cola Report for GDS4278

Date: 2019-12-25 21:25:40 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 51941 rows and 154 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4, anno = anno)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 51941   154

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_list), 
    col = get_anno_col(res_list)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
CV:skmeans 2 1.000 0.998 0.999 **
CV:mclust 2 1.000 0.995 0.991 **
MAD:hclust 2 1.000 1.000 1.000 **
MAD:kmeans 2 1.000 1.000 1.000 **
MAD:skmeans 2 1.000 1.000 1.000 **
MAD:mclust 2 1.000 1.000 1.000 **
MAD:NMF 2 1.000 1.000 1.000 **
ATC:hclust 2 1.000 1.000 1.000 **
ATC:kmeans 2 1.000 0.996 0.996 **
ATC:pam 2 1.000 0.999 0.999 **
ATC:mclust 2 1.000 1.000 1.000 **
ATC:NMF 2 1.000 1.000 1.000 **
CV:NMF 2 1.000 0.977 0.988 **
SD:skmeans 3 0.967 0.924 0.958 **
MAD:pam 2 0.945 0.942 0.976 *
SD:NMF 4 0.935 0.913 0.961 *
ATC:skmeans 6 0.912 0.890 0.920 * 2,5
SD:mclust 5 0.904 0.879 0.935 * 2
SD:kmeans 5 0.891 0.841 0.907
CV:kmeans 2 0.865 0.949 0.952
SD:hclust 4 0.488 0.522 0.689
SD:pam 2 0.457 0.786 0.896
CV:hclust 2 0.314 0.848 0.766
CV:pam 2 0.071 0.558 0.780

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.672           0.814       0.919          0.492 0.501   0.501
#> CV:NMF      2 1.000           0.977       0.988          0.501 0.500   0.500
#> MAD:NMF     2 1.000           1.000       1.000          0.501 0.500   0.500
#> ATC:NMF     2 1.000           1.000       1.000          0.501 0.500   0.500
#> SD:skmeans  2 0.471           0.609       0.782          0.497 0.500   0.500
#> CV:skmeans  2 1.000           0.998       0.999          0.501 0.500   0.500
#> MAD:skmeans 2 1.000           1.000       1.000          0.501 0.500   0.500
#> ATC:skmeans 2 1.000           1.000       1.000          0.501 0.500   0.500
#> SD:mclust   2 1.000           1.000       1.000          0.501 0.500   0.500
#> CV:mclust   2 1.000           0.995       0.991          0.495 0.500   0.500
#> MAD:mclust  2 1.000           1.000       1.000          0.501 0.500   0.500
#> ATC:mclust  2 1.000           1.000       1.000          0.501 0.500   0.500
#> SD:kmeans   2 0.495           0.491       0.792          0.490 0.499   0.499
#> CV:kmeans   2 0.865           0.949       0.952          0.498 0.500   0.500
#> MAD:kmeans  2 1.000           1.000       1.000          0.501 0.500   0.500
#> ATC:kmeans  2 1.000           0.996       0.996          0.501 0.500   0.500
#> SD:pam      2 0.457           0.786       0.896          0.491 0.511   0.511
#> CV:pam      2 0.071           0.558       0.780          0.489 0.500   0.500
#> MAD:pam     2 0.945           0.942       0.976          0.503 0.497   0.497
#> ATC:pam     2 1.000           0.999       0.999          0.501 0.500   0.500
#> SD:hclust   2 0.114           0.437       0.644          0.416 0.502   0.502
#> CV:hclust   2 0.314           0.848       0.766          0.335 0.499   0.499
#> MAD:hclust  2 1.000           1.000       1.000          0.501 0.500   0.500
#> ATC:hclust  2 1.000           1.000       1.000          0.501 0.500   0.500
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.655           0.857       0.904          0.323 0.672   0.443
#> CV:NMF      3 0.617           0.691       0.826          0.290 0.827   0.666
#> MAD:NMF     3 0.774           0.856       0.935          0.271 0.806   0.634
#> ATC:NMF     3 0.778           0.841       0.907          0.243 0.857   0.719
#> SD:skmeans  3 0.967           0.924       0.958          0.349 0.733   0.513
#> CV:skmeans  3 0.526           0.712       0.814          0.304 0.855   0.710
#> MAD:skmeans 3 0.898           0.907       0.947          0.287 0.854   0.709
#> ATC:skmeans 3 0.875           0.849       0.917          0.281 0.860   0.720
#> SD:mclust   3 0.714           0.815       0.858          0.263 0.860   0.720
#> CV:mclust   3 0.855           0.882       0.928          0.264 0.874   0.748
#> MAD:mclust  3 0.797           0.891       0.908          0.267 0.856   0.711
#> ATC:mclust  3 0.747           0.884       0.863          0.209 0.894   0.787
#> SD:kmeans   3 0.485           0.533       0.689          0.340 0.613   0.371
#> CV:kmeans   3 0.636           0.717       0.807          0.256 0.870   0.744
#> MAD:kmeans  3 0.696           0.667       0.773          0.250 0.880   0.760
#> ATC:kmeans  3 0.657           0.735       0.765          0.248 0.886   0.772
#> SD:pam      3 0.615           0.801       0.883          0.356 0.770   0.574
#> CV:pam      3 0.231           0.565       0.753          0.321 0.718   0.493
#> MAD:pam     3 0.666           0.744       0.851          0.263 0.849   0.700
#> ATC:pam     3 0.653           0.636       0.744          0.233 0.901   0.801
#> SD:hclust   3 0.307           0.285       0.555          0.503 0.620   0.379
#> CV:hclust   3 0.160           0.791       0.787          0.414 0.981   0.963
#> MAD:hclust  3 0.780           0.752       0.876          0.228 0.905   0.809
#> ATC:hclust  3 0.772           0.703       0.829          0.270 0.856   0.711
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.935           0.913       0.961         0.1129 0.880   0.681
#> CV:NMF      4 0.806           0.822       0.921         0.1478 0.813   0.535
#> MAD:NMF     4 0.607           0.622       0.777         0.1373 0.807   0.535
#> ATC:NMF     4 0.699           0.685       0.856         0.1486 0.870   0.672
#> SD:skmeans  4 0.846           0.867       0.930         0.1196 0.851   0.590
#> CV:skmeans  4 0.501           0.592       0.763         0.1476 0.828   0.557
#> MAD:skmeans 4 0.714           0.763       0.877         0.1562 0.884   0.679
#> ATC:skmeans 4 0.743           0.832       0.823         0.1138 0.917   0.779
#> SD:mclust   4 0.751           0.844       0.893         0.1604 0.809   0.525
#> CV:mclust   4 0.665           0.743       0.778         0.1297 0.839   0.591
#> MAD:mclust  4 0.676           0.809       0.824         0.0881 0.934   0.820
#> ATC:mclust  4 0.617           0.670       0.781         0.1236 0.860   0.676
#> SD:kmeans   4 0.665           0.686       0.808         0.1301 0.786   0.478
#> CV:kmeans   4 0.617           0.692       0.787         0.1456 0.854   0.634
#> MAD:kmeans  4 0.604           0.726       0.760         0.1249 0.826   0.568
#> ATC:kmeans  4 0.606           0.601       0.642         0.1205 0.865   0.658
#> SD:pam      4 0.751           0.766       0.893         0.1264 0.846   0.588
#> CV:pam      4 0.300           0.423       0.671         0.1186 0.906   0.730
#> MAD:pam     4 0.556           0.624       0.787         0.1488 0.902   0.735
#> ATC:pam     4 0.699           0.768       0.867         0.1824 0.796   0.536
#> SD:hclust   4 0.488           0.522       0.689         0.1326 0.725   0.380
#> CV:hclust   4 0.148           0.734       0.779         0.1600 0.950   0.899
#> MAD:hclust  4 0.608           0.519       0.778         0.1236 0.892   0.741
#> ATC:hclust  4 0.854           0.795       0.884         0.0811 0.908   0.757
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.692           0.668       0.815         0.0763 0.892   0.657
#> CV:NMF      5 0.644           0.618       0.787         0.0594 0.924   0.720
#> MAD:NMF     5 0.617           0.669       0.810         0.0815 0.841   0.516
#> ATC:NMF     5 0.651           0.479       0.735         0.0829 0.842   0.538
#> SD:skmeans  5 0.839           0.814       0.902         0.0630 0.898   0.632
#> CV:skmeans  5 0.506           0.524       0.678         0.0671 0.929   0.731
#> MAD:skmeans 5 0.653           0.566       0.770         0.0630 0.929   0.736
#> ATC:skmeans 5 0.906           0.929       0.945         0.1149 0.888   0.638
#> SD:mclust   5 0.904           0.879       0.935         0.0787 0.928   0.726
#> CV:mclust   5 0.761           0.757       0.863         0.0774 0.938   0.778
#> MAD:mclust  5 0.667           0.807       0.848         0.1230 0.880   0.626
#> ATC:mclust  5 0.727           0.727       0.807         0.1076 0.861   0.603
#> SD:kmeans   5 0.891           0.841       0.907         0.0724 0.886   0.603
#> CV:kmeans   5 0.631           0.581       0.742         0.0796 0.904   0.663
#> MAD:kmeans  5 0.574           0.746       0.759         0.0754 0.931   0.742
#> ATC:kmeans  5 0.586           0.778       0.750         0.0849 0.889   0.618
#> SD:pam      5 0.691           0.606       0.785         0.0596 0.925   0.723
#> CV:pam      5 0.375           0.375       0.608         0.0695 0.925   0.742
#> MAD:pam     5 0.621           0.609       0.786         0.0739 0.887   0.633
#> ATC:pam     5 0.806           0.856       0.916         0.0900 0.900   0.654
#> SD:hclust   5 0.619           0.476       0.660         0.0712 0.892   0.659
#> CV:hclust   5 0.167           0.722       0.772         0.0740 0.978   0.950
#> MAD:hclust  5 0.612           0.690       0.804         0.0916 0.880   0.649
#> ATC:hclust  5 0.739           0.683       0.820         0.0833 0.925   0.757
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.653           0.542       0.722         0.0453 0.939   0.757
#> CV:NMF      6 0.625           0.518       0.723         0.0416 0.939   0.739
#> MAD:NMF     6 0.613           0.560       0.758         0.0413 0.899   0.607
#> ATC:NMF     6 0.799           0.760       0.826         0.0549 0.876   0.547
#> SD:skmeans  6 0.772           0.735       0.834         0.0365 0.966   0.837
#> CV:skmeans  6 0.510           0.407       0.596         0.0404 0.958   0.807
#> MAD:skmeans 6 0.640           0.572       0.718         0.0387 0.927   0.691
#> ATC:skmeans 6 0.912           0.890       0.920         0.0397 0.954   0.778
#> SD:mclust   6 0.866           0.862       0.914         0.0417 0.963   0.819
#> CV:mclust   6 0.870           0.843       0.927         0.0577 0.921   0.694
#> MAD:mclust  6 0.682           0.686       0.757         0.0325 0.949   0.790
#> ATC:mclust  6 0.888           0.883       0.923         0.0554 0.941   0.764
#> SD:kmeans   6 0.843           0.793       0.874         0.0390 0.964   0.825
#> CV:kmeans   6 0.669           0.632       0.751         0.0452 0.920   0.658
#> MAD:kmeans  6 0.677           0.601       0.707         0.0572 0.970   0.875
#> ATC:kmeans  6 0.638           0.779       0.779         0.0588 0.959   0.802
#> SD:pam      6 0.728           0.636       0.797         0.0428 0.893   0.558
#> CV:pam      6 0.453           0.411       0.626         0.0404 0.888   0.582
#> MAD:pam     6 0.654           0.582       0.742         0.0397 0.944   0.761
#> ATC:pam     6 0.813           0.799       0.893         0.0467 0.943   0.734
#> SD:hclust   6 0.665           0.630       0.767         0.0526 0.904   0.648
#> CV:hclust   6 0.267           0.614       0.753         0.0633 0.971   0.932
#> MAD:hclust  6 0.654           0.627       0.779         0.0432 0.988   0.950
#> ATC:hclust  6 0.703           0.639       0.784         0.0406 0.979   0.912

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Test to known annotations

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res_list, k = 2)
#>               n genotype/variation(p) disease.state(p) k
#> SD:NMF      137               0.00558            0.416 2
#> CV:NMF      154               0.92460            0.476 2
#> MAD:NMF     154               0.92460            0.476 2
#> ATC:NMF     154               0.92460            0.476 2
#> SD:skmeans  130               0.33296            0.674 2
#> CV:skmeans  154               0.92460            0.476 2
#> MAD:skmeans 154               0.92460            0.476 2
#> ATC:skmeans 154               0.92460            0.476 2
#> SD:mclust   154               0.92460            0.476 2
#> CV:mclust   154               0.92460            0.476 2
#> MAD:mclust  154               0.92460            0.476 2
#> ATC:mclust  154               0.92460            0.476 2
#> SD:kmeans    89               0.03230            0.900 2
#> CV:kmeans   154               0.92460            0.476 2
#> MAD:kmeans  154               0.92460            0.476 2
#> ATC:kmeans  154               0.92460            0.476 2
#> SD:pam      140               0.00260            0.470 2
#> CV:pam      108               0.43667            0.865 2
#> MAD:pam     148               0.87248            0.432 2
#> ATC:pam     154               0.92460            0.476 2
#> SD:hclust    83               0.05127               NA 2
#> CV:hclust   148               0.97895            0.393 2
#> MAD:hclust  154               0.92460            0.476 2
#> ATC:hclust  154               0.92460            0.476 2
test_to_known_factors(res_list, k = 3)
#>               n genotype/variation(p) disease.state(p) k
#> SD:NMF      147                0.1666         5.65e-01 3
#> CV:NMF      131                0.8680         7.58e-05 3
#> MAD:NMF     146                0.8759         8.25e-01 3
#> ATC:NMF     144                0.4620         7.58e-01 3
#> SD:skmeans  150                0.0552         4.40e-01 3
#> CV:skmeans  143                0.0820         3.09e-01 3
#> MAD:skmeans 149                0.3667         2.17e-01 3
#> ATC:skmeans 152                0.9963         9.42e-02 3
#> SD:mclust   136                0.0629         1.95e-01 3
#> CV:mclust   146                0.3128         4.44e-01 3
#> MAD:mclust  152                0.1677         1.85e-01 3
#> ATC:mclust  149                0.3466         9.16e-01 3
#> SD:kmeans   101                0.0713         3.53e-01 3
#> CV:kmeans   127                0.9967         4.83e-01 3
#> MAD:kmeans  138                0.1671         1.61e-01 3
#> ATC:kmeans  140                0.8500         1.85e-02 3
#> SD:pam      144                0.0752         3.13e-01 3
#> CV:pam      110                0.8572         4.37e-01 3
#> MAD:pam     134                0.0584         1.34e-01 3
#> ATC:pam     135                0.5681         9.58e-01 3
#> SD:hclust    56                0.6957         1.00e+00 3
#> CV:hclust   138                0.9639         4.48e-01 3
#> MAD:hclust  132                0.2015         4.87e-01 3
#> ATC:hclust  112                0.7485         3.10e-02 3
test_to_known_factors(res_list, k = 4)
#>               n genotype/variation(p) disease.state(p) k
#> SD:NMF      149               0.38910           0.1018 4
#> CV:NMF      141               0.42002           0.2630 4
#> MAD:NMF     121               0.23638           0.5983 4
#> ATC:NMF     125               0.47299           0.5238 4
#> SD:skmeans  145               0.09311           0.2428 4
#> CV:skmeans  112               0.20357           0.6120 4
#> MAD:skmeans 136               0.42974           0.5596 4
#> ATC:skmeans 151               0.45997           0.0471 4
#> SD:mclust   141               0.01074           0.3975 4
#> CV:mclust   142               0.01173           0.7597 4
#> MAD:mclust  146               0.32680           0.0374 4
#> ATC:mclust  133               0.52773           0.1888 4
#> SD:kmeans   128               0.09862           0.2121 4
#> CV:kmeans   130               0.20363           0.6215 4
#> MAD:kmeans  143               0.32881           0.5489 4
#> ATC:kmeans  134               0.57599           0.1615 4
#> SD:pam      136               0.25363           0.2451 4
#> CV:pam       62               0.92553               NA 4
#> MAD:pam     122               0.00435           0.3617 4
#> ATC:pam     148               0.48219           0.2880 4
#> SD:hclust   106               0.10429           0.6135 4
#> CV:hclust   137               0.83830           0.8121 4
#> MAD:hclust  114               0.24414           0.6882 4
#> ATC:hclust  129               0.47179           0.0675 4
test_to_known_factors(res_list, k = 5)
#>               n genotype/variation(p) disease.state(p) k
#> SD:NMF      125              0.363100         2.22e-01 5
#> CV:NMF      115              0.000033         2.46e-01 5
#> MAD:NMF     127              0.315244         8.78e-01 5
#> ATC:NMF      77              0.216659         6.90e-01 5
#> SD:skmeans  144              0.031149         9.76e-02 5
#> CV:skmeans   97              0.546038         3.75e-03 5
#> MAD:skmeans 102              0.574004         1.05e-05 5
#> ATC:skmeans 151              0.387587         1.79e-01 5
#> SD:mclust   150              0.101739         3.78e-01 5
#> CV:mclust   139              0.035663         9.54e-01 5
#> MAD:mclust  144              0.269558         1.80e-01 5
#> ATC:mclust  136              0.566245         8.88e-02 5
#> SD:kmeans   145              0.092081         1.02e-01 5
#> CV:kmeans   109              0.415960         3.86e-03 5
#> MAD:kmeans  142              0.451189         2.01e-01 5
#> ATC:kmeans  146              0.394626         2.12e-01 5
#> SD:pam      102              0.162526               NA 5
#> CV:pam       56              0.707307               NA 5
#> MAD:pam     118              0.103712         2.25e-01 5
#> ATC:pam     150              0.356920         2.59e-01 5
#> SD:hclust    73              0.232362         3.13e-03 5
#> CV:hclust   133              0.854664         8.23e-01 5
#> MAD:hclust  132              0.410501         1.46e-01 5
#> ATC:hclust  121              0.530923         2.06e-01 5
test_to_known_factors(res_list, k = 6)
#>               n genotype/variation(p) disease.state(p) k
#> SD:NMF       94              2.45e-01          0.15970 6
#> CV:NMF       96              2.92e-07          0.25041 6
#> MAD:NMF     101              4.89e-01          0.74006 6
#> ATC:NMF     136              8.48e-01          0.69167 6
#> SD:skmeans  132              7.07e-02          0.31154 6
#> CV:skmeans   72              5.31e-01          0.08727 6
#> MAD:skmeans 111              4.10e-01          0.10708 6
#> ATC:skmeans 152              3.83e-01          0.38761 6
#> SD:mclust   148              2.05e-01          0.68607 6
#> CV:mclust   145              2.91e-01          0.07320 6
#> MAD:mclust  136              4.81e-01          0.16483 6
#> ATC:mclust  149              2.12e-01          0.18573 6
#> SD:kmeans   136              1.51e-01          0.33389 6
#> CV:kmeans   123              3.69e-01          0.04280 6
#> MAD:kmeans  120              1.93e-01          0.20842 6
#> ATC:kmeans  144              2.43e-01          0.42046 6
#> SD:pam      121              1.66e-12          0.09597 6
#> CV:pam       76              2.03e-01               NA 6
#> MAD:pam     119              5.39e-02          0.06159 6
#> ATC:pam     147              5.71e-01          0.49968 6
#> SD:hclust   120              1.51e-02          0.02306 6
#> CV:hclust   123              7.26e-01          0.81966 6
#> MAD:hclust  123              7.30e-02          0.42751 6
#> ATC:hclust  122              7.40e-01          0.00823 6

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 154 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.114           0.437       0.644         0.4155 0.502   0.502
#> 3 3 0.307           0.285       0.555         0.5032 0.620   0.379
#> 4 4 0.488           0.522       0.689         0.1326 0.725   0.380
#> 5 5 0.619           0.476       0.660         0.0712 0.892   0.659
#> 6 6 0.665           0.630       0.767         0.0526 0.904   0.648

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM564615     1   0.278     0.5360 0.952 0.048
#> GSM564616     2   0.998     0.0346 0.472 0.528
#> GSM564617     2   0.998     0.0346 0.472 0.528
#> GSM564618     1   0.996     0.1267 0.536 0.464
#> GSM564619     1   0.913     0.5675 0.672 0.328
#> GSM564620     1   0.900     0.5642 0.684 0.316
#> GSM564621     1   0.866     0.5795 0.712 0.288
#> GSM564622     2   0.966     0.2441 0.392 0.608
#> GSM564623     1   0.991     0.1740 0.556 0.444
#> GSM564624     2   1.000    -0.0462 0.500 0.500
#> GSM564625     1   0.900     0.5642 0.684 0.316
#> GSM564626     1   0.921     0.5602 0.664 0.336
#> GSM564627     1   0.814     0.5961 0.748 0.252
#> GSM564628     2   0.998     0.0346 0.472 0.528
#> GSM564629     1   0.900     0.5637 0.684 0.316
#> GSM564630     2   0.998     0.0346 0.472 0.528
#> GSM564609     2   0.634     0.5469 0.160 0.840
#> GSM564610     1   0.925     0.5561 0.660 0.340
#> GSM564611     1   0.946     0.5233 0.636 0.364
#> GSM564612     2   0.163     0.5833 0.024 0.976
#> GSM564613     2   0.722     0.5160 0.200 0.800
#> GSM564614     1   0.311     0.5236 0.944 0.056
#> GSM564631     2   0.141     0.5813 0.020 0.980
#> GSM564632     2   0.866     0.4296 0.288 0.712
#> GSM564633     2   0.224     0.5848 0.036 0.964
#> GSM564634     2   0.767     0.5045 0.224 0.776
#> GSM564635     2   0.141     0.5813 0.020 0.980
#> GSM564636     2   0.343     0.5862 0.064 0.936
#> GSM564637     1   0.997     0.1225 0.532 0.468
#> GSM564638     2   0.343     0.5862 0.064 0.936
#> GSM564639     2   0.163     0.5833 0.024 0.976
#> GSM564640     2   0.909     0.3793 0.324 0.676
#> GSM564641     2   0.242     0.5861 0.040 0.960
#> GSM564642     2   0.904     0.3837 0.320 0.680
#> GSM564643     2   0.730     0.5208 0.204 0.796
#> GSM564644     2   0.909     0.3793 0.324 0.676
#> GSM564645     2   0.141     0.5813 0.020 0.980
#> GSM564647     2   0.388     0.5844 0.076 0.924
#> GSM564648     2   0.900     0.3890 0.316 0.684
#> GSM564649     2   0.141     0.5813 0.020 0.980
#> GSM564650     1   0.999     0.0913 0.520 0.480
#> GSM564651     2   0.886     0.4053 0.304 0.696
#> GSM564652     2   0.909     0.3793 0.324 0.676
#> GSM564653     2   0.909     0.3793 0.324 0.676
#> GSM564654     2   0.184     0.5847 0.028 0.972
#> GSM564655     2   0.966     0.2513 0.392 0.608
#> GSM564656     2   0.141     0.5813 0.020 0.980
#> GSM564657     2   0.163     0.5833 0.024 0.976
#> GSM564658     2   0.909     0.3793 0.324 0.676
#> GSM564659     2   0.494     0.5780 0.108 0.892
#> GSM564660     1   0.985     0.2106 0.572 0.428
#> GSM564661     2   0.909     0.3793 0.324 0.676
#> GSM564662     2   0.141     0.5813 0.020 0.980
#> GSM564663     2   0.904     0.3837 0.320 0.680
#> GSM564664     2   0.909     0.3793 0.324 0.676
#> GSM564665     2   0.605     0.5591 0.148 0.852
#> GSM564666     1   0.973     0.2586 0.596 0.404
#> GSM564667     2   0.141     0.5813 0.020 0.980
#> GSM564668     2   0.653     0.5429 0.168 0.832
#> GSM564669     2   0.184     0.5848 0.028 0.972
#> GSM564670     2   0.584     0.5643 0.140 0.860
#> GSM564671     1   0.827     0.3957 0.740 0.260
#> GSM564672     2   0.141     0.5813 0.020 0.980
#> GSM564673     2   0.909     0.3793 0.324 0.676
#> GSM564674     2   0.904     0.3837 0.320 0.680
#> GSM564675     1   0.969     0.2853 0.604 0.396
#> GSM564676     2   0.909     0.3793 0.324 0.676
#> GSM564677     2   0.921     0.3592 0.336 0.664
#> GSM564678     2   0.909     0.3793 0.324 0.676
#> GSM564679     2   0.909     0.3793 0.324 0.676
#> GSM564680     2   0.184     0.5848 0.028 0.972
#> GSM564682     2   0.242     0.5861 0.040 0.960
#> GSM564683     2   0.141     0.5813 0.020 0.980
#> GSM564684     1   0.827     0.3955 0.740 0.260
#> GSM564685     2   0.141     0.5813 0.020 0.980
#> GSM564686     1   0.844     0.3899 0.728 0.272
#> GSM564687     2   0.909     0.3793 0.324 0.676
#> GSM564688     2   0.909     0.3793 0.324 0.676
#> GSM564689     1   1.000     0.0669 0.512 0.488
#> GSM564690     2   0.913     0.3736 0.328 0.672
#> GSM564691     2   0.373     0.5865 0.072 0.928
#> GSM564692     2   0.886     0.4061 0.304 0.696
#> GSM564694     2   0.987     0.1318 0.432 0.568
#> GSM564695     1   0.993     0.1610 0.548 0.452
#> GSM564696     2   0.469     0.5755 0.100 0.900
#> GSM564697     2   0.991     0.1159 0.444 0.556
#> GSM564698     2   0.295     0.5864 0.052 0.948
#> GSM564700     1   0.844     0.3899 0.728 0.272
#> GSM564701     2   0.909     0.3793 0.324 0.676
#> GSM564702     2   0.917     0.3682 0.332 0.668
#> GSM564703     2   0.775     0.3970 0.228 0.772
#> GSM564704     1   0.760     0.5925 0.780 0.220
#> GSM564705     1   0.946     0.5233 0.636 0.364
#> GSM564706     2   0.788     0.3895 0.236 0.764
#> GSM564707     1   0.943     0.5307 0.640 0.360
#> GSM564708     2   0.788     0.3861 0.236 0.764
#> GSM564709     1   0.625     0.5893 0.844 0.156
#> GSM564710     1   0.943     0.5307 0.640 0.360
#> GSM564711     2   0.917     0.2763 0.332 0.668
#> GSM564712     1   0.943     0.5307 0.640 0.360
#> GSM564713     2   0.833     0.3587 0.264 0.736
#> GSM564714     2   0.850     0.3495 0.276 0.724
#> GSM564715     1   0.943     0.5307 0.640 0.360
#> GSM564716     1   0.913     0.5676 0.672 0.328
#> GSM564717     1   0.946     0.5233 0.636 0.364
#> GSM564718     2   0.996     0.0310 0.464 0.536
#> GSM564719     1   0.946     0.5233 0.636 0.364
#> GSM564720     1   0.946     0.5233 0.636 0.364
#> GSM564721     1   0.929     0.5540 0.656 0.344
#> GSM564722     1   0.949     0.3814 0.632 0.368
#> GSM564723     1   0.943     0.5307 0.640 0.360
#> GSM564724     2   0.983     0.1204 0.424 0.576
#> GSM564725     1   0.909     0.5716 0.676 0.324
#> GSM564726     1   0.456     0.5514 0.904 0.096
#> GSM564727     1   0.529     0.5806 0.880 0.120
#> GSM564728     1   0.343     0.5297 0.936 0.064
#> GSM564729     1   0.278     0.5249 0.952 0.048
#> GSM564730     1   0.891     0.5841 0.692 0.308
#> GSM564731     1   0.936     0.5096 0.648 0.352
#> GSM564732     1   0.482     0.5701 0.896 0.104
#> GSM564733     2   0.998    -0.0512 0.472 0.528
#> GSM564734     1   0.662     0.5954 0.828 0.172
#> GSM564735     1   0.850     0.5086 0.724 0.276
#> GSM564736     2   0.850     0.3461 0.276 0.724
#> GSM564737     1   0.943     0.5307 0.640 0.360
#> GSM564738     2   0.997     0.0427 0.468 0.532
#> GSM564739     2   0.795     0.3892 0.240 0.760
#> GSM564740     1   0.518     0.4998 0.884 0.116
#> GSM564741     2   0.990     0.1051 0.440 0.560
#> GSM564742     2   0.781     0.3972 0.232 0.768
#> GSM564743     1   0.891     0.5841 0.692 0.308
#> GSM564744     1   0.943     0.5307 0.640 0.360
#> GSM564745     1   0.871     0.5910 0.708 0.292
#> GSM564746     1   0.925     0.5467 0.660 0.340
#> GSM564747     1   0.966     0.3182 0.608 0.392
#> GSM564748     2   0.781     0.3972 0.232 0.768
#> GSM564749     1   0.946     0.5233 0.636 0.364
#> GSM564750     1   0.295     0.5301 0.948 0.052
#> GSM564751     2   0.775     0.3970 0.228 0.772
#> GSM564752     1   0.295     0.5301 0.948 0.052
#> GSM564753     2   0.775     0.3970 0.228 0.772
#> GSM564754     1   0.844     0.5924 0.728 0.272
#> GSM564755     1   0.494     0.5043 0.892 0.108
#> GSM564756     1   0.929     0.5490 0.656 0.344
#> GSM564757     1   0.204     0.5280 0.968 0.032
#> GSM564758     1   0.343     0.5263 0.936 0.064
#> GSM564759     2   0.788     0.3895 0.236 0.764
#> GSM564760     1   0.753     0.5971 0.784 0.216
#> GSM564761     1   0.936     0.5421 0.648 0.352
#> GSM564762     1   0.909     0.5707 0.676 0.324
#> GSM564681     1   0.904     0.3679 0.680 0.320
#> GSM564693     2   0.904     0.3841 0.320 0.680
#> GSM564646     1   0.821     0.3950 0.744 0.256
#> GSM564699     1   0.850     0.3865 0.724 0.276

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM564615     1  0.5500     0.5531 0.816 0.084 0.100
#> GSM564616     2  0.4912     0.6046 0.196 0.796 0.008
#> GSM564617     2  0.4963     0.6034 0.200 0.792 0.008
#> GSM564618     2  0.6113     0.5207 0.300 0.688 0.012
#> GSM564619     1  0.9964     0.3770 0.356 0.292 0.352
#> GSM564620     1  0.9874     0.4400 0.412 0.304 0.284
#> GSM564621     1  0.9667     0.4737 0.464 0.264 0.272
#> GSM564622     2  0.6271     0.6816 0.140 0.772 0.088
#> GSM564623     2  0.6307     0.4808 0.328 0.660 0.012
#> GSM564624     2  0.5619     0.5764 0.244 0.744 0.012
#> GSM564625     1  0.9874     0.4400 0.412 0.304 0.284
#> GSM564626     3  0.9947    -0.3707 0.336 0.288 0.376
#> GSM564627     1  0.9604     0.4909 0.476 0.256 0.268
#> GSM564628     2  0.4912     0.6046 0.196 0.796 0.008
#> GSM564629     1  0.9889     0.4373 0.408 0.300 0.292
#> GSM564630     2  0.4912     0.6046 0.196 0.796 0.008
#> GSM564609     2  0.5928     0.5023 0.008 0.696 0.296
#> GSM564610     3  0.9942    -0.3596 0.332 0.288 0.380
#> GSM564611     3  0.9877    -0.3132 0.296 0.292 0.412
#> GSM564612     3  0.6299    -0.1102 0.000 0.476 0.524
#> GSM564613     2  0.5551     0.5969 0.020 0.768 0.212
#> GSM564614     1  0.2651     0.5129 0.928 0.012 0.060
#> GSM564631     3  0.6280    -0.0853 0.000 0.460 0.540
#> GSM564632     2  0.7966     0.5628 0.128 0.652 0.220
#> GSM564633     3  0.6513    -0.1210 0.004 0.476 0.520
#> GSM564634     2  0.6067     0.5743 0.028 0.736 0.236
#> GSM564635     3  0.6280    -0.0853 0.000 0.460 0.540
#> GSM564636     2  0.7074     0.1643 0.020 0.500 0.480
#> GSM564637     2  0.6570     0.5268 0.308 0.668 0.024
#> GSM564638     2  0.7074     0.1643 0.020 0.500 0.480
#> GSM564639     3  0.6291    -0.0975 0.000 0.468 0.532
#> GSM564640     2  0.0000     0.7378 0.000 1.000 0.000
#> GSM564641     3  0.6302    -0.1313 0.000 0.480 0.520
#> GSM564642     2  0.0237     0.7379 0.000 0.996 0.004
#> GSM564643     2  0.6668     0.5458 0.040 0.696 0.264
#> GSM564644     2  0.0237     0.7373 0.000 0.996 0.004
#> GSM564645     3  0.6280    -0.0853 0.000 0.460 0.540
#> GSM564647     2  0.6410     0.3009 0.004 0.576 0.420
#> GSM564648     2  0.0829     0.7368 0.004 0.984 0.012
#> GSM564649     3  0.6280    -0.0853 0.000 0.460 0.540
#> GSM564650     2  0.5325     0.5674 0.248 0.748 0.004
#> GSM564651     2  0.1399     0.7310 0.004 0.968 0.028
#> GSM564652     2  0.0237     0.7372 0.004 0.996 0.000
#> GSM564653     2  0.0000     0.7378 0.000 1.000 0.000
#> GSM564654     3  0.6299    -0.1100 0.000 0.476 0.524
#> GSM564655     2  0.7398     0.6400 0.180 0.700 0.120
#> GSM564656     3  0.6280    -0.0853 0.000 0.460 0.540
#> GSM564657     3  0.6299    -0.1102 0.000 0.476 0.524
#> GSM564658     2  0.0424     0.7383 0.008 0.992 0.000
#> GSM564659     2  0.6398     0.3818 0.008 0.620 0.372
#> GSM564660     2  0.6298     0.4136 0.388 0.608 0.004
#> GSM564661     2  0.0000     0.7378 0.000 1.000 0.000
#> GSM564662     3  0.6280    -0.0853 0.000 0.460 0.540
#> GSM564663     2  0.0237     0.7379 0.000 0.996 0.004
#> GSM564664     2  0.0661     0.7348 0.004 0.988 0.008
#> GSM564665     2  0.6912     0.4272 0.028 0.628 0.344
#> GSM564666     2  0.7278     0.2926 0.456 0.516 0.028
#> GSM564667     3  0.6280    -0.0853 0.000 0.460 0.540
#> GSM564668     2  0.5986     0.5178 0.012 0.704 0.284
#> GSM564669     3  0.6295    -0.1053 0.000 0.472 0.528
#> GSM564670     2  0.6228     0.4690 0.012 0.672 0.316
#> GSM564671     1  0.6442     0.0416 0.564 0.432 0.004
#> GSM564672     3  0.6280    -0.0853 0.000 0.460 0.540
#> GSM564673     2  0.0237     0.7383 0.004 0.996 0.000
#> GSM564674     2  0.0237     0.7379 0.000 0.996 0.004
#> GSM564675     2  0.6467     0.3947 0.388 0.604 0.008
#> GSM564676     2  0.0661     0.7349 0.004 0.988 0.008
#> GSM564677     2  0.1267     0.7374 0.024 0.972 0.004
#> GSM564678     2  0.0237     0.7373 0.000 0.996 0.004
#> GSM564679     2  0.0237     0.7373 0.000 0.996 0.004
#> GSM564680     3  0.6295    -0.1053 0.000 0.472 0.528
#> GSM564682     3  0.6302    -0.1313 0.000 0.480 0.520
#> GSM564683     3  0.6280    -0.0853 0.000 0.460 0.540
#> GSM564684     1  0.6451     0.0323 0.560 0.436 0.004
#> GSM564685     3  0.6280    -0.0853 0.000 0.460 0.540
#> GSM564686     1  0.6140     0.0460 0.596 0.404 0.000
#> GSM564687     2  0.0000     0.7378 0.000 1.000 0.000
#> GSM564688     2  0.0000     0.7378 0.000 1.000 0.000
#> GSM564689     2  0.5016     0.5765 0.240 0.760 0.000
#> GSM564690     2  0.0661     0.7361 0.004 0.988 0.008
#> GSM564691     2  0.6267     0.2421 0.000 0.548 0.452
#> GSM564692     2  0.1453     0.7326 0.008 0.968 0.024
#> GSM564694     2  0.7634     0.6158 0.232 0.668 0.100
#> GSM564695     2  0.7207     0.4202 0.384 0.584 0.032
#> GSM564696     2  0.7570     0.3038 0.044 0.552 0.404
#> GSM564697     2  0.4755     0.6693 0.184 0.808 0.008
#> GSM564698     2  0.6518     0.1681 0.004 0.512 0.484
#> GSM564700     1  0.6140     0.0460 0.596 0.404 0.000
#> GSM564701     2  0.0237     0.7376 0.004 0.996 0.000
#> GSM564702     2  0.0747     0.7367 0.016 0.984 0.000
#> GSM564703     3  0.2564     0.3181 0.036 0.028 0.936
#> GSM564704     1  0.9322     0.4812 0.504 0.192 0.304
#> GSM564705     3  0.9863    -0.3104 0.300 0.284 0.416
#> GSM564706     3  0.2681     0.3156 0.040 0.028 0.932
#> GSM564707     3  0.9895    -0.3204 0.312 0.284 0.404
#> GSM564708     3  0.2550     0.3143 0.040 0.024 0.936
#> GSM564709     1  0.8657     0.5240 0.592 0.164 0.244
#> GSM564710     3  0.9885    -0.3151 0.308 0.284 0.408
#> GSM564711     3  0.4748     0.2456 0.144 0.024 0.832
#> GSM564712     3  0.9885    -0.3151 0.308 0.284 0.408
#> GSM564713     3  0.3461     0.2984 0.076 0.024 0.900
#> GSM564714     3  0.3966     0.2791 0.100 0.024 0.876
#> GSM564715     3  0.9885    -0.3151 0.308 0.284 0.408
#> GSM564716     3  0.9908    -0.3758 0.360 0.268 0.372
#> GSM564717     3  0.9863    -0.3104 0.300 0.284 0.416
#> GSM564718     3  0.6451     0.0875 0.292 0.024 0.684
#> GSM564719     3  0.9863    -0.3104 0.300 0.284 0.416
#> GSM564720     3  0.9874    -0.3119 0.304 0.284 0.412
#> GSM564721     3  0.9936    -0.3582 0.336 0.284 0.380
#> GSM564722     3  0.8535    -0.2265 0.404 0.096 0.500
#> GSM564723     3  0.9885    -0.3151 0.308 0.284 0.408
#> GSM564724     3  0.6148     0.1439 0.244 0.028 0.728
#> GSM564725     1  0.9909     0.3598 0.368 0.268 0.364
#> GSM564726     1  0.4931     0.4839 0.784 0.004 0.212
#> GSM564727     1  0.7620     0.5450 0.684 0.128 0.188
#> GSM564728     1  0.3234     0.5216 0.908 0.020 0.072
#> GSM564729     1  0.4469     0.5427 0.864 0.060 0.076
#> GSM564730     1  0.9907     0.3935 0.376 0.268 0.356
#> GSM564731     3  0.9454    -0.3513 0.388 0.180 0.432
#> GSM564732     1  0.7829     0.5513 0.672 0.164 0.164
#> GSM564733     3  0.7694    -0.0355 0.292 0.076 0.632
#> GSM564734     1  0.9083     0.5143 0.548 0.196 0.256
#> GSM564735     1  0.6798     0.3047 0.584 0.016 0.400
#> GSM564736     3  0.3886     0.2862 0.096 0.024 0.880
#> GSM564737     3  0.9885    -0.3151 0.308 0.284 0.408
#> GSM564738     3  0.6473     0.0910 0.312 0.020 0.668
#> GSM564739     3  0.3028     0.3076 0.048 0.032 0.920
#> GSM564740     1  0.3694     0.4919 0.896 0.052 0.052
#> GSM564741     3  0.6195     0.1361 0.276 0.020 0.704
#> GSM564742     3  0.2564     0.3180 0.036 0.028 0.936
#> GSM564743     1  0.9907     0.3935 0.376 0.268 0.356
#> GSM564744     3  0.9885    -0.3151 0.308 0.284 0.408
#> GSM564745     1  0.9787     0.4217 0.412 0.240 0.348
#> GSM564746     1  0.9939     0.4170 0.388 0.300 0.312
#> GSM564747     3  0.8318    -0.1819 0.392 0.084 0.524
#> GSM564748     3  0.2681     0.3171 0.040 0.028 0.932
#> GSM564749     3  0.9863    -0.3104 0.300 0.284 0.416
#> GSM564750     1  0.3918     0.5061 0.856 0.004 0.140
#> GSM564751     3  0.2564     0.3181 0.036 0.028 0.936
#> GSM564752     1  0.3918     0.5061 0.856 0.004 0.140
#> GSM564753     3  0.2443     0.3188 0.032 0.028 0.940
#> GSM564754     1  0.9776     0.4395 0.424 0.244 0.332
#> GSM564755     1  0.4569     0.5031 0.860 0.068 0.072
#> GSM564756     3  0.9914    -0.3417 0.328 0.280 0.392
#> GSM564757     1  0.5181     0.5529 0.832 0.084 0.084
#> GSM564758     1  0.2902     0.5130 0.920 0.016 0.064
#> GSM564759     3  0.2681     0.3156 0.040 0.028 0.932
#> GSM564760     1  0.9248     0.4879 0.516 0.188 0.296
#> GSM564761     3  0.9919    -0.3438 0.324 0.284 0.392
#> GSM564762     1  0.9871     0.3669 0.376 0.256 0.368
#> GSM564681     2  0.6299     0.1589 0.476 0.524 0.000
#> GSM564693     2  0.0237     0.7378 0.000 0.996 0.004
#> GSM564646     1  0.6225     0.0349 0.568 0.432 0.000
#> GSM564699     1  0.6470     0.0916 0.632 0.356 0.012

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM564615     4  0.5859     0.3988 0.284 0.064 0.000 0.652
#> GSM564616     2  0.7325     0.6510 0.096 0.612 0.244 0.048
#> GSM564617     2  0.7343     0.6505 0.092 0.612 0.244 0.052
#> GSM564618     2  0.7097     0.6090 0.040 0.644 0.200 0.116
#> GSM564619     1  0.2722     0.8192 0.904 0.064 0.000 0.032
#> GSM564620     1  0.4415     0.7553 0.804 0.140 0.000 0.056
#> GSM564621     1  0.5266     0.7257 0.752 0.140 0.000 0.108
#> GSM564622     2  0.6969     0.6015 0.056 0.528 0.388 0.028
#> GSM564623     2  0.7201     0.5942 0.040 0.640 0.180 0.140
#> GSM564624     2  0.7042     0.6377 0.060 0.640 0.232 0.068
#> GSM564625     1  0.4465     0.7529 0.800 0.144 0.000 0.056
#> GSM564626     1  0.1820     0.8334 0.944 0.036 0.000 0.020
#> GSM564627     1  0.5594     0.7028 0.724 0.112 0.000 0.164
#> GSM564628     2  0.7325     0.6510 0.096 0.612 0.244 0.048
#> GSM564629     1  0.4465     0.7512 0.800 0.144 0.000 0.056
#> GSM564630     2  0.7325     0.6510 0.096 0.612 0.244 0.048
#> GSM564609     3  0.4755     0.0944 0.012 0.260 0.724 0.004
#> GSM564610     1  0.1297     0.8374 0.964 0.020 0.000 0.016
#> GSM564611     1  0.0779     0.8339 0.980 0.016 0.004 0.000
#> GSM564612     3  0.0707     0.6006 0.000 0.020 0.980 0.000
#> GSM564613     3  0.5252    -0.1974 0.020 0.336 0.644 0.000
#> GSM564614     4  0.3978     0.6168 0.108 0.056 0.000 0.836
#> GSM564631     3  0.0000     0.6074 0.000 0.000 1.000 0.000
#> GSM564632     3  0.6523    -0.1734 0.004 0.332 0.584 0.080
#> GSM564633     3  0.1022     0.5930 0.000 0.032 0.968 0.000
#> GSM564634     3  0.5783    -0.1393 0.032 0.324 0.636 0.008
#> GSM564635     3  0.0000     0.6074 0.000 0.000 1.000 0.000
#> GSM564636     3  0.2255     0.5630 0.000 0.068 0.920 0.012
#> GSM564637     2  0.7733     0.5870 0.036 0.576 0.212 0.176
#> GSM564638     3  0.2255     0.5630 0.000 0.068 0.920 0.012
#> GSM564639     3  0.0592     0.6016 0.000 0.016 0.984 0.000
#> GSM564640     2  0.6834     0.6877 0.100 0.476 0.424 0.000
#> GSM564641     3  0.1822     0.5942 0.004 0.044 0.944 0.008
#> GSM564642     2  0.6792     0.6851 0.096 0.476 0.428 0.000
#> GSM564643     3  0.5520    -0.0481 0.020 0.304 0.664 0.012
#> GSM564644     2  0.6918     0.6871 0.108 0.472 0.420 0.000
#> GSM564645     3  0.0000     0.6074 0.000 0.000 1.000 0.000
#> GSM564647     3  0.2999     0.4578 0.000 0.132 0.864 0.004
#> GSM564648     2  0.6752     0.6728 0.092 0.468 0.440 0.000
#> GSM564649     3  0.0000     0.6074 0.000 0.000 1.000 0.000
#> GSM564650     2  0.7690     0.6277 0.068 0.608 0.200 0.124
#> GSM564651     2  0.6660     0.6568 0.084 0.464 0.452 0.000
#> GSM564652     2  0.6878     0.6861 0.104 0.472 0.424 0.000
#> GSM564653     2  0.6741     0.6869 0.092 0.484 0.424 0.000
#> GSM564654     3  0.0921     0.5958 0.000 0.028 0.972 0.000
#> GSM564655     3  0.7843    -0.4675 0.028 0.380 0.464 0.128
#> GSM564656     3  0.0000     0.6074 0.000 0.000 1.000 0.000
#> GSM564657     3  0.0707     0.6006 0.000 0.020 0.980 0.000
#> GSM564658     2  0.6908     0.6873 0.092 0.480 0.424 0.004
#> GSM564659     3  0.3907     0.3494 0.008 0.180 0.808 0.004
#> GSM564660     2  0.7402     0.4993 0.012 0.564 0.172 0.252
#> GSM564661     2  0.6788     0.6872 0.096 0.480 0.424 0.000
#> GSM564662     3  0.0000     0.6074 0.000 0.000 1.000 0.000
#> GSM564663     2  0.6792     0.6851 0.096 0.476 0.428 0.000
#> GSM564664     2  0.6957     0.6850 0.112 0.472 0.416 0.000
#> GSM564665     3  0.4479     0.2904 0.008 0.224 0.760 0.008
#> GSM564666     2  0.7459     0.3631 0.004 0.500 0.168 0.328
#> GSM564667     3  0.0000     0.6074 0.000 0.000 1.000 0.000
#> GSM564668     3  0.5033     0.0490 0.020 0.268 0.708 0.004
#> GSM564669     3  0.0707     0.5995 0.000 0.020 0.980 0.000
#> GSM564670     3  0.4475     0.2006 0.008 0.240 0.748 0.004
#> GSM564671     2  0.6296     0.1083 0.020 0.552 0.028 0.400
#> GSM564672     3  0.0188     0.6061 0.000 0.004 0.996 0.000
#> GSM564673     2  0.6741     0.6869 0.092 0.484 0.424 0.000
#> GSM564674     2  0.6792     0.6851 0.096 0.476 0.428 0.000
#> GSM564675     2  0.7638     0.5248 0.032 0.580 0.168 0.220
#> GSM564676     2  0.7037     0.6815 0.120 0.464 0.416 0.000
#> GSM564677     2  0.7292     0.6855 0.096 0.468 0.420 0.016
#> GSM564678     2  0.6918     0.6871 0.108 0.472 0.420 0.000
#> GSM564679     2  0.6918     0.6871 0.108 0.472 0.420 0.000
#> GSM564680     3  0.0707     0.5995 0.000 0.020 0.980 0.000
#> GSM564682     3  0.1909     0.5921 0.004 0.048 0.940 0.008
#> GSM564683     3  0.0000     0.6074 0.000 0.000 1.000 0.000
#> GSM564684     2  0.6287     0.1187 0.020 0.556 0.028 0.396
#> GSM564685     3  0.0000     0.6074 0.000 0.000 1.000 0.000
#> GSM564686     2  0.6570     0.0487 0.016 0.504 0.044 0.436
#> GSM564687     2  0.6788     0.6872 0.096 0.480 0.424 0.000
#> GSM564688     2  0.6741     0.6869 0.092 0.484 0.424 0.000
#> GSM564689     2  0.7531     0.6327 0.064 0.620 0.200 0.116
#> GSM564690     2  0.6994     0.6866 0.116 0.472 0.412 0.000
#> GSM564691     3  0.2281     0.5130 0.000 0.096 0.904 0.000
#> GSM564692     2  0.6825     0.6625 0.084 0.464 0.448 0.004
#> GSM564694     2  0.7003     0.5346 0.008 0.536 0.356 0.100
#> GSM564695     2  0.7643     0.4848 0.012 0.532 0.200 0.256
#> GSM564696     3  0.3910     0.4448 0.000 0.156 0.820 0.024
#> GSM564697     2  0.7683     0.6452 0.040 0.532 0.324 0.104
#> GSM564698     3  0.1940     0.5523 0.000 0.076 0.924 0.000
#> GSM564700     2  0.6570     0.0487 0.016 0.504 0.044 0.436
#> GSM564701     2  0.6878     0.6871 0.104 0.472 0.424 0.000
#> GSM564702     2  0.7161     0.6901 0.104 0.476 0.412 0.008
#> GSM564703     3  0.8982     0.1695 0.136 0.240 0.480 0.144
#> GSM564704     1  0.5346     0.6064 0.692 0.032 0.004 0.272
#> GSM564705     1  0.0336     0.8358 0.992 0.008 0.000 0.000
#> GSM564706     3  0.9033     0.1628 0.144 0.236 0.476 0.144
#> GSM564707     1  0.0188     0.8382 0.996 0.004 0.000 0.000
#> GSM564708     3  0.9053     0.1602 0.144 0.240 0.472 0.144
#> GSM564709     1  0.5807     0.4405 0.596 0.040 0.000 0.364
#> GSM564710     1  0.0000     0.8382 1.000 0.000 0.000 0.000
#> GSM564711     3  0.9534    -0.0298 0.140 0.224 0.392 0.244
#> GSM564712     1  0.0000     0.8382 1.000 0.000 0.000 0.000
#> GSM564713     3  0.9238     0.1151 0.168 0.220 0.456 0.156
#> GSM564714     3  0.9413     0.0713 0.148 0.232 0.424 0.196
#> GSM564715     1  0.0000     0.8382 1.000 0.000 0.000 0.000
#> GSM564716     1  0.2197     0.8332 0.928 0.024 0.000 0.048
#> GSM564717     1  0.0469     0.8346 0.988 0.012 0.000 0.000
#> GSM564718     4  0.9670     0.2644 0.160 0.204 0.276 0.360
#> GSM564719     1  0.0469     0.8346 0.988 0.012 0.000 0.000
#> GSM564720     1  0.0188     0.8371 0.996 0.004 0.000 0.000
#> GSM564721     1  0.1584     0.8369 0.952 0.012 0.000 0.036
#> GSM564722     4  0.9442     0.3244 0.292 0.168 0.148 0.392
#> GSM564723     1  0.0000     0.8382 1.000 0.000 0.000 0.000
#> GSM564724     3  0.9789    -0.2491 0.172 0.212 0.308 0.308
#> GSM564725     1  0.2089     0.8356 0.932 0.020 0.000 0.048
#> GSM564726     4  0.4142     0.6334 0.080 0.064 0.012 0.844
#> GSM564727     1  0.6273     0.1545 0.488 0.056 0.000 0.456
#> GSM564728     4  0.4071     0.6263 0.104 0.064 0.000 0.832
#> GSM564729     4  0.5292     0.5100 0.216 0.060 0.000 0.724
#> GSM564730     1  0.2706     0.8172 0.900 0.020 0.000 0.080
#> GSM564731     1  0.7603     0.4455 0.616 0.104 0.076 0.204
#> GSM564732     1  0.6327     0.1900 0.496 0.060 0.000 0.444
#> GSM564733     1  0.8569     0.1357 0.528 0.108 0.224 0.140
#> GSM564734     1  0.5535     0.5529 0.656 0.040 0.000 0.304
#> GSM564735     4  0.7309     0.5638 0.100 0.116 0.124 0.660
#> GSM564736     3  0.9361     0.0773 0.172 0.216 0.440 0.172
#> GSM564737     1  0.0000     0.8382 1.000 0.000 0.000 0.000
#> GSM564738     4  0.9253     0.2536 0.100 0.212 0.284 0.404
#> GSM564739     3  0.9134     0.1407 0.168 0.232 0.464 0.136
#> GSM564740     4  0.4057     0.6168 0.032 0.152 0.000 0.816
#> GSM564741     4  0.9333     0.1941 0.104 0.208 0.316 0.372
#> GSM564742     3  0.8996     0.1701 0.136 0.236 0.480 0.148
#> GSM564743     1  0.2706     0.8172 0.900 0.020 0.000 0.080
#> GSM564744     1  0.0000     0.8382 1.000 0.000 0.000 0.000
#> GSM564745     1  0.3542     0.7900 0.852 0.028 0.000 0.120
#> GSM564746     1  0.3787     0.7786 0.840 0.124 0.000 0.036
#> GSM564747     4  0.9545     0.3109 0.292 0.160 0.172 0.376
#> GSM564748     3  0.9017     0.1661 0.136 0.240 0.476 0.148
#> GSM564749     1  0.0469     0.8346 0.988 0.012 0.000 0.000
#> GSM564750     4  0.3349     0.6462 0.064 0.052 0.004 0.880
#> GSM564751     3  0.8998     0.1710 0.140 0.236 0.480 0.144
#> GSM564752     4  0.3349     0.6462 0.064 0.052 0.004 0.880
#> GSM564753     3  0.8962     0.1733 0.136 0.236 0.484 0.144
#> GSM564754     1  0.3926     0.7522 0.820 0.016 0.004 0.160
#> GSM564755     4  0.4829     0.6127 0.068 0.156 0.000 0.776
#> GSM564756     1  0.0895     0.8388 0.976 0.004 0.000 0.020
#> GSM564757     4  0.5906     0.3844 0.292 0.064 0.000 0.644
#> GSM564758     4  0.3996     0.6240 0.104 0.060 0.000 0.836
#> GSM564759     3  0.9033     0.1628 0.144 0.236 0.476 0.144
#> GSM564760     1  0.5113     0.6368 0.712 0.036 0.000 0.252
#> GSM564761     1  0.1042     0.8379 0.972 0.020 0.000 0.008
#> GSM564762     1  0.3150     0.8142 0.888 0.036 0.004 0.072
#> GSM564681     2  0.7415     0.3134 0.028 0.532 0.096 0.344
#> GSM564693     2  0.6745     0.6845 0.092 0.480 0.428 0.000
#> GSM564646     2  0.6198     0.1111 0.016 0.556 0.028 0.400
#> GSM564699     4  0.6443    -0.0203 0.004 0.468 0.056 0.472

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM564615     4  0.4457    0.57035 0.208 0.004 0.000 0.740 0.048
#> GSM564616     2  0.5975    0.43001 0.068 0.668 0.020 0.028 0.216
#> GSM564617     2  0.5918    0.42617 0.064 0.672 0.020 0.028 0.216
#> GSM564618     2  0.6374    0.18183 0.024 0.600 0.024 0.068 0.284
#> GSM564619     1  0.2952    0.81659 0.892 0.028 0.012 0.016 0.052
#> GSM564620     1  0.4871    0.74569 0.784 0.040 0.020 0.048 0.108
#> GSM564621     1  0.5700    0.69562 0.724 0.036 0.020 0.112 0.108
#> GSM564622     2  0.6041    0.51251 0.024 0.668 0.120 0.012 0.176
#> GSM564623     2  0.6596    0.09659 0.020 0.572 0.024 0.088 0.296
#> GSM564624     2  0.5861    0.34388 0.036 0.656 0.024 0.032 0.252
#> GSM564625     1  0.4943    0.74283 0.780 0.044 0.020 0.048 0.108
#> GSM564626     1  0.1975    0.83385 0.936 0.020 0.004 0.016 0.024
#> GSM564627     1  0.5779    0.66260 0.696 0.028 0.012 0.168 0.096
#> GSM564628     2  0.5975    0.43001 0.068 0.668 0.020 0.028 0.216
#> GSM564629     1  0.4871    0.74548 0.784 0.048 0.020 0.040 0.108
#> GSM564630     2  0.5975    0.43001 0.068 0.668 0.020 0.028 0.216
#> GSM564609     2  0.5087    0.16815 0.008 0.588 0.376 0.000 0.028
#> GSM564610     1  0.1617    0.84040 0.948 0.020 0.000 0.012 0.020
#> GSM564611     1  0.1483    0.83610 0.952 0.028 0.008 0.000 0.012
#> GSM564612     3  0.4074    0.47524 0.000 0.364 0.636 0.000 0.000
#> GSM564613     2  0.4936    0.40230 0.008 0.684 0.260 0.000 0.048
#> GSM564614     4  0.1364    0.58945 0.036 0.000 0.000 0.952 0.012
#> GSM564631     3  0.3983    0.49444 0.000 0.340 0.660 0.000 0.000
#> GSM564632     2  0.7033    0.31315 0.000 0.528 0.284 0.068 0.120
#> GSM564633     3  0.4430    0.46953 0.000 0.360 0.628 0.000 0.012
#> GSM564634     2  0.5911    0.37459 0.024 0.616 0.276 0.000 0.084
#> GSM564635     3  0.3983    0.49444 0.000 0.340 0.660 0.000 0.000
#> GSM564636     3  0.5292    0.41792 0.000 0.368 0.580 0.004 0.048
#> GSM564637     2  0.6640    0.00789 0.012 0.544 0.024 0.100 0.320
#> GSM564638     3  0.5280    0.42334 0.000 0.364 0.584 0.004 0.048
#> GSM564639     3  0.4045    0.48083 0.000 0.356 0.644 0.000 0.000
#> GSM564640     2  0.1270    0.68885 0.052 0.948 0.000 0.000 0.000
#> GSM564641     3  0.5094    0.46410 0.000 0.352 0.600 0.000 0.048
#> GSM564642     2  0.1484    0.68886 0.048 0.944 0.008 0.000 0.000
#> GSM564643     2  0.5815    0.27029 0.008 0.580 0.340 0.008 0.064
#> GSM564644     2  0.1502    0.68792 0.056 0.940 0.000 0.000 0.004
#> GSM564645     3  0.3983    0.49444 0.000 0.340 0.660 0.000 0.000
#> GSM564647     3  0.5042    0.25204 0.000 0.460 0.512 0.004 0.024
#> GSM564648     2  0.2053    0.68489 0.048 0.924 0.024 0.000 0.004
#> GSM564649     3  0.3983    0.49444 0.000 0.340 0.660 0.000 0.000
#> GSM564650     2  0.5765    0.19567 0.028 0.624 0.000 0.064 0.284
#> GSM564651     2  0.2152    0.68229 0.044 0.920 0.032 0.000 0.004
#> GSM564652     2  0.1341    0.68877 0.056 0.944 0.000 0.000 0.000
#> GSM564653     2  0.1408    0.68725 0.044 0.948 0.000 0.000 0.008
#> GSM564654     3  0.4088    0.47001 0.000 0.368 0.632 0.000 0.000
#> GSM564655     2  0.7266    0.39104 0.012 0.576 0.144 0.084 0.184
#> GSM564656     3  0.3983    0.49444 0.000 0.340 0.660 0.000 0.000
#> GSM564657     3  0.4074    0.47524 0.000 0.364 0.636 0.000 0.000
#> GSM564658     2  0.1800    0.68757 0.048 0.932 0.000 0.000 0.020
#> GSM564659     2  0.5029   -0.08636 0.000 0.528 0.444 0.004 0.024
#> GSM564660     2  0.6461   -0.27566 0.000 0.496 0.008 0.152 0.344
#> GSM564661     2  0.1197    0.68802 0.048 0.952 0.000 0.000 0.000
#> GSM564662     3  0.3983    0.49444 0.000 0.340 0.660 0.000 0.000
#> GSM564663     2  0.1484    0.68886 0.048 0.944 0.008 0.000 0.000
#> GSM564664     2  0.1731    0.68578 0.060 0.932 0.004 0.000 0.004
#> GSM564665     2  0.5995    0.02729 0.004 0.504 0.392 0.000 0.100
#> GSM564666     2  0.7328   -0.45823 0.000 0.396 0.032 0.224 0.348
#> GSM564667     3  0.4135    0.49417 0.000 0.340 0.656 0.000 0.004
#> GSM564668     2  0.5052    0.20045 0.008 0.600 0.364 0.000 0.028
#> GSM564669     3  0.4060    0.47683 0.000 0.360 0.640 0.000 0.000
#> GSM564670     2  0.5128    0.11354 0.000 0.580 0.380 0.004 0.036
#> GSM564671     5  0.6959    0.71585 0.004 0.336 0.000 0.320 0.340
#> GSM564672     3  0.3999    0.49109 0.000 0.344 0.656 0.000 0.000
#> GSM564673     2  0.1357    0.68803 0.048 0.948 0.000 0.000 0.004
#> GSM564674     2  0.1484    0.68886 0.048 0.944 0.008 0.000 0.000
#> GSM564675     2  0.6876   -0.18870 0.012 0.512 0.012 0.164 0.300
#> GSM564676     2  0.1704    0.68345 0.068 0.928 0.000 0.000 0.004
#> GSM564677     2  0.2158    0.67739 0.052 0.920 0.000 0.008 0.020
#> GSM564678     2  0.1502    0.68792 0.056 0.940 0.000 0.000 0.004
#> GSM564679     2  0.1502    0.68792 0.056 0.940 0.000 0.000 0.004
#> GSM564680     3  0.4060    0.47683 0.000 0.360 0.640 0.000 0.000
#> GSM564682     3  0.5107    0.46032 0.000 0.356 0.596 0.000 0.048
#> GSM564683     3  0.3983    0.49444 0.000 0.340 0.660 0.000 0.000
#> GSM564684     5  0.6954    0.71553 0.004 0.336 0.000 0.312 0.348
#> GSM564685     3  0.3983    0.49444 0.000 0.340 0.660 0.000 0.000
#> GSM564686     5  0.6796    0.71795 0.000 0.292 0.000 0.336 0.372
#> GSM564687     2  0.1197    0.68802 0.048 0.952 0.000 0.000 0.000
#> GSM564688     2  0.1408    0.68725 0.044 0.948 0.000 0.000 0.008
#> GSM564689     2  0.5569    0.22362 0.024 0.636 0.000 0.056 0.284
#> GSM564690     2  0.1764    0.68495 0.064 0.928 0.000 0.000 0.008
#> GSM564691     3  0.4848    0.35506 0.000 0.420 0.556 0.000 0.024
#> GSM564692     2  0.2511    0.68420 0.044 0.908 0.024 0.000 0.024
#> GSM564694     2  0.6870    0.30842 0.000 0.564 0.136 0.060 0.240
#> GSM564695     2  0.7042   -0.25301 0.000 0.472 0.036 0.160 0.332
#> GSM564696     3  0.6547    0.15399 0.000 0.416 0.424 0.008 0.152
#> GSM564697     2  0.4990    0.47622 0.012 0.732 0.008 0.060 0.188
#> GSM564698     3  0.4557    0.39451 0.000 0.404 0.584 0.000 0.012
#> GSM564700     5  0.6796    0.71795 0.000 0.292 0.000 0.336 0.372
#> GSM564701     2  0.1430    0.68899 0.052 0.944 0.000 0.000 0.004
#> GSM564702     2  0.1914    0.68478 0.056 0.928 0.000 0.008 0.008
#> GSM564703     3  0.4856    0.22168 0.020 0.000 0.584 0.004 0.392
#> GSM564704     1  0.5155    0.49664 0.652 0.000 0.008 0.288 0.052
#> GSM564705     1  0.1306    0.83662 0.960 0.016 0.008 0.000 0.016
#> GSM564706     3  0.4937    0.21687 0.024 0.000 0.580 0.004 0.392
#> GSM564707     1  0.1018    0.83961 0.968 0.016 0.000 0.000 0.016
#> GSM564708     3  0.4884    0.21120 0.020 0.000 0.572 0.004 0.404
#> GSM564709     1  0.5541    0.26166 0.556 0.004 0.008 0.388 0.044
#> GSM564710     1  0.0912    0.83897 0.972 0.016 0.000 0.000 0.012
#> GSM564711     3  0.6301    0.07872 0.016 0.000 0.484 0.100 0.400
#> GSM564712     1  0.0807    0.84060 0.976 0.012 0.000 0.000 0.012
#> GSM564713     3  0.5742    0.17929 0.044 0.000 0.548 0.024 0.384
#> GSM564714     3  0.5868    0.14469 0.024 0.000 0.504 0.048 0.424
#> GSM564715     1  0.0912    0.83897 0.972 0.016 0.000 0.000 0.012
#> GSM564716     1  0.2688    0.82629 0.904 0.012 0.012 0.048 0.024
#> GSM564717     1  0.1799    0.83224 0.940 0.020 0.012 0.000 0.028
#> GSM564718     3  0.7530   -0.18009 0.044 0.000 0.368 0.232 0.356
#> GSM564719     1  0.1617    0.83445 0.948 0.020 0.012 0.000 0.020
#> GSM564720     1  0.0968    0.83864 0.972 0.012 0.004 0.000 0.012
#> GSM564721     1  0.2555    0.83395 0.908 0.016 0.004 0.048 0.024
#> GSM564722     4  0.8500    0.36019 0.188 0.000 0.220 0.296 0.296
#> GSM564723     1  0.0807    0.83925 0.976 0.012 0.000 0.000 0.012
#> GSM564724     3  0.7407   -0.12591 0.048 0.000 0.392 0.184 0.376
#> GSM564725     1  0.2484    0.83113 0.912 0.012 0.008 0.048 0.020
#> GSM564726     4  0.4178    0.54490 0.000 0.004 0.100 0.792 0.104
#> GSM564727     4  0.5553    0.12742 0.424 0.004 0.004 0.520 0.048
#> GSM564728     4  0.1648    0.58573 0.020 0.000 0.000 0.940 0.040
#> GSM564729     4  0.3708    0.59177 0.136 0.004 0.000 0.816 0.044
#> GSM564730     1  0.2699    0.80724 0.880 0.008 0.000 0.100 0.012
#> GSM564731     1  0.7295    0.29984 0.552 0.000 0.116 0.164 0.168
#> GSM564732     4  0.5507    0.05668 0.436 0.004 0.004 0.512 0.044
#> GSM564733     1  0.7791    0.10002 0.468 0.004 0.192 0.088 0.248
#> GSM564734     1  0.5102    0.42849 0.620 0.000 0.008 0.336 0.036
#> GSM564735     4  0.6330    0.39554 0.008 0.004 0.240 0.580 0.168
#> GSM564736     3  0.6127    0.14817 0.052 0.000 0.532 0.040 0.376
#> GSM564737     1  0.0807    0.83925 0.976 0.012 0.000 0.000 0.012
#> GSM564738     5  0.6748   -0.29562 0.000 0.000 0.368 0.260 0.372
#> GSM564739     3  0.5374    0.20358 0.052 0.000 0.568 0.004 0.376
#> GSM564740     4  0.3845    0.34815 0.000 0.012 0.004 0.760 0.224
#> GSM564741     3  0.6672   -0.11928 0.000 0.000 0.392 0.232 0.376
#> GSM564742     3  0.4960    0.22487 0.020 0.000 0.584 0.008 0.388
#> GSM564743     1  0.2699    0.80724 0.880 0.008 0.000 0.100 0.012
#> GSM564744     1  0.0807    0.84060 0.976 0.012 0.000 0.000 0.012
#> GSM564745     1  0.3151    0.76799 0.836 0.000 0.000 0.144 0.020
#> GSM564746     1  0.4302    0.77441 0.820 0.044 0.020 0.028 0.088
#> GSM564747     4  0.8568    0.35261 0.216 0.000 0.224 0.280 0.280
#> GSM564748     3  0.4980    0.21949 0.020 0.000 0.576 0.008 0.396
#> GSM564749     1  0.1518    0.83479 0.952 0.020 0.012 0.000 0.016
#> GSM564750     4  0.2972    0.57358 0.000 0.004 0.040 0.872 0.084
#> GSM564751     3  0.4917    0.22342 0.024 0.000 0.588 0.004 0.384
#> GSM564752     4  0.2913    0.57433 0.000 0.004 0.040 0.876 0.080
#> GSM564753     3  0.4846    0.22737 0.020 0.000 0.588 0.004 0.388
#> GSM564754     1  0.3844    0.71870 0.788 0.004 0.000 0.180 0.028
#> GSM564755     4  0.4924    0.36046 0.028 0.024 0.004 0.712 0.232
#> GSM564756     1  0.1299    0.84001 0.960 0.012 0.000 0.020 0.008
#> GSM564757     4  0.4450    0.56656 0.216 0.004 0.000 0.736 0.044
#> GSM564758     4  0.2040    0.58426 0.032 0.008 0.000 0.928 0.032
#> GSM564759     3  0.4937    0.21635 0.024 0.000 0.580 0.004 0.392
#> GSM564760     1  0.5402    0.53999 0.656 0.008 0.008 0.272 0.056
#> GSM564761     1  0.1393    0.83976 0.956 0.024 0.000 0.008 0.012
#> GSM564762     1  0.3500    0.80084 0.864 0.016 0.016 0.064 0.040
#> GSM564681     2  0.6824   -0.57188 0.004 0.428 0.000 0.260 0.308
#> GSM564693     2  0.1569    0.68828 0.044 0.944 0.004 0.000 0.008
#> GSM564646     5  0.6820    0.71804 0.000 0.332 0.000 0.316 0.352
#> GSM564699     5  0.7069    0.66214 0.000 0.256 0.012 0.364 0.368

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM564615     2  0.4534     0.6331 0.132 0.752 0.020 0.008 0.000 0.088
#> GSM564616     5  0.5815     0.3786 0.024 0.016 0.100 0.020 0.664 0.176
#> GSM564617     5  0.5895     0.3726 0.024 0.020 0.100 0.020 0.660 0.176
#> GSM564618     5  0.6809    -0.1034 0.016 0.036 0.096 0.024 0.480 0.348
#> GSM564619     1  0.3469     0.8019 0.856 0.044 0.036 0.004 0.036 0.024
#> GSM564620     1  0.5384     0.7300 0.740 0.060 0.084 0.016 0.044 0.056
#> GSM564621     1  0.6233     0.6603 0.660 0.148 0.084 0.020 0.036 0.052
#> GSM564622     5  0.6433     0.2783 0.012 0.012 0.212 0.016 0.548 0.200
#> GSM564623     5  0.6848    -0.1962 0.016 0.036 0.096 0.024 0.452 0.376
#> GSM564624     5  0.6471     0.1644 0.020 0.024 0.096 0.024 0.564 0.272
#> GSM564625     1  0.5446     0.7273 0.736 0.060 0.084 0.016 0.048 0.056
#> GSM564626     1  0.2472     0.8185 0.904 0.032 0.020 0.000 0.032 0.012
#> GSM564627     1  0.6267     0.6264 0.632 0.204 0.060 0.020 0.028 0.056
#> GSM564628     5  0.5815     0.3786 0.024 0.016 0.100 0.020 0.664 0.176
#> GSM564629     1  0.5474     0.7254 0.736 0.056 0.084 0.020 0.052 0.052
#> GSM564630     5  0.5815     0.3786 0.024 0.016 0.100 0.020 0.664 0.176
#> GSM564609     3  0.4649     0.3800 0.000 0.000 0.492 0.000 0.468 0.040
#> GSM564610     1  0.1700     0.8263 0.936 0.024 0.012 0.000 0.028 0.000
#> GSM564611     1  0.1598     0.8208 0.940 0.000 0.004 0.008 0.040 0.008
#> GSM564612     3  0.2838     0.8742 0.000 0.000 0.808 0.004 0.188 0.000
#> GSM564613     5  0.5193     0.0258 0.000 0.008 0.348 0.004 0.572 0.068
#> GSM564614     2  0.3380     0.6729 0.004 0.812 0.024 0.008 0.000 0.152
#> GSM564631     3  0.2841     0.8746 0.000 0.000 0.824 0.012 0.164 0.000
#> GSM564632     3  0.6530     0.2213 0.000 0.008 0.392 0.012 0.344 0.244
#> GSM564633     3  0.3371     0.8722 0.000 0.004 0.796 0.008 0.180 0.012
#> GSM564634     5  0.5834    -0.1202 0.004 0.004 0.384 0.028 0.508 0.072
#> GSM564635     3  0.2841     0.8746 0.000 0.000 0.824 0.012 0.164 0.000
#> GSM564636     3  0.4475     0.8370 0.000 0.016 0.744 0.020 0.180 0.040
#> GSM564637     6  0.4526     0.4113 0.000 0.000 0.032 0.000 0.456 0.512
#> GSM564638     3  0.4443     0.8390 0.000 0.016 0.748 0.020 0.176 0.040
#> GSM564639     3  0.2882     0.8746 0.000 0.000 0.812 0.008 0.180 0.000
#> GSM564640     5  0.0405     0.7171 0.008 0.000 0.004 0.000 0.988 0.000
#> GSM564641     3  0.4356     0.8450 0.000 0.004 0.744 0.044 0.184 0.024
#> GSM564642     5  0.0508     0.7167 0.004 0.000 0.012 0.000 0.984 0.000
#> GSM564643     5  0.5149    -0.2705 0.000 0.000 0.440 0.000 0.476 0.084
#> GSM564644     5  0.0363     0.7160 0.012 0.000 0.000 0.000 0.988 0.000
#> GSM564645     3  0.2841     0.8746 0.000 0.000 0.824 0.012 0.164 0.000
#> GSM564647     3  0.4366     0.7210 0.000 0.004 0.644 0.004 0.324 0.024
#> GSM564648     5  0.1338     0.7064 0.004 0.000 0.032 0.004 0.952 0.008
#> GSM564649     3  0.2841     0.8746 0.000 0.000 0.824 0.012 0.164 0.000
#> GSM564650     5  0.4049    -0.1302 0.004 0.000 0.004 0.000 0.580 0.412
#> GSM564651     5  0.1226     0.7020 0.004 0.000 0.040 0.000 0.952 0.004
#> GSM564652     5  0.0653     0.7171 0.012 0.000 0.004 0.000 0.980 0.004
#> GSM564653     5  0.0603     0.7143 0.000 0.000 0.004 0.000 0.980 0.016
#> GSM564654     3  0.3043     0.8691 0.000 0.000 0.792 0.008 0.200 0.000
#> GSM564655     5  0.6507    -0.0999 0.000 0.004 0.248 0.016 0.404 0.328
#> GSM564656     3  0.2841     0.8746 0.000 0.000 0.824 0.012 0.164 0.000
#> GSM564657     3  0.2838     0.8742 0.000 0.000 0.808 0.004 0.188 0.000
#> GSM564658     5  0.0982     0.7134 0.004 0.000 0.004 0.004 0.968 0.020
#> GSM564659     3  0.4495     0.6049 0.000 0.004 0.580 0.000 0.388 0.028
#> GSM564660     6  0.4466     0.6590 0.000 0.004 0.016 0.012 0.340 0.628
#> GSM564661     5  0.0291     0.7162 0.004 0.000 0.004 0.000 0.992 0.000
#> GSM564662     3  0.2841     0.8746 0.000 0.000 0.824 0.012 0.164 0.000
#> GSM564663     5  0.0508     0.7167 0.004 0.000 0.012 0.000 0.984 0.000
#> GSM564664     5  0.0837     0.7116 0.020 0.000 0.004 0.000 0.972 0.004
#> GSM564665     3  0.5740     0.4837 0.000 0.000 0.504 0.036 0.384 0.076
#> GSM564666     6  0.5611     0.7096 0.000 0.048 0.056 0.016 0.244 0.636
#> GSM564667     3  0.2841     0.8741 0.000 0.000 0.824 0.012 0.164 0.000
#> GSM564668     5  0.4651    -0.3881 0.000 0.000 0.480 0.000 0.480 0.040
#> GSM564669     3  0.2915     0.8747 0.000 0.000 0.808 0.008 0.184 0.000
#> GSM564670     3  0.4930     0.4280 0.000 0.004 0.496 0.000 0.448 0.052
#> GSM564671     6  0.5101     0.7544 0.004 0.108 0.004 0.004 0.220 0.660
#> GSM564672     3  0.2778     0.8749 0.000 0.000 0.824 0.008 0.168 0.000
#> GSM564673     5  0.0551     0.7161 0.004 0.000 0.004 0.000 0.984 0.008
#> GSM564674     5  0.0508     0.7167 0.004 0.000 0.012 0.000 0.984 0.000
#> GSM564675     6  0.5751     0.5682 0.012 0.024 0.048 0.008 0.376 0.532
#> GSM564676     5  0.0777     0.7103 0.024 0.000 0.000 0.000 0.972 0.004
#> GSM564677     5  0.2125     0.6696 0.016 0.004 0.004 0.000 0.908 0.068
#> GSM564678     5  0.0363     0.7160 0.012 0.000 0.000 0.000 0.988 0.000
#> GSM564679     5  0.0363     0.7160 0.012 0.000 0.000 0.000 0.988 0.000
#> GSM564680     3  0.2915     0.8747 0.000 0.000 0.808 0.008 0.184 0.000
#> GSM564682     3  0.4464     0.8445 0.000 0.008 0.740 0.044 0.184 0.024
#> GSM564683     3  0.2841     0.8746 0.000 0.000 0.824 0.012 0.164 0.000
#> GSM564684     6  0.4968     0.7571 0.004 0.100 0.004 0.004 0.212 0.676
#> GSM564685     3  0.2841     0.8746 0.000 0.000 0.824 0.012 0.164 0.000
#> GSM564686     6  0.3705     0.7280 0.000 0.056 0.000 0.008 0.144 0.792
#> GSM564687     5  0.0291     0.7162 0.004 0.000 0.004 0.000 0.992 0.000
#> GSM564688     5  0.0603     0.7143 0.000 0.000 0.004 0.000 0.980 0.016
#> GSM564689     5  0.3862    -0.0301 0.000 0.000 0.004 0.000 0.608 0.388
#> GSM564690     5  0.0777     0.7112 0.024 0.000 0.000 0.000 0.972 0.004
#> GSM564691     3  0.3965     0.8107 0.000 0.004 0.716 0.004 0.256 0.020
#> GSM564692     5  0.1774     0.7034 0.004 0.004 0.024 0.004 0.936 0.028
#> GSM564694     5  0.6089    -0.2133 0.000 0.008 0.168 0.004 0.424 0.396
#> GSM564695     6  0.5147     0.6390 0.000 0.008 0.056 0.012 0.320 0.604
#> GSM564696     3  0.6471     0.5836 0.000 0.008 0.532 0.092 0.284 0.084
#> GSM564697     5  0.3984     0.1871 0.000 0.000 0.016 0.000 0.648 0.336
#> GSM564698     3  0.3894     0.8334 0.000 0.004 0.732 0.008 0.240 0.016
#> GSM564700     6  0.3763     0.7279 0.000 0.060 0.000 0.008 0.144 0.788
#> GSM564701     5  0.0508     0.7170 0.012 0.000 0.004 0.000 0.984 0.000
#> GSM564702     5  0.1078     0.7131 0.012 0.000 0.008 0.000 0.964 0.016
#> GSM564703     4  0.2146     0.8227 0.000 0.000 0.116 0.880 0.000 0.004
#> GSM564704     1  0.4907     0.4858 0.620 0.328 0.008 0.020 0.004 0.020
#> GSM564705     1  0.1509     0.8200 0.948 0.000 0.008 0.008 0.024 0.012
#> GSM564706     4  0.2476     0.8236 0.004 0.004 0.120 0.868 0.000 0.004
#> GSM564707     1  0.1180     0.8241 0.960 0.000 0.004 0.004 0.024 0.008
#> GSM564708     4  0.2170     0.8228 0.000 0.000 0.100 0.888 0.000 0.012
#> GSM564709     1  0.5285     0.2237 0.500 0.432 0.004 0.020 0.000 0.044
#> GSM564710     1  0.1036     0.8234 0.964 0.000 0.000 0.004 0.024 0.008
#> GSM564711     4  0.4070     0.7906 0.004 0.096 0.084 0.792 0.000 0.024
#> GSM564712     1  0.1210     0.8254 0.960 0.008 0.000 0.004 0.020 0.008
#> GSM564713     4  0.3306     0.8109 0.032 0.020 0.104 0.840 0.000 0.004
#> GSM564714     4  0.3684     0.8062 0.000 0.048 0.112 0.812 0.000 0.028
#> GSM564715     1  0.1036     0.8234 0.964 0.000 0.000 0.004 0.024 0.008
#> GSM564716     1  0.3234     0.8135 0.868 0.060 0.020 0.020 0.020 0.012
#> GSM564717     1  0.2402     0.8040 0.908 0.000 0.028 0.012 0.024 0.028
#> GSM564718     4  0.5472     0.6413 0.024 0.204 0.052 0.672 0.000 0.048
#> GSM564719     1  0.1971     0.8124 0.928 0.000 0.016 0.008 0.024 0.024
#> GSM564720     1  0.1096     0.8230 0.964 0.000 0.004 0.004 0.020 0.008
#> GSM564721     1  0.2947     0.8214 0.880 0.056 0.012 0.004 0.024 0.024
#> GSM564722     4  0.7145     0.1995 0.144 0.292 0.024 0.464 0.000 0.076
#> GSM564723     1  0.0951     0.8237 0.968 0.000 0.000 0.004 0.020 0.008
#> GSM564724     4  0.5234     0.6792 0.024 0.176 0.068 0.700 0.000 0.032
#> GSM564725     1  0.2955     0.8183 0.880 0.060 0.020 0.008 0.020 0.012
#> GSM564726     2  0.4870     0.5764 0.000 0.696 0.016 0.168 0.000 0.120
#> GSM564727     2  0.5589     0.1959 0.356 0.548 0.024 0.008 0.000 0.064
#> GSM564728     2  0.3263     0.6731 0.000 0.816 0.016 0.016 0.000 0.152
#> GSM564729     2  0.4077     0.6628 0.080 0.788 0.020 0.004 0.000 0.108
#> GSM564730     1  0.3308     0.7840 0.824 0.140 0.008 0.000 0.016 0.012
#> GSM564731     1  0.6837     0.2896 0.492 0.196 0.016 0.256 0.004 0.036
#> GSM564732     2  0.5407     0.1446 0.368 0.552 0.016 0.012 0.000 0.052
#> GSM564733     1  0.6728     0.0497 0.444 0.104 0.052 0.380 0.004 0.016
#> GSM564734     1  0.5057     0.3943 0.568 0.372 0.004 0.016 0.000 0.040
#> GSM564735     2  0.6024     0.1198 0.004 0.508 0.044 0.360 0.000 0.084
#> GSM564736     4  0.3703     0.8010 0.036 0.040 0.100 0.820 0.000 0.004
#> GSM564737     1  0.0951     0.8237 0.968 0.000 0.000 0.004 0.020 0.008
#> GSM564738     4  0.5133     0.6344 0.000 0.224 0.056 0.668 0.000 0.052
#> GSM564739     4  0.3005     0.8139 0.036 0.000 0.108 0.848 0.000 0.008
#> GSM564740     2  0.4765     0.4064 0.000 0.524 0.012 0.028 0.000 0.436
#> GSM564741     4  0.4932     0.6677 0.000 0.212 0.060 0.688 0.000 0.040
#> GSM564742     4  0.2146     0.8239 0.000 0.004 0.116 0.880 0.000 0.000
#> GSM564743     1  0.3308     0.7840 0.824 0.140 0.008 0.000 0.016 0.012
#> GSM564744     1  0.1210     0.8254 0.960 0.008 0.000 0.004 0.020 0.008
#> GSM564745     1  0.3951     0.7427 0.772 0.180 0.004 0.008 0.008 0.028
#> GSM564746     1  0.4824     0.7549 0.780 0.044 0.072 0.020 0.048 0.036
#> GSM564747     4  0.7170     0.1943 0.176 0.288 0.028 0.452 0.000 0.056
#> GSM564748     4  0.1957     0.8249 0.000 0.000 0.112 0.888 0.000 0.000
#> GSM564749     1  0.1785     0.8164 0.936 0.000 0.012 0.008 0.028 0.016
#> GSM564750     2  0.4289     0.6492 0.000 0.756 0.016 0.092 0.000 0.136
#> GSM564751     4  0.2333     0.8216 0.004 0.000 0.120 0.872 0.000 0.004
#> GSM564752     2  0.4200     0.6489 0.000 0.760 0.012 0.092 0.000 0.136
#> GSM564753     4  0.2191     0.8229 0.000 0.004 0.120 0.876 0.000 0.000
#> GSM564754     1  0.3891     0.7133 0.768 0.192 0.004 0.008 0.008 0.020
#> GSM564755     2  0.5157     0.4165 0.016 0.516 0.012 0.028 0.000 0.428
#> GSM564756     1  0.2146     0.8264 0.916 0.044 0.008 0.000 0.024 0.008
#> GSM564757     2  0.4364     0.6271 0.144 0.748 0.016 0.000 0.000 0.092
#> GSM564758     2  0.3712     0.6697 0.004 0.788 0.024 0.016 0.000 0.168
#> GSM564759     4  0.2476     0.8240 0.004 0.004 0.120 0.868 0.000 0.004
#> GSM564760     1  0.5660     0.5133 0.604 0.296 0.012 0.040 0.008 0.040
#> GSM564761     1  0.1893     0.8243 0.928 0.024 0.008 0.000 0.036 0.004
#> GSM564762     1  0.3829     0.7932 0.836 0.068 0.024 0.036 0.016 0.020
#> GSM564681     6  0.5380     0.7252 0.004 0.084 0.008 0.004 0.308 0.592
#> GSM564693     5  0.0717     0.7148 0.000 0.000 0.008 0.000 0.976 0.016
#> GSM564646     6  0.4820     0.7565 0.000 0.104 0.004 0.004 0.204 0.684
#> GSM564699     6  0.4491     0.6878 0.000 0.076 0.020 0.016 0.124 0.764

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n genotype/variation(p) disease.state(p) k
#> SD:hclust  83                0.0513               NA 2
#> SD:hclust  56                0.6957          1.00000 3
#> SD:hclust 106                0.1043          0.61352 4
#> SD:hclust  73                0.2324          0.00313 5
#> SD:hclust 120                0.0151          0.02306 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 154 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.495           0.491       0.792         0.4895 0.499   0.499
#> 3 3 0.485           0.533       0.689         0.3403 0.613   0.371
#> 4 4 0.665           0.686       0.808         0.1301 0.786   0.478
#> 5 5 0.891           0.841       0.907         0.0724 0.886   0.603
#> 6 6 0.843           0.793       0.874         0.0390 0.964   0.825

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM564615     1  0.0000      0.756 1.000 0.000
#> GSM564616     2  0.9988      0.424 0.480 0.520
#> GSM564617     2  0.9988      0.424 0.480 0.520
#> GSM564618     2  0.9998      0.404 0.492 0.508
#> GSM564619     1  0.0000      0.756 1.000 0.000
#> GSM564620     1  0.0000      0.756 1.000 0.000
#> GSM564621     1  0.0000      0.756 1.000 0.000
#> GSM564622     2  0.9977      0.436 0.472 0.528
#> GSM564623     1  1.0000     -0.395 0.504 0.496
#> GSM564624     2  0.9996      0.410 0.488 0.512
#> GSM564625     1  0.0000      0.756 1.000 0.000
#> GSM564626     1  0.0000      0.756 1.000 0.000
#> GSM564627     1  0.0000      0.756 1.000 0.000
#> GSM564628     2  0.9993      0.417 0.484 0.516
#> GSM564629     1  0.0000      0.756 1.000 0.000
#> GSM564630     2  0.9988      0.424 0.480 0.520
#> GSM564609     2  0.0000      0.618 0.000 1.000
#> GSM564610     1  0.0000      0.756 1.000 0.000
#> GSM564611     1  0.0376      0.754 0.996 0.004
#> GSM564612     2  0.0000      0.618 0.000 1.000
#> GSM564613     2  0.1414      0.614 0.020 0.980
#> GSM564614     1  0.0000      0.756 1.000 0.000
#> GSM564631     2  0.0000      0.618 0.000 1.000
#> GSM564632     2  0.1633      0.613 0.024 0.976
#> GSM564633     2  0.0000      0.618 0.000 1.000
#> GSM564634     2  0.9661      0.468 0.392 0.608
#> GSM564635     2  0.0000      0.618 0.000 1.000
#> GSM564636     2  0.0000      0.618 0.000 1.000
#> GSM564637     2  0.0376      0.617 0.004 0.996
#> GSM564638     2  0.0000      0.618 0.000 1.000
#> GSM564639     2  0.0000      0.618 0.000 1.000
#> GSM564640     2  0.9983      0.430 0.476 0.524
#> GSM564641     2  0.0000      0.618 0.000 1.000
#> GSM564642     2  0.9977      0.436 0.472 0.528
#> GSM564643     2  0.6343      0.566 0.160 0.840
#> GSM564644     2  0.9977      0.436 0.472 0.528
#> GSM564645     2  0.0000      0.618 0.000 1.000
#> GSM564647     2  0.0000      0.618 0.000 1.000
#> GSM564648     2  0.9977      0.436 0.472 0.528
#> GSM564649     2  0.0000      0.618 0.000 1.000
#> GSM564650     2  0.9983      0.430 0.476 0.524
#> GSM564651     2  0.9963      0.440 0.464 0.536
#> GSM564652     2  0.9983      0.430 0.476 0.524
#> GSM564653     2  0.9977      0.436 0.472 0.528
#> GSM564654     2  0.0000      0.618 0.000 1.000
#> GSM564655     2  0.0672      0.617 0.008 0.992
#> GSM564656     2  0.0000      0.618 0.000 1.000
#> GSM564657     2  0.0000      0.618 0.000 1.000
#> GSM564658     2  0.9977      0.436 0.472 0.528
#> GSM564659     2  0.0000      0.618 0.000 1.000
#> GSM564660     2  0.9996      0.412 0.488 0.512
#> GSM564661     2  0.9977      0.436 0.472 0.528
#> GSM564662     2  0.0000      0.618 0.000 1.000
#> GSM564663     2  0.9977      0.436 0.472 0.528
#> GSM564664     2  0.9977      0.436 0.472 0.528
#> GSM564665     2  0.0000      0.618 0.000 1.000
#> GSM564666     2  0.3431      0.600 0.064 0.936
#> GSM564667     2  0.0000      0.618 0.000 1.000
#> GSM564668     2  0.0000      0.618 0.000 1.000
#> GSM564669     2  0.0000      0.618 0.000 1.000
#> GSM564670     2  0.0000      0.618 0.000 1.000
#> GSM564671     1  1.0000     -0.395 0.504 0.496
#> GSM564672     2  0.0000      0.618 0.000 1.000
#> GSM564673     2  0.9977      0.436 0.472 0.528
#> GSM564674     2  0.9977      0.436 0.472 0.528
#> GSM564675     1  1.0000     -0.395 0.504 0.496
#> GSM564676     2  0.9977      0.436 0.472 0.528
#> GSM564677     2  0.9998      0.402 0.492 0.508
#> GSM564678     2  0.9977      0.436 0.472 0.528
#> GSM564679     2  0.9977      0.436 0.472 0.528
#> GSM564680     2  0.0000      0.618 0.000 1.000
#> GSM564682     2  0.0000      0.618 0.000 1.000
#> GSM564683     2  0.0000      0.618 0.000 1.000
#> GSM564684     1  1.0000     -0.395 0.504 0.496
#> GSM564685     2  0.0000      0.618 0.000 1.000
#> GSM564686     1  1.0000     -0.395 0.504 0.496
#> GSM564687     2  0.9977      0.436 0.472 0.528
#> GSM564688     2  0.9977      0.436 0.472 0.528
#> GSM564689     2  0.9988      0.424 0.480 0.520
#> GSM564690     2  0.9977      0.436 0.472 0.528
#> GSM564691     2  0.0000      0.618 0.000 1.000
#> GSM564692     2  0.9977      0.436 0.472 0.528
#> GSM564694     2  0.8813      0.508 0.300 0.700
#> GSM564695     2  0.0938      0.614 0.012 0.988
#> GSM564696     2  0.0000      0.618 0.000 1.000
#> GSM564697     2  0.9977      0.436 0.472 0.528
#> GSM564698     2  0.0000      0.618 0.000 1.000
#> GSM564700     1  1.0000     -0.395 0.504 0.496
#> GSM564701     2  0.9977      0.436 0.472 0.528
#> GSM564702     2  0.9996      0.410 0.488 0.512
#> GSM564703     2  1.0000     -0.221 0.496 0.504
#> GSM564704     1  0.0000      0.756 1.000 0.000
#> GSM564705     1  0.0376      0.754 0.996 0.004
#> GSM564706     2  1.0000     -0.221 0.496 0.504
#> GSM564707     1  0.0376      0.754 0.996 0.004
#> GSM564708     1  0.9998      0.221 0.508 0.492
#> GSM564709     1  0.0000      0.756 1.000 0.000
#> GSM564710     1  0.0376      0.754 0.996 0.004
#> GSM564711     1  0.9977      0.248 0.528 0.472
#> GSM564712     1  0.0000      0.756 1.000 0.000
#> GSM564713     1  0.9983      0.243 0.524 0.476
#> GSM564714     1  1.0000      0.205 0.500 0.500
#> GSM564715     1  0.0376      0.754 0.996 0.004
#> GSM564716     1  0.0000      0.756 1.000 0.000
#> GSM564717     1  0.0376      0.754 0.996 0.004
#> GSM564718     1  0.9977      0.248 0.528 0.472
#> GSM564719     1  0.0376      0.754 0.996 0.004
#> GSM564720     1  0.0376      0.754 0.996 0.004
#> GSM564721     1  0.0000      0.756 1.000 0.000
#> GSM564722     1  0.0000      0.756 1.000 0.000
#> GSM564723     1  0.0376      0.754 0.996 0.004
#> GSM564724     1  0.9983      0.243 0.524 0.476
#> GSM564725     1  0.0000      0.756 1.000 0.000
#> GSM564726     1  0.9977      0.248 0.528 0.472
#> GSM564727     1  0.0000      0.756 1.000 0.000
#> GSM564728     1  0.0000      0.756 1.000 0.000
#> GSM564729     1  0.0000      0.756 1.000 0.000
#> GSM564730     1  0.0000      0.756 1.000 0.000
#> GSM564731     1  0.1414      0.740 0.980 0.020
#> GSM564732     1  0.0000      0.756 1.000 0.000
#> GSM564733     1  0.5629      0.624 0.868 0.132
#> GSM564734     1  0.0000      0.756 1.000 0.000
#> GSM564735     1  0.9977      0.248 0.528 0.472
#> GSM564736     1  0.9983      0.243 0.524 0.476
#> GSM564737     1  0.0376      0.754 0.996 0.004
#> GSM564738     1  0.9983      0.243 0.524 0.476
#> GSM564739     1  0.9998      0.221 0.508 0.492
#> GSM564740     1  0.0000      0.756 1.000 0.000
#> GSM564741     1  0.9988      0.237 0.520 0.480
#> GSM564742     2  1.0000     -0.221 0.496 0.504
#> GSM564743     1  0.0000      0.756 1.000 0.000
#> GSM564744     1  0.0376      0.754 0.996 0.004
#> GSM564745     1  0.0000      0.756 1.000 0.000
#> GSM564746     1  0.0376      0.754 0.996 0.004
#> GSM564747     1  0.0938      0.747 0.988 0.012
#> GSM564748     2  1.0000     -0.221 0.496 0.504
#> GSM564749     1  0.0376      0.754 0.996 0.004
#> GSM564750     1  0.9977      0.248 0.528 0.472
#> GSM564751     2  1.0000     -0.221 0.496 0.504
#> GSM564752     1  0.9977      0.248 0.528 0.472
#> GSM564753     2  1.0000     -0.221 0.496 0.504
#> GSM564754     1  0.0000      0.756 1.000 0.000
#> GSM564755     1  0.0000      0.756 1.000 0.000
#> GSM564756     1  0.0000      0.756 1.000 0.000
#> GSM564757     1  0.0000      0.756 1.000 0.000
#> GSM564758     1  0.0000      0.756 1.000 0.000
#> GSM564759     2  1.0000     -0.221 0.496 0.504
#> GSM564760     1  0.0000      0.756 1.000 0.000
#> GSM564761     1  0.0376      0.754 0.996 0.004
#> GSM564762     1  0.0000      0.756 1.000 0.000
#> GSM564681     1  1.0000     -0.395 0.504 0.496
#> GSM564693     2  0.9977      0.436 0.472 0.528
#> GSM564646     1  1.0000     -0.395 0.504 0.496
#> GSM564699     2  0.0938      0.611 0.012 0.988

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM564615     1  0.1711     0.6904 0.960 0.008 0.032
#> GSM564616     2  0.0661     0.6246 0.008 0.988 0.004
#> GSM564617     2  0.0661     0.6246 0.008 0.988 0.004
#> GSM564618     2  0.6659    -0.1032 0.460 0.532 0.008
#> GSM564619     2  0.8675     0.2672 0.420 0.476 0.104
#> GSM564620     2  0.8680     0.2594 0.424 0.472 0.104
#> GSM564621     1  0.6039     0.5750 0.788 0.108 0.104
#> GSM564622     2  0.0237     0.6268 0.000 0.996 0.004
#> GSM564623     1  0.6836     0.3108 0.572 0.412 0.016
#> GSM564624     2  0.0829     0.6182 0.012 0.984 0.004
#> GSM564625     1  0.7778     0.3345 0.656 0.240 0.104
#> GSM564626     2  0.8675     0.2672 0.420 0.476 0.104
#> GSM564627     1  0.4902     0.6314 0.844 0.064 0.092
#> GSM564628     2  0.0424     0.6230 0.008 0.992 0.000
#> GSM564629     2  0.8683     0.2513 0.428 0.468 0.104
#> GSM564630     2  0.0661     0.6246 0.008 0.988 0.004
#> GSM564609     3  0.4605     0.8564 0.000 0.204 0.796
#> GSM564610     2  0.8675     0.2672 0.420 0.476 0.104
#> GSM564611     2  0.8675     0.2672 0.420 0.476 0.104
#> GSM564612     3  0.4291     0.8770 0.000 0.180 0.820
#> GSM564613     2  0.5988    -0.0619 0.000 0.632 0.368
#> GSM564614     1  0.2682     0.6944 0.920 0.004 0.076
#> GSM564631     3  0.4291     0.8770 0.000 0.180 0.820
#> GSM564632     2  0.7382    -0.1327 0.456 0.512 0.032
#> GSM564633     3  0.4291     0.8770 0.000 0.180 0.820
#> GSM564634     2  0.0592     0.6213 0.000 0.988 0.012
#> GSM564635     3  0.4291     0.8770 0.000 0.180 0.820
#> GSM564636     3  0.4351     0.8719 0.004 0.168 0.828
#> GSM564637     2  0.7647    -0.1144 0.440 0.516 0.044
#> GSM564638     3  0.4121     0.8729 0.000 0.168 0.832
#> GSM564639     3  0.4291     0.8770 0.000 0.180 0.820
#> GSM564640     2  0.0475     0.6259 0.004 0.992 0.004
#> GSM564641     3  0.4291     0.8770 0.000 0.180 0.820
#> GSM564642     2  0.0237     0.6268 0.000 0.996 0.004
#> GSM564643     2  0.7278    -0.1305 0.456 0.516 0.028
#> GSM564644     2  0.0237     0.6268 0.000 0.996 0.004
#> GSM564645     3  0.4291     0.8770 0.000 0.180 0.820
#> GSM564647     3  0.5216     0.7972 0.000 0.260 0.740
#> GSM564648     2  0.0237     0.6268 0.000 0.996 0.004
#> GSM564649     3  0.4291     0.8770 0.000 0.180 0.820
#> GSM564650     2  0.6398     0.0679 0.372 0.620 0.008
#> GSM564651     2  0.0424     0.6240 0.000 0.992 0.008
#> GSM564652     2  0.0237     0.6268 0.000 0.996 0.004
#> GSM564653     2  0.0237     0.6268 0.000 0.996 0.004
#> GSM564654     3  0.4291     0.8770 0.000 0.180 0.820
#> GSM564655     2  0.9151     0.0677 0.292 0.528 0.180
#> GSM564656     3  0.4291     0.8770 0.000 0.180 0.820
#> GSM564657     3  0.4291     0.8770 0.000 0.180 0.820
#> GSM564658     2  0.0237     0.6268 0.000 0.996 0.004
#> GSM564659     3  0.5678     0.7225 0.000 0.316 0.684
#> GSM564660     2  0.6641    -0.0887 0.448 0.544 0.008
#> GSM564661     2  0.0237     0.6268 0.000 0.996 0.004
#> GSM564662     3  0.4291     0.8770 0.000 0.180 0.820
#> GSM564663     2  0.0237     0.6268 0.000 0.996 0.004
#> GSM564664     2  0.0237     0.6268 0.000 0.996 0.004
#> GSM564665     3  0.4291     0.8770 0.000 0.180 0.820
#> GSM564666     1  0.7250     0.3208 0.572 0.396 0.032
#> GSM564667     3  0.4291     0.8770 0.000 0.180 0.820
#> GSM564668     3  0.5465     0.7625 0.000 0.288 0.712
#> GSM564669     3  0.4291     0.8770 0.000 0.180 0.820
#> GSM564670     2  0.6215    -0.2338 0.000 0.572 0.428
#> GSM564671     1  0.6836     0.3108 0.572 0.412 0.016
#> GSM564672     3  0.4291     0.8770 0.000 0.180 0.820
#> GSM564673     2  0.0237     0.6268 0.000 0.996 0.004
#> GSM564674     2  0.0237     0.6268 0.000 0.996 0.004
#> GSM564675     1  0.6713     0.3049 0.572 0.416 0.012
#> GSM564676     2  0.0237     0.6268 0.000 0.996 0.004
#> GSM564677     2  0.0424     0.6230 0.008 0.992 0.000
#> GSM564678     2  0.0237     0.6268 0.000 0.996 0.004
#> GSM564679     2  0.0237     0.6268 0.000 0.996 0.004
#> GSM564680     3  0.4291     0.8770 0.000 0.180 0.820
#> GSM564682     3  0.4291     0.8770 0.000 0.180 0.820
#> GSM564683     3  0.4121     0.8729 0.000 0.168 0.832
#> GSM564684     1  0.6713     0.3049 0.572 0.416 0.012
#> GSM564685     3  0.4291     0.8770 0.000 0.180 0.820
#> GSM564686     1  0.6824     0.3161 0.576 0.408 0.016
#> GSM564687     2  0.0237     0.6268 0.000 0.996 0.004
#> GSM564688     2  0.0237     0.6268 0.000 0.996 0.004
#> GSM564689     2  0.0237     0.6245 0.004 0.996 0.000
#> GSM564690     2  0.0237     0.6268 0.000 0.996 0.004
#> GSM564691     3  0.4291     0.8770 0.000 0.180 0.820
#> GSM564692     2  0.0237     0.6268 0.000 0.996 0.004
#> GSM564694     2  0.7178    -0.1424 0.464 0.512 0.024
#> GSM564695     1  0.7240     0.2589 0.540 0.432 0.028
#> GSM564696     3  0.4062     0.8714 0.000 0.164 0.836
#> GSM564697     2  0.0000     0.6251 0.000 1.000 0.000
#> GSM564698     3  0.4291     0.8770 0.000 0.180 0.820
#> GSM564700     1  0.6824     0.3161 0.576 0.408 0.016
#> GSM564701     2  0.0237     0.6268 0.000 0.996 0.004
#> GSM564702     2  0.0424     0.6230 0.008 0.992 0.000
#> GSM564703     3  0.2173     0.7417 0.048 0.008 0.944
#> GSM564704     1  0.3618     0.6589 0.884 0.012 0.104
#> GSM564705     2  0.8675     0.2672 0.420 0.476 0.104
#> GSM564706     3  0.2063     0.7425 0.044 0.008 0.948
#> GSM564707     2  0.8675     0.2672 0.420 0.476 0.104
#> GSM564708     3  0.2066     0.7236 0.060 0.000 0.940
#> GSM564709     1  0.3293     0.6666 0.900 0.012 0.088
#> GSM564710     2  0.8675     0.2672 0.420 0.476 0.104
#> GSM564711     1  0.4291     0.6831 0.820 0.000 0.180
#> GSM564712     2  0.8675     0.2672 0.420 0.476 0.104
#> GSM564713     3  0.6180     0.0177 0.416 0.000 0.584
#> GSM564714     3  0.2356     0.7570 0.072 0.000 0.928
#> GSM564715     2  0.8680     0.2598 0.424 0.472 0.104
#> GSM564716     1  0.5815     0.5894 0.800 0.096 0.104
#> GSM564717     2  0.8675     0.2672 0.420 0.476 0.104
#> GSM564718     1  0.2945     0.6938 0.908 0.004 0.088
#> GSM564719     2  0.8675     0.2672 0.420 0.476 0.104
#> GSM564720     2  0.8675     0.2672 0.420 0.476 0.104
#> GSM564721     2  0.8675     0.2672 0.420 0.476 0.104
#> GSM564722     1  0.2860     0.6956 0.912 0.004 0.084
#> GSM564723     2  0.8675     0.2672 0.420 0.476 0.104
#> GSM564724     1  0.5138     0.6392 0.748 0.000 0.252
#> GSM564725     1  0.5657     0.5989 0.808 0.088 0.104
#> GSM564726     1  0.2945     0.6915 0.908 0.004 0.088
#> GSM564727     1  0.2173     0.6797 0.944 0.008 0.048
#> GSM564728     1  0.2682     0.6944 0.920 0.004 0.076
#> GSM564729     1  0.1453     0.6903 0.968 0.008 0.024
#> GSM564730     1  0.8691    -0.2254 0.452 0.444 0.104
#> GSM564731     1  0.5947     0.6543 0.776 0.052 0.172
#> GSM564732     1  0.3293     0.6666 0.900 0.012 0.088
#> GSM564733     1  0.6543     0.6298 0.748 0.076 0.176
#> GSM564734     1  0.5737     0.5943 0.804 0.092 0.104
#> GSM564735     1  0.5325     0.5581 0.748 0.004 0.248
#> GSM564736     3  0.6215    -0.0188 0.428 0.000 0.572
#> GSM564737     2  0.8675     0.2672 0.420 0.476 0.104
#> GSM564738     1  0.6209     0.3421 0.628 0.004 0.368
#> GSM564739     3  0.4750     0.4912 0.216 0.000 0.784
#> GSM564740     1  0.2682     0.6944 0.920 0.004 0.076
#> GSM564741     3  0.6247     0.3364 0.376 0.004 0.620
#> GSM564742     3  0.1015     0.7656 0.012 0.008 0.980
#> GSM564743     1  0.8518     0.0174 0.540 0.356 0.104
#> GSM564744     2  0.8675     0.2672 0.420 0.476 0.104
#> GSM564745     1  0.7664     0.3579 0.668 0.228 0.104
#> GSM564746     2  0.8675     0.2672 0.420 0.476 0.104
#> GSM564747     1  0.4409     0.6763 0.824 0.004 0.172
#> GSM564748     3  0.2063     0.7425 0.044 0.008 0.948
#> GSM564749     2  0.8675     0.2672 0.420 0.476 0.104
#> GSM564750     1  0.3193     0.6870 0.896 0.004 0.100
#> GSM564751     3  0.2173     0.7417 0.048 0.008 0.944
#> GSM564752     1  0.3193     0.6870 0.896 0.004 0.100
#> GSM564753     3  0.1015     0.7656 0.012 0.008 0.980
#> GSM564754     2  0.8683     0.2515 0.428 0.468 0.104
#> GSM564755     1  0.2682     0.6944 0.920 0.004 0.076
#> GSM564756     2  0.8675     0.2672 0.420 0.476 0.104
#> GSM564757     1  0.1751     0.6897 0.960 0.012 0.028
#> GSM564758     1  0.2682     0.6944 0.920 0.004 0.076
#> GSM564759     3  0.2063     0.7425 0.044 0.008 0.948
#> GSM564760     1  0.4253     0.6501 0.872 0.048 0.080
#> GSM564761     2  0.8675     0.2672 0.420 0.476 0.104
#> GSM564762     1  0.5492     0.6048 0.816 0.080 0.104
#> GSM564681     2  0.6664    -0.1090 0.464 0.528 0.008
#> GSM564693     2  0.0237     0.6268 0.000 0.996 0.004
#> GSM564646     1  0.6713     0.3049 0.572 0.416 0.012
#> GSM564699     1  0.7920     0.3521 0.572 0.360 0.068

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM564615     4  0.7013     0.4343 0.292 0.152 0.000 0.556
#> GSM564616     2  0.4808     0.7569 0.236 0.736 0.028 0.000
#> GSM564617     2  0.4808     0.7569 0.236 0.736 0.028 0.000
#> GSM564618     2  0.3688     0.4295 0.000 0.792 0.000 0.208
#> GSM564619     1  0.0779     0.8772 0.980 0.004 0.000 0.016
#> GSM564620     1  0.1545     0.8703 0.952 0.008 0.000 0.040
#> GSM564621     1  0.4956     0.7513 0.776 0.116 0.000 0.108
#> GSM564622     2  0.4365     0.7489 0.188 0.784 0.028 0.000
#> GSM564623     2  0.4955    -0.0482 0.000 0.556 0.000 0.444
#> GSM564624     2  0.2198     0.6759 0.072 0.920 0.008 0.000
#> GSM564625     1  0.3978     0.8114 0.836 0.056 0.000 0.108
#> GSM564626     1  0.0779     0.8772 0.980 0.004 0.000 0.016
#> GSM564627     1  0.5217     0.7228 0.756 0.136 0.000 0.108
#> GSM564628     2  0.4399     0.7553 0.212 0.768 0.020 0.000
#> GSM564629     1  0.2124     0.8592 0.924 0.008 0.000 0.068
#> GSM564630     2  0.4964     0.7530 0.256 0.716 0.028 0.000
#> GSM564609     3  0.1211     0.8686 0.000 0.040 0.960 0.000
#> GSM564610     1  0.0895     0.8766 0.976 0.004 0.000 0.020
#> GSM564611     1  0.0000     0.8746 1.000 0.000 0.000 0.000
#> GSM564612     3  0.0336     0.8895 0.000 0.008 0.992 0.000
#> GSM564613     2  0.4121     0.6249 0.020 0.796 0.184 0.000
#> GSM564614     4  0.3448     0.7077 0.004 0.168 0.000 0.828
#> GSM564631     3  0.0336     0.8895 0.000 0.008 0.992 0.000
#> GSM564632     2  0.5272     0.3377 0.000 0.680 0.032 0.288
#> GSM564633     3  0.0469     0.8884 0.000 0.012 0.988 0.000
#> GSM564634     2  0.4833     0.7577 0.228 0.740 0.032 0.000
#> GSM564635     3  0.0336     0.8895 0.000 0.008 0.992 0.000
#> GSM564636     3  0.1854     0.8567 0.000 0.048 0.940 0.012
#> GSM564637     2  0.5557     0.3222 0.000 0.652 0.040 0.308
#> GSM564638     3  0.0376     0.8858 0.000 0.004 0.992 0.004
#> GSM564639     3  0.0336     0.8895 0.000 0.008 0.992 0.000
#> GSM564640     2  0.5022     0.7519 0.264 0.708 0.028 0.000
#> GSM564641     3  0.0336     0.8895 0.000 0.008 0.992 0.000
#> GSM564642     2  0.5022     0.7519 0.264 0.708 0.028 0.000
#> GSM564643     2  0.5062     0.2986 0.000 0.680 0.020 0.300
#> GSM564644     2  0.5022     0.7519 0.264 0.708 0.028 0.000
#> GSM564645     3  0.0336     0.8895 0.000 0.008 0.992 0.000
#> GSM564647     3  0.1557     0.8534 0.000 0.056 0.944 0.000
#> GSM564648     2  0.4775     0.7575 0.232 0.740 0.028 0.000
#> GSM564649     3  0.0336     0.8895 0.000 0.008 0.992 0.000
#> GSM564650     2  0.2164     0.5725 0.004 0.924 0.004 0.068
#> GSM564651     2  0.5085     0.7520 0.260 0.708 0.032 0.000
#> GSM564652     2  0.5022     0.7519 0.264 0.708 0.028 0.000
#> GSM564653     2  0.5022     0.7519 0.264 0.708 0.028 0.000
#> GSM564654     3  0.0469     0.8884 0.000 0.012 0.988 0.000
#> GSM564655     2  0.6621     0.4186 0.000 0.616 0.140 0.244
#> GSM564656     3  0.0336     0.8895 0.000 0.008 0.992 0.000
#> GSM564657     3  0.0336     0.8895 0.000 0.008 0.992 0.000
#> GSM564658     2  0.5022     0.7519 0.264 0.708 0.028 0.000
#> GSM564659     3  0.2814     0.7837 0.000 0.132 0.868 0.000
#> GSM564660     2  0.3751     0.4491 0.004 0.800 0.000 0.196
#> GSM564661     2  0.5022     0.7519 0.264 0.708 0.028 0.000
#> GSM564662     3  0.0336     0.8895 0.000 0.008 0.992 0.000
#> GSM564663     2  0.5022     0.7519 0.264 0.708 0.028 0.000
#> GSM564664     2  0.5022     0.7519 0.264 0.708 0.028 0.000
#> GSM564665     3  0.0336     0.8895 0.000 0.008 0.992 0.000
#> GSM564666     4  0.4907     0.3496 0.000 0.420 0.000 0.580
#> GSM564667     3  0.0336     0.8895 0.000 0.008 0.992 0.000
#> GSM564668     3  0.2704     0.7872 0.000 0.124 0.876 0.000
#> GSM564669     3  0.0469     0.8884 0.000 0.012 0.988 0.000
#> GSM564670     2  0.4663     0.5517 0.012 0.716 0.272 0.000
#> GSM564671     2  0.4985    -0.1112 0.000 0.532 0.000 0.468
#> GSM564672     3  0.0336     0.8895 0.000 0.008 0.992 0.000
#> GSM564673     2  0.5022     0.7519 0.264 0.708 0.028 0.000
#> GSM564674     2  0.4964     0.7539 0.256 0.716 0.028 0.000
#> GSM564675     2  0.4776     0.1333 0.000 0.624 0.000 0.376
#> GSM564676     2  0.5022     0.7519 0.264 0.708 0.028 0.000
#> GSM564677     2  0.4290     0.7542 0.212 0.772 0.016 0.000
#> GSM564678     2  0.5022     0.7519 0.264 0.708 0.028 0.000
#> GSM564679     2  0.5022     0.7519 0.264 0.708 0.028 0.000
#> GSM564680     3  0.0336     0.8895 0.000 0.008 0.992 0.000
#> GSM564682     3  0.0336     0.8895 0.000 0.008 0.992 0.000
#> GSM564683     3  0.0336     0.8805 0.000 0.000 0.992 0.008
#> GSM564684     2  0.4898     0.0324 0.000 0.584 0.000 0.416
#> GSM564685     3  0.0336     0.8895 0.000 0.008 0.992 0.000
#> GSM564686     2  0.4998    -0.1681 0.000 0.512 0.000 0.488
#> GSM564687     2  0.5022     0.7519 0.264 0.708 0.028 0.000
#> GSM564688     2  0.4671     0.7576 0.220 0.752 0.028 0.000
#> GSM564689     2  0.4399     0.7562 0.224 0.760 0.016 0.000
#> GSM564690     2  0.5022     0.7519 0.264 0.708 0.028 0.000
#> GSM564691     3  0.0336     0.8895 0.000 0.008 0.992 0.000
#> GSM564692     2  0.4775     0.7575 0.232 0.740 0.028 0.000
#> GSM564694     2  0.4372     0.3445 0.000 0.728 0.004 0.268
#> GSM564695     2  0.4996    -0.1318 0.000 0.516 0.000 0.484
#> GSM564696     3  0.0592     0.8752 0.000 0.000 0.984 0.016
#> GSM564697     2  0.3647     0.7271 0.152 0.832 0.016 0.000
#> GSM564698     3  0.0469     0.8884 0.000 0.012 0.988 0.000
#> GSM564700     2  0.4992    -0.1342 0.000 0.524 0.000 0.476
#> GSM564701     2  0.5022     0.7519 0.264 0.708 0.028 0.000
#> GSM564702     2  0.4671     0.7574 0.220 0.752 0.028 0.000
#> GSM564703     3  0.4799     0.6644 0.008 0.004 0.704 0.284
#> GSM564704     1  0.5063     0.7421 0.768 0.108 0.000 0.124
#> GSM564705     1  0.0000     0.8746 1.000 0.000 0.000 0.000
#> GSM564706     3  0.4647     0.6614 0.008 0.000 0.704 0.288
#> GSM564707     1  0.0000     0.8746 1.000 0.000 0.000 0.000
#> GSM564708     3  0.4825     0.6594 0.008 0.004 0.700 0.288
#> GSM564709     1  0.5480     0.6959 0.736 0.140 0.000 0.124
#> GSM564710     1  0.0000     0.8746 1.000 0.000 0.000 0.000
#> GSM564711     4  0.2882     0.6872 0.024 0.000 0.084 0.892
#> GSM564712     1  0.0336     0.8768 0.992 0.000 0.000 0.008
#> GSM564713     4  0.4922     0.3943 0.012 0.004 0.284 0.700
#> GSM564714     3  0.4877     0.4654 0.000 0.000 0.592 0.408
#> GSM564715     1  0.0336     0.8768 0.992 0.000 0.000 0.008
#> GSM564716     1  0.4581     0.7813 0.800 0.080 0.000 0.120
#> GSM564717     1  0.0000     0.8746 1.000 0.000 0.000 0.000
#> GSM564718     4  0.0336     0.7326 0.000 0.000 0.008 0.992
#> GSM564719     1  0.0000     0.8746 1.000 0.000 0.000 0.000
#> GSM564720     1  0.0000     0.8746 1.000 0.000 0.000 0.000
#> GSM564721     1  0.0188     0.8758 0.996 0.000 0.000 0.004
#> GSM564722     4  0.3655     0.7334 0.060 0.072 0.004 0.864
#> GSM564723     1  0.0000     0.8746 1.000 0.000 0.000 0.000
#> GSM564724     4  0.3863     0.5853 0.008 0.004 0.176 0.812
#> GSM564725     1  0.4786     0.7660 0.788 0.104 0.000 0.108
#> GSM564726     4  0.0524     0.7343 0.000 0.008 0.004 0.988
#> GSM564727     1  0.6149     0.6150 0.676 0.144 0.000 0.180
#> GSM564728     4  0.3356     0.7041 0.000 0.176 0.000 0.824
#> GSM564729     4  0.6980     0.4818 0.264 0.164 0.000 0.572
#> GSM564730     1  0.2751     0.8518 0.904 0.040 0.000 0.056
#> GSM564731     4  0.5281    -0.0295 0.464 0.000 0.008 0.528
#> GSM564732     1  0.5581     0.6863 0.728 0.140 0.000 0.132
#> GSM564733     4  0.5400     0.0939 0.428 0.004 0.008 0.560
#> GSM564734     1  0.4261     0.7969 0.820 0.068 0.000 0.112
#> GSM564735     4  0.0469     0.7325 0.000 0.000 0.012 0.988
#> GSM564736     4  0.4825     0.3879 0.008 0.004 0.288 0.700
#> GSM564737     1  0.0000     0.8746 1.000 0.000 0.000 0.000
#> GSM564738     4  0.0707     0.7309 0.000 0.000 0.020 0.980
#> GSM564739     3  0.7959     0.1495 0.284 0.004 0.420 0.292
#> GSM564740     4  0.3266     0.7063 0.000 0.168 0.000 0.832
#> GSM564741     4  0.4250     0.4274 0.000 0.000 0.276 0.724
#> GSM564742     3  0.4304     0.6728 0.000 0.000 0.716 0.284
#> GSM564743     1  0.3547     0.8292 0.864 0.064 0.000 0.072
#> GSM564744     1  0.0000     0.8746 1.000 0.000 0.000 0.000
#> GSM564745     1  0.4055     0.8081 0.832 0.060 0.000 0.108
#> GSM564746     1  0.0779     0.8772 0.980 0.004 0.000 0.016
#> GSM564747     4  0.5220     0.1048 0.424 0.000 0.008 0.568
#> GSM564748     3  0.4647     0.6614 0.008 0.000 0.704 0.288
#> GSM564749     1  0.0000     0.8746 1.000 0.000 0.000 0.000
#> GSM564750     4  0.0657     0.7346 0.000 0.012 0.004 0.984
#> GSM564751     3  0.4621     0.6660 0.008 0.000 0.708 0.284
#> GSM564752     4  0.2281     0.7280 0.000 0.096 0.000 0.904
#> GSM564753     3  0.4103     0.7006 0.000 0.000 0.744 0.256
#> GSM564754     1  0.0707     0.8770 0.980 0.000 0.000 0.020
#> GSM564755     4  0.3356     0.7041 0.000 0.176 0.000 0.824
#> GSM564756     1  0.0336     0.8768 0.992 0.000 0.000 0.008
#> GSM564757     4  0.6439     0.5892 0.176 0.176 0.000 0.648
#> GSM564758     4  0.3123     0.7116 0.000 0.156 0.000 0.844
#> GSM564759     3  0.4746     0.6407 0.008 0.000 0.688 0.304
#> GSM564760     1  0.6295     0.5786 0.656 0.132 0.000 0.212
#> GSM564761     1  0.0000     0.8746 1.000 0.000 0.000 0.000
#> GSM564762     1  0.4353     0.6973 0.756 0.012 0.000 0.232
#> GSM564681     2  0.2408     0.5370 0.000 0.896 0.000 0.104
#> GSM564693     2  0.4706     0.7577 0.224 0.748 0.028 0.000
#> GSM564646     2  0.4898     0.0324 0.000 0.584 0.000 0.416
#> GSM564699     4  0.4356     0.5925 0.000 0.292 0.000 0.708

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM564615     4  0.6960     -0.176 0.328 0.004 0.328 0.340 0.000
#> GSM564616     2  0.1087      0.949 0.016 0.968 0.008 0.008 0.000
#> GSM564617     2  0.1087      0.949 0.016 0.968 0.008 0.008 0.000
#> GSM564618     3  0.1857      0.807 0.004 0.060 0.928 0.008 0.000
#> GSM564619     1  0.1369      0.945 0.956 0.008 0.008 0.028 0.000
#> GSM564620     1  0.1278      0.944 0.960 0.004 0.016 0.020 0.000
#> GSM564621     1  0.2387      0.925 0.908 0.004 0.040 0.048 0.000
#> GSM564622     2  0.2300      0.916 0.012 0.920 0.040 0.024 0.004
#> GSM564623     3  0.1205      0.814 0.000 0.040 0.956 0.004 0.000
#> GSM564624     2  0.4318      0.569 0.008 0.688 0.296 0.008 0.000
#> GSM564625     1  0.2157      0.932 0.920 0.004 0.036 0.040 0.000
#> GSM564626     1  0.1369      0.945 0.956 0.008 0.008 0.028 0.000
#> GSM564627     1  0.2664      0.917 0.892 0.004 0.040 0.064 0.000
#> GSM564628     2  0.1200      0.947 0.016 0.964 0.012 0.008 0.000
#> GSM564629     1  0.1461      0.943 0.952 0.004 0.016 0.028 0.000
#> GSM564630     2  0.0960      0.950 0.016 0.972 0.004 0.008 0.000
#> GSM564609     5  0.0912      0.972 0.000 0.012 0.000 0.016 0.972
#> GSM564610     1  0.0960      0.951 0.972 0.016 0.004 0.008 0.000
#> GSM564611     1  0.1059      0.951 0.968 0.020 0.004 0.008 0.000
#> GSM564612     5  0.0162      0.987 0.000 0.004 0.000 0.000 0.996
#> GSM564613     2  0.4340      0.748 0.000 0.780 0.060 0.012 0.148
#> GSM564614     3  0.4802      0.224 0.012 0.004 0.504 0.480 0.000
#> GSM564631     5  0.0162      0.987 0.000 0.004 0.000 0.000 0.996
#> GSM564632     3  0.2206      0.804 0.000 0.068 0.912 0.016 0.004
#> GSM564633     5  0.0451      0.983 0.000 0.004 0.000 0.008 0.988
#> GSM564634     2  0.0324      0.962 0.000 0.992 0.004 0.000 0.004
#> GSM564635     5  0.0162      0.987 0.000 0.004 0.000 0.000 0.996
#> GSM564636     5  0.1883      0.928 0.000 0.008 0.048 0.012 0.932
#> GSM564637     3  0.1831      0.804 0.000 0.076 0.920 0.000 0.004
#> GSM564638     5  0.0566      0.982 0.000 0.004 0.000 0.012 0.984
#> GSM564639     5  0.0162      0.987 0.000 0.004 0.000 0.000 0.996
#> GSM564640     2  0.0486      0.962 0.004 0.988 0.000 0.004 0.004
#> GSM564641     5  0.0162      0.987 0.000 0.004 0.000 0.000 0.996
#> GSM564642     2  0.0324      0.963 0.004 0.992 0.000 0.000 0.004
#> GSM564643     3  0.2012      0.809 0.000 0.060 0.920 0.020 0.000
#> GSM564644     2  0.0613      0.961 0.008 0.984 0.000 0.004 0.004
#> GSM564645     5  0.0162      0.987 0.000 0.004 0.000 0.000 0.996
#> GSM564647     5  0.0912      0.971 0.000 0.016 0.000 0.012 0.972
#> GSM564648     2  0.0486      0.962 0.004 0.988 0.004 0.000 0.004
#> GSM564649     5  0.0162      0.987 0.000 0.004 0.000 0.000 0.996
#> GSM564650     3  0.2929      0.719 0.000 0.180 0.820 0.000 0.000
#> GSM564651     2  0.0324      0.963 0.004 0.992 0.000 0.000 0.004
#> GSM564652     2  0.0324      0.963 0.004 0.992 0.000 0.000 0.004
#> GSM564653     2  0.0324      0.963 0.004 0.992 0.000 0.000 0.004
#> GSM564654     5  0.0324      0.985 0.000 0.004 0.000 0.004 0.992
#> GSM564655     3  0.4513      0.546 0.000 0.284 0.688 0.004 0.024
#> GSM564656     5  0.0162      0.987 0.000 0.004 0.000 0.000 0.996
#> GSM564657     5  0.0162      0.987 0.000 0.004 0.000 0.000 0.996
#> GSM564658     2  0.0324      0.963 0.004 0.992 0.000 0.000 0.004
#> GSM564659     5  0.2302      0.912 0.000 0.020 0.048 0.016 0.916
#> GSM564660     3  0.1608      0.807 0.000 0.072 0.928 0.000 0.000
#> GSM564661     2  0.0324      0.963 0.004 0.992 0.000 0.000 0.004
#> GSM564662     5  0.0162      0.987 0.000 0.004 0.000 0.000 0.996
#> GSM564663     2  0.0324      0.963 0.004 0.992 0.000 0.000 0.004
#> GSM564664     2  0.0613      0.961 0.008 0.984 0.000 0.004 0.004
#> GSM564665     5  0.0162      0.987 0.000 0.004 0.000 0.000 0.996
#> GSM564666     3  0.1281      0.813 0.000 0.032 0.956 0.012 0.000
#> GSM564667     5  0.0162      0.987 0.000 0.004 0.000 0.000 0.996
#> GSM564668     5  0.1934      0.924 0.000 0.052 0.004 0.016 0.928
#> GSM564669     5  0.0324      0.985 0.000 0.004 0.000 0.004 0.992
#> GSM564670     2  0.4905      0.608 0.000 0.688 0.040 0.012 0.260
#> GSM564671     3  0.0955      0.811 0.000 0.028 0.968 0.004 0.000
#> GSM564672     5  0.0162      0.987 0.000 0.004 0.000 0.000 0.996
#> GSM564673     2  0.0324      0.963 0.004 0.992 0.000 0.000 0.004
#> GSM564674     2  0.0324      0.963 0.004 0.992 0.000 0.000 0.004
#> GSM564675     3  0.1124      0.815 0.000 0.036 0.960 0.004 0.000
#> GSM564676     2  0.0613      0.961 0.008 0.984 0.000 0.004 0.004
#> GSM564677     2  0.0510      0.957 0.000 0.984 0.016 0.000 0.000
#> GSM564678     2  0.0613      0.961 0.008 0.984 0.000 0.004 0.004
#> GSM564679     2  0.0613      0.961 0.008 0.984 0.000 0.004 0.004
#> GSM564680     5  0.0162      0.987 0.000 0.004 0.000 0.000 0.996
#> GSM564682     5  0.0162      0.987 0.000 0.004 0.000 0.000 0.996
#> GSM564683     5  0.0000      0.983 0.000 0.000 0.000 0.000 1.000
#> GSM564684     3  0.1124      0.815 0.000 0.036 0.960 0.004 0.000
#> GSM564685     5  0.0162      0.987 0.000 0.004 0.000 0.000 0.996
#> GSM564686     3  0.1124      0.815 0.000 0.036 0.960 0.004 0.000
#> GSM564687     2  0.0324      0.963 0.004 0.992 0.000 0.000 0.004
#> GSM564688     2  0.0613      0.961 0.004 0.984 0.008 0.000 0.004
#> GSM564689     2  0.0775      0.961 0.004 0.980 0.008 0.004 0.004
#> GSM564690     2  0.0613      0.961 0.008 0.984 0.000 0.004 0.004
#> GSM564691     5  0.0324      0.985 0.000 0.004 0.000 0.004 0.992
#> GSM564692     2  0.0324      0.962 0.000 0.992 0.004 0.000 0.004
#> GSM564694     3  0.1981      0.808 0.000 0.064 0.920 0.016 0.000
#> GSM564695     3  0.1251      0.814 0.000 0.036 0.956 0.008 0.000
#> GSM564696     5  0.0404      0.976 0.000 0.000 0.000 0.012 0.988
#> GSM564697     2  0.1043      0.939 0.000 0.960 0.040 0.000 0.000
#> GSM564698     5  0.0451      0.983 0.000 0.004 0.000 0.008 0.988
#> GSM564700     3  0.1124      0.815 0.000 0.036 0.960 0.004 0.000
#> GSM564701     2  0.0451      0.962 0.008 0.988 0.000 0.000 0.004
#> GSM564702     2  0.0613      0.961 0.004 0.984 0.008 0.000 0.004
#> GSM564703     4  0.4331      0.519 0.004 0.000 0.000 0.596 0.400
#> GSM564704     1  0.2473      0.910 0.896 0.000 0.032 0.072 0.000
#> GSM564705     1  0.0771      0.951 0.976 0.020 0.004 0.000 0.000
#> GSM564706     4  0.4276      0.550 0.004 0.000 0.000 0.616 0.380
#> GSM564707     1  0.0771      0.951 0.976 0.020 0.004 0.000 0.000
#> GSM564708     4  0.4211      0.574 0.004 0.000 0.000 0.636 0.360
#> GSM564709     1  0.2491      0.910 0.896 0.000 0.036 0.068 0.000
#> GSM564710     1  0.0771      0.951 0.976 0.020 0.004 0.000 0.000
#> GSM564711     4  0.1386      0.729 0.000 0.000 0.032 0.952 0.016
#> GSM564712     1  0.1059      0.951 0.968 0.020 0.004 0.008 0.000
#> GSM564713     4  0.1043      0.738 0.000 0.000 0.000 0.960 0.040
#> GSM564714     4  0.2852      0.715 0.000 0.000 0.000 0.828 0.172
#> GSM564715     1  0.0771      0.951 0.976 0.020 0.004 0.000 0.000
#> GSM564716     1  0.2504      0.923 0.900 0.004 0.032 0.064 0.000
#> GSM564717     1  0.0932      0.950 0.972 0.020 0.004 0.004 0.000
#> GSM564718     4  0.1197      0.719 0.000 0.000 0.048 0.952 0.000
#> GSM564719     1  0.0932      0.950 0.972 0.020 0.004 0.004 0.000
#> GSM564720     1  0.0932      0.952 0.972 0.020 0.004 0.004 0.000
#> GSM564721     1  0.0671      0.952 0.980 0.016 0.004 0.000 0.000
#> GSM564722     4  0.1764      0.709 0.008 0.000 0.064 0.928 0.000
#> GSM564723     1  0.0932      0.952 0.972 0.020 0.004 0.004 0.000
#> GSM564724     4  0.1281      0.736 0.000 0.000 0.012 0.956 0.032
#> GSM564725     1  0.2504      0.923 0.900 0.004 0.032 0.064 0.000
#> GSM564726     4  0.1952      0.698 0.004 0.000 0.084 0.912 0.000
#> GSM564727     1  0.4150      0.792 0.772 0.004 0.044 0.180 0.000
#> GSM564728     3  0.4327      0.472 0.008 0.000 0.632 0.360 0.000
#> GSM564729     3  0.6957      0.128 0.316 0.004 0.344 0.336 0.000
#> GSM564730     1  0.0740      0.951 0.980 0.004 0.008 0.008 0.000
#> GSM564731     4  0.1768      0.709 0.072 0.000 0.000 0.924 0.004
#> GSM564732     1  0.3141      0.879 0.852 0.000 0.040 0.108 0.000
#> GSM564733     4  0.1357      0.715 0.048 0.000 0.000 0.948 0.004
#> GSM564734     1  0.1836      0.937 0.932 0.000 0.032 0.036 0.000
#> GSM564735     4  0.1341      0.716 0.000 0.000 0.056 0.944 0.000
#> GSM564736     4  0.1197      0.738 0.000 0.000 0.000 0.952 0.048
#> GSM564737     1  0.0932      0.952 0.972 0.020 0.004 0.004 0.000
#> GSM564738     4  0.1410      0.715 0.000 0.000 0.060 0.940 0.000
#> GSM564739     4  0.5604      0.609 0.132 0.000 0.000 0.628 0.240
#> GSM564740     3  0.4341      0.469 0.008 0.000 0.628 0.364 0.000
#> GSM564741     4  0.1701      0.737 0.000 0.000 0.016 0.936 0.048
#> GSM564742     4  0.4192      0.514 0.000 0.000 0.000 0.596 0.404
#> GSM564743     1  0.0740      0.951 0.980 0.004 0.008 0.008 0.000
#> GSM564744     1  0.1059      0.951 0.968 0.020 0.004 0.008 0.000
#> GSM564745     1  0.1469      0.944 0.948 0.000 0.016 0.036 0.000
#> GSM564746     1  0.1243      0.945 0.960 0.008 0.004 0.028 0.000
#> GSM564747     4  0.1282      0.720 0.044 0.000 0.000 0.952 0.004
#> GSM564748     4  0.4299      0.539 0.004 0.000 0.000 0.608 0.388
#> GSM564749     1  0.0932      0.950 0.972 0.020 0.004 0.004 0.000
#> GSM564750     4  0.2179      0.683 0.004 0.000 0.100 0.896 0.000
#> GSM564751     4  0.4331      0.519 0.004 0.000 0.000 0.596 0.400
#> GSM564752     4  0.4084      0.267 0.004 0.000 0.328 0.668 0.000
#> GSM564753     4  0.4192      0.514 0.000 0.000 0.000 0.596 0.404
#> GSM564754     1  0.0671      0.952 0.980 0.016 0.004 0.000 0.000
#> GSM564755     3  0.4327      0.472 0.008 0.000 0.632 0.360 0.000
#> GSM564756     1  0.0932      0.951 0.972 0.020 0.004 0.004 0.000
#> GSM564757     3  0.6666      0.275 0.208 0.004 0.456 0.332 0.000
#> GSM564758     3  0.4557      0.241 0.008 0.000 0.516 0.476 0.000
#> GSM564759     4  0.4238      0.565 0.004 0.000 0.000 0.628 0.368
#> GSM564760     1  0.4370      0.719 0.724 0.000 0.040 0.236 0.000
#> GSM564761     1  0.1059      0.952 0.968 0.020 0.004 0.008 0.000
#> GSM564762     1  0.1597      0.939 0.940 0.000 0.012 0.048 0.000
#> GSM564681     3  0.1851      0.797 0.000 0.088 0.912 0.000 0.000
#> GSM564693     2  0.0613      0.961 0.004 0.984 0.008 0.000 0.004
#> GSM564646     3  0.1124      0.815 0.000 0.036 0.960 0.004 0.000
#> GSM564699     3  0.1281      0.813 0.000 0.032 0.956 0.012 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM564615     2  0.5235     0.6902 0.120 0.692 0.000 0.132 0.000 0.056
#> GSM564616     5  0.3231     0.8433 0.008 0.116 0.000 0.000 0.832 0.044
#> GSM564617     5  0.3231     0.8445 0.008 0.116 0.000 0.000 0.832 0.044
#> GSM564618     6  0.2095     0.8596 0.004 0.076 0.000 0.000 0.016 0.904
#> GSM564619     1  0.1610     0.8250 0.916 0.084 0.000 0.000 0.000 0.000
#> GSM564620     1  0.2664     0.7562 0.816 0.184 0.000 0.000 0.000 0.000
#> GSM564621     1  0.3867     0.0988 0.512 0.488 0.000 0.000 0.000 0.000
#> GSM564622     5  0.4586     0.7210 0.008 0.176 0.000 0.000 0.712 0.104
#> GSM564623     6  0.1728     0.8813 0.004 0.064 0.000 0.000 0.008 0.924
#> GSM564624     6  0.5414     0.4104 0.008 0.116 0.000 0.000 0.304 0.572
#> GSM564625     1  0.3797     0.3356 0.580 0.420 0.000 0.000 0.000 0.000
#> GSM564626     1  0.1610     0.8250 0.916 0.084 0.000 0.000 0.000 0.000
#> GSM564627     2  0.3864    -0.0624 0.480 0.520 0.000 0.000 0.000 0.000
#> GSM564628     5  0.3231     0.8433 0.008 0.116 0.000 0.000 0.832 0.044
#> GSM564629     1  0.2730     0.7513 0.808 0.192 0.000 0.000 0.000 0.000
#> GSM564630     5  0.3165     0.8479 0.008 0.116 0.000 0.000 0.836 0.040
#> GSM564609     3  0.3216     0.8702 0.000 0.108 0.840 0.004 0.008 0.040
#> GSM564610     1  0.0790     0.8553 0.968 0.032 0.000 0.000 0.000 0.000
#> GSM564611     1  0.0891     0.8524 0.968 0.024 0.000 0.000 0.008 0.000
#> GSM564612     3  0.0260     0.9530 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM564613     5  0.6828     0.4266 0.000 0.152 0.164 0.004 0.532 0.148
#> GSM564614     2  0.4734     0.6327 0.000 0.672 0.000 0.208 0.000 0.120
#> GSM564631     3  0.0146     0.9529 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM564632     6  0.2255     0.8534 0.000 0.088 0.000 0.004 0.016 0.892
#> GSM564633     3  0.1082     0.9404 0.000 0.040 0.956 0.004 0.000 0.000
#> GSM564634     5  0.1765     0.8983 0.000 0.052 0.000 0.000 0.924 0.024
#> GSM564635     3  0.0146     0.9529 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM564636     3  0.3612     0.8390 0.000 0.100 0.804 0.004 0.000 0.092
#> GSM564637     6  0.1723     0.8714 0.000 0.036 0.000 0.000 0.036 0.928
#> GSM564638     3  0.1219     0.9375 0.000 0.048 0.948 0.004 0.000 0.000
#> GSM564639     3  0.0146     0.9531 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM564640     5  0.0713     0.9222 0.000 0.028 0.000 0.000 0.972 0.000
#> GSM564641     3  0.0713     0.9481 0.000 0.028 0.972 0.000 0.000 0.000
#> GSM564642     5  0.0146     0.9267 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM564643     6  0.2356     0.8547 0.000 0.096 0.000 0.004 0.016 0.884
#> GSM564644     5  0.0790     0.9215 0.000 0.032 0.000 0.000 0.968 0.000
#> GSM564645     3  0.0146     0.9529 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM564647     3  0.3922     0.8247 0.000 0.140 0.784 0.004 0.008 0.064
#> GSM564648     5  0.1151     0.9183 0.000 0.032 0.000 0.000 0.956 0.012
#> GSM564649     3  0.0146     0.9529 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM564650     6  0.3134     0.7995 0.000 0.036 0.000 0.000 0.144 0.820
#> GSM564651     5  0.0632     0.9267 0.000 0.024 0.000 0.000 0.976 0.000
#> GSM564652     5  0.0632     0.9257 0.000 0.024 0.000 0.000 0.976 0.000
#> GSM564653     5  0.0363     0.9265 0.000 0.012 0.000 0.000 0.988 0.000
#> GSM564654     3  0.0146     0.9531 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM564655     6  0.4567     0.7071 0.000 0.096 0.012 0.004 0.156 0.732
#> GSM564656     3  0.0146     0.9529 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM564657     3  0.0146     0.9531 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM564658     5  0.0146     0.9263 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM564659     3  0.4640     0.7539 0.000 0.140 0.728 0.004 0.012 0.116
#> GSM564660     6  0.0914     0.8831 0.000 0.016 0.000 0.000 0.016 0.968
#> GSM564661     5  0.0363     0.9265 0.000 0.012 0.000 0.000 0.988 0.000
#> GSM564662     3  0.0146     0.9529 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM564663     5  0.0260     0.9265 0.000 0.008 0.000 0.000 0.992 0.000
#> GSM564664     5  0.0790     0.9215 0.000 0.032 0.000 0.000 0.968 0.000
#> GSM564665     3  0.1155     0.9428 0.000 0.036 0.956 0.004 0.000 0.004
#> GSM564666     6  0.1049     0.8836 0.000 0.032 0.000 0.000 0.008 0.960
#> GSM564667     3  0.0146     0.9529 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM564668     3  0.3977     0.8293 0.000 0.108 0.800 0.004 0.032 0.056
#> GSM564669     3  0.0146     0.9531 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM564670     5  0.7153     0.2453 0.000 0.152 0.284 0.004 0.440 0.120
#> GSM564671     6  0.2113     0.8622 0.000 0.092 0.000 0.004 0.008 0.896
#> GSM564672     3  0.0146     0.9529 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM564673     5  0.0458     0.9266 0.000 0.016 0.000 0.000 0.984 0.000
#> GSM564674     5  0.0363     0.9270 0.000 0.012 0.000 0.000 0.988 0.000
#> GSM564675     6  0.0909     0.8839 0.000 0.020 0.000 0.000 0.012 0.968
#> GSM564676     5  0.0790     0.9215 0.000 0.032 0.000 0.000 0.968 0.000
#> GSM564677     5  0.0858     0.9253 0.000 0.028 0.000 0.000 0.968 0.004
#> GSM564678     5  0.0790     0.9215 0.000 0.032 0.000 0.000 0.968 0.000
#> GSM564679     5  0.0713     0.9222 0.000 0.028 0.000 0.000 0.972 0.000
#> GSM564680     3  0.0146     0.9531 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM564682     3  0.1010     0.9443 0.000 0.036 0.960 0.000 0.000 0.004
#> GSM564683     3  0.0146     0.9529 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM564684     6  0.1970     0.8674 0.000 0.092 0.000 0.000 0.008 0.900
#> GSM564685     3  0.0146     0.9529 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM564686     6  0.2113     0.8622 0.000 0.092 0.000 0.004 0.008 0.896
#> GSM564687     5  0.0291     0.9272 0.000 0.004 0.000 0.000 0.992 0.004
#> GSM564688     5  0.0603     0.9266 0.000 0.016 0.000 0.000 0.980 0.004
#> GSM564689     5  0.0790     0.9215 0.000 0.032 0.000 0.000 0.968 0.000
#> GSM564690     5  0.0790     0.9215 0.000 0.032 0.000 0.000 0.968 0.000
#> GSM564691     3  0.0935     0.9470 0.000 0.032 0.964 0.004 0.000 0.000
#> GSM564692     5  0.1594     0.9066 0.000 0.052 0.000 0.000 0.932 0.016
#> GSM564694     6  0.2636     0.8362 0.000 0.120 0.000 0.004 0.016 0.860
#> GSM564695     6  0.1151     0.8843 0.000 0.032 0.000 0.000 0.012 0.956
#> GSM564696     3  0.1861     0.9282 0.000 0.036 0.928 0.020 0.000 0.016
#> GSM564697     5  0.2001     0.8986 0.000 0.040 0.000 0.000 0.912 0.048
#> GSM564698     3  0.1152     0.9388 0.000 0.044 0.952 0.004 0.000 0.000
#> GSM564700     6  0.2113     0.8622 0.000 0.092 0.000 0.004 0.008 0.896
#> GSM564701     5  0.0146     0.9263 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM564702     5  0.0777     0.9249 0.000 0.024 0.000 0.000 0.972 0.004
#> GSM564703     4  0.2902     0.7713 0.004 0.000 0.196 0.800 0.000 0.000
#> GSM564704     1  0.4452     0.1840 0.572 0.400 0.000 0.024 0.000 0.004
#> GSM564705     1  0.0260     0.8594 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM564706     4  0.2838     0.7768 0.004 0.000 0.188 0.808 0.000 0.000
#> GSM564707     1  0.0260     0.8594 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM564708     4  0.2946     0.7783 0.004 0.004 0.184 0.808 0.000 0.000
#> GSM564709     2  0.4407     0.1228 0.480 0.496 0.000 0.024 0.000 0.000
#> GSM564710     1  0.0260     0.8594 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM564711     4  0.0520     0.8049 0.000 0.008 0.008 0.984 0.000 0.000
#> GSM564712     1  0.1026     0.8573 0.968 0.012 0.000 0.008 0.008 0.004
#> GSM564713     4  0.0820     0.8071 0.000 0.016 0.012 0.972 0.000 0.000
#> GSM564714     4  0.2006     0.8022 0.000 0.004 0.104 0.892 0.000 0.000
#> GSM564715     1  0.0260     0.8594 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM564716     1  0.3878     0.4486 0.644 0.348 0.000 0.004 0.000 0.004
#> GSM564717     1  0.0717     0.8542 0.976 0.016 0.000 0.000 0.008 0.000
#> GSM564718     4  0.1265     0.7875 0.000 0.044 0.000 0.948 0.000 0.008
#> GSM564719     1  0.0806     0.8520 0.972 0.020 0.000 0.000 0.008 0.000
#> GSM564720     1  0.0520     0.8593 0.984 0.008 0.000 0.000 0.008 0.000
#> GSM564721     1  0.0260     0.8594 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM564722     4  0.4057     0.2459 0.000 0.388 0.000 0.600 0.000 0.012
#> GSM564723     1  0.0405     0.8593 0.988 0.004 0.000 0.000 0.008 0.000
#> GSM564724     4  0.0717     0.8045 0.000 0.016 0.008 0.976 0.000 0.000
#> GSM564725     1  0.3852     0.3641 0.612 0.384 0.000 0.004 0.000 0.000
#> GSM564726     4  0.4047     0.4774 0.000 0.296 0.000 0.676 0.000 0.028
#> GSM564727     2  0.4910     0.5009 0.312 0.620 0.000 0.052 0.000 0.016
#> GSM564728     2  0.4882     0.6395 0.000 0.660 0.000 0.188 0.000 0.152
#> GSM564729     2  0.5060     0.6899 0.084 0.712 0.000 0.132 0.000 0.072
#> GSM564730     1  0.1523     0.8465 0.940 0.044 0.000 0.008 0.000 0.008
#> GSM564731     4  0.1829     0.7869 0.036 0.028 0.000 0.928 0.000 0.008
#> GSM564732     2  0.4614     0.2980 0.416 0.548 0.000 0.032 0.000 0.004
#> GSM564733     4  0.1789     0.7899 0.032 0.044 0.000 0.924 0.000 0.000
#> GSM564734     1  0.3820     0.4710 0.660 0.332 0.000 0.004 0.000 0.004
#> GSM564735     4  0.2243     0.7454 0.000 0.112 0.004 0.880 0.000 0.004
#> GSM564736     4  0.0820     0.8071 0.000 0.016 0.012 0.972 0.000 0.000
#> GSM564737     1  0.0405     0.8593 0.988 0.004 0.000 0.000 0.008 0.000
#> GSM564738     4  0.1410     0.7892 0.000 0.044 0.004 0.944 0.000 0.008
#> GSM564739     4  0.3626     0.7624 0.084 0.012 0.092 0.812 0.000 0.000
#> GSM564740     2  0.5504     0.4982 0.000 0.560 0.000 0.188 0.000 0.252
#> GSM564741     4  0.0458     0.8082 0.000 0.000 0.016 0.984 0.000 0.000
#> GSM564742     4  0.2793     0.7691 0.000 0.000 0.200 0.800 0.000 0.000
#> GSM564743     1  0.1719     0.8405 0.928 0.056 0.000 0.008 0.000 0.008
#> GSM564744     1  0.1026     0.8572 0.968 0.012 0.000 0.008 0.008 0.004
#> GSM564745     1  0.2958     0.7603 0.824 0.160 0.000 0.008 0.000 0.008
#> GSM564746     1  0.1610     0.8231 0.916 0.084 0.000 0.000 0.000 0.000
#> GSM564747     4  0.0862     0.8012 0.016 0.008 0.000 0.972 0.000 0.004
#> GSM564748     4  0.2838     0.7768 0.004 0.000 0.188 0.808 0.000 0.000
#> GSM564749     1  0.0806     0.8520 0.972 0.020 0.000 0.000 0.008 0.000
#> GSM564750     4  0.4107     0.4935 0.000 0.280 0.000 0.684 0.000 0.036
#> GSM564751     4  0.2902     0.7713 0.004 0.000 0.196 0.800 0.000 0.000
#> GSM564752     4  0.5267     0.2354 0.000 0.320 0.000 0.560 0.000 0.120
#> GSM564753     4  0.2793     0.7691 0.000 0.000 0.200 0.800 0.000 0.000
#> GSM564754     1  0.0291     0.8593 0.992 0.004 0.000 0.000 0.004 0.000
#> GSM564755     2  0.4946     0.6319 0.000 0.652 0.000 0.188 0.000 0.160
#> GSM564756     1  0.0924     0.8570 0.972 0.008 0.000 0.008 0.008 0.004
#> GSM564757     2  0.4977     0.6821 0.044 0.712 0.000 0.132 0.000 0.112
#> GSM564758     2  0.5013     0.6096 0.000 0.636 0.000 0.224 0.000 0.140
#> GSM564759     4  0.2809     0.7840 0.004 0.004 0.168 0.824 0.000 0.000
#> GSM564760     2  0.5135     0.4215 0.364 0.552 0.000 0.080 0.000 0.004
#> GSM564761     1  0.0622     0.8590 0.980 0.012 0.000 0.000 0.008 0.000
#> GSM564762     1  0.2932     0.7616 0.836 0.140 0.000 0.020 0.000 0.004
#> GSM564681     6  0.2230     0.8745 0.000 0.084 0.000 0.000 0.024 0.892
#> GSM564693     5  0.0603     0.9258 0.000 0.016 0.000 0.000 0.980 0.004
#> GSM564646     6  0.1970     0.8674 0.000 0.092 0.000 0.000 0.008 0.900
#> GSM564699     6  0.2062     0.8655 0.000 0.088 0.000 0.008 0.004 0.900

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n genotype/variation(p) disease.state(p) k
#> SD:kmeans  89                0.0323            0.900 2
#> SD:kmeans 101                0.0713            0.353 3
#> SD:kmeans 128                0.0986            0.212 4
#> SD:kmeans 145                0.0921            0.102 5
#> SD:kmeans 136                0.1509            0.334 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 154 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.471           0.609       0.782         0.4970 0.500   0.500
#> 3 3 0.967           0.924       0.958         0.3488 0.733   0.513
#> 4 4 0.846           0.867       0.930         0.1196 0.851   0.590
#> 5 5 0.839           0.814       0.902         0.0630 0.898   0.632
#> 6 6 0.772           0.735       0.834         0.0365 0.966   0.837

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM564615     1  0.0000      0.716 1.000 0.000
#> GSM564616     2  0.9998      0.575 0.492 0.508
#> GSM564617     2  0.9998      0.575 0.492 0.508
#> GSM564618     2  0.9998      0.575 0.492 0.508
#> GSM564619     1  0.0000      0.716 1.000 0.000
#> GSM564620     1  0.0000      0.716 1.000 0.000
#> GSM564621     1  0.0000      0.716 1.000 0.000
#> GSM564622     2  0.9998      0.575 0.492 0.508
#> GSM564623     2  0.9998      0.575 0.492 0.508
#> GSM564624     2  0.9998      0.575 0.492 0.508
#> GSM564625     1  0.0000      0.716 1.000 0.000
#> GSM564626     1  0.0000      0.716 1.000 0.000
#> GSM564627     1  0.0000      0.716 1.000 0.000
#> GSM564628     2  0.9998      0.575 0.492 0.508
#> GSM564629     1  0.0000      0.716 1.000 0.000
#> GSM564630     2  0.9998      0.575 0.492 0.508
#> GSM564609     2  0.0000      0.617 0.000 1.000
#> GSM564610     1  0.0000      0.716 1.000 0.000
#> GSM564611     1  0.0000      0.716 1.000 0.000
#> GSM564612     2  0.0000      0.617 0.000 1.000
#> GSM564613     2  0.0000      0.617 0.000 1.000
#> GSM564614     1  0.3584      0.685 0.932 0.068
#> GSM564631     2  0.0000      0.617 0.000 1.000
#> GSM564632     2  0.0000      0.617 0.000 1.000
#> GSM564633     2  0.0000      0.617 0.000 1.000
#> GSM564634     2  0.0938      0.615 0.012 0.988
#> GSM564635     2  0.0000      0.617 0.000 1.000
#> GSM564636     2  0.0000      0.617 0.000 1.000
#> GSM564637     2  0.0000      0.617 0.000 1.000
#> GSM564638     2  0.0000      0.617 0.000 1.000
#> GSM564639     2  0.0000      0.617 0.000 1.000
#> GSM564640     2  0.9998      0.575 0.492 0.508
#> GSM564641     2  0.0000      0.617 0.000 1.000
#> GSM564642     2  0.9998      0.575 0.492 0.508
#> GSM564643     2  0.0000      0.617 0.000 1.000
#> GSM564644     2  0.9998      0.575 0.492 0.508
#> GSM564645     2  0.0000      0.617 0.000 1.000
#> GSM564647     2  0.0000      0.617 0.000 1.000
#> GSM564648     2  0.9998      0.575 0.492 0.508
#> GSM564649     2  0.0000      0.617 0.000 1.000
#> GSM564650     2  0.9998      0.575 0.492 0.508
#> GSM564651     2  0.8661      0.572 0.288 0.712
#> GSM564652     2  0.9998      0.575 0.492 0.508
#> GSM564653     2  0.9998      0.575 0.492 0.508
#> GSM564654     2  0.0000      0.617 0.000 1.000
#> GSM564655     2  0.0000      0.617 0.000 1.000
#> GSM564656     2  0.0000      0.617 0.000 1.000
#> GSM564657     2  0.0000      0.617 0.000 1.000
#> GSM564658     2  0.9998      0.575 0.492 0.508
#> GSM564659     2  0.0000      0.617 0.000 1.000
#> GSM564660     2  0.9998      0.575 0.492 0.508
#> GSM564661     2  0.9998      0.575 0.492 0.508
#> GSM564662     2  0.0000      0.617 0.000 1.000
#> GSM564663     2  0.9998      0.575 0.492 0.508
#> GSM564664     2  0.9998      0.575 0.492 0.508
#> GSM564665     2  0.0000      0.617 0.000 1.000
#> GSM564666     2  0.0000      0.617 0.000 1.000
#> GSM564667     2  0.0000      0.617 0.000 1.000
#> GSM564668     2  0.0000      0.617 0.000 1.000
#> GSM564669     2  0.0000      0.617 0.000 1.000
#> GSM564670     2  0.0000      0.617 0.000 1.000
#> GSM564671     2  0.9998      0.575 0.492 0.508
#> GSM564672     2  0.0000      0.617 0.000 1.000
#> GSM564673     2  0.9998      0.575 0.492 0.508
#> GSM564674     2  0.9998      0.575 0.492 0.508
#> GSM564675     2  0.9998      0.575 0.492 0.508
#> GSM564676     2  0.9998      0.575 0.492 0.508
#> GSM564677     2  0.9998      0.575 0.492 0.508
#> GSM564678     2  0.9998      0.575 0.492 0.508
#> GSM564679     2  0.9998      0.575 0.492 0.508
#> GSM564680     2  0.0000      0.617 0.000 1.000
#> GSM564682     2  0.0000      0.617 0.000 1.000
#> GSM564683     2  0.0000      0.617 0.000 1.000
#> GSM564684     2  0.9998      0.575 0.492 0.508
#> GSM564685     2  0.0000      0.617 0.000 1.000
#> GSM564686     2  0.9983      0.572 0.476 0.524
#> GSM564687     2  0.9998      0.575 0.492 0.508
#> GSM564688     2  0.9998      0.575 0.492 0.508
#> GSM564689     2  0.9998      0.575 0.492 0.508
#> GSM564690     2  0.9998      0.575 0.492 0.508
#> GSM564691     2  0.0000      0.617 0.000 1.000
#> GSM564692     2  0.9998      0.575 0.492 0.508
#> GSM564694     2  0.0000      0.617 0.000 1.000
#> GSM564695     2  0.0000      0.617 0.000 1.000
#> GSM564696     2  0.0000      0.617 0.000 1.000
#> GSM564697     2  0.9998      0.575 0.492 0.508
#> GSM564698     2  0.0000      0.617 0.000 1.000
#> GSM564700     2  0.9998      0.575 0.492 0.508
#> GSM564701     2  0.9998      0.575 0.492 0.508
#> GSM564702     2  0.9998      0.575 0.492 0.508
#> GSM564703     1  0.9998      0.464 0.508 0.492
#> GSM564704     1  0.0000      0.716 1.000 0.000
#> GSM564705     1  0.0000      0.716 1.000 0.000
#> GSM564706     1  0.9998      0.464 0.508 0.492
#> GSM564707     1  0.0000      0.716 1.000 0.000
#> GSM564708     1  0.9998      0.464 0.508 0.492
#> GSM564709     1  0.0000      0.716 1.000 0.000
#> GSM564710     1  0.0000      0.716 1.000 0.000
#> GSM564711     1  0.9998      0.464 0.508 0.492
#> GSM564712     1  0.0000      0.716 1.000 0.000
#> GSM564713     1  0.9998      0.464 0.508 0.492
#> GSM564714     1  0.9998      0.464 0.508 0.492
#> GSM564715     1  0.0000      0.716 1.000 0.000
#> GSM564716     1  0.0000      0.716 1.000 0.000
#> GSM564717     1  0.0000      0.716 1.000 0.000
#> GSM564718     1  0.9998      0.464 0.508 0.492
#> GSM564719     1  0.0000      0.716 1.000 0.000
#> GSM564720     1  0.0000      0.716 1.000 0.000
#> GSM564721     1  0.0000      0.716 1.000 0.000
#> GSM564722     1  0.6623      0.629 0.828 0.172
#> GSM564723     1  0.0000      0.716 1.000 0.000
#> GSM564724     1  0.9998      0.464 0.508 0.492
#> GSM564725     1  0.0000      0.716 1.000 0.000
#> GSM564726     1  0.9998      0.464 0.508 0.492
#> GSM564727     1  0.0000      0.716 1.000 0.000
#> GSM564728     1  0.5946      0.646 0.856 0.144
#> GSM564729     1  0.0000      0.716 1.000 0.000
#> GSM564730     1  0.0000      0.716 1.000 0.000
#> GSM564731     1  0.9970      0.473 0.532 0.468
#> GSM564732     1  0.0000      0.716 1.000 0.000
#> GSM564733     1  0.9998      0.464 0.508 0.492
#> GSM564734     1  0.0000      0.716 1.000 0.000
#> GSM564735     1  0.9998      0.464 0.508 0.492
#> GSM564736     1  0.9998      0.464 0.508 0.492
#> GSM564737     1  0.0000      0.716 1.000 0.000
#> GSM564738     1  0.9998      0.464 0.508 0.492
#> GSM564739     1  0.9998      0.464 0.508 0.492
#> GSM564740     1  0.5519      0.654 0.872 0.128
#> GSM564741     1  0.9998      0.464 0.508 0.492
#> GSM564742     1  0.9998      0.464 0.508 0.492
#> GSM564743     1  0.0000      0.716 1.000 0.000
#> GSM564744     1  0.0000      0.716 1.000 0.000
#> GSM564745     1  0.0000      0.716 1.000 0.000
#> GSM564746     1  0.0000      0.716 1.000 0.000
#> GSM564747     1  0.9993      0.467 0.516 0.484
#> GSM564748     1  0.9998      0.464 0.508 0.492
#> GSM564749     1  0.0000      0.716 1.000 0.000
#> GSM564750     1  0.9998      0.464 0.508 0.492
#> GSM564751     1  0.9998      0.464 0.508 0.492
#> GSM564752     1  0.9998      0.464 0.508 0.492
#> GSM564753     1  0.9998      0.464 0.508 0.492
#> GSM564754     1  0.0000      0.716 1.000 0.000
#> GSM564755     1  0.2043      0.702 0.968 0.032
#> GSM564756     1  0.0000      0.716 1.000 0.000
#> GSM564757     1  0.0000      0.716 1.000 0.000
#> GSM564758     1  0.8327      0.575 0.736 0.264
#> GSM564759     1  0.9998      0.464 0.508 0.492
#> GSM564760     1  0.0000      0.716 1.000 0.000
#> GSM564761     1  0.0000      0.716 1.000 0.000
#> GSM564762     1  0.0000      0.716 1.000 0.000
#> GSM564681     2  0.9998      0.575 0.492 0.508
#> GSM564693     2  0.9998      0.575 0.492 0.508
#> GSM564646     2  0.9998      0.575 0.492 0.508
#> GSM564699     2  0.0000      0.617 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM564615     1  0.0000      0.955 1.000 0.000 0.000
#> GSM564616     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564617     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564618     2  0.2165      0.929 0.064 0.936 0.000
#> GSM564619     1  0.2261      0.951 0.932 0.068 0.000
#> GSM564620     1  0.2165      0.951 0.936 0.064 0.000
#> GSM564621     1  0.0000      0.955 1.000 0.000 0.000
#> GSM564622     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564623     2  0.2261      0.927 0.068 0.932 0.000
#> GSM564624     2  0.0424      0.950 0.008 0.992 0.000
#> GSM564625     1  0.0592      0.955 0.988 0.012 0.000
#> GSM564626     1  0.2261      0.951 0.932 0.068 0.000
#> GSM564627     1  0.0000      0.955 1.000 0.000 0.000
#> GSM564628     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564629     1  0.1860      0.953 0.948 0.052 0.000
#> GSM564630     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564609     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564610     1  0.2261      0.951 0.932 0.068 0.000
#> GSM564611     1  0.2261      0.951 0.932 0.068 0.000
#> GSM564612     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564613     2  0.4291      0.803 0.000 0.820 0.180
#> GSM564614     1  0.0000      0.955 1.000 0.000 0.000
#> GSM564631     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564632     2  0.3713      0.900 0.032 0.892 0.076
#> GSM564633     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564634     2  0.1964      0.924 0.000 0.944 0.056
#> GSM564635     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564636     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564637     2  0.3528      0.892 0.016 0.892 0.092
#> GSM564638     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564639     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564640     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564641     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564642     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564643     2  0.2681      0.928 0.040 0.932 0.028
#> GSM564644     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564645     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564647     3  0.0592      0.954 0.000 0.012 0.988
#> GSM564648     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564649     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564650     2  0.2066      0.931 0.060 0.940 0.000
#> GSM564651     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564652     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564653     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564654     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564655     2  0.5785      0.552 0.000 0.668 0.332
#> GSM564656     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564657     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564658     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564659     3  0.1163      0.942 0.000 0.028 0.972
#> GSM564660     2  0.2066      0.931 0.060 0.940 0.000
#> GSM564661     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564662     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564663     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564664     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564665     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564666     2  0.4914      0.865 0.068 0.844 0.088
#> GSM564667     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564668     3  0.0892      0.949 0.000 0.020 0.980
#> GSM564669     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564670     2  0.6225      0.300 0.000 0.568 0.432
#> GSM564671     2  0.2261      0.927 0.068 0.932 0.000
#> GSM564672     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564673     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564674     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564675     2  0.2261      0.927 0.068 0.932 0.000
#> GSM564676     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564677     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564678     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564679     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564680     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564682     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564683     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564684     2  0.2261      0.927 0.068 0.932 0.000
#> GSM564685     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564686     2  0.2261      0.927 0.068 0.932 0.000
#> GSM564687     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564688     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564689     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564690     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564691     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564692     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564694     2  0.2261      0.927 0.068 0.932 0.000
#> GSM564695     2  0.6811      0.697 0.064 0.716 0.220
#> GSM564696     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564697     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564698     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564700     2  0.2261      0.927 0.068 0.932 0.000
#> GSM564701     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564702     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564703     3  0.0424      0.959 0.008 0.000 0.992
#> GSM564704     1  0.0000      0.955 1.000 0.000 0.000
#> GSM564705     1  0.2261      0.951 0.932 0.068 0.000
#> GSM564706     3  0.0424      0.959 0.008 0.000 0.992
#> GSM564707     1  0.2261      0.951 0.932 0.068 0.000
#> GSM564708     3  0.0424      0.959 0.008 0.000 0.992
#> GSM564709     1  0.0000      0.955 1.000 0.000 0.000
#> GSM564710     1  0.2261      0.951 0.932 0.068 0.000
#> GSM564711     3  0.5835      0.527 0.340 0.000 0.660
#> GSM564712     1  0.2261      0.951 0.932 0.068 0.000
#> GSM564713     3  0.1411      0.942 0.036 0.000 0.964
#> GSM564714     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564715     1  0.2261      0.951 0.932 0.068 0.000
#> GSM564716     1  0.0000      0.955 1.000 0.000 0.000
#> GSM564717     1  0.2261      0.951 0.932 0.068 0.000
#> GSM564718     1  0.2878      0.866 0.904 0.000 0.096
#> GSM564719     1  0.2261      0.951 0.932 0.068 0.000
#> GSM564720     1  0.2261      0.951 0.932 0.068 0.000
#> GSM564721     1  0.2261      0.951 0.932 0.068 0.000
#> GSM564722     1  0.0000      0.955 1.000 0.000 0.000
#> GSM564723     1  0.2261      0.951 0.932 0.068 0.000
#> GSM564724     3  0.3619      0.846 0.136 0.000 0.864
#> GSM564725     1  0.0000      0.955 1.000 0.000 0.000
#> GSM564726     1  0.6215      0.160 0.572 0.000 0.428
#> GSM564727     1  0.0000      0.955 1.000 0.000 0.000
#> GSM564728     1  0.0000      0.955 1.000 0.000 0.000
#> GSM564729     1  0.0000      0.955 1.000 0.000 0.000
#> GSM564730     1  0.1163      0.955 0.972 0.028 0.000
#> GSM564731     1  0.0000      0.955 1.000 0.000 0.000
#> GSM564732     1  0.0000      0.955 1.000 0.000 0.000
#> GSM564733     1  0.1289      0.942 0.968 0.000 0.032
#> GSM564734     1  0.0000      0.955 1.000 0.000 0.000
#> GSM564735     3  0.2448      0.912 0.076 0.000 0.924
#> GSM564736     3  0.1411      0.942 0.036 0.000 0.964
#> GSM564737     1  0.2261      0.951 0.932 0.068 0.000
#> GSM564738     3  0.1753      0.932 0.048 0.000 0.952
#> GSM564739     3  0.2537      0.901 0.080 0.000 0.920
#> GSM564740     1  0.0000      0.955 1.000 0.000 0.000
#> GSM564741     3  0.0592      0.957 0.012 0.000 0.988
#> GSM564742     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564743     1  0.0747      0.955 0.984 0.016 0.000
#> GSM564744     1  0.2261      0.951 0.932 0.068 0.000
#> GSM564745     1  0.0237      0.955 0.996 0.004 0.000
#> GSM564746     1  0.2261      0.951 0.932 0.068 0.000
#> GSM564747     1  0.0000      0.955 1.000 0.000 0.000
#> GSM564748     3  0.0237      0.961 0.004 0.000 0.996
#> GSM564749     1  0.2261      0.951 0.932 0.068 0.000
#> GSM564750     3  0.6154      0.379 0.408 0.000 0.592
#> GSM564751     3  0.0424      0.959 0.008 0.000 0.992
#> GSM564752     3  0.5988      0.478 0.368 0.000 0.632
#> GSM564753     3  0.0000      0.962 0.000 0.000 1.000
#> GSM564754     1  0.2261      0.951 0.932 0.068 0.000
#> GSM564755     1  0.0000      0.955 1.000 0.000 0.000
#> GSM564756     1  0.2261      0.951 0.932 0.068 0.000
#> GSM564757     1  0.0000      0.955 1.000 0.000 0.000
#> GSM564758     1  0.0000      0.955 1.000 0.000 0.000
#> GSM564759     3  0.0424      0.959 0.008 0.000 0.992
#> GSM564760     1  0.0000      0.955 1.000 0.000 0.000
#> GSM564761     1  0.2261      0.951 0.932 0.068 0.000
#> GSM564762     1  0.0000      0.955 1.000 0.000 0.000
#> GSM564681     2  0.2165      0.929 0.064 0.936 0.000
#> GSM564693     2  0.0000      0.953 0.000 1.000 0.000
#> GSM564646     2  0.2261      0.927 0.068 0.932 0.000
#> GSM564699     3  0.5153      0.816 0.068 0.100 0.832

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM564615     4  0.4898     0.2527 0.416 0.000 0.000 0.584
#> GSM564616     2  0.0000     0.9648 0.000 1.000 0.000 0.000
#> GSM564617     2  0.0000     0.9648 0.000 1.000 0.000 0.000
#> GSM564618     4  0.4585     0.5816 0.000 0.332 0.000 0.668
#> GSM564619     1  0.0188     0.9668 0.996 0.004 0.000 0.000
#> GSM564620     1  0.0524     0.9655 0.988 0.004 0.000 0.008
#> GSM564621     1  0.0817     0.9580 0.976 0.000 0.000 0.024
#> GSM564622     2  0.0000     0.9648 0.000 1.000 0.000 0.000
#> GSM564623     4  0.2704     0.8046 0.000 0.124 0.000 0.876
#> GSM564624     2  0.0336     0.9595 0.000 0.992 0.000 0.008
#> GSM564625     1  0.0336     0.9643 0.992 0.000 0.000 0.008
#> GSM564626     1  0.0188     0.9668 0.996 0.004 0.000 0.000
#> GSM564627     1  0.1302     0.9454 0.956 0.000 0.000 0.044
#> GSM564628     2  0.0000     0.9648 0.000 1.000 0.000 0.000
#> GSM564629     1  0.0376     0.9661 0.992 0.004 0.000 0.004
#> GSM564630     2  0.0188     0.9654 0.004 0.996 0.000 0.000
#> GSM564609     3  0.0469     0.9271 0.000 0.012 0.988 0.000
#> GSM564610     1  0.0188     0.9668 0.996 0.004 0.000 0.000
#> GSM564611     1  0.0188     0.9668 0.996 0.004 0.000 0.000
#> GSM564612     3  0.0000     0.9332 0.000 0.000 1.000 0.000
#> GSM564613     2  0.6147     0.3200 0.000 0.564 0.380 0.056
#> GSM564614     4  0.0469     0.8239 0.012 0.000 0.000 0.988
#> GSM564631     3  0.0000     0.9332 0.000 0.000 1.000 0.000
#> GSM564632     4  0.5613     0.7310 0.000 0.156 0.120 0.724
#> GSM564633     3  0.0000     0.9332 0.000 0.000 1.000 0.000
#> GSM564634     2  0.2149     0.8653 0.000 0.912 0.088 0.000
#> GSM564635     3  0.0000     0.9332 0.000 0.000 1.000 0.000
#> GSM564636     3  0.1118     0.9101 0.000 0.000 0.964 0.036
#> GSM564637     4  0.4514     0.7852 0.000 0.136 0.064 0.800
#> GSM564638     3  0.0000     0.9332 0.000 0.000 1.000 0.000
#> GSM564639     3  0.0000     0.9332 0.000 0.000 1.000 0.000
#> GSM564640     2  0.0188     0.9654 0.004 0.996 0.000 0.000
#> GSM564641     3  0.0000     0.9332 0.000 0.000 1.000 0.000
#> GSM564642     2  0.0000     0.9648 0.000 1.000 0.000 0.000
#> GSM564643     4  0.4804     0.7653 0.000 0.160 0.064 0.776
#> GSM564644     2  0.0188     0.9654 0.004 0.996 0.000 0.000
#> GSM564645     3  0.0000     0.9332 0.000 0.000 1.000 0.000
#> GSM564647     3  0.0336     0.9294 0.000 0.008 0.992 0.000
#> GSM564648     2  0.0000     0.9648 0.000 1.000 0.000 0.000
#> GSM564649     3  0.0000     0.9332 0.000 0.000 1.000 0.000
#> GSM564650     2  0.4761     0.2637 0.000 0.628 0.000 0.372
#> GSM564651     2  0.0336     0.9600 0.000 0.992 0.008 0.000
#> GSM564652     2  0.0188     0.9654 0.004 0.996 0.000 0.000
#> GSM564653     2  0.0188     0.9654 0.004 0.996 0.000 0.000
#> GSM564654     3  0.0000     0.9332 0.000 0.000 1.000 0.000
#> GSM564655     4  0.7235     0.4957 0.000 0.180 0.288 0.532
#> GSM564656     3  0.0000     0.9332 0.000 0.000 1.000 0.000
#> GSM564657     3  0.0000     0.9332 0.000 0.000 1.000 0.000
#> GSM564658     2  0.0188     0.9654 0.004 0.996 0.000 0.000
#> GSM564659     3  0.0336     0.9296 0.000 0.008 0.992 0.000
#> GSM564660     4  0.4697     0.5386 0.000 0.356 0.000 0.644
#> GSM564661     2  0.0188     0.9654 0.004 0.996 0.000 0.000
#> GSM564662     3  0.0000     0.9332 0.000 0.000 1.000 0.000
#> GSM564663     2  0.0188     0.9654 0.004 0.996 0.000 0.000
#> GSM564664     2  0.0188     0.9654 0.004 0.996 0.000 0.000
#> GSM564665     3  0.0188     0.9315 0.000 0.004 0.996 0.000
#> GSM564666     4  0.2002     0.8225 0.000 0.020 0.044 0.936
#> GSM564667     3  0.0000     0.9332 0.000 0.000 1.000 0.000
#> GSM564668     3  0.0336     0.9296 0.000 0.008 0.992 0.000
#> GSM564669     3  0.0000     0.9332 0.000 0.000 1.000 0.000
#> GSM564670     3  0.4830     0.3358 0.000 0.392 0.608 0.000
#> GSM564671     4  0.2530     0.8094 0.000 0.112 0.000 0.888
#> GSM564672     3  0.0000     0.9332 0.000 0.000 1.000 0.000
#> GSM564673     2  0.0188     0.9654 0.004 0.996 0.000 0.000
#> GSM564674     2  0.0000     0.9648 0.000 1.000 0.000 0.000
#> GSM564675     4  0.3444     0.7670 0.000 0.184 0.000 0.816
#> GSM564676     2  0.0188     0.9654 0.004 0.996 0.000 0.000
#> GSM564677     2  0.0188     0.9626 0.000 0.996 0.000 0.004
#> GSM564678     2  0.0188     0.9654 0.004 0.996 0.000 0.000
#> GSM564679     2  0.0188     0.9654 0.004 0.996 0.000 0.000
#> GSM564680     3  0.0000     0.9332 0.000 0.000 1.000 0.000
#> GSM564682     3  0.0000     0.9332 0.000 0.000 1.000 0.000
#> GSM564683     3  0.0000     0.9332 0.000 0.000 1.000 0.000
#> GSM564684     4  0.3311     0.7764 0.000 0.172 0.000 0.828
#> GSM564685     3  0.0000     0.9332 0.000 0.000 1.000 0.000
#> GSM564686     4  0.2408     0.8121 0.000 0.104 0.000 0.896
#> GSM564687     2  0.0188     0.9654 0.004 0.996 0.000 0.000
#> GSM564688     2  0.0188     0.9626 0.000 0.996 0.000 0.004
#> GSM564689     2  0.0188     0.9626 0.000 0.996 0.000 0.004
#> GSM564690     2  0.0188     0.9654 0.004 0.996 0.000 0.000
#> GSM564691     3  0.0188     0.9314 0.000 0.004 0.996 0.000
#> GSM564692     2  0.0188     0.9654 0.004 0.996 0.000 0.000
#> GSM564694     4  0.4137     0.7433 0.000 0.208 0.012 0.780
#> GSM564695     4  0.3453     0.8102 0.000 0.052 0.080 0.868
#> GSM564696     3  0.0000     0.9332 0.000 0.000 1.000 0.000
#> GSM564697     2  0.0188     0.9626 0.000 0.996 0.000 0.004
#> GSM564698     3  0.0000     0.9332 0.000 0.000 1.000 0.000
#> GSM564700     4  0.2408     0.8121 0.000 0.104 0.000 0.896
#> GSM564701     2  0.0188     0.9654 0.004 0.996 0.000 0.000
#> GSM564702     2  0.0188     0.9626 0.000 0.996 0.000 0.004
#> GSM564703     3  0.2197     0.8967 0.004 0.000 0.916 0.080
#> GSM564704     1  0.0817     0.9582 0.976 0.000 0.000 0.024
#> GSM564705     1  0.0188     0.9668 0.996 0.004 0.000 0.000
#> GSM564706     3  0.2334     0.8920 0.004 0.000 0.908 0.088
#> GSM564707     1  0.0188     0.9668 0.996 0.004 0.000 0.000
#> GSM564708     3  0.2401     0.8895 0.004 0.000 0.904 0.092
#> GSM564709     1  0.1474     0.9403 0.948 0.000 0.000 0.052
#> GSM564710     1  0.0188     0.9668 0.996 0.004 0.000 0.000
#> GSM564711     4  0.6985     0.0217 0.116 0.000 0.404 0.480
#> GSM564712     1  0.0188     0.9668 0.996 0.004 0.000 0.000
#> GSM564713     3  0.3908     0.7741 0.004 0.000 0.784 0.212
#> GSM564714     3  0.2647     0.8710 0.000 0.000 0.880 0.120
#> GSM564715     1  0.0188     0.9668 0.996 0.004 0.000 0.000
#> GSM564716     1  0.1118     0.9520 0.964 0.000 0.000 0.036
#> GSM564717     1  0.0188     0.9668 0.996 0.004 0.000 0.000
#> GSM564718     4  0.0592     0.8226 0.016 0.000 0.000 0.984
#> GSM564719     1  0.0188     0.9668 0.996 0.004 0.000 0.000
#> GSM564720     1  0.0188     0.9668 0.996 0.004 0.000 0.000
#> GSM564721     1  0.0188     0.9668 0.996 0.004 0.000 0.000
#> GSM564722     4  0.3219     0.7125 0.164 0.000 0.000 0.836
#> GSM564723     1  0.0188     0.9668 0.996 0.004 0.000 0.000
#> GSM564724     3  0.5387     0.4212 0.016 0.000 0.584 0.400
#> GSM564725     1  0.0592     0.9615 0.984 0.000 0.000 0.016
#> GSM564726     4  0.0188     0.8236 0.004 0.000 0.000 0.996
#> GSM564727     1  0.3219     0.8233 0.836 0.000 0.000 0.164
#> GSM564728     4  0.0188     0.8236 0.004 0.000 0.000 0.996
#> GSM564729     4  0.4843     0.3183 0.396 0.000 0.000 0.604
#> GSM564730     1  0.0188     0.9655 0.996 0.000 0.000 0.004
#> GSM564731     1  0.3123     0.8406 0.844 0.000 0.000 0.156
#> GSM564732     1  0.1867     0.9231 0.928 0.000 0.000 0.072
#> GSM564733     1  0.4323     0.7594 0.776 0.000 0.020 0.204
#> GSM564734     1  0.0336     0.9643 0.992 0.000 0.000 0.008
#> GSM564735     4  0.2831     0.7455 0.004 0.000 0.120 0.876
#> GSM564736     3  0.4103     0.7179 0.000 0.000 0.744 0.256
#> GSM564737     1  0.0188     0.9668 0.996 0.004 0.000 0.000
#> GSM564738     4  0.2053     0.7890 0.004 0.000 0.072 0.924
#> GSM564739     3  0.5466     0.6737 0.220 0.000 0.712 0.068
#> GSM564740     4  0.0188     0.8236 0.004 0.000 0.000 0.996
#> GSM564741     3  0.4564     0.6014 0.000 0.000 0.672 0.328
#> GSM564742     3  0.1940     0.9006 0.000 0.000 0.924 0.076
#> GSM564743     1  0.0336     0.9643 0.992 0.000 0.000 0.008
#> GSM564744     1  0.0188     0.9668 0.996 0.004 0.000 0.000
#> GSM564745     1  0.0336     0.9643 0.992 0.000 0.000 0.008
#> GSM564746     1  0.0188     0.9668 0.996 0.004 0.000 0.000
#> GSM564747     1  0.3801     0.7568 0.780 0.000 0.000 0.220
#> GSM564748     3  0.2334     0.8920 0.004 0.000 0.908 0.088
#> GSM564749     1  0.0188     0.9668 0.996 0.004 0.000 0.000
#> GSM564750     4  0.0376     0.8233 0.004 0.000 0.004 0.992
#> GSM564751     3  0.2412     0.8930 0.008 0.000 0.908 0.084
#> GSM564752     4  0.0188     0.8236 0.004 0.000 0.000 0.996
#> GSM564753     3  0.1867     0.9024 0.000 0.000 0.928 0.072
#> GSM564754     1  0.0188     0.9650 0.996 0.000 0.000 0.004
#> GSM564755     4  0.0188     0.8236 0.004 0.000 0.000 0.996
#> GSM564756     1  0.0188     0.9668 0.996 0.004 0.000 0.000
#> GSM564757     4  0.3311     0.7258 0.172 0.000 0.000 0.828
#> GSM564758     4  0.0592     0.8238 0.016 0.000 0.000 0.984
#> GSM564759     3  0.2401     0.8896 0.004 0.000 0.904 0.092
#> GSM564760     1  0.3024     0.8475 0.852 0.000 0.000 0.148
#> GSM564761     1  0.0188     0.9668 0.996 0.004 0.000 0.000
#> GSM564762     1  0.1389     0.9431 0.952 0.000 0.000 0.048
#> GSM564681     4  0.4981     0.2828 0.000 0.464 0.000 0.536
#> GSM564693     2  0.0188     0.9626 0.000 0.996 0.000 0.004
#> GSM564646     4  0.3311     0.7769 0.000 0.172 0.000 0.828
#> GSM564699     4  0.1109     0.8240 0.000 0.004 0.028 0.968

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM564615     1  0.6742    0.09401 0.408 0.000 0.316 0.276 0.000
#> GSM564616     2  0.1331    0.94453 0.000 0.952 0.040 0.008 0.000
#> GSM564617     2  0.1331    0.94618 0.000 0.952 0.040 0.008 0.000
#> GSM564618     3  0.1408    0.80237 0.000 0.044 0.948 0.008 0.000
#> GSM564619     1  0.0486    0.91380 0.988 0.004 0.004 0.004 0.000
#> GSM564620     1  0.0566    0.91377 0.984 0.004 0.000 0.012 0.000
#> GSM564621     1  0.2504    0.87414 0.896 0.000 0.040 0.064 0.000
#> GSM564622     2  0.2886    0.84301 0.000 0.844 0.148 0.008 0.000
#> GSM564623     3  0.0609    0.81488 0.000 0.000 0.980 0.020 0.000
#> GSM564624     2  0.4559    0.14634 0.000 0.512 0.480 0.008 0.000
#> GSM564625     1  0.1444    0.89858 0.948 0.000 0.012 0.040 0.000
#> GSM564626     1  0.0451    0.91400 0.988 0.004 0.000 0.008 0.000
#> GSM564627     1  0.3644    0.82189 0.824 0.000 0.096 0.080 0.000
#> GSM564628     2  0.1956    0.92612 0.000 0.916 0.076 0.008 0.000
#> GSM564629     1  0.0833    0.91147 0.976 0.004 0.004 0.016 0.000
#> GSM564630     2  0.0898    0.95093 0.000 0.972 0.020 0.008 0.000
#> GSM564609     5  0.0981    0.95206 0.000 0.008 0.012 0.008 0.972
#> GSM564610     1  0.0324    0.91433 0.992 0.004 0.000 0.004 0.000
#> GSM564611     1  0.0290    0.91366 0.992 0.008 0.000 0.000 0.000
#> GSM564612     5  0.0162    0.96728 0.000 0.000 0.000 0.004 0.996
#> GSM564613     5  0.5718    0.55565 0.000 0.168 0.160 0.012 0.660
#> GSM564614     3  0.5344    0.25632 0.052 0.000 0.500 0.448 0.000
#> GSM564631     5  0.0000    0.96827 0.000 0.000 0.000 0.000 1.000
#> GSM564632     3  0.3443    0.73793 0.000 0.012 0.840 0.028 0.120
#> GSM564633     5  0.0162    0.96705 0.000 0.000 0.000 0.004 0.996
#> GSM564634     2  0.3732    0.79895 0.000 0.820 0.056 0.004 0.120
#> GSM564635     5  0.0000    0.96827 0.000 0.000 0.000 0.000 1.000
#> GSM564636     5  0.1571    0.91117 0.000 0.000 0.060 0.004 0.936
#> GSM564637     3  0.4117    0.72219 0.000 0.048 0.804 0.020 0.128
#> GSM564638     5  0.0162    0.96705 0.000 0.000 0.000 0.004 0.996
#> GSM564639     5  0.0162    0.96728 0.000 0.000 0.000 0.004 0.996
#> GSM564640     2  0.0290    0.95456 0.000 0.992 0.008 0.000 0.000
#> GSM564641     5  0.0000    0.96827 0.000 0.000 0.000 0.000 1.000
#> GSM564642     2  0.0162    0.95465 0.000 0.996 0.004 0.000 0.000
#> GSM564643     3  0.2507    0.78019 0.000 0.012 0.900 0.016 0.072
#> GSM564644     2  0.0162    0.95449 0.000 0.996 0.004 0.000 0.000
#> GSM564645     5  0.0000    0.96827 0.000 0.000 0.000 0.000 1.000
#> GSM564647     5  0.0727    0.95732 0.000 0.004 0.012 0.004 0.980
#> GSM564648     2  0.0955    0.95100 0.000 0.968 0.028 0.004 0.000
#> GSM564649     5  0.0000    0.96827 0.000 0.000 0.000 0.000 1.000
#> GSM564650     3  0.3612    0.56906 0.000 0.268 0.732 0.000 0.000
#> GSM564651     2  0.0451    0.95305 0.000 0.988 0.004 0.000 0.008
#> GSM564652     2  0.0451    0.95470 0.000 0.988 0.008 0.004 0.000
#> GSM564653     2  0.0162    0.95461 0.000 0.996 0.004 0.000 0.000
#> GSM564654     5  0.0162    0.96728 0.000 0.000 0.000 0.004 0.996
#> GSM564655     3  0.6689    0.17961 0.000 0.096 0.464 0.040 0.400
#> GSM564656     5  0.0000    0.96827 0.000 0.000 0.000 0.000 1.000
#> GSM564657     5  0.0000    0.96827 0.000 0.000 0.000 0.000 1.000
#> GSM564658     2  0.0451    0.95421 0.000 0.988 0.008 0.004 0.000
#> GSM564659     5  0.1934    0.90983 0.000 0.004 0.052 0.016 0.928
#> GSM564660     3  0.1877    0.79603 0.000 0.064 0.924 0.012 0.000
#> GSM564661     2  0.0162    0.95461 0.000 0.996 0.004 0.000 0.000
#> GSM564662     5  0.0000    0.96827 0.000 0.000 0.000 0.000 1.000
#> GSM564663     2  0.0162    0.95449 0.000 0.996 0.004 0.000 0.000
#> GSM564664     2  0.0162    0.95449 0.000 0.996 0.004 0.000 0.000
#> GSM564665     5  0.0162    0.96651 0.000 0.000 0.004 0.000 0.996
#> GSM564666     3  0.1197    0.81121 0.000 0.000 0.952 0.048 0.000
#> GSM564667     5  0.0000    0.96827 0.000 0.000 0.000 0.000 1.000
#> GSM564668     5  0.0807    0.95549 0.000 0.000 0.012 0.012 0.976
#> GSM564669     5  0.0162    0.96728 0.000 0.000 0.000 0.004 0.996
#> GSM564670     5  0.4240    0.73401 0.000 0.148 0.048 0.016 0.788
#> GSM564671     3  0.0703    0.81360 0.000 0.000 0.976 0.024 0.000
#> GSM564672     5  0.0000    0.96827 0.000 0.000 0.000 0.000 1.000
#> GSM564673     2  0.0162    0.95461 0.000 0.996 0.004 0.000 0.000
#> GSM564674     2  0.0404    0.95431 0.000 0.988 0.012 0.000 0.000
#> GSM564675     3  0.1012    0.81515 0.000 0.012 0.968 0.020 0.000
#> GSM564676     2  0.0162    0.95449 0.000 0.996 0.004 0.000 0.000
#> GSM564677     2  0.1544    0.92792 0.000 0.932 0.068 0.000 0.000
#> GSM564678     2  0.0162    0.95449 0.000 0.996 0.004 0.000 0.000
#> GSM564679     2  0.0162    0.95449 0.000 0.996 0.004 0.000 0.000
#> GSM564680     5  0.0000    0.96827 0.000 0.000 0.000 0.000 1.000
#> GSM564682     5  0.0000    0.96827 0.000 0.000 0.000 0.000 1.000
#> GSM564683     5  0.0000    0.96827 0.000 0.000 0.000 0.000 1.000
#> GSM564684     3  0.0566    0.81510 0.000 0.004 0.984 0.012 0.000
#> GSM564685     5  0.0000    0.96827 0.000 0.000 0.000 0.000 1.000
#> GSM564686     3  0.0963    0.81242 0.000 0.000 0.964 0.036 0.000
#> GSM564687     2  0.0290    0.95487 0.000 0.992 0.008 0.000 0.000
#> GSM564688     2  0.1043    0.94512 0.000 0.960 0.040 0.000 0.000
#> GSM564689     2  0.1270    0.93682 0.000 0.948 0.052 0.000 0.000
#> GSM564690     2  0.0162    0.95449 0.000 0.996 0.004 0.000 0.000
#> GSM564691     5  0.0162    0.96705 0.000 0.000 0.000 0.004 0.996
#> GSM564692     2  0.0771    0.95189 0.000 0.976 0.020 0.004 0.000
#> GSM564694     3  0.1967    0.80546 0.000 0.036 0.932 0.012 0.020
#> GSM564695     3  0.1329    0.81484 0.000 0.004 0.956 0.032 0.008
#> GSM564696     5  0.0880    0.93918 0.000 0.000 0.000 0.032 0.968
#> GSM564697     2  0.2020    0.88919 0.000 0.900 0.100 0.000 0.000
#> GSM564698     5  0.0162    0.96728 0.000 0.000 0.000 0.004 0.996
#> GSM564700     3  0.0880    0.81300 0.000 0.000 0.968 0.032 0.000
#> GSM564701     2  0.0162    0.95461 0.000 0.996 0.004 0.000 0.000
#> GSM564702     2  0.1502    0.93788 0.000 0.940 0.056 0.004 0.000
#> GSM564703     4  0.4225    0.57287 0.004 0.000 0.000 0.632 0.364
#> GSM564704     1  0.3106    0.82881 0.840 0.000 0.020 0.140 0.000
#> GSM564705     1  0.0162    0.91446 0.996 0.004 0.000 0.000 0.000
#> GSM564706     4  0.4066    0.63078 0.004 0.000 0.000 0.672 0.324
#> GSM564707     1  0.0162    0.91446 0.996 0.004 0.000 0.000 0.000
#> GSM564708     4  0.3715    0.69498 0.004 0.000 0.000 0.736 0.260
#> GSM564709     1  0.3506    0.82698 0.832 0.000 0.064 0.104 0.000
#> GSM564710     1  0.0324    0.91433 0.992 0.004 0.000 0.004 0.000
#> GSM564711     4  0.0955    0.74496 0.000 0.000 0.004 0.968 0.028
#> GSM564712     1  0.0162    0.91446 0.996 0.004 0.000 0.000 0.000
#> GSM564713     4  0.1121    0.74962 0.000 0.000 0.000 0.956 0.044
#> GSM564714     4  0.3109    0.72398 0.000 0.000 0.000 0.800 0.200
#> GSM564715     1  0.0162    0.91446 0.996 0.004 0.000 0.000 0.000
#> GSM564716     1  0.3769    0.78546 0.788 0.000 0.032 0.180 0.000
#> GSM564717     1  0.0404    0.91256 0.988 0.012 0.000 0.000 0.000
#> GSM564718     4  0.0794    0.72983 0.000 0.000 0.028 0.972 0.000
#> GSM564719     1  0.0609    0.90827 0.980 0.020 0.000 0.000 0.000
#> GSM564720     1  0.0162    0.91446 0.996 0.004 0.000 0.000 0.000
#> GSM564721     1  0.0000    0.91411 1.000 0.000 0.000 0.000 0.000
#> GSM564722     4  0.2522    0.66949 0.012 0.000 0.108 0.880 0.000
#> GSM564723     1  0.0162    0.91446 0.996 0.004 0.000 0.000 0.000
#> GSM564724     4  0.0912    0.74043 0.000 0.000 0.012 0.972 0.016
#> GSM564725     1  0.2848    0.85430 0.868 0.000 0.028 0.104 0.000
#> GSM564726     4  0.2763    0.63207 0.004 0.000 0.148 0.848 0.000
#> GSM564727     1  0.5435    0.63736 0.660 0.000 0.152 0.188 0.000
#> GSM564728     3  0.4288    0.45058 0.004 0.000 0.612 0.384 0.000
#> GSM564729     1  0.6767   -0.00888 0.380 0.000 0.348 0.272 0.000
#> GSM564730     1  0.0324    0.91306 0.992 0.000 0.004 0.004 0.000
#> GSM564731     4  0.2439    0.69664 0.120 0.000 0.004 0.876 0.000
#> GSM564732     1  0.3994    0.79677 0.792 0.000 0.068 0.140 0.000
#> GSM564733     4  0.2017    0.70439 0.080 0.000 0.008 0.912 0.000
#> GSM564734     1  0.1430    0.89428 0.944 0.000 0.004 0.052 0.000
#> GSM564735     4  0.0771    0.73359 0.000 0.000 0.020 0.976 0.004
#> GSM564736     4  0.1043    0.74874 0.000 0.000 0.000 0.960 0.040
#> GSM564737     1  0.0162    0.91446 0.996 0.004 0.000 0.000 0.000
#> GSM564738     4  0.0865    0.73182 0.000 0.000 0.024 0.972 0.004
#> GSM564739     4  0.5268    0.66837 0.112 0.000 0.000 0.668 0.220
#> GSM564740     3  0.4196    0.49871 0.004 0.000 0.640 0.356 0.000
#> GSM564741     4  0.1430    0.74920 0.000 0.000 0.004 0.944 0.052
#> GSM564742     4  0.4015    0.59722 0.000 0.000 0.000 0.652 0.348
#> GSM564743     1  0.0324    0.91443 0.992 0.004 0.004 0.000 0.000
#> GSM564744     1  0.0162    0.91446 0.996 0.004 0.000 0.000 0.000
#> GSM564745     1  0.0566    0.91088 0.984 0.000 0.004 0.012 0.000
#> GSM564746     1  0.0162    0.91446 0.996 0.004 0.000 0.000 0.000
#> GSM564747     4  0.2411    0.70382 0.108 0.000 0.008 0.884 0.000
#> GSM564748     4  0.3966    0.61513 0.000 0.000 0.000 0.664 0.336
#> GSM564749     1  0.0404    0.91245 0.988 0.012 0.000 0.000 0.000
#> GSM564750     4  0.2929    0.58911 0.000 0.000 0.180 0.820 0.000
#> GSM564751     4  0.4114    0.55388 0.000 0.000 0.000 0.624 0.376
#> GSM564752     4  0.4264    0.15027 0.004 0.000 0.376 0.620 0.000
#> GSM564753     4  0.4138    0.53782 0.000 0.000 0.000 0.616 0.384
#> GSM564754     1  0.0162    0.91446 0.996 0.004 0.000 0.000 0.000
#> GSM564755     3  0.4182    0.50030 0.004 0.000 0.644 0.352 0.000
#> GSM564756     1  0.0162    0.91446 0.996 0.004 0.000 0.000 0.000
#> GSM564757     3  0.6523    0.30597 0.232 0.000 0.480 0.288 0.000
#> GSM564758     4  0.4731   -0.11871 0.016 0.000 0.456 0.528 0.000
#> GSM564759     4  0.3730    0.66898 0.000 0.000 0.000 0.712 0.288
#> GSM564760     1  0.5149    0.66900 0.680 0.000 0.104 0.216 0.000
#> GSM564761     1  0.0324    0.91433 0.992 0.004 0.000 0.004 0.000
#> GSM564762     1  0.3333    0.75574 0.788 0.000 0.004 0.208 0.000
#> GSM564681     3  0.1894    0.78917 0.000 0.072 0.920 0.008 0.000
#> GSM564693     2  0.1430    0.94047 0.000 0.944 0.052 0.004 0.000
#> GSM564646     3  0.0693    0.81517 0.000 0.012 0.980 0.008 0.000
#> GSM564699     3  0.1341    0.80750 0.000 0.000 0.944 0.056 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM564615     2  0.6538     0.6706 0.124 0.556 0.000 0.156 0.000 0.164
#> GSM564616     5  0.3210     0.8610 0.000 0.152 0.000 0.000 0.812 0.036
#> GSM564617     5  0.3387     0.8541 0.000 0.164 0.000 0.000 0.796 0.040
#> GSM564618     6  0.3141     0.7770 0.000 0.112 0.000 0.004 0.048 0.836
#> GSM564619     1  0.2597     0.7674 0.824 0.176 0.000 0.000 0.000 0.000
#> GSM564620     1  0.3198     0.7177 0.740 0.260 0.000 0.000 0.000 0.000
#> GSM564621     1  0.4580     0.2573 0.488 0.484 0.000 0.016 0.000 0.012
#> GSM564622     5  0.5228     0.6141 0.000 0.192 0.000 0.000 0.612 0.196
#> GSM564623     6  0.1970     0.8012 0.000 0.092 0.000 0.008 0.000 0.900
#> GSM564624     6  0.5510     0.2496 0.000 0.144 0.000 0.000 0.340 0.516
#> GSM564625     1  0.4226     0.4847 0.580 0.404 0.000 0.012 0.000 0.004
#> GSM564626     1  0.2562     0.7708 0.828 0.172 0.000 0.000 0.000 0.000
#> GSM564627     2  0.4858    -0.1847 0.440 0.516 0.000 0.024 0.000 0.020
#> GSM564628     5  0.4108     0.8093 0.000 0.164 0.000 0.000 0.744 0.092
#> GSM564629     1  0.3330     0.6891 0.716 0.284 0.000 0.000 0.000 0.000
#> GSM564630     5  0.2971     0.8702 0.004 0.144 0.000 0.000 0.832 0.020
#> GSM564609     3  0.2407     0.9041 0.000 0.072 0.896 0.008 0.016 0.008
#> GSM564610     1  0.1765     0.8038 0.904 0.096 0.000 0.000 0.000 0.000
#> GSM564611     1  0.0508     0.8039 0.984 0.004 0.000 0.000 0.012 0.000
#> GSM564612     3  0.0260     0.9434 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM564613     3  0.7003     0.3571 0.000 0.144 0.516 0.008 0.156 0.176
#> GSM564614     2  0.6116     0.5638 0.020 0.512 0.000 0.268 0.000 0.200
#> GSM564631     3  0.0000     0.9429 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564632     6  0.3850     0.7584 0.000 0.084 0.076 0.008 0.020 0.812
#> GSM564633     3  0.0713     0.9404 0.000 0.028 0.972 0.000 0.000 0.000
#> GSM564634     5  0.5390     0.6952 0.000 0.092 0.132 0.004 0.692 0.080
#> GSM564635     3  0.0146     0.9429 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM564636     3  0.2649     0.8794 0.000 0.036 0.880 0.012 0.000 0.072
#> GSM564637     6  0.3162     0.7779 0.000 0.064 0.064 0.000 0.020 0.852
#> GSM564638     3  0.0777     0.9408 0.000 0.024 0.972 0.000 0.000 0.004
#> GSM564639     3  0.0405     0.9426 0.000 0.008 0.988 0.004 0.000 0.000
#> GSM564640     5  0.1410     0.9210 0.004 0.044 0.000 0.000 0.944 0.008
#> GSM564641     3  0.0692     0.9399 0.000 0.020 0.976 0.000 0.000 0.004
#> GSM564642     5  0.1296     0.9197 0.000 0.044 0.004 0.000 0.948 0.004
#> GSM564643     6  0.2852     0.7723 0.000 0.064 0.080 0.000 0.000 0.856
#> GSM564644     5  0.1340     0.9153 0.008 0.040 0.000 0.000 0.948 0.004
#> GSM564645     3  0.0146     0.9429 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM564647     3  0.2208     0.9119 0.000 0.052 0.912 0.008 0.012 0.016
#> GSM564648     5  0.1895     0.9128 0.000 0.072 0.000 0.000 0.912 0.016
#> GSM564649     3  0.0146     0.9432 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM564650     6  0.4032     0.6571 0.000 0.068 0.000 0.000 0.192 0.740
#> GSM564651     5  0.1621     0.9132 0.004 0.048 0.008 0.000 0.936 0.004
#> GSM564652     5  0.1625     0.9165 0.000 0.060 0.000 0.000 0.928 0.012
#> GSM564653     5  0.0547     0.9169 0.000 0.020 0.000 0.000 0.980 0.000
#> GSM564654     3  0.0692     0.9409 0.000 0.020 0.976 0.004 0.000 0.000
#> GSM564655     6  0.7268     0.4067 0.000 0.092 0.256 0.048 0.108 0.496
#> GSM564656     3  0.0520     0.9429 0.000 0.008 0.984 0.008 0.000 0.000
#> GSM564657     3  0.0146     0.9429 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM564658     5  0.1531     0.9186 0.000 0.068 0.000 0.000 0.928 0.004
#> GSM564659     3  0.3301     0.8347 0.000 0.068 0.828 0.004 0.000 0.100
#> GSM564660     6  0.2393     0.8004 0.000 0.040 0.000 0.004 0.064 0.892
#> GSM564661     5  0.0692     0.9174 0.000 0.020 0.000 0.000 0.976 0.004
#> GSM564662     3  0.0146     0.9429 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM564663     5  0.1152     0.9200 0.000 0.044 0.000 0.000 0.952 0.004
#> GSM564664     5  0.1003     0.9143 0.004 0.028 0.000 0.000 0.964 0.004
#> GSM564665     3  0.1553     0.9271 0.000 0.032 0.944 0.004 0.008 0.012
#> GSM564666     6  0.1528     0.8047 0.000 0.048 0.000 0.016 0.000 0.936
#> GSM564667     3  0.0146     0.9430 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM564668     3  0.2332     0.9090 0.000 0.060 0.904 0.008 0.016 0.012
#> GSM564669     3  0.0547     0.9423 0.000 0.020 0.980 0.000 0.000 0.000
#> GSM564670     3  0.5495     0.6608 0.000 0.144 0.676 0.004 0.116 0.060
#> GSM564671     6  0.1444     0.7951 0.000 0.072 0.000 0.000 0.000 0.928
#> GSM564672     3  0.0146     0.9429 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM564673     5  0.0790     0.9189 0.000 0.032 0.000 0.000 0.968 0.000
#> GSM564674     5  0.1471     0.9174 0.000 0.064 0.000 0.000 0.932 0.004
#> GSM564675     6  0.1334     0.8140 0.000 0.032 0.000 0.000 0.020 0.948
#> GSM564676     5  0.0951     0.9148 0.008 0.020 0.000 0.000 0.968 0.004
#> GSM564677     5  0.2843     0.8590 0.000 0.036 0.000 0.000 0.848 0.116
#> GSM564678     5  0.0922     0.9145 0.004 0.024 0.000 0.000 0.968 0.004
#> GSM564679     5  0.0692     0.9155 0.004 0.020 0.000 0.000 0.976 0.000
#> GSM564680     3  0.0146     0.9429 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM564682     3  0.1340     0.9312 0.000 0.040 0.948 0.000 0.004 0.008
#> GSM564683     3  0.0146     0.9429 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM564684     6  0.0937     0.8046 0.000 0.040 0.000 0.000 0.000 0.960
#> GSM564685     3  0.0146     0.9429 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM564686     6  0.0937     0.8053 0.000 0.040 0.000 0.000 0.000 0.960
#> GSM564687     5  0.1462     0.9197 0.000 0.056 0.000 0.000 0.936 0.008
#> GSM564688     5  0.2376     0.8941 0.000 0.044 0.000 0.000 0.888 0.068
#> GSM564689     5  0.3076     0.8552 0.004 0.044 0.000 0.000 0.840 0.112
#> GSM564690     5  0.0922     0.9148 0.004 0.024 0.000 0.000 0.968 0.004
#> GSM564691     3  0.0748     0.9405 0.000 0.016 0.976 0.000 0.004 0.004
#> GSM564692     5  0.1967     0.9078 0.000 0.084 0.000 0.000 0.904 0.012
#> GSM564694     6  0.3340     0.7854 0.000 0.100 0.032 0.004 0.024 0.840
#> GSM564695     6  0.1882     0.8055 0.000 0.060 0.008 0.012 0.000 0.920
#> GSM564696     3  0.2698     0.8723 0.000 0.040 0.880 0.064 0.000 0.016
#> GSM564697     5  0.3588     0.7957 0.000 0.060 0.000 0.000 0.788 0.152
#> GSM564698     3  0.0790     0.9391 0.000 0.032 0.968 0.000 0.000 0.000
#> GSM564700     6  0.1204     0.8005 0.000 0.056 0.000 0.000 0.000 0.944
#> GSM564701     5  0.1003     0.9188 0.004 0.028 0.000 0.000 0.964 0.004
#> GSM564702     5  0.2672     0.8996 0.000 0.080 0.000 0.000 0.868 0.052
#> GSM564703     4  0.3644     0.6653 0.008 0.008 0.252 0.732 0.000 0.000
#> GSM564704     1  0.5506     0.1235 0.524 0.372 0.000 0.088 0.000 0.016
#> GSM564705     1  0.0146     0.8069 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM564706     4  0.3564     0.6947 0.008 0.020 0.200 0.772 0.000 0.000
#> GSM564707     1  0.0603     0.8109 0.980 0.016 0.000 0.004 0.000 0.000
#> GSM564708     4  0.3277     0.7017 0.004 0.016 0.188 0.792 0.000 0.000
#> GSM564709     1  0.5878    -0.0588 0.484 0.396 0.000 0.072 0.000 0.048
#> GSM564710     1  0.0458     0.8112 0.984 0.016 0.000 0.000 0.000 0.000
#> GSM564711     4  0.1728     0.7040 0.008 0.064 0.000 0.924 0.000 0.004
#> GSM564712     1  0.0547     0.8117 0.980 0.020 0.000 0.000 0.000 0.000
#> GSM564713     4  0.1320     0.7135 0.000 0.036 0.016 0.948 0.000 0.000
#> GSM564714     4  0.2723     0.7171 0.000 0.016 0.128 0.852 0.000 0.004
#> GSM564715     1  0.0937     0.8128 0.960 0.040 0.000 0.000 0.000 0.000
#> GSM564716     1  0.5280     0.3718 0.544 0.376 0.000 0.060 0.000 0.020
#> GSM564717     1  0.1116     0.8033 0.960 0.028 0.000 0.008 0.004 0.000
#> GSM564718     4  0.2805     0.6498 0.000 0.160 0.000 0.828 0.000 0.012
#> GSM564719     1  0.1148     0.7987 0.960 0.020 0.000 0.004 0.016 0.000
#> GSM564720     1  0.0260     0.8086 0.992 0.008 0.000 0.000 0.000 0.000
#> GSM564721     1  0.1204     0.8129 0.944 0.056 0.000 0.000 0.000 0.000
#> GSM564722     4  0.5064     0.0925 0.004 0.372 0.000 0.552 0.000 0.072
#> GSM564723     1  0.0260     0.8095 0.992 0.008 0.000 0.000 0.000 0.000
#> GSM564724     4  0.1908     0.6960 0.000 0.096 0.000 0.900 0.000 0.004
#> GSM564725     1  0.5241     0.3073 0.528 0.396 0.000 0.060 0.000 0.016
#> GSM564726     4  0.4700     0.3693 0.000 0.268 0.000 0.648 0.000 0.084
#> GSM564727     2  0.6203     0.4952 0.264 0.556 0.000 0.092 0.000 0.088
#> GSM564728     2  0.5919     0.5097 0.000 0.452 0.000 0.228 0.000 0.320
#> GSM564729     2  0.6571     0.6647 0.104 0.544 0.000 0.188 0.000 0.164
#> GSM564730     1  0.2320     0.7817 0.864 0.132 0.000 0.004 0.000 0.000
#> GSM564731     4  0.3787     0.5911 0.120 0.100 0.000 0.780 0.000 0.000
#> GSM564732     2  0.5755     0.2367 0.380 0.504 0.000 0.084 0.000 0.032
#> GSM564733     4  0.3624     0.6140 0.060 0.156 0.000 0.784 0.000 0.000
#> GSM564734     1  0.4726     0.4383 0.628 0.316 0.000 0.044 0.000 0.012
#> GSM564735     4  0.2118     0.6769 0.000 0.104 0.000 0.888 0.000 0.008
#> GSM564736     4  0.1398     0.7087 0.000 0.052 0.008 0.940 0.000 0.000
#> GSM564737     1  0.0458     0.8111 0.984 0.016 0.000 0.000 0.000 0.000
#> GSM564738     4  0.2214     0.6834 0.000 0.092 0.004 0.892 0.000 0.012
#> GSM564739     4  0.4640     0.6425 0.128 0.020 0.124 0.728 0.000 0.000
#> GSM564740     6  0.6012    -0.4061 0.000 0.348 0.000 0.244 0.000 0.408
#> GSM564741     4  0.1572     0.7160 0.000 0.036 0.028 0.936 0.000 0.000
#> GSM564742     4  0.3518     0.6658 0.000 0.012 0.256 0.732 0.000 0.000
#> GSM564743     1  0.2615     0.7638 0.852 0.136 0.000 0.004 0.000 0.008
#> GSM564744     1  0.0632     0.8110 0.976 0.024 0.000 0.000 0.000 0.000
#> GSM564745     1  0.3420     0.6878 0.748 0.240 0.000 0.012 0.000 0.000
#> GSM564746     1  0.2597     0.7688 0.824 0.176 0.000 0.000 0.000 0.000
#> GSM564747     4  0.3731     0.6255 0.072 0.124 0.000 0.796 0.000 0.008
#> GSM564748     4  0.3570     0.6813 0.004 0.016 0.228 0.752 0.000 0.000
#> GSM564749     1  0.0622     0.8063 0.980 0.012 0.000 0.000 0.008 0.000
#> GSM564750     4  0.4639     0.3870 0.000 0.256 0.000 0.660 0.000 0.084
#> GSM564751     4  0.3882     0.6577 0.012 0.012 0.260 0.716 0.000 0.000
#> GSM564752     4  0.5751    -0.0333 0.000 0.276 0.000 0.508 0.000 0.216
#> GSM564753     4  0.3595     0.6376 0.000 0.008 0.288 0.704 0.000 0.000
#> GSM564754     1  0.1075     0.8132 0.952 0.048 0.000 0.000 0.000 0.000
#> GSM564755     2  0.5992     0.4814 0.000 0.420 0.000 0.240 0.000 0.340
#> GSM564756     1  0.1082     0.8084 0.956 0.040 0.000 0.000 0.004 0.000
#> GSM564757     2  0.6351     0.6521 0.060 0.544 0.000 0.172 0.000 0.224
#> GSM564758     2  0.6260     0.3999 0.008 0.412 0.000 0.300 0.000 0.280
#> GSM564759     4  0.3361     0.7009 0.004 0.020 0.188 0.788 0.000 0.000
#> GSM564760     2  0.6189     0.4226 0.308 0.516 0.000 0.132 0.000 0.044
#> GSM564761     1  0.1141     0.8095 0.948 0.052 0.000 0.000 0.000 0.000
#> GSM564762     1  0.5637     0.3435 0.556 0.252 0.000 0.188 0.000 0.004
#> GSM564681     6  0.2442     0.7909 0.000 0.048 0.000 0.000 0.068 0.884
#> GSM564693     5  0.2451     0.8986 0.000 0.056 0.000 0.000 0.884 0.060
#> GSM564646     6  0.1007     0.8036 0.000 0.044 0.000 0.000 0.000 0.956
#> GSM564699     6  0.1528     0.8030 0.000 0.048 0.000 0.016 0.000 0.936

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n genotype/variation(p) disease.state(p) k
#> SD:skmeans 130                0.3330           0.6740 2
#> SD:skmeans 150                0.0552           0.4398 3
#> SD:skmeans 145                0.0931           0.2428 4
#> SD:skmeans 144                0.0311           0.0976 5
#> SD:skmeans 132                0.0707           0.3115 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 154 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.457           0.786       0.896         0.4906 0.511   0.511
#> 3 3 0.615           0.801       0.883         0.3556 0.770   0.574
#> 4 4 0.751           0.766       0.893         0.1264 0.846   0.588
#> 5 5 0.691           0.606       0.785         0.0596 0.925   0.723
#> 6 6 0.728           0.636       0.797         0.0428 0.893   0.558

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM564615     1  0.9129      0.535 0.672 0.328
#> GSM564616     1  0.1184      0.878 0.984 0.016
#> GSM564617     1  0.0672      0.877 0.992 0.008
#> GSM564618     1  0.7883      0.701 0.764 0.236
#> GSM564619     1  0.0000      0.876 1.000 0.000
#> GSM564620     1  0.3879      0.853 0.924 0.076
#> GSM564621     1  0.4815      0.832 0.896 0.104
#> GSM564622     1  0.9922      0.211 0.552 0.448
#> GSM564623     1  0.6801      0.783 0.820 0.180
#> GSM564624     1  0.3431      0.865 0.936 0.064
#> GSM564625     1  0.4562      0.838 0.904 0.096
#> GSM564626     1  0.0000      0.876 1.000 0.000
#> GSM564627     1  0.3584      0.854 0.932 0.068
#> GSM564628     1  0.1414      0.877 0.980 0.020
#> GSM564629     1  0.0672      0.876 0.992 0.008
#> GSM564630     1  0.0672      0.877 0.992 0.008
#> GSM564609     2  0.5946      0.814 0.144 0.856
#> GSM564610     1  0.0000      0.876 1.000 0.000
#> GSM564611     1  0.0672      0.877 0.992 0.008
#> GSM564612     2  0.4562      0.838 0.096 0.904
#> GSM564613     1  0.9833      0.290 0.576 0.424
#> GSM564614     1  0.9988      0.060 0.520 0.480
#> GSM564631     2  0.0000      0.884 0.000 1.000
#> GSM564632     2  0.6531      0.799 0.168 0.832
#> GSM564633     2  0.0000      0.884 0.000 1.000
#> GSM564634     1  0.7950      0.693 0.760 0.240
#> GSM564635     2  0.0376      0.884 0.004 0.996
#> GSM564636     2  0.0000      0.884 0.000 1.000
#> GSM564637     2  0.7602      0.722 0.220 0.780
#> GSM564638     2  0.0000      0.884 0.000 1.000
#> GSM564639     2  0.0000      0.884 0.000 1.000
#> GSM564640     1  0.0672      0.877 0.992 0.008
#> GSM564641     2  0.2236      0.875 0.036 0.964
#> GSM564642     1  0.2778      0.871 0.952 0.048
#> GSM564643     2  0.4161      0.853 0.084 0.916
#> GSM564644     1  0.2423      0.874 0.960 0.040
#> GSM564645     2  0.0000      0.884 0.000 1.000
#> GSM564647     2  0.5946      0.805 0.144 0.856
#> GSM564648     1  0.3879      0.858 0.924 0.076
#> GSM564649     2  0.0672      0.883 0.008 0.992
#> GSM564650     1  0.8608      0.618 0.716 0.284
#> GSM564651     1  0.9909      0.245 0.556 0.444
#> GSM564652     1  0.2043      0.876 0.968 0.032
#> GSM564653     1  0.0938      0.877 0.988 0.012
#> GSM564654     2  0.0000      0.884 0.000 1.000
#> GSM564655     2  0.3114      0.876 0.056 0.944
#> GSM564656     2  0.0000      0.884 0.000 1.000
#> GSM564657     2  0.4022      0.850 0.080 0.920
#> GSM564658     1  0.0672      0.877 0.992 0.008
#> GSM564659     2  0.5059      0.833 0.112 0.888
#> GSM564660     1  0.3733      0.857 0.928 0.072
#> GSM564661     1  0.2043      0.875 0.968 0.032
#> GSM564662     2  0.0000      0.884 0.000 1.000
#> GSM564663     1  0.2043      0.875 0.968 0.032
#> GSM564664     1  0.6048      0.797 0.852 0.148
#> GSM564665     2  0.4161      0.849 0.084 0.916
#> GSM564666     2  0.8661      0.589 0.288 0.712
#> GSM564667     2  0.4431      0.841 0.092 0.908
#> GSM564668     2  0.2778      0.874 0.048 0.952
#> GSM564669     2  0.0000      0.884 0.000 1.000
#> GSM564670     2  0.7602      0.734 0.220 0.780
#> GSM564671     1  0.8555      0.668 0.720 0.280
#> GSM564672     2  0.0000      0.884 0.000 1.000
#> GSM564673     1  0.4815      0.842 0.896 0.104
#> GSM564674     1  0.0672      0.877 0.992 0.008
#> GSM564675     1  0.8443      0.640 0.728 0.272
#> GSM564676     1  0.1184      0.877 0.984 0.016
#> GSM564677     1  0.0938      0.877 0.988 0.012
#> GSM564678     1  0.0938      0.877 0.988 0.012
#> GSM564679     1  0.0672      0.877 0.992 0.008
#> GSM564680     2  0.0000      0.884 0.000 1.000
#> GSM564682     2  0.6712      0.768 0.176 0.824
#> GSM564683     2  0.0000      0.884 0.000 1.000
#> GSM564684     1  0.4161      0.857 0.916 0.084
#> GSM564685     2  0.0000      0.884 0.000 1.000
#> GSM564686     2  0.9522      0.380 0.372 0.628
#> GSM564687     1  0.3114      0.867 0.944 0.056
#> GSM564688     1  0.8327      0.650 0.736 0.264
#> GSM564689     1  0.3274      0.865 0.940 0.060
#> GSM564690     1  0.2948      0.870 0.948 0.052
#> GSM564691     2  0.7950      0.691 0.240 0.760
#> GSM564692     1  0.4815      0.838 0.896 0.104
#> GSM564694     1  0.9795      0.349 0.584 0.416
#> GSM564695     2  0.4298      0.858 0.088 0.912
#> GSM564696     2  0.0000      0.884 0.000 1.000
#> GSM564697     1  0.1414      0.878 0.980 0.020
#> GSM564698     2  0.0000      0.884 0.000 1.000
#> GSM564700     1  0.9732      0.434 0.596 0.404
#> GSM564701     1  0.1184      0.877 0.984 0.016
#> GSM564702     1  0.4022      0.855 0.920 0.080
#> GSM564703     2  0.2236      0.878 0.036 0.964
#> GSM564704     1  0.4562      0.836 0.904 0.096
#> GSM564705     1  0.0672      0.877 0.992 0.008
#> GSM564706     2  0.3274      0.868 0.060 0.940
#> GSM564707     1  0.3584      0.865 0.932 0.068
#> GSM564708     2  0.0672      0.884 0.008 0.992
#> GSM564709     1  0.4562      0.836 0.904 0.096
#> GSM564710     1  0.0672      0.877 0.992 0.008
#> GSM564711     2  0.6801      0.762 0.180 0.820
#> GSM564712     1  0.0000      0.876 1.000 0.000
#> GSM564713     2  0.4939      0.843 0.108 0.892
#> GSM564714     2  0.0000      0.884 0.000 1.000
#> GSM564715     1  0.3274      0.861 0.940 0.060
#> GSM564716     1  0.7299      0.748 0.796 0.204
#> GSM564717     1  0.0672      0.877 0.992 0.008
#> GSM564718     2  0.8267      0.654 0.260 0.740
#> GSM564719     1  0.0672      0.877 0.992 0.008
#> GSM564720     1  0.0000      0.876 1.000 0.000
#> GSM564721     1  0.0000      0.876 1.000 0.000
#> GSM564722     2  0.9944      0.203 0.456 0.544
#> GSM564723     1  0.0000      0.876 1.000 0.000
#> GSM564724     2  0.2043      0.879 0.032 0.968
#> GSM564725     1  0.6712      0.774 0.824 0.176
#> GSM564726     2  0.5737      0.817 0.136 0.864
#> GSM564727     1  0.6247      0.793 0.844 0.156
#> GSM564728     2  0.9522      0.416 0.372 0.628
#> GSM564729     1  0.9909      0.204 0.556 0.444
#> GSM564730     1  0.2236      0.868 0.964 0.036
#> GSM564731     1  0.9129      0.548 0.672 0.328
#> GSM564732     1  0.4562      0.836 0.904 0.096
#> GSM564733     2  0.9491      0.435 0.368 0.632
#> GSM564734     1  0.0000      0.876 1.000 0.000
#> GSM564735     2  0.4690      0.846 0.100 0.900
#> GSM564736     2  0.1184      0.882 0.016 0.984
#> GSM564737     1  0.0376      0.877 0.996 0.004
#> GSM564738     2  0.0672      0.881 0.008 0.992
#> GSM564739     2  0.5294      0.827 0.120 0.880
#> GSM564740     1  0.6623      0.784 0.828 0.172
#> GSM564741     2  0.0672      0.881 0.008 0.992
#> GSM564742     2  0.0000      0.884 0.000 1.000
#> GSM564743     1  0.0000      0.876 1.000 0.000
#> GSM564744     1  0.0000      0.876 1.000 0.000
#> GSM564745     1  0.0000      0.876 1.000 0.000
#> GSM564746     1  0.1184      0.877 0.984 0.016
#> GSM564747     2  0.9954      0.152 0.460 0.540
#> GSM564748     2  0.4022      0.856 0.080 0.920
#> GSM564749     1  0.0672      0.877 0.992 0.008
#> GSM564750     2  0.5946      0.809 0.144 0.856
#> GSM564751     2  0.2236      0.877 0.036 0.964
#> GSM564752     2  0.4298      0.854 0.088 0.912
#> GSM564753     2  0.0000      0.884 0.000 1.000
#> GSM564754     1  0.4431      0.839 0.908 0.092
#> GSM564755     1  0.9977      0.124 0.528 0.472
#> GSM564756     1  0.0000      0.876 1.000 0.000
#> GSM564757     1  0.6438      0.786 0.836 0.164
#> GSM564758     2  0.9977      0.119 0.472 0.528
#> GSM564759     2  0.0376      0.884 0.004 0.996
#> GSM564760     1  0.7056      0.758 0.808 0.192
#> GSM564761     1  0.0376      0.877 0.996 0.004
#> GSM564762     1  0.4431      0.839 0.908 0.092
#> GSM564681     1  0.1633      0.877 0.976 0.024
#> GSM564693     1  0.8207      0.680 0.744 0.256
#> GSM564646     1  0.5946      0.799 0.856 0.144
#> GSM564699     2  0.1184      0.882 0.016 0.984

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM564615     1  0.0892     0.8717 0.980 0.020 0.000
#> GSM564616     2  0.0892     0.8446 0.020 0.980 0.000
#> GSM564617     2  0.1129     0.8438 0.020 0.976 0.004
#> GSM564618     1  0.4452     0.7814 0.808 0.192 0.000
#> GSM564619     2  0.3116     0.8329 0.108 0.892 0.000
#> GSM564620     2  0.5905     0.3414 0.352 0.648 0.000
#> GSM564621     1  0.4654     0.8132 0.792 0.208 0.000
#> GSM564622     2  0.6062     0.5671 0.016 0.708 0.276
#> GSM564623     1  0.4062     0.8039 0.836 0.164 0.000
#> GSM564624     2  0.2682     0.8210 0.076 0.920 0.004
#> GSM564625     1  0.4887     0.8039 0.772 0.228 0.000
#> GSM564626     2  0.5905     0.5552 0.352 0.648 0.000
#> GSM564627     1  0.4346     0.8155 0.816 0.184 0.000
#> GSM564628     2  0.2301     0.8303 0.060 0.936 0.004
#> GSM564629     2  0.5178     0.6175 0.256 0.744 0.000
#> GSM564630     2  0.0237     0.8458 0.004 0.996 0.000
#> GSM564609     3  0.2625     0.8595 0.000 0.084 0.916
#> GSM564610     2  0.4654     0.7836 0.208 0.792 0.000
#> GSM564611     2  0.3941     0.8112 0.156 0.844 0.000
#> GSM564612     3  0.0000     0.9180 0.000 0.000 1.000
#> GSM564613     2  0.3921     0.7889 0.016 0.872 0.112
#> GSM564614     1  0.0424     0.8687 0.992 0.008 0.000
#> GSM564631     3  0.0000     0.9180 0.000 0.000 1.000
#> GSM564632     3  0.8494     0.4971 0.236 0.156 0.608
#> GSM564633     3  0.0000     0.9180 0.000 0.000 1.000
#> GSM564634     2  0.4963     0.7346 0.008 0.792 0.200
#> GSM564635     3  0.0000     0.9180 0.000 0.000 1.000
#> GSM564636     3  0.0000     0.9180 0.000 0.000 1.000
#> GSM564637     3  0.5798     0.7266 0.044 0.176 0.780
#> GSM564638     3  0.0000     0.9180 0.000 0.000 1.000
#> GSM564639     3  0.0000     0.9180 0.000 0.000 1.000
#> GSM564640     2  0.0475     0.8460 0.004 0.992 0.004
#> GSM564641     3  0.0000     0.9180 0.000 0.000 1.000
#> GSM564642     2  0.2063     0.8498 0.044 0.948 0.008
#> GSM564643     3  0.6062     0.7351 0.072 0.148 0.780
#> GSM564644     2  0.0829     0.8468 0.012 0.984 0.004
#> GSM564645     3  0.0000     0.9180 0.000 0.000 1.000
#> GSM564647     3  0.0237     0.9165 0.000 0.004 0.996
#> GSM564648     2  0.1751     0.8417 0.028 0.960 0.012
#> GSM564649     3  0.0000     0.9180 0.000 0.000 1.000
#> GSM564650     2  0.2682     0.8210 0.076 0.920 0.004
#> GSM564651     2  0.5138     0.6811 0.000 0.748 0.252
#> GSM564652     2  0.4733     0.8156 0.196 0.800 0.004
#> GSM564653     2  0.1315     0.8443 0.020 0.972 0.008
#> GSM564654     3  0.0000     0.9180 0.000 0.000 1.000
#> GSM564655     3  0.1751     0.8979 0.012 0.028 0.960
#> GSM564656     3  0.0000     0.9180 0.000 0.000 1.000
#> GSM564657     3  0.0000     0.9180 0.000 0.000 1.000
#> GSM564658     2  0.0000     0.8457 0.000 1.000 0.000
#> GSM564659     3  0.0892     0.9078 0.000 0.020 0.980
#> GSM564660     2  0.5948     0.4178 0.360 0.640 0.000
#> GSM564661     2  0.3918     0.8355 0.120 0.868 0.012
#> GSM564662     3  0.0000     0.9180 0.000 0.000 1.000
#> GSM564663     2  0.0829     0.8467 0.012 0.984 0.004
#> GSM564664     2  0.1031     0.8439 0.000 0.976 0.024
#> GSM564665     3  0.0000     0.9180 0.000 0.000 1.000
#> GSM564666     1  0.4233     0.8055 0.836 0.160 0.004
#> GSM564667     3  0.0000     0.9180 0.000 0.000 1.000
#> GSM564668     3  0.0592     0.9132 0.000 0.012 0.988
#> GSM564669     3  0.0000     0.9180 0.000 0.000 1.000
#> GSM564670     3  0.4978     0.7287 0.004 0.216 0.780
#> GSM564671     1  0.3879     0.8123 0.848 0.152 0.000
#> GSM564672     3  0.0000     0.9180 0.000 0.000 1.000
#> GSM564673     2  0.2031     0.8383 0.016 0.952 0.032
#> GSM564674     2  0.0983     0.8467 0.016 0.980 0.004
#> GSM564675     1  0.6600     0.4487 0.604 0.384 0.012
#> GSM564676     2  0.0237     0.8458 0.000 0.996 0.004
#> GSM564677     2  0.2796     0.8316 0.092 0.908 0.000
#> GSM564678     2  0.0829     0.8449 0.012 0.984 0.004
#> GSM564679     2  0.0475     0.8459 0.004 0.992 0.004
#> GSM564680     3  0.0000     0.9180 0.000 0.000 1.000
#> GSM564682     3  0.0237     0.9165 0.000 0.004 0.996
#> GSM564683     3  0.0000     0.9180 0.000 0.000 1.000
#> GSM564684     1  0.4121     0.8009 0.832 0.168 0.000
#> GSM564685     3  0.0000     0.9180 0.000 0.000 1.000
#> GSM564686     1  0.4172     0.8081 0.840 0.156 0.004
#> GSM564687     2  0.1399     0.8424 0.028 0.968 0.004
#> GSM564688     2  0.2680     0.8245 0.068 0.924 0.008
#> GSM564689     2  0.2682     0.8210 0.076 0.920 0.004
#> GSM564690     2  0.0661     0.8465 0.008 0.988 0.004
#> GSM564691     3  0.3482     0.8137 0.000 0.128 0.872
#> GSM564692     2  0.1999     0.8371 0.012 0.952 0.036
#> GSM564694     2  0.6286     0.7157 0.136 0.772 0.092
#> GSM564695     3  0.7885     0.5816 0.212 0.128 0.660
#> GSM564696     3  0.0000     0.9180 0.000 0.000 1.000
#> GSM564697     2  0.1399     0.8423 0.028 0.968 0.004
#> GSM564698     3  0.0000     0.9180 0.000 0.000 1.000
#> GSM564700     1  0.4062     0.8040 0.836 0.164 0.000
#> GSM564701     2  0.0237     0.8458 0.000 0.996 0.004
#> GSM564702     2  0.3644     0.8386 0.124 0.872 0.004
#> GSM564703     3  0.0424     0.9147 0.000 0.008 0.992
#> GSM564704     1  0.2448     0.8500 0.924 0.076 0.000
#> GSM564705     2  0.4235     0.8032 0.176 0.824 0.000
#> GSM564706     3  0.1491     0.9014 0.016 0.016 0.968
#> GSM564707     2  0.4178     0.8066 0.172 0.828 0.000
#> GSM564708     3  0.0000     0.9180 0.000 0.000 1.000
#> GSM564709     1  0.1643     0.8662 0.956 0.044 0.000
#> GSM564710     2  0.4555     0.7898 0.200 0.800 0.000
#> GSM564711     3  0.4937     0.7777 0.148 0.028 0.824
#> GSM564712     2  0.5254     0.7337 0.264 0.736 0.000
#> GSM564713     3  0.7285     0.4811 0.320 0.048 0.632
#> GSM564714     3  0.0592     0.9122 0.012 0.000 0.988
#> GSM564715     2  0.4654     0.7840 0.208 0.792 0.000
#> GSM564716     1  0.2165     0.8620 0.936 0.064 0.000
#> GSM564717     2  0.4062     0.8083 0.164 0.836 0.000
#> GSM564718     1  0.1620     0.8698 0.964 0.024 0.012
#> GSM564719     2  0.3941     0.8112 0.156 0.844 0.000
#> GSM564720     2  0.4062     0.8080 0.164 0.836 0.000
#> GSM564721     2  0.4291     0.8015 0.180 0.820 0.000
#> GSM564722     1  0.1315     0.8698 0.972 0.020 0.008
#> GSM564723     2  0.4235     0.8035 0.176 0.824 0.000
#> GSM564724     3  0.6309    -0.0568 0.496 0.000 0.504
#> GSM564725     1  0.1753     0.8642 0.952 0.048 0.000
#> GSM564726     1  0.1878     0.8637 0.952 0.004 0.044
#> GSM564727     1  0.1753     0.8649 0.952 0.048 0.000
#> GSM564728     1  0.1129     0.8695 0.976 0.020 0.004
#> GSM564729     1  0.0592     0.8697 0.988 0.012 0.000
#> GSM564730     2  0.5905     0.6354 0.352 0.648 0.000
#> GSM564731     1  0.2448     0.8490 0.924 0.076 0.000
#> GSM564732     1  0.1643     0.8656 0.956 0.044 0.000
#> GSM564733     3  0.8243     0.1762 0.420 0.076 0.504
#> GSM564734     2  0.6215     0.4332 0.428 0.572 0.000
#> GSM564735     1  0.4139     0.8197 0.860 0.016 0.124
#> GSM564736     3  0.4605     0.7142 0.204 0.000 0.796
#> GSM564737     2  0.4291     0.8022 0.180 0.820 0.000
#> GSM564738     1  0.5859     0.4883 0.656 0.000 0.344
#> GSM564739     3  0.3967     0.8343 0.072 0.044 0.884
#> GSM564740     1  0.1529     0.8660 0.960 0.040 0.000
#> GSM564741     3  0.4750     0.6931 0.216 0.000 0.784
#> GSM564742     3  0.0000     0.9180 0.000 0.000 1.000
#> GSM564743     2  0.5968     0.6174 0.364 0.636 0.000
#> GSM564744     2  0.4399     0.7973 0.188 0.812 0.000
#> GSM564745     1  0.2625     0.8448 0.916 0.084 0.000
#> GSM564746     2  0.1860     0.8402 0.052 0.948 0.000
#> GSM564747     1  0.6291     0.7363 0.768 0.080 0.152
#> GSM564748     3  0.1315     0.9041 0.008 0.020 0.972
#> GSM564749     2  0.4002     0.8097 0.160 0.840 0.000
#> GSM564750     1  0.3889     0.8439 0.884 0.032 0.084
#> GSM564751     3  0.0237     0.9164 0.004 0.000 0.996
#> GSM564752     1  0.1989     0.8598 0.948 0.004 0.048
#> GSM564753     3  0.0000     0.9180 0.000 0.000 1.000
#> GSM564754     1  0.5431     0.5483 0.716 0.284 0.000
#> GSM564755     1  0.0000     0.8684 1.000 0.000 0.000
#> GSM564756     2  0.4178     0.8046 0.172 0.828 0.000
#> GSM564757     1  0.0237     0.8686 0.996 0.004 0.000
#> GSM564758     1  0.2200     0.8651 0.940 0.056 0.004
#> GSM564759     3  0.0000     0.9180 0.000 0.000 1.000
#> GSM564760     1  0.1989     0.8646 0.948 0.048 0.004
#> GSM564761     2  0.4346     0.8003 0.184 0.816 0.000
#> GSM564762     1  0.2356     0.8520 0.928 0.072 0.000
#> GSM564681     2  0.6295     0.1519 0.472 0.528 0.000
#> GSM564693     2  0.3141     0.8212 0.068 0.912 0.020
#> GSM564646     1  0.4062     0.8040 0.836 0.164 0.000
#> GSM564699     1  0.4784     0.7133 0.796 0.004 0.200

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM564615     4  0.3726     0.6827 0.212 0.000 0.000 0.788
#> GSM564616     2  0.2813     0.8482 0.080 0.896 0.000 0.024
#> GSM564617     2  0.2882     0.8442 0.084 0.892 0.000 0.024
#> GSM564618     4  0.1854     0.8023 0.012 0.048 0.000 0.940
#> GSM564619     1  0.1118     0.8773 0.964 0.036 0.000 0.000
#> GSM564620     1  0.1389     0.8712 0.952 0.048 0.000 0.000
#> GSM564621     4  0.5823     0.4355 0.348 0.044 0.000 0.608
#> GSM564622     2  0.8284     0.2503 0.284 0.452 0.240 0.024
#> GSM564623     4  0.1398     0.8070 0.004 0.040 0.000 0.956
#> GSM564624     2  0.3300     0.7974 0.008 0.848 0.000 0.144
#> GSM564625     1  0.1635     0.8725 0.948 0.044 0.000 0.008
#> GSM564626     1  0.0592     0.8832 0.984 0.016 0.000 0.000
#> GSM564627     4  0.4711     0.6427 0.236 0.024 0.000 0.740
#> GSM564628     2  0.3570     0.8259 0.092 0.860 0.000 0.048
#> GSM564629     1  0.1398     0.8747 0.956 0.040 0.000 0.004
#> GSM564630     2  0.1411     0.8822 0.020 0.960 0.000 0.020
#> GSM564609     3  0.1305     0.8804 0.004 0.036 0.960 0.000
#> GSM564610     1  0.0376     0.8852 0.992 0.004 0.000 0.004
#> GSM564611     2  0.1867     0.8649 0.072 0.928 0.000 0.000
#> GSM564612     3  0.0000     0.9026 0.000 0.000 1.000 0.000
#> GSM564613     2  0.1639     0.8755 0.004 0.952 0.036 0.008
#> GSM564614     4  0.0188     0.8189 0.004 0.000 0.000 0.996
#> GSM564631     3  0.0000     0.9026 0.000 0.000 1.000 0.000
#> GSM564632     3  0.4967     0.2809 0.000 0.000 0.548 0.452
#> GSM564633     3  0.0000     0.9026 0.000 0.000 1.000 0.000
#> GSM564634     2  0.3494     0.7567 0.004 0.824 0.172 0.000
#> GSM564635     3  0.0000     0.9026 0.000 0.000 1.000 0.000
#> GSM564636     3  0.0188     0.9010 0.000 0.000 0.996 0.004
#> GSM564637     3  0.6548     0.4874 0.000 0.116 0.608 0.276
#> GSM564638     3  0.0000     0.9026 0.000 0.000 1.000 0.000
#> GSM564639     3  0.0000     0.9026 0.000 0.000 1.000 0.000
#> GSM564640     2  0.0000     0.8895 0.000 1.000 0.000 0.000
#> GSM564641     3  0.0000     0.9026 0.000 0.000 1.000 0.000
#> GSM564642     2  0.0188     0.8900 0.004 0.996 0.000 0.000
#> GSM564643     3  0.5476     0.5416 0.004 0.028 0.660 0.308
#> GSM564644     2  0.0336     0.8901 0.008 0.992 0.000 0.000
#> GSM564645     3  0.0000     0.9026 0.000 0.000 1.000 0.000
#> GSM564647     3  0.0469     0.8974 0.000 0.012 0.988 0.000
#> GSM564648     2  0.0188     0.8895 0.004 0.996 0.000 0.000
#> GSM564649     3  0.0000     0.9026 0.000 0.000 1.000 0.000
#> GSM564650     2  0.4621     0.6116 0.000 0.708 0.008 0.284
#> GSM564651     2  0.1792     0.8547 0.000 0.932 0.068 0.000
#> GSM564652     1  0.5126     0.1716 0.552 0.444 0.000 0.004
#> GSM564653     2  0.0000     0.8895 0.000 1.000 0.000 0.000
#> GSM564654     3  0.0000     0.9026 0.000 0.000 1.000 0.000
#> GSM564655     3  0.4194     0.7448 0.000 0.028 0.800 0.172
#> GSM564656     3  0.0000     0.9026 0.000 0.000 1.000 0.000
#> GSM564657     3  0.0000     0.9026 0.000 0.000 1.000 0.000
#> GSM564658     2  0.0188     0.8895 0.004 0.996 0.000 0.000
#> GSM564659     3  0.0937     0.8918 0.000 0.012 0.976 0.012
#> GSM564660     4  0.4961     0.0466 0.000 0.448 0.000 0.552
#> GSM564661     2  0.1118     0.8829 0.036 0.964 0.000 0.000
#> GSM564662     3  0.0000     0.9026 0.000 0.000 1.000 0.000
#> GSM564663     2  0.0188     0.8895 0.004 0.996 0.000 0.000
#> GSM564664     2  0.0336     0.8901 0.008 0.992 0.000 0.000
#> GSM564665     3  0.0000     0.9026 0.000 0.000 1.000 0.000
#> GSM564666     4  0.0000     0.8192 0.000 0.000 0.000 1.000
#> GSM564667     3  0.0000     0.9026 0.000 0.000 1.000 0.000
#> GSM564668     3  0.1557     0.8698 0.000 0.056 0.944 0.000
#> GSM564669     3  0.0000     0.9026 0.000 0.000 1.000 0.000
#> GSM564670     3  0.4277     0.7456 0.004 0.172 0.800 0.024
#> GSM564671     4  0.0000     0.8192 0.000 0.000 0.000 1.000
#> GSM564672     3  0.0000     0.9026 0.000 0.000 1.000 0.000
#> GSM564673     2  0.0188     0.8895 0.004 0.996 0.000 0.000
#> GSM564674     2  0.1792     0.8661 0.068 0.932 0.000 0.000
#> GSM564675     4  0.3973     0.6461 0.004 0.200 0.004 0.792
#> GSM564676     2  0.0469     0.8896 0.012 0.988 0.000 0.000
#> GSM564677     2  0.2976     0.8220 0.008 0.872 0.000 0.120
#> GSM564678     2  0.0336     0.8901 0.008 0.992 0.000 0.000
#> GSM564679     2  0.0336     0.8901 0.008 0.992 0.000 0.000
#> GSM564680     3  0.0000     0.9026 0.000 0.000 1.000 0.000
#> GSM564682     3  0.0000     0.9026 0.000 0.000 1.000 0.000
#> GSM564683     3  0.0000     0.9026 0.000 0.000 1.000 0.000
#> GSM564684     4  0.0336     0.8173 0.000 0.008 0.000 0.992
#> GSM564685     3  0.0000     0.9026 0.000 0.000 1.000 0.000
#> GSM564686     4  0.0000     0.8192 0.000 0.000 0.000 1.000
#> GSM564687     2  0.0188     0.8895 0.004 0.996 0.000 0.000
#> GSM564688     2  0.1211     0.8776 0.000 0.960 0.000 0.040
#> GSM564689     2  0.0336     0.8901 0.008 0.992 0.000 0.000
#> GSM564690     2  0.0336     0.8901 0.008 0.992 0.000 0.000
#> GSM564691     3  0.3024     0.7857 0.000 0.148 0.852 0.000
#> GSM564692     2  0.0188     0.8895 0.004 0.996 0.000 0.000
#> GSM564694     2  0.5853     0.3471 0.004 0.564 0.028 0.404
#> GSM564695     3  0.5203     0.3577 0.000 0.008 0.576 0.416
#> GSM564696     3  0.0000     0.9026 0.000 0.000 1.000 0.000
#> GSM564697     2  0.0707     0.8853 0.000 0.980 0.000 0.020
#> GSM564698     3  0.0000     0.9026 0.000 0.000 1.000 0.000
#> GSM564700     4  0.0000     0.8192 0.000 0.000 0.000 1.000
#> GSM564701     2  0.0188     0.8895 0.004 0.996 0.000 0.000
#> GSM564702     2  0.4991     0.3615 0.388 0.608 0.000 0.004
#> GSM564703     3  0.4500     0.5367 0.316 0.000 0.684 0.000
#> GSM564704     1  0.1474     0.8661 0.948 0.000 0.000 0.052
#> GSM564705     1  0.1022     0.8817 0.968 0.032 0.000 0.000
#> GSM564706     3  0.1716     0.8623 0.064 0.000 0.936 0.000
#> GSM564707     1  0.0188     0.8844 0.996 0.004 0.000 0.000
#> GSM564708     3  0.0817     0.8907 0.024 0.000 0.976 0.000
#> GSM564709     4  0.5296     0.0318 0.492 0.008 0.000 0.500
#> GSM564710     1  0.0188     0.8844 0.996 0.004 0.000 0.000
#> GSM564711     3  0.5604     0.0595 0.476 0.000 0.504 0.020
#> GSM564712     1  0.0188     0.8836 0.996 0.000 0.000 0.004
#> GSM564713     3  0.6635     0.5453 0.176 0.008 0.652 0.164
#> GSM564714     3  0.0469     0.8967 0.000 0.000 0.988 0.012
#> GSM564715     1  0.0188     0.8844 0.996 0.004 0.000 0.000
#> GSM564716     1  0.1305     0.8758 0.960 0.004 0.000 0.036
#> GSM564717     2  0.3528     0.7546 0.192 0.808 0.000 0.000
#> GSM564718     4  0.1716     0.7972 0.064 0.000 0.000 0.936
#> GSM564719     2  0.1389     0.8745 0.048 0.952 0.000 0.000
#> GSM564720     1  0.1474     0.8689 0.948 0.052 0.000 0.000
#> GSM564721     1  0.2345     0.8318 0.900 0.100 0.000 0.000
#> GSM564722     4  0.3402     0.7304 0.164 0.000 0.004 0.832
#> GSM564723     1  0.0524     0.8850 0.988 0.008 0.000 0.004
#> GSM564724     4  0.5296     0.0485 0.008 0.000 0.492 0.500
#> GSM564725     1  0.4720     0.4767 0.672 0.004 0.000 0.324
#> GSM564726     4  0.0000     0.8192 0.000 0.000 0.000 1.000
#> GSM564727     4  0.4277     0.5909 0.280 0.000 0.000 0.720
#> GSM564728     4  0.0000     0.8192 0.000 0.000 0.000 1.000
#> GSM564729     4  0.3801     0.6753 0.220 0.000 0.000 0.780
#> GSM564730     1  0.0336     0.8839 0.992 0.000 0.000 0.008
#> GSM564731     1  0.3172     0.7644 0.840 0.000 0.000 0.160
#> GSM564732     1  0.4522     0.5049 0.680 0.000 0.000 0.320
#> GSM564733     1  0.2197     0.8369 0.916 0.000 0.080 0.004
#> GSM564734     1  0.1256     0.8816 0.964 0.028 0.000 0.008
#> GSM564735     4  0.5894     0.6265 0.108 0.000 0.200 0.692
#> GSM564736     3  0.4399     0.6671 0.020 0.000 0.768 0.212
#> GSM564737     1  0.0188     0.8844 0.996 0.004 0.000 0.000
#> GSM564738     4  0.4564     0.4898 0.000 0.000 0.328 0.672
#> GSM564739     1  0.4454     0.5263 0.692 0.000 0.308 0.000
#> GSM564740     4  0.0000     0.8192 0.000 0.000 0.000 1.000
#> GSM564741     3  0.3907     0.6555 0.000 0.000 0.768 0.232
#> GSM564742     3  0.0000     0.9026 0.000 0.000 1.000 0.000
#> GSM564743     1  0.2737     0.8222 0.888 0.104 0.000 0.008
#> GSM564744     1  0.1398     0.8757 0.956 0.040 0.000 0.004
#> GSM564745     1  0.0469     0.8830 0.988 0.000 0.000 0.012
#> GSM564746     1  0.1211     0.8742 0.960 0.040 0.000 0.000
#> GSM564747     1  0.2759     0.8439 0.904 0.000 0.052 0.044
#> GSM564748     3  0.3726     0.7173 0.212 0.000 0.788 0.000
#> GSM564749     2  0.4746     0.4512 0.368 0.632 0.000 0.000
#> GSM564750     4  0.4231     0.7478 0.096 0.000 0.080 0.824
#> GSM564751     3  0.0188     0.9010 0.004 0.000 0.996 0.000
#> GSM564752     4  0.0000     0.8192 0.000 0.000 0.000 1.000
#> GSM564753     3  0.0000     0.9026 0.000 0.000 1.000 0.000
#> GSM564754     1  0.0188     0.8844 0.996 0.004 0.000 0.000
#> GSM564755     4  0.0000     0.8192 0.000 0.000 0.000 1.000
#> GSM564756     2  0.4989     0.1242 0.472 0.528 0.000 0.000
#> GSM564757     4  0.0817     0.8131 0.024 0.000 0.000 0.976
#> GSM564758     4  0.4406     0.5575 0.300 0.000 0.000 0.700
#> GSM564759     3  0.0336     0.8992 0.008 0.000 0.992 0.000
#> GSM564760     1  0.4382     0.5469 0.704 0.000 0.000 0.296
#> GSM564761     1  0.0469     0.8855 0.988 0.012 0.000 0.000
#> GSM564762     1  0.4955     0.1329 0.556 0.000 0.000 0.444
#> GSM564681     4  0.5174     0.2952 0.012 0.368 0.000 0.620
#> GSM564693     2  0.1576     0.8724 0.000 0.948 0.004 0.048
#> GSM564646     4  0.0188     0.8184 0.000 0.004 0.000 0.996
#> GSM564699     4  0.0188     0.8179 0.000 0.000 0.004 0.996

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM564615     4  0.6032     0.2095 0.116 0.000 0.000 0.460 0.424
#> GSM564616     2  0.5709     0.2913 0.060 0.476 0.000 0.008 0.456
#> GSM564617     2  0.5829     0.4403 0.080 0.548 0.000 0.008 0.364
#> GSM564618     5  0.1883     0.4670 0.008 0.012 0.000 0.048 0.932
#> GSM564619     1  0.1990     0.8046 0.920 0.004 0.000 0.008 0.068
#> GSM564620     1  0.4727     0.5199 0.636 0.012 0.000 0.012 0.340
#> GSM564621     5  0.6461     0.0665 0.356 0.012 0.000 0.136 0.496
#> GSM564622     5  0.8409     0.1266 0.216 0.220 0.136 0.012 0.416
#> GSM564623     5  0.3093     0.3902 0.000 0.008 0.000 0.168 0.824
#> GSM564624     5  0.3861     0.2583 0.000 0.284 0.000 0.004 0.712
#> GSM564625     1  0.3734     0.7183 0.792 0.008 0.000 0.016 0.184
#> GSM564626     1  0.2929     0.7598 0.840 0.000 0.000 0.008 0.152
#> GSM564627     5  0.6829    -0.0176 0.200 0.012 0.000 0.332 0.456
#> GSM564628     5  0.5789     0.1829 0.104 0.304 0.000 0.004 0.588
#> GSM564629     1  0.4758     0.5942 0.676 0.012 0.000 0.024 0.288
#> GSM564630     2  0.4270     0.5840 0.004 0.656 0.000 0.004 0.336
#> GSM564609     3  0.2289     0.7958 0.000 0.012 0.904 0.004 0.080
#> GSM564610     1  0.1372     0.8211 0.956 0.004 0.000 0.024 0.016
#> GSM564611     2  0.1043     0.8102 0.040 0.960 0.000 0.000 0.000
#> GSM564612     3  0.0162     0.8492 0.000 0.000 0.996 0.004 0.000
#> GSM564613     2  0.2864     0.7840 0.000 0.864 0.024 0.000 0.112
#> GSM564614     4  0.4151     0.4432 0.004 0.000 0.000 0.652 0.344
#> GSM564631     3  0.0000     0.8494 0.000 0.000 1.000 0.000 0.000
#> GSM564632     5  0.5515     0.2655 0.000 0.000 0.260 0.112 0.628
#> GSM564633     3  0.0324     0.8487 0.000 0.000 0.992 0.004 0.004
#> GSM564634     2  0.3124     0.7118 0.004 0.844 0.136 0.000 0.016
#> GSM564635     3  0.0162     0.8493 0.000 0.000 0.996 0.000 0.004
#> GSM564636     3  0.0451     0.8474 0.000 0.000 0.988 0.004 0.008
#> GSM564637     3  0.6793     0.3367 0.000 0.172 0.560 0.040 0.228
#> GSM564638     3  0.0162     0.8493 0.000 0.000 0.996 0.000 0.004
#> GSM564639     3  0.0000     0.8494 0.000 0.000 1.000 0.000 0.000
#> GSM564640     2  0.0000     0.8244 0.000 1.000 0.000 0.000 0.000
#> GSM564641     3  0.0000     0.8494 0.000 0.000 1.000 0.000 0.000
#> GSM564642     2  0.0703     0.8242 0.000 0.976 0.000 0.000 0.024
#> GSM564643     5  0.4791     0.2682 0.000 0.008 0.336 0.020 0.636
#> GSM564644     2  0.0162     0.8246 0.004 0.996 0.000 0.000 0.000
#> GSM564645     3  0.0000     0.8494 0.000 0.000 1.000 0.000 0.000
#> GSM564647     3  0.0566     0.8451 0.000 0.012 0.984 0.000 0.004
#> GSM564648     2  0.3612     0.6685 0.000 0.732 0.000 0.000 0.268
#> GSM564649     3  0.0000     0.8494 0.000 0.000 1.000 0.000 0.000
#> GSM564650     5  0.4722     0.3615 0.000 0.368 0.000 0.024 0.608
#> GSM564651     2  0.0880     0.8114 0.000 0.968 0.032 0.000 0.000
#> GSM564652     1  0.6636     0.1784 0.440 0.192 0.000 0.004 0.364
#> GSM564653     2  0.0000     0.8244 0.000 1.000 0.000 0.000 0.000
#> GSM564654     3  0.0324     0.8487 0.000 0.000 0.992 0.004 0.004
#> GSM564655     3  0.3779     0.7608 0.000 0.032 0.836 0.040 0.092
#> GSM564656     3  0.0324     0.8487 0.000 0.000 0.992 0.004 0.004
#> GSM564657     3  0.0000     0.8494 0.000 0.000 1.000 0.000 0.000
#> GSM564658     2  0.1571     0.8130 0.004 0.936 0.000 0.000 0.060
#> GSM564659     3  0.0955     0.8383 0.000 0.000 0.968 0.004 0.028
#> GSM564660     5  0.3641     0.4766 0.000 0.120 0.000 0.060 0.820
#> GSM564661     2  0.0324     0.8250 0.004 0.992 0.000 0.000 0.004
#> GSM564662     3  0.0000     0.8494 0.000 0.000 1.000 0.000 0.000
#> GSM564663     2  0.1270     0.8162 0.000 0.948 0.000 0.000 0.052
#> GSM564664     2  0.0162     0.8246 0.004 0.996 0.000 0.000 0.000
#> GSM564665     3  0.0451     0.8485 0.000 0.000 0.988 0.008 0.004
#> GSM564666     4  0.4321     0.3857 0.004 0.000 0.000 0.600 0.396
#> GSM564667     3  0.0000     0.8494 0.000 0.000 1.000 0.000 0.000
#> GSM564668     3  0.2067     0.8142 0.000 0.044 0.924 0.004 0.028
#> GSM564669     3  0.0324     0.8487 0.000 0.000 0.992 0.004 0.004
#> GSM564670     3  0.5156     0.5315 0.000 0.092 0.688 0.004 0.216
#> GSM564671     5  0.4029     0.1914 0.004 0.000 0.000 0.316 0.680
#> GSM564672     3  0.0162     0.8493 0.000 0.000 0.996 0.000 0.004
#> GSM564673     2  0.3534     0.6782 0.000 0.744 0.000 0.000 0.256
#> GSM564674     2  0.4549     0.6853 0.048 0.728 0.000 0.004 0.220
#> GSM564675     5  0.2597     0.4641 0.000 0.024 0.000 0.092 0.884
#> GSM564676     2  0.0290     0.8234 0.008 0.992 0.000 0.000 0.000
#> GSM564677     2  0.4341     0.2809 0.000 0.592 0.000 0.004 0.404
#> GSM564678     2  0.0162     0.8246 0.004 0.996 0.000 0.000 0.000
#> GSM564679     2  0.0162     0.8246 0.004 0.996 0.000 0.000 0.000
#> GSM564680     3  0.0324     0.8487 0.000 0.000 0.992 0.004 0.004
#> GSM564682     3  0.0000     0.8494 0.000 0.000 1.000 0.000 0.000
#> GSM564683     3  0.0000     0.8494 0.000 0.000 1.000 0.000 0.000
#> GSM564684     5  0.3949     0.2213 0.004 0.000 0.000 0.300 0.696
#> GSM564685     3  0.0000     0.8494 0.000 0.000 1.000 0.000 0.000
#> GSM564686     5  0.4211     0.0922 0.004 0.000 0.000 0.360 0.636
#> GSM564687     2  0.1043     0.8198 0.000 0.960 0.000 0.000 0.040
#> GSM564688     2  0.3913     0.4717 0.000 0.676 0.000 0.000 0.324
#> GSM564689     2  0.0162     0.8239 0.000 0.996 0.000 0.000 0.004
#> GSM564690     2  0.0162     0.8246 0.004 0.996 0.000 0.000 0.000
#> GSM564691     3  0.2690     0.7274 0.000 0.156 0.844 0.000 0.000
#> GSM564692     2  0.3730     0.6480 0.000 0.712 0.000 0.000 0.288
#> GSM564694     5  0.4361     0.4778 0.000 0.140 0.032 0.040 0.788
#> GSM564695     5  0.5841     0.2502 0.000 0.000 0.256 0.148 0.596
#> GSM564696     3  0.3274     0.7239 0.000 0.000 0.780 0.220 0.000
#> GSM564697     2  0.0290     0.8223 0.000 0.992 0.000 0.000 0.008
#> GSM564698     3  0.0324     0.8487 0.000 0.000 0.992 0.004 0.004
#> GSM564700     5  0.4047     0.1834 0.004 0.000 0.000 0.320 0.676
#> GSM564701     2  0.1732     0.8060 0.000 0.920 0.000 0.000 0.080
#> GSM564702     5  0.6545     0.1906 0.260 0.228 0.000 0.004 0.508
#> GSM564703     3  0.6254     0.4034 0.160 0.000 0.500 0.340 0.000
#> GSM564704     1  0.1106     0.8205 0.964 0.000 0.000 0.024 0.012
#> GSM564705     1  0.1331     0.8198 0.952 0.040 0.000 0.008 0.000
#> GSM564706     3  0.4763     0.5903 0.032 0.000 0.632 0.336 0.000
#> GSM564707     1  0.0451     0.8196 0.988 0.004 0.000 0.008 0.000
#> GSM564708     3  0.2393     0.8136 0.016 0.000 0.900 0.080 0.004
#> GSM564709     1  0.6176     0.3111 0.540 0.000 0.000 0.288 0.172
#> GSM564710     1  0.0451     0.8202 0.988 0.004 0.000 0.008 0.000
#> GSM564711     4  0.6565     0.1466 0.244 0.000 0.224 0.524 0.008
#> GSM564712     1  0.0162     0.8194 0.996 0.000 0.000 0.004 0.000
#> GSM564713     3  0.5540     0.3166 0.060 0.000 0.536 0.400 0.004
#> GSM564714     3  0.4304     0.4139 0.000 0.000 0.516 0.484 0.000
#> GSM564715     1  0.0324     0.8200 0.992 0.004 0.000 0.004 0.000
#> GSM564716     1  0.1990     0.8176 0.928 0.004 0.000 0.040 0.028
#> GSM564717     2  0.2648     0.7202 0.152 0.848 0.000 0.000 0.000
#> GSM564718     4  0.1981     0.5645 0.028 0.000 0.000 0.924 0.048
#> GSM564719     2  0.0404     0.8214 0.012 0.988 0.000 0.000 0.000
#> GSM564720     1  0.1638     0.8073 0.932 0.064 0.000 0.004 0.000
#> GSM564721     1  0.2011     0.7957 0.908 0.088 0.000 0.004 0.000
#> GSM564722     4  0.3201     0.5700 0.052 0.000 0.000 0.852 0.096
#> GSM564723     1  0.0955     0.8198 0.968 0.028 0.000 0.004 0.000
#> GSM564724     4  0.4517    -0.0104 0.004 0.000 0.372 0.616 0.008
#> GSM564725     1  0.4028     0.6828 0.768 0.000 0.000 0.192 0.040
#> GSM564726     4  0.2068     0.5710 0.004 0.000 0.000 0.904 0.092
#> GSM564727     4  0.6614     0.2074 0.316 0.000 0.000 0.448 0.236
#> GSM564728     4  0.4238     0.4256 0.004 0.000 0.000 0.628 0.368
#> GSM564729     4  0.6002     0.2561 0.116 0.000 0.000 0.492 0.392
#> GSM564730     1  0.3391     0.7088 0.800 0.000 0.000 0.012 0.188
#> GSM564731     1  0.3074     0.7370 0.804 0.000 0.000 0.196 0.000
#> GSM564732     1  0.4367     0.6676 0.748 0.000 0.000 0.192 0.060
#> GSM564733     1  0.3073     0.7747 0.868 0.000 0.076 0.052 0.004
#> GSM564734     1  0.1731     0.8098 0.932 0.060 0.000 0.004 0.004
#> GSM564735     4  0.1419     0.5434 0.016 0.000 0.016 0.956 0.012
#> GSM564736     3  0.4704     0.3861 0.008 0.000 0.508 0.480 0.004
#> GSM564737     1  0.0324     0.8199 0.992 0.004 0.000 0.004 0.000
#> GSM564738     4  0.2616     0.4911 0.000 0.000 0.100 0.880 0.020
#> GSM564739     1  0.6490     0.3038 0.520 0.000 0.252 0.224 0.004
#> GSM564740     4  0.4211     0.4318 0.004 0.000 0.000 0.636 0.360
#> GSM564741     3  0.4449     0.3858 0.000 0.000 0.512 0.484 0.004
#> GSM564742     3  0.4015     0.6069 0.000 0.000 0.652 0.348 0.000
#> GSM564743     1  0.4782     0.6317 0.720 0.036 0.000 0.020 0.224
#> GSM564744     1  0.1502     0.8105 0.940 0.056 0.000 0.004 0.000
#> GSM564745     1  0.0798     0.8215 0.976 0.000 0.000 0.016 0.008
#> GSM564746     1  0.4030     0.6561 0.736 0.008 0.000 0.008 0.248
#> GSM564747     1  0.4355     0.6277 0.732 0.000 0.044 0.224 0.000
#> GSM564748     3  0.6235     0.4112 0.156 0.000 0.500 0.344 0.000
#> GSM564749     2  0.4161     0.3579 0.392 0.608 0.000 0.000 0.000
#> GSM564750     4  0.2747     0.5686 0.036 0.000 0.020 0.896 0.048
#> GSM564751     3  0.4118     0.6161 0.004 0.000 0.660 0.336 0.000
#> GSM564752     4  0.2389     0.5677 0.004 0.000 0.000 0.880 0.116
#> GSM564753     3  0.3774     0.6605 0.000 0.000 0.704 0.296 0.000
#> GSM564754     1  0.0324     0.8199 0.992 0.004 0.000 0.004 0.000
#> GSM564755     4  0.4251     0.4108 0.004 0.000 0.000 0.624 0.372
#> GSM564756     2  0.4273     0.1549 0.448 0.552 0.000 0.000 0.000
#> GSM564757     5  0.4655    -0.2014 0.012 0.000 0.000 0.476 0.512
#> GSM564758     4  0.5240     0.4325 0.216 0.000 0.000 0.672 0.112
#> GSM564759     3  0.4118     0.6211 0.004 0.000 0.660 0.336 0.000
#> GSM564760     1  0.4548     0.6668 0.748 0.000 0.000 0.156 0.096
#> GSM564761     1  0.0854     0.8224 0.976 0.012 0.000 0.008 0.004
#> GSM564762     1  0.4352     0.6086 0.720 0.000 0.000 0.244 0.036
#> GSM564681     5  0.2575     0.4846 0.016 0.036 0.000 0.044 0.904
#> GSM564693     5  0.3949     0.3028 0.000 0.300 0.000 0.004 0.696
#> GSM564646     5  0.3838     0.2494 0.004 0.000 0.000 0.280 0.716
#> GSM564699     4  0.4397     0.3341 0.000 0.000 0.004 0.564 0.432

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM564615     6  0.4250     0.5765 0.084 0.000 0.000 0.088 0.048 0.780
#> GSM564616     5  0.2846     0.6738 0.016 0.140 0.000 0.000 0.840 0.004
#> GSM564617     5  0.3566     0.6304 0.024 0.224 0.000 0.000 0.752 0.000
#> GSM564618     5  0.2512     0.5559 0.008 0.000 0.000 0.008 0.868 0.116
#> GSM564619     1  0.2597     0.7418 0.824 0.000 0.000 0.000 0.176 0.000
#> GSM564620     5  0.3101     0.5778 0.244 0.000 0.000 0.000 0.756 0.000
#> GSM564621     5  0.4875     0.5402 0.108 0.000 0.000 0.024 0.704 0.164
#> GSM564622     5  0.4109     0.6520 0.064 0.052 0.044 0.028 0.812 0.000
#> GSM564623     6  0.4177     0.2797 0.000 0.000 0.000 0.012 0.468 0.520
#> GSM564624     5  0.2595     0.6305 0.000 0.084 0.000 0.000 0.872 0.044
#> GSM564625     1  0.3993     0.2907 0.592 0.000 0.000 0.000 0.400 0.008
#> GSM564626     1  0.3390     0.5683 0.704 0.000 0.000 0.000 0.296 0.000
#> GSM564627     5  0.6004     0.2622 0.084 0.000 0.000 0.060 0.536 0.320
#> GSM564628     5  0.2812     0.6739 0.048 0.096 0.000 0.000 0.856 0.000
#> GSM564629     5  0.3405     0.5349 0.272 0.000 0.000 0.004 0.724 0.000
#> GSM564630     5  0.3468     0.5738 0.004 0.284 0.000 0.000 0.712 0.000
#> GSM564609     3  0.3249     0.7718 0.000 0.004 0.824 0.044 0.128 0.000
#> GSM564610     1  0.2367     0.8249 0.900 0.004 0.000 0.020 0.064 0.012
#> GSM564611     2  0.0790     0.8197 0.032 0.968 0.000 0.000 0.000 0.000
#> GSM564612     3  0.1285     0.8777 0.000 0.000 0.944 0.052 0.004 0.000
#> GSM564613     2  0.3720     0.6328 0.000 0.760 0.020 0.000 0.208 0.012
#> GSM564614     6  0.3816     0.4890 0.000 0.000 0.000 0.296 0.016 0.688
#> GSM564631     3  0.0000     0.8844 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564632     6  0.5773     0.5347 0.000 0.000 0.144 0.044 0.196 0.616
#> GSM564633     3  0.1471     0.8735 0.000 0.000 0.932 0.064 0.004 0.000
#> GSM564634     2  0.3017     0.7294 0.000 0.844 0.084 0.000 0.072 0.000
#> GSM564635     3  0.0260     0.8849 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM564636     3  0.0551     0.8825 0.000 0.000 0.984 0.004 0.008 0.004
#> GSM564637     3  0.7265     0.1468 0.000 0.164 0.448 0.064 0.032 0.292
#> GSM564638     3  0.0405     0.8862 0.000 0.000 0.988 0.008 0.004 0.000
#> GSM564639     3  0.1152     0.8803 0.000 0.000 0.952 0.044 0.004 0.000
#> GSM564640     2  0.0000     0.8354 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564641     3  0.0458     0.8782 0.000 0.000 0.984 0.016 0.000 0.000
#> GSM564642     2  0.0632     0.8276 0.000 0.976 0.000 0.000 0.024 0.000
#> GSM564643     6  0.6505     0.4009 0.000 0.000 0.208 0.064 0.204 0.524
#> GSM564644     2  0.0000     0.8354 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564645     3  0.0000     0.8844 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564647     3  0.0951     0.8771 0.000 0.020 0.968 0.004 0.008 0.000
#> GSM564648     5  0.3695     0.4487 0.000 0.376 0.000 0.000 0.624 0.000
#> GSM564649     3  0.0146     0.8837 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM564650     6  0.5122     0.4954 0.000 0.180 0.000 0.000 0.192 0.628
#> GSM564651     2  0.0806     0.8213 0.000 0.972 0.020 0.008 0.000 0.000
#> GSM564652     5  0.7043     0.1640 0.344 0.112 0.000 0.000 0.396 0.148
#> GSM564653     2  0.0146     0.8344 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM564654     3  0.1471     0.8735 0.000 0.000 0.932 0.064 0.004 0.000
#> GSM564655     3  0.5376     0.6774 0.000 0.036 0.720 0.100 0.060 0.084
#> GSM564656     3  0.1007     0.8817 0.000 0.000 0.956 0.044 0.000 0.000
#> GSM564657     3  0.0508     0.8865 0.000 0.000 0.984 0.012 0.004 0.000
#> GSM564658     2  0.2191     0.7594 0.004 0.876 0.000 0.000 0.120 0.000
#> GSM564659     3  0.2250     0.8546 0.000 0.000 0.896 0.064 0.040 0.000
#> GSM564660     6  0.4389     0.5444 0.000 0.052 0.000 0.000 0.288 0.660
#> GSM564661     2  0.0000     0.8354 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564662     3  0.0000     0.8844 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564663     2  0.1814     0.7799 0.000 0.900 0.000 0.000 0.100 0.000
#> GSM564664     2  0.0000     0.8354 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564665     3  0.0632     0.8852 0.000 0.000 0.976 0.024 0.000 0.000
#> GSM564666     6  0.3494     0.5343 0.000 0.000 0.000 0.252 0.012 0.736
#> GSM564667     3  0.0000     0.8844 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564668     3  0.2918     0.8350 0.000 0.020 0.868 0.064 0.048 0.000
#> GSM564669     3  0.1471     0.8735 0.000 0.000 0.932 0.064 0.004 0.000
#> GSM564670     3  0.4800     0.4210 0.000 0.020 0.604 0.032 0.344 0.000
#> GSM564671     6  0.2793     0.6462 0.000 0.000 0.000 0.000 0.200 0.800
#> GSM564672     3  0.0363     0.8859 0.000 0.000 0.988 0.012 0.000 0.000
#> GSM564673     5  0.3869     0.1444 0.000 0.500 0.000 0.000 0.500 0.000
#> GSM564674     2  0.4410     0.1239 0.028 0.560 0.000 0.000 0.412 0.000
#> GSM564675     5  0.3500     0.3600 0.000 0.000 0.000 0.028 0.768 0.204
#> GSM564676     2  0.0000     0.8354 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564677     2  0.5669     0.1740 0.000 0.504 0.000 0.000 0.176 0.320
#> GSM564678     2  0.0000     0.8354 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564679     2  0.0000     0.8354 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564680     3  0.1471     0.8735 0.000 0.000 0.932 0.064 0.004 0.000
#> GSM564682     3  0.0146     0.8838 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM564683     3  0.0000     0.8844 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564684     6  0.2854     0.6431 0.000 0.000 0.000 0.000 0.208 0.792
#> GSM564685     3  0.0000     0.8844 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564686     6  0.2946     0.6550 0.000 0.000 0.000 0.012 0.176 0.812
#> GSM564687     2  0.1444     0.7999 0.000 0.928 0.000 0.000 0.072 0.000
#> GSM564688     2  0.5229     0.3724 0.000 0.604 0.000 0.000 0.156 0.240
#> GSM564689     2  0.0000     0.8354 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564690     2  0.0000     0.8354 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564691     3  0.2595     0.7300 0.000 0.160 0.836 0.000 0.004 0.000
#> GSM564692     5  0.3659     0.4643 0.000 0.364 0.000 0.000 0.636 0.000
#> GSM564694     6  0.5610     0.3615 0.000 0.056 0.008 0.024 0.440 0.472
#> GSM564695     6  0.6678     0.5475 0.000 0.000 0.132 0.128 0.212 0.528
#> GSM564696     3  0.3607     0.2084 0.000 0.000 0.652 0.348 0.000 0.000
#> GSM564697     2  0.0000     0.8354 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564698     3  0.1471     0.8735 0.000 0.000 0.932 0.064 0.004 0.000
#> GSM564700     6  0.2793     0.6462 0.000 0.000 0.000 0.000 0.200 0.800
#> GSM564701     2  0.2631     0.6974 0.000 0.820 0.000 0.000 0.180 0.000
#> GSM564702     5  0.5512     0.5154 0.116 0.064 0.000 0.000 0.664 0.156
#> GSM564703     4  0.3690     0.5860 0.008 0.000 0.308 0.684 0.000 0.000
#> GSM564704     1  0.1856     0.8279 0.920 0.000 0.000 0.000 0.032 0.048
#> GSM564705     1  0.2070     0.8200 0.908 0.044 0.000 0.000 0.048 0.000
#> GSM564706     4  0.3620     0.5675 0.000 0.000 0.352 0.648 0.000 0.000
#> GSM564707     1  0.1007     0.8258 0.956 0.000 0.000 0.000 0.044 0.000
#> GSM564708     3  0.3521     0.5871 0.004 0.000 0.724 0.268 0.004 0.000
#> GSM564709     1  0.4962     0.5326 0.612 0.000 0.000 0.048 0.020 0.320
#> GSM564710     1  0.0458     0.8295 0.984 0.000 0.000 0.000 0.016 0.000
#> GSM564711     4  0.3228     0.5782 0.056 0.000 0.080 0.848 0.004 0.012
#> GSM564712     1  0.0000     0.8285 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564713     4  0.5657    -0.0656 0.036 0.000 0.444 0.472 0.024 0.024
#> GSM564714     4  0.2730     0.6249 0.000 0.000 0.192 0.808 0.000 0.000
#> GSM564715     1  0.1480     0.8274 0.940 0.000 0.000 0.020 0.040 0.000
#> GSM564716     1  0.3136     0.7988 0.844 0.000 0.000 0.020 0.108 0.028
#> GSM564717     2  0.2562     0.6869 0.172 0.828 0.000 0.000 0.000 0.000
#> GSM564718     4  0.3697     0.3857 0.016 0.000 0.000 0.732 0.004 0.248
#> GSM564719     2  0.0363     0.8307 0.012 0.988 0.000 0.000 0.000 0.000
#> GSM564720     1  0.0790     0.8239 0.968 0.032 0.000 0.000 0.000 0.000
#> GSM564721     1  0.2462     0.7864 0.876 0.096 0.000 0.000 0.028 0.000
#> GSM564722     4  0.4880     0.0661 0.032 0.000 0.000 0.540 0.016 0.412
#> GSM564723     1  0.0458     0.8282 0.984 0.016 0.000 0.000 0.000 0.000
#> GSM564724     4  0.3405     0.5887 0.000 0.000 0.272 0.724 0.000 0.004
#> GSM564725     1  0.4590     0.7234 0.728 0.000 0.000 0.024 0.080 0.168
#> GSM564726     4  0.3874     0.2318 0.000 0.000 0.000 0.636 0.008 0.356
#> GSM564727     6  0.5873     0.3070 0.260 0.000 0.000 0.088 0.064 0.588
#> GSM564728     6  0.3575     0.5015 0.000 0.000 0.000 0.284 0.008 0.708
#> GSM564729     6  0.4218     0.5710 0.064 0.000 0.000 0.108 0.048 0.780
#> GSM564730     1  0.4184     0.6672 0.752 0.000 0.000 0.004 0.124 0.120
#> GSM564731     1  0.3395     0.7685 0.812 0.000 0.000 0.136 0.004 0.048
#> GSM564732     1  0.4756     0.6739 0.688 0.000 0.000 0.032 0.048 0.232
#> GSM564733     1  0.3843     0.7258 0.792 0.000 0.064 0.132 0.008 0.004
#> GSM564734     1  0.0972     0.8283 0.964 0.028 0.000 0.000 0.000 0.008
#> GSM564735     4  0.2504     0.4752 0.000 0.000 0.004 0.856 0.004 0.136
#> GSM564736     4  0.3288     0.5885 0.000 0.000 0.276 0.724 0.000 0.000
#> GSM564737     1  0.0000     0.8285 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564738     4  0.3395     0.5000 0.000 0.000 0.048 0.812 0.004 0.136
#> GSM564739     4  0.6214     0.2161 0.328 0.000 0.144 0.492 0.036 0.000
#> GSM564740     6  0.3383     0.5180 0.000 0.000 0.000 0.268 0.004 0.728
#> GSM564741     4  0.3266     0.5936 0.000 0.000 0.272 0.728 0.000 0.000
#> GSM564742     4  0.3592     0.5753 0.000 0.000 0.344 0.656 0.000 0.000
#> GSM564743     1  0.5166     0.5824 0.676 0.004 0.000 0.016 0.148 0.156
#> GSM564744     1  0.0713     0.8253 0.972 0.028 0.000 0.000 0.000 0.000
#> GSM564745     1  0.1296     0.8296 0.952 0.000 0.000 0.012 0.032 0.004
#> GSM564746     5  0.3774     0.2841 0.408 0.000 0.000 0.000 0.592 0.000
#> GSM564747     1  0.3905     0.5136 0.668 0.000 0.016 0.316 0.000 0.000
#> GSM564748     4  0.4585     0.5987 0.068 0.000 0.284 0.648 0.000 0.000
#> GSM564749     2  0.3765     0.3389 0.404 0.596 0.000 0.000 0.000 0.000
#> GSM564750     4  0.4873     0.2824 0.020 0.000 0.028 0.628 0.008 0.316
#> GSM564751     4  0.3620     0.5675 0.000 0.000 0.352 0.648 0.000 0.000
#> GSM564752     4  0.3966     0.1012 0.000 0.000 0.000 0.552 0.004 0.444
#> GSM564753     4  0.3817     0.4408 0.000 0.000 0.432 0.568 0.000 0.000
#> GSM564754     1  0.0000     0.8285 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564755     6  0.3876     0.5107 0.000 0.000 0.000 0.276 0.024 0.700
#> GSM564756     2  0.3857     0.0894 0.468 0.532 0.000 0.000 0.000 0.000
#> GSM564757     6  0.2504     0.6251 0.004 0.000 0.000 0.088 0.028 0.880
#> GSM564758     4  0.5922     0.2969 0.196 0.000 0.000 0.556 0.020 0.228
#> GSM564759     4  0.3819     0.5126 0.000 0.000 0.372 0.624 0.000 0.004
#> GSM564760     1  0.4544     0.6981 0.716 0.000 0.000 0.036 0.040 0.208
#> GSM564761     1  0.1524     0.8227 0.932 0.008 0.000 0.000 0.060 0.000
#> GSM564762     1  0.3680     0.7155 0.756 0.000 0.000 0.020 0.008 0.216
#> GSM564681     6  0.4114     0.4955 0.008 0.000 0.000 0.008 0.356 0.628
#> GSM564693     5  0.4121     0.5592 0.000 0.136 0.000 0.000 0.748 0.116
#> GSM564646     6  0.2941     0.6375 0.000 0.000 0.000 0.000 0.220 0.780
#> GSM564699     6  0.3470     0.6140 0.000 0.000 0.000 0.152 0.052 0.796

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n genotype/variation(p) disease.state(p) k
#> SD:pam 140              2.60e-03            0.470 2
#> SD:pam 144              7.52e-02            0.313 3
#> SD:pam 136              2.54e-01            0.245 4
#> SD:pam 102              1.63e-01               NA 5
#> SD:pam 121              1.66e-12            0.096 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 154 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.5007 0.500   0.500
#> 3 3 0.714           0.815       0.858         0.2634 0.860   0.720
#> 4 4 0.751           0.844       0.893         0.1604 0.809   0.525
#> 5 5 0.904           0.879       0.935         0.0787 0.928   0.726
#> 6 6 0.866           0.862       0.914         0.0417 0.963   0.819

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> GSM564615     1       0          1  1  0
#> GSM564616     2       0          1  0  1
#> GSM564617     2       0          1  0  1
#> GSM564618     2       0          1  0  1
#> GSM564619     1       0          1  1  0
#> GSM564620     1       0          1  1  0
#> GSM564621     1       0          1  1  0
#> GSM564622     2       0          1  0  1
#> GSM564623     2       0          1  0  1
#> GSM564624     2       0          1  0  1
#> GSM564625     1       0          1  1  0
#> GSM564626     1       0          1  1  0
#> GSM564627     1       0          1  1  0
#> GSM564628     2       0          1  0  1
#> GSM564629     1       0          1  1  0
#> GSM564630     2       0          1  0  1
#> GSM564609     2       0          1  0  1
#> GSM564610     1       0          1  1  0
#> GSM564611     1       0          1  1  0
#> GSM564612     2       0          1  0  1
#> GSM564613     2       0          1  0  1
#> GSM564614     1       0          1  1  0
#> GSM564631     2       0          1  0  1
#> GSM564632     2       0          1  0  1
#> GSM564633     2       0          1  0  1
#> GSM564634     2       0          1  0  1
#> GSM564635     2       0          1  0  1
#> GSM564636     2       0          1  0  1
#> GSM564637     2       0          1  0  1
#> GSM564638     2       0          1  0  1
#> GSM564639     2       0          1  0  1
#> GSM564640     2       0          1  0  1
#> GSM564641     2       0          1  0  1
#> GSM564642     2       0          1  0  1
#> GSM564643     2       0          1  0  1
#> GSM564644     2       0          1  0  1
#> GSM564645     2       0          1  0  1
#> GSM564647     2       0          1  0  1
#> GSM564648     2       0          1  0  1
#> GSM564649     2       0          1  0  1
#> GSM564650     2       0          1  0  1
#> GSM564651     2       0          1  0  1
#> GSM564652     2       0          1  0  1
#> GSM564653     2       0          1  0  1
#> GSM564654     2       0          1  0  1
#> GSM564655     2       0          1  0  1
#> GSM564656     2       0          1  0  1
#> GSM564657     2       0          1  0  1
#> GSM564658     2       0          1  0  1
#> GSM564659     2       0          1  0  1
#> GSM564660     2       0          1  0  1
#> GSM564661     2       0          1  0  1
#> GSM564662     2       0          1  0  1
#> GSM564663     2       0          1  0  1
#> GSM564664     2       0          1  0  1
#> GSM564665     2       0          1  0  1
#> GSM564666     2       0          1  0  1
#> GSM564667     2       0          1  0  1
#> GSM564668     2       0          1  0  1
#> GSM564669     2       0          1  0  1
#> GSM564670     2       0          1  0  1
#> GSM564671     2       0          1  0  1
#> GSM564672     2       0          1  0  1
#> GSM564673     2       0          1  0  1
#> GSM564674     2       0          1  0  1
#> GSM564675     2       0          1  0  1
#> GSM564676     2       0          1  0  1
#> GSM564677     2       0          1  0  1
#> GSM564678     2       0          1  0  1
#> GSM564679     2       0          1  0  1
#> GSM564680     2       0          1  0  1
#> GSM564682     2       0          1  0  1
#> GSM564683     2       0          1  0  1
#> GSM564684     2       0          1  0  1
#> GSM564685     2       0          1  0  1
#> GSM564686     2       0          1  0  1
#> GSM564687     2       0          1  0  1
#> GSM564688     2       0          1  0  1
#> GSM564689     2       0          1  0  1
#> GSM564690     2       0          1  0  1
#> GSM564691     2       0          1  0  1
#> GSM564692     2       0          1  0  1
#> GSM564694     2       0          1  0  1
#> GSM564695     2       0          1  0  1
#> GSM564696     2       0          1  0  1
#> GSM564697     2       0          1  0  1
#> GSM564698     2       0          1  0  1
#> GSM564700     2       0          1  0  1
#> GSM564701     2       0          1  0  1
#> GSM564702     2       0          1  0  1
#> GSM564703     1       0          1  1  0
#> GSM564704     1       0          1  1  0
#> GSM564705     1       0          1  1  0
#> GSM564706     1       0          1  1  0
#> GSM564707     1       0          1  1  0
#> GSM564708     1       0          1  1  0
#> GSM564709     1       0          1  1  0
#> GSM564710     1       0          1  1  0
#> GSM564711     1       0          1  1  0
#> GSM564712     1       0          1  1  0
#> GSM564713     1       0          1  1  0
#> GSM564714     1       0          1  1  0
#> GSM564715     1       0          1  1  0
#> GSM564716     1       0          1  1  0
#> GSM564717     1       0          1  1  0
#> GSM564718     1       0          1  1  0
#> GSM564719     1       0          1  1  0
#> GSM564720     1       0          1  1  0
#> GSM564721     1       0          1  1  0
#> GSM564722     1       0          1  1  0
#> GSM564723     1       0          1  1  0
#> GSM564724     1       0          1  1  0
#> GSM564725     1       0          1  1  0
#> GSM564726     1       0          1  1  0
#> GSM564727     1       0          1  1  0
#> GSM564728     1       0          1  1  0
#> GSM564729     1       0          1  1  0
#> GSM564730     1       0          1  1  0
#> GSM564731     1       0          1  1  0
#> GSM564732     1       0          1  1  0
#> GSM564733     1       0          1  1  0
#> GSM564734     1       0          1  1  0
#> GSM564735     1       0          1  1  0
#> GSM564736     1       0          1  1  0
#> GSM564737     1       0          1  1  0
#> GSM564738     1       0          1  1  0
#> GSM564739     1       0          1  1  0
#> GSM564740     1       0          1  1  0
#> GSM564741     1       0          1  1  0
#> GSM564742     1       0          1  1  0
#> GSM564743     1       0          1  1  0
#> GSM564744     1       0          1  1  0
#> GSM564745     1       0          1  1  0
#> GSM564746     1       0          1  1  0
#> GSM564747     1       0          1  1  0
#> GSM564748     1       0          1  1  0
#> GSM564749     1       0          1  1  0
#> GSM564750     1       0          1  1  0
#> GSM564751     1       0          1  1  0
#> GSM564752     1       0          1  1  0
#> GSM564753     1       0          1  1  0
#> GSM564754     1       0          1  1  0
#> GSM564755     1       0          1  1  0
#> GSM564756     1       0          1  1  0
#> GSM564757     1       0          1  1  0
#> GSM564758     1       0          1  1  0
#> GSM564759     1       0          1  1  0
#> GSM564760     1       0          1  1  0
#> GSM564761     1       0          1  1  0
#> GSM564762     1       0          1  1  0
#> GSM564681     2       0          1  0  1
#> GSM564693     2       0          1  0  1
#> GSM564646     2       0          1  0  1
#> GSM564699     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM564615     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564616     2  0.0000      0.768 0.000 1.000 0.000
#> GSM564617     2  0.0000      0.768 0.000 1.000 0.000
#> GSM564618     2  0.6062      0.342 0.000 0.616 0.384
#> GSM564619     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564620     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564621     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564622     2  0.2165      0.739 0.000 0.936 0.064
#> GSM564623     2  0.6267      0.210 0.000 0.548 0.452
#> GSM564624     2  0.2537      0.727 0.000 0.920 0.080
#> GSM564625     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564626     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564627     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564628     2  0.0000      0.768 0.000 1.000 0.000
#> GSM564629     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564630     2  0.0892      0.764 0.000 0.980 0.020
#> GSM564609     3  0.4654      0.907 0.000 0.208 0.792
#> GSM564610     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564611     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564612     3  0.3941      0.946 0.000 0.156 0.844
#> GSM564613     3  0.5621      0.780 0.000 0.308 0.692
#> GSM564614     1  0.3551      0.938 0.868 0.000 0.132
#> GSM564631     3  0.3941      0.946 0.000 0.156 0.844
#> GSM564632     2  0.6267      0.210 0.000 0.548 0.452
#> GSM564633     3  0.3941      0.946 0.000 0.156 0.844
#> GSM564634     3  0.5859      0.709 0.000 0.344 0.656
#> GSM564635     3  0.3941      0.946 0.000 0.156 0.844
#> GSM564636     3  0.4399      0.925 0.000 0.188 0.812
#> GSM564637     2  0.6260      0.219 0.000 0.552 0.448
#> GSM564638     3  0.3941      0.946 0.000 0.156 0.844
#> GSM564639     3  0.3941      0.946 0.000 0.156 0.844
#> GSM564640     2  0.0000      0.768 0.000 1.000 0.000
#> GSM564641     3  0.3941      0.946 0.000 0.156 0.844
#> GSM564642     2  0.0424      0.767 0.000 0.992 0.008
#> GSM564643     2  0.6252      0.228 0.000 0.556 0.444
#> GSM564644     2  0.0000      0.768 0.000 1.000 0.000
#> GSM564645     3  0.3941      0.946 0.000 0.156 0.844
#> GSM564647     3  0.5497      0.807 0.000 0.292 0.708
#> GSM564648     2  0.0237      0.767 0.000 0.996 0.004
#> GSM564649     3  0.3941      0.946 0.000 0.156 0.844
#> GSM564650     2  0.6045      0.348 0.000 0.620 0.380
#> GSM564651     2  0.1163      0.760 0.000 0.972 0.028
#> GSM564652     2  0.0000      0.768 0.000 1.000 0.000
#> GSM564653     2  0.0237      0.767 0.000 0.996 0.004
#> GSM564654     3  0.3941      0.946 0.000 0.156 0.844
#> GSM564655     3  0.4931      0.878 0.000 0.232 0.768
#> GSM564656     3  0.3941      0.946 0.000 0.156 0.844
#> GSM564657     3  0.3941      0.946 0.000 0.156 0.844
#> GSM564658     2  0.0000      0.768 0.000 1.000 0.000
#> GSM564659     3  0.5098      0.865 0.000 0.248 0.752
#> GSM564660     2  0.6140      0.306 0.000 0.596 0.404
#> GSM564661     2  0.0000      0.768 0.000 1.000 0.000
#> GSM564662     3  0.3941      0.946 0.000 0.156 0.844
#> GSM564663     2  0.0000      0.768 0.000 1.000 0.000
#> GSM564664     2  0.0000      0.768 0.000 1.000 0.000
#> GSM564665     3  0.4605      0.911 0.000 0.204 0.796
#> GSM564666     2  0.6267      0.210 0.000 0.548 0.452
#> GSM564667     3  0.3941      0.946 0.000 0.156 0.844
#> GSM564668     3  0.4887      0.886 0.000 0.228 0.772
#> GSM564669     3  0.3941      0.946 0.000 0.156 0.844
#> GSM564670     3  0.5591      0.787 0.000 0.304 0.696
#> GSM564671     2  0.6267      0.210 0.000 0.548 0.452
#> GSM564672     3  0.3941      0.946 0.000 0.156 0.844
#> GSM564673     2  0.0000      0.768 0.000 1.000 0.000
#> GSM564674     2  0.0000      0.768 0.000 1.000 0.000
#> GSM564675     2  0.6267      0.210 0.000 0.548 0.452
#> GSM564676     2  0.0000      0.768 0.000 1.000 0.000
#> GSM564677     2  0.0892      0.764 0.000 0.980 0.020
#> GSM564678     2  0.0000      0.768 0.000 1.000 0.000
#> GSM564679     2  0.0000      0.768 0.000 1.000 0.000
#> GSM564680     3  0.3941      0.946 0.000 0.156 0.844
#> GSM564682     3  0.4504      0.911 0.000 0.196 0.804
#> GSM564683     3  0.3941      0.946 0.000 0.156 0.844
#> GSM564684     2  0.6267      0.210 0.000 0.548 0.452
#> GSM564685     3  0.3941      0.946 0.000 0.156 0.844
#> GSM564686     2  0.6267      0.210 0.000 0.548 0.452
#> GSM564687     2  0.0000      0.768 0.000 1.000 0.000
#> GSM564688     2  0.0892      0.764 0.000 0.980 0.020
#> GSM564689     2  0.0000      0.768 0.000 1.000 0.000
#> GSM564690     2  0.0000      0.768 0.000 1.000 0.000
#> GSM564691     3  0.5178      0.852 0.000 0.256 0.744
#> GSM564692     2  0.0747      0.765 0.000 0.984 0.016
#> GSM564694     2  0.6267      0.210 0.000 0.548 0.452
#> GSM564695     2  0.6267      0.210 0.000 0.548 0.452
#> GSM564696     3  0.3941      0.946 0.000 0.156 0.844
#> GSM564697     2  0.1411      0.756 0.000 0.964 0.036
#> GSM564698     3  0.3941      0.946 0.000 0.156 0.844
#> GSM564700     2  0.6267      0.210 0.000 0.548 0.452
#> GSM564701     2  0.0892      0.764 0.000 0.980 0.020
#> GSM564702     2  0.0237      0.767 0.000 0.996 0.004
#> GSM564703     1  0.3941      0.934 0.844 0.000 0.156
#> GSM564704     1  0.1643      0.943 0.956 0.000 0.044
#> GSM564705     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564706     1  0.3941      0.934 0.844 0.000 0.156
#> GSM564707     1  0.2796      0.942 0.908 0.000 0.092
#> GSM564708     1  0.3941      0.934 0.844 0.000 0.156
#> GSM564709     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564710     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564711     1  0.3941      0.934 0.844 0.000 0.156
#> GSM564712     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564713     1  0.3941      0.934 0.844 0.000 0.156
#> GSM564714     1  0.3941      0.934 0.844 0.000 0.156
#> GSM564715     1  0.2796      0.942 0.908 0.000 0.092
#> GSM564716     1  0.2625      0.943 0.916 0.000 0.084
#> GSM564717     1  0.2625      0.943 0.916 0.000 0.084
#> GSM564718     1  0.3941      0.934 0.844 0.000 0.156
#> GSM564719     1  0.2537      0.943 0.920 0.000 0.080
#> GSM564720     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564721     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564722     1  0.3619      0.938 0.864 0.000 0.136
#> GSM564723     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564724     1  0.3941      0.934 0.844 0.000 0.156
#> GSM564725     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564726     1  0.3941      0.934 0.844 0.000 0.156
#> GSM564727     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564728     1  0.3551      0.938 0.868 0.000 0.132
#> GSM564729     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564730     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564731     1  0.3816      0.936 0.852 0.000 0.148
#> GSM564732     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564733     1  0.3941      0.934 0.844 0.000 0.156
#> GSM564734     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564735     1  0.3941      0.934 0.844 0.000 0.156
#> GSM564736     1  0.3941      0.934 0.844 0.000 0.156
#> GSM564737     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564738     1  0.3941      0.934 0.844 0.000 0.156
#> GSM564739     1  0.3941      0.934 0.844 0.000 0.156
#> GSM564740     1  0.3551      0.938 0.868 0.000 0.132
#> GSM564741     1  0.3941      0.934 0.844 0.000 0.156
#> GSM564742     1  0.3941      0.934 0.844 0.000 0.156
#> GSM564743     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564744     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564745     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564746     1  0.2796      0.942 0.908 0.000 0.092
#> GSM564747     1  0.3941      0.934 0.844 0.000 0.156
#> GSM564748     1  0.3941      0.934 0.844 0.000 0.156
#> GSM564749     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564750     1  0.3941      0.934 0.844 0.000 0.156
#> GSM564751     1  0.3941      0.934 0.844 0.000 0.156
#> GSM564752     1  0.3941      0.934 0.844 0.000 0.156
#> GSM564753     1  0.3941      0.934 0.844 0.000 0.156
#> GSM564754     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564755     1  0.3551      0.938 0.868 0.000 0.132
#> GSM564756     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564757     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564758     1  0.3551      0.938 0.868 0.000 0.132
#> GSM564759     1  0.3941      0.934 0.844 0.000 0.156
#> GSM564760     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564761     1  0.0000      0.941 1.000 0.000 0.000
#> GSM564762     1  0.2878      0.942 0.904 0.000 0.096
#> GSM564681     2  0.6045      0.348 0.000 0.620 0.380
#> GSM564693     2  0.0000      0.768 0.000 1.000 0.000
#> GSM564646     2  0.6267      0.210 0.000 0.548 0.452
#> GSM564699     2  0.6267      0.210 0.000 0.548 0.452

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM564615     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564616     2  0.0000     0.9389 0.000 1.000 0.000 0.000
#> GSM564617     2  0.0000     0.9389 0.000 1.000 0.000 0.000
#> GSM564618     2  0.6961     0.0137 0.000 0.524 0.352 0.124
#> GSM564619     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564620     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564621     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564622     2  0.3384     0.8043 0.000 0.860 0.116 0.024
#> GSM564623     3  0.6972     0.4946 0.000 0.356 0.520 0.124
#> GSM564624     2  0.3266     0.8406 0.000 0.868 0.024 0.108
#> GSM564625     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564626     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564627     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564628     2  0.0188     0.9375 0.000 0.996 0.004 0.000
#> GSM564629     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564630     2  0.0336     0.9358 0.000 0.992 0.000 0.008
#> GSM564609     3  0.2871     0.7831 0.000 0.072 0.896 0.032
#> GSM564610     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564611     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564612     3  0.0336     0.8030 0.000 0.000 0.992 0.008
#> GSM564613     3  0.5159     0.7190 0.000 0.156 0.756 0.088
#> GSM564614     4  0.4877     0.6078 0.408 0.000 0.000 0.592
#> GSM564631     3  0.0336     0.8030 0.000 0.000 0.992 0.008
#> GSM564632     3  0.6949     0.5057 0.000 0.348 0.528 0.124
#> GSM564633     3  0.0336     0.8030 0.000 0.000 0.992 0.008
#> GSM564634     3  0.4974     0.6882 0.000 0.224 0.736 0.040
#> GSM564635     3  0.0336     0.8030 0.000 0.000 0.992 0.008
#> GSM564636     3  0.2222     0.7946 0.000 0.016 0.924 0.060
#> GSM564637     3  0.6911     0.5204 0.000 0.336 0.540 0.124
#> GSM564638     3  0.0000     0.8033 0.000 0.000 1.000 0.000
#> GSM564639     3  0.0336     0.8030 0.000 0.000 0.992 0.008
#> GSM564640     2  0.0000     0.9389 0.000 1.000 0.000 0.000
#> GSM564641     3  0.0336     0.8030 0.000 0.000 0.992 0.008
#> GSM564642     2  0.0779     0.9284 0.000 0.980 0.016 0.004
#> GSM564643     3  0.6937     0.5108 0.000 0.344 0.532 0.124
#> GSM564644     2  0.0000     0.9389 0.000 1.000 0.000 0.000
#> GSM564645     3  0.0336     0.8030 0.000 0.000 0.992 0.008
#> GSM564647     3  0.2227     0.7944 0.000 0.036 0.928 0.036
#> GSM564648     2  0.0188     0.9375 0.000 0.996 0.004 0.000
#> GSM564649     3  0.0336     0.8030 0.000 0.000 0.992 0.008
#> GSM564650     2  0.6746     0.2363 0.000 0.580 0.296 0.124
#> GSM564651     2  0.2988     0.8222 0.000 0.876 0.112 0.012
#> GSM564652     2  0.0000     0.9389 0.000 1.000 0.000 0.000
#> GSM564653     2  0.0000     0.9389 0.000 1.000 0.000 0.000
#> GSM564654     3  0.0336     0.8030 0.000 0.000 0.992 0.008
#> GSM564655     3  0.5361     0.7155 0.000 0.148 0.744 0.108
#> GSM564656     3  0.0336     0.8030 0.000 0.000 0.992 0.008
#> GSM564657     3  0.0336     0.8030 0.000 0.000 0.992 0.008
#> GSM564658     2  0.0000     0.9389 0.000 1.000 0.000 0.000
#> GSM564659     3  0.2871     0.7878 0.000 0.032 0.896 0.072
#> GSM564660     3  0.7078     0.3345 0.000 0.420 0.456 0.124
#> GSM564661     2  0.0000     0.9389 0.000 1.000 0.000 0.000
#> GSM564662     3  0.0336     0.8030 0.000 0.000 0.992 0.008
#> GSM564663     2  0.0000     0.9389 0.000 1.000 0.000 0.000
#> GSM564664     2  0.0000     0.9389 0.000 1.000 0.000 0.000
#> GSM564665     3  0.1256     0.8006 0.000 0.008 0.964 0.028
#> GSM564666     3  0.6972     0.4946 0.000 0.356 0.520 0.124
#> GSM564667     3  0.0336     0.8030 0.000 0.000 0.992 0.008
#> GSM564668     3  0.2675     0.7895 0.000 0.048 0.908 0.044
#> GSM564669     3  0.0336     0.8030 0.000 0.000 0.992 0.008
#> GSM564670     3  0.4336     0.7466 0.000 0.128 0.812 0.060
#> GSM564671     3  0.6972     0.4946 0.000 0.356 0.520 0.124
#> GSM564672     3  0.0336     0.8030 0.000 0.000 0.992 0.008
#> GSM564673     2  0.0000     0.9389 0.000 1.000 0.000 0.000
#> GSM564674     2  0.0000     0.9389 0.000 1.000 0.000 0.000
#> GSM564675     3  0.6972     0.4946 0.000 0.356 0.520 0.124
#> GSM564676     2  0.0000     0.9389 0.000 1.000 0.000 0.000
#> GSM564677     2  0.0804     0.9292 0.000 0.980 0.008 0.012
#> GSM564678     2  0.0000     0.9389 0.000 1.000 0.000 0.000
#> GSM564679     2  0.0000     0.9389 0.000 1.000 0.000 0.000
#> GSM564680     3  0.0336     0.8030 0.000 0.000 0.992 0.008
#> GSM564682     3  0.0336     0.8030 0.000 0.000 0.992 0.008
#> GSM564683     3  0.0000     0.8033 0.000 0.000 1.000 0.000
#> GSM564684     3  0.6972     0.4946 0.000 0.356 0.520 0.124
#> GSM564685     3  0.0336     0.8030 0.000 0.000 0.992 0.008
#> GSM564686     3  0.6972     0.4946 0.000 0.356 0.520 0.124
#> GSM564687     2  0.0000     0.9389 0.000 1.000 0.000 0.000
#> GSM564688     2  0.1284     0.9194 0.000 0.964 0.012 0.024
#> GSM564689     2  0.0000     0.9389 0.000 1.000 0.000 0.000
#> GSM564690     2  0.0000     0.9389 0.000 1.000 0.000 0.000
#> GSM564691     3  0.1356     0.8001 0.000 0.008 0.960 0.032
#> GSM564692     2  0.1520     0.9136 0.000 0.956 0.020 0.024
#> GSM564694     3  0.6972     0.4946 0.000 0.356 0.520 0.124
#> GSM564695     3  0.6972     0.4946 0.000 0.356 0.520 0.124
#> GSM564696     3  0.0592     0.8025 0.000 0.000 0.984 0.016
#> GSM564697     2  0.2385     0.8859 0.000 0.920 0.028 0.052
#> GSM564698     3  0.0188     0.8032 0.000 0.000 0.996 0.004
#> GSM564700     3  0.6972     0.4946 0.000 0.356 0.520 0.124
#> GSM564701     2  0.0000     0.9389 0.000 1.000 0.000 0.000
#> GSM564702     2  0.0188     0.9375 0.000 0.996 0.000 0.004
#> GSM564703     4  0.2814     0.9310 0.132 0.000 0.000 0.868
#> GSM564704     1  0.0469     0.9782 0.988 0.000 0.000 0.012
#> GSM564705     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564706     4  0.2814     0.9310 0.132 0.000 0.000 0.868
#> GSM564707     1  0.1022     0.9592 0.968 0.000 0.000 0.032
#> GSM564708     4  0.2814     0.9310 0.132 0.000 0.000 0.868
#> GSM564709     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564710     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564711     4  0.2814     0.9310 0.132 0.000 0.000 0.868
#> GSM564712     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564713     4  0.2814     0.9310 0.132 0.000 0.000 0.868
#> GSM564714     4  0.2814     0.9310 0.132 0.000 0.000 0.868
#> GSM564715     1  0.1211     0.9506 0.960 0.000 0.000 0.040
#> GSM564716     1  0.1867     0.9102 0.928 0.000 0.000 0.072
#> GSM564717     1  0.0921     0.9632 0.972 0.000 0.000 0.028
#> GSM564718     4  0.2814     0.9310 0.132 0.000 0.000 0.868
#> GSM564719     1  0.0707     0.9710 0.980 0.000 0.000 0.020
#> GSM564720     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564721     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564722     4  0.4804     0.6532 0.384 0.000 0.000 0.616
#> GSM564723     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564724     4  0.2814     0.9310 0.132 0.000 0.000 0.868
#> GSM564725     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564726     4  0.2814     0.9310 0.132 0.000 0.000 0.868
#> GSM564727     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564728     4  0.4830     0.6401 0.392 0.000 0.000 0.608
#> GSM564729     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564730     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564731     4  0.3266     0.9069 0.168 0.000 0.000 0.832
#> GSM564732     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564733     4  0.2921     0.9262 0.140 0.000 0.000 0.860
#> GSM564734     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564735     4  0.2814     0.9310 0.132 0.000 0.000 0.868
#> GSM564736     4  0.2814     0.9310 0.132 0.000 0.000 0.868
#> GSM564737     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564738     4  0.2814     0.9310 0.132 0.000 0.000 0.868
#> GSM564739     4  0.2814     0.9310 0.132 0.000 0.000 0.868
#> GSM564740     4  0.4830     0.6401 0.392 0.000 0.000 0.608
#> GSM564741     4  0.2814     0.9310 0.132 0.000 0.000 0.868
#> GSM564742     4  0.2814     0.9310 0.132 0.000 0.000 0.868
#> GSM564743     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564744     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564745     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564746     1  0.1716     0.9211 0.936 0.000 0.000 0.064
#> GSM564747     4  0.3266     0.9070 0.168 0.000 0.000 0.832
#> GSM564748     4  0.2814     0.9310 0.132 0.000 0.000 0.868
#> GSM564749     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564750     4  0.2814     0.9310 0.132 0.000 0.000 0.868
#> GSM564751     4  0.2814     0.9310 0.132 0.000 0.000 0.868
#> GSM564752     4  0.2814     0.9310 0.132 0.000 0.000 0.868
#> GSM564753     4  0.2814     0.9310 0.132 0.000 0.000 0.868
#> GSM564754     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564755     4  0.4830     0.6401 0.392 0.000 0.000 0.608
#> GSM564756     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564757     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564758     4  0.4830     0.6401 0.392 0.000 0.000 0.608
#> GSM564759     4  0.2814     0.9310 0.132 0.000 0.000 0.868
#> GSM564760     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564761     1  0.0000     0.9883 1.000 0.000 0.000 0.000
#> GSM564762     1  0.2469     0.8564 0.892 0.000 0.000 0.108
#> GSM564681     2  0.5874     0.5717 0.000 0.700 0.176 0.124
#> GSM564693     2  0.0000     0.9389 0.000 1.000 0.000 0.000
#> GSM564646     3  0.6993     0.4780 0.000 0.364 0.512 0.124
#> GSM564699     3  0.6937     0.5105 0.000 0.344 0.532 0.124

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM564615     1  0.1121     0.9672 0.956 0.000 0.000 0.044 0.000
#> GSM564616     2  0.0000     0.9275 0.000 1.000 0.000 0.000 0.000
#> GSM564617     2  0.0000     0.9275 0.000 1.000 0.000 0.000 0.000
#> GSM564618     5  0.3452     0.6601 0.000 0.244 0.000 0.000 0.756
#> GSM564619     1  0.0000     0.9780 1.000 0.000 0.000 0.000 0.000
#> GSM564620     1  0.0000     0.9780 1.000 0.000 0.000 0.000 0.000
#> GSM564621     1  0.0609     0.9773 0.980 0.000 0.000 0.020 0.000
#> GSM564622     5  0.4436     0.3971 0.000 0.396 0.008 0.000 0.596
#> GSM564623     5  0.0290     0.8085 0.000 0.008 0.000 0.000 0.992
#> GSM564624     2  0.4161     0.3009 0.000 0.608 0.000 0.000 0.392
#> GSM564625     1  0.0510     0.9782 0.984 0.000 0.000 0.016 0.000
#> GSM564626     1  0.0162     0.9783 0.996 0.000 0.000 0.004 0.000
#> GSM564627     1  0.0609     0.9773 0.980 0.000 0.000 0.020 0.000
#> GSM564628     2  0.0000     0.9275 0.000 1.000 0.000 0.000 0.000
#> GSM564629     1  0.0000     0.9780 1.000 0.000 0.000 0.000 0.000
#> GSM564630     2  0.1341     0.8805 0.000 0.944 0.000 0.000 0.056
#> GSM564609     5  0.4108     0.6835 0.000 0.008 0.308 0.000 0.684
#> GSM564610     1  0.0000     0.9780 1.000 0.000 0.000 0.000 0.000
#> GSM564611     1  0.0000     0.9780 1.000 0.000 0.000 0.000 0.000
#> GSM564612     3  0.1851     0.8837 0.000 0.000 0.912 0.000 0.088
#> GSM564613     5  0.4003     0.7011 0.000 0.008 0.288 0.000 0.704
#> GSM564614     4  0.3210     0.7623 0.212 0.000 0.000 0.788 0.000
#> GSM564631     3  0.0000     0.9888 0.000 0.000 1.000 0.000 0.000
#> GSM564632     5  0.0404     0.8081 0.000 0.012 0.000 0.000 0.988
#> GSM564633     3  0.0000     0.9888 0.000 0.000 1.000 0.000 0.000
#> GSM564634     5  0.4360     0.7003 0.000 0.024 0.284 0.000 0.692
#> GSM564635     3  0.0000     0.9888 0.000 0.000 1.000 0.000 0.000
#> GSM564636     3  0.1478     0.9229 0.000 0.000 0.936 0.000 0.064
#> GSM564637     5  0.0404     0.8081 0.000 0.012 0.000 0.000 0.988
#> GSM564638     3  0.0000     0.9888 0.000 0.000 1.000 0.000 0.000
#> GSM564639     3  0.0000     0.9888 0.000 0.000 1.000 0.000 0.000
#> GSM564640     2  0.0000     0.9275 0.000 1.000 0.000 0.000 0.000
#> GSM564641     3  0.0000     0.9888 0.000 0.000 1.000 0.000 0.000
#> GSM564642     2  0.3789     0.6594 0.000 0.768 0.020 0.000 0.212
#> GSM564643     5  0.0404     0.8081 0.000 0.012 0.000 0.000 0.988
#> GSM564644     2  0.0000     0.9275 0.000 1.000 0.000 0.000 0.000
#> GSM564645     3  0.0000     0.9888 0.000 0.000 1.000 0.000 0.000
#> GSM564647     5  0.3990     0.6827 0.000 0.004 0.308 0.000 0.688
#> GSM564648     2  0.0404     0.9199 0.000 0.988 0.000 0.000 0.012
#> GSM564649     3  0.0000     0.9888 0.000 0.000 1.000 0.000 0.000
#> GSM564650     5  0.3534     0.6466 0.000 0.256 0.000 0.000 0.744
#> GSM564651     5  0.4934     0.4575 0.000 0.364 0.036 0.000 0.600
#> GSM564652     2  0.0000     0.9275 0.000 1.000 0.000 0.000 0.000
#> GSM564653     2  0.0000     0.9275 0.000 1.000 0.000 0.000 0.000
#> GSM564654     3  0.0000     0.9888 0.000 0.000 1.000 0.000 0.000
#> GSM564655     5  0.3980     0.7039 0.000 0.008 0.284 0.000 0.708
#> GSM564656     3  0.0000     0.9888 0.000 0.000 1.000 0.000 0.000
#> GSM564657     3  0.0000     0.9888 0.000 0.000 1.000 0.000 0.000
#> GSM564658     2  0.0000     0.9275 0.000 1.000 0.000 0.000 0.000
#> GSM564659     5  0.3990     0.6816 0.000 0.004 0.308 0.000 0.688
#> GSM564660     5  0.3424     0.6642 0.000 0.240 0.000 0.000 0.760
#> GSM564661     2  0.0000     0.9275 0.000 1.000 0.000 0.000 0.000
#> GSM564662     3  0.0000     0.9888 0.000 0.000 1.000 0.000 0.000
#> GSM564663     2  0.0000     0.9275 0.000 1.000 0.000 0.000 0.000
#> GSM564664     2  0.0000     0.9275 0.000 1.000 0.000 0.000 0.000
#> GSM564665     5  0.4126     0.5773 0.000 0.000 0.380 0.000 0.620
#> GSM564666     5  0.0290     0.8085 0.000 0.008 0.000 0.000 0.992
#> GSM564667     3  0.0000     0.9888 0.000 0.000 1.000 0.000 0.000
#> GSM564668     5  0.3969     0.6866 0.000 0.004 0.304 0.000 0.692
#> GSM564669     3  0.0000     0.9888 0.000 0.000 1.000 0.000 0.000
#> GSM564670     5  0.4046     0.6946 0.000 0.008 0.296 0.000 0.696
#> GSM564671     5  0.0290     0.8085 0.000 0.008 0.000 0.000 0.992
#> GSM564672     3  0.0000     0.9888 0.000 0.000 1.000 0.000 0.000
#> GSM564673     2  0.0000     0.9275 0.000 1.000 0.000 0.000 0.000
#> GSM564674     2  0.0162     0.9252 0.000 0.996 0.000 0.000 0.004
#> GSM564675     5  0.0290     0.8085 0.000 0.008 0.000 0.000 0.992
#> GSM564676     2  0.0000     0.9275 0.000 1.000 0.000 0.000 0.000
#> GSM564677     2  0.0162     0.9253 0.000 0.996 0.000 0.000 0.004
#> GSM564678     2  0.0000     0.9275 0.000 1.000 0.000 0.000 0.000
#> GSM564679     2  0.0000     0.9275 0.000 1.000 0.000 0.000 0.000
#> GSM564680     3  0.0000     0.9888 0.000 0.000 1.000 0.000 0.000
#> GSM564682     5  0.4219     0.5070 0.000 0.000 0.416 0.000 0.584
#> GSM564683     3  0.0000     0.9888 0.000 0.000 1.000 0.000 0.000
#> GSM564684     5  0.0290     0.8085 0.000 0.008 0.000 0.000 0.992
#> GSM564685     3  0.0000     0.9888 0.000 0.000 1.000 0.000 0.000
#> GSM564686     5  0.0290     0.8085 0.000 0.008 0.000 0.000 0.992
#> GSM564687     2  0.0000     0.9275 0.000 1.000 0.000 0.000 0.000
#> GSM564688     2  0.4306    -0.0949 0.000 0.508 0.000 0.000 0.492
#> GSM564689     2  0.0000     0.9275 0.000 1.000 0.000 0.000 0.000
#> GSM564690     2  0.0000     0.9275 0.000 1.000 0.000 0.000 0.000
#> GSM564691     5  0.4171     0.5479 0.000 0.000 0.396 0.000 0.604
#> GSM564692     2  0.3837     0.5120 0.000 0.692 0.000 0.000 0.308
#> GSM564694     5  0.0404     0.8081 0.000 0.012 0.000 0.000 0.988
#> GSM564695     5  0.0290     0.8085 0.000 0.008 0.000 0.000 0.992
#> GSM564696     3  0.1043     0.9466 0.000 0.000 0.960 0.000 0.040
#> GSM564697     2  0.3636     0.5840 0.000 0.728 0.000 0.000 0.272
#> GSM564698     3  0.0000     0.9888 0.000 0.000 1.000 0.000 0.000
#> GSM564700     5  0.0290     0.8085 0.000 0.008 0.000 0.000 0.992
#> GSM564701     2  0.0000     0.9275 0.000 1.000 0.000 0.000 0.000
#> GSM564702     2  0.0000     0.9275 0.000 1.000 0.000 0.000 0.000
#> GSM564703     4  0.0000     0.9406 0.000 0.000 0.000 1.000 0.000
#> GSM564704     1  0.1270     0.9623 0.948 0.000 0.000 0.052 0.000
#> GSM564705     1  0.0000     0.9780 1.000 0.000 0.000 0.000 0.000
#> GSM564706     4  0.0000     0.9406 0.000 0.000 0.000 1.000 0.000
#> GSM564707     1  0.0880     0.9663 0.968 0.000 0.000 0.032 0.000
#> GSM564708     4  0.0000     0.9406 0.000 0.000 0.000 1.000 0.000
#> GSM564709     1  0.1043     0.9697 0.960 0.000 0.000 0.040 0.000
#> GSM564710     1  0.0000     0.9780 1.000 0.000 0.000 0.000 0.000
#> GSM564711     4  0.0000     0.9406 0.000 0.000 0.000 1.000 0.000
#> GSM564712     1  0.0000     0.9780 1.000 0.000 0.000 0.000 0.000
#> GSM564713     4  0.0000     0.9406 0.000 0.000 0.000 1.000 0.000
#> GSM564714     4  0.0000     0.9406 0.000 0.000 0.000 1.000 0.000
#> GSM564715     1  0.0880     0.9663 0.968 0.000 0.000 0.032 0.000
#> GSM564716     1  0.1341     0.9560 0.944 0.000 0.000 0.056 0.000
#> GSM564717     1  0.0794     0.9688 0.972 0.000 0.000 0.028 0.000
#> GSM564718     4  0.0000     0.9406 0.000 0.000 0.000 1.000 0.000
#> GSM564719     1  0.0794     0.9747 0.972 0.000 0.000 0.028 0.000
#> GSM564720     1  0.0000     0.9780 1.000 0.000 0.000 0.000 0.000
#> GSM564721     1  0.0000     0.9780 1.000 0.000 0.000 0.000 0.000
#> GSM564722     4  0.3266     0.7748 0.200 0.000 0.000 0.796 0.004
#> GSM564723     1  0.0290     0.9785 0.992 0.000 0.000 0.008 0.000
#> GSM564724     4  0.0000     0.9406 0.000 0.000 0.000 1.000 0.000
#> GSM564725     1  0.0703     0.9763 0.976 0.000 0.000 0.024 0.000
#> GSM564726     4  0.0000     0.9406 0.000 0.000 0.000 1.000 0.000
#> GSM564727     1  0.1043     0.9697 0.960 0.000 0.000 0.040 0.000
#> GSM564728     4  0.3700     0.7210 0.240 0.000 0.000 0.752 0.008
#> GSM564729     1  0.1121     0.9672 0.956 0.000 0.000 0.044 0.000
#> GSM564730     1  0.0000     0.9780 1.000 0.000 0.000 0.000 0.000
#> GSM564731     4  0.0963     0.9171 0.036 0.000 0.000 0.964 0.000
#> GSM564732     1  0.1043     0.9697 0.960 0.000 0.000 0.040 0.000
#> GSM564733     4  0.0794     0.9230 0.028 0.000 0.000 0.972 0.000
#> GSM564734     1  0.0963     0.9717 0.964 0.000 0.000 0.036 0.000
#> GSM564735     4  0.0000     0.9406 0.000 0.000 0.000 1.000 0.000
#> GSM564736     4  0.0000     0.9406 0.000 0.000 0.000 1.000 0.000
#> GSM564737     1  0.0000     0.9780 1.000 0.000 0.000 0.000 0.000
#> GSM564738     4  0.0000     0.9406 0.000 0.000 0.000 1.000 0.000
#> GSM564739     4  0.0000     0.9406 0.000 0.000 0.000 1.000 0.000
#> GSM564740     4  0.3700     0.7210 0.240 0.000 0.000 0.752 0.008
#> GSM564741     4  0.0000     0.9406 0.000 0.000 0.000 1.000 0.000
#> GSM564742     4  0.0000     0.9406 0.000 0.000 0.000 1.000 0.000
#> GSM564743     1  0.0510     0.9781 0.984 0.000 0.000 0.016 0.000
#> GSM564744     1  0.0000     0.9780 1.000 0.000 0.000 0.000 0.000
#> GSM564745     1  0.1043     0.9697 0.960 0.000 0.000 0.040 0.000
#> GSM564746     1  0.1121     0.9575 0.956 0.000 0.000 0.044 0.000
#> GSM564747     4  0.0162     0.9384 0.004 0.000 0.000 0.996 0.000
#> GSM564748     4  0.0000     0.9406 0.000 0.000 0.000 1.000 0.000
#> GSM564749     1  0.0000     0.9780 1.000 0.000 0.000 0.000 0.000
#> GSM564750     4  0.0000     0.9406 0.000 0.000 0.000 1.000 0.000
#> GSM564751     4  0.0000     0.9406 0.000 0.000 0.000 1.000 0.000
#> GSM564752     4  0.0000     0.9406 0.000 0.000 0.000 1.000 0.000
#> GSM564753     4  0.0000     0.9406 0.000 0.000 0.000 1.000 0.000
#> GSM564754     1  0.0404     0.9785 0.988 0.000 0.000 0.012 0.000
#> GSM564755     4  0.3700     0.7210 0.240 0.000 0.000 0.752 0.008
#> GSM564756     1  0.0000     0.9780 1.000 0.000 0.000 0.000 0.000
#> GSM564757     1  0.1121     0.9672 0.956 0.000 0.000 0.044 0.000
#> GSM564758     4  0.3700     0.7210 0.240 0.000 0.000 0.752 0.008
#> GSM564759     4  0.0000     0.9406 0.000 0.000 0.000 1.000 0.000
#> GSM564760     1  0.0963     0.9717 0.964 0.000 0.000 0.036 0.000
#> GSM564761     1  0.0000     0.9780 1.000 0.000 0.000 0.000 0.000
#> GSM564762     1  0.2074     0.9079 0.896 0.000 0.000 0.104 0.000
#> GSM564681     5  0.3612     0.6281 0.000 0.268 0.000 0.000 0.732
#> GSM564693     2  0.0609     0.9135 0.000 0.980 0.000 0.000 0.020
#> GSM564646     5  0.0963     0.8002 0.000 0.036 0.000 0.000 0.964
#> GSM564699     5  0.0290     0.8085 0.000 0.008 0.000 0.000 0.992

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM564615     2  0.3175     0.8169 0.164 0.808 0.000 0.028 0.000 0.000
#> GSM564616     5  0.0000     0.9412 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564617     5  0.0000     0.9412 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564618     6  0.2378     0.8373 0.000 0.000 0.000 0.000 0.152 0.848
#> GSM564619     1  0.0000     0.9162 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564620     1  0.0000     0.9162 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564621     2  0.3862     0.4767 0.476 0.524 0.000 0.000 0.000 0.000
#> GSM564622     6  0.3915     0.3641 0.000 0.000 0.004 0.000 0.412 0.584
#> GSM564623     6  0.1327     0.8840 0.000 0.000 0.000 0.000 0.064 0.936
#> GSM564624     5  0.3076     0.6730 0.000 0.000 0.000 0.000 0.760 0.240
#> GSM564625     2  0.3659     0.7307 0.364 0.636 0.000 0.000 0.000 0.000
#> GSM564626     1  0.0000     0.9162 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564627     1  0.3810    -0.2005 0.572 0.428 0.000 0.000 0.000 0.000
#> GSM564628     5  0.0000     0.9412 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564629     1  0.0790     0.8889 0.968 0.032 0.000 0.000 0.000 0.000
#> GSM564630     5  0.1204     0.9004 0.000 0.000 0.000 0.000 0.944 0.056
#> GSM564609     6  0.1814     0.8685 0.000 0.000 0.100 0.000 0.000 0.900
#> GSM564610     1  0.0000     0.9162 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564611     1  0.0000     0.9162 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564612     3  0.2562     0.7785 0.000 0.000 0.828 0.000 0.000 0.172
#> GSM564613     6  0.1838     0.8830 0.000 0.000 0.068 0.000 0.016 0.916
#> GSM564614     4  0.3371     0.7840 0.000 0.292 0.000 0.708 0.000 0.000
#> GSM564631     3  0.0000     0.9812 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564632     6  0.0146     0.8863 0.000 0.000 0.000 0.000 0.004 0.996
#> GSM564633     3  0.0000     0.9812 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564634     6  0.2009     0.8823 0.000 0.000 0.068 0.000 0.024 0.908
#> GSM564635     3  0.0000     0.9812 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564636     3  0.1501     0.9082 0.000 0.000 0.924 0.000 0.000 0.076
#> GSM564637     6  0.0146     0.8863 0.000 0.000 0.000 0.000 0.004 0.996
#> GSM564638     3  0.0000     0.9812 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564639     3  0.0000     0.9812 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564640     5  0.0000     0.9412 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564641     3  0.0000     0.9812 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564642     5  0.3017     0.7642 0.000 0.000 0.020 0.000 0.816 0.164
#> GSM564643     6  0.0146     0.8863 0.000 0.000 0.000 0.000 0.004 0.996
#> GSM564644     5  0.0000     0.9412 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564645     3  0.0000     0.9812 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564647     6  0.2178     0.8475 0.000 0.000 0.132 0.000 0.000 0.868
#> GSM564648     5  0.0000     0.9412 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564649     3  0.0000     0.9812 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564650     6  0.2378     0.8373 0.000 0.000 0.000 0.000 0.152 0.848
#> GSM564651     5  0.4401    -0.0204 0.000 0.000 0.024 0.000 0.512 0.464
#> GSM564652     5  0.0000     0.9412 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564653     5  0.0000     0.9412 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564654     3  0.0000     0.9812 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564655     6  0.1387     0.8813 0.000 0.000 0.068 0.000 0.000 0.932
#> GSM564656     3  0.0000     0.9812 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564657     3  0.0000     0.9812 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564658     5  0.0000     0.9412 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564659     6  0.2300     0.8378 0.000 0.000 0.144 0.000 0.000 0.856
#> GSM564660     6  0.2340     0.8404 0.000 0.000 0.000 0.000 0.148 0.852
#> GSM564661     5  0.0000     0.9412 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564662     3  0.0000     0.9812 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564663     5  0.0000     0.9412 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564664     5  0.0000     0.9412 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564665     6  0.2730     0.7891 0.000 0.000 0.192 0.000 0.000 0.808
#> GSM564666     6  0.0000     0.8850 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM564667     3  0.0000     0.9812 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564668     6  0.1814     0.8686 0.000 0.000 0.100 0.000 0.000 0.900
#> GSM564669     3  0.0000     0.9812 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564670     6  0.1983     0.8815 0.000 0.000 0.072 0.000 0.020 0.908
#> GSM564671     6  0.1327     0.8840 0.000 0.000 0.000 0.000 0.064 0.936
#> GSM564672     3  0.0000     0.9812 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564673     5  0.0000     0.9412 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564674     5  0.0146     0.9390 0.000 0.000 0.000 0.000 0.996 0.004
#> GSM564675     6  0.1327     0.8840 0.000 0.000 0.000 0.000 0.064 0.936
#> GSM564676     5  0.0000     0.9412 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564677     5  0.0146     0.9391 0.000 0.000 0.000 0.000 0.996 0.004
#> GSM564678     5  0.0000     0.9412 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564679     5  0.0000     0.9412 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564680     3  0.0000     0.9812 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564682     6  0.3023     0.7375 0.000 0.000 0.232 0.000 0.000 0.768
#> GSM564683     3  0.0000     0.9812 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564684     6  0.2092     0.8544 0.000 0.000 0.000 0.000 0.124 0.876
#> GSM564685     3  0.0000     0.9812 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564686     6  0.1327     0.8840 0.000 0.000 0.000 0.000 0.064 0.936
#> GSM564687     5  0.0000     0.9412 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564688     5  0.3265     0.6466 0.000 0.000 0.004 0.000 0.748 0.248
#> GSM564689     5  0.0000     0.9412 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564690     5  0.0000     0.9412 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564691     6  0.2854     0.7784 0.000 0.000 0.208 0.000 0.000 0.792
#> GSM564692     5  0.2048     0.8365 0.000 0.000 0.000 0.000 0.880 0.120
#> GSM564694     6  0.0000     0.8850 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM564695     6  0.0000     0.8850 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM564696     3  0.1610     0.8971 0.000 0.000 0.916 0.000 0.000 0.084
#> GSM564697     5  0.2762     0.7405 0.000 0.000 0.000 0.000 0.804 0.196
#> GSM564698     3  0.0000     0.9812 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564700     6  0.1327     0.8840 0.000 0.000 0.000 0.000 0.064 0.936
#> GSM564701     5  0.0260     0.9364 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM564702     5  0.0000     0.9412 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564703     4  0.0790     0.9118 0.000 0.032 0.000 0.968 0.000 0.000
#> GSM564704     2  0.3265     0.8713 0.248 0.748 0.000 0.004 0.000 0.000
#> GSM564705     1  0.0000     0.9162 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564706     4  0.0790     0.9118 0.000 0.032 0.000 0.968 0.000 0.000
#> GSM564707     1  0.0146     0.9135 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM564708     4  0.0865     0.9129 0.000 0.036 0.000 0.964 0.000 0.000
#> GSM564709     2  0.3198     0.8681 0.260 0.740 0.000 0.000 0.000 0.000
#> GSM564710     1  0.0000     0.9162 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564711     4  0.0363     0.9184 0.000 0.012 0.000 0.988 0.000 0.000
#> GSM564712     1  0.0000     0.9162 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564713     4  0.0363     0.9182 0.000 0.012 0.000 0.988 0.000 0.000
#> GSM564714     4  0.0260     0.9167 0.000 0.008 0.000 0.992 0.000 0.000
#> GSM564715     1  0.0146     0.9135 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM564716     1  0.5703    -0.4320 0.424 0.416 0.000 0.160 0.000 0.000
#> GSM564717     1  0.0146     0.9135 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM564718     4  0.1663     0.9041 0.000 0.088 0.000 0.912 0.000 0.000
#> GSM564719     1  0.0458     0.9017 0.984 0.000 0.000 0.016 0.000 0.000
#> GSM564720     1  0.0000     0.9162 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564721     1  0.0000     0.9162 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564722     4  0.3595     0.7755 0.008 0.288 0.000 0.704 0.000 0.000
#> GSM564723     1  0.0458     0.9038 0.984 0.016 0.000 0.000 0.000 0.000
#> GSM564724     4  0.0363     0.9184 0.000 0.012 0.000 0.988 0.000 0.000
#> GSM564725     2  0.3244     0.8616 0.268 0.732 0.000 0.000 0.000 0.000
#> GSM564726     4  0.0937     0.9172 0.000 0.040 0.000 0.960 0.000 0.000
#> GSM564727     2  0.3076     0.8700 0.240 0.760 0.000 0.000 0.000 0.000
#> GSM564728     4  0.3371     0.7840 0.000 0.292 0.000 0.708 0.000 0.000
#> GSM564729     2  0.3210     0.8199 0.168 0.804 0.000 0.028 0.000 0.000
#> GSM564730     1  0.2003     0.7856 0.884 0.116 0.000 0.000 0.000 0.000
#> GSM564731     4  0.2907     0.8579 0.020 0.152 0.000 0.828 0.000 0.000
#> GSM564732     2  0.3126     0.8713 0.248 0.752 0.000 0.000 0.000 0.000
#> GSM564733     4  0.2170     0.8935 0.012 0.100 0.000 0.888 0.000 0.000
#> GSM564734     2  0.3198     0.8680 0.260 0.740 0.000 0.000 0.000 0.000
#> GSM564735     4  0.0713     0.9184 0.000 0.028 0.000 0.972 0.000 0.000
#> GSM564736     4  0.0363     0.9182 0.000 0.012 0.000 0.988 0.000 0.000
#> GSM564737     1  0.0000     0.9162 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564738     4  0.0865     0.9177 0.000 0.036 0.000 0.964 0.000 0.000
#> GSM564739     4  0.1007     0.9171 0.000 0.044 0.000 0.956 0.000 0.000
#> GSM564740     4  0.3371     0.7840 0.000 0.292 0.000 0.708 0.000 0.000
#> GSM564741     4  0.0790     0.9182 0.000 0.032 0.000 0.968 0.000 0.000
#> GSM564742     4  0.0790     0.9118 0.000 0.032 0.000 0.968 0.000 0.000
#> GSM564743     1  0.2416     0.7173 0.844 0.156 0.000 0.000 0.000 0.000
#> GSM564744     1  0.0000     0.9162 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564745     2  0.3244     0.8630 0.268 0.732 0.000 0.000 0.000 0.000
#> GSM564746     1  0.0508     0.9027 0.984 0.004 0.000 0.012 0.000 0.000
#> GSM564747     4  0.2692     0.8646 0.012 0.148 0.000 0.840 0.000 0.000
#> GSM564748     4  0.0790     0.9118 0.000 0.032 0.000 0.968 0.000 0.000
#> GSM564749     1  0.0000     0.9162 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564750     4  0.0865     0.9177 0.000 0.036 0.000 0.964 0.000 0.000
#> GSM564751     4  0.0790     0.9118 0.000 0.032 0.000 0.968 0.000 0.000
#> GSM564752     4  0.0937     0.9172 0.000 0.040 0.000 0.960 0.000 0.000
#> GSM564753     4  0.0790     0.9118 0.000 0.032 0.000 0.968 0.000 0.000
#> GSM564754     1  0.2996     0.5609 0.772 0.228 0.000 0.000 0.000 0.000
#> GSM564755     4  0.3371     0.7840 0.000 0.292 0.000 0.708 0.000 0.000
#> GSM564756     1  0.0000     0.9162 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564757     2  0.3213     0.8111 0.160 0.808 0.000 0.032 0.000 0.000
#> GSM564758     4  0.3371     0.7840 0.000 0.292 0.000 0.708 0.000 0.000
#> GSM564759     4  0.0790     0.9118 0.000 0.032 0.000 0.968 0.000 0.000
#> GSM564760     2  0.3101     0.8694 0.244 0.756 0.000 0.000 0.000 0.000
#> GSM564761     1  0.0000     0.9162 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564762     2  0.4691     0.4778 0.108 0.672 0.000 0.220 0.000 0.000
#> GSM564681     6  0.2454     0.8291 0.000 0.000 0.000 0.000 0.160 0.840
#> GSM564693     5  0.0000     0.9412 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564646     6  0.2340     0.8399 0.000 0.000 0.000 0.000 0.148 0.852
#> GSM564699     6  0.0000     0.8850 0.000 0.000 0.000 0.000 0.000 1.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n genotype/variation(p) disease.state(p) k
#> SD:mclust 154                0.9246            0.476 2
#> SD:mclust 136                0.0629            0.195 3
#> SD:mclust 141                0.0107            0.397 4
#> SD:mclust 150                0.1017            0.378 5
#> SD:mclust 148                0.2049            0.686 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 154 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.672           0.814       0.919         0.4923 0.501   0.501
#> 3 3 0.655           0.857       0.904         0.3231 0.672   0.443
#> 4 4 0.935           0.913       0.961         0.1129 0.880   0.681
#> 5 5 0.692           0.668       0.815         0.0763 0.892   0.657
#> 6 6 0.653           0.542       0.722         0.0453 0.939   0.757

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM564615     1  0.0376     0.9313 0.996 0.004
#> GSM564616     1  0.2603     0.9079 0.956 0.044
#> GSM564617     1  0.2778     0.9044 0.952 0.048
#> GSM564618     1  0.2236     0.9141 0.964 0.036
#> GSM564619     1  0.0376     0.9313 0.996 0.004
#> GSM564620     1  0.0000     0.9307 1.000 0.000
#> GSM564621     1  0.0376     0.9313 0.996 0.004
#> GSM564622     2  0.7299     0.7393 0.204 0.796
#> GSM564623     1  0.1184     0.9245 0.984 0.016
#> GSM564624     1  0.3114     0.8973 0.944 0.056
#> GSM564625     1  0.0376     0.9313 0.996 0.004
#> GSM564626     1  0.0376     0.9313 0.996 0.004
#> GSM564627     1  0.0000     0.9307 1.000 0.000
#> GSM564628     1  0.1843     0.9179 0.972 0.028
#> GSM564629     1  0.0376     0.9313 0.996 0.004
#> GSM564630     1  0.2043     0.9159 0.968 0.032
#> GSM564609     2  0.0376     0.8802 0.004 0.996
#> GSM564610     1  0.0000     0.9307 1.000 0.000
#> GSM564611     1  0.0672     0.9273 0.992 0.008
#> GSM564612     2  0.0000     0.8808 0.000 1.000
#> GSM564613     2  0.0376     0.8802 0.004 0.996
#> GSM564614     1  0.0376     0.9313 0.996 0.004
#> GSM564631     2  0.0672     0.8818 0.008 0.992
#> GSM564632     2  0.0672     0.8801 0.008 0.992
#> GSM564633     2  0.0672     0.8818 0.008 0.992
#> GSM564634     2  0.1633     0.8753 0.024 0.976
#> GSM564635     2  0.0000     0.8808 0.000 1.000
#> GSM564636     2  0.0672     0.8818 0.008 0.992
#> GSM564637     2  0.0376     0.8802 0.004 0.996
#> GSM564638     2  0.0938     0.8807 0.012 0.988
#> GSM564639     2  0.0672     0.8818 0.008 0.992
#> GSM564640     1  0.3114     0.8975 0.944 0.056
#> GSM564641     2  0.0672     0.8818 0.008 0.992
#> GSM564642     2  0.7299     0.7393 0.204 0.796
#> GSM564643     2  0.1184     0.8784 0.016 0.984
#> GSM564644     2  0.7376     0.7352 0.208 0.792
#> GSM564645     2  0.0672     0.8818 0.008 0.992
#> GSM564647     2  0.0376     0.8802 0.004 0.996
#> GSM564648     2  0.9754     0.4024 0.408 0.592
#> GSM564649     2  0.0000     0.8808 0.000 1.000
#> GSM564650     1  0.9963     0.0134 0.536 0.464
#> GSM564651     2  0.0672     0.8801 0.008 0.992
#> GSM564652     1  0.8499     0.5758 0.724 0.276
#> GSM564653     2  1.0000     0.1305 0.496 0.504
#> GSM564654     2  0.0000     0.8808 0.000 1.000
#> GSM564655     2  0.0376     0.8802 0.004 0.996
#> GSM564656     2  0.0672     0.8818 0.008 0.992
#> GSM564657     2  0.0672     0.8818 0.008 0.992
#> GSM564658     2  0.9833     0.3628 0.424 0.576
#> GSM564659     2  0.0376     0.8802 0.004 0.996
#> GSM564660     1  0.9286     0.4176 0.656 0.344
#> GSM564661     1  0.8763     0.5336 0.704 0.296
#> GSM564662     2  0.0672     0.8818 0.008 0.992
#> GSM564663     2  0.8207     0.6784 0.256 0.744
#> GSM564664     2  0.7674     0.7170 0.224 0.776
#> GSM564665     2  0.0376     0.8802 0.004 0.996
#> GSM564666     2  0.4939     0.8311 0.108 0.892
#> GSM564667     2  0.0672     0.8818 0.008 0.992
#> GSM564668     2  0.0376     0.8802 0.004 0.996
#> GSM564669     2  0.0672     0.8818 0.008 0.992
#> GSM564670     2  0.0376     0.8802 0.004 0.996
#> GSM564671     1  0.1184     0.9245 0.984 0.016
#> GSM564672     2  0.0672     0.8818 0.008 0.992
#> GSM564673     2  0.9993     0.1759 0.484 0.516
#> GSM564674     2  0.8661     0.6318 0.288 0.712
#> GSM564675     1  0.1414     0.9226 0.980 0.020
#> GSM564676     1  0.9977    -0.0293 0.528 0.472
#> GSM564677     1  0.1843     0.9179 0.972 0.028
#> GSM564678     2  0.9993     0.1772 0.484 0.516
#> GSM564679     1  0.4022     0.8743 0.920 0.080
#> GSM564680     2  0.0672     0.8818 0.008 0.992
#> GSM564682     2  0.0000     0.8808 0.000 1.000
#> GSM564683     2  0.0938     0.8807 0.012 0.988
#> GSM564684     1  0.1414     0.9226 0.980 0.020
#> GSM564685     2  0.0672     0.8818 0.008 0.992
#> GSM564686     1  0.1184     0.9245 0.984 0.016
#> GSM564687     2  0.9922     0.2931 0.448 0.552
#> GSM564688     2  0.7528     0.7265 0.216 0.784
#> GSM564689     1  0.2603     0.9075 0.956 0.044
#> GSM564690     2  0.9580     0.4698 0.380 0.620
#> GSM564691     2  0.0376     0.8802 0.004 0.996
#> GSM564692     2  0.7528     0.7265 0.216 0.784
#> GSM564694     2  0.6438     0.7772 0.164 0.836
#> GSM564695     2  0.1633     0.8755 0.024 0.976
#> GSM564696     2  0.0938     0.8807 0.012 0.988
#> GSM564697     1  0.9881     0.1236 0.564 0.436
#> GSM564698     2  0.0672     0.8818 0.008 0.992
#> GSM564700     1  0.1184     0.9245 0.984 0.016
#> GSM564701     2  0.9754     0.4040 0.408 0.592
#> GSM564702     1  0.2236     0.9131 0.964 0.036
#> GSM564703     2  0.3431     0.8535 0.064 0.936
#> GSM564704     1  0.0376     0.9313 0.996 0.004
#> GSM564705     1  0.0000     0.9307 1.000 0.000
#> GSM564706     2  0.2778     0.8637 0.048 0.952
#> GSM564707     1  0.0376     0.9313 0.996 0.004
#> GSM564708     2  0.5059     0.8169 0.112 0.888
#> GSM564709     1  0.0376     0.9313 0.996 0.004
#> GSM564710     1  0.0376     0.9292 0.996 0.004
#> GSM564711     1  0.5059     0.8270 0.888 0.112
#> GSM564712     1  0.0376     0.9313 0.996 0.004
#> GSM564713     1  0.9754     0.2905 0.592 0.408
#> GSM564714     2  0.1843     0.8738 0.028 0.972
#> GSM564715     1  0.0376     0.9313 0.996 0.004
#> GSM564716     1  0.0376     0.9313 0.996 0.004
#> GSM564717     1  0.0376     0.9313 0.996 0.004
#> GSM564718     1  0.1184     0.9242 0.984 0.016
#> GSM564719     1  0.0000     0.9307 1.000 0.000
#> GSM564720     1  0.0000     0.9307 1.000 0.000
#> GSM564721     1  0.0000     0.9307 1.000 0.000
#> GSM564722     1  0.0376     0.9313 0.996 0.004
#> GSM564723     1  0.0376     0.9313 0.996 0.004
#> GSM564724     1  0.7299     0.7053 0.796 0.204
#> GSM564725     1  0.0376     0.9313 0.996 0.004
#> GSM564726     1  0.2043     0.9113 0.968 0.032
#> GSM564727     1  0.0376     0.9313 0.996 0.004
#> GSM564728     1  0.0376     0.9313 0.996 0.004
#> GSM564729     1  0.0376     0.9313 0.996 0.004
#> GSM564730     1  0.0000     0.9307 1.000 0.000
#> GSM564731     1  0.0376     0.9313 0.996 0.004
#> GSM564732     1  0.0376     0.9313 0.996 0.004
#> GSM564733     1  0.0938     0.9270 0.988 0.012
#> GSM564734     1  0.0376     0.9313 0.996 0.004
#> GSM564735     1  0.9129     0.4875 0.672 0.328
#> GSM564736     1  0.9909     0.1776 0.556 0.444
#> GSM564737     1  0.0376     0.9313 0.996 0.004
#> GSM564738     2  0.7376     0.7072 0.208 0.792
#> GSM564739     2  0.9909     0.2101 0.444 0.556
#> GSM564740     1  0.0376     0.9313 0.996 0.004
#> GSM564741     2  0.4298     0.8347 0.088 0.912
#> GSM564742     2  0.1414     0.8774 0.020 0.980
#> GSM564743     1  0.0000     0.9307 1.000 0.000
#> GSM564744     1  0.0000     0.9307 1.000 0.000
#> GSM564745     1  0.0376     0.9313 0.996 0.004
#> GSM564746     1  0.0376     0.9313 0.996 0.004
#> GSM564747     1  0.0376     0.9313 0.996 0.004
#> GSM564748     2  0.1843     0.8738 0.028 0.972
#> GSM564749     1  0.0000     0.9307 1.000 0.000
#> GSM564750     1  0.6438     0.7606 0.836 0.164
#> GSM564751     2  0.2043     0.8724 0.032 0.968
#> GSM564752     1  0.6712     0.7443 0.824 0.176
#> GSM564753     2  0.1414     0.8774 0.020 0.980
#> GSM564754     1  0.0376     0.9313 0.996 0.004
#> GSM564755     1  0.0376     0.9313 0.996 0.004
#> GSM564756     1  0.0000     0.9307 1.000 0.000
#> GSM564757     1  0.0376     0.9313 0.996 0.004
#> GSM564758     1  0.0376     0.9313 0.996 0.004
#> GSM564759     2  0.2043     0.8722 0.032 0.968
#> GSM564760     1  0.0376     0.9313 0.996 0.004
#> GSM564761     1  0.0672     0.9273 0.992 0.008
#> GSM564762     1  0.0376     0.9313 0.996 0.004
#> GSM564681     1  0.1414     0.9226 0.980 0.020
#> GSM564693     2  0.9732     0.4133 0.404 0.596
#> GSM564646     1  0.1414     0.9226 0.980 0.020
#> GSM564699     2  0.0938     0.8807 0.012 0.988

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM564615     1  0.1129      0.888 0.976 0.020 0.004
#> GSM564616     2  0.0892      0.875 0.020 0.980 0.000
#> GSM564617     2  0.0983      0.877 0.016 0.980 0.004
#> GSM564618     2  0.3482      0.831 0.128 0.872 0.000
#> GSM564619     1  0.3267      0.923 0.884 0.116 0.000
#> GSM564620     1  0.3267      0.923 0.884 0.116 0.000
#> GSM564621     1  0.2537      0.921 0.920 0.080 0.000
#> GSM564622     2  0.3192      0.865 0.000 0.888 0.112
#> GSM564623     2  0.6345      0.478 0.400 0.596 0.004
#> GSM564624     2  0.2998      0.876 0.016 0.916 0.068
#> GSM564625     1  0.3192      0.923 0.888 0.112 0.000
#> GSM564626     1  0.3267      0.923 0.884 0.116 0.000
#> GSM564627     1  0.2537      0.921 0.920 0.080 0.000
#> GSM564628     2  0.0983      0.877 0.016 0.980 0.004
#> GSM564629     1  0.3267      0.923 0.884 0.116 0.000
#> GSM564630     2  0.0892      0.875 0.020 0.980 0.000
#> GSM564609     2  0.3941      0.843 0.000 0.844 0.156
#> GSM564610     1  0.3267      0.923 0.884 0.116 0.000
#> GSM564611     1  0.3267      0.923 0.884 0.116 0.000
#> GSM564612     2  0.6168      0.445 0.000 0.588 0.412
#> GSM564613     2  0.3551      0.855 0.000 0.868 0.132
#> GSM564614     1  0.1525      0.883 0.964 0.032 0.004
#> GSM564631     3  0.0237      0.934 0.000 0.004 0.996
#> GSM564632     2  0.3425      0.859 0.004 0.884 0.112
#> GSM564633     3  0.0237      0.934 0.000 0.004 0.996
#> GSM564634     2  0.3551      0.855 0.000 0.868 0.132
#> GSM564635     3  0.0424      0.931 0.000 0.008 0.992
#> GSM564636     3  0.0237      0.934 0.000 0.004 0.996
#> GSM564637     2  0.3551      0.855 0.000 0.868 0.132
#> GSM564638     3  0.0237      0.934 0.000 0.004 0.996
#> GSM564639     3  0.0237      0.934 0.000 0.004 0.996
#> GSM564640     2  0.0892      0.875 0.020 0.980 0.000
#> GSM564641     3  0.0237      0.934 0.000 0.004 0.996
#> GSM564642     2  0.2173      0.880 0.008 0.944 0.048
#> GSM564643     2  0.3715      0.856 0.004 0.868 0.128
#> GSM564644     2  0.1647      0.867 0.036 0.960 0.004
#> GSM564645     3  0.0237      0.934 0.000 0.004 0.996
#> GSM564647     2  0.3941      0.843 0.000 0.844 0.156
#> GSM564648     2  0.1878      0.880 0.004 0.952 0.044
#> GSM564649     3  0.0237      0.934 0.000 0.004 0.996
#> GSM564650     2  0.4217      0.861 0.032 0.868 0.100
#> GSM564651     2  0.3816      0.848 0.000 0.852 0.148
#> GSM564652     2  0.0892      0.875 0.020 0.980 0.000
#> GSM564653     2  0.0829      0.878 0.012 0.984 0.004
#> GSM564654     3  0.1411      0.907 0.000 0.036 0.964
#> GSM564655     2  0.3941      0.844 0.000 0.844 0.156
#> GSM564656     3  0.0237      0.934 0.000 0.004 0.996
#> GSM564657     3  0.0237      0.934 0.000 0.004 0.996
#> GSM564658     2  0.1015      0.878 0.012 0.980 0.008
#> GSM564659     2  0.3879      0.845 0.000 0.848 0.152
#> GSM564660     2  0.3618      0.840 0.104 0.884 0.012
#> GSM564661     2  0.0892      0.875 0.020 0.980 0.000
#> GSM564662     3  0.0237      0.934 0.000 0.004 0.996
#> GSM564663     2  0.0747      0.877 0.016 0.984 0.000
#> GSM564664     2  0.1636      0.875 0.020 0.964 0.016
#> GSM564665     2  0.3941      0.843 0.000 0.844 0.156
#> GSM564666     2  0.5470      0.788 0.168 0.796 0.036
#> GSM564667     3  0.0237      0.934 0.000 0.004 0.996
#> GSM564668     2  0.3941      0.843 0.000 0.844 0.156
#> GSM564669     3  0.0237      0.934 0.000 0.004 0.996
#> GSM564670     2  0.3686      0.852 0.000 0.860 0.140
#> GSM564671     2  0.6451      0.387 0.436 0.560 0.004
#> GSM564672     3  0.0237      0.934 0.000 0.004 0.996
#> GSM564673     2  0.0829      0.878 0.012 0.984 0.004
#> GSM564674     2  0.1765      0.880 0.004 0.956 0.040
#> GSM564675     2  0.4233      0.812 0.160 0.836 0.004
#> GSM564676     2  0.1031      0.874 0.024 0.976 0.000
#> GSM564677     2  0.0892      0.875 0.020 0.980 0.000
#> GSM564678     2  0.1267      0.874 0.024 0.972 0.004
#> GSM564679     2  0.0892      0.875 0.020 0.980 0.000
#> GSM564680     3  0.0237      0.934 0.000 0.004 0.996
#> GSM564682     2  0.4504      0.809 0.000 0.804 0.196
#> GSM564683     3  0.0237      0.934 0.000 0.004 0.996
#> GSM564684     2  0.5623      0.697 0.280 0.716 0.004
#> GSM564685     3  0.0237      0.934 0.000 0.004 0.996
#> GSM564686     2  0.6298      0.505 0.388 0.608 0.004
#> GSM564687     2  0.0829      0.878 0.012 0.984 0.004
#> GSM564688     2  0.3551      0.855 0.000 0.868 0.132
#> GSM564689     2  0.0848      0.879 0.008 0.984 0.008
#> GSM564690     2  0.1182      0.878 0.012 0.976 0.012
#> GSM564691     2  0.5327      0.714 0.000 0.728 0.272
#> GSM564692     2  0.2537      0.874 0.000 0.920 0.080
#> GSM564694     2  0.3551      0.855 0.000 0.868 0.132
#> GSM564695     2  0.4253      0.857 0.048 0.872 0.080
#> GSM564696     3  0.0237      0.934 0.000 0.004 0.996
#> GSM564697     2  0.0747      0.879 0.000 0.984 0.016
#> GSM564698     3  0.0892      0.922 0.000 0.020 0.980
#> GSM564700     2  0.6345      0.478 0.400 0.596 0.004
#> GSM564701     2  0.1765      0.865 0.040 0.956 0.004
#> GSM564702     2  0.0848      0.879 0.008 0.984 0.008
#> GSM564703     3  0.5588      0.763 0.124 0.068 0.808
#> GSM564704     1  0.1289      0.909 0.968 0.032 0.000
#> GSM564705     1  0.3267      0.923 0.884 0.116 0.000
#> GSM564706     3  0.6018      0.526 0.308 0.008 0.684
#> GSM564707     1  0.3267      0.923 0.884 0.116 0.000
#> GSM564708     1  0.6599      0.789 0.748 0.084 0.168
#> GSM564709     1  0.1529      0.912 0.960 0.040 0.000
#> GSM564710     1  0.3267      0.923 0.884 0.116 0.000
#> GSM564711     1  0.1337      0.885 0.972 0.012 0.016
#> GSM564712     1  0.3267      0.923 0.884 0.116 0.000
#> GSM564713     1  0.5285      0.613 0.752 0.004 0.244
#> GSM564714     3  0.1289      0.911 0.032 0.000 0.968
#> GSM564715     1  0.3267      0.923 0.884 0.116 0.000
#> GSM564716     1  0.2448      0.920 0.924 0.076 0.000
#> GSM564717     1  0.3267      0.923 0.884 0.116 0.000
#> GSM564718     1  0.1337      0.885 0.972 0.016 0.012
#> GSM564719     1  0.3267      0.923 0.884 0.116 0.000
#> GSM564720     1  0.3267      0.923 0.884 0.116 0.000
#> GSM564721     1  0.3267      0.923 0.884 0.116 0.000
#> GSM564722     1  0.0983      0.888 0.980 0.016 0.004
#> GSM564723     1  0.3267      0.923 0.884 0.116 0.000
#> GSM564724     1  0.1636      0.881 0.964 0.016 0.020
#> GSM564725     1  0.2878      0.923 0.904 0.096 0.000
#> GSM564726     1  0.1711      0.881 0.960 0.032 0.008
#> GSM564727     1  0.0983      0.888 0.980 0.016 0.004
#> GSM564728     1  0.1765      0.879 0.956 0.040 0.004
#> GSM564729     1  0.1129      0.887 0.976 0.020 0.004
#> GSM564730     1  0.3267      0.923 0.884 0.116 0.000
#> GSM564731     1  0.3193      0.923 0.896 0.100 0.004
#> GSM564732     1  0.1031      0.907 0.976 0.024 0.000
#> GSM564733     1  0.0983      0.902 0.980 0.016 0.004
#> GSM564734     1  0.3267      0.923 0.884 0.116 0.000
#> GSM564735     3  0.6721      0.443 0.380 0.016 0.604
#> GSM564736     1  0.6081      0.396 0.652 0.004 0.344
#> GSM564737     1  0.3267      0.923 0.884 0.116 0.000
#> GSM564738     3  0.3995      0.831 0.116 0.016 0.868
#> GSM564739     1  0.7458      0.734 0.692 0.112 0.196
#> GSM564740     1  0.1765      0.879 0.956 0.040 0.004
#> GSM564741     3  0.3995      0.831 0.116 0.016 0.868
#> GSM564742     3  0.0000      0.932 0.000 0.000 1.000
#> GSM564743     1  0.3267      0.923 0.884 0.116 0.000
#> GSM564744     1  0.3267      0.923 0.884 0.116 0.000
#> GSM564745     1  0.3267      0.923 0.884 0.116 0.000
#> GSM564746     1  0.3267      0.923 0.884 0.116 0.000
#> GSM564747     1  0.0237      0.895 0.996 0.000 0.004
#> GSM564748     3  0.0000      0.932 0.000 0.000 1.000
#> GSM564749     1  0.3267      0.923 0.884 0.116 0.000
#> GSM564750     1  0.1905      0.877 0.956 0.016 0.028
#> GSM564751     3  0.5554      0.770 0.112 0.076 0.812
#> GSM564752     1  0.4371      0.797 0.860 0.032 0.108
#> GSM564753     3  0.0000      0.932 0.000 0.000 1.000
#> GSM564754     1  0.3267      0.923 0.884 0.116 0.000
#> GSM564755     1  0.1765      0.879 0.956 0.040 0.004
#> GSM564756     1  0.3267      0.923 0.884 0.116 0.000
#> GSM564757     1  0.1647      0.882 0.960 0.036 0.004
#> GSM564758     1  0.1525      0.883 0.964 0.032 0.004
#> GSM564759     3  0.0237      0.930 0.000 0.004 0.996
#> GSM564760     1  0.0237      0.895 0.996 0.000 0.004
#> GSM564761     1  0.3267      0.923 0.884 0.116 0.000
#> GSM564762     1  0.2356      0.920 0.928 0.072 0.000
#> GSM564681     2  0.3551      0.829 0.132 0.868 0.000
#> GSM564693     2  0.2878      0.870 0.000 0.904 0.096
#> GSM564646     2  0.4682      0.787 0.192 0.804 0.004
#> GSM564699     3  0.8820      0.117 0.116 0.408 0.476

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM564615     4  0.4072      0.666 0.252 0.000 0.000 0.748
#> GSM564616     2  0.0000      0.967 0.000 1.000 0.000 0.000
#> GSM564617     2  0.0188      0.967 0.000 0.996 0.000 0.004
#> GSM564618     2  0.4072      0.679 0.000 0.748 0.000 0.252
#> GSM564619     1  0.0336      0.953 0.992 0.000 0.000 0.008
#> GSM564620     1  0.0188      0.955 0.996 0.000 0.000 0.004
#> GSM564621     1  0.0188      0.955 0.996 0.000 0.000 0.004
#> GSM564622     2  0.0000      0.967 0.000 1.000 0.000 0.000
#> GSM564623     4  0.0469      0.908 0.000 0.012 0.000 0.988
#> GSM564624     2  0.0000      0.967 0.000 1.000 0.000 0.000
#> GSM564625     1  0.0188      0.955 0.996 0.000 0.000 0.004
#> GSM564626     1  0.0336      0.954 0.992 0.000 0.000 0.008
#> GSM564627     1  0.0188      0.955 0.996 0.000 0.000 0.004
#> GSM564628     2  0.0000      0.967 0.000 1.000 0.000 0.000
#> GSM564629     1  0.0336      0.954 0.992 0.000 0.000 0.008
#> GSM564630     2  0.0524      0.965 0.004 0.988 0.000 0.008
#> GSM564609     2  0.0000      0.967 0.000 1.000 0.000 0.000
#> GSM564610     1  0.0000      0.955 1.000 0.000 0.000 0.000
#> GSM564611     1  0.0336      0.953 0.992 0.000 0.000 0.008
#> GSM564612     2  0.4624      0.504 0.000 0.660 0.340 0.000
#> GSM564613     2  0.0000      0.967 0.000 1.000 0.000 0.000
#> GSM564614     4  0.3801      0.713 0.220 0.000 0.000 0.780
#> GSM564631     3  0.0000      0.978 0.000 0.000 1.000 0.000
#> GSM564632     2  0.1867      0.911 0.000 0.928 0.000 0.072
#> GSM564633     3  0.0000      0.978 0.000 0.000 1.000 0.000
#> GSM564634     2  0.0000      0.967 0.000 1.000 0.000 0.000
#> GSM564635     3  0.0000      0.978 0.000 0.000 1.000 0.000
#> GSM564636     3  0.0469      0.966 0.000 0.012 0.988 0.000
#> GSM564637     2  0.0469      0.961 0.000 0.988 0.000 0.012
#> GSM564638     3  0.0000      0.978 0.000 0.000 1.000 0.000
#> GSM564639     3  0.0000      0.978 0.000 0.000 1.000 0.000
#> GSM564640     2  0.0376      0.967 0.004 0.992 0.000 0.004
#> GSM564641     3  0.0188      0.974 0.000 0.004 0.996 0.000
#> GSM564642     2  0.0524      0.965 0.004 0.988 0.000 0.008
#> GSM564643     2  0.2469      0.870 0.000 0.892 0.000 0.108
#> GSM564644     2  0.0524      0.965 0.004 0.988 0.000 0.008
#> GSM564645     3  0.0000      0.978 0.000 0.000 1.000 0.000
#> GSM564647     2  0.0469      0.962 0.000 0.988 0.012 0.000
#> GSM564648     2  0.0000      0.967 0.000 1.000 0.000 0.000
#> GSM564649     3  0.0000      0.978 0.000 0.000 1.000 0.000
#> GSM564650     2  0.0000      0.967 0.000 1.000 0.000 0.000
#> GSM564651     2  0.0376      0.967 0.004 0.992 0.000 0.004
#> GSM564652     2  0.0000      0.967 0.000 1.000 0.000 0.000
#> GSM564653     2  0.0376      0.967 0.004 0.992 0.000 0.004
#> GSM564654     3  0.0592      0.961 0.000 0.016 0.984 0.000
#> GSM564655     2  0.0000      0.967 0.000 1.000 0.000 0.000
#> GSM564656     3  0.0000      0.978 0.000 0.000 1.000 0.000
#> GSM564657     3  0.0000      0.978 0.000 0.000 1.000 0.000
#> GSM564658     2  0.0524      0.965 0.004 0.988 0.000 0.008
#> GSM564659     2  0.0000      0.967 0.000 1.000 0.000 0.000
#> GSM564660     2  0.1792      0.915 0.000 0.932 0.000 0.068
#> GSM564661     2  0.0524      0.965 0.004 0.988 0.000 0.008
#> GSM564662     3  0.0000      0.978 0.000 0.000 1.000 0.000
#> GSM564663     2  0.0524      0.965 0.004 0.988 0.000 0.008
#> GSM564664     2  0.0524      0.965 0.004 0.988 0.000 0.008
#> GSM564665     2  0.0000      0.967 0.000 1.000 0.000 0.000
#> GSM564666     4  0.0469      0.908 0.000 0.012 0.000 0.988
#> GSM564667     3  0.0000      0.978 0.000 0.000 1.000 0.000
#> GSM564668     2  0.0188      0.966 0.000 0.996 0.004 0.000
#> GSM564669     3  0.0000      0.978 0.000 0.000 1.000 0.000
#> GSM564670     2  0.0000      0.967 0.000 1.000 0.000 0.000
#> GSM564671     4  0.0469      0.908 0.000 0.012 0.000 0.988
#> GSM564672     3  0.0000      0.978 0.000 0.000 1.000 0.000
#> GSM564673     2  0.0376      0.967 0.004 0.992 0.000 0.004
#> GSM564674     2  0.0376      0.967 0.004 0.992 0.000 0.004
#> GSM564675     4  0.0469      0.908 0.000 0.012 0.000 0.988
#> GSM564676     2  0.0524      0.965 0.004 0.988 0.000 0.008
#> GSM564677     2  0.0000      0.967 0.000 1.000 0.000 0.000
#> GSM564678     2  0.0524      0.965 0.004 0.988 0.000 0.008
#> GSM564679     2  0.0524      0.965 0.004 0.988 0.000 0.008
#> GSM564680     3  0.0000      0.978 0.000 0.000 1.000 0.000
#> GSM564682     2  0.0707      0.957 0.000 0.980 0.020 0.000
#> GSM564683     3  0.0000      0.978 0.000 0.000 1.000 0.000
#> GSM564684     4  0.0469      0.908 0.000 0.012 0.000 0.988
#> GSM564685     3  0.0000      0.978 0.000 0.000 1.000 0.000
#> GSM564686     4  0.0469      0.908 0.000 0.012 0.000 0.988
#> GSM564687     2  0.0188      0.967 0.004 0.996 0.000 0.000
#> GSM564688     2  0.0000      0.967 0.000 1.000 0.000 0.000
#> GSM564689     2  0.0188      0.967 0.004 0.996 0.000 0.000
#> GSM564690     2  0.0524      0.965 0.004 0.988 0.000 0.008
#> GSM564691     2  0.1211      0.940 0.000 0.960 0.040 0.000
#> GSM564692     2  0.0000      0.967 0.000 1.000 0.000 0.000
#> GSM564694     2  0.0000      0.967 0.000 1.000 0.000 0.000
#> GSM564695     2  0.4866      0.352 0.000 0.596 0.000 0.404
#> GSM564696     3  0.0000      0.978 0.000 0.000 1.000 0.000
#> GSM564697     2  0.0000      0.967 0.000 1.000 0.000 0.000
#> GSM564698     3  0.0469      0.967 0.000 0.012 0.988 0.000
#> GSM564700     4  0.0469      0.908 0.000 0.012 0.000 0.988
#> GSM564701     2  0.0524      0.965 0.004 0.988 0.000 0.008
#> GSM564702     2  0.0000      0.967 0.000 1.000 0.000 0.000
#> GSM564703     1  0.4222      0.645 0.728 0.000 0.272 0.000
#> GSM564704     1  0.0188      0.955 0.996 0.000 0.000 0.004
#> GSM564705     1  0.0336      0.953 0.992 0.000 0.000 0.008
#> GSM564706     1  0.2408      0.869 0.896 0.000 0.104 0.000
#> GSM564707     1  0.0188      0.954 0.996 0.000 0.000 0.004
#> GSM564708     1  0.0469      0.950 0.988 0.000 0.012 0.000
#> GSM564709     1  0.0188      0.955 0.996 0.000 0.000 0.004
#> GSM564710     1  0.0188      0.954 0.996 0.000 0.000 0.004
#> GSM564711     1  0.0657      0.949 0.984 0.000 0.012 0.004
#> GSM564712     1  0.0336      0.953 0.992 0.000 0.000 0.008
#> GSM564713     1  0.4761      0.530 0.664 0.000 0.332 0.004
#> GSM564714     3  0.0000      0.978 0.000 0.000 1.000 0.000
#> GSM564715     1  0.0188      0.955 0.996 0.000 0.000 0.004
#> GSM564716     1  0.0188      0.955 0.996 0.000 0.000 0.004
#> GSM564717     1  0.0336      0.953 0.992 0.000 0.000 0.008
#> GSM564718     1  0.1118      0.934 0.964 0.000 0.000 0.036
#> GSM564719     1  0.0336      0.953 0.992 0.000 0.000 0.008
#> GSM564720     1  0.0336      0.953 0.992 0.000 0.000 0.008
#> GSM564721     1  0.0000      0.955 1.000 0.000 0.000 0.000
#> GSM564722     1  0.4830      0.330 0.608 0.000 0.000 0.392
#> GSM564723     1  0.0336      0.953 0.992 0.000 0.000 0.008
#> GSM564724     1  0.2999      0.833 0.864 0.000 0.132 0.004
#> GSM564725     1  0.0188      0.955 0.996 0.000 0.000 0.004
#> GSM564726     4  0.0336      0.907 0.008 0.000 0.000 0.992
#> GSM564727     1  0.3266      0.785 0.832 0.000 0.000 0.168
#> GSM564728     4  0.0336      0.907 0.008 0.000 0.000 0.992
#> GSM564729     4  0.4804      0.385 0.384 0.000 0.000 0.616
#> GSM564730     1  0.0000      0.955 1.000 0.000 0.000 0.000
#> GSM564731     1  0.0188      0.955 0.996 0.000 0.000 0.004
#> GSM564732     1  0.0188      0.955 0.996 0.000 0.000 0.004
#> GSM564733     1  0.0188      0.955 0.996 0.000 0.000 0.004
#> GSM564734     1  0.0188      0.955 0.996 0.000 0.000 0.004
#> GSM564735     4  0.5285      0.075 0.008 0.000 0.468 0.524
#> GSM564736     3  0.1109      0.944 0.028 0.000 0.968 0.004
#> GSM564737     1  0.0336      0.953 0.992 0.000 0.000 0.008
#> GSM564738     3  0.5132      0.138 0.004 0.000 0.548 0.448
#> GSM564739     1  0.1022      0.936 0.968 0.000 0.032 0.000
#> GSM564740     4  0.0336      0.907 0.008 0.000 0.000 0.992
#> GSM564741     3  0.0000      0.978 0.000 0.000 1.000 0.000
#> GSM564742     3  0.0000      0.978 0.000 0.000 1.000 0.000
#> GSM564743     1  0.0188      0.955 0.996 0.000 0.000 0.004
#> GSM564744     1  0.0336      0.953 0.992 0.000 0.000 0.008
#> GSM564745     1  0.0188      0.955 0.996 0.000 0.000 0.004
#> GSM564746     1  0.0336      0.953 0.992 0.000 0.000 0.008
#> GSM564747     1  0.0188      0.955 0.996 0.000 0.000 0.004
#> GSM564748     3  0.0000      0.978 0.000 0.000 1.000 0.000
#> GSM564749     1  0.0336      0.953 0.992 0.000 0.000 0.008
#> GSM564750     4  0.2216      0.847 0.092 0.000 0.000 0.908
#> GSM564751     1  0.2469      0.865 0.892 0.000 0.108 0.000
#> GSM564752     4  0.0336      0.907 0.008 0.000 0.000 0.992
#> GSM564753     3  0.0000      0.978 0.000 0.000 1.000 0.000
#> GSM564754     1  0.0188      0.955 0.996 0.000 0.000 0.004
#> GSM564755     4  0.0336      0.907 0.008 0.000 0.000 0.992
#> GSM564756     1  0.0000      0.955 1.000 0.000 0.000 0.000
#> GSM564757     4  0.0469      0.905 0.012 0.000 0.000 0.988
#> GSM564758     1  0.4406      0.568 0.700 0.000 0.000 0.300
#> GSM564759     3  0.1022      0.942 0.032 0.000 0.968 0.000
#> GSM564760     1  0.1022      0.936 0.968 0.000 0.000 0.032
#> GSM564761     1  0.0336      0.953 0.992 0.000 0.000 0.008
#> GSM564762     1  0.0188      0.955 0.996 0.000 0.000 0.004
#> GSM564681     2  0.2589      0.865 0.000 0.884 0.000 0.116
#> GSM564693     2  0.0000      0.967 0.000 1.000 0.000 0.000
#> GSM564646     4  0.0469      0.908 0.000 0.012 0.000 0.988
#> GSM564699     4  0.0469      0.908 0.000 0.012 0.000 0.988

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM564615     1  0.4836     0.4806 0.612 0.000 0.000 0.356 0.032
#> GSM564616     2  0.3242     0.6829 0.000 0.784 0.000 0.000 0.216
#> GSM564617     2  0.3274     0.6857 0.000 0.780 0.000 0.000 0.220
#> GSM564618     2  0.4781     0.6360 0.000 0.728 0.000 0.112 0.160
#> GSM564619     1  0.3074     0.7420 0.804 0.000 0.000 0.000 0.196
#> GSM564620     1  0.3003     0.7460 0.812 0.000 0.000 0.000 0.188
#> GSM564621     1  0.3300     0.7389 0.792 0.000 0.000 0.004 0.204
#> GSM564622     2  0.3508     0.6750 0.000 0.748 0.000 0.000 0.252
#> GSM564623     4  0.3229     0.7940 0.000 0.032 0.000 0.840 0.128
#> GSM564624     2  0.2329     0.7410 0.000 0.876 0.000 0.000 0.124
#> GSM564625     1  0.3074     0.7420 0.804 0.000 0.000 0.000 0.196
#> GSM564626     1  0.3074     0.7420 0.804 0.000 0.000 0.000 0.196
#> GSM564627     1  0.3300     0.7366 0.792 0.000 0.000 0.004 0.204
#> GSM564628     2  0.3210     0.6847 0.000 0.788 0.000 0.000 0.212
#> GSM564629     1  0.3300     0.7339 0.792 0.004 0.000 0.000 0.204
#> GSM564630     2  0.3305     0.6806 0.000 0.776 0.000 0.000 0.224
#> GSM564609     2  0.4519     0.6685 0.000 0.752 0.100 0.000 0.148
#> GSM564610     1  0.1121     0.7974 0.956 0.000 0.000 0.000 0.044
#> GSM564611     5  0.4294     0.0928 0.468 0.000 0.000 0.000 0.532
#> GSM564612     3  0.4477     0.5748 0.000 0.252 0.708 0.000 0.040
#> GSM564613     2  0.3231     0.7151 0.000 0.800 0.000 0.004 0.196
#> GSM564614     1  0.4949     0.3970 0.572 0.000 0.000 0.396 0.032
#> GSM564631     3  0.0162     0.8988 0.000 0.000 0.996 0.000 0.004
#> GSM564632     2  0.3736     0.7042 0.000 0.824 0.004 0.072 0.100
#> GSM564633     3  0.1484     0.8850 0.000 0.008 0.944 0.000 0.048
#> GSM564634     2  0.1410     0.7240 0.000 0.940 0.000 0.000 0.060
#> GSM564635     3  0.1357     0.8874 0.000 0.004 0.948 0.000 0.048
#> GSM564636     3  0.2341     0.8660 0.000 0.012 0.912 0.020 0.056
#> GSM564637     4  0.5176     0.0133 0.000 0.468 0.000 0.492 0.040
#> GSM564638     3  0.1942     0.8694 0.000 0.000 0.920 0.012 0.068
#> GSM564639     3  0.0880     0.8944 0.000 0.000 0.968 0.000 0.032
#> GSM564640     2  0.2561     0.6546 0.000 0.856 0.000 0.000 0.144
#> GSM564641     3  0.0671     0.8978 0.000 0.004 0.980 0.000 0.016
#> GSM564642     2  0.4256    -0.1680 0.000 0.564 0.000 0.000 0.436
#> GSM564643     2  0.4891     0.6217 0.000 0.740 0.012 0.152 0.096
#> GSM564644     2  0.4307    -0.4740 0.000 0.500 0.000 0.000 0.500
#> GSM564645     3  0.0510     0.8981 0.000 0.000 0.984 0.000 0.016
#> GSM564647     2  0.0566     0.7422 0.000 0.984 0.004 0.000 0.012
#> GSM564648     2  0.2690     0.7354 0.000 0.844 0.000 0.000 0.156
#> GSM564649     3  0.0404     0.8985 0.000 0.000 0.988 0.000 0.012
#> GSM564650     2  0.5316     0.3543 0.000 0.632 0.000 0.284 0.084
#> GSM564651     2  0.1638     0.7390 0.000 0.932 0.004 0.000 0.064
#> GSM564652     2  0.2074     0.7452 0.000 0.896 0.000 0.000 0.104
#> GSM564653     2  0.1671     0.7228 0.000 0.924 0.000 0.000 0.076
#> GSM564654     3  0.4226     0.6998 0.000 0.176 0.764 0.000 0.060
#> GSM564655     2  0.3735     0.6737 0.000 0.816 0.004 0.048 0.132
#> GSM564656     3  0.0609     0.8989 0.000 0.000 0.980 0.000 0.020
#> GSM564657     3  0.0000     0.8991 0.000 0.000 1.000 0.000 0.000
#> GSM564658     2  0.3480     0.4393 0.000 0.752 0.000 0.000 0.248
#> GSM564659     2  0.2438     0.7447 0.000 0.900 0.040 0.000 0.060
#> GSM564660     2  0.5053     0.3869 0.000 0.624 0.000 0.324 0.052
#> GSM564661     2  0.1341     0.7401 0.000 0.944 0.000 0.000 0.056
#> GSM564662     3  0.0000     0.8991 0.000 0.000 1.000 0.000 0.000
#> GSM564663     2  0.4074     0.0107 0.000 0.636 0.000 0.000 0.364
#> GSM564664     5  0.4278     0.4956 0.000 0.452 0.000 0.000 0.548
#> GSM564665     2  0.4886     0.5145 0.000 0.712 0.188 0.000 0.100
#> GSM564666     4  0.2233     0.8357 0.000 0.016 0.000 0.904 0.080
#> GSM564667     3  0.0000     0.8991 0.000 0.000 1.000 0.000 0.000
#> GSM564668     2  0.4559     0.6290 0.000 0.748 0.152 0.000 0.100
#> GSM564669     3  0.0703     0.8985 0.000 0.000 0.976 0.000 0.024
#> GSM564670     2  0.3039     0.7019 0.000 0.808 0.000 0.000 0.192
#> GSM564671     4  0.1430     0.8386 0.000 0.004 0.000 0.944 0.052
#> GSM564672     3  0.0609     0.8979 0.000 0.000 0.980 0.000 0.020
#> GSM564673     2  0.1608     0.7472 0.000 0.928 0.000 0.000 0.072
#> GSM564674     2  0.0794     0.7393 0.000 0.972 0.000 0.000 0.028
#> GSM564675     4  0.1608     0.8398 0.000 0.000 0.000 0.928 0.072
#> GSM564676     5  0.4249     0.5030 0.000 0.432 0.000 0.000 0.568
#> GSM564677     2  0.2813     0.6715 0.000 0.832 0.000 0.000 0.168
#> GSM564678     5  0.4278     0.4962 0.000 0.452 0.000 0.000 0.548
#> GSM564679     5  0.4307     0.4144 0.000 0.496 0.000 0.000 0.504
#> GSM564680     3  0.0609     0.8977 0.000 0.000 0.980 0.000 0.020
#> GSM564682     2  0.3647     0.6503 0.000 0.816 0.132 0.000 0.052
#> GSM564683     3  0.0162     0.8991 0.000 0.000 0.996 0.000 0.004
#> GSM564684     4  0.1386     0.8416 0.000 0.016 0.000 0.952 0.032
#> GSM564685     3  0.0000     0.8991 0.000 0.000 1.000 0.000 0.000
#> GSM564686     4  0.0404     0.8447 0.000 0.000 0.000 0.988 0.012
#> GSM564687     2  0.1341     0.7506 0.000 0.944 0.000 0.000 0.056
#> GSM564688     2  0.1478     0.7379 0.000 0.936 0.000 0.000 0.064
#> GSM564689     5  0.4304     0.4427 0.000 0.484 0.000 0.000 0.516
#> GSM564690     5  0.4291     0.4803 0.000 0.464 0.000 0.000 0.536
#> GSM564691     2  0.2505     0.7084 0.000 0.888 0.092 0.000 0.020
#> GSM564692     2  0.2929     0.7032 0.000 0.820 0.000 0.000 0.180
#> GSM564694     2  0.2464     0.7448 0.000 0.888 0.000 0.016 0.096
#> GSM564695     4  0.4164     0.7382 0.000 0.120 0.000 0.784 0.096
#> GSM564696     3  0.2700     0.8518 0.000 0.004 0.884 0.024 0.088
#> GSM564697     2  0.4268    -0.2965 0.000 0.556 0.000 0.000 0.444
#> GSM564698     3  0.3346     0.8056 0.000 0.092 0.844 0.000 0.064
#> GSM564700     4  0.0963     0.8423 0.000 0.000 0.000 0.964 0.036
#> GSM564701     2  0.1341     0.7390 0.000 0.944 0.000 0.000 0.056
#> GSM564702     2  0.1270     0.7496 0.000 0.948 0.000 0.000 0.052
#> GSM564703     1  0.4430     0.2130 0.540 0.000 0.456 0.000 0.004
#> GSM564704     1  0.0404     0.7948 0.988 0.000 0.000 0.000 0.012
#> GSM564705     1  0.2605     0.7254 0.852 0.000 0.000 0.000 0.148
#> GSM564706     3  0.4803     0.1853 0.444 0.000 0.536 0.000 0.020
#> GSM564707     1  0.0510     0.7938 0.984 0.000 0.000 0.000 0.016
#> GSM564708     1  0.2513     0.7621 0.876 0.000 0.116 0.000 0.008
#> GSM564709     1  0.2522     0.7734 0.896 0.000 0.000 0.052 0.052
#> GSM564710     1  0.0404     0.7942 0.988 0.000 0.000 0.000 0.012
#> GSM564711     1  0.3197     0.7179 0.836 0.000 0.140 0.000 0.024
#> GSM564712     1  0.3661     0.5561 0.724 0.000 0.000 0.000 0.276
#> GSM564713     1  0.4197     0.6419 0.728 0.000 0.244 0.000 0.028
#> GSM564714     3  0.2046     0.8699 0.000 0.000 0.916 0.016 0.068
#> GSM564715     1  0.0510     0.7938 0.984 0.000 0.000 0.000 0.016
#> GSM564716     1  0.3109     0.7420 0.800 0.000 0.000 0.000 0.200
#> GSM564717     1  0.4278     0.0990 0.548 0.000 0.000 0.000 0.452
#> GSM564718     1  0.4035     0.6900 0.784 0.000 0.000 0.156 0.060
#> GSM564719     5  0.4268     0.1496 0.444 0.000 0.000 0.000 0.556
#> GSM564720     1  0.3177     0.6537 0.792 0.000 0.000 0.000 0.208
#> GSM564721     1  0.0794     0.7946 0.972 0.000 0.000 0.000 0.028
#> GSM564722     4  0.4779     0.4015 0.340 0.000 0.000 0.628 0.032
#> GSM564723     1  0.0880     0.7938 0.968 0.000 0.000 0.000 0.032
#> GSM564724     1  0.4276     0.6345 0.724 0.000 0.244 0.000 0.032
#> GSM564725     1  0.3074     0.7438 0.804 0.000 0.000 0.000 0.196
#> GSM564726     4  0.1872     0.8413 0.020 0.000 0.000 0.928 0.052
#> GSM564727     1  0.4602     0.6543 0.708 0.000 0.000 0.240 0.052
#> GSM564728     4  0.0703     0.8418 0.000 0.000 0.000 0.976 0.024
#> GSM564729     1  0.5049     0.5646 0.644 0.000 0.000 0.296 0.060
#> GSM564730     1  0.2424     0.7527 0.868 0.000 0.000 0.000 0.132
#> GSM564731     1  0.0404     0.7958 0.988 0.000 0.000 0.000 0.012
#> GSM564732     1  0.0451     0.7972 0.988 0.000 0.000 0.004 0.008
#> GSM564733     1  0.0794     0.7986 0.972 0.000 0.000 0.000 0.028
#> GSM564734     1  0.0703     0.7958 0.976 0.000 0.000 0.000 0.024
#> GSM564735     3  0.6063     0.1812 0.016 0.000 0.520 0.384 0.080
#> GSM564736     1  0.4897     0.2022 0.516 0.000 0.460 0.000 0.024
#> GSM564737     1  0.1270     0.7895 0.948 0.000 0.000 0.000 0.052
#> GSM564738     4  0.5293     0.0414 0.000 0.000 0.460 0.492 0.048
#> GSM564739     1  0.1557     0.7918 0.940 0.000 0.052 0.000 0.008
#> GSM564740     4  0.1608     0.8379 0.000 0.000 0.000 0.928 0.072
#> GSM564741     3  0.0609     0.8961 0.000 0.000 0.980 0.000 0.020
#> GSM564742     3  0.0609     0.8961 0.000 0.000 0.980 0.000 0.020
#> GSM564743     1  0.4015     0.4154 0.652 0.000 0.000 0.000 0.348
#> GSM564744     1  0.1197     0.7912 0.952 0.000 0.000 0.000 0.048
#> GSM564745     1  0.0162     0.7947 0.996 0.000 0.000 0.000 0.004
#> GSM564746     1  0.3039     0.7451 0.808 0.000 0.000 0.000 0.192
#> GSM564747     1  0.1197     0.7956 0.952 0.000 0.000 0.000 0.048
#> GSM564748     3  0.0955     0.8940 0.004 0.000 0.968 0.000 0.028
#> GSM564749     5  0.4256     0.1545 0.436 0.000 0.000 0.000 0.564
#> GSM564750     4  0.3915     0.7760 0.096 0.000 0.004 0.812 0.088
#> GSM564751     3  0.4620     0.3370 0.392 0.000 0.592 0.000 0.016
#> GSM564752     4  0.1732     0.8363 0.000 0.000 0.000 0.920 0.080
#> GSM564753     3  0.0404     0.8975 0.000 0.000 0.988 0.000 0.012
#> GSM564754     1  0.1792     0.7764 0.916 0.000 0.000 0.000 0.084
#> GSM564755     4  0.0404     0.8457 0.000 0.000 0.000 0.988 0.012
#> GSM564756     1  0.3561     0.6036 0.740 0.000 0.000 0.000 0.260
#> GSM564757     4  0.1310     0.8376 0.020 0.000 0.000 0.956 0.024
#> GSM564758     1  0.5559     0.3128 0.544 0.000 0.000 0.380 0.076
#> GSM564759     3  0.2270     0.8418 0.076 0.000 0.904 0.000 0.020
#> GSM564760     1  0.2712     0.7726 0.880 0.000 0.000 0.088 0.032
#> GSM564761     1  0.0404     0.7969 0.988 0.000 0.000 0.000 0.012
#> GSM564762     1  0.0404     0.7971 0.988 0.000 0.000 0.000 0.012
#> GSM564681     4  0.5290     0.4792 0.000 0.300 0.000 0.624 0.076
#> GSM564693     2  0.1671     0.7401 0.000 0.924 0.000 0.000 0.076
#> GSM564646     4  0.1568     0.8392 0.000 0.020 0.000 0.944 0.036
#> GSM564699     4  0.1197     0.8429 0.000 0.000 0.000 0.952 0.048

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM564615     1  0.5349     0.4314 0.540 0.012 0.000 0.376 0.004 0.068
#> GSM564616     5  0.0520     0.4906 0.000 0.008 0.000 0.000 0.984 0.008
#> GSM564617     5  0.0547     0.4952 0.000 0.020 0.000 0.000 0.980 0.000
#> GSM564618     5  0.2344     0.4618 0.000 0.004 0.000 0.048 0.896 0.052
#> GSM564619     1  0.4440     0.5610 0.596 0.012 0.000 0.000 0.376 0.016
#> GSM564620     1  0.4015     0.6997 0.744 0.012 0.000 0.000 0.208 0.036
#> GSM564621     1  0.3946     0.7045 0.748 0.012 0.000 0.000 0.208 0.032
#> GSM564622     5  0.2263     0.4553 0.000 0.016 0.000 0.000 0.884 0.100
#> GSM564623     5  0.5583    -0.1485 0.000 0.000 0.000 0.336 0.508 0.156
#> GSM564624     5  0.2119     0.4885 0.000 0.036 0.000 0.000 0.904 0.060
#> GSM564625     1  0.3449     0.7128 0.780 0.008 0.000 0.000 0.196 0.016
#> GSM564626     1  0.4113     0.6384 0.668 0.008 0.000 0.000 0.308 0.016
#> GSM564627     1  0.4839     0.4919 0.544 0.016 0.000 0.008 0.416 0.016
#> GSM564628     5  0.0508     0.4933 0.000 0.012 0.000 0.000 0.984 0.004
#> GSM564629     1  0.4712     0.4550 0.524 0.016 0.000 0.000 0.440 0.020
#> GSM564630     5  0.0909     0.4903 0.000 0.020 0.000 0.000 0.968 0.012
#> GSM564609     6  0.5650     0.4236 0.000 0.024 0.092 0.000 0.352 0.532
#> GSM564610     1  0.3052     0.7577 0.852 0.008 0.000 0.000 0.064 0.076
#> GSM564611     2  0.3583     0.4677 0.260 0.728 0.000 0.000 0.008 0.004
#> GSM564612     3  0.4485     0.6333 0.000 0.084 0.724 0.000 0.012 0.180
#> GSM564613     5  0.4507     0.3120 0.000 0.048 0.004 0.004 0.676 0.268
#> GSM564614     1  0.4197     0.6763 0.744 0.012 0.000 0.196 0.004 0.044
#> GSM564631     3  0.0260     0.8564 0.000 0.000 0.992 0.000 0.000 0.008
#> GSM564632     6  0.4383     0.4201 0.000 0.032 0.004 0.016 0.240 0.708
#> GSM564633     3  0.3201     0.7278 0.000 0.000 0.780 0.000 0.012 0.208
#> GSM564634     5  0.6126    -0.0643 0.000 0.232 0.008 0.000 0.456 0.304
#> GSM564635     3  0.2883     0.7693 0.000 0.008 0.832 0.000 0.008 0.152
#> GSM564636     3  0.3570     0.7153 0.000 0.004 0.752 0.000 0.016 0.228
#> GSM564637     4  0.6340     0.3160 0.000 0.236 0.000 0.548 0.148 0.068
#> GSM564638     3  0.3702     0.7058 0.000 0.012 0.752 0.004 0.008 0.224
#> GSM564639     3  0.1556     0.8447 0.000 0.000 0.920 0.000 0.000 0.080
#> GSM564640     2  0.5787    -0.1246 0.000 0.480 0.000 0.000 0.324 0.196
#> GSM564641     3  0.0632     0.8547 0.000 0.000 0.976 0.000 0.000 0.024
#> GSM564642     2  0.5564    -0.2114 0.000 0.472 0.000 0.000 0.140 0.388
#> GSM564643     6  0.5936     0.4342 0.000 0.028 0.004 0.116 0.304 0.548
#> GSM564644     2  0.2053     0.6837 0.000 0.888 0.000 0.000 0.108 0.004
#> GSM564645     3  0.0937     0.8565 0.000 0.000 0.960 0.000 0.000 0.040
#> GSM564647     5  0.5783     0.1997 0.000 0.168 0.036 0.000 0.608 0.188
#> GSM564648     5  0.4703    -0.1418 0.000 0.048 0.000 0.000 0.544 0.408
#> GSM564649     3  0.0790     0.8564 0.000 0.000 0.968 0.000 0.000 0.032
#> GSM564650     4  0.7208    -0.2236 0.000 0.248 0.000 0.404 0.104 0.244
#> GSM564651     6  0.5763     0.3713 0.000 0.180 0.000 0.000 0.356 0.464
#> GSM564652     6  0.5334     0.4108 0.000 0.128 0.000 0.000 0.320 0.552
#> GSM564653     5  0.6082    -0.3101 0.000 0.272 0.000 0.000 0.372 0.356
#> GSM564654     6  0.4513     0.0284 0.000 0.004 0.440 0.000 0.024 0.532
#> GSM564655     6  0.6174     0.2319 0.000 0.172 0.008 0.024 0.248 0.548
#> GSM564656     3  0.1141     0.8551 0.000 0.000 0.948 0.000 0.000 0.052
#> GSM564657     3  0.0865     0.8574 0.000 0.000 0.964 0.000 0.000 0.036
#> GSM564658     2  0.4141     0.1277 0.000 0.556 0.000 0.000 0.432 0.012
#> GSM564659     5  0.5642     0.0297 0.000 0.124 0.016 0.000 0.560 0.300
#> GSM564660     6  0.6865     0.1620 0.000 0.068 0.000 0.264 0.224 0.444
#> GSM564661     6  0.5871     0.3939 0.000 0.220 0.000 0.000 0.312 0.468
#> GSM564662     3  0.0713     0.8585 0.000 0.000 0.972 0.000 0.000 0.028
#> GSM564663     2  0.4524     0.3512 0.000 0.616 0.000 0.000 0.336 0.048
#> GSM564664     2  0.2039     0.6824 0.000 0.904 0.000 0.000 0.076 0.020
#> GSM564665     6  0.7454     0.3361 0.000 0.232 0.240 0.000 0.152 0.376
#> GSM564666     4  0.4927     0.6877 0.000 0.012 0.000 0.652 0.080 0.256
#> GSM564667     3  0.0520     0.8571 0.000 0.000 0.984 0.000 0.008 0.008
#> GSM564668     6  0.5685     0.4516 0.000 0.040 0.076 0.000 0.332 0.552
#> GSM564669     3  0.1610     0.8428 0.000 0.000 0.916 0.000 0.000 0.084
#> GSM564670     5  0.2034     0.4971 0.000 0.024 0.004 0.000 0.912 0.060
#> GSM564671     4  0.2100     0.7064 0.000 0.004 0.000 0.884 0.000 0.112
#> GSM564672     3  0.1501     0.8474 0.000 0.000 0.924 0.000 0.000 0.076
#> GSM564673     6  0.5654     0.3296 0.000 0.152 0.000 0.000 0.404 0.444
#> GSM564674     5  0.5209     0.1783 0.000 0.168 0.000 0.000 0.612 0.220
#> GSM564675     4  0.4674     0.6996 0.000 0.008 0.000 0.680 0.076 0.236
#> GSM564676     2  0.1333     0.6780 0.000 0.944 0.000 0.000 0.048 0.008
#> GSM564677     6  0.6220     0.4110 0.000 0.272 0.000 0.016 0.236 0.476
#> GSM564678     2  0.1444     0.6888 0.000 0.928 0.000 0.000 0.072 0.000
#> GSM564679     2  0.1957     0.6825 0.000 0.888 0.000 0.000 0.112 0.000
#> GSM564680     3  0.1204     0.8533 0.000 0.000 0.944 0.000 0.000 0.056
#> GSM564682     5  0.6697     0.0351 0.000 0.184 0.324 0.000 0.436 0.056
#> GSM564683     3  0.0713     0.8575 0.000 0.000 0.972 0.000 0.000 0.028
#> GSM564684     4  0.1320     0.7407 0.000 0.000 0.000 0.948 0.036 0.016
#> GSM564685     3  0.0458     0.8577 0.000 0.000 0.984 0.000 0.000 0.016
#> GSM564686     4  0.0405     0.7454 0.000 0.004 0.000 0.988 0.000 0.008
#> GSM564687     5  0.4860     0.2346 0.000 0.128 0.000 0.000 0.656 0.216
#> GSM564688     5  0.5781    -0.2998 0.000 0.176 0.000 0.000 0.428 0.396
#> GSM564689     2  0.2170     0.6849 0.000 0.888 0.000 0.000 0.100 0.012
#> GSM564690     2  0.1588     0.6889 0.000 0.924 0.000 0.000 0.072 0.004
#> GSM564691     5  0.6590    -0.0262 0.000 0.180 0.384 0.000 0.392 0.044
#> GSM564692     5  0.2309     0.4721 0.000 0.028 0.000 0.000 0.888 0.084
#> GSM564694     5  0.2771     0.4890 0.000 0.060 0.000 0.004 0.868 0.068
#> GSM564695     4  0.5102     0.6571 0.000 0.056 0.000 0.612 0.024 0.308
#> GSM564696     3  0.3658     0.7335 0.000 0.028 0.772 0.000 0.008 0.192
#> GSM564697     2  0.3259     0.5958 0.000 0.772 0.000 0.000 0.216 0.012
#> GSM564698     3  0.4758     0.3993 0.000 0.000 0.580 0.000 0.060 0.360
#> GSM564700     4  0.0713     0.7442 0.000 0.000 0.000 0.972 0.000 0.028
#> GSM564701     5  0.5176     0.2107 0.000 0.192 0.000 0.000 0.620 0.188
#> GSM564702     5  0.5312    -0.1301 0.000 0.112 0.000 0.000 0.524 0.364
#> GSM564703     1  0.4097     0.1265 0.504 0.000 0.488 0.000 0.000 0.008
#> GSM564704     1  0.0508     0.7526 0.984 0.004 0.000 0.000 0.000 0.012
#> GSM564705     1  0.3398     0.6271 0.740 0.252 0.000 0.000 0.000 0.008
#> GSM564706     3  0.3972     0.5333 0.300 0.004 0.680 0.000 0.000 0.016
#> GSM564707     1  0.0972     0.7536 0.964 0.028 0.000 0.000 0.000 0.008
#> GSM564708     1  0.2698     0.7467 0.872 0.008 0.096 0.000 0.004 0.020
#> GSM564709     1  0.4120     0.6762 0.748 0.052 0.000 0.188 0.000 0.012
#> GSM564710     1  0.0993     0.7561 0.964 0.012 0.000 0.000 0.000 0.024
#> GSM564711     1  0.3490     0.6920 0.784 0.000 0.176 0.000 0.000 0.040
#> GSM564712     1  0.3405     0.6127 0.724 0.272 0.000 0.000 0.000 0.004
#> GSM564713     1  0.4440     0.6800 0.728 0.008 0.188 0.000 0.004 0.072
#> GSM564714     3  0.1863     0.8199 0.000 0.000 0.896 0.000 0.000 0.104
#> GSM564715     1  0.0914     0.7552 0.968 0.016 0.000 0.000 0.000 0.016
#> GSM564716     1  0.4255     0.7033 0.732 0.008 0.000 0.000 0.196 0.064
#> GSM564717     1  0.3998     0.1509 0.504 0.492 0.000 0.000 0.000 0.004
#> GSM564718     1  0.4840     0.6253 0.696 0.000 0.012 0.148 0.000 0.144
#> GSM564719     2  0.3404     0.4833 0.248 0.744 0.000 0.000 0.004 0.004
#> GSM564720     1  0.3290     0.6254 0.744 0.252 0.000 0.000 0.000 0.004
#> GSM564721     1  0.1707     0.7564 0.928 0.056 0.000 0.000 0.004 0.012
#> GSM564722     4  0.4229     0.6100 0.200 0.008 0.000 0.732 0.000 0.060
#> GSM564723     1  0.2053     0.7385 0.888 0.108 0.000 0.000 0.000 0.004
#> GSM564724     1  0.5815     0.4445 0.540 0.004 0.308 0.012 0.000 0.136
#> GSM564725     1  0.3390     0.7261 0.804 0.008 0.000 0.000 0.160 0.028
#> GSM564726     4  0.4851     0.6866 0.096 0.012 0.000 0.680 0.000 0.212
#> GSM564727     1  0.4840     0.6605 0.696 0.008 0.000 0.220 0.052 0.024
#> GSM564728     4  0.0748     0.7429 0.004 0.004 0.000 0.976 0.000 0.016
#> GSM564729     1  0.5408     0.5885 0.616 0.008 0.000 0.240 0.004 0.132
#> GSM564730     1  0.4559     0.6461 0.712 0.156 0.000 0.000 0.004 0.128
#> GSM564731     1  0.1268     0.7570 0.952 0.008 0.004 0.000 0.000 0.036
#> GSM564732     1  0.1321     0.7574 0.952 0.004 0.000 0.020 0.000 0.024
#> GSM564733     1  0.3329     0.7206 0.768 0.008 0.000 0.000 0.004 0.220
#> GSM564734     1  0.1728     0.7555 0.924 0.064 0.000 0.004 0.000 0.008
#> GSM564735     3  0.6353     0.3721 0.032 0.012 0.544 0.168 0.000 0.244
#> GSM564736     1  0.5737     0.2234 0.460 0.008 0.416 0.000 0.004 0.112
#> GSM564737     1  0.1349     0.7511 0.940 0.056 0.000 0.000 0.000 0.004
#> GSM564738     4  0.5391     0.1273 0.000 0.000 0.432 0.456 0.000 0.112
#> GSM564739     1  0.1615     0.7561 0.928 0.004 0.064 0.000 0.000 0.004
#> GSM564740     4  0.3342     0.7229 0.000 0.012 0.000 0.760 0.000 0.228
#> GSM564741     3  0.0603     0.8569 0.000 0.000 0.980 0.004 0.000 0.016
#> GSM564742     3  0.0458     0.8550 0.000 0.000 0.984 0.000 0.000 0.016
#> GSM564743     1  0.5359     0.5096 0.608 0.260 0.000 0.000 0.012 0.120
#> GSM564744     1  0.2711     0.7420 0.872 0.068 0.000 0.000 0.004 0.056
#> GSM564745     1  0.0622     0.7525 0.980 0.008 0.000 0.000 0.000 0.012
#> GSM564746     1  0.4577     0.5233 0.568 0.016 0.000 0.000 0.400 0.016
#> GSM564747     1  0.2849     0.7490 0.876 0.060 0.016 0.004 0.000 0.044
#> GSM564748     3  0.1334     0.8473 0.020 0.000 0.948 0.000 0.000 0.032
#> GSM564749     2  0.3645     0.4872 0.236 0.740 0.000 0.000 0.000 0.024
#> GSM564750     4  0.6145     0.6113 0.144 0.012 0.016 0.520 0.000 0.308
#> GSM564751     3  0.4274     0.1532 0.432 0.004 0.552 0.000 0.000 0.012
#> GSM564752     4  0.3445     0.7189 0.000 0.012 0.000 0.744 0.000 0.244
#> GSM564753     3  0.0146     0.8560 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM564754     1  0.2070     0.7428 0.896 0.092 0.000 0.000 0.000 0.012
#> GSM564755     4  0.2218     0.7522 0.000 0.012 0.000 0.884 0.000 0.104
#> GSM564756     1  0.5195     0.5456 0.616 0.208 0.000 0.000 0.000 0.176
#> GSM564757     4  0.1225     0.7386 0.036 0.000 0.000 0.952 0.000 0.012
#> GSM564758     1  0.6152     0.1549 0.456 0.008 0.000 0.276 0.000 0.260
#> GSM564759     3  0.2901     0.7635 0.128 0.000 0.840 0.000 0.000 0.032
#> GSM564760     1  0.4784     0.6709 0.700 0.008 0.000 0.184 0.004 0.104
#> GSM564761     1  0.1679     0.7572 0.936 0.016 0.000 0.000 0.036 0.012
#> GSM564762     1  0.2346     0.7496 0.868 0.008 0.000 0.000 0.000 0.124
#> GSM564681     4  0.5913     0.1917 0.000 0.056 0.000 0.532 0.076 0.336
#> GSM564693     6  0.5663     0.4377 0.000 0.136 0.000 0.008 0.332 0.524
#> GSM564646     4  0.1265     0.7393 0.000 0.000 0.000 0.948 0.008 0.044
#> GSM564699     4  0.2234     0.7512 0.000 0.004 0.000 0.872 0.000 0.124

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n genotype/variation(p) disease.state(p) k
#> SD:NMF 137               0.00558            0.416 2
#> SD:NMF 147               0.16656            0.565 3
#> SD:NMF 149               0.38910            0.102 4
#> SD:NMF 125               0.36310            0.222 5
#> SD:NMF  94               0.24503            0.160 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 154 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.314           0.848       0.766         0.3352 0.499   0.499
#> 3 3 0.160           0.791       0.787         0.4142 0.981   0.963
#> 4 4 0.148           0.734       0.779         0.1600 0.950   0.899
#> 5 5 0.167           0.722       0.772         0.0740 0.978   0.950
#> 6 6 0.267           0.614       0.753         0.0633 0.971   0.932

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM564615     1  0.9087     0.7885 0.676 0.324
#> GSM564616     2  0.2603     0.9002 0.044 0.956
#> GSM564617     2  0.2423     0.9016 0.040 0.960
#> GSM564618     2  0.3274     0.8924 0.060 0.940
#> GSM564619     1  0.9881     0.9015 0.564 0.436
#> GSM564620     1  0.9850     0.8951 0.572 0.428
#> GSM564621     1  0.9815     0.8930 0.580 0.420
#> GSM564622     2  0.2423     0.9014 0.040 0.960
#> GSM564623     2  0.7745     0.5488 0.228 0.772
#> GSM564624     2  0.3114     0.8949 0.056 0.944
#> GSM564625     1  0.9522     0.8618 0.628 0.372
#> GSM564626     1  0.9866     0.8983 0.568 0.432
#> GSM564627     1  0.9795     0.8919 0.584 0.416
#> GSM564628     2  0.2778     0.8978 0.048 0.952
#> GSM564629     1  0.9795     0.8851 0.584 0.416
#> GSM564630     2  0.1843     0.9052 0.028 0.972
#> GSM564609     2  0.3733     0.8531 0.072 0.928
#> GSM564610     1  0.9963     0.8913 0.536 0.464
#> GSM564611     1  0.9996     0.8659 0.512 0.488
#> GSM564612     2  0.1633     0.9077 0.024 0.976
#> GSM564613     2  0.1633     0.9074 0.024 0.976
#> GSM564614     1  0.9087     0.7947 0.676 0.324
#> GSM564631     2  0.1184     0.9065 0.016 0.984
#> GSM564632     2  0.1633     0.9095 0.024 0.976
#> GSM564633     2  0.1414     0.9071 0.020 0.980
#> GSM564634     2  0.2948     0.8905 0.052 0.948
#> GSM564635     2  0.1843     0.9072 0.028 0.972
#> GSM564636     2  0.1633     0.9085 0.024 0.976
#> GSM564637     2  0.4298     0.8475 0.088 0.912
#> GSM564638     2  0.2778     0.8880 0.048 0.952
#> GSM564639     2  0.1414     0.9062 0.020 0.980
#> GSM564640     2  0.1414     0.9034 0.020 0.980
#> GSM564641     2  0.1843     0.9065 0.028 0.972
#> GSM564642     2  0.2603     0.8888 0.044 0.956
#> GSM564643     2  0.7139     0.6129 0.196 0.804
#> GSM564644     2  0.3431     0.8803 0.064 0.936
#> GSM564645     2  0.1633     0.9050 0.024 0.976
#> GSM564647     2  0.0672     0.9058 0.008 0.992
#> GSM564648     2  0.1184     0.9071 0.016 0.984
#> GSM564649     2  0.1414     0.9064 0.020 0.980
#> GSM564650     2  0.2778     0.8927 0.048 0.952
#> GSM564651     2  0.1633     0.9096 0.024 0.976
#> GSM564652     2  0.4690     0.8289 0.100 0.900
#> GSM564653     2  0.1414     0.9071 0.020 0.980
#> GSM564654     2  0.1414     0.9062 0.020 0.980
#> GSM564655     2  0.2043     0.9086 0.032 0.968
#> GSM564656     2  0.1414     0.9062 0.020 0.980
#> GSM564657     2  0.1843     0.9071 0.028 0.972
#> GSM564658     2  0.3114     0.8801 0.056 0.944
#> GSM564659     2  0.1184     0.9082 0.016 0.984
#> GSM564660     2  0.4022     0.8676 0.080 0.920
#> GSM564661     2  0.3431     0.8817 0.064 0.936
#> GSM564662     2  0.1414     0.9062 0.020 0.980
#> GSM564663     2  0.1414     0.9070 0.020 0.980
#> GSM564664     2  0.4815     0.8436 0.104 0.896
#> GSM564665     2  0.2948     0.9004 0.052 0.948
#> GSM564666     2  0.5294     0.7941 0.120 0.880
#> GSM564667     2  0.2043     0.9075 0.032 0.968
#> GSM564668     2  0.2236     0.9064 0.036 0.964
#> GSM564669     2  0.1184     0.9065 0.016 0.984
#> GSM564670     2  0.0938     0.9093 0.012 0.988
#> GSM564671     1  0.9977     0.6621 0.528 0.472
#> GSM564672     2  0.1184     0.9065 0.016 0.984
#> GSM564673     2  0.2043     0.9078 0.032 0.968
#> GSM564674     2  0.1414     0.9064 0.020 0.980
#> GSM564675     2  0.4022     0.8566 0.080 0.920
#> GSM564676     2  0.3431     0.8834 0.064 0.936
#> GSM564677     2  0.2043     0.9063 0.032 0.968
#> GSM564678     2  0.3431     0.8834 0.064 0.936
#> GSM564679     2  0.3733     0.8744 0.072 0.928
#> GSM564680     2  0.1184     0.9065 0.016 0.984
#> GSM564682     2  0.2043     0.9050 0.032 0.968
#> GSM564683     2  0.1414     0.9062 0.020 0.980
#> GSM564684     2  0.9427     0.0126 0.360 0.640
#> GSM564685     2  0.5059     0.8126 0.112 0.888
#> GSM564686     2  0.9170     0.1556 0.332 0.668
#> GSM564687     2  0.5629     0.7744 0.132 0.868
#> GSM564688     2  0.1184     0.9065 0.016 0.984
#> GSM564689     2  0.1633     0.9013 0.024 0.976
#> GSM564690     2  0.2948     0.8913 0.052 0.948
#> GSM564691     2  0.0938     0.9065 0.012 0.988
#> GSM564692     2  0.1633     0.9074 0.024 0.976
#> GSM564694     2  0.7219     0.6373 0.200 0.800
#> GSM564695     2  0.3114     0.8929 0.056 0.944
#> GSM564696     2  0.3584     0.8925 0.068 0.932
#> GSM564697     2  0.2778     0.8858 0.048 0.952
#> GSM564698     2  0.1184     0.9079 0.016 0.984
#> GSM564700     2  0.9000     0.2351 0.316 0.684
#> GSM564701     2  0.1843     0.9049 0.028 0.972
#> GSM564702     2  0.3114     0.8937 0.056 0.944
#> GSM564703     1  0.9963     0.8887 0.536 0.464
#> GSM564704     1  0.9909     0.9009 0.556 0.444
#> GSM564705     1  0.9970     0.8842 0.532 0.468
#> GSM564706     1  0.9977     0.8871 0.528 0.472
#> GSM564707     1  0.9944     0.8941 0.544 0.456
#> GSM564708     1  0.9833     0.7322 0.576 0.424
#> GSM564709     1  0.9815     0.9003 0.580 0.420
#> GSM564710     1  0.9954     0.8917 0.540 0.460
#> GSM564711     1  0.9963     0.8899 0.536 0.464
#> GSM564712     1  0.9963     0.8877 0.536 0.464
#> GSM564713     1  0.9983     0.8639 0.524 0.476
#> GSM564714     1  0.9944     0.8972 0.544 0.456
#> GSM564715     1  0.9954     0.8937 0.540 0.460
#> GSM564716     1  0.9732     0.8938 0.596 0.404
#> GSM564717     1  0.8909     0.7238 0.692 0.308
#> GSM564718     1  0.9866     0.8989 0.568 0.432
#> GSM564719     1  0.9954     0.8728 0.540 0.460
#> GSM564720     1  0.9922     0.8937 0.552 0.448
#> GSM564721     1  0.9795     0.8956 0.584 0.416
#> GSM564722     1  0.9909     0.9016 0.556 0.444
#> GSM564723     1  0.9977     0.8844 0.528 0.472
#> GSM564724     1  0.9922     0.8856 0.552 0.448
#> GSM564725     1  0.9795     0.8966 0.584 0.416
#> GSM564726     1  0.9286     0.8149 0.656 0.344
#> GSM564727     1  0.9248     0.8151 0.660 0.340
#> GSM564728     1  0.9129     0.7942 0.672 0.328
#> GSM564729     1  0.9044     0.7871 0.680 0.320
#> GSM564730     1  0.9909     0.8966 0.556 0.444
#> GSM564731     1  0.9909     0.8964 0.556 0.444
#> GSM564732     1  0.9661     0.8748 0.608 0.392
#> GSM564733     1  0.9732     0.8791 0.596 0.404
#> GSM564734     1  0.9775     0.8961 0.588 0.412
#> GSM564735     1  0.9754     0.8776 0.592 0.408
#> GSM564736     1  0.9833     0.8904 0.576 0.424
#> GSM564737     1  0.9977     0.8817 0.528 0.472
#> GSM564738     1  0.9933     0.8959 0.548 0.452
#> GSM564739     1  0.9954     0.8908 0.540 0.460
#> GSM564740     1  0.9661     0.8572 0.608 0.392
#> GSM564741     1  0.9933     0.8996 0.548 0.452
#> GSM564742     1  0.9963     0.8921 0.536 0.464
#> GSM564743     1  0.9909     0.8966 0.556 0.444
#> GSM564744     1  0.9922     0.8949 0.552 0.448
#> GSM564745     1  0.9881     0.8982 0.564 0.436
#> GSM564746     1  0.9866     0.8890 0.568 0.432
#> GSM564747     1  0.9896     0.9017 0.560 0.440
#> GSM564748     1  0.9954     0.8933 0.540 0.460
#> GSM564749     1  0.9970     0.8604 0.532 0.468
#> GSM564750     1  0.9427     0.8419 0.640 0.360
#> GSM564751     1  0.9963     0.8888 0.536 0.464
#> GSM564752     1  0.9393     0.8372 0.644 0.356
#> GSM564753     1  0.9963     0.8895 0.536 0.464
#> GSM564754     1  0.9933     0.8981 0.548 0.452
#> GSM564755     1  0.9286     0.8140 0.656 0.344
#> GSM564756     1  0.9881     0.8983 0.564 0.436
#> GSM564757     1  0.9170     0.7991 0.668 0.332
#> GSM564758     1  0.9358     0.4378 0.648 0.352
#> GSM564759     1  0.9954     0.8936 0.540 0.460
#> GSM564760     1  0.9491     0.8486 0.632 0.368
#> GSM564761     1  0.9963     0.8924 0.536 0.464
#> GSM564762     1  0.9881     0.9015 0.564 0.436
#> GSM564681     2  0.1633     0.9055 0.024 0.976
#> GSM564693     2  0.5519     0.7873 0.128 0.872
#> GSM564646     2  0.9427    -0.0167 0.360 0.640
#> GSM564699     2  0.8713     0.3141 0.292 0.708

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM564615     1  0.9130      0.313 0.492 0.152 0.356
#> GSM564616     2  0.2486      0.890 0.060 0.932 0.008
#> GSM564617     2  0.2446      0.891 0.052 0.936 0.012
#> GSM564618     2  0.3213      0.883 0.060 0.912 0.028
#> GSM564619     1  0.5858      0.850 0.740 0.240 0.020
#> GSM564620     1  0.6319      0.829 0.732 0.228 0.040
#> GSM564621     1  0.7256      0.799 0.696 0.216 0.088
#> GSM564622     2  0.2339      0.894 0.048 0.940 0.012
#> GSM564623     2  0.7217      0.642 0.132 0.716 0.152
#> GSM564624     2  0.3237      0.883 0.056 0.912 0.032
#> GSM564625     1  0.7036      0.774 0.720 0.184 0.096
#> GSM564626     1  0.5858      0.841 0.740 0.240 0.020
#> GSM564627     1  0.6232      0.827 0.740 0.220 0.040
#> GSM564628     2  0.3141      0.884 0.068 0.912 0.020
#> GSM564629     1  0.6142      0.814 0.748 0.212 0.040
#> GSM564630     2  0.2063      0.894 0.044 0.948 0.008
#> GSM564609     2  0.3272      0.849 0.104 0.892 0.004
#> GSM564610     1  0.5656      0.846 0.728 0.264 0.008
#> GSM564611     1  0.5678      0.813 0.684 0.316 0.000
#> GSM564612     2  0.1585      0.896 0.028 0.964 0.008
#> GSM564613     2  0.2031      0.897 0.032 0.952 0.016
#> GSM564614     1  0.8900      0.301 0.512 0.132 0.356
#> GSM564631     2  0.1620      0.896 0.024 0.964 0.012
#> GSM564632     2  0.1267      0.898 0.024 0.972 0.004
#> GSM564633     2  0.2031      0.896 0.032 0.952 0.016
#> GSM564634     2  0.3472      0.851 0.040 0.904 0.056
#> GSM564635     2  0.2031      0.891 0.032 0.952 0.016
#> GSM564636     2  0.1774      0.897 0.024 0.960 0.016
#> GSM564637     2  0.3998      0.863 0.060 0.884 0.056
#> GSM564638     2  0.3129      0.868 0.088 0.904 0.008
#> GSM564639     2  0.2176      0.894 0.032 0.948 0.020
#> GSM564640     2  0.1482      0.892 0.020 0.968 0.012
#> GSM564641     2  0.1989      0.895 0.048 0.948 0.004
#> GSM564642     2  0.2550      0.866 0.024 0.936 0.040
#> GSM564643     2  0.6410      0.708 0.092 0.764 0.144
#> GSM564644     2  0.3472      0.843 0.040 0.904 0.056
#> GSM564645     2  0.2297      0.890 0.036 0.944 0.020
#> GSM564647     2  0.1585      0.895 0.028 0.964 0.008
#> GSM564648     2  0.1620      0.894 0.024 0.964 0.012
#> GSM564649     2  0.1620      0.895 0.024 0.964 0.012
#> GSM564650     2  0.2810      0.893 0.036 0.928 0.036
#> GSM564651     2  0.1905      0.897 0.028 0.956 0.016
#> GSM564652     2  0.4047      0.810 0.148 0.848 0.004
#> GSM564653     2  0.1832      0.894 0.036 0.956 0.008
#> GSM564654     2  0.1620      0.893 0.024 0.964 0.012
#> GSM564655     2  0.2926      0.896 0.040 0.924 0.036
#> GSM564656     2  0.2152      0.894 0.036 0.948 0.016
#> GSM564657     2  0.2339      0.895 0.048 0.940 0.012
#> GSM564658     2  0.3039      0.857 0.036 0.920 0.044
#> GSM564659     2  0.1711      0.897 0.032 0.960 0.008
#> GSM564660     2  0.3993      0.864 0.064 0.884 0.052
#> GSM564661     2  0.3669      0.862 0.064 0.896 0.040
#> GSM564662     2  0.2297      0.893 0.036 0.944 0.020
#> GSM564663     2  0.1765      0.896 0.040 0.956 0.004
#> GSM564664     2  0.4290      0.821 0.064 0.872 0.064
#> GSM564665     2  0.3572      0.865 0.060 0.900 0.040
#> GSM564666     2  0.5416      0.801 0.100 0.820 0.080
#> GSM564667     2  0.2269      0.895 0.040 0.944 0.016
#> GSM564668     2  0.2845      0.888 0.068 0.920 0.012
#> GSM564669     2  0.1620      0.895 0.024 0.964 0.012
#> GSM564670     2  0.1529      0.898 0.040 0.960 0.000
#> GSM564671     2  0.9930     -0.241 0.280 0.380 0.340
#> GSM564672     2  0.1620      0.895 0.024 0.964 0.012
#> GSM564673     2  0.2383      0.891 0.044 0.940 0.016
#> GSM564674     2  0.1765      0.895 0.040 0.956 0.004
#> GSM564675     2  0.3791      0.867 0.048 0.892 0.060
#> GSM564676     2  0.3207      0.875 0.084 0.904 0.012
#> GSM564677     2  0.2280      0.896 0.052 0.940 0.008
#> GSM564678     2  0.3207      0.875 0.084 0.904 0.012
#> GSM564679     2  0.3031      0.880 0.076 0.912 0.012
#> GSM564680     2  0.1620      0.895 0.024 0.964 0.012
#> GSM564682     2  0.2200      0.895 0.056 0.940 0.004
#> GSM564683     2  0.2031      0.893 0.032 0.952 0.016
#> GSM564684     2  0.8637      0.343 0.152 0.588 0.260
#> GSM564685     2  0.4966      0.771 0.060 0.840 0.100
#> GSM564686     2  0.8544      0.391 0.152 0.600 0.248
#> GSM564687     2  0.5442      0.686 0.056 0.812 0.132
#> GSM564688     2  0.1832      0.895 0.036 0.956 0.008
#> GSM564689     2  0.2031      0.896 0.032 0.952 0.016
#> GSM564690     2  0.2774      0.884 0.072 0.920 0.008
#> GSM564691     2  0.1315      0.896 0.020 0.972 0.008
#> GSM564692     2  0.1999      0.895 0.036 0.952 0.012
#> GSM564694     2  0.6252      0.730 0.084 0.772 0.144
#> GSM564695     2  0.2773      0.890 0.048 0.928 0.024
#> GSM564696     2  0.3780      0.864 0.044 0.892 0.064
#> GSM564697     2  0.3009      0.861 0.028 0.920 0.052
#> GSM564698     2  0.0892      0.895 0.020 0.980 0.000
#> GSM564700     2  0.8528      0.401 0.156 0.604 0.240
#> GSM564701     2  0.1585      0.896 0.028 0.964 0.008
#> GSM564702     2  0.2772      0.885 0.080 0.916 0.004
#> GSM564703     1  0.5443      0.844 0.736 0.260 0.004
#> GSM564704     1  0.6105      0.851 0.724 0.252 0.024
#> GSM564705     1  0.5690      0.830 0.708 0.288 0.004
#> GSM564706     1  0.5517      0.844 0.728 0.268 0.004
#> GSM564707     1  0.5553      0.841 0.724 0.272 0.004
#> GSM564708     1  0.8077      0.393 0.652 0.176 0.172
#> GSM564709     1  0.6211      0.851 0.736 0.228 0.036
#> GSM564710     1  0.5737      0.844 0.732 0.256 0.012
#> GSM564711     1  0.6929      0.839 0.688 0.260 0.052
#> GSM564712     1  0.5327      0.840 0.728 0.272 0.000
#> GSM564713     1  0.6998      0.797 0.664 0.292 0.044
#> GSM564714     1  0.6053      0.849 0.720 0.260 0.020
#> GSM564715     1  0.5480      0.845 0.732 0.264 0.004
#> GSM564716     1  0.6446      0.841 0.736 0.212 0.052
#> GSM564717     1  0.6621      0.632 0.752 0.148 0.100
#> GSM564718     1  0.6606      0.843 0.716 0.236 0.048
#> GSM564719     1  0.5553      0.828 0.724 0.272 0.004
#> GSM564720     1  0.5244      0.844 0.756 0.240 0.004
#> GSM564721     1  0.5366      0.841 0.776 0.208 0.016
#> GSM564722     1  0.6067      0.851 0.736 0.236 0.028
#> GSM564723     1  0.5848      0.842 0.720 0.268 0.012
#> GSM564724     1  0.7568      0.759 0.680 0.212 0.108
#> GSM564725     1  0.6168      0.843 0.740 0.224 0.036
#> GSM564726     1  0.8957      0.416 0.536 0.152 0.312
#> GSM564727     1  0.8752      0.468 0.568 0.148 0.284
#> GSM564728     1  0.8983      0.308 0.508 0.140 0.352
#> GSM564729     1  0.8973      0.279 0.500 0.136 0.364
#> GSM564730     1  0.5536      0.848 0.752 0.236 0.012
#> GSM564731     1  0.6211      0.848 0.736 0.228 0.036
#> GSM564732     1  0.7276      0.791 0.704 0.192 0.104
#> GSM564733     1  0.8331      0.736 0.628 0.208 0.164
#> GSM564734     1  0.6034      0.841 0.752 0.212 0.036
#> GSM564735     1  0.7988      0.759 0.656 0.200 0.144
#> GSM564736     1  0.6794      0.807 0.728 0.196 0.076
#> GSM564737     1  0.5465      0.833 0.712 0.288 0.000
#> GSM564738     1  0.7331      0.832 0.672 0.256 0.072
#> GSM564739     1  0.5291      0.843 0.732 0.268 0.000
#> GSM564740     1  0.8985      0.648 0.564 0.220 0.216
#> GSM564741     1  0.6875      0.846 0.700 0.244 0.056
#> GSM564742     1  0.5404      0.847 0.740 0.256 0.004
#> GSM564743     1  0.5578      0.847 0.748 0.240 0.012
#> GSM564744     1  0.5244      0.845 0.756 0.240 0.004
#> GSM564745     1  0.6056      0.844 0.744 0.224 0.032
#> GSM564746     1  0.5894      0.828 0.752 0.220 0.028
#> GSM564747     1  0.5378      0.850 0.756 0.236 0.008
#> GSM564748     1  0.5656      0.845 0.728 0.264 0.008
#> GSM564749     1  0.5763      0.822 0.716 0.276 0.008
#> GSM564750     1  0.8862      0.638 0.576 0.192 0.232
#> GSM564751     1  0.5618      0.847 0.732 0.260 0.008
#> GSM564752     1  0.8792      0.611 0.580 0.176 0.244
#> GSM564753     1  0.5692      0.844 0.724 0.268 0.008
#> GSM564754     1  0.5737      0.847 0.732 0.256 0.012
#> GSM564755     1  0.8848      0.478 0.560 0.156 0.284
#> GSM564756     1  0.5639      0.850 0.752 0.232 0.016
#> GSM564757     1  0.9120      0.362 0.504 0.156 0.340
#> GSM564758     3  0.5744      0.000 0.072 0.128 0.800
#> GSM564759     1  0.5541      0.848 0.740 0.252 0.008
#> GSM564760     1  0.8386      0.660 0.624 0.172 0.204
#> GSM564761     1  0.5397      0.841 0.720 0.280 0.000
#> GSM564762     1  0.6141      0.850 0.736 0.232 0.032
#> GSM564681     2  0.2200      0.895 0.056 0.940 0.004
#> GSM564693     2  0.4443      0.828 0.052 0.864 0.084
#> GSM564646     2  0.8824      0.316 0.168 0.572 0.260
#> GSM564699     2  0.8137      0.488 0.140 0.640 0.220

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM564615     4   0.713      0.817 0.332 0.084 0.024 0.560
#> GSM564616     2   0.255      0.891 0.060 0.916 0.008 0.016
#> GSM564617     2   0.267      0.892 0.048 0.916 0.016 0.020
#> GSM564618     2   0.327      0.883 0.056 0.892 0.024 0.028
#> GSM564619     1   0.487      0.755 0.792 0.140 0.012 0.056
#> GSM564620     1   0.639      0.653 0.708 0.152 0.036 0.104
#> GSM564621     1   0.704      0.537 0.648 0.144 0.032 0.176
#> GSM564622     2   0.264      0.893 0.052 0.916 0.016 0.016
#> GSM564623     2   0.652      0.636 0.096 0.688 0.032 0.184
#> GSM564624     2   0.328      0.883 0.052 0.892 0.024 0.032
#> GSM564625     1   0.713      0.406 0.636 0.108 0.040 0.216
#> GSM564626     1   0.479      0.738 0.792 0.144 0.008 0.056
#> GSM564627     1   0.619      0.658 0.716 0.144 0.024 0.116
#> GSM564628     2   0.323      0.881 0.072 0.888 0.012 0.028
#> GSM564629     1   0.615      0.655 0.732 0.132 0.044 0.092
#> GSM564630     2   0.231      0.894 0.048 0.928 0.008 0.016
#> GSM564609     2   0.296      0.854 0.116 0.876 0.004 0.004
#> GSM564610     1   0.452      0.766 0.800 0.156 0.008 0.036
#> GSM564611     1   0.485      0.725 0.748 0.220 0.004 0.028
#> GSM564612     2   0.182      0.898 0.032 0.948 0.012 0.008
#> GSM564613     2   0.214      0.899 0.040 0.936 0.012 0.012
#> GSM564614     4   0.679      0.816 0.328 0.068 0.020 0.584
#> GSM564631     2   0.174      0.898 0.024 0.952 0.016 0.008
#> GSM564632     2   0.149      0.900 0.036 0.956 0.004 0.004
#> GSM564633     2   0.225      0.900 0.052 0.928 0.016 0.004
#> GSM564634     2   0.363      0.842 0.024 0.876 0.060 0.040
#> GSM564635     2   0.221      0.892 0.028 0.936 0.020 0.016
#> GSM564636     2   0.192      0.898 0.036 0.944 0.012 0.008
#> GSM564637     2   0.369      0.873 0.048 0.868 0.012 0.072
#> GSM564638     2   0.307      0.868 0.096 0.884 0.008 0.012
#> GSM564639     2   0.241      0.894 0.036 0.928 0.020 0.016
#> GSM564640     2   0.159      0.896 0.024 0.956 0.016 0.004
#> GSM564641     2   0.201      0.896 0.060 0.932 0.004 0.004
#> GSM564642     2   0.272      0.880 0.028 0.912 0.052 0.008
#> GSM564643     2   0.573      0.700 0.064 0.732 0.020 0.184
#> GSM564644     2   0.361      0.846 0.032 0.868 0.088 0.012
#> GSM564645     2   0.242      0.891 0.032 0.928 0.024 0.016
#> GSM564647     2   0.134      0.897 0.024 0.964 0.008 0.004
#> GSM564648     2   0.141      0.898 0.020 0.960 0.020 0.000
#> GSM564649     2   0.176      0.897 0.016 0.952 0.020 0.012
#> GSM564650     2   0.287      0.896 0.036 0.908 0.012 0.044
#> GSM564651     2   0.192      0.901 0.028 0.944 0.024 0.004
#> GSM564652     2   0.438      0.768 0.176 0.796 0.016 0.012
#> GSM564653     2   0.189      0.897 0.036 0.944 0.016 0.004
#> GSM564654     2   0.185      0.895 0.028 0.948 0.012 0.012
#> GSM564655     2   0.294      0.896 0.036 0.908 0.028 0.028
#> GSM564656     2   0.231      0.894 0.032 0.932 0.020 0.016
#> GSM564657     2   0.252      0.897 0.052 0.920 0.016 0.012
#> GSM564658     2   0.290      0.872 0.032 0.904 0.056 0.008
#> GSM564659     2   0.171      0.900 0.036 0.948 0.016 0.000
#> GSM564660     2   0.373      0.871 0.064 0.864 0.008 0.064
#> GSM564661     2   0.342      0.877 0.060 0.880 0.052 0.008
#> GSM564662     2   0.242      0.893 0.032 0.928 0.024 0.016
#> GSM564663     2   0.207      0.898 0.044 0.936 0.016 0.004
#> GSM564664     2   0.442      0.813 0.048 0.832 0.096 0.024
#> GSM564665     2   0.367      0.859 0.044 0.876 0.048 0.032
#> GSM564666     2   0.516      0.791 0.096 0.776 0.008 0.120
#> GSM564667     2   0.240      0.896 0.032 0.928 0.028 0.012
#> GSM564668     2   0.282      0.890 0.068 0.904 0.020 0.008
#> GSM564669     2   0.195      0.896 0.032 0.944 0.012 0.012
#> GSM564670     2   0.174      0.901 0.056 0.940 0.004 0.000
#> GSM564671     4   0.818      0.230 0.160 0.332 0.036 0.472
#> GSM564672     2   0.192      0.897 0.036 0.944 0.012 0.008
#> GSM564673     2   0.263      0.892 0.036 0.920 0.020 0.024
#> GSM564674     2   0.177      0.896 0.036 0.948 0.012 0.004
#> GSM564675     2   0.374      0.865 0.044 0.864 0.012 0.080
#> GSM564676     2   0.303      0.876 0.088 0.888 0.020 0.004
#> GSM564677     2   0.229      0.897 0.060 0.924 0.012 0.004
#> GSM564678     2   0.303      0.876 0.088 0.888 0.020 0.004
#> GSM564679     2   0.296      0.879 0.084 0.892 0.020 0.004
#> GSM564680     2   0.195      0.896 0.032 0.944 0.012 0.012
#> GSM564682     2   0.223      0.896 0.064 0.924 0.004 0.008
#> GSM564683     2   0.231      0.893 0.032 0.932 0.020 0.016
#> GSM564684     2   0.719      0.328 0.084 0.564 0.028 0.324
#> GSM564685     2   0.641      0.647 0.040 0.712 0.120 0.128
#> GSM564686     2   0.731      0.356 0.100 0.568 0.028 0.304
#> GSM564687     2   0.580      0.659 0.048 0.728 0.192 0.032
#> GSM564688     2   0.201      0.896 0.040 0.940 0.012 0.008
#> GSM564689     2   0.239      0.899 0.036 0.928 0.012 0.024
#> GSM564690     2   0.271      0.885 0.076 0.904 0.016 0.004
#> GSM564691     2   0.157      0.898 0.028 0.956 0.012 0.004
#> GSM564692     2   0.192      0.897 0.028 0.944 0.024 0.004
#> GSM564694     2   0.574      0.723 0.068 0.744 0.028 0.160
#> GSM564695     2   0.258      0.893 0.048 0.916 0.004 0.032
#> GSM564696     2   0.417      0.848 0.036 0.852 0.052 0.060
#> GSM564697     2   0.285      0.876 0.024 0.904 0.064 0.008
#> GSM564698     2   0.100      0.898 0.024 0.972 0.004 0.000
#> GSM564700     2   0.740      0.363 0.112 0.568 0.028 0.292
#> GSM564701     2   0.158      0.898 0.036 0.952 0.012 0.000
#> GSM564702     2   0.273      0.889 0.076 0.904 0.008 0.012
#> GSM564703     1   0.458      0.765 0.796 0.164 0.020 0.020
#> GSM564704     1   0.491      0.770 0.784 0.148 0.008 0.060
#> GSM564705     1   0.482      0.748 0.768 0.192 0.008 0.032
#> GSM564706     1   0.525      0.758 0.764 0.172 0.036 0.028
#> GSM564707     1   0.405      0.762 0.808 0.168 0.000 0.024
#> GSM564708     1   0.859     -0.229 0.392 0.040 0.208 0.360
#> GSM564709     1   0.538      0.750 0.752 0.144 0.004 0.100
#> GSM564710     1   0.469      0.761 0.796 0.152 0.012 0.040
#> GSM564711     1   0.680      0.692 0.680 0.160 0.044 0.116
#> GSM564712     1   0.433      0.759 0.804 0.164 0.008 0.024
#> GSM564713     1   0.727      0.587 0.624 0.208 0.036 0.132
#> GSM564714     1   0.538      0.747 0.752 0.172 0.012 0.064
#> GSM564715     1   0.472      0.764 0.788 0.168 0.016 0.028
#> GSM564716     1   0.523      0.714 0.756 0.124 0.000 0.120
#> GSM564717     1   0.717      0.306 0.648 0.044 0.140 0.168
#> GSM564718     1   0.611      0.699 0.732 0.124 0.036 0.108
#> GSM564719     1   0.504      0.735 0.768 0.176 0.012 0.044
#> GSM564720     1   0.450      0.754 0.808 0.140 0.008 0.044
#> GSM564721     1   0.450      0.759 0.816 0.124 0.012 0.048
#> GSM564722     1   0.566      0.746 0.740 0.156 0.012 0.092
#> GSM564723     1   0.481      0.757 0.784 0.168 0.016 0.032
#> GSM564724     1   0.784      0.228 0.556 0.104 0.060 0.280
#> GSM564725     1   0.564      0.713 0.732 0.152 0.004 0.112
#> GSM564726     4   0.698      0.781 0.348 0.076 0.020 0.556
#> GSM564727     4   0.699      0.717 0.424 0.072 0.016 0.488
#> GSM564728     4   0.655      0.822 0.336 0.072 0.008 0.584
#> GSM564729     4   0.656      0.810 0.324 0.068 0.012 0.596
#> GSM564730     1   0.393      0.757 0.832 0.128 0.000 0.040
#> GSM564731     1   0.546      0.741 0.768 0.128 0.024 0.080
#> GSM564732     1   0.660      0.506 0.652 0.116 0.012 0.220
#> GSM564733     1   0.732      0.176 0.560 0.128 0.016 0.296
#> GSM564734     1   0.561      0.722 0.736 0.136 0.004 0.124
#> GSM564735     1   0.739      0.259 0.580 0.132 0.024 0.264
#> GSM564736     1   0.671      0.560 0.660 0.124 0.020 0.196
#> GSM564737     1   0.441      0.752 0.788 0.184 0.004 0.024
#> GSM564738     1   0.674      0.635 0.668 0.168 0.024 0.140
#> GSM564739     1   0.440      0.765 0.800 0.168 0.012 0.020
#> GSM564740     1   0.766     -0.135 0.500 0.148 0.016 0.336
#> GSM564741     1   0.641      0.706 0.700 0.160 0.028 0.112
#> GSM564742     1   0.502      0.762 0.776 0.168 0.032 0.024
#> GSM564743     1   0.415      0.756 0.820 0.132 0.000 0.048
#> GSM564744     1   0.427      0.756 0.820 0.136 0.008 0.036
#> GSM564745     1   0.551      0.714 0.764 0.120 0.020 0.096
#> GSM564746     1   0.541      0.706 0.772 0.132 0.028 0.068
#> GSM564747     1   0.488      0.767 0.784 0.152 0.008 0.056
#> GSM564748     1   0.488      0.761 0.784 0.164 0.028 0.024
#> GSM564749     1   0.532      0.723 0.756 0.176 0.016 0.052
#> GSM564750     1   0.723     -0.251 0.500 0.116 0.008 0.376
#> GSM564751     1   0.538      0.762 0.756 0.176 0.040 0.028
#> GSM564752     1   0.720     -0.384 0.476 0.108 0.008 0.408
#> GSM564753     1   0.515      0.755 0.764 0.180 0.028 0.028
#> GSM564754     1   0.451      0.768 0.804 0.152 0.012 0.032
#> GSM564755     4   0.699      0.699 0.420 0.080 0.012 0.488
#> GSM564756     1   0.487      0.769 0.792 0.140 0.012 0.056
#> GSM564757     4   0.708      0.816 0.344 0.084 0.020 0.552
#> GSM564758     3   0.626      0.000 0.024 0.056 0.668 0.252
#> GSM564759     1   0.530      0.760 0.772 0.152 0.036 0.040
#> GSM564760     1   0.751     -0.228 0.504 0.116 0.020 0.360
#> GSM564761     1   0.436      0.759 0.792 0.180 0.004 0.024
#> GSM564762     1   0.522      0.748 0.772 0.140 0.012 0.076
#> GSM564681     2   0.222      0.896 0.056 0.928 0.008 0.008
#> GSM564693     2   0.400      0.835 0.028 0.844 0.016 0.112
#> GSM564646     2   0.749      0.267 0.108 0.540 0.028 0.324
#> GSM564699     2   0.732      0.444 0.120 0.592 0.028 0.260

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM564615     4   0.518     0.7085 0.220 0.016 0.044 0.708 0.012
#> GSM564616     3   0.266     0.8800 0.060 0.004 0.900 0.012 0.024
#> GSM564617     3   0.249     0.8832 0.044 0.000 0.908 0.016 0.032
#> GSM564618     3   0.313     0.8742 0.060 0.004 0.880 0.024 0.032
#> GSM564619     1   0.502     0.7316 0.756 0.004 0.120 0.092 0.028
#> GSM564620     1   0.633     0.5980 0.664 0.004 0.116 0.132 0.084
#> GSM564621     1   0.688     0.4711 0.584 0.004 0.112 0.228 0.072
#> GSM564622     3   0.270     0.8826 0.052 0.004 0.900 0.012 0.032
#> GSM564623     3   0.606     0.6371 0.068 0.024 0.676 0.196 0.036
#> GSM564624     3   0.318     0.8745 0.056 0.008 0.880 0.024 0.032
#> GSM564625     1   0.694     0.2792 0.556 0.012 0.076 0.288 0.068
#> GSM564626     1   0.489     0.7211 0.772 0.008 0.108 0.084 0.028
#> GSM564627     1   0.625     0.6165 0.668 0.008 0.116 0.152 0.056
#> GSM564628     3   0.330     0.8709 0.068 0.008 0.872 0.024 0.028
#> GSM564629     1   0.614     0.5992 0.684 0.004 0.096 0.104 0.112
#> GSM564630     3   0.238     0.8849 0.044 0.004 0.916 0.012 0.024
#> GSM564609     3   0.266     0.8490 0.112 0.004 0.876 0.004 0.004
#> GSM564610     1   0.405     0.7611 0.812 0.004 0.128 0.036 0.020
#> GSM564611     1   0.464     0.7251 0.756 0.008 0.184 0.016 0.036
#> GSM564612     3   0.164     0.8884 0.028 0.008 0.948 0.004 0.012
#> GSM564613     3   0.189     0.8911 0.040 0.004 0.936 0.012 0.008
#> GSM564614     4   0.452     0.6888 0.200 0.008 0.028 0.752 0.012
#> GSM564631     3   0.161     0.8889 0.024 0.016 0.948 0.000 0.012
#> GSM564632     3   0.153     0.8917 0.040 0.004 0.948 0.004 0.004
#> GSM564633     3   0.213     0.8900 0.056 0.008 0.920 0.000 0.016
#> GSM564634     3   0.361     0.8334 0.016 0.036 0.856 0.016 0.076
#> GSM564635     3   0.239     0.8847 0.040 0.012 0.916 0.004 0.028
#> GSM564636     3   0.181     0.8889 0.036 0.008 0.940 0.004 0.012
#> GSM564637     3   0.319     0.8665 0.040 0.000 0.868 0.076 0.016
#> GSM564638     3   0.300     0.8638 0.088 0.012 0.876 0.020 0.004
#> GSM564639     3   0.230     0.8860 0.040 0.012 0.920 0.004 0.024
#> GSM564640     3   0.147     0.8871 0.016 0.008 0.956 0.004 0.016
#> GSM564641     3   0.186     0.8871 0.060 0.004 0.928 0.000 0.008
#> GSM564642     3   0.332     0.8698 0.036 0.052 0.872 0.004 0.036
#> GSM564643     3   0.509     0.6995 0.044 0.016 0.720 0.208 0.012
#> GSM564644     3   0.413     0.8238 0.024 0.084 0.824 0.008 0.060
#> GSM564645     3   0.231     0.8838 0.036 0.012 0.920 0.004 0.028
#> GSM564647     3   0.107     0.8900 0.016 0.004 0.968 0.000 0.012
#> GSM564648     3   0.142     0.8899 0.016 0.012 0.956 0.000 0.016
#> GSM564649     3   0.205     0.8894 0.028 0.012 0.932 0.004 0.024
#> GSM564650     3   0.248     0.8874 0.028 0.000 0.908 0.048 0.016
#> GSM564651     3   0.161     0.8926 0.024 0.016 0.948 0.000 0.012
#> GSM564652     3   0.393     0.7600 0.188 0.008 0.784 0.004 0.016
#> GSM564653     3   0.176     0.8877 0.028 0.012 0.944 0.004 0.012
#> GSM564654     3   0.175     0.8881 0.028 0.008 0.944 0.004 0.016
#> GSM564655     3   0.262     0.8889 0.036 0.008 0.908 0.016 0.032
#> GSM564656     3   0.211     0.8862 0.032 0.008 0.928 0.004 0.028
#> GSM564657     3   0.218     0.8889 0.048 0.008 0.920 0.000 0.024
#> GSM564658     3   0.290     0.8680 0.024 0.052 0.892 0.004 0.028
#> GSM564659     3   0.146     0.8923 0.032 0.008 0.952 0.000 0.008
#> GSM564660     3   0.358     0.8633 0.060 0.008 0.856 0.060 0.016
#> GSM564661     3   0.343     0.8685 0.060 0.048 0.864 0.004 0.024
#> GSM564662     3   0.231     0.8856 0.036 0.012 0.920 0.004 0.028
#> GSM564663     3   0.239     0.8910 0.044 0.016 0.916 0.004 0.020
#> GSM564664     3   0.504     0.7820 0.036 0.084 0.776 0.020 0.084
#> GSM564665     3   0.366     0.8491 0.044 0.024 0.856 0.012 0.064
#> GSM564666     3   0.491     0.7756 0.088 0.016 0.760 0.128 0.008
#> GSM564667     3   0.248     0.8883 0.036 0.012 0.912 0.004 0.036
#> GSM564668     3   0.255     0.8837 0.060 0.004 0.904 0.008 0.024
#> GSM564669     3   0.183     0.8871 0.032 0.008 0.940 0.004 0.016
#> GSM564670     3   0.160     0.8926 0.048 0.012 0.940 0.000 0.000
#> GSM564671     4   0.696     0.2154 0.092 0.044 0.312 0.536 0.016
#> GSM564672     3   0.176     0.8875 0.036 0.008 0.940 0.000 0.016
#> GSM564673     3   0.275     0.8824 0.032 0.032 0.904 0.012 0.020
#> GSM564674     3   0.197     0.8876 0.028 0.016 0.936 0.004 0.016
#> GSM564675     3   0.364     0.8564 0.044 0.008 0.852 0.076 0.020
#> GSM564676     3   0.318     0.8622 0.080 0.020 0.872 0.004 0.024
#> GSM564677     3   0.237     0.8875 0.060 0.012 0.912 0.004 0.012
#> GSM564678     3   0.318     0.8622 0.080 0.020 0.872 0.004 0.024
#> GSM564679     3   0.312     0.8668 0.076 0.020 0.876 0.004 0.024
#> GSM564680     3   0.183     0.8871 0.032 0.008 0.940 0.004 0.016
#> GSM564682     3   0.208     0.8867 0.064 0.004 0.920 0.004 0.008
#> GSM564683     3   0.220     0.8850 0.036 0.008 0.924 0.004 0.028
#> GSM564684     3   0.597     0.3605 0.044 0.024 0.552 0.372 0.008
#> GSM564685     3   0.637     0.5288 0.024 0.072 0.628 0.032 0.244
#> GSM564686     3   0.623     0.3650 0.052 0.028 0.552 0.356 0.012
#> GSM564687     3   0.683     0.4865 0.028 0.220 0.608 0.040 0.104
#> GSM564688     3   0.211     0.8884 0.036 0.008 0.928 0.004 0.024
#> GSM564689     3   0.246     0.8899 0.032 0.008 0.916 0.028 0.016
#> GSM564690     3   0.290     0.8718 0.068 0.016 0.888 0.004 0.024
#> GSM564691     3   0.151     0.8898 0.024 0.012 0.952 0.000 0.012
#> GSM564692     3   0.191     0.8891 0.020 0.016 0.940 0.008 0.016
#> GSM564694     3   0.563     0.7101 0.064 0.016 0.720 0.156 0.044
#> GSM564695     3   0.244     0.8881 0.040 0.008 0.912 0.036 0.004
#> GSM564696     3   0.448     0.8284 0.048 0.020 0.812 0.036 0.084
#> GSM564697     3   0.292     0.8699 0.016 0.052 0.892 0.008 0.032
#> GSM564698     3   0.103     0.8891 0.024 0.004 0.968 0.000 0.004
#> GSM564700     3   0.638     0.3718 0.060 0.032 0.552 0.344 0.012
#> GSM564701     3   0.179     0.8881 0.032 0.012 0.940 0.000 0.016
#> GSM564702     3   0.285     0.8789 0.076 0.008 0.888 0.012 0.016
#> GSM564703     1   0.477     0.7596 0.772 0.004 0.136 0.040 0.048
#> GSM564704     1   0.452     0.7638 0.780 0.000 0.124 0.076 0.020
#> GSM564705     1   0.435     0.7420 0.780 0.004 0.164 0.020 0.032
#> GSM564706     1   0.549     0.7424 0.716 0.000 0.148 0.052 0.084
#> GSM564707     1   0.391     0.7597 0.808 0.000 0.144 0.028 0.020
#> GSM564708     5   0.550     0.0000 0.164 0.020 0.020 0.076 0.720
#> GSM564709     1   0.532     0.7244 0.724 0.000 0.112 0.132 0.032
#> GSM564710     1   0.397     0.7559 0.820 0.008 0.124 0.028 0.020
#> GSM564711     1   0.679     0.6218 0.608 0.000 0.132 0.160 0.100
#> GSM564712     1   0.384     0.7509 0.812 0.004 0.148 0.020 0.016
#> GSM564713     1   0.732     0.5119 0.560 0.004 0.168 0.164 0.104
#> GSM564714     1   0.570     0.7228 0.704 0.004 0.152 0.096 0.044
#> GSM564715     1   0.419     0.7592 0.800 0.004 0.140 0.020 0.036
#> GSM564716     1   0.574     0.6761 0.692 0.004 0.096 0.172 0.036
#> GSM564717     1   0.642     0.0933 0.588 0.032 0.004 0.104 0.272
#> GSM564718     1   0.629     0.6391 0.656 0.000 0.096 0.152 0.096
#> GSM564719     1   0.492     0.7297 0.764 0.008 0.140 0.032 0.056
#> GSM564720     1   0.411     0.7495 0.816 0.008 0.116 0.020 0.040
#> GSM564721     1   0.458     0.7599 0.792 0.004 0.104 0.064 0.036
#> GSM564722     1   0.559     0.7204 0.716 0.004 0.120 0.120 0.040
#> GSM564723     1   0.408     0.7519 0.808 0.012 0.140 0.016 0.024
#> GSM564724     1   0.777    -0.0725 0.420 0.008 0.060 0.324 0.188
#> GSM564725     1   0.593     0.6573 0.672 0.008 0.116 0.180 0.024
#> GSM564726     4   0.533     0.6682 0.204 0.012 0.036 0.712 0.036
#> GSM564727     4   0.541     0.6919 0.316 0.004 0.044 0.624 0.012
#> GSM564728     4   0.456     0.7070 0.208 0.008 0.032 0.744 0.008
#> GSM564729     4   0.426     0.6830 0.196 0.008 0.028 0.764 0.004
#> GSM564730     1   0.354     0.7533 0.848 0.004 0.100 0.028 0.020
#> GSM564731     1   0.548     0.7239 0.736 0.004 0.096 0.080 0.084
#> GSM564732     1   0.615     0.3714 0.592 0.004 0.076 0.300 0.028
#> GSM564733     1   0.693    -0.1004 0.452 0.004 0.100 0.400 0.044
#> GSM564734     1   0.548     0.7000 0.704 0.000 0.112 0.156 0.028
#> GSM564735     1   0.696     0.0710 0.480 0.004 0.108 0.364 0.044
#> GSM564736     1   0.672     0.4263 0.564 0.004 0.096 0.284 0.052
#> GSM564737     1   0.401     0.7476 0.800 0.004 0.156 0.024 0.016
#> GSM564738     1   0.663     0.5677 0.612 0.004 0.136 0.196 0.052
#> GSM564739     1   0.459     0.7602 0.776 0.000 0.140 0.040 0.044
#> GSM564740     1   0.711    -0.2555 0.424 0.020 0.124 0.412 0.020
#> GSM564741     1   0.648     0.6647 0.644 0.004 0.140 0.144 0.068
#> GSM564742     1   0.521     0.7464 0.736 0.000 0.144 0.044 0.076
#> GSM564743     1   0.353     0.7512 0.848 0.004 0.100 0.032 0.016
#> GSM564744     1   0.351     0.7479 0.848 0.004 0.104 0.024 0.020
#> GSM564745     1   0.560     0.7097 0.732 0.008 0.092 0.096 0.072
#> GSM564746     1   0.548     0.6830 0.736 0.004 0.100 0.084 0.076
#> GSM564747     1   0.488     0.7570 0.764 0.000 0.120 0.076 0.040
#> GSM564748     1   0.499     0.7496 0.752 0.000 0.136 0.040 0.072
#> GSM564749     1   0.496     0.7201 0.760 0.008 0.144 0.032 0.056
#> GSM564750     4   0.639     0.3191 0.416 0.000 0.092 0.468 0.024
#> GSM564751     1   0.519     0.7528 0.732 0.000 0.148 0.032 0.088
#> GSM564752     4   0.620     0.4749 0.372 0.000 0.080 0.524 0.024
#> GSM564753     1   0.521     0.7384 0.732 0.000 0.156 0.044 0.068
#> GSM564754     1   0.406     0.7621 0.812 0.004 0.128 0.032 0.024
#> GSM564755     4   0.556     0.7054 0.300 0.012 0.044 0.632 0.012
#> GSM564756     1   0.464     0.7681 0.788 0.008 0.120 0.048 0.036
#> GSM564757     4   0.499     0.7180 0.232 0.012 0.040 0.708 0.008
#> GSM564758     2   0.295     0.0000 0.016 0.876 0.020 0.088 0.000
#> GSM564759     1   0.538     0.7412 0.732 0.000 0.124 0.068 0.076
#> GSM564760     4   0.684     0.3890 0.392 0.012 0.084 0.476 0.036
#> GSM564761     1   0.422     0.7539 0.792 0.004 0.152 0.036 0.016
#> GSM564762     1   0.535     0.7178 0.744 0.008 0.096 0.108 0.044
#> GSM564681     3   0.227     0.8873 0.048 0.008 0.920 0.008 0.016
#> GSM564693     3   0.356     0.8328 0.028 0.008 0.840 0.116 0.008
#> GSM564646     3   0.634     0.2829 0.056 0.028 0.524 0.380 0.012
#> GSM564699     3   0.655     0.4332 0.084 0.032 0.568 0.304 0.012

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM564615     4   0.369     0.5817 0.100 0.004 0.024 0.828 0.032 0.012
#> GSM564616     3   0.308     0.7422 0.060 0.000 0.860 0.028 0.052 0.000
#> GSM564617     3   0.292     0.7562 0.052 0.000 0.868 0.020 0.060 0.000
#> GSM564618     3   0.344     0.7347 0.060 0.004 0.844 0.040 0.052 0.000
#> GSM564619     1   0.520     0.6750 0.712 0.004 0.100 0.100 0.084 0.000
#> GSM564620     1   0.679     0.4388 0.560 0.020 0.096 0.156 0.168 0.000
#> GSM564621     1   0.702     0.2554 0.488 0.016 0.092 0.272 0.132 0.000
#> GSM564622     3   0.308     0.7496 0.048 0.000 0.860 0.028 0.064 0.000
#> GSM564623     3   0.591     0.2836 0.052 0.008 0.636 0.192 0.108 0.004
#> GSM564624     3   0.352     0.7361 0.056 0.004 0.844 0.040 0.052 0.004
#> GSM564625     1   0.714     0.0198 0.436 0.012 0.056 0.336 0.148 0.012
#> GSM564626     1   0.552     0.6619 0.692 0.004 0.092 0.112 0.096 0.004
#> GSM564627     1   0.668     0.4755 0.572 0.012 0.092 0.184 0.136 0.004
#> GSM564628     3   0.362     0.7179 0.056 0.000 0.832 0.040 0.068 0.004
#> GSM564629     1   0.670     0.4355 0.588 0.048 0.072 0.112 0.180 0.000
#> GSM564630     3   0.274     0.7585 0.048 0.000 0.880 0.020 0.052 0.000
#> GSM564609     3   0.242     0.7284 0.096 0.008 0.884 0.004 0.008 0.000
#> GSM564610     1   0.390     0.7417 0.800 0.004 0.120 0.024 0.052 0.000
#> GSM564611     1   0.460     0.6966 0.736 0.012 0.172 0.008 0.068 0.004
#> GSM564612     3   0.166     0.7882 0.020 0.008 0.940 0.004 0.028 0.000
#> GSM564613     3   0.198     0.7896 0.036 0.008 0.928 0.016 0.008 0.004
#> GSM564614     4   0.281     0.5565 0.088 0.020 0.012 0.872 0.008 0.000
#> GSM564631     3   0.138     0.7861 0.016 0.004 0.952 0.004 0.024 0.000
#> GSM564632     3   0.128     0.7926 0.024 0.004 0.956 0.004 0.012 0.000
#> GSM564633     3   0.221     0.7886 0.048 0.012 0.908 0.000 0.032 0.000
#> GSM564634     3   0.395     0.6205 0.008 0.048 0.812 0.012 0.104 0.016
#> GSM564635     3   0.237     0.7713 0.024 0.024 0.908 0.008 0.036 0.000
#> GSM564636     3   0.171     0.7888 0.028 0.004 0.936 0.004 0.028 0.000
#> GSM564637     3   0.304     0.7552 0.024 0.000 0.860 0.076 0.040 0.000
#> GSM564638     3   0.310     0.7403 0.084 0.008 0.860 0.020 0.028 0.000
#> GSM564639     3   0.213     0.7761 0.028 0.016 0.920 0.008 0.028 0.000
#> GSM564640     3   0.180     0.7815 0.016 0.000 0.924 0.004 0.056 0.000
#> GSM564641     3   0.194     0.7845 0.052 0.008 0.920 0.000 0.020 0.000
#> GSM564642     3   0.338     0.6990 0.028 0.008 0.816 0.004 0.144 0.000
#> GSM564643     3   0.495     0.4195 0.028 0.000 0.696 0.208 0.060 0.008
#> GSM564644     3   0.378     0.4797 0.016 0.000 0.732 0.000 0.244 0.008
#> GSM564645     3   0.222     0.7704 0.024 0.024 0.916 0.008 0.028 0.000
#> GSM564647     3   0.148     0.7911 0.016 0.008 0.952 0.008 0.012 0.004
#> GSM564648     3   0.131     0.7881 0.016 0.004 0.952 0.000 0.028 0.000
#> GSM564649     3   0.210     0.7853 0.016 0.016 0.920 0.008 0.040 0.000
#> GSM564650     3   0.248     0.7843 0.024 0.000 0.896 0.044 0.036 0.000
#> GSM564651     3   0.171     0.7940 0.024 0.004 0.932 0.000 0.040 0.000
#> GSM564652     3   0.397     0.5760 0.160 0.000 0.768 0.008 0.064 0.000
#> GSM564653     3   0.186     0.7812 0.028 0.000 0.924 0.004 0.044 0.000
#> GSM564654     3   0.159     0.7809 0.016 0.012 0.944 0.004 0.024 0.000
#> GSM564655     3   0.244     0.7766 0.024 0.024 0.904 0.008 0.040 0.000
#> GSM564656     3   0.207     0.7742 0.016 0.024 0.924 0.012 0.024 0.000
#> GSM564657     3   0.207     0.7856 0.036 0.012 0.920 0.004 0.028 0.000
#> GSM564658     3   0.292     0.7139 0.020 0.000 0.844 0.000 0.128 0.008
#> GSM564659     3   0.131     0.7917 0.020 0.000 0.956 0.008 0.012 0.004
#> GSM564660     3   0.336     0.7379 0.044 0.004 0.848 0.068 0.036 0.000
#> GSM564661     3   0.349     0.7109 0.056 0.000 0.816 0.004 0.120 0.004
#> GSM564662     3   0.230     0.7721 0.024 0.024 0.912 0.008 0.032 0.000
#> GSM564663     3   0.260     0.7819 0.044 0.004 0.884 0.004 0.064 0.000
#> GSM564664     3   0.436     0.3043 0.024 0.008 0.684 0.000 0.276 0.008
#> GSM564665     3   0.380     0.6850 0.028 0.032 0.836 0.020 0.072 0.012
#> GSM564666     3   0.480     0.5591 0.064 0.000 0.736 0.140 0.056 0.004
#> GSM564667     3   0.245     0.7760 0.032 0.024 0.904 0.008 0.032 0.000
#> GSM564668     3   0.244     0.7725 0.040 0.024 0.904 0.008 0.024 0.000
#> GSM564669     3   0.158     0.7817 0.020 0.004 0.944 0.008 0.024 0.000
#> GSM564670     3   0.171     0.7924 0.040 0.000 0.932 0.004 0.024 0.000
#> GSM564671     4   0.612    -0.0036 0.040 0.004 0.280 0.580 0.076 0.020
#> GSM564672     3   0.155     0.7825 0.024 0.004 0.944 0.004 0.024 0.000
#> GSM564673     3   0.332     0.7513 0.036 0.008 0.860 0.012 0.064 0.020
#> GSM564674     3   0.217     0.7815 0.028 0.000 0.904 0.004 0.064 0.000
#> GSM564675     3   0.369     0.7075 0.036 0.000 0.820 0.080 0.064 0.000
#> GSM564676     3   0.316     0.7213 0.080 0.000 0.840 0.004 0.076 0.000
#> GSM564677     3   0.240     0.7795 0.060 0.000 0.892 0.004 0.044 0.000
#> GSM564678     3   0.316     0.7213 0.080 0.000 0.840 0.004 0.076 0.000
#> GSM564679     3   0.316     0.7234 0.072 0.000 0.840 0.004 0.084 0.000
#> GSM564680     3   0.158     0.7817 0.020 0.004 0.944 0.008 0.024 0.000
#> GSM564682     3   0.200     0.7835 0.056 0.008 0.916 0.000 0.020 0.000
#> GSM564683     3   0.222     0.7725 0.024 0.024 0.916 0.008 0.028 0.000
#> GSM564684     3   0.586    -0.0710 0.028 0.004 0.516 0.372 0.076 0.004
#> GSM564685     3   0.702    -0.7212 0.020 0.172 0.460 0.020 0.308 0.020
#> GSM564686     3   0.598    -0.0507 0.032 0.004 0.516 0.360 0.084 0.004
#> GSM564687     5   0.620     0.0000 0.012 0.012 0.384 0.004 0.464 0.124
#> GSM564688     3   0.212     0.7836 0.036 0.000 0.912 0.008 0.044 0.000
#> GSM564689     3   0.235     0.7835 0.028 0.000 0.904 0.028 0.040 0.000
#> GSM564690     3   0.289     0.7404 0.072 0.000 0.860 0.004 0.064 0.000
#> GSM564691     3   0.143     0.7907 0.016 0.008 0.948 0.000 0.028 0.000
#> GSM564692     3   0.200     0.7854 0.020 0.000 0.916 0.008 0.056 0.000
#> GSM564694     3   0.556     0.4384 0.048 0.024 0.700 0.148 0.072 0.008
#> GSM564695     3   0.263     0.7865 0.040 0.000 0.888 0.028 0.044 0.000
#> GSM564696     3   0.457     0.6097 0.036 0.056 0.784 0.032 0.088 0.004
#> GSM564697     3   0.290     0.7123 0.012 0.000 0.840 0.004 0.140 0.004
#> GSM564698     3   0.113     0.7895 0.012 0.008 0.964 0.004 0.012 0.000
#> GSM564700     3   0.608    -0.0503 0.036 0.004 0.520 0.352 0.080 0.008
#> GSM564701     3   0.197     0.7823 0.028 0.000 0.912 0.000 0.060 0.000
#> GSM564702     3   0.289     0.7741 0.064 0.000 0.868 0.016 0.052 0.000
#> GSM564703     1   0.487     0.7399 0.748 0.040 0.128 0.052 0.032 0.000
#> GSM564704     1   0.526     0.7343 0.708 0.012 0.128 0.104 0.048 0.000
#> GSM564705     1   0.428     0.7198 0.760 0.008 0.156 0.012 0.064 0.000
#> GSM564706     1   0.589     0.7129 0.664 0.096 0.148 0.064 0.028 0.000
#> GSM564707     1   0.411     0.7423 0.784 0.016 0.144 0.024 0.032 0.000
#> GSM564708     2   0.215     0.0000 0.044 0.916 0.008 0.024 0.008 0.000
#> GSM564709     1   0.505     0.7020 0.708 0.024 0.096 0.160 0.012 0.000
#> GSM564710     1   0.352     0.7421 0.816 0.000 0.116 0.012 0.056 0.000
#> GSM564711     1   0.714     0.5284 0.536 0.120 0.124 0.184 0.036 0.000
#> GSM564712     1   0.364     0.7343 0.796 0.000 0.144 0.008 0.052 0.000
#> GSM564713     1   0.735     0.4243 0.500 0.104 0.164 0.196 0.036 0.000
#> GSM564714     1   0.597     0.6876 0.652 0.052 0.148 0.120 0.028 0.000
#> GSM564715     1   0.449     0.7415 0.764 0.016 0.140 0.036 0.044 0.000
#> GSM564716     1   0.604     0.5936 0.628 0.048 0.084 0.208 0.032 0.000
#> GSM564717     1   0.676     0.1111 0.504 0.232 0.004 0.016 0.212 0.032
#> GSM564718     1   0.671     0.5474 0.576 0.116 0.092 0.188 0.028 0.000
#> GSM564719     1   0.460     0.7024 0.752 0.016 0.124 0.008 0.096 0.004
#> GSM564720     1   0.390     0.7264 0.800 0.016 0.104 0.004 0.076 0.000
#> GSM564721     1   0.455     0.7418 0.776 0.020 0.092 0.068 0.044 0.000
#> GSM564722     1   0.577     0.6729 0.672 0.040 0.104 0.148 0.036 0.000
#> GSM564723     1   0.377     0.7357 0.796 0.004 0.136 0.008 0.056 0.000
#> GSM564724     4   0.810     0.2565 0.308 0.192 0.044 0.356 0.088 0.012
#> GSM564725     1   0.637     0.5600 0.584 0.036 0.108 0.232 0.040 0.000
#> GSM564726     4   0.414     0.5390 0.112 0.068 0.004 0.792 0.012 0.012
#> GSM564727     4   0.427     0.6197 0.208 0.000 0.028 0.732 0.032 0.000
#> GSM564728     4   0.276     0.5863 0.100 0.012 0.016 0.868 0.004 0.000
#> GSM564729     4   0.266     0.5635 0.092 0.004 0.012 0.876 0.016 0.000
#> GSM564730     1   0.393     0.7330 0.816 0.020 0.088 0.028 0.048 0.000
#> GSM564731     1   0.573     0.6851 0.692 0.088 0.084 0.100 0.036 0.000
#> GSM564732     1   0.617     0.2239 0.508 0.024 0.064 0.364 0.040 0.000
#> GSM564733     4   0.681     0.2687 0.364 0.048 0.084 0.464 0.036 0.004
#> GSM564734     1   0.554     0.6786 0.668 0.028 0.104 0.180 0.020 0.000
#> GSM564735     4   0.679     0.1269 0.404 0.056 0.088 0.420 0.032 0.000
#> GSM564736     1   0.681     0.2395 0.476 0.064 0.088 0.340 0.032 0.000
#> GSM564737     1   0.392     0.7305 0.784 0.004 0.152 0.016 0.044 0.000
#> GSM564738     1   0.666     0.4751 0.556 0.064 0.116 0.236 0.028 0.000
#> GSM564739     1   0.481     0.7405 0.748 0.036 0.136 0.052 0.028 0.000
#> GSM564740     4   0.667     0.3589 0.348 0.016 0.096 0.480 0.056 0.004
#> GSM564741     1   0.662     0.6193 0.592 0.072 0.132 0.168 0.036 0.000
#> GSM564742     1   0.553     0.7150 0.692 0.080 0.144 0.064 0.020 0.000
#> GSM564743     1   0.362     0.7306 0.828 0.008 0.088 0.020 0.056 0.000
#> GSM564744     1   0.332     0.7288 0.840 0.004 0.092 0.012 0.052 0.000
#> GSM564745     1   0.615     0.6582 0.672 0.076 0.080 0.112 0.052 0.008
#> GSM564746     1   0.597     0.5771 0.668 0.036 0.076 0.096 0.124 0.000
#> GSM564747     1   0.504     0.7304 0.736 0.040 0.108 0.092 0.024 0.000
#> GSM564748     1   0.533     0.7224 0.708 0.076 0.140 0.056 0.020 0.000
#> GSM564749     1   0.458     0.6937 0.748 0.016 0.128 0.004 0.100 0.004
#> GSM564750     4   0.611     0.4403 0.348 0.028 0.072 0.524 0.028 0.000
#> GSM564751     1   0.563     0.7294 0.684 0.092 0.144 0.056 0.024 0.000
#> GSM564752     4   0.572     0.5359 0.304 0.028 0.056 0.588 0.024 0.000
#> GSM564753     1   0.561     0.7062 0.680 0.076 0.160 0.064 0.020 0.000
#> GSM564754     1   0.396     0.7462 0.796 0.004 0.124 0.032 0.044 0.000
#> GSM564755     4   0.438     0.6328 0.196 0.012 0.028 0.740 0.024 0.000
#> GSM564756     1   0.512     0.7393 0.748 0.032 0.104 0.052 0.056 0.008
#> GSM564757     4   0.356     0.6030 0.120 0.004 0.024 0.824 0.024 0.004
#> GSM564758     6   0.149     0.0000 0.004 0.000 0.000 0.024 0.028 0.944
#> GSM564759     1   0.577     0.7000 0.680 0.096 0.120 0.080 0.024 0.000
#> GSM564760     4   0.655     0.4802 0.304 0.032 0.064 0.544 0.040 0.016
#> GSM564761     1   0.417     0.7362 0.772 0.004 0.148 0.024 0.052 0.000
#> GSM564762     1   0.576     0.6667 0.672 0.048 0.092 0.156 0.032 0.000
#> GSM564681     3   0.219     0.7854 0.044 0.000 0.908 0.008 0.040 0.000
#> GSM564693     3   0.358     0.6845 0.024 0.000 0.820 0.104 0.052 0.000
#> GSM564646     3   0.608    -0.1235 0.036 0.004 0.488 0.384 0.084 0.004
#> GSM564699     3   0.629     0.0292 0.060 0.004 0.540 0.308 0.080 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n genotype/variation(p) disease.state(p) k
#> CV:hclust 148                 0.979            0.393 2
#> CV:hclust 138                 0.964            0.448 3
#> CV:hclust 137                 0.838            0.812 4
#> CV:hclust 133                 0.855            0.823 5
#> CV:hclust 123                 0.726            0.820 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 154 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.865           0.949       0.952         0.4983 0.500   0.500
#> 3 3 0.636           0.717       0.807         0.2557 0.870   0.744
#> 4 4 0.617           0.692       0.787         0.1456 0.854   0.634
#> 5 5 0.631           0.581       0.742         0.0796 0.904   0.663
#> 6 6 0.669           0.632       0.751         0.0452 0.920   0.658

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM564615     1  0.2603      0.955 0.956 0.044
#> GSM564616     2  0.3879      0.956 0.076 0.924
#> GSM564617     2  0.3879      0.956 0.076 0.924
#> GSM564618     2  0.4298      0.952 0.088 0.912
#> GSM564619     1  0.0376      0.955 0.996 0.004
#> GSM564620     1  0.0000      0.954 1.000 0.000
#> GSM564621     1  0.0000      0.954 1.000 0.000
#> GSM564622     2  0.3733      0.956 0.072 0.928
#> GSM564623     2  0.4690      0.917 0.100 0.900
#> GSM564624     2  0.3879      0.956 0.076 0.924
#> GSM564625     1  0.0000      0.954 1.000 0.000
#> GSM564626     1  0.0376      0.955 0.996 0.004
#> GSM564627     1  0.0000      0.954 1.000 0.000
#> GSM564628     2  0.5059      0.939 0.112 0.888
#> GSM564629     1  0.0000      0.954 1.000 0.000
#> GSM564630     2  0.3879      0.956 0.076 0.924
#> GSM564609     2  0.0000      0.956 0.000 1.000
#> GSM564610     1  0.0938      0.955 0.988 0.012
#> GSM564611     1  0.3584      0.928 0.932 0.068
#> GSM564612     2  0.1843      0.958 0.028 0.972
#> GSM564613     2  0.0938      0.958 0.012 0.988
#> GSM564614     1  0.2603      0.955 0.956 0.044
#> GSM564631     2  0.0000      0.956 0.000 1.000
#> GSM564632     2  0.0000      0.956 0.000 1.000
#> GSM564633     2  0.0000      0.956 0.000 1.000
#> GSM564634     2  0.2236      0.960 0.036 0.964
#> GSM564635     2  0.0000      0.956 0.000 1.000
#> GSM564636     2  0.0000      0.956 0.000 1.000
#> GSM564637     2  0.0000      0.956 0.000 1.000
#> GSM564638     2  0.0000      0.956 0.000 1.000
#> GSM564639     2  0.0000      0.956 0.000 1.000
#> GSM564640     2  0.3879      0.956 0.076 0.924
#> GSM564641     2  0.0376      0.957 0.004 0.996
#> GSM564642     2  0.3584      0.956 0.068 0.932
#> GSM564643     2  0.4298      0.918 0.088 0.912
#> GSM564644     2  0.3879      0.956 0.076 0.924
#> GSM564645     2  0.0000      0.956 0.000 1.000
#> GSM564647     2  0.1184      0.958 0.016 0.984
#> GSM564648     2  0.3584      0.957 0.068 0.932
#> GSM564649     2  0.0000      0.956 0.000 1.000
#> GSM564650     2  0.3431      0.958 0.064 0.936
#> GSM564651     2  0.2778      0.957 0.048 0.952
#> GSM564652     2  0.3879      0.956 0.076 0.924
#> GSM564653     2  0.3879      0.956 0.076 0.924
#> GSM564654     2  0.0000      0.956 0.000 1.000
#> GSM564655     2  0.0000      0.956 0.000 1.000
#> GSM564656     2  0.0000      0.956 0.000 1.000
#> GSM564657     2  0.0672      0.957 0.008 0.992
#> GSM564658     2  0.3879      0.956 0.076 0.924
#> GSM564659     2  0.0000      0.956 0.000 1.000
#> GSM564660     2  0.2043      0.957 0.032 0.968
#> GSM564661     2  0.3879      0.956 0.076 0.924
#> GSM564662     2  0.0000      0.956 0.000 1.000
#> GSM564663     2  0.3879      0.956 0.076 0.924
#> GSM564664     2  0.3879      0.956 0.076 0.924
#> GSM564665     2  0.0000      0.956 0.000 1.000
#> GSM564666     2  0.4298      0.918 0.088 0.912
#> GSM564667     2  0.0000      0.956 0.000 1.000
#> GSM564668     2  0.0000      0.956 0.000 1.000
#> GSM564669     2  0.0000      0.956 0.000 1.000
#> GSM564670     2  0.1633      0.958 0.024 0.976
#> GSM564671     2  0.5178      0.904 0.116 0.884
#> GSM564672     2  0.0000      0.956 0.000 1.000
#> GSM564673     2  0.3879      0.956 0.076 0.924
#> GSM564674     2  0.3879      0.956 0.076 0.924
#> GSM564675     2  0.3274      0.951 0.060 0.940
#> GSM564676     2  0.3879      0.956 0.076 0.924
#> GSM564677     2  0.3879      0.956 0.076 0.924
#> GSM564678     2  0.3879      0.956 0.076 0.924
#> GSM564679     2  0.3879      0.956 0.076 0.924
#> GSM564680     2  0.0000      0.956 0.000 1.000
#> GSM564682     2  0.1843      0.958 0.028 0.972
#> GSM564683     2  0.0000      0.956 0.000 1.000
#> GSM564684     2  0.4690      0.917 0.100 0.900
#> GSM564685     2  0.0000      0.956 0.000 1.000
#> GSM564686     2  0.4690      0.917 0.100 0.900
#> GSM564687     2  0.4161      0.953 0.084 0.916
#> GSM564688     2  0.3879      0.956 0.076 0.924
#> GSM564689     2  0.3879      0.956 0.076 0.924
#> GSM564690     2  0.3879      0.956 0.076 0.924
#> GSM564691     2  0.2043      0.957 0.032 0.968
#> GSM564692     2  0.3879      0.956 0.076 0.924
#> GSM564694     2  0.3733      0.932 0.072 0.928
#> GSM564695     2  0.0672      0.957 0.008 0.992
#> GSM564696     2  0.0000      0.956 0.000 1.000
#> GSM564697     2  0.3879      0.956 0.076 0.924
#> GSM564698     2  0.0000      0.956 0.000 1.000
#> GSM564700     2  0.4690      0.917 0.100 0.900
#> GSM564701     2  0.3879      0.956 0.076 0.924
#> GSM564702     2  0.3879      0.956 0.076 0.924
#> GSM564703     1  0.5629      0.923 0.868 0.132
#> GSM564704     1  0.0376      0.955 0.996 0.004
#> GSM564705     1  0.3584      0.928 0.932 0.068
#> GSM564706     1  0.5737      0.924 0.864 0.136
#> GSM564707     1  0.3584      0.928 0.932 0.068
#> GSM564708     1  0.3879      0.942 0.924 0.076
#> GSM564709     1  0.0376      0.955 0.996 0.004
#> GSM564710     1  0.2948      0.938 0.948 0.052
#> GSM564711     1  0.3431      0.951 0.936 0.064
#> GSM564712     1  0.3584      0.928 0.932 0.068
#> GSM564713     1  0.4022      0.943 0.920 0.080
#> GSM564714     1  0.5737      0.924 0.864 0.136
#> GSM564715     1  0.1414      0.953 0.980 0.020
#> GSM564716     1  0.1633      0.958 0.976 0.024
#> GSM564717     1  0.0672      0.955 0.992 0.008
#> GSM564718     1  0.3431      0.951 0.936 0.064
#> GSM564719     1  0.3431      0.931 0.936 0.064
#> GSM564720     1  0.1184      0.954 0.984 0.016
#> GSM564721     1  0.0672      0.955 0.992 0.008
#> GSM564722     1  0.1843      0.958 0.972 0.028
#> GSM564723     1  0.3584      0.928 0.932 0.068
#> GSM564724     1  0.4022      0.943 0.920 0.080
#> GSM564725     1  0.2236      0.956 0.964 0.036
#> GSM564726     1  0.3114      0.951 0.944 0.056
#> GSM564727     1  0.2043      0.956 0.968 0.032
#> GSM564728     1  0.2603      0.955 0.956 0.044
#> GSM564729     1  0.2603      0.955 0.956 0.044
#> GSM564730     1  0.0672      0.955 0.992 0.008
#> GSM564731     1  0.2948      0.956 0.948 0.052
#> GSM564732     1  0.1633      0.957 0.976 0.024
#> GSM564733     1  0.3733      0.947 0.928 0.072
#> GSM564734     1  0.0376      0.955 0.996 0.004
#> GSM564735     1  0.3879      0.942 0.924 0.076
#> GSM564736     1  0.4022      0.943 0.920 0.080
#> GSM564737     1  0.3584      0.928 0.932 0.068
#> GSM564738     1  0.4022      0.943 0.920 0.080
#> GSM564739     1  0.5178      0.924 0.884 0.116
#> GSM564740     1  0.2603      0.955 0.956 0.044
#> GSM564741     1  0.4022      0.943 0.920 0.080
#> GSM564742     1  0.5946      0.918 0.856 0.144
#> GSM564743     1  0.0672      0.955 0.992 0.008
#> GSM564744     1  0.1184      0.954 0.984 0.016
#> GSM564745     1  0.0000      0.954 1.000 0.000
#> GSM564746     1  0.0376      0.955 0.996 0.004
#> GSM564747     1  0.1843      0.959 0.972 0.028
#> GSM564748     1  0.5946      0.918 0.856 0.144
#> GSM564749     1  0.3274      0.933 0.940 0.060
#> GSM564750     1  0.3114      0.951 0.944 0.056
#> GSM564751     1  0.5408      0.929 0.876 0.124
#> GSM564752     1  0.3114      0.951 0.944 0.056
#> GSM564753     1  0.5737      0.924 0.864 0.136
#> GSM564754     1  0.0672      0.955 0.992 0.008
#> GSM564755     1  0.2603      0.955 0.956 0.044
#> GSM564756     1  0.0672      0.955 0.992 0.008
#> GSM564757     1  0.2603      0.955 0.956 0.044
#> GSM564758     1  0.2603      0.955 0.956 0.044
#> GSM564759     1  0.5629      0.926 0.868 0.132
#> GSM564760     1  0.2236      0.956 0.964 0.036
#> GSM564761     1  0.4161      0.916 0.916 0.084
#> GSM564762     1  0.2423      0.957 0.960 0.040
#> GSM564681     2  0.3879      0.956 0.076 0.924
#> GSM564693     2  0.3431      0.958 0.064 0.936
#> GSM564646     2  0.4690      0.917 0.100 0.900
#> GSM564699     2  0.3584      0.917 0.068 0.932

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM564615     3  0.6095    0.45815 0.392 0.000 0.608
#> GSM564616     2  0.7475    0.77600 0.044 0.580 0.376
#> GSM564617     2  0.7475    0.77600 0.044 0.580 0.376
#> GSM564618     2  0.7256    0.72372 0.028 0.532 0.440
#> GSM564619     1  0.1267    0.86228 0.972 0.004 0.024
#> GSM564620     1  0.3267    0.81643 0.884 0.000 0.116
#> GSM564621     3  0.6309    0.18112 0.496 0.000 0.504
#> GSM564622     2  0.7209    0.78904 0.036 0.604 0.360
#> GSM564623     3  0.4195    0.38019 0.012 0.136 0.852
#> GSM564624     2  0.7475    0.77600 0.044 0.580 0.376
#> GSM564625     1  0.6079    0.27507 0.612 0.000 0.388
#> GSM564626     1  0.1525    0.86235 0.964 0.004 0.032
#> GSM564627     1  0.5465    0.53896 0.712 0.000 0.288
#> GSM564628     2  0.7346    0.72949 0.032 0.536 0.432
#> GSM564629     1  0.1989    0.85645 0.948 0.004 0.048
#> GSM564630     2  0.7475    0.77600 0.044 0.580 0.376
#> GSM564609     2  0.2443    0.75004 0.032 0.940 0.028
#> GSM564610     1  0.1170    0.86101 0.976 0.008 0.016
#> GSM564611     1  0.1999    0.84025 0.952 0.012 0.036
#> GSM564612     2  0.2982    0.75945 0.024 0.920 0.056
#> GSM564613     2  0.6090    0.80360 0.020 0.716 0.264
#> GSM564614     3  0.6095    0.45815 0.392 0.000 0.608
#> GSM564631     2  0.0592    0.72982 0.012 0.988 0.000
#> GSM564632     2  0.6369    0.79182 0.016 0.668 0.316
#> GSM564633     2  0.0592    0.72982 0.012 0.988 0.000
#> GSM564634     2  0.6541    0.80678 0.024 0.672 0.304
#> GSM564635     2  0.0592    0.72982 0.012 0.988 0.000
#> GSM564636     2  0.2651    0.75537 0.012 0.928 0.060
#> GSM564637     2  0.5810    0.79168 0.000 0.664 0.336
#> GSM564638     2  0.0592    0.72982 0.012 0.988 0.000
#> GSM564639     2  0.0592    0.72982 0.012 0.988 0.000
#> GSM564640     2  0.7190    0.80321 0.044 0.636 0.320
#> GSM564641     2  0.1170    0.73996 0.016 0.976 0.008
#> GSM564642     2  0.7112    0.80532 0.044 0.648 0.308
#> GSM564643     3  0.5220    0.21911 0.012 0.208 0.780
#> GSM564644     2  0.7260    0.80319 0.048 0.636 0.316
#> GSM564645     2  0.0592    0.72982 0.012 0.988 0.000
#> GSM564647     2  0.2804    0.76146 0.016 0.924 0.060
#> GSM564648     2  0.6962    0.80492 0.036 0.648 0.316
#> GSM564649     2  0.0592    0.72982 0.012 0.988 0.000
#> GSM564650     2  0.7481    0.78475 0.048 0.596 0.356
#> GSM564651     2  0.6793    0.80765 0.036 0.672 0.292
#> GSM564652     2  0.7260    0.80268 0.048 0.636 0.316
#> GSM564653     2  0.7190    0.80321 0.044 0.636 0.320
#> GSM564654     2  0.0592    0.72982 0.012 0.988 0.000
#> GSM564655     2  0.3120    0.75743 0.012 0.908 0.080
#> GSM564656     2  0.0592    0.72982 0.012 0.988 0.000
#> GSM564657     2  0.0592    0.72982 0.012 0.988 0.000
#> GSM564658     2  0.7310    0.80123 0.048 0.628 0.324
#> GSM564659     2  0.2680    0.76070 0.008 0.924 0.068
#> GSM564660     2  0.7123    0.77832 0.032 0.604 0.364
#> GSM564661     2  0.7285    0.80204 0.048 0.632 0.320
#> GSM564662     2  0.0592    0.72982 0.012 0.988 0.000
#> GSM564663     2  0.7234    0.80408 0.048 0.640 0.312
#> GSM564664     2  0.7260    0.80319 0.048 0.636 0.316
#> GSM564665     2  0.0592    0.72982 0.012 0.988 0.000
#> GSM564666     3  0.5884    0.00118 0.012 0.272 0.716
#> GSM564667     2  0.0592    0.72982 0.012 0.988 0.000
#> GSM564668     2  0.0592    0.72982 0.012 0.988 0.000
#> GSM564669     2  0.0592    0.72982 0.012 0.988 0.000
#> GSM564670     2  0.5939    0.79969 0.028 0.748 0.224
#> GSM564671     3  0.2947    0.48172 0.020 0.060 0.920
#> GSM564672     2  0.0592    0.72982 0.012 0.988 0.000
#> GSM564673     2  0.6962    0.80492 0.036 0.648 0.316
#> GSM564674     2  0.7262    0.79994 0.044 0.624 0.332
#> GSM564675     2  0.6859    0.74513 0.016 0.564 0.420
#> GSM564676     2  0.7285    0.80240 0.048 0.632 0.320
#> GSM564677     2  0.7470    0.79451 0.052 0.612 0.336
#> GSM564678     2  0.7285    0.80240 0.048 0.632 0.320
#> GSM564679     2  0.7310    0.80123 0.048 0.628 0.324
#> GSM564680     2  0.0592    0.72982 0.012 0.988 0.000
#> GSM564682     2  0.3009    0.75870 0.028 0.920 0.052
#> GSM564683     2  0.0592    0.72982 0.012 0.988 0.000
#> GSM564684     3  0.4326    0.37182 0.012 0.144 0.844
#> GSM564685     2  0.0592    0.72982 0.012 0.988 0.000
#> GSM564686     3  0.3845    0.41324 0.012 0.116 0.872
#> GSM564687     2  0.7310    0.80123 0.048 0.628 0.324
#> GSM564688     2  0.7138    0.80455 0.044 0.644 0.312
#> GSM564689     2  0.7401    0.79503 0.048 0.612 0.340
#> GSM564690     2  0.7285    0.80240 0.048 0.632 0.320
#> GSM564691     2  0.3370    0.76234 0.024 0.904 0.072
#> GSM564692     2  0.7065    0.80444 0.040 0.644 0.316
#> GSM564694     2  0.6683    0.60295 0.008 0.496 0.496
#> GSM564695     2  0.6867    0.79206 0.028 0.636 0.336
#> GSM564696     2  0.0592    0.72982 0.012 0.988 0.000
#> GSM564697     2  0.7357    0.79873 0.048 0.620 0.332
#> GSM564698     2  0.0592    0.72982 0.012 0.988 0.000
#> GSM564700     3  0.4261    0.37900 0.012 0.140 0.848
#> GSM564701     2  0.7012    0.80627 0.040 0.652 0.308
#> GSM564702     2  0.7551    0.77479 0.048 0.580 0.372
#> GSM564703     1  0.2682    0.83438 0.920 0.076 0.004
#> GSM564704     1  0.1620    0.86414 0.964 0.012 0.024
#> GSM564705     1  0.1337    0.85693 0.972 0.012 0.016
#> GSM564706     1  0.3933    0.81797 0.880 0.092 0.028
#> GSM564707     1  0.1170    0.86063 0.976 0.016 0.008
#> GSM564708     1  0.4821    0.79534 0.840 0.040 0.120
#> GSM564709     1  0.1453    0.86408 0.968 0.008 0.024
#> GSM564710     1  0.1015    0.86040 0.980 0.008 0.012
#> GSM564711     1  0.5137    0.79762 0.832 0.064 0.104
#> GSM564712     1  0.1182    0.85825 0.976 0.012 0.012
#> GSM564713     1  0.5371    0.77116 0.812 0.048 0.140
#> GSM564714     1  0.4172    0.80791 0.868 0.104 0.028
#> GSM564715     1  0.0424    0.86399 0.992 0.000 0.008
#> GSM564716     1  0.2448    0.84456 0.924 0.000 0.076
#> GSM564717     1  0.1170    0.86135 0.976 0.008 0.016
#> GSM564718     1  0.5276    0.78467 0.820 0.052 0.128
#> GSM564719     1  0.1482    0.85486 0.968 0.012 0.020
#> GSM564720     1  0.1337    0.85693 0.972 0.012 0.016
#> GSM564721     1  0.0848    0.86300 0.984 0.008 0.008
#> GSM564722     1  0.1860    0.85807 0.948 0.000 0.052
#> GSM564723     1  0.1182    0.85825 0.976 0.012 0.012
#> GSM564724     1  0.6079    0.75909 0.784 0.088 0.128
#> GSM564725     1  0.4974    0.66917 0.764 0.000 0.236
#> GSM564726     3  0.6095    0.45815 0.392 0.000 0.608
#> GSM564727     3  0.6215    0.38251 0.428 0.000 0.572
#> GSM564728     3  0.6095    0.45815 0.392 0.000 0.608
#> GSM564729     3  0.6095    0.45815 0.392 0.000 0.608
#> GSM564730     1  0.0661    0.86288 0.988 0.004 0.008
#> GSM564731     1  0.3337    0.84046 0.908 0.032 0.060
#> GSM564732     1  0.6095    0.28334 0.608 0.000 0.392
#> GSM564733     1  0.5377    0.78963 0.820 0.068 0.112
#> GSM564734     1  0.1399    0.86411 0.968 0.004 0.028
#> GSM564735     1  0.7181    0.48769 0.648 0.048 0.304
#> GSM564736     1  0.6630    0.65760 0.724 0.056 0.220
#> GSM564737     1  0.1182    0.85825 0.976 0.012 0.012
#> GSM564738     1  0.7745    0.54046 0.648 0.092 0.260
#> GSM564739     1  0.2165    0.84620 0.936 0.064 0.000
#> GSM564740     3  0.6079    0.45864 0.388 0.000 0.612
#> GSM564741     1  0.7995    0.44242 0.608 0.088 0.304
#> GSM564742     1  0.4121    0.80536 0.868 0.108 0.024
#> GSM564743     1  0.1015    0.86120 0.980 0.008 0.012
#> GSM564744     1  0.1015    0.86008 0.980 0.012 0.008
#> GSM564745     1  0.0892    0.86180 0.980 0.000 0.020
#> GSM564746     1  0.1765    0.86175 0.956 0.004 0.040
#> GSM564747     1  0.0747    0.86466 0.984 0.000 0.016
#> GSM564748     1  0.4015    0.81457 0.876 0.096 0.028
#> GSM564749     1  0.1482    0.85486 0.968 0.012 0.020
#> GSM564750     3  0.6468    0.31640 0.444 0.004 0.552
#> GSM564751     1  0.2860    0.82915 0.912 0.084 0.004
#> GSM564752     3  0.6095    0.45815 0.392 0.000 0.608
#> GSM564753     1  0.4342    0.79265 0.856 0.120 0.024
#> GSM564754     1  0.0237    0.86389 0.996 0.000 0.004
#> GSM564755     3  0.6095    0.45815 0.392 0.000 0.608
#> GSM564756     1  0.0829    0.86261 0.984 0.004 0.012
#> GSM564757     3  0.6095    0.45815 0.392 0.000 0.608
#> GSM564758     3  0.6079    0.46036 0.388 0.000 0.612
#> GSM564759     1  0.3850    0.82114 0.884 0.088 0.028
#> GSM564760     1  0.6282    0.32603 0.612 0.004 0.384
#> GSM564761     1  0.1482    0.85373 0.968 0.012 0.020
#> GSM564762     1  0.3038    0.82892 0.896 0.000 0.104
#> GSM564681     2  0.7475    0.77430 0.044 0.580 0.376
#> GSM564693     2  0.7030    0.76836 0.024 0.580 0.396
#> GSM564646     3  0.4326    0.37182 0.012 0.144 0.844
#> GSM564699     3  0.5450    0.16041 0.012 0.228 0.760

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM564615     4  0.2542     0.6509 0.084 0.012 0.000 0.904
#> GSM564616     2  0.4801     0.7651 0.000 0.764 0.188 0.048
#> GSM564617     2  0.4720     0.7675 0.000 0.768 0.188 0.044
#> GSM564618     2  0.5292     0.7256 0.000 0.744 0.168 0.088
#> GSM564619     1  0.2797     0.7909 0.900 0.068 0.000 0.032
#> GSM564620     1  0.5352     0.6883 0.740 0.092 0.000 0.168
#> GSM564621     4  0.6446     0.2881 0.328 0.088 0.000 0.584
#> GSM564622     2  0.5102     0.7861 0.000 0.732 0.220 0.048
#> GSM564623     4  0.5387     0.4080 0.000 0.400 0.016 0.584
#> GSM564624     2  0.5030     0.7581 0.000 0.752 0.188 0.060
#> GSM564625     1  0.6733     0.2073 0.492 0.092 0.000 0.416
#> GSM564626     1  0.2739     0.7917 0.904 0.060 0.000 0.036
#> GSM564627     1  0.6336     0.4713 0.608 0.088 0.000 0.304
#> GSM564628     2  0.5100     0.7346 0.000 0.756 0.168 0.076
#> GSM564629     1  0.4022     0.7609 0.836 0.096 0.000 0.068
#> GSM564630     2  0.4839     0.7765 0.000 0.756 0.200 0.044
#> GSM564609     3  0.2730     0.8036 0.016 0.088 0.896 0.000
#> GSM564610     1  0.0188     0.8145 0.996 0.000 0.000 0.004
#> GSM564611     1  0.1389     0.7901 0.952 0.048 0.000 0.000
#> GSM564612     3  0.3351     0.7328 0.008 0.148 0.844 0.000
#> GSM564613     3  0.5263    -0.4069 0.000 0.448 0.544 0.008
#> GSM564614     4  0.2412     0.6497 0.084 0.008 0.000 0.908
#> GSM564631     3  0.0000     0.8902 0.000 0.000 1.000 0.000
#> GSM564632     2  0.6384     0.5461 0.000 0.496 0.440 0.064
#> GSM564633     3  0.0592     0.8807 0.000 0.016 0.984 0.000
#> GSM564634     2  0.5165     0.7835 0.004 0.604 0.388 0.004
#> GSM564635     3  0.0000     0.8902 0.000 0.000 1.000 0.000
#> GSM564636     3  0.2973     0.7468 0.000 0.144 0.856 0.000
#> GSM564637     2  0.5663     0.7921 0.000 0.676 0.264 0.060
#> GSM564638     3  0.0000     0.8902 0.000 0.000 1.000 0.000
#> GSM564639     3  0.0000     0.8902 0.000 0.000 1.000 0.000
#> GSM564640     2  0.5186     0.8224 0.016 0.640 0.344 0.000
#> GSM564641     3  0.1824     0.8402 0.004 0.060 0.936 0.000
#> GSM564642     2  0.5804     0.7989 0.032 0.604 0.360 0.004
#> GSM564643     4  0.5807     0.4112 0.000 0.344 0.044 0.612
#> GSM564644     2  0.5668     0.8166 0.032 0.636 0.328 0.004
#> GSM564645     3  0.0000     0.8902 0.000 0.000 1.000 0.000
#> GSM564647     3  0.3444     0.6730 0.000 0.184 0.816 0.000
#> GSM564648     2  0.4855     0.8199 0.004 0.644 0.352 0.000
#> GSM564649     3  0.0000     0.8902 0.000 0.000 1.000 0.000
#> GSM564650     2  0.5880     0.8077 0.012 0.676 0.264 0.048
#> GSM564651     2  0.5150     0.7784 0.008 0.596 0.396 0.000
#> GSM564652     2  0.5420     0.8194 0.024 0.624 0.352 0.000
#> GSM564653     2  0.5167     0.8235 0.016 0.644 0.340 0.000
#> GSM564654     3  0.0000     0.8902 0.000 0.000 1.000 0.000
#> GSM564655     3  0.1940     0.8143 0.000 0.076 0.924 0.000
#> GSM564656     3  0.0000     0.8902 0.000 0.000 1.000 0.000
#> GSM564657     3  0.0000     0.8902 0.000 0.000 1.000 0.000
#> GSM564658     2  0.5608     0.8212 0.032 0.648 0.316 0.004
#> GSM564659     3  0.3024     0.7399 0.000 0.148 0.852 0.000
#> GSM564660     2  0.5900     0.7518 0.000 0.664 0.260 0.076
#> GSM564661     2  0.5579     0.8238 0.028 0.640 0.328 0.004
#> GSM564662     3  0.0000     0.8902 0.000 0.000 1.000 0.000
#> GSM564663     2  0.5582     0.8156 0.032 0.620 0.348 0.000
#> GSM564664     2  0.5686     0.8139 0.032 0.632 0.332 0.004
#> GSM564665     3  0.0376     0.8836 0.000 0.004 0.992 0.004
#> GSM564666     4  0.6337     0.2877 0.000 0.380 0.068 0.552
#> GSM564667     3  0.0188     0.8871 0.000 0.000 0.996 0.004
#> GSM564668     3  0.0000     0.8902 0.000 0.000 1.000 0.000
#> GSM564669     3  0.0000     0.8902 0.000 0.000 1.000 0.000
#> GSM564670     3  0.4967    -0.3991 0.000 0.452 0.548 0.000
#> GSM564671     4  0.4955     0.5232 0.000 0.268 0.024 0.708
#> GSM564672     3  0.0000     0.8902 0.000 0.000 1.000 0.000
#> GSM564673     2  0.4995     0.8230 0.004 0.648 0.344 0.004
#> GSM564674     2  0.5110     0.8307 0.016 0.656 0.328 0.000
#> GSM564675     2  0.5672     0.7321 0.000 0.712 0.188 0.100
#> GSM564676     2  0.5511     0.8173 0.032 0.636 0.332 0.000
#> GSM564677     2  0.5272     0.8302 0.032 0.680 0.288 0.000
#> GSM564678     2  0.5511     0.8173 0.032 0.636 0.332 0.000
#> GSM564679     2  0.5473     0.8218 0.032 0.644 0.324 0.000
#> GSM564680     3  0.0000     0.8902 0.000 0.000 1.000 0.000
#> GSM564682     3  0.3659     0.7302 0.024 0.136 0.840 0.000
#> GSM564683     3  0.0000     0.8902 0.000 0.000 1.000 0.000
#> GSM564684     4  0.5442     0.4447 0.000 0.336 0.028 0.636
#> GSM564685     3  0.0524     0.8790 0.000 0.008 0.988 0.004
#> GSM564686     4  0.5460     0.4405 0.000 0.340 0.028 0.632
#> GSM564687     2  0.5519     0.8198 0.028 0.652 0.316 0.004
#> GSM564688     2  0.5159     0.8104 0.012 0.624 0.364 0.000
#> GSM564689     2  0.4776     0.8283 0.016 0.712 0.272 0.000
#> GSM564690     2  0.5511     0.8173 0.032 0.636 0.332 0.000
#> GSM564691     3  0.4059     0.6202 0.012 0.200 0.788 0.000
#> GSM564692     2  0.4889     0.8146 0.004 0.636 0.360 0.000
#> GSM564694     2  0.7402     0.3910 0.000 0.500 0.192 0.308
#> GSM564695     2  0.5573     0.7885 0.000 0.676 0.272 0.052
#> GSM564696     3  0.0376     0.8832 0.000 0.004 0.992 0.004
#> GSM564697     2  0.5108     0.8319 0.020 0.672 0.308 0.000
#> GSM564698     3  0.0000     0.8902 0.000 0.000 1.000 0.000
#> GSM564700     4  0.5478     0.4347 0.000 0.344 0.028 0.628
#> GSM564701     2  0.5269     0.8113 0.016 0.620 0.364 0.000
#> GSM564702     2  0.5793     0.7892 0.012 0.700 0.232 0.056
#> GSM564703     1  0.4672     0.7692 0.820 0.092 0.064 0.024
#> GSM564704     1  0.2596     0.8079 0.908 0.024 0.000 0.068
#> GSM564705     1  0.0469     0.8108 0.988 0.012 0.000 0.000
#> GSM564706     1  0.5741     0.7371 0.764 0.096 0.092 0.048
#> GSM564707     1  0.0336     0.8145 0.992 0.000 0.008 0.000
#> GSM564708     1  0.7229     0.5129 0.560 0.128 0.012 0.300
#> GSM564709     1  0.1488     0.8148 0.956 0.012 0.000 0.032
#> GSM564710     1  0.0524     0.8147 0.988 0.004 0.000 0.008
#> GSM564711     1  0.8039     0.5461 0.564 0.112 0.080 0.244
#> GSM564712     1  0.0000     0.8136 1.000 0.000 0.000 0.000
#> GSM564713     1  0.7746     0.4302 0.512 0.120 0.032 0.336
#> GSM564714     1  0.6535     0.6984 0.712 0.096 0.128 0.064
#> GSM564715     1  0.0188     0.8142 0.996 0.000 0.000 0.004
#> GSM564716     1  0.5170     0.6743 0.724 0.048 0.000 0.228
#> GSM564717     1  0.1042     0.8109 0.972 0.020 0.000 0.008
#> GSM564718     1  0.8065     0.4459 0.512 0.116 0.056 0.316
#> GSM564719     1  0.1118     0.7993 0.964 0.036 0.000 0.000
#> GSM564720     1  0.0336     0.8121 0.992 0.008 0.000 0.000
#> GSM564721     1  0.0524     0.8136 0.988 0.008 0.000 0.004
#> GSM564722     1  0.5092     0.7405 0.764 0.096 0.000 0.140
#> GSM564723     1  0.0188     0.8131 0.996 0.004 0.000 0.000
#> GSM564724     1  0.8858     0.3937 0.472 0.116 0.132 0.280
#> GSM564725     1  0.5937     0.5089 0.608 0.052 0.000 0.340
#> GSM564726     4  0.2984     0.6437 0.084 0.028 0.000 0.888
#> GSM564727     4  0.4079     0.5678 0.180 0.020 0.000 0.800
#> GSM564728     4  0.2412     0.6510 0.084 0.008 0.000 0.908
#> GSM564729     4  0.2412     0.6510 0.084 0.008 0.000 0.908
#> GSM564730     1  0.1297     0.8152 0.964 0.016 0.000 0.020
#> GSM564731     1  0.5277     0.7497 0.768 0.116 0.008 0.108
#> GSM564732     4  0.5856     0.0454 0.408 0.036 0.000 0.556
#> GSM564733     1  0.8032     0.4992 0.540 0.108 0.068 0.284
#> GSM564734     1  0.2413     0.8036 0.916 0.020 0.000 0.064
#> GSM564735     4  0.8018    -0.1365 0.388 0.108 0.048 0.456
#> GSM564736     1  0.8337     0.2663 0.432 0.116 0.064 0.388
#> GSM564737     1  0.0000     0.8136 1.000 0.000 0.000 0.000
#> GSM564738     4  0.8933    -0.1109 0.360 0.096 0.144 0.400
#> GSM564739     1  0.2317     0.8075 0.928 0.032 0.036 0.004
#> GSM564740     4  0.2996     0.6462 0.064 0.044 0.000 0.892
#> GSM564741     4  0.8843    -0.1080 0.364 0.096 0.132 0.408
#> GSM564742     1  0.6224     0.6996 0.724 0.096 0.140 0.040
#> GSM564743     1  0.0188     0.8138 0.996 0.004 0.000 0.000
#> GSM564744     1  0.0188     0.8138 0.996 0.004 0.000 0.000
#> GSM564745     1  0.1733     0.8141 0.948 0.024 0.000 0.028
#> GSM564746     1  0.2722     0.7901 0.904 0.064 0.000 0.032
#> GSM564747     1  0.2623     0.8052 0.908 0.064 0.000 0.028
#> GSM564748     1  0.6109     0.7138 0.736 0.096 0.124 0.044
#> GSM564749     1  0.0707     0.8078 0.980 0.020 0.000 0.000
#> GSM564750     4  0.5332     0.5020 0.184 0.080 0.000 0.736
#> GSM564751     1  0.4652     0.7667 0.820 0.076 0.084 0.020
#> GSM564752     4  0.3354     0.6346 0.084 0.044 0.000 0.872
#> GSM564753     1  0.6109     0.7132 0.736 0.096 0.124 0.044
#> GSM564754     1  0.0817     0.8147 0.976 0.000 0.000 0.024
#> GSM564755     4  0.2271     0.6518 0.076 0.008 0.000 0.916
#> GSM564756     1  0.1411     0.8177 0.960 0.020 0.000 0.020
#> GSM564757     4  0.2542     0.6509 0.084 0.012 0.000 0.904
#> GSM564758     4  0.3354     0.6439 0.084 0.044 0.000 0.872
#> GSM564759     1  0.5759     0.7427 0.764 0.104 0.076 0.056
#> GSM564760     4  0.6866    -0.0853 0.408 0.080 0.008 0.504
#> GSM564761     1  0.0336     0.8124 0.992 0.008 0.000 0.000
#> GSM564762     1  0.5894     0.6763 0.692 0.108 0.000 0.200
#> GSM564681     2  0.5532     0.7722 0.000 0.704 0.228 0.068
#> GSM564693     2  0.5559     0.7855 0.000 0.696 0.240 0.064
#> GSM564646     4  0.5478     0.4347 0.000 0.344 0.028 0.628
#> GSM564699     4  0.6140     0.3863 0.000 0.340 0.064 0.596

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM564615     3  0.5951   -0.22016 0.012 0.072 0.460 0.456 0.000
#> GSM564616     2  0.5999    0.55485 0.000 0.644 0.232 0.052 0.072
#> GSM564617     2  0.5949    0.56043 0.000 0.644 0.236 0.044 0.076
#> GSM564618     3  0.6375   -0.12288 0.000 0.432 0.464 0.048 0.056
#> GSM564619     1  0.3690    0.68412 0.828 0.052 0.008 0.112 0.000
#> GSM564620     1  0.5990    0.40060 0.612 0.084 0.028 0.276 0.000
#> GSM564621     4  0.7647    0.39176 0.212 0.124 0.164 0.500 0.000
#> GSM564622     2  0.6286    0.63384 0.000 0.628 0.196 0.040 0.136
#> GSM564623     3  0.2628    0.56910 0.000 0.088 0.884 0.028 0.000
#> GSM564624     2  0.6210    0.47665 0.000 0.588 0.296 0.044 0.072
#> GSM564625     4  0.7478    0.38348 0.276 0.124 0.108 0.492 0.000
#> GSM564626     1  0.3597    0.68715 0.832 0.044 0.008 0.116 0.000
#> GSM564627     1  0.6930   -0.03824 0.460 0.084 0.068 0.388 0.000
#> GSM564628     2  0.6331    0.34872 0.000 0.548 0.340 0.060 0.052
#> GSM564629     1  0.4848    0.60012 0.736 0.076 0.012 0.176 0.000
#> GSM564630     2  0.5855    0.58529 0.000 0.664 0.212 0.048 0.076
#> GSM564609     5  0.3409    0.74010 0.008 0.156 0.008 0.004 0.824
#> GSM564610     1  0.1393    0.75571 0.956 0.012 0.008 0.024 0.000
#> GSM564611     1  0.1774    0.74143 0.932 0.052 0.000 0.016 0.000
#> GSM564612     5  0.3631    0.69698 0.008 0.192 0.004 0.004 0.792
#> GSM564613     5  0.5785   -0.17046 0.000 0.404 0.092 0.000 0.504
#> GSM564614     4  0.5937    0.18240 0.008 0.080 0.432 0.480 0.000
#> GSM564631     5  0.0000    0.87960 0.000 0.000 0.000 0.000 1.000
#> GSM564632     5  0.6806   -0.28190 0.000 0.296 0.352 0.000 0.352
#> GSM564633     5  0.0880    0.86630 0.000 0.032 0.000 0.000 0.968
#> GSM564634     2  0.4581    0.76317 0.000 0.696 0.004 0.032 0.268
#> GSM564635     5  0.0000    0.87960 0.000 0.000 0.000 0.000 1.000
#> GSM564636     5  0.4002    0.72704 0.000 0.120 0.084 0.000 0.796
#> GSM564637     2  0.6417    0.48106 0.000 0.496 0.336 0.004 0.164
#> GSM564638     5  0.0671    0.87468 0.000 0.016 0.000 0.004 0.980
#> GSM564639     5  0.0000    0.87960 0.000 0.000 0.000 0.000 1.000
#> GSM564640     2  0.3923    0.81310 0.008 0.756 0.004 0.004 0.228
#> GSM564641     5  0.2904    0.78719 0.008 0.112 0.008 0.004 0.868
#> GSM564642     2  0.4706    0.80452 0.020 0.724 0.000 0.032 0.224
#> GSM564643     3  0.2407    0.58799 0.000 0.088 0.896 0.004 0.012
#> GSM564644     2  0.4173    0.81562 0.012 0.756 0.000 0.020 0.212
#> GSM564645     5  0.0000    0.87960 0.000 0.000 0.000 0.000 1.000
#> GSM564647     5  0.3643    0.66529 0.000 0.212 0.008 0.004 0.776
#> GSM564648     2  0.4095    0.81141 0.000 0.752 0.024 0.004 0.220
#> GSM564649     5  0.0000    0.87960 0.000 0.000 0.000 0.000 1.000
#> GSM564650     2  0.6321    0.55536 0.012 0.564 0.296 0.004 0.124
#> GSM564651     2  0.4336    0.77970 0.008 0.700 0.000 0.012 0.280
#> GSM564652     2  0.4378    0.81469 0.012 0.740 0.012 0.008 0.228
#> GSM564653     2  0.4030    0.81257 0.012 0.752 0.004 0.004 0.228
#> GSM564654     5  0.0000    0.87960 0.000 0.000 0.000 0.000 1.000
#> GSM564655     5  0.1864    0.82761 0.000 0.068 0.004 0.004 0.924
#> GSM564656     5  0.0000    0.87960 0.000 0.000 0.000 0.000 1.000
#> GSM564657     5  0.0290    0.87801 0.000 0.008 0.000 0.000 0.992
#> GSM564658     2  0.4296    0.81508 0.012 0.756 0.004 0.020 0.208
#> GSM564659     5  0.3365    0.76281 0.000 0.120 0.044 0.000 0.836
#> GSM564660     3  0.6077   -0.16985 0.000 0.396 0.480 0.000 0.124
#> GSM564661     2  0.4296    0.81713 0.012 0.756 0.004 0.020 0.208
#> GSM564662     5  0.0000    0.87960 0.000 0.000 0.000 0.000 1.000
#> GSM564663     2  0.4303    0.81532 0.016 0.748 0.000 0.020 0.216
#> GSM564664     2  0.4328    0.81267 0.016 0.752 0.000 0.024 0.208
#> GSM564665     5  0.1074    0.86855 0.000 0.012 0.004 0.016 0.968
#> GSM564666     3  0.3513    0.57700 0.000 0.132 0.828 0.004 0.036
#> GSM564667     5  0.0324    0.87666 0.000 0.004 0.000 0.004 0.992
#> GSM564668     5  0.0000    0.87960 0.000 0.000 0.000 0.000 1.000
#> GSM564669     5  0.0162    0.87898 0.000 0.004 0.000 0.000 0.996
#> GSM564670     2  0.5012    0.44089 0.004 0.532 0.016 0.004 0.444
#> GSM564671     3  0.1668    0.53771 0.000 0.032 0.940 0.028 0.000
#> GSM564672     5  0.0000    0.87960 0.000 0.000 0.000 0.000 1.000
#> GSM564673     2  0.4849    0.80275 0.000 0.712 0.024 0.032 0.232
#> GSM564674     2  0.4372    0.81741 0.008 0.748 0.020 0.008 0.216
#> GSM564675     3  0.6264   -0.13106 0.000 0.412 0.484 0.024 0.080
#> GSM564676     2  0.4272    0.81585 0.016 0.752 0.000 0.020 0.212
#> GSM564677     2  0.4568    0.81453 0.024 0.764 0.020 0.012 0.180
#> GSM564678     2  0.4272    0.81585 0.016 0.752 0.000 0.020 0.212
#> GSM564679     2  0.4240    0.81537 0.020 0.756 0.000 0.016 0.208
#> GSM564680     5  0.0162    0.87898 0.000 0.004 0.000 0.000 0.996
#> GSM564682     5  0.3774    0.68601 0.012 0.196 0.004 0.004 0.784
#> GSM564683     5  0.0000    0.87960 0.000 0.000 0.000 0.000 1.000
#> GSM564684     3  0.1478    0.57485 0.000 0.064 0.936 0.000 0.000
#> GSM564685     5  0.0992    0.85864 0.000 0.024 0.000 0.008 0.968
#> GSM564686     3  0.1671    0.58441 0.000 0.076 0.924 0.000 0.000
#> GSM564687     2  0.4583    0.80491 0.012 0.740 0.000 0.044 0.204
#> GSM564688     2  0.4172    0.80395 0.012 0.732 0.004 0.004 0.248
#> GSM564689     2  0.4468    0.80168 0.012 0.776 0.044 0.008 0.160
#> GSM564690     2  0.4272    0.81585 0.016 0.752 0.000 0.020 0.212
#> GSM564691     5  0.4143    0.56432 0.008 0.260 0.004 0.004 0.724
#> GSM564692     2  0.3947    0.80816 0.008 0.748 0.008 0.000 0.236
#> GSM564694     3  0.6082    0.34593 0.000 0.204 0.640 0.032 0.124
#> GSM564695     2  0.6471    0.38021 0.000 0.464 0.384 0.008 0.144
#> GSM564696     5  0.0613    0.87355 0.000 0.004 0.004 0.008 0.984
#> GSM564697     2  0.4004    0.81992 0.012 0.776 0.004 0.012 0.196
#> GSM564698     5  0.0671    0.87460 0.000 0.016 0.004 0.000 0.980
#> GSM564700     3  0.1732    0.58630 0.000 0.080 0.920 0.000 0.000
#> GSM564701     2  0.4277    0.80595 0.008 0.732 0.008 0.008 0.244
#> GSM564702     2  0.6356    0.40090 0.012 0.508 0.380 0.008 0.092
#> GSM564703     1  0.5102    0.43547 0.620 0.008 0.000 0.336 0.036
#> GSM564704     1  0.3280    0.67348 0.824 0.004 0.012 0.160 0.000
#> GSM564705     1  0.0771    0.75917 0.976 0.020 0.000 0.004 0.000
#> GSM564706     1  0.5929    0.34287 0.556 0.008 0.008 0.360 0.068
#> GSM564707     1  0.0613    0.76060 0.984 0.008 0.000 0.004 0.004
#> GSM564708     4  0.5674    0.47911 0.232 0.080 0.020 0.664 0.004
#> GSM564709     1  0.1913    0.75323 0.932 0.016 0.008 0.044 0.000
#> GSM564710     1  0.0960    0.76055 0.972 0.008 0.004 0.016 0.000
#> GSM564711     4  0.6648    0.39058 0.280 0.044 0.016 0.584 0.076
#> GSM564712     1  0.0727    0.76120 0.980 0.012 0.004 0.004 0.000
#> GSM564713     4  0.4779    0.54179 0.220 0.016 0.008 0.728 0.028
#> GSM564714     1  0.5873    0.29595 0.532 0.004 0.000 0.372 0.092
#> GSM564715     1  0.0579    0.76031 0.984 0.008 0.000 0.008 0.000
#> GSM564716     1  0.5327    0.18104 0.552 0.032 0.012 0.404 0.000
#> GSM564717     1  0.2688    0.74115 0.896 0.056 0.012 0.036 0.000
#> GSM564718     4  0.5937    0.52291 0.216 0.044 0.016 0.672 0.052
#> GSM564719     1  0.1626    0.74663 0.940 0.044 0.000 0.016 0.000
#> GSM564720     1  0.0912    0.76080 0.972 0.016 0.000 0.012 0.000
#> GSM564721     1  0.0451    0.76050 0.988 0.008 0.000 0.004 0.000
#> GSM564722     1  0.4297    0.19096 0.528 0.000 0.000 0.472 0.000
#> GSM564723     1  0.0798    0.75972 0.976 0.016 0.000 0.008 0.000
#> GSM564724     4  0.6778    0.50321 0.184 0.044 0.020 0.620 0.132
#> GSM564725     4  0.5966    0.31531 0.392 0.032 0.048 0.528 0.000
#> GSM564726     4  0.6011    0.28946 0.012 0.084 0.380 0.524 0.000
#> GSM564727     4  0.6517    0.25465 0.040 0.080 0.396 0.484 0.000
#> GSM564728     3  0.5904   -0.21109 0.012 0.068 0.468 0.452 0.000
#> GSM564729     3  0.5904   -0.21586 0.012 0.068 0.464 0.456 0.000
#> GSM564730     1  0.2149    0.74931 0.924 0.028 0.012 0.036 0.000
#> GSM564731     1  0.6369    0.10626 0.456 0.064 0.020 0.448 0.012
#> GSM564732     4  0.7627    0.44856 0.212 0.100 0.196 0.492 0.000
#> GSM564733     4  0.4866    0.43652 0.284 0.000 0.000 0.664 0.052
#> GSM564734     1  0.2844    0.72196 0.876 0.028 0.004 0.092 0.000
#> GSM564735     4  0.4656    0.60031 0.156 0.000 0.052 0.764 0.028
#> GSM564736     4  0.4260    0.58862 0.164 0.000 0.008 0.776 0.052
#> GSM564737     1  0.0566    0.76023 0.984 0.012 0.000 0.004 0.000
#> GSM564738     4  0.5722    0.55516 0.168 0.000 0.028 0.680 0.124
#> GSM564739     1  0.3023    0.70062 0.860 0.004 0.000 0.112 0.024
#> GSM564740     4  0.5068    0.35498 0.016 0.016 0.388 0.580 0.000
#> GSM564741     4  0.5544    0.56053 0.172 0.000 0.024 0.692 0.112
#> GSM564742     1  0.6030    0.30753 0.532 0.004 0.000 0.352 0.112
#> GSM564743     1  0.1267    0.75765 0.960 0.012 0.004 0.024 0.000
#> GSM564744     1  0.0968    0.76041 0.972 0.012 0.004 0.012 0.000
#> GSM564745     1  0.3575    0.71000 0.848 0.056 0.020 0.076 0.000
#> GSM564746     1  0.3340    0.69632 0.852 0.044 0.008 0.096 0.000
#> GSM564747     1  0.3550    0.59530 0.760 0.004 0.000 0.236 0.000
#> GSM564748     1  0.5888    0.31705 0.540 0.004 0.000 0.360 0.096
#> GSM564749     1  0.1364    0.75192 0.952 0.036 0.000 0.012 0.000
#> GSM564750     4  0.5102    0.57386 0.084 0.016 0.164 0.732 0.004
#> GSM564751     1  0.5264    0.50250 0.660 0.008 0.000 0.264 0.068
#> GSM564752     4  0.5274    0.37496 0.012 0.040 0.336 0.612 0.000
#> GSM564753     1  0.5991    0.31347 0.536 0.004 0.000 0.352 0.108
#> GSM564754     1  0.0703    0.75968 0.976 0.000 0.000 0.024 0.000
#> GSM564755     3  0.5904   -0.21109 0.012 0.068 0.468 0.452 0.000
#> GSM564756     1  0.2095    0.75401 0.920 0.012 0.008 0.060 0.000
#> GSM564757     3  0.5951   -0.21533 0.012 0.072 0.464 0.452 0.000
#> GSM564758     4  0.6548    0.23478 0.016 0.128 0.400 0.456 0.000
#> GSM564759     1  0.5419    0.34395 0.564 0.004 0.004 0.384 0.044
#> GSM564760     4  0.6493    0.57536 0.148 0.072 0.132 0.644 0.004
#> GSM564761     1  0.0771    0.76110 0.976 0.020 0.000 0.004 0.000
#> GSM564762     4  0.5156   -0.00396 0.440 0.020 0.012 0.528 0.000
#> GSM564681     3  0.5691   -0.21759 0.000 0.444 0.476 0.000 0.080
#> GSM564693     2  0.6038    0.43224 0.000 0.516 0.372 0.004 0.108
#> GSM564646     3  0.1732    0.58630 0.000 0.080 0.920 0.000 0.000
#> GSM564699     3  0.2953    0.58544 0.000 0.100 0.868 0.004 0.028

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM564615     2  0.6172    0.73511 0.000 0.412 0.000 0.280 0.004 0.304
#> GSM564616     5  0.5812    0.30538 0.000 0.156 0.020 0.004 0.588 0.232
#> GSM564617     5  0.5855    0.25169 0.000 0.144 0.020 0.004 0.572 0.260
#> GSM564618     6  0.5910    0.49637 0.000 0.144 0.012 0.008 0.288 0.548
#> GSM564619     1  0.4833    0.64111 0.660 0.268 0.000 0.032 0.040 0.000
#> GSM564620     1  0.5892    0.26184 0.444 0.436 0.000 0.076 0.044 0.000
#> GSM564621     2  0.5770    0.49579 0.136 0.660 0.000 0.144 0.036 0.024
#> GSM564622     5  0.5940    0.39386 0.000 0.148 0.044 0.004 0.608 0.196
#> GSM564623     6  0.3065    0.61557 0.000 0.100 0.000 0.004 0.052 0.844
#> GSM564624     5  0.6076    0.05538 0.000 0.144 0.020 0.004 0.508 0.324
#> GSM564625     2  0.5440    0.49210 0.124 0.692 0.000 0.128 0.036 0.020
#> GSM564626     1  0.4605    0.63401 0.668 0.276 0.000 0.028 0.028 0.000
#> GSM564627     2  0.6328   -0.00325 0.360 0.476 0.000 0.120 0.036 0.008
#> GSM564628     5  0.6090   -0.25130 0.000 0.152 0.012 0.004 0.420 0.412
#> GSM564629     1  0.5210    0.49455 0.556 0.372 0.000 0.036 0.036 0.000
#> GSM564630     5  0.5672    0.38518 0.000 0.152 0.024 0.004 0.620 0.200
#> GSM564609     3  0.3589    0.71985 0.004 0.008 0.768 0.012 0.208 0.000
#> GSM564610     1  0.2742    0.79852 0.876 0.072 0.000 0.036 0.016 0.000
#> GSM564611     1  0.1819    0.79673 0.932 0.024 0.000 0.008 0.032 0.004
#> GSM564612     3  0.2871    0.75294 0.000 0.000 0.804 0.004 0.192 0.000
#> GSM564613     3  0.6145   -0.02134 0.000 0.032 0.492 0.016 0.376 0.084
#> GSM564614     2  0.6004    0.73113 0.000 0.476 0.000 0.256 0.004 0.264
#> GSM564631     3  0.0291    0.89790 0.000 0.000 0.992 0.004 0.004 0.000
#> GSM564632     6  0.6558    0.30605 0.000 0.024 0.328 0.012 0.180 0.456
#> GSM564633     3  0.1053    0.89279 0.000 0.012 0.964 0.004 0.020 0.000
#> GSM564634     5  0.4916    0.71172 0.000 0.088 0.164 0.020 0.716 0.012
#> GSM564635     3  0.0260    0.89577 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM564636     3  0.4010    0.76694 0.000 0.012 0.792 0.012 0.124 0.060
#> GSM564637     6  0.5408    0.07538 0.004 0.004 0.084 0.000 0.444 0.464
#> GSM564638     3  0.0984    0.89484 0.000 0.012 0.968 0.012 0.008 0.000
#> GSM564639     3  0.0146    0.89759 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM564640     5  0.3296    0.79168 0.012 0.012 0.160 0.000 0.812 0.004
#> GSM564641     3  0.2708    0.82801 0.004 0.008 0.864 0.012 0.112 0.000
#> GSM564642     5  0.3883    0.78935 0.024 0.028 0.148 0.008 0.792 0.000
#> GSM564643     6  0.1629    0.64727 0.000 0.024 0.004 0.004 0.028 0.940
#> GSM564644     5  0.3899    0.78610 0.040 0.020 0.136 0.008 0.796 0.000
#> GSM564645     3  0.0508    0.89335 0.000 0.000 0.984 0.012 0.004 0.000
#> GSM564647     3  0.3437    0.68168 0.000 0.008 0.752 0.004 0.236 0.000
#> GSM564648     5  0.3885    0.77828 0.000 0.024 0.168 0.000 0.776 0.032
#> GSM564649     3  0.0260    0.89799 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM564650     5  0.5372    0.12300 0.008 0.004 0.076 0.000 0.524 0.388
#> GSM564651     5  0.3578    0.77121 0.008 0.008 0.220 0.000 0.760 0.004
#> GSM564652     5  0.4042    0.78235 0.016 0.024 0.144 0.016 0.792 0.008
#> GSM564653     5  0.3124    0.78863 0.012 0.004 0.164 0.000 0.816 0.004
#> GSM564654     3  0.0260    0.89674 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM564655     3  0.2058    0.85666 0.000 0.036 0.908 0.000 0.056 0.000
#> GSM564656     3  0.0363    0.89521 0.000 0.000 0.988 0.012 0.000 0.000
#> GSM564657     3  0.0508    0.89744 0.000 0.000 0.984 0.004 0.012 0.000
#> GSM564658     5  0.4029    0.79111 0.036 0.020 0.132 0.012 0.796 0.004
#> GSM564659     3  0.3353    0.79222 0.000 0.012 0.824 0.008 0.136 0.020
#> GSM564660     6  0.5331    0.54804 0.000 0.020 0.072 0.012 0.256 0.640
#> GSM564661     5  0.3585    0.78796 0.020 0.016 0.136 0.008 0.816 0.004
#> GSM564662     3  0.0146    0.89701 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM564663     5  0.3300    0.79276 0.016 0.016 0.156 0.000 0.812 0.000
#> GSM564664     5  0.4168    0.77315 0.060 0.020 0.132 0.008 0.780 0.000
#> GSM564665     3  0.2351    0.85490 0.000 0.052 0.900 0.012 0.036 0.000
#> GSM564666     6  0.2613    0.66617 0.000 0.012 0.020 0.016 0.060 0.892
#> GSM564667     3  0.0291    0.89690 0.000 0.004 0.992 0.004 0.000 0.000
#> GSM564668     3  0.0363    0.89737 0.000 0.012 0.988 0.000 0.000 0.000
#> GSM564669     3  0.0291    0.89790 0.000 0.000 0.992 0.004 0.004 0.000
#> GSM564670     5  0.4952    0.39915 0.004 0.016 0.404 0.008 0.552 0.016
#> GSM564671     6  0.1268    0.60244 0.000 0.036 0.000 0.008 0.004 0.952
#> GSM564672     3  0.0260    0.89674 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM564673     5  0.4437    0.75991 0.000 0.056 0.156 0.016 0.756 0.016
#> GSM564674     5  0.3621    0.78844 0.012 0.016 0.144 0.000 0.808 0.020
#> GSM564675     6  0.5335    0.56563 0.000 0.072 0.020 0.008 0.276 0.624
#> GSM564676     5  0.3995    0.78762 0.044 0.020 0.136 0.004 0.792 0.004
#> GSM564677     5  0.4185    0.77219 0.024 0.020 0.112 0.008 0.800 0.036
#> GSM564678     5  0.3995    0.78762 0.044 0.020 0.136 0.004 0.792 0.004
#> GSM564679     5  0.3678    0.79200 0.028 0.020 0.132 0.004 0.812 0.004
#> GSM564680     3  0.0405    0.89778 0.000 0.000 0.988 0.004 0.008 0.000
#> GSM564682     3  0.3658    0.70471 0.008 0.008 0.760 0.008 0.216 0.000
#> GSM564683     3  0.0363    0.89521 0.000 0.000 0.988 0.012 0.000 0.000
#> GSM564684     6  0.0964    0.62973 0.000 0.012 0.000 0.004 0.016 0.968
#> GSM564685     3  0.1620    0.87098 0.000 0.024 0.940 0.024 0.012 0.000
#> GSM564686     6  0.0951    0.63568 0.000 0.008 0.000 0.004 0.020 0.968
#> GSM564687     5  0.4490    0.74017 0.028 0.052 0.112 0.024 0.780 0.004
#> GSM564688     5  0.3243    0.76908 0.000 0.008 0.208 0.000 0.780 0.004
#> GSM564689     5  0.3835    0.78559 0.020 0.012 0.120 0.004 0.812 0.032
#> GSM564690     5  0.3995    0.78762 0.044 0.020 0.136 0.004 0.792 0.004
#> GSM564691     3  0.3595    0.58901 0.000 0.008 0.704 0.000 0.288 0.000
#> GSM564692     5  0.3304    0.78127 0.000 0.008 0.172 0.004 0.804 0.012
#> GSM564694     6  0.5021    0.65615 0.000 0.072 0.044 0.028 0.116 0.740
#> GSM564695     6  0.5649    0.19344 0.000 0.016 0.084 0.004 0.408 0.488
#> GSM564696     3  0.1483    0.87901 0.000 0.036 0.944 0.012 0.008 0.000
#> GSM564697     5  0.4057    0.78820 0.044 0.012 0.128 0.008 0.796 0.012
#> GSM564698     3  0.0862    0.89550 0.000 0.016 0.972 0.004 0.008 0.000
#> GSM564700     6  0.0951    0.63568 0.000 0.008 0.000 0.004 0.020 0.968
#> GSM564701     5  0.3089    0.78042 0.000 0.008 0.188 0.004 0.800 0.000
#> GSM564702     6  0.5895    0.13482 0.016 0.020 0.040 0.016 0.448 0.460
#> GSM564703     4  0.4787    0.49996 0.388 0.000 0.040 0.564 0.008 0.000
#> GSM564704     1  0.3512    0.59010 0.740 0.004 0.000 0.248 0.008 0.000
#> GSM564705     1  0.0881    0.80656 0.972 0.008 0.000 0.012 0.008 0.000
#> GSM564706     4  0.5103    0.60129 0.308 0.004 0.064 0.612 0.012 0.000
#> GSM564707     1  0.1719    0.79441 0.924 0.000 0.016 0.060 0.000 0.000
#> GSM564708     4  0.5667    0.47952 0.056 0.220 0.004 0.652 0.052 0.016
#> GSM564709     1  0.2775    0.79723 0.884 0.028 0.000 0.060 0.016 0.012
#> GSM564710     1  0.1483    0.81032 0.944 0.012 0.000 0.036 0.008 0.000
#> GSM564711     4  0.5275    0.63300 0.100 0.072 0.080 0.724 0.024 0.000
#> GSM564712     1  0.1693    0.80820 0.936 0.012 0.000 0.032 0.020 0.000
#> GSM564713     4  0.2985    0.62189 0.076 0.012 0.016 0.872 0.020 0.004
#> GSM564714     4  0.4867    0.59196 0.320 0.000 0.068 0.608 0.004 0.000
#> GSM564715     1  0.1219    0.80447 0.948 0.004 0.000 0.048 0.000 0.000
#> GSM564716     1  0.6522    0.05989 0.424 0.144 0.000 0.388 0.036 0.008
#> GSM564717     1  0.4127    0.73025 0.804 0.076 0.000 0.052 0.056 0.012
#> GSM564718     4  0.4268    0.62803 0.072 0.056 0.048 0.800 0.024 0.000
#> GSM564719     1  0.1844    0.79794 0.932 0.024 0.000 0.012 0.028 0.004
#> GSM564720     1  0.0893    0.81162 0.972 0.004 0.000 0.016 0.004 0.004
#> GSM564721     1  0.0984    0.80796 0.968 0.012 0.000 0.008 0.012 0.000
#> GSM564722     4  0.4015    0.58275 0.320 0.008 0.000 0.664 0.004 0.004
#> GSM564723     1  0.0767    0.80883 0.976 0.004 0.000 0.012 0.008 0.000
#> GSM564724     4  0.4823    0.58332 0.028 0.076 0.112 0.756 0.024 0.004
#> GSM564725     4  0.6791    0.13918 0.276 0.204 0.000 0.468 0.040 0.012
#> GSM564726     2  0.6086    0.66729 0.000 0.444 0.000 0.344 0.008 0.204
#> GSM564727     2  0.6001    0.70687 0.012 0.512 0.000 0.268 0.000 0.208
#> GSM564728     2  0.6261    0.73239 0.000 0.412 0.000 0.284 0.008 0.296
#> GSM564729     2  0.6156    0.73544 0.000 0.420 0.000 0.276 0.004 0.300
#> GSM564730     1  0.3751    0.77542 0.820 0.088 0.000 0.052 0.036 0.004
#> GSM564731     4  0.6159    0.58518 0.204 0.116 0.004 0.612 0.052 0.012
#> GSM564732     2  0.6773    0.57478 0.124 0.536 0.000 0.228 0.012 0.100
#> GSM564733     4  0.3590    0.63533 0.116 0.028 0.024 0.824 0.004 0.004
#> GSM564734     1  0.3025    0.78880 0.860 0.088 0.000 0.032 0.016 0.004
#> GSM564735     4  0.3035    0.57452 0.048 0.040 0.020 0.876 0.004 0.012
#> GSM564736     4  0.2981    0.58678 0.052 0.032 0.032 0.876 0.004 0.004
#> GSM564737     1  0.1010    0.80521 0.960 0.000 0.000 0.036 0.004 0.000
#> GSM564738     4  0.3816    0.59373 0.048 0.024 0.088 0.824 0.004 0.012
#> GSM564739     1  0.3780    0.52595 0.744 0.000 0.028 0.224 0.004 0.000
#> GSM564740     4  0.5406   -0.03190 0.004 0.104 0.000 0.588 0.008 0.296
#> GSM564741     4  0.3555    0.59891 0.052 0.028 0.084 0.832 0.000 0.004
#> GSM564742     4  0.4993    0.59290 0.316 0.000 0.080 0.600 0.004 0.000
#> GSM564743     1  0.2898    0.79847 0.876 0.056 0.000 0.036 0.028 0.004
#> GSM564744     1  0.2001    0.80594 0.924 0.012 0.000 0.032 0.028 0.004
#> GSM564745     1  0.5530    0.66806 0.688 0.144 0.000 0.092 0.060 0.016
#> GSM564746     1  0.4003    0.68794 0.736 0.224 0.000 0.020 0.020 0.000
#> GSM564747     1  0.3797    0.01321 0.580 0.000 0.000 0.420 0.000 0.000
#> GSM564748     4  0.4918    0.60129 0.308 0.000 0.076 0.612 0.004 0.000
#> GSM564749     1  0.1381    0.80221 0.952 0.020 0.000 0.004 0.020 0.004
#> GSM564750     4  0.4287    0.26611 0.008 0.188 0.004 0.748 0.008 0.044
#> GSM564751     4  0.5513    0.34497 0.444 0.004 0.076 0.464 0.012 0.000
#> GSM564752     4  0.5818   -0.42371 0.000 0.308 0.000 0.516 0.008 0.168
#> GSM564753     4  0.5021    0.58429 0.324 0.000 0.080 0.592 0.004 0.000
#> GSM564754     1  0.1327    0.79803 0.936 0.000 0.000 0.064 0.000 0.000
#> GSM564755     2  0.6172    0.73511 0.000 0.412 0.000 0.280 0.004 0.304
#> GSM564756     1  0.3790    0.77601 0.824 0.048 0.000 0.072 0.048 0.008
#> GSM564757     2  0.6172    0.73511 0.000 0.412 0.000 0.280 0.004 0.304
#> GSM564758     2  0.6737    0.57796 0.008 0.504 0.000 0.224 0.056 0.208
#> GSM564759     4  0.4571    0.60344 0.308 0.004 0.040 0.644 0.004 0.000
#> GSM564760     4  0.5555   -0.39105 0.028 0.440 0.004 0.480 0.004 0.044
#> GSM564761     1  0.1622    0.81130 0.940 0.016 0.000 0.028 0.016 0.000
#> GSM564762     4  0.5586    0.60561 0.224 0.104 0.000 0.636 0.024 0.012
#> GSM564681     6  0.4543    0.48366 0.000 0.012 0.028 0.000 0.336 0.624
#> GSM564693     5  0.5105   -0.04171 0.000 0.008 0.048 0.004 0.496 0.444
#> GSM564646     6  0.0951    0.63568 0.000 0.008 0.000 0.004 0.020 0.968
#> GSM564699     6  0.1874    0.64831 0.000 0.008 0.012 0.020 0.028 0.932

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n genotype/variation(p) disease.state(p) k
#> CV:kmeans 154                 0.925          0.47591 2
#> CV:kmeans 127                 0.997          0.48303 3
#> CV:kmeans 130                 0.204          0.62147 4
#> CV:kmeans 109                 0.416          0.00386 5
#> CV:kmeans 123                 0.369          0.04280 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 154 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.998       0.999         0.5008 0.500   0.500
#> 3 3 0.526           0.712       0.814         0.3042 0.855   0.710
#> 4 4 0.501           0.592       0.763         0.1476 0.828   0.557
#> 5 5 0.506           0.524       0.678         0.0671 0.929   0.731
#> 6 6 0.510           0.407       0.596         0.0404 0.958   0.807

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM564615     1  0.0000      0.999 1.000 0.000
#> GSM564616     2  0.0000      0.999 0.000 1.000
#> GSM564617     2  0.0000      0.999 0.000 1.000
#> GSM564618     2  0.0376      0.996 0.004 0.996
#> GSM564619     1  0.0000      0.999 1.000 0.000
#> GSM564620     1  0.0000      0.999 1.000 0.000
#> GSM564621     1  0.0000      0.999 1.000 0.000
#> GSM564622     2  0.0000      0.999 0.000 1.000
#> GSM564623     2  0.0376      0.996 0.004 0.996
#> GSM564624     2  0.0000      0.999 0.000 1.000
#> GSM564625     1  0.0000      0.999 1.000 0.000
#> GSM564626     1  0.0000      0.999 1.000 0.000
#> GSM564627     1  0.0000      0.999 1.000 0.000
#> GSM564628     2  0.0000      0.999 0.000 1.000
#> GSM564629     1  0.0000      0.999 1.000 0.000
#> GSM564630     2  0.0000      0.999 0.000 1.000
#> GSM564609     2  0.0000      0.999 0.000 1.000
#> GSM564610     1  0.0000      0.999 1.000 0.000
#> GSM564611     1  0.0376      0.997 0.996 0.004
#> GSM564612     2  0.0000      0.999 0.000 1.000
#> GSM564613     2  0.0000      0.999 0.000 1.000
#> GSM564614     1  0.0000      0.999 1.000 0.000
#> GSM564631     2  0.0000      0.999 0.000 1.000
#> GSM564632     2  0.0000      0.999 0.000 1.000
#> GSM564633     2  0.0000      0.999 0.000 1.000
#> GSM564634     2  0.0000      0.999 0.000 1.000
#> GSM564635     2  0.0000      0.999 0.000 1.000
#> GSM564636     2  0.0000      0.999 0.000 1.000
#> GSM564637     2  0.0000      0.999 0.000 1.000
#> GSM564638     2  0.0000      0.999 0.000 1.000
#> GSM564639     2  0.0000      0.999 0.000 1.000
#> GSM564640     2  0.0000      0.999 0.000 1.000
#> GSM564641     2  0.0000      0.999 0.000 1.000
#> GSM564642     2  0.0000      0.999 0.000 1.000
#> GSM564643     2  0.0000      0.999 0.000 1.000
#> GSM564644     2  0.0000      0.999 0.000 1.000
#> GSM564645     2  0.0000      0.999 0.000 1.000
#> GSM564647     2  0.0000      0.999 0.000 1.000
#> GSM564648     2  0.0000      0.999 0.000 1.000
#> GSM564649     2  0.0000      0.999 0.000 1.000
#> GSM564650     2  0.0000      0.999 0.000 1.000
#> GSM564651     2  0.0000      0.999 0.000 1.000
#> GSM564652     2  0.0000      0.999 0.000 1.000
#> GSM564653     2  0.0000      0.999 0.000 1.000
#> GSM564654     2  0.0000      0.999 0.000 1.000
#> GSM564655     2  0.0000      0.999 0.000 1.000
#> GSM564656     2  0.0000      0.999 0.000 1.000
#> GSM564657     2  0.0000      0.999 0.000 1.000
#> GSM564658     2  0.0000      0.999 0.000 1.000
#> GSM564659     2  0.0000      0.999 0.000 1.000
#> GSM564660     2  0.0000      0.999 0.000 1.000
#> GSM564661     2  0.0000      0.999 0.000 1.000
#> GSM564662     2  0.0000      0.999 0.000 1.000
#> GSM564663     2  0.0000      0.999 0.000 1.000
#> GSM564664     2  0.0000      0.999 0.000 1.000
#> GSM564665     2  0.0000      0.999 0.000 1.000
#> GSM564666     2  0.0376      0.996 0.004 0.996
#> GSM564667     2  0.0000      0.999 0.000 1.000
#> GSM564668     2  0.0000      0.999 0.000 1.000
#> GSM564669     2  0.0000      0.999 0.000 1.000
#> GSM564670     2  0.0000      0.999 0.000 1.000
#> GSM564671     2  0.2948      0.947 0.052 0.948
#> GSM564672     2  0.0000      0.999 0.000 1.000
#> GSM564673     2  0.0000      0.999 0.000 1.000
#> GSM564674     2  0.0000      0.999 0.000 1.000
#> GSM564675     2  0.0000      0.999 0.000 1.000
#> GSM564676     2  0.0000      0.999 0.000 1.000
#> GSM564677     2  0.0376      0.995 0.004 0.996
#> GSM564678     2  0.0000      0.999 0.000 1.000
#> GSM564679     2  0.0000      0.999 0.000 1.000
#> GSM564680     2  0.0000      0.999 0.000 1.000
#> GSM564682     2  0.0000      0.999 0.000 1.000
#> GSM564683     2  0.0000      0.999 0.000 1.000
#> GSM564684     2  0.0376      0.996 0.004 0.996
#> GSM564685     2  0.0000      0.999 0.000 1.000
#> GSM564686     2  0.0672      0.992 0.008 0.992
#> GSM564687     2  0.0000      0.999 0.000 1.000
#> GSM564688     2  0.0000      0.999 0.000 1.000
#> GSM564689     2  0.0000      0.999 0.000 1.000
#> GSM564690     2  0.0000      0.999 0.000 1.000
#> GSM564691     2  0.0000      0.999 0.000 1.000
#> GSM564692     2  0.0000      0.999 0.000 1.000
#> GSM564694     2  0.0376      0.996 0.004 0.996
#> GSM564695     2  0.0000      0.999 0.000 1.000
#> GSM564696     2  0.0000      0.999 0.000 1.000
#> GSM564697     2  0.0000      0.999 0.000 1.000
#> GSM564698     2  0.0000      0.999 0.000 1.000
#> GSM564700     2  0.0376      0.996 0.004 0.996
#> GSM564701     2  0.0000      0.999 0.000 1.000
#> GSM564702     2  0.0376      0.996 0.004 0.996
#> GSM564703     1  0.0376      0.997 0.996 0.004
#> GSM564704     1  0.0000      0.999 1.000 0.000
#> GSM564705     1  0.0000      0.999 1.000 0.000
#> GSM564706     1  0.0376      0.997 0.996 0.004
#> GSM564707     1  0.0376      0.997 0.996 0.004
#> GSM564708     1  0.0000      0.999 1.000 0.000
#> GSM564709     1  0.0000      0.999 1.000 0.000
#> GSM564710     1  0.0376      0.997 0.996 0.004
#> GSM564711     1  0.0000      0.999 1.000 0.000
#> GSM564712     1  0.0376      0.997 0.996 0.004
#> GSM564713     1  0.0000      0.999 1.000 0.000
#> GSM564714     1  0.0000      0.999 1.000 0.000
#> GSM564715     1  0.0376      0.997 0.996 0.004
#> GSM564716     1  0.0000      0.999 1.000 0.000
#> GSM564717     1  0.0000      0.999 1.000 0.000
#> GSM564718     1  0.0000      0.999 1.000 0.000
#> GSM564719     1  0.0000      0.999 1.000 0.000
#> GSM564720     1  0.0000      0.999 1.000 0.000
#> GSM564721     1  0.0000      0.999 1.000 0.000
#> GSM564722     1  0.0000      0.999 1.000 0.000
#> GSM564723     1  0.0000      0.999 1.000 0.000
#> GSM564724     1  0.0000      0.999 1.000 0.000
#> GSM564725     1  0.0000      0.999 1.000 0.000
#> GSM564726     1  0.0000      0.999 1.000 0.000
#> GSM564727     1  0.0000      0.999 1.000 0.000
#> GSM564728     1  0.0000      0.999 1.000 0.000
#> GSM564729     1  0.0000      0.999 1.000 0.000
#> GSM564730     1  0.0000      0.999 1.000 0.000
#> GSM564731     1  0.0000      0.999 1.000 0.000
#> GSM564732     1  0.0000      0.999 1.000 0.000
#> GSM564733     1  0.0000      0.999 1.000 0.000
#> GSM564734     1  0.0000      0.999 1.000 0.000
#> GSM564735     1  0.0000      0.999 1.000 0.000
#> GSM564736     1  0.0000      0.999 1.000 0.000
#> GSM564737     1  0.0000      0.999 1.000 0.000
#> GSM564738     1  0.0000      0.999 1.000 0.000
#> GSM564739     1  0.0376      0.997 0.996 0.004
#> GSM564740     1  0.0000      0.999 1.000 0.000
#> GSM564741     1  0.0000      0.999 1.000 0.000
#> GSM564742     1  0.0376      0.997 0.996 0.004
#> GSM564743     1  0.0000      0.999 1.000 0.000
#> GSM564744     1  0.0000      0.999 1.000 0.000
#> GSM564745     1  0.0000      0.999 1.000 0.000
#> GSM564746     1  0.0000      0.999 1.000 0.000
#> GSM564747     1  0.0000      0.999 1.000 0.000
#> GSM564748     1  0.0376      0.997 0.996 0.004
#> GSM564749     1  0.0000      0.999 1.000 0.000
#> GSM564750     1  0.0000      0.999 1.000 0.000
#> GSM564751     1  0.0376      0.997 0.996 0.004
#> GSM564752     1  0.0000      0.999 1.000 0.000
#> GSM564753     1  0.0000      0.999 1.000 0.000
#> GSM564754     1  0.0000      0.999 1.000 0.000
#> GSM564755     1  0.0000      0.999 1.000 0.000
#> GSM564756     1  0.0000      0.999 1.000 0.000
#> GSM564757     1  0.0000      0.999 1.000 0.000
#> GSM564758     1  0.0000      0.999 1.000 0.000
#> GSM564759     1  0.0000      0.999 1.000 0.000
#> GSM564760     1  0.0000      0.999 1.000 0.000
#> GSM564761     1  0.0376      0.997 0.996 0.004
#> GSM564762     1  0.0000      0.999 1.000 0.000
#> GSM564681     2  0.0000      0.999 0.000 1.000
#> GSM564693     2  0.0000      0.999 0.000 1.000
#> GSM564646     2  0.0376      0.996 0.004 0.996
#> GSM564699     2  0.0938      0.989 0.012 0.988

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM564615     1  0.5465     0.7967 0.712 0.288 0.000
#> GSM564616     2  0.5244     0.7095 0.004 0.756 0.240
#> GSM564617     2  0.5327     0.7069 0.000 0.728 0.272
#> GSM564618     2  0.2959     0.6608 0.000 0.900 0.100
#> GSM564619     1  0.1289     0.8802 0.968 0.032 0.000
#> GSM564620     1  0.3551     0.8723 0.868 0.132 0.000
#> GSM564621     1  0.4605     0.8457 0.796 0.204 0.000
#> GSM564622     2  0.6215     0.5830 0.000 0.572 0.428
#> GSM564623     2  0.1585     0.5982 0.008 0.964 0.028
#> GSM564624     2  0.5363     0.7045 0.000 0.724 0.276
#> GSM564625     1  0.4235     0.8581 0.824 0.176 0.000
#> GSM564626     1  0.1289     0.8804 0.968 0.032 0.000
#> GSM564627     1  0.4346     0.8578 0.816 0.184 0.000
#> GSM564628     2  0.3619     0.6825 0.000 0.864 0.136
#> GSM564629     1  0.1289     0.8816 0.968 0.032 0.000
#> GSM564630     2  0.5465     0.7010 0.000 0.712 0.288
#> GSM564609     3  0.4349     0.7311 0.020 0.128 0.852
#> GSM564610     1  0.1289     0.8786 0.968 0.032 0.000
#> GSM564611     1  0.3234     0.8453 0.908 0.072 0.020
#> GSM564612     3  0.2625     0.7655 0.000 0.084 0.916
#> GSM564613     3  0.5948     0.2191 0.000 0.360 0.640
#> GSM564614     1  0.5497     0.7949 0.708 0.292 0.000
#> GSM564631     3  0.0000     0.8021 0.000 0.000 1.000
#> GSM564632     3  0.6509    -0.0869 0.004 0.472 0.524
#> GSM564633     3  0.0424     0.8030 0.000 0.008 0.992
#> GSM564634     3  0.6617    -0.2032 0.008 0.436 0.556
#> GSM564635     3  0.0237     0.8018 0.004 0.000 0.996
#> GSM564636     3  0.4121     0.7024 0.000 0.168 0.832
#> GSM564637     2  0.6330     0.6133 0.004 0.600 0.396
#> GSM564638     3  0.1860     0.7737 0.000 0.052 0.948
#> GSM564639     3  0.0000     0.8021 0.000 0.000 1.000
#> GSM564640     2  0.6045     0.6610 0.000 0.620 0.380
#> GSM564641     3  0.2116     0.7910 0.012 0.040 0.948
#> GSM564642     3  0.6881    -0.0414 0.020 0.388 0.592
#> GSM564643     2  0.4733     0.5648 0.004 0.800 0.196
#> GSM564644     2  0.6252     0.5741 0.000 0.556 0.444
#> GSM564645     3  0.0000     0.8021 0.000 0.000 1.000
#> GSM564647     3  0.5098     0.5149 0.000 0.248 0.752
#> GSM564648     2  0.6168     0.6231 0.000 0.588 0.412
#> GSM564649     3  0.0424     0.8027 0.000 0.008 0.992
#> GSM564650     2  0.5529     0.7078 0.000 0.704 0.296
#> GSM564651     3  0.6079    -0.0423 0.000 0.388 0.612
#> GSM564652     2  0.6617     0.5749 0.008 0.556 0.436
#> GSM564653     2  0.6168     0.6248 0.000 0.588 0.412
#> GSM564654     3  0.0237     0.8028 0.000 0.004 0.996
#> GSM564655     3  0.2878     0.7665 0.000 0.096 0.904
#> GSM564656     3  0.0424     0.8027 0.000 0.008 0.992
#> GSM564657     3  0.1170     0.7945 0.016 0.008 0.976
#> GSM564658     2  0.6717     0.6772 0.020 0.628 0.352
#> GSM564659     3  0.4654     0.6341 0.000 0.208 0.792
#> GSM564660     2  0.5325     0.6534 0.004 0.748 0.248
#> GSM564661     2  0.6553     0.6236 0.008 0.580 0.412
#> GSM564662     3  0.0000     0.8021 0.000 0.000 1.000
#> GSM564663     2  0.6724     0.6022 0.012 0.568 0.420
#> GSM564664     2  0.6669     0.4966 0.008 0.524 0.468
#> GSM564665     3  0.2796     0.7633 0.000 0.092 0.908
#> GSM564666     2  0.4110     0.5368 0.004 0.844 0.152
#> GSM564667     3  0.0475     0.8018 0.004 0.004 0.992
#> GSM564668     3  0.1031     0.8011 0.000 0.024 0.976
#> GSM564669     3  0.0892     0.7999 0.000 0.020 0.980
#> GSM564670     3  0.5327     0.4646 0.000 0.272 0.728
#> GSM564671     2  0.3263     0.5466 0.048 0.912 0.040
#> GSM564672     3  0.0424     0.8026 0.000 0.008 0.992
#> GSM564673     2  0.6647     0.5452 0.008 0.540 0.452
#> GSM564674     2  0.6033     0.6935 0.004 0.660 0.336
#> GSM564675     2  0.2878     0.6462 0.000 0.904 0.096
#> GSM564676     2  0.6565     0.6077 0.008 0.576 0.416
#> GSM564677     2  0.6541     0.6989 0.024 0.672 0.304
#> GSM564678     2  0.6836     0.6039 0.016 0.572 0.412
#> GSM564679     2  0.6379     0.6642 0.008 0.624 0.368
#> GSM564680     3  0.0237     0.8028 0.000 0.004 0.996
#> GSM564682     3  0.4411     0.7042 0.016 0.140 0.844
#> GSM564683     3  0.0237     0.8028 0.000 0.004 0.996
#> GSM564684     2  0.1950     0.5957 0.008 0.952 0.040
#> GSM564685     3  0.0592     0.8011 0.000 0.012 0.988
#> GSM564686     2  0.1950     0.5961 0.008 0.952 0.040
#> GSM564687     2  0.6529     0.6675 0.012 0.620 0.368
#> GSM564688     3  0.6302    -0.4014 0.000 0.480 0.520
#> GSM564689     2  0.5926     0.6801 0.000 0.644 0.356
#> GSM564690     2  0.6617     0.6399 0.012 0.600 0.388
#> GSM564691     3  0.3482     0.7155 0.000 0.128 0.872
#> GSM564692     2  0.6154     0.6370 0.000 0.592 0.408
#> GSM564694     2  0.5058     0.5384 0.000 0.756 0.244
#> GSM564695     2  0.6062     0.5018 0.000 0.616 0.384
#> GSM564696     3  0.2165     0.7775 0.000 0.064 0.936
#> GSM564697     2  0.6104     0.6811 0.004 0.648 0.348
#> GSM564698     3  0.2096     0.7861 0.004 0.052 0.944
#> GSM564700     2  0.1765     0.5986 0.004 0.956 0.040
#> GSM564701     3  0.6305    -0.4209 0.000 0.484 0.516
#> GSM564702     2  0.4663     0.6915 0.016 0.828 0.156
#> GSM564703     1  0.4351     0.7907 0.828 0.004 0.168
#> GSM564704     1  0.2878     0.8817 0.904 0.096 0.000
#> GSM564705     1  0.0829     0.8742 0.984 0.012 0.004
#> GSM564706     1  0.3896     0.8301 0.864 0.008 0.128
#> GSM564707     1  0.1751     0.8730 0.960 0.012 0.028
#> GSM564708     1  0.2998     0.8847 0.916 0.068 0.016
#> GSM564709     1  0.3644     0.8772 0.872 0.124 0.004
#> GSM564710     1  0.1015     0.8760 0.980 0.008 0.012
#> GSM564711     1  0.4964     0.8737 0.836 0.116 0.048
#> GSM564712     1  0.1491     0.8739 0.968 0.016 0.016
#> GSM564713     1  0.5377     0.8650 0.820 0.112 0.068
#> GSM564714     1  0.7368     0.5037 0.604 0.044 0.352
#> GSM564715     1  0.1015     0.8770 0.980 0.012 0.008
#> GSM564716     1  0.2537     0.8818 0.920 0.080 0.000
#> GSM564717     1  0.0592     0.8743 0.988 0.012 0.000
#> GSM564718     1  0.4371     0.8782 0.860 0.108 0.032
#> GSM564719     1  0.2063     0.8680 0.948 0.044 0.008
#> GSM564720     1  0.1031     0.8736 0.976 0.024 0.000
#> GSM564721     1  0.0892     0.8788 0.980 0.020 0.000
#> GSM564722     1  0.3715     0.8764 0.868 0.128 0.004
#> GSM564723     1  0.0892     0.8740 0.980 0.020 0.000
#> GSM564724     1  0.5585     0.8558 0.812 0.092 0.096
#> GSM564725     1  0.4121     0.8624 0.832 0.168 0.000
#> GSM564726     1  0.5656     0.7986 0.712 0.284 0.004
#> GSM564727     1  0.4842     0.8353 0.776 0.224 0.000
#> GSM564728     1  0.5497     0.7938 0.708 0.292 0.000
#> GSM564729     1  0.5465     0.7967 0.712 0.288 0.000
#> GSM564730     1  0.1289     0.8826 0.968 0.032 0.000
#> GSM564731     1  0.2280     0.8848 0.940 0.052 0.008
#> GSM564732     1  0.4291     0.8569 0.820 0.180 0.000
#> GSM564733     1  0.3983     0.8711 0.884 0.048 0.068
#> GSM564734     1  0.1753     0.8832 0.952 0.048 0.000
#> GSM564735     1  0.8623     0.7153 0.600 0.224 0.176
#> GSM564736     1  0.6886     0.8269 0.728 0.184 0.088
#> GSM564737     1  0.0747     0.8741 0.984 0.016 0.000
#> GSM564738     1  0.9636     0.5178 0.468 0.248 0.284
#> GSM564739     1  0.4110     0.8062 0.844 0.004 0.152
#> GSM564740     1  0.5982     0.7605 0.668 0.328 0.004
#> GSM564741     1  0.8017     0.7667 0.652 0.208 0.140
#> GSM564742     1  0.6209     0.4970 0.628 0.004 0.368
#> GSM564743     1  0.0747     0.8758 0.984 0.016 0.000
#> GSM564744     1  0.0424     0.8744 0.992 0.008 0.000
#> GSM564745     1  0.2537     0.8830 0.920 0.080 0.000
#> GSM564746     1  0.0892     0.8784 0.980 0.020 0.000
#> GSM564747     1  0.0424     0.8773 0.992 0.008 0.000
#> GSM564748     1  0.4575     0.7792 0.812 0.004 0.184
#> GSM564749     1  0.0592     0.8743 0.988 0.012 0.000
#> GSM564750     1  0.6053     0.8114 0.720 0.260 0.020
#> GSM564751     1  0.2261     0.8628 0.932 0.000 0.068
#> GSM564752     1  0.5397     0.8026 0.720 0.280 0.000
#> GSM564753     1  0.5929     0.5884 0.676 0.004 0.320
#> GSM564754     1  0.0424     0.8762 0.992 0.008 0.000
#> GSM564755     1  0.5465     0.7967 0.712 0.288 0.000
#> GSM564756     1  0.1163     0.8821 0.972 0.028 0.000
#> GSM564757     1  0.5465     0.7967 0.712 0.288 0.000
#> GSM564758     1  0.5928     0.7867 0.696 0.296 0.008
#> GSM564759     1  0.4233     0.7984 0.836 0.004 0.160
#> GSM564760     1  0.4399     0.8529 0.812 0.188 0.000
#> GSM564761     1  0.2269     0.8677 0.944 0.040 0.016
#> GSM564762     1  0.2165     0.8834 0.936 0.064 0.000
#> GSM564681     2  0.3816     0.6851 0.000 0.852 0.148
#> GSM564693     2  0.5178     0.7056 0.000 0.744 0.256
#> GSM564646     2  0.1315     0.5934 0.008 0.972 0.020
#> GSM564699     2  0.5167     0.4657 0.016 0.792 0.192

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM564615     4  0.2843     0.6524 0.088 0.020 0.000 0.892
#> GSM564616     2  0.2521     0.7244 0.016 0.924 0.032 0.028
#> GSM564617     2  0.1452     0.7151 0.000 0.956 0.008 0.036
#> GSM564618     2  0.3836     0.6694 0.000 0.816 0.016 0.168
#> GSM564619     1  0.3450     0.7333 0.836 0.008 0.000 0.156
#> GSM564620     1  0.5723     0.3630 0.580 0.032 0.000 0.388
#> GSM564621     4  0.4872     0.5723 0.244 0.028 0.000 0.728
#> GSM564622     2  0.4744     0.6529 0.000 0.736 0.240 0.024
#> GSM564623     4  0.5296    -0.1489 0.000 0.496 0.008 0.496
#> GSM564624     2  0.2409     0.7232 0.004 0.924 0.032 0.040
#> GSM564625     4  0.5339     0.3388 0.384 0.016 0.000 0.600
#> GSM564626     1  0.3208     0.7416 0.848 0.004 0.000 0.148
#> GSM564627     4  0.5649     0.3317 0.392 0.028 0.000 0.580
#> GSM564628     2  0.3108     0.6987 0.000 0.872 0.016 0.112
#> GSM564629     1  0.5003     0.5714 0.676 0.016 0.000 0.308
#> GSM564630     2  0.2529     0.7267 0.008 0.920 0.048 0.024
#> GSM564609     3  0.6638     0.5686 0.064 0.248 0.652 0.036
#> GSM564610     1  0.2861     0.7584 0.888 0.016 0.000 0.096
#> GSM564611     1  0.2530     0.6956 0.896 0.100 0.000 0.004
#> GSM564612     3  0.4820     0.5667 0.012 0.296 0.692 0.000
#> GSM564613     2  0.6254     0.1486 0.012 0.508 0.448 0.032
#> GSM564614     4  0.2796     0.6536 0.092 0.016 0.000 0.892
#> GSM564631     3  0.1004     0.8399 0.004 0.024 0.972 0.000
#> GSM564632     3  0.7171     0.0236 0.000 0.400 0.464 0.136
#> GSM564633     3  0.1543     0.8378 0.008 0.032 0.956 0.004
#> GSM564634     2  0.5673     0.3077 0.008 0.536 0.444 0.012
#> GSM564635     3  0.0707     0.8396 0.000 0.020 0.980 0.000
#> GSM564636     3  0.5019     0.6566 0.004 0.240 0.728 0.028
#> GSM564637     2  0.6611     0.4942 0.012 0.584 0.336 0.068
#> GSM564638     3  0.2363     0.8206 0.000 0.056 0.920 0.024
#> GSM564639     3  0.0188     0.8377 0.000 0.004 0.996 0.000
#> GSM564640     2  0.3932     0.7298 0.032 0.836 0.128 0.004
#> GSM564641     3  0.4057     0.7832 0.036 0.120 0.836 0.008
#> GSM564642     2  0.6349     0.4105 0.056 0.548 0.392 0.004
#> GSM564643     2  0.7677     0.3316 0.000 0.456 0.248 0.296
#> GSM564644     2  0.5030     0.6931 0.060 0.752 0.188 0.000
#> GSM564645     3  0.0336     0.8382 0.000 0.008 0.992 0.000
#> GSM564647     3  0.4973     0.4466 0.008 0.348 0.644 0.000
#> GSM564648     2  0.5126     0.6797 0.008 0.728 0.236 0.028
#> GSM564649     3  0.1305     0.8415 0.004 0.036 0.960 0.000
#> GSM564650     2  0.4493     0.7333 0.020 0.828 0.092 0.060
#> GSM564651     2  0.6049     0.2986 0.028 0.524 0.440 0.008
#> GSM564652     2  0.6190     0.6855 0.068 0.692 0.216 0.024
#> GSM564653     2  0.4381     0.7218 0.028 0.804 0.160 0.008
#> GSM564654     3  0.0469     0.8395 0.000 0.012 0.988 0.000
#> GSM564655     3  0.3858     0.7749 0.004 0.116 0.844 0.036
#> GSM564656     3  0.0592     0.8388 0.000 0.016 0.984 0.000
#> GSM564657     3  0.2585     0.8218 0.032 0.048 0.916 0.004
#> GSM564658     2  0.4744     0.7259 0.056 0.788 0.152 0.004
#> GSM564659     3  0.5453     0.5099 0.000 0.304 0.660 0.036
#> GSM564660     2  0.6339     0.6158 0.004 0.672 0.168 0.156
#> GSM564661     2  0.4287     0.7303 0.032 0.808 0.156 0.004
#> GSM564662     3  0.0524     0.8379 0.004 0.008 0.988 0.000
#> GSM564663     2  0.5363     0.6900 0.056 0.728 0.212 0.004
#> GSM564664     2  0.5820     0.6440 0.080 0.680 0.240 0.000
#> GSM564665     3  0.3432     0.7686 0.004 0.140 0.848 0.008
#> GSM564666     2  0.7463     0.2576 0.000 0.440 0.176 0.384
#> GSM564667     3  0.0895     0.8406 0.004 0.020 0.976 0.000
#> GSM564668     3  0.1389     0.8387 0.000 0.048 0.952 0.000
#> GSM564669     3  0.1211     0.8390 0.000 0.040 0.960 0.000
#> GSM564670     3  0.6038     0.2120 0.012 0.416 0.548 0.024
#> GSM564671     4  0.5585     0.3102 0.012 0.316 0.020 0.652
#> GSM564672     3  0.0779     0.8413 0.004 0.016 0.980 0.000
#> GSM564673     2  0.5266     0.6648 0.012 0.704 0.264 0.020
#> GSM564674     2  0.4235     0.7387 0.024 0.828 0.128 0.020
#> GSM564675     2  0.4919     0.6386 0.000 0.752 0.048 0.200
#> GSM564676     2  0.4706     0.7113 0.072 0.788 0.140 0.000
#> GSM564677     2  0.5119     0.7326 0.068 0.800 0.092 0.040
#> GSM564678     2  0.4804     0.7044 0.072 0.780 0.148 0.000
#> GSM564679     2  0.4071     0.7222 0.064 0.832 0.104 0.000
#> GSM564680     3  0.1022     0.8413 0.000 0.032 0.968 0.000
#> GSM564682     3  0.5631     0.6095 0.076 0.224 0.700 0.000
#> GSM564683     3  0.0844     0.8375 0.004 0.012 0.980 0.004
#> GSM564684     4  0.5409    -0.1501 0.000 0.492 0.012 0.496
#> GSM564685     3  0.0779     0.8389 0.000 0.016 0.980 0.004
#> GSM564686     4  0.5865     0.0448 0.000 0.412 0.036 0.552
#> GSM564687     2  0.5393     0.7117 0.056 0.752 0.176 0.016
#> GSM564688     2  0.5038     0.5746 0.012 0.652 0.336 0.000
#> GSM564689     2  0.4118     0.7279 0.060 0.836 0.100 0.004
#> GSM564690     2  0.4686     0.7069 0.068 0.788 0.144 0.000
#> GSM564691     3  0.5174     0.3710 0.012 0.368 0.620 0.000
#> GSM564692     2  0.4687     0.7267 0.028 0.784 0.176 0.012
#> GSM564694     2  0.7793     0.3481 0.004 0.468 0.256 0.272
#> GSM564695     2  0.7858     0.3899 0.016 0.492 0.308 0.184
#> GSM564696     3  0.2048     0.8271 0.000 0.064 0.928 0.008
#> GSM564697     2  0.3857     0.7318 0.044 0.848 0.104 0.004
#> GSM564698     3  0.2821     0.8074 0.004 0.076 0.900 0.020
#> GSM564700     2  0.5781     0.1307 0.000 0.488 0.028 0.484
#> GSM564701     2  0.6131     0.5406 0.044 0.600 0.348 0.008
#> GSM564702     2  0.4423     0.7040 0.036 0.832 0.032 0.100
#> GSM564703     1  0.5724     0.6440 0.716 0.000 0.144 0.140
#> GSM564704     1  0.5588     0.3890 0.600 0.020 0.004 0.376
#> GSM564705     1  0.1042     0.7490 0.972 0.020 0.000 0.008
#> GSM564706     1  0.6608     0.5410 0.628 0.000 0.168 0.204
#> GSM564707     1  0.2218     0.7519 0.932 0.004 0.028 0.036
#> GSM564708     4  0.6652     0.1754 0.396 0.000 0.088 0.516
#> GSM564709     1  0.5437     0.4336 0.624 0.012 0.008 0.356
#> GSM564710     1  0.3053     0.7637 0.892 0.016 0.012 0.080
#> GSM564711     4  0.7044     0.2538 0.368 0.004 0.112 0.516
#> GSM564712     1  0.2302     0.7628 0.924 0.008 0.008 0.060
#> GSM564713     4  0.6491     0.4557 0.280 0.004 0.096 0.620
#> GSM564714     1  0.7714     0.2006 0.448 0.000 0.260 0.292
#> GSM564715     1  0.2011     0.7640 0.920 0.000 0.000 0.080
#> GSM564716     4  0.4985     0.0656 0.468 0.000 0.000 0.532
#> GSM564717     1  0.2831     0.7586 0.876 0.004 0.000 0.120
#> GSM564718     4  0.5524     0.4953 0.276 0.000 0.048 0.676
#> GSM564719     1  0.3370     0.7109 0.872 0.080 0.000 0.048
#> GSM564720     1  0.1985     0.7559 0.940 0.016 0.004 0.040
#> GSM564721     1  0.3052     0.7452 0.860 0.004 0.000 0.136
#> GSM564722     4  0.5746     0.2527 0.424 0.016 0.008 0.552
#> GSM564723     1  0.1356     0.7568 0.960 0.008 0.000 0.032
#> GSM564724     4  0.7012     0.3574 0.284 0.000 0.156 0.560
#> GSM564725     4  0.5047     0.4897 0.316 0.016 0.000 0.668
#> GSM564726     4  0.1807     0.6520 0.052 0.008 0.000 0.940
#> GSM564727     4  0.4059     0.6115 0.200 0.012 0.000 0.788
#> GSM564728     4  0.2101     0.6521 0.060 0.012 0.000 0.928
#> GSM564729     4  0.2675     0.6516 0.100 0.008 0.000 0.892
#> GSM564730     1  0.4283     0.6382 0.740 0.004 0.000 0.256
#> GSM564731     1  0.5543     0.2885 0.556 0.000 0.020 0.424
#> GSM564732     4  0.4699     0.4760 0.320 0.004 0.000 0.676
#> GSM564733     4  0.7196     0.0959 0.408 0.004 0.120 0.468
#> GSM564734     1  0.4936     0.4965 0.652 0.008 0.000 0.340
#> GSM564735     4  0.4840     0.6148 0.116 0.000 0.100 0.784
#> GSM564736     4  0.5151     0.5969 0.140 0.000 0.100 0.760
#> GSM564737     1  0.1256     0.7552 0.964 0.008 0.000 0.028
#> GSM564738     4  0.5906     0.5513 0.148 0.000 0.152 0.700
#> GSM564739     1  0.4812     0.7115 0.800 0.008 0.096 0.096
#> GSM564740     4  0.2699     0.6452 0.068 0.028 0.000 0.904
#> GSM564741     4  0.6110     0.5388 0.176 0.000 0.144 0.680
#> GSM564742     1  0.7113     0.3698 0.532 0.000 0.316 0.152
#> GSM564743     1  0.3552     0.7488 0.848 0.024 0.000 0.128
#> GSM564744     1  0.1635     0.7576 0.948 0.008 0.000 0.044
#> GSM564745     1  0.4560     0.5870 0.700 0.004 0.000 0.296
#> GSM564746     1  0.2799     0.7531 0.884 0.008 0.000 0.108
#> GSM564747     1  0.3751     0.7190 0.800 0.000 0.004 0.196
#> GSM564748     1  0.6617     0.5289 0.628 0.000 0.176 0.196
#> GSM564749     1  0.0895     0.7442 0.976 0.020 0.000 0.004
#> GSM564750     4  0.2860     0.6522 0.100 0.004 0.008 0.888
#> GSM564751     1  0.4487     0.7224 0.808 0.000 0.092 0.100
#> GSM564752     4  0.1743     0.6522 0.056 0.004 0.000 0.940
#> GSM564753     1  0.6728     0.4806 0.596 0.000 0.268 0.136
#> GSM564754     1  0.3356     0.7286 0.824 0.000 0.000 0.176
#> GSM564755     4  0.2021     0.6512 0.056 0.012 0.000 0.932
#> GSM564756     1  0.4779     0.6973 0.756 0.028 0.004 0.212
#> GSM564757     4  0.2741     0.6512 0.096 0.012 0.000 0.892
#> GSM564758     4  0.3319     0.6556 0.096 0.016 0.012 0.876
#> GSM564759     1  0.7133     0.4088 0.548 0.000 0.172 0.280
#> GSM564760     4  0.4295     0.5825 0.240 0.000 0.008 0.752
#> GSM564761     1  0.2123     0.7533 0.936 0.032 0.004 0.028
#> GSM564762     4  0.5317     0.0668 0.460 0.004 0.004 0.532
#> GSM564681     2  0.3037     0.7088 0.000 0.888 0.036 0.076
#> GSM564693     2  0.4444     0.7153 0.000 0.808 0.120 0.072
#> GSM564646     2  0.5399     0.1893 0.000 0.520 0.012 0.468
#> GSM564699     4  0.7595    -0.1565 0.000 0.372 0.200 0.428

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM564615     4   0.326    0.66466 0.036 0.000 0.000 0.840 0.124
#> GSM564616     2   0.540    0.37828 0.016 0.576 0.020 0.008 0.380
#> GSM564617     2   0.481    0.38403 0.000 0.600 0.020 0.004 0.376
#> GSM564618     5   0.603    0.25840 0.000 0.376 0.028 0.060 0.536
#> GSM564619     1   0.521    0.57967 0.696 0.016 0.000 0.216 0.072
#> GSM564620     4   0.625    0.03755 0.432 0.016 0.000 0.460 0.092
#> GSM564621     4   0.594    0.50614 0.260 0.008 0.000 0.604 0.128
#> GSM564622     2   0.679    0.35264 0.016 0.492 0.156 0.004 0.332
#> GSM564623     5   0.556    0.59806 0.000 0.092 0.012 0.244 0.652
#> GSM564624     2   0.488    0.33195 0.000 0.576 0.028 0.000 0.396
#> GSM564625     4   0.496    0.39983 0.352 0.000 0.000 0.608 0.040
#> GSM564626     1   0.443    0.65355 0.784 0.020 0.000 0.132 0.064
#> GSM564627     4   0.597    0.40099 0.320 0.004 0.000 0.560 0.116
#> GSM564628     5   0.543   -0.09153 0.012 0.468 0.008 0.020 0.492
#> GSM564629     1   0.552    0.35421 0.572 0.000 0.000 0.348 0.080
#> GSM564630     2   0.475    0.52529 0.004 0.676 0.036 0.000 0.284
#> GSM564609     3   0.830    0.42733 0.076 0.192 0.508 0.076 0.148
#> GSM564610     1   0.448    0.66842 0.796 0.048 0.000 0.096 0.060
#> GSM564611     1   0.430    0.57384 0.728 0.244 0.000 0.008 0.020
#> GSM564612     3   0.536    0.43064 0.008 0.352 0.592 0.000 0.048
#> GSM564613     3   0.732   -0.03399 0.004 0.296 0.380 0.016 0.304
#> GSM564614     4   0.330    0.67137 0.028 0.004 0.000 0.840 0.128
#> GSM564631     3   0.199    0.78057 0.004 0.040 0.928 0.000 0.028
#> GSM564632     5   0.773    0.14207 0.004 0.196 0.340 0.060 0.400
#> GSM564633     3   0.281    0.78102 0.012 0.068 0.888 0.000 0.032
#> GSM564634     2   0.760    0.19068 0.036 0.404 0.372 0.016 0.172
#> GSM564635     3   0.251    0.77976 0.000 0.060 0.896 0.000 0.044
#> GSM564636     3   0.654    0.44608 0.004 0.172 0.556 0.012 0.256
#> GSM564637     2   0.749    0.06510 0.004 0.384 0.196 0.040 0.376
#> GSM564638     3   0.405    0.76133 0.008 0.048 0.824 0.020 0.100
#> GSM564639     3   0.140    0.77612 0.004 0.008 0.956 0.004 0.028
#> GSM564640     2   0.390    0.65846 0.016 0.820 0.052 0.000 0.112
#> GSM564641     3   0.589    0.68789 0.056 0.124 0.708 0.012 0.100
#> GSM564642     2   0.675    0.49049 0.040 0.556 0.256 0.000 0.148
#> GSM564643     5   0.684    0.56124 0.000 0.100 0.152 0.144 0.604
#> GSM564644     2   0.368    0.66280 0.016 0.840 0.072 0.000 0.072
#> GSM564645     3   0.141    0.77498 0.004 0.008 0.952 0.000 0.036
#> GSM564647     3   0.597    0.38249 0.000 0.320 0.548 0.000 0.132
#> GSM564648     2   0.634    0.43695 0.000 0.532 0.172 0.004 0.292
#> GSM564649     3   0.332    0.76458 0.000 0.116 0.840 0.000 0.044
#> GSM564650     2   0.592    0.30921 0.012 0.560 0.052 0.012 0.364
#> GSM564651     2   0.618    0.35342 0.004 0.536 0.340 0.004 0.116
#> GSM564652     2   0.746    0.44087 0.128 0.556 0.128 0.008 0.180
#> GSM564653     2   0.383    0.66103 0.004 0.816 0.068 0.000 0.112
#> GSM564654     3   0.211    0.78053 0.004 0.036 0.928 0.008 0.024
#> GSM564655     3   0.617    0.61426 0.008 0.180 0.652 0.028 0.132
#> GSM564656     3   0.172    0.77743 0.004 0.024 0.944 0.004 0.024
#> GSM564657     3   0.344    0.76878 0.024 0.104 0.848 0.000 0.024
#> GSM564658     2   0.482    0.65399 0.032 0.772 0.072 0.004 0.120
#> GSM564659     3   0.629    0.51013 0.004 0.200 0.592 0.008 0.196
#> GSM564660     5   0.711    0.30787 0.012 0.256 0.140 0.044 0.548
#> GSM564661     2   0.519    0.64561 0.032 0.732 0.088 0.000 0.148
#> GSM564662     3   0.112    0.77579 0.000 0.016 0.964 0.000 0.020
#> GSM564663     2   0.475    0.65763 0.032 0.772 0.092 0.000 0.104
#> GSM564664     2   0.464    0.63146 0.068 0.788 0.084 0.000 0.060
#> GSM564665     3   0.512    0.66868 0.000 0.172 0.712 0.008 0.108
#> GSM564666     5   0.648    0.58591 0.000 0.108 0.100 0.152 0.640
#> GSM564667     3   0.292    0.77862 0.008 0.072 0.880 0.000 0.040
#> GSM564668     3   0.374    0.75966 0.000 0.096 0.828 0.008 0.068
#> GSM564669     3   0.278    0.77674 0.000 0.048 0.880 0.000 0.072
#> GSM564670     3   0.725   -0.16251 0.020 0.376 0.384 0.004 0.216
#> GSM564671     5   0.600    0.44566 0.000 0.056 0.032 0.356 0.556
#> GSM564672     3   0.125    0.77837 0.000 0.036 0.956 0.000 0.008
#> GSM564673     2   0.718    0.46683 0.032 0.540 0.236 0.016 0.176
#> GSM564674     2   0.555    0.58580 0.012 0.672 0.076 0.008 0.232
#> GSM564675     5   0.646    0.41775 0.004 0.300 0.040 0.084 0.572
#> GSM564676     2   0.277    0.65439 0.024 0.896 0.040 0.000 0.040
#> GSM564677     2   0.603    0.56641 0.068 0.648 0.048 0.004 0.232
#> GSM564678     2   0.223    0.64813 0.032 0.920 0.036 0.000 0.012
#> GSM564679     2   0.252    0.65058 0.024 0.908 0.028 0.000 0.040
#> GSM564680     3   0.238    0.78095 0.000 0.048 0.904 0.000 0.048
#> GSM564682     3   0.695    0.40492 0.060 0.304 0.532 0.004 0.100
#> GSM564683     3   0.106    0.77472 0.004 0.008 0.968 0.000 0.020
#> GSM564684     5   0.531    0.59808 0.000 0.064 0.012 0.264 0.660
#> GSM564685     3   0.152    0.77771 0.004 0.012 0.952 0.004 0.028
#> GSM564686     5   0.549    0.57021 0.000 0.068 0.012 0.288 0.632
#> GSM564687     2   0.597    0.59634 0.016 0.680 0.132 0.020 0.152
#> GSM564688     2   0.659    0.51298 0.020 0.556 0.192 0.000 0.232
#> GSM564689     2   0.401    0.62335 0.016 0.796 0.020 0.004 0.164
#> GSM564690     2   0.276    0.65043 0.024 0.896 0.032 0.000 0.048
#> GSM564691     3   0.571    0.31506 0.004 0.384 0.536 0.000 0.076
#> GSM564692     2   0.513    0.63364 0.008 0.708 0.100 0.000 0.184
#> GSM564694     5   0.759    0.47278 0.016 0.100 0.192 0.144 0.548
#> GSM564695     5   0.804    0.20982 0.016 0.260 0.232 0.064 0.428
#> GSM564696     3   0.414    0.74865 0.004 0.064 0.804 0.008 0.120
#> GSM564697     2   0.458    0.64550 0.020 0.776 0.056 0.004 0.144
#> GSM564698     3   0.412    0.73814 0.008 0.044 0.796 0.004 0.148
#> GSM564700     5   0.548    0.60258 0.000 0.100 0.008 0.232 0.660
#> GSM564701     2   0.636    0.55226 0.024 0.596 0.224 0.000 0.156
#> GSM564702     5   0.706    0.00439 0.040 0.420 0.048 0.044 0.448
#> GSM564703     1   0.680    0.53544 0.620 0.008 0.112 0.176 0.084
#> GSM564704     1   0.700    0.18958 0.464 0.028 0.008 0.372 0.128
#> GSM564705     1   0.363    0.67215 0.848 0.076 0.000 0.036 0.040
#> GSM564706     1   0.841    0.16154 0.384 0.032 0.144 0.340 0.100
#> GSM564707     1   0.406    0.66823 0.832 0.032 0.008 0.064 0.064
#> GSM564708     4   0.744    0.40072 0.256 0.012 0.092 0.532 0.108
#> GSM564709     1   0.717    0.24090 0.476 0.056 0.004 0.348 0.116
#> GSM564710     1   0.481    0.67281 0.780 0.036 0.012 0.120 0.052
#> GSM564711     4   0.753    0.39835 0.232 0.012 0.112 0.536 0.108
#> GSM564712     1   0.344    0.67881 0.860 0.036 0.000 0.064 0.040
#> GSM564713     4   0.680    0.47726 0.220 0.000 0.088 0.588 0.104
#> GSM564714     1   0.871    0.05929 0.300 0.012 0.236 0.300 0.152
#> GSM564715     1   0.468    0.67596 0.788 0.024 0.012 0.108 0.068
#> GSM564716     4   0.573    0.38794 0.332 0.012 0.000 0.584 0.072
#> GSM564717     1   0.487    0.66710 0.760 0.064 0.000 0.136 0.040
#> GSM564718     4   0.644    0.53024 0.192 0.004 0.060 0.636 0.108
#> GSM564719     1   0.509    0.62204 0.724 0.188 0.000 0.056 0.032
#> GSM564720     1   0.394    0.67839 0.832 0.052 0.000 0.072 0.044
#> GSM564721     1   0.517    0.64570 0.732 0.048 0.000 0.164 0.056
#> GSM564722     4   0.765    0.24946 0.296 0.028 0.024 0.452 0.200
#> GSM564723     1   0.386    0.67909 0.836 0.060 0.000 0.068 0.036
#> GSM564724     4   0.697    0.48246 0.132 0.008 0.160 0.608 0.092
#> GSM564725     4   0.544    0.55752 0.248 0.008 0.000 0.656 0.088
#> GSM564726     4   0.311    0.66847 0.024 0.000 0.000 0.844 0.132
#> GSM564727     4   0.444    0.64878 0.140 0.000 0.000 0.760 0.100
#> GSM564728     4   0.271    0.65732 0.008 0.000 0.000 0.860 0.132
#> GSM564729     4   0.398    0.66329 0.060 0.004 0.000 0.800 0.136
#> GSM564730     1   0.539    0.47479 0.636 0.008 0.000 0.288 0.068
#> GSM564731     1   0.677    0.12116 0.452 0.012 0.028 0.420 0.088
#> GSM564732     4   0.567    0.53020 0.264 0.008 0.000 0.628 0.100
#> GSM564733     4   0.770    0.39015 0.228 0.020 0.148 0.524 0.080
#> GSM564734     1   0.577    0.42951 0.600 0.024 0.000 0.316 0.060
#> GSM564735     4   0.598    0.61589 0.092 0.004 0.092 0.696 0.116
#> GSM564736     4   0.555    0.61639 0.080 0.008 0.088 0.736 0.088
#> GSM564737     1   0.324    0.67445 0.868 0.020 0.000 0.068 0.044
#> GSM564738     4   0.720    0.49885 0.104 0.004 0.156 0.576 0.160
#> GSM564739     1   0.634    0.60812 0.680 0.020 0.080 0.140 0.080
#> GSM564740     4   0.437    0.59984 0.032 0.004 0.000 0.728 0.236
#> GSM564741     4   0.674    0.54921 0.108 0.008 0.116 0.636 0.132
#> GSM564742     1   0.861    0.24500 0.376 0.020 0.276 0.200 0.128
#> GSM564743     1   0.464    0.66669 0.788 0.056 0.000 0.084 0.072
#> GSM564744     1   0.333    0.67184 0.868 0.044 0.000 0.044 0.044
#> GSM564745     1   0.585    0.42087 0.584 0.016 0.000 0.324 0.076
#> GSM564746     1   0.434    0.66556 0.784 0.012 0.000 0.136 0.068
#> GSM564747     1   0.509    0.63598 0.728 0.016 0.008 0.188 0.060
#> GSM564748     1   0.793    0.35422 0.472 0.012 0.180 0.248 0.088
#> GSM564749     1   0.342    0.66629 0.852 0.096 0.000 0.028 0.024
#> GSM564750     4   0.440    0.66630 0.084 0.004 0.012 0.792 0.108
#> GSM564751     1   0.691    0.54862 0.616 0.016 0.092 0.188 0.088
#> GSM564752     4   0.292    0.67247 0.016 0.000 0.000 0.852 0.132
#> GSM564753     1   0.822    0.22116 0.400 0.020 0.296 0.212 0.072
#> GSM564754     1   0.406    0.64825 0.764 0.000 0.000 0.196 0.040
#> GSM564755     4   0.293    0.64018 0.004 0.000 0.000 0.832 0.164
#> GSM564756     1   0.756    0.44063 0.512 0.100 0.008 0.260 0.120
#> GSM564757     4   0.349    0.66510 0.036 0.008 0.000 0.836 0.120
#> GSM564758     4   0.504    0.65919 0.076 0.008 0.016 0.744 0.156
#> GSM564759     1   0.850    0.14141 0.360 0.016 0.200 0.308 0.116
#> GSM564760     4   0.469    0.65068 0.160 0.008 0.008 0.760 0.064
#> GSM564761     1   0.402    0.67780 0.828 0.060 0.000 0.064 0.048
#> GSM564762     4   0.653    0.27639 0.356 0.016 0.020 0.528 0.080
#> GSM564681     5   0.517    0.11832 0.004 0.416 0.008 0.020 0.552
#> GSM564693     5   0.682    0.13105 0.000 0.412 0.072 0.068 0.448
#> GSM564646     5   0.544    0.60339 0.000 0.080 0.012 0.248 0.660
#> GSM564699     5   0.676    0.58538 0.000 0.072 0.124 0.212 0.592

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM564615     4   0.327    0.53562 0.036 0.024 0.000 0.840 0.000 0.100
#> GSM564616     5   0.711    0.23287 0.024 0.080 0.056 0.024 0.428 0.388
#> GSM564617     5   0.588    0.30503 0.012 0.068 0.020 0.004 0.484 0.412
#> GSM564618     6   0.572    0.35396 0.000 0.056 0.036 0.040 0.220 0.648
#> GSM564619     1   0.557    0.47899 0.640 0.140 0.000 0.180 0.000 0.040
#> GSM564620     4   0.738    0.02580 0.348 0.132 0.000 0.404 0.036 0.080
#> GSM564621     4   0.668    0.37750 0.248 0.100 0.008 0.556 0.016 0.072
#> GSM564622     6   0.791   -0.18171 0.012 0.128 0.132 0.028 0.332 0.368
#> GSM564623     6   0.484    0.54406 0.000 0.036 0.004 0.196 0.056 0.708
#> GSM564624     6   0.629   -0.15545 0.004 0.068 0.048 0.012 0.412 0.456
#> GSM564625     4   0.567    0.43964 0.220 0.116 0.000 0.620 0.000 0.044
#> GSM564626     1   0.581    0.45023 0.600 0.124 0.000 0.244 0.012 0.020
#> GSM564627     4   0.685    0.35376 0.232 0.144 0.004 0.520 0.004 0.096
#> GSM564628     6   0.633    0.13122 0.008 0.076 0.016 0.044 0.316 0.540
#> GSM564629     1   0.692    0.24305 0.424 0.216 0.004 0.300 0.000 0.056
#> GSM564630     5   0.614    0.44180 0.016 0.076 0.040 0.004 0.560 0.304
#> GSM564609     3   0.879    0.24790 0.060 0.152 0.396 0.060 0.212 0.120
#> GSM564610     1   0.597    0.50311 0.664 0.152 0.000 0.072 0.056 0.056
#> GSM564611     1   0.613    0.39831 0.600 0.132 0.008 0.028 0.220 0.012
#> GSM564612     3   0.556    0.50322 0.004 0.052 0.588 0.000 0.308 0.048
#> GSM564613     6   0.811    0.03922 0.012 0.148 0.272 0.016 0.216 0.336
#> GSM564614     4   0.435    0.54361 0.048 0.096 0.000 0.772 0.000 0.084
#> GSM564631     3   0.367    0.73808 0.000 0.076 0.820 0.000 0.072 0.032
#> GSM564632     6   0.836    0.22824 0.020 0.136 0.268 0.044 0.156 0.376
#> GSM564633     3   0.527    0.71638 0.008 0.120 0.720 0.008 0.060 0.084
#> GSM564634     5   0.835    0.25540 0.012 0.152 0.208 0.040 0.368 0.220
#> GSM564635     3   0.387    0.73782 0.000 0.076 0.808 0.000 0.076 0.040
#> GSM564636     3   0.711    0.35772 0.008 0.088 0.476 0.008 0.136 0.284
#> GSM564637     6   0.764   -0.00695 0.004 0.088 0.180 0.024 0.336 0.368
#> GSM564638     3   0.494    0.70043 0.004 0.116 0.744 0.024 0.024 0.088
#> GSM564639     3   0.187    0.72708 0.000 0.032 0.928 0.000 0.024 0.016
#> GSM564640     5   0.435    0.60508 0.016 0.032 0.040 0.000 0.772 0.140
#> GSM564641     3   0.732    0.52603 0.032 0.192 0.520 0.004 0.132 0.120
#> GSM564642     5   0.770    0.46046 0.076 0.124 0.208 0.000 0.480 0.112
#> GSM564643     6   0.692    0.50666 0.000 0.036 0.124 0.184 0.096 0.560
#> GSM564644     5   0.552    0.61052 0.044 0.064 0.088 0.000 0.712 0.092
#> GSM564645     3   0.203    0.73033 0.000 0.032 0.920 0.000 0.016 0.032
#> GSM564647     3   0.689    0.30127 0.000 0.100 0.464 0.000 0.276 0.160
#> GSM564648     5   0.719    0.40347 0.012 0.104 0.140 0.004 0.480 0.260
#> GSM564649     3   0.424    0.72917 0.000 0.076 0.780 0.000 0.096 0.048
#> GSM564650     5   0.660    0.14708 0.000 0.056 0.056 0.044 0.468 0.376
#> GSM564651     5   0.661    0.36904 0.008 0.048 0.308 0.000 0.484 0.152
#> GSM564652     5   0.849    0.40663 0.136 0.132 0.116 0.012 0.416 0.188
#> GSM564653     5   0.493    0.60621 0.012 0.064 0.056 0.000 0.736 0.132
#> GSM564654     3   0.253    0.73662 0.000 0.028 0.900 0.008 0.036 0.028
#> GSM564655     3   0.786    0.27486 0.012 0.140 0.436 0.028 0.136 0.248
#> GSM564656     3   0.312    0.73166 0.000 0.096 0.848 0.000 0.040 0.016
#> GSM564657     3   0.444    0.72810 0.016 0.068 0.780 0.004 0.108 0.024
#> GSM564658     5   0.626    0.57209 0.044 0.112 0.060 0.000 0.636 0.148
#> GSM564659     3   0.633    0.57225 0.000 0.068 0.596 0.012 0.156 0.168
#> GSM564660     6   0.728    0.37284 0.008 0.072 0.136 0.060 0.176 0.548
#> GSM564661     5   0.577    0.59854 0.056 0.060 0.068 0.008 0.704 0.104
#> GSM564662     3   0.186    0.73058 0.000 0.028 0.928 0.000 0.032 0.012
#> GSM564663     5   0.601    0.59145 0.028 0.072 0.104 0.000 0.656 0.140
#> GSM564664     5   0.551    0.59087 0.064 0.072 0.088 0.000 0.716 0.060
#> GSM564665     3   0.617    0.58187 0.000 0.100 0.616 0.008 0.172 0.104
#> GSM564666     6   0.623    0.53848 0.004 0.084 0.072 0.160 0.036 0.644
#> GSM564667     3   0.449    0.73623 0.004 0.080 0.780 0.008 0.080 0.048
#> GSM564668     3   0.555    0.67914 0.004 0.044 0.696 0.020 0.120 0.116
#> GSM564669     3   0.338    0.74028 0.000 0.048 0.848 0.004 0.044 0.056
#> GSM564670     5   0.835    0.19871 0.036 0.160 0.248 0.008 0.328 0.220
#> GSM564671     6   0.615    0.35885 0.008 0.068 0.016 0.348 0.032 0.528
#> GSM564672     3   0.235    0.73440 0.000 0.036 0.904 0.000 0.028 0.032
#> GSM564673     5   0.750    0.41486 0.020 0.104 0.156 0.008 0.464 0.248
#> GSM564674     5   0.694    0.43790 0.028 0.080 0.116 0.000 0.516 0.260
#> GSM564675     6   0.652    0.41990 0.008 0.088 0.060 0.056 0.160 0.628
#> GSM564676     5   0.387    0.60482 0.020 0.036 0.048 0.000 0.824 0.072
#> GSM564677     5   0.720    0.44268 0.044 0.104 0.048 0.024 0.532 0.248
#> GSM564678     5   0.364    0.59996 0.020 0.032 0.044 0.004 0.844 0.056
#> GSM564679     5   0.357    0.60642 0.016 0.056 0.024 0.000 0.840 0.064
#> GSM564680     3   0.320    0.74037 0.000 0.044 0.852 0.000 0.072 0.032
#> GSM564682     3   0.780    0.22661 0.048 0.164 0.400 0.000 0.288 0.100
#> GSM564683     3   0.174    0.72162 0.000 0.052 0.928 0.000 0.016 0.004
#> GSM564684     6   0.498    0.51206 0.000 0.036 0.004 0.284 0.032 0.644
#> GSM564685     3   0.306    0.72936 0.004 0.072 0.864 0.000 0.032 0.028
#> GSM564686     6   0.472    0.50733 0.000 0.044 0.000 0.276 0.020 0.660
#> GSM564687     5   0.689    0.54757 0.032 0.092 0.084 0.020 0.592 0.180
#> GSM564688     5   0.686    0.47476 0.016 0.064 0.220 0.004 0.532 0.164
#> GSM564689     5   0.464    0.56891 0.008 0.048 0.028 0.004 0.740 0.172
#> GSM564690     5   0.379    0.59994 0.020 0.052 0.024 0.004 0.832 0.068
#> GSM564691     3   0.614    0.13392 0.004 0.084 0.448 0.000 0.416 0.048
#> GSM564692     5   0.650    0.51416 0.008 0.084 0.108 0.004 0.572 0.224
#> GSM564694     6   0.773    0.47014 0.004 0.124 0.104 0.156 0.104 0.508
#> GSM564695     6   0.865    0.22990 0.008 0.144 0.156 0.112 0.212 0.368
#> GSM564696     3   0.588    0.63111 0.000 0.160 0.640 0.016 0.040 0.144
#> GSM564697     5   0.509    0.58410 0.012 0.064 0.036 0.000 0.700 0.188
#> GSM564698     3   0.641    0.63488 0.016 0.104 0.640 0.024 0.076 0.140
#> GSM564700     6   0.494    0.54191 0.000 0.032 0.004 0.240 0.048 0.676
#> GSM564701     5   0.709    0.50271 0.020 0.112 0.180 0.004 0.536 0.148
#> GSM564702     6   0.806    0.06464 0.076 0.088 0.036 0.068 0.332 0.400
#> GSM564703     1   0.740   -0.34965 0.416 0.316 0.128 0.124 0.012 0.004
#> GSM564704     1   0.773    0.06439 0.384 0.248 0.004 0.264 0.044 0.056
#> GSM564705     1   0.435    0.51010 0.784 0.116 0.004 0.024 0.056 0.016
#> GSM564706     2   0.801    0.46657 0.304 0.376 0.140 0.140 0.024 0.016
#> GSM564707     1   0.555    0.45240 0.684 0.188 0.016 0.060 0.036 0.016
#> GSM564708     4   0.749    0.05929 0.160 0.316 0.108 0.396 0.000 0.020
#> GSM564709     1   0.801    0.11597 0.404 0.160 0.004 0.276 0.076 0.080
#> GSM564710     1   0.517    0.51531 0.724 0.136 0.004 0.080 0.036 0.020
#> GSM564711     4   0.759    0.03724 0.196 0.300 0.112 0.376 0.000 0.016
#> GSM564712     1   0.452    0.51537 0.748 0.172 0.004 0.040 0.028 0.008
#> GSM564713     4   0.764   -0.12814 0.156 0.344 0.080 0.380 0.004 0.036
#> GSM564714     2   0.849    0.56848 0.204 0.384 0.172 0.168 0.016 0.056
#> GSM564715     1   0.568    0.49587 0.680 0.164 0.016 0.092 0.036 0.012
#> GSM564716     4   0.639    0.32173 0.252 0.200 0.000 0.512 0.004 0.032
#> GSM564717     1   0.676    0.38849 0.552 0.204 0.004 0.164 0.056 0.020
#> GSM564718     4   0.671    0.29082 0.128 0.292 0.048 0.508 0.000 0.024
#> GSM564719     1   0.609    0.34329 0.592 0.132 0.000 0.032 0.228 0.016
#> GSM564720     1   0.448    0.51797 0.760 0.144 0.004 0.032 0.056 0.004
#> GSM564721     1   0.637    0.43702 0.588 0.148 0.000 0.196 0.044 0.024
#> GSM564722     4   0.818   -0.02477 0.236 0.260 0.020 0.368 0.048 0.068
#> GSM564723     1   0.519    0.52604 0.724 0.128 0.000 0.068 0.056 0.024
#> GSM564724     4   0.732    0.09263 0.144 0.280 0.116 0.444 0.000 0.016
#> GSM564725     4   0.679    0.36895 0.260 0.152 0.008 0.516 0.008 0.056
#> GSM564726     4   0.373    0.52455 0.012 0.148 0.004 0.796 0.000 0.040
#> GSM564727     4   0.433    0.52786 0.136 0.076 0.000 0.760 0.000 0.028
#> GSM564728     4   0.266    0.53255 0.012 0.028 0.000 0.876 0.000 0.084
#> GSM564729     4   0.403    0.53925 0.048 0.064 0.000 0.796 0.000 0.092
#> GSM564730     1   0.558    0.42477 0.616 0.108 0.004 0.252 0.008 0.012
#> GSM564731     1   0.712   -0.05589 0.368 0.292 0.020 0.292 0.004 0.024
#> GSM564732     4   0.515    0.50325 0.176 0.112 0.000 0.680 0.000 0.032
#> GSM564733     4   0.772   -0.09995 0.196 0.228 0.136 0.420 0.008 0.012
#> GSM564734     1   0.624    0.27382 0.484 0.148 0.000 0.340 0.020 0.008
#> GSM564735     4   0.712    0.27404 0.100 0.252 0.076 0.516 0.000 0.056
#> GSM564736     4   0.676    0.24446 0.104 0.268 0.076 0.528 0.000 0.024
#> GSM564737     1   0.444    0.51728 0.764 0.144 0.004 0.060 0.016 0.012
#> GSM564738     4   0.768    0.01593 0.036 0.292 0.164 0.416 0.004 0.088
#> GSM564739     1   0.715    0.17811 0.540 0.228 0.100 0.088 0.020 0.024
#> GSM564740     4   0.611    0.41003 0.048 0.124 0.008 0.588 0.000 0.232
#> GSM564741     4   0.736    0.07605 0.144 0.232 0.116 0.484 0.004 0.020
#> GSM564742     2   0.787    0.56037 0.296 0.384 0.180 0.108 0.016 0.016
#> GSM564743     1   0.561    0.50262 0.688 0.120 0.000 0.116 0.024 0.052
#> GSM564744     1   0.384    0.52787 0.812 0.112 0.004 0.040 0.028 0.004
#> GSM564745     4   0.631    0.01756 0.408 0.148 0.000 0.416 0.008 0.020
#> GSM564746     1   0.511    0.49899 0.692 0.148 0.000 0.124 0.000 0.036
#> GSM564747     1   0.592    0.32967 0.604 0.212 0.000 0.148 0.016 0.020
#> GSM564748     1   0.768   -0.55572 0.344 0.328 0.168 0.148 0.004 0.008
#> GSM564749     1   0.421    0.51368 0.780 0.096 0.000 0.016 0.100 0.008
#> GSM564750     4   0.612    0.45512 0.080 0.188 0.028 0.632 0.000 0.072
#> GSM564751     1   0.688   -0.18893 0.444 0.348 0.096 0.104 0.004 0.004
#> GSM564752     4   0.385    0.52330 0.016 0.152 0.000 0.784 0.000 0.048
#> GSM564753     2   0.778    0.53457 0.304 0.320 0.232 0.132 0.004 0.008
#> GSM564754     1   0.522    0.46438 0.680 0.180 0.004 0.116 0.008 0.012
#> GSM564755     4   0.342    0.52243 0.012 0.044 0.000 0.820 0.000 0.124
#> GSM564756     1   0.823    0.12615 0.408 0.192 0.020 0.224 0.116 0.040
#> GSM564757     4   0.295    0.54237 0.040 0.028 0.000 0.868 0.000 0.064
#> GSM564758     4   0.632    0.49886 0.088 0.120 0.024 0.648 0.012 0.108
#> GSM564759     2   0.831    0.48617 0.232 0.368 0.112 0.232 0.036 0.020
#> GSM564760     4   0.519    0.47586 0.144 0.152 0.000 0.676 0.000 0.028
#> GSM564761     1   0.447    0.52793 0.780 0.100 0.000 0.044 0.056 0.020
#> GSM564762     4   0.755   -0.03631 0.300 0.268 0.024 0.356 0.012 0.040
#> GSM564681     6   0.556    0.33271 0.012 0.044 0.008 0.040 0.260 0.636
#> GSM564693     6   0.757    0.20321 0.000 0.052 0.124 0.088 0.324 0.412
#> GSM564646     6   0.516    0.53911 0.004 0.024 0.004 0.260 0.056 0.652
#> GSM564699     6   0.625    0.53960 0.000 0.060 0.056 0.196 0.064 0.624

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n genotype/variation(p) disease.state(p) k
#> CV:skmeans 154                 0.925          0.47591 2
#> CV:skmeans 143                 0.082          0.30933 3
#> CV:skmeans 112                 0.204          0.61201 4
#> CV:skmeans  97                 0.546          0.00375 5
#> CV:skmeans  72                 0.531          0.08727 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 154 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.071           0.558       0.780         0.4885 0.500   0.500
#> 3 3 0.231           0.565       0.753         0.3212 0.718   0.493
#> 4 4 0.300           0.423       0.671         0.1186 0.906   0.730
#> 5 5 0.375           0.375       0.608         0.0695 0.925   0.742
#> 6 6 0.453           0.411       0.626         0.0404 0.888   0.582

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM564615     1  0.9815     0.2564 0.580 0.420
#> GSM564616     1  0.9896     0.2836 0.560 0.440
#> GSM564617     2  0.1414     0.7101 0.020 0.980
#> GSM564618     2  0.9522     0.2891 0.372 0.628
#> GSM564619     2  0.9286     0.4525 0.344 0.656
#> GSM564620     1  0.8443     0.6023 0.728 0.272
#> GSM564621     1  0.6801     0.6498 0.820 0.180
#> GSM564622     1  0.8207     0.5980 0.744 0.256
#> GSM564623     1  0.7453     0.6927 0.788 0.212
#> GSM564624     2  0.2423     0.7159 0.040 0.960
#> GSM564625     1  0.9358     0.3922 0.648 0.352
#> GSM564626     2  0.7056     0.6311 0.192 0.808
#> GSM564627     2  0.9044     0.4688 0.320 0.680
#> GSM564628     2  0.8207     0.5989 0.256 0.744
#> GSM564629     2  0.9286     0.4592 0.344 0.656
#> GSM564630     2  0.1633     0.7126 0.024 0.976
#> GSM564609     1  0.9850     0.3063 0.572 0.428
#> GSM564610     2  0.7139     0.6736 0.196 0.804
#> GSM564611     2  0.3733     0.6857 0.072 0.928
#> GSM564612     1  0.9977     0.2512 0.528 0.472
#> GSM564613     2  0.9323     0.4436 0.348 0.652
#> GSM564614     1  0.4690     0.6919 0.900 0.100
#> GSM564631     1  0.6973     0.6498 0.812 0.188
#> GSM564632     1  0.9129     0.6002 0.672 0.328
#> GSM564633     1  0.7299     0.6618 0.796 0.204
#> GSM564634     2  0.8955     0.5056 0.312 0.688
#> GSM564635     1  0.7883     0.5968 0.764 0.236
#> GSM564636     1  0.8207     0.6712 0.744 0.256
#> GSM564637     2  0.9909     0.2440 0.444 0.556
#> GSM564638     1  0.5946     0.6911 0.856 0.144
#> GSM564639     1  0.4022     0.7000 0.920 0.080
#> GSM564640     2  0.2948     0.7167 0.052 0.948
#> GSM564641     1  0.9795     0.2423 0.584 0.416
#> GSM564642     2  0.8207     0.5890 0.256 0.744
#> GSM564643     1  0.8144     0.5958 0.748 0.252
#> GSM564644     2  0.1184     0.7095 0.016 0.984
#> GSM564645     1  0.7602     0.6136 0.780 0.220
#> GSM564647     2  0.9954     0.1553 0.460 0.540
#> GSM564648     2  0.9522     0.3886 0.372 0.628
#> GSM564649     1  0.9954     0.1763 0.540 0.460
#> GSM564650     2  0.5737     0.7094 0.136 0.864
#> GSM564651     2  0.9044     0.4305 0.320 0.680
#> GSM564652     2  0.8909     0.4893 0.308 0.692
#> GSM564653     2  0.2603     0.7128 0.044 0.956
#> GSM564654     1  0.4690     0.7078 0.900 0.100
#> GSM564655     1  0.4815     0.6995 0.896 0.104
#> GSM564656     1  0.3733     0.7031 0.928 0.072
#> GSM564657     1  0.8144     0.6238 0.748 0.252
#> GSM564658     2  0.2043     0.7140 0.032 0.968
#> GSM564659     1  0.9129     0.5316 0.672 0.328
#> GSM564660     2  0.9850     0.2664 0.428 0.572
#> GSM564661     2  0.3733     0.7129 0.072 0.928
#> GSM564662     1  0.7815     0.6007 0.768 0.232
#> GSM564663     2  0.7219     0.6502 0.200 0.800
#> GSM564664     2  0.1843     0.7116 0.028 0.972
#> GSM564665     1  0.8909     0.5380 0.692 0.308
#> GSM564666     1  0.8499     0.6369 0.724 0.276
#> GSM564667     1  0.7883     0.6177 0.764 0.236
#> GSM564668     1  0.8144     0.6352 0.748 0.252
#> GSM564669     1  0.4161     0.7025 0.916 0.084
#> GSM564670     1  0.9963     0.2722 0.536 0.464
#> GSM564671     1  0.7815     0.6472 0.768 0.232
#> GSM564672     1  0.4161     0.7004 0.916 0.084
#> GSM564673     2  0.7376     0.6378 0.208 0.792
#> GSM564674     2  0.9393     0.4257 0.356 0.644
#> GSM564675     2  0.9833     0.1100 0.424 0.576
#> GSM564676     2  0.1184     0.7100 0.016 0.984
#> GSM564677     2  0.8386     0.5464 0.268 0.732
#> GSM564678     2  0.1184     0.7092 0.016 0.984
#> GSM564679     2  0.0938     0.7075 0.012 0.988
#> GSM564680     1  0.7219     0.6426 0.800 0.200
#> GSM564682     2  0.9775     0.2839 0.412 0.588
#> GSM564683     1  0.4431     0.6999 0.908 0.092
#> GSM564684     2  0.8763     0.4503 0.296 0.704
#> GSM564685     1  0.7950     0.5970 0.760 0.240
#> GSM564686     1  0.7299     0.6717 0.796 0.204
#> GSM564687     2  0.1414     0.7098 0.020 0.980
#> GSM564688     2  0.5629     0.6884 0.132 0.868
#> GSM564689     2  0.1633     0.7106 0.024 0.976
#> GSM564690     2  0.1843     0.7111 0.028 0.972
#> GSM564691     2  0.5294     0.7049 0.120 0.880
#> GSM564692     2  0.9000     0.4976 0.316 0.684
#> GSM564694     1  0.8813     0.6362 0.700 0.300
#> GSM564695     2  0.9988    -0.1126 0.480 0.520
#> GSM564696     1  0.3584     0.7025 0.932 0.068
#> GSM564697     2  0.2778     0.7142 0.048 0.952
#> GSM564698     1  0.7376     0.6871 0.792 0.208
#> GSM564700     1  0.7299     0.6469 0.796 0.204
#> GSM564701     2  0.9608     0.3724 0.384 0.616
#> GSM564702     2  0.9209     0.3211 0.336 0.664
#> GSM564703     1  0.7139     0.6953 0.804 0.196
#> GSM564704     1  0.9866     0.1245 0.568 0.432
#> GSM564705     2  0.4939     0.7102 0.108 0.892
#> GSM564706     1  0.6801     0.7087 0.820 0.180
#> GSM564707     1  0.8555     0.5126 0.720 0.280
#> GSM564708     1  0.2603     0.7010 0.956 0.044
#> GSM564709     2  0.9866     0.2225 0.432 0.568
#> GSM564710     2  0.7453     0.6193 0.212 0.788
#> GSM564711     1  0.3431     0.7070 0.936 0.064
#> GSM564712     2  0.9686     0.3772 0.396 0.604
#> GSM564713     1  0.0938     0.6938 0.988 0.012
#> GSM564714     1  0.0672     0.6931 0.992 0.008
#> GSM564715     2  0.9795     0.3499 0.416 0.584
#> GSM564716     1  0.9881     0.1608 0.564 0.436
#> GSM564717     2  0.2948     0.7114 0.052 0.948
#> GSM564718     1  0.6531     0.6668 0.832 0.168
#> GSM564719     2  0.3584     0.6844 0.068 0.932
#> GSM564720     2  0.3431     0.7081 0.064 0.936
#> GSM564721     2  0.5737     0.7001 0.136 0.864
#> GSM564722     2  0.9552     0.4131 0.376 0.624
#> GSM564723     2  0.4022     0.7131 0.080 0.920
#> GSM564724     1  0.0376     0.6919 0.996 0.004
#> GSM564725     1  0.5737     0.7065 0.864 0.136
#> GSM564726     1  0.7602     0.6041 0.780 0.220
#> GSM564727     1  0.9710     0.3062 0.600 0.400
#> GSM564728     1  0.8763     0.4834 0.704 0.296
#> GSM564729     1  0.8081     0.6042 0.752 0.248
#> GSM564730     2  0.4022     0.7116 0.080 0.920
#> GSM564731     1  0.9460     0.3650 0.636 0.364
#> GSM564732     1  0.9977    -0.0241 0.528 0.472
#> GSM564733     1  0.6973     0.6664 0.812 0.188
#> GSM564734     2  0.8144     0.5466 0.252 0.748
#> GSM564735     1  0.1184     0.6966 0.984 0.016
#> GSM564736     1  0.3431     0.7035 0.936 0.064
#> GSM564737     2  0.9286     0.5385 0.344 0.656
#> GSM564738     1  0.2236     0.7007 0.964 0.036
#> GSM564739     1  0.4562     0.7147 0.904 0.096
#> GSM564740     1  0.7453     0.6385 0.788 0.212
#> GSM564741     1  0.0376     0.6919 0.996 0.004
#> GSM564742     1  0.5946     0.6847 0.856 0.144
#> GSM564743     2  0.7139     0.6732 0.196 0.804
#> GSM564744     2  0.4562     0.7127 0.096 0.904
#> GSM564745     2  0.8955     0.4633 0.312 0.688
#> GSM564746     2  0.7745     0.6263 0.228 0.772
#> GSM564747     1  0.5519     0.6794 0.872 0.128
#> GSM564748     1  0.4298     0.6978 0.912 0.088
#> GSM564749     2  0.3584     0.6844 0.068 0.932
#> GSM564750     1  0.4690     0.7126 0.900 0.100
#> GSM564751     1  0.5737     0.6884 0.864 0.136
#> GSM564752     1  0.8861     0.4757 0.696 0.304
#> GSM564753     1  0.0938     0.6950 0.988 0.012
#> GSM564754     1  0.9608     0.2966 0.616 0.384
#> GSM564755     1  0.9129     0.4661 0.672 0.328
#> GSM564756     2  0.8861     0.5793 0.304 0.696
#> GSM564757     1  0.8207     0.5825 0.744 0.256
#> GSM564758     1  0.9248     0.4207 0.660 0.340
#> GSM564759     1  0.8207     0.6031 0.744 0.256
#> GSM564760     1  0.8443     0.5738 0.728 0.272
#> GSM564761     2  0.4939     0.7064 0.108 0.892
#> GSM564762     1  0.9580     0.3312 0.620 0.380
#> GSM564681     2  0.6148     0.6552 0.152 0.848
#> GSM564693     2  0.9608     0.1871 0.384 0.616
#> GSM564646     2  0.9866     0.0664 0.432 0.568
#> GSM564699     1  0.9833     0.2493 0.576 0.424

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM564615     1  0.2902     0.6814 0.920 0.064 0.016
#> GSM564616     3  0.5763     0.5394 0.008 0.276 0.716
#> GSM564617     2  0.2446     0.7672 0.052 0.936 0.012
#> GSM564618     2  0.8472     0.3084 0.100 0.540 0.360
#> GSM564619     1  0.9329     0.2021 0.436 0.400 0.164
#> GSM564620     1  0.9314     0.4982 0.492 0.180 0.328
#> GSM564621     1  0.5053     0.6913 0.812 0.024 0.164
#> GSM564622     3  0.1015     0.7014 0.008 0.012 0.980
#> GSM564623     3  0.6625     0.6220 0.196 0.068 0.736
#> GSM564624     2  0.1999     0.7694 0.036 0.952 0.012
#> GSM564625     1  0.7272     0.6891 0.700 0.096 0.204
#> GSM564626     2  0.6200     0.4870 0.312 0.676 0.012
#> GSM564627     1  0.3573     0.6836 0.876 0.120 0.004
#> GSM564628     2  0.8199     0.1114 0.072 0.488 0.440
#> GSM564629     1  0.7056     0.5609 0.656 0.300 0.044
#> GSM564630     2  0.2116     0.7700 0.040 0.948 0.012
#> GSM564609     3  0.6724     0.1286 0.012 0.420 0.568
#> GSM564610     2  0.5965     0.7304 0.100 0.792 0.108
#> GSM564611     2  0.0747     0.7645 0.016 0.984 0.000
#> GSM564612     3  0.6067     0.5946 0.028 0.236 0.736
#> GSM564613     2  0.8691     0.3221 0.116 0.528 0.356
#> GSM564614     1  0.4605     0.6751 0.796 0.000 0.204
#> GSM564631     3  0.0000     0.6940 0.000 0.000 1.000
#> GSM564632     3  0.8072     0.5591 0.208 0.144 0.648
#> GSM564633     3  0.2527     0.7053 0.020 0.044 0.936
#> GSM564634     2  0.7190     0.4560 0.036 0.608 0.356
#> GSM564635     3  0.0475     0.6965 0.004 0.004 0.992
#> GSM564636     3  0.4232     0.6918 0.044 0.084 0.872
#> GSM564637     2  0.9424     0.1820 0.188 0.472 0.340
#> GSM564638     3  0.2414     0.7023 0.040 0.020 0.940
#> GSM564639     3  0.1163     0.6974 0.028 0.000 0.972
#> GSM564640     2  0.1315     0.7715 0.008 0.972 0.020
#> GSM564641     3  0.4700     0.6251 0.008 0.180 0.812
#> GSM564642     2  0.6282     0.5380 0.012 0.664 0.324
#> GSM564643     3  0.2590     0.6920 0.072 0.004 0.924
#> GSM564644     2  0.0237     0.7650 0.004 0.996 0.000
#> GSM564645     3  0.0424     0.6950 0.008 0.000 0.992
#> GSM564647     3  0.5845     0.4534 0.004 0.308 0.688
#> GSM564648     2  0.5988     0.4675 0.000 0.632 0.368
#> GSM564649     3  0.6416     0.4818 0.020 0.304 0.676
#> GSM564650     2  0.5889     0.7287 0.096 0.796 0.108
#> GSM564651     2  0.5873     0.5197 0.004 0.684 0.312
#> GSM564652     3  0.8250     0.2523 0.080 0.392 0.528
#> GSM564653     2  0.0848     0.7675 0.008 0.984 0.008
#> GSM564654     3  0.2703     0.6977 0.056 0.016 0.928
#> GSM564655     3  0.0661     0.6950 0.008 0.004 0.988
#> GSM564656     3  0.2682     0.6600 0.076 0.004 0.920
#> GSM564657     3  0.2846     0.7046 0.020 0.056 0.924
#> GSM564658     2  0.2200     0.7679 0.056 0.940 0.004
#> GSM564659     3  0.5179     0.6714 0.088 0.080 0.832
#> GSM564660     3  0.9377     0.1256 0.172 0.380 0.448
#> GSM564661     2  0.2434     0.7731 0.024 0.940 0.036
#> GSM564662     3  0.0237     0.6948 0.004 0.000 0.996
#> GSM564663     2  0.5585     0.6806 0.024 0.772 0.204
#> GSM564664     2  0.0237     0.7664 0.000 0.996 0.004
#> GSM564665     3  0.3425     0.6836 0.004 0.112 0.884
#> GSM564666     3  0.8468     0.4330 0.308 0.116 0.576
#> GSM564667     3  0.1905     0.7022 0.016 0.028 0.956
#> GSM564668     3  0.3875     0.6950 0.044 0.068 0.888
#> GSM564669     3  0.1015     0.6986 0.012 0.008 0.980
#> GSM564670     3  0.7382     0.5989 0.116 0.184 0.700
#> GSM564671     3  0.8571     0.3176 0.272 0.140 0.588
#> GSM564672     3  0.0237     0.6948 0.004 0.000 0.996
#> GSM564673     2  0.5122     0.6893 0.012 0.788 0.200
#> GSM564674     2  0.6696     0.4894 0.020 0.632 0.348
#> GSM564675     2  0.9353    -0.0493 0.168 0.444 0.388
#> GSM564676     2  0.0237     0.7650 0.004 0.996 0.000
#> GSM564677     2  0.5397     0.5916 0.000 0.720 0.280
#> GSM564678     2  0.0424     0.7657 0.008 0.992 0.000
#> GSM564679     2  0.0237     0.7650 0.004 0.996 0.000
#> GSM564680     3  0.0829     0.6973 0.012 0.004 0.984
#> GSM564682     3  0.7032     0.3184 0.028 0.368 0.604
#> GSM564683     3  0.0000     0.6940 0.000 0.000 1.000
#> GSM564684     3  0.9947     0.1404 0.292 0.328 0.380
#> GSM564685     3  0.0592     0.6989 0.000 0.012 0.988
#> GSM564686     1  0.7044     0.2958 0.620 0.032 0.348
#> GSM564687     2  0.0237     0.7658 0.004 0.996 0.000
#> GSM564688     2  0.5847     0.6886 0.048 0.780 0.172
#> GSM564689     2  0.1163     0.7658 0.028 0.972 0.000
#> GSM564690     2  0.0237     0.7650 0.004 0.996 0.000
#> GSM564691     2  0.5167     0.6878 0.016 0.792 0.192
#> GSM564692     2  0.6908     0.5403 0.036 0.656 0.308
#> GSM564694     3  0.6783     0.6383 0.140 0.116 0.744
#> GSM564695     3  0.6715     0.6085 0.056 0.228 0.716
#> GSM564696     3  0.2261     0.6716 0.068 0.000 0.932
#> GSM564697     2  0.1711     0.7721 0.008 0.960 0.032
#> GSM564698     3  0.4995     0.6733 0.092 0.068 0.840
#> GSM564700     1  0.6107     0.6715 0.764 0.052 0.184
#> GSM564701     3  0.6500     0.0328 0.004 0.464 0.532
#> GSM564702     2  0.8130     0.1792 0.072 0.528 0.400
#> GSM564703     3  0.8318     0.3505 0.284 0.116 0.600
#> GSM564704     1  0.7927     0.6868 0.664 0.160 0.176
#> GSM564705     2  0.2383     0.7651 0.044 0.940 0.016
#> GSM564706     3  0.7713     0.3287 0.284 0.080 0.636
#> GSM564707     1  0.8139     0.6431 0.616 0.108 0.276
#> GSM564708     3  0.5325     0.4764 0.248 0.004 0.748
#> GSM564709     2  0.9850    -0.0871 0.324 0.412 0.264
#> GSM564710     2  0.7531     0.5917 0.092 0.672 0.236
#> GSM564711     3  0.5706     0.2769 0.320 0.000 0.680
#> GSM564712     2  0.8562     0.3814 0.108 0.540 0.352
#> GSM564713     1  0.6275     0.5917 0.644 0.008 0.348
#> GSM564714     1  0.6235     0.5140 0.564 0.000 0.436
#> GSM564715     1  0.8076     0.6595 0.632 0.252 0.116
#> GSM564716     1  0.8972     0.6255 0.564 0.236 0.200
#> GSM564717     2  0.0983     0.7658 0.016 0.980 0.004
#> GSM564718     1  0.5689     0.7003 0.780 0.036 0.184
#> GSM564719     2  0.0424     0.7650 0.008 0.992 0.000
#> GSM564720     2  0.3933     0.7644 0.092 0.880 0.028
#> GSM564721     2  0.4609     0.7326 0.128 0.844 0.028
#> GSM564722     1  0.7741     0.6065 0.608 0.324 0.068
#> GSM564723     2  0.3623     0.7613 0.072 0.896 0.032
#> GSM564724     1  0.6299     0.4569 0.524 0.000 0.476
#> GSM564725     3  0.7542     0.1388 0.432 0.040 0.528
#> GSM564726     1  0.3875     0.6856 0.888 0.068 0.044
#> GSM564727     1  0.4174     0.6879 0.872 0.092 0.036
#> GSM564728     1  0.5174     0.6772 0.832 0.092 0.076
#> GSM564729     1  0.4937     0.6252 0.824 0.028 0.148
#> GSM564730     2  0.5955     0.7196 0.180 0.772 0.048
#> GSM564731     1  0.7651     0.6930 0.680 0.196 0.124
#> GSM564732     1  0.6856     0.7131 0.740 0.128 0.132
#> GSM564733     3  0.8779    -0.2808 0.416 0.112 0.472
#> GSM564734     1  0.6608     0.4070 0.560 0.432 0.008
#> GSM564735     1  0.6529     0.5763 0.620 0.012 0.368
#> GSM564736     1  0.7471     0.3654 0.516 0.036 0.448
#> GSM564737     2  0.7530     0.6098 0.084 0.664 0.252
#> GSM564738     1  0.7080     0.5389 0.564 0.024 0.412
#> GSM564739     3  0.6142     0.4913 0.212 0.040 0.748
#> GSM564740     1  0.2050     0.6696 0.952 0.020 0.028
#> GSM564741     1  0.6302     0.4562 0.520 0.000 0.480
#> GSM564742     1  0.8655     0.5312 0.512 0.108 0.380
#> GSM564743     2  0.6624     0.6668 0.248 0.708 0.044
#> GSM564744     2  0.4269     0.7600 0.052 0.872 0.076
#> GSM564745     1  0.6917     0.4708 0.608 0.368 0.024
#> GSM564746     2  0.7740    -0.0128 0.444 0.508 0.048
#> GSM564747     1  0.6935     0.5714 0.604 0.024 0.372
#> GSM564748     1  0.7948     0.4925 0.520 0.060 0.420
#> GSM564749     2  0.1411     0.7633 0.036 0.964 0.000
#> GSM564750     3  0.7129     0.1210 0.392 0.028 0.580
#> GSM564751     3  0.7188    -0.3732 0.488 0.024 0.488
#> GSM564752     1  0.4563     0.6813 0.852 0.112 0.036
#> GSM564753     1  0.6309     0.3854 0.500 0.000 0.500
#> GSM564754     1  0.7772     0.6842 0.672 0.132 0.196
#> GSM564755     1  0.2187     0.6663 0.948 0.024 0.028
#> GSM564756     2  0.5384     0.6934 0.024 0.788 0.188
#> GSM564757     1  0.3683     0.6907 0.896 0.060 0.044
#> GSM564758     1  0.5470     0.6892 0.796 0.168 0.036
#> GSM564759     1  0.8479     0.6132 0.580 0.120 0.300
#> GSM564760     1  0.7661     0.6892 0.684 0.144 0.172
#> GSM564761     2  0.3780     0.7674 0.044 0.892 0.064
#> GSM564762     1  0.6470     0.7128 0.760 0.092 0.148
#> GSM564681     2  0.7256     0.6450 0.124 0.712 0.164
#> GSM564693     3  0.8113     0.4178 0.088 0.324 0.588
#> GSM564646     3  0.9623     0.0414 0.204 0.384 0.412
#> GSM564699     1  0.7413     0.6512 0.692 0.204 0.104

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM564615     1  0.5511    0.23503 0.500 0.016 0.000 0.484
#> GSM564616     3  0.7983    0.11232 0.020 0.204 0.496 0.280
#> GSM564617     2  0.5980    0.24931 0.040 0.592 0.004 0.364
#> GSM564618     4  0.8554    0.25206 0.040 0.332 0.208 0.420
#> GSM564619     4  0.9155    0.22770 0.340 0.232 0.076 0.352
#> GSM564620     1  0.9555   -0.20233 0.332 0.120 0.236 0.312
#> GSM564621     4  0.5327    0.27956 0.208 0.004 0.056 0.732
#> GSM564622     3  0.5245    0.58128 0.044 0.012 0.748 0.196
#> GSM564623     4  0.6548    0.25085 0.032 0.032 0.364 0.572
#> GSM564624     2  0.5349    0.34655 0.020 0.656 0.004 0.320
#> GSM564625     1  0.7283   -0.14783 0.480 0.032 0.068 0.420
#> GSM564626     4  0.8049    0.15537 0.352 0.288 0.004 0.356
#> GSM564627     4  0.5766    0.12582 0.404 0.032 0.000 0.564
#> GSM564628     4  0.8664    0.36488 0.056 0.260 0.220 0.464
#> GSM564629     1  0.7233   -0.21390 0.480 0.112 0.008 0.400
#> GSM564630     2  0.4360    0.60459 0.032 0.816 0.012 0.140
#> GSM564609     3  0.7149    0.14700 0.052 0.392 0.516 0.040
#> GSM564610     2  0.7263    0.55709 0.236 0.624 0.064 0.076
#> GSM564611     2  0.1798    0.66439 0.040 0.944 0.000 0.016
#> GSM564612     3  0.5403    0.54087 0.052 0.196 0.740 0.012
#> GSM564613     2  0.8684    0.19147 0.080 0.464 0.308 0.148
#> GSM564614     4  0.6522    0.07209 0.280 0.000 0.112 0.608
#> GSM564631     3  0.0921    0.67716 0.028 0.000 0.972 0.000
#> GSM564632     3  0.8243    0.37672 0.136 0.108 0.572 0.184
#> GSM564633     3  0.4192    0.67953 0.056 0.044 0.852 0.048
#> GSM564634     2  0.7940    0.33286 0.080 0.512 0.336 0.072
#> GSM564635     3  0.0524    0.68446 0.008 0.004 0.988 0.000
#> GSM564636     3  0.5810    0.61982 0.060 0.068 0.760 0.112
#> GSM564637     2  0.8643    0.09397 0.188 0.424 0.336 0.052
#> GSM564638     3  0.3515    0.67949 0.072 0.012 0.876 0.040
#> GSM564639     3  0.1854    0.67991 0.048 0.000 0.940 0.012
#> GSM564640     2  0.1209    0.67203 0.004 0.964 0.032 0.000
#> GSM564641     3  0.4749    0.62289 0.044 0.132 0.804 0.020
#> GSM564642     2  0.6253    0.44626 0.028 0.612 0.332 0.028
#> GSM564643     3  0.5204    0.53531 0.032 0.004 0.712 0.252
#> GSM564644     2  0.0188    0.66610 0.004 0.996 0.000 0.000
#> GSM564645     3  0.1545    0.68478 0.040 0.000 0.952 0.008
#> GSM564647     3  0.5680    0.47384 0.040 0.276 0.676 0.008
#> GSM564648     2  0.6841    0.35995 0.020 0.556 0.360 0.064
#> GSM564649     3  0.6206    0.49813 0.068 0.260 0.660 0.012
#> GSM564650     2  0.7492    0.43867 0.080 0.628 0.096 0.196
#> GSM564651     2  0.5146    0.47294 0.016 0.696 0.280 0.008
#> GSM564652     3  0.8096    0.17918 0.068 0.360 0.480 0.092
#> GSM564653     2  0.0895    0.66821 0.020 0.976 0.004 0.000
#> GSM564654     3  0.2928    0.67740 0.056 0.012 0.904 0.028
#> GSM564655     3  0.1305    0.67909 0.036 0.004 0.960 0.000
#> GSM564656     3  0.2530    0.65673 0.100 0.004 0.896 0.000
#> GSM564657     3  0.3070    0.68040 0.020 0.068 0.896 0.016
#> GSM564658     2  0.3104    0.66319 0.060 0.892 0.004 0.044
#> GSM564659     3  0.5419    0.60346 0.056 0.060 0.784 0.100
#> GSM564660     3  0.9161   -0.17967 0.080 0.220 0.352 0.348
#> GSM564661     2  0.2531    0.67119 0.020 0.924 0.032 0.024
#> GSM564662     3  0.0921    0.68302 0.028 0.000 0.972 0.000
#> GSM564663     2  0.5244    0.60222 0.052 0.756 0.180 0.012
#> GSM564664     2  0.0188    0.66748 0.000 0.996 0.004 0.000
#> GSM564665     3  0.3616    0.64664 0.036 0.112 0.852 0.000
#> GSM564666     4  0.8624    0.11323 0.144 0.068 0.384 0.404
#> GSM564667     3  0.1975    0.68888 0.028 0.016 0.944 0.012
#> GSM564668     3  0.3777    0.66368 0.060 0.052 0.868 0.020
#> GSM564669     3  0.1585    0.68101 0.040 0.004 0.952 0.004
#> GSM564670     3  0.7409    0.47523 0.064 0.148 0.640 0.148
#> GSM564671     4  0.8876    0.33072 0.120 0.120 0.308 0.452
#> GSM564672     3  0.1211    0.68318 0.040 0.000 0.960 0.000
#> GSM564673     2  0.4673    0.60747 0.024 0.780 0.184 0.012
#> GSM564674     2  0.7285    0.40517 0.040 0.568 0.316 0.076
#> GSM564675     2  0.8948   -0.30169 0.080 0.376 0.172 0.372
#> GSM564676     2  0.0188    0.66610 0.004 0.996 0.000 0.000
#> GSM564677     2  0.5947    0.49556 0.024 0.668 0.276 0.032
#> GSM564678     2  0.0592    0.66657 0.016 0.984 0.000 0.000
#> GSM564679     2  0.0188    0.66610 0.004 0.996 0.000 0.000
#> GSM564680     3  0.1585    0.68113 0.040 0.004 0.952 0.004
#> GSM564682     3  0.7054    0.35031 0.056 0.336 0.568 0.040
#> GSM564683     3  0.0817    0.67849 0.024 0.000 0.976 0.000
#> GSM564684     4  0.5358    0.45062 0.032 0.212 0.020 0.736
#> GSM564685     3  0.3194    0.68350 0.044 0.020 0.896 0.040
#> GSM564686     4  0.5995    0.39338 0.132 0.020 0.120 0.728
#> GSM564687     2  0.0188    0.66654 0.000 0.996 0.000 0.004
#> GSM564688     2  0.7115    0.44390 0.044 0.652 0.132 0.172
#> GSM564689     2  0.1545    0.66393 0.040 0.952 0.000 0.008
#> GSM564690     2  0.0469    0.66613 0.012 0.988 0.000 0.000
#> GSM564691     2  0.4655    0.57498 0.032 0.760 0.208 0.000
#> GSM564692     2  0.6848    0.49548 0.072 0.632 0.260 0.036
#> GSM564694     3  0.8104   -0.09423 0.064 0.092 0.428 0.416
#> GSM564695     3  0.7765    0.42550 0.064 0.172 0.604 0.160
#> GSM564696     3  0.3485    0.65599 0.116 0.000 0.856 0.028
#> GSM564697     2  0.1975    0.66971 0.012 0.944 0.028 0.016
#> GSM564698     3  0.4928    0.63055 0.072 0.040 0.812 0.076
#> GSM564700     4  0.7621    0.09654 0.360 0.036 0.096 0.508
#> GSM564701     3  0.7038    0.14640 0.024 0.404 0.508 0.064
#> GSM564702     2  0.8094    0.05540 0.024 0.472 0.316 0.188
#> GSM564703     3  0.7915    0.04530 0.396 0.092 0.460 0.052
#> GSM564704     1  0.5322    0.51988 0.780 0.072 0.120 0.028
#> GSM564705     2  0.5442    0.59581 0.164 0.748 0.008 0.080
#> GSM564706     3  0.6221    0.34362 0.316 0.076 0.608 0.000
#> GSM564707     1  0.5991    0.50661 0.736 0.056 0.156 0.052
#> GSM564708     3  0.5678    0.41469 0.316 0.000 0.640 0.044
#> GSM564709     2  0.9449   -0.12405 0.340 0.340 0.200 0.120
#> GSM564710     2  0.8770    0.40153 0.208 0.512 0.164 0.116
#> GSM564711     3  0.5075    0.28118 0.344 0.000 0.644 0.012
#> GSM564712     2  0.9118    0.29615 0.248 0.420 0.248 0.084
#> GSM564713     1  0.6002    0.48268 0.640 0.008 0.304 0.048
#> GSM564714     1  0.4830    0.46239 0.608 0.000 0.392 0.000
#> GSM564715     1  0.5926    0.42437 0.752 0.116 0.056 0.076
#> GSM564716     1  0.7436    0.42604 0.620 0.188 0.148 0.044
#> GSM564717     2  0.1305    0.66942 0.036 0.960 0.004 0.000
#> GSM564718     1  0.5452    0.51362 0.768 0.020 0.096 0.116
#> GSM564719     2  0.0336    0.66637 0.008 0.992 0.000 0.000
#> GSM564720     2  0.5816    0.59478 0.224 0.700 0.008 0.068
#> GSM564721     2  0.5777    0.59710 0.172 0.728 0.012 0.088
#> GSM564722     1  0.6534    0.39143 0.632 0.284 0.060 0.024
#> GSM564723     2  0.6216    0.56699 0.208 0.692 0.020 0.080
#> GSM564724     1  0.5080    0.41513 0.576 0.000 0.420 0.004
#> GSM564725     4  0.8429    0.21503 0.276 0.020 0.348 0.356
#> GSM564726     1  0.6389    0.34759 0.544 0.032 0.020 0.404
#> GSM564727     1  0.6442    0.33481 0.552 0.036 0.020 0.392
#> GSM564728     1  0.6886    0.35644 0.548 0.044 0.036 0.372
#> GSM564729     4  0.7242   -0.18492 0.420 0.020 0.084 0.476
#> GSM564730     2  0.8361    0.28134 0.220 0.476 0.036 0.268
#> GSM564731     1  0.7477    0.46731 0.632 0.188 0.100 0.080
#> GSM564732     1  0.7485    0.43912 0.616 0.080 0.080 0.224
#> GSM564733     1  0.6959    0.28547 0.504 0.100 0.392 0.004
#> GSM564734     1  0.5660    0.28251 0.632 0.336 0.008 0.024
#> GSM564735     1  0.5632    0.46696 0.624 0.000 0.340 0.036
#> GSM564736     1  0.6694    0.36165 0.536 0.024 0.396 0.044
#> GSM564737     2  0.8716    0.42067 0.232 0.508 0.156 0.104
#> GSM564738     1  0.5152    0.46207 0.608 0.004 0.384 0.004
#> GSM564739     3  0.6685    0.34492 0.308 0.028 0.608 0.056
#> GSM564740     1  0.5268    0.37826 0.592 0.000 0.012 0.396
#> GSM564741     1  0.5097    0.40804 0.568 0.000 0.428 0.004
#> GSM564742     1  0.6259    0.47952 0.616 0.084 0.300 0.000
#> GSM564743     2  0.7493    0.47040 0.240 0.556 0.012 0.192
#> GSM564744     2  0.6092    0.61432 0.160 0.728 0.044 0.068
#> GSM564745     1  0.8021    0.00131 0.436 0.268 0.008 0.288
#> GSM564746     1  0.7951    0.09434 0.496 0.340 0.040 0.124
#> GSM564747     1  0.5102    0.51456 0.716 0.012 0.256 0.016
#> GSM564748     1  0.5841    0.44328 0.584 0.024 0.384 0.008
#> GSM564749     2  0.4094    0.63456 0.116 0.828 0.000 0.056
#> GSM564750     3  0.6580    0.15757 0.364 0.004 0.556 0.076
#> GSM564751     1  0.5417    0.42838 0.596 0.012 0.388 0.004
#> GSM564752     1  0.6751    0.35306 0.568 0.060 0.020 0.352
#> GSM564753     1  0.4916    0.41361 0.576 0.000 0.424 0.000
#> GSM564754     1  0.5019    0.47771 0.804 0.040 0.100 0.056
#> GSM564755     1  0.5155    0.27090 0.528 0.004 0.000 0.468
#> GSM564756     2  0.5213    0.61510 0.032 0.768 0.168 0.032
#> GSM564757     1  0.5990    0.28541 0.524 0.020 0.012 0.444
#> GSM564758     1  0.7137    0.41180 0.620 0.108 0.032 0.240
#> GSM564759     1  0.5811    0.50648 0.708 0.076 0.208 0.008
#> GSM564760     1  0.5865    0.49513 0.736 0.084 0.156 0.024
#> GSM564761     2  0.5813    0.61529 0.136 0.752 0.044 0.068
#> GSM564762     1  0.5925    0.51949 0.752 0.052 0.112 0.084
#> GSM564681     4  0.7258    0.10904 0.052 0.416 0.044 0.488
#> GSM564693     3  0.8321    0.19848 0.068 0.292 0.508 0.132
#> GSM564646     4  0.7636    0.46215 0.048 0.168 0.180 0.604
#> GSM564699     1  0.8282    0.21502 0.516 0.172 0.052 0.260

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM564615     5  0.4402    0.52127 0.056 0.008 0.000 0.172 0.764
#> GSM564616     3  0.6544    0.02810 0.308 0.196 0.492 0.004 0.000
#> GSM564617     2  0.5419    0.10994 0.440 0.520 0.008 0.016 0.016
#> GSM564618     1  0.6870    0.32900 0.536 0.280 0.148 0.004 0.032
#> GSM564619     1  0.8299    0.22642 0.412 0.160 0.024 0.308 0.096
#> GSM564620     1  0.8954    0.13254 0.376 0.092 0.192 0.272 0.068
#> GSM564621     5  0.6193    0.29421 0.312 0.000 0.036 0.076 0.576
#> GSM564622     3  0.5022    0.54834 0.268 0.012 0.684 0.012 0.024
#> GSM564623     1  0.5720    0.22048 0.656 0.008 0.120 0.004 0.212
#> GSM564624     2  0.4614    0.27219 0.356 0.628 0.008 0.004 0.004
#> GSM564625     1  0.7298    0.21769 0.548 0.012 0.064 0.236 0.140
#> GSM564626     1  0.7714    0.20349 0.420 0.104 0.000 0.336 0.140
#> GSM564627     1  0.7295   -0.23308 0.340 0.020 0.000 0.312 0.328
#> GSM564628     1  0.7944    0.34710 0.484 0.196 0.196 0.008 0.116
#> GSM564629     1  0.6720    0.22344 0.544 0.040 0.000 0.288 0.128
#> GSM564630     2  0.4084    0.50984 0.204 0.768 0.008 0.008 0.012
#> GSM564609     3  0.6216    0.22546 0.068 0.336 0.564 0.024 0.008
#> GSM564610     2  0.8081    0.33293 0.156 0.488 0.032 0.240 0.084
#> GSM564611     2  0.2444    0.59275 0.036 0.912 0.000 0.028 0.024
#> GSM564612     3  0.6461    0.55709 0.124 0.148 0.660 0.048 0.020
#> GSM564613     2  0.8245    0.06031 0.272 0.436 0.196 0.048 0.048
#> GSM564614     5  0.5929    0.43474 0.112 0.000 0.108 0.088 0.692
#> GSM564631     3  0.0510    0.65415 0.000 0.000 0.984 0.016 0.000
#> GSM564632     3  0.8057    0.37971 0.292 0.060 0.468 0.132 0.048
#> GSM564633     3  0.4587    0.66518 0.108 0.032 0.800 0.036 0.024
#> GSM564634     2  0.7831    0.16545 0.088 0.420 0.384 0.048 0.060
#> GSM564635     3  0.2032    0.67638 0.052 0.004 0.924 0.020 0.000
#> GSM564636     3  0.5195    0.61479 0.196 0.036 0.724 0.032 0.012
#> GSM564637     2  0.8011    0.04191 0.080 0.392 0.348 0.168 0.012
#> GSM564638     3  0.5517    0.65145 0.168 0.012 0.716 0.076 0.028
#> GSM564639     3  0.4426    0.65503 0.128 0.000 0.788 0.056 0.028
#> GSM564640     2  0.1644    0.60515 0.012 0.948 0.028 0.008 0.004
#> GSM564641     3  0.3844    0.60824 0.044 0.104 0.828 0.024 0.000
#> GSM564642     2  0.6174    0.34922 0.048 0.560 0.352 0.024 0.016
#> GSM564643     3  0.7027    0.29506 0.280 0.000 0.488 0.028 0.204
#> GSM564644     2  0.0162    0.60207 0.000 0.996 0.000 0.004 0.000
#> GSM564645     3  0.3103    0.67872 0.072 0.000 0.872 0.044 0.012
#> GSM564647     3  0.4481    0.48231 0.024 0.228 0.732 0.016 0.000
#> GSM564648     2  0.6777    0.22979 0.084 0.480 0.392 0.012 0.032
#> GSM564649     3  0.6271    0.49563 0.076 0.224 0.644 0.040 0.016
#> GSM564650     2  0.8277    0.16286 0.192 0.496 0.084 0.052 0.176
#> GSM564651     2  0.5127    0.41806 0.056 0.708 0.216 0.016 0.004
#> GSM564652     3  0.7917    0.16864 0.116 0.308 0.472 0.048 0.056
#> GSM564653     2  0.0898    0.60215 0.008 0.972 0.000 0.020 0.000
#> GSM564654     3  0.4825    0.65926 0.120 0.012 0.776 0.068 0.024
#> GSM564655     3  0.1153    0.65739 0.008 0.000 0.964 0.024 0.004
#> GSM564656     3  0.2124    0.61208 0.000 0.004 0.900 0.096 0.000
#> GSM564657     3  0.4296    0.67069 0.112 0.048 0.808 0.024 0.008
#> GSM564658     2  0.3072    0.58871 0.040 0.872 0.004 0.080 0.004
#> GSM564659     3  0.5743    0.60211 0.208 0.024 0.688 0.056 0.024
#> GSM564660     1  0.8852    0.26922 0.420 0.208 0.192 0.052 0.128
#> GSM564661     2  0.3049    0.59449 0.052 0.888 0.020 0.028 0.012
#> GSM564662     3  0.2395    0.67651 0.048 0.000 0.912 0.024 0.016
#> GSM564663     2  0.4934    0.52932 0.060 0.736 0.184 0.016 0.004
#> GSM564664     2  0.0000    0.60184 0.000 1.000 0.000 0.000 0.000
#> GSM564665     3  0.2804    0.62245 0.012 0.092 0.880 0.016 0.000
#> GSM564666     1  0.7922    0.21966 0.492 0.024 0.244 0.076 0.164
#> GSM564667     3  0.3293    0.67633 0.096 0.004 0.860 0.028 0.012
#> GSM564668     3  0.5722    0.63567 0.136 0.044 0.728 0.056 0.036
#> GSM564669     3  0.4045    0.65891 0.124 0.000 0.808 0.052 0.016
#> GSM564670     3  0.7226    0.50424 0.244 0.108 0.568 0.044 0.036
#> GSM564671     1  0.8662    0.16750 0.344 0.044 0.252 0.068 0.292
#> GSM564672     3  0.2520    0.67687 0.056 0.000 0.896 0.048 0.000
#> GSM564673     2  0.4570    0.50461 0.020 0.720 0.240 0.020 0.000
#> GSM564674     2  0.7133    0.28995 0.108 0.508 0.328 0.020 0.036
#> GSM564675     1  0.7850    0.34716 0.456 0.296 0.156 0.080 0.012
#> GSM564676     2  0.0162    0.60207 0.000 0.996 0.000 0.004 0.000
#> GSM564677     2  0.5438    0.40076 0.032 0.624 0.320 0.012 0.012
#> GSM564678     2  0.0771    0.60177 0.020 0.976 0.000 0.004 0.000
#> GSM564679     2  0.0162    0.60207 0.000 0.996 0.000 0.004 0.000
#> GSM564680     3  0.4207    0.65816 0.124 0.000 0.800 0.056 0.020
#> GSM564682     3  0.6938    0.33417 0.136 0.308 0.520 0.024 0.012
#> GSM564683     3  0.1211    0.66405 0.016 0.000 0.960 0.024 0.000
#> GSM564684     5  0.6138    0.04511 0.388 0.104 0.000 0.008 0.500
#> GSM564685     3  0.2784    0.66374 0.072 0.012 0.888 0.028 0.000
#> GSM564686     5  0.6746    0.09050 0.396 0.000 0.080 0.056 0.468
#> GSM564687     2  0.0324    0.60255 0.004 0.992 0.000 0.000 0.004
#> GSM564688     2  0.6869    0.33191 0.212 0.600 0.128 0.020 0.040
#> GSM564689     2  0.2026    0.59703 0.044 0.928 0.000 0.016 0.012
#> GSM564690     2  0.0566    0.60174 0.004 0.984 0.000 0.012 0.000
#> GSM564691     2  0.4924    0.49501 0.044 0.732 0.200 0.016 0.008
#> GSM564692     2  0.6614    0.41429 0.104 0.608 0.236 0.036 0.016
#> GSM564694     1  0.7447    0.14073 0.456 0.040 0.360 0.024 0.120
#> GSM564695     3  0.8154    0.33065 0.260 0.140 0.476 0.036 0.088
#> GSM564696     3  0.3336    0.61478 0.060 0.000 0.844 0.096 0.000
#> GSM564697     2  0.2409    0.59954 0.044 0.916 0.012 0.020 0.008
#> GSM564698     3  0.5723    0.61346 0.192 0.012 0.696 0.056 0.044
#> GSM564700     1  0.7706   -0.09979 0.380 0.008 0.044 0.212 0.356
#> GSM564701     3  0.6600    0.16874 0.128 0.384 0.472 0.008 0.008
#> GSM564702     2  0.8083   -0.02282 0.212 0.440 0.256 0.016 0.076
#> GSM564703     4  0.9061    0.07636 0.168 0.084 0.320 0.336 0.092
#> GSM564704     4  0.5961    0.48101 0.100 0.052 0.076 0.724 0.048
#> GSM564705     2  0.7737    0.26788 0.192 0.500 0.004 0.196 0.108
#> GSM564706     3  0.7088    0.24199 0.068 0.068 0.536 0.308 0.020
#> GSM564707     4  0.7212    0.40883 0.144 0.024 0.156 0.600 0.076
#> GSM564708     3  0.6454    0.27021 0.072 0.000 0.580 0.284 0.064
#> GSM564709     1  0.9720    0.15522 0.264 0.244 0.140 0.232 0.120
#> GSM564710     2  0.9384   -0.03907 0.292 0.296 0.076 0.196 0.140
#> GSM564711     3  0.5896    0.22042 0.052 0.000 0.604 0.304 0.040
#> GSM564712     2  0.9603   -0.00888 0.248 0.272 0.116 0.248 0.116
#> GSM564713     4  0.6402    0.48974 0.100 0.004 0.208 0.632 0.056
#> GSM564714     4  0.4449    0.49844 0.004 0.000 0.352 0.636 0.008
#> GSM564715     4  0.6617    0.18223 0.204 0.064 0.012 0.628 0.092
#> GSM564716     4  0.8765    0.27380 0.112 0.184 0.144 0.468 0.092
#> GSM564717     2  0.2943    0.58745 0.040 0.888 0.000 0.036 0.036
#> GSM564718     4  0.5404    0.43471 0.092 0.008 0.056 0.744 0.100
#> GSM564719     2  0.0404    0.60233 0.000 0.988 0.000 0.012 0.000
#> GSM564720     2  0.7833    0.28494 0.224 0.464 0.000 0.196 0.116
#> GSM564721     2  0.6736    0.42725 0.148 0.612 0.004 0.172 0.064
#> GSM564722     4  0.6036    0.39066 0.096 0.220 0.032 0.648 0.004
#> GSM564723     2  0.8299    0.18040 0.208 0.412 0.012 0.260 0.108
#> GSM564724     4  0.4760    0.45586 0.020 0.000 0.416 0.564 0.000
#> GSM564725     1  0.8708    0.18782 0.344 0.016 0.224 0.272 0.144
#> GSM564726     5  0.5967    0.32805 0.056 0.008 0.012 0.408 0.516
#> GSM564727     5  0.6050    0.42777 0.064 0.020 0.004 0.364 0.548
#> GSM564728     5  0.5535    0.35424 0.020 0.020 0.008 0.404 0.548
#> GSM564729     5  0.5524    0.53743 0.056 0.008 0.032 0.208 0.696
#> GSM564730     1  0.8349   -0.02063 0.348 0.324 0.004 0.152 0.172
#> GSM564731     4  0.6983    0.40541 0.032 0.168 0.088 0.628 0.084
#> GSM564732     4  0.7376    0.11661 0.060 0.052 0.076 0.564 0.248
#> GSM564733     4  0.7435    0.35255 0.076 0.060 0.328 0.500 0.036
#> GSM564734     4  0.7333    0.13729 0.144 0.284 0.000 0.496 0.076
#> GSM564735     4  0.6525    0.47671 0.132 0.000 0.208 0.608 0.052
#> GSM564736     4  0.7397    0.42001 0.156 0.012 0.280 0.504 0.048
#> GSM564737     2  0.9546   -0.01004 0.240 0.284 0.100 0.252 0.124
#> GSM564738     4  0.5821    0.50768 0.100 0.004 0.264 0.624 0.008
#> GSM564739     3  0.7531    0.14915 0.168 0.020 0.492 0.280 0.040
#> GSM564740     4  0.5949    0.00369 0.100 0.000 0.008 0.564 0.328
#> GSM564741     4  0.5331    0.47193 0.060 0.000 0.372 0.568 0.000
#> GSM564742     4  0.5622    0.52551 0.016 0.060 0.232 0.676 0.016
#> GSM564743     2  0.8079    0.21235 0.228 0.432 0.008 0.240 0.092
#> GSM564744     2  0.5841    0.51997 0.072 0.704 0.040 0.164 0.020
#> GSM564745     5  0.8547   -0.20977 0.280 0.208 0.000 0.220 0.292
#> GSM564746     4  0.8808   -0.06480 0.236 0.220 0.024 0.368 0.152
#> GSM564747     4  0.4267    0.52738 0.028 0.000 0.232 0.736 0.004
#> GSM564748     4  0.5498    0.43281 0.020 0.012 0.428 0.528 0.012
#> GSM564749     2  0.6371    0.42903 0.152 0.648 0.000 0.116 0.084
#> GSM564750     3  0.7869    0.10334 0.136 0.004 0.440 0.304 0.116
#> GSM564751     4  0.6035    0.47253 0.076 0.000 0.276 0.612 0.036
#> GSM564752     5  0.5402    0.38094 0.024 0.024 0.000 0.388 0.564
#> GSM564753     4  0.5192    0.47424 0.032 0.000 0.388 0.572 0.008
#> GSM564754     4  0.6680    0.21091 0.208 0.020 0.040 0.620 0.112
#> GSM564755     5  0.4527    0.52494 0.036 0.000 0.000 0.272 0.692
#> GSM564756     2  0.4782    0.54460 0.052 0.756 0.168 0.008 0.016
#> GSM564757     5  0.4511    0.53677 0.012 0.008 0.004 0.284 0.692
#> GSM564758     4  0.6858    0.14187 0.088 0.072 0.012 0.596 0.232
#> GSM564759     4  0.6587    0.52255 0.048 0.064 0.216 0.636 0.036
#> GSM564760     4  0.5796    0.45983 0.100 0.044 0.084 0.732 0.040
#> GSM564761     2  0.7636    0.32183 0.208 0.540 0.016 0.128 0.108
#> GSM564762     4  0.6132    0.46704 0.072 0.044 0.104 0.712 0.068
#> GSM564681     1  0.6997    0.23955 0.472 0.272 0.004 0.012 0.240
#> GSM564693     3  0.8958    0.17354 0.208 0.176 0.408 0.052 0.156
#> GSM564646     5  0.6649    0.00364 0.388 0.068 0.060 0.000 0.484
#> GSM564699     4  0.8723   -0.09577 0.236 0.120 0.024 0.356 0.264

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM564615     2  0.2825    0.64206 0.028 0.880 0.000 0.032 0.004 0.056
#> GSM564616     3  0.6222   -0.11888 0.032 0.000 0.432 0.000 0.140 0.396
#> GSM564617     6  0.5356    0.08384 0.048 0.012 0.004 0.008 0.388 0.540
#> GSM564618     6  0.5873    0.38891 0.028 0.004 0.076 0.040 0.204 0.648
#> GSM564619     1  0.6912    0.39777 0.524 0.004 0.008 0.096 0.144 0.224
#> GSM564620     6  0.9250    0.15514 0.188 0.088 0.128 0.164 0.080 0.352
#> GSM564621     2  0.5748    0.40797 0.084 0.576 0.016 0.012 0.004 0.308
#> GSM564622     3  0.6417    0.31317 0.048 0.020 0.500 0.072 0.004 0.356
#> GSM564623     6  0.3684    0.41410 0.016 0.060 0.040 0.028 0.012 0.844
#> GSM564624     5  0.4890    0.05843 0.032 0.000 0.008 0.004 0.492 0.464
#> GSM564625     6  0.7263   -0.05460 0.392 0.108 0.036 0.060 0.008 0.396
#> GSM564626     1  0.3878    0.52760 0.816 0.024 0.000 0.016 0.052 0.092
#> GSM564627     2  0.7372    0.24721 0.180 0.412 0.000 0.092 0.016 0.300
#> GSM564628     6  0.6131    0.41354 0.052 0.016 0.144 0.008 0.140 0.640
#> GSM564629     1  0.6591    0.11809 0.476 0.076 0.000 0.052 0.032 0.364
#> GSM564630     5  0.4971    0.45448 0.052 0.008 0.008 0.004 0.648 0.280
#> GSM564609     3  0.5372    0.33354 0.012 0.004 0.620 0.008 0.280 0.076
#> GSM564610     1  0.5730    0.20495 0.512 0.008 0.024 0.024 0.404 0.028
#> GSM564611     5  0.1908    0.60862 0.096 0.000 0.000 0.000 0.900 0.004
#> GSM564612     3  0.7308    0.48413 0.048 0.028 0.560 0.172 0.132 0.060
#> GSM564613     5  0.8142    0.05040 0.020 0.028 0.136 0.180 0.412 0.224
#> GSM564614     2  0.3865    0.60310 0.012 0.812 0.080 0.016 0.000 0.080
#> GSM564631     3  0.0520    0.56713 0.008 0.000 0.984 0.008 0.000 0.000
#> GSM564632     3  0.7746    0.28866 0.024 0.020 0.384 0.280 0.052 0.240
#> GSM564633     3  0.5551    0.58265 0.040 0.016 0.716 0.076 0.032 0.120
#> GSM564634     3  0.7245    0.01611 0.036 0.040 0.472 0.032 0.328 0.092
#> GSM564635     3  0.2753    0.59887 0.016 0.004 0.876 0.088 0.004 0.012
#> GSM564636     3  0.5466    0.53791 0.020 0.004 0.676 0.084 0.024 0.192
#> GSM564637     3  0.7526   -0.03263 0.028 0.008 0.396 0.132 0.352 0.084
#> GSM564638     3  0.6315    0.55484 0.040 0.020 0.596 0.228 0.008 0.108
#> GSM564639     3  0.5419    0.55949 0.040 0.024 0.664 0.224 0.000 0.048
#> GSM564640     5  0.1478    0.66402 0.000 0.004 0.032 0.000 0.944 0.020
#> GSM564641     3  0.3675    0.55293 0.008 0.000 0.828 0.028 0.080 0.056
#> GSM564642     5  0.5612    0.21416 0.024 0.004 0.428 0.012 0.492 0.040
#> GSM564643     6  0.7623    0.00306 0.064 0.136 0.364 0.068 0.000 0.368
#> GSM564644     5  0.0146    0.66046 0.000 0.000 0.000 0.000 0.996 0.004
#> GSM564645     3  0.4373    0.59788 0.036 0.020 0.780 0.120 0.000 0.044
#> GSM564647     3  0.3379    0.50576 0.012 0.000 0.804 0.008 0.168 0.008
#> GSM564648     3  0.6114   -0.11184 0.024 0.016 0.456 0.004 0.424 0.076
#> GSM564649     3  0.5900    0.51159 0.020 0.012 0.660 0.064 0.188 0.056
#> GSM564650     5  0.8120    0.13232 0.036 0.148 0.076 0.056 0.456 0.228
#> GSM564651     5  0.5520    0.47406 0.028 0.016 0.168 0.052 0.700 0.036
#> GSM564652     3  0.7723    0.16703 0.088 0.028 0.448 0.024 0.284 0.128
#> GSM564653     5  0.1007    0.66163 0.008 0.004 0.000 0.004 0.968 0.016
#> GSM564654     3  0.5760    0.56902 0.044 0.024 0.668 0.188 0.008 0.068
#> GSM564655     3  0.1799    0.57620 0.024 0.008 0.936 0.016 0.000 0.016
#> GSM564656     3  0.1901    0.52755 0.008 0.000 0.912 0.076 0.004 0.000
#> GSM564657     3  0.5257    0.59607 0.036 0.004 0.724 0.140 0.052 0.044
#> GSM564658     5  0.3139    0.61145 0.120 0.000 0.000 0.008 0.836 0.036
#> GSM564659     3  0.6631    0.51984 0.044 0.032 0.596 0.212 0.020 0.096
#> GSM564660     6  0.8583    0.30623 0.032 0.052 0.160 0.184 0.172 0.400
#> GSM564661     5  0.2820    0.64919 0.016 0.000 0.016 0.052 0.884 0.032
#> GSM564662     3  0.3729    0.60080 0.036 0.020 0.828 0.088 0.000 0.028
#> GSM564663     5  0.4794    0.56484 0.032 0.004 0.204 0.012 0.716 0.032
#> GSM564664     5  0.0000    0.66001 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564665     3  0.2114    0.55864 0.012 0.000 0.904 0.008 0.076 0.000
#> GSM564666     6  0.7209    0.37407 0.032 0.068 0.184 0.156 0.016 0.544
#> GSM564667     3  0.3272    0.59600 0.016 0.000 0.820 0.144 0.000 0.020
#> GSM564668     3  0.6472    0.54135 0.044 0.028 0.612 0.220 0.036 0.060
#> GSM564669     3  0.5380    0.56333 0.044 0.024 0.676 0.208 0.000 0.048
#> GSM564670     3  0.7466    0.40698 0.020 0.012 0.484 0.200 0.088 0.196
#> GSM564671     6  0.8002    0.35701 0.048 0.196 0.204 0.076 0.024 0.452
#> GSM564672     3  0.3676    0.59887 0.032 0.012 0.828 0.092 0.000 0.036
#> GSM564673     5  0.4221    0.51753 0.004 0.000 0.284 0.008 0.684 0.020
#> GSM564674     5  0.6505    0.29952 0.028 0.016 0.344 0.004 0.484 0.124
#> GSM564675     6  0.6076    0.34544 0.024 0.000 0.072 0.044 0.280 0.580
#> GSM564676     5  0.0146    0.66046 0.000 0.000 0.000 0.000 0.996 0.004
#> GSM564677     5  0.4645    0.39603 0.012 0.008 0.364 0.000 0.600 0.016
#> GSM564678     5  0.0725    0.66055 0.012 0.000 0.000 0.000 0.976 0.012
#> GSM564679     5  0.0146    0.66046 0.000 0.000 0.000 0.000 0.996 0.004
#> GSM564680     3  0.5406    0.56129 0.044 0.024 0.672 0.212 0.000 0.048
#> GSM564682     3  0.7137    0.36771 0.036 0.008 0.500 0.092 0.288 0.076
#> GSM564683     3  0.1003    0.58343 0.004 0.000 0.964 0.028 0.000 0.004
#> GSM564684     6  0.5806    0.16119 0.040 0.400 0.000 0.024 0.032 0.504
#> GSM564685     3  0.3252    0.58676 0.016 0.004 0.856 0.028 0.012 0.084
#> GSM564686     6  0.6354    0.21746 0.036 0.352 0.032 0.076 0.000 0.504
#> GSM564687     5  0.0146    0.66075 0.000 0.000 0.000 0.000 0.996 0.004
#> GSM564688     5  0.6574    0.36393 0.032 0.024 0.128 0.012 0.568 0.236
#> GSM564689     5  0.2107    0.65364 0.024 0.012 0.000 0.008 0.920 0.036
#> GSM564690     5  0.0653    0.66123 0.004 0.004 0.000 0.000 0.980 0.012
#> GSM564691     5  0.4872    0.53477 0.016 0.008 0.208 0.032 0.712 0.024
#> GSM564692     5  0.6701    0.47356 0.044 0.008 0.196 0.088 0.596 0.068
#> GSM564694     6  0.6776    0.32519 0.036 0.028 0.252 0.088 0.032 0.564
#> GSM564695     3  0.8508    0.23968 0.032 0.068 0.400 0.124 0.124 0.252
#> GSM564696     3  0.3479    0.52107 0.008 0.000 0.820 0.084 0.000 0.088
#> GSM564697     5  0.2736    0.65243 0.028 0.008 0.008 0.008 0.888 0.060
#> GSM564698     3  0.6380    0.49805 0.032 0.020 0.568 0.244 0.004 0.132
#> GSM564700     6  0.6602    0.27691 0.036 0.224 0.020 0.188 0.000 0.532
#> GSM564701     3  0.7149    0.20840 0.032 0.004 0.444 0.076 0.348 0.096
#> GSM564702     5  0.8391   -0.07964 0.056 0.064 0.220 0.040 0.392 0.228
#> GSM564703     1  0.7634    0.11428 0.412 0.012 0.240 0.248 0.068 0.020
#> GSM564704     4  0.6553    0.35925 0.300 0.012 0.068 0.544 0.048 0.028
#> GSM564705     1  0.3714    0.51829 0.656 0.000 0.000 0.004 0.340 0.000
#> GSM564706     3  0.6194    0.17019 0.028 0.012 0.520 0.356 0.068 0.016
#> GSM564707     1  0.6108   -0.02247 0.448 0.004 0.144 0.388 0.016 0.000
#> GSM564708     3  0.6722    0.12921 0.188 0.032 0.492 0.268 0.000 0.020
#> GSM564709     1  0.8880    0.29814 0.384 0.036 0.116 0.140 0.204 0.120
#> GSM564710     1  0.5603    0.56665 0.684 0.016 0.032 0.076 0.176 0.016
#> GSM564711     3  0.5429    0.19091 0.072 0.028 0.608 0.288 0.000 0.004
#> GSM564712     1  0.5764    0.56633 0.676 0.004 0.080 0.064 0.156 0.020
#> GSM564713     4  0.4703    0.61092 0.056 0.016 0.136 0.756 0.004 0.032
#> GSM564714     4  0.4246    0.58080 0.012 0.000 0.340 0.636 0.000 0.012
#> GSM564715     1  0.4231    0.43231 0.696 0.004 0.004 0.264 0.032 0.000
#> GSM564716     1  0.8229    0.07821 0.348 0.036 0.136 0.296 0.172 0.012
#> GSM564717     5  0.2595    0.55454 0.160 0.000 0.000 0.000 0.836 0.004
#> GSM564718     4  0.5456    0.54487 0.112 0.084 0.040 0.712 0.000 0.052
#> GSM564719     5  0.0291    0.66111 0.004 0.000 0.000 0.000 0.992 0.004
#> GSM564720     1  0.5312    0.50682 0.620 0.016 0.000 0.028 0.296 0.040
#> GSM564721     5  0.5179    0.02899 0.384 0.004 0.000 0.032 0.552 0.028
#> GSM564722     4  0.4974    0.47243 0.048 0.004 0.008 0.712 0.188 0.040
#> GSM564723     1  0.4086    0.59108 0.724 0.004 0.004 0.024 0.240 0.004
#> GSM564724     4  0.4221    0.52628 0.008 0.000 0.396 0.588 0.000 0.008
#> GSM564725     6  0.8942    0.20069 0.276 0.116 0.160 0.144 0.016 0.288
#> GSM564726     2  0.5357    0.52426 0.004 0.556 0.008 0.360 0.004 0.068
#> GSM564727     2  0.4732    0.69475 0.024 0.716 0.000 0.204 0.016 0.040
#> GSM564728     2  0.4313    0.62020 0.004 0.664 0.000 0.304 0.008 0.020
#> GSM564729     2  0.3439    0.69600 0.036 0.848 0.008 0.076 0.004 0.028
#> GSM564730     1  0.6930    0.44383 0.512 0.036 0.000 0.052 0.260 0.140
#> GSM564731     4  0.7352    0.48208 0.112 0.056 0.084 0.560 0.168 0.020
#> GSM564732     4  0.8326    0.03142 0.232 0.272 0.096 0.340 0.040 0.020
#> GSM564733     4  0.6763    0.42370 0.076 0.016 0.260 0.560 0.044 0.044
#> GSM564734     1  0.6762    0.41058 0.444 0.012 0.000 0.276 0.240 0.028
#> GSM564735     4  0.3463    0.61165 0.000 0.008 0.160 0.800 0.000 0.032
#> GSM564736     4  0.5675    0.49001 0.032 0.024 0.220 0.656 0.008 0.060
#> GSM564737     1  0.4036    0.57817 0.788 0.008 0.060 0.004 0.132 0.008
#> GSM564738     4  0.3345    0.62251 0.000 0.000 0.204 0.776 0.000 0.020
#> GSM564739     3  0.7161    0.14731 0.332 0.012 0.428 0.160 0.008 0.060
#> GSM564740     4  0.5161    0.20819 0.000 0.252 0.004 0.620 0.000 0.124
#> GSM564741     4  0.4415    0.56147 0.016 0.000 0.300 0.660 0.000 0.024
#> GSM564742     4  0.6227    0.59372 0.092 0.012 0.220 0.608 0.060 0.008
#> GSM564743     5  0.7424   -0.02902 0.332 0.024 0.004 0.084 0.412 0.144
#> GSM564744     5  0.4500    0.43169 0.264 0.000 0.036 0.012 0.684 0.004
#> GSM564745     1  0.6667    0.50163 0.572 0.140 0.000 0.028 0.192 0.068
#> GSM564746     1  0.7594    0.51382 0.504 0.068 0.012 0.204 0.152 0.060
#> GSM564747     4  0.5246    0.61165 0.112 0.000 0.252 0.624 0.000 0.012
#> GSM564748     3  0.4852   -0.38874 0.056 0.000 0.492 0.452 0.000 0.000
#> GSM564749     5  0.4274   -0.09642 0.432 0.004 0.000 0.000 0.552 0.012
#> GSM564750     4  0.7152    0.03546 0.024 0.136 0.344 0.432 0.004 0.060
#> GSM564751     4  0.6129    0.45214 0.288 0.004 0.212 0.488 0.000 0.008
#> GSM564752     2  0.4423    0.59434 0.000 0.644 0.000 0.320 0.016 0.020
#> GSM564753     4  0.5097    0.52221 0.064 0.008 0.384 0.544 0.000 0.000
#> GSM564754     1  0.4107    0.38963 0.704 0.008 0.004 0.268 0.012 0.004
#> GSM564755     2  0.2667    0.71694 0.000 0.852 0.000 0.128 0.000 0.020
#> GSM564756     5  0.4327    0.58174 0.036 0.012 0.164 0.004 0.764 0.020
#> GSM564757     2  0.3539    0.69336 0.056 0.832 0.000 0.084 0.004 0.024
#> GSM564758     4  0.7538    0.21645 0.140 0.196 0.004 0.500 0.044 0.116
#> GSM564759     4  0.6959    0.58294 0.108 0.016 0.212 0.568 0.056 0.040
#> GSM564760     4  0.5821    0.57850 0.152 0.024 0.068 0.688 0.024 0.044
#> GSM564761     1  0.4343    0.42988 0.584 0.004 0.012 0.004 0.396 0.000
#> GSM564762     4  0.6196    0.57190 0.120 0.040 0.088 0.676 0.036 0.040
#> GSM564681     6  0.6673    0.39875 0.056 0.164 0.000 0.024 0.200 0.556
#> GSM564693     3  0.9494    0.04444 0.068 0.148 0.312 0.164 0.144 0.164
#> GSM564646     6  0.6572    0.26190 0.044 0.356 0.044 0.028 0.024 0.504
#> GSM564699     6  0.7463    0.17441 0.024 0.180 0.016 0.356 0.044 0.380

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n genotype/variation(p) disease.state(p) k
#> CV:pam 108                 0.437            0.865 2
#> CV:pam 110                 0.857            0.437 3
#> CV:pam  62                 0.926               NA 4
#> CV:pam  56                 0.707               NA 5
#> CV:pam  76                 0.203               NA 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 154 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.995       0.991         0.4953 0.500   0.500
#> 3 3 0.855           0.882       0.928         0.2641 0.874   0.748
#> 4 4 0.665           0.743       0.778         0.1297 0.839   0.591
#> 5 5 0.761           0.757       0.863         0.0774 0.938   0.778
#> 6 6 0.870           0.843       0.927         0.0577 0.921   0.694

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM564615     1  0.0000      0.999 1.000 0.000
#> GSM564616     2  0.1414      0.995 0.020 0.980
#> GSM564617     2  0.1414      0.995 0.020 0.980
#> GSM564618     2  0.1414      0.995 0.020 0.980
#> GSM564619     1  0.0000      0.999 1.000 0.000
#> GSM564620     1  0.0000      0.999 1.000 0.000
#> GSM564621     1  0.0000      0.999 1.000 0.000
#> GSM564622     2  0.1414      0.995 0.020 0.980
#> GSM564623     2  0.1414      0.995 0.020 0.980
#> GSM564624     2  0.1414      0.995 0.020 0.980
#> GSM564625     1  0.0000      0.999 1.000 0.000
#> GSM564626     1  0.0000      0.999 1.000 0.000
#> GSM564627     1  0.0000      0.999 1.000 0.000
#> GSM564628     2  0.1414      0.995 0.020 0.980
#> GSM564629     1  0.0000      0.999 1.000 0.000
#> GSM564630     2  0.1414      0.995 0.020 0.980
#> GSM564609     2  0.1414      0.995 0.020 0.980
#> GSM564610     1  0.0000      0.999 1.000 0.000
#> GSM564611     1  0.0376      0.996 0.996 0.004
#> GSM564612     2  0.1414      0.995 0.020 0.980
#> GSM564613     2  0.1414      0.995 0.020 0.980
#> GSM564614     1  0.0000      0.999 1.000 0.000
#> GSM564631     2  0.0000      0.984 0.000 1.000
#> GSM564632     2  0.1414      0.995 0.020 0.980
#> GSM564633     2  0.0672      0.989 0.008 0.992
#> GSM564634     2  0.1414      0.995 0.020 0.980
#> GSM564635     2  0.0000      0.984 0.000 1.000
#> GSM564636     2  0.1414      0.995 0.020 0.980
#> GSM564637     2  0.1414      0.995 0.020 0.980
#> GSM564638     2  0.0376      0.987 0.004 0.996
#> GSM564639     2  0.0000      0.984 0.000 1.000
#> GSM564640     2  0.1414      0.995 0.020 0.980
#> GSM564641     2  0.1414      0.995 0.020 0.980
#> GSM564642     2  0.1414      0.995 0.020 0.980
#> GSM564643     2  0.1414      0.995 0.020 0.980
#> GSM564644     2  0.1414      0.995 0.020 0.980
#> GSM564645     2  0.0000      0.984 0.000 1.000
#> GSM564647     2  0.1414      0.995 0.020 0.980
#> GSM564648     2  0.1414      0.995 0.020 0.980
#> GSM564649     2  0.0000      0.984 0.000 1.000
#> GSM564650     2  0.1414      0.995 0.020 0.980
#> GSM564651     2  0.1414      0.995 0.020 0.980
#> GSM564652     2  0.1414      0.995 0.020 0.980
#> GSM564653     2  0.1414      0.995 0.020 0.980
#> GSM564654     2  0.0000      0.984 0.000 1.000
#> GSM564655     2  0.0376      0.987 0.004 0.996
#> GSM564656     2  0.0000      0.984 0.000 1.000
#> GSM564657     2  0.1414      0.995 0.020 0.980
#> GSM564658     2  0.1414      0.995 0.020 0.980
#> GSM564659     2  0.1414      0.995 0.020 0.980
#> GSM564660     2  0.1414      0.995 0.020 0.980
#> GSM564661     2  0.1414      0.995 0.020 0.980
#> GSM564662     2  0.0000      0.984 0.000 1.000
#> GSM564663     2  0.1414      0.995 0.020 0.980
#> GSM564664     2  0.1633      0.992 0.024 0.976
#> GSM564665     2  0.0000      0.984 0.000 1.000
#> GSM564666     2  0.1414      0.995 0.020 0.980
#> GSM564667     2  0.0000      0.984 0.000 1.000
#> GSM564668     2  0.0000      0.984 0.000 1.000
#> GSM564669     2  0.0938      0.991 0.012 0.988
#> GSM564670     2  0.1414      0.995 0.020 0.980
#> GSM564671     2  0.1414      0.995 0.020 0.980
#> GSM564672     2  0.0000      0.984 0.000 1.000
#> GSM564673     2  0.1414      0.995 0.020 0.980
#> GSM564674     2  0.1414      0.995 0.020 0.980
#> GSM564675     2  0.1414      0.995 0.020 0.980
#> GSM564676     2  0.1414      0.995 0.020 0.980
#> GSM564677     2  0.1414      0.995 0.020 0.980
#> GSM564678     2  0.1414      0.995 0.020 0.980
#> GSM564679     2  0.1414      0.995 0.020 0.980
#> GSM564680     2  0.0000      0.984 0.000 1.000
#> GSM564682     2  0.1414      0.995 0.020 0.980
#> GSM564683     2  0.0000      0.984 0.000 1.000
#> GSM564684     2  0.1414      0.995 0.020 0.980
#> GSM564685     2  0.0000      0.984 0.000 1.000
#> GSM564686     2  0.1414      0.995 0.020 0.980
#> GSM564687     2  0.1633      0.992 0.024 0.976
#> GSM564688     2  0.1414      0.995 0.020 0.980
#> GSM564689     2  0.1414      0.995 0.020 0.980
#> GSM564690     2  0.1414      0.995 0.020 0.980
#> GSM564691     2  0.1414      0.995 0.020 0.980
#> GSM564692     2  0.1414      0.995 0.020 0.980
#> GSM564694     2  0.1414      0.995 0.020 0.980
#> GSM564695     2  0.1414      0.995 0.020 0.980
#> GSM564696     2  0.0376      0.987 0.004 0.996
#> GSM564697     2  0.1414      0.995 0.020 0.980
#> GSM564698     2  0.0672      0.989 0.008 0.992
#> GSM564700     2  0.1414      0.995 0.020 0.980
#> GSM564701     2  0.1414      0.995 0.020 0.980
#> GSM564702     2  0.1414      0.995 0.020 0.980
#> GSM564703     1  0.0000      0.999 1.000 0.000
#> GSM564704     1  0.0000      0.999 1.000 0.000
#> GSM564705     1  0.0000      0.999 1.000 0.000
#> GSM564706     1  0.0000      0.999 1.000 0.000
#> GSM564707     1  0.0000      0.999 1.000 0.000
#> GSM564708     1  0.0000      0.999 1.000 0.000
#> GSM564709     1  0.0000      0.999 1.000 0.000
#> GSM564710     1  0.0000      0.999 1.000 0.000
#> GSM564711     1  0.0000      0.999 1.000 0.000
#> GSM564712     1  0.0000      0.999 1.000 0.000
#> GSM564713     1  0.0000      0.999 1.000 0.000
#> GSM564714     1  0.0000      0.999 1.000 0.000
#> GSM564715     1  0.0000      0.999 1.000 0.000
#> GSM564716     1  0.0000      0.999 1.000 0.000
#> GSM564717     1  0.0000      0.999 1.000 0.000
#> GSM564718     1  0.0000      0.999 1.000 0.000
#> GSM564719     1  0.0000      0.999 1.000 0.000
#> GSM564720     1  0.0000      0.999 1.000 0.000
#> GSM564721     1  0.0000      0.999 1.000 0.000
#> GSM564722     1  0.0000      0.999 1.000 0.000
#> GSM564723     1  0.0000      0.999 1.000 0.000
#> GSM564724     1  0.0000      0.999 1.000 0.000
#> GSM564725     1  0.0000      0.999 1.000 0.000
#> GSM564726     1  0.0000      0.999 1.000 0.000
#> GSM564727     1  0.0000      0.999 1.000 0.000
#> GSM564728     1  0.0000      0.999 1.000 0.000
#> GSM564729     1  0.0000      0.999 1.000 0.000
#> GSM564730     1  0.0000      0.999 1.000 0.000
#> GSM564731     1  0.0000      0.999 1.000 0.000
#> GSM564732     1  0.0000      0.999 1.000 0.000
#> GSM564733     1  0.0000      0.999 1.000 0.000
#> GSM564734     1  0.0000      0.999 1.000 0.000
#> GSM564735     1  0.0000      0.999 1.000 0.000
#> GSM564736     1  0.0000      0.999 1.000 0.000
#> GSM564737     1  0.0000      0.999 1.000 0.000
#> GSM564738     1  0.1633      0.975 0.976 0.024
#> GSM564739     1  0.0376      0.996 0.996 0.004
#> GSM564740     1  0.0000      0.999 1.000 0.000
#> GSM564741     1  0.0000      0.999 1.000 0.000
#> GSM564742     1  0.0000      0.999 1.000 0.000
#> GSM564743     1  0.0000      0.999 1.000 0.000
#> GSM564744     1  0.0000      0.999 1.000 0.000
#> GSM564745     1  0.0000      0.999 1.000 0.000
#> GSM564746     1  0.0000      0.999 1.000 0.000
#> GSM564747     1  0.0000      0.999 1.000 0.000
#> GSM564748     1  0.0000      0.999 1.000 0.000
#> GSM564749     1  0.0000      0.999 1.000 0.000
#> GSM564750     1  0.0000      0.999 1.000 0.000
#> GSM564751     1  0.0000      0.999 1.000 0.000
#> GSM564752     1  0.0000      0.999 1.000 0.000
#> GSM564753     1  0.0000      0.999 1.000 0.000
#> GSM564754     1  0.0000      0.999 1.000 0.000
#> GSM564755     1  0.0000      0.999 1.000 0.000
#> GSM564756     1  0.0000      0.999 1.000 0.000
#> GSM564757     1  0.0000      0.999 1.000 0.000
#> GSM564758     1  0.0000      0.999 1.000 0.000
#> GSM564759     1  0.0000      0.999 1.000 0.000
#> GSM564760     1  0.0000      0.999 1.000 0.000
#> GSM564761     1  0.1184      0.984 0.984 0.016
#> GSM564762     1  0.0000      0.999 1.000 0.000
#> GSM564681     2  0.1414      0.995 0.020 0.980
#> GSM564693     2  0.1414      0.995 0.020 0.980
#> GSM564646     2  0.1414      0.995 0.020 0.980
#> GSM564699     2  0.1414      0.995 0.020 0.980

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM564615     1  0.1964      0.960 0.944 0.000 0.056
#> GSM564616     2  0.0424      0.894 0.000 0.992 0.008
#> GSM564617     2  0.0237      0.894 0.000 0.996 0.004
#> GSM564618     2  0.0237      0.894 0.000 0.996 0.004
#> GSM564619     1  0.0424      0.978 0.992 0.000 0.008
#> GSM564620     1  0.0000      0.978 1.000 0.000 0.000
#> GSM564621     1  0.0592      0.977 0.988 0.000 0.012
#> GSM564622     2  0.0000      0.893 0.000 1.000 0.000
#> GSM564623     2  0.2448      0.859 0.000 0.924 0.076
#> GSM564624     2  0.0000      0.893 0.000 1.000 0.000
#> GSM564625     1  0.0747      0.976 0.984 0.000 0.016
#> GSM564626     1  0.0424      0.978 0.992 0.000 0.008
#> GSM564627     1  0.0424      0.978 0.992 0.000 0.008
#> GSM564628     2  0.0237      0.894 0.000 0.996 0.004
#> GSM564629     1  0.0592      0.978 0.988 0.000 0.012
#> GSM564630     2  0.0237      0.894 0.000 0.996 0.004
#> GSM564609     3  0.5529      0.742 0.000 0.296 0.704
#> GSM564610     1  0.0237      0.979 0.996 0.000 0.004
#> GSM564611     1  0.0475      0.978 0.992 0.004 0.004
#> GSM564612     3  0.6286      0.335 0.000 0.464 0.536
#> GSM564613     2  0.5529      0.510 0.000 0.704 0.296
#> GSM564614     1  0.1753      0.964 0.952 0.000 0.048
#> GSM564631     3  0.3482      0.922 0.000 0.128 0.872
#> GSM564632     2  0.5363      0.564 0.000 0.724 0.276
#> GSM564633     3  0.3941      0.908 0.000 0.156 0.844
#> GSM564634     2  0.6111      0.242 0.000 0.604 0.396
#> GSM564635     3  0.3038      0.918 0.000 0.104 0.896
#> GSM564636     2  0.6305     -0.151 0.000 0.516 0.484
#> GSM564637     2  0.1964      0.869 0.000 0.944 0.056
#> GSM564638     3  0.3816      0.913 0.000 0.148 0.852
#> GSM564639     3  0.3412      0.923 0.000 0.124 0.876
#> GSM564640     2  0.0237      0.894 0.000 0.996 0.004
#> GSM564641     3  0.5098      0.815 0.000 0.248 0.752
#> GSM564642     2  0.3038      0.820 0.000 0.896 0.104
#> GSM564643     2  0.2537      0.855 0.000 0.920 0.080
#> GSM564644     2  0.0237      0.894 0.000 0.996 0.004
#> GSM564645     3  0.3038      0.918 0.000 0.104 0.896
#> GSM564647     2  0.6180      0.126 0.000 0.584 0.416
#> GSM564648     2  0.0000      0.893 0.000 1.000 0.000
#> GSM564649     3  0.3340      0.923 0.000 0.120 0.880
#> GSM564650     2  0.0237      0.894 0.000 0.996 0.004
#> GSM564651     2  0.5678      0.462 0.000 0.684 0.316
#> GSM564652     2  0.3267      0.806 0.000 0.884 0.116
#> GSM564653     2  0.0000      0.893 0.000 1.000 0.000
#> GSM564654     3  0.3267      0.921 0.000 0.116 0.884
#> GSM564655     3  0.3686      0.917 0.000 0.140 0.860
#> GSM564656     3  0.3038      0.918 0.000 0.104 0.896
#> GSM564657     3  0.4452      0.879 0.000 0.192 0.808
#> GSM564658     2  0.0592      0.892 0.000 0.988 0.012
#> GSM564659     2  0.6140      0.202 0.000 0.596 0.404
#> GSM564660     2  0.0592      0.892 0.000 0.988 0.012
#> GSM564661     2  0.0237      0.894 0.000 0.996 0.004
#> GSM564662     3  0.3192      0.921 0.000 0.112 0.888
#> GSM564663     2  0.0424      0.893 0.000 0.992 0.008
#> GSM564664     2  0.1015      0.888 0.012 0.980 0.008
#> GSM564665     3  0.3340      0.921 0.000 0.120 0.880
#> GSM564666     2  0.2165      0.867 0.000 0.936 0.064
#> GSM564667     3  0.3116      0.919 0.000 0.108 0.892
#> GSM564668     3  0.3267      0.922 0.000 0.116 0.884
#> GSM564669     3  0.4974      0.835 0.000 0.236 0.764
#> GSM564670     2  0.6291     -0.102 0.000 0.532 0.468
#> GSM564671     2  0.2796      0.844 0.000 0.908 0.092
#> GSM564672     3  0.3619      0.919 0.000 0.136 0.864
#> GSM564673     2  0.1753      0.870 0.000 0.952 0.048
#> GSM564674     2  0.0424      0.893 0.000 0.992 0.008
#> GSM564675     2  0.1031      0.886 0.000 0.976 0.024
#> GSM564676     2  0.0237      0.894 0.000 0.996 0.004
#> GSM564677     2  0.1129      0.890 0.004 0.976 0.020
#> GSM564678     2  0.0237      0.894 0.000 0.996 0.004
#> GSM564679     2  0.0237      0.894 0.000 0.996 0.004
#> GSM564680     3  0.4931      0.836 0.000 0.232 0.768
#> GSM564682     3  0.6045      0.582 0.000 0.380 0.620
#> GSM564683     3  0.3038      0.918 0.000 0.104 0.896
#> GSM564684     2  0.2537      0.855 0.000 0.920 0.080
#> GSM564685     3  0.3038      0.918 0.000 0.104 0.896
#> GSM564686     2  0.2537      0.855 0.000 0.920 0.080
#> GSM564687     2  0.0661      0.890 0.008 0.988 0.004
#> GSM564688     2  0.1163      0.885 0.000 0.972 0.028
#> GSM564689     2  0.0424      0.894 0.000 0.992 0.008
#> GSM564690     2  0.0237      0.894 0.000 0.996 0.004
#> GSM564691     2  0.5785      0.410 0.000 0.668 0.332
#> GSM564692     2  0.0000      0.893 0.000 1.000 0.000
#> GSM564694     2  0.1529      0.881 0.000 0.960 0.040
#> GSM564695     2  0.4291      0.730 0.000 0.820 0.180
#> GSM564696     3  0.3038      0.918 0.000 0.104 0.896
#> GSM564697     2  0.0237      0.894 0.000 0.996 0.004
#> GSM564698     3  0.3482      0.922 0.000 0.128 0.872
#> GSM564700     2  0.2537      0.855 0.000 0.920 0.080
#> GSM564701     2  0.0747      0.891 0.000 0.984 0.016
#> GSM564702     2  0.0592      0.893 0.000 0.988 0.012
#> GSM564703     1  0.1643      0.968 0.956 0.000 0.044
#> GSM564704     1  0.0237      0.979 0.996 0.000 0.004
#> GSM564705     1  0.0424      0.978 0.992 0.000 0.008
#> GSM564706     1  0.1643      0.968 0.956 0.000 0.044
#> GSM564707     1  0.0237      0.979 0.996 0.000 0.004
#> GSM564708     1  0.2356      0.957 0.928 0.000 0.072
#> GSM564709     1  0.0237      0.979 0.996 0.000 0.004
#> GSM564710     1  0.0424      0.978 0.992 0.000 0.008
#> GSM564711     1  0.1753      0.967 0.952 0.000 0.048
#> GSM564712     1  0.0237      0.979 0.996 0.000 0.004
#> GSM564713     1  0.1753      0.967 0.952 0.000 0.048
#> GSM564714     1  0.1753      0.967 0.952 0.000 0.048
#> GSM564715     1  0.0424      0.978 0.992 0.000 0.008
#> GSM564716     1  0.0424      0.979 0.992 0.000 0.008
#> GSM564717     1  0.0424      0.978 0.992 0.000 0.008
#> GSM564718     1  0.1860      0.965 0.948 0.000 0.052
#> GSM564719     1  0.0237      0.979 0.996 0.000 0.004
#> GSM564720     1  0.0424      0.978 0.992 0.000 0.008
#> GSM564721     1  0.0424      0.978 0.992 0.000 0.008
#> GSM564722     1  0.0592      0.977 0.988 0.000 0.012
#> GSM564723     1  0.0424      0.978 0.992 0.000 0.008
#> GSM564724     1  0.2261      0.957 0.932 0.000 0.068
#> GSM564725     1  0.0237      0.978 0.996 0.000 0.004
#> GSM564726     1  0.1860      0.966 0.948 0.000 0.052
#> GSM564727     1  0.0747      0.976 0.984 0.000 0.016
#> GSM564728     1  0.1964      0.960 0.944 0.000 0.056
#> GSM564729     1  0.1860      0.962 0.948 0.000 0.052
#> GSM564730     1  0.0424      0.978 0.992 0.000 0.008
#> GSM564731     1  0.1643      0.968 0.956 0.000 0.044
#> GSM564732     1  0.0424      0.978 0.992 0.000 0.008
#> GSM564733     1  0.1753      0.967 0.952 0.000 0.048
#> GSM564734     1  0.0237      0.979 0.996 0.000 0.004
#> GSM564735     1  0.1753      0.969 0.952 0.000 0.048
#> GSM564736     1  0.1964      0.964 0.944 0.000 0.056
#> GSM564737     1  0.0424      0.978 0.992 0.000 0.008
#> GSM564738     1  0.2774      0.950 0.920 0.008 0.072
#> GSM564739     1  0.1399      0.974 0.968 0.004 0.028
#> GSM564740     1  0.2590      0.948 0.924 0.004 0.072
#> GSM564741     1  0.2261      0.958 0.932 0.000 0.068
#> GSM564742     1  0.1643      0.968 0.956 0.000 0.044
#> GSM564743     1  0.0237      0.979 0.996 0.000 0.004
#> GSM564744     1  0.0424      0.978 0.992 0.000 0.008
#> GSM564745     1  0.0592      0.978 0.988 0.000 0.012
#> GSM564746     1  0.0424      0.978 0.992 0.000 0.008
#> GSM564747     1  0.0237      0.979 0.996 0.000 0.004
#> GSM564748     1  0.1643      0.968 0.956 0.000 0.044
#> GSM564749     1  0.0424      0.978 0.992 0.000 0.008
#> GSM564750     1  0.1289      0.975 0.968 0.000 0.032
#> GSM564751     1  0.1643      0.968 0.956 0.000 0.044
#> GSM564752     1  0.1860      0.962 0.948 0.000 0.052
#> GSM564753     1  0.1753      0.967 0.952 0.000 0.048
#> GSM564754     1  0.0424      0.978 0.992 0.000 0.008
#> GSM564755     1  0.1964      0.960 0.944 0.000 0.056
#> GSM564756     1  0.0237      0.979 0.996 0.000 0.004
#> GSM564757     1  0.1964      0.960 0.944 0.000 0.056
#> GSM564758     1  0.1643      0.970 0.956 0.000 0.044
#> GSM564759     1  0.1753      0.967 0.952 0.000 0.048
#> GSM564760     1  0.0592      0.978 0.988 0.000 0.012
#> GSM564761     1  0.1015      0.974 0.980 0.008 0.012
#> GSM564762     1  0.0592      0.977 0.988 0.000 0.012
#> GSM564681     2  0.0237      0.894 0.000 0.996 0.004
#> GSM564693     2  0.0592      0.892 0.000 0.988 0.012
#> GSM564646     2  0.2537      0.855 0.000 0.920 0.080
#> GSM564699     2  0.2537      0.855 0.000 0.920 0.080

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM564615     1  0.5085      0.743 0.616 0.008 0.000 0.376
#> GSM564616     2  0.2805      0.810 0.012 0.888 0.100 0.000
#> GSM564617     2  0.3166      0.810 0.016 0.868 0.116 0.000
#> GSM564618     2  0.3168      0.784 0.060 0.884 0.056 0.000
#> GSM564619     1  0.4933      0.922 0.568 0.000 0.000 0.432
#> GSM564620     1  0.4941      0.921 0.564 0.000 0.000 0.436
#> GSM564621     1  0.4888      0.897 0.588 0.000 0.000 0.412
#> GSM564622     2  0.3280      0.810 0.016 0.860 0.124 0.000
#> GSM564623     2  0.4722      0.618 0.300 0.692 0.008 0.000
#> GSM564624     2  0.3557      0.805 0.036 0.856 0.108 0.000
#> GSM564625     1  0.4888      0.898 0.588 0.000 0.000 0.412
#> GSM564626     1  0.4941      0.923 0.564 0.000 0.000 0.436
#> GSM564627     1  0.4933      0.915 0.568 0.000 0.000 0.432
#> GSM564628     2  0.3453      0.796 0.052 0.868 0.080 0.000
#> GSM564629     1  0.4933      0.922 0.568 0.000 0.000 0.432
#> GSM564630     2  0.3105      0.811 0.012 0.868 0.120 0.000
#> GSM564609     3  0.3806      0.778 0.020 0.156 0.824 0.000
#> GSM564610     1  0.4948      0.923 0.560 0.000 0.000 0.440
#> GSM564611     1  0.4961      0.918 0.552 0.000 0.000 0.448
#> GSM564612     3  0.4098      0.744 0.012 0.204 0.784 0.000
#> GSM564613     3  0.5088      0.351 0.004 0.424 0.572 0.000
#> GSM564614     1  0.5281      0.747 0.528 0.008 0.000 0.464
#> GSM564631     3  0.0524      0.858 0.000 0.008 0.988 0.004
#> GSM564632     3  0.5536      0.423 0.024 0.384 0.592 0.000
#> GSM564633     3  0.1305      0.853 0.000 0.036 0.960 0.004
#> GSM564634     3  0.4920      0.452 0.000 0.368 0.628 0.004
#> GSM564635     3  0.0376      0.857 0.000 0.004 0.992 0.004
#> GSM564636     3  0.4158      0.729 0.008 0.224 0.768 0.000
#> GSM564637     2  0.6158      0.577 0.080 0.628 0.292 0.000
#> GSM564638     3  0.1109      0.855 0.000 0.028 0.968 0.004
#> GSM564639     3  0.0376      0.857 0.000 0.004 0.992 0.004
#> GSM564640     2  0.3024      0.804 0.000 0.852 0.148 0.000
#> GSM564641     3  0.3757      0.781 0.020 0.152 0.828 0.000
#> GSM564642     2  0.5152      0.571 0.020 0.664 0.316 0.000
#> GSM564643     2  0.4868      0.612 0.304 0.684 0.012 0.000
#> GSM564644     2  0.3217      0.807 0.012 0.860 0.128 0.000
#> GSM564645     3  0.0188      0.855 0.000 0.000 0.996 0.004
#> GSM564647     3  0.4511      0.669 0.008 0.268 0.724 0.000
#> GSM564648     2  0.3052      0.806 0.004 0.860 0.136 0.000
#> GSM564649     3  0.0000      0.856 0.000 0.000 1.000 0.000
#> GSM564650     2  0.2909      0.808 0.020 0.888 0.092 0.000
#> GSM564651     3  0.5105      0.273 0.004 0.432 0.564 0.000
#> GSM564652     2  0.5026      0.583 0.016 0.672 0.312 0.000
#> GSM564653     2  0.3032      0.811 0.008 0.868 0.124 0.000
#> GSM564654     3  0.0524      0.858 0.000 0.008 0.988 0.004
#> GSM564655     3  0.0188      0.855 0.000 0.000 0.996 0.004
#> GSM564656     3  0.0188      0.855 0.000 0.000 0.996 0.004
#> GSM564657     3  0.2081      0.831 0.000 0.084 0.916 0.000
#> GSM564658     2  0.3969      0.778 0.016 0.804 0.180 0.000
#> GSM564659     3  0.4401      0.683 0.004 0.272 0.724 0.000
#> GSM564660     2  0.3354      0.797 0.044 0.872 0.084 0.000
#> GSM564661     2  0.3249      0.805 0.008 0.852 0.140 0.000
#> GSM564662     3  0.0188      0.855 0.000 0.000 0.996 0.004
#> GSM564663     2  0.3672      0.792 0.012 0.824 0.164 0.000
#> GSM564664     2  0.4362      0.791 0.024 0.808 0.156 0.012
#> GSM564665     3  0.0524      0.858 0.000 0.008 0.988 0.004
#> GSM564666     2  0.4690      0.630 0.276 0.712 0.012 0.000
#> GSM564667     3  0.0376      0.857 0.000 0.004 0.992 0.004
#> GSM564668     3  0.0376      0.857 0.000 0.004 0.992 0.004
#> GSM564669     3  0.2010      0.845 0.004 0.060 0.932 0.004
#> GSM564670     3  0.4630      0.677 0.016 0.252 0.732 0.000
#> GSM564671     2  0.5024      0.571 0.360 0.632 0.008 0.000
#> GSM564672     3  0.0524      0.858 0.000 0.008 0.988 0.004
#> GSM564673     2  0.3764      0.744 0.000 0.784 0.216 0.000
#> GSM564674     2  0.3300      0.805 0.008 0.848 0.144 0.000
#> GSM564675     2  0.4599      0.685 0.212 0.760 0.028 0.000
#> GSM564676     2  0.3105      0.809 0.012 0.868 0.120 0.000
#> GSM564677     2  0.4458      0.759 0.016 0.780 0.196 0.008
#> GSM564678     2  0.3105      0.809 0.012 0.868 0.120 0.000
#> GSM564679     2  0.3324      0.805 0.012 0.852 0.136 0.000
#> GSM564680     3  0.1109      0.856 0.000 0.028 0.968 0.004
#> GSM564682     3  0.4012      0.754 0.016 0.184 0.800 0.000
#> GSM564683     3  0.0188      0.855 0.000 0.000 0.996 0.004
#> GSM564684     2  0.5007      0.574 0.356 0.636 0.008 0.000
#> GSM564685     3  0.0188      0.855 0.000 0.000 0.996 0.004
#> GSM564686     2  0.5007      0.574 0.356 0.636 0.008 0.000
#> GSM564687     2  0.4000      0.801 0.016 0.828 0.144 0.012
#> GSM564688     2  0.4228      0.723 0.008 0.760 0.232 0.000
#> GSM564689     2  0.3625      0.794 0.012 0.828 0.160 0.000
#> GSM564690     2  0.3271      0.806 0.012 0.856 0.132 0.000
#> GSM564691     3  0.4973      0.546 0.008 0.348 0.644 0.000
#> GSM564692     2  0.3032      0.810 0.008 0.868 0.124 0.000
#> GSM564694     2  0.4900      0.664 0.236 0.732 0.032 0.000
#> GSM564695     2  0.6235      0.191 0.056 0.524 0.420 0.000
#> GSM564696     3  0.0188      0.855 0.000 0.000 0.996 0.004
#> GSM564697     2  0.3529      0.800 0.012 0.836 0.152 0.000
#> GSM564698     3  0.0779      0.858 0.000 0.016 0.980 0.004
#> GSM564700     2  0.5007      0.574 0.356 0.636 0.008 0.000
#> GSM564701     2  0.4253      0.750 0.016 0.776 0.208 0.000
#> GSM564702     2  0.3335      0.808 0.016 0.856 0.128 0.000
#> GSM564703     4  0.1302      0.811 0.000 0.000 0.044 0.956
#> GSM564704     1  0.4981      0.905 0.536 0.000 0.000 0.464
#> GSM564705     1  0.4961      0.917 0.552 0.000 0.000 0.448
#> GSM564706     4  0.1302      0.811 0.000 0.000 0.044 0.956
#> GSM564707     4  0.5155     -0.780 0.468 0.000 0.004 0.528
#> GSM564708     4  0.1302      0.811 0.000 0.000 0.044 0.956
#> GSM564709     1  0.4981      0.904 0.536 0.000 0.000 0.464
#> GSM564710     1  0.5151      0.908 0.532 0.000 0.004 0.464
#> GSM564711     4  0.1302      0.811 0.000 0.000 0.044 0.956
#> GSM564712     1  0.4967      0.915 0.548 0.000 0.000 0.452
#> GSM564713     4  0.1209      0.804 0.004 0.000 0.032 0.964
#> GSM564714     4  0.1302      0.811 0.000 0.000 0.044 0.956
#> GSM564715     1  0.4981      0.905 0.536 0.000 0.000 0.464
#> GSM564716     1  0.4999      0.874 0.508 0.000 0.000 0.492
#> GSM564717     1  0.5132      0.920 0.548 0.000 0.004 0.448
#> GSM564718     4  0.1302      0.811 0.000 0.000 0.044 0.956
#> GSM564719     1  0.4955      0.919 0.556 0.000 0.000 0.444
#> GSM564720     1  0.4948      0.922 0.560 0.000 0.000 0.440
#> GSM564721     1  0.4933      0.922 0.568 0.000 0.000 0.432
#> GSM564722     4  0.4817     -0.524 0.388 0.000 0.000 0.612
#> GSM564723     1  0.4941      0.921 0.564 0.000 0.000 0.436
#> GSM564724     4  0.1302      0.811 0.000 0.000 0.044 0.956
#> GSM564725     1  0.4972      0.891 0.544 0.000 0.000 0.456
#> GSM564726     4  0.2654      0.712 0.108 0.004 0.000 0.888
#> GSM564727     1  0.4888      0.874 0.588 0.000 0.000 0.412
#> GSM564728     1  0.5212      0.735 0.572 0.008 0.000 0.420
#> GSM564729     1  0.5125      0.785 0.604 0.008 0.000 0.388
#> GSM564730     1  0.4933      0.923 0.568 0.000 0.000 0.432
#> GSM564731     4  0.1677      0.803 0.012 0.000 0.040 0.948
#> GSM564732     1  0.4916      0.904 0.576 0.000 0.000 0.424
#> GSM564733     4  0.1302      0.811 0.000 0.000 0.044 0.956
#> GSM564734     1  0.4933      0.922 0.568 0.000 0.000 0.432
#> GSM564735     4  0.2032      0.786 0.036 0.000 0.028 0.936
#> GSM564736     4  0.1635      0.806 0.008 0.000 0.044 0.948
#> GSM564737     1  0.4961      0.913 0.552 0.000 0.000 0.448
#> GSM564738     4  0.1798      0.802 0.016 0.000 0.040 0.944
#> GSM564739     4  0.1733      0.784 0.024 0.000 0.028 0.948
#> GSM564740     4  0.5597     -0.520 0.464 0.020 0.000 0.516
#> GSM564741     4  0.1635      0.806 0.008 0.000 0.044 0.948
#> GSM564742     4  0.1302      0.811 0.000 0.000 0.044 0.956
#> GSM564743     1  0.4948      0.924 0.560 0.000 0.000 0.440
#> GSM564744     1  0.4948      0.922 0.560 0.000 0.000 0.440
#> GSM564745     1  0.4933      0.921 0.568 0.000 0.000 0.432
#> GSM564746     1  0.4933      0.922 0.568 0.000 0.000 0.432
#> GSM564747     4  0.3907      0.270 0.232 0.000 0.000 0.768
#> GSM564748     4  0.1302      0.811 0.000 0.000 0.044 0.956
#> GSM564749     1  0.4941      0.921 0.564 0.000 0.000 0.436
#> GSM564750     4  0.2345      0.712 0.100 0.000 0.000 0.900
#> GSM564751     4  0.1302      0.811 0.000 0.000 0.044 0.956
#> GSM564752     4  0.3945      0.534 0.216 0.004 0.000 0.780
#> GSM564753     4  0.1302      0.811 0.000 0.000 0.044 0.956
#> GSM564754     1  0.4977      0.913 0.540 0.000 0.000 0.460
#> GSM564755     1  0.5203      0.729 0.576 0.008 0.000 0.416
#> GSM564756     1  0.4996      0.888 0.516 0.000 0.000 0.484
#> GSM564757     1  0.5085      0.743 0.616 0.008 0.000 0.376
#> GSM564758     4  0.3942      0.393 0.236 0.000 0.000 0.764
#> GSM564759     4  0.1211      0.806 0.000 0.000 0.040 0.960
#> GSM564760     4  0.4989     -0.792 0.472 0.000 0.000 0.528
#> GSM564761     1  0.5421      0.917 0.548 0.004 0.008 0.440
#> GSM564762     4  0.3528      0.448 0.192 0.000 0.000 0.808
#> GSM564681     2  0.4829      0.742 0.156 0.776 0.068 0.000
#> GSM564693     2  0.3216      0.766 0.076 0.880 0.044 0.000
#> GSM564646     2  0.4955      0.585 0.344 0.648 0.008 0.000
#> GSM564699     2  0.5152      0.597 0.316 0.664 0.020 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM564615     5  0.6102     0.9469 0.232 0.000 0.000 0.200 0.568
#> GSM564616     2  0.0807     0.8544 0.000 0.976 0.012 0.000 0.012
#> GSM564617     2  0.0798     0.8525 0.000 0.976 0.008 0.000 0.016
#> GSM564618     2  0.1478     0.8427 0.000 0.936 0.000 0.000 0.064
#> GSM564619     1  0.0865     0.8682 0.972 0.000 0.000 0.024 0.004
#> GSM564620     1  0.1831     0.8477 0.920 0.000 0.000 0.076 0.004
#> GSM564621     1  0.3164     0.7982 0.852 0.000 0.000 0.104 0.044
#> GSM564622     2  0.1211     0.8518 0.000 0.960 0.024 0.000 0.016
#> GSM564623     2  0.4151     0.6819 0.000 0.652 0.004 0.000 0.344
#> GSM564624     2  0.1403     0.8516 0.000 0.952 0.024 0.000 0.024
#> GSM564625     1  0.4022     0.7199 0.796 0.000 0.000 0.100 0.104
#> GSM564626     1  0.0898     0.8673 0.972 0.000 0.000 0.020 0.008
#> GSM564627     1  0.2293     0.8390 0.900 0.000 0.000 0.084 0.016
#> GSM564628     2  0.1043     0.8484 0.000 0.960 0.000 0.000 0.040
#> GSM564629     1  0.1082     0.8679 0.964 0.000 0.000 0.028 0.008
#> GSM564630     2  0.1211     0.8531 0.000 0.960 0.024 0.000 0.016
#> GSM564609     3  0.3819     0.7062 0.000 0.228 0.756 0.000 0.016
#> GSM564610     1  0.0771     0.8683 0.976 0.000 0.000 0.020 0.004
#> GSM564611     1  0.0771     0.8654 0.976 0.000 0.000 0.020 0.004
#> GSM564612     3  0.3790     0.6657 0.000 0.272 0.724 0.000 0.004
#> GSM564613     2  0.4718     0.0706 0.000 0.540 0.444 0.000 0.016
#> GSM564614     5  0.6199     0.9447 0.236 0.000 0.000 0.212 0.552
#> GSM564631     3  0.0324     0.8425 0.000 0.004 0.992 0.000 0.004
#> GSM564632     3  0.5237     0.1232 0.000 0.468 0.488 0.000 0.044
#> GSM564633     3  0.1270     0.8329 0.000 0.052 0.948 0.000 0.000
#> GSM564634     3  0.4420     0.1917 0.000 0.448 0.548 0.000 0.004
#> GSM564635     3  0.0162     0.8402 0.000 0.000 0.996 0.000 0.004
#> GSM564636     3  0.3807     0.6940 0.000 0.240 0.748 0.000 0.012
#> GSM564637     2  0.5013     0.6463 0.000 0.696 0.204 0.000 0.100
#> GSM564638     3  0.1357     0.8336 0.000 0.048 0.948 0.000 0.004
#> GSM564639     3  0.0324     0.8425 0.000 0.004 0.992 0.000 0.004
#> GSM564640     2  0.0880     0.8524 0.000 0.968 0.032 0.000 0.000
#> GSM564641     3  0.3863     0.6819 0.000 0.248 0.740 0.000 0.012
#> GSM564642     2  0.3387     0.7496 0.012 0.828 0.148 0.000 0.012
#> GSM564643     2  0.4473     0.6245 0.000 0.580 0.008 0.000 0.412
#> GSM564644     2  0.0912     0.8525 0.000 0.972 0.016 0.000 0.012
#> GSM564645     3  0.0162     0.8402 0.000 0.000 0.996 0.000 0.004
#> GSM564647     3  0.4576     0.4535 0.000 0.376 0.608 0.000 0.016
#> GSM564648     2  0.1300     0.8505 0.000 0.956 0.028 0.000 0.016
#> GSM564649     3  0.0162     0.8430 0.000 0.004 0.996 0.000 0.000
#> GSM564650     2  0.0798     0.8547 0.000 0.976 0.008 0.000 0.016
#> GSM564651     2  0.4481     0.1909 0.000 0.576 0.416 0.000 0.008
#> GSM564652     2  0.2189     0.8193 0.000 0.904 0.084 0.000 0.012
#> GSM564653     2  0.0865     0.8544 0.000 0.972 0.024 0.000 0.004
#> GSM564654     3  0.0000     0.8416 0.000 0.000 1.000 0.000 0.000
#> GSM564655     3  0.0162     0.8421 0.000 0.000 0.996 0.000 0.004
#> GSM564656     3  0.0162     0.8402 0.000 0.000 0.996 0.000 0.004
#> GSM564657     3  0.2411     0.8039 0.000 0.108 0.884 0.000 0.008
#> GSM564658     2  0.1393     0.8501 0.008 0.956 0.024 0.000 0.012
#> GSM564659     3  0.4401     0.5613 0.000 0.328 0.656 0.000 0.016
#> GSM564660     2  0.1557     0.8462 0.000 0.940 0.008 0.000 0.052
#> GSM564661     2  0.0798     0.8534 0.000 0.976 0.016 0.000 0.008
#> GSM564662     3  0.0324     0.8425 0.000 0.004 0.992 0.000 0.004
#> GSM564663     2  0.1299     0.8507 0.008 0.960 0.020 0.000 0.012
#> GSM564664     2  0.1617     0.8496 0.020 0.948 0.020 0.000 0.012
#> GSM564665     3  0.0000     0.8416 0.000 0.000 1.000 0.000 0.000
#> GSM564666     2  0.4101     0.6964 0.000 0.664 0.004 0.000 0.332
#> GSM564667     3  0.0324     0.8425 0.000 0.004 0.992 0.000 0.004
#> GSM564668     3  0.0162     0.8430 0.000 0.004 0.996 0.000 0.000
#> GSM564669     3  0.1331     0.8354 0.000 0.040 0.952 0.000 0.008
#> GSM564670     2  0.4653    -0.0426 0.000 0.516 0.472 0.000 0.012
#> GSM564671     2  0.4430     0.5810 0.000 0.540 0.004 0.000 0.456
#> GSM564672     3  0.0162     0.8430 0.000 0.004 0.996 0.000 0.000
#> GSM564673     2  0.1197     0.8478 0.000 0.952 0.048 0.000 0.000
#> GSM564674     2  0.0955     0.8531 0.000 0.968 0.028 0.000 0.004
#> GSM564675     2  0.3048     0.7896 0.000 0.820 0.004 0.000 0.176
#> GSM564676     2  0.0912     0.8525 0.000 0.972 0.016 0.000 0.012
#> GSM564677     2  0.2186     0.8384 0.016 0.924 0.044 0.004 0.012
#> GSM564678     2  0.0807     0.8528 0.000 0.976 0.012 0.000 0.012
#> GSM564679     2  0.0912     0.8525 0.000 0.972 0.016 0.000 0.012
#> GSM564680     3  0.0404     0.8427 0.000 0.012 0.988 0.000 0.000
#> GSM564682     3  0.4734     0.5274 0.008 0.344 0.632 0.000 0.016
#> GSM564683     3  0.0162     0.8402 0.000 0.000 0.996 0.000 0.004
#> GSM564684     2  0.4196     0.6738 0.000 0.640 0.004 0.000 0.356
#> GSM564685     3  0.0162     0.8402 0.000 0.000 0.996 0.000 0.004
#> GSM564686     2  0.4211     0.6726 0.000 0.636 0.004 0.000 0.360
#> GSM564687     2  0.1574     0.8502 0.012 0.952 0.020 0.004 0.012
#> GSM564688     2  0.2068     0.8182 0.000 0.904 0.092 0.000 0.004
#> GSM564689     2  0.0992     0.8531 0.000 0.968 0.024 0.000 0.008
#> GSM564690     2  0.1012     0.8518 0.000 0.968 0.020 0.000 0.012
#> GSM564691     3  0.4902     0.2648 0.008 0.460 0.520 0.000 0.012
#> GSM564692     2  0.1124     0.8520 0.000 0.960 0.036 0.000 0.004
#> GSM564694     2  0.3821     0.7639 0.000 0.764 0.020 0.000 0.216
#> GSM564695     2  0.4967     0.5060 0.000 0.660 0.280 0.000 0.060
#> GSM564696     3  0.0000     0.8416 0.000 0.000 1.000 0.000 0.000
#> GSM564697     2  0.1173     0.8514 0.004 0.964 0.020 0.000 0.012
#> GSM564698     3  0.0703     0.8410 0.000 0.024 0.976 0.000 0.000
#> GSM564700     2  0.4196     0.6738 0.000 0.640 0.004 0.000 0.356
#> GSM564701     2  0.1651     0.8469 0.008 0.944 0.036 0.000 0.012
#> GSM564702     2  0.1216     0.8559 0.000 0.960 0.020 0.000 0.020
#> GSM564703     4  0.1195     0.8847 0.028 0.000 0.000 0.960 0.012
#> GSM564704     1  0.2561     0.7766 0.856 0.000 0.000 0.144 0.000
#> GSM564705     1  0.0000     0.8547 1.000 0.000 0.000 0.000 0.000
#> GSM564706     4  0.0992     0.8855 0.024 0.000 0.000 0.968 0.008
#> GSM564707     1  0.1792     0.8216 0.916 0.000 0.000 0.084 0.000
#> GSM564708     4  0.1211     0.8835 0.024 0.000 0.000 0.960 0.016
#> GSM564709     1  0.2997     0.7616 0.840 0.000 0.000 0.148 0.012
#> GSM564710     1  0.0703     0.8646 0.976 0.000 0.000 0.024 0.000
#> GSM564711     4  0.0865     0.8855 0.024 0.000 0.000 0.972 0.004
#> GSM564712     1  0.0609     0.8617 0.980 0.000 0.000 0.020 0.000
#> GSM564713     4  0.0992     0.8859 0.024 0.000 0.000 0.968 0.008
#> GSM564714     4  0.0992     0.8855 0.024 0.000 0.000 0.968 0.008
#> GSM564715     1  0.1282     0.8657 0.952 0.000 0.000 0.044 0.004
#> GSM564716     1  0.2612     0.8049 0.868 0.000 0.000 0.124 0.008
#> GSM564717     1  0.1205     0.8683 0.956 0.000 0.000 0.040 0.004
#> GSM564718     4  0.0992     0.8854 0.024 0.000 0.000 0.968 0.008
#> GSM564719     1  0.0290     0.8570 0.992 0.000 0.000 0.008 0.000
#> GSM564720     1  0.0000     0.8547 1.000 0.000 0.000 0.000 0.000
#> GSM564721     1  0.0798     0.8666 0.976 0.000 0.000 0.016 0.008
#> GSM564722     1  0.4718     0.2795 0.628 0.000 0.000 0.344 0.028
#> GSM564723     1  0.0290     0.8574 0.992 0.000 0.000 0.008 0.000
#> GSM564724     4  0.1211     0.8835 0.024 0.000 0.000 0.960 0.016
#> GSM564725     1  0.3304     0.7203 0.816 0.000 0.000 0.168 0.016
#> GSM564726     4  0.4065     0.4882 0.016 0.000 0.000 0.720 0.264
#> GSM564727     1  0.5798     0.1835 0.604 0.000 0.000 0.148 0.248
#> GSM564728     5  0.6171     0.9529 0.240 0.000 0.000 0.204 0.556
#> GSM564729     5  0.6174     0.9394 0.256 0.000 0.000 0.192 0.552
#> GSM564730     1  0.1281     0.8668 0.956 0.000 0.000 0.032 0.012
#> GSM564731     4  0.1364     0.8781 0.036 0.000 0.000 0.952 0.012
#> GSM564732     1  0.4280     0.6772 0.772 0.000 0.000 0.140 0.088
#> GSM564733     4  0.0865     0.8855 0.024 0.000 0.000 0.972 0.004
#> GSM564734     1  0.1364     0.8657 0.952 0.000 0.000 0.036 0.012
#> GSM564735     4  0.1399     0.8803 0.028 0.000 0.000 0.952 0.020
#> GSM564736     4  0.1106     0.8846 0.024 0.000 0.000 0.964 0.012
#> GSM564737     1  0.0162     0.8536 0.996 0.000 0.000 0.004 0.000
#> GSM564738     4  0.1564     0.8792 0.024 0.000 0.004 0.948 0.024
#> GSM564739     4  0.2358     0.8029 0.104 0.000 0.000 0.888 0.008
#> GSM564740     5  0.6518     0.7859 0.240 0.000 0.000 0.276 0.484
#> GSM564741     4  0.1211     0.8834 0.024 0.000 0.000 0.960 0.016
#> GSM564742     4  0.0992     0.8855 0.024 0.000 0.000 0.968 0.008
#> GSM564743     1  0.0693     0.8654 0.980 0.000 0.000 0.012 0.008
#> GSM564744     1  0.0703     0.8671 0.976 0.000 0.000 0.024 0.000
#> GSM564745     1  0.1670     0.8594 0.936 0.000 0.000 0.052 0.012
#> GSM564746     1  0.0771     0.8674 0.976 0.000 0.000 0.020 0.004
#> GSM564747     1  0.4557     0.0287 0.516 0.000 0.000 0.476 0.008
#> GSM564748     4  0.0992     0.8855 0.024 0.000 0.000 0.968 0.008
#> GSM564749     1  0.0162     0.8536 0.996 0.000 0.000 0.004 0.000
#> GSM564750     4  0.3110     0.7902 0.080 0.000 0.000 0.860 0.060
#> GSM564751     4  0.1082     0.8838 0.028 0.000 0.000 0.964 0.008
#> GSM564752     4  0.4825     0.0582 0.024 0.000 0.000 0.568 0.408
#> GSM564753     4  0.0992     0.8855 0.024 0.000 0.000 0.968 0.008
#> GSM564754     1  0.2017     0.8519 0.912 0.000 0.000 0.080 0.008
#> GSM564755     5  0.6171     0.9529 0.240 0.000 0.000 0.204 0.556
#> GSM564756     1  0.2127     0.8301 0.892 0.000 0.000 0.108 0.000
#> GSM564757     5  0.6087     0.9427 0.244 0.000 0.000 0.188 0.568
#> GSM564758     4  0.6433    -0.3804 0.184 0.000 0.000 0.464 0.352
#> GSM564759     4  0.0992     0.8855 0.024 0.000 0.000 0.968 0.008
#> GSM564760     1  0.5810     0.0943 0.580 0.000 0.000 0.296 0.124
#> GSM564761     1  0.1386     0.8591 0.952 0.016 0.000 0.032 0.000
#> GSM564762     4  0.4798     0.0575 0.396 0.000 0.000 0.580 0.024
#> GSM564681     2  0.1894     0.8415 0.000 0.920 0.008 0.000 0.072
#> GSM564693     2  0.1768     0.8395 0.000 0.924 0.004 0.000 0.072
#> GSM564646     2  0.4196     0.6738 0.000 0.640 0.004 0.000 0.356
#> GSM564699     2  0.5420     0.5532 0.000 0.524 0.060 0.000 0.416

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM564615     2  0.0665     0.8679 0.008 0.980 0.000 0.008 0.000 0.004
#> GSM564616     5  0.0547     0.8998 0.000 0.000 0.000 0.000 0.980 0.020
#> GSM564617     5  0.0632     0.8939 0.000 0.000 0.000 0.000 0.976 0.024
#> GSM564618     5  0.3244     0.6233 0.000 0.000 0.000 0.000 0.732 0.268
#> GSM564619     1  0.0146     0.9314 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM564620     1  0.0458     0.9260 0.984 0.016 0.000 0.000 0.000 0.000
#> GSM564621     1  0.3804     0.2338 0.576 0.424 0.000 0.000 0.000 0.000
#> GSM564622     5  0.0547     0.9006 0.000 0.000 0.000 0.000 0.980 0.020
#> GSM564623     6  0.0937     0.9432 0.000 0.000 0.000 0.000 0.040 0.960
#> GSM564624     5  0.0937     0.8900 0.000 0.000 0.000 0.000 0.960 0.040
#> GSM564625     1  0.3795     0.4037 0.632 0.364 0.000 0.000 0.000 0.004
#> GSM564626     1  0.0000     0.9317 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564627     1  0.2793     0.7251 0.800 0.200 0.000 0.000 0.000 0.000
#> GSM564628     5  0.2883     0.7075 0.000 0.000 0.000 0.000 0.788 0.212
#> GSM564629     1  0.0146     0.9314 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM564630     5  0.0458     0.8980 0.000 0.000 0.000 0.000 0.984 0.016
#> GSM564609     3  0.4621     0.6251 0.000 0.012 0.676 0.000 0.256 0.056
#> GSM564610     1  0.0146     0.9314 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM564611     1  0.0291     0.9300 0.992 0.004 0.000 0.000 0.004 0.000
#> GSM564612     3  0.4664     0.6118 0.000 0.012 0.668 0.000 0.264 0.056
#> GSM564613     5  0.3139     0.8134 0.000 0.012 0.084 0.000 0.848 0.056
#> GSM564614     2  0.0508     0.8682 0.004 0.984 0.000 0.012 0.000 0.000
#> GSM564631     3  0.0000     0.8753 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564632     5  0.5383    -0.0618 0.000 0.012 0.440 0.000 0.472 0.076
#> GSM564633     3  0.0972     0.8616 0.000 0.000 0.964 0.000 0.028 0.008
#> GSM564634     5  0.4531     0.6286 0.000 0.012 0.240 0.000 0.692 0.056
#> GSM564635     3  0.0000     0.8753 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564636     3  0.4395     0.6251 0.000 0.008 0.684 0.000 0.264 0.044
#> GSM564637     5  0.4200     0.7403 0.000 0.012 0.092 0.000 0.760 0.136
#> GSM564638     3  0.1151     0.8569 0.000 0.000 0.956 0.000 0.032 0.012
#> GSM564639     3  0.0000     0.8753 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564640     5  0.0000     0.9025 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564641     3  0.4474     0.6501 0.000 0.012 0.696 0.000 0.240 0.052
#> GSM564642     5  0.1606     0.8764 0.000 0.008 0.004 0.000 0.932 0.056
#> GSM564643     6  0.0291     0.9497 0.000 0.004 0.000 0.000 0.004 0.992
#> GSM564644     5  0.0000     0.9025 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564645     3  0.0000     0.8753 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564647     3  0.5152     0.2252 0.000 0.012 0.504 0.000 0.428 0.056
#> GSM564648     5  0.0692     0.8988 0.000 0.004 0.000 0.000 0.976 0.020
#> GSM564649     3  0.0363     0.8721 0.000 0.000 0.988 0.000 0.000 0.012
#> GSM564650     5  0.0260     0.9016 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM564651     5  0.3190     0.8178 0.000 0.012 0.088 0.000 0.844 0.056
#> GSM564652     5  0.0603     0.8997 0.000 0.004 0.000 0.000 0.980 0.016
#> GSM564653     5  0.0146     0.9022 0.000 0.000 0.000 0.000 0.996 0.004
#> GSM564654     3  0.0000     0.8753 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564655     3  0.0551     0.8720 0.000 0.004 0.984 0.000 0.004 0.008
#> GSM564656     3  0.0000     0.8753 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564657     3  0.1078     0.8629 0.000 0.008 0.964 0.000 0.012 0.016
#> GSM564658     5  0.0000     0.9025 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564659     3  0.5028     0.4591 0.000 0.012 0.588 0.000 0.340 0.060
#> GSM564660     5  0.2048     0.8480 0.000 0.000 0.000 0.000 0.880 0.120
#> GSM564661     5  0.0000     0.9025 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564662     3  0.0000     0.8753 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564663     5  0.0000     0.9025 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564664     5  0.0000     0.9025 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564665     3  0.0508     0.8711 0.000 0.004 0.984 0.000 0.000 0.012
#> GSM564666     6  0.0291     0.9497 0.000 0.004 0.000 0.000 0.004 0.992
#> GSM564667     3  0.0146     0.8746 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM564668     3  0.0291     0.8737 0.000 0.004 0.992 0.000 0.000 0.004
#> GSM564669     3  0.0000     0.8753 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564670     5  0.4239     0.6669 0.000 0.012 0.196 0.000 0.736 0.056
#> GSM564671     6  0.0363     0.9545 0.000 0.000 0.000 0.000 0.012 0.988
#> GSM564672     3  0.0000     0.8753 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564673     5  0.0692     0.8987 0.000 0.004 0.000 0.000 0.976 0.020
#> GSM564674     5  0.0363     0.9011 0.000 0.000 0.000 0.000 0.988 0.012
#> GSM564675     6  0.2454     0.7975 0.000 0.000 0.000 0.000 0.160 0.840
#> GSM564676     5  0.0000     0.9025 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564677     5  0.0508     0.9017 0.004 0.000 0.000 0.000 0.984 0.012
#> GSM564678     5  0.0000     0.9025 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564679     5  0.0000     0.9025 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564680     3  0.0000     0.8753 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564682     3  0.5088     0.3584 0.000 0.012 0.548 0.000 0.384 0.056
#> GSM564683     3  0.0000     0.8753 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564684     6  0.0937     0.9432 0.000 0.000 0.000 0.000 0.040 0.960
#> GSM564685     3  0.0000     0.8753 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564686     6  0.0363     0.9545 0.000 0.000 0.000 0.000 0.012 0.988
#> GSM564687     5  0.0260     0.8996 0.008 0.000 0.000 0.000 0.992 0.000
#> GSM564688     5  0.0713     0.8968 0.000 0.000 0.000 0.000 0.972 0.028
#> GSM564689     5  0.0000     0.9025 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564690     5  0.0000     0.9025 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564691     5  0.5116    -0.0678 0.000 0.012 0.448 0.000 0.488 0.052
#> GSM564692     5  0.0000     0.9025 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564694     6  0.1194     0.9279 0.000 0.004 0.008 0.000 0.032 0.956
#> GSM564695     5  0.4933     0.6376 0.000 0.012 0.136 0.000 0.684 0.168
#> GSM564696     3  0.0000     0.8753 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564697     5  0.0000     0.9025 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564698     3  0.0665     0.8707 0.000 0.004 0.980 0.000 0.008 0.008
#> GSM564700     6  0.0458     0.9542 0.000 0.000 0.000 0.000 0.016 0.984
#> GSM564701     5  0.0603     0.8999 0.000 0.004 0.000 0.000 0.980 0.016
#> GSM564702     5  0.1075     0.8852 0.000 0.000 0.000 0.000 0.952 0.048
#> GSM564703     4  0.0000     0.9704 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564704     1  0.1088     0.9102 0.960 0.024 0.000 0.016 0.000 0.000
#> GSM564705     1  0.0000     0.9317 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564706     4  0.0000     0.9704 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564707     1  0.0603     0.9252 0.980 0.016 0.000 0.004 0.000 0.000
#> GSM564708     4  0.0146     0.9700 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM564709     1  0.1176     0.9104 0.956 0.024 0.000 0.020 0.000 0.000
#> GSM564710     1  0.0000     0.9317 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564711     4  0.0000     0.9704 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564712     1  0.0146     0.9306 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM564713     4  0.0405     0.9656 0.008 0.004 0.000 0.988 0.000 0.000
#> GSM564714     4  0.0000     0.9704 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564715     1  0.0000     0.9317 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564716     1  0.0405     0.9287 0.988 0.008 0.000 0.004 0.000 0.000
#> GSM564717     1  0.0000     0.9317 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564718     4  0.0146     0.9700 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM564719     1  0.0000     0.9317 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564720     1  0.0000     0.9317 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564721     1  0.0000     0.9317 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564722     1  0.4144     0.6464 0.728 0.072 0.000 0.200 0.000 0.000
#> GSM564723     1  0.0000     0.9317 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564724     4  0.0146     0.9700 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM564725     1  0.2633     0.8302 0.864 0.104 0.000 0.032 0.000 0.000
#> GSM564726     2  0.1957     0.8269 0.000 0.888 0.000 0.112 0.000 0.000
#> GSM564727     2  0.2243     0.8042 0.112 0.880 0.000 0.004 0.000 0.004
#> GSM564728     2  0.0405     0.8679 0.004 0.988 0.000 0.008 0.000 0.000
#> GSM564729     2  0.0551     0.8677 0.004 0.984 0.000 0.008 0.000 0.004
#> GSM564730     1  0.0146     0.9314 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM564731     4  0.1245     0.9309 0.032 0.016 0.000 0.952 0.000 0.000
#> GSM564732     2  0.3717     0.3774 0.384 0.616 0.000 0.000 0.000 0.000
#> GSM564733     4  0.0000     0.9704 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564734     1  0.0146     0.9314 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM564735     4  0.0717     0.9564 0.008 0.016 0.000 0.976 0.000 0.000
#> GSM564736     4  0.0146     0.9700 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM564737     1  0.0000     0.9317 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564738     4  0.0260     0.9678 0.000 0.008 0.000 0.992 0.000 0.000
#> GSM564739     4  0.2501     0.8265 0.108 0.016 0.000 0.872 0.004 0.000
#> GSM564740     2  0.1732     0.8488 0.004 0.920 0.000 0.072 0.000 0.004
#> GSM564741     4  0.0146     0.9700 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM564742     4  0.0000     0.9704 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564743     1  0.0146     0.9314 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM564744     1  0.0000     0.9317 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564745     1  0.0146     0.9314 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM564746     1  0.0000     0.9317 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564747     1  0.3245     0.7380 0.800 0.028 0.000 0.172 0.000 0.000
#> GSM564748     4  0.0000     0.9704 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564749     1  0.0000     0.9317 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564750     4  0.4328     0.6289 0.100 0.180 0.000 0.720 0.000 0.000
#> GSM564751     4  0.0146     0.9683 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM564752     2  0.1663     0.8400 0.000 0.912 0.000 0.088 0.000 0.000
#> GSM564753     4  0.0000     0.9704 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564754     1  0.0146     0.9314 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM564755     2  0.0405     0.8679 0.004 0.988 0.000 0.008 0.000 0.000
#> GSM564756     1  0.0777     0.9190 0.972 0.004 0.000 0.024 0.000 0.000
#> GSM564757     2  0.0665     0.8679 0.008 0.980 0.000 0.008 0.000 0.004
#> GSM564758     2  0.3626     0.7672 0.068 0.788 0.000 0.144 0.000 0.000
#> GSM564759     4  0.0146     0.9689 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM564760     2  0.4915     0.6421 0.208 0.652 0.000 0.140 0.000 0.000
#> GSM564761     1  0.0777     0.9102 0.972 0.000 0.000 0.004 0.024 0.000
#> GSM564762     1  0.4420     0.4041 0.604 0.036 0.000 0.360 0.000 0.000
#> GSM564681     5  0.2823     0.7413 0.000 0.000 0.000 0.000 0.796 0.204
#> GSM564693     5  0.2562     0.7836 0.000 0.000 0.000 0.000 0.828 0.172
#> GSM564646     6  0.0937     0.9432 0.000 0.000 0.000 0.000 0.040 0.960
#> GSM564699     6  0.0291     0.9497 0.000 0.004 0.000 0.000 0.004 0.992

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n genotype/variation(p) disease.state(p) k
#> CV:mclust 154                0.9246           0.4759 2
#> CV:mclust 146                0.3128           0.4437 3
#> CV:mclust 142                0.0117           0.7597 4
#> CV:mclust 139                0.0357           0.9544 5
#> CV:mclust 145                0.2907           0.0732 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 154 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.977       0.988         0.5013 0.500   0.500
#> 3 3 0.617           0.691       0.826         0.2903 0.827   0.666
#> 4 4 0.806           0.822       0.921         0.1478 0.813   0.535
#> 5 5 0.644           0.618       0.787         0.0594 0.924   0.720
#> 6 6 0.625           0.518       0.723         0.0416 0.939   0.739

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM564615     1  0.0000      0.995 1.000 0.000
#> GSM564616     2  0.0000      0.982 0.000 1.000
#> GSM564617     2  0.0000      0.982 0.000 1.000
#> GSM564618     2  0.5519      0.869 0.128 0.872
#> GSM564619     1  0.0000      0.995 1.000 0.000
#> GSM564620     1  0.0000      0.995 1.000 0.000
#> GSM564621     1  0.0000      0.995 1.000 0.000
#> GSM564622     2  0.0000      0.982 0.000 1.000
#> GSM564623     2  0.7219      0.777 0.200 0.800
#> GSM564624     2  0.0376      0.979 0.004 0.996
#> GSM564625     1  0.0000      0.995 1.000 0.000
#> GSM564626     1  0.0000      0.995 1.000 0.000
#> GSM564627     1  0.0000      0.995 1.000 0.000
#> GSM564628     2  0.4690      0.898 0.100 0.900
#> GSM564629     1  0.0000      0.995 1.000 0.000
#> GSM564630     2  0.0000      0.982 0.000 1.000
#> GSM564609     2  0.0000      0.982 0.000 1.000
#> GSM564610     1  0.0000      0.995 1.000 0.000
#> GSM564611     1  0.1843      0.973 0.972 0.028
#> GSM564612     2  0.0000      0.982 0.000 1.000
#> GSM564613     2  0.0000      0.982 0.000 1.000
#> GSM564614     1  0.0000      0.995 1.000 0.000
#> GSM564631     2  0.0000      0.982 0.000 1.000
#> GSM564632     2  0.0000      0.982 0.000 1.000
#> GSM564633     2  0.0000      0.982 0.000 1.000
#> GSM564634     2  0.0000      0.982 0.000 1.000
#> GSM564635     2  0.0000      0.982 0.000 1.000
#> GSM564636     2  0.0000      0.982 0.000 1.000
#> GSM564637     2  0.0000      0.982 0.000 1.000
#> GSM564638     2  0.0000      0.982 0.000 1.000
#> GSM564639     2  0.0000      0.982 0.000 1.000
#> GSM564640     2  0.0000      0.982 0.000 1.000
#> GSM564641     2  0.0000      0.982 0.000 1.000
#> GSM564642     2  0.0000      0.982 0.000 1.000
#> GSM564643     2  0.1414      0.967 0.020 0.980
#> GSM564644     2  0.0000      0.982 0.000 1.000
#> GSM564645     2  0.0000      0.982 0.000 1.000
#> GSM564647     2  0.0000      0.982 0.000 1.000
#> GSM564648     2  0.0000      0.982 0.000 1.000
#> GSM564649     2  0.0000      0.982 0.000 1.000
#> GSM564650     2  0.0000      0.982 0.000 1.000
#> GSM564651     2  0.0000      0.982 0.000 1.000
#> GSM564652     2  0.0000      0.982 0.000 1.000
#> GSM564653     2  0.0000      0.982 0.000 1.000
#> GSM564654     2  0.0000      0.982 0.000 1.000
#> GSM564655     2  0.0000      0.982 0.000 1.000
#> GSM564656     2  0.0000      0.982 0.000 1.000
#> GSM564657     2  0.0000      0.982 0.000 1.000
#> GSM564658     2  0.0000      0.982 0.000 1.000
#> GSM564659     2  0.0000      0.982 0.000 1.000
#> GSM564660     2  0.0000      0.982 0.000 1.000
#> GSM564661     2  0.0000      0.982 0.000 1.000
#> GSM564662     2  0.0000      0.982 0.000 1.000
#> GSM564663     2  0.0000      0.982 0.000 1.000
#> GSM564664     2  0.0000      0.982 0.000 1.000
#> GSM564665     2  0.0000      0.982 0.000 1.000
#> GSM564666     2  0.3114      0.939 0.056 0.944
#> GSM564667     2  0.0000      0.982 0.000 1.000
#> GSM564668     2  0.0000      0.982 0.000 1.000
#> GSM564669     2  0.0000      0.982 0.000 1.000
#> GSM564670     2  0.0000      0.982 0.000 1.000
#> GSM564671     2  0.8267      0.681 0.260 0.740
#> GSM564672     2  0.0000      0.982 0.000 1.000
#> GSM564673     2  0.0000      0.982 0.000 1.000
#> GSM564674     2  0.0000      0.982 0.000 1.000
#> GSM564675     2  0.0376      0.979 0.004 0.996
#> GSM564676     2  0.0000      0.982 0.000 1.000
#> GSM564677     2  0.0000      0.982 0.000 1.000
#> GSM564678     2  0.0000      0.982 0.000 1.000
#> GSM564679     2  0.0000      0.982 0.000 1.000
#> GSM564680     2  0.0000      0.982 0.000 1.000
#> GSM564682     2  0.0000      0.982 0.000 1.000
#> GSM564683     2  0.0000      0.982 0.000 1.000
#> GSM564684     2  0.2778      0.945 0.048 0.952
#> GSM564685     2  0.0000      0.982 0.000 1.000
#> GSM564686     2  0.6623      0.815 0.172 0.828
#> GSM564687     2  0.0000      0.982 0.000 1.000
#> GSM564688     2  0.0000      0.982 0.000 1.000
#> GSM564689     2  0.0000      0.982 0.000 1.000
#> GSM564690     2  0.0000      0.982 0.000 1.000
#> GSM564691     2  0.0000      0.982 0.000 1.000
#> GSM564692     2  0.0000      0.982 0.000 1.000
#> GSM564694     2  0.0000      0.982 0.000 1.000
#> GSM564695     2  0.0000      0.982 0.000 1.000
#> GSM564696     2  0.0000      0.982 0.000 1.000
#> GSM564697     2  0.0000      0.982 0.000 1.000
#> GSM564698     2  0.0000      0.982 0.000 1.000
#> GSM564700     2  0.5519      0.869 0.128 0.872
#> GSM564701     2  0.0000      0.982 0.000 1.000
#> GSM564702     2  0.4562      0.902 0.096 0.904
#> GSM564703     1  0.1184      0.984 0.984 0.016
#> GSM564704     1  0.0000      0.995 1.000 0.000
#> GSM564705     1  0.0000      0.995 1.000 0.000
#> GSM564706     1  0.3584      0.932 0.932 0.068
#> GSM564707     1  0.0000      0.995 1.000 0.000
#> GSM564708     1  0.0672      0.990 0.992 0.008
#> GSM564709     1  0.0000      0.995 1.000 0.000
#> GSM564710     1  0.0000      0.995 1.000 0.000
#> GSM564711     1  0.0376      0.993 0.996 0.004
#> GSM564712     1  0.0000      0.995 1.000 0.000
#> GSM564713     1  0.0000      0.995 1.000 0.000
#> GSM564714     1  0.0000      0.995 1.000 0.000
#> GSM564715     1  0.0000      0.995 1.000 0.000
#> GSM564716     1  0.0000      0.995 1.000 0.000
#> GSM564717     1  0.1843      0.973 0.972 0.028
#> GSM564718     1  0.0000      0.995 1.000 0.000
#> GSM564719     1  0.1414      0.980 0.980 0.020
#> GSM564720     1  0.0938      0.987 0.988 0.012
#> GSM564721     1  0.0000      0.995 1.000 0.000
#> GSM564722     1  0.0000      0.995 1.000 0.000
#> GSM564723     1  0.0938      0.987 0.988 0.012
#> GSM564724     1  0.0000      0.995 1.000 0.000
#> GSM564725     1  0.0000      0.995 1.000 0.000
#> GSM564726     1  0.0000      0.995 1.000 0.000
#> GSM564727     1  0.0000      0.995 1.000 0.000
#> GSM564728     1  0.0000      0.995 1.000 0.000
#> GSM564729     1  0.0000      0.995 1.000 0.000
#> GSM564730     1  0.0000      0.995 1.000 0.000
#> GSM564731     1  0.0000      0.995 1.000 0.000
#> GSM564732     1  0.0000      0.995 1.000 0.000
#> GSM564733     1  0.0000      0.995 1.000 0.000
#> GSM564734     1  0.0000      0.995 1.000 0.000
#> GSM564735     1  0.0000      0.995 1.000 0.000
#> GSM564736     1  0.0000      0.995 1.000 0.000
#> GSM564737     1  0.0000      0.995 1.000 0.000
#> GSM564738     1  0.0000      0.995 1.000 0.000
#> GSM564739     1  0.0000      0.995 1.000 0.000
#> GSM564740     1  0.0000      0.995 1.000 0.000
#> GSM564741     1  0.0000      0.995 1.000 0.000
#> GSM564742     1  0.3114      0.945 0.944 0.056
#> GSM564743     1  0.0000      0.995 1.000 0.000
#> GSM564744     1  0.0000      0.995 1.000 0.000
#> GSM564745     1  0.0000      0.995 1.000 0.000
#> GSM564746     1  0.0000      0.995 1.000 0.000
#> GSM564747     1  0.0000      0.995 1.000 0.000
#> GSM564748     1  0.1843      0.973 0.972 0.028
#> GSM564749     1  0.0376      0.993 0.996 0.004
#> GSM564750     1  0.0000      0.995 1.000 0.000
#> GSM564751     1  0.0672      0.990 0.992 0.008
#> GSM564752     1  0.0000      0.995 1.000 0.000
#> GSM564753     1  0.0938      0.987 0.988 0.012
#> GSM564754     1  0.0000      0.995 1.000 0.000
#> GSM564755     1  0.0000      0.995 1.000 0.000
#> GSM564756     1  0.0000      0.995 1.000 0.000
#> GSM564757     1  0.0000      0.995 1.000 0.000
#> GSM564758     1  0.2423      0.960 0.960 0.040
#> GSM564759     1  0.0000      0.995 1.000 0.000
#> GSM564760     1  0.0000      0.995 1.000 0.000
#> GSM564761     1  0.0000      0.995 1.000 0.000
#> GSM564762     1  0.0000      0.995 1.000 0.000
#> GSM564681     2  0.0000      0.982 0.000 1.000
#> GSM564693     2  0.0000      0.982 0.000 1.000
#> GSM564646     2  0.5294      0.877 0.120 0.880
#> GSM564699     2  0.6343      0.831 0.160 0.840

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM564615     2  0.6008    0.40756 0.372 0.628 0.000
#> GSM564616     3  0.6252    0.59076 0.000 0.444 0.556
#> GSM564617     3  0.6225    0.61291 0.000 0.432 0.568
#> GSM564618     2  0.4233    0.48854 0.004 0.836 0.160
#> GSM564619     1  0.0000    0.89629 1.000 0.000 0.000
#> GSM564620     1  0.1860    0.86482 0.948 0.052 0.000
#> GSM564621     1  0.4605    0.67748 0.796 0.204 0.000
#> GSM564622     3  0.5926    0.72062 0.000 0.356 0.644
#> GSM564623     2  0.1399    0.60672 0.004 0.968 0.028
#> GSM564624     3  0.6299    0.52857 0.000 0.476 0.524
#> GSM564625     1  0.1860    0.86524 0.948 0.052 0.000
#> GSM564626     1  0.0000    0.89629 1.000 0.000 0.000
#> GSM564627     1  0.2625    0.83722 0.916 0.084 0.000
#> GSM564628     2  0.6282   -0.13503 0.004 0.612 0.384
#> GSM564629     1  0.0000    0.89629 1.000 0.000 0.000
#> GSM564630     3  0.6008    0.70102 0.000 0.372 0.628
#> GSM564609     3  0.1289    0.72229 0.000 0.032 0.968
#> GSM564610     1  0.0000    0.89629 1.000 0.000 0.000
#> GSM564611     1  0.1289    0.87704 0.968 0.032 0.000
#> GSM564612     3  0.2165    0.73483 0.000 0.064 0.936
#> GSM564613     3  0.5621    0.76625 0.000 0.308 0.692
#> GSM564614     1  0.6291   -0.02318 0.532 0.468 0.000
#> GSM564631     3  0.2165    0.68327 0.000 0.064 0.936
#> GSM564632     2  0.5431    0.24042 0.000 0.716 0.284
#> GSM564633     3  0.2448    0.67504 0.000 0.076 0.924
#> GSM564634     3  0.5529    0.77217 0.000 0.296 0.704
#> GSM564635     3  0.1411    0.70086 0.000 0.036 0.964
#> GSM564636     3  0.3116    0.70767 0.000 0.108 0.892
#> GSM564637     3  0.6095    0.65908 0.000 0.392 0.608
#> GSM564638     3  0.4110    0.58808 0.004 0.152 0.844
#> GSM564639     3  0.3038    0.64954 0.000 0.104 0.896
#> GSM564640     3  0.5560    0.77130 0.000 0.300 0.700
#> GSM564641     3  0.0424    0.71157 0.000 0.008 0.992
#> GSM564642     3  0.5560    0.77130 0.000 0.300 0.700
#> GSM564643     2  0.1753    0.58918 0.000 0.952 0.048
#> GSM564644     3  0.5560    0.77130 0.000 0.300 0.700
#> GSM564645     3  0.0747    0.70904 0.000 0.016 0.984
#> GSM564647     3  0.4654    0.76796 0.000 0.208 0.792
#> GSM564648     3  0.5810    0.74183 0.000 0.336 0.664
#> GSM564649     3  0.0000    0.71409 0.000 0.000 1.000
#> GSM564650     3  0.5760    0.75046 0.000 0.328 0.672
#> GSM564651     3  0.5431    0.77332 0.000 0.284 0.716
#> GSM564652     3  0.5785    0.76995 0.004 0.300 0.696
#> GSM564653     3  0.5560    0.77130 0.000 0.300 0.700
#> GSM564654     3  0.1289    0.70744 0.000 0.032 0.968
#> GSM564655     3  0.2448    0.67528 0.000 0.076 0.924
#> GSM564656     3  0.2625    0.66797 0.000 0.084 0.916
#> GSM564657     3  0.1163    0.70354 0.000 0.028 0.972
#> GSM564658     3  0.5591    0.76903 0.000 0.304 0.696
#> GSM564659     3  0.4654    0.75536 0.000 0.208 0.792
#> GSM564660     2  0.5882   -0.00612 0.000 0.652 0.348
#> GSM564661     3  0.5560    0.77130 0.000 0.300 0.700
#> GSM564662     3  0.0747    0.70907 0.000 0.016 0.984
#> GSM564663     3  0.5560    0.77130 0.000 0.300 0.700
#> GSM564664     3  0.5560    0.77130 0.000 0.300 0.700
#> GSM564665     3  0.1411    0.72935 0.000 0.036 0.964
#> GSM564666     2  0.0237    0.61297 0.000 0.996 0.004
#> GSM564667     3  0.0424    0.71157 0.000 0.008 0.992
#> GSM564668     3  0.2448    0.67576 0.000 0.076 0.924
#> GSM564669     3  0.4121    0.57138 0.000 0.168 0.832
#> GSM564670     3  0.5363    0.77343 0.000 0.276 0.724
#> GSM564671     2  0.1031    0.62427 0.024 0.976 0.000
#> GSM564672     3  0.3192    0.64248 0.000 0.112 0.888
#> GSM564673     3  0.5560    0.77130 0.000 0.300 0.700
#> GSM564674     3  0.5560    0.77130 0.000 0.300 0.700
#> GSM564675     2  0.4178    0.46574 0.000 0.828 0.172
#> GSM564676     3  0.5560    0.77130 0.000 0.300 0.700
#> GSM564677     3  0.6082    0.76683 0.012 0.296 0.692
#> GSM564678     3  0.5560    0.77130 0.000 0.300 0.700
#> GSM564679     3  0.5785    0.76971 0.004 0.300 0.696
#> GSM564680     3  0.3482    0.62341 0.000 0.128 0.872
#> GSM564682     3  0.2878    0.74555 0.000 0.096 0.904
#> GSM564683     3  0.3038    0.64927 0.000 0.104 0.896
#> GSM564684     2  0.2356    0.57302 0.000 0.928 0.072
#> GSM564685     3  0.1529    0.69836 0.000 0.040 0.960
#> GSM564686     2  0.0747    0.62124 0.016 0.984 0.000
#> GSM564687     3  0.5560    0.77130 0.000 0.300 0.700
#> GSM564688     3  0.5529    0.77230 0.000 0.296 0.704
#> GSM564689     3  0.5560    0.77130 0.000 0.300 0.700
#> GSM564690     3  0.5560    0.77130 0.000 0.300 0.700
#> GSM564691     3  0.4452    0.76512 0.000 0.192 0.808
#> GSM564692     3  0.5560    0.77130 0.000 0.300 0.700
#> GSM564694     2  0.5785    0.01873 0.000 0.668 0.332
#> GSM564695     3  0.5706    0.75708 0.000 0.320 0.680
#> GSM564696     3  0.3267    0.63699 0.000 0.116 0.884
#> GSM564697     3  0.5560    0.77130 0.000 0.300 0.700
#> GSM564698     3  0.3192    0.64251 0.000 0.112 0.888
#> GSM564700     2  0.0237    0.61589 0.004 0.996 0.000
#> GSM564701     3  0.5431    0.77334 0.000 0.284 0.716
#> GSM564702     2  0.5958    0.16904 0.008 0.692 0.300
#> GSM564703     1  0.3340    0.81995 0.880 0.000 0.120
#> GSM564704     1  0.0237    0.89487 0.996 0.004 0.000
#> GSM564705     1  0.0000    0.89629 1.000 0.000 0.000
#> GSM564706     1  0.4277    0.80122 0.852 0.016 0.132
#> GSM564707     1  0.0000    0.89629 1.000 0.000 0.000
#> GSM564708     1  0.3686    0.79835 0.860 0.000 0.140
#> GSM564709     1  0.0000    0.89629 1.000 0.000 0.000
#> GSM564710     1  0.0000    0.89629 1.000 0.000 0.000
#> GSM564711     1  0.2680    0.85751 0.924 0.008 0.068
#> GSM564712     1  0.0000    0.89629 1.000 0.000 0.000
#> GSM564713     1  0.3181    0.85497 0.912 0.024 0.064
#> GSM564714     1  0.7851    0.53249 0.644 0.100 0.256
#> GSM564715     1  0.0000    0.89629 1.000 0.000 0.000
#> GSM564716     1  0.0000    0.89629 1.000 0.000 0.000
#> GSM564717     1  0.0475    0.89360 0.992 0.004 0.004
#> GSM564718     1  0.3375    0.85422 0.908 0.044 0.048
#> GSM564719     1  0.0592    0.89088 0.988 0.012 0.000
#> GSM564720     1  0.0747    0.88841 0.984 0.016 0.000
#> GSM564721     1  0.0000    0.89629 1.000 0.000 0.000
#> GSM564722     1  0.0747    0.89027 0.984 0.016 0.000
#> GSM564723     1  0.0237    0.89490 0.996 0.004 0.000
#> GSM564724     1  0.7830    0.58720 0.668 0.136 0.196
#> GSM564725     1  0.3941    0.75269 0.844 0.156 0.000
#> GSM564726     2  0.5621    0.48650 0.308 0.692 0.000
#> GSM564727     1  0.5497    0.49992 0.708 0.292 0.000
#> GSM564728     2  0.5760    0.46421 0.328 0.672 0.000
#> GSM564729     2  0.6274    0.23388 0.456 0.544 0.000
#> GSM564730     1  0.0000    0.89629 1.000 0.000 0.000
#> GSM564731     1  0.0000    0.89629 1.000 0.000 0.000
#> GSM564732     1  0.0424    0.89325 0.992 0.008 0.000
#> GSM564733     1  0.4353    0.77895 0.836 0.008 0.156
#> GSM564734     1  0.0000    0.89629 1.000 0.000 0.000
#> GSM564735     2  0.8068    0.09377 0.456 0.480 0.064
#> GSM564736     1  0.6698    0.53265 0.684 0.280 0.036
#> GSM564737     1  0.0000    0.89629 1.000 0.000 0.000
#> GSM564738     2  0.8349    0.48079 0.156 0.624 0.220
#> GSM564739     1  0.0237    0.89524 0.996 0.000 0.004
#> GSM564740     2  0.5591    0.49108 0.304 0.696 0.000
#> GSM564741     1  0.7785    0.13187 0.528 0.420 0.052
#> GSM564742     1  0.5497    0.61219 0.708 0.000 0.292
#> GSM564743     1  0.0000    0.89629 1.000 0.000 0.000
#> GSM564744     1  0.0000    0.89629 1.000 0.000 0.000
#> GSM564745     1  0.0000    0.89629 1.000 0.000 0.000
#> GSM564746     1  0.0000    0.89629 1.000 0.000 0.000
#> GSM564747     1  0.0000    0.89629 1.000 0.000 0.000
#> GSM564748     1  0.4605    0.73009 0.796 0.000 0.204
#> GSM564749     1  0.0000    0.89629 1.000 0.000 0.000
#> GSM564750     2  0.6154    0.32876 0.408 0.592 0.000
#> GSM564751     1  0.2448    0.85483 0.924 0.000 0.076
#> GSM564752     2  0.5968    0.40706 0.364 0.636 0.000
#> GSM564753     1  0.6062    0.61672 0.708 0.016 0.276
#> GSM564754     1  0.0000    0.89629 1.000 0.000 0.000
#> GSM564755     2  0.5650    0.48294 0.312 0.688 0.000
#> GSM564756     1  0.0000    0.89629 1.000 0.000 0.000
#> GSM564757     2  0.6192    0.31867 0.420 0.580 0.000
#> GSM564758     2  0.6680    0.13966 0.484 0.508 0.008
#> GSM564759     1  0.4974    0.68662 0.764 0.000 0.236
#> GSM564760     1  0.3038    0.82190 0.896 0.104 0.000
#> GSM564761     1  0.0237    0.89486 0.996 0.004 0.000
#> GSM564762     1  0.0000    0.89629 1.000 0.000 0.000
#> GSM564681     2  0.4842    0.37188 0.000 0.776 0.224
#> GSM564693     3  0.6299    0.52903 0.000 0.476 0.524
#> GSM564646     2  0.0892    0.60788 0.000 0.980 0.020
#> GSM564699     2  0.2564    0.62343 0.036 0.936 0.028

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM564615     4  0.0000     0.8589 0.000 0.000 0.000 1.000
#> GSM564616     2  0.0336     0.9326 0.000 0.992 0.000 0.008
#> GSM564617     2  0.0188     0.9334 0.000 0.996 0.000 0.004
#> GSM564618     4  0.5000    -0.0229 0.000 0.496 0.000 0.504
#> GSM564619     1  0.0000     0.9458 1.000 0.000 0.000 0.000
#> GSM564620     1  0.1743     0.9135 0.940 0.004 0.000 0.056
#> GSM564621     1  0.3052     0.8318 0.860 0.004 0.000 0.136
#> GSM564622     2  0.1109     0.9217 0.000 0.968 0.004 0.028
#> GSM564623     4  0.0336     0.8581 0.000 0.008 0.000 0.992
#> GSM564624     2  0.0817     0.9252 0.000 0.976 0.000 0.024
#> GSM564625     1  0.1305     0.9268 0.960 0.004 0.000 0.036
#> GSM564626     1  0.0188     0.9446 0.996 0.004 0.000 0.000
#> GSM564627     1  0.1824     0.9087 0.936 0.004 0.000 0.060
#> GSM564628     2  0.3266     0.7863 0.000 0.832 0.000 0.168
#> GSM564629     1  0.0188     0.9446 0.996 0.004 0.000 0.000
#> GSM564630     2  0.0000     0.9339 0.000 1.000 0.000 0.000
#> GSM564609     3  0.2704     0.7805 0.000 0.124 0.876 0.000
#> GSM564610     1  0.0000     0.9458 1.000 0.000 0.000 0.000
#> GSM564611     1  0.0921     0.9289 0.972 0.028 0.000 0.000
#> GSM564612     3  0.3942     0.6562 0.000 0.236 0.764 0.000
#> GSM564613     2  0.1388     0.9229 0.000 0.960 0.028 0.012
#> GSM564614     4  0.3791     0.7103 0.200 0.004 0.000 0.796
#> GSM564631     3  0.0000     0.8698 0.000 0.000 1.000 0.000
#> GSM564632     4  0.3972     0.6926 0.000 0.204 0.008 0.788
#> GSM564633     3  0.0000     0.8698 0.000 0.000 1.000 0.000
#> GSM564634     2  0.0469     0.9334 0.000 0.988 0.012 0.000
#> GSM564635     3  0.0000     0.8698 0.000 0.000 1.000 0.000
#> GSM564636     3  0.3208     0.7518 0.000 0.148 0.848 0.004
#> GSM564637     2  0.6232     0.4088 0.000 0.596 0.072 0.332
#> GSM564638     3  0.0000     0.8698 0.000 0.000 1.000 0.000
#> GSM564639     3  0.0000     0.8698 0.000 0.000 1.000 0.000
#> GSM564640     2  0.0188     0.9349 0.000 0.996 0.004 0.000
#> GSM564641     3  0.1389     0.8437 0.000 0.048 0.952 0.000
#> GSM564642     2  0.0376     0.9341 0.004 0.992 0.004 0.000
#> GSM564643     4  0.1004     0.8490 0.000 0.024 0.004 0.972
#> GSM564644     2  0.0188     0.9349 0.000 0.996 0.004 0.000
#> GSM564645     3  0.0000     0.8698 0.000 0.000 1.000 0.000
#> GSM564647     2  0.3172     0.7983 0.000 0.840 0.160 0.000
#> GSM564648     2  0.0376     0.9346 0.000 0.992 0.004 0.004
#> GSM564649     3  0.0188     0.8677 0.000 0.004 0.996 0.000
#> GSM564650     2  0.2593     0.8601 0.000 0.892 0.004 0.104
#> GSM564651     2  0.2011     0.8863 0.000 0.920 0.080 0.000
#> GSM564652     2  0.0188     0.9349 0.000 0.996 0.004 0.000
#> GSM564653     2  0.0188     0.9349 0.000 0.996 0.004 0.000
#> GSM564654     3  0.0000     0.8698 0.000 0.000 1.000 0.000
#> GSM564655     3  0.0000     0.8698 0.000 0.000 1.000 0.000
#> GSM564656     3  0.0000     0.8698 0.000 0.000 1.000 0.000
#> GSM564657     3  0.0376     0.8674 0.004 0.004 0.992 0.000
#> GSM564658     2  0.0000     0.9339 0.000 1.000 0.000 0.000
#> GSM564659     2  0.5488     0.1638 0.000 0.532 0.452 0.016
#> GSM564660     2  0.4585     0.5103 0.000 0.668 0.000 0.332
#> GSM564661     2  0.0188     0.9349 0.000 0.996 0.004 0.000
#> GSM564662     3  0.0000     0.8698 0.000 0.000 1.000 0.000
#> GSM564663     2  0.0188     0.9349 0.000 0.996 0.004 0.000
#> GSM564664     2  0.0376     0.9341 0.004 0.992 0.004 0.000
#> GSM564665     3  0.2921     0.7530 0.000 0.140 0.860 0.000
#> GSM564666     4  0.0188     0.8587 0.000 0.004 0.000 0.996
#> GSM564667     3  0.0000     0.8698 0.000 0.000 1.000 0.000
#> GSM564668     3  0.0000     0.8698 0.000 0.000 1.000 0.000
#> GSM564669     3  0.0000     0.8698 0.000 0.000 1.000 0.000
#> GSM564670     2  0.1722     0.9073 0.000 0.944 0.048 0.008
#> GSM564671     4  0.0000     0.8589 0.000 0.000 0.000 1.000
#> GSM564672     3  0.0000     0.8698 0.000 0.000 1.000 0.000
#> GSM564673     2  0.0188     0.9349 0.000 0.996 0.004 0.000
#> GSM564674     2  0.0336     0.9342 0.000 0.992 0.008 0.000
#> GSM564675     4  0.4356     0.5659 0.000 0.292 0.000 0.708
#> GSM564676     2  0.0188     0.9349 0.000 0.996 0.004 0.000
#> GSM564677     2  0.0564     0.9340 0.004 0.988 0.004 0.004
#> GSM564678     2  0.0376     0.9341 0.004 0.992 0.004 0.000
#> GSM564679     2  0.0188     0.9337 0.004 0.996 0.000 0.000
#> GSM564680     3  0.0000     0.8698 0.000 0.000 1.000 0.000
#> GSM564682     2  0.3801     0.7180 0.000 0.780 0.220 0.000
#> GSM564683     3  0.0000     0.8698 0.000 0.000 1.000 0.000
#> GSM564684     4  0.0188     0.8587 0.000 0.004 0.000 0.996
#> GSM564685     3  0.0000     0.8698 0.000 0.000 1.000 0.000
#> GSM564686     4  0.0000     0.8589 0.000 0.000 0.000 1.000
#> GSM564687     2  0.0188     0.9349 0.000 0.996 0.004 0.000
#> GSM564688     2  0.0469     0.9335 0.000 0.988 0.012 0.000
#> GSM564689     2  0.0188     0.9349 0.000 0.996 0.004 0.000
#> GSM564690     2  0.0188     0.9349 0.000 0.996 0.004 0.000
#> GSM564691     2  0.0707     0.9293 0.000 0.980 0.020 0.000
#> GSM564692     2  0.0000     0.9339 0.000 1.000 0.000 0.000
#> GSM564694     4  0.4483     0.5672 0.000 0.284 0.004 0.712
#> GSM564695     2  0.1209     0.9229 0.000 0.964 0.004 0.032
#> GSM564696     3  0.0000     0.8698 0.000 0.000 1.000 0.000
#> GSM564697     2  0.0188     0.9349 0.000 0.996 0.004 0.000
#> GSM564698     3  0.0000     0.8698 0.000 0.000 1.000 0.000
#> GSM564700     4  0.0188     0.8587 0.000 0.004 0.000 0.996
#> GSM564701     2  0.0817     0.9284 0.000 0.976 0.024 0.000
#> GSM564702     2  0.1792     0.8977 0.000 0.932 0.000 0.068
#> GSM564703     1  0.1022     0.9282 0.968 0.000 0.032 0.000
#> GSM564704     1  0.0921     0.9341 0.972 0.000 0.000 0.028
#> GSM564705     1  0.0000     0.9458 1.000 0.000 0.000 0.000
#> GSM564706     1  0.4985     0.0756 0.532 0.000 0.468 0.000
#> GSM564707     1  0.0000     0.9458 1.000 0.000 0.000 0.000
#> GSM564708     3  0.4981     0.1996 0.464 0.000 0.536 0.000
#> GSM564709     1  0.0707     0.9377 0.980 0.000 0.000 0.020
#> GSM564710     1  0.0000     0.9458 1.000 0.000 0.000 0.000
#> GSM564711     1  0.4431     0.5571 0.696 0.000 0.304 0.000
#> GSM564712     1  0.0000     0.9458 1.000 0.000 0.000 0.000
#> GSM564713     1  0.5112     0.3151 0.608 0.000 0.384 0.008
#> GSM564714     3  0.3257     0.7665 0.152 0.000 0.844 0.004
#> GSM564715     1  0.0000     0.9458 1.000 0.000 0.000 0.000
#> GSM564716     1  0.0188     0.9445 0.996 0.000 0.000 0.004
#> GSM564717     1  0.0000     0.9458 1.000 0.000 0.000 0.000
#> GSM564718     1  0.3808     0.7676 0.812 0.000 0.176 0.012
#> GSM564719     1  0.0336     0.9424 0.992 0.008 0.000 0.000
#> GSM564720     1  0.0592     0.9382 0.984 0.016 0.000 0.000
#> GSM564721     1  0.0000     0.9458 1.000 0.000 0.000 0.000
#> GSM564722     1  0.1716     0.9077 0.936 0.000 0.000 0.064
#> GSM564723     1  0.0336     0.9424 0.992 0.008 0.000 0.000
#> GSM564724     3  0.1489     0.8439 0.044 0.000 0.952 0.004
#> GSM564725     1  0.3219     0.7923 0.836 0.000 0.000 0.164
#> GSM564726     4  0.0000     0.8589 0.000 0.000 0.000 1.000
#> GSM564727     4  0.4925     0.2540 0.428 0.000 0.000 0.572
#> GSM564728     4  0.0336     0.8575 0.008 0.000 0.000 0.992
#> GSM564729     4  0.2704     0.7848 0.124 0.000 0.000 0.876
#> GSM564730     1  0.0000     0.9458 1.000 0.000 0.000 0.000
#> GSM564731     1  0.0000     0.9458 1.000 0.000 0.000 0.000
#> GSM564732     1  0.1004     0.9346 0.972 0.004 0.000 0.024
#> GSM564733     3  0.4790     0.4413 0.380 0.000 0.620 0.000
#> GSM564734     1  0.0000     0.9458 1.000 0.000 0.000 0.000
#> GSM564735     4  0.6258     0.4163 0.076 0.000 0.324 0.600
#> GSM564736     3  0.6469     0.5439 0.164 0.000 0.644 0.192
#> GSM564737     1  0.0000     0.9458 1.000 0.000 0.000 0.000
#> GSM564738     4  0.4933     0.2458 0.000 0.000 0.432 0.568
#> GSM564739     1  0.0336     0.9423 0.992 0.000 0.008 0.000
#> GSM564740     4  0.0000     0.8589 0.000 0.000 0.000 1.000
#> GSM564741     4  0.5130     0.5075 0.020 0.000 0.312 0.668
#> GSM564742     3  0.4866     0.3927 0.404 0.000 0.596 0.000
#> GSM564743     1  0.0000     0.9458 1.000 0.000 0.000 0.000
#> GSM564744     1  0.0000     0.9458 1.000 0.000 0.000 0.000
#> GSM564745     1  0.0000     0.9458 1.000 0.000 0.000 0.000
#> GSM564746     1  0.0188     0.9446 0.996 0.004 0.000 0.000
#> GSM564747     1  0.0000     0.9458 1.000 0.000 0.000 0.000
#> GSM564748     3  0.4972     0.2045 0.456 0.000 0.544 0.000
#> GSM564749     1  0.0000     0.9458 1.000 0.000 0.000 0.000
#> GSM564750     4  0.1118     0.8450 0.036 0.000 0.000 0.964
#> GSM564751     1  0.1940     0.8899 0.924 0.000 0.076 0.000
#> GSM564752     4  0.0469     0.8559 0.012 0.000 0.000 0.988
#> GSM564753     3  0.4477     0.5746 0.312 0.000 0.688 0.000
#> GSM564754     1  0.0000     0.9458 1.000 0.000 0.000 0.000
#> GSM564755     4  0.0188     0.8583 0.004 0.000 0.000 0.996
#> GSM564756     1  0.0000     0.9458 1.000 0.000 0.000 0.000
#> GSM564757     4  0.0188     0.8585 0.004 0.000 0.000 0.996
#> GSM564758     4  0.3638     0.7841 0.120 0.032 0.000 0.848
#> GSM564759     3  0.4776     0.4678 0.376 0.000 0.624 0.000
#> GSM564760     1  0.3649     0.7496 0.796 0.000 0.000 0.204
#> GSM564761     1  0.0000     0.9458 1.000 0.000 0.000 0.000
#> GSM564762     1  0.0000     0.9458 1.000 0.000 0.000 0.000
#> GSM564681     2  0.3626     0.7732 0.000 0.812 0.004 0.184
#> GSM564693     2  0.2714     0.8574 0.000 0.884 0.004 0.112
#> GSM564646     4  0.0188     0.8587 0.000 0.004 0.000 0.996
#> GSM564699     4  0.0000     0.8589 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM564615     4  0.2491    0.74144 0.068 0.000 0.000 0.896 0.036
#> GSM564616     5  0.4251    0.54583 0.000 0.316 0.000 0.012 0.672
#> GSM564617     5  0.3983    0.52785 0.000 0.340 0.000 0.000 0.660
#> GSM564618     5  0.5849    0.51119 0.000 0.196 0.000 0.196 0.608
#> GSM564619     1  0.1732    0.86441 0.920 0.000 0.000 0.000 0.080
#> GSM564620     1  0.3563    0.75618 0.780 0.000 0.000 0.012 0.208
#> GSM564621     1  0.2782    0.84027 0.880 0.000 0.000 0.072 0.048
#> GSM564622     5  0.4128    0.57510 0.000 0.220 0.008 0.020 0.752
#> GSM564623     4  0.3607    0.59148 0.000 0.004 0.000 0.752 0.244
#> GSM564624     5  0.4555    0.52323 0.000 0.344 0.000 0.020 0.636
#> GSM564625     1  0.1750    0.86279 0.936 0.000 0.000 0.028 0.036
#> GSM564626     1  0.1341    0.86618 0.944 0.000 0.000 0.000 0.056
#> GSM564627     1  0.2304    0.86195 0.908 0.000 0.000 0.044 0.048
#> GSM564628     5  0.4706    0.56815 0.000 0.256 0.000 0.052 0.692
#> GSM564629     1  0.2783    0.84464 0.868 0.012 0.000 0.004 0.116
#> GSM564630     5  0.3983    0.52813 0.000 0.340 0.000 0.000 0.660
#> GSM564609     3  0.4850    0.56394 0.000 0.072 0.696 0.000 0.232
#> GSM564610     1  0.2127    0.85802 0.892 0.000 0.000 0.000 0.108
#> GSM564611     1  0.5014    0.40931 0.536 0.432 0.000 0.000 0.032
#> GSM564612     3  0.4254    0.60484 0.000 0.220 0.740 0.000 0.040
#> GSM564613     5  0.5360    0.50292 0.000 0.296 0.056 0.012 0.636
#> GSM564614     4  0.5065    0.25165 0.420 0.000 0.000 0.544 0.036
#> GSM564631     3  0.0290    0.79622 0.000 0.000 0.992 0.000 0.008
#> GSM564632     5  0.6011    0.05209 0.000 0.052 0.028 0.440 0.480
#> GSM564633     3  0.1608    0.78580 0.000 0.000 0.928 0.000 0.072
#> GSM564634     5  0.5099    0.30932 0.000 0.336 0.052 0.000 0.612
#> GSM564635     3  0.2389    0.75782 0.000 0.004 0.880 0.000 0.116
#> GSM564636     3  0.3021    0.74608 0.000 0.060 0.872 0.004 0.064
#> GSM564637     2  0.6756    0.04851 0.000 0.456 0.056 0.408 0.080
#> GSM564638     3  0.1251    0.78390 0.000 0.000 0.956 0.008 0.036
#> GSM564639     3  0.0290    0.79610 0.000 0.000 0.992 0.000 0.008
#> GSM564640     2  0.3003    0.60203 0.000 0.812 0.000 0.000 0.188
#> GSM564641     3  0.1741    0.77884 0.000 0.040 0.936 0.000 0.024
#> GSM564642     2  0.4249    0.52241 0.000 0.688 0.016 0.000 0.296
#> GSM564643     5  0.5251    0.34215 0.000 0.044 0.004 0.376 0.576
#> GSM564644     2  0.1341    0.67769 0.000 0.944 0.000 0.000 0.056
#> GSM564645     3  0.0404    0.79685 0.000 0.000 0.988 0.000 0.012
#> GSM564647     5  0.6157    0.34910 0.000 0.220 0.220 0.000 0.560
#> GSM564648     5  0.3424    0.53325 0.000 0.240 0.000 0.000 0.760
#> GSM564649     3  0.0510    0.79672 0.000 0.000 0.984 0.000 0.016
#> GSM564650     2  0.3771    0.51986 0.000 0.804 0.004 0.156 0.036
#> GSM564651     2  0.6113    0.26649 0.000 0.524 0.144 0.000 0.332
#> GSM564652     5  0.4547    0.15481 0.000 0.400 0.012 0.000 0.588
#> GSM564653     2  0.3730    0.51101 0.000 0.712 0.000 0.000 0.288
#> GSM564654     3  0.3053    0.72145 0.000 0.008 0.828 0.000 0.164
#> GSM564655     3  0.3656    0.70589 0.000 0.032 0.800 0.000 0.168
#> GSM564656     3  0.1043    0.79294 0.000 0.000 0.960 0.000 0.040
#> GSM564657     3  0.0162    0.79556 0.000 0.004 0.996 0.000 0.000
#> GSM564658     2  0.1851    0.63835 0.000 0.912 0.000 0.000 0.088
#> GSM564659     5  0.6366    0.31729 0.000 0.112 0.368 0.016 0.504
#> GSM564660     5  0.5083    0.55096 0.000 0.160 0.000 0.140 0.700
#> GSM564661     2  0.4249    0.08831 0.000 0.568 0.000 0.000 0.432
#> GSM564662     3  0.0162    0.79583 0.000 0.000 0.996 0.000 0.004
#> GSM564663     2  0.1732    0.66358 0.000 0.920 0.000 0.000 0.080
#> GSM564664     2  0.0963    0.68155 0.000 0.964 0.000 0.000 0.036
#> GSM564665     3  0.5904    0.37545 0.000 0.196 0.600 0.000 0.204
#> GSM564666     4  0.3452    0.61040 0.000 0.000 0.000 0.756 0.244
#> GSM564667     3  0.1341    0.78953 0.000 0.000 0.944 0.000 0.056
#> GSM564668     3  0.3462    0.68850 0.000 0.012 0.792 0.000 0.196
#> GSM564669     3  0.0609    0.79606 0.000 0.000 0.980 0.000 0.020
#> GSM564670     5  0.5512    0.51329 0.000 0.280 0.080 0.008 0.632
#> GSM564671     4  0.2561    0.71325 0.000 0.000 0.000 0.856 0.144
#> GSM564672     3  0.0880    0.79482 0.000 0.000 0.968 0.000 0.032
#> GSM564673     5  0.4666    0.20549 0.000 0.412 0.016 0.000 0.572
#> GSM564674     2  0.4045    0.42941 0.000 0.644 0.000 0.000 0.356
#> GSM564675     4  0.5785   -0.02572 0.000 0.092 0.000 0.504 0.404
#> GSM564676     2  0.0162    0.66991 0.000 0.996 0.000 0.000 0.004
#> GSM564677     2  0.4066    0.51093 0.000 0.672 0.004 0.000 0.324
#> GSM564678     2  0.0290    0.66937 0.000 0.992 0.000 0.000 0.008
#> GSM564679     2  0.0703    0.67954 0.000 0.976 0.000 0.000 0.024
#> GSM564680     3  0.0404    0.79638 0.000 0.000 0.988 0.000 0.012
#> GSM564682     2  0.6606    0.01376 0.000 0.444 0.328 0.000 0.228
#> GSM564683     3  0.0162    0.79563 0.000 0.000 0.996 0.000 0.004
#> GSM564684     4  0.2583    0.70307 0.000 0.004 0.000 0.864 0.132
#> GSM564685     3  0.0404    0.79668 0.000 0.000 0.988 0.000 0.012
#> GSM564686     4  0.1341    0.74467 0.000 0.000 0.000 0.944 0.056
#> GSM564687     2  0.4060    0.20084 0.000 0.640 0.000 0.000 0.360
#> GSM564688     2  0.4836    0.32919 0.000 0.628 0.036 0.000 0.336
#> GSM564689     2  0.0404    0.67757 0.000 0.988 0.000 0.000 0.012
#> GSM564690     2  0.0290    0.67662 0.000 0.992 0.000 0.000 0.008
#> GSM564691     2  0.4113    0.56330 0.000 0.784 0.076 0.000 0.140
#> GSM564692     5  0.4182    0.47633 0.000 0.352 0.004 0.000 0.644
#> GSM564694     5  0.5142    0.39896 0.000 0.052 0.000 0.348 0.600
#> GSM564695     5  0.6218    0.21828 0.000 0.440 0.008 0.108 0.444
#> GSM564696     3  0.0510    0.79660 0.000 0.000 0.984 0.000 0.016
#> GSM564697     2  0.0963    0.68074 0.000 0.964 0.000 0.000 0.036
#> GSM564698     3  0.3676    0.66312 0.000 0.004 0.760 0.004 0.232
#> GSM564700     4  0.1671    0.73698 0.000 0.000 0.000 0.924 0.076
#> GSM564701     5  0.5422    0.28183 0.004 0.372 0.056 0.000 0.568
#> GSM564702     5  0.5946    0.26719 0.000 0.380 0.000 0.112 0.508
#> GSM564703     1  0.1478    0.86120 0.936 0.000 0.064 0.000 0.000
#> GSM564704     1  0.2352    0.86494 0.912 0.008 0.000 0.048 0.032
#> GSM564705     1  0.1750    0.86647 0.936 0.036 0.000 0.000 0.028
#> GSM564706     3  0.5402   -0.00371 0.472 0.004 0.484 0.004 0.036
#> GSM564707     1  0.1753    0.86618 0.936 0.032 0.000 0.000 0.032
#> GSM564708     1  0.4905    0.42276 0.624 0.000 0.336 0.000 0.040
#> GSM564709     1  0.5262    0.77051 0.736 0.124 0.000 0.096 0.044
#> GSM564710     1  0.0794    0.86700 0.972 0.000 0.000 0.000 0.028
#> GSM564711     1  0.4660    0.68322 0.728 0.000 0.220 0.016 0.036
#> GSM564712     1  0.1836    0.86958 0.932 0.032 0.000 0.000 0.036
#> GSM564713     1  0.4462    0.77385 0.788 0.000 0.124 0.032 0.056
#> GSM564714     3  0.5198    0.64563 0.176 0.008 0.732 0.032 0.052
#> GSM564715     1  0.0609    0.86559 0.980 0.000 0.000 0.000 0.020
#> GSM564716     1  0.2152    0.86426 0.920 0.004 0.000 0.032 0.044
#> GSM564717     1  0.3445    0.82095 0.824 0.140 0.000 0.000 0.036
#> GSM564718     1  0.4996    0.75207 0.752 0.000 0.140 0.048 0.060
#> GSM564719     1  0.5088    0.39573 0.528 0.436 0.000 0.000 0.036
#> GSM564720     1  0.3710    0.81433 0.808 0.144 0.000 0.000 0.048
#> GSM564721     1  0.1808    0.86870 0.936 0.040 0.000 0.004 0.020
#> GSM564722     1  0.5939    0.38207 0.564 0.024 0.000 0.348 0.064
#> GSM564723     1  0.3035    0.83883 0.856 0.112 0.000 0.000 0.032
#> GSM564724     3  0.5646    0.45378 0.308 0.000 0.616 0.032 0.044
#> GSM564725     1  0.2491    0.84954 0.896 0.000 0.000 0.068 0.036
#> GSM564726     4  0.1444    0.75517 0.012 0.000 0.000 0.948 0.040
#> GSM564727     4  0.4420    0.16697 0.448 0.000 0.000 0.548 0.004
#> GSM564728     4  0.1211    0.75859 0.024 0.000 0.000 0.960 0.016
#> GSM564729     4  0.3016    0.70938 0.132 0.000 0.000 0.848 0.020
#> GSM564730     1  0.1907    0.87134 0.928 0.028 0.000 0.000 0.044
#> GSM564731     1  0.2130    0.87184 0.920 0.012 0.004 0.004 0.060
#> GSM564732     1  0.1965    0.85963 0.924 0.000 0.000 0.052 0.024
#> GSM564733     1  0.6078    0.05735 0.492 0.000 0.424 0.036 0.048
#> GSM564734     1  0.1934    0.87035 0.932 0.040 0.000 0.020 0.008
#> GSM564735     4  0.7311    0.09208 0.140 0.000 0.388 0.412 0.060
#> GSM564736     3  0.7899   -0.03738 0.312 0.000 0.328 0.292 0.068
#> GSM564737     1  0.0898    0.86696 0.972 0.008 0.000 0.000 0.020
#> GSM564738     4  0.5303    0.33880 0.004 0.000 0.372 0.576 0.048
#> GSM564739     1  0.1200    0.86991 0.964 0.008 0.012 0.000 0.016
#> GSM564740     4  0.1341    0.75233 0.000 0.000 0.000 0.944 0.056
#> GSM564741     4  0.5432    0.53820 0.036 0.000 0.264 0.660 0.040
#> GSM564742     3  0.5244    0.41020 0.368 0.004 0.588 0.004 0.036
#> GSM564743     1  0.3164    0.85135 0.852 0.044 0.000 0.000 0.104
#> GSM564744     1  0.2592    0.86104 0.892 0.056 0.000 0.000 0.052
#> GSM564745     1  0.1831    0.86846 0.920 0.004 0.000 0.000 0.076
#> GSM564746     1  0.0798    0.86768 0.976 0.008 0.000 0.000 0.016
#> GSM564747     1  0.1153    0.86848 0.964 0.008 0.000 0.004 0.024
#> GSM564748     3  0.5384    0.16047 0.440 0.004 0.516 0.004 0.036
#> GSM564749     1  0.3769    0.78815 0.788 0.180 0.000 0.000 0.032
#> GSM564750     4  0.2843    0.73504 0.076 0.000 0.000 0.876 0.048
#> GSM564751     1  0.1956    0.85321 0.916 0.000 0.076 0.000 0.008
#> GSM564752     4  0.2054    0.75209 0.028 0.000 0.000 0.920 0.052
#> GSM564753     3  0.4682    0.44631 0.356 0.000 0.620 0.000 0.024
#> GSM564754     1  0.0865    0.86745 0.972 0.004 0.000 0.000 0.024
#> GSM564755     4  0.0451    0.75537 0.004 0.000 0.000 0.988 0.008
#> GSM564756     1  0.4971    0.78624 0.748 0.128 0.000 0.024 0.100
#> GSM564757     4  0.0898    0.75781 0.020 0.000 0.000 0.972 0.008
#> GSM564758     4  0.5821    0.55063 0.228 0.012 0.000 0.636 0.124
#> GSM564759     3  0.5165    0.37740 0.376 0.000 0.576 0.000 0.048
#> GSM564760     1  0.3961    0.71760 0.760 0.000 0.000 0.212 0.028
#> GSM564761     1  0.1597    0.87126 0.940 0.012 0.000 0.000 0.048
#> GSM564762     1  0.2166    0.86511 0.912 0.004 0.000 0.012 0.072
#> GSM564681     5  0.6438    0.42239 0.000 0.212 0.000 0.292 0.496
#> GSM564693     5  0.6184    0.42196 0.000 0.276 0.004 0.160 0.560
#> GSM564646     4  0.1608    0.73886 0.000 0.000 0.000 0.928 0.072
#> GSM564699     4  0.1410    0.74734 0.000 0.000 0.000 0.940 0.060

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM564615     4  0.2952     0.6789 0.068 0.000 0.000 0.864 0.052 0.016
#> GSM564616     6  0.1807     0.5154 0.000 0.060 0.000 0.000 0.020 0.920
#> GSM564617     6  0.2350     0.5057 0.000 0.076 0.000 0.000 0.036 0.888
#> GSM564618     6  0.2990     0.5124 0.000 0.036 0.000 0.084 0.020 0.860
#> GSM564619     1  0.3072     0.8211 0.840 0.000 0.000 0.000 0.084 0.076
#> GSM564620     1  0.4859     0.5396 0.596 0.000 0.000 0.016 0.040 0.348
#> GSM564621     1  0.3657     0.7962 0.824 0.000 0.000 0.072 0.044 0.060
#> GSM564622     6  0.2022     0.5029 0.000 0.024 0.008 0.000 0.052 0.916
#> GSM564623     6  0.4534     0.0878 0.000 0.000 0.000 0.472 0.032 0.496
#> GSM564624     6  0.2151     0.5170 0.000 0.072 0.000 0.008 0.016 0.904
#> GSM564625     1  0.3049     0.8103 0.864 0.000 0.000 0.040 0.052 0.044
#> GSM564626     1  0.2046     0.8194 0.908 0.000 0.000 0.000 0.032 0.060
#> GSM564627     1  0.3323     0.8052 0.836 0.000 0.000 0.032 0.028 0.104
#> GSM564628     6  0.1585     0.5191 0.000 0.036 0.000 0.012 0.012 0.940
#> GSM564629     1  0.4283     0.6484 0.672 0.000 0.004 0.000 0.036 0.288
#> GSM564630     6  0.1913     0.5084 0.000 0.080 0.000 0.000 0.012 0.908
#> GSM564609     3  0.6118     0.2912 0.000 0.068 0.540 0.000 0.300 0.092
#> GSM564610     1  0.3792     0.7923 0.780 0.000 0.000 0.000 0.112 0.108
#> GSM564611     2  0.4359     0.3450 0.296 0.664 0.000 0.000 0.032 0.008
#> GSM564612     3  0.4957     0.4684 0.000 0.244 0.668 0.000 0.040 0.048
#> GSM564613     6  0.4490     0.4097 0.000 0.016 0.028 0.008 0.252 0.696
#> GSM564614     4  0.5490     0.2265 0.404 0.000 0.000 0.508 0.052 0.036
#> GSM564631     3  0.1152     0.6870 0.000 0.000 0.952 0.000 0.044 0.004
#> GSM564632     5  0.6986    -0.1140 0.000 0.012 0.040 0.228 0.392 0.328
#> GSM564633     3  0.2597     0.6359 0.000 0.000 0.824 0.000 0.176 0.000
#> GSM564634     5  0.6411     0.4971 0.000 0.148 0.068 0.000 0.532 0.252
#> GSM564635     3  0.4048     0.4260 0.000 0.004 0.644 0.000 0.340 0.012
#> GSM564636     3  0.4838     0.5880 0.000 0.056 0.740 0.004 0.100 0.100
#> GSM564637     2  0.6793     0.0738 0.000 0.436 0.040 0.384 0.100 0.040
#> GSM564638     3  0.2633     0.6542 0.000 0.000 0.864 0.004 0.112 0.020
#> GSM564639     3  0.0260     0.6847 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM564640     2  0.4486     0.3695 0.000 0.696 0.000 0.000 0.208 0.096
#> GSM564641     3  0.3693     0.6436 0.004 0.060 0.828 0.000 0.048 0.060
#> GSM564642     5  0.5761     0.4556 0.000 0.344 0.040 0.000 0.536 0.080
#> GSM564643     5  0.7230     0.2791 0.000 0.032 0.048 0.256 0.448 0.216
#> GSM564644     2  0.1616     0.6575 0.000 0.932 0.000 0.000 0.048 0.020
#> GSM564645     3  0.0865     0.6857 0.000 0.000 0.964 0.000 0.036 0.000
#> GSM564647     6  0.7062    -0.2484 0.000 0.072 0.240 0.000 0.328 0.360
#> GSM564648     6  0.5213     0.0895 0.000 0.064 0.004 0.008 0.376 0.548
#> GSM564649     3  0.1745     0.6817 0.000 0.000 0.920 0.000 0.068 0.012
#> GSM564650     2  0.4396     0.5386 0.000 0.768 0.008 0.132 0.060 0.032
#> GSM564651     5  0.6615     0.4203 0.000 0.296 0.156 0.000 0.480 0.068
#> GSM564652     5  0.5615     0.4672 0.016 0.184 0.000 0.000 0.600 0.200
#> GSM564653     2  0.5353    -0.2339 0.000 0.516 0.000 0.000 0.368 0.116
#> GSM564654     3  0.4092     0.4254 0.000 0.000 0.636 0.000 0.344 0.020
#> GSM564655     3  0.4704     0.3749 0.000 0.032 0.604 0.004 0.352 0.008
#> GSM564656     3  0.2191     0.6627 0.000 0.000 0.876 0.000 0.120 0.004
#> GSM564657     3  0.1168     0.6849 0.000 0.028 0.956 0.000 0.016 0.000
#> GSM564658     2  0.2831     0.5981 0.000 0.840 0.000 0.000 0.024 0.136
#> GSM564659     6  0.6477     0.0314 0.000 0.028 0.392 0.008 0.156 0.416
#> GSM564660     6  0.5014     0.3817 0.000 0.020 0.000 0.064 0.280 0.636
#> GSM564661     5  0.6056     0.3684 0.000 0.352 0.000 0.000 0.388 0.260
#> GSM564662     3  0.0777     0.6859 0.000 0.000 0.972 0.000 0.024 0.004
#> GSM564663     2  0.3645     0.5256 0.000 0.784 0.000 0.000 0.152 0.064
#> GSM564664     2  0.1074     0.6689 0.000 0.960 0.000 0.000 0.028 0.012
#> GSM564665     3  0.5602     0.0311 0.000 0.076 0.460 0.000 0.440 0.024
#> GSM564666     6  0.5392     0.0907 0.000 0.000 0.000 0.440 0.112 0.448
#> GSM564667     3  0.1908     0.6708 0.000 0.000 0.900 0.000 0.096 0.004
#> GSM564668     3  0.4699     0.3481 0.000 0.008 0.580 0.000 0.376 0.036
#> GSM564669     3  0.1285     0.6858 0.000 0.000 0.944 0.004 0.052 0.000
#> GSM564670     6  0.5537     0.3024 0.000 0.108 0.052 0.000 0.192 0.648
#> GSM564671     4  0.3979     0.5293 0.000 0.000 0.000 0.752 0.172 0.076
#> GSM564672     3  0.1267     0.6810 0.000 0.000 0.940 0.000 0.060 0.000
#> GSM564673     5  0.6337     0.4953 0.000 0.212 0.028 0.000 0.484 0.276
#> GSM564674     5  0.5996     0.3454 0.000 0.392 0.000 0.004 0.408 0.196
#> GSM564675     6  0.5681     0.3690 0.000 0.028 0.000 0.300 0.104 0.568
#> GSM564676     2  0.0405     0.6697 0.000 0.988 0.000 0.000 0.008 0.004
#> GSM564677     5  0.5147     0.4266 0.008 0.364 0.000 0.000 0.556 0.072
#> GSM564678     2  0.0405     0.6686 0.000 0.988 0.000 0.000 0.004 0.008
#> GSM564679     2  0.1176     0.6669 0.000 0.956 0.000 0.000 0.024 0.020
#> GSM564680     3  0.0865     0.6863 0.000 0.000 0.964 0.000 0.036 0.000
#> GSM564682     3  0.7391    -0.1269 0.004 0.316 0.372 0.000 0.124 0.184
#> GSM564683     3  0.0146     0.6846 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM564684     4  0.2480     0.6280 0.000 0.000 0.000 0.872 0.024 0.104
#> GSM564685     3  0.1049     0.6876 0.000 0.000 0.960 0.000 0.032 0.008
#> GSM564686     4  0.1921     0.6571 0.000 0.000 0.000 0.916 0.032 0.052
#> GSM564687     2  0.5910    -0.2322 0.000 0.448 0.000 0.000 0.220 0.332
#> GSM564688     2  0.6794    -0.2265 0.000 0.460 0.076 0.000 0.288 0.176
#> GSM564689     2  0.0725     0.6708 0.000 0.976 0.000 0.000 0.012 0.012
#> GSM564690     2  0.0405     0.6704 0.000 0.988 0.000 0.000 0.004 0.008
#> GSM564691     2  0.4914     0.4760 0.000 0.728 0.080 0.000 0.080 0.112
#> GSM564692     6  0.5176     0.1252 0.000 0.144 0.000 0.000 0.248 0.608
#> GSM564694     6  0.6085     0.2766 0.000 0.016 0.004 0.232 0.212 0.536
#> GSM564695     6  0.7773    -0.2286 0.000 0.244 0.008 0.160 0.264 0.324
#> GSM564696     3  0.1462     0.6829 0.000 0.000 0.936 0.000 0.056 0.008
#> GSM564697     2  0.0820     0.6703 0.000 0.972 0.000 0.000 0.012 0.016
#> GSM564698     3  0.5586     0.2653 0.000 0.000 0.532 0.000 0.292 0.176
#> GSM564700     4  0.2179     0.6501 0.000 0.000 0.000 0.900 0.036 0.064
#> GSM564701     5  0.6815     0.4450 0.000 0.156 0.084 0.000 0.448 0.312
#> GSM564702     6  0.7347    -0.0317 0.000 0.148 0.000 0.168 0.340 0.344
#> GSM564703     1  0.2361     0.8215 0.896 0.000 0.064 0.000 0.032 0.008
#> GSM564704     1  0.3706     0.8059 0.824 0.020 0.000 0.052 0.092 0.012
#> GSM564705     1  0.2476     0.8167 0.888 0.072 0.000 0.000 0.032 0.008
#> GSM564706     3  0.6041    -0.0365 0.420 0.004 0.436 0.012 0.124 0.004
#> GSM564707     1  0.2457     0.8236 0.896 0.036 0.004 0.000 0.056 0.008
#> GSM564708     1  0.4928     0.6172 0.668 0.000 0.232 0.008 0.088 0.004
#> GSM564709     1  0.5679     0.7088 0.672 0.092 0.000 0.132 0.096 0.008
#> GSM564710     1  0.1480     0.8234 0.940 0.000 0.000 0.000 0.040 0.020
#> GSM564711     1  0.5409     0.6598 0.656 0.000 0.192 0.020 0.124 0.008
#> GSM564712     1  0.2883     0.8109 0.844 0.012 0.000 0.000 0.132 0.012
#> GSM564713     1  0.5162     0.7001 0.696 0.000 0.060 0.052 0.184 0.008
#> GSM564714     3  0.6043     0.4915 0.200 0.008 0.600 0.016 0.164 0.012
#> GSM564715     1  0.1297     0.8201 0.948 0.000 0.000 0.000 0.040 0.012
#> GSM564716     1  0.2849     0.8106 0.864 0.000 0.000 0.044 0.084 0.008
#> GSM564717     1  0.4219     0.7210 0.720 0.224 0.000 0.000 0.048 0.008
#> GSM564718     1  0.5095     0.7166 0.700 0.000 0.096 0.036 0.164 0.004
#> GSM564719     2  0.3930     0.4136 0.236 0.728 0.000 0.000 0.032 0.004
#> GSM564720     1  0.3936     0.7922 0.780 0.088 0.000 0.000 0.124 0.008
#> GSM564721     1  0.2420     0.8206 0.888 0.076 0.000 0.000 0.032 0.004
#> GSM564722     4  0.7007     0.2047 0.356 0.060 0.000 0.404 0.168 0.012
#> GSM564723     1  0.3375     0.7932 0.816 0.136 0.000 0.000 0.040 0.008
#> GSM564724     3  0.6187    -0.0642 0.416 0.000 0.432 0.048 0.104 0.000
#> GSM564725     1  0.3399     0.7934 0.832 0.000 0.000 0.088 0.064 0.016
#> GSM564726     4  0.2699     0.6872 0.008 0.000 0.000 0.856 0.124 0.012
#> GSM564727     4  0.4516     0.2440 0.420 0.000 0.000 0.552 0.020 0.008
#> GSM564728     4  0.1769     0.6985 0.012 0.000 0.000 0.924 0.060 0.004
#> GSM564729     4  0.3282     0.6704 0.108 0.000 0.000 0.836 0.036 0.020
#> GSM564730     1  0.3909     0.7870 0.772 0.020 0.000 0.000 0.172 0.036
#> GSM564731     1  0.4128     0.7642 0.712 0.008 0.004 0.004 0.256 0.016
#> GSM564732     1  0.2773     0.8035 0.868 0.000 0.000 0.064 0.064 0.004
#> GSM564733     1  0.6358     0.3593 0.520 0.000 0.300 0.056 0.120 0.004
#> GSM564734     1  0.2910     0.8211 0.868 0.068 0.000 0.020 0.044 0.000
#> GSM564735     3  0.7495    -0.1183 0.080 0.000 0.356 0.332 0.212 0.020
#> GSM564736     4  0.7847     0.1904 0.288 0.000 0.200 0.296 0.208 0.008
#> GSM564737     1  0.1148     0.8199 0.960 0.020 0.000 0.000 0.016 0.004
#> GSM564738     4  0.6124     0.1658 0.000 0.000 0.368 0.444 0.172 0.016
#> GSM564739     1  0.1346     0.8231 0.952 0.000 0.016 0.000 0.024 0.008
#> GSM564740     4  0.2790     0.6755 0.000 0.000 0.000 0.844 0.132 0.024
#> GSM564741     4  0.6063     0.5238 0.048 0.000 0.192 0.596 0.160 0.004
#> GSM564742     3  0.5616     0.4239 0.304 0.004 0.560 0.000 0.124 0.008
#> GSM564743     1  0.5079     0.7207 0.672 0.028 0.000 0.000 0.212 0.088
#> GSM564744     1  0.4130     0.7758 0.756 0.036 0.000 0.000 0.180 0.028
#> GSM564745     1  0.3073     0.7891 0.788 0.000 0.000 0.000 0.204 0.008
#> GSM564746     1  0.2164     0.8215 0.900 0.000 0.000 0.000 0.032 0.068
#> GSM564747     1  0.1398     0.8199 0.940 0.008 0.000 0.000 0.052 0.000
#> GSM564748     3  0.5772     0.0790 0.424 0.000 0.448 0.008 0.116 0.004
#> GSM564749     1  0.4545     0.5262 0.616 0.344 0.000 0.000 0.032 0.008
#> GSM564750     4  0.4447     0.6580 0.072 0.000 0.008 0.756 0.144 0.020
#> GSM564751     1  0.2451     0.8203 0.888 0.000 0.068 0.000 0.040 0.004
#> GSM564752     4  0.3025     0.6835 0.020 0.000 0.000 0.844 0.120 0.016
#> GSM564753     3  0.5100     0.2719 0.392 0.000 0.524 0.000 0.084 0.000
#> GSM564754     1  0.1845     0.8181 0.916 0.000 0.000 0.004 0.072 0.008
#> GSM564755     4  0.1075     0.6946 0.000 0.000 0.000 0.952 0.048 0.000
#> GSM564756     1  0.5799     0.6585 0.588 0.064 0.000 0.052 0.288 0.008
#> GSM564757     4  0.1448     0.6905 0.012 0.000 0.000 0.948 0.024 0.016
#> GSM564758     4  0.6805     0.4336 0.208 0.008 0.000 0.512 0.200 0.072
#> GSM564759     3  0.6002     0.4267 0.280 0.000 0.536 0.004 0.164 0.016
#> GSM564760     1  0.4755     0.6105 0.664 0.000 0.000 0.244 0.088 0.004
#> GSM564761     1  0.2604     0.8224 0.872 0.004 0.000 0.000 0.096 0.028
#> GSM564762     1  0.4690     0.7208 0.716 0.000 0.004 0.044 0.200 0.036
#> GSM564681     6  0.6550     0.2597 0.000 0.040 0.000 0.236 0.256 0.468
#> GSM564693     5  0.7408     0.3304 0.000 0.124 0.004 0.196 0.384 0.292
#> GSM564646     4  0.2046     0.6544 0.000 0.000 0.000 0.908 0.032 0.060
#> GSM564699     4  0.2325     0.6641 0.000 0.000 0.000 0.892 0.060 0.048

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n genotype/variation(p) disease.state(p) k
#> CV:NMF 154              9.25e-01         4.76e-01 2
#> CV:NMF 131              8.68e-01         7.58e-05 3
#> CV:NMF 141              4.20e-01         2.63e-01 4
#> CV:NMF 115              3.30e-05         2.46e-01 5
#> CV:NMF  96              2.92e-07         2.50e-01 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 154 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.5007 0.500   0.500
#> 3 3 0.780           0.752       0.876         0.2283 0.905   0.809
#> 4 4 0.608           0.519       0.778         0.1236 0.892   0.741
#> 5 5 0.612           0.690       0.804         0.0916 0.880   0.649
#> 6 6 0.654           0.627       0.779         0.0432 0.988   0.950

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM564615     1  0.0000      1.000 1.000 0.000
#> GSM564616     2  0.0000      1.000 0.000 1.000
#> GSM564617     2  0.0000      1.000 0.000 1.000
#> GSM564618     2  0.0000      1.000 0.000 1.000
#> GSM564619     1  0.0000      1.000 1.000 0.000
#> GSM564620     1  0.0000      1.000 1.000 0.000
#> GSM564621     1  0.0000      1.000 1.000 0.000
#> GSM564622     2  0.0000      1.000 0.000 1.000
#> GSM564623     2  0.0376      0.996 0.004 0.996
#> GSM564624     2  0.0000      1.000 0.000 1.000
#> GSM564625     1  0.0000      1.000 1.000 0.000
#> GSM564626     1  0.0000      1.000 1.000 0.000
#> GSM564627     1  0.0000      1.000 1.000 0.000
#> GSM564628     2  0.0000      1.000 0.000 1.000
#> GSM564629     1  0.0000      1.000 1.000 0.000
#> GSM564630     2  0.0000      1.000 0.000 1.000
#> GSM564609     2  0.0000      1.000 0.000 1.000
#> GSM564610     1  0.0000      1.000 1.000 0.000
#> GSM564611     1  0.0000      1.000 1.000 0.000
#> GSM564612     2  0.0000      1.000 0.000 1.000
#> GSM564613     2  0.0000      1.000 0.000 1.000
#> GSM564614     1  0.0000      1.000 1.000 0.000
#> GSM564631     2  0.0000      1.000 0.000 1.000
#> GSM564632     2  0.0000      1.000 0.000 1.000
#> GSM564633     2  0.0000      1.000 0.000 1.000
#> GSM564634     2  0.0000      1.000 0.000 1.000
#> GSM564635     2  0.0000      1.000 0.000 1.000
#> GSM564636     2  0.0000      1.000 0.000 1.000
#> GSM564637     2  0.0000      1.000 0.000 1.000
#> GSM564638     2  0.0000      1.000 0.000 1.000
#> GSM564639     2  0.0000      1.000 0.000 1.000
#> GSM564640     2  0.0000      1.000 0.000 1.000
#> GSM564641     2  0.0000      1.000 0.000 1.000
#> GSM564642     2  0.0000      1.000 0.000 1.000
#> GSM564643     2  0.0000      1.000 0.000 1.000
#> GSM564644     2  0.0000      1.000 0.000 1.000
#> GSM564645     2  0.0000      1.000 0.000 1.000
#> GSM564647     2  0.0000      1.000 0.000 1.000
#> GSM564648     2  0.0000      1.000 0.000 1.000
#> GSM564649     2  0.0000      1.000 0.000 1.000
#> GSM564650     2  0.0000      1.000 0.000 1.000
#> GSM564651     2  0.0000      1.000 0.000 1.000
#> GSM564652     2  0.0000      1.000 0.000 1.000
#> GSM564653     2  0.0000      1.000 0.000 1.000
#> GSM564654     2  0.0000      1.000 0.000 1.000
#> GSM564655     2  0.0000      1.000 0.000 1.000
#> GSM564656     2  0.0000      1.000 0.000 1.000
#> GSM564657     2  0.0000      1.000 0.000 1.000
#> GSM564658     2  0.0000      1.000 0.000 1.000
#> GSM564659     2  0.0000      1.000 0.000 1.000
#> GSM564660     2  0.0000      1.000 0.000 1.000
#> GSM564661     2  0.0000      1.000 0.000 1.000
#> GSM564662     2  0.0000      1.000 0.000 1.000
#> GSM564663     2  0.0000      1.000 0.000 1.000
#> GSM564664     2  0.0000      1.000 0.000 1.000
#> GSM564665     2  0.0000      1.000 0.000 1.000
#> GSM564666     2  0.0000      1.000 0.000 1.000
#> GSM564667     2  0.0000      1.000 0.000 1.000
#> GSM564668     2  0.0000      1.000 0.000 1.000
#> GSM564669     2  0.0000      1.000 0.000 1.000
#> GSM564670     2  0.0000      1.000 0.000 1.000
#> GSM564671     2  0.0376      0.996 0.004 0.996
#> GSM564672     2  0.0000      1.000 0.000 1.000
#> GSM564673     2  0.0000      1.000 0.000 1.000
#> GSM564674     2  0.0000      1.000 0.000 1.000
#> GSM564675     2  0.0938      0.988 0.012 0.988
#> GSM564676     2  0.0000      1.000 0.000 1.000
#> GSM564677     2  0.0000      1.000 0.000 1.000
#> GSM564678     2  0.0000      1.000 0.000 1.000
#> GSM564679     2  0.0000      1.000 0.000 1.000
#> GSM564680     2  0.0000      1.000 0.000 1.000
#> GSM564682     2  0.0000      1.000 0.000 1.000
#> GSM564683     2  0.0000      1.000 0.000 1.000
#> GSM564684     2  0.0376      0.996 0.004 0.996
#> GSM564685     2  0.0000      1.000 0.000 1.000
#> GSM564686     2  0.0376      0.996 0.004 0.996
#> GSM564687     2  0.0000      1.000 0.000 1.000
#> GSM564688     2  0.0000      1.000 0.000 1.000
#> GSM564689     2  0.0000      1.000 0.000 1.000
#> GSM564690     2  0.0000      1.000 0.000 1.000
#> GSM564691     2  0.0000      1.000 0.000 1.000
#> GSM564692     2  0.0000      1.000 0.000 1.000
#> GSM564694     2  0.0376      0.996 0.004 0.996
#> GSM564695     2  0.0000      1.000 0.000 1.000
#> GSM564696     2  0.0000      1.000 0.000 1.000
#> GSM564697     2  0.0000      1.000 0.000 1.000
#> GSM564698     2  0.0000      1.000 0.000 1.000
#> GSM564700     2  0.0376      0.996 0.004 0.996
#> GSM564701     2  0.0000      1.000 0.000 1.000
#> GSM564702     2  0.0000      1.000 0.000 1.000
#> GSM564703     1  0.0000      1.000 1.000 0.000
#> GSM564704     1  0.0000      1.000 1.000 0.000
#> GSM564705     1  0.0000      1.000 1.000 0.000
#> GSM564706     1  0.0000      1.000 1.000 0.000
#> GSM564707     1  0.0000      1.000 1.000 0.000
#> GSM564708     1  0.0000      1.000 1.000 0.000
#> GSM564709     1  0.0000      1.000 1.000 0.000
#> GSM564710     1  0.0000      1.000 1.000 0.000
#> GSM564711     1  0.0000      1.000 1.000 0.000
#> GSM564712     1  0.0000      1.000 1.000 0.000
#> GSM564713     1  0.0000      1.000 1.000 0.000
#> GSM564714     1  0.0000      1.000 1.000 0.000
#> GSM564715     1  0.0000      1.000 1.000 0.000
#> GSM564716     1  0.0000      1.000 1.000 0.000
#> GSM564717     1  0.0000      1.000 1.000 0.000
#> GSM564718     1  0.0000      1.000 1.000 0.000
#> GSM564719     1  0.0000      1.000 1.000 0.000
#> GSM564720     1  0.0000      1.000 1.000 0.000
#> GSM564721     1  0.0000      1.000 1.000 0.000
#> GSM564722     1  0.0000      1.000 1.000 0.000
#> GSM564723     1  0.0000      1.000 1.000 0.000
#> GSM564724     1  0.0000      1.000 1.000 0.000
#> GSM564725     1  0.0000      1.000 1.000 0.000
#> GSM564726     1  0.0000      1.000 1.000 0.000
#> GSM564727     1  0.0000      1.000 1.000 0.000
#> GSM564728     1  0.0000      1.000 1.000 0.000
#> GSM564729     1  0.0000      1.000 1.000 0.000
#> GSM564730     1  0.0000      1.000 1.000 0.000
#> GSM564731     1  0.0000      1.000 1.000 0.000
#> GSM564732     1  0.0000      1.000 1.000 0.000
#> GSM564733     1  0.0000      1.000 1.000 0.000
#> GSM564734     1  0.0000      1.000 1.000 0.000
#> GSM564735     1  0.0000      1.000 1.000 0.000
#> GSM564736     1  0.0000      1.000 1.000 0.000
#> GSM564737     1  0.0000      1.000 1.000 0.000
#> GSM564738     1  0.0000      1.000 1.000 0.000
#> GSM564739     1  0.0000      1.000 1.000 0.000
#> GSM564740     1  0.0000      1.000 1.000 0.000
#> GSM564741     1  0.0000      1.000 1.000 0.000
#> GSM564742     1  0.0000      1.000 1.000 0.000
#> GSM564743     1  0.0000      1.000 1.000 0.000
#> GSM564744     1  0.0000      1.000 1.000 0.000
#> GSM564745     1  0.0000      1.000 1.000 0.000
#> GSM564746     1  0.0000      1.000 1.000 0.000
#> GSM564747     1  0.0000      1.000 1.000 0.000
#> GSM564748     1  0.0000      1.000 1.000 0.000
#> GSM564749     1  0.0000      1.000 1.000 0.000
#> GSM564750     1  0.0000      1.000 1.000 0.000
#> GSM564751     1  0.0000      1.000 1.000 0.000
#> GSM564752     1  0.0000      1.000 1.000 0.000
#> GSM564753     1  0.0000      1.000 1.000 0.000
#> GSM564754     1  0.0000      1.000 1.000 0.000
#> GSM564755     1  0.0000      1.000 1.000 0.000
#> GSM564756     1  0.0000      1.000 1.000 0.000
#> GSM564757     1  0.0000      1.000 1.000 0.000
#> GSM564758     1  0.0000      1.000 1.000 0.000
#> GSM564759     1  0.0000      1.000 1.000 0.000
#> GSM564760     1  0.0000      1.000 1.000 0.000
#> GSM564761     1  0.0000      1.000 1.000 0.000
#> GSM564762     1  0.0000      1.000 1.000 0.000
#> GSM564681     2  0.0000      1.000 0.000 1.000
#> GSM564693     2  0.0000      1.000 0.000 1.000
#> GSM564646     2  0.0376      0.996 0.004 0.996
#> GSM564699     2  0.0000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM564615     1  0.0424     0.9787 0.992 0.008 0.000
#> GSM564616     3  0.6252     0.0837 0.000 0.444 0.556
#> GSM564617     2  0.5098     0.7428 0.000 0.752 0.248
#> GSM564618     3  0.5810     0.4511 0.000 0.336 0.664
#> GSM564619     1  0.1289     0.9751 0.968 0.032 0.000
#> GSM564620     1  0.0424     0.9794 0.992 0.008 0.000
#> GSM564621     1  0.1031     0.9790 0.976 0.024 0.000
#> GSM564622     3  0.4974     0.6031 0.000 0.236 0.764
#> GSM564623     3  0.4887     0.6231 0.000 0.228 0.772
#> GSM564624     2  0.5016     0.7472 0.000 0.760 0.240
#> GSM564625     1  0.0424     0.9787 0.992 0.008 0.000
#> GSM564626     1  0.1529     0.9728 0.960 0.040 0.000
#> GSM564627     1  0.1163     0.9764 0.972 0.028 0.000
#> GSM564628     2  0.6295     0.3749 0.000 0.528 0.472
#> GSM564629     1  0.0424     0.9787 0.992 0.008 0.000
#> GSM564630     2  0.5327     0.7268 0.000 0.728 0.272
#> GSM564609     3  0.1643     0.7409 0.000 0.044 0.956
#> GSM564610     1  0.1643     0.9732 0.956 0.044 0.000
#> GSM564611     1  0.2537     0.9570 0.920 0.080 0.000
#> GSM564612     3  0.6286    -0.2029 0.000 0.464 0.536
#> GSM564613     3  0.6308    -0.3023 0.000 0.492 0.508
#> GSM564614     1  0.0592     0.9793 0.988 0.012 0.000
#> GSM564631     3  0.1643     0.7382 0.000 0.044 0.956
#> GSM564632     3  0.2537     0.7342 0.000 0.080 0.920
#> GSM564633     3  0.0592     0.7362 0.000 0.012 0.988
#> GSM564634     3  0.4452     0.6384 0.000 0.192 0.808
#> GSM564635     3  0.0424     0.7365 0.000 0.008 0.992
#> GSM564636     3  0.3340     0.7126 0.000 0.120 0.880
#> GSM564637     3  0.1643     0.7418 0.000 0.044 0.956
#> GSM564638     3  0.3192     0.7181 0.000 0.112 0.888
#> GSM564639     3  0.0424     0.7368 0.000 0.008 0.992
#> GSM564640     3  0.6079     0.1849 0.000 0.388 0.612
#> GSM564641     3  0.4931     0.5788 0.000 0.232 0.768
#> GSM564642     3  0.5926     0.3014 0.000 0.356 0.644
#> GSM564643     3  0.1529     0.7393 0.000 0.040 0.960
#> GSM564644     2  0.6235     0.4406 0.000 0.564 0.436
#> GSM564645     3  0.1289     0.7392 0.000 0.032 0.968
#> GSM564647     3  0.4796     0.6312 0.000 0.220 0.780
#> GSM564648     3  0.4654     0.6421 0.000 0.208 0.792
#> GSM564649     3  0.1643     0.7385 0.000 0.044 0.956
#> GSM564650     2  0.6026     0.6225 0.000 0.624 0.376
#> GSM564651     3  0.5397     0.5393 0.000 0.280 0.720
#> GSM564652     3  0.5431     0.5391 0.000 0.284 0.716
#> GSM564653     3  0.5810     0.4622 0.000 0.336 0.664
#> GSM564654     3  0.0892     0.7394 0.000 0.020 0.980
#> GSM564655     3  0.1964     0.7429 0.000 0.056 0.944
#> GSM564656     3  0.0592     0.7362 0.000 0.012 0.988
#> GSM564657     3  0.2066     0.7373 0.000 0.060 0.940
#> GSM564658     2  0.4555     0.7568 0.000 0.800 0.200
#> GSM564659     3  0.5968     0.2481 0.000 0.364 0.636
#> GSM564660     3  0.6309    -0.3022 0.000 0.496 0.504
#> GSM564661     3  0.5591     0.5033 0.000 0.304 0.696
#> GSM564662     3  0.1753     0.7365 0.000 0.048 0.952
#> GSM564663     2  0.6267     0.4089 0.000 0.548 0.452
#> GSM564664     2  0.6307     0.2670 0.000 0.512 0.488
#> GSM564665     3  0.3038     0.7305 0.000 0.104 0.896
#> GSM564666     3  0.6062     0.1709 0.000 0.384 0.616
#> GSM564667     3  0.3192     0.7160 0.000 0.112 0.888
#> GSM564668     3  0.0892     0.7358 0.000 0.020 0.980
#> GSM564669     3  0.0237     0.7363 0.000 0.004 0.996
#> GSM564670     2  0.6244     0.4529 0.000 0.560 0.440
#> GSM564671     3  0.1289     0.7351 0.000 0.032 0.968
#> GSM564672     3  0.1643     0.7379 0.000 0.044 0.956
#> GSM564673     3  0.4654     0.6373 0.000 0.208 0.792
#> GSM564674     3  0.6267    -0.0559 0.000 0.452 0.548
#> GSM564675     3  0.3965     0.7015 0.008 0.132 0.860
#> GSM564676     2  0.4121     0.7530 0.000 0.832 0.168
#> GSM564677     3  0.5529     0.5145 0.000 0.296 0.704
#> GSM564678     2  0.3816     0.7425 0.000 0.852 0.148
#> GSM564679     2  0.4002     0.7482 0.000 0.840 0.160
#> GSM564680     3  0.0424     0.7368 0.000 0.008 0.992
#> GSM564682     3  0.6286    -0.1723 0.000 0.464 0.536
#> GSM564683     3  0.1964     0.7351 0.000 0.056 0.944
#> GSM564684     3  0.1529     0.7395 0.000 0.040 0.960
#> GSM564685     3  0.1529     0.7396 0.000 0.040 0.960
#> GSM564686     3  0.1289     0.7408 0.000 0.032 0.968
#> GSM564687     3  0.3619     0.7094 0.000 0.136 0.864
#> GSM564688     3  0.5431     0.5329 0.000 0.284 0.716
#> GSM564689     2  0.3879     0.7429 0.000 0.848 0.152
#> GSM564690     2  0.3879     0.7429 0.000 0.848 0.152
#> GSM564691     2  0.6095     0.5978 0.000 0.608 0.392
#> GSM564692     3  0.5859     0.4178 0.000 0.344 0.656
#> GSM564694     3  0.2448     0.7419 0.000 0.076 0.924
#> GSM564695     3  0.5905     0.2646 0.000 0.352 0.648
#> GSM564696     3  0.2537     0.7322 0.000 0.080 0.920
#> GSM564697     2  0.4504     0.7540 0.000 0.804 0.196
#> GSM564698     3  0.0592     0.7368 0.000 0.012 0.988
#> GSM564700     3  0.1289     0.7372 0.000 0.032 0.968
#> GSM564701     3  0.6280    -0.0390 0.000 0.460 0.540
#> GSM564702     3  0.5529     0.5158 0.000 0.296 0.704
#> GSM564703     1  0.0424     0.9795 0.992 0.008 0.000
#> GSM564704     1  0.1163     0.9775 0.972 0.028 0.000
#> GSM564705     1  0.2711     0.9518 0.912 0.088 0.000
#> GSM564706     1  0.1289     0.9769 0.968 0.032 0.000
#> GSM564707     1  0.2537     0.9567 0.920 0.080 0.000
#> GSM564708     1  0.0424     0.9787 0.992 0.008 0.000
#> GSM564709     1  0.2261     0.9644 0.932 0.068 0.000
#> GSM564710     1  0.2711     0.9518 0.912 0.088 0.000
#> GSM564711     1  0.1031     0.9772 0.976 0.024 0.000
#> GSM564712     1  0.2796     0.9496 0.908 0.092 0.000
#> GSM564713     1  0.0424     0.9787 0.992 0.008 0.000
#> GSM564714     1  0.1529     0.9737 0.960 0.040 0.000
#> GSM564715     1  0.1163     0.9775 0.972 0.028 0.000
#> GSM564716     1  0.1031     0.9779 0.976 0.024 0.000
#> GSM564717     1  0.1753     0.9718 0.952 0.048 0.000
#> GSM564718     1  0.0747     0.9790 0.984 0.016 0.000
#> GSM564719     1  0.1529     0.9737 0.960 0.040 0.000
#> GSM564720     1  0.2448     0.9598 0.924 0.076 0.000
#> GSM564721     1  0.2356     0.9606 0.928 0.072 0.000
#> GSM564722     1  0.1529     0.9737 0.960 0.040 0.000
#> GSM564723     1  0.2537     0.9575 0.920 0.080 0.000
#> GSM564724     1  0.0424     0.9787 0.992 0.008 0.000
#> GSM564725     1  0.0892     0.9783 0.980 0.020 0.000
#> GSM564726     1  0.0424     0.9787 0.992 0.008 0.000
#> GSM564727     1  0.0747     0.9789 0.984 0.016 0.000
#> GSM564728     1  0.0424     0.9787 0.992 0.008 0.000
#> GSM564729     1  0.0424     0.9787 0.992 0.008 0.000
#> GSM564730     1  0.2066     0.9670 0.940 0.060 0.000
#> GSM564731     1  0.0592     0.9792 0.988 0.012 0.000
#> GSM564732     1  0.0424     0.9787 0.992 0.008 0.000
#> GSM564733     1  0.0237     0.9789 0.996 0.004 0.000
#> GSM564734     1  0.0237     0.9789 0.996 0.004 0.000
#> GSM564735     1  0.0237     0.9789 0.996 0.004 0.000
#> GSM564736     1  0.0237     0.9789 0.996 0.004 0.000
#> GSM564737     1  0.2796     0.9496 0.908 0.092 0.000
#> GSM564738     1  0.0592     0.9796 0.988 0.012 0.000
#> GSM564739     1  0.0000     0.9790 1.000 0.000 0.000
#> GSM564740     1  0.0424     0.9787 0.992 0.008 0.000
#> GSM564741     1  0.0592     0.9796 0.988 0.012 0.000
#> GSM564742     1  0.1031     0.9772 0.976 0.024 0.000
#> GSM564743     1  0.2625     0.9551 0.916 0.084 0.000
#> GSM564744     1  0.2537     0.9570 0.920 0.080 0.000
#> GSM564745     1  0.1529     0.9759 0.960 0.040 0.000
#> GSM564746     1  0.1163     0.9764 0.972 0.028 0.000
#> GSM564747     1  0.0892     0.9787 0.980 0.020 0.000
#> GSM564748     1  0.1031     0.9784 0.976 0.024 0.000
#> GSM564749     1  0.1964     0.9683 0.944 0.056 0.000
#> GSM564750     1  0.0424     0.9787 0.992 0.008 0.000
#> GSM564751     1  0.0000     0.9790 1.000 0.000 0.000
#> GSM564752     1  0.0424     0.9787 0.992 0.008 0.000
#> GSM564753     1  0.0237     0.9794 0.996 0.004 0.000
#> GSM564754     1  0.0892     0.9787 0.980 0.020 0.000
#> GSM564755     1  0.0424     0.9787 0.992 0.008 0.000
#> GSM564756     1  0.0892     0.9788 0.980 0.020 0.000
#> GSM564757     1  0.0424     0.9787 0.992 0.008 0.000
#> GSM564758     1  0.0424     0.9787 0.992 0.008 0.000
#> GSM564759     1  0.0237     0.9791 0.996 0.004 0.000
#> GSM564760     1  0.0237     0.9789 0.996 0.004 0.000
#> GSM564761     1  0.2356     0.9613 0.928 0.072 0.000
#> GSM564762     1  0.0424     0.9787 0.992 0.008 0.000
#> GSM564681     3  0.6192     0.1786 0.000 0.420 0.580
#> GSM564693     3  0.5591     0.4994 0.000 0.304 0.696
#> GSM564646     3  0.1411     0.7394 0.000 0.036 0.964
#> GSM564699     3  0.1529     0.7423 0.000 0.040 0.960

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM564615     1  0.0336     0.7851 0.992 0.000 0.000 0.008
#> GSM564616     2  0.7634     0.3212 0.000 0.464 0.300 0.236
#> GSM564617     2  0.4989     0.6217 0.000 0.764 0.164 0.072
#> GSM564618     3  0.7866    -0.1414 0.000 0.336 0.384 0.280
#> GSM564619     1  0.5080    -0.6835 0.576 0.004 0.000 0.420
#> GSM564620     1  0.1022     0.7810 0.968 0.000 0.000 0.032
#> GSM564621     1  0.1661     0.7696 0.944 0.004 0.000 0.052
#> GSM564622     3  0.7634     0.1008 0.000 0.236 0.464 0.300
#> GSM564623     3  0.5288     0.5113 0.004 0.196 0.740 0.060
#> GSM564624     2  0.4706     0.6271 0.000 0.788 0.140 0.072
#> GSM564625     1  0.0817     0.7861 0.976 0.000 0.000 0.024
#> GSM564626     1  0.5143    -0.8016 0.540 0.004 0.000 0.456
#> GSM564627     1  0.3583     0.5222 0.816 0.004 0.000 0.180
#> GSM564628     2  0.6993     0.4752 0.000 0.532 0.336 0.132
#> GSM564629     1  0.0336     0.7848 0.992 0.000 0.000 0.008
#> GSM564630     2  0.5272     0.6193 0.000 0.744 0.172 0.084
#> GSM564609     3  0.2840     0.6788 0.000 0.044 0.900 0.056
#> GSM564610     1  0.3486     0.5158 0.812 0.000 0.000 0.188
#> GSM564611     4  0.4999     0.9019 0.492 0.000 0.000 0.508
#> GSM564612     2  0.5938     0.2608 0.000 0.484 0.480 0.036
#> GSM564613     2  0.6140     0.3205 0.000 0.500 0.452 0.048
#> GSM564614     1  0.0336     0.7867 0.992 0.000 0.000 0.008
#> GSM564631     3  0.1584     0.6833 0.000 0.036 0.952 0.012
#> GSM564632     3  0.4292     0.6312 0.000 0.080 0.820 0.100
#> GSM564633     3  0.1109     0.6900 0.000 0.004 0.968 0.028
#> GSM564634     3  0.4019     0.5665 0.000 0.196 0.792 0.012
#> GSM564635     3  0.1004     0.6901 0.000 0.004 0.972 0.024
#> GSM564636     3  0.3047     0.6493 0.000 0.116 0.872 0.012
#> GSM564637     3  0.2021     0.6911 0.000 0.056 0.932 0.012
#> GSM564638     3  0.2859     0.6567 0.000 0.112 0.880 0.008
#> GSM564639     3  0.1042     0.6914 0.000 0.008 0.972 0.020
#> GSM564640     3  0.6387    -0.2004 0.000 0.444 0.492 0.064
#> GSM564641     3  0.4546     0.4623 0.000 0.256 0.732 0.012
#> GSM564642     3  0.6101     0.0376 0.000 0.388 0.560 0.052
#> GSM564643     3  0.3550     0.6574 0.000 0.044 0.860 0.096
#> GSM564644     2  0.6052     0.5185 0.000 0.616 0.320 0.064
#> GSM564645     3  0.1118     0.6864 0.000 0.036 0.964 0.000
#> GSM564647     3  0.4671     0.5353 0.000 0.220 0.752 0.028
#> GSM564648     3  0.6944     0.2991 0.000 0.216 0.588 0.196
#> GSM564649     3  0.1706     0.6848 0.000 0.036 0.948 0.016
#> GSM564650     2  0.5673     0.5691 0.000 0.660 0.288 0.052
#> GSM564651     3  0.7837    -0.0137 0.000 0.292 0.408 0.300
#> GSM564652     3  0.7836    -0.0022 0.000 0.288 0.408 0.304
#> GSM564653     2  0.7896     0.0941 0.000 0.356 0.352 0.292
#> GSM564654     3  0.1520     0.6939 0.000 0.020 0.956 0.024
#> GSM564655     3  0.2335     0.6898 0.000 0.060 0.920 0.020
#> GSM564656     3  0.1109     0.6900 0.000 0.004 0.968 0.028
#> GSM564657     3  0.2021     0.6808 0.000 0.056 0.932 0.012
#> GSM564658     2  0.3247     0.6284 0.000 0.880 0.060 0.060
#> GSM564659     3  0.5984     0.0839 0.000 0.372 0.580 0.048
#> GSM564660     2  0.6204     0.3189 0.000 0.500 0.448 0.052
#> GSM564661     3  0.7877    -0.0587 0.000 0.312 0.388 0.300
#> GSM564662     3  0.1677     0.6810 0.000 0.040 0.948 0.012
#> GSM564663     2  0.6007     0.5054 0.000 0.604 0.340 0.056
#> GSM564664     2  0.6355     0.4592 0.000 0.576 0.348 0.076
#> GSM564665     3  0.3708     0.6358 0.000 0.148 0.832 0.020
#> GSM564666     3  0.6020     0.0164 0.000 0.384 0.568 0.048
#> GSM564667     3  0.3047     0.6500 0.000 0.116 0.872 0.012
#> GSM564668     3  0.1975     0.6887 0.000 0.016 0.936 0.048
#> GSM564669     3  0.1042     0.6916 0.000 0.008 0.972 0.020
#> GSM564670     2  0.6135     0.4515 0.000 0.568 0.376 0.056
#> GSM564671     3  0.2674     0.6841 0.004 0.020 0.908 0.068
#> GSM564672     3  0.1635     0.6841 0.000 0.044 0.948 0.008
#> GSM564673     3  0.7220     0.2430 0.000 0.196 0.544 0.260
#> GSM564674     2  0.6064     0.2869 0.000 0.512 0.444 0.044
#> GSM564675     3  0.4071     0.6297 0.012 0.112 0.840 0.036
#> GSM564676     2  0.3004     0.6253 0.000 0.892 0.060 0.048
#> GSM564677     3  0.7877    -0.0537 0.000 0.308 0.388 0.304
#> GSM564678     2  0.2408     0.6169 0.000 0.920 0.036 0.044
#> GSM564679     2  0.2385     0.6130 0.000 0.920 0.028 0.052
#> GSM564680     3  0.1042     0.6914 0.000 0.008 0.972 0.020
#> GSM564682     2  0.5493     0.3138 0.000 0.528 0.456 0.016
#> GSM564683     3  0.1854     0.6783 0.000 0.048 0.940 0.012
#> GSM564684     3  0.2680     0.6891 0.004 0.036 0.912 0.048
#> GSM564685     3  0.1833     0.6900 0.000 0.032 0.944 0.024
#> GSM564686     3  0.1575     0.6919 0.004 0.028 0.956 0.012
#> GSM564687     3  0.5375     0.5546 0.000 0.140 0.744 0.116
#> GSM564688     3  0.7845    -0.0185 0.000 0.292 0.404 0.304
#> GSM564689     2  0.2670     0.6147 0.000 0.908 0.040 0.052
#> GSM564690     2  0.2670     0.6147 0.000 0.908 0.040 0.052
#> GSM564691     2  0.5546     0.5758 0.000 0.664 0.292 0.044
#> GSM564692     3  0.7823    -0.1577 0.000 0.372 0.372 0.256
#> GSM564694     3  0.3134     0.6792 0.004 0.088 0.884 0.024
#> GSM564695     3  0.5742     0.1199 0.000 0.368 0.596 0.036
#> GSM564696     3  0.2329     0.6759 0.000 0.072 0.916 0.012
#> GSM564697     2  0.3435     0.6275 0.000 0.864 0.100 0.036
#> GSM564698     3  0.1042     0.6902 0.000 0.008 0.972 0.020
#> GSM564700     3  0.2731     0.6858 0.004 0.028 0.908 0.060
#> GSM564701     2  0.6783     0.3628 0.000 0.512 0.388 0.100
#> GSM564702     3  0.7854    -0.0386 0.000 0.304 0.400 0.296
#> GSM564703     1  0.2888     0.6776 0.872 0.004 0.000 0.124
#> GSM564704     1  0.2921     0.6748 0.860 0.000 0.000 0.140
#> GSM564705     4  0.4967     0.9174 0.452 0.000 0.000 0.548
#> GSM564706     1  0.1792     0.7641 0.932 0.000 0.000 0.068
#> GSM564707     4  0.4998     0.9018 0.488 0.000 0.000 0.512
#> GSM564708     1  0.0779     0.7871 0.980 0.004 0.000 0.016
#> GSM564709     1  0.5050    -0.5994 0.588 0.004 0.000 0.408
#> GSM564710     4  0.4961     0.9133 0.448 0.000 0.000 0.552
#> GSM564711     1  0.1867     0.7550 0.928 0.000 0.000 0.072
#> GSM564712     4  0.4967     0.9185 0.452 0.000 0.000 0.548
#> GSM564713     1  0.0524     0.7863 0.988 0.004 0.000 0.008
#> GSM564714     1  0.2589     0.7116 0.884 0.000 0.000 0.116
#> GSM564715     1  0.3172     0.6222 0.840 0.000 0.000 0.160
#> GSM564716     1  0.1661     0.7637 0.944 0.004 0.000 0.052
#> GSM564717     1  0.3400     0.6045 0.820 0.000 0.000 0.180
#> GSM564718     1  0.1302     0.7767 0.956 0.000 0.000 0.044
#> GSM564719     1  0.2868     0.6922 0.864 0.000 0.000 0.136
#> GSM564720     1  0.4999    -0.8783 0.508 0.000 0.000 0.492
#> GSM564721     1  0.5163    -0.8637 0.516 0.004 0.000 0.480
#> GSM564722     1  0.2589     0.7116 0.884 0.000 0.000 0.116
#> GSM564723     4  0.5000     0.8925 0.500 0.000 0.000 0.500
#> GSM564724     1  0.0657     0.7861 0.984 0.004 0.000 0.012
#> GSM564725     1  0.4837    -0.3972 0.648 0.004 0.000 0.348
#> GSM564726     1  0.0336     0.7851 0.992 0.000 0.000 0.008
#> GSM564727     1  0.4720    -0.2753 0.672 0.004 0.000 0.324
#> GSM564728     1  0.0336     0.7851 0.992 0.000 0.000 0.008
#> GSM564729     1  0.0336     0.7851 0.992 0.000 0.000 0.008
#> GSM564730     1  0.4776    -0.4796 0.624 0.000 0.000 0.376
#> GSM564731     1  0.1004     0.7851 0.972 0.004 0.000 0.024
#> GSM564732     1  0.0524     0.7850 0.988 0.004 0.000 0.008
#> GSM564733     1  0.0524     0.7856 0.988 0.004 0.000 0.008
#> GSM564734     1  0.0779     0.7863 0.980 0.004 0.000 0.016
#> GSM564735     1  0.0524     0.7861 0.988 0.004 0.000 0.008
#> GSM564736     1  0.0188     0.7860 0.996 0.000 0.000 0.004
#> GSM564737     4  0.4967     0.9185 0.452 0.000 0.000 0.548
#> GSM564738     1  0.1305     0.7777 0.960 0.004 0.000 0.036
#> GSM564739     1  0.2773     0.6812 0.880 0.004 0.000 0.116
#> GSM564740     1  0.0592     0.7847 0.984 0.000 0.000 0.016
#> GSM564741     1  0.1398     0.7785 0.956 0.004 0.000 0.040
#> GSM564742     1  0.1716     0.7631 0.936 0.000 0.000 0.064
#> GSM564743     4  0.5000     0.8330 0.500 0.000 0.000 0.500
#> GSM564744     4  0.4994     0.9144 0.480 0.000 0.000 0.520
#> GSM564745     1  0.3311     0.5588 0.828 0.000 0.000 0.172
#> GSM564746     1  0.3400     0.5249 0.820 0.000 0.000 0.180
#> GSM564747     1  0.2266     0.7529 0.912 0.004 0.000 0.084
#> GSM564748     1  0.2530     0.7243 0.896 0.004 0.000 0.100
#> GSM564749     1  0.4948    -0.7329 0.560 0.000 0.000 0.440
#> GSM564750     1  0.0188     0.7853 0.996 0.000 0.000 0.004
#> GSM564751     1  0.1661     0.7669 0.944 0.004 0.000 0.052
#> GSM564752     1  0.0188     0.7853 0.996 0.000 0.000 0.004
#> GSM564753     1  0.1004     0.7849 0.972 0.004 0.000 0.024
#> GSM564754     1  0.4535    -0.0192 0.704 0.004 0.000 0.292
#> GSM564755     1  0.0336     0.7851 0.992 0.000 0.000 0.008
#> GSM564756     1  0.2149     0.7347 0.912 0.000 0.000 0.088
#> GSM564757     1  0.0336     0.7851 0.992 0.000 0.000 0.008
#> GSM564758     1  0.0336     0.7851 0.992 0.000 0.000 0.008
#> GSM564759     1  0.0469     0.7859 0.988 0.000 0.000 0.012
#> GSM564760     1  0.0657     0.7874 0.984 0.004 0.000 0.012
#> GSM564761     4  0.5000     0.9004 0.496 0.000 0.000 0.504
#> GSM564762     1  0.0817     0.7828 0.976 0.000 0.000 0.024
#> GSM564681     2  0.7694     0.2867 0.000 0.448 0.308 0.244
#> GSM564693     3  0.7847    -0.0882 0.000 0.328 0.396 0.276
#> GSM564646     3  0.2585     0.6887 0.004 0.032 0.916 0.048
#> GSM564699     3  0.1584     0.6907 0.000 0.036 0.952 0.012

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM564615     4  0.0404    0.88744 0.012 0.000 0.000 0.988 0.000
#> GSM564616     5  0.5206    0.59974 0.004 0.216 0.096 0.000 0.684
#> GSM564617     2  0.6105    0.51962 0.020 0.608 0.120 0.000 0.252
#> GSM564618     5  0.4700    0.69146 0.004 0.132 0.116 0.000 0.748
#> GSM564619     1  0.3935    0.82674 0.760 0.012 0.000 0.220 0.008
#> GSM564620     4  0.1914    0.87723 0.056 0.008 0.000 0.928 0.008
#> GSM564621     4  0.2457    0.86614 0.076 0.016 0.000 0.900 0.008
#> GSM564622     5  0.3731    0.73758 0.000 0.040 0.160 0.000 0.800
#> GSM564623     3  0.5298    0.59474 0.012 0.140 0.716 0.004 0.128
#> GSM564624     2  0.5867    0.52189 0.020 0.632 0.100 0.000 0.248
#> GSM564625     4  0.1280    0.88788 0.024 0.008 0.000 0.960 0.008
#> GSM564626     1  0.3437    0.85044 0.808 0.012 0.000 0.176 0.004
#> GSM564627     4  0.4530    0.31747 0.376 0.008 0.000 0.612 0.004
#> GSM564628     2  0.6871    0.28032 0.004 0.388 0.256 0.000 0.352
#> GSM564629     4  0.0451    0.88936 0.008 0.004 0.000 0.988 0.000
#> GSM564630     2  0.6226    0.50143 0.020 0.584 0.120 0.000 0.276
#> GSM564609     3  0.3456    0.73016 0.000 0.016 0.800 0.000 0.184
#> GSM564610     4  0.4446    0.26074 0.400 0.008 0.000 0.592 0.000
#> GSM564611     1  0.2873    0.86241 0.856 0.016 0.000 0.128 0.000
#> GSM564612     3  0.6211   -0.24927 0.004 0.432 0.444 0.000 0.120
#> GSM564613     2  0.6521    0.24744 0.008 0.424 0.420 0.000 0.148
#> GSM564614     4  0.0566    0.88902 0.012 0.000 0.000 0.984 0.004
#> GSM564631     3  0.1386    0.78581 0.000 0.032 0.952 0.000 0.016
#> GSM564632     3  0.4603    0.57635 0.000 0.032 0.668 0.000 0.300
#> GSM564633     3  0.1571    0.78571 0.000 0.004 0.936 0.000 0.060
#> GSM564634     3  0.4068    0.69253 0.004 0.144 0.792 0.000 0.060
#> GSM564635     3  0.1502    0.78632 0.000 0.004 0.940 0.000 0.056
#> GSM564636     3  0.3033    0.74971 0.000 0.084 0.864 0.000 0.052
#> GSM564637     3  0.2446    0.79168 0.000 0.044 0.900 0.000 0.056
#> GSM564638     3  0.3019    0.75384 0.000 0.088 0.864 0.000 0.048
#> GSM564639     3  0.1557    0.78888 0.000 0.008 0.940 0.000 0.052
#> GSM564640     3  0.6796   -0.29355 0.000 0.316 0.380 0.000 0.304
#> GSM564641     3  0.4465    0.60237 0.000 0.204 0.736 0.000 0.060
#> GSM564642     3  0.6666   -0.00273 0.004 0.288 0.476 0.000 0.232
#> GSM564643     3  0.3690    0.68748 0.000 0.012 0.764 0.000 0.224
#> GSM564644     2  0.6665    0.36174 0.004 0.480 0.244 0.000 0.272
#> GSM564645     3  0.1281    0.78820 0.000 0.032 0.956 0.000 0.012
#> GSM564647     3  0.4674    0.63772 0.004 0.148 0.748 0.000 0.100
#> GSM564648     5  0.4608    0.46739 0.000 0.024 0.336 0.000 0.640
#> GSM564649     3  0.1485    0.78858 0.000 0.032 0.948 0.000 0.020
#> GSM564650     2  0.5404    0.54176 0.000 0.636 0.264 0.000 0.100
#> GSM564651     5  0.2361    0.79358 0.000 0.012 0.096 0.000 0.892
#> GSM564652     5  0.2304    0.79203 0.000 0.008 0.100 0.000 0.892
#> GSM564653     5  0.3479    0.76622 0.000 0.084 0.080 0.000 0.836
#> GSM564654     3  0.2110    0.79170 0.000 0.016 0.912 0.000 0.072
#> GSM564655     3  0.2504    0.79049 0.000 0.040 0.896 0.000 0.064
#> GSM564656     3  0.1571    0.78571 0.000 0.004 0.936 0.000 0.060
#> GSM564657     3  0.1522    0.78300 0.000 0.044 0.944 0.000 0.012
#> GSM564658     2  0.4245    0.52064 0.008 0.744 0.024 0.000 0.224
#> GSM564659     3  0.6100    0.19783 0.004 0.304 0.556 0.000 0.136
#> GSM564660     2  0.6594    0.27445 0.008 0.428 0.404 0.000 0.160
#> GSM564661     5  0.2889    0.79060 0.000 0.044 0.084 0.000 0.872
#> GSM564662     3  0.1364    0.78336 0.000 0.036 0.952 0.000 0.012
#> GSM564663     2  0.6642    0.45017 0.004 0.480 0.292 0.000 0.224
#> GSM564664     2  0.6830    0.20617 0.004 0.396 0.240 0.000 0.360
#> GSM564665     3  0.3806    0.73223 0.000 0.104 0.812 0.000 0.084
#> GSM564666     3  0.6159    0.10991 0.004 0.332 0.532 0.000 0.132
#> GSM564667     3  0.2628    0.76192 0.000 0.088 0.884 0.000 0.028
#> GSM564668     3  0.2389    0.77637 0.000 0.004 0.880 0.000 0.116
#> GSM564669     3  0.1764    0.78761 0.000 0.008 0.928 0.000 0.064
#> GSM564670     2  0.6729    0.43729 0.008 0.456 0.340 0.000 0.196
#> GSM564671     3  0.2921    0.76137 0.000 0.004 0.844 0.004 0.148
#> GSM564672     3  0.1568    0.78705 0.000 0.036 0.944 0.000 0.020
#> GSM564673     5  0.3766    0.62120 0.000 0.004 0.268 0.000 0.728
#> GSM564674     3  0.6742   -0.33042 0.004 0.388 0.396 0.000 0.212
#> GSM564675     3  0.3975    0.72851 0.008 0.076 0.828 0.012 0.076
#> GSM564676     2  0.4074    0.54620 0.012 0.780 0.028 0.000 0.180
#> GSM564677     5  0.2676    0.78934 0.000 0.036 0.080 0.000 0.884
#> GSM564678     2  0.3328    0.53087 0.008 0.812 0.004 0.000 0.176
#> GSM564679     2  0.3427    0.51317 0.012 0.796 0.000 0.000 0.192
#> GSM564680     3  0.1557    0.78888 0.000 0.008 0.940 0.000 0.052
#> GSM564682     2  0.5966    0.25028 0.000 0.460 0.432 0.000 0.108
#> GSM564683     3  0.1549    0.78298 0.000 0.040 0.944 0.000 0.016
#> GSM564684     3  0.3001    0.76475 0.000 0.008 0.844 0.004 0.144
#> GSM564685     3  0.1493    0.79202 0.000 0.024 0.948 0.000 0.028
#> GSM564686     3  0.2102    0.79088 0.000 0.012 0.916 0.004 0.068
#> GSM564687     3  0.5129    0.46419 0.000 0.056 0.616 0.000 0.328
#> GSM564688     5  0.2351    0.79239 0.000 0.016 0.088 0.000 0.896
#> GSM564689     2  0.2976    0.53377 0.012 0.852 0.004 0.000 0.132
#> GSM564690     2  0.3022    0.53206 0.012 0.848 0.004 0.000 0.136
#> GSM564691     2  0.5673    0.55686 0.000 0.616 0.252 0.000 0.132
#> GSM564692     5  0.3962    0.75725 0.000 0.112 0.088 0.000 0.800
#> GSM564694     3  0.3400    0.76980 0.000 0.040 0.840 0.004 0.116
#> GSM564695     3  0.5805    0.28220 0.004 0.308 0.584 0.000 0.104
#> GSM564696     3  0.2054    0.78077 0.000 0.052 0.920 0.000 0.028
#> GSM564697     2  0.4288    0.56712 0.008 0.784 0.072 0.000 0.136
#> GSM564698     3  0.1282    0.78905 0.000 0.004 0.952 0.000 0.044
#> GSM564700     3  0.2964    0.75850 0.000 0.004 0.840 0.004 0.152
#> GSM564701     5  0.6796   -0.22813 0.000 0.336 0.292 0.000 0.372
#> GSM564702     5  0.2983    0.79300 0.000 0.040 0.096 0.000 0.864
#> GSM564703     4  0.3616    0.67834 0.224 0.004 0.000 0.768 0.004
#> GSM564704     4  0.4220    0.72993 0.200 0.032 0.000 0.760 0.008
#> GSM564705     1  0.1768    0.83651 0.924 0.004 0.000 0.072 0.000
#> GSM564706     4  0.2234    0.86554 0.044 0.036 0.000 0.916 0.004
#> GSM564707     1  0.2612    0.85851 0.868 0.008 0.000 0.124 0.000
#> GSM564708     4  0.1412    0.88727 0.036 0.008 0.000 0.952 0.004
#> GSM564709     1  0.4337    0.75065 0.696 0.016 0.000 0.284 0.004
#> GSM564710     1  0.1704    0.83270 0.928 0.004 0.000 0.068 0.000
#> GSM564711     4  0.2584    0.85688 0.052 0.040 0.000 0.900 0.008
#> GSM564712     1  0.1830    0.83342 0.924 0.008 0.000 0.068 0.000
#> GSM564713     4  0.1026    0.88895 0.024 0.004 0.000 0.968 0.004
#> GSM564714     4  0.3720    0.81200 0.096 0.048 0.000 0.836 0.020
#> GSM564715     4  0.4597    0.54783 0.300 0.024 0.000 0.672 0.004
#> GSM564716     4  0.2349    0.86007 0.084 0.012 0.000 0.900 0.004
#> GSM564717     4  0.4914    0.57416 0.280 0.040 0.000 0.672 0.008
#> GSM564718     4  0.1300    0.88163 0.028 0.016 0.000 0.956 0.000
#> GSM564719     4  0.4523    0.75602 0.160 0.052 0.000 0.768 0.020
#> GSM564720     1  0.3292    0.85946 0.836 0.016 0.000 0.140 0.008
#> GSM564721     1  0.2930    0.85858 0.832 0.004 0.000 0.164 0.000
#> GSM564722     4  0.3720    0.81200 0.096 0.048 0.000 0.836 0.020
#> GSM564723     1  0.3201    0.86288 0.844 0.016 0.000 0.132 0.008
#> GSM564724     4  0.0932    0.88832 0.020 0.004 0.000 0.972 0.004
#> GSM564725     1  0.4403    0.72434 0.668 0.012 0.000 0.316 0.004
#> GSM564726     4  0.0404    0.88744 0.012 0.000 0.000 0.988 0.000
#> GSM564727     1  0.4581    0.65093 0.624 0.012 0.000 0.360 0.004
#> GSM564728     4  0.0566    0.88725 0.012 0.000 0.000 0.984 0.004
#> GSM564729     4  0.0566    0.88725 0.012 0.000 0.000 0.984 0.004
#> GSM564730     1  0.4225    0.63648 0.632 0.004 0.000 0.364 0.000
#> GSM564731     4  0.0912    0.88655 0.016 0.012 0.000 0.972 0.000
#> GSM564732     4  0.0613    0.88842 0.004 0.008 0.000 0.984 0.004
#> GSM564733     4  0.0992    0.88893 0.024 0.008 0.000 0.968 0.000
#> GSM564734     4  0.0968    0.88956 0.012 0.012 0.000 0.972 0.004
#> GSM564735     4  0.0960    0.88847 0.016 0.008 0.000 0.972 0.004
#> GSM564736     4  0.0609    0.88854 0.020 0.000 0.000 0.980 0.000
#> GSM564737     1  0.1830    0.83342 0.924 0.008 0.000 0.068 0.000
#> GSM564738     4  0.1547    0.88166 0.032 0.016 0.000 0.948 0.004
#> GSM564739     4  0.3616    0.68161 0.224 0.004 0.000 0.768 0.004
#> GSM564740     4  0.0510    0.88685 0.016 0.000 0.000 0.984 0.000
#> GSM564741     4  0.1862    0.88197 0.048 0.016 0.000 0.932 0.004
#> GSM564742     4  0.2584    0.86117 0.052 0.040 0.000 0.900 0.008
#> GSM564743     1  0.3731    0.83602 0.800 0.016 0.000 0.172 0.012
#> GSM564744     1  0.2625    0.85809 0.876 0.016 0.000 0.108 0.000
#> GSM564745     4  0.3944    0.61207 0.272 0.004 0.000 0.720 0.004
#> GSM564746     4  0.4414    0.32080 0.376 0.004 0.000 0.616 0.004
#> GSM564747     4  0.2982    0.83930 0.116 0.020 0.000 0.860 0.004
#> GSM564748     4  0.3264    0.79569 0.164 0.016 0.000 0.820 0.000
#> GSM564749     1  0.3795    0.83858 0.780 0.028 0.000 0.192 0.000
#> GSM564750     4  0.0290    0.88759 0.008 0.000 0.000 0.992 0.000
#> GSM564751     4  0.2352    0.85586 0.092 0.008 0.000 0.896 0.004
#> GSM564752     4  0.0290    0.88759 0.008 0.000 0.000 0.992 0.000
#> GSM564753     4  0.1522    0.88403 0.044 0.012 0.000 0.944 0.000
#> GSM564754     1  0.4590    0.48673 0.568 0.012 0.000 0.420 0.000
#> GSM564755     4  0.0404    0.88744 0.012 0.000 0.000 0.988 0.000
#> GSM564756     4  0.3098    0.80102 0.148 0.016 0.000 0.836 0.000
#> GSM564757     4  0.0404    0.88744 0.012 0.000 0.000 0.988 0.000
#> GSM564758     4  0.0404    0.88744 0.012 0.000 0.000 0.988 0.000
#> GSM564759     4  0.0566    0.88863 0.012 0.004 0.000 0.984 0.000
#> GSM564760     4  0.1202    0.88817 0.032 0.004 0.000 0.960 0.004
#> GSM564761     1  0.2548    0.85840 0.876 0.004 0.000 0.116 0.004
#> GSM564762     4  0.0566    0.88895 0.000 0.012 0.000 0.984 0.004
#> GSM564681     5  0.4851    0.64287 0.000 0.196 0.092 0.000 0.712
#> GSM564693     5  0.3754    0.76846 0.000 0.084 0.100 0.000 0.816
#> GSM564646     3  0.2877    0.76468 0.000 0.004 0.848 0.004 0.144
#> GSM564699     3  0.2067    0.79307 0.000 0.032 0.920 0.000 0.048

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM564615     4  0.0260     0.8407 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM564616     5  0.5114     0.5837 0.000 0.200 0.032 0.000 0.676 0.092
#> GSM564617     6  0.6314     0.3575 0.000 0.404 0.088 0.000 0.072 0.436
#> GSM564618     5  0.4843     0.6597 0.000 0.100 0.060 0.000 0.732 0.108
#> GSM564619     1  0.3312     0.8008 0.792 0.000 0.000 0.180 0.000 0.028
#> GSM564620     4  0.2605     0.8185 0.028 0.000 0.000 0.864 0.000 0.108
#> GSM564621     4  0.3044     0.8061 0.048 0.000 0.000 0.836 0.000 0.116
#> GSM564622     5  0.3628     0.7193 0.000 0.040 0.084 0.000 0.824 0.052
#> GSM564623     3  0.4601     0.4483 0.000 0.032 0.680 0.004 0.020 0.264
#> GSM564624     2  0.6192    -0.3709 0.000 0.452 0.064 0.000 0.084 0.400
#> GSM564625     4  0.1320     0.8436 0.016 0.000 0.000 0.948 0.000 0.036
#> GSM564626     1  0.2771     0.8261 0.852 0.000 0.000 0.116 0.000 0.032
#> GSM564627     4  0.5673     0.1147 0.372 0.000 0.000 0.468 0.000 0.160
#> GSM564628     6  0.7621     0.3872 0.000 0.236 0.196 0.000 0.232 0.336
#> GSM564629     4  0.1152     0.8470 0.004 0.000 0.000 0.952 0.000 0.044
#> GSM564630     6  0.6447     0.3676 0.000 0.380 0.080 0.000 0.096 0.444
#> GSM564609     3  0.4028     0.6628 0.000 0.012 0.756 0.000 0.184 0.048
#> GSM564610     4  0.5675     0.0262 0.400 0.000 0.000 0.444 0.000 0.156
#> GSM564611     1  0.2527     0.8347 0.884 0.000 0.000 0.048 0.004 0.064
#> GSM564612     3  0.6672    -0.4493 0.000 0.292 0.388 0.000 0.032 0.288
#> GSM564613     6  0.6432     0.5252 0.000 0.184 0.356 0.000 0.032 0.428
#> GSM564614     4  0.0520     0.8424 0.008 0.000 0.000 0.984 0.000 0.008
#> GSM564631     3  0.1908     0.7485 0.000 0.020 0.924 0.000 0.012 0.044
#> GSM564632     3  0.4988     0.4837 0.000 0.016 0.628 0.000 0.292 0.064
#> GSM564633     3  0.1542     0.7524 0.000 0.004 0.936 0.000 0.052 0.008
#> GSM564634     3  0.4311     0.6237 0.000 0.108 0.756 0.000 0.016 0.120
#> GSM564635     3  0.1429     0.7529 0.000 0.004 0.940 0.000 0.052 0.004
#> GSM564636     3  0.3239     0.6796 0.000 0.024 0.816 0.000 0.008 0.152
#> GSM564637     3  0.2777     0.7552 0.000 0.036 0.880 0.000 0.036 0.048
#> GSM564638     3  0.3196     0.6843 0.000 0.020 0.816 0.000 0.008 0.156
#> GSM564639     3  0.1523     0.7537 0.000 0.008 0.940 0.000 0.044 0.008
#> GSM564640     2  0.7160     0.0169 0.000 0.324 0.312 0.000 0.288 0.076
#> GSM564641     3  0.4872     0.5201 0.000 0.156 0.692 0.000 0.012 0.140
#> GSM564642     3  0.7350    -0.1322 0.000 0.208 0.412 0.000 0.224 0.156
#> GSM564643     3  0.4073     0.6215 0.000 0.016 0.732 0.000 0.224 0.028
#> GSM564644     2  0.7028     0.2911 0.000 0.472 0.196 0.000 0.208 0.124
#> GSM564645     3  0.1922     0.7524 0.000 0.024 0.924 0.000 0.012 0.040
#> GSM564647     3  0.4925     0.5441 0.000 0.088 0.700 0.000 0.032 0.180
#> GSM564648     5  0.4576     0.4408 0.000 0.016 0.264 0.000 0.676 0.044
#> GSM564649     3  0.2151     0.7515 0.000 0.024 0.912 0.000 0.016 0.048
#> GSM564650     2  0.5388     0.2189 0.000 0.636 0.228 0.000 0.028 0.108
#> GSM564651     5  0.1088     0.7826 0.000 0.024 0.016 0.000 0.960 0.000
#> GSM564652     5  0.1148     0.7790 0.000 0.016 0.020 0.000 0.960 0.004
#> GSM564653     5  0.2019     0.7627 0.000 0.088 0.012 0.000 0.900 0.000
#> GSM564654     3  0.2196     0.7571 0.000 0.016 0.908 0.000 0.056 0.020
#> GSM564655     3  0.2968     0.7511 0.000 0.032 0.868 0.000 0.044 0.056
#> GSM564656     3  0.1542     0.7524 0.000 0.004 0.936 0.000 0.052 0.008
#> GSM564657     3  0.2074     0.7447 0.000 0.036 0.912 0.000 0.004 0.048
#> GSM564658     2  0.4656     0.4362 0.000 0.720 0.016 0.000 0.112 0.152
#> GSM564659     3  0.6551    -0.1595 0.000 0.176 0.488 0.000 0.056 0.280
#> GSM564660     6  0.6438     0.5527 0.000 0.192 0.332 0.000 0.032 0.444
#> GSM564661     5  0.1462     0.7771 0.000 0.056 0.008 0.000 0.936 0.000
#> GSM564662     3  0.1957     0.7443 0.000 0.024 0.920 0.000 0.008 0.048
#> GSM564663     2  0.7399    -0.0535 0.000 0.384 0.248 0.000 0.140 0.228
#> GSM564664     2  0.7203     0.2255 0.000 0.364 0.176 0.000 0.344 0.116
#> GSM564665     3  0.4375     0.6890 0.000 0.092 0.772 0.000 0.060 0.076
#> GSM564666     3  0.6137    -0.3337 0.000 0.140 0.464 0.000 0.028 0.368
#> GSM564667     3  0.3090     0.7145 0.000 0.056 0.848 0.000 0.008 0.088
#> GSM564668     3  0.2611     0.7387 0.000 0.008 0.864 0.000 0.116 0.012
#> GSM564669     3  0.1757     0.7523 0.000 0.012 0.928 0.000 0.052 0.008
#> GSM564670     6  0.6596     0.5708 0.000 0.212 0.268 0.000 0.048 0.472
#> GSM564671     3  0.3090     0.7184 0.000 0.000 0.828 0.004 0.140 0.028
#> GSM564672     3  0.2202     0.7490 0.000 0.028 0.908 0.000 0.012 0.052
#> GSM564673     5  0.3200     0.6170 0.000 0.000 0.196 0.000 0.788 0.016
#> GSM564674     3  0.7397    -0.3478 0.000 0.320 0.340 0.000 0.132 0.208
#> GSM564675     3  0.3477     0.6515 0.000 0.008 0.800 0.012 0.012 0.168
#> GSM564676     2  0.2953     0.5120 0.000 0.864 0.020 0.000 0.076 0.040
#> GSM564677     5  0.1429     0.7761 0.000 0.052 0.004 0.000 0.940 0.004
#> GSM564678     2  0.2322     0.5070 0.000 0.896 0.004 0.000 0.064 0.036
#> GSM564679     2  0.2937     0.4923 0.000 0.848 0.000 0.000 0.096 0.056
#> GSM564680     3  0.1523     0.7537 0.000 0.008 0.940 0.000 0.044 0.008
#> GSM564682     2  0.6408    -0.1004 0.000 0.420 0.372 0.000 0.032 0.176
#> GSM564683     3  0.2101     0.7436 0.000 0.028 0.912 0.000 0.008 0.052
#> GSM564684     3  0.3393     0.7176 0.000 0.012 0.824 0.004 0.128 0.032
#> GSM564685     3  0.1922     0.7588 0.000 0.024 0.924 0.000 0.012 0.040
#> GSM564686     3  0.2256     0.7531 0.000 0.008 0.908 0.004 0.048 0.032
#> GSM564687     3  0.5778     0.3489 0.000 0.052 0.564 0.000 0.308 0.076
#> GSM564688     5  0.0993     0.7798 0.000 0.024 0.012 0.000 0.964 0.000
#> GSM564689     2  0.1196     0.5002 0.000 0.952 0.000 0.000 0.040 0.008
#> GSM564690     2  0.1082     0.5000 0.000 0.956 0.000 0.000 0.040 0.004
#> GSM564691     2  0.5952     0.1368 0.000 0.576 0.204 0.000 0.032 0.188
#> GSM564692     5  0.3259     0.7474 0.000 0.104 0.012 0.000 0.836 0.048
#> GSM564694     3  0.3761     0.7218 0.000 0.032 0.820 0.004 0.072 0.072
#> GSM564695     3  0.6141     0.0167 0.000 0.180 0.524 0.000 0.028 0.268
#> GSM564696     3  0.2331     0.7413 0.000 0.032 0.888 0.000 0.000 0.080
#> GSM564697     2  0.3301     0.4799 0.000 0.848 0.056 0.000 0.040 0.056
#> GSM564698     3  0.1152     0.7552 0.000 0.004 0.952 0.000 0.044 0.000
#> GSM564700     3  0.3441     0.7094 0.000 0.012 0.816 0.004 0.140 0.028
#> GSM564701     5  0.7647    -0.2739 0.000 0.268 0.228 0.000 0.312 0.192
#> GSM564702     5  0.1932     0.7815 0.000 0.040 0.016 0.000 0.924 0.020
#> GSM564703     4  0.4223     0.6483 0.236 0.000 0.000 0.704 0.000 0.060
#> GSM564704     4  0.5066     0.6408 0.176 0.000 0.000 0.636 0.000 0.188
#> GSM564705     1  0.1116     0.8146 0.960 0.000 0.000 0.008 0.004 0.028
#> GSM564706     4  0.3189     0.8021 0.020 0.000 0.000 0.796 0.000 0.184
#> GSM564707     1  0.1921     0.8345 0.916 0.000 0.000 0.052 0.000 0.032
#> GSM564708     4  0.1865     0.8448 0.040 0.000 0.000 0.920 0.000 0.040
#> GSM564709     1  0.4149     0.7380 0.720 0.000 0.000 0.216 0.000 0.064
#> GSM564710     1  0.1194     0.8134 0.956 0.000 0.000 0.008 0.004 0.032
#> GSM564711     4  0.3645     0.7681 0.024 0.000 0.000 0.740 0.000 0.236
#> GSM564712     1  0.0717     0.8147 0.976 0.000 0.000 0.008 0.000 0.016
#> GSM564713     4  0.1257     0.8449 0.020 0.000 0.000 0.952 0.000 0.028
#> GSM564714     4  0.4406     0.6687 0.040 0.000 0.000 0.624 0.000 0.336
#> GSM564715     4  0.5364     0.4740 0.300 0.000 0.000 0.560 0.000 0.140
#> GSM564716     4  0.3150     0.8045 0.064 0.000 0.000 0.832 0.000 0.104
#> GSM564717     4  0.5947     0.3306 0.240 0.000 0.000 0.448 0.000 0.312
#> GSM564718     4  0.2653     0.8250 0.012 0.000 0.000 0.844 0.000 0.144
#> GSM564719     4  0.5198     0.5438 0.096 0.000 0.000 0.524 0.000 0.380
#> GSM564720     1  0.2794     0.8306 0.860 0.000 0.000 0.060 0.000 0.080
#> GSM564721     1  0.2622     0.8375 0.868 0.000 0.000 0.104 0.004 0.024
#> GSM564722     4  0.4406     0.6687 0.040 0.000 0.000 0.624 0.000 0.336
#> GSM564723     1  0.2625     0.8342 0.872 0.000 0.000 0.056 0.000 0.072
#> GSM564724     4  0.0806     0.8445 0.008 0.000 0.000 0.972 0.000 0.020
#> GSM564725     1  0.3956     0.7048 0.704 0.000 0.000 0.264 0.000 0.032
#> GSM564726     4  0.0146     0.8408 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM564727     1  0.4134     0.6181 0.656 0.000 0.000 0.316 0.000 0.028
#> GSM564728     4  0.0363     0.8402 0.000 0.000 0.000 0.988 0.000 0.012
#> GSM564729     4  0.0458     0.8419 0.000 0.000 0.000 0.984 0.000 0.016
#> GSM564730     1  0.4408     0.6319 0.656 0.000 0.000 0.292 0.000 0.052
#> GSM564731     4  0.2357     0.8352 0.012 0.000 0.000 0.872 0.000 0.116
#> GSM564732     4  0.0858     0.8448 0.004 0.000 0.000 0.968 0.000 0.028
#> GSM564733     4  0.0806     0.8435 0.008 0.000 0.000 0.972 0.000 0.020
#> GSM564734     4  0.1480     0.8460 0.020 0.000 0.000 0.940 0.000 0.040
#> GSM564735     4  0.1049     0.8456 0.008 0.000 0.000 0.960 0.000 0.032
#> GSM564736     4  0.0725     0.8429 0.012 0.000 0.000 0.976 0.000 0.012
#> GSM564737     1  0.0717     0.8147 0.976 0.000 0.000 0.008 0.000 0.016
#> GSM564738     4  0.2361     0.8378 0.028 0.000 0.000 0.884 0.000 0.088
#> GSM564739     4  0.4215     0.6481 0.244 0.000 0.000 0.700 0.000 0.056
#> GSM564740     4  0.1802     0.8436 0.012 0.000 0.000 0.916 0.000 0.072
#> GSM564741     4  0.2376     0.8399 0.044 0.000 0.000 0.888 0.000 0.068
#> GSM564742     4  0.3455     0.7959 0.036 0.000 0.000 0.784 0.000 0.180
#> GSM564743     1  0.3563     0.8107 0.800 0.000 0.000 0.092 0.000 0.108
#> GSM564744     1  0.2201     0.8326 0.904 0.000 0.000 0.036 0.004 0.056
#> GSM564745     4  0.4151     0.5835 0.276 0.000 0.000 0.684 0.000 0.040
#> GSM564746     4  0.5648     0.1186 0.372 0.000 0.000 0.472 0.000 0.156
#> GSM564747     4  0.4095     0.7769 0.100 0.000 0.000 0.748 0.000 0.152
#> GSM564748     4  0.4209     0.7532 0.160 0.000 0.000 0.736 0.000 0.104
#> GSM564749     1  0.3514     0.8221 0.804 0.000 0.000 0.088 0.000 0.108
#> GSM564750     4  0.0603     0.8432 0.004 0.000 0.000 0.980 0.000 0.016
#> GSM564751     4  0.3520     0.8041 0.096 0.000 0.000 0.804 0.000 0.100
#> GSM564752     4  0.1010     0.8455 0.004 0.000 0.000 0.960 0.000 0.036
#> GSM564753     4  0.2908     0.8303 0.048 0.000 0.000 0.848 0.000 0.104
#> GSM564754     1  0.4538     0.5071 0.612 0.000 0.000 0.340 0.000 0.048
#> GSM564755     4  0.0363     0.8412 0.000 0.000 0.000 0.988 0.000 0.012
#> GSM564756     4  0.4085     0.7481 0.156 0.000 0.000 0.748 0.000 0.096
#> GSM564757     4  0.0260     0.8407 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM564758     4  0.0260     0.8407 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM564759     4  0.1524     0.8447 0.008 0.000 0.000 0.932 0.000 0.060
#> GSM564760     4  0.1492     0.8442 0.036 0.000 0.000 0.940 0.000 0.024
#> GSM564761     1  0.1594     0.8342 0.932 0.000 0.000 0.052 0.000 0.016
#> GSM564762     4  0.1265     0.8482 0.008 0.000 0.000 0.948 0.000 0.044
#> GSM564681     5  0.4694     0.6436 0.000 0.160 0.028 0.000 0.724 0.088
#> GSM564693     5  0.2858     0.7582 0.000 0.092 0.028 0.000 0.864 0.016
#> GSM564646     3  0.3360     0.7161 0.000 0.012 0.824 0.004 0.132 0.028
#> GSM564699     3  0.2322     0.7572 0.000 0.024 0.904 0.000 0.024 0.048

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n genotype/variation(p) disease.state(p) k
#> MAD:hclust 154                 0.925            0.476 2
#> MAD:hclust 132                 0.202            0.487 3
#> MAD:hclust 114                 0.244            0.688 4
#> MAD:hclust 132                 0.411            0.146 5
#> MAD:hclust 123                 0.073            0.428 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 154 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.5007 0.500   0.500
#> 3 3 0.696           0.667       0.773         0.2497 0.880   0.760
#> 4 4 0.604           0.726       0.760         0.1249 0.826   0.568
#> 5 5 0.574           0.746       0.759         0.0754 0.931   0.742
#> 6 6 0.677           0.601       0.707         0.0572 0.970   0.875

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> GSM564615     1       0          1  1  0
#> GSM564616     2       0          1  0  1
#> GSM564617     2       0          1  0  1
#> GSM564618     2       0          1  0  1
#> GSM564619     1       0          1  1  0
#> GSM564620     1       0          1  1  0
#> GSM564621     1       0          1  1  0
#> GSM564622     2       0          1  0  1
#> GSM564623     2       0          1  0  1
#> GSM564624     2       0          1  0  1
#> GSM564625     1       0          1  1  0
#> GSM564626     1       0          1  1  0
#> GSM564627     1       0          1  1  0
#> GSM564628     2       0          1  0  1
#> GSM564629     1       0          1  1  0
#> GSM564630     2       0          1  0  1
#> GSM564609     2       0          1  0  1
#> GSM564610     1       0          1  1  0
#> GSM564611     1       0          1  1  0
#> GSM564612     2       0          1  0  1
#> GSM564613     2       0          1  0  1
#> GSM564614     1       0          1  1  0
#> GSM564631     2       0          1  0  1
#> GSM564632     2       0          1  0  1
#> GSM564633     2       0          1  0  1
#> GSM564634     2       0          1  0  1
#> GSM564635     2       0          1  0  1
#> GSM564636     2       0          1  0  1
#> GSM564637     2       0          1  0  1
#> GSM564638     2       0          1  0  1
#> GSM564639     2       0          1  0  1
#> GSM564640     2       0          1  0  1
#> GSM564641     2       0          1  0  1
#> GSM564642     2       0          1  0  1
#> GSM564643     2       0          1  0  1
#> GSM564644     2       0          1  0  1
#> GSM564645     2       0          1  0  1
#> GSM564647     2       0          1  0  1
#> GSM564648     2       0          1  0  1
#> GSM564649     2       0          1  0  1
#> GSM564650     2       0          1  0  1
#> GSM564651     2       0          1  0  1
#> GSM564652     2       0          1  0  1
#> GSM564653     2       0          1  0  1
#> GSM564654     2       0          1  0  1
#> GSM564655     2       0          1  0  1
#> GSM564656     2       0          1  0  1
#> GSM564657     2       0          1  0  1
#> GSM564658     2       0          1  0  1
#> GSM564659     2       0          1  0  1
#> GSM564660     2       0          1  0  1
#> GSM564661     2       0          1  0  1
#> GSM564662     2       0          1  0  1
#> GSM564663     2       0          1  0  1
#> GSM564664     2       0          1  0  1
#> GSM564665     2       0          1  0  1
#> GSM564666     2       0          1  0  1
#> GSM564667     2       0          1  0  1
#> GSM564668     2       0          1  0  1
#> GSM564669     2       0          1  0  1
#> GSM564670     2       0          1  0  1
#> GSM564671     2       0          1  0  1
#> GSM564672     2       0          1  0  1
#> GSM564673     2       0          1  0  1
#> GSM564674     2       0          1  0  1
#> GSM564675     2       0          1  0  1
#> GSM564676     2       0          1  0  1
#> GSM564677     2       0          1  0  1
#> GSM564678     2       0          1  0  1
#> GSM564679     2       0          1  0  1
#> GSM564680     2       0          1  0  1
#> GSM564682     2       0          1  0  1
#> GSM564683     2       0          1  0  1
#> GSM564684     2       0          1  0  1
#> GSM564685     2       0          1  0  1
#> GSM564686     2       0          1  0  1
#> GSM564687     2       0          1  0  1
#> GSM564688     2       0          1  0  1
#> GSM564689     2       0          1  0  1
#> GSM564690     2       0          1  0  1
#> GSM564691     2       0          1  0  1
#> GSM564692     2       0          1  0  1
#> GSM564694     2       0          1  0  1
#> GSM564695     2       0          1  0  1
#> GSM564696     2       0          1  0  1
#> GSM564697     2       0          1  0  1
#> GSM564698     2       0          1  0  1
#> GSM564700     2       0          1  0  1
#> GSM564701     2       0          1  0  1
#> GSM564702     2       0          1  0  1
#> GSM564703     1       0          1  1  0
#> GSM564704     1       0          1  1  0
#> GSM564705     1       0          1  1  0
#> GSM564706     1       0          1  1  0
#> GSM564707     1       0          1  1  0
#> GSM564708     1       0          1  1  0
#> GSM564709     1       0          1  1  0
#> GSM564710     1       0          1  1  0
#> GSM564711     1       0          1  1  0
#> GSM564712     1       0          1  1  0
#> GSM564713     1       0          1  1  0
#> GSM564714     1       0          1  1  0
#> GSM564715     1       0          1  1  0
#> GSM564716     1       0          1  1  0
#> GSM564717     1       0          1  1  0
#> GSM564718     1       0          1  1  0
#> GSM564719     1       0          1  1  0
#> GSM564720     1       0          1  1  0
#> GSM564721     1       0          1  1  0
#> GSM564722     1       0          1  1  0
#> GSM564723     1       0          1  1  0
#> GSM564724     1       0          1  1  0
#> GSM564725     1       0          1  1  0
#> GSM564726     1       0          1  1  0
#> GSM564727     1       0          1  1  0
#> GSM564728     1       0          1  1  0
#> GSM564729     1       0          1  1  0
#> GSM564730     1       0          1  1  0
#> GSM564731     1       0          1  1  0
#> GSM564732     1       0          1  1  0
#> GSM564733     1       0          1  1  0
#> GSM564734     1       0          1  1  0
#> GSM564735     1       0          1  1  0
#> GSM564736     1       0          1  1  0
#> GSM564737     1       0          1  1  0
#> GSM564738     1       0          1  1  0
#> GSM564739     1       0          1  1  0
#> GSM564740     1       0          1  1  0
#> GSM564741     1       0          1  1  0
#> GSM564742     1       0          1  1  0
#> GSM564743     1       0          1  1  0
#> GSM564744     1       0          1  1  0
#> GSM564745     1       0          1  1  0
#> GSM564746     1       0          1  1  0
#> GSM564747     1       0          1  1  0
#> GSM564748     1       0          1  1  0
#> GSM564749     1       0          1  1  0
#> GSM564750     1       0          1  1  0
#> GSM564751     1       0          1  1  0
#> GSM564752     1       0          1  1  0
#> GSM564753     1       0          1  1  0
#> GSM564754     1       0          1  1  0
#> GSM564755     1       0          1  1  0
#> GSM564756     1       0          1  1  0
#> GSM564757     1       0          1  1  0
#> GSM564758     1       0          1  1  0
#> GSM564759     1       0          1  1  0
#> GSM564760     1       0          1  1  0
#> GSM564761     1       0          1  1  0
#> GSM564762     1       0          1  1  0
#> GSM564681     2       0          1  0  1
#> GSM564693     2       0          1  0  1
#> GSM564646     2       0          1  0  1
#> GSM564699     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM564615     1  0.6244     0.8598 0.560 0.440 0.000
#> GSM564616     2  0.6267     0.9188 0.000 0.548 0.452
#> GSM564617     2  0.6286     0.9417 0.000 0.536 0.464
#> GSM564618     3  0.6308    -0.8370 0.000 0.492 0.508
#> GSM564619     1  0.2625     0.8009 0.916 0.084 0.000
#> GSM564620     1  0.6244     0.8598 0.560 0.440 0.000
#> GSM564621     1  0.6244     0.8598 0.560 0.440 0.000
#> GSM564622     3  0.5905    -0.3388 0.000 0.352 0.648
#> GSM564623     3  0.2165     0.6909 0.000 0.064 0.936
#> GSM564624     2  0.6274     0.9461 0.000 0.544 0.456
#> GSM564625     1  0.6244     0.8598 0.560 0.440 0.000
#> GSM564626     1  0.0424     0.7827 0.992 0.008 0.000
#> GSM564627     1  0.3482     0.8119 0.872 0.128 0.000
#> GSM564628     2  0.6305     0.8898 0.000 0.516 0.484
#> GSM564629     1  0.6244     0.8598 0.560 0.440 0.000
#> GSM564630     2  0.6286     0.9417 0.000 0.536 0.464
#> GSM564609     3  0.1031     0.7313 0.000 0.024 0.976
#> GSM564610     1  0.0424     0.7833 0.992 0.008 0.000
#> GSM564611     1  0.0000     0.7809 1.000 0.000 0.000
#> GSM564612     2  0.6286     0.9506 0.000 0.536 0.464
#> GSM564613     3  0.5621    -0.0917 0.000 0.308 0.692
#> GSM564614     1  0.6244     0.8598 0.560 0.440 0.000
#> GSM564631     3  0.0237     0.7349 0.000 0.004 0.996
#> GSM564632     3  0.1031     0.7313 0.000 0.024 0.976
#> GSM564633     3  0.0747     0.7332 0.000 0.016 0.984
#> GSM564634     3  0.2066     0.6886 0.000 0.060 0.940
#> GSM564635     3  0.0747     0.7332 0.000 0.016 0.984
#> GSM564636     3  0.0592     0.7319 0.000 0.012 0.988
#> GSM564637     3  0.0237     0.7349 0.000 0.004 0.996
#> GSM564638     3  0.0424     0.7339 0.000 0.008 0.992
#> GSM564639     3  0.0237     0.7353 0.000 0.004 0.996
#> GSM564640     2  0.6274     0.9310 0.000 0.544 0.456
#> GSM564641     3  0.1289     0.7160 0.000 0.032 0.968
#> GSM564642     3  0.3551     0.5738 0.000 0.132 0.868
#> GSM564643     3  0.1031     0.7313 0.000 0.024 0.976
#> GSM564644     2  0.6286     0.9506 0.000 0.536 0.464
#> GSM564645     3  0.0424     0.7339 0.000 0.008 0.992
#> GSM564647     3  0.1860     0.6939 0.000 0.052 0.948
#> GSM564648     3  0.6140    -0.5540 0.000 0.404 0.596
#> GSM564649     3  0.0424     0.7339 0.000 0.008 0.992
#> GSM564650     2  0.6286     0.9506 0.000 0.536 0.464
#> GSM564651     3  0.6215    -0.6329 0.000 0.428 0.572
#> GSM564652     3  0.6215    -0.6329 0.000 0.428 0.572
#> GSM564653     3  0.6309    -0.8483 0.000 0.500 0.500
#> GSM564654     3  0.1031     0.7313 0.000 0.024 0.976
#> GSM564655     3  0.0747     0.7341 0.000 0.016 0.984
#> GSM564656     3  0.0592     0.7343 0.000 0.012 0.988
#> GSM564657     3  0.0747     0.7297 0.000 0.016 0.984
#> GSM564658     2  0.6286     0.9506 0.000 0.536 0.464
#> GSM564659     3  0.3686     0.5632 0.000 0.140 0.860
#> GSM564660     3  0.6302    -0.8219 0.000 0.480 0.520
#> GSM564661     2  0.6308     0.8574 0.000 0.508 0.492
#> GSM564662     3  0.0424     0.7339 0.000 0.008 0.992
#> GSM564663     2  0.6286     0.9506 0.000 0.536 0.464
#> GSM564664     3  0.6309    -0.8684 0.000 0.496 0.504
#> GSM564665     3  0.3412     0.5778 0.000 0.124 0.876
#> GSM564666     3  0.2066     0.6897 0.000 0.060 0.940
#> GSM564667     3  0.0747     0.7297 0.000 0.016 0.984
#> GSM564668     3  0.1031     0.7313 0.000 0.024 0.976
#> GSM564669     3  0.1031     0.7313 0.000 0.024 0.976
#> GSM564670     3  0.6280    -0.7591 0.000 0.460 0.540
#> GSM564671     3  0.1031     0.7313 0.000 0.024 0.976
#> GSM564672     3  0.0424     0.7339 0.000 0.008 0.992
#> GSM564673     3  0.5397     0.0693 0.000 0.280 0.720
#> GSM564674     2  0.6286     0.9506 0.000 0.536 0.464
#> GSM564675     3  0.0892     0.7337 0.000 0.020 0.980
#> GSM564676     2  0.6286     0.9506 0.000 0.536 0.464
#> GSM564677     3  0.6309    -0.8483 0.000 0.500 0.500
#> GSM564678     2  0.6286     0.9506 0.000 0.536 0.464
#> GSM564679     2  0.6274     0.9461 0.000 0.544 0.456
#> GSM564680     3  0.0237     0.7353 0.000 0.004 0.996
#> GSM564682     3  0.6291    -0.7897 0.000 0.468 0.532
#> GSM564683     3  0.0424     0.7339 0.000 0.008 0.992
#> GSM564684     3  0.1031     0.7313 0.000 0.024 0.976
#> GSM564685     3  0.0424     0.7339 0.000 0.008 0.992
#> GSM564686     3  0.0592     0.7352 0.000 0.012 0.988
#> GSM564687     3  0.4062     0.5037 0.000 0.164 0.836
#> GSM564688     2  0.6309     0.8390 0.000 0.500 0.500
#> GSM564689     2  0.6286     0.9506 0.000 0.536 0.464
#> GSM564690     2  0.6286     0.9506 0.000 0.536 0.464
#> GSM564691     2  0.6286     0.9506 0.000 0.536 0.464
#> GSM564692     3  0.6309    -0.8483 0.000 0.500 0.500
#> GSM564694     3  0.0747     0.7343 0.000 0.016 0.984
#> GSM564695     3  0.4121     0.4997 0.000 0.168 0.832
#> GSM564696     3  0.0747     0.7297 0.000 0.016 0.984
#> GSM564697     2  0.6286     0.9506 0.000 0.536 0.464
#> GSM564698     3  0.0892     0.7330 0.000 0.020 0.980
#> GSM564700     3  0.1031     0.7313 0.000 0.024 0.976
#> GSM564701     2  0.6309     0.8463 0.000 0.504 0.496
#> GSM564702     2  0.6309     0.8390 0.000 0.500 0.500
#> GSM564703     1  0.3752     0.8244 0.856 0.144 0.000
#> GSM564704     1  0.5560     0.8482 0.700 0.300 0.000
#> GSM564705     1  0.0000     0.7809 1.000 0.000 0.000
#> GSM564706     1  0.6168     0.8596 0.588 0.412 0.000
#> GSM564707     1  0.0000     0.7809 1.000 0.000 0.000
#> GSM564708     1  0.6244     0.8598 0.560 0.440 0.000
#> GSM564709     1  0.0000     0.7809 1.000 0.000 0.000
#> GSM564710     1  0.0000     0.7809 1.000 0.000 0.000
#> GSM564711     1  0.6215     0.8599 0.572 0.428 0.000
#> GSM564712     1  0.0000     0.7809 1.000 0.000 0.000
#> GSM564713     1  0.6244     0.8598 0.560 0.440 0.000
#> GSM564714     1  0.6026     0.8574 0.624 0.376 0.000
#> GSM564715     1  0.0424     0.7842 0.992 0.008 0.000
#> GSM564716     1  0.6244     0.8598 0.560 0.440 0.000
#> GSM564717     1  0.0747     0.7873 0.984 0.016 0.000
#> GSM564718     1  0.6244     0.8598 0.560 0.440 0.000
#> GSM564719     1  0.2711     0.8110 0.912 0.088 0.000
#> GSM564720     1  0.0000     0.7809 1.000 0.000 0.000
#> GSM564721     1  0.0000     0.7809 1.000 0.000 0.000
#> GSM564722     1  0.6045     0.8580 0.620 0.380 0.000
#> GSM564723     1  0.0000     0.7809 1.000 0.000 0.000
#> GSM564724     1  0.6244     0.8598 0.560 0.440 0.000
#> GSM564725     1  0.3879     0.8175 0.848 0.152 0.000
#> GSM564726     1  0.6244     0.8598 0.560 0.440 0.000
#> GSM564727     1  0.4399     0.8264 0.812 0.188 0.000
#> GSM564728     1  0.6244     0.8598 0.560 0.440 0.000
#> GSM564729     1  0.6244     0.8598 0.560 0.440 0.000
#> GSM564730     1  0.1643     0.7970 0.956 0.044 0.000
#> GSM564731     1  0.6235     0.8599 0.564 0.436 0.000
#> GSM564732     1  0.6244     0.8598 0.560 0.440 0.000
#> GSM564733     1  0.6244     0.8598 0.560 0.440 0.000
#> GSM564734     1  0.6225     0.8600 0.568 0.432 0.000
#> GSM564735     1  0.6244     0.8598 0.560 0.440 0.000
#> GSM564736     1  0.6244     0.8598 0.560 0.440 0.000
#> GSM564737     1  0.0000     0.7809 1.000 0.000 0.000
#> GSM564738     1  0.6225     0.8599 0.568 0.432 0.000
#> GSM564739     1  0.3941     0.8270 0.844 0.156 0.000
#> GSM564740     1  0.6244     0.8598 0.560 0.440 0.000
#> GSM564741     1  0.6126     0.8592 0.600 0.400 0.000
#> GSM564742     1  0.5835     0.8531 0.660 0.340 0.000
#> GSM564743     1  0.0000     0.7809 1.000 0.000 0.000
#> GSM564744     1  0.0000     0.7809 1.000 0.000 0.000
#> GSM564745     1  0.6045     0.8580 0.620 0.380 0.000
#> GSM564746     1  0.3340     0.8104 0.880 0.120 0.000
#> GSM564747     1  0.5621     0.8502 0.692 0.308 0.000
#> GSM564748     1  0.1860     0.7997 0.948 0.052 0.000
#> GSM564749     1  0.0000     0.7809 1.000 0.000 0.000
#> GSM564750     1  0.6244     0.8598 0.560 0.440 0.000
#> GSM564751     1  0.4291     0.8317 0.820 0.180 0.000
#> GSM564752     1  0.6244     0.8598 0.560 0.440 0.000
#> GSM564753     1  0.6204     0.8600 0.576 0.424 0.000
#> GSM564754     1  0.0000     0.7809 1.000 0.000 0.000
#> GSM564755     1  0.6244     0.8598 0.560 0.440 0.000
#> GSM564756     1  0.5948     0.8557 0.640 0.360 0.000
#> GSM564757     1  0.6244     0.8598 0.560 0.440 0.000
#> GSM564758     1  0.6244     0.8598 0.560 0.440 0.000
#> GSM564759     1  0.6244     0.8598 0.560 0.440 0.000
#> GSM564760     1  0.6244     0.8598 0.560 0.440 0.000
#> GSM564761     1  0.0000     0.7809 1.000 0.000 0.000
#> GSM564762     1  0.6244     0.8598 0.560 0.440 0.000
#> GSM564681     2  0.6274     0.9144 0.000 0.544 0.456
#> GSM564693     3  0.6309    -0.8483 0.000 0.500 0.500
#> GSM564646     3  0.1163     0.7299 0.000 0.028 0.972
#> GSM564699     3  0.0237     0.7357 0.000 0.004 0.996

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM564615     4  0.4331     0.8935 0.288 0.000 0.000 0.712
#> GSM564616     2  0.7534     0.7550 0.000 0.492 0.268 0.240
#> GSM564617     2  0.5387     0.7933 0.000 0.696 0.256 0.048
#> GSM564618     2  0.7676     0.7203 0.000 0.452 0.308 0.240
#> GSM564619     1  0.3547     0.6843 0.840 0.016 0.000 0.144
#> GSM564620     4  0.4988     0.8839 0.288 0.020 0.000 0.692
#> GSM564621     4  0.4988     0.8839 0.288 0.020 0.000 0.692
#> GSM564622     3  0.7700    -0.4358 0.000 0.304 0.448 0.248
#> GSM564623     3  0.3833     0.7991 0.000 0.080 0.848 0.072
#> GSM564624     2  0.5052     0.8047 0.000 0.720 0.244 0.036
#> GSM564625     4  0.4509     0.8913 0.288 0.004 0.000 0.708
#> GSM564626     1  0.1256     0.7766 0.964 0.008 0.000 0.028
#> GSM564627     1  0.5585     0.5696 0.712 0.084 0.000 0.204
#> GSM564628     2  0.7493     0.7315 0.000 0.488 0.304 0.208
#> GSM564629     4  0.5522     0.8716 0.288 0.044 0.000 0.668
#> GSM564630     2  0.5055     0.8022 0.000 0.712 0.256 0.032
#> GSM564609     3  0.2111     0.8247 0.000 0.024 0.932 0.044
#> GSM564610     1  0.2334     0.7609 0.908 0.088 0.000 0.004
#> GSM564611     1  0.1109     0.7804 0.968 0.028 0.000 0.004
#> GSM564612     2  0.4283     0.8096 0.000 0.740 0.256 0.004
#> GSM564613     3  0.6082    -0.3501 0.000 0.476 0.480 0.044
#> GSM564614     4  0.4331     0.8935 0.288 0.000 0.000 0.712
#> GSM564631     3  0.0895     0.8431 0.000 0.020 0.976 0.004
#> GSM564632     3  0.3659     0.7704 0.000 0.024 0.840 0.136
#> GSM564633     3  0.0592     0.8378 0.000 0.016 0.984 0.000
#> GSM564634     3  0.3523     0.7740 0.000 0.112 0.856 0.032
#> GSM564635     3  0.0336     0.8403 0.000 0.008 0.992 0.000
#> GSM564636     3  0.1929     0.8415 0.000 0.024 0.940 0.036
#> GSM564637     3  0.2124     0.8418 0.000 0.028 0.932 0.040
#> GSM564638     3  0.1151     0.8422 0.000 0.024 0.968 0.008
#> GSM564639     3  0.0895     0.8430 0.000 0.020 0.976 0.004
#> GSM564640     2  0.5953     0.8036 0.000 0.656 0.268 0.076
#> GSM564641     3  0.1635     0.8336 0.000 0.044 0.948 0.008
#> GSM564642     3  0.4906     0.6371 0.000 0.140 0.776 0.084
#> GSM564643     3  0.3497     0.7705 0.000 0.024 0.852 0.124
#> GSM564644     2  0.4283     0.8121 0.000 0.740 0.256 0.004
#> GSM564645     3  0.1004     0.8420 0.000 0.024 0.972 0.004
#> GSM564647     3  0.3051     0.7970 0.000 0.088 0.884 0.028
#> GSM564648     3  0.7800    -0.6119 0.000 0.372 0.380 0.248
#> GSM564649     3  0.1109     0.8413 0.000 0.028 0.968 0.004
#> GSM564650     2  0.4103     0.8110 0.000 0.744 0.256 0.000
#> GSM564651     2  0.7658     0.6404 0.000 0.416 0.372 0.212
#> GSM564652     2  0.7732     0.6006 0.000 0.388 0.384 0.228
#> GSM564653     2  0.7464     0.7492 0.000 0.496 0.296 0.208
#> GSM564654     3  0.2111     0.8176 0.000 0.024 0.932 0.044
#> GSM564655     3  0.1388     0.8416 0.000 0.012 0.960 0.028
#> GSM564656     3  0.0336     0.8403 0.000 0.008 0.992 0.000
#> GSM564657     3  0.1398     0.8356 0.000 0.040 0.956 0.004
#> GSM564658     2  0.4072     0.8122 0.000 0.748 0.252 0.000
#> GSM564659     3  0.4462     0.7261 0.000 0.132 0.804 0.064
#> GSM564660     2  0.6071     0.7142 0.000 0.612 0.324 0.064
#> GSM564661     2  0.7493     0.7447 0.000 0.488 0.304 0.208
#> GSM564662     3  0.1109     0.8413 0.000 0.028 0.968 0.004
#> GSM564663     2  0.4103     0.8110 0.000 0.744 0.256 0.000
#> GSM564664     2  0.6757     0.7849 0.000 0.572 0.308 0.120
#> GSM564665     3  0.3672     0.6906 0.000 0.164 0.824 0.012
#> GSM564666     3  0.3621     0.7999 0.000 0.072 0.860 0.068
#> GSM564667     3  0.1398     0.8356 0.000 0.040 0.956 0.004
#> GSM564668     3  0.2021     0.8266 0.000 0.024 0.936 0.040
#> GSM564669     3  0.0336     0.8403 0.000 0.008 0.992 0.000
#> GSM564670     2  0.6074     0.7029 0.000 0.600 0.340 0.060
#> GSM564671     3  0.3659     0.7712 0.000 0.024 0.840 0.136
#> GSM564672     3  0.1109     0.8413 0.000 0.028 0.968 0.004
#> GSM564673     3  0.7458    -0.2373 0.000 0.252 0.508 0.240
#> GSM564674     2  0.4868     0.8023 0.000 0.720 0.256 0.024
#> GSM564675     3  0.2546     0.8373 0.000 0.028 0.912 0.060
#> GSM564676     2  0.4283     0.8121 0.000 0.740 0.256 0.004
#> GSM564677     2  0.7506     0.7407 0.000 0.484 0.308 0.208
#> GSM564678     2  0.4283     0.8121 0.000 0.740 0.256 0.004
#> GSM564679     2  0.4220     0.8130 0.000 0.748 0.248 0.004
#> GSM564680     3  0.0895     0.8430 0.000 0.020 0.976 0.004
#> GSM564682     2  0.5213     0.7195 0.000 0.652 0.328 0.020
#> GSM564683     3  0.1109     0.8413 0.000 0.028 0.968 0.004
#> GSM564684     3  0.3080     0.8064 0.000 0.024 0.880 0.096
#> GSM564685     3  0.0817     0.8428 0.000 0.024 0.976 0.000
#> GSM564686     3  0.2179     0.8311 0.000 0.012 0.924 0.064
#> GSM564687     3  0.5396     0.5837 0.000 0.156 0.740 0.104
#> GSM564688     2  0.7506     0.7407 0.000 0.484 0.308 0.208
#> GSM564689     2  0.4283     0.8121 0.000 0.740 0.256 0.004
#> GSM564690     2  0.4283     0.8121 0.000 0.740 0.256 0.004
#> GSM564691     2  0.4283     0.8096 0.000 0.740 0.256 0.004
#> GSM564692     2  0.7530     0.7391 0.000 0.480 0.308 0.212
#> GSM564694     3  0.2255     0.8296 0.000 0.012 0.920 0.068
#> GSM564695     3  0.4635     0.6059 0.000 0.216 0.756 0.028
#> GSM564696     3  0.2124     0.8348 0.000 0.040 0.932 0.028
#> GSM564697     2  0.4661     0.8041 0.000 0.728 0.256 0.016
#> GSM564698     3  0.0376     0.8420 0.000 0.004 0.992 0.004
#> GSM564700     3  0.3813     0.7621 0.000 0.024 0.828 0.148
#> GSM564701     2  0.7412     0.7538 0.000 0.504 0.296 0.200
#> GSM564702     2  0.7530     0.7391 0.000 0.480 0.308 0.212
#> GSM564703     1  0.6167     0.3919 0.664 0.116 0.000 0.220
#> GSM564704     1  0.7526    -0.3201 0.468 0.200 0.000 0.332
#> GSM564705     1  0.0188     0.7859 0.996 0.000 0.000 0.004
#> GSM564706     4  0.7374     0.7389 0.308 0.188 0.000 0.504
#> GSM564707     1  0.0188     0.7859 0.996 0.000 0.000 0.004
#> GSM564708     4  0.6307     0.8551 0.288 0.092 0.000 0.620
#> GSM564709     1  0.0188     0.7859 0.996 0.000 0.000 0.004
#> GSM564710     1  0.0188     0.7859 0.996 0.000 0.000 0.004
#> GSM564711     4  0.7330     0.7524 0.304 0.184 0.000 0.512
#> GSM564712     1  0.0188     0.7859 0.996 0.000 0.000 0.004
#> GSM564713     4  0.4509     0.8937 0.288 0.004 0.000 0.708
#> GSM564714     4  0.7684     0.5786 0.360 0.220 0.000 0.420
#> GSM564715     1  0.2011     0.7647 0.920 0.080 0.000 0.000
#> GSM564716     4  0.4957     0.8774 0.300 0.016 0.000 0.684
#> GSM564717     1  0.4136     0.6916 0.788 0.196 0.000 0.016
#> GSM564718     4  0.6835     0.8195 0.288 0.136 0.000 0.576
#> GSM564719     1  0.5816     0.5657 0.688 0.224 0.000 0.088
#> GSM564720     1  0.1109     0.7804 0.968 0.028 0.000 0.004
#> GSM564721     1  0.0524     0.7848 0.988 0.004 0.000 0.008
#> GSM564722     4  0.7702     0.5733 0.360 0.224 0.000 0.416
#> GSM564723     1  0.0000     0.7853 1.000 0.000 0.000 0.000
#> GSM564724     4  0.5599     0.8803 0.288 0.048 0.000 0.664
#> GSM564725     1  0.4391     0.5179 0.740 0.008 0.000 0.252
#> GSM564726     4  0.4331     0.8935 0.288 0.000 0.000 0.712
#> GSM564727     1  0.4831     0.4484 0.704 0.016 0.000 0.280
#> GSM564728     4  0.4331     0.8935 0.288 0.000 0.000 0.712
#> GSM564729     4  0.4331     0.8935 0.288 0.000 0.000 0.712
#> GSM564730     1  0.2222     0.7632 0.924 0.016 0.000 0.060
#> GSM564731     4  0.6681     0.8356 0.292 0.120 0.000 0.588
#> GSM564732     4  0.4509     0.8935 0.288 0.004 0.000 0.708
#> GSM564733     4  0.4331     0.8935 0.288 0.000 0.000 0.712
#> GSM564734     4  0.5557     0.8729 0.308 0.040 0.000 0.652
#> GSM564735     4  0.4331     0.8935 0.288 0.000 0.000 0.712
#> GSM564736     4  0.4331     0.8935 0.288 0.000 0.000 0.712
#> GSM564737     1  0.0188     0.7859 0.996 0.000 0.000 0.004
#> GSM564738     4  0.7031     0.7962 0.296 0.152 0.000 0.552
#> GSM564739     1  0.6104     0.3716 0.664 0.104 0.000 0.232
#> GSM564740     4  0.6307     0.8484 0.288 0.092 0.000 0.620
#> GSM564741     4  0.7066     0.7857 0.304 0.152 0.000 0.544
#> GSM564742     1  0.7679    -0.4674 0.408 0.216 0.000 0.376
#> GSM564743     1  0.2266     0.7614 0.912 0.084 0.000 0.004
#> GSM564744     1  0.0000     0.7853 1.000 0.000 0.000 0.000
#> GSM564745     4  0.5161     0.7575 0.400 0.008 0.000 0.592
#> GSM564746     1  0.5536     0.6020 0.724 0.096 0.000 0.180
#> GSM564747     1  0.7576    -0.3525 0.452 0.204 0.000 0.344
#> GSM564748     1  0.4982     0.6242 0.772 0.136 0.000 0.092
#> GSM564749     1  0.1209     0.7806 0.964 0.032 0.000 0.004
#> GSM564750     4  0.4509     0.8937 0.288 0.004 0.000 0.708
#> GSM564751     1  0.6773     0.0567 0.584 0.132 0.000 0.284
#> GSM564752     4  0.5088     0.8871 0.288 0.024 0.000 0.688
#> GSM564753     4  0.7011     0.7965 0.300 0.148 0.000 0.552
#> GSM564754     1  0.0188     0.7859 0.996 0.000 0.000 0.004
#> GSM564755     4  0.4331     0.8935 0.288 0.000 0.000 0.712
#> GSM564756     4  0.6396     0.7538 0.380 0.072 0.000 0.548
#> GSM564757     4  0.4331     0.8935 0.288 0.000 0.000 0.712
#> GSM564758     4  0.4331     0.8935 0.288 0.000 0.000 0.712
#> GSM564759     4  0.6994     0.8069 0.288 0.152 0.000 0.560
#> GSM564760     4  0.4331     0.8935 0.288 0.000 0.000 0.712
#> GSM564761     1  0.0376     0.7854 0.992 0.004 0.000 0.004
#> GSM564762     4  0.5442     0.8847 0.288 0.040 0.000 0.672
#> GSM564681     2  0.7363     0.7626 0.000 0.520 0.272 0.208
#> GSM564693     2  0.7493     0.7447 0.000 0.488 0.304 0.208
#> GSM564646     3  0.3910     0.7559 0.000 0.024 0.820 0.156
#> GSM564699     3  0.1888     0.8423 0.000 0.016 0.940 0.044

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM564615     4  0.0000     0.8144 0.000 0.000 0.000 1.000 0.000
#> GSM564616     5  0.3589     0.7996 0.004 0.040 0.132 0.000 0.824
#> GSM564617     2  0.6594     0.8241 0.024 0.556 0.164 0.000 0.256
#> GSM564618     5  0.4411     0.7920 0.032 0.036 0.152 0.000 0.780
#> GSM564619     1  0.5568     0.7137 0.616 0.016 0.000 0.308 0.060
#> GSM564620     4  0.1845     0.7932 0.000 0.016 0.000 0.928 0.056
#> GSM564621     4  0.1914     0.7890 0.000 0.016 0.000 0.924 0.060
#> GSM564622     5  0.4834     0.7212 0.016 0.044 0.224 0.000 0.716
#> GSM564623     3  0.5189     0.7756 0.144 0.104 0.728 0.000 0.024
#> GSM564624     2  0.6804     0.8233 0.028 0.516 0.160 0.000 0.296
#> GSM564625     4  0.0324     0.8118 0.000 0.004 0.000 0.992 0.004
#> GSM564626     1  0.4514     0.8106 0.756 0.016 0.000 0.184 0.044
#> GSM564627     1  0.7223     0.5441 0.436 0.084 0.000 0.384 0.096
#> GSM564628     5  0.7480     0.3940 0.144 0.152 0.172 0.000 0.532
#> GSM564629     4  0.2157     0.7935 0.004 0.040 0.000 0.920 0.036
#> GSM564630     2  0.6715     0.8404 0.024 0.528 0.164 0.000 0.284
#> GSM564609     3  0.4264     0.8112 0.084 0.032 0.808 0.000 0.076
#> GSM564610     1  0.6721     0.7686 0.612 0.100 0.000 0.176 0.112
#> GSM564611     1  0.4638     0.8183 0.764 0.032 0.000 0.160 0.044
#> GSM564612     2  0.6393     0.8617 0.004 0.524 0.180 0.000 0.292
#> GSM564613     2  0.6903     0.4247 0.040 0.440 0.400 0.000 0.120
#> GSM564614     4  0.0162     0.8144 0.000 0.000 0.000 0.996 0.004
#> GSM564631     3  0.0324     0.8409 0.000 0.004 0.992 0.000 0.004
#> GSM564632     3  0.6466     0.6851 0.136 0.068 0.632 0.000 0.164
#> GSM564633     3  0.1710     0.8344 0.004 0.016 0.940 0.000 0.040
#> GSM564634     3  0.4925     0.7032 0.072 0.180 0.732 0.000 0.016
#> GSM564635     3  0.1525     0.8354 0.004 0.012 0.948 0.000 0.036
#> GSM564636     3  0.2952     0.8355 0.088 0.036 0.872 0.000 0.004
#> GSM564637     3  0.3765     0.8257 0.124 0.048 0.820 0.000 0.008
#> GSM564638     3  0.0162     0.8407 0.000 0.004 0.996 0.000 0.000
#> GSM564639     3  0.0566     0.8400 0.000 0.004 0.984 0.000 0.012
#> GSM564640     5  0.7203    -0.3883 0.048 0.336 0.156 0.000 0.460
#> GSM564641     3  0.1116     0.8384 0.004 0.028 0.964 0.000 0.004
#> GSM564642     3  0.6151     0.5708 0.088 0.040 0.616 0.000 0.256
#> GSM564643     3  0.6055     0.6816 0.132 0.036 0.652 0.000 0.180
#> GSM564644     2  0.6572     0.8624 0.012 0.508 0.164 0.000 0.316
#> GSM564645     3  0.0162     0.8407 0.000 0.004 0.996 0.000 0.000
#> GSM564647     3  0.3968     0.7995 0.072 0.100 0.816 0.000 0.012
#> GSM564648     5  0.3953     0.7893 0.008 0.024 0.188 0.000 0.780
#> GSM564649     3  0.0162     0.8407 0.000 0.004 0.996 0.000 0.000
#> GSM564650     2  0.6295     0.8683 0.004 0.536 0.164 0.000 0.296
#> GSM564651     5  0.3597     0.8019 0.008 0.012 0.180 0.000 0.800
#> GSM564652     5  0.3988     0.7845 0.008 0.024 0.192 0.000 0.776
#> GSM564653     5  0.3039     0.8254 0.000 0.012 0.152 0.000 0.836
#> GSM564654     3  0.2407     0.8141 0.004 0.012 0.896 0.000 0.088
#> GSM564655     3  0.3895     0.8295 0.108 0.044 0.824 0.000 0.024
#> GSM564656     3  0.1461     0.8386 0.004 0.016 0.952 0.000 0.028
#> GSM564657     3  0.0162     0.8407 0.000 0.004 0.996 0.000 0.000
#> GSM564658     2  0.6461     0.8657 0.008 0.516 0.164 0.000 0.312
#> GSM564659     3  0.3941     0.7726 0.036 0.036 0.824 0.000 0.104
#> GSM564660     2  0.7635     0.5901 0.072 0.456 0.244 0.000 0.228
#> GSM564661     5  0.2886     0.8250 0.000 0.008 0.148 0.000 0.844
#> GSM564662     3  0.0162     0.8407 0.000 0.004 0.996 0.000 0.000
#> GSM564663     2  0.6191     0.8675 0.000 0.528 0.164 0.000 0.308
#> GSM564664     5  0.6295     0.0869 0.008 0.256 0.172 0.000 0.564
#> GSM564665     3  0.2952     0.7733 0.008 0.020 0.868 0.000 0.104
#> GSM564666     3  0.4911     0.7797 0.144 0.104 0.740 0.000 0.012
#> GSM564667     3  0.0162     0.8407 0.000 0.004 0.996 0.000 0.000
#> GSM564668     3  0.3525     0.8140 0.040 0.028 0.852 0.000 0.080
#> GSM564669     3  0.1605     0.8343 0.004 0.012 0.944 0.000 0.040
#> GSM564670     2  0.7389     0.6128 0.048 0.460 0.276 0.000 0.216
#> GSM564671     3  0.6356     0.6941 0.140 0.060 0.640 0.000 0.160
#> GSM564672     3  0.0162     0.8407 0.000 0.004 0.996 0.000 0.000
#> GSM564673     5  0.4676     0.6629 0.008 0.032 0.264 0.000 0.696
#> GSM564674     2  0.6829     0.8327 0.032 0.528 0.164 0.000 0.276
#> GSM564675     3  0.4303     0.8106 0.132 0.076 0.784 0.000 0.008
#> GSM564676     2  0.6461     0.8657 0.008 0.516 0.164 0.000 0.312
#> GSM564677     5  0.2929     0.8274 0.000 0.008 0.152 0.000 0.840
#> GSM564678     2  0.6461     0.8657 0.008 0.516 0.164 0.000 0.312
#> GSM564679     2  0.6461     0.8657 0.008 0.516 0.164 0.000 0.312
#> GSM564680     3  0.0566     0.8400 0.000 0.004 0.984 0.000 0.012
#> GSM564682     2  0.6180     0.7904 0.000 0.556 0.220 0.000 0.224
#> GSM564683     3  0.0162     0.8407 0.000 0.004 0.996 0.000 0.000
#> GSM564684     3  0.5999     0.7469 0.140 0.068 0.680 0.000 0.112
#> GSM564685     3  0.0162     0.8407 0.000 0.004 0.996 0.000 0.000
#> GSM564686     3  0.4449     0.8113 0.140 0.060 0.780 0.000 0.020
#> GSM564687     3  0.6584     0.6538 0.132 0.088 0.628 0.000 0.152
#> GSM564688     5  0.2929     0.8264 0.000 0.008 0.152 0.000 0.840
#> GSM564689     2  0.6461     0.8657 0.008 0.516 0.164 0.000 0.312
#> GSM564690     2  0.6461     0.8657 0.008 0.516 0.164 0.000 0.312
#> GSM564691     2  0.6206     0.8683 0.000 0.528 0.168 0.000 0.304
#> GSM564692     5  0.2929     0.8274 0.000 0.008 0.152 0.000 0.840
#> GSM564694     3  0.4848     0.8029 0.148 0.064 0.756 0.000 0.032
#> GSM564695     3  0.5183     0.7271 0.076 0.112 0.748 0.000 0.064
#> GSM564696     3  0.2770     0.8333 0.076 0.044 0.880 0.000 0.000
#> GSM564697     2  0.6345     0.8620 0.008 0.548 0.164 0.000 0.280
#> GSM564698     3  0.1168     0.8380 0.000 0.008 0.960 0.000 0.032
#> GSM564700     3  0.6751     0.6440 0.144 0.072 0.600 0.000 0.184
#> GSM564701     5  0.3723     0.7990 0.000 0.044 0.152 0.000 0.804
#> GSM564702     5  0.2929     0.8274 0.000 0.008 0.152 0.000 0.840
#> GSM564703     1  0.7029     0.3961 0.436 0.204 0.000 0.340 0.020
#> GSM564704     4  0.6519     0.4358 0.152 0.328 0.000 0.508 0.012
#> GSM564705     1  0.3606     0.8253 0.808 0.004 0.000 0.164 0.024
#> GSM564706     4  0.4733     0.6422 0.028 0.348 0.000 0.624 0.000
#> GSM564707     1  0.3359     0.8250 0.816 0.000 0.000 0.164 0.020
#> GSM564708     4  0.2929     0.7843 0.000 0.152 0.000 0.840 0.008
#> GSM564709     1  0.3653     0.8268 0.808 0.012 0.000 0.164 0.016
#> GSM564710     1  0.3516     0.8255 0.812 0.004 0.000 0.164 0.020
#> GSM564711     4  0.4451     0.6636 0.016 0.340 0.000 0.644 0.000
#> GSM564712     1  0.3163     0.8245 0.824 0.000 0.000 0.164 0.012
#> GSM564713     4  0.0566     0.8166 0.000 0.012 0.000 0.984 0.004
#> GSM564714     4  0.6033     0.5540 0.060 0.348 0.000 0.560 0.032
#> GSM564715     1  0.5562     0.7784 0.692 0.120 0.000 0.164 0.024
#> GSM564716     4  0.2312     0.7811 0.012 0.016 0.000 0.912 0.060
#> GSM564717     1  0.7396     0.6323 0.472 0.296 0.000 0.168 0.064
#> GSM564718     4  0.3707     0.7200 0.000 0.284 0.000 0.716 0.000
#> GSM564719     1  0.7680     0.4235 0.364 0.328 0.000 0.256 0.052
#> GSM564720     1  0.4859     0.8163 0.752 0.040 0.000 0.160 0.048
#> GSM564721     1  0.3645     0.8235 0.804 0.004 0.000 0.168 0.024
#> GSM564722     4  0.6145     0.5467 0.064 0.344 0.000 0.556 0.036
#> GSM564723     1  0.3651     0.8246 0.808 0.004 0.000 0.160 0.028
#> GSM564724     4  0.1768     0.8112 0.000 0.072 0.000 0.924 0.004
#> GSM564725     1  0.5722     0.5912 0.536 0.016 0.000 0.396 0.052
#> GSM564726     4  0.0000     0.8144 0.000 0.000 0.000 1.000 0.000
#> GSM564727     1  0.5941     0.4834 0.472 0.016 0.000 0.448 0.064
#> GSM564728     4  0.0000     0.8144 0.000 0.000 0.000 1.000 0.000
#> GSM564729     4  0.0000     0.8144 0.000 0.000 0.000 1.000 0.000
#> GSM564730     1  0.4629     0.7852 0.704 0.000 0.000 0.244 0.052
#> GSM564731     4  0.3612     0.7483 0.000 0.228 0.000 0.764 0.008
#> GSM564732     4  0.0771     0.8161 0.000 0.020 0.000 0.976 0.004
#> GSM564733     4  0.0162     0.8143 0.000 0.000 0.000 0.996 0.004
#> GSM564734     4  0.2526     0.8033 0.012 0.080 0.000 0.896 0.012
#> GSM564735     4  0.0771     0.8172 0.000 0.020 0.000 0.976 0.004
#> GSM564736     4  0.0162     0.8150 0.000 0.004 0.000 0.996 0.000
#> GSM564737     1  0.3163     0.8245 0.824 0.000 0.000 0.164 0.012
#> GSM564738     4  0.3928     0.7102 0.004 0.296 0.000 0.700 0.000
#> GSM564739     1  0.6936     0.3939 0.440 0.200 0.000 0.344 0.016
#> GSM564740     4  0.3067     0.7774 0.004 0.140 0.000 0.844 0.012
#> GSM564741     4  0.4491     0.7013 0.024 0.280 0.000 0.692 0.004
#> GSM564742     4  0.6260     0.4425 0.120 0.372 0.000 0.500 0.008
#> GSM564743     1  0.6104     0.7829 0.668 0.100 0.000 0.160 0.072
#> GSM564744     1  0.3651     0.8246 0.808 0.004 0.000 0.160 0.028
#> GSM564745     4  0.3273     0.7302 0.112 0.004 0.000 0.848 0.036
#> GSM564746     1  0.7547     0.5821 0.436 0.108 0.000 0.344 0.112
#> GSM564747     4  0.6140     0.4437 0.140 0.356 0.000 0.504 0.000
#> GSM564748     1  0.6602     0.5549 0.516 0.224 0.000 0.252 0.008
#> GSM564749     1  0.4708     0.8186 0.760 0.032 0.000 0.160 0.048
#> GSM564750     4  0.0404     0.8164 0.000 0.012 0.000 0.988 0.000
#> GSM564751     4  0.7071    -0.1143 0.344 0.232 0.000 0.408 0.016
#> GSM564752     4  0.1638     0.8107 0.004 0.064 0.000 0.932 0.000
#> GSM564753     4  0.4230     0.7111 0.008 0.280 0.000 0.704 0.008
#> GSM564754     1  0.3443     0.8244 0.816 0.008 0.000 0.164 0.012
#> GSM564755     4  0.0000     0.8144 0.000 0.000 0.000 1.000 0.000
#> GSM564756     4  0.4662     0.7267 0.080 0.132 0.000 0.768 0.020
#> GSM564757     4  0.0000     0.8144 0.000 0.000 0.000 1.000 0.000
#> GSM564758     4  0.0000     0.8144 0.000 0.000 0.000 1.000 0.000
#> GSM564759     4  0.3607     0.7412 0.004 0.244 0.000 0.752 0.000
#> GSM564760     4  0.0290     0.8141 0.000 0.000 0.000 0.992 0.008
#> GSM564761     1  0.3053     0.8243 0.828 0.000 0.000 0.164 0.008
#> GSM564762     4  0.1894     0.8098 0.000 0.072 0.000 0.920 0.008
#> GSM564681     5  0.3078     0.8001 0.004 0.016 0.132 0.000 0.848
#> GSM564693     5  0.2886     0.8250 0.000 0.008 0.148 0.000 0.844
#> GSM564646     3  0.6815     0.6327 0.148 0.072 0.592 0.000 0.188
#> GSM564699     3  0.3971     0.8200 0.136 0.052 0.804 0.000 0.008

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM564615     4  0.3961     0.7080 0.000 0.440 0.000 0.556 0.000 0.004
#> GSM564616     5  0.3198     0.7866 0.020 0.020 0.056 0.000 0.864 0.040
#> GSM564617     2  0.8016     0.4069 0.052 0.392 0.120 0.000 0.192 0.244
#> GSM564618     5  0.4181     0.7526 0.024 0.028 0.092 0.000 0.800 0.056
#> GSM564619     1  0.6049     0.6608 0.624 0.132 0.000 0.152 0.004 0.088
#> GSM564620     4  0.5597     0.6815 0.000 0.360 0.000 0.524 0.016 0.100
#> GSM564621     4  0.5359     0.6796 0.000 0.376 0.000 0.520 0.004 0.100
#> GSM564622     5  0.3726     0.7457 0.012 0.012 0.148 0.000 0.800 0.028
#> GSM564623     3  0.4104     0.4402 0.052 0.036 0.800 0.000 0.012 0.100
#> GSM564624     2  0.7958     0.4650 0.052 0.384 0.096 0.000 0.232 0.236
#> GSM564625     4  0.4093     0.7080 0.000 0.440 0.000 0.552 0.004 0.004
#> GSM564626     1  0.3787     0.8097 0.804 0.020 0.000 0.104 0.000 0.072
#> GSM564627     1  0.7617     0.4212 0.364 0.172 0.000 0.200 0.004 0.260
#> GSM564628     5  0.7310    -0.0684 0.056 0.052 0.344 0.000 0.420 0.128
#> GSM564629     4  0.5430     0.6846 0.000 0.408 0.000 0.492 0.008 0.092
#> GSM564630     2  0.7946     0.4743 0.052 0.388 0.096 0.000 0.224 0.240
#> GSM564609     3  0.3663     0.6541 0.012 0.004 0.808 0.000 0.048 0.128
#> GSM564610     1  0.5941     0.7087 0.564 0.052 0.000 0.100 0.000 0.284
#> GSM564611     1  0.4017     0.8169 0.796 0.016 0.000 0.092 0.008 0.088
#> GSM564612     2  0.7150     0.6961 0.008 0.428 0.072 0.000 0.252 0.240
#> GSM564613     6  0.8112     0.0000 0.048 0.296 0.248 0.000 0.108 0.300
#> GSM564614     4  0.4057     0.7080 0.000 0.436 0.000 0.556 0.000 0.008
#> GSM564631     3  0.3923     0.6856 0.000 0.000 0.620 0.000 0.008 0.372
#> GSM564632     3  0.3268     0.4931 0.000 0.000 0.812 0.000 0.144 0.044
#> GSM564633     3  0.4543     0.6890 0.012 0.000 0.624 0.000 0.028 0.336
#> GSM564634     3  0.5065     0.4854 0.024 0.076 0.696 0.000 0.012 0.192
#> GSM564635     3  0.4569     0.6884 0.012 0.000 0.616 0.000 0.028 0.344
#> GSM564636     3  0.2982     0.6553 0.012 0.004 0.820 0.000 0.000 0.164
#> GSM564637     3  0.1409     0.6146 0.008 0.012 0.948 0.000 0.000 0.032
#> GSM564638     3  0.3923     0.6877 0.000 0.000 0.620 0.000 0.008 0.372
#> GSM564639     3  0.4341     0.6861 0.012 0.004 0.620 0.000 0.008 0.356
#> GSM564640     5  0.7333    -0.3872 0.016 0.264 0.148 0.000 0.452 0.120
#> GSM564641     3  0.4284     0.6691 0.004 0.004 0.608 0.000 0.012 0.372
#> GSM564642     3  0.4945     0.3309 0.016 0.004 0.640 0.000 0.288 0.052
#> GSM564643     3  0.3855     0.5270 0.020 0.004 0.796 0.000 0.136 0.044
#> GSM564644     2  0.7232     0.7473 0.020 0.444 0.076 0.000 0.288 0.172
#> GSM564645     3  0.3923     0.6856 0.000 0.000 0.620 0.000 0.008 0.372
#> GSM564647     3  0.4987     0.5538 0.028 0.060 0.700 0.000 0.012 0.200
#> GSM564648     5  0.2588     0.7929 0.000 0.004 0.124 0.000 0.860 0.012
#> GSM564649     3  0.4058     0.6852 0.004 0.000 0.616 0.000 0.008 0.372
#> GSM564650     2  0.6720     0.7655 0.000 0.492 0.080 0.000 0.252 0.176
#> GSM564651     5  0.1700     0.8240 0.004 0.000 0.080 0.000 0.916 0.000
#> GSM564652     5  0.1910     0.8095 0.000 0.000 0.108 0.000 0.892 0.000
#> GSM564653     5  0.1719     0.8283 0.000 0.000 0.060 0.000 0.924 0.016
#> GSM564654     3  0.5444     0.6680 0.016 0.004 0.572 0.000 0.080 0.328
#> GSM564655     3  0.2009     0.6420 0.004 0.000 0.904 0.000 0.008 0.084
#> GSM564656     3  0.4472     0.6897 0.012 0.000 0.628 0.000 0.024 0.336
#> GSM564657     3  0.4079     0.6830 0.004 0.000 0.608 0.000 0.008 0.380
#> GSM564658     2  0.6837     0.7697 0.004 0.468 0.072 0.000 0.288 0.168
#> GSM564659     3  0.6567     0.5226 0.048 0.044 0.520 0.000 0.072 0.316
#> GSM564660     3  0.8458    -0.8245 0.060 0.252 0.288 0.000 0.176 0.224
#> GSM564661     5  0.1411     0.8305 0.000 0.000 0.060 0.000 0.936 0.004
#> GSM564662     3  0.3923     0.6856 0.000 0.000 0.620 0.000 0.008 0.372
#> GSM564663     2  0.7036     0.7512 0.008 0.456 0.072 0.000 0.260 0.204
#> GSM564664     5  0.6379     0.0067 0.016 0.244 0.068 0.000 0.572 0.100
#> GSM564665     3  0.5954     0.5618 0.004 0.020 0.532 0.000 0.132 0.312
#> GSM564666     3  0.4020     0.4565 0.040 0.032 0.800 0.000 0.012 0.116
#> GSM564667     3  0.4090     0.6814 0.004 0.000 0.604 0.000 0.008 0.384
#> GSM564668     3  0.4875     0.6624 0.020 0.008 0.692 0.000 0.060 0.220
#> GSM564669     3  0.4734     0.6887 0.016 0.004 0.624 0.000 0.028 0.328
#> GSM564670     2  0.8488    -0.4757 0.064 0.296 0.200 0.000 0.192 0.248
#> GSM564671     3  0.2680     0.5238 0.004 0.000 0.856 0.000 0.124 0.016
#> GSM564672     3  0.3923     0.6856 0.000 0.000 0.620 0.000 0.008 0.372
#> GSM564673     5  0.2597     0.7280 0.000 0.000 0.176 0.000 0.824 0.000
#> GSM564674     2  0.7883     0.5501 0.024 0.372 0.144 0.000 0.232 0.228
#> GSM564675     3  0.1155     0.5867 0.004 0.004 0.956 0.000 0.000 0.036
#> GSM564676     2  0.6912     0.7622 0.008 0.468 0.072 0.000 0.288 0.164
#> GSM564677     5  0.1267     0.8309 0.000 0.000 0.060 0.000 0.940 0.000
#> GSM564678     2  0.6790     0.7665 0.004 0.476 0.072 0.000 0.288 0.160
#> GSM564679     2  0.6782     0.7614 0.004 0.472 0.068 0.000 0.292 0.164
#> GSM564680     3  0.4341     0.6861 0.012 0.004 0.620 0.000 0.008 0.356
#> GSM564682     2  0.7459     0.4920 0.012 0.420 0.116 0.000 0.200 0.252
#> GSM564683     3  0.3934     0.6851 0.000 0.000 0.616 0.000 0.008 0.376
#> GSM564684     3  0.2635     0.5409 0.004 0.004 0.880 0.000 0.076 0.036
#> GSM564685     3  0.3905     0.6909 0.004 0.000 0.636 0.000 0.004 0.356
#> GSM564686     3  0.1003     0.5907 0.004 0.004 0.964 0.000 0.000 0.028
#> GSM564687     3  0.4881     0.3317 0.024 0.012 0.720 0.000 0.168 0.076
#> GSM564688     5  0.1411     0.8305 0.000 0.000 0.060 0.000 0.936 0.004
#> GSM564689     2  0.6754     0.7712 0.004 0.488 0.072 0.000 0.276 0.160
#> GSM564690     2  0.6790     0.7665 0.004 0.476 0.072 0.000 0.288 0.160
#> GSM564691     2  0.6711     0.7666 0.000 0.484 0.072 0.000 0.260 0.184
#> GSM564692     5  0.1625     0.8295 0.000 0.000 0.060 0.000 0.928 0.012
#> GSM564694     3  0.1655     0.5806 0.004 0.004 0.936 0.000 0.012 0.044
#> GSM564695     3  0.6148     0.3057 0.032 0.096 0.620 0.000 0.048 0.204
#> GSM564696     3  0.3074     0.6598 0.004 0.004 0.792 0.000 0.000 0.200
#> GSM564697     2  0.6937     0.7409 0.004 0.492 0.100 0.000 0.232 0.172
#> GSM564698     3  0.4457     0.6907 0.012 0.000 0.632 0.000 0.024 0.332
#> GSM564700     3  0.3516     0.4674 0.004 0.008 0.812 0.000 0.136 0.040
#> GSM564701     5  0.2503     0.8134 0.008 0.012 0.060 0.000 0.896 0.024
#> GSM564702     5  0.1524     0.8303 0.000 0.000 0.060 0.000 0.932 0.008
#> GSM564703     4  0.5126    -0.2089 0.408 0.004 0.000 0.532 0.016 0.040
#> GSM564704     4  0.4212     0.4014 0.132 0.008 0.000 0.772 0.012 0.076
#> GSM564705     1  0.2648     0.8312 0.876 0.004 0.000 0.092 0.008 0.020
#> GSM564706     4  0.2265     0.5408 0.008 0.008 0.000 0.896 0.004 0.084
#> GSM564707     1  0.2326     0.8302 0.888 0.000 0.000 0.092 0.012 0.008
#> GSM564708     4  0.3565     0.6637 0.000 0.156 0.000 0.796 0.008 0.040
#> GSM564709     1  0.2113     0.8306 0.896 0.000 0.000 0.092 0.004 0.008
#> GSM564710     1  0.2648     0.8312 0.876 0.004 0.000 0.092 0.008 0.020
#> GSM564711     4  0.2213     0.5499 0.008 0.008 0.000 0.904 0.008 0.072
#> GSM564712     1  0.2113     0.8301 0.896 0.000 0.000 0.092 0.004 0.008
#> GSM564713     4  0.4102     0.7130 0.000 0.356 0.000 0.628 0.004 0.012
#> GSM564714     4  0.4087     0.4606 0.040 0.020 0.000 0.776 0.008 0.156
#> GSM564715     1  0.4510     0.7350 0.704 0.000 0.000 0.228 0.020 0.048
#> GSM564716     4  0.5731     0.6702 0.008 0.360 0.000 0.516 0.008 0.108
#> GSM564717     1  0.6723     0.4579 0.400 0.020 0.000 0.332 0.012 0.236
#> GSM564718     4  0.0665     0.6053 0.000 0.008 0.000 0.980 0.004 0.008
#> GSM564719     4  0.6541    -0.2111 0.272 0.020 0.000 0.476 0.012 0.220
#> GSM564720     1  0.4244     0.8110 0.780 0.020 0.000 0.092 0.008 0.100
#> GSM564721     1  0.2760     0.8277 0.872 0.008 0.000 0.092 0.008 0.020
#> GSM564722     4  0.4278     0.4519 0.032 0.020 0.000 0.744 0.008 0.196
#> GSM564723     1  0.3093     0.8294 0.852 0.004 0.000 0.092 0.008 0.044
#> GSM564724     4  0.4096     0.7076 0.000 0.304 0.000 0.672 0.008 0.016
#> GSM564725     1  0.6647     0.4839 0.528 0.172 0.000 0.220 0.004 0.076
#> GSM564726     4  0.3961     0.7080 0.000 0.440 0.000 0.556 0.000 0.004
#> GSM564727     1  0.7076     0.3613 0.460 0.196 0.000 0.244 0.004 0.096
#> GSM564728     4  0.3961     0.7080 0.000 0.440 0.000 0.556 0.000 0.004
#> GSM564729     4  0.3961     0.7080 0.000 0.440 0.000 0.556 0.000 0.004
#> GSM564730     1  0.4776     0.7648 0.740 0.052 0.000 0.144 0.008 0.056
#> GSM564731     4  0.1957     0.6363 0.000 0.072 0.000 0.912 0.008 0.008
#> GSM564732     4  0.4253     0.7120 0.000 0.412 0.000 0.572 0.008 0.008
#> GSM564733     4  0.3828     0.7086 0.000 0.440 0.000 0.560 0.000 0.000
#> GSM564734     4  0.4663     0.7100 0.012 0.340 0.000 0.620 0.016 0.012
#> GSM564735     4  0.3797     0.7127 0.000 0.420 0.000 0.580 0.000 0.000
#> GSM564736     4  0.3833     0.7080 0.000 0.444 0.000 0.556 0.000 0.000
#> GSM564737     1  0.2113     0.8301 0.896 0.000 0.000 0.092 0.004 0.008
#> GSM564738     4  0.0837     0.5949 0.004 0.004 0.000 0.972 0.000 0.020
#> GSM564739     4  0.5025    -0.1680 0.396 0.004 0.000 0.548 0.012 0.040
#> GSM564740     4  0.4882     0.6583 0.000 0.236 0.000 0.656 0.004 0.104
#> GSM564741     4  0.1893     0.5782 0.024 0.004 0.000 0.928 0.008 0.036
#> GSM564742     4  0.4323     0.4051 0.084 0.020 0.000 0.772 0.008 0.116
#> GSM564743     1  0.5619     0.7332 0.632 0.020 0.000 0.104 0.016 0.228
#> GSM564744     1  0.2956     0.8301 0.860 0.004 0.000 0.092 0.008 0.036
#> GSM564745     4  0.6592     0.6245 0.124 0.336 0.000 0.480 0.016 0.044
#> GSM564746     1  0.7410     0.4661 0.372 0.144 0.000 0.204 0.000 0.280
#> GSM564747     4  0.4157     0.4163 0.104 0.016 0.000 0.784 0.008 0.088
#> GSM564748     4  0.4744    -0.3056 0.440 0.000 0.000 0.520 0.008 0.032
#> GSM564749     1  0.4017     0.8162 0.796 0.016 0.000 0.092 0.008 0.088
#> GSM564750     4  0.4109     0.7149 0.000 0.392 0.000 0.596 0.004 0.008
#> GSM564751     4  0.4452     0.1373 0.288 0.000 0.000 0.664 0.008 0.040
#> GSM564752     4  0.3867     0.7082 0.000 0.328 0.000 0.660 0.000 0.012
#> GSM564753     4  0.1268     0.5935 0.004 0.000 0.000 0.952 0.008 0.036
#> GSM564754     1  0.2376     0.8286 0.884 0.000 0.000 0.096 0.008 0.012
#> GSM564755     4  0.3961     0.7080 0.000 0.440 0.000 0.556 0.000 0.004
#> GSM564756     4  0.5653     0.6537 0.072 0.220 0.000 0.648 0.024 0.036
#> GSM564757     4  0.4165     0.7110 0.000 0.420 0.000 0.568 0.008 0.004
#> GSM564758     4  0.4165     0.7110 0.000 0.420 0.000 0.568 0.008 0.004
#> GSM564759     4  0.2789     0.6226 0.000 0.088 0.000 0.864 0.004 0.044
#> GSM564760     4  0.3828     0.7086 0.000 0.440 0.000 0.560 0.000 0.000
#> GSM564761     1  0.1970     0.8297 0.900 0.000 0.000 0.092 0.000 0.008
#> GSM564762     4  0.4076     0.7127 0.000 0.348 0.000 0.636 0.012 0.004
#> GSM564681     5  0.1578     0.8122 0.000 0.004 0.048 0.000 0.936 0.012
#> GSM564693     5  0.1699     0.8302 0.004 0.004 0.060 0.000 0.928 0.004
#> GSM564646     3  0.3761     0.4391 0.004 0.008 0.792 0.000 0.148 0.048
#> GSM564699     3  0.0922     0.6054 0.004 0.004 0.968 0.000 0.000 0.024

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n genotype/variation(p) disease.state(p) k
#> MAD:kmeans 154                 0.925            0.476 2
#> MAD:kmeans 138                 0.167            0.161 3
#> MAD:kmeans 143                 0.329            0.549 4
#> MAD:kmeans 142                 0.451            0.201 5
#> MAD:kmeans 120                 0.193            0.208 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 154 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.5007 0.500   0.500
#> 3 3 0.898           0.907       0.947         0.2873 0.854   0.709
#> 4 4 0.714           0.763       0.877         0.1562 0.884   0.679
#> 5 5 0.653           0.566       0.770         0.0630 0.929   0.736
#> 6 6 0.640           0.572       0.718         0.0387 0.927   0.691

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> GSM564615     1       0          1  1  0
#> GSM564616     2       0          1  0  1
#> GSM564617     2       0          1  0  1
#> GSM564618     2       0          1  0  1
#> GSM564619     1       0          1  1  0
#> GSM564620     1       0          1  1  0
#> GSM564621     1       0          1  1  0
#> GSM564622     2       0          1  0  1
#> GSM564623     2       0          1  0  1
#> GSM564624     2       0          1  0  1
#> GSM564625     1       0          1  1  0
#> GSM564626     1       0          1  1  0
#> GSM564627     1       0          1  1  0
#> GSM564628     2       0          1  0  1
#> GSM564629     1       0          1  1  0
#> GSM564630     2       0          1  0  1
#> GSM564609     2       0          1  0  1
#> GSM564610     1       0          1  1  0
#> GSM564611     1       0          1  1  0
#> GSM564612     2       0          1  0  1
#> GSM564613     2       0          1  0  1
#> GSM564614     1       0          1  1  0
#> GSM564631     2       0          1  0  1
#> GSM564632     2       0          1  0  1
#> GSM564633     2       0          1  0  1
#> GSM564634     2       0          1  0  1
#> GSM564635     2       0          1  0  1
#> GSM564636     2       0          1  0  1
#> GSM564637     2       0          1  0  1
#> GSM564638     2       0          1  0  1
#> GSM564639     2       0          1  0  1
#> GSM564640     2       0          1  0  1
#> GSM564641     2       0          1  0  1
#> GSM564642     2       0          1  0  1
#> GSM564643     2       0          1  0  1
#> GSM564644     2       0          1  0  1
#> GSM564645     2       0          1  0  1
#> GSM564647     2       0          1  0  1
#> GSM564648     2       0          1  0  1
#> GSM564649     2       0          1  0  1
#> GSM564650     2       0          1  0  1
#> GSM564651     2       0          1  0  1
#> GSM564652     2       0          1  0  1
#> GSM564653     2       0          1  0  1
#> GSM564654     2       0          1  0  1
#> GSM564655     2       0          1  0  1
#> GSM564656     2       0          1  0  1
#> GSM564657     2       0          1  0  1
#> GSM564658     2       0          1  0  1
#> GSM564659     2       0          1  0  1
#> GSM564660     2       0          1  0  1
#> GSM564661     2       0          1  0  1
#> GSM564662     2       0          1  0  1
#> GSM564663     2       0          1  0  1
#> GSM564664     2       0          1  0  1
#> GSM564665     2       0          1  0  1
#> GSM564666     2       0          1  0  1
#> GSM564667     2       0          1  0  1
#> GSM564668     2       0          1  0  1
#> GSM564669     2       0          1  0  1
#> GSM564670     2       0          1  0  1
#> GSM564671     2       0          1  0  1
#> GSM564672     2       0          1  0  1
#> GSM564673     2       0          1  0  1
#> GSM564674     2       0          1  0  1
#> GSM564675     2       0          1  0  1
#> GSM564676     2       0          1  0  1
#> GSM564677     2       0          1  0  1
#> GSM564678     2       0          1  0  1
#> GSM564679     2       0          1  0  1
#> GSM564680     2       0          1  0  1
#> GSM564682     2       0          1  0  1
#> GSM564683     2       0          1  0  1
#> GSM564684     2       0          1  0  1
#> GSM564685     2       0          1  0  1
#> GSM564686     2       0          1  0  1
#> GSM564687     2       0          1  0  1
#> GSM564688     2       0          1  0  1
#> GSM564689     2       0          1  0  1
#> GSM564690     2       0          1  0  1
#> GSM564691     2       0          1  0  1
#> GSM564692     2       0          1  0  1
#> GSM564694     2       0          1  0  1
#> GSM564695     2       0          1  0  1
#> GSM564696     2       0          1  0  1
#> GSM564697     2       0          1  0  1
#> GSM564698     2       0          1  0  1
#> GSM564700     2       0          1  0  1
#> GSM564701     2       0          1  0  1
#> GSM564702     2       0          1  0  1
#> GSM564703     1       0          1  1  0
#> GSM564704     1       0          1  1  0
#> GSM564705     1       0          1  1  0
#> GSM564706     1       0          1  1  0
#> GSM564707     1       0          1  1  0
#> GSM564708     1       0          1  1  0
#> GSM564709     1       0          1  1  0
#> GSM564710     1       0          1  1  0
#> GSM564711     1       0          1  1  0
#> GSM564712     1       0          1  1  0
#> GSM564713     1       0          1  1  0
#> GSM564714     1       0          1  1  0
#> GSM564715     1       0          1  1  0
#> GSM564716     1       0          1  1  0
#> GSM564717     1       0          1  1  0
#> GSM564718     1       0          1  1  0
#> GSM564719     1       0          1  1  0
#> GSM564720     1       0          1  1  0
#> GSM564721     1       0          1  1  0
#> GSM564722     1       0          1  1  0
#> GSM564723     1       0          1  1  0
#> GSM564724     1       0          1  1  0
#> GSM564725     1       0          1  1  0
#> GSM564726     1       0          1  1  0
#> GSM564727     1       0          1  1  0
#> GSM564728     1       0          1  1  0
#> GSM564729     1       0          1  1  0
#> GSM564730     1       0          1  1  0
#> GSM564731     1       0          1  1  0
#> GSM564732     1       0          1  1  0
#> GSM564733     1       0          1  1  0
#> GSM564734     1       0          1  1  0
#> GSM564735     1       0          1  1  0
#> GSM564736     1       0          1  1  0
#> GSM564737     1       0          1  1  0
#> GSM564738     1       0          1  1  0
#> GSM564739     1       0          1  1  0
#> GSM564740     1       0          1  1  0
#> GSM564741     1       0          1  1  0
#> GSM564742     1       0          1  1  0
#> GSM564743     1       0          1  1  0
#> GSM564744     1       0          1  1  0
#> GSM564745     1       0          1  1  0
#> GSM564746     1       0          1  1  0
#> GSM564747     1       0          1  1  0
#> GSM564748     1       0          1  1  0
#> GSM564749     1       0          1  1  0
#> GSM564750     1       0          1  1  0
#> GSM564751     1       0          1  1  0
#> GSM564752     1       0          1  1  0
#> GSM564753     1       0          1  1  0
#> GSM564754     1       0          1  1  0
#> GSM564755     1       0          1  1  0
#> GSM564756     1       0          1  1  0
#> GSM564757     1       0          1  1  0
#> GSM564758     1       0          1  1  0
#> GSM564759     1       0          1  1  0
#> GSM564760     1       0          1  1  0
#> GSM564761     1       0          1  1  0
#> GSM564762     1       0          1  1  0
#> GSM564681     2       0          1  0  1
#> GSM564693     2       0          1  0  1
#> GSM564646     2       0          1  0  1
#> GSM564699     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM564615     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564616     2  0.0592      0.907 0.000 0.988 0.012
#> GSM564617     2  0.0424      0.908 0.000 0.992 0.008
#> GSM564618     2  0.2066      0.898 0.000 0.940 0.060
#> GSM564619     1  0.0592      0.994 0.988 0.000 0.012
#> GSM564620     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564621     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564622     2  0.4504      0.789 0.000 0.804 0.196
#> GSM564623     3  0.5760      0.610 0.000 0.328 0.672
#> GSM564624     2  0.0237      0.908 0.000 0.996 0.004
#> GSM564625     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564626     1  0.0747      0.993 0.984 0.000 0.016
#> GSM564627     1  0.0592      0.994 0.988 0.000 0.012
#> GSM564628     2  0.1289      0.907 0.000 0.968 0.032
#> GSM564629     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564630     2  0.0424      0.908 0.000 0.992 0.008
#> GSM564609     3  0.1289      0.903 0.000 0.032 0.968
#> GSM564610     1  0.0747      0.993 0.984 0.000 0.016
#> GSM564611     1  0.0747      0.993 0.984 0.000 0.016
#> GSM564612     2  0.0424      0.908 0.000 0.992 0.008
#> GSM564613     2  0.4235      0.769 0.000 0.824 0.176
#> GSM564614     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564631     3  0.1031      0.905 0.000 0.024 0.976
#> GSM564632     3  0.4235      0.796 0.000 0.176 0.824
#> GSM564633     3  0.0892      0.903 0.000 0.020 0.980
#> GSM564634     3  0.6291      0.227 0.000 0.468 0.532
#> GSM564635     3  0.0892      0.905 0.000 0.020 0.980
#> GSM564636     3  0.2165      0.895 0.000 0.064 0.936
#> GSM564637     3  0.4178      0.818 0.000 0.172 0.828
#> GSM564638     3  0.1289      0.902 0.000 0.032 0.968
#> GSM564639     3  0.0747      0.904 0.000 0.016 0.984
#> GSM564640     2  0.1031      0.908 0.000 0.976 0.024
#> GSM564641     3  0.4291      0.816 0.000 0.180 0.820
#> GSM564642     2  0.5397      0.667 0.000 0.720 0.280
#> GSM564643     3  0.1753      0.898 0.000 0.048 0.952
#> GSM564644     2  0.0237      0.908 0.000 0.996 0.004
#> GSM564645     3  0.1031      0.905 0.000 0.024 0.976
#> GSM564647     3  0.6026      0.488 0.000 0.376 0.624
#> GSM564648     2  0.4002      0.827 0.000 0.840 0.160
#> GSM564649     3  0.1031      0.905 0.000 0.024 0.976
#> GSM564650     2  0.0237      0.908 0.000 0.996 0.004
#> GSM564651     2  0.4002      0.823 0.000 0.840 0.160
#> GSM564652     2  0.3816      0.839 0.000 0.852 0.148
#> GSM564653     2  0.1643      0.904 0.000 0.956 0.044
#> GSM564654     3  0.0892      0.903 0.000 0.020 0.980
#> GSM564655     3  0.2261      0.890 0.000 0.068 0.932
#> GSM564656     3  0.0747      0.904 0.000 0.016 0.984
#> GSM564657     3  0.2537      0.887 0.000 0.080 0.920
#> GSM564658     2  0.0237      0.908 0.000 0.996 0.004
#> GSM564659     2  0.5948      0.448 0.000 0.640 0.360
#> GSM564660     2  0.0424      0.908 0.000 0.992 0.008
#> GSM564661     2  0.1163      0.907 0.000 0.972 0.028
#> GSM564662     3  0.1031      0.905 0.000 0.024 0.976
#> GSM564663     2  0.0237      0.908 0.000 0.996 0.004
#> GSM564664     2  0.1860      0.904 0.000 0.948 0.052
#> GSM564665     3  0.6045      0.428 0.000 0.380 0.620
#> GSM564666     3  0.4654      0.785 0.000 0.208 0.792
#> GSM564667     3  0.4178      0.821 0.000 0.172 0.828
#> GSM564668     3  0.0892      0.903 0.000 0.020 0.980
#> GSM564669     3  0.0892      0.903 0.000 0.020 0.980
#> GSM564670     2  0.1529      0.900 0.000 0.960 0.040
#> GSM564671     3  0.1643      0.900 0.000 0.044 0.956
#> GSM564672     3  0.1031      0.905 0.000 0.024 0.976
#> GSM564673     2  0.5948      0.501 0.000 0.640 0.360
#> GSM564674     2  0.0237      0.908 0.000 0.996 0.004
#> GSM564675     3  0.1964      0.900 0.000 0.056 0.944
#> GSM564676     2  0.0237      0.908 0.000 0.996 0.004
#> GSM564677     2  0.2066      0.897 0.000 0.940 0.060
#> GSM564678     2  0.0237      0.908 0.000 0.996 0.004
#> GSM564679     2  0.0237      0.908 0.000 0.996 0.004
#> GSM564680     3  0.0747      0.904 0.000 0.016 0.984
#> GSM564682     2  0.2796      0.859 0.000 0.908 0.092
#> GSM564683     3  0.1163      0.904 0.000 0.028 0.972
#> GSM564684     3  0.3340      0.855 0.000 0.120 0.880
#> GSM564685     3  0.0892      0.904 0.000 0.020 0.980
#> GSM564686     3  0.1289      0.904 0.000 0.032 0.968
#> GSM564687     2  0.5650      0.579 0.000 0.688 0.312
#> GSM564688     2  0.2625      0.883 0.000 0.916 0.084
#> GSM564689     2  0.0237      0.908 0.000 0.996 0.004
#> GSM564690     2  0.0237      0.908 0.000 0.996 0.004
#> GSM564691     2  0.0424      0.908 0.000 0.992 0.008
#> GSM564692     2  0.1753      0.902 0.000 0.952 0.048
#> GSM564694     3  0.4974      0.741 0.000 0.236 0.764
#> GSM564695     2  0.5138      0.654 0.000 0.748 0.252
#> GSM564696     3  0.2356      0.886 0.000 0.072 0.928
#> GSM564697     2  0.0237      0.908 0.000 0.996 0.004
#> GSM564698     3  0.0747      0.904 0.000 0.016 0.984
#> GSM564700     3  0.5733      0.553 0.000 0.324 0.676
#> GSM564701     2  0.1753      0.903 0.000 0.952 0.048
#> GSM564702     2  0.2261      0.893 0.000 0.932 0.068
#> GSM564703     1  0.0592      0.994 0.988 0.000 0.012
#> GSM564704     1  0.0424      0.994 0.992 0.000 0.008
#> GSM564705     1  0.0747      0.993 0.984 0.000 0.016
#> GSM564706     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564707     1  0.0747      0.993 0.984 0.000 0.016
#> GSM564708     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564709     1  0.0747      0.993 0.984 0.000 0.016
#> GSM564710     1  0.0747      0.993 0.984 0.000 0.016
#> GSM564711     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564712     1  0.0747      0.993 0.984 0.000 0.016
#> GSM564713     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564714     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564715     1  0.0747      0.993 0.984 0.000 0.016
#> GSM564716     1  0.0237      0.995 0.996 0.000 0.004
#> GSM564717     1  0.0747      0.993 0.984 0.000 0.016
#> GSM564718     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564719     1  0.0592      0.994 0.988 0.000 0.012
#> GSM564720     1  0.0747      0.993 0.984 0.000 0.016
#> GSM564721     1  0.0747      0.993 0.984 0.000 0.016
#> GSM564722     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564723     1  0.0747      0.993 0.984 0.000 0.016
#> GSM564724     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564725     1  0.0592      0.994 0.988 0.000 0.012
#> GSM564726     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564727     1  0.0424      0.994 0.992 0.000 0.008
#> GSM564728     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564729     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564730     1  0.0747      0.993 0.984 0.000 0.016
#> GSM564731     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564732     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564733     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564734     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564735     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564736     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564737     1  0.0747      0.993 0.984 0.000 0.016
#> GSM564738     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564739     1  0.0592      0.994 0.988 0.000 0.012
#> GSM564740     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564741     1  0.0237      0.995 0.996 0.000 0.004
#> GSM564742     1  0.0237      0.995 0.996 0.000 0.004
#> GSM564743     1  0.0747      0.993 0.984 0.000 0.016
#> GSM564744     1  0.0747      0.993 0.984 0.000 0.016
#> GSM564745     1  0.0424      0.994 0.992 0.000 0.008
#> GSM564746     1  0.0747      0.993 0.984 0.000 0.016
#> GSM564747     1  0.0237      0.995 0.996 0.000 0.004
#> GSM564748     1  0.0424      0.994 0.992 0.000 0.008
#> GSM564749     1  0.0747      0.993 0.984 0.000 0.016
#> GSM564750     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564751     1  0.0592      0.994 0.988 0.000 0.012
#> GSM564752     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564753     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564754     1  0.0747      0.993 0.984 0.000 0.016
#> GSM564755     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564756     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564757     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564758     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564759     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564760     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564761     1  0.0747      0.993 0.984 0.000 0.016
#> GSM564762     1  0.0000      0.995 1.000 0.000 0.000
#> GSM564681     2  0.0892      0.907 0.000 0.980 0.020
#> GSM564693     2  0.1643      0.903 0.000 0.956 0.044
#> GSM564646     2  0.6274      0.171 0.000 0.544 0.456
#> GSM564699     3  0.0892      0.904 0.000 0.020 0.980

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM564615     4  0.0000     0.8713 0.000 0.000 0.000 1.000
#> GSM564616     2  0.1888     0.8585 0.016 0.940 0.044 0.000
#> GSM564617     2  0.0672     0.8583 0.008 0.984 0.008 0.000
#> GSM564618     2  0.3279     0.8394 0.032 0.872 0.096 0.000
#> GSM564619     1  0.4164     0.7084 0.736 0.000 0.000 0.264
#> GSM564620     4  0.2149     0.8259 0.088 0.000 0.000 0.912
#> GSM564621     4  0.2814     0.7817 0.132 0.000 0.000 0.868
#> GSM564622     2  0.4993     0.6918 0.028 0.712 0.260 0.000
#> GSM564623     3  0.5544     0.5474 0.020 0.332 0.640 0.008
#> GSM564624     2  0.0376     0.8585 0.004 0.992 0.004 0.000
#> GSM564625     4  0.0188     0.8710 0.004 0.000 0.000 0.996
#> GSM564626     1  0.2530     0.8345 0.888 0.000 0.000 0.112
#> GSM564627     1  0.4907     0.4223 0.580 0.000 0.000 0.420
#> GSM564628     2  0.2596     0.8520 0.024 0.908 0.068 0.000
#> GSM564629     4  0.1118     0.8594 0.036 0.000 0.000 0.964
#> GSM564630     2  0.0779     0.8593 0.004 0.980 0.016 0.000
#> GSM564609     3  0.1411     0.8795 0.020 0.020 0.960 0.000
#> GSM564610     1  0.2921     0.8234 0.860 0.000 0.000 0.140
#> GSM564611     1  0.1211     0.8563 0.960 0.000 0.000 0.040
#> GSM564612     2  0.1209     0.8534 0.004 0.964 0.032 0.000
#> GSM564613     2  0.4019     0.7170 0.012 0.792 0.196 0.000
#> GSM564614     4  0.0188     0.8710 0.004 0.000 0.000 0.996
#> GSM564631     3  0.0817     0.8871 0.000 0.024 0.976 0.000
#> GSM564632     3  0.4289     0.7529 0.032 0.172 0.796 0.000
#> GSM564633     3  0.0188     0.8858 0.000 0.004 0.996 0.000
#> GSM564634     2  0.5257     0.1236 0.008 0.548 0.444 0.000
#> GSM564635     3  0.0524     0.8868 0.004 0.008 0.988 0.000
#> GSM564636     3  0.2773     0.8564 0.004 0.116 0.880 0.000
#> GSM564637     3  0.4284     0.7502 0.012 0.224 0.764 0.000
#> GSM564638     3  0.1398     0.8821 0.004 0.040 0.956 0.000
#> GSM564639     3  0.0469     0.8871 0.000 0.012 0.988 0.000
#> GSM564640     2  0.1256     0.8602 0.008 0.964 0.028 0.000
#> GSM564641     3  0.4511     0.6890 0.008 0.268 0.724 0.000
#> GSM564642     2  0.4697     0.6235 0.008 0.696 0.296 0.000
#> GSM564643     3  0.2670     0.8590 0.040 0.052 0.908 0.000
#> GSM564644     2  0.0188     0.8592 0.000 0.996 0.004 0.000
#> GSM564645     3  0.0707     0.8875 0.000 0.020 0.980 0.000
#> GSM564647     2  0.5296    -0.0650 0.008 0.500 0.492 0.000
#> GSM564648     2  0.4799     0.7333 0.032 0.744 0.224 0.000
#> GSM564649     3  0.1302     0.8849 0.000 0.044 0.956 0.000
#> GSM564650     2  0.0188     0.8585 0.004 0.996 0.000 0.000
#> GSM564651     2  0.4574     0.7389 0.024 0.756 0.220 0.000
#> GSM564652     2  0.4446     0.7600 0.028 0.776 0.196 0.000
#> GSM564653     2  0.2596     0.8497 0.024 0.908 0.068 0.000
#> GSM564654     3  0.0469     0.8845 0.012 0.000 0.988 0.000
#> GSM564655     3  0.3351     0.8178 0.008 0.148 0.844 0.000
#> GSM564656     3  0.0336     0.8866 0.000 0.008 0.992 0.000
#> GSM564657     3  0.2704     0.8486 0.000 0.124 0.876 0.000
#> GSM564658     2  0.0188     0.8585 0.004 0.996 0.000 0.000
#> GSM564659     2  0.5444     0.3189 0.016 0.560 0.424 0.000
#> GSM564660     2  0.1584     0.8538 0.012 0.952 0.036 0.000
#> GSM564661     2  0.2282     0.8539 0.024 0.924 0.052 0.000
#> GSM564662     3  0.0817     0.8869 0.000 0.024 0.976 0.000
#> GSM564663     2  0.0188     0.8590 0.000 0.996 0.004 0.000
#> GSM564664     2  0.1398     0.8605 0.004 0.956 0.040 0.000
#> GSM564665     3  0.5040     0.4214 0.008 0.364 0.628 0.000
#> GSM564666     3  0.4776     0.7230 0.024 0.244 0.732 0.000
#> GSM564667     3  0.3688     0.7703 0.000 0.208 0.792 0.000
#> GSM564668     3  0.0592     0.8842 0.016 0.000 0.984 0.000
#> GSM564669     3  0.0657     0.8852 0.012 0.004 0.984 0.000
#> GSM564670     2  0.2198     0.8368 0.008 0.920 0.072 0.000
#> GSM564671     3  0.2409     0.8672 0.032 0.040 0.924 0.004
#> GSM564672     3  0.0817     0.8869 0.000 0.024 0.976 0.000
#> GSM564673     2  0.5671     0.4146 0.028 0.572 0.400 0.000
#> GSM564674     2  0.0188     0.8585 0.004 0.996 0.000 0.000
#> GSM564675     3  0.3302     0.8622 0.016 0.064 0.888 0.032
#> GSM564676     2  0.0188     0.8585 0.004 0.996 0.000 0.000
#> GSM564677     2  0.2915     0.8441 0.028 0.892 0.080 0.000
#> GSM564678     2  0.0188     0.8585 0.004 0.996 0.000 0.000
#> GSM564679     2  0.0188     0.8585 0.004 0.996 0.000 0.000
#> GSM564680     3  0.0336     0.8868 0.000 0.008 0.992 0.000
#> GSM564682     2  0.2944     0.7860 0.004 0.868 0.128 0.000
#> GSM564683     3  0.0817     0.8869 0.000 0.024 0.976 0.000
#> GSM564684     3  0.4379     0.7525 0.036 0.172 0.792 0.000
#> GSM564685     3  0.0592     0.8870 0.000 0.016 0.984 0.000
#> GSM564686     3  0.1388     0.8872 0.012 0.028 0.960 0.000
#> GSM564687     2  0.5204     0.4522 0.012 0.612 0.376 0.000
#> GSM564688     2  0.2973     0.8397 0.020 0.884 0.096 0.000
#> GSM564689     2  0.0188     0.8585 0.004 0.996 0.000 0.000
#> GSM564690     2  0.0188     0.8585 0.004 0.996 0.000 0.000
#> GSM564691     2  0.0188     0.8585 0.004 0.996 0.000 0.000
#> GSM564692     2  0.2413     0.8522 0.020 0.916 0.064 0.000
#> GSM564694     3  0.5182     0.5872 0.028 0.288 0.684 0.000
#> GSM564695     2  0.4663     0.6250 0.012 0.716 0.272 0.000
#> GSM564696     3  0.2011     0.8683 0.000 0.080 0.920 0.000
#> GSM564697     2  0.0336     0.8583 0.008 0.992 0.000 0.000
#> GSM564698     3  0.0188     0.8849 0.004 0.000 0.996 0.000
#> GSM564700     3  0.5535     0.4924 0.040 0.304 0.656 0.000
#> GSM564701     2  0.2413     0.8558 0.020 0.916 0.064 0.000
#> GSM564702     2  0.2882     0.8437 0.024 0.892 0.084 0.000
#> GSM564703     1  0.4916     0.3740 0.576 0.000 0.000 0.424
#> GSM564704     4  0.5000    -0.0572 0.500 0.000 0.000 0.500
#> GSM564705     1  0.1302     0.8593 0.956 0.000 0.000 0.044
#> GSM564706     4  0.2530     0.8161 0.112 0.000 0.000 0.888
#> GSM564707     1  0.1302     0.8593 0.956 0.000 0.000 0.044
#> GSM564708     4  0.1302     0.8612 0.044 0.000 0.000 0.956
#> GSM564709     1  0.1302     0.8593 0.956 0.000 0.000 0.044
#> GSM564710     1  0.1302     0.8593 0.956 0.000 0.000 0.044
#> GSM564711     4  0.1867     0.8437 0.072 0.000 0.000 0.928
#> GSM564712     1  0.1302     0.8593 0.956 0.000 0.000 0.044
#> GSM564713     4  0.0000     0.8713 0.000 0.000 0.000 1.000
#> GSM564714     4  0.3942     0.6742 0.236 0.000 0.000 0.764
#> GSM564715     1  0.3172     0.8077 0.840 0.000 0.000 0.160
#> GSM564716     4  0.3123     0.7638 0.156 0.000 0.000 0.844
#> GSM564717     1  0.3172     0.8034 0.840 0.000 0.000 0.160
#> GSM564718     4  0.0707     0.8676 0.020 0.000 0.000 0.980
#> GSM564719     1  0.4040     0.7067 0.752 0.000 0.000 0.248
#> GSM564720     1  0.1302     0.8593 0.956 0.000 0.000 0.044
#> GSM564721     1  0.1867     0.8539 0.928 0.000 0.000 0.072
#> GSM564722     4  0.4697     0.4477 0.356 0.000 0.000 0.644
#> GSM564723     1  0.1302     0.8593 0.956 0.000 0.000 0.044
#> GSM564724     4  0.0000     0.8713 0.000 0.000 0.000 1.000
#> GSM564725     1  0.4972     0.3238 0.544 0.000 0.000 0.456
#> GSM564726     4  0.0188     0.8710 0.004 0.000 0.000 0.996
#> GSM564727     4  0.4967    -0.0139 0.452 0.000 0.000 0.548
#> GSM564728     4  0.0000     0.8713 0.000 0.000 0.000 1.000
#> GSM564729     4  0.0188     0.8710 0.004 0.000 0.000 0.996
#> GSM564730     1  0.4193     0.7064 0.732 0.000 0.000 0.268
#> GSM564731     4  0.1211     0.8626 0.040 0.000 0.000 0.960
#> GSM564732     4  0.0336     0.8710 0.008 0.000 0.000 0.992
#> GSM564733     4  0.0000     0.8713 0.000 0.000 0.000 1.000
#> GSM564734     4  0.2469     0.8239 0.108 0.000 0.000 0.892
#> GSM564735     4  0.0000     0.8713 0.000 0.000 0.000 1.000
#> GSM564736     4  0.0000     0.8713 0.000 0.000 0.000 1.000
#> GSM564737     1  0.1302     0.8593 0.956 0.000 0.000 0.044
#> GSM564738     4  0.1118     0.8620 0.036 0.000 0.000 0.964
#> GSM564739     1  0.4898     0.3728 0.584 0.000 0.000 0.416
#> GSM564740     4  0.0000     0.8713 0.000 0.000 0.000 1.000
#> GSM564741     4  0.3311     0.7557 0.172 0.000 0.000 0.828
#> GSM564742     4  0.4790     0.3760 0.380 0.000 0.000 0.620
#> GSM564743     1  0.1389     0.8583 0.952 0.000 0.000 0.048
#> GSM564744     1  0.1302     0.8593 0.956 0.000 0.000 0.044
#> GSM564745     4  0.3726     0.7102 0.212 0.000 0.000 0.788
#> GSM564746     1  0.4697     0.5792 0.644 0.000 0.000 0.356
#> GSM564747     4  0.4972     0.1349 0.456 0.000 0.000 0.544
#> GSM564748     1  0.4222     0.6709 0.728 0.000 0.000 0.272
#> GSM564749     1  0.1389     0.8583 0.952 0.000 0.000 0.048
#> GSM564750     4  0.0188     0.8710 0.004 0.000 0.000 0.996
#> GSM564751     4  0.4999    -0.0527 0.492 0.000 0.000 0.508
#> GSM564752     4  0.0000     0.8713 0.000 0.000 0.000 1.000
#> GSM564753     4  0.2149     0.8329 0.088 0.000 0.000 0.912
#> GSM564754     1  0.1716     0.8557 0.936 0.000 0.000 0.064
#> GSM564755     4  0.0000     0.8713 0.000 0.000 0.000 1.000
#> GSM564756     4  0.4431     0.5630 0.304 0.000 0.000 0.696
#> GSM564757     4  0.0000     0.8713 0.000 0.000 0.000 1.000
#> GSM564758     4  0.0000     0.8713 0.000 0.000 0.000 1.000
#> GSM564759     4  0.0000     0.8713 0.000 0.000 0.000 1.000
#> GSM564760     4  0.0188     0.8710 0.004 0.000 0.000 0.996
#> GSM564761     1  0.1302     0.8593 0.956 0.000 0.000 0.044
#> GSM564762     4  0.0336     0.8706 0.008 0.000 0.000 0.992
#> GSM564681     2  0.1975     0.8564 0.016 0.936 0.048 0.000
#> GSM564693     2  0.2489     0.8513 0.020 0.912 0.068 0.000
#> GSM564646     2  0.6009     0.1576 0.040 0.492 0.468 0.000
#> GSM564699     3  0.1151     0.8884 0.008 0.024 0.968 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM564615     4  0.0609    0.85981 0.000 0.000 0.000 0.980 0.020
#> GSM564616     2  0.4505    0.34226 0.000 0.604 0.012 0.000 0.384
#> GSM564617     2  0.2672    0.59585 0.004 0.872 0.008 0.000 0.116
#> GSM564618     5  0.5407    0.03821 0.004 0.424 0.048 0.000 0.524
#> GSM564619     1  0.4042    0.69909 0.756 0.000 0.000 0.212 0.032
#> GSM564620     4  0.3215    0.79799 0.092 0.000 0.000 0.852 0.056
#> GSM564621     4  0.4256    0.68097 0.192 0.000 0.004 0.760 0.044
#> GSM564622     5  0.5579    0.44277 0.000 0.264 0.116 0.000 0.620
#> GSM564623     5  0.7059    0.11130 0.004 0.308 0.256 0.008 0.424
#> GSM564624     2  0.2672    0.60812 0.004 0.872 0.008 0.000 0.116
#> GSM564625     4  0.0963    0.86142 0.000 0.000 0.000 0.964 0.036
#> GSM564626     1  0.2172    0.78933 0.908 0.000 0.000 0.076 0.016
#> GSM564627     1  0.5002    0.52044 0.612 0.000 0.000 0.344 0.044
#> GSM564628     2  0.4827    0.17839 0.000 0.504 0.020 0.000 0.476
#> GSM564629     4  0.2300    0.84166 0.052 0.000 0.000 0.908 0.040
#> GSM564630     2  0.2517    0.61134 0.004 0.884 0.008 0.000 0.104
#> GSM564609     3  0.4744    0.02914 0.000 0.016 0.508 0.000 0.476
#> GSM564610     1  0.3019    0.78681 0.864 0.000 0.000 0.088 0.048
#> GSM564611     1  0.0566    0.80345 0.984 0.000 0.000 0.004 0.012
#> GSM564612     2  0.3484    0.56525 0.004 0.824 0.144 0.000 0.028
#> GSM564613     2  0.5585    0.37022 0.004 0.652 0.208 0.000 0.136
#> GSM564614     4  0.0703    0.86164 0.000 0.000 0.000 0.976 0.024
#> GSM564631     3  0.1117    0.73472 0.000 0.016 0.964 0.000 0.020
#> GSM564632     5  0.5304    0.50438 0.000 0.080 0.292 0.000 0.628
#> GSM564633     3  0.2806    0.68264 0.000 0.004 0.844 0.000 0.152
#> GSM564634     2  0.5878    0.17560 0.000 0.548 0.336 0.000 0.116
#> GSM564635     3  0.2286    0.70283 0.000 0.004 0.888 0.000 0.108
#> GSM564636     3  0.4137    0.67065 0.004 0.076 0.792 0.000 0.128
#> GSM564637     3  0.6366    0.24914 0.000 0.204 0.512 0.000 0.284
#> GSM564638     3  0.1885    0.73582 0.004 0.020 0.932 0.000 0.044
#> GSM564639     3  0.1043    0.73504 0.000 0.000 0.960 0.000 0.040
#> GSM564640     2  0.3970    0.53880 0.000 0.752 0.024 0.000 0.224
#> GSM564641     3  0.4054    0.55836 0.000 0.248 0.732 0.000 0.020
#> GSM564642     2  0.6601   -0.00866 0.000 0.460 0.248 0.000 0.292
#> GSM564643     5  0.4862    0.34470 0.000 0.032 0.364 0.000 0.604
#> GSM564644     2  0.2144    0.62264 0.000 0.912 0.020 0.000 0.068
#> GSM564645     3  0.1195    0.73439 0.000 0.028 0.960 0.000 0.012
#> GSM564647     3  0.5983    0.25056 0.000 0.380 0.504 0.000 0.116
#> GSM564648     5  0.5569    0.26498 0.000 0.364 0.080 0.000 0.556
#> GSM564649     3  0.2067    0.73397 0.000 0.032 0.920 0.000 0.048
#> GSM564650     2  0.0880    0.62710 0.000 0.968 0.000 0.000 0.032
#> GSM564651     5  0.5535    0.20507 0.000 0.392 0.072 0.000 0.536
#> GSM564652     5  0.5422    0.30804 0.000 0.348 0.072 0.000 0.580
#> GSM564653     2  0.4767    0.23172 0.000 0.560 0.020 0.000 0.420
#> GSM564654     3  0.4183    0.40855 0.000 0.008 0.668 0.000 0.324
#> GSM564655     3  0.5793    0.36180 0.000 0.124 0.584 0.000 0.292
#> GSM564656     3  0.1638    0.72939 0.000 0.004 0.932 0.000 0.064
#> GSM564657     3  0.2411    0.70350 0.000 0.108 0.884 0.000 0.008
#> GSM564658     2  0.0290    0.62742 0.000 0.992 0.000 0.000 0.008
#> GSM564659     2  0.6922   -0.19495 0.004 0.360 0.356 0.000 0.280
#> GSM564660     2  0.4756    0.49549 0.004 0.704 0.052 0.000 0.240
#> GSM564661     2  0.4760    0.23907 0.000 0.564 0.020 0.000 0.416
#> GSM564662     3  0.1106    0.73477 0.000 0.024 0.964 0.000 0.012
#> GSM564663     2  0.1828    0.62313 0.004 0.936 0.028 0.000 0.032
#> GSM564664     2  0.4765    0.47676 0.000 0.704 0.068 0.000 0.228
#> GSM564665     3  0.6273    0.09567 0.000 0.316 0.512 0.000 0.172
#> GSM564666     3  0.6942    0.04218 0.004 0.308 0.368 0.000 0.320
#> GSM564667     3  0.3326    0.66589 0.000 0.152 0.824 0.000 0.024
#> GSM564668     3  0.4367    0.26477 0.000 0.004 0.580 0.000 0.416
#> GSM564669     3  0.3563    0.62372 0.000 0.012 0.780 0.000 0.208
#> GSM564670     2  0.4788    0.52348 0.004 0.740 0.120 0.000 0.136
#> GSM564671     5  0.4716    0.44235 0.000 0.036 0.308 0.000 0.656
#> GSM564672     3  0.0898    0.73332 0.000 0.020 0.972 0.000 0.008
#> GSM564673     5  0.5775    0.48398 0.000 0.244 0.148 0.000 0.608
#> GSM564674     2  0.2654    0.62161 0.000 0.884 0.032 0.000 0.084
#> GSM564675     5  0.6951   -0.17403 0.000 0.112 0.400 0.048 0.440
#> GSM564676     2  0.0566    0.62683 0.000 0.984 0.004 0.000 0.012
#> GSM564677     2  0.4961    0.14405 0.000 0.524 0.028 0.000 0.448
#> GSM564678     2  0.0451    0.62644 0.000 0.988 0.004 0.000 0.008
#> GSM564679     2  0.0794    0.62632 0.000 0.972 0.000 0.000 0.028
#> GSM564680     3  0.1251    0.73278 0.000 0.008 0.956 0.000 0.036
#> GSM564682     2  0.4550    0.45711 0.004 0.744 0.188 0.000 0.064
#> GSM564683     3  0.0912    0.73441 0.000 0.016 0.972 0.000 0.012
#> GSM564684     5  0.4948    0.46149 0.000 0.068 0.256 0.000 0.676
#> GSM564685     3  0.1557    0.73683 0.000 0.008 0.940 0.000 0.052
#> GSM564686     3  0.5111    0.24727 0.000 0.036 0.500 0.000 0.464
#> GSM564687     2  0.6532   -0.12095 0.000 0.420 0.196 0.000 0.384
#> GSM564688     2  0.5236    0.04317 0.000 0.492 0.044 0.000 0.464
#> GSM564689     2  0.0566    0.62607 0.000 0.984 0.004 0.000 0.012
#> GSM564690     2  0.0671    0.62716 0.000 0.980 0.004 0.000 0.016
#> GSM564691     2  0.1661    0.61969 0.000 0.940 0.036 0.000 0.024
#> GSM564692     2  0.4787    0.20971 0.000 0.548 0.020 0.000 0.432
#> GSM564694     5  0.6325    0.31256 0.000 0.180 0.316 0.000 0.504
#> GSM564695     2  0.6295    0.24994 0.004 0.552 0.256 0.000 0.188
#> GSM564696     3  0.3732    0.69183 0.000 0.056 0.820 0.004 0.120
#> GSM564697     2  0.1430    0.61812 0.000 0.944 0.004 0.000 0.052
#> GSM564698     3  0.1732    0.72328 0.000 0.000 0.920 0.000 0.080
#> GSM564700     5  0.4519    0.57499 0.000 0.100 0.148 0.000 0.752
#> GSM564701     2  0.5470    0.30897 0.000 0.588 0.080 0.000 0.332
#> GSM564702     2  0.5109    0.09508 0.000 0.504 0.036 0.000 0.460
#> GSM564703     1  0.5149    0.29770 0.540 0.000 0.004 0.424 0.032
#> GSM564704     1  0.6121    0.27627 0.504 0.000 0.004 0.376 0.116
#> GSM564705     1  0.0451    0.80311 0.988 0.000 0.000 0.008 0.004
#> GSM564706     4  0.4720    0.74275 0.136 0.000 0.008 0.752 0.104
#> GSM564707     1  0.0693    0.80419 0.980 0.000 0.000 0.008 0.012
#> GSM564708     4  0.3078    0.83482 0.064 0.000 0.008 0.872 0.056
#> GSM564709     1  0.0992    0.80495 0.968 0.000 0.000 0.008 0.024
#> GSM564710     1  0.0798    0.80366 0.976 0.000 0.000 0.008 0.016
#> GSM564711     4  0.3928    0.79632 0.084 0.000 0.008 0.816 0.092
#> GSM564712     1  0.0579    0.80263 0.984 0.000 0.000 0.008 0.008
#> GSM564713     4  0.0671    0.86363 0.000 0.000 0.004 0.980 0.016
#> GSM564714     4  0.5623    0.59361 0.220 0.000 0.008 0.652 0.120
#> GSM564715     1  0.3339    0.76882 0.840 0.000 0.000 0.112 0.048
#> GSM564716     4  0.3914    0.72230 0.164 0.000 0.000 0.788 0.048
#> GSM564717     1  0.4063    0.75245 0.800 0.000 0.004 0.112 0.084
#> GSM564718     4  0.2284    0.84873 0.028 0.000 0.004 0.912 0.056
#> GSM564719     1  0.5537    0.61803 0.660 0.000 0.008 0.220 0.112
#> GSM564720     1  0.1041    0.80284 0.964 0.000 0.000 0.004 0.032
#> GSM564721     1  0.1943    0.79821 0.924 0.000 0.000 0.056 0.020
#> GSM564722     4  0.6111    0.30273 0.340 0.000 0.004 0.532 0.124
#> GSM564723     1  0.0865    0.80397 0.972 0.000 0.000 0.004 0.024
#> GSM564724     4  0.0898    0.86373 0.000 0.000 0.008 0.972 0.020
#> GSM564725     1  0.4937    0.33011 0.544 0.000 0.000 0.428 0.028
#> GSM564726     4  0.0771    0.86361 0.004 0.000 0.000 0.976 0.020
#> GSM564727     4  0.5385   -0.04293 0.432 0.000 0.000 0.512 0.056
#> GSM564728     4  0.0510    0.86151 0.000 0.000 0.000 0.984 0.016
#> GSM564729     4  0.0609    0.85981 0.000 0.000 0.000 0.980 0.020
#> GSM564730     1  0.4709    0.68213 0.716 0.000 0.004 0.224 0.056
#> GSM564731     4  0.2494    0.85153 0.032 0.000 0.008 0.904 0.056
#> GSM564732     4  0.1399    0.86253 0.020 0.000 0.000 0.952 0.028
#> GSM564733     4  0.0671    0.86360 0.000 0.000 0.004 0.980 0.016
#> GSM564734     4  0.3195    0.82053 0.100 0.000 0.004 0.856 0.040
#> GSM564735     4  0.0404    0.86252 0.000 0.000 0.000 0.988 0.012
#> GSM564736     4  0.0566    0.86332 0.000 0.000 0.004 0.984 0.012
#> GSM564737     1  0.0693    0.80340 0.980 0.000 0.000 0.008 0.012
#> GSM564738     4  0.3053    0.83286 0.044 0.000 0.008 0.872 0.076
#> GSM564739     1  0.5155    0.28531 0.536 0.000 0.004 0.428 0.032
#> GSM564740     4  0.1697    0.86003 0.008 0.000 0.000 0.932 0.060
#> GSM564741     4  0.4820    0.69090 0.180 0.000 0.004 0.728 0.088
#> GSM564742     4  0.6262    0.23215 0.356 0.000 0.008 0.512 0.124
#> GSM564743     1  0.1628    0.80009 0.936 0.000 0.000 0.008 0.056
#> GSM564744     1  0.0566    0.80270 0.984 0.000 0.000 0.004 0.012
#> GSM564745     4  0.4805    0.48033 0.312 0.000 0.000 0.648 0.040
#> GSM564746     1  0.5124    0.63623 0.668 0.000 0.004 0.260 0.068
#> GSM564747     1  0.6036    0.09204 0.460 0.000 0.004 0.436 0.100
#> GSM564748     1  0.5170    0.59063 0.660 0.000 0.004 0.268 0.068
#> GSM564749     1  0.0771    0.80377 0.976 0.000 0.000 0.004 0.020
#> GSM564750     4  0.0833    0.86408 0.004 0.000 0.004 0.976 0.016
#> GSM564751     1  0.5788    0.15624 0.480 0.000 0.004 0.440 0.076
#> GSM564752     4  0.1202    0.86302 0.004 0.000 0.004 0.960 0.032
#> GSM564753     4  0.3924    0.79593 0.096 0.000 0.008 0.816 0.080
#> GSM564754     1  0.2110    0.79561 0.912 0.000 0.000 0.072 0.016
#> GSM564755     4  0.0404    0.86221 0.000 0.000 0.000 0.988 0.012
#> GSM564756     4  0.5364    0.37438 0.352 0.000 0.004 0.588 0.056
#> GSM564757     4  0.0794    0.86373 0.000 0.000 0.000 0.972 0.028
#> GSM564758     4  0.0510    0.86342 0.000 0.000 0.000 0.984 0.016
#> GSM564759     4  0.2050    0.85752 0.008 0.000 0.008 0.920 0.064
#> GSM564760     4  0.0404    0.86117 0.000 0.000 0.000 0.988 0.012
#> GSM564761     1  0.0693    0.80365 0.980 0.000 0.000 0.008 0.012
#> GSM564762     4  0.1569    0.86196 0.008 0.000 0.004 0.944 0.044
#> GSM564681     2  0.4276    0.33995 0.000 0.616 0.004 0.000 0.380
#> GSM564693     2  0.4948    0.18688 0.000 0.536 0.028 0.000 0.436
#> GSM564646     5  0.5243    0.52573 0.000 0.188 0.132 0.000 0.680
#> GSM564699     3  0.4734    0.53866 0.000 0.036 0.652 0.000 0.312

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM564615     4  0.0632     0.8162 0.000 0.000 0.000 0.976 0.000 0.024
#> GSM564616     5  0.4573     0.4488 0.000 0.372 0.000 0.000 0.584 0.044
#> GSM564617     2  0.2744     0.7118 0.000 0.864 0.000 0.000 0.072 0.064
#> GSM564618     5  0.4198     0.5678 0.000 0.232 0.000 0.000 0.708 0.060
#> GSM564619     1  0.4722     0.5719 0.656 0.000 0.000 0.264 0.004 0.076
#> GSM564620     4  0.3411     0.7710 0.060 0.000 0.000 0.816 0.004 0.120
#> GSM564621     4  0.3930     0.7133 0.116 0.000 0.000 0.776 0.004 0.104
#> GSM564622     5  0.4146     0.6117 0.000 0.124 0.056 0.000 0.780 0.040
#> GSM564623     6  0.7653    -0.0667 0.000 0.292 0.124 0.008 0.260 0.316
#> GSM564624     2  0.3691     0.6684 0.000 0.788 0.004 0.000 0.148 0.060
#> GSM564625     4  0.1152     0.8206 0.004 0.000 0.000 0.952 0.000 0.044
#> GSM564626     1  0.2821     0.6706 0.860 0.000 0.000 0.096 0.004 0.040
#> GSM564627     1  0.5978     0.3376 0.452 0.000 0.000 0.364 0.008 0.176
#> GSM564628     5  0.5642     0.2974 0.000 0.352 0.000 0.000 0.488 0.160
#> GSM564629     4  0.2963     0.8005 0.016 0.000 0.000 0.828 0.004 0.152
#> GSM564630     2  0.3802     0.6889 0.000 0.792 0.008 0.000 0.116 0.084
#> GSM564609     3  0.5512     0.2400 0.000 0.008 0.472 0.000 0.420 0.100
#> GSM564610     1  0.4627     0.6390 0.696 0.000 0.000 0.104 0.004 0.196
#> GSM564611     1  0.1075     0.6920 0.952 0.000 0.000 0.000 0.000 0.048
#> GSM564612     2  0.4286     0.6580 0.000 0.764 0.144 0.000 0.048 0.044
#> GSM564613     2  0.5311     0.5867 0.000 0.684 0.132 0.000 0.056 0.128
#> GSM564614     4  0.1411     0.8232 0.000 0.000 0.000 0.936 0.004 0.060
#> GSM564631     3  0.1036     0.7666 0.000 0.004 0.964 0.000 0.024 0.008
#> GSM564632     5  0.5113     0.4889 0.000 0.032 0.176 0.000 0.684 0.108
#> GSM564633     3  0.2901     0.7433 0.000 0.000 0.840 0.000 0.128 0.032
#> GSM564634     2  0.6600     0.4063 0.000 0.536 0.208 0.000 0.104 0.152
#> GSM564635     3  0.2301     0.7610 0.000 0.000 0.884 0.000 0.096 0.020
#> GSM564636     3  0.6458     0.5237 0.000 0.132 0.568 0.000 0.140 0.160
#> GSM564637     3  0.7247     0.2783 0.000 0.168 0.428 0.000 0.248 0.156
#> GSM564638     3  0.2159     0.7628 0.000 0.012 0.904 0.000 0.012 0.072
#> GSM564639     3  0.0909     0.7654 0.000 0.000 0.968 0.000 0.020 0.012
#> GSM564640     2  0.5004     0.0305 0.000 0.548 0.028 0.000 0.396 0.028
#> GSM564641     3  0.4374     0.5492 0.000 0.272 0.680 0.000 0.008 0.040
#> GSM564642     5  0.7020     0.4041 0.000 0.268 0.188 0.000 0.444 0.100
#> GSM564643     5  0.5158     0.3603 0.000 0.008 0.232 0.000 0.636 0.124
#> GSM564644     2  0.3816     0.6102 0.000 0.784 0.024 0.000 0.160 0.032
#> GSM564645     3  0.1053     0.7662 0.000 0.004 0.964 0.000 0.012 0.020
#> GSM564647     2  0.6606     0.1386 0.000 0.440 0.348 0.000 0.060 0.152
#> GSM564648     5  0.3662     0.6159 0.000 0.172 0.044 0.000 0.780 0.004
#> GSM564649     3  0.2570     0.7643 0.000 0.036 0.892 0.000 0.040 0.032
#> GSM564650     2  0.1857     0.7296 0.000 0.924 0.004 0.000 0.028 0.044
#> GSM564651     5  0.4340     0.6051 0.000 0.208 0.064 0.000 0.720 0.008
#> GSM564652     5  0.3755     0.6120 0.000 0.192 0.028 0.000 0.768 0.012
#> GSM564653     5  0.3774     0.5441 0.000 0.328 0.000 0.000 0.664 0.008
#> GSM564654     3  0.4094     0.5104 0.000 0.000 0.652 0.000 0.324 0.024
#> GSM564655     5  0.7084     0.0115 0.000 0.132 0.348 0.000 0.388 0.132
#> GSM564656     3  0.2190     0.7607 0.000 0.000 0.900 0.000 0.060 0.040
#> GSM564657     3  0.3005     0.7237 0.000 0.108 0.848 0.000 0.008 0.036
#> GSM564658     2  0.1088     0.7242 0.000 0.960 0.000 0.000 0.024 0.016
#> GSM564659     2  0.7229     0.0239 0.000 0.340 0.336 0.000 0.228 0.096
#> GSM564660     2  0.5313     0.5903 0.000 0.668 0.036 0.000 0.168 0.128
#> GSM564661     5  0.4174     0.5208 0.000 0.352 0.004 0.000 0.628 0.016
#> GSM564662     3  0.0862     0.7639 0.000 0.008 0.972 0.000 0.016 0.004
#> GSM564663     2  0.1944     0.7315 0.000 0.924 0.016 0.000 0.024 0.036
#> GSM564664     2  0.5527     0.0693 0.000 0.560 0.044 0.000 0.340 0.056
#> GSM564665     3  0.6803     0.1634 0.000 0.240 0.456 0.000 0.240 0.064
#> GSM564666     6  0.7589    -0.0527 0.000 0.304 0.172 0.000 0.220 0.304
#> GSM564667     3  0.4413     0.6191 0.000 0.208 0.720 0.000 0.016 0.056
#> GSM564668     3  0.4797     0.2733 0.000 0.000 0.504 0.000 0.444 0.052
#> GSM564669     3  0.3835     0.6887 0.000 0.000 0.756 0.000 0.188 0.056
#> GSM564670     2  0.5216     0.6202 0.000 0.696 0.072 0.000 0.144 0.088
#> GSM564671     5  0.5163     0.4266 0.000 0.004 0.120 0.008 0.652 0.216
#> GSM564672     3  0.1546     0.7640 0.000 0.016 0.944 0.000 0.020 0.020
#> GSM564673     5  0.4174     0.6096 0.000 0.104 0.064 0.000 0.784 0.048
#> GSM564674     2  0.3852     0.6816 0.000 0.796 0.020 0.000 0.120 0.064
#> GSM564675     6  0.8122    -0.0250 0.000 0.108 0.204 0.060 0.272 0.356
#> GSM564676     2  0.1644     0.7203 0.000 0.932 0.000 0.000 0.040 0.028
#> GSM564677     5  0.3809     0.5616 0.000 0.304 0.004 0.000 0.684 0.008
#> GSM564678     2  0.1225     0.7200 0.000 0.952 0.000 0.000 0.036 0.012
#> GSM564679     2  0.1838     0.7133 0.000 0.916 0.000 0.000 0.068 0.016
#> GSM564680     3  0.1151     0.7655 0.000 0.000 0.956 0.000 0.032 0.012
#> GSM564682     2  0.3835     0.6653 0.000 0.796 0.116 0.000 0.016 0.072
#> GSM564683     3  0.0951     0.7599 0.000 0.008 0.968 0.000 0.004 0.020
#> GSM564684     5  0.5548     0.3431 0.000 0.020 0.108 0.000 0.580 0.292
#> GSM564685     3  0.2583     0.7615 0.000 0.008 0.884 0.000 0.052 0.056
#> GSM564686     5  0.6833    -0.0297 0.000 0.036 0.264 0.004 0.384 0.312
#> GSM564687     5  0.7127     0.2861 0.000 0.276 0.208 0.000 0.416 0.100
#> GSM564688     5  0.3835     0.5702 0.000 0.300 0.016 0.000 0.684 0.000
#> GSM564689     2  0.0858     0.7240 0.000 0.968 0.000 0.000 0.028 0.004
#> GSM564690     2  0.1434     0.7156 0.000 0.940 0.000 0.000 0.048 0.012
#> GSM564691     2  0.1546     0.7290 0.000 0.944 0.020 0.000 0.016 0.020
#> GSM564692     5  0.4008     0.5524 0.000 0.308 0.004 0.000 0.672 0.016
#> GSM564694     5  0.7326     0.2176 0.000 0.144 0.220 0.000 0.412 0.224
#> GSM564695     2  0.6932     0.3283 0.000 0.484 0.212 0.000 0.192 0.112
#> GSM564696     3  0.5576     0.6037 0.000 0.100 0.656 0.000 0.072 0.172
#> GSM564697     2  0.1708     0.7301 0.000 0.932 0.004 0.000 0.024 0.040
#> GSM564698     3  0.2801     0.7559 0.000 0.000 0.860 0.000 0.072 0.068
#> GSM564700     5  0.4238     0.4651 0.000 0.016 0.036 0.000 0.720 0.228
#> GSM564701     5  0.5946     0.3185 0.000 0.408 0.068 0.000 0.468 0.056
#> GSM564702     5  0.3935     0.5706 0.000 0.288 0.008 0.000 0.692 0.012
#> GSM564703     1  0.5863     0.3578 0.492 0.000 0.000 0.336 0.008 0.164
#> GSM564704     1  0.6080     0.2552 0.396 0.000 0.000 0.288 0.000 0.316
#> GSM564705     1  0.0748     0.6917 0.976 0.000 0.000 0.004 0.004 0.016
#> GSM564706     4  0.5157     0.5918 0.088 0.000 0.000 0.568 0.004 0.340
#> GSM564707     1  0.1588     0.6956 0.924 0.000 0.000 0.000 0.004 0.072
#> GSM564708     4  0.3756     0.7910 0.052 0.000 0.000 0.784 0.008 0.156
#> GSM564709     1  0.1524     0.6978 0.932 0.000 0.000 0.008 0.000 0.060
#> GSM564710     1  0.0603     0.6921 0.980 0.000 0.000 0.004 0.000 0.016
#> GSM564711     4  0.4511     0.6530 0.048 0.000 0.000 0.620 0.000 0.332
#> GSM564712     1  0.0405     0.6905 0.988 0.000 0.000 0.004 0.000 0.008
#> GSM564713     4  0.2118     0.8282 0.000 0.000 0.000 0.888 0.008 0.104
#> GSM564714     4  0.5604     0.3690 0.144 0.000 0.000 0.452 0.000 0.404
#> GSM564715     1  0.4676     0.6396 0.700 0.000 0.000 0.104 0.008 0.188
#> GSM564716     4  0.4380     0.7157 0.136 0.000 0.000 0.744 0.012 0.108
#> GSM564717     1  0.5049     0.5814 0.616 0.000 0.000 0.084 0.008 0.292
#> GSM564718     4  0.3564     0.7804 0.024 0.000 0.000 0.768 0.004 0.204
#> GSM564719     1  0.5742     0.3668 0.432 0.000 0.000 0.168 0.000 0.400
#> GSM564720     1  0.2100     0.6876 0.884 0.000 0.000 0.000 0.004 0.112
#> GSM564721     1  0.3039     0.6822 0.848 0.000 0.000 0.088 0.004 0.060
#> GSM564722     6  0.5930    -0.3597 0.212 0.000 0.000 0.384 0.000 0.404
#> GSM564723     1  0.1082     0.6941 0.956 0.000 0.000 0.004 0.000 0.040
#> GSM564724     4  0.2196     0.8244 0.004 0.000 0.000 0.884 0.004 0.108
#> GSM564725     1  0.5018     0.3826 0.536 0.000 0.000 0.396 0.004 0.064
#> GSM564726     4  0.1082     0.8267 0.000 0.000 0.000 0.956 0.004 0.040
#> GSM564727     1  0.5457     0.2156 0.448 0.000 0.000 0.444 0.004 0.104
#> GSM564728     4  0.0508     0.8197 0.000 0.000 0.000 0.984 0.004 0.012
#> GSM564729     4  0.0713     0.8166 0.000 0.000 0.000 0.972 0.000 0.028
#> GSM564730     1  0.4948     0.5810 0.648 0.000 0.000 0.252 0.008 0.092
#> GSM564731     4  0.4020     0.7713 0.044 0.000 0.000 0.744 0.008 0.204
#> GSM564732     4  0.2126     0.8288 0.020 0.000 0.000 0.904 0.004 0.072
#> GSM564733     4  0.1285     0.8256 0.004 0.000 0.000 0.944 0.000 0.052
#> GSM564734     4  0.4183     0.7410 0.128 0.000 0.000 0.752 0.004 0.116
#> GSM564735     4  0.1471     0.8298 0.004 0.000 0.000 0.932 0.000 0.064
#> GSM564736     4  0.0777     0.8261 0.000 0.000 0.000 0.972 0.004 0.024
#> GSM564737     1  0.0858     0.6924 0.968 0.000 0.000 0.004 0.000 0.028
#> GSM564738     4  0.3641     0.7523 0.020 0.000 0.000 0.732 0.000 0.248
#> GSM564739     1  0.5754     0.4096 0.512 0.000 0.000 0.312 0.004 0.172
#> GSM564740     4  0.2964     0.7921 0.004 0.000 0.000 0.792 0.000 0.204
#> GSM564741     4  0.5510     0.5400 0.156 0.000 0.000 0.568 0.004 0.272
#> GSM564742     6  0.6086    -0.2491 0.284 0.000 0.000 0.328 0.000 0.388
#> GSM564743     1  0.2882     0.6720 0.812 0.000 0.000 0.008 0.000 0.180
#> GSM564744     1  0.0692     0.6923 0.976 0.000 0.000 0.004 0.000 0.020
#> GSM564745     4  0.4921     0.5758 0.216 0.000 0.000 0.660 0.004 0.120
#> GSM564746     1  0.6003     0.4565 0.476 0.000 0.000 0.268 0.004 0.252
#> GSM564747     1  0.6103     0.1639 0.380 0.000 0.000 0.320 0.000 0.300
#> GSM564748     1  0.5299     0.5481 0.612 0.000 0.000 0.156 0.004 0.228
#> GSM564749     1  0.1910     0.6891 0.892 0.000 0.000 0.000 0.000 0.108
#> GSM564750     4  0.1429     0.8290 0.004 0.000 0.000 0.940 0.004 0.052
#> GSM564751     1  0.5939     0.1691 0.412 0.000 0.000 0.372 0.000 0.216
#> GSM564752     4  0.2504     0.8200 0.004 0.000 0.000 0.856 0.004 0.136
#> GSM564753     4  0.4936     0.6612 0.064 0.000 0.000 0.624 0.012 0.300
#> GSM564754     1  0.2822     0.6887 0.864 0.000 0.000 0.056 0.004 0.076
#> GSM564755     4  0.1141     0.8257 0.000 0.000 0.000 0.948 0.000 0.052
#> GSM564756     4  0.5630     0.4645 0.240 0.000 0.000 0.560 0.004 0.196
#> GSM564757     4  0.1204     0.8298 0.000 0.000 0.000 0.944 0.000 0.056
#> GSM564758     4  0.1349     0.8297 0.004 0.000 0.000 0.940 0.000 0.056
#> GSM564759     4  0.3410     0.7813 0.008 0.000 0.000 0.768 0.008 0.216
#> GSM564760     4  0.1531     0.8265 0.004 0.000 0.000 0.928 0.000 0.068
#> GSM564761     1  0.0603     0.6899 0.980 0.000 0.000 0.004 0.000 0.016
#> GSM564762     4  0.2772     0.8118 0.004 0.000 0.000 0.816 0.000 0.180
#> GSM564681     5  0.4571     0.3777 0.000 0.432 0.004 0.000 0.536 0.028
#> GSM564693     5  0.4778     0.5039 0.000 0.360 0.008 0.000 0.588 0.044
#> GSM564646     5  0.4814     0.4515 0.000 0.052 0.032 0.000 0.684 0.232
#> GSM564699     3  0.6537     0.3630 0.000 0.036 0.456 0.000 0.228 0.280

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>               n genotype/variation(p) disease.state(p) k
#> MAD:skmeans 154                 0.925         4.76e-01 2
#> MAD:skmeans 149                 0.367         2.17e-01 3
#> MAD:skmeans 136                 0.430         5.60e-01 4
#> MAD:skmeans 102                 0.574         1.05e-05 5
#> MAD:skmeans 111                 0.410         1.07e-01 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 154 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.945           0.942       0.976         0.5025 0.497   0.497
#> 3 3 0.666           0.744       0.851         0.2626 0.849   0.700
#> 4 4 0.556           0.624       0.787         0.1488 0.902   0.735
#> 5 5 0.621           0.609       0.786         0.0739 0.887   0.633
#> 6 6 0.654           0.582       0.742         0.0397 0.944   0.761

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM564615     1  0.0000      0.969 1.000 0.000
#> GSM564616     2  0.0000      0.981 0.000 1.000
#> GSM564617     2  0.1184      0.970 0.016 0.984
#> GSM564618     2  0.0000      0.981 0.000 1.000
#> GSM564619     1  0.0376      0.966 0.996 0.004
#> GSM564620     1  0.0000      0.969 1.000 0.000
#> GSM564621     1  0.0000      0.969 1.000 0.000
#> GSM564622     2  0.0000      0.981 0.000 1.000
#> GSM564623     1  0.9248      0.493 0.660 0.340
#> GSM564624     2  0.0000      0.981 0.000 1.000
#> GSM564625     1  0.0000      0.969 1.000 0.000
#> GSM564626     1  0.0376      0.966 0.996 0.004
#> GSM564627     1  0.0000      0.969 1.000 0.000
#> GSM564628     2  0.0000      0.981 0.000 1.000
#> GSM564629     1  0.0000      0.969 1.000 0.000
#> GSM564630     2  0.0672      0.976 0.008 0.992
#> GSM564609     2  0.0000      0.981 0.000 1.000
#> GSM564610     1  0.0000      0.969 1.000 0.000
#> GSM564611     1  0.1843      0.946 0.972 0.028
#> GSM564612     2  0.0000      0.981 0.000 1.000
#> GSM564613     2  0.0672      0.976 0.008 0.992
#> GSM564614     1  0.0000      0.969 1.000 0.000
#> GSM564631     2  0.0000      0.981 0.000 1.000
#> GSM564632     2  0.2778      0.941 0.048 0.952
#> GSM564633     2  0.0000      0.981 0.000 1.000
#> GSM564634     2  0.0376      0.979 0.004 0.996
#> GSM564635     2  0.0000      0.981 0.000 1.000
#> GSM564636     2  0.0000      0.981 0.000 1.000
#> GSM564637     2  0.0000      0.981 0.000 1.000
#> GSM564638     2  0.0000      0.981 0.000 1.000
#> GSM564639     2  0.0000      0.981 0.000 1.000
#> GSM564640     2  0.0000      0.981 0.000 1.000
#> GSM564641     2  0.0000      0.981 0.000 1.000
#> GSM564642     2  0.0000      0.981 0.000 1.000
#> GSM564643     2  0.0000      0.981 0.000 1.000
#> GSM564644     2  0.0000      0.981 0.000 1.000
#> GSM564645     2  0.0000      0.981 0.000 1.000
#> GSM564647     2  0.0000      0.981 0.000 1.000
#> GSM564648     2  0.0000      0.981 0.000 1.000
#> GSM564649     2  0.0000      0.981 0.000 1.000
#> GSM564650     2  0.0000      0.981 0.000 1.000
#> GSM564651     2  0.0000      0.981 0.000 1.000
#> GSM564652     2  0.0000      0.981 0.000 1.000
#> GSM564653     2  0.0000      0.981 0.000 1.000
#> GSM564654     2  0.0000      0.981 0.000 1.000
#> GSM564655     2  0.1184      0.970 0.016 0.984
#> GSM564656     2  0.3584      0.922 0.068 0.932
#> GSM564657     2  0.0000      0.981 0.000 1.000
#> GSM564658     2  0.0000      0.981 0.000 1.000
#> GSM564659     2  0.0000      0.981 0.000 1.000
#> GSM564660     2  0.0672      0.976 0.008 0.992
#> GSM564661     2  0.0000      0.981 0.000 1.000
#> GSM564662     2  0.0000      0.981 0.000 1.000
#> GSM564663     2  0.0000      0.981 0.000 1.000
#> GSM564664     2  0.0000      0.981 0.000 1.000
#> GSM564665     2  0.0000      0.981 0.000 1.000
#> GSM564666     2  0.5408      0.861 0.124 0.876
#> GSM564667     2  0.0376      0.979 0.004 0.996
#> GSM564668     2  0.1633      0.963 0.024 0.976
#> GSM564669     2  0.0672      0.976 0.008 0.992
#> GSM564670     2  0.0000      0.981 0.000 1.000
#> GSM564671     1  0.9427      0.453 0.640 0.360
#> GSM564672     2  0.0376      0.979 0.004 0.996
#> GSM564673     2  0.0000      0.981 0.000 1.000
#> GSM564674     2  0.0000      0.981 0.000 1.000
#> GSM564675     2  0.6887      0.780 0.184 0.816
#> GSM564676     2  0.0000      0.981 0.000 1.000
#> GSM564677     2  0.0000      0.981 0.000 1.000
#> GSM564678     2  0.0000      0.981 0.000 1.000
#> GSM564679     2  0.0000      0.981 0.000 1.000
#> GSM564680     2  0.0376      0.979 0.004 0.996
#> GSM564682     2  0.0000      0.981 0.000 1.000
#> GSM564683     2  0.5842      0.836 0.140 0.860
#> GSM564684     2  0.5408      0.859 0.124 0.876
#> GSM564685     2  0.0376      0.979 0.004 0.996
#> GSM564686     1  0.9922      0.209 0.552 0.448
#> GSM564687     2  0.0000      0.981 0.000 1.000
#> GSM564688     2  0.0000      0.981 0.000 1.000
#> GSM564689     2  0.0000      0.981 0.000 1.000
#> GSM564690     2  0.0000      0.981 0.000 1.000
#> GSM564691     2  0.0000      0.981 0.000 1.000
#> GSM564692     2  0.0000      0.981 0.000 1.000
#> GSM564694     2  0.0000      0.981 0.000 1.000
#> GSM564695     2  0.0938      0.973 0.012 0.988
#> GSM564696     2  0.5059      0.875 0.112 0.888
#> GSM564697     2  0.0000      0.981 0.000 1.000
#> GSM564698     2  0.0000      0.981 0.000 1.000
#> GSM564700     1  0.9963      0.152 0.536 0.464
#> GSM564701     2  0.0000      0.981 0.000 1.000
#> GSM564702     2  0.0000      0.981 0.000 1.000
#> GSM564703     1  0.0000      0.969 1.000 0.000
#> GSM564704     1  0.0000      0.969 1.000 0.000
#> GSM564705     1  0.4815      0.868 0.896 0.104
#> GSM564706     1  0.0376      0.966 0.996 0.004
#> GSM564707     1  0.0000      0.969 1.000 0.000
#> GSM564708     1  0.0376      0.966 0.996 0.004
#> GSM564709     1  0.0000      0.969 1.000 0.000
#> GSM564710     1  0.9580      0.400 0.620 0.380
#> GSM564711     1  0.0000      0.969 1.000 0.000
#> GSM564712     1  0.0000      0.969 1.000 0.000
#> GSM564713     1  0.0000      0.969 1.000 0.000
#> GSM564714     1  0.0000      0.969 1.000 0.000
#> GSM564715     1  0.0000      0.969 1.000 0.000
#> GSM564716     1  0.0000      0.969 1.000 0.000
#> GSM564717     1  0.0000      0.969 1.000 0.000
#> GSM564718     1  0.0000      0.969 1.000 0.000
#> GSM564719     1  0.0000      0.969 1.000 0.000
#> GSM564720     1  0.0000      0.969 1.000 0.000
#> GSM564721     1  0.2236      0.939 0.964 0.036
#> GSM564722     1  0.0000      0.969 1.000 0.000
#> GSM564723     1  0.0672      0.963 0.992 0.008
#> GSM564724     1  0.0000      0.969 1.000 0.000
#> GSM564725     1  0.0000      0.969 1.000 0.000
#> GSM564726     1  0.0000      0.969 1.000 0.000
#> GSM564727     1  0.0000      0.969 1.000 0.000
#> GSM564728     1  0.0000      0.969 1.000 0.000
#> GSM564729     1  0.0000      0.969 1.000 0.000
#> GSM564730     1  0.1184      0.957 0.984 0.016
#> GSM564731     1  0.0000      0.969 1.000 0.000
#> GSM564732     1  0.0000      0.969 1.000 0.000
#> GSM564733     1  0.0000      0.969 1.000 0.000
#> GSM564734     1  0.0000      0.969 1.000 0.000
#> GSM564735     1  0.0000      0.969 1.000 0.000
#> GSM564736     1  0.0000      0.969 1.000 0.000
#> GSM564737     1  0.0000      0.969 1.000 0.000
#> GSM564738     1  0.0000      0.969 1.000 0.000
#> GSM564739     1  0.0000      0.969 1.000 0.000
#> GSM564740     1  0.0000      0.969 1.000 0.000
#> GSM564741     1  0.0000      0.969 1.000 0.000
#> GSM564742     1  0.0000      0.969 1.000 0.000
#> GSM564743     1  0.0000      0.969 1.000 0.000
#> GSM564744     1  0.0938      0.960 0.988 0.012
#> GSM564745     1  0.0000      0.969 1.000 0.000
#> GSM564746     1  0.0000      0.969 1.000 0.000
#> GSM564747     1  0.0000      0.969 1.000 0.000
#> GSM564748     1  0.0000      0.969 1.000 0.000
#> GSM564749     1  0.0000      0.969 1.000 0.000
#> GSM564750     1  0.0000      0.969 1.000 0.000
#> GSM564751     1  0.0000      0.969 1.000 0.000
#> GSM564752     1  0.0000      0.969 1.000 0.000
#> GSM564753     1  0.0000      0.969 1.000 0.000
#> GSM564754     1  0.0000      0.969 1.000 0.000
#> GSM564755     1  0.0000      0.969 1.000 0.000
#> GSM564756     1  0.0000      0.969 1.000 0.000
#> GSM564757     1  0.0000      0.969 1.000 0.000
#> GSM564758     1  0.0000      0.969 1.000 0.000
#> GSM564759     1  0.0000      0.969 1.000 0.000
#> GSM564760     1  0.0000      0.969 1.000 0.000
#> GSM564761     1  0.2603      0.932 0.956 0.044
#> GSM564762     1  0.0000      0.969 1.000 0.000
#> GSM564681     2  0.0000      0.981 0.000 1.000
#> GSM564693     2  0.0000      0.981 0.000 1.000
#> GSM564646     2  0.4161      0.905 0.084 0.916
#> GSM564699     2  0.9850      0.228 0.428 0.572

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM564615     1  0.1163     0.9428 0.972 0.000 0.028
#> GSM564616     2  0.0237     0.7327 0.000 0.996 0.004
#> GSM564617     2  0.0983     0.7369 0.004 0.980 0.016
#> GSM564618     2  0.3038     0.7202 0.000 0.896 0.104
#> GSM564619     1  0.1267     0.9427 0.972 0.004 0.024
#> GSM564620     1  0.0983     0.9427 0.980 0.004 0.016
#> GSM564621     1  0.0892     0.9443 0.980 0.000 0.020
#> GSM564622     2  0.4504     0.6690 0.000 0.804 0.196
#> GSM564623     1  0.8607     0.3908 0.592 0.152 0.256
#> GSM564624     2  0.0000     0.7322 0.000 1.000 0.000
#> GSM564625     1  0.1031     0.9431 0.976 0.000 0.024
#> GSM564626     1  0.1289     0.9454 0.968 0.000 0.032
#> GSM564627     1  0.1529     0.9465 0.960 0.000 0.040
#> GSM564628     2  0.3941     0.6888 0.000 0.844 0.156
#> GSM564629     1  0.1129     0.9437 0.976 0.004 0.020
#> GSM564630     2  0.2261     0.7360 0.000 0.932 0.068
#> GSM564609     3  0.6095     0.5227 0.000 0.392 0.608
#> GSM564610     1  0.2537     0.9440 0.920 0.000 0.080
#> GSM564611     1  0.5165     0.8887 0.832 0.072 0.096
#> GSM564612     2  0.6309    -0.0183 0.000 0.504 0.496
#> GSM564613     3  0.7156     0.5011 0.028 0.400 0.572
#> GSM564614     1  0.1163     0.9429 0.972 0.000 0.028
#> GSM564631     3  0.3412     0.8010 0.000 0.124 0.876
#> GSM564632     2  0.5335     0.6059 0.008 0.760 0.232
#> GSM564633     3  0.3267     0.8015 0.000 0.116 0.884
#> GSM564634     3  0.5706     0.6360 0.000 0.320 0.680
#> GSM564635     3  0.3267     0.8015 0.000 0.116 0.884
#> GSM564636     3  0.5560     0.6727 0.000 0.300 0.700
#> GSM564637     3  0.5254     0.7231 0.000 0.264 0.736
#> GSM564638     3  0.3340     0.8026 0.000 0.120 0.880
#> GSM564639     3  0.3412     0.8022 0.000 0.124 0.876
#> GSM564640     2  0.6252    -0.0948 0.000 0.556 0.444
#> GSM564641     3  0.3412     0.8008 0.000 0.124 0.876
#> GSM564642     2  0.5905     0.3210 0.000 0.648 0.352
#> GSM564643     3  0.6169     0.5626 0.004 0.360 0.636
#> GSM564644     2  0.5465     0.5026 0.000 0.712 0.288
#> GSM564645     3  0.3412     0.8020 0.000 0.124 0.876
#> GSM564647     3  0.5431     0.6906 0.000 0.284 0.716
#> GSM564648     2  0.1860     0.7372 0.000 0.948 0.052
#> GSM564649     3  0.3551     0.8023 0.000 0.132 0.868
#> GSM564650     2  0.2878     0.7212 0.000 0.904 0.096
#> GSM564651     3  0.6308     0.1669 0.000 0.492 0.508
#> GSM564652     2  0.1529     0.7374 0.000 0.960 0.040
#> GSM564653     2  0.0892     0.7379 0.000 0.980 0.020
#> GSM564654     3  0.3619     0.8008 0.000 0.136 0.864
#> GSM564655     3  0.6255     0.6418 0.012 0.320 0.668
#> GSM564656     3  0.3116     0.7974 0.000 0.108 0.892
#> GSM564657     3  0.3340     0.8009 0.000 0.120 0.880
#> GSM564658     2  0.1964     0.7321 0.000 0.944 0.056
#> GSM564659     3  0.5529     0.6550 0.000 0.296 0.704
#> GSM564660     2  0.2796     0.7303 0.000 0.908 0.092
#> GSM564661     2  0.1031     0.7375 0.000 0.976 0.024
#> GSM564662     3  0.3267     0.8015 0.000 0.116 0.884
#> GSM564663     2  0.1860     0.7330 0.000 0.948 0.052
#> GSM564664     2  0.6307    -0.1573 0.000 0.512 0.488
#> GSM564665     3  0.6168     0.4162 0.000 0.412 0.588
#> GSM564666     2  0.9953    -0.0570 0.300 0.380 0.320
#> GSM564667     3  0.4062     0.7907 0.000 0.164 0.836
#> GSM564668     3  0.5858     0.7342 0.020 0.240 0.740
#> GSM564669     3  0.3267     0.8015 0.000 0.116 0.884
#> GSM564670     2  0.6260    -0.0798 0.000 0.552 0.448
#> GSM564671     1  0.8958     0.2858 0.552 0.280 0.168
#> GSM564672     3  0.3340     0.8009 0.000 0.120 0.880
#> GSM564673     2  0.5529     0.4587 0.000 0.704 0.296
#> GSM564674     2  0.6235    -0.0142 0.000 0.564 0.436
#> GSM564675     3  0.9744     0.2301 0.256 0.300 0.444
#> GSM564676     2  0.1964     0.7388 0.000 0.944 0.056
#> GSM564677     2  0.0592     0.7348 0.000 0.988 0.012
#> GSM564678     2  0.1860     0.7326 0.000 0.948 0.052
#> GSM564679     2  0.0592     0.7356 0.000 0.988 0.012
#> GSM564680     3  0.3340     0.8009 0.000 0.120 0.880
#> GSM564682     3  0.4974     0.7492 0.000 0.236 0.764
#> GSM564683     3  0.3610     0.7859 0.016 0.096 0.888
#> GSM564684     2  0.9269     0.1653 0.308 0.508 0.184
#> GSM564685     3  0.3412     0.8025 0.000 0.124 0.876
#> GSM564686     1  0.9561    -0.0090 0.468 0.216 0.316
#> GSM564687     2  0.6154     0.1318 0.000 0.592 0.408
#> GSM564688     2  0.4346     0.6557 0.000 0.816 0.184
#> GSM564689     2  0.5016     0.5783 0.000 0.760 0.240
#> GSM564690     2  0.1031     0.7396 0.000 0.976 0.024
#> GSM564691     3  0.6302     0.2341 0.000 0.480 0.520
#> GSM564692     2  0.0592     0.7353 0.000 0.988 0.012
#> GSM564694     3  0.6126     0.5097 0.000 0.400 0.600
#> GSM564695     2  0.5363     0.5278 0.000 0.724 0.276
#> GSM564696     3  0.5798     0.7388 0.040 0.184 0.776
#> GSM564697     2  0.4605     0.6262 0.000 0.796 0.204
#> GSM564698     3  0.3340     0.8025 0.000 0.120 0.880
#> GSM564700     2  0.5677     0.5644 0.160 0.792 0.048
#> GSM564701     2  0.5859     0.3754 0.000 0.656 0.344
#> GSM564702     2  0.3038     0.7153 0.000 0.896 0.104
#> GSM564703     1  0.2165     0.9442 0.936 0.000 0.064
#> GSM564704     1  0.2066     0.9432 0.940 0.000 0.060
#> GSM564705     1  0.5831     0.8515 0.796 0.076 0.128
#> GSM564706     1  0.2711     0.9317 0.912 0.000 0.088
#> GSM564707     1  0.2796     0.9370 0.908 0.000 0.092
#> GSM564708     1  0.2537     0.9346 0.920 0.000 0.080
#> GSM564709     1  0.2945     0.9365 0.908 0.004 0.088
#> GSM564710     2  0.8797     0.3371 0.276 0.568 0.156
#> GSM564711     1  0.2261     0.9412 0.932 0.000 0.068
#> GSM564712     1  0.5585     0.8656 0.812 0.092 0.096
#> GSM564713     1  0.0747     0.9432 0.984 0.000 0.016
#> GSM564714     1  0.2711     0.9358 0.912 0.000 0.088
#> GSM564715     1  0.1643     0.9480 0.956 0.000 0.044
#> GSM564716     1  0.1163     0.9444 0.972 0.000 0.028
#> GSM564717     1  0.2537     0.9396 0.920 0.000 0.080
#> GSM564718     1  0.1031     0.9480 0.976 0.000 0.024
#> GSM564719     1  0.2945     0.9351 0.908 0.004 0.088
#> GSM564720     1  0.2625     0.9409 0.916 0.000 0.084
#> GSM564721     1  0.3045     0.9396 0.916 0.020 0.064
#> GSM564722     1  0.2537     0.9389 0.920 0.000 0.080
#> GSM564723     1  0.2945     0.9349 0.908 0.004 0.088
#> GSM564724     1  0.1411     0.9476 0.964 0.000 0.036
#> GSM564725     1  0.1031     0.9431 0.976 0.000 0.024
#> GSM564726     1  0.0747     0.9432 0.984 0.000 0.016
#> GSM564727     1  0.1031     0.9431 0.976 0.000 0.024
#> GSM564728     1  0.0592     0.9435 0.988 0.000 0.012
#> GSM564729     1  0.0892     0.9434 0.980 0.000 0.020
#> GSM564730     1  0.3267     0.9254 0.884 0.000 0.116
#> GSM564731     1  0.0747     0.9456 0.984 0.000 0.016
#> GSM564732     1  0.1643     0.9476 0.956 0.000 0.044
#> GSM564733     1  0.1031     0.9479 0.976 0.000 0.024
#> GSM564734     1  0.1289     0.9450 0.968 0.000 0.032
#> GSM564735     1  0.1289     0.9474 0.968 0.000 0.032
#> GSM564736     1  0.1163     0.9470 0.972 0.000 0.028
#> GSM564737     1  0.3910     0.9266 0.876 0.020 0.104
#> GSM564738     1  0.2261     0.9412 0.932 0.000 0.068
#> GSM564739     1  0.1529     0.9482 0.960 0.000 0.040
#> GSM564740     1  0.0747     0.9459 0.984 0.000 0.016
#> GSM564741     1  0.1964     0.9433 0.944 0.000 0.056
#> GSM564742     1  0.2796     0.9352 0.908 0.000 0.092
#> GSM564743     1  0.2878     0.9351 0.904 0.000 0.096
#> GSM564744     1  0.4357     0.9105 0.868 0.052 0.080
#> GSM564745     1  0.0747     0.9438 0.984 0.000 0.016
#> GSM564746     1  0.1860     0.9438 0.948 0.000 0.052
#> GSM564747     1  0.2356     0.9413 0.928 0.000 0.072
#> GSM564748     1  0.2066     0.9437 0.940 0.000 0.060
#> GSM564749     1  0.2878     0.9373 0.904 0.000 0.096
#> GSM564750     1  0.0892     0.9425 0.980 0.000 0.020
#> GSM564751     1  0.2261     0.9427 0.932 0.000 0.068
#> GSM564752     1  0.0747     0.9432 0.984 0.000 0.016
#> GSM564753     1  0.2448     0.9403 0.924 0.000 0.076
#> GSM564754     1  0.2261     0.9438 0.932 0.000 0.068
#> GSM564755     1  0.0747     0.9432 0.984 0.000 0.016
#> GSM564756     1  0.1163     0.9469 0.972 0.000 0.028
#> GSM564757     1  0.0592     0.9442 0.988 0.000 0.012
#> GSM564758     1  0.1163     0.9462 0.972 0.000 0.028
#> GSM564759     1  0.1643     0.9466 0.956 0.000 0.044
#> GSM564760     1  0.1289     0.9477 0.968 0.000 0.032
#> GSM564761     1  0.3678     0.9308 0.892 0.028 0.080
#> GSM564762     1  0.1411     0.9474 0.964 0.000 0.036
#> GSM564681     2  0.1529     0.7384 0.000 0.960 0.040
#> GSM564693     2  0.4062     0.6512 0.000 0.836 0.164
#> GSM564646     2  0.2846     0.7340 0.020 0.924 0.056
#> GSM564699     3  0.9998     0.0461 0.336 0.324 0.340

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM564615     1  0.1474     0.7416 0.948 0.000 0.000 0.052
#> GSM564616     2  0.1406     0.7248 0.000 0.960 0.016 0.024
#> GSM564617     2  0.3015     0.7263 0.000 0.884 0.024 0.092
#> GSM564618     2  0.2081     0.7220 0.000 0.916 0.084 0.000
#> GSM564619     1  0.1940     0.7306 0.924 0.000 0.000 0.076
#> GSM564620     1  0.1389     0.7429 0.952 0.000 0.000 0.048
#> GSM564621     1  0.1716     0.7435 0.936 0.000 0.000 0.064
#> GSM564622     2  0.4372     0.6048 0.000 0.728 0.268 0.004
#> GSM564623     1  0.7076     0.3155 0.612 0.140 0.232 0.016
#> GSM564624     2  0.2124     0.7183 0.000 0.924 0.008 0.068
#> GSM564625     1  0.1474     0.7352 0.948 0.000 0.000 0.052
#> GSM564626     1  0.2760     0.7214 0.872 0.000 0.000 0.128
#> GSM564627     1  0.3907     0.5800 0.768 0.000 0.000 0.232
#> GSM564628     2  0.3862     0.6739 0.000 0.824 0.152 0.024
#> GSM564629     1  0.1389     0.7424 0.952 0.000 0.000 0.048
#> GSM564630     2  0.3903     0.7238 0.000 0.844 0.076 0.080
#> GSM564609     3  0.5699     0.3788 0.000 0.380 0.588 0.032
#> GSM564610     4  0.4382     0.7599 0.296 0.000 0.000 0.704
#> GSM564611     4  0.1716     0.7889 0.064 0.000 0.000 0.936
#> GSM564612     3  0.4920     0.2693 0.000 0.368 0.628 0.004
#> GSM564613     3  0.7409     0.3488 0.020 0.304 0.552 0.124
#> GSM564614     1  0.1637     0.7404 0.940 0.000 0.000 0.060
#> GSM564631     3  0.0779     0.7655 0.000 0.016 0.980 0.004
#> GSM564632     2  0.5046     0.5993 0.004 0.732 0.232 0.032
#> GSM564633     3  0.0592     0.7666 0.000 0.016 0.984 0.000
#> GSM564634     3  0.4964     0.5968 0.000 0.244 0.724 0.032
#> GSM564635     3  0.0592     0.7675 0.000 0.016 0.984 0.000
#> GSM564636     3  0.4964     0.6085 0.000 0.244 0.724 0.032
#> GSM564637     3  0.5055     0.5893 0.000 0.256 0.712 0.032
#> GSM564638     3  0.0469     0.7671 0.000 0.012 0.988 0.000
#> GSM564639     3  0.1389     0.7657 0.000 0.048 0.952 0.000
#> GSM564640     2  0.5980     0.1753 0.000 0.560 0.396 0.044
#> GSM564641     3  0.0469     0.7632 0.000 0.012 0.988 0.000
#> GSM564642     2  0.5254     0.4907 0.000 0.672 0.300 0.028
#> GSM564643     3  0.5875     0.3399 0.008 0.396 0.572 0.024
#> GSM564644     2  0.6411     0.4939 0.000 0.600 0.308 0.092
#> GSM564645     3  0.0707     0.7681 0.000 0.020 0.980 0.000
#> GSM564647     3  0.4059     0.6631 0.000 0.200 0.788 0.012
#> GSM564648     2  0.2021     0.7191 0.000 0.936 0.040 0.024
#> GSM564649     3  0.1545     0.7683 0.000 0.040 0.952 0.008
#> GSM564650     2  0.4100     0.6923 0.000 0.816 0.148 0.036
#> GSM564651     3  0.4994     0.0763 0.000 0.480 0.520 0.000
#> GSM564652     2  0.0921     0.7243 0.000 0.972 0.028 0.000
#> GSM564653     2  0.2032     0.7282 0.000 0.936 0.028 0.036
#> GSM564654     3  0.1716     0.7630 0.000 0.064 0.936 0.000
#> GSM564655     3  0.5708     0.5398 0.012 0.288 0.668 0.032
#> GSM564656     3  0.0469     0.7661 0.000 0.012 0.988 0.000
#> GSM564657     3  0.0469     0.7618 0.000 0.012 0.988 0.000
#> GSM564658     2  0.3903     0.7043 0.000 0.844 0.076 0.080
#> GSM564659     3  0.3942     0.6137 0.000 0.236 0.764 0.000
#> GSM564660     2  0.2909     0.7152 0.000 0.888 0.092 0.020
#> GSM564661     2  0.2871     0.7189 0.000 0.896 0.032 0.072
#> GSM564662     3  0.0188     0.7642 0.000 0.004 0.996 0.000
#> GSM564663     2  0.3972     0.7021 0.000 0.840 0.080 0.080
#> GSM564664     3  0.6775     0.1080 0.000 0.384 0.516 0.100
#> GSM564665     3  0.4713     0.3830 0.000 0.360 0.640 0.000
#> GSM564666     2  0.8525     0.1384 0.236 0.436 0.292 0.036
#> GSM564667     3  0.2149     0.7528 0.000 0.088 0.912 0.000
#> GSM564668     3  0.4584     0.6819 0.016 0.196 0.776 0.012
#> GSM564669     3  0.0817     0.7678 0.000 0.024 0.976 0.000
#> GSM564670     2  0.5155     0.0129 0.000 0.528 0.468 0.004
#> GSM564671     1  0.8453     0.1397 0.484 0.304 0.148 0.064
#> GSM564672     3  0.0469     0.7618 0.000 0.012 0.988 0.000
#> GSM564673     2  0.5036     0.4990 0.000 0.696 0.280 0.024
#> GSM564674     2  0.6425     0.1361 0.000 0.508 0.424 0.068
#> GSM564675     3  0.8475     0.1239 0.188 0.352 0.420 0.040
#> GSM564676     2  0.5559     0.6458 0.000 0.696 0.064 0.240
#> GSM564677     2  0.1182     0.7235 0.000 0.968 0.016 0.016
#> GSM564678     2  0.5055     0.6215 0.000 0.712 0.032 0.256
#> GSM564679     2  0.2882     0.7199 0.000 0.892 0.024 0.084
#> GSM564680     3  0.0336     0.7628 0.000 0.008 0.992 0.000
#> GSM564682     3  0.4411     0.7007 0.000 0.108 0.812 0.080
#> GSM564683     3  0.0376     0.7630 0.004 0.004 0.992 0.000
#> GSM564684     2  0.7884     0.3376 0.232 0.548 0.188 0.032
#> GSM564685     3  0.1042     0.7680 0.000 0.020 0.972 0.008
#> GSM564686     1  0.8621    -0.1664 0.368 0.260 0.340 0.032
#> GSM564687     2  0.5428     0.3091 0.000 0.600 0.380 0.020
#> GSM564688     2  0.4220     0.5963 0.000 0.748 0.248 0.004
#> GSM564689     2  0.7289     0.4634 0.000 0.528 0.280 0.192
#> GSM564690     2  0.5971     0.4735 0.000 0.532 0.040 0.428
#> GSM564691     3  0.6477     0.2164 0.000 0.368 0.552 0.080
#> GSM564692     2  0.0188     0.7184 0.000 0.996 0.004 0.000
#> GSM564694     3  0.5847     0.3176 0.000 0.404 0.560 0.036
#> GSM564695     2  0.4406     0.5042 0.000 0.700 0.300 0.000
#> GSM564696     3  0.4126     0.7203 0.020 0.120 0.836 0.024
#> GSM564697     2  0.6083     0.6102 0.000 0.672 0.216 0.112
#> GSM564698     3  0.1302     0.7637 0.000 0.044 0.956 0.000
#> GSM564700     2  0.4914     0.6360 0.116 0.804 0.048 0.032
#> GSM564701     2  0.5467     0.4018 0.000 0.612 0.364 0.024
#> GSM564702     2  0.2647     0.7074 0.000 0.880 0.120 0.000
#> GSM564703     1  0.4477     0.6584 0.688 0.000 0.000 0.312
#> GSM564704     1  0.4661     0.6014 0.652 0.000 0.000 0.348
#> GSM564705     4  0.2466     0.8240 0.096 0.000 0.004 0.900
#> GSM564706     1  0.5364     0.5897 0.652 0.000 0.028 0.320
#> GSM564707     4  0.3311     0.8212 0.172 0.000 0.000 0.828
#> GSM564708     1  0.4049     0.7181 0.780 0.000 0.008 0.212
#> GSM564709     1  0.5165     0.2301 0.512 0.004 0.000 0.484
#> GSM564710     4  0.5176     0.7683 0.100 0.108 0.012 0.780
#> GSM564711     1  0.4730     0.5713 0.636 0.000 0.000 0.364
#> GSM564712     4  0.3208     0.8420 0.148 0.004 0.000 0.848
#> GSM564713     1  0.0817     0.7455 0.976 0.000 0.000 0.024
#> GSM564714     1  0.4999     0.2516 0.508 0.000 0.000 0.492
#> GSM564715     1  0.4193     0.6650 0.732 0.000 0.000 0.268
#> GSM564716     1  0.2011     0.7325 0.920 0.000 0.000 0.080
#> GSM564717     4  0.4304     0.7598 0.284 0.000 0.000 0.716
#> GSM564718     1  0.2921     0.7482 0.860 0.000 0.000 0.140
#> GSM564719     4  0.3486     0.8197 0.188 0.000 0.000 0.812
#> GSM564720     4  0.3975     0.8061 0.240 0.000 0.000 0.760
#> GSM564721     1  0.4761     0.5508 0.628 0.000 0.000 0.372
#> GSM564722     1  0.4989     0.2658 0.528 0.000 0.000 0.472
#> GSM564723     4  0.3801     0.8322 0.220 0.000 0.000 0.780
#> GSM564724     1  0.3444     0.7288 0.816 0.000 0.000 0.184
#> GSM564725     1  0.2081     0.7295 0.916 0.000 0.000 0.084
#> GSM564726     1  0.0817     0.7488 0.976 0.000 0.000 0.024
#> GSM564727     1  0.2081     0.7336 0.916 0.000 0.000 0.084
#> GSM564728     1  0.0469     0.7480 0.988 0.000 0.000 0.012
#> GSM564729     1  0.1389     0.7438 0.952 0.000 0.000 0.048
#> GSM564730     1  0.5189     0.4541 0.616 0.000 0.012 0.372
#> GSM564731     1  0.1867     0.7561 0.928 0.000 0.000 0.072
#> GSM564732     1  0.3873     0.7168 0.772 0.000 0.000 0.228
#> GSM564733     1  0.3172     0.7474 0.840 0.000 0.000 0.160
#> GSM564734     1  0.2408     0.7555 0.896 0.000 0.000 0.104
#> GSM564735     1  0.3356     0.7323 0.824 0.000 0.000 0.176
#> GSM564736     1  0.2081     0.7586 0.916 0.000 0.000 0.084
#> GSM564737     4  0.2921     0.8432 0.140 0.000 0.000 0.860
#> GSM564738     1  0.4585     0.6080 0.668 0.000 0.000 0.332
#> GSM564739     1  0.3610     0.7264 0.800 0.000 0.000 0.200
#> GSM564740     1  0.2469     0.7524 0.892 0.000 0.000 0.108
#> GSM564741     1  0.4331     0.6555 0.712 0.000 0.000 0.288
#> GSM564742     1  0.4999     0.2226 0.508 0.000 0.000 0.492
#> GSM564743     4  0.3123     0.8356 0.156 0.000 0.000 0.844
#> GSM564744     4  0.4164     0.7808 0.264 0.000 0.000 0.736
#> GSM564745     1  0.0592     0.7485 0.984 0.000 0.000 0.016
#> GSM564746     4  0.4989     0.4422 0.472 0.000 0.000 0.528
#> GSM564747     1  0.4605     0.6121 0.664 0.000 0.000 0.336
#> GSM564748     1  0.4477     0.6528 0.688 0.000 0.000 0.312
#> GSM564749     4  0.2973     0.8384 0.144 0.000 0.000 0.856
#> GSM564750     1  0.1807     0.7562 0.940 0.000 0.008 0.052
#> GSM564751     1  0.4431     0.6514 0.696 0.000 0.000 0.304
#> GSM564752     1  0.1118     0.7483 0.964 0.000 0.000 0.036
#> GSM564753     1  0.4883     0.6511 0.696 0.000 0.016 0.288
#> GSM564754     1  0.4585     0.6353 0.668 0.000 0.000 0.332
#> GSM564755     1  0.0707     0.7475 0.980 0.000 0.000 0.020
#> GSM564756     1  0.2760     0.7412 0.872 0.000 0.000 0.128
#> GSM564757     1  0.0817     0.7474 0.976 0.000 0.000 0.024
#> GSM564758     1  0.1716     0.7569 0.936 0.000 0.000 0.064
#> GSM564759     1  0.3764     0.7157 0.784 0.000 0.000 0.216
#> GSM564760     1  0.3306     0.7476 0.840 0.004 0.000 0.156
#> GSM564761     4  0.4164     0.7476 0.264 0.000 0.000 0.736
#> GSM564762     1  0.3688     0.7186 0.792 0.000 0.000 0.208
#> GSM564681     2  0.1209     0.7250 0.000 0.964 0.032 0.004
#> GSM564693     2  0.3024     0.6606 0.000 0.852 0.148 0.000
#> GSM564646     2  0.2466     0.7200 0.000 0.916 0.056 0.028
#> GSM564699     2  0.8731    -0.0108 0.212 0.372 0.368 0.048

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM564615     4  0.1341    0.76663 0.056 0.000 0.000 0.944 0.000
#> GSM564616     2  0.4310    0.48941 0.000 0.604 0.392 0.000 0.004
#> GSM564617     3  0.4304    0.03148 0.000 0.484 0.516 0.000 0.000
#> GSM564618     2  0.5322    0.45498 0.000 0.552 0.392 0.000 0.056
#> GSM564619     4  0.2179    0.74269 0.100 0.004 0.000 0.896 0.000
#> GSM564620     4  0.1662    0.76616 0.056 0.004 0.004 0.936 0.000
#> GSM564621     4  0.1671    0.76602 0.076 0.000 0.000 0.924 0.000
#> GSM564622     3  0.6674   -0.07867 0.000 0.304 0.436 0.000 0.260
#> GSM564623     4  0.6718    0.08324 0.004 0.004 0.352 0.456 0.184
#> GSM564624     2  0.3109    0.60617 0.000 0.800 0.200 0.000 0.000
#> GSM564625     4  0.1341    0.75852 0.056 0.000 0.000 0.944 0.000
#> GSM564626     4  0.2890    0.72901 0.160 0.004 0.000 0.836 0.000
#> GSM564627     4  0.4220    0.47413 0.300 0.008 0.004 0.688 0.000
#> GSM564628     3  0.1830    0.61795 0.000 0.068 0.924 0.000 0.008
#> GSM564629     4  0.1557    0.76475 0.052 0.008 0.000 0.940 0.000
#> GSM564630     2  0.4028    0.55185 0.000 0.768 0.192 0.000 0.040
#> GSM564609     3  0.3550    0.59778 0.000 0.004 0.760 0.000 0.236
#> GSM564610     1  0.3525    0.70358 0.800 0.008 0.008 0.184 0.000
#> GSM564611     1  0.3115    0.70141 0.852 0.112 0.000 0.036 0.000
#> GSM564612     5  0.4686    0.25099 0.000 0.384 0.020 0.000 0.596
#> GSM564613     5  0.7653   -0.01417 0.048 0.196 0.320 0.008 0.428
#> GSM564614     4  0.1478    0.76094 0.064 0.000 0.000 0.936 0.000
#> GSM564631     5  0.1197    0.83721 0.000 0.000 0.048 0.000 0.952
#> GSM564632     3  0.2625    0.65832 0.000 0.016 0.876 0.000 0.108
#> GSM564633     5  0.0510    0.84847 0.000 0.000 0.016 0.000 0.984
#> GSM564634     5  0.4612    0.63091 0.000 0.056 0.232 0.000 0.712
#> GSM564635     5  0.0162    0.84829 0.000 0.000 0.004 0.000 0.996
#> GSM564636     5  0.4283    0.00794 0.000 0.000 0.456 0.000 0.544
#> GSM564637     3  0.3715    0.60943 0.000 0.004 0.736 0.000 0.260
#> GSM564638     5  0.0290    0.84866 0.000 0.000 0.008 0.000 0.992
#> GSM564639     5  0.0880    0.84173 0.000 0.000 0.032 0.000 0.968
#> GSM564640     3  0.2790    0.66217 0.000 0.052 0.880 0.000 0.068
#> GSM564641     5  0.0451    0.84838 0.000 0.004 0.008 0.000 0.988
#> GSM564642     3  0.5480    0.45997 0.000 0.168 0.656 0.000 0.176
#> GSM564643     3  0.3196    0.64669 0.000 0.004 0.804 0.000 0.192
#> GSM564644     2  0.5335    0.41339 0.000 0.668 0.200 0.000 0.132
#> GSM564645     5  0.0290    0.84861 0.000 0.000 0.008 0.000 0.992
#> GSM564647     5  0.2929    0.76106 0.000 0.008 0.152 0.000 0.840
#> GSM564648     3  0.2233    0.58944 0.000 0.104 0.892 0.000 0.004
#> GSM564649     5  0.1740    0.83070 0.000 0.012 0.056 0.000 0.932
#> GSM564650     3  0.4062    0.55733 0.000 0.196 0.764 0.000 0.040
#> GSM564651     3  0.6555    0.11448 0.000 0.200 0.400 0.000 0.400
#> GSM564652     2  0.4674    0.43713 0.000 0.568 0.416 0.000 0.016
#> GSM564653     2  0.3266    0.61193 0.000 0.796 0.200 0.000 0.004
#> GSM564654     5  0.1197    0.83733 0.000 0.000 0.048 0.000 0.952
#> GSM564655     3  0.4650    0.12031 0.000 0.012 0.520 0.000 0.468
#> GSM564656     5  0.0290    0.84873 0.000 0.000 0.008 0.000 0.992
#> GSM564657     5  0.0162    0.84793 0.000 0.000 0.004 0.000 0.996
#> GSM564658     2  0.0963    0.60811 0.000 0.964 0.036 0.000 0.000
#> GSM564659     5  0.3569    0.75373 0.000 0.104 0.068 0.000 0.828
#> GSM564660     3  0.3487    0.47138 0.000 0.212 0.780 0.000 0.008
#> GSM564661     2  0.2124    0.62016 0.000 0.900 0.096 0.000 0.004
#> GSM564662     5  0.0000    0.84745 0.000 0.000 0.000 0.000 1.000
#> GSM564663     2  0.1270    0.61287 0.000 0.948 0.052 0.000 0.000
#> GSM564664     2  0.6523    0.11460 0.000 0.484 0.268 0.000 0.248
#> GSM564665     5  0.5584    0.31151 0.000 0.324 0.092 0.000 0.584
#> GSM564666     3  0.1996    0.65021 0.004 0.008 0.932 0.040 0.016
#> GSM564667     5  0.1571    0.82994 0.000 0.004 0.060 0.000 0.936
#> GSM564668     5  0.3559    0.72530 0.008 0.000 0.176 0.012 0.804
#> GSM564669     5  0.0404    0.84699 0.000 0.000 0.012 0.000 0.988
#> GSM564670     3  0.6012    0.25654 0.000 0.116 0.484 0.000 0.400
#> GSM564671     3  0.4355    0.59595 0.012 0.008 0.796 0.124 0.060
#> GSM564672     5  0.0000    0.84745 0.000 0.000 0.000 0.000 1.000
#> GSM564673     3  0.2416    0.66785 0.000 0.012 0.888 0.000 0.100
#> GSM564674     3  0.4832    0.59636 0.000 0.104 0.720 0.000 0.176
#> GSM564675     3  0.3701    0.64382 0.004 0.008 0.808 0.016 0.164
#> GSM564676     2  0.5297    0.44583 0.072 0.684 0.228 0.000 0.016
#> GSM564677     2  0.3857    0.54963 0.000 0.688 0.312 0.000 0.000
#> GSM564678     2  0.1851    0.57402 0.088 0.912 0.000 0.000 0.000
#> GSM564679     2  0.1121    0.61040 0.000 0.956 0.044 0.000 0.000
#> GSM564680     5  0.0000    0.84745 0.000 0.000 0.000 0.000 1.000
#> GSM564682     5  0.5519    0.39062 0.000 0.332 0.084 0.000 0.584
#> GSM564683     5  0.0000    0.84745 0.000 0.000 0.000 0.000 1.000
#> GSM564684     3  0.1597    0.65412 0.000 0.008 0.948 0.024 0.020
#> GSM564685     5  0.1043    0.83592 0.000 0.000 0.040 0.000 0.960
#> GSM564686     3  0.3547    0.64952 0.004 0.000 0.836 0.060 0.100
#> GSM564687     3  0.5229    0.47939 0.000 0.064 0.612 0.000 0.324
#> GSM564688     2  0.5215    0.50493 0.000 0.664 0.096 0.000 0.240
#> GSM564689     3  0.6372    0.15209 0.008 0.408 0.456 0.000 0.128
#> GSM564690     2  0.6142    0.30454 0.232 0.580 0.184 0.000 0.004
#> GSM564691     2  0.5213    0.34485 0.000 0.616 0.064 0.000 0.320
#> GSM564692     2  0.4249    0.43853 0.000 0.568 0.432 0.000 0.000
#> GSM564694     3  0.2074    0.67034 0.000 0.000 0.896 0.000 0.104
#> GSM564695     2  0.6049    0.44859 0.000 0.564 0.272 0.000 0.164
#> GSM564696     5  0.3854    0.69457 0.008 0.004 0.180 0.016 0.792
#> GSM564697     3  0.5285    0.28971 0.000 0.356 0.584 0.000 0.060
#> GSM564698     5  0.0963    0.83976 0.000 0.000 0.036 0.000 0.964
#> GSM564700     3  0.3585    0.58880 0.004 0.112 0.840 0.032 0.012
#> GSM564701     2  0.6410    0.33477 0.000 0.488 0.192 0.000 0.320
#> GSM564702     2  0.5671    0.47736 0.000 0.568 0.336 0.000 0.096
#> GSM564703     4  0.4474    0.65504 0.332 0.012 0.004 0.652 0.000
#> GSM564704     4  0.5240    0.55032 0.368 0.032 0.012 0.588 0.000
#> GSM564705     1  0.1082    0.76450 0.964 0.008 0.000 0.028 0.000
#> GSM564706     4  0.5311    0.55810 0.340 0.032 0.008 0.612 0.008
#> GSM564707     1  0.1864    0.74913 0.924 0.004 0.004 0.068 0.000
#> GSM564708     4  0.4277    0.72740 0.208 0.024 0.008 0.756 0.004
#> GSM564709     1  0.4819    0.09802 0.576 0.012 0.008 0.404 0.000
#> GSM564710     1  0.2872    0.73021 0.884 0.072 0.004 0.036 0.004
#> GSM564711     4  0.5262    0.52656 0.376 0.032 0.012 0.580 0.000
#> GSM564712     1  0.1124    0.76501 0.960 0.004 0.000 0.036 0.000
#> GSM564713     4  0.1278    0.77413 0.016 0.020 0.004 0.960 0.000
#> GSM564714     1  0.5283    0.09454 0.572 0.032 0.012 0.384 0.000
#> GSM564715     4  0.4791    0.58530 0.316 0.024 0.008 0.652 0.000
#> GSM564716     4  0.2304    0.74898 0.100 0.000 0.008 0.892 0.000
#> GSM564717     1  0.3718    0.70306 0.784 0.016 0.004 0.196 0.000
#> GSM564718     4  0.3474    0.76413 0.132 0.028 0.008 0.832 0.000
#> GSM564719     1  0.2177    0.74692 0.908 0.008 0.004 0.080 0.000
#> GSM564720     1  0.2911    0.73508 0.852 0.008 0.004 0.136 0.000
#> GSM564721     4  0.4219    0.51171 0.416 0.000 0.000 0.584 0.000
#> GSM564722     1  0.5311    0.10902 0.560 0.032 0.012 0.396 0.000
#> GSM564723     1  0.2411    0.75749 0.884 0.008 0.000 0.108 0.000
#> GSM564724     4  0.3831    0.73743 0.188 0.024 0.004 0.784 0.000
#> GSM564725     4  0.1908    0.74900 0.092 0.000 0.000 0.908 0.000
#> GSM564726     4  0.1018    0.77687 0.016 0.016 0.000 0.968 0.000
#> GSM564727     4  0.2249    0.74996 0.096 0.008 0.000 0.896 0.000
#> GSM564728     4  0.0671    0.77464 0.016 0.000 0.004 0.980 0.000
#> GSM564729     4  0.1341    0.76696 0.056 0.000 0.000 0.944 0.000
#> GSM564730     4  0.5033    0.22492 0.444 0.008 0.004 0.532 0.012
#> GSM564731     4  0.2741    0.77545 0.064 0.032 0.012 0.892 0.000
#> GSM564732     4  0.3607    0.72864 0.244 0.000 0.004 0.752 0.000
#> GSM564733     4  0.3441    0.76733 0.148 0.024 0.004 0.824 0.000
#> GSM564734     4  0.2452    0.78284 0.084 0.016 0.004 0.896 0.000
#> GSM564735     4  0.3888    0.73889 0.176 0.032 0.004 0.788 0.000
#> GSM564736     4  0.1792    0.78269 0.084 0.000 0.000 0.916 0.000
#> GSM564737     1  0.1041    0.76470 0.964 0.004 0.000 0.032 0.000
#> GSM564738     4  0.5190    0.55956 0.352 0.032 0.012 0.604 0.000
#> GSM564739     4  0.3883    0.72984 0.216 0.016 0.004 0.764 0.000
#> GSM564740     4  0.3573    0.76627 0.124 0.032 0.012 0.832 0.000
#> GSM564741     4  0.4986    0.62416 0.308 0.028 0.008 0.652 0.004
#> GSM564742     1  0.5355   -0.04386 0.536 0.032 0.012 0.420 0.000
#> GSM564743     1  0.1202    0.76362 0.960 0.004 0.004 0.032 0.000
#> GSM564744     1  0.2806    0.72353 0.844 0.004 0.000 0.152 0.000
#> GSM564745     4  0.0880    0.77356 0.032 0.000 0.000 0.968 0.000
#> GSM564746     1  0.4970    0.51141 0.624 0.028 0.008 0.340 0.000
#> GSM564747     4  0.4866    0.58174 0.352 0.016 0.012 0.620 0.000
#> GSM564748     4  0.4838    0.62614 0.336 0.028 0.004 0.632 0.000
#> GSM564749     1  0.0955    0.76332 0.968 0.004 0.000 0.028 0.000
#> GSM564750     4  0.2017    0.78183 0.060 0.004 0.004 0.924 0.008
#> GSM564751     4  0.4557    0.63314 0.324 0.012 0.008 0.656 0.000
#> GSM564752     4  0.1369    0.77501 0.028 0.008 0.008 0.956 0.000
#> GSM564753     4  0.4830    0.64131 0.300 0.028 0.004 0.664 0.004
#> GSM564754     4  0.4060    0.62313 0.360 0.000 0.000 0.640 0.000
#> GSM564755     4  0.0609    0.77408 0.020 0.000 0.000 0.980 0.000
#> GSM564756     4  0.3491    0.76256 0.124 0.028 0.012 0.836 0.000
#> GSM564757     4  0.0609    0.77401 0.020 0.000 0.000 0.980 0.000
#> GSM564758     4  0.1831    0.78159 0.076 0.000 0.004 0.920 0.000
#> GSM564759     4  0.4066    0.72647 0.196 0.032 0.004 0.768 0.000
#> GSM564760     4  0.2886    0.76975 0.148 0.000 0.008 0.844 0.000
#> GSM564761     1  0.3196    0.65931 0.804 0.004 0.000 0.192 0.000
#> GSM564762     4  0.3675    0.73088 0.216 0.008 0.004 0.772 0.000
#> GSM564681     2  0.4726    0.45498 0.000 0.580 0.400 0.000 0.020
#> GSM564693     2  0.5103    0.41382 0.000 0.556 0.404 0.000 0.040
#> GSM564646     3  0.1768    0.62295 0.000 0.072 0.924 0.000 0.004
#> GSM564699     3  0.2669    0.67324 0.000 0.000 0.876 0.020 0.104

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM564615     4  0.0146    0.74397 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM564616     5  0.2912    0.70497 0.000 0.000 0.000 0.000 0.784 0.216
#> GSM564617     2  0.5621   -0.03537 0.000 0.460 0.000 0.000 0.148 0.392
#> GSM564618     5  0.3017    0.72511 0.000 0.000 0.020 0.000 0.816 0.164
#> GSM564619     4  0.3276    0.71696 0.132 0.052 0.000 0.816 0.000 0.000
#> GSM564620     4  0.1334    0.75141 0.020 0.032 0.000 0.948 0.000 0.000
#> GSM564621     4  0.1245    0.75436 0.032 0.016 0.000 0.952 0.000 0.000
#> GSM564622     5  0.5860    0.35097 0.000 0.020 0.124 0.000 0.504 0.352
#> GSM564623     4  0.6020    0.09023 0.000 0.012 0.168 0.456 0.000 0.364
#> GSM564624     5  0.3563    0.69109 0.000 0.108 0.000 0.000 0.800 0.092
#> GSM564625     4  0.0405    0.74434 0.008 0.004 0.000 0.988 0.000 0.000
#> GSM564626     4  0.3404    0.67998 0.224 0.016 0.000 0.760 0.000 0.000
#> GSM564627     4  0.5058    0.45049 0.292 0.108 0.000 0.600 0.000 0.000
#> GSM564628     6  0.2069    0.72991 0.000 0.020 0.004 0.000 0.068 0.908
#> GSM564629     4  0.1657    0.75312 0.016 0.056 0.000 0.928 0.000 0.000
#> GSM564630     5  0.5879    0.20566 0.000 0.380 0.028 0.000 0.488 0.104
#> GSM564609     6  0.3053    0.70472 0.000 0.020 0.168 0.000 0.000 0.812
#> GSM564610     1  0.4243    0.71023 0.736 0.132 0.000 0.132 0.000 0.000
#> GSM564611     1  0.3144    0.66773 0.808 0.172 0.000 0.004 0.016 0.000
#> GSM564612     3  0.3860    0.06758 0.000 0.000 0.528 0.000 0.472 0.000
#> GSM564613     3  0.7404    0.00453 0.016 0.348 0.356 0.008 0.052 0.220
#> GSM564614     4  0.0790    0.74633 0.032 0.000 0.000 0.968 0.000 0.000
#> GSM564631     3  0.1141    0.86071 0.000 0.000 0.948 0.000 0.000 0.052
#> GSM564632     6  0.2554    0.75617 0.000 0.020 0.088 0.000 0.012 0.880
#> GSM564633     3  0.0405    0.87545 0.000 0.004 0.988 0.000 0.000 0.008
#> GSM564634     3  0.4856    0.60898 0.000 0.080 0.676 0.000 0.016 0.228
#> GSM564635     3  0.0146    0.87548 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM564636     6  0.3854    0.23066 0.000 0.000 0.464 0.000 0.000 0.536
#> GSM564637     6  0.2805    0.71806 0.000 0.000 0.184 0.000 0.004 0.812
#> GSM564638     3  0.0146    0.87552 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM564639     3  0.0713    0.86869 0.000 0.000 0.972 0.000 0.000 0.028
#> GSM564640     6  0.2078    0.76381 0.000 0.032 0.040 0.000 0.012 0.916
#> GSM564641     3  0.0520    0.87490 0.000 0.000 0.984 0.000 0.008 0.008
#> GSM564642     6  0.4832    0.52715 0.000 0.004 0.116 0.000 0.208 0.672
#> GSM564643     6  0.2553    0.74400 0.000 0.008 0.144 0.000 0.000 0.848
#> GSM564644     2  0.6239    0.13166 0.000 0.532 0.056 0.000 0.284 0.128
#> GSM564645     3  0.0146    0.87526 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM564647     3  0.2942    0.78198 0.000 0.032 0.836 0.000 0.000 0.132
#> GSM564648     6  0.2830    0.67247 0.000 0.020 0.000 0.000 0.144 0.836
#> GSM564649     3  0.1563    0.85120 0.000 0.000 0.932 0.000 0.012 0.056
#> GSM564650     6  0.4286    0.63049 0.000 0.052 0.028 0.000 0.168 0.752
#> GSM564651     5  0.6359    0.11195 0.000 0.012 0.264 0.000 0.380 0.344
#> GSM564652     5  0.2859    0.72604 0.000 0.000 0.016 0.000 0.828 0.156
#> GSM564653     5  0.3055    0.64141 0.000 0.096 0.000 0.000 0.840 0.064
#> GSM564654     3  0.0790    0.86898 0.000 0.000 0.968 0.000 0.000 0.032
#> GSM564655     6  0.4183    0.05126 0.000 0.000 0.480 0.000 0.012 0.508
#> GSM564656     3  0.0547    0.87337 0.000 0.000 0.980 0.000 0.000 0.020
#> GSM564657     3  0.0146    0.87503 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM564658     2  0.3993   -0.08789 0.000 0.520 0.000 0.000 0.476 0.004
#> GSM564659     3  0.3099    0.79185 0.000 0.012 0.848 0.000 0.096 0.044
#> GSM564660     6  0.3349    0.56399 0.000 0.000 0.008 0.000 0.244 0.748
#> GSM564661     5  0.1053    0.68455 0.000 0.012 0.004 0.000 0.964 0.020
#> GSM564662     3  0.0000    0.87478 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564663     5  0.3076    0.48447 0.000 0.240 0.000 0.000 0.760 0.000
#> GSM564664     2  0.6901    0.15771 0.000 0.496 0.136 0.000 0.216 0.152
#> GSM564665     3  0.4851    0.16306 0.000 0.000 0.536 0.000 0.404 0.060
#> GSM564666     6  0.0405    0.75389 0.000 0.008 0.004 0.000 0.000 0.988
#> GSM564667     3  0.1245    0.86231 0.000 0.016 0.952 0.000 0.000 0.032
#> GSM564668     3  0.2656    0.79756 0.000 0.012 0.860 0.008 0.000 0.120
#> GSM564669     3  0.0363    0.87425 0.000 0.000 0.988 0.000 0.000 0.012
#> GSM564670     6  0.5863    0.15520 0.000 0.016 0.420 0.000 0.124 0.440
#> GSM564671     6  0.3009    0.72965 0.004 0.000 0.052 0.084 0.004 0.856
#> GSM564672     3  0.0000    0.87478 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564673     6  0.2463    0.75815 0.000 0.020 0.068 0.000 0.020 0.892
#> GSM564674     6  0.4387    0.68202 0.000 0.104 0.132 0.000 0.016 0.748
#> GSM564675     6  0.3195    0.72480 0.000 0.036 0.116 0.012 0.000 0.836
#> GSM564676     2  0.6252    0.13165 0.036 0.544 0.012 0.000 0.284 0.124
#> GSM564677     5  0.2048    0.73181 0.000 0.000 0.000 0.000 0.880 0.120
#> GSM564678     2  0.4617   -0.04332 0.024 0.524 0.000 0.000 0.444 0.008
#> GSM564679     5  0.4026    0.26376 0.000 0.376 0.000 0.000 0.612 0.012
#> GSM564680     3  0.0000    0.87478 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564682     2  0.6824   -0.03720 0.000 0.396 0.380 0.000 0.128 0.096
#> GSM564683     3  0.0000    0.87478 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564684     6  0.0508    0.75014 0.000 0.012 0.000 0.004 0.000 0.984
#> GSM564685     3  0.1204    0.85395 0.000 0.000 0.944 0.000 0.000 0.056
#> GSM564686     6  0.2134    0.75391 0.000 0.000 0.052 0.044 0.000 0.904
#> GSM564687     6  0.5161    0.50830 0.000 0.020 0.316 0.000 0.064 0.600
#> GSM564688     5  0.1858    0.68802 0.000 0.000 0.092 0.000 0.904 0.004
#> GSM564689     2  0.6502    0.19021 0.000 0.524 0.068 0.000 0.172 0.236
#> GSM564690     2  0.6431    0.15583 0.168 0.536 0.004 0.000 0.240 0.052
#> GSM564691     2  0.6030    0.10921 0.000 0.528 0.148 0.000 0.296 0.028
#> GSM564692     5  0.3014    0.71556 0.000 0.012 0.000 0.000 0.804 0.184
#> GSM564694     6  0.1141    0.76206 0.000 0.000 0.052 0.000 0.000 0.948
#> GSM564695     5  0.4587    0.62879 0.000 0.000 0.108 0.000 0.688 0.204
#> GSM564696     3  0.4358    0.61557 0.004 0.048 0.716 0.008 0.000 0.224
#> GSM564697     2  0.6248    0.07779 0.000 0.480 0.040 0.000 0.136 0.344
#> GSM564698     3  0.0632    0.87018 0.000 0.000 0.976 0.000 0.000 0.024
#> GSM564700     6  0.2361    0.71517 0.000 0.004 0.000 0.012 0.104 0.880
#> GSM564701     5  0.5680    0.47116 0.000 0.028 0.280 0.000 0.580 0.112
#> GSM564702     5  0.3014    0.72828 0.000 0.000 0.036 0.000 0.832 0.132
#> GSM564703     4  0.5528    0.59455 0.252 0.192 0.000 0.556 0.000 0.000
#> GSM564704     2  0.5800   -0.48103 0.180 0.424 0.000 0.396 0.000 0.000
#> GSM564705     1  0.1204    0.77656 0.944 0.056 0.000 0.000 0.000 0.000
#> GSM564706     4  0.6000    0.45684 0.200 0.368 0.004 0.428 0.000 0.000
#> GSM564707     1  0.3175    0.74454 0.808 0.164 0.000 0.028 0.000 0.000
#> GSM564708     4  0.5086    0.65862 0.104 0.276 0.004 0.616 0.000 0.000
#> GSM564709     1  0.5943   -0.15312 0.404 0.216 0.000 0.380 0.000 0.000
#> GSM564710     1  0.2285    0.75502 0.900 0.028 0.000 0.008 0.064 0.000
#> GSM564711     2  0.5832   -0.46635 0.188 0.428 0.000 0.384 0.000 0.000
#> GSM564712     1  0.1701    0.77493 0.920 0.072 0.000 0.008 0.000 0.000
#> GSM564713     4  0.2333    0.75878 0.024 0.092 0.000 0.884 0.000 0.000
#> GSM564714     2  0.5957   -0.23096 0.344 0.428 0.000 0.228 0.000 0.000
#> GSM564715     4  0.5830    0.50119 0.220 0.296 0.000 0.484 0.000 0.000
#> GSM564716     4  0.3509    0.73193 0.112 0.084 0.000 0.804 0.000 0.000
#> GSM564717     1  0.4797    0.68230 0.664 0.212 0.000 0.124 0.000 0.000
#> GSM564718     4  0.4524    0.66419 0.052 0.320 0.000 0.628 0.000 0.000
#> GSM564719     1  0.3789    0.69854 0.716 0.260 0.000 0.024 0.000 0.000
#> GSM564720     1  0.1908    0.77148 0.916 0.028 0.000 0.056 0.000 0.000
#> GSM564721     4  0.4945    0.52067 0.328 0.084 0.000 0.588 0.000 0.000
#> GSM564722     2  0.6029   -0.25022 0.356 0.396 0.000 0.248 0.000 0.000
#> GSM564723     1  0.2506    0.77987 0.880 0.052 0.000 0.068 0.000 0.000
#> GSM564724     4  0.4449    0.70057 0.088 0.216 0.000 0.696 0.000 0.000
#> GSM564725     4  0.2260    0.72157 0.140 0.000 0.000 0.860 0.000 0.000
#> GSM564726     4  0.1007    0.75448 0.000 0.044 0.000 0.956 0.000 0.000
#> GSM564727     4  0.3088    0.72567 0.120 0.048 0.000 0.832 0.000 0.000
#> GSM564728     4  0.0363    0.74747 0.000 0.012 0.000 0.988 0.000 0.000
#> GSM564729     4  0.0622    0.74799 0.012 0.008 0.000 0.980 0.000 0.000
#> GSM564730     4  0.5503    0.29121 0.400 0.076 0.020 0.504 0.000 0.000
#> GSM564731     4  0.4029    0.69682 0.028 0.292 0.000 0.680 0.000 0.000
#> GSM564732     4  0.3947    0.71993 0.136 0.100 0.000 0.764 0.000 0.000
#> GSM564733     4  0.4376    0.71709 0.084 0.212 0.000 0.704 0.000 0.000
#> GSM564734     4  0.3412    0.75330 0.064 0.128 0.000 0.808 0.000 0.000
#> GSM564735     4  0.4692    0.67405 0.080 0.276 0.000 0.644 0.000 0.000
#> GSM564736     4  0.1649    0.75712 0.032 0.036 0.000 0.932 0.000 0.000
#> GSM564737     1  0.0865    0.77713 0.964 0.036 0.000 0.000 0.000 0.000
#> GSM564738     2  0.5670   -0.47708 0.156 0.452 0.000 0.392 0.000 0.000
#> GSM564739     4  0.4624    0.70469 0.120 0.192 0.000 0.688 0.000 0.000
#> GSM564740     4  0.4396    0.65668 0.036 0.352 0.000 0.612 0.000 0.000
#> GSM564741     4  0.5668    0.56852 0.152 0.328 0.004 0.516 0.000 0.000
#> GSM564742     2  0.5961   -0.26185 0.312 0.444 0.000 0.244 0.000 0.000
#> GSM564743     1  0.3253    0.75183 0.788 0.192 0.000 0.020 0.000 0.000
#> GSM564744     1  0.2361    0.75329 0.884 0.028 0.000 0.088 0.000 0.000
#> GSM564745     4  0.0717    0.75154 0.016 0.008 0.000 0.976 0.000 0.000
#> GSM564746     1  0.5731    0.53900 0.516 0.260 0.000 0.224 0.000 0.000
#> GSM564747     4  0.5774    0.48906 0.176 0.384 0.000 0.440 0.000 0.000
#> GSM564748     4  0.5716    0.56818 0.192 0.304 0.000 0.504 0.000 0.000
#> GSM564749     1  0.2489    0.77629 0.860 0.128 0.000 0.012 0.000 0.000
#> GSM564750     4  0.2203    0.75962 0.016 0.084 0.004 0.896 0.000 0.000
#> GSM564751     4  0.5191    0.64054 0.172 0.212 0.000 0.616 0.000 0.000
#> GSM564752     4  0.2362    0.74446 0.004 0.136 0.000 0.860 0.000 0.000
#> GSM564753     4  0.5635    0.58040 0.152 0.316 0.004 0.528 0.000 0.000
#> GSM564754     4  0.4549    0.64376 0.232 0.088 0.000 0.680 0.000 0.000
#> GSM564755     4  0.0993    0.75359 0.012 0.024 0.000 0.964 0.000 0.000
#> GSM564756     4  0.4446    0.64481 0.040 0.348 0.000 0.612 0.000 0.000
#> GSM564757     4  0.1010    0.75660 0.004 0.036 0.000 0.960 0.000 0.000
#> GSM564758     4  0.1983    0.75638 0.020 0.072 0.000 0.908 0.000 0.000
#> GSM564759     4  0.4892    0.66010 0.100 0.272 0.000 0.628 0.000 0.000
#> GSM564760     4  0.3382    0.75026 0.124 0.048 0.000 0.820 0.000 0.008
#> GSM564761     1  0.2696    0.71218 0.856 0.028 0.000 0.116 0.000 0.000
#> GSM564762     4  0.4174    0.72438 0.084 0.184 0.000 0.732 0.000 0.000
#> GSM564681     5  0.2768    0.72529 0.000 0.000 0.012 0.000 0.832 0.156
#> GSM564693     5  0.3766    0.58650 0.000 0.000 0.012 0.000 0.684 0.304
#> GSM564646     6  0.1584    0.74227 0.000 0.008 0.000 0.000 0.064 0.928
#> GSM564699     6  0.1500    0.76645 0.000 0.000 0.052 0.012 0.000 0.936

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n genotype/variation(p) disease.state(p) k
#> MAD:pam 148               0.87248           0.4321 2
#> MAD:pam 134               0.05835           0.1342 3
#> MAD:pam 122               0.00435           0.3617 4
#> MAD:pam 118               0.10371           0.2254 5
#> MAD:pam 119               0.05389           0.0616 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 154 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.5007 0.500   0.500
#> 3 3 0.797           0.891       0.908         0.2674 0.856   0.711
#> 4 4 0.676           0.809       0.824         0.0881 0.934   0.820
#> 5 5 0.667           0.807       0.848         0.1230 0.880   0.626
#> 6 6 0.682           0.686       0.757         0.0325 0.949   0.790

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> GSM564615     1       0          1  1  0
#> GSM564616     2       0          1  0  1
#> GSM564617     2       0          1  0  1
#> GSM564618     2       0          1  0  1
#> GSM564619     1       0          1  1  0
#> GSM564620     1       0          1  1  0
#> GSM564621     1       0          1  1  0
#> GSM564622     2       0          1  0  1
#> GSM564623     2       0          1  0  1
#> GSM564624     2       0          1  0  1
#> GSM564625     1       0          1  1  0
#> GSM564626     1       0          1  1  0
#> GSM564627     1       0          1  1  0
#> GSM564628     2       0          1  0  1
#> GSM564629     1       0          1  1  0
#> GSM564630     2       0          1  0  1
#> GSM564609     2       0          1  0  1
#> GSM564610     1       0          1  1  0
#> GSM564611     1       0          1  1  0
#> GSM564612     2       0          1  0  1
#> GSM564613     2       0          1  0  1
#> GSM564614     1       0          1  1  0
#> GSM564631     2       0          1  0  1
#> GSM564632     2       0          1  0  1
#> GSM564633     2       0          1  0  1
#> GSM564634     2       0          1  0  1
#> GSM564635     2       0          1  0  1
#> GSM564636     2       0          1  0  1
#> GSM564637     2       0          1  0  1
#> GSM564638     2       0          1  0  1
#> GSM564639     2       0          1  0  1
#> GSM564640     2       0          1  0  1
#> GSM564641     2       0          1  0  1
#> GSM564642     2       0          1  0  1
#> GSM564643     2       0          1  0  1
#> GSM564644     2       0          1  0  1
#> GSM564645     2       0          1  0  1
#> GSM564647     2       0          1  0  1
#> GSM564648     2       0          1  0  1
#> GSM564649     2       0          1  0  1
#> GSM564650     2       0          1  0  1
#> GSM564651     2       0          1  0  1
#> GSM564652     2       0          1  0  1
#> GSM564653     2       0          1  0  1
#> GSM564654     2       0          1  0  1
#> GSM564655     2       0          1  0  1
#> GSM564656     2       0          1  0  1
#> GSM564657     2       0          1  0  1
#> GSM564658     2       0          1  0  1
#> GSM564659     2       0          1  0  1
#> GSM564660     2       0          1  0  1
#> GSM564661     2       0          1  0  1
#> GSM564662     2       0          1  0  1
#> GSM564663     2       0          1  0  1
#> GSM564664     2       0          1  0  1
#> GSM564665     2       0          1  0  1
#> GSM564666     2       0          1  0  1
#> GSM564667     2       0          1  0  1
#> GSM564668     2       0          1  0  1
#> GSM564669     2       0          1  0  1
#> GSM564670     2       0          1  0  1
#> GSM564671     2       0          1  0  1
#> GSM564672     2       0          1  0  1
#> GSM564673     2       0          1  0  1
#> GSM564674     2       0          1  0  1
#> GSM564675     2       0          1  0  1
#> GSM564676     2       0          1  0  1
#> GSM564677     2       0          1  0  1
#> GSM564678     2       0          1  0  1
#> GSM564679     2       0          1  0  1
#> GSM564680     2       0          1  0  1
#> GSM564682     2       0          1  0  1
#> GSM564683     2       0          1  0  1
#> GSM564684     2       0          1  0  1
#> GSM564685     2       0          1  0  1
#> GSM564686     2       0          1  0  1
#> GSM564687     2       0          1  0  1
#> GSM564688     2       0          1  0  1
#> GSM564689     2       0          1  0  1
#> GSM564690     2       0          1  0  1
#> GSM564691     2       0          1  0  1
#> GSM564692     2       0          1  0  1
#> GSM564694     2       0          1  0  1
#> GSM564695     2       0          1  0  1
#> GSM564696     2       0          1  0  1
#> GSM564697     2       0          1  0  1
#> GSM564698     2       0          1  0  1
#> GSM564700     2       0          1  0  1
#> GSM564701     2       0          1  0  1
#> GSM564702     2       0          1  0  1
#> GSM564703     1       0          1  1  0
#> GSM564704     1       0          1  1  0
#> GSM564705     1       0          1  1  0
#> GSM564706     1       0          1  1  0
#> GSM564707     1       0          1  1  0
#> GSM564708     1       0          1  1  0
#> GSM564709     1       0          1  1  0
#> GSM564710     1       0          1  1  0
#> GSM564711     1       0          1  1  0
#> GSM564712     1       0          1  1  0
#> GSM564713     1       0          1  1  0
#> GSM564714     1       0          1  1  0
#> GSM564715     1       0          1  1  0
#> GSM564716     1       0          1  1  0
#> GSM564717     1       0          1  1  0
#> GSM564718     1       0          1  1  0
#> GSM564719     1       0          1  1  0
#> GSM564720     1       0          1  1  0
#> GSM564721     1       0          1  1  0
#> GSM564722     1       0          1  1  0
#> GSM564723     1       0          1  1  0
#> GSM564724     1       0          1  1  0
#> GSM564725     1       0          1  1  0
#> GSM564726     1       0          1  1  0
#> GSM564727     1       0          1  1  0
#> GSM564728     1       0          1  1  0
#> GSM564729     1       0          1  1  0
#> GSM564730     1       0          1  1  0
#> GSM564731     1       0          1  1  0
#> GSM564732     1       0          1  1  0
#> GSM564733     1       0          1  1  0
#> GSM564734     1       0          1  1  0
#> GSM564735     1       0          1  1  0
#> GSM564736     1       0          1  1  0
#> GSM564737     1       0          1  1  0
#> GSM564738     1       0          1  1  0
#> GSM564739     1       0          1  1  0
#> GSM564740     1       0          1  1  0
#> GSM564741     1       0          1  1  0
#> GSM564742     1       0          1  1  0
#> GSM564743     1       0          1  1  0
#> GSM564744     1       0          1  1  0
#> GSM564745     1       0          1  1  0
#> GSM564746     1       0          1  1  0
#> GSM564747     1       0          1  1  0
#> GSM564748     1       0          1  1  0
#> GSM564749     1       0          1  1  0
#> GSM564750     1       0          1  1  0
#> GSM564751     1       0          1  1  0
#> GSM564752     1       0          1  1  0
#> GSM564753     1       0          1  1  0
#> GSM564754     1       0          1  1  0
#> GSM564755     1       0          1  1  0
#> GSM564756     1       0          1  1  0
#> GSM564757     1       0          1  1  0
#> GSM564758     1       0          1  1  0
#> GSM564759     1       0          1  1  0
#> GSM564760     1       0          1  1  0
#> GSM564761     1       0          1  1  0
#> GSM564762     1       0          1  1  0
#> GSM564681     2       0          1  0  1
#> GSM564693     2       0          1  0  1
#> GSM564646     2       0          1  0  1
#> GSM564699     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM564615     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564616     2  0.1964     0.8403 0.000 0.944 0.056
#> GSM564617     2  0.5178     0.8329 0.000 0.744 0.256
#> GSM564618     2  0.1964     0.8403 0.000 0.944 0.056
#> GSM564619     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564620     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564621     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564622     2  0.2066     0.8417 0.000 0.940 0.060
#> GSM564623     3  0.1163     0.8603 0.000 0.028 0.972
#> GSM564624     2  0.4750     0.8461 0.000 0.784 0.216
#> GSM564625     1  0.0237     0.9801 0.996 0.004 0.000
#> GSM564626     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564627     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564628     2  0.4974     0.7896 0.000 0.764 0.236
#> GSM564629     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564630     2  0.6235     0.6137 0.000 0.564 0.436
#> GSM564609     3  0.4291     0.8477 0.000 0.180 0.820
#> GSM564610     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564611     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564612     2  0.5178     0.8268 0.000 0.744 0.256
#> GSM564613     3  0.1529     0.8591 0.000 0.040 0.960
#> GSM564614     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564631     3  0.4062     0.8266 0.000 0.164 0.836
#> GSM564632     3  0.4887     0.8147 0.000 0.228 0.772
#> GSM564633     3  0.3752     0.8623 0.000 0.144 0.856
#> GSM564634     3  0.0747     0.8589 0.000 0.016 0.984
#> GSM564635     3  0.4750     0.8177 0.000 0.216 0.784
#> GSM564636     3  0.4002     0.8317 0.000 0.160 0.840
#> GSM564637     3  0.4235     0.8162 0.000 0.176 0.824
#> GSM564638     3  0.3816     0.8386 0.000 0.148 0.852
#> GSM564639     3  0.0000     0.8564 0.000 0.000 1.000
#> GSM564640     2  0.5138     0.8025 0.000 0.748 0.252
#> GSM564641     3  0.2625     0.8651 0.000 0.084 0.916
#> GSM564642     3  0.4555     0.8348 0.000 0.200 0.800
#> GSM564643     3  0.2711     0.8554 0.000 0.088 0.912
#> GSM564644     2  0.4931     0.8410 0.000 0.768 0.232
#> GSM564645     3  0.3619     0.8462 0.000 0.136 0.864
#> GSM564647     3  0.1753     0.8691 0.000 0.048 0.952
#> GSM564648     2  0.1964     0.8403 0.000 0.944 0.056
#> GSM564649     3  0.4178     0.8200 0.000 0.172 0.828
#> GSM564650     2  0.4974     0.8404 0.000 0.764 0.236
#> GSM564651     2  0.1964     0.8403 0.000 0.944 0.056
#> GSM564652     2  0.1964     0.8403 0.000 0.944 0.056
#> GSM564653     2  0.2066     0.8406 0.000 0.940 0.060
#> GSM564654     3  0.4974     0.8067 0.000 0.236 0.764
#> GSM564655     3  0.2165     0.8599 0.000 0.064 0.936
#> GSM564656     3  0.2959     0.8688 0.000 0.100 0.900
#> GSM564657     3  0.4002     0.8312 0.000 0.160 0.840
#> GSM564658     2  0.5016     0.8408 0.000 0.760 0.240
#> GSM564659     3  0.4931     0.7691 0.000 0.232 0.768
#> GSM564660     3  0.5650     0.4752 0.000 0.312 0.688
#> GSM564661     2  0.1964     0.8418 0.000 0.944 0.056
#> GSM564662     3  0.1163     0.8647 0.000 0.028 0.972
#> GSM564663     2  0.4974     0.8404 0.000 0.764 0.236
#> GSM564664     2  0.4291     0.8464 0.000 0.820 0.180
#> GSM564665     3  0.5138     0.7043 0.000 0.252 0.748
#> GSM564666     3  0.0592     0.8584 0.000 0.012 0.988
#> GSM564667     3  0.4002     0.8307 0.000 0.160 0.840
#> GSM564668     3  0.2537     0.8525 0.000 0.080 0.920
#> GSM564669     3  0.2448     0.8531 0.000 0.076 0.924
#> GSM564670     2  0.5497     0.7912 0.000 0.708 0.292
#> GSM564671     3  0.2448     0.8531 0.000 0.076 0.924
#> GSM564672     3  0.4062     0.8266 0.000 0.164 0.836
#> GSM564673     2  0.4605     0.8092 0.000 0.796 0.204
#> GSM564674     2  0.5497     0.7924 0.000 0.708 0.292
#> GSM564675     3  0.2165     0.8576 0.000 0.064 0.936
#> GSM564676     2  0.5760     0.7781 0.000 0.672 0.328
#> GSM564677     2  0.1964     0.8403 0.000 0.944 0.056
#> GSM564678     2  0.4931     0.8410 0.000 0.768 0.232
#> GSM564679     2  0.4931     0.8410 0.000 0.768 0.232
#> GSM564680     3  0.3752     0.8416 0.000 0.144 0.856
#> GSM564682     3  0.4796     0.6232 0.000 0.220 0.780
#> GSM564683     3  0.0237     0.8576 0.000 0.004 0.996
#> GSM564684     3  0.2448     0.8531 0.000 0.076 0.924
#> GSM564685     3  0.1860     0.8695 0.000 0.052 0.948
#> GSM564686     3  0.2261     0.8564 0.000 0.068 0.932
#> GSM564687     2  0.6308    -0.0586 0.000 0.508 0.492
#> GSM564688     2  0.2066     0.8406 0.000 0.940 0.060
#> GSM564689     2  0.5058     0.8394 0.000 0.756 0.244
#> GSM564690     2  0.6079     0.7050 0.000 0.612 0.388
#> GSM564691     2  0.4974     0.8404 0.000 0.764 0.236
#> GSM564692     2  0.1964     0.8403 0.000 0.944 0.056
#> GSM564694     3  0.2448     0.8531 0.000 0.076 0.924
#> GSM564695     3  0.2448     0.8425 0.000 0.076 0.924
#> GSM564696     3  0.0237     0.8576 0.000 0.004 0.996
#> GSM564697     2  0.5706     0.7868 0.000 0.680 0.320
#> GSM564698     3  0.3482     0.8672 0.000 0.128 0.872
#> GSM564700     3  0.2448     0.8531 0.000 0.076 0.924
#> GSM564701     2  0.3412     0.8511 0.000 0.876 0.124
#> GSM564702     2  0.1964     0.8403 0.000 0.944 0.056
#> GSM564703     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564704     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564705     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564706     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564707     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564708     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564709     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564710     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564711     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564712     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564713     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564714     1  0.1163     0.9798 0.972 0.028 0.000
#> GSM564715     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564716     1  0.1643     0.9786 0.956 0.044 0.000
#> GSM564717     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564718     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564719     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564720     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564721     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564722     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564723     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564724     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564725     1  0.1753     0.9782 0.952 0.048 0.000
#> GSM564726     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564727     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564728     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564729     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564730     1  0.1643     0.9786 0.956 0.044 0.000
#> GSM564731     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564732     1  0.0237     0.9801 0.996 0.004 0.000
#> GSM564733     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564734     1  0.0237     0.9801 0.996 0.004 0.000
#> GSM564735     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564736     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564737     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564738     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564739     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564740     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564741     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564742     1  0.1163     0.9798 0.972 0.028 0.000
#> GSM564743     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564744     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564745     1  0.0592     0.9801 0.988 0.012 0.000
#> GSM564746     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564747     1  0.1163     0.9798 0.972 0.028 0.000
#> GSM564748     1  0.0892     0.9804 0.980 0.020 0.000
#> GSM564749     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564750     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564751     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564752     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564753     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564754     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564755     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564756     1  0.1289     0.9797 0.968 0.032 0.000
#> GSM564757     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564758     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564759     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564760     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564761     1  0.1860     0.9777 0.948 0.052 0.000
#> GSM564762     1  0.0000     0.9799 1.000 0.000 0.000
#> GSM564681     2  0.1964     0.8403 0.000 0.944 0.056
#> GSM564693     2  0.3267     0.8500 0.000 0.884 0.116
#> GSM564646     3  0.4121     0.8502 0.000 0.168 0.832
#> GSM564699     3  0.0237     0.8576 0.000 0.004 0.996

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM564615     1  0.1902     0.8793 0.932 0.064 0.000 0.004
#> GSM564616     4  0.0469     0.8234 0.000 0.000 0.012 0.988
#> GSM564617     2  0.6320     0.8283 0.000 0.660 0.160 0.180
#> GSM564618     4  0.0336     0.8223 0.000 0.000 0.008 0.992
#> GSM564619     1  0.3801     0.8874 0.780 0.220 0.000 0.000
#> GSM564620     1  0.3688     0.8916 0.792 0.208 0.000 0.000
#> GSM564621     1  0.3801     0.8874 0.780 0.220 0.000 0.000
#> GSM564622     4  0.2805     0.7920 0.000 0.012 0.100 0.888
#> GSM564623     3  0.1452     0.8175 0.000 0.008 0.956 0.036
#> GSM564624     2  0.6773     0.6328 0.000 0.544 0.108 0.348
#> GSM564625     1  0.1978     0.8814 0.928 0.068 0.000 0.004
#> GSM564626     1  0.3942     0.8809 0.764 0.236 0.000 0.000
#> GSM564627     1  0.3873     0.8842 0.772 0.228 0.000 0.000
#> GSM564628     4  0.4514     0.7151 0.000 0.064 0.136 0.800
#> GSM564629     1  0.1743     0.8875 0.940 0.056 0.000 0.004
#> GSM564630     2  0.6549     0.7591 0.000 0.612 0.268 0.120
#> GSM564609     3  0.3525     0.8260 0.000 0.040 0.860 0.100
#> GSM564610     1  0.3873     0.8808 0.772 0.228 0.000 0.000
#> GSM564611     1  0.3873     0.8787 0.772 0.228 0.000 0.000
#> GSM564612     2  0.6240     0.8303 0.000 0.664 0.136 0.200
#> GSM564613     2  0.5368     0.7584 0.000 0.636 0.340 0.024
#> GSM564614     1  0.1902     0.8793 0.932 0.064 0.000 0.004
#> GSM564631     3  0.4898     0.7523 0.000 0.116 0.780 0.104
#> GSM564632     3  0.4088     0.8016 0.000 0.040 0.820 0.140
#> GSM564633     3  0.3056     0.8292 0.000 0.040 0.888 0.072
#> GSM564634     2  0.5284     0.7252 0.000 0.616 0.368 0.016
#> GSM564635     3  0.3716     0.8076 0.000 0.052 0.852 0.096
#> GSM564636     3  0.5968     0.5645 0.000 0.236 0.672 0.092
#> GSM564637     3  0.6063     0.6105 0.000 0.196 0.680 0.124
#> GSM564638     3  0.4104     0.7983 0.000 0.080 0.832 0.088
#> GSM564639     3  0.1297     0.8312 0.000 0.016 0.964 0.020
#> GSM564640     4  0.7466    -0.2905 0.000 0.388 0.176 0.436
#> GSM564641     3  0.6290     0.1573 0.000 0.364 0.568 0.068
#> GSM564642     3  0.7480     0.1032 0.000 0.276 0.500 0.224
#> GSM564643     3  0.2399     0.8327 0.000 0.032 0.920 0.048
#> GSM564644     2  0.6240     0.8285 0.000 0.664 0.136 0.200
#> GSM564645     3  0.4817     0.7549 0.000 0.128 0.784 0.088
#> GSM564647     2  0.5865     0.7294 0.000 0.612 0.340 0.048
#> GSM564648     4  0.1545     0.8255 0.000 0.008 0.040 0.952
#> GSM564649     3  0.5911     0.6313 0.000 0.196 0.692 0.112
#> GSM564650     2  0.6096     0.8354 0.000 0.680 0.136 0.184
#> GSM564651     4  0.1452     0.8260 0.000 0.008 0.036 0.956
#> GSM564652     4  0.1489     0.8251 0.000 0.004 0.044 0.952
#> GSM564653     4  0.0336     0.8196 0.000 0.000 0.008 0.992
#> GSM564654     3  0.3464     0.8091 0.000 0.032 0.860 0.108
#> GSM564655     3  0.1406     0.8251 0.000 0.024 0.960 0.016
#> GSM564656     3  0.3081     0.8275 0.000 0.048 0.888 0.064
#> GSM564657     2  0.6714     0.5720 0.000 0.540 0.360 0.100
#> GSM564658     2  0.6163     0.8448 0.000 0.676 0.160 0.164
#> GSM564659     3  0.6951     0.4096 0.000 0.140 0.556 0.304
#> GSM564660     2  0.6245     0.8124 0.000 0.648 0.244 0.108
#> GSM564661     4  0.3205     0.7833 0.000 0.024 0.104 0.872
#> GSM564662     3  0.1929     0.8322 0.000 0.036 0.940 0.024
#> GSM564663     2  0.6170     0.8335 0.000 0.672 0.136 0.192
#> GSM564664     4  0.6418     0.4144 0.000 0.216 0.140 0.644
#> GSM564665     3  0.6941     0.4343 0.000 0.220 0.588 0.192
#> GSM564666     3  0.1256     0.8247 0.000 0.008 0.964 0.028
#> GSM564667     2  0.6867     0.3985 0.000 0.484 0.412 0.104
#> GSM564668     3  0.2002     0.8318 0.000 0.020 0.936 0.044
#> GSM564669     3  0.1635     0.8280 0.000 0.008 0.948 0.044
#> GSM564670     2  0.6295     0.8148 0.000 0.656 0.132 0.212
#> GSM564671     3  0.1452     0.8175 0.000 0.008 0.956 0.036
#> GSM564672     3  0.5272     0.7230 0.000 0.136 0.752 0.112
#> GSM564673     4  0.4289     0.7125 0.000 0.032 0.172 0.796
#> GSM564674     2  0.6162     0.8455 0.000 0.676 0.168 0.156
#> GSM564675     3  0.1452     0.8175 0.000 0.008 0.956 0.036
#> GSM564676     2  0.5944     0.8416 0.000 0.684 0.212 0.104
#> GSM564677     4  0.0188     0.8202 0.000 0.000 0.004 0.996
#> GSM564678     2  0.6303     0.8335 0.000 0.660 0.148 0.192
#> GSM564679     2  0.6193     0.8396 0.000 0.672 0.148 0.180
#> GSM564680     3  0.3266     0.8201 0.000 0.040 0.876 0.084
#> GSM564682     2  0.5475     0.7918 0.000 0.656 0.308 0.036
#> GSM564683     3  0.0804     0.8209 0.000 0.008 0.980 0.012
#> GSM564684     3  0.1452     0.8175 0.000 0.008 0.956 0.036
#> GSM564685     3  0.2589     0.8324 0.000 0.044 0.912 0.044
#> GSM564686     3  0.1452     0.8215 0.000 0.008 0.956 0.036
#> GSM564687     4  0.7578    -0.0431 0.000 0.284 0.236 0.480
#> GSM564688     4  0.0188     0.8202 0.000 0.000 0.004 0.996
#> GSM564689     2  0.5994     0.8448 0.000 0.692 0.156 0.152
#> GSM564690     2  0.6056     0.8210 0.000 0.660 0.248 0.092
#> GSM564691     2  0.6205     0.8319 0.000 0.668 0.136 0.196
#> GSM564692     4  0.0188     0.8202 0.000 0.000 0.004 0.996
#> GSM564694     3  0.1677     0.8296 0.000 0.012 0.948 0.040
#> GSM564695     2  0.5417     0.8070 0.000 0.676 0.284 0.040
#> GSM564696     3  0.0804     0.8209 0.000 0.008 0.980 0.012
#> GSM564697     2  0.5982     0.8463 0.000 0.684 0.204 0.112
#> GSM564698     3  0.2751     0.8303 0.000 0.040 0.904 0.056
#> GSM564700     3  0.1635     0.8213 0.000 0.008 0.948 0.044
#> GSM564701     4  0.3803     0.7519 0.000 0.032 0.132 0.836
#> GSM564702     4  0.0188     0.8202 0.000 0.000 0.004 0.996
#> GSM564703     1  0.1118     0.9056 0.964 0.036 0.000 0.000
#> GSM564704     1  0.3356     0.8945 0.824 0.176 0.000 0.000
#> GSM564705     1  0.3873     0.8787 0.772 0.228 0.000 0.000
#> GSM564706     1  0.0000     0.9005 1.000 0.000 0.000 0.000
#> GSM564707     1  0.3837     0.8803 0.776 0.224 0.000 0.000
#> GSM564708     1  0.0188     0.9003 0.996 0.004 0.000 0.000
#> GSM564709     1  0.3688     0.8871 0.792 0.208 0.000 0.000
#> GSM564710     1  0.3873     0.8794 0.772 0.228 0.000 0.000
#> GSM564711     1  0.0592     0.9034 0.984 0.016 0.000 0.000
#> GSM564712     1  0.3873     0.8787 0.772 0.228 0.000 0.000
#> GSM564713     1  0.1902     0.8793 0.932 0.064 0.000 0.004
#> GSM564714     1  0.1716     0.9060 0.936 0.064 0.000 0.000
#> GSM564715     1  0.3528     0.8913 0.808 0.192 0.000 0.000
#> GSM564716     1  0.3688     0.8916 0.792 0.208 0.000 0.000
#> GSM564717     1  0.3726     0.8854 0.788 0.212 0.000 0.000
#> GSM564718     1  0.0000     0.9005 1.000 0.000 0.000 0.000
#> GSM564719     1  0.3649     0.8884 0.796 0.204 0.000 0.000
#> GSM564720     1  0.3873     0.8787 0.772 0.228 0.000 0.000
#> GSM564721     1  0.3873     0.8830 0.772 0.228 0.000 0.000
#> GSM564722     1  0.2921     0.9000 0.860 0.140 0.000 0.000
#> GSM564723     1  0.3837     0.8806 0.776 0.224 0.000 0.000
#> GSM564724     1  0.1022     0.8946 0.968 0.032 0.000 0.000
#> GSM564725     1  0.3610     0.8939 0.800 0.200 0.000 0.000
#> GSM564726     1  0.1902     0.8793 0.932 0.064 0.000 0.004
#> GSM564727     1  0.3873     0.8842 0.772 0.228 0.000 0.000
#> GSM564728     1  0.1489     0.8896 0.952 0.044 0.000 0.004
#> GSM564729     1  0.1743     0.8840 0.940 0.056 0.000 0.004
#> GSM564730     1  0.3444     0.8957 0.816 0.184 0.000 0.000
#> GSM564731     1  0.0000     0.9005 1.000 0.000 0.000 0.000
#> GSM564732     1  0.0469     0.8992 0.988 0.012 0.000 0.000
#> GSM564733     1  0.1661     0.8856 0.944 0.052 0.000 0.004
#> GSM564734     1  0.0469     0.9028 0.988 0.012 0.000 0.000
#> GSM564735     1  0.1109     0.8956 0.968 0.028 0.000 0.004
#> GSM564736     1  0.1743     0.8834 0.940 0.056 0.000 0.004
#> GSM564737     1  0.3873     0.8787 0.772 0.228 0.000 0.000
#> GSM564738     1  0.0000     0.9005 1.000 0.000 0.000 0.000
#> GSM564739     1  0.0188     0.9014 0.996 0.004 0.000 0.000
#> GSM564740     1  0.0817     0.8967 0.976 0.024 0.000 0.000
#> GSM564741     1  0.0000     0.9005 1.000 0.000 0.000 0.000
#> GSM564742     1  0.1716     0.9060 0.936 0.064 0.000 0.000
#> GSM564743     1  0.3873     0.8787 0.772 0.228 0.000 0.000
#> GSM564744     1  0.3873     0.8787 0.772 0.228 0.000 0.000
#> GSM564745     1  0.2530     0.9048 0.888 0.112 0.000 0.000
#> GSM564746     1  0.3837     0.8858 0.776 0.224 0.000 0.000
#> GSM564747     1  0.1792     0.9060 0.932 0.068 0.000 0.000
#> GSM564748     1  0.1867     0.9064 0.928 0.072 0.000 0.000
#> GSM564749     1  0.3837     0.8803 0.776 0.224 0.000 0.000
#> GSM564750     1  0.1118     0.8932 0.964 0.036 0.000 0.000
#> GSM564751     1  0.0336     0.9021 0.992 0.008 0.000 0.000
#> GSM564752     1  0.0707     0.8976 0.980 0.020 0.000 0.000
#> GSM564753     1  0.0000     0.9005 1.000 0.000 0.000 0.000
#> GSM564754     1  0.3400     0.8938 0.820 0.180 0.000 0.000
#> GSM564755     1  0.1902     0.8793 0.932 0.064 0.000 0.004
#> GSM564756     1  0.2081     0.9061 0.916 0.084 0.000 0.000
#> GSM564757     1  0.0921     0.8956 0.972 0.028 0.000 0.000
#> GSM564758     1  0.0592     0.8993 0.984 0.016 0.000 0.000
#> GSM564759     1  0.0000     0.9005 1.000 0.000 0.000 0.000
#> GSM564760     1  0.1302     0.8928 0.956 0.044 0.000 0.000
#> GSM564761     1  0.3873     0.8787 0.772 0.228 0.000 0.000
#> GSM564762     1  0.0000     0.9005 1.000 0.000 0.000 0.000
#> GSM564681     4  0.0188     0.8202 0.000 0.000 0.004 0.996
#> GSM564693     4  0.3427     0.7775 0.000 0.028 0.112 0.860
#> GSM564646     3  0.3587     0.8254 0.000 0.040 0.856 0.104
#> GSM564699     3  0.0927     0.8267 0.000 0.008 0.976 0.016

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM564615     4  0.2326     0.8922 0.044 0.020 0.000 0.916 0.020
#> GSM564616     5  0.0609     0.8592 0.000 0.020 0.000 0.000 0.980
#> GSM564617     2  0.4334     0.8192 0.000 0.764 0.080 0.000 0.156
#> GSM564618     5  0.0609     0.8592 0.000 0.020 0.000 0.000 0.980
#> GSM564619     1  0.2377     0.8922 0.872 0.000 0.000 0.128 0.000
#> GSM564620     1  0.2690     0.8777 0.844 0.000 0.000 0.156 0.000
#> GSM564621     1  0.2424     0.8939 0.868 0.000 0.000 0.132 0.000
#> GSM564622     5  0.3159     0.8086 0.000 0.056 0.088 0.000 0.856
#> GSM564623     3  0.3277     0.8385 0.008 0.148 0.832 0.000 0.012
#> GSM564624     2  0.5128     0.7285 0.000 0.656 0.076 0.000 0.268
#> GSM564625     4  0.2805     0.8929 0.072 0.020 0.000 0.888 0.020
#> GSM564626     1  0.1851     0.8995 0.912 0.000 0.000 0.088 0.000
#> GSM564627     1  0.2179     0.8993 0.888 0.000 0.000 0.112 0.000
#> GSM564628     5  0.4889     0.6494 0.000 0.136 0.144 0.000 0.720
#> GSM564629     4  0.4365     0.7369 0.212 0.020 0.000 0.748 0.020
#> GSM564630     2  0.3765     0.7756 0.004 0.820 0.112 0.000 0.064
#> GSM564609     3  0.1981     0.8581 0.000 0.048 0.924 0.000 0.028
#> GSM564610     1  0.1851     0.9024 0.912 0.000 0.000 0.088 0.000
#> GSM564611     1  0.0963     0.9009 0.964 0.000 0.000 0.036 0.000
#> GSM564612     2  0.4680     0.8294 0.000 0.740 0.128 0.000 0.132
#> GSM564613     2  0.3550     0.7330 0.004 0.760 0.236 0.000 0.000
#> GSM564614     4  0.2170     0.8872 0.036 0.020 0.000 0.924 0.020
#> GSM564631     3  0.2653     0.8219 0.000 0.096 0.880 0.000 0.024
#> GSM564632     3  0.2983     0.8348 0.000 0.056 0.868 0.000 0.076
#> GSM564633     3  0.1018     0.8547 0.000 0.016 0.968 0.000 0.016
#> GSM564634     2  0.3635     0.7090 0.004 0.748 0.248 0.000 0.000
#> GSM564635     3  0.1648     0.8471 0.000 0.040 0.940 0.000 0.020
#> GSM564636     3  0.2616     0.8230 0.000 0.100 0.880 0.000 0.020
#> GSM564637     3  0.3409     0.7839 0.000 0.144 0.824 0.000 0.032
#> GSM564638     3  0.2172     0.8350 0.000 0.076 0.908 0.000 0.016
#> GSM564639     3  0.1205     0.8553 0.004 0.040 0.956 0.000 0.000
#> GSM564640     2  0.6173     0.3175 0.000 0.468 0.136 0.000 0.396
#> GSM564641     3  0.3635     0.6495 0.000 0.248 0.748 0.000 0.004
#> GSM564642     3  0.6736    -0.0381 0.000 0.312 0.412 0.000 0.276
#> GSM564643     3  0.2172     0.8562 0.000 0.076 0.908 0.000 0.016
#> GSM564644     2  0.4587     0.8242 0.000 0.744 0.096 0.000 0.160
#> GSM564645     3  0.2130     0.8371 0.000 0.080 0.908 0.000 0.012
#> GSM564647     2  0.4147     0.6726 0.000 0.676 0.316 0.000 0.008
#> GSM564648     5  0.1364     0.8591 0.000 0.036 0.012 0.000 0.952
#> GSM564649     3  0.3165     0.8003 0.000 0.116 0.848 0.000 0.036
#> GSM564650     2  0.4559     0.8283 0.000 0.748 0.100 0.000 0.152
#> GSM564651     5  0.1281     0.8596 0.000 0.032 0.012 0.000 0.956
#> GSM564652     5  0.1281     0.8595 0.000 0.032 0.012 0.000 0.956
#> GSM564653     5  0.0609     0.8592 0.000 0.020 0.000 0.000 0.980
#> GSM564654     3  0.1997     0.8488 0.000 0.036 0.924 0.000 0.040
#> GSM564655     3  0.2536     0.8474 0.004 0.128 0.868 0.000 0.000
#> GSM564656     3  0.0798     0.8528 0.000 0.008 0.976 0.000 0.016
#> GSM564657     3  0.4666     0.1528 0.000 0.412 0.572 0.000 0.016
#> GSM564658     2  0.3339     0.8074 0.000 0.836 0.040 0.000 0.124
#> GSM564659     3  0.5493     0.5557 0.000 0.112 0.632 0.000 0.256
#> GSM564660     2  0.4584     0.7740 0.000 0.716 0.228 0.000 0.056
#> GSM564661     5  0.3176     0.8148 0.000 0.080 0.064 0.000 0.856
#> GSM564662     3  0.1952     0.8601 0.004 0.084 0.912 0.000 0.000
#> GSM564663     2  0.4535     0.8305 0.000 0.752 0.108 0.000 0.140
#> GSM564664     5  0.5757     0.2431 0.000 0.336 0.104 0.000 0.560
#> GSM564665     3  0.5027     0.6518 0.000 0.188 0.700 0.000 0.112
#> GSM564666     3  0.2964     0.8423 0.004 0.152 0.840 0.000 0.004
#> GSM564667     3  0.4651     0.3011 0.000 0.372 0.608 0.000 0.020
#> GSM564668     3  0.2351     0.8533 0.000 0.088 0.896 0.000 0.016
#> GSM564669     3  0.2568     0.8507 0.004 0.092 0.888 0.000 0.016
#> GSM564670     2  0.5032     0.8070 0.000 0.704 0.128 0.000 0.168
#> GSM564671     3  0.3201     0.8348 0.008 0.132 0.844 0.000 0.016
#> GSM564672     3  0.2769     0.8220 0.000 0.092 0.876 0.000 0.032
#> GSM564673     5  0.4199     0.7069 0.000 0.056 0.180 0.000 0.764
#> GSM564674     2  0.4855     0.8099 0.000 0.720 0.168 0.000 0.112
#> GSM564675     3  0.3099     0.8353 0.008 0.132 0.848 0.000 0.012
#> GSM564676     2  0.3003     0.8180 0.000 0.864 0.044 0.000 0.092
#> GSM564677     5  0.0609     0.8592 0.000 0.020 0.000 0.000 0.980
#> GSM564678     2  0.3413     0.8080 0.000 0.832 0.044 0.000 0.124
#> GSM564679     2  0.3339     0.8074 0.000 0.836 0.040 0.000 0.124
#> GSM564680     3  0.1211     0.8485 0.000 0.024 0.960 0.000 0.016
#> GSM564682     2  0.3300     0.7731 0.004 0.792 0.204 0.000 0.000
#> GSM564683     3  0.2488     0.8433 0.004 0.124 0.872 0.000 0.000
#> GSM564684     3  0.2886     0.8439 0.004 0.116 0.864 0.000 0.016
#> GSM564685     3  0.0912     0.8534 0.000 0.016 0.972 0.000 0.012
#> GSM564686     3  0.2575     0.8490 0.004 0.100 0.884 0.000 0.012
#> GSM564687     5  0.6417     0.2160 0.000 0.264 0.228 0.000 0.508
#> GSM564688     5  0.0609     0.8592 0.000 0.020 0.000 0.000 0.980
#> GSM564689     2  0.3255     0.8237 0.000 0.848 0.052 0.000 0.100
#> GSM564690     2  0.2694     0.8146 0.000 0.884 0.040 0.000 0.076
#> GSM564691     2  0.4509     0.8271 0.000 0.752 0.096 0.000 0.152
#> GSM564692     5  0.0609     0.8592 0.000 0.020 0.000 0.000 0.980
#> GSM564694     3  0.2464     0.8564 0.004 0.092 0.892 0.000 0.012
#> GSM564695     2  0.3395     0.7566 0.000 0.764 0.236 0.000 0.000
#> GSM564696     3  0.2536     0.8414 0.004 0.128 0.868 0.000 0.000
#> GSM564697     2  0.3758     0.8387 0.000 0.816 0.088 0.000 0.096
#> GSM564698     3  0.0912     0.8531 0.000 0.016 0.972 0.000 0.012
#> GSM564700     3  0.2784     0.8474 0.004 0.108 0.872 0.000 0.016
#> GSM564701     5  0.3471     0.7918 0.000 0.072 0.092 0.000 0.836
#> GSM564702     5  0.0609     0.8592 0.000 0.020 0.000 0.000 0.980
#> GSM564703     4  0.3438     0.8545 0.172 0.020 0.000 0.808 0.000
#> GSM564704     1  0.3183     0.8456 0.828 0.016 0.000 0.156 0.000
#> GSM564705     1  0.0880     0.8994 0.968 0.000 0.000 0.032 0.000
#> GSM564706     4  0.2632     0.8936 0.072 0.040 0.000 0.888 0.000
#> GSM564707     1  0.1270     0.9046 0.948 0.000 0.000 0.052 0.000
#> GSM564708     4  0.2144     0.8887 0.068 0.020 0.000 0.912 0.000
#> GSM564709     1  0.1851     0.9035 0.912 0.000 0.000 0.088 0.000
#> GSM564710     1  0.1197     0.8952 0.952 0.000 0.000 0.048 0.000
#> GSM564711     4  0.2927     0.8913 0.092 0.040 0.000 0.868 0.000
#> GSM564712     1  0.0794     0.8974 0.972 0.000 0.000 0.028 0.000
#> GSM564713     4  0.1820     0.8854 0.020 0.020 0.000 0.940 0.020
#> GSM564714     4  0.3691     0.8407 0.156 0.040 0.000 0.804 0.000
#> GSM564715     1  0.2818     0.8748 0.856 0.012 0.000 0.132 0.000
#> GSM564716     1  0.3003     0.8419 0.812 0.000 0.000 0.188 0.000
#> GSM564717     1  0.2513     0.8866 0.876 0.008 0.000 0.116 0.000
#> GSM564718     4  0.2595     0.8971 0.080 0.032 0.000 0.888 0.000
#> GSM564719     1  0.2361     0.8944 0.892 0.012 0.000 0.096 0.000
#> GSM564720     1  0.0963     0.9009 0.964 0.000 0.000 0.036 0.000
#> GSM564721     1  0.1732     0.9040 0.920 0.000 0.000 0.080 0.000
#> GSM564722     1  0.4779     0.4852 0.628 0.032 0.000 0.340 0.000
#> GSM564723     1  0.1043     0.9020 0.960 0.000 0.000 0.040 0.000
#> GSM564724     4  0.1195     0.8958 0.028 0.000 0.000 0.960 0.012
#> GSM564725     1  0.3086     0.8530 0.816 0.000 0.000 0.180 0.004
#> GSM564726     4  0.1820     0.8800 0.020 0.020 0.000 0.940 0.020
#> GSM564727     1  0.2127     0.8946 0.892 0.000 0.000 0.108 0.000
#> GSM564728     4  0.2400     0.8942 0.048 0.020 0.000 0.912 0.020
#> GSM564729     4  0.2472     0.8969 0.052 0.020 0.000 0.908 0.020
#> GSM564730     1  0.4171     0.3396 0.604 0.000 0.000 0.396 0.000
#> GSM564731     4  0.2616     0.8964 0.076 0.036 0.000 0.888 0.000
#> GSM564732     4  0.2518     0.9013 0.080 0.008 0.000 0.896 0.016
#> GSM564733     4  0.2416     0.8945 0.060 0.016 0.000 0.908 0.016
#> GSM564734     4  0.3559     0.8424 0.176 0.012 0.000 0.804 0.008
#> GSM564735     4  0.2100     0.9002 0.048 0.012 0.000 0.924 0.016
#> GSM564736     4  0.1815     0.8889 0.024 0.016 0.000 0.940 0.020
#> GSM564737     1  0.0880     0.8994 0.968 0.000 0.000 0.032 0.000
#> GSM564738     4  0.2632     0.8962 0.072 0.040 0.000 0.888 0.000
#> GSM564739     4  0.2864     0.8932 0.112 0.024 0.000 0.864 0.000
#> GSM564740     4  0.1774     0.9035 0.052 0.016 0.000 0.932 0.000
#> GSM564741     4  0.2570     0.8972 0.084 0.028 0.000 0.888 0.000
#> GSM564742     4  0.3608     0.8476 0.148 0.040 0.000 0.812 0.000
#> GSM564743     1  0.0963     0.9009 0.964 0.000 0.000 0.036 0.000
#> GSM564744     1  0.0703     0.8949 0.976 0.000 0.000 0.024 0.000
#> GSM564745     4  0.3766     0.7239 0.268 0.000 0.000 0.728 0.004
#> GSM564746     1  0.2377     0.8947 0.872 0.000 0.000 0.128 0.000
#> GSM564747     4  0.5028     0.1902 0.444 0.032 0.000 0.524 0.000
#> GSM564748     4  0.4620     0.5890 0.320 0.028 0.000 0.652 0.000
#> GSM564749     1  0.0963     0.9009 0.964 0.000 0.000 0.036 0.000
#> GSM564750     4  0.1041     0.9007 0.032 0.004 0.000 0.964 0.000
#> GSM564751     4  0.3283     0.8701 0.140 0.028 0.000 0.832 0.000
#> GSM564752     4  0.1469     0.9017 0.036 0.016 0.000 0.948 0.000
#> GSM564753     4  0.2504     0.8936 0.064 0.040 0.000 0.896 0.000
#> GSM564754     1  0.2411     0.8955 0.884 0.008 0.000 0.108 0.000
#> GSM564755     4  0.2002     0.8853 0.028 0.020 0.000 0.932 0.020
#> GSM564756     1  0.4557     0.3615 0.584 0.012 0.000 0.404 0.000
#> GSM564757     4  0.1883     0.9031 0.048 0.008 0.000 0.932 0.012
#> GSM564758     4  0.1197     0.8890 0.048 0.000 0.000 0.952 0.000
#> GSM564759     4  0.2632     0.8936 0.072 0.040 0.000 0.888 0.000
#> GSM564760     4  0.2270     0.8947 0.076 0.000 0.000 0.904 0.020
#> GSM564761     1  0.0880     0.8986 0.968 0.000 0.000 0.032 0.000
#> GSM564762     4  0.3096     0.8926 0.108 0.024 0.000 0.860 0.008
#> GSM564681     5  0.0609     0.8592 0.000 0.020 0.000 0.000 0.980
#> GSM564693     5  0.3130     0.8063 0.000 0.048 0.096 0.000 0.856
#> GSM564646     3  0.2790     0.8508 0.000 0.068 0.880 0.000 0.052
#> GSM564699     3  0.2179     0.8537 0.004 0.100 0.896 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5 p6
#> GSM564615     4  0.1713     0.8175 0.000 0.044 0.000 0.928 0.000 NA
#> GSM564616     5  0.0405     0.8320 0.000 0.004 0.008 0.000 0.988 NA
#> GSM564617     2  0.4537     0.7226 0.000 0.748 0.108 0.000 0.112 NA
#> GSM564618     5  0.0767     0.8324 0.000 0.008 0.012 0.000 0.976 NA
#> GSM564619     1  0.2689     0.8695 0.876 0.004 0.000 0.080 0.004 NA
#> GSM564620     1  0.4762     0.4993 0.604 0.004 0.000 0.344 0.004 NA
#> GSM564621     1  0.3733     0.8217 0.784 0.004 0.000 0.164 0.004 NA
#> GSM564622     5  0.2677     0.7590 0.000 0.016 0.084 0.000 0.876 NA
#> GSM564623     3  0.3103     0.6265 0.000 0.036 0.848 0.000 0.016 NA
#> GSM564624     2  0.4758     0.2806 0.000 0.500 0.032 0.000 0.460 NA
#> GSM564625     4  0.2009     0.8103 0.004 0.040 0.000 0.916 0.000 NA
#> GSM564626     1  0.1810     0.8765 0.932 0.008 0.000 0.036 0.004 NA
#> GSM564627     1  0.3237     0.8591 0.836 0.004 0.000 0.108 0.004 NA
#> GSM564628     5  0.6774    -0.0825 0.000 0.124 0.348 0.000 0.432 NA
#> GSM564629     4  0.3893     0.7636 0.124 0.044 0.000 0.796 0.000 NA
#> GSM564630     2  0.5728     0.5763 0.000 0.604 0.248 0.000 0.048 NA
#> GSM564609     3  0.2420     0.6852 0.000 0.004 0.888 0.000 0.032 NA
#> GSM564610     1  0.2344     0.8789 0.896 0.004 0.000 0.048 0.000 NA
#> GSM564611     1  0.1391     0.8738 0.944 0.016 0.000 0.000 0.000 NA
#> GSM564612     2  0.7028     0.5325 0.000 0.464 0.156 0.000 0.132 NA
#> GSM564613     3  0.5264     0.2398 0.000 0.304 0.588 0.000 0.008 NA
#> GSM564614     4  0.1863     0.8178 0.000 0.044 0.000 0.920 0.000 NA
#> GSM564631     3  0.4955     0.5794 0.000 0.056 0.520 0.000 0.004 NA
#> GSM564632     3  0.4461     0.6573 0.000 0.020 0.736 0.000 0.076 NA
#> GSM564633     3  0.2482     0.6855 0.000 0.004 0.848 0.000 0.000 NA
#> GSM564634     3  0.4633     0.4570 0.000 0.188 0.704 0.000 0.008 NA
#> GSM564635     3  0.4521     0.6068 0.000 0.028 0.568 0.000 0.004 NA
#> GSM564636     3  0.4703     0.5932 0.000 0.048 0.544 0.000 0.000 NA
#> GSM564637     3  0.5271     0.5749 0.000 0.068 0.512 0.000 0.012 NA
#> GSM564638     3  0.4603     0.5942 0.000 0.040 0.544 0.000 0.000 NA
#> GSM564639     3  0.2112     0.6898 0.000 0.016 0.896 0.000 0.000 NA
#> GSM564640     2  0.6656     0.3503 0.000 0.412 0.360 0.000 0.176 NA
#> GSM564641     3  0.4968     0.6112 0.000 0.068 0.576 0.000 0.004 NA
#> GSM564642     3  0.5105     0.5629 0.000 0.124 0.708 0.000 0.064 NA
#> GSM564643     3  0.2022     0.6790 0.000 0.008 0.916 0.000 0.024 NA
#> GSM564644     2  0.4616     0.6669 0.000 0.684 0.084 0.000 0.228 NA
#> GSM564645     3  0.4709     0.5920 0.000 0.048 0.540 0.000 0.000 NA
#> GSM564647     3  0.4780     0.5209 0.000 0.180 0.692 0.000 0.008 NA
#> GSM564648     5  0.1086     0.8297 0.000 0.012 0.012 0.000 0.964 NA
#> GSM564649     3  0.5052     0.5741 0.000 0.064 0.512 0.000 0.004 NA
#> GSM564650     2  0.5583     0.7108 0.000 0.660 0.108 0.000 0.156 NA
#> GSM564651     5  0.1059     0.8303 0.000 0.016 0.016 0.000 0.964 NA
#> GSM564652     5  0.0984     0.8312 0.000 0.012 0.012 0.000 0.968 NA
#> GSM564653     5  0.0520     0.8302 0.000 0.008 0.008 0.000 0.984 NA
#> GSM564654     3  0.4887     0.6083 0.000 0.020 0.572 0.000 0.032 NA
#> GSM564655     3  0.2182     0.6592 0.000 0.020 0.904 0.000 0.008 NA
#> GSM564656     3  0.2473     0.6852 0.000 0.008 0.856 0.000 0.000 NA
#> GSM564657     3  0.5137     0.5657 0.000 0.072 0.508 0.000 0.004 NA
#> GSM564658     2  0.2670     0.6928 0.000 0.872 0.040 0.000 0.084 NA
#> GSM564659     3  0.6465     0.4640 0.000 0.048 0.452 0.000 0.152 NA
#> GSM564660     3  0.6295    -0.1145 0.000 0.376 0.464 0.000 0.076 NA
#> GSM564661     5  0.3258     0.7302 0.000 0.092 0.064 0.000 0.836 NA
#> GSM564662     3  0.4180     0.6294 0.000 0.024 0.628 0.000 0.000 NA
#> GSM564663     2  0.5248     0.6853 0.000 0.672 0.084 0.000 0.196 NA
#> GSM564664     2  0.6152     0.5217 0.000 0.496 0.156 0.000 0.320 NA
#> GSM564665     3  0.6378     0.4883 0.000 0.088 0.476 0.000 0.084 NA
#> GSM564666     3  0.2778     0.6416 0.000 0.032 0.872 0.000 0.016 NA
#> GSM564667     3  0.5288     0.5659 0.000 0.088 0.504 0.000 0.004 NA
#> GSM564668     3  0.1952     0.6732 0.000 0.012 0.920 0.000 0.016 NA
#> GSM564669     3  0.1820     0.6760 0.000 0.016 0.928 0.000 0.012 NA
#> GSM564670     2  0.6662     0.4446 0.000 0.452 0.328 0.000 0.152 NA
#> GSM564671     3  0.2933     0.6245 0.000 0.032 0.860 0.000 0.016 NA
#> GSM564672     3  0.5004     0.5768 0.000 0.060 0.516 0.000 0.004 NA
#> GSM564673     5  0.5430     0.1693 0.000 0.024 0.368 0.000 0.540 NA
#> GSM564674     2  0.6013     0.4391 0.000 0.508 0.356 0.000 0.068 NA
#> GSM564675     3  0.3005     0.6262 0.000 0.036 0.856 0.000 0.016 NA
#> GSM564676     2  0.2685     0.6916 0.000 0.872 0.044 0.000 0.080 NA
#> GSM564677     5  0.0405     0.8317 0.000 0.004 0.008 0.000 0.988 NA
#> GSM564678     2  0.2579     0.6945 0.000 0.872 0.040 0.000 0.088 NA
#> GSM564679     2  0.2579     0.6898 0.000 0.876 0.032 0.000 0.088 NA
#> GSM564680     3  0.4254     0.6080 0.000 0.020 0.576 0.000 0.000 NA
#> GSM564682     2  0.5337     0.2220 0.000 0.472 0.448 0.000 0.016 NA
#> GSM564683     3  0.2222     0.6490 0.000 0.012 0.896 0.000 0.008 NA
#> GSM564684     3  0.2508     0.6391 0.000 0.016 0.884 0.000 0.016 NA
#> GSM564685     3  0.2623     0.6865 0.000 0.016 0.852 0.000 0.000 NA
#> GSM564686     3  0.2317     0.6522 0.000 0.020 0.900 0.000 0.016 NA
#> GSM564687     3  0.7295     0.1528 0.000 0.172 0.424 0.000 0.236 NA
#> GSM564688     5  0.0520     0.8302 0.000 0.008 0.008 0.000 0.984 NA
#> GSM564689     2  0.2956     0.7132 0.000 0.848 0.064 0.000 0.088 NA
#> GSM564690     2  0.3951     0.7197 0.000 0.796 0.100 0.000 0.076 NA
#> GSM564691     2  0.5960     0.6718 0.000 0.616 0.084 0.000 0.184 NA
#> GSM564692     5  0.0405     0.8317 0.000 0.004 0.008 0.000 0.988 NA
#> GSM564694     3  0.1887     0.6723 0.000 0.012 0.924 0.000 0.016 NA
#> GSM564695     3  0.5386     0.2234 0.000 0.312 0.580 0.000 0.016 NA
#> GSM564696     3  0.2262     0.6482 0.000 0.016 0.896 0.000 0.008 NA
#> GSM564697     2  0.4730     0.7237 0.000 0.728 0.148 0.000 0.088 NA
#> GSM564698     3  0.2431     0.6879 0.000 0.008 0.860 0.000 0.000 NA
#> GSM564700     3  0.2317     0.6496 0.000 0.020 0.900 0.000 0.016 NA
#> GSM564701     5  0.4866     0.5147 0.000 0.140 0.136 0.000 0.704 NA
#> GSM564702     5  0.0405     0.8317 0.000 0.004 0.008 0.000 0.988 NA
#> GSM564703     4  0.3843     0.7898 0.104 0.004 0.000 0.784 0.000 NA
#> GSM564704     1  0.4613     0.6908 0.696 0.004 0.000 0.200 0.000 NA
#> GSM564705     1  0.0951     0.8757 0.968 0.020 0.000 0.004 0.000 NA
#> GSM564706     4  0.4681     0.7217 0.020 0.016 0.000 0.604 0.004 NA
#> GSM564707     1  0.0653     0.8810 0.980 0.004 0.000 0.012 0.000 NA
#> GSM564708     4  0.3075     0.8213 0.016 0.012 0.000 0.840 0.004 NA
#> GSM564709     1  0.2066     0.8737 0.908 0.000 0.000 0.052 0.000 NA
#> GSM564710     1  0.2649     0.8600 0.880 0.012 0.000 0.036 0.000 NA
#> GSM564711     4  0.4691     0.7306 0.024 0.016 0.000 0.620 0.004 NA
#> GSM564712     1  0.1262     0.8763 0.956 0.020 0.000 0.008 0.000 NA
#> GSM564713     4  0.1934     0.8111 0.000 0.040 0.000 0.916 0.000 NA
#> GSM564714     4  0.5205     0.7041 0.056 0.016 0.000 0.580 0.004 NA
#> GSM564715     1  0.3835     0.7987 0.772 0.004 0.000 0.164 0.000 NA
#> GSM564716     4  0.5064    -0.0514 0.460 0.004 0.000 0.480 0.004 NA
#> GSM564717     1  0.3649     0.8151 0.800 0.004 0.000 0.112 0.000 NA
#> GSM564718     4  0.3700     0.8030 0.020 0.016 0.000 0.784 0.004 NA
#> GSM564719     1  0.3996     0.7998 0.776 0.008 0.000 0.104 0.000 NA
#> GSM564720     1  0.1785     0.8764 0.928 0.016 0.000 0.008 0.000 NA
#> GSM564721     1  0.2507     0.8711 0.884 0.004 0.000 0.072 0.000 NA
#> GSM564722     4  0.6177     0.4249 0.296 0.012 0.000 0.464 0.000 NA
#> GSM564723     1  0.1251     0.8784 0.956 0.012 0.000 0.008 0.000 NA
#> GSM564724     4  0.1333     0.8260 0.000 0.008 0.000 0.944 0.000 NA
#> GSM564725     1  0.3791     0.7957 0.760 0.008 0.000 0.200 0.000 NA
#> GSM564726     4  0.1865     0.8194 0.000 0.040 0.000 0.920 0.000 NA
#> GSM564727     1  0.3751     0.8233 0.788 0.004 0.000 0.152 0.004 NA
#> GSM564728     4  0.1713     0.8126 0.000 0.044 0.000 0.928 0.000 NA
#> GSM564729     4  0.1863     0.8182 0.000 0.044 0.000 0.920 0.000 NA
#> GSM564730     1  0.4841     0.6385 0.648 0.004 0.000 0.260 0.000 NA
#> GSM564731     4  0.3542     0.8086 0.020 0.012 0.000 0.796 0.004 NA
#> GSM564732     4  0.2133     0.8186 0.020 0.016 0.000 0.912 0.000 NA
#> GSM564733     4  0.2122     0.8098 0.008 0.040 0.000 0.912 0.000 NA
#> GSM564734     4  0.3750     0.7826 0.104 0.004 0.000 0.800 0.004 NA
#> GSM564735     4  0.1856     0.8230 0.000 0.032 0.000 0.920 0.000 NA
#> GSM564736     4  0.1794     0.8185 0.000 0.040 0.000 0.924 0.000 NA
#> GSM564737     1  0.0951     0.8757 0.968 0.020 0.000 0.004 0.000 NA
#> GSM564738     4  0.4458     0.7560 0.020 0.016 0.000 0.664 0.004 NA
#> GSM564739     4  0.3596     0.8108 0.036 0.016 0.000 0.812 0.004 NA
#> GSM564740     4  0.3779     0.7566 0.008 0.008 0.000 0.708 0.000 NA
#> GSM564741     4  0.3078     0.8163 0.020 0.016 0.000 0.848 0.004 NA
#> GSM564742     4  0.5245     0.7032 0.060 0.016 0.000 0.580 0.004 NA
#> GSM564743     1  0.1692     0.8769 0.932 0.012 0.000 0.008 0.000 NA
#> GSM564744     1  0.0717     0.8741 0.976 0.016 0.000 0.000 0.000 NA
#> GSM564745     4  0.4730     0.5990 0.232 0.004 0.000 0.680 0.004 NA
#> GSM564746     1  0.3517     0.8457 0.812 0.004 0.000 0.128 0.004 NA
#> GSM564747     4  0.5549     0.6743 0.200 0.016 0.000 0.624 0.004 NA
#> GSM564748     4  0.4322     0.7711 0.116 0.004 0.000 0.748 0.004 NA
#> GSM564749     1  0.1785     0.8764 0.928 0.016 0.000 0.008 0.000 NA
#> GSM564750     4  0.1493     0.8270 0.004 0.004 0.000 0.936 0.000 NA
#> GSM564751     4  0.3641     0.8088 0.052 0.012 0.000 0.812 0.004 NA
#> GSM564752     4  0.3650     0.7566 0.000 0.012 0.000 0.708 0.000 NA
#> GSM564753     4  0.4656     0.7270 0.020 0.016 0.000 0.612 0.004 NA
#> GSM564754     1  0.2586     0.8690 0.880 0.008 0.000 0.080 0.000 NA
#> GSM564755     4  0.2070     0.8080 0.000 0.044 0.000 0.908 0.000 NA
#> GSM564756     4  0.5397     0.4828 0.304 0.008 0.000 0.584 0.004 NA
#> GSM564757     4  0.1232     0.8229 0.004 0.024 0.000 0.956 0.000 NA
#> GSM564758     4  0.1806     0.8253 0.000 0.004 0.000 0.908 0.000 NA
#> GSM564759     4  0.4669     0.7241 0.020 0.016 0.000 0.608 0.004 NA
#> GSM564760     4  0.2283     0.8058 0.020 0.020 0.000 0.904 0.000 NA
#> GSM564761     1  0.1851     0.8732 0.928 0.012 0.000 0.024 0.000 NA
#> GSM564762     4  0.2823     0.8222 0.028 0.020 0.000 0.876 0.004 NA
#> GSM564681     5  0.0405     0.8317 0.000 0.004 0.008 0.000 0.988 NA
#> GSM564693     5  0.3554     0.6977 0.000 0.028 0.112 0.000 0.820 NA
#> GSM564646     3  0.2944     0.6687 0.000 0.004 0.856 0.000 0.068 NA
#> GSM564699     3  0.2001     0.6604 0.000 0.012 0.912 0.000 0.008 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n genotype/variation(p) disease.state(p) k
#> MAD:mclust 154                 0.925           0.4759 2
#> MAD:mclust 152                 0.168           0.1854 3
#> MAD:mclust 146                 0.327           0.0374 4
#> MAD:mclust 144                 0.270           0.1799 5
#> MAD:mclust 136                 0.481           0.1648 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 154 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.5007 0.500   0.500
#> 3 3 0.774           0.856       0.935         0.2713 0.806   0.634
#> 4 4 0.607           0.622       0.777         0.1373 0.807   0.535
#> 5 5 0.617           0.669       0.810         0.0815 0.841   0.516
#> 6 6 0.613           0.560       0.758         0.0413 0.899   0.607

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> GSM564615     1       0          1  1  0
#> GSM564616     2       0          1  0  1
#> GSM564617     2       0          1  0  1
#> GSM564618     2       0          1  0  1
#> GSM564619     1       0          1  1  0
#> GSM564620     1       0          1  1  0
#> GSM564621     1       0          1  1  0
#> GSM564622     2       0          1  0  1
#> GSM564623     2       0          1  0  1
#> GSM564624     2       0          1  0  1
#> GSM564625     1       0          1  1  0
#> GSM564626     1       0          1  1  0
#> GSM564627     1       0          1  1  0
#> GSM564628     2       0          1  0  1
#> GSM564629     1       0          1  1  0
#> GSM564630     2       0          1  0  1
#> GSM564609     2       0          1  0  1
#> GSM564610     1       0          1  1  0
#> GSM564611     1       0          1  1  0
#> GSM564612     2       0          1  0  1
#> GSM564613     2       0          1  0  1
#> GSM564614     1       0          1  1  0
#> GSM564631     2       0          1  0  1
#> GSM564632     2       0          1  0  1
#> GSM564633     2       0          1  0  1
#> GSM564634     2       0          1  0  1
#> GSM564635     2       0          1  0  1
#> GSM564636     2       0          1  0  1
#> GSM564637     2       0          1  0  1
#> GSM564638     2       0          1  0  1
#> GSM564639     2       0          1  0  1
#> GSM564640     2       0          1  0  1
#> GSM564641     2       0          1  0  1
#> GSM564642     2       0          1  0  1
#> GSM564643     2       0          1  0  1
#> GSM564644     2       0          1  0  1
#> GSM564645     2       0          1  0  1
#> GSM564647     2       0          1  0  1
#> GSM564648     2       0          1  0  1
#> GSM564649     2       0          1  0  1
#> GSM564650     2       0          1  0  1
#> GSM564651     2       0          1  0  1
#> GSM564652     2       0          1  0  1
#> GSM564653     2       0          1  0  1
#> GSM564654     2       0          1  0  1
#> GSM564655     2       0          1  0  1
#> GSM564656     2       0          1  0  1
#> GSM564657     2       0          1  0  1
#> GSM564658     2       0          1  0  1
#> GSM564659     2       0          1  0  1
#> GSM564660     2       0          1  0  1
#> GSM564661     2       0          1  0  1
#> GSM564662     2       0          1  0  1
#> GSM564663     2       0          1  0  1
#> GSM564664     2       0          1  0  1
#> GSM564665     2       0          1  0  1
#> GSM564666     2       0          1  0  1
#> GSM564667     2       0          1  0  1
#> GSM564668     2       0          1  0  1
#> GSM564669     2       0          1  0  1
#> GSM564670     2       0          1  0  1
#> GSM564671     2       0          1  0  1
#> GSM564672     2       0          1  0  1
#> GSM564673     2       0          1  0  1
#> GSM564674     2       0          1  0  1
#> GSM564675     2       0          1  0  1
#> GSM564676     2       0          1  0  1
#> GSM564677     2       0          1  0  1
#> GSM564678     2       0          1  0  1
#> GSM564679     2       0          1  0  1
#> GSM564680     2       0          1  0  1
#> GSM564682     2       0          1  0  1
#> GSM564683     2       0          1  0  1
#> GSM564684     2       0          1  0  1
#> GSM564685     2       0          1  0  1
#> GSM564686     2       0          1  0  1
#> GSM564687     2       0          1  0  1
#> GSM564688     2       0          1  0  1
#> GSM564689     2       0          1  0  1
#> GSM564690     2       0          1  0  1
#> GSM564691     2       0          1  0  1
#> GSM564692     2       0          1  0  1
#> GSM564694     2       0          1  0  1
#> GSM564695     2       0          1  0  1
#> GSM564696     2       0          1  0  1
#> GSM564697     2       0          1  0  1
#> GSM564698     2       0          1  0  1
#> GSM564700     2       0          1  0  1
#> GSM564701     2       0          1  0  1
#> GSM564702     2       0          1  0  1
#> GSM564703     1       0          1  1  0
#> GSM564704     1       0          1  1  0
#> GSM564705     1       0          1  1  0
#> GSM564706     1       0          1  1  0
#> GSM564707     1       0          1  1  0
#> GSM564708     1       0          1  1  0
#> GSM564709     1       0          1  1  0
#> GSM564710     1       0          1  1  0
#> GSM564711     1       0          1  1  0
#> GSM564712     1       0          1  1  0
#> GSM564713     1       0          1  1  0
#> GSM564714     1       0          1  1  0
#> GSM564715     1       0          1  1  0
#> GSM564716     1       0          1  1  0
#> GSM564717     1       0          1  1  0
#> GSM564718     1       0          1  1  0
#> GSM564719     1       0          1  1  0
#> GSM564720     1       0          1  1  0
#> GSM564721     1       0          1  1  0
#> GSM564722     1       0          1  1  0
#> GSM564723     1       0          1  1  0
#> GSM564724     1       0          1  1  0
#> GSM564725     1       0          1  1  0
#> GSM564726     1       0          1  1  0
#> GSM564727     1       0          1  1  0
#> GSM564728     1       0          1  1  0
#> GSM564729     1       0          1  1  0
#> GSM564730     1       0          1  1  0
#> GSM564731     1       0          1  1  0
#> GSM564732     1       0          1  1  0
#> GSM564733     1       0          1  1  0
#> GSM564734     1       0          1  1  0
#> GSM564735     1       0          1  1  0
#> GSM564736     1       0          1  1  0
#> GSM564737     1       0          1  1  0
#> GSM564738     1       0          1  1  0
#> GSM564739     1       0          1  1  0
#> GSM564740     1       0          1  1  0
#> GSM564741     1       0          1  1  0
#> GSM564742     1       0          1  1  0
#> GSM564743     1       0          1  1  0
#> GSM564744     1       0          1  1  0
#> GSM564745     1       0          1  1  0
#> GSM564746     1       0          1  1  0
#> GSM564747     1       0          1  1  0
#> GSM564748     1       0          1  1  0
#> GSM564749     1       0          1  1  0
#> GSM564750     1       0          1  1  0
#> GSM564751     1       0          1  1  0
#> GSM564752     1       0          1  1  0
#> GSM564753     1       0          1  1  0
#> GSM564754     1       0          1  1  0
#> GSM564755     1       0          1  1  0
#> GSM564756     1       0          1  1  0
#> GSM564757     1       0          1  1  0
#> GSM564758     1       0          1  1  0
#> GSM564759     1       0          1  1  0
#> GSM564760     1       0          1  1  0
#> GSM564761     1       0          1  1  0
#> GSM564762     1       0          1  1  0
#> GSM564681     2       0          1  0  1
#> GSM564693     2       0          1  0  1
#> GSM564646     2       0          1  0  1
#> GSM564699     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM564615     1  0.0000      0.910 1.000 0.000 0.000
#> GSM564616     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564617     2  0.3619      0.828 0.000 0.864 0.136
#> GSM564618     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564619     3  0.4931      0.714 0.232 0.000 0.768
#> GSM564620     1  0.2878      0.846 0.904 0.000 0.096
#> GSM564621     1  0.4842      0.684 0.776 0.000 0.224
#> GSM564622     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564623     2  0.2796      0.882 0.092 0.908 0.000
#> GSM564624     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564625     1  0.0000      0.910 1.000 0.000 0.000
#> GSM564626     3  0.2878      0.834 0.096 0.000 0.904
#> GSM564627     3  0.3941      0.791 0.156 0.000 0.844
#> GSM564628     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564629     1  0.4291      0.748 0.820 0.000 0.180
#> GSM564630     3  0.4702      0.698 0.000 0.212 0.788
#> GSM564609     2  0.1643      0.927 0.044 0.956 0.000
#> GSM564610     3  0.3116      0.826 0.108 0.000 0.892
#> GSM564611     3  0.0000      0.867 0.000 0.000 1.000
#> GSM564612     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564613     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564614     1  0.0000      0.910 1.000 0.000 0.000
#> GSM564631     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564632     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564633     2  0.4654      0.745 0.208 0.792 0.000
#> GSM564634     2  0.3340      0.851 0.000 0.880 0.120
#> GSM564635     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564636     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564637     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564638     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564639     2  0.3116      0.867 0.108 0.892 0.000
#> GSM564640     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564641     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564642     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564643     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564644     2  0.3116      0.865 0.000 0.892 0.108
#> GSM564645     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564647     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564648     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564649     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564650     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564651     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564652     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564653     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564654     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564655     2  0.0424      0.954 0.008 0.992 0.000
#> GSM564656     2  0.5968      0.438 0.364 0.636 0.000
#> GSM564657     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564658     3  0.5560      0.546 0.000 0.300 0.700
#> GSM564659     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564660     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564661     2  0.1643      0.928 0.000 0.956 0.044
#> GSM564662     2  0.0237      0.957 0.004 0.996 0.000
#> GSM564663     2  0.0424      0.954 0.000 0.992 0.008
#> GSM564664     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564665     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564666     2  0.1860      0.921 0.052 0.948 0.000
#> GSM564667     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564668     2  0.1753      0.924 0.048 0.952 0.000
#> GSM564669     2  0.0592      0.952 0.012 0.988 0.000
#> GSM564670     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564671     1  0.4654      0.671 0.792 0.208 0.000
#> GSM564672     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564673     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564674     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564675     1  0.5327      0.576 0.728 0.272 0.000
#> GSM564676     3  0.5431      0.579 0.000 0.284 0.716
#> GSM564677     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564678     3  0.2796      0.808 0.000 0.092 0.908
#> GSM564679     3  0.3038      0.799 0.000 0.104 0.896
#> GSM564680     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564682     2  0.4654      0.735 0.000 0.792 0.208
#> GSM564683     1  0.3941      0.740 0.844 0.156 0.000
#> GSM564684     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564685     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564686     2  0.4750      0.733 0.216 0.784 0.000
#> GSM564687     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564688     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564689     2  0.6299      0.104 0.000 0.524 0.476
#> GSM564690     3  0.0237      0.865 0.000 0.004 0.996
#> GSM564691     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564692     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564694     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564695     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564696     1  0.6724      0.252 0.568 0.420 0.012
#> GSM564697     2  0.1964      0.918 0.000 0.944 0.056
#> GSM564698     2  0.2448      0.898 0.076 0.924 0.000
#> GSM564700     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564701     2  0.0424      0.954 0.000 0.992 0.008
#> GSM564702     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564703     1  0.1411      0.892 0.964 0.000 0.036
#> GSM564704     3  0.6305      0.013 0.484 0.000 0.516
#> GSM564705     3  0.0000      0.867 0.000 0.000 1.000
#> GSM564706     1  0.0000      0.910 1.000 0.000 0.000
#> GSM564707     3  0.0000      0.867 0.000 0.000 1.000
#> GSM564708     1  0.0000      0.910 1.000 0.000 0.000
#> GSM564709     3  0.0424      0.865 0.008 0.000 0.992
#> GSM564710     3  0.0000      0.867 0.000 0.000 1.000
#> GSM564711     1  0.0000      0.910 1.000 0.000 0.000
#> GSM564712     3  0.0000      0.867 0.000 0.000 1.000
#> GSM564713     1  0.0000      0.910 1.000 0.000 0.000
#> GSM564714     1  0.3686      0.816 0.860 0.000 0.140
#> GSM564715     3  0.5363      0.636 0.276 0.000 0.724
#> GSM564716     1  0.1031      0.899 0.976 0.000 0.024
#> GSM564717     3  0.1753      0.855 0.048 0.000 0.952
#> GSM564718     1  0.0000      0.910 1.000 0.000 0.000
#> GSM564719     3  0.0000      0.867 0.000 0.000 1.000
#> GSM564720     3  0.0000      0.867 0.000 0.000 1.000
#> GSM564721     3  0.1860      0.854 0.052 0.000 0.948
#> GSM564722     3  0.4842      0.718 0.224 0.000 0.776
#> GSM564723     3  0.0000      0.867 0.000 0.000 1.000
#> GSM564724     1  0.0000      0.910 1.000 0.000 0.000
#> GSM564725     1  0.6192      0.191 0.580 0.000 0.420
#> GSM564726     1  0.0000      0.910 1.000 0.000 0.000
#> GSM564727     3  0.6180      0.360 0.416 0.000 0.584
#> GSM564728     1  0.0000      0.910 1.000 0.000 0.000
#> GSM564729     1  0.0000      0.910 1.000 0.000 0.000
#> GSM564730     3  0.5948      0.492 0.360 0.000 0.640
#> GSM564731     1  0.0237      0.909 0.996 0.000 0.004
#> GSM564732     1  0.0000      0.910 1.000 0.000 0.000
#> GSM564733     1  0.0000      0.910 1.000 0.000 0.000
#> GSM564734     1  0.2066      0.881 0.940 0.000 0.060
#> GSM564735     1  0.0000      0.910 1.000 0.000 0.000
#> GSM564736     1  0.0000      0.910 1.000 0.000 0.000
#> GSM564737     3  0.0000      0.867 0.000 0.000 1.000
#> GSM564738     1  0.0237      0.909 0.996 0.000 0.004
#> GSM564739     1  0.2261      0.877 0.932 0.000 0.068
#> GSM564740     1  0.0000      0.910 1.000 0.000 0.000
#> GSM564741     1  0.0000      0.910 1.000 0.000 0.000
#> GSM564742     1  0.2448      0.872 0.924 0.000 0.076
#> GSM564743     3  0.0000      0.867 0.000 0.000 1.000
#> GSM564744     3  0.0000      0.867 0.000 0.000 1.000
#> GSM564745     1  0.3619      0.817 0.864 0.000 0.136
#> GSM564746     3  0.4062      0.785 0.164 0.000 0.836
#> GSM564747     1  0.4750      0.729 0.784 0.000 0.216
#> GSM564748     1  0.5948      0.472 0.640 0.000 0.360
#> GSM564749     3  0.0000      0.867 0.000 0.000 1.000
#> GSM564750     1  0.0000      0.910 1.000 0.000 0.000
#> GSM564751     1  0.3340      0.833 0.880 0.000 0.120
#> GSM564752     1  0.0000      0.910 1.000 0.000 0.000
#> GSM564753     1  0.0000      0.910 1.000 0.000 0.000
#> GSM564754     3  0.3116      0.825 0.108 0.000 0.892
#> GSM564755     1  0.0000      0.910 1.000 0.000 0.000
#> GSM564756     1  0.5291      0.649 0.732 0.000 0.268
#> GSM564757     1  0.0000      0.910 1.000 0.000 0.000
#> GSM564758     1  0.0000      0.910 1.000 0.000 0.000
#> GSM564759     1  0.0000      0.910 1.000 0.000 0.000
#> GSM564760     1  0.0237      0.909 0.996 0.000 0.004
#> GSM564761     3  0.0237      0.866 0.004 0.000 0.996
#> GSM564762     1  0.0237      0.909 0.996 0.000 0.004
#> GSM564681     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564693     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564646     2  0.0000      0.959 0.000 1.000 0.000
#> GSM564699     2  0.5560      0.582 0.300 0.700 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM564615     1  0.0188     0.6831 0.996 0.000 0.004 0.000
#> GSM564616     2  0.2586     0.8269 0.004 0.900 0.092 0.004
#> GSM564617     4  0.6213     0.5196 0.008 0.280 0.068 0.644
#> GSM564618     2  0.1356     0.8711 0.008 0.960 0.032 0.000
#> GSM564619     1  0.5237     0.5685 0.628 0.000 0.356 0.016
#> GSM564620     1  0.3401     0.6956 0.840 0.000 0.152 0.008
#> GSM564621     1  0.5057     0.5860 0.648 0.000 0.340 0.012
#> GSM564622     2  0.1716     0.8579 0.000 0.936 0.064 0.000
#> GSM564623     2  0.3812     0.7659 0.140 0.832 0.028 0.000
#> GSM564624     2  0.1356     0.8748 0.008 0.960 0.032 0.000
#> GSM564625     1  0.2589     0.7006 0.884 0.000 0.116 0.000
#> GSM564626     1  0.5452     0.5557 0.616 0.000 0.360 0.024
#> GSM564627     4  0.7677     0.1556 0.372 0.000 0.216 0.412
#> GSM564628     2  0.1284     0.8735 0.024 0.964 0.012 0.000
#> GSM564629     1  0.3570     0.6677 0.860 0.000 0.048 0.092
#> GSM564630     4  0.6892     0.6631 0.072 0.124 0.116 0.688
#> GSM564609     2  0.1042     0.8763 0.008 0.972 0.020 0.000
#> GSM564610     4  0.4834     0.6693 0.120 0.000 0.096 0.784
#> GSM564611     4  0.1302     0.7219 0.000 0.000 0.044 0.956
#> GSM564612     2  0.0817     0.8735 0.000 0.976 0.024 0.000
#> GSM564613     4  0.7777     0.1025 0.000 0.316 0.260 0.424
#> GSM564614     1  0.0817     0.6840 0.976 0.000 0.024 0.000
#> GSM564631     2  0.4999    -0.0502 0.000 0.508 0.492 0.000
#> GSM564632     2  0.0336     0.8744 0.000 0.992 0.008 0.000
#> GSM564633     2  0.6274     0.4735 0.152 0.664 0.184 0.000
#> GSM564634     3  0.7622     0.3319 0.000 0.280 0.472 0.248
#> GSM564635     2  0.3249     0.7852 0.008 0.852 0.140 0.000
#> GSM564636     2  0.3219     0.7687 0.000 0.836 0.164 0.000
#> GSM564637     2  0.1118     0.8708 0.000 0.964 0.036 0.000
#> GSM564638     3  0.5807     0.4649 0.044 0.344 0.612 0.000
#> GSM564639     3  0.7250     0.5989 0.220 0.236 0.544 0.000
#> GSM564640     2  0.0188     0.8755 0.000 0.996 0.004 0.000
#> GSM564641     3  0.4925     0.2663 0.000 0.428 0.572 0.000
#> GSM564642     2  0.0469     0.8758 0.000 0.988 0.012 0.000
#> GSM564643     2  0.1297     0.8739 0.020 0.964 0.016 0.000
#> GSM564644     2  0.3542     0.8017 0.000 0.852 0.028 0.120
#> GSM564645     2  0.4585     0.4786 0.000 0.668 0.332 0.000
#> GSM564647     2  0.2868     0.8052 0.000 0.864 0.136 0.000
#> GSM564648     2  0.0921     0.8737 0.000 0.972 0.028 0.000
#> GSM564649     2  0.2973     0.7940 0.000 0.856 0.144 0.000
#> GSM564650     2  0.0707     0.8738 0.000 0.980 0.020 0.000
#> GSM564651     2  0.1792     0.8544 0.000 0.932 0.068 0.000
#> GSM564652     2  0.3870     0.6946 0.004 0.788 0.208 0.000
#> GSM564653     2  0.1256     0.8732 0.000 0.964 0.028 0.008
#> GSM564654     2  0.0817     0.8756 0.000 0.976 0.024 0.000
#> GSM564655     2  0.4372     0.6050 0.004 0.728 0.268 0.000
#> GSM564656     3  0.7702     0.5407 0.260 0.288 0.452 0.000
#> GSM564657     3  0.5168     0.0628 0.000 0.492 0.504 0.004
#> GSM564658     4  0.3377     0.6633 0.000 0.140 0.012 0.848
#> GSM564659     2  0.0817     0.8748 0.000 0.976 0.024 0.000
#> GSM564660     2  0.0707     0.8738 0.000 0.980 0.020 0.000
#> GSM564661     2  0.3577     0.7556 0.000 0.832 0.156 0.012
#> GSM564662     3  0.5582     0.3491 0.024 0.400 0.576 0.000
#> GSM564663     2  0.2413     0.8549 0.000 0.916 0.020 0.064
#> GSM564664     2  0.0804     0.8776 0.000 0.980 0.008 0.012
#> GSM564665     2  0.1118     0.8708 0.000 0.964 0.036 0.000
#> GSM564666     2  0.7200    -0.2141 0.056 0.456 0.452 0.036
#> GSM564667     3  0.4989     0.1298 0.000 0.472 0.528 0.000
#> GSM564668     2  0.1833     0.8703 0.024 0.944 0.032 0.000
#> GSM564669     2  0.1209     0.8763 0.004 0.964 0.032 0.000
#> GSM564670     2  0.1388     0.8741 0.000 0.960 0.028 0.012
#> GSM564671     1  0.5137     0.4212 0.716 0.244 0.040 0.000
#> GSM564672     2  0.2081     0.8487 0.000 0.916 0.084 0.000
#> GSM564673     2  0.1022     0.8754 0.000 0.968 0.032 0.000
#> GSM564674     2  0.0592     0.8744 0.000 0.984 0.016 0.000
#> GSM564675     2  0.7519    -0.2299 0.392 0.424 0.184 0.000
#> GSM564676     4  0.0804     0.7103 0.000 0.008 0.012 0.980
#> GSM564677     2  0.2011     0.8448 0.000 0.920 0.080 0.000
#> GSM564678     4  0.1042     0.7122 0.000 0.020 0.008 0.972
#> GSM564679     4  0.3710     0.6315 0.000 0.192 0.004 0.804
#> GSM564680     2  0.2921     0.8005 0.000 0.860 0.140 0.000
#> GSM564682     4  0.6873     0.3039 0.000 0.160 0.252 0.588
#> GSM564683     3  0.4889     0.6178 0.360 0.004 0.636 0.000
#> GSM564684     2  0.0376     0.8768 0.004 0.992 0.004 0.000
#> GSM564685     3  0.6356     0.5117 0.084 0.320 0.596 0.000
#> GSM564686     2  0.7450    -0.0409 0.280 0.504 0.216 0.000
#> GSM564687     2  0.0336     0.8754 0.000 0.992 0.008 0.000
#> GSM564688     2  0.1211     0.8701 0.000 0.960 0.040 0.000
#> GSM564689     4  0.1510     0.7063 0.000 0.028 0.016 0.956
#> GSM564690     4  0.0376     0.7121 0.000 0.004 0.004 0.992
#> GSM564691     2  0.2596     0.8446 0.000 0.908 0.024 0.068
#> GSM564692     2  0.0469     0.8752 0.000 0.988 0.012 0.000
#> GSM564694     2  0.0817     0.8745 0.000 0.976 0.024 0.000
#> GSM564695     2  0.0921     0.8730 0.000 0.972 0.028 0.000
#> GSM564696     3  0.6510     0.6272 0.276 0.028 0.640 0.056
#> GSM564697     4  0.5237     0.4048 0.000 0.356 0.016 0.628
#> GSM564698     2  0.6753     0.3298 0.164 0.608 0.228 0.000
#> GSM564700     2  0.0779     0.8768 0.016 0.980 0.004 0.000
#> GSM564701     2  0.2048     0.8558 0.000 0.928 0.064 0.008
#> GSM564702     2  0.0921     0.8732 0.000 0.972 0.028 0.000
#> GSM564703     1  0.5158     0.3902 0.524 0.000 0.472 0.004
#> GSM564704     1  0.6425     0.4679 0.604 0.000 0.096 0.300
#> GSM564705     4  0.5898     0.5939 0.048 0.000 0.348 0.604
#> GSM564706     3  0.4843     0.6026 0.396 0.000 0.604 0.000
#> GSM564707     4  0.7245     0.4483 0.164 0.000 0.324 0.512
#> GSM564708     1  0.4008     0.3695 0.756 0.000 0.244 0.000
#> GSM564709     4  0.7913     0.0525 0.316 0.000 0.324 0.360
#> GSM564710     4  0.6887     0.5277 0.116 0.000 0.356 0.528
#> GSM564711     3  0.4843     0.6026 0.396 0.000 0.604 0.000
#> GSM564712     4  0.7119     0.4681 0.140 0.000 0.352 0.508
#> GSM564713     1  0.1211     0.6614 0.960 0.000 0.040 0.000
#> GSM564714     3  0.6302     0.3412 0.068 0.000 0.564 0.368
#> GSM564715     1  0.6729     0.5311 0.588 0.000 0.284 0.128
#> GSM564716     1  0.4283     0.6515 0.740 0.000 0.256 0.004
#> GSM564717     4  0.0927     0.7169 0.016 0.000 0.008 0.976
#> GSM564718     3  0.4907     0.5787 0.420 0.000 0.580 0.000
#> GSM564719     4  0.1792     0.6852 0.000 0.000 0.068 0.932
#> GSM564720     4  0.2593     0.7186 0.016 0.000 0.080 0.904
#> GSM564721     1  0.6249     0.5122 0.580 0.000 0.352 0.068
#> GSM564722     4  0.4964     0.4741 0.032 0.000 0.244 0.724
#> GSM564723     4  0.5272     0.6357 0.032 0.000 0.288 0.680
#> GSM564724     1  0.2011     0.6301 0.920 0.000 0.080 0.000
#> GSM564725     1  0.4889     0.5769 0.636 0.000 0.360 0.004
#> GSM564726     1  0.1389     0.6542 0.952 0.000 0.048 0.000
#> GSM564727     1  0.5403     0.5666 0.628 0.000 0.348 0.024
#> GSM564728     1  0.1389     0.6538 0.952 0.000 0.048 0.000
#> GSM564729     1  0.2149     0.7010 0.912 0.000 0.088 0.000
#> GSM564730     1  0.5127     0.5725 0.632 0.000 0.356 0.012
#> GSM564731     3  0.4933     0.5600 0.432 0.000 0.568 0.000
#> GSM564732     1  0.1211     0.6648 0.960 0.000 0.040 0.000
#> GSM564733     1  0.1637     0.6946 0.940 0.000 0.060 0.000
#> GSM564734     1  0.2699     0.6987 0.904 0.000 0.068 0.028
#> GSM564735     1  0.4008     0.3296 0.756 0.000 0.244 0.000
#> GSM564736     1  0.1716     0.6422 0.936 0.000 0.064 0.000
#> GSM564737     4  0.6023     0.5875 0.056 0.000 0.344 0.600
#> GSM564738     3  0.4843     0.6026 0.396 0.000 0.604 0.000
#> GSM564739     1  0.5992     0.5308 0.516 0.000 0.444 0.040
#> GSM564740     1  0.5004    -0.1912 0.604 0.000 0.392 0.004
#> GSM564741     3  0.4907     0.5762 0.420 0.000 0.580 0.000
#> GSM564742     3  0.6715     0.5844 0.252 0.000 0.604 0.144
#> GSM564743     4  0.1118     0.7212 0.000 0.000 0.036 0.964
#> GSM564744     4  0.5898     0.5939 0.048 0.000 0.348 0.604
#> GSM564745     1  0.4855     0.5830 0.644 0.000 0.352 0.004
#> GSM564746     4  0.5265     0.6362 0.160 0.000 0.092 0.748
#> GSM564747     3  0.6520     0.5636 0.364 0.000 0.552 0.084
#> GSM564748     3  0.6678     0.3425 0.240 0.000 0.612 0.148
#> GSM564749     4  0.0817     0.7195 0.000 0.000 0.024 0.976
#> GSM564750     1  0.3764     0.4263 0.784 0.000 0.216 0.000
#> GSM564751     1  0.5444     0.1519 0.560 0.000 0.424 0.016
#> GSM564752     3  0.4972     0.5254 0.456 0.000 0.544 0.000
#> GSM564753     3  0.4843     0.6026 0.396 0.000 0.604 0.000
#> GSM564754     1  0.7369     0.4370 0.512 0.000 0.292 0.196
#> GSM564755     1  0.1302     0.6788 0.956 0.000 0.044 0.000
#> GSM564756     1  0.5848     0.6257 0.684 0.000 0.228 0.088
#> GSM564757     1  0.1716     0.6436 0.936 0.000 0.064 0.000
#> GSM564758     1  0.2345     0.6080 0.900 0.000 0.100 0.000
#> GSM564759     3  0.4843     0.6026 0.396 0.000 0.604 0.000
#> GSM564760     1  0.1118     0.6933 0.964 0.000 0.036 0.000
#> GSM564761     1  0.7943     0.1606 0.392 0.004 0.360 0.244
#> GSM564762     1  0.1792     0.6403 0.932 0.000 0.068 0.000
#> GSM564681     2  0.0188     0.8748 0.000 0.996 0.004 0.000
#> GSM564693     2  0.0469     0.8758 0.000 0.988 0.012 0.000
#> GSM564646     2  0.0188     0.8754 0.000 0.996 0.004 0.000
#> GSM564699     3  0.7337     0.5960 0.272 0.204 0.524 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM564615     4  0.0162     0.8373 0.004 0.000 0.000 0.996 0.000
#> GSM564616     5  0.2172     0.7912 0.016 0.076 0.000 0.000 0.908
#> GSM564617     2  0.3873     0.7097 0.024 0.808 0.012 0.004 0.152
#> GSM564618     5  0.2251     0.8008 0.024 0.052 0.008 0.000 0.916
#> GSM564619     1  0.4029     0.5792 0.680 0.004 0.000 0.316 0.000
#> GSM564620     4  0.1082     0.8349 0.008 0.028 0.000 0.964 0.000
#> GSM564621     4  0.1251     0.8275 0.036 0.008 0.000 0.956 0.000
#> GSM564622     5  0.1347     0.8004 0.008 0.008 0.020 0.004 0.960
#> GSM564623     4  0.6926     0.3206 0.004 0.260 0.024 0.524 0.188
#> GSM564624     5  0.3511     0.7447 0.004 0.184 0.012 0.000 0.800
#> GSM564625     4  0.0404     0.8370 0.012 0.000 0.000 0.988 0.000
#> GSM564626     1  0.2771     0.7424 0.860 0.012 0.000 0.128 0.000
#> GSM564627     4  0.6333     0.2167 0.176 0.328 0.000 0.496 0.000
#> GSM564628     5  0.3246     0.7756 0.000 0.120 0.008 0.024 0.848
#> GSM564629     4  0.1732     0.8204 0.000 0.080 0.000 0.920 0.000
#> GSM564630     2  0.4557     0.7126 0.104 0.772 0.000 0.012 0.112
#> GSM564609     5  0.1774     0.7952 0.000 0.000 0.052 0.016 0.932
#> GSM564610     2  0.4421     0.6514 0.184 0.748 0.000 0.068 0.000
#> GSM564611     1  0.4430     0.2343 0.628 0.360 0.012 0.000 0.000
#> GSM564612     5  0.3631     0.7758 0.000 0.104 0.072 0.000 0.824
#> GSM564613     2  0.3704     0.7173 0.000 0.820 0.088 0.000 0.092
#> GSM564614     4  0.0290     0.8371 0.008 0.000 0.000 0.992 0.000
#> GSM564631     3  0.2439     0.7598 0.000 0.004 0.876 0.000 0.120
#> GSM564632     5  0.0609     0.7981 0.000 0.000 0.020 0.000 0.980
#> GSM564633     3  0.3906     0.5835 0.000 0.000 0.704 0.004 0.292
#> GSM564634     5  0.7517     0.0736 0.036 0.280 0.336 0.000 0.348
#> GSM564635     5  0.4287     0.1845 0.000 0.000 0.460 0.000 0.540
#> GSM564636     5  0.3526     0.7933 0.000 0.072 0.096 0.000 0.832
#> GSM564637     5  0.2719     0.8020 0.000 0.048 0.068 0.000 0.884
#> GSM564638     3  0.2678     0.7595 0.000 0.016 0.880 0.004 0.100
#> GSM564639     3  0.2354     0.7755 0.000 0.008 0.904 0.012 0.076
#> GSM564640     5  0.1282     0.7982 0.000 0.044 0.004 0.000 0.952
#> GSM564641     3  0.3366     0.7034 0.000 0.032 0.828 0.000 0.140
#> GSM564642     5  0.1731     0.7982 0.008 0.012 0.040 0.000 0.940
#> GSM564643     5  0.3327     0.7255 0.000 0.000 0.028 0.144 0.828
#> GSM564644     5  0.4637     0.7642 0.064 0.088 0.060 0.000 0.788
#> GSM564645     3  0.2230     0.7635 0.000 0.000 0.884 0.000 0.116
#> GSM564647     5  0.4752     0.7378 0.000 0.092 0.184 0.000 0.724
#> GSM564648     5  0.0609     0.7966 0.000 0.000 0.020 0.000 0.980
#> GSM564649     5  0.4350     0.3829 0.000 0.004 0.408 0.000 0.588
#> GSM564650     5  0.3612     0.7033 0.000 0.228 0.008 0.000 0.764
#> GSM564651     5  0.3897     0.6731 0.204 0.000 0.028 0.000 0.768
#> GSM564652     5  0.3883     0.6609 0.216 0.000 0.016 0.004 0.764
#> GSM564653     5  0.4084     0.4847 0.328 0.000 0.004 0.000 0.668
#> GSM564654     5  0.1965     0.7845 0.000 0.000 0.096 0.000 0.904
#> GSM564655     3  0.4684     0.1242 0.008 0.004 0.536 0.000 0.452
#> GSM564656     3  0.2818     0.7582 0.000 0.000 0.856 0.012 0.132
#> GSM564657     3  0.1831     0.7690 0.000 0.004 0.920 0.000 0.076
#> GSM564658     2  0.5361     0.6783 0.100 0.696 0.016 0.000 0.188
#> GSM564659     5  0.3090     0.7901 0.000 0.104 0.040 0.000 0.856
#> GSM564660     5  0.3403     0.7594 0.000 0.160 0.012 0.008 0.820
#> GSM564661     5  0.4350     0.2979 0.408 0.004 0.000 0.000 0.588
#> GSM564662     3  0.1544     0.7757 0.000 0.000 0.932 0.000 0.068
#> GSM564663     5  0.4042     0.7148 0.000 0.212 0.032 0.000 0.756
#> GSM564664     5  0.2568     0.7851 0.064 0.012 0.024 0.000 0.900
#> GSM564665     5  0.1768     0.7930 0.000 0.004 0.072 0.000 0.924
#> GSM564666     5  0.6206     0.4412 0.000 0.344 0.080 0.028 0.548
#> GSM564667     3  0.1357     0.7745 0.000 0.004 0.948 0.000 0.048
#> GSM564668     5  0.2580     0.7898 0.016 0.000 0.064 0.020 0.900
#> GSM564669     5  0.3790     0.6224 0.000 0.004 0.272 0.000 0.724
#> GSM564670     5  0.4082     0.7635 0.008 0.140 0.056 0.000 0.796
#> GSM564671     4  0.4155     0.6445 0.004 0.000 0.024 0.744 0.228
#> GSM564672     5  0.4415     0.4387 0.000 0.008 0.388 0.000 0.604
#> GSM564673     5  0.1492     0.7962 0.008 0.000 0.040 0.004 0.948
#> GSM564674     5  0.2464     0.7841 0.000 0.096 0.016 0.000 0.888
#> GSM564675     4  0.4945     0.6815 0.000 0.092 0.048 0.764 0.096
#> GSM564676     2  0.3463     0.7356 0.124 0.836 0.008 0.000 0.032
#> GSM564677     5  0.0671     0.7992 0.016 0.004 0.000 0.000 0.980
#> GSM564678     2  0.3620     0.7461 0.112 0.832 0.008 0.000 0.048
#> GSM564679     2  0.5268     0.6603 0.112 0.668 0.000 0.000 0.220
#> GSM564680     3  0.3561     0.6230 0.000 0.000 0.740 0.000 0.260
#> GSM564682     2  0.4291     0.7191 0.028 0.796 0.128 0.000 0.048
#> GSM564683     3  0.0451     0.7676 0.000 0.000 0.988 0.008 0.004
#> GSM564684     4  0.4995     0.3521 0.000 0.028 0.004 0.584 0.384
#> GSM564685     3  0.1410     0.7768 0.000 0.000 0.940 0.000 0.060
#> GSM564686     5  0.5982     0.4337 0.000 0.060 0.032 0.332 0.576
#> GSM564687     5  0.2305     0.7839 0.000 0.092 0.012 0.000 0.896
#> GSM564688     5  0.1579     0.7963 0.032 0.000 0.024 0.000 0.944
#> GSM564689     2  0.2300     0.7494 0.024 0.904 0.000 0.000 0.072
#> GSM564690     2  0.3693     0.7282 0.156 0.808 0.004 0.000 0.032
#> GSM564691     5  0.5411     0.3664 0.004 0.392 0.052 0.000 0.552
#> GSM564692     5  0.0613     0.7983 0.008 0.004 0.004 0.000 0.984
#> GSM564694     5  0.2822     0.7971 0.000 0.064 0.036 0.012 0.888
#> GSM564695     5  0.3401     0.7841 0.000 0.096 0.064 0.000 0.840
#> GSM564696     3  0.0510     0.7637 0.000 0.016 0.984 0.000 0.000
#> GSM564697     2  0.4839     0.4974 0.004 0.668 0.040 0.000 0.288
#> GSM564698     3  0.3496     0.7075 0.000 0.000 0.788 0.012 0.200
#> GSM564700     4  0.4738     0.2973 0.000 0.012 0.004 0.564 0.420
#> GSM564701     1  0.4648     0.0718 0.524 0.000 0.012 0.000 0.464
#> GSM564702     5  0.1864     0.7864 0.068 0.004 0.004 0.000 0.924
#> GSM564703     1  0.6063     0.3554 0.540 0.000 0.316 0.144 0.000
#> GSM564704     4  0.6860     0.0456 0.380 0.152 0.024 0.444 0.000
#> GSM564705     1  0.0671     0.7613 0.980 0.016 0.000 0.004 0.000
#> GSM564706     3  0.2824     0.7427 0.000 0.020 0.864 0.116 0.000
#> GSM564707     1  0.2172     0.7544 0.916 0.060 0.004 0.020 0.000
#> GSM564708     3  0.3817     0.6616 0.004 0.004 0.740 0.252 0.000
#> GSM564709     1  0.1981     0.7619 0.924 0.048 0.000 0.028 0.000
#> GSM564710     1  0.1300     0.7672 0.956 0.016 0.000 0.028 0.000
#> GSM564711     3  0.4290     0.5590 0.000 0.016 0.680 0.304 0.000
#> GSM564712     1  0.0290     0.7614 0.992 0.008 0.000 0.000 0.000
#> GSM564713     4  0.1267     0.8371 0.012 0.004 0.024 0.960 0.000
#> GSM564714     2  0.5097     0.0188 0.012 0.496 0.476 0.016 0.000
#> GSM564715     1  0.3355     0.7244 0.804 0.012 0.000 0.184 0.000
#> GSM564716     4  0.1670     0.8204 0.052 0.012 0.000 0.936 0.000
#> GSM564717     2  0.4208     0.6926 0.156 0.788 0.032 0.024 0.000
#> GSM564718     4  0.4313     0.3831 0.000 0.008 0.356 0.636 0.000
#> GSM564719     2  0.3678     0.6956 0.140 0.816 0.040 0.004 0.000
#> GSM564720     2  0.4560     0.1611 0.484 0.508 0.008 0.000 0.000
#> GSM564721     1  0.2230     0.7570 0.884 0.000 0.000 0.116 0.000
#> GSM564722     2  0.3986     0.6963 0.068 0.828 0.036 0.068 0.000
#> GSM564723     1  0.1043     0.7501 0.960 0.040 0.000 0.000 0.000
#> GSM564724     4  0.2462     0.7860 0.008 0.000 0.112 0.880 0.000
#> GSM564725     1  0.4047     0.5760 0.676 0.004 0.000 0.320 0.000
#> GSM564726     4  0.0451     0.8379 0.000 0.004 0.008 0.988 0.000
#> GSM564727     4  0.3355     0.7060 0.184 0.012 0.000 0.804 0.000
#> GSM564728     4  0.0324     0.8381 0.000 0.004 0.004 0.992 0.000
#> GSM564729     4  0.0510     0.8361 0.016 0.000 0.000 0.984 0.000
#> GSM564730     1  0.3990     0.6025 0.688 0.004 0.000 0.308 0.000
#> GSM564731     3  0.4516     0.3064 0.004 0.004 0.576 0.416 0.000
#> GSM564732     4  0.0290     0.8374 0.008 0.000 0.000 0.992 0.000
#> GSM564733     4  0.0963     0.8302 0.036 0.000 0.000 0.964 0.000
#> GSM564734     4  0.1369     0.8341 0.028 0.008 0.008 0.956 0.000
#> GSM564735     4  0.1830     0.8209 0.000 0.008 0.068 0.924 0.000
#> GSM564736     4  0.1329     0.8357 0.008 0.004 0.032 0.956 0.000
#> GSM564737     1  0.0404     0.7599 0.988 0.012 0.000 0.000 0.000
#> GSM564738     3  0.3821     0.6897 0.000 0.020 0.764 0.216 0.000
#> GSM564739     1  0.4166     0.6888 0.788 0.008 0.148 0.056 0.000
#> GSM564740     4  0.2771     0.7827 0.000 0.128 0.012 0.860 0.000
#> GSM564741     3  0.2646     0.7446 0.004 0.004 0.868 0.124 0.000
#> GSM564742     3  0.3154     0.7340 0.008 0.088 0.864 0.040 0.000
#> GSM564743     2  0.3048     0.6916 0.176 0.820 0.004 0.000 0.000
#> GSM564744     1  0.0771     0.7609 0.976 0.020 0.000 0.004 0.000
#> GSM564745     4  0.3123     0.7061 0.184 0.004 0.000 0.812 0.000
#> GSM564746     2  0.5038     0.6096 0.164 0.704 0.000 0.132 0.000
#> GSM564747     3  0.4187     0.7267 0.040 0.048 0.812 0.100 0.000
#> GSM564748     3  0.5539     0.3710 0.348 0.048 0.588 0.016 0.000
#> GSM564749     1  0.4306     0.3274 0.660 0.328 0.012 0.000 0.000
#> GSM564750     4  0.3816     0.5133 0.000 0.000 0.304 0.696 0.000
#> GSM564751     3  0.5990     0.3682 0.324 0.028 0.580 0.068 0.000
#> GSM564752     4  0.2723     0.7758 0.000 0.012 0.124 0.864 0.000
#> GSM564753     3  0.2548     0.7467 0.004 0.004 0.876 0.116 0.000
#> GSM564754     1  0.3142     0.7553 0.856 0.032 0.004 0.108 0.000
#> GSM564755     4  0.0324     0.8382 0.000 0.004 0.004 0.992 0.000
#> GSM564756     4  0.3219     0.7389 0.136 0.020 0.004 0.840 0.000
#> GSM564757     4  0.0912     0.8366 0.000 0.012 0.016 0.972 0.000
#> GSM564758     4  0.1243     0.8356 0.004 0.008 0.028 0.960 0.000
#> GSM564759     3  0.3675     0.7114 0.000 0.024 0.788 0.188 0.000
#> GSM564760     4  0.0162     0.8373 0.004 0.000 0.000 0.996 0.000
#> GSM564761     1  0.1168     0.7690 0.960 0.008 0.000 0.032 0.000
#> GSM564762     4  0.0854     0.8376 0.004 0.008 0.012 0.976 0.000
#> GSM564681     5  0.1202     0.7990 0.004 0.032 0.004 0.000 0.960
#> GSM564693     5  0.0613     0.7991 0.004 0.008 0.004 0.000 0.984
#> GSM564646     5  0.5420     0.2454 0.000 0.052 0.004 0.396 0.548
#> GSM564699     5  0.5600     0.5171 0.000 0.028 0.300 0.048 0.624

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM564615     4  0.0260     0.7949 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM564616     5  0.3219     0.6661 0.012 0.192 0.000 0.000 0.792 0.004
#> GSM564617     2  0.1723     0.4901 0.004 0.932 0.004 0.000 0.048 0.012
#> GSM564618     5  0.3352     0.6686 0.016 0.180 0.004 0.000 0.796 0.004
#> GSM564619     1  0.4347     0.6521 0.756 0.036 0.000 0.152 0.000 0.056
#> GSM564620     4  0.1149     0.7964 0.008 0.008 0.000 0.960 0.000 0.024
#> GSM564621     4  0.3189     0.7552 0.100 0.020 0.000 0.844 0.000 0.036
#> GSM564622     5  0.4174     0.6306 0.192 0.016 0.020 0.004 0.756 0.012
#> GSM564623     2  0.6248     0.3674 0.004 0.604 0.016 0.208 0.120 0.048
#> GSM564624     2  0.4564     0.1720 0.004 0.540 0.004 0.000 0.432 0.020
#> GSM564625     4  0.1401     0.7964 0.020 0.004 0.000 0.948 0.000 0.028
#> GSM564626     1  0.1605     0.7931 0.940 0.016 0.000 0.032 0.000 0.012
#> GSM564627     2  0.5646     0.1832 0.132 0.632 0.000 0.192 0.000 0.044
#> GSM564628     5  0.3705     0.6367 0.004 0.220 0.004 0.004 0.756 0.012
#> GSM564629     4  0.2145     0.7815 0.000 0.072 0.000 0.900 0.000 0.028
#> GSM564630     2  0.2109     0.4632 0.028 0.920 0.004 0.000 0.024 0.024
#> GSM564609     5  0.2303     0.7261 0.000 0.000 0.052 0.024 0.904 0.020
#> GSM564610     2  0.4523     0.2736 0.084 0.756 0.000 0.048 0.000 0.112
#> GSM564611     1  0.5087     0.1839 0.508 0.080 0.000 0.000 0.000 0.412
#> GSM564612     5  0.5044     0.5743 0.000 0.224 0.128 0.000 0.644 0.004
#> GSM564613     2  0.2183     0.4829 0.000 0.912 0.028 0.000 0.040 0.020
#> GSM564614     4  0.0405     0.7956 0.008 0.000 0.000 0.988 0.000 0.004
#> GSM564631     3  0.2738     0.6516 0.000 0.000 0.820 0.000 0.176 0.004
#> GSM564632     5  0.0912     0.7255 0.000 0.004 0.008 0.004 0.972 0.012
#> GSM564633     3  0.4303     0.5136 0.008 0.000 0.652 0.000 0.316 0.024
#> GSM564634     6  0.5392     0.3059 0.000 0.148 0.060 0.000 0.116 0.676
#> GSM564635     5  0.3938     0.4980 0.004 0.000 0.312 0.000 0.672 0.012
#> GSM564636     5  0.5258     0.6767 0.004 0.120 0.112 0.004 0.708 0.052
#> GSM564637     5  0.2865     0.7177 0.000 0.064 0.012 0.000 0.868 0.056
#> GSM564638     3  0.2145     0.6801 0.000 0.028 0.900 0.000 0.072 0.000
#> GSM564639     3  0.2058     0.6818 0.000 0.012 0.908 0.000 0.072 0.008
#> GSM564640     5  0.3236     0.7019 0.000 0.036 0.004 0.000 0.820 0.140
#> GSM564641     3  0.4897     0.4871 0.000 0.040 0.684 0.000 0.224 0.052
#> GSM564642     5  0.4594     0.5583 0.020 0.016 0.004 0.004 0.660 0.296
#> GSM564643     5  0.3813     0.6030 0.000 0.004 0.024 0.180 0.776 0.016
#> GSM564644     5  0.5457     0.5848 0.016 0.096 0.016 0.000 0.644 0.228
#> GSM564645     3  0.1714     0.6868 0.000 0.000 0.908 0.000 0.092 0.000
#> GSM564647     5  0.6402     0.4782 0.000 0.188 0.248 0.000 0.516 0.048
#> GSM564648     5  0.0665     0.7226 0.008 0.000 0.008 0.000 0.980 0.004
#> GSM564649     5  0.4723     0.5323 0.000 0.004 0.296 0.000 0.636 0.064
#> GSM564650     5  0.4581     0.5633 0.004 0.256 0.000 0.000 0.672 0.068
#> GSM564651     5  0.3093     0.6664 0.164 0.000 0.008 0.000 0.816 0.012
#> GSM564652     5  0.3037     0.6639 0.160 0.000 0.004 0.000 0.820 0.016
#> GSM564653     5  0.3566     0.6602 0.156 0.000 0.000 0.000 0.788 0.056
#> GSM564654     5  0.3813     0.6147 0.000 0.008 0.236 0.000 0.736 0.020
#> GSM564655     5  0.5149     0.5773 0.004 0.004 0.108 0.004 0.652 0.228
#> GSM564656     3  0.2859     0.6605 0.000 0.000 0.828 0.000 0.156 0.016
#> GSM564657     3  0.3150     0.6551 0.000 0.016 0.844 0.000 0.104 0.036
#> GSM564658     2  0.4614     0.4744 0.052 0.720 0.000 0.000 0.192 0.036
#> GSM564659     5  0.4758     0.6274 0.000 0.172 0.124 0.000 0.696 0.008
#> GSM564660     2  0.5267     0.2158 0.004 0.528 0.000 0.024 0.404 0.040
#> GSM564661     5  0.3841     0.3731 0.380 0.000 0.000 0.000 0.616 0.004
#> GSM564662     3  0.0937     0.6810 0.000 0.000 0.960 0.000 0.040 0.000
#> GSM564663     5  0.4094     0.5995 0.000 0.252 0.004 0.000 0.708 0.036
#> GSM564664     5  0.5037     0.5255 0.056 0.008 0.012 0.000 0.632 0.292
#> GSM564665     5  0.2420     0.7214 0.000 0.004 0.076 0.000 0.888 0.032
#> GSM564666     2  0.6250     0.4601 0.004 0.620 0.076 0.032 0.208 0.060
#> GSM564667     3  0.1196     0.6810 0.000 0.000 0.952 0.000 0.040 0.008
#> GSM564668     5  0.5004     0.6138 0.056 0.008 0.180 0.008 0.716 0.032
#> GSM564669     3  0.4513     0.3162 0.000 0.004 0.572 0.000 0.396 0.028
#> GSM564670     2  0.5544     0.3808 0.000 0.584 0.100 0.000 0.292 0.024
#> GSM564671     4  0.4789     0.5674 0.020 0.000 0.004 0.676 0.252 0.048
#> GSM564672     3  0.3861     0.4789 0.000 0.008 0.672 0.000 0.316 0.004
#> GSM564673     5  0.1596     0.7250 0.020 0.000 0.012 0.004 0.944 0.020
#> GSM564674     5  0.3835     0.6379 0.000 0.188 0.000 0.000 0.756 0.056
#> GSM564675     4  0.4006     0.7215 0.004 0.052 0.008 0.816 0.056 0.064
#> GSM564676     6  0.5677     0.1788 0.012 0.316 0.000 0.000 0.132 0.540
#> GSM564677     5  0.1390     0.7253 0.032 0.016 0.000 0.000 0.948 0.004
#> GSM564678     2  0.5090     0.3883 0.028 0.680 0.000 0.000 0.104 0.188
#> GSM564679     2  0.5900     0.2312 0.032 0.492 0.000 0.000 0.376 0.100
#> GSM564680     3  0.2593     0.6652 0.000 0.008 0.844 0.000 0.148 0.000
#> GSM564682     2  0.5927     0.3371 0.000 0.616 0.088 0.000 0.100 0.196
#> GSM564683     3  0.0146     0.6680 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM564684     4  0.5316     0.3782 0.004 0.020 0.000 0.564 0.356 0.056
#> GSM564685     3  0.1858     0.6851 0.000 0.000 0.912 0.000 0.076 0.012
#> GSM564686     4  0.5815     0.2006 0.004 0.032 0.000 0.500 0.388 0.076
#> GSM564687     5  0.3637     0.6714 0.000 0.164 0.008 0.000 0.788 0.040
#> GSM564688     5  0.1802     0.7161 0.072 0.000 0.000 0.000 0.916 0.012
#> GSM564689     6  0.5736    -0.0287 0.004 0.412 0.000 0.000 0.144 0.440
#> GSM564690     2  0.5695    -0.0559 0.028 0.476 0.000 0.000 0.080 0.416
#> GSM564691     2  0.4890     0.4506 0.000 0.652 0.052 0.000 0.272 0.024
#> GSM564692     5  0.0653     0.7221 0.000 0.012 0.004 0.000 0.980 0.004
#> GSM564694     5  0.4077     0.6963 0.004 0.092 0.004 0.048 0.804 0.048
#> GSM564695     5  0.4870     0.6397 0.000 0.168 0.120 0.000 0.696 0.016
#> GSM564696     3  0.3790     0.5282 0.000 0.016 0.716 0.000 0.004 0.264
#> GSM564697     5  0.5608     0.0664 0.004 0.424 0.008 0.000 0.468 0.096
#> GSM564698     3  0.2482     0.6704 0.000 0.004 0.848 0.000 0.148 0.000
#> GSM564700     4  0.4495     0.3907 0.004 0.004 0.000 0.580 0.392 0.020
#> GSM564701     1  0.4701     0.1674 0.556 0.008 0.024 0.000 0.408 0.004
#> GSM564702     5  0.3088     0.6643 0.172 0.020 0.000 0.000 0.808 0.000
#> GSM564703     1  0.5208     0.2979 0.556 0.000 0.372 0.040 0.000 0.032
#> GSM564704     6  0.4940     0.4189 0.108 0.004 0.008 0.200 0.000 0.680
#> GSM564705     1  0.1225     0.7982 0.952 0.012 0.000 0.000 0.000 0.036
#> GSM564706     3  0.5433     0.4023 0.000 0.008 0.596 0.144 0.000 0.252
#> GSM564707     1  0.2838     0.7181 0.808 0.000 0.000 0.004 0.000 0.188
#> GSM564708     3  0.3998     0.5214 0.004 0.000 0.724 0.236 0.000 0.036
#> GSM564709     1  0.2169     0.7814 0.900 0.012 0.000 0.008 0.000 0.080
#> GSM564710     1  0.1138     0.7980 0.960 0.024 0.000 0.004 0.000 0.012
#> GSM564711     4  0.6122     0.2358 0.000 0.016 0.300 0.488 0.000 0.196
#> GSM564712     1  0.0777     0.8001 0.972 0.000 0.000 0.004 0.000 0.024
#> GSM564713     4  0.3123     0.7800 0.040 0.004 0.040 0.864 0.000 0.052
#> GSM564714     6  0.6463     0.3370 0.000 0.240 0.280 0.028 0.000 0.452
#> GSM564715     1  0.3658     0.7416 0.800 0.004 0.000 0.092 0.000 0.104
#> GSM564716     4  0.3412     0.7578 0.100 0.024 0.004 0.836 0.000 0.036
#> GSM564717     6  0.5606     0.2456 0.040 0.396 0.008 0.040 0.000 0.516
#> GSM564718     4  0.3914     0.6916 0.000 0.000 0.104 0.768 0.000 0.128
#> GSM564719     6  0.3780     0.4335 0.008 0.236 0.012 0.004 0.000 0.740
#> GSM564720     6  0.5888     0.3423 0.268 0.256 0.000 0.000 0.000 0.476
#> GSM564721     1  0.1074     0.8020 0.960 0.000 0.000 0.028 0.000 0.012
#> GSM564722     2  0.4417     0.2094 0.008 0.712 0.004 0.052 0.000 0.224
#> GSM564723     1  0.2512     0.7757 0.880 0.060 0.000 0.000 0.000 0.060
#> GSM564724     4  0.2249     0.7893 0.004 0.000 0.032 0.900 0.000 0.064
#> GSM564725     1  0.3105     0.7346 0.844 0.012 0.000 0.108 0.000 0.036
#> GSM564726     4  0.1096     0.7958 0.004 0.008 0.004 0.964 0.000 0.020
#> GSM564727     4  0.5505     0.2670 0.388 0.032 0.000 0.520 0.000 0.060
#> GSM564728     4  0.0692     0.7952 0.000 0.004 0.000 0.976 0.000 0.020
#> GSM564729     4  0.1718     0.7945 0.016 0.000 0.008 0.932 0.000 0.044
#> GSM564730     1  0.3043     0.7227 0.836 0.008 0.000 0.132 0.000 0.024
#> GSM564731     4  0.5495     0.3792 0.000 0.000 0.288 0.548 0.000 0.164
#> GSM564732     4  0.1387     0.7904 0.000 0.000 0.000 0.932 0.000 0.068
#> GSM564733     4  0.3255     0.7556 0.100 0.004 0.008 0.840 0.000 0.048
#> GSM564734     4  0.3200     0.7084 0.016 0.000 0.000 0.788 0.000 0.196
#> GSM564735     4  0.2981     0.7653 0.008 0.000 0.100 0.852 0.000 0.040
#> GSM564736     4  0.1555     0.7966 0.008 0.000 0.012 0.940 0.000 0.040
#> GSM564737     1  0.1074     0.7989 0.960 0.012 0.000 0.000 0.000 0.028
#> GSM564738     3  0.4795     0.4984 0.000 0.016 0.692 0.204 0.000 0.088
#> GSM564739     1  0.4214     0.6544 0.756 0.004 0.176 0.020 0.000 0.044
#> GSM564740     4  0.3354     0.7457 0.004 0.100 0.012 0.836 0.000 0.048
#> GSM564741     3  0.3209     0.6095 0.000 0.008 0.840 0.064 0.000 0.088
#> GSM564742     3  0.3820     0.5631 0.000 0.008 0.756 0.032 0.000 0.204
#> GSM564743     2  0.3841     0.1909 0.028 0.716 0.000 0.000 0.000 0.256
#> GSM564744     1  0.1088     0.7988 0.960 0.024 0.000 0.000 0.000 0.016
#> GSM564745     4  0.3665     0.6255 0.252 0.000 0.000 0.728 0.000 0.020
#> GSM564746     2  0.4541     0.2798 0.084 0.756 0.000 0.052 0.000 0.108
#> GSM564747     6  0.5751     0.0480 0.016 0.008 0.380 0.088 0.000 0.508
#> GSM564748     3  0.6158    -0.0341 0.368 0.000 0.380 0.004 0.000 0.248
#> GSM564749     6  0.4419     0.3040 0.304 0.040 0.004 0.000 0.000 0.652
#> GSM564750     3  0.4830     0.0829 0.000 0.004 0.496 0.456 0.000 0.044
#> GSM564751     3  0.6585     0.1375 0.332 0.004 0.444 0.036 0.000 0.184
#> GSM564752     4  0.2613     0.7782 0.000 0.016 0.068 0.884 0.000 0.032
#> GSM564753     3  0.2994     0.6135 0.000 0.004 0.852 0.064 0.000 0.080
#> GSM564754     1  0.3450     0.7148 0.780 0.000 0.000 0.032 0.000 0.188
#> GSM564755     4  0.1375     0.7958 0.008 0.008 0.004 0.952 0.000 0.028
#> GSM564756     4  0.3916     0.6820 0.064 0.000 0.000 0.752 0.000 0.184
#> GSM564757     4  0.1010     0.7935 0.004 0.000 0.000 0.960 0.000 0.036
#> GSM564758     4  0.0858     0.7940 0.004 0.000 0.000 0.968 0.000 0.028
#> GSM564759     3  0.6388     0.1764 0.000 0.020 0.444 0.268 0.000 0.268
#> GSM564760     4  0.0865     0.7974 0.000 0.000 0.000 0.964 0.000 0.036
#> GSM564761     1  0.0508     0.8006 0.984 0.000 0.000 0.012 0.000 0.004
#> GSM564762     4  0.3052     0.6919 0.000 0.000 0.004 0.780 0.000 0.216
#> GSM564681     5  0.2165     0.7082 0.008 0.108 0.000 0.000 0.884 0.000
#> GSM564693     5  0.1053     0.7242 0.004 0.020 0.000 0.000 0.964 0.012
#> GSM564646     4  0.5629     0.2377 0.004 0.060 0.000 0.520 0.384 0.032
#> GSM564699     5  0.6067     0.4933 0.004 0.028 0.016 0.132 0.608 0.212

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n genotype/variation(p) disease.state(p) k
#> MAD:NMF 154                 0.925            0.476 2
#> MAD:NMF 146                 0.876            0.825 3
#> MAD:NMF 121                 0.236            0.598 4
#> MAD:NMF 127                 0.315            0.878 5
#> MAD:NMF 101                 0.489            0.740 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 154 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.5007 0.500   0.500
#> 3 3 0.772           0.703       0.829         0.2700 0.856   0.711
#> 4 4 0.854           0.795       0.884         0.0811 0.908   0.757
#> 5 5 0.739           0.683       0.820         0.0833 0.925   0.757
#> 6 6 0.703           0.639       0.784         0.0406 0.979   0.912

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM564615     1  0.0000      1.000 1.000 0.000
#> GSM564616     2  0.0000      1.000 0.000 1.000
#> GSM564617     2  0.0000      1.000 0.000 1.000
#> GSM564618     2  0.0000      1.000 0.000 1.000
#> GSM564619     1  0.0000      1.000 1.000 0.000
#> GSM564620     1  0.0000      1.000 1.000 0.000
#> GSM564621     1  0.0000      1.000 1.000 0.000
#> GSM564622     2  0.0000      1.000 0.000 1.000
#> GSM564623     2  0.0938      0.988 0.012 0.988
#> GSM564624     2  0.0000      1.000 0.000 1.000
#> GSM564625     1  0.0000      1.000 1.000 0.000
#> GSM564626     1  0.0000      1.000 1.000 0.000
#> GSM564627     1  0.0000      1.000 1.000 0.000
#> GSM564628     2  0.0000      1.000 0.000 1.000
#> GSM564629     1  0.0000      1.000 1.000 0.000
#> GSM564630     2  0.1414      0.980 0.020 0.980
#> GSM564609     2  0.0000      1.000 0.000 1.000
#> GSM564610     1  0.0000      1.000 1.000 0.000
#> GSM564611     1  0.0000      1.000 1.000 0.000
#> GSM564612     2  0.0000      1.000 0.000 1.000
#> GSM564613     2  0.0000      1.000 0.000 1.000
#> GSM564614     1  0.0000      1.000 1.000 0.000
#> GSM564631     2  0.0000      1.000 0.000 1.000
#> GSM564632     2  0.0000      1.000 0.000 1.000
#> GSM564633     2  0.0000      1.000 0.000 1.000
#> GSM564634     2  0.0000      1.000 0.000 1.000
#> GSM564635     2  0.0000      1.000 0.000 1.000
#> GSM564636     2  0.0000      1.000 0.000 1.000
#> GSM564637     2  0.0000      1.000 0.000 1.000
#> GSM564638     2  0.0000      1.000 0.000 1.000
#> GSM564639     2  0.0000      1.000 0.000 1.000
#> GSM564640     2  0.0000      1.000 0.000 1.000
#> GSM564641     2  0.0000      1.000 0.000 1.000
#> GSM564642     2  0.0000      1.000 0.000 1.000
#> GSM564643     2  0.0000      1.000 0.000 1.000
#> GSM564644     2  0.0000      1.000 0.000 1.000
#> GSM564645     2  0.0000      1.000 0.000 1.000
#> GSM564647     2  0.0000      1.000 0.000 1.000
#> GSM564648     2  0.0000      1.000 0.000 1.000
#> GSM564649     2  0.0000      1.000 0.000 1.000
#> GSM564650     2  0.0000      1.000 0.000 1.000
#> GSM564651     2  0.0000      1.000 0.000 1.000
#> GSM564652     2  0.0000      1.000 0.000 1.000
#> GSM564653     2  0.0000      1.000 0.000 1.000
#> GSM564654     2  0.0000      1.000 0.000 1.000
#> GSM564655     2  0.0000      1.000 0.000 1.000
#> GSM564656     2  0.0000      1.000 0.000 1.000
#> GSM564657     2  0.0000      1.000 0.000 1.000
#> GSM564658     2  0.0000      1.000 0.000 1.000
#> GSM564659     2  0.0000      1.000 0.000 1.000
#> GSM564660     2  0.0000      1.000 0.000 1.000
#> GSM564661     2  0.0000      1.000 0.000 1.000
#> GSM564662     2  0.0000      1.000 0.000 1.000
#> GSM564663     2  0.0000      1.000 0.000 1.000
#> GSM564664     2  0.0000      1.000 0.000 1.000
#> GSM564665     2  0.0000      1.000 0.000 1.000
#> GSM564666     2  0.0000      1.000 0.000 1.000
#> GSM564667     2  0.0000      1.000 0.000 1.000
#> GSM564668     2  0.0000      1.000 0.000 1.000
#> GSM564669     2  0.0000      1.000 0.000 1.000
#> GSM564670     2  0.0000      1.000 0.000 1.000
#> GSM564671     2  0.0000      1.000 0.000 1.000
#> GSM564672     2  0.0000      1.000 0.000 1.000
#> GSM564673     2  0.0000      1.000 0.000 1.000
#> GSM564674     2  0.0000      1.000 0.000 1.000
#> GSM564675     2  0.0000      1.000 0.000 1.000
#> GSM564676     2  0.0000      1.000 0.000 1.000
#> GSM564677     2  0.0000      1.000 0.000 1.000
#> GSM564678     2  0.0000      1.000 0.000 1.000
#> GSM564679     2  0.0000      1.000 0.000 1.000
#> GSM564680     2  0.0000      1.000 0.000 1.000
#> GSM564682     2  0.0000      1.000 0.000 1.000
#> GSM564683     2  0.0000      1.000 0.000 1.000
#> GSM564684     2  0.0000      1.000 0.000 1.000
#> GSM564685     2  0.0000      1.000 0.000 1.000
#> GSM564686     2  0.0000      1.000 0.000 1.000
#> GSM564687     2  0.0000      1.000 0.000 1.000
#> GSM564688     2  0.0000      1.000 0.000 1.000
#> GSM564689     2  0.0000      1.000 0.000 1.000
#> GSM564690     2  0.0000      1.000 0.000 1.000
#> GSM564691     2  0.0000      1.000 0.000 1.000
#> GSM564692     2  0.0000      1.000 0.000 1.000
#> GSM564694     2  0.0000      1.000 0.000 1.000
#> GSM564695     2  0.0000      1.000 0.000 1.000
#> GSM564696     2  0.0000      1.000 0.000 1.000
#> GSM564697     2  0.0000      1.000 0.000 1.000
#> GSM564698     2  0.0000      1.000 0.000 1.000
#> GSM564700     2  0.0000      1.000 0.000 1.000
#> GSM564701     2  0.0000      1.000 0.000 1.000
#> GSM564702     2  0.0000      1.000 0.000 1.000
#> GSM564703     1  0.0000      1.000 1.000 0.000
#> GSM564704     1  0.0000      1.000 1.000 0.000
#> GSM564705     1  0.0000      1.000 1.000 0.000
#> GSM564706     1  0.0000      1.000 1.000 0.000
#> GSM564707     1  0.0000      1.000 1.000 0.000
#> GSM564708     1  0.0000      1.000 1.000 0.000
#> GSM564709     1  0.0000      1.000 1.000 0.000
#> GSM564710     1  0.0000      1.000 1.000 0.000
#> GSM564711     1  0.0000      1.000 1.000 0.000
#> GSM564712     1  0.0000      1.000 1.000 0.000
#> GSM564713     1  0.0000      1.000 1.000 0.000
#> GSM564714     1  0.0000      1.000 1.000 0.000
#> GSM564715     1  0.0000      1.000 1.000 0.000
#> GSM564716     1  0.0000      1.000 1.000 0.000
#> GSM564717     1  0.0000      1.000 1.000 0.000
#> GSM564718     1  0.0000      1.000 1.000 0.000
#> GSM564719     1  0.0000      1.000 1.000 0.000
#> GSM564720     1  0.0000      1.000 1.000 0.000
#> GSM564721     1  0.0000      1.000 1.000 0.000
#> GSM564722     1  0.0000      1.000 1.000 0.000
#> GSM564723     1  0.0000      1.000 1.000 0.000
#> GSM564724     1  0.0000      1.000 1.000 0.000
#> GSM564725     1  0.0000      1.000 1.000 0.000
#> GSM564726     1  0.0000      1.000 1.000 0.000
#> GSM564727     1  0.0000      1.000 1.000 0.000
#> GSM564728     1  0.0000      1.000 1.000 0.000
#> GSM564729     1  0.0000      1.000 1.000 0.000
#> GSM564730     1  0.0000      1.000 1.000 0.000
#> GSM564731     1  0.0000      1.000 1.000 0.000
#> GSM564732     1  0.0000      1.000 1.000 0.000
#> GSM564733     1  0.0000      1.000 1.000 0.000
#> GSM564734     1  0.0000      1.000 1.000 0.000
#> GSM564735     1  0.0000      1.000 1.000 0.000
#> GSM564736     1  0.0000      1.000 1.000 0.000
#> GSM564737     1  0.0000      1.000 1.000 0.000
#> GSM564738     1  0.0000      1.000 1.000 0.000
#> GSM564739     1  0.0000      1.000 1.000 0.000
#> GSM564740     1  0.0000      1.000 1.000 0.000
#> GSM564741     1  0.0000      1.000 1.000 0.000
#> GSM564742     1  0.0000      1.000 1.000 0.000
#> GSM564743     1  0.0000      1.000 1.000 0.000
#> GSM564744     1  0.0000      1.000 1.000 0.000
#> GSM564745     1  0.0000      1.000 1.000 0.000
#> GSM564746     1  0.0000      1.000 1.000 0.000
#> GSM564747     1  0.0000      1.000 1.000 0.000
#> GSM564748     1  0.0000      1.000 1.000 0.000
#> GSM564749     1  0.0000      1.000 1.000 0.000
#> GSM564750     1  0.0000      1.000 1.000 0.000
#> GSM564751     1  0.0000      1.000 1.000 0.000
#> GSM564752     1  0.0000      1.000 1.000 0.000
#> GSM564753     1  0.0000      1.000 1.000 0.000
#> GSM564754     1  0.0000      1.000 1.000 0.000
#> GSM564755     1  0.0000      1.000 1.000 0.000
#> GSM564756     1  0.0000      1.000 1.000 0.000
#> GSM564757     1  0.0000      1.000 1.000 0.000
#> GSM564758     1  0.0000      1.000 1.000 0.000
#> GSM564759     1  0.0000      1.000 1.000 0.000
#> GSM564760     1  0.0000      1.000 1.000 0.000
#> GSM564761     1  0.0000      1.000 1.000 0.000
#> GSM564762     1  0.0000      1.000 1.000 0.000
#> GSM564681     2  0.0000      1.000 0.000 1.000
#> GSM564693     2  0.0000      1.000 0.000 1.000
#> GSM564646     2  0.0000      1.000 0.000 1.000
#> GSM564699     2  0.0000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM564615     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564616     2  0.6180    0.53570 0.000 0.584 0.416
#> GSM564617     3  0.0000    0.62364 0.000 0.000 1.000
#> GSM564618     2  0.6126    0.54550 0.000 0.600 0.400
#> GSM564619     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564620     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564621     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564622     2  0.6168    0.49415 0.000 0.588 0.412
#> GSM564623     3  0.6600    0.36992 0.012 0.384 0.604
#> GSM564624     3  0.1411    0.59301 0.000 0.036 0.964
#> GSM564625     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564626     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564627     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564628     3  0.5591    0.24750 0.000 0.304 0.696
#> GSM564629     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564630     3  0.3234    0.59008 0.020 0.072 0.908
#> GSM564609     2  0.4121    0.37653 0.000 0.832 0.168
#> GSM564610     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564611     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564612     3  0.1753    0.62158 0.000 0.048 0.952
#> GSM564613     3  0.0000    0.62364 0.000 0.000 1.000
#> GSM564614     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564631     3  0.6299    0.40201 0.000 0.476 0.524
#> GSM564632     2  0.5785    0.55039 0.000 0.668 0.332
#> GSM564633     2  0.4121    0.37653 0.000 0.832 0.168
#> GSM564634     3  0.4346    0.58406 0.000 0.184 0.816
#> GSM564635     2  0.4121    0.37653 0.000 0.832 0.168
#> GSM564636     3  0.6299    0.40411 0.000 0.476 0.524
#> GSM564637     3  0.5988    0.44966 0.000 0.368 0.632
#> GSM564638     3  0.6302    0.39803 0.000 0.480 0.520
#> GSM564639     2  0.6286   -0.32615 0.000 0.536 0.464
#> GSM564640     3  0.5363    0.34743 0.000 0.276 0.724
#> GSM564641     3  0.0000    0.62364 0.000 0.000 1.000
#> GSM564642     3  0.5859    0.47574 0.000 0.344 0.656
#> GSM564643     2  0.5785    0.55039 0.000 0.668 0.332
#> GSM564644     3  0.5465    0.50072 0.000 0.288 0.712
#> GSM564645     2  0.6286   -0.33045 0.000 0.536 0.464
#> GSM564647     3  0.5327    0.52915 0.000 0.272 0.728
#> GSM564648     2  0.6095    0.55259 0.000 0.608 0.392
#> GSM564649     3  0.6302    0.40011 0.000 0.480 0.520
#> GSM564650     3  0.0237    0.62080 0.000 0.004 0.996
#> GSM564651     2  0.6095    0.55259 0.000 0.608 0.392
#> GSM564652     2  0.6095    0.55259 0.000 0.608 0.392
#> GSM564653     2  0.6095    0.55259 0.000 0.608 0.392
#> GSM564654     2  0.5785    0.55039 0.000 0.668 0.332
#> GSM564655     2  0.4974    0.38909 0.000 0.764 0.236
#> GSM564656     2  0.4121    0.37653 0.000 0.832 0.168
#> GSM564657     3  0.6299    0.40201 0.000 0.476 0.524
#> GSM564658     3  0.3192    0.53479 0.000 0.112 0.888
#> GSM564659     3  0.6295    0.29244 0.000 0.472 0.528
#> GSM564660     3  0.0237    0.62080 0.000 0.004 0.996
#> GSM564661     2  0.6095    0.55259 0.000 0.608 0.392
#> GSM564662     3  0.6299    0.40201 0.000 0.476 0.524
#> GSM564663     3  0.1289    0.59703 0.000 0.032 0.968
#> GSM564664     3  0.5785    0.45517 0.000 0.332 0.668
#> GSM564665     3  0.5988    0.44966 0.000 0.368 0.632
#> GSM564666     3  0.6305    0.27014 0.000 0.484 0.516
#> GSM564667     3  0.6299    0.40201 0.000 0.476 0.524
#> GSM564668     2  0.3340    0.40502 0.000 0.880 0.120
#> GSM564669     2  0.3340    0.40502 0.000 0.880 0.120
#> GSM564670     3  0.0000    0.62364 0.000 0.000 1.000
#> GSM564671     2  0.5650    0.45268 0.000 0.688 0.312
#> GSM564672     3  0.6302    0.40011 0.000 0.480 0.520
#> GSM564673     2  0.6095    0.55259 0.000 0.608 0.392
#> GSM564674     3  0.2448    0.59926 0.000 0.076 0.924
#> GSM564675     3  0.6291    0.30030 0.000 0.468 0.532
#> GSM564676     3  0.0000    0.62364 0.000 0.000 1.000
#> GSM564677     2  0.6095    0.55259 0.000 0.608 0.392
#> GSM564678     3  0.1289    0.59703 0.000 0.032 0.968
#> GSM564679     3  0.3192    0.53479 0.000 0.112 0.888
#> GSM564680     2  0.6286   -0.32615 0.000 0.536 0.464
#> GSM564682     3  0.0000    0.62364 0.000 0.000 1.000
#> GSM564683     3  0.6302    0.39803 0.000 0.480 0.520
#> GSM564684     2  0.5650    0.45268 0.000 0.688 0.312
#> GSM564685     3  0.6299    0.40261 0.000 0.476 0.524
#> GSM564686     2  0.5760    0.25143 0.000 0.672 0.328
#> GSM564687     3  0.5650    0.46970 0.000 0.312 0.688
#> GSM564688     2  0.6095    0.55259 0.000 0.608 0.392
#> GSM564689     3  0.0000    0.62364 0.000 0.000 1.000
#> GSM564690     3  0.0237    0.62080 0.000 0.004 0.996
#> GSM564691     3  0.0000    0.62364 0.000 0.000 1.000
#> GSM564692     2  0.6111    0.55096 0.000 0.604 0.396
#> GSM564694     3  0.6260    0.22703 0.000 0.448 0.552
#> GSM564695     2  0.6260   -0.00166 0.000 0.552 0.448
#> GSM564696     3  0.6079    0.45247 0.000 0.388 0.612
#> GSM564697     3  0.0000    0.62364 0.000 0.000 1.000
#> GSM564698     2  0.4974    0.25691 0.000 0.764 0.236
#> GSM564700     2  0.5650    0.45268 0.000 0.688 0.312
#> GSM564701     2  0.6126    0.54550 0.000 0.600 0.400
#> GSM564702     2  0.6095    0.55259 0.000 0.608 0.392
#> GSM564703     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564704     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564705     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564706     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564707     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564708     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564709     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564710     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564711     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564712     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564713     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564714     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564715     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564716     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564717     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564718     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564719     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564720     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564721     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564722     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564723     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564724     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564725     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564726     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564727     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564728     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564729     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564730     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564731     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564732     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564733     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564734     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564735     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564736     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564737     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564738     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564739     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564740     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564741     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564742     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564743     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564744     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564745     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564746     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564747     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564748     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564749     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564750     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564751     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564752     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564753     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564754     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564755     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564756     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564757     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564758     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564759     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564760     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564761     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564762     1  0.0000    1.00000 1.000 0.000 0.000
#> GSM564681     2  0.6126    0.54550 0.000 0.600 0.400
#> GSM564693     2  0.6095    0.55259 0.000 0.608 0.392
#> GSM564646     2  0.5650    0.45268 0.000 0.688 0.312
#> GSM564699     2  0.5785    0.24998 0.000 0.668 0.332

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM564615     1  0.0000     0.9934 1.000 0.000 0.000 0.000
#> GSM564616     4  0.1118     0.8252 0.000 0.036 0.000 0.964
#> GSM564617     2  0.1888     0.7961 0.000 0.940 0.044 0.016
#> GSM564618     4  0.0592     0.8392 0.000 0.016 0.000 0.984
#> GSM564619     1  0.0804     0.9881 0.980 0.008 0.012 0.000
#> GSM564620     1  0.0336     0.9920 0.992 0.000 0.008 0.000
#> GSM564621     1  0.0469     0.9906 0.988 0.000 0.012 0.000
#> GSM564622     4  0.4877     0.6023 0.000 0.044 0.204 0.752
#> GSM564623     2  0.7879    -0.0644 0.012 0.464 0.332 0.192
#> GSM564624     2  0.2546     0.7936 0.000 0.912 0.028 0.060
#> GSM564625     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564626     1  0.0804     0.9881 0.980 0.008 0.012 0.000
#> GSM564627     1  0.0336     0.9922 0.992 0.008 0.000 0.000
#> GSM564628     2  0.5671     0.4473 0.000 0.572 0.028 0.400
#> GSM564629     1  0.0000     0.9934 1.000 0.000 0.000 0.000
#> GSM564630     2  0.4090     0.7043 0.012 0.844 0.096 0.048
#> GSM564609     3  0.4679     0.4904 0.000 0.000 0.648 0.352
#> GSM564610     1  0.0336     0.9922 0.992 0.008 0.000 0.000
#> GSM564611     1  0.0336     0.9922 0.992 0.008 0.000 0.000
#> GSM564612     2  0.4792     0.6053 0.000 0.680 0.312 0.008
#> GSM564613     2  0.3280     0.7728 0.000 0.860 0.124 0.016
#> GSM564614     1  0.0000     0.9934 1.000 0.000 0.000 0.000
#> GSM564631     3  0.1211     0.6925 0.000 0.040 0.960 0.000
#> GSM564632     4  0.3123     0.7319 0.000 0.000 0.156 0.844
#> GSM564633     3  0.4679     0.4904 0.000 0.000 0.648 0.352
#> GSM564634     2  0.5127     0.3810 0.000 0.632 0.356 0.012
#> GSM564635     3  0.4679     0.4904 0.000 0.000 0.648 0.352
#> GSM564636     3  0.1302     0.6904 0.000 0.044 0.956 0.000
#> GSM564637     3  0.7279     0.1253 0.000 0.408 0.444 0.148
#> GSM564638     3  0.0817     0.6950 0.000 0.024 0.976 0.000
#> GSM564639     3  0.2363     0.7038 0.000 0.024 0.920 0.056
#> GSM564640     2  0.5839     0.5359 0.000 0.604 0.044 0.352
#> GSM564641     2  0.3636     0.7419 0.000 0.820 0.172 0.008
#> GSM564642     2  0.7436     0.3837 0.000 0.512 0.252 0.236
#> GSM564643     4  0.3123     0.7319 0.000 0.000 0.156 0.844
#> GSM564644     2  0.6769     0.5576 0.000 0.608 0.172 0.220
#> GSM564645     3  0.2644     0.7056 0.000 0.032 0.908 0.060
#> GSM564647     3  0.4677     0.3586 0.000 0.316 0.680 0.004
#> GSM564648     4  0.0000     0.8471 0.000 0.000 0.000 1.000
#> GSM564649     3  0.1118     0.6936 0.000 0.036 0.964 0.000
#> GSM564650     2  0.2111     0.7975 0.000 0.932 0.044 0.024
#> GSM564651     4  0.0000     0.8471 0.000 0.000 0.000 1.000
#> GSM564652     4  0.0000     0.8471 0.000 0.000 0.000 1.000
#> GSM564653     4  0.0000     0.8471 0.000 0.000 0.000 1.000
#> GSM564654     4  0.3123     0.7319 0.000 0.000 0.156 0.844
#> GSM564655     3  0.5070     0.3741 0.000 0.004 0.580 0.416
#> GSM564656     3  0.4679     0.4904 0.000 0.000 0.648 0.352
#> GSM564657     3  0.1211     0.6925 0.000 0.040 0.960 0.000
#> GSM564658     2  0.3355     0.7512 0.000 0.836 0.004 0.160
#> GSM564659     3  0.6324     0.6143 0.000 0.168 0.660 0.172
#> GSM564660     2  0.2111     0.7975 0.000 0.932 0.044 0.024
#> GSM564661     4  0.0000     0.8471 0.000 0.000 0.000 1.000
#> GSM564662     3  0.1211     0.6925 0.000 0.040 0.960 0.000
#> GSM564663     2  0.2466     0.7941 0.000 0.916 0.028 0.056
#> GSM564664     2  0.7182     0.4655 0.000 0.552 0.200 0.248
#> GSM564665     3  0.7279     0.1253 0.000 0.408 0.444 0.148
#> GSM564666     3  0.7380     0.4765 0.000 0.288 0.512 0.200
#> GSM564667     3  0.1211     0.6925 0.000 0.040 0.960 0.000
#> GSM564668     3  0.5959     0.3695 0.000 0.044 0.568 0.388
#> GSM564669     3  0.5959     0.3695 0.000 0.044 0.568 0.388
#> GSM564670     2  0.3280     0.7728 0.000 0.860 0.124 0.016
#> GSM564671     4  0.6482     0.2212 0.000 0.084 0.352 0.564
#> GSM564672     3  0.1118     0.6936 0.000 0.036 0.964 0.000
#> GSM564673     4  0.0000     0.8471 0.000 0.000 0.000 1.000
#> GSM564674     2  0.3312     0.7874 0.000 0.876 0.052 0.072
#> GSM564675     3  0.7401     0.4590 0.000 0.300 0.504 0.196
#> GSM564676     2  0.1888     0.7961 0.000 0.940 0.044 0.016
#> GSM564677     4  0.0000     0.8471 0.000 0.000 0.000 1.000
#> GSM564678     2  0.2466     0.7941 0.000 0.916 0.028 0.056
#> GSM564679     2  0.3355     0.7512 0.000 0.836 0.004 0.160
#> GSM564680     3  0.2363     0.7038 0.000 0.024 0.920 0.056
#> GSM564682     2  0.3636     0.7419 0.000 0.820 0.172 0.008
#> GSM564683     3  0.0817     0.6950 0.000 0.024 0.976 0.000
#> GSM564684     4  0.6482     0.2212 0.000 0.084 0.352 0.564
#> GSM564685     3  0.1022     0.6952 0.000 0.032 0.968 0.000
#> GSM564686     3  0.7345     0.4244 0.000 0.172 0.492 0.336
#> GSM564687     2  0.6976     0.5157 0.000 0.580 0.180 0.240
#> GSM564688     4  0.0000     0.8471 0.000 0.000 0.000 1.000
#> GSM564689     2  0.1888     0.7961 0.000 0.940 0.044 0.016
#> GSM564690     2  0.2111     0.7969 0.000 0.932 0.044 0.024
#> GSM564691     2  0.3636     0.7419 0.000 0.820 0.172 0.008
#> GSM564692     4  0.0336     0.8440 0.000 0.008 0.000 0.992
#> GSM564694     3  0.7694     0.3573 0.000 0.308 0.448 0.244
#> GSM564695     3  0.7164     0.4797 0.000 0.156 0.524 0.320
#> GSM564696     3  0.3610     0.5921 0.000 0.200 0.800 0.000
#> GSM564697     2  0.1888     0.7961 0.000 0.940 0.044 0.016
#> GSM564698     3  0.4304     0.5659 0.000 0.000 0.716 0.284
#> GSM564700     4  0.6482     0.2212 0.000 0.084 0.352 0.564
#> GSM564701     4  0.0592     0.8392 0.000 0.016 0.000 0.984
#> GSM564702     4  0.0000     0.8471 0.000 0.000 0.000 1.000
#> GSM564703     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564704     1  0.0336     0.9920 0.992 0.000 0.008 0.000
#> GSM564705     1  0.0804     0.9881 0.980 0.008 0.012 0.000
#> GSM564706     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564707     1  0.0376     0.9926 0.992 0.004 0.004 0.000
#> GSM564708     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564709     1  0.0804     0.9881 0.980 0.008 0.012 0.000
#> GSM564710     1  0.0804     0.9881 0.980 0.008 0.012 0.000
#> GSM564711     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564712     1  0.0804     0.9881 0.980 0.008 0.012 0.000
#> GSM564713     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564714     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564715     1  0.0336     0.9920 0.992 0.000 0.008 0.000
#> GSM564716     1  0.0336     0.9920 0.992 0.000 0.008 0.000
#> GSM564717     1  0.0336     0.9922 0.992 0.008 0.000 0.000
#> GSM564718     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564719     1  0.0336     0.9922 0.992 0.008 0.000 0.000
#> GSM564720     1  0.0336     0.9922 0.992 0.008 0.000 0.000
#> GSM564721     1  0.0672     0.9898 0.984 0.008 0.008 0.000
#> GSM564722     1  0.0336     0.9922 0.992 0.008 0.000 0.000
#> GSM564723     1  0.0804     0.9881 0.980 0.008 0.012 0.000
#> GSM564724     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564725     1  0.0804     0.9881 0.980 0.008 0.012 0.000
#> GSM564726     1  0.0000     0.9934 1.000 0.000 0.000 0.000
#> GSM564727     1  0.0804     0.9881 0.980 0.008 0.012 0.000
#> GSM564728     1  0.0000     0.9934 1.000 0.000 0.000 0.000
#> GSM564729     1  0.0000     0.9934 1.000 0.000 0.000 0.000
#> GSM564730     1  0.0804     0.9881 0.980 0.008 0.012 0.000
#> GSM564731     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564732     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564733     1  0.0000     0.9934 1.000 0.000 0.000 0.000
#> GSM564734     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564735     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564736     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564737     1  0.0804     0.9881 0.980 0.008 0.012 0.000
#> GSM564738     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564739     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564740     1  0.0000     0.9934 1.000 0.000 0.000 0.000
#> GSM564741     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564742     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564743     1  0.0336     0.9922 0.992 0.008 0.000 0.000
#> GSM564744     1  0.0804     0.9881 0.980 0.008 0.012 0.000
#> GSM564745     1  0.0657     0.9896 0.984 0.004 0.012 0.000
#> GSM564746     1  0.0336     0.9922 0.992 0.008 0.000 0.000
#> GSM564747     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564748     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564749     1  0.0336     0.9922 0.992 0.008 0.000 0.000
#> GSM564750     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564751     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564752     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564753     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564754     1  0.0524     0.9913 0.988 0.004 0.008 0.000
#> GSM564755     1  0.0000     0.9934 1.000 0.000 0.000 0.000
#> GSM564756     1  0.0336     0.9920 0.992 0.000 0.008 0.000
#> GSM564757     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564758     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564759     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564760     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564761     1  0.0804     0.9881 0.980 0.008 0.012 0.000
#> GSM564762     1  0.0188     0.9933 0.996 0.000 0.004 0.000
#> GSM564681     4  0.0592     0.8392 0.000 0.016 0.000 0.984
#> GSM564693     4  0.0000     0.8471 0.000 0.000 0.000 1.000
#> GSM564646     4  0.6482     0.2212 0.000 0.084 0.352 0.564
#> GSM564699     3  0.7146     0.4505 0.000 0.148 0.516 0.336

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM564615     4  0.0880     0.8735 0.032 0.000 0.000 0.968 0.000
#> GSM564616     5  0.0963     0.8265 0.000 0.036 0.000 0.000 0.964
#> GSM564617     2  0.0404     0.8047 0.012 0.988 0.000 0.000 0.000
#> GSM564618     5  0.0510     0.8405 0.000 0.016 0.000 0.000 0.984
#> GSM564619     1  0.4235     0.8802 0.576 0.000 0.000 0.424 0.000
#> GSM564620     4  0.3966    -0.0677 0.336 0.000 0.000 0.664 0.000
#> GSM564621     4  0.4114    -0.2799 0.376 0.000 0.000 0.624 0.000
#> GSM564622     5  0.4864     0.6274 0.164 0.000 0.116 0.000 0.720
#> GSM564623     1  0.8304    -0.5636 0.368 0.256 0.228 0.000 0.148
#> GSM564624     2  0.1725     0.8032 0.020 0.936 0.000 0.000 0.044
#> GSM564625     4  0.0162     0.8888 0.004 0.000 0.000 0.996 0.000
#> GSM564626     1  0.4235     0.8802 0.576 0.000 0.000 0.424 0.000
#> GSM564627     4  0.0880     0.8736 0.032 0.000 0.000 0.968 0.000
#> GSM564628     2  0.4856     0.4561 0.000 0.584 0.028 0.000 0.388
#> GSM564629     4  0.0510     0.8836 0.016 0.000 0.000 0.984 0.000
#> GSM564630     2  0.4588     0.5817 0.380 0.604 0.000 0.000 0.016
#> GSM564609     3  0.5037     0.4703 0.048 0.000 0.616 0.000 0.336
#> GSM564610     4  0.0880     0.8736 0.032 0.000 0.000 0.968 0.000
#> GSM564611     4  0.0880     0.8736 0.032 0.000 0.000 0.968 0.000
#> GSM564612     2  0.4161     0.6136 0.016 0.704 0.280 0.000 0.000
#> GSM564613     2  0.2293     0.7824 0.016 0.900 0.084 0.000 0.000
#> GSM564614     4  0.0880     0.8735 0.032 0.000 0.000 0.968 0.000
#> GSM564631     3  0.0898     0.6912 0.008 0.020 0.972 0.000 0.000
#> GSM564632     5  0.3413     0.7346 0.044 0.000 0.124 0.000 0.832
#> GSM564633     3  0.5037     0.4703 0.048 0.000 0.616 0.000 0.336
#> GSM564634     2  0.6067     0.3975 0.164 0.560 0.276 0.000 0.000
#> GSM564635     3  0.5037     0.4703 0.048 0.000 0.616 0.000 0.336
#> GSM564636     3  0.0880     0.6892 0.000 0.032 0.968 0.000 0.000
#> GSM564637     3  0.6583     0.1828 0.012 0.404 0.440 0.000 0.144
#> GSM564638     3  0.0290     0.6928 0.008 0.000 0.992 0.000 0.000
#> GSM564639     3  0.1701     0.6911 0.016 0.000 0.936 0.000 0.048
#> GSM564640     2  0.4987     0.5417 0.000 0.616 0.044 0.000 0.340
#> GSM564641     2  0.3016     0.7547 0.020 0.848 0.132 0.000 0.000
#> GSM564642     2  0.6685     0.3581 0.012 0.516 0.240 0.000 0.232
#> GSM564643     5  0.3413     0.7346 0.044 0.000 0.124 0.000 0.832
#> GSM564644     2  0.6075     0.5439 0.012 0.612 0.160 0.000 0.216
#> GSM564645     3  0.2506     0.6917 0.036 0.008 0.904 0.000 0.052
#> GSM564647     3  0.3895     0.3659 0.000 0.320 0.680 0.000 0.000
#> GSM564648     5  0.0000     0.8486 0.000 0.000 0.000 0.000 1.000
#> GSM564649     3  0.0703     0.6921 0.000 0.024 0.976 0.000 0.000
#> GSM564650     2  0.0451     0.8062 0.004 0.988 0.000 0.000 0.008
#> GSM564651     5  0.0000     0.8486 0.000 0.000 0.000 0.000 1.000
#> GSM564652     5  0.0000     0.8486 0.000 0.000 0.000 0.000 1.000
#> GSM564653     5  0.0000     0.8486 0.000 0.000 0.000 0.000 1.000
#> GSM564654     5  0.3413     0.7346 0.044 0.000 0.124 0.000 0.832
#> GSM564655     3  0.5423     0.3690 0.064 0.000 0.548 0.000 0.388
#> GSM564656     3  0.5037     0.4703 0.048 0.000 0.616 0.000 0.336
#> GSM564657     3  0.0898     0.6912 0.008 0.020 0.972 0.000 0.000
#> GSM564658     2  0.3151     0.7664 0.020 0.836 0.000 0.000 0.144
#> GSM564659     3  0.6112     0.6069 0.036 0.152 0.648 0.000 0.164
#> GSM564660     2  0.0451     0.8062 0.004 0.988 0.000 0.000 0.008
#> GSM564661     5  0.0000     0.8486 0.000 0.000 0.000 0.000 1.000
#> GSM564662     3  0.0898     0.6912 0.008 0.020 0.972 0.000 0.000
#> GSM564663     2  0.1648     0.8038 0.020 0.940 0.000 0.000 0.040
#> GSM564664     2  0.6540     0.4427 0.016 0.552 0.188 0.000 0.244
#> GSM564665     3  0.6583     0.1828 0.012 0.404 0.440 0.000 0.144
#> GSM564666     3  0.8093     0.4513 0.248 0.168 0.424 0.000 0.160
#> GSM564667     3  0.0898     0.6912 0.008 0.020 0.972 0.000 0.000
#> GSM564668     3  0.6353     0.3231 0.172 0.000 0.480 0.000 0.348
#> GSM564669     3  0.6353     0.3231 0.172 0.000 0.480 0.000 0.348
#> GSM564670     2  0.2293     0.7824 0.016 0.900 0.084 0.000 0.000
#> GSM564671     5  0.6326     0.2739 0.208 0.000 0.268 0.000 0.524
#> GSM564672     3  0.0703     0.6921 0.000 0.024 0.976 0.000 0.000
#> GSM564673     5  0.0000     0.8486 0.000 0.000 0.000 0.000 1.000
#> GSM564674     2  0.2321     0.7953 0.008 0.912 0.024 0.000 0.056
#> GSM564675     3  0.8134     0.4374 0.248 0.180 0.416 0.000 0.156
#> GSM564676     2  0.0162     0.8048 0.004 0.996 0.000 0.000 0.000
#> GSM564677     5  0.0000     0.8486 0.000 0.000 0.000 0.000 1.000
#> GSM564678     2  0.1648     0.8038 0.020 0.940 0.000 0.000 0.040
#> GSM564679     2  0.3151     0.7664 0.020 0.836 0.000 0.000 0.144
#> GSM564680     3  0.1800     0.6909 0.020 0.000 0.932 0.000 0.048
#> GSM564682     2  0.3016     0.7547 0.020 0.848 0.132 0.000 0.000
#> GSM564683     3  0.0290     0.6928 0.008 0.000 0.992 0.000 0.000
#> GSM564684     5  0.6326     0.2739 0.208 0.000 0.268 0.000 0.524
#> GSM564685     3  0.0912     0.6916 0.012 0.016 0.972 0.000 0.000
#> GSM564686     3  0.7777     0.3801 0.160 0.104 0.436 0.000 0.300
#> GSM564687     2  0.6261     0.5005 0.012 0.584 0.168 0.000 0.236
#> GSM564688     5  0.0000     0.8486 0.000 0.000 0.000 0.000 1.000
#> GSM564689     2  0.0162     0.8047 0.004 0.996 0.000 0.000 0.000
#> GSM564690     2  0.0451     0.8059 0.004 0.988 0.000 0.000 0.008
#> GSM564691     2  0.3016     0.7547 0.020 0.848 0.132 0.000 0.000
#> GSM564692     5  0.0290     0.8455 0.000 0.008 0.000 0.000 0.992
#> GSM564694     3  0.7033     0.3774 0.016 0.304 0.440 0.000 0.240
#> GSM564695     3  0.6867     0.4559 0.032 0.152 0.504 0.000 0.312
#> GSM564696     3  0.4704     0.5528 0.152 0.112 0.736 0.000 0.000
#> GSM564697     2  0.0404     0.8047 0.012 0.988 0.000 0.000 0.000
#> GSM564698     3  0.4268     0.5605 0.024 0.000 0.708 0.000 0.268
#> GSM564700     5  0.6326     0.2739 0.208 0.000 0.268 0.000 0.524
#> GSM564701     5  0.0510     0.8405 0.000 0.016 0.000 0.000 0.984
#> GSM564702     5  0.0000     0.8486 0.000 0.000 0.000 0.000 1.000
#> GSM564703     4  0.0162     0.8888 0.004 0.000 0.000 0.996 0.000
#> GSM564704     4  0.3983    -0.0858 0.340 0.000 0.000 0.660 0.000
#> GSM564705     1  0.4235     0.8802 0.576 0.000 0.000 0.424 0.000
#> GSM564706     4  0.0000     0.8878 0.000 0.000 0.000 1.000 0.000
#> GSM564707     4  0.4171    -0.3721 0.396 0.000 0.000 0.604 0.000
#> GSM564708     4  0.0162     0.8888 0.004 0.000 0.000 0.996 0.000
#> GSM564709     1  0.4235     0.8802 0.576 0.000 0.000 0.424 0.000
#> GSM564710     1  0.4235     0.8802 0.576 0.000 0.000 0.424 0.000
#> GSM564711     4  0.0000     0.8878 0.000 0.000 0.000 1.000 0.000
#> GSM564712     1  0.4235     0.8802 0.576 0.000 0.000 0.424 0.000
#> GSM564713     4  0.0162     0.8888 0.004 0.000 0.000 0.996 0.000
#> GSM564714     4  0.0000     0.8878 0.000 0.000 0.000 1.000 0.000
#> GSM564715     4  0.3949    -0.0453 0.332 0.000 0.000 0.668 0.000
#> GSM564716     4  0.3966    -0.0677 0.336 0.000 0.000 0.664 0.000
#> GSM564717     4  0.0880     0.8736 0.032 0.000 0.000 0.968 0.000
#> GSM564718     4  0.0162     0.8888 0.004 0.000 0.000 0.996 0.000
#> GSM564719     4  0.0880     0.8736 0.032 0.000 0.000 0.968 0.000
#> GSM564720     4  0.0880     0.8736 0.032 0.000 0.000 0.968 0.000
#> GSM564721     1  0.4242     0.8738 0.572 0.000 0.000 0.428 0.000
#> GSM564722     4  0.0880     0.8736 0.032 0.000 0.000 0.968 0.000
#> GSM564723     1  0.4302     0.7757 0.520 0.000 0.000 0.480 0.000
#> GSM564724     4  0.0162     0.8888 0.004 0.000 0.000 0.996 0.000
#> GSM564725     1  0.4235     0.8802 0.576 0.000 0.000 0.424 0.000
#> GSM564726     4  0.0880     0.8735 0.032 0.000 0.000 0.968 0.000
#> GSM564727     1  0.4235     0.8802 0.576 0.000 0.000 0.424 0.000
#> GSM564728     4  0.0880     0.8735 0.032 0.000 0.000 0.968 0.000
#> GSM564729     4  0.0880     0.8735 0.032 0.000 0.000 0.968 0.000
#> GSM564730     1  0.4235     0.8802 0.576 0.000 0.000 0.424 0.000
#> GSM564731     4  0.0000     0.8878 0.000 0.000 0.000 1.000 0.000
#> GSM564732     4  0.0162     0.8888 0.004 0.000 0.000 0.996 0.000
#> GSM564733     4  0.0880     0.8735 0.032 0.000 0.000 0.968 0.000
#> GSM564734     4  0.0162     0.8888 0.004 0.000 0.000 0.996 0.000
#> GSM564735     4  0.0000     0.8878 0.000 0.000 0.000 1.000 0.000
#> GSM564736     4  0.0000     0.8878 0.000 0.000 0.000 1.000 0.000
#> GSM564737     1  0.4235     0.8802 0.576 0.000 0.000 0.424 0.000
#> GSM564738     4  0.0162     0.8888 0.004 0.000 0.000 0.996 0.000
#> GSM564739     4  0.0162     0.8888 0.004 0.000 0.000 0.996 0.000
#> GSM564740     4  0.0510     0.8836 0.016 0.000 0.000 0.984 0.000
#> GSM564741     4  0.0162     0.8888 0.004 0.000 0.000 0.996 0.000
#> GSM564742     4  0.0000     0.8878 0.000 0.000 0.000 1.000 0.000
#> GSM564743     4  0.0880     0.8736 0.032 0.000 0.000 0.968 0.000
#> GSM564744     1  0.4235     0.8802 0.576 0.000 0.000 0.424 0.000
#> GSM564745     1  0.4306     0.7339 0.508 0.000 0.000 0.492 0.000
#> GSM564746     4  0.0880     0.8736 0.032 0.000 0.000 0.968 0.000
#> GSM564747     4  0.0404     0.8852 0.012 0.000 0.000 0.988 0.000
#> GSM564748     4  0.0162     0.8888 0.004 0.000 0.000 0.996 0.000
#> GSM564749     4  0.0880     0.8736 0.032 0.000 0.000 0.968 0.000
#> GSM564750     4  0.0000     0.8878 0.000 0.000 0.000 1.000 0.000
#> GSM564751     4  0.0000     0.8878 0.000 0.000 0.000 1.000 0.000
#> GSM564752     4  0.0000     0.8878 0.000 0.000 0.000 1.000 0.000
#> GSM564753     4  0.0000     0.8878 0.000 0.000 0.000 1.000 0.000
#> GSM564754     4  0.4307    -0.7196 0.496 0.000 0.000 0.504 0.000
#> GSM564755     4  0.0880     0.8735 0.032 0.000 0.000 0.968 0.000
#> GSM564756     4  0.3949    -0.0409 0.332 0.000 0.000 0.668 0.000
#> GSM564757     4  0.0162     0.8888 0.004 0.000 0.000 0.996 0.000
#> GSM564758     4  0.0162     0.8888 0.004 0.000 0.000 0.996 0.000
#> GSM564759     4  0.0000     0.8878 0.000 0.000 0.000 1.000 0.000
#> GSM564760     4  0.0162     0.8888 0.004 0.000 0.000 0.996 0.000
#> GSM564761     1  0.4235     0.8802 0.576 0.000 0.000 0.424 0.000
#> GSM564762     4  0.0162     0.8888 0.004 0.000 0.000 0.996 0.000
#> GSM564681     5  0.0510     0.8405 0.000 0.016 0.000 0.000 0.984
#> GSM564693     5  0.0000     0.8486 0.000 0.000 0.000 0.000 1.000
#> GSM564646     5  0.6326     0.2739 0.208 0.000 0.268 0.000 0.524
#> GSM564699     3  0.7483     0.4247 0.120 0.104 0.476 0.000 0.300

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM564615     4  0.0790     0.8358 0.032 0.000 0.000 0.968 0.000 0.000
#> GSM564616     5  0.1452     0.8609 0.012 0.020 0.000 0.000 0.948 0.020
#> GSM564617     2  0.1434     0.7640 0.020 0.948 0.008 0.000 0.000 0.024
#> GSM564618     5  0.0603     0.8883 0.004 0.000 0.000 0.000 0.980 0.016
#> GSM564619     1  0.3482     0.8921 0.684 0.000 0.000 0.316 0.000 0.000
#> GSM564620     4  0.3647     0.1045 0.360 0.000 0.000 0.640 0.000 0.000
#> GSM564621     4  0.3756    -0.0802 0.400 0.000 0.000 0.600 0.000 0.000
#> GSM564622     5  0.3769     0.2946 0.000 0.000 0.004 0.000 0.640 0.356
#> GSM564623     1  0.8514    -0.5680 0.264 0.212 0.212 0.000 0.060 0.252
#> GSM564624     2  0.3522     0.7393 0.032 0.824 0.004 0.000 0.024 0.116
#> GSM564625     4  0.0146     0.8454 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM564626     1  0.3482     0.8921 0.684 0.000 0.000 0.316 0.000 0.000
#> GSM564627     4  0.2994     0.7373 0.004 0.000 0.000 0.788 0.000 0.208
#> GSM564628     2  0.5266     0.4337 0.012 0.560 0.020 0.000 0.372 0.036
#> GSM564629     4  0.2632     0.7706 0.004 0.000 0.000 0.832 0.000 0.164
#> GSM564630     2  0.5984     0.4303 0.284 0.444 0.000 0.000 0.000 0.272
#> GSM564609     3  0.5638    -0.1370 0.004 0.000 0.504 0.000 0.140 0.352
#> GSM564610     4  0.3454     0.7169 0.024 0.000 0.000 0.768 0.000 0.208
#> GSM564611     4  0.3290     0.7257 0.016 0.000 0.000 0.776 0.000 0.208
#> GSM564612     2  0.4504     0.5614 0.004 0.652 0.296 0.000 0.000 0.048
#> GSM564613     2  0.3356     0.7309 0.020 0.836 0.092 0.000 0.000 0.052
#> GSM564614     4  0.0790     0.8358 0.032 0.000 0.000 0.968 0.000 0.000
#> GSM564631     3  0.0363     0.6108 0.000 0.012 0.988 0.000 0.000 0.000
#> GSM564632     5  0.4011     0.5246 0.000 0.000 0.056 0.000 0.732 0.212
#> GSM564633     3  0.5638    -0.1370 0.004 0.000 0.504 0.000 0.140 0.352
#> GSM564634     2  0.6386     0.3411 0.156 0.520 0.268 0.000 0.000 0.056
#> GSM564635     3  0.5638    -0.1370 0.004 0.000 0.504 0.000 0.140 0.352
#> GSM564636     3  0.0909     0.6103 0.000 0.020 0.968 0.000 0.000 0.012
#> GSM564637     3  0.6696     0.1785 0.004 0.372 0.432 0.000 0.080 0.112
#> GSM564638     3  0.0405     0.6054 0.008 0.000 0.988 0.000 0.000 0.004
#> GSM564639     3  0.1728     0.5853 0.008 0.000 0.924 0.000 0.004 0.064
#> GSM564640     2  0.5402     0.5204 0.012 0.592 0.036 0.000 0.324 0.036
#> GSM564641     2  0.3645     0.7030 0.008 0.796 0.144 0.000 0.000 0.052
#> GSM564642     2  0.7076     0.3346 0.012 0.492 0.224 0.000 0.176 0.096
#> GSM564643     5  0.4011     0.5246 0.000 0.000 0.056 0.000 0.732 0.212
#> GSM564644     2  0.6487     0.5240 0.016 0.588 0.144 0.000 0.172 0.080
#> GSM564645     3  0.1845     0.5863 0.000 0.008 0.916 0.000 0.004 0.072
#> GSM564647     3  0.4079     0.4065 0.000 0.288 0.680 0.000 0.000 0.032
#> GSM564648     5  0.0000     0.8989 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564649     3  0.0725     0.6111 0.000 0.012 0.976 0.000 0.000 0.012
#> GSM564650     2  0.1026     0.7661 0.008 0.968 0.004 0.000 0.008 0.012
#> GSM564651     5  0.0000     0.8989 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564652     5  0.0000     0.8989 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564653     5  0.0000     0.8989 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564654     5  0.4011     0.5246 0.000 0.000 0.056 0.000 0.732 0.212
#> GSM564655     3  0.6044    -0.3346 0.004 0.000 0.440 0.000 0.220 0.336
#> GSM564656     3  0.5638    -0.1370 0.004 0.000 0.504 0.000 0.140 0.352
#> GSM564657     3  0.0363     0.6108 0.000 0.012 0.988 0.000 0.000 0.000
#> GSM564658     2  0.4744     0.7009 0.032 0.728 0.000 0.000 0.124 0.116
#> GSM564659     3  0.5685     0.4304 0.000 0.136 0.656 0.000 0.104 0.104
#> GSM564660     2  0.1026     0.7661 0.008 0.968 0.004 0.000 0.008 0.012
#> GSM564661     5  0.0000     0.8989 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564662     3  0.0363     0.6108 0.000 0.012 0.988 0.000 0.000 0.000
#> GSM564663     2  0.3441     0.7402 0.032 0.828 0.004 0.000 0.020 0.116
#> GSM564664     2  0.6872     0.4333 0.016 0.536 0.172 0.000 0.188 0.088
#> GSM564665     3  0.6696     0.1785 0.004 0.372 0.432 0.000 0.080 0.112
#> GSM564666     3  0.8249     0.0738 0.188 0.148 0.388 0.000 0.072 0.204
#> GSM564667     3  0.0363     0.6108 0.000 0.012 0.988 0.000 0.000 0.000
#> GSM564668     6  0.5480     0.5198 0.000 0.000 0.328 0.000 0.144 0.528
#> GSM564669     6  0.5480     0.5198 0.000 0.000 0.328 0.000 0.144 0.528
#> GSM564670     2  0.3356     0.7309 0.020 0.836 0.092 0.000 0.000 0.052
#> GSM564671     6  0.6102     0.7420 0.032 0.000 0.128 0.000 0.360 0.480
#> GSM564672     3  0.0725     0.6111 0.000 0.012 0.976 0.000 0.000 0.012
#> GSM564673     5  0.0000     0.8989 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564674     2  0.3506     0.7524 0.024 0.844 0.024 0.000 0.032 0.076
#> GSM564675     3  0.8190     0.0920 0.188 0.160 0.380 0.000 0.056 0.216
#> GSM564676     2  0.0779     0.7655 0.008 0.976 0.008 0.000 0.000 0.008
#> GSM564677     5  0.0000     0.8989 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564678     2  0.3441     0.7402 0.032 0.828 0.004 0.000 0.020 0.116
#> GSM564679     2  0.4744     0.7009 0.032 0.728 0.000 0.000 0.124 0.116
#> GSM564680     3  0.1787     0.5835 0.008 0.000 0.920 0.000 0.004 0.068
#> GSM564682     2  0.3645     0.7030 0.008 0.796 0.144 0.000 0.000 0.052
#> GSM564683     3  0.0405     0.6054 0.008 0.000 0.988 0.000 0.000 0.004
#> GSM564684     6  0.6102     0.7420 0.032 0.000 0.128 0.000 0.360 0.480
#> GSM564685     3  0.1262     0.6080 0.020 0.008 0.956 0.000 0.000 0.016
#> GSM564686     6  0.7498     0.2971 0.036 0.092 0.336 0.000 0.136 0.400
#> GSM564687     2  0.6727     0.4855 0.016 0.560 0.152 0.000 0.180 0.092
#> GSM564688     5  0.0000     0.8989 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564689     2  0.0551     0.7650 0.008 0.984 0.004 0.000 0.000 0.004
#> GSM564690     2  0.0696     0.7661 0.004 0.980 0.004 0.000 0.008 0.004
#> GSM564691     2  0.3645     0.7030 0.008 0.796 0.144 0.000 0.000 0.052
#> GSM564692     5  0.0767     0.8849 0.012 0.008 0.000 0.000 0.976 0.004
#> GSM564694     3  0.7134     0.1719 0.000 0.280 0.428 0.000 0.168 0.124
#> GSM564695     3  0.6899     0.1278 0.000 0.132 0.492 0.000 0.228 0.148
#> GSM564696     3  0.4980     0.4733 0.148 0.088 0.712 0.000 0.000 0.052
#> GSM564697     2  0.1065     0.7648 0.020 0.964 0.008 0.000 0.000 0.008
#> GSM564698     3  0.5012     0.2412 0.008 0.000 0.644 0.000 0.100 0.248
#> GSM564700     6  0.6102     0.7420 0.032 0.000 0.128 0.000 0.360 0.480
#> GSM564701     5  0.0748     0.8859 0.004 0.004 0.000 0.000 0.976 0.016
#> GSM564702     5  0.0000     0.8989 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564703     4  0.0363     0.8431 0.012 0.000 0.000 0.988 0.000 0.000
#> GSM564704     4  0.3659     0.0886 0.364 0.000 0.000 0.636 0.000 0.000
#> GSM564705     1  0.3482     0.8921 0.684 0.000 0.000 0.316 0.000 0.000
#> GSM564706     4  0.1267     0.8296 0.000 0.000 0.000 0.940 0.000 0.060
#> GSM564707     4  0.4804    -0.4524 0.456 0.000 0.000 0.492 0.000 0.052
#> GSM564708     4  0.0146     0.8454 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM564709     1  0.3499     0.8897 0.680 0.000 0.000 0.320 0.000 0.000
#> GSM564710     1  0.3482     0.8921 0.684 0.000 0.000 0.316 0.000 0.000
#> GSM564711     4  0.1267     0.8296 0.000 0.000 0.000 0.940 0.000 0.060
#> GSM564712     1  0.3482     0.8921 0.684 0.000 0.000 0.316 0.000 0.000
#> GSM564713     4  0.0146     0.8454 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM564714     4  0.1387     0.8267 0.000 0.000 0.000 0.932 0.000 0.068
#> GSM564715     4  0.3647     0.1054 0.360 0.000 0.000 0.640 0.000 0.000
#> GSM564716     4  0.3647     0.1045 0.360 0.000 0.000 0.640 0.000 0.000
#> GSM564717     4  0.2994     0.7373 0.004 0.000 0.000 0.788 0.000 0.208
#> GSM564718     4  0.0146     0.8454 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM564719     4  0.2994     0.7373 0.004 0.000 0.000 0.788 0.000 0.208
#> GSM564720     4  0.3290     0.7257 0.016 0.000 0.000 0.776 0.000 0.208
#> GSM564721     1  0.3499     0.8892 0.680 0.000 0.000 0.320 0.000 0.000
#> GSM564722     4  0.2994     0.7373 0.004 0.000 0.000 0.788 0.000 0.208
#> GSM564723     1  0.4357     0.8315 0.624 0.000 0.000 0.340 0.000 0.036
#> GSM564724     4  0.0146     0.8454 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM564725     1  0.3482     0.8921 0.684 0.000 0.000 0.316 0.000 0.000
#> GSM564726     4  0.0790     0.8358 0.032 0.000 0.000 0.968 0.000 0.000
#> GSM564727     1  0.3499     0.8897 0.680 0.000 0.000 0.320 0.000 0.000
#> GSM564728     4  0.0790     0.8358 0.032 0.000 0.000 0.968 0.000 0.000
#> GSM564729     4  0.0790     0.8358 0.032 0.000 0.000 0.968 0.000 0.000
#> GSM564730     1  0.3499     0.8897 0.680 0.000 0.000 0.320 0.000 0.000
#> GSM564731     4  0.0000     0.8453 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564732     4  0.0146     0.8454 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM564733     4  0.0865     0.8335 0.036 0.000 0.000 0.964 0.000 0.000
#> GSM564734     4  0.0146     0.8454 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM564735     4  0.0000     0.8453 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564736     4  0.0000     0.8453 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564737     1  0.3482     0.8921 0.684 0.000 0.000 0.316 0.000 0.000
#> GSM564738     4  0.0146     0.8454 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM564739     4  0.0363     0.8431 0.012 0.000 0.000 0.988 0.000 0.000
#> GSM564740     4  0.2595     0.7731 0.004 0.000 0.000 0.836 0.000 0.160
#> GSM564741     4  0.0363     0.8431 0.012 0.000 0.000 0.988 0.000 0.000
#> GSM564742     4  0.1387     0.8267 0.000 0.000 0.000 0.932 0.000 0.068
#> GSM564743     4  0.2994     0.7373 0.004 0.000 0.000 0.788 0.000 0.208
#> GSM564744     1  0.3482     0.8921 0.684 0.000 0.000 0.316 0.000 0.000
#> GSM564745     1  0.3804     0.6935 0.576 0.000 0.000 0.424 0.000 0.000
#> GSM564746     4  0.2994     0.7373 0.004 0.000 0.000 0.788 0.000 0.208
#> GSM564747     4  0.2558     0.7755 0.004 0.000 0.000 0.840 0.000 0.156
#> GSM564748     4  0.0363     0.8431 0.012 0.000 0.000 0.988 0.000 0.000
#> GSM564749     4  0.3290     0.7257 0.016 0.000 0.000 0.776 0.000 0.208
#> GSM564750     4  0.0000     0.8453 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564751     4  0.0000     0.8453 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564752     4  0.0000     0.8453 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564753     4  0.1204     0.8312 0.000 0.000 0.000 0.944 0.000 0.056
#> GSM564754     1  0.3797     0.7133 0.580 0.000 0.000 0.420 0.000 0.000
#> GSM564755     4  0.0790     0.8358 0.032 0.000 0.000 0.968 0.000 0.000
#> GSM564756     4  0.3563     0.2090 0.336 0.000 0.000 0.664 0.000 0.000
#> GSM564757     4  0.0146     0.8454 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM564758     4  0.0146     0.8454 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM564759     4  0.1387     0.8267 0.000 0.000 0.000 0.932 0.000 0.068
#> GSM564760     4  0.0146     0.8454 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM564761     1  0.3482     0.8921 0.684 0.000 0.000 0.316 0.000 0.000
#> GSM564762     4  0.0146     0.8454 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM564681     5  0.0603     0.8883 0.004 0.000 0.000 0.000 0.980 0.016
#> GSM564693     5  0.0000     0.8989 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564646     6  0.6102     0.7420 0.032 0.000 0.128 0.000 0.360 0.480
#> GSM564699     3  0.7498    -0.2509 0.036 0.092 0.400 0.000 0.136 0.336

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n genotype/variation(p) disease.state(p) k
#> ATC:hclust 154                 0.925          0.47591 2
#> ATC:hclust 112                 0.749          0.03100 3
#> ATC:hclust 129                 0.472          0.06751 4
#> ATC:hclust 121                 0.531          0.20643 5
#> ATC:hclust 122                 0.740          0.00823 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 154 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.996       0.996         0.5007 0.500   0.500
#> 3 3 0.657           0.735       0.765         0.2480 0.886   0.772
#> 4 4 0.606           0.601       0.642         0.1205 0.865   0.658
#> 5 5 0.586           0.778       0.750         0.0849 0.889   0.618
#> 6 6 0.638           0.779       0.779         0.0588 0.959   0.802

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM564615     1  0.0000      0.996 1.000 0.000
#> GSM564616     2  0.0000      0.996 0.000 1.000
#> GSM564617     2  0.0000      0.996 0.000 1.000
#> GSM564618     2  0.0000      0.996 0.000 1.000
#> GSM564619     1  0.0672      0.996 0.992 0.008
#> GSM564620     1  0.0672      0.996 0.992 0.008
#> GSM564621     1  0.0672      0.996 0.992 0.008
#> GSM564622     2  0.0000      0.996 0.000 1.000
#> GSM564623     2  0.0000      0.996 0.000 1.000
#> GSM564624     2  0.0000      0.996 0.000 1.000
#> GSM564625     1  0.0376      0.996 0.996 0.004
#> GSM564626     1  0.0672      0.996 0.992 0.008
#> GSM564627     1  0.0672      0.996 0.992 0.008
#> GSM564628     2  0.0000      0.996 0.000 1.000
#> GSM564629     1  0.0672      0.996 0.992 0.008
#> GSM564630     2  0.0000      0.996 0.000 1.000
#> GSM564609     2  0.0672      0.996 0.008 0.992
#> GSM564610     1  0.0672      0.996 0.992 0.008
#> GSM564611     1  0.0672      0.996 0.992 0.008
#> GSM564612     2  0.0672      0.996 0.008 0.992
#> GSM564613     2  0.0672      0.996 0.008 0.992
#> GSM564614     1  0.0000      0.996 1.000 0.000
#> GSM564631     2  0.0672      0.996 0.008 0.992
#> GSM564632     2  0.0000      0.996 0.000 1.000
#> GSM564633     2  0.0672      0.996 0.008 0.992
#> GSM564634     2  0.0672      0.996 0.008 0.992
#> GSM564635     2  0.0672      0.996 0.008 0.992
#> GSM564636     2  0.0672      0.996 0.008 0.992
#> GSM564637     2  0.0672      0.996 0.008 0.992
#> GSM564638     2  0.0672      0.996 0.008 0.992
#> GSM564639     2  0.0672      0.996 0.008 0.992
#> GSM564640     2  0.0000      0.996 0.000 1.000
#> GSM564641     2  0.0672      0.996 0.008 0.992
#> GSM564642     2  0.0000      0.996 0.000 1.000
#> GSM564643     2  0.0000      0.996 0.000 1.000
#> GSM564644     2  0.0000      0.996 0.000 1.000
#> GSM564645     2  0.0672      0.996 0.008 0.992
#> GSM564647     2  0.0672      0.996 0.008 0.992
#> GSM564648     2  0.0000      0.996 0.000 1.000
#> GSM564649     2  0.0672      0.996 0.008 0.992
#> GSM564650     2  0.0000      0.996 0.000 1.000
#> GSM564651     2  0.0000      0.996 0.000 1.000
#> GSM564652     2  0.0000      0.996 0.000 1.000
#> GSM564653     2  0.0000      0.996 0.000 1.000
#> GSM564654     2  0.0672      0.996 0.008 0.992
#> GSM564655     2  0.0672      0.996 0.008 0.992
#> GSM564656     2  0.0672      0.996 0.008 0.992
#> GSM564657     2  0.0672      0.996 0.008 0.992
#> GSM564658     2  0.0000      0.996 0.000 1.000
#> GSM564659     2  0.0672      0.996 0.008 0.992
#> GSM564660     2  0.0000      0.996 0.000 1.000
#> GSM564661     2  0.0000      0.996 0.000 1.000
#> GSM564662     2  0.0672      0.996 0.008 0.992
#> GSM564663     2  0.0000      0.996 0.000 1.000
#> GSM564664     2  0.0000      0.996 0.000 1.000
#> GSM564665     2  0.0672      0.996 0.008 0.992
#> GSM564666     2  0.0672      0.996 0.008 0.992
#> GSM564667     2  0.0672      0.996 0.008 0.992
#> GSM564668     2  0.0672      0.996 0.008 0.992
#> GSM564669     2  0.0672      0.996 0.008 0.992
#> GSM564670     2  0.0376      0.996 0.004 0.996
#> GSM564671     2  0.0000      0.996 0.000 1.000
#> GSM564672     2  0.0672      0.996 0.008 0.992
#> GSM564673     2  0.0000      0.996 0.000 1.000
#> GSM564674     2  0.0000      0.996 0.000 1.000
#> GSM564675     2  0.0376      0.996 0.004 0.996
#> GSM564676     2  0.0000      0.996 0.000 1.000
#> GSM564677     2  0.0000      0.996 0.000 1.000
#> GSM564678     2  0.0000      0.996 0.000 1.000
#> GSM564679     2  0.0000      0.996 0.000 1.000
#> GSM564680     2  0.0672      0.996 0.008 0.992
#> GSM564682     2  0.0672      0.996 0.008 0.992
#> GSM564683     2  0.0672      0.996 0.008 0.992
#> GSM564684     2  0.0000      0.996 0.000 1.000
#> GSM564685     2  0.0672      0.996 0.008 0.992
#> GSM564686     2  0.0672      0.996 0.008 0.992
#> GSM564687     2  0.0000      0.996 0.000 1.000
#> GSM564688     2  0.0000      0.996 0.000 1.000
#> GSM564689     2  0.0000      0.996 0.000 1.000
#> GSM564690     2  0.0000      0.996 0.000 1.000
#> GSM564691     2  0.0672      0.996 0.008 0.992
#> GSM564692     2  0.0000      0.996 0.000 1.000
#> GSM564694     2  0.0000      0.996 0.000 1.000
#> GSM564695     2  0.0000      0.996 0.000 1.000
#> GSM564696     2  0.0672      0.996 0.008 0.992
#> GSM564697     2  0.0000      0.996 0.000 1.000
#> GSM564698     2  0.0672      0.996 0.008 0.992
#> GSM564700     2  0.0000      0.996 0.000 1.000
#> GSM564701     2  0.0000      0.996 0.000 1.000
#> GSM564702     2  0.0000      0.996 0.000 1.000
#> GSM564703     1  0.0000      0.996 1.000 0.000
#> GSM564704     1  0.0672      0.996 0.992 0.008
#> GSM564705     1  0.0672      0.996 0.992 0.008
#> GSM564706     1  0.0000      0.996 1.000 0.000
#> GSM564707     1  0.0672      0.996 0.992 0.008
#> GSM564708     1  0.0000      0.996 1.000 0.000
#> GSM564709     1  0.0672      0.996 0.992 0.008
#> GSM564710     1  0.0672      0.996 0.992 0.008
#> GSM564711     1  0.0000      0.996 1.000 0.000
#> GSM564712     1  0.0672      0.996 0.992 0.008
#> GSM564713     1  0.0000      0.996 1.000 0.000
#> GSM564714     1  0.0000      0.996 1.000 0.000
#> GSM564715     1  0.0672      0.996 0.992 0.008
#> GSM564716     1  0.0672      0.996 0.992 0.008
#> GSM564717     1  0.0672      0.996 0.992 0.008
#> GSM564718     1  0.0000      0.996 1.000 0.000
#> GSM564719     1  0.0672      0.996 0.992 0.008
#> GSM564720     1  0.0672      0.996 0.992 0.008
#> GSM564721     1  0.0672      0.996 0.992 0.008
#> GSM564722     1  0.0000      0.996 1.000 0.000
#> GSM564723     1  0.0672      0.996 0.992 0.008
#> GSM564724     1  0.0000      0.996 1.000 0.000
#> GSM564725     1  0.0672      0.996 0.992 0.008
#> GSM564726     1  0.0000      0.996 1.000 0.000
#> GSM564727     1  0.0672      0.996 0.992 0.008
#> GSM564728     1  0.0000      0.996 1.000 0.000
#> GSM564729     1  0.0376      0.996 0.996 0.004
#> GSM564730     1  0.0672      0.996 0.992 0.008
#> GSM564731     1  0.0000      0.996 1.000 0.000
#> GSM564732     1  0.0000      0.996 1.000 0.000
#> GSM564733     1  0.0000      0.996 1.000 0.000
#> GSM564734     1  0.0376      0.996 0.996 0.004
#> GSM564735     1  0.0000      0.996 1.000 0.000
#> GSM564736     1  0.0000      0.996 1.000 0.000
#> GSM564737     1  0.0672      0.996 0.992 0.008
#> GSM564738     1  0.0000      0.996 1.000 0.000
#> GSM564739     1  0.0000      0.996 1.000 0.000
#> GSM564740     1  0.0000      0.996 1.000 0.000
#> GSM564741     1  0.0000      0.996 1.000 0.000
#> GSM564742     1  0.0000      0.996 1.000 0.000
#> GSM564743     1  0.0672      0.996 0.992 0.008
#> GSM564744     1  0.0672      0.996 0.992 0.008
#> GSM564745     1  0.0672      0.996 0.992 0.008
#> GSM564746     1  0.0672      0.996 0.992 0.008
#> GSM564747     1  0.0000      0.996 1.000 0.000
#> GSM564748     1  0.0000      0.996 1.000 0.000
#> GSM564749     1  0.0672      0.996 0.992 0.008
#> GSM564750     1  0.0000      0.996 1.000 0.000
#> GSM564751     1  0.0000      0.996 1.000 0.000
#> GSM564752     1  0.0000      0.996 1.000 0.000
#> GSM564753     1  0.0000      0.996 1.000 0.000
#> GSM564754     1  0.0672      0.996 0.992 0.008
#> GSM564755     1  0.0000      0.996 1.000 0.000
#> GSM564756     1  0.0672      0.996 0.992 0.008
#> GSM564757     1  0.0000      0.996 1.000 0.000
#> GSM564758     1  0.0000      0.996 1.000 0.000
#> GSM564759     1  0.0000      0.996 1.000 0.000
#> GSM564760     1  0.0376      0.996 0.996 0.004
#> GSM564761     1  0.0672      0.996 0.992 0.008
#> GSM564762     1  0.0000      0.996 1.000 0.000
#> GSM564681     2  0.0000      0.996 0.000 1.000
#> GSM564693     2  0.0000      0.996 0.000 1.000
#> GSM564646     2  0.0000      0.996 0.000 1.000
#> GSM564699     2  0.0672      0.996 0.008 0.992

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM564615     1  0.5529      0.868 0.704 0.296 0.000
#> GSM564616     2  0.6140      0.970 0.000 0.596 0.404
#> GSM564617     3  0.4346      0.616 0.000 0.184 0.816
#> GSM564618     2  0.6154      0.974 0.000 0.592 0.408
#> GSM564619     1  0.0000      0.836 1.000 0.000 0.000
#> GSM564620     1  0.2356      0.852 0.928 0.072 0.000
#> GSM564621     1  0.0237      0.837 0.996 0.004 0.000
#> GSM564622     2  0.6192      0.955 0.000 0.580 0.420
#> GSM564623     3  0.3267      0.665 0.000 0.116 0.884
#> GSM564624     3  0.4887      0.558 0.000 0.228 0.772
#> GSM564625     1  0.5529      0.868 0.704 0.296 0.000
#> GSM564626     1  0.0000      0.836 1.000 0.000 0.000
#> GSM564627     1  0.3038      0.820 0.896 0.104 0.000
#> GSM564628     3  0.5785      0.223 0.000 0.332 0.668
#> GSM564629     1  0.5988      0.857 0.632 0.368 0.000
#> GSM564630     3  0.5016      0.532 0.000 0.240 0.760
#> GSM564609     3  0.5058      0.184 0.000 0.244 0.756
#> GSM564610     1  0.3038      0.820 0.896 0.104 0.000
#> GSM564611     1  0.3038      0.820 0.896 0.104 0.000
#> GSM564612     3  0.1411      0.708 0.000 0.036 0.964
#> GSM564613     3  0.0237      0.714 0.000 0.004 0.996
#> GSM564614     1  0.5529      0.868 0.704 0.296 0.000
#> GSM564631     3  0.0237      0.715 0.000 0.004 0.996
#> GSM564632     2  0.6168      0.967 0.000 0.588 0.412
#> GSM564633     3  0.5988     -0.328 0.000 0.368 0.632
#> GSM564634     3  0.0237      0.714 0.000 0.004 0.996
#> GSM564635     3  0.4452      0.367 0.000 0.192 0.808
#> GSM564636     3  0.0424      0.714 0.000 0.008 0.992
#> GSM564637     3  0.0237      0.715 0.000 0.004 0.996
#> GSM564638     3  0.0237      0.715 0.000 0.004 0.996
#> GSM564639     3  0.0237      0.715 0.000 0.004 0.996
#> GSM564640     3  0.5216      0.485 0.000 0.260 0.740
#> GSM564641     3  0.0892      0.713 0.000 0.020 0.980
#> GSM564642     3  0.4605      0.595 0.000 0.204 0.796
#> GSM564643     2  0.6192      0.955 0.000 0.580 0.420
#> GSM564644     3  0.4887      0.558 0.000 0.228 0.772
#> GSM564645     3  0.0237      0.715 0.000 0.004 0.996
#> GSM564647     3  0.0747      0.714 0.000 0.016 0.984
#> GSM564648     2  0.6140      0.976 0.000 0.596 0.404
#> GSM564649     3  0.0237      0.715 0.000 0.004 0.996
#> GSM564650     3  0.4702      0.585 0.000 0.212 0.788
#> GSM564651     2  0.6140      0.976 0.000 0.596 0.404
#> GSM564652     2  0.6140      0.976 0.000 0.596 0.404
#> GSM564653     2  0.6154      0.974 0.000 0.592 0.408
#> GSM564654     3  0.6286     -0.632 0.000 0.464 0.536
#> GSM564655     3  0.5835     -0.235 0.000 0.340 0.660
#> GSM564656     3  0.5058      0.184 0.000 0.244 0.756
#> GSM564657     3  0.0237      0.715 0.000 0.004 0.996
#> GSM564658     3  0.5678      0.293 0.000 0.316 0.684
#> GSM564659     3  0.0237      0.715 0.000 0.004 0.996
#> GSM564660     3  0.4702      0.585 0.000 0.212 0.788
#> GSM564661     2  0.6140      0.970 0.000 0.596 0.404
#> GSM564662     3  0.0237      0.715 0.000 0.004 0.996
#> GSM564663     3  0.4887      0.558 0.000 0.228 0.772
#> GSM564664     3  0.5621      0.316 0.000 0.308 0.692
#> GSM564665     3  0.0237      0.715 0.000 0.004 0.996
#> GSM564666     3  0.0000      0.715 0.000 0.000 1.000
#> GSM564667     3  0.0424      0.714 0.000 0.008 0.992
#> GSM564668     3  0.6140     -0.444 0.000 0.404 0.596
#> GSM564669     3  0.5882     -0.263 0.000 0.348 0.652
#> GSM564670     3  0.0892      0.713 0.000 0.020 0.980
#> GSM564671     2  0.6235      0.923 0.000 0.564 0.436
#> GSM564672     3  0.0237      0.715 0.000 0.004 0.996
#> GSM564673     2  0.6140      0.976 0.000 0.596 0.404
#> GSM564674     3  0.4887      0.558 0.000 0.228 0.772
#> GSM564675     3  0.3267      0.665 0.000 0.116 0.884
#> GSM564676     3  0.4750      0.579 0.000 0.216 0.784
#> GSM564677     2  0.6140      0.976 0.000 0.596 0.404
#> GSM564678     3  0.4887      0.558 0.000 0.228 0.772
#> GSM564679     3  0.5733      0.260 0.000 0.324 0.676
#> GSM564680     3  0.0424      0.712 0.000 0.008 0.992
#> GSM564682     3  0.0892      0.713 0.000 0.020 0.980
#> GSM564683     3  0.0237      0.715 0.000 0.004 0.996
#> GSM564684     2  0.6260      0.905 0.000 0.552 0.448
#> GSM564685     3  0.0237      0.715 0.000 0.004 0.996
#> GSM564686     3  0.3340      0.665 0.000 0.120 0.880
#> GSM564687     3  0.4842      0.566 0.000 0.224 0.776
#> GSM564688     2  0.6140      0.976 0.000 0.596 0.404
#> GSM564689     3  0.4654      0.590 0.000 0.208 0.792
#> GSM564690     3  0.4887      0.558 0.000 0.228 0.772
#> GSM564691     3  0.1411      0.708 0.000 0.036 0.964
#> GSM564692     2  0.6140      0.970 0.000 0.596 0.404
#> GSM564694     3  0.4399      0.607 0.000 0.188 0.812
#> GSM564695     3  0.4654      0.591 0.000 0.208 0.792
#> GSM564696     3  0.0237      0.715 0.000 0.004 0.996
#> GSM564697     3  0.4346      0.616 0.000 0.184 0.816
#> GSM564698     3  0.4974      0.214 0.000 0.236 0.764
#> GSM564700     2  0.6180      0.961 0.000 0.584 0.416
#> GSM564701     2  0.6154      0.974 0.000 0.592 0.408
#> GSM564702     2  0.6140      0.976 0.000 0.596 0.404
#> GSM564703     1  0.5529      0.870 0.704 0.296 0.000
#> GSM564704     1  0.0592      0.839 0.988 0.012 0.000
#> GSM564705     1  0.0000      0.836 1.000 0.000 0.000
#> GSM564706     1  0.6126      0.852 0.600 0.400 0.000
#> GSM564707     1  0.0000      0.836 1.000 0.000 0.000
#> GSM564708     1  0.5560      0.868 0.700 0.300 0.000
#> GSM564709     1  0.0000      0.836 1.000 0.000 0.000
#> GSM564710     1  0.0000      0.836 1.000 0.000 0.000
#> GSM564711     1  0.6126      0.852 0.600 0.400 0.000
#> GSM564712     1  0.0000      0.836 1.000 0.000 0.000
#> GSM564713     1  0.5621      0.868 0.692 0.308 0.000
#> GSM564714     1  0.6126      0.852 0.600 0.400 0.000
#> GSM564715     1  0.0000      0.836 1.000 0.000 0.000
#> GSM564716     1  0.0592      0.839 0.988 0.012 0.000
#> GSM564717     1  0.3340      0.826 0.880 0.120 0.000
#> GSM564718     1  0.5926      0.862 0.644 0.356 0.000
#> GSM564719     1  0.4931      0.851 0.768 0.232 0.000
#> GSM564720     1  0.3038      0.820 0.896 0.104 0.000
#> GSM564721     1  0.0000      0.836 1.000 0.000 0.000
#> GSM564722     1  0.5465      0.858 0.712 0.288 0.000
#> GSM564723     1  0.1860      0.826 0.948 0.052 0.000
#> GSM564724     1  0.5560      0.868 0.700 0.300 0.000
#> GSM564725     1  0.0000      0.836 1.000 0.000 0.000
#> GSM564726     1  0.5529      0.868 0.704 0.296 0.000
#> GSM564727     1  0.0000      0.836 1.000 0.000 0.000
#> GSM564728     1  0.5529      0.868 0.704 0.296 0.000
#> GSM564729     1  0.5529      0.868 0.704 0.296 0.000
#> GSM564730     1  0.0000      0.836 1.000 0.000 0.000
#> GSM564731     1  0.6026      0.858 0.624 0.376 0.000
#> GSM564732     1  0.5529      0.868 0.704 0.296 0.000
#> GSM564733     1  0.5529      0.868 0.704 0.296 0.000
#> GSM564734     1  0.5529      0.868 0.704 0.296 0.000
#> GSM564735     1  0.5926      0.862 0.644 0.356 0.000
#> GSM564736     1  0.5621      0.868 0.692 0.308 0.000
#> GSM564737     1  0.0000      0.836 1.000 0.000 0.000
#> GSM564738     1  0.5835      0.865 0.660 0.340 0.000
#> GSM564739     1  0.5431      0.869 0.716 0.284 0.000
#> GSM564740     1  0.6126      0.852 0.600 0.400 0.000
#> GSM564741     1  0.5621      0.868 0.692 0.308 0.000
#> GSM564742     1  0.6126      0.852 0.600 0.400 0.000
#> GSM564743     1  0.3038      0.820 0.896 0.104 0.000
#> GSM564744     1  0.0000      0.836 1.000 0.000 0.000
#> GSM564745     1  0.0747      0.840 0.984 0.016 0.000
#> GSM564746     1  0.3038      0.820 0.896 0.104 0.000
#> GSM564747     1  0.6126      0.852 0.600 0.400 0.000
#> GSM564748     1  0.5591      0.869 0.696 0.304 0.000
#> GSM564749     1  0.3038      0.820 0.896 0.104 0.000
#> GSM564750     1  0.5621      0.868 0.692 0.308 0.000
#> GSM564751     1  0.6026      0.858 0.624 0.376 0.000
#> GSM564752     1  0.6126      0.852 0.600 0.400 0.000
#> GSM564753     1  0.6126      0.852 0.600 0.400 0.000
#> GSM564754     1  0.0000      0.836 1.000 0.000 0.000
#> GSM564755     1  0.5529      0.868 0.704 0.296 0.000
#> GSM564756     1  0.4887      0.870 0.772 0.228 0.000
#> GSM564757     1  0.5926      0.862 0.644 0.356 0.000
#> GSM564758     1  0.5926      0.862 0.644 0.356 0.000
#> GSM564759     1  0.6126      0.852 0.600 0.400 0.000
#> GSM564760     1  0.5529      0.868 0.704 0.296 0.000
#> GSM564761     1  0.0000      0.836 1.000 0.000 0.000
#> GSM564762     1  0.5926      0.862 0.644 0.356 0.000
#> GSM564681     2  0.6140      0.970 0.000 0.596 0.404
#> GSM564693     2  0.6140      0.970 0.000 0.596 0.404
#> GSM564646     2  0.6235      0.921 0.000 0.564 0.436
#> GSM564699     3  0.0237      0.715 0.000 0.004 0.996

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM564615     4  0.0376     0.7669 0.004 0.004 0.000 0.992
#> GSM564616     2  0.7776     0.8296 0.340 0.412 0.248 0.000
#> GSM564617     3  0.4977     0.5290 0.000 0.460 0.540 0.000
#> GSM564618     2  0.7816     0.8361 0.340 0.400 0.260 0.000
#> GSM564619     1  0.4961     0.8326 0.552 0.000 0.000 0.448
#> GSM564620     4  0.6451    -0.6239 0.404 0.072 0.000 0.524
#> GSM564621     1  0.5602     0.7975 0.508 0.020 0.000 0.472
#> GSM564622     2  0.7816     0.8361 0.340 0.400 0.260 0.000
#> GSM564623     3  0.4713     0.5718 0.000 0.360 0.640 0.000
#> GSM564624     3  0.4994     0.5043 0.000 0.480 0.520 0.000
#> GSM564625     4  0.0657     0.7680 0.004 0.012 0.000 0.984
#> GSM564626     1  0.4961     0.8326 0.552 0.000 0.000 0.448
#> GSM564627     1  0.7576     0.5705 0.452 0.204 0.000 0.344
#> GSM564628     2  0.4941    -0.3629 0.000 0.564 0.436 0.000
#> GSM564629     4  0.6897     0.3517 0.180 0.228 0.000 0.592
#> GSM564630     3  0.5000     0.4764 0.000 0.496 0.504 0.000
#> GSM564609     3  0.3400     0.3240 0.000 0.180 0.820 0.000
#> GSM564610     1  0.7478     0.5888 0.468 0.188 0.000 0.344
#> GSM564611     1  0.7451     0.5919 0.472 0.184 0.000 0.344
#> GSM564612     3  0.4679     0.5938 0.000 0.352 0.648 0.000
#> GSM564613     3  0.4697     0.5929 0.000 0.356 0.644 0.000
#> GSM564614     4  0.0524     0.7662 0.004 0.008 0.000 0.988
#> GSM564631     3  0.0000     0.6005 0.000 0.000 1.000 0.000
#> GSM564632     2  0.7816     0.8361 0.340 0.400 0.260 0.000
#> GSM564633     3  0.4567     0.0622 0.008 0.276 0.716 0.000
#> GSM564634     3  0.4643     0.5959 0.000 0.344 0.656 0.000
#> GSM564635     3  0.2973     0.3955 0.000 0.144 0.856 0.000
#> GSM564636     3  0.0592     0.6015 0.000 0.016 0.984 0.000
#> GSM564637     3  0.0000     0.6005 0.000 0.000 1.000 0.000
#> GSM564638     3  0.0000     0.6005 0.000 0.000 1.000 0.000
#> GSM564639     3  0.0000     0.6005 0.000 0.000 1.000 0.000
#> GSM564640     2  0.4996    -0.4666 0.000 0.516 0.484 0.000
#> GSM564641     3  0.2469     0.6021 0.000 0.108 0.892 0.000
#> GSM564642     3  0.4981     0.5254 0.000 0.464 0.536 0.000
#> GSM564643     2  0.7816     0.8361 0.340 0.400 0.260 0.000
#> GSM564644     3  0.4994     0.5043 0.000 0.480 0.520 0.000
#> GSM564645     3  0.0000     0.6005 0.000 0.000 1.000 0.000
#> GSM564647     3  0.4661     0.5948 0.000 0.348 0.652 0.000
#> GSM564648     2  0.7816     0.8361 0.340 0.400 0.260 0.000
#> GSM564649     3  0.0000     0.6005 0.000 0.000 1.000 0.000
#> GSM564650     3  0.4981     0.5254 0.000 0.464 0.536 0.000
#> GSM564651     2  0.7816     0.8361 0.340 0.400 0.260 0.000
#> GSM564652     2  0.7816     0.8361 0.340 0.400 0.260 0.000
#> GSM564653     2  0.7803     0.8346 0.340 0.404 0.256 0.000
#> GSM564654     2  0.7922     0.7447 0.340 0.340 0.320 0.000
#> GSM564655     3  0.4630     0.1213 0.016 0.252 0.732 0.000
#> GSM564656     3  0.3400     0.3240 0.000 0.180 0.820 0.000
#> GSM564657     3  0.0000     0.6005 0.000 0.000 1.000 0.000
#> GSM564658     2  0.4961    -0.3876 0.000 0.552 0.448 0.000
#> GSM564659     3  0.0000     0.6005 0.000 0.000 1.000 0.000
#> GSM564660     3  0.4981     0.5254 0.000 0.464 0.536 0.000
#> GSM564661     2  0.7776     0.8296 0.340 0.412 0.248 0.000
#> GSM564662     3  0.0000     0.6005 0.000 0.000 1.000 0.000
#> GSM564663     3  0.4994     0.5043 0.000 0.480 0.520 0.000
#> GSM564664     3  0.4989     0.4434 0.000 0.472 0.528 0.000
#> GSM564665     3  0.0000     0.6005 0.000 0.000 1.000 0.000
#> GSM564666     3  0.4331     0.6004 0.000 0.288 0.712 0.000
#> GSM564667     3  0.0336     0.6010 0.000 0.008 0.992 0.000
#> GSM564668     3  0.7834    -0.6283 0.284 0.308 0.408 0.000
#> GSM564669     3  0.4134     0.1265 0.000 0.260 0.740 0.000
#> GSM564670     3  0.4697     0.5929 0.000 0.356 0.644 0.000
#> GSM564671     2  0.7858     0.8085 0.316 0.396 0.288 0.000
#> GSM564672     3  0.0000     0.6005 0.000 0.000 1.000 0.000
#> GSM564673     2  0.7816     0.8361 0.340 0.400 0.260 0.000
#> GSM564674     3  0.4994     0.5043 0.000 0.480 0.520 0.000
#> GSM564675     3  0.4713     0.5718 0.000 0.360 0.640 0.000
#> GSM564676     3  0.4989     0.5154 0.000 0.472 0.528 0.000
#> GSM564677     2  0.7816     0.8361 0.340 0.400 0.260 0.000
#> GSM564678     3  0.4994     0.5043 0.000 0.480 0.520 0.000
#> GSM564679     2  0.4955    -0.3791 0.000 0.556 0.444 0.000
#> GSM564680     3  0.0188     0.5966 0.000 0.004 0.996 0.000
#> GSM564682     3  0.4697     0.5929 0.000 0.356 0.644 0.000
#> GSM564683     3  0.0000     0.6005 0.000 0.000 1.000 0.000
#> GSM564684     2  0.7871     0.7530 0.284 0.384 0.332 0.000
#> GSM564685     3  0.0000     0.6005 0.000 0.000 1.000 0.000
#> GSM564686     3  0.3356     0.5791 0.000 0.176 0.824 0.000
#> GSM564687     3  0.4981     0.5108 0.000 0.464 0.536 0.000
#> GSM564688     2  0.7803     0.8346 0.340 0.404 0.256 0.000
#> GSM564689     3  0.4981     0.5254 0.000 0.464 0.536 0.000
#> GSM564690     3  0.4994     0.5043 0.000 0.480 0.520 0.000
#> GSM564691     3  0.4713     0.5911 0.000 0.360 0.640 0.000
#> GSM564692     2  0.7790     0.8322 0.340 0.408 0.252 0.000
#> GSM564694     3  0.4955     0.5328 0.000 0.444 0.556 0.000
#> GSM564695     3  0.4981     0.5254 0.000 0.464 0.536 0.000
#> GSM564696     3  0.0188     0.6013 0.000 0.004 0.996 0.000
#> GSM564697     3  0.4977     0.5290 0.000 0.460 0.540 0.000
#> GSM564698     3  0.3266     0.3481 0.000 0.168 0.832 0.000
#> GSM564700     2  0.7816     0.8361 0.340 0.400 0.260 0.000
#> GSM564701     2  0.7816     0.8361 0.340 0.400 0.260 0.000
#> GSM564702     2  0.7816     0.8361 0.340 0.400 0.260 0.000
#> GSM564703     4  0.1297     0.7573 0.020 0.016 0.000 0.964
#> GSM564704     1  0.5607     0.7766 0.492 0.020 0.000 0.488
#> GSM564705     1  0.4961     0.8326 0.552 0.000 0.000 0.448
#> GSM564706     4  0.5217     0.6332 0.108 0.136 0.000 0.756
#> GSM564707     1  0.5378     0.8281 0.540 0.012 0.000 0.448
#> GSM564708     4  0.0469     0.7690 0.000 0.012 0.000 0.988
#> GSM564709     1  0.4961     0.8326 0.552 0.000 0.000 0.448
#> GSM564710     1  0.4961     0.8326 0.552 0.000 0.000 0.448
#> GSM564711     4  0.5452     0.6098 0.108 0.156 0.000 0.736
#> GSM564712     1  0.4961     0.8326 0.552 0.000 0.000 0.448
#> GSM564713     4  0.0469     0.7690 0.000 0.012 0.000 0.988
#> GSM564714     4  0.6127     0.5081 0.108 0.228 0.000 0.664
#> GSM564715     1  0.5483     0.8265 0.536 0.016 0.000 0.448
#> GSM564716     1  0.5607     0.7766 0.492 0.020 0.000 0.488
#> GSM564717     1  0.7710     0.4976 0.408 0.224 0.000 0.368
#> GSM564718     4  0.2670     0.7568 0.072 0.024 0.000 0.904
#> GSM564719     4  0.7572    -0.1713 0.300 0.224 0.000 0.476
#> GSM564720     1  0.7451     0.5919 0.472 0.184 0.000 0.344
#> GSM564721     1  0.4961     0.8326 0.552 0.000 0.000 0.448
#> GSM564722     4  0.7369     0.0708 0.248 0.228 0.000 0.524
#> GSM564723     1  0.4866     0.7992 0.596 0.000 0.000 0.404
#> GSM564724     4  0.0524     0.7662 0.004 0.008 0.000 0.988
#> GSM564725     1  0.4961     0.8326 0.552 0.000 0.000 0.448
#> GSM564726     4  0.0524     0.7662 0.004 0.008 0.000 0.988
#> GSM564727     1  0.4961     0.8326 0.552 0.000 0.000 0.448
#> GSM564728     4  0.0524     0.7662 0.004 0.008 0.000 0.988
#> GSM564729     4  0.0524     0.7662 0.004 0.008 0.000 0.988
#> GSM564730     1  0.4961     0.8326 0.552 0.000 0.000 0.448
#> GSM564731     4  0.3279     0.7392 0.096 0.032 0.000 0.872
#> GSM564732     4  0.0657     0.7680 0.004 0.012 0.000 0.984
#> GSM564733     4  0.0779     0.7667 0.004 0.016 0.000 0.980
#> GSM564734     4  0.0657     0.7680 0.004 0.012 0.000 0.984
#> GSM564735     4  0.2256     0.7633 0.056 0.020 0.000 0.924
#> GSM564736     4  0.0469     0.7696 0.000 0.012 0.000 0.988
#> GSM564737     1  0.4961     0.8326 0.552 0.000 0.000 0.448
#> GSM564738     4  0.2256     0.7636 0.056 0.020 0.000 0.924
#> GSM564739     4  0.1406     0.7513 0.024 0.016 0.000 0.960
#> GSM564740     4  0.6127     0.5081 0.108 0.228 0.000 0.664
#> GSM564741     4  0.0707     0.7697 0.000 0.020 0.000 0.980
#> GSM564742     4  0.6187     0.5101 0.108 0.236 0.000 0.656
#> GSM564743     1  0.7553     0.5747 0.456 0.200 0.000 0.344
#> GSM564744     1  0.4961     0.8326 0.552 0.000 0.000 0.448
#> GSM564745     4  0.5296    -0.7798 0.496 0.008 0.000 0.496
#> GSM564746     1  0.7687     0.5328 0.428 0.224 0.000 0.348
#> GSM564747     4  0.6187     0.5101 0.108 0.236 0.000 0.656
#> GSM564748     4  0.0779     0.7689 0.004 0.016 0.000 0.980
#> GSM564749     1  0.7553     0.5756 0.456 0.200 0.000 0.344
#> GSM564750     4  0.0469     0.7690 0.000 0.012 0.000 0.988
#> GSM564751     4  0.3308     0.7397 0.092 0.036 0.000 0.872
#> GSM564752     4  0.3734     0.7184 0.108 0.044 0.000 0.848
#> GSM564753     4  0.3978     0.7149 0.108 0.056 0.000 0.836
#> GSM564754     1  0.4961     0.8326 0.552 0.000 0.000 0.448
#> GSM564755     4  0.0524     0.7662 0.004 0.008 0.000 0.988
#> GSM564756     4  0.2611     0.6190 0.096 0.008 0.000 0.896
#> GSM564757     4  0.2670     0.7552 0.072 0.024 0.000 0.904
#> GSM564758     4  0.2773     0.7538 0.072 0.028 0.000 0.900
#> GSM564759     4  0.5314     0.6337 0.108 0.144 0.000 0.748
#> GSM564760     4  0.0657     0.7680 0.004 0.012 0.000 0.984
#> GSM564761     1  0.4961     0.8326 0.552 0.000 0.000 0.448
#> GSM564762     4  0.2871     0.7532 0.072 0.032 0.000 0.896
#> GSM564681     2  0.7776     0.8296 0.340 0.412 0.248 0.000
#> GSM564693     2  0.7761     0.8252 0.340 0.416 0.244 0.000
#> GSM564646     2  0.7521     0.6217 0.220 0.488 0.292 0.000
#> GSM564699     3  0.0000     0.6005 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM564615     4   0.468     0.8359 0.300 0.028 0.004 0.668 0.000
#> GSM564616     5   0.455     0.9297 0.000 0.100 0.100 0.020 0.780
#> GSM564617     2   0.381     0.8661 0.000 0.772 0.204 0.024 0.000
#> GSM564618     5   0.436     0.9330 0.000 0.100 0.100 0.012 0.788
#> GSM564619     1   0.000     0.7931 1.000 0.000 0.000 0.000 0.000
#> GSM564620     1   0.512     0.6438 0.772 0.048 0.020 0.096 0.064
#> GSM564621     1   0.240     0.7696 0.916 0.040 0.004 0.016 0.024
#> GSM564622     5   0.478     0.9188 0.000 0.088 0.104 0.036 0.772
#> GSM564623     2   0.619     0.6452 0.000 0.552 0.308 0.132 0.008
#> GSM564624     2   0.373     0.8671 0.000 0.792 0.184 0.016 0.008
#> GSM564625     4   0.499     0.8370 0.304 0.044 0.004 0.648 0.000
#> GSM564626     1   0.000     0.7931 1.000 0.000 0.000 0.000 0.000
#> GSM564627     1   0.777     0.5711 0.568 0.076 0.088 0.084 0.184
#> GSM564628     2   0.441     0.8064 0.000 0.788 0.120 0.020 0.072
#> GSM564629     4   0.901     0.3670 0.256 0.100 0.088 0.400 0.156
#> GSM564630     2   0.451     0.8555 0.000 0.760 0.176 0.048 0.016
#> GSM564609     3   0.392     0.7687 0.000 0.000 0.804 0.092 0.104
#> GSM564610     1   0.771     0.5800 0.576 0.080 0.088 0.080 0.176
#> GSM564611     1   0.761     0.5805 0.584 0.068 0.088 0.084 0.176
#> GSM564612     2   0.499     0.7068 0.000 0.600 0.360 0.040 0.000
#> GSM564613     2   0.478     0.7770 0.000 0.664 0.292 0.044 0.000
#> GSM564614     4   0.475     0.8349 0.300 0.024 0.004 0.668 0.004
#> GSM564631     3   0.196     0.8584 0.000 0.096 0.904 0.000 0.000
#> GSM564632     5   0.454     0.9255 0.000 0.092 0.100 0.024 0.784
#> GSM564633     3   0.476     0.6137 0.000 0.000 0.712 0.076 0.212
#> GSM564634     2   0.516     0.7531 0.000 0.628 0.308 0.064 0.000
#> GSM564635     3   0.320     0.8112 0.000 0.024 0.868 0.028 0.080
#> GSM564636     3   0.247     0.8471 0.000 0.104 0.884 0.012 0.000
#> GSM564637     3   0.435     0.8140 0.000 0.096 0.784 0.112 0.008
#> GSM564638     3   0.191     0.8591 0.000 0.092 0.908 0.000 0.000
#> GSM564639     3   0.279     0.8556 0.000 0.092 0.880 0.020 0.008
#> GSM564640     2   0.396     0.8538 0.000 0.796 0.160 0.012 0.032
#> GSM564641     3   0.458     0.5016 0.000 0.268 0.692 0.040 0.000
#> GSM564642     2   0.424     0.8634 0.000 0.752 0.200 0.048 0.000
#> GSM564643     5   0.453     0.9232 0.000 0.088 0.104 0.024 0.784
#> GSM564644     2   0.352     0.8686 0.000 0.800 0.184 0.008 0.008
#> GSM564645     3   0.196     0.8584 0.000 0.096 0.904 0.000 0.000
#> GSM564647     2   0.499     0.7038 0.000 0.600 0.360 0.040 0.000
#> GSM564648     5   0.397     0.9364 0.000 0.100 0.100 0.000 0.800
#> GSM564649     3   0.225     0.8560 0.000 0.096 0.896 0.008 0.000
#> GSM564650     2   0.386     0.8674 0.000 0.772 0.200 0.028 0.000
#> GSM564651     5   0.397     0.9364 0.000 0.100 0.100 0.000 0.800
#> GSM564652     5   0.397     0.9364 0.000 0.100 0.100 0.000 0.800
#> GSM564653     5   0.397     0.9364 0.000 0.100 0.100 0.000 0.800
#> GSM564654     5   0.467     0.8360 0.000 0.028 0.164 0.048 0.760
#> GSM564655     3   0.570     0.5962 0.000 0.008 0.652 0.152 0.188
#> GSM564656     3   0.375     0.7723 0.000 0.000 0.816 0.080 0.104
#> GSM564657     3   0.212     0.8572 0.000 0.096 0.900 0.004 0.000
#> GSM564658     2   0.434     0.8257 0.000 0.788 0.136 0.020 0.056
#> GSM564659     3   0.196     0.8584 0.000 0.096 0.904 0.000 0.000
#> GSM564660     2   0.390     0.8686 0.000 0.776 0.196 0.024 0.004
#> GSM564661     5   0.397     0.9364 0.000 0.100 0.100 0.000 0.800
#> GSM564662     3   0.196     0.8584 0.000 0.096 0.904 0.000 0.000
#> GSM564663     2   0.373     0.8671 0.000 0.792 0.184 0.016 0.008
#> GSM564664     2   0.575     0.7566 0.000 0.652 0.244 0.068 0.036
#> GSM564665     3   0.274     0.8556 0.000 0.096 0.876 0.028 0.000
#> GSM564666     2   0.627     0.5374 0.000 0.496 0.364 0.136 0.004
#> GSM564667     3   0.225     0.8559 0.000 0.096 0.896 0.008 0.000
#> GSM564668     5   0.595     0.6028 0.000 0.008 0.268 0.124 0.600
#> GSM564669     3   0.495     0.6563 0.000 0.000 0.712 0.120 0.168
#> GSM564670     2   0.471     0.7818 0.000 0.668 0.292 0.040 0.000
#> GSM564671     5   0.620     0.8265 0.000 0.080 0.144 0.112 0.664
#> GSM564672     3   0.196     0.8584 0.000 0.096 0.904 0.000 0.000
#> GSM564673     5   0.397     0.9364 0.000 0.100 0.100 0.000 0.800
#> GSM564674     2   0.352     0.8684 0.000 0.800 0.184 0.008 0.008
#> GSM564675     2   0.619     0.6452 0.000 0.552 0.308 0.132 0.008
#> GSM564676     2   0.312     0.8700 0.000 0.812 0.184 0.000 0.004
#> GSM564677     5   0.397     0.9364 0.000 0.100 0.100 0.000 0.800
#> GSM564678     2   0.373     0.8686 0.000 0.792 0.184 0.016 0.008
#> GSM564679     2   0.441     0.8064 0.000 0.788 0.120 0.020 0.072
#> GSM564680     3   0.302     0.8528 0.000 0.088 0.872 0.028 0.012
#> GSM564682     2   0.482     0.7596 0.000 0.644 0.316 0.040 0.000
#> GSM564683     3   0.191     0.8591 0.000 0.092 0.908 0.000 0.000
#> GSM564684     5   0.684     0.7351 0.000 0.084 0.196 0.128 0.592
#> GSM564685     3   0.207     0.8592 0.000 0.092 0.904 0.004 0.000
#> GSM564686     3   0.627     0.3644 0.000 0.292 0.552 0.148 0.008
#> GSM564687     2   0.436     0.8566 0.000 0.748 0.208 0.036 0.008
#> GSM564688     5   0.397     0.9364 0.000 0.100 0.100 0.000 0.800
#> GSM564689     2   0.374     0.8680 0.000 0.780 0.196 0.024 0.000
#> GSM564690     2   0.337     0.8690 0.000 0.808 0.180 0.004 0.008
#> GSM564691     2   0.470     0.7765 0.000 0.660 0.304 0.036 0.000
#> GSM564692     5   0.425     0.9341 0.000 0.100 0.100 0.008 0.792
#> GSM564694     2   0.465     0.8445 0.000 0.720 0.212 0.068 0.000
#> GSM564695     2   0.443     0.8679 0.000 0.748 0.196 0.052 0.004
#> GSM564696     3   0.412     0.7953 0.000 0.108 0.788 0.104 0.000
#> GSM564697     2   0.363     0.8679 0.000 0.780 0.204 0.016 0.000
#> GSM564698     3   0.412     0.7631 0.000 0.000 0.788 0.112 0.100
#> GSM564700     5   0.519     0.9058 0.000 0.088 0.104 0.060 0.748
#> GSM564701     5   0.455     0.9297 0.000 0.100 0.100 0.020 0.780
#> GSM564702     5   0.397     0.9364 0.000 0.100 0.100 0.000 0.800
#> GSM564703     4   0.530     0.8391 0.300 0.048 0.008 0.640 0.004
#> GSM564704     1   0.300     0.7460 0.888 0.040 0.004 0.044 0.024
#> GSM564705     1   0.000     0.7931 1.000 0.000 0.000 0.000 0.000
#> GSM564706     4   0.761     0.6419 0.216 0.084 0.056 0.564 0.080
#> GSM564707     1   0.136     0.7846 0.956 0.028 0.004 0.000 0.012
#> GSM564708     4   0.476     0.8396 0.296 0.020 0.004 0.672 0.008
#> GSM564709     1   0.000     0.7931 1.000 0.000 0.000 0.000 0.000
#> GSM564710     1   0.000     0.7931 1.000 0.000 0.000 0.000 0.000
#> GSM564711     4   0.800     0.6097 0.216 0.100 0.064 0.532 0.088
#> GSM564712     1   0.000     0.7931 1.000 0.000 0.000 0.000 0.000
#> GSM564713     4   0.476     0.8396 0.296 0.020 0.004 0.672 0.008
#> GSM564714     4   0.873     0.4934 0.216 0.124 0.084 0.460 0.116
#> GSM564715     1   0.191     0.7807 0.932 0.032 0.004 0.000 0.032
#> GSM564716     1   0.300     0.7460 0.888 0.040 0.004 0.044 0.024
#> GSM564717     1   0.824     0.5191 0.524 0.084 0.088 0.120 0.184
#> GSM564718     4   0.503     0.8319 0.252 0.036 0.004 0.692 0.016
#> GSM564719     1   0.898     0.1860 0.396 0.088 0.084 0.252 0.180
#> GSM564720     1   0.761     0.5805 0.584 0.068 0.088 0.084 0.176
#> GSM564721     1   0.000     0.7931 1.000 0.000 0.000 0.000 0.000
#> GSM564722     1   0.909    -0.0495 0.340 0.092 0.084 0.308 0.176
#> GSM564723     1   0.205     0.7655 0.920 0.000 0.000 0.052 0.028
#> GSM564724     4   0.473     0.8370 0.296 0.024 0.004 0.672 0.004
#> GSM564725     1   0.000     0.7931 1.000 0.000 0.000 0.000 0.000
#> GSM564726     4   0.475     0.8349 0.300 0.024 0.004 0.668 0.004
#> GSM564727     1   0.000     0.7931 1.000 0.000 0.000 0.000 0.000
#> GSM564728     4   0.475     0.8349 0.300 0.024 0.004 0.668 0.004
#> GSM564729     4   0.491     0.8327 0.300 0.032 0.004 0.660 0.004
#> GSM564730     1   0.000     0.7931 1.000 0.000 0.000 0.000 0.000
#> GSM564731     4   0.509     0.8178 0.240 0.064 0.004 0.688 0.004
#> GSM564732     4   0.499     0.8370 0.304 0.044 0.004 0.648 0.000
#> GSM564733     4   0.504     0.8358 0.304 0.040 0.008 0.648 0.000
#> GSM564734     4   0.499     0.8370 0.304 0.044 0.004 0.648 0.000
#> GSM564735     4   0.514     0.8282 0.256 0.060 0.004 0.676 0.004
#> GSM564736     4   0.490     0.8393 0.300 0.040 0.004 0.656 0.000
#> GSM564737     1   0.000     0.7931 1.000 0.000 0.000 0.000 0.000
#> GSM564738     4   0.498     0.8379 0.268 0.028 0.004 0.684 0.016
#> GSM564739     4   0.465     0.8394 0.304 0.020 0.008 0.668 0.000
#> GSM564740     4   0.877     0.4548 0.216 0.092 0.084 0.448 0.160
#> GSM564741     4   0.510     0.8407 0.300 0.036 0.008 0.652 0.004
#> GSM564742     4   0.880     0.4948 0.216 0.128 0.088 0.452 0.116
#> GSM564743     1   0.777     0.5711 0.568 0.076 0.088 0.084 0.184
#> GSM564744     1   0.000     0.7931 1.000 0.000 0.000 0.000 0.000
#> GSM564745     1   0.233     0.7409 0.912 0.020 0.004 0.060 0.004
#> GSM564746     1   0.777     0.5711 0.568 0.076 0.088 0.084 0.184
#> GSM564747     4   0.879     0.4991 0.220 0.128 0.088 0.452 0.112
#> GSM564748     4   0.530     0.8391 0.300 0.048 0.008 0.640 0.004
#> GSM564749     1   0.766     0.5769 0.580 0.072 0.088 0.084 0.176
#> GSM564750     4   0.476     0.8396 0.296 0.020 0.004 0.672 0.008
#> GSM564751     4   0.512     0.8193 0.244 0.064 0.004 0.684 0.004
#> GSM564752     4   0.483     0.8007 0.216 0.060 0.000 0.716 0.008
#> GSM564753     4   0.504     0.7971 0.216 0.072 0.004 0.704 0.004
#> GSM564754     1   0.029     0.7912 0.992 0.008 0.000 0.000 0.000
#> GSM564755     4   0.475     0.8349 0.300 0.024 0.004 0.668 0.004
#> GSM564756     4   0.556     0.6877 0.396 0.044 0.004 0.548 0.008
#> GSM564757     4   0.433     0.8387 0.252 0.032 0.000 0.716 0.000
#> GSM564758     4   0.417     0.8386 0.252 0.024 0.000 0.724 0.000
#> GSM564759     4   0.762     0.6612 0.216 0.108 0.060 0.560 0.056
#> GSM564760     4   0.499     0.8370 0.304 0.044 0.004 0.648 0.000
#> GSM564761     1   0.000     0.7931 1.000 0.000 0.000 0.000 0.000
#> GSM564762     4   0.479     0.8352 0.256 0.048 0.004 0.692 0.000
#> GSM564681     5   0.455     0.9297 0.000 0.100 0.100 0.020 0.780
#> GSM564693     5   0.397     0.9364 0.000 0.100 0.100 0.000 0.800
#> GSM564646     5   0.740     0.5526 0.000 0.296 0.112 0.104 0.488
#> GSM564699     3   0.486     0.7846 0.000 0.096 0.736 0.160 0.008

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM564615     4  0.3711     0.8355 0.156 0.008 0.012 0.800 0.008 0.016
#> GSM564616     5  0.2084     0.9012 0.000 0.044 0.000 0.016 0.916 0.024
#> GSM564617     2  0.3157     0.8505 0.000 0.860 0.024 0.020 0.080 0.016
#> GSM564618     5  0.1577     0.9109 0.000 0.036 0.000 0.008 0.940 0.016
#> GSM564619     1  0.0146     0.9231 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM564620     1  0.5979     0.4965 0.656 0.020 0.032 0.092 0.020 0.180
#> GSM564621     1  0.3542     0.8395 0.856 0.016 0.028 0.036 0.020 0.044
#> GSM564622     5  0.1857     0.9053 0.000 0.028 0.004 0.000 0.924 0.044
#> GSM564623     2  0.6499     0.6580 0.000 0.616 0.104 0.056 0.064 0.160
#> GSM564624     2  0.3422     0.8488 0.000 0.832 0.000 0.032 0.100 0.036
#> GSM564625     4  0.4722     0.8348 0.156 0.016 0.052 0.748 0.012 0.016
#> GSM564626     1  0.0291     0.9231 0.992 0.004 0.000 0.004 0.000 0.000
#> GSM564627     6  0.4234     0.6879 0.324 0.000 0.000 0.032 0.000 0.644
#> GSM564628     2  0.3395     0.8383 0.000 0.820 0.000 0.020 0.132 0.028
#> GSM564629     6  0.6009     0.6117 0.132 0.004 0.036 0.228 0.004 0.596
#> GSM564630     2  0.4378     0.8403 0.000 0.776 0.004 0.060 0.104 0.056
#> GSM564609     3  0.6561     0.7082 0.000 0.076 0.604 0.040 0.116 0.164
#> GSM564610     6  0.5183     0.6484 0.340 0.012 0.020 0.028 0.004 0.596
#> GSM564611     6  0.4389     0.6463 0.372 0.000 0.000 0.032 0.000 0.596
#> GSM564612     2  0.4774     0.6176 0.000 0.684 0.240 0.008 0.012 0.056
#> GSM564613     2  0.3809     0.7625 0.000 0.808 0.104 0.044 0.000 0.044
#> GSM564614     4  0.2921     0.8361 0.156 0.008 0.000 0.828 0.000 0.008
#> GSM564631     3  0.2838     0.8320 0.000 0.188 0.808 0.000 0.004 0.000
#> GSM564632     5  0.2316     0.8929 0.000 0.028 0.004 0.004 0.900 0.064
#> GSM564633     3  0.6093     0.6172 0.000 0.028 0.608 0.024 0.192 0.148
#> GSM564634     2  0.4526     0.7349 0.000 0.756 0.116 0.052 0.000 0.076
#> GSM564635     3  0.5180     0.7761 0.000 0.096 0.728 0.020 0.096 0.060
#> GSM564636     3  0.3485     0.8111 0.000 0.204 0.772 0.004 0.000 0.020
#> GSM564637     3  0.5737     0.7662 0.000 0.196 0.612 0.024 0.004 0.164
#> GSM564638     3  0.2805     0.8327 0.000 0.184 0.812 0.000 0.004 0.000
#> GSM564639     3  0.3900     0.8285 0.000 0.184 0.764 0.004 0.004 0.044
#> GSM564640     2  0.3191     0.8436 0.000 0.832 0.000 0.016 0.128 0.024
#> GSM564641     3  0.4787     0.4767 0.000 0.388 0.564 0.008 0.000 0.040
#> GSM564642     2  0.4101     0.8446 0.000 0.796 0.008 0.028 0.096 0.072
#> GSM564643     5  0.2369     0.8930 0.000 0.028 0.004 0.008 0.900 0.060
#> GSM564644     2  0.2786     0.8550 0.000 0.864 0.000 0.012 0.100 0.024
#> GSM564645     3  0.2805     0.8327 0.000 0.184 0.812 0.000 0.004 0.000
#> GSM564647     2  0.4266     0.6024 0.000 0.700 0.252 0.008 0.000 0.040
#> GSM564648     5  0.0790     0.9157 0.000 0.032 0.000 0.000 0.968 0.000
#> GSM564649     3  0.3229     0.8284 0.000 0.188 0.796 0.004 0.004 0.008
#> GSM564650     2  0.2499     0.8562 0.000 0.880 0.004 0.004 0.096 0.016
#> GSM564651     5  0.0790     0.9157 0.000 0.032 0.000 0.000 0.968 0.000
#> GSM564652     5  0.0790     0.9157 0.000 0.032 0.000 0.000 0.968 0.000
#> GSM564653     5  0.0865     0.9159 0.000 0.036 0.000 0.000 0.964 0.000
#> GSM564654     5  0.4344     0.7887 0.000 0.028 0.064 0.024 0.788 0.096
#> GSM564655     3  0.6823     0.5631 0.000 0.036 0.524 0.036 0.184 0.220
#> GSM564656     3  0.6095     0.7216 0.000 0.072 0.644 0.024 0.120 0.140
#> GSM564657     3  0.2838     0.8320 0.000 0.188 0.808 0.000 0.004 0.000
#> GSM564658     2  0.3757     0.8327 0.000 0.804 0.000 0.032 0.124 0.040
#> GSM564659     3  0.2979     0.8307 0.000 0.188 0.804 0.000 0.004 0.004
#> GSM564660     2  0.2586     0.8561 0.000 0.876 0.004 0.004 0.096 0.020
#> GSM564661     5  0.0937     0.9146 0.000 0.040 0.000 0.000 0.960 0.000
#> GSM564662     3  0.2838     0.8320 0.000 0.188 0.808 0.000 0.004 0.000
#> GSM564663     2  0.3422     0.8488 0.000 0.832 0.000 0.032 0.100 0.036
#> GSM564664     2  0.5590     0.7549 0.000 0.684 0.040 0.028 0.148 0.100
#> GSM564665     3  0.4102     0.8271 0.000 0.188 0.752 0.008 0.004 0.048
#> GSM564666     2  0.6040     0.5459 0.000 0.608 0.164 0.056 0.004 0.168
#> GSM564667     3  0.3281     0.8186 0.000 0.200 0.784 0.004 0.000 0.012
#> GSM564668     5  0.6479     0.5118 0.000 0.028 0.160 0.036 0.568 0.208
#> GSM564669     3  0.6475     0.6159 0.000 0.032 0.576 0.036 0.160 0.196
#> GSM564670     2  0.3265     0.7698 0.000 0.836 0.108 0.016 0.000 0.040
#> GSM564671     5  0.4707     0.7755 0.000 0.028 0.048 0.020 0.740 0.164
#> GSM564672     3  0.2838     0.8320 0.000 0.188 0.808 0.000 0.004 0.000
#> GSM564673     5  0.0790     0.9157 0.000 0.032 0.000 0.000 0.968 0.000
#> GSM564674     2  0.2796     0.8554 0.000 0.864 0.000 0.020 0.100 0.016
#> GSM564675     2  0.6499     0.6580 0.000 0.616 0.104 0.056 0.064 0.160
#> GSM564676     2  0.2407     0.8574 0.000 0.884 0.004 0.004 0.096 0.012
#> GSM564677     5  0.0865     0.9159 0.000 0.036 0.000 0.000 0.964 0.000
#> GSM564678     2  0.3198     0.8517 0.000 0.844 0.000 0.024 0.100 0.032
#> GSM564679     2  0.3869     0.8288 0.000 0.796 0.000 0.036 0.128 0.040
#> GSM564680     3  0.4393     0.8236 0.000 0.180 0.744 0.016 0.008 0.052
#> GSM564682     2  0.3789     0.7246 0.000 0.784 0.160 0.016 0.000 0.040
#> GSM564683     3  0.2805     0.8327 0.000 0.184 0.812 0.000 0.004 0.000
#> GSM564684     5  0.5404     0.7116 0.000 0.032 0.072 0.024 0.680 0.192
#> GSM564685     3  0.3154     0.8331 0.000 0.184 0.800 0.000 0.004 0.012
#> GSM564686     3  0.7560     0.3076 0.000 0.328 0.344 0.028 0.068 0.232
#> GSM564687     2  0.4119     0.8444 0.000 0.800 0.020 0.024 0.100 0.056
#> GSM564688     5  0.0865     0.9159 0.000 0.036 0.000 0.000 0.964 0.000
#> GSM564689     2  0.2586     0.8565 0.000 0.876 0.004 0.004 0.096 0.020
#> GSM564690     2  0.2325     0.8569 0.000 0.884 0.000 0.008 0.100 0.008
#> GSM564691     2  0.3741     0.7423 0.000 0.796 0.148 0.008 0.008 0.040
#> GSM564692     5  0.1196     0.9134 0.000 0.040 0.000 0.000 0.952 0.008
#> GSM564694     2  0.4679     0.8206 0.000 0.756 0.020 0.024 0.088 0.112
#> GSM564695     2  0.4919     0.8353 0.000 0.740 0.020 0.032 0.096 0.112
#> GSM564696     3  0.5571     0.7535 0.000 0.204 0.648 0.048 0.004 0.096
#> GSM564697     2  0.2886     0.8543 0.000 0.872 0.024 0.012 0.080 0.012
#> GSM564698     3  0.6286     0.7345 0.000 0.088 0.624 0.024 0.104 0.160
#> GSM564700     5  0.3050     0.8699 0.000 0.028 0.004 0.016 0.856 0.096
#> GSM564701     5  0.2103     0.9020 0.000 0.040 0.000 0.020 0.916 0.024
#> GSM564702     5  0.1010     0.9157 0.000 0.036 0.000 0.000 0.960 0.004
#> GSM564703     4  0.5597     0.8154 0.148 0.044 0.112 0.680 0.004 0.012
#> GSM564704     1  0.3830     0.8224 0.840 0.020 0.028 0.044 0.020 0.048
#> GSM564705     1  0.0291     0.9214 0.992 0.004 0.004 0.000 0.000 0.000
#> GSM564706     4  0.7859     0.0187 0.100 0.072 0.108 0.416 0.004 0.300
#> GSM564707     1  0.1659     0.8930 0.940 0.000 0.020 0.004 0.008 0.028
#> GSM564708     4  0.4476     0.8334 0.152 0.028 0.040 0.760 0.000 0.020
#> GSM564709     1  0.0436     0.9224 0.988 0.004 0.004 0.004 0.000 0.000
#> GSM564710     1  0.0291     0.9214 0.992 0.004 0.004 0.000 0.000 0.000
#> GSM564711     6  0.7902     0.1973 0.100 0.064 0.104 0.360 0.008 0.364
#> GSM564712     1  0.0436     0.9224 0.988 0.004 0.004 0.004 0.000 0.000
#> GSM564713     4  0.4440     0.8332 0.148 0.028 0.040 0.764 0.000 0.020
#> GSM564714     6  0.7743     0.4504 0.100 0.060 0.104 0.276 0.008 0.452
#> GSM564715     1  0.3148     0.8495 0.872 0.016 0.028 0.008 0.020 0.056
#> GSM564716     1  0.3895     0.8179 0.836 0.020 0.028 0.048 0.020 0.048
#> GSM564717     6  0.4463     0.6961 0.300 0.000 0.000 0.044 0.004 0.652
#> GSM564718     4  0.5154     0.8005 0.124 0.040 0.048 0.740 0.008 0.040
#> GSM564719     6  0.5204     0.7163 0.224 0.004 0.004 0.116 0.004 0.648
#> GSM564720     6  0.4389     0.6463 0.372 0.000 0.000 0.032 0.000 0.596
#> GSM564721     1  0.0146     0.9231 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM564722     6  0.5504     0.7138 0.184 0.004 0.008 0.156 0.008 0.640
#> GSM564723     1  0.2876     0.7194 0.836 0.004 0.004 0.008 0.000 0.148
#> GSM564724     4  0.2982     0.8367 0.152 0.008 0.000 0.828 0.000 0.012
#> GSM564725     1  0.0146     0.9231 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM564726     4  0.2883     0.8375 0.152 0.008 0.000 0.832 0.000 0.008
#> GSM564727     1  0.0146     0.9231 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM564728     4  0.3020     0.8353 0.156 0.008 0.000 0.824 0.000 0.012
#> GSM564729     4  0.3496     0.8288 0.164 0.008 0.008 0.804 0.008 0.008
#> GSM564730     1  0.0146     0.9220 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM564731     4  0.6219     0.7638 0.108 0.048 0.132 0.656 0.008 0.048
#> GSM564732     4  0.4687     0.8359 0.152 0.016 0.052 0.752 0.012 0.016
#> GSM564733     4  0.4215     0.8377 0.156 0.004 0.044 0.772 0.012 0.012
#> GSM564734     4  0.4722     0.8348 0.156 0.016 0.052 0.748 0.012 0.016
#> GSM564735     4  0.5946     0.7932 0.124 0.048 0.128 0.668 0.008 0.024
#> GSM564736     4  0.4554     0.8388 0.148 0.016 0.052 0.760 0.008 0.016
#> GSM564737     1  0.0291     0.9214 0.992 0.004 0.004 0.000 0.000 0.000
#> GSM564738     4  0.5185     0.8063 0.132 0.040 0.052 0.732 0.004 0.040
#> GSM564739     4  0.3944     0.8427 0.156 0.012 0.040 0.784 0.004 0.004
#> GSM564740     6  0.5699     0.5825 0.100 0.008 0.012 0.272 0.008 0.600
#> GSM564741     4  0.5300     0.8279 0.148 0.036 0.096 0.704 0.004 0.012
#> GSM564742     6  0.7698     0.4674 0.100 0.064 0.116 0.248 0.004 0.468
#> GSM564743     6  0.4249     0.6845 0.328 0.000 0.000 0.032 0.000 0.640
#> GSM564744     1  0.0291     0.9214 0.992 0.004 0.004 0.000 0.000 0.000
#> GSM564745     1  0.2917     0.8464 0.880 0.004 0.016 0.060 0.012 0.028
#> GSM564746     6  0.4219     0.6899 0.320 0.000 0.000 0.032 0.000 0.648
#> GSM564747     6  0.7729     0.4641 0.100 0.064 0.120 0.248 0.004 0.464
#> GSM564748     4  0.5597     0.8154 0.148 0.044 0.112 0.680 0.004 0.012
#> GSM564749     6  0.4344     0.6636 0.356 0.000 0.000 0.032 0.000 0.612
#> GSM564750     4  0.4493     0.8337 0.148 0.032 0.044 0.760 0.000 0.016
#> GSM564751     4  0.6360     0.7301 0.112 0.072 0.140 0.636 0.004 0.036
#> GSM564752     4  0.6304     0.6980 0.096 0.068 0.108 0.656 0.004 0.068
#> GSM564753     4  0.6585     0.6884 0.100 0.072 0.128 0.628 0.004 0.068
#> GSM564754     1  0.0436     0.9208 0.988 0.000 0.004 0.004 0.004 0.000
#> GSM564755     4  0.2921     0.8361 0.156 0.008 0.000 0.828 0.000 0.008
#> GSM564756     4  0.5759     0.6122 0.264 0.024 0.032 0.628 0.020 0.032
#> GSM564757     4  0.3547     0.8368 0.124 0.004 0.020 0.824 0.008 0.020
#> GSM564758     4  0.3967     0.8366 0.124 0.016 0.032 0.804 0.004 0.020
#> GSM564759     4  0.8106     0.1844 0.100 0.072 0.144 0.416 0.008 0.260
#> GSM564760     4  0.4722     0.8348 0.156 0.016 0.052 0.748 0.012 0.016
#> GSM564761     1  0.0291     0.9231 0.992 0.004 0.000 0.004 0.000 0.000
#> GSM564762     4  0.4544     0.8266 0.128 0.016 0.052 0.772 0.012 0.020
#> GSM564681     5  0.2252     0.8972 0.000 0.044 0.000 0.020 0.908 0.028
#> GSM564693     5  0.0937     0.9146 0.000 0.040 0.000 0.000 0.960 0.000
#> GSM564646     5  0.6298     0.4485 0.000 0.252 0.008 0.032 0.540 0.168
#> GSM564699     3  0.6191     0.7227 0.000 0.192 0.544 0.028 0.004 0.232

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n genotype/variation(p) disease.state(p) k
#> ATC:kmeans 154                 0.925           0.4759 2
#> ATC:kmeans 140                 0.850           0.0185 3
#> ATC:kmeans 134                 0.576           0.1615 4
#> ATC:kmeans 146                 0.395           0.2123 5
#> ATC:kmeans 144                 0.243           0.4205 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 154 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.5007 0.500   0.500
#> 3 3 0.875           0.849       0.917         0.2806 0.860   0.720
#> 4 4 0.743           0.832       0.823         0.1138 0.917   0.779
#> 5 5 0.906           0.929       0.945         0.1149 0.888   0.638
#> 6 6 0.912           0.890       0.920         0.0397 0.954   0.778

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 5

There is also optional best \(k\) = 2 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> GSM564615     1       0          1  1  0
#> GSM564616     2       0          1  0  1
#> GSM564617     2       0          1  0  1
#> GSM564618     2       0          1  0  1
#> GSM564619     1       0          1  1  0
#> GSM564620     1       0          1  1  0
#> GSM564621     1       0          1  1  0
#> GSM564622     2       0          1  0  1
#> GSM564623     2       0          1  0  1
#> GSM564624     2       0          1  0  1
#> GSM564625     1       0          1  1  0
#> GSM564626     1       0          1  1  0
#> GSM564627     1       0          1  1  0
#> GSM564628     2       0          1  0  1
#> GSM564629     1       0          1  1  0
#> GSM564630     2       0          1  0  1
#> GSM564609     2       0          1  0  1
#> GSM564610     1       0          1  1  0
#> GSM564611     1       0          1  1  0
#> GSM564612     2       0          1  0  1
#> GSM564613     2       0          1  0  1
#> GSM564614     1       0          1  1  0
#> GSM564631     2       0          1  0  1
#> GSM564632     2       0          1  0  1
#> GSM564633     2       0          1  0  1
#> GSM564634     2       0          1  0  1
#> GSM564635     2       0          1  0  1
#> GSM564636     2       0          1  0  1
#> GSM564637     2       0          1  0  1
#> GSM564638     2       0          1  0  1
#> GSM564639     2       0          1  0  1
#> GSM564640     2       0          1  0  1
#> GSM564641     2       0          1  0  1
#> GSM564642     2       0          1  0  1
#> GSM564643     2       0          1  0  1
#> GSM564644     2       0          1  0  1
#> GSM564645     2       0          1  0  1
#> GSM564647     2       0          1  0  1
#> GSM564648     2       0          1  0  1
#> GSM564649     2       0          1  0  1
#> GSM564650     2       0          1  0  1
#> GSM564651     2       0          1  0  1
#> GSM564652     2       0          1  0  1
#> GSM564653     2       0          1  0  1
#> GSM564654     2       0          1  0  1
#> GSM564655     2       0          1  0  1
#> GSM564656     2       0          1  0  1
#> GSM564657     2       0          1  0  1
#> GSM564658     2       0          1  0  1
#> GSM564659     2       0          1  0  1
#> GSM564660     2       0          1  0  1
#> GSM564661     2       0          1  0  1
#> GSM564662     2       0          1  0  1
#> GSM564663     2       0          1  0  1
#> GSM564664     2       0          1  0  1
#> GSM564665     2       0          1  0  1
#> GSM564666     2       0          1  0  1
#> GSM564667     2       0          1  0  1
#> GSM564668     2       0          1  0  1
#> GSM564669     2       0          1  0  1
#> GSM564670     2       0          1  0  1
#> GSM564671     2       0          1  0  1
#> GSM564672     2       0          1  0  1
#> GSM564673     2       0          1  0  1
#> GSM564674     2       0          1  0  1
#> GSM564675     2       0          1  0  1
#> GSM564676     2       0          1  0  1
#> GSM564677     2       0          1  0  1
#> GSM564678     2       0          1  0  1
#> GSM564679     2       0          1  0  1
#> GSM564680     2       0          1  0  1
#> GSM564682     2       0          1  0  1
#> GSM564683     2       0          1  0  1
#> GSM564684     2       0          1  0  1
#> GSM564685     2       0          1  0  1
#> GSM564686     2       0          1  0  1
#> GSM564687     2       0          1  0  1
#> GSM564688     2       0          1  0  1
#> GSM564689     2       0          1  0  1
#> GSM564690     2       0          1  0  1
#> GSM564691     2       0          1  0  1
#> GSM564692     2       0          1  0  1
#> GSM564694     2       0          1  0  1
#> GSM564695     2       0          1  0  1
#> GSM564696     2       0          1  0  1
#> GSM564697     2       0          1  0  1
#> GSM564698     2       0          1  0  1
#> GSM564700     2       0          1  0  1
#> GSM564701     2       0          1  0  1
#> GSM564702     2       0          1  0  1
#> GSM564703     1       0          1  1  0
#> GSM564704     1       0          1  1  0
#> GSM564705     1       0          1  1  0
#> GSM564706     1       0          1  1  0
#> GSM564707     1       0          1  1  0
#> GSM564708     1       0          1  1  0
#> GSM564709     1       0          1  1  0
#> GSM564710     1       0          1  1  0
#> GSM564711     1       0          1  1  0
#> GSM564712     1       0          1  1  0
#> GSM564713     1       0          1  1  0
#> GSM564714     1       0          1  1  0
#> GSM564715     1       0          1  1  0
#> GSM564716     1       0          1  1  0
#> GSM564717     1       0          1  1  0
#> GSM564718     1       0          1  1  0
#> GSM564719     1       0          1  1  0
#> GSM564720     1       0          1  1  0
#> GSM564721     1       0          1  1  0
#> GSM564722     1       0          1  1  0
#> GSM564723     1       0          1  1  0
#> GSM564724     1       0          1  1  0
#> GSM564725     1       0          1  1  0
#> GSM564726     1       0          1  1  0
#> GSM564727     1       0          1  1  0
#> GSM564728     1       0          1  1  0
#> GSM564729     1       0          1  1  0
#> GSM564730     1       0          1  1  0
#> GSM564731     1       0          1  1  0
#> GSM564732     1       0          1  1  0
#> GSM564733     1       0          1  1  0
#> GSM564734     1       0          1  1  0
#> GSM564735     1       0          1  1  0
#> GSM564736     1       0          1  1  0
#> GSM564737     1       0          1  1  0
#> GSM564738     1       0          1  1  0
#> GSM564739     1       0          1  1  0
#> GSM564740     1       0          1  1  0
#> GSM564741     1       0          1  1  0
#> GSM564742     1       0          1  1  0
#> GSM564743     1       0          1  1  0
#> GSM564744     1       0          1  1  0
#> GSM564745     1       0          1  1  0
#> GSM564746     1       0          1  1  0
#> GSM564747     1       0          1  1  0
#> GSM564748     1       0          1  1  0
#> GSM564749     1       0          1  1  0
#> GSM564750     1       0          1  1  0
#> GSM564751     1       0          1  1  0
#> GSM564752     1       0          1  1  0
#> GSM564753     1       0          1  1  0
#> GSM564754     1       0          1  1  0
#> GSM564755     1       0          1  1  0
#> GSM564756     1       0          1  1  0
#> GSM564757     1       0          1  1  0
#> GSM564758     1       0          1  1  0
#> GSM564759     1       0          1  1  0
#> GSM564760     1       0          1  1  0
#> GSM564761     1       0          1  1  0
#> GSM564762     1       0          1  1  0
#> GSM564681     2       0          1  0  1
#> GSM564693     2       0          1  0  1
#> GSM564646     2       0          1  0  1
#> GSM564699     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM564615     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564616     2  0.0592     0.8420 0.000 0.988 0.012
#> GSM564617     3  0.5785     0.6971 0.000 0.332 0.668
#> GSM564618     2  0.0592     0.8420 0.000 0.988 0.012
#> GSM564619     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564620     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564621     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564622     2  0.0592     0.8420 0.000 0.988 0.012
#> GSM564623     3  0.5621     0.7055 0.000 0.308 0.692
#> GSM564624     3  0.5810     0.6946 0.000 0.336 0.664
#> GSM564625     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564626     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564627     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564628     3  0.6062     0.6314 0.000 0.384 0.616
#> GSM564629     1  0.0424     0.9948 0.992 0.008 0.000
#> GSM564630     3  0.5948     0.6738 0.000 0.360 0.640
#> GSM564609     2  0.5968     0.5806 0.000 0.636 0.364
#> GSM564610     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564611     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564612     3  0.0000     0.7749 0.000 0.000 1.000
#> GSM564613     3  0.0000     0.7749 0.000 0.000 1.000
#> GSM564614     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564631     3  0.0000     0.7749 0.000 0.000 1.000
#> GSM564632     2  0.0592     0.8420 0.000 0.988 0.012
#> GSM564633     2  0.5859     0.5991 0.000 0.656 0.344
#> GSM564634     3  0.0000     0.7749 0.000 0.000 1.000
#> GSM564635     2  0.5968     0.5806 0.000 0.636 0.364
#> GSM564636     3  0.0000     0.7749 0.000 0.000 1.000
#> GSM564637     3  0.0000     0.7749 0.000 0.000 1.000
#> GSM564638     3  0.0000     0.7749 0.000 0.000 1.000
#> GSM564639     3  0.0000     0.7749 0.000 0.000 1.000
#> GSM564640     3  0.5926     0.6720 0.000 0.356 0.644
#> GSM564641     3  0.0000     0.7749 0.000 0.000 1.000
#> GSM564642     3  0.5785     0.6971 0.000 0.332 0.668
#> GSM564643     2  0.0592     0.8420 0.000 0.988 0.012
#> GSM564644     3  0.5810     0.6946 0.000 0.336 0.664
#> GSM564645     3  0.0000     0.7749 0.000 0.000 1.000
#> GSM564647     3  0.0000     0.7749 0.000 0.000 1.000
#> GSM564648     2  0.0592     0.8420 0.000 0.988 0.012
#> GSM564649     3  0.0000     0.7749 0.000 0.000 1.000
#> GSM564650     3  0.5810     0.6946 0.000 0.336 0.664
#> GSM564651     2  0.0592     0.8420 0.000 0.988 0.012
#> GSM564652     2  0.0592     0.8420 0.000 0.988 0.012
#> GSM564653     2  0.0592     0.8420 0.000 0.988 0.012
#> GSM564654     2  0.5785     0.6090 0.000 0.668 0.332
#> GSM564655     2  0.5882     0.5954 0.000 0.652 0.348
#> GSM564656     2  0.5968     0.5806 0.000 0.636 0.364
#> GSM564657     3  0.0000     0.7749 0.000 0.000 1.000
#> GSM564658     3  0.5905     0.6766 0.000 0.352 0.648
#> GSM564659     3  0.0000     0.7749 0.000 0.000 1.000
#> GSM564660     3  0.5785     0.6971 0.000 0.332 0.668
#> GSM564661     2  0.0592     0.8420 0.000 0.988 0.012
#> GSM564662     3  0.0000     0.7749 0.000 0.000 1.000
#> GSM564663     3  0.5810     0.6946 0.000 0.336 0.664
#> GSM564664     2  0.3752     0.6741 0.000 0.856 0.144
#> GSM564665     3  0.0000     0.7749 0.000 0.000 1.000
#> GSM564666     3  0.0000     0.7749 0.000 0.000 1.000
#> GSM564667     3  0.0000     0.7749 0.000 0.000 1.000
#> GSM564668     2  0.5835     0.6027 0.000 0.660 0.340
#> GSM564669     2  0.5882     0.5954 0.000 0.652 0.348
#> GSM564670     3  0.0000     0.7749 0.000 0.000 1.000
#> GSM564671     2  0.0592     0.8420 0.000 0.988 0.012
#> GSM564672     3  0.0000     0.7749 0.000 0.000 1.000
#> GSM564673     2  0.0592     0.8420 0.000 0.988 0.012
#> GSM564674     3  0.5810     0.6946 0.000 0.336 0.664
#> GSM564675     3  0.5621     0.7055 0.000 0.308 0.692
#> GSM564676     3  0.5810     0.6946 0.000 0.336 0.664
#> GSM564677     2  0.0592     0.8420 0.000 0.988 0.012
#> GSM564678     3  0.5810     0.6946 0.000 0.336 0.664
#> GSM564679     3  0.5948     0.6668 0.000 0.360 0.640
#> GSM564680     3  0.6095    -0.0457 0.000 0.392 0.608
#> GSM564682     3  0.0000     0.7749 0.000 0.000 1.000
#> GSM564683     3  0.0000     0.7749 0.000 0.000 1.000
#> GSM564684     2  0.0592     0.8420 0.000 0.988 0.012
#> GSM564685     3  0.0000     0.7749 0.000 0.000 1.000
#> GSM564686     2  0.6299    -0.2949 0.000 0.524 0.476
#> GSM564687     3  0.5810     0.6946 0.000 0.336 0.664
#> GSM564688     2  0.0592     0.8420 0.000 0.988 0.012
#> GSM564689     3  0.5785     0.6971 0.000 0.332 0.668
#> GSM564690     3  0.5810     0.6946 0.000 0.336 0.664
#> GSM564691     3  0.0000     0.7749 0.000 0.000 1.000
#> GSM564692     2  0.0592     0.8420 0.000 0.988 0.012
#> GSM564694     3  0.5810     0.6946 0.000 0.336 0.664
#> GSM564695     3  0.5678     0.7034 0.000 0.316 0.684
#> GSM564696     3  0.0000     0.7749 0.000 0.000 1.000
#> GSM564697     3  0.5785     0.6971 0.000 0.332 0.668
#> GSM564698     2  0.5968     0.5806 0.000 0.636 0.364
#> GSM564700     2  0.0592     0.8420 0.000 0.988 0.012
#> GSM564701     2  0.0592     0.8420 0.000 0.988 0.012
#> GSM564702     2  0.0592     0.8420 0.000 0.988 0.012
#> GSM564703     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564704     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564705     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564706     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564707     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564708     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564709     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564710     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564711     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564712     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564713     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564714     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564715     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564716     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564717     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564718     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564719     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564720     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564721     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564722     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564723     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564724     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564725     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564726     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564727     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564728     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564729     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564730     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564731     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564732     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564733     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564734     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564735     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564736     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564737     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564738     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564739     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564740     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564741     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564742     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564743     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564744     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564745     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564746     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564747     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564748     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564749     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564750     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564751     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564752     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564753     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564754     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564755     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564756     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564757     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564758     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564759     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564760     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564761     1  0.0592     0.9946 0.988 0.012 0.000
#> GSM564762     1  0.0000     0.9951 1.000 0.000 0.000
#> GSM564681     2  0.0592     0.8420 0.000 0.988 0.012
#> GSM564693     2  0.0592     0.8420 0.000 0.988 0.012
#> GSM564646     2  0.0892     0.8344 0.000 0.980 0.020
#> GSM564699     3  0.0000     0.7749 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM564615     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564616     4  0.6563     0.9792 0.000 0.160 0.208 0.632
#> GSM564617     2  0.0000     0.8936 0.000 1.000 0.000 0.000
#> GSM564618     4  0.6563     0.9792 0.000 0.160 0.208 0.632
#> GSM564619     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564620     1  0.4605     0.8103 0.664 0.000 0.000 0.336
#> GSM564621     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564622     4  0.6563     0.9792 0.000 0.160 0.208 0.632
#> GSM564623     2  0.1022     0.8748 0.000 0.968 0.032 0.000
#> GSM564624     2  0.0000     0.8936 0.000 1.000 0.000 0.000
#> GSM564625     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564626     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564627     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564628     2  0.0592     0.8813 0.000 0.984 0.016 0.000
#> GSM564629     1  0.4431     0.8130 0.696 0.000 0.000 0.304
#> GSM564630     2  0.0469     0.8851 0.000 0.988 0.012 0.000
#> GSM564609     3  0.0469     0.7487 0.000 0.012 0.988 0.000
#> GSM564610     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564611     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564612     2  0.3172     0.7475 0.000 0.840 0.160 0.000
#> GSM564613     2  0.3172     0.7475 0.000 0.840 0.160 0.000
#> GSM564614     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564631     3  0.3688     0.8690 0.000 0.208 0.792 0.000
#> GSM564632     4  0.6563     0.9792 0.000 0.160 0.208 0.632
#> GSM564633     3  0.2814     0.5475 0.000 0.000 0.868 0.132
#> GSM564634     2  0.3172     0.7475 0.000 0.840 0.160 0.000
#> GSM564635     3  0.0469     0.7487 0.000 0.012 0.988 0.000
#> GSM564636     3  0.3726     0.8645 0.000 0.212 0.788 0.000
#> GSM564637     3  0.3688     0.8690 0.000 0.208 0.792 0.000
#> GSM564638     3  0.3688     0.8690 0.000 0.208 0.792 0.000
#> GSM564639     3  0.3688     0.8690 0.000 0.208 0.792 0.000
#> GSM564640     2  0.0469     0.8851 0.000 0.988 0.012 0.000
#> GSM564641     2  0.4977    -0.0929 0.000 0.540 0.460 0.000
#> GSM564642     2  0.0000     0.8936 0.000 1.000 0.000 0.000
#> GSM564643     4  0.6563     0.9792 0.000 0.160 0.208 0.632
#> GSM564644     2  0.0000     0.8936 0.000 1.000 0.000 0.000
#> GSM564645     3  0.3688     0.8690 0.000 0.208 0.792 0.000
#> GSM564647     2  0.3172     0.7475 0.000 0.840 0.160 0.000
#> GSM564648     4  0.6563     0.9792 0.000 0.160 0.208 0.632
#> GSM564649     3  0.3688     0.8690 0.000 0.208 0.792 0.000
#> GSM564650     2  0.0000     0.8936 0.000 1.000 0.000 0.000
#> GSM564651     4  0.6563     0.9792 0.000 0.160 0.208 0.632
#> GSM564652     4  0.6563     0.9792 0.000 0.160 0.208 0.632
#> GSM564653     4  0.6563     0.9792 0.000 0.160 0.208 0.632
#> GSM564654     4  0.4905     0.7392 0.000 0.004 0.364 0.632
#> GSM564655     3  0.3486     0.4291 0.000 0.000 0.812 0.188
#> GSM564656     3  0.0469     0.7487 0.000 0.012 0.988 0.000
#> GSM564657     3  0.3688     0.8690 0.000 0.208 0.792 0.000
#> GSM564658     2  0.0469     0.8851 0.000 0.988 0.012 0.000
#> GSM564659     3  0.3688     0.8690 0.000 0.208 0.792 0.000
#> GSM564660     2  0.0000     0.8936 0.000 1.000 0.000 0.000
#> GSM564661     4  0.6563     0.9792 0.000 0.160 0.208 0.632
#> GSM564662     3  0.3688     0.8690 0.000 0.208 0.792 0.000
#> GSM564663     2  0.0000     0.8936 0.000 1.000 0.000 0.000
#> GSM564664     2  0.7037    -0.1319 0.000 0.564 0.168 0.268
#> GSM564665     3  0.3688     0.8690 0.000 0.208 0.792 0.000
#> GSM564666     2  0.3837     0.6571 0.000 0.776 0.224 0.000
#> GSM564667     3  0.3688     0.8690 0.000 0.208 0.792 0.000
#> GSM564668     4  0.4746     0.7319 0.000 0.000 0.368 0.632
#> GSM564669     3  0.0000     0.7327 0.000 0.000 1.000 0.000
#> GSM564670     2  0.3172     0.7475 0.000 0.840 0.160 0.000
#> GSM564671     4  0.6563     0.9792 0.000 0.160 0.208 0.632
#> GSM564672     3  0.3688     0.8690 0.000 0.208 0.792 0.000
#> GSM564673     4  0.6563     0.9792 0.000 0.160 0.208 0.632
#> GSM564674     2  0.0000     0.8936 0.000 1.000 0.000 0.000
#> GSM564675     2  0.0817     0.8808 0.000 0.976 0.024 0.000
#> GSM564676     2  0.0000     0.8936 0.000 1.000 0.000 0.000
#> GSM564677     4  0.6563     0.9792 0.000 0.160 0.208 0.632
#> GSM564678     2  0.0000     0.8936 0.000 1.000 0.000 0.000
#> GSM564679     2  0.0469     0.8851 0.000 0.988 0.012 0.000
#> GSM564680     3  0.1940     0.8033 0.000 0.076 0.924 0.000
#> GSM564682     2  0.3172     0.7475 0.000 0.840 0.160 0.000
#> GSM564683     3  0.3688     0.8690 0.000 0.208 0.792 0.000
#> GSM564684     4  0.6563     0.9792 0.000 0.160 0.208 0.632
#> GSM564685     3  0.3688     0.8690 0.000 0.208 0.792 0.000
#> GSM564686     3  0.4826     0.6166 0.000 0.264 0.716 0.020
#> GSM564687     2  0.0000     0.8936 0.000 1.000 0.000 0.000
#> GSM564688     4  0.6563     0.9792 0.000 0.160 0.208 0.632
#> GSM564689     2  0.0000     0.8936 0.000 1.000 0.000 0.000
#> GSM564690     2  0.0000     0.8936 0.000 1.000 0.000 0.000
#> GSM564691     2  0.3172     0.7475 0.000 0.840 0.160 0.000
#> GSM564692     4  0.6563     0.9792 0.000 0.160 0.208 0.632
#> GSM564694     2  0.0000     0.8936 0.000 1.000 0.000 0.000
#> GSM564695     2  0.0592     0.8848 0.000 0.984 0.016 0.000
#> GSM564696     3  0.3688     0.8690 0.000 0.208 0.792 0.000
#> GSM564697     2  0.0000     0.8936 0.000 1.000 0.000 0.000
#> GSM564698     3  0.0469     0.7487 0.000 0.012 0.988 0.000
#> GSM564700     4  0.6563     0.9792 0.000 0.160 0.208 0.632
#> GSM564701     4  0.6563     0.9792 0.000 0.160 0.208 0.632
#> GSM564702     4  0.6563     0.9792 0.000 0.160 0.208 0.632
#> GSM564703     1  0.0707     0.8277 0.980 0.000 0.000 0.020
#> GSM564704     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564705     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564706     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564707     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564708     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564709     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564710     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564711     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564712     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564713     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564714     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564715     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564716     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564717     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564718     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564719     1  0.4605     0.8103 0.664 0.000 0.000 0.336
#> GSM564720     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564721     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564722     1  0.4605     0.8103 0.664 0.000 0.000 0.336
#> GSM564723     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564724     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564725     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564726     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564727     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564728     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564729     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564730     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564731     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564732     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564733     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564734     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564735     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564736     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564737     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564738     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564739     1  0.0707     0.8277 0.980 0.000 0.000 0.020
#> GSM564740     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564741     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564742     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564743     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564744     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564745     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564746     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564747     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564748     1  0.0469     0.8286 0.988 0.000 0.000 0.012
#> GSM564749     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564750     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564751     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564752     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564753     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564754     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564755     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564756     1  0.4477     0.8124 0.688 0.000 0.000 0.312
#> GSM564757     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564758     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564759     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564760     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564761     1  0.4746     0.8071 0.632 0.000 0.000 0.368
#> GSM564762     1  0.0000     0.8297 1.000 0.000 0.000 0.000
#> GSM564681     4  0.6563     0.9792 0.000 0.160 0.208 0.632
#> GSM564693     4  0.6563     0.9792 0.000 0.160 0.208 0.632
#> GSM564646     4  0.6678     0.9665 0.000 0.172 0.208 0.620
#> GSM564699     3  0.3688     0.8690 0.000 0.208 0.792 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM564615     4  0.1608      0.943 0.072 0.000 0.000 0.928 0.000
#> GSM564616     5  0.0000      0.996 0.000 0.000 0.000 0.000 1.000
#> GSM564617     2  0.0609      0.974 0.000 0.980 0.000 0.000 0.020
#> GSM564618     5  0.0000      0.996 0.000 0.000 0.000 0.000 1.000
#> GSM564619     1  0.0880      0.927 0.968 0.000 0.000 0.032 0.000
#> GSM564620     1  0.3074      0.780 0.804 0.000 0.000 0.196 0.000
#> GSM564621     1  0.0880      0.927 0.968 0.000 0.000 0.032 0.000
#> GSM564622     5  0.0000      0.996 0.000 0.000 0.000 0.000 1.000
#> GSM564623     2  0.2171      0.944 0.032 0.924 0.028 0.000 0.016
#> GSM564624     2  0.0609      0.974 0.000 0.980 0.000 0.000 0.020
#> GSM564625     4  0.1671      0.943 0.076 0.000 0.000 0.924 0.000
#> GSM564626     1  0.0880      0.927 0.968 0.000 0.000 0.032 0.000
#> GSM564627     1  0.3166      0.888 0.860 0.016 0.020 0.104 0.000
#> GSM564628     2  0.0703      0.973 0.000 0.976 0.000 0.000 0.024
#> GSM564629     1  0.5408      0.375 0.516 0.020 0.024 0.440 0.000
#> GSM564630     2  0.1485      0.961 0.032 0.948 0.000 0.000 0.020
#> GSM564609     3  0.0703      0.945 0.000 0.000 0.976 0.000 0.024
#> GSM564610     1  0.3166      0.888 0.860 0.016 0.020 0.104 0.000
#> GSM564611     1  0.3166      0.888 0.860 0.016 0.020 0.104 0.000
#> GSM564612     2  0.0609      0.964 0.000 0.980 0.020 0.000 0.000
#> GSM564613     2  0.1216      0.958 0.020 0.960 0.020 0.000 0.000
#> GSM564614     4  0.1608      0.943 0.072 0.000 0.000 0.928 0.000
#> GSM564631     3  0.0703      0.958 0.000 0.024 0.976 0.000 0.000
#> GSM564632     5  0.0000      0.996 0.000 0.000 0.000 0.000 1.000
#> GSM564633     3  0.2690      0.817 0.000 0.000 0.844 0.000 0.156
#> GSM564634     2  0.1493      0.951 0.028 0.948 0.024 0.000 0.000
#> GSM564635     3  0.0703      0.945 0.000 0.000 0.976 0.000 0.024
#> GSM564636     3  0.0794      0.955 0.000 0.028 0.972 0.000 0.000
#> GSM564637     3  0.0703      0.958 0.000 0.024 0.976 0.000 0.000
#> GSM564638     3  0.0703      0.958 0.000 0.024 0.976 0.000 0.000
#> GSM564639     3  0.0703      0.958 0.000 0.024 0.976 0.000 0.000
#> GSM564640     2  0.0703      0.973 0.000 0.976 0.000 0.000 0.024
#> GSM564641     3  0.4182      0.373 0.000 0.400 0.600 0.000 0.000
#> GSM564642     2  0.0609      0.974 0.000 0.980 0.000 0.000 0.020
#> GSM564643     5  0.0000      0.996 0.000 0.000 0.000 0.000 1.000
#> GSM564644     2  0.0609      0.974 0.000 0.980 0.000 0.000 0.020
#> GSM564645     3  0.0703      0.958 0.000 0.024 0.976 0.000 0.000
#> GSM564647     2  0.0609      0.964 0.000 0.980 0.020 0.000 0.000
#> GSM564648     5  0.0000      0.996 0.000 0.000 0.000 0.000 1.000
#> GSM564649     3  0.0703      0.958 0.000 0.024 0.976 0.000 0.000
#> GSM564650     2  0.0609      0.974 0.000 0.980 0.000 0.000 0.020
#> GSM564651     5  0.0000      0.996 0.000 0.000 0.000 0.000 1.000
#> GSM564652     5  0.0000      0.996 0.000 0.000 0.000 0.000 1.000
#> GSM564653     5  0.0000      0.996 0.000 0.000 0.000 0.000 1.000
#> GSM564654     5  0.0609      0.973 0.000 0.000 0.020 0.000 0.980
#> GSM564655     3  0.3636      0.640 0.000 0.000 0.728 0.000 0.272
#> GSM564656     3  0.0703      0.945 0.000 0.000 0.976 0.000 0.024
#> GSM564657     3  0.0703      0.958 0.000 0.024 0.976 0.000 0.000
#> GSM564658     2  0.0703      0.973 0.000 0.976 0.000 0.000 0.024
#> GSM564659     3  0.0703      0.958 0.000 0.024 0.976 0.000 0.000
#> GSM564660     2  0.0609      0.974 0.000 0.980 0.000 0.000 0.020
#> GSM564661     5  0.0000      0.996 0.000 0.000 0.000 0.000 1.000
#> GSM564662     3  0.0703      0.958 0.000 0.024 0.976 0.000 0.000
#> GSM564663     2  0.0609      0.974 0.000 0.980 0.000 0.000 0.020
#> GSM564664     2  0.4030      0.489 0.000 0.648 0.000 0.000 0.352
#> GSM564665     3  0.0703      0.958 0.000 0.024 0.976 0.000 0.000
#> GSM564666     2  0.2654      0.890 0.032 0.884 0.084 0.000 0.000
#> GSM564667     3  0.0703      0.958 0.000 0.024 0.976 0.000 0.000
#> GSM564668     5  0.0703      0.970 0.000 0.000 0.024 0.000 0.976
#> GSM564669     3  0.0794      0.942 0.000 0.000 0.972 0.000 0.028
#> GSM564670     2  0.0609      0.964 0.000 0.980 0.020 0.000 0.000
#> GSM564671     5  0.0000      0.996 0.000 0.000 0.000 0.000 1.000
#> GSM564672     3  0.0703      0.958 0.000 0.024 0.976 0.000 0.000
#> GSM564673     5  0.0000      0.996 0.000 0.000 0.000 0.000 1.000
#> GSM564674     2  0.0609      0.974 0.000 0.980 0.000 0.000 0.020
#> GSM564675     2  0.1989      0.951 0.032 0.932 0.020 0.000 0.016
#> GSM564676     2  0.0609      0.974 0.000 0.980 0.000 0.000 0.020
#> GSM564677     5  0.0000      0.996 0.000 0.000 0.000 0.000 1.000
#> GSM564678     2  0.0609      0.974 0.000 0.980 0.000 0.000 0.020
#> GSM564679     2  0.0703      0.973 0.000 0.976 0.000 0.000 0.024
#> GSM564680     3  0.0807      0.952 0.000 0.012 0.976 0.000 0.012
#> GSM564682     2  0.0609      0.964 0.000 0.980 0.020 0.000 0.000
#> GSM564683     3  0.0703      0.958 0.000 0.024 0.976 0.000 0.000
#> GSM564684     5  0.0000      0.996 0.000 0.000 0.000 0.000 1.000
#> GSM564685     3  0.0703      0.958 0.000 0.024 0.976 0.000 0.000
#> GSM564686     3  0.1981      0.914 0.000 0.016 0.920 0.000 0.064
#> GSM564687     2  0.0703      0.973 0.000 0.976 0.000 0.000 0.024
#> GSM564688     5  0.0000      0.996 0.000 0.000 0.000 0.000 1.000
#> GSM564689     2  0.0609      0.974 0.000 0.980 0.000 0.000 0.020
#> GSM564690     2  0.0609      0.974 0.000 0.980 0.000 0.000 0.020
#> GSM564691     2  0.0609      0.964 0.000 0.980 0.020 0.000 0.000
#> GSM564692     5  0.0000      0.996 0.000 0.000 0.000 0.000 1.000
#> GSM564694     2  0.0703      0.973 0.000 0.976 0.000 0.000 0.024
#> GSM564695     2  0.0703      0.973 0.000 0.976 0.000 0.000 0.024
#> GSM564696     3  0.1579      0.942 0.032 0.024 0.944 0.000 0.000
#> GSM564697     2  0.0609      0.974 0.000 0.980 0.000 0.000 0.020
#> GSM564698     3  0.0703      0.945 0.000 0.000 0.976 0.000 0.024
#> GSM564700     5  0.0000      0.996 0.000 0.000 0.000 0.000 1.000
#> GSM564701     5  0.0000      0.996 0.000 0.000 0.000 0.000 1.000
#> GSM564702     5  0.0000      0.996 0.000 0.000 0.000 0.000 1.000
#> GSM564703     4  0.3003      0.826 0.188 0.000 0.000 0.812 0.000
#> GSM564704     1  0.1043      0.924 0.960 0.000 0.000 0.040 0.000
#> GSM564705     1  0.0880      0.927 0.968 0.000 0.000 0.032 0.000
#> GSM564706     4  0.1310      0.919 0.000 0.020 0.024 0.956 0.000
#> GSM564707     1  0.0880      0.927 0.968 0.000 0.000 0.032 0.000
#> GSM564708     4  0.1608      0.943 0.072 0.000 0.000 0.928 0.000
#> GSM564709     1  0.0880      0.927 0.968 0.000 0.000 0.032 0.000
#> GSM564710     1  0.0880      0.927 0.968 0.000 0.000 0.032 0.000
#> GSM564711     4  0.1310      0.919 0.000 0.020 0.024 0.956 0.000
#> GSM564712     1  0.0880      0.927 0.968 0.000 0.000 0.032 0.000
#> GSM564713     4  0.1544      0.944 0.068 0.000 0.000 0.932 0.000
#> GSM564714     4  0.1310      0.919 0.000 0.020 0.024 0.956 0.000
#> GSM564715     1  0.0880      0.927 0.968 0.000 0.000 0.032 0.000
#> GSM564716     1  0.1043      0.924 0.960 0.000 0.000 0.040 0.000
#> GSM564717     1  0.3405      0.883 0.848 0.020 0.024 0.108 0.000
#> GSM564718     4  0.0000      0.937 0.000 0.000 0.000 1.000 0.000
#> GSM564719     1  0.4902      0.715 0.676 0.020 0.024 0.280 0.000
#> GSM564720     1  0.3166      0.888 0.860 0.016 0.020 0.104 0.000
#> GSM564721     1  0.0880      0.927 0.968 0.000 0.000 0.032 0.000
#> GSM564722     1  0.5005      0.685 0.656 0.020 0.024 0.300 0.000
#> GSM564723     1  0.1270      0.921 0.948 0.000 0.000 0.052 0.000
#> GSM564724     4  0.1608      0.943 0.072 0.000 0.000 0.928 0.000
#> GSM564725     1  0.0880      0.927 0.968 0.000 0.000 0.032 0.000
#> GSM564726     4  0.1608      0.943 0.072 0.000 0.000 0.928 0.000
#> GSM564727     1  0.0880      0.927 0.968 0.000 0.000 0.032 0.000
#> GSM564728     4  0.1608      0.943 0.072 0.000 0.000 0.928 0.000
#> GSM564729     4  0.1608      0.943 0.072 0.000 0.000 0.928 0.000
#> GSM564730     1  0.0880      0.927 0.968 0.000 0.000 0.032 0.000
#> GSM564731     4  0.0162      0.937 0.004 0.000 0.000 0.996 0.000
#> GSM564732     4  0.1671      0.943 0.076 0.000 0.000 0.924 0.000
#> GSM564733     4  0.1671      0.943 0.076 0.000 0.000 0.924 0.000
#> GSM564734     4  0.1671      0.943 0.076 0.000 0.000 0.924 0.000
#> GSM564735     4  0.0162      0.937 0.004 0.000 0.000 0.996 0.000
#> GSM564736     4  0.1608      0.944 0.072 0.000 0.000 0.928 0.000
#> GSM564737     1  0.0880      0.927 0.968 0.000 0.000 0.032 0.000
#> GSM564738     4  0.0794      0.942 0.028 0.000 0.000 0.972 0.000
#> GSM564739     4  0.3039      0.823 0.192 0.000 0.000 0.808 0.000
#> GSM564740     4  0.1310      0.919 0.000 0.020 0.024 0.956 0.000
#> GSM564741     4  0.1608      0.944 0.072 0.000 0.000 0.928 0.000
#> GSM564742     4  0.1310      0.919 0.000 0.020 0.024 0.956 0.000
#> GSM564743     1  0.3257      0.886 0.856 0.016 0.024 0.104 0.000
#> GSM564744     1  0.0880      0.927 0.968 0.000 0.000 0.032 0.000
#> GSM564745     1  0.0880      0.927 0.968 0.000 0.000 0.032 0.000
#> GSM564746     1  0.3353      0.884 0.852 0.020 0.024 0.104 0.000
#> GSM564747     4  0.1471      0.919 0.004 0.020 0.024 0.952 0.000
#> GSM564748     4  0.2377      0.899 0.128 0.000 0.000 0.872 0.000
#> GSM564749     1  0.3166      0.888 0.860 0.016 0.020 0.104 0.000
#> GSM564750     4  0.1544      0.944 0.068 0.000 0.000 0.932 0.000
#> GSM564751     4  0.0162      0.937 0.004 0.000 0.000 0.996 0.000
#> GSM564752     4  0.0324      0.935 0.000 0.004 0.004 0.992 0.000
#> GSM564753     4  0.0324      0.935 0.000 0.004 0.004 0.992 0.000
#> GSM564754     1  0.0880      0.927 0.968 0.000 0.000 0.032 0.000
#> GSM564755     4  0.1608      0.943 0.072 0.000 0.000 0.928 0.000
#> GSM564756     1  0.3857      0.594 0.688 0.000 0.000 0.312 0.000
#> GSM564757     4  0.0000      0.937 0.000 0.000 0.000 1.000 0.000
#> GSM564758     4  0.0000      0.937 0.000 0.000 0.000 1.000 0.000
#> GSM564759     4  0.1310      0.919 0.000 0.020 0.024 0.956 0.000
#> GSM564760     4  0.1671      0.943 0.076 0.000 0.000 0.924 0.000
#> GSM564761     1  0.0880      0.927 0.968 0.000 0.000 0.032 0.000
#> GSM564762     4  0.0162      0.937 0.004 0.000 0.000 0.996 0.000
#> GSM564681     5  0.0000      0.996 0.000 0.000 0.000 0.000 1.000
#> GSM564693     5  0.0000      0.996 0.000 0.000 0.000 0.000 1.000
#> GSM564646     5  0.0703      0.973 0.000 0.024 0.000 0.000 0.976
#> GSM564699     3  0.0703      0.958 0.000 0.024 0.976 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM564615     4  0.0405      0.956 0.008 0.000 0.000 0.988 0.000 0.004
#> GSM564616     5  0.0363      0.981 0.000 0.000 0.000 0.000 0.988 0.012
#> GSM564617     2  0.0508      0.949 0.000 0.984 0.000 0.000 0.004 0.012
#> GSM564618     5  0.0260      0.983 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM564619     1  0.0000      0.945 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564620     1  0.4079      0.576 0.744 0.000 0.000 0.172 0.000 0.084
#> GSM564621     1  0.0405      0.939 0.988 0.000 0.000 0.008 0.000 0.004
#> GSM564622     5  0.0632      0.975 0.000 0.000 0.000 0.000 0.976 0.024
#> GSM564623     2  0.3345      0.817 0.000 0.776 0.020 0.000 0.000 0.204
#> GSM564624     2  0.0405      0.949 0.000 0.988 0.000 0.000 0.004 0.008
#> GSM564625     4  0.0458      0.955 0.016 0.000 0.000 0.984 0.000 0.000
#> GSM564626     1  0.0000      0.945 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564627     6  0.3578      0.638 0.340 0.000 0.000 0.000 0.000 0.660
#> GSM564628     2  0.1003      0.944 0.000 0.964 0.000 0.000 0.016 0.020
#> GSM564629     6  0.4666      0.743 0.108 0.000 0.000 0.216 0.000 0.676
#> GSM564630     2  0.1806      0.914 0.000 0.908 0.000 0.000 0.004 0.088
#> GSM564609     3  0.1219      0.927 0.000 0.000 0.948 0.000 0.004 0.048
#> GSM564610     6  0.3756      0.548 0.400 0.000 0.000 0.000 0.000 0.600
#> GSM564611     6  0.3706      0.590 0.380 0.000 0.000 0.000 0.000 0.620
#> GSM564612     2  0.1245      0.937 0.000 0.952 0.032 0.000 0.000 0.016
#> GSM564613     2  0.1349      0.933 0.000 0.940 0.004 0.000 0.000 0.056
#> GSM564614     4  0.0508      0.956 0.004 0.000 0.000 0.984 0.000 0.012
#> GSM564631     3  0.0146      0.938 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM564632     5  0.0000      0.984 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564633     3  0.2506      0.884 0.000 0.000 0.880 0.000 0.068 0.052
#> GSM564634     2  0.2877      0.855 0.000 0.820 0.012 0.000 0.000 0.168
#> GSM564635     3  0.1082      0.929 0.000 0.000 0.956 0.000 0.004 0.040
#> GSM564636     3  0.0603      0.932 0.000 0.016 0.980 0.000 0.000 0.004
#> GSM564637     3  0.0935      0.934 0.000 0.004 0.964 0.000 0.000 0.032
#> GSM564638     3  0.0146      0.938 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM564639     3  0.0508      0.937 0.000 0.004 0.984 0.000 0.000 0.012
#> GSM564640     2  0.1003      0.944 0.000 0.964 0.000 0.000 0.016 0.020
#> GSM564641     3  0.4110      0.390 0.000 0.376 0.608 0.000 0.000 0.016
#> GSM564642     2  0.1036      0.945 0.000 0.964 0.004 0.000 0.008 0.024
#> GSM564643     5  0.0363      0.979 0.000 0.000 0.000 0.000 0.988 0.012
#> GSM564644     2  0.0717      0.948 0.000 0.976 0.000 0.000 0.008 0.016
#> GSM564645     3  0.0146      0.938 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM564647     2  0.1320      0.934 0.000 0.948 0.036 0.000 0.000 0.016
#> GSM564648     5  0.0000      0.984 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564649     3  0.0146      0.938 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM564650     2  0.0405      0.949 0.000 0.988 0.000 0.000 0.004 0.008
#> GSM564651     5  0.0000      0.984 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564652     5  0.0000      0.984 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564653     5  0.0146      0.984 0.000 0.000 0.000 0.000 0.996 0.004
#> GSM564654     5  0.0937      0.963 0.000 0.000 0.000 0.000 0.960 0.040
#> GSM564655     3  0.4552      0.558 0.000 0.000 0.648 0.000 0.288 0.064
#> GSM564656     3  0.1285      0.926 0.000 0.000 0.944 0.000 0.004 0.052
#> GSM564657     3  0.0146      0.938 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM564658     2  0.0508      0.949 0.000 0.984 0.000 0.000 0.004 0.012
#> GSM564659     3  0.0146      0.938 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM564660     2  0.0405      0.949 0.000 0.988 0.000 0.000 0.004 0.008
#> GSM564661     5  0.0146      0.984 0.000 0.000 0.000 0.000 0.996 0.004
#> GSM564662     3  0.0146      0.938 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM564663     2  0.0405      0.949 0.000 0.988 0.000 0.000 0.004 0.008
#> GSM564664     2  0.3789      0.644 0.000 0.716 0.000 0.000 0.260 0.024
#> GSM564665     3  0.0146      0.938 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM564666     2  0.3923      0.799 0.000 0.748 0.060 0.000 0.000 0.192
#> GSM564667     3  0.0622      0.933 0.000 0.012 0.980 0.000 0.000 0.008
#> GSM564668     5  0.1643      0.937 0.000 0.000 0.008 0.000 0.924 0.068
#> GSM564669     3  0.1643      0.918 0.000 0.000 0.924 0.000 0.008 0.068
#> GSM564670     2  0.0603      0.946 0.000 0.980 0.004 0.000 0.000 0.016
#> GSM564671     5  0.0632      0.976 0.000 0.000 0.000 0.000 0.976 0.024
#> GSM564672     3  0.0146      0.938 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM564673     5  0.0000      0.984 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564674     2  0.0405      0.949 0.000 0.988 0.000 0.000 0.004 0.008
#> GSM564675     2  0.3424      0.817 0.000 0.772 0.024 0.000 0.000 0.204
#> GSM564676     2  0.0291      0.949 0.000 0.992 0.000 0.000 0.004 0.004
#> GSM564677     5  0.0000      0.984 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564678     2  0.0146      0.949 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM564679     2  0.0820      0.946 0.000 0.972 0.000 0.000 0.016 0.012
#> GSM564680     3  0.0935      0.933 0.000 0.004 0.964 0.000 0.000 0.032
#> GSM564682     2  0.1168      0.939 0.000 0.956 0.028 0.000 0.000 0.016
#> GSM564683     3  0.0146      0.938 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM564684     5  0.1327      0.949 0.000 0.000 0.000 0.000 0.936 0.064
#> GSM564685     3  0.0146      0.938 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM564686     3  0.3382      0.846 0.000 0.004 0.820 0.000 0.064 0.112
#> GSM564687     2  0.1138      0.944 0.000 0.960 0.004 0.000 0.012 0.024
#> GSM564688     5  0.0000      0.984 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564689     2  0.0291      0.949 0.000 0.992 0.000 0.000 0.004 0.004
#> GSM564690     2  0.0291      0.949 0.000 0.992 0.000 0.000 0.004 0.004
#> GSM564691     2  0.1088      0.940 0.000 0.960 0.024 0.000 0.000 0.016
#> GSM564692     5  0.0363      0.981 0.000 0.000 0.000 0.000 0.988 0.012
#> GSM564694     2  0.1088      0.943 0.000 0.960 0.000 0.000 0.016 0.024
#> GSM564695     2  0.1321      0.942 0.000 0.952 0.024 0.000 0.004 0.020
#> GSM564696     3  0.2912      0.825 0.000 0.012 0.816 0.000 0.000 0.172
#> GSM564697     2  0.0291      0.949 0.000 0.992 0.000 0.000 0.004 0.004
#> GSM564698     3  0.1285      0.926 0.000 0.000 0.944 0.000 0.004 0.052
#> GSM564700     5  0.0000      0.984 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564701     5  0.0260      0.983 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM564702     5  0.0146      0.984 0.000 0.000 0.000 0.000 0.996 0.004
#> GSM564703     4  0.3013      0.768 0.152 0.004 0.004 0.828 0.000 0.012
#> GSM564704     1  0.1334      0.903 0.948 0.000 0.000 0.032 0.000 0.020
#> GSM564705     1  0.0146      0.944 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM564706     6  0.3820      0.627 0.000 0.004 0.004 0.332 0.000 0.660
#> GSM564707     1  0.0146      0.944 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM564708     4  0.0632      0.955 0.000 0.000 0.000 0.976 0.000 0.024
#> GSM564709     1  0.0000      0.945 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564710     1  0.0146      0.944 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM564711     6  0.3721      0.661 0.000 0.004 0.004 0.308 0.000 0.684
#> GSM564712     1  0.0000      0.945 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564713     4  0.0713      0.954 0.000 0.000 0.000 0.972 0.000 0.028
#> GSM564714     6  0.3665      0.672 0.000 0.004 0.004 0.296 0.000 0.696
#> GSM564715     1  0.0363      0.941 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM564716     1  0.1088      0.913 0.960 0.000 0.000 0.024 0.000 0.016
#> GSM564717     6  0.3729      0.668 0.296 0.000 0.000 0.012 0.000 0.692
#> GSM564718     4  0.1007      0.947 0.000 0.000 0.000 0.956 0.000 0.044
#> GSM564719     6  0.4595      0.738 0.136 0.000 0.000 0.168 0.000 0.696
#> GSM564720     6  0.3706      0.590 0.380 0.000 0.000 0.000 0.000 0.620
#> GSM564721     1  0.0000      0.945 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564722     6  0.4506      0.742 0.120 0.000 0.000 0.176 0.000 0.704
#> GSM564723     1  0.0547      0.931 0.980 0.000 0.000 0.000 0.000 0.020
#> GSM564724     4  0.0363      0.956 0.000 0.000 0.000 0.988 0.000 0.012
#> GSM564725     1  0.0000      0.945 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564726     4  0.0363      0.956 0.000 0.000 0.000 0.988 0.000 0.012
#> GSM564727     1  0.0000      0.945 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564728     4  0.0508      0.956 0.004 0.000 0.000 0.984 0.000 0.012
#> GSM564729     4  0.0909      0.949 0.020 0.000 0.000 0.968 0.000 0.012
#> GSM564730     1  0.0146      0.944 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM564731     4  0.1338      0.943 0.008 0.004 0.004 0.952 0.000 0.032
#> GSM564732     4  0.0458      0.955 0.016 0.000 0.000 0.984 0.000 0.000
#> GSM564733     4  0.0458      0.955 0.016 0.000 0.000 0.984 0.000 0.000
#> GSM564734     4  0.0458      0.955 0.016 0.000 0.000 0.984 0.000 0.000
#> GSM564735     4  0.1007      0.952 0.008 0.004 0.004 0.968 0.000 0.016
#> GSM564736     4  0.0260      0.956 0.008 0.000 0.000 0.992 0.000 0.000
#> GSM564737     1  0.0146      0.944 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM564738     4  0.0790      0.952 0.000 0.000 0.000 0.968 0.000 0.032
#> GSM564739     4  0.2340      0.782 0.148 0.000 0.000 0.852 0.000 0.000
#> GSM564740     6  0.3371      0.678 0.000 0.000 0.000 0.292 0.000 0.708
#> GSM564741     4  0.0622      0.955 0.008 0.000 0.000 0.980 0.000 0.012
#> GSM564742     6  0.3858      0.670 0.004 0.004 0.004 0.308 0.000 0.680
#> GSM564743     6  0.3563      0.641 0.336 0.000 0.000 0.000 0.000 0.664
#> GSM564744     1  0.0146      0.944 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM564745     1  0.0508      0.935 0.984 0.000 0.000 0.012 0.000 0.004
#> GSM564746     6  0.3482      0.655 0.316 0.000 0.000 0.000 0.000 0.684
#> GSM564747     6  0.3946      0.671 0.008 0.004 0.004 0.304 0.000 0.680
#> GSM564748     4  0.2305      0.866 0.088 0.004 0.004 0.892 0.000 0.012
#> GSM564749     6  0.3607      0.631 0.348 0.000 0.000 0.000 0.000 0.652
#> GSM564750     4  0.0632      0.955 0.000 0.000 0.000 0.976 0.000 0.024
#> GSM564751     4  0.1440      0.941 0.012 0.004 0.004 0.948 0.000 0.032
#> GSM564752     4  0.1897      0.907 0.000 0.004 0.004 0.908 0.000 0.084
#> GSM564753     4  0.1732      0.907 0.000 0.004 0.004 0.920 0.000 0.072
#> GSM564754     1  0.0000      0.945 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564755     4  0.0508      0.956 0.004 0.000 0.000 0.984 0.000 0.012
#> GSM564756     1  0.4282      0.212 0.560 0.000 0.000 0.420 0.000 0.020
#> GSM564757     4  0.0405      0.957 0.004 0.000 0.000 0.988 0.000 0.008
#> GSM564758     4  0.0603      0.956 0.000 0.000 0.004 0.980 0.000 0.016
#> GSM564759     6  0.4100      0.566 0.004 0.004 0.004 0.376 0.000 0.612
#> GSM564760     4  0.0458      0.955 0.016 0.000 0.000 0.984 0.000 0.000
#> GSM564761     1  0.0000      0.945 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564762     4  0.0725      0.955 0.012 0.000 0.000 0.976 0.000 0.012
#> GSM564681     5  0.0260      0.983 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM564693     5  0.0146      0.984 0.000 0.000 0.000 0.000 0.996 0.004
#> GSM564646     5  0.2512      0.893 0.000 0.060 0.000 0.000 0.880 0.060
#> GSM564699     3  0.2402      0.877 0.000 0.004 0.856 0.000 0.000 0.140

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>               n genotype/variation(p) disease.state(p) k
#> ATC:skmeans 154                 0.925           0.4759 2
#> ATC:skmeans 152                 0.996           0.0942 3
#> ATC:skmeans 151                 0.460           0.0471 4
#> ATC:skmeans 151                 0.388           0.1786 5
#> ATC:skmeans 152                 0.383           0.3876 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 154 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.999       0.999         0.5008 0.500   0.500
#> 3 3 0.653           0.636       0.744         0.2329 0.901   0.801
#> 4 4 0.699           0.768       0.867         0.1824 0.796   0.536
#> 5 5 0.806           0.856       0.916         0.0900 0.900   0.654
#> 6 6 0.813           0.799       0.893         0.0467 0.943   0.734

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM564615     1   0.000      1.000 1.000 0.000
#> GSM564616     2   0.000      0.999 0.000 1.000
#> GSM564617     2   0.000      0.999 0.000 1.000
#> GSM564618     2   0.000      0.999 0.000 1.000
#> GSM564619     1   0.000      1.000 1.000 0.000
#> GSM564620     1   0.000      1.000 1.000 0.000
#> GSM564621     1   0.000      1.000 1.000 0.000
#> GSM564622     2   0.000      0.999 0.000 1.000
#> GSM564623     2   0.456      0.894 0.096 0.904
#> GSM564624     2   0.000      0.999 0.000 1.000
#> GSM564625     1   0.000      1.000 1.000 0.000
#> GSM564626     1   0.000      1.000 1.000 0.000
#> GSM564627     1   0.000      1.000 1.000 0.000
#> GSM564628     2   0.000      0.999 0.000 1.000
#> GSM564629     1   0.000      1.000 1.000 0.000
#> GSM564630     2   0.000      0.999 0.000 1.000
#> GSM564609     2   0.000      0.999 0.000 1.000
#> GSM564610     1   0.000      1.000 1.000 0.000
#> GSM564611     1   0.000      1.000 1.000 0.000
#> GSM564612     2   0.000      0.999 0.000 1.000
#> GSM564613     2   0.000      0.999 0.000 1.000
#> GSM564614     1   0.000      1.000 1.000 0.000
#> GSM564631     2   0.000      0.999 0.000 1.000
#> GSM564632     2   0.000      0.999 0.000 1.000
#> GSM564633     2   0.000      0.999 0.000 1.000
#> GSM564634     2   0.000      0.999 0.000 1.000
#> GSM564635     2   0.000      0.999 0.000 1.000
#> GSM564636     2   0.000      0.999 0.000 1.000
#> GSM564637     2   0.000      0.999 0.000 1.000
#> GSM564638     2   0.000      0.999 0.000 1.000
#> GSM564639     2   0.000      0.999 0.000 1.000
#> GSM564640     2   0.000      0.999 0.000 1.000
#> GSM564641     2   0.000      0.999 0.000 1.000
#> GSM564642     2   0.000      0.999 0.000 1.000
#> GSM564643     2   0.000      0.999 0.000 1.000
#> GSM564644     2   0.000      0.999 0.000 1.000
#> GSM564645     2   0.000      0.999 0.000 1.000
#> GSM564647     2   0.000      0.999 0.000 1.000
#> GSM564648     2   0.000      0.999 0.000 1.000
#> GSM564649     2   0.000      0.999 0.000 1.000
#> GSM564650     2   0.000      0.999 0.000 1.000
#> GSM564651     2   0.000      0.999 0.000 1.000
#> GSM564652     2   0.000      0.999 0.000 1.000
#> GSM564653     2   0.000      0.999 0.000 1.000
#> GSM564654     2   0.000      0.999 0.000 1.000
#> GSM564655     2   0.000      0.999 0.000 1.000
#> GSM564656     2   0.000      0.999 0.000 1.000
#> GSM564657     2   0.000      0.999 0.000 1.000
#> GSM564658     2   0.000      0.999 0.000 1.000
#> GSM564659     2   0.000      0.999 0.000 1.000
#> GSM564660     2   0.000      0.999 0.000 1.000
#> GSM564661     2   0.000      0.999 0.000 1.000
#> GSM564662     2   0.000      0.999 0.000 1.000
#> GSM564663     2   0.000      0.999 0.000 1.000
#> GSM564664     2   0.000      0.999 0.000 1.000
#> GSM564665     2   0.000      0.999 0.000 1.000
#> GSM564666     2   0.000      0.999 0.000 1.000
#> GSM564667     2   0.000      0.999 0.000 1.000
#> GSM564668     2   0.000      0.999 0.000 1.000
#> GSM564669     2   0.000      0.999 0.000 1.000
#> GSM564670     2   0.000      0.999 0.000 1.000
#> GSM564671     2   0.000      0.999 0.000 1.000
#> GSM564672     2   0.000      0.999 0.000 1.000
#> GSM564673     2   0.000      0.999 0.000 1.000
#> GSM564674     2   0.000      0.999 0.000 1.000
#> GSM564675     2   0.000      0.999 0.000 1.000
#> GSM564676     2   0.000      0.999 0.000 1.000
#> GSM564677     2   0.000      0.999 0.000 1.000
#> GSM564678     2   0.000      0.999 0.000 1.000
#> GSM564679     2   0.000      0.999 0.000 1.000
#> GSM564680     2   0.000      0.999 0.000 1.000
#> GSM564682     2   0.000      0.999 0.000 1.000
#> GSM564683     2   0.000      0.999 0.000 1.000
#> GSM564684     2   0.000      0.999 0.000 1.000
#> GSM564685     2   0.000      0.999 0.000 1.000
#> GSM564686     2   0.000      0.999 0.000 1.000
#> GSM564687     2   0.000      0.999 0.000 1.000
#> GSM564688     2   0.000      0.999 0.000 1.000
#> GSM564689     2   0.000      0.999 0.000 1.000
#> GSM564690     2   0.000      0.999 0.000 1.000
#> GSM564691     2   0.000      0.999 0.000 1.000
#> GSM564692     2   0.000      0.999 0.000 1.000
#> GSM564694     2   0.000      0.999 0.000 1.000
#> GSM564695     2   0.000      0.999 0.000 1.000
#> GSM564696     2   0.000      0.999 0.000 1.000
#> GSM564697     2   0.000      0.999 0.000 1.000
#> GSM564698     2   0.000      0.999 0.000 1.000
#> GSM564700     2   0.000      0.999 0.000 1.000
#> GSM564701     2   0.000      0.999 0.000 1.000
#> GSM564702     2   0.000      0.999 0.000 1.000
#> GSM564703     1   0.000      1.000 1.000 0.000
#> GSM564704     1   0.000      1.000 1.000 0.000
#> GSM564705     1   0.000      1.000 1.000 0.000
#> GSM564706     1   0.000      1.000 1.000 0.000
#> GSM564707     1   0.000      1.000 1.000 0.000
#> GSM564708     1   0.000      1.000 1.000 0.000
#> GSM564709     1   0.000      1.000 1.000 0.000
#> GSM564710     1   0.000      1.000 1.000 0.000
#> GSM564711     1   0.000      1.000 1.000 0.000
#> GSM564712     1   0.000      1.000 1.000 0.000
#> GSM564713     1   0.000      1.000 1.000 0.000
#> GSM564714     1   0.000      1.000 1.000 0.000
#> GSM564715     1   0.000      1.000 1.000 0.000
#> GSM564716     1   0.000      1.000 1.000 0.000
#> GSM564717     1   0.000      1.000 1.000 0.000
#> GSM564718     1   0.000      1.000 1.000 0.000
#> GSM564719     1   0.000      1.000 1.000 0.000
#> GSM564720     1   0.000      1.000 1.000 0.000
#> GSM564721     1   0.000      1.000 1.000 0.000
#> GSM564722     1   0.000      1.000 1.000 0.000
#> GSM564723     1   0.000      1.000 1.000 0.000
#> GSM564724     1   0.000      1.000 1.000 0.000
#> GSM564725     1   0.000      1.000 1.000 0.000
#> GSM564726     1   0.000      1.000 1.000 0.000
#> GSM564727     1   0.000      1.000 1.000 0.000
#> GSM564728     1   0.000      1.000 1.000 0.000
#> GSM564729     1   0.000      1.000 1.000 0.000
#> GSM564730     1   0.000      1.000 1.000 0.000
#> GSM564731     1   0.000      1.000 1.000 0.000
#> GSM564732     1   0.000      1.000 1.000 0.000
#> GSM564733     1   0.000      1.000 1.000 0.000
#> GSM564734     1   0.000      1.000 1.000 0.000
#> GSM564735     1   0.000      1.000 1.000 0.000
#> GSM564736     1   0.000      1.000 1.000 0.000
#> GSM564737     1   0.000      1.000 1.000 0.000
#> GSM564738     1   0.000      1.000 1.000 0.000
#> GSM564739     1   0.000      1.000 1.000 0.000
#> GSM564740     1   0.000      1.000 1.000 0.000
#> GSM564741     1   0.000      1.000 1.000 0.000
#> GSM564742     1   0.000      1.000 1.000 0.000
#> GSM564743     1   0.000      1.000 1.000 0.000
#> GSM564744     1   0.000      1.000 1.000 0.000
#> GSM564745     1   0.000      1.000 1.000 0.000
#> GSM564746     1   0.000      1.000 1.000 0.000
#> GSM564747     1   0.000      1.000 1.000 0.000
#> GSM564748     1   0.000      1.000 1.000 0.000
#> GSM564749     1   0.000      1.000 1.000 0.000
#> GSM564750     1   0.000      1.000 1.000 0.000
#> GSM564751     1   0.000      1.000 1.000 0.000
#> GSM564752     1   0.000      1.000 1.000 0.000
#> GSM564753     1   0.000      1.000 1.000 0.000
#> GSM564754     1   0.000      1.000 1.000 0.000
#> GSM564755     1   0.000      1.000 1.000 0.000
#> GSM564756     1   0.000      1.000 1.000 0.000
#> GSM564757     1   0.000      1.000 1.000 0.000
#> GSM564758     1   0.000      1.000 1.000 0.000
#> GSM564759     1   0.000      1.000 1.000 0.000
#> GSM564760     1   0.000      1.000 1.000 0.000
#> GSM564761     1   0.000      1.000 1.000 0.000
#> GSM564762     1   0.000      1.000 1.000 0.000
#> GSM564681     2   0.000      0.999 0.000 1.000
#> GSM564693     2   0.000      0.999 0.000 1.000
#> GSM564646     2   0.000      0.999 0.000 1.000
#> GSM564699     2   0.000      0.999 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM564615     3  0.6299     0.9305 0.476 0.000 0.524
#> GSM564616     2  0.3879     0.8092 0.000 0.848 0.152
#> GSM564617     2  0.0237     0.8520 0.000 0.996 0.004
#> GSM564618     2  0.3941     0.8079 0.000 0.844 0.156
#> GSM564619     1  0.1964     0.5944 0.944 0.000 0.056
#> GSM564620     1  0.6215    -0.6853 0.572 0.000 0.428
#> GSM564621     1  0.0592     0.6047 0.988 0.000 0.012
#> GSM564622     2  0.3941     0.8079 0.000 0.844 0.156
#> GSM564623     2  0.3947     0.7866 0.076 0.884 0.040
#> GSM564624     2  0.0237     0.8520 0.000 0.996 0.004
#> GSM564625     1  0.5835    -0.2225 0.660 0.000 0.340
#> GSM564626     1  0.1964     0.5944 0.944 0.000 0.056
#> GSM564627     1  0.0892     0.5997 0.980 0.000 0.020
#> GSM564628     2  0.3879     0.8092 0.000 0.848 0.152
#> GSM564629     1  0.5016     0.1581 0.760 0.000 0.240
#> GSM564630     2  0.3112     0.8056 0.096 0.900 0.004
#> GSM564609     2  0.5529     0.8110 0.000 0.704 0.296
#> GSM564610     1  0.0000     0.6047 1.000 0.000 0.000
#> GSM564611     1  0.0000     0.6047 1.000 0.000 0.000
#> GSM564612     2  0.5560     0.8101 0.000 0.700 0.300
#> GSM564613     2  0.0237     0.8520 0.000 0.996 0.004
#> GSM564614     3  0.6274     0.9606 0.456 0.000 0.544
#> GSM564631     2  0.5529     0.8110 0.000 0.704 0.296
#> GSM564632     2  0.3941     0.8079 0.000 0.844 0.156
#> GSM564633     2  0.6267     0.7653 0.000 0.548 0.452
#> GSM564634     2  0.0237     0.8520 0.000 0.996 0.004
#> GSM564635     2  0.5529     0.8110 0.000 0.704 0.296
#> GSM564636     2  0.5529     0.8110 0.000 0.704 0.296
#> GSM564637     2  0.4062     0.8376 0.000 0.836 0.164
#> GSM564638     2  0.5529     0.8110 0.000 0.704 0.296
#> GSM564639     2  0.5529     0.8110 0.000 0.704 0.296
#> GSM564640     2  0.0000     0.8523 0.000 1.000 0.000
#> GSM564641     2  0.5560     0.8101 0.000 0.700 0.300
#> GSM564642     2  0.0000     0.8523 0.000 1.000 0.000
#> GSM564643     2  0.6225     0.7731 0.000 0.568 0.432
#> GSM564644     2  0.0000     0.8523 0.000 1.000 0.000
#> GSM564645     2  0.5529     0.8110 0.000 0.704 0.296
#> GSM564647     2  0.5529     0.8110 0.000 0.704 0.296
#> GSM564648     2  0.3941     0.8079 0.000 0.844 0.156
#> GSM564649     2  0.5529     0.8110 0.000 0.704 0.296
#> GSM564650     2  0.0237     0.8520 0.000 0.996 0.004
#> GSM564651     2  0.3941     0.8079 0.000 0.844 0.156
#> GSM564652     2  0.3941     0.8079 0.000 0.844 0.156
#> GSM564653     2  0.3941     0.8079 0.000 0.844 0.156
#> GSM564654     2  0.6267     0.7653 0.000 0.548 0.452
#> GSM564655     2  0.5529     0.8110 0.000 0.704 0.296
#> GSM564656     2  0.5529     0.8110 0.000 0.704 0.296
#> GSM564657     2  0.5529     0.8110 0.000 0.704 0.296
#> GSM564658     2  0.1529     0.8460 0.000 0.960 0.040
#> GSM564659     2  0.5529     0.8110 0.000 0.704 0.296
#> GSM564660     2  0.0237     0.8520 0.000 0.996 0.004
#> GSM564661     2  0.3941     0.8079 0.000 0.844 0.156
#> GSM564662     2  0.5529     0.8110 0.000 0.704 0.296
#> GSM564663     2  0.0237     0.8520 0.000 0.996 0.004
#> GSM564664     2  0.0000     0.8523 0.000 1.000 0.000
#> GSM564665     2  0.5529     0.8110 0.000 0.704 0.296
#> GSM564666     2  0.5497     0.8127 0.000 0.708 0.292
#> GSM564667     2  0.5560     0.8101 0.000 0.700 0.300
#> GSM564668     2  0.5968     0.7697 0.000 0.636 0.364
#> GSM564669     2  0.5835     0.7832 0.000 0.660 0.340
#> GSM564670     2  0.0237     0.8520 0.000 0.996 0.004
#> GSM564671     2  0.0592     0.8510 0.000 0.988 0.012
#> GSM564672     2  0.5529     0.8110 0.000 0.704 0.296
#> GSM564673     2  0.3941     0.8079 0.000 0.844 0.156
#> GSM564674     2  0.0237     0.8520 0.000 0.996 0.004
#> GSM564675     2  0.0000     0.8523 0.000 1.000 0.000
#> GSM564676     2  0.0000     0.8523 0.000 1.000 0.000
#> GSM564677     2  0.3941     0.8079 0.000 0.844 0.156
#> GSM564678     2  0.0237     0.8520 0.000 0.996 0.004
#> GSM564679     2  0.3879     0.8092 0.000 0.848 0.152
#> GSM564680     2  0.5529     0.8110 0.000 0.704 0.296
#> GSM564682     2  0.5560     0.8101 0.000 0.700 0.300
#> GSM564683     2  0.5560     0.8101 0.000 0.700 0.300
#> GSM564684     2  0.0237     0.8520 0.000 0.996 0.004
#> GSM564685     2  0.5529     0.8110 0.000 0.704 0.296
#> GSM564686     2  0.0000     0.8523 0.000 1.000 0.000
#> GSM564687     2  0.0000     0.8523 0.000 1.000 0.000
#> GSM564688     2  0.3941     0.8079 0.000 0.844 0.156
#> GSM564689     2  0.0237     0.8520 0.000 0.996 0.004
#> GSM564690     2  0.0000     0.8523 0.000 1.000 0.000
#> GSM564691     2  0.2537     0.8491 0.000 0.920 0.080
#> GSM564692     2  0.3879     0.8092 0.000 0.848 0.152
#> GSM564694     2  0.0000     0.8523 0.000 1.000 0.000
#> GSM564695     2  0.5560     0.8101 0.000 0.700 0.300
#> GSM564696     2  0.5560     0.8101 0.000 0.700 0.300
#> GSM564697     2  0.0237     0.8520 0.000 0.996 0.004
#> GSM564698     2  0.5560     0.8104 0.000 0.700 0.300
#> GSM564700     2  0.1289     0.8473 0.000 0.968 0.032
#> GSM564701     2  0.3941     0.8079 0.000 0.844 0.156
#> GSM564702     2  0.3941     0.8079 0.000 0.844 0.156
#> GSM564703     3  0.6299     0.9468 0.476 0.000 0.524
#> GSM564704     1  0.6204    -0.6521 0.576 0.000 0.424
#> GSM564705     1  0.0000     0.6047 1.000 0.000 0.000
#> GSM564706     1  0.6305    -0.7894 0.516 0.000 0.484
#> GSM564707     1  0.2796     0.5716 0.908 0.000 0.092
#> GSM564708     3  0.6274     0.9606 0.456 0.000 0.544
#> GSM564709     1  0.2066     0.5923 0.940 0.000 0.060
#> GSM564710     1  0.0000     0.6047 1.000 0.000 0.000
#> GSM564711     1  0.6305    -0.7894 0.516 0.000 0.484
#> GSM564712     1  0.1031     0.6050 0.976 0.000 0.024
#> GSM564713     3  0.6274     0.9606 0.456 0.000 0.544
#> GSM564714     1  0.6299    -0.7672 0.524 0.000 0.476
#> GSM564715     1  0.0892     0.6025 0.980 0.000 0.020
#> GSM564716     1  0.6225    -0.7198 0.568 0.000 0.432
#> GSM564717     1  0.3686     0.4711 0.860 0.000 0.140
#> GSM564718     3  0.6274     0.9606 0.456 0.000 0.544
#> GSM564719     1  0.6286    -0.7438 0.536 0.000 0.464
#> GSM564720     1  0.0000     0.6047 1.000 0.000 0.000
#> GSM564721     1  0.2356     0.5854 0.928 0.000 0.072
#> GSM564722     1  0.6295    -0.7608 0.528 0.000 0.472
#> GSM564723     1  0.0000     0.6047 1.000 0.000 0.000
#> GSM564724     3  0.6274     0.9606 0.456 0.000 0.544
#> GSM564725     1  0.2261     0.5874 0.932 0.000 0.068
#> GSM564726     3  0.6274     0.9606 0.456 0.000 0.544
#> GSM564727     1  0.1964     0.5944 0.944 0.000 0.056
#> GSM564728     3  0.6274     0.9606 0.456 0.000 0.544
#> GSM564729     1  0.6309    -0.8714 0.504 0.000 0.496
#> GSM564730     1  0.1964     0.5944 0.944 0.000 0.056
#> GSM564731     3  0.6305     0.9349 0.484 0.000 0.516
#> GSM564732     3  0.6309     0.9072 0.496 0.000 0.504
#> GSM564733     1  0.6008    -0.3718 0.628 0.000 0.372
#> GSM564734     1  0.6215    -0.6501 0.572 0.000 0.428
#> GSM564735     3  0.6302     0.9413 0.480 0.000 0.520
#> GSM564736     3  0.6299     0.9468 0.476 0.000 0.524
#> GSM564737     1  0.0000     0.6047 1.000 0.000 0.000
#> GSM564738     3  0.6274     0.9606 0.456 0.000 0.544
#> GSM564739     3  0.6309     0.9072 0.496 0.000 0.504
#> GSM564740     1  0.6299    -0.7672 0.524 0.000 0.476
#> GSM564741     3  0.6299     0.9468 0.476 0.000 0.524
#> GSM564742     1  0.6295    -0.7608 0.528 0.000 0.472
#> GSM564743     1  0.0892     0.5997 0.980 0.000 0.020
#> GSM564744     1  0.0000     0.6047 1.000 0.000 0.000
#> GSM564745     1  0.3116     0.5625 0.892 0.000 0.108
#> GSM564746     1  0.0892     0.5997 0.980 0.000 0.020
#> GSM564747     1  0.6267    -0.7497 0.548 0.000 0.452
#> GSM564748     3  0.6299     0.9468 0.476 0.000 0.524
#> GSM564749     1  0.0892     0.5997 0.980 0.000 0.020
#> GSM564750     3  0.6274     0.9606 0.456 0.000 0.544
#> GSM564751     3  0.6302     0.9420 0.480 0.000 0.520
#> GSM564752     3  0.6274     0.9606 0.456 0.000 0.544
#> GSM564753     3  0.6274     0.9606 0.456 0.000 0.544
#> GSM564754     1  0.2261     0.5883 0.932 0.000 0.068
#> GSM564755     3  0.6274     0.9606 0.456 0.000 0.544
#> GSM564756     3  0.6309     0.8706 0.500 0.000 0.500
#> GSM564757     3  0.6274     0.9606 0.456 0.000 0.544
#> GSM564758     3  0.6274     0.9606 0.456 0.000 0.544
#> GSM564759     1  0.6302    -0.7835 0.520 0.000 0.480
#> GSM564760     1  0.5397     0.0992 0.720 0.000 0.280
#> GSM564761     1  0.2261     0.5874 0.932 0.000 0.068
#> GSM564762     3  0.6307     0.9307 0.488 0.000 0.512
#> GSM564681     2  0.3941     0.8079 0.000 0.844 0.156
#> GSM564693     2  0.3941     0.8079 0.000 0.844 0.156
#> GSM564646     2  0.0000     0.8523 0.000 1.000 0.000
#> GSM564699     2  0.5529     0.8110 0.000 0.704 0.296

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM564615     4  0.1867     0.8431 0.072 0.000 0.000 0.928
#> GSM564616     2  0.4356     0.8922 0.000 0.708 0.292 0.000
#> GSM564617     3  0.0469     0.7341 0.012 0.000 0.988 0.000
#> GSM564618     2  0.4331     0.8943 0.000 0.712 0.288 0.000
#> GSM564619     1  0.2647     0.8620 0.880 0.000 0.000 0.120
#> GSM564620     4  0.4500     0.6571 0.316 0.000 0.000 0.684
#> GSM564621     1  0.2281     0.8562 0.904 0.000 0.000 0.096
#> GSM564622     2  0.4776     0.8814 0.016 0.712 0.272 0.000
#> GSM564623     3  0.4755     0.5547 0.040 0.000 0.760 0.200
#> GSM564624     3  0.0469     0.7341 0.012 0.000 0.988 0.000
#> GSM564625     4  0.4564     0.5165 0.328 0.000 0.000 0.672
#> GSM564626     1  0.2760     0.8595 0.872 0.000 0.000 0.128
#> GSM564627     1  0.2589     0.8353 0.884 0.000 0.000 0.116
#> GSM564628     2  0.4406     0.8874 0.000 0.700 0.300 0.000
#> GSM564629     4  0.4996     0.2325 0.484 0.000 0.000 0.516
#> GSM564630     3  0.3074     0.5979 0.152 0.000 0.848 0.000
#> GSM564609     3  0.4697     0.7909 0.008 0.296 0.696 0.000
#> GSM564610     1  0.1389     0.8669 0.952 0.000 0.000 0.048
#> GSM564611     1  0.0707     0.8724 0.980 0.000 0.000 0.020
#> GSM564612     3  0.4988     0.7924 0.020 0.288 0.692 0.000
#> GSM564613     3  0.0469     0.7341 0.012 0.000 0.988 0.000
#> GSM564614     4  0.0592     0.8667 0.016 0.000 0.000 0.984
#> GSM564631     3  0.4647     0.7939 0.008 0.288 0.704 0.000
#> GSM564632     2  0.4331     0.8943 0.000 0.712 0.288 0.000
#> GSM564633     2  0.5161    -0.3882 0.008 0.592 0.400 0.000
#> GSM564634     3  0.0469     0.7341 0.012 0.000 0.988 0.000
#> GSM564635     3  0.4647     0.7939 0.008 0.288 0.704 0.000
#> GSM564636     3  0.4647     0.7939 0.008 0.288 0.704 0.000
#> GSM564637     3  0.3450     0.7774 0.008 0.156 0.836 0.000
#> GSM564638     3  0.4647     0.7939 0.008 0.288 0.704 0.000
#> GSM564639     3  0.4647     0.7939 0.008 0.288 0.704 0.000
#> GSM564640     3  0.2530     0.5786 0.000 0.112 0.888 0.000
#> GSM564641     3  0.4988     0.7924 0.020 0.288 0.692 0.000
#> GSM564642     3  0.0000     0.7353 0.000 0.000 1.000 0.000
#> GSM564643     2  0.0895     0.6129 0.000 0.976 0.020 0.004
#> GSM564644     3  0.0000     0.7353 0.000 0.000 1.000 0.000
#> GSM564645     3  0.4647     0.7939 0.008 0.288 0.704 0.000
#> GSM564647     3  0.4509     0.7944 0.004 0.288 0.708 0.000
#> GSM564648     2  0.4331     0.8943 0.000 0.712 0.288 0.000
#> GSM564649     3  0.4647     0.7939 0.008 0.288 0.704 0.000
#> GSM564650     3  0.0469     0.7341 0.012 0.000 0.988 0.000
#> GSM564651     2  0.4331     0.8943 0.000 0.712 0.288 0.000
#> GSM564652     2  0.4331     0.8943 0.000 0.712 0.288 0.000
#> GSM564653     2  0.4331     0.8943 0.000 0.712 0.288 0.000
#> GSM564654     2  0.0000     0.5848 0.000 1.000 0.000 0.000
#> GSM564655     3  0.4431     0.7899 0.000 0.304 0.696 0.000
#> GSM564656     3  0.4697     0.7909 0.008 0.296 0.696 0.000
#> GSM564657     3  0.4647     0.7939 0.008 0.288 0.704 0.000
#> GSM564658     3  0.5256    -0.3557 0.012 0.392 0.596 0.000
#> GSM564659     3  0.4647     0.7939 0.008 0.288 0.704 0.000
#> GSM564660     3  0.0469     0.7341 0.012 0.000 0.988 0.000
#> GSM564661     2  0.4331     0.8943 0.000 0.712 0.288 0.000
#> GSM564662     3  0.4647     0.7939 0.008 0.288 0.704 0.000
#> GSM564663     3  0.0469     0.7341 0.012 0.000 0.988 0.000
#> GSM564664     3  0.0592     0.7257 0.000 0.016 0.984 0.000
#> GSM564665     3  0.4647     0.7939 0.008 0.288 0.704 0.000
#> GSM564666     3  0.5308     0.7876 0.012 0.256 0.708 0.024
#> GSM564667     3  0.4988     0.7924 0.020 0.288 0.692 0.000
#> GSM564668     2  0.5496     0.3964 0.000 0.724 0.188 0.088
#> GSM564669     3  0.6009     0.7525 0.008 0.292 0.648 0.052
#> GSM564670     3  0.0469     0.7341 0.012 0.000 0.988 0.000
#> GSM564671     2  0.6413     0.6279 0.000 0.516 0.416 0.068
#> GSM564672     3  0.4647     0.7939 0.008 0.288 0.704 0.000
#> GSM564673     2  0.4331     0.8943 0.000 0.712 0.288 0.000
#> GSM564674     3  0.0469     0.7341 0.012 0.000 0.988 0.000
#> GSM564675     3  0.0000     0.7353 0.000 0.000 1.000 0.000
#> GSM564676     3  0.0000     0.7353 0.000 0.000 1.000 0.000
#> GSM564677     2  0.4331     0.8943 0.000 0.712 0.288 0.000
#> GSM564678     3  0.0469     0.7341 0.012 0.000 0.988 0.000
#> GSM564679     2  0.4406     0.8874 0.000 0.700 0.300 0.000
#> GSM564680     3  0.4647     0.7939 0.008 0.288 0.704 0.000
#> GSM564682     3  0.4770     0.7929 0.012 0.288 0.700 0.000
#> GSM564683     3  0.4988     0.7924 0.020 0.288 0.692 0.000
#> GSM564684     3  0.2868     0.5406 0.000 0.136 0.864 0.000
#> GSM564685     3  0.4647     0.7939 0.008 0.288 0.704 0.000
#> GSM564686     3  0.0000     0.7353 0.000 0.000 1.000 0.000
#> GSM564687     3  0.0000     0.7353 0.000 0.000 1.000 0.000
#> GSM564688     2  0.4331     0.8943 0.000 0.712 0.288 0.000
#> GSM564689     3  0.0469     0.7341 0.012 0.000 0.988 0.000
#> GSM564690     3  0.0336     0.7345 0.008 0.000 0.992 0.000
#> GSM564691     3  0.2402     0.7584 0.012 0.076 0.912 0.000
#> GSM564692     2  0.4356     0.8922 0.000 0.708 0.292 0.000
#> GSM564694     3  0.0000     0.7353 0.000 0.000 1.000 0.000
#> GSM564695     3  0.4770     0.7929 0.012 0.288 0.700 0.000
#> GSM564696     3  0.4770     0.7936 0.012 0.288 0.700 0.000
#> GSM564697     3  0.0469     0.7341 0.012 0.000 0.988 0.000
#> GSM564698     3  0.4988     0.7883 0.008 0.292 0.692 0.008
#> GSM564700     2  0.4967     0.6890 0.000 0.548 0.452 0.000
#> GSM564701     2  0.4356     0.8924 0.000 0.708 0.292 0.000
#> GSM564702     2  0.4331     0.8943 0.000 0.712 0.288 0.000
#> GSM564703     4  0.0817     0.8660 0.024 0.000 0.000 0.976
#> GSM564704     4  0.4277     0.6699 0.280 0.000 0.000 0.720
#> GSM564705     1  0.0707     0.8724 0.980 0.000 0.000 0.020
#> GSM564706     4  0.2408     0.8212 0.104 0.000 0.000 0.896
#> GSM564707     1  0.4134     0.7256 0.740 0.000 0.000 0.260
#> GSM564708     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> GSM564709     1  0.2973     0.8495 0.856 0.000 0.000 0.144
#> GSM564710     1  0.0707     0.8724 0.980 0.000 0.000 0.020
#> GSM564711     4  0.2408     0.8212 0.104 0.000 0.000 0.896
#> GSM564712     1  0.1940     0.8738 0.924 0.000 0.000 0.076
#> GSM564713     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> GSM564714     4  0.2921     0.7998 0.140 0.000 0.000 0.860
#> GSM564715     1  0.3444     0.7644 0.816 0.000 0.000 0.184
#> GSM564716     4  0.4304     0.7077 0.284 0.000 0.000 0.716
#> GSM564717     1  0.4804     0.3966 0.616 0.000 0.000 0.384
#> GSM564718     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> GSM564719     4  0.3400     0.7746 0.180 0.000 0.000 0.820
#> GSM564720     1  0.0707     0.8724 0.980 0.000 0.000 0.020
#> GSM564721     1  0.3266     0.8342 0.832 0.000 0.000 0.168
#> GSM564722     4  0.3219     0.7871 0.164 0.000 0.000 0.836
#> GSM564723     1  0.0707     0.8724 0.980 0.000 0.000 0.020
#> GSM564724     4  0.0592     0.8667 0.016 0.000 0.000 0.984
#> GSM564725     1  0.3311     0.8321 0.828 0.000 0.000 0.172
#> GSM564726     4  0.0592     0.8667 0.016 0.000 0.000 0.984
#> GSM564727     1  0.2647     0.8620 0.880 0.000 0.000 0.120
#> GSM564728     4  0.0592     0.8667 0.016 0.000 0.000 0.984
#> GSM564729     4  0.3172     0.7771 0.160 0.000 0.000 0.840
#> GSM564730     1  0.2647     0.8620 0.880 0.000 0.000 0.120
#> GSM564731     4  0.1474     0.8613 0.052 0.000 0.000 0.948
#> GSM564732     4  0.2281     0.8358 0.096 0.000 0.000 0.904
#> GSM564733     4  0.4522     0.5246 0.320 0.000 0.000 0.680
#> GSM564734     4  0.4356     0.6220 0.292 0.000 0.000 0.708
#> GSM564735     4  0.1557     0.8622 0.056 0.000 0.000 0.944
#> GSM564736     4  0.1118     0.8650 0.036 0.000 0.000 0.964
#> GSM564737     1  0.0707     0.8724 0.980 0.000 0.000 0.020
#> GSM564738     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> GSM564739     4  0.2281     0.8358 0.096 0.000 0.000 0.904
#> GSM564740     4  0.2921     0.8003 0.140 0.000 0.000 0.860
#> GSM564741     4  0.1211     0.8641 0.040 0.000 0.000 0.960
#> GSM564742     4  0.3172     0.7898 0.160 0.000 0.000 0.840
#> GSM564743     1  0.2216     0.8423 0.908 0.000 0.000 0.092
#> GSM564744     1  0.0707     0.8724 0.980 0.000 0.000 0.020
#> GSM564745     1  0.4697     0.6011 0.644 0.000 0.000 0.356
#> GSM564746     1  0.3024     0.8128 0.852 0.000 0.000 0.148
#> GSM564747     4  0.3486     0.7807 0.188 0.000 0.000 0.812
#> GSM564748     4  0.0817     0.8660 0.024 0.000 0.000 0.976
#> GSM564749     1  0.1716     0.8599 0.936 0.000 0.000 0.064
#> GSM564750     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> GSM564751     4  0.1118     0.8648 0.036 0.000 0.000 0.964
#> GSM564752     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> GSM564753     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> GSM564754     1  0.3528     0.8204 0.808 0.000 0.000 0.192
#> GSM564755     4  0.0592     0.8667 0.016 0.000 0.000 0.984
#> GSM564756     4  0.3266     0.7683 0.168 0.000 0.000 0.832
#> GSM564757     4  0.0817     0.8676 0.024 0.000 0.000 0.976
#> GSM564758     4  0.0592     0.8667 0.016 0.000 0.000 0.984
#> GSM564759     4  0.2760     0.8138 0.128 0.000 0.000 0.872
#> GSM564760     4  0.4989     0.0629 0.472 0.000 0.000 0.528
#> GSM564761     1  0.3219     0.8373 0.836 0.000 0.000 0.164
#> GSM564762     4  0.2011     0.8556 0.080 0.000 0.000 0.920
#> GSM564681     2  0.4331     0.8943 0.000 0.712 0.288 0.000
#> GSM564693     2  0.4331     0.8943 0.000 0.712 0.288 0.000
#> GSM564646     3  0.2469     0.5899 0.000 0.108 0.892 0.000
#> GSM564699     3  0.4647     0.7939 0.008 0.288 0.704 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM564615     4  0.1732      0.862 0.080 0.000 0.000 0.920 0.000
#> GSM564616     5  0.0162      0.930 0.000 0.000 0.004 0.000 0.996
#> GSM564617     2  0.0000      0.912 0.000 1.000 0.000 0.000 0.000
#> GSM564618     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM564619     1  0.1341      0.902 0.944 0.000 0.000 0.056 0.000
#> GSM564620     4  0.3636      0.725 0.272 0.000 0.000 0.728 0.000
#> GSM564621     1  0.1792      0.880 0.916 0.000 0.000 0.084 0.000
#> GSM564622     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM564623     2  0.0404      0.908 0.000 0.988 0.000 0.012 0.000
#> GSM564624     2  0.0290      0.912 0.000 0.992 0.008 0.000 0.000
#> GSM564625     4  0.3949      0.562 0.332 0.000 0.000 0.668 0.000
#> GSM564626     1  0.1478      0.900 0.936 0.000 0.000 0.064 0.000
#> GSM564627     1  0.2127      0.857 0.892 0.000 0.000 0.108 0.000
#> GSM564628     2  0.4009      0.594 0.000 0.684 0.004 0.000 0.312
#> GSM564629     4  0.4242      0.396 0.428 0.000 0.000 0.572 0.000
#> GSM564630     2  0.0000      0.912 0.000 1.000 0.000 0.000 0.000
#> GSM564609     3  0.0000      0.944 0.000 0.000 1.000 0.000 0.000
#> GSM564610     1  0.0880      0.897 0.968 0.000 0.000 0.032 0.000
#> GSM564611     1  0.0000      0.904 1.000 0.000 0.000 0.000 0.000
#> GSM564612     3  0.2732      0.815 0.000 0.160 0.840 0.000 0.000
#> GSM564613     2  0.0000      0.912 0.000 1.000 0.000 0.000 0.000
#> GSM564614     4  0.0510      0.889 0.016 0.000 0.000 0.984 0.000
#> GSM564631     3  0.0000      0.944 0.000 0.000 1.000 0.000 0.000
#> GSM564632     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM564633     3  0.3143      0.737 0.000 0.000 0.796 0.000 0.204
#> GSM564634     2  0.0000      0.912 0.000 1.000 0.000 0.000 0.000
#> GSM564635     3  0.0000      0.944 0.000 0.000 1.000 0.000 0.000
#> GSM564636     3  0.0000      0.944 0.000 0.000 1.000 0.000 0.000
#> GSM564637     3  0.0000      0.944 0.000 0.000 1.000 0.000 0.000
#> GSM564638     3  0.0000      0.944 0.000 0.000 1.000 0.000 0.000
#> GSM564639     3  0.0162      0.942 0.000 0.004 0.996 0.000 0.000
#> GSM564640     2  0.3495      0.825 0.000 0.812 0.160 0.000 0.028
#> GSM564641     3  0.2690      0.818 0.000 0.156 0.844 0.000 0.000
#> GSM564642     2  0.3109      0.808 0.000 0.800 0.200 0.000 0.000
#> GSM564643     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM564644     2  0.2732      0.836 0.000 0.840 0.160 0.000 0.000
#> GSM564645     3  0.0000      0.944 0.000 0.000 1.000 0.000 0.000
#> GSM564647     3  0.2377      0.823 0.000 0.128 0.872 0.000 0.000
#> GSM564648     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM564649     3  0.0000      0.944 0.000 0.000 1.000 0.000 0.000
#> GSM564650     2  0.0162      0.912 0.000 0.996 0.004 0.000 0.000
#> GSM564651     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM564652     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM564653     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM564654     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM564655     5  0.3395      0.731 0.000 0.000 0.236 0.000 0.764
#> GSM564656     3  0.0000      0.944 0.000 0.000 1.000 0.000 0.000
#> GSM564657     3  0.0000      0.944 0.000 0.000 1.000 0.000 0.000
#> GSM564658     2  0.0162      0.912 0.000 0.996 0.004 0.000 0.000
#> GSM564659     3  0.0000      0.944 0.000 0.000 1.000 0.000 0.000
#> GSM564660     2  0.0000      0.912 0.000 1.000 0.000 0.000 0.000
#> GSM564661     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM564662     3  0.0000      0.944 0.000 0.000 1.000 0.000 0.000
#> GSM564663     2  0.0162      0.912 0.000 0.996 0.004 0.000 0.000
#> GSM564664     5  0.4297      0.759 0.000 0.072 0.164 0.000 0.764
#> GSM564665     3  0.0000      0.944 0.000 0.000 1.000 0.000 0.000
#> GSM564666     2  0.0000      0.912 0.000 1.000 0.000 0.000 0.000
#> GSM564667     3  0.2690      0.818 0.000 0.156 0.844 0.000 0.000
#> GSM564668     5  0.2929      0.796 0.000 0.000 0.180 0.000 0.820
#> GSM564669     3  0.0162      0.942 0.000 0.000 0.996 0.000 0.004
#> GSM564670     2  0.0000      0.912 0.000 1.000 0.000 0.000 0.000
#> GSM564671     5  0.2690      0.819 0.000 0.000 0.156 0.000 0.844
#> GSM564672     3  0.0000      0.944 0.000 0.000 1.000 0.000 0.000
#> GSM564673     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM564674     2  0.0290      0.912 0.000 0.992 0.008 0.000 0.000
#> GSM564675     2  0.2690      0.837 0.000 0.844 0.156 0.000 0.000
#> GSM564676     2  0.2690      0.837 0.000 0.844 0.156 0.000 0.000
#> GSM564677     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM564678     2  0.0162      0.912 0.000 0.996 0.004 0.000 0.000
#> GSM564679     2  0.3048      0.789 0.000 0.820 0.004 0.000 0.176
#> GSM564680     3  0.0000      0.944 0.000 0.000 1.000 0.000 0.000
#> GSM564682     2  0.0162      0.911 0.000 0.996 0.004 0.000 0.000
#> GSM564683     3  0.2732      0.817 0.000 0.160 0.840 0.000 0.000
#> GSM564684     5  0.2690      0.819 0.000 0.000 0.156 0.000 0.844
#> GSM564685     3  0.0162      0.942 0.000 0.004 0.996 0.000 0.000
#> GSM564686     2  0.3109      0.805 0.000 0.800 0.200 0.000 0.000
#> GSM564687     2  0.2966      0.821 0.000 0.816 0.184 0.000 0.000
#> GSM564688     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM564689     2  0.0162      0.912 0.000 0.996 0.004 0.000 0.000
#> GSM564690     2  0.2074      0.871 0.000 0.896 0.104 0.000 0.000
#> GSM564691     2  0.0162      0.912 0.000 0.996 0.004 0.000 0.000
#> GSM564692     5  0.0162      0.930 0.000 0.000 0.004 0.000 0.996
#> GSM564694     2  0.3074      0.812 0.000 0.804 0.196 0.000 0.000
#> GSM564695     2  0.3684      0.592 0.000 0.720 0.280 0.000 0.000
#> GSM564696     3  0.3274      0.707 0.000 0.220 0.780 0.000 0.000
#> GSM564697     2  0.0000      0.912 0.000 1.000 0.000 0.000 0.000
#> GSM564698     3  0.0162      0.942 0.000 0.000 0.996 0.000 0.004
#> GSM564700     5  0.2561      0.830 0.000 0.000 0.144 0.000 0.856
#> GSM564701     5  0.0162      0.930 0.000 0.000 0.004 0.000 0.996
#> GSM564702     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM564703     4  0.0609      0.889 0.020 0.000 0.000 0.980 0.000
#> GSM564704     4  0.3636      0.695 0.272 0.000 0.000 0.728 0.000
#> GSM564705     1  0.0000      0.904 1.000 0.000 0.000 0.000 0.000
#> GSM564706     4  0.1410      0.869 0.060 0.000 0.000 0.940 0.000
#> GSM564707     1  0.3210      0.759 0.788 0.000 0.000 0.212 0.000
#> GSM564708     4  0.0000      0.887 0.000 0.000 0.000 1.000 0.000
#> GSM564709     1  0.1544      0.898 0.932 0.000 0.000 0.068 0.000
#> GSM564710     1  0.0000      0.904 1.000 0.000 0.000 0.000 0.000
#> GSM564711     4  0.1410      0.869 0.060 0.000 0.000 0.940 0.000
#> GSM564712     1  0.0703      0.906 0.976 0.000 0.000 0.024 0.000
#> GSM564713     4  0.0000      0.887 0.000 0.000 0.000 1.000 0.000
#> GSM564714     4  0.1732      0.862 0.080 0.000 0.000 0.920 0.000
#> GSM564715     1  0.2929      0.773 0.820 0.000 0.000 0.180 0.000
#> GSM564716     4  0.3534      0.751 0.256 0.000 0.000 0.744 0.000
#> GSM564717     1  0.4126      0.418 0.620 0.000 0.000 0.380 0.000
#> GSM564718     4  0.0000      0.887 0.000 0.000 0.000 1.000 0.000
#> GSM564719     4  0.2377      0.838 0.128 0.000 0.000 0.872 0.000
#> GSM564720     1  0.0000      0.904 1.000 0.000 0.000 0.000 0.000
#> GSM564721     1  0.1851      0.889 0.912 0.000 0.000 0.088 0.000
#> GSM564722     4  0.2179      0.848 0.112 0.000 0.000 0.888 0.000
#> GSM564723     1  0.0000      0.904 1.000 0.000 0.000 0.000 0.000
#> GSM564724     4  0.0510      0.889 0.016 0.000 0.000 0.984 0.000
#> GSM564725     1  0.1851      0.889 0.912 0.000 0.000 0.088 0.000
#> GSM564726     4  0.0609      0.889 0.020 0.000 0.000 0.980 0.000
#> GSM564727     1  0.1341      0.902 0.944 0.000 0.000 0.056 0.000
#> GSM564728     4  0.0510      0.889 0.016 0.000 0.000 0.984 0.000
#> GSM564729     4  0.2813      0.798 0.168 0.000 0.000 0.832 0.000
#> GSM564730     1  0.1341      0.902 0.944 0.000 0.000 0.056 0.000
#> GSM564731     4  0.1197      0.885 0.048 0.000 0.000 0.952 0.000
#> GSM564732     4  0.2020      0.857 0.100 0.000 0.000 0.900 0.000
#> GSM564733     4  0.3949      0.552 0.332 0.000 0.000 0.668 0.000
#> GSM564734     4  0.3816      0.646 0.304 0.000 0.000 0.696 0.000
#> GSM564735     4  0.1270      0.886 0.052 0.000 0.000 0.948 0.000
#> GSM564736     4  0.0880      0.889 0.032 0.000 0.000 0.968 0.000
#> GSM564737     1  0.0000      0.904 1.000 0.000 0.000 0.000 0.000
#> GSM564738     4  0.0000      0.887 0.000 0.000 0.000 1.000 0.000
#> GSM564739     4  0.2020      0.857 0.100 0.000 0.000 0.900 0.000
#> GSM564740     4  0.1792      0.861 0.084 0.000 0.000 0.916 0.000
#> GSM564741     4  0.0963      0.888 0.036 0.000 0.000 0.964 0.000
#> GSM564742     4  0.2127      0.853 0.108 0.000 0.000 0.892 0.000
#> GSM564743     1  0.1732      0.867 0.920 0.000 0.000 0.080 0.000
#> GSM564744     1  0.0000      0.904 1.000 0.000 0.000 0.000 0.000
#> GSM564745     1  0.3752      0.669 0.708 0.000 0.000 0.292 0.000
#> GSM564746     1  0.2516      0.833 0.860 0.000 0.000 0.140 0.000
#> GSM564747     4  0.2424      0.845 0.132 0.000 0.000 0.868 0.000
#> GSM564748     4  0.0609      0.889 0.020 0.000 0.000 0.980 0.000
#> GSM564749     1  0.1197      0.888 0.952 0.000 0.000 0.048 0.000
#> GSM564750     4  0.0162      0.888 0.004 0.000 0.000 0.996 0.000
#> GSM564751     4  0.0880      0.888 0.032 0.000 0.000 0.968 0.000
#> GSM564752     4  0.0000      0.887 0.000 0.000 0.000 1.000 0.000
#> GSM564753     4  0.0000      0.887 0.000 0.000 0.000 1.000 0.000
#> GSM564754     1  0.2179      0.878 0.888 0.000 0.000 0.112 0.000
#> GSM564755     4  0.0609      0.889 0.020 0.000 0.000 0.980 0.000
#> GSM564756     4  0.2966      0.783 0.184 0.000 0.000 0.816 0.000
#> GSM564757     4  0.0703      0.891 0.024 0.000 0.000 0.976 0.000
#> GSM564758     4  0.0510      0.889 0.016 0.000 0.000 0.984 0.000
#> GSM564759     4  0.1851      0.862 0.088 0.000 0.000 0.912 0.000
#> GSM564760     4  0.4302      0.147 0.480 0.000 0.000 0.520 0.000
#> GSM564761     1  0.1732      0.893 0.920 0.000 0.000 0.080 0.000
#> GSM564762     4  0.1792      0.878 0.084 0.000 0.000 0.916 0.000
#> GSM564681     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM564693     5  0.0000      0.932 0.000 0.000 0.000 0.000 1.000
#> GSM564646     5  0.6281      0.188 0.000 0.352 0.160 0.000 0.488
#> GSM564699     3  0.1732      0.884 0.000 0.080 0.920 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM564615     4  0.0146     0.7911 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM564616     5  0.0146     0.9258 0.000 0.000 0.004 0.000 0.996 0.000
#> GSM564617     2  0.0000     0.9113 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564618     5  0.0000     0.9281 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564619     1  0.0146     0.8372 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM564620     6  0.3989     0.6217 0.236 0.000 0.000 0.044 0.000 0.720
#> GSM564621     1  0.2384     0.7935 0.888 0.000 0.000 0.064 0.000 0.048
#> GSM564622     5  0.0000     0.9281 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564623     2  0.0458     0.9046 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM564624     2  0.0260     0.9114 0.000 0.992 0.008 0.000 0.000 0.000
#> GSM564625     4  0.0508     0.7848 0.012 0.000 0.000 0.984 0.000 0.004
#> GSM564626     1  0.0000     0.8380 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564627     1  0.4473     0.2095 0.488 0.000 0.000 0.028 0.000 0.484
#> GSM564628     2  0.3601     0.5936 0.000 0.684 0.004 0.000 0.312 0.000
#> GSM564629     6  0.3244     0.6126 0.000 0.000 0.000 0.268 0.000 0.732
#> GSM564630     2  0.0000     0.9113 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564609     3  0.0000     0.9437 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564610     1  0.2793     0.7527 0.800 0.000 0.000 0.000 0.000 0.200
#> GSM564611     1  0.2762     0.7531 0.804 0.000 0.000 0.000 0.000 0.196
#> GSM564612     3  0.2340     0.8275 0.000 0.148 0.852 0.000 0.000 0.000
#> GSM564613     2  0.0000     0.9113 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564614     4  0.3151     0.7549 0.000 0.000 0.000 0.748 0.000 0.252
#> GSM564631     3  0.0000     0.9437 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564632     5  0.0000     0.9281 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564633     3  0.2823     0.7399 0.000 0.000 0.796 0.000 0.204 0.000
#> GSM564634     2  0.0000     0.9113 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564635     3  0.0000     0.9437 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564636     3  0.0000     0.9437 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564637     3  0.0000     0.9437 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564638     3  0.0000     0.9437 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564639     3  0.0146     0.9416 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM564640     2  0.3027     0.8356 0.000 0.824 0.148 0.000 0.028 0.000
#> GSM564641     3  0.2300     0.8302 0.000 0.144 0.856 0.000 0.000 0.000
#> GSM564642     2  0.2793     0.8084 0.000 0.800 0.200 0.000 0.000 0.000
#> GSM564643     5  0.0000     0.9281 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564644     2  0.2340     0.8458 0.000 0.852 0.148 0.000 0.000 0.000
#> GSM564645     3  0.0000     0.9437 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564647     3  0.2178     0.8218 0.000 0.132 0.868 0.000 0.000 0.000
#> GSM564648     5  0.0000     0.9281 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564649     3  0.0000     0.9437 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564650     2  0.0146     0.9117 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM564651     5  0.0000     0.9281 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564652     5  0.0000     0.9281 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564653     5  0.0000     0.9281 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564654     5  0.0000     0.9281 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564655     5  0.3050     0.7298 0.000 0.000 0.236 0.000 0.764 0.000
#> GSM564656     3  0.0000     0.9437 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564657     3  0.0000     0.9437 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564658     2  0.0146     0.9117 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM564659     3  0.0000     0.9437 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564660     2  0.0000     0.9113 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564661     5  0.0000     0.9281 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564662     3  0.0000     0.9437 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564663     2  0.0146     0.9117 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM564664     5  0.3857     0.7627 0.000 0.080 0.152 0.000 0.768 0.000
#> GSM564665     3  0.0000     0.9437 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564666     2  0.0000     0.9113 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564667     3  0.2300     0.8302 0.000 0.144 0.856 0.000 0.000 0.000
#> GSM564668     5  0.2597     0.8009 0.000 0.000 0.176 0.000 0.824 0.000
#> GSM564669     3  0.0146     0.9413 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM564670     2  0.0000     0.9113 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564671     5  0.2300     0.8283 0.000 0.000 0.144 0.000 0.856 0.000
#> GSM564672     3  0.0000     0.9437 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564673     5  0.0000     0.9281 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564674     2  0.0146     0.9117 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM564675     2  0.2300     0.8467 0.000 0.856 0.144 0.000 0.000 0.000
#> GSM564676     2  0.2300     0.8467 0.000 0.856 0.144 0.000 0.000 0.000
#> GSM564677     5  0.0000     0.9281 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564678     2  0.0146     0.9117 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM564679     2  0.2738     0.7909 0.000 0.820 0.004 0.000 0.176 0.000
#> GSM564680     3  0.0000     0.9437 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564682     2  0.0146     0.9106 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM564683     3  0.2340     0.8286 0.000 0.148 0.852 0.000 0.000 0.000
#> GSM564684     5  0.2300     0.8283 0.000 0.000 0.144 0.000 0.856 0.000
#> GSM564685     3  0.0146     0.9416 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM564686     2  0.2793     0.8055 0.000 0.800 0.200 0.000 0.000 0.000
#> GSM564687     2  0.2631     0.8254 0.000 0.820 0.180 0.000 0.000 0.000
#> GSM564688     5  0.0000     0.9281 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564689     2  0.0146     0.9117 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM564690     2  0.1714     0.8793 0.000 0.908 0.092 0.000 0.000 0.000
#> GSM564691     2  0.0146     0.9117 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM564692     5  0.0146     0.9258 0.000 0.000 0.004 0.000 0.996 0.000
#> GSM564694     2  0.2730     0.8164 0.000 0.808 0.192 0.000 0.000 0.000
#> GSM564695     2  0.3351     0.5841 0.000 0.712 0.288 0.000 0.000 0.000
#> GSM564696     3  0.2996     0.6976 0.000 0.228 0.772 0.000 0.000 0.000
#> GSM564697     2  0.0000     0.9113 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564698     3  0.0146     0.9413 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM564700     5  0.2178     0.8381 0.000 0.000 0.132 0.000 0.868 0.000
#> GSM564701     5  0.0146     0.9262 0.000 0.000 0.004 0.000 0.996 0.000
#> GSM564702     5  0.0000     0.9281 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564703     4  0.4039     0.7564 0.060 0.000 0.000 0.732 0.000 0.208
#> GSM564704     1  0.3679     0.6265 0.760 0.000 0.000 0.040 0.000 0.200
#> GSM564705     1  0.0000     0.8380 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564706     6  0.1141     0.8155 0.000 0.000 0.000 0.052 0.000 0.948
#> GSM564707     1  0.4328     0.6699 0.720 0.000 0.000 0.180 0.000 0.100
#> GSM564708     4  0.3244     0.7403 0.000 0.000 0.000 0.732 0.000 0.268
#> GSM564709     1  0.0000     0.8380 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564710     1  0.0000     0.8380 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564711     6  0.1556     0.8027 0.000 0.000 0.000 0.080 0.000 0.920
#> GSM564712     1  0.0000     0.8380 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564713     4  0.3244     0.7403 0.000 0.000 0.000 0.732 0.000 0.268
#> GSM564714     6  0.1007     0.8171 0.000 0.000 0.000 0.044 0.000 0.956
#> GSM564715     1  0.2480     0.7609 0.872 0.000 0.000 0.024 0.000 0.104
#> GSM564716     1  0.5990    -0.2172 0.400 0.000 0.000 0.368 0.000 0.232
#> GSM564717     6  0.1471     0.7756 0.064 0.000 0.000 0.004 0.000 0.932
#> GSM564718     6  0.2793     0.6862 0.000 0.000 0.000 0.200 0.000 0.800
#> GSM564719     6  0.0000     0.8133 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM564720     1  0.2793     0.7505 0.800 0.000 0.000 0.000 0.000 0.200
#> GSM564721     1  0.3851     0.0441 0.540 0.000 0.000 0.460 0.000 0.000
#> GSM564722     6  0.0000     0.8133 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM564723     1  0.2730     0.7557 0.808 0.000 0.000 0.000 0.000 0.192
#> GSM564724     4  0.3175     0.7518 0.000 0.000 0.000 0.744 0.000 0.256
#> GSM564725     1  0.0000     0.8380 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564726     4  0.2527     0.7987 0.000 0.000 0.000 0.832 0.000 0.168
#> GSM564727     1  0.0000     0.8380 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564728     4  0.3076     0.7635 0.000 0.000 0.000 0.760 0.000 0.240
#> GSM564729     4  0.3172     0.7984 0.036 0.000 0.000 0.816 0.000 0.148
#> GSM564730     1  0.0865     0.8302 0.964 0.000 0.000 0.000 0.000 0.036
#> GSM564731     4  0.3864    -0.3050 0.000 0.000 0.000 0.520 0.000 0.480
#> GSM564732     4  0.0000     0.7890 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564733     4  0.0632     0.7779 0.024 0.000 0.000 0.976 0.000 0.000
#> GSM564734     4  0.1176     0.7695 0.020 0.000 0.000 0.956 0.000 0.024
#> GSM564735     4  0.0790     0.7939 0.000 0.000 0.000 0.968 0.000 0.032
#> GSM564736     4  0.0713     0.7964 0.000 0.000 0.000 0.972 0.000 0.028
#> GSM564737     1  0.0000     0.8380 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564738     6  0.3862    -0.1703 0.000 0.000 0.000 0.476 0.000 0.524
#> GSM564739     4  0.2357     0.8078 0.012 0.000 0.000 0.872 0.000 0.116
#> GSM564740     6  0.1007     0.8173 0.000 0.000 0.000 0.044 0.000 0.956
#> GSM564741     4  0.2743     0.8003 0.008 0.000 0.000 0.828 0.000 0.164
#> GSM564742     6  0.0547     0.8180 0.000 0.000 0.000 0.020 0.000 0.980
#> GSM564743     1  0.2793     0.7505 0.800 0.000 0.000 0.000 0.000 0.200
#> GSM564744     1  0.0000     0.8380 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564745     4  0.5127     0.4105 0.348 0.000 0.000 0.556 0.000 0.096
#> GSM564746     6  0.2219     0.6875 0.136 0.000 0.000 0.000 0.000 0.864
#> GSM564747     6  0.1812     0.7904 0.008 0.000 0.000 0.080 0.000 0.912
#> GSM564748     4  0.2980     0.7952 0.012 0.000 0.000 0.808 0.000 0.180
#> GSM564749     1  0.4144     0.7085 0.728 0.000 0.000 0.072 0.000 0.200
#> GSM564750     4  0.3244     0.7403 0.000 0.000 0.000 0.732 0.000 0.268
#> GSM564751     4  0.3615     0.6843 0.008 0.000 0.000 0.700 0.000 0.292
#> GSM564752     6  0.2793     0.6862 0.000 0.000 0.000 0.200 0.000 0.800
#> GSM564753     6  0.2730     0.6943 0.000 0.000 0.000 0.192 0.000 0.808
#> GSM564754     1  0.1588     0.8097 0.924 0.000 0.000 0.072 0.000 0.004
#> GSM564755     4  0.2340     0.8050 0.000 0.000 0.000 0.852 0.000 0.148
#> GSM564756     4  0.4924     0.6462 0.144 0.000 0.000 0.652 0.000 0.204
#> GSM564757     4  0.0363     0.7877 0.000 0.000 0.000 0.988 0.000 0.012
#> GSM564758     4  0.1556     0.7983 0.000 0.000 0.000 0.920 0.000 0.080
#> GSM564759     6  0.2664     0.7355 0.000 0.000 0.000 0.184 0.000 0.816
#> GSM564760     4  0.0865     0.7718 0.036 0.000 0.000 0.964 0.000 0.000
#> GSM564761     1  0.0000     0.8380 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564762     4  0.0937     0.7686 0.000 0.000 0.000 0.960 0.000 0.040
#> GSM564681     5  0.0000     0.9281 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564693     5  0.0000     0.9281 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564646     5  0.5571     0.1950 0.000 0.356 0.148 0.000 0.496 0.000
#> GSM564699     3  0.1501     0.8900 0.000 0.076 0.924 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n genotype/variation(p) disease.state(p) k
#> ATC:pam 154                 0.925            0.476 2
#> ATC:pam 135                 0.568            0.958 3
#> ATC:pam 148                 0.482            0.288 4
#> ATC:pam 150                 0.357            0.259 5
#> ATC:pam 147                 0.571            0.500 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 154 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.5007 0.500   0.500
#> 3 3 0.747           0.884       0.863         0.2089 0.894   0.787
#> 4 4 0.617           0.670       0.781         0.1236 0.860   0.676
#> 5 5 0.727           0.727       0.807         0.1076 0.861   0.603
#> 6 6 0.888           0.883       0.923         0.0554 0.941   0.764

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> GSM564615     1       0          1  1  0
#> GSM564616     2       0          1  0  1
#> GSM564617     2       0          1  0  1
#> GSM564618     2       0          1  0  1
#> GSM564619     1       0          1  1  0
#> GSM564620     1       0          1  1  0
#> GSM564621     1       0          1  1  0
#> GSM564622     2       0          1  0  1
#> GSM564623     2       0          1  0  1
#> GSM564624     2       0          1  0  1
#> GSM564625     1       0          1  1  0
#> GSM564626     1       0          1  1  0
#> GSM564627     1       0          1  1  0
#> GSM564628     2       0          1  0  1
#> GSM564629     1       0          1  1  0
#> GSM564630     2       0          1  0  1
#> GSM564609     2       0          1  0  1
#> GSM564610     1       0          1  1  0
#> GSM564611     1       0          1  1  0
#> GSM564612     2       0          1  0  1
#> GSM564613     2       0          1  0  1
#> GSM564614     1       0          1  1  0
#> GSM564631     2       0          1  0  1
#> GSM564632     2       0          1  0  1
#> GSM564633     2       0          1  0  1
#> GSM564634     2       0          1  0  1
#> GSM564635     2       0          1  0  1
#> GSM564636     2       0          1  0  1
#> GSM564637     2       0          1  0  1
#> GSM564638     2       0          1  0  1
#> GSM564639     2       0          1  0  1
#> GSM564640     2       0          1  0  1
#> GSM564641     2       0          1  0  1
#> GSM564642     2       0          1  0  1
#> GSM564643     2       0          1  0  1
#> GSM564644     2       0          1  0  1
#> GSM564645     2       0          1  0  1
#> GSM564647     2       0          1  0  1
#> GSM564648     2       0          1  0  1
#> GSM564649     2       0          1  0  1
#> GSM564650     2       0          1  0  1
#> GSM564651     2       0          1  0  1
#> GSM564652     2       0          1  0  1
#> GSM564653     2       0          1  0  1
#> GSM564654     2       0          1  0  1
#> GSM564655     2       0          1  0  1
#> GSM564656     2       0          1  0  1
#> GSM564657     2       0          1  0  1
#> GSM564658     2       0          1  0  1
#> GSM564659     2       0          1  0  1
#> GSM564660     2       0          1  0  1
#> GSM564661     2       0          1  0  1
#> GSM564662     2       0          1  0  1
#> GSM564663     2       0          1  0  1
#> GSM564664     2       0          1  0  1
#> GSM564665     2       0          1  0  1
#> GSM564666     2       0          1  0  1
#> GSM564667     2       0          1  0  1
#> GSM564668     2       0          1  0  1
#> GSM564669     2       0          1  0  1
#> GSM564670     2       0          1  0  1
#> GSM564671     2       0          1  0  1
#> GSM564672     2       0          1  0  1
#> GSM564673     2       0          1  0  1
#> GSM564674     2       0          1  0  1
#> GSM564675     2       0          1  0  1
#> GSM564676     2       0          1  0  1
#> GSM564677     2       0          1  0  1
#> GSM564678     2       0          1  0  1
#> GSM564679     2       0          1  0  1
#> GSM564680     2       0          1  0  1
#> GSM564682     2       0          1  0  1
#> GSM564683     2       0          1  0  1
#> GSM564684     2       0          1  0  1
#> GSM564685     2       0          1  0  1
#> GSM564686     2       0          1  0  1
#> GSM564687     2       0          1  0  1
#> GSM564688     2       0          1  0  1
#> GSM564689     2       0          1  0  1
#> GSM564690     2       0          1  0  1
#> GSM564691     2       0          1  0  1
#> GSM564692     2       0          1  0  1
#> GSM564694     2       0          1  0  1
#> GSM564695     2       0          1  0  1
#> GSM564696     2       0          1  0  1
#> GSM564697     2       0          1  0  1
#> GSM564698     2       0          1  0  1
#> GSM564700     2       0          1  0  1
#> GSM564701     2       0          1  0  1
#> GSM564702     2       0          1  0  1
#> GSM564703     1       0          1  1  0
#> GSM564704     1       0          1  1  0
#> GSM564705     1       0          1  1  0
#> GSM564706     1       0          1  1  0
#> GSM564707     1       0          1  1  0
#> GSM564708     1       0          1  1  0
#> GSM564709     1       0          1  1  0
#> GSM564710     1       0          1  1  0
#> GSM564711     1       0          1  1  0
#> GSM564712     1       0          1  1  0
#> GSM564713     1       0          1  1  0
#> GSM564714     1       0          1  1  0
#> GSM564715     1       0          1  1  0
#> GSM564716     1       0          1  1  0
#> GSM564717     1       0          1  1  0
#> GSM564718     1       0          1  1  0
#> GSM564719     1       0          1  1  0
#> GSM564720     1       0          1  1  0
#> GSM564721     1       0          1  1  0
#> GSM564722     1       0          1  1  0
#> GSM564723     1       0          1  1  0
#> GSM564724     1       0          1  1  0
#> GSM564725     1       0          1  1  0
#> GSM564726     1       0          1  1  0
#> GSM564727     1       0          1  1  0
#> GSM564728     1       0          1  1  0
#> GSM564729     1       0          1  1  0
#> GSM564730     1       0          1  1  0
#> GSM564731     1       0          1  1  0
#> GSM564732     1       0          1  1  0
#> GSM564733     1       0          1  1  0
#> GSM564734     1       0          1  1  0
#> GSM564735     1       0          1  1  0
#> GSM564736     1       0          1  1  0
#> GSM564737     1       0          1  1  0
#> GSM564738     1       0          1  1  0
#> GSM564739     1       0          1  1  0
#> GSM564740     1       0          1  1  0
#> GSM564741     1       0          1  1  0
#> GSM564742     1       0          1  1  0
#> GSM564743     1       0          1  1  0
#> GSM564744     1       0          1  1  0
#> GSM564745     1       0          1  1  0
#> GSM564746     1       0          1  1  0
#> GSM564747     1       0          1  1  0
#> GSM564748     1       0          1  1  0
#> GSM564749     1       0          1  1  0
#> GSM564750     1       0          1  1  0
#> GSM564751     1       0          1  1  0
#> GSM564752     1       0          1  1  0
#> GSM564753     1       0          1  1  0
#> GSM564754     1       0          1  1  0
#> GSM564755     1       0          1  1  0
#> GSM564756     1       0          1  1  0
#> GSM564757     1       0          1  1  0
#> GSM564758     1       0          1  1  0
#> GSM564759     1       0          1  1  0
#> GSM564760     1       0          1  1  0
#> GSM564761     1       0          1  1  0
#> GSM564762     1       0          1  1  0
#> GSM564681     2       0          1  0  1
#> GSM564693     2       0          1  0  1
#> GSM564646     2       0          1  0  1
#> GSM564699     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM564615     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564616     2  0.2261      0.916 0.000 0.932 0.068
#> GSM564617     2  0.0424      0.939 0.000 0.992 0.008
#> GSM564618     2  0.2261      0.916 0.000 0.932 0.068
#> GSM564619     1  0.0000      0.862 1.000 0.000 0.000
#> GSM564620     1  0.4291      0.694 0.820 0.000 0.180
#> GSM564621     1  0.0000      0.862 1.000 0.000 0.000
#> GSM564622     2  0.4555      0.863 0.000 0.800 0.200
#> GSM564623     2  0.4654      0.860 0.000 0.792 0.208
#> GSM564624     2  0.0237      0.940 0.000 0.996 0.004
#> GSM564625     3  0.6307      0.488 0.488 0.000 0.512
#> GSM564626     1  0.0000      0.862 1.000 0.000 0.000
#> GSM564627     1  0.2959      0.825 0.900 0.000 0.100
#> GSM564628     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564629     1  0.5216      0.589 0.740 0.000 0.260
#> GSM564630     2  0.4654      0.860 0.000 0.792 0.208
#> GSM564609     2  0.3686      0.892 0.000 0.860 0.140
#> GSM564610     1  0.2959      0.825 0.900 0.000 0.100
#> GSM564611     1  0.2959      0.825 0.900 0.000 0.100
#> GSM564612     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564613     2  0.4555      0.865 0.000 0.800 0.200
#> GSM564614     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564631     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564632     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564633     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564634     2  0.4654      0.860 0.000 0.792 0.208
#> GSM564635     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564636     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564637     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564638     2  0.0747      0.937 0.000 0.984 0.016
#> GSM564639     2  0.4555      0.863 0.000 0.800 0.200
#> GSM564640     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564641     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564642     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564643     2  0.2959      0.909 0.000 0.900 0.100
#> GSM564644     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564645     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564647     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564648     2  0.2261      0.916 0.000 0.932 0.068
#> GSM564649     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564650     2  0.0237      0.940 0.000 0.996 0.004
#> GSM564651     2  0.2261      0.916 0.000 0.932 0.068
#> GSM564652     2  0.2261      0.916 0.000 0.932 0.068
#> GSM564653     2  0.2261      0.916 0.000 0.932 0.068
#> GSM564654     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564655     2  0.4555      0.863 0.000 0.800 0.200
#> GSM564656     2  0.4555      0.863 0.000 0.800 0.200
#> GSM564657     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564658     2  0.0237      0.940 0.000 0.996 0.004
#> GSM564659     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564660     2  0.0237      0.940 0.000 0.996 0.004
#> GSM564661     2  0.2261      0.916 0.000 0.932 0.068
#> GSM564662     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564663     2  0.0237      0.940 0.000 0.996 0.004
#> GSM564664     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564665     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564666     2  0.4654      0.860 0.000 0.792 0.208
#> GSM564667     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564668     2  0.4555      0.863 0.000 0.800 0.200
#> GSM564669     2  0.4555      0.863 0.000 0.800 0.200
#> GSM564670     2  0.0237      0.940 0.000 0.996 0.004
#> GSM564671     2  0.4555      0.863 0.000 0.800 0.200
#> GSM564672     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564673     2  0.2261      0.916 0.000 0.932 0.068
#> GSM564674     2  0.0237      0.940 0.000 0.996 0.004
#> GSM564675     2  0.4654      0.860 0.000 0.792 0.208
#> GSM564676     2  0.0424      0.939 0.000 0.992 0.008
#> GSM564677     2  0.2261      0.916 0.000 0.932 0.068
#> GSM564678     2  0.0424      0.939 0.000 0.992 0.008
#> GSM564679     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564680     2  0.2711      0.914 0.000 0.912 0.088
#> GSM564682     2  0.0237      0.940 0.000 0.996 0.004
#> GSM564683     2  0.4555      0.863 0.000 0.800 0.200
#> GSM564684     2  0.4555      0.863 0.000 0.800 0.200
#> GSM564685     2  0.4555      0.863 0.000 0.800 0.200
#> GSM564686     2  0.4555      0.863 0.000 0.800 0.200
#> GSM564687     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564688     2  0.2261      0.916 0.000 0.932 0.068
#> GSM564689     2  0.0424      0.939 0.000 0.992 0.008
#> GSM564690     2  0.0424      0.939 0.000 0.992 0.008
#> GSM564691     2  0.0237      0.940 0.000 0.996 0.004
#> GSM564692     2  0.2261      0.916 0.000 0.932 0.068
#> GSM564694     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564695     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564696     2  0.4654      0.860 0.000 0.792 0.208
#> GSM564697     2  0.0424      0.939 0.000 0.992 0.008
#> GSM564698     2  0.4555      0.863 0.000 0.800 0.200
#> GSM564700     2  0.4504      0.866 0.000 0.804 0.196
#> GSM564701     2  0.2261      0.916 0.000 0.932 0.068
#> GSM564702     2  0.2261      0.916 0.000 0.932 0.068
#> GSM564703     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564704     1  0.1753      0.844 0.952 0.000 0.048
#> GSM564705     1  0.0000      0.862 1.000 0.000 0.000
#> GSM564706     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564707     1  0.0000      0.862 1.000 0.000 0.000
#> GSM564708     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564709     1  0.0000      0.862 1.000 0.000 0.000
#> GSM564710     1  0.0000      0.862 1.000 0.000 0.000
#> GSM564711     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564712     1  0.0000      0.862 1.000 0.000 0.000
#> GSM564713     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564714     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564715     1  0.0000      0.862 1.000 0.000 0.000
#> GSM564716     1  0.1411      0.851 0.964 0.000 0.036
#> GSM564717     1  0.3482      0.797 0.872 0.000 0.128
#> GSM564718     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564719     1  0.5529      0.498 0.704 0.000 0.296
#> GSM564720     1  0.2959      0.825 0.900 0.000 0.100
#> GSM564721     1  0.0000      0.862 1.000 0.000 0.000
#> GSM564722     1  0.5733      0.410 0.676 0.000 0.324
#> GSM564723     1  0.2537      0.836 0.920 0.000 0.080
#> GSM564724     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564725     1  0.0000      0.862 1.000 0.000 0.000
#> GSM564726     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564727     1  0.0000      0.862 1.000 0.000 0.000
#> GSM564728     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564729     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564730     1  0.0000      0.862 1.000 0.000 0.000
#> GSM564731     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564732     3  0.6244      0.646 0.440 0.000 0.560
#> GSM564733     3  0.6235      0.658 0.436 0.000 0.564
#> GSM564734     1  0.4605      0.653 0.796 0.000 0.204
#> GSM564735     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564736     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564737     1  0.0000      0.862 1.000 0.000 0.000
#> GSM564738     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564739     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564740     1  0.6045      0.171 0.620 0.000 0.380
#> GSM564741     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564742     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564743     1  0.2959      0.825 0.900 0.000 0.100
#> GSM564744     1  0.0000      0.862 1.000 0.000 0.000
#> GSM564745     1  0.0747      0.859 0.984 0.000 0.016
#> GSM564746     1  0.3038      0.822 0.896 0.000 0.104
#> GSM564747     1  0.5733      0.410 0.676 0.000 0.324
#> GSM564748     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564749     1  0.2959      0.825 0.900 0.000 0.100
#> GSM564750     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564751     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564752     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564753     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564754     1  0.0000      0.862 1.000 0.000 0.000
#> GSM564755     3  0.5431      0.960 0.284 0.000 0.716
#> GSM564756     1  0.4605      0.653 0.796 0.000 0.204
#> GSM564757     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564758     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564759     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564760     1  0.5098      0.587 0.752 0.000 0.248
#> GSM564761     1  0.0000      0.862 1.000 0.000 0.000
#> GSM564762     3  0.5363      0.971 0.276 0.000 0.724
#> GSM564681     2  0.2261      0.916 0.000 0.932 0.068
#> GSM564693     2  0.2165      0.918 0.000 0.936 0.064
#> GSM564646     2  0.0000      0.940 0.000 1.000 0.000
#> GSM564699     2  0.4555      0.863 0.000 0.800 0.200

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM564615     1  0.0000    0.79843 1.000 0.000 0.000 0.000
#> GSM564616     2  0.4697    0.92557 0.000 0.644 0.356 0.000
#> GSM564617     3  0.5170    0.58095 0.000 0.228 0.724 0.048
#> GSM564618     2  0.4817    0.97272 0.000 0.612 0.388 0.000
#> GSM564619     4  0.4040    0.92984 0.248 0.000 0.000 0.752
#> GSM564620     4  0.4941    0.62851 0.436 0.000 0.000 0.564
#> GSM564621     4  0.4040    0.92984 0.248 0.000 0.000 0.752
#> GSM564622     3  0.5307    0.60240 0.000 0.076 0.736 0.188
#> GSM564623     3  0.4776    0.62192 0.000 0.060 0.776 0.164
#> GSM564624     3  0.5848    0.47141 0.000 0.336 0.616 0.048
#> GSM564625     1  0.3486    0.61429 0.812 0.000 0.000 0.188
#> GSM564626     4  0.4040    0.92984 0.248 0.000 0.000 0.752
#> GSM564627     1  0.7273   -0.23446 0.452 0.148 0.000 0.400
#> GSM564628     3  0.5733    0.47299 0.000 0.312 0.640 0.048
#> GSM564629     1  0.6873    0.20915 0.580 0.148 0.000 0.272
#> GSM564630     3  0.4907    0.62363 0.000 0.060 0.764 0.176
#> GSM564609     3  0.2021    0.71530 0.000 0.024 0.936 0.040
#> GSM564610     1  0.7273   -0.23446 0.452 0.148 0.000 0.400
#> GSM564611     1  0.7273   -0.23446 0.452 0.148 0.000 0.400
#> GSM564612     3  0.4800    0.60084 0.000 0.196 0.760 0.044
#> GSM564613     3  0.4286    0.65603 0.000 0.052 0.812 0.136
#> GSM564614     1  0.0000    0.79843 1.000 0.000 0.000 0.000
#> GSM564631     3  0.1151    0.72329 0.000 0.024 0.968 0.008
#> GSM564632     3  0.1520    0.71264 0.000 0.020 0.956 0.024
#> GSM564633     3  0.1022    0.71823 0.000 0.000 0.968 0.032
#> GSM564634     3  0.4776    0.63181 0.000 0.060 0.776 0.164
#> GSM564635     3  0.1833    0.72244 0.000 0.024 0.944 0.032
#> GSM564636     3  0.1151    0.72329 0.000 0.024 0.968 0.008
#> GSM564637     3  0.1151    0.72329 0.000 0.024 0.968 0.008
#> GSM564638     3  0.2214    0.71795 0.000 0.044 0.928 0.028
#> GSM564639     3  0.5035    0.61188 0.000 0.056 0.748 0.196
#> GSM564640     3  0.5830    0.47409 0.000 0.332 0.620 0.048
#> GSM564641     3  0.1890    0.71688 0.000 0.056 0.936 0.008
#> GSM564642     3  0.2111    0.71136 0.000 0.044 0.932 0.024
#> GSM564643     3  0.1936    0.71302 0.000 0.028 0.940 0.032
#> GSM564644     3  0.5830    0.47409 0.000 0.332 0.620 0.048
#> GSM564645     3  0.1151    0.72329 0.000 0.024 0.968 0.008
#> GSM564647     3  0.2021    0.71639 0.000 0.056 0.932 0.012
#> GSM564648     2  0.4817    0.97272 0.000 0.612 0.388 0.000
#> GSM564649     3  0.1151    0.72329 0.000 0.024 0.968 0.008
#> GSM564650     3  0.5646    0.52022 0.000 0.296 0.656 0.048
#> GSM564651     2  0.4817    0.97272 0.000 0.612 0.388 0.000
#> GSM564652     2  0.4817    0.97272 0.000 0.612 0.388 0.000
#> GSM564653     2  0.4817    0.97272 0.000 0.612 0.388 0.000
#> GSM564654     3  0.1022    0.71823 0.000 0.000 0.968 0.032
#> GSM564655     3  0.5035    0.61188 0.000 0.056 0.748 0.196
#> GSM564656     3  0.4881    0.61961 0.000 0.048 0.756 0.196
#> GSM564657     3  0.1151    0.72329 0.000 0.024 0.968 0.008
#> GSM564658     3  0.5773    0.47093 0.000 0.320 0.632 0.048
#> GSM564659     3  0.1151    0.72329 0.000 0.024 0.968 0.008
#> GSM564660     3  0.5235    0.57206 0.000 0.236 0.716 0.048
#> GSM564661     2  0.4817    0.96683 0.000 0.612 0.388 0.000
#> GSM564662     3  0.1151    0.72329 0.000 0.024 0.968 0.008
#> GSM564663     3  0.5830    0.47706 0.000 0.332 0.620 0.048
#> GSM564664     3  0.1767    0.70550 0.000 0.044 0.944 0.012
#> GSM564665     3  0.1151    0.72329 0.000 0.024 0.968 0.008
#> GSM564666     3  0.4776    0.62192 0.000 0.060 0.776 0.164
#> GSM564667     3  0.1151    0.72329 0.000 0.024 0.968 0.008
#> GSM564668     3  0.5180    0.60866 0.000 0.064 0.740 0.196
#> GSM564669     3  0.5035    0.61188 0.000 0.056 0.748 0.196
#> GSM564670     3  0.4050    0.65052 0.000 0.144 0.820 0.036
#> GSM564671     3  0.5307    0.60240 0.000 0.076 0.736 0.188
#> GSM564672     3  0.1151    0.72329 0.000 0.024 0.968 0.008
#> GSM564673     3  0.2654    0.65131 0.000 0.108 0.888 0.004
#> GSM564674     3  0.5267    0.56946 0.000 0.240 0.712 0.048
#> GSM564675     3  0.4776    0.62192 0.000 0.060 0.776 0.164
#> GSM564676     3  0.5235    0.57206 0.000 0.236 0.716 0.048
#> GSM564677     2  0.4817    0.97272 0.000 0.612 0.388 0.000
#> GSM564678     3  0.5848    0.47141 0.000 0.336 0.616 0.048
#> GSM564679     3  0.5733    0.46995 0.000 0.312 0.640 0.048
#> GSM564680     3  0.1820    0.71897 0.000 0.020 0.944 0.036
#> GSM564682     3  0.3479    0.66369 0.000 0.148 0.840 0.012
#> GSM564683     3  0.4789    0.61884 0.000 0.056 0.772 0.172
#> GSM564684     3  0.5307    0.60240 0.000 0.076 0.736 0.188
#> GSM564685     3  0.4789    0.61884 0.000 0.056 0.772 0.172
#> GSM564686     3  0.4956    0.61496 0.000 0.056 0.756 0.188
#> GSM564687     3  0.3198    0.68643 0.000 0.080 0.880 0.040
#> GSM564688     2  0.4817    0.97272 0.000 0.612 0.388 0.000
#> GSM564689     3  0.5203    0.57663 0.000 0.232 0.720 0.048
#> GSM564690     3  0.4957    0.58976 0.000 0.204 0.748 0.048
#> GSM564691     3  0.4877    0.59543 0.000 0.204 0.752 0.044
#> GSM564692     2  0.4994    0.76621 0.000 0.520 0.480 0.000
#> GSM564694     3  0.0188    0.72142 0.000 0.000 0.996 0.004
#> GSM564695     3  0.0000    0.72075 0.000 0.000 1.000 0.000
#> GSM564696     3  0.4864    0.61912 0.000 0.060 0.768 0.172
#> GSM564697     3  0.5102    0.58744 0.000 0.220 0.732 0.048
#> GSM564698     3  0.5035    0.61188 0.000 0.056 0.748 0.196
#> GSM564700     3  0.3398    0.69521 0.000 0.068 0.872 0.060
#> GSM564701     3  0.3024    0.59505 0.000 0.148 0.852 0.000
#> GSM564702     2  0.4817    0.97272 0.000 0.612 0.388 0.000
#> GSM564703     1  0.0000    0.79843 1.000 0.000 0.000 0.000
#> GSM564704     4  0.4164    0.91425 0.264 0.000 0.000 0.736
#> GSM564705     4  0.4040    0.92984 0.248 0.000 0.000 0.752
#> GSM564706     1  0.0000    0.79843 1.000 0.000 0.000 0.000
#> GSM564707     4  0.4406    0.86549 0.300 0.000 0.000 0.700
#> GSM564708     1  0.0000    0.79843 1.000 0.000 0.000 0.000
#> GSM564709     4  0.4040    0.92984 0.248 0.000 0.000 0.752
#> GSM564710     4  0.4040    0.92984 0.248 0.000 0.000 0.752
#> GSM564711     1  0.0000    0.79843 1.000 0.000 0.000 0.000
#> GSM564712     4  0.4040    0.92984 0.248 0.000 0.000 0.752
#> GSM564713     1  0.0188    0.79806 0.996 0.000 0.000 0.004
#> GSM564714     1  0.0000    0.79843 1.000 0.000 0.000 0.000
#> GSM564715     4  0.4040    0.92984 0.248 0.000 0.000 0.752
#> GSM564716     4  0.4898    0.67261 0.416 0.000 0.000 0.584
#> GSM564717     1  0.7191   -0.07127 0.500 0.148 0.000 0.352
#> GSM564718     1  0.0000    0.79843 1.000 0.000 0.000 0.000
#> GSM564719     1  0.6115    0.43885 0.680 0.148 0.000 0.172
#> GSM564720     1  0.7273   -0.23446 0.452 0.148 0.000 0.400
#> GSM564721     4  0.4040    0.92984 0.248 0.000 0.000 0.752
#> GSM564722     1  0.5950    0.48659 0.696 0.148 0.000 0.156
#> GSM564723     4  0.6773    0.72934 0.276 0.136 0.000 0.588
#> GSM564724     1  0.0000    0.79843 1.000 0.000 0.000 0.000
#> GSM564725     4  0.4040    0.92984 0.248 0.000 0.000 0.752
#> GSM564726     1  0.0000    0.79843 1.000 0.000 0.000 0.000
#> GSM564727     4  0.4040    0.92984 0.248 0.000 0.000 0.752
#> GSM564728     1  0.0000    0.79843 1.000 0.000 0.000 0.000
#> GSM564729     1  0.0336    0.79566 0.992 0.000 0.000 0.008
#> GSM564730     4  0.4040    0.92984 0.248 0.000 0.000 0.752
#> GSM564731     1  0.1022    0.78635 0.968 0.000 0.000 0.032
#> GSM564732     1  0.1940    0.75272 0.924 0.000 0.000 0.076
#> GSM564733     1  0.3444    0.61315 0.816 0.000 0.000 0.184
#> GSM564734     4  0.4961    0.57841 0.448 0.000 0.000 0.552
#> GSM564735     1  0.1022    0.78635 0.968 0.000 0.000 0.032
#> GSM564736     1  0.1022    0.78635 0.968 0.000 0.000 0.032
#> GSM564737     4  0.4040    0.92984 0.248 0.000 0.000 0.752
#> GSM564738     1  0.0336    0.79688 0.992 0.000 0.000 0.008
#> GSM564739     1  0.0188    0.79797 0.996 0.000 0.000 0.004
#> GSM564740     1  0.2610    0.72266 0.900 0.012 0.000 0.088
#> GSM564741     1  0.1022    0.78635 0.968 0.000 0.000 0.032
#> GSM564742     1  0.0000    0.79843 1.000 0.000 0.000 0.000
#> GSM564743     1  0.7273   -0.23446 0.452 0.148 0.000 0.400
#> GSM564744     4  0.4040    0.92984 0.248 0.000 0.000 0.752
#> GSM564745     4  0.4134    0.91961 0.260 0.000 0.000 0.740
#> GSM564746     1  0.7254   -0.18228 0.468 0.148 0.000 0.384
#> GSM564747     1  0.3808    0.62281 0.812 0.012 0.000 0.176
#> GSM564748     1  0.1022    0.78635 0.968 0.000 0.000 0.032
#> GSM564749     1  0.7273   -0.23446 0.452 0.148 0.000 0.400
#> GSM564750     1  0.0000    0.79843 1.000 0.000 0.000 0.000
#> GSM564751     1  0.0817    0.79039 0.976 0.000 0.000 0.024
#> GSM564752     1  0.0000    0.79843 1.000 0.000 0.000 0.000
#> GSM564753     1  0.0000    0.79843 1.000 0.000 0.000 0.000
#> GSM564754     4  0.4040    0.92984 0.248 0.000 0.000 0.752
#> GSM564755     1  0.0336    0.79702 0.992 0.000 0.000 0.008
#> GSM564756     4  0.4925    0.63259 0.428 0.000 0.000 0.572
#> GSM564757     1  0.0000    0.79843 1.000 0.000 0.000 0.000
#> GSM564758     1  0.0000    0.79843 1.000 0.000 0.000 0.000
#> GSM564759     1  0.0000    0.79843 1.000 0.000 0.000 0.000
#> GSM564760     1  0.4967   -0.28353 0.548 0.000 0.000 0.452
#> GSM564761     4  0.4040    0.92984 0.248 0.000 0.000 0.752
#> GSM564762     1  0.0188    0.79806 0.996 0.000 0.000 0.004
#> GSM564681     2  0.4761    0.95260 0.000 0.628 0.372 0.000
#> GSM564693     3  0.4679   -0.00656 0.000 0.352 0.648 0.000
#> GSM564646     3  0.1256    0.71862 0.000 0.008 0.964 0.028
#> GSM564699     3  0.4916    0.61616 0.000 0.056 0.760 0.184

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM564615     4  0.0000     0.9012 0.000 0.000 0.000 1.000 0.000
#> GSM564616     5  0.2411     0.9503 0.000 0.108 0.008 0.000 0.884
#> GSM564617     2  0.3612     0.8320 0.000 0.732 0.268 0.000 0.000
#> GSM564618     5  0.2127     0.9588 0.000 0.108 0.000 0.000 0.892
#> GSM564619     1  0.0000     0.8759 1.000 0.000 0.000 0.000 0.000
#> GSM564620     1  0.3109     0.7179 0.800 0.000 0.000 0.200 0.000
#> GSM564621     1  0.0000     0.8759 1.000 0.000 0.000 0.000 0.000
#> GSM564622     3  0.0000     0.6190 0.000 0.000 1.000 0.000 0.000
#> GSM564623     3  0.0000     0.6190 0.000 0.000 1.000 0.000 0.000
#> GSM564624     2  0.4240     0.8571 0.000 0.736 0.228 0.000 0.036
#> GSM564625     4  0.4171     0.3303 0.396 0.000 0.000 0.604 0.000
#> GSM564626     1  0.0000     0.8759 1.000 0.000 0.000 0.000 0.000
#> GSM564627     1  0.4453     0.7737 0.724 0.228 0.000 0.048 0.000
#> GSM564628     2  0.4313     0.8577 0.000 0.732 0.228 0.000 0.040
#> GSM564629     4  0.6460    -0.1391 0.404 0.180 0.000 0.416 0.000
#> GSM564630     3  0.0000     0.6190 0.000 0.000 1.000 0.000 0.000
#> GSM564609     3  0.5303     0.6445 0.000 0.232 0.660 0.000 0.108
#> GSM564610     1  0.4384     0.7754 0.728 0.228 0.000 0.044 0.000
#> GSM564611     1  0.4453     0.7737 0.724 0.228 0.000 0.048 0.000
#> GSM564612     2  0.5719     0.4320 0.000 0.552 0.352 0.000 0.096
#> GSM564613     3  0.2929     0.6473 0.000 0.180 0.820 0.000 0.000
#> GSM564614     4  0.0000     0.9012 0.000 0.000 0.000 1.000 0.000
#> GSM564631     3  0.5579     0.6211 0.000 0.264 0.620 0.000 0.116
#> GSM564632     3  0.4599     0.4981 0.000 0.356 0.624 0.000 0.020
#> GSM564633     3  0.5513     0.6312 0.000 0.252 0.632 0.000 0.116
#> GSM564634     3  0.2648     0.6470 0.000 0.152 0.848 0.000 0.000
#> GSM564635     3  0.5513     0.6312 0.000 0.252 0.632 0.000 0.116
#> GSM564636     3  0.5748     0.5589 0.000 0.300 0.584 0.000 0.116
#> GSM564637     3  0.5579     0.6211 0.000 0.264 0.620 0.000 0.116
#> GSM564638     3  0.5358     0.6377 0.000 0.248 0.648 0.000 0.104
#> GSM564639     3  0.2361     0.6337 0.000 0.012 0.892 0.000 0.096
#> GSM564640     2  0.4313     0.8577 0.000 0.732 0.228 0.000 0.040
#> GSM564641     3  0.5962     0.1479 0.000 0.424 0.468 0.000 0.108
#> GSM564642     2  0.4787     0.3327 0.000 0.548 0.432 0.000 0.020
#> GSM564643     3  0.3912     0.6346 0.000 0.228 0.752 0.000 0.020
#> GSM564644     2  0.4313     0.8577 0.000 0.732 0.228 0.000 0.040
#> GSM564645     3  0.5579     0.6211 0.000 0.264 0.620 0.000 0.116
#> GSM564647     3  0.5854     0.1144 0.000 0.436 0.468 0.000 0.096
#> GSM564648     5  0.1965     0.9659 0.000 0.096 0.000 0.000 0.904
#> GSM564649     3  0.5640     0.6042 0.000 0.276 0.608 0.000 0.116
#> GSM564650     2  0.4000     0.8592 0.000 0.748 0.228 0.000 0.024
#> GSM564651     5  0.1965     0.9659 0.000 0.096 0.000 0.000 0.904
#> GSM564652     5  0.1965     0.9659 0.000 0.096 0.000 0.000 0.904
#> GSM564653     5  0.1965     0.9659 0.000 0.096 0.000 0.000 0.904
#> GSM564654     3  0.5466     0.6365 0.000 0.244 0.640 0.000 0.116
#> GSM564655     3  0.0000     0.6190 0.000 0.000 1.000 0.000 0.000
#> GSM564656     3  0.4164     0.6575 0.000 0.120 0.784 0.000 0.096
#> GSM564657     3  0.5579     0.6211 0.000 0.264 0.620 0.000 0.116
#> GSM564658     2  0.4240     0.8571 0.000 0.736 0.228 0.000 0.036
#> GSM564659     3  0.5620     0.6105 0.000 0.272 0.612 0.000 0.116
#> GSM564660     2  0.3491     0.8538 0.000 0.768 0.228 0.000 0.004
#> GSM564661     5  0.2179     0.9555 0.000 0.112 0.000 0.000 0.888
#> GSM564662     3  0.5579     0.6211 0.000 0.264 0.620 0.000 0.116
#> GSM564663     2  0.4240     0.8571 0.000 0.736 0.228 0.000 0.036
#> GSM564664     3  0.4613     0.4910 0.000 0.360 0.620 0.000 0.020
#> GSM564665     3  0.5600     0.6162 0.000 0.268 0.616 0.000 0.116
#> GSM564666     3  0.0000     0.6190 0.000 0.000 1.000 0.000 0.000
#> GSM564667     3  0.5600     0.6162 0.000 0.268 0.616 0.000 0.116
#> GSM564668     3  0.0000     0.6190 0.000 0.000 1.000 0.000 0.000
#> GSM564669     3  0.0000     0.6190 0.000 0.000 1.000 0.000 0.000
#> GSM564670     2  0.4437     0.2090 0.000 0.532 0.464 0.000 0.004
#> GSM564671     3  0.0000     0.6190 0.000 0.000 1.000 0.000 0.000
#> GSM564672     3  0.5579     0.6211 0.000 0.264 0.620 0.000 0.116
#> GSM564673     3  0.4132     0.5866 0.000 0.260 0.720 0.000 0.020
#> GSM564674     2  0.3912     0.8588 0.000 0.752 0.228 0.000 0.020
#> GSM564675     3  0.0000     0.6190 0.000 0.000 1.000 0.000 0.000
#> GSM564676     2  0.3579     0.8513 0.000 0.756 0.240 0.000 0.004
#> GSM564677     5  0.1965     0.9659 0.000 0.096 0.000 0.000 0.904
#> GSM564678     2  0.4240     0.8571 0.000 0.736 0.228 0.000 0.036
#> GSM564679     2  0.4313     0.8577 0.000 0.732 0.228 0.000 0.040
#> GSM564680     3  0.5303     0.6444 0.000 0.232 0.660 0.000 0.108
#> GSM564682     3  0.5816     0.1015 0.000 0.440 0.468 0.000 0.092
#> GSM564683     3  0.2653     0.6380 0.000 0.024 0.880 0.000 0.096
#> GSM564684     3  0.0000     0.6190 0.000 0.000 1.000 0.000 0.000
#> GSM564685     3  0.4020     0.6563 0.000 0.108 0.796 0.000 0.096
#> GSM564686     3  0.0000     0.6190 0.000 0.000 1.000 0.000 0.000
#> GSM564687     2  0.4498     0.8009 0.000 0.688 0.280 0.000 0.032
#> GSM564688     5  0.1965     0.9659 0.000 0.096 0.000 0.000 0.904
#> GSM564689     2  0.3612     0.8320 0.000 0.732 0.268 0.000 0.000
#> GSM564690     2  0.3612     0.8320 0.000 0.732 0.268 0.000 0.000
#> GSM564691     2  0.3861     0.8129 0.000 0.712 0.284 0.000 0.004
#> GSM564692     5  0.4847     0.5792 0.000 0.240 0.068 0.000 0.692
#> GSM564694     3  0.4613     0.4910 0.000 0.360 0.620 0.000 0.020
#> GSM564695     3  0.4787     0.2556 0.000 0.432 0.548 0.000 0.020
#> GSM564696     3  0.0000     0.6190 0.000 0.000 1.000 0.000 0.000
#> GSM564697     2  0.3612     0.8320 0.000 0.732 0.268 0.000 0.000
#> GSM564698     3  0.0000     0.6190 0.000 0.000 1.000 0.000 0.000
#> GSM564700     3  0.1251     0.6283 0.000 0.036 0.956 0.000 0.008
#> GSM564701     3  0.5584     0.3843 0.000 0.324 0.584 0.000 0.092
#> GSM564702     5  0.1965     0.9659 0.000 0.096 0.000 0.000 0.904
#> GSM564703     4  0.0000     0.9012 0.000 0.000 0.000 1.000 0.000
#> GSM564704     1  0.0794     0.8693 0.972 0.000 0.000 0.028 0.000
#> GSM564705     1  0.0000     0.8759 1.000 0.000 0.000 0.000 0.000
#> GSM564706     4  0.0000     0.9012 0.000 0.000 0.000 1.000 0.000
#> GSM564707     1  0.0880     0.8681 0.968 0.000 0.000 0.032 0.000
#> GSM564708     4  0.0000     0.9012 0.000 0.000 0.000 1.000 0.000
#> GSM564709     1  0.0000     0.8759 1.000 0.000 0.000 0.000 0.000
#> GSM564710     1  0.0000     0.8759 1.000 0.000 0.000 0.000 0.000
#> GSM564711     4  0.0000     0.9012 0.000 0.000 0.000 1.000 0.000
#> GSM564712     1  0.0000     0.8759 1.000 0.000 0.000 0.000 0.000
#> GSM564713     4  0.0000     0.9012 0.000 0.000 0.000 1.000 0.000
#> GSM564714     4  0.0000     0.9012 0.000 0.000 0.000 1.000 0.000
#> GSM564715     1  0.0000     0.8759 1.000 0.000 0.000 0.000 0.000
#> GSM564716     1  0.3074     0.7212 0.804 0.000 0.000 0.196 0.000
#> GSM564717     1  0.6261     0.4337 0.524 0.180 0.000 0.296 0.000
#> GSM564718     4  0.0000     0.9012 0.000 0.000 0.000 1.000 0.000
#> GSM564719     4  0.6386     0.0704 0.340 0.180 0.000 0.480 0.000
#> GSM564720     1  0.4453     0.7737 0.724 0.228 0.000 0.048 0.000
#> GSM564721     1  0.0000     0.8759 1.000 0.000 0.000 0.000 0.000
#> GSM564722     4  0.6416     0.0289 0.356 0.180 0.000 0.464 0.000
#> GSM564723     1  0.3650     0.8061 0.796 0.176 0.000 0.028 0.000
#> GSM564724     4  0.0000     0.9012 0.000 0.000 0.000 1.000 0.000
#> GSM564725     1  0.0000     0.8759 1.000 0.000 0.000 0.000 0.000
#> GSM564726     4  0.0000     0.9012 0.000 0.000 0.000 1.000 0.000
#> GSM564727     1  0.0000     0.8759 1.000 0.000 0.000 0.000 0.000
#> GSM564728     4  0.0000     0.9012 0.000 0.000 0.000 1.000 0.000
#> GSM564729     4  0.0703     0.8895 0.024 0.000 0.000 0.976 0.000
#> GSM564730     1  0.0000     0.8759 1.000 0.000 0.000 0.000 0.000
#> GSM564731     4  0.0609     0.8940 0.020 0.000 0.000 0.980 0.000
#> GSM564732     4  0.3586     0.6146 0.264 0.000 0.000 0.736 0.000
#> GSM564733     4  0.3774     0.5540 0.296 0.000 0.000 0.704 0.000
#> GSM564734     1  0.2074     0.8310 0.896 0.000 0.000 0.104 0.000
#> GSM564735     4  0.0794     0.8895 0.028 0.000 0.000 0.972 0.000
#> GSM564736     4  0.0703     0.8919 0.024 0.000 0.000 0.976 0.000
#> GSM564737     1  0.0000     0.8759 1.000 0.000 0.000 0.000 0.000
#> GSM564738     4  0.0000     0.9012 0.000 0.000 0.000 1.000 0.000
#> GSM564739     4  0.0162     0.9003 0.004 0.000 0.000 0.996 0.000
#> GSM564740     4  0.3366     0.6516 0.232 0.000 0.000 0.768 0.000
#> GSM564741     4  0.0703     0.8919 0.024 0.000 0.000 0.976 0.000
#> GSM564742     4  0.0000     0.9012 0.000 0.000 0.000 1.000 0.000
#> GSM564743     1  0.4453     0.7737 0.724 0.228 0.000 0.048 0.000
#> GSM564744     1  0.0000     0.8759 1.000 0.000 0.000 0.000 0.000
#> GSM564745     1  0.0510     0.8716 0.984 0.000 0.000 0.016 0.000
#> GSM564746     1  0.5500     0.6951 0.648 0.212 0.000 0.140 0.000
#> GSM564747     4  0.3561     0.6185 0.260 0.000 0.000 0.740 0.000
#> GSM564748     4  0.0703     0.8919 0.024 0.000 0.000 0.976 0.000
#> GSM564749     1  0.4453     0.7737 0.724 0.228 0.000 0.048 0.000
#> GSM564750     4  0.0000     0.9012 0.000 0.000 0.000 1.000 0.000
#> GSM564751     4  0.0510     0.8959 0.016 0.000 0.000 0.984 0.000
#> GSM564752     4  0.0000     0.9012 0.000 0.000 0.000 1.000 0.000
#> GSM564753     4  0.0000     0.9012 0.000 0.000 0.000 1.000 0.000
#> GSM564754     1  0.0000     0.8759 1.000 0.000 0.000 0.000 0.000
#> GSM564755     4  0.0290     0.8990 0.008 0.000 0.000 0.992 0.000
#> GSM564756     1  0.3274     0.6951 0.780 0.000 0.000 0.220 0.000
#> GSM564757     4  0.0000     0.9012 0.000 0.000 0.000 1.000 0.000
#> GSM564758     4  0.0000     0.9012 0.000 0.000 0.000 1.000 0.000
#> GSM564759     4  0.0000     0.9012 0.000 0.000 0.000 1.000 0.000
#> GSM564760     1  0.4201     0.2906 0.592 0.000 0.000 0.408 0.000
#> GSM564761     1  0.0000     0.8759 1.000 0.000 0.000 0.000 0.000
#> GSM564762     4  0.0162     0.9003 0.004 0.000 0.000 0.996 0.000
#> GSM564681     5  0.1965     0.9659 0.000 0.096 0.000 0.000 0.904
#> GSM564693     2  0.6519     0.5094 0.000 0.456 0.204 0.000 0.340
#> GSM564646     3  0.4626     0.4825 0.000 0.364 0.616 0.000 0.020
#> GSM564699     3  0.0000     0.6190 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM564615     4  0.0146     0.9556 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM564616     5  0.0260     0.9151 0.000 0.008 0.000 0.000 0.992 0.000
#> GSM564617     2  0.1556     0.8888 0.000 0.920 0.080 0.000 0.000 0.000
#> GSM564618     5  0.0260     0.9151 0.000 0.008 0.000 0.000 0.992 0.000
#> GSM564619     1  0.0000     0.9414 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564620     1  0.2738     0.7334 0.820 0.000 0.000 0.176 0.000 0.004
#> GSM564621     1  0.0146     0.9396 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM564622     3  0.2135     0.8913 0.000 0.000 0.872 0.000 0.000 0.128
#> GSM564623     3  0.2300     0.8859 0.000 0.000 0.856 0.000 0.000 0.144
#> GSM564624     2  0.0000     0.9269 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564625     4  0.1713     0.9290 0.028 0.000 0.000 0.928 0.000 0.044
#> GSM564626     1  0.0000     0.9414 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564627     6  0.2762     0.9192 0.196 0.000 0.000 0.000 0.000 0.804
#> GSM564628     2  0.0000     0.9269 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564629     6  0.3370     0.7925 0.048 0.000 0.000 0.148 0.000 0.804
#> GSM564630     3  0.2178     0.8906 0.000 0.000 0.868 0.000 0.000 0.132
#> GSM564609     3  0.0405     0.9060 0.000 0.008 0.988 0.000 0.000 0.004
#> GSM564610     6  0.2762     0.9192 0.196 0.000 0.000 0.000 0.000 0.804
#> GSM564611     6  0.2762     0.9192 0.196 0.000 0.000 0.000 0.000 0.804
#> GSM564612     3  0.3860     0.2343 0.000 0.472 0.528 0.000 0.000 0.000
#> GSM564613     3  0.2278     0.8913 0.000 0.004 0.868 0.000 0.000 0.128
#> GSM564614     4  0.0000     0.9562 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564631     3  0.0972     0.9029 0.000 0.028 0.964 0.000 0.000 0.008
#> GSM564632     3  0.0777     0.9040 0.000 0.024 0.972 0.000 0.000 0.004
#> GSM564633     3  0.0603     0.9050 0.000 0.016 0.980 0.000 0.000 0.004
#> GSM564634     3  0.2178     0.8906 0.000 0.000 0.868 0.000 0.000 0.132
#> GSM564635     3  0.0777     0.9040 0.000 0.024 0.972 0.000 0.000 0.004
#> GSM564636     3  0.1196     0.9000 0.000 0.040 0.952 0.000 0.000 0.008
#> GSM564637     3  0.0891     0.9032 0.000 0.024 0.968 0.000 0.000 0.008
#> GSM564638     3  0.1584     0.9028 0.000 0.008 0.928 0.000 0.000 0.064
#> GSM564639     3  0.2260     0.8872 0.000 0.000 0.860 0.000 0.000 0.140
#> GSM564640     2  0.0000     0.9269 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564641     3  0.2048     0.8562 0.000 0.120 0.880 0.000 0.000 0.000
#> GSM564642     3  0.2362     0.8304 0.000 0.136 0.860 0.000 0.000 0.004
#> GSM564643     3  0.0260     0.9056 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM564644     2  0.0000     0.9269 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564645     3  0.0891     0.9032 0.000 0.024 0.968 0.000 0.000 0.008
#> GSM564647     3  0.2697     0.7744 0.000 0.188 0.812 0.000 0.000 0.000
#> GSM564648     5  0.0000     0.9198 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564649     3  0.1049     0.9024 0.000 0.032 0.960 0.000 0.000 0.008
#> GSM564650     2  0.0000     0.9269 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564651     5  0.0000     0.9198 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564652     5  0.0000     0.9198 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564653     5  0.0000     0.9198 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564654     3  0.0508     0.9052 0.000 0.012 0.984 0.000 0.000 0.004
#> GSM564655     3  0.1957     0.8932 0.000 0.000 0.888 0.000 0.000 0.112
#> GSM564656     3  0.1556     0.8974 0.000 0.000 0.920 0.000 0.000 0.080
#> GSM564657     3  0.0972     0.9029 0.000 0.028 0.964 0.000 0.000 0.008
#> GSM564658     2  0.0000     0.9269 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564659     3  0.1049     0.9024 0.000 0.032 0.960 0.000 0.000 0.008
#> GSM564660     2  0.0000     0.9269 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564661     5  0.0260     0.9149 0.000 0.008 0.000 0.000 0.992 0.000
#> GSM564662     3  0.0891     0.9032 0.000 0.024 0.968 0.000 0.000 0.008
#> GSM564663     2  0.0000     0.9269 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564664     3  0.0777     0.9040 0.000 0.024 0.972 0.000 0.000 0.004
#> GSM564665     3  0.0972     0.9029 0.000 0.028 0.964 0.000 0.000 0.008
#> GSM564666     3  0.2300     0.8859 0.000 0.000 0.856 0.000 0.000 0.144
#> GSM564667     3  0.1049     0.9024 0.000 0.032 0.960 0.000 0.000 0.008
#> GSM564668     3  0.2300     0.8860 0.000 0.000 0.856 0.000 0.000 0.144
#> GSM564669     3  0.2300     0.8860 0.000 0.000 0.856 0.000 0.000 0.144
#> GSM564670     2  0.3737     0.3623 0.000 0.608 0.392 0.000 0.000 0.000
#> GSM564671     3  0.2260     0.8872 0.000 0.000 0.860 0.000 0.000 0.140
#> GSM564672     3  0.1049     0.9024 0.000 0.032 0.960 0.000 0.000 0.008
#> GSM564673     3  0.0260     0.9056 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM564674     2  0.0000     0.9269 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564675     3  0.2300     0.8859 0.000 0.000 0.856 0.000 0.000 0.144
#> GSM564676     2  0.1204     0.9037 0.000 0.944 0.056 0.000 0.000 0.000
#> GSM564677     5  0.0000     0.9198 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564678     2  0.0000     0.9269 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564679     2  0.0000     0.9269 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564680     3  0.1398     0.9040 0.000 0.008 0.940 0.000 0.000 0.052
#> GSM564682     3  0.3828     0.2109 0.000 0.440 0.560 0.000 0.000 0.000
#> GSM564683     3  0.2260     0.8872 0.000 0.000 0.860 0.000 0.000 0.140
#> GSM564684     3  0.2219     0.8888 0.000 0.000 0.864 0.000 0.000 0.136
#> GSM564685     3  0.2260     0.8872 0.000 0.000 0.860 0.000 0.000 0.140
#> GSM564686     3  0.2135     0.8907 0.000 0.000 0.872 0.000 0.000 0.128
#> GSM564687     2  0.3240     0.6905 0.000 0.752 0.244 0.000 0.000 0.004
#> GSM564688     5  0.0000     0.9198 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564689     2  0.1387     0.8972 0.000 0.932 0.068 0.000 0.000 0.000
#> GSM564690     2  0.1501     0.8919 0.000 0.924 0.076 0.000 0.000 0.000
#> GSM564691     2  0.0000     0.9269 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564692     5  0.0000     0.9198 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564694     3  0.0858     0.9038 0.000 0.028 0.968 0.000 0.000 0.004
#> GSM564695     3  0.1285     0.8951 0.000 0.052 0.944 0.000 0.000 0.004
#> GSM564696     3  0.2300     0.8859 0.000 0.000 0.856 0.000 0.000 0.144
#> GSM564697     2  0.1556     0.8888 0.000 0.920 0.080 0.000 0.000 0.000
#> GSM564698     3  0.2260     0.8872 0.000 0.000 0.860 0.000 0.000 0.140
#> GSM564700     3  0.0146     0.9056 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM564701     5  0.4407     0.1247 0.000 0.024 0.480 0.000 0.496 0.000
#> GSM564702     5  0.0000     0.9198 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564703     4  0.0260     0.9553 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM564704     1  0.1779     0.8633 0.920 0.000 0.000 0.064 0.000 0.016
#> GSM564705     1  0.0000     0.9414 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564706     4  0.0000     0.9562 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564707     1  0.0692     0.9233 0.976 0.000 0.000 0.020 0.000 0.004
#> GSM564708     4  0.0000     0.9562 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564709     1  0.0000     0.9414 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564710     1  0.0000     0.9414 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564711     4  0.0000     0.9562 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564712     1  0.0000     0.9414 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564713     4  0.0547     0.9527 0.000 0.000 0.000 0.980 0.000 0.020
#> GSM564714     4  0.0000     0.9562 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564715     1  0.0146     0.9396 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM564716     1  0.2772     0.7298 0.816 0.000 0.000 0.180 0.000 0.004
#> GSM564717     6  0.3014     0.9142 0.184 0.000 0.000 0.012 0.000 0.804
#> GSM564718     4  0.0000     0.9562 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564719     6  0.2980     0.7461 0.008 0.000 0.000 0.192 0.000 0.800
#> GSM564720     6  0.2762     0.9192 0.196 0.000 0.000 0.000 0.000 0.804
#> GSM564721     1  0.0000     0.9414 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564722     6  0.3122     0.7620 0.020 0.000 0.000 0.176 0.000 0.804
#> GSM564723     6  0.2762     0.9192 0.196 0.000 0.000 0.000 0.000 0.804
#> GSM564724     4  0.0000     0.9562 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564725     1  0.0000     0.9414 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564726     4  0.0000     0.9562 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564727     1  0.0000     0.9414 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564728     4  0.0000     0.9562 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564729     4  0.0146     0.9556 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM564730     1  0.0146     0.9396 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM564731     4  0.1245     0.9420 0.016 0.000 0.000 0.952 0.000 0.032
#> GSM564732     4  0.1461     0.9364 0.016 0.000 0.000 0.940 0.000 0.044
#> GSM564733     4  0.1934     0.9160 0.040 0.000 0.000 0.916 0.000 0.044
#> GSM564734     4  0.4472     0.0553 0.476 0.000 0.000 0.496 0.000 0.028
#> GSM564735     4  0.1549     0.9338 0.020 0.000 0.000 0.936 0.000 0.044
#> GSM564736     4  0.1461     0.9364 0.016 0.000 0.000 0.940 0.000 0.044
#> GSM564737     1  0.0000     0.9414 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564738     4  0.0632     0.9515 0.000 0.000 0.000 0.976 0.000 0.024
#> GSM564739     4  0.0508     0.9539 0.004 0.000 0.000 0.984 0.000 0.012
#> GSM564740     4  0.0000     0.9562 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564741     4  0.1461     0.9364 0.016 0.000 0.000 0.940 0.000 0.044
#> GSM564742     4  0.0000     0.9562 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564743     6  0.2762     0.9192 0.196 0.000 0.000 0.000 0.000 0.804
#> GSM564744     1  0.0000     0.9414 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564745     1  0.0858     0.9160 0.968 0.000 0.000 0.028 0.000 0.004
#> GSM564746     6  0.2948     0.9160 0.188 0.000 0.000 0.008 0.000 0.804
#> GSM564747     4  0.2006     0.8876 0.080 0.000 0.000 0.904 0.000 0.016
#> GSM564748     4  0.1461     0.9364 0.016 0.000 0.000 0.940 0.000 0.044
#> GSM564749     6  0.2762     0.9192 0.196 0.000 0.000 0.000 0.000 0.804
#> GSM564750     4  0.0000     0.9562 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564751     4  0.1003     0.9463 0.016 0.000 0.000 0.964 0.000 0.020
#> GSM564752     4  0.0000     0.9562 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564753     4  0.0000     0.9562 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564754     1  0.0146     0.9396 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM564755     4  0.0858     0.9491 0.004 0.000 0.000 0.968 0.000 0.028
#> GSM564756     1  0.4014     0.5873 0.716 0.000 0.000 0.240 0.000 0.044
#> GSM564757     4  0.0000     0.9562 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564758     4  0.0000     0.9562 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564759     4  0.0000     0.9562 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM564760     4  0.4107     0.6307 0.256 0.000 0.000 0.700 0.000 0.044
#> GSM564761     1  0.0000     0.9414 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM564762     4  0.0291     0.9550 0.004 0.000 0.000 0.992 0.000 0.004
#> GSM564681     5  0.0000     0.9198 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM564693     5  0.3940     0.6765 0.000 0.096 0.140 0.000 0.764 0.000
#> GSM564646     3  0.0713     0.9047 0.000 0.028 0.972 0.000 0.000 0.000
#> GSM564699     3  0.2260     0.8872 0.000 0.000 0.860 0.000 0.000 0.140

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n genotype/variation(p) disease.state(p) k
#> ATC:mclust 154                 0.925           0.4759 2
#> ATC:mclust 149                 0.347           0.9164 3
#> ATC:mclust 133                 0.528           0.1888 4
#> ATC:mclust 136                 0.566           0.0888 5
#> ATC:mclust 149                 0.212           0.1857 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 51941 rows and 154 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.5007 0.500   0.500
#> 3 3 0.778           0.841       0.907         0.2429 0.857   0.719
#> 4 4 0.699           0.685       0.856         0.1486 0.870   0.672
#> 5 5 0.651           0.479       0.735         0.0829 0.842   0.538
#> 6 6 0.799           0.760       0.826         0.0549 0.876   0.547

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> GSM564615     1       0          1  1  0
#> GSM564616     2       0          1  0  1
#> GSM564617     2       0          1  0  1
#> GSM564618     2       0          1  0  1
#> GSM564619     1       0          1  1  0
#> GSM564620     1       0          1  1  0
#> GSM564621     1       0          1  1  0
#> GSM564622     2       0          1  0  1
#> GSM564623     2       0          1  0  1
#> GSM564624     2       0          1  0  1
#> GSM564625     1       0          1  1  0
#> GSM564626     1       0          1  1  0
#> GSM564627     1       0          1  1  0
#> GSM564628     2       0          1  0  1
#> GSM564629     1       0          1  1  0
#> GSM564630     2       0          1  0  1
#> GSM564609     2       0          1  0  1
#> GSM564610     1       0          1  1  0
#> GSM564611     1       0          1  1  0
#> GSM564612     2       0          1  0  1
#> GSM564613     2       0          1  0  1
#> GSM564614     1       0          1  1  0
#> GSM564631     2       0          1  0  1
#> GSM564632     2       0          1  0  1
#> GSM564633     2       0          1  0  1
#> GSM564634     2       0          1  0  1
#> GSM564635     2       0          1  0  1
#> GSM564636     2       0          1  0  1
#> GSM564637     2       0          1  0  1
#> GSM564638     2       0          1  0  1
#> GSM564639     2       0          1  0  1
#> GSM564640     2       0          1  0  1
#> GSM564641     2       0          1  0  1
#> GSM564642     2       0          1  0  1
#> GSM564643     2       0          1  0  1
#> GSM564644     2       0          1  0  1
#> GSM564645     2       0          1  0  1
#> GSM564647     2       0          1  0  1
#> GSM564648     2       0          1  0  1
#> GSM564649     2       0          1  0  1
#> GSM564650     2       0          1  0  1
#> GSM564651     2       0          1  0  1
#> GSM564652     2       0          1  0  1
#> GSM564653     2       0          1  0  1
#> GSM564654     2       0          1  0  1
#> GSM564655     2       0          1  0  1
#> GSM564656     2       0          1  0  1
#> GSM564657     2       0          1  0  1
#> GSM564658     2       0          1  0  1
#> GSM564659     2       0          1  0  1
#> GSM564660     2       0          1  0  1
#> GSM564661     2       0          1  0  1
#> GSM564662     2       0          1  0  1
#> GSM564663     2       0          1  0  1
#> GSM564664     2       0          1  0  1
#> GSM564665     2       0          1  0  1
#> GSM564666     2       0          1  0  1
#> GSM564667     2       0          1  0  1
#> GSM564668     2       0          1  0  1
#> GSM564669     2       0          1  0  1
#> GSM564670     2       0          1  0  1
#> GSM564671     2       0          1  0  1
#> GSM564672     2       0          1  0  1
#> GSM564673     2       0          1  0  1
#> GSM564674     2       0          1  0  1
#> GSM564675     2       0          1  0  1
#> GSM564676     2       0          1  0  1
#> GSM564677     2       0          1  0  1
#> GSM564678     2       0          1  0  1
#> GSM564679     2       0          1  0  1
#> GSM564680     2       0          1  0  1
#> GSM564682     2       0          1  0  1
#> GSM564683     2       0          1  0  1
#> GSM564684     2       0          1  0  1
#> GSM564685     2       0          1  0  1
#> GSM564686     2       0          1  0  1
#> GSM564687     2       0          1  0  1
#> GSM564688     2       0          1  0  1
#> GSM564689     2       0          1  0  1
#> GSM564690     2       0          1  0  1
#> GSM564691     2       0          1  0  1
#> GSM564692     2       0          1  0  1
#> GSM564694     2       0          1  0  1
#> GSM564695     2       0          1  0  1
#> GSM564696     2       0          1  0  1
#> GSM564697     2       0          1  0  1
#> GSM564698     2       0          1  0  1
#> GSM564700     2       0          1  0  1
#> GSM564701     2       0          1  0  1
#> GSM564702     2       0          1  0  1
#> GSM564703     1       0          1  1  0
#> GSM564704     1       0          1  1  0
#> GSM564705     1       0          1  1  0
#> GSM564706     1       0          1  1  0
#> GSM564707     1       0          1  1  0
#> GSM564708     1       0          1  1  0
#> GSM564709     1       0          1  1  0
#> GSM564710     1       0          1  1  0
#> GSM564711     1       0          1  1  0
#> GSM564712     1       0          1  1  0
#> GSM564713     1       0          1  1  0
#> GSM564714     1       0          1  1  0
#> GSM564715     1       0          1  1  0
#> GSM564716     1       0          1  1  0
#> GSM564717     1       0          1  1  0
#> GSM564718     1       0          1  1  0
#> GSM564719     1       0          1  1  0
#> GSM564720     1       0          1  1  0
#> GSM564721     1       0          1  1  0
#> GSM564722     1       0          1  1  0
#> GSM564723     1       0          1  1  0
#> GSM564724     1       0          1  1  0
#> GSM564725     1       0          1  1  0
#> GSM564726     1       0          1  1  0
#> GSM564727     1       0          1  1  0
#> GSM564728     1       0          1  1  0
#> GSM564729     1       0          1  1  0
#> GSM564730     1       0          1  1  0
#> GSM564731     1       0          1  1  0
#> GSM564732     1       0          1  1  0
#> GSM564733     1       0          1  1  0
#> GSM564734     1       0          1  1  0
#> GSM564735     1       0          1  1  0
#> GSM564736     1       0          1  1  0
#> GSM564737     1       0          1  1  0
#> GSM564738     1       0          1  1  0
#> GSM564739     1       0          1  1  0
#> GSM564740     1       0          1  1  0
#> GSM564741     1       0          1  1  0
#> GSM564742     1       0          1  1  0
#> GSM564743     1       0          1  1  0
#> GSM564744     1       0          1  1  0
#> GSM564745     1       0          1  1  0
#> GSM564746     1       0          1  1  0
#> GSM564747     1       0          1  1  0
#> GSM564748     1       0          1  1  0
#> GSM564749     1       0          1  1  0
#> GSM564750     1       0          1  1  0
#> GSM564751     1       0          1  1  0
#> GSM564752     1       0          1  1  0
#> GSM564753     1       0          1  1  0
#> GSM564754     1       0          1  1  0
#> GSM564755     1       0          1  1  0
#> GSM564756     1       0          1  1  0
#> GSM564757     1       0          1  1  0
#> GSM564758     1       0          1  1  0
#> GSM564759     1       0          1  1  0
#> GSM564760     1       0          1  1  0
#> GSM564761     1       0          1  1  0
#> GSM564762     1       0          1  1  0
#> GSM564681     2       0          1  0  1
#> GSM564693     2       0          1  0  1
#> GSM564646     2       0          1  0  1
#> GSM564699     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM564615     1  0.0000   0.969492 1.000 0.000 0.000
#> GSM564616     2  0.0000   0.870905 0.000 1.000 0.000
#> GSM564617     2  0.4504   0.842860 0.000 0.804 0.196
#> GSM564618     2  0.0000   0.870905 0.000 1.000 0.000
#> GSM564619     1  0.0747   0.967577 0.984 0.000 0.016
#> GSM564620     1  0.0424   0.969144 0.992 0.000 0.008
#> GSM564621     1  0.0747   0.967577 0.984 0.000 0.016
#> GSM564622     2  0.0000   0.870905 0.000 1.000 0.000
#> GSM564623     2  0.4504   0.842860 0.000 0.804 0.196
#> GSM564624     2  0.4452   0.845250 0.000 0.808 0.192
#> GSM564625     1  0.0000   0.969492 1.000 0.000 0.000
#> GSM564626     1  0.0747   0.967577 0.984 0.000 0.016
#> GSM564627     1  0.0000   0.969492 1.000 0.000 0.000
#> GSM564628     2  0.0237   0.871218 0.000 0.996 0.004
#> GSM564629     1  0.0424   0.968342 0.992 0.000 0.008
#> GSM564630     2  0.4399   0.846574 0.000 0.812 0.188
#> GSM564609     2  0.0424   0.870918 0.000 0.992 0.008
#> GSM564610     1  0.0424   0.969144 0.992 0.000 0.008
#> GSM564611     1  0.0424   0.969141 0.992 0.000 0.008
#> GSM564612     2  0.4504   0.842860 0.000 0.804 0.196
#> GSM564613     3  0.5560   0.448872 0.000 0.300 0.700
#> GSM564614     1  0.0237   0.969025 0.996 0.000 0.004
#> GSM564631     3  0.3482   0.703576 0.000 0.128 0.872
#> GSM564632     2  0.0000   0.870905 0.000 1.000 0.000
#> GSM564633     2  0.0000   0.870905 0.000 1.000 0.000
#> GSM564634     3  0.5560   0.449852 0.000 0.300 0.700
#> GSM564635     2  0.0892   0.865902 0.000 0.980 0.020
#> GSM564636     2  0.5560   0.710376 0.000 0.700 0.300
#> GSM564637     2  0.4452   0.845250 0.000 0.808 0.192
#> GSM564638     3  0.1031   0.745452 0.000 0.024 0.976
#> GSM564639     3  0.1031   0.745452 0.000 0.024 0.976
#> GSM564640     2  0.2165   0.867664 0.000 0.936 0.064
#> GSM564641     3  0.4002   0.678181 0.000 0.160 0.840
#> GSM564642     2  0.4452   0.845250 0.000 0.808 0.192
#> GSM564643     2  0.0000   0.870905 0.000 1.000 0.000
#> GSM564644     2  0.4452   0.845250 0.000 0.808 0.192
#> GSM564645     3  0.6079   0.249074 0.000 0.388 0.612
#> GSM564647     2  0.4842   0.815122 0.000 0.776 0.224
#> GSM564648     2  0.0000   0.870905 0.000 1.000 0.000
#> GSM564649     2  0.6215   0.422007 0.000 0.572 0.428
#> GSM564650     2  0.4452   0.845250 0.000 0.808 0.192
#> GSM564651     2  0.0000   0.870905 0.000 1.000 0.000
#> GSM564652     2  0.0000   0.870905 0.000 1.000 0.000
#> GSM564653     2  0.0000   0.870905 0.000 1.000 0.000
#> GSM564654     2  0.0000   0.870905 0.000 1.000 0.000
#> GSM564655     2  0.0000   0.870905 0.000 1.000 0.000
#> GSM564656     2  0.4504   0.637183 0.000 0.804 0.196
#> GSM564657     3  0.1031   0.745452 0.000 0.024 0.976
#> GSM564658     2  0.1289   0.870325 0.000 0.968 0.032
#> GSM564659     2  0.4291   0.849057 0.000 0.820 0.180
#> GSM564660     2  0.4452   0.845250 0.000 0.808 0.192
#> GSM564661     2  0.0000   0.870905 0.000 1.000 0.000
#> GSM564662     3  0.4842   0.608301 0.000 0.224 0.776
#> GSM564663     2  0.4452   0.845250 0.000 0.808 0.192
#> GSM564664     2  0.0237   0.871218 0.000 0.996 0.004
#> GSM564665     2  0.4452   0.845250 0.000 0.808 0.192
#> GSM564666     2  0.4555   0.839589 0.000 0.800 0.200
#> GSM564667     3  0.1031   0.745452 0.000 0.024 0.976
#> GSM564668     2  0.0000   0.870905 0.000 1.000 0.000
#> GSM564669     2  0.2165   0.817134 0.000 0.936 0.064
#> GSM564670     2  0.4504   0.842860 0.000 0.804 0.196
#> GSM564671     2  0.0000   0.870905 0.000 1.000 0.000
#> GSM564672     3  0.4062   0.677121 0.000 0.164 0.836
#> GSM564673     2  0.0000   0.870905 0.000 1.000 0.000
#> GSM564674     2  0.4452   0.845250 0.000 0.808 0.192
#> GSM564675     2  0.4504   0.842860 0.000 0.804 0.196
#> GSM564676     2  0.4504   0.842860 0.000 0.804 0.196
#> GSM564677     2  0.0000   0.870905 0.000 1.000 0.000
#> GSM564678     2  0.4452   0.845250 0.000 0.808 0.192
#> GSM564679     2  0.0000   0.870905 0.000 1.000 0.000
#> GSM564680     3  0.5678   0.538965 0.000 0.316 0.684
#> GSM564682     3  0.5785   0.387613 0.000 0.332 0.668
#> GSM564683     3  0.1031   0.745452 0.000 0.024 0.976
#> GSM564684     2  0.0000   0.870905 0.000 1.000 0.000
#> GSM564685     3  0.1031   0.745452 0.000 0.024 0.976
#> GSM564686     2  0.3619   0.857909 0.000 0.864 0.136
#> GSM564687     2  0.4346   0.847866 0.000 0.816 0.184
#> GSM564688     2  0.0000   0.870905 0.000 1.000 0.000
#> GSM564689     2  0.4504   0.842860 0.000 0.804 0.196
#> GSM564690     2  0.4452   0.845250 0.000 0.808 0.192
#> GSM564691     2  0.5926   0.605015 0.000 0.644 0.356
#> GSM564692     2  0.0000   0.870905 0.000 1.000 0.000
#> GSM564694     2  0.4399   0.846773 0.000 0.812 0.188
#> GSM564695     2  0.3941   0.854516 0.000 0.844 0.156
#> GSM564696     3  0.1031   0.745452 0.000 0.024 0.976
#> GSM564697     2  0.4504   0.842860 0.000 0.804 0.196
#> GSM564698     3  0.6180   0.466809 0.000 0.416 0.584
#> GSM564700     2  0.0000   0.870905 0.000 1.000 0.000
#> GSM564701     2  0.0000   0.870905 0.000 1.000 0.000
#> GSM564702     2  0.0000   0.870905 0.000 1.000 0.000
#> GSM564703     1  0.0892   0.959913 0.980 0.000 0.020
#> GSM564704     1  0.0747   0.967577 0.984 0.000 0.016
#> GSM564705     1  0.0747   0.967577 0.984 0.000 0.016
#> GSM564706     3  0.5529   0.538442 0.296 0.000 0.704
#> GSM564707     1  0.0000   0.969492 1.000 0.000 0.000
#> GSM564708     1  0.1529   0.945671 0.960 0.000 0.040
#> GSM564709     1  0.0747   0.967577 0.984 0.000 0.016
#> GSM564710     1  0.0747   0.967577 0.984 0.000 0.016
#> GSM564711     1  0.6299   0.000143 0.524 0.000 0.476
#> GSM564712     1  0.0747   0.967577 0.984 0.000 0.016
#> GSM564713     1  0.0424   0.968342 0.992 0.000 0.008
#> GSM564714     3  0.4702   0.632077 0.212 0.000 0.788
#> GSM564715     1  0.0747   0.967577 0.984 0.000 0.016
#> GSM564716     1  0.0747   0.967577 0.984 0.000 0.016
#> GSM564717     1  0.0424   0.968342 0.992 0.000 0.008
#> GSM564718     1  0.0424   0.968342 0.992 0.000 0.008
#> GSM564719     1  0.0424   0.968342 0.992 0.000 0.008
#> GSM564720     1  0.0237   0.969538 0.996 0.000 0.004
#> GSM564721     1  0.0747   0.967577 0.984 0.000 0.016
#> GSM564722     1  0.0424   0.968342 0.992 0.000 0.008
#> GSM564723     1  0.0747   0.967577 0.984 0.000 0.016
#> GSM564724     1  0.0424   0.968342 0.992 0.000 0.008
#> GSM564725     1  0.0747   0.967577 0.984 0.000 0.016
#> GSM564726     1  0.0424   0.968342 0.992 0.000 0.008
#> GSM564727     1  0.0747   0.967577 0.984 0.000 0.016
#> GSM564728     1  0.0424   0.969558 0.992 0.000 0.008
#> GSM564729     1  0.0747   0.967577 0.984 0.000 0.016
#> GSM564730     1  0.0747   0.967577 0.984 0.000 0.016
#> GSM564731     1  0.0424   0.968342 0.992 0.000 0.008
#> GSM564732     1  0.0424   0.968342 0.992 0.000 0.008
#> GSM564733     1  0.0237   0.969515 0.996 0.000 0.004
#> GSM564734     1  0.0000   0.969492 1.000 0.000 0.000
#> GSM564735     1  0.0424   0.968342 0.992 0.000 0.008
#> GSM564736     1  0.0424   0.968342 0.992 0.000 0.008
#> GSM564737     1  0.0747   0.967577 0.984 0.000 0.016
#> GSM564738     1  0.0424   0.968342 0.992 0.000 0.008
#> GSM564739     1  0.0747   0.967577 0.984 0.000 0.016
#> GSM564740     1  0.0424   0.968342 0.992 0.000 0.008
#> GSM564741     1  0.0424   0.968342 0.992 0.000 0.008
#> GSM564742     3  0.6026   0.400028 0.376 0.000 0.624
#> GSM564743     1  0.0424   0.969141 0.992 0.000 0.008
#> GSM564744     1  0.0747   0.967577 0.984 0.000 0.016
#> GSM564745     1  0.0747   0.967577 0.984 0.000 0.016
#> GSM564746     1  0.0424   0.968342 0.992 0.000 0.008
#> GSM564747     1  0.0424   0.968342 0.992 0.000 0.008
#> GSM564748     1  0.0424   0.968342 0.992 0.000 0.008
#> GSM564749     1  0.0424   0.968342 0.992 0.000 0.008
#> GSM564750     1  0.6062   0.317247 0.616 0.000 0.384
#> GSM564751     1  0.5529   0.534482 0.704 0.000 0.296
#> GSM564752     3  0.5706   0.503240 0.320 0.000 0.680
#> GSM564753     3  0.4796   0.625040 0.220 0.000 0.780
#> GSM564754     1  0.0747   0.967577 0.984 0.000 0.016
#> GSM564755     1  0.0237   0.969515 0.996 0.000 0.004
#> GSM564756     1  0.0237   0.969515 0.996 0.000 0.004
#> GSM564757     1  0.0424   0.968342 0.992 0.000 0.008
#> GSM564758     3  0.6111   0.354382 0.396 0.000 0.604
#> GSM564759     3  0.4702   0.632077 0.212 0.000 0.788
#> GSM564760     1  0.0000   0.969492 1.000 0.000 0.000
#> GSM564761     1  0.0747   0.967577 0.984 0.000 0.016
#> GSM564762     1  0.0424   0.968342 0.992 0.000 0.008
#> GSM564681     2  0.0000   0.870905 0.000 1.000 0.000
#> GSM564693     2  0.0000   0.870905 0.000 1.000 0.000
#> GSM564646     2  0.0000   0.870905 0.000 1.000 0.000
#> GSM564699     2  0.4605   0.836164 0.000 0.796 0.204

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM564615     1  0.2408     0.8947 0.896 0.000 0.104 0.000
#> GSM564616     2  0.0188     0.8375 0.000 0.996 0.004 0.000
#> GSM564617     4  0.0188     0.7027 0.000 0.004 0.000 0.996
#> GSM564618     2  0.0188     0.8375 0.000 0.996 0.004 0.000
#> GSM564619     1  0.0000     0.8982 1.000 0.000 0.000 0.000
#> GSM564620     1  0.0817     0.9003 0.976 0.000 0.024 0.000
#> GSM564621     1  0.0000     0.8982 1.000 0.000 0.000 0.000
#> GSM564622     2  0.0000     0.8383 0.000 1.000 0.000 0.000
#> GSM564623     4  0.0188     0.7027 0.000 0.004 0.000 0.996
#> GSM564624     4  0.4252     0.5349 0.000 0.252 0.004 0.744
#> GSM564625     1  0.2281     0.8966 0.904 0.000 0.096 0.000
#> GSM564626     1  0.0000     0.8982 1.000 0.000 0.000 0.000
#> GSM564627     1  0.2466     0.8941 0.916 0.000 0.056 0.028
#> GSM564628     2  0.4991     0.3333 0.000 0.608 0.004 0.388
#> GSM564629     4  0.6655    -0.2377 0.440 0.000 0.084 0.476
#> GSM564630     4  0.0895     0.7014 0.000 0.020 0.004 0.976
#> GSM564609     2  0.2530     0.7826 0.000 0.888 0.112 0.000
#> GSM564610     1  0.0188     0.8981 0.996 0.000 0.000 0.004
#> GSM564611     1  0.2408     0.8334 0.896 0.000 0.000 0.104
#> GSM564612     4  0.5167    -0.0572 0.000 0.488 0.004 0.508
#> GSM564613     4  0.0188     0.7027 0.000 0.004 0.000 0.996
#> GSM564614     1  0.2408     0.8947 0.896 0.000 0.104 0.000
#> GSM564631     3  0.2469     0.7241 0.000 0.000 0.892 0.108
#> GSM564632     2  0.0000     0.8383 0.000 1.000 0.000 0.000
#> GSM564633     2  0.0469     0.8343 0.000 0.988 0.012 0.000
#> GSM564634     4  0.0188     0.6997 0.000 0.000 0.004 0.996
#> GSM564635     2  0.5112     0.3672 0.000 0.608 0.384 0.008
#> GSM564636     4  0.7595     0.0708 0.000 0.372 0.200 0.428
#> GSM564637     2  0.4673     0.7160 0.000 0.792 0.132 0.076
#> GSM564638     3  0.2469     0.7241 0.000 0.000 0.892 0.108
#> GSM564639     3  0.2469     0.7241 0.000 0.000 0.892 0.108
#> GSM564640     2  0.5080     0.2590 0.000 0.576 0.004 0.420
#> GSM564641     4  0.6521     0.0268 0.000 0.076 0.412 0.512
#> GSM564642     2  0.4992     0.1096 0.000 0.524 0.000 0.476
#> GSM564643     2  0.0000     0.8383 0.000 1.000 0.000 0.000
#> GSM564644     4  0.5000    -0.0799 0.000 0.500 0.000 0.500
#> GSM564645     3  0.3674     0.7070 0.000 0.044 0.852 0.104
#> GSM564647     4  0.5147     0.0379 0.000 0.460 0.004 0.536
#> GSM564648     2  0.0000     0.8383 0.000 1.000 0.000 0.000
#> GSM564649     3  0.7904    -0.0784 0.000 0.308 0.368 0.324
#> GSM564650     4  0.0707     0.7022 0.000 0.020 0.000 0.980
#> GSM564651     2  0.0000     0.8383 0.000 1.000 0.000 0.000
#> GSM564652     2  0.0000     0.8383 0.000 1.000 0.000 0.000
#> GSM564653     2  0.0000     0.8383 0.000 1.000 0.000 0.000
#> GSM564654     2  0.0188     0.8366 0.000 0.996 0.004 0.000
#> GSM564655     2  0.1637     0.8121 0.000 0.940 0.060 0.000
#> GSM564656     3  0.4564     0.4395 0.000 0.328 0.672 0.000
#> GSM564657     3  0.2469     0.7241 0.000 0.000 0.892 0.108
#> GSM564658     2  0.5119     0.2026 0.000 0.556 0.004 0.440
#> GSM564659     2  0.4931     0.7001 0.000 0.776 0.132 0.092
#> GSM564660     4  0.2647     0.6715 0.000 0.120 0.000 0.880
#> GSM564661     2  0.0000     0.8383 0.000 1.000 0.000 0.000
#> GSM564662     3  0.2469     0.7241 0.000 0.000 0.892 0.108
#> GSM564663     4  0.3626     0.6212 0.000 0.184 0.004 0.812
#> GSM564664     2  0.2011     0.7911 0.000 0.920 0.000 0.080
#> GSM564665     2  0.5217     0.6804 0.000 0.756 0.136 0.108
#> GSM564666     4  0.4313     0.5150 0.000 0.260 0.004 0.736
#> GSM564667     3  0.4585     0.4616 0.000 0.000 0.668 0.332
#> GSM564668     2  0.0469     0.8340 0.000 0.988 0.012 0.000
#> GSM564669     2  0.4941     0.1713 0.000 0.564 0.436 0.000
#> GSM564670     4  0.0188     0.7027 0.000 0.004 0.000 0.996
#> GSM564671     2  0.0000     0.8383 0.000 1.000 0.000 0.000
#> GSM564672     3  0.2469     0.7241 0.000 0.000 0.892 0.108
#> GSM564673     2  0.0000     0.8383 0.000 1.000 0.000 0.000
#> GSM564674     4  0.5168    -0.0708 0.000 0.496 0.004 0.500
#> GSM564675     4  0.2814     0.6642 0.000 0.132 0.000 0.868
#> GSM564676     4  0.0188     0.7027 0.000 0.004 0.000 0.996
#> GSM564677     2  0.0000     0.8383 0.000 1.000 0.000 0.000
#> GSM564678     4  0.0657     0.7020 0.000 0.012 0.004 0.984
#> GSM564679     2  0.5039     0.2950 0.000 0.592 0.004 0.404
#> GSM564680     3  0.3149     0.6948 0.000 0.088 0.880 0.032
#> GSM564682     4  0.0188     0.6997 0.000 0.000 0.004 0.996
#> GSM564683     3  0.2469     0.7241 0.000 0.000 0.892 0.108
#> GSM564684     2  0.0000     0.8383 0.000 1.000 0.000 0.000
#> GSM564685     3  0.2469     0.7241 0.000 0.000 0.892 0.108
#> GSM564686     2  0.3697     0.7678 0.000 0.852 0.100 0.048
#> GSM564687     2  0.4992     0.1096 0.000 0.524 0.000 0.476
#> GSM564688     2  0.0000     0.8383 0.000 1.000 0.000 0.000
#> GSM564689     4  0.0188     0.7027 0.000 0.004 0.000 0.996
#> GSM564690     4  0.0779     0.7013 0.000 0.016 0.004 0.980
#> GSM564691     4  0.0188     0.7027 0.000 0.004 0.000 0.996
#> GSM564692     2  0.0000     0.8383 0.000 1.000 0.000 0.000
#> GSM564694     2  0.4977     0.1608 0.000 0.540 0.000 0.460
#> GSM564695     2  0.4283     0.6043 0.000 0.740 0.004 0.256
#> GSM564696     3  0.4804     0.3769 0.000 0.000 0.616 0.384
#> GSM564697     4  0.0188     0.7027 0.000 0.004 0.000 0.996
#> GSM564698     3  0.2704     0.6733 0.000 0.124 0.876 0.000
#> GSM564700     2  0.0000     0.8383 0.000 1.000 0.000 0.000
#> GSM564701     2  0.0188     0.8375 0.000 0.996 0.004 0.000
#> GSM564702     2  0.0000     0.8383 0.000 1.000 0.000 0.000
#> GSM564703     1  0.4188     0.7040 0.752 0.000 0.244 0.004
#> GSM564704     1  0.0000     0.8982 1.000 0.000 0.000 0.000
#> GSM564705     1  0.0000     0.8982 1.000 0.000 0.000 0.000
#> GSM564706     3  0.3710     0.6108 0.192 0.000 0.804 0.004
#> GSM564707     1  0.0469     0.8997 0.988 0.000 0.012 0.000
#> GSM564708     1  0.4948     0.3724 0.560 0.000 0.440 0.000
#> GSM564709     1  0.0000     0.8982 1.000 0.000 0.000 0.000
#> GSM564710     1  0.0000     0.8982 1.000 0.000 0.000 0.000
#> GSM564711     1  0.4991     0.4996 0.608 0.000 0.388 0.004
#> GSM564712     1  0.0000     0.8982 1.000 0.000 0.000 0.000
#> GSM564713     1  0.2530     0.8953 0.896 0.000 0.100 0.004
#> GSM564714     4  0.7440    -0.1180 0.172 0.000 0.388 0.440
#> GSM564715     1  0.0000     0.8982 1.000 0.000 0.000 0.000
#> GSM564716     1  0.0000     0.8982 1.000 0.000 0.000 0.000
#> GSM564717     1  0.6222     0.3720 0.532 0.000 0.056 0.412
#> GSM564718     1  0.2593     0.8938 0.892 0.000 0.104 0.004
#> GSM564719     4  0.6425    -0.1495 0.424 0.000 0.068 0.508
#> GSM564720     1  0.1940     0.8572 0.924 0.000 0.000 0.076
#> GSM564721     1  0.0000     0.8982 1.000 0.000 0.000 0.000
#> GSM564722     1  0.5873     0.6482 0.668 0.000 0.076 0.256
#> GSM564723     1  0.0000     0.8982 1.000 0.000 0.000 0.000
#> GSM564724     1  0.2593     0.8938 0.892 0.000 0.104 0.004
#> GSM564725     1  0.0000     0.8982 1.000 0.000 0.000 0.000
#> GSM564726     1  0.2408     0.8947 0.896 0.000 0.104 0.000
#> GSM564727     1  0.0000     0.8982 1.000 0.000 0.000 0.000
#> GSM564728     1  0.2408     0.8947 0.896 0.000 0.104 0.000
#> GSM564729     1  0.0469     0.8986 0.988 0.000 0.012 0.000
#> GSM564730     1  0.0000     0.8982 1.000 0.000 0.000 0.000
#> GSM564731     1  0.2593     0.8938 0.892 0.000 0.104 0.004
#> GSM564732     1  0.2593     0.8938 0.892 0.000 0.104 0.004
#> GSM564733     1  0.2216     0.8973 0.908 0.000 0.092 0.000
#> GSM564734     1  0.1940     0.8989 0.924 0.000 0.076 0.000
#> GSM564735     1  0.2593     0.8938 0.892 0.000 0.104 0.004
#> GSM564736     1  0.2831     0.8855 0.876 0.000 0.120 0.004
#> GSM564737     1  0.0000     0.8982 1.000 0.000 0.000 0.000
#> GSM564738     1  0.2593     0.8938 0.892 0.000 0.104 0.004
#> GSM564739     1  0.1389     0.8980 0.952 0.000 0.048 0.000
#> GSM564740     1  0.3015     0.8905 0.884 0.000 0.092 0.024
#> GSM564741     1  0.2593     0.8938 0.892 0.000 0.104 0.004
#> GSM564742     3  0.5229     0.0264 0.428 0.000 0.564 0.008
#> GSM564743     1  0.4277     0.6193 0.720 0.000 0.000 0.280
#> GSM564744     1  0.0000     0.8982 1.000 0.000 0.000 0.000
#> GSM564745     1  0.0000     0.8982 1.000 0.000 0.000 0.000
#> GSM564746     1  0.6136     0.4943 0.584 0.000 0.060 0.356
#> GSM564747     1  0.2530     0.8951 0.896 0.000 0.100 0.004
#> GSM564748     1  0.2530     0.8953 0.896 0.000 0.100 0.004
#> GSM564749     1  0.3858     0.8410 0.844 0.000 0.056 0.100
#> GSM564750     3  0.4188     0.5371 0.244 0.000 0.752 0.004
#> GSM564751     1  0.5167     0.2212 0.508 0.000 0.488 0.004
#> GSM564752     3  0.3257     0.6390 0.152 0.000 0.844 0.004
#> GSM564753     3  0.3105     0.6458 0.140 0.000 0.856 0.004
#> GSM564754     1  0.0000     0.8982 1.000 0.000 0.000 0.000
#> GSM564755     1  0.2408     0.8947 0.896 0.000 0.104 0.000
#> GSM564756     1  0.1389     0.9001 0.952 0.000 0.048 0.000
#> GSM564757     1  0.2593     0.8938 0.892 0.000 0.104 0.004
#> GSM564758     3  0.4761     0.3451 0.332 0.000 0.664 0.004
#> GSM564759     3  0.3105     0.6458 0.140 0.000 0.856 0.004
#> GSM564760     1  0.2216     0.8973 0.908 0.000 0.092 0.000
#> GSM564761     1  0.0000     0.8982 1.000 0.000 0.000 0.000
#> GSM564762     1  0.2593     0.8938 0.892 0.000 0.104 0.004
#> GSM564681     2  0.0188     0.8375 0.000 0.996 0.004 0.000
#> GSM564693     2  0.0188     0.8375 0.000 0.996 0.004 0.000
#> GSM564646     2  0.0592     0.8321 0.000 0.984 0.000 0.016
#> GSM564699     2  0.6295     0.5771 0.000 0.660 0.196 0.144

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM564615     4  0.0290     0.4625 0.008 0.000 0.000 0.992 0.000
#> GSM564616     5  0.1965     0.8105 0.096 0.000 0.000 0.000 0.904
#> GSM564617     2  0.1043     0.6852 0.040 0.960 0.000 0.000 0.000
#> GSM564618     5  0.2127     0.8034 0.108 0.000 0.000 0.000 0.892
#> GSM564619     4  0.4367     0.4346 0.416 0.000 0.004 0.580 0.000
#> GSM564620     1  0.4138     0.4008 0.616 0.000 0.000 0.384 0.000
#> GSM564621     4  0.4359     0.4351 0.412 0.000 0.004 0.584 0.000
#> GSM564622     5  0.1270     0.8261 0.052 0.000 0.000 0.000 0.948
#> GSM564623     2  0.0451     0.7090 0.000 0.988 0.004 0.000 0.008
#> GSM564624     2  0.3607     0.7145 0.000 0.752 0.004 0.000 0.244
#> GSM564625     4  0.0880     0.4623 0.032 0.000 0.000 0.968 0.000
#> GSM564626     4  0.4375     0.4325 0.420 0.000 0.004 0.576 0.000
#> GSM564627     1  0.4290     0.6238 0.680 0.016 0.000 0.304 0.000
#> GSM564628     2  0.4108     0.6711 0.000 0.684 0.008 0.000 0.308
#> GSM564629     1  0.6572     0.5756 0.452 0.220 0.000 0.328 0.000
#> GSM564630     2  0.5673     0.5589 0.216 0.628 0.000 0.000 0.156
#> GSM564609     5  0.5313     0.1356 0.000 0.056 0.388 0.000 0.556
#> GSM564610     1  0.3003     0.5654 0.812 0.000 0.000 0.188 0.000
#> GSM564611     1  0.3343     0.6086 0.812 0.016 0.000 0.172 0.000
#> GSM564612     2  0.4465     0.6497 0.000 0.736 0.204 0.000 0.060
#> GSM564613     2  0.1197     0.6796 0.048 0.952 0.000 0.000 0.000
#> GSM564614     4  0.0404     0.4641 0.012 0.000 0.000 0.988 0.000
#> GSM564631     3  0.1914     0.6930 0.000 0.060 0.924 0.000 0.016
#> GSM564632     5  0.1408     0.8257 0.000 0.044 0.008 0.000 0.948
#> GSM564633     5  0.4735     0.4255 0.000 0.044 0.284 0.000 0.672
#> GSM564634     2  0.1117     0.7010 0.016 0.964 0.020 0.000 0.000
#> GSM564635     3  0.5296     0.0552 0.000 0.048 0.480 0.000 0.472
#> GSM564636     2  0.5338     0.3327 0.000 0.544 0.400 0.000 0.056
#> GSM564637     2  0.6633     0.0430 0.000 0.396 0.384 0.000 0.220
#> GSM564638     3  0.0451     0.7024 0.004 0.008 0.988 0.000 0.000
#> GSM564639     3  0.0451     0.6997 0.008 0.004 0.988 0.000 0.000
#> GSM564640     2  0.4067     0.6798 0.000 0.692 0.008 0.000 0.300
#> GSM564641     2  0.4640     0.6009 0.000 0.696 0.256 0.000 0.048
#> GSM564642     2  0.3980     0.6963 0.000 0.708 0.008 0.000 0.284
#> GSM564643     5  0.0854     0.8433 0.008 0.012 0.004 0.000 0.976
#> GSM564644     2  0.3835     0.7087 0.000 0.732 0.008 0.000 0.260
#> GSM564645     3  0.1547     0.7105 0.004 0.016 0.948 0.000 0.032
#> GSM564647     2  0.4434     0.6470 0.000 0.736 0.208 0.000 0.056
#> GSM564648     5  0.0693     0.8412 0.000 0.012 0.008 0.000 0.980
#> GSM564649     2  0.5557     0.1510 0.000 0.472 0.460 0.000 0.068
#> GSM564650     2  0.1251     0.7185 0.000 0.956 0.008 0.000 0.036
#> GSM564651     5  0.0613     0.8435 0.008 0.004 0.004 0.000 0.984
#> GSM564652     5  0.0703     0.8391 0.024 0.000 0.000 0.000 0.976
#> GSM564653     5  0.0290     0.8425 0.008 0.000 0.000 0.000 0.992
#> GSM564654     5  0.1461     0.8356 0.028 0.000 0.016 0.004 0.952
#> GSM564655     5  0.4547     0.5087 0.000 0.044 0.252 0.000 0.704
#> GSM564656     3  0.4736     0.2650 0.000 0.020 0.576 0.000 0.404
#> GSM564657     3  0.3010     0.5842 0.004 0.172 0.824 0.000 0.000
#> GSM564658     2  0.5404     0.6511 0.100 0.636 0.000 0.000 0.264
#> GSM564659     3  0.6428     0.1886 0.000 0.176 0.440 0.000 0.384
#> GSM564660     2  0.3013     0.7327 0.000 0.832 0.008 0.000 0.160
#> GSM564661     5  0.0290     0.8425 0.008 0.000 0.000 0.000 0.992
#> GSM564662     3  0.1568     0.7046 0.000 0.036 0.944 0.000 0.020
#> GSM564663     2  0.3643     0.7218 0.008 0.776 0.004 0.000 0.212
#> GSM564664     5  0.4415     0.0539 0.000 0.388 0.008 0.000 0.604
#> GSM564665     3  0.6719    -0.0701 0.000 0.372 0.380 0.000 0.248
#> GSM564666     2  0.4400     0.6450 0.000 0.736 0.212 0.000 0.052
#> GSM564667     2  0.4658     0.1666 0.000 0.504 0.484 0.000 0.012
#> GSM564668     5  0.2409     0.8068 0.028 0.000 0.056 0.008 0.908
#> GSM564669     5  0.5071     0.0262 0.000 0.012 0.440 0.016 0.532
#> GSM564670     2  0.2116     0.7060 0.004 0.912 0.076 0.000 0.008
#> GSM564671     5  0.0693     0.8412 0.000 0.012 0.008 0.000 0.980
#> GSM564672     3  0.4360     0.4057 0.000 0.284 0.692 0.000 0.024
#> GSM564673     5  0.0609     0.8400 0.020 0.000 0.000 0.000 0.980
#> GSM564674     2  0.3835     0.7087 0.000 0.732 0.008 0.000 0.260
#> GSM564675     2  0.1764     0.7260 0.000 0.928 0.008 0.000 0.064
#> GSM564676     2  0.0880     0.6899 0.032 0.968 0.000 0.000 0.000
#> GSM564677     5  0.0794     0.8386 0.028 0.000 0.000 0.000 0.972
#> GSM564678     2  0.1043     0.6852 0.040 0.960 0.000 0.000 0.000
#> GSM564679     2  0.5026     0.6553 0.064 0.656 0.000 0.000 0.280
#> GSM564680     3  0.1270     0.7081 0.000 0.000 0.948 0.000 0.052
#> GSM564682     2  0.3243     0.6594 0.004 0.812 0.180 0.000 0.004
#> GSM564683     3  0.0451     0.6997 0.008 0.004 0.988 0.000 0.000
#> GSM564684     5  0.1484     0.8229 0.000 0.048 0.008 0.000 0.944
#> GSM564685     3  0.0865     0.7022 0.004 0.024 0.972 0.000 0.000
#> GSM564686     5  0.6183    -0.2471 0.000 0.408 0.136 0.000 0.456
#> GSM564687     2  0.3957     0.6974 0.000 0.712 0.008 0.000 0.280
#> GSM564688     5  0.0727     0.8428 0.004 0.012 0.004 0.000 0.980
#> GSM564689     2  0.1408     0.6856 0.044 0.948 0.000 0.000 0.008
#> GSM564690     2  0.3622     0.7150 0.048 0.816 0.000 0.000 0.136
#> GSM564691     2  0.2170     0.7003 0.004 0.904 0.088 0.000 0.004
#> GSM564692     5  0.1408     0.8257 0.000 0.044 0.008 0.000 0.948
#> GSM564694     2  0.3980     0.6951 0.000 0.708 0.008 0.000 0.284
#> GSM564695     2  0.5918     0.4436 0.020 0.524 0.060 0.000 0.396
#> GSM564696     3  0.4552    -0.1231 0.008 0.468 0.524 0.000 0.000
#> GSM564697     2  0.0963     0.6877 0.036 0.964 0.000 0.000 0.000
#> GSM564698     3  0.1704     0.7032 0.004 0.000 0.928 0.000 0.068
#> GSM564700     5  0.1168     0.8329 0.000 0.032 0.008 0.000 0.960
#> GSM564701     5  0.2179     0.8007 0.112 0.000 0.000 0.000 0.888
#> GSM564702     5  0.1121     0.8346 0.044 0.000 0.000 0.000 0.956
#> GSM564703     4  0.4761     0.3761 0.124 0.000 0.144 0.732 0.000
#> GSM564704     4  0.4321     0.4362 0.396 0.000 0.004 0.600 0.000
#> GSM564705     4  0.4375     0.4325 0.420 0.000 0.004 0.576 0.000
#> GSM564706     4  0.6189    -0.3809 0.384 0.000 0.140 0.476 0.000
#> GSM564707     4  0.4225     0.4314 0.364 0.000 0.004 0.632 0.000
#> GSM564708     4  0.4879     0.4022 0.156 0.000 0.124 0.720 0.000
#> GSM564709     4  0.4367     0.4346 0.416 0.000 0.004 0.580 0.000
#> GSM564710     4  0.4443     0.3728 0.472 0.000 0.004 0.524 0.000
#> GSM564711     4  0.4917    -0.3774 0.416 0.000 0.028 0.556 0.000
#> GSM564712     4  0.4390     0.4267 0.428 0.000 0.004 0.568 0.000
#> GSM564713     4  0.0290     0.4621 0.008 0.000 0.000 0.992 0.000
#> GSM564714     1  0.6155     0.4235 0.460 0.040 0.048 0.452 0.000
#> GSM564715     4  0.4367     0.4291 0.416 0.000 0.004 0.580 0.000
#> GSM564716     4  0.4367     0.4346 0.416 0.000 0.004 0.580 0.000
#> GSM564717     1  0.6054     0.6385 0.560 0.160 0.000 0.280 0.000
#> GSM564718     4  0.4165    -0.1970 0.320 0.000 0.008 0.672 0.000
#> GSM564719     1  0.6612     0.5734 0.452 0.240 0.000 0.308 0.000
#> GSM564720     1  0.3242     0.5978 0.816 0.012 0.000 0.172 0.000
#> GSM564721     4  0.4367     0.4346 0.416 0.000 0.004 0.580 0.000
#> GSM564722     1  0.6130     0.5296 0.448 0.128 0.000 0.424 0.000
#> GSM564723     1  0.3398     0.4561 0.780 0.000 0.004 0.216 0.000
#> GSM564724     4  0.0000     0.4574 0.000 0.000 0.000 1.000 0.000
#> GSM564725     4  0.4367     0.4346 0.416 0.000 0.004 0.580 0.000
#> GSM564726     4  0.0290     0.4625 0.008 0.000 0.000 0.992 0.000
#> GSM564727     4  0.4341     0.4359 0.404 0.000 0.004 0.592 0.000
#> GSM564728     4  0.0290     0.4625 0.008 0.000 0.000 0.992 0.000
#> GSM564729     4  0.4288     0.4413 0.384 0.000 0.004 0.612 0.000
#> GSM564730     4  0.4367     0.4346 0.416 0.000 0.004 0.580 0.000
#> GSM564731     4  0.3966    -0.2111 0.336 0.000 0.000 0.664 0.000
#> GSM564732     4  0.0880     0.4321 0.032 0.000 0.000 0.968 0.000
#> GSM564733     4  0.1043     0.4679 0.040 0.000 0.000 0.960 0.000
#> GSM564734     4  0.2690     0.4359 0.156 0.000 0.000 0.844 0.000
#> GSM564735     4  0.1469     0.4161 0.036 0.000 0.016 0.948 0.000
#> GSM564736     4  0.0566     0.4457 0.012 0.000 0.004 0.984 0.000
#> GSM564737     4  0.4375     0.4325 0.420 0.000 0.004 0.576 0.000
#> GSM564738     4  0.1211     0.4253 0.024 0.000 0.016 0.960 0.000
#> GSM564739     4  0.3143     0.4614 0.204 0.000 0.000 0.796 0.000
#> GSM564740     4  0.4367    -0.3617 0.416 0.004 0.000 0.580 0.000
#> GSM564741     4  0.0000     0.4574 0.000 0.000 0.000 1.000 0.000
#> GSM564742     4  0.5607    -0.3928 0.408 0.004 0.064 0.524 0.000
#> GSM564743     1  0.3772     0.6235 0.792 0.036 0.000 0.172 0.000
#> GSM564744     4  0.4375     0.4317 0.420 0.000 0.004 0.576 0.000
#> GSM564745     4  0.4383     0.4298 0.424 0.000 0.004 0.572 0.000
#> GSM564746     1  0.6114     0.6287 0.536 0.152 0.000 0.312 0.000
#> GSM564747     4  0.4219    -0.3555 0.416 0.000 0.000 0.584 0.000
#> GSM564748     4  0.1018     0.4604 0.016 0.000 0.016 0.968 0.000
#> GSM564749     1  0.4445     0.6398 0.676 0.024 0.000 0.300 0.000
#> GSM564750     4  0.4126     0.0329 0.000 0.000 0.380 0.620 0.000
#> GSM564751     4  0.4862    -0.0150 0.032 0.000 0.364 0.604 0.000
#> GSM564752     4  0.6203    -0.1828 0.140 0.000 0.396 0.464 0.000
#> GSM564753     3  0.5396    -0.1758 0.056 0.000 0.500 0.444 0.000
#> GSM564754     4  0.4331     0.4357 0.400 0.000 0.004 0.596 0.000
#> GSM564755     4  0.0510     0.4652 0.016 0.000 0.000 0.984 0.000
#> GSM564756     4  0.3707     0.4256 0.284 0.000 0.000 0.716 0.000
#> GSM564757     4  0.3480    -0.0119 0.248 0.000 0.000 0.752 0.000
#> GSM564758     4  0.5659    -0.1071 0.100 0.000 0.320 0.580 0.000
#> GSM564759     4  0.6377    -0.3803 0.380 0.000 0.168 0.452 0.000
#> GSM564760     4  0.1121     0.4665 0.044 0.000 0.000 0.956 0.000
#> GSM564761     4  0.4843     0.4122 0.428 0.000 0.004 0.552 0.016
#> GSM564762     4  0.3752    -0.1147 0.292 0.000 0.000 0.708 0.000
#> GSM564681     5  0.2127     0.8030 0.108 0.000 0.000 0.000 0.892
#> GSM564693     5  0.0693     0.8412 0.000 0.012 0.008 0.000 0.980
#> GSM564646     5  0.2753     0.7298 0.000 0.136 0.008 0.000 0.856
#> GSM564699     2  0.6299     0.1081 0.000 0.432 0.416 0.000 0.152

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM564615     4  0.0713      0.805 0.028 0.000 0.000 0.972 0.000 0.000
#> GSM564616     5  0.2565      0.813 0.072 0.012 0.000 0.004 0.888 0.024
#> GSM564617     2  0.0146      0.894 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM564618     5  0.2471      0.812 0.052 0.000 0.000 0.004 0.888 0.056
#> GSM564619     1  0.2912      0.949 0.784 0.000 0.000 0.216 0.000 0.000
#> GSM564620     6  0.5294      0.282 0.356 0.000 0.000 0.112 0.000 0.532
#> GSM564621     1  0.3175      0.917 0.744 0.000 0.000 0.256 0.000 0.000
#> GSM564622     5  0.0665      0.850 0.008 0.000 0.004 0.000 0.980 0.008
#> GSM564623     2  0.0000      0.894 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564624     2  0.1116      0.889 0.008 0.960 0.000 0.000 0.004 0.028
#> GSM564625     4  0.1391      0.801 0.040 0.000 0.000 0.944 0.000 0.016
#> GSM564626     1  0.2823      0.951 0.796 0.000 0.000 0.204 0.000 0.000
#> GSM564627     6  0.2506      0.853 0.068 0.000 0.000 0.052 0.000 0.880
#> GSM564628     2  0.1226      0.885 0.004 0.952 0.000 0.000 0.040 0.004
#> GSM564629     6  0.2110      0.859 0.012 0.004 0.000 0.084 0.000 0.900
#> GSM564630     2  0.3794      0.777 0.144 0.788 0.000 0.004 0.004 0.060
#> GSM564609     5  0.3221      0.646 0.000 0.000 0.264 0.000 0.736 0.000
#> GSM564610     6  0.3570      0.741 0.144 0.000 0.000 0.064 0.000 0.792
#> GSM564611     6  0.2302      0.817 0.120 0.000 0.000 0.008 0.000 0.872
#> GSM564612     2  0.2301      0.876 0.008 0.912 0.028 0.004 0.008 0.040
#> GSM564613     2  0.0146      0.894 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM564614     4  0.0260      0.812 0.008 0.000 0.000 0.992 0.000 0.000
#> GSM564631     3  0.0603      0.842 0.000 0.016 0.980 0.000 0.000 0.004
#> GSM564632     5  0.0582      0.853 0.004 0.004 0.004 0.000 0.984 0.004
#> GSM564633     5  0.2278      0.785 0.000 0.000 0.128 0.000 0.868 0.004
#> GSM564634     2  0.0146      0.894 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM564635     5  0.3737      0.458 0.000 0.000 0.392 0.000 0.608 0.000
#> GSM564636     2  0.3534      0.627 0.000 0.716 0.276 0.000 0.008 0.000
#> GSM564637     5  0.5885      0.259 0.000 0.248 0.276 0.000 0.476 0.000
#> GSM564638     3  0.0291      0.842 0.000 0.004 0.992 0.000 0.000 0.004
#> GSM564639     3  0.0000      0.842 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM564640     2  0.1296      0.882 0.004 0.948 0.000 0.000 0.044 0.004
#> GSM564641     2  0.1349      0.872 0.000 0.940 0.056 0.000 0.004 0.000
#> GSM564642     2  0.0748      0.893 0.000 0.976 0.004 0.000 0.016 0.004
#> GSM564643     5  0.0291      0.852 0.000 0.000 0.004 0.000 0.992 0.004
#> GSM564644     2  0.0458      0.893 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM564645     3  0.0405      0.842 0.000 0.004 0.988 0.000 0.008 0.000
#> GSM564647     2  0.0891      0.888 0.000 0.968 0.024 0.000 0.008 0.000
#> GSM564648     5  0.0582      0.853 0.004 0.004 0.004 0.000 0.984 0.004
#> GSM564649     2  0.3881      0.425 0.000 0.600 0.396 0.000 0.004 0.000
#> GSM564650     2  0.0291      0.894 0.004 0.992 0.000 0.000 0.004 0.000
#> GSM564651     5  0.0291      0.853 0.000 0.004 0.000 0.000 0.992 0.004
#> GSM564652     5  0.0146      0.852 0.000 0.000 0.000 0.000 0.996 0.004
#> GSM564653     5  0.0291      0.853 0.004 0.004 0.000 0.000 0.992 0.000
#> GSM564654     5  0.0820      0.850 0.000 0.000 0.012 0.000 0.972 0.016
#> GSM564655     5  0.1501      0.824 0.000 0.000 0.076 0.000 0.924 0.000
#> GSM564656     5  0.3774      0.427 0.000 0.000 0.408 0.000 0.592 0.000
#> GSM564657     3  0.2320      0.770 0.000 0.132 0.864 0.000 0.000 0.004
#> GSM564658     2  0.4771      0.719 0.196 0.712 0.000 0.004 0.032 0.056
#> GSM564659     5  0.5031      0.340 0.000 0.064 0.404 0.000 0.528 0.004
#> GSM564660     2  0.0260      0.894 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM564661     5  0.0862      0.851 0.004 0.008 0.000 0.000 0.972 0.016
#> GSM564662     3  0.0146      0.843 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM564663     2  0.1440      0.883 0.004 0.944 0.000 0.004 0.004 0.044
#> GSM564664     5  0.4199      0.111 0.000 0.444 0.008 0.000 0.544 0.004
#> GSM564665     5  0.5636      0.347 0.000 0.180 0.300 0.000 0.520 0.000
#> GSM564666     2  0.1152      0.882 0.000 0.952 0.044 0.000 0.000 0.004
#> GSM564667     2  0.3756      0.418 0.000 0.600 0.400 0.000 0.000 0.000
#> GSM564668     5  0.1442      0.838 0.000 0.000 0.040 0.012 0.944 0.004
#> GSM564669     5  0.3741      0.570 0.000 0.000 0.320 0.008 0.672 0.000
#> GSM564670     2  0.0508      0.894 0.000 0.984 0.004 0.000 0.000 0.012
#> GSM564671     5  0.0436      0.853 0.000 0.004 0.004 0.004 0.988 0.000
#> GSM564672     3  0.2527      0.727 0.000 0.168 0.832 0.000 0.000 0.000
#> GSM564673     5  0.0146      0.853 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM564674     2  0.0820      0.893 0.000 0.972 0.000 0.000 0.012 0.016
#> GSM564675     2  0.0000      0.894 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564676     2  0.0000      0.894 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564677     5  0.0520      0.852 0.008 0.000 0.000 0.000 0.984 0.008
#> GSM564678     2  0.1049      0.888 0.008 0.960 0.000 0.000 0.000 0.032
#> GSM564679     2  0.4810      0.717 0.192 0.712 0.000 0.004 0.036 0.056
#> GSM564680     3  0.1714      0.787 0.000 0.000 0.908 0.000 0.092 0.000
#> GSM564682     2  0.0520      0.894 0.000 0.984 0.008 0.000 0.000 0.008
#> GSM564683     3  0.0291      0.840 0.004 0.000 0.992 0.000 0.000 0.004
#> GSM564684     5  0.0767      0.852 0.000 0.012 0.008 0.000 0.976 0.004
#> GSM564685     3  0.1007      0.833 0.000 0.044 0.956 0.000 0.000 0.000
#> GSM564686     2  0.4822      0.511 0.000 0.628 0.072 0.000 0.296 0.004
#> GSM564687     2  0.0692      0.892 0.000 0.976 0.004 0.000 0.020 0.000
#> GSM564688     5  0.0436      0.853 0.004 0.004 0.000 0.000 0.988 0.004
#> GSM564689     2  0.0000      0.894 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM564690     2  0.0653      0.893 0.004 0.980 0.000 0.000 0.012 0.004
#> GSM564691     2  0.0146      0.894 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM564692     5  0.0653      0.851 0.004 0.012 0.000 0.000 0.980 0.004
#> GSM564694     2  0.0603      0.893 0.000 0.980 0.000 0.000 0.016 0.004
#> GSM564695     2  0.5089      0.725 0.100 0.724 0.004 0.004 0.116 0.052
#> GSM564696     2  0.3221      0.648 0.000 0.736 0.264 0.000 0.000 0.000
#> GSM564697     2  0.0146      0.894 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM564698     3  0.2135      0.749 0.000 0.000 0.872 0.000 0.128 0.000
#> GSM564700     5  0.0291      0.853 0.004 0.004 0.000 0.000 0.992 0.000
#> GSM564701     5  0.3911      0.721 0.160 0.000 0.000 0.004 0.768 0.068
#> GSM564702     5  0.0806      0.850 0.008 0.000 0.000 0.000 0.972 0.020
#> GSM564703     3  0.6123     -0.110 0.184 0.000 0.408 0.396 0.000 0.012
#> GSM564704     1  0.3802      0.825 0.676 0.000 0.000 0.312 0.000 0.012
#> GSM564705     1  0.2730      0.946 0.808 0.000 0.000 0.192 0.000 0.000
#> GSM564706     6  0.3046      0.803 0.000 0.000 0.012 0.188 0.000 0.800
#> GSM564707     1  0.3956      0.891 0.712 0.000 0.000 0.252 0.000 0.036
#> GSM564708     4  0.5757      0.117 0.148 0.000 0.404 0.444 0.000 0.004
#> GSM564709     1  0.2823      0.951 0.796 0.000 0.000 0.204 0.000 0.000
#> GSM564710     1  0.2389      0.871 0.864 0.000 0.000 0.128 0.000 0.008
#> GSM564711     6  0.2520      0.834 0.000 0.000 0.004 0.152 0.000 0.844
#> GSM564712     1  0.2823      0.951 0.796 0.000 0.000 0.204 0.000 0.000
#> GSM564713     4  0.0891      0.806 0.024 0.000 0.000 0.968 0.000 0.008
#> GSM564714     6  0.2257      0.848 0.000 0.000 0.008 0.116 0.000 0.876
#> GSM564715     1  0.3588      0.918 0.776 0.000 0.000 0.180 0.000 0.044
#> GSM564716     1  0.2912      0.949 0.784 0.000 0.000 0.216 0.000 0.000
#> GSM564717     6  0.2513      0.852 0.060 0.008 0.000 0.044 0.000 0.888
#> GSM564718     4  0.3756      0.144 0.000 0.000 0.000 0.600 0.000 0.400
#> GSM564719     6  0.2339      0.857 0.020 0.012 0.000 0.072 0.000 0.896
#> GSM564720     6  0.2402      0.819 0.120 0.000 0.000 0.012 0.000 0.868
#> GSM564721     1  0.2941      0.948 0.780 0.000 0.000 0.220 0.000 0.000
#> GSM564722     6  0.1951      0.861 0.016 0.000 0.000 0.076 0.000 0.908
#> GSM564723     1  0.3871      0.764 0.768 0.000 0.000 0.084 0.000 0.148
#> GSM564724     4  0.0146      0.812 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM564725     1  0.3076      0.934 0.760 0.000 0.000 0.240 0.000 0.000
#> GSM564726     4  0.0260      0.812 0.008 0.000 0.000 0.992 0.000 0.000
#> GSM564727     1  0.3217      0.943 0.768 0.000 0.000 0.224 0.000 0.008
#> GSM564728     4  0.0458      0.810 0.016 0.000 0.000 0.984 0.000 0.000
#> GSM564729     4  0.2793      0.584 0.200 0.000 0.000 0.800 0.000 0.000
#> GSM564730     1  0.2793      0.950 0.800 0.000 0.000 0.200 0.000 0.000
#> GSM564731     6  0.3828      0.359 0.000 0.000 0.000 0.440 0.000 0.560
#> GSM564732     4  0.0777      0.811 0.004 0.000 0.000 0.972 0.000 0.024
#> GSM564733     4  0.1007      0.796 0.044 0.000 0.000 0.956 0.000 0.000
#> GSM564734     4  0.1528      0.795 0.048 0.000 0.000 0.936 0.000 0.016
#> GSM564735     4  0.1610      0.770 0.000 0.000 0.000 0.916 0.000 0.084
#> GSM564736     4  0.0547      0.810 0.000 0.000 0.000 0.980 0.000 0.020
#> GSM564737     1  0.2762      0.948 0.804 0.000 0.000 0.196 0.000 0.000
#> GSM564738     4  0.1141      0.801 0.000 0.000 0.000 0.948 0.000 0.052
#> GSM564739     4  0.2996      0.536 0.228 0.000 0.000 0.772 0.000 0.000
#> GSM564740     6  0.1714      0.857 0.000 0.000 0.000 0.092 0.000 0.908
#> GSM564741     4  0.0458      0.811 0.000 0.000 0.000 0.984 0.000 0.016
#> GSM564742     6  0.2613      0.839 0.000 0.000 0.012 0.140 0.000 0.848
#> GSM564743     6  0.2163      0.833 0.092 0.000 0.000 0.016 0.000 0.892
#> GSM564744     1  0.2902      0.946 0.800 0.000 0.000 0.196 0.000 0.004
#> GSM564745     1  0.2883      0.951 0.788 0.000 0.000 0.212 0.000 0.000
#> GSM564746     6  0.2250      0.859 0.040 0.000 0.000 0.064 0.000 0.896
#> GSM564747     6  0.2416      0.837 0.000 0.000 0.000 0.156 0.000 0.844
#> GSM564748     4  0.2519      0.769 0.044 0.000 0.048 0.892 0.000 0.016
#> GSM564749     6  0.2325      0.854 0.060 0.000 0.000 0.048 0.000 0.892
#> GSM564750     4  0.1168      0.804 0.000 0.000 0.028 0.956 0.000 0.016
#> GSM564751     4  0.5592      0.193 0.004 0.000 0.376 0.492 0.000 0.128
#> GSM564752     6  0.5335      0.560 0.000 0.000 0.148 0.276 0.000 0.576
#> GSM564753     3  0.5546      0.216 0.000 0.000 0.552 0.256 0.000 0.192
#> GSM564754     4  0.4076     -0.264 0.452 0.000 0.000 0.540 0.000 0.008
#> GSM564755     4  0.0363      0.811 0.012 0.000 0.000 0.988 0.000 0.000
#> GSM564756     4  0.3245      0.524 0.228 0.000 0.000 0.764 0.000 0.008
#> GSM564757     4  0.2854      0.591 0.000 0.000 0.000 0.792 0.000 0.208
#> GSM564758     4  0.3348      0.583 0.000 0.000 0.016 0.768 0.000 0.216
#> GSM564759     6  0.3230      0.779 0.000 0.000 0.012 0.212 0.000 0.776
#> GSM564760     4  0.1196      0.799 0.040 0.000 0.000 0.952 0.000 0.008
#> GSM564761     1  0.2883      0.950 0.788 0.000 0.000 0.212 0.000 0.000
#> GSM564762     4  0.3563      0.343 0.000 0.000 0.000 0.664 0.000 0.336
#> GSM564681     5  0.4051      0.722 0.160 0.004 0.000 0.004 0.764 0.068
#> GSM564693     5  0.0767      0.852 0.004 0.008 0.000 0.000 0.976 0.012
#> GSM564646     5  0.1555      0.824 0.004 0.060 0.000 0.000 0.932 0.004
#> GSM564699     2  0.5486      0.223 0.000 0.496 0.372 0.000 0.132 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n genotype/variation(p) disease.state(p) k
#> ATC:NMF 154                 0.925            0.476 2
#> ATC:NMF 144                 0.462            0.758 3
#> ATC:NMF 125                 0.473            0.524 4
#> ATC:NMF  77                 0.217            0.690 5
#> ATC:NMF 136                 0.848            0.692 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0