cola Report for GDS4282

Date: 2019-12-25 21:25:43 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 51941 rows and 76 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4, anno = anno)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 51941    76

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_list), 
    col = get_anno_col(res_list)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
SD:skmeans 4 1.000 0.980 0.989 ** 2,3
CV:skmeans 4 1.000 0.977 0.984 ** 2,3
MAD:skmeans 3 1.000 0.945 0.980 **
ATC:kmeans 2 1.000 0.989 0.995 **
ATC:skmeans 4 1.000 0.967 0.978 ** 2
ATC:pam 6 1.000 0.965 0.986 ** 2,3,5
ATC:NMF 2 1.000 0.986 0.994 **
MAD:mclust 5 0.979 0.958 0.977 ** 2,3
MAD:NMF 4 0.963 0.918 0.968 ** 2,3
SD:pam 6 0.959 0.925 0.954 ** 3,4,5
SD:mclust 5 0.956 0.875 0.946 ** 2,3
CV:NMF 5 0.956 0.908 0.950 ** 3,4
CV:pam 6 0.955 0.945 0.965 ** 2,3,4,5
CV:mclust 5 0.955 0.903 0.957 ** 2,3
SD:NMF 5 0.940 0.898 0.946 * 3,4
ATC:hclust 2 0.918 0.941 0.975 *
MAD:pam 6 0.908 0.844 0.919 * 2,3,4,5
CV:hclust 6 0.893 0.816 0.908
SD:hclust 6 0.848 0.790 0.904
MAD:hclust 5 0.848 0.778 0.891
MAD:kmeans 3 0.728 0.952 0.916
CV:kmeans 3 0.727 0.963 0.923
ATC:mclust 2 0.647 0.838 0.904
SD:kmeans 2 0.581 0.857 0.892

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.728           0.896       0.943          0.487 0.494   0.494
#> CV:NMF      2 0.728           0.849       0.928          0.480 0.495   0.495
#> MAD:NMF     2 0.944           0.926       0.971          0.496 0.502   0.502
#> ATC:NMF     2 1.000           0.986       0.994          0.506 0.495   0.495
#> SD:skmeans  2 0.999           0.981       0.991          0.503 0.496   0.496
#> CV:skmeans  2 1.000           0.993       0.996          0.504 0.496   0.496
#> MAD:skmeans 2 0.872           0.956       0.979          0.499 0.502   0.502
#> ATC:skmeans 2 1.000           0.981       0.993          0.500 0.499   0.499
#> SD:mclust   2 1.000           1.000       1.000          0.428 0.572   0.572
#> CV:mclust   2 1.000           1.000       1.000          0.428 0.572   0.572
#> MAD:mclust  2 1.000           1.000       1.000          0.428 0.572   0.572
#> ATC:mclust  2 0.647           0.838       0.904          0.470 0.494   0.494
#> SD:kmeans   2 0.581           0.857       0.892          0.460 0.528   0.528
#> CV:kmeans   2 0.581           0.864       0.860          0.459 0.528   0.528
#> MAD:kmeans  2 0.581           0.853       0.899          0.465 0.522   0.522
#> ATC:kmeans  2 1.000           0.989       0.995          0.489 0.511   0.511
#> SD:pam      2 0.572           0.931       0.949          0.440 0.572   0.572
#> CV:pam      2 1.000           0.974       0.979          0.433 0.572   0.572
#> MAD:pam     2 1.000           0.991       0.996          0.485 0.516   0.516
#> ATC:pam     2 0.920           0.963       0.984          0.479 0.522   0.522
#> SD:hclust   2 0.500           0.673       0.856          0.462 0.499   0.499
#> CV:hclust   2 0.541           0.713       0.885          0.464 0.499   0.499
#> MAD:hclust  2 0.534           0.771       0.900          0.475 0.494   0.494
#> ATC:hclust  2 0.918           0.941       0.975          0.484 0.522   0.522
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 1.000           0.984       0.993          0.385 0.705   0.470
#> CV:NMF      3 1.000           0.991       0.996          0.405 0.704   0.469
#> MAD:NMF     3 1.000           0.960       0.985          0.359 0.716   0.490
#> ATC:NMF     3 0.762           0.789       0.893          0.271 0.821   0.649
#> SD:skmeans  3 1.000           0.958       0.985          0.338 0.742   0.522
#> CV:skmeans  3 1.000           0.964       0.986          0.336 0.728   0.504
#> MAD:skmeans 3 1.000           0.945       0.980          0.349 0.740   0.522
#> ATC:skmeans 3 0.782           0.917       0.917          0.296 0.828   0.661
#> SD:mclust   3 1.000           0.984       0.994          0.577 0.721   0.525
#> CV:mclust   3 1.000           0.984       0.994          0.577 0.720   0.524
#> MAD:mclust  3 1.000           0.984       0.994          0.576 0.721   0.525
#> ATC:mclust  3 0.561           0.492       0.755          0.357 0.720   0.503
#> SD:kmeans   3 0.654           0.923       0.866          0.386 0.762   0.565
#> CV:kmeans   3 0.727           0.963       0.923          0.423 0.762   0.565
#> MAD:kmeans  3 0.728           0.952       0.916          0.404 0.754   0.550
#> ATC:kmeans  3 0.660           0.736       0.868          0.332 0.828   0.670
#> SD:pam      3 1.000           0.993       0.997          0.533 0.754   0.571
#> CV:pam      3 1.000           0.985       0.992          0.556 0.754   0.571
#> MAD:pam     3 1.000           0.991       0.996          0.390 0.779   0.584
#> ATC:pam     3 1.000           0.952       0.978          0.381 0.788   0.606
#> SD:hclust   3 0.546           0.827       0.814          0.375 0.696   0.462
#> CV:hclust   3 0.615           0.813       0.851          0.386 0.696   0.462
#> MAD:hclust  3 0.663           0.658       0.837          0.344 0.814   0.639
#> ATC:hclust  3 0.772           0.764       0.885          0.259 0.915   0.837
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.964           0.947       0.978         0.1055 0.890   0.681
#> CV:NMF      4 1.000           0.949       0.979         0.1036 0.890   0.681
#> MAD:NMF     4 0.963           0.918       0.968         0.1020 0.883   0.664
#> ATC:NMF     4 0.794           0.787       0.888         0.1504 0.807   0.510
#> SD:skmeans  4 1.000           0.980       0.989         0.1056 0.908   0.727
#> CV:skmeans  4 1.000           0.977       0.984         0.1061 0.897   0.698
#> MAD:skmeans 4 0.862           0.929       0.932         0.1072 0.897   0.698
#> ATC:skmeans 4 1.000           0.967       0.978         0.0971 0.933   0.806
#> SD:mclust   4 0.897           0.797       0.896         0.0862 0.939   0.814
#> CV:mclust   4 0.886           0.892       0.936         0.0757 0.938   0.813
#> MAD:mclust  4 0.870           0.856       0.913         0.0790 0.939   0.814
#> ATC:mclust  4 0.723           0.755       0.869         0.1662 0.773   0.451
#> SD:kmeans   4 0.829           0.864       0.840         0.1325 0.914   0.745
#> CV:kmeans   4 0.811           0.718       0.819         0.1090 0.936   0.807
#> MAD:kmeans  4 0.827           0.831       0.801         0.1083 0.964   0.896
#> ATC:kmeans  4 0.687           0.411       0.669         0.1184 0.876   0.688
#> SD:pam      4 1.000           0.986       0.995         0.0953 0.934   0.799
#> CV:pam      4 1.000           0.969       0.989         0.0928 0.920   0.762
#> MAD:pam     4 1.000           0.988       0.995         0.0964 0.934   0.799
#> ATC:pam     4 0.743           0.733       0.792         0.1289 0.794   0.483
#> SD:hclust   4 0.684           0.814       0.895         0.1129 0.952   0.854
#> CV:hclust   4 0.713           0.805       0.873         0.0778 0.965   0.893
#> MAD:hclust  4 0.702           0.762       0.845         0.0947 0.793   0.501
#> ATC:hclust  4 0.785           0.755       0.875         0.0274 0.974   0.942
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.940           0.898       0.946         0.0425 0.921   0.716
#> CV:NMF      5 0.956           0.908       0.950         0.0434 0.921   0.716
#> MAD:NMF     5 0.889           0.866       0.916         0.0474 0.907   0.675
#> ATC:NMF     5 0.796           0.686       0.828         0.0508 0.954   0.824
#> SD:skmeans  5 0.883           0.845       0.916         0.0608 0.931   0.737
#> CV:skmeans  5 0.893           0.839       0.918         0.0593 0.938   0.761
#> MAD:skmeans 5 0.899           0.826       0.912         0.0604 0.931   0.737
#> ATC:skmeans 5 0.878           0.924       0.875         0.0774 0.924   0.735
#> SD:mclust   5 0.956           0.875       0.946         0.0621 0.907   0.686
#> CV:mclust   5 0.955           0.903       0.957         0.0729 0.915   0.707
#> MAD:mclust  5 0.979           0.958       0.977         0.0706 0.914   0.701
#> ATC:mclust  5 0.781           0.735       0.854         0.0519 0.927   0.723
#> SD:kmeans   5 0.796           0.768       0.814         0.0662 0.976   0.908
#> CV:kmeans   5 0.793           0.804       0.820         0.0610 0.940   0.797
#> MAD:kmeans  5 0.771           0.733       0.796         0.0648 0.909   0.723
#> ATC:kmeans  5 0.694           0.808       0.798         0.0704 0.818   0.469
#> SD:pam      5 1.000           0.992       0.998         0.0288 0.979   0.919
#> CV:pam      5 1.000           0.990       0.997         0.0312 0.968   0.881
#> MAD:pam     5 0.993           0.969       0.984         0.0281 0.982   0.930
#> ATC:pam     5 0.950           0.916       0.961         0.0796 0.850   0.493
#> SD:hclust   5 0.727           0.766       0.841         0.0768 0.914   0.709
#> CV:hclust   5 0.743           0.784       0.846         0.0869 0.933   0.769
#> MAD:hclust  5 0.848           0.778       0.891         0.0920 0.953   0.829
#> ATC:hclust  5 0.737           0.797       0.897         0.1074 0.820   0.597
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.876           0.809       0.892         0.0294 0.970   0.871
#> CV:NMF      6 0.894           0.811       0.887         0.0307 0.981   0.918
#> MAD:NMF     6 0.872           0.773       0.885         0.0283 0.980   0.913
#> ATC:NMF     6 0.784           0.717       0.824         0.0261 0.967   0.863
#> SD:skmeans  6 0.879           0.750       0.837         0.0301 0.964   0.828
#> CV:skmeans  6 0.888           0.710       0.865         0.0293 0.971   0.866
#> MAD:skmeans 6 0.884           0.713       0.873         0.0306 0.978   0.898
#> ATC:skmeans 6 0.863           0.901       0.863         0.0422 0.949   0.763
#> SD:mclust   6 0.873           0.688       0.855         0.0380 0.979   0.905
#> CV:mclust   6 0.883           0.852       0.874         0.0345 0.985   0.931
#> MAD:mclust  6 0.863           0.769       0.887         0.0420 0.972   0.873
#> ATC:mclust  6 0.809           0.712       0.874         0.0496 0.910   0.619
#> SD:kmeans   6 0.754           0.732       0.786         0.0430 0.959   0.834
#> CV:kmeans   6 0.733           0.438       0.752         0.0425 0.940   0.772
#> MAD:kmeans  6 0.735           0.540       0.794         0.0405 0.937   0.754
#> ATC:kmeans  6 0.755           0.858       0.835         0.0451 0.957   0.788
#> SD:pam      6 0.959           0.925       0.954         0.0185 0.977   0.907
#> CV:pam      6 0.955           0.945       0.965         0.0146 0.977   0.907
#> MAD:pam     6 0.908           0.844       0.919         0.0484 0.960   0.839
#> ATC:pam     6 1.000           0.965       0.986         0.0375 0.935   0.693
#> SD:hclust   6 0.848           0.790       0.904         0.0548 0.965   0.848
#> CV:hclust   6 0.893           0.816       0.908         0.0708 0.965   0.845
#> MAD:hclust  6 0.846           0.683       0.838         0.0434 0.921   0.696
#> ATC:hclust  6 0.815           0.716       0.881         0.0937 0.865   0.587

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Test to known annotations

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res_list, k = 2)
#>              n tissue(p) genotype/variation(p) individual(p) k
#> SD:NMF      75  9.06e-07              7.59e-04       0.05134 2
#> CV:NMF      71  5.52e-07              3.65e-04       0.07133 2
#> MAD:NMF     73  2.16e-07              4.52e-03       0.05241 2
#> ATC:NMF     76  6.80e-07              5.88e-04       0.02667 2
#> SD:skmeans  76  4.99e-07              1.61e-03       0.08034 2
#> CV:skmeans  76  4.99e-07              1.61e-03       0.08034 2
#> MAD:skmeans 76  1.95e-07              1.24e-03       0.03728 2
#> ATC:skmeans 75  2.44e-07              6.76e-04       0.01807 2
#> SD:mclust   76  3.04e-12              1.17e-05       0.99018 2
#> CV:mclust   76  3.04e-12              1.17e-05       0.99018 2
#> MAD:mclust  76  3.04e-12              1.17e-05       0.99018 2
#> ATC:mclust  75  9.46e-07              2.26e-04       0.00555 2
#> SD:kmeans   76  2.17e-09              6.67e-03       0.08617 2
#> CV:kmeans   76  2.17e-09              6.67e-03       0.08617 2
#> MAD:kmeans  75  3.12e-09              6.64e-03       0.06583 2
#> ATC:kmeans  76  4.83e-08              9.05e-03       0.01639 2
#> SD:pam      76  3.04e-12              1.17e-05       0.99018 2
#> CV:pam      76  3.04e-12              1.17e-05       0.99018 2
#> MAD:pam     76  1.98e-08              5.13e-03       0.07094 2
#> ATC:pam     75  3.12e-09              7.87e-03       0.05269 2
#> SD:hclust   60  3.62e-09              4.36e-05       0.33194 2
#> CV:hclust   60  3.62e-09              4.36e-05       0.33194 2
#> MAD:hclust  67  5.18e-08              4.00e-03       0.05106 2
#> ATC:hclust  76  7.07e-09              1.08e-02       0.03990 2
test_to_known_factors(res_list, k = 3)
#>              n tissue(p) genotype/variation(p) individual(p) k
#> SD:NMF      76  2.85e-20              4.94e-05        0.9774 3
#> CV:NMF      76  2.85e-20              4.94e-05        0.9774 3
#> MAD:NMF     75  8.78e-20              1.03e-04        0.9544 3
#> ATC:NMF     69  2.81e-11              2.74e-05        0.2811 3
#> SD:skmeans  74  1.34e-18              5.42e-06        0.9028 3
#> CV:skmeans  74  1.34e-18              5.42e-06        0.9460 3
#> MAD:skmeans 73  4.09e-19              1.27e-05        0.9240 3
#> ATC:skmeans 76  3.46e-15              4.51e-06        0.6508 3
#> SD:mclust   75  7.59e-20              1.17e-05        0.9573 3
#> CV:mclust   75  7.59e-20              1.17e-05        0.9573 3
#> MAD:mclust  75  7.59e-20              9.30e-06        0.9375 3
#> ATC:mclust  38  3.80e-05              7.26e-04        0.0730 3
#> SD:kmeans   76  2.85e-20              4.94e-05        0.9774 3
#> CV:kmeans   76  2.85e-20              4.94e-05        0.9774 3
#> MAD:kmeans  76  2.85e-20              4.94e-05        0.9774 3
#> ATC:kmeans  72  3.14e-09              4.42e-05        0.0659 3
#> SD:pam      76  1.53e-18              5.88e-06        0.8922 3
#> CV:pam      76  1.53e-18              5.88e-06        0.8922 3
#> MAD:pam     76  1.53e-18              5.88e-06        0.8922 3
#> ATC:pam     74  5.34e-09              2.94e-04        0.0275 3
#> SD:hclust   76  3.01e-21              5.75e-05        0.9916 3
#> CV:hclust   75  7.29e-21              3.97e-05        0.9850 3
#> MAD:hclust  56  2.05e-13              5.07e-04        0.7699 3
#> ATC:hclust  66  1.14e-06              1.17e-03        0.0758 3
test_to_known_factors(res_list, k = 4)
#>              n tissue(p) genotype/variation(p) individual(p) k
#> SD:NMF      75  2.38e-19              2.57e-09       0.35834 4
#> CV:NMF      75  2.38e-19              2.57e-09       0.35834 4
#> MAD:NMF     72  1.27e-18              1.47e-09       0.43483 4
#> ATC:NMF     69  5.57e-12              1.44e-07       0.07401 4
#> SD:skmeans  76  2.32e-19              1.01e-09       0.19775 4
#> CV:skmeans  75  1.27e-19              7.10e-10       0.23558 4
#> MAD:skmeans 76  2.32e-19              1.01e-09       0.19775 4
#> ATC:skmeans 75  4.45e-13              8.70e-06       0.64634 4
#> SD:mclust   70  3.18e-21              5.89e-06       0.05217 4
#> CV:mclust   75  7.56e-19              1.95e-06       0.33661 4
#> MAD:mclust  74  1.89e-18              1.21e-06       0.30257 4
#> ATC:mclust  64  3.06e-13              1.80e-03       0.63962 4
#> SD:kmeans   74  3.63e-22              8.85e-09       0.40324 4
#> CV:kmeans   59  1.29e-20              2.34e-05       0.99777 4
#> MAD:kmeans  74  1.68e-19              2.77e-05       0.93779 4
#> ATC:kmeans  43  2.49e-07              1.70e-02       0.62474 4
#> SD:pam      75  1.05e-21              2.27e-09       0.35473 4
#> CV:pam      75  1.05e-21              2.27e-09       0.35473 4
#> MAD:pam     76  2.37e-21              6.19e-10       0.30079 4
#> ATC:pam     71  1.14e-09              4.02e-07       0.00123 4
#> SD:hclust   73  2.26e-20              7.84e-05       0.48736 4
#> CV:hclust   75  8.41e-21              7.24e-06       0.38164 4
#> MAD:hclust  63  7.21e-16              5.29e-06       0.08542 4
#> ATC:hclust  66  1.14e-06              1.17e-03       0.07584 4
test_to_known_factors(res_list, k = 5)
#>              n tissue(p) genotype/variation(p) individual(p) k
#> SD:NMF      73  1.10e-15              1.63e-10       0.00382 5
#> CV:NMF      74  3.99e-16              2.12e-10       0.00344 5
#> MAD:NMF     73  2.39e-16              1.68e-10       0.00524 5
#> ATC:NMF     64  4.15e-12              6.46e-06       0.05676 5
#> SD:skmeans  72  1.53e-16              5.37e-08       0.30822 5
#> CV:skmeans  72  1.53e-16              2.67e-08       0.43016 5
#> MAD:skmeans 70  1.75e-15              6.17e-09       0.50003 5
#> ATC:skmeans 75  1.44e-15              8.32e-09       0.13567 5
#> SD:mclust   69  3.53e-21              6.70e-12       0.67679 5
#> CV:mclust   70  2.94e-20              4.72e-11       0.67366 5
#> MAD:mclust  76  2.61e-18              6.72e-11       0.21672 5
#> ATC:mclust  66  6.83e-11              2.24e-04       0.38834 5
#> SD:kmeans   71  4.64e-23              3.14e-09       0.37776 5
#> CV:kmeans   72  2.68e-22              1.67e-09       0.44843 5
#> MAD:kmeans  69  2.29e-18              8.80e-11       0.77692 5
#> ATC:kmeans  73  4.38e-16              3.16e-07       0.30648 5
#> SD:pam      76  1.33e-21              7.96e-12       0.01272 5
#> CV:pam      76  1.33e-21              7.96e-12       0.01272 5
#> MAD:pam     76  1.78e-21              4.53e-11       0.03977 5
#> ATC:pam     74  3.66e-13              5.00e-08       0.11876 5
#> SD:hclust   66  3.13e-14              1.39e-05       0.40926 5
#> CV:hclust   71  8.82e-16              4.97e-06       0.37955 5
#> MAD:hclust  69  4.90e-15              8.72e-06       0.34407 5
#> ATC:hclust  67  1.87e-08              1.50e-06       0.14910 5
test_to_known_factors(res_list, k = 6)
#>              n tissue(p) genotype/variation(p) individual(p) k
#> SD:NMF      70  8.36e-15              7.54e-12       0.00195 6
#> CV:NMF      71  2.05e-15              6.30e-11       0.00141 6
#> MAD:NMF     70  6.20e-15              7.01e-11       0.00572 6
#> ATC:NMF     64  1.02e-12              4.42e-07       0.14454 6
#> SD:skmeans  65  7.63e-17              9.59e-09       0.02696 6
#> CV:skmeans  61  3.24e-16              1.74e-10       0.54070 6
#> MAD:skmeans 62  1.16e-16              2.11e-10       0.40770 6
#> ATC:skmeans 75  8.81e-13              5.80e-08       0.17147 6
#> SD:mclust   63  5.19e-13              3.51e-07       0.59266 6
#> CV:mclust   73  2.08e-21              4.96e-12       0.31037 6
#> MAD:mclust  67  2.82e-12              1.34e-08       0.22034 6
#> ATC:mclust  64  5.59e-14              8.52e-06       0.24640 6
#> SD:kmeans   65  7.31e-17              4.69e-08       0.70071 6
#> CV:kmeans   44  1.51e-08              7.26e-04       0.22722 6
#> MAD:kmeans  55  9.35e-13              1.28e-06       0.29751 6
#> ATC:kmeans  71  1.95e-14              2.53e-07       0.25106 6
#> SD:pam      74  1.82e-26              7.00e-12       0.02659 6
#> CV:pam      75  2.04e-24              1.54e-12       0.00838 6
#> MAD:pam     70  3.68e-20              1.67e-08       0.10086 6
#> ATC:pam     74  8.94e-15              7.17e-08       0.27272 6
#> SD:hclust   69  4.18e-18              1.04e-10       0.14865 6
#> CV:hclust   70  9.51e-19              6.55e-10       0.12403 6
#> MAD:hclust  60  1.39e-16              4.82e-13       0.22968 6
#> ATC:hclust  51  1.84e-08              3.77e-07       0.39669 6

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 76 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.500           0.673       0.856         0.4615 0.499   0.499
#> 3 3 0.546           0.827       0.814         0.3753 0.696   0.462
#> 4 4 0.684           0.814       0.895         0.1129 0.952   0.854
#> 5 5 0.727           0.766       0.841         0.0768 0.914   0.709
#> 6 6 0.848           0.790       0.904         0.0548 0.965   0.848

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM905004     1   0.949     0.4202 0.632 0.368
#> GSM905024     1   0.416     0.7944 0.916 0.084
#> GSM905038     1   0.871     0.5905 0.708 0.292
#> GSM905043     1   0.416     0.7944 0.916 0.084
#> GSM904986     2   0.983     0.3179 0.424 0.576
#> GSM904991     1   0.861     0.6038 0.716 0.284
#> GSM904994     2   0.983     0.3179 0.424 0.576
#> GSM904996     2   0.983     0.3179 0.424 0.576
#> GSM905007     1   0.861     0.6038 0.716 0.284
#> GSM905012     2   0.983     0.3179 0.424 0.576
#> GSM905022     1   0.998     0.0593 0.528 0.472
#> GSM905026     2   0.993     0.2287 0.452 0.548
#> GSM905027     1   0.990     0.1923 0.560 0.440
#> GSM905031     2   0.983     0.3179 0.424 0.576
#> GSM905036     1   0.866     0.5975 0.712 0.288
#> GSM905041     1   0.855     0.6093 0.720 0.280
#> GSM905044     2   0.991     0.2573 0.444 0.556
#> GSM904989     2   0.990     0.2701 0.440 0.560
#> GSM904999     1   0.985     0.2363 0.572 0.428
#> GSM905002     2   0.990     0.2705 0.440 0.560
#> GSM905009     2   0.983     0.3179 0.424 0.576
#> GSM905014     1   0.861     0.6038 0.716 0.284
#> GSM905017     1   0.985     0.2363 0.572 0.428
#> GSM905020     2   0.983     0.3179 0.424 0.576
#> GSM905023     1   0.866     0.5975 0.712 0.288
#> GSM905029     1   0.866     0.5975 0.712 0.288
#> GSM905032     1   0.855     0.6093 0.720 0.280
#> GSM905034     1   0.416     0.7944 0.916 0.084
#> GSM905040     1   0.000     0.8281 1.000 0.000
#> GSM904985     2   0.000     0.8011 0.000 1.000
#> GSM904988     2   0.000     0.8011 0.000 1.000
#> GSM904990     2   0.000     0.8011 0.000 1.000
#> GSM904992     2   0.000     0.8011 0.000 1.000
#> GSM904995     2   0.000     0.8011 0.000 1.000
#> GSM904998     2   0.000     0.8011 0.000 1.000
#> GSM905000     2   0.000     0.8011 0.000 1.000
#> GSM905003     2   0.000     0.8011 0.000 1.000
#> GSM905006     2   0.000     0.8011 0.000 1.000
#> GSM905008     2   0.000     0.8011 0.000 1.000
#> GSM905011     2   0.000     0.8011 0.000 1.000
#> GSM905013     2   0.000     0.8011 0.000 1.000
#> GSM905016     2   0.000     0.8011 0.000 1.000
#> GSM905018     2   0.000     0.8011 0.000 1.000
#> GSM905021     2   0.388     0.7638 0.076 0.924
#> GSM905025     2   0.000     0.8011 0.000 1.000
#> GSM905028     2   0.000     0.8011 0.000 1.000
#> GSM905030     2   0.000     0.8011 0.000 1.000
#> GSM905033     2   0.388     0.7638 0.076 0.924
#> GSM905035     2   0.000     0.8011 0.000 1.000
#> GSM905037     2   0.000     0.8011 0.000 1.000
#> GSM905039     2   0.000     0.8011 0.000 1.000
#> GSM905042     2   0.388     0.7638 0.076 0.924
#> GSM905046     1   0.000     0.8281 1.000 0.000
#> GSM905065     1   0.000     0.8281 1.000 0.000
#> GSM905049     1   0.204     0.8229 0.968 0.032
#> GSM905050     1   0.204     0.8229 0.968 0.032
#> GSM905064     1   0.204     0.8229 0.968 0.032
#> GSM905045     1   0.204     0.8229 0.968 0.032
#> GSM905051     1   0.204     0.8229 0.968 0.032
#> GSM905055     1   0.000     0.8281 1.000 0.000
#> GSM905058     1   0.000     0.8281 1.000 0.000
#> GSM905053     1   0.204     0.8229 0.968 0.032
#> GSM905061     1   0.204     0.8229 0.968 0.032
#> GSM905063     1   0.000     0.8281 1.000 0.000
#> GSM905054     1   0.204     0.8229 0.968 0.032
#> GSM905062     1   0.204     0.8229 0.968 0.032
#> GSM905052     1   0.204     0.8229 0.968 0.032
#> GSM905059     1   0.000     0.8281 1.000 0.000
#> GSM905047     1   0.000     0.8281 1.000 0.000
#> GSM905066     1   0.000     0.8281 1.000 0.000
#> GSM905056     1   0.000     0.8281 1.000 0.000
#> GSM905060     1   0.000     0.8281 1.000 0.000
#> GSM905048     1   0.000     0.8281 1.000 0.000
#> GSM905067     1   0.000     0.8281 1.000 0.000
#> GSM905057     1   0.000     0.8281 1.000 0.000
#> GSM905068     1   0.204     0.8229 0.968 0.032

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM905004     3   0.871      0.575 0.156 0.264 0.580
#> GSM905024     3   0.327      0.547 0.116 0.000 0.884
#> GSM905038     3   0.553      0.756 0.036 0.172 0.792
#> GSM905043     3   0.327      0.547 0.116 0.000 0.884
#> GSM904986     3   0.627      0.663 0.000 0.456 0.544
#> GSM904991     3   0.552      0.754 0.040 0.164 0.796
#> GSM904994     3   0.627      0.663 0.000 0.456 0.544
#> GSM904996     3   0.627      0.663 0.000 0.456 0.544
#> GSM905007     3   0.552      0.754 0.040 0.164 0.796
#> GSM905012     3   0.627      0.663 0.000 0.456 0.544
#> GSM905022     3   0.590      0.729 0.000 0.352 0.648
#> GSM905026     3   0.621      0.689 0.000 0.428 0.572
#> GSM905027     3   0.571      0.740 0.000 0.320 0.680
#> GSM905031     3   0.627      0.663 0.000 0.456 0.544
#> GSM905036     3   0.547      0.756 0.036 0.168 0.796
#> GSM905041     3   0.547      0.752 0.040 0.160 0.800
#> GSM905044     3   0.623      0.684 0.000 0.436 0.564
#> GSM904989     3   0.624      0.680 0.000 0.440 0.560
#> GSM904999     3   0.562      0.742 0.000 0.308 0.692
#> GSM905002     3   0.624      0.680 0.000 0.440 0.560
#> GSM905009     3   0.627      0.663 0.000 0.456 0.544
#> GSM905014     3   0.552      0.754 0.040 0.164 0.796
#> GSM905017     3   0.562      0.742 0.000 0.308 0.692
#> GSM905020     3   0.627      0.663 0.000 0.456 0.544
#> GSM905023     3   0.547      0.756 0.036 0.168 0.796
#> GSM905029     3   0.547      0.756 0.036 0.168 0.796
#> GSM905032     3   0.547      0.752 0.040 0.160 0.800
#> GSM905034     3   0.334      0.545 0.120 0.000 0.880
#> GSM905040     1   0.525      0.737 0.736 0.000 0.264
#> GSM904985     2   0.000      0.974 0.000 1.000 0.000
#> GSM904988     2   0.000      0.974 0.000 1.000 0.000
#> GSM904990     2   0.000      0.974 0.000 1.000 0.000
#> GSM904992     2   0.000      0.974 0.000 1.000 0.000
#> GSM904995     2   0.000      0.974 0.000 1.000 0.000
#> GSM904998     2   0.000      0.974 0.000 1.000 0.000
#> GSM905000     2   0.000      0.974 0.000 1.000 0.000
#> GSM905003     2   0.000      0.974 0.000 1.000 0.000
#> GSM905006     2   0.000      0.974 0.000 1.000 0.000
#> GSM905008     2   0.000      0.974 0.000 1.000 0.000
#> GSM905011     2   0.000      0.974 0.000 1.000 0.000
#> GSM905013     2   0.000      0.974 0.000 1.000 0.000
#> GSM905016     2   0.000      0.974 0.000 1.000 0.000
#> GSM905018     2   0.000      0.974 0.000 1.000 0.000
#> GSM905021     2   0.334      0.793 0.000 0.880 0.120
#> GSM905025     2   0.000      0.974 0.000 1.000 0.000
#> GSM905028     2   0.000      0.974 0.000 1.000 0.000
#> GSM905030     2   0.000      0.974 0.000 1.000 0.000
#> GSM905033     2   0.334      0.793 0.000 0.880 0.120
#> GSM905035     2   0.000      0.974 0.000 1.000 0.000
#> GSM905037     2   0.000      0.974 0.000 1.000 0.000
#> GSM905039     2   0.000      0.974 0.000 1.000 0.000
#> GSM905042     2   0.334      0.793 0.000 0.880 0.120
#> GSM905046     1   0.226      0.891 0.932 0.000 0.068
#> GSM905065     1   0.341      0.836 0.876 0.000 0.124
#> GSM905049     1   0.506      0.888 0.820 0.032 0.148
#> GSM905050     1   0.506      0.888 0.820 0.032 0.148
#> GSM905064     1   0.506      0.888 0.820 0.032 0.148
#> GSM905045     1   0.506      0.888 0.820 0.032 0.148
#> GSM905051     1   0.493      0.888 0.828 0.032 0.140
#> GSM905055     1   0.406      0.818 0.836 0.000 0.164
#> GSM905058     1   0.226      0.891 0.932 0.000 0.068
#> GSM905053     1   0.506      0.888 0.820 0.032 0.148
#> GSM905061     1   0.506      0.888 0.820 0.032 0.148
#> GSM905063     1   0.406      0.818 0.836 0.000 0.164
#> GSM905054     1   0.506      0.888 0.820 0.032 0.148
#> GSM905062     1   0.506      0.888 0.820 0.032 0.148
#> GSM905052     1   0.493      0.888 0.828 0.032 0.140
#> GSM905059     1   0.226      0.891 0.932 0.000 0.068
#> GSM905047     1   0.226      0.891 0.932 0.000 0.068
#> GSM905066     1   0.341      0.836 0.876 0.000 0.124
#> GSM905056     1   0.406      0.818 0.836 0.000 0.164
#> GSM905060     1   0.226      0.891 0.932 0.000 0.068
#> GSM905048     1   0.226      0.891 0.932 0.000 0.068
#> GSM905067     1   0.341      0.836 0.876 0.000 0.124
#> GSM905057     1   0.406      0.818 0.836 0.000 0.164
#> GSM905068     1   0.506      0.888 0.820 0.032 0.148

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM905004     3  0.7299      0.510 0.000 0.184 0.520 0.296
#> GSM905024     3  0.3649      0.575 0.204 0.000 0.796 0.000
#> GSM905038     3  0.0336      0.768 0.000 0.008 0.992 0.000
#> GSM905043     3  0.3649      0.575 0.204 0.000 0.796 0.000
#> GSM904986     3  0.4406      0.751 0.000 0.300 0.700 0.000
#> GSM904991     3  0.0000      0.764 0.000 0.000 1.000 0.000
#> GSM904994     3  0.4406      0.751 0.000 0.300 0.700 0.000
#> GSM904996     3  0.4406      0.751 0.000 0.300 0.700 0.000
#> GSM905007     3  0.0000      0.764 0.000 0.000 1.000 0.000
#> GSM905012     3  0.4406      0.751 0.000 0.300 0.700 0.000
#> GSM905022     3  0.3486      0.800 0.000 0.188 0.812 0.000
#> GSM905026     3  0.4164      0.773 0.000 0.264 0.736 0.000
#> GSM905027     3  0.3123      0.801 0.000 0.156 0.844 0.000
#> GSM905031     3  0.4406      0.751 0.000 0.300 0.700 0.000
#> GSM905036     3  0.0188      0.766 0.000 0.004 0.996 0.000
#> GSM905041     3  0.0188      0.762 0.004 0.000 0.996 0.000
#> GSM905044     3  0.4222      0.769 0.000 0.272 0.728 0.000
#> GSM904989     3  0.4304      0.763 0.000 0.284 0.716 0.000
#> GSM904999     3  0.3157      0.800 0.004 0.144 0.852 0.000
#> GSM905002     3  0.4304      0.763 0.000 0.284 0.716 0.000
#> GSM905009     3  0.4406      0.751 0.000 0.300 0.700 0.000
#> GSM905014     3  0.0000      0.764 0.000 0.000 1.000 0.000
#> GSM905017     3  0.3157      0.800 0.004 0.144 0.852 0.000
#> GSM905020     3  0.4406      0.751 0.000 0.300 0.700 0.000
#> GSM905023     3  0.0188      0.766 0.000 0.004 0.996 0.000
#> GSM905029     3  0.0188      0.766 0.000 0.004 0.996 0.000
#> GSM905032     3  0.0336      0.760 0.008 0.000 0.992 0.000
#> GSM905034     3  0.3688      0.572 0.208 0.000 0.792 0.000
#> GSM905040     1  0.2281      0.681 0.904 0.000 0.096 0.000
#> GSM904985     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM904988     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM904990     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM904992     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM904995     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM904998     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905000     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905003     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905006     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905008     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905011     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905013     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905016     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905018     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905021     2  0.2814      0.821 0.000 0.868 0.132 0.000
#> GSM905025     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905028     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905030     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905033     2  0.2814      0.821 0.000 0.868 0.132 0.000
#> GSM905035     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905037     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905039     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905042     2  0.2814      0.821 0.000 0.868 0.132 0.000
#> GSM905046     4  0.3356      0.806 0.176 0.000 0.000 0.824
#> GSM905065     1  0.4977      0.257 0.540 0.000 0.000 0.460
#> GSM905049     4  0.0188      0.902 0.000 0.000 0.004 0.996
#> GSM905050     4  0.0188      0.902 0.000 0.000 0.004 0.996
#> GSM905064     4  0.0188      0.902 0.000 0.000 0.004 0.996
#> GSM905045     4  0.0188      0.902 0.000 0.000 0.004 0.996
#> GSM905051     4  0.0707      0.897 0.020 0.000 0.000 0.980
#> GSM905055     1  0.0188      0.745 0.996 0.000 0.000 0.004
#> GSM905058     4  0.3356      0.806 0.176 0.000 0.000 0.824
#> GSM905053     4  0.0188      0.902 0.000 0.000 0.004 0.996
#> GSM905061     4  0.0188      0.902 0.000 0.000 0.004 0.996
#> GSM905063     1  0.0188      0.745 0.996 0.000 0.000 0.004
#> GSM905054     4  0.0188      0.902 0.000 0.000 0.004 0.996
#> GSM905062     4  0.0188      0.902 0.000 0.000 0.004 0.996
#> GSM905052     4  0.0707      0.897 0.020 0.000 0.000 0.980
#> GSM905059     4  0.3356      0.806 0.176 0.000 0.000 0.824
#> GSM905047     4  0.3356      0.806 0.176 0.000 0.000 0.824
#> GSM905066     1  0.4977      0.257 0.540 0.000 0.000 0.460
#> GSM905056     1  0.0188      0.745 0.996 0.000 0.000 0.004
#> GSM905060     4  0.3356      0.806 0.176 0.000 0.000 0.824
#> GSM905048     4  0.3356      0.806 0.176 0.000 0.000 0.824
#> GSM905067     1  0.4977      0.257 0.540 0.000 0.000 0.460
#> GSM905057     1  0.0188      0.745 0.996 0.000 0.000 0.004
#> GSM905068     4  0.0188      0.902 0.000 0.000 0.004 0.996

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM905004     3   0.561     0.4245 0.000 0.104 0.600 0.296 0.000
#> GSM905024     5   0.143     0.6724 0.004 0.000 0.052 0.000 0.944
#> GSM905038     3   0.366     0.4224 0.000 0.000 0.724 0.000 0.276
#> GSM905043     5   0.143     0.6724 0.004 0.000 0.052 0.000 0.944
#> GSM904986     3   0.277     0.7960 0.000 0.164 0.836 0.000 0.000
#> GSM904991     5   0.380     0.7563 0.000 0.000 0.300 0.000 0.700
#> GSM904994     3   0.277     0.7960 0.000 0.164 0.836 0.000 0.000
#> GSM904996     3   0.277     0.7960 0.000 0.164 0.836 0.000 0.000
#> GSM905007     5   0.380     0.7563 0.000 0.000 0.300 0.000 0.700
#> GSM905012     3   0.277     0.7960 0.000 0.164 0.836 0.000 0.000
#> GSM905022     3   0.339     0.6936 0.000 0.060 0.840 0.000 0.100
#> GSM905026     3   0.287     0.7825 0.000 0.128 0.856 0.000 0.016
#> GSM905027     3   0.450     0.5543 0.000 0.060 0.732 0.000 0.208
#> GSM905031     3   0.277     0.7960 0.000 0.164 0.836 0.000 0.000
#> GSM905036     3   0.423    -0.0695 0.000 0.000 0.576 0.000 0.424
#> GSM905041     5   0.391     0.7586 0.004 0.000 0.292 0.000 0.704
#> GSM905044     3   0.275     0.7882 0.000 0.136 0.856 0.000 0.008
#> GSM904989     3   0.336     0.7900 0.000 0.164 0.816 0.000 0.020
#> GSM904999     5   0.542     0.4232 0.000 0.060 0.416 0.000 0.524
#> GSM905002     3   0.276     0.7935 0.000 0.148 0.848 0.000 0.004
#> GSM905009     3   0.277     0.7960 0.000 0.164 0.836 0.000 0.000
#> GSM905014     5   0.380     0.7563 0.000 0.000 0.300 0.000 0.700
#> GSM905017     5   0.542     0.4232 0.000 0.060 0.416 0.000 0.524
#> GSM905020     3   0.277     0.7960 0.000 0.164 0.836 0.000 0.000
#> GSM905023     3   0.413     0.1207 0.000 0.000 0.620 0.000 0.380
#> GSM905029     3   0.371     0.4060 0.000 0.000 0.716 0.000 0.284
#> GSM905032     5   0.364     0.7603 0.004 0.000 0.248 0.000 0.748
#> GSM905034     5   0.150     0.6696 0.004 0.000 0.056 0.000 0.940
#> GSM905040     1   0.247     0.8543 0.864 0.000 0.000 0.000 0.136
#> GSM904985     2   0.000     0.9651 0.000 1.000 0.000 0.000 0.000
#> GSM904988     2   0.000     0.9651 0.000 1.000 0.000 0.000 0.000
#> GSM904990     2   0.000     0.9651 0.000 1.000 0.000 0.000 0.000
#> GSM904992     2   0.000     0.9651 0.000 1.000 0.000 0.000 0.000
#> GSM904995     2   0.000     0.9651 0.000 1.000 0.000 0.000 0.000
#> GSM904998     2   0.000     0.9651 0.000 1.000 0.000 0.000 0.000
#> GSM905000     2   0.000     0.9651 0.000 1.000 0.000 0.000 0.000
#> GSM905003     2   0.000     0.9651 0.000 1.000 0.000 0.000 0.000
#> GSM905006     2   0.000     0.9651 0.000 1.000 0.000 0.000 0.000
#> GSM905008     2   0.000     0.9651 0.000 1.000 0.000 0.000 0.000
#> GSM905011     2   0.000     0.9651 0.000 1.000 0.000 0.000 0.000
#> GSM905013     2   0.000     0.9651 0.000 1.000 0.000 0.000 0.000
#> GSM905016     2   0.000     0.9651 0.000 1.000 0.000 0.000 0.000
#> GSM905018     2   0.000     0.9651 0.000 1.000 0.000 0.000 0.000
#> GSM905021     2   0.324     0.7034 0.000 0.784 0.216 0.000 0.000
#> GSM905025     2   0.000     0.9651 0.000 1.000 0.000 0.000 0.000
#> GSM905028     2   0.000     0.9651 0.000 1.000 0.000 0.000 0.000
#> GSM905030     2   0.000     0.9651 0.000 1.000 0.000 0.000 0.000
#> GSM905033     2   0.321     0.7099 0.000 0.788 0.212 0.000 0.000
#> GSM905035     2   0.000     0.9651 0.000 1.000 0.000 0.000 0.000
#> GSM905037     2   0.000     0.9651 0.000 1.000 0.000 0.000 0.000
#> GSM905039     2   0.000     0.9651 0.000 1.000 0.000 0.000 0.000
#> GSM905042     2   0.321     0.7099 0.000 0.788 0.212 0.000 0.000
#> GSM905046     4   0.566     0.7477 0.052 0.000 0.144 0.704 0.100
#> GSM905065     4   0.825     0.2766 0.300 0.000 0.132 0.352 0.216
#> GSM905049     4   0.000     0.8056 0.000 0.000 0.000 1.000 0.000
#> GSM905050     4   0.000     0.8056 0.000 0.000 0.000 1.000 0.000
#> GSM905064     4   0.000     0.8056 0.000 0.000 0.000 1.000 0.000
#> GSM905045     4   0.000     0.8056 0.000 0.000 0.000 1.000 0.000
#> GSM905051     4   0.162     0.8020 0.020 0.000 0.020 0.948 0.012
#> GSM905055     1   0.000     0.9671 1.000 0.000 0.000 0.000 0.000
#> GSM905058     4   0.566     0.7477 0.052 0.000 0.144 0.704 0.100
#> GSM905053     4   0.000     0.8056 0.000 0.000 0.000 1.000 0.000
#> GSM905061     4   0.000     0.8056 0.000 0.000 0.000 1.000 0.000
#> GSM905063     1   0.000     0.9671 1.000 0.000 0.000 0.000 0.000
#> GSM905054     4   0.000     0.8056 0.000 0.000 0.000 1.000 0.000
#> GSM905062     4   0.000     0.8056 0.000 0.000 0.000 1.000 0.000
#> GSM905052     4   0.162     0.8020 0.020 0.000 0.020 0.948 0.012
#> GSM905059     4   0.566     0.7477 0.052 0.000 0.144 0.704 0.100
#> GSM905047     4   0.566     0.7477 0.052 0.000 0.144 0.704 0.100
#> GSM905066     4   0.825     0.2766 0.300 0.000 0.132 0.352 0.216
#> GSM905056     1   0.000     0.9671 1.000 0.000 0.000 0.000 0.000
#> GSM905060     4   0.566     0.7477 0.052 0.000 0.144 0.704 0.100
#> GSM905048     4   0.566     0.7477 0.052 0.000 0.144 0.704 0.100
#> GSM905067     4   0.825     0.2766 0.300 0.000 0.132 0.352 0.216
#> GSM905057     1   0.000     0.9671 1.000 0.000 0.000 0.000 0.000
#> GSM905068     4   0.000     0.8056 0.000 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM905004     3  0.3634      0.462 0.000 0.008 0.696 0.296 0.000 0.000
#> GSM905024     5  0.0000      0.662 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM905038     3  0.3351      0.517 0.000 0.000 0.712 0.000 0.288 0.000
#> GSM905043     5  0.0000      0.662 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM904986     3  0.0260      0.821 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM904991     5  0.3126      0.756 0.000 0.000 0.248 0.000 0.752 0.000
#> GSM904994     3  0.0260      0.821 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM904996     3  0.0260      0.821 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM905007     5  0.3126      0.756 0.000 0.000 0.248 0.000 0.752 0.000
#> GSM905012     3  0.0260      0.821 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM905022     3  0.1957      0.747 0.000 0.000 0.888 0.000 0.112 0.000
#> GSM905026     3  0.0713      0.811 0.000 0.000 0.972 0.000 0.028 0.000
#> GSM905027     3  0.2941      0.609 0.000 0.000 0.780 0.000 0.220 0.000
#> GSM905031     3  0.0260      0.821 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM905036     3  0.3823      0.070 0.000 0.000 0.564 0.000 0.436 0.000
#> GSM905041     5  0.3076      0.758 0.000 0.000 0.240 0.000 0.760 0.000
#> GSM905044     3  0.0547      0.815 0.000 0.000 0.980 0.000 0.020 0.000
#> GSM904989     3  0.0806      0.817 0.000 0.008 0.972 0.000 0.020 0.000
#> GSM904999     5  0.3854      0.347 0.000 0.000 0.464 0.000 0.536 0.000
#> GSM905002     3  0.0717      0.819 0.000 0.008 0.976 0.000 0.016 0.000
#> GSM905009     3  0.0260      0.821 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM905014     5  0.3126      0.756 0.000 0.000 0.248 0.000 0.752 0.000
#> GSM905017     5  0.3854      0.347 0.000 0.000 0.464 0.000 0.536 0.000
#> GSM905020     3  0.0260      0.821 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM905023     3  0.3737      0.242 0.000 0.000 0.608 0.000 0.392 0.000
#> GSM905029     3  0.3390      0.502 0.000 0.000 0.704 0.000 0.296 0.000
#> GSM905032     5  0.2762      0.760 0.000 0.000 0.196 0.000 0.804 0.000
#> GSM905034     5  0.0146      0.659 0.004 0.000 0.000 0.000 0.996 0.000
#> GSM905040     6  0.2219      0.842 0.000 0.000 0.000 0.000 0.136 0.864
#> GSM904985     2  0.0000      0.956 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904988     2  0.0000      0.956 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904990     2  0.0000      0.956 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904992     2  0.0000      0.956 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904995     2  0.0000      0.956 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904998     2  0.0000      0.956 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905000     2  0.0000      0.956 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905003     2  0.0000      0.956 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905006     2  0.0000      0.956 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905008     2  0.0000      0.956 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905011     2  0.0000      0.956 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905013     2  0.0000      0.956 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905016     2  0.0000      0.956 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905018     2  0.0000      0.956 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905021     2  0.3266      0.655 0.000 0.728 0.272 0.000 0.000 0.000
#> GSM905025     2  0.0000      0.956 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905028     2  0.0000      0.956 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905030     2  0.0000      0.956 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905033     2  0.3244      0.660 0.000 0.732 0.268 0.000 0.000 0.000
#> GSM905035     2  0.0000      0.956 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905037     2  0.0000      0.956 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905039     2  0.0000      0.956 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905042     2  0.3244      0.660 0.000 0.732 0.268 0.000 0.000 0.000
#> GSM905046     1  0.0000      0.846 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM905065     1  0.5029      0.598 0.620 0.000 0.000 0.000 0.120 0.260
#> GSM905049     4  0.0000      0.901 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905050     4  0.0000      0.901 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905064     4  0.0000      0.901 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905045     4  0.0000      0.901 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905051     4  0.3843      0.337 0.452 0.000 0.000 0.548 0.000 0.000
#> GSM905055     6  0.0000      0.961 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM905058     1  0.0000      0.846 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM905053     4  0.0000      0.901 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905061     4  0.0000      0.901 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905063     6  0.0000      0.961 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM905054     4  0.0000      0.901 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905062     4  0.0000      0.901 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905052     4  0.3843      0.337 0.452 0.000 0.000 0.548 0.000 0.000
#> GSM905059     1  0.0000      0.846 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM905047     1  0.0000      0.846 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM905066     1  0.5029      0.598 0.620 0.000 0.000 0.000 0.120 0.260
#> GSM905056     6  0.0000      0.961 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM905060     1  0.0000      0.846 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM905048     1  0.0000      0.846 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM905067     1  0.5029      0.598 0.620 0.000 0.000 0.000 0.120 0.260
#> GSM905057     6  0.0000      0.961 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM905068     4  0.0000      0.901 0.000 0.000 0.000 1.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n tissue(p) genotype/variation(p) individual(p) k
#> SD:hclust 60  3.62e-09              4.36e-05         0.332 2
#> SD:hclust 76  3.01e-21              5.75e-05         0.992 3
#> SD:hclust 73  2.26e-20              7.84e-05         0.487 4
#> SD:hclust 66  3.13e-14              1.39e-05         0.409 5
#> SD:hclust 69  4.18e-18              1.04e-10         0.149 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 76 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.581           0.857       0.892         0.4596 0.528   0.528
#> 3 3 0.654           0.923       0.866         0.3861 0.762   0.565
#> 4 4 0.829           0.864       0.840         0.1325 0.914   0.745
#> 5 5 0.796           0.768       0.814         0.0662 0.976   0.908
#> 6 6 0.754           0.732       0.786         0.0430 0.959   0.834

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM905004     2  0.9044      0.763 0.320 0.680
#> GSM905024     1  0.0672      0.991 0.992 0.008
#> GSM905038     2  0.9000      0.763 0.316 0.684
#> GSM905043     1  0.0672      0.991 0.992 0.008
#> GSM904986     2  0.8955      0.767 0.312 0.688
#> GSM904991     2  0.9044      0.759 0.320 0.680
#> GSM904994     2  0.8955      0.767 0.312 0.688
#> GSM904996     2  0.8955      0.767 0.312 0.688
#> GSM905007     2  0.9000      0.763 0.316 0.684
#> GSM905012     2  0.8955      0.767 0.312 0.688
#> GSM905022     2  0.8955      0.767 0.312 0.688
#> GSM905026     2  0.8955      0.767 0.312 0.688
#> GSM905027     2  0.8955      0.767 0.312 0.688
#> GSM905031     2  0.8955      0.767 0.312 0.688
#> GSM905036     2  0.9000      0.763 0.316 0.684
#> GSM905041     2  0.9922      0.529 0.448 0.552
#> GSM905044     2  0.8955      0.767 0.312 0.688
#> GSM904989     2  0.8955      0.767 0.312 0.688
#> GSM904999     2  0.8955      0.767 0.312 0.688
#> GSM905002     2  0.8955      0.767 0.312 0.688
#> GSM905009     2  0.8955      0.767 0.312 0.688
#> GSM905014     2  0.9000      0.763 0.316 0.684
#> GSM905017     2  0.8955      0.767 0.312 0.688
#> GSM905020     2  0.8955      0.767 0.312 0.688
#> GSM905023     2  0.9000      0.763 0.316 0.684
#> GSM905029     2  0.9000      0.763 0.316 0.684
#> GSM905032     2  0.9044      0.759 0.320 0.680
#> GSM905034     1  0.0672      0.991 0.992 0.008
#> GSM905040     1  0.0672      0.991 0.992 0.008
#> GSM904985     2  0.0672      0.798 0.008 0.992
#> GSM904988     2  0.0672      0.798 0.008 0.992
#> GSM904990     2  0.0672      0.798 0.008 0.992
#> GSM904992     2  0.0672      0.798 0.008 0.992
#> GSM904995     2  0.0672      0.798 0.008 0.992
#> GSM904998     2  0.0672      0.798 0.008 0.992
#> GSM905000     2  0.0672      0.798 0.008 0.992
#> GSM905003     2  0.0672      0.798 0.008 0.992
#> GSM905006     2  0.0672      0.798 0.008 0.992
#> GSM905008     2  0.0672      0.798 0.008 0.992
#> GSM905011     2  0.0672      0.798 0.008 0.992
#> GSM905013     2  0.0672      0.798 0.008 0.992
#> GSM905016     2  0.0672      0.798 0.008 0.992
#> GSM905018     2  0.0672      0.798 0.008 0.992
#> GSM905021     2  0.0672      0.798 0.008 0.992
#> GSM905025     2  0.0672      0.798 0.008 0.992
#> GSM905028     2  0.0672      0.798 0.008 0.992
#> GSM905030     2  0.0672      0.798 0.008 0.992
#> GSM905033     2  0.0672      0.798 0.008 0.992
#> GSM905035     2  0.0672      0.798 0.008 0.992
#> GSM905037     2  0.0672      0.798 0.008 0.992
#> GSM905039     2  0.0672      0.798 0.008 0.992
#> GSM905042     2  0.0672      0.798 0.008 0.992
#> GSM905046     1  0.0000      0.998 1.000 0.000
#> GSM905065     1  0.0000      0.998 1.000 0.000
#> GSM905049     1  0.0000      0.998 1.000 0.000
#> GSM905050     1  0.0000      0.998 1.000 0.000
#> GSM905064     1  0.0000      0.998 1.000 0.000
#> GSM905045     1  0.0000      0.998 1.000 0.000
#> GSM905051     1  0.0000      0.998 1.000 0.000
#> GSM905055     1  0.0000      0.998 1.000 0.000
#> GSM905058     1  0.0000      0.998 1.000 0.000
#> GSM905053     1  0.0000      0.998 1.000 0.000
#> GSM905061     1  0.0000      0.998 1.000 0.000
#> GSM905063     1  0.0000      0.998 1.000 0.000
#> GSM905054     1  0.0000      0.998 1.000 0.000
#> GSM905062     1  0.0000      0.998 1.000 0.000
#> GSM905052     1  0.0000      0.998 1.000 0.000
#> GSM905059     1  0.0000      0.998 1.000 0.000
#> GSM905047     1  0.0000      0.998 1.000 0.000
#> GSM905066     1  0.0000      0.998 1.000 0.000
#> GSM905056     1  0.0000      0.998 1.000 0.000
#> GSM905060     1  0.0000      0.998 1.000 0.000
#> GSM905048     1  0.0000      0.998 1.000 0.000
#> GSM905067     1  0.0000      0.998 1.000 0.000
#> GSM905057     1  0.0000      0.998 1.000 0.000
#> GSM905068     1  0.0000      0.998 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM905004     3  0.6363      0.804 0.136 0.096 0.768
#> GSM905024     3  0.3267      0.523 0.116 0.000 0.884
#> GSM905038     3  0.4931      0.954 0.000 0.232 0.768
#> GSM905043     3  0.3267      0.523 0.116 0.000 0.884
#> GSM904986     3  0.4931      0.954 0.000 0.232 0.768
#> GSM904991     3  0.4784      0.927 0.004 0.200 0.796
#> GSM904994     3  0.4931      0.954 0.000 0.232 0.768
#> GSM904996     3  0.4931      0.954 0.000 0.232 0.768
#> GSM905007     3  0.4931      0.954 0.000 0.232 0.768
#> GSM905012     3  0.4931      0.954 0.000 0.232 0.768
#> GSM905022     3  0.4931      0.954 0.000 0.232 0.768
#> GSM905026     3  0.4931      0.954 0.000 0.232 0.768
#> GSM905027     3  0.4931      0.954 0.000 0.232 0.768
#> GSM905031     3  0.4931      0.954 0.000 0.232 0.768
#> GSM905036     3  0.4931      0.954 0.000 0.232 0.768
#> GSM905041     3  0.4733      0.924 0.004 0.196 0.800
#> GSM905044     3  0.4931      0.954 0.000 0.232 0.768
#> GSM904989     3  0.4931      0.954 0.000 0.232 0.768
#> GSM904999     3  0.4931      0.954 0.000 0.232 0.768
#> GSM905002     3  0.4931      0.954 0.000 0.232 0.768
#> GSM905009     3  0.4931      0.954 0.000 0.232 0.768
#> GSM905014     3  0.4931      0.954 0.000 0.232 0.768
#> GSM905017     3  0.4931      0.954 0.000 0.232 0.768
#> GSM905020     3  0.4931      0.954 0.000 0.232 0.768
#> GSM905023     3  0.4931      0.954 0.000 0.232 0.768
#> GSM905029     3  0.4931      0.954 0.000 0.232 0.768
#> GSM905032     3  0.4555      0.927 0.000 0.200 0.800
#> GSM905034     1  0.5178      0.889 0.744 0.000 0.256
#> GSM905040     1  0.5327      0.884 0.728 0.000 0.272
#> GSM904985     2  0.1289      0.984 0.032 0.968 0.000
#> GSM904988     2  0.0237      0.988 0.004 0.996 0.000
#> GSM904990     2  0.0000      0.988 0.000 1.000 0.000
#> GSM904992     2  0.0237      0.988 0.004 0.996 0.000
#> GSM904995     2  0.1289      0.984 0.032 0.968 0.000
#> GSM904998     2  0.0237      0.988 0.004 0.996 0.000
#> GSM905000     2  0.0000      0.988 0.000 1.000 0.000
#> GSM905003     2  0.0592      0.987 0.012 0.988 0.000
#> GSM905006     2  0.0237      0.988 0.004 0.996 0.000
#> GSM905008     2  0.0237      0.988 0.004 0.996 0.000
#> GSM905011     2  0.0237      0.988 0.004 0.996 0.000
#> GSM905013     2  0.0000      0.988 0.000 1.000 0.000
#> GSM905016     2  0.1289      0.984 0.032 0.968 0.000
#> GSM905018     2  0.0000      0.988 0.000 1.000 0.000
#> GSM905021     2  0.1163      0.984 0.028 0.972 0.000
#> GSM905025     2  0.1163      0.984 0.028 0.972 0.000
#> GSM905028     2  0.0000      0.988 0.000 1.000 0.000
#> GSM905030     2  0.0237      0.988 0.004 0.996 0.000
#> GSM905033     2  0.1163      0.984 0.028 0.972 0.000
#> GSM905035     2  0.1289      0.984 0.032 0.968 0.000
#> GSM905037     2  0.0000      0.988 0.000 1.000 0.000
#> GSM905039     2  0.1163      0.984 0.028 0.972 0.000
#> GSM905042     2  0.1163      0.984 0.028 0.972 0.000
#> GSM905046     1  0.4796      0.899 0.780 0.000 0.220
#> GSM905065     1  0.4796      0.899 0.780 0.000 0.220
#> GSM905049     1  0.3116      0.847 0.892 0.000 0.108
#> GSM905050     1  0.3116      0.847 0.892 0.000 0.108
#> GSM905064     1  0.2356      0.862 0.928 0.000 0.072
#> GSM905045     1  0.3116      0.847 0.892 0.000 0.108
#> GSM905051     1  0.1753      0.869 0.952 0.000 0.048
#> GSM905055     1  0.5254      0.888 0.736 0.000 0.264
#> GSM905058     1  0.4796      0.899 0.780 0.000 0.220
#> GSM905053     1  0.3116      0.847 0.892 0.000 0.108
#> GSM905061     1  0.3116      0.847 0.892 0.000 0.108
#> GSM905063     1  0.5254      0.888 0.736 0.000 0.264
#> GSM905054     1  0.2959      0.851 0.900 0.000 0.100
#> GSM905062     1  0.3116      0.847 0.892 0.000 0.108
#> GSM905052     1  0.1753      0.869 0.952 0.000 0.048
#> GSM905059     1  0.4750      0.899 0.784 0.000 0.216
#> GSM905047     1  0.4750      0.899 0.784 0.000 0.216
#> GSM905066     1  0.4796      0.899 0.780 0.000 0.220
#> GSM905056     1  0.5254      0.888 0.736 0.000 0.264
#> GSM905060     1  0.4750      0.899 0.784 0.000 0.216
#> GSM905048     1  0.4796      0.899 0.780 0.000 0.220
#> GSM905067     1  0.4796      0.899 0.780 0.000 0.220
#> GSM905057     1  0.5254      0.888 0.736 0.000 0.264
#> GSM905068     1  0.3116      0.847 0.892 0.000 0.108

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM905004     3  0.3975      0.691 0.000 0.000 0.760 0.240
#> GSM905024     1  0.5614      0.143 0.592 0.020 0.384 0.004
#> GSM905038     3  0.0188      0.961 0.004 0.000 0.996 0.000
#> GSM905043     1  0.4855      0.236 0.644 0.000 0.352 0.004
#> GSM904986     3  0.0000      0.962 0.000 0.000 1.000 0.000
#> GSM904991     3  0.2654      0.910 0.108 0.000 0.888 0.004
#> GSM904994     3  0.0000      0.962 0.000 0.000 1.000 0.000
#> GSM904996     3  0.0000      0.962 0.000 0.000 1.000 0.000
#> GSM905007     3  0.1576      0.943 0.048 0.000 0.948 0.004
#> GSM905012     3  0.0000      0.962 0.000 0.000 1.000 0.000
#> GSM905022     3  0.0000      0.962 0.000 0.000 1.000 0.000
#> GSM905026     3  0.0000      0.962 0.000 0.000 1.000 0.000
#> GSM905027     3  0.0188      0.961 0.004 0.000 0.996 0.000
#> GSM905031     3  0.0000      0.962 0.000 0.000 1.000 0.000
#> GSM905036     3  0.0657      0.958 0.012 0.000 0.984 0.004
#> GSM905041     3  0.2799      0.908 0.108 0.000 0.884 0.008
#> GSM905044     3  0.0000      0.962 0.000 0.000 1.000 0.000
#> GSM904989     3  0.0000      0.962 0.000 0.000 1.000 0.000
#> GSM904999     3  0.3245      0.908 0.064 0.000 0.880 0.056
#> GSM905002     3  0.0000      0.962 0.000 0.000 1.000 0.000
#> GSM905009     3  0.0000      0.962 0.000 0.000 1.000 0.000
#> GSM905014     3  0.1637      0.938 0.060 0.000 0.940 0.000
#> GSM905017     3  0.3245      0.908 0.064 0.000 0.880 0.056
#> GSM905020     3  0.0000      0.962 0.000 0.000 1.000 0.000
#> GSM905023     3  0.0469      0.959 0.012 0.000 0.988 0.000
#> GSM905029     3  0.0188      0.961 0.004 0.000 0.996 0.000
#> GSM905032     3  0.4285      0.841 0.156 0.000 0.804 0.040
#> GSM905034     1  0.2744      0.660 0.912 0.024 0.012 0.052
#> GSM905040     1  0.0336      0.636 0.992 0.008 0.000 0.000
#> GSM904985     2  0.5136      0.878 0.000 0.728 0.048 0.224
#> GSM904988     2  0.1576      0.925 0.000 0.948 0.048 0.004
#> GSM904990     2  0.1389      0.925 0.000 0.952 0.048 0.000
#> GSM904992     2  0.1576      0.925 0.000 0.948 0.048 0.004
#> GSM904995     2  0.4919      0.885 0.000 0.752 0.048 0.200
#> GSM904998     2  0.1975      0.923 0.000 0.936 0.048 0.016
#> GSM905000     2  0.1389      0.925 0.000 0.952 0.048 0.000
#> GSM905003     2  0.2586      0.920 0.000 0.912 0.048 0.040
#> GSM905006     2  0.1576      0.925 0.000 0.948 0.048 0.004
#> GSM905008     2  0.2300      0.920 0.000 0.924 0.048 0.028
#> GSM905011     2  0.1576      0.925 0.000 0.948 0.048 0.004
#> GSM905013     2  0.1389      0.925 0.000 0.952 0.048 0.000
#> GSM905016     2  0.4919      0.885 0.000 0.752 0.048 0.200
#> GSM905018     2  0.1389      0.925 0.000 0.952 0.048 0.000
#> GSM905021     2  0.5623      0.837 0.000 0.660 0.048 0.292
#> GSM905025     2  0.4881      0.885 0.000 0.756 0.048 0.196
#> GSM905028     2  0.1389      0.925 0.000 0.952 0.048 0.000
#> GSM905030     2  0.1576      0.925 0.000 0.948 0.048 0.004
#> GSM905033     2  0.5416      0.858 0.000 0.692 0.048 0.260
#> GSM905035     2  0.4919      0.885 0.000 0.752 0.048 0.200
#> GSM905037     2  0.1389      0.925 0.000 0.952 0.048 0.000
#> GSM905039     2  0.4881      0.885 0.000 0.756 0.048 0.196
#> GSM905042     2  0.5416      0.858 0.000 0.692 0.048 0.260
#> GSM905046     1  0.4507      0.729 0.756 0.020 0.000 0.224
#> GSM905065     1  0.4018      0.730 0.772 0.004 0.000 0.224
#> GSM905049     4  0.5358      0.964 0.252 0.000 0.048 0.700
#> GSM905050     4  0.5358      0.964 0.252 0.000 0.048 0.700
#> GSM905064     4  0.5078      0.943 0.272 0.000 0.028 0.700
#> GSM905045     4  0.5358      0.964 0.252 0.000 0.048 0.700
#> GSM905051     4  0.5206      0.868 0.308 0.024 0.000 0.668
#> GSM905055     1  0.2737      0.722 0.888 0.008 0.000 0.104
#> GSM905058     1  0.4574      0.728 0.756 0.024 0.000 0.220
#> GSM905053     4  0.5358      0.964 0.252 0.000 0.048 0.700
#> GSM905061     4  0.5358      0.964 0.252 0.000 0.048 0.700
#> GSM905063     1  0.2737      0.722 0.888 0.008 0.000 0.104
#> GSM905054     4  0.5200      0.954 0.264 0.000 0.036 0.700
#> GSM905062     4  0.5358      0.964 0.252 0.000 0.048 0.700
#> GSM905052     4  0.5206      0.868 0.308 0.024 0.000 0.668
#> GSM905059     1  0.4644      0.719 0.748 0.024 0.000 0.228
#> GSM905047     1  0.4576      0.720 0.748 0.020 0.000 0.232
#> GSM905066     1  0.4018      0.730 0.772 0.004 0.000 0.224
#> GSM905056     1  0.2737      0.722 0.888 0.008 0.000 0.104
#> GSM905060     1  0.4644      0.719 0.748 0.024 0.000 0.228
#> GSM905048     1  0.4507      0.729 0.756 0.020 0.000 0.224
#> GSM905067     1  0.4018      0.730 0.772 0.004 0.000 0.224
#> GSM905057     1  0.2737      0.722 0.888 0.008 0.000 0.104
#> GSM905068     4  0.5358      0.964 0.252 0.000 0.048 0.700

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM905004     3  0.3635      0.543 0.000 0.000 0.748 0.248 0.004
#> GSM905024     5  0.6836      0.459 0.396 0.000 0.188 0.012 0.404
#> GSM905038     3  0.1043      0.868 0.000 0.000 0.960 0.000 0.040
#> GSM905043     5  0.6476      0.408 0.384 0.000 0.132 0.012 0.472
#> GSM904986     3  0.0000      0.878 0.000 0.000 1.000 0.000 0.000
#> GSM904991     3  0.3932      0.538 0.000 0.000 0.672 0.000 0.328
#> GSM904994     3  0.0000      0.878 0.000 0.000 1.000 0.000 0.000
#> GSM904996     3  0.0000      0.878 0.000 0.000 1.000 0.000 0.000
#> GSM905007     3  0.2891      0.767 0.000 0.000 0.824 0.000 0.176
#> GSM905012     3  0.0000      0.878 0.000 0.000 1.000 0.000 0.000
#> GSM905022     3  0.0000      0.878 0.000 0.000 1.000 0.000 0.000
#> GSM905026     3  0.0000      0.878 0.000 0.000 1.000 0.000 0.000
#> GSM905027     3  0.1043      0.868 0.000 0.000 0.960 0.000 0.040
#> GSM905031     3  0.0000      0.878 0.000 0.000 1.000 0.000 0.000
#> GSM905036     3  0.1851      0.844 0.000 0.000 0.912 0.000 0.088
#> GSM905041     3  0.3999      0.504 0.000 0.000 0.656 0.000 0.344
#> GSM905044     3  0.0000      0.878 0.000 0.000 1.000 0.000 0.000
#> GSM904989     3  0.0000      0.878 0.000 0.000 1.000 0.000 0.000
#> GSM904999     3  0.4752      0.523 0.000 0.000 0.648 0.036 0.316
#> GSM905002     3  0.0000      0.878 0.000 0.000 1.000 0.000 0.000
#> GSM905009     3  0.0000      0.878 0.000 0.000 1.000 0.000 0.000
#> GSM905014     3  0.3039      0.749 0.000 0.000 0.808 0.000 0.192
#> GSM905017     3  0.4752      0.523 0.000 0.000 0.648 0.036 0.316
#> GSM905020     3  0.0000      0.878 0.000 0.000 1.000 0.000 0.000
#> GSM905023     3  0.1792      0.847 0.000 0.000 0.916 0.000 0.084
#> GSM905029     3  0.1270      0.863 0.000 0.000 0.948 0.000 0.052
#> GSM905032     5  0.4443     -0.259 0.000 0.000 0.472 0.004 0.524
#> GSM905034     1  0.4791     -0.123 0.588 0.000 0.008 0.012 0.392
#> GSM905040     5  0.5291     -0.175 0.456 0.000 0.000 0.048 0.496
#> GSM904985     2  0.5747      0.764 0.000 0.636 0.004 0.200 0.160
#> GSM904988     2  0.0162      0.858 0.000 0.996 0.004 0.000 0.000
#> GSM904990     2  0.0451      0.858 0.000 0.988 0.004 0.008 0.000
#> GSM904992     2  0.0162      0.858 0.000 0.996 0.004 0.000 0.000
#> GSM904995     2  0.5497      0.775 0.000 0.664 0.004 0.196 0.136
#> GSM904998     2  0.0613      0.857 0.000 0.984 0.004 0.008 0.004
#> GSM905000     2  0.0451      0.858 0.000 0.988 0.004 0.008 0.000
#> GSM905003     2  0.2313      0.845 0.000 0.912 0.004 0.040 0.044
#> GSM905006     2  0.0162      0.858 0.000 0.996 0.004 0.000 0.000
#> GSM905008     2  0.1153      0.852 0.000 0.964 0.004 0.008 0.024
#> GSM905011     2  0.0162      0.858 0.000 0.996 0.004 0.000 0.000
#> GSM905013     2  0.0451      0.858 0.000 0.988 0.004 0.008 0.000
#> GSM905016     2  0.5497      0.775 0.000 0.664 0.004 0.196 0.136
#> GSM905018     2  0.0451      0.858 0.000 0.988 0.004 0.008 0.000
#> GSM905021     2  0.6414      0.645 0.000 0.504 0.004 0.168 0.324
#> GSM905025     2  0.5527      0.776 0.000 0.660 0.004 0.200 0.136
#> GSM905028     2  0.1892      0.848 0.000 0.916 0.004 0.080 0.000
#> GSM905030     2  0.0162      0.858 0.000 0.996 0.004 0.000 0.000
#> GSM905033     2  0.6054      0.713 0.000 0.572 0.004 0.140 0.284
#> GSM905035     2  0.5497      0.775 0.000 0.664 0.004 0.196 0.136
#> GSM905037     2  0.0451      0.858 0.000 0.988 0.004 0.008 0.000
#> GSM905039     2  0.5527      0.776 0.000 0.660 0.004 0.200 0.136
#> GSM905042     2  0.6054      0.713 0.000 0.572 0.004 0.140 0.284
#> GSM905046     1  0.0162      0.806 0.996 0.000 0.000 0.000 0.004
#> GSM905065     1  0.1732      0.801 0.920 0.000 0.000 0.000 0.080
#> GSM905049     4  0.4152      0.973 0.296 0.000 0.012 0.692 0.000
#> GSM905050     4  0.4152      0.973 0.296 0.000 0.012 0.692 0.000
#> GSM905064     4  0.4067      0.971 0.300 0.000 0.008 0.692 0.000
#> GSM905045     4  0.4305      0.973 0.296 0.000 0.012 0.688 0.004
#> GSM905051     4  0.5152      0.901 0.344 0.004 0.000 0.608 0.044
#> GSM905055     1  0.4477      0.655 0.708 0.000 0.000 0.040 0.252
#> GSM905058     1  0.0000      0.806 1.000 0.000 0.000 0.000 0.000
#> GSM905053     4  0.4152      0.973 0.296 0.000 0.012 0.692 0.000
#> GSM905061     4  0.4715      0.966 0.296 0.000 0.012 0.672 0.020
#> GSM905063     1  0.4352      0.661 0.720 0.000 0.000 0.036 0.244
#> GSM905054     4  0.4067      0.971 0.300 0.000 0.008 0.692 0.000
#> GSM905062     4  0.4715      0.966 0.296 0.000 0.012 0.672 0.020
#> GSM905052     4  0.5152      0.901 0.344 0.004 0.000 0.608 0.044
#> GSM905059     1  0.0510      0.800 0.984 0.000 0.000 0.016 0.000
#> GSM905047     1  0.0671      0.799 0.980 0.000 0.000 0.016 0.004
#> GSM905066     1  0.1732      0.801 0.920 0.000 0.000 0.000 0.080
#> GSM905056     1  0.4477      0.655 0.708 0.000 0.000 0.040 0.252
#> GSM905060     1  0.0510      0.800 0.984 0.000 0.000 0.016 0.000
#> GSM905048     1  0.0162      0.806 0.996 0.000 0.000 0.000 0.004
#> GSM905067     1  0.1732      0.801 0.920 0.000 0.000 0.000 0.080
#> GSM905057     1  0.4477      0.655 0.708 0.000 0.000 0.040 0.252
#> GSM905068     4  0.4305      0.973 0.296 0.000 0.012 0.688 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5 p6
#> GSM905004     3  0.3485      0.568 0.000 0.000 0.772 0.204 0.004 NA
#> GSM905024     5  0.6203      0.441 0.300 0.000 0.052 0.012 0.548 NA
#> GSM905038     3  0.2312      0.799 0.000 0.000 0.876 0.000 0.112 NA
#> GSM905043     5  0.5826      0.406 0.256 0.000 0.028 0.012 0.600 NA
#> GSM904986     3  0.0000      0.866 0.000 0.000 1.000 0.000 0.000 NA
#> GSM904991     5  0.4205      0.226 0.000 0.000 0.420 0.000 0.564 NA
#> GSM904994     3  0.0000      0.866 0.000 0.000 1.000 0.000 0.000 NA
#> GSM904996     3  0.0000      0.866 0.000 0.000 1.000 0.000 0.000 NA
#> GSM905007     3  0.3984      0.459 0.000 0.000 0.648 0.000 0.336 NA
#> GSM905012     3  0.0000      0.866 0.000 0.000 1.000 0.000 0.000 NA
#> GSM905022     3  0.0000      0.866 0.000 0.000 1.000 0.000 0.000 NA
#> GSM905026     3  0.0000      0.866 0.000 0.000 1.000 0.000 0.000 NA
#> GSM905027     3  0.2278      0.788 0.000 0.000 0.868 0.000 0.128 NA
#> GSM905031     3  0.0000      0.866 0.000 0.000 1.000 0.000 0.000 NA
#> GSM905036     3  0.3420      0.662 0.000 0.000 0.748 0.000 0.240 NA
#> GSM905041     5  0.3899      0.277 0.000 0.000 0.404 0.000 0.592 NA
#> GSM905044     3  0.0000      0.866 0.000 0.000 1.000 0.000 0.000 NA
#> GSM904989     3  0.0260      0.863 0.000 0.000 0.992 0.000 0.000 NA
#> GSM904999     5  0.6402      0.283 0.000 0.000 0.368 0.056 0.452 NA
#> GSM905002     3  0.0000      0.866 0.000 0.000 1.000 0.000 0.000 NA
#> GSM905009     3  0.0260      0.863 0.000 0.000 0.992 0.000 0.000 NA
#> GSM905014     3  0.4076      0.381 0.000 0.000 0.620 0.000 0.364 NA
#> GSM905017     5  0.6402      0.283 0.000 0.000 0.368 0.056 0.452 NA
#> GSM905020     3  0.0000      0.866 0.000 0.000 1.000 0.000 0.000 NA
#> GSM905023     3  0.3420      0.662 0.000 0.000 0.748 0.000 0.240 NA
#> GSM905029     3  0.2805      0.758 0.000 0.000 0.828 0.000 0.160 NA
#> GSM905032     5  0.3457      0.504 0.016 0.000 0.232 0.000 0.752 NA
#> GSM905034     5  0.5521      0.310 0.360 0.000 0.000 0.016 0.532 NA
#> GSM905040     5  0.6105      0.150 0.288 0.000 0.000 0.012 0.484 NA
#> GSM904985     2  0.1864      0.658 0.000 0.924 0.000 0.004 0.032 NA
#> GSM904988     2  0.3854      0.792 0.000 0.536 0.000 0.000 0.000 NA
#> GSM904990     2  0.4103      0.792 0.000 0.544 0.000 0.004 0.004 NA
#> GSM904992     2  0.4114      0.792 0.000 0.532 0.000 0.004 0.004 NA
#> GSM904995     2  0.1194      0.670 0.000 0.956 0.000 0.004 0.032 NA
#> GSM904998     2  0.4381      0.790 0.000 0.524 0.000 0.004 0.016 NA
#> GSM905000     2  0.4103      0.792 0.000 0.544 0.000 0.004 0.004 NA
#> GSM905003     2  0.4678      0.784 0.000 0.544 0.000 0.012 0.024 NA
#> GSM905006     2  0.3854      0.792 0.000 0.536 0.000 0.000 0.000 NA
#> GSM905008     2  0.4389      0.787 0.000 0.512 0.000 0.004 0.016 NA
#> GSM905011     2  0.3854      0.792 0.000 0.536 0.000 0.000 0.000 NA
#> GSM905013     2  0.4204      0.793 0.000 0.540 0.000 0.004 0.008 NA
#> GSM905016     2  0.1194      0.670 0.000 0.956 0.000 0.004 0.032 NA
#> GSM905018     2  0.4103      0.792 0.000 0.544 0.000 0.004 0.004 NA
#> GSM905021     2  0.6188      0.377 0.000 0.580 0.000 0.068 0.192 NA
#> GSM905025     2  0.0291      0.671 0.000 0.992 0.000 0.000 0.004 NA
#> GSM905028     2  0.3844      0.773 0.000 0.676 0.000 0.004 0.008 NA
#> GSM905030     2  0.4178      0.793 0.000 0.560 0.000 0.004 0.008 NA
#> GSM905033     2  0.5022      0.548 0.000 0.712 0.000 0.060 0.140 NA
#> GSM905035     2  0.0508      0.668 0.000 0.984 0.000 0.004 0.012 NA
#> GSM905037     2  0.4158      0.792 0.000 0.572 0.000 0.004 0.008 NA
#> GSM905039     2  0.0405      0.672 0.000 0.988 0.000 0.000 0.004 NA
#> GSM905042     2  0.5022      0.548 0.000 0.712 0.000 0.060 0.140 NA
#> GSM905046     1  0.2020      0.832 0.896 0.000 0.000 0.096 0.008 NA
#> GSM905065     1  0.4028      0.832 0.796 0.000 0.000 0.096 0.056 NA
#> GSM905049     4  0.2048      0.969 0.120 0.000 0.000 0.880 0.000 NA
#> GSM905050     4  0.2048      0.969 0.120 0.000 0.000 0.880 0.000 NA
#> GSM905064     4  0.2048      0.969 0.120 0.000 0.000 0.880 0.000 NA
#> GSM905045     4  0.2662      0.965 0.120 0.000 0.000 0.856 0.000 NA
#> GSM905051     4  0.3542      0.894 0.184 0.000 0.000 0.784 0.016 NA
#> GSM905055     1  0.4403      0.707 0.708 0.000 0.000 0.000 0.096 NA
#> GSM905058     1  0.2476      0.829 0.880 0.000 0.000 0.092 0.024 NA
#> GSM905053     4  0.2048      0.969 0.120 0.000 0.000 0.880 0.000 NA
#> GSM905061     4  0.2815      0.962 0.120 0.000 0.000 0.848 0.000 NA
#> GSM905063     1  0.4434      0.704 0.712 0.000 0.000 0.000 0.116 NA
#> GSM905054     4  0.2048      0.969 0.120 0.000 0.000 0.880 0.000 NA
#> GSM905062     4  0.2815      0.962 0.120 0.000 0.000 0.848 0.000 NA
#> GSM905052     4  0.3542      0.894 0.184 0.000 0.000 0.784 0.016 NA
#> GSM905059     1  0.2669      0.821 0.864 0.000 0.000 0.108 0.024 NA
#> GSM905047     1  0.2212      0.823 0.880 0.000 0.000 0.112 0.008 NA
#> GSM905066     1  0.4028      0.832 0.796 0.000 0.000 0.096 0.056 NA
#> GSM905056     1  0.4403      0.707 0.708 0.000 0.000 0.000 0.096 NA
#> GSM905060     1  0.2669      0.821 0.864 0.000 0.000 0.108 0.024 NA
#> GSM905048     1  0.2020      0.832 0.896 0.000 0.000 0.096 0.008 NA
#> GSM905067     1  0.4028      0.832 0.796 0.000 0.000 0.096 0.056 NA
#> GSM905057     1  0.4403      0.707 0.708 0.000 0.000 0.000 0.096 NA
#> GSM905068     4  0.2662      0.965 0.120 0.000 0.000 0.856 0.000 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n tissue(p) genotype/variation(p) individual(p) k
#> SD:kmeans 76  2.17e-09              6.67e-03        0.0862 2
#> SD:kmeans 76  2.85e-20              4.94e-05        0.9774 3
#> SD:kmeans 74  3.63e-22              8.85e-09        0.4032 4
#> SD:kmeans 71  4.64e-23              3.14e-09        0.3778 5
#> SD:kmeans 65  7.31e-17              4.69e-08        0.7007 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 76 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.999           0.981       0.991         0.5031 0.496   0.496
#> 3 3 1.000           0.958       0.985         0.3381 0.742   0.522
#> 4 4 1.000           0.980       0.989         0.1056 0.908   0.727
#> 5 5 0.883           0.845       0.916         0.0608 0.931   0.737
#> 6 6 0.879           0.750       0.837         0.0301 0.964   0.828

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM905004     1  0.0000      0.988 1.000 0.000
#> GSM905024     1  0.0000      0.988 1.000 0.000
#> GSM905038     2  0.4298      0.907 0.088 0.912
#> GSM905043     1  0.0000      0.988 1.000 0.000
#> GSM904986     2  0.0000      0.993 0.000 1.000
#> GSM904991     1  0.0000      0.988 1.000 0.000
#> GSM904994     2  0.0000      0.993 0.000 1.000
#> GSM904996     2  0.0000      0.993 0.000 1.000
#> GSM905007     1  0.3733      0.920 0.928 0.072
#> GSM905012     2  0.0000      0.993 0.000 1.000
#> GSM905022     2  0.0000      0.993 0.000 1.000
#> GSM905026     2  0.0000      0.993 0.000 1.000
#> GSM905027     2  0.0938      0.983 0.012 0.988
#> GSM905031     2  0.0000      0.993 0.000 1.000
#> GSM905036     1  0.5294      0.866 0.880 0.120
#> GSM905041     1  0.0000      0.988 1.000 0.000
#> GSM905044     2  0.0000      0.993 0.000 1.000
#> GSM904989     2  0.0000      0.993 0.000 1.000
#> GSM904999     2  0.0000      0.993 0.000 1.000
#> GSM905002     2  0.0000      0.993 0.000 1.000
#> GSM905009     2  0.0000      0.993 0.000 1.000
#> GSM905014     1  0.7376      0.743 0.792 0.208
#> GSM905017     2  0.0000      0.993 0.000 1.000
#> GSM905020     2  0.0000      0.993 0.000 1.000
#> GSM905023     2  0.4298      0.907 0.088 0.912
#> GSM905029     2  0.4298      0.907 0.088 0.912
#> GSM905032     1  0.0000      0.988 1.000 0.000
#> GSM905034     1  0.0000      0.988 1.000 0.000
#> GSM905040     1  0.0000      0.988 1.000 0.000
#> GSM904985     2  0.0000      0.993 0.000 1.000
#> GSM904988     2  0.0000      0.993 0.000 1.000
#> GSM904990     2  0.0000      0.993 0.000 1.000
#> GSM904992     2  0.0000      0.993 0.000 1.000
#> GSM904995     2  0.0000      0.993 0.000 1.000
#> GSM904998     2  0.0000      0.993 0.000 1.000
#> GSM905000     2  0.0000      0.993 0.000 1.000
#> GSM905003     2  0.0000      0.993 0.000 1.000
#> GSM905006     2  0.0000      0.993 0.000 1.000
#> GSM905008     2  0.0000      0.993 0.000 1.000
#> GSM905011     2  0.0000      0.993 0.000 1.000
#> GSM905013     2  0.0000      0.993 0.000 1.000
#> GSM905016     2  0.0000      0.993 0.000 1.000
#> GSM905018     2  0.0000      0.993 0.000 1.000
#> GSM905021     2  0.0000      0.993 0.000 1.000
#> GSM905025     2  0.0000      0.993 0.000 1.000
#> GSM905028     2  0.0000      0.993 0.000 1.000
#> GSM905030     2  0.0000      0.993 0.000 1.000
#> GSM905033     2  0.0000      0.993 0.000 1.000
#> GSM905035     2  0.0000      0.993 0.000 1.000
#> GSM905037     2  0.0000      0.993 0.000 1.000
#> GSM905039     2  0.0000      0.993 0.000 1.000
#> GSM905042     2  0.0000      0.993 0.000 1.000
#> GSM905046     1  0.0000      0.988 1.000 0.000
#> GSM905065     1  0.0000      0.988 1.000 0.000
#> GSM905049     1  0.0000      0.988 1.000 0.000
#> GSM905050     1  0.0000      0.988 1.000 0.000
#> GSM905064     1  0.0000      0.988 1.000 0.000
#> GSM905045     1  0.0000      0.988 1.000 0.000
#> GSM905051     1  0.0000      0.988 1.000 0.000
#> GSM905055     1  0.0000      0.988 1.000 0.000
#> GSM905058     1  0.0000      0.988 1.000 0.000
#> GSM905053     1  0.0000      0.988 1.000 0.000
#> GSM905061     1  0.0000      0.988 1.000 0.000
#> GSM905063     1  0.0000      0.988 1.000 0.000
#> GSM905054     1  0.0000      0.988 1.000 0.000
#> GSM905062     1  0.0000      0.988 1.000 0.000
#> GSM905052     1  0.0000      0.988 1.000 0.000
#> GSM905059     1  0.0000      0.988 1.000 0.000
#> GSM905047     1  0.0000      0.988 1.000 0.000
#> GSM905066     1  0.0000      0.988 1.000 0.000
#> GSM905056     1  0.0000      0.988 1.000 0.000
#> GSM905060     1  0.0000      0.988 1.000 0.000
#> GSM905048     1  0.0000      0.988 1.000 0.000
#> GSM905067     1  0.0000      0.988 1.000 0.000
#> GSM905057     1  0.0000      0.988 1.000 0.000
#> GSM905068     1  0.0000      0.988 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1 p2    p3
#> GSM905004     3   0.631    -0.0314 0.492  0 0.508
#> GSM905024     1   0.593     0.4468 0.644  0 0.356
#> GSM905038     3   0.000     0.9784 0.000  0 1.000
#> GSM905043     1   0.559     0.5599 0.696  0 0.304
#> GSM904986     3   0.000     0.9784 0.000  0 1.000
#> GSM904991     3   0.000     0.9784 0.000  0 1.000
#> GSM904994     3   0.000     0.9784 0.000  0 1.000
#> GSM904996     3   0.000     0.9784 0.000  0 1.000
#> GSM905007     3   0.000     0.9784 0.000  0 1.000
#> GSM905012     3   0.000     0.9784 0.000  0 1.000
#> GSM905022     3   0.000     0.9784 0.000  0 1.000
#> GSM905026     3   0.000     0.9784 0.000  0 1.000
#> GSM905027     3   0.000     0.9784 0.000  0 1.000
#> GSM905031     3   0.000     0.9784 0.000  0 1.000
#> GSM905036     3   0.000     0.9784 0.000  0 1.000
#> GSM905041     3   0.000     0.9784 0.000  0 1.000
#> GSM905044     3   0.000     0.9784 0.000  0 1.000
#> GSM904989     3   0.000     0.9784 0.000  0 1.000
#> GSM904999     3   0.000     0.9784 0.000  0 1.000
#> GSM905002     3   0.000     0.9784 0.000  0 1.000
#> GSM905009     3   0.000     0.9784 0.000  0 1.000
#> GSM905014     3   0.000     0.9784 0.000  0 1.000
#> GSM905017     3   0.000     0.9784 0.000  0 1.000
#> GSM905020     3   0.000     0.9784 0.000  0 1.000
#> GSM905023     3   0.000     0.9784 0.000  0 1.000
#> GSM905029     3   0.000     0.9784 0.000  0 1.000
#> GSM905032     3   0.000     0.9784 0.000  0 1.000
#> GSM905034     1   0.000     0.9745 1.000  0 0.000
#> GSM905040     1   0.000     0.9745 1.000  0 0.000
#> GSM904985     2   0.000     1.0000 0.000  1 0.000
#> GSM904988     2   0.000     1.0000 0.000  1 0.000
#> GSM904990     2   0.000     1.0000 0.000  1 0.000
#> GSM904992     2   0.000     1.0000 0.000  1 0.000
#> GSM904995     2   0.000     1.0000 0.000  1 0.000
#> GSM904998     2   0.000     1.0000 0.000  1 0.000
#> GSM905000     2   0.000     1.0000 0.000  1 0.000
#> GSM905003     2   0.000     1.0000 0.000  1 0.000
#> GSM905006     2   0.000     1.0000 0.000  1 0.000
#> GSM905008     2   0.000     1.0000 0.000  1 0.000
#> GSM905011     2   0.000     1.0000 0.000  1 0.000
#> GSM905013     2   0.000     1.0000 0.000  1 0.000
#> GSM905016     2   0.000     1.0000 0.000  1 0.000
#> GSM905018     2   0.000     1.0000 0.000  1 0.000
#> GSM905021     2   0.000     1.0000 0.000  1 0.000
#> GSM905025     2   0.000     1.0000 0.000  1 0.000
#> GSM905028     2   0.000     1.0000 0.000  1 0.000
#> GSM905030     2   0.000     1.0000 0.000  1 0.000
#> GSM905033     2   0.000     1.0000 0.000  1 0.000
#> GSM905035     2   0.000     1.0000 0.000  1 0.000
#> GSM905037     2   0.000     1.0000 0.000  1 0.000
#> GSM905039     2   0.000     1.0000 0.000  1 0.000
#> GSM905042     2   0.000     1.0000 0.000  1 0.000
#> GSM905046     1   0.000     0.9745 1.000  0 0.000
#> GSM905065     1   0.000     0.9745 1.000  0 0.000
#> GSM905049     1   0.000     0.9745 1.000  0 0.000
#> GSM905050     1   0.000     0.9745 1.000  0 0.000
#> GSM905064     1   0.000     0.9745 1.000  0 0.000
#> GSM905045     1   0.000     0.9745 1.000  0 0.000
#> GSM905051     1   0.000     0.9745 1.000  0 0.000
#> GSM905055     1   0.000     0.9745 1.000  0 0.000
#> GSM905058     1   0.000     0.9745 1.000  0 0.000
#> GSM905053     1   0.000     0.9745 1.000  0 0.000
#> GSM905061     1   0.000     0.9745 1.000  0 0.000
#> GSM905063     1   0.000     0.9745 1.000  0 0.000
#> GSM905054     1   0.000     0.9745 1.000  0 0.000
#> GSM905062     1   0.000     0.9745 1.000  0 0.000
#> GSM905052     1   0.000     0.9745 1.000  0 0.000
#> GSM905059     1   0.000     0.9745 1.000  0 0.000
#> GSM905047     1   0.000     0.9745 1.000  0 0.000
#> GSM905066     1   0.000     0.9745 1.000  0 0.000
#> GSM905056     1   0.000     0.9745 1.000  0 0.000
#> GSM905060     1   0.000     0.9745 1.000  0 0.000
#> GSM905048     1   0.000     0.9745 1.000  0 0.000
#> GSM905067     1   0.000     0.9745 1.000  0 0.000
#> GSM905057     1   0.000     0.9745 1.000  0 0.000
#> GSM905068     1   0.000     0.9745 1.000  0 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1 p2    p3    p4
#> GSM905004     4  0.3649      0.744 0.000  0 0.204 0.796
#> GSM905024     1  0.0000      0.964 1.000  0 0.000 0.000
#> GSM905038     3  0.0188      0.995 0.004  0 0.996 0.000
#> GSM905043     1  0.0000      0.964 1.000  0 0.000 0.000
#> GSM904986     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM904991     3  0.0592      0.990 0.016  0 0.984 0.000
#> GSM904994     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM904996     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM905007     3  0.0592      0.990 0.016  0 0.984 0.000
#> GSM905012     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM905022     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM905026     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM905027     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM905031     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM905036     3  0.0336      0.994 0.008  0 0.992 0.000
#> GSM905041     3  0.0707      0.987 0.020  0 0.980 0.000
#> GSM905044     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM904989     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM904999     3  0.0469      0.991 0.012  0 0.988 0.000
#> GSM905002     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM905009     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM905014     3  0.0592      0.990 0.016  0 0.984 0.000
#> GSM905017     3  0.0469      0.991 0.012  0 0.988 0.000
#> GSM905020     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM905023     3  0.0336      0.994 0.008  0 0.992 0.000
#> GSM905029     3  0.0188      0.995 0.004  0 0.996 0.000
#> GSM905032     1  0.4304      0.587 0.716  0 0.284 0.000
#> GSM905034     1  0.0000      0.964 1.000  0 0.000 0.000
#> GSM905040     1  0.0000      0.964 1.000  0 0.000 0.000
#> GSM904985     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904988     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904990     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904992     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904995     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904998     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905000     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905003     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905006     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905008     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905011     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905013     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905016     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905018     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905021     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905025     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905028     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905030     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905033     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905035     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905037     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905039     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905042     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905046     1  0.0707      0.973 0.980  0 0.000 0.020
#> GSM905065     1  0.0707      0.973 0.980  0 0.000 0.020
#> GSM905049     4  0.0000      0.979 0.000  0 0.000 1.000
#> GSM905050     4  0.0000      0.979 0.000  0 0.000 1.000
#> GSM905064     4  0.0000      0.979 0.000  0 0.000 1.000
#> GSM905045     4  0.0000      0.979 0.000  0 0.000 1.000
#> GSM905051     4  0.0000      0.979 0.000  0 0.000 1.000
#> GSM905055     1  0.0592      0.973 0.984  0 0.000 0.016
#> GSM905058     1  0.0707      0.973 0.980  0 0.000 0.020
#> GSM905053     4  0.0000      0.979 0.000  0 0.000 1.000
#> GSM905061     4  0.0000      0.979 0.000  0 0.000 1.000
#> GSM905063     1  0.0592      0.973 0.984  0 0.000 0.016
#> GSM905054     4  0.0000      0.979 0.000  0 0.000 1.000
#> GSM905062     4  0.0000      0.979 0.000  0 0.000 1.000
#> GSM905052     4  0.0000      0.979 0.000  0 0.000 1.000
#> GSM905059     1  0.0707      0.973 0.980  0 0.000 0.020
#> GSM905047     1  0.0707      0.973 0.980  0 0.000 0.020
#> GSM905066     1  0.0707      0.973 0.980  0 0.000 0.020
#> GSM905056     1  0.0592      0.973 0.984  0 0.000 0.016
#> GSM905060     1  0.0707      0.973 0.980  0 0.000 0.020
#> GSM905048     1  0.0707      0.973 0.980  0 0.000 0.020
#> GSM905067     1  0.0707      0.973 0.980  0 0.000 0.020
#> GSM905057     1  0.0592      0.973 0.984  0 0.000 0.016
#> GSM905068     4  0.0000      0.979 0.000  0 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM905004     4  0.3521      0.681 0.000 0.000 0.232 0.764 0.004
#> GSM905024     5  0.3123      0.571 0.184 0.000 0.000 0.004 0.812
#> GSM905038     3  0.4273     -0.164 0.000 0.000 0.552 0.000 0.448
#> GSM905043     5  0.4118      0.233 0.336 0.000 0.000 0.004 0.660
#> GSM904986     3  0.0000      0.897 0.000 0.000 1.000 0.000 0.000
#> GSM904991     5  0.3177      0.741 0.000 0.000 0.208 0.000 0.792
#> GSM904994     3  0.0000      0.897 0.000 0.000 1.000 0.000 0.000
#> GSM904996     3  0.0000      0.897 0.000 0.000 1.000 0.000 0.000
#> GSM905007     5  0.3242      0.740 0.000 0.000 0.216 0.000 0.784
#> GSM905012     3  0.0000      0.897 0.000 0.000 1.000 0.000 0.000
#> GSM905022     3  0.0000      0.897 0.000 0.000 1.000 0.000 0.000
#> GSM905026     3  0.0510      0.887 0.000 0.000 0.984 0.000 0.016
#> GSM905027     3  0.4294     -0.272 0.000 0.000 0.532 0.000 0.468
#> GSM905031     3  0.0510      0.887 0.000 0.000 0.984 0.000 0.016
#> GSM905036     5  0.3983      0.615 0.000 0.000 0.340 0.000 0.660
#> GSM905041     5  0.2929      0.738 0.000 0.000 0.180 0.000 0.820
#> GSM905044     3  0.0510      0.887 0.000 0.000 0.984 0.000 0.016
#> GSM904989     3  0.0000      0.897 0.000 0.000 1.000 0.000 0.000
#> GSM904999     5  0.4402      0.624 0.000 0.000 0.352 0.012 0.636
#> GSM905002     3  0.0000      0.897 0.000 0.000 1.000 0.000 0.000
#> GSM905009     3  0.0000      0.897 0.000 0.000 1.000 0.000 0.000
#> GSM905014     5  0.3210      0.741 0.000 0.000 0.212 0.000 0.788
#> GSM905017     5  0.4402      0.624 0.000 0.000 0.352 0.012 0.636
#> GSM905020     3  0.0000      0.897 0.000 0.000 1.000 0.000 0.000
#> GSM905023     5  0.4030      0.598 0.000 0.000 0.352 0.000 0.648
#> GSM905029     5  0.4306      0.273 0.000 0.000 0.492 0.000 0.508
#> GSM905032     5  0.0613      0.647 0.008 0.000 0.004 0.004 0.984
#> GSM905034     1  0.3521      0.764 0.764 0.000 0.000 0.004 0.232
#> GSM905040     1  0.3969      0.750 0.692 0.000 0.000 0.004 0.304
#> GSM904985     2  0.0162      0.997 0.000 0.996 0.000 0.000 0.004
#> GSM904988     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM904990     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM904992     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM904995     2  0.0162      0.997 0.000 0.996 0.000 0.000 0.004
#> GSM904998     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905000     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905003     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905006     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905008     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905011     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905013     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905016     2  0.0162      0.997 0.000 0.996 0.000 0.000 0.004
#> GSM905018     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905021     2  0.0451      0.991 0.000 0.988 0.000 0.004 0.008
#> GSM905025     2  0.0162      0.997 0.000 0.996 0.000 0.000 0.004
#> GSM905028     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905030     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905033     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905035     2  0.0162      0.997 0.000 0.996 0.000 0.000 0.004
#> GSM905037     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905039     2  0.0162      0.997 0.000 0.996 0.000 0.000 0.004
#> GSM905042     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905046     1  0.0162      0.917 0.996 0.000 0.000 0.004 0.000
#> GSM905065     1  0.0451      0.918 0.988 0.000 0.000 0.004 0.008
#> GSM905049     4  0.0404      0.932 0.012 0.000 0.000 0.988 0.000
#> GSM905050     4  0.0404      0.932 0.012 0.000 0.000 0.988 0.000
#> GSM905064     4  0.0404      0.932 0.012 0.000 0.000 0.988 0.000
#> GSM905045     4  0.0404      0.932 0.012 0.000 0.000 0.988 0.000
#> GSM905051     4  0.3395      0.743 0.236 0.000 0.000 0.764 0.000
#> GSM905055     1  0.2891      0.870 0.824 0.000 0.000 0.000 0.176
#> GSM905058     1  0.0162      0.917 0.996 0.000 0.000 0.004 0.000
#> GSM905053     4  0.0404      0.932 0.012 0.000 0.000 0.988 0.000
#> GSM905061     4  0.0566      0.931 0.012 0.000 0.000 0.984 0.004
#> GSM905063     1  0.2891      0.870 0.824 0.000 0.000 0.000 0.176
#> GSM905054     4  0.0404      0.932 0.012 0.000 0.000 0.988 0.000
#> GSM905062     4  0.0566      0.931 0.012 0.000 0.000 0.984 0.004
#> GSM905052     4  0.3395      0.743 0.236 0.000 0.000 0.764 0.000
#> GSM905059     1  0.0290      0.916 0.992 0.000 0.000 0.008 0.000
#> GSM905047     1  0.0290      0.916 0.992 0.000 0.000 0.008 0.000
#> GSM905066     1  0.0451      0.918 0.988 0.000 0.000 0.004 0.008
#> GSM905056     1  0.2891      0.870 0.824 0.000 0.000 0.000 0.176
#> GSM905060     1  0.0290      0.916 0.992 0.000 0.000 0.008 0.000
#> GSM905048     1  0.0162      0.917 0.996 0.000 0.000 0.004 0.000
#> GSM905067     1  0.0451      0.918 0.988 0.000 0.000 0.004 0.008
#> GSM905057     1  0.2891      0.870 0.824 0.000 0.000 0.000 0.176
#> GSM905068     4  0.0404      0.932 0.012 0.000 0.000 0.988 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM905004     4  0.4145     0.6460 0.044 0.000 0.208 0.736 0.012 0.000
#> GSM905024     5  0.5047     0.4827 0.236 0.000 0.000 0.000 0.628 0.136
#> GSM905038     5  0.4241     0.4637 0.024 0.000 0.368 0.000 0.608 0.000
#> GSM905043     5  0.5886     0.2209 0.236 0.000 0.000 0.000 0.472 0.292
#> GSM904986     3  0.0260     0.9804 0.008 0.000 0.992 0.000 0.000 0.000
#> GSM904991     5  0.2325     0.7333 0.060 0.000 0.048 0.000 0.892 0.000
#> GSM904994     3  0.0000     0.9817 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904996     3  0.0000     0.9817 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905007     5  0.2433     0.7428 0.044 0.000 0.072 0.000 0.884 0.000
#> GSM905012     3  0.0000     0.9817 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905022     3  0.0520     0.9779 0.008 0.000 0.984 0.000 0.008 0.000
#> GSM905026     3  0.1528     0.9416 0.016 0.000 0.936 0.000 0.048 0.000
#> GSM905027     5  0.4153     0.5329 0.024 0.000 0.340 0.000 0.636 0.000
#> GSM905031     3  0.0909     0.9681 0.012 0.000 0.968 0.000 0.020 0.000
#> GSM905036     5  0.2402     0.7279 0.012 0.000 0.120 0.000 0.868 0.000
#> GSM905041     5  0.1562     0.7297 0.024 0.000 0.032 0.000 0.940 0.004
#> GSM905044     3  0.1151     0.9609 0.012 0.000 0.956 0.000 0.032 0.000
#> GSM904989     3  0.0520     0.9748 0.008 0.000 0.984 0.000 0.008 0.000
#> GSM904999     5  0.5473     0.5922 0.240 0.000 0.192 0.000 0.568 0.000
#> GSM905002     3  0.0146     0.9811 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM905009     3  0.0260     0.9793 0.008 0.000 0.992 0.000 0.000 0.000
#> GSM905014     5  0.2308     0.7417 0.040 0.000 0.068 0.000 0.892 0.000
#> GSM905017     5  0.5492     0.5914 0.244 0.000 0.192 0.000 0.564 0.000
#> GSM905020     3  0.0000     0.9817 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905023     5  0.2653     0.7173 0.012 0.000 0.144 0.000 0.844 0.000
#> GSM905029     5  0.3738     0.6101 0.016 0.000 0.280 0.000 0.704 0.000
#> GSM905032     5  0.5530     0.3646 0.140 0.000 0.000 0.000 0.496 0.364
#> GSM905034     1  0.5643     0.0657 0.476 0.000 0.000 0.000 0.156 0.368
#> GSM905040     6  0.3254     0.3757 0.124 0.000 0.000 0.000 0.056 0.820
#> GSM904985     2  0.1333     0.9601 0.048 0.944 0.000 0.000 0.008 0.000
#> GSM904988     2  0.0000     0.9740 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904990     2  0.0000     0.9740 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904992     2  0.0000     0.9740 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904995     2  0.1333     0.9601 0.048 0.944 0.000 0.000 0.008 0.000
#> GSM904998     2  0.0000     0.9740 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905000     2  0.0000     0.9740 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905003     2  0.0000     0.9740 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905006     2  0.0000     0.9740 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905008     2  0.0000     0.9740 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905011     2  0.0000     0.9740 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905013     2  0.0000     0.9740 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905016     2  0.1333     0.9601 0.048 0.944 0.000 0.000 0.008 0.000
#> GSM905018     2  0.0000     0.9740 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905021     2  0.3409     0.8110 0.192 0.780 0.000 0.000 0.028 0.000
#> GSM905025     2  0.1333     0.9601 0.048 0.944 0.000 0.000 0.008 0.000
#> GSM905028     2  0.0000     0.9740 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905030     2  0.0000     0.9740 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905033     2  0.1411     0.9561 0.060 0.936 0.000 0.000 0.004 0.000
#> GSM905035     2  0.1333     0.9601 0.048 0.944 0.000 0.000 0.008 0.000
#> GSM905037     2  0.0000     0.9740 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905039     2  0.1333     0.9601 0.048 0.944 0.000 0.000 0.008 0.000
#> GSM905042     2  0.1411     0.9561 0.060 0.936 0.000 0.000 0.004 0.000
#> GSM905046     1  0.3868     0.8272 0.508 0.000 0.000 0.000 0.000 0.492
#> GSM905065     6  0.3823    -0.6600 0.436 0.000 0.000 0.000 0.000 0.564
#> GSM905049     4  0.0146     0.8850 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM905050     4  0.0000     0.8852 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905064     4  0.0000     0.8852 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905045     4  0.0508     0.8839 0.012 0.000 0.000 0.984 0.004 0.000
#> GSM905051     4  0.5220     0.3760 0.348 0.000 0.000 0.556 0.004 0.092
#> GSM905055     6  0.0000     0.5441 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM905058     1  0.3868     0.8272 0.508 0.000 0.000 0.000 0.000 0.492
#> GSM905053     4  0.0000     0.8852 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905061     4  0.0603     0.8825 0.016 0.000 0.000 0.980 0.004 0.000
#> GSM905063     6  0.0000     0.5441 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM905054     4  0.0000     0.8852 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905062     4  0.0603     0.8825 0.016 0.000 0.000 0.980 0.004 0.000
#> GSM905052     4  0.5220     0.3760 0.348 0.000 0.000 0.556 0.004 0.092
#> GSM905059     1  0.3868     0.8272 0.508 0.000 0.000 0.000 0.000 0.492
#> GSM905047     1  0.3868     0.8272 0.508 0.000 0.000 0.000 0.000 0.492
#> GSM905066     6  0.3823    -0.6600 0.436 0.000 0.000 0.000 0.000 0.564
#> GSM905056     6  0.0000     0.5441 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM905060     1  0.3868     0.8272 0.508 0.000 0.000 0.000 0.000 0.492
#> GSM905048     1  0.3868     0.8272 0.508 0.000 0.000 0.000 0.000 0.492
#> GSM905067     6  0.3823    -0.6600 0.436 0.000 0.000 0.000 0.000 0.564
#> GSM905057     6  0.0000     0.5441 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM905068     4  0.0508     0.8835 0.012 0.000 0.000 0.984 0.004 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n tissue(p) genotype/variation(p) individual(p) k
#> SD:skmeans 76  4.99e-07              1.61e-03        0.0803 2
#> SD:skmeans 74  1.34e-18              5.42e-06        0.9028 3
#> SD:skmeans 76  2.32e-19              1.01e-09        0.1977 4
#> SD:skmeans 72  1.53e-16              5.37e-08        0.3082 5
#> SD:skmeans 65  7.63e-17              9.59e-09        0.0270 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 76 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.572           0.931       0.949         0.4395 0.572   0.572
#> 3 3 1.000           0.993       0.997         0.5330 0.754   0.571
#> 4 4 1.000           0.986       0.995         0.0953 0.934   0.799
#> 5 5 1.000           0.992       0.998         0.0288 0.979   0.919
#> 6 6 0.959           0.925       0.954         0.0185 0.977   0.907

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 3 4 5

There is also optional best \(k\) = 3 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM905004     1  0.4939      0.897 0.892 0.108
#> GSM905024     1  0.0000      0.921 1.000 0.000
#> GSM905038     1  0.6801      0.870 0.820 0.180
#> GSM905043     1  0.0000      0.921 1.000 0.000
#> GSM904986     1  0.6801      0.870 0.820 0.180
#> GSM904991     1  0.0672      0.919 0.992 0.008
#> GSM904994     1  0.6801      0.870 0.820 0.180
#> GSM904996     1  0.6801      0.870 0.820 0.180
#> GSM905007     1  0.4939      0.897 0.892 0.108
#> GSM905012     1  0.6801      0.870 0.820 0.180
#> GSM905022     1  0.6801      0.870 0.820 0.180
#> GSM905026     1  0.6801      0.870 0.820 0.180
#> GSM905027     1  0.4939      0.897 0.892 0.108
#> GSM905031     1  0.6801      0.870 0.820 0.180
#> GSM905036     1  0.4939      0.897 0.892 0.108
#> GSM905041     1  0.0376      0.920 0.996 0.004
#> GSM905044     1  0.6801      0.870 0.820 0.180
#> GSM904989     1  0.6801      0.870 0.820 0.180
#> GSM904999     1  0.6801      0.870 0.820 0.180
#> GSM905002     1  0.6801      0.870 0.820 0.180
#> GSM905009     1  0.6801      0.870 0.820 0.180
#> GSM905014     1  0.6801      0.870 0.820 0.180
#> GSM905017     1  0.6801      0.870 0.820 0.180
#> GSM905020     1  0.6801      0.870 0.820 0.180
#> GSM905023     1  0.6801      0.870 0.820 0.180
#> GSM905029     1  0.6801      0.870 0.820 0.180
#> GSM905032     1  0.6801      0.870 0.820 0.180
#> GSM905034     1  0.0000      0.921 1.000 0.000
#> GSM905040     1  0.0000      0.921 1.000 0.000
#> GSM904985     2  0.0000      1.000 0.000 1.000
#> GSM904988     2  0.0000      1.000 0.000 1.000
#> GSM904990     2  0.0000      1.000 0.000 1.000
#> GSM904992     2  0.0000      1.000 0.000 1.000
#> GSM904995     2  0.0000      1.000 0.000 1.000
#> GSM904998     2  0.0000      1.000 0.000 1.000
#> GSM905000     2  0.0000      1.000 0.000 1.000
#> GSM905003     2  0.0000      1.000 0.000 1.000
#> GSM905006     2  0.0000      1.000 0.000 1.000
#> GSM905008     2  0.0000      1.000 0.000 1.000
#> GSM905011     2  0.0000      1.000 0.000 1.000
#> GSM905013     2  0.0000      1.000 0.000 1.000
#> GSM905016     2  0.0000      1.000 0.000 1.000
#> GSM905018     2  0.0000      1.000 0.000 1.000
#> GSM905021     2  0.0000      1.000 0.000 1.000
#> GSM905025     2  0.0000      1.000 0.000 1.000
#> GSM905028     2  0.0000      1.000 0.000 1.000
#> GSM905030     2  0.0000      1.000 0.000 1.000
#> GSM905033     2  0.0000      1.000 0.000 1.000
#> GSM905035     2  0.0000      1.000 0.000 1.000
#> GSM905037     2  0.0000      1.000 0.000 1.000
#> GSM905039     2  0.0000      1.000 0.000 1.000
#> GSM905042     2  0.0000      1.000 0.000 1.000
#> GSM905046     1  0.0000      0.921 1.000 0.000
#> GSM905065     1  0.0000      0.921 1.000 0.000
#> GSM905049     1  0.0000      0.921 1.000 0.000
#> GSM905050     1  0.0000      0.921 1.000 0.000
#> GSM905064     1  0.0000      0.921 1.000 0.000
#> GSM905045     1  0.0000      0.921 1.000 0.000
#> GSM905051     1  0.0000      0.921 1.000 0.000
#> GSM905055     1  0.0000      0.921 1.000 0.000
#> GSM905058     1  0.0000      0.921 1.000 0.000
#> GSM905053     1  0.0000      0.921 1.000 0.000
#> GSM905061     1  0.0000      0.921 1.000 0.000
#> GSM905063     1  0.0000      0.921 1.000 0.000
#> GSM905054     1  0.0000      0.921 1.000 0.000
#> GSM905062     1  0.0000      0.921 1.000 0.000
#> GSM905052     1  0.0000      0.921 1.000 0.000
#> GSM905059     1  0.0000      0.921 1.000 0.000
#> GSM905047     1  0.0000      0.921 1.000 0.000
#> GSM905066     1  0.0000      0.921 1.000 0.000
#> GSM905056     1  0.0000      0.921 1.000 0.000
#> GSM905060     1  0.0000      0.921 1.000 0.000
#> GSM905048     1  0.0000      0.921 1.000 0.000
#> GSM905067     1  0.0000      0.921 1.000 0.000
#> GSM905057     1  0.0000      0.921 1.000 0.000
#> GSM905068     1  0.0000      0.921 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1 p2    p3
#> GSM905004     3  0.0000      1.000 0.000  0 1.000
#> GSM905024     1  0.0237      0.987 0.996  0 0.004
#> GSM905038     3  0.0000      1.000 0.000  0 1.000
#> GSM905043     1  0.4346      0.778 0.816  0 0.184
#> GSM904986     3  0.0000      1.000 0.000  0 1.000
#> GSM904991     3  0.0000      1.000 0.000  0 1.000
#> GSM904994     3  0.0000      1.000 0.000  0 1.000
#> GSM904996     3  0.0000      1.000 0.000  0 1.000
#> GSM905007     3  0.0000      1.000 0.000  0 1.000
#> GSM905012     3  0.0000      1.000 0.000  0 1.000
#> GSM905022     3  0.0000      1.000 0.000  0 1.000
#> GSM905026     3  0.0000      1.000 0.000  0 1.000
#> GSM905027     3  0.0000      1.000 0.000  0 1.000
#> GSM905031     3  0.0000      1.000 0.000  0 1.000
#> GSM905036     3  0.0000      1.000 0.000  0 1.000
#> GSM905041     3  0.0000      1.000 0.000  0 1.000
#> GSM905044     3  0.0000      1.000 0.000  0 1.000
#> GSM904989     3  0.0000      1.000 0.000  0 1.000
#> GSM904999     3  0.0000      1.000 0.000  0 1.000
#> GSM905002     3  0.0000      1.000 0.000  0 1.000
#> GSM905009     3  0.0000      1.000 0.000  0 1.000
#> GSM905014     3  0.0000      1.000 0.000  0 1.000
#> GSM905017     3  0.0000      1.000 0.000  0 1.000
#> GSM905020     3  0.0000      1.000 0.000  0 1.000
#> GSM905023     3  0.0000      1.000 0.000  0 1.000
#> GSM905029     3  0.0000      1.000 0.000  0 1.000
#> GSM905032     3  0.0000      1.000 0.000  0 1.000
#> GSM905034     1  0.0000      0.991 1.000  0 0.000
#> GSM905040     1  0.0000      0.991 1.000  0 0.000
#> GSM904985     2  0.0000      1.000 0.000  1 0.000
#> GSM904988     2  0.0000      1.000 0.000  1 0.000
#> GSM904990     2  0.0000      1.000 0.000  1 0.000
#> GSM904992     2  0.0000      1.000 0.000  1 0.000
#> GSM904995     2  0.0000      1.000 0.000  1 0.000
#> GSM904998     2  0.0000      1.000 0.000  1 0.000
#> GSM905000     2  0.0000      1.000 0.000  1 0.000
#> GSM905003     2  0.0000      1.000 0.000  1 0.000
#> GSM905006     2  0.0000      1.000 0.000  1 0.000
#> GSM905008     2  0.0000      1.000 0.000  1 0.000
#> GSM905011     2  0.0000      1.000 0.000  1 0.000
#> GSM905013     2  0.0000      1.000 0.000  1 0.000
#> GSM905016     2  0.0000      1.000 0.000  1 0.000
#> GSM905018     2  0.0000      1.000 0.000  1 0.000
#> GSM905021     2  0.0000      1.000 0.000  1 0.000
#> GSM905025     2  0.0000      1.000 0.000  1 0.000
#> GSM905028     2  0.0000      1.000 0.000  1 0.000
#> GSM905030     2  0.0000      1.000 0.000  1 0.000
#> GSM905033     2  0.0000      1.000 0.000  1 0.000
#> GSM905035     2  0.0000      1.000 0.000  1 0.000
#> GSM905037     2  0.0000      1.000 0.000  1 0.000
#> GSM905039     2  0.0000      1.000 0.000  1 0.000
#> GSM905042     2  0.0000      1.000 0.000  1 0.000
#> GSM905046     1  0.0000      0.991 1.000  0 0.000
#> GSM905065     1  0.0000      0.991 1.000  0 0.000
#> GSM905049     1  0.0000      0.991 1.000  0 0.000
#> GSM905050     1  0.1753      0.947 0.952  0 0.048
#> GSM905064     1  0.0000      0.991 1.000  0 0.000
#> GSM905045     1  0.0000      0.991 1.000  0 0.000
#> GSM905051     1  0.0000      0.991 1.000  0 0.000
#> GSM905055     1  0.0000      0.991 1.000  0 0.000
#> GSM905058     1  0.0000      0.991 1.000  0 0.000
#> GSM905053     1  0.0000      0.991 1.000  0 0.000
#> GSM905061     1  0.0000      0.991 1.000  0 0.000
#> GSM905063     1  0.0000      0.991 1.000  0 0.000
#> GSM905054     1  0.0000      0.991 1.000  0 0.000
#> GSM905062     1  0.0000      0.991 1.000  0 0.000
#> GSM905052     1  0.0000      0.991 1.000  0 0.000
#> GSM905059     1  0.0000      0.991 1.000  0 0.000
#> GSM905047     1  0.0000      0.991 1.000  0 0.000
#> GSM905066     1  0.0000      0.991 1.000  0 0.000
#> GSM905056     1  0.0000      0.991 1.000  0 0.000
#> GSM905060     1  0.0000      0.991 1.000  0 0.000
#> GSM905048     1  0.0000      0.991 1.000  0 0.000
#> GSM905067     1  0.0000      0.991 1.000  0 0.000
#> GSM905057     1  0.0000      0.991 1.000  0 0.000
#> GSM905068     1  0.0747      0.977 0.984  0 0.016

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1 p2    p3    p4
#> GSM905004     3  0.0000      1.000 0.000  0 1.000 0.000
#> GSM905024     1  0.4746      0.420 0.632  0 0.368 0.000
#> GSM905038     3  0.0000      1.000 0.000  0 1.000 0.000
#> GSM905043     1  0.0336      0.963 0.992  0 0.008 0.000
#> GSM904986     3  0.0000      1.000 0.000  0 1.000 0.000
#> GSM904991     3  0.0000      1.000 0.000  0 1.000 0.000
#> GSM904994     3  0.0000      1.000 0.000  0 1.000 0.000
#> GSM904996     3  0.0000      1.000 0.000  0 1.000 0.000
#> GSM905007     3  0.0000      1.000 0.000  0 1.000 0.000
#> GSM905012     3  0.0000      1.000 0.000  0 1.000 0.000
#> GSM905022     3  0.0000      1.000 0.000  0 1.000 0.000
#> GSM905026     3  0.0000      1.000 0.000  0 1.000 0.000
#> GSM905027     3  0.0000      1.000 0.000  0 1.000 0.000
#> GSM905031     3  0.0000      1.000 0.000  0 1.000 0.000
#> GSM905036     3  0.0000      1.000 0.000  0 1.000 0.000
#> GSM905041     3  0.0000      1.000 0.000  0 1.000 0.000
#> GSM905044     3  0.0000      1.000 0.000  0 1.000 0.000
#> GSM904989     3  0.0000      1.000 0.000  0 1.000 0.000
#> GSM904999     3  0.0000      1.000 0.000  0 1.000 0.000
#> GSM905002     3  0.0000      1.000 0.000  0 1.000 0.000
#> GSM905009     3  0.0000      1.000 0.000  0 1.000 0.000
#> GSM905014     3  0.0000      1.000 0.000  0 1.000 0.000
#> GSM905017     3  0.0000      1.000 0.000  0 1.000 0.000
#> GSM905020     3  0.0000      1.000 0.000  0 1.000 0.000
#> GSM905023     3  0.0000      1.000 0.000  0 1.000 0.000
#> GSM905029     3  0.0000      1.000 0.000  0 1.000 0.000
#> GSM905032     3  0.0000      1.000 0.000  0 1.000 0.000
#> GSM905034     1  0.0000      0.970 1.000  0 0.000 0.000
#> GSM905040     1  0.0000      0.970 1.000  0 0.000 0.000
#> GSM904985     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904988     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904990     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904992     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904995     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904998     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905000     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905003     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905006     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905008     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905011     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905013     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905016     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905018     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905021     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905025     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905028     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905030     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905033     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905035     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905037     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905039     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905042     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905046     1  0.0000      0.970 1.000  0 0.000 0.000
#> GSM905065     1  0.0000      0.970 1.000  0 0.000 0.000
#> GSM905049     4  0.0000      1.000 0.000  0 0.000 1.000
#> GSM905050     4  0.0000      1.000 0.000  0 0.000 1.000
#> GSM905064     4  0.0000      1.000 0.000  0 0.000 1.000
#> GSM905045     4  0.0000      1.000 0.000  0 0.000 1.000
#> GSM905051     4  0.0000      1.000 0.000  0 0.000 1.000
#> GSM905055     1  0.0000      0.970 1.000  0 0.000 0.000
#> GSM905058     1  0.0000      0.970 1.000  0 0.000 0.000
#> GSM905053     4  0.0000      1.000 0.000  0 0.000 1.000
#> GSM905061     4  0.0000      1.000 0.000  0 0.000 1.000
#> GSM905063     1  0.0000      0.970 1.000  0 0.000 0.000
#> GSM905054     4  0.0000      1.000 0.000  0 0.000 1.000
#> GSM905062     4  0.0000      1.000 0.000  0 0.000 1.000
#> GSM905052     4  0.0000      1.000 0.000  0 0.000 1.000
#> GSM905059     1  0.0469      0.960 0.988  0 0.000 0.012
#> GSM905047     1  0.0000      0.970 1.000  0 0.000 0.000
#> GSM905066     1  0.0000      0.970 1.000  0 0.000 0.000
#> GSM905056     1  0.0000      0.970 1.000  0 0.000 0.000
#> GSM905060     1  0.0000      0.970 1.000  0 0.000 0.000
#> GSM905048     1  0.0000      0.970 1.000  0 0.000 0.000
#> GSM905067     1  0.0000      0.970 1.000  0 0.000 0.000
#> GSM905057     1  0.0000      0.970 1.000  0 0.000 0.000
#> GSM905068     4  0.0000      1.000 0.000  0 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1 p2    p3 p4 p5
#> GSM905004     3  0.0000      1.000 0.000  0 1.000  0  0
#> GSM905024     1  0.0162      0.970 0.996  0 0.004  0  0
#> GSM905038     3  0.0000      1.000 0.000  0 1.000  0  0
#> GSM905043     1  0.2966      0.704 0.816  0 0.184  0  0
#> GSM904986     3  0.0000      1.000 0.000  0 1.000  0  0
#> GSM904991     3  0.0000      1.000 0.000  0 1.000  0  0
#> GSM904994     3  0.0000      1.000 0.000  0 1.000  0  0
#> GSM904996     3  0.0000      1.000 0.000  0 1.000  0  0
#> GSM905007     3  0.0000      1.000 0.000  0 1.000  0  0
#> GSM905012     3  0.0000      1.000 0.000  0 1.000  0  0
#> GSM905022     3  0.0000      1.000 0.000  0 1.000  0  0
#> GSM905026     3  0.0000      1.000 0.000  0 1.000  0  0
#> GSM905027     3  0.0000      1.000 0.000  0 1.000  0  0
#> GSM905031     3  0.0000      1.000 0.000  0 1.000  0  0
#> GSM905036     3  0.0000      1.000 0.000  0 1.000  0  0
#> GSM905041     3  0.0000      1.000 0.000  0 1.000  0  0
#> GSM905044     3  0.0000      1.000 0.000  0 1.000  0  0
#> GSM904989     3  0.0000      1.000 0.000  0 1.000  0  0
#> GSM904999     3  0.0000      1.000 0.000  0 1.000  0  0
#> GSM905002     3  0.0000      1.000 0.000  0 1.000  0  0
#> GSM905009     3  0.0000      1.000 0.000  0 1.000  0  0
#> GSM905014     3  0.0000      1.000 0.000  0 1.000  0  0
#> GSM905017     3  0.0000      1.000 0.000  0 1.000  0  0
#> GSM905020     3  0.0000      1.000 0.000  0 1.000  0  0
#> GSM905023     3  0.0000      1.000 0.000  0 1.000  0  0
#> GSM905029     3  0.0000      1.000 0.000  0 1.000  0  0
#> GSM905032     3  0.0000      1.000 0.000  0 1.000  0  0
#> GSM905034     1  0.0000      0.975 1.000  0 0.000  0  0
#> GSM905040     5  0.0000      1.000 0.000  0 0.000  0  1
#> GSM904985     2  0.0000      1.000 0.000  1 0.000  0  0
#> GSM904988     2  0.0000      1.000 0.000  1 0.000  0  0
#> GSM904990     2  0.0000      1.000 0.000  1 0.000  0  0
#> GSM904992     2  0.0000      1.000 0.000  1 0.000  0  0
#> GSM904995     2  0.0000      1.000 0.000  1 0.000  0  0
#> GSM904998     2  0.0000      1.000 0.000  1 0.000  0  0
#> GSM905000     2  0.0000      1.000 0.000  1 0.000  0  0
#> GSM905003     2  0.0000      1.000 0.000  1 0.000  0  0
#> GSM905006     2  0.0000      1.000 0.000  1 0.000  0  0
#> GSM905008     2  0.0000      1.000 0.000  1 0.000  0  0
#> GSM905011     2  0.0000      1.000 0.000  1 0.000  0  0
#> GSM905013     2  0.0000      1.000 0.000  1 0.000  0  0
#> GSM905016     2  0.0000      1.000 0.000  1 0.000  0  0
#> GSM905018     2  0.0000      1.000 0.000  1 0.000  0  0
#> GSM905021     2  0.0000      1.000 0.000  1 0.000  0  0
#> GSM905025     2  0.0000      1.000 0.000  1 0.000  0  0
#> GSM905028     2  0.0000      1.000 0.000  1 0.000  0  0
#> GSM905030     2  0.0000      1.000 0.000  1 0.000  0  0
#> GSM905033     2  0.0000      1.000 0.000  1 0.000  0  0
#> GSM905035     2  0.0000      1.000 0.000  1 0.000  0  0
#> GSM905037     2  0.0000      1.000 0.000  1 0.000  0  0
#> GSM905039     2  0.0000      1.000 0.000  1 0.000  0  0
#> GSM905042     2  0.0000      1.000 0.000  1 0.000  0  0
#> GSM905046     1  0.0000      0.975 1.000  0 0.000  0  0
#> GSM905065     1  0.0000      0.975 1.000  0 0.000  0  0
#> GSM905049     4  0.0000      1.000 0.000  0 0.000  1  0
#> GSM905050     4  0.0000      1.000 0.000  0 0.000  1  0
#> GSM905064     4  0.0000      1.000 0.000  0 0.000  1  0
#> GSM905045     4  0.0000      1.000 0.000  0 0.000  1  0
#> GSM905051     4  0.0000      1.000 0.000  0 0.000  1  0
#> GSM905055     5  0.0000      1.000 0.000  0 0.000  0  1
#> GSM905058     1  0.0000      0.975 1.000  0 0.000  0  0
#> GSM905053     4  0.0000      1.000 0.000  0 0.000  1  0
#> GSM905061     4  0.0000      1.000 0.000  0 0.000  1  0
#> GSM905063     5  0.0000      1.000 0.000  0 0.000  0  1
#> GSM905054     4  0.0000      1.000 0.000  0 0.000  1  0
#> GSM905062     4  0.0000      1.000 0.000  0 0.000  1  0
#> GSM905052     4  0.0000      1.000 0.000  0 0.000  1  0
#> GSM905059     1  0.0000      0.975 1.000  0 0.000  0  0
#> GSM905047     1  0.0000      0.975 1.000  0 0.000  0  0
#> GSM905066     1  0.0000      0.975 1.000  0 0.000  0  0
#> GSM905056     5  0.0000      1.000 0.000  0 0.000  0  1
#> GSM905060     1  0.0000      0.975 1.000  0 0.000  0  0
#> GSM905048     1  0.0000      0.975 1.000  0 0.000  0  0
#> GSM905067     1  0.0000      0.975 1.000  0 0.000  0  0
#> GSM905057     5  0.0000      1.000 0.000  0 0.000  0  1
#> GSM905068     4  0.0000      1.000 0.000  0 0.000  1  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1 p2    p3 p4    p5    p6
#> GSM905004     3  0.0000      0.947 0.000  0 1.000  0 0.000 0.000
#> GSM905024     3  0.3563      0.617 0.000  0 0.664  0 0.336 0.000
#> GSM905038     3  0.0000      0.947 0.000  0 1.000  0 0.000 0.000
#> GSM905043     1  0.3563      0.451 0.664  0 0.000  0 0.336 0.000
#> GSM904986     3  0.0000      0.947 0.000  0 1.000  0 0.000 0.000
#> GSM904991     3  0.3563      0.617 0.000  0 0.664  0 0.336 0.000
#> GSM904994     3  0.0000      0.947 0.000  0 1.000  0 0.000 0.000
#> GSM904996     3  0.0000      0.947 0.000  0 1.000  0 0.000 0.000
#> GSM905007     3  0.0146      0.945 0.000  0 0.996  0 0.004 0.000
#> GSM905012     3  0.0000      0.947 0.000  0 1.000  0 0.000 0.000
#> GSM905022     3  0.0000      0.947 0.000  0 1.000  0 0.000 0.000
#> GSM905026     3  0.0000      0.947 0.000  0 1.000  0 0.000 0.000
#> GSM905027     3  0.0000      0.947 0.000  0 1.000  0 0.000 0.000
#> GSM905031     3  0.0000      0.947 0.000  0 1.000  0 0.000 0.000
#> GSM905036     3  0.0146      0.945 0.000  0 0.996  0 0.004 0.000
#> GSM905041     3  0.3351      0.677 0.000  0 0.712  0 0.288 0.000
#> GSM905044     3  0.0000      0.947 0.000  0 1.000  0 0.000 0.000
#> GSM904989     3  0.0000      0.947 0.000  0 1.000  0 0.000 0.000
#> GSM904999     3  0.0000      0.947 0.000  0 1.000  0 0.000 0.000
#> GSM905002     3  0.0000      0.947 0.000  0 1.000  0 0.000 0.000
#> GSM905009     3  0.0000      0.947 0.000  0 1.000  0 0.000 0.000
#> GSM905014     3  0.0146      0.945 0.000  0 0.996  0 0.004 0.000
#> GSM905017     3  0.0000      0.947 0.000  0 1.000  0 0.000 0.000
#> GSM905020     3  0.0000      0.947 0.000  0 1.000  0 0.000 0.000
#> GSM905023     3  0.0146      0.945 0.000  0 0.996  0 0.004 0.000
#> GSM905029     3  0.0000      0.947 0.000  0 1.000  0 0.000 0.000
#> GSM905032     3  0.3531      0.628 0.000  0 0.672  0 0.328 0.000
#> GSM905034     5  0.0000      0.482 0.000  0 0.000  0 1.000 0.000
#> GSM905040     6  0.3547      0.595 0.000  0 0.000  0 0.332 0.668
#> GSM904985     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> GSM904988     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> GSM904990     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> GSM904992     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> GSM904995     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> GSM904998     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> GSM905000     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> GSM905003     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> GSM905006     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> GSM905008     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> GSM905011     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> GSM905013     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> GSM905016     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> GSM905018     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> GSM905021     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> GSM905025     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> GSM905028     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> GSM905030     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> GSM905033     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> GSM905035     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> GSM905037     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> GSM905039     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> GSM905042     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> GSM905046     1  0.0458      0.862 0.984  0 0.000  0 0.016 0.000
#> GSM905065     1  0.0000      0.879 1.000  0 0.000  0 0.000 0.000
#> GSM905049     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> GSM905050     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> GSM905064     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> GSM905045     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> GSM905051     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> GSM905055     6  0.0000      0.907 0.000  0 0.000  0 0.000 1.000
#> GSM905058     5  0.3563      0.851 0.336  0 0.000  0 0.664 0.000
#> GSM905053     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> GSM905061     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> GSM905063     6  0.0405      0.901 0.008  0 0.000  0 0.004 0.988
#> GSM905054     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> GSM905062     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> GSM905052     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> GSM905059     5  0.3563      0.851 0.336  0 0.000  0 0.664 0.000
#> GSM905047     5  0.3563      0.851 0.336  0 0.000  0 0.664 0.000
#> GSM905066     1  0.0000      0.879 1.000  0 0.000  0 0.000 0.000
#> GSM905056     6  0.0000      0.907 0.000  0 0.000  0 0.000 1.000
#> GSM905060     5  0.3563      0.851 0.336  0 0.000  0 0.664 0.000
#> GSM905048     1  0.0000      0.879 1.000  0 0.000  0 0.000 0.000
#> GSM905067     1  0.0000      0.879 1.000  0 0.000  0 0.000 0.000
#> GSM905057     6  0.0000      0.907 0.000  0 0.000  0 0.000 1.000
#> GSM905068     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n tissue(p) genotype/variation(p) individual(p) k
#> SD:pam 76  3.04e-12              1.17e-05        0.9902 2
#> SD:pam 76  1.53e-18              5.88e-06        0.8922 3
#> SD:pam 75  1.05e-21              2.27e-09        0.3547 4
#> SD:pam 76  1.33e-21              7.96e-12        0.0127 5
#> SD:pam 74  1.82e-26              7.00e-12        0.0266 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 76 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4283 0.572   0.572
#> 3 3 1.000           0.984       0.994         0.5768 0.721   0.525
#> 4 4 0.897           0.797       0.896         0.0862 0.939   0.814
#> 5 5 0.956           0.875       0.946         0.0621 0.907   0.686
#> 6 6 0.873           0.688       0.855         0.0380 0.979   0.905

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> GSM905004     1       0          1  1  0
#> GSM905024     1       0          1  1  0
#> GSM905038     1       0          1  1  0
#> GSM905043     1       0          1  1  0
#> GSM904986     1       0          1  1  0
#> GSM904991     1       0          1  1  0
#> GSM904994     1       0          1  1  0
#> GSM904996     1       0          1  1  0
#> GSM905007     1       0          1  1  0
#> GSM905012     1       0          1  1  0
#> GSM905022     1       0          1  1  0
#> GSM905026     1       0          1  1  0
#> GSM905027     1       0          1  1  0
#> GSM905031     1       0          1  1  0
#> GSM905036     1       0          1  1  0
#> GSM905041     1       0          1  1  0
#> GSM905044     1       0          1  1  0
#> GSM904989     1       0          1  1  0
#> GSM904999     1       0          1  1  0
#> GSM905002     1       0          1  1  0
#> GSM905009     1       0          1  1  0
#> GSM905014     1       0          1  1  0
#> GSM905017     1       0          1  1  0
#> GSM905020     1       0          1  1  0
#> GSM905023     1       0          1  1  0
#> GSM905029     1       0          1  1  0
#> GSM905032     1       0          1  1  0
#> GSM905034     1       0          1  1  0
#> GSM905040     1       0          1  1  0
#> GSM904985     2       0          1  0  1
#> GSM904988     2       0          1  0  1
#> GSM904990     2       0          1  0  1
#> GSM904992     2       0          1  0  1
#> GSM904995     2       0          1  0  1
#> GSM904998     2       0          1  0  1
#> GSM905000     2       0          1  0  1
#> GSM905003     2       0          1  0  1
#> GSM905006     2       0          1  0  1
#> GSM905008     2       0          1  0  1
#> GSM905011     2       0          1  0  1
#> GSM905013     2       0          1  0  1
#> GSM905016     2       0          1  0  1
#> GSM905018     2       0          1  0  1
#> GSM905021     2       0          1  0  1
#> GSM905025     2       0          1  0  1
#> GSM905028     2       0          1  0  1
#> GSM905030     2       0          1  0  1
#> GSM905033     2       0          1  0  1
#> GSM905035     2       0          1  0  1
#> GSM905037     2       0          1  0  1
#> GSM905039     2       0          1  0  1
#> GSM905042     2       0          1  0  1
#> GSM905046     1       0          1  1  0
#> GSM905065     1       0          1  1  0
#> GSM905049     1       0          1  1  0
#> GSM905050     1       0          1  1  0
#> GSM905064     1       0          1  1  0
#> GSM905045     1       0          1  1  0
#> GSM905051     1       0          1  1  0
#> GSM905055     1       0          1  1  0
#> GSM905058     1       0          1  1  0
#> GSM905053     1       0          1  1  0
#> GSM905061     1       0          1  1  0
#> GSM905063     1       0          1  1  0
#> GSM905054     1       0          1  1  0
#> GSM905062     1       0          1  1  0
#> GSM905052     1       0          1  1  0
#> GSM905059     1       0          1  1  0
#> GSM905047     1       0          1  1  0
#> GSM905066     1       0          1  1  0
#> GSM905056     1       0          1  1  0
#> GSM905060     1       0          1  1  0
#> GSM905048     1       0          1  1  0
#> GSM905067     1       0          1  1  0
#> GSM905057     1       0          1  1  0
#> GSM905068     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM905004     3  0.6079      0.369 0.388 0.000 0.612
#> GSM905024     3  0.0237      0.979 0.004 0.000 0.996
#> GSM905038     3  0.0000      0.982 0.000 0.000 1.000
#> GSM905043     3  0.0237      0.979 0.004 0.000 0.996
#> GSM904986     3  0.0000      0.982 0.000 0.000 1.000
#> GSM904991     3  0.0000      0.982 0.000 0.000 1.000
#> GSM904994     3  0.0000      0.982 0.000 0.000 1.000
#> GSM904996     3  0.0000      0.982 0.000 0.000 1.000
#> GSM905007     3  0.0000      0.982 0.000 0.000 1.000
#> GSM905012     3  0.0000      0.982 0.000 0.000 1.000
#> GSM905022     3  0.0000      0.982 0.000 0.000 1.000
#> GSM905026     3  0.0000      0.982 0.000 0.000 1.000
#> GSM905027     3  0.0000      0.982 0.000 0.000 1.000
#> GSM905031     3  0.0000      0.982 0.000 0.000 1.000
#> GSM905036     3  0.0000      0.982 0.000 0.000 1.000
#> GSM905041     3  0.0000      0.982 0.000 0.000 1.000
#> GSM905044     3  0.0000      0.982 0.000 0.000 1.000
#> GSM904989     3  0.0000      0.982 0.000 0.000 1.000
#> GSM904999     2  0.0237      0.996 0.004 0.996 0.000
#> GSM905002     3  0.0000      0.982 0.000 0.000 1.000
#> GSM905009     3  0.0000      0.982 0.000 0.000 1.000
#> GSM905014     3  0.0000      0.982 0.000 0.000 1.000
#> GSM905017     2  0.0237      0.996 0.004 0.996 0.000
#> GSM905020     3  0.0000      0.982 0.000 0.000 1.000
#> GSM905023     3  0.0000      0.982 0.000 0.000 1.000
#> GSM905029     3  0.0000      0.982 0.000 0.000 1.000
#> GSM905032     3  0.2400      0.918 0.004 0.064 0.932
#> GSM905034     3  0.0237      0.979 0.004 0.000 0.996
#> GSM905040     3  0.0237      0.979 0.004 0.000 0.996
#> GSM904985     2  0.0000      1.000 0.000 1.000 0.000
#> GSM904988     2  0.0000      1.000 0.000 1.000 0.000
#> GSM904990     2  0.0000      1.000 0.000 1.000 0.000
#> GSM904992     2  0.0000      1.000 0.000 1.000 0.000
#> GSM904995     2  0.0000      1.000 0.000 1.000 0.000
#> GSM904998     2  0.0000      1.000 0.000 1.000 0.000
#> GSM905000     2  0.0000      1.000 0.000 1.000 0.000
#> GSM905003     2  0.0000      1.000 0.000 1.000 0.000
#> GSM905006     2  0.0000      1.000 0.000 1.000 0.000
#> GSM905008     2  0.0000      1.000 0.000 1.000 0.000
#> GSM905011     2  0.0000      1.000 0.000 1.000 0.000
#> GSM905013     2  0.0000      1.000 0.000 1.000 0.000
#> GSM905016     2  0.0000      1.000 0.000 1.000 0.000
#> GSM905018     2  0.0000      1.000 0.000 1.000 0.000
#> GSM905021     2  0.0000      1.000 0.000 1.000 0.000
#> GSM905025     2  0.0000      1.000 0.000 1.000 0.000
#> GSM905028     2  0.0000      1.000 0.000 1.000 0.000
#> GSM905030     2  0.0000      1.000 0.000 1.000 0.000
#> GSM905033     2  0.0000      1.000 0.000 1.000 0.000
#> GSM905035     2  0.0000      1.000 0.000 1.000 0.000
#> GSM905037     2  0.0000      1.000 0.000 1.000 0.000
#> GSM905039     2  0.0000      1.000 0.000 1.000 0.000
#> GSM905042     2  0.0000      1.000 0.000 1.000 0.000
#> GSM905046     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905065     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905049     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905050     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905064     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905045     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905051     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905055     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905058     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905053     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905061     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905063     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905054     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905062     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905052     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905059     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905047     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905066     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905056     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905060     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905048     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905067     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905057     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905068     1  0.0000      1.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM905004     1  0.7753    -0.3499 0.432 0.000 0.256 0.312
#> GSM905024     3  0.6273     0.5008 0.264 0.000 0.636 0.100
#> GSM905038     3  0.0000     0.9241 0.000 0.000 1.000 0.000
#> GSM905043     3  0.6436     0.4519 0.292 0.000 0.608 0.100
#> GSM904986     3  0.0000     0.9241 0.000 0.000 1.000 0.000
#> GSM904991     3  0.0000     0.9241 0.000 0.000 1.000 0.000
#> GSM904994     3  0.0000     0.9241 0.000 0.000 1.000 0.000
#> GSM904996     3  0.0000     0.9241 0.000 0.000 1.000 0.000
#> GSM905007     3  0.0000     0.9241 0.000 0.000 1.000 0.000
#> GSM905012     3  0.0000     0.9241 0.000 0.000 1.000 0.000
#> GSM905022     3  0.0000     0.9241 0.000 0.000 1.000 0.000
#> GSM905026     3  0.0000     0.9241 0.000 0.000 1.000 0.000
#> GSM905027     3  0.0000     0.9241 0.000 0.000 1.000 0.000
#> GSM905031     3  0.0000     0.9241 0.000 0.000 1.000 0.000
#> GSM905036     3  0.0000     0.9241 0.000 0.000 1.000 0.000
#> GSM905041     3  0.0000     0.9241 0.000 0.000 1.000 0.000
#> GSM905044     3  0.0000     0.9241 0.000 0.000 1.000 0.000
#> GSM904989     3  0.0000     0.9241 0.000 0.000 1.000 0.000
#> GSM904999     1  0.5893     0.3446 0.592 0.372 0.008 0.028
#> GSM905002     3  0.0000     0.9241 0.000 0.000 1.000 0.000
#> GSM905009     3  0.0000     0.9241 0.000 0.000 1.000 0.000
#> GSM905014     3  0.0000     0.9241 0.000 0.000 1.000 0.000
#> GSM905017     1  0.6038     0.2183 0.532 0.432 0.008 0.028
#> GSM905020     3  0.0000     0.9241 0.000 0.000 1.000 0.000
#> GSM905023     3  0.0376     0.9175 0.004 0.000 0.992 0.004
#> GSM905029     3  0.0000     0.9241 0.000 0.000 1.000 0.000
#> GSM905032     1  0.1256     0.3247 0.964 0.000 0.008 0.028
#> GSM905034     3  0.6273     0.5008 0.264 0.000 0.636 0.100
#> GSM905040     3  0.7568    -0.0635 0.400 0.000 0.408 0.192
#> GSM904985     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM904988     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM904990     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM904992     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM904995     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM904998     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM905000     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM905003     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM905006     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM905008     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM905011     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM905013     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM905016     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM905018     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM905021     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM905025     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM905028     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM905030     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM905033     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM905035     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM905037     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM905039     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM905042     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM905046     4  0.1867     0.7038 0.072 0.000 0.000 0.928
#> GSM905065     4  0.0000     0.6585 0.000 0.000 0.000 1.000
#> GSM905049     4  0.4907     0.7277 0.420 0.000 0.000 0.580
#> GSM905050     4  0.4907     0.7277 0.420 0.000 0.000 0.580
#> GSM905064     4  0.4761     0.7405 0.372 0.000 0.000 0.628
#> GSM905045     4  0.4898     0.7284 0.416 0.000 0.000 0.584
#> GSM905051     4  0.4661     0.7411 0.348 0.000 0.000 0.652
#> GSM905055     1  0.4933     0.5110 0.568 0.000 0.000 0.432
#> GSM905058     4  0.0000     0.6585 0.000 0.000 0.000 1.000
#> GSM905053     4  0.4907     0.7277 0.420 0.000 0.000 0.580
#> GSM905061     4  0.4907     0.7277 0.420 0.000 0.000 0.580
#> GSM905063     4  0.2216     0.5197 0.092 0.000 0.000 0.908
#> GSM905054     4  0.4776     0.7399 0.376 0.000 0.000 0.624
#> GSM905062     4  0.4907     0.7277 0.420 0.000 0.000 0.580
#> GSM905052     4  0.4661     0.7411 0.348 0.000 0.000 0.652
#> GSM905059     4  0.1867     0.7038 0.072 0.000 0.000 0.928
#> GSM905047     4  0.1867     0.7038 0.072 0.000 0.000 0.928
#> GSM905066     4  0.0000     0.6585 0.000 0.000 0.000 1.000
#> GSM905056     1  0.4933     0.5110 0.568 0.000 0.000 0.432
#> GSM905060     4  0.1867     0.7038 0.072 0.000 0.000 0.928
#> GSM905048     4  0.0000     0.6585 0.000 0.000 0.000 1.000
#> GSM905067     4  0.0000     0.6585 0.000 0.000 0.000 1.000
#> GSM905057     1  0.4933     0.5110 0.568 0.000 0.000 0.432
#> GSM905068     4  0.4907     0.7277 0.420 0.000 0.000 0.580

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1 p2    p3    p4   p5
#> GSM905004     4   0.504     0.4178 0.044  0 0.356 0.600 0.00
#> GSM905024     5   0.000     1.0000 0.000  0 0.000 0.000 1.00
#> GSM905038     3   0.000     1.0000 0.000  0 1.000 0.000 0.00
#> GSM905043     5   0.000     1.0000 0.000  0 0.000 0.000 1.00
#> GSM904986     3   0.000     1.0000 0.000  0 1.000 0.000 0.00
#> GSM904991     3   0.000     1.0000 0.000  0 1.000 0.000 0.00
#> GSM904994     3   0.000     1.0000 0.000  0 1.000 0.000 0.00
#> GSM904996     3   0.000     1.0000 0.000  0 1.000 0.000 0.00
#> GSM905007     3   0.000     1.0000 0.000  0 1.000 0.000 0.00
#> GSM905012     3   0.000     1.0000 0.000  0 1.000 0.000 0.00
#> GSM905022     3   0.000     1.0000 0.000  0 1.000 0.000 0.00
#> GSM905026     3   0.000     1.0000 0.000  0 1.000 0.000 0.00
#> GSM905027     3   0.000     1.0000 0.000  0 1.000 0.000 0.00
#> GSM905031     3   0.000     1.0000 0.000  0 1.000 0.000 0.00
#> GSM905036     3   0.000     1.0000 0.000  0 1.000 0.000 0.00
#> GSM905041     3   0.000     1.0000 0.000  0 1.000 0.000 0.00
#> GSM905044     3   0.000     1.0000 0.000  0 1.000 0.000 0.00
#> GSM904989     3   0.000     1.0000 0.000  0 1.000 0.000 0.00
#> GSM904999     5   0.000     1.0000 0.000  0 0.000 0.000 1.00
#> GSM905002     3   0.000     1.0000 0.000  0 1.000 0.000 0.00
#> GSM905009     3   0.000     1.0000 0.000  0 1.000 0.000 0.00
#> GSM905014     3   0.000     1.0000 0.000  0 1.000 0.000 0.00
#> GSM905017     5   0.000     1.0000 0.000  0 0.000 0.000 1.00
#> GSM905020     3   0.000     1.0000 0.000  0 1.000 0.000 0.00
#> GSM905023     3   0.000     1.0000 0.000  0 1.000 0.000 0.00
#> GSM905029     3   0.000     1.0000 0.000  0 1.000 0.000 0.00
#> GSM905032     5   0.000     1.0000 0.000  0 0.000 0.000 1.00
#> GSM905034     5   0.000     1.0000 0.000  0 0.000 0.000 1.00
#> GSM905040     5   0.000     1.0000 0.000  0 0.000 0.000 1.00
#> GSM904985     2   0.000     1.0000 0.000  1 0.000 0.000 0.00
#> GSM904988     2   0.000     1.0000 0.000  1 0.000 0.000 0.00
#> GSM904990     2   0.000     1.0000 0.000  1 0.000 0.000 0.00
#> GSM904992     2   0.000     1.0000 0.000  1 0.000 0.000 0.00
#> GSM904995     2   0.000     1.0000 0.000  1 0.000 0.000 0.00
#> GSM904998     2   0.000     1.0000 0.000  1 0.000 0.000 0.00
#> GSM905000     2   0.000     1.0000 0.000  1 0.000 0.000 0.00
#> GSM905003     2   0.000     1.0000 0.000  1 0.000 0.000 0.00
#> GSM905006     2   0.000     1.0000 0.000  1 0.000 0.000 0.00
#> GSM905008     2   0.000     1.0000 0.000  1 0.000 0.000 0.00
#> GSM905011     2   0.000     1.0000 0.000  1 0.000 0.000 0.00
#> GSM905013     2   0.000     1.0000 0.000  1 0.000 0.000 0.00
#> GSM905016     2   0.000     1.0000 0.000  1 0.000 0.000 0.00
#> GSM905018     2   0.000     1.0000 0.000  1 0.000 0.000 0.00
#> GSM905021     2   0.000     1.0000 0.000  1 0.000 0.000 0.00
#> GSM905025     2   0.000     1.0000 0.000  1 0.000 0.000 0.00
#> GSM905028     2   0.000     1.0000 0.000  1 0.000 0.000 0.00
#> GSM905030     2   0.000     1.0000 0.000  1 0.000 0.000 0.00
#> GSM905033     2   0.000     1.0000 0.000  1 0.000 0.000 0.00
#> GSM905035     2   0.000     1.0000 0.000  1 0.000 0.000 0.00
#> GSM905037     2   0.000     1.0000 0.000  1 0.000 0.000 0.00
#> GSM905039     2   0.000     1.0000 0.000  1 0.000 0.000 0.00
#> GSM905042     2   0.000     1.0000 0.000  1 0.000 0.000 0.00
#> GSM905046     1   0.167     0.6698 0.924  0 0.000 0.076 0.00
#> GSM905065     1   0.000     0.6857 1.000  0 0.000 0.000 0.00
#> GSM905049     4   0.000     0.9257 0.000  0 0.000 1.000 0.00
#> GSM905050     4   0.000     0.9257 0.000  0 0.000 1.000 0.00
#> GSM905064     4   0.112     0.8929 0.044  0 0.000 0.956 0.00
#> GSM905045     4   0.112     0.8929 0.044  0 0.000 0.956 0.00
#> GSM905051     1   0.407     0.4317 0.636  0 0.000 0.364 0.00
#> GSM905055     1   0.430     0.0748 0.520  0 0.000 0.000 0.48
#> GSM905058     1   0.000     0.6857 1.000  0 0.000 0.000 0.00
#> GSM905053     4   0.000     0.9257 0.000  0 0.000 1.000 0.00
#> GSM905061     4   0.000     0.9257 0.000  0 0.000 1.000 0.00
#> GSM905063     1   0.430     0.0748 0.520  0 0.000 0.000 0.48
#> GSM905054     4   0.000     0.9257 0.000  0 0.000 1.000 0.00
#> GSM905062     4   0.000     0.9257 0.000  0 0.000 1.000 0.00
#> GSM905052     1   0.407     0.4317 0.636  0 0.000 0.364 0.00
#> GSM905059     1   0.380     0.5245 0.700  0 0.000 0.300 0.00
#> GSM905047     1   0.380     0.5245 0.700  0 0.000 0.300 0.00
#> GSM905066     1   0.000     0.6857 1.000  0 0.000 0.000 0.00
#> GSM905056     1   0.430     0.0748 0.520  0 0.000 0.000 0.48
#> GSM905060     1   0.380     0.5245 0.700  0 0.000 0.300 0.00
#> GSM905048     1   0.000     0.6857 1.000  0 0.000 0.000 0.00
#> GSM905067     1   0.000     0.6857 1.000  0 0.000 0.000 0.00
#> GSM905057     1   0.430     0.0748 0.520  0 0.000 0.000 0.48
#> GSM905068     4   0.000     0.9257 0.000  0 0.000 1.000 0.00

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM905004     4  0.6240      0.549 0.024 0.000 0.176 0.608 0.044 0.148
#> GSM905024     5  0.0000      0.994 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM905038     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905043     5  0.0000      0.994 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM904986     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904991     3  0.0632      0.976 0.000 0.000 0.976 0.000 0.024 0.000
#> GSM904994     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904996     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905007     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905012     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905022     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905026     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905027     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905031     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905036     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905041     3  0.0865      0.964 0.000 0.000 0.964 0.000 0.036 0.000
#> GSM905044     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904989     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904999     5  0.0520      0.987 0.000 0.000 0.008 0.000 0.984 0.008
#> GSM905002     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905009     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905014     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905017     5  0.0520      0.987 0.000 0.000 0.008 0.000 0.984 0.008
#> GSM905020     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905023     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905029     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905032     5  0.0146      0.993 0.000 0.000 0.000 0.000 0.996 0.004
#> GSM905034     5  0.0000      0.994 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM905040     5  0.0000      0.994 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM904985     2  0.3797     -0.494 0.000 0.580 0.000 0.000 0.000 0.420
#> GSM904988     2  0.0000      0.632 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904990     2  0.0000      0.632 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904992     2  0.0000      0.632 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904995     2  0.3634     -0.208 0.000 0.644 0.000 0.000 0.000 0.356
#> GSM904998     2  0.1007      0.595 0.000 0.956 0.000 0.000 0.000 0.044
#> GSM905000     2  0.0000      0.632 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905003     2  0.2416      0.427 0.000 0.844 0.000 0.000 0.000 0.156
#> GSM905006     2  0.0000      0.632 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905008     2  0.3860     -0.734 0.000 0.528 0.000 0.000 0.000 0.472
#> GSM905011     2  0.0000      0.632 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905013     2  0.0790      0.608 0.000 0.968 0.000 0.000 0.000 0.032
#> GSM905016     2  0.3634     -0.208 0.000 0.644 0.000 0.000 0.000 0.356
#> GSM905018     2  0.0000      0.632 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905021     6  0.3833      0.987 0.000 0.444 0.000 0.000 0.000 0.556
#> GSM905025     2  0.3634     -0.208 0.000 0.644 0.000 0.000 0.000 0.356
#> GSM905028     2  0.3634     -0.208 0.000 0.644 0.000 0.000 0.000 0.356
#> GSM905030     2  0.0713      0.612 0.000 0.972 0.000 0.000 0.000 0.028
#> GSM905033     6  0.3828      0.994 0.000 0.440 0.000 0.000 0.000 0.560
#> GSM905035     2  0.3634     -0.208 0.000 0.644 0.000 0.000 0.000 0.356
#> GSM905037     2  0.0000      0.632 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905039     2  0.3634     -0.208 0.000 0.644 0.000 0.000 0.000 0.356
#> GSM905042     6  0.3828      0.994 0.000 0.440 0.000 0.000 0.000 0.560
#> GSM905046     1  0.2830      0.643 0.836 0.000 0.000 0.144 0.000 0.020
#> GSM905065     1  0.0000      0.695 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM905049     4  0.0000      0.928 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905050     4  0.0000      0.928 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905064     4  0.1411      0.882 0.060 0.000 0.000 0.936 0.000 0.004
#> GSM905045     4  0.3275      0.790 0.032 0.000 0.000 0.820 0.008 0.140
#> GSM905051     1  0.5082      0.555 0.648 0.000 0.000 0.188 0.004 0.160
#> GSM905055     1  0.5994      0.217 0.440 0.000 0.000 0.000 0.284 0.276
#> GSM905058     1  0.0000      0.695 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM905053     4  0.0000      0.928 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905061     4  0.0000      0.928 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905063     1  0.5974      0.228 0.448 0.000 0.000 0.000 0.276 0.276
#> GSM905054     4  0.0000      0.928 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905062     4  0.0000      0.928 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905052     1  0.5055      0.560 0.652 0.000 0.000 0.184 0.004 0.160
#> GSM905059     1  0.4602      0.602 0.696 0.000 0.000 0.144 0.000 0.160
#> GSM905047     1  0.4602      0.602 0.696 0.000 0.000 0.144 0.000 0.160
#> GSM905066     1  0.0000      0.695 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM905056     1  0.5994      0.217 0.440 0.000 0.000 0.000 0.284 0.276
#> GSM905060     1  0.4602      0.602 0.696 0.000 0.000 0.144 0.000 0.160
#> GSM905048     1  0.0000      0.695 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM905067     1  0.0000      0.695 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM905057     1  0.5994      0.217 0.440 0.000 0.000 0.000 0.284 0.276
#> GSM905068     4  0.0000      0.928 0.000 0.000 0.000 1.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n tissue(p) genotype/variation(p) individual(p) k
#> SD:mclust 76  3.04e-12              1.17e-05        0.9902 2
#> SD:mclust 75  7.59e-20              1.17e-05        0.9573 3
#> SD:mclust 70  3.18e-21              5.89e-06        0.0522 4
#> SD:mclust 69  3.53e-21              6.70e-12        0.6768 5
#> SD:mclust 63  5.19e-13              3.51e-07        0.5927 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 76 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.728           0.896       0.943         0.4867 0.494   0.494
#> 3 3 1.000           0.984       0.993         0.3850 0.705   0.470
#> 4 4 0.964           0.947       0.978         0.1055 0.890   0.681
#> 5 5 0.940           0.898       0.946         0.0425 0.921   0.716
#> 6 6 0.876           0.809       0.892         0.0294 0.970   0.871

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 3 4

There is also optional best \(k\) = 3 4 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM905004     1  0.6887      0.721 0.816 0.184
#> GSM905024     1  0.0000      0.994 1.000 0.000
#> GSM905038     1  0.0376      0.990 0.996 0.004
#> GSM905043     1  0.0000      0.994 1.000 0.000
#> GSM904986     2  0.7950      0.751 0.240 0.760
#> GSM904991     1  0.0000      0.994 1.000 0.000
#> GSM904994     2  0.8713      0.702 0.292 0.708
#> GSM904996     2  0.8443      0.723 0.272 0.728
#> GSM905007     1  0.0000      0.994 1.000 0.000
#> GSM905012     2  0.8144      0.742 0.252 0.748
#> GSM905022     2  0.9608      0.558 0.384 0.616
#> GSM905026     2  0.9732      0.517 0.404 0.596
#> GSM905027     1  0.0672      0.985 0.992 0.008
#> GSM905031     2  0.8555      0.715 0.280 0.720
#> GSM905036     1  0.0000      0.994 1.000 0.000
#> GSM905041     1  0.0000      0.994 1.000 0.000
#> GSM905044     2  0.9248      0.636 0.340 0.660
#> GSM904989     2  0.9833      0.471 0.424 0.576
#> GSM904999     2  0.9248      0.636 0.340 0.660
#> GSM905002     2  0.9000      0.671 0.316 0.684
#> GSM905009     2  0.8608      0.711 0.284 0.716
#> GSM905014     1  0.0000      0.994 1.000 0.000
#> GSM905017     2  0.5946      0.815 0.144 0.856
#> GSM905020     2  0.6623      0.799 0.172 0.828
#> GSM905023     1  0.0376      0.990 0.996 0.004
#> GSM905029     1  0.0000      0.994 1.000 0.000
#> GSM905032     1  0.0000      0.994 1.000 0.000
#> GSM905034     1  0.0000      0.994 1.000 0.000
#> GSM905040     1  0.0000      0.994 1.000 0.000
#> GSM904985     2  0.0000      0.878 0.000 1.000
#> GSM904988     2  0.0000      0.878 0.000 1.000
#> GSM904990     2  0.0000      0.878 0.000 1.000
#> GSM904992     2  0.0000      0.878 0.000 1.000
#> GSM904995     2  0.0000      0.878 0.000 1.000
#> GSM904998     2  0.0000      0.878 0.000 1.000
#> GSM905000     2  0.0000      0.878 0.000 1.000
#> GSM905003     2  0.0000      0.878 0.000 1.000
#> GSM905006     2  0.0000      0.878 0.000 1.000
#> GSM905008     2  0.0000      0.878 0.000 1.000
#> GSM905011     2  0.0000      0.878 0.000 1.000
#> GSM905013     2  0.0000      0.878 0.000 1.000
#> GSM905016     2  0.0000      0.878 0.000 1.000
#> GSM905018     2  0.0000      0.878 0.000 1.000
#> GSM905021     2  0.0000      0.878 0.000 1.000
#> GSM905025     2  0.0000      0.878 0.000 1.000
#> GSM905028     2  0.0000      0.878 0.000 1.000
#> GSM905030     2  0.0000      0.878 0.000 1.000
#> GSM905033     2  0.0000      0.878 0.000 1.000
#> GSM905035     2  0.0000      0.878 0.000 1.000
#> GSM905037     2  0.0000      0.878 0.000 1.000
#> GSM905039     2  0.0000      0.878 0.000 1.000
#> GSM905042     2  0.0000      0.878 0.000 1.000
#> GSM905046     1  0.0000      0.994 1.000 0.000
#> GSM905065     1  0.0000      0.994 1.000 0.000
#> GSM905049     1  0.0000      0.994 1.000 0.000
#> GSM905050     1  0.0000      0.994 1.000 0.000
#> GSM905064     1  0.0000      0.994 1.000 0.000
#> GSM905045     1  0.0000      0.994 1.000 0.000
#> GSM905051     1  0.0000      0.994 1.000 0.000
#> GSM905055     1  0.0000      0.994 1.000 0.000
#> GSM905058     1  0.0000      0.994 1.000 0.000
#> GSM905053     1  0.0000      0.994 1.000 0.000
#> GSM905061     1  0.0000      0.994 1.000 0.000
#> GSM905063     1  0.0000      0.994 1.000 0.000
#> GSM905054     1  0.0000      0.994 1.000 0.000
#> GSM905062     1  0.0000      0.994 1.000 0.000
#> GSM905052     1  0.0000      0.994 1.000 0.000
#> GSM905059     1  0.0000      0.994 1.000 0.000
#> GSM905047     1  0.0000      0.994 1.000 0.000
#> GSM905066     1  0.0000      0.994 1.000 0.000
#> GSM905056     1  0.0000      0.994 1.000 0.000
#> GSM905060     1  0.0000      0.994 1.000 0.000
#> GSM905048     1  0.0000      0.994 1.000 0.000
#> GSM905067     1  0.0000      0.994 1.000 0.000
#> GSM905057     1  0.0000      0.994 1.000 0.000
#> GSM905068     1  0.0000      0.994 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1 p2    p3
#> GSM905004     3   0.000      0.994 0.000  0 1.000
#> GSM905024     3   0.271      0.904 0.088  0 0.912
#> GSM905038     3   0.000      0.994 0.000  0 1.000
#> GSM905043     3   0.207      0.936 0.060  0 0.940
#> GSM904986     3   0.000      0.994 0.000  0 1.000
#> GSM904991     3   0.000      0.994 0.000  0 1.000
#> GSM904994     3   0.000      0.994 0.000  0 1.000
#> GSM904996     3   0.000      0.994 0.000  0 1.000
#> GSM905007     3   0.000      0.994 0.000  0 1.000
#> GSM905012     3   0.000      0.994 0.000  0 1.000
#> GSM905022     3   0.000      0.994 0.000  0 1.000
#> GSM905026     3   0.000      0.994 0.000  0 1.000
#> GSM905027     3   0.000      0.994 0.000  0 1.000
#> GSM905031     3   0.000      0.994 0.000  0 1.000
#> GSM905036     3   0.000      0.994 0.000  0 1.000
#> GSM905041     3   0.000      0.994 0.000  0 1.000
#> GSM905044     3   0.000      0.994 0.000  0 1.000
#> GSM904989     3   0.000      0.994 0.000  0 1.000
#> GSM904999     3   0.000      0.994 0.000  0 1.000
#> GSM905002     3   0.000      0.994 0.000  0 1.000
#> GSM905009     3   0.000      0.994 0.000  0 1.000
#> GSM905014     3   0.000      0.994 0.000  0 1.000
#> GSM905017     3   0.000      0.994 0.000  0 1.000
#> GSM905020     3   0.000      0.994 0.000  0 1.000
#> GSM905023     3   0.000      0.994 0.000  0 1.000
#> GSM905029     3   0.000      0.994 0.000  0 1.000
#> GSM905032     3   0.000      0.994 0.000  0 1.000
#> GSM905034     1   0.207      0.926 0.940  0 0.060
#> GSM905040     1   0.573      0.520 0.676  0 0.324
#> GSM904985     2   0.000      1.000 0.000  1 0.000
#> GSM904988     2   0.000      1.000 0.000  1 0.000
#> GSM904990     2   0.000      1.000 0.000  1 0.000
#> GSM904992     2   0.000      1.000 0.000  1 0.000
#> GSM904995     2   0.000      1.000 0.000  1 0.000
#> GSM904998     2   0.000      1.000 0.000  1 0.000
#> GSM905000     2   0.000      1.000 0.000  1 0.000
#> GSM905003     2   0.000      1.000 0.000  1 0.000
#> GSM905006     2   0.000      1.000 0.000  1 0.000
#> GSM905008     2   0.000      1.000 0.000  1 0.000
#> GSM905011     2   0.000      1.000 0.000  1 0.000
#> GSM905013     2   0.000      1.000 0.000  1 0.000
#> GSM905016     2   0.000      1.000 0.000  1 0.000
#> GSM905018     2   0.000      1.000 0.000  1 0.000
#> GSM905021     2   0.000      1.000 0.000  1 0.000
#> GSM905025     2   0.000      1.000 0.000  1 0.000
#> GSM905028     2   0.000      1.000 0.000  1 0.000
#> GSM905030     2   0.000      1.000 0.000  1 0.000
#> GSM905033     2   0.000      1.000 0.000  1 0.000
#> GSM905035     2   0.000      1.000 0.000  1 0.000
#> GSM905037     2   0.000      1.000 0.000  1 0.000
#> GSM905039     2   0.000      1.000 0.000  1 0.000
#> GSM905042     2   0.000      1.000 0.000  1 0.000
#> GSM905046     1   0.000      0.984 1.000  0 0.000
#> GSM905065     1   0.000      0.984 1.000  0 0.000
#> GSM905049     1   0.000      0.984 1.000  0 0.000
#> GSM905050     1   0.000      0.984 1.000  0 0.000
#> GSM905064     1   0.000      0.984 1.000  0 0.000
#> GSM905045     1   0.000      0.984 1.000  0 0.000
#> GSM905051     1   0.000      0.984 1.000  0 0.000
#> GSM905055     1   0.000      0.984 1.000  0 0.000
#> GSM905058     1   0.000      0.984 1.000  0 0.000
#> GSM905053     1   0.000      0.984 1.000  0 0.000
#> GSM905061     1   0.000      0.984 1.000  0 0.000
#> GSM905063     1   0.000      0.984 1.000  0 0.000
#> GSM905054     1   0.000      0.984 1.000  0 0.000
#> GSM905062     1   0.000      0.984 1.000  0 0.000
#> GSM905052     1   0.000      0.984 1.000  0 0.000
#> GSM905059     1   0.000      0.984 1.000  0 0.000
#> GSM905047     1   0.000      0.984 1.000  0 0.000
#> GSM905066     1   0.000      0.984 1.000  0 0.000
#> GSM905056     1   0.000      0.984 1.000  0 0.000
#> GSM905060     1   0.000      0.984 1.000  0 0.000
#> GSM905048     1   0.000      0.984 1.000  0 0.000
#> GSM905067     1   0.000      0.984 1.000  0 0.000
#> GSM905057     1   0.000      0.984 1.000  0 0.000
#> GSM905068     1   0.000      0.984 1.000  0 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1 p2    p3    p4
#> GSM905004     4  0.0000      0.948 0.000  0 0.000 1.000
#> GSM905024     1  0.4888      0.357 0.588  0 0.412 0.000
#> GSM905038     3  0.0000      0.986 0.000  0 1.000 0.000
#> GSM905043     1  0.4304      0.631 0.716  0 0.284 0.000
#> GSM904986     3  0.0000      0.986 0.000  0 1.000 0.000
#> GSM904991     3  0.0000      0.986 0.000  0 1.000 0.000
#> GSM904994     3  0.0000      0.986 0.000  0 1.000 0.000
#> GSM904996     3  0.0000      0.986 0.000  0 1.000 0.000
#> GSM905007     3  0.0000      0.986 0.000  0 1.000 0.000
#> GSM905012     4  0.4134      0.631 0.000  0 0.260 0.740
#> GSM905022     3  0.0000      0.986 0.000  0 1.000 0.000
#> GSM905026     3  0.0000      0.986 0.000  0 1.000 0.000
#> GSM905027     3  0.0000      0.986 0.000  0 1.000 0.000
#> GSM905031     3  0.2216      0.895 0.000  0 0.908 0.092
#> GSM905036     3  0.0000      0.986 0.000  0 1.000 0.000
#> GSM905041     3  0.0000      0.986 0.000  0 1.000 0.000
#> GSM905044     3  0.0000      0.986 0.000  0 1.000 0.000
#> GSM904989     3  0.0000      0.986 0.000  0 1.000 0.000
#> GSM904999     3  0.0000      0.986 0.000  0 1.000 0.000
#> GSM905002     3  0.0000      0.986 0.000  0 1.000 0.000
#> GSM905009     3  0.0592      0.972 0.000  0 0.984 0.016
#> GSM905014     3  0.0000      0.986 0.000  0 1.000 0.000
#> GSM905017     3  0.0000      0.986 0.000  0 1.000 0.000
#> GSM905020     3  0.3569      0.755 0.000  0 0.804 0.196
#> GSM905023     3  0.0000      0.986 0.000  0 1.000 0.000
#> GSM905029     3  0.0000      0.986 0.000  0 1.000 0.000
#> GSM905032     3  0.0000      0.986 0.000  0 1.000 0.000
#> GSM905034     1  0.0000      0.938 1.000  0 0.000 0.000
#> GSM905040     1  0.2589      0.832 0.884  0 0.116 0.000
#> GSM904985     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904988     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904990     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904992     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904995     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904998     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905000     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905003     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905006     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905008     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905011     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905013     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905016     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905018     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905021     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905025     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905028     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905030     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905033     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905035     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905037     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905039     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905042     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905046     1  0.0000      0.938 1.000  0 0.000 0.000
#> GSM905065     1  0.0000      0.938 1.000  0 0.000 0.000
#> GSM905049     4  0.0000      0.948 0.000  0 0.000 1.000
#> GSM905050     4  0.0000      0.948 0.000  0 0.000 1.000
#> GSM905064     4  0.0000      0.948 0.000  0 0.000 1.000
#> GSM905045     4  0.0000      0.948 0.000  0 0.000 1.000
#> GSM905051     4  0.3726      0.734 0.212  0 0.000 0.788
#> GSM905055     1  0.0000      0.938 1.000  0 0.000 0.000
#> GSM905058     1  0.0000      0.938 1.000  0 0.000 0.000
#> GSM905053     4  0.0000      0.948 0.000  0 0.000 1.000
#> GSM905061     4  0.0000      0.948 0.000  0 0.000 1.000
#> GSM905063     1  0.0000      0.938 1.000  0 0.000 0.000
#> GSM905054     4  0.0000      0.948 0.000  0 0.000 1.000
#> GSM905062     4  0.0000      0.948 0.000  0 0.000 1.000
#> GSM905052     4  0.2345      0.868 0.100  0 0.000 0.900
#> GSM905059     1  0.0000      0.938 1.000  0 0.000 0.000
#> GSM905047     1  0.0469      0.928 0.988  0 0.000 0.012
#> GSM905066     1  0.0000      0.938 1.000  0 0.000 0.000
#> GSM905056     1  0.0000      0.938 1.000  0 0.000 0.000
#> GSM905060     1  0.0000      0.938 1.000  0 0.000 0.000
#> GSM905048     1  0.0000      0.938 1.000  0 0.000 0.000
#> GSM905067     1  0.0000      0.938 1.000  0 0.000 0.000
#> GSM905057     1  0.0000      0.938 1.000  0 0.000 0.000
#> GSM905068     4  0.0000      0.948 0.000  0 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM905004     4  0.1195      0.892 0.000 0.000 0.028 0.960 0.012
#> GSM905024     1  0.4546      0.495 0.668 0.000 0.304 0.000 0.028
#> GSM905038     3  0.0451      0.926 0.000 0.000 0.988 0.004 0.008
#> GSM905043     3  0.5113      0.250 0.380 0.000 0.576 0.000 0.044
#> GSM904986     3  0.1493      0.911 0.000 0.000 0.948 0.028 0.024
#> GSM904991     3  0.0404      0.924 0.000 0.000 0.988 0.000 0.012
#> GSM904994     3  0.1310      0.917 0.000 0.000 0.956 0.020 0.024
#> GSM904996     3  0.1211      0.919 0.000 0.000 0.960 0.016 0.024
#> GSM905007     3  0.0510      0.927 0.000 0.000 0.984 0.000 0.016
#> GSM905012     4  0.1579      0.882 0.000 0.000 0.032 0.944 0.024
#> GSM905022     3  0.0898      0.923 0.000 0.000 0.972 0.008 0.020
#> GSM905026     3  0.0693      0.925 0.000 0.000 0.980 0.008 0.012
#> GSM905027     3  0.0162      0.926 0.000 0.000 0.996 0.000 0.004
#> GSM905031     4  0.3550      0.728 0.000 0.000 0.184 0.796 0.020
#> GSM905036     3  0.0451      0.926 0.000 0.000 0.988 0.004 0.008
#> GSM905041     3  0.0609      0.920 0.000 0.000 0.980 0.000 0.020
#> GSM905044     3  0.0898      0.923 0.000 0.000 0.972 0.008 0.020
#> GSM904989     3  0.2300      0.873 0.000 0.000 0.904 0.072 0.024
#> GSM904999     3  0.0880      0.916 0.000 0.000 0.968 0.000 0.032
#> GSM905002     3  0.0898      0.923 0.000 0.000 0.972 0.008 0.020
#> GSM905009     3  0.4833      0.230 0.000 0.000 0.564 0.412 0.024
#> GSM905014     3  0.0510      0.925 0.000 0.000 0.984 0.000 0.016
#> GSM905017     3  0.0880      0.916 0.000 0.000 0.968 0.000 0.032
#> GSM905020     4  0.4292      0.600 0.000 0.000 0.272 0.704 0.024
#> GSM905023     3  0.0404      0.924 0.000 0.000 0.988 0.000 0.012
#> GSM905029     3  0.0000      0.927 0.000 0.000 1.000 0.000 0.000
#> GSM905032     5  0.3534      0.634 0.000 0.000 0.256 0.000 0.744
#> GSM905034     1  0.1386      0.880 0.952 0.000 0.032 0.000 0.016
#> GSM905040     5  0.1908      0.914 0.092 0.000 0.000 0.000 0.908
#> GSM904985     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM904988     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM904990     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM904992     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM904995     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM904998     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905000     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905003     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905006     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905008     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905011     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905013     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905016     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905018     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905021     2  0.0162      0.996 0.000 0.996 0.000 0.000 0.004
#> GSM905025     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905028     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905030     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905033     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905035     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905037     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905039     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905042     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905046     1  0.0771      0.893 0.976 0.000 0.000 0.004 0.020
#> GSM905065     1  0.1608      0.870 0.928 0.000 0.000 0.000 0.072
#> GSM905049     4  0.1168      0.908 0.032 0.000 0.000 0.960 0.008
#> GSM905050     4  0.0510      0.914 0.016 0.000 0.000 0.984 0.000
#> GSM905064     4  0.2488      0.830 0.124 0.000 0.000 0.872 0.004
#> GSM905045     4  0.0955      0.911 0.028 0.000 0.000 0.968 0.004
#> GSM905051     1  0.2659      0.840 0.888 0.000 0.000 0.060 0.052
#> GSM905055     5  0.2020      0.920 0.100 0.000 0.000 0.000 0.900
#> GSM905058     1  0.0162      0.892 0.996 0.000 0.000 0.000 0.004
#> GSM905053     4  0.0771      0.913 0.020 0.000 0.000 0.976 0.004
#> GSM905061     4  0.0510      0.914 0.016 0.000 0.000 0.984 0.000
#> GSM905063     5  0.2127      0.916 0.108 0.000 0.000 0.000 0.892
#> GSM905054     4  0.1701      0.895 0.048 0.000 0.000 0.936 0.016
#> GSM905062     4  0.0404      0.913 0.012 0.000 0.000 0.988 0.000
#> GSM905052     1  0.3944      0.734 0.788 0.000 0.000 0.160 0.052
#> GSM905059     1  0.0794      0.890 0.972 0.000 0.000 0.028 0.000
#> GSM905047     1  0.0963      0.887 0.964 0.000 0.000 0.036 0.000
#> GSM905066     1  0.1671      0.868 0.924 0.000 0.000 0.000 0.076
#> GSM905056     5  0.1965      0.919 0.096 0.000 0.000 0.000 0.904
#> GSM905060     1  0.0794      0.890 0.972 0.000 0.000 0.028 0.000
#> GSM905048     1  0.0963      0.886 0.964 0.000 0.000 0.000 0.036
#> GSM905067     1  0.1608      0.870 0.928 0.000 0.000 0.000 0.072
#> GSM905057     5  0.2020      0.920 0.100 0.000 0.000 0.000 0.900
#> GSM905068     4  0.0290      0.912 0.008 0.000 0.000 0.992 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM905004     4  0.4482     0.5356 0.000 0.000 0.124 0.708 0.168 0.000
#> GSM905024     1  0.4669     0.5875 0.712 0.000 0.164 0.000 0.112 0.012
#> GSM905038     3  0.1444     0.8461 0.000 0.000 0.928 0.000 0.072 0.000
#> GSM905043     1  0.5587     0.2899 0.532 0.000 0.344 0.000 0.112 0.012
#> GSM904986     3  0.3637     0.7594 0.000 0.000 0.780 0.056 0.164 0.000
#> GSM904991     3  0.2402     0.8264 0.000 0.000 0.868 0.000 0.120 0.012
#> GSM904994     3  0.3053     0.7917 0.000 0.000 0.812 0.020 0.168 0.000
#> GSM904996     3  0.2968     0.7949 0.000 0.000 0.816 0.016 0.168 0.000
#> GSM905007     3  0.2070     0.8401 0.000 0.000 0.892 0.000 0.100 0.008
#> GSM905012     4  0.5039     0.5029 0.000 0.000 0.184 0.640 0.176 0.000
#> GSM905022     3  0.2300     0.8164 0.000 0.000 0.856 0.000 0.144 0.000
#> GSM905026     3  0.0790     0.8483 0.000 0.000 0.968 0.000 0.032 0.000
#> GSM905027     3  0.2212     0.8317 0.000 0.000 0.880 0.000 0.112 0.008
#> GSM905031     4  0.4454     0.5264 0.000 0.000 0.224 0.692 0.084 0.000
#> GSM905036     3  0.2656     0.8270 0.000 0.000 0.860 0.008 0.120 0.012
#> GSM905041     3  0.2402     0.8264 0.000 0.000 0.868 0.000 0.120 0.012
#> GSM905044     3  0.1411     0.8426 0.000 0.000 0.936 0.004 0.060 0.000
#> GSM904989     3  0.4918     0.5646 0.000 0.000 0.656 0.184 0.160 0.000
#> GSM904999     3  0.3518     0.7751 0.000 0.000 0.732 0.000 0.256 0.012
#> GSM905002     3  0.2416     0.8109 0.000 0.000 0.844 0.000 0.156 0.000
#> GSM905009     4  0.5573     0.3905 0.000 0.000 0.312 0.524 0.164 0.000
#> GSM905014     3  0.2489     0.8487 0.000 0.000 0.860 0.000 0.128 0.012
#> GSM905017     3  0.3171     0.8137 0.000 0.000 0.784 0.000 0.204 0.012
#> GSM905020     4  0.5420     0.4456 0.000 0.000 0.256 0.572 0.172 0.000
#> GSM905023     3  0.2402     0.8264 0.000 0.000 0.868 0.000 0.120 0.012
#> GSM905029     3  0.2006     0.8356 0.000 0.000 0.892 0.000 0.104 0.004
#> GSM905032     6  0.4226     0.6083 0.000 0.000 0.152 0.000 0.112 0.736
#> GSM905034     1  0.1500     0.8665 0.936 0.000 0.000 0.000 0.052 0.012
#> GSM905040     6  0.0260     0.9063 0.000 0.000 0.000 0.000 0.008 0.992
#> GSM904985     2  0.0000     0.9965 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904988     2  0.0146     0.9958 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM904990     2  0.0146     0.9958 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM904992     2  0.0146     0.9958 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM904995     2  0.0000     0.9965 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904998     2  0.0000     0.9965 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905000     2  0.0146     0.9958 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM905003     2  0.0000     0.9965 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905006     2  0.0146     0.9958 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM905008     2  0.0146     0.9958 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM905011     2  0.0146     0.9958 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM905013     2  0.0000     0.9965 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905016     2  0.0000     0.9965 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905018     2  0.0146     0.9958 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM905021     2  0.1082     0.9550 0.000 0.956 0.004 0.000 0.040 0.000
#> GSM905025     2  0.0000     0.9965 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905028     2  0.0000     0.9965 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905030     2  0.0146     0.9958 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM905033     2  0.0000     0.9965 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905035     2  0.0000     0.9965 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905037     2  0.0000     0.9965 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905039     2  0.0000     0.9965 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905042     2  0.0000     0.9965 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905046     1  0.0000     0.8798 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM905065     1  0.0405     0.8790 0.988 0.000 0.000 0.000 0.004 0.008
#> GSM905049     4  0.1908     0.5481 0.004 0.000 0.000 0.900 0.096 0.000
#> GSM905050     4  0.1010     0.5905 0.004 0.000 0.000 0.960 0.036 0.000
#> GSM905064     4  0.3834     0.2716 0.036 0.000 0.000 0.732 0.232 0.000
#> GSM905045     4  0.2964     0.3983 0.004 0.000 0.000 0.792 0.204 0.000
#> GSM905051     5  0.4911     0.9455 0.100 0.000 0.000 0.276 0.624 0.000
#> GSM905055     6  0.0363     0.9198 0.012 0.000 0.000 0.000 0.000 0.988
#> GSM905058     1  0.1141     0.8662 0.948 0.000 0.000 0.000 0.052 0.000
#> GSM905053     4  0.1908     0.5490 0.004 0.000 0.000 0.900 0.096 0.000
#> GSM905061     4  0.0405     0.6030 0.004 0.000 0.000 0.988 0.008 0.000
#> GSM905063     6  0.0363     0.9198 0.012 0.000 0.000 0.000 0.000 0.988
#> GSM905054     4  0.3714     0.0134 0.004 0.000 0.000 0.656 0.340 0.000
#> GSM905062     4  0.0458     0.6019 0.000 0.000 0.000 0.984 0.016 0.000
#> GSM905052     5  0.4720     0.9441 0.072 0.000 0.000 0.304 0.624 0.000
#> GSM905059     1  0.1327     0.8593 0.936 0.000 0.000 0.000 0.064 0.000
#> GSM905047     1  0.0291     0.8783 0.992 0.000 0.000 0.004 0.004 0.000
#> GSM905066     1  0.0603     0.8761 0.980 0.000 0.000 0.000 0.004 0.016
#> GSM905056     6  0.0363     0.9198 0.012 0.000 0.000 0.000 0.000 0.988
#> GSM905060     1  0.1267     0.8636 0.940 0.000 0.000 0.000 0.060 0.000
#> GSM905048     1  0.0146     0.8798 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM905067     1  0.0405     0.8790 0.988 0.000 0.000 0.000 0.004 0.008
#> GSM905057     6  0.0363     0.9198 0.012 0.000 0.000 0.000 0.000 0.988
#> GSM905068     4  0.0146     0.6022 0.000 0.000 0.000 0.996 0.004 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n tissue(p) genotype/variation(p) individual(p) k
#> SD:NMF 75  9.06e-07              7.59e-04       0.05134 2
#> SD:NMF 76  2.85e-20              4.94e-05       0.97745 3
#> SD:NMF 75  2.38e-19              2.57e-09       0.35834 4
#> SD:NMF 73  1.10e-15              1.63e-10       0.00382 5
#> SD:NMF 70  8.36e-15              7.54e-12       0.00195 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 76 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.541           0.713       0.885         0.4642 0.499   0.499
#> 3 3 0.615           0.813       0.851         0.3855 0.696   0.462
#> 4 4 0.713           0.805       0.873         0.0778 0.965   0.893
#> 5 5 0.743           0.784       0.846         0.0869 0.933   0.769
#> 6 6 0.893           0.816       0.908         0.0708 0.965   0.845

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM905004     1  0.9522     0.3379 0.628 0.372
#> GSM905024     1  0.4431     0.8483 0.908 0.092
#> GSM905038     1  0.5842     0.8124 0.860 0.140
#> GSM905043     1  0.4431     0.8483 0.908 0.092
#> GSM904986     2  0.9866     0.3182 0.432 0.568
#> GSM904991     1  0.5737     0.8165 0.864 0.136
#> GSM904994     2  0.9866     0.3182 0.432 0.568
#> GSM904996     2  0.9866     0.3182 0.432 0.568
#> GSM905007     1  0.5737     0.8165 0.864 0.136
#> GSM905012     2  0.9866     0.3182 0.432 0.568
#> GSM905022     1  0.9983    -0.0274 0.524 0.476
#> GSM905026     2  0.9996     0.1331 0.488 0.512
#> GSM905027     1  0.9963     0.0266 0.536 0.464
#> GSM905031     2  0.9866     0.3182 0.432 0.568
#> GSM905036     1  0.5737     0.8165 0.864 0.136
#> GSM905041     1  0.5408     0.8263 0.876 0.124
#> GSM905044     2  0.9996     0.1331 0.488 0.512
#> GSM904989     2  0.9866     0.3182 0.432 0.568
#> GSM904999     1  0.9954     0.0440 0.540 0.460
#> GSM905002     2  0.9933     0.2592 0.452 0.548
#> GSM905009     2  0.9866     0.3182 0.432 0.568
#> GSM905014     1  0.5737     0.8165 0.864 0.136
#> GSM905017     1  0.9954     0.0440 0.540 0.460
#> GSM905020     2  0.9866     0.3182 0.432 0.568
#> GSM905023     1  0.5737     0.8165 0.864 0.136
#> GSM905029     1  0.5737     0.8165 0.864 0.136
#> GSM905032     1  0.5178     0.8323 0.884 0.116
#> GSM905034     1  0.2043     0.8765 0.968 0.032
#> GSM905040     1  0.0000     0.8832 1.000 0.000
#> GSM904985     2  0.0000     0.8121 0.000 1.000
#> GSM904988     2  0.0000     0.8121 0.000 1.000
#> GSM904990     2  0.0000     0.8121 0.000 1.000
#> GSM904992     2  0.0000     0.8121 0.000 1.000
#> GSM904995     2  0.0000     0.8121 0.000 1.000
#> GSM904998     2  0.0000     0.8121 0.000 1.000
#> GSM905000     2  0.0000     0.8121 0.000 1.000
#> GSM905003     2  0.0000     0.8121 0.000 1.000
#> GSM905006     2  0.0000     0.8121 0.000 1.000
#> GSM905008     2  0.0000     0.8121 0.000 1.000
#> GSM905011     2  0.0000     0.8121 0.000 1.000
#> GSM905013     2  0.0000     0.8121 0.000 1.000
#> GSM905016     2  0.0000     0.8121 0.000 1.000
#> GSM905018     2  0.0000     0.8121 0.000 1.000
#> GSM905021     2  0.2778     0.7817 0.048 0.952
#> GSM905025     2  0.0000     0.8121 0.000 1.000
#> GSM905028     2  0.0000     0.8121 0.000 1.000
#> GSM905030     2  0.0000     0.8121 0.000 1.000
#> GSM905033     2  0.0000     0.8121 0.000 1.000
#> GSM905035     2  0.0000     0.8121 0.000 1.000
#> GSM905037     2  0.0000     0.8121 0.000 1.000
#> GSM905039     2  0.0000     0.8121 0.000 1.000
#> GSM905042     2  0.0000     0.8121 0.000 1.000
#> GSM905046     1  0.0000     0.8832 1.000 0.000
#> GSM905065     1  0.0000     0.8832 1.000 0.000
#> GSM905049     1  0.0938     0.8857 0.988 0.012
#> GSM905050     1  0.0938     0.8857 0.988 0.012
#> GSM905064     1  0.0938     0.8857 0.988 0.012
#> GSM905045     1  0.0938     0.8857 0.988 0.012
#> GSM905051     1  0.0938     0.8857 0.988 0.012
#> GSM905055     1  0.0000     0.8832 1.000 0.000
#> GSM905058     1  0.0000     0.8832 1.000 0.000
#> GSM905053     1  0.0938     0.8857 0.988 0.012
#> GSM905061     1  0.0938     0.8857 0.988 0.012
#> GSM905063     1  0.0000     0.8832 1.000 0.000
#> GSM905054     1  0.0938     0.8857 0.988 0.012
#> GSM905062     1  0.0938     0.8857 0.988 0.012
#> GSM905052     1  0.0938     0.8857 0.988 0.012
#> GSM905059     1  0.0000     0.8832 1.000 0.000
#> GSM905047     1  0.0000     0.8832 1.000 0.000
#> GSM905066     1  0.0000     0.8832 1.000 0.000
#> GSM905056     1  0.0000     0.8832 1.000 0.000
#> GSM905060     1  0.0000     0.8832 1.000 0.000
#> GSM905048     1  0.0000     0.8832 1.000 0.000
#> GSM905067     1  0.0000     0.8832 1.000 0.000
#> GSM905057     1  0.0000     0.8832 1.000 0.000
#> GSM905068     1  0.0938     0.8857 0.988 0.012

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM905004     3  0.7633      0.628 0.120 0.200 0.680
#> GSM905024     3  0.8260      0.624 0.172 0.192 0.636
#> GSM905038     3  0.7750      0.669 0.140 0.184 0.676
#> GSM905043     3  0.8260      0.624 0.172 0.192 0.636
#> GSM904986     3  0.3192      0.579 0.000 0.112 0.888
#> GSM904991     3  0.7702      0.668 0.140 0.180 0.680
#> GSM904994     3  0.3192      0.579 0.000 0.112 0.888
#> GSM904996     3  0.3192      0.579 0.000 0.112 0.888
#> GSM905007     3  0.7702      0.668 0.140 0.180 0.680
#> GSM905012     3  0.3192      0.579 0.000 0.112 0.888
#> GSM905022     3  0.0892      0.652 0.000 0.020 0.980
#> GSM905026     3  0.1964      0.631 0.000 0.056 0.944
#> GSM905027     3  0.0424      0.658 0.000 0.008 0.992
#> GSM905031     3  0.3192      0.579 0.000 0.112 0.888
#> GSM905036     3  0.7702      0.668 0.140 0.180 0.680
#> GSM905041     3  0.7843      0.658 0.140 0.192 0.668
#> GSM905044     3  0.1964      0.631 0.000 0.056 0.944
#> GSM904989     3  0.3192      0.579 0.000 0.112 0.888
#> GSM904999     3  0.0237      0.659 0.000 0.004 0.996
#> GSM905002     3  0.2796      0.600 0.000 0.092 0.908
#> GSM905009     3  0.3192      0.579 0.000 0.112 0.888
#> GSM905014     3  0.7702      0.668 0.140 0.180 0.680
#> GSM905017     3  0.0237      0.659 0.000 0.004 0.996
#> GSM905020     3  0.3192      0.579 0.000 0.112 0.888
#> GSM905023     3  0.7702      0.668 0.140 0.180 0.680
#> GSM905029     3  0.7702      0.668 0.140 0.180 0.680
#> GSM905032     3  0.7954      0.651 0.148 0.192 0.660
#> GSM905034     3  0.8242      0.483 0.336 0.092 0.572
#> GSM905040     1  0.4873      0.821 0.824 0.152 0.024
#> GSM904985     2  0.5810      0.978 0.000 0.664 0.336
#> GSM904988     2  0.5810      0.978 0.000 0.664 0.336
#> GSM904990     2  0.5810      0.978 0.000 0.664 0.336
#> GSM904992     2  0.5810      0.978 0.000 0.664 0.336
#> GSM904995     2  0.5810      0.978 0.000 0.664 0.336
#> GSM904998     2  0.5810      0.978 0.000 0.664 0.336
#> GSM905000     2  0.5810      0.978 0.000 0.664 0.336
#> GSM905003     2  0.5810      0.978 0.000 0.664 0.336
#> GSM905006     2  0.5810      0.978 0.000 0.664 0.336
#> GSM905008     2  0.5810      0.978 0.000 0.664 0.336
#> GSM905011     2  0.5810      0.978 0.000 0.664 0.336
#> GSM905013     2  0.5810      0.978 0.000 0.664 0.336
#> GSM905016     2  0.5810      0.978 0.000 0.664 0.336
#> GSM905018     2  0.5810      0.978 0.000 0.664 0.336
#> GSM905021     2  0.6308      0.736 0.000 0.508 0.492
#> GSM905025     2  0.5810      0.978 0.000 0.664 0.336
#> GSM905028     2  0.5810      0.978 0.000 0.664 0.336
#> GSM905030     2  0.5810      0.978 0.000 0.664 0.336
#> GSM905033     2  0.6204      0.864 0.000 0.576 0.424
#> GSM905035     2  0.5810      0.978 0.000 0.664 0.336
#> GSM905037     2  0.5810      0.978 0.000 0.664 0.336
#> GSM905039     2  0.5810      0.978 0.000 0.664 0.336
#> GSM905042     2  0.6204      0.864 0.000 0.576 0.424
#> GSM905046     1  0.0000      0.911 1.000 0.000 0.000
#> GSM905065     1  0.0000      0.911 1.000 0.000 0.000
#> GSM905049     1  0.3412      0.901 0.876 0.124 0.000
#> GSM905050     1  0.3412      0.901 0.876 0.124 0.000
#> GSM905064     1  0.3412      0.901 0.876 0.124 0.000
#> GSM905045     1  0.3412      0.901 0.876 0.124 0.000
#> GSM905051     1  0.3412      0.901 0.876 0.124 0.000
#> GSM905055     1  0.3879      0.832 0.848 0.152 0.000
#> GSM905058     1  0.0000      0.911 1.000 0.000 0.000
#> GSM905053     1  0.3412      0.901 0.876 0.124 0.000
#> GSM905061     1  0.3412      0.901 0.876 0.124 0.000
#> GSM905063     1  0.3879      0.832 0.848 0.152 0.000
#> GSM905054     1  0.3412      0.901 0.876 0.124 0.000
#> GSM905062     1  0.3412      0.901 0.876 0.124 0.000
#> GSM905052     1  0.3412      0.901 0.876 0.124 0.000
#> GSM905059     1  0.0000      0.911 1.000 0.000 0.000
#> GSM905047     1  0.0000      0.911 1.000 0.000 0.000
#> GSM905066     1  0.0000      0.911 1.000 0.000 0.000
#> GSM905056     1  0.3879      0.832 0.848 0.152 0.000
#> GSM905060     1  0.0000      0.911 1.000 0.000 0.000
#> GSM905048     1  0.0000      0.911 1.000 0.000 0.000
#> GSM905067     1  0.0000      0.911 1.000 0.000 0.000
#> GSM905057     1  0.3879      0.832 0.848 0.152 0.000
#> GSM905068     1  0.3412      0.901 0.876 0.124 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM905004     3  0.7662      0.556 0.008 0.272 0.512 0.208
#> GSM905024     3  0.1940      0.587 0.076 0.000 0.924 0.000
#> GSM905038     3  0.0376      0.632 0.004 0.004 0.992 0.000
#> GSM905043     3  0.1940      0.587 0.076 0.000 0.924 0.000
#> GSM904986     3  0.5229      0.597 0.008 0.428 0.564 0.000
#> GSM904991     3  0.1022      0.622 0.032 0.000 0.968 0.000
#> GSM904994     3  0.5229      0.597 0.008 0.428 0.564 0.000
#> GSM904996     3  0.5229      0.597 0.008 0.428 0.564 0.000
#> GSM905007     3  0.0921      0.624 0.028 0.000 0.972 0.000
#> GSM905012     3  0.5229      0.597 0.008 0.428 0.564 0.000
#> GSM905022     3  0.4917      0.668 0.008 0.336 0.656 0.000
#> GSM905026     3  0.5070      0.648 0.008 0.372 0.620 0.000
#> GSM905027     3  0.5311      0.671 0.024 0.328 0.648 0.000
#> GSM905031     3  0.5229      0.597 0.008 0.428 0.564 0.000
#> GSM905036     3  0.0707      0.627 0.020 0.000 0.980 0.000
#> GSM905041     3  0.1302      0.614 0.044 0.000 0.956 0.000
#> GSM905044     3  0.5070      0.648 0.008 0.372 0.620 0.000
#> GSM904989     3  0.5229      0.597 0.008 0.428 0.564 0.000
#> GSM904999     3  0.5173      0.671 0.020 0.320 0.660 0.000
#> GSM905002     3  0.5183      0.617 0.008 0.408 0.584 0.000
#> GSM905009     3  0.5229      0.597 0.008 0.428 0.564 0.000
#> GSM905014     3  0.1022      0.622 0.032 0.000 0.968 0.000
#> GSM905017     3  0.5173      0.671 0.020 0.320 0.660 0.000
#> GSM905020     3  0.5229      0.597 0.008 0.428 0.564 0.000
#> GSM905023     3  0.0707      0.627 0.020 0.000 0.980 0.000
#> GSM905029     3  0.0188      0.630 0.004 0.000 0.996 0.000
#> GSM905032     3  0.1474      0.608 0.052 0.000 0.948 0.000
#> GSM905034     3  0.5723      0.374 0.220 0.000 0.696 0.084
#> GSM905040     1  0.1798      0.967 0.944 0.000 0.016 0.040
#> GSM904985     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM904988     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM904990     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM904992     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM904995     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM904998     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905000     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905003     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905006     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905008     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905011     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905013     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905016     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905018     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905021     2  0.3757      0.736 0.020 0.828 0.152 0.000
#> GSM905025     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905028     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905030     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905033     2  0.2345      0.845 0.000 0.900 0.100 0.000
#> GSM905035     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905037     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905039     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> GSM905042     2  0.2345      0.845 0.000 0.900 0.100 0.000
#> GSM905046     4  0.3486      0.842 0.188 0.000 0.000 0.812
#> GSM905065     4  0.3942      0.800 0.236 0.000 0.000 0.764
#> GSM905049     4  0.0000      0.885 0.000 0.000 0.000 1.000
#> GSM905050     4  0.0000      0.885 0.000 0.000 0.000 1.000
#> GSM905064     4  0.0000      0.885 0.000 0.000 0.000 1.000
#> GSM905045     4  0.0000      0.885 0.000 0.000 0.000 1.000
#> GSM905051     4  0.0000      0.885 0.000 0.000 0.000 1.000
#> GSM905055     1  0.1557      0.992 0.944 0.000 0.000 0.056
#> GSM905058     4  0.3486      0.842 0.188 0.000 0.000 0.812
#> GSM905053     4  0.0000      0.885 0.000 0.000 0.000 1.000
#> GSM905061     4  0.0000      0.885 0.000 0.000 0.000 1.000
#> GSM905063     1  0.1557      0.992 0.944 0.000 0.000 0.056
#> GSM905054     4  0.0000      0.885 0.000 0.000 0.000 1.000
#> GSM905062     4  0.0000      0.885 0.000 0.000 0.000 1.000
#> GSM905052     4  0.0000      0.885 0.000 0.000 0.000 1.000
#> GSM905059     4  0.3486      0.842 0.188 0.000 0.000 0.812
#> GSM905047     4  0.3486      0.842 0.188 0.000 0.000 0.812
#> GSM905066     4  0.3942      0.800 0.236 0.000 0.000 0.764
#> GSM905056     1  0.1557      0.992 0.944 0.000 0.000 0.056
#> GSM905060     4  0.3486      0.842 0.188 0.000 0.000 0.812
#> GSM905048     4  0.3486      0.842 0.188 0.000 0.000 0.812
#> GSM905067     4  0.3942      0.800 0.236 0.000 0.000 0.764
#> GSM905057     1  0.1557      0.992 0.944 0.000 0.000 0.056
#> GSM905068     4  0.0000      0.885 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM905004     3  0.3073     0.5552 0.000 0.076 0.868 0.052 0.004
#> GSM905024     5  0.2208     0.7561 0.020 0.000 0.072 0.000 0.908
#> GSM905038     3  0.4262    -0.0867 0.000 0.000 0.560 0.000 0.440
#> GSM905043     5  0.2208     0.7561 0.020 0.000 0.072 0.000 0.908
#> GSM904986     3  0.3336     0.8394 0.000 0.228 0.772 0.000 0.000
#> GSM904991     5  0.2471     0.7738 0.000 0.000 0.136 0.000 0.864
#> GSM904994     3  0.3336     0.8394 0.000 0.228 0.772 0.000 0.000
#> GSM904996     3  0.3336     0.8394 0.000 0.228 0.772 0.000 0.000
#> GSM905007     5  0.2516     0.7719 0.000 0.000 0.140 0.000 0.860
#> GSM905012     3  0.3336     0.8394 0.000 0.228 0.772 0.000 0.000
#> GSM905022     3  0.5543     0.7372 0.000 0.224 0.640 0.000 0.136
#> GSM905026     3  0.4879     0.7993 0.000 0.228 0.696 0.000 0.076
#> GSM905027     3  0.6246     0.5994 0.000 0.224 0.544 0.000 0.232
#> GSM905031     3  0.3336     0.8394 0.000 0.228 0.772 0.000 0.000
#> GSM905036     5  0.4030     0.5331 0.000 0.000 0.352 0.000 0.648
#> GSM905041     5  0.2723     0.7742 0.012 0.000 0.124 0.000 0.864
#> GSM905044     3  0.4879     0.7993 0.000 0.228 0.696 0.000 0.076
#> GSM904989     3  0.3336     0.8394 0.000 0.228 0.772 0.000 0.000
#> GSM904999     5  0.6392     0.0529 0.000 0.220 0.268 0.000 0.512
#> GSM905002     3  0.3912     0.8321 0.000 0.228 0.752 0.000 0.020
#> GSM905009     3  0.3336     0.8394 0.000 0.228 0.772 0.000 0.000
#> GSM905014     5  0.2471     0.7738 0.000 0.000 0.136 0.000 0.864
#> GSM905017     5  0.6392     0.0529 0.000 0.220 0.268 0.000 0.512
#> GSM905020     3  0.3336     0.8394 0.000 0.228 0.772 0.000 0.000
#> GSM905023     5  0.4138     0.4702 0.000 0.000 0.384 0.000 0.616
#> GSM905029     3  0.4268    -0.0972 0.000 0.000 0.556 0.000 0.444
#> GSM905032     5  0.2519     0.7708 0.016 0.000 0.100 0.000 0.884
#> GSM905034     5  0.3977     0.5281 0.024 0.000 0.016 0.168 0.792
#> GSM905040     1  0.0703     0.9725 0.976 0.000 0.000 0.000 0.024
#> GSM904985     2  0.0000     0.9600 0.000 1.000 0.000 0.000 0.000
#> GSM904988     2  0.0000     0.9600 0.000 1.000 0.000 0.000 0.000
#> GSM904990     2  0.0000     0.9600 0.000 1.000 0.000 0.000 0.000
#> GSM904992     2  0.0000     0.9600 0.000 1.000 0.000 0.000 0.000
#> GSM904995     2  0.0000     0.9600 0.000 1.000 0.000 0.000 0.000
#> GSM904998     2  0.0000     0.9600 0.000 1.000 0.000 0.000 0.000
#> GSM905000     2  0.0000     0.9600 0.000 1.000 0.000 0.000 0.000
#> GSM905003     2  0.0000     0.9600 0.000 1.000 0.000 0.000 0.000
#> GSM905006     2  0.0000     0.9600 0.000 1.000 0.000 0.000 0.000
#> GSM905008     2  0.0000     0.9600 0.000 1.000 0.000 0.000 0.000
#> GSM905011     2  0.0000     0.9600 0.000 1.000 0.000 0.000 0.000
#> GSM905013     2  0.0000     0.9600 0.000 1.000 0.000 0.000 0.000
#> GSM905016     2  0.0000     0.9600 0.000 1.000 0.000 0.000 0.000
#> GSM905018     2  0.0000     0.9600 0.000 1.000 0.000 0.000 0.000
#> GSM905021     2  0.4141     0.5391 0.000 0.728 0.248 0.000 0.024
#> GSM905025     2  0.0000     0.9600 0.000 1.000 0.000 0.000 0.000
#> GSM905028     2  0.0000     0.9600 0.000 1.000 0.000 0.000 0.000
#> GSM905030     2  0.0000     0.9600 0.000 1.000 0.000 0.000 0.000
#> GSM905033     2  0.3109     0.6810 0.000 0.800 0.200 0.000 0.000
#> GSM905035     2  0.0000     0.9600 0.000 1.000 0.000 0.000 0.000
#> GSM905037     2  0.0000     0.9600 0.000 1.000 0.000 0.000 0.000
#> GSM905039     2  0.0000     0.9600 0.000 1.000 0.000 0.000 0.000
#> GSM905042     2  0.3109     0.6810 0.000 0.800 0.200 0.000 0.000
#> GSM905046     4  0.2927     0.7616 0.060 0.000 0.000 0.872 0.068
#> GSM905065     4  0.3767     0.7155 0.120 0.000 0.000 0.812 0.068
#> GSM905049     4  0.3461     0.8156 0.000 0.000 0.224 0.772 0.004
#> GSM905050     4  0.3461     0.8156 0.000 0.000 0.224 0.772 0.004
#> GSM905064     4  0.3461     0.8156 0.000 0.000 0.224 0.772 0.004
#> GSM905045     4  0.3461     0.8156 0.000 0.000 0.224 0.772 0.004
#> GSM905051     4  0.3109     0.8152 0.000 0.000 0.200 0.800 0.000
#> GSM905055     1  0.0000     0.9933 1.000 0.000 0.000 0.000 0.000
#> GSM905058     4  0.2927     0.7616 0.060 0.000 0.000 0.872 0.068
#> GSM905053     4  0.3461     0.8156 0.000 0.000 0.224 0.772 0.004
#> GSM905061     4  0.3461     0.8156 0.000 0.000 0.224 0.772 0.004
#> GSM905063     1  0.0000     0.9933 1.000 0.000 0.000 0.000 0.000
#> GSM905054     4  0.3461     0.8156 0.000 0.000 0.224 0.772 0.004
#> GSM905062     4  0.3461     0.8156 0.000 0.000 0.224 0.772 0.004
#> GSM905052     4  0.3109     0.8152 0.000 0.000 0.200 0.800 0.000
#> GSM905059     4  0.2927     0.7616 0.060 0.000 0.000 0.872 0.068
#> GSM905047     4  0.2927     0.7616 0.060 0.000 0.000 0.872 0.068
#> GSM905066     4  0.3767     0.7155 0.120 0.000 0.000 0.812 0.068
#> GSM905056     1  0.0000     0.9933 1.000 0.000 0.000 0.000 0.000
#> GSM905060     4  0.2927     0.7616 0.060 0.000 0.000 0.872 0.068
#> GSM905048     4  0.2927     0.7616 0.060 0.000 0.000 0.872 0.068
#> GSM905067     4  0.3767     0.7155 0.120 0.000 0.000 0.812 0.068
#> GSM905057     1  0.0000     0.9933 1.000 0.000 0.000 0.000 0.000
#> GSM905068     4  0.3461     0.8156 0.000 0.000 0.224 0.772 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM905004     3  0.3290     0.6252 0.000 0.016 0.776 0.208 0.000 0.000
#> GSM905024     5  0.0291     0.7472 0.004 0.000 0.000 0.000 0.992 0.004
#> GSM905038     3  0.3862    -0.0187 0.000 0.000 0.524 0.000 0.476 0.000
#> GSM905043     5  0.0291     0.7472 0.004 0.000 0.000 0.000 0.992 0.004
#> GSM904986     3  0.0458     0.8498 0.000 0.016 0.984 0.000 0.000 0.000
#> GSM904991     5  0.1556     0.7803 0.000 0.000 0.080 0.000 0.920 0.000
#> GSM904994     3  0.0458     0.8498 0.000 0.016 0.984 0.000 0.000 0.000
#> GSM904996     3  0.0458     0.8498 0.000 0.016 0.984 0.000 0.000 0.000
#> GSM905007     5  0.1610     0.7786 0.000 0.000 0.084 0.000 0.916 0.000
#> GSM905012     3  0.0458     0.8498 0.000 0.016 0.984 0.000 0.000 0.000
#> GSM905022     3  0.2664     0.7536 0.000 0.016 0.848 0.000 0.136 0.000
#> GSM905026     3  0.1951     0.8123 0.000 0.016 0.908 0.000 0.076 0.000
#> GSM905027     3  0.3534     0.6011 0.000 0.016 0.740 0.000 0.244 0.000
#> GSM905031     3  0.0458     0.8498 0.000 0.016 0.984 0.000 0.000 0.000
#> GSM905036     5  0.3428     0.5340 0.000 0.000 0.304 0.000 0.696 0.000
#> GSM905041     5  0.1387     0.7806 0.000 0.000 0.068 0.000 0.932 0.000
#> GSM905044     3  0.1951     0.8123 0.000 0.016 0.908 0.000 0.076 0.000
#> GSM904989     3  0.0458     0.8498 0.000 0.016 0.984 0.000 0.000 0.000
#> GSM904999     5  0.5547     0.2079 0.072 0.000 0.416 0.000 0.488 0.024
#> GSM905002     3  0.1003     0.8431 0.000 0.016 0.964 0.000 0.020 0.000
#> GSM905009     3  0.0458     0.8498 0.000 0.016 0.984 0.000 0.000 0.000
#> GSM905014     5  0.1556     0.7803 0.000 0.000 0.080 0.000 0.920 0.000
#> GSM905017     5  0.5547     0.2079 0.072 0.000 0.416 0.000 0.488 0.024
#> GSM905020     3  0.0458     0.8498 0.000 0.016 0.984 0.000 0.000 0.000
#> GSM905023     5  0.3563     0.4699 0.000 0.000 0.336 0.000 0.664 0.000
#> GSM905029     3  0.3864    -0.0307 0.000 0.000 0.520 0.000 0.480 0.000
#> GSM905032     5  0.0713     0.7667 0.000 0.000 0.028 0.000 0.972 0.000
#> GSM905034     5  0.3163     0.5663 0.232 0.000 0.000 0.000 0.764 0.004
#> GSM905040     6  0.1176     0.9706 0.020 0.000 0.000 0.000 0.024 0.956
#> GSM904985     2  0.0000     0.9397 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904988     2  0.0000     0.9397 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904990     2  0.0000     0.9397 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904992     2  0.0000     0.9397 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904995     2  0.0000     0.9397 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904998     2  0.0000     0.9397 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905000     2  0.0000     0.9397 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905003     2  0.0000     0.9397 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905006     2  0.0000     0.9397 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905008     2  0.0000     0.9397 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905011     2  0.0000     0.9397 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905013     2  0.0000     0.9397 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905016     2  0.0000     0.9397 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905018     2  0.0000     0.9397 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905021     2  0.5524     0.2389 0.072 0.508 0.396 0.000 0.000 0.024
#> GSM905025     2  0.0000     0.9397 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905028     2  0.0000     0.9397 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905030     2  0.0000     0.9397 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905033     2  0.4134     0.5278 0.028 0.656 0.316 0.000 0.000 0.000
#> GSM905035     2  0.0000     0.9397 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905037     2  0.0000     0.9397 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905039     2  0.0000     0.9397 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905042     2  0.4134     0.5278 0.028 0.656 0.316 0.000 0.000 0.000
#> GSM905046     1  0.1501     0.9746 0.924 0.000 0.000 0.076 0.000 0.000
#> GSM905065     1  0.2512     0.9471 0.880 0.000 0.000 0.060 0.000 0.060
#> GSM905049     4  0.0000     0.9386 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905050     4  0.0000     0.9386 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905064     4  0.0000     0.9386 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905045     4  0.0000     0.9386 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905051     4  0.3266     0.6360 0.272 0.000 0.000 0.728 0.000 0.000
#> GSM905055     6  0.0713     0.9926 0.028 0.000 0.000 0.000 0.000 0.972
#> GSM905058     1  0.1501     0.9746 0.924 0.000 0.000 0.076 0.000 0.000
#> GSM905053     4  0.0000     0.9386 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905061     4  0.0000     0.9386 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905063     6  0.0713     0.9926 0.028 0.000 0.000 0.000 0.000 0.972
#> GSM905054     4  0.0000     0.9386 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905062     4  0.0000     0.9386 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905052     4  0.3266     0.6360 0.272 0.000 0.000 0.728 0.000 0.000
#> GSM905059     1  0.1501     0.9746 0.924 0.000 0.000 0.076 0.000 0.000
#> GSM905047     1  0.1501     0.9746 0.924 0.000 0.000 0.076 0.000 0.000
#> GSM905066     1  0.2512     0.9471 0.880 0.000 0.000 0.060 0.000 0.060
#> GSM905056     6  0.0713     0.9926 0.028 0.000 0.000 0.000 0.000 0.972
#> GSM905060     1  0.1501     0.9746 0.924 0.000 0.000 0.076 0.000 0.000
#> GSM905048     1  0.1501     0.9746 0.924 0.000 0.000 0.076 0.000 0.000
#> GSM905067     1  0.2512     0.9471 0.880 0.000 0.000 0.060 0.000 0.060
#> GSM905057     6  0.0713     0.9926 0.028 0.000 0.000 0.000 0.000 0.972
#> GSM905068     4  0.0000     0.9386 0.000 0.000 0.000 1.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n tissue(p) genotype/variation(p) individual(p) k
#> CV:hclust 60  3.62e-09              4.36e-05         0.332 2
#> CV:hclust 75  7.29e-21              3.97e-05         0.985 3
#> CV:hclust 75  8.41e-21              7.24e-06         0.382 4
#> CV:hclust 71  8.82e-16              4.97e-06         0.380 5
#> CV:hclust 70  9.51e-19              6.55e-10         0.124 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 76 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.581           0.864       0.860         0.4590 0.528   0.528
#> 3 3 0.727           0.963       0.923         0.4233 0.762   0.565
#> 4 4 0.811           0.718       0.819         0.1090 0.936   0.807
#> 5 5 0.793           0.804       0.820         0.0610 0.940   0.797
#> 6 6 0.733           0.438       0.752         0.0425 0.940   0.772

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM905004     2  0.0672      0.769 0.008 0.992
#> GSM905024     1  0.9044      0.986 0.680 0.320
#> GSM905038     2  0.0000      0.775 0.000 1.000
#> GSM905043     1  0.9044      0.986 0.680 0.320
#> GSM904986     2  0.0000      0.775 0.000 1.000
#> GSM904991     2  0.0376      0.770 0.004 0.996
#> GSM904994     2  0.0000      0.775 0.000 1.000
#> GSM904996     2  0.0000      0.775 0.000 1.000
#> GSM905007     2  0.0000      0.775 0.000 1.000
#> GSM905012     2  0.0000      0.775 0.000 1.000
#> GSM905022     2  0.0000      0.775 0.000 1.000
#> GSM905026     2  0.0000      0.775 0.000 1.000
#> GSM905027     2  0.0000      0.775 0.000 1.000
#> GSM905031     2  0.0000      0.775 0.000 1.000
#> GSM905036     2  0.0000      0.775 0.000 1.000
#> GSM905041     2  0.1633      0.743 0.024 0.976
#> GSM905044     2  0.0000      0.775 0.000 1.000
#> GSM904989     2  0.0000      0.775 0.000 1.000
#> GSM904999     2  0.0000      0.775 0.000 1.000
#> GSM905002     2  0.0000      0.775 0.000 1.000
#> GSM905009     2  0.0000      0.775 0.000 1.000
#> GSM905014     2  0.0000      0.775 0.000 1.000
#> GSM905017     2  0.0000      0.775 0.000 1.000
#> GSM905020     2  0.0000      0.775 0.000 1.000
#> GSM905023     2  0.0000      0.775 0.000 1.000
#> GSM905029     2  0.0000      0.775 0.000 1.000
#> GSM905032     2  0.0376      0.770 0.004 0.996
#> GSM905034     1  0.9044      0.986 0.680 0.320
#> GSM905040     1  0.9044      0.986 0.680 0.320
#> GSM904985     2  0.9044      0.801 0.320 0.680
#> GSM904988     2  0.9044      0.801 0.320 0.680
#> GSM904990     2  0.9044      0.801 0.320 0.680
#> GSM904992     2  0.9044      0.801 0.320 0.680
#> GSM904995     2  0.9044      0.801 0.320 0.680
#> GSM904998     2  0.9044      0.801 0.320 0.680
#> GSM905000     2  0.9044      0.801 0.320 0.680
#> GSM905003     2  0.9044      0.801 0.320 0.680
#> GSM905006     2  0.9044      0.801 0.320 0.680
#> GSM905008     2  0.9044      0.801 0.320 0.680
#> GSM905011     2  0.9044      0.801 0.320 0.680
#> GSM905013     2  0.9044      0.801 0.320 0.680
#> GSM905016     2  0.9044      0.801 0.320 0.680
#> GSM905018     2  0.9044      0.801 0.320 0.680
#> GSM905021     2  0.9044      0.801 0.320 0.680
#> GSM905025     2  0.9044      0.801 0.320 0.680
#> GSM905028     2  0.9044      0.801 0.320 0.680
#> GSM905030     2  0.9044      0.801 0.320 0.680
#> GSM905033     2  0.9044      0.801 0.320 0.680
#> GSM905035     2  0.9044      0.801 0.320 0.680
#> GSM905037     2  0.9044      0.801 0.320 0.680
#> GSM905039     2  0.9044      0.801 0.320 0.680
#> GSM905042     2  0.9044      0.801 0.320 0.680
#> GSM905046     1  0.8909      0.998 0.692 0.308
#> GSM905065     1  0.8909      0.998 0.692 0.308
#> GSM905049     1  0.8909      0.998 0.692 0.308
#> GSM905050     1  0.8909      0.998 0.692 0.308
#> GSM905064     1  0.8909      0.998 0.692 0.308
#> GSM905045     1  0.8909      0.998 0.692 0.308
#> GSM905051     1  0.8909      0.998 0.692 0.308
#> GSM905055     1  0.8909      0.998 0.692 0.308
#> GSM905058     1  0.8909      0.998 0.692 0.308
#> GSM905053     1  0.8909      0.998 0.692 0.308
#> GSM905061     1  0.8909      0.998 0.692 0.308
#> GSM905063     1  0.8909      0.998 0.692 0.308
#> GSM905054     1  0.8909      0.998 0.692 0.308
#> GSM905062     1  0.8909      0.998 0.692 0.308
#> GSM905052     1  0.8909      0.998 0.692 0.308
#> GSM905059     1  0.8909      0.998 0.692 0.308
#> GSM905047     1  0.8909      0.998 0.692 0.308
#> GSM905066     1  0.8909      0.998 0.692 0.308
#> GSM905056     1  0.8909      0.998 0.692 0.308
#> GSM905060     1  0.8909      0.998 0.692 0.308
#> GSM905048     1  0.8909      0.998 0.692 0.308
#> GSM905067     1  0.8909      0.998 0.692 0.308
#> GSM905057     1  0.8909      0.998 0.692 0.308
#> GSM905068     1  0.8909      0.998 0.692 0.308

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM905004     3  0.2176      0.842 0.032 0.020 0.948
#> GSM905024     3  0.3038      0.827 0.104 0.000 0.896
#> GSM905038     3  0.3879      0.973 0.000 0.152 0.848
#> GSM905043     3  0.3038      0.827 0.104 0.000 0.896
#> GSM904986     3  0.3879      0.973 0.000 0.152 0.848
#> GSM904991     3  0.3192      0.943 0.000 0.112 0.888
#> GSM904994     3  0.3879      0.973 0.000 0.152 0.848
#> GSM904996     3  0.3879      0.973 0.000 0.152 0.848
#> GSM905007     3  0.3879      0.973 0.000 0.152 0.848
#> GSM905012     3  0.3879      0.973 0.000 0.152 0.848
#> GSM905022     3  0.3879      0.973 0.000 0.152 0.848
#> GSM905026     3  0.3879      0.973 0.000 0.152 0.848
#> GSM905027     3  0.3879      0.973 0.000 0.152 0.848
#> GSM905031     3  0.3879      0.973 0.000 0.152 0.848
#> GSM905036     3  0.3879      0.973 0.000 0.152 0.848
#> GSM905041     3  0.3116      0.940 0.000 0.108 0.892
#> GSM905044     3  0.3879      0.973 0.000 0.152 0.848
#> GSM904989     3  0.3879      0.973 0.000 0.152 0.848
#> GSM904999     3  0.3879      0.973 0.000 0.152 0.848
#> GSM905002     3  0.3879      0.973 0.000 0.152 0.848
#> GSM905009     3  0.3879      0.973 0.000 0.152 0.848
#> GSM905014     3  0.3879      0.973 0.000 0.152 0.848
#> GSM905017     3  0.3879      0.973 0.000 0.152 0.848
#> GSM905020     3  0.3879      0.973 0.000 0.152 0.848
#> GSM905023     3  0.3879      0.973 0.000 0.152 0.848
#> GSM905029     3  0.3879      0.973 0.000 0.152 0.848
#> GSM905032     3  0.3116      0.940 0.000 0.108 0.892
#> GSM905034     1  0.2165      0.943 0.936 0.000 0.064
#> GSM905040     1  0.2261      0.942 0.932 0.000 0.068
#> GSM904985     2  0.0592      0.993 0.012 0.988 0.000
#> GSM904988     2  0.0000      0.996 0.000 1.000 0.000
#> GSM904990     2  0.0000      0.996 0.000 1.000 0.000
#> GSM904992     2  0.0000      0.996 0.000 1.000 0.000
#> GSM904995     2  0.0592      0.993 0.012 0.988 0.000
#> GSM904998     2  0.0000      0.996 0.000 1.000 0.000
#> GSM905000     2  0.0000      0.996 0.000 1.000 0.000
#> GSM905003     2  0.0000      0.996 0.000 1.000 0.000
#> GSM905006     2  0.0000      0.996 0.000 1.000 0.000
#> GSM905008     2  0.0000      0.996 0.000 1.000 0.000
#> GSM905011     2  0.0000      0.996 0.000 1.000 0.000
#> GSM905013     2  0.0000      0.996 0.000 1.000 0.000
#> GSM905016     2  0.0592      0.993 0.012 0.988 0.000
#> GSM905018     2  0.0000      0.996 0.000 1.000 0.000
#> GSM905021     2  0.0747      0.993 0.016 0.984 0.000
#> GSM905025     2  0.0747      0.993 0.016 0.984 0.000
#> GSM905028     2  0.0237      0.995 0.004 0.996 0.000
#> GSM905030     2  0.0237      0.995 0.004 0.996 0.000
#> GSM905033     2  0.0592      0.994 0.012 0.988 0.000
#> GSM905035     2  0.0747      0.993 0.016 0.984 0.000
#> GSM905037     2  0.0237      0.995 0.004 0.996 0.000
#> GSM905039     2  0.0747      0.993 0.016 0.984 0.000
#> GSM905042     2  0.0592      0.994 0.012 0.988 0.000
#> GSM905046     1  0.1289      0.952 0.968 0.000 0.032
#> GSM905065     1  0.1289      0.952 0.968 0.000 0.032
#> GSM905049     1  0.3267      0.944 0.884 0.000 0.116
#> GSM905050     1  0.3267      0.944 0.884 0.000 0.116
#> GSM905064     1  0.3267      0.944 0.884 0.000 0.116
#> GSM905045     1  0.3267      0.944 0.884 0.000 0.116
#> GSM905051     1  0.3267      0.944 0.884 0.000 0.116
#> GSM905055     1  0.2261      0.942 0.932 0.000 0.068
#> GSM905058     1  0.1289      0.952 0.968 0.000 0.032
#> GSM905053     1  0.3267      0.944 0.884 0.000 0.116
#> GSM905061     1  0.3267      0.944 0.884 0.000 0.116
#> GSM905063     1  0.2261      0.942 0.932 0.000 0.068
#> GSM905054     1  0.3267      0.944 0.884 0.000 0.116
#> GSM905062     1  0.3267      0.944 0.884 0.000 0.116
#> GSM905052     1  0.3267      0.944 0.884 0.000 0.116
#> GSM905059     1  0.0747      0.953 0.984 0.000 0.016
#> GSM905047     1  0.0747      0.953 0.984 0.000 0.016
#> GSM905066     1  0.1289      0.952 0.968 0.000 0.032
#> GSM905056     1  0.2261      0.942 0.932 0.000 0.068
#> GSM905060     1  0.0747      0.953 0.984 0.000 0.016
#> GSM905048     1  0.1289      0.952 0.968 0.000 0.032
#> GSM905067     1  0.1289      0.952 0.968 0.000 0.032
#> GSM905057     1  0.2261      0.942 0.932 0.000 0.068
#> GSM905068     1  0.3267      0.944 0.884 0.000 0.116

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM905004     3  0.4406     0.5773 0.000 0.000 0.700 0.300
#> GSM905024     1  0.5558     0.0269 0.528 0.004 0.456 0.012
#> GSM905038     3  0.0469     0.9491 0.000 0.012 0.988 0.000
#> GSM905043     1  0.5290     0.1983 0.584 0.000 0.404 0.012
#> GSM904986     3  0.0469     0.9491 0.000 0.012 0.988 0.000
#> GSM904991     3  0.2921     0.8566 0.140 0.000 0.860 0.000
#> GSM904994     3  0.0469     0.9491 0.000 0.012 0.988 0.000
#> GSM904996     3  0.0469     0.9491 0.000 0.012 0.988 0.000
#> GSM905007     3  0.2101     0.9222 0.060 0.012 0.928 0.000
#> GSM905012     3  0.0469     0.9491 0.000 0.012 0.988 0.000
#> GSM905022     3  0.0469     0.9491 0.000 0.012 0.988 0.000
#> GSM905026     3  0.0469     0.9491 0.000 0.012 0.988 0.000
#> GSM905027     3  0.0469     0.9491 0.000 0.012 0.988 0.000
#> GSM905031     3  0.0469     0.9491 0.000 0.012 0.988 0.000
#> GSM905036     3  0.1059     0.9437 0.016 0.012 0.972 0.000
#> GSM905041     3  0.2921     0.8566 0.140 0.000 0.860 0.000
#> GSM905044     3  0.0469     0.9491 0.000 0.012 0.988 0.000
#> GSM904989     3  0.0469     0.9491 0.000 0.012 0.988 0.000
#> GSM904999     3  0.3217     0.8854 0.128 0.012 0.860 0.000
#> GSM905002     3  0.0469     0.9491 0.000 0.012 0.988 0.000
#> GSM905009     3  0.0469     0.9491 0.000 0.012 0.988 0.000
#> GSM905014     3  0.2329     0.9156 0.072 0.012 0.916 0.000
#> GSM905017     3  0.3217     0.8854 0.128 0.012 0.860 0.000
#> GSM905020     3  0.0469     0.9491 0.000 0.012 0.988 0.000
#> GSM905023     3  0.1059     0.9437 0.016 0.012 0.972 0.000
#> GSM905029     3  0.0469     0.9491 0.000 0.012 0.988 0.000
#> GSM905032     3  0.3893     0.7923 0.196 0.008 0.796 0.000
#> GSM905034     1  0.5464     0.3590 0.632 0.004 0.020 0.344
#> GSM905040     1  0.5047     0.4331 0.712 0.012 0.012 0.264
#> GSM904985     2  0.4182     0.9102 0.180 0.796 0.024 0.000
#> GSM904988     2  0.1629     0.9390 0.024 0.952 0.024 0.000
#> GSM904990     2  0.0817     0.9396 0.000 0.976 0.024 0.000
#> GSM904992     2  0.1629     0.9390 0.024 0.952 0.024 0.000
#> GSM904995     2  0.4095     0.9122 0.172 0.804 0.024 0.000
#> GSM904998     2  0.2111     0.9384 0.044 0.932 0.024 0.000
#> GSM905000     2  0.0817     0.9396 0.000 0.976 0.024 0.000
#> GSM905003     2  0.2197     0.9338 0.048 0.928 0.024 0.000
#> GSM905006     2  0.1629     0.9390 0.024 0.952 0.024 0.000
#> GSM905008     2  0.2111     0.9384 0.044 0.932 0.024 0.000
#> GSM905011     2  0.1629     0.9390 0.024 0.952 0.024 0.000
#> GSM905013     2  0.0817     0.9396 0.000 0.976 0.024 0.000
#> GSM905016     2  0.4095     0.9122 0.172 0.804 0.024 0.000
#> GSM905018     2  0.0817     0.9396 0.000 0.976 0.024 0.000
#> GSM905021     2  0.4644     0.8708 0.228 0.748 0.024 0.000
#> GSM905025     2  0.3659     0.9143 0.136 0.840 0.024 0.000
#> GSM905028     2  0.0817     0.9396 0.000 0.976 0.024 0.000
#> GSM905030     2  0.1629     0.9390 0.024 0.952 0.024 0.000
#> GSM905033     2  0.4225     0.8963 0.184 0.792 0.024 0.000
#> GSM905035     2  0.4095     0.9122 0.172 0.804 0.024 0.000
#> GSM905037     2  0.0817     0.9396 0.000 0.976 0.024 0.000
#> GSM905039     2  0.3659     0.9143 0.136 0.840 0.024 0.000
#> GSM905042     2  0.4225     0.8963 0.184 0.792 0.024 0.000
#> GSM905046     4  0.5273     0.1045 0.456 0.008 0.000 0.536
#> GSM905065     4  0.5147     0.0935 0.460 0.004 0.000 0.536
#> GSM905049     4  0.0469     0.6301 0.000 0.000 0.012 0.988
#> GSM905050     4  0.0469     0.6301 0.000 0.000 0.012 0.988
#> GSM905064     4  0.0188     0.6290 0.000 0.000 0.004 0.996
#> GSM905045     4  0.0469     0.6301 0.000 0.000 0.012 0.988
#> GSM905051     4  0.0188     0.6265 0.000 0.004 0.000 0.996
#> GSM905055     1  0.5809     0.3820 0.572 0.016 0.012 0.400
#> GSM905058     4  0.5277     0.0970 0.460 0.008 0.000 0.532
#> GSM905053     4  0.0469     0.6301 0.000 0.000 0.012 0.988
#> GSM905061     4  0.0469     0.6301 0.000 0.000 0.012 0.988
#> GSM905063     1  0.5809     0.3820 0.572 0.016 0.012 0.400
#> GSM905054     4  0.0336     0.6300 0.000 0.000 0.008 0.992
#> GSM905062     4  0.0469     0.6301 0.000 0.000 0.012 0.988
#> GSM905052     4  0.0188     0.6265 0.000 0.004 0.000 0.996
#> GSM905059     4  0.5257     0.1337 0.444 0.008 0.000 0.548
#> GSM905047     4  0.5250     0.1387 0.440 0.008 0.000 0.552
#> GSM905066     4  0.5147     0.0935 0.460 0.004 0.000 0.536
#> GSM905056     1  0.5809     0.3820 0.572 0.016 0.012 0.400
#> GSM905060     4  0.5257     0.1337 0.444 0.008 0.000 0.548
#> GSM905048     4  0.5273     0.1045 0.456 0.008 0.000 0.536
#> GSM905067     4  0.5147     0.0935 0.460 0.004 0.000 0.536
#> GSM905057     1  0.5809     0.3820 0.572 0.016 0.012 0.400
#> GSM905068     4  0.0469     0.6301 0.000 0.000 0.012 0.988

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4 p5
#> GSM905004     3  0.4658      0.309 0.000 0.000 0.576 0.408 NA
#> GSM905024     1  0.6498      0.254 0.460 0.000 0.200 0.000 NA
#> GSM905038     3  0.1831      0.873 0.004 0.000 0.920 0.000 NA
#> GSM905043     1  0.6039      0.366 0.552 0.000 0.148 0.000 NA
#> GSM904986     3  0.0000      0.888 0.000 0.000 1.000 0.000 NA
#> GSM904991     3  0.5515      0.693 0.112 0.000 0.628 0.000 NA
#> GSM904994     3  0.0000      0.888 0.000 0.000 1.000 0.000 NA
#> GSM904996     3  0.0000      0.888 0.000 0.000 1.000 0.000 NA
#> GSM905007     3  0.3687      0.824 0.028 0.000 0.792 0.000 NA
#> GSM905012     3  0.0000      0.888 0.000 0.000 1.000 0.000 NA
#> GSM905022     3  0.0000      0.888 0.000 0.000 1.000 0.000 NA
#> GSM905026     3  0.0000      0.888 0.000 0.000 1.000 0.000 NA
#> GSM905027     3  0.0510      0.886 0.000 0.000 0.984 0.000 NA
#> GSM905031     3  0.0000      0.888 0.000 0.000 1.000 0.000 NA
#> GSM905036     3  0.2997      0.847 0.012 0.000 0.840 0.000 NA
#> GSM905041     3  0.5537      0.689 0.112 0.000 0.624 0.000 NA
#> GSM905044     3  0.0000      0.888 0.000 0.000 1.000 0.000 NA
#> GSM904989     3  0.0000      0.888 0.000 0.000 1.000 0.000 NA
#> GSM904999     3  0.4444      0.797 0.072 0.000 0.748 0.000 NA
#> GSM905002     3  0.0000      0.888 0.000 0.000 1.000 0.000 NA
#> GSM905009     3  0.0000      0.888 0.000 0.000 1.000 0.000 NA
#> GSM905014     3  0.3994      0.812 0.040 0.000 0.772 0.000 NA
#> GSM905017     3  0.4444      0.797 0.072 0.000 0.748 0.000 NA
#> GSM905020     3  0.0000      0.888 0.000 0.000 1.000 0.000 NA
#> GSM905023     3  0.2909      0.850 0.012 0.000 0.848 0.000 NA
#> GSM905029     3  0.1704      0.875 0.004 0.000 0.928 0.000 NA
#> GSM905032     3  0.6147      0.603 0.168 0.000 0.544 0.000 NA
#> GSM905034     1  0.5892      0.497 0.520 0.000 0.000 0.108 NA
#> GSM905040     1  0.5167      0.541 0.664 0.000 0.000 0.088 NA
#> GSM904985     2  0.4444      0.783 0.000 0.624 0.012 0.000 NA
#> GSM904988     2  0.0807      0.868 0.012 0.976 0.012 0.000 NA
#> GSM904990     2  0.0968      0.869 0.004 0.972 0.012 0.000 NA
#> GSM904992     2  0.0807      0.868 0.012 0.976 0.012 0.000 NA
#> GSM904995     2  0.4464      0.800 0.008 0.676 0.012 0.000 NA
#> GSM904998     2  0.2208      0.860 0.012 0.916 0.012 0.000 NA
#> GSM905000     2  0.0968      0.869 0.004 0.972 0.012 0.000 NA
#> GSM905003     2  0.3170      0.839 0.016 0.852 0.012 0.000 NA
#> GSM905006     2  0.0807      0.868 0.012 0.976 0.012 0.000 NA
#> GSM905008     2  0.2444      0.857 0.016 0.904 0.012 0.000 NA
#> GSM905011     2  0.0807      0.868 0.012 0.976 0.012 0.000 NA
#> GSM905013     2  0.0968      0.869 0.004 0.972 0.012 0.000 NA
#> GSM905016     2  0.4464      0.800 0.008 0.676 0.012 0.000 NA
#> GSM905018     2  0.0968      0.869 0.004 0.972 0.012 0.000 NA
#> GSM905021     2  0.5504      0.718 0.040 0.516 0.012 0.000 NA
#> GSM905025     2  0.4588      0.801 0.012 0.668 0.012 0.000 NA
#> GSM905028     2  0.1605      0.869 0.004 0.944 0.012 0.000 NA
#> GSM905030     2  0.0807      0.868 0.012 0.976 0.012 0.000 NA
#> GSM905033     2  0.5484      0.756 0.048 0.580 0.012 0.000 NA
#> GSM905035     2  0.4464      0.800 0.008 0.676 0.012 0.000 NA
#> GSM905037     2  0.0968      0.869 0.004 0.972 0.012 0.000 NA
#> GSM905039     2  0.4568      0.802 0.012 0.672 0.012 0.000 NA
#> GSM905042     2  0.5484      0.756 0.048 0.580 0.012 0.000 NA
#> GSM905046     1  0.5475      0.707 0.604 0.000 0.000 0.308 NA
#> GSM905065     1  0.4400      0.709 0.672 0.000 0.000 0.308 NA
#> GSM905049     4  0.0000      0.982 0.000 0.000 0.000 1.000 NA
#> GSM905050     4  0.0000      0.982 0.000 0.000 0.000 1.000 NA
#> GSM905064     4  0.0000      0.982 0.000 0.000 0.000 1.000 NA
#> GSM905045     4  0.0510      0.979 0.000 0.000 0.000 0.984 NA
#> GSM905051     4  0.1644      0.943 0.004 0.008 0.000 0.940 NA
#> GSM905055     1  0.5147      0.686 0.692 0.004 0.000 0.208 NA
#> GSM905058     1  0.5568      0.704 0.596 0.000 0.000 0.308 NA
#> GSM905053     4  0.0000      0.982 0.000 0.000 0.000 1.000 NA
#> GSM905061     4  0.0609      0.978 0.000 0.000 0.000 0.980 NA
#> GSM905063     1  0.4841      0.691 0.708 0.000 0.000 0.208 NA
#> GSM905054     4  0.0000      0.982 0.000 0.000 0.000 1.000 NA
#> GSM905062     4  0.0609      0.978 0.000 0.000 0.000 0.980 NA
#> GSM905052     4  0.1644      0.943 0.004 0.008 0.000 0.940 NA
#> GSM905059     1  0.5630      0.693 0.580 0.000 0.000 0.324 NA
#> GSM905047     1  0.5538      0.697 0.588 0.000 0.000 0.324 NA
#> GSM905066     1  0.4400      0.709 0.672 0.000 0.000 0.308 NA
#> GSM905056     1  0.5147      0.686 0.692 0.004 0.000 0.208 NA
#> GSM905060     1  0.5630      0.693 0.580 0.000 0.000 0.324 NA
#> GSM905048     1  0.5475      0.707 0.604 0.000 0.000 0.308 NA
#> GSM905067     1  0.4400      0.709 0.672 0.000 0.000 0.308 NA
#> GSM905057     1  0.5147      0.686 0.692 0.004 0.000 0.208 NA
#> GSM905068     4  0.0404      0.979 0.000 0.000 0.000 0.988 NA

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM905004     3  0.5145     0.2390 0.000 0.000 0.556 0.372 0.016 0.056
#> GSM905024     5  0.6286     0.5273 0.260 0.000 0.096 0.008 0.564 0.072
#> GSM905038     3  0.3398     0.6409 0.000 0.000 0.768 0.004 0.216 0.012
#> GSM905043     5  0.5861     0.4968 0.228 0.000 0.064 0.008 0.620 0.080
#> GSM904986     3  0.0146     0.7882 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM904991     5  0.4285     0.0559 0.000 0.000 0.432 0.008 0.552 0.008
#> GSM904994     3  0.0000     0.7893 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904996     3  0.0000     0.7893 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905007     3  0.4161     0.4127 0.000 0.000 0.612 0.008 0.372 0.008
#> GSM905012     3  0.0000     0.7893 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905022     3  0.0146     0.7882 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM905026     3  0.0146     0.7888 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM905027     3  0.2225     0.7437 0.000 0.000 0.892 0.008 0.092 0.008
#> GSM905031     3  0.0146     0.7888 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM905036     3  0.4044     0.5263 0.000 0.000 0.668 0.008 0.312 0.012
#> GSM905041     5  0.4172     0.0862 0.000 0.000 0.424 0.008 0.564 0.004
#> GSM905044     3  0.0291     0.7879 0.000 0.000 0.992 0.004 0.000 0.004
#> GSM904989     3  0.0291     0.7878 0.000 0.000 0.992 0.004 0.000 0.004
#> GSM904999     3  0.6076     0.2189 0.000 0.000 0.504 0.100 0.348 0.048
#> GSM905002     3  0.0000     0.7893 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905009     3  0.0146     0.7888 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM905014     3  0.4230     0.3437 0.000 0.000 0.584 0.008 0.400 0.008
#> GSM905017     3  0.6076     0.2189 0.000 0.000 0.504 0.100 0.348 0.048
#> GSM905020     3  0.0000     0.7893 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905023     3  0.4009     0.5391 0.000 0.000 0.676 0.008 0.304 0.012
#> GSM905029     3  0.3370     0.6490 0.000 0.000 0.772 0.004 0.212 0.012
#> GSM905032     5  0.3405     0.3582 0.000 0.000 0.272 0.000 0.724 0.004
#> GSM905034     5  0.5618     0.3080 0.364 0.000 0.004 0.012 0.524 0.096
#> GSM905040     5  0.6564    -0.0560 0.312 0.000 0.000 0.052 0.464 0.172
#> GSM904985     2  0.1983     0.2282 0.000 0.916 0.000 0.012 0.012 0.060
#> GSM904988     2  0.3862    -0.4944 0.000 0.524 0.000 0.000 0.000 0.476
#> GSM904990     2  0.3989    -0.4910 0.000 0.528 0.000 0.004 0.000 0.468
#> GSM904992     2  0.4089    -0.5148 0.000 0.524 0.000 0.000 0.008 0.468
#> GSM904995     2  0.0665     0.2576 0.000 0.980 0.000 0.008 0.004 0.008
#> GSM904998     2  0.4394    -0.7985 0.000 0.492 0.000 0.004 0.016 0.488
#> GSM905000     2  0.3989    -0.4910 0.000 0.528 0.000 0.004 0.000 0.468
#> GSM905003     6  0.5238     0.7514 0.000 0.464 0.000 0.024 0.044 0.468
#> GSM905006     2  0.3862    -0.4944 0.000 0.524 0.000 0.000 0.000 0.476
#> GSM905008     6  0.4537     0.7373 0.000 0.480 0.000 0.004 0.024 0.492
#> GSM905011     2  0.3862    -0.4944 0.000 0.524 0.000 0.000 0.000 0.476
#> GSM905013     2  0.3989    -0.4910 0.000 0.528 0.000 0.004 0.000 0.468
#> GSM905016     2  0.0665     0.2576 0.000 0.980 0.000 0.008 0.004 0.008
#> GSM905018     2  0.3989    -0.4910 0.000 0.528 0.000 0.004 0.000 0.468
#> GSM905021     2  0.5628     0.1404 0.000 0.660 0.000 0.084 0.124 0.132
#> GSM905025     2  0.0458     0.2543 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM905028     2  0.3861    -0.4131 0.000 0.640 0.000 0.008 0.000 0.352
#> GSM905030     2  0.4211    -0.5224 0.000 0.532 0.000 0.004 0.008 0.456
#> GSM905033     2  0.5563     0.1224 0.000 0.660 0.000 0.064 0.136 0.140
#> GSM905035     2  0.0405     0.2577 0.000 0.988 0.000 0.000 0.004 0.008
#> GSM905037     2  0.4080    -0.5001 0.000 0.536 0.000 0.008 0.000 0.456
#> GSM905039     2  0.0458     0.2543 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM905042     2  0.5563     0.1224 0.000 0.660 0.000 0.064 0.136 0.140
#> GSM905046     1  0.0653     0.8114 0.980 0.000 0.000 0.012 0.004 0.004
#> GSM905065     1  0.2806     0.8110 0.872 0.000 0.000 0.012 0.060 0.056
#> GSM905049     4  0.3081     0.9601 0.220 0.000 0.004 0.776 0.000 0.000
#> GSM905050     4  0.3081     0.9601 0.220 0.000 0.004 0.776 0.000 0.000
#> GSM905064     4  0.3081     0.9601 0.220 0.000 0.004 0.776 0.000 0.000
#> GSM905045     4  0.4072     0.9537 0.220 0.000 0.004 0.736 0.008 0.032
#> GSM905051     4  0.4341     0.8790 0.284 0.000 0.000 0.676 0.016 0.024
#> GSM905055     1  0.5978     0.6763 0.604 0.000 0.000 0.060 0.152 0.184
#> GSM905058     1  0.1642     0.7915 0.936 0.000 0.000 0.004 0.032 0.028
#> GSM905053     4  0.3081     0.9601 0.220 0.000 0.004 0.776 0.000 0.000
#> GSM905061     4  0.4168     0.9524 0.220 0.000 0.004 0.732 0.012 0.032
#> GSM905063     1  0.5846     0.6812 0.620 0.000 0.000 0.056 0.160 0.164
#> GSM905054     4  0.3081     0.9601 0.220 0.000 0.004 0.776 0.000 0.000
#> GSM905062     4  0.4168     0.9524 0.220 0.000 0.004 0.732 0.012 0.032
#> GSM905052     4  0.4341     0.8790 0.284 0.000 0.000 0.676 0.016 0.024
#> GSM905059     1  0.2038     0.7852 0.920 0.000 0.000 0.020 0.032 0.028
#> GSM905047     1  0.1003     0.8023 0.964 0.000 0.000 0.028 0.004 0.004
#> GSM905066     1  0.2806     0.8110 0.872 0.000 0.000 0.012 0.060 0.056
#> GSM905056     1  0.5978     0.6763 0.604 0.000 0.000 0.060 0.152 0.184
#> GSM905060     1  0.2038     0.7852 0.920 0.000 0.000 0.020 0.032 0.028
#> GSM905048     1  0.0653     0.8114 0.980 0.000 0.000 0.012 0.004 0.004
#> GSM905067     1  0.2806     0.8110 0.872 0.000 0.000 0.012 0.060 0.056
#> GSM905057     1  0.5978     0.6763 0.604 0.000 0.000 0.060 0.152 0.184
#> GSM905068     4  0.4072     0.9537 0.220 0.000 0.004 0.736 0.008 0.032

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n tissue(p) genotype/variation(p) individual(p) k
#> CV:kmeans 76  2.17e-09              6.67e-03        0.0862 2
#> CV:kmeans 76  2.85e-20              4.94e-05        0.9774 3
#> CV:kmeans 59  1.29e-20              2.34e-05        0.9978 4
#> CV:kmeans 72  2.68e-22              1.67e-09        0.4484 5
#> CV:kmeans 44  1.51e-08              7.26e-04        0.2272 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 76 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.993       0.996         0.5039 0.496   0.496
#> 3 3 1.000           0.964       0.986         0.3364 0.728   0.504
#> 4 4 1.000           0.977       0.984         0.1061 0.897   0.698
#> 5 5 0.893           0.839       0.918         0.0593 0.938   0.761
#> 6 6 0.888           0.710       0.865         0.0293 0.971   0.866

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM905004     1  0.0000      0.997 1.000 0.000
#> GSM905024     1  0.0000      0.997 1.000 0.000
#> GSM905038     2  0.2778      0.952 0.048 0.952
#> GSM905043     1  0.0000      0.997 1.000 0.000
#> GSM904986     2  0.0000      0.996 0.000 1.000
#> GSM904991     1  0.0000      0.997 1.000 0.000
#> GSM904994     2  0.0000      0.996 0.000 1.000
#> GSM904996     2  0.0000      0.996 0.000 1.000
#> GSM905007     1  0.0000      0.997 1.000 0.000
#> GSM905012     2  0.0000      0.996 0.000 1.000
#> GSM905022     2  0.0000      0.996 0.000 1.000
#> GSM905026     2  0.0000      0.996 0.000 1.000
#> GSM905027     2  0.1633      0.975 0.024 0.976
#> GSM905031     2  0.0000      0.996 0.000 1.000
#> GSM905036     1  0.0672      0.990 0.992 0.008
#> GSM905041     1  0.0000      0.997 1.000 0.000
#> GSM905044     2  0.0000      0.996 0.000 1.000
#> GSM904989     2  0.0000      0.996 0.000 1.000
#> GSM904999     2  0.0000      0.996 0.000 1.000
#> GSM905002     2  0.0000      0.996 0.000 1.000
#> GSM905009     2  0.0000      0.996 0.000 1.000
#> GSM905014     1  0.4431      0.898 0.908 0.092
#> GSM905017     2  0.0000      0.996 0.000 1.000
#> GSM905020     2  0.0000      0.996 0.000 1.000
#> GSM905023     2  0.2778      0.952 0.048 0.952
#> GSM905029     2  0.2778      0.952 0.048 0.952
#> GSM905032     1  0.0000      0.997 1.000 0.000
#> GSM905034     1  0.0000      0.997 1.000 0.000
#> GSM905040     1  0.0000      0.997 1.000 0.000
#> GSM904985     2  0.0000      0.996 0.000 1.000
#> GSM904988     2  0.0000      0.996 0.000 1.000
#> GSM904990     2  0.0000      0.996 0.000 1.000
#> GSM904992     2  0.0000      0.996 0.000 1.000
#> GSM904995     2  0.0000      0.996 0.000 1.000
#> GSM904998     2  0.0000      0.996 0.000 1.000
#> GSM905000     2  0.0000      0.996 0.000 1.000
#> GSM905003     2  0.0000      0.996 0.000 1.000
#> GSM905006     2  0.0000      0.996 0.000 1.000
#> GSM905008     2  0.0000      0.996 0.000 1.000
#> GSM905011     2  0.0000      0.996 0.000 1.000
#> GSM905013     2  0.0000      0.996 0.000 1.000
#> GSM905016     2  0.0000      0.996 0.000 1.000
#> GSM905018     2  0.0000      0.996 0.000 1.000
#> GSM905021     2  0.0000      0.996 0.000 1.000
#> GSM905025     2  0.0000      0.996 0.000 1.000
#> GSM905028     2  0.0000      0.996 0.000 1.000
#> GSM905030     2  0.0000      0.996 0.000 1.000
#> GSM905033     2  0.0000      0.996 0.000 1.000
#> GSM905035     2  0.0000      0.996 0.000 1.000
#> GSM905037     2  0.0000      0.996 0.000 1.000
#> GSM905039     2  0.0000      0.996 0.000 1.000
#> GSM905042     2  0.0000      0.996 0.000 1.000
#> GSM905046     1  0.0000      0.997 1.000 0.000
#> GSM905065     1  0.0000      0.997 1.000 0.000
#> GSM905049     1  0.0000      0.997 1.000 0.000
#> GSM905050     1  0.0000      0.997 1.000 0.000
#> GSM905064     1  0.0000      0.997 1.000 0.000
#> GSM905045     1  0.0000      0.997 1.000 0.000
#> GSM905051     1  0.0000      0.997 1.000 0.000
#> GSM905055     1  0.0000      0.997 1.000 0.000
#> GSM905058     1  0.0000      0.997 1.000 0.000
#> GSM905053     1  0.0000      0.997 1.000 0.000
#> GSM905061     1  0.0000      0.997 1.000 0.000
#> GSM905063     1  0.0000      0.997 1.000 0.000
#> GSM905054     1  0.0000      0.997 1.000 0.000
#> GSM905062     1  0.0000      0.997 1.000 0.000
#> GSM905052     1  0.0000      0.997 1.000 0.000
#> GSM905059     1  0.0000      0.997 1.000 0.000
#> GSM905047     1  0.0000      0.997 1.000 0.000
#> GSM905066     1  0.0000      0.997 1.000 0.000
#> GSM905056     1  0.0000      0.997 1.000 0.000
#> GSM905060     1  0.0000      0.997 1.000 0.000
#> GSM905048     1  0.0000      0.997 1.000 0.000
#> GSM905067     1  0.0000      0.997 1.000 0.000
#> GSM905057     1  0.0000      0.997 1.000 0.000
#> GSM905068     1  0.0000      0.997 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1 p2    p3
#> GSM905004     1   0.475      0.707 0.784  0 0.216
#> GSM905024     3   0.617      0.312 0.412  0 0.588
#> GSM905038     3   0.000      0.965 0.000  0 1.000
#> GSM905043     3   0.618      0.301 0.416  0 0.584
#> GSM904986     3   0.000      0.965 0.000  0 1.000
#> GSM904991     3   0.000      0.965 0.000  0 1.000
#> GSM904994     3   0.000      0.965 0.000  0 1.000
#> GSM904996     3   0.000      0.965 0.000  0 1.000
#> GSM905007     3   0.000      0.965 0.000  0 1.000
#> GSM905012     3   0.000      0.965 0.000  0 1.000
#> GSM905022     3   0.000      0.965 0.000  0 1.000
#> GSM905026     3   0.000      0.965 0.000  0 1.000
#> GSM905027     3   0.000      0.965 0.000  0 1.000
#> GSM905031     3   0.000      0.965 0.000  0 1.000
#> GSM905036     3   0.000      0.965 0.000  0 1.000
#> GSM905041     3   0.000      0.965 0.000  0 1.000
#> GSM905044     3   0.000      0.965 0.000  0 1.000
#> GSM904989     3   0.000      0.965 0.000  0 1.000
#> GSM904999     3   0.000      0.965 0.000  0 1.000
#> GSM905002     3   0.000      0.965 0.000  0 1.000
#> GSM905009     3   0.000      0.965 0.000  0 1.000
#> GSM905014     3   0.000      0.965 0.000  0 1.000
#> GSM905017     3   0.000      0.965 0.000  0 1.000
#> GSM905020     3   0.000      0.965 0.000  0 1.000
#> GSM905023     3   0.000      0.965 0.000  0 1.000
#> GSM905029     3   0.000      0.965 0.000  0 1.000
#> GSM905032     3   0.000      0.965 0.000  0 1.000
#> GSM905034     1   0.000      0.991 1.000  0 0.000
#> GSM905040     1   0.000      0.991 1.000  0 0.000
#> GSM904985     2   0.000      1.000 0.000  1 0.000
#> GSM904988     2   0.000      1.000 0.000  1 0.000
#> GSM904990     2   0.000      1.000 0.000  1 0.000
#> GSM904992     2   0.000      1.000 0.000  1 0.000
#> GSM904995     2   0.000      1.000 0.000  1 0.000
#> GSM904998     2   0.000      1.000 0.000  1 0.000
#> GSM905000     2   0.000      1.000 0.000  1 0.000
#> GSM905003     2   0.000      1.000 0.000  1 0.000
#> GSM905006     2   0.000      1.000 0.000  1 0.000
#> GSM905008     2   0.000      1.000 0.000  1 0.000
#> GSM905011     2   0.000      1.000 0.000  1 0.000
#> GSM905013     2   0.000      1.000 0.000  1 0.000
#> GSM905016     2   0.000      1.000 0.000  1 0.000
#> GSM905018     2   0.000      1.000 0.000  1 0.000
#> GSM905021     2   0.000      1.000 0.000  1 0.000
#> GSM905025     2   0.000      1.000 0.000  1 0.000
#> GSM905028     2   0.000      1.000 0.000  1 0.000
#> GSM905030     2   0.000      1.000 0.000  1 0.000
#> GSM905033     2   0.000      1.000 0.000  1 0.000
#> GSM905035     2   0.000      1.000 0.000  1 0.000
#> GSM905037     2   0.000      1.000 0.000  1 0.000
#> GSM905039     2   0.000      1.000 0.000  1 0.000
#> GSM905042     2   0.000      1.000 0.000  1 0.000
#> GSM905046     1   0.000      0.991 1.000  0 0.000
#> GSM905065     1   0.000      0.991 1.000  0 0.000
#> GSM905049     1   0.000      0.991 1.000  0 0.000
#> GSM905050     1   0.000      0.991 1.000  0 0.000
#> GSM905064     1   0.000      0.991 1.000  0 0.000
#> GSM905045     1   0.000      0.991 1.000  0 0.000
#> GSM905051     1   0.000      0.991 1.000  0 0.000
#> GSM905055     1   0.000      0.991 1.000  0 0.000
#> GSM905058     1   0.000      0.991 1.000  0 0.000
#> GSM905053     1   0.000      0.991 1.000  0 0.000
#> GSM905061     1   0.000      0.991 1.000  0 0.000
#> GSM905063     1   0.000      0.991 1.000  0 0.000
#> GSM905054     1   0.000      0.991 1.000  0 0.000
#> GSM905062     1   0.000      0.991 1.000  0 0.000
#> GSM905052     1   0.000      0.991 1.000  0 0.000
#> GSM905059     1   0.000      0.991 1.000  0 0.000
#> GSM905047     1   0.000      0.991 1.000  0 0.000
#> GSM905066     1   0.000      0.991 1.000  0 0.000
#> GSM905056     1   0.000      0.991 1.000  0 0.000
#> GSM905060     1   0.000      0.991 1.000  0 0.000
#> GSM905048     1   0.000      0.991 1.000  0 0.000
#> GSM905067     1   0.000      0.991 1.000  0 0.000
#> GSM905057     1   0.000      0.991 1.000  0 0.000
#> GSM905068     1   0.000      0.991 1.000  0 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1 p2    p3    p4
#> GSM905004     4  0.1022      0.961 0.000  0 0.032 0.968
#> GSM905024     1  0.0000      0.940 1.000  0 0.000 0.000
#> GSM905038     3  0.0336      0.987 0.008  0 0.992 0.000
#> GSM905043     1  0.0000      0.940 1.000  0 0.000 0.000
#> GSM904986     3  0.0000      0.989 0.000  0 1.000 0.000
#> GSM904991     3  0.1211      0.975 0.040  0 0.960 0.000
#> GSM904994     3  0.0000      0.989 0.000  0 1.000 0.000
#> GSM904996     3  0.0000      0.989 0.000  0 1.000 0.000
#> GSM905007     3  0.1211      0.975 0.040  0 0.960 0.000
#> GSM905012     3  0.0000      0.989 0.000  0 1.000 0.000
#> GSM905022     3  0.0000      0.989 0.000  0 1.000 0.000
#> GSM905026     3  0.0000      0.989 0.000  0 1.000 0.000
#> GSM905027     3  0.0000      0.989 0.000  0 1.000 0.000
#> GSM905031     3  0.0000      0.989 0.000  0 1.000 0.000
#> GSM905036     3  0.0707      0.984 0.020  0 0.980 0.000
#> GSM905041     3  0.1211      0.975 0.040  0 0.960 0.000
#> GSM905044     3  0.0000      0.989 0.000  0 1.000 0.000
#> GSM904989     3  0.0000      0.989 0.000  0 1.000 0.000
#> GSM904999     3  0.1022      0.978 0.032  0 0.968 0.000
#> GSM905002     3  0.0000      0.989 0.000  0 1.000 0.000
#> GSM905009     3  0.0000      0.989 0.000  0 1.000 0.000
#> GSM905014     3  0.1211      0.975 0.040  0 0.960 0.000
#> GSM905017     3  0.1022      0.978 0.032  0 0.968 0.000
#> GSM905020     3  0.0000      0.989 0.000  0 1.000 0.000
#> GSM905023     3  0.0707      0.984 0.020  0 0.980 0.000
#> GSM905029     3  0.0000      0.989 0.000  0 1.000 0.000
#> GSM905032     1  0.4713      0.388 0.640  0 0.360 0.000
#> GSM905034     1  0.0000      0.940 1.000  0 0.000 0.000
#> GSM905040     1  0.0000      0.940 1.000  0 0.000 0.000
#> GSM904985     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904988     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904990     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904992     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904995     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904998     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905000     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905003     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905006     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905008     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905011     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905013     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905016     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905018     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905021     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905025     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905028     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905030     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905033     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905035     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905037     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905039     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905042     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905046     1  0.1211      0.962 0.960  0 0.000 0.040
#> GSM905065     1  0.1211      0.962 0.960  0 0.000 0.040
#> GSM905049     4  0.0000      0.996 0.000  0 0.000 1.000
#> GSM905050     4  0.0000      0.996 0.000  0 0.000 1.000
#> GSM905064     4  0.0000      0.996 0.000  0 0.000 1.000
#> GSM905045     4  0.0000      0.996 0.000  0 0.000 1.000
#> GSM905051     4  0.0000      0.996 0.000  0 0.000 1.000
#> GSM905055     1  0.1211      0.962 0.960  0 0.000 0.040
#> GSM905058     1  0.1211      0.962 0.960  0 0.000 0.040
#> GSM905053     4  0.0000      0.996 0.000  0 0.000 1.000
#> GSM905061     4  0.0000      0.996 0.000  0 0.000 1.000
#> GSM905063     1  0.1211      0.962 0.960  0 0.000 0.040
#> GSM905054     4  0.0000      0.996 0.000  0 0.000 1.000
#> GSM905062     4  0.0000      0.996 0.000  0 0.000 1.000
#> GSM905052     4  0.0000      0.996 0.000  0 0.000 1.000
#> GSM905059     1  0.1211      0.962 0.960  0 0.000 0.040
#> GSM905047     1  0.1211      0.962 0.960  0 0.000 0.040
#> GSM905066     1  0.1211      0.962 0.960  0 0.000 0.040
#> GSM905056     1  0.1211      0.962 0.960  0 0.000 0.040
#> GSM905060     1  0.1211      0.962 0.960  0 0.000 0.040
#> GSM905048     1  0.1211      0.962 0.960  0 0.000 0.040
#> GSM905067     1  0.1211      0.962 0.960  0 0.000 0.040
#> GSM905057     1  0.1211      0.962 0.960  0 0.000 0.040
#> GSM905068     4  0.0000      0.996 0.000  0 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM905004     4  0.2130     0.8780 0.000 0.000 0.080 0.908 0.012
#> GSM905024     5  0.2648     0.6396 0.152 0.000 0.000 0.000 0.848
#> GSM905038     3  0.4192     0.0631 0.000 0.000 0.596 0.000 0.404
#> GSM905043     5  0.3177     0.5570 0.208 0.000 0.000 0.000 0.792
#> GSM904986     3  0.0000     0.8618 0.000 0.000 1.000 0.000 0.000
#> GSM904991     5  0.3274     0.7393 0.000 0.000 0.220 0.000 0.780
#> GSM904994     3  0.0000     0.8618 0.000 0.000 1.000 0.000 0.000
#> GSM904996     3  0.0000     0.8618 0.000 0.000 1.000 0.000 0.000
#> GSM905007     5  0.3452     0.7283 0.000 0.000 0.244 0.000 0.756
#> GSM905012     3  0.0000     0.8618 0.000 0.000 1.000 0.000 0.000
#> GSM905022     3  0.0000     0.8618 0.000 0.000 1.000 0.000 0.000
#> GSM905026     3  0.0000     0.8618 0.000 0.000 1.000 0.000 0.000
#> GSM905027     3  0.3242     0.5828 0.000 0.000 0.784 0.000 0.216
#> GSM905031     3  0.0000     0.8618 0.000 0.000 1.000 0.000 0.000
#> GSM905036     5  0.4126     0.5506 0.000 0.000 0.380 0.000 0.620
#> GSM905041     5  0.3242     0.7395 0.000 0.000 0.216 0.000 0.784
#> GSM905044     3  0.0000     0.8618 0.000 0.000 1.000 0.000 0.000
#> GSM904989     3  0.0000     0.8618 0.000 0.000 1.000 0.000 0.000
#> GSM904999     5  0.4562     0.2157 0.000 0.000 0.496 0.008 0.496
#> GSM905002     3  0.0000     0.8618 0.000 0.000 1.000 0.000 0.000
#> GSM905009     3  0.0000     0.8618 0.000 0.000 1.000 0.000 0.000
#> GSM905014     5  0.3366     0.7355 0.000 0.000 0.232 0.000 0.768
#> GSM905017     3  0.4562    -0.3383 0.000 0.000 0.496 0.008 0.496
#> GSM905020     3  0.0000     0.8618 0.000 0.000 1.000 0.000 0.000
#> GSM905023     5  0.4171     0.5175 0.000 0.000 0.396 0.000 0.604
#> GSM905029     3  0.4114     0.1696 0.000 0.000 0.624 0.000 0.376
#> GSM905032     5  0.1205     0.6467 0.040 0.000 0.004 0.000 0.956
#> GSM905034     1  0.3586     0.7021 0.736 0.000 0.000 0.000 0.264
#> GSM905040     1  0.4030     0.6939 0.648 0.000 0.000 0.000 0.352
#> GSM904985     2  0.0510     0.9911 0.000 0.984 0.000 0.000 0.016
#> GSM904988     2  0.0000     0.9943 0.000 1.000 0.000 0.000 0.000
#> GSM904990     2  0.0000     0.9943 0.000 1.000 0.000 0.000 0.000
#> GSM904992     2  0.0000     0.9943 0.000 1.000 0.000 0.000 0.000
#> GSM904995     2  0.0510     0.9911 0.000 0.984 0.000 0.000 0.016
#> GSM904998     2  0.0000     0.9943 0.000 1.000 0.000 0.000 0.000
#> GSM905000     2  0.0000     0.9943 0.000 1.000 0.000 0.000 0.000
#> GSM905003     2  0.0000     0.9943 0.000 1.000 0.000 0.000 0.000
#> GSM905006     2  0.0000     0.9943 0.000 1.000 0.000 0.000 0.000
#> GSM905008     2  0.0000     0.9943 0.000 1.000 0.000 0.000 0.000
#> GSM905011     2  0.0000     0.9943 0.000 1.000 0.000 0.000 0.000
#> GSM905013     2  0.0000     0.9943 0.000 1.000 0.000 0.000 0.000
#> GSM905016     2  0.0510     0.9911 0.000 0.984 0.000 0.000 0.016
#> GSM905018     2  0.0000     0.9943 0.000 1.000 0.000 0.000 0.000
#> GSM905021     2  0.0609     0.9890 0.000 0.980 0.000 0.000 0.020
#> GSM905025     2  0.0510     0.9911 0.000 0.984 0.000 0.000 0.016
#> GSM905028     2  0.0000     0.9943 0.000 1.000 0.000 0.000 0.000
#> GSM905030     2  0.0000     0.9943 0.000 1.000 0.000 0.000 0.000
#> GSM905033     2  0.0510     0.9911 0.000 0.984 0.000 0.000 0.016
#> GSM905035     2  0.0510     0.9911 0.000 0.984 0.000 0.000 0.016
#> GSM905037     2  0.0000     0.9943 0.000 1.000 0.000 0.000 0.000
#> GSM905039     2  0.0510     0.9911 0.000 0.984 0.000 0.000 0.016
#> GSM905042     2  0.0510     0.9911 0.000 0.984 0.000 0.000 0.016
#> GSM905046     1  0.0290     0.9097 0.992 0.000 0.000 0.008 0.000
#> GSM905065     1  0.0451     0.9099 0.988 0.000 0.000 0.008 0.004
#> GSM905049     4  0.0290     0.9543 0.008 0.000 0.000 0.992 0.000
#> GSM905050     4  0.0290     0.9543 0.008 0.000 0.000 0.992 0.000
#> GSM905064     4  0.0290     0.9543 0.008 0.000 0.000 0.992 0.000
#> GSM905045     4  0.0451     0.9539 0.008 0.000 0.000 0.988 0.004
#> GSM905051     4  0.3123     0.8060 0.184 0.000 0.000 0.812 0.004
#> GSM905055     1  0.2966     0.8540 0.816 0.000 0.000 0.000 0.184
#> GSM905058     1  0.0451     0.9087 0.988 0.000 0.000 0.008 0.004
#> GSM905053     4  0.0290     0.9543 0.008 0.000 0.000 0.992 0.000
#> GSM905061     4  0.0693     0.9525 0.008 0.000 0.000 0.980 0.012
#> GSM905063     1  0.2966     0.8540 0.816 0.000 0.000 0.000 0.184
#> GSM905054     4  0.0290     0.9543 0.008 0.000 0.000 0.992 0.000
#> GSM905062     4  0.0693     0.9525 0.008 0.000 0.000 0.980 0.012
#> GSM905052     4  0.3086     0.8103 0.180 0.000 0.000 0.816 0.004
#> GSM905059     1  0.0451     0.9087 0.988 0.000 0.000 0.008 0.004
#> GSM905047     1  0.0290     0.9097 0.992 0.000 0.000 0.008 0.000
#> GSM905066     1  0.0451     0.9099 0.988 0.000 0.000 0.008 0.004
#> GSM905056     1  0.2966     0.8540 0.816 0.000 0.000 0.000 0.184
#> GSM905060     1  0.0451     0.9087 0.988 0.000 0.000 0.008 0.004
#> GSM905048     1  0.0290     0.9097 0.992 0.000 0.000 0.008 0.000
#> GSM905067     1  0.0451     0.9099 0.988 0.000 0.000 0.008 0.004
#> GSM905057     1  0.2966     0.8540 0.816 0.000 0.000 0.000 0.184
#> GSM905068     4  0.0693     0.9525 0.008 0.000 0.000 0.980 0.012

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM905004     4  0.2841     0.7948 0.000 0.000 0.092 0.864 0.012 0.032
#> GSM905024     5  0.4148     0.5055 0.108 0.000 0.000 0.000 0.744 0.148
#> GSM905038     5  0.4294     0.3288 0.000 0.000 0.428 0.000 0.552 0.020
#> GSM905043     5  0.4983     0.3582 0.148 0.000 0.000 0.000 0.644 0.208
#> GSM904986     3  0.0146     0.9437 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM904991     5  0.2106     0.6820 0.000 0.000 0.064 0.000 0.904 0.032
#> GSM904994     3  0.0000     0.9444 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904996     3  0.0000     0.9444 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905007     5  0.1812     0.6890 0.000 0.000 0.080 0.000 0.912 0.008
#> GSM905012     3  0.0000     0.9444 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905022     3  0.0291     0.9429 0.000 0.000 0.992 0.000 0.004 0.004
#> GSM905026     3  0.1151     0.9186 0.000 0.000 0.956 0.000 0.032 0.012
#> GSM905027     3  0.4212     0.0381 0.000 0.000 0.560 0.000 0.424 0.016
#> GSM905031     3  0.0603     0.9345 0.000 0.000 0.980 0.000 0.016 0.004
#> GSM905036     5  0.2877     0.6790 0.000 0.000 0.168 0.000 0.820 0.012
#> GSM905041     5  0.1713     0.6733 0.000 0.000 0.044 0.000 0.928 0.028
#> GSM905044     3  0.0909     0.9293 0.000 0.000 0.968 0.000 0.020 0.012
#> GSM904989     3  0.0146     0.9428 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM904999     5  0.5984     0.4048 0.000 0.000 0.284 0.000 0.444 0.272
#> GSM905002     3  0.0291     0.9429 0.000 0.000 0.992 0.000 0.004 0.004
#> GSM905009     3  0.0000     0.9444 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905014     5  0.1701     0.6870 0.000 0.000 0.072 0.000 0.920 0.008
#> GSM905017     5  0.5984     0.4048 0.000 0.000 0.284 0.000 0.444 0.272
#> GSM905020     3  0.0000     0.9444 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905023     5  0.3104     0.6730 0.000 0.000 0.184 0.000 0.800 0.016
#> GSM905029     5  0.4224     0.3268 0.000 0.000 0.432 0.000 0.552 0.016
#> GSM905032     5  0.3868     0.0799 0.000 0.000 0.000 0.000 0.504 0.496
#> GSM905034     1  0.5117     0.0476 0.628 0.000 0.000 0.000 0.200 0.172
#> GSM905040     6  0.4950     0.0000 0.344 0.000 0.000 0.000 0.080 0.576
#> GSM904985     2  0.1471     0.9514 0.000 0.932 0.000 0.000 0.004 0.064
#> GSM904988     2  0.0000     0.9683 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904990     2  0.0000     0.9683 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904992     2  0.0000     0.9683 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904995     2  0.1411     0.9525 0.000 0.936 0.000 0.000 0.004 0.060
#> GSM904998     2  0.0000     0.9683 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905000     2  0.0000     0.9683 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905003     2  0.0146     0.9676 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM905006     2  0.0000     0.9683 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905008     2  0.0146     0.9676 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM905011     2  0.0000     0.9683 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905013     2  0.0000     0.9683 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905016     2  0.1411     0.9525 0.000 0.936 0.000 0.000 0.004 0.060
#> GSM905018     2  0.0000     0.9683 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905021     2  0.3420     0.7751 0.000 0.748 0.000 0.000 0.012 0.240
#> GSM905025     2  0.1524     0.9518 0.000 0.932 0.000 0.000 0.008 0.060
#> GSM905028     2  0.0146     0.9678 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM905030     2  0.0146     0.9678 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM905033     2  0.1643     0.9482 0.000 0.924 0.000 0.000 0.008 0.068
#> GSM905035     2  0.1524     0.9518 0.000 0.932 0.000 0.000 0.008 0.060
#> GSM905037     2  0.0146     0.9678 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM905039     2  0.1524     0.9518 0.000 0.932 0.000 0.000 0.008 0.060
#> GSM905042     2  0.1701     0.9460 0.000 0.920 0.000 0.000 0.008 0.072
#> GSM905046     1  0.0291     0.6667 0.992 0.000 0.000 0.004 0.000 0.004
#> GSM905065     1  0.1219     0.6553 0.948 0.000 0.000 0.004 0.000 0.048
#> GSM905049     4  0.0000     0.8997 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905050     4  0.0000     0.8997 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905064     4  0.0000     0.8997 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905045     4  0.0363     0.8983 0.000 0.000 0.000 0.988 0.000 0.012
#> GSM905051     4  0.5092     0.4310 0.356 0.000 0.000 0.576 0.024 0.044
#> GSM905055     1  0.3986    -0.3769 0.532 0.000 0.000 0.000 0.004 0.464
#> GSM905058     1  0.1232     0.6548 0.956 0.000 0.000 0.004 0.016 0.024
#> GSM905053     4  0.0000     0.8997 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905061     4  0.0508     0.8963 0.000 0.000 0.000 0.984 0.004 0.012
#> GSM905063     1  0.3975    -0.3479 0.544 0.000 0.000 0.000 0.004 0.452
#> GSM905054     4  0.0000     0.8997 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905062     4  0.0508     0.8963 0.000 0.000 0.000 0.984 0.004 0.012
#> GSM905052     4  0.5092     0.4310 0.356 0.000 0.000 0.576 0.024 0.044
#> GSM905059     1  0.1232     0.6548 0.956 0.000 0.000 0.004 0.016 0.024
#> GSM905047     1  0.0291     0.6667 0.992 0.000 0.000 0.004 0.000 0.004
#> GSM905066     1  0.1219     0.6553 0.948 0.000 0.000 0.004 0.000 0.048
#> GSM905056     1  0.3986    -0.3769 0.532 0.000 0.000 0.000 0.004 0.464
#> GSM905060     1  0.1232     0.6548 0.956 0.000 0.000 0.004 0.016 0.024
#> GSM905048     1  0.0603     0.6663 0.980 0.000 0.000 0.004 0.000 0.016
#> GSM905067     1  0.1219     0.6553 0.948 0.000 0.000 0.004 0.000 0.048
#> GSM905057     1  0.3986    -0.3769 0.532 0.000 0.000 0.000 0.004 0.464
#> GSM905068     4  0.0260     0.8985 0.000 0.000 0.000 0.992 0.000 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n tissue(p) genotype/variation(p) individual(p) k
#> CV:skmeans 76  4.99e-07              1.61e-03        0.0803 2
#> CV:skmeans 74  1.34e-18              5.42e-06        0.9460 3
#> CV:skmeans 75  1.27e-19              7.10e-10        0.2356 4
#> CV:skmeans 72  1.53e-16              2.67e-08        0.4302 5
#> CV:skmeans 61  3.24e-16              1.74e-10        0.5407 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 76 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.974       0.979         0.4332 0.572   0.572
#> 3 3 1.000           0.985       0.992         0.5556 0.754   0.571
#> 4 4 1.000           0.969       0.989         0.0928 0.920   0.762
#> 5 5 1.000           0.990       0.997         0.0312 0.968   0.881
#> 6 6 0.955           0.945       0.965         0.0146 0.977   0.907

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4 5

There is also optional best \(k\) = 2 3 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM905004     1  0.2043      0.964 0.968 0.032
#> GSM905024     1  0.0000      0.969 1.000 0.000
#> GSM905038     1  0.3879      0.950 0.924 0.076
#> GSM905043     1  0.0000      0.969 1.000 0.000
#> GSM904986     1  0.3879      0.950 0.924 0.076
#> GSM904991     1  0.0376      0.969 0.996 0.004
#> GSM904994     1  0.3879      0.950 0.924 0.076
#> GSM904996     1  0.3879      0.950 0.924 0.076
#> GSM905007     1  0.2043      0.964 0.968 0.032
#> GSM905012     1  0.3879      0.950 0.924 0.076
#> GSM905022     1  0.3879      0.950 0.924 0.076
#> GSM905026     1  0.3879      0.950 0.924 0.076
#> GSM905027     1  0.2043      0.964 0.968 0.032
#> GSM905031     1  0.3879      0.950 0.924 0.076
#> GSM905036     1  0.2043      0.964 0.968 0.032
#> GSM905041     1  0.0376      0.969 0.996 0.004
#> GSM905044     1  0.3879      0.950 0.924 0.076
#> GSM904989     1  0.3879      0.950 0.924 0.076
#> GSM904999     1  0.3879      0.950 0.924 0.076
#> GSM905002     1  0.3879      0.950 0.924 0.076
#> GSM905009     1  0.3879      0.950 0.924 0.076
#> GSM905014     1  0.3879      0.950 0.924 0.076
#> GSM905017     1  0.3879      0.950 0.924 0.076
#> GSM905020     1  0.3879      0.950 0.924 0.076
#> GSM905023     1  0.3879      0.950 0.924 0.076
#> GSM905029     1  0.3879      0.950 0.924 0.076
#> GSM905032     1  0.3879      0.950 0.924 0.076
#> GSM905034     1  0.0000      0.969 1.000 0.000
#> GSM905040     1  0.0000      0.969 1.000 0.000
#> GSM904985     2  0.0000      1.000 0.000 1.000
#> GSM904988     2  0.0000      1.000 0.000 1.000
#> GSM904990     2  0.0000      1.000 0.000 1.000
#> GSM904992     2  0.0000      1.000 0.000 1.000
#> GSM904995     2  0.0000      1.000 0.000 1.000
#> GSM904998     2  0.0000      1.000 0.000 1.000
#> GSM905000     2  0.0000      1.000 0.000 1.000
#> GSM905003     2  0.0000      1.000 0.000 1.000
#> GSM905006     2  0.0000      1.000 0.000 1.000
#> GSM905008     2  0.0000      1.000 0.000 1.000
#> GSM905011     2  0.0000      1.000 0.000 1.000
#> GSM905013     2  0.0000      1.000 0.000 1.000
#> GSM905016     2  0.0000      1.000 0.000 1.000
#> GSM905018     2  0.0000      1.000 0.000 1.000
#> GSM905021     2  0.0000      1.000 0.000 1.000
#> GSM905025     2  0.0000      1.000 0.000 1.000
#> GSM905028     2  0.0000      1.000 0.000 1.000
#> GSM905030     2  0.0000      1.000 0.000 1.000
#> GSM905033     2  0.0000      1.000 0.000 1.000
#> GSM905035     2  0.0000      1.000 0.000 1.000
#> GSM905037     2  0.0000      1.000 0.000 1.000
#> GSM905039     2  0.0000      1.000 0.000 1.000
#> GSM905042     2  0.0000      1.000 0.000 1.000
#> GSM905046     1  0.0000      0.969 1.000 0.000
#> GSM905065     1  0.0000      0.969 1.000 0.000
#> GSM905049     1  0.0000      0.969 1.000 0.000
#> GSM905050     1  0.0000      0.969 1.000 0.000
#> GSM905064     1  0.0000      0.969 1.000 0.000
#> GSM905045     1  0.0000      0.969 1.000 0.000
#> GSM905051     1  0.0000      0.969 1.000 0.000
#> GSM905055     1  0.0000      0.969 1.000 0.000
#> GSM905058     1  0.0000      0.969 1.000 0.000
#> GSM905053     1  0.0000      0.969 1.000 0.000
#> GSM905061     1  0.0000      0.969 1.000 0.000
#> GSM905063     1  0.0000      0.969 1.000 0.000
#> GSM905054     1  0.0000      0.969 1.000 0.000
#> GSM905062     1  0.0000      0.969 1.000 0.000
#> GSM905052     1  0.0000      0.969 1.000 0.000
#> GSM905059     1  0.0000      0.969 1.000 0.000
#> GSM905047     1  0.0000      0.969 1.000 0.000
#> GSM905066     1  0.0000      0.969 1.000 0.000
#> GSM905056     1  0.0000      0.969 1.000 0.000
#> GSM905060     1  0.0000      0.969 1.000 0.000
#> GSM905048     1  0.0000      0.969 1.000 0.000
#> GSM905067     1  0.0000      0.969 1.000 0.000
#> GSM905057     1  0.0000      0.969 1.000 0.000
#> GSM905068     1  0.0000      0.969 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1 p2    p3
#> GSM905004     3  0.0000      1.000 0.000  0 1.000
#> GSM905024     1  0.2066      0.932 0.940  0 0.060
#> GSM905038     3  0.0000      1.000 0.000  0 1.000
#> GSM905043     1  0.4452      0.782 0.808  0 0.192
#> GSM904986     3  0.0000      1.000 0.000  0 1.000
#> GSM904991     3  0.0000      1.000 0.000  0 1.000
#> GSM904994     3  0.0000      1.000 0.000  0 1.000
#> GSM904996     3  0.0000      1.000 0.000  0 1.000
#> GSM905007     3  0.0000      1.000 0.000  0 1.000
#> GSM905012     3  0.0000      1.000 0.000  0 1.000
#> GSM905022     3  0.0000      1.000 0.000  0 1.000
#> GSM905026     3  0.0000      1.000 0.000  0 1.000
#> GSM905027     3  0.0000      1.000 0.000  0 1.000
#> GSM905031     3  0.0000      1.000 0.000  0 1.000
#> GSM905036     3  0.0000      1.000 0.000  0 1.000
#> GSM905041     3  0.0000      1.000 0.000  0 1.000
#> GSM905044     3  0.0000      1.000 0.000  0 1.000
#> GSM904989     3  0.0000      1.000 0.000  0 1.000
#> GSM904999     3  0.0000      1.000 0.000  0 1.000
#> GSM905002     3  0.0000      1.000 0.000  0 1.000
#> GSM905009     3  0.0000      1.000 0.000  0 1.000
#> GSM905014     3  0.0000      1.000 0.000  0 1.000
#> GSM905017     3  0.0000      1.000 0.000  0 1.000
#> GSM905020     3  0.0000      1.000 0.000  0 1.000
#> GSM905023     3  0.0000      1.000 0.000  0 1.000
#> GSM905029     3  0.0000      1.000 0.000  0 1.000
#> GSM905032     3  0.0000      1.000 0.000  0 1.000
#> GSM905034     1  0.0237      0.976 0.996  0 0.004
#> GSM905040     1  0.0892      0.965 0.980  0 0.020
#> GSM904985     2  0.0000      1.000 0.000  1 0.000
#> GSM904988     2  0.0000      1.000 0.000  1 0.000
#> GSM904990     2  0.0000      1.000 0.000  1 0.000
#> GSM904992     2  0.0000      1.000 0.000  1 0.000
#> GSM904995     2  0.0000      1.000 0.000  1 0.000
#> GSM904998     2  0.0000      1.000 0.000  1 0.000
#> GSM905000     2  0.0000      1.000 0.000  1 0.000
#> GSM905003     2  0.0000      1.000 0.000  1 0.000
#> GSM905006     2  0.0000      1.000 0.000  1 0.000
#> GSM905008     2  0.0000      1.000 0.000  1 0.000
#> GSM905011     2  0.0000      1.000 0.000  1 0.000
#> GSM905013     2  0.0000      1.000 0.000  1 0.000
#> GSM905016     2  0.0000      1.000 0.000  1 0.000
#> GSM905018     2  0.0000      1.000 0.000  1 0.000
#> GSM905021     2  0.0000      1.000 0.000  1 0.000
#> GSM905025     2  0.0000      1.000 0.000  1 0.000
#> GSM905028     2  0.0000      1.000 0.000  1 0.000
#> GSM905030     2  0.0000      1.000 0.000  1 0.000
#> GSM905033     2  0.0000      1.000 0.000  1 0.000
#> GSM905035     2  0.0000      1.000 0.000  1 0.000
#> GSM905037     2  0.0000      1.000 0.000  1 0.000
#> GSM905039     2  0.0000      1.000 0.000  1 0.000
#> GSM905042     2  0.0000      1.000 0.000  1 0.000
#> GSM905046     1  0.0000      0.978 1.000  0 0.000
#> GSM905065     1  0.0000      0.978 1.000  0 0.000
#> GSM905049     1  0.0424      0.973 0.992  0 0.008
#> GSM905050     1  0.3551      0.857 0.868  0 0.132
#> GSM905064     1  0.0000      0.978 1.000  0 0.000
#> GSM905045     1  0.0000      0.978 1.000  0 0.000
#> GSM905051     1  0.0000      0.978 1.000  0 0.000
#> GSM905055     1  0.0000      0.978 1.000  0 0.000
#> GSM905058     1  0.0000      0.978 1.000  0 0.000
#> GSM905053     1  0.0000      0.978 1.000  0 0.000
#> GSM905061     1  0.0000      0.978 1.000  0 0.000
#> GSM905063     1  0.0000      0.978 1.000  0 0.000
#> GSM905054     1  0.0000      0.978 1.000  0 0.000
#> GSM905062     1  0.0000      0.978 1.000  0 0.000
#> GSM905052     1  0.0000      0.978 1.000  0 0.000
#> GSM905059     1  0.0000      0.978 1.000  0 0.000
#> GSM905047     1  0.0000      0.978 1.000  0 0.000
#> GSM905066     1  0.0000      0.978 1.000  0 0.000
#> GSM905056     1  0.0000      0.978 1.000  0 0.000
#> GSM905060     1  0.0000      0.978 1.000  0 0.000
#> GSM905048     1  0.0000      0.978 1.000  0 0.000
#> GSM905067     1  0.0000      0.978 1.000  0 0.000
#> GSM905057     1  0.0000      0.978 1.000  0 0.000
#> GSM905068     1  0.4062      0.816 0.836  0 0.164

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1 p2    p3    p4
#> GSM905004     3  0.1389     0.9321 0.000  0 0.952 0.048
#> GSM905024     3  0.4981     0.0863 0.464  0 0.536 0.000
#> GSM905038     3  0.0000     0.9782 0.000  0 1.000 0.000
#> GSM905043     1  0.2589     0.8552 0.884  0 0.116 0.000
#> GSM904986     3  0.0000     0.9782 0.000  0 1.000 0.000
#> GSM904991     3  0.0000     0.9782 0.000  0 1.000 0.000
#> GSM904994     3  0.0000     0.9782 0.000  0 1.000 0.000
#> GSM904996     3  0.0000     0.9782 0.000  0 1.000 0.000
#> GSM905007     3  0.0000     0.9782 0.000  0 1.000 0.000
#> GSM905012     3  0.0000     0.9782 0.000  0 1.000 0.000
#> GSM905022     3  0.0000     0.9782 0.000  0 1.000 0.000
#> GSM905026     3  0.0000     0.9782 0.000  0 1.000 0.000
#> GSM905027     3  0.0000     0.9782 0.000  0 1.000 0.000
#> GSM905031     3  0.0000     0.9782 0.000  0 1.000 0.000
#> GSM905036     3  0.0000     0.9782 0.000  0 1.000 0.000
#> GSM905041     3  0.0000     0.9782 0.000  0 1.000 0.000
#> GSM905044     3  0.0000     0.9782 0.000  0 1.000 0.000
#> GSM904989     3  0.0000     0.9782 0.000  0 1.000 0.000
#> GSM904999     3  0.0000     0.9782 0.000  0 1.000 0.000
#> GSM905002     3  0.0000     0.9782 0.000  0 1.000 0.000
#> GSM905009     3  0.0000     0.9782 0.000  0 1.000 0.000
#> GSM905014     3  0.0000     0.9782 0.000  0 1.000 0.000
#> GSM905017     3  0.0000     0.9782 0.000  0 1.000 0.000
#> GSM905020     3  0.0000     0.9782 0.000  0 1.000 0.000
#> GSM905023     3  0.0000     0.9782 0.000  0 1.000 0.000
#> GSM905029     3  0.0000     0.9782 0.000  0 1.000 0.000
#> GSM905032     3  0.0000     0.9782 0.000  0 1.000 0.000
#> GSM905034     1  0.3569     0.7520 0.804  0 0.196 0.000
#> GSM905040     1  0.0592     0.9586 0.984  0 0.016 0.000
#> GSM904985     2  0.0000     1.0000 0.000  1 0.000 0.000
#> GSM904988     2  0.0000     1.0000 0.000  1 0.000 0.000
#> GSM904990     2  0.0000     1.0000 0.000  1 0.000 0.000
#> GSM904992     2  0.0000     1.0000 0.000  1 0.000 0.000
#> GSM904995     2  0.0000     1.0000 0.000  1 0.000 0.000
#> GSM904998     2  0.0000     1.0000 0.000  1 0.000 0.000
#> GSM905000     2  0.0000     1.0000 0.000  1 0.000 0.000
#> GSM905003     2  0.0000     1.0000 0.000  1 0.000 0.000
#> GSM905006     2  0.0000     1.0000 0.000  1 0.000 0.000
#> GSM905008     2  0.0000     1.0000 0.000  1 0.000 0.000
#> GSM905011     2  0.0000     1.0000 0.000  1 0.000 0.000
#> GSM905013     2  0.0000     1.0000 0.000  1 0.000 0.000
#> GSM905016     2  0.0000     1.0000 0.000  1 0.000 0.000
#> GSM905018     2  0.0000     1.0000 0.000  1 0.000 0.000
#> GSM905021     2  0.0000     1.0000 0.000  1 0.000 0.000
#> GSM905025     2  0.0000     1.0000 0.000  1 0.000 0.000
#> GSM905028     2  0.0000     1.0000 0.000  1 0.000 0.000
#> GSM905030     2  0.0000     1.0000 0.000  1 0.000 0.000
#> GSM905033     2  0.0000     1.0000 0.000  1 0.000 0.000
#> GSM905035     2  0.0000     1.0000 0.000  1 0.000 0.000
#> GSM905037     2  0.0000     1.0000 0.000  1 0.000 0.000
#> GSM905039     2  0.0000     1.0000 0.000  1 0.000 0.000
#> GSM905042     2  0.0000     1.0000 0.000  1 0.000 0.000
#> GSM905046     1  0.0000     0.9709 1.000  0 0.000 0.000
#> GSM905065     1  0.0000     0.9709 1.000  0 0.000 0.000
#> GSM905049     4  0.0000     1.0000 0.000  0 0.000 1.000
#> GSM905050     4  0.0000     1.0000 0.000  0 0.000 1.000
#> GSM905064     4  0.0000     1.0000 0.000  0 0.000 1.000
#> GSM905045     4  0.0000     1.0000 0.000  0 0.000 1.000
#> GSM905051     4  0.0000     1.0000 0.000  0 0.000 1.000
#> GSM905055     1  0.0000     0.9709 1.000  0 0.000 0.000
#> GSM905058     1  0.0000     0.9709 1.000  0 0.000 0.000
#> GSM905053     4  0.0000     1.0000 0.000  0 0.000 1.000
#> GSM905061     4  0.0000     1.0000 0.000  0 0.000 1.000
#> GSM905063     1  0.0000     0.9709 1.000  0 0.000 0.000
#> GSM905054     4  0.0000     1.0000 0.000  0 0.000 1.000
#> GSM905062     4  0.0000     1.0000 0.000  0 0.000 1.000
#> GSM905052     4  0.0000     1.0000 0.000  0 0.000 1.000
#> GSM905059     1  0.1022     0.9468 0.968  0 0.000 0.032
#> GSM905047     1  0.0000     0.9709 1.000  0 0.000 0.000
#> GSM905066     1  0.0000     0.9709 1.000  0 0.000 0.000
#> GSM905056     1  0.0000     0.9709 1.000  0 0.000 0.000
#> GSM905060     1  0.0000     0.9709 1.000  0 0.000 0.000
#> GSM905048     1  0.0000     0.9709 1.000  0 0.000 0.000
#> GSM905067     1  0.0000     0.9709 1.000  0 0.000 0.000
#> GSM905057     1  0.0000     0.9709 1.000  0 0.000 0.000
#> GSM905068     4  0.0000     1.0000 0.000  0 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1 p2    p3    p4 p5
#> GSM905004     3   0.120      0.945 0.000  0 0.952 0.048  0
#> GSM905024     1   0.120      0.917 0.952  0 0.048 0.000  0
#> GSM905038     3   0.000      0.998 0.000  0 1.000 0.000  0
#> GSM905043     1   0.277      0.747 0.836  0 0.164 0.000  0
#> GSM904986     3   0.000      0.998 0.000  0 1.000 0.000  0
#> GSM904991     3   0.000      0.998 0.000  0 1.000 0.000  0
#> GSM904994     3   0.000      0.998 0.000  0 1.000 0.000  0
#> GSM904996     3   0.000      0.998 0.000  0 1.000 0.000  0
#> GSM905007     3   0.000      0.998 0.000  0 1.000 0.000  0
#> GSM905012     3   0.000      0.998 0.000  0 1.000 0.000  0
#> GSM905022     3   0.000      0.998 0.000  0 1.000 0.000  0
#> GSM905026     3   0.000      0.998 0.000  0 1.000 0.000  0
#> GSM905027     3   0.000      0.998 0.000  0 1.000 0.000  0
#> GSM905031     3   0.000      0.998 0.000  0 1.000 0.000  0
#> GSM905036     3   0.000      0.998 0.000  0 1.000 0.000  0
#> GSM905041     3   0.000      0.998 0.000  0 1.000 0.000  0
#> GSM905044     3   0.000      0.998 0.000  0 1.000 0.000  0
#> GSM904989     3   0.000      0.998 0.000  0 1.000 0.000  0
#> GSM904999     3   0.000      0.998 0.000  0 1.000 0.000  0
#> GSM905002     3   0.000      0.998 0.000  0 1.000 0.000  0
#> GSM905009     3   0.000      0.998 0.000  0 1.000 0.000  0
#> GSM905014     3   0.000      0.998 0.000  0 1.000 0.000  0
#> GSM905017     3   0.000      0.998 0.000  0 1.000 0.000  0
#> GSM905020     3   0.000      0.998 0.000  0 1.000 0.000  0
#> GSM905023     3   0.000      0.998 0.000  0 1.000 0.000  0
#> GSM905029     3   0.000      0.998 0.000  0 1.000 0.000  0
#> GSM905032     3   0.000      0.998 0.000  0 1.000 0.000  0
#> GSM905034     1   0.000      0.971 1.000  0 0.000 0.000  0
#> GSM905040     5   0.000      1.000 0.000  0 0.000 0.000  1
#> GSM904985     2   0.000      1.000 0.000  1 0.000 0.000  0
#> GSM904988     2   0.000      1.000 0.000  1 0.000 0.000  0
#> GSM904990     2   0.000      1.000 0.000  1 0.000 0.000  0
#> GSM904992     2   0.000      1.000 0.000  1 0.000 0.000  0
#> GSM904995     2   0.000      1.000 0.000  1 0.000 0.000  0
#> GSM904998     2   0.000      1.000 0.000  1 0.000 0.000  0
#> GSM905000     2   0.000      1.000 0.000  1 0.000 0.000  0
#> GSM905003     2   0.000      1.000 0.000  1 0.000 0.000  0
#> GSM905006     2   0.000      1.000 0.000  1 0.000 0.000  0
#> GSM905008     2   0.000      1.000 0.000  1 0.000 0.000  0
#> GSM905011     2   0.000      1.000 0.000  1 0.000 0.000  0
#> GSM905013     2   0.000      1.000 0.000  1 0.000 0.000  0
#> GSM905016     2   0.000      1.000 0.000  1 0.000 0.000  0
#> GSM905018     2   0.000      1.000 0.000  1 0.000 0.000  0
#> GSM905021     2   0.000      1.000 0.000  1 0.000 0.000  0
#> GSM905025     2   0.000      1.000 0.000  1 0.000 0.000  0
#> GSM905028     2   0.000      1.000 0.000  1 0.000 0.000  0
#> GSM905030     2   0.000      1.000 0.000  1 0.000 0.000  0
#> GSM905033     2   0.000      1.000 0.000  1 0.000 0.000  0
#> GSM905035     2   0.000      1.000 0.000  1 0.000 0.000  0
#> GSM905037     2   0.000      1.000 0.000  1 0.000 0.000  0
#> GSM905039     2   0.000      1.000 0.000  1 0.000 0.000  0
#> GSM905042     2   0.000      1.000 0.000  1 0.000 0.000  0
#> GSM905046     1   0.000      0.971 1.000  0 0.000 0.000  0
#> GSM905065     1   0.000      0.971 1.000  0 0.000 0.000  0
#> GSM905049     4   0.000      1.000 0.000  0 0.000 1.000  0
#> GSM905050     4   0.000      1.000 0.000  0 0.000 1.000  0
#> GSM905064     4   0.000      1.000 0.000  0 0.000 1.000  0
#> GSM905045     4   0.000      1.000 0.000  0 0.000 1.000  0
#> GSM905051     4   0.000      1.000 0.000  0 0.000 1.000  0
#> GSM905055     5   0.000      1.000 0.000  0 0.000 0.000  1
#> GSM905058     1   0.000      0.971 1.000  0 0.000 0.000  0
#> GSM905053     4   0.000      1.000 0.000  0 0.000 1.000  0
#> GSM905061     4   0.000      1.000 0.000  0 0.000 1.000  0
#> GSM905063     5   0.000      1.000 0.000  0 0.000 0.000  1
#> GSM905054     4   0.000      1.000 0.000  0 0.000 1.000  0
#> GSM905062     4   0.000      1.000 0.000  0 0.000 1.000  0
#> GSM905052     4   0.000      1.000 0.000  0 0.000 1.000  0
#> GSM905059     1   0.000      0.971 1.000  0 0.000 0.000  0
#> GSM905047     1   0.000      0.971 1.000  0 0.000 0.000  0
#> GSM905066     1   0.000      0.971 1.000  0 0.000 0.000  0
#> GSM905056     5   0.000      1.000 0.000  0 0.000 0.000  1
#> GSM905060     1   0.000      0.971 1.000  0 0.000 0.000  0
#> GSM905048     1   0.000      0.971 1.000  0 0.000 0.000  0
#> GSM905067     1   0.000      0.971 1.000  0 0.000 0.000  0
#> GSM905057     5   0.000      1.000 0.000  0 0.000 0.000  1
#> GSM905068     4   0.000      1.000 0.000  0 0.000 1.000  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1 p2    p3    p4    p5    p6
#> GSM905004     3   0.107      0.923 0.000  0 0.952 0.048 0.000 0.000
#> GSM905024     3   0.322      0.721 0.000  0 0.736 0.000 0.264 0.000
#> GSM905038     3   0.000      0.965 0.000  0 1.000 0.000 0.000 0.000
#> GSM905043     1   0.299      0.736 0.824  0 0.024 0.000 0.152 0.000
#> GSM904986     3   0.000      0.965 0.000  0 1.000 0.000 0.000 0.000
#> GSM904991     3   0.238      0.852 0.000  0 0.848 0.000 0.152 0.000
#> GSM904994     3   0.000      0.965 0.000  0 1.000 0.000 0.000 0.000
#> GSM904996     3   0.000      0.965 0.000  0 1.000 0.000 0.000 0.000
#> GSM905007     3   0.000      0.965 0.000  0 1.000 0.000 0.000 0.000
#> GSM905012     3   0.000      0.965 0.000  0 1.000 0.000 0.000 0.000
#> GSM905022     3   0.000      0.965 0.000  0 1.000 0.000 0.000 0.000
#> GSM905026     3   0.000      0.965 0.000  0 1.000 0.000 0.000 0.000
#> GSM905027     3   0.000      0.965 0.000  0 1.000 0.000 0.000 0.000
#> GSM905031     3   0.000      0.965 0.000  0 1.000 0.000 0.000 0.000
#> GSM905036     3   0.000      0.965 0.000  0 1.000 0.000 0.000 0.000
#> GSM905041     3   0.238      0.852 0.000  0 0.848 0.000 0.152 0.000
#> GSM905044     3   0.000      0.965 0.000  0 1.000 0.000 0.000 0.000
#> GSM904989     3   0.000      0.965 0.000  0 1.000 0.000 0.000 0.000
#> GSM904999     3   0.000      0.965 0.000  0 1.000 0.000 0.000 0.000
#> GSM905002     3   0.000      0.965 0.000  0 1.000 0.000 0.000 0.000
#> GSM905009     3   0.000      0.965 0.000  0 1.000 0.000 0.000 0.000
#> GSM905014     3   0.218      0.870 0.000  0 0.868 0.000 0.132 0.000
#> GSM905017     3   0.000      0.965 0.000  0 1.000 0.000 0.000 0.000
#> GSM905020     3   0.000      0.965 0.000  0 1.000 0.000 0.000 0.000
#> GSM905023     3   0.000      0.965 0.000  0 1.000 0.000 0.000 0.000
#> GSM905029     3   0.000      0.965 0.000  0 1.000 0.000 0.000 0.000
#> GSM905032     3   0.226      0.864 0.000  0 0.860 0.000 0.140 0.000
#> GSM905034     5   0.000      0.747 0.000  0 0.000 0.000 1.000 0.000
#> GSM905040     6   0.238      0.750 0.000  0 0.000 0.000 0.152 0.848
#> GSM904985     2   0.000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM904988     2   0.000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM904990     2   0.000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM904992     2   0.000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM904995     2   0.000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM904998     2   0.000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM905000     2   0.000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM905003     2   0.000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM905006     2   0.000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM905008     2   0.000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM905011     2   0.000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM905013     2   0.000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM905016     2   0.000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM905018     2   0.000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM905021     2   0.000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM905025     2   0.000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM905028     2   0.000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM905030     2   0.000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM905033     2   0.000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM905035     2   0.000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM905037     2   0.000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM905039     2   0.000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM905042     2   0.000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM905046     1   0.079      0.914 0.968  0 0.000 0.000 0.032 0.000
#> GSM905065     1   0.000      0.941 1.000  0 0.000 0.000 0.000 0.000
#> GSM905049     4   0.000      1.000 0.000  0 0.000 1.000 0.000 0.000
#> GSM905050     4   0.000      1.000 0.000  0 0.000 1.000 0.000 0.000
#> GSM905064     4   0.000      1.000 0.000  0 0.000 1.000 0.000 0.000
#> GSM905045     4   0.000      1.000 0.000  0 0.000 1.000 0.000 0.000
#> GSM905051     4   0.000      1.000 0.000  0 0.000 1.000 0.000 0.000
#> GSM905055     6   0.000      0.854 0.000  0 0.000 0.000 0.000 1.000
#> GSM905058     5   0.238      0.906 0.152  0 0.000 0.000 0.848 0.000
#> GSM905053     4   0.000      1.000 0.000  0 0.000 1.000 0.000 0.000
#> GSM905061     4   0.000      1.000 0.000  0 0.000 1.000 0.000 0.000
#> GSM905063     6   0.490      0.439 0.304  0 0.000 0.000 0.088 0.608
#> GSM905054     4   0.000      1.000 0.000  0 0.000 1.000 0.000 0.000
#> GSM905062     4   0.000      1.000 0.000  0 0.000 1.000 0.000 0.000
#> GSM905052     4   0.000      1.000 0.000  0 0.000 1.000 0.000 0.000
#> GSM905059     5   0.238      0.906 0.152  0 0.000 0.000 0.848 0.000
#> GSM905047     5   0.327      0.789 0.272  0 0.000 0.000 0.728 0.000
#> GSM905066     1   0.000      0.941 1.000  0 0.000 0.000 0.000 0.000
#> GSM905056     6   0.000      0.854 0.000  0 0.000 0.000 0.000 1.000
#> GSM905060     5   0.238      0.906 0.152  0 0.000 0.000 0.848 0.000
#> GSM905048     1   0.000      0.941 1.000  0 0.000 0.000 0.000 0.000
#> GSM905067     1   0.000      0.941 1.000  0 0.000 0.000 0.000 0.000
#> GSM905057     6   0.000      0.854 0.000  0 0.000 0.000 0.000 1.000
#> GSM905068     4   0.000      1.000 0.000  0 0.000 1.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n tissue(p) genotype/variation(p) individual(p) k
#> CV:pam 76  3.04e-12              1.17e-05       0.99018 2
#> CV:pam 76  1.53e-18              5.88e-06       0.89219 3
#> CV:pam 75  1.05e-21              2.27e-09       0.35473 4
#> CV:pam 76  1.33e-21              7.96e-12       0.01272 5
#> CV:pam 75  2.04e-24              1.54e-12       0.00838 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 76 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4283 0.572   0.572
#> 3 3 1.000           0.984       0.994         0.5772 0.720   0.524
#> 4 4 0.886           0.892       0.936         0.0757 0.938   0.813
#> 5 5 0.955           0.903       0.957         0.0729 0.915   0.707
#> 6 6 0.883           0.852       0.874         0.0345 0.985   0.931

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> GSM905004     1       0          1  1  0
#> GSM905024     1       0          1  1  0
#> GSM905038     1       0          1  1  0
#> GSM905043     1       0          1  1  0
#> GSM904986     1       0          1  1  0
#> GSM904991     1       0          1  1  0
#> GSM904994     1       0          1  1  0
#> GSM904996     1       0          1  1  0
#> GSM905007     1       0          1  1  0
#> GSM905012     1       0          1  1  0
#> GSM905022     1       0          1  1  0
#> GSM905026     1       0          1  1  0
#> GSM905027     1       0          1  1  0
#> GSM905031     1       0          1  1  0
#> GSM905036     1       0          1  1  0
#> GSM905041     1       0          1  1  0
#> GSM905044     1       0          1  1  0
#> GSM904989     1       0          1  1  0
#> GSM904999     1       0          1  1  0
#> GSM905002     1       0          1  1  0
#> GSM905009     1       0          1  1  0
#> GSM905014     1       0          1  1  0
#> GSM905017     1       0          1  1  0
#> GSM905020     1       0          1  1  0
#> GSM905023     1       0          1  1  0
#> GSM905029     1       0          1  1  0
#> GSM905032     1       0          1  1  0
#> GSM905034     1       0          1  1  0
#> GSM905040     1       0          1  1  0
#> GSM904985     2       0          1  0  1
#> GSM904988     2       0          1  0  1
#> GSM904990     2       0          1  0  1
#> GSM904992     2       0          1  0  1
#> GSM904995     2       0          1  0  1
#> GSM904998     2       0          1  0  1
#> GSM905000     2       0          1  0  1
#> GSM905003     2       0          1  0  1
#> GSM905006     2       0          1  0  1
#> GSM905008     2       0          1  0  1
#> GSM905011     2       0          1  0  1
#> GSM905013     2       0          1  0  1
#> GSM905016     2       0          1  0  1
#> GSM905018     2       0          1  0  1
#> GSM905021     2       0          1  0  1
#> GSM905025     2       0          1  0  1
#> GSM905028     2       0          1  0  1
#> GSM905030     2       0          1  0  1
#> GSM905033     2       0          1  0  1
#> GSM905035     2       0          1  0  1
#> GSM905037     2       0          1  0  1
#> GSM905039     2       0          1  0  1
#> GSM905042     2       0          1  0  1
#> GSM905046     1       0          1  1  0
#> GSM905065     1       0          1  1  0
#> GSM905049     1       0          1  1  0
#> GSM905050     1       0          1  1  0
#> GSM905064     1       0          1  1  0
#> GSM905045     1       0          1  1  0
#> GSM905051     1       0          1  1  0
#> GSM905055     1       0          1  1  0
#> GSM905058     1       0          1  1  0
#> GSM905053     1       0          1  1  0
#> GSM905061     1       0          1  1  0
#> GSM905063     1       0          1  1  0
#> GSM905054     1       0          1  1  0
#> GSM905062     1       0          1  1  0
#> GSM905052     1       0          1  1  0
#> GSM905059     1       0          1  1  0
#> GSM905047     1       0          1  1  0
#> GSM905066     1       0          1  1  0
#> GSM905056     1       0          1  1  0
#> GSM905060     1       0          1  1  0
#> GSM905048     1       0          1  1  0
#> GSM905067     1       0          1  1  0
#> GSM905057     1       0          1  1  0
#> GSM905068     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette  p1    p2    p3
#> GSM905004     1   0.613      0.331 0.6 0.000 0.400
#> GSM905024     3   0.000      0.998 0.0 0.000 1.000
#> GSM905038     3   0.000      0.998 0.0 0.000 1.000
#> GSM905043     3   0.000      0.998 0.0 0.000 1.000
#> GSM904986     3   0.000      0.998 0.0 0.000 1.000
#> GSM904991     3   0.000      0.998 0.0 0.000 1.000
#> GSM904994     3   0.000      0.998 0.0 0.000 1.000
#> GSM904996     3   0.000      0.998 0.0 0.000 1.000
#> GSM905007     3   0.000      0.998 0.0 0.000 1.000
#> GSM905012     3   0.000      0.998 0.0 0.000 1.000
#> GSM905022     3   0.000      0.998 0.0 0.000 1.000
#> GSM905026     3   0.000      0.998 0.0 0.000 1.000
#> GSM905027     3   0.000      0.998 0.0 0.000 1.000
#> GSM905031     3   0.000      0.998 0.0 0.000 1.000
#> GSM905036     3   0.000      0.998 0.0 0.000 1.000
#> GSM905041     3   0.000      0.998 0.0 0.000 1.000
#> GSM905044     3   0.000      0.998 0.0 0.000 1.000
#> GSM904989     3   0.000      0.998 0.0 0.000 1.000
#> GSM904999     2   0.000      1.000 0.0 1.000 0.000
#> GSM905002     3   0.000      0.998 0.0 0.000 1.000
#> GSM905009     3   0.000      0.998 0.0 0.000 1.000
#> GSM905014     3   0.000      0.998 0.0 0.000 1.000
#> GSM905017     2   0.000      1.000 0.0 1.000 0.000
#> GSM905020     3   0.000      0.998 0.0 0.000 1.000
#> GSM905023     3   0.000      0.998 0.0 0.000 1.000
#> GSM905029     3   0.000      0.998 0.0 0.000 1.000
#> GSM905032     3   0.196      0.941 0.0 0.056 0.944
#> GSM905034     3   0.000      0.998 0.0 0.000 1.000
#> GSM905040     3   0.000      0.998 0.0 0.000 1.000
#> GSM904985     2   0.000      1.000 0.0 1.000 0.000
#> GSM904988     2   0.000      1.000 0.0 1.000 0.000
#> GSM904990     2   0.000      1.000 0.0 1.000 0.000
#> GSM904992     2   0.000      1.000 0.0 1.000 0.000
#> GSM904995     2   0.000      1.000 0.0 1.000 0.000
#> GSM904998     2   0.000      1.000 0.0 1.000 0.000
#> GSM905000     2   0.000      1.000 0.0 1.000 0.000
#> GSM905003     2   0.000      1.000 0.0 1.000 0.000
#> GSM905006     2   0.000      1.000 0.0 1.000 0.000
#> GSM905008     2   0.000      1.000 0.0 1.000 0.000
#> GSM905011     2   0.000      1.000 0.0 1.000 0.000
#> GSM905013     2   0.000      1.000 0.0 1.000 0.000
#> GSM905016     2   0.000      1.000 0.0 1.000 0.000
#> GSM905018     2   0.000      1.000 0.0 1.000 0.000
#> GSM905021     2   0.000      1.000 0.0 1.000 0.000
#> GSM905025     2   0.000      1.000 0.0 1.000 0.000
#> GSM905028     2   0.000      1.000 0.0 1.000 0.000
#> GSM905030     2   0.000      1.000 0.0 1.000 0.000
#> GSM905033     2   0.000      1.000 0.0 1.000 0.000
#> GSM905035     2   0.000      1.000 0.0 1.000 0.000
#> GSM905037     2   0.000      1.000 0.0 1.000 0.000
#> GSM905039     2   0.000      1.000 0.0 1.000 0.000
#> GSM905042     2   0.000      1.000 0.0 1.000 0.000
#> GSM905046     1   0.000      0.983 1.0 0.000 0.000
#> GSM905065     1   0.000      0.983 1.0 0.000 0.000
#> GSM905049     1   0.000      0.983 1.0 0.000 0.000
#> GSM905050     1   0.000      0.983 1.0 0.000 0.000
#> GSM905064     1   0.000      0.983 1.0 0.000 0.000
#> GSM905045     1   0.000      0.983 1.0 0.000 0.000
#> GSM905051     1   0.000      0.983 1.0 0.000 0.000
#> GSM905055     1   0.000      0.983 1.0 0.000 0.000
#> GSM905058     1   0.000      0.983 1.0 0.000 0.000
#> GSM905053     1   0.000      0.983 1.0 0.000 0.000
#> GSM905061     1   0.000      0.983 1.0 0.000 0.000
#> GSM905063     1   0.000      0.983 1.0 0.000 0.000
#> GSM905054     1   0.000      0.983 1.0 0.000 0.000
#> GSM905062     1   0.000      0.983 1.0 0.000 0.000
#> GSM905052     1   0.000      0.983 1.0 0.000 0.000
#> GSM905059     1   0.000      0.983 1.0 0.000 0.000
#> GSM905047     1   0.000      0.983 1.0 0.000 0.000
#> GSM905066     1   0.000      0.983 1.0 0.000 0.000
#> GSM905056     1   0.000      0.983 1.0 0.000 0.000
#> GSM905060     1   0.000      0.983 1.0 0.000 0.000
#> GSM905048     1   0.000      0.983 1.0 0.000 0.000
#> GSM905067     1   0.000      0.983 1.0 0.000 0.000
#> GSM905057     1   0.000      0.983 1.0 0.000 0.000
#> GSM905068     1   0.000      0.983 1.0 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM905004     4  0.5393      0.430 0.044 0.000 0.268 0.688
#> GSM905024     3  0.4222      0.642 0.272 0.000 0.728 0.000
#> GSM905038     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM905043     3  0.4522      0.558 0.320 0.000 0.680 0.000
#> GSM904986     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM904991     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM904994     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM904996     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM905007     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM905012     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM905022     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM905026     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM905027     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM905031     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM905036     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM905041     3  0.0592      0.942 0.016 0.000 0.984 0.000
#> GSM905044     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM904989     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM904999     1  0.4818      0.668 0.748 0.216 0.036 0.000
#> GSM905002     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM905009     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM905014     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM905017     1  0.5247      0.579 0.684 0.284 0.032 0.000
#> GSM905020     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM905023     3  0.0592      0.942 0.016 0.000 0.984 0.000
#> GSM905029     3  0.0000      0.957 0.000 0.000 1.000 0.000
#> GSM905032     1  0.4525      0.691 0.804 0.000 0.116 0.080
#> GSM905034     3  0.4331      0.619 0.288 0.000 0.712 0.000
#> GSM905040     1  0.3801      0.592 0.780 0.000 0.220 0.000
#> GSM904985     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM904988     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM904990     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM904992     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM904995     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM904998     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905000     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905003     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905006     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905008     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905011     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905013     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905016     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905018     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905021     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905025     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905028     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905030     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905033     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905035     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905037     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905039     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905042     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905046     4  0.3172      0.863 0.160 0.000 0.000 0.840
#> GSM905065     4  0.3266      0.859 0.168 0.000 0.000 0.832
#> GSM905049     4  0.0817      0.859 0.024 0.000 0.000 0.976
#> GSM905050     4  0.0817      0.859 0.024 0.000 0.000 0.976
#> GSM905064     4  0.0707      0.870 0.020 0.000 0.000 0.980
#> GSM905045     4  0.1302      0.865 0.044 0.000 0.000 0.956
#> GSM905051     4  0.1940      0.874 0.076 0.000 0.000 0.924
#> GSM905055     1  0.3266      0.684 0.832 0.000 0.000 0.168
#> GSM905058     4  0.3266      0.859 0.168 0.000 0.000 0.832
#> GSM905053     4  0.0817      0.859 0.024 0.000 0.000 0.976
#> GSM905061     4  0.0817      0.859 0.024 0.000 0.000 0.976
#> GSM905063     4  0.4661      0.616 0.348 0.000 0.000 0.652
#> GSM905054     4  0.0000      0.866 0.000 0.000 0.000 1.000
#> GSM905062     4  0.0817      0.859 0.024 0.000 0.000 0.976
#> GSM905052     4  0.1940      0.874 0.076 0.000 0.000 0.924
#> GSM905059     4  0.2973      0.868 0.144 0.000 0.000 0.856
#> GSM905047     4  0.2973      0.868 0.144 0.000 0.000 0.856
#> GSM905066     4  0.3266      0.859 0.168 0.000 0.000 0.832
#> GSM905056     1  0.3266      0.684 0.832 0.000 0.000 0.168
#> GSM905060     4  0.2973      0.868 0.144 0.000 0.000 0.856
#> GSM905048     4  0.3266      0.859 0.168 0.000 0.000 0.832
#> GSM905067     4  0.3266      0.859 0.168 0.000 0.000 0.832
#> GSM905057     1  0.3266      0.684 0.832 0.000 0.000 0.168
#> GSM905068     4  0.0817      0.859 0.024 0.000 0.000 0.976

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1 p2    p3    p4    p5
#> GSM905004     4  0.4618      0.649 0.068  0 0.208 0.724 0.000
#> GSM905024     5  0.0000      0.994 0.000  0 0.000 0.000 1.000
#> GSM905038     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> GSM905043     5  0.0000      0.994 0.000  0 0.000 0.000 1.000
#> GSM904986     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> GSM904991     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> GSM904994     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> GSM904996     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> GSM905007     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> GSM905012     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> GSM905022     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> GSM905026     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> GSM905027     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> GSM905031     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> GSM905036     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> GSM905041     3  0.0162      0.996 0.000  0 0.996 0.000 0.004
#> GSM905044     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> GSM904989     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> GSM904999     5  0.0404      0.984 0.000  0 0.012 0.000 0.988
#> GSM905002     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> GSM905009     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> GSM905014     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> GSM905017     5  0.0404      0.984 0.000  0 0.012 0.000 0.988
#> GSM905020     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> GSM905023     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> GSM905029     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> GSM905032     5  0.0000      0.994 0.000  0 0.000 0.000 1.000
#> GSM905034     5  0.0000      0.994 0.000  0 0.000 0.000 1.000
#> GSM905040     5  0.0000      0.994 0.000  0 0.000 0.000 1.000
#> GSM904985     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM904988     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM904990     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM904992     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM904995     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM904998     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM905000     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM905003     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM905006     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM905008     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM905011     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM905013     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM905016     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM905018     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM905021     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM905025     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM905028     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM905030     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM905033     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM905035     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM905037     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM905039     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM905042     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM905046     1  0.0162      0.764 0.996  0 0.000 0.004 0.000
#> GSM905065     1  0.0000      0.764 1.000  0 0.000 0.000 0.000
#> GSM905049     4  0.0000      0.946 0.000  0 0.000 1.000 0.000
#> GSM905050     4  0.0000      0.946 0.000  0 0.000 1.000 0.000
#> GSM905064     4  0.1608      0.896 0.072  0 0.000 0.928 0.000
#> GSM905045     4  0.1544      0.900 0.068  0 0.000 0.932 0.000
#> GSM905051     1  0.4126      0.350 0.620  0 0.000 0.380 0.000
#> GSM905055     1  0.4273      0.284 0.552  0 0.000 0.000 0.448
#> GSM905058     1  0.0000      0.764 1.000  0 0.000 0.000 0.000
#> GSM905053     4  0.0000      0.946 0.000  0 0.000 1.000 0.000
#> GSM905061     4  0.0000      0.946 0.000  0 0.000 1.000 0.000
#> GSM905063     1  0.4262      0.298 0.560  0 0.000 0.000 0.440
#> GSM905054     4  0.0000      0.946 0.000  0 0.000 1.000 0.000
#> GSM905062     4  0.0000      0.946 0.000  0 0.000 1.000 0.000
#> GSM905052     1  0.4126      0.350 0.620  0 0.000 0.380 0.000
#> GSM905059     1  0.2020      0.732 0.900  0 0.000 0.100 0.000
#> GSM905047     1  0.2127      0.726 0.892  0 0.000 0.108 0.000
#> GSM905066     1  0.0000      0.764 1.000  0 0.000 0.000 0.000
#> GSM905056     1  0.4273      0.284 0.552  0 0.000 0.000 0.448
#> GSM905060     1  0.2020      0.732 0.900  0 0.000 0.100 0.000
#> GSM905048     1  0.0000      0.764 1.000  0 0.000 0.000 0.000
#> GSM905067     1  0.0000      0.764 1.000  0 0.000 0.000 0.000
#> GSM905057     1  0.4273      0.284 0.552  0 0.000 0.000 0.448
#> GSM905068     4  0.0000      0.946 0.000  0 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM905004     4  0.8134      0.187 0.112 0.000 0.124 0.432 0.136 0.196
#> GSM905024     5  0.3592      0.986 0.000 0.000 0.000 0.000 0.656 0.344
#> GSM905038     3  0.0547      0.964 0.000 0.000 0.980 0.000 0.020 0.000
#> GSM905043     5  0.3592      0.986 0.000 0.000 0.000 0.000 0.656 0.344
#> GSM904986     3  0.0000      0.968 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904991     3  0.2300      0.856 0.000 0.000 0.856 0.000 0.144 0.000
#> GSM904994     3  0.0000      0.968 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904996     3  0.0000      0.968 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905007     3  0.1075      0.948 0.000 0.000 0.952 0.000 0.048 0.000
#> GSM905012     3  0.0000      0.968 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905022     3  0.0000      0.968 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905026     3  0.0000      0.968 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905027     3  0.0547      0.964 0.000 0.000 0.980 0.000 0.020 0.000
#> GSM905031     3  0.0000      0.968 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905036     3  0.0547      0.964 0.000 0.000 0.980 0.000 0.020 0.000
#> GSM905041     3  0.3189      0.732 0.000 0.000 0.760 0.000 0.236 0.004
#> GSM905044     3  0.0000      0.968 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904989     3  0.0000      0.968 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904999     5  0.3984      0.966 0.000 0.000 0.016 0.000 0.648 0.336
#> GSM905002     3  0.0363      0.964 0.000 0.000 0.988 0.000 0.012 0.000
#> GSM905009     3  0.0000      0.968 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905014     3  0.1075      0.948 0.000 0.000 0.952 0.000 0.048 0.000
#> GSM905017     5  0.3984      0.966 0.000 0.000 0.016 0.000 0.648 0.336
#> GSM905020     3  0.0000      0.968 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905023     3  0.1501      0.924 0.000 0.000 0.924 0.000 0.076 0.000
#> GSM905029     3  0.0547      0.964 0.000 0.000 0.980 0.000 0.020 0.000
#> GSM905032     5  0.3592      0.986 0.000 0.000 0.000 0.000 0.656 0.344
#> GSM905034     5  0.3592      0.986 0.000 0.000 0.000 0.000 0.656 0.344
#> GSM905040     5  0.3592      0.986 0.000 0.000 0.000 0.000 0.656 0.344
#> GSM904985     2  0.3254      0.841 0.048 0.816 0.000 0.000 0.136 0.000
#> GSM904988     2  0.0000      0.861 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904990     2  0.0000      0.861 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904992     2  0.0000      0.861 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904995     2  0.3254      0.841 0.048 0.816 0.000 0.000 0.136 0.000
#> GSM904998     2  0.0000      0.861 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905000     2  0.0000      0.861 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905003     2  0.1267      0.858 0.000 0.940 0.000 0.000 0.060 0.000
#> GSM905006     2  0.0000      0.861 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905008     2  0.6302      0.593 0.048 0.488 0.000 0.000 0.332 0.132
#> GSM905011     2  0.0000      0.861 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905013     2  0.0000      0.861 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905016     2  0.3254      0.841 0.048 0.816 0.000 0.000 0.136 0.000
#> GSM905018     2  0.0000      0.861 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905021     2  0.6326      0.580 0.048 0.476 0.000 0.000 0.344 0.132
#> GSM905025     2  0.3254      0.841 0.048 0.816 0.000 0.000 0.136 0.000
#> GSM905028     2  0.3254      0.841 0.048 0.816 0.000 0.000 0.136 0.000
#> GSM905030     2  0.0000      0.861 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905033     2  0.6333      0.576 0.048 0.472 0.000 0.000 0.348 0.132
#> GSM905035     2  0.3254      0.841 0.048 0.816 0.000 0.000 0.136 0.000
#> GSM905037     2  0.0000      0.861 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905039     2  0.3254      0.841 0.048 0.816 0.000 0.000 0.136 0.000
#> GSM905042     2  0.6333      0.576 0.048 0.472 0.000 0.000 0.348 0.132
#> GSM905046     1  0.3360      0.720 0.732 0.000 0.000 0.004 0.000 0.264
#> GSM905065     1  0.3244      0.720 0.732 0.000 0.000 0.000 0.000 0.268
#> GSM905049     4  0.0000      0.910 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905050     4  0.0000      0.910 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905064     4  0.1141      0.878 0.052 0.000 0.000 0.948 0.000 0.000
#> GSM905045     4  0.3822      0.727 0.128 0.000 0.000 0.776 0.000 0.096
#> GSM905051     1  0.4314      0.481 0.712 0.000 0.000 0.220 0.004 0.064
#> GSM905055     6  0.2178      0.988 0.132 0.000 0.000 0.000 0.000 0.868
#> GSM905058     1  0.3244      0.720 0.732 0.000 0.000 0.000 0.000 0.268
#> GSM905053     4  0.0000      0.910 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905061     4  0.0000      0.910 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905063     6  0.2520      0.965 0.152 0.000 0.000 0.000 0.004 0.844
#> GSM905054     4  0.0000      0.910 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905062     4  0.0000      0.910 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905052     1  0.4314      0.481 0.712 0.000 0.000 0.220 0.004 0.064
#> GSM905059     1  0.1075      0.693 0.952 0.000 0.000 0.048 0.000 0.000
#> GSM905047     1  0.1075      0.693 0.952 0.000 0.000 0.048 0.000 0.000
#> GSM905066     1  0.3244      0.720 0.732 0.000 0.000 0.000 0.000 0.268
#> GSM905056     6  0.2178      0.988 0.132 0.000 0.000 0.000 0.000 0.868
#> GSM905060     1  0.1075      0.693 0.952 0.000 0.000 0.048 0.000 0.000
#> GSM905048     1  0.3244      0.720 0.732 0.000 0.000 0.000 0.000 0.268
#> GSM905067     1  0.3244      0.720 0.732 0.000 0.000 0.000 0.000 0.268
#> GSM905057     6  0.2178      0.988 0.132 0.000 0.000 0.000 0.000 0.868
#> GSM905068     4  0.0000      0.910 0.000 0.000 0.000 1.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n tissue(p) genotype/variation(p) individual(p) k
#> CV:mclust 76  3.04e-12              1.17e-05         0.990 2
#> CV:mclust 75  7.59e-20              1.17e-05         0.957 3
#> CV:mclust 75  7.56e-19              1.95e-06         0.337 4
#> CV:mclust 70  2.94e-20              4.72e-11         0.674 5
#> CV:mclust 73  2.08e-21              4.96e-12         0.310 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 76 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.728           0.849       0.928         0.4798 0.495   0.495
#> 3 3 1.000           0.991       0.996         0.4051 0.704   0.469
#> 4 4 1.000           0.949       0.979         0.1036 0.890   0.681
#> 5 5 0.956           0.908       0.950         0.0434 0.921   0.716
#> 6 6 0.894           0.811       0.887         0.0307 0.981   0.918

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 3 4

There is also optional best \(k\) = 3 4 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM905004     1  0.5629      0.800 0.868 0.132
#> GSM905024     1  0.0000      0.981 1.000 0.000
#> GSM905038     1  0.0672      0.973 0.992 0.008
#> GSM905043     1  0.0000      0.981 1.000 0.000
#> GSM904986     2  0.9323      0.599 0.348 0.652
#> GSM904991     1  0.0000      0.981 1.000 0.000
#> GSM904994     2  0.9635      0.540 0.388 0.612
#> GSM904996     2  0.9580      0.553 0.380 0.620
#> GSM905007     1  0.0000      0.981 1.000 0.000
#> GSM905012     2  0.9427      0.583 0.360 0.640
#> GSM905022     2  0.9977      0.350 0.472 0.528
#> GSM905026     2  0.9963      0.373 0.464 0.536
#> GSM905027     1  0.0672      0.973 0.992 0.008
#> GSM905031     2  0.9427      0.583 0.360 0.640
#> GSM905036     1  0.0000      0.981 1.000 0.000
#> GSM905041     1  0.0000      0.981 1.000 0.000
#> GSM905044     2  0.9795      0.487 0.416 0.584
#> GSM904989     1  0.9933     -0.132 0.548 0.452
#> GSM904999     2  0.9248      0.609 0.340 0.660
#> GSM905002     2  0.9850      0.461 0.428 0.572
#> GSM905009     2  0.9754      0.503 0.408 0.592
#> GSM905014     1  0.0000      0.981 1.000 0.000
#> GSM905017     2  0.7528      0.725 0.216 0.784
#> GSM905020     2  0.8144      0.696 0.252 0.748
#> GSM905023     1  0.0672      0.973 0.992 0.008
#> GSM905029     1  0.0000      0.981 1.000 0.000
#> GSM905032     1  0.0000      0.981 1.000 0.000
#> GSM905034     1  0.0000      0.981 1.000 0.000
#> GSM905040     1  0.0000      0.981 1.000 0.000
#> GSM904985     2  0.0000      0.850 0.000 1.000
#> GSM904988     2  0.0000      0.850 0.000 1.000
#> GSM904990     2  0.0000      0.850 0.000 1.000
#> GSM904992     2  0.0000      0.850 0.000 1.000
#> GSM904995     2  0.0000      0.850 0.000 1.000
#> GSM904998     2  0.0000      0.850 0.000 1.000
#> GSM905000     2  0.0000      0.850 0.000 1.000
#> GSM905003     2  0.0000      0.850 0.000 1.000
#> GSM905006     2  0.0000      0.850 0.000 1.000
#> GSM905008     2  0.0000      0.850 0.000 1.000
#> GSM905011     2  0.0000      0.850 0.000 1.000
#> GSM905013     2  0.0000      0.850 0.000 1.000
#> GSM905016     2  0.0000      0.850 0.000 1.000
#> GSM905018     2  0.0000      0.850 0.000 1.000
#> GSM905021     2  0.0000      0.850 0.000 1.000
#> GSM905025     2  0.0000      0.850 0.000 1.000
#> GSM905028     2  0.0000      0.850 0.000 1.000
#> GSM905030     2  0.0000      0.850 0.000 1.000
#> GSM905033     2  0.0000      0.850 0.000 1.000
#> GSM905035     2  0.0000      0.850 0.000 1.000
#> GSM905037     2  0.0000      0.850 0.000 1.000
#> GSM905039     2  0.0000      0.850 0.000 1.000
#> GSM905042     2  0.0000      0.850 0.000 1.000
#> GSM905046     1  0.0000      0.981 1.000 0.000
#> GSM905065     1  0.0000      0.981 1.000 0.000
#> GSM905049     1  0.0000      0.981 1.000 0.000
#> GSM905050     1  0.0000      0.981 1.000 0.000
#> GSM905064     1  0.0000      0.981 1.000 0.000
#> GSM905045     1  0.0000      0.981 1.000 0.000
#> GSM905051     1  0.0000      0.981 1.000 0.000
#> GSM905055     1  0.0000      0.981 1.000 0.000
#> GSM905058     1  0.0000      0.981 1.000 0.000
#> GSM905053     1  0.0000      0.981 1.000 0.000
#> GSM905061     1  0.0000      0.981 1.000 0.000
#> GSM905063     1  0.0000      0.981 1.000 0.000
#> GSM905054     1  0.0000      0.981 1.000 0.000
#> GSM905062     1  0.0000      0.981 1.000 0.000
#> GSM905052     1  0.0000      0.981 1.000 0.000
#> GSM905059     1  0.0000      0.981 1.000 0.000
#> GSM905047     1  0.0000      0.981 1.000 0.000
#> GSM905066     1  0.0000      0.981 1.000 0.000
#> GSM905056     1  0.0000      0.981 1.000 0.000
#> GSM905060     1  0.0000      0.981 1.000 0.000
#> GSM905048     1  0.0000      0.981 1.000 0.000
#> GSM905067     1  0.0000      0.981 1.000 0.000
#> GSM905057     1  0.0000      0.981 1.000 0.000
#> GSM905068     1  0.0000      0.981 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1 p2    p3
#> GSM905004     3   0.000      0.993 0.000  0 1.000
#> GSM905024     3   0.296      0.891 0.100  0 0.900
#> GSM905038     3   0.000      0.993 0.000  0 1.000
#> GSM905043     3   0.236      0.923 0.072  0 0.928
#> GSM904986     3   0.000      0.993 0.000  0 1.000
#> GSM904991     3   0.000      0.993 0.000  0 1.000
#> GSM904994     3   0.000      0.993 0.000  0 1.000
#> GSM904996     3   0.000      0.993 0.000  0 1.000
#> GSM905007     3   0.000      0.993 0.000  0 1.000
#> GSM905012     3   0.000      0.993 0.000  0 1.000
#> GSM905022     3   0.000      0.993 0.000  0 1.000
#> GSM905026     3   0.000      0.993 0.000  0 1.000
#> GSM905027     3   0.000      0.993 0.000  0 1.000
#> GSM905031     3   0.000      0.993 0.000  0 1.000
#> GSM905036     3   0.000      0.993 0.000  0 1.000
#> GSM905041     3   0.000      0.993 0.000  0 1.000
#> GSM905044     3   0.000      0.993 0.000  0 1.000
#> GSM904989     3   0.000      0.993 0.000  0 1.000
#> GSM904999     3   0.000      0.993 0.000  0 1.000
#> GSM905002     3   0.000      0.993 0.000  0 1.000
#> GSM905009     3   0.000      0.993 0.000  0 1.000
#> GSM905014     3   0.000      0.993 0.000  0 1.000
#> GSM905017     3   0.000      0.993 0.000  0 1.000
#> GSM905020     3   0.000      0.993 0.000  0 1.000
#> GSM905023     3   0.000      0.993 0.000  0 1.000
#> GSM905029     3   0.000      0.993 0.000  0 1.000
#> GSM905032     3   0.000      0.993 0.000  0 1.000
#> GSM905034     1   0.236      0.924 0.928  0 0.072
#> GSM905040     1   0.280      0.901 0.908  0 0.092
#> GSM904985     2   0.000      1.000 0.000  1 0.000
#> GSM904988     2   0.000      1.000 0.000  1 0.000
#> GSM904990     2   0.000      1.000 0.000  1 0.000
#> GSM904992     2   0.000      1.000 0.000  1 0.000
#> GSM904995     2   0.000      1.000 0.000  1 0.000
#> GSM904998     2   0.000      1.000 0.000  1 0.000
#> GSM905000     2   0.000      1.000 0.000  1 0.000
#> GSM905003     2   0.000      1.000 0.000  1 0.000
#> GSM905006     2   0.000      1.000 0.000  1 0.000
#> GSM905008     2   0.000      1.000 0.000  1 0.000
#> GSM905011     2   0.000      1.000 0.000  1 0.000
#> GSM905013     2   0.000      1.000 0.000  1 0.000
#> GSM905016     2   0.000      1.000 0.000  1 0.000
#> GSM905018     2   0.000      1.000 0.000  1 0.000
#> GSM905021     2   0.000      1.000 0.000  1 0.000
#> GSM905025     2   0.000      1.000 0.000  1 0.000
#> GSM905028     2   0.000      1.000 0.000  1 0.000
#> GSM905030     2   0.000      1.000 0.000  1 0.000
#> GSM905033     2   0.000      1.000 0.000  1 0.000
#> GSM905035     2   0.000      1.000 0.000  1 0.000
#> GSM905037     2   0.000      1.000 0.000  1 0.000
#> GSM905039     2   0.000      1.000 0.000  1 0.000
#> GSM905042     2   0.000      1.000 0.000  1 0.000
#> GSM905046     1   0.000      0.993 1.000  0 0.000
#> GSM905065     1   0.000      0.993 1.000  0 0.000
#> GSM905049     1   0.000      0.993 1.000  0 0.000
#> GSM905050     1   0.000      0.993 1.000  0 0.000
#> GSM905064     1   0.000      0.993 1.000  0 0.000
#> GSM905045     1   0.000      0.993 1.000  0 0.000
#> GSM905051     1   0.000      0.993 1.000  0 0.000
#> GSM905055     1   0.000      0.993 1.000  0 0.000
#> GSM905058     1   0.000      0.993 1.000  0 0.000
#> GSM905053     1   0.000      0.993 1.000  0 0.000
#> GSM905061     1   0.000      0.993 1.000  0 0.000
#> GSM905063     1   0.000      0.993 1.000  0 0.000
#> GSM905054     1   0.000      0.993 1.000  0 0.000
#> GSM905062     1   0.000      0.993 1.000  0 0.000
#> GSM905052     1   0.000      0.993 1.000  0 0.000
#> GSM905059     1   0.000      0.993 1.000  0 0.000
#> GSM905047     1   0.000      0.993 1.000  0 0.000
#> GSM905066     1   0.000      0.993 1.000  0 0.000
#> GSM905056     1   0.000      0.993 1.000  0 0.000
#> GSM905060     1   0.000      0.993 1.000  0 0.000
#> GSM905048     1   0.000      0.993 1.000  0 0.000
#> GSM905067     1   0.000      0.993 1.000  0 0.000
#> GSM905057     1   0.000      0.993 1.000  0 0.000
#> GSM905068     1   0.000      0.993 1.000  0 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1 p2    p3    p4
#> GSM905004     4  0.0000      0.945 0.000  0 0.000 1.000
#> GSM905024     1  0.4977      0.204 0.540  0 0.460 0.000
#> GSM905038     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM905043     1  0.4564      0.535 0.672  0 0.328 0.000
#> GSM904986     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM904991     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM904994     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM904996     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM905007     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM905012     4  0.4477      0.541 0.000  0 0.312 0.688
#> GSM905022     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM905026     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM905027     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM905031     3  0.0469      0.985 0.000  0 0.988 0.012
#> GSM905036     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM905041     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM905044     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM904989     3  0.0188      0.992 0.000  0 0.996 0.004
#> GSM904999     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM905002     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM905009     3  0.0188      0.992 0.000  0 0.996 0.004
#> GSM905014     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM905017     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM905020     3  0.2149      0.900 0.000  0 0.912 0.088
#> GSM905023     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM905029     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM905032     3  0.0000      0.995 0.000  0 1.000 0.000
#> GSM905034     1  0.0921      0.914 0.972  0 0.028 0.000
#> GSM905040     1  0.0817      0.918 0.976  0 0.024 0.000
#> GSM904985     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904988     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904990     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904992     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904995     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904998     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905000     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905003     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905006     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905008     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905011     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905013     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905016     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905018     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905021     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905025     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905028     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905030     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905033     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905035     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905037     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905039     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905042     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905046     1  0.0000      0.935 1.000  0 0.000 0.000
#> GSM905065     1  0.0000      0.935 1.000  0 0.000 0.000
#> GSM905049     4  0.0000      0.945 0.000  0 0.000 1.000
#> GSM905050     4  0.0000      0.945 0.000  0 0.000 1.000
#> GSM905064     4  0.0188      0.943 0.004  0 0.000 0.996
#> GSM905045     4  0.0000      0.945 0.000  0 0.000 1.000
#> GSM905051     4  0.3801      0.718 0.220  0 0.000 0.780
#> GSM905055     1  0.0000      0.935 1.000  0 0.000 0.000
#> GSM905058     1  0.0000      0.935 1.000  0 0.000 0.000
#> GSM905053     4  0.0000      0.945 0.000  0 0.000 1.000
#> GSM905061     4  0.0000      0.945 0.000  0 0.000 1.000
#> GSM905063     1  0.0000      0.935 1.000  0 0.000 0.000
#> GSM905054     4  0.0000      0.945 0.000  0 0.000 1.000
#> GSM905062     4  0.0000      0.945 0.000  0 0.000 1.000
#> GSM905052     4  0.1940      0.888 0.076  0 0.000 0.924
#> GSM905059     1  0.0000      0.935 1.000  0 0.000 0.000
#> GSM905047     1  0.0188      0.932 0.996  0 0.000 0.004
#> GSM905066     1  0.0000      0.935 1.000  0 0.000 0.000
#> GSM905056     1  0.0000      0.935 1.000  0 0.000 0.000
#> GSM905060     1  0.0000      0.935 1.000  0 0.000 0.000
#> GSM905048     1  0.0000      0.935 1.000  0 0.000 0.000
#> GSM905067     1  0.0000      0.935 1.000  0 0.000 0.000
#> GSM905057     1  0.0000      0.935 1.000  0 0.000 0.000
#> GSM905068     4  0.0000      0.945 0.000  0 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM905004     4  0.0912      0.890 0.000 0.000 0.012 0.972 0.016
#> GSM905024     1  0.4517      0.369 0.600 0.000 0.388 0.000 0.012
#> GSM905038     3  0.0404      0.941 0.000 0.000 0.988 0.000 0.012
#> GSM905043     3  0.5010      0.214 0.392 0.000 0.572 0.000 0.036
#> GSM904986     3  0.1485      0.929 0.000 0.000 0.948 0.020 0.032
#> GSM904991     3  0.0404      0.939 0.000 0.000 0.988 0.000 0.012
#> GSM904994     3  0.1579      0.926 0.000 0.000 0.944 0.024 0.032
#> GSM904996     3  0.1386      0.930 0.000 0.000 0.952 0.016 0.032
#> GSM905007     3  0.0771      0.941 0.000 0.000 0.976 0.004 0.020
#> GSM905012     4  0.1547      0.873 0.004 0.000 0.016 0.948 0.032
#> GSM905022     3  0.1168      0.934 0.000 0.000 0.960 0.008 0.032
#> GSM905026     3  0.0771      0.938 0.000 0.000 0.976 0.004 0.020
#> GSM905027     3  0.0162      0.941 0.000 0.000 0.996 0.000 0.004
#> GSM905031     4  0.4350      0.602 0.000 0.000 0.268 0.704 0.028
#> GSM905036     3  0.0404      0.939 0.000 0.000 0.988 0.000 0.012
#> GSM905041     3  0.0404      0.939 0.000 0.000 0.988 0.000 0.012
#> GSM905044     3  0.0992      0.936 0.000 0.000 0.968 0.008 0.024
#> GSM904989     3  0.1915      0.914 0.000 0.000 0.928 0.040 0.032
#> GSM904999     3  0.0290      0.940 0.000 0.000 0.992 0.000 0.008
#> GSM905002     3  0.1168      0.934 0.000 0.000 0.960 0.008 0.032
#> GSM905009     3  0.4099      0.709 0.004 0.000 0.764 0.200 0.032
#> GSM905014     3  0.0404      0.939 0.000 0.000 0.988 0.000 0.012
#> GSM905017     3  0.0290      0.940 0.000 0.000 0.992 0.000 0.008
#> GSM905020     4  0.4812      0.518 0.004 0.000 0.312 0.652 0.032
#> GSM905023     3  0.0404      0.939 0.000 0.000 0.988 0.000 0.012
#> GSM905029     3  0.0162      0.941 0.000 0.000 0.996 0.000 0.004
#> GSM905032     5  0.2561      0.797 0.000 0.000 0.144 0.000 0.856
#> GSM905034     1  0.1670      0.864 0.936 0.000 0.052 0.000 0.012
#> GSM905040     5  0.1952      0.951 0.084 0.000 0.004 0.000 0.912
#> GSM904985     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM904988     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM904990     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM904992     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM904995     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM904998     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905000     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905003     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905006     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905008     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905011     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905013     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905016     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905018     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905021     2  0.0162      0.996 0.000 0.996 0.000 0.000 0.004
#> GSM905025     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905028     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905030     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905033     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905035     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905037     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905039     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905042     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM905046     1  0.0451      0.892 0.988 0.000 0.000 0.008 0.004
#> GSM905065     1  0.1544      0.864 0.932 0.000 0.000 0.000 0.068
#> GSM905049     4  0.0703      0.905 0.024 0.000 0.000 0.976 0.000
#> GSM905050     4  0.0510      0.906 0.016 0.000 0.000 0.984 0.000
#> GSM905064     4  0.2020      0.842 0.100 0.000 0.000 0.900 0.000
#> GSM905045     4  0.0880      0.901 0.032 0.000 0.000 0.968 0.000
#> GSM905051     1  0.2504      0.852 0.896 0.000 0.000 0.064 0.040
#> GSM905055     5  0.1851      0.955 0.088 0.000 0.000 0.000 0.912
#> GSM905058     1  0.0162      0.892 0.996 0.000 0.000 0.004 0.000
#> GSM905053     4  0.0510      0.906 0.016 0.000 0.000 0.984 0.000
#> GSM905061     4  0.0404      0.906 0.012 0.000 0.000 0.988 0.000
#> GSM905063     5  0.1908      0.953 0.092 0.000 0.000 0.000 0.908
#> GSM905054     4  0.0880      0.901 0.032 0.000 0.000 0.968 0.000
#> GSM905062     4  0.0290      0.905 0.008 0.000 0.000 0.992 0.000
#> GSM905052     1  0.3432      0.787 0.828 0.000 0.000 0.132 0.040
#> GSM905059     1  0.0794      0.891 0.972 0.000 0.000 0.028 0.000
#> GSM905047     1  0.1121      0.884 0.956 0.000 0.000 0.044 0.000
#> GSM905066     1  0.1732      0.855 0.920 0.000 0.000 0.000 0.080
#> GSM905056     5  0.1851      0.955 0.088 0.000 0.000 0.000 0.912
#> GSM905060     1  0.0880      0.890 0.968 0.000 0.000 0.032 0.000
#> GSM905048     1  0.0404      0.889 0.988 0.000 0.000 0.000 0.012
#> GSM905067     1  0.1544      0.864 0.932 0.000 0.000 0.000 0.068
#> GSM905057     5  0.1851      0.955 0.088 0.000 0.000 0.000 0.912
#> GSM905068     4  0.0404      0.906 0.012 0.000 0.000 0.988 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM905004     4  0.3858     0.5916 0.000 0.000 0.216 0.740 0.044 0.000
#> GSM905024     1  0.5254     0.4044 0.608 0.000 0.196 0.000 0.196 0.000
#> GSM905038     3  0.2491     0.8116 0.000 0.000 0.836 0.000 0.164 0.000
#> GSM905043     1  0.6047     0.0234 0.448 0.000 0.320 0.000 0.228 0.004
#> GSM904986     3  0.1967     0.7596 0.000 0.000 0.904 0.012 0.084 0.000
#> GSM904991     3  0.3126     0.7927 0.000 0.000 0.752 0.000 0.248 0.000
#> GSM904994     3  0.1866     0.7621 0.000 0.000 0.908 0.008 0.084 0.000
#> GSM904996     3  0.1663     0.7649 0.000 0.000 0.912 0.000 0.088 0.000
#> GSM905007     3  0.1327     0.8099 0.000 0.000 0.936 0.000 0.064 0.000
#> GSM905012     4  0.4725     0.5144 0.000 0.000 0.264 0.648 0.088 0.000
#> GSM905022     3  0.1327     0.7753 0.000 0.000 0.936 0.000 0.064 0.000
#> GSM905026     3  0.1765     0.8105 0.000 0.000 0.904 0.000 0.096 0.000
#> GSM905027     3  0.3076     0.7970 0.000 0.000 0.760 0.000 0.240 0.000
#> GSM905031     4  0.3608     0.5691 0.000 0.000 0.272 0.716 0.012 0.000
#> GSM905036     3  0.3240     0.7959 0.000 0.000 0.752 0.004 0.244 0.000
#> GSM905041     3  0.3126     0.7927 0.000 0.000 0.752 0.000 0.248 0.000
#> GSM905044     3  0.0632     0.7979 0.000 0.000 0.976 0.000 0.024 0.000
#> GSM904989     3  0.3118     0.6889 0.000 0.000 0.836 0.092 0.072 0.000
#> GSM904999     3  0.3634     0.7335 0.000 0.000 0.644 0.000 0.356 0.000
#> GSM905002     3  0.1387     0.7736 0.000 0.000 0.932 0.000 0.068 0.000
#> GSM905009     3  0.5040    -0.1232 0.000 0.000 0.516 0.408 0.076 0.000
#> GSM905014     3  0.2527     0.8104 0.000 0.000 0.832 0.000 0.168 0.000
#> GSM905017     3  0.3563     0.7510 0.000 0.000 0.664 0.000 0.336 0.000
#> GSM905020     4  0.4932     0.4562 0.000 0.000 0.312 0.600 0.088 0.000
#> GSM905023     3  0.3151     0.7915 0.000 0.000 0.748 0.000 0.252 0.000
#> GSM905029     3  0.3023     0.7999 0.000 0.000 0.768 0.000 0.232 0.000
#> GSM905032     6  0.2778     0.7477 0.000 0.000 0.008 0.000 0.168 0.824
#> GSM905034     1  0.1556     0.8192 0.920 0.000 0.000 0.000 0.080 0.000
#> GSM905040     6  0.0291     0.9487 0.004 0.000 0.000 0.000 0.004 0.992
#> GSM904985     2  0.0146     0.9958 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM904988     2  0.0000     0.9968 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904990     2  0.0000     0.9968 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904992     2  0.0000     0.9968 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904995     2  0.0146     0.9958 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM904998     2  0.0000     0.9968 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905000     2  0.0000     0.9968 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905003     2  0.0000     0.9968 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905006     2  0.0000     0.9968 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905008     2  0.0000     0.9968 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905011     2  0.0000     0.9968 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905013     2  0.0000     0.9968 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905016     2  0.0146     0.9958 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM905018     2  0.0000     0.9968 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905021     2  0.1007     0.9581 0.000 0.956 0.000 0.000 0.044 0.000
#> GSM905025     2  0.0146     0.9958 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM905028     2  0.0000     0.9968 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905030     2  0.0000     0.9968 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905033     2  0.0146     0.9958 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM905035     2  0.0146     0.9958 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM905037     2  0.0000     0.9968 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905039     2  0.0146     0.9958 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM905042     2  0.0146     0.9958 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM905046     1  0.0000     0.8371 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM905065     1  0.0632     0.8333 0.976 0.000 0.000 0.000 0.000 0.024
#> GSM905049     4  0.0790     0.7056 0.000 0.000 0.000 0.968 0.032 0.000
#> GSM905050     4  0.0146     0.7192 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM905064     4  0.3736     0.4544 0.068 0.000 0.000 0.776 0.156 0.000
#> GSM905045     4  0.2597     0.5501 0.000 0.000 0.000 0.824 0.176 0.000
#> GSM905051     5  0.4837     0.9567 0.088 0.000 0.000 0.288 0.624 0.000
#> GSM905055     6  0.0146     0.9511 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM905058     1  0.1501     0.8198 0.924 0.000 0.000 0.000 0.076 0.000
#> GSM905053     4  0.0458     0.7151 0.000 0.000 0.000 0.984 0.016 0.000
#> GSM905061     4  0.0363     0.7189 0.000 0.000 0.000 0.988 0.012 0.000
#> GSM905063     6  0.0146     0.9511 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM905054     4  0.2697     0.5258 0.000 0.000 0.000 0.812 0.188 0.000
#> GSM905062     4  0.0458     0.7182 0.000 0.000 0.000 0.984 0.016 0.000
#> GSM905052     5  0.4637     0.9558 0.064 0.000 0.000 0.308 0.628 0.000
#> GSM905059     1  0.1501     0.8198 0.924 0.000 0.000 0.000 0.076 0.000
#> GSM905047     1  0.0000     0.8371 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM905066     1  0.0790     0.8292 0.968 0.000 0.000 0.000 0.000 0.032
#> GSM905056     6  0.0146     0.9511 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM905060     1  0.1501     0.8198 0.924 0.000 0.000 0.000 0.076 0.000
#> GSM905048     1  0.0146     0.8369 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM905067     1  0.0632     0.8333 0.976 0.000 0.000 0.000 0.000 0.024
#> GSM905057     6  0.0146     0.9511 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM905068     4  0.0000     0.7196 0.000 0.000 0.000 1.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n tissue(p) genotype/variation(p) individual(p) k
#> CV:NMF 71  5.52e-07              3.65e-04       0.07133 2
#> CV:NMF 76  2.85e-20              4.94e-05       0.97745 3
#> CV:NMF 75  2.38e-19              2.57e-09       0.35834 4
#> CV:NMF 74  3.99e-16              2.12e-10       0.00344 5
#> CV:NMF 71  2.05e-15              6.30e-11       0.00141 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 76 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.534           0.771       0.900         0.4751 0.494   0.494
#> 3 3 0.663           0.658       0.837         0.3440 0.814   0.639
#> 4 4 0.702           0.762       0.845         0.0947 0.793   0.501
#> 5 5 0.848           0.778       0.891         0.0920 0.953   0.829
#> 6 6 0.846           0.683       0.838         0.0434 0.921   0.696

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM905004     2   0.871      0.646 0.292 0.708
#> GSM905024     1   0.456      0.789 0.904 0.096
#> GSM905038     1   0.999      0.102 0.516 0.484
#> GSM905043     1   0.456      0.789 0.904 0.096
#> GSM904986     2   0.634      0.840 0.160 0.840
#> GSM904991     1   0.994      0.202 0.544 0.456
#> GSM904994     2   0.634      0.840 0.160 0.840
#> GSM904996     2   0.634      0.840 0.160 0.840
#> GSM905007     1   0.994      0.202 0.544 0.456
#> GSM905012     2   0.634      0.840 0.160 0.840
#> GSM905022     2   0.714      0.798 0.196 0.804
#> GSM905026     2   0.634      0.840 0.160 0.840
#> GSM905027     2   0.714      0.798 0.196 0.804
#> GSM905031     2   0.634      0.840 0.160 0.840
#> GSM905036     1   0.997      0.162 0.532 0.468
#> GSM905041     1   0.990      0.246 0.560 0.440
#> GSM905044     2   0.634      0.840 0.160 0.840
#> GSM904989     2   0.634      0.840 0.160 0.840
#> GSM904999     2   0.871      0.633 0.292 0.708
#> GSM905002     2   0.634      0.840 0.160 0.840
#> GSM905009     2   0.634      0.840 0.160 0.840
#> GSM905014     1   0.994      0.202 0.544 0.456
#> GSM905017     2   0.871      0.633 0.292 0.708
#> GSM905020     2   0.634      0.840 0.160 0.840
#> GSM905023     1   0.997      0.162 0.532 0.468
#> GSM905029     1   0.999      0.102 0.516 0.484
#> GSM905032     1   0.980      0.306 0.584 0.416
#> GSM905034     1   0.456      0.789 0.904 0.096
#> GSM905040     1   0.358      0.809 0.932 0.068
#> GSM904985     2   0.000      0.897 0.000 1.000
#> GSM904988     2   0.000      0.897 0.000 1.000
#> GSM904990     2   0.000      0.897 0.000 1.000
#> GSM904992     2   0.000      0.897 0.000 1.000
#> GSM904995     2   0.000      0.897 0.000 1.000
#> GSM904998     2   0.000      0.897 0.000 1.000
#> GSM905000     2   0.000      0.897 0.000 1.000
#> GSM905003     2   0.000      0.897 0.000 1.000
#> GSM905006     2   0.000      0.897 0.000 1.000
#> GSM905008     2   0.000      0.897 0.000 1.000
#> GSM905011     2   0.000      0.897 0.000 1.000
#> GSM905013     2   0.000      0.897 0.000 1.000
#> GSM905016     2   0.000      0.897 0.000 1.000
#> GSM905018     2   0.000      0.897 0.000 1.000
#> GSM905021     2   0.430      0.870 0.088 0.912
#> GSM905025     2   0.000      0.897 0.000 1.000
#> GSM905028     2   0.000      0.897 0.000 1.000
#> GSM905030     2   0.000      0.897 0.000 1.000
#> GSM905033     2   0.000      0.897 0.000 1.000
#> GSM905035     2   0.000      0.897 0.000 1.000
#> GSM905037     2   0.000      0.897 0.000 1.000
#> GSM905039     2   0.000      0.897 0.000 1.000
#> GSM905042     2   0.000      0.897 0.000 1.000
#> GSM905046     1   0.000      0.850 1.000 0.000
#> GSM905065     1   0.000      0.850 1.000 0.000
#> GSM905049     1   0.000      0.850 1.000 0.000
#> GSM905050     1   0.000      0.850 1.000 0.000
#> GSM905064     1   0.000      0.850 1.000 0.000
#> GSM905045     1   0.000      0.850 1.000 0.000
#> GSM905051     1   0.000      0.850 1.000 0.000
#> GSM905055     1   0.000      0.850 1.000 0.000
#> GSM905058     1   0.000      0.850 1.000 0.000
#> GSM905053     1   0.000      0.850 1.000 0.000
#> GSM905061     1   0.000      0.850 1.000 0.000
#> GSM905063     1   0.000      0.850 1.000 0.000
#> GSM905054     1   0.000      0.850 1.000 0.000
#> GSM905062     1   0.000      0.850 1.000 0.000
#> GSM905052     1   0.000      0.850 1.000 0.000
#> GSM905059     1   0.000      0.850 1.000 0.000
#> GSM905047     1   0.000      0.850 1.000 0.000
#> GSM905066     1   0.000      0.850 1.000 0.000
#> GSM905056     1   0.000      0.850 1.000 0.000
#> GSM905060     1   0.000      0.850 1.000 0.000
#> GSM905048     1   0.000      0.850 1.000 0.000
#> GSM905067     1   0.000      0.850 1.000 0.000
#> GSM905057     1   0.000      0.850 1.000 0.000
#> GSM905068     1   0.000      0.850 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM905004     3  0.7969     0.1935 0.064 0.396 0.540
#> GSM905024     3  0.5431     0.3285 0.284 0.000 0.716
#> GSM905038     3  0.3715     0.7147 0.004 0.128 0.868
#> GSM905043     3  0.5431     0.3285 0.284 0.000 0.716
#> GSM904986     2  0.6299     0.1334 0.000 0.524 0.476
#> GSM904991     3  0.3375     0.7260 0.008 0.100 0.892
#> GSM904994     2  0.6299     0.1334 0.000 0.524 0.476
#> GSM904996     2  0.6299     0.1334 0.000 0.524 0.476
#> GSM905007     3  0.3375     0.7260 0.008 0.100 0.892
#> GSM905012     2  0.6299     0.1334 0.000 0.524 0.476
#> GSM905022     3  0.6280     0.0582 0.000 0.460 0.540
#> GSM905026     2  0.6299     0.1334 0.000 0.524 0.476
#> GSM905027     3  0.6280     0.0582 0.000 0.460 0.540
#> GSM905031     2  0.6299     0.1334 0.000 0.524 0.476
#> GSM905036     3  0.3607     0.7243 0.008 0.112 0.880
#> GSM905041     3  0.3502     0.7202 0.020 0.084 0.896
#> GSM905044     2  0.6299     0.1334 0.000 0.524 0.476
#> GSM904989     2  0.6299     0.1334 0.000 0.524 0.476
#> GSM904999     3  0.5905     0.3940 0.000 0.352 0.648
#> GSM905002     2  0.6299     0.1334 0.000 0.524 0.476
#> GSM905009     2  0.6299     0.1334 0.000 0.524 0.476
#> GSM905014     3  0.3375     0.7260 0.008 0.100 0.892
#> GSM905017     3  0.5905     0.3940 0.000 0.352 0.648
#> GSM905020     2  0.6299     0.1334 0.000 0.524 0.476
#> GSM905023     3  0.3607     0.7243 0.008 0.112 0.880
#> GSM905029     3  0.3715     0.7147 0.004 0.128 0.868
#> GSM905032     3  0.3181     0.7072 0.024 0.064 0.912
#> GSM905034     3  0.5431     0.3285 0.284 0.000 0.716
#> GSM905040     1  0.4399     0.8191 0.812 0.000 0.188
#> GSM904985     2  0.0000     0.7541 0.000 1.000 0.000
#> GSM904988     2  0.0000     0.7541 0.000 1.000 0.000
#> GSM904990     2  0.0000     0.7541 0.000 1.000 0.000
#> GSM904992     2  0.0000     0.7541 0.000 1.000 0.000
#> GSM904995     2  0.0000     0.7541 0.000 1.000 0.000
#> GSM904998     2  0.0000     0.7541 0.000 1.000 0.000
#> GSM905000     2  0.0000     0.7541 0.000 1.000 0.000
#> GSM905003     2  0.0000     0.7541 0.000 1.000 0.000
#> GSM905006     2  0.0000     0.7541 0.000 1.000 0.000
#> GSM905008     2  0.0000     0.7541 0.000 1.000 0.000
#> GSM905011     2  0.0000     0.7541 0.000 1.000 0.000
#> GSM905013     2  0.0000     0.7541 0.000 1.000 0.000
#> GSM905016     2  0.0000     0.7541 0.000 1.000 0.000
#> GSM905018     2  0.0000     0.7541 0.000 1.000 0.000
#> GSM905021     2  0.6126     0.2708 0.000 0.600 0.400
#> GSM905025     2  0.0000     0.7541 0.000 1.000 0.000
#> GSM905028     2  0.0000     0.7541 0.000 1.000 0.000
#> GSM905030     2  0.0000     0.7541 0.000 1.000 0.000
#> GSM905033     2  0.0424     0.7493 0.000 0.992 0.008
#> GSM905035     2  0.0000     0.7541 0.000 1.000 0.000
#> GSM905037     2  0.0000     0.7541 0.000 1.000 0.000
#> GSM905039     2  0.0000     0.7541 0.000 1.000 0.000
#> GSM905042     2  0.0424     0.7493 0.000 0.992 0.008
#> GSM905046     1  0.0000     0.9405 1.000 0.000 0.000
#> GSM905065     1  0.1289     0.9343 0.968 0.000 0.032
#> GSM905049     1  0.2878     0.9227 0.904 0.000 0.096
#> GSM905050     1  0.2878     0.9227 0.904 0.000 0.096
#> GSM905064     1  0.2878     0.9227 0.904 0.000 0.096
#> GSM905045     1  0.2878     0.9227 0.904 0.000 0.096
#> GSM905051     1  0.0000     0.9405 1.000 0.000 0.000
#> GSM905055     1  0.2796     0.9099 0.908 0.000 0.092
#> GSM905058     1  0.0000     0.9405 1.000 0.000 0.000
#> GSM905053     1  0.2878     0.9227 0.904 0.000 0.096
#> GSM905061     1  0.2878     0.9227 0.904 0.000 0.096
#> GSM905063     1  0.2796     0.9099 0.908 0.000 0.092
#> GSM905054     1  0.2878     0.9227 0.904 0.000 0.096
#> GSM905062     1  0.2878     0.9227 0.904 0.000 0.096
#> GSM905052     1  0.0000     0.9405 1.000 0.000 0.000
#> GSM905059     1  0.0000     0.9405 1.000 0.000 0.000
#> GSM905047     1  0.0000     0.9405 1.000 0.000 0.000
#> GSM905066     1  0.1289     0.9343 0.968 0.000 0.032
#> GSM905056     1  0.2796     0.9099 0.908 0.000 0.092
#> GSM905060     1  0.0000     0.9405 1.000 0.000 0.000
#> GSM905048     1  0.0000     0.9405 1.000 0.000 0.000
#> GSM905067     1  0.1289     0.9343 0.968 0.000 0.032
#> GSM905057     1  0.2796     0.9099 0.908 0.000 0.092
#> GSM905068     1  0.2878     0.9227 0.904 0.000 0.096

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM905004     3  0.4656      0.576 0.000 0.056 0.784 0.160
#> GSM905024     1  0.7732      0.412 0.392 0.380 0.228 0.000
#> GSM905038     3  0.4872      0.488 0.004 0.356 0.640 0.000
#> GSM905043     1  0.7732      0.412 0.392 0.380 0.228 0.000
#> GSM904986     3  0.1557      0.663 0.000 0.056 0.944 0.000
#> GSM904991     3  0.5428      0.446 0.020 0.380 0.600 0.000
#> GSM904994     3  0.1557      0.663 0.000 0.056 0.944 0.000
#> GSM904996     3  0.1557      0.663 0.000 0.056 0.944 0.000
#> GSM905007     3  0.5428      0.446 0.020 0.380 0.600 0.000
#> GSM905012     3  0.1557      0.663 0.000 0.056 0.944 0.000
#> GSM905022     3  0.0817      0.689 0.000 0.024 0.976 0.000
#> GSM905026     3  0.1557      0.663 0.000 0.056 0.944 0.000
#> GSM905027     3  0.0817      0.689 0.000 0.024 0.976 0.000
#> GSM905031     3  0.1557      0.663 0.000 0.056 0.944 0.000
#> GSM905036     3  0.4936      0.471 0.004 0.372 0.624 0.000
#> GSM905041     3  0.5781      0.423 0.036 0.380 0.584 0.000
#> GSM905044     3  0.1557      0.663 0.000 0.056 0.944 0.000
#> GSM904989     3  0.1557      0.663 0.000 0.056 0.944 0.000
#> GSM904999     3  0.2999      0.667 0.004 0.132 0.864 0.000
#> GSM905002     3  0.1557      0.663 0.000 0.056 0.944 0.000
#> GSM905009     3  0.1557      0.663 0.000 0.056 0.944 0.000
#> GSM905014     3  0.5428      0.446 0.020 0.380 0.600 0.000
#> GSM905017     3  0.2999      0.667 0.004 0.132 0.864 0.000
#> GSM905020     3  0.1557      0.663 0.000 0.056 0.944 0.000
#> GSM905023     3  0.4936      0.471 0.004 0.372 0.624 0.000
#> GSM905029     3  0.4872      0.488 0.004 0.356 0.640 0.000
#> GSM905032     3  0.6337      0.370 0.068 0.380 0.552 0.000
#> GSM905034     1  0.7732      0.412 0.392 0.380 0.228 0.000
#> GSM905040     1  0.2021      0.678 0.936 0.024 0.040 0.000
#> GSM904985     2  0.4790      0.998 0.000 0.620 0.380 0.000
#> GSM904988     2  0.4790      0.998 0.000 0.620 0.380 0.000
#> GSM904990     2  0.4790      0.998 0.000 0.620 0.380 0.000
#> GSM904992     2  0.4790      0.998 0.000 0.620 0.380 0.000
#> GSM904995     2  0.4790      0.998 0.000 0.620 0.380 0.000
#> GSM904998     2  0.4790      0.998 0.000 0.620 0.380 0.000
#> GSM905000     2  0.4790      0.998 0.000 0.620 0.380 0.000
#> GSM905003     2  0.4790      0.998 0.000 0.620 0.380 0.000
#> GSM905006     2  0.4790      0.998 0.000 0.620 0.380 0.000
#> GSM905008     2  0.4790      0.998 0.000 0.620 0.380 0.000
#> GSM905011     2  0.4790      0.998 0.000 0.620 0.380 0.000
#> GSM905013     2  0.4790      0.998 0.000 0.620 0.380 0.000
#> GSM905016     2  0.4790      0.998 0.000 0.620 0.380 0.000
#> GSM905018     2  0.4790      0.998 0.000 0.620 0.380 0.000
#> GSM905021     3  0.3074      0.394 0.000 0.152 0.848 0.000
#> GSM905025     2  0.4790      0.998 0.000 0.620 0.380 0.000
#> GSM905028     2  0.4790      0.998 0.000 0.620 0.380 0.000
#> GSM905030     2  0.4790      0.998 0.000 0.620 0.380 0.000
#> GSM905033     2  0.4830      0.983 0.000 0.608 0.392 0.000
#> GSM905035     2  0.4790      0.998 0.000 0.620 0.380 0.000
#> GSM905037     2  0.4790      0.998 0.000 0.620 0.380 0.000
#> GSM905039     2  0.4790      0.998 0.000 0.620 0.380 0.000
#> GSM905042     2  0.4830      0.983 0.000 0.608 0.392 0.000
#> GSM905046     4  0.3219      0.858 0.164 0.000 0.000 0.836
#> GSM905065     4  0.4855      0.584 0.400 0.000 0.000 0.600
#> GSM905049     4  0.0000      0.861 0.000 0.000 0.000 1.000
#> GSM905050     4  0.0000      0.861 0.000 0.000 0.000 1.000
#> GSM905064     4  0.0000      0.861 0.000 0.000 0.000 1.000
#> GSM905045     4  0.0000      0.861 0.000 0.000 0.000 1.000
#> GSM905051     4  0.2973      0.862 0.144 0.000 0.000 0.856
#> GSM905055     1  0.1022      0.673 0.968 0.000 0.000 0.032
#> GSM905058     4  0.3219      0.858 0.164 0.000 0.000 0.836
#> GSM905053     4  0.0000      0.861 0.000 0.000 0.000 1.000
#> GSM905061     4  0.0000      0.861 0.000 0.000 0.000 1.000
#> GSM905063     1  0.1022      0.673 0.968 0.000 0.000 0.032
#> GSM905054     4  0.0000      0.861 0.000 0.000 0.000 1.000
#> GSM905062     4  0.0000      0.861 0.000 0.000 0.000 1.000
#> GSM905052     4  0.2973      0.862 0.144 0.000 0.000 0.856
#> GSM905059     4  0.3219      0.858 0.164 0.000 0.000 0.836
#> GSM905047     4  0.3219      0.858 0.164 0.000 0.000 0.836
#> GSM905066     4  0.4855      0.584 0.400 0.000 0.000 0.600
#> GSM905056     1  0.1022      0.673 0.968 0.000 0.000 0.032
#> GSM905060     4  0.3219      0.858 0.164 0.000 0.000 0.836
#> GSM905048     4  0.3219      0.858 0.164 0.000 0.000 0.836
#> GSM905067     4  0.4855      0.584 0.400 0.000 0.000 0.600
#> GSM905057     1  0.1022      0.673 0.968 0.000 0.000 0.032
#> GSM905068     4  0.0000      0.861 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM905004     3  0.4547    0.61763 0.112 0.056 0.788 0.044 0.000
#> GSM905024     5  0.0000    0.52593 0.000 0.000 0.000 0.000 1.000
#> GSM905038     3  0.4138   -0.00777 0.000 0.000 0.616 0.000 0.384
#> GSM905043     5  0.0000    0.52593 0.000 0.000 0.000 0.000 1.000
#> GSM904986     3  0.1410    0.77838 0.000 0.060 0.940 0.000 0.000
#> GSM904991     5  0.4249    0.57149 0.000 0.000 0.432 0.000 0.568
#> GSM904994     3  0.1410    0.77838 0.000 0.060 0.940 0.000 0.000
#> GSM904996     3  0.1410    0.77838 0.000 0.060 0.940 0.000 0.000
#> GSM905007     5  0.4249    0.57149 0.000 0.000 0.432 0.000 0.568
#> GSM905012     3  0.1410    0.77838 0.000 0.060 0.940 0.000 0.000
#> GSM905022     3  0.0865    0.72156 0.000 0.004 0.972 0.000 0.024
#> GSM905026     3  0.1571    0.77721 0.000 0.060 0.936 0.000 0.004
#> GSM905027     3  0.0955    0.72077 0.000 0.004 0.968 0.000 0.028
#> GSM905031     3  0.1571    0.77721 0.000 0.060 0.936 0.000 0.004
#> GSM905036     3  0.4235   -0.16342 0.000 0.000 0.576 0.000 0.424
#> GSM905041     5  0.4171    0.60293 0.000 0.000 0.396 0.000 0.604
#> GSM905044     3  0.1571    0.77721 0.000 0.060 0.936 0.000 0.004
#> GSM904989     3  0.1410    0.77838 0.000 0.060 0.940 0.000 0.000
#> GSM904999     3  0.3491    0.47742 0.000 0.004 0.768 0.000 0.228
#> GSM905002     3  0.1410    0.77838 0.000 0.060 0.940 0.000 0.000
#> GSM905009     3  0.1410    0.77838 0.000 0.060 0.940 0.000 0.000
#> GSM905014     5  0.4249    0.57149 0.000 0.000 0.432 0.000 0.568
#> GSM905017     3  0.3491    0.47742 0.000 0.004 0.768 0.000 0.228
#> GSM905020     3  0.1410    0.77838 0.000 0.060 0.940 0.000 0.000
#> GSM905023     3  0.4235   -0.16342 0.000 0.000 0.576 0.000 0.424
#> GSM905029     3  0.4138   -0.00777 0.000 0.000 0.616 0.000 0.384
#> GSM905032     5  0.4060    0.61915 0.000 0.000 0.360 0.000 0.640
#> GSM905034     5  0.0000    0.52593 0.000 0.000 0.000 0.000 1.000
#> GSM905040     1  0.4541    0.86806 0.752 0.000 0.000 0.112 0.136
#> GSM904985     2  0.0000    0.99809 0.000 1.000 0.000 0.000 0.000
#> GSM904988     2  0.0000    0.99809 0.000 1.000 0.000 0.000 0.000
#> GSM904990     2  0.0000    0.99809 0.000 1.000 0.000 0.000 0.000
#> GSM904992     2  0.0000    0.99809 0.000 1.000 0.000 0.000 0.000
#> GSM904995     2  0.0000    0.99809 0.000 1.000 0.000 0.000 0.000
#> GSM904998     2  0.0000    0.99809 0.000 1.000 0.000 0.000 0.000
#> GSM905000     2  0.0000    0.99809 0.000 1.000 0.000 0.000 0.000
#> GSM905003     2  0.0000    0.99809 0.000 1.000 0.000 0.000 0.000
#> GSM905006     2  0.0000    0.99809 0.000 1.000 0.000 0.000 0.000
#> GSM905008     2  0.0000    0.99809 0.000 1.000 0.000 0.000 0.000
#> GSM905011     2  0.0000    0.99809 0.000 1.000 0.000 0.000 0.000
#> GSM905013     2  0.0000    0.99809 0.000 1.000 0.000 0.000 0.000
#> GSM905016     2  0.0000    0.99809 0.000 1.000 0.000 0.000 0.000
#> GSM905018     2  0.0000    0.99809 0.000 1.000 0.000 0.000 0.000
#> GSM905021     3  0.3752    0.40264 0.000 0.292 0.708 0.000 0.000
#> GSM905025     2  0.0000    0.99809 0.000 1.000 0.000 0.000 0.000
#> GSM905028     2  0.0000    0.99809 0.000 1.000 0.000 0.000 0.000
#> GSM905030     2  0.0000    0.99809 0.000 1.000 0.000 0.000 0.000
#> GSM905033     2  0.0510    0.98073 0.000 0.984 0.016 0.000 0.000
#> GSM905035     2  0.0000    0.99809 0.000 1.000 0.000 0.000 0.000
#> GSM905037     2  0.0000    0.99809 0.000 1.000 0.000 0.000 0.000
#> GSM905039     2  0.0000    0.99809 0.000 1.000 0.000 0.000 0.000
#> GSM905042     2  0.0510    0.98073 0.000 0.984 0.016 0.000 0.000
#> GSM905046     4  0.0798    0.84620 0.008 0.000 0.000 0.976 0.016
#> GSM905065     4  0.4054    0.62467 0.020 0.000 0.000 0.732 0.248
#> GSM905049     4  0.2848    0.85262 0.156 0.000 0.004 0.840 0.000
#> GSM905050     4  0.2848    0.85262 0.156 0.000 0.004 0.840 0.000
#> GSM905064     4  0.2848    0.85262 0.156 0.000 0.004 0.840 0.000
#> GSM905045     4  0.2848    0.85262 0.156 0.000 0.004 0.840 0.000
#> GSM905051     4  0.0162    0.84911 0.000 0.000 0.000 0.996 0.004
#> GSM905055     1  0.2690    0.96979 0.844 0.000 0.000 0.156 0.000
#> GSM905058     4  0.0798    0.84620 0.008 0.000 0.000 0.976 0.016
#> GSM905053     4  0.2848    0.85262 0.156 0.000 0.004 0.840 0.000
#> GSM905061     4  0.2848    0.85262 0.156 0.000 0.004 0.840 0.000
#> GSM905063     1  0.2690    0.96979 0.844 0.000 0.000 0.156 0.000
#> GSM905054     4  0.2848    0.85262 0.156 0.000 0.004 0.840 0.000
#> GSM905062     4  0.2848    0.85262 0.156 0.000 0.004 0.840 0.000
#> GSM905052     4  0.0162    0.84911 0.000 0.000 0.000 0.996 0.004
#> GSM905059     4  0.0798    0.84620 0.008 0.000 0.000 0.976 0.016
#> GSM905047     4  0.0798    0.84620 0.008 0.000 0.000 0.976 0.016
#> GSM905066     4  0.4054    0.62467 0.020 0.000 0.000 0.732 0.248
#> GSM905056     1  0.2690    0.96979 0.844 0.000 0.000 0.156 0.000
#> GSM905060     4  0.0798    0.84620 0.008 0.000 0.000 0.976 0.016
#> GSM905048     4  0.0798    0.84620 0.008 0.000 0.000 0.976 0.016
#> GSM905067     4  0.4054    0.62467 0.020 0.000 0.000 0.732 0.248
#> GSM905057     1  0.2690    0.96979 0.844 0.000 0.000 0.156 0.000
#> GSM905068     4  0.2848    0.85262 0.156 0.000 0.004 0.840 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM905004     3  0.2454     0.6611 0.000 0.000 0.840 0.160 0.000 0.000
#> GSM905024     5  0.3499     0.3995 0.320 0.000 0.000 0.000 0.680 0.000
#> GSM905038     5  0.3647     0.4672 0.000 0.000 0.360 0.000 0.640 0.000
#> GSM905043     5  0.3499     0.3995 0.320 0.000 0.000 0.000 0.680 0.000
#> GSM904986     3  0.0000     0.8656 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904991     5  0.3647     0.5390 0.000 0.000 0.360 0.000 0.640 0.000
#> GSM904994     3  0.0000     0.8656 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904996     3  0.0000     0.8656 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905007     5  0.3647     0.5390 0.000 0.000 0.360 0.000 0.640 0.000
#> GSM905012     3  0.0000     0.8656 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905022     3  0.1714     0.7746 0.000 0.000 0.908 0.000 0.092 0.000
#> GSM905026     3  0.2730     0.7119 0.000 0.000 0.808 0.000 0.192 0.000
#> GSM905027     3  0.3330     0.5699 0.000 0.000 0.716 0.000 0.284 0.000
#> GSM905031     3  0.2730     0.7119 0.000 0.000 0.808 0.000 0.192 0.000
#> GSM905036     5  0.3499     0.5223 0.000 0.000 0.320 0.000 0.680 0.000
#> GSM905041     5  0.2402     0.6195 0.004 0.000 0.140 0.000 0.856 0.000
#> GSM905044     3  0.2730     0.7119 0.000 0.000 0.808 0.000 0.192 0.000
#> GSM904989     3  0.0000     0.8656 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904999     5  0.6028     0.3024 0.316 0.000 0.264 0.000 0.420 0.000
#> GSM905002     3  0.0000     0.8656 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905009     3  0.0000     0.8656 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905014     5  0.3647     0.5390 0.000 0.000 0.360 0.000 0.640 0.000
#> GSM905017     5  0.6028     0.3024 0.316 0.000 0.264 0.000 0.420 0.000
#> GSM905020     3  0.0000     0.8656 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905023     5  0.3499     0.5223 0.000 0.000 0.320 0.000 0.680 0.000
#> GSM905029     5  0.3647     0.4672 0.000 0.000 0.360 0.000 0.640 0.000
#> GSM905032     5  0.2263     0.6207 0.016 0.000 0.100 0.000 0.884 0.000
#> GSM905034     5  0.3499     0.3995 0.320 0.000 0.000 0.000 0.680 0.000
#> GSM905040     6  0.2744     0.8711 0.064 0.000 0.000 0.000 0.072 0.864
#> GSM904985     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904988     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904990     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904992     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904995     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904998     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905000     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905003     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905006     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905008     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905011     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905013     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905016     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905018     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905021     2  0.7704    -0.3561 0.244 0.288 0.212 0.000 0.256 0.000
#> GSM905025     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905028     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905030     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905033     2  0.0458     0.9524 0.016 0.984 0.000 0.000 0.000 0.000
#> GSM905035     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905037     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905039     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905042     2  0.0458     0.9524 0.016 0.984 0.000 0.000 0.000 0.000
#> GSM905046     4  0.4524     0.0199 0.376 0.000 0.000 0.584 0.000 0.040
#> GSM905065     1  0.6025     1.0000 0.452 0.000 0.000 0.416 0.080 0.052
#> GSM905049     4  0.0000     0.5859 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905050     4  0.0000     0.5859 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905064     4  0.0000     0.5859 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905045     4  0.0000     0.5859 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905051     4  0.4371     0.1044 0.344 0.000 0.000 0.620 0.000 0.036
#> GSM905055     6  0.0000     0.9699 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM905058     4  0.4524     0.0199 0.376 0.000 0.000 0.584 0.000 0.040
#> GSM905053     4  0.0000     0.5859 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905061     4  0.0000     0.5859 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905063     6  0.0000     0.9699 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM905054     4  0.0000     0.5859 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905062     4  0.0000     0.5859 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905052     4  0.4371     0.1044 0.344 0.000 0.000 0.620 0.000 0.036
#> GSM905059     4  0.4524     0.0199 0.376 0.000 0.000 0.584 0.000 0.040
#> GSM905047     4  0.4524     0.0199 0.376 0.000 0.000 0.584 0.000 0.040
#> GSM905066     1  0.6025     1.0000 0.452 0.000 0.000 0.416 0.080 0.052
#> GSM905056     6  0.0000     0.9699 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM905060     4  0.4524     0.0199 0.376 0.000 0.000 0.584 0.000 0.040
#> GSM905048     4  0.4524     0.0199 0.376 0.000 0.000 0.584 0.000 0.040
#> GSM905067     1  0.6025     1.0000 0.452 0.000 0.000 0.416 0.080 0.052
#> GSM905057     6  0.0000     0.9699 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM905068     4  0.0000     0.5859 0.000 0.000 0.000 1.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n tissue(p) genotype/variation(p) individual(p) k
#> MAD:hclust 67  5.18e-08              4.00e-03        0.0511 2
#> MAD:hclust 56  2.05e-13              5.07e-04        0.7699 3
#> MAD:hclust 63  7.21e-16              5.29e-06        0.0854 4
#> MAD:hclust 69  4.90e-15              8.72e-06        0.3441 5
#> MAD:hclust 60  1.39e-16              4.82e-13        0.2297 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 76 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.581           0.853       0.899         0.4645 0.522   0.522
#> 3 3 0.728           0.952       0.916         0.4035 0.754   0.550
#> 4 4 0.827           0.831       0.801         0.1083 0.964   0.896
#> 5 5 0.771           0.733       0.796         0.0648 0.909   0.723
#> 6 6 0.735           0.540       0.794         0.0405 0.937   0.754

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM905004     2   0.876      0.782 0.296 0.704
#> GSM905024     1   0.224      0.938 0.964 0.036
#> GSM905038     2   0.827      0.795 0.260 0.740
#> GSM905043     1   0.224      0.938 0.964 0.036
#> GSM904986     2   0.808      0.805 0.248 0.752
#> GSM904991     2   0.850      0.777 0.276 0.724
#> GSM904994     2   0.808      0.805 0.248 0.752
#> GSM904996     2   0.808      0.805 0.248 0.752
#> GSM905007     2   0.827      0.795 0.260 0.740
#> GSM905012     2   0.808      0.805 0.248 0.752
#> GSM905022     2   0.808      0.805 0.248 0.752
#> GSM905026     2   0.808      0.805 0.248 0.752
#> GSM905027     2   0.827      0.795 0.260 0.740
#> GSM905031     2   0.808      0.805 0.248 0.752
#> GSM905036     2   0.850      0.777 0.276 0.724
#> GSM905041     1   1.000     -0.287 0.508 0.492
#> GSM905044     2   0.808      0.805 0.248 0.752
#> GSM904989     2   0.808      0.805 0.248 0.752
#> GSM904999     2   0.808      0.805 0.248 0.752
#> GSM905002     2   0.808      0.805 0.248 0.752
#> GSM905009     2   0.808      0.805 0.248 0.752
#> GSM905014     2   0.827      0.795 0.260 0.740
#> GSM905017     2   0.808      0.805 0.248 0.752
#> GSM905020     2   0.808      0.805 0.248 0.752
#> GSM905023     2   0.827      0.795 0.260 0.740
#> GSM905029     2   0.827      0.795 0.260 0.740
#> GSM905032     2   0.949      0.629 0.368 0.632
#> GSM905034     1   0.224      0.938 0.964 0.036
#> GSM905040     1   0.224      0.938 0.964 0.036
#> GSM904985     2   0.224      0.828 0.036 0.964
#> GSM904988     2   0.224      0.828 0.036 0.964
#> GSM904990     2   0.224      0.828 0.036 0.964
#> GSM904992     2   0.224      0.828 0.036 0.964
#> GSM904995     2   0.224      0.828 0.036 0.964
#> GSM904998     2   0.224      0.828 0.036 0.964
#> GSM905000     2   0.224      0.828 0.036 0.964
#> GSM905003     2   0.224      0.828 0.036 0.964
#> GSM905006     2   0.224      0.828 0.036 0.964
#> GSM905008     2   0.204      0.827 0.032 0.968
#> GSM905011     2   0.224      0.828 0.036 0.964
#> GSM905013     2   0.224      0.828 0.036 0.964
#> GSM905016     2   0.224      0.828 0.036 0.964
#> GSM905018     2   0.224      0.828 0.036 0.964
#> GSM905021     2   0.000      0.818 0.000 1.000
#> GSM905025     2   0.224      0.828 0.036 0.964
#> GSM905028     2   0.224      0.828 0.036 0.964
#> GSM905030     2   0.224      0.828 0.036 0.964
#> GSM905033     2   0.204      0.827 0.032 0.968
#> GSM905035     2   0.224      0.828 0.036 0.964
#> GSM905037     2   0.224      0.828 0.036 0.964
#> GSM905039     2   0.224      0.828 0.036 0.964
#> GSM905042     2   0.184      0.826 0.028 0.972
#> GSM905046     1   0.000      0.972 1.000 0.000
#> GSM905065     1   0.000      0.972 1.000 0.000
#> GSM905049     1   0.000      0.972 1.000 0.000
#> GSM905050     1   0.000      0.972 1.000 0.000
#> GSM905064     1   0.000      0.972 1.000 0.000
#> GSM905045     1   0.000      0.972 1.000 0.000
#> GSM905051     1   0.000      0.972 1.000 0.000
#> GSM905055     1   0.000      0.972 1.000 0.000
#> GSM905058     1   0.000      0.972 1.000 0.000
#> GSM905053     1   0.000      0.972 1.000 0.000
#> GSM905061     1   0.000      0.972 1.000 0.000
#> GSM905063     1   0.000      0.972 1.000 0.000
#> GSM905054     1   0.000      0.972 1.000 0.000
#> GSM905062     1   0.000      0.972 1.000 0.000
#> GSM905052     1   0.000      0.972 1.000 0.000
#> GSM905059     1   0.000      0.972 1.000 0.000
#> GSM905047     1   0.000      0.972 1.000 0.000
#> GSM905066     1   0.000      0.972 1.000 0.000
#> GSM905056     1   0.000      0.972 1.000 0.000
#> GSM905060     1   0.000      0.972 1.000 0.000
#> GSM905048     1   0.000      0.972 1.000 0.000
#> GSM905067     1   0.000      0.972 1.000 0.000
#> GSM905057     1   0.000      0.972 1.000 0.000
#> GSM905068     1   0.000      0.972 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM905004     3  0.1163      0.942 0.028 0.000 0.972
#> GSM905024     3  0.7097      0.646 0.128 0.148 0.724
#> GSM905038     3  0.0000      0.967 0.000 0.000 1.000
#> GSM905043     3  0.7097      0.646 0.128 0.148 0.724
#> GSM904986     3  0.0000      0.967 0.000 0.000 1.000
#> GSM904991     3  0.0747      0.954 0.000 0.016 0.984
#> GSM904994     3  0.0000      0.967 0.000 0.000 1.000
#> GSM904996     3  0.0000      0.967 0.000 0.000 1.000
#> GSM905007     3  0.0000      0.967 0.000 0.000 1.000
#> GSM905012     3  0.0000      0.967 0.000 0.000 1.000
#> GSM905022     3  0.0000      0.967 0.000 0.000 1.000
#> GSM905026     3  0.0000      0.967 0.000 0.000 1.000
#> GSM905027     3  0.0000      0.967 0.000 0.000 1.000
#> GSM905031     3  0.0000      0.967 0.000 0.000 1.000
#> GSM905036     3  0.0000      0.967 0.000 0.000 1.000
#> GSM905041     3  0.2446      0.908 0.012 0.052 0.936
#> GSM905044     3  0.0000      0.967 0.000 0.000 1.000
#> GSM904989     3  0.0000      0.967 0.000 0.000 1.000
#> GSM904999     3  0.0000      0.967 0.000 0.000 1.000
#> GSM905002     3  0.0000      0.967 0.000 0.000 1.000
#> GSM905009     3  0.0000      0.967 0.000 0.000 1.000
#> GSM905014     3  0.0000      0.967 0.000 0.000 1.000
#> GSM905017     3  0.0000      0.967 0.000 0.000 1.000
#> GSM905020     3  0.0000      0.967 0.000 0.000 1.000
#> GSM905023     3  0.0000      0.967 0.000 0.000 1.000
#> GSM905029     3  0.0000      0.967 0.000 0.000 1.000
#> GSM905032     3  0.1860      0.921 0.000 0.052 0.948
#> GSM905034     1  0.6968      0.839 0.732 0.148 0.120
#> GSM905040     1  0.6968      0.839 0.732 0.148 0.120
#> GSM904985     2  0.4002      0.998 0.000 0.840 0.160
#> GSM904988     2  0.4002      0.998 0.000 0.840 0.160
#> GSM904990     2  0.4002      0.998 0.000 0.840 0.160
#> GSM904992     2  0.4002      0.998 0.000 0.840 0.160
#> GSM904995     2  0.4002      0.998 0.000 0.840 0.160
#> GSM904998     2  0.4002      0.998 0.000 0.840 0.160
#> GSM905000     2  0.4002      0.998 0.000 0.840 0.160
#> GSM905003     2  0.4002      0.998 0.000 0.840 0.160
#> GSM905006     2  0.4002      0.998 0.000 0.840 0.160
#> GSM905008     2  0.4002      0.998 0.000 0.840 0.160
#> GSM905011     2  0.4002      0.998 0.000 0.840 0.160
#> GSM905013     2  0.4002      0.998 0.000 0.840 0.160
#> GSM905016     2  0.4002      0.998 0.000 0.840 0.160
#> GSM905018     2  0.4002      0.998 0.000 0.840 0.160
#> GSM905021     2  0.4002      0.998 0.000 0.840 0.160
#> GSM905025     2  0.4413      0.996 0.008 0.832 0.160
#> GSM905028     2  0.4413      0.996 0.008 0.832 0.160
#> GSM905030     2  0.4413      0.996 0.008 0.832 0.160
#> GSM905033     2  0.4413      0.996 0.008 0.832 0.160
#> GSM905035     2  0.4413      0.996 0.008 0.832 0.160
#> GSM905037     2  0.4413      0.996 0.008 0.832 0.160
#> GSM905039     2  0.4413      0.996 0.008 0.832 0.160
#> GSM905042     2  0.4413      0.996 0.008 0.832 0.160
#> GSM905046     1  0.4033      0.940 0.856 0.136 0.008
#> GSM905065     1  0.4033      0.940 0.856 0.136 0.008
#> GSM905049     1  0.0424      0.930 0.992 0.000 0.008
#> GSM905050     1  0.0424      0.930 0.992 0.000 0.008
#> GSM905064     1  0.0424      0.930 0.992 0.000 0.008
#> GSM905045     1  0.0424      0.930 0.992 0.000 0.008
#> GSM905051     1  0.0424      0.930 0.992 0.000 0.008
#> GSM905055     1  0.4413      0.934 0.832 0.160 0.008
#> GSM905058     1  0.4033      0.940 0.856 0.136 0.008
#> GSM905053     1  0.0424      0.930 0.992 0.000 0.008
#> GSM905061     1  0.0424      0.930 0.992 0.000 0.008
#> GSM905063     1  0.4228      0.936 0.844 0.148 0.008
#> GSM905054     1  0.0424      0.930 0.992 0.000 0.008
#> GSM905062     1  0.0424      0.930 0.992 0.000 0.008
#> GSM905052     1  0.0424      0.930 0.992 0.000 0.008
#> GSM905059     1  0.3896      0.940 0.864 0.128 0.008
#> GSM905047     1  0.3896      0.940 0.864 0.128 0.008
#> GSM905066     1  0.4033      0.940 0.856 0.136 0.008
#> GSM905056     1  0.4413      0.934 0.832 0.160 0.008
#> GSM905060     1  0.3896      0.940 0.864 0.128 0.008
#> GSM905048     1  0.4033      0.940 0.856 0.136 0.008
#> GSM905067     1  0.4033      0.940 0.856 0.136 0.008
#> GSM905057     1  0.4413      0.934 0.832 0.160 0.008
#> GSM905068     1  0.0424      0.930 0.992 0.000 0.008

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3 p4
#> GSM905004     3  0.1109      0.930 0.000 0.004 0.968 NA
#> GSM905024     1  0.7833     -0.104 0.376 0.000 0.364 NA
#> GSM905038     3  0.1867      0.935 0.000 0.000 0.928 NA
#> GSM905043     1  0.7993     -0.104 0.372 0.004 0.364 NA
#> GSM904986     3  0.0000      0.946 0.000 0.000 1.000 NA
#> GSM904991     3  0.3486      0.882 0.000 0.000 0.812 NA
#> GSM904994     3  0.0000      0.946 0.000 0.000 1.000 NA
#> GSM904996     3  0.0000      0.946 0.000 0.000 1.000 NA
#> GSM905007     3  0.2281      0.929 0.000 0.000 0.904 NA
#> GSM905012     3  0.0000      0.946 0.000 0.000 1.000 NA
#> GSM905022     3  0.0000      0.946 0.000 0.000 1.000 NA
#> GSM905026     3  0.0000      0.946 0.000 0.000 1.000 NA
#> GSM905027     3  0.1474      0.940 0.000 0.000 0.948 NA
#> GSM905031     3  0.0000      0.946 0.000 0.000 1.000 NA
#> GSM905036     3  0.2814      0.915 0.000 0.000 0.868 NA
#> GSM905041     3  0.3486      0.882 0.000 0.000 0.812 NA
#> GSM905044     3  0.0000      0.946 0.000 0.000 1.000 NA
#> GSM904989     3  0.0000      0.946 0.000 0.000 1.000 NA
#> GSM904999     3  0.2814      0.915 0.000 0.000 0.868 NA
#> GSM905002     3  0.0000      0.946 0.000 0.000 1.000 NA
#> GSM905009     3  0.0000      0.946 0.000 0.000 1.000 NA
#> GSM905014     3  0.2281      0.929 0.000 0.000 0.904 NA
#> GSM905017     3  0.2814      0.915 0.000 0.000 0.868 NA
#> GSM905020     3  0.0000      0.946 0.000 0.000 1.000 NA
#> GSM905023     3  0.2704      0.919 0.000 0.000 0.876 NA
#> GSM905029     3  0.2530      0.924 0.000 0.000 0.888 NA
#> GSM905032     3  0.4372      0.808 0.000 0.004 0.728 NA
#> GSM905034     1  0.5652      0.587 0.688 0.008 0.044 NA
#> GSM905040     1  0.5865      0.572 0.644 0.016 0.028 NA
#> GSM904985     2  0.4552      0.912 0.000 0.784 0.044 NA
#> GSM904988     2  0.1302      0.942 0.000 0.956 0.044 NA
#> GSM904990     2  0.1302      0.942 0.000 0.956 0.044 NA
#> GSM904992     2  0.1302      0.942 0.000 0.956 0.044 NA
#> GSM904995     2  0.4224      0.919 0.000 0.812 0.044 NA
#> GSM904998     2  0.2408      0.939 0.000 0.920 0.044 NA
#> GSM905000     2  0.1302      0.942 0.000 0.956 0.044 NA
#> GSM905003     2  0.2500      0.938 0.000 0.916 0.044 NA
#> GSM905006     2  0.1302      0.942 0.000 0.956 0.044 NA
#> GSM905008     2  0.2500      0.938 0.000 0.916 0.044 NA
#> GSM905011     2  0.1302      0.942 0.000 0.956 0.044 NA
#> GSM905013     2  0.1302      0.942 0.000 0.956 0.044 NA
#> GSM905016     2  0.4224      0.919 0.000 0.812 0.044 NA
#> GSM905018     2  0.1302      0.942 0.000 0.956 0.044 NA
#> GSM905021     2  0.5156      0.882 0.000 0.720 0.044 NA
#> GSM905025     2  0.4370      0.916 0.000 0.800 0.044 NA
#> GSM905028     2  0.2002      0.941 0.000 0.936 0.044 NA
#> GSM905030     2  0.2002      0.941 0.000 0.936 0.044 NA
#> GSM905033     2  0.4800      0.906 0.000 0.760 0.044 NA
#> GSM905035     2  0.4462      0.915 0.000 0.792 0.044 NA
#> GSM905037     2  0.2002      0.941 0.000 0.936 0.044 NA
#> GSM905039     2  0.4370      0.916 0.000 0.800 0.044 NA
#> GSM905042     2  0.4800      0.906 0.000 0.760 0.044 NA
#> GSM905046     1  0.0000      0.766 1.000 0.000 0.000 NA
#> GSM905065     1  0.0188      0.766 0.996 0.004 0.000 NA
#> GSM905049     1  0.5112      0.715 0.560 0.004 0.000 NA
#> GSM905050     1  0.5112      0.715 0.560 0.004 0.000 NA
#> GSM905064     1  0.4948      0.715 0.560 0.000 0.000 NA
#> GSM905045     1  0.4948      0.715 0.560 0.000 0.000 NA
#> GSM905051     1  0.5161      0.720 0.592 0.008 0.000 NA
#> GSM905055     1  0.3552      0.727 0.848 0.024 0.000 NA
#> GSM905058     1  0.0336      0.766 0.992 0.008 0.000 NA
#> GSM905053     1  0.5112      0.715 0.560 0.004 0.000 NA
#> GSM905061     1  0.4948      0.715 0.560 0.000 0.000 NA
#> GSM905063     1  0.3280      0.728 0.860 0.016 0.000 NA
#> GSM905054     1  0.5112      0.715 0.560 0.004 0.000 NA
#> GSM905062     1  0.4948      0.715 0.560 0.000 0.000 NA
#> GSM905052     1  0.5161      0.720 0.592 0.008 0.000 NA
#> GSM905059     1  0.0336      0.766 0.992 0.008 0.000 NA
#> GSM905047     1  0.0000      0.766 1.000 0.000 0.000 NA
#> GSM905066     1  0.0188      0.766 0.996 0.004 0.000 NA
#> GSM905056     1  0.3552      0.727 0.848 0.024 0.000 NA
#> GSM905060     1  0.0336      0.766 0.992 0.008 0.000 NA
#> GSM905048     1  0.0000      0.766 1.000 0.000 0.000 NA
#> GSM905067     1  0.0188      0.766 0.996 0.004 0.000 NA
#> GSM905057     1  0.3552      0.727 0.848 0.024 0.000 NA
#> GSM905068     1  0.5112      0.715 0.560 0.004 0.000 NA

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM905004     3  0.0865     0.8324 0.000 0.000 0.972 0.024 0.004
#> GSM905024     5  0.6444     0.6772 0.260 0.000 0.176 0.012 0.552
#> GSM905038     3  0.3320     0.7775 0.000 0.004 0.820 0.012 0.164
#> GSM905043     5  0.6228     0.6781 0.220 0.000 0.176 0.012 0.592
#> GSM904986     3  0.0162     0.8500 0.000 0.004 0.996 0.000 0.000
#> GSM904991     3  0.4551     0.3226 0.000 0.004 0.556 0.004 0.436
#> GSM904994     3  0.0162     0.8500 0.000 0.004 0.996 0.000 0.000
#> GSM904996     3  0.0162     0.8500 0.000 0.004 0.996 0.000 0.000
#> GSM905007     3  0.3128     0.7784 0.000 0.004 0.824 0.004 0.168
#> GSM905012     3  0.0324     0.8497 0.000 0.004 0.992 0.004 0.000
#> GSM905022     3  0.0162     0.8500 0.000 0.004 0.996 0.000 0.000
#> GSM905026     3  0.0740     0.8486 0.000 0.004 0.980 0.008 0.008
#> GSM905027     3  0.2570     0.8158 0.000 0.004 0.880 0.008 0.108
#> GSM905031     3  0.0740     0.8486 0.000 0.004 0.980 0.008 0.008
#> GSM905036     3  0.4283     0.6456 0.000 0.004 0.692 0.012 0.292
#> GSM905041     3  0.4589     0.2210 0.000 0.004 0.520 0.004 0.472
#> GSM905044     3  0.0613     0.8491 0.000 0.004 0.984 0.004 0.008
#> GSM904989     3  0.0324     0.8497 0.000 0.004 0.992 0.004 0.000
#> GSM904999     3  0.4359     0.7301 0.000 0.004 0.756 0.052 0.188
#> GSM905002     3  0.0162     0.8500 0.000 0.004 0.996 0.000 0.000
#> GSM905009     3  0.0324     0.8497 0.000 0.004 0.992 0.004 0.000
#> GSM905014     3  0.3128     0.7784 0.000 0.004 0.824 0.004 0.168
#> GSM905017     3  0.4359     0.7301 0.000 0.004 0.756 0.052 0.188
#> GSM905020     3  0.0324     0.8497 0.000 0.004 0.992 0.004 0.000
#> GSM905023     3  0.4217     0.6627 0.000 0.004 0.704 0.012 0.280
#> GSM905029     3  0.3797     0.7240 0.000 0.004 0.756 0.008 0.232
#> GSM905032     5  0.4383    -0.0537 0.000 0.004 0.424 0.000 0.572
#> GSM905034     5  0.5205     0.4813 0.412 0.000 0.020 0.016 0.552
#> GSM905040     5  0.5629     0.2994 0.388 0.000 0.008 0.060 0.544
#> GSM904985     2  0.5572     0.7818 0.000 0.644 0.000 0.192 0.164
#> GSM904988     2  0.0000     0.8615 0.000 1.000 0.000 0.000 0.000
#> GSM904990     2  0.0000     0.8615 0.000 1.000 0.000 0.000 0.000
#> GSM904992     2  0.0162     0.8615 0.000 0.996 0.000 0.004 0.000
#> GSM904995     2  0.5273     0.7950 0.000 0.680 0.000 0.156 0.164
#> GSM904998     2  0.1830     0.8546 0.000 0.924 0.000 0.068 0.008
#> GSM905000     2  0.0000     0.8615 0.000 1.000 0.000 0.000 0.000
#> GSM905003     2  0.1894     0.8542 0.000 0.920 0.000 0.072 0.008
#> GSM905006     2  0.0000     0.8615 0.000 1.000 0.000 0.000 0.000
#> GSM905008     2  0.1956     0.8528 0.000 0.916 0.000 0.076 0.008
#> GSM905011     2  0.0000     0.8615 0.000 1.000 0.000 0.000 0.000
#> GSM905013     2  0.0162     0.8615 0.000 0.996 0.000 0.004 0.000
#> GSM905016     2  0.5273     0.7950 0.000 0.680 0.000 0.156 0.164
#> GSM905018     2  0.0000     0.8615 0.000 1.000 0.000 0.000 0.000
#> GSM905021     2  0.6155     0.7191 0.000 0.560 0.000 0.228 0.212
#> GSM905025     2  0.5354     0.7914 0.000 0.668 0.000 0.140 0.192
#> GSM905028     2  0.1741     0.8583 0.000 0.936 0.000 0.024 0.040
#> GSM905030     2  0.1485     0.8587 0.000 0.948 0.000 0.020 0.032
#> GSM905033     2  0.5700     0.7821 0.000 0.628 0.000 0.196 0.176
#> GSM905035     2  0.5460     0.7882 0.000 0.656 0.000 0.148 0.196
#> GSM905037     2  0.1386     0.8584 0.000 0.952 0.000 0.016 0.032
#> GSM905039     2  0.5314     0.7922 0.000 0.672 0.000 0.136 0.192
#> GSM905042     2  0.5700     0.7821 0.000 0.628 0.000 0.196 0.176
#> GSM905046     1  0.0000     0.7295 1.000 0.000 0.000 0.000 0.000
#> GSM905065     1  0.1270     0.7262 0.948 0.000 0.000 0.000 0.052
#> GSM905049     4  0.4201     0.9938 0.408 0.000 0.000 0.592 0.000
#> GSM905050     4  0.4201     0.9938 0.408 0.000 0.000 0.592 0.000
#> GSM905064     4  0.4350     0.9926 0.408 0.000 0.000 0.588 0.004
#> GSM905045     4  0.4499     0.9921 0.408 0.000 0.004 0.584 0.004
#> GSM905051     1  0.5137    -0.6660 0.536 0.000 0.000 0.424 0.040
#> GSM905055     1  0.5130     0.5579 0.680 0.000 0.000 0.100 0.220
#> GSM905058     1  0.0693     0.7265 0.980 0.000 0.000 0.008 0.012
#> GSM905053     4  0.4350     0.9926 0.408 0.000 0.000 0.588 0.004
#> GSM905061     4  0.4499     0.9921 0.408 0.000 0.004 0.584 0.004
#> GSM905063     1  0.5024     0.5494 0.692 0.000 0.000 0.096 0.212
#> GSM905054     4  0.4350     0.9926 0.408 0.000 0.000 0.588 0.004
#> GSM905062     4  0.4499     0.9921 0.408 0.000 0.004 0.584 0.004
#> GSM905052     1  0.5137    -0.6660 0.536 0.000 0.000 0.424 0.040
#> GSM905059     1  0.0807     0.7243 0.976 0.000 0.000 0.012 0.012
#> GSM905047     1  0.0162     0.7269 0.996 0.000 0.000 0.004 0.000
#> GSM905066     1  0.1270     0.7262 0.948 0.000 0.000 0.000 0.052
#> GSM905056     1  0.5130     0.5579 0.680 0.000 0.000 0.100 0.220
#> GSM905060     1  0.0807     0.7243 0.976 0.000 0.000 0.012 0.012
#> GSM905048     1  0.0000     0.7295 1.000 0.000 0.000 0.000 0.000
#> GSM905067     1  0.1270     0.7262 0.948 0.000 0.000 0.000 0.052
#> GSM905057     1  0.5130     0.5579 0.680 0.000 0.000 0.100 0.220
#> GSM905068     4  0.4350     0.9929 0.408 0.000 0.004 0.588 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM905004     3  0.2357     0.7306 0.008 0.000 0.908 0.032 0.016 0.036
#> GSM905024     5  0.5511     0.5602 0.192 0.000 0.100 0.000 0.652 0.056
#> GSM905038     3  0.4358     0.1944 0.008 0.000 0.596 0.000 0.380 0.016
#> GSM905043     5  0.5615     0.5608 0.208 0.000 0.100 0.000 0.636 0.056
#> GSM904986     3  0.0146     0.7824 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM904991     5  0.4417     0.3889 0.000 0.000 0.416 0.000 0.556 0.028
#> GSM904994     3  0.0000     0.7833 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904996     3  0.0000     0.7833 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905007     3  0.4165     0.4049 0.004 0.000 0.676 0.000 0.292 0.028
#> GSM905012     3  0.0000     0.7833 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905022     3  0.0146     0.7824 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM905026     3  0.1610     0.7424 0.000 0.000 0.916 0.000 0.084 0.000
#> GSM905027     3  0.3565     0.4617 0.000 0.000 0.692 0.000 0.304 0.004
#> GSM905031     3  0.1327     0.7539 0.000 0.000 0.936 0.000 0.064 0.000
#> GSM905036     5  0.4312     0.1723 0.004 0.000 0.476 0.000 0.508 0.012
#> GSM905041     5  0.3508     0.5552 0.004 0.000 0.292 0.000 0.704 0.000
#> GSM905044     3  0.1471     0.7536 0.000 0.000 0.932 0.000 0.064 0.004
#> GSM904989     3  0.0862     0.7764 0.008 0.000 0.972 0.000 0.004 0.016
#> GSM904999     3  0.5815     0.3809 0.048 0.000 0.612 0.000 0.204 0.136
#> GSM905002     3  0.0000     0.7833 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905009     3  0.0405     0.7814 0.008 0.000 0.988 0.000 0.000 0.004
#> GSM905014     3  0.4165     0.4049 0.004 0.000 0.676 0.000 0.292 0.028
#> GSM905017     3  0.5815     0.3809 0.048 0.000 0.612 0.000 0.204 0.136
#> GSM905020     3  0.0000     0.7833 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905023     5  0.4313     0.1586 0.004 0.000 0.480 0.000 0.504 0.012
#> GSM905029     3  0.4199    -0.0218 0.004 0.000 0.544 0.000 0.444 0.008
#> GSM905032     5  0.3948     0.5724 0.012 0.000 0.272 0.000 0.704 0.012
#> GSM905034     5  0.5222     0.2626 0.264 0.000 0.004 0.020 0.636 0.076
#> GSM905040     1  0.5775     0.1161 0.468 0.000 0.000 0.020 0.408 0.104
#> GSM904985     2  0.4161    -0.3354 0.004 0.608 0.000 0.000 0.012 0.376
#> GSM904988     2  0.0146     0.6321 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM904990     2  0.0146     0.6321 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM904992     2  0.0436     0.6293 0.004 0.988 0.000 0.000 0.004 0.004
#> GSM904995     2  0.4347    -0.1357 0.012 0.660 0.000 0.000 0.024 0.304
#> GSM904998     2  0.2102     0.5733 0.012 0.908 0.000 0.000 0.012 0.068
#> GSM905000     2  0.0146     0.6321 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM905003     2  0.2467     0.5467 0.012 0.884 0.000 0.000 0.016 0.088
#> GSM905006     2  0.0146     0.6321 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM905008     2  0.2568     0.5357 0.012 0.876 0.000 0.000 0.016 0.096
#> GSM905011     2  0.0146     0.6321 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM905013     2  0.0436     0.6293 0.004 0.988 0.000 0.000 0.004 0.004
#> GSM905016     2  0.4347    -0.1357 0.012 0.660 0.000 0.000 0.024 0.304
#> GSM905018     2  0.0146     0.6321 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM905021     6  0.4924     0.0000 0.020 0.440 0.000 0.000 0.028 0.512
#> GSM905025     2  0.4497    -0.1932 0.012 0.600 0.000 0.000 0.020 0.368
#> GSM905028     2  0.2605     0.5590 0.012 0.876 0.000 0.000 0.020 0.092
#> GSM905030     2  0.1806     0.5823 0.000 0.908 0.000 0.000 0.004 0.088
#> GSM905033     2  0.4366    -0.4246 0.004 0.540 0.000 0.000 0.016 0.440
#> GSM905035     2  0.4528    -0.2291 0.012 0.588 0.000 0.000 0.020 0.380
#> GSM905037     2  0.1866     0.5809 0.000 0.908 0.000 0.000 0.008 0.084
#> GSM905039     2  0.4497    -0.1932 0.012 0.600 0.000 0.000 0.020 0.368
#> GSM905042     2  0.4366    -0.4246 0.004 0.540 0.000 0.000 0.016 0.440
#> GSM905046     1  0.4968     0.7866 0.688 0.000 0.000 0.208 0.044 0.060
#> GSM905065     1  0.3623     0.7873 0.764 0.000 0.000 0.208 0.020 0.008
#> GSM905049     4  0.0000     0.9090 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905050     4  0.0000     0.9090 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905064     4  0.0260     0.9082 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM905045     4  0.0909     0.9052 0.000 0.000 0.000 0.968 0.012 0.020
#> GSM905051     4  0.5717     0.5484 0.144 0.000 0.000 0.644 0.068 0.144
#> GSM905055     1  0.5545     0.6958 0.668 0.000 0.000 0.128 0.080 0.124
#> GSM905058     1  0.5278     0.7826 0.668 0.000 0.000 0.204 0.064 0.064
#> GSM905053     4  0.0363     0.9075 0.000 0.000 0.000 0.988 0.000 0.012
#> GSM905061     4  0.1176     0.9023 0.000 0.000 0.000 0.956 0.020 0.024
#> GSM905063     1  0.5073     0.7202 0.712 0.000 0.000 0.128 0.084 0.076
#> GSM905054     4  0.0363     0.9075 0.000 0.000 0.000 0.988 0.000 0.012
#> GSM905062     4  0.1176     0.9023 0.000 0.000 0.000 0.956 0.020 0.024
#> GSM905052     4  0.5717     0.5484 0.144 0.000 0.000 0.644 0.068 0.144
#> GSM905059     1  0.5278     0.7826 0.668 0.000 0.000 0.204 0.064 0.064
#> GSM905047     1  0.4968     0.7866 0.688 0.000 0.000 0.208 0.044 0.060
#> GSM905066     1  0.3623     0.7873 0.764 0.000 0.000 0.208 0.020 0.008
#> GSM905056     1  0.5545     0.6958 0.668 0.000 0.000 0.128 0.080 0.124
#> GSM905060     1  0.5278     0.7826 0.668 0.000 0.000 0.204 0.064 0.064
#> GSM905048     1  0.4968     0.7866 0.688 0.000 0.000 0.208 0.044 0.060
#> GSM905067     1  0.3623     0.7873 0.764 0.000 0.000 0.208 0.020 0.008
#> GSM905057     1  0.5545     0.6958 0.668 0.000 0.000 0.128 0.080 0.124
#> GSM905068     4  0.0806     0.9053 0.000 0.000 0.000 0.972 0.008 0.020

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n tissue(p) genotype/variation(p) individual(p) k
#> MAD:kmeans 75  3.12e-09              6.64e-03        0.0658 2
#> MAD:kmeans 76  2.85e-20              4.94e-05        0.9774 3
#> MAD:kmeans 74  1.68e-19              2.77e-05        0.9378 4
#> MAD:kmeans 69  2.29e-18              8.80e-11        0.7769 5
#> MAD:kmeans 55  9.35e-13              1.28e-06        0.2975 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 76 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.872           0.956       0.979         0.4993 0.502   0.502
#> 3 3 1.000           0.945       0.980         0.3487 0.740   0.522
#> 4 4 0.862           0.929       0.932         0.1072 0.897   0.698
#> 5 5 0.899           0.826       0.912         0.0604 0.931   0.737
#> 6 6 0.884           0.713       0.873         0.0306 0.978   0.898

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM905004     1  0.0000      0.991 1.000 0.000
#> GSM905024     1  0.0000      0.991 1.000 0.000
#> GSM905038     2  0.7602      0.745 0.220 0.780
#> GSM905043     1  0.0000      0.991 1.000 0.000
#> GSM904986     2  0.0000      0.968 0.000 1.000
#> GSM904991     1  0.0376      0.988 0.996 0.004
#> GSM904994     2  0.0000      0.968 0.000 1.000
#> GSM904996     2  0.0000      0.968 0.000 1.000
#> GSM905007     2  0.8327      0.676 0.264 0.736
#> GSM905012     2  0.0000      0.968 0.000 1.000
#> GSM905022     2  0.0000      0.968 0.000 1.000
#> GSM905026     2  0.0000      0.968 0.000 1.000
#> GSM905027     2  0.6623      0.805 0.172 0.828
#> GSM905031     2  0.0000      0.968 0.000 1.000
#> GSM905036     1  0.7815      0.679 0.768 0.232
#> GSM905041     1  0.0000      0.991 1.000 0.000
#> GSM905044     2  0.0000      0.968 0.000 1.000
#> GSM904989     2  0.0000      0.968 0.000 1.000
#> GSM904999     2  0.0000      0.968 0.000 1.000
#> GSM905002     2  0.0000      0.968 0.000 1.000
#> GSM905009     2  0.0000      0.968 0.000 1.000
#> GSM905014     2  0.7219      0.771 0.200 0.800
#> GSM905017     2  0.0000      0.968 0.000 1.000
#> GSM905020     2  0.0000      0.968 0.000 1.000
#> GSM905023     2  0.7602      0.745 0.220 0.780
#> GSM905029     2  0.7602      0.745 0.220 0.780
#> GSM905032     1  0.1843      0.964 0.972 0.028
#> GSM905034     1  0.0000      0.991 1.000 0.000
#> GSM905040     1  0.0000      0.991 1.000 0.000
#> GSM904985     2  0.0000      0.968 0.000 1.000
#> GSM904988     2  0.0000      0.968 0.000 1.000
#> GSM904990     2  0.0000      0.968 0.000 1.000
#> GSM904992     2  0.0000      0.968 0.000 1.000
#> GSM904995     2  0.0000      0.968 0.000 1.000
#> GSM904998     2  0.0000      0.968 0.000 1.000
#> GSM905000     2  0.0000      0.968 0.000 1.000
#> GSM905003     2  0.0000      0.968 0.000 1.000
#> GSM905006     2  0.0000      0.968 0.000 1.000
#> GSM905008     2  0.0000      0.968 0.000 1.000
#> GSM905011     2  0.0000      0.968 0.000 1.000
#> GSM905013     2  0.0000      0.968 0.000 1.000
#> GSM905016     2  0.0000      0.968 0.000 1.000
#> GSM905018     2  0.0000      0.968 0.000 1.000
#> GSM905021     2  0.0000      0.968 0.000 1.000
#> GSM905025     2  0.0000      0.968 0.000 1.000
#> GSM905028     2  0.0000      0.968 0.000 1.000
#> GSM905030     2  0.0000      0.968 0.000 1.000
#> GSM905033     2  0.0000      0.968 0.000 1.000
#> GSM905035     2  0.0000      0.968 0.000 1.000
#> GSM905037     2  0.0000      0.968 0.000 1.000
#> GSM905039     2  0.0000      0.968 0.000 1.000
#> GSM905042     2  0.0000      0.968 0.000 1.000
#> GSM905046     1  0.0000      0.991 1.000 0.000
#> GSM905065     1  0.0000      0.991 1.000 0.000
#> GSM905049     1  0.0000      0.991 1.000 0.000
#> GSM905050     1  0.0000      0.991 1.000 0.000
#> GSM905064     1  0.0000      0.991 1.000 0.000
#> GSM905045     1  0.0000      0.991 1.000 0.000
#> GSM905051     1  0.0000      0.991 1.000 0.000
#> GSM905055     1  0.0000      0.991 1.000 0.000
#> GSM905058     1  0.0000      0.991 1.000 0.000
#> GSM905053     1  0.0000      0.991 1.000 0.000
#> GSM905061     1  0.0000      0.991 1.000 0.000
#> GSM905063     1  0.0000      0.991 1.000 0.000
#> GSM905054     1  0.0000      0.991 1.000 0.000
#> GSM905062     1  0.0000      0.991 1.000 0.000
#> GSM905052     1  0.0000      0.991 1.000 0.000
#> GSM905059     1  0.0000      0.991 1.000 0.000
#> GSM905047     1  0.0000      0.991 1.000 0.000
#> GSM905066     1  0.0000      0.991 1.000 0.000
#> GSM905056     1  0.0000      0.991 1.000 0.000
#> GSM905060     1  0.0000      0.991 1.000 0.000
#> GSM905048     1  0.0000      0.991 1.000 0.000
#> GSM905067     1  0.0000      0.991 1.000 0.000
#> GSM905057     1  0.0000      0.991 1.000 0.000
#> GSM905068     1  0.0000      0.991 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1 p2    p3
#> GSM905004     1   0.623      0.181 0.564  0 0.436
#> GSM905024     3   0.630      0.135 0.472  0 0.528
#> GSM905038     3   0.000      0.955 0.000  0 1.000
#> GSM905043     3   0.630      0.135 0.472  0 0.528
#> GSM904986     3   0.000      0.955 0.000  0 1.000
#> GSM904991     3   0.000      0.955 0.000  0 1.000
#> GSM904994     3   0.000      0.955 0.000  0 1.000
#> GSM904996     3   0.000      0.955 0.000  0 1.000
#> GSM905007     3   0.000      0.955 0.000  0 1.000
#> GSM905012     3   0.000      0.955 0.000  0 1.000
#> GSM905022     3   0.000      0.955 0.000  0 1.000
#> GSM905026     3   0.000      0.955 0.000  0 1.000
#> GSM905027     3   0.000      0.955 0.000  0 1.000
#> GSM905031     3   0.000      0.955 0.000  0 1.000
#> GSM905036     3   0.000      0.955 0.000  0 1.000
#> GSM905041     3   0.000      0.955 0.000  0 1.000
#> GSM905044     3   0.000      0.955 0.000  0 1.000
#> GSM904989     3   0.000      0.955 0.000  0 1.000
#> GSM904999     3   0.000      0.955 0.000  0 1.000
#> GSM905002     3   0.000      0.955 0.000  0 1.000
#> GSM905009     3   0.000      0.955 0.000  0 1.000
#> GSM905014     3   0.000      0.955 0.000  0 1.000
#> GSM905017     3   0.000      0.955 0.000  0 1.000
#> GSM905020     3   0.000      0.955 0.000  0 1.000
#> GSM905023     3   0.000      0.955 0.000  0 1.000
#> GSM905029     3   0.000      0.955 0.000  0 1.000
#> GSM905032     3   0.355      0.821 0.132  0 0.868
#> GSM905034     1   0.000      0.982 1.000  0 0.000
#> GSM905040     1   0.000      0.982 1.000  0 0.000
#> GSM904985     2   0.000      1.000 0.000  1 0.000
#> GSM904988     2   0.000      1.000 0.000  1 0.000
#> GSM904990     2   0.000      1.000 0.000  1 0.000
#> GSM904992     2   0.000      1.000 0.000  1 0.000
#> GSM904995     2   0.000      1.000 0.000  1 0.000
#> GSM904998     2   0.000      1.000 0.000  1 0.000
#> GSM905000     2   0.000      1.000 0.000  1 0.000
#> GSM905003     2   0.000      1.000 0.000  1 0.000
#> GSM905006     2   0.000      1.000 0.000  1 0.000
#> GSM905008     2   0.000      1.000 0.000  1 0.000
#> GSM905011     2   0.000      1.000 0.000  1 0.000
#> GSM905013     2   0.000      1.000 0.000  1 0.000
#> GSM905016     2   0.000      1.000 0.000  1 0.000
#> GSM905018     2   0.000      1.000 0.000  1 0.000
#> GSM905021     2   0.000      1.000 0.000  1 0.000
#> GSM905025     2   0.000      1.000 0.000  1 0.000
#> GSM905028     2   0.000      1.000 0.000  1 0.000
#> GSM905030     2   0.000      1.000 0.000  1 0.000
#> GSM905033     2   0.000      1.000 0.000  1 0.000
#> GSM905035     2   0.000      1.000 0.000  1 0.000
#> GSM905037     2   0.000      1.000 0.000  1 0.000
#> GSM905039     2   0.000      1.000 0.000  1 0.000
#> GSM905042     2   0.000      1.000 0.000  1 0.000
#> GSM905046     1   0.000      0.982 1.000  0 0.000
#> GSM905065     1   0.000      0.982 1.000  0 0.000
#> GSM905049     1   0.000      0.982 1.000  0 0.000
#> GSM905050     1   0.000      0.982 1.000  0 0.000
#> GSM905064     1   0.000      0.982 1.000  0 0.000
#> GSM905045     1   0.000      0.982 1.000  0 0.000
#> GSM905051     1   0.000      0.982 1.000  0 0.000
#> GSM905055     1   0.000      0.982 1.000  0 0.000
#> GSM905058     1   0.000      0.982 1.000  0 0.000
#> GSM905053     1   0.000      0.982 1.000  0 0.000
#> GSM905061     1   0.000      0.982 1.000  0 0.000
#> GSM905063     1   0.000      0.982 1.000  0 0.000
#> GSM905054     1   0.000      0.982 1.000  0 0.000
#> GSM905062     1   0.000      0.982 1.000  0 0.000
#> GSM905052     1   0.000      0.982 1.000  0 0.000
#> GSM905059     1   0.000      0.982 1.000  0 0.000
#> GSM905047     1   0.000      0.982 1.000  0 0.000
#> GSM905066     1   0.000      0.982 1.000  0 0.000
#> GSM905056     1   0.000      0.982 1.000  0 0.000
#> GSM905060     1   0.000      0.982 1.000  0 0.000
#> GSM905048     1   0.000      0.982 1.000  0 0.000
#> GSM905067     1   0.000      0.982 1.000  0 0.000
#> GSM905057     1   0.000      0.982 1.000  0 0.000
#> GSM905068     1   0.000      0.982 1.000  0 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1 p2    p3    p4
#> GSM905004     4  0.3688      0.719 0.000  0 0.208 0.792
#> GSM905024     1  0.0000      0.773 1.000  0 0.000 0.000
#> GSM905038     3  0.1022      0.910 0.032  0 0.968 0.000
#> GSM905043     1  0.0000      0.773 1.000  0 0.000 0.000
#> GSM904986     3  0.0000      0.914 0.000  0 1.000 0.000
#> GSM904991     3  0.3764      0.872 0.216  0 0.784 0.000
#> GSM904994     3  0.0000      0.914 0.000  0 1.000 0.000
#> GSM904996     3  0.0000      0.914 0.000  0 1.000 0.000
#> GSM905007     3  0.3610      0.879 0.200  0 0.800 0.000
#> GSM905012     3  0.0000      0.914 0.000  0 1.000 0.000
#> GSM905022     3  0.0000      0.914 0.000  0 1.000 0.000
#> GSM905026     3  0.0000      0.914 0.000  0 1.000 0.000
#> GSM905027     3  0.2469      0.900 0.108  0 0.892 0.000
#> GSM905031     3  0.0000      0.914 0.000  0 1.000 0.000
#> GSM905036     3  0.3764      0.872 0.216  0 0.784 0.000
#> GSM905041     3  0.3837      0.867 0.224  0 0.776 0.000
#> GSM905044     3  0.0000      0.914 0.000  0 1.000 0.000
#> GSM904989     3  0.0000      0.914 0.000  0 1.000 0.000
#> GSM904999     3  0.3569      0.880 0.196  0 0.804 0.000
#> GSM905002     3  0.0000      0.914 0.000  0 1.000 0.000
#> GSM905009     3  0.0000      0.914 0.000  0 1.000 0.000
#> GSM905014     3  0.3610      0.879 0.200  0 0.800 0.000
#> GSM905017     3  0.3569      0.880 0.196  0 0.804 0.000
#> GSM905020     3  0.0000      0.914 0.000  0 1.000 0.000
#> GSM905023     3  0.3764      0.872 0.216  0 0.784 0.000
#> GSM905029     3  0.3764      0.872 0.216  0 0.784 0.000
#> GSM905032     1  0.1022      0.743 0.968  0 0.032 0.000
#> GSM905034     1  0.0000      0.773 1.000  0 0.000 0.000
#> GSM905040     1  0.0000      0.773 1.000  0 0.000 0.000
#> GSM904985     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904988     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904990     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904992     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904995     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM904998     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905000     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905003     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905006     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905008     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905011     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905013     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905016     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905018     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905021     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905025     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905028     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905030     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905033     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905035     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905037     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905039     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905042     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM905046     1  0.3837      0.903 0.776  0 0.000 0.224
#> GSM905065     1  0.3837      0.903 0.776  0 0.000 0.224
#> GSM905049     4  0.0000      0.972 0.000  0 0.000 1.000
#> GSM905050     4  0.0000      0.972 0.000  0 0.000 1.000
#> GSM905064     4  0.0000      0.972 0.000  0 0.000 1.000
#> GSM905045     4  0.0000      0.972 0.000  0 0.000 1.000
#> GSM905051     4  0.0188      0.969 0.004  0 0.000 0.996
#> GSM905055     1  0.3764      0.902 0.784  0 0.000 0.216
#> GSM905058     1  0.3837      0.903 0.776  0 0.000 0.224
#> GSM905053     4  0.0000      0.972 0.000  0 0.000 1.000
#> GSM905061     4  0.0000      0.972 0.000  0 0.000 1.000
#> GSM905063     1  0.3764      0.902 0.784  0 0.000 0.216
#> GSM905054     4  0.0000      0.972 0.000  0 0.000 1.000
#> GSM905062     4  0.0000      0.972 0.000  0 0.000 1.000
#> GSM905052     4  0.0188      0.969 0.004  0 0.000 0.996
#> GSM905059     1  0.3837      0.903 0.776  0 0.000 0.224
#> GSM905047     1  0.3837      0.903 0.776  0 0.000 0.224
#> GSM905066     1  0.3837      0.903 0.776  0 0.000 0.224
#> GSM905056     1  0.3764      0.902 0.784  0 0.000 0.216
#> GSM905060     1  0.3837      0.903 0.776  0 0.000 0.224
#> GSM905048     1  0.3837      0.903 0.776  0 0.000 0.224
#> GSM905067     1  0.3837      0.903 0.776  0 0.000 0.224
#> GSM905057     1  0.3764      0.902 0.784  0 0.000 0.216
#> GSM905068     4  0.0000      0.972 0.000  0 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM905004     4  0.2124      0.795 0.000 0.000 0.096 0.900 0.004
#> GSM905024     5  0.3992      0.532 0.268 0.000 0.000 0.012 0.720
#> GSM905038     5  0.3366      0.635 0.000 0.000 0.232 0.000 0.768
#> GSM905043     5  0.4063      0.515 0.280 0.000 0.000 0.012 0.708
#> GSM904986     3  0.0000      0.855 0.000 0.000 1.000 0.000 0.000
#> GSM904991     5  0.3928      0.613 0.000 0.000 0.296 0.004 0.700
#> GSM904994     3  0.0000      0.855 0.000 0.000 1.000 0.000 0.000
#> GSM904996     3  0.0000      0.855 0.000 0.000 1.000 0.000 0.000
#> GSM905007     5  0.4249      0.424 0.000 0.000 0.432 0.000 0.568
#> GSM905012     3  0.0000      0.855 0.000 0.000 1.000 0.000 0.000
#> GSM905022     3  0.0000      0.855 0.000 0.000 1.000 0.000 0.000
#> GSM905026     3  0.3452      0.629 0.000 0.000 0.756 0.000 0.244
#> GSM905027     5  0.3857      0.516 0.000 0.000 0.312 0.000 0.688
#> GSM905031     3  0.3274      0.661 0.000 0.000 0.780 0.000 0.220
#> GSM905036     5  0.1965      0.734 0.000 0.000 0.096 0.000 0.904
#> GSM905041     5  0.1270      0.729 0.000 0.000 0.052 0.000 0.948
#> GSM905044     3  0.3274      0.661 0.000 0.000 0.780 0.000 0.220
#> GSM904989     3  0.0000      0.855 0.000 0.000 1.000 0.000 0.000
#> GSM904999     3  0.4201      0.316 0.000 0.000 0.664 0.008 0.328
#> GSM905002     3  0.0000      0.855 0.000 0.000 1.000 0.000 0.000
#> GSM905009     3  0.0000      0.855 0.000 0.000 1.000 0.000 0.000
#> GSM905014     5  0.4227      0.446 0.000 0.000 0.420 0.000 0.580
#> GSM905017     3  0.4201      0.316 0.000 0.000 0.664 0.008 0.328
#> GSM905020     3  0.0000      0.855 0.000 0.000 1.000 0.000 0.000
#> GSM905023     5  0.2074      0.733 0.000 0.000 0.104 0.000 0.896
#> GSM905029     5  0.2471      0.721 0.000 0.000 0.136 0.000 0.864
#> GSM905032     5  0.2130      0.694 0.080 0.000 0.000 0.012 0.908
#> GSM905034     1  0.4063      0.624 0.708 0.000 0.000 0.012 0.280
#> GSM905040     1  0.3280      0.764 0.812 0.000 0.000 0.012 0.176
#> GSM904985     2  0.0290      0.992 0.000 0.992 0.000 0.000 0.008
#> GSM904988     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000
#> GSM904990     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000
#> GSM904992     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000
#> GSM904995     2  0.0290      0.992 0.000 0.992 0.000 0.000 0.008
#> GSM904998     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000
#> GSM905000     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000
#> GSM905003     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000
#> GSM905006     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000
#> GSM905008     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000
#> GSM905011     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000
#> GSM905013     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000
#> GSM905016     2  0.0290      0.992 0.000 0.992 0.000 0.000 0.008
#> GSM905018     2  0.0000      0.993 0.000 1.000 0.000 0.000 0.000
#> GSM905021     2  0.0798      0.984 0.000 0.976 0.000 0.008 0.016
#> GSM905025     2  0.0703      0.988 0.000 0.976 0.000 0.000 0.024
#> GSM905028     2  0.0404      0.991 0.000 0.988 0.000 0.000 0.012
#> GSM905030     2  0.0404      0.991 0.000 0.988 0.000 0.000 0.012
#> GSM905033     2  0.0703      0.988 0.000 0.976 0.000 0.000 0.024
#> GSM905035     2  0.0703      0.988 0.000 0.976 0.000 0.000 0.024
#> GSM905037     2  0.0404      0.991 0.000 0.988 0.000 0.000 0.012
#> GSM905039     2  0.0703      0.988 0.000 0.976 0.000 0.000 0.024
#> GSM905042     2  0.0703      0.988 0.000 0.976 0.000 0.000 0.024
#> GSM905046     1  0.1282      0.930 0.952 0.000 0.000 0.044 0.004
#> GSM905065     1  0.1121      0.931 0.956 0.000 0.000 0.044 0.000
#> GSM905049     4  0.0609      0.888 0.020 0.000 0.000 0.980 0.000
#> GSM905050     4  0.0609      0.888 0.020 0.000 0.000 0.980 0.000
#> GSM905064     4  0.0609      0.888 0.020 0.000 0.000 0.980 0.000
#> GSM905045     4  0.0771      0.888 0.020 0.000 0.000 0.976 0.004
#> GSM905051     4  0.4562      0.104 0.492 0.000 0.000 0.500 0.008
#> GSM905055     1  0.1121      0.906 0.956 0.000 0.000 0.000 0.044
#> GSM905058     1  0.1282      0.930 0.952 0.000 0.000 0.044 0.004
#> GSM905053     4  0.0609      0.888 0.020 0.000 0.000 0.980 0.000
#> GSM905061     4  0.0771      0.888 0.020 0.000 0.000 0.976 0.004
#> GSM905063     1  0.0963      0.909 0.964 0.000 0.000 0.000 0.036
#> GSM905054     4  0.0609      0.888 0.020 0.000 0.000 0.980 0.000
#> GSM905062     4  0.0771      0.888 0.020 0.000 0.000 0.976 0.004
#> GSM905052     4  0.4562      0.104 0.492 0.000 0.000 0.500 0.008
#> GSM905059     1  0.1357      0.929 0.948 0.000 0.000 0.048 0.004
#> GSM905047     1  0.1357      0.929 0.948 0.000 0.000 0.048 0.004
#> GSM905066     1  0.1121      0.931 0.956 0.000 0.000 0.044 0.000
#> GSM905056     1  0.1121      0.906 0.956 0.000 0.000 0.000 0.044
#> GSM905060     1  0.1357      0.929 0.948 0.000 0.000 0.048 0.004
#> GSM905048     1  0.1121      0.931 0.956 0.000 0.000 0.044 0.000
#> GSM905067     1  0.1121      0.931 0.956 0.000 0.000 0.044 0.000
#> GSM905057     1  0.1121      0.906 0.956 0.000 0.000 0.000 0.044
#> GSM905068     4  0.0771      0.888 0.020 0.000 0.000 0.976 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM905004     4  0.1829      0.918 0.000 0.000 0.056 0.920 0.000 0.024
#> GSM905024     5  0.5354      0.271 0.160 0.000 0.000 0.000 0.580 0.260
#> GSM905038     5  0.1757      0.658 0.000 0.000 0.076 0.000 0.916 0.008
#> GSM905043     5  0.5411      0.252 0.168 0.000 0.000 0.000 0.572 0.260
#> GSM904986     3  0.0458      0.811 0.000 0.000 0.984 0.000 0.000 0.016
#> GSM904991     5  0.4801      0.582 0.000 0.000 0.196 0.000 0.668 0.136
#> GSM904994     3  0.0000      0.814 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904996     3  0.0000      0.814 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905007     5  0.4828      0.494 0.000 0.000 0.320 0.000 0.604 0.076
#> GSM905012     3  0.0000      0.814 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905022     3  0.0806      0.807 0.000 0.000 0.972 0.000 0.008 0.020
#> GSM905026     3  0.4300      0.516 0.000 0.000 0.640 0.000 0.324 0.036
#> GSM905027     5  0.3456      0.560 0.000 0.000 0.172 0.000 0.788 0.040
#> GSM905031     3  0.4087      0.575 0.000 0.000 0.688 0.000 0.276 0.036
#> GSM905036     5  0.1245      0.670 0.000 0.000 0.016 0.000 0.952 0.032
#> GSM905041     5  0.2191      0.641 0.000 0.000 0.004 0.000 0.876 0.120
#> GSM905044     3  0.4146      0.565 0.000 0.000 0.676 0.000 0.288 0.036
#> GSM904989     3  0.0260      0.812 0.000 0.000 0.992 0.000 0.000 0.008
#> GSM904999     3  0.5951      0.126 0.000 0.000 0.456 0.000 0.272 0.272
#> GSM905002     3  0.0146      0.814 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM905009     3  0.0260      0.812 0.000 0.000 0.992 0.000 0.000 0.008
#> GSM905014     5  0.4798      0.504 0.000 0.000 0.312 0.000 0.612 0.076
#> GSM905017     3  0.5951      0.126 0.000 0.000 0.456 0.000 0.272 0.272
#> GSM905020     3  0.0000      0.814 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905023     5  0.0777      0.671 0.000 0.000 0.024 0.000 0.972 0.004
#> GSM905029     5  0.1333      0.670 0.000 0.000 0.048 0.000 0.944 0.008
#> GSM905032     5  0.5587      0.319 0.240 0.000 0.000 0.000 0.548 0.212
#> GSM905034     6  0.5870      0.000 0.364 0.000 0.000 0.000 0.200 0.436
#> GSM905040     1  0.4044     -0.391 0.744 0.000 0.000 0.000 0.076 0.180
#> GSM904985     2  0.1267      0.949 0.000 0.940 0.000 0.000 0.000 0.060
#> GSM904988     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904990     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904992     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904995     2  0.1267      0.949 0.000 0.940 0.000 0.000 0.000 0.060
#> GSM904998     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905000     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905003     2  0.0146      0.961 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM905006     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905008     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905011     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905013     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905016     2  0.1267      0.949 0.000 0.940 0.000 0.000 0.000 0.060
#> GSM905018     2  0.0000      0.961 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905021     2  0.3244      0.752 0.000 0.732 0.000 0.000 0.000 0.268
#> GSM905025     2  0.1806      0.942 0.000 0.908 0.000 0.000 0.004 0.088
#> GSM905028     2  0.0935      0.955 0.000 0.964 0.000 0.000 0.004 0.032
#> GSM905030     2  0.0858      0.955 0.000 0.968 0.000 0.000 0.004 0.028
#> GSM905033     2  0.1958      0.937 0.000 0.896 0.000 0.000 0.004 0.100
#> GSM905035     2  0.1858      0.940 0.000 0.904 0.000 0.000 0.004 0.092
#> GSM905037     2  0.0858      0.955 0.000 0.968 0.000 0.000 0.004 0.028
#> GSM905039     2  0.1806      0.942 0.000 0.908 0.000 0.000 0.004 0.088
#> GSM905042     2  0.1958      0.937 0.000 0.896 0.000 0.000 0.004 0.100
#> GSM905046     1  0.3728      0.632 0.652 0.000 0.000 0.004 0.000 0.344
#> GSM905065     1  0.3668      0.631 0.668 0.000 0.000 0.004 0.000 0.328
#> GSM905049     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905050     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905064     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905045     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905051     1  0.5982      0.289 0.428 0.000 0.000 0.240 0.000 0.332
#> GSM905055     1  0.0520      0.319 0.984 0.000 0.000 0.000 0.008 0.008
#> GSM905058     1  0.3807      0.621 0.628 0.000 0.000 0.004 0.000 0.368
#> GSM905053     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905061     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905063     1  0.0146      0.330 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM905054     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905062     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905052     1  0.5982      0.289 0.428 0.000 0.000 0.240 0.000 0.332
#> GSM905059     1  0.3807      0.621 0.628 0.000 0.000 0.004 0.000 0.368
#> GSM905047     1  0.3742      0.631 0.648 0.000 0.000 0.004 0.000 0.348
#> GSM905066     1  0.3668      0.631 0.668 0.000 0.000 0.004 0.000 0.328
#> GSM905056     1  0.0520      0.319 0.984 0.000 0.000 0.000 0.008 0.008
#> GSM905060     1  0.3807      0.621 0.628 0.000 0.000 0.004 0.000 0.368
#> GSM905048     1  0.3728      0.632 0.652 0.000 0.000 0.004 0.000 0.344
#> GSM905067     1  0.3668      0.631 0.668 0.000 0.000 0.004 0.000 0.328
#> GSM905057     1  0.0520      0.319 0.984 0.000 0.000 0.000 0.008 0.008
#> GSM905068     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n tissue(p) genotype/variation(p) individual(p) k
#> MAD:skmeans 76  1.95e-07              1.24e-03        0.0373 2
#> MAD:skmeans 73  4.09e-19              1.27e-05        0.9240 3
#> MAD:skmeans 76  2.32e-19              1.01e-09        0.1977 4
#> MAD:skmeans 70  1.75e-15              6.17e-09        0.5000 5
#> MAD:skmeans 62  1.16e-16              2.11e-10        0.4077 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 76 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.991       0.996         0.4845 0.516   0.516
#> 3 3 1.000           0.991       0.996         0.3900 0.779   0.584
#> 4 4 1.000           0.988       0.995         0.0964 0.934   0.799
#> 5 5 0.993           0.969       0.984         0.0281 0.982   0.930
#> 6 6 0.908           0.844       0.919         0.0484 0.960   0.839

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4 5

There is also optional best \(k\) = 2 3 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM905004     2   0.204      0.965 0.032 0.968
#> GSM905024     1   0.000      0.994 1.000 0.000
#> GSM905038     2   0.000      0.996 0.000 1.000
#> GSM905043     1   0.000      0.994 1.000 0.000
#> GSM904986     2   0.000      0.996 0.000 1.000
#> GSM904991     1   0.653      0.796 0.832 0.168
#> GSM904994     2   0.000      0.996 0.000 1.000
#> GSM904996     2   0.000      0.996 0.000 1.000
#> GSM905007     2   0.000      0.996 0.000 1.000
#> GSM905012     2   0.000      0.996 0.000 1.000
#> GSM905022     2   0.000      0.996 0.000 1.000
#> GSM905026     2   0.000      0.996 0.000 1.000
#> GSM905027     2   0.000      0.996 0.000 1.000
#> GSM905031     2   0.000      0.996 0.000 1.000
#> GSM905036     2   0.541      0.858 0.124 0.876
#> GSM905041     1   0.000      0.994 1.000 0.000
#> GSM905044     2   0.000      0.996 0.000 1.000
#> GSM904989     2   0.000      0.996 0.000 1.000
#> GSM904999     2   0.000      0.996 0.000 1.000
#> GSM905002     2   0.000      0.996 0.000 1.000
#> GSM905009     2   0.000      0.996 0.000 1.000
#> GSM905014     2   0.000      0.996 0.000 1.000
#> GSM905017     2   0.000      0.996 0.000 1.000
#> GSM905020     2   0.000      0.996 0.000 1.000
#> GSM905023     2   0.000      0.996 0.000 1.000
#> GSM905029     2   0.000      0.996 0.000 1.000
#> GSM905032     2   0.000      0.996 0.000 1.000
#> GSM905034     1   0.000      0.994 1.000 0.000
#> GSM905040     1   0.000      0.994 1.000 0.000
#> GSM904985     2   0.000      0.996 0.000 1.000
#> GSM904988     2   0.000      0.996 0.000 1.000
#> GSM904990     2   0.000      0.996 0.000 1.000
#> GSM904992     2   0.000      0.996 0.000 1.000
#> GSM904995     2   0.000      0.996 0.000 1.000
#> GSM904998     2   0.000      0.996 0.000 1.000
#> GSM905000     2   0.000      0.996 0.000 1.000
#> GSM905003     2   0.000      0.996 0.000 1.000
#> GSM905006     2   0.000      0.996 0.000 1.000
#> GSM905008     2   0.000      0.996 0.000 1.000
#> GSM905011     2   0.000      0.996 0.000 1.000
#> GSM905013     2   0.000      0.996 0.000 1.000
#> GSM905016     2   0.000      0.996 0.000 1.000
#> GSM905018     2   0.000      0.996 0.000 1.000
#> GSM905021     2   0.000      0.996 0.000 1.000
#> GSM905025     2   0.000      0.996 0.000 1.000
#> GSM905028     2   0.000      0.996 0.000 1.000
#> GSM905030     2   0.000      0.996 0.000 1.000
#> GSM905033     2   0.000      0.996 0.000 1.000
#> GSM905035     2   0.000      0.996 0.000 1.000
#> GSM905037     2   0.000      0.996 0.000 1.000
#> GSM905039     2   0.000      0.996 0.000 1.000
#> GSM905042     2   0.000      0.996 0.000 1.000
#> GSM905046     1   0.000      0.994 1.000 0.000
#> GSM905065     1   0.000      0.994 1.000 0.000
#> GSM905049     1   0.000      0.994 1.000 0.000
#> GSM905050     1   0.000      0.994 1.000 0.000
#> GSM905064     1   0.000      0.994 1.000 0.000
#> GSM905045     1   0.000      0.994 1.000 0.000
#> GSM905051     1   0.000      0.994 1.000 0.000
#> GSM905055     1   0.000      0.994 1.000 0.000
#> GSM905058     1   0.000      0.994 1.000 0.000
#> GSM905053     1   0.000      0.994 1.000 0.000
#> GSM905061     1   0.000      0.994 1.000 0.000
#> GSM905063     1   0.000      0.994 1.000 0.000
#> GSM905054     1   0.000      0.994 1.000 0.000
#> GSM905062     1   0.000      0.994 1.000 0.000
#> GSM905052     1   0.000      0.994 1.000 0.000
#> GSM905059     1   0.000      0.994 1.000 0.000
#> GSM905047     1   0.000      0.994 1.000 0.000
#> GSM905066     1   0.000      0.994 1.000 0.000
#> GSM905056     1   0.000      0.994 1.000 0.000
#> GSM905060     1   0.000      0.994 1.000 0.000
#> GSM905048     1   0.000      0.994 1.000 0.000
#> GSM905067     1   0.000      0.994 1.000 0.000
#> GSM905057     1   0.000      0.994 1.000 0.000
#> GSM905068     1   0.000      0.994 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM905004     3  0.0000      1.000 0.000 0.000 1.000
#> GSM905024     1  0.0424      0.989 0.992 0.000 0.008
#> GSM905038     3  0.0000      1.000 0.000 0.000 1.000
#> GSM905043     1  0.2878      0.895 0.904 0.000 0.096
#> GSM904986     3  0.0000      1.000 0.000 0.000 1.000
#> GSM904991     3  0.0000      1.000 0.000 0.000 1.000
#> GSM904994     3  0.0000      1.000 0.000 0.000 1.000
#> GSM904996     3  0.0000      1.000 0.000 0.000 1.000
#> GSM905007     3  0.0000      1.000 0.000 0.000 1.000
#> GSM905012     3  0.0000      1.000 0.000 0.000 1.000
#> GSM905022     3  0.0000      1.000 0.000 0.000 1.000
#> GSM905026     3  0.0000      1.000 0.000 0.000 1.000
#> GSM905027     3  0.0000      1.000 0.000 0.000 1.000
#> GSM905031     3  0.0000      1.000 0.000 0.000 1.000
#> GSM905036     3  0.0000      1.000 0.000 0.000 1.000
#> GSM905041     3  0.0000      1.000 0.000 0.000 1.000
#> GSM905044     3  0.0000      1.000 0.000 0.000 1.000
#> GSM904989     3  0.0000      1.000 0.000 0.000 1.000
#> GSM904999     3  0.0000      1.000 0.000 0.000 1.000
#> GSM905002     3  0.0000      1.000 0.000 0.000 1.000
#> GSM905009     3  0.0000      1.000 0.000 0.000 1.000
#> GSM905014     3  0.0000      1.000 0.000 0.000 1.000
#> GSM905017     3  0.0000      1.000 0.000 0.000 1.000
#> GSM905020     3  0.0000      1.000 0.000 0.000 1.000
#> GSM905023     3  0.0000      1.000 0.000 0.000 1.000
#> GSM905029     3  0.0000      1.000 0.000 0.000 1.000
#> GSM905032     3  0.0000      1.000 0.000 0.000 1.000
#> GSM905034     1  0.0000      0.996 1.000 0.000 0.000
#> GSM905040     1  0.0237      0.993 0.996 0.000 0.004
#> GSM904985     2  0.0000      0.991 0.000 1.000 0.000
#> GSM904988     2  0.0000      0.991 0.000 1.000 0.000
#> GSM904990     2  0.0000      0.991 0.000 1.000 0.000
#> GSM904992     2  0.0000      0.991 0.000 1.000 0.000
#> GSM904995     2  0.0000      0.991 0.000 1.000 0.000
#> GSM904998     2  0.0000      0.991 0.000 1.000 0.000
#> GSM905000     2  0.0000      0.991 0.000 1.000 0.000
#> GSM905003     2  0.0000      0.991 0.000 1.000 0.000
#> GSM905006     2  0.0000      0.991 0.000 1.000 0.000
#> GSM905008     2  0.0000      0.991 0.000 1.000 0.000
#> GSM905011     2  0.0000      0.991 0.000 1.000 0.000
#> GSM905013     2  0.0000      0.991 0.000 1.000 0.000
#> GSM905016     2  0.0000      0.991 0.000 1.000 0.000
#> GSM905018     2  0.0000      0.991 0.000 1.000 0.000
#> GSM905021     2  0.4504      0.756 0.000 0.804 0.196
#> GSM905025     2  0.0000      0.991 0.000 1.000 0.000
#> GSM905028     2  0.0000      0.991 0.000 1.000 0.000
#> GSM905030     2  0.0000      0.991 0.000 1.000 0.000
#> GSM905033     2  0.0000      0.991 0.000 1.000 0.000
#> GSM905035     2  0.0000      0.991 0.000 1.000 0.000
#> GSM905037     2  0.0000      0.991 0.000 1.000 0.000
#> GSM905039     2  0.0000      0.991 0.000 1.000 0.000
#> GSM905042     2  0.0000      0.991 0.000 1.000 0.000
#> GSM905046     1  0.0000      0.996 1.000 0.000 0.000
#> GSM905065     1  0.0000      0.996 1.000 0.000 0.000
#> GSM905049     1  0.0000      0.996 1.000 0.000 0.000
#> GSM905050     1  0.0000      0.996 1.000 0.000 0.000
#> GSM905064     1  0.0000      0.996 1.000 0.000 0.000
#> GSM905045     1  0.0000      0.996 1.000 0.000 0.000
#> GSM905051     1  0.0000      0.996 1.000 0.000 0.000
#> GSM905055     1  0.0000      0.996 1.000 0.000 0.000
#> GSM905058     1  0.0000      0.996 1.000 0.000 0.000
#> GSM905053     1  0.0000      0.996 1.000 0.000 0.000
#> GSM905061     1  0.0000      0.996 1.000 0.000 0.000
#> GSM905063     1  0.0000      0.996 1.000 0.000 0.000
#> GSM905054     1  0.0000      0.996 1.000 0.000 0.000
#> GSM905062     1  0.0000      0.996 1.000 0.000 0.000
#> GSM905052     1  0.0000      0.996 1.000 0.000 0.000
#> GSM905059     1  0.0000      0.996 1.000 0.000 0.000
#> GSM905047     1  0.0000      0.996 1.000 0.000 0.000
#> GSM905066     1  0.0000      0.996 1.000 0.000 0.000
#> GSM905056     1  0.0000      0.996 1.000 0.000 0.000
#> GSM905060     1  0.0000      0.996 1.000 0.000 0.000
#> GSM905048     1  0.0000      0.996 1.000 0.000 0.000
#> GSM905067     1  0.0000      0.996 1.000 0.000 0.000
#> GSM905057     1  0.0000      0.996 1.000 0.000 0.000
#> GSM905068     1  0.0000      0.996 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM905004     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM905024     1  0.0469      0.981 0.988 0.000 0.012 0.000
#> GSM905038     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM905043     1  0.2281      0.878 0.904 0.000 0.096 0.000
#> GSM904986     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM904991     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM904994     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM904996     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM905007     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM905012     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM905022     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM905026     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM905027     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM905031     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM905036     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM905041     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM905044     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM904989     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM904999     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM905002     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM905009     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM905014     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM905017     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM905020     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM905023     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM905029     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM905032     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> GSM905034     1  0.0188      0.988 0.996 0.000 0.004 0.000
#> GSM905040     1  0.0336      0.985 0.992 0.000 0.008 0.000
#> GSM904985     2  0.0000      0.989 0.000 1.000 0.000 0.000
#> GSM904988     2  0.0000      0.989 0.000 1.000 0.000 0.000
#> GSM904990     2  0.0000      0.989 0.000 1.000 0.000 0.000
#> GSM904992     2  0.0000      0.989 0.000 1.000 0.000 0.000
#> GSM904995     2  0.0000      0.989 0.000 1.000 0.000 0.000
#> GSM904998     2  0.0000      0.989 0.000 1.000 0.000 0.000
#> GSM905000     2  0.0000      0.989 0.000 1.000 0.000 0.000
#> GSM905003     2  0.0000      0.989 0.000 1.000 0.000 0.000
#> GSM905006     2  0.0000      0.989 0.000 1.000 0.000 0.000
#> GSM905008     2  0.0000      0.989 0.000 1.000 0.000 0.000
#> GSM905011     2  0.0000      0.989 0.000 1.000 0.000 0.000
#> GSM905013     2  0.0000      0.989 0.000 1.000 0.000 0.000
#> GSM905016     2  0.0000      0.989 0.000 1.000 0.000 0.000
#> GSM905018     2  0.0000      0.989 0.000 1.000 0.000 0.000
#> GSM905021     2  0.3569      0.738 0.000 0.804 0.196 0.000
#> GSM905025     2  0.0000      0.989 0.000 1.000 0.000 0.000
#> GSM905028     2  0.0000      0.989 0.000 1.000 0.000 0.000
#> GSM905030     2  0.0000      0.989 0.000 1.000 0.000 0.000
#> GSM905033     2  0.0000      0.989 0.000 1.000 0.000 0.000
#> GSM905035     2  0.0000      0.989 0.000 1.000 0.000 0.000
#> GSM905037     2  0.0000      0.989 0.000 1.000 0.000 0.000
#> GSM905039     2  0.0000      0.989 0.000 1.000 0.000 0.000
#> GSM905042     2  0.0000      0.989 0.000 1.000 0.000 0.000
#> GSM905046     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM905065     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM905049     4  0.0000      0.992 0.000 0.000 0.000 1.000
#> GSM905050     4  0.0000      0.992 0.000 0.000 0.000 1.000
#> GSM905064     4  0.0000      0.992 0.000 0.000 0.000 1.000
#> GSM905045     4  0.0000      0.992 0.000 0.000 0.000 1.000
#> GSM905051     4  0.1792      0.928 0.068 0.000 0.000 0.932
#> GSM905055     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM905058     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM905053     4  0.0000      0.992 0.000 0.000 0.000 1.000
#> GSM905061     4  0.0000      0.992 0.000 0.000 0.000 1.000
#> GSM905063     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM905054     4  0.0000      0.992 0.000 0.000 0.000 1.000
#> GSM905062     4  0.0000      0.992 0.000 0.000 0.000 1.000
#> GSM905052     4  0.0336      0.987 0.008 0.000 0.000 0.992
#> GSM905059     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM905047     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM905066     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM905056     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM905060     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM905048     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM905067     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM905057     1  0.0000      0.991 1.000 0.000 0.000 0.000
#> GSM905068     4  0.0000      0.992 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM905004     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000
#> GSM905024     1  0.1892      0.902 0.916 0.000 0.004 0.000 0.080
#> GSM905038     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000
#> GSM905043     1  0.2754      0.865 0.880 0.000 0.040 0.000 0.080
#> GSM904986     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000
#> GSM904991     3  0.1732      0.924 0.000 0.000 0.920 0.000 0.080
#> GSM904994     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000
#> GSM904996     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000
#> GSM905007     3  0.0290      0.984 0.000 0.000 0.992 0.000 0.008
#> GSM905012     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000
#> GSM905022     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000
#> GSM905026     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000
#> GSM905027     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000
#> GSM905031     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000
#> GSM905036     3  0.0290      0.984 0.000 0.000 0.992 0.000 0.008
#> GSM905041     3  0.1732      0.924 0.000 0.000 0.920 0.000 0.080
#> GSM905044     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000
#> GSM904989     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000
#> GSM904999     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000
#> GSM905002     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000
#> GSM905009     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000
#> GSM905014     3  0.0290      0.984 0.000 0.000 0.992 0.000 0.008
#> GSM905017     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000
#> GSM905020     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000
#> GSM905023     3  0.0290      0.984 0.000 0.000 0.992 0.000 0.008
#> GSM905029     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000
#> GSM905032     3  0.2020      0.905 0.000 0.000 0.900 0.000 0.100
#> GSM905034     1  0.1732      0.904 0.920 0.000 0.000 0.000 0.080
#> GSM905040     5  0.0000      0.904 0.000 0.000 0.000 0.000 1.000
#> GSM904985     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000
#> GSM904988     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000
#> GSM904990     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000
#> GSM904992     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000
#> GSM904995     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000
#> GSM904998     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000
#> GSM905000     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000
#> GSM905003     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000
#> GSM905006     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000
#> GSM905008     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000
#> GSM905011     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000
#> GSM905013     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000
#> GSM905016     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000
#> GSM905018     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000
#> GSM905021     2  0.3039      0.703 0.000 0.808 0.192 0.000 0.000
#> GSM905025     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000
#> GSM905028     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000
#> GSM905030     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000
#> GSM905033     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000
#> GSM905035     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000
#> GSM905037     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000
#> GSM905039     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000
#> GSM905042     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000
#> GSM905046     1  0.0000      0.957 1.000 0.000 0.000 0.000 0.000
#> GSM905065     1  0.0000      0.957 1.000 0.000 0.000 0.000 0.000
#> GSM905049     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000
#> GSM905050     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000
#> GSM905064     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000
#> GSM905045     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000
#> GSM905051     4  0.1478      0.916 0.064 0.000 0.000 0.936 0.000
#> GSM905055     5  0.1732      0.967 0.080 0.000 0.000 0.000 0.920
#> GSM905058     1  0.0000      0.957 1.000 0.000 0.000 0.000 0.000
#> GSM905053     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000
#> GSM905061     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000
#> GSM905063     1  0.2813      0.779 0.832 0.000 0.000 0.000 0.168
#> GSM905054     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000
#> GSM905062     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000
#> GSM905052     4  0.0162      0.988 0.004 0.000 0.000 0.996 0.000
#> GSM905059     1  0.0000      0.957 1.000 0.000 0.000 0.000 0.000
#> GSM905047     1  0.0000      0.957 1.000 0.000 0.000 0.000 0.000
#> GSM905066     1  0.0000      0.957 1.000 0.000 0.000 0.000 0.000
#> GSM905056     5  0.1732      0.967 0.080 0.000 0.000 0.000 0.920
#> GSM905060     1  0.0000      0.957 1.000 0.000 0.000 0.000 0.000
#> GSM905048     1  0.0000      0.957 1.000 0.000 0.000 0.000 0.000
#> GSM905067     1  0.0000      0.957 1.000 0.000 0.000 0.000 0.000
#> GSM905057     5  0.1732      0.967 0.080 0.000 0.000 0.000 0.920
#> GSM905068     4  0.0000      0.991 0.000 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM905004     3  0.0000      0.822 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905024     5  0.4333      0.404 0.376 0.000 0.028 0.000 0.596 0.000
#> GSM905038     3  0.3578      0.643 0.000 0.000 0.660 0.000 0.340 0.000
#> GSM905043     5  0.3330      0.546 0.284 0.000 0.000 0.000 0.716 0.000
#> GSM904986     3  0.0000      0.822 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904991     5  0.3828      0.309 0.000 0.000 0.440 0.000 0.560 0.000
#> GSM904994     3  0.0000      0.822 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904996     3  0.0000      0.822 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905007     3  0.0458      0.812 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM905012     3  0.0000      0.822 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905022     3  0.0000      0.822 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905026     3  0.3578      0.643 0.000 0.000 0.660 0.000 0.340 0.000
#> GSM905027     3  0.3774      0.569 0.000 0.000 0.592 0.000 0.408 0.000
#> GSM905031     3  0.3578      0.643 0.000 0.000 0.660 0.000 0.340 0.000
#> GSM905036     3  0.3851      0.493 0.000 0.000 0.540 0.000 0.460 0.000
#> GSM905041     5  0.1814      0.516 0.000 0.000 0.100 0.000 0.900 0.000
#> GSM905044     3  0.3578      0.643 0.000 0.000 0.660 0.000 0.340 0.000
#> GSM904989     3  0.0000      0.822 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904999     3  0.0000      0.822 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905002     3  0.0000      0.822 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905009     3  0.0000      0.822 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905014     3  0.0458      0.812 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM905017     3  0.0000      0.822 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905020     3  0.0000      0.822 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905023     3  0.3860      0.469 0.000 0.000 0.528 0.000 0.472 0.000
#> GSM905029     3  0.3774      0.569 0.000 0.000 0.592 0.000 0.408 0.000
#> GSM905032     5  0.1970      0.517 0.000 0.000 0.092 0.000 0.900 0.008
#> GSM905034     5  0.3578      0.367 0.340 0.000 0.000 0.000 0.660 0.000
#> GSM905040     5  0.3774      0.130 0.000 0.000 0.000 0.000 0.592 0.408
#> GSM904985     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904988     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904990     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904992     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904995     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904998     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905000     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905003     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905006     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905008     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905011     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905013     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905016     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905018     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905021     2  0.2823      0.711 0.000 0.796 0.204 0.000 0.000 0.000
#> GSM905025     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905028     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905030     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905033     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905035     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905037     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905039     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905042     2  0.0547      0.968 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM905046     1  0.0000      0.928 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM905065     1  0.0000      0.928 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM905049     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905050     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905064     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905045     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905051     4  0.1471      0.916 0.064 0.000 0.000 0.932 0.004 0.000
#> GSM905055     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM905058     1  0.1814      0.907 0.900 0.000 0.000 0.000 0.100 0.000
#> GSM905053     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905061     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905063     1  0.3766      0.679 0.736 0.000 0.000 0.000 0.032 0.232
#> GSM905054     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905062     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905052     4  0.0405      0.981 0.008 0.000 0.000 0.988 0.004 0.000
#> GSM905059     1  0.1814      0.907 0.900 0.000 0.000 0.000 0.100 0.000
#> GSM905047     1  0.1267      0.916 0.940 0.000 0.000 0.000 0.060 0.000
#> GSM905066     1  0.0000      0.928 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM905056     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM905060     1  0.1814      0.907 0.900 0.000 0.000 0.000 0.100 0.000
#> GSM905048     1  0.0000      0.928 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM905067     1  0.0000      0.928 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM905057     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM905068     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n tissue(p) genotype/variation(p) individual(p) k
#> MAD:pam 76  1.98e-08              5.13e-03        0.0709 2
#> MAD:pam 76  1.53e-18              5.88e-06        0.8922 3
#> MAD:pam 76  2.37e-21              6.19e-10        0.3008 4
#> MAD:pam 76  1.78e-21              4.53e-11        0.0398 5
#> MAD:pam 70  3.68e-20              1.67e-08        0.1009 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 76 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4283 0.572   0.572
#> 3 3 1.000           0.984       0.994         0.5765 0.721   0.525
#> 4 4 0.870           0.856       0.913         0.0790 0.939   0.814
#> 5 5 0.979           0.958       0.977         0.0706 0.914   0.701
#> 6 6 0.863           0.769       0.887         0.0420 0.972   0.873

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> GSM905004     1       0          1  1  0
#> GSM905024     1       0          1  1  0
#> GSM905038     1       0          1  1  0
#> GSM905043     1       0          1  1  0
#> GSM904986     1       0          1  1  0
#> GSM904991     1       0          1  1  0
#> GSM904994     1       0          1  1  0
#> GSM904996     1       0          1  1  0
#> GSM905007     1       0          1  1  0
#> GSM905012     1       0          1  1  0
#> GSM905022     1       0          1  1  0
#> GSM905026     1       0          1  1  0
#> GSM905027     1       0          1  1  0
#> GSM905031     1       0          1  1  0
#> GSM905036     1       0          1  1  0
#> GSM905041     1       0          1  1  0
#> GSM905044     1       0          1  1  0
#> GSM904989     1       0          1  1  0
#> GSM904999     1       0          1  1  0
#> GSM905002     1       0          1  1  0
#> GSM905009     1       0          1  1  0
#> GSM905014     1       0          1  1  0
#> GSM905017     1       0          1  1  0
#> GSM905020     1       0          1  1  0
#> GSM905023     1       0          1  1  0
#> GSM905029     1       0          1  1  0
#> GSM905032     1       0          1  1  0
#> GSM905034     1       0          1  1  0
#> GSM905040     1       0          1  1  0
#> GSM904985     2       0          1  0  1
#> GSM904988     2       0          1  0  1
#> GSM904990     2       0          1  0  1
#> GSM904992     2       0          1  0  1
#> GSM904995     2       0          1  0  1
#> GSM904998     2       0          1  0  1
#> GSM905000     2       0          1  0  1
#> GSM905003     2       0          1  0  1
#> GSM905006     2       0          1  0  1
#> GSM905008     2       0          1  0  1
#> GSM905011     2       0          1  0  1
#> GSM905013     2       0          1  0  1
#> GSM905016     2       0          1  0  1
#> GSM905018     2       0          1  0  1
#> GSM905021     2       0          1  0  1
#> GSM905025     2       0          1  0  1
#> GSM905028     2       0          1  0  1
#> GSM905030     2       0          1  0  1
#> GSM905033     2       0          1  0  1
#> GSM905035     2       0          1  0  1
#> GSM905037     2       0          1  0  1
#> GSM905039     2       0          1  0  1
#> GSM905042     2       0          1  0  1
#> GSM905046     1       0          1  1  0
#> GSM905065     1       0          1  1  0
#> GSM905049     1       0          1  1  0
#> GSM905050     1       0          1  1  0
#> GSM905064     1       0          1  1  0
#> GSM905045     1       0          1  1  0
#> GSM905051     1       0          1  1  0
#> GSM905055     1       0          1  1  0
#> GSM905058     1       0          1  1  0
#> GSM905053     1       0          1  1  0
#> GSM905061     1       0          1  1  0
#> GSM905063     1       0          1  1  0
#> GSM905054     1       0          1  1  0
#> GSM905062     1       0          1  1  0
#> GSM905052     1       0          1  1  0
#> GSM905059     1       0          1  1  0
#> GSM905047     1       0          1  1  0
#> GSM905066     1       0          1  1  0
#> GSM905056     1       0          1  1  0
#> GSM905060     1       0          1  1  0
#> GSM905048     1       0          1  1  0
#> GSM905067     1       0          1  1  0
#> GSM905057     1       0          1  1  0
#> GSM905068     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM905004     3  0.1643      0.940 0.044 0.000 0.956
#> GSM905024     3  0.0000      0.983 0.000 0.000 1.000
#> GSM905038     3  0.0000      0.983 0.000 0.000 1.000
#> GSM905043     3  0.0000      0.983 0.000 0.000 1.000
#> GSM904986     3  0.0000      0.983 0.000 0.000 1.000
#> GSM904991     3  0.0000      0.983 0.000 0.000 1.000
#> GSM904994     3  0.0000      0.983 0.000 0.000 1.000
#> GSM904996     3  0.0000      0.983 0.000 0.000 1.000
#> GSM905007     3  0.0000      0.983 0.000 0.000 1.000
#> GSM905012     3  0.0000      0.983 0.000 0.000 1.000
#> GSM905022     3  0.0000      0.983 0.000 0.000 1.000
#> GSM905026     3  0.0000      0.983 0.000 0.000 1.000
#> GSM905027     3  0.0000      0.983 0.000 0.000 1.000
#> GSM905031     3  0.0000      0.983 0.000 0.000 1.000
#> GSM905036     3  0.0000      0.983 0.000 0.000 1.000
#> GSM905041     3  0.0000      0.983 0.000 0.000 1.000
#> GSM905044     3  0.0000      0.983 0.000 0.000 1.000
#> GSM904989     3  0.0000      0.983 0.000 0.000 1.000
#> GSM904999     2  0.0592      0.988 0.000 0.988 0.012
#> GSM905002     3  0.0000      0.983 0.000 0.000 1.000
#> GSM905009     3  0.0000      0.983 0.000 0.000 1.000
#> GSM905014     3  0.0000      0.983 0.000 0.000 1.000
#> GSM905017     2  0.0592      0.988 0.000 0.988 0.012
#> GSM905020     3  0.0000      0.983 0.000 0.000 1.000
#> GSM905023     3  0.0000      0.983 0.000 0.000 1.000
#> GSM905029     3  0.0000      0.983 0.000 0.000 1.000
#> GSM905032     3  0.6126      0.332 0.000 0.400 0.600
#> GSM905034     3  0.0000      0.983 0.000 0.000 1.000
#> GSM905040     3  0.0000      0.983 0.000 0.000 1.000
#> GSM904985     2  0.0000      0.999 0.000 1.000 0.000
#> GSM904988     2  0.0000      0.999 0.000 1.000 0.000
#> GSM904990     2  0.0000      0.999 0.000 1.000 0.000
#> GSM904992     2  0.0000      0.999 0.000 1.000 0.000
#> GSM904995     2  0.0000      0.999 0.000 1.000 0.000
#> GSM904998     2  0.0000      0.999 0.000 1.000 0.000
#> GSM905000     2  0.0000      0.999 0.000 1.000 0.000
#> GSM905003     2  0.0000      0.999 0.000 1.000 0.000
#> GSM905006     2  0.0000      0.999 0.000 1.000 0.000
#> GSM905008     2  0.0000      0.999 0.000 1.000 0.000
#> GSM905011     2  0.0000      0.999 0.000 1.000 0.000
#> GSM905013     2  0.0000      0.999 0.000 1.000 0.000
#> GSM905016     2  0.0000      0.999 0.000 1.000 0.000
#> GSM905018     2  0.0000      0.999 0.000 1.000 0.000
#> GSM905021     2  0.0000      0.999 0.000 1.000 0.000
#> GSM905025     2  0.0000      0.999 0.000 1.000 0.000
#> GSM905028     2  0.0000      0.999 0.000 1.000 0.000
#> GSM905030     2  0.0000      0.999 0.000 1.000 0.000
#> GSM905033     2  0.0000      0.999 0.000 1.000 0.000
#> GSM905035     2  0.0000      0.999 0.000 1.000 0.000
#> GSM905037     2  0.0000      0.999 0.000 1.000 0.000
#> GSM905039     2  0.0000      0.999 0.000 1.000 0.000
#> GSM905042     2  0.0000      0.999 0.000 1.000 0.000
#> GSM905046     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905065     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905049     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905050     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905064     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905045     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905051     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905055     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905058     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905053     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905061     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905063     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905054     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905062     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905052     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905059     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905047     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905066     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905056     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905060     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905048     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905067     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905057     1  0.0000      1.000 1.000 0.000 0.000
#> GSM905068     1  0.0000      1.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM905004     3  0.5636      0.342 0.024 0.000 0.552 0.424
#> GSM905024     3  0.3975      0.635 0.240 0.000 0.760 0.000
#> GSM905038     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM905043     3  0.4961      0.199 0.448 0.000 0.552 0.000
#> GSM904986     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM904991     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM904994     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM904996     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM905007     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM905012     3  0.0592      0.916 0.000 0.000 0.984 0.016
#> GSM905022     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM905026     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM905027     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM905031     3  0.0336      0.922 0.000 0.000 0.992 0.008
#> GSM905036     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM905041     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM905044     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM904989     3  0.0336      0.922 0.000 0.000 0.992 0.008
#> GSM904999     1  0.4406      0.717 0.780 0.192 0.028 0.000
#> GSM905002     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM905009     3  0.0336      0.922 0.000 0.000 0.992 0.008
#> GSM905014     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM905017     1  0.5343      0.584 0.656 0.316 0.028 0.000
#> GSM905020     3  0.0336      0.922 0.000 0.000 0.992 0.008
#> GSM905023     3  0.2589      0.808 0.116 0.000 0.884 0.000
#> GSM905029     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM905032     1  0.3182      0.752 0.876 0.000 0.028 0.096
#> GSM905034     3  0.4008      0.630 0.244 0.000 0.756 0.000
#> GSM905040     1  0.3266      0.699 0.832 0.000 0.168 0.000
#> GSM904985     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM904988     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM904990     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM904992     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM904995     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM904998     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905000     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905003     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905006     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905008     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905011     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905013     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905016     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905018     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905021     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905025     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905028     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905030     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905033     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905035     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905037     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905039     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905042     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905046     4  0.4643      0.772 0.344 0.000 0.000 0.656
#> GSM905065     4  0.4776      0.754 0.376 0.000 0.000 0.624
#> GSM905049     4  0.0000      0.732 0.000 0.000 0.000 1.000
#> GSM905050     4  0.0000      0.732 0.000 0.000 0.000 1.000
#> GSM905064     4  0.2216      0.761 0.092 0.000 0.000 0.908
#> GSM905045     4  0.2081      0.759 0.084 0.000 0.000 0.916
#> GSM905051     4  0.4134      0.775 0.260 0.000 0.000 0.740
#> GSM905055     1  0.0592      0.787 0.984 0.000 0.000 0.016
#> GSM905058     4  0.4713      0.764 0.360 0.000 0.000 0.640
#> GSM905053     4  0.0000      0.732 0.000 0.000 0.000 1.000
#> GSM905061     4  0.0000      0.732 0.000 0.000 0.000 1.000
#> GSM905063     4  0.4730      0.761 0.364 0.000 0.000 0.636
#> GSM905054     4  0.1022      0.743 0.032 0.000 0.000 0.968
#> GSM905062     4  0.0000      0.732 0.000 0.000 0.000 1.000
#> GSM905052     4  0.4134      0.775 0.260 0.000 0.000 0.740
#> GSM905059     4  0.4624      0.774 0.340 0.000 0.000 0.660
#> GSM905047     4  0.4624      0.774 0.340 0.000 0.000 0.660
#> GSM905066     4  0.4776      0.754 0.376 0.000 0.000 0.624
#> GSM905056     1  0.0592      0.787 0.984 0.000 0.000 0.016
#> GSM905060     4  0.4624      0.774 0.340 0.000 0.000 0.660
#> GSM905048     4  0.4730      0.762 0.364 0.000 0.000 0.636
#> GSM905067     4  0.4776      0.754 0.376 0.000 0.000 0.624
#> GSM905057     1  0.0592      0.787 0.984 0.000 0.000 0.016
#> GSM905068     4  0.0000      0.732 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM905004     4  0.4169      0.637 0.016 0.000 0.256 0.724 0.004
#> GSM905024     5  0.1197      0.888 0.000 0.000 0.048 0.000 0.952
#> GSM905038     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM905043     5  0.1121      0.890 0.000 0.000 0.044 0.000 0.956
#> GSM904986     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM904991     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM904994     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM904996     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM905007     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM905012     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM905022     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM905026     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM905027     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM905031     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM905036     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM905041     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM905044     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM904989     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM904999     5  0.0000      0.902 0.000 0.000 0.000 0.000 1.000
#> GSM905002     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM905009     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM905014     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM905017     5  0.0000      0.902 0.000 0.000 0.000 0.000 1.000
#> GSM905020     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM905023     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM905029     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> GSM905032     5  0.0000      0.902 0.000 0.000 0.000 0.000 1.000
#> GSM905034     5  0.1197      0.889 0.000 0.000 0.048 0.000 0.952
#> GSM905040     5  0.0000      0.902 0.000 0.000 0.000 0.000 1.000
#> GSM904985     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM904988     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM904990     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM904992     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM904995     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM904998     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905000     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905003     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905006     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905008     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905011     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905013     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905016     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905018     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905021     2  0.0162      0.996 0.000 0.996 0.000 0.000 0.004
#> GSM905025     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905028     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905030     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905033     2  0.0162      0.996 0.000 0.996 0.000 0.000 0.004
#> GSM905035     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905037     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905039     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> GSM905042     2  0.0162      0.996 0.000 0.996 0.000 0.000 0.004
#> GSM905046     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000
#> GSM905065     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000
#> GSM905049     4  0.0000      0.915 0.000 0.000 0.000 1.000 0.000
#> GSM905050     4  0.0000      0.915 0.000 0.000 0.000 1.000 0.000
#> GSM905064     4  0.2377      0.822 0.128 0.000 0.000 0.872 0.000
#> GSM905045     4  0.3586      0.641 0.264 0.000 0.000 0.736 0.000
#> GSM905051     1  0.1043      0.970 0.960 0.000 0.000 0.040 0.000
#> GSM905055     5  0.2852      0.846 0.172 0.000 0.000 0.000 0.828
#> GSM905058     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000
#> GSM905053     4  0.0000      0.915 0.000 0.000 0.000 1.000 0.000
#> GSM905061     4  0.0000      0.915 0.000 0.000 0.000 1.000 0.000
#> GSM905063     5  0.3452      0.768 0.244 0.000 0.000 0.000 0.756
#> GSM905054     4  0.0162      0.913 0.004 0.000 0.000 0.996 0.000
#> GSM905062     4  0.0000      0.915 0.000 0.000 0.000 1.000 0.000
#> GSM905052     1  0.1043      0.970 0.960 0.000 0.000 0.040 0.000
#> GSM905059     1  0.0963      0.973 0.964 0.000 0.000 0.036 0.000
#> GSM905047     1  0.0963      0.973 0.964 0.000 0.000 0.036 0.000
#> GSM905066     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000
#> GSM905056     5  0.2852      0.846 0.172 0.000 0.000 0.000 0.828
#> GSM905060     1  0.0963      0.973 0.964 0.000 0.000 0.036 0.000
#> GSM905048     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000
#> GSM905067     1  0.0000      0.978 1.000 0.000 0.000 0.000 0.000
#> GSM905057     5  0.2852      0.846 0.172 0.000 0.000 0.000 0.828
#> GSM905068     4  0.0000      0.915 0.000 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM905004     4  0.4998      0.609 0.016 0.000 0.196 0.676 0.112 0.000
#> GSM905024     5  0.1610      0.815 0.000 0.000 0.000 0.000 0.916 0.084
#> GSM905038     3  0.2135      0.926 0.000 0.000 0.872 0.000 0.000 0.128
#> GSM905043     5  0.1610      0.815 0.000 0.000 0.000 0.000 0.916 0.084
#> GSM904986     3  0.0000      0.946 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904991     3  0.2135      0.926 0.000 0.000 0.872 0.000 0.000 0.128
#> GSM904994     3  0.0000      0.946 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904996     3  0.0000      0.946 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905007     3  0.2135      0.926 0.000 0.000 0.872 0.000 0.000 0.128
#> GSM905012     3  0.0000      0.946 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905022     3  0.0146      0.946 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM905026     3  0.0000      0.946 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905027     3  0.2135      0.926 0.000 0.000 0.872 0.000 0.000 0.128
#> GSM905031     3  0.0000      0.946 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905036     3  0.2135      0.926 0.000 0.000 0.872 0.000 0.000 0.128
#> GSM905041     3  0.2278      0.923 0.000 0.000 0.868 0.000 0.004 0.128
#> GSM905044     3  0.0146      0.946 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM904989     3  0.0000      0.946 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904999     5  0.2996      0.740 0.000 0.000 0.000 0.000 0.772 0.228
#> GSM905002     3  0.0000      0.946 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905009     3  0.0000      0.946 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905014     3  0.2135      0.926 0.000 0.000 0.872 0.000 0.000 0.128
#> GSM905017     5  0.2996      0.740 0.000 0.000 0.000 0.000 0.772 0.228
#> GSM905020     3  0.0146      0.946 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM905023     3  0.1957      0.929 0.000 0.000 0.888 0.000 0.000 0.112
#> GSM905029     3  0.2135      0.926 0.000 0.000 0.872 0.000 0.000 0.128
#> GSM905032     5  0.1556      0.814 0.000 0.000 0.000 0.000 0.920 0.080
#> GSM905034     5  0.1075      0.825 0.000 0.000 0.000 0.000 0.952 0.048
#> GSM905040     5  0.0000      0.825 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM904985     2  0.3659      0.150 0.000 0.636 0.000 0.000 0.000 0.364
#> GSM904988     2  0.0000      0.703 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904990     2  0.0000      0.703 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904992     2  0.0000      0.703 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904995     2  0.3659      0.150 0.000 0.636 0.000 0.000 0.000 0.364
#> GSM904998     2  0.0146      0.701 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM905000     2  0.0000      0.703 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905003     2  0.0146      0.701 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM905006     2  0.0000      0.703 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905008     2  0.3860     -0.415 0.000 0.528 0.000 0.000 0.000 0.472
#> GSM905011     2  0.0000      0.703 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905013     2  0.0146      0.701 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM905016     2  0.3659      0.150 0.000 0.636 0.000 0.000 0.000 0.364
#> GSM905018     2  0.0000      0.703 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905021     6  0.3765      0.800 0.000 0.404 0.000 0.000 0.000 0.596
#> GSM905025     2  0.3647      0.157 0.000 0.640 0.000 0.000 0.000 0.360
#> GSM905028     2  0.3647      0.157 0.000 0.640 0.000 0.000 0.000 0.360
#> GSM905030     2  0.0000      0.703 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905033     6  0.3547      0.913 0.000 0.332 0.000 0.000 0.000 0.668
#> GSM905035     2  0.3659      0.150 0.000 0.636 0.000 0.000 0.000 0.364
#> GSM905037     2  0.0000      0.703 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905039     2  0.3647      0.157 0.000 0.640 0.000 0.000 0.000 0.360
#> GSM905042     6  0.3547      0.913 0.000 0.332 0.000 0.000 0.000 0.668
#> GSM905046     1  0.0260      0.934 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM905065     1  0.0632      0.928 0.976 0.000 0.000 0.000 0.000 0.024
#> GSM905049     4  0.0000      0.947 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905050     4  0.0000      0.947 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905064     4  0.1866      0.867 0.084 0.000 0.000 0.908 0.000 0.008
#> GSM905045     1  0.5532      0.212 0.520 0.000 0.000 0.368 0.100 0.012
#> GSM905051     1  0.0870      0.932 0.972 0.000 0.000 0.012 0.004 0.012
#> GSM905055     5  0.4024      0.785 0.072 0.000 0.000 0.000 0.744 0.184
#> GSM905058     1  0.0363      0.931 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM905053     4  0.0000      0.947 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905061     4  0.0000      0.947 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905063     5  0.5454      0.589 0.252 0.000 0.000 0.000 0.568 0.180
#> GSM905054     4  0.0000      0.947 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905062     4  0.0000      0.947 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905052     1  0.0870      0.932 0.972 0.000 0.000 0.012 0.004 0.012
#> GSM905059     1  0.0725      0.933 0.976 0.000 0.000 0.012 0.000 0.012
#> GSM905047     1  0.0725      0.933 0.976 0.000 0.000 0.012 0.000 0.012
#> GSM905066     1  0.0865      0.920 0.964 0.000 0.000 0.000 0.000 0.036
#> GSM905056     5  0.4024      0.785 0.072 0.000 0.000 0.000 0.744 0.184
#> GSM905060     1  0.0725      0.933 0.976 0.000 0.000 0.012 0.000 0.012
#> GSM905048     1  0.0547      0.929 0.980 0.000 0.000 0.000 0.000 0.020
#> GSM905067     1  0.0632      0.928 0.976 0.000 0.000 0.000 0.000 0.024
#> GSM905057     5  0.4024      0.785 0.072 0.000 0.000 0.000 0.744 0.184
#> GSM905068     4  0.0000      0.947 0.000 0.000 0.000 1.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n tissue(p) genotype/variation(p) individual(p) k
#> MAD:mclust 76  3.04e-12              1.17e-05         0.990 2
#> MAD:mclust 75  7.59e-20              9.30e-06         0.938 3
#> MAD:mclust 74  1.89e-18              1.21e-06         0.303 4
#> MAD:mclust 76  2.61e-18              6.72e-11         0.217 5
#> MAD:mclust 67  2.82e-12              1.34e-08         0.220 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 76 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.944           0.926       0.971         0.4964 0.502   0.502
#> 3 3 1.000           0.960       0.985         0.3586 0.716   0.490
#> 4 4 0.963           0.918       0.968         0.1020 0.883   0.664
#> 5 5 0.889           0.866       0.916         0.0474 0.907   0.675
#> 6 6 0.872           0.773       0.885         0.0283 0.980   0.913

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM905004     2  0.1414      0.954 0.020 0.980
#> GSM905024     1  0.0000      0.965 1.000 0.000
#> GSM905038     2  0.4161      0.891 0.084 0.916
#> GSM905043     1  0.0000      0.965 1.000 0.000
#> GSM904986     2  0.0000      0.970 0.000 1.000
#> GSM904991     1  0.4022      0.890 0.920 0.080
#> GSM904994     2  0.0000      0.970 0.000 1.000
#> GSM904996     2  0.0000      0.970 0.000 1.000
#> GSM905007     1  0.8861      0.562 0.696 0.304
#> GSM905012     2  0.0000      0.970 0.000 1.000
#> GSM905022     2  0.0000      0.970 0.000 1.000
#> GSM905026     2  0.0000      0.970 0.000 1.000
#> GSM905027     2  0.4298      0.887 0.088 0.912
#> GSM905031     2  0.0000      0.970 0.000 1.000
#> GSM905036     1  0.8016      0.672 0.756 0.244
#> GSM905041     1  0.0376      0.962 0.996 0.004
#> GSM905044     2  0.0000      0.970 0.000 1.000
#> GSM904989     2  0.0000      0.970 0.000 1.000
#> GSM904999     2  0.0000      0.970 0.000 1.000
#> GSM905002     2  0.0000      0.970 0.000 1.000
#> GSM905009     2  0.0000      0.970 0.000 1.000
#> GSM905014     1  0.9833      0.259 0.576 0.424
#> GSM905017     2  0.0000      0.970 0.000 1.000
#> GSM905020     2  0.0000      0.970 0.000 1.000
#> GSM905023     2  0.6343      0.799 0.160 0.840
#> GSM905029     2  0.9909      0.183 0.444 0.556
#> GSM905032     2  0.9608      0.366 0.384 0.616
#> GSM905034     1  0.0000      0.965 1.000 0.000
#> GSM905040     1  0.0000      0.965 1.000 0.000
#> GSM904985     2  0.0000      0.970 0.000 1.000
#> GSM904988     2  0.0000      0.970 0.000 1.000
#> GSM904990     2  0.0000      0.970 0.000 1.000
#> GSM904992     2  0.0000      0.970 0.000 1.000
#> GSM904995     2  0.0000      0.970 0.000 1.000
#> GSM904998     2  0.0000      0.970 0.000 1.000
#> GSM905000     2  0.0000      0.970 0.000 1.000
#> GSM905003     2  0.0000      0.970 0.000 1.000
#> GSM905006     2  0.0000      0.970 0.000 1.000
#> GSM905008     2  0.0000      0.970 0.000 1.000
#> GSM905011     2  0.0000      0.970 0.000 1.000
#> GSM905013     2  0.0000      0.970 0.000 1.000
#> GSM905016     2  0.0000      0.970 0.000 1.000
#> GSM905018     2  0.0000      0.970 0.000 1.000
#> GSM905021     2  0.0000      0.970 0.000 1.000
#> GSM905025     2  0.0000      0.970 0.000 1.000
#> GSM905028     2  0.0000      0.970 0.000 1.000
#> GSM905030     2  0.0000      0.970 0.000 1.000
#> GSM905033     2  0.0000      0.970 0.000 1.000
#> GSM905035     2  0.0000      0.970 0.000 1.000
#> GSM905037     2  0.0000      0.970 0.000 1.000
#> GSM905039     2  0.0000      0.970 0.000 1.000
#> GSM905042     2  0.0000      0.970 0.000 1.000
#> GSM905046     1  0.0000      0.965 1.000 0.000
#> GSM905065     1  0.0000      0.965 1.000 0.000
#> GSM905049     1  0.0000      0.965 1.000 0.000
#> GSM905050     1  0.0000      0.965 1.000 0.000
#> GSM905064     1  0.0000      0.965 1.000 0.000
#> GSM905045     1  0.0000      0.965 1.000 0.000
#> GSM905051     1  0.0000      0.965 1.000 0.000
#> GSM905055     1  0.0000      0.965 1.000 0.000
#> GSM905058     1  0.0000      0.965 1.000 0.000
#> GSM905053     1  0.0000      0.965 1.000 0.000
#> GSM905061     1  0.0000      0.965 1.000 0.000
#> GSM905063     1  0.0000      0.965 1.000 0.000
#> GSM905054     1  0.0000      0.965 1.000 0.000
#> GSM905062     1  0.0000      0.965 1.000 0.000
#> GSM905052     1  0.0000      0.965 1.000 0.000
#> GSM905059     1  0.0000      0.965 1.000 0.000
#> GSM905047     1  0.0000      0.965 1.000 0.000
#> GSM905066     1  0.0000      0.965 1.000 0.000
#> GSM905056     1  0.0000      0.965 1.000 0.000
#> GSM905060     1  0.0000      0.965 1.000 0.000
#> GSM905048     1  0.0000      0.965 1.000 0.000
#> GSM905067     1  0.0000      0.965 1.000 0.000
#> GSM905057     1  0.0000      0.965 1.000 0.000
#> GSM905068     1  0.0000      0.965 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM905004     2  0.6541   0.535841 0.024 0.672 0.304
#> GSM905024     3  0.0592   0.968559 0.012 0.000 0.988
#> GSM905038     3  0.0000   0.979023 0.000 0.000 1.000
#> GSM905043     3  0.0592   0.968559 0.012 0.000 0.988
#> GSM904986     3  0.0000   0.979023 0.000 0.000 1.000
#> GSM904991     3  0.0000   0.979023 0.000 0.000 1.000
#> GSM904994     3  0.0000   0.979023 0.000 0.000 1.000
#> GSM904996     3  0.0000   0.979023 0.000 0.000 1.000
#> GSM905007     3  0.0000   0.979023 0.000 0.000 1.000
#> GSM905012     3  0.0000   0.979023 0.000 0.000 1.000
#> GSM905022     3  0.0000   0.979023 0.000 0.000 1.000
#> GSM905026     3  0.0000   0.979023 0.000 0.000 1.000
#> GSM905027     3  0.0000   0.979023 0.000 0.000 1.000
#> GSM905031     3  0.0000   0.979023 0.000 0.000 1.000
#> GSM905036     3  0.0000   0.979023 0.000 0.000 1.000
#> GSM905041     3  0.0000   0.979023 0.000 0.000 1.000
#> GSM905044     3  0.0000   0.979023 0.000 0.000 1.000
#> GSM904989     3  0.0000   0.979023 0.000 0.000 1.000
#> GSM904999     3  0.0000   0.979023 0.000 0.000 1.000
#> GSM905002     3  0.0000   0.979023 0.000 0.000 1.000
#> GSM905009     3  0.0000   0.979023 0.000 0.000 1.000
#> GSM905014     3  0.0000   0.979023 0.000 0.000 1.000
#> GSM905017     3  0.0000   0.979023 0.000 0.000 1.000
#> GSM905020     3  0.0000   0.979023 0.000 0.000 1.000
#> GSM905023     3  0.0000   0.979023 0.000 0.000 1.000
#> GSM905029     3  0.0000   0.979023 0.000 0.000 1.000
#> GSM905032     3  0.0000   0.979023 0.000 0.000 1.000
#> GSM905034     1  0.4178   0.784600 0.828 0.000 0.172
#> GSM905040     3  0.6309  -0.000368 0.496 0.000 0.504
#> GSM904985     2  0.0000   0.980331 0.000 1.000 0.000
#> GSM904988     2  0.0000   0.980331 0.000 1.000 0.000
#> GSM904990     2  0.0000   0.980331 0.000 1.000 0.000
#> GSM904992     2  0.0000   0.980331 0.000 1.000 0.000
#> GSM904995     2  0.0000   0.980331 0.000 1.000 0.000
#> GSM904998     2  0.0000   0.980331 0.000 1.000 0.000
#> GSM905000     2  0.0000   0.980331 0.000 1.000 0.000
#> GSM905003     2  0.0000   0.980331 0.000 1.000 0.000
#> GSM905006     2  0.0000   0.980331 0.000 1.000 0.000
#> GSM905008     2  0.0000   0.980331 0.000 1.000 0.000
#> GSM905011     2  0.0000   0.980331 0.000 1.000 0.000
#> GSM905013     2  0.0000   0.980331 0.000 1.000 0.000
#> GSM905016     2  0.0000   0.980331 0.000 1.000 0.000
#> GSM905018     2  0.0000   0.980331 0.000 1.000 0.000
#> GSM905021     2  0.3412   0.853325 0.000 0.876 0.124
#> GSM905025     2  0.0000   0.980331 0.000 1.000 0.000
#> GSM905028     2  0.0000   0.980331 0.000 1.000 0.000
#> GSM905030     2  0.0000   0.980331 0.000 1.000 0.000
#> GSM905033     2  0.0000   0.980331 0.000 1.000 0.000
#> GSM905035     2  0.0000   0.980331 0.000 1.000 0.000
#> GSM905037     2  0.0000   0.980331 0.000 1.000 0.000
#> GSM905039     2  0.0000   0.980331 0.000 1.000 0.000
#> GSM905042     2  0.0000   0.980331 0.000 1.000 0.000
#> GSM905046     1  0.0000   0.992472 1.000 0.000 0.000
#> GSM905065     1  0.0000   0.992472 1.000 0.000 0.000
#> GSM905049     1  0.0000   0.992472 1.000 0.000 0.000
#> GSM905050     1  0.0000   0.992472 1.000 0.000 0.000
#> GSM905064     1  0.0000   0.992472 1.000 0.000 0.000
#> GSM905045     1  0.0000   0.992472 1.000 0.000 0.000
#> GSM905051     1  0.0000   0.992472 1.000 0.000 0.000
#> GSM905055     1  0.0000   0.992472 1.000 0.000 0.000
#> GSM905058     1  0.0000   0.992472 1.000 0.000 0.000
#> GSM905053     1  0.0000   0.992472 1.000 0.000 0.000
#> GSM905061     1  0.0000   0.992472 1.000 0.000 0.000
#> GSM905063     1  0.0000   0.992472 1.000 0.000 0.000
#> GSM905054     1  0.0000   0.992472 1.000 0.000 0.000
#> GSM905062     1  0.0000   0.992472 1.000 0.000 0.000
#> GSM905052     1  0.0000   0.992472 1.000 0.000 0.000
#> GSM905059     1  0.0000   0.992472 1.000 0.000 0.000
#> GSM905047     1  0.0000   0.992472 1.000 0.000 0.000
#> GSM905066     1  0.0000   0.992472 1.000 0.000 0.000
#> GSM905056     1  0.0000   0.992472 1.000 0.000 0.000
#> GSM905060     1  0.0000   0.992472 1.000 0.000 0.000
#> GSM905048     1  0.0000   0.992472 1.000 0.000 0.000
#> GSM905067     1  0.0000   0.992472 1.000 0.000 0.000
#> GSM905057     1  0.0000   0.992472 1.000 0.000 0.000
#> GSM905068     1  0.0000   0.992472 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM905004     4  0.0336      0.922 0.000 0.000 0.008 0.992
#> GSM905024     1  0.4992      0.127 0.524 0.000 0.476 0.000
#> GSM905038     3  0.0000      0.985 0.000 0.000 1.000 0.000
#> GSM905043     1  0.4776      0.407 0.624 0.000 0.376 0.000
#> GSM904986     3  0.0000      0.985 0.000 0.000 1.000 0.000
#> GSM904991     3  0.0000      0.985 0.000 0.000 1.000 0.000
#> GSM904994     3  0.0000      0.985 0.000 0.000 1.000 0.000
#> GSM904996     3  0.0000      0.985 0.000 0.000 1.000 0.000
#> GSM905007     3  0.0000      0.985 0.000 0.000 1.000 0.000
#> GSM905012     4  0.3356      0.756 0.000 0.000 0.176 0.824
#> GSM905022     3  0.0000      0.985 0.000 0.000 1.000 0.000
#> GSM905026     3  0.0000      0.985 0.000 0.000 1.000 0.000
#> GSM905027     3  0.0000      0.985 0.000 0.000 1.000 0.000
#> GSM905031     3  0.2408      0.887 0.000 0.000 0.896 0.104
#> GSM905036     3  0.0000      0.985 0.000 0.000 1.000 0.000
#> GSM905041     3  0.0000      0.985 0.000 0.000 1.000 0.000
#> GSM905044     3  0.0000      0.985 0.000 0.000 1.000 0.000
#> GSM904989     3  0.0000      0.985 0.000 0.000 1.000 0.000
#> GSM904999     3  0.0000      0.985 0.000 0.000 1.000 0.000
#> GSM905002     3  0.0000      0.985 0.000 0.000 1.000 0.000
#> GSM905009     3  0.0817      0.965 0.000 0.000 0.976 0.024
#> GSM905014     3  0.0000      0.985 0.000 0.000 1.000 0.000
#> GSM905017     3  0.0000      0.985 0.000 0.000 1.000 0.000
#> GSM905020     3  0.2647      0.864 0.000 0.000 0.880 0.120
#> GSM905023     3  0.0000      0.985 0.000 0.000 1.000 0.000
#> GSM905029     3  0.0000      0.985 0.000 0.000 1.000 0.000
#> GSM905032     3  0.1867      0.914 0.072 0.000 0.928 0.000
#> GSM905034     1  0.0817      0.884 0.976 0.000 0.024 0.000
#> GSM905040     1  0.0817      0.885 0.976 0.000 0.024 0.000
#> GSM904985     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM904988     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM904990     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM904992     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM904995     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM904998     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905000     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905003     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905006     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905008     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905011     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905013     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905016     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905018     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905021     2  0.0188      0.995 0.000 0.996 0.004 0.000
#> GSM905025     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905028     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905030     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905033     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905035     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905037     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905039     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905042     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM905046     1  0.0000      0.902 1.000 0.000 0.000 0.000
#> GSM905065     1  0.0000      0.902 1.000 0.000 0.000 0.000
#> GSM905049     4  0.0707      0.925 0.020 0.000 0.000 0.980
#> GSM905050     4  0.0000      0.923 0.000 0.000 0.000 1.000
#> GSM905064     4  0.1557      0.904 0.056 0.000 0.000 0.944
#> GSM905045     4  0.1022      0.921 0.032 0.000 0.000 0.968
#> GSM905051     1  0.4866      0.205 0.596 0.000 0.000 0.404
#> GSM905055     1  0.0000      0.902 1.000 0.000 0.000 0.000
#> GSM905058     1  0.0000      0.902 1.000 0.000 0.000 0.000
#> GSM905053     4  0.0336      0.926 0.008 0.000 0.000 0.992
#> GSM905061     4  0.0336      0.926 0.008 0.000 0.000 0.992
#> GSM905063     1  0.0000      0.902 1.000 0.000 0.000 0.000
#> GSM905054     4  0.1118      0.919 0.036 0.000 0.000 0.964
#> GSM905062     4  0.0336      0.926 0.008 0.000 0.000 0.992
#> GSM905052     4  0.4948      0.228 0.440 0.000 0.000 0.560
#> GSM905059     1  0.0000      0.902 1.000 0.000 0.000 0.000
#> GSM905047     1  0.0817      0.885 0.976 0.000 0.000 0.024
#> GSM905066     1  0.0000      0.902 1.000 0.000 0.000 0.000
#> GSM905056     1  0.0000      0.902 1.000 0.000 0.000 0.000
#> GSM905060     1  0.0336      0.897 0.992 0.000 0.000 0.008
#> GSM905048     1  0.0000      0.902 1.000 0.000 0.000 0.000
#> GSM905067     1  0.0000      0.902 1.000 0.000 0.000 0.000
#> GSM905057     1  0.0000      0.902 1.000 0.000 0.000 0.000
#> GSM905068     4  0.0000      0.923 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM905004     4  0.3037      0.775 0.000 0.000 0.040 0.860 0.100
#> GSM905024     3  0.5519      0.228 0.412 0.000 0.520 0.000 0.068
#> GSM905038     3  0.1043      0.896 0.000 0.000 0.960 0.000 0.040
#> GSM905043     3  0.5163      0.530 0.296 0.000 0.636 0.000 0.068
#> GSM904986     3  0.1741      0.876 0.000 0.000 0.936 0.024 0.040
#> GSM904991     3  0.1270      0.895 0.000 0.000 0.948 0.000 0.052
#> GSM904994     3  0.2848      0.831 0.000 0.000 0.868 0.028 0.104
#> GSM904996     3  0.2624      0.833 0.000 0.000 0.872 0.012 0.116
#> GSM905007     3  0.1270      0.896 0.000 0.000 0.948 0.000 0.052
#> GSM905012     4  0.4010      0.735 0.000 0.000 0.072 0.792 0.136
#> GSM905022     3  0.0963      0.886 0.000 0.000 0.964 0.000 0.036
#> GSM905026     3  0.0963      0.897 0.000 0.000 0.964 0.000 0.036
#> GSM905027     3  0.0963      0.898 0.000 0.000 0.964 0.000 0.036
#> GSM905031     4  0.3919      0.691 0.000 0.000 0.188 0.776 0.036
#> GSM905036     3  0.1544      0.887 0.000 0.000 0.932 0.000 0.068
#> GSM905041     3  0.1544      0.887 0.000 0.000 0.932 0.000 0.068
#> GSM905044     3  0.1043      0.897 0.000 0.000 0.960 0.000 0.040
#> GSM904989     3  0.4410      0.715 0.000 0.000 0.764 0.112 0.124
#> GSM904999     3  0.0880      0.898 0.000 0.000 0.968 0.000 0.032
#> GSM905002     3  0.1544      0.873 0.000 0.000 0.932 0.000 0.068
#> GSM905009     4  0.6146      0.246 0.000 0.000 0.400 0.468 0.132
#> GSM905014     3  0.1197      0.896 0.000 0.000 0.952 0.000 0.048
#> GSM905017     3  0.0703      0.898 0.000 0.000 0.976 0.000 0.024
#> GSM905020     4  0.6016      0.461 0.000 0.000 0.312 0.548 0.140
#> GSM905023     3  0.1544      0.887 0.000 0.000 0.932 0.000 0.068
#> GSM905029     3  0.0880      0.897 0.000 0.000 0.968 0.000 0.032
#> GSM905032     5  0.3630      0.634 0.016 0.000 0.204 0.000 0.780
#> GSM905034     1  0.3055      0.783 0.864 0.000 0.072 0.000 0.064
#> GSM905040     5  0.3452      0.871 0.244 0.000 0.000 0.000 0.756
#> GSM904985     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> GSM904988     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> GSM904990     2  0.0162      0.995 0.000 0.996 0.000 0.000 0.004
#> GSM904992     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> GSM904995     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> GSM904998     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> GSM905000     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> GSM905003     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> GSM905006     2  0.0162      0.995 0.000 0.996 0.000 0.000 0.004
#> GSM905008     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> GSM905011     2  0.0162      0.995 0.000 0.996 0.000 0.000 0.004
#> GSM905013     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> GSM905016     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> GSM905018     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> GSM905021     2  0.0992      0.966 0.000 0.968 0.024 0.000 0.008
#> GSM905025     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> GSM905028     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> GSM905030     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> GSM905033     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> GSM905035     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> GSM905037     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> GSM905039     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> GSM905042     2  0.0162      0.994 0.000 0.996 0.000 0.000 0.004
#> GSM905046     1  0.0609      0.897 0.980 0.000 0.000 0.020 0.000
#> GSM905065     1  0.0290      0.890 0.992 0.000 0.000 0.000 0.008
#> GSM905049     4  0.0703      0.826 0.024 0.000 0.000 0.976 0.000
#> GSM905050     4  0.0290      0.830 0.008 0.000 0.000 0.992 0.000
#> GSM905064     4  0.3109      0.659 0.200 0.000 0.000 0.800 0.000
#> GSM905045     4  0.1608      0.801 0.072 0.000 0.000 0.928 0.000
#> GSM905051     1  0.2813      0.815 0.832 0.000 0.000 0.168 0.000
#> GSM905055     5  0.3242      0.889 0.216 0.000 0.000 0.000 0.784
#> GSM905058     1  0.0162      0.895 0.996 0.000 0.000 0.004 0.000
#> GSM905053     4  0.0290      0.830 0.008 0.000 0.000 0.992 0.000
#> GSM905061     4  0.0290      0.830 0.008 0.000 0.000 0.992 0.000
#> GSM905063     5  0.3837      0.815 0.308 0.000 0.000 0.000 0.692
#> GSM905054     4  0.1608      0.802 0.072 0.000 0.000 0.928 0.000
#> GSM905062     4  0.0290      0.830 0.008 0.000 0.000 0.992 0.000
#> GSM905052     1  0.3074      0.783 0.804 0.000 0.000 0.196 0.000
#> GSM905059     1  0.1410      0.892 0.940 0.000 0.000 0.060 0.000
#> GSM905047     1  0.2424      0.847 0.868 0.000 0.000 0.132 0.000
#> GSM905066     1  0.0290      0.890 0.992 0.000 0.000 0.000 0.008
#> GSM905056     5  0.3242      0.889 0.216 0.000 0.000 0.000 0.784
#> GSM905060     1  0.1544      0.889 0.932 0.000 0.000 0.068 0.000
#> GSM905048     1  0.0162      0.892 0.996 0.000 0.000 0.000 0.004
#> GSM905067     1  0.0290      0.890 0.992 0.000 0.000 0.000 0.008
#> GSM905057     5  0.3242      0.889 0.216 0.000 0.000 0.000 0.784
#> GSM905068     4  0.0162      0.829 0.004 0.000 0.000 0.996 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM905004     4  0.4192     -0.119 0.000 0.004 0.008 0.612 0.372 0.004
#> GSM905024     1  0.3862      0.157 0.524 0.000 0.476 0.000 0.000 0.000
#> GSM905038     3  0.0363      0.756 0.000 0.000 0.988 0.000 0.012 0.000
#> GSM905043     3  0.3892      0.320 0.352 0.000 0.640 0.000 0.004 0.004
#> GSM904986     3  0.3933      0.679 0.000 0.000 0.716 0.036 0.248 0.000
#> GSM904991     3  0.1387      0.767 0.000 0.000 0.932 0.000 0.068 0.000
#> GSM904994     3  0.4409      0.508 0.000 0.000 0.588 0.032 0.380 0.000
#> GSM904996     3  0.3782      0.512 0.000 0.000 0.588 0.000 0.412 0.000
#> GSM905007     3  0.2416      0.756 0.000 0.000 0.844 0.000 0.156 0.000
#> GSM905012     4  0.4762     -0.647 0.000 0.000 0.032 0.488 0.472 0.008
#> GSM905022     3  0.2941      0.727 0.000 0.000 0.780 0.000 0.220 0.000
#> GSM905026     3  0.1387      0.766 0.000 0.000 0.932 0.000 0.068 0.000
#> GSM905027     3  0.1007      0.765 0.000 0.000 0.956 0.000 0.044 0.000
#> GSM905031     4  0.3678      0.408 0.000 0.000 0.128 0.788 0.084 0.000
#> GSM905036     3  0.2234      0.652 0.000 0.000 0.872 0.124 0.004 0.000
#> GSM905041     3  0.0146      0.749 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM905044     3  0.1957      0.763 0.000 0.000 0.888 0.000 0.112 0.000
#> GSM904989     3  0.5850     -0.204 0.000 0.000 0.420 0.164 0.412 0.004
#> GSM904999     3  0.3918      0.583 0.000 0.004 0.632 0.000 0.360 0.004
#> GSM905002     3  0.3531      0.638 0.000 0.000 0.672 0.000 0.328 0.000
#> GSM905009     5  0.5951      0.767 0.000 0.000 0.192 0.356 0.448 0.004
#> GSM905014     3  0.2340      0.756 0.000 0.000 0.852 0.000 0.148 0.000
#> GSM905017     3  0.3329      0.716 0.000 0.004 0.756 0.000 0.236 0.004
#> GSM905020     5  0.5117      0.739 0.000 0.000 0.076 0.376 0.544 0.004
#> GSM905023     3  0.0717      0.746 0.000 0.000 0.976 0.016 0.008 0.000
#> GSM905029     3  0.0632      0.761 0.000 0.000 0.976 0.000 0.024 0.000
#> GSM905032     6  0.2772      0.794 0.000 0.000 0.180 0.000 0.004 0.816
#> GSM905034     1  0.1408      0.868 0.944 0.000 0.036 0.000 0.020 0.000
#> GSM905040     6  0.1708      0.927 0.024 0.000 0.040 0.000 0.004 0.932
#> GSM904985     2  0.0363      0.973 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM904988     2  0.0547      0.974 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM904990     2  0.0632      0.973 0.000 0.976 0.000 0.000 0.024 0.000
#> GSM904992     2  0.0547      0.974 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM904995     2  0.0363      0.973 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM904998     2  0.0000      0.976 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905000     2  0.0547      0.974 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM905003     2  0.0000      0.976 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905006     2  0.0547      0.974 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM905008     2  0.0458      0.975 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM905011     2  0.0547      0.974 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM905013     2  0.0547      0.974 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM905016     2  0.0260      0.974 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM905018     2  0.0547      0.974 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM905021     2  0.3828      0.637 0.000 0.696 0.004 0.000 0.288 0.012
#> GSM905025     2  0.0146      0.975 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM905028     2  0.0146      0.975 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM905030     2  0.0363      0.976 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM905033     2  0.0458      0.971 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM905035     2  0.0363      0.973 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM905037     2  0.0146      0.976 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM905039     2  0.0146      0.975 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM905042     2  0.0603      0.969 0.000 0.980 0.004 0.000 0.016 0.000
#> GSM905046     1  0.0291      0.888 0.992 0.000 0.000 0.000 0.004 0.004
#> GSM905065     1  0.0291      0.888 0.992 0.000 0.000 0.000 0.004 0.004
#> GSM905049     4  0.0777      0.797 0.024 0.000 0.000 0.972 0.004 0.000
#> GSM905050     4  0.0458      0.798 0.016 0.000 0.000 0.984 0.000 0.000
#> GSM905064     4  0.2706      0.674 0.124 0.000 0.000 0.852 0.024 0.000
#> GSM905045     4  0.1297      0.789 0.040 0.000 0.000 0.948 0.012 0.000
#> GSM905051     1  0.4310      0.683 0.684 0.000 0.000 0.044 0.268 0.004
#> GSM905055     6  0.0632      0.945 0.024 0.000 0.000 0.000 0.000 0.976
#> GSM905058     1  0.0632      0.885 0.976 0.000 0.000 0.000 0.024 0.000
#> GSM905053     4  0.0777      0.797 0.024 0.000 0.000 0.972 0.004 0.000
#> GSM905061     4  0.0806      0.798 0.020 0.000 0.000 0.972 0.008 0.000
#> GSM905063     6  0.1007      0.936 0.044 0.000 0.000 0.000 0.000 0.956
#> GSM905054     4  0.1575      0.779 0.032 0.000 0.000 0.936 0.032 0.000
#> GSM905062     4  0.0717      0.791 0.008 0.000 0.000 0.976 0.016 0.000
#> GSM905052     1  0.4855      0.621 0.620 0.000 0.000 0.072 0.304 0.004
#> GSM905059     1  0.0632      0.885 0.976 0.000 0.000 0.000 0.024 0.000
#> GSM905047     1  0.0260      0.887 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM905066     1  0.0291      0.888 0.992 0.000 0.000 0.000 0.004 0.004
#> GSM905056     6  0.0547      0.943 0.020 0.000 0.000 0.000 0.000 0.980
#> GSM905060     1  0.0632      0.885 0.976 0.000 0.000 0.000 0.024 0.000
#> GSM905048     1  0.0291      0.888 0.992 0.000 0.000 0.000 0.004 0.004
#> GSM905067     1  0.0291      0.888 0.992 0.000 0.000 0.000 0.004 0.004
#> GSM905057     6  0.0632      0.945 0.024 0.000 0.000 0.000 0.000 0.976
#> GSM905068     4  0.0405      0.790 0.004 0.000 0.000 0.988 0.008 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n tissue(p) genotype/variation(p) individual(p) k
#> MAD:NMF 73  2.16e-07              4.52e-03       0.05241 2
#> MAD:NMF 75  8.78e-20              1.03e-04       0.95436 3
#> MAD:NMF 72  1.27e-18              1.47e-09       0.43483 4
#> MAD:NMF 73  2.39e-16              1.68e-10       0.00524 5
#> MAD:NMF 70  6.20e-15              7.01e-11       0.00572 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 76 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.918           0.941       0.975         0.4839 0.522   0.522
#> 3 3 0.772           0.764       0.885         0.2591 0.915   0.837
#> 4 4 0.785           0.755       0.875         0.0274 0.974   0.942
#> 5 5 0.737           0.797       0.897         0.1074 0.820   0.597
#> 6 6 0.815           0.716       0.881         0.0937 0.865   0.587

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM905004     2   0.574      0.834 0.136 0.864
#> GSM905024     1   0.000      0.988 1.000 0.000
#> GSM905038     2   0.913      0.547 0.328 0.672
#> GSM905043     1   0.000      0.988 1.000 0.000
#> GSM904986     2   0.000      0.964 0.000 1.000
#> GSM904991     2   0.000      0.964 0.000 1.000
#> GSM904994     2   0.000      0.964 0.000 1.000
#> GSM904996     2   0.000      0.964 0.000 1.000
#> GSM905007     2   0.000      0.964 0.000 1.000
#> GSM905012     2   0.000      0.964 0.000 1.000
#> GSM905022     2   0.000      0.964 0.000 1.000
#> GSM905026     2   0.000      0.964 0.000 1.000
#> GSM905027     2   0.000      0.964 0.000 1.000
#> GSM905031     2   0.000      0.964 0.000 1.000
#> GSM905036     2   0.913      0.547 0.328 0.672
#> GSM905041     2   0.929      0.513 0.344 0.656
#> GSM905044     2   0.000      0.964 0.000 1.000
#> GSM904989     2   0.000      0.964 0.000 1.000
#> GSM904999     2   0.000      0.964 0.000 1.000
#> GSM905002     2   0.000      0.964 0.000 1.000
#> GSM905009     2   0.000      0.964 0.000 1.000
#> GSM905014     2   0.000      0.964 0.000 1.000
#> GSM905017     2   0.000      0.964 0.000 1.000
#> GSM905020     2   0.000      0.964 0.000 1.000
#> GSM905023     2   0.913      0.547 0.328 0.672
#> GSM905029     2   0.000      0.964 0.000 1.000
#> GSM905032     1   0.866      0.564 0.712 0.288
#> GSM905034     1   0.000      0.988 1.000 0.000
#> GSM905040     1   0.000      0.988 1.000 0.000
#> GSM904985     2   0.000      0.964 0.000 1.000
#> GSM904988     2   0.000      0.964 0.000 1.000
#> GSM904990     2   0.000      0.964 0.000 1.000
#> GSM904992     2   0.000      0.964 0.000 1.000
#> GSM904995     2   0.000      0.964 0.000 1.000
#> GSM904998     2   0.000      0.964 0.000 1.000
#> GSM905000     2   0.000      0.964 0.000 1.000
#> GSM905003     2   0.000      0.964 0.000 1.000
#> GSM905006     2   0.000      0.964 0.000 1.000
#> GSM905008     2   0.000      0.964 0.000 1.000
#> GSM905011     2   0.000      0.964 0.000 1.000
#> GSM905013     2   0.000      0.964 0.000 1.000
#> GSM905016     2   0.000      0.964 0.000 1.000
#> GSM905018     2   0.000      0.964 0.000 1.000
#> GSM905021     2   0.000      0.964 0.000 1.000
#> GSM905025     2   0.574      0.834 0.136 0.864
#> GSM905028     2   0.000      0.964 0.000 1.000
#> GSM905030     2   0.000      0.964 0.000 1.000
#> GSM905033     2   0.000      0.964 0.000 1.000
#> GSM905035     2   0.000      0.964 0.000 1.000
#> GSM905037     2   0.000      0.964 0.000 1.000
#> GSM905039     2   0.000      0.964 0.000 1.000
#> GSM905042     2   0.000      0.964 0.000 1.000
#> GSM905046     1   0.000      0.988 1.000 0.000
#> GSM905065     1   0.000      0.988 1.000 0.000
#> GSM905049     1   0.000      0.988 1.000 0.000
#> GSM905050     1   0.000      0.988 1.000 0.000
#> GSM905064     1   0.000      0.988 1.000 0.000
#> GSM905045     1   0.000      0.988 1.000 0.000
#> GSM905051     1   0.118      0.973 0.984 0.016
#> GSM905055     1   0.000      0.988 1.000 0.000
#> GSM905058     1   0.000      0.988 1.000 0.000
#> GSM905053     1   0.000      0.988 1.000 0.000
#> GSM905061     1   0.000      0.988 1.000 0.000
#> GSM905063     1   0.000      0.988 1.000 0.000
#> GSM905054     1   0.000      0.988 1.000 0.000
#> GSM905062     1   0.000      0.988 1.000 0.000
#> GSM905052     1   0.118      0.973 0.984 0.016
#> GSM905059     1   0.000      0.988 1.000 0.000
#> GSM905047     1   0.000      0.988 1.000 0.000
#> GSM905066     1   0.000      0.988 1.000 0.000
#> GSM905056     1   0.000      0.988 1.000 0.000
#> GSM905060     1   0.000      0.988 1.000 0.000
#> GSM905048     1   0.000      0.988 1.000 0.000
#> GSM905067     1   0.000      0.988 1.000 0.000
#> GSM905057     1   0.000      0.988 1.000 0.000
#> GSM905068     1   0.000      0.988 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM905004     3  0.4504      0.575 0.000 0.196 0.804
#> GSM905024     1  0.4452      0.780 0.808 0.000 0.192
#> GSM905038     3  0.0237      0.816 0.000 0.004 0.996
#> GSM905043     1  0.4452      0.780 0.808 0.000 0.192
#> GSM904986     2  0.0000      0.895 0.000 1.000 0.000
#> GSM904991     2  0.6126      0.443 0.000 0.600 0.400
#> GSM904994     2  0.0592      0.888 0.000 0.988 0.012
#> GSM904996     2  0.0000      0.895 0.000 1.000 0.000
#> GSM905007     2  0.6126      0.443 0.000 0.600 0.400
#> GSM905012     2  0.0592      0.888 0.000 0.988 0.012
#> GSM905022     2  0.0000      0.895 0.000 1.000 0.000
#> GSM905026     2  0.6267      0.345 0.000 0.548 0.452
#> GSM905027     2  0.6267      0.345 0.000 0.548 0.452
#> GSM905031     2  0.6267      0.345 0.000 0.548 0.452
#> GSM905036     3  0.0237      0.816 0.000 0.004 0.996
#> GSM905041     3  0.0747      0.804 0.016 0.000 0.984
#> GSM905044     2  0.6267      0.345 0.000 0.548 0.452
#> GSM904989     2  0.0592      0.888 0.000 0.988 0.012
#> GSM904999     2  0.0000      0.895 0.000 1.000 0.000
#> GSM905002     2  0.0000      0.895 0.000 1.000 0.000
#> GSM905009     2  0.0592      0.888 0.000 0.988 0.012
#> GSM905014     2  0.6126      0.443 0.000 0.600 0.400
#> GSM905017     2  0.0000      0.895 0.000 1.000 0.000
#> GSM905020     2  0.0000      0.895 0.000 1.000 0.000
#> GSM905023     3  0.0237      0.816 0.000 0.004 0.996
#> GSM905029     2  0.6305      0.269 0.000 0.516 0.484
#> GSM905032     3  0.6062     -0.131 0.384 0.000 0.616
#> GSM905034     1  0.4452      0.780 0.808 0.000 0.192
#> GSM905040     1  0.0237      0.808 0.996 0.000 0.004
#> GSM904985     2  0.0000      0.895 0.000 1.000 0.000
#> GSM904988     2  0.0000      0.895 0.000 1.000 0.000
#> GSM904990     2  0.0000      0.895 0.000 1.000 0.000
#> GSM904992     2  0.0000      0.895 0.000 1.000 0.000
#> GSM904995     2  0.0000      0.895 0.000 1.000 0.000
#> GSM904998     2  0.0000      0.895 0.000 1.000 0.000
#> GSM905000     2  0.0000      0.895 0.000 1.000 0.000
#> GSM905003     2  0.0000      0.895 0.000 1.000 0.000
#> GSM905006     2  0.0000      0.895 0.000 1.000 0.000
#> GSM905008     2  0.0000      0.895 0.000 1.000 0.000
#> GSM905011     2  0.0000      0.895 0.000 1.000 0.000
#> GSM905013     2  0.0000      0.895 0.000 1.000 0.000
#> GSM905016     2  0.0000      0.895 0.000 1.000 0.000
#> GSM905018     2  0.0000      0.895 0.000 1.000 0.000
#> GSM905021     2  0.0000      0.895 0.000 1.000 0.000
#> GSM905025     2  0.6154      0.277 0.000 0.592 0.408
#> GSM905028     2  0.0000      0.895 0.000 1.000 0.000
#> GSM905030     2  0.0000      0.895 0.000 1.000 0.000
#> GSM905033     2  0.0000      0.895 0.000 1.000 0.000
#> GSM905035     2  0.0000      0.895 0.000 1.000 0.000
#> GSM905037     2  0.0000      0.895 0.000 1.000 0.000
#> GSM905039     2  0.0000      0.895 0.000 1.000 0.000
#> GSM905042     2  0.0000      0.895 0.000 1.000 0.000
#> GSM905046     1  0.0000      0.808 1.000 0.000 0.000
#> GSM905065     1  0.0000      0.808 1.000 0.000 0.000
#> GSM905049     1  0.5760      0.726 0.672 0.000 0.328
#> GSM905050     1  0.5760      0.726 0.672 0.000 0.328
#> GSM905064     1  0.5760      0.726 0.672 0.000 0.328
#> GSM905045     1  0.5760      0.726 0.672 0.000 0.328
#> GSM905051     1  0.5859      0.707 0.656 0.000 0.344
#> GSM905055     1  0.0000      0.808 1.000 0.000 0.000
#> GSM905058     1  0.0000      0.808 1.000 0.000 0.000
#> GSM905053     1  0.5760      0.726 0.672 0.000 0.328
#> GSM905061     1  0.5760      0.726 0.672 0.000 0.328
#> GSM905063     1  0.0000      0.808 1.000 0.000 0.000
#> GSM905054     1  0.5760      0.726 0.672 0.000 0.328
#> GSM905062     1  0.5760      0.726 0.672 0.000 0.328
#> GSM905052     1  0.5859      0.707 0.656 0.000 0.344
#> GSM905059     1  0.0000      0.808 1.000 0.000 0.000
#> GSM905047     1  0.0000      0.808 1.000 0.000 0.000
#> GSM905066     1  0.0000      0.808 1.000 0.000 0.000
#> GSM905056     1  0.0000      0.808 1.000 0.000 0.000
#> GSM905060     1  0.0000      0.808 1.000 0.000 0.000
#> GSM905048     1  0.0000      0.808 1.000 0.000 0.000
#> GSM905067     1  0.0000      0.808 1.000 0.000 0.000
#> GSM905057     1  0.0000      0.808 1.000 0.000 0.000
#> GSM905068     1  0.5760      0.726 0.672 0.000 0.328

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM905004     3  0.6170     0.6309 0.136 0.000 0.672 0.192
#> GSM905024     1  0.2868     0.7526 0.864 0.000 0.136 0.000
#> GSM905038     3  0.4564     0.9162 0.328 0.000 0.672 0.000
#> GSM905043     1  0.2868     0.7526 0.864 0.000 0.136 0.000
#> GSM904986     2  0.0000     0.8924 0.000 1.000 0.000 0.000
#> GSM904991     2  0.4866     0.4453 0.000 0.596 0.404 0.000
#> GSM904994     2  0.0469     0.8874 0.000 0.988 0.012 0.000
#> GSM904996     2  0.0000     0.8924 0.000 1.000 0.000 0.000
#> GSM905007     2  0.4866     0.4453 0.000 0.596 0.404 0.000
#> GSM905012     2  0.0469     0.8874 0.000 0.988 0.012 0.000
#> GSM905022     2  0.0000     0.8924 0.000 1.000 0.000 0.000
#> GSM905026     2  0.5493     0.3169 0.000 0.528 0.456 0.016
#> GSM905027     2  0.5493     0.3169 0.000 0.528 0.456 0.016
#> GSM905031     2  0.5493     0.3169 0.000 0.528 0.456 0.016
#> GSM905036     3  0.4564     0.9162 0.328 0.000 0.672 0.000
#> GSM905041     3  0.4643     0.8938 0.344 0.000 0.656 0.000
#> GSM905044     2  0.5493     0.3169 0.000 0.528 0.456 0.016
#> GSM904989     2  0.0469     0.8874 0.000 0.988 0.012 0.000
#> GSM904999     2  0.0000     0.8924 0.000 1.000 0.000 0.000
#> GSM905002     2  0.0000     0.8924 0.000 1.000 0.000 0.000
#> GSM905009     2  0.0469     0.8874 0.000 0.988 0.012 0.000
#> GSM905014     2  0.4866     0.4453 0.000 0.596 0.404 0.000
#> GSM905017     2  0.0000     0.8924 0.000 1.000 0.000 0.000
#> GSM905020     2  0.0000     0.8924 0.000 1.000 0.000 0.000
#> GSM905023     3  0.4564     0.9162 0.328 0.000 0.672 0.000
#> GSM905029     2  0.4998     0.2637 0.000 0.512 0.488 0.000
#> GSM905032     1  0.4331     0.0451 0.712 0.000 0.288 0.000
#> GSM905034     1  0.2868     0.7526 0.864 0.000 0.136 0.000
#> GSM905040     1  0.5639     0.7716 0.636 0.000 0.324 0.040
#> GSM904985     2  0.0000     0.8924 0.000 1.000 0.000 0.000
#> GSM904988     2  0.0000     0.8924 0.000 1.000 0.000 0.000
#> GSM904990     2  0.0000     0.8924 0.000 1.000 0.000 0.000
#> GSM904992     2  0.0000     0.8924 0.000 1.000 0.000 0.000
#> GSM904995     2  0.0000     0.8924 0.000 1.000 0.000 0.000
#> GSM904998     2  0.0000     0.8924 0.000 1.000 0.000 0.000
#> GSM905000     2  0.0000     0.8924 0.000 1.000 0.000 0.000
#> GSM905003     2  0.0000     0.8924 0.000 1.000 0.000 0.000
#> GSM905006     2  0.0000     0.8924 0.000 1.000 0.000 0.000
#> GSM905008     2  0.0000     0.8924 0.000 1.000 0.000 0.000
#> GSM905011     2  0.0000     0.8924 0.000 1.000 0.000 0.000
#> GSM905013     2  0.0000     0.8924 0.000 1.000 0.000 0.000
#> GSM905016     2  0.0000     0.8924 0.000 1.000 0.000 0.000
#> GSM905018     2  0.0000     0.8924 0.000 1.000 0.000 0.000
#> GSM905021     2  0.0000     0.8924 0.000 1.000 0.000 0.000
#> GSM905025     4  0.1389     0.0000 0.000 0.048 0.000 0.952
#> GSM905028     2  0.0592     0.8866 0.000 0.984 0.000 0.016
#> GSM905030     2  0.0592     0.8866 0.000 0.984 0.000 0.016
#> GSM905033     2  0.0592     0.8866 0.000 0.984 0.000 0.016
#> GSM905035     2  0.0592     0.8866 0.000 0.984 0.000 0.016
#> GSM905037     2  0.0592     0.8866 0.000 0.984 0.000 0.016
#> GSM905039     2  0.0592     0.8866 0.000 0.984 0.000 0.016
#> GSM905042     2  0.0592     0.8866 0.000 0.984 0.000 0.016
#> GSM905046     1  0.5812     0.7714 0.624 0.000 0.328 0.048
#> GSM905065     1  0.5812     0.7714 0.624 0.000 0.328 0.048
#> GSM905049     1  0.0000     0.7085 1.000 0.000 0.000 0.000
#> GSM905050     1  0.0000     0.7085 1.000 0.000 0.000 0.000
#> GSM905064     1  0.0000     0.7085 1.000 0.000 0.000 0.000
#> GSM905045     1  0.0000     0.7085 1.000 0.000 0.000 0.000
#> GSM905051     1  0.0592     0.6921 0.984 0.000 0.016 0.000
#> GSM905055     1  0.5812     0.7714 0.624 0.000 0.328 0.048
#> GSM905058     1  0.5812     0.7714 0.624 0.000 0.328 0.048
#> GSM905053     1  0.0000     0.7085 1.000 0.000 0.000 0.000
#> GSM905061     1  0.0000     0.7085 1.000 0.000 0.000 0.000
#> GSM905063     1  0.5812     0.7714 0.624 0.000 0.328 0.048
#> GSM905054     1  0.0000     0.7085 1.000 0.000 0.000 0.000
#> GSM905062     1  0.0000     0.7085 1.000 0.000 0.000 0.000
#> GSM905052     1  0.0592     0.6921 0.984 0.000 0.016 0.000
#> GSM905059     1  0.5812     0.7714 0.624 0.000 0.328 0.048
#> GSM905047     1  0.5812     0.7714 0.624 0.000 0.328 0.048
#> GSM905066     1  0.5812     0.7714 0.624 0.000 0.328 0.048
#> GSM905056     1  0.5812     0.7714 0.624 0.000 0.328 0.048
#> GSM905060     1  0.5812     0.7714 0.624 0.000 0.328 0.048
#> GSM905048     1  0.5812     0.7714 0.624 0.000 0.328 0.048
#> GSM905067     1  0.5812     0.7714 0.624 0.000 0.328 0.048
#> GSM905057     1  0.5812     0.7714 0.624 0.000 0.328 0.048
#> GSM905068     1  0.0000     0.7085 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM905004     3  0.2966      0.046 0.000 0.000 0.848 0.136 0.016
#> GSM905024     4  0.2471      0.799 0.136 0.000 0.000 0.864 0.000
#> GSM905038     3  0.3932      0.195 0.000 0.000 0.672 0.328 0.000
#> GSM905043     4  0.2471      0.799 0.136 0.000 0.000 0.864 0.000
#> GSM904986     2  0.2561      0.837 0.000 0.856 0.144 0.000 0.000
#> GSM904991     3  0.4268      0.434 0.000 0.444 0.556 0.000 0.000
#> GSM904994     2  0.2773      0.817 0.000 0.836 0.164 0.000 0.000
#> GSM904996     2  0.2648      0.830 0.000 0.848 0.152 0.000 0.000
#> GSM905007     3  0.4268      0.434 0.000 0.444 0.556 0.000 0.000
#> GSM905012     2  0.2773      0.817 0.000 0.836 0.164 0.000 0.000
#> GSM905022     2  0.2648      0.830 0.000 0.848 0.152 0.000 0.000
#> GSM905026     3  0.4651      0.560 0.000 0.372 0.608 0.000 0.020
#> GSM905027     3  0.4651      0.560 0.000 0.372 0.608 0.000 0.020
#> GSM905031     3  0.4651      0.560 0.000 0.372 0.608 0.000 0.020
#> GSM905036     3  0.3932      0.195 0.000 0.000 0.672 0.328 0.000
#> GSM905041     3  0.3999      0.180 0.000 0.000 0.656 0.344 0.000
#> GSM905044     3  0.4651      0.560 0.000 0.372 0.608 0.000 0.020
#> GSM904989     2  0.2773      0.817 0.000 0.836 0.164 0.000 0.000
#> GSM904999     2  0.2516      0.840 0.000 0.860 0.140 0.000 0.000
#> GSM905002     2  0.2648      0.830 0.000 0.848 0.152 0.000 0.000
#> GSM905009     2  0.2773      0.817 0.000 0.836 0.164 0.000 0.000
#> GSM905014     3  0.4268      0.434 0.000 0.444 0.556 0.000 0.000
#> GSM905017     2  0.2516      0.840 0.000 0.860 0.140 0.000 0.000
#> GSM905020     2  0.2648      0.830 0.000 0.848 0.152 0.000 0.000
#> GSM905023     3  0.3932      0.195 0.000 0.000 0.672 0.328 0.000
#> GSM905029     3  0.4060      0.567 0.000 0.360 0.640 0.000 0.000
#> GSM905032     4  0.3730      0.588 0.000 0.000 0.288 0.712 0.000
#> GSM905034     4  0.2561      0.790 0.144 0.000 0.000 0.856 0.000
#> GSM905040     1  0.3305      0.657 0.776 0.000 0.000 0.224 0.000
#> GSM904985     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> GSM904988     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> GSM904990     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> GSM904992     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> GSM904995     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> GSM904998     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> GSM905000     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> GSM905003     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> GSM905006     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> GSM905008     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> GSM905011     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> GSM905013     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> GSM905016     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> GSM905018     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> GSM905021     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> GSM905025     5  0.0000      0.000 0.000 0.000 0.000 0.000 1.000
#> GSM905028     2  0.0609      0.911 0.000 0.980 0.000 0.000 0.020
#> GSM905030     2  0.0609      0.911 0.000 0.980 0.000 0.000 0.020
#> GSM905033     2  0.0609      0.911 0.000 0.980 0.000 0.000 0.020
#> GSM905035     2  0.0609      0.911 0.000 0.980 0.000 0.000 0.020
#> GSM905037     2  0.0609      0.911 0.000 0.980 0.000 0.000 0.020
#> GSM905039     2  0.0609      0.911 0.000 0.980 0.000 0.000 0.020
#> GSM905042     2  0.0609      0.911 0.000 0.980 0.000 0.000 0.020
#> GSM905046     1  0.0290      0.976 0.992 0.000 0.000 0.008 0.000
#> GSM905065     1  0.0290      0.976 0.992 0.000 0.000 0.008 0.000
#> GSM905049     4  0.0000      0.922 0.000 0.000 0.000 1.000 0.000
#> GSM905050     4  0.0000      0.922 0.000 0.000 0.000 1.000 0.000
#> GSM905064     4  0.0000      0.922 0.000 0.000 0.000 1.000 0.000
#> GSM905045     4  0.0000      0.922 0.000 0.000 0.000 1.000 0.000
#> GSM905051     4  0.0510      0.915 0.000 0.000 0.016 0.984 0.000
#> GSM905055     1  0.0290      0.976 0.992 0.000 0.000 0.008 0.000
#> GSM905058     1  0.0290      0.976 0.992 0.000 0.000 0.008 0.000
#> GSM905053     4  0.0000      0.922 0.000 0.000 0.000 1.000 0.000
#> GSM905061     4  0.0963      0.904 0.036 0.000 0.000 0.964 0.000
#> GSM905063     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000
#> GSM905054     4  0.0000      0.922 0.000 0.000 0.000 1.000 0.000
#> GSM905062     4  0.0963      0.904 0.036 0.000 0.000 0.964 0.000
#> GSM905052     4  0.0510      0.915 0.000 0.000 0.016 0.984 0.000
#> GSM905059     1  0.0290      0.976 0.992 0.000 0.000 0.008 0.000
#> GSM905047     1  0.0290      0.976 0.992 0.000 0.000 0.008 0.000
#> GSM905066     1  0.0000      0.968 1.000 0.000 0.000 0.000 0.000
#> GSM905056     1  0.0290      0.976 0.992 0.000 0.000 0.008 0.000
#> GSM905060     1  0.0290      0.976 0.992 0.000 0.000 0.008 0.000
#> GSM905048     1  0.0290      0.976 0.992 0.000 0.000 0.008 0.000
#> GSM905067     1  0.0290      0.976 0.992 0.000 0.000 0.008 0.000
#> GSM905057     1  0.0290      0.976 0.992 0.000 0.000 0.008 0.000
#> GSM905068     4  0.0000      0.922 0.000 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM905004     6  0.4572      0.000 0.000 0.000 0.036 0.020 0.272 0.672
#> GSM905024     4  0.2362      0.795 0.136 0.000 0.000 0.860 0.000 0.004
#> GSM905038     3  0.6118     -0.350 0.000 0.000 0.364 0.328 0.308 0.000
#> GSM905043     4  0.2362      0.795 0.136 0.000 0.000 0.860 0.000 0.004
#> GSM904986     3  0.3843      0.408 0.000 0.452 0.548 0.000 0.000 0.000
#> GSM904991     3  0.0146      0.385 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM904994     3  0.3737      0.498 0.000 0.392 0.608 0.000 0.000 0.000
#> GSM904996     3  0.3765      0.488 0.000 0.404 0.596 0.000 0.000 0.000
#> GSM905007     3  0.0146      0.385 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM905012     3  0.3737      0.498 0.000 0.392 0.608 0.000 0.000 0.000
#> GSM905022     3  0.3774      0.482 0.000 0.408 0.592 0.000 0.000 0.000
#> GSM905026     3  0.1814      0.356 0.000 0.000 0.900 0.000 0.100 0.000
#> GSM905027     3  0.1814      0.356 0.000 0.000 0.900 0.000 0.100 0.000
#> GSM905031     3  0.1814      0.356 0.000 0.000 0.900 0.000 0.100 0.000
#> GSM905036     3  0.6118     -0.350 0.000 0.000 0.364 0.328 0.308 0.000
#> GSM905041     3  0.6123     -0.355 0.000 0.000 0.348 0.344 0.308 0.000
#> GSM905044     3  0.1814      0.356 0.000 0.000 0.900 0.000 0.100 0.000
#> GSM904989     3  0.3737      0.498 0.000 0.392 0.608 0.000 0.000 0.000
#> GSM904999     3  0.3868      0.314 0.000 0.496 0.504 0.000 0.000 0.000
#> GSM905002     3  0.3765      0.488 0.000 0.404 0.596 0.000 0.000 0.000
#> GSM905009     3  0.3737      0.498 0.000 0.392 0.608 0.000 0.000 0.000
#> GSM905014     3  0.0146      0.385 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM905017     3  0.3868      0.314 0.000 0.496 0.504 0.000 0.000 0.000
#> GSM905020     3  0.3765      0.488 0.000 0.404 0.596 0.000 0.000 0.000
#> GSM905023     3  0.6118     -0.350 0.000 0.000 0.364 0.328 0.308 0.000
#> GSM905029     3  0.1910      0.334 0.000 0.000 0.892 0.000 0.108 0.000
#> GSM905032     4  0.3351      0.528 0.000 0.000 0.000 0.712 0.288 0.000
#> GSM905034     4  0.2442      0.785 0.144 0.000 0.000 0.852 0.000 0.004
#> GSM905040     1  0.2969      0.656 0.776 0.000 0.000 0.224 0.000 0.000
#> GSM904985     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904988     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904990     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904992     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904995     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904998     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905000     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905003     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905006     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905008     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905011     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905013     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905016     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905018     2  0.0000      0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905021     2  0.0146      0.987 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM905025     5  0.3565      0.000 0.000 0.000 0.004 0.000 0.692 0.304
#> GSM905028     2  0.0603      0.981 0.000 0.980 0.004 0.000 0.016 0.000
#> GSM905030     2  0.0603      0.981 0.000 0.980 0.004 0.000 0.016 0.000
#> GSM905033     2  0.0603      0.981 0.000 0.980 0.004 0.000 0.016 0.000
#> GSM905035     2  0.0603      0.981 0.000 0.980 0.004 0.000 0.016 0.000
#> GSM905037     2  0.0603      0.981 0.000 0.980 0.004 0.000 0.016 0.000
#> GSM905039     2  0.0603      0.981 0.000 0.980 0.004 0.000 0.016 0.000
#> GSM905042     2  0.0603      0.981 0.000 0.980 0.004 0.000 0.016 0.000
#> GSM905046     1  0.0260      0.972 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM905065     1  0.0260      0.972 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM905049     4  0.0000      0.919 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905050     4  0.0000      0.919 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905064     4  0.0000      0.919 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905045     4  0.0000      0.919 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905051     4  0.0458      0.912 0.000 0.000 0.000 0.984 0.016 0.000
#> GSM905055     1  0.0260      0.972 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM905058     1  0.0260      0.972 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM905053     4  0.0000      0.919 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905061     4  0.0865      0.900 0.036 0.000 0.000 0.964 0.000 0.000
#> GSM905063     1  0.0547      0.950 0.980 0.000 0.000 0.000 0.000 0.020
#> GSM905054     4  0.0000      0.919 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905062     4  0.0865      0.900 0.036 0.000 0.000 0.964 0.000 0.000
#> GSM905052     4  0.0458      0.912 0.000 0.000 0.000 0.984 0.016 0.000
#> GSM905059     1  0.0260      0.972 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM905047     1  0.0260      0.972 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM905066     1  0.0547      0.950 0.980 0.000 0.000 0.000 0.000 0.020
#> GSM905056     1  0.0260      0.972 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM905060     1  0.0260      0.972 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM905048     1  0.0260      0.972 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM905067     1  0.0260      0.972 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM905057     1  0.0260      0.972 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM905068     4  0.0000      0.919 0.000 0.000 0.000 1.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n tissue(p) genotype/variation(p) individual(p) k
#> ATC:hclust 76  7.07e-09              1.08e-02        0.0399 2
#> ATC:hclust 66  1.14e-06              1.17e-03        0.0758 3
#> ATC:hclust 66  1.14e-06              1.17e-03        0.0758 4
#> ATC:hclust 67  1.87e-08              1.50e-06        0.1491 5
#> ATC:hclust 51  1.84e-08              3.77e-07        0.3967 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 76 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.989       0.995         0.4889 0.511   0.511
#> 3 3 0.660           0.736       0.868         0.3317 0.828   0.670
#> 4 4 0.687           0.411       0.669         0.1184 0.876   0.688
#> 5 5 0.694           0.808       0.798         0.0704 0.818   0.469
#> 6 6 0.755           0.858       0.835         0.0451 0.957   0.788

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM905004     2  0.0672      0.990 0.008 0.992
#> GSM905024     1  0.0000      0.991 1.000 0.000
#> GSM905038     2  0.0000      0.998 0.000 1.000
#> GSM905043     1  0.0000      0.991 1.000 0.000
#> GSM904986     2  0.0000      0.998 0.000 1.000
#> GSM904991     2  0.0000      0.998 0.000 1.000
#> GSM904994     2  0.0000      0.998 0.000 1.000
#> GSM904996     2  0.0000      0.998 0.000 1.000
#> GSM905007     2  0.0000      0.998 0.000 1.000
#> GSM905012     2  0.0000      0.998 0.000 1.000
#> GSM905022     2  0.0000      0.998 0.000 1.000
#> GSM905026     2  0.0000      0.998 0.000 1.000
#> GSM905027     2  0.0000      0.998 0.000 1.000
#> GSM905031     2  0.0000      0.998 0.000 1.000
#> GSM905036     1  0.8443      0.624 0.728 0.272
#> GSM905041     1  0.0000      0.991 1.000 0.000
#> GSM905044     2  0.0000      0.998 0.000 1.000
#> GSM904989     2  0.0000      0.998 0.000 1.000
#> GSM904999     2  0.0000      0.998 0.000 1.000
#> GSM905002     2  0.0000      0.998 0.000 1.000
#> GSM905009     2  0.0000      0.998 0.000 1.000
#> GSM905014     2  0.0000      0.998 0.000 1.000
#> GSM905017     2  0.0000      0.998 0.000 1.000
#> GSM905020     2  0.0000      0.998 0.000 1.000
#> GSM905023     2  0.4022      0.912 0.080 0.920
#> GSM905029     2  0.0000      0.998 0.000 1.000
#> GSM905032     1  0.0000      0.991 1.000 0.000
#> GSM905034     1  0.0000      0.991 1.000 0.000
#> GSM905040     1  0.0000      0.991 1.000 0.000
#> GSM904985     2  0.0000      0.998 0.000 1.000
#> GSM904988     2  0.0000      0.998 0.000 1.000
#> GSM904990     2  0.0000      0.998 0.000 1.000
#> GSM904992     2  0.0000      0.998 0.000 1.000
#> GSM904995     2  0.0000      0.998 0.000 1.000
#> GSM904998     2  0.0000      0.998 0.000 1.000
#> GSM905000     2  0.0000      0.998 0.000 1.000
#> GSM905003     2  0.0000      0.998 0.000 1.000
#> GSM905006     2  0.0000      0.998 0.000 1.000
#> GSM905008     2  0.0000      0.998 0.000 1.000
#> GSM905011     2  0.0000      0.998 0.000 1.000
#> GSM905013     2  0.0000      0.998 0.000 1.000
#> GSM905016     2  0.0000      0.998 0.000 1.000
#> GSM905018     2  0.0000      0.998 0.000 1.000
#> GSM905021     2  0.0000      0.998 0.000 1.000
#> GSM905025     2  0.0000      0.998 0.000 1.000
#> GSM905028     2  0.0000      0.998 0.000 1.000
#> GSM905030     2  0.0000      0.998 0.000 1.000
#> GSM905033     2  0.0000      0.998 0.000 1.000
#> GSM905035     2  0.0000      0.998 0.000 1.000
#> GSM905037     2  0.0000      0.998 0.000 1.000
#> GSM905039     2  0.0000      0.998 0.000 1.000
#> GSM905042     2  0.0000      0.998 0.000 1.000
#> GSM905046     1  0.0000      0.991 1.000 0.000
#> GSM905065     1  0.0000      0.991 1.000 0.000
#> GSM905049     1  0.0000      0.991 1.000 0.000
#> GSM905050     1  0.0000      0.991 1.000 0.000
#> GSM905064     1  0.0000      0.991 1.000 0.000
#> GSM905045     1  0.0000      0.991 1.000 0.000
#> GSM905051     1  0.0000      0.991 1.000 0.000
#> GSM905055     1  0.0000      0.991 1.000 0.000
#> GSM905058     1  0.0000      0.991 1.000 0.000
#> GSM905053     1  0.0000      0.991 1.000 0.000
#> GSM905061     1  0.0000      0.991 1.000 0.000
#> GSM905063     1  0.0000      0.991 1.000 0.000
#> GSM905054     1  0.0000      0.991 1.000 0.000
#> GSM905062     1  0.0000      0.991 1.000 0.000
#> GSM905052     1  0.0000      0.991 1.000 0.000
#> GSM905059     1  0.0000      0.991 1.000 0.000
#> GSM905047     1  0.0000      0.991 1.000 0.000
#> GSM905066     1  0.0000      0.991 1.000 0.000
#> GSM905056     1  0.0000      0.991 1.000 0.000
#> GSM905060     1  0.0000      0.991 1.000 0.000
#> GSM905048     1  0.0000      0.991 1.000 0.000
#> GSM905067     1  0.0000      0.991 1.000 0.000
#> GSM905057     1  0.0000      0.991 1.000 0.000
#> GSM905068     1  0.0000      0.991 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM905004     3  0.0000      0.800 0.000 0.000 1.000
#> GSM905024     1  0.5650      0.744 0.688 0.000 0.312
#> GSM905038     3  0.0000      0.800 0.000 0.000 1.000
#> GSM905043     1  0.5650      0.744 0.688 0.000 0.312
#> GSM904986     2  0.5882      0.581 0.000 0.652 0.348
#> GSM904991     3  0.2448      0.788 0.000 0.076 0.924
#> GSM904994     2  0.5882      0.581 0.000 0.652 0.348
#> GSM904996     2  0.5882      0.581 0.000 0.652 0.348
#> GSM905007     3  0.4452      0.712 0.000 0.192 0.808
#> GSM905012     2  0.5882      0.581 0.000 0.652 0.348
#> GSM905022     2  0.5882      0.581 0.000 0.652 0.348
#> GSM905026     3  0.4452      0.712 0.000 0.192 0.808
#> GSM905027     3  0.3412      0.767 0.000 0.124 0.876
#> GSM905031     3  0.4452      0.712 0.000 0.192 0.808
#> GSM905036     3  0.0000      0.800 0.000 0.000 1.000
#> GSM905041     3  0.3192      0.664 0.112 0.000 0.888
#> GSM905044     3  0.4452      0.712 0.000 0.192 0.808
#> GSM904989     2  0.5882      0.581 0.000 0.652 0.348
#> GSM904999     2  0.5882      0.581 0.000 0.652 0.348
#> GSM905002     2  0.5882      0.581 0.000 0.652 0.348
#> GSM905009     2  0.5882      0.581 0.000 0.652 0.348
#> GSM905014     3  0.5650      0.429 0.000 0.312 0.688
#> GSM905017     2  0.5882      0.581 0.000 0.652 0.348
#> GSM905020     2  0.5882      0.581 0.000 0.652 0.348
#> GSM905023     3  0.0000      0.800 0.000 0.000 1.000
#> GSM905029     3  0.0000      0.800 0.000 0.000 1.000
#> GSM905032     3  0.6062     -0.122 0.384 0.000 0.616
#> GSM905034     1  0.0000      0.870 1.000 0.000 0.000
#> GSM905040     1  0.0000      0.870 1.000 0.000 0.000
#> GSM904985     2  0.0000      0.812 0.000 1.000 0.000
#> GSM904988     2  0.0000      0.812 0.000 1.000 0.000
#> GSM904990     2  0.0000      0.812 0.000 1.000 0.000
#> GSM904992     2  0.0000      0.812 0.000 1.000 0.000
#> GSM904995     2  0.0000      0.812 0.000 1.000 0.000
#> GSM904998     2  0.0000      0.812 0.000 1.000 0.000
#> GSM905000     2  0.0000      0.812 0.000 1.000 0.000
#> GSM905003     2  0.0000      0.812 0.000 1.000 0.000
#> GSM905006     2  0.0000      0.812 0.000 1.000 0.000
#> GSM905008     2  0.0000      0.812 0.000 1.000 0.000
#> GSM905011     2  0.0000      0.812 0.000 1.000 0.000
#> GSM905013     2  0.0000      0.812 0.000 1.000 0.000
#> GSM905016     2  0.0000      0.812 0.000 1.000 0.000
#> GSM905018     2  0.0000      0.812 0.000 1.000 0.000
#> GSM905021     2  0.0000      0.812 0.000 1.000 0.000
#> GSM905025     2  0.6280     -0.100 0.000 0.540 0.460
#> GSM905028     2  0.0000      0.812 0.000 1.000 0.000
#> GSM905030     2  0.0237      0.810 0.000 0.996 0.004
#> GSM905033     2  0.1753      0.791 0.000 0.952 0.048
#> GSM905035     2  0.0237      0.810 0.000 0.996 0.004
#> GSM905037     2  0.0000      0.812 0.000 1.000 0.000
#> GSM905039     2  0.0237      0.810 0.000 0.996 0.004
#> GSM905042     2  0.6302      0.263 0.000 0.520 0.480
#> GSM905046     1  0.0000      0.870 1.000 0.000 0.000
#> GSM905065     1  0.0000      0.870 1.000 0.000 0.000
#> GSM905049     1  0.5650      0.744 0.688 0.000 0.312
#> GSM905050     1  0.6140      0.607 0.596 0.000 0.404
#> GSM905064     1  0.3816      0.835 0.852 0.000 0.148
#> GSM905045     1  0.5560      0.752 0.700 0.000 0.300
#> GSM905051     1  0.5650      0.744 0.688 0.000 0.312
#> GSM905055     1  0.0000      0.870 1.000 0.000 0.000
#> GSM905058     1  0.0000      0.870 1.000 0.000 0.000
#> GSM905053     1  0.5650      0.744 0.688 0.000 0.312
#> GSM905061     1  0.2448      0.855 0.924 0.000 0.076
#> GSM905063     1  0.0000      0.870 1.000 0.000 0.000
#> GSM905054     1  0.3816      0.835 0.852 0.000 0.148
#> GSM905062     1  0.3686      0.838 0.860 0.000 0.140
#> GSM905052     1  0.5650      0.744 0.688 0.000 0.312
#> GSM905059     1  0.0000      0.870 1.000 0.000 0.000
#> GSM905047     1  0.0000      0.870 1.000 0.000 0.000
#> GSM905066     1  0.0000      0.870 1.000 0.000 0.000
#> GSM905056     1  0.0000      0.870 1.000 0.000 0.000
#> GSM905060     1  0.0000      0.870 1.000 0.000 0.000
#> GSM905048     1  0.0000      0.870 1.000 0.000 0.000
#> GSM905067     1  0.0000      0.870 1.000 0.000 0.000
#> GSM905057     1  0.0000      0.870 1.000 0.000 0.000
#> GSM905068     1  0.5650      0.744 0.688 0.000 0.312

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM905004     3  0.1042      0.764 0.000 0.020 0.972 0.008
#> GSM905024     1  0.7456      0.630 0.508 0.000 0.256 0.236
#> GSM905038     3  0.3311      0.777 0.000 0.172 0.828 0.000
#> GSM905043     1  0.7456      0.630 0.508 0.000 0.256 0.236
#> GSM904986     2  0.1557      0.381 0.000 0.944 0.056 0.000
#> GSM904991     2  0.4999     -0.434 0.000 0.508 0.492 0.000
#> GSM904994     2  0.1637      0.380 0.000 0.940 0.060 0.000
#> GSM904996     2  0.1557      0.381 0.000 0.944 0.056 0.000
#> GSM905007     2  0.4985     -0.396 0.000 0.532 0.468 0.000
#> GSM905012     2  0.1637      0.380 0.000 0.940 0.060 0.000
#> GSM905022     2  0.1557      0.381 0.000 0.944 0.056 0.000
#> GSM905026     3  0.4630      0.763 0.000 0.196 0.768 0.036
#> GSM905027     3  0.3937      0.770 0.000 0.188 0.800 0.012
#> GSM905031     3  0.4630      0.763 0.000 0.196 0.768 0.036
#> GSM905036     3  0.0937      0.753 0.000 0.012 0.976 0.012
#> GSM905041     3  0.3272      0.665 0.032 0.008 0.884 0.076
#> GSM905044     3  0.4781      0.749 0.000 0.212 0.752 0.036
#> GSM904989     2  0.1637      0.380 0.000 0.940 0.060 0.000
#> GSM904999     2  0.1557      0.381 0.000 0.944 0.056 0.000
#> GSM905002     2  0.1557      0.381 0.000 0.944 0.056 0.000
#> GSM905009     2  0.1637      0.380 0.000 0.940 0.060 0.000
#> GSM905014     2  0.4977     -0.383 0.000 0.540 0.460 0.000
#> GSM905017     2  0.1557      0.381 0.000 0.944 0.056 0.000
#> GSM905020     2  0.1557      0.381 0.000 0.944 0.056 0.000
#> GSM905023     3  0.0469      0.760 0.000 0.012 0.988 0.000
#> GSM905029     3  0.3311      0.777 0.000 0.172 0.828 0.000
#> GSM905032     3  0.6618      0.169 0.124 0.000 0.604 0.272
#> GSM905034     1  0.0817      0.737 0.976 0.000 0.000 0.024
#> GSM905040     1  0.0592      0.738 0.984 0.000 0.000 0.016
#> GSM904985     2  0.4999     -0.338 0.000 0.508 0.000 0.492
#> GSM904988     2  0.5000     -0.349 0.000 0.504 0.000 0.496
#> GSM904990     2  0.5000     -0.349 0.000 0.504 0.000 0.496
#> GSM904992     2  0.5000     -0.349 0.000 0.504 0.000 0.496
#> GSM904995     2  0.4999     -0.338 0.000 0.508 0.000 0.492
#> GSM904998     2  0.4999     -0.338 0.000 0.508 0.000 0.492
#> GSM905000     2  0.4999     -0.338 0.000 0.508 0.000 0.492
#> GSM905003     2  0.4999     -0.338 0.000 0.508 0.000 0.492
#> GSM905006     2  0.5000     -0.349 0.000 0.504 0.000 0.496
#> GSM905008     2  0.4999     -0.338 0.000 0.508 0.000 0.492
#> GSM905011     2  0.5000     -0.349 0.000 0.504 0.000 0.496
#> GSM905013     2  0.4999     -0.338 0.000 0.508 0.000 0.492
#> GSM905016     2  0.4999     -0.338 0.000 0.508 0.000 0.492
#> GSM905018     2  0.4999     -0.338 0.000 0.508 0.000 0.492
#> GSM905021     2  0.4999     -0.338 0.000 0.508 0.000 0.492
#> GSM905025     3  0.5271      0.499 0.000 0.020 0.640 0.340
#> GSM905028     4  0.5322      0.910 0.000 0.312 0.028 0.660
#> GSM905030     4  0.5972      0.943 0.000 0.304 0.064 0.632
#> GSM905033     4  0.6156      0.861 0.000 0.344 0.064 0.592
#> GSM905035     4  0.5972      0.943 0.000 0.304 0.064 0.632
#> GSM905037     4  0.5322      0.910 0.000 0.312 0.028 0.660
#> GSM905039     4  0.5972      0.943 0.000 0.304 0.064 0.632
#> GSM905042     3  0.7476      0.395 0.000 0.236 0.504 0.260
#> GSM905046     1  0.0000      0.742 1.000 0.000 0.000 0.000
#> GSM905065     1  0.0188      0.742 0.996 0.000 0.000 0.004
#> GSM905049     1  0.7540      0.637 0.480 0.000 0.216 0.304
#> GSM905050     1  0.7902      0.480 0.368 0.000 0.328 0.304
#> GSM905064     1  0.7300      0.655 0.516 0.000 0.180 0.304
#> GSM905045     1  0.7540      0.637 0.480 0.000 0.216 0.304
#> GSM905051     1  0.7540      0.637 0.480 0.000 0.216 0.304
#> GSM905055     1  0.0336      0.741 0.992 0.000 0.000 0.008
#> GSM905058     1  0.0188      0.742 0.996 0.000 0.000 0.004
#> GSM905053     1  0.7540      0.637 0.480 0.000 0.216 0.304
#> GSM905061     1  0.7205      0.660 0.528 0.000 0.168 0.304
#> GSM905063     1  0.0817      0.737 0.976 0.000 0.000 0.024
#> GSM905054     1  0.7270      0.657 0.520 0.000 0.176 0.304
#> GSM905062     1  0.7270      0.657 0.520 0.000 0.176 0.304
#> GSM905052     1  0.7540      0.637 0.480 0.000 0.216 0.304
#> GSM905059     1  0.0188      0.742 0.996 0.000 0.000 0.004
#> GSM905047     1  0.0000      0.742 1.000 0.000 0.000 0.000
#> GSM905066     1  0.0817      0.737 0.976 0.000 0.000 0.024
#> GSM905056     1  0.0336      0.741 0.992 0.000 0.000 0.008
#> GSM905060     1  0.0188      0.742 0.996 0.000 0.000 0.004
#> GSM905048     1  0.0000      0.742 1.000 0.000 0.000 0.000
#> GSM905067     1  0.0188      0.742 0.996 0.000 0.000 0.004
#> GSM905057     1  0.0336      0.741 0.992 0.000 0.000 0.008
#> GSM905068     1  0.7563      0.633 0.476 0.000 0.220 0.304

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM905004     5  0.4114      0.701 0.000 0.000 0.024 0.244 0.732
#> GSM905024     4  0.7365      0.625 0.304 0.000 0.076 0.480 0.140
#> GSM905038     5  0.3759      0.775 0.000 0.000 0.136 0.056 0.808
#> GSM905043     4  0.7365      0.625 0.304 0.000 0.076 0.480 0.140
#> GSM904986     3  0.3750      0.907 0.000 0.232 0.756 0.012 0.000
#> GSM904991     3  0.4295      0.558 0.000 0.004 0.724 0.024 0.248
#> GSM904994     3  0.3366      0.910 0.000 0.232 0.768 0.000 0.000
#> GSM904996     3  0.3366      0.910 0.000 0.232 0.768 0.000 0.000
#> GSM905007     3  0.4096      0.584 0.000 0.004 0.744 0.020 0.232
#> GSM905012     3  0.3366      0.910 0.000 0.232 0.768 0.000 0.000
#> GSM905022     3  0.3750      0.907 0.000 0.232 0.756 0.012 0.000
#> GSM905026     5  0.3044      0.770 0.000 0.004 0.148 0.008 0.840
#> GSM905027     5  0.3170      0.764 0.000 0.004 0.160 0.008 0.828
#> GSM905031     5  0.3044      0.770 0.000 0.004 0.148 0.008 0.840
#> GSM905036     5  0.3663      0.702 0.000 0.000 0.016 0.208 0.776
#> GSM905041     5  0.5218      0.504 0.000 0.000 0.068 0.308 0.624
#> GSM905044     5  0.2970      0.756 0.000 0.004 0.168 0.000 0.828
#> GSM904989     3  0.3366      0.910 0.000 0.232 0.768 0.000 0.000
#> GSM904999     3  0.3750      0.907 0.000 0.232 0.756 0.012 0.000
#> GSM905002     3  0.3366      0.910 0.000 0.232 0.768 0.000 0.000
#> GSM905009     3  0.3366      0.910 0.000 0.232 0.768 0.000 0.000
#> GSM905014     3  0.4158      0.595 0.000 0.008 0.748 0.020 0.224
#> GSM905017     3  0.3750      0.907 0.000 0.232 0.756 0.012 0.000
#> GSM905020     3  0.3366      0.910 0.000 0.232 0.768 0.000 0.000
#> GSM905023     5  0.3596      0.709 0.000 0.000 0.016 0.200 0.784
#> GSM905029     5  0.3649      0.770 0.000 0.000 0.152 0.040 0.808
#> GSM905032     4  0.5115      0.283 0.012 0.000 0.028 0.608 0.352
#> GSM905034     1  0.3516      0.870 0.836 0.000 0.108 0.004 0.052
#> GSM905040     1  0.2103      0.933 0.920 0.000 0.056 0.004 0.020
#> GSM904985     2  0.0324      0.850 0.000 0.992 0.004 0.004 0.000
#> GSM904988     2  0.0000      0.851 0.000 1.000 0.000 0.000 0.000
#> GSM904990     2  0.0000      0.851 0.000 1.000 0.000 0.000 0.000
#> GSM904992     2  0.0000      0.851 0.000 1.000 0.000 0.000 0.000
#> GSM904995     2  0.0324      0.850 0.000 0.992 0.004 0.004 0.000
#> GSM904998     2  0.0162      0.851 0.000 0.996 0.004 0.000 0.000
#> GSM905000     2  0.0162      0.851 0.000 0.996 0.004 0.000 0.000
#> GSM905003     2  0.0162      0.851 0.000 0.996 0.004 0.000 0.000
#> GSM905006     2  0.0000      0.851 0.000 1.000 0.000 0.000 0.000
#> GSM905008     2  0.0162      0.851 0.000 0.996 0.004 0.000 0.000
#> GSM905011     2  0.0000      0.851 0.000 1.000 0.000 0.000 0.000
#> GSM905013     2  0.0162      0.851 0.000 0.996 0.004 0.000 0.000
#> GSM905016     2  0.0324      0.850 0.000 0.992 0.004 0.004 0.000
#> GSM905018     2  0.0162      0.851 0.000 0.996 0.004 0.000 0.000
#> GSM905021     2  0.1300      0.818 0.000 0.956 0.028 0.016 0.000
#> GSM905025     5  0.6566      0.480 0.000 0.104 0.084 0.192 0.620
#> GSM905028     2  0.6849      0.614 0.000 0.592 0.076 0.168 0.164
#> GSM905030     2  0.7081      0.580 0.000 0.560 0.076 0.168 0.196
#> GSM905033     2  0.7344      0.555 0.000 0.540 0.104 0.168 0.188
#> GSM905035     2  0.7081      0.580 0.000 0.560 0.076 0.168 0.196
#> GSM905037     2  0.6912      0.606 0.000 0.584 0.076 0.168 0.172
#> GSM905039     2  0.7081      0.580 0.000 0.560 0.076 0.168 0.196
#> GSM905042     5  0.7138      0.427 0.000 0.140 0.120 0.168 0.572
#> GSM905046     1  0.0807      0.951 0.976 0.000 0.012 0.000 0.012
#> GSM905065     1  0.0671      0.951 0.980 0.000 0.016 0.000 0.004
#> GSM905049     4  0.3424      0.886 0.240 0.000 0.000 0.760 0.000
#> GSM905050     4  0.4134      0.851 0.196 0.000 0.000 0.760 0.044
#> GSM905064     4  0.3766      0.872 0.268 0.000 0.000 0.728 0.004
#> GSM905045     4  0.3424      0.886 0.240 0.000 0.000 0.760 0.000
#> GSM905051     4  0.3579      0.886 0.240 0.000 0.004 0.756 0.000
#> GSM905055     1  0.0880      0.947 0.968 0.000 0.032 0.000 0.000
#> GSM905058     1  0.0912      0.951 0.972 0.000 0.012 0.000 0.016
#> GSM905053     4  0.3424      0.886 0.240 0.000 0.000 0.760 0.000
#> GSM905061     4  0.3814      0.865 0.276 0.000 0.000 0.720 0.004
#> GSM905063     1  0.2464      0.922 0.904 0.000 0.048 0.004 0.044
#> GSM905054     4  0.3661      0.867 0.276 0.000 0.000 0.724 0.000
#> GSM905062     4  0.3814      0.865 0.276 0.000 0.000 0.720 0.004
#> GSM905052     4  0.3579      0.886 0.240 0.000 0.004 0.756 0.000
#> GSM905059     1  0.0912      0.951 0.972 0.000 0.012 0.000 0.016
#> GSM905047     1  0.0807      0.951 0.976 0.000 0.012 0.000 0.012
#> GSM905066     1  0.2464      0.922 0.904 0.000 0.048 0.004 0.044
#> GSM905056     1  0.0880      0.947 0.968 0.000 0.032 0.000 0.000
#> GSM905060     1  0.1403      0.949 0.952 0.000 0.024 0.000 0.024
#> GSM905048     1  0.0579      0.953 0.984 0.000 0.008 0.000 0.008
#> GSM905067     1  0.0671      0.951 0.980 0.000 0.016 0.000 0.004
#> GSM905057     1  0.0880      0.947 0.968 0.000 0.032 0.000 0.000
#> GSM905068     4  0.3424      0.886 0.240 0.000 0.000 0.760 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM905004     5  0.4389      0.796 0.048 0.104 0.004 0.052 0.784 0.008
#> GSM905024     4  0.6936      0.448 0.108 0.248 0.000 0.500 0.136 0.008
#> GSM905038     5  0.1398      0.920 0.000 0.000 0.052 0.000 0.940 0.008
#> GSM905043     4  0.6936      0.448 0.108 0.248 0.000 0.500 0.136 0.008
#> GSM904986     3  0.0951      0.901 0.004 0.020 0.968 0.000 0.000 0.008
#> GSM904991     3  0.5233      0.531 0.028 0.076 0.632 0.000 0.264 0.000
#> GSM904994     3  0.0748      0.906 0.000 0.016 0.976 0.000 0.004 0.004
#> GSM904996     3  0.0146      0.907 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM905007     3  0.4710      0.664 0.028 0.076 0.716 0.000 0.180 0.000
#> GSM905012     3  0.0458      0.905 0.000 0.016 0.984 0.000 0.000 0.000
#> GSM905022     3  0.0951      0.901 0.004 0.020 0.968 0.000 0.000 0.008
#> GSM905026     5  0.1765      0.918 0.000 0.000 0.052 0.000 0.924 0.024
#> GSM905027     5  0.1738      0.920 0.000 0.004 0.052 0.000 0.928 0.016
#> GSM905031     5  0.1765      0.918 0.000 0.000 0.052 0.000 0.924 0.024
#> GSM905036     5  0.1471      0.889 0.000 0.000 0.004 0.064 0.932 0.000
#> GSM905041     5  0.4603      0.729 0.004 0.168 0.004 0.096 0.724 0.004
#> GSM905044     5  0.1909      0.918 0.000 0.004 0.052 0.000 0.920 0.024
#> GSM904989     3  0.0603      0.905 0.000 0.016 0.980 0.000 0.004 0.000
#> GSM904999     3  0.1036      0.900 0.004 0.024 0.964 0.000 0.000 0.008
#> GSM905002     3  0.0146      0.907 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM905009     3  0.0603      0.905 0.000 0.016 0.980 0.000 0.004 0.000
#> GSM905014     3  0.4547      0.688 0.028 0.076 0.736 0.000 0.160 0.000
#> GSM905017     3  0.1036      0.900 0.004 0.024 0.964 0.000 0.000 0.008
#> GSM905020     3  0.0146      0.907 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM905023     5  0.1429      0.896 0.000 0.000 0.004 0.052 0.940 0.004
#> GSM905029     5  0.1542      0.920 0.000 0.004 0.052 0.000 0.936 0.008
#> GSM905032     4  0.5067      0.443 0.004 0.080 0.000 0.612 0.300 0.004
#> GSM905034     1  0.5988      0.736 0.564 0.284 0.000 0.116 0.024 0.012
#> GSM905040     1  0.4384      0.895 0.760 0.104 0.000 0.116 0.008 0.012
#> GSM904985     2  0.6719      0.940 0.060 0.464 0.160 0.000 0.004 0.312
#> GSM904988     2  0.5498      0.950 0.000 0.528 0.148 0.000 0.000 0.324
#> GSM904990     2  0.5498      0.950 0.000 0.528 0.148 0.000 0.000 0.324
#> GSM904992     2  0.5498      0.950 0.000 0.528 0.148 0.000 0.000 0.324
#> GSM904995     2  0.6719      0.940 0.060 0.464 0.160 0.000 0.004 0.312
#> GSM904998     2  0.6337      0.949 0.040 0.488 0.160 0.000 0.000 0.312
#> GSM905000     2  0.5547      0.953 0.000 0.528 0.160 0.000 0.000 0.312
#> GSM905003     2  0.6382      0.947 0.044 0.488 0.160 0.000 0.000 0.308
#> GSM905006     2  0.5498      0.950 0.000 0.528 0.148 0.000 0.000 0.324
#> GSM905008     2  0.6392      0.948 0.044 0.484 0.160 0.000 0.000 0.312
#> GSM905011     2  0.5498      0.950 0.000 0.528 0.148 0.000 0.000 0.324
#> GSM905013     2  0.5547      0.953 0.000 0.528 0.160 0.000 0.000 0.312
#> GSM905016     2  0.6719      0.940 0.060 0.464 0.160 0.000 0.004 0.312
#> GSM905018     2  0.5547      0.953 0.000 0.528 0.160 0.000 0.000 0.312
#> GSM905021     2  0.6823      0.816 0.064 0.480 0.224 0.000 0.004 0.228
#> GSM905025     6  0.4452      0.394 0.004 0.040 0.000 0.000 0.312 0.644
#> GSM905028     6  0.1757      0.805 0.000 0.008 0.052 0.000 0.012 0.928
#> GSM905030     6  0.1682      0.814 0.000 0.000 0.052 0.000 0.020 0.928
#> GSM905033     6  0.2237      0.806 0.004 0.004 0.064 0.000 0.024 0.904
#> GSM905035     6  0.1765      0.816 0.000 0.000 0.052 0.000 0.024 0.924
#> GSM905037     6  0.1757      0.805 0.000 0.008 0.052 0.000 0.012 0.928
#> GSM905039     6  0.1765      0.816 0.000 0.000 0.052 0.000 0.024 0.924
#> GSM905042     6  0.4370      0.426 0.004 0.000 0.032 0.000 0.324 0.640
#> GSM905046     1  0.3251      0.927 0.828 0.040 0.000 0.124 0.000 0.008
#> GSM905065     1  0.2600      0.929 0.860 0.008 0.000 0.124 0.000 0.008
#> GSM905049     4  0.0000      0.894 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905050     4  0.0547      0.879 0.000 0.000 0.000 0.980 0.020 0.000
#> GSM905064     4  0.0000      0.894 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905045     4  0.0146      0.894 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM905051     4  0.0260      0.893 0.000 0.008 0.000 0.992 0.000 0.000
#> GSM905055     1  0.3487      0.920 0.824 0.024 0.000 0.124 0.008 0.020
#> GSM905058     1  0.3491      0.926 0.820 0.040 0.000 0.124 0.004 0.012
#> GSM905053     4  0.0000      0.894 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905061     4  0.0146      0.894 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM905063     1  0.4965      0.895 0.740 0.080 0.000 0.120 0.028 0.032
#> GSM905054     4  0.0000      0.894 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905062     4  0.0146      0.894 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM905052     4  0.0260      0.893 0.000 0.008 0.000 0.992 0.000 0.000
#> GSM905059     1  0.3491      0.926 0.820 0.040 0.000 0.124 0.004 0.012
#> GSM905047     1  0.3251      0.927 0.828 0.040 0.000 0.124 0.000 0.008
#> GSM905066     1  0.4965      0.895 0.740 0.080 0.000 0.120 0.028 0.032
#> GSM905056     1  0.3487      0.920 0.824 0.024 0.000 0.124 0.008 0.020
#> GSM905060     1  0.3924      0.925 0.788 0.076 0.000 0.124 0.004 0.008
#> GSM905048     1  0.3036      0.929 0.840 0.028 0.000 0.124 0.000 0.008
#> GSM905067     1  0.2600      0.929 0.860 0.008 0.000 0.124 0.000 0.008
#> GSM905057     1  0.3487      0.920 0.824 0.024 0.000 0.124 0.008 0.020
#> GSM905068     4  0.0000      0.894 0.000 0.000 0.000 1.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n tissue(p) genotype/variation(p) individual(p) k
#> ATC:kmeans 76  4.83e-08              9.05e-03        0.0164 2
#> ATC:kmeans 72  3.14e-09              4.42e-05        0.0659 3
#> ATC:kmeans 43  2.49e-07              1.70e-02        0.6247 4
#> ATC:kmeans 73  4.38e-16              3.16e-07        0.3065 5
#> ATC:kmeans 71  1.95e-14              2.53e-07        0.2511 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 76 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.981       0.993         0.5002 0.499   0.499
#> 3 3 0.782           0.917       0.917         0.2962 0.828   0.661
#> 4 4 1.000           0.967       0.978         0.0971 0.933   0.806
#> 5 5 0.878           0.924       0.875         0.0774 0.924   0.735
#> 6 6 0.863           0.901       0.863         0.0422 0.949   0.763

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM905004     1   0.000     0.9855 1.000 0.000
#> GSM905024     1   0.000     0.9855 1.000 0.000
#> GSM905038     1   0.998     0.0919 0.524 0.476
#> GSM905043     1   0.000     0.9855 1.000 0.000
#> GSM904986     2   0.000     0.9991 0.000 1.000
#> GSM904991     2   0.000     0.9991 0.000 1.000
#> GSM904994     2   0.000     0.9991 0.000 1.000
#> GSM904996     2   0.000     0.9991 0.000 1.000
#> GSM905007     2   0.000     0.9991 0.000 1.000
#> GSM905012     2   0.000     0.9991 0.000 1.000
#> GSM905022     2   0.000     0.9991 0.000 1.000
#> GSM905026     2   0.000     0.9991 0.000 1.000
#> GSM905027     2   0.000     0.9991 0.000 1.000
#> GSM905031     2   0.000     0.9991 0.000 1.000
#> GSM905036     1   0.000     0.9855 1.000 0.000
#> GSM905041     1   0.000     0.9855 1.000 0.000
#> GSM905044     2   0.000     0.9991 0.000 1.000
#> GSM904989     2   0.000     0.9991 0.000 1.000
#> GSM904999     2   0.000     0.9991 0.000 1.000
#> GSM905002     2   0.000     0.9991 0.000 1.000
#> GSM905009     2   0.000     0.9991 0.000 1.000
#> GSM905014     2   0.000     0.9991 0.000 1.000
#> GSM905017     2   0.000     0.9991 0.000 1.000
#> GSM905020     2   0.000     0.9991 0.000 1.000
#> GSM905023     1   0.000     0.9855 1.000 0.000
#> GSM905029     2   0.224     0.9619 0.036 0.964
#> GSM905032     1   0.000     0.9855 1.000 0.000
#> GSM905034     1   0.000     0.9855 1.000 0.000
#> GSM905040     1   0.000     0.9855 1.000 0.000
#> GSM904985     2   0.000     0.9991 0.000 1.000
#> GSM904988     2   0.000     0.9991 0.000 1.000
#> GSM904990     2   0.000     0.9991 0.000 1.000
#> GSM904992     2   0.000     0.9991 0.000 1.000
#> GSM904995     2   0.000     0.9991 0.000 1.000
#> GSM904998     2   0.000     0.9991 0.000 1.000
#> GSM905000     2   0.000     0.9991 0.000 1.000
#> GSM905003     2   0.000     0.9991 0.000 1.000
#> GSM905006     2   0.000     0.9991 0.000 1.000
#> GSM905008     2   0.000     0.9991 0.000 1.000
#> GSM905011     2   0.000     0.9991 0.000 1.000
#> GSM905013     2   0.000     0.9991 0.000 1.000
#> GSM905016     2   0.000     0.9991 0.000 1.000
#> GSM905018     2   0.000     0.9991 0.000 1.000
#> GSM905021     2   0.000     0.9991 0.000 1.000
#> GSM905025     2   0.000     0.9991 0.000 1.000
#> GSM905028     2   0.000     0.9991 0.000 1.000
#> GSM905030     2   0.000     0.9991 0.000 1.000
#> GSM905033     2   0.000     0.9991 0.000 1.000
#> GSM905035     2   0.000     0.9991 0.000 1.000
#> GSM905037     2   0.000     0.9991 0.000 1.000
#> GSM905039     2   0.000     0.9991 0.000 1.000
#> GSM905042     2   0.000     0.9991 0.000 1.000
#> GSM905046     1   0.000     0.9855 1.000 0.000
#> GSM905065     1   0.000     0.9855 1.000 0.000
#> GSM905049     1   0.000     0.9855 1.000 0.000
#> GSM905050     1   0.000     0.9855 1.000 0.000
#> GSM905064     1   0.000     0.9855 1.000 0.000
#> GSM905045     1   0.000     0.9855 1.000 0.000
#> GSM905051     1   0.000     0.9855 1.000 0.000
#> GSM905055     1   0.000     0.9855 1.000 0.000
#> GSM905058     1   0.000     0.9855 1.000 0.000
#> GSM905053     1   0.000     0.9855 1.000 0.000
#> GSM905061     1   0.000     0.9855 1.000 0.000
#> GSM905063     1   0.000     0.9855 1.000 0.000
#> GSM905054     1   0.000     0.9855 1.000 0.000
#> GSM905062     1   0.000     0.9855 1.000 0.000
#> GSM905052     1   0.000     0.9855 1.000 0.000
#> GSM905059     1   0.000     0.9855 1.000 0.000
#> GSM905047     1   0.000     0.9855 1.000 0.000
#> GSM905066     1   0.000     0.9855 1.000 0.000
#> GSM905056     1   0.000     0.9855 1.000 0.000
#> GSM905060     1   0.000     0.9855 1.000 0.000
#> GSM905048     1   0.000     0.9855 1.000 0.000
#> GSM905067     1   0.000     0.9855 1.000 0.000
#> GSM905057     1   0.000     0.9855 1.000 0.000
#> GSM905068     1   0.000     0.9855 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM905004     1  0.0592      0.980 0.988 0.000 0.012
#> GSM905024     1  0.0000      0.990 1.000 0.000 0.000
#> GSM905038     3  0.4062      0.746 0.000 0.164 0.836
#> GSM905043     1  0.0000      0.990 1.000 0.000 0.000
#> GSM904986     3  0.3686      0.875 0.000 0.140 0.860
#> GSM904991     3  0.2625      0.848 0.000 0.084 0.916
#> GSM904994     3  0.3686      0.875 0.000 0.140 0.860
#> GSM904996     3  0.3686      0.875 0.000 0.140 0.860
#> GSM905007     3  0.3686      0.875 0.000 0.140 0.860
#> GSM905012     3  0.3686      0.875 0.000 0.140 0.860
#> GSM905022     3  0.3686      0.875 0.000 0.140 0.860
#> GSM905026     3  0.4178      0.743 0.000 0.172 0.828
#> GSM905027     3  0.4062      0.746 0.000 0.164 0.836
#> GSM905031     3  0.4178      0.743 0.000 0.172 0.828
#> GSM905036     1  0.3686      0.869 0.860 0.000 0.140
#> GSM905041     1  0.1964      0.946 0.944 0.000 0.056
#> GSM905044     3  0.4062      0.746 0.000 0.164 0.836
#> GSM904989     3  0.3686      0.875 0.000 0.140 0.860
#> GSM904999     3  0.3686      0.875 0.000 0.140 0.860
#> GSM905002     3  0.3686      0.875 0.000 0.140 0.860
#> GSM905009     3  0.3686      0.875 0.000 0.140 0.860
#> GSM905014     3  0.3686      0.875 0.000 0.140 0.860
#> GSM905017     3  0.3686      0.875 0.000 0.140 0.860
#> GSM905020     3  0.3686      0.875 0.000 0.140 0.860
#> GSM905023     1  0.3686      0.869 0.860 0.000 0.140
#> GSM905029     3  0.4002      0.746 0.000 0.160 0.840
#> GSM905032     1  0.0000      0.990 1.000 0.000 0.000
#> GSM905034     1  0.0000      0.990 1.000 0.000 0.000
#> GSM905040     1  0.0000      0.990 1.000 0.000 0.000
#> GSM904985     2  0.4002      0.920 0.000 0.840 0.160
#> GSM904988     2  0.4002      0.920 0.000 0.840 0.160
#> GSM904990     2  0.4002      0.920 0.000 0.840 0.160
#> GSM904992     2  0.4002      0.920 0.000 0.840 0.160
#> GSM904995     2  0.4002      0.920 0.000 0.840 0.160
#> GSM904998     2  0.4002      0.920 0.000 0.840 0.160
#> GSM905000     2  0.4002      0.920 0.000 0.840 0.160
#> GSM905003     2  0.4002      0.920 0.000 0.840 0.160
#> GSM905006     2  0.4002      0.920 0.000 0.840 0.160
#> GSM905008     2  0.4002      0.920 0.000 0.840 0.160
#> GSM905011     2  0.4002      0.920 0.000 0.840 0.160
#> GSM905013     2  0.4002      0.920 0.000 0.840 0.160
#> GSM905016     2  0.4002      0.920 0.000 0.840 0.160
#> GSM905018     2  0.4002      0.920 0.000 0.840 0.160
#> GSM905021     2  0.4002      0.920 0.000 0.840 0.160
#> GSM905025     2  0.0000      0.851 0.000 1.000 0.000
#> GSM905028     2  0.0000      0.851 0.000 1.000 0.000
#> GSM905030     2  0.0000      0.851 0.000 1.000 0.000
#> GSM905033     2  0.0000      0.851 0.000 1.000 0.000
#> GSM905035     2  0.0000      0.851 0.000 1.000 0.000
#> GSM905037     2  0.0000      0.851 0.000 1.000 0.000
#> GSM905039     2  0.0000      0.851 0.000 1.000 0.000
#> GSM905042     2  0.0000      0.851 0.000 1.000 0.000
#> GSM905046     1  0.0000      0.990 1.000 0.000 0.000
#> GSM905065     1  0.0000      0.990 1.000 0.000 0.000
#> GSM905049     1  0.0000      0.990 1.000 0.000 0.000
#> GSM905050     1  0.0000      0.990 1.000 0.000 0.000
#> GSM905064     1  0.0000      0.990 1.000 0.000 0.000
#> GSM905045     1  0.0000      0.990 1.000 0.000 0.000
#> GSM905051     1  0.0000      0.990 1.000 0.000 0.000
#> GSM905055     1  0.0000      0.990 1.000 0.000 0.000
#> GSM905058     1  0.0000      0.990 1.000 0.000 0.000
#> GSM905053     1  0.0000      0.990 1.000 0.000 0.000
#> GSM905061     1  0.0000      0.990 1.000 0.000 0.000
#> GSM905063     1  0.0000      0.990 1.000 0.000 0.000
#> GSM905054     1  0.0000      0.990 1.000 0.000 0.000
#> GSM905062     1  0.0000      0.990 1.000 0.000 0.000
#> GSM905052     1  0.0000      0.990 1.000 0.000 0.000
#> GSM905059     1  0.0000      0.990 1.000 0.000 0.000
#> GSM905047     1  0.0000      0.990 1.000 0.000 0.000
#> GSM905066     1  0.0000      0.990 1.000 0.000 0.000
#> GSM905056     1  0.0000      0.990 1.000 0.000 0.000
#> GSM905060     1  0.0000      0.990 1.000 0.000 0.000
#> GSM905048     1  0.0000      0.990 1.000 0.000 0.000
#> GSM905067     1  0.0000      0.990 1.000 0.000 0.000
#> GSM905057     1  0.0000      0.990 1.000 0.000 0.000
#> GSM905068     1  0.0000      0.990 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM905004     1  0.1284      0.972 0.964 0.000 0.024 0.012
#> GSM905024     1  0.0000      0.993 1.000 0.000 0.000 0.000
#> GSM905038     4  0.0469      0.917 0.000 0.000 0.012 0.988
#> GSM905043     1  0.0000      0.993 1.000 0.000 0.000 0.000
#> GSM904986     3  0.0188      0.999 0.000 0.004 0.996 0.000
#> GSM904991     3  0.0469      0.985 0.000 0.000 0.988 0.012
#> GSM904994     3  0.0188      0.999 0.000 0.004 0.996 0.000
#> GSM904996     3  0.0188      0.999 0.000 0.004 0.996 0.000
#> GSM905007     3  0.0188      0.999 0.000 0.004 0.996 0.000
#> GSM905012     3  0.0188      0.999 0.000 0.004 0.996 0.000
#> GSM905022     3  0.0188      0.999 0.000 0.004 0.996 0.000
#> GSM905026     4  0.1584      0.919 0.000 0.036 0.012 0.952
#> GSM905027     4  0.1584      0.919 0.000 0.036 0.012 0.952
#> GSM905031     4  0.1584      0.919 0.000 0.036 0.012 0.952
#> GSM905036     4  0.0469      0.916 0.012 0.000 0.000 0.988
#> GSM905041     4  0.4790      0.392 0.380 0.000 0.000 0.620
#> GSM905044     4  0.1584      0.919 0.000 0.036 0.012 0.952
#> GSM904989     3  0.0188      0.999 0.000 0.004 0.996 0.000
#> GSM904999     3  0.0188      0.999 0.000 0.004 0.996 0.000
#> GSM905002     3  0.0188      0.999 0.000 0.004 0.996 0.000
#> GSM905009     3  0.0188      0.999 0.000 0.004 0.996 0.000
#> GSM905014     3  0.0188      0.999 0.000 0.004 0.996 0.000
#> GSM905017     3  0.0188      0.999 0.000 0.004 0.996 0.000
#> GSM905020     3  0.0188      0.999 0.000 0.004 0.996 0.000
#> GSM905023     4  0.0469      0.916 0.012 0.000 0.000 0.988
#> GSM905029     4  0.0469      0.917 0.000 0.000 0.012 0.988
#> GSM905032     1  0.0000      0.993 1.000 0.000 0.000 0.000
#> GSM905034     1  0.0000      0.993 1.000 0.000 0.000 0.000
#> GSM905040     1  0.0000      0.993 1.000 0.000 0.000 0.000
#> GSM904985     2  0.1118      0.974 0.000 0.964 0.036 0.000
#> GSM904988     2  0.1118      0.974 0.000 0.964 0.036 0.000
#> GSM904990     2  0.1118      0.974 0.000 0.964 0.036 0.000
#> GSM904992     2  0.1118      0.974 0.000 0.964 0.036 0.000
#> GSM904995     2  0.1118      0.974 0.000 0.964 0.036 0.000
#> GSM904998     2  0.1118      0.974 0.000 0.964 0.036 0.000
#> GSM905000     2  0.1118      0.974 0.000 0.964 0.036 0.000
#> GSM905003     2  0.1118      0.974 0.000 0.964 0.036 0.000
#> GSM905006     2  0.1118      0.974 0.000 0.964 0.036 0.000
#> GSM905008     2  0.1118      0.974 0.000 0.964 0.036 0.000
#> GSM905011     2  0.1118      0.974 0.000 0.964 0.036 0.000
#> GSM905013     2  0.1118      0.974 0.000 0.964 0.036 0.000
#> GSM905016     2  0.1118      0.974 0.000 0.964 0.036 0.000
#> GSM905018     2  0.1118      0.974 0.000 0.964 0.036 0.000
#> GSM905021     2  0.4072      0.704 0.000 0.748 0.252 0.000
#> GSM905025     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM905028     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM905030     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM905033     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM905035     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM905037     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM905039     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM905042     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM905046     1  0.0000      0.993 1.000 0.000 0.000 0.000
#> GSM905065     1  0.0000      0.993 1.000 0.000 0.000 0.000
#> GSM905049     1  0.0657      0.990 0.984 0.000 0.004 0.012
#> GSM905050     1  0.0657      0.990 0.984 0.000 0.004 0.012
#> GSM905064     1  0.0657      0.990 0.984 0.000 0.004 0.012
#> GSM905045     1  0.0657      0.990 0.984 0.000 0.004 0.012
#> GSM905051     1  0.0469      0.991 0.988 0.000 0.000 0.012
#> GSM905055     1  0.0000      0.993 1.000 0.000 0.000 0.000
#> GSM905058     1  0.0000      0.993 1.000 0.000 0.000 0.000
#> GSM905053     1  0.0657      0.990 0.984 0.000 0.004 0.012
#> GSM905061     1  0.0657      0.990 0.984 0.000 0.004 0.012
#> GSM905063     1  0.0000      0.993 1.000 0.000 0.000 0.000
#> GSM905054     1  0.0657      0.990 0.984 0.000 0.004 0.012
#> GSM905062     1  0.0657      0.990 0.984 0.000 0.004 0.012
#> GSM905052     1  0.0469      0.991 0.988 0.000 0.000 0.012
#> GSM905059     1  0.0000      0.993 1.000 0.000 0.000 0.000
#> GSM905047     1  0.0000      0.993 1.000 0.000 0.000 0.000
#> GSM905066     1  0.0000      0.993 1.000 0.000 0.000 0.000
#> GSM905056     1  0.0000      0.993 1.000 0.000 0.000 0.000
#> GSM905060     1  0.0000      0.993 1.000 0.000 0.000 0.000
#> GSM905048     1  0.0000      0.993 1.000 0.000 0.000 0.000
#> GSM905067     1  0.0000      0.993 1.000 0.000 0.000 0.000
#> GSM905057     1  0.0000      0.993 1.000 0.000 0.000 0.000
#> GSM905068     1  0.0657      0.990 0.984 0.000 0.004 0.012

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM905004     4  0.2409      0.821 0.068 0.000 0.032 0.900 0.000
#> GSM905024     1  0.4192      0.945 0.596 0.000 0.000 0.404 0.000
#> GSM905038     5  0.0703      0.882 0.024 0.000 0.000 0.000 0.976
#> GSM905043     1  0.4192      0.945 0.596 0.000 0.000 0.404 0.000
#> GSM904986     3  0.0880      0.989 0.000 0.032 0.968 0.000 0.000
#> GSM904991     3  0.0771      0.950 0.020 0.000 0.976 0.000 0.004
#> GSM904994     3  0.0880      0.989 0.000 0.032 0.968 0.000 0.000
#> GSM904996     3  0.0880      0.989 0.000 0.032 0.968 0.000 0.000
#> GSM905007     3  0.0404      0.959 0.012 0.000 0.988 0.000 0.000
#> GSM905012     3  0.0880      0.989 0.000 0.032 0.968 0.000 0.000
#> GSM905022     3  0.0880      0.989 0.000 0.032 0.968 0.000 0.000
#> GSM905026     5  0.2583      0.883 0.132 0.004 0.000 0.000 0.864
#> GSM905027     5  0.2488      0.884 0.124 0.004 0.000 0.000 0.872
#> GSM905031     5  0.2583      0.883 0.132 0.004 0.000 0.000 0.864
#> GSM905036     5  0.1478      0.875 0.064 0.000 0.000 0.000 0.936
#> GSM905041     5  0.5987      0.355 0.304 0.000 0.000 0.140 0.556
#> GSM905044     5  0.2583      0.883 0.132 0.004 0.000 0.000 0.864
#> GSM904989     3  0.0880      0.989 0.000 0.032 0.968 0.000 0.000
#> GSM904999     3  0.0880      0.989 0.000 0.032 0.968 0.000 0.000
#> GSM905002     3  0.0880      0.989 0.000 0.032 0.968 0.000 0.000
#> GSM905009     3  0.0880      0.989 0.000 0.032 0.968 0.000 0.000
#> GSM905014     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> GSM905017     3  0.0880      0.989 0.000 0.032 0.968 0.000 0.000
#> GSM905020     3  0.0880      0.989 0.000 0.032 0.968 0.000 0.000
#> GSM905023     5  0.1544      0.874 0.068 0.000 0.000 0.000 0.932
#> GSM905029     5  0.0566      0.883 0.012 0.000 0.004 0.000 0.984
#> GSM905032     1  0.4227      0.966 0.580 0.000 0.000 0.420 0.000
#> GSM905034     1  0.4201      0.951 0.592 0.000 0.000 0.408 0.000
#> GSM905040     1  0.4249      0.979 0.568 0.000 0.000 0.432 0.000
#> GSM904985     2  0.0162      0.909 0.000 0.996 0.004 0.000 0.000
#> GSM904988     2  0.0162      0.909 0.000 0.996 0.004 0.000 0.000
#> GSM904990     2  0.0162      0.909 0.000 0.996 0.004 0.000 0.000
#> GSM904992     2  0.0162      0.909 0.000 0.996 0.004 0.000 0.000
#> GSM904995     2  0.0162      0.909 0.000 0.996 0.004 0.000 0.000
#> GSM904998     2  0.0162      0.909 0.000 0.996 0.004 0.000 0.000
#> GSM905000     2  0.0162      0.909 0.000 0.996 0.004 0.000 0.000
#> GSM905003     2  0.0162      0.909 0.000 0.996 0.004 0.000 0.000
#> GSM905006     2  0.0162      0.909 0.000 0.996 0.004 0.000 0.000
#> GSM905008     2  0.0162      0.909 0.000 0.996 0.004 0.000 0.000
#> GSM905011     2  0.0162      0.909 0.000 0.996 0.004 0.000 0.000
#> GSM905013     2  0.0162      0.909 0.000 0.996 0.004 0.000 0.000
#> GSM905016     2  0.0162      0.909 0.000 0.996 0.004 0.000 0.000
#> GSM905018     2  0.0162      0.909 0.000 0.996 0.004 0.000 0.000
#> GSM905021     2  0.3003      0.722 0.000 0.812 0.188 0.000 0.000
#> GSM905025     2  0.3612      0.804 0.268 0.732 0.000 0.000 0.000
#> GSM905028     2  0.3366      0.830 0.232 0.768 0.000 0.000 0.000
#> GSM905030     2  0.3366      0.830 0.232 0.768 0.000 0.000 0.000
#> GSM905033     2  0.3109      0.842 0.200 0.800 0.000 0.000 0.000
#> GSM905035     2  0.3366      0.830 0.232 0.768 0.000 0.000 0.000
#> GSM905037     2  0.3366      0.830 0.232 0.768 0.000 0.000 0.000
#> GSM905039     2  0.3366      0.830 0.232 0.768 0.000 0.000 0.000
#> GSM905042     2  0.3366      0.830 0.232 0.768 0.000 0.000 0.000
#> GSM905046     1  0.4262      0.986 0.560 0.000 0.000 0.440 0.000
#> GSM905065     1  0.4262      0.986 0.560 0.000 0.000 0.440 0.000
#> GSM905049     4  0.0000      0.970 0.000 0.000 0.000 1.000 0.000
#> GSM905050     4  0.0000      0.970 0.000 0.000 0.000 1.000 0.000
#> GSM905064     4  0.0404      0.958 0.012 0.000 0.000 0.988 0.000
#> GSM905045     4  0.0000      0.970 0.000 0.000 0.000 1.000 0.000
#> GSM905051     4  0.0963      0.926 0.036 0.000 0.000 0.964 0.000
#> GSM905055     1  0.4262      0.986 0.560 0.000 0.000 0.440 0.000
#> GSM905058     1  0.4262      0.986 0.560 0.000 0.000 0.440 0.000
#> GSM905053     4  0.0000      0.970 0.000 0.000 0.000 1.000 0.000
#> GSM905061     4  0.0000      0.970 0.000 0.000 0.000 1.000 0.000
#> GSM905063     1  0.4262      0.986 0.560 0.000 0.000 0.440 0.000
#> GSM905054     4  0.0000      0.970 0.000 0.000 0.000 1.000 0.000
#> GSM905062     4  0.0000      0.970 0.000 0.000 0.000 1.000 0.000
#> GSM905052     4  0.0963      0.926 0.036 0.000 0.000 0.964 0.000
#> GSM905059     1  0.4262      0.986 0.560 0.000 0.000 0.440 0.000
#> GSM905047     1  0.4262      0.986 0.560 0.000 0.000 0.440 0.000
#> GSM905066     1  0.4262      0.986 0.560 0.000 0.000 0.440 0.000
#> GSM905056     1  0.4262      0.986 0.560 0.000 0.000 0.440 0.000
#> GSM905060     1  0.4262      0.986 0.560 0.000 0.000 0.440 0.000
#> GSM905048     1  0.4262      0.986 0.560 0.000 0.000 0.440 0.000
#> GSM905067     1  0.4262      0.986 0.560 0.000 0.000 0.440 0.000
#> GSM905057     1  0.4262      0.986 0.560 0.000 0.000 0.440 0.000
#> GSM905068     4  0.0000      0.970 0.000 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM905004     4  0.3469      0.683 0.104 0.088 0.000 0.808 0.000 0.000
#> GSM905024     1  0.1745      0.871 0.924 0.020 0.000 0.056 0.000 0.000
#> GSM905038     6  0.4212      0.811 0.000 0.264 0.000 0.048 0.000 0.688
#> GSM905043     1  0.1745      0.871 0.924 0.020 0.000 0.056 0.000 0.000
#> GSM904986     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904991     3  0.1682      0.940 0.000 0.020 0.928 0.052 0.000 0.000
#> GSM904994     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904996     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905007     3  0.1480      0.948 0.000 0.020 0.940 0.040 0.000 0.000
#> GSM905012     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905022     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905026     6  0.1141      0.846 0.000 0.000 0.000 0.000 0.052 0.948
#> GSM905027     6  0.1075      0.847 0.000 0.000 0.000 0.000 0.048 0.952
#> GSM905031     6  0.1141      0.846 0.000 0.000 0.000 0.000 0.052 0.948
#> GSM905036     6  0.5042      0.773 0.000 0.332 0.000 0.092 0.000 0.576
#> GSM905041     1  0.7253     -0.228 0.380 0.232 0.000 0.104 0.000 0.284
#> GSM905044     6  0.1075      0.847 0.000 0.000 0.000 0.000 0.048 0.952
#> GSM904989     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904999     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905002     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905009     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905014     3  0.0993      0.962 0.000 0.012 0.964 0.024 0.000 0.000
#> GSM905017     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905020     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905023     6  0.5047      0.769 0.000 0.348 0.000 0.088 0.000 0.564
#> GSM905029     6  0.2911      0.838 0.000 0.144 0.000 0.024 0.000 0.832
#> GSM905032     1  0.1633      0.884 0.932 0.024 0.000 0.044 0.000 0.000
#> GSM905034     1  0.1124      0.899 0.956 0.008 0.000 0.036 0.000 0.000
#> GSM905040     1  0.0458      0.917 0.984 0.000 0.000 0.016 0.000 0.000
#> GSM904985     2  0.4439      0.978 0.000 0.540 0.028 0.000 0.432 0.000
#> GSM904988     2  0.4377      0.983 0.000 0.540 0.024 0.000 0.436 0.000
#> GSM904990     2  0.4377      0.983 0.000 0.540 0.024 0.000 0.436 0.000
#> GSM904992     2  0.4377      0.983 0.000 0.540 0.024 0.000 0.436 0.000
#> GSM904995     2  0.4377      0.983 0.000 0.540 0.024 0.000 0.436 0.000
#> GSM904998     2  0.4377      0.983 0.000 0.540 0.024 0.000 0.436 0.000
#> GSM905000     2  0.4377      0.983 0.000 0.540 0.024 0.000 0.436 0.000
#> GSM905003     2  0.4439      0.978 0.000 0.540 0.028 0.000 0.432 0.000
#> GSM905006     2  0.4377      0.983 0.000 0.540 0.024 0.000 0.436 0.000
#> GSM905008     2  0.4439      0.978 0.000 0.540 0.028 0.000 0.432 0.000
#> GSM905011     2  0.4377      0.983 0.000 0.540 0.024 0.000 0.436 0.000
#> GSM905013     2  0.4377      0.983 0.000 0.540 0.024 0.000 0.436 0.000
#> GSM905016     2  0.4377      0.983 0.000 0.540 0.024 0.000 0.436 0.000
#> GSM905018     2  0.4377      0.983 0.000 0.540 0.024 0.000 0.436 0.000
#> GSM905021     2  0.5300      0.787 0.000 0.540 0.116 0.000 0.344 0.000
#> GSM905025     5  0.2527      0.778 0.000 0.064 0.000 0.048 0.884 0.004
#> GSM905028     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM905030     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM905033     5  0.2219      0.668 0.000 0.136 0.000 0.000 0.864 0.000
#> GSM905035     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM905037     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM905039     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM905042     5  0.0790      0.890 0.000 0.032 0.000 0.000 0.968 0.000
#> GSM905046     1  0.0458      0.926 0.984 0.000 0.000 0.016 0.000 0.000
#> GSM905065     1  0.0260      0.927 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM905049     4  0.3126      0.927 0.248 0.000 0.000 0.752 0.000 0.000
#> GSM905050     4  0.3126      0.927 0.248 0.000 0.000 0.752 0.000 0.000
#> GSM905064     4  0.3515      0.861 0.324 0.000 0.000 0.676 0.000 0.000
#> GSM905045     4  0.3126      0.927 0.248 0.000 0.000 0.752 0.000 0.000
#> GSM905051     4  0.3899      0.750 0.404 0.004 0.000 0.592 0.000 0.000
#> GSM905055     1  0.0000      0.926 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM905058     1  0.0458      0.926 0.984 0.000 0.000 0.016 0.000 0.000
#> GSM905053     4  0.3126      0.927 0.248 0.000 0.000 0.752 0.000 0.000
#> GSM905061     4  0.3126      0.927 0.248 0.000 0.000 0.752 0.000 0.000
#> GSM905063     1  0.0458      0.926 0.984 0.000 0.000 0.016 0.000 0.000
#> GSM905054     4  0.3126      0.927 0.248 0.000 0.000 0.752 0.000 0.000
#> GSM905062     4  0.3126      0.927 0.248 0.000 0.000 0.752 0.000 0.000
#> GSM905052     4  0.3899      0.750 0.404 0.004 0.000 0.592 0.000 0.000
#> GSM905059     1  0.0458      0.926 0.984 0.000 0.000 0.016 0.000 0.000
#> GSM905047     1  0.0458      0.926 0.984 0.000 0.000 0.016 0.000 0.000
#> GSM905066     1  0.0458      0.926 0.984 0.000 0.000 0.016 0.000 0.000
#> GSM905056     1  0.0000      0.926 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM905060     1  0.0458      0.926 0.984 0.000 0.000 0.016 0.000 0.000
#> GSM905048     1  0.0458      0.926 0.984 0.000 0.000 0.016 0.000 0.000
#> GSM905067     1  0.0260      0.927 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM905057     1  0.0000      0.926 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM905068     4  0.3126      0.927 0.248 0.000 0.000 0.752 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n tissue(p) genotype/variation(p) individual(p) k
#> ATC:skmeans 75  2.44e-07              6.76e-04        0.0181 2
#> ATC:skmeans 76  3.46e-15              4.51e-06        0.6508 3
#> ATC:skmeans 75  4.45e-13              8.70e-06        0.6463 4
#> ATC:skmeans 75  1.44e-15              8.32e-09        0.1357 5
#> ATC:skmeans 75  8.81e-13              5.80e-08        0.1715 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 76 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.920           0.963       0.984         0.4793 0.522   0.522
#> 3 3 1.000           0.952       0.978         0.3805 0.788   0.606
#> 4 4 0.743           0.733       0.792         0.1289 0.794   0.483
#> 5 5 0.950           0.916       0.961         0.0796 0.850   0.493
#> 6 6 1.000           0.965       0.986         0.0375 0.935   0.693

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 5

There is also optional best \(k\) = 2 3 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM905004     2  0.5946      0.844 0.144 0.856
#> GSM905024     1  0.0000      0.984 1.000 0.000
#> GSM905038     2  0.1414      0.968 0.020 0.980
#> GSM905043     1  0.0000      0.984 1.000 0.000
#> GSM904986     2  0.0000      0.983 0.000 1.000
#> GSM904991     2  0.0672      0.977 0.008 0.992
#> GSM904994     2  0.0000      0.983 0.000 1.000
#> GSM904996     2  0.0000      0.983 0.000 1.000
#> GSM905007     2  0.0376      0.980 0.004 0.996
#> GSM905012     2  0.0000      0.983 0.000 1.000
#> GSM905022     2  0.0000      0.983 0.000 1.000
#> GSM905026     2  0.0376      0.980 0.004 0.996
#> GSM905027     2  0.0376      0.980 0.004 0.996
#> GSM905031     2  0.0376      0.980 0.004 0.996
#> GSM905036     2  0.5842      0.849 0.140 0.860
#> GSM905041     2  0.6623      0.808 0.172 0.828
#> GSM905044     2  0.0376      0.980 0.004 0.996
#> GSM904989     2  0.0000      0.983 0.000 1.000
#> GSM904999     2  0.0000      0.983 0.000 1.000
#> GSM905002     2  0.0000      0.983 0.000 1.000
#> GSM905009     2  0.0000      0.983 0.000 1.000
#> GSM905014     2  0.0000      0.983 0.000 1.000
#> GSM905017     2  0.0000      0.983 0.000 1.000
#> GSM905020     2  0.0000      0.983 0.000 1.000
#> GSM905023     2  0.5842      0.849 0.140 0.860
#> GSM905029     2  0.5737      0.854 0.136 0.864
#> GSM905032     1  0.9881      0.183 0.564 0.436
#> GSM905034     1  0.0000      0.984 1.000 0.000
#> GSM905040     1  0.0000      0.984 1.000 0.000
#> GSM904985     2  0.0000      0.983 0.000 1.000
#> GSM904988     2  0.0000      0.983 0.000 1.000
#> GSM904990     2  0.0000      0.983 0.000 1.000
#> GSM904992     2  0.0000      0.983 0.000 1.000
#> GSM904995     2  0.0000      0.983 0.000 1.000
#> GSM904998     2  0.0000      0.983 0.000 1.000
#> GSM905000     2  0.0000      0.983 0.000 1.000
#> GSM905003     2  0.0000      0.983 0.000 1.000
#> GSM905006     2  0.0000      0.983 0.000 1.000
#> GSM905008     2  0.0000      0.983 0.000 1.000
#> GSM905011     2  0.0000      0.983 0.000 1.000
#> GSM905013     2  0.0000      0.983 0.000 1.000
#> GSM905016     2  0.0000      0.983 0.000 1.000
#> GSM905018     2  0.0000      0.983 0.000 1.000
#> GSM905021     2  0.0000      0.983 0.000 1.000
#> GSM905025     2  0.0000      0.983 0.000 1.000
#> GSM905028     2  0.0000      0.983 0.000 1.000
#> GSM905030     2  0.0000      0.983 0.000 1.000
#> GSM905033     2  0.0000      0.983 0.000 1.000
#> GSM905035     2  0.0000      0.983 0.000 1.000
#> GSM905037     2  0.0000      0.983 0.000 1.000
#> GSM905039     2  0.0000      0.983 0.000 1.000
#> GSM905042     2  0.0000      0.983 0.000 1.000
#> GSM905046     1  0.0000      0.984 1.000 0.000
#> GSM905065     1  0.0000      0.984 1.000 0.000
#> GSM905049     1  0.0000      0.984 1.000 0.000
#> GSM905050     1  0.0000      0.984 1.000 0.000
#> GSM905064     1  0.0000      0.984 1.000 0.000
#> GSM905045     1  0.0000      0.984 1.000 0.000
#> GSM905051     1  0.0000      0.984 1.000 0.000
#> GSM905055     1  0.0000      0.984 1.000 0.000
#> GSM905058     1  0.0000      0.984 1.000 0.000
#> GSM905053     1  0.0000      0.984 1.000 0.000
#> GSM905061     1  0.0000      0.984 1.000 0.000
#> GSM905063     1  0.0000      0.984 1.000 0.000
#> GSM905054     1  0.0000      0.984 1.000 0.000
#> GSM905062     1  0.0000      0.984 1.000 0.000
#> GSM905052     1  0.0000      0.984 1.000 0.000
#> GSM905059     1  0.0000      0.984 1.000 0.000
#> GSM905047     1  0.0000      0.984 1.000 0.000
#> GSM905066     1  0.0000      0.984 1.000 0.000
#> GSM905056     1  0.0000      0.984 1.000 0.000
#> GSM905060     1  0.0000      0.984 1.000 0.000
#> GSM905048     1  0.0000      0.984 1.000 0.000
#> GSM905067     1  0.0000      0.984 1.000 0.000
#> GSM905057     1  0.0000      0.984 1.000 0.000
#> GSM905068     1  0.0000      0.984 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM905004     3  0.0237      0.973 0.004 0.000 0.996
#> GSM905024     1  0.0000      0.986 1.000 0.000 0.000
#> GSM905038     3  0.0000      0.976 0.000 0.000 1.000
#> GSM905043     1  0.5760      0.494 0.672 0.000 0.328
#> GSM904986     2  0.1860      0.945 0.000 0.948 0.052
#> GSM904991     3  0.0000      0.976 0.000 0.000 1.000
#> GSM904994     2  0.3192      0.889 0.000 0.888 0.112
#> GSM904996     2  0.0000      0.971 0.000 1.000 0.000
#> GSM905007     3  0.0000      0.976 0.000 0.000 1.000
#> GSM905012     2  0.0000      0.971 0.000 1.000 0.000
#> GSM905022     2  0.0000      0.971 0.000 1.000 0.000
#> GSM905026     3  0.0000      0.976 0.000 0.000 1.000
#> GSM905027     3  0.0000      0.976 0.000 0.000 1.000
#> GSM905031     3  0.0000      0.976 0.000 0.000 1.000
#> GSM905036     3  0.0000      0.976 0.000 0.000 1.000
#> GSM905041     3  0.0000      0.976 0.000 0.000 1.000
#> GSM905044     3  0.0000      0.976 0.000 0.000 1.000
#> GSM904989     2  0.6192      0.315 0.000 0.580 0.420
#> GSM904999     2  0.0000      0.971 0.000 1.000 0.000
#> GSM905002     2  0.0000      0.971 0.000 1.000 0.000
#> GSM905009     2  0.1411      0.949 0.000 0.964 0.036
#> GSM905014     3  0.0000      0.976 0.000 0.000 1.000
#> GSM905017     2  0.0000      0.971 0.000 1.000 0.000
#> GSM905020     2  0.0000      0.971 0.000 1.000 0.000
#> GSM905023     3  0.0000      0.976 0.000 0.000 1.000
#> GSM905029     3  0.0000      0.976 0.000 0.000 1.000
#> GSM905032     3  0.0892      0.960 0.020 0.000 0.980
#> GSM905034     1  0.0000      0.986 1.000 0.000 0.000
#> GSM905040     1  0.0000      0.986 1.000 0.000 0.000
#> GSM904985     2  0.0000      0.971 0.000 1.000 0.000
#> GSM904988     2  0.0000      0.971 0.000 1.000 0.000
#> GSM904990     2  0.0000      0.971 0.000 1.000 0.000
#> GSM904992     2  0.0000      0.971 0.000 1.000 0.000
#> GSM904995     2  0.0000      0.971 0.000 1.000 0.000
#> GSM904998     2  0.0000      0.971 0.000 1.000 0.000
#> GSM905000     2  0.0000      0.971 0.000 1.000 0.000
#> GSM905003     2  0.0000      0.971 0.000 1.000 0.000
#> GSM905006     2  0.0000      0.971 0.000 1.000 0.000
#> GSM905008     2  0.0000      0.971 0.000 1.000 0.000
#> GSM905011     2  0.0000      0.971 0.000 1.000 0.000
#> GSM905013     2  0.0000      0.971 0.000 1.000 0.000
#> GSM905016     2  0.0000      0.971 0.000 1.000 0.000
#> GSM905018     2  0.0000      0.971 0.000 1.000 0.000
#> GSM905021     2  0.0000      0.971 0.000 1.000 0.000
#> GSM905025     3  0.0000      0.976 0.000 0.000 1.000
#> GSM905028     2  0.1289      0.956 0.000 0.968 0.032
#> GSM905030     2  0.1860      0.944 0.000 0.948 0.052
#> GSM905033     2  0.1964      0.941 0.000 0.944 0.056
#> GSM905035     2  0.2261      0.932 0.000 0.932 0.068
#> GSM905037     2  0.1289      0.956 0.000 0.968 0.032
#> GSM905039     2  0.2066      0.938 0.000 0.940 0.060
#> GSM905042     3  0.0000      0.976 0.000 0.000 1.000
#> GSM905046     1  0.0000      0.986 1.000 0.000 0.000
#> GSM905065     1  0.0000      0.986 1.000 0.000 0.000
#> GSM905049     1  0.0000      0.986 1.000 0.000 0.000
#> GSM905050     3  0.5560      0.573 0.300 0.000 0.700
#> GSM905064     1  0.0000      0.986 1.000 0.000 0.000
#> GSM905045     1  0.0000      0.986 1.000 0.000 0.000
#> GSM905051     1  0.0000      0.986 1.000 0.000 0.000
#> GSM905055     1  0.0000      0.986 1.000 0.000 0.000
#> GSM905058     1  0.0000      0.986 1.000 0.000 0.000
#> GSM905053     1  0.0000      0.986 1.000 0.000 0.000
#> GSM905061     1  0.0000      0.986 1.000 0.000 0.000
#> GSM905063     1  0.0000      0.986 1.000 0.000 0.000
#> GSM905054     1  0.0000      0.986 1.000 0.000 0.000
#> GSM905062     1  0.0000      0.986 1.000 0.000 0.000
#> GSM905052     1  0.0237      0.982 0.996 0.000 0.004
#> GSM905059     1  0.0000      0.986 1.000 0.000 0.000
#> GSM905047     1  0.0000      0.986 1.000 0.000 0.000
#> GSM905066     1  0.0000      0.986 1.000 0.000 0.000
#> GSM905056     1  0.0000      0.986 1.000 0.000 0.000
#> GSM905060     1  0.0000      0.986 1.000 0.000 0.000
#> GSM905048     1  0.0000      0.986 1.000 0.000 0.000
#> GSM905067     1  0.0000      0.986 1.000 0.000 0.000
#> GSM905057     1  0.0000      0.986 1.000 0.000 0.000
#> GSM905068     3  0.2261      0.912 0.068 0.000 0.932

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM905004     4  0.2469      0.197 0.000 0.000 0.108 0.892
#> GSM905024     1  0.1474      0.893 0.948 0.000 0.000 0.052
#> GSM905038     3  0.4933      0.728 0.000 0.000 0.568 0.432
#> GSM905043     1  0.4477      0.411 0.688 0.000 0.000 0.312
#> GSM904986     3  0.0000      0.603 0.000 0.000 1.000 0.000
#> GSM904991     3  0.1557      0.635 0.000 0.000 0.944 0.056
#> GSM904994     3  0.0000      0.603 0.000 0.000 1.000 0.000
#> GSM904996     2  0.4933      0.642 0.000 0.568 0.432 0.000
#> GSM905007     3  0.0000      0.603 0.000 0.000 1.000 0.000
#> GSM905012     2  0.4933      0.642 0.000 0.568 0.432 0.000
#> GSM905022     2  0.4933      0.642 0.000 0.568 0.432 0.000
#> GSM905026     3  0.4933      0.728 0.000 0.000 0.568 0.432
#> GSM905027     3  0.4933      0.728 0.000 0.000 0.568 0.432
#> GSM905031     3  0.4933      0.728 0.000 0.000 0.568 0.432
#> GSM905036     3  0.4933      0.728 0.000 0.000 0.568 0.432
#> GSM905041     4  0.2216      0.240 0.000 0.000 0.092 0.908
#> GSM905044     3  0.4933      0.728 0.000 0.000 0.568 0.432
#> GSM904989     3  0.0469      0.589 0.000 0.012 0.988 0.000
#> GSM904999     2  0.4941      0.638 0.000 0.564 0.436 0.000
#> GSM905002     2  0.4933      0.642 0.000 0.568 0.432 0.000
#> GSM905009     2  0.4955      0.629 0.000 0.556 0.444 0.000
#> GSM905014     3  0.0000      0.603 0.000 0.000 1.000 0.000
#> GSM905017     2  0.4933      0.642 0.000 0.568 0.432 0.000
#> GSM905020     2  0.4933      0.642 0.000 0.568 0.432 0.000
#> GSM905023     3  0.4933      0.728 0.000 0.000 0.568 0.432
#> GSM905029     3  0.4933      0.728 0.000 0.000 0.568 0.432
#> GSM905032     4  0.0000      0.404 0.000 0.000 0.000 1.000
#> GSM905034     1  0.0000      0.968 1.000 0.000 0.000 0.000
#> GSM905040     1  0.0000      0.968 1.000 0.000 0.000 0.000
#> GSM904985     2  0.0000      0.805 0.000 1.000 0.000 0.000
#> GSM904988     2  0.0000      0.805 0.000 1.000 0.000 0.000
#> GSM904990     2  0.0000      0.805 0.000 1.000 0.000 0.000
#> GSM904992     2  0.0000      0.805 0.000 1.000 0.000 0.000
#> GSM904995     2  0.0000      0.805 0.000 1.000 0.000 0.000
#> GSM904998     2  0.0000      0.805 0.000 1.000 0.000 0.000
#> GSM905000     2  0.0000      0.805 0.000 1.000 0.000 0.000
#> GSM905003     2  0.0000      0.805 0.000 1.000 0.000 0.000
#> GSM905006     2  0.0000      0.805 0.000 1.000 0.000 0.000
#> GSM905008     2  0.0000      0.805 0.000 1.000 0.000 0.000
#> GSM905011     2  0.0000      0.805 0.000 1.000 0.000 0.000
#> GSM905013     2  0.0000      0.805 0.000 1.000 0.000 0.000
#> GSM905016     2  0.0000      0.805 0.000 1.000 0.000 0.000
#> GSM905018     2  0.0000      0.805 0.000 1.000 0.000 0.000
#> GSM905021     2  0.4008      0.717 0.000 0.756 0.244 0.000
#> GSM905025     3  0.4933      0.728 0.000 0.000 0.568 0.432
#> GSM905028     3  0.4941      0.497 0.000 0.436 0.564 0.000
#> GSM905030     3  0.4933      0.504 0.000 0.432 0.568 0.000
#> GSM905033     3  0.6896      0.636 0.000 0.292 0.568 0.140
#> GSM905035     3  0.7039      0.660 0.000 0.256 0.568 0.176
#> GSM905037     3  0.4933      0.504 0.000 0.432 0.568 0.000
#> GSM905039     3  0.4933      0.504 0.000 0.432 0.568 0.000
#> GSM905042     3  0.4933      0.728 0.000 0.000 0.568 0.432
#> GSM905046     1  0.0000      0.968 1.000 0.000 0.000 0.000
#> GSM905065     1  0.0000      0.968 1.000 0.000 0.000 0.000
#> GSM905049     4  0.4933      0.713 0.432 0.000 0.000 0.568
#> GSM905050     4  0.4406      0.663 0.300 0.000 0.000 0.700
#> GSM905064     4  0.4933      0.713 0.432 0.000 0.000 0.568
#> GSM905045     4  0.4933      0.713 0.432 0.000 0.000 0.568
#> GSM905051     4  0.4933      0.713 0.432 0.000 0.000 0.568
#> GSM905055     1  0.0000      0.968 1.000 0.000 0.000 0.000
#> GSM905058     1  0.0000      0.968 1.000 0.000 0.000 0.000
#> GSM905053     4  0.4933      0.713 0.432 0.000 0.000 0.568
#> GSM905061     4  0.4933      0.713 0.432 0.000 0.000 0.568
#> GSM905063     1  0.0000      0.968 1.000 0.000 0.000 0.000
#> GSM905054     4  0.4933      0.713 0.432 0.000 0.000 0.568
#> GSM905062     4  0.4933      0.713 0.432 0.000 0.000 0.568
#> GSM905052     4  0.4925      0.712 0.428 0.000 0.000 0.572
#> GSM905059     1  0.0000      0.968 1.000 0.000 0.000 0.000
#> GSM905047     1  0.0000      0.968 1.000 0.000 0.000 0.000
#> GSM905066     1  0.0000      0.968 1.000 0.000 0.000 0.000
#> GSM905056     1  0.0000      0.968 1.000 0.000 0.000 0.000
#> GSM905060     1  0.0000      0.968 1.000 0.000 0.000 0.000
#> GSM905048     1  0.0000      0.968 1.000 0.000 0.000 0.000
#> GSM905067     1  0.0000      0.968 1.000 0.000 0.000 0.000
#> GSM905057     1  0.0000      0.968 1.000 0.000 0.000 0.000
#> GSM905068     4  0.3356      0.605 0.176 0.000 0.000 0.824

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM905004     5  0.4114      0.404 0.000 0.000 0.000 0.376 0.624
#> GSM905024     1  0.1270      0.941 0.948 0.000 0.000 0.052 0.000
#> GSM905038     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000
#> GSM905043     1  0.2886      0.824 0.844 0.000 0.000 0.148 0.008
#> GSM904986     3  0.0000      0.956 0.000 0.000 1.000 0.000 0.000
#> GSM904991     3  0.1121      0.921 0.000 0.000 0.956 0.000 0.044
#> GSM904994     3  0.0000      0.956 0.000 0.000 1.000 0.000 0.000
#> GSM904996     3  0.0000      0.956 0.000 0.000 1.000 0.000 0.000
#> GSM905007     3  0.0609      0.940 0.000 0.000 0.980 0.000 0.020
#> GSM905012     3  0.0000      0.956 0.000 0.000 1.000 0.000 0.000
#> GSM905022     3  0.0000      0.956 0.000 0.000 1.000 0.000 0.000
#> GSM905026     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000
#> GSM905027     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000
#> GSM905031     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000
#> GSM905036     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000
#> GSM905041     5  0.3305      0.679 0.000 0.000 0.000 0.224 0.776
#> GSM905044     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000
#> GSM904989     3  0.0000      0.956 0.000 0.000 1.000 0.000 0.000
#> GSM904999     3  0.0000      0.956 0.000 0.000 1.000 0.000 0.000
#> GSM905002     3  0.0000      0.956 0.000 0.000 1.000 0.000 0.000
#> GSM905009     3  0.0000      0.956 0.000 0.000 1.000 0.000 0.000
#> GSM905014     3  0.0609      0.940 0.000 0.000 0.980 0.000 0.020
#> GSM905017     3  0.0000      0.956 0.000 0.000 1.000 0.000 0.000
#> GSM905020     3  0.0000      0.956 0.000 0.000 1.000 0.000 0.000
#> GSM905023     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000
#> GSM905029     5  0.0000      0.926 0.000 0.000 0.000 0.000 1.000
#> GSM905032     4  0.1121      0.952 0.000 0.000 0.000 0.956 0.044
#> GSM905034     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM905040     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM904985     2  0.0609      0.933 0.000 0.980 0.020 0.000 0.000
#> GSM904988     2  0.0609      0.933 0.000 0.980 0.020 0.000 0.000
#> GSM904990     2  0.0609      0.933 0.000 0.980 0.020 0.000 0.000
#> GSM904992     2  0.0609      0.933 0.000 0.980 0.020 0.000 0.000
#> GSM904995     2  0.0609      0.933 0.000 0.980 0.020 0.000 0.000
#> GSM904998     2  0.0609      0.933 0.000 0.980 0.020 0.000 0.000
#> GSM905000     2  0.0609      0.933 0.000 0.980 0.020 0.000 0.000
#> GSM905003     2  0.0609      0.933 0.000 0.980 0.020 0.000 0.000
#> GSM905006     2  0.0609      0.933 0.000 0.980 0.020 0.000 0.000
#> GSM905008     2  0.0609      0.933 0.000 0.980 0.020 0.000 0.000
#> GSM905011     2  0.0609      0.933 0.000 0.980 0.020 0.000 0.000
#> GSM905013     2  0.0609      0.933 0.000 0.980 0.020 0.000 0.000
#> GSM905016     2  0.0609      0.933 0.000 0.980 0.020 0.000 0.000
#> GSM905018     2  0.0609      0.933 0.000 0.980 0.020 0.000 0.000
#> GSM905021     3  0.4300      0.093 0.000 0.476 0.524 0.000 0.000
#> GSM905025     5  0.0609      0.918 0.000 0.020 0.000 0.000 0.980
#> GSM905028     2  0.3395      0.710 0.000 0.764 0.000 0.000 0.236
#> GSM905030     2  0.3480      0.696 0.000 0.752 0.000 0.000 0.248
#> GSM905033     5  0.3727      0.672 0.000 0.216 0.016 0.000 0.768
#> GSM905035     5  0.1121      0.903 0.000 0.044 0.000 0.000 0.956
#> GSM905037     2  0.3480      0.696 0.000 0.752 0.000 0.000 0.248
#> GSM905039     2  0.3480      0.696 0.000 0.752 0.000 0.000 0.248
#> GSM905042     5  0.0609      0.918 0.000 0.020 0.000 0.000 0.980
#> GSM905046     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM905065     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM905049     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000
#> GSM905050     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000
#> GSM905064     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000
#> GSM905045     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000
#> GSM905051     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000
#> GSM905055     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM905058     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM905053     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000
#> GSM905061     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000
#> GSM905063     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM905054     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000
#> GSM905062     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000
#> GSM905052     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000
#> GSM905059     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM905047     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM905066     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM905056     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM905060     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM905048     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM905067     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM905057     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM905068     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5 p6
#> GSM905004     5  0.0000      0.960 0.000 0.000 0.000 0.000 1.000  0
#> GSM905024     1  0.1141      0.918 0.948 0.000 0.000 0.052 0.000  0
#> GSM905038     5  0.0000      0.960 0.000 0.000 0.000 0.000 1.000  0
#> GSM905043     1  0.5528      0.248 0.508 0.000 0.000 0.144 0.348  0
#> GSM904986     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000  0
#> GSM904991     5  0.3717      0.369 0.000 0.000 0.384 0.000 0.616  0
#> GSM904994     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000  0
#> GSM904996     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000  0
#> GSM905007     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000  0
#> GSM905012     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000  0
#> GSM905022     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000  0
#> GSM905026     5  0.0000      0.960 0.000 0.000 0.000 0.000 1.000  0
#> GSM905027     5  0.0000      0.960 0.000 0.000 0.000 0.000 1.000  0
#> GSM905031     5  0.0000      0.960 0.000 0.000 0.000 0.000 1.000  0
#> GSM905036     5  0.0000      0.960 0.000 0.000 0.000 0.000 1.000  0
#> GSM905041     5  0.0000      0.960 0.000 0.000 0.000 0.000 1.000  0
#> GSM905044     5  0.0000      0.960 0.000 0.000 0.000 0.000 1.000  0
#> GSM904989     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000  0
#> GSM904999     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000  0
#> GSM905002     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000  0
#> GSM905009     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000  0
#> GSM905014     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000  0
#> GSM905017     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000  0
#> GSM905020     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000  0
#> GSM905023     5  0.0000      0.960 0.000 0.000 0.000 0.000 1.000  0
#> GSM905029     5  0.0000      0.960 0.000 0.000 0.000 0.000 1.000  0
#> GSM905032     5  0.0146      0.956 0.000 0.000 0.000 0.004 0.996  0
#> GSM905034     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000  0
#> GSM905040     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000  0
#> GSM904985     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000  0
#> GSM904988     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000  0
#> GSM904990     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000  0
#> GSM904992     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000  0
#> GSM904995     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000  0
#> GSM904998     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000  0
#> GSM905000     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000  0
#> GSM905003     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000  0
#> GSM905006     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000  0
#> GSM905008     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000  0
#> GSM905011     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000  0
#> GSM905013     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000  0
#> GSM905016     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000  0
#> GSM905018     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000  0
#> GSM905021     2  0.1765      0.888 0.000 0.904 0.096 0.000 0.000  0
#> GSM905025     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000  1
#> GSM905028     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000  1
#> GSM905030     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000  1
#> GSM905033     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000  1
#> GSM905035     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000  1
#> GSM905037     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000  1
#> GSM905039     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000  1
#> GSM905042     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000  1
#> GSM905046     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000  0
#> GSM905065     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000  0
#> GSM905049     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000  0
#> GSM905050     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000  0
#> GSM905064     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000  0
#> GSM905045     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000  0
#> GSM905051     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000  0
#> GSM905055     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000  0
#> GSM905058     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000  0
#> GSM905053     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000  0
#> GSM905061     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000  0
#> GSM905063     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000  0
#> GSM905054     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000  0
#> GSM905062     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000  0
#> GSM905052     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000  0
#> GSM905059     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000  0
#> GSM905047     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000  0
#> GSM905066     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000  0
#> GSM905056     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000  0
#> GSM905060     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000  0
#> GSM905048     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000  0
#> GSM905067     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000  0
#> GSM905057     1  0.0000      0.966 1.000 0.000 0.000 0.000 0.000  0
#> GSM905068     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000  0

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n tissue(p) genotype/variation(p) individual(p) k
#> ATC:pam 75  3.12e-09              7.87e-03       0.05269 2
#> ATC:pam 74  5.34e-09              2.94e-04       0.02753 3
#> ATC:pam 71  1.14e-09              4.02e-07       0.00123 4
#> ATC:pam 74  3.66e-13              5.00e-08       0.11876 5
#> ATC:pam 74  8.94e-15              7.17e-08       0.27272 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 76 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.647           0.838       0.904         0.4697 0.494   0.494
#> 3 3 0.561           0.492       0.755         0.3572 0.720   0.503
#> 4 4 0.723           0.755       0.869         0.1662 0.773   0.451
#> 5 5 0.781           0.735       0.854         0.0519 0.927   0.723
#> 6 6 0.809           0.712       0.874         0.0496 0.910   0.619

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM905004     1  0.0376      0.830 0.996 0.004
#> GSM905024     1  0.9129      0.642 0.672 0.328
#> GSM905038     1  0.9286      0.618 0.656 0.344
#> GSM905043     1  0.9129      0.642 0.672 0.328
#> GSM904986     2  0.1843      0.939 0.028 0.972
#> GSM904991     2  0.7950      0.687 0.240 0.760
#> GSM904994     2  0.3584      0.945 0.068 0.932
#> GSM904996     2  0.1843      0.939 0.028 0.972
#> GSM905007     2  0.6531      0.767 0.168 0.832
#> GSM905012     2  0.1843      0.939 0.028 0.972
#> GSM905022     2  0.1843      0.939 0.028 0.972
#> GSM905026     1  0.9686      0.525 0.604 0.396
#> GSM905027     1  0.9635      0.543 0.612 0.388
#> GSM905031     1  0.9775      0.487 0.588 0.412
#> GSM905036     1  0.9170      0.637 0.668 0.332
#> GSM905041     1  0.9170      0.637 0.668 0.332
#> GSM905044     1  0.9686      0.525 0.604 0.396
#> GSM904989     2  0.1843      0.939 0.028 0.972
#> GSM904999     2  0.1843      0.939 0.028 0.972
#> GSM905002     2  0.1843      0.939 0.028 0.972
#> GSM905009     2  0.1843      0.939 0.028 0.972
#> GSM905014     2  0.5519      0.833 0.128 0.872
#> GSM905017     2  0.1843      0.939 0.028 0.972
#> GSM905020     2  0.1843      0.939 0.028 0.972
#> GSM905023     1  0.9170      0.637 0.668 0.332
#> GSM905029     1  0.9580      0.555 0.620 0.380
#> GSM905032     1  0.9129      0.642 0.672 0.328
#> GSM905034     1  0.9129      0.642 0.672 0.328
#> GSM905040     1  0.9129      0.642 0.672 0.328
#> GSM904985     2  0.2603      0.963 0.044 0.956
#> GSM904988     2  0.2603      0.963 0.044 0.956
#> GSM904990     2  0.2603      0.963 0.044 0.956
#> GSM904992     2  0.2603      0.963 0.044 0.956
#> GSM904995     2  0.2603      0.963 0.044 0.956
#> GSM904998     2  0.2603      0.963 0.044 0.956
#> GSM905000     2  0.2603      0.963 0.044 0.956
#> GSM905003     2  0.2603      0.963 0.044 0.956
#> GSM905006     2  0.2603      0.963 0.044 0.956
#> GSM905008     2  0.2603      0.963 0.044 0.956
#> GSM905011     2  0.2603      0.963 0.044 0.956
#> GSM905013     2  0.2603      0.963 0.044 0.956
#> GSM905016     2  0.2603      0.963 0.044 0.956
#> GSM905018     2  0.2603      0.963 0.044 0.956
#> GSM905021     2  0.2603      0.963 0.044 0.956
#> GSM905025     2  0.2603      0.963 0.044 0.956
#> GSM905028     2  0.2603      0.963 0.044 0.956
#> GSM905030     2  0.2603      0.963 0.044 0.956
#> GSM905033     2  0.2603      0.963 0.044 0.956
#> GSM905035     2  0.2603      0.963 0.044 0.956
#> GSM905037     2  0.2603      0.963 0.044 0.956
#> GSM905039     2  0.2603      0.963 0.044 0.956
#> GSM905042     2  0.2603      0.963 0.044 0.956
#> GSM905046     1  0.0000      0.832 1.000 0.000
#> GSM905065     1  0.0000      0.832 1.000 0.000
#> GSM905049     1  0.0000      0.832 1.000 0.000
#> GSM905050     1  0.9087      0.645 0.676 0.324
#> GSM905064     1  0.0000      0.832 1.000 0.000
#> GSM905045     1  0.0000      0.832 1.000 0.000
#> GSM905051     1  0.0000      0.832 1.000 0.000
#> GSM905055     1  0.0000      0.832 1.000 0.000
#> GSM905058     1  0.0000      0.832 1.000 0.000
#> GSM905053     1  0.0000      0.832 1.000 0.000
#> GSM905061     1  0.0000      0.832 1.000 0.000
#> GSM905063     1  0.5737      0.772 0.864 0.136
#> GSM905054     1  0.0000      0.832 1.000 0.000
#> GSM905062     1  0.0000      0.832 1.000 0.000
#> GSM905052     1  0.0000      0.832 1.000 0.000
#> GSM905059     1  0.0000      0.832 1.000 0.000
#> GSM905047     1  0.0000      0.832 1.000 0.000
#> GSM905066     1  0.0000      0.832 1.000 0.000
#> GSM905056     1  0.0000      0.832 1.000 0.000
#> GSM905060     1  0.0000      0.832 1.000 0.000
#> GSM905048     1  0.0000      0.832 1.000 0.000
#> GSM905067     1  0.0000      0.832 1.000 0.000
#> GSM905057     1  0.0000      0.832 1.000 0.000
#> GSM905068     1  0.0000      0.832 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM905004     1  0.6587    0.53454 0.752 0.092 0.156
#> GSM905024     1  0.6302    0.28620 0.520 0.000 0.480
#> GSM905038     3  0.6180   -0.07614 0.416 0.000 0.584
#> GSM905043     1  0.6302    0.28620 0.520 0.000 0.480
#> GSM904986     3  0.6235    0.00236 0.000 0.436 0.564
#> GSM904991     3  0.6235    0.00236 0.000 0.436 0.564
#> GSM904994     3  0.6451    0.00132 0.004 0.436 0.560
#> GSM904996     3  0.6235    0.00236 0.000 0.436 0.564
#> GSM905007     3  0.6451    0.00132 0.004 0.436 0.560
#> GSM905012     3  0.6235    0.00236 0.000 0.436 0.564
#> GSM905022     3  0.6235    0.00236 0.000 0.436 0.564
#> GSM905026     3  0.6180   -0.07614 0.416 0.000 0.584
#> GSM905027     3  0.6180   -0.07614 0.416 0.000 0.584
#> GSM905031     3  0.6180   -0.07614 0.416 0.000 0.584
#> GSM905036     3  0.6180   -0.07614 0.416 0.000 0.584
#> GSM905041     3  0.6180   -0.07614 0.416 0.000 0.584
#> GSM905044     3  0.6180   -0.07614 0.416 0.000 0.584
#> GSM904989     3  0.6235    0.00236 0.000 0.436 0.564
#> GSM904999     3  0.6235    0.00236 0.000 0.436 0.564
#> GSM905002     3  0.6235    0.00236 0.000 0.436 0.564
#> GSM905009     3  0.6235    0.00236 0.000 0.436 0.564
#> GSM905014     3  0.6235    0.00236 0.000 0.436 0.564
#> GSM905017     3  0.6235    0.00236 0.000 0.436 0.564
#> GSM905020     3  0.6235    0.00236 0.000 0.436 0.564
#> GSM905023     3  0.6180   -0.07614 0.416 0.000 0.584
#> GSM905029     3  0.6180   -0.07614 0.416 0.000 0.584
#> GSM905032     1  0.6235    0.37047 0.564 0.000 0.436
#> GSM905034     1  0.6235    0.37047 0.564 0.000 0.436
#> GSM905040     1  0.6235    0.37047 0.564 0.000 0.436
#> GSM904985     2  0.0000    0.97923 0.000 1.000 0.000
#> GSM904988     2  0.0000    0.97923 0.000 1.000 0.000
#> GSM904990     2  0.0000    0.97923 0.000 1.000 0.000
#> GSM904992     2  0.0000    0.97923 0.000 1.000 0.000
#> GSM904995     2  0.0000    0.97923 0.000 1.000 0.000
#> GSM904998     2  0.0000    0.97923 0.000 1.000 0.000
#> GSM905000     2  0.0000    0.97923 0.000 1.000 0.000
#> GSM905003     2  0.0000    0.97923 0.000 1.000 0.000
#> GSM905006     2  0.0000    0.97923 0.000 1.000 0.000
#> GSM905008     2  0.0000    0.97923 0.000 1.000 0.000
#> GSM905011     2  0.0000    0.97923 0.000 1.000 0.000
#> GSM905013     2  0.0000    0.97923 0.000 1.000 0.000
#> GSM905016     2  0.0000    0.97923 0.000 1.000 0.000
#> GSM905018     2  0.0000    0.97923 0.000 1.000 0.000
#> GSM905021     2  0.4887    0.66662 0.000 0.772 0.228
#> GSM905025     3  0.9850    0.18132 0.252 0.356 0.392
#> GSM905028     3  0.9614    0.22828 0.208 0.356 0.436
#> GSM905030     3  0.9614    0.22828 0.208 0.356 0.436
#> GSM905033     3  0.9614    0.22828 0.208 0.356 0.436
#> GSM905035     3  0.9614    0.22828 0.208 0.356 0.436
#> GSM905037     3  0.9614    0.22828 0.208 0.356 0.436
#> GSM905039     3  0.9614    0.22828 0.208 0.356 0.436
#> GSM905042     3  0.9614    0.22828 0.208 0.356 0.436
#> GSM905046     1  0.0000    0.85306 1.000 0.000 0.000
#> GSM905065     1  0.0000    0.85306 1.000 0.000 0.000
#> GSM905049     1  0.0000    0.85306 1.000 0.000 0.000
#> GSM905050     1  0.6079    0.43901 0.612 0.000 0.388
#> GSM905064     1  0.0000    0.85306 1.000 0.000 0.000
#> GSM905045     1  0.0424    0.84737 0.992 0.000 0.008
#> GSM905051     1  0.0000    0.85306 1.000 0.000 0.000
#> GSM905055     1  0.0000    0.85306 1.000 0.000 0.000
#> GSM905058     1  0.0000    0.85306 1.000 0.000 0.000
#> GSM905053     1  0.0000    0.85306 1.000 0.000 0.000
#> GSM905061     1  0.0000    0.85306 1.000 0.000 0.000
#> GSM905063     1  0.6062    0.44447 0.616 0.000 0.384
#> GSM905054     1  0.0000    0.85306 1.000 0.000 0.000
#> GSM905062     1  0.0000    0.85306 1.000 0.000 0.000
#> GSM905052     1  0.0000    0.85306 1.000 0.000 0.000
#> GSM905059     1  0.0000    0.85306 1.000 0.000 0.000
#> GSM905047     1  0.0000    0.85306 1.000 0.000 0.000
#> GSM905066     1  0.0000    0.85306 1.000 0.000 0.000
#> GSM905056     1  0.0000    0.85306 1.000 0.000 0.000
#> GSM905060     1  0.0000    0.85306 1.000 0.000 0.000
#> GSM905048     1  0.0000    0.85306 1.000 0.000 0.000
#> GSM905067     1  0.0000    0.85306 1.000 0.000 0.000
#> GSM905057     1  0.0000    0.85306 1.000 0.000 0.000
#> GSM905068     1  0.0000    0.85306 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM905004     4  0.6468     0.5978 0.088 0.008 0.272 0.632
#> GSM905024     1  0.2589     0.8191 0.884 0.000 0.000 0.116
#> GSM905038     1  0.2222     0.8577 0.924 0.000 0.060 0.016
#> GSM905043     1  0.2469     0.8235 0.892 0.000 0.000 0.108
#> GSM904986     3  0.0336     0.9328 0.000 0.008 0.992 0.000
#> GSM904991     3  0.0937     0.9187 0.012 0.012 0.976 0.000
#> GSM904994     3  0.0188     0.9314 0.000 0.004 0.996 0.000
#> GSM904996     3  0.0469     0.9322 0.000 0.012 0.988 0.000
#> GSM905007     3  0.0937     0.9187 0.012 0.012 0.976 0.000
#> GSM905012     3  0.0336     0.9324 0.000 0.008 0.992 0.000
#> GSM905022     3  0.0336     0.9328 0.000 0.008 0.992 0.000
#> GSM905026     1  0.1978     0.8538 0.928 0.000 0.068 0.004
#> GSM905027     1  0.1978     0.8538 0.928 0.000 0.068 0.004
#> GSM905031     1  0.1978     0.8538 0.928 0.000 0.068 0.004
#> GSM905036     1  0.2222     0.8577 0.924 0.000 0.060 0.016
#> GSM905041     1  0.2521     0.8571 0.912 0.000 0.064 0.024
#> GSM905044     1  0.1978     0.8538 0.928 0.000 0.068 0.004
#> GSM904989     3  0.0469     0.9322 0.000 0.012 0.988 0.000
#> GSM904999     3  0.0336     0.9328 0.000 0.008 0.992 0.000
#> GSM905002     3  0.0469     0.9322 0.000 0.012 0.988 0.000
#> GSM905009     3  0.0336     0.9324 0.000 0.008 0.992 0.000
#> GSM905014     3  0.0469     0.9256 0.000 0.012 0.988 0.000
#> GSM905017     3  0.0336     0.9328 0.000 0.008 0.992 0.000
#> GSM905020     3  0.0469     0.9322 0.000 0.012 0.988 0.000
#> GSM905023     1  0.2222     0.8577 0.924 0.000 0.060 0.016
#> GSM905029     1  0.2255     0.8563 0.920 0.000 0.068 0.012
#> GSM905032     1  0.0921     0.8231 0.972 0.000 0.000 0.028
#> GSM905034     1  0.2647     0.8180 0.880 0.000 0.000 0.120
#> GSM905040     1  0.2814     0.8128 0.868 0.000 0.000 0.132
#> GSM904985     2  0.3942     0.6067 0.000 0.764 0.236 0.000
#> GSM904988     2  0.0336     0.7887 0.000 0.992 0.008 0.000
#> GSM904990     2  0.0336     0.7887 0.000 0.992 0.008 0.000
#> GSM904992     2  0.0336     0.7887 0.000 0.992 0.008 0.000
#> GSM904995     2  0.3528     0.6668 0.000 0.808 0.192 0.000
#> GSM904998     2  0.0336     0.7887 0.000 0.992 0.008 0.000
#> GSM905000     2  0.0336     0.7887 0.000 0.992 0.008 0.000
#> GSM905003     3  0.4948     0.1541 0.000 0.440 0.560 0.000
#> GSM905006     2  0.0336     0.7887 0.000 0.992 0.008 0.000
#> GSM905008     2  0.1474     0.7688 0.000 0.948 0.052 0.000
#> GSM905011     2  0.0336     0.7887 0.000 0.992 0.008 0.000
#> GSM905013     2  0.0336     0.7887 0.000 0.992 0.008 0.000
#> GSM905016     2  0.3528     0.6668 0.000 0.808 0.192 0.000
#> GSM905018     2  0.0336     0.7887 0.000 0.992 0.008 0.000
#> GSM905021     3  0.4605     0.4314 0.000 0.336 0.664 0.000
#> GSM905025     2  0.5392     0.4116 0.424 0.564 0.008 0.004
#> GSM905028     2  0.5337     0.4140 0.424 0.564 0.012 0.000
#> GSM905030     2  0.5337     0.4140 0.424 0.564 0.012 0.000
#> GSM905033     1  0.5911     0.0834 0.584 0.372 0.044 0.000
#> GSM905035     2  0.5337     0.4140 0.424 0.564 0.012 0.000
#> GSM905037     2  0.5337     0.4140 0.424 0.564 0.012 0.000
#> GSM905039     2  0.5337     0.4140 0.424 0.564 0.012 0.000
#> GSM905042     1  0.6794     0.2555 0.584 0.280 0.136 0.000
#> GSM905046     4  0.0817     0.8504 0.024 0.000 0.000 0.976
#> GSM905065     4  0.0000     0.8506 0.000 0.000 0.000 1.000
#> GSM905049     4  0.3907     0.8306 0.232 0.000 0.000 0.768
#> GSM905050     1  0.4746     0.1817 0.632 0.000 0.000 0.368
#> GSM905064     4  0.3837     0.8324 0.224 0.000 0.000 0.776
#> GSM905045     4  0.3907     0.8306 0.232 0.000 0.000 0.768
#> GSM905051     4  0.3837     0.8324 0.224 0.000 0.000 0.776
#> GSM905055     4  0.0000     0.8506 0.000 0.000 0.000 1.000
#> GSM905058     4  0.0000     0.8506 0.000 0.000 0.000 1.000
#> GSM905053     4  0.3907     0.8306 0.232 0.000 0.000 0.768
#> GSM905061     4  0.3907     0.8306 0.232 0.000 0.000 0.768
#> GSM905063     4  0.4817     0.0584 0.388 0.000 0.000 0.612
#> GSM905054     4  0.3907     0.8306 0.232 0.000 0.000 0.768
#> GSM905062     4  0.3907     0.8306 0.232 0.000 0.000 0.768
#> GSM905052     4  0.3837     0.8324 0.224 0.000 0.000 0.776
#> GSM905059     4  0.0000     0.8506 0.000 0.000 0.000 1.000
#> GSM905047     4  0.2868     0.8347 0.136 0.000 0.000 0.864
#> GSM905066     4  0.0000     0.8506 0.000 0.000 0.000 1.000
#> GSM905056     4  0.0000     0.8506 0.000 0.000 0.000 1.000
#> GSM905060     4  0.0000     0.8506 0.000 0.000 0.000 1.000
#> GSM905048     4  0.0000     0.8506 0.000 0.000 0.000 1.000
#> GSM905067     4  0.0000     0.8506 0.000 0.000 0.000 1.000
#> GSM905057     4  0.0000     0.8506 0.000 0.000 0.000 1.000
#> GSM905068     4  0.3907     0.8306 0.232 0.000 0.000 0.768

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM905004     1  0.6218     0.4610 0.516 0.028 0.052 0.008 0.396
#> GSM905024     4  0.6234     0.1067 0.160 0.000 0.000 0.508 0.332
#> GSM905038     4  0.2286     0.8202 0.000 0.000 0.004 0.888 0.108
#> GSM905043     4  0.5489     0.3944 0.136 0.000 0.000 0.648 0.216
#> GSM904986     3  0.0290     0.9753 0.000 0.008 0.992 0.000 0.000
#> GSM904991     3  0.0290     0.9700 0.000 0.000 0.992 0.008 0.000
#> GSM904994     3  0.0290     0.9753 0.000 0.008 0.992 0.000 0.000
#> GSM904996     3  0.0290     0.9753 0.000 0.008 0.992 0.000 0.000
#> GSM905007     3  0.0290     0.9700 0.000 0.000 0.992 0.008 0.000
#> GSM905012     3  0.0000     0.9729 0.000 0.000 1.000 0.000 0.000
#> GSM905022     3  0.0290     0.9753 0.000 0.008 0.992 0.000 0.000
#> GSM905026     4  0.0162     0.8254 0.000 0.000 0.004 0.996 0.000
#> GSM905027     4  0.0162     0.8254 0.000 0.000 0.004 0.996 0.000
#> GSM905031     4  0.0162     0.8254 0.000 0.000 0.004 0.996 0.000
#> GSM905036     4  0.2389     0.8139 0.000 0.000 0.004 0.880 0.116
#> GSM905041     4  0.1894     0.8352 0.000 0.000 0.008 0.920 0.072
#> GSM905044     4  0.0162     0.8254 0.000 0.000 0.004 0.996 0.000
#> GSM904989     3  0.0000     0.9729 0.000 0.000 1.000 0.000 0.000
#> GSM904999     3  0.0290     0.9753 0.000 0.008 0.992 0.000 0.000
#> GSM905002     3  0.0290     0.9753 0.000 0.008 0.992 0.000 0.000
#> GSM905009     3  0.0000     0.9729 0.000 0.000 1.000 0.000 0.000
#> GSM905014     3  0.0162     0.9718 0.000 0.000 0.996 0.004 0.000
#> GSM905017     3  0.0290     0.9753 0.000 0.008 0.992 0.000 0.000
#> GSM905020     3  0.0290     0.9753 0.000 0.008 0.992 0.000 0.000
#> GSM905023     4  0.1831     0.8353 0.000 0.000 0.004 0.920 0.076
#> GSM905029     4  0.2011     0.8314 0.000 0.000 0.004 0.908 0.088
#> GSM905032     5  0.5828     0.2485 0.100 0.000 0.000 0.380 0.520
#> GSM905034     5  0.6527     0.2194 0.196 0.000 0.000 0.376 0.428
#> GSM905040     5  0.6465     0.3023 0.208 0.000 0.000 0.308 0.484
#> GSM904985     2  0.3452     0.7380 0.000 0.756 0.244 0.000 0.000
#> GSM904988     2  0.0000     0.8929 0.000 1.000 0.000 0.000 0.000
#> GSM904990     2  0.0000     0.8929 0.000 1.000 0.000 0.000 0.000
#> GSM904992     2  0.0000     0.8929 0.000 1.000 0.000 0.000 0.000
#> GSM904995     2  0.3671     0.7430 0.000 0.756 0.236 0.000 0.008
#> GSM904998     2  0.0290     0.8949 0.000 0.992 0.008 0.000 0.000
#> GSM905000     2  0.0290     0.8949 0.000 0.992 0.008 0.000 0.000
#> GSM905003     2  0.4030     0.5536 0.000 0.648 0.352 0.000 0.000
#> GSM905006     2  0.0000     0.8929 0.000 1.000 0.000 0.000 0.000
#> GSM905008     2  0.1197     0.8784 0.000 0.952 0.048 0.000 0.000
#> GSM905011     2  0.0000     0.8929 0.000 1.000 0.000 0.000 0.000
#> GSM905013     2  0.0290     0.8949 0.000 0.992 0.008 0.000 0.000
#> GSM905016     2  0.3452     0.7380 0.000 0.756 0.244 0.000 0.000
#> GSM905018     2  0.0290     0.8949 0.000 0.992 0.008 0.000 0.000
#> GSM905021     3  0.3424     0.6332 0.000 0.240 0.760 0.000 0.000
#> GSM905025     5  0.1410     0.6604 0.000 0.060 0.000 0.000 0.940
#> GSM905028     5  0.1983     0.6630 0.000 0.060 0.008 0.008 0.924
#> GSM905030     5  0.2199     0.6613 0.000 0.060 0.008 0.016 0.916
#> GSM905033     5  0.6643     0.3936 0.000 0.060 0.084 0.308 0.548
#> GSM905035     5  0.4642     0.5647 0.000 0.060 0.008 0.192 0.740
#> GSM905037     5  0.1983     0.6630 0.000 0.060 0.008 0.008 0.924
#> GSM905039     5  0.1983     0.6630 0.000 0.060 0.008 0.008 0.924
#> GSM905042     5  0.6541     0.2672 0.000 0.036 0.088 0.396 0.480
#> GSM905046     1  0.1357     0.7513 0.948 0.000 0.000 0.004 0.048
#> GSM905065     1  0.0000     0.7461 1.000 0.000 0.000 0.000 0.000
#> GSM905049     1  0.4967     0.7136 0.660 0.000 0.000 0.060 0.280
#> GSM905050     5  0.5316     0.2036 0.284 0.000 0.000 0.084 0.632
#> GSM905064     1  0.5083     0.7080 0.652 0.000 0.000 0.068 0.280
#> GSM905045     1  0.5009     0.7067 0.652 0.000 0.000 0.060 0.288
#> GSM905051     1  0.5026     0.7116 0.656 0.000 0.000 0.064 0.280
#> GSM905055     1  0.0000     0.7461 1.000 0.000 0.000 0.000 0.000
#> GSM905058     1  0.0000     0.7461 1.000 0.000 0.000 0.000 0.000
#> GSM905053     1  0.5026     0.7116 0.656 0.000 0.000 0.064 0.280
#> GSM905061     1  0.4967     0.7136 0.660 0.000 0.000 0.060 0.280
#> GSM905063     1  0.4906    -0.0721 0.496 0.000 0.000 0.024 0.480
#> GSM905054     1  0.4967     0.7136 0.660 0.000 0.000 0.060 0.280
#> GSM905062     1  0.4967     0.7136 0.660 0.000 0.000 0.060 0.280
#> GSM905052     1  0.5026     0.7116 0.656 0.000 0.000 0.064 0.280
#> GSM905059     1  0.0000     0.7461 1.000 0.000 0.000 0.000 0.000
#> GSM905047     1  0.3602     0.7339 0.796 0.000 0.000 0.024 0.180
#> GSM905066     1  0.0000     0.7461 1.000 0.000 0.000 0.000 0.000
#> GSM905056     1  0.0000     0.7461 1.000 0.000 0.000 0.000 0.000
#> GSM905060     1  0.1121     0.7509 0.956 0.000 0.000 0.000 0.044
#> GSM905048     1  0.0404     0.7480 0.988 0.000 0.000 0.000 0.012
#> GSM905067     1  0.0000     0.7461 1.000 0.000 0.000 0.000 0.000
#> GSM905057     1  0.0000     0.7461 1.000 0.000 0.000 0.000 0.000
#> GSM905068     1  0.5083     0.7080 0.652 0.000 0.000 0.068 0.280

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM905004     4  0.4580     0.4978 0.008 0.000 0.048 0.744 0.036 0.164
#> GSM905024     4  0.5562     0.0937 0.016 0.000 0.000 0.484 0.412 0.088
#> GSM905038     5  0.1556     0.8707 0.000 0.000 0.000 0.000 0.920 0.080
#> GSM905043     5  0.5292    -0.0815 0.016 0.000 0.000 0.452 0.472 0.060
#> GSM904986     3  0.0000     0.9733 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904991     3  0.0937     0.9476 0.000 0.000 0.960 0.000 0.040 0.000
#> GSM904994     3  0.0000     0.9733 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904996     3  0.0000     0.9733 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905007     3  0.0937     0.9476 0.000 0.000 0.960 0.000 0.040 0.000
#> GSM905012     3  0.0000     0.9733 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905022     3  0.0000     0.9733 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905026     5  0.0000     0.8705 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM905027     5  0.0000     0.8705 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM905031     5  0.0363     0.8749 0.000 0.000 0.000 0.000 0.988 0.012
#> GSM905036     5  0.1444     0.8758 0.000 0.000 0.000 0.000 0.928 0.072
#> GSM905041     5  0.1462     0.8786 0.000 0.000 0.000 0.008 0.936 0.056
#> GSM905044     5  0.0000     0.8705 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM904989     3  0.0000     0.9733 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM904999     3  0.0000     0.9733 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905002     3  0.0000     0.9733 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905009     3  0.0000     0.9733 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905014     3  0.0865     0.9504 0.000 0.000 0.964 0.000 0.036 0.000
#> GSM905017     3  0.0000     0.9733 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905020     3  0.0000     0.9733 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM905023     5  0.1204     0.8796 0.000 0.000 0.000 0.000 0.944 0.056
#> GSM905029     5  0.1556     0.8707 0.000 0.000 0.000 0.000 0.920 0.080
#> GSM905032     4  0.5285     0.0323 0.000 0.000 0.000 0.480 0.420 0.100
#> GSM905034     4  0.5622     0.2500 0.028 0.000 0.000 0.528 0.364 0.080
#> GSM905040     4  0.6125     0.2846 0.060 0.000 0.000 0.512 0.336 0.092
#> GSM904985     2  0.3050     0.7661 0.000 0.764 0.236 0.000 0.000 0.000
#> GSM904988     2  0.0000     0.8925 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904990     2  0.0000     0.8925 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904992     2  0.0000     0.8925 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM904995     2  0.3245     0.7709 0.000 0.764 0.228 0.000 0.000 0.008
#> GSM904998     2  0.0000     0.8925 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905000     2  0.0000     0.8925 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905003     2  0.3911     0.7172 0.000 0.712 0.256 0.000 0.000 0.032
#> GSM905006     2  0.0000     0.8925 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905008     2  0.2378     0.8250 0.000 0.848 0.152 0.000 0.000 0.000
#> GSM905011     2  0.0000     0.8925 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905013     2  0.0000     0.8925 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905016     2  0.3050     0.7661 0.000 0.764 0.236 0.000 0.000 0.000
#> GSM905018     2  0.0000     0.8925 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM905021     3  0.3523     0.7081 0.000 0.180 0.780 0.000 0.000 0.040
#> GSM905025     6  0.0000     0.8649 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM905028     6  0.0000     0.8649 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM905030     6  0.0000     0.8649 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM905033     6  0.5113     0.5469 0.000 0.000 0.204 0.000 0.168 0.628
#> GSM905035     6  0.1267     0.8250 0.000 0.000 0.000 0.000 0.060 0.940
#> GSM905037     6  0.0000     0.8649 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM905039     6  0.0000     0.8649 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM905042     6  0.5254     0.2175 0.000 0.000 0.100 0.000 0.392 0.508
#> GSM905046     4  0.3817    -0.2531 0.432 0.000 0.000 0.568 0.000 0.000
#> GSM905065     1  0.3409     0.6628 0.700 0.000 0.000 0.300 0.000 0.000
#> GSM905049     4  0.0000     0.6816 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905050     4  0.5100     0.4634 0.000 0.000 0.000 0.612 0.128 0.260
#> GSM905064     4  0.0603     0.6777 0.016 0.000 0.000 0.980 0.004 0.000
#> GSM905045     4  0.0000     0.6816 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905051     4  0.0405     0.6808 0.008 0.000 0.000 0.988 0.004 0.000
#> GSM905055     1  0.0000     0.6829 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM905058     1  0.3823     0.5527 0.564 0.000 0.000 0.436 0.000 0.000
#> GSM905053     4  0.0260     0.6806 0.008 0.000 0.000 0.992 0.000 0.000
#> GSM905061     4  0.0146     0.6808 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM905063     4  0.6792     0.3911 0.124 0.000 0.000 0.492 0.124 0.260
#> GSM905054     4  0.0000     0.6816 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905062     4  0.0000     0.6816 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM905052     4  0.0508     0.6796 0.012 0.000 0.000 0.984 0.004 0.000
#> GSM905059     1  0.3797     0.5732 0.580 0.000 0.000 0.420 0.000 0.000
#> GSM905047     4  0.2883     0.4508 0.212 0.000 0.000 0.788 0.000 0.000
#> GSM905066     4  0.3864    -0.4164 0.480 0.000 0.000 0.520 0.000 0.000
#> GSM905056     1  0.0000     0.6829 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM905060     1  0.3838     0.5227 0.552 0.000 0.000 0.448 0.000 0.000
#> GSM905048     1  0.3563     0.6450 0.664 0.000 0.000 0.336 0.000 0.000
#> GSM905067     1  0.0000     0.6829 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM905057     1  0.0000     0.6829 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM905068     4  0.0260     0.6806 0.008 0.000 0.000 0.992 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n tissue(p) genotype/variation(p) individual(p) k
#> ATC:mclust 75  9.46e-07              2.26e-04       0.00555 2
#> ATC:mclust 38  3.80e-05              7.26e-04       0.07302 3
#> ATC:mclust 64  3.06e-13              1.80e-03       0.63962 4
#> ATC:mclust 66  6.83e-11              2.24e-04       0.38834 5
#> ATC:mclust 64  5.59e-14              8.52e-06       0.24640 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 76 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.986       0.994         0.5056 0.495   0.495
#> 3 3 0.762           0.789       0.893         0.2712 0.821   0.649
#> 4 4 0.794           0.787       0.888         0.1504 0.807   0.510
#> 5 5 0.796           0.686       0.828         0.0508 0.954   0.824
#> 6 6 0.784           0.717       0.824         0.0261 0.967   0.863

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM905004     1  0.0000      0.994 1.000 0.000
#> GSM905024     1  0.0000      0.994 1.000 0.000
#> GSM905038     1  0.1184      0.979 0.984 0.016
#> GSM905043     1  0.0000      0.994 1.000 0.000
#> GSM904986     2  0.0000      0.993 0.000 1.000
#> GSM904991     1  0.4815      0.887 0.896 0.104
#> GSM904994     2  0.0000      0.993 0.000 1.000
#> GSM904996     2  0.0000      0.993 0.000 1.000
#> GSM905007     2  0.0672      0.986 0.008 0.992
#> GSM905012     2  0.0000      0.993 0.000 1.000
#> GSM905022     2  0.0000      0.993 0.000 1.000
#> GSM905026     2  0.0376      0.990 0.004 0.996
#> GSM905027     2  0.8016      0.674 0.244 0.756
#> GSM905031     2  0.0376      0.990 0.004 0.996
#> GSM905036     1  0.0000      0.994 1.000 0.000
#> GSM905041     1  0.0000      0.994 1.000 0.000
#> GSM905044     2  0.0000      0.993 0.000 1.000
#> GSM904989     2  0.0000      0.993 0.000 1.000
#> GSM904999     2  0.0000      0.993 0.000 1.000
#> GSM905002     2  0.0000      0.993 0.000 1.000
#> GSM905009     2  0.0000      0.993 0.000 1.000
#> GSM905014     2  0.0000      0.993 0.000 1.000
#> GSM905017     2  0.0000      0.993 0.000 1.000
#> GSM905020     2  0.0000      0.993 0.000 1.000
#> GSM905023     1  0.0000      0.994 1.000 0.000
#> GSM905029     1  0.4690      0.892 0.900 0.100
#> GSM905032     1  0.0000      0.994 1.000 0.000
#> GSM905034     1  0.0000      0.994 1.000 0.000
#> GSM905040     1  0.0000      0.994 1.000 0.000
#> GSM904985     2  0.0000      0.993 0.000 1.000
#> GSM904988     2  0.0000      0.993 0.000 1.000
#> GSM904990     2  0.0000      0.993 0.000 1.000
#> GSM904992     2  0.0000      0.993 0.000 1.000
#> GSM904995     2  0.0000      0.993 0.000 1.000
#> GSM904998     2  0.0000      0.993 0.000 1.000
#> GSM905000     2  0.0000      0.993 0.000 1.000
#> GSM905003     2  0.0000      0.993 0.000 1.000
#> GSM905006     2  0.0000      0.993 0.000 1.000
#> GSM905008     2  0.0000      0.993 0.000 1.000
#> GSM905011     2  0.0000      0.993 0.000 1.000
#> GSM905013     2  0.0000      0.993 0.000 1.000
#> GSM905016     2  0.0000      0.993 0.000 1.000
#> GSM905018     2  0.0000      0.993 0.000 1.000
#> GSM905021     2  0.0000      0.993 0.000 1.000
#> GSM905025     2  0.0000      0.993 0.000 1.000
#> GSM905028     2  0.0000      0.993 0.000 1.000
#> GSM905030     2  0.0000      0.993 0.000 1.000
#> GSM905033     2  0.0000      0.993 0.000 1.000
#> GSM905035     2  0.0000      0.993 0.000 1.000
#> GSM905037     2  0.0000      0.993 0.000 1.000
#> GSM905039     2  0.0000      0.993 0.000 1.000
#> GSM905042     2  0.0000      0.993 0.000 1.000
#> GSM905046     1  0.0000      0.994 1.000 0.000
#> GSM905065     1  0.0000      0.994 1.000 0.000
#> GSM905049     1  0.0000      0.994 1.000 0.000
#> GSM905050     1  0.0000      0.994 1.000 0.000
#> GSM905064     1  0.0000      0.994 1.000 0.000
#> GSM905045     1  0.0000      0.994 1.000 0.000
#> GSM905051     1  0.0000      0.994 1.000 0.000
#> GSM905055     1  0.0000      0.994 1.000 0.000
#> GSM905058     1  0.0000      0.994 1.000 0.000
#> GSM905053     1  0.0000      0.994 1.000 0.000
#> GSM905061     1  0.0000      0.994 1.000 0.000
#> GSM905063     1  0.0000      0.994 1.000 0.000
#> GSM905054     1  0.0000      0.994 1.000 0.000
#> GSM905062     1  0.0000      0.994 1.000 0.000
#> GSM905052     1  0.0000      0.994 1.000 0.000
#> GSM905059     1  0.0000      0.994 1.000 0.000
#> GSM905047     1  0.0000      0.994 1.000 0.000
#> GSM905066     1  0.0000      0.994 1.000 0.000
#> GSM905056     1  0.0000      0.994 1.000 0.000
#> GSM905060     1  0.0000      0.994 1.000 0.000
#> GSM905048     1  0.0000      0.994 1.000 0.000
#> GSM905067     1  0.0000      0.994 1.000 0.000
#> GSM905057     1  0.0000      0.994 1.000 0.000
#> GSM905068     1  0.0000      0.994 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM905004     1  0.1529      0.955 0.960 0.040 0.000
#> GSM905024     1  0.0000      0.978 1.000 0.000 0.000
#> GSM905038     1  0.4702      0.716 0.788 0.000 0.212
#> GSM905043     1  0.0000      0.978 1.000 0.000 0.000
#> GSM904986     3  0.0000      0.784 0.000 0.000 1.000
#> GSM904991     3  0.5733      0.478 0.324 0.000 0.676
#> GSM904994     3  0.0000      0.784 0.000 0.000 1.000
#> GSM904996     3  0.0000      0.784 0.000 0.000 1.000
#> GSM905007     3  0.3551      0.676 0.132 0.000 0.868
#> GSM905012     3  0.0000      0.784 0.000 0.000 1.000
#> GSM905022     3  0.0000      0.784 0.000 0.000 1.000
#> GSM905026     3  0.5988      0.464 0.000 0.368 0.632
#> GSM905027     3  0.6567      0.613 0.088 0.160 0.752
#> GSM905031     3  0.6215      0.369 0.000 0.428 0.572
#> GSM905036     1  0.0747      0.971 0.984 0.016 0.000
#> GSM905041     1  0.1753      0.937 0.952 0.000 0.048
#> GSM905044     3  0.0000      0.784 0.000 0.000 1.000
#> GSM904989     3  0.0000      0.784 0.000 0.000 1.000
#> GSM904999     3  0.0000      0.784 0.000 0.000 1.000
#> GSM905002     3  0.0000      0.784 0.000 0.000 1.000
#> GSM905009     3  0.0000      0.784 0.000 0.000 1.000
#> GSM905014     3  0.1163      0.765 0.028 0.000 0.972
#> GSM905017     3  0.0000      0.784 0.000 0.000 1.000
#> GSM905020     3  0.0000      0.784 0.000 0.000 1.000
#> GSM905023     1  0.0000      0.978 1.000 0.000 0.000
#> GSM905029     3  0.5988      0.384 0.368 0.000 0.632
#> GSM905032     1  0.0592      0.973 0.988 0.012 0.000
#> GSM905034     1  0.0000      0.978 1.000 0.000 0.000
#> GSM905040     1  0.0000      0.978 1.000 0.000 0.000
#> GSM904985     3  0.6309     -0.484 0.000 0.496 0.504
#> GSM904988     2  0.4974      0.816 0.000 0.764 0.236
#> GSM904990     2  0.4931      0.816 0.000 0.768 0.232
#> GSM904992     2  0.5529      0.801 0.000 0.704 0.296
#> GSM904995     2  0.5760      0.781 0.000 0.672 0.328
#> GSM904998     2  0.6111      0.697 0.000 0.604 0.396
#> GSM905000     2  0.5835      0.770 0.000 0.660 0.340
#> GSM905003     3  0.6140     -0.203 0.000 0.404 0.596
#> GSM905006     2  0.4702      0.813 0.000 0.788 0.212
#> GSM905008     3  0.6274     -0.370 0.000 0.456 0.544
#> GSM905011     2  0.4842      0.815 0.000 0.776 0.224
#> GSM905013     2  0.5988      0.741 0.000 0.632 0.368
#> GSM905016     2  0.6026      0.730 0.000 0.624 0.376
#> GSM905018     2  0.6008      0.735 0.000 0.628 0.372
#> GSM905021     3  0.0000      0.784 0.000 0.000 1.000
#> GSM905025     2  0.0000      0.712 0.000 1.000 0.000
#> GSM905028     2  0.1529      0.744 0.000 0.960 0.040
#> GSM905030     2  0.1411      0.742 0.000 0.964 0.036
#> GSM905033     2  0.5529      0.801 0.000 0.704 0.296
#> GSM905035     2  0.0892      0.731 0.000 0.980 0.020
#> GSM905037     2  0.1289      0.739 0.000 0.968 0.032
#> GSM905039     2  0.0892      0.731 0.000 0.980 0.020
#> GSM905042     2  0.5291      0.811 0.000 0.732 0.268
#> GSM905046     1  0.0000      0.978 1.000 0.000 0.000
#> GSM905065     1  0.0000      0.978 1.000 0.000 0.000
#> GSM905049     1  0.2356      0.931 0.928 0.072 0.000
#> GSM905050     1  0.5098      0.737 0.752 0.248 0.000
#> GSM905064     1  0.0000      0.978 1.000 0.000 0.000
#> GSM905045     1  0.1529      0.957 0.960 0.040 0.000
#> GSM905051     1  0.0000      0.978 1.000 0.000 0.000
#> GSM905055     1  0.0000      0.978 1.000 0.000 0.000
#> GSM905058     1  0.0000      0.978 1.000 0.000 0.000
#> GSM905053     1  0.0000      0.978 1.000 0.000 0.000
#> GSM905061     1  0.1163      0.964 0.972 0.028 0.000
#> GSM905063     1  0.0592      0.973 0.988 0.012 0.000
#> GSM905054     1  0.0237      0.976 0.996 0.004 0.000
#> GSM905062     1  0.1289      0.962 0.968 0.032 0.000
#> GSM905052     1  0.0000      0.978 1.000 0.000 0.000
#> GSM905059     1  0.0000      0.978 1.000 0.000 0.000
#> GSM905047     1  0.0000      0.978 1.000 0.000 0.000
#> GSM905066     1  0.0000      0.978 1.000 0.000 0.000
#> GSM905056     1  0.0000      0.978 1.000 0.000 0.000
#> GSM905060     1  0.0000      0.978 1.000 0.000 0.000
#> GSM905048     1  0.0000      0.978 1.000 0.000 0.000
#> GSM905067     1  0.0000      0.978 1.000 0.000 0.000
#> GSM905057     1  0.0000      0.978 1.000 0.000 0.000
#> GSM905068     1  0.0000      0.978 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM905004     4  0.5633     0.5318 0.380 0.008 0.016 0.596
#> GSM905024     1  0.0336     0.9235 0.992 0.000 0.000 0.008
#> GSM905038     3  0.4963     0.5378 0.020 0.000 0.696 0.284
#> GSM905043     1  0.2021     0.8533 0.936 0.000 0.040 0.024
#> GSM904986     3  0.1398     0.8869 0.000 0.040 0.956 0.004
#> GSM904991     3  0.1302     0.8588 0.044 0.000 0.956 0.000
#> GSM904994     3  0.1576     0.8840 0.000 0.048 0.948 0.004
#> GSM904996     3  0.1902     0.8796 0.000 0.064 0.932 0.004
#> GSM905007     3  0.1339     0.8841 0.008 0.024 0.964 0.004
#> GSM905012     3  0.4387     0.7512 0.000 0.200 0.776 0.024
#> GSM905022     3  0.1305     0.8871 0.000 0.036 0.960 0.004
#> GSM905026     4  0.3355     0.6000 0.000 0.004 0.160 0.836
#> GSM905027     3  0.2048     0.8466 0.000 0.008 0.928 0.064
#> GSM905031     4  0.2924     0.6360 0.000 0.016 0.100 0.884
#> GSM905036     4  0.3176     0.6607 0.036 0.000 0.084 0.880
#> GSM905041     3  0.5933     0.1206 0.464 0.000 0.500 0.036
#> GSM905044     3  0.1706     0.8658 0.000 0.016 0.948 0.036
#> GSM904989     3  0.2610     0.8593 0.000 0.088 0.900 0.012
#> GSM904999     3  0.1305     0.8871 0.000 0.036 0.960 0.004
#> GSM905002     3  0.1211     0.8867 0.000 0.040 0.960 0.000
#> GSM905009     3  0.4406     0.7579 0.000 0.192 0.780 0.028
#> GSM905014     3  0.1256     0.8861 0.008 0.028 0.964 0.000
#> GSM905017     3  0.1305     0.8871 0.000 0.036 0.960 0.004
#> GSM905020     3  0.3324     0.8275 0.000 0.136 0.852 0.012
#> GSM905023     4  0.6087     0.1870 0.048 0.000 0.412 0.540
#> GSM905029     3  0.2261     0.8600 0.024 0.008 0.932 0.036
#> GSM905032     4  0.5404     0.0801 0.476 0.000 0.012 0.512
#> GSM905034     1  0.0376     0.9272 0.992 0.000 0.004 0.004
#> GSM905040     1  0.0188     0.9276 0.996 0.000 0.000 0.004
#> GSM904985     2  0.1118     0.9239 0.000 0.964 0.036 0.000
#> GSM904988     2  0.0188     0.9311 0.000 0.996 0.004 0.000
#> GSM904990     2  0.0000     0.9302 0.000 1.000 0.000 0.000
#> GSM904992     2  0.0188     0.9311 0.000 0.996 0.004 0.000
#> GSM904995     2  0.0592     0.9318 0.000 0.984 0.016 0.000
#> GSM904998     2  0.0592     0.9318 0.000 0.984 0.016 0.000
#> GSM905000     2  0.0469     0.9318 0.000 0.988 0.012 0.000
#> GSM905003     2  0.1398     0.9201 0.000 0.956 0.040 0.004
#> GSM905006     2  0.0524     0.9255 0.000 0.988 0.004 0.008
#> GSM905008     2  0.1305     0.9225 0.000 0.960 0.036 0.004
#> GSM905011     2  0.0000     0.9302 0.000 1.000 0.000 0.000
#> GSM905013     2  0.0592     0.9318 0.000 0.984 0.016 0.000
#> GSM905016     2  0.0592     0.9318 0.000 0.984 0.016 0.000
#> GSM905018     2  0.0592     0.9318 0.000 0.984 0.016 0.000
#> GSM905021     2  0.3791     0.7616 0.000 0.796 0.200 0.004
#> GSM905025     4  0.2593     0.6305 0.000 0.104 0.004 0.892
#> GSM905028     2  0.1489     0.9109 0.000 0.952 0.004 0.044
#> GSM905030     2  0.1867     0.8988 0.000 0.928 0.000 0.072
#> GSM905033     2  0.3523     0.8521 0.000 0.856 0.112 0.032
#> GSM905035     2  0.4690     0.7025 0.000 0.712 0.012 0.276
#> GSM905037     2  0.2125     0.8992 0.000 0.920 0.004 0.076
#> GSM905039     2  0.3402     0.8269 0.000 0.832 0.004 0.164
#> GSM905042     2  0.5834     0.6998 0.000 0.704 0.172 0.124
#> GSM905046     1  0.0000     0.9289 1.000 0.000 0.000 0.000
#> GSM905065     1  0.0188     0.9289 0.996 0.000 0.004 0.000
#> GSM905049     4  0.4631     0.6489 0.260 0.004 0.008 0.728
#> GSM905050     4  0.1743     0.6835 0.056 0.000 0.004 0.940
#> GSM905064     1  0.0336     0.9254 0.992 0.000 0.000 0.008
#> GSM905045     4  0.4401     0.6459 0.272 0.004 0.000 0.724
#> GSM905051     1  0.0927     0.9121 0.976 0.000 0.008 0.016
#> GSM905055     1  0.0000     0.9289 1.000 0.000 0.000 0.000
#> GSM905058     1  0.0188     0.9289 0.996 0.000 0.004 0.000
#> GSM905053     4  0.5365     0.4966 0.412 0.004 0.008 0.576
#> GSM905061     1  0.5168    -0.3299 0.504 0.000 0.004 0.492
#> GSM905063     1  0.1635     0.8858 0.948 0.000 0.008 0.044
#> GSM905054     1  0.5055     0.0985 0.624 0.000 0.008 0.368
#> GSM905062     4  0.5203     0.4930 0.416 0.000 0.008 0.576
#> GSM905052     1  0.0804     0.9159 0.980 0.000 0.008 0.012
#> GSM905059     1  0.0188     0.9289 0.996 0.000 0.004 0.000
#> GSM905047     1  0.0188     0.9277 0.996 0.000 0.000 0.004
#> GSM905066     1  0.0188     0.9289 0.996 0.000 0.004 0.000
#> GSM905056     1  0.0000     0.9289 1.000 0.000 0.000 0.000
#> GSM905060     1  0.0188     0.9289 0.996 0.000 0.004 0.000
#> GSM905048     1  0.0000     0.9289 1.000 0.000 0.000 0.000
#> GSM905067     1  0.0188     0.9289 0.996 0.000 0.004 0.000
#> GSM905057     1  0.0000     0.9289 1.000 0.000 0.000 0.000
#> GSM905068     4  0.5172     0.5135 0.404 0.000 0.008 0.588

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM905004     4  0.2674     0.3075 0.004 0.000 0.140 0.856 0.000
#> GSM905024     1  0.0955     0.8848 0.968 0.000 0.004 0.000 0.028
#> GSM905038     5  0.4287     0.5722 0.000 0.000 0.460 0.000 0.540
#> GSM905043     1  0.2719     0.7790 0.852 0.000 0.004 0.000 0.144
#> GSM904986     3  0.2130     0.5774 0.000 0.012 0.908 0.000 0.080
#> GSM904991     3  0.1410     0.6926 0.000 0.000 0.940 0.060 0.000
#> GSM904994     3  0.3282     0.7055 0.000 0.008 0.804 0.188 0.000
#> GSM904996     3  0.3339     0.7101 0.000 0.040 0.836 0.124 0.000
#> GSM905007     3  0.3774     0.6676 0.000 0.000 0.704 0.296 0.000
#> GSM905012     3  0.5320     0.6012 0.000 0.060 0.572 0.368 0.000
#> GSM905022     3  0.1743     0.6386 0.000 0.028 0.940 0.004 0.028
#> GSM905026     5  0.4030     0.6494 0.000 0.000 0.352 0.000 0.648
#> GSM905027     5  0.4305     0.5352 0.000 0.000 0.488 0.000 0.512
#> GSM905031     5  0.3055     0.4284 0.000 0.000 0.072 0.064 0.864
#> GSM905036     5  0.1914     0.4846 0.000 0.000 0.060 0.016 0.924
#> GSM905041     5  0.5778     0.5025 0.088 0.000 0.452 0.000 0.460
#> GSM905044     3  0.4448    -0.5590 0.000 0.004 0.516 0.000 0.480
#> GSM904989     3  0.4201     0.6507 0.000 0.008 0.664 0.328 0.000
#> GSM904999     3  0.1300     0.6461 0.000 0.028 0.956 0.000 0.016
#> GSM905002     3  0.2674     0.7124 0.000 0.012 0.868 0.120 0.000
#> GSM905009     3  0.4599     0.5948 0.000 0.016 0.600 0.384 0.000
#> GSM905014     3  0.2230     0.7093 0.000 0.000 0.884 0.116 0.000
#> GSM905017     3  0.1818     0.6304 0.000 0.044 0.932 0.000 0.024
#> GSM905020     3  0.5087     0.6482 0.000 0.064 0.644 0.292 0.000
#> GSM905023     5  0.4088     0.6471 0.000 0.000 0.368 0.000 0.632
#> GSM905029     3  0.4151    -0.1953 0.000 0.004 0.652 0.000 0.344
#> GSM905032     5  0.2903     0.2896 0.080 0.000 0.000 0.048 0.872
#> GSM905034     1  0.1502     0.8701 0.940 0.000 0.004 0.000 0.056
#> GSM905040     1  0.1282     0.8765 0.952 0.000 0.004 0.000 0.044
#> GSM904985     2  0.0290     0.9285 0.000 0.992 0.008 0.000 0.000
#> GSM904988     2  0.0000     0.9315 0.000 1.000 0.000 0.000 0.000
#> GSM904990     2  0.0162     0.9303 0.000 0.996 0.000 0.004 0.000
#> GSM904992     2  0.0000     0.9315 0.000 1.000 0.000 0.000 0.000
#> GSM904995     2  0.0000     0.9315 0.000 1.000 0.000 0.000 0.000
#> GSM904998     2  0.0000     0.9315 0.000 1.000 0.000 0.000 0.000
#> GSM905000     2  0.0000     0.9315 0.000 1.000 0.000 0.000 0.000
#> GSM905003     2  0.0290     0.9285 0.000 0.992 0.008 0.000 0.000
#> GSM905006     2  0.0162     0.9303 0.000 0.996 0.000 0.004 0.000
#> GSM905008     2  0.0290     0.9285 0.000 0.992 0.008 0.000 0.000
#> GSM905011     2  0.0162     0.9303 0.000 0.996 0.000 0.004 0.000
#> GSM905013     2  0.0000     0.9315 0.000 1.000 0.000 0.000 0.000
#> GSM905016     2  0.0000     0.9315 0.000 1.000 0.000 0.000 0.000
#> GSM905018     2  0.0000     0.9315 0.000 1.000 0.000 0.000 0.000
#> GSM905021     2  0.2561     0.8032 0.000 0.856 0.144 0.000 0.000
#> GSM905025     4  0.5044     0.4448 0.000 0.032 0.000 0.504 0.464
#> GSM905028     2  0.0162     0.9305 0.000 0.996 0.000 0.004 0.000
#> GSM905030     2  0.1522     0.9029 0.000 0.944 0.000 0.044 0.012
#> GSM905033     2  0.3317     0.8063 0.000 0.840 0.044 0.000 0.116
#> GSM905035     2  0.4639     0.6612 0.000 0.708 0.000 0.056 0.236
#> GSM905037     2  0.1408     0.9054 0.000 0.948 0.000 0.044 0.008
#> GSM905039     2  0.2592     0.8668 0.000 0.892 0.000 0.052 0.056
#> GSM905042     2  0.5778    -0.0502 0.000 0.460 0.088 0.000 0.452
#> GSM905046     1  0.0162     0.8934 0.996 0.000 0.004 0.000 0.000
#> GSM905065     1  0.0162     0.8934 0.996 0.000 0.004 0.000 0.000
#> GSM905049     4  0.4562     0.5553 0.032 0.000 0.000 0.676 0.292
#> GSM905050     4  0.4283     0.4807 0.000 0.000 0.000 0.544 0.456
#> GSM905064     1  0.1106     0.8774 0.964 0.000 0.000 0.024 0.012
#> GSM905045     4  0.6738     0.5027 0.256 0.000 0.000 0.376 0.368
#> GSM905051     1  0.2629     0.7860 0.860 0.000 0.004 0.136 0.000
#> GSM905055     1  0.0000     0.8936 1.000 0.000 0.000 0.000 0.000
#> GSM905058     1  0.0162     0.8934 0.996 0.000 0.004 0.000 0.000
#> GSM905053     4  0.5236     0.3275 0.380 0.000 0.000 0.568 0.052
#> GSM905061     1  0.6407    -0.0813 0.512 0.000 0.000 0.244 0.244
#> GSM905063     1  0.1798     0.8664 0.928 0.000 0.004 0.004 0.064
#> GSM905054     1  0.3593     0.7337 0.824 0.000 0.000 0.116 0.060
#> GSM905062     1  0.6817    -0.4918 0.348 0.000 0.000 0.344 0.308
#> GSM905052     1  0.2488     0.7996 0.872 0.000 0.004 0.124 0.000
#> GSM905059     1  0.0324     0.8934 0.992 0.000 0.004 0.004 0.000
#> GSM905047     1  0.0324     0.8934 0.992 0.000 0.004 0.004 0.000
#> GSM905066     1  0.0162     0.8934 0.996 0.000 0.004 0.000 0.000
#> GSM905056     1  0.0000     0.8936 1.000 0.000 0.000 0.000 0.000
#> GSM905060     1  0.0324     0.8934 0.992 0.000 0.004 0.004 0.000
#> GSM905048     1  0.0000     0.8936 1.000 0.000 0.000 0.000 0.000
#> GSM905067     1  0.0000     0.8936 1.000 0.000 0.000 0.000 0.000
#> GSM905057     1  0.0000     0.8936 1.000 0.000 0.000 0.000 0.000
#> GSM905068     4  0.5853     0.5297 0.252 0.000 0.036 0.640 0.072

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5 p6
#> GSM905004     3  0.6784    -0.0225 0.052 0.000 0.400 0.336 0.000 NA
#> GSM905024     1  0.1480     0.8163 0.940 0.000 0.000 0.000 0.040 NA
#> GSM905038     5  0.4042     0.6271 0.000 0.000 0.020 0.180 0.760 NA
#> GSM905043     1  0.1471     0.8008 0.932 0.000 0.000 0.000 0.064 NA
#> GSM904986     3  0.4039     0.6801 0.000 0.000 0.732 0.000 0.208 NA
#> GSM904991     3  0.2510     0.7841 0.000 0.000 0.872 0.000 0.100 NA
#> GSM904994     3  0.1078     0.8144 0.000 0.000 0.964 0.008 0.016 NA
#> GSM904996     3  0.2653     0.8076 0.000 0.024 0.896 0.036 0.024 NA
#> GSM905007     3  0.1542     0.8157 0.000 0.000 0.944 0.016 0.024 NA
#> GSM905012     3  0.3830     0.7280 0.000 0.020 0.788 0.148 0.000 NA
#> GSM905022     3  0.3359     0.7579 0.000 0.008 0.820 0.000 0.128 NA
#> GSM905026     5  0.3412     0.6681 0.000 0.000 0.064 0.128 0.808 NA
#> GSM905027     5  0.2418     0.6495 0.000 0.000 0.092 0.008 0.884 NA
#> GSM905031     5  0.4468     0.4995 0.000 0.000 0.028 0.316 0.644 NA
#> GSM905036     5  0.3641     0.6213 0.000 0.000 0.028 0.224 0.748 NA
#> GSM905041     5  0.5127     0.4683 0.156 0.000 0.112 0.000 0.692 NA
#> GSM905044     5  0.3098     0.6056 0.000 0.000 0.164 0.000 0.812 NA
#> GSM904989     3  0.3000     0.7637 0.000 0.000 0.840 0.124 0.004 NA
#> GSM904999     3  0.3874     0.7318 0.000 0.008 0.776 0.000 0.156 NA
#> GSM905002     3  0.1837     0.8128 0.000 0.004 0.932 0.032 0.020 NA
#> GSM905009     3  0.3511     0.7360 0.000 0.004 0.800 0.148 0.000 NA
#> GSM905014     3  0.1268     0.8136 0.000 0.000 0.952 0.008 0.036 NA
#> GSM905017     3  0.4100     0.7081 0.000 0.008 0.752 0.000 0.176 NA
#> GSM905020     3  0.3707     0.7493 0.000 0.044 0.808 0.120 0.000 NA
#> GSM905023     5  0.3764     0.6635 0.012 0.000 0.056 0.140 0.792 NA
#> GSM905029     5  0.4524     0.3585 0.000 0.000 0.320 0.000 0.628 NA
#> GSM905032     5  0.5200     0.4819 0.044 0.000 0.000 0.076 0.668 NA
#> GSM905034     1  0.0891     0.8188 0.968 0.000 0.000 0.000 0.008 NA
#> GSM905040     1  0.0806     0.8237 0.972 0.000 0.000 0.000 0.008 NA
#> GSM904985     2  0.0363     0.9351 0.000 0.988 0.012 0.000 0.000 NA
#> GSM904988     2  0.0000     0.9361 0.000 1.000 0.000 0.000 0.000 NA
#> GSM904990     2  0.0000     0.9361 0.000 1.000 0.000 0.000 0.000 NA
#> GSM904992     2  0.0146     0.9370 0.000 0.996 0.004 0.000 0.000 NA
#> GSM904995     2  0.0260     0.9364 0.000 0.992 0.008 0.000 0.000 NA
#> GSM904998     2  0.0260     0.9364 0.000 0.992 0.008 0.000 0.000 NA
#> GSM905000     2  0.0146     0.9370 0.000 0.996 0.004 0.000 0.000 NA
#> GSM905003     2  0.0622     0.9315 0.000 0.980 0.012 0.000 0.000 NA
#> GSM905006     2  0.0000     0.9361 0.000 1.000 0.000 0.000 0.000 NA
#> GSM905008     2  0.0622     0.9313 0.000 0.980 0.012 0.000 0.000 NA
#> GSM905011     2  0.0146     0.9370 0.000 0.996 0.004 0.000 0.000 NA
#> GSM905013     2  0.0146     0.9370 0.000 0.996 0.004 0.000 0.000 NA
#> GSM905016     2  0.0260     0.9364 0.000 0.992 0.008 0.000 0.000 NA
#> GSM905018     2  0.0146     0.9370 0.000 0.996 0.004 0.000 0.000 NA
#> GSM905021     2  0.4305     0.4959 0.000 0.656 0.312 0.000 0.012 NA
#> GSM905025     4  0.5427     0.4229 0.000 0.036 0.000 0.520 0.048 NA
#> GSM905028     2  0.0837     0.9249 0.000 0.972 0.000 0.004 0.020 NA
#> GSM905030     2  0.1938     0.8956 0.000 0.920 0.000 0.036 0.040 NA
#> GSM905033     2  0.3352     0.7692 0.000 0.800 0.000 0.012 0.172 NA
#> GSM905035     2  0.4176     0.6778 0.000 0.732 0.000 0.064 0.200 NA
#> GSM905037     2  0.1909     0.8947 0.000 0.920 0.000 0.024 0.052 NA
#> GSM905039     2  0.2649     0.8620 0.000 0.876 0.000 0.068 0.052 NA
#> GSM905042     5  0.5072     0.3560 0.000 0.308 0.000 0.044 0.616 NA
#> GSM905046     1  0.0692     0.8244 0.976 0.000 0.000 0.004 0.000 NA
#> GSM905065     1  0.0547     0.8245 0.980 0.000 0.000 0.000 0.000 NA
#> GSM905049     4  0.3372     0.6123 0.076 0.000 0.032 0.848 0.036 NA
#> GSM905050     4  0.5160     0.4459 0.008 0.000 0.000 0.648 0.184 NA
#> GSM905064     1  0.3168     0.7559 0.804 0.000 0.000 0.024 0.000 NA
#> GSM905045     4  0.5846     0.4835 0.288 0.000 0.000 0.568 0.100 NA
#> GSM905051     1  0.4529     0.6958 0.740 0.000 0.032 0.052 0.004 NA
#> GSM905055     1  0.3782     0.5947 0.636 0.000 0.000 0.004 0.000 NA
#> GSM905058     1  0.0146     0.8224 0.996 0.000 0.000 0.000 0.000 NA
#> GSM905053     4  0.6448     0.5411 0.224 0.000 0.036 0.568 0.028 NA
#> GSM905061     1  0.5364     0.4199 0.624 0.000 0.000 0.216 0.012 NA
#> GSM905063     1  0.2851     0.7396 0.844 0.000 0.000 0.020 0.004 NA
#> GSM905054     1  0.4520     0.5680 0.688 0.000 0.000 0.248 0.012 NA
#> GSM905062     1  0.5928    -0.1369 0.456 0.000 0.000 0.416 0.036 NA
#> GSM905052     1  0.4610     0.6931 0.732 0.000 0.032 0.044 0.008 NA
#> GSM905059     1  0.0146     0.8224 0.996 0.000 0.000 0.000 0.000 NA
#> GSM905047     1  0.0935     0.8239 0.964 0.000 0.000 0.004 0.000 NA
#> GSM905066     1  0.1010     0.8159 0.960 0.000 0.000 0.004 0.000 NA
#> GSM905056     1  0.3954     0.5764 0.620 0.000 0.000 0.004 0.004 NA
#> GSM905060     1  0.0291     0.8226 0.992 0.000 0.000 0.004 0.000 NA
#> GSM905048     1  0.1082     0.8229 0.956 0.000 0.000 0.004 0.000 NA
#> GSM905067     1  0.1141     0.8210 0.948 0.000 0.000 0.000 0.000 NA
#> GSM905057     1  0.3769     0.5999 0.640 0.000 0.000 0.004 0.000 NA
#> GSM905068     4  0.6158     0.5444 0.044 0.000 0.064 0.628 0.064 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n tissue(p) genotype/variation(p) individual(p) k
#> ATC:NMF 76  6.80e-07              5.88e-04        0.0267 2
#> ATC:NMF 69  2.81e-11              2.74e-05        0.2811 3
#> ATC:NMF 69  5.57e-12              1.44e-07        0.0740 4
#> ATC:NMF 64  4.15e-12              6.46e-06        0.0568 5
#> ATC:NMF 64  1.02e-12              4.42e-07        0.1445 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0