 0.608 0.012
#> GSM627163     1  0.0000     0.8932 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627211     2  0.1007     0.8031 0.000 0.956 0.000 0.044 0.000 0.000
#> GSM627171     2  0.6188     0.0522 0.000 0.476 0.000 0.212 0.296 0.016
#> GSM627209     2  0.1863     0.7616 0.000 0.896 0.000 0.000 0.104 0.000
#> GSM627135     1  0.6085     0.2194 0.516 0.000 0.312 0.000 0.032 0.140
#> GSM627170     2  0.0458     0.8060 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM627178     3  0.4377     0.6292 0.040 0.000 0.728 0.000 0.028 0.204
#> GSM627199     4  0.1663     0.8733 0.000 0.000 0.000 0.912 0.088 0.000
#> GSM627213     2  0.4828     0.3149 0.000 0.568 0.000 0.064 0.368 0.000
#> GSM627140     4  0.2060     0.7719 0.000 0.000 0.000 0.900 0.016 0.084
#> GSM627149     1  0.5561     0.4430 0.624 0.000 0.220 0.000 0.032 0.124
#> GSM627147     4  0.1908     0.8685 0.000 0.004 0.000 0.900 0.096 0.000
#> GSM627195     2  0.3782     0.3760 0.000 0.588 0.000 0.000 0.412 0.000
#> GSM627204     2  0.1007     0.8031 0.000 0.956 0.000 0.044 0.000 0.000
#> GSM627207     2  0.1007     0.8031 0.000 0.956 0.000 0.044 0.000 0.000
#> GSM627157     3  0.5072     0.5880 0.056 0.000 0.652 0.000 0.036 0.256
#> GSM627201     2  0.0291     0.8069 0.000 0.992 0.000 0.004 0.004 0.000
#> GSM627146     2  0.4887     0.4283 0.000 0.624 0.000 0.096 0.280 0.000
#> GSM627156     2  0.3349     0.6185 0.000 0.748 0.000 0.244 0.008 0.000
#> GSM627188     1  0.0000     0.8932 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627197     2  0.4614     0.5293 0.000 0.676 0.000 0.096 0.228 0.000
#> GSM627173     4  0.1663     0.8733 0.000 0.000 0.000 0.912 0.088 0.000
#> GSM627179     2  0.1007     0.8031 0.000 0.956 0.000 0.044 0.000 0.000
#> GSM627208     2  0.1957     0.7738 0.000 0.888 0.000 0.000 0.112 0.000
#> GSM627215     2  0.3578     0.5065 0.000 0.660 0.000 0.000 0.340 0.000
#> GSM627153     2  0.1863     0.7616 0.000 0.896 0.000 0.000 0.104 0.000
#> GSM627155     1  0.0000     0.8932 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627165     2  0.0260     0.8056 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM627168     6  0.5234     0.6245 0.000 0.000 0.088 0.196 0.044 0.672
#> GSM627183     6  0.4440     0.6487 0.000 0.000 0.060 0.156 0.036 0.748
#> GSM627144     5  0.4392     0.3100 0.000 0.332 0.000 0.040 0.628 0.000
#> GSM627158     1  0.0000     0.8932 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627196     2  0.1007     0.8031 0.000 0.956 0.000 0.044 0.000 0.000
#> GSM627142     6  0.5918     0.3363 0.000 0.000 0.000 0.232 0.312 0.456
#> GSM627182     2  0.3789     0.3829 0.000 0.584 0.000 0.000 0.416 0.000
#> GSM627202     6  0.4389     0.1333 0.000 0.000 0.372 0.000 0.032 0.596
#> GSM627141     6  0.3258     0.6461 0.000 0.000 0.016 0.120 0.032 0.832
#> GSM627143     4  0.5511     0.5792 0.000 0.004 0.000 0.580 0.236 0.180
#> GSM627145     5  0.5036     0.2887 0.000 0.000 0.000 0.140 0.632 0.228
#> GSM627152     3  0.6358     0.2045 0.000 0.000 0.484 0.232 0.028 0.256
#> GSM627200     6  0.4833     0.4110 0.000 0.000 0.268 0.032 0.040 0.660
#> GSM627159     6  0.4223     0.6083 0.000 0.000 0.000 0.236 0.060 0.704
#> GSM627164     4  0.1663     0.8733 0.000 0.000 0.000 0.912 0.088 0.000
#> GSM627138     1  0.0000     0.8932 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627175     2  0.0458     0.8070 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM627150     5  0.3847     0.2689 0.000 0.348 0.000 0.008 0.644 0.000
#> GSM627166     3  0.0000     0.7203 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM627186     4  0.2972     0.8477 0.000 0.000 0.000 0.836 0.128 0.036
#> GSM627139     5  0.4348     0.5220 0.000 0.116 0.000 0.124 0.748 0.012
#> GSM627181     2  0.0363     0.8070 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM627205     2  0.0603     0.8084 0.000 0.980 0.000 0.004 0.016 0.000
#> GSM627214     2  0.0458     0.8070 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM627180     2  0.3833     0.3204 0.000 0.556 0.000 0.000 0.444 0.000
#> GSM627172     4  0.1663     0.8733 0.000 0.000 0.000 0.912 0.088 0.000
#> GSM627184     1  0.0000     0.8932 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627193     2  0.1863     0.8006 0.000 0.920 0.000 0.044 0.036 0.000
#> GSM627191     6  0.1448     0.6085 0.000 0.000 0.024 0.012 0.016 0.948
#> GSM627176     3  0.6514     0.1960 0.000 0.000 0.464 0.272 0.036 0.228
#> GSM627194     2  0.2258     0.7987 0.000 0.896 0.000 0.044 0.060 0.000
#> GSM627154     5  0.5635     0.0738 0.000 0.420 0.000 0.148 0.432 0.000
#> GSM627187     4  0.2420     0.7737 0.000 0.000 0.004 0.888 0.032 0.076
#> GSM627198     2  0.4887     0.4283 0.000 0.624 0.000 0.096 0.280 0.000
#> GSM627160     6  0.6275     0.3965 0.000 0.000 0.256 0.228 0.024 0.492
#> GSM627185     3  0.4699     0.6246 0.176 0.000 0.720 0.000 0.032 0.072
#> GSM627206     6  0.5866     0.3632 0.000 0.000 0.004 0.252 0.232 0.512
#> GSM627161     1  0.0000     0.8932 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627162     4  0.3185     0.7124 0.000 0.000 0.024 0.840 0.024 0.112
#> GSM627210     3  0.4176     0.5393 0.000 0.000 0.716 0.220 0.000 0.064
#> GSM627189     2  0.1863     0.8006 0.000 0.920 0.000 0.044 0.036 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) age(p) other(p) k
#> ATC:hclust 138            0.912 0.1393 0.011188 2
#> ATC:hclust  99            0.581 0.0868 0.016489 3
#> ATC:hclust 123            0.496 0.1787 0.000895 4
#> ATC:hclust  99            0.173 0.5247 0.010781 5
#> ATC:hclust 100            0.223 0.6985 0.007062 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 146 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.986           0.942       0.976         0.4661 0.531   0.531
#> 3 3 0.851           0.872       0.945         0.3313 0.723   0.529
#> 4 4 0.639           0.609       0.793         0.1557 0.820   0.565
#> 5 5 0.649           0.591       0.757         0.0831 0.897   0.669
#> 6 6 0.659           0.446       0.659         0.0530 0.822   0.399

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM627128     2   0.000     0.9834 0.000 1.000
#> GSM627110     1   0.430     0.8982 0.912 0.088
#> GSM627132     1   0.000     0.9603 1.000 0.000
#> GSM627107     2   0.000     0.9834 0.000 1.000
#> GSM627103     2   0.000     0.9834 0.000 1.000
#> GSM627114     1   0.000     0.9603 1.000 0.000
#> GSM627134     2   0.000     0.9834 0.000 1.000
#> GSM627137     2   0.000     0.9834 0.000 1.000
#> GSM627148     2   0.000     0.9834 0.000 1.000
#> GSM627101     2   0.000     0.9834 0.000 1.000
#> GSM627130     2   0.000     0.9834 0.000 1.000
#> GSM627071     2   0.000     0.9834 0.000 1.000
#> GSM627118     2   0.000     0.9834 0.000 1.000
#> GSM627094     2   0.000     0.9834 0.000 1.000
#> GSM627122     1   0.000     0.9603 1.000 0.000
#> GSM627115     2   0.000     0.9834 0.000 1.000
#> GSM627125     2   0.000     0.9834 0.000 1.000
#> GSM627174     2   0.814     0.6416 0.252 0.748
#> GSM627102     2   0.000     0.9834 0.000 1.000
#> GSM627073     2   0.000     0.9834 0.000 1.000
#> GSM627108     2   0.000     0.9834 0.000 1.000
#> GSM627126     1   0.000     0.9603 1.000 0.000
#> GSM627078     2   0.000     0.9834 0.000 1.000
#> GSM627090     1   0.615     0.8293 0.848 0.152
#> GSM627099     2   0.000     0.9834 0.000 1.000
#> GSM627105     2   0.000     0.9834 0.000 1.000
#> GSM627117     2   0.000     0.9834 0.000 1.000
#> GSM627121     2   0.000     0.9834 0.000 1.000
#> GSM627127     2   0.000     0.9834 0.000 1.000
#> GSM627087     2   0.000     0.9834 0.000 1.000
#> GSM627089     2   0.990     0.1608 0.440 0.560
#> GSM627092     2   0.000     0.9834 0.000 1.000
#> GSM627076     1   0.430     0.8982 0.912 0.088
#> GSM627136     1   0.430     0.8982 0.912 0.088
#> GSM627081     2   0.000     0.9834 0.000 1.000
#> GSM627091     2   0.000     0.9834 0.000 1.000
#> GSM627097     2   0.000     0.9834 0.000 1.000
#> GSM627072     2   0.000     0.9834 0.000 1.000
#> GSM627080     1   0.000     0.9603 1.000 0.000
#> GSM627088     1   0.430     0.8982 0.912 0.088
#> GSM627109     1   0.000     0.9603 1.000 0.000
#> GSM627111     1   0.000     0.9603 1.000 0.000
#> GSM627113     1   0.000     0.9603 1.000 0.000
#> GSM627133     2   0.000     0.9834 0.000 1.000
#> GSM627177     2   0.000     0.9834 0.000 1.000
#> GSM627086     2   0.000     0.9834 0.000 1.000
#> GSM627095     1   0.000     0.9603 1.000 0.000
#> GSM627079     2   0.844     0.6004 0.272 0.728
#> GSM627082     1   0.000     0.9603 1.000 0.000
#> GSM627074     1   0.000     0.9603 1.000 0.000
#> GSM627077     1   0.000     0.9603 1.000 0.000
#> GSM627093     1   0.000     0.9603 1.000 0.000
#> GSM627120     2   0.000     0.9834 0.000 1.000
#> GSM627124     2   0.000     0.9834 0.000 1.000
#> GSM627075     2   0.000     0.9834 0.000 1.000
#> GSM627085     2   0.000     0.9834 0.000 1.000
#> GSM627119     1   0.000     0.9603 1.000 0.000
#> GSM627116     2   0.000     0.9834 0.000 1.000
#> GSM627084     1   0.000     0.9603 1.000 0.000
#> GSM627096     2   0.000     0.9834 0.000 1.000
#> GSM627100     2   0.000     0.9834 0.000 1.000
#> GSM627112     2   0.000     0.9834 0.000 1.000
#> GSM627083     1   0.000     0.9603 1.000 0.000
#> GSM627098     1   0.000     0.9603 1.000 0.000
#> GSM627104     1   0.000     0.9603 1.000 0.000
#> GSM627131     1   0.000     0.9603 1.000 0.000
#> GSM627106     2   0.000     0.9834 0.000 1.000
#> GSM627123     1   0.000     0.9603 1.000 0.000
#> GSM627129     2   0.000     0.9834 0.000 1.000
#> GSM627216     2   0.000     0.9834 0.000 1.000
#> GSM627212     2   0.000     0.9834 0.000 1.000
#> GSM627190     2   0.000     0.9834 0.000 1.000
#> GSM627169     2   0.000     0.9834 0.000 1.000
#> GSM627167     2   0.000     0.9834 0.000 1.000
#> GSM627192     1   0.000     0.9603 1.000 0.000
#> GSM627203     2   0.000     0.9834 0.000 1.000
#> GSM627151     2   0.000     0.9834 0.000 1.000
#> GSM627163     1   0.000     0.9603 1.000 0.000
#> GSM627211     2   0.000     0.9834 0.000 1.000
#> GSM627171     2   0.000     0.9834 0.000 1.000
#> GSM627209     2   0.000     0.9834 0.000 1.000
#> GSM627135     1   0.000     0.9603 1.000 0.000
#> GSM627170     2   0.000     0.9834 0.000 1.000
#> GSM627178     1   0.000     0.9603 1.000 0.000
#> GSM627199     2   0.000     0.9834 0.000 1.000
#> GSM627213     2   0.000     0.9834 0.000 1.000
#> GSM627140     1   0.430     0.8982 0.912 0.088
#> GSM627149     1   0.000     0.9603 1.000 0.000
#> GSM627147     2   0.000     0.9834 0.000 1.000
#> GSM627195     2   0.000     0.9834 0.000 1.000
#> GSM627204     2   0.000     0.9834 0.000 1.000
#> GSM627207     2   0.000     0.9834 0.000 1.000
#> GSM627157     1   0.000     0.9603 1.000 0.000
#> GSM627201     2   0.000     0.9834 0.000 1.000
#> GSM627146     2   0.000     0.9834 0.000 1.000
#> GSM627156     2   0.000     0.9834 0.000 1.000
#> GSM627188     1   0.000     0.9603 1.000 0.000
#> GSM627197     2   0.000     0.9834 0.000 1.000
#> GSM627173     2   0.000     0.9834 0.000 1.000
#> GSM627179     2   0.000     0.9834 0.000 1.000
#> GSM627208     2   0.000     0.9834 0.000 1.000
#> GSM627215     2   0.000     0.9834 0.000 1.000
#> GSM627153     2   0.000     0.9834 0.000 1.000
#> GSM627155     1   0.000     0.9603 1.000 0.000
#> GSM627165     2   0.000     0.9834 0.000 1.000
#> GSM627168     1   0.000     0.9603 1.000 0.000
#> GSM627183     1   0.000     0.9603 1.000 0.000
#> GSM627144     2   0.000     0.9834 0.000 1.000
#> GSM627158     1   0.000     0.9603 1.000 0.000
#> GSM627196     2   0.000     0.9834 0.000 1.000
#> GSM627142     1   0.963     0.4029 0.612 0.388
#> GSM627182     2   0.000     0.9834 0.000 1.000
#> GSM627202     1   0.000     0.9603 1.000 0.000
#> GSM627141     1   0.000     0.9603 1.000 0.000
#> GSM627143     2   0.000     0.9834 0.000 1.000
#> GSM627145     2   0.000     0.9834 0.000 1.000
#> GSM627152     1   0.000     0.9603 1.000 0.000
#> GSM627200     1   0.000     0.9603 1.000 0.000
#> GSM627159     1   0.994     0.2041 0.544 0.456
#> GSM627164     2   0.000     0.9834 0.000 1.000
#> GSM627138     1   0.000     0.9603 1.000 0.000
#> GSM627175     2   0.000     0.9834 0.000 1.000
#> GSM627150     2   0.000     0.9834 0.000 1.000
#> GSM627166     1   0.000     0.9603 1.000 0.000
#> GSM627186     2   0.000     0.9834 0.000 1.000
#> GSM627139     2   0.000     0.9834 0.000 1.000
#> GSM627181     2   0.000     0.9834 0.000 1.000
#> GSM627205     2   0.000     0.9834 0.000 1.000
#> GSM627214     2   0.000     0.9834 0.000 1.000
#> GSM627180     2   0.000     0.9834 0.000 1.000
#> GSM627172     2   0.000     0.9834 0.000 1.000
#> GSM627184     1   0.000     0.9603 1.000 0.000
#> GSM627193     2   0.000     0.9834 0.000 1.000
#> GSM627191     1   0.000     0.9603 1.000 0.000
#> GSM627176     1   0.430     0.8982 0.912 0.088
#> GSM627194     2   0.000     0.9834 0.000 1.000
#> GSM627154     2   0.000     0.9834 0.000 1.000
#> GSM627187     1   0.730     0.7621 0.796 0.204
#> GSM627198     2   0.000     0.9834 0.000 1.000
#> GSM627160     1   0.000     0.9603 1.000 0.000
#> GSM627185     1   0.000     0.9603 1.000 0.000
#> GSM627206     2   0.995     0.0882 0.460 0.540
#> GSM627161     1   0.000     0.9603 1.000 0.000
#> GSM627162     1   0.833     0.6683 0.736 0.264
#> GSM627210     1   0.327     0.9198 0.940 0.060
#> GSM627189     2   0.000     0.9834 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM627128     3  0.0892      0.898 0.000 0.020 0.980
#> GSM627110     3  0.0592      0.903 0.012 0.000 0.988
#> GSM627132     1  0.0000      0.877 1.000 0.000 0.000
#> GSM627107     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627103     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627114     3  0.0747      0.903 0.016 0.000 0.984
#> GSM627134     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627137     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627148     3  0.6126      0.346 0.000 0.400 0.600
#> GSM627101     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627130     3  0.6079      0.397 0.000 0.388 0.612
#> GSM627071     3  0.0747      0.901 0.000 0.016 0.984
#> GSM627118     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627094     2  0.0747      0.964 0.000 0.984 0.016
#> GSM627122     3  0.0747      0.903 0.016 0.000 0.984
#> GSM627115     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627125     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627174     3  0.0000      0.901 0.000 0.000 1.000
#> GSM627102     2  0.4178      0.799 0.000 0.828 0.172
#> GSM627073     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627108     2  0.0592      0.967 0.000 0.988 0.012
#> GSM627126     1  0.0000      0.877 1.000 0.000 0.000
#> GSM627078     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627090     3  0.0747      0.903 0.016 0.000 0.984
#> GSM627099     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627105     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627117     3  0.0000      0.901 0.000 0.000 1.000
#> GSM627121     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627127     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627087     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627089     3  0.0829      0.902 0.004 0.012 0.984
#> GSM627092     2  0.2959      0.887 0.000 0.900 0.100
#> GSM627076     3  0.0747      0.903 0.016 0.000 0.984
#> GSM627136     3  0.0747      0.903 0.016 0.000 0.984
#> GSM627081     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627091     2  0.0424      0.969 0.000 0.992 0.008
#> GSM627097     2  0.4796      0.713 0.000 0.780 0.220
#> GSM627072     3  0.5905      0.466 0.000 0.352 0.648
#> GSM627080     1  0.0000      0.877 1.000 0.000 0.000
#> GSM627088     3  0.0747      0.903 0.016 0.000 0.984
#> GSM627109     1  0.0000      0.877 1.000 0.000 0.000
#> GSM627111     1  0.0000      0.877 1.000 0.000 0.000
#> GSM627113     1  0.4555      0.733 0.800 0.000 0.200
#> GSM627133     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627177     3  0.0747      0.901 0.000 0.016 0.984
#> GSM627086     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627095     1  0.0000      0.877 1.000 0.000 0.000
#> GSM627079     3  0.0747      0.901 0.000 0.016 0.984
#> GSM627082     3  0.0747      0.903 0.016 0.000 0.984
#> GSM627074     1  0.5733      0.596 0.676 0.000 0.324
#> GSM627077     3  0.0747      0.903 0.016 0.000 0.984
#> GSM627093     1  0.6140      0.467 0.596 0.000 0.404
#> GSM627120     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627124     2  0.0747      0.964 0.000 0.984 0.016
#> GSM627075     2  0.0747      0.964 0.000 0.984 0.016
#> GSM627085     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627119     1  0.6307      0.245 0.512 0.000 0.488
#> GSM627116     3  0.0747      0.901 0.000 0.016 0.984
#> GSM627084     3  0.0747      0.903 0.016 0.000 0.984
#> GSM627096     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627100     3  0.0747      0.901 0.000 0.016 0.984
#> GSM627112     3  0.0000      0.901 0.000 0.000 1.000
#> GSM627083     3  0.4399      0.682 0.188 0.000 0.812
#> GSM627098     1  0.6154      0.459 0.592 0.000 0.408
#> GSM627104     1  0.5760      0.591 0.672 0.000 0.328
#> GSM627131     3  0.2878      0.817 0.096 0.000 0.904
#> GSM627106     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627123     1  0.0000      0.877 1.000 0.000 0.000
#> GSM627129     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627216     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627212     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627190     3  0.0000      0.901 0.000 0.000 1.000
#> GSM627169     3  0.4931      0.617 0.000 0.232 0.768
#> GSM627167     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627192     1  0.0000      0.877 1.000 0.000 0.000
#> GSM627203     3  0.5905      0.466 0.000 0.352 0.648
#> GSM627151     3  0.0592      0.902 0.000 0.012 0.988
#> GSM627163     1  0.0000      0.877 1.000 0.000 0.000
#> GSM627211     2  0.0592      0.967 0.000 0.988 0.012
#> GSM627171     2  0.0237      0.972 0.000 0.996 0.004
#> GSM627209     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627135     1  0.0000      0.877 1.000 0.000 0.000
#> GSM627170     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627178     1  0.6154      0.459 0.592 0.000 0.408
#> GSM627199     3  0.6260      0.195 0.000 0.448 0.552
#> GSM627213     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627140     3  0.0000      0.901 0.000 0.000 1.000
#> GSM627149     1  0.0000      0.877 1.000 0.000 0.000
#> GSM627147     2  0.2878      0.891 0.000 0.904 0.096
#> GSM627195     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627204     2  0.0592      0.967 0.000 0.988 0.012
#> GSM627207     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627157     1  0.0000      0.877 1.000 0.000 0.000
#> GSM627201     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627146     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627156     2  0.0747      0.964 0.000 0.984 0.016
#> GSM627188     1  0.0000      0.877 1.000 0.000 0.000
#> GSM627197     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627173     2  0.2625      0.904 0.000 0.916 0.084
#> GSM627179     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627208     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627215     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627153     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627155     1  0.0000      0.877 1.000 0.000 0.000
#> GSM627165     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627168     3  0.0747      0.903 0.016 0.000 0.984
#> GSM627183     3  0.0747      0.903 0.016 0.000 0.984
#> GSM627144     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627158     1  0.0000      0.877 1.000 0.000 0.000
#> GSM627196     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627142     3  0.0829      0.902 0.004 0.012 0.984
#> GSM627182     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627202     3  0.4974      0.592 0.236 0.000 0.764
#> GSM627141     3  0.0747      0.903 0.016 0.000 0.984
#> GSM627143     2  0.5810      0.487 0.000 0.664 0.336
#> GSM627145     3  0.0892      0.898 0.000 0.020 0.980
#> GSM627152     3  0.0747      0.903 0.016 0.000 0.984
#> GSM627200     3  0.0747      0.903 0.016 0.000 0.984
#> GSM627159     3  0.0829      0.902 0.004 0.012 0.984
#> GSM627164     2  0.4931      0.708 0.000 0.768 0.232
#> GSM627138     1  0.0000      0.877 1.000 0.000 0.000
#> GSM627175     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627150     2  0.5016      0.663 0.000 0.760 0.240
#> GSM627166     1  0.6154      0.459 0.592 0.000 0.408
#> GSM627186     3  0.4654      0.655 0.000 0.208 0.792
#> GSM627139     3  0.1753      0.871 0.000 0.048 0.952
#> GSM627181     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627205     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627214     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627180     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627172     3  0.0237      0.900 0.000 0.004 0.996
#> GSM627184     1  0.0000      0.877 1.000 0.000 0.000
#> GSM627193     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627191     3  0.0747      0.903 0.016 0.000 0.984
#> GSM627176     3  0.0000      0.901 0.000 0.000 1.000
#> GSM627194     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627154     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627187     3  0.0000      0.901 0.000 0.000 1.000
#> GSM627198     2  0.0000      0.974 0.000 1.000 0.000
#> GSM627160     3  0.0592      0.903 0.012 0.000 0.988
#> GSM627185     1  0.0000      0.877 1.000 0.000 0.000
#> GSM627206     3  0.0747      0.903 0.016 0.000 0.984
#> GSM627161     1  0.0000      0.877 1.000 0.000 0.000
#> GSM627162     3  0.0000      0.901 0.000 0.000 1.000
#> GSM627210     3  0.0592      0.903 0.012 0.000 0.988
#> GSM627189     2  0.0000      0.974 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM627128     4  0.6785    0.43510 0.000 0.108 0.352 0.540
#> GSM627110     3  0.3975    0.41124 0.000 0.000 0.760 0.240
#> GSM627132     1  0.0000    0.85633 1.000 0.000 0.000 0.000
#> GSM627107     2  0.0592    0.87385 0.000 0.984 0.000 0.016
#> GSM627103     2  0.0336    0.87818 0.000 0.992 0.000 0.008
#> GSM627114     3  0.0817    0.62528 0.000 0.000 0.976 0.024
#> GSM627134     2  0.0188    0.87845 0.000 0.996 0.000 0.004
#> GSM627137     2  0.1792    0.87446 0.000 0.932 0.000 0.068
#> GSM627148     4  0.6974    0.49260 0.000 0.152 0.284 0.564
#> GSM627101     2  0.0592    0.87385 0.000 0.984 0.000 0.016
#> GSM627130     4  0.6805    0.52073 0.000 0.176 0.220 0.604
#> GSM627071     4  0.4989    0.27837 0.000 0.000 0.472 0.528
#> GSM627118     2  0.0000    0.87889 0.000 1.000 0.000 0.000
#> GSM627094     2  0.4382    0.75907 0.000 0.704 0.000 0.296
#> GSM627122     3  0.1716    0.60253 0.000 0.000 0.936 0.064
#> GSM627115     2  0.2408    0.86387 0.000 0.896 0.000 0.104
#> GSM627125     4  0.6229    0.42571 0.000 0.416 0.056 0.528
#> GSM627174     3  0.4925   -0.00339 0.000 0.000 0.572 0.428
#> GSM627102     4  0.1867    0.56210 0.000 0.072 0.000 0.928
#> GSM627073     2  0.1474    0.85497 0.000 0.948 0.000 0.052
#> GSM627108     2  0.4331    0.76538 0.000 0.712 0.000 0.288
#> GSM627126     1  0.0000    0.85633 1.000 0.000 0.000 0.000
#> GSM627078     2  0.4304    0.77242 0.000 0.716 0.000 0.284
#> GSM627090     3  0.4888    0.05425 0.000 0.000 0.588 0.412
#> GSM627099     2  0.0000    0.87889 0.000 1.000 0.000 0.000
#> GSM627105     2  0.3311    0.72789 0.000 0.828 0.000 0.172
#> GSM627117     4  0.4981    0.28447 0.000 0.000 0.464 0.536
#> GSM627121     2  0.0592    0.87385 0.000 0.984 0.000 0.016
#> GSM627127     2  0.0000    0.87889 0.000 1.000 0.000 0.000
#> GSM627087     2  0.1211    0.87789 0.000 0.960 0.000 0.040
#> GSM627089     3  0.4907    0.03343 0.000 0.000 0.580 0.420
#> GSM627092     4  0.2011    0.56037 0.000 0.080 0.000 0.920
#> GSM627076     3  0.4866    0.07029 0.000 0.000 0.596 0.404
#> GSM627136     3  0.4790    0.09472 0.000 0.000 0.620 0.380
#> GSM627081     2  0.0592    0.87385 0.000 0.984 0.000 0.016
#> GSM627091     2  0.4250    0.77580 0.000 0.724 0.000 0.276
#> GSM627097     4  0.6630    0.52478 0.000 0.252 0.136 0.612
#> GSM627072     4  0.6904    0.47588 0.000 0.132 0.312 0.556
#> GSM627080     1  0.0000    0.85633 1.000 0.000 0.000 0.000
#> GSM627088     3  0.4877    0.06089 0.000 0.000 0.592 0.408
#> GSM627109     1  0.4804    0.58082 0.616 0.000 0.384 0.000
#> GSM627111     1  0.0000    0.85633 1.000 0.000 0.000 0.000
#> GSM627113     1  0.4998    0.38230 0.512 0.000 0.488 0.000
#> GSM627133     2  0.0707    0.87419 0.000 0.980 0.000 0.020
#> GSM627177     4  0.4992    0.27034 0.000 0.000 0.476 0.524
#> GSM627086     2  0.1792    0.87446 0.000 0.932 0.000 0.068
#> GSM627095     1  0.4776    0.59213 0.624 0.000 0.376 0.000
#> GSM627079     3  0.4955   -0.05501 0.000 0.000 0.556 0.444
#> GSM627082     3  0.2469    0.56759 0.000 0.000 0.892 0.108
#> GSM627074     3  0.5821   -0.26373 0.432 0.000 0.536 0.032
#> GSM627077     3  0.0592    0.62787 0.000 0.000 0.984 0.016
#> GSM627093     3  0.5247    0.22066 0.284 0.000 0.684 0.032
#> GSM627120     2  0.0188    0.87845 0.000 0.996 0.000 0.004
#> GSM627124     4  0.2814    0.54268 0.000 0.132 0.000 0.868
#> GSM627075     2  0.4356    0.76156 0.000 0.708 0.000 0.292
#> GSM627085     2  0.4304    0.77034 0.000 0.716 0.000 0.284
#> GSM627119     3  0.5113    0.27330 0.264 0.000 0.704 0.032
#> GSM627116     4  0.4992    0.27034 0.000 0.000 0.476 0.524
#> GSM627084     3  0.0707    0.62301 0.000 0.000 0.980 0.020
#> GSM627096     2  0.0469    0.87573 0.000 0.988 0.000 0.012
#> GSM627100     4  0.4992    0.27034 0.000 0.000 0.476 0.524
#> GSM627112     4  0.2281    0.55156 0.000 0.000 0.096 0.904
#> GSM627083     3  0.0376    0.62780 0.004 0.000 0.992 0.004
#> GSM627098     3  0.4222    0.28010 0.272 0.000 0.728 0.000
#> GSM627104     3  0.5815   -0.25183 0.428 0.000 0.540 0.032
#> GSM627131     3  0.0817    0.62506 0.000 0.000 0.976 0.024
#> GSM627106     2  0.0592    0.87385 0.000 0.984 0.000 0.016
#> GSM627123     1  0.4776    0.59213 0.624 0.000 0.376 0.000
#> GSM627129     2  0.0188    0.87845 0.000 0.996 0.000 0.004
#> GSM627216     2  0.0188    0.87845 0.000 0.996 0.000 0.004
#> GSM627212     2  0.3649    0.82236 0.000 0.796 0.000 0.204
#> GSM627190     4  0.4643    0.37811 0.000 0.000 0.344 0.656
#> GSM627169     4  0.2124    0.55120 0.000 0.028 0.040 0.932
#> GSM627167     2  0.4855    0.62984 0.000 0.600 0.000 0.400
#> GSM627192     1  0.0000    0.85633 1.000 0.000 0.000 0.000
#> GSM627203     4  0.6973    0.48199 0.000 0.144 0.300 0.556
#> GSM627151     4  0.5951    0.49970 0.000 0.064 0.300 0.636
#> GSM627163     1  0.0000    0.85633 1.000 0.000 0.000 0.000
#> GSM627211     2  0.4356    0.76156 0.000 0.708 0.000 0.292
#> GSM627171     4  0.4040    0.44279 0.000 0.248 0.000 0.752
#> GSM627209     2  0.1867    0.87351 0.000 0.928 0.000 0.072
#> GSM627135     1  0.1474    0.83175 0.948 0.000 0.052 0.000
#> GSM627170     2  0.0000    0.87889 0.000 1.000 0.000 0.000
#> GSM627178     3  0.4882    0.26210 0.272 0.000 0.708 0.020
#> GSM627199     4  0.1792    0.56294 0.000 0.068 0.000 0.932
#> GSM627213     2  0.2011    0.83002 0.000 0.920 0.000 0.080
#> GSM627140     4  0.4855    0.22112 0.000 0.000 0.400 0.600
#> GSM627149     1  0.0000    0.85633 1.000 0.000 0.000 0.000
#> GSM627147     4  0.2281    0.55585 0.000 0.096 0.000 0.904
#> GSM627195     2  0.0592    0.87385 0.000 0.984 0.000 0.016
#> GSM627204     2  0.4356    0.76156 0.000 0.708 0.000 0.292
#> GSM627207     2  0.3610    0.82441 0.000 0.800 0.000 0.200
#> GSM627157     1  0.4985    0.42782 0.532 0.000 0.468 0.000
#> GSM627201     2  0.1792    0.87446 0.000 0.932 0.000 0.068
#> GSM627146     2  0.4040    0.79541 0.000 0.752 0.000 0.248
#> GSM627156     2  0.4585    0.72268 0.000 0.668 0.000 0.332
#> GSM627188     1  0.0000    0.85633 1.000 0.000 0.000 0.000
#> GSM627197     2  0.4040    0.79541 0.000 0.752 0.000 0.248
#> GSM627173     4  0.2081    0.55830 0.000 0.084 0.000 0.916
#> GSM627179     2  0.3444    0.83219 0.000 0.816 0.000 0.184
#> GSM627208     2  0.0000    0.87889 0.000 1.000 0.000 0.000
#> GSM627215     2  0.0469    0.87573 0.000 0.988 0.000 0.012
#> GSM627153     2  0.1792    0.87446 0.000 0.932 0.000 0.068
#> GSM627155     1  0.0000    0.85633 1.000 0.000 0.000 0.000
#> GSM627165     2  0.0000    0.87889 0.000 1.000 0.000 0.000
#> GSM627168     3  0.0592    0.62785 0.000 0.000 0.984 0.016
#> GSM627183     3  0.0592    0.62787 0.000 0.000 0.984 0.016
#> GSM627144     2  0.3311    0.72850 0.000 0.828 0.000 0.172
#> GSM627158     1  0.0000    0.85633 1.000 0.000 0.000 0.000
#> GSM627196     2  0.3837    0.81073 0.000 0.776 0.000 0.224
#> GSM627142     3  0.4907    0.03035 0.000 0.000 0.580 0.420
#> GSM627182     2  0.0817    0.87181 0.000 0.976 0.000 0.024
#> GSM627202     3  0.0524    0.62791 0.004 0.000 0.988 0.008
#> GSM627141     3  0.0469    0.62830 0.000 0.000 0.988 0.012
#> GSM627143     4  0.6504    0.54048 0.000 0.148 0.216 0.636
#> GSM627145     4  0.5155    0.28503 0.000 0.004 0.468 0.528
#> GSM627152     3  0.1022    0.62510 0.000 0.000 0.968 0.032
#> GSM627200     3  0.0707    0.62301 0.000 0.000 0.980 0.020
#> GSM627159     3  0.4907    0.03035 0.000 0.000 0.580 0.420
#> GSM627164     4  0.1867    0.56210 0.000 0.072 0.000 0.928
#> GSM627138     1  0.0000    0.85633 1.000 0.000 0.000 0.000
#> GSM627175     2  0.0000    0.87889 0.000 1.000 0.000 0.000
#> GSM627150     4  0.7020    0.45146 0.000 0.332 0.136 0.532
#> GSM627166     3  0.5247    0.22066 0.284 0.000 0.684 0.032
#> GSM627186     4  0.1635    0.54960 0.000 0.008 0.044 0.948
#> GSM627139     4  0.6522    0.50855 0.000 0.112 0.280 0.608
#> GSM627181     2  0.2345    0.86507 0.000 0.900 0.000 0.100
#> GSM627205     2  0.0000    0.87889 0.000 1.000 0.000 0.000
#> GSM627214     2  0.0000    0.87889 0.000 1.000 0.000 0.000
#> GSM627180     2  0.0817    0.87181 0.000 0.976 0.000 0.024
#> GSM627172     4  0.1576    0.54726 0.000 0.004 0.048 0.948
#> GSM627184     1  0.0000    0.85633 1.000 0.000 0.000 0.000
#> GSM627193     2  0.3444    0.83219 0.000 0.816 0.000 0.184
#> GSM627191     3  0.0707    0.62794 0.000 0.000 0.980 0.020
#> GSM627176     4  0.4981    0.11858 0.000 0.000 0.464 0.536
#> GSM627194     2  0.1867    0.87412 0.000 0.928 0.000 0.072
#> GSM627154     4  0.3975    0.45601 0.000 0.240 0.000 0.760
#> GSM627187     4  0.4981    0.11858 0.000 0.000 0.464 0.536
#> GSM627198     2  0.4250    0.77421 0.000 0.724 0.000 0.276
#> GSM627160     3  0.3172    0.54210 0.000 0.000 0.840 0.160
#> GSM627185     1  0.4776    0.59213 0.624 0.000 0.376 0.000
#> GSM627206     3  0.4888    0.04966 0.000 0.000 0.588 0.412
#> GSM627161     1  0.0000    0.85633 1.000 0.000 0.000 0.000
#> GSM627162     4  0.4972    0.13960 0.000 0.000 0.456 0.544
#> GSM627210     3  0.4746    0.28189 0.000 0.000 0.632 0.368
#> GSM627189     2  0.3610    0.82441 0.000 0.800 0.000 0.200

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM627128     5  0.3399     0.6260 0.000 0.004 0.012 0.172 0.812
#> GSM627110     3  0.5358     0.4041 0.000 0.000 0.648 0.248 0.104
#> GSM627132     1  0.0000     0.9679 1.000 0.000 0.000 0.000 0.000
#> GSM627107     2  0.3274     0.7109 0.000 0.780 0.000 0.000 0.220
#> GSM627103     2  0.4707     0.5687 0.000 0.588 0.000 0.020 0.392
#> GSM627114     3  0.6219     0.1160 0.000 0.000 0.548 0.212 0.240
#> GSM627134     2  0.3242     0.7129 0.000 0.784 0.000 0.000 0.216
#> GSM627137     2  0.0000     0.7512 0.000 1.000 0.000 0.000 0.000
#> GSM627148     5  0.1756     0.5245 0.000 0.008 0.016 0.036 0.940
#> GSM627101     2  0.3274     0.7109 0.000 0.780 0.000 0.000 0.220
#> GSM627130     5  0.2835     0.5932 0.000 0.016 0.004 0.112 0.868
#> GSM627071     5  0.5820     0.6701 0.000 0.000 0.196 0.192 0.612
#> GSM627118     2  0.2230     0.7417 0.000 0.884 0.000 0.000 0.116
#> GSM627094     2  0.6368     0.1567 0.000 0.472 0.000 0.356 0.172
#> GSM627122     3  0.6085    -0.1989 0.000 0.000 0.472 0.124 0.404
#> GSM627115     2  0.0794     0.7459 0.000 0.972 0.000 0.028 0.000
#> GSM627125     5  0.2068     0.4308 0.000 0.092 0.000 0.004 0.904
#> GSM627174     5  0.6289     0.6344 0.000 0.000 0.232 0.232 0.536
#> GSM627102     4  0.3550     0.6535 0.000 0.004 0.000 0.760 0.236
#> GSM627073     2  0.4504     0.5321 0.000 0.564 0.000 0.008 0.428
#> GSM627108     2  0.3816     0.5515 0.000 0.696 0.000 0.304 0.000
#> GSM627126     1  0.0000     0.9679 1.000 0.000 0.000 0.000 0.000
#> GSM627078     2  0.6339     0.2504 0.000 0.508 0.000 0.304 0.188
#> GSM627090     5  0.6268     0.6456 0.000 0.000 0.228 0.232 0.540
#> GSM627099     2  0.0404     0.7524 0.000 0.988 0.000 0.000 0.012
#> GSM627105     5  0.3934     0.1232 0.000 0.276 0.000 0.008 0.716
#> GSM627117     4  0.6583    -0.1184 0.000 0.000 0.256 0.468 0.276
#> GSM627121     2  0.3274     0.7109 0.000 0.780 0.000 0.000 0.220
#> GSM627127     2  0.1341     0.7527 0.000 0.944 0.000 0.000 0.056
#> GSM627087     2  0.0404     0.7506 0.000 0.988 0.000 0.012 0.000
#> GSM627089     5  0.6246     0.6487 0.000 0.000 0.224 0.232 0.544
#> GSM627092     4  0.3550     0.6535 0.000 0.004 0.000 0.760 0.236
#> GSM627076     5  0.6268     0.6456 0.000 0.000 0.228 0.232 0.540
#> GSM627136     5  0.6661     0.4269 0.000 0.000 0.356 0.232 0.412
#> GSM627081     2  0.3424     0.6995 0.000 0.760 0.000 0.000 0.240
#> GSM627091     2  0.5470     0.4604 0.000 0.612 0.000 0.296 0.092
#> GSM627097     5  0.1836     0.5258 0.000 0.016 0.008 0.040 0.936
#> GSM627072     5  0.1310     0.5494 0.000 0.000 0.020 0.024 0.956
#> GSM627080     1  0.0000     0.9679 1.000 0.000 0.000 0.000 0.000
#> GSM627088     5  0.6349     0.6271 0.000 0.000 0.244 0.232 0.524
#> GSM627109     3  0.4367     0.3446 0.372 0.000 0.620 0.008 0.000
#> GSM627111     1  0.0000     0.9679 1.000 0.000 0.000 0.000 0.000
#> GSM627113     3  0.4225     0.3644 0.364 0.000 0.632 0.004 0.000
#> GSM627133     2  0.4456     0.6486 0.000 0.660 0.000 0.020 0.320
#> GSM627177     5  0.5902     0.6659 0.000 0.000 0.208 0.192 0.600
#> GSM627086     2  0.0000     0.7512 0.000 1.000 0.000 0.000 0.000
#> GSM627095     3  0.4264     0.3393 0.376 0.000 0.620 0.004 0.000
#> GSM627079     5  0.6201     0.6545 0.000 0.000 0.216 0.232 0.552
#> GSM627082     3  0.6092    -0.2015 0.000 0.000 0.464 0.124 0.412
#> GSM627074     3  0.3630     0.5680 0.204 0.000 0.780 0.016 0.000
#> GSM627077     3  0.2130     0.6592 0.000 0.000 0.908 0.012 0.080
#> GSM627093     3  0.2624     0.6535 0.116 0.000 0.872 0.012 0.000
#> GSM627120     2  0.3242     0.7129 0.000 0.784 0.000 0.000 0.216
#> GSM627124     4  0.5398     0.5929 0.000 0.112 0.000 0.648 0.240
#> GSM627075     2  0.3966     0.5093 0.000 0.664 0.000 0.336 0.000
#> GSM627085     2  0.3949     0.5520 0.000 0.696 0.000 0.300 0.004
#> GSM627119     3  0.2624     0.6535 0.116 0.000 0.872 0.012 0.000
#> GSM627116     5  0.6084     0.6632 0.000 0.000 0.208 0.220 0.572
#> GSM627084     3  0.0693     0.6868 0.000 0.000 0.980 0.012 0.008
#> GSM627096     2  0.3242     0.7129 0.000 0.784 0.000 0.000 0.216
#> GSM627100     5  0.6049     0.6655 0.000 0.000 0.192 0.232 0.576
#> GSM627112     4  0.2694     0.5348 0.000 0.004 0.004 0.864 0.128
#> GSM627083     3  0.1364     0.6829 0.000 0.000 0.952 0.012 0.036
#> GSM627098     3  0.0898     0.6910 0.020 0.000 0.972 0.000 0.008
#> GSM627104     3  0.3630     0.5680 0.204 0.000 0.780 0.016 0.000
#> GSM627131     3  0.1942     0.6658 0.000 0.000 0.920 0.012 0.068
#> GSM627106     2  0.3424     0.6995 0.000 0.760 0.000 0.000 0.240
#> GSM627123     3  0.4264     0.3393 0.376 0.000 0.620 0.004 0.000
#> GSM627129     2  0.3242     0.7129 0.000 0.784 0.000 0.000 0.216
#> GSM627216     2  0.3596     0.7164 0.000 0.776 0.000 0.012 0.212
#> GSM627212     2  0.3274     0.6370 0.000 0.780 0.000 0.220 0.000
#> GSM627190     4  0.6203     0.2842 0.000 0.000 0.188 0.544 0.268
#> GSM627169     4  0.3579     0.6520 0.000 0.000 0.004 0.756 0.240
#> GSM627167     2  0.6629     0.0605 0.000 0.436 0.000 0.332 0.232
#> GSM627192     1  0.0000     0.9679 1.000 0.000 0.000 0.000 0.000
#> GSM627203     5  0.1059     0.5423 0.000 0.008 0.020 0.004 0.968
#> GSM627151     5  0.3996     0.5214 0.000 0.008 0.012 0.228 0.752
#> GSM627163     1  0.0000     0.9679 1.000 0.000 0.000 0.000 0.000
#> GSM627211     2  0.3837     0.5463 0.000 0.692 0.000 0.308 0.000
#> GSM627171     4  0.6778     0.2987 0.000 0.276 0.000 0.368 0.356
#> GSM627209     2  0.0510     0.7492 0.000 0.984 0.000 0.016 0.000
#> GSM627135     1  0.4166     0.3983 0.648 0.000 0.348 0.004 0.000
#> GSM627170     2  0.1410     0.7518 0.000 0.940 0.000 0.000 0.060
#> GSM627178     3  0.2416     0.6625 0.100 0.000 0.888 0.012 0.000
#> GSM627199     4  0.2719     0.6233 0.000 0.004 0.000 0.852 0.144
#> GSM627213     2  0.4504     0.5233 0.000 0.564 0.000 0.008 0.428
#> GSM627140     4  0.4678     0.3047 0.000 0.000 0.224 0.712 0.064
#> GSM627149     1  0.0162     0.9648 0.996 0.000 0.000 0.004 0.000
#> GSM627147     4  0.3550     0.6535 0.000 0.004 0.000 0.760 0.236
#> GSM627195     2  0.3424     0.6995 0.000 0.760 0.000 0.000 0.240
#> GSM627204     2  0.3876     0.5358 0.000 0.684 0.000 0.316 0.000
#> GSM627207     2  0.3242     0.6390 0.000 0.784 0.000 0.216 0.000
#> GSM627157     3  0.4238     0.3565 0.368 0.000 0.628 0.004 0.000
#> GSM627201     2  0.0000     0.7512 0.000 1.000 0.000 0.000 0.000
#> GSM627146     2  0.5116     0.5433 0.000 0.668 0.000 0.248 0.084
#> GSM627156     4  0.6440    -0.0470 0.000 0.412 0.000 0.412 0.176
#> GSM627188     1  0.0000     0.9679 1.000 0.000 0.000 0.000 0.000
#> GSM627197     2  0.3424     0.6169 0.000 0.760 0.000 0.240 0.000
#> GSM627173     4  0.3550     0.6535 0.000 0.004 0.000 0.760 0.236
#> GSM627179     2  0.2280     0.7052 0.000 0.880 0.000 0.120 0.000
#> GSM627208     2  0.2424     0.7384 0.000 0.868 0.000 0.000 0.132
#> GSM627215     2  0.3242     0.7129 0.000 0.784 0.000 0.000 0.216
#> GSM627153     2  0.0290     0.7509 0.000 0.992 0.000 0.008 0.000
#> GSM627155     1  0.0000     0.9679 1.000 0.000 0.000 0.000 0.000
#> GSM627165     2  0.0404     0.7524 0.000 0.988 0.000 0.000 0.012
#> GSM627168     3  0.5082     0.4430 0.000 0.000 0.684 0.220 0.096
#> GSM627183     3  0.5240     0.4330 0.000 0.000 0.676 0.204 0.120
#> GSM627144     2  0.5103     0.4824 0.000 0.524 0.004 0.028 0.444
#> GSM627158     1  0.0000     0.9679 1.000 0.000 0.000 0.000 0.000
#> GSM627196     2  0.3395     0.6208 0.000 0.764 0.000 0.236 0.000
#> GSM627142     5  0.6201     0.6507 0.000 0.000 0.216 0.232 0.552
#> GSM627182     2  0.4555     0.6289 0.000 0.636 0.000 0.020 0.344
#> GSM627202     3  0.1195     0.6824 0.000 0.000 0.960 0.012 0.028
#> GSM627141     3  0.2236     0.6606 0.000 0.000 0.908 0.024 0.068
#> GSM627143     5  0.1731     0.5292 0.000 0.012 0.008 0.040 0.940
#> GSM627145     5  0.3780     0.6218 0.000 0.000 0.116 0.072 0.812
#> GSM627152     3  0.4617     0.4912 0.000 0.000 0.716 0.224 0.060
#> GSM627200     3  0.0579     0.6873 0.000 0.000 0.984 0.008 0.008
#> GSM627159     5  0.6201     0.6507 0.000 0.000 0.216 0.232 0.552
#> GSM627164     4  0.3579     0.6533 0.000 0.004 0.000 0.756 0.240
#> GSM627138     1  0.0000     0.9679 1.000 0.000 0.000 0.000 0.000
#> GSM627175     2  0.0162     0.7518 0.000 0.996 0.000 0.000 0.004
#> GSM627150     5  0.1892     0.4495 0.000 0.080 0.000 0.004 0.916
#> GSM627166     3  0.2624     0.6535 0.116 0.000 0.872 0.012 0.000
#> GSM627186     4  0.3579     0.6520 0.000 0.000 0.004 0.756 0.240
#> GSM627139     5  0.3005     0.5916 0.000 0.008 0.012 0.124 0.856
#> GSM627181     2  0.0510     0.7477 0.000 0.984 0.000 0.016 0.000
#> GSM627205     2  0.0963     0.7530 0.000 0.964 0.000 0.000 0.036
#> GSM627214     2  0.1410     0.7518 0.000 0.940 0.000 0.000 0.060
#> GSM627180     2  0.4626     0.6083 0.000 0.616 0.000 0.020 0.364
#> GSM627172     4  0.2763     0.6206 0.000 0.000 0.004 0.848 0.148
#> GSM627184     1  0.0000     0.9679 1.000 0.000 0.000 0.000 0.000
#> GSM627193     2  0.1851     0.7218 0.000 0.912 0.000 0.088 0.000
#> GSM627191     3  0.3421     0.6227 0.000 0.000 0.840 0.080 0.080
#> GSM627176     4  0.5304     0.1522 0.000 0.000 0.292 0.628 0.080
#> GSM627194     2  0.1117     0.7526 0.000 0.964 0.000 0.020 0.016
#> GSM627154     4  0.6805     0.2459 0.000 0.312 0.000 0.372 0.316
#> GSM627187     4  0.5245     0.1788 0.000 0.000 0.280 0.640 0.080
#> GSM627198     2  0.5163     0.4915 0.000 0.636 0.000 0.296 0.068
#> GSM627160     3  0.5188     0.4876 0.000 0.000 0.612 0.328 0.060
#> GSM627185     3  0.4264     0.3393 0.376 0.000 0.620 0.004 0.000
#> GSM627206     5  0.6329     0.6314 0.000 0.000 0.240 0.232 0.528
#> GSM627161     1  0.0000     0.9679 1.000 0.000 0.000 0.000 0.000
#> GSM627162     4  0.5164     0.2378 0.000 0.000 0.256 0.660 0.084
#> GSM627210     3  0.4557     0.2379 0.000 0.000 0.516 0.476 0.008
#> GSM627189     2  0.3210     0.6423 0.000 0.788 0.000 0.212 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM627128     6  0.5196    0.25656 0.000 0.000 0.000 0.252 0.144 0.604
#> GSM627110     5  0.4253    0.23752 0.000 0.000 0.196 0.004 0.728 0.072
#> GSM627132     1  0.0000    0.94479 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627107     4  0.3314    0.63346 0.000 0.256 0.004 0.740 0.000 0.000
#> GSM627103     4  0.3617    0.58635 0.000 0.244 0.000 0.736 0.000 0.020
#> GSM627114     5  0.2664    0.52478 0.000 0.000 0.000 0.000 0.816 0.184
#> GSM627134     4  0.3636    0.64772 0.000 0.320 0.000 0.676 0.000 0.004
#> GSM627137     2  0.3508    0.51652 0.000 0.704 0.004 0.292 0.000 0.000
#> GSM627148     6  0.4444    0.32626 0.000 0.000 0.000 0.436 0.028 0.536
#> GSM627101     4  0.3583    0.62991 0.000 0.260 0.004 0.728 0.000 0.008
#> GSM627130     6  0.5107    0.30764 0.000 0.004 0.004 0.288 0.088 0.616
#> GSM627071     6  0.5052   -0.16232 0.000 0.000 0.000 0.080 0.388 0.532
#> GSM627118     4  0.3940    0.53781 0.000 0.336 0.004 0.652 0.000 0.008
#> GSM627094     2  0.3757    0.60300 0.000 0.808 0.024 0.104 0.000 0.064
#> GSM627122     5  0.3534    0.51147 0.000 0.000 0.016 0.000 0.740 0.244
#> GSM627115     2  0.2584    0.63473 0.000 0.848 0.004 0.144 0.000 0.004
#> GSM627125     4  0.3838   -0.12237 0.000 0.000 0.000 0.552 0.000 0.448
#> GSM627174     5  0.4212    0.43642 0.000 0.000 0.008 0.008 0.592 0.392
#> GSM627102     6  0.6438    0.37227 0.000 0.140 0.348 0.052 0.000 0.460
#> GSM627073     4  0.3655    0.55799 0.000 0.136 0.000 0.788 0.000 0.076
#> GSM627108     2  0.0692    0.68933 0.000 0.976 0.020 0.000 0.000 0.004
#> GSM627126     1  0.0000    0.94479 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627078     2  0.3043    0.61697 0.000 0.836 0.008 0.132 0.000 0.024
#> GSM627090     5  0.4205    0.41071 0.000 0.000 0.000 0.016 0.564 0.420
#> GSM627099     2  0.3998   -0.11579 0.000 0.504 0.004 0.492 0.000 0.000
#> GSM627105     4  0.4431    0.36212 0.000 0.080 0.000 0.692 0.000 0.228
#> GSM627117     6  0.5978    0.10892 0.000 0.000 0.200 0.016 0.252 0.532
#> GSM627121     4  0.3314    0.63346 0.000 0.256 0.004 0.740 0.000 0.000
#> GSM627127     4  0.4293    0.33092 0.000 0.448 0.004 0.536 0.000 0.012
#> GSM627087     2  0.2703    0.60152 0.000 0.824 0.000 0.172 0.000 0.004
#> GSM627089     5  0.4366    0.39140 0.000 0.000 0.000 0.024 0.548 0.428
#> GSM627092     6  0.6438    0.37227 0.000 0.140 0.348 0.052 0.000 0.460
#> GSM627076     5  0.3930    0.42175 0.000 0.000 0.000 0.004 0.576 0.420
#> GSM627136     5  0.3563    0.47065 0.000 0.000 0.000 0.000 0.664 0.336
#> GSM627081     4  0.3566    0.65344 0.000 0.224 0.000 0.752 0.000 0.024
#> GSM627091     2  0.2325    0.65181 0.000 0.884 0.008 0.100 0.000 0.008
#> GSM627097     6  0.4635    0.33390 0.000 0.000 0.000 0.336 0.056 0.608
#> GSM627072     6  0.4838    0.32870 0.000 0.000 0.000 0.396 0.060 0.544
#> GSM627080     1  0.0000    0.94479 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627088     5  0.3819    0.45327 0.000 0.000 0.000 0.004 0.624 0.372
#> GSM627109     3  0.5476    0.57960 0.132 0.000 0.576 0.008 0.284 0.000
#> GSM627111     1  0.0000    0.94479 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627113     3  0.5824    0.56568 0.188 0.000 0.504 0.004 0.304 0.000
#> GSM627133     4  0.4428    0.58912 0.000 0.244 0.000 0.684 0.000 0.072
#> GSM627177     6  0.4985   -0.18367 0.000 0.000 0.000 0.072 0.400 0.528
#> GSM627086     2  0.3508    0.51968 0.000 0.704 0.004 0.292 0.000 0.000
#> GSM627095     3  0.5835    0.56560 0.192 0.000 0.504 0.004 0.300 0.000
#> GSM627079     5  0.4695    0.33526 0.000 0.000 0.000 0.044 0.508 0.448
#> GSM627082     5  0.3999    0.50312 0.000 0.000 0.032 0.000 0.696 0.272
#> GSM627074     3  0.4898    0.57650 0.060 0.000 0.604 0.008 0.328 0.000
#> GSM627077     5  0.2912    0.16740 0.000 0.000 0.216 0.000 0.784 0.000
#> GSM627093     3  0.4549    0.55351 0.028 0.000 0.596 0.008 0.368 0.000
#> GSM627120     4  0.3428    0.64960 0.000 0.304 0.000 0.696 0.000 0.000
#> GSM627124     2  0.6693    0.10990 0.000 0.460 0.080 0.140 0.000 0.320
#> GSM627075     2  0.1675    0.67855 0.000 0.936 0.024 0.008 0.000 0.032
#> GSM627085     2  0.2632    0.66017 0.000 0.880 0.012 0.076 0.000 0.032
#> GSM627119     3  0.4560    0.55267 0.028 0.000 0.592 0.008 0.372 0.000
#> GSM627116     6  0.4901   -0.30195 0.000 0.000 0.000 0.060 0.456 0.484
#> GSM627084     5  0.3659   -0.17747 0.000 0.000 0.364 0.000 0.636 0.000
#> GSM627096     4  0.3650    0.63769 0.000 0.272 0.004 0.716 0.000 0.008
#> GSM627100     5  0.4837    0.34283 0.000 0.000 0.000 0.056 0.512 0.432
#> GSM627112     6  0.6436    0.33637 0.000 0.108 0.364 0.012 0.044 0.472
#> GSM627083     5  0.3428    0.00223 0.000 0.000 0.304 0.000 0.696 0.000
#> GSM627098     5  0.3695   -0.19810 0.000 0.000 0.376 0.000 0.624 0.000
#> GSM627104     3  0.4898    0.57650 0.060 0.000 0.604 0.008 0.328 0.000
#> GSM627131     5  0.3126    0.10865 0.000 0.000 0.248 0.000 0.752 0.000
#> GSM627106     4  0.3705    0.65233 0.000 0.224 0.004 0.748 0.000 0.024
#> GSM627123     3  0.5835    0.56560 0.192 0.000 0.504 0.004 0.300 0.000
#> GSM627129     4  0.3804    0.63257 0.000 0.336 0.000 0.656 0.000 0.008
#> GSM627216     4  0.3954    0.61504 0.000 0.352 0.000 0.636 0.000 0.012
#> GSM627212     2  0.1196    0.68887 0.000 0.952 0.008 0.040 0.000 0.000
#> GSM627190     6  0.6104    0.15756 0.000 0.000 0.408 0.024 0.140 0.428
#> GSM627169     6  0.6187    0.36405 0.000 0.116 0.364 0.044 0.000 0.476
#> GSM627167     2  0.5335    0.46221 0.000 0.640 0.016 0.188 0.000 0.156
#> GSM627192     1  0.0000    0.94479 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627203     6  0.4620    0.32924 0.000 0.000 0.000 0.428 0.040 0.532
#> GSM627151     6  0.4788    0.33099 0.000 0.000 0.024 0.224 0.064 0.688
#> GSM627163     1  0.0000    0.94479 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627211     2  0.2515    0.67716 0.000 0.888 0.024 0.072 0.000 0.016
#> GSM627171     2  0.5836    0.37424 0.000 0.572 0.020 0.192 0.000 0.216
#> GSM627209     2  0.3109    0.60360 0.000 0.772 0.004 0.224 0.000 0.000
#> GSM627135     1  0.6022   -0.25178 0.432 0.000 0.356 0.004 0.208 0.000
#> GSM627170     4  0.3899    0.40506 0.000 0.404 0.004 0.592 0.000 0.000
#> GSM627178     3  0.4353    0.53898 0.020 0.000 0.588 0.004 0.388 0.000
#> GSM627199     6  0.6219    0.36189 0.000 0.144 0.344 0.020 0.008 0.484
#> GSM627213     4  0.3945    0.56521 0.000 0.200 0.004 0.748 0.000 0.048
#> GSM627140     3  0.6191   -0.18039 0.000 0.004 0.444 0.012 0.176 0.364
#> GSM627149     1  0.1237    0.90502 0.956 0.000 0.020 0.004 0.020 0.000
#> GSM627147     6  0.6438    0.37227 0.000 0.140 0.348 0.052 0.000 0.460
#> GSM627195     4  0.4443    0.65233 0.000 0.276 0.000 0.664 0.000 0.060
#> GSM627204     2  0.1232    0.68489 0.000 0.956 0.024 0.004 0.000 0.016
#> GSM627207     2  0.2362    0.66990 0.000 0.860 0.004 0.136 0.000 0.000
#> GSM627157     3  0.5824    0.56568 0.188 0.000 0.504 0.004 0.304 0.000
#> GSM627201     2  0.3508    0.51968 0.000 0.704 0.004 0.292 0.000 0.000
#> GSM627146     2  0.2643    0.65333 0.000 0.856 0.008 0.128 0.000 0.008
#> GSM627156     2  0.4797    0.53723 0.000 0.728 0.040 0.112 0.000 0.120
#> GSM627188     1  0.0000    0.94479 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627197     2  0.1340    0.68990 0.000 0.948 0.008 0.040 0.000 0.004
#> GSM627173     6  0.6464    0.36939 0.000 0.144 0.348 0.052 0.000 0.456
#> GSM627179     2  0.2442    0.66614 0.000 0.852 0.004 0.144 0.000 0.000
#> GSM627208     4  0.3584    0.57909 0.000 0.308 0.004 0.688 0.000 0.000
#> GSM627215     4  0.4011    0.65728 0.000 0.304 0.000 0.672 0.000 0.024
#> GSM627153     2  0.3248    0.60754 0.000 0.768 0.004 0.224 0.000 0.004
#> GSM627155     1  0.0000    0.94479 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627165     2  0.3996   -0.08695 0.000 0.512 0.004 0.484 0.000 0.000
#> GSM627168     5  0.1934    0.42785 0.000 0.000 0.040 0.000 0.916 0.044
#> GSM627183     5  0.1141    0.46369 0.000 0.000 0.000 0.000 0.948 0.052
#> GSM627144     4  0.4666    0.50317 0.000 0.168 0.000 0.688 0.000 0.144
#> GSM627158     1  0.0000    0.94479 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627196     2  0.2165    0.67919 0.000 0.884 0.008 0.108 0.000 0.000
#> GSM627142     5  0.4276    0.40795 0.000 0.000 0.000 0.020 0.564 0.416
#> GSM627182     4  0.4405    0.58829 0.000 0.240 0.000 0.688 0.000 0.072
#> GSM627202     5  0.3409   -0.01200 0.000 0.000 0.300 0.000 0.700 0.000
#> GSM627141     5  0.2883    0.17327 0.000 0.000 0.212 0.000 0.788 0.000
#> GSM627143     6  0.4408    0.35097 0.000 0.000 0.000 0.356 0.036 0.608
#> GSM627145     6  0.5480    0.08872 0.000 0.000 0.000 0.184 0.252 0.564
#> GSM627152     5  0.3549    0.19130 0.000 0.000 0.192 0.004 0.776 0.028
#> GSM627200     5  0.3862   -0.37957 0.000 0.000 0.476 0.000 0.524 0.000
#> GSM627159     5  0.4462    0.39565 0.000 0.000 0.008 0.016 0.540 0.436
#> GSM627164     6  0.6417    0.37201 0.000 0.136 0.352 0.052 0.000 0.460
#> GSM627138     1  0.0000    0.94479 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627175     2  0.3878    0.46668 0.000 0.668 0.008 0.320 0.000 0.004
#> GSM627150     4  0.4169   -0.20002 0.000 0.000 0.000 0.532 0.012 0.456
#> GSM627166     3  0.4549    0.55351 0.028 0.000 0.596 0.008 0.368 0.000
#> GSM627186     6  0.6118    0.36057 0.000 0.100 0.372 0.048 0.000 0.480
#> GSM627139     6  0.4911    0.30427 0.000 0.000 0.000 0.276 0.100 0.624
#> GSM627181     2  0.3512    0.54870 0.000 0.720 0.008 0.272 0.000 0.000
#> GSM627205     4  0.3944    0.33398 0.000 0.428 0.004 0.568 0.000 0.000
#> GSM627214     4  0.3965    0.43452 0.000 0.388 0.008 0.604 0.000 0.000
#> GSM627180     4  0.4328    0.57244 0.000 0.212 0.000 0.708 0.000 0.080
#> GSM627172     6  0.6048    0.35463 0.000 0.116 0.364 0.020 0.008 0.492
#> GSM627184     1  0.0000    0.94479 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627193     2  0.1753    0.67337 0.000 0.912 0.004 0.084 0.000 0.000
#> GSM627191     5  0.1814    0.33059 0.000 0.000 0.100 0.000 0.900 0.000
#> GSM627176     3  0.6090   -0.02706 0.000 0.000 0.448 0.004 0.268 0.280
#> GSM627194     2  0.3103    0.55855 0.000 0.784 0.000 0.208 0.000 0.008
#> GSM627154     2  0.5891    0.33215 0.000 0.552 0.016 0.228 0.000 0.204
#> GSM627187     3  0.6185   -0.03102 0.000 0.000 0.444 0.008 0.264 0.284
#> GSM627198     2  0.2425    0.65023 0.000 0.880 0.008 0.100 0.000 0.012
#> GSM627160     5  0.4794    0.01924 0.000 0.000 0.228 0.004 0.668 0.100
#> GSM627185     3  0.5835    0.56560 0.192 0.000 0.504 0.004 0.300 0.000
#> GSM627206     5  0.4110    0.44430 0.000 0.000 0.000 0.016 0.608 0.376
#> GSM627161     1  0.0000    0.94479 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627162     3  0.6151   -0.06115 0.000 0.000 0.444 0.008 0.232 0.316
#> GSM627210     3  0.5771    0.28626 0.000 0.000 0.480 0.008 0.372 0.140
#> GSM627189     2  0.1285    0.68697 0.000 0.944 0.004 0.052 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) age(p) other(p) k
#> ATC:kmeans 142           1.0000  0.152  0.03741 2
#> ATC:kmeans 135           0.9352  0.384  0.00619 3
#> ATC:kmeans 105           0.9422  0.333  0.03337 4
#> ATC:kmeans 111           0.2063  0.178  0.09421 5
#> ATC:kmeans  76           0.0549  0.870  0.03904 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 146 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.962       0.986         0.4963 0.504   0.504
#> 3 3 0.732           0.661       0.841         0.2430 0.855   0.722
#> 4 4 0.784           0.757       0.883         0.1219 0.855   0.674
#> 5 5 0.725           0.680       0.792         0.0783 0.847   0.579
#> 6 6 0.806           0.804       0.863         0.0488 0.897   0.609

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM627128     2   0.000      0.986 0.000 1.000
#> GSM627110     1   0.000      0.984 1.000 0.000
#> GSM627132     1   0.000      0.984 1.000 0.000
#> GSM627107     2   0.000      0.986 0.000 1.000
#> GSM627103     2   0.000      0.986 0.000 1.000
#> GSM627114     1   0.000      0.984 1.000 0.000
#> GSM627134     2   0.000      0.986 0.000 1.000
#> GSM627137     2   0.000      0.986 0.000 1.000
#> GSM627148     2   0.000      0.986 0.000 1.000
#> GSM627101     2   0.000      0.986 0.000 1.000
#> GSM627130     2   0.000      0.986 0.000 1.000
#> GSM627071     1   0.966      0.357 0.608 0.392
#> GSM627118     2   0.000      0.986 0.000 1.000
#> GSM627094     2   0.000      0.986 0.000 1.000
#> GSM627122     1   0.000      0.984 1.000 0.000
#> GSM627115     2   0.000      0.986 0.000 1.000
#> GSM627125     2   0.000      0.986 0.000 1.000
#> GSM627174     1   0.000      0.984 1.000 0.000
#> GSM627102     2   0.000      0.986 0.000 1.000
#> GSM627073     2   0.000      0.986 0.000 1.000
#> GSM627108     2   0.000      0.986 0.000 1.000
#> GSM627126     1   0.000      0.984 1.000 0.000
#> GSM627078     2   0.000      0.986 0.000 1.000
#> GSM627090     1   0.000      0.984 1.000 0.000
#> GSM627099     2   0.000      0.986 0.000 1.000
#> GSM627105     2   0.000      0.986 0.000 1.000
#> GSM627117     1   0.000      0.984 1.000 0.000
#> GSM627121     2   0.000      0.986 0.000 1.000
#> GSM627127     2   0.000      0.986 0.000 1.000
#> GSM627087     2   0.000      0.986 0.000 1.000
#> GSM627089     1   0.000      0.984 1.000 0.000
#> GSM627092     2   0.000      0.986 0.000 1.000
#> GSM627076     1   0.000      0.984 1.000 0.000
#> GSM627136     1   0.000      0.984 1.000 0.000
#> GSM627081     2   0.000      0.986 0.000 1.000
#> GSM627091     2   0.000      0.986 0.000 1.000
#> GSM627097     2   0.000      0.986 0.000 1.000
#> GSM627072     2   0.000      0.986 0.000 1.000
#> GSM627080     1   0.000      0.984 1.000 0.000
#> GSM627088     1   0.000      0.984 1.000 0.000
#> GSM627109     1   0.000      0.984 1.000 0.000
#> GSM627111     1   0.000      0.984 1.000 0.000
#> GSM627113     1   0.000      0.984 1.000 0.000
#> GSM627133     2   0.000      0.986 0.000 1.000
#> GSM627177     1   0.722      0.742 0.800 0.200
#> GSM627086     2   0.000      0.986 0.000 1.000
#> GSM627095     1   0.000      0.984 1.000 0.000
#> GSM627079     1   0.000      0.984 1.000 0.000
#> GSM627082     1   0.000      0.984 1.000 0.000
#> GSM627074     1   0.000      0.984 1.000 0.000
#> GSM627077     1   0.000      0.984 1.000 0.000
#> GSM627093     1   0.000      0.984 1.000 0.000
#> GSM627120     2   0.000      0.986 0.000 1.000
#> GSM627124     2   0.000      0.986 0.000 1.000
#> GSM627075     2   0.000      0.986 0.000 1.000
#> GSM627085     2   0.000      0.986 0.000 1.000
#> GSM627119     1   0.000      0.984 1.000 0.000
#> GSM627116     1   0.000      0.984 1.000 0.000
#> GSM627084     1   0.000      0.984 1.000 0.000
#> GSM627096     2   0.000      0.986 0.000 1.000
#> GSM627100     1   0.000      0.984 1.000 0.000
#> GSM627112     2   0.993      0.172 0.452 0.548
#> GSM627083     1   0.000      0.984 1.000 0.000
#> GSM627098     1   0.000      0.984 1.000 0.000
#> GSM627104     1   0.000      0.984 1.000 0.000
#> GSM627131     1   0.000      0.984 1.000 0.000
#> GSM627106     2   0.000      0.986 0.000 1.000
#> GSM627123     1   0.000      0.984 1.000 0.000
#> GSM627129     2   0.000      0.986 0.000 1.000
#> GSM627216     2   0.000      0.986 0.000 1.000
#> GSM627212     2   0.000      0.986 0.000 1.000
#> GSM627190     1   0.971      0.336 0.600 0.400
#> GSM627169     2   0.000      0.986 0.000 1.000
#> GSM627167     2   0.000      0.986 0.000 1.000
#> GSM627192     1   0.000      0.984 1.000 0.000
#> GSM627203     2   0.000      0.986 0.000 1.000
#> GSM627151     2   0.000      0.986 0.000 1.000
#> GSM627163     1   0.000      0.984 1.000 0.000
#> GSM627211     2   0.000      0.986 0.000 1.000
#> GSM627171     2   0.000      0.986 0.000 1.000
#> GSM627209     2   0.000      0.986 0.000 1.000
#> GSM627135     1   0.000      0.984 1.000 0.000
#> GSM627170     2   0.000      0.986 0.000 1.000
#> GSM627178     1   0.000      0.984 1.000 0.000
#> GSM627199     2   0.000      0.986 0.000 1.000
#> GSM627213     2   0.000      0.986 0.000 1.000
#> GSM627140     1   0.000      0.984 1.000 0.000
#> GSM627149     1   0.000      0.984 1.000 0.000
#> GSM627147     2   0.000      0.986 0.000 1.000
#> GSM627195     2   0.000      0.986 0.000 1.000
#> GSM627204     2   0.000      0.986 0.000 1.000
#> GSM627207     2   0.000      0.986 0.000 1.000
#> GSM627157     1   0.000      0.984 1.000 0.000
#> GSM627201     2   0.000      0.986 0.000 1.000
#> GSM627146     2   0.000      0.986 0.000 1.000
#> GSM627156     2   0.000      0.986 0.000 1.000
#> GSM627188     1   0.000      0.984 1.000 0.000
#> GSM627197     2   0.000      0.986 0.000 1.000
#> GSM627173     2   0.000      0.986 0.000 1.000
#> GSM627179     2   0.000      0.986 0.000 1.000
#> GSM627208     2   0.000      0.986 0.000 1.000
#> GSM627215     2   0.000      0.986 0.000 1.000
#> GSM627153     2   0.000      0.986 0.000 1.000
#> GSM627155     1   0.000      0.984 1.000 0.000
#> GSM627165     2   0.000      0.986 0.000 1.000
#> GSM627168     1   0.000      0.984 1.000 0.000
#> GSM627183     1   0.000      0.984 1.000 0.000
#> GSM627144     2   0.000      0.986 0.000 1.000
#> GSM627158     1   0.000      0.984 1.000 0.000
#> GSM627196     2   0.000      0.986 0.000 1.000
#> GSM627142     1   0.000      0.984 1.000 0.000
#> GSM627182     2   0.000      0.986 0.000 1.000
#> GSM627202     1   0.000      0.984 1.000 0.000
#> GSM627141     1   0.000      0.984 1.000 0.000
#> GSM627143     2   0.000      0.986 0.000 1.000
#> GSM627145     2   0.983      0.243 0.424 0.576
#> GSM627152     1   0.000      0.984 1.000 0.000
#> GSM627200     1   0.000      0.984 1.000 0.000
#> GSM627159     1   0.000      0.984 1.000 0.000
#> GSM627164     2   0.000      0.986 0.000 1.000
#> GSM627138     1   0.000      0.984 1.000 0.000
#> GSM627175     2   0.000      0.986 0.000 1.000
#> GSM627150     2   0.000      0.986 0.000 1.000
#> GSM627166     1   0.000      0.984 1.000 0.000
#> GSM627186     2   0.000      0.986 0.000 1.000
#> GSM627139     2   0.000      0.986 0.000 1.000
#> GSM627181     2   0.000      0.986 0.000 1.000
#> GSM627205     2   0.000      0.986 0.000 1.000
#> GSM627214     2   0.000      0.986 0.000 1.000
#> GSM627180     2   0.000      0.986 0.000 1.000
#> GSM627172     2   0.753      0.717 0.216 0.784
#> GSM627184     1   0.000      0.984 1.000 0.000
#> GSM627193     2   0.000      0.986 0.000 1.000
#> GSM627191     1   0.000      0.984 1.000 0.000
#> GSM627176     1   0.000      0.984 1.000 0.000
#> GSM627194     2   0.000      0.986 0.000 1.000
#> GSM627154     2   0.000      0.986 0.000 1.000
#> GSM627187     1   0.000      0.984 1.000 0.000
#> GSM627198     2   0.000      0.986 0.000 1.000
#> GSM627160     1   0.000      0.984 1.000 0.000
#> GSM627185     1   0.000      0.984 1.000 0.000
#> GSM627206     1   0.000      0.984 1.000 0.000
#> GSM627161     1   0.000      0.984 1.000 0.000
#> GSM627162     1   0.000      0.984 1.000 0.000
#> GSM627210     1   0.000      0.984 1.000 0.000
#> GSM627189     2   0.000      0.986 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM627128     3  0.6260     0.3656 0.000 0.448 0.552
#> GSM627110     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627132     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627107     2  0.6126     0.1399 0.000 0.600 0.400
#> GSM627103     2  0.1860     0.7987 0.000 0.948 0.052
#> GSM627114     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627134     2  0.2165     0.7938 0.000 0.936 0.064
#> GSM627137     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627148     2  0.6126     0.1399 0.000 0.600 0.400
#> GSM627101     2  0.6126     0.1399 0.000 0.600 0.400
#> GSM627130     3  0.6260     0.3656 0.000 0.448 0.552
#> GSM627071     3  0.6062     0.4238 0.000 0.384 0.616
#> GSM627118     2  0.2165     0.7938 0.000 0.936 0.064
#> GSM627094     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627122     1  0.6274     0.8795 0.544 0.000 0.456
#> GSM627115     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627125     3  0.6267     0.3597 0.000 0.452 0.548
#> GSM627174     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627102     2  0.6260     0.3467 0.448 0.552 0.000
#> GSM627073     2  0.6126     0.1399 0.000 0.600 0.400
#> GSM627108     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627126     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627078     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627090     3  0.2165     0.2366 0.064 0.000 0.936
#> GSM627099     2  0.2165     0.7938 0.000 0.936 0.064
#> GSM627105     3  0.6286     0.3301 0.000 0.464 0.536
#> GSM627117     1  0.0000     0.4290 1.000 0.000 0.000
#> GSM627121     2  0.6126     0.1399 0.000 0.600 0.400
#> GSM627127     2  0.2165     0.7938 0.000 0.936 0.064
#> GSM627087     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627089     3  0.2165     0.2366 0.064 0.000 0.936
#> GSM627092     2  0.6260     0.3467 0.448 0.552 0.000
#> GSM627076     3  0.3116     0.0983 0.108 0.000 0.892
#> GSM627136     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627081     2  0.6126     0.1399 0.000 0.600 0.400
#> GSM627091     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627097     2  0.6244    -0.0282 0.000 0.560 0.440
#> GSM627072     3  0.6267     0.3597 0.000 0.452 0.548
#> GSM627080     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627088     1  0.6274     0.8795 0.544 0.000 0.456
#> GSM627109     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627111     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627113     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627133     2  0.2165     0.7938 0.000 0.936 0.064
#> GSM627177     3  0.5660     0.5428 0.028 0.200 0.772
#> GSM627086     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627095     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627079     3  0.1163     0.3098 0.028 0.000 0.972
#> GSM627082     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627074     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627077     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627093     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627120     2  0.2165     0.7938 0.000 0.936 0.064
#> GSM627124     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627075     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627085     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627119     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627116     3  0.0747     0.3296 0.016 0.000 0.984
#> GSM627084     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627096     2  0.4750     0.5930 0.000 0.784 0.216
#> GSM627100     3  0.0237     0.3574 0.000 0.004 0.996
#> GSM627112     1  0.6809    -0.3870 0.524 0.464 0.012
#> GSM627083     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627098     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627104     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627131     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627106     2  0.6126     0.1399 0.000 0.600 0.400
#> GSM627123     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627129     2  0.2165     0.7938 0.000 0.936 0.064
#> GSM627216     2  0.1964     0.7972 0.000 0.944 0.056
#> GSM627212     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627190     1  0.0747     0.4052 0.984 0.016 0.000
#> GSM627169     2  0.6260     0.3467 0.448 0.552 0.000
#> GSM627167     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627192     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627203     3  0.6267     0.3597 0.000 0.452 0.548
#> GSM627151     2  0.6488     0.6234 0.192 0.744 0.064
#> GSM627163     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627211     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627171     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627209     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627135     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627170     2  0.2165     0.7938 0.000 0.936 0.064
#> GSM627178     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627199     2  0.6260     0.3467 0.448 0.552 0.000
#> GSM627213     2  0.2165     0.7938 0.000 0.936 0.064
#> GSM627140     1  0.0000     0.4290 1.000 0.000 0.000
#> GSM627149     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627147     2  0.6260     0.3467 0.448 0.552 0.000
#> GSM627195     2  0.6126     0.1399 0.000 0.600 0.400
#> GSM627204     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627207     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627157     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627201     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627146     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627156     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627188     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627197     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627173     2  0.6260     0.3467 0.448 0.552 0.000
#> GSM627179     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627208     2  0.2165     0.7938 0.000 0.936 0.064
#> GSM627215     2  0.2165     0.7938 0.000 0.936 0.064
#> GSM627153     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627155     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627165     2  0.1860     0.7987 0.000 0.948 0.052
#> GSM627168     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627183     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627144     2  0.6045     0.2031 0.000 0.620 0.380
#> GSM627158     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627196     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627142     3  0.2165     0.2366 0.064 0.000 0.936
#> GSM627182     2  0.2261     0.7908 0.000 0.932 0.068
#> GSM627202     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627141     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627143     2  0.1753     0.8001 0.000 0.952 0.048
#> GSM627145     3  0.6260     0.3656 0.000 0.448 0.552
#> GSM627152     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627200     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627159     3  0.2165     0.2366 0.064 0.000 0.936
#> GSM627164     2  0.6260     0.3467 0.448 0.552 0.000
#> GSM627138     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627175     2  0.1643     0.8013 0.000 0.956 0.044
#> GSM627150     3  0.6286     0.3302 0.000 0.464 0.536
#> GSM627166     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627186     2  0.6260     0.3467 0.448 0.552 0.000
#> GSM627139     3  0.6280     0.3408 0.000 0.460 0.540
#> GSM627181     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627205     2  0.2165     0.7938 0.000 0.936 0.064
#> GSM627214     2  0.2165     0.7938 0.000 0.936 0.064
#> GSM627180     2  0.2261     0.7908 0.000 0.932 0.068
#> GSM627172     1  0.6204    -0.2972 0.576 0.424 0.000
#> GSM627184     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627193     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627191     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627176     1  0.1031     0.4527 0.976 0.000 0.024
#> GSM627194     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627154     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627187     1  0.0000     0.4290 1.000 0.000 0.000
#> GSM627198     2  0.0000     0.8124 0.000 1.000 0.000
#> GSM627160     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627185     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627206     1  0.6305     0.8488 0.516 0.000 0.484
#> GSM627161     1  0.6260     0.8873 0.552 0.000 0.448
#> GSM627162     1  0.0000     0.4290 1.000 0.000 0.000
#> GSM627210     1  0.0000     0.4290 1.000 0.000 0.000
#> GSM627189     2  0.0000     0.8124 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM627128     3  0.4790    0.94517 0.000 0.000 0.620 0.380
#> GSM627110     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627132     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627107     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627103     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627114     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627134     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627137     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627148     2  0.0336    0.81102 0.000 0.992 0.008 0.000
#> GSM627101     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627130     2  0.5288   -0.00372 0.000 0.520 0.472 0.008
#> GSM627071     3  0.4790    0.94517 0.000 0.000 0.620 0.380
#> GSM627118     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627094     2  0.5099    0.61706 0.000 0.612 0.380 0.008
#> GSM627122     1  0.5099    0.35673 0.612 0.000 0.008 0.380
#> GSM627115     2  0.2973    0.75953 0.000 0.856 0.144 0.000
#> GSM627125     2  0.4194    0.59178 0.000 0.764 0.228 0.008
#> GSM627174     1  0.0336    0.91666 0.992 0.000 0.000 0.008
#> GSM627102     4  0.4790    0.73944 0.000 0.000 0.380 0.620
#> GSM627073     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627108     2  0.5099    0.61706 0.000 0.612 0.380 0.008
#> GSM627126     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627078     2  0.4790    0.62566 0.000 0.620 0.380 0.000
#> GSM627090     3  0.5099    0.94173 0.008 0.000 0.612 0.380
#> GSM627099     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627105     2  0.3610    0.63643 0.000 0.800 0.200 0.000
#> GSM627117     4  0.4888    0.45520 0.412 0.000 0.000 0.588
#> GSM627121     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627127     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627087     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627089     3  0.4790    0.94517 0.000 0.000 0.620 0.380
#> GSM627092     4  0.4790    0.73944 0.000 0.000 0.380 0.620
#> GSM627076     3  0.6718    0.87430 0.096 0.000 0.524 0.380
#> GSM627136     1  0.5070    0.37698 0.620 0.000 0.008 0.372
#> GSM627081     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627091     2  0.4790    0.62566 0.000 0.620 0.380 0.000
#> GSM627097     2  0.1867    0.76963 0.000 0.928 0.072 0.000
#> GSM627072     2  0.7729   -0.16289 0.000 0.400 0.228 0.372
#> GSM627080     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627088     1  0.5099    0.35673 0.612 0.000 0.008 0.380
#> GSM627109     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627111     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627113     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627133     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627177     3  0.4790    0.94517 0.000 0.000 0.620 0.380
#> GSM627086     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627095     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627079     3  0.4790    0.94517 0.000 0.000 0.620 0.380
#> GSM627082     1  0.4964    0.36679 0.616 0.000 0.004 0.380
#> GSM627074     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627077     1  0.0336    0.91668 0.992 0.000 0.000 0.008
#> GSM627093     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627120     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627124     2  0.5099    0.61706 0.000 0.612 0.380 0.008
#> GSM627075     2  0.5099    0.61706 0.000 0.612 0.380 0.008
#> GSM627085     2  0.4790    0.62566 0.000 0.620 0.380 0.000
#> GSM627119     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627116     3  0.4790    0.94517 0.000 0.000 0.620 0.380
#> GSM627084     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627096     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627100     3  0.4790    0.94517 0.000 0.000 0.620 0.380
#> GSM627112     4  0.4790    0.73944 0.000 0.000 0.380 0.620
#> GSM627083     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627098     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627104     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627131     1  0.4950    0.37671 0.620 0.000 0.004 0.376
#> GSM627106     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627123     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627129     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627216     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627212     2  0.4790    0.62566 0.000 0.620 0.380 0.000
#> GSM627190     4  0.4790    0.50771 0.380 0.000 0.000 0.620
#> GSM627169     4  0.4790    0.73944 0.000 0.000 0.380 0.620
#> GSM627167     2  0.4790    0.62566 0.000 0.620 0.380 0.000
#> GSM627192     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627203     2  0.6296    0.45487 0.000 0.652 0.224 0.124
#> GSM627151     2  0.3219    0.67370 0.000 0.836 0.000 0.164
#> GSM627163     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627211     2  0.5099    0.61706 0.000 0.612 0.380 0.008
#> GSM627171     2  0.4746    0.63392 0.000 0.632 0.368 0.000
#> GSM627209     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627135     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627170     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627178     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627199     4  0.4790    0.73944 0.000 0.000 0.380 0.620
#> GSM627213     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627140     4  0.4817    0.49823 0.388 0.000 0.000 0.612
#> GSM627149     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627147     4  0.4790    0.73944 0.000 0.000 0.380 0.620
#> GSM627195     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627204     2  0.5099    0.61706 0.000 0.612 0.380 0.008
#> GSM627207     2  0.4790    0.62566 0.000 0.620 0.380 0.000
#> GSM627157     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627201     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627146     2  0.4790    0.62566 0.000 0.620 0.380 0.000
#> GSM627156     2  0.5099    0.61706 0.000 0.612 0.380 0.008
#> GSM627188     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627197     2  0.4790    0.62566 0.000 0.620 0.380 0.000
#> GSM627173     4  0.4790    0.73944 0.000 0.000 0.380 0.620
#> GSM627179     2  0.4790    0.62566 0.000 0.620 0.380 0.000
#> GSM627208     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627215     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627153     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627155     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627165     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627168     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627183     1  0.4936    0.38602 0.624 0.000 0.004 0.372
#> GSM627144     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627158     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627196     2  0.4790    0.62566 0.000 0.620 0.380 0.000
#> GSM627142     3  0.6396    0.90094 0.072 0.000 0.548 0.380
#> GSM627182     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627202     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627141     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627143     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627145     3  0.4790    0.94517 0.000 0.000 0.620 0.380
#> GSM627152     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627200     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627159     3  0.6396    0.90094 0.072 0.000 0.548 0.380
#> GSM627164     4  0.4790    0.73944 0.000 0.000 0.380 0.620
#> GSM627138     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627175     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627150     2  0.4049    0.61351 0.000 0.780 0.212 0.008
#> GSM627166     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627186     4  0.4790    0.73944 0.000 0.000 0.380 0.620
#> GSM627139     2  0.4053    0.59636 0.000 0.768 0.228 0.004
#> GSM627181     2  0.4431    0.67364 0.000 0.696 0.304 0.000
#> GSM627205     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627214     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627180     2  0.0000    0.81530 0.000 1.000 0.000 0.000
#> GSM627172     4  0.4790    0.73944 0.000 0.000 0.380 0.620
#> GSM627184     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627193     2  0.4746    0.63404 0.000 0.632 0.368 0.000
#> GSM627191     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627176     1  0.4981   -0.16453 0.536 0.000 0.000 0.464
#> GSM627194     2  0.0188    0.81419 0.000 0.996 0.004 0.000
#> GSM627154     2  0.4790    0.62566 0.000 0.620 0.380 0.000
#> GSM627187     4  0.4830    0.49209 0.392 0.000 0.000 0.608
#> GSM627198     2  0.4790    0.62566 0.000 0.620 0.380 0.000
#> GSM627160     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627185     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627206     3  0.7663    0.68665 0.212 0.000 0.408 0.380
#> GSM627161     1  0.0000    0.92376 1.000 0.000 0.000 0.000
#> GSM627162     4  0.4817    0.49807 0.388 0.000 0.000 0.612
#> GSM627210     4  0.4981    0.33200 0.464 0.000 0.000 0.536
#> GSM627189     2  0.4790    0.62566 0.000 0.620 0.380 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM627128     3  0.4262     0.6415 0.000 0.000 0.560 0.000 0.440
#> GSM627110     1  0.1410     0.4507 0.940 0.000 0.000 0.060 0.000
#> GSM627132     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627107     5  0.4262     0.8769 0.000 0.440 0.000 0.000 0.560
#> GSM627103     2  0.2852     0.5490 0.000 0.828 0.000 0.000 0.172
#> GSM627114     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627134     5  0.4268     0.8747 0.000 0.444 0.000 0.000 0.556
#> GSM627137     2  0.1043     0.7801 0.000 0.960 0.000 0.000 0.040
#> GSM627148     5  0.4256     0.8764 0.000 0.436 0.000 0.000 0.564
#> GSM627101     5  0.4262     0.8769 0.000 0.440 0.000 0.000 0.560
#> GSM627130     5  0.3888     0.5013 0.000 0.148 0.056 0.000 0.796
#> GSM627071     3  0.4242     0.6439 0.000 0.000 0.572 0.000 0.428
#> GSM627118     5  0.4262     0.8769 0.000 0.440 0.000 0.000 0.560
#> GSM627094     2  0.1851     0.7969 0.000 0.912 0.000 0.088 0.000
#> GSM627122     3  0.1671     0.3493 0.076 0.000 0.924 0.000 0.000
#> GSM627115     2  0.0703     0.7920 0.000 0.976 0.000 0.000 0.024
#> GSM627125     5  0.3783     0.6918 0.000 0.252 0.008 0.000 0.740
#> GSM627174     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627102     4  0.1410     0.8550 0.000 0.060 0.000 0.940 0.000
#> GSM627073     5  0.4256     0.8764 0.000 0.436 0.000 0.000 0.564
#> GSM627108     2  0.1851     0.7969 0.000 0.912 0.000 0.088 0.000
#> GSM627126     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627078     2  0.1341     0.8204 0.000 0.944 0.000 0.056 0.000
#> GSM627090     3  0.4138     0.6524 0.000 0.000 0.616 0.000 0.384
#> GSM627099     2  0.2127     0.6863 0.000 0.892 0.000 0.000 0.108
#> GSM627105     5  0.3837     0.7605 0.000 0.308 0.000 0.000 0.692
#> GSM627117     1  0.3424     0.0819 0.760 0.000 0.000 0.240 0.000
#> GSM627121     5  0.4262     0.8769 0.000 0.440 0.000 0.000 0.560
#> GSM627127     2  0.3143     0.4596 0.000 0.796 0.000 0.000 0.204
#> GSM627087     2  0.1270     0.7675 0.000 0.948 0.000 0.000 0.052
#> GSM627089     3  0.4227     0.6467 0.000 0.000 0.580 0.000 0.420
#> GSM627092     4  0.1608     0.8508 0.000 0.072 0.000 0.928 0.000
#> GSM627076     3  0.3885     0.6533 0.008 0.000 0.724 0.000 0.268
#> GSM627136     3  0.3210    -0.0108 0.212 0.000 0.788 0.000 0.000
#> GSM627081     5  0.4256     0.8764 0.000 0.436 0.000 0.000 0.564
#> GSM627091     2  0.1341     0.8204 0.000 0.944 0.000 0.056 0.000
#> GSM627097     2  0.3684     0.4498 0.000 0.720 0.000 0.000 0.280
#> GSM627072     5  0.6586     0.4403 0.000 0.304 0.236 0.000 0.460
#> GSM627080     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627088     3  0.1608     0.3566 0.072 0.000 0.928 0.000 0.000
#> GSM627109     1  0.1211     0.5011 0.960 0.000 0.016 0.024 0.000
#> GSM627111     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627113     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627133     5  0.4268     0.8747 0.000 0.444 0.000 0.000 0.556
#> GSM627177     3  0.4242     0.6439 0.000 0.000 0.572 0.000 0.428
#> GSM627086     2  0.1197     0.7717 0.000 0.952 0.000 0.000 0.048
#> GSM627095     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627079     3  0.4242     0.6439 0.000 0.000 0.572 0.000 0.428
#> GSM627082     3  0.3534    -0.1457 0.256 0.000 0.744 0.000 0.000
#> GSM627074     1  0.0880     0.4818 0.968 0.000 0.000 0.032 0.000
#> GSM627077     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627093     1  0.1106     0.4986 0.964 0.000 0.012 0.024 0.000
#> GSM627120     5  0.4273     0.8688 0.000 0.448 0.000 0.000 0.552
#> GSM627124     2  0.2280     0.7587 0.000 0.880 0.000 0.120 0.000
#> GSM627075     2  0.1851     0.7969 0.000 0.912 0.000 0.088 0.000
#> GSM627085     2  0.1410     0.8184 0.000 0.940 0.000 0.060 0.000
#> GSM627119     1  0.0865     0.4923 0.972 0.000 0.004 0.024 0.000
#> GSM627116     3  0.4262     0.6415 0.000 0.000 0.560 0.000 0.440
#> GSM627084     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627096     5  0.4262     0.8769 0.000 0.440 0.000 0.000 0.560
#> GSM627100     3  0.4242     0.6439 0.000 0.000 0.572 0.000 0.428
#> GSM627112     4  0.2032     0.8550 0.020 0.052 0.000 0.924 0.004
#> GSM627083     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627098     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627104     1  0.1106     0.4986 0.964 0.000 0.012 0.024 0.000
#> GSM627131     3  0.3508    -0.1424 0.252 0.000 0.748 0.000 0.000
#> GSM627106     5  0.4256     0.8764 0.000 0.436 0.000 0.000 0.564
#> GSM627123     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627129     5  0.4268     0.8747 0.000 0.444 0.000 0.000 0.556
#> GSM627216     2  0.4304    -0.7381 0.000 0.516 0.000 0.000 0.484
#> GSM627212     2  0.1341     0.8204 0.000 0.944 0.000 0.056 0.000
#> GSM627190     4  0.3508     0.7306 0.252 0.000 0.000 0.748 0.000
#> GSM627169     4  0.0609     0.8508 0.000 0.020 0.000 0.980 0.000
#> GSM627167     2  0.1341     0.8204 0.000 0.944 0.000 0.056 0.000
#> GSM627192     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627203     5  0.4249     0.7283 0.000 0.296 0.016 0.000 0.688
#> GSM627151     5  0.6221     0.6148 0.000 0.300 0.000 0.172 0.528
#> GSM627163     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627211     2  0.1851     0.7969 0.000 0.912 0.000 0.088 0.000
#> GSM627171     2  0.1197     0.8199 0.000 0.952 0.000 0.048 0.000
#> GSM627209     2  0.0880     0.7865 0.000 0.968 0.000 0.000 0.032
#> GSM627135     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627170     5  0.4268     0.8747 0.000 0.444 0.000 0.000 0.556
#> GSM627178     1  0.4201     0.7941 0.592 0.000 0.408 0.000 0.000
#> GSM627199     4  0.1544     0.8527 0.000 0.068 0.000 0.932 0.000
#> GSM627213     2  0.4242    -0.5734 0.000 0.572 0.000 0.000 0.428
#> GSM627140     4  0.3561     0.7263 0.260 0.000 0.000 0.740 0.000
#> GSM627149     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627147     4  0.1732     0.8455 0.000 0.080 0.000 0.920 0.000
#> GSM627195     5  0.4256     0.8764 0.000 0.436 0.000 0.000 0.564
#> GSM627204     2  0.1851     0.7969 0.000 0.912 0.000 0.088 0.000
#> GSM627207     2  0.1341     0.8204 0.000 0.944 0.000 0.056 0.000
#> GSM627157     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627201     2  0.0963     0.7832 0.000 0.964 0.000 0.000 0.036
#> GSM627146     2  0.1341     0.8204 0.000 0.944 0.000 0.056 0.000
#> GSM627156     2  0.3177     0.6333 0.000 0.792 0.000 0.208 0.000
#> GSM627188     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627197     2  0.1341     0.8204 0.000 0.944 0.000 0.056 0.000
#> GSM627173     4  0.1792     0.8421 0.000 0.084 0.000 0.916 0.000
#> GSM627179     2  0.1502     0.8205 0.000 0.940 0.000 0.056 0.004
#> GSM627208     5  0.4268     0.8747 0.000 0.444 0.000 0.000 0.556
#> GSM627215     5  0.4268     0.8747 0.000 0.444 0.000 0.000 0.556
#> GSM627153     2  0.0880     0.7865 0.000 0.968 0.000 0.000 0.032
#> GSM627155     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627165     2  0.2179     0.6799 0.000 0.888 0.000 0.000 0.112
#> GSM627168     1  0.4235     0.8049 0.576 0.000 0.424 0.000 0.000
#> GSM627183     3  0.3684    -0.2347 0.280 0.000 0.720 0.000 0.000
#> GSM627144     5  0.4262     0.8769 0.000 0.440 0.000 0.000 0.560
#> GSM627158     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627196     2  0.1341     0.8204 0.000 0.944 0.000 0.056 0.000
#> GSM627142     3  0.3642     0.6471 0.008 0.000 0.760 0.000 0.232
#> GSM627182     5  0.4268     0.8747 0.000 0.444 0.000 0.000 0.556
#> GSM627202     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627141     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627143     2  0.3210     0.4210 0.000 0.788 0.000 0.000 0.212
#> GSM627145     3  0.4242     0.6439 0.000 0.000 0.572 0.000 0.428
#> GSM627152     1  0.0703     0.4890 0.976 0.000 0.000 0.024 0.000
#> GSM627200     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627159     3  0.3728     0.6500 0.008 0.000 0.748 0.000 0.244
#> GSM627164     4  0.1410     0.8550 0.000 0.060 0.000 0.940 0.000
#> GSM627138     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627175     2  0.1544     0.7468 0.000 0.932 0.000 0.000 0.068
#> GSM627150     5  0.3983     0.7880 0.000 0.340 0.000 0.000 0.660
#> GSM627166     1  0.0992     0.4956 0.968 0.000 0.008 0.024 0.000
#> GSM627186     4  0.1341     0.8142 0.056 0.000 0.000 0.944 0.000
#> GSM627139     5  0.4017     0.6817 0.000 0.248 0.004 0.012 0.736
#> GSM627181     2  0.0579     0.8049 0.000 0.984 0.000 0.008 0.008
#> GSM627205     2  0.4300    -0.7203 0.000 0.524 0.000 0.000 0.476
#> GSM627214     5  0.4300     0.8175 0.000 0.476 0.000 0.000 0.524
#> GSM627180     5  0.4262     0.8769 0.000 0.440 0.000 0.000 0.560
#> GSM627172     4  0.0609     0.8508 0.000 0.020 0.000 0.980 0.000
#> GSM627184     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627193     2  0.0579     0.8049 0.000 0.984 0.000 0.008 0.008
#> GSM627191     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627176     1  0.3983    -0.2649 0.660 0.000 0.000 0.340 0.000
#> GSM627194     2  0.1410     0.7604 0.000 0.940 0.000 0.000 0.060
#> GSM627154     2  0.1410     0.8184 0.000 0.940 0.000 0.060 0.000
#> GSM627187     4  0.4242     0.6148 0.428 0.000 0.000 0.572 0.000
#> GSM627198     2  0.1410     0.8184 0.000 0.940 0.000 0.060 0.000
#> GSM627160     1  0.0963     0.4780 0.964 0.000 0.000 0.036 0.000
#> GSM627185     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627206     3  0.3336     0.6281 0.000 0.000 0.772 0.000 0.228
#> GSM627161     1  0.4242     0.8075 0.572 0.000 0.428 0.000 0.000
#> GSM627162     4  0.4242     0.6148 0.428 0.000 0.000 0.572 0.000
#> GSM627210     1  0.3039     0.1722 0.808 0.000 0.000 0.192 0.000
#> GSM627189     2  0.1502     0.8205 0.000 0.940 0.000 0.056 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM627128     6  0.5482    0.66930 0.000 0.232 0.072 0.036 0.012 0.648
#> GSM627110     3  0.1610    0.89390 0.084 0.000 0.916 0.000 0.000 0.000
#> GSM627132     1  0.0000    0.93872 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627107     5  0.0146    0.80524 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM627103     5  0.3851   -0.41997 0.000 0.460 0.000 0.000 0.540 0.000
#> GSM627114     1  0.0291    0.93452 0.992 0.000 0.004 0.004 0.000 0.000
#> GSM627134     5  0.0547    0.80149 0.000 0.020 0.000 0.000 0.980 0.000
#> GSM627137     2  0.3428    0.91760 0.000 0.696 0.000 0.000 0.304 0.000
#> GSM627148     5  0.0000    0.80518 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM627101     5  0.0405    0.80458 0.000 0.008 0.004 0.000 0.988 0.000
#> GSM627130     5  0.7566    0.07415 0.000 0.280 0.072 0.036 0.408 0.204
#> GSM627071     6  0.0146    0.87904 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM627118     5  0.0777    0.79977 0.000 0.024 0.004 0.000 0.972 0.000
#> GSM627094     2  0.4002    0.90803 0.000 0.704 0.000 0.036 0.260 0.000
#> GSM627122     1  0.4049    0.26683 0.580 0.000 0.004 0.004 0.000 0.412
#> GSM627115     2  0.3584    0.91888 0.000 0.688 0.000 0.004 0.308 0.000
#> GSM627125     5  0.6591    0.40660 0.000 0.240 0.072 0.036 0.568 0.084
#> GSM627174     1  0.0806    0.91849 0.972 0.000 0.020 0.008 0.000 0.000
#> GSM627102     4  0.0937    0.94535 0.000 0.040 0.000 0.960 0.000 0.000
#> GSM627073     5  0.0146    0.80524 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM627108     2  0.3834    0.91762 0.000 0.708 0.000 0.024 0.268 0.000
#> GSM627126     1  0.0000    0.93872 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627078     2  0.3383    0.92836 0.000 0.728 0.000 0.004 0.268 0.000
#> GSM627090     6  0.0713    0.87682 0.028 0.000 0.000 0.000 0.000 0.972
#> GSM627099     2  0.3547    0.88600 0.000 0.668 0.000 0.000 0.332 0.000
#> GSM627105     5  0.6410    0.42801 0.000 0.240 0.072 0.036 0.584 0.068
#> GSM627117     3  0.2776    0.85395 0.052 0.000 0.860 0.088 0.000 0.000
#> GSM627121     5  0.0146    0.80524 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM627127     5  0.4097   -0.52058 0.000 0.492 0.008 0.000 0.500 0.000
#> GSM627087     2  0.3464    0.91370 0.000 0.688 0.000 0.000 0.312 0.000
#> GSM627089     6  0.0146    0.87904 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM627092     4  0.1007    0.94414 0.000 0.044 0.000 0.956 0.000 0.000
#> GSM627076     6  0.2416    0.79713 0.156 0.000 0.000 0.000 0.000 0.844
#> GSM627136     1  0.4015    0.31904 0.596 0.000 0.004 0.004 0.000 0.396
#> GSM627081     5  0.0000    0.80518 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM627091     2  0.3426    0.92936 0.000 0.720 0.000 0.004 0.276 0.000
#> GSM627097     2  0.4978    0.26769 0.000 0.720 0.072 0.036 0.160 0.012
#> GSM627072     5  0.4300    0.22140 0.000 0.020 0.000 0.000 0.548 0.432
#> GSM627080     1  0.0000    0.93872 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627088     1  0.4128   -0.00245 0.504 0.000 0.004 0.004 0.000 0.488
#> GSM627109     3  0.2378    0.89435 0.152 0.000 0.848 0.000 0.000 0.000
#> GSM627111     1  0.0000    0.93872 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627113     1  0.0000    0.93872 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627133     5  0.0363    0.80255 0.000 0.012 0.000 0.000 0.988 0.000
#> GSM627177     6  0.0603    0.87814 0.000 0.016 0.000 0.004 0.000 0.980
#> GSM627086     2  0.3428    0.91760 0.000 0.696 0.000 0.000 0.304 0.000
#> GSM627095     1  0.0000    0.93872 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627079     6  0.0000    0.87916 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM627082     1  0.1719    0.88494 0.932 0.000 0.032 0.004 0.000 0.032
#> GSM627074     3  0.2178    0.90401 0.132 0.000 0.868 0.000 0.000 0.000
#> GSM627077     1  0.0291    0.93452 0.992 0.000 0.004 0.004 0.000 0.000
#> GSM627093     3  0.2454    0.88557 0.160 0.000 0.840 0.000 0.000 0.000
#> GSM627120     5  0.0713    0.79442 0.000 0.028 0.000 0.000 0.972 0.000
#> GSM627124     2  0.4158    0.89105 0.000 0.704 0.000 0.052 0.244 0.000
#> GSM627075     2  0.4002    0.90803 0.000 0.704 0.000 0.036 0.260 0.000
#> GSM627085     2  0.3586    0.92519 0.000 0.720 0.000 0.012 0.268 0.000
#> GSM627119     3  0.2340    0.89804 0.148 0.000 0.852 0.000 0.000 0.000
#> GSM627116     6  0.2662    0.82096 0.000 0.152 0.004 0.004 0.000 0.840
#> GSM627084     1  0.0000    0.93872 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627096     5  0.0891    0.79918 0.000 0.024 0.008 0.000 0.968 0.000
#> GSM627100     6  0.0000    0.87916 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM627112     4  0.2282    0.91754 0.000 0.088 0.024 0.888 0.000 0.000
#> GSM627083     1  0.0000    0.93872 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627098     1  0.0000    0.93872 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627104     3  0.2340    0.89801 0.148 0.000 0.852 0.000 0.000 0.000
#> GSM627131     1  0.3302    0.66525 0.760 0.000 0.004 0.004 0.000 0.232
#> GSM627106     5  0.0146    0.80524 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM627123     1  0.0000    0.93872 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627129     5  0.1219    0.78437 0.000 0.048 0.004 0.000 0.948 0.000
#> GSM627216     5  0.1663    0.73565 0.000 0.088 0.000 0.000 0.912 0.000
#> GSM627212     2  0.3426    0.92936 0.000 0.720 0.000 0.004 0.276 0.000
#> GSM627190     3  0.3221    0.62463 0.000 0.000 0.736 0.264 0.000 0.000
#> GSM627169     4  0.1151    0.93542 0.000 0.012 0.032 0.956 0.000 0.000
#> GSM627167     2  0.3244    0.92877 0.000 0.732 0.000 0.000 0.268 0.000
#> GSM627192     1  0.0000    0.93872 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627203     5  0.2982    0.72792 0.000 0.068 0.000 0.012 0.860 0.060
#> GSM627151     5  0.5617    0.53234 0.000 0.208 0.040 0.124 0.628 0.000
#> GSM627163     1  0.0000    0.93872 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627211     2  0.3934    0.91222 0.000 0.708 0.000 0.032 0.260 0.000
#> GSM627171     2  0.3330    0.92698 0.000 0.716 0.000 0.000 0.284 0.000
#> GSM627209     2  0.3409    0.92031 0.000 0.700 0.000 0.000 0.300 0.000
#> GSM627135     1  0.0000    0.93872 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627170     5  0.1007    0.78869 0.000 0.044 0.000 0.000 0.956 0.000
#> GSM627178     1  0.0865    0.90695 0.964 0.000 0.036 0.000 0.000 0.000
#> GSM627199     4  0.1866    0.93567 0.000 0.084 0.008 0.908 0.000 0.000
#> GSM627213     5  0.4424    0.37095 0.000 0.276 0.036 0.012 0.676 0.000
#> GSM627140     4  0.3584    0.70130 0.004 0.012 0.244 0.740 0.000 0.000
#> GSM627149     1  0.0000    0.93872 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627147     4  0.1444    0.94073 0.000 0.072 0.000 0.928 0.000 0.000
#> GSM627195     5  0.0000    0.80518 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM627204     2  0.3934    0.91222 0.000 0.708 0.000 0.032 0.260 0.000
#> GSM627207     2  0.3426    0.92936 0.000 0.720 0.000 0.004 0.276 0.000
#> GSM627157     1  0.0000    0.93872 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627201     2  0.3428    0.91760 0.000 0.696 0.000 0.000 0.304 0.000
#> GSM627146     2  0.3405    0.92935 0.000 0.724 0.000 0.004 0.272 0.000
#> GSM627156     2  0.5538    0.45725 0.000 0.512 0.000 0.340 0.148 0.000
#> GSM627188     1  0.0000    0.93872 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627197     2  0.3405    0.92935 0.000 0.724 0.000 0.004 0.272 0.000
#> GSM627173     4  0.1007    0.94414 0.000 0.044 0.000 0.956 0.000 0.000
#> GSM627179     2  0.3448    0.92940 0.000 0.716 0.000 0.004 0.280 0.000
#> GSM627208     5  0.0547    0.79802 0.000 0.020 0.000 0.000 0.980 0.000
#> GSM627215     5  0.0000    0.80518 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM627153     2  0.3428    0.91760 0.000 0.696 0.000 0.000 0.304 0.000
#> GSM627155     1  0.0000    0.93872 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627165     2  0.3531    0.89199 0.000 0.672 0.000 0.000 0.328 0.000
#> GSM627168     1  0.1082    0.90236 0.956 0.000 0.040 0.004 0.000 0.000
#> GSM627183     1  0.3302    0.66487 0.760 0.000 0.004 0.004 0.000 0.232
#> GSM627144     5  0.0291    0.80274 0.000 0.004 0.000 0.004 0.992 0.000
#> GSM627158     1  0.0000    0.93872 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627196     2  0.3383    0.92836 0.000 0.728 0.000 0.004 0.268 0.000
#> GSM627142     6  0.2772    0.77084 0.180 0.000 0.004 0.000 0.000 0.816
#> GSM627182     5  0.0146    0.80470 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM627202     1  0.0146    0.93639 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM627141     1  0.0000    0.93872 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627143     5  0.4045   -0.29810 0.000 0.428 0.000 0.008 0.564 0.000
#> GSM627145     6  0.0713    0.87461 0.000 0.028 0.000 0.000 0.000 0.972
#> GSM627152     3  0.2219    0.90316 0.136 0.000 0.864 0.000 0.000 0.000
#> GSM627200     1  0.0000    0.93872 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627159     6  0.4506    0.75786 0.172 0.020 0.036 0.024 0.000 0.748
#> GSM627164     4  0.0937    0.94535 0.000 0.040 0.000 0.960 0.000 0.000
#> GSM627138     1  0.0000    0.93872 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627175     2  0.3446    0.91382 0.000 0.692 0.000 0.000 0.308 0.000
#> GSM627150     5  0.0935    0.79401 0.000 0.004 0.000 0.000 0.964 0.032
#> GSM627166     3  0.2300    0.90026 0.144 0.000 0.856 0.000 0.000 0.000
#> GSM627186     4  0.1204    0.91996 0.000 0.000 0.056 0.944 0.000 0.000
#> GSM627139     5  0.6914    0.32132 0.000 0.292 0.072 0.036 0.504 0.096
#> GSM627181     2  0.3390    0.92255 0.000 0.704 0.000 0.000 0.296 0.000
#> GSM627205     5  0.2300    0.66218 0.000 0.144 0.000 0.000 0.856 0.000
#> GSM627214     5  0.1814    0.73196 0.000 0.100 0.000 0.000 0.900 0.000
#> GSM627180     5  0.0000    0.80518 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM627172     4  0.1480    0.93532 0.000 0.020 0.040 0.940 0.000 0.000
#> GSM627184     1  0.0000    0.93872 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627193     2  0.3565    0.92147 0.000 0.692 0.000 0.004 0.304 0.000
#> GSM627191     1  0.0000    0.93872 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627176     3  0.1794    0.86689 0.036 0.000 0.924 0.040 0.000 0.000
#> GSM627194     2  0.3782    0.85029 0.000 0.636 0.000 0.004 0.360 0.000
#> GSM627154     2  0.3287    0.87657 0.000 0.768 0.000 0.012 0.220 0.000
#> GSM627187     3  0.1501    0.82601 0.000 0.000 0.924 0.076 0.000 0.000
#> GSM627198     2  0.3383    0.92836 0.000 0.728 0.000 0.004 0.268 0.000
#> GSM627160     3  0.2135    0.90406 0.128 0.000 0.872 0.000 0.000 0.000
#> GSM627185     1  0.0000    0.93872 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627206     6  0.2051    0.82260 0.096 0.000 0.004 0.004 0.000 0.896
#> GSM627161     1  0.0000    0.93872 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627162     3  0.1501    0.82601 0.000 0.000 0.924 0.076 0.000 0.000
#> GSM627210     3  0.1765    0.87892 0.052 0.000 0.924 0.024 0.000 0.000
#> GSM627189     2  0.3426    0.92936 0.000 0.720 0.000 0.004 0.276 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>               n disease.state(p) age(p) other(p) k
#> ATC:skmeans 142           0.4464 0.1300  0.01018 2
#> ATC:skmeans 101           0.2178 0.9117  0.00372 3
#> ATC:skmeans 131           0.2186 0.0121  0.00779 4
#> ATC:skmeans 122           0.0667 0.1048  0.03099 5
#> ATC:skmeans 132           0.3295 0.1507  0.07444 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 146 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.781           0.922       0.965         0.4741 0.524   0.524
#> 3 3 0.715           0.831       0.897         0.2645 0.805   0.656
#> 4 4 0.678           0.547       0.796         0.2037 0.837   0.619
#> 5 5 0.679           0.554       0.701         0.0739 0.779   0.373
#> 6 6 0.704           0.562       0.755         0.0527 0.852   0.447

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM627128     2  0.6343     0.8301 0.160 0.840
#> GSM627110     1  0.5842     0.8213 0.860 0.140
#> GSM627132     1  0.0000     0.9576 1.000 0.000
#> GSM627107     2  0.0000     0.9635 0.000 1.000
#> GSM627103     2  0.0000     0.9635 0.000 1.000
#> GSM627114     1  0.0000     0.9576 1.000 0.000
#> GSM627134     2  0.0000     0.9635 0.000 1.000
#> GSM627137     2  0.0000     0.9635 0.000 1.000
#> GSM627148     2  0.0000     0.9635 0.000 1.000
#> GSM627101     2  0.0000     0.9635 0.000 1.000
#> GSM627130     2  0.2603     0.9320 0.044 0.956
#> GSM627071     2  0.6343     0.8301 0.160 0.840
#> GSM627118     2  0.0000     0.9635 0.000 1.000
#> GSM627094     2  0.0000     0.9635 0.000 1.000
#> GSM627122     1  0.0000     0.9576 1.000 0.000
#> GSM627115     2  0.0000     0.9635 0.000 1.000
#> GSM627125     2  0.0000     0.9635 0.000 1.000
#> GSM627174     1  0.9393     0.4307 0.644 0.356
#> GSM627102     2  0.0000     0.9635 0.000 1.000
#> GSM627073     2  0.0000     0.9635 0.000 1.000
#> GSM627108     2  0.0000     0.9635 0.000 1.000
#> GSM627126     1  0.0000     0.9576 1.000 0.000
#> GSM627078     2  0.0000     0.9635 0.000 1.000
#> GSM627090     1  0.1184     0.9458 0.984 0.016
#> GSM627099     2  0.0000     0.9635 0.000 1.000
#> GSM627105     2  0.0000     0.9635 0.000 1.000
#> GSM627117     2  0.6343     0.8301 0.160 0.840
#> GSM627121     2  0.0000     0.9635 0.000 1.000
#> GSM627127     2  0.0000     0.9635 0.000 1.000
#> GSM627087     2  0.0000     0.9635 0.000 1.000
#> GSM627089     1  0.8909     0.5531 0.692 0.308
#> GSM627092     2  0.0000     0.9635 0.000 1.000
#> GSM627076     1  0.0376     0.9550 0.996 0.004
#> GSM627136     1  0.0376     0.9550 0.996 0.004
#> GSM627081     2  0.0000     0.9635 0.000 1.000
#> GSM627091     2  0.0000     0.9635 0.000 1.000
#> GSM627097     2  0.1633     0.9468 0.024 0.976
#> GSM627072     2  0.0000     0.9635 0.000 1.000
#> GSM627080     1  0.0000     0.9576 1.000 0.000
#> GSM627088     1  0.0376     0.9550 0.996 0.004
#> GSM627109     1  0.0000     0.9576 1.000 0.000
#> GSM627111     1  0.0000     0.9576 1.000 0.000
#> GSM627113     1  0.0000     0.9576 1.000 0.000
#> GSM627133     2  0.0000     0.9635 0.000 1.000
#> GSM627177     2  0.6343     0.8301 0.160 0.840
#> GSM627086     2  0.0000     0.9635 0.000 1.000
#> GSM627095     1  0.0000     0.9576 1.000 0.000
#> GSM627079     2  0.6343     0.8301 0.160 0.840
#> GSM627082     1  0.0000     0.9576 1.000 0.000
#> GSM627074     1  0.0000     0.9576 1.000 0.000
#> GSM627077     1  0.0000     0.9576 1.000 0.000
#> GSM627093     1  0.0000     0.9576 1.000 0.000
#> GSM627120     2  0.0000     0.9635 0.000 1.000
#> GSM627124     2  0.0000     0.9635 0.000 1.000
#> GSM627075     2  0.0000     0.9635 0.000 1.000
#> GSM627085     2  0.0000     0.9635 0.000 1.000
#> GSM627119     1  0.0000     0.9576 1.000 0.000
#> GSM627116     2  0.6343     0.8301 0.160 0.840
#> GSM627084     1  0.0000     0.9576 1.000 0.000
#> GSM627096     2  0.0000     0.9635 0.000 1.000
#> GSM627100     2  0.6343     0.8301 0.160 0.840
#> GSM627112     2  0.6343     0.8301 0.160 0.840
#> GSM627083     1  0.0000     0.9576 1.000 0.000
#> GSM627098     1  0.0000     0.9576 1.000 0.000
#> GSM627104     1  0.0000     0.9576 1.000 0.000
#> GSM627131     1  0.0000     0.9576 1.000 0.000
#> GSM627106     2  0.0000     0.9635 0.000 1.000
#> GSM627123     1  0.0000     0.9576 1.000 0.000
#> GSM627129     2  0.0000     0.9635 0.000 1.000
#> GSM627216     2  0.0000     0.9635 0.000 1.000
#> GSM627212     2  0.0000     0.9635 0.000 1.000
#> GSM627190     2  0.6343     0.8301 0.160 0.840
#> GSM627169     2  0.6343     0.8301 0.160 0.840
#> GSM627167     2  0.0000     0.9635 0.000 1.000
#> GSM627192     1  0.0000     0.9576 1.000 0.000
#> GSM627203     2  0.0000     0.9635 0.000 1.000
#> GSM627151     2  0.6343     0.8301 0.160 0.840
#> GSM627163     1  0.0000     0.9576 1.000 0.000
#> GSM627211     2  0.0000     0.9635 0.000 1.000
#> GSM627171     2  0.0000     0.9635 0.000 1.000
#> GSM627209     2  0.0000     0.9635 0.000 1.000
#> GSM627135     1  0.0000     0.9576 1.000 0.000
#> GSM627170     2  0.0000     0.9635 0.000 1.000
#> GSM627178     1  0.0000     0.9576 1.000 0.000
#> GSM627199     2  0.6148     0.8382 0.152 0.848
#> GSM627213     2  0.0000     0.9635 0.000 1.000
#> GSM627140     1  0.7674     0.7038 0.776 0.224
#> GSM627149     1  0.0000     0.9576 1.000 0.000
#> GSM627147     2  0.0000     0.9635 0.000 1.000
#> GSM627195     2  0.0000     0.9635 0.000 1.000
#> GSM627204     2  0.0000     0.9635 0.000 1.000
#> GSM627207     2  0.0000     0.9635 0.000 1.000
#> GSM627157     1  0.0000     0.9576 1.000 0.000
#> GSM627201     2  0.0000     0.9635 0.000 1.000
#> GSM627146     2  0.0000     0.9635 0.000 1.000
#> GSM627156     2  0.0000     0.9635 0.000 1.000
#> GSM627188     1  0.0000     0.9576 1.000 0.000
#> GSM627197     2  0.0000     0.9635 0.000 1.000
#> GSM627173     2  0.0000     0.9635 0.000 1.000
#> GSM627179     2  0.0000     0.9635 0.000 1.000
#> GSM627208     2  0.0000     0.9635 0.000 1.000
#> GSM627215     2  0.0000     0.9635 0.000 1.000
#> GSM627153     2  0.0000     0.9635 0.000 1.000
#> GSM627155     1  0.0000     0.9576 1.000 0.000
#> GSM627165     2  0.0000     0.9635 0.000 1.000
#> GSM627168     1  0.0000     0.9576 1.000 0.000
#> GSM627183     1  0.0000     0.9576 1.000 0.000
#> GSM627144     2  0.0000     0.9635 0.000 1.000
#> GSM627158     1  0.0000     0.9576 1.000 0.000
#> GSM627196     2  0.0000     0.9635 0.000 1.000
#> GSM627142     1  0.1633     0.9394 0.976 0.024
#> GSM627182     2  0.0000     0.9635 0.000 1.000
#> GSM627202     1  0.0000     0.9576 1.000 0.000
#> GSM627141     1  0.0000     0.9576 1.000 0.000
#> GSM627143     2  0.0000     0.9635 0.000 1.000
#> GSM627145     2  0.6343     0.8301 0.160 0.840
#> GSM627152     1  0.0000     0.9576 1.000 0.000
#> GSM627200     1  0.0000     0.9576 1.000 0.000
#> GSM627159     1  0.5519     0.8346 0.872 0.128
#> GSM627164     2  0.0000     0.9635 0.000 1.000
#> GSM627138     1  0.0000     0.9576 1.000 0.000
#> GSM627175     2  0.0000     0.9635 0.000 1.000
#> GSM627150     2  0.0000     0.9635 0.000 1.000
#> GSM627166     1  0.0000     0.9576 1.000 0.000
#> GSM627186     2  0.5519     0.8606 0.128 0.872
#> GSM627139     2  0.6343     0.8301 0.160 0.840
#> GSM627181     2  0.0000     0.9635 0.000 1.000
#> GSM627205     2  0.0000     0.9635 0.000 1.000
#> GSM627214     2  0.0000     0.9635 0.000 1.000
#> GSM627180     2  0.0000     0.9635 0.000 1.000
#> GSM627172     2  0.6343     0.8301 0.160 0.840
#> GSM627184     1  0.0000     0.9576 1.000 0.000
#> GSM627193     2  0.0000     0.9635 0.000 1.000
#> GSM627191     1  0.0000     0.9576 1.000 0.000
#> GSM627176     2  0.9732     0.3566 0.404 0.596
#> GSM627194     2  0.0000     0.9635 0.000 1.000
#> GSM627154     2  0.0000     0.9635 0.000 1.000
#> GSM627187     1  0.7883     0.6882 0.764 0.236
#> GSM627198     2  0.0000     0.9635 0.000 1.000
#> GSM627160     1  0.0000     0.9576 1.000 0.000
#> GSM627185     1  0.0000     0.9576 1.000 0.000
#> GSM627206     1  0.8207     0.6538 0.744 0.256
#> GSM627161     1  0.0000     0.9576 1.000 0.000
#> GSM627162     1  0.9977     0.0746 0.528 0.472
#> GSM627210     1  0.0000     0.9576 1.000 0.000
#> GSM627189     2  0.0000     0.9635 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM627128     3  0.6299    -0.2802 0.000 0.476 0.524
#> GSM627110     3  0.4555     0.8507 0.200 0.000 0.800
#> GSM627132     1  0.0000     0.9685 1.000 0.000 0.000
#> GSM627107     2  0.4555     0.8199 0.000 0.800 0.200
#> GSM627103     2  0.0237     0.9130 0.000 0.996 0.004
#> GSM627114     3  0.4605     0.8512 0.204 0.000 0.796
#> GSM627134     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627137     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627148     2  0.4605     0.8184 0.000 0.796 0.204
#> GSM627101     2  0.4555     0.8199 0.000 0.800 0.200
#> GSM627130     2  0.6140     0.5549 0.000 0.596 0.404
#> GSM627071     3  0.0000     0.7646 0.000 0.000 1.000
#> GSM627118     2  0.1163     0.9049 0.000 0.972 0.028
#> GSM627094     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627122     3  0.4605     0.8512 0.204 0.000 0.796
#> GSM627115     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627125     2  0.4605     0.8184 0.000 0.796 0.204
#> GSM627174     3  0.1905     0.7807 0.028 0.016 0.956
#> GSM627102     2  0.0237     0.9130 0.000 0.996 0.004
#> GSM627073     2  0.4605     0.8184 0.000 0.796 0.204
#> GSM627108     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627126     1  0.0000     0.9685 1.000 0.000 0.000
#> GSM627078     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627090     3  0.0000     0.7646 0.000 0.000 1.000
#> GSM627099     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627105     2  0.4605     0.8184 0.000 0.796 0.204
#> GSM627117     3  0.1163     0.7638 0.000 0.028 0.972
#> GSM627121     2  0.4555     0.8199 0.000 0.800 0.200
#> GSM627127     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627087     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627089     3  0.0237     0.7657 0.004 0.000 0.996
#> GSM627092     2  0.0237     0.9130 0.000 0.996 0.004
#> GSM627076     3  0.0000     0.7646 0.000 0.000 1.000
#> GSM627136     3  0.4605     0.8512 0.204 0.000 0.796
#> GSM627081     2  0.4555     0.8199 0.000 0.800 0.200
#> GSM627091     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627097     2  0.5431     0.7234 0.000 0.716 0.284
#> GSM627072     2  0.4605     0.8184 0.000 0.796 0.204
#> GSM627080     1  0.0000     0.9685 1.000 0.000 0.000
#> GSM627088     3  0.4605     0.8512 0.204 0.000 0.796
#> GSM627109     3  0.6225     0.4934 0.432 0.000 0.568
#> GSM627111     1  0.0000     0.9685 1.000 0.000 0.000
#> GSM627113     3  0.4605     0.8512 0.204 0.000 0.796
#> GSM627133     2  0.0592     0.9113 0.000 0.988 0.012
#> GSM627177     3  0.0000     0.7646 0.000 0.000 1.000
#> GSM627086     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627095     1  0.0237     0.9641 0.996 0.000 0.004
#> GSM627079     3  0.0000     0.7646 0.000 0.000 1.000
#> GSM627082     3  0.4605     0.8512 0.204 0.000 0.796
#> GSM627074     3  0.4605     0.8512 0.204 0.000 0.796
#> GSM627077     3  0.4605     0.8512 0.204 0.000 0.796
#> GSM627093     3  0.4605     0.8512 0.204 0.000 0.796
#> GSM627120     2  0.1411     0.9023 0.000 0.964 0.036
#> GSM627124     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627075     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627085     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627119     3  0.4605     0.8512 0.204 0.000 0.796
#> GSM627116     3  0.0000     0.7646 0.000 0.000 1.000
#> GSM627084     3  0.4605     0.8512 0.204 0.000 0.796
#> GSM627096     2  0.1163     0.9049 0.000 0.972 0.028
#> GSM627100     3  0.0000     0.7646 0.000 0.000 1.000
#> GSM627112     3  0.5733     0.4904 0.000 0.324 0.676
#> GSM627083     3  0.4605     0.8512 0.204 0.000 0.796
#> GSM627098     3  0.4605     0.8512 0.204 0.000 0.796
#> GSM627104     3  0.4605     0.8512 0.204 0.000 0.796
#> GSM627131     3  0.4605     0.8512 0.204 0.000 0.796
#> GSM627106     2  0.4555     0.8199 0.000 0.800 0.200
#> GSM627123     1  0.0000     0.9685 1.000 0.000 0.000
#> GSM627129     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627216     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627212     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627190     3  0.1163     0.7638 0.000 0.028 0.972
#> GSM627169     2  0.5733     0.4892 0.000 0.676 0.324
#> GSM627167     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627192     1  0.0000     0.9685 1.000 0.000 0.000
#> GSM627203     2  0.4605     0.8184 0.000 0.796 0.204
#> GSM627151     2  0.6309     0.2856 0.000 0.504 0.496
#> GSM627163     1  0.0000     0.9685 1.000 0.000 0.000
#> GSM627211     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627171     2  0.1163     0.9049 0.000 0.972 0.028
#> GSM627209     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627135     1  0.0000     0.9685 1.000 0.000 0.000
#> GSM627170     2  0.1163     0.9049 0.000 0.972 0.028
#> GSM627178     3  0.4605     0.8512 0.204 0.000 0.796
#> GSM627199     2  0.5678     0.5072 0.000 0.684 0.316
#> GSM627213     2  0.0237     0.9130 0.000 0.996 0.004
#> GSM627140     3  0.5292     0.8348 0.172 0.028 0.800
#> GSM627149     1  0.0000     0.9685 1.000 0.000 0.000
#> GSM627147     2  0.0237     0.9130 0.000 0.996 0.004
#> GSM627195     2  0.4605     0.8184 0.000 0.796 0.204
#> GSM627204     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627207     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627157     3  0.4605     0.8512 0.204 0.000 0.796
#> GSM627201     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627146     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627156     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627188     1  0.0000     0.9685 1.000 0.000 0.000
#> GSM627197     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627173     2  0.0237     0.9130 0.000 0.996 0.004
#> GSM627179     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627208     2  0.1163     0.9049 0.000 0.972 0.028
#> GSM627215     2  0.4555     0.8199 0.000 0.800 0.200
#> GSM627153     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627155     1  0.0000     0.9685 1.000 0.000 0.000
#> GSM627165     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627168     3  0.4605     0.8512 0.204 0.000 0.796
#> GSM627183     3  0.4605     0.8512 0.204 0.000 0.796
#> GSM627144     2  0.4235     0.8301 0.000 0.824 0.176
#> GSM627158     1  0.0000     0.9685 1.000 0.000 0.000
#> GSM627196     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627142     3  0.0000     0.7646 0.000 0.000 1.000
#> GSM627182     2  0.4605     0.8184 0.000 0.796 0.204
#> GSM627202     3  0.4605     0.8512 0.204 0.000 0.796
#> GSM627141     3  0.4605     0.8512 0.204 0.000 0.796
#> GSM627143     2  0.4796     0.8062 0.000 0.780 0.220
#> GSM627145     3  0.0000     0.7646 0.000 0.000 1.000
#> GSM627152     3  0.4555     0.8507 0.200 0.000 0.800
#> GSM627200     3  0.4605     0.8512 0.204 0.000 0.796
#> GSM627159     3  0.0000     0.7646 0.000 0.000 1.000
#> GSM627164     2  0.0237     0.9130 0.000 0.996 0.004
#> GSM627138     1  0.0000     0.9685 1.000 0.000 0.000
#> GSM627175     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627150     2  0.4605     0.8184 0.000 0.796 0.204
#> GSM627166     3  0.4605     0.8512 0.204 0.000 0.796
#> GSM627186     2  0.4399     0.7363 0.000 0.812 0.188
#> GSM627139     3  0.6302    -0.2917 0.000 0.480 0.520
#> GSM627181     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627205     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627214     2  0.1163     0.9049 0.000 0.972 0.028
#> GSM627180     2  0.4605     0.8184 0.000 0.796 0.204
#> GSM627172     2  0.6225     0.1860 0.000 0.568 0.432
#> GSM627184     1  0.0000     0.9685 1.000 0.000 0.000
#> GSM627193     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627191     3  0.4605     0.8512 0.204 0.000 0.796
#> GSM627176     3  0.5292     0.8348 0.172 0.028 0.800
#> GSM627194     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627154     2  0.0237     0.9130 0.000 0.996 0.004
#> GSM627187     3  0.4555     0.8507 0.200 0.000 0.800
#> GSM627198     2  0.0000     0.9139 0.000 1.000 0.000
#> GSM627160     3  0.4555     0.8507 0.200 0.000 0.800
#> GSM627185     1  0.6062     0.0842 0.616 0.000 0.384
#> GSM627206     3  0.0237     0.7657 0.004 0.000 0.996
#> GSM627161     1  0.0000     0.9685 1.000 0.000 0.000
#> GSM627162     3  0.4733     0.8492 0.196 0.004 0.800
#> GSM627210     3  0.4555     0.8507 0.200 0.000 0.800
#> GSM627189     2  0.0000     0.9139 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM627128     4  0.4914    0.28913 0.000 0.312 0.012 0.676
#> GSM627110     3  0.0188    0.89726 0.000 0.004 0.996 0.000
#> GSM627132     1  0.0000    0.97296 1.000 0.000 0.000 0.000
#> GSM627107     4  0.4981    0.01050 0.000 0.464 0.000 0.536
#> GSM627103     4  0.0336    0.55567 0.000 0.008 0.000 0.992
#> GSM627114     3  0.0000    0.89729 0.000 0.000 1.000 0.000
#> GSM627134     4  0.0188    0.55667 0.000 0.004 0.000 0.996
#> GSM627137     2  0.4477    0.42413 0.000 0.688 0.000 0.312
#> GSM627148     4  0.4103    0.34483 0.000 0.256 0.000 0.744
#> GSM627101     4  0.4981    0.01050 0.000 0.464 0.000 0.536
#> GSM627130     4  0.4699    0.29185 0.000 0.320 0.004 0.676
#> GSM627071     3  0.4655    0.71143 0.000 0.312 0.684 0.004
#> GSM627118     4  0.4985    0.00848 0.000 0.468 0.000 0.532
#> GSM627094     4  0.3907    0.28769 0.000 0.232 0.000 0.768
#> GSM627122     3  0.0000    0.89729 0.000 0.000 1.000 0.000
#> GSM627115     4  0.4746    0.11512 0.000 0.368 0.000 0.632
#> GSM627125     4  0.4522    0.29541 0.000 0.320 0.000 0.680
#> GSM627174     3  0.2469    0.85183 0.000 0.108 0.892 0.000
#> GSM627102     2  0.4977    0.02350 0.000 0.540 0.000 0.460
#> GSM627073     4  0.0000    0.55663 0.000 0.000 0.000 1.000
#> GSM627108     2  0.4477    0.42413 0.000 0.688 0.000 0.312
#> GSM627126     1  0.0000    0.97296 1.000 0.000 0.000 0.000
#> GSM627078     2  0.4843    0.33147 0.000 0.604 0.000 0.396
#> GSM627090     3  0.1557    0.87595 0.000 0.056 0.944 0.000
#> GSM627099     2  0.4477    0.42413 0.000 0.688 0.000 0.312
#> GSM627105     4  0.0469    0.55111 0.000 0.012 0.000 0.988
#> GSM627117     3  0.4655    0.71107 0.000 0.312 0.684 0.004
#> GSM627121     4  0.0336    0.55415 0.000 0.008 0.000 0.992
#> GSM627127     2  0.4843    0.33324 0.000 0.604 0.000 0.396
#> GSM627087     4  0.3837    0.29059 0.000 0.224 0.000 0.776
#> GSM627089     3  0.4535    0.72985 0.000 0.292 0.704 0.004
#> GSM627092     2  0.4989    0.01253 0.000 0.528 0.000 0.472
#> GSM627076     3  0.0188    0.89726 0.000 0.004 0.996 0.000
#> GSM627136     3  0.3123    0.82473 0.000 0.156 0.844 0.000
#> GSM627081     4  0.0000    0.55663 0.000 0.000 0.000 1.000
#> GSM627091     4  0.4454    0.20297 0.000 0.308 0.000 0.692
#> GSM627097     2  0.4985    0.01772 0.000 0.532 0.000 0.468
#> GSM627072     4  0.4477    0.30023 0.000 0.312 0.000 0.688
#> GSM627080     1  0.0000    0.97296 1.000 0.000 0.000 0.000
#> GSM627088     3  0.3024    0.82966 0.000 0.148 0.852 0.000
#> GSM627109     3  0.4925    0.13634 0.428 0.000 0.572 0.000
#> GSM627111     1  0.0000    0.97296 1.000 0.000 0.000 0.000
#> GSM627113     3  0.0000    0.89729 0.000 0.000 1.000 0.000
#> GSM627133     4  0.0188    0.55667 0.000 0.004 0.000 0.996
#> GSM627177     3  0.4477    0.71483 0.000 0.312 0.688 0.000
#> GSM627086     4  0.4985    0.00848 0.000 0.468 0.000 0.532
#> GSM627095     1  0.0336    0.96801 0.992 0.000 0.008 0.000
#> GSM627079     3  0.4456    0.73896 0.000 0.280 0.716 0.004
#> GSM627082     3  0.0000    0.89729 0.000 0.000 1.000 0.000
#> GSM627074     3  0.0000    0.89729 0.000 0.000 1.000 0.000
#> GSM627077     3  0.0000    0.89729 0.000 0.000 1.000 0.000
#> GSM627093     3  0.0000    0.89729 0.000 0.000 1.000 0.000
#> GSM627120     4  0.0188    0.55667 0.000 0.004 0.000 0.996
#> GSM627124     2  0.4790    0.05727 0.000 0.620 0.000 0.380
#> GSM627075     2  0.4477    0.42413 0.000 0.688 0.000 0.312
#> GSM627085     2  0.4477    0.42413 0.000 0.688 0.000 0.312
#> GSM627119     3  0.0000    0.89729 0.000 0.000 1.000 0.000
#> GSM627116     3  0.4331    0.73548 0.000 0.288 0.712 0.000
#> GSM627084     3  0.0000    0.89729 0.000 0.000 1.000 0.000
#> GSM627096     4  0.3219    0.42267 0.000 0.164 0.000 0.836
#> GSM627100     3  0.4584    0.72296 0.000 0.300 0.696 0.004
#> GSM627112     2  0.6937   -0.14131 0.000 0.508 0.376 0.116
#> GSM627083     3  0.0000    0.89729 0.000 0.000 1.000 0.000
#> GSM627098     3  0.0000    0.89729 0.000 0.000 1.000 0.000
#> GSM627104     3  0.0000    0.89729 0.000 0.000 1.000 0.000
#> GSM627131     3  0.0000    0.89729 0.000 0.000 1.000 0.000
#> GSM627106     4  0.3024    0.43808 0.000 0.148 0.000 0.852
#> GSM627123     1  0.0188    0.97120 0.996 0.000 0.004 0.000
#> GSM627129     4  0.0188    0.55667 0.000 0.004 0.000 0.996
#> GSM627216     4  0.0188    0.55667 0.000 0.004 0.000 0.996
#> GSM627212     2  0.4477    0.42413 0.000 0.688 0.000 0.312
#> GSM627190     3  0.4477    0.71483 0.000 0.312 0.688 0.000
#> GSM627169     2  0.4981    0.02012 0.000 0.536 0.000 0.464
#> GSM627167     4  0.2408    0.49261 0.000 0.104 0.000 0.896
#> GSM627192     1  0.0000    0.97296 1.000 0.000 0.000 0.000
#> GSM627203     4  0.4454    0.30341 0.000 0.308 0.000 0.692
#> GSM627151     2  0.5399    0.01240 0.000 0.520 0.012 0.468
#> GSM627163     1  0.0000    0.97296 1.000 0.000 0.000 0.000
#> GSM627211     2  0.4477    0.42413 0.000 0.688 0.000 0.312
#> GSM627171     4  0.4500    0.30061 0.000 0.316 0.000 0.684
#> GSM627209     2  0.4477    0.42413 0.000 0.688 0.000 0.312
#> GSM627135     1  0.0188    0.97120 0.996 0.000 0.004 0.000
#> GSM627170     4  0.4985    0.00848 0.000 0.468 0.000 0.532
#> GSM627178     3  0.0000    0.89729 0.000 0.000 1.000 0.000
#> GSM627199     2  0.4977    0.02350 0.000 0.540 0.000 0.460
#> GSM627213     4  0.0188    0.55667 0.000 0.004 0.000 0.996
#> GSM627140     3  0.0188    0.89726 0.000 0.004 0.996 0.000
#> GSM627149     1  0.0188    0.97120 0.996 0.000 0.004 0.000
#> GSM627147     2  0.4817    0.05467 0.000 0.612 0.000 0.388
#> GSM627195     4  0.0000    0.55663 0.000 0.000 0.000 1.000
#> GSM627204     2  0.4477    0.42413 0.000 0.688 0.000 0.312
#> GSM627207     2  0.4477    0.42413 0.000 0.688 0.000 0.312
#> GSM627157     3  0.0000    0.89729 0.000 0.000 1.000 0.000
#> GSM627201     2  0.4855    0.27066 0.000 0.600 0.000 0.400
#> GSM627146     4  0.0188    0.55667 0.000 0.004 0.000 0.996
#> GSM627156     4  0.3942    0.28609 0.000 0.236 0.000 0.764
#> GSM627188     1  0.0000    0.97296 1.000 0.000 0.000 0.000
#> GSM627197     2  0.4543    0.41386 0.000 0.676 0.000 0.324
#> GSM627173     4  0.4933    0.07563 0.000 0.432 0.000 0.568
#> GSM627179     2  0.4477    0.42413 0.000 0.688 0.000 0.312
#> GSM627208     4  0.4985    0.00848 0.000 0.468 0.000 0.532
#> GSM627215     4  0.0000    0.55663 0.000 0.000 0.000 1.000
#> GSM627153     2  0.4477    0.42413 0.000 0.688 0.000 0.312
#> GSM627155     1  0.0000    0.97296 1.000 0.000 0.000 0.000
#> GSM627165     4  0.4994   -0.01482 0.000 0.480 0.000 0.520
#> GSM627168     3  0.0188    0.89726 0.000 0.004 0.996 0.000
#> GSM627183     3  0.0000    0.89729 0.000 0.000 1.000 0.000
#> GSM627144     4  0.1940    0.49520 0.000 0.076 0.000 0.924
#> GSM627158     1  0.0000    0.97296 1.000 0.000 0.000 0.000
#> GSM627196     2  0.4477    0.42413 0.000 0.688 0.000 0.312
#> GSM627142     3  0.4535    0.72985 0.000 0.292 0.704 0.004
#> GSM627182     4  0.0000    0.55663 0.000 0.000 0.000 1.000
#> GSM627202     3  0.0000    0.89729 0.000 0.000 1.000 0.000
#> GSM627141     3  0.0000    0.89729 0.000 0.000 1.000 0.000
#> GSM627143     4  0.4543    0.29229 0.000 0.324 0.000 0.676
#> GSM627145     3  0.4608    0.71931 0.000 0.304 0.692 0.004
#> GSM627152     3  0.0188    0.89726 0.000 0.004 0.996 0.000
#> GSM627200     3  0.0000    0.89729 0.000 0.000 1.000 0.000
#> GSM627159     3  0.2469    0.85174 0.000 0.108 0.892 0.000
#> GSM627164     2  0.4981    0.02012 0.000 0.536 0.000 0.464
#> GSM627138     1  0.0000    0.97296 1.000 0.000 0.000 0.000
#> GSM627175     4  0.4985    0.00848 0.000 0.468 0.000 0.532
#> GSM627150     4  0.4477    0.30023 0.000 0.312 0.000 0.688
#> GSM627166     3  0.0000    0.89729 0.000 0.000 1.000 0.000
#> GSM627186     2  0.5151    0.02015 0.000 0.532 0.004 0.464
#> GSM627139     4  0.4643    0.26960 0.000 0.344 0.000 0.656
#> GSM627181     4  0.4985    0.00848 0.000 0.468 0.000 0.532
#> GSM627205     4  0.4985    0.00848 0.000 0.468 0.000 0.532
#> GSM627214     4  0.4985    0.00848 0.000 0.468 0.000 0.532
#> GSM627180     4  0.0000    0.55663 0.000 0.000 0.000 1.000
#> GSM627172     2  0.6898    0.04662 0.000 0.524 0.116 0.360
#> GSM627184     1  0.0000    0.97296 1.000 0.000 0.000 0.000
#> GSM627193     4  0.3610    0.32539 0.000 0.200 0.000 0.800
#> GSM627191     3  0.0000    0.89729 0.000 0.000 1.000 0.000
#> GSM627176     3  0.0188    0.89726 0.000 0.004 0.996 0.000
#> GSM627194     4  0.1022    0.54105 0.000 0.032 0.000 0.968
#> GSM627154     2  0.4804    0.05628 0.000 0.616 0.000 0.384
#> GSM627187     3  0.0188    0.89726 0.000 0.004 0.996 0.000
#> GSM627198     2  0.4585    0.40053 0.000 0.668 0.000 0.332
#> GSM627160     3  0.0188    0.89726 0.000 0.004 0.996 0.000
#> GSM627185     1  0.4804    0.42619 0.616 0.000 0.384 0.000
#> GSM627206     3  0.4356    0.73234 0.000 0.292 0.708 0.000
#> GSM627161     1  0.0000    0.97296 1.000 0.000 0.000 0.000
#> GSM627162     3  0.0188    0.89726 0.000 0.004 0.996 0.000
#> GSM627210     3  0.0188    0.89726 0.000 0.004 0.996 0.000
#> GSM627189     2  0.4843    0.33324 0.000 0.604 0.000 0.396

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM627128     3  0.1908     0.4226 0.000 0.000 0.908 0.000 0.092
#> GSM627110     4  0.1908     0.5900 0.000 0.000 0.092 0.908 0.000
#> GSM627132     1  0.0000     0.8108 1.000 0.000 0.000 0.000 0.000
#> GSM627107     5  0.1626     0.7518 0.000 0.044 0.016 0.000 0.940
#> GSM627103     5  0.0451     0.7677 0.000 0.008 0.004 0.000 0.988
#> GSM627114     3  0.6207     0.3572 0.000 0.140 0.460 0.400 0.000
#> GSM627134     5  0.0162     0.7685 0.000 0.004 0.000 0.000 0.996
#> GSM627137     2  0.4278     0.7861 0.000 0.548 0.000 0.000 0.452
#> GSM627148     5  0.4192     0.1317 0.000 0.000 0.404 0.000 0.596
#> GSM627101     5  0.1522     0.7509 0.000 0.044 0.012 0.000 0.944
#> GSM627130     3  0.2694     0.3978 0.000 0.076 0.884 0.000 0.040
#> GSM627071     3  0.0162     0.4679 0.000 0.000 0.996 0.000 0.004
#> GSM627118     5  0.4307    -0.7163 0.000 0.500 0.000 0.000 0.500
#> GSM627094     2  0.4161     0.7645 0.000 0.608 0.000 0.000 0.392
#> GSM627122     3  0.4726     0.4028 0.000 0.020 0.580 0.400 0.000
#> GSM627115     2  0.4045     0.7915 0.000 0.644 0.000 0.000 0.356
#> GSM627125     3  0.4294     0.1048 0.000 0.000 0.532 0.000 0.468
#> GSM627174     3  0.3177     0.4709 0.000 0.000 0.792 0.208 0.000
#> GSM627102     4  0.6351     0.5820 0.000 0.112 0.256 0.596 0.036
#> GSM627073     5  0.1544     0.7179 0.000 0.000 0.068 0.000 0.932
#> GSM627108     2  0.3983     0.7928 0.000 0.660 0.000 0.000 0.340
#> GSM627126     1  0.0000     0.8108 1.000 0.000 0.000 0.000 0.000
#> GSM627078     2  0.4114     0.7757 0.000 0.624 0.000 0.000 0.376
#> GSM627090     3  0.3752     0.4481 0.000 0.000 0.708 0.292 0.000
#> GSM627099     2  0.4227     0.8080 0.000 0.580 0.000 0.000 0.420
#> GSM627105     5  0.2605     0.6265 0.000 0.000 0.148 0.000 0.852
#> GSM627117     4  0.4268     0.5097 0.000 0.000 0.444 0.556 0.000
#> GSM627121     5  0.0798     0.7697 0.000 0.008 0.016 0.000 0.976
#> GSM627127     5  0.4291    -0.6143 0.000 0.464 0.000 0.000 0.536
#> GSM627087     2  0.4210     0.7543 0.000 0.588 0.000 0.000 0.412
#> GSM627089     3  0.0566     0.4736 0.000 0.000 0.984 0.012 0.004
#> GSM627092     4  0.6546     0.5785 0.000 0.112 0.244 0.592 0.052
#> GSM627076     3  0.4182     0.4072 0.000 0.000 0.600 0.400 0.000
#> GSM627136     3  0.3081     0.4775 0.000 0.012 0.832 0.156 0.000
#> GSM627081     5  0.0510     0.7693 0.000 0.000 0.016 0.000 0.984
#> GSM627091     2  0.4161     0.7647 0.000 0.608 0.000 0.000 0.392
#> GSM627097     3  0.4434     0.1215 0.000 0.004 0.536 0.000 0.460
#> GSM627072     3  0.4287     0.1231 0.000 0.000 0.540 0.000 0.460
#> GSM627080     1  0.0000     0.8108 1.000 0.000 0.000 0.000 0.000
#> GSM627088     3  0.3123     0.4775 0.000 0.012 0.828 0.160 0.000
#> GSM627109     1  0.7557     0.4271 0.404 0.340 0.056 0.200 0.000
#> GSM627111     1  0.0000     0.8108 1.000 0.000 0.000 0.000 0.000
#> GSM627113     1  0.7909     0.3701 0.368 0.340 0.088 0.204 0.000
#> GSM627133     5  0.0290     0.7678 0.000 0.008 0.000 0.000 0.992
#> GSM627177     3  0.0162     0.4690 0.000 0.000 0.996 0.004 0.000
#> GSM627086     2  0.4278     0.7861 0.000 0.548 0.000 0.000 0.452
#> GSM627095     1  0.4135     0.7018 0.656 0.340 0.000 0.004 0.000
#> GSM627079     3  0.0771     0.4759 0.000 0.000 0.976 0.020 0.004
#> GSM627082     3  0.6485     0.3652 0.000 0.196 0.460 0.344 0.000
#> GSM627074     4  0.4863     0.5230 0.000 0.204 0.088 0.708 0.000
#> GSM627077     3  0.6485     0.3652 0.000 0.196 0.460 0.344 0.000
#> GSM627093     4  0.4280     0.4526 0.000 0.140 0.088 0.772 0.000
#> GSM627120     5  0.0324     0.7691 0.000 0.004 0.004 0.000 0.992
#> GSM627124     2  0.6105     0.4679 0.000 0.600 0.212 0.008 0.180
#> GSM627075     2  0.3983     0.7928 0.000 0.660 0.000 0.000 0.340
#> GSM627085     2  0.4210     0.8097 0.000 0.588 0.000 0.000 0.412
#> GSM627119     4  0.4280     0.4526 0.000 0.140 0.088 0.772 0.000
#> GSM627116     3  0.0609     0.4744 0.000 0.000 0.980 0.020 0.000
#> GSM627084     3  0.6470     0.3648 0.000 0.192 0.460 0.348 0.000
#> GSM627096     5  0.4045    -0.2710 0.000 0.356 0.000 0.000 0.644
#> GSM627100     3  0.0324     0.4701 0.000 0.000 0.992 0.004 0.004
#> GSM627112     4  0.4310     0.5225 0.000 0.004 0.392 0.604 0.000
#> GSM627083     3  0.6498     0.3256 0.000 0.340 0.460 0.200 0.000
#> GSM627098     3  0.6498     0.3256 0.000 0.340 0.460 0.200 0.000
#> GSM627104     4  0.3551     0.5960 0.000 0.136 0.044 0.820 0.000
#> GSM627131     3  0.6511     0.3641 0.000 0.204 0.460 0.336 0.000
#> GSM627106     5  0.1386     0.7605 0.000 0.032 0.016 0.000 0.952
#> GSM627123     1  0.4135     0.7018 0.656 0.340 0.000 0.004 0.000
#> GSM627129     5  0.0162     0.7685 0.000 0.004 0.000 0.000 0.996
#> GSM627216     5  0.0290     0.7678 0.000 0.008 0.000 0.000 0.992
#> GSM627212     2  0.4227     0.8072 0.000 0.580 0.000 0.000 0.420
#> GSM627190     4  0.4268     0.5097 0.000 0.000 0.444 0.556 0.000
#> GSM627169     4  0.6351     0.5820 0.000 0.112 0.256 0.596 0.036
#> GSM627167     2  0.4451     0.7484 0.000 0.504 0.004 0.000 0.492
#> GSM627192     1  0.0000     0.8108 1.000 0.000 0.000 0.000 0.000
#> GSM627203     3  0.4287     0.1231 0.000 0.000 0.540 0.000 0.460
#> GSM627151     3  0.5278     0.1588 0.000 0.004 0.536 0.040 0.420
#> GSM627163     1  0.0000     0.8108 1.000 0.000 0.000 0.000 0.000
#> GSM627211     2  0.4201     0.8101 0.000 0.592 0.000 0.000 0.408
#> GSM627171     2  0.6897     0.3989 0.000 0.532 0.256 0.036 0.176
#> GSM627209     2  0.4219     0.8084 0.000 0.584 0.000 0.000 0.416
#> GSM627135     1  0.3983     0.7035 0.660 0.340 0.000 0.000 0.000
#> GSM627170     5  0.1478     0.7277 0.000 0.064 0.000 0.000 0.936
#> GSM627178     3  0.6210     0.3554 0.000 0.140 0.456 0.404 0.000
#> GSM627199     4  0.6002     0.5657 0.000 0.064 0.304 0.596 0.036
#> GSM627213     5  0.3336     0.2616 0.000 0.228 0.000 0.000 0.772
#> GSM627140     4  0.0162     0.6234 0.000 0.000 0.004 0.996 0.000
#> GSM627149     1  0.3983     0.7035 0.660 0.340 0.000 0.000 0.000
#> GSM627147     2  0.6915     0.4215 0.000 0.564 0.212 0.056 0.168
#> GSM627195     5  0.0510     0.7693 0.000 0.000 0.016 0.000 0.984
#> GSM627204     2  0.3983     0.7928 0.000 0.660 0.000 0.000 0.340
#> GSM627207     2  0.3983     0.7928 0.000 0.660 0.000 0.000 0.340
#> GSM627157     1  0.7909     0.3701 0.368 0.340 0.088 0.204 0.000
#> GSM627201     2  0.4278     0.7861 0.000 0.548 0.000 0.000 0.452
#> GSM627146     5  0.4256    -0.6250 0.000 0.436 0.000 0.000 0.564
#> GSM627156     2  0.5206     0.7248 0.000 0.572 0.004 0.040 0.384
#> GSM627188     1  0.0000     0.8108 1.000 0.000 0.000 0.000 0.000
#> GSM627197     2  0.4273     0.7910 0.000 0.552 0.000 0.000 0.448
#> GSM627173     4  0.6867     0.5629 0.000 0.112 0.196 0.592 0.100
#> GSM627179     2  0.4088     0.8045 0.000 0.632 0.000 0.000 0.368
#> GSM627208     5  0.1357     0.7443 0.000 0.048 0.004 0.000 0.948
#> GSM627215     5  0.0510     0.7693 0.000 0.000 0.016 0.000 0.984
#> GSM627153     2  0.4227     0.8080 0.000 0.580 0.000 0.000 0.420
#> GSM627155     1  0.0000     0.8108 1.000 0.000 0.000 0.000 0.000
#> GSM627165     2  0.4278     0.7861 0.000 0.548 0.000 0.000 0.452
#> GSM627168     3  0.4547     0.4050 0.000 0.012 0.588 0.400 0.000
#> GSM627183     3  0.6207     0.3572 0.000 0.140 0.460 0.400 0.000
#> GSM627144     5  0.3432     0.6216 0.000 0.040 0.132 0.000 0.828
#> GSM627158     1  0.0000     0.8108 1.000 0.000 0.000 0.000 0.000
#> GSM627196     2  0.4249     0.8015 0.000 0.568 0.000 0.000 0.432
#> GSM627142     3  0.0566     0.4736 0.000 0.000 0.984 0.012 0.004
#> GSM627182     5  0.0510     0.7693 0.000 0.000 0.016 0.000 0.984
#> GSM627202     3  0.6523     0.3276 0.000 0.332 0.460 0.208 0.000
#> GSM627141     3  0.6207     0.3572 0.000 0.140 0.460 0.400 0.000
#> GSM627143     3  0.4306     0.0746 0.000 0.000 0.508 0.000 0.492
#> GSM627145     3  0.0162     0.4679 0.000 0.000 0.996 0.000 0.004
#> GSM627152     4  0.1908     0.5900 0.000 0.000 0.092 0.908 0.000
#> GSM627200     3  0.6207     0.3572 0.000 0.140 0.460 0.400 0.000
#> GSM627159     3  0.3143     0.4712 0.000 0.000 0.796 0.204 0.000
#> GSM627164     4  0.6351     0.5820 0.000 0.112 0.256 0.596 0.036
#> GSM627138     1  0.0000     0.8108 1.000 0.000 0.000 0.000 0.000
#> GSM627175     2  0.4278     0.7861 0.000 0.548 0.000 0.000 0.452
#> GSM627150     3  0.4306     0.0733 0.000 0.000 0.508 0.000 0.492
#> GSM627166     4  0.4280     0.4526 0.000 0.140 0.088 0.772 0.000
#> GSM627186     4  0.6351     0.5820 0.000 0.112 0.256 0.596 0.036
#> GSM627139     3  0.4283     0.1298 0.000 0.000 0.544 0.000 0.456
#> GSM627181     2  0.4278     0.7861 0.000 0.548 0.000 0.000 0.452
#> GSM627205     5  0.3661     0.1909 0.000 0.276 0.000 0.000 0.724
#> GSM627214     2  0.4300     0.7480 0.000 0.524 0.000 0.000 0.476
#> GSM627180     5  0.0510     0.7693 0.000 0.000 0.016 0.000 0.984
#> GSM627172     4  0.4436     0.5205 0.000 0.008 0.396 0.596 0.000
#> GSM627184     1  0.0000     0.8108 1.000 0.000 0.000 0.000 0.000
#> GSM627193     5  0.2020     0.6453 0.000 0.100 0.000 0.000 0.900
#> GSM627191     3  0.6233     0.3583 0.000 0.144 0.460 0.396 0.000
#> GSM627176     4  0.1197     0.6206 0.000 0.000 0.048 0.952 0.000
#> GSM627194     5  0.0703     0.7636 0.000 0.024 0.000 0.000 0.976
#> GSM627154     2  0.5765     0.2700 0.000 0.488 0.424 0.000 0.088
#> GSM627187     4  0.1197     0.6206 0.000 0.000 0.048 0.952 0.000
#> GSM627198     2  0.4278     0.7867 0.000 0.548 0.000 0.000 0.452
#> GSM627160     4  0.1851     0.5935 0.000 0.000 0.088 0.912 0.000
#> GSM627185     1  0.6576     0.5117 0.468 0.340 0.004 0.188 0.000
#> GSM627206     3  0.0510     0.4735 0.000 0.000 0.984 0.016 0.000
#> GSM627161     1  0.0000     0.8108 1.000 0.000 0.000 0.000 0.000
#> GSM627162     4  0.1197     0.6206 0.000 0.000 0.048 0.952 0.000
#> GSM627210     4  0.1121     0.6209 0.000 0.000 0.044 0.956 0.000
#> GSM627189     2  0.4273     0.7772 0.000 0.552 0.000 0.000 0.448

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM627128     6  0.4201     0.6803 0.000 0.000 0.036 0.000 0.300 0.664
#> GSM627110     3  0.3607     0.4774 0.000 0.000 0.652 0.348 0.000 0.000
#> GSM627132     1  0.0000     0.8591 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627107     5  0.3076     0.6132 0.000 0.240 0.000 0.000 0.760 0.000
#> GSM627103     5  0.5760     0.6685 0.000 0.128 0.000 0.016 0.528 0.328
#> GSM627114     3  0.1141     0.6963 0.000 0.000 0.948 0.000 0.000 0.052
#> GSM627134     5  0.5480     0.6731 0.000 0.144 0.000 0.000 0.528 0.328
#> GSM627137     2  0.0000     0.8106 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627148     5  0.3144     0.4770 0.000 0.016 0.000 0.004 0.808 0.172
#> GSM627101     5  0.3351     0.5782 0.000 0.288 0.000 0.000 0.712 0.000
#> GSM627130     6  0.4320     0.6804 0.000 0.004 0.036 0.000 0.296 0.664
#> GSM627071     6  0.4368     0.6811 0.000 0.000 0.048 0.000 0.296 0.656
#> GSM627118     2  0.0937     0.7901 0.000 0.960 0.000 0.000 0.040 0.000
#> GSM627094     2  0.6562     0.0809 0.000 0.436 0.000 0.040 0.196 0.328
#> GSM627122     3  0.3076     0.5413 0.000 0.000 0.760 0.000 0.000 0.240
#> GSM627115     2  0.4732     0.4469 0.000 0.620 0.000 0.016 0.036 0.328
#> GSM627125     6  0.3706     0.6114 0.000 0.000 0.000 0.000 0.380 0.620
#> GSM627174     3  0.4097    -0.0410 0.000 0.000 0.500 0.000 0.008 0.492
#> GSM627102     4  0.1267     0.7267 0.000 0.000 0.000 0.940 0.000 0.060
#> GSM627073     5  0.2260     0.6785 0.000 0.140 0.000 0.000 0.860 0.000
#> GSM627108     2  0.0458     0.8036 0.000 0.984 0.000 0.016 0.000 0.000
#> GSM627126     1  0.0000     0.8591 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627078     2  0.1625     0.7874 0.000 0.928 0.000 0.012 0.060 0.000
#> GSM627090     3  0.4717     0.1919 0.000 0.000 0.580 0.000 0.056 0.364
#> GSM627099     2  0.0000     0.8106 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627105     5  0.3746     0.6039 0.000 0.140 0.000 0.000 0.780 0.080
#> GSM627117     6  0.5171    -0.1395 0.000 0.000 0.088 0.416 0.000 0.496
#> GSM627121     5  0.2631     0.6569 0.000 0.180 0.000 0.000 0.820 0.000
#> GSM627127     2  0.4905     0.4700 0.000 0.672 0.000 0.004 0.164 0.160
#> GSM627087     2  0.6358    -0.0444 0.000 0.416 0.000 0.016 0.240 0.328
#> GSM627089     6  0.4606     0.6784 0.000 0.000 0.076 0.000 0.268 0.656
#> GSM627092     4  0.3647     0.5202 0.000 0.000 0.000 0.640 0.000 0.360
#> GSM627076     3  0.4284     0.4456 0.000 0.000 0.688 0.000 0.056 0.256
#> GSM627136     6  0.3868     0.0565 0.000 0.000 0.496 0.000 0.000 0.504
#> GSM627081     5  0.2260     0.6785 0.000 0.140 0.000 0.000 0.860 0.000
#> GSM627091     2  0.5090     0.5134 0.000 0.672 0.000 0.016 0.144 0.168
#> GSM627097     6  0.0777     0.4648 0.000 0.000 0.000 0.004 0.024 0.972
#> GSM627072     6  0.3531     0.6452 0.000 0.000 0.000 0.000 0.328 0.672
#> GSM627080     1  0.0000     0.8591 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627088     6  0.3868     0.0590 0.000 0.000 0.496 0.000 0.000 0.504
#> GSM627109     3  0.6315     0.2641 0.216 0.000 0.576 0.060 0.140 0.008
#> GSM627111     1  0.0000     0.8591 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627113     3  0.4542     0.5896 0.036 0.000 0.756 0.060 0.140 0.008
#> GSM627133     5  0.5760     0.6685 0.000 0.128 0.000 0.016 0.528 0.328
#> GSM627177     6  0.4915     0.6235 0.000 0.000 0.188 0.000 0.156 0.656
#> GSM627086     2  0.0000     0.8106 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627095     1  0.6688     0.4354 0.480 0.000 0.312 0.060 0.140 0.008
#> GSM627079     6  0.4918     0.6297 0.000 0.000 0.184 0.000 0.160 0.656
#> GSM627082     3  0.2782     0.6897 0.000 0.000 0.876 0.024 0.032 0.068
#> GSM627074     3  0.5095     0.5442 0.000 0.000 0.632 0.256 0.104 0.008
#> GSM627077     3  0.2411     0.6944 0.000 0.000 0.900 0.024 0.032 0.044
#> GSM627093     3  0.1124     0.6955 0.000 0.000 0.956 0.036 0.000 0.008
#> GSM627120     5  0.5480     0.6731 0.000 0.144 0.000 0.000 0.528 0.328
#> GSM627124     2  0.5946     0.0235 0.000 0.436 0.000 0.336 0.000 0.228
#> GSM627075     2  0.1391     0.7962 0.000 0.944 0.000 0.016 0.040 0.000
#> GSM627085     2  0.1010     0.7995 0.000 0.960 0.000 0.004 0.036 0.000
#> GSM627119     3  0.1265     0.6939 0.000 0.000 0.948 0.044 0.000 0.008
#> GSM627116     6  0.3309     0.4856 0.000 0.000 0.280 0.000 0.000 0.720
#> GSM627084     3  0.2328     0.6954 0.000 0.000 0.904 0.020 0.032 0.044
#> GSM627096     2  0.5934    -0.0621 0.000 0.444 0.000 0.000 0.328 0.228
#> GSM627100     6  0.4247     0.6816 0.000 0.000 0.040 0.000 0.296 0.664
#> GSM627112     4  0.3747     0.2936 0.000 0.000 0.000 0.604 0.000 0.396
#> GSM627083     3  0.4426     0.6392 0.000 0.000 0.756 0.060 0.140 0.044
#> GSM627098     3  0.4426     0.6392 0.000 0.000 0.756 0.060 0.140 0.044
#> GSM627104     3  0.5520     0.2613 0.000 0.000 0.448 0.444 0.100 0.008
#> GSM627131     3  0.2565     0.6933 0.000 0.000 0.892 0.032 0.032 0.044
#> GSM627106     5  0.2260     0.6785 0.000 0.140 0.000 0.000 0.860 0.000
#> GSM627123     1  0.6688     0.4354 0.480 0.000 0.312 0.060 0.140 0.008
#> GSM627129     5  0.5480     0.6731 0.000 0.144 0.000 0.000 0.528 0.328
#> GSM627216     5  0.5480     0.6731 0.000 0.144 0.000 0.000 0.528 0.328
#> GSM627212     2  0.1082     0.7982 0.000 0.956 0.000 0.004 0.040 0.000
#> GSM627190     4  0.5666     0.1120 0.000 0.000 0.156 0.456 0.000 0.388
#> GSM627169     4  0.1267     0.7267 0.000 0.000 0.000 0.940 0.000 0.060
#> GSM627167     2  0.6218     0.4231 0.000 0.568 0.000 0.204 0.060 0.168
#> GSM627192     1  0.0000     0.8591 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627203     5  0.3756    -0.2327 0.000 0.000 0.000 0.000 0.600 0.400
#> GSM627151     6  0.0603     0.4719 0.000 0.000 0.000 0.004 0.016 0.980
#> GSM627163     1  0.0000     0.8591 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627211     2  0.0000     0.8106 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627171     6  0.6023    -0.3230 0.000 0.260 0.000 0.320 0.000 0.420
#> GSM627209     2  0.0000     0.8106 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627135     1  0.6322     0.4924 0.532 0.000 0.268 0.060 0.140 0.000
#> GSM627170     2  0.3464     0.3461 0.000 0.688 0.000 0.000 0.312 0.000
#> GSM627178     3  0.0260     0.7037 0.000 0.000 0.992 0.000 0.000 0.008
#> GSM627199     4  0.1814     0.7071 0.000 0.000 0.000 0.900 0.000 0.100
#> GSM627213     5  0.5665     0.6391 0.000 0.172 0.000 0.000 0.500 0.328
#> GSM627140     4  0.2912     0.4773 0.000 0.000 0.216 0.784 0.000 0.000
#> GSM627149     1  0.6322     0.4924 0.532 0.000 0.268 0.060 0.140 0.000
#> GSM627147     4  0.5347     0.1640 0.000 0.384 0.000 0.504 0.000 0.112
#> GSM627195     5  0.2260     0.6785 0.000 0.140 0.000 0.000 0.860 0.000
#> GSM627204     2  0.0405     0.8076 0.000 0.988 0.000 0.008 0.004 0.000
#> GSM627207     2  0.0000     0.8106 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627157     3  0.4542     0.5896 0.036 0.000 0.756 0.060 0.140 0.008
#> GSM627201     2  0.0000     0.8106 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627146     2  0.6131    -0.3193 0.000 0.340 0.000 0.000 0.332 0.328
#> GSM627156     4  0.6982     0.0572 0.000 0.256 0.000 0.356 0.060 0.328
#> GSM627188     1  0.0000     0.8591 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627197     2  0.0937     0.7986 0.000 0.960 0.000 0.000 0.040 0.000
#> GSM627173     4  0.2553     0.6817 0.000 0.000 0.000 0.848 0.008 0.144
#> GSM627179     2  0.0000     0.8106 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627208     5  0.3868     0.1999 0.000 0.496 0.000 0.000 0.504 0.000
#> GSM627215     5  0.5451     0.6748 0.000 0.140 0.000 0.000 0.532 0.328
#> GSM627153     2  0.0000     0.8106 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627155     1  0.0000     0.8591 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627165     2  0.0000     0.8106 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627168     3  0.3175     0.5198 0.000 0.000 0.744 0.000 0.000 0.256
#> GSM627183     3  0.1007     0.6985 0.000 0.000 0.956 0.000 0.000 0.044
#> GSM627144     5  0.5760     0.6685 0.000 0.128 0.000 0.016 0.528 0.328
#> GSM627158     1  0.0000     0.8591 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627196     2  0.0000     0.8106 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627142     6  0.4247     0.6816 0.000 0.000 0.040 0.000 0.296 0.664
#> GSM627182     5  0.2872     0.6823 0.000 0.140 0.000 0.000 0.836 0.024
#> GSM627202     3  0.4349     0.6438 0.000 0.000 0.764 0.060 0.132 0.044
#> GSM627141     3  0.1007     0.6985 0.000 0.000 0.956 0.000 0.000 0.044
#> GSM627143     6  0.0632     0.4747 0.000 0.000 0.000 0.000 0.024 0.976
#> GSM627145     6  0.4247     0.6816 0.000 0.000 0.040 0.000 0.296 0.664
#> GSM627152     3  0.3607     0.4774 0.000 0.000 0.652 0.348 0.000 0.000
#> GSM627200     3  0.0260     0.7041 0.000 0.000 0.992 0.000 0.000 0.008
#> GSM627159     3  0.4856    -0.1355 0.000 0.000 0.480 0.000 0.056 0.464
#> GSM627164     4  0.1267     0.7267 0.000 0.000 0.000 0.940 0.000 0.060
#> GSM627138     1  0.0000     0.8591 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627175     2  0.0000     0.8106 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627150     5  0.3862    -0.4132 0.000 0.000 0.000 0.000 0.524 0.476
#> GSM627166     3  0.1124     0.6955 0.000 0.000 0.956 0.036 0.000 0.008
#> GSM627186     4  0.1267     0.7267 0.000 0.000 0.000 0.940 0.000 0.060
#> GSM627139     6  0.3446     0.6601 0.000 0.000 0.000 0.000 0.308 0.692
#> GSM627181     2  0.0000     0.8106 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627205     2  0.2092     0.7216 0.000 0.876 0.000 0.000 0.124 0.000
#> GSM627214     2  0.0000     0.8106 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM627180     5  0.2790     0.6870 0.000 0.140 0.000 0.000 0.840 0.020
#> GSM627172     4  0.1444     0.7218 0.000 0.000 0.000 0.928 0.000 0.072
#> GSM627184     1  0.0000     0.8591 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627193     5  0.5480     0.6731 0.000 0.144 0.000 0.000 0.528 0.328
#> GSM627191     3  0.1152     0.6989 0.000 0.000 0.952 0.004 0.000 0.044
#> GSM627176     3  0.3843     0.3249 0.000 0.000 0.548 0.452 0.000 0.000
#> GSM627194     5  0.5582     0.6726 0.000 0.140 0.000 0.004 0.528 0.328
#> GSM627154     6  0.3742     0.1921 0.000 0.348 0.000 0.004 0.000 0.648
#> GSM627187     3  0.3843     0.3249 0.000 0.000 0.548 0.452 0.000 0.000
#> GSM627198     2  0.1267     0.7884 0.000 0.940 0.000 0.000 0.060 0.000
#> GSM627160     3  0.3810     0.3662 0.000 0.000 0.572 0.428 0.000 0.000
#> GSM627185     3  0.6657     0.0126 0.300 0.000 0.492 0.060 0.140 0.008
#> GSM627206     6  0.4481     0.4869 0.000 0.000 0.296 0.000 0.056 0.648
#> GSM627161     1  0.0000     0.8591 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627162     3  0.3843     0.3249 0.000 0.000 0.548 0.452 0.000 0.000
#> GSM627210     3  0.4010     0.3627 0.000 0.000 0.584 0.408 0.000 0.008
#> GSM627189     2  0.3621     0.6524 0.000 0.788 0.000 0.004 0.048 0.160

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n disease.state(p) age(p) other(p) k
#> ATC:pam 143           1.0000  0.106   0.0536 2
#> ATC:pam 138           0.3814  0.437   0.0132 3
#> ATC:pam  80           0.4626  0.900   0.1640 4
#> ATC:pam  89           0.4717  0.858   0.0774 5
#> ATC:pam 100           0.0905  0.440   0.0858 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 146 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.513           0.868       0.905         0.4697 0.499   0.499
#> 3 3 0.310           0.344       0.672         0.2207 0.620   0.417
#> 4 4 0.491           0.581       0.762         0.2112 0.691   0.390
#> 5 5 0.628           0.699       0.818         0.0889 0.896   0.655
#> 6 6 0.688           0.619       0.811         0.0556 0.963   0.840

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM627128     2  0.9358      0.548 0.352 0.648
#> GSM627110     1  0.6048      0.904 0.852 0.148
#> GSM627132     1  0.0000      0.886 1.000 0.000
#> GSM627107     2  0.0672      0.908 0.008 0.992
#> GSM627103     2  0.0000      0.911 0.000 1.000
#> GSM627114     1  0.3879      0.930 0.924 0.076
#> GSM627134     2  0.0000      0.911 0.000 1.000
#> GSM627137     2  0.0000      0.911 0.000 1.000
#> GSM627148     1  0.7299      0.848 0.796 0.204
#> GSM627101     2  0.0672      0.908 0.008 0.992
#> GSM627130     2  0.9248      0.572 0.340 0.660
#> GSM627071     1  0.5408      0.904 0.876 0.124
#> GSM627118     2  0.0000      0.911 0.000 1.000
#> GSM627094     2  0.4562      0.870 0.096 0.904
#> GSM627122     1  0.3879      0.930 0.924 0.076
#> GSM627115     2  0.0000      0.911 0.000 1.000
#> GSM627125     2  0.9286      0.564 0.344 0.656
#> GSM627174     2  0.9087      0.600 0.324 0.676
#> GSM627102     2  0.4690      0.868 0.100 0.900
#> GSM627073     2  0.0672      0.908 0.008 0.992
#> GSM627108     2  0.0000      0.911 0.000 1.000
#> GSM627126     1  0.0000      0.886 1.000 0.000
#> GSM627078     2  0.0000      0.911 0.000 1.000
#> GSM627090     1  0.3879      0.930 0.924 0.076
#> GSM627099     2  0.0000      0.911 0.000 1.000
#> GSM627105     2  0.6531      0.784 0.168 0.832
#> GSM627117     1  0.6623      0.883 0.828 0.172
#> GSM627121     2  0.0672      0.908 0.008 0.992
#> GSM627127     2  0.0000      0.911 0.000 1.000
#> GSM627087     2  0.0000      0.911 0.000 1.000
#> GSM627089     1  0.3879      0.930 0.924 0.076
#> GSM627092     2  0.4690      0.868 0.100 0.900
#> GSM627076     1  0.3879      0.930 0.924 0.076
#> GSM627136     1  0.3879      0.930 0.924 0.076
#> GSM627081     1  0.9491      0.605 0.632 0.368
#> GSM627091     2  0.0000      0.911 0.000 1.000
#> GSM627097     2  0.8661      0.650 0.288 0.712
#> GSM627072     1  0.6247      0.898 0.844 0.156
#> GSM627080     1  0.0000      0.886 1.000 0.000
#> GSM627088     1  0.3879      0.930 0.924 0.076
#> GSM627109     1  0.6048      0.904 0.852 0.148
#> GSM627111     1  0.0000      0.886 1.000 0.000
#> GSM627113     1  0.3879      0.930 0.924 0.076
#> GSM627133     1  0.8763      0.738 0.704 0.296
#> GSM627177     1  0.3879      0.930 0.924 0.076
#> GSM627086     2  0.0000      0.911 0.000 1.000
#> GSM627095     1  0.3879      0.930 0.924 0.076
#> GSM627079     1  0.3879      0.930 0.924 0.076
#> GSM627082     2  0.9358      0.548 0.352 0.648
#> GSM627074     1  0.6048      0.904 0.852 0.148
#> GSM627077     1  0.3879      0.930 0.924 0.076
#> GSM627093     1  0.6048      0.904 0.852 0.148
#> GSM627120     2  0.0000      0.911 0.000 1.000
#> GSM627124     2  0.4690      0.868 0.100 0.900
#> GSM627075     2  0.0000      0.911 0.000 1.000
#> GSM627085     2  0.0000      0.911 0.000 1.000
#> GSM627119     1  0.6048      0.904 0.852 0.148
#> GSM627116     1  0.5059      0.920 0.888 0.112
#> GSM627084     1  0.3879      0.930 0.924 0.076
#> GSM627096     2  0.0376      0.909 0.004 0.996
#> GSM627100     1  0.4298      0.926 0.912 0.088
#> GSM627112     2  0.4690      0.868 0.100 0.900
#> GSM627083     2  0.9358      0.548 0.352 0.648
#> GSM627098     1  0.3879      0.930 0.924 0.076
#> GSM627104     1  0.6247      0.898 0.844 0.156
#> GSM627131     1  0.3879      0.930 0.924 0.076
#> GSM627106     2  0.5737      0.796 0.136 0.864
#> GSM627123     1  0.3879      0.930 0.924 0.076
#> GSM627129     2  0.0000      0.911 0.000 1.000
#> GSM627216     2  0.0000      0.911 0.000 1.000
#> GSM627212     2  0.0000      0.911 0.000 1.000
#> GSM627190     1  0.6623      0.883 0.828 0.172
#> GSM627169     2  0.4690      0.868 0.100 0.900
#> GSM627167     2  0.0000      0.911 0.000 1.000
#> GSM627192     1  0.0000      0.886 1.000 0.000
#> GSM627203     1  0.6148      0.901 0.848 0.152
#> GSM627151     2  0.8144      0.687 0.252 0.748
#> GSM627163     1  0.0000      0.886 1.000 0.000
#> GSM627211     2  0.0000      0.911 0.000 1.000
#> GSM627171     2  0.4690      0.868 0.100 0.900
#> GSM627209     2  0.0000      0.911 0.000 1.000
#> GSM627135     1  0.3274      0.923 0.940 0.060
#> GSM627170     2  0.0000      0.911 0.000 1.000
#> GSM627178     1  0.4431      0.927 0.908 0.092
#> GSM627199     2  0.4690      0.868 0.100 0.900
#> GSM627213     2  0.0000      0.911 0.000 1.000
#> GSM627140     2  0.4690      0.868 0.100 0.900
#> GSM627149     1  0.2043      0.907 0.968 0.032
#> GSM627147     2  0.4690      0.868 0.100 0.900
#> GSM627195     1  0.8443      0.769 0.728 0.272
#> GSM627204     2  0.0000      0.911 0.000 1.000
#> GSM627207     2  0.0000      0.911 0.000 1.000
#> GSM627157     1  0.3879      0.930 0.924 0.076
#> GSM627201     2  0.0000      0.911 0.000 1.000
#> GSM627146     2  0.0000      0.911 0.000 1.000
#> GSM627156     2  0.4690      0.868 0.100 0.900
#> GSM627188     1  0.0000      0.886 1.000 0.000
#> GSM627197     2  0.0000      0.911 0.000 1.000
#> GSM627173     2  0.4690      0.868 0.100 0.900
#> GSM627179     2  0.0000      0.911 0.000 1.000
#> GSM627208     2  0.0000      0.911 0.000 1.000
#> GSM627215     2  0.0672      0.907 0.008 0.992
#> GSM627153     2  0.0000      0.911 0.000 1.000
#> GSM627155     1  0.0000      0.886 1.000 0.000
#> GSM627165     2  0.0000      0.911 0.000 1.000
#> GSM627168     1  0.3879      0.930 0.924 0.076
#> GSM627183     1  0.3879      0.930 0.924 0.076
#> GSM627144     1  0.6531      0.887 0.832 0.168
#> GSM627158     1  0.0000      0.886 1.000 0.000
#> GSM627196     2  0.0000      0.911 0.000 1.000
#> GSM627142     1  0.4431      0.924 0.908 0.092
#> GSM627182     1  0.9635      0.565 0.612 0.388
#> GSM627202     1  0.3879      0.930 0.924 0.076
#> GSM627141     1  0.3879      0.930 0.924 0.076
#> GSM627143     2  0.4690      0.868 0.100 0.900
#> GSM627145     1  0.3879      0.930 0.924 0.076
#> GSM627152     1  0.5946      0.906 0.856 0.144
#> GSM627200     1  0.3879      0.930 0.924 0.076
#> GSM627159     2  0.9358      0.548 0.352 0.648
#> GSM627164     2  0.4690      0.868 0.100 0.900
#> GSM627138     1  0.0000      0.886 1.000 0.000
#> GSM627175     2  0.0000      0.911 0.000 1.000
#> GSM627150     1  0.6623      0.869 0.828 0.172
#> GSM627166     1  0.6048      0.904 0.852 0.148
#> GSM627186     2  0.4690      0.868 0.100 0.900
#> GSM627139     2  0.8661      0.654 0.288 0.712
#> GSM627181     2  0.0000      0.911 0.000 1.000
#> GSM627205     2  0.0000      0.911 0.000 1.000
#> GSM627214     2  0.0000      0.911 0.000 1.000
#> GSM627180     2  0.9248      0.396 0.340 0.660
#> GSM627172     2  0.4690      0.868 0.100 0.900
#> GSM627184     1  0.0000      0.886 1.000 0.000
#> GSM627193     2  0.0000      0.911 0.000 1.000
#> GSM627191     2  0.9358      0.548 0.352 0.648
#> GSM627176     1  0.6438      0.891 0.836 0.164
#> GSM627194     2  0.0000      0.911 0.000 1.000
#> GSM627154     2  0.5294      0.855 0.120 0.880
#> GSM627187     1  0.6623      0.883 0.828 0.172
#> GSM627198     2  0.0000      0.911 0.000 1.000
#> GSM627160     1  0.6048      0.904 0.852 0.148
#> GSM627185     1  0.3879      0.930 0.924 0.076
#> GSM627206     1  0.3879      0.930 0.924 0.076
#> GSM627161     1  0.0000      0.886 1.000 0.000
#> GSM627162     1  0.8144      0.781 0.748 0.252
#> GSM627210     1  0.6048      0.904 0.852 0.148
#> GSM627189     2  0.0000      0.911 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM627128     2  0.5756    0.12071 0.208 0.764 0.028
#> GSM627110     1  0.8857    0.55098 0.524 0.344 0.132
#> GSM627132     3  0.0000    0.93060 0.000 0.000 1.000
#> GSM627107     2  0.0000    0.48175 0.000 1.000 0.000
#> GSM627103     2  0.1753    0.50027 0.048 0.952 0.000
#> GSM627114     1  0.9296    0.52208 0.436 0.404 0.160
#> GSM627134     2  0.0892    0.49246 0.020 0.980 0.000
#> GSM627137     2  0.6267    0.46435 0.452 0.548 0.000
#> GSM627148     2  0.4891    0.33864 0.040 0.836 0.124
#> GSM627101     2  0.0000    0.48175 0.000 1.000 0.000
#> GSM627130     2  0.5690    0.24117 0.288 0.708 0.004
#> GSM627071     2  0.8775   -0.42804 0.384 0.500 0.116
#> GSM627118     2  0.0892    0.49246 0.020 0.980 0.000
#> GSM627094     1  0.6267   -0.39148 0.548 0.452 0.000
#> GSM627122     1  0.9189    0.51444 0.436 0.416 0.148
#> GSM627115     2  0.5706    0.48328 0.320 0.680 0.000
#> GSM627125     2  0.3349    0.35253 0.108 0.888 0.004
#> GSM627174     1  0.7397    0.29550 0.484 0.484 0.032
#> GSM627102     1  0.5760   -0.26481 0.672 0.328 0.000
#> GSM627073     2  0.0747    0.47160 0.016 0.984 0.000
#> GSM627108     1  0.6305   -0.41558 0.516 0.484 0.000
#> GSM627126     3  0.0000    0.93060 0.000 0.000 1.000
#> GSM627078     2  0.6267    0.46435 0.452 0.548 0.000
#> GSM627090     1  0.9111    0.50672 0.436 0.424 0.140
#> GSM627099     2  0.5098    0.49570 0.248 0.752 0.000
#> GSM627105     2  0.0000    0.48175 0.000 1.000 0.000
#> GSM627117     1  0.8790    0.55279 0.540 0.328 0.132
#> GSM627121     2  0.0000    0.48175 0.000 1.000 0.000
#> GSM627127     2  0.3192    0.50702 0.112 0.888 0.000
#> GSM627087     2  0.4062    0.50408 0.164 0.836 0.000
#> GSM627089     1  0.9028    0.49856 0.436 0.432 0.132
#> GSM627092     1  0.5810   -0.26917 0.664 0.336 0.000
#> GSM627076     1  0.9111    0.50672 0.436 0.424 0.140
#> GSM627136     1  0.9151    0.50956 0.436 0.420 0.144
#> GSM627081     2  0.4063    0.37621 0.020 0.868 0.112
#> GSM627091     2  0.6267    0.46435 0.452 0.548 0.000
#> GSM627097     2  0.2796    0.38516 0.092 0.908 0.000
#> GSM627072     2  0.7495    0.00960 0.188 0.692 0.120
#> GSM627080     3  0.0000    0.93060 0.000 0.000 1.000
#> GSM627088     1  0.9111    0.50672 0.436 0.424 0.140
#> GSM627109     1  0.9089    0.55615 0.524 0.312 0.164
#> GSM627111     3  0.0000    0.93060 0.000 0.000 1.000
#> GSM627113     1  0.9457    0.54676 0.484 0.312 0.204
#> GSM627133     2  0.4731    0.35051 0.032 0.840 0.128
#> GSM627177     2  0.8892   -0.50118 0.436 0.444 0.120
#> GSM627086     2  0.6267    0.46435 0.452 0.548 0.000
#> GSM627095     1  0.9736    0.36522 0.416 0.228 0.356
#> GSM627079     2  0.8984   -0.50926 0.436 0.436 0.128
#> GSM627082     2  0.9433   -0.41415 0.404 0.420 0.176
#> GSM627074     1  0.9089    0.55615 0.524 0.312 0.164
#> GSM627077     1  0.9329    0.52434 0.436 0.400 0.164
#> GSM627093     1  0.9089    0.55615 0.524 0.312 0.164
#> GSM627120     2  0.0592    0.48869 0.012 0.988 0.000
#> GSM627124     2  0.6308    0.43679 0.492 0.508 0.000
#> GSM627075     1  0.6295   -0.40273 0.528 0.472 0.000
#> GSM627085     2  0.6267    0.46435 0.452 0.548 0.000
#> GSM627119     1  0.9089    0.55615 0.524 0.312 0.164
#> GSM627116     2  0.8892   -0.50118 0.436 0.444 0.120
#> GSM627084     1  0.9411    0.53446 0.444 0.380 0.176
#> GSM627096     2  0.0000    0.48175 0.000 1.000 0.000
#> GSM627100     2  0.8887   -0.48695 0.424 0.456 0.120
#> GSM627112     1  0.5760   -0.25956 0.672 0.328 0.000
#> GSM627083     2  0.9550   -0.41880 0.404 0.404 0.192
#> GSM627098     1  0.9762    0.53291 0.408 0.360 0.232
#> GSM627104     1  0.8853    0.51746 0.572 0.252 0.176
#> GSM627131     1  0.9361    0.52631 0.436 0.396 0.168
#> GSM627106     2  0.2383    0.44578 0.016 0.940 0.044
#> GSM627123     1  0.9688    0.39897 0.440 0.228 0.332
#> GSM627129     2  0.1411    0.49771 0.036 0.964 0.000
#> GSM627216     2  0.1529    0.49734 0.040 0.960 0.000
#> GSM627212     2  0.6267    0.46435 0.452 0.548 0.000
#> GSM627190     1  0.8991    0.48896 0.476 0.392 0.132
#> GSM627169     1  0.4346   -0.07369 0.816 0.184 0.000
#> GSM627167     2  0.6267    0.46435 0.452 0.548 0.000
#> GSM627192     3  0.0000    0.93060 0.000 0.000 1.000
#> GSM627203     2  0.8759   -0.39015 0.360 0.520 0.120
#> GSM627151     2  0.3752    0.31003 0.144 0.856 0.000
#> GSM627163     3  0.0000    0.93060 0.000 0.000 1.000
#> GSM627211     2  0.6299    0.44202 0.476 0.524 0.000
#> GSM627171     1  0.6286   -0.40661 0.536 0.464 0.000
#> GSM627209     2  0.6267    0.46435 0.452 0.548 0.000
#> GSM627135     3  0.7997    0.18431 0.360 0.072 0.568
#> GSM627170     2  0.2356    0.50411 0.072 0.928 0.000
#> GSM627178     1  0.9199    0.55716 0.504 0.328 0.168
#> GSM627199     1  0.5760   -0.26258 0.672 0.328 0.000
#> GSM627213     2  0.3267    0.50459 0.116 0.884 0.000
#> GSM627140     1  0.3340    0.00933 0.880 0.120 0.000
#> GSM627149     3  0.5728    0.53099 0.272 0.008 0.720
#> GSM627147     1  0.5905   -0.28960 0.648 0.352 0.000
#> GSM627195     2  0.4209    0.36713 0.020 0.860 0.120
#> GSM627204     2  0.6286    0.45364 0.464 0.536 0.000
#> GSM627207     2  0.6274    0.46093 0.456 0.544 0.000
#> GSM627157     1  0.9654    0.41313 0.452 0.228 0.320
#> GSM627201     2  0.6267    0.46435 0.452 0.548 0.000
#> GSM627146     2  0.6267    0.46435 0.452 0.548 0.000
#> GSM627156     1  0.6045   -0.31963 0.620 0.380 0.000
#> GSM627188     3  0.0000    0.93060 0.000 0.000 1.000
#> GSM627197     2  0.6267    0.46435 0.452 0.548 0.000
#> GSM627173     1  0.5926   -0.29194 0.644 0.356 0.000
#> GSM627179     2  0.6267    0.46435 0.452 0.548 0.000
#> GSM627208     2  0.0747    0.49069 0.016 0.984 0.000
#> GSM627215     2  0.0892    0.46830 0.020 0.980 0.000
#> GSM627153     2  0.6267    0.46435 0.452 0.548 0.000
#> GSM627155     3  0.0000    0.93060 0.000 0.000 1.000
#> GSM627165     2  0.5678    0.48153 0.316 0.684 0.000
#> GSM627168     1  0.9151    0.50956 0.436 0.420 0.144
#> GSM627183     1  0.9262    0.51940 0.436 0.408 0.156
#> GSM627144     2  0.8520   -0.17509 0.280 0.588 0.132
#> GSM627158     3  0.0000    0.93060 0.000 0.000 1.000
#> GSM627196     2  0.6267    0.46435 0.452 0.548 0.000
#> GSM627142     2  0.9027   -0.50688 0.428 0.440 0.132
#> GSM627182     2  0.3832    0.38964 0.020 0.880 0.100
#> GSM627202     1  0.9746    0.52956 0.408 0.364 0.228
#> GSM627141     1  0.9296    0.52208 0.436 0.404 0.160
#> GSM627143     2  0.0892    0.46811 0.020 0.980 0.000
#> GSM627145     2  0.8880   -0.47682 0.416 0.464 0.120
#> GSM627152     1  0.8906    0.55128 0.520 0.344 0.136
#> GSM627200     1  0.9457    0.55309 0.468 0.340 0.192
#> GSM627159     2  0.9009   -0.39108 0.404 0.464 0.132
#> GSM627164     1  0.5785   -0.26919 0.668 0.332 0.000
#> GSM627138     3  0.0000    0.93060 0.000 0.000 1.000
#> GSM627175     2  0.6235    0.46722 0.436 0.564 0.000
#> GSM627150     2  0.6529    0.18586 0.124 0.760 0.116
#> GSM627166     1  0.9108    0.55680 0.520 0.316 0.164
#> GSM627186     1  0.5363   -0.09231 0.724 0.276 0.000
#> GSM627139     2  0.2796    0.38516 0.092 0.908 0.000
#> GSM627181     2  0.6267    0.46435 0.452 0.548 0.000
#> GSM627205     2  0.3619    0.50625 0.136 0.864 0.000
#> GSM627214     2  0.5178    0.49537 0.256 0.744 0.000
#> GSM627180     2  0.2527    0.44158 0.020 0.936 0.044
#> GSM627172     1  0.4346   -0.08062 0.816 0.184 0.000
#> GSM627184     3  0.0000    0.93060 0.000 0.000 1.000
#> GSM627193     2  0.6244    0.46622 0.440 0.560 0.000
#> GSM627191     2  0.9494   -0.41593 0.404 0.412 0.184
#> GSM627176     1  0.8712    0.55345 0.556 0.312 0.132
#> GSM627194     2  0.4974    0.49723 0.236 0.764 0.000
#> GSM627154     2  0.6295    0.45245 0.472 0.528 0.000
#> GSM627187     1  0.8712    0.55345 0.556 0.312 0.132
#> GSM627198     2  0.6267    0.46435 0.452 0.548 0.000
#> GSM627160     1  0.8910    0.55576 0.540 0.312 0.148
#> GSM627185     1  0.9623    0.43157 0.464 0.232 0.304
#> GSM627206     1  0.9028    0.49914 0.436 0.432 0.132
#> GSM627161     3  0.0000    0.93060 0.000 0.000 1.000
#> GSM627162     1  0.8859    0.48737 0.500 0.376 0.124
#> GSM627210     1  0.9046    0.55609 0.528 0.312 0.160
#> GSM627189     2  0.6267    0.46435 0.452 0.548 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM627128     4  0.6869    -0.0951 0.000 0.132 0.304 0.564
#> GSM627110     3  0.4685     0.6268 0.000 0.156 0.784 0.060
#> GSM627132     1  0.0000     0.9311 1.000 0.000 0.000 0.000
#> GSM627107     4  0.0000     0.7139 0.000 0.000 0.000 1.000
#> GSM627103     4  0.0000     0.7139 0.000 0.000 0.000 1.000
#> GSM627114     3  0.6549     0.5819 0.000 0.120 0.612 0.268
#> GSM627134     4  0.0000     0.7139 0.000 0.000 0.000 1.000
#> GSM627137     2  0.4543     0.7869 0.000 0.676 0.000 0.324
#> GSM627148     4  0.6920     0.0527 0.000 0.132 0.316 0.552
#> GSM627101     4  0.0000     0.7139 0.000 0.000 0.000 1.000
#> GSM627130     4  0.7247     0.0857 0.000 0.216 0.240 0.544
#> GSM627071     3  0.7231     0.4312 0.000 0.144 0.464 0.392
#> GSM627118     4  0.0000     0.7139 0.000 0.000 0.000 1.000
#> GSM627094     2  0.4277     0.7959 0.000 0.720 0.000 0.280
#> GSM627122     3  0.6133     0.5874 0.000 0.088 0.644 0.268
#> GSM627115     4  0.4999    -0.5158 0.000 0.492 0.000 0.508
#> GSM627125     4  0.5849     0.3697 0.000 0.132 0.164 0.704
#> GSM627174     2  0.7493    -0.2099 0.000 0.480 0.320 0.200
#> GSM627102     2  0.0336     0.6881 0.000 0.992 0.000 0.008
#> GSM627073     4  0.0592     0.7129 0.000 0.000 0.016 0.984
#> GSM627108     2  0.4277     0.7951 0.000 0.720 0.000 0.280
#> GSM627126     1  0.0000     0.9311 1.000 0.000 0.000 0.000
#> GSM627078     2  0.4356     0.7939 0.000 0.708 0.000 0.292
#> GSM627090     3  0.6770     0.5756 0.000 0.140 0.592 0.268
#> GSM627099     4  0.2530     0.5994 0.000 0.112 0.000 0.888
#> GSM627105     4  0.0469     0.7129 0.000 0.000 0.012 0.988
#> GSM627117     3  0.5280     0.6122 0.000 0.156 0.748 0.096
#> GSM627121     4  0.0000     0.7139 0.000 0.000 0.000 1.000
#> GSM627127     4  0.2081     0.6320 0.000 0.084 0.000 0.916
#> GSM627087     4  0.4605    -0.0948 0.000 0.336 0.000 0.664
#> GSM627089     3  0.6770     0.5756 0.000 0.140 0.592 0.268
#> GSM627092     2  0.1970     0.6615 0.000 0.932 0.060 0.008
#> GSM627076     3  0.6770     0.5756 0.000 0.140 0.592 0.268
#> GSM627136     3  0.6770     0.5756 0.000 0.140 0.592 0.268
#> GSM627081     4  0.3569     0.5733 0.000 0.000 0.196 0.804
#> GSM627091     2  0.4522     0.7888 0.000 0.680 0.000 0.320
#> GSM627097     4  0.5972     0.3005 0.000 0.132 0.176 0.692
#> GSM627072     4  0.7073    -0.1230 0.000 0.132 0.364 0.504
#> GSM627080     1  0.0000     0.9311 1.000 0.000 0.000 0.000
#> GSM627088     3  0.6770     0.5756 0.000 0.140 0.592 0.268
#> GSM627109     3  0.4191     0.5742 0.068 0.024 0.848 0.060
#> GSM627111     1  0.0000     0.9311 1.000 0.000 0.000 0.000
#> GSM627113     3  0.4431     0.4264 0.304 0.000 0.696 0.000
#> GSM627133     4  0.3528     0.5791 0.000 0.000 0.192 0.808
#> GSM627177     3  0.7096     0.5104 0.000 0.140 0.516 0.344
#> GSM627086     2  0.4543     0.7869 0.000 0.676 0.000 0.324
#> GSM627095     3  0.6585     0.2225 0.412 0.008 0.520 0.060
#> GSM627079     3  0.6770     0.5756 0.000 0.140 0.592 0.268
#> GSM627082     3  0.9819     0.4029 0.220 0.192 0.344 0.244
#> GSM627074     3  0.3629     0.5958 0.040 0.024 0.876 0.060
#> GSM627077     3  0.4193     0.5796 0.000 0.000 0.732 0.268
#> GSM627093     3  0.3538     0.5983 0.036 0.024 0.880 0.060
#> GSM627120     4  0.0000     0.7139 0.000 0.000 0.000 1.000
#> GSM627124     2  0.3080     0.7142 0.000 0.880 0.024 0.096
#> GSM627075     2  0.4072     0.7925 0.000 0.748 0.000 0.252
#> GSM627085     2  0.4522     0.7888 0.000 0.680 0.000 0.320
#> GSM627119     3  0.3538     0.5983 0.036 0.024 0.880 0.060
#> GSM627116     3  0.7119     0.5026 0.000 0.140 0.508 0.352
#> GSM627084     3  0.5951     0.4638 0.300 0.000 0.636 0.064
#> GSM627096     4  0.0000     0.7139 0.000 0.000 0.000 1.000
#> GSM627100     3  0.6770     0.5756 0.000 0.140 0.592 0.268
#> GSM627112     2  0.2450     0.6541 0.000 0.912 0.072 0.016
#> GSM627083     3  0.8979     0.2876 0.264 0.100 0.460 0.176
#> GSM627098     3  0.4584     0.4349 0.300 0.000 0.696 0.004
#> GSM627104     3  0.4468     0.5589 0.084 0.024 0.832 0.060
#> GSM627131     3  0.4193     0.5796 0.000 0.000 0.732 0.268
#> GSM627106     4  0.1940     0.6851 0.000 0.000 0.076 0.924
#> GSM627123     3  0.4776     0.2852 0.376 0.000 0.624 0.000
#> GSM627129     4  0.0000     0.7139 0.000 0.000 0.000 1.000
#> GSM627216     4  0.0000     0.7139 0.000 0.000 0.000 1.000
#> GSM627212     2  0.4543     0.7869 0.000 0.676 0.000 0.324
#> GSM627190     3  0.5369     0.6083 0.000 0.164 0.740 0.096
#> GSM627169     2  0.2342     0.6458 0.000 0.912 0.080 0.008
#> GSM627167     2  0.4134     0.7935 0.000 0.740 0.000 0.260
#> GSM627192     1  0.0000     0.9311 1.000 0.000 0.000 0.000
#> GSM627203     3  0.7143     0.3719 0.000 0.132 0.460 0.408
#> GSM627151     4  0.7050    -0.1184 0.000 0.156 0.292 0.552
#> GSM627163     1  0.0000     0.9311 1.000 0.000 0.000 0.000
#> GSM627211     2  0.4072     0.7923 0.000 0.748 0.000 0.252
#> GSM627171     2  0.3208     0.7156 0.000 0.848 0.004 0.148
#> GSM627209     2  0.4543     0.7869 0.000 0.676 0.000 0.324
#> GSM627135     1  0.5119     0.1470 0.556 0.000 0.440 0.004
#> GSM627170     4  0.1716     0.6594 0.000 0.064 0.000 0.936
#> GSM627178     3  0.2563     0.5732 0.072 0.020 0.908 0.000
#> GSM627199     2  0.0336     0.6881 0.000 0.992 0.000 0.008
#> GSM627213     4  0.2197     0.6631 0.000 0.080 0.004 0.916
#> GSM627140     2  0.1059     0.6709 0.000 0.972 0.012 0.016
#> GSM627149     1  0.4500     0.5265 0.684 0.000 0.316 0.000
#> GSM627147     2  0.0336     0.6881 0.000 0.992 0.000 0.008
#> GSM627195     4  0.4356     0.4223 0.000 0.000 0.292 0.708
#> GSM627204     2  0.4103     0.7931 0.000 0.744 0.000 0.256
#> GSM627207     2  0.4193     0.7944 0.000 0.732 0.000 0.268
#> GSM627157     3  0.4936     0.2985 0.372 0.000 0.624 0.004
#> GSM627201     2  0.4543     0.7869 0.000 0.676 0.000 0.324
#> GSM627146     2  0.4543     0.7869 0.000 0.676 0.000 0.324
#> GSM627156     2  0.3208     0.7484 0.000 0.848 0.004 0.148
#> GSM627188     1  0.0000     0.9311 1.000 0.000 0.000 0.000
#> GSM627197     2  0.4543     0.7869 0.000 0.676 0.000 0.324
#> GSM627173     2  0.0524     0.6877 0.000 0.988 0.004 0.008
#> GSM627179     2  0.4543     0.7869 0.000 0.676 0.000 0.324
#> GSM627208     4  0.0000     0.7139 0.000 0.000 0.000 1.000
#> GSM627215     4  0.0336     0.7144 0.000 0.000 0.008 0.992
#> GSM627153     2  0.4543     0.7869 0.000 0.676 0.000 0.324
#> GSM627155     1  0.0000     0.9311 1.000 0.000 0.000 0.000
#> GSM627165     4  0.3942     0.3961 0.000 0.236 0.000 0.764
#> GSM627168     3  0.6685     0.5783 0.000 0.132 0.600 0.268
#> GSM627183     3  0.5619     0.5879 0.000 0.056 0.676 0.268
#> GSM627144     3  0.6187     0.5572 0.000 0.144 0.672 0.184
#> GSM627158     1  0.0000     0.9311 1.000 0.000 0.000 0.000
#> GSM627196     2  0.4522     0.7888 0.000 0.680 0.000 0.320
#> GSM627142     3  0.6770     0.5756 0.000 0.140 0.592 0.268
#> GSM627182     4  0.3356     0.5952 0.000 0.000 0.176 0.824
#> GSM627202     3  0.4193     0.5796 0.000 0.000 0.732 0.268
#> GSM627141     3  0.4193     0.5796 0.000 0.000 0.732 0.268
#> GSM627143     4  0.4257     0.5294 0.000 0.140 0.048 0.812
#> GSM627145     3  0.7108     0.4407 0.000 0.140 0.512 0.348
#> GSM627152     3  0.1978     0.6283 0.000 0.068 0.928 0.004
#> GSM627200     3  0.2840     0.6129 0.056 0.000 0.900 0.044
#> GSM627159     4  0.7505    -0.2136 0.000 0.200 0.324 0.476
#> GSM627164     2  0.0336     0.6881 0.000 0.992 0.000 0.008
#> GSM627138     1  0.0188     0.9270 0.996 0.000 0.004 0.000
#> GSM627175     2  0.4817     0.6923 0.000 0.612 0.000 0.388
#> GSM627150     4  0.6936     0.0606 0.000 0.132 0.320 0.548
#> GSM627166     3  0.3538     0.5983 0.036 0.024 0.880 0.060
#> GSM627186     2  0.6731     0.2480 0.000 0.604 0.248 0.148
#> GSM627139     4  0.6523     0.1401 0.000 0.136 0.236 0.628
#> GSM627181     2  0.4543     0.7869 0.000 0.676 0.000 0.324
#> GSM627205     4  0.2281     0.6173 0.000 0.096 0.000 0.904
#> GSM627214     4  0.4356     0.2978 0.000 0.292 0.000 0.708
#> GSM627180     4  0.2921     0.6346 0.000 0.000 0.140 0.860
#> GSM627172     2  0.0336     0.6881 0.000 0.992 0.000 0.008
#> GSM627184     1  0.0000     0.9311 1.000 0.000 0.000 0.000
#> GSM627193     2  0.4804     0.7163 0.000 0.616 0.000 0.384
#> GSM627191     3  0.9050     0.2782 0.264 0.112 0.456 0.168
#> GSM627176     3  0.6321     0.6129 0.036 0.156 0.712 0.096
#> GSM627194     4  0.4804    -0.2545 0.000 0.384 0.000 0.616
#> GSM627154     2  0.3626     0.7319 0.000 0.812 0.004 0.184
#> GSM627187     3  0.6407     0.6091 0.036 0.164 0.704 0.096
#> GSM627198     2  0.4522     0.7888 0.000 0.680 0.000 0.320
#> GSM627160     3  0.5363     0.6271 0.036 0.096 0.784 0.084
#> GSM627185     3  0.5400     0.2942 0.372 0.020 0.608 0.000
#> GSM627206     3  0.6814     0.5715 0.000 0.140 0.584 0.276
#> GSM627161     1  0.0000     0.9311 1.000 0.000 0.000 0.000
#> GSM627162     3  0.6842     0.5824 0.036 0.204 0.660 0.100
#> GSM627210     3  0.5880     0.6248 0.036 0.156 0.740 0.068
#> GSM627189     2  0.4522     0.7888 0.000 0.680 0.000 0.320

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM627128     3  0.4367     0.4066 0.000 0.000 0.620 0.372 0.008
#> GSM627110     5  0.2329     0.8773 0.000 0.000 0.124 0.000 0.876
#> GSM627132     1  0.0000     0.8027 1.000 0.000 0.000 0.000 0.000
#> GSM627107     4  0.1331     0.8316 0.000 0.000 0.040 0.952 0.008
#> GSM627103     4  0.0510     0.8194 0.000 0.000 0.000 0.984 0.016
#> GSM627114     3  0.0794     0.7704 0.000 0.000 0.972 0.000 0.028
#> GSM627134     4  0.0671     0.8253 0.000 0.000 0.016 0.980 0.004
#> GSM627137     2  0.4632     0.6362 0.000 0.540 0.000 0.448 0.012
#> GSM627148     4  0.4867     0.3653 0.000 0.000 0.432 0.544 0.024
#> GSM627101     4  0.1444     0.8310 0.000 0.000 0.040 0.948 0.012
#> GSM627130     4  0.4633     0.3994 0.000 0.004 0.348 0.632 0.016
#> GSM627071     3  0.2462     0.6889 0.000 0.000 0.880 0.112 0.008
#> GSM627118     4  0.1549     0.8303 0.000 0.000 0.040 0.944 0.016
#> GSM627094     2  0.3242     0.7839 0.000 0.784 0.000 0.216 0.000
#> GSM627122     3  0.0703     0.7707 0.000 0.000 0.976 0.000 0.024
#> GSM627115     2  0.4624     0.7745 0.000 0.636 0.000 0.340 0.024
#> GSM627125     4  0.3197     0.7745 0.000 0.000 0.140 0.836 0.024
#> GSM627174     3  0.4702     0.3201 0.000 0.000 0.552 0.432 0.016
#> GSM627102     2  0.0510     0.6788 0.000 0.984 0.000 0.000 0.016
#> GSM627073     4  0.1205     0.8315 0.000 0.000 0.040 0.956 0.004
#> GSM627108     2  0.3143     0.7836 0.000 0.796 0.000 0.204 0.000
#> GSM627126     1  0.0000     0.8027 1.000 0.000 0.000 0.000 0.000
#> GSM627078     2  0.4288     0.7839 0.000 0.664 0.000 0.324 0.012
#> GSM627090     3  0.0000     0.7733 0.000 0.000 1.000 0.000 0.000
#> GSM627099     4  0.0404     0.8190 0.000 0.000 0.000 0.988 0.012
#> GSM627105     4  0.1725     0.8295 0.000 0.000 0.044 0.936 0.020
#> GSM627117     5  0.2909     0.8619 0.000 0.012 0.140 0.000 0.848
#> GSM627121     4  0.1205     0.8315 0.000 0.000 0.040 0.956 0.004
#> GSM627127     4  0.0798     0.8243 0.000 0.000 0.008 0.976 0.016
#> GSM627087     4  0.2408     0.7209 0.000 0.092 0.000 0.892 0.016
#> GSM627089     3  0.0000     0.7733 0.000 0.000 1.000 0.000 0.000
#> GSM627092     2  0.0898     0.6738 0.000 0.972 0.020 0.000 0.008
#> GSM627076     3  0.0162     0.7725 0.000 0.000 0.996 0.000 0.004
#> GSM627136     3  0.0290     0.7725 0.000 0.000 0.992 0.000 0.008
#> GSM627081     4  0.4613     0.5049 0.000 0.000 0.360 0.620 0.020
#> GSM627091     2  0.4620     0.7844 0.000 0.652 0.000 0.320 0.028
#> GSM627097     4  0.3326     0.7455 0.000 0.000 0.152 0.824 0.024
#> GSM627072     3  0.4900    -0.1915 0.000 0.000 0.512 0.464 0.024
#> GSM627080     1  0.0000     0.8027 1.000 0.000 0.000 0.000 0.000
#> GSM627088     3  0.0000     0.7733 0.000 0.000 1.000 0.000 0.000
#> GSM627109     5  0.1608     0.8869 0.000 0.000 0.072 0.000 0.928
#> GSM627111     1  0.0000     0.8027 1.000 0.000 0.000 0.000 0.000
#> GSM627113     1  0.6416     0.3084 0.452 0.000 0.372 0.000 0.176
#> GSM627133     4  0.4054     0.6860 0.000 0.000 0.224 0.748 0.028
#> GSM627177     3  0.2077     0.7152 0.000 0.000 0.908 0.084 0.008
#> GSM627086     2  0.4648     0.5970 0.000 0.524 0.000 0.464 0.012
#> GSM627095     1  0.5825     0.4172 0.536 0.000 0.360 0.000 0.104
#> GSM627079     3  0.0000     0.7733 0.000 0.000 1.000 0.000 0.000
#> GSM627082     3  0.4956     0.5134 0.004 0.000 0.644 0.312 0.040
#> GSM627074     5  0.1608     0.8869 0.000 0.000 0.072 0.000 0.928
#> GSM627077     3  0.1792     0.7452 0.000 0.000 0.916 0.000 0.084
#> GSM627093     5  0.1608     0.8869 0.000 0.000 0.072 0.000 0.928
#> GSM627120     4  0.1124     0.8312 0.000 0.000 0.036 0.960 0.004
#> GSM627124     2  0.3274     0.7854 0.000 0.780 0.000 0.220 0.000
#> GSM627075     2  0.2516     0.7626 0.000 0.860 0.000 0.140 0.000
#> GSM627085     2  0.4387     0.7751 0.000 0.640 0.000 0.348 0.012
#> GSM627119     5  0.1608     0.8869 0.000 0.000 0.072 0.000 0.928
#> GSM627116     3  0.0290     0.7725 0.000 0.000 0.992 0.000 0.008
#> GSM627084     3  0.5176     0.0302 0.040 0.000 0.492 0.000 0.468
#> GSM627096     4  0.1549     0.8303 0.000 0.000 0.040 0.944 0.016
#> GSM627100     3  0.0162     0.7729 0.000 0.000 0.996 0.000 0.004
#> GSM627112     2  0.2722     0.6877 0.000 0.892 0.060 0.040 0.008
#> GSM627083     3  0.7294     0.3788 0.096 0.000 0.488 0.312 0.104
#> GSM627098     3  0.4496     0.5702 0.156 0.000 0.752 0.000 0.092
#> GSM627104     5  0.1608     0.8869 0.000 0.000 0.072 0.000 0.928
#> GSM627131     3  0.1851     0.7428 0.000 0.000 0.912 0.000 0.088
#> GSM627106     4  0.4138     0.6388 0.000 0.000 0.276 0.708 0.016
#> GSM627123     1  0.5751     0.4215 0.540 0.000 0.364 0.000 0.096
#> GSM627129     4  0.0324     0.8182 0.000 0.000 0.004 0.992 0.004
#> GSM627216     4  0.0290     0.8152 0.000 0.000 0.000 0.992 0.008
#> GSM627212     2  0.4451     0.7793 0.000 0.644 0.000 0.340 0.016
#> GSM627190     5  0.3937     0.8474 0.000 0.060 0.132 0.004 0.804
#> GSM627169     2  0.1281     0.6716 0.000 0.956 0.012 0.000 0.032
#> GSM627167     2  0.4127     0.7869 0.000 0.680 0.000 0.312 0.008
#> GSM627192     1  0.0000     0.8027 1.000 0.000 0.000 0.000 0.000
#> GSM627203     3  0.3845     0.5514 0.000 0.000 0.768 0.208 0.024
#> GSM627151     4  0.3081     0.7286 0.000 0.000 0.156 0.832 0.012
#> GSM627163     1  0.0000     0.8027 1.000 0.000 0.000 0.000 0.000
#> GSM627211     2  0.3109     0.7827 0.000 0.800 0.000 0.200 0.000
#> GSM627171     2  0.4464     0.6823 0.000 0.584 0.000 0.408 0.008
#> GSM627209     2  0.4430     0.7594 0.000 0.628 0.000 0.360 0.012
#> GSM627135     1  0.5088     0.6140 0.680 0.000 0.228 0.000 0.092
#> GSM627170     4  0.1041     0.8307 0.000 0.000 0.032 0.964 0.004
#> GSM627178     3  0.4817     0.2753 0.024 0.000 0.572 0.000 0.404
#> GSM627199     2  0.0510     0.6788 0.000 0.984 0.000 0.000 0.016
#> GSM627213     4  0.0807     0.8262 0.000 0.000 0.012 0.976 0.012
#> GSM627140     2  0.1386     0.6757 0.000 0.952 0.032 0.000 0.016
#> GSM627149     1  0.3736     0.7019 0.808 0.000 0.140 0.000 0.052
#> GSM627147     2  0.0510     0.6788 0.000 0.984 0.000 0.000 0.016
#> GSM627195     4  0.4746     0.4750 0.000 0.000 0.376 0.600 0.024
#> GSM627204     2  0.3210     0.7851 0.000 0.788 0.000 0.212 0.000
#> GSM627207     2  0.3885     0.7909 0.000 0.724 0.000 0.268 0.008
#> GSM627157     1  0.5794     0.3810 0.520 0.000 0.384 0.000 0.096
#> GSM627201     2  0.4648     0.6046 0.000 0.524 0.000 0.464 0.012
#> GSM627146     2  0.4387     0.7751 0.000 0.640 0.000 0.348 0.012
#> GSM627156     2  0.1768     0.7337 0.000 0.924 0.000 0.072 0.004
#> GSM627188     1  0.0000     0.8027 1.000 0.000 0.000 0.000 0.000
#> GSM627197     2  0.4339     0.7799 0.000 0.652 0.000 0.336 0.012
#> GSM627173     2  0.0693     0.6774 0.000 0.980 0.008 0.000 0.012
#> GSM627179     2  0.4339     0.7810 0.000 0.652 0.000 0.336 0.012
#> GSM627208     4  0.0324     0.8182 0.000 0.000 0.004 0.992 0.004
#> GSM627215     4  0.1251     0.8322 0.000 0.000 0.036 0.956 0.008
#> GSM627153     2  0.4622     0.6413 0.000 0.548 0.000 0.440 0.012
#> GSM627155     1  0.0000     0.8027 1.000 0.000 0.000 0.000 0.000
#> GSM627165     4  0.3530     0.4789 0.000 0.204 0.000 0.784 0.012
#> GSM627168     3  0.0609     0.7710 0.000 0.000 0.980 0.000 0.020
#> GSM627183     3  0.0794     0.7698 0.000 0.000 0.972 0.000 0.028
#> GSM627144     5  0.6338     0.0642 0.000 0.000 0.160 0.392 0.448
#> GSM627158     1  0.0000     0.8027 1.000 0.000 0.000 0.000 0.000
#> GSM627196     2  0.4251     0.7868 0.000 0.672 0.000 0.316 0.012
#> GSM627142     3  0.0290     0.7725 0.000 0.000 0.992 0.000 0.008
#> GSM627182     4  0.4380     0.5863 0.000 0.000 0.304 0.676 0.020
#> GSM627202     3  0.1908     0.7401 0.000 0.000 0.908 0.000 0.092
#> GSM627141     3  0.1792     0.7462 0.000 0.000 0.916 0.000 0.084
#> GSM627143     4  0.2284     0.7857 0.000 0.004 0.096 0.896 0.004
#> GSM627145     3  0.3284     0.6423 0.000 0.000 0.828 0.148 0.024
#> GSM627152     3  0.4161     0.2917 0.000 0.000 0.608 0.000 0.392
#> GSM627200     3  0.3141     0.6840 0.016 0.000 0.832 0.000 0.152
#> GSM627159     3  0.4419     0.5110 0.000 0.000 0.668 0.312 0.020
#> GSM627164     2  0.0510     0.6788 0.000 0.984 0.000 0.000 0.016
#> GSM627138     1  0.0000     0.8027 1.000 0.000 0.000 0.000 0.000
#> GSM627175     2  0.4655     0.5781 0.000 0.512 0.000 0.476 0.012
#> GSM627150     4  0.4872     0.3492 0.000 0.000 0.436 0.540 0.024
#> GSM627166     5  0.1671     0.8839 0.000 0.000 0.076 0.000 0.924
#> GSM627186     2  0.0693     0.6774 0.000 0.980 0.008 0.000 0.012
#> GSM627139     4  0.3282     0.7132 0.000 0.000 0.188 0.804 0.008
#> GSM627181     2  0.4387     0.7716 0.000 0.640 0.000 0.348 0.012
#> GSM627205     4  0.0162     0.8149 0.000 0.000 0.000 0.996 0.004
#> GSM627214     4  0.2878     0.7559 0.000 0.084 0.024 0.880 0.012
#> GSM627180     4  0.1818     0.8286 0.000 0.000 0.044 0.932 0.024
#> GSM627172     2  0.0510     0.6788 0.000 0.984 0.000 0.000 0.016
#> GSM627184     1  0.0000     0.8027 1.000 0.000 0.000 0.000 0.000
#> GSM627193     2  0.4371     0.7779 0.000 0.644 0.000 0.344 0.012
#> GSM627191     3  0.6578     0.4553 0.040 0.000 0.544 0.312 0.104
#> GSM627176     5  0.2280     0.8780 0.000 0.000 0.120 0.000 0.880
#> GSM627194     4  0.4080     0.3772 0.000 0.252 0.000 0.728 0.020
#> GSM627154     2  0.4608     0.7723 0.000 0.640 0.000 0.336 0.024
#> GSM627187     5  0.3862     0.8381 0.000 0.088 0.104 0.000 0.808
#> GSM627198     2  0.4323     0.7820 0.000 0.656 0.000 0.332 0.012
#> GSM627160     5  0.2852     0.8054 0.000 0.000 0.172 0.000 0.828
#> GSM627185     1  0.5770     0.4073 0.532 0.000 0.372 0.000 0.096
#> GSM627206     3  0.0290     0.7725 0.000 0.000 0.992 0.000 0.008
#> GSM627161     1  0.0000     0.8027 1.000 0.000 0.000 0.000 0.000
#> GSM627162     5  0.4647     0.7562 0.000 0.184 0.084 0.000 0.732
#> GSM627210     5  0.1732     0.8874 0.000 0.000 0.080 0.000 0.920
#> GSM627189     2  0.4419     0.7858 0.000 0.668 0.000 0.312 0.020

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM627128     5  0.4622     0.6826 0.000 0.000 0.024 0.080 0.724 0.172
#> GSM627110     3  0.1267     0.8968 0.000 0.000 0.940 0.000 0.060 0.000
#> GSM627132     1  0.0000     0.8702 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627107     4  0.1082     0.8674 0.000 0.040 0.000 0.956 0.000 0.004
#> GSM627103     4  0.1643     0.8608 0.000 0.068 0.008 0.924 0.000 0.000
#> GSM627114     5  0.0508     0.8052 0.000 0.000 0.004 0.000 0.984 0.012
#> GSM627134     4  0.1219     0.8674 0.000 0.048 0.004 0.948 0.000 0.000
#> GSM627137     2  0.3133     0.5880 0.000 0.780 0.000 0.212 0.000 0.008
#> GSM627148     4  0.2796     0.8316 0.000 0.008 0.032 0.884 0.024 0.052
#> GSM627101     4  0.1082     0.8674 0.000 0.040 0.000 0.956 0.000 0.004
#> GSM627130     6  0.6435    -0.2749 0.000 0.024 0.000 0.324 0.224 0.428
#> GSM627071     5  0.3593     0.6231 0.000 0.000 0.024 0.228 0.748 0.000
#> GSM627118     4  0.0865     0.8675 0.000 0.036 0.000 0.964 0.000 0.000
#> GSM627094     2  0.4766     0.2929 0.000 0.612 0.000 0.072 0.000 0.316
#> GSM627122     5  0.0622     0.8045 0.000 0.000 0.008 0.000 0.980 0.012
#> GSM627115     2  0.3682     0.5740 0.000 0.792 0.008 0.148 0.000 0.052
#> GSM627125     4  0.1858     0.8579 0.000 0.024 0.016 0.932 0.024 0.004
#> GSM627174     5  0.5534     0.3751 0.000 0.000 0.000 0.132 0.444 0.424
#> GSM627102     6  0.3869     0.1785 0.000 0.500 0.000 0.000 0.000 0.500
#> GSM627073     4  0.2749     0.8612 0.000 0.048 0.020 0.884 0.004 0.044
#> GSM627108     2  0.3979     0.3974 0.000 0.708 0.000 0.036 0.000 0.256
#> GSM627126     1  0.0000     0.8702 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627078     2  0.1757     0.6167 0.000 0.916 0.000 0.076 0.000 0.008
#> GSM627090     5  0.0458     0.8049 0.000 0.000 0.000 0.016 0.984 0.000
#> GSM627099     4  0.2340     0.8108 0.000 0.148 0.000 0.852 0.000 0.000
#> GSM627105     4  0.0922     0.8668 0.000 0.024 0.004 0.968 0.000 0.004
#> GSM627117     3  0.2565     0.8284 0.000 0.000 0.872 0.016 0.104 0.008
#> GSM627121     4  0.1152     0.8673 0.000 0.044 0.000 0.952 0.000 0.004
#> GSM627127     4  0.0632     0.8671 0.000 0.024 0.000 0.976 0.000 0.000
#> GSM627087     4  0.3547     0.6007 0.000 0.300 0.000 0.696 0.000 0.004
#> GSM627089     5  0.0547     0.8042 0.000 0.000 0.000 0.020 0.980 0.000
#> GSM627092     2  0.4499    -0.3539 0.000 0.500 0.012 0.000 0.012 0.476
#> GSM627076     5  0.0000     0.8064 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM627136     5  0.0000     0.8064 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM627081     4  0.2697     0.8588 0.000 0.040 0.024 0.888 0.004 0.044
#> GSM627091     2  0.3400     0.5899 0.000 0.816 0.008 0.132 0.000 0.044
#> GSM627097     4  0.0858     0.8490 0.000 0.000 0.004 0.968 0.028 0.000
#> GSM627072     4  0.5241     0.0713 0.000 0.000 0.032 0.500 0.432 0.036
#> GSM627080     1  0.0000     0.8702 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627088     5  0.0000     0.8064 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM627109     3  0.0632     0.9028 0.000 0.000 0.976 0.000 0.024 0.000
#> GSM627111     1  0.0000     0.8702 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627113     5  0.5848     0.3495 0.236 0.000 0.204 0.000 0.548 0.012
#> GSM627133     4  0.3476     0.8184 0.000 0.068 0.032 0.840 0.004 0.056
#> GSM627177     5  0.2006     0.7640 0.000 0.000 0.016 0.080 0.904 0.000
#> GSM627086     2  0.2632     0.6073 0.000 0.832 0.000 0.164 0.000 0.004
#> GSM627095     1  0.5919     0.3640 0.512 0.000 0.172 0.000 0.304 0.012
#> GSM627079     5  0.0692     0.8041 0.000 0.000 0.004 0.020 0.976 0.000
#> GSM627082     5  0.4542     0.4889 0.000 0.000 0.008 0.020 0.532 0.440
#> GSM627074     3  0.0632     0.9028 0.000 0.000 0.976 0.000 0.024 0.000
#> GSM627077     5  0.0622     0.8045 0.000 0.000 0.008 0.000 0.980 0.012
#> GSM627093     3  0.0632     0.9028 0.000 0.000 0.976 0.000 0.024 0.000
#> GSM627120     4  0.1141     0.8672 0.000 0.052 0.000 0.948 0.000 0.000
#> GSM627124     2  0.2052     0.5942 0.000 0.912 0.000 0.056 0.004 0.028
#> GSM627075     2  0.4004     0.1441 0.000 0.620 0.000 0.012 0.000 0.368
#> GSM627085     2  0.2738     0.6059 0.000 0.820 0.000 0.176 0.000 0.004
#> GSM627119     3  0.0632     0.9028 0.000 0.000 0.976 0.000 0.024 0.000
#> GSM627116     5  0.1480     0.7943 0.000 0.000 0.020 0.040 0.940 0.000
#> GSM627084     5  0.3110     0.6875 0.000 0.000 0.196 0.000 0.792 0.012
#> GSM627096     4  0.0937     0.8675 0.000 0.040 0.000 0.960 0.000 0.000
#> GSM627100     5  0.0458     0.8049 0.000 0.000 0.000 0.016 0.984 0.000
#> GSM627112     2  0.4307     0.1469 0.000 0.652 0.004 0.012 0.012 0.320
#> GSM627083     5  0.5779     0.4073 0.056 0.000 0.020 0.020 0.464 0.440
#> GSM627098     5  0.2312     0.7527 0.000 0.000 0.112 0.000 0.876 0.012
#> GSM627104     3  0.0858     0.9018 0.000 0.000 0.968 0.000 0.028 0.004
#> GSM627131     5  0.0622     0.8045 0.000 0.000 0.008 0.000 0.980 0.012
#> GSM627106     4  0.2457     0.8635 0.000 0.044 0.016 0.900 0.004 0.036
#> GSM627123     1  0.5655     0.3355 0.524 0.000 0.120 0.000 0.344 0.012
#> GSM627129     4  0.1219     0.8674 0.000 0.048 0.004 0.948 0.000 0.000
#> GSM627216     4  0.3438     0.8001 0.000 0.184 0.008 0.788 0.000 0.020
#> GSM627212     2  0.3794     0.5816 0.000 0.792 0.008 0.120 0.000 0.080
#> GSM627190     3  0.3591     0.8096 0.000 0.016 0.816 0.000 0.104 0.064
#> GSM627169     2  0.5027    -0.2970 0.000 0.496 0.052 0.000 0.008 0.444
#> GSM627167     2  0.1866     0.6133 0.000 0.908 0.000 0.084 0.000 0.008
#> GSM627192     1  0.0000     0.8702 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627203     5  0.4760     0.4829 0.000 0.000 0.024 0.296 0.644 0.036
#> GSM627151     4  0.4547     0.7047 0.000 0.028 0.020 0.752 0.160 0.040
#> GSM627163     1  0.0000     0.8702 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627211     2  0.3440     0.4596 0.000 0.776 0.000 0.028 0.000 0.196
#> GSM627171     2  0.2101     0.6111 0.000 0.892 0.000 0.100 0.004 0.004
#> GSM627209     2  0.2053     0.6132 0.000 0.888 0.000 0.108 0.000 0.004
#> GSM627135     1  0.3578     0.7412 0.804 0.000 0.044 0.000 0.140 0.012
#> GSM627170     4  0.2340     0.8126 0.000 0.148 0.000 0.852 0.000 0.000
#> GSM627178     5  0.3804     0.3337 0.000 0.000 0.424 0.000 0.576 0.000
#> GSM627199     2  0.3999    -0.3895 0.000 0.500 0.000 0.000 0.004 0.496
#> GSM627213     4  0.1007     0.8671 0.000 0.044 0.000 0.956 0.000 0.000
#> GSM627140     2  0.3996    -0.3609 0.000 0.512 0.000 0.000 0.004 0.484
#> GSM627149     1  0.2699     0.7740 0.856 0.000 0.008 0.000 0.124 0.012
#> GSM627147     6  0.3869     0.1785 0.000 0.500 0.000 0.000 0.000 0.500
#> GSM627195     4  0.2638     0.8468 0.000 0.020 0.028 0.892 0.008 0.052
#> GSM627204     2  0.3706     0.5002 0.000 0.772 0.000 0.056 0.000 0.172
#> GSM627207     2  0.3227     0.5628 0.000 0.824 0.000 0.060 0.000 0.116
#> GSM627157     5  0.5723    -0.0528 0.412 0.000 0.116 0.000 0.460 0.012
#> GSM627201     2  0.2994     0.5867 0.000 0.788 0.000 0.208 0.000 0.004
#> GSM627146     2  0.2632     0.6112 0.000 0.832 0.000 0.164 0.000 0.004
#> GSM627156     2  0.3706     0.0649 0.000 0.620 0.000 0.000 0.000 0.380
#> GSM627188     1  0.0000     0.8702 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627197     2  0.1958     0.6245 0.000 0.896 0.000 0.100 0.000 0.004
#> GSM627173     2  0.4227    -0.3739 0.000 0.500 0.004 0.000 0.008 0.488
#> GSM627179     2  0.4111     0.5902 0.000 0.748 0.000 0.144 0.000 0.108
#> GSM627208     4  0.2581     0.8272 0.000 0.128 0.000 0.856 0.000 0.016
#> GSM627215     4  0.2752     0.8587 0.000 0.044 0.024 0.880 0.000 0.052
#> GSM627153     2  0.2100     0.6113 0.000 0.884 0.000 0.112 0.000 0.004
#> GSM627155     1  0.0000     0.8702 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627165     4  0.3864     0.0739 0.000 0.480 0.000 0.520 0.000 0.000
#> GSM627168     5  0.0260     0.8066 0.000 0.000 0.008 0.000 0.992 0.000
#> GSM627183     5  0.0260     0.8062 0.000 0.000 0.008 0.000 0.992 0.000
#> GSM627144     3  0.5405     0.3136 0.000 0.024 0.572 0.344 0.008 0.052
#> GSM627158     1  0.0000     0.8702 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627196     2  0.3297     0.5697 0.000 0.820 0.000 0.068 0.000 0.112
#> GSM627142     5  0.0363     0.8056 0.000 0.000 0.000 0.012 0.988 0.000
#> GSM627182     4  0.3516     0.8218 0.000 0.076 0.036 0.832 0.000 0.056
#> GSM627202     5  0.0909     0.8007 0.000 0.000 0.020 0.000 0.968 0.012
#> GSM627141     5  0.0622     0.8045 0.000 0.000 0.008 0.000 0.980 0.012
#> GSM627143     4  0.2237     0.8511 0.000 0.064 0.004 0.904 0.024 0.004
#> GSM627145     5  0.2838     0.6726 0.000 0.000 0.000 0.188 0.808 0.004
#> GSM627152     5  0.3620     0.4450 0.000 0.000 0.352 0.000 0.648 0.000
#> GSM627200     5  0.2980     0.6953 0.000 0.000 0.180 0.000 0.808 0.012
#> GSM627159     5  0.4566     0.4925 0.000 0.000 0.004 0.028 0.540 0.428
#> GSM627164     6  0.3869     0.1785 0.000 0.500 0.000 0.000 0.000 0.500
#> GSM627138     1  0.0000     0.8702 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627175     2  0.3050     0.5675 0.000 0.764 0.000 0.236 0.000 0.000
#> GSM627150     4  0.5413     0.3210 0.000 0.024 0.024 0.564 0.360 0.028
#> GSM627166     3  0.0632     0.9028 0.000 0.000 0.976 0.000 0.024 0.000
#> GSM627186     2  0.4413    -0.3687 0.000 0.492 0.012 0.000 0.008 0.488
#> GSM627139     4  0.2805     0.7449 0.000 0.000 0.012 0.828 0.160 0.000
#> GSM627181     2  0.2053     0.6071 0.000 0.888 0.000 0.108 0.000 0.004
#> GSM627205     4  0.2378     0.8089 0.000 0.152 0.000 0.848 0.000 0.000
#> GSM627214     4  0.3371     0.6486 0.000 0.292 0.000 0.708 0.000 0.000
#> GSM627180     4  0.3316     0.8186 0.000 0.072 0.028 0.844 0.000 0.056
#> GSM627172     2  0.3999    -0.3895 0.000 0.500 0.000 0.000 0.004 0.496
#> GSM627184     1  0.0000     0.8702 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627193     2  0.3453     0.6094 0.000 0.808 0.008 0.144 0.000 0.040
#> GSM627191     5  0.4542     0.4889 0.000 0.000 0.008 0.020 0.532 0.440
#> GSM627176     3  0.0937     0.8959 0.000 0.000 0.960 0.000 0.040 0.000
#> GSM627194     2  0.4300    -0.0277 0.000 0.528 0.004 0.456 0.000 0.012
#> GSM627154     2  0.2730     0.6016 0.000 0.808 0.000 0.192 0.000 0.000
#> GSM627187     3  0.2265     0.8681 0.000 0.008 0.900 0.000 0.024 0.068
#> GSM627198     2  0.1531     0.6149 0.000 0.928 0.000 0.068 0.000 0.004
#> GSM627160     3  0.1714     0.8688 0.000 0.000 0.908 0.000 0.092 0.000
#> GSM627185     1  0.5924     0.1863 0.456 0.000 0.148 0.000 0.384 0.012
#> GSM627206     5  0.0458     0.8049 0.000 0.000 0.000 0.016 0.984 0.000
#> GSM627161     1  0.0000     0.8702 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627162     3  0.3295     0.7821 0.000 0.012 0.800 0.000 0.012 0.176
#> GSM627210     3  0.1010     0.9018 0.000 0.000 0.960 0.000 0.036 0.004
#> GSM627189     2  0.4210     0.5540 0.000 0.756 0.008 0.120 0.000 0.116

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) age(p) other(p) k
#> ATC:mclust 145           0.7037  0.305   0.0112 2
#> ATC:mclust  49           0.2118  0.693   0.5777 3
#> ATC:mclust 114           0.0281  0.895   0.0517 4
#> ATC:mclust 126           0.0320  0.395   0.0824 5
#> ATC:mclust 111           0.0164  0.578   0.0362 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51882 rows and 146 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.736           0.864       0.940         0.3345 0.648   0.648
#> 3 3 0.538           0.650       0.857         0.8022 0.665   0.512
#> 4 4 0.577           0.711       0.823         0.2143 0.778   0.490
#> 5 5 0.570           0.617       0.773         0.0711 0.848   0.503
#> 6 6 0.616           0.559       0.744         0.0302 0.872   0.525

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM627128     2  0.0000      0.957 0.000 1.000
#> GSM627110     2  0.7815      0.627 0.232 0.768
#> GSM627132     1  0.0000      0.831 1.000 0.000
#> GSM627107     2  0.0000      0.957 0.000 1.000
#> GSM627103     2  0.0000      0.957 0.000 1.000
#> GSM627114     2  0.8813      0.476 0.300 0.700
#> GSM627134     2  0.0000      0.957 0.000 1.000
#> GSM627137     2  0.0000      0.957 0.000 1.000
#> GSM627148     2  0.0000      0.957 0.000 1.000
#> GSM627101     2  0.0000      0.957 0.000 1.000
#> GSM627130     2  0.0000      0.957 0.000 1.000
#> GSM627071     2  0.0000      0.957 0.000 1.000
#> GSM627118     2  0.0000      0.957 0.000 1.000
#> GSM627094     2  0.0000      0.957 0.000 1.000
#> GSM627122     2  0.8661      0.505 0.288 0.712
#> GSM627115     2  0.0000      0.957 0.000 1.000
#> GSM627125     2  0.0000      0.957 0.000 1.000
#> GSM627174     2  0.0000      0.957 0.000 1.000
#> GSM627102     2  0.0000      0.957 0.000 1.000
#> GSM627073     2  0.0000      0.957 0.000 1.000
#> GSM627108     2  0.0000      0.957 0.000 1.000
#> GSM627126     1  0.0000      0.831 1.000 0.000
#> GSM627078     2  0.0000      0.957 0.000 1.000
#> GSM627090     2  0.0000      0.957 0.000 1.000
#> GSM627099     2  0.0000      0.957 0.000 1.000
#> GSM627105     2  0.0000      0.957 0.000 1.000
#> GSM627117     2  0.0000      0.957 0.000 1.000
#> GSM627121     2  0.0000      0.957 0.000 1.000
#> GSM627127     2  0.0000      0.957 0.000 1.000
#> GSM627087     2  0.0000      0.957 0.000 1.000
#> GSM627089     2  0.0000      0.957 0.000 1.000
#> GSM627092     2  0.0000      0.957 0.000 1.000
#> GSM627076     2  0.3114      0.897 0.056 0.944
#> GSM627136     2  0.8016      0.602 0.244 0.756
#> GSM627081     2  0.0000      0.957 0.000 1.000
#> GSM627091     2  0.0000      0.957 0.000 1.000
#> GSM627097     2  0.0000      0.957 0.000 1.000
#> GSM627072     2  0.0000      0.957 0.000 1.000
#> GSM627080     1  0.0000      0.831 1.000 0.000
#> GSM627088     2  0.0000      0.957 0.000 1.000
#> GSM627109     1  0.5842      0.812 0.860 0.140
#> GSM627111     1  0.0000      0.831 1.000 0.000
#> GSM627113     1  0.7219      0.786 0.800 0.200
#> GSM627133     2  0.0000      0.957 0.000 1.000
#> GSM627177     2  0.0000      0.957 0.000 1.000
#> GSM627086     2  0.0000      0.957 0.000 1.000
#> GSM627095     1  0.3733      0.827 0.928 0.072
#> GSM627079     2  0.0000      0.957 0.000 1.000
#> GSM627082     2  0.0000      0.957 0.000 1.000
#> GSM627074     1  0.7219      0.786 0.800 0.200
#> GSM627077     1  0.9710      0.535 0.600 0.400
#> GSM627093     1  0.7950      0.757 0.760 0.240
#> GSM627120     2  0.0000      0.957 0.000 1.000
#> GSM627124     2  0.0000      0.957 0.000 1.000
#> GSM627075     2  0.0000      0.957 0.000 1.000
#> GSM627085     2  0.0000      0.957 0.000 1.000
#> GSM627119     1  0.9686      0.544 0.604 0.396
#> GSM627116     2  0.0000      0.957 0.000 1.000
#> GSM627084     1  0.9866      0.453 0.568 0.432
#> GSM627096     2  0.0000      0.957 0.000 1.000
#> GSM627100     2  0.0000      0.957 0.000 1.000
#> GSM627112     2  0.0000      0.957 0.000 1.000
#> GSM627083     1  0.9754      0.516 0.592 0.408
#> GSM627098     1  0.7528      0.776 0.784 0.216
#> GSM627104     1  0.7950      0.757 0.760 0.240
#> GSM627131     1  0.9661      0.552 0.608 0.392
#> GSM627106     2  0.0000      0.957 0.000 1.000
#> GSM627123     1  0.1843      0.831 0.972 0.028
#> GSM627129     2  0.0000      0.957 0.000 1.000
#> GSM627216     2  0.0000      0.957 0.000 1.000
#> GSM627212     2  0.0000      0.957 0.000 1.000
#> GSM627190     2  0.0000      0.957 0.000 1.000
#> GSM627169     2  0.0000      0.957 0.000 1.000
#> GSM627167     2  0.0000      0.957 0.000 1.000
#> GSM627192     1  0.0000      0.831 1.000 0.000
#> GSM627203     2  0.0000      0.957 0.000 1.000
#> GSM627151     2  0.0000      0.957 0.000 1.000
#> GSM627163     1  0.0000      0.831 1.000 0.000
#> GSM627211     2  0.0000      0.957 0.000 1.000
#> GSM627171     2  0.0000      0.957 0.000 1.000
#> GSM627209     2  0.0000      0.957 0.000 1.000
#> GSM627135     1  0.0000      0.831 1.000 0.000
#> GSM627170     2  0.0000      0.957 0.000 1.000
#> GSM627178     1  0.8861      0.688 0.696 0.304
#> GSM627199     2  0.0000      0.957 0.000 1.000
#> GSM627213     2  0.0000      0.957 0.000 1.000
#> GSM627140     2  0.0672      0.949 0.008 0.992
#> GSM627149     1  0.0000      0.831 1.000 0.000
#> GSM627147     2  0.0000      0.957 0.000 1.000
#> GSM627195     2  0.0000      0.957 0.000 1.000
#> GSM627204     2  0.0000      0.957 0.000 1.000
#> GSM627207     2  0.0000      0.957 0.000 1.000
#> GSM627157     1  0.4939      0.821 0.892 0.108
#> GSM627201     2  0.0000      0.957 0.000 1.000
#> GSM627146     2  0.0000      0.957 0.000 1.000
#> GSM627156     2  0.0000      0.957 0.000 1.000
#> GSM627188     1  0.0000      0.831 1.000 0.000
#> GSM627197     2  0.0000      0.957 0.000 1.000
#> GSM627173     2  0.0000      0.957 0.000 1.000
#> GSM627179     2  0.0000      0.957 0.000 1.000
#> GSM627208     2  0.0000      0.957 0.000 1.000
#> GSM627215     2  0.0000      0.957 0.000 1.000
#> GSM627153     2  0.0000      0.957 0.000 1.000
#> GSM627155     1  0.0000      0.831 1.000 0.000
#> GSM627165     2  0.0000      0.957 0.000 1.000
#> GSM627168     2  0.9710      0.163 0.400 0.600
#> GSM627183     2  0.9710      0.163 0.400 0.600
#> GSM627144     2  0.0000      0.957 0.000 1.000
#> GSM627158     1  0.0000      0.831 1.000 0.000
#> GSM627196     2  0.0000      0.957 0.000 1.000
#> GSM627142     2  0.0000      0.957 0.000 1.000
#> GSM627182     2  0.0000      0.957 0.000 1.000
#> GSM627202     1  0.8499      0.722 0.724 0.276
#> GSM627141     2  0.8955      0.445 0.312 0.688
#> GSM627143     2  0.0000      0.957 0.000 1.000
#> GSM627145     2  0.0000      0.957 0.000 1.000
#> GSM627152     2  0.9732      0.147 0.404 0.596
#> GSM627200     1  0.9686      0.544 0.604 0.396
#> GSM627159     2  0.0000      0.957 0.000 1.000
#> GSM627164     2  0.0000      0.957 0.000 1.000
#> GSM627138     1  0.0000      0.831 1.000 0.000
#> GSM627175     2  0.0000      0.957 0.000 1.000
#> GSM627150     2  0.0000      0.957 0.000 1.000
#> GSM627166     1  0.9460      0.601 0.636 0.364
#> GSM627186     2  0.0000      0.957 0.000 1.000
#> GSM627139     2  0.0000      0.957 0.000 1.000
#> GSM627181     2  0.0000      0.957 0.000 1.000
#> GSM627205     2  0.0000      0.957 0.000 1.000
#> GSM627214     2  0.0000      0.957 0.000 1.000
#> GSM627180     2  0.0000      0.957 0.000 1.000
#> GSM627172     2  0.0000      0.957 0.000 1.000
#> GSM627184     1  0.0000      0.831 1.000 0.000
#> GSM627193     2  0.0000      0.957 0.000 1.000
#> GSM627191     2  0.9491      0.278 0.368 0.632
#> GSM627176     2  0.0938      0.945 0.012 0.988
#> GSM627194     2  0.0000      0.957 0.000 1.000
#> GSM627154     2  0.0000      0.957 0.000 1.000
#> GSM627187     2  0.4161      0.863 0.084 0.916
#> GSM627198     2  0.0000      0.957 0.000 1.000
#> GSM627160     2  0.8909      0.455 0.308 0.692
#> GSM627185     1  0.5408      0.818 0.876 0.124
#> GSM627206     2  0.0000      0.957 0.000 1.000
#> GSM627161     1  0.0000      0.831 1.000 0.000
#> GSM627162     2  0.2603      0.911 0.044 0.956
#> GSM627210     2  0.9732      0.147 0.404 0.596
#> GSM627189     2  0.0000      0.957 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM627128     3  0.0000    0.84692 0.000 0.000 1.000
#> GSM627110     2  0.6079    0.05605 0.388 0.612 0.000
#> GSM627132     1  0.0000    0.81906 1.000 0.000 0.000
#> GSM627107     3  0.0000    0.84692 0.000 0.000 1.000
#> GSM627103     3  0.4002    0.77438 0.000 0.160 0.840
#> GSM627114     3  0.2063    0.83097 0.044 0.008 0.948
#> GSM627134     3  0.0747    0.84786 0.000 0.016 0.984
#> GSM627137     3  0.5810    0.50983 0.000 0.336 0.664
#> GSM627148     3  0.2537    0.82031 0.000 0.080 0.920
#> GSM627101     3  0.0000    0.84692 0.000 0.000 1.000
#> GSM627130     3  0.0000    0.84692 0.000 0.000 1.000
#> GSM627071     3  0.1411    0.84299 0.000 0.036 0.964
#> GSM627118     3  0.0237    0.84736 0.000 0.004 0.996
#> GSM627094     2  0.0000    0.72898 0.000 1.000 0.000
#> GSM627122     3  0.0000    0.84692 0.000 0.000 1.000
#> GSM627115     2  0.5138    0.55686 0.000 0.748 0.252
#> GSM627125     3  0.0000    0.84692 0.000 0.000 1.000
#> GSM627174     3  0.3340    0.79045 0.000 0.120 0.880
#> GSM627102     2  0.0000    0.72898 0.000 1.000 0.000
#> GSM627073     3  0.1411    0.84299 0.000 0.036 0.964
#> GSM627108     2  0.1753    0.71255 0.000 0.952 0.048
#> GSM627126     1  0.0000    0.81906 1.000 0.000 0.000
#> GSM627078     3  0.6215    0.29560 0.000 0.428 0.572
#> GSM627090     3  0.0237    0.84755 0.000 0.004 0.996
#> GSM627099     3  0.1753    0.83668 0.000 0.048 0.952
#> GSM627105     3  0.0237    0.84755 0.000 0.004 0.996
#> GSM627117     2  0.0000    0.72898 0.000 1.000 0.000
#> GSM627121     3  0.0000    0.84692 0.000 0.000 1.000
#> GSM627127     3  0.1529    0.84161 0.000 0.040 0.960
#> GSM627087     3  0.6192    0.33934 0.000 0.420 0.580
#> GSM627089     3  0.0000    0.84692 0.000 0.000 1.000
#> GSM627092     2  0.0000    0.72898 0.000 1.000 0.000
#> GSM627076     3  0.2448    0.82056 0.000 0.076 0.924
#> GSM627136     3  0.2918    0.82783 0.032 0.044 0.924
#> GSM627081     3  0.0000    0.84692 0.000 0.000 1.000
#> GSM627091     2  0.5098    0.56175 0.000 0.752 0.248
#> GSM627097     3  0.1860    0.83943 0.000 0.052 0.948
#> GSM627072     3  0.1643    0.83970 0.000 0.044 0.956
#> GSM627080     1  0.0000    0.81906 1.000 0.000 0.000
#> GSM627088     3  0.0237    0.84755 0.000 0.004 0.996
#> GSM627109     2  0.6309   -0.28104 0.496 0.504 0.000
#> GSM627111     1  0.0000    0.81906 1.000 0.000 0.000
#> GSM627113     1  0.4555    0.70787 0.800 0.200 0.000
#> GSM627133     3  0.5254    0.65356 0.000 0.264 0.736
#> GSM627177     3  0.0237    0.84755 0.000 0.004 0.996
#> GSM627086     3  0.4842    0.68369 0.000 0.224 0.776
#> GSM627095     1  0.6168    0.45221 0.588 0.412 0.000
#> GSM627079     3  0.1860    0.83586 0.000 0.052 0.948
#> GSM627082     3  0.0000    0.84692 0.000 0.000 1.000
#> GSM627074     2  0.6045    0.07214 0.380 0.620 0.000
#> GSM627077     3  0.4293    0.72540 0.164 0.004 0.832
#> GSM627093     2  0.6126    0.01471 0.400 0.600 0.000
#> GSM627120     3  0.0237    0.84736 0.000 0.004 0.996
#> GSM627124     2  0.5785    0.40658 0.000 0.668 0.332
#> GSM627075     2  0.0000    0.72898 0.000 1.000 0.000
#> GSM627085     3  0.6299    0.13724 0.000 0.476 0.524
#> GSM627119     2  0.6026    0.09114 0.376 0.624 0.000
#> GSM627116     3  0.3482    0.77438 0.000 0.128 0.872
#> GSM627084     1  0.6264    0.50258 0.616 0.380 0.004
#> GSM627096     3  0.0237    0.84736 0.000 0.004 0.996
#> GSM627100     3  0.0000    0.84692 0.000 0.000 1.000
#> GSM627112     2  0.4235    0.64903 0.000 0.824 0.176
#> GSM627083     1  0.6140    0.31342 0.596 0.000 0.404
#> GSM627098     1  0.4682    0.65968 0.804 0.004 0.192
#> GSM627104     2  0.5098    0.39034 0.248 0.752 0.000
#> GSM627131     3  0.5760    0.43799 0.328 0.000 0.672
#> GSM627106     3  0.0000    0.84692 0.000 0.000 1.000
#> GSM627123     1  0.3038    0.77454 0.896 0.104 0.000
#> GSM627129     3  0.1163    0.84716 0.000 0.028 0.972
#> GSM627216     3  0.4931    0.70661 0.000 0.232 0.768
#> GSM627212     2  0.5760    0.40240 0.000 0.672 0.328
#> GSM627190     2  0.0000    0.72898 0.000 1.000 0.000
#> GSM627169     2  0.0000    0.72898 0.000 1.000 0.000
#> GSM627167     3  0.5431    0.60237 0.000 0.284 0.716
#> GSM627192     1  0.0000    0.81906 1.000 0.000 0.000
#> GSM627203     3  0.1289    0.84425 0.000 0.032 0.968
#> GSM627151     3  0.6026    0.47870 0.000 0.376 0.624
#> GSM627163     1  0.0000    0.81906 1.000 0.000 0.000
#> GSM627211     2  0.4121    0.65918 0.000 0.832 0.168
#> GSM627171     3  0.4399    0.72535 0.000 0.188 0.812
#> GSM627209     3  0.5859    0.48843 0.000 0.344 0.656
#> GSM627135     1  0.0000    0.81906 1.000 0.000 0.000
#> GSM627170     3  0.0237    0.84736 0.000 0.004 0.996
#> GSM627178     1  0.5138    0.66032 0.748 0.252 0.000
#> GSM627199     2  0.0000    0.72898 0.000 1.000 0.000
#> GSM627213     3  0.0237    0.84736 0.000 0.004 0.996
#> GSM627140     2  0.0000    0.72898 0.000 1.000 0.000
#> GSM627149     1  0.0000    0.81906 1.000 0.000 0.000
#> GSM627147     2  0.0000    0.72898 0.000 1.000 0.000
#> GSM627195     3  0.1411    0.84299 0.000 0.036 0.964
#> GSM627204     2  0.3619    0.67198 0.000 0.864 0.136
#> GSM627207     2  0.6244    0.11665 0.000 0.560 0.440
#> GSM627157     1  0.1529    0.80457 0.960 0.040 0.000
#> GSM627201     3  0.5138    0.65059 0.000 0.252 0.748
#> GSM627146     3  0.6302    0.16917 0.000 0.480 0.520
#> GSM627156     2  0.0000    0.72898 0.000 1.000 0.000
#> GSM627188     1  0.0000    0.81906 1.000 0.000 0.000
#> GSM627197     3  0.6299    0.13724 0.000 0.476 0.524
#> GSM627173     2  0.0000    0.72898 0.000 1.000 0.000
#> GSM627179     2  0.6252    0.08800 0.000 0.556 0.444
#> GSM627208     3  0.1031    0.84774 0.000 0.024 0.976
#> GSM627215     3  0.1529    0.84305 0.000 0.040 0.960
#> GSM627153     3  0.5178    0.64093 0.000 0.256 0.744
#> GSM627155     1  0.0000    0.81906 1.000 0.000 0.000
#> GSM627165     3  0.2261    0.83066 0.000 0.068 0.932
#> GSM627168     3  0.9520    0.02257 0.352 0.196 0.452
#> GSM627183     3  0.5793    0.72513 0.116 0.084 0.800
#> GSM627144     3  0.6299    0.13378 0.000 0.476 0.524
#> GSM627158     1  0.0000    0.81906 1.000 0.000 0.000
#> GSM627196     2  0.6026    0.32012 0.000 0.624 0.376
#> GSM627142     3  0.0000    0.84692 0.000 0.000 1.000
#> GSM627182     3  0.3686    0.76858 0.000 0.140 0.860
#> GSM627202     1  0.6235    0.24888 0.564 0.000 0.436
#> GSM627141     3  0.7885    0.38870 0.336 0.072 0.592
#> GSM627143     3  0.2878    0.82348 0.000 0.096 0.904
#> GSM627145     3  0.1289    0.84429 0.000 0.032 0.968
#> GSM627152     1  0.6345    0.47420 0.596 0.400 0.004
#> GSM627200     1  0.4555    0.70787 0.800 0.200 0.000
#> GSM627159     3  0.0000    0.84692 0.000 0.000 1.000
#> GSM627164     2  0.0000    0.72898 0.000 1.000 0.000
#> GSM627138     1  0.0000    0.81906 1.000 0.000 0.000
#> GSM627175     3  0.2448    0.82195 0.000 0.076 0.924
#> GSM627150     3  0.0000    0.84692 0.000 0.000 1.000
#> GSM627166     2  0.6008    0.10311 0.372 0.628 0.000
#> GSM627186     2  0.0000    0.72898 0.000 1.000 0.000
#> GSM627139     3  0.1643    0.84189 0.000 0.044 0.956
#> GSM627181     3  0.6008    0.42882 0.000 0.372 0.628
#> GSM627205     3  0.1753    0.84020 0.000 0.048 0.952
#> GSM627214     3  0.0237    0.84736 0.000 0.004 0.996
#> GSM627180     3  0.3941    0.74996 0.000 0.156 0.844
#> GSM627172     2  0.0000    0.72898 0.000 1.000 0.000
#> GSM627184     1  0.0000    0.81906 1.000 0.000 0.000
#> GSM627193     2  0.6235    0.10661 0.000 0.564 0.436
#> GSM627191     1  0.7069    0.24439 0.568 0.024 0.408
#> GSM627176     2  0.0000    0.72898 0.000 1.000 0.000
#> GSM627194     2  0.6280   -0.00197 0.000 0.540 0.460
#> GSM627154     3  0.6095    0.38157 0.000 0.392 0.608
#> GSM627187     2  0.0237    0.72591 0.004 0.996 0.000
#> GSM627198     2  0.6302   -0.01295 0.000 0.520 0.480
#> GSM627160     2  0.0592    0.71937 0.012 0.988 0.000
#> GSM627185     1  0.6079    0.49460 0.612 0.388 0.000
#> GSM627206     3  0.0237    0.84755 0.000 0.004 0.996
#> GSM627161     1  0.0000    0.81906 1.000 0.000 0.000
#> GSM627162     2  0.0237    0.72591 0.004 0.996 0.000
#> GSM627210     2  0.0424    0.72279 0.008 0.992 0.000
#> GSM627189     2  0.5098    0.56008 0.000 0.752 0.248

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM627128     4  0.4624     0.5470 0.000 0.000 0.340 0.660
#> GSM627110     3  0.2944     0.7352 0.004 0.128 0.868 0.000
#> GSM627132     1  0.0000     0.8729 1.000 0.000 0.000 0.000
#> GSM627107     4  0.4522     0.5861 0.000 0.000 0.320 0.680
#> GSM627103     4  0.3958     0.7857 0.000 0.032 0.144 0.824
#> GSM627114     3  0.7394     0.5057 0.076 0.052 0.580 0.292
#> GSM627134     4  0.4252     0.6807 0.000 0.004 0.252 0.744
#> GSM627137     4  0.2256     0.8058 0.000 0.020 0.056 0.924
#> GSM627148     3  0.1488     0.8429 0.000 0.012 0.956 0.032
#> GSM627101     4  0.3610     0.7418 0.000 0.000 0.200 0.800
#> GSM627130     4  0.1637     0.8043 0.000 0.000 0.060 0.940
#> GSM627071     3  0.4018     0.6962 0.000 0.004 0.772 0.224
#> GSM627118     4  0.3266     0.7685 0.000 0.000 0.168 0.832
#> GSM627094     2  0.1474     0.8194 0.000 0.948 0.000 0.052
#> GSM627122     3  0.6897     0.5296 0.180 0.000 0.592 0.228
#> GSM627115     2  0.4203     0.7574 0.000 0.824 0.108 0.068
#> GSM627125     4  0.4697     0.5176 0.000 0.000 0.356 0.644
#> GSM627174     4  0.1452     0.8032 0.000 0.008 0.036 0.956
#> GSM627102     2  0.1867     0.8175 0.000 0.928 0.000 0.072
#> GSM627073     3  0.2704     0.8024 0.000 0.000 0.876 0.124
#> GSM627108     2  0.2589     0.8045 0.000 0.884 0.000 0.116
#> GSM627126     1  0.0000     0.8729 1.000 0.000 0.000 0.000
#> GSM627078     4  0.2149     0.7556 0.000 0.088 0.000 0.912
#> GSM627090     3  0.1118     0.8402 0.000 0.000 0.964 0.036
#> GSM627099     4  0.3088     0.7909 0.000 0.008 0.128 0.864
#> GSM627105     4  0.4898     0.3950 0.000 0.000 0.416 0.584
#> GSM627117     2  0.4955     0.1935 0.000 0.556 0.444 0.000
#> GSM627121     4  0.4277     0.6336 0.000 0.000 0.280 0.720
#> GSM627127     4  0.3681     0.7729 0.000 0.008 0.176 0.816
#> GSM627087     4  0.6706     0.5270 0.000 0.288 0.124 0.588
#> GSM627089     3  0.1302     0.8372 0.000 0.000 0.956 0.044
#> GSM627092     2  0.0469     0.8017 0.000 0.988 0.012 0.000
#> GSM627076     3  0.0188     0.8418 0.000 0.004 0.996 0.000
#> GSM627136     3  0.5062     0.5007 0.284 0.000 0.692 0.024
#> GSM627081     3  0.3074     0.7749 0.000 0.000 0.848 0.152
#> GSM627091     2  0.4764     0.7430 0.000 0.788 0.088 0.124
#> GSM627097     4  0.4535     0.6730 0.000 0.004 0.292 0.704
#> GSM627072     3  0.0376     0.8432 0.000 0.004 0.992 0.004
#> GSM627080     1  0.0000     0.8729 1.000 0.000 0.000 0.000
#> GSM627088     3  0.1389     0.8364 0.000 0.000 0.952 0.048
#> GSM627109     1  0.5537     0.6806 0.688 0.256 0.056 0.000
#> GSM627111     1  0.0000     0.8729 1.000 0.000 0.000 0.000
#> GSM627113     1  0.4534     0.8013 0.800 0.132 0.068 0.000
#> GSM627133     3  0.1211     0.8254 0.000 0.040 0.960 0.000
#> GSM627177     3  0.3172     0.7703 0.000 0.000 0.840 0.160
#> GSM627086     4  0.1635     0.7872 0.000 0.044 0.008 0.948
#> GSM627095     1  0.3300     0.8174 0.848 0.144 0.008 0.000
#> GSM627079     3  0.0188     0.8418 0.000 0.004 0.996 0.000
#> GSM627082     4  0.0469     0.7995 0.000 0.000 0.012 0.988
#> GSM627074     2  0.7143    -0.1882 0.408 0.460 0.132 0.000
#> GSM627077     3  0.0779     0.8452 0.004 0.000 0.980 0.016
#> GSM627093     1  0.6323     0.6516 0.640 0.248 0.112 0.000
#> GSM627120     4  0.2611     0.8016 0.000 0.008 0.096 0.896
#> GSM627124     4  0.4164     0.5400 0.000 0.264 0.000 0.736
#> GSM627075     2  0.1792     0.8180 0.000 0.932 0.000 0.068
#> GSM627085     4  0.3761     0.7989 0.000 0.068 0.080 0.852
#> GSM627119     2  0.6398     0.1655 0.344 0.576 0.080 0.000
#> GSM627116     3  0.0376     0.8434 0.000 0.004 0.992 0.004
#> GSM627084     1  0.4514     0.8003 0.800 0.136 0.064 0.000
#> GSM627096     4  0.3311     0.7652 0.000 0.000 0.172 0.828
#> GSM627100     3  0.3444     0.7479 0.000 0.000 0.816 0.184
#> GSM627112     4  0.4585     0.4323 0.000 0.332 0.000 0.668
#> GSM627083     4  0.6498     0.0422 0.440 0.000 0.072 0.488
#> GSM627098     1  0.4423     0.7297 0.792 0.000 0.168 0.040
#> GSM627104     2  0.2466     0.7391 0.096 0.900 0.004 0.000
#> GSM627131     3  0.0469     0.8447 0.000 0.000 0.988 0.012
#> GSM627106     3  0.4522     0.5142 0.000 0.000 0.680 0.320
#> GSM627123     1  0.3474     0.8364 0.868 0.068 0.064 0.000
#> GSM627129     4  0.2888     0.7942 0.000 0.004 0.124 0.872
#> GSM627216     4  0.7289     0.3948 0.000 0.268 0.200 0.532
#> GSM627212     2  0.2342     0.8179 0.000 0.912 0.008 0.080
#> GSM627190     2  0.2081     0.7707 0.000 0.916 0.084 0.000
#> GSM627169     2  0.0000     0.8054 0.000 1.000 0.000 0.000
#> GSM627167     4  0.1867     0.7657 0.000 0.072 0.000 0.928
#> GSM627192     1  0.0000     0.8729 1.000 0.000 0.000 0.000
#> GSM627203     3  0.0188     0.8441 0.000 0.000 0.996 0.004
#> GSM627151     2  0.7674     0.1071 0.000 0.436 0.340 0.224
#> GSM627163     1  0.0000     0.8729 1.000 0.000 0.000 0.000
#> GSM627211     2  0.4072     0.6938 0.000 0.748 0.000 0.252
#> GSM627171     4  0.1716     0.7708 0.000 0.064 0.000 0.936
#> GSM627209     4  0.1557     0.7768 0.000 0.056 0.000 0.944
#> GSM627135     1  0.2814     0.8089 0.868 0.000 0.132 0.000
#> GSM627170     4  0.2814     0.7896 0.000 0.000 0.132 0.868
#> GSM627178     1  0.6258     0.5551 0.600 0.076 0.324 0.000
#> GSM627199     2  0.2216     0.8138 0.000 0.908 0.000 0.092
#> GSM627213     4  0.2216     0.7989 0.000 0.000 0.092 0.908
#> GSM627140     2  0.1867     0.8175 0.000 0.928 0.000 0.072
#> GSM627149     1  0.0921     0.8646 0.972 0.000 0.028 0.000
#> GSM627147     2  0.1474     0.8183 0.000 0.948 0.000 0.052
#> GSM627195     3  0.0188     0.8441 0.000 0.000 0.996 0.004
#> GSM627204     2  0.4543     0.5922 0.000 0.676 0.000 0.324
#> GSM627207     2  0.4998     0.1698 0.000 0.512 0.000 0.488
#> GSM627157     1  0.0927     0.8694 0.976 0.008 0.016 0.000
#> GSM627201     4  0.1624     0.8008 0.000 0.028 0.020 0.952
#> GSM627146     4  0.2704     0.7316 0.000 0.124 0.000 0.876
#> GSM627156     2  0.1557     0.8182 0.000 0.944 0.000 0.056
#> GSM627188     1  0.0000     0.8729 1.000 0.000 0.000 0.000
#> GSM627197     4  0.2149     0.7577 0.000 0.088 0.000 0.912
#> GSM627173     2  0.1118     0.8159 0.000 0.964 0.000 0.036
#> GSM627179     2  0.4382     0.6280 0.000 0.704 0.000 0.296
#> GSM627208     3  0.6082     0.0311 0.000 0.044 0.480 0.476
#> GSM627215     3  0.3610     0.7267 0.000 0.000 0.800 0.200
#> GSM627153     4  0.1389     0.7803 0.000 0.048 0.000 0.952
#> GSM627155     1  0.0000     0.8729 1.000 0.000 0.000 0.000
#> GSM627165     4  0.2924     0.8026 0.000 0.016 0.100 0.884
#> GSM627168     3  0.0592     0.8361 0.000 0.016 0.984 0.000
#> GSM627183     3  0.0188     0.8418 0.000 0.004 0.996 0.000
#> GSM627144     3  0.2281     0.7731 0.000 0.096 0.904 0.000
#> GSM627158     1  0.0000     0.8729 1.000 0.000 0.000 0.000
#> GSM627196     4  0.3942     0.5845 0.000 0.236 0.000 0.764
#> GSM627142     4  0.4830     0.4335 0.000 0.000 0.392 0.608
#> GSM627182     3  0.3818     0.7607 0.000 0.108 0.844 0.048
#> GSM627202     1  0.6136     0.4710 0.632 0.000 0.288 0.080
#> GSM627141     3  0.2040     0.8275 0.048 0.004 0.936 0.012
#> GSM627143     4  0.2965     0.7822 0.000 0.072 0.036 0.892
#> GSM627145     3  0.0188     0.8441 0.000 0.000 0.996 0.004
#> GSM627152     3  0.2408     0.7620 0.000 0.104 0.896 0.000
#> GSM627200     3  0.6276     0.0760 0.380 0.064 0.556 0.000
#> GSM627159     4  0.2868     0.7863 0.000 0.000 0.136 0.864
#> GSM627164     2  0.1940     0.8171 0.000 0.924 0.000 0.076
#> GSM627138     1  0.0000     0.8729 1.000 0.000 0.000 0.000
#> GSM627175     4  0.1902     0.8030 0.000 0.004 0.064 0.932
#> GSM627150     3  0.3444     0.7466 0.000 0.000 0.816 0.184
#> GSM627166     1  0.7597     0.4213 0.468 0.308 0.224 0.000
#> GSM627186     2  0.0000     0.8054 0.000 1.000 0.000 0.000
#> GSM627139     4  0.4053     0.7127 0.000 0.004 0.228 0.768
#> GSM627181     4  0.1474     0.7780 0.000 0.052 0.000 0.948
#> GSM627205     4  0.3324     0.7910 0.000 0.012 0.136 0.852
#> GSM627214     4  0.0469     0.7997 0.000 0.000 0.012 0.988
#> GSM627180     3  0.1854     0.8308 0.000 0.048 0.940 0.012
#> GSM627172     2  0.1867     0.8175 0.000 0.928 0.000 0.072
#> GSM627184     1  0.0000     0.8729 1.000 0.000 0.000 0.000
#> GSM627193     2  0.3933     0.7384 0.000 0.792 0.008 0.200
#> GSM627191     4  0.6658     0.1384 0.388 0.068 0.008 0.536
#> GSM627176     2  0.1637     0.7748 0.000 0.940 0.060 0.000
#> GSM627194     2  0.5836     0.6549 0.000 0.700 0.188 0.112
#> GSM627154     4  0.2546     0.8008 0.000 0.008 0.092 0.900
#> GSM627187     2  0.0592     0.7998 0.000 0.984 0.016 0.000
#> GSM627198     4  0.2704     0.7254 0.000 0.124 0.000 0.876
#> GSM627160     2  0.6142     0.5063 0.140 0.676 0.184 0.000
#> GSM627185     1  0.3610     0.7780 0.800 0.200 0.000 0.000
#> GSM627206     3  0.4635     0.6299 0.012 0.000 0.720 0.268
#> GSM627161     1  0.0000     0.8729 1.000 0.000 0.000 0.000
#> GSM627162     2  0.0188     0.8044 0.000 0.996 0.004 0.000
#> GSM627210     2  0.1557     0.7778 0.000 0.944 0.056 0.000
#> GSM627189     2  0.3390     0.7980 0.000 0.852 0.016 0.132

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM627128     4  0.3160     0.6514 0.000 0.004 0.000 0.808 0.188
#> GSM627110     5  0.3123     0.6815 0.000 0.012 0.160 0.000 0.828
#> GSM627132     1  0.0162     0.8574 0.996 0.000 0.000 0.000 0.004
#> GSM627107     2  0.5967     0.3416 0.000 0.556 0.000 0.136 0.308
#> GSM627103     2  0.4458     0.6949 0.000 0.800 0.072 0.052 0.076
#> GSM627114     2  0.2925     0.6618 0.024 0.884 0.024 0.000 0.068
#> GSM627134     2  0.6286     0.5239 0.000 0.584 0.012 0.220 0.184
#> GSM627137     2  0.5310     0.6402 0.000 0.704 0.044 0.204 0.048
#> GSM627148     5  0.4326     0.6925 0.000 0.264 0.028 0.000 0.708
#> GSM627101     4  0.4203     0.6683 0.000 0.092 0.000 0.780 0.128
#> GSM627130     4  0.1408     0.6965 0.000 0.000 0.008 0.948 0.044
#> GSM627071     5  0.4949     0.4615 0.000 0.396 0.000 0.032 0.572
#> GSM627118     2  0.6401     0.1814 0.000 0.448 0.000 0.380 0.172
#> GSM627094     3  0.4074     0.4826 0.000 0.364 0.636 0.000 0.000
#> GSM627122     5  0.6133     0.6033 0.108 0.056 0.000 0.180 0.656
#> GSM627115     2  0.4024     0.6138 0.000 0.752 0.220 0.000 0.028
#> GSM627125     4  0.3491     0.6251 0.000 0.004 0.000 0.768 0.228
#> GSM627174     2  0.4763     0.6242 0.000 0.716 0.020 0.232 0.032
#> GSM627102     3  0.2362     0.7728 0.000 0.076 0.900 0.024 0.000
#> GSM627073     5  0.4049     0.7317 0.000 0.084 0.000 0.124 0.792
#> GSM627108     2  0.4450    -0.0746 0.000 0.508 0.488 0.004 0.000
#> GSM627126     1  0.0162     0.8574 0.996 0.000 0.000 0.000 0.004
#> GSM627078     2  0.5738     0.5229 0.000 0.604 0.132 0.264 0.000
#> GSM627090     5  0.2370     0.7766 0.000 0.056 0.000 0.040 0.904
#> GSM627099     2  0.5195     0.6107 0.000 0.692 0.008 0.212 0.088
#> GSM627105     4  0.4403     0.4981 0.000 0.008 0.004 0.648 0.340
#> GSM627117     2  0.6206     0.3606 0.000 0.528 0.304 0.000 0.168
#> GSM627121     2  0.2966     0.6322 0.000 0.848 0.000 0.016 0.136
#> GSM627127     4  0.5508     0.5817 0.000 0.120 0.000 0.636 0.244
#> GSM627087     2  0.3835     0.6691 0.000 0.796 0.156 0.000 0.048
#> GSM627089     5  0.3160     0.7485 0.000 0.188 0.000 0.004 0.808
#> GSM627092     3  0.0671     0.7664 0.000 0.016 0.980 0.000 0.004
#> GSM627076     5  0.2069     0.7429 0.000 0.000 0.012 0.076 0.912
#> GSM627136     5  0.6062    -0.0441 0.452 0.028 0.012 0.032 0.476
#> GSM627081     2  0.4641    -0.0647 0.000 0.532 0.000 0.012 0.456
#> GSM627091     3  0.4161     0.6832 0.000 0.208 0.752 0.000 0.040
#> GSM627097     4  0.4491     0.4860 0.000 0.004 0.008 0.624 0.364
#> GSM627072     5  0.2763     0.7703 0.000 0.148 0.004 0.000 0.848
#> GSM627080     1  0.0162     0.8574 0.996 0.000 0.000 0.000 0.004
#> GSM627088     2  0.4596    -0.2089 0.004 0.496 0.000 0.004 0.496
#> GSM627109     1  0.5084     0.5942 0.616 0.000 0.332 0.000 0.052
#> GSM627111     1  0.0000     0.8566 1.000 0.000 0.000 0.000 0.000
#> GSM627113     1  0.3734     0.8069 0.812 0.000 0.128 0.000 0.060
#> GSM627133     5  0.4780     0.6208 0.000 0.248 0.060 0.000 0.692
#> GSM627177     5  0.3442     0.7580 0.000 0.104 0.000 0.060 0.836
#> GSM627086     2  0.3442     0.6843 0.000 0.836 0.060 0.104 0.000
#> GSM627095     1  0.4155     0.7476 0.744 0.000 0.228 0.004 0.024
#> GSM627079     5  0.1200     0.7719 0.000 0.008 0.012 0.016 0.964
#> GSM627082     4  0.1095     0.6827 0.000 0.012 0.008 0.968 0.012
#> GSM627074     3  0.5882     0.4185 0.184 0.012 0.640 0.000 0.164
#> GSM627077     5  0.4328     0.7526 0.076 0.116 0.000 0.016 0.792
#> GSM627093     1  0.4902     0.7543 0.724 0.004 0.172 0.000 0.100
#> GSM627120     2  0.1638     0.6730 0.000 0.932 0.004 0.000 0.064
#> GSM627124     3  0.5466     0.5710 0.000 0.244 0.640 0.116 0.000
#> GSM627075     3  0.2970     0.7496 0.000 0.168 0.828 0.004 0.000
#> GSM627085     4  0.5995     0.5273 0.000 0.060 0.260 0.628 0.052
#> GSM627119     1  0.6136     0.5005 0.548 0.016 0.340 0.000 0.096
#> GSM627116     5  0.2585     0.7290 0.000 0.008 0.024 0.072 0.896
#> GSM627084     1  0.3888     0.8007 0.796 0.000 0.148 0.000 0.056
#> GSM627096     4  0.6351     0.3187 0.000 0.280 0.000 0.516 0.204
#> GSM627100     5  0.4766     0.7052 0.000 0.136 0.000 0.132 0.732
#> GSM627112     4  0.3128     0.6269 0.000 0.004 0.168 0.824 0.004
#> GSM627083     1  0.5157     0.5334 0.628 0.012 0.000 0.324 0.036
#> GSM627098     1  0.3983     0.7498 0.796 0.028 0.000 0.016 0.160
#> GSM627104     3  0.3992     0.4637 0.268 0.000 0.720 0.000 0.012
#> GSM627131     5  0.2312     0.7560 0.032 0.004 0.004 0.044 0.916
#> GSM627106     5  0.4958     0.4137 0.000 0.400 0.000 0.032 0.568
#> GSM627123     1  0.3180     0.8256 0.856 0.000 0.076 0.000 0.068
#> GSM627129     2  0.6000     0.4939 0.000 0.584 0.008 0.288 0.120
#> GSM627216     2  0.2388     0.6867 0.000 0.900 0.072 0.000 0.028
#> GSM627212     3  0.2424     0.7692 0.000 0.132 0.868 0.000 0.000
#> GSM627190     3  0.4904     0.5820 0.000 0.240 0.688 0.000 0.072
#> GSM627169     3  0.1043     0.7739 0.000 0.040 0.960 0.000 0.000
#> GSM627167     4  0.3051     0.6361 0.000 0.076 0.060 0.864 0.000
#> GSM627192     1  0.0000     0.8566 1.000 0.000 0.000 0.000 0.000
#> GSM627203     5  0.0963     0.7822 0.000 0.036 0.000 0.000 0.964
#> GSM627151     3  0.6319     0.0463 0.000 0.020 0.472 0.092 0.416
#> GSM627163     1  0.0000     0.8566 1.000 0.000 0.000 0.000 0.000
#> GSM627211     3  0.3921     0.7397 0.000 0.128 0.800 0.072 0.000
#> GSM627171     2  0.2139     0.6861 0.000 0.916 0.052 0.032 0.000
#> GSM627209     2  0.4577     0.6418 0.000 0.740 0.084 0.176 0.000
#> GSM627135     1  0.2583     0.8073 0.864 0.000 0.004 0.000 0.132
#> GSM627170     2  0.4564     0.6439 0.000 0.748 0.004 0.176 0.072
#> GSM627178     1  0.6037     0.3226 0.496 0.004 0.088 0.004 0.408
#> GSM627199     3  0.2848     0.7426 0.000 0.028 0.868 0.104 0.000
#> GSM627213     4  0.2592     0.6930 0.000 0.052 0.000 0.892 0.056
#> GSM627140     3  0.2708     0.7581 0.000 0.044 0.884 0.072 0.000
#> GSM627149     1  0.1444     0.8440 0.948 0.000 0.000 0.012 0.040
#> GSM627147     3  0.1836     0.7688 0.000 0.032 0.932 0.036 0.000
#> GSM627195     5  0.1571     0.7814 0.000 0.060 0.000 0.004 0.936
#> GSM627204     3  0.4503     0.6266 0.000 0.268 0.696 0.036 0.000
#> GSM627207     2  0.3551     0.5871 0.000 0.772 0.220 0.008 0.000
#> GSM627157     1  0.1300     0.8534 0.956 0.000 0.016 0.000 0.028
#> GSM627201     2  0.4234     0.6601 0.000 0.776 0.040 0.172 0.012
#> GSM627146     4  0.6312     0.0576 0.000 0.156 0.392 0.452 0.000
#> GSM627156     3  0.3074     0.7303 0.000 0.196 0.804 0.000 0.000
#> GSM627188     1  0.0000     0.8566 1.000 0.000 0.000 0.000 0.000
#> GSM627197     4  0.6202     0.3063 0.000 0.228 0.220 0.552 0.000
#> GSM627173     3  0.1410     0.7775 0.000 0.060 0.940 0.000 0.000
#> GSM627179     2  0.3838     0.5115 0.000 0.716 0.280 0.004 0.000
#> GSM627208     2  0.1914     0.6753 0.000 0.924 0.016 0.000 0.060
#> GSM627215     2  0.4181     0.3857 0.000 0.676 0.004 0.004 0.316
#> GSM627153     2  0.4587     0.6334 0.000 0.728 0.068 0.204 0.000
#> GSM627155     1  0.0000     0.8566 1.000 0.000 0.000 0.000 0.000
#> GSM627165     2  0.4914     0.6527 0.000 0.736 0.028 0.184 0.052
#> GSM627168     5  0.3138     0.7594 0.048 0.024 0.052 0.000 0.876
#> GSM627183     5  0.2249     0.7846 0.000 0.096 0.008 0.000 0.896
#> GSM627144     5  0.3111     0.6889 0.000 0.012 0.144 0.004 0.840
#> GSM627158     1  0.0162     0.8574 0.996 0.000 0.000 0.000 0.004
#> GSM627196     2  0.5213     0.4722 0.000 0.640 0.284 0.076 0.000
#> GSM627142     4  0.5232     0.0667 0.000 0.044 0.000 0.500 0.456
#> GSM627182     2  0.4840     0.3028 0.000 0.640 0.040 0.000 0.320
#> GSM627202     1  0.5520     0.6491 0.692 0.020 0.000 0.124 0.164
#> GSM627141     2  0.4630     0.5463 0.116 0.744 0.000 0.000 0.140
#> GSM627143     2  0.1798     0.6859 0.000 0.928 0.064 0.004 0.004
#> GSM627145     5  0.2228     0.7850 0.000 0.068 0.008 0.012 0.912
#> GSM627152     5  0.3163     0.6912 0.000 0.012 0.128 0.012 0.848
#> GSM627200     5  0.4866     0.6264 0.144 0.012 0.072 0.012 0.760
#> GSM627159     4  0.1638     0.6972 0.000 0.000 0.004 0.932 0.064
#> GSM627164     3  0.2771     0.7694 0.000 0.128 0.860 0.012 0.000
#> GSM627138     1  0.0162     0.8574 0.996 0.000 0.000 0.000 0.004
#> GSM627175     2  0.5435     0.2954 0.000 0.512 0.000 0.428 0.060
#> GSM627150     5  0.4382     0.6554 0.000 0.288 0.000 0.024 0.688
#> GSM627166     3  0.6773     0.1793 0.232 0.012 0.496 0.000 0.260
#> GSM627186     3  0.1851     0.7787 0.000 0.088 0.912 0.000 0.000
#> GSM627139     4  0.4442     0.5549 0.000 0.016 0.004 0.676 0.304
#> GSM627181     2  0.5359     0.5644 0.000 0.644 0.100 0.256 0.000
#> GSM627205     2  0.4507     0.6741 0.000 0.776 0.028 0.148 0.048
#> GSM627214     2  0.3250     0.6858 0.000 0.844 0.020 0.128 0.008
#> GSM627180     5  0.3226     0.7524 0.000 0.088 0.060 0.000 0.852
#> GSM627172     3  0.2491     0.7694 0.000 0.068 0.896 0.036 0.000
#> GSM627184     1  0.0162     0.8574 0.996 0.000 0.000 0.000 0.004
#> GSM627193     2  0.3534     0.5531 0.000 0.744 0.256 0.000 0.000
#> GSM627191     4  0.5498    -0.1553 0.444 0.008 0.036 0.508 0.004
#> GSM627176     3  0.2416     0.6969 0.000 0.012 0.888 0.000 0.100
#> GSM627194     3  0.6240     0.2024 0.000 0.364 0.524 0.020 0.092
#> GSM627154     4  0.2104     0.6989 0.000 0.024 0.000 0.916 0.060
#> GSM627187     3  0.1251     0.7703 0.000 0.036 0.956 0.000 0.008
#> GSM627198     4  0.4645     0.5420 0.000 0.072 0.204 0.724 0.000
#> GSM627160     3  0.5373     0.5447 0.084 0.012 0.712 0.012 0.180
#> GSM627185     1  0.3365     0.7912 0.808 0.008 0.180 0.000 0.004
#> GSM627206     2  0.2921     0.6256 0.004 0.844 0.000 0.004 0.148
#> GSM627161     1  0.0162     0.8574 0.996 0.000 0.000 0.000 0.004
#> GSM627162     3  0.0451     0.7628 0.000 0.008 0.988 0.000 0.004
#> GSM627210     3  0.1942     0.7204 0.000 0.012 0.920 0.000 0.068
#> GSM627189     3  0.4109     0.6143 0.000 0.288 0.700 0.000 0.012

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM627128     6  0.3840     0.5751 0.000 0.012 0.000 0.064 0.136 0.788
#> GSM627110     5  0.5114    -0.1218 0.000 0.000 0.068 0.440 0.488 0.004
#> GSM627132     1  0.0146     0.8504 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM627107     2  0.5915     0.0553 0.000 0.444 0.000 0.104 0.424 0.028
#> GSM627103     2  0.2138     0.7003 0.000 0.912 0.008 0.060 0.012 0.008
#> GSM627114     5  0.7814     0.2197 0.068 0.144 0.048 0.304 0.420 0.016
#> GSM627134     2  0.4539     0.6073 0.000 0.744 0.020 0.036 0.176 0.024
#> GSM627137     2  0.1708     0.6956 0.000 0.932 0.004 0.040 0.000 0.024
#> GSM627148     5  0.2711     0.6154 0.000 0.008 0.028 0.076 0.880 0.008
#> GSM627101     6  0.5902     0.2405 0.000 0.364 0.000 0.044 0.084 0.508
#> GSM627130     6  0.1769     0.6049 0.000 0.012 0.000 0.004 0.060 0.924
#> GSM627071     5  0.3404     0.5696 0.000 0.004 0.012 0.184 0.792 0.008
#> GSM627118     2  0.3000     0.6655 0.000 0.852 0.000 0.096 0.008 0.044
#> GSM627094     2  0.4582     0.6037 0.000 0.676 0.256 0.060 0.000 0.008
#> GSM627122     5  0.2911     0.6145 0.024 0.000 0.000 0.036 0.868 0.072
#> GSM627115     2  0.1590     0.7052 0.000 0.936 0.008 0.048 0.000 0.008
#> GSM627125     6  0.4715     0.5533 0.000 0.040 0.000 0.112 0.112 0.736
#> GSM627174     2  0.1706     0.7029 0.004 0.936 0.004 0.032 0.000 0.024
#> GSM627102     3  0.1777     0.7903 0.000 0.032 0.932 0.012 0.000 0.024
#> GSM627073     5  0.1679     0.6279 0.000 0.000 0.012 0.016 0.936 0.036
#> GSM627108     2  0.4808     0.5294 0.000 0.628 0.304 0.060 0.000 0.008
#> GSM627126     1  0.0363     0.8515 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM627078     2  0.4697     0.6509 0.000 0.732 0.152 0.044 0.000 0.072
#> GSM627090     5  0.2196     0.6060 0.000 0.004 0.000 0.108 0.884 0.004
#> GSM627099     2  0.2095     0.6858 0.000 0.904 0.000 0.076 0.004 0.016
#> GSM627105     6  0.6878     0.2797 0.000 0.100 0.000 0.288 0.152 0.460
#> GSM627117     4  0.7846     0.1587 0.004 0.260 0.212 0.328 0.192 0.004
#> GSM627121     5  0.6329     0.2568 0.000 0.256 0.004 0.268 0.460 0.012
#> GSM627127     2  0.4520     0.5508 0.000 0.676 0.004 0.276 0.020 0.024
#> GSM627087     2  0.1196     0.7009 0.000 0.952 0.000 0.040 0.000 0.008
#> GSM627089     5  0.0937     0.6308 0.000 0.000 0.000 0.040 0.960 0.000
#> GSM627092     3  0.2651     0.7569 0.000 0.028 0.860 0.112 0.000 0.000
#> GSM627076     5  0.3756     0.3566 0.000 0.000 0.004 0.316 0.676 0.004
#> GSM627136     5  0.4874     0.2414 0.300 0.004 0.008 0.056 0.632 0.000
#> GSM627081     2  0.5314     0.3785 0.000 0.572 0.000 0.088 0.328 0.012
#> GSM627091     2  0.4053     0.6566 0.000 0.772 0.080 0.136 0.000 0.012
#> GSM627097     2  0.6015     0.2718 0.000 0.480 0.004 0.396 0.068 0.052
#> GSM627072     5  0.1967     0.6227 0.000 0.012 0.000 0.084 0.904 0.000
#> GSM627080     1  0.0363     0.8515 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM627088     5  0.4259     0.5463 0.000 0.076 0.000 0.176 0.740 0.008
#> GSM627109     1  0.4851     0.6334 0.680 0.000 0.212 0.096 0.012 0.000
#> GSM627111     1  0.0146     0.8517 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM627113     1  0.4318     0.7377 0.760 0.000 0.064 0.032 0.144 0.000
#> GSM627133     2  0.5670     0.5388 0.000 0.628 0.032 0.204 0.132 0.004
#> GSM627177     5  0.2095     0.6219 0.000 0.016 0.000 0.076 0.904 0.004
#> GSM627086     2  0.2948     0.6889 0.000 0.860 0.044 0.084 0.000 0.012
#> GSM627095     1  0.4320     0.7175 0.740 0.000 0.184 0.056 0.020 0.000
#> GSM627079     5  0.3565     0.4272 0.000 0.000 0.004 0.276 0.716 0.004
#> GSM627082     6  0.2820     0.5975 0.008 0.012 0.004 0.024 0.072 0.880
#> GSM627074     4  0.6664     0.3910 0.232 0.000 0.228 0.488 0.048 0.004
#> GSM627077     5  0.1890     0.6137 0.060 0.000 0.000 0.024 0.916 0.000
#> GSM627093     1  0.5365     0.6512 0.680 0.000 0.108 0.148 0.064 0.000
#> GSM627120     2  0.5880     0.4529 0.000 0.568 0.008 0.252 0.160 0.012
#> GSM627124     3  0.5305     0.5062 0.000 0.240 0.644 0.040 0.000 0.076
#> GSM627075     3  0.4283     0.5671 0.000 0.244 0.704 0.044 0.000 0.008
#> GSM627085     2  0.5871     0.2767 0.000 0.532 0.032 0.108 0.000 0.328
#> GSM627119     1  0.6110     0.4278 0.568 0.000 0.236 0.144 0.052 0.000
#> GSM627116     4  0.4969     0.1473 0.000 0.024 0.000 0.532 0.416 0.028
#> GSM627084     1  0.4580     0.7622 0.752 0.000 0.064 0.064 0.120 0.000
#> GSM627096     2  0.4114     0.6287 0.000 0.784 0.000 0.108 0.032 0.076
#> GSM627100     5  0.2599     0.6216 0.008 0.004 0.000 0.048 0.888 0.052
#> GSM627112     6  0.4022     0.3652 0.000 0.004 0.300 0.004 0.012 0.680
#> GSM627083     1  0.4531     0.6604 0.692 0.000 0.000 0.012 0.056 0.240
#> GSM627098     1  0.3593     0.6999 0.748 0.000 0.000 0.024 0.228 0.000
#> GSM627104     3  0.3316     0.6229 0.164 0.000 0.804 0.028 0.004 0.000
#> GSM627131     5  0.4105     0.3066 0.004 0.004 0.000 0.344 0.640 0.008
#> GSM627106     5  0.5613     0.1286 0.000 0.392 0.000 0.088 0.500 0.020
#> GSM627123     1  0.3256     0.7931 0.836 0.000 0.020 0.112 0.032 0.000
#> GSM627129     2  0.2720     0.6910 0.000 0.884 0.016 0.056 0.004 0.040
#> GSM627216     2  0.5955     0.5623 0.000 0.624 0.084 0.212 0.068 0.012
#> GSM627212     2  0.5958     0.1699 0.000 0.452 0.392 0.140 0.000 0.016
#> GSM627190     3  0.6123     0.3753 0.000 0.040 0.588 0.160 0.204 0.008
#> GSM627169     3  0.1745     0.7829 0.000 0.020 0.924 0.056 0.000 0.000
#> GSM627167     6  0.4153     0.4952 0.000 0.020 0.208 0.016 0.012 0.744
#> GSM627192     1  0.0363     0.8515 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM627203     5  0.3819     0.4232 0.000 0.020 0.000 0.280 0.700 0.000
#> GSM627151     4  0.6682     0.2273 0.000 0.236 0.160 0.532 0.056 0.016
#> GSM627163     1  0.0363     0.8515 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM627211     3  0.3401     0.7503 0.000 0.072 0.840 0.036 0.000 0.052
#> GSM627171     2  0.6981     0.3491 0.000 0.480 0.072 0.292 0.136 0.020
#> GSM627209     2  0.2979     0.6966 0.000 0.868 0.052 0.044 0.000 0.036
#> GSM627135     1  0.2941     0.8033 0.856 0.004 0.000 0.076 0.064 0.000
#> GSM627170     2  0.1297     0.6981 0.000 0.948 0.000 0.040 0.000 0.012
#> GSM627178     4  0.6607     0.4260 0.284 0.000 0.048 0.464 0.204 0.000
#> GSM627199     3  0.2313     0.7715 0.000 0.004 0.884 0.012 0.000 0.100
#> GSM627213     6  0.5419     0.0219 0.000 0.444 0.000 0.044 0.036 0.476
#> GSM627140     3  0.2114     0.7770 0.000 0.000 0.904 0.012 0.008 0.076
#> GSM627149     1  0.1610     0.8281 0.916 0.000 0.000 0.000 0.084 0.000
#> GSM627147     3  0.2137     0.7857 0.000 0.012 0.912 0.048 0.000 0.028
#> GSM627195     5  0.4970     0.2631 0.000 0.084 0.000 0.336 0.580 0.000
#> GSM627204     3  0.4732     0.4783 0.000 0.276 0.660 0.040 0.000 0.024
#> GSM627207     2  0.4871     0.6233 0.000 0.692 0.184 0.108 0.000 0.016
#> GSM627157     1  0.3395     0.7922 0.820 0.000 0.020 0.028 0.132 0.000
#> GSM627201     2  0.1138     0.7010 0.000 0.960 0.004 0.024 0.000 0.012
#> GSM627146     2  0.6281     0.3983 0.000 0.512 0.284 0.040 0.000 0.164
#> GSM627156     3  0.2740     0.7664 0.000 0.076 0.864 0.060 0.000 0.000
#> GSM627188     1  0.0146     0.8519 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM627197     2  0.5431     0.5510 0.000 0.652 0.088 0.052 0.000 0.208
#> GSM627173     3  0.0909     0.7909 0.000 0.012 0.968 0.020 0.000 0.000
#> GSM627179     2  0.3076     0.6920 0.000 0.840 0.112 0.044 0.000 0.004
#> GSM627208     2  0.6728     0.3870 0.000 0.492 0.048 0.224 0.228 0.008
#> GSM627215     2  0.5011     0.4471 0.000 0.616 0.004 0.064 0.308 0.008
#> GSM627153     2  0.2917     0.6967 0.000 0.872 0.048 0.040 0.000 0.040
#> GSM627155     1  0.0000     0.8515 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627165     2  0.1982     0.6920 0.000 0.912 0.004 0.068 0.000 0.016
#> GSM627168     5  0.4169     0.5118 0.048 0.000 0.020 0.180 0.752 0.000
#> GSM627183     5  0.1910     0.6080 0.000 0.000 0.000 0.108 0.892 0.000
#> GSM627144     4  0.4956     0.3500 0.000 0.004 0.072 0.592 0.332 0.000
#> GSM627158     1  0.0000     0.8515 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627196     2  0.4575     0.6367 0.000 0.720 0.196 0.052 0.000 0.032
#> GSM627142     5  0.3229     0.5920 0.004 0.000 0.000 0.048 0.828 0.120
#> GSM627182     5  0.5813     0.4508 0.000 0.068 0.076 0.204 0.640 0.012
#> GSM627202     5  0.5079     0.3236 0.280 0.000 0.004 0.048 0.640 0.028
#> GSM627141     2  0.7304     0.0686 0.324 0.416 0.000 0.132 0.112 0.016
#> GSM627143     2  0.6833     0.3942 0.000 0.496 0.096 0.296 0.096 0.016
#> GSM627145     5  0.1285     0.6227 0.000 0.000 0.004 0.052 0.944 0.000
#> GSM627152     5  0.4921    -0.0476 0.000 0.000 0.064 0.420 0.516 0.000
#> GSM627200     4  0.5845     0.1986 0.112 0.000 0.020 0.452 0.416 0.000
#> GSM627159     6  0.2356     0.5976 0.000 0.004 0.008 0.004 0.100 0.884
#> GSM627164     3  0.2344     0.7804 0.000 0.028 0.896 0.068 0.000 0.008
#> GSM627138     1  0.1624     0.8384 0.936 0.004 0.000 0.020 0.040 0.000
#> GSM627175     2  0.2052     0.6918 0.000 0.912 0.000 0.028 0.004 0.056
#> GSM627150     5  0.2959     0.6029 0.000 0.024 0.000 0.124 0.844 0.008
#> GSM627166     4  0.6496     0.4599 0.220 0.004 0.144 0.560 0.068 0.004
#> GSM627186     3  0.1832     0.7926 0.000 0.032 0.928 0.032 0.000 0.008
#> GSM627139     6  0.6187     0.3751 0.000 0.032 0.012 0.164 0.216 0.576
#> GSM627181     2  0.4370     0.6765 0.000 0.772 0.096 0.060 0.000 0.072
#> GSM627205     2  0.0935     0.7012 0.000 0.964 0.004 0.032 0.000 0.000
#> GSM627214     2  0.4580     0.6318 0.000 0.740 0.032 0.180 0.024 0.024
#> GSM627180     5  0.4683     0.5095 0.000 0.052 0.096 0.108 0.744 0.000
#> GSM627172     3  0.2384     0.7800 0.000 0.004 0.900 0.056 0.008 0.032
#> GSM627184     1  0.0000     0.8515 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627193     2  0.4261     0.6626 0.000 0.748 0.148 0.096 0.000 0.008
#> GSM627191     6  0.6012     0.4324 0.164 0.000 0.084 0.024 0.080 0.648
#> GSM627176     3  0.3509     0.5971 0.000 0.000 0.744 0.240 0.016 0.000
#> GSM627194     2  0.3770     0.6392 0.000 0.760 0.024 0.204 0.000 0.012
#> GSM627154     2  0.5708     0.1697 0.000 0.496 0.016 0.092 0.004 0.392
#> GSM627187     3  0.1938     0.7757 0.000 0.008 0.920 0.052 0.020 0.000
#> GSM627198     6  0.5958    -0.0288 0.000 0.392 0.140 0.016 0.000 0.452
#> GSM627160     3  0.5185     0.2198 0.008 0.000 0.568 0.344 0.080 0.000
#> GSM627185     1  0.3701     0.7621 0.792 0.000 0.160 0.032 0.012 0.004
#> GSM627206     5  0.5777     0.4180 0.008 0.120 0.012 0.248 0.604 0.008
#> GSM627161     1  0.0000     0.8515 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM627162     3  0.1082     0.7775 0.000 0.000 0.956 0.040 0.004 0.000
#> GSM627210     3  0.3214     0.6614 0.000 0.004 0.788 0.200 0.004 0.004
#> GSM627189     2  0.3663     0.6723 0.000 0.796 0.128 0.072 0.000 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n disease.state(p) age(p) other(p) k
#> ATC:NMF 137           1.0000  0.394   0.1031 2
#> ATC:NMF 112           0.0266  0.507   0.7819 3
#> ATC:NMF 131           0.0349  0.484   0.0861 4
#> ATC:NMF 118           0.0565  0.531   0.2028 5
#> ATC:NMF  99           0.1106  0.618   0.3301 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0