Date: 2019-12-25 21:17:39 CET, cola version: 1.3.2
Document is loading...
All available functions which can be applied to this res_list
object:
res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#> On a matrix with 21168 rows and 67 columns.
#> Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#> Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#> Number of partitions are tried for k = 2, 3, 4, 5, 6.
#> Performed in total 30000 partitions by row resampling.
#>
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#> [1] "cola_report" "collect_classes" "collect_plots" "collect_stats"
#> [5] "colnames" "functional_enrichment" "get_anno_col" "get_anno"
#> [9] "get_classes" "get_matrix" "get_membership" "get_stats"
#> [13] "is_best_k" "is_stable_k" "ncol" "nrow"
#> [17] "rownames" "show" "suggest_best_k" "test_to_known_factors"
#> [21] "top_rows_heatmap" "top_rows_overlap"
#>
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]
The call of run_all_consensus_partition_methods()
was:
#> run_all_consensus_partition_methods(data = mat, mc.cores = 4, anno = anno)
Dimension of the input matrix:
mat = get_matrix(res_list)
dim(mat)
#> [1] 21168 67
The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.
library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_list),
col = get_anno_col(res_list)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
mc.cores = 4)
Folowing table shows the best k
(number of partitions) for each combination
of top-value methods and partition methods. Clicking on the method name in
the table goes to the section for a single combination of methods.
The cola vignette explains the definition of the metrics used for determining the best number of partitions.
suggest_best_k(res_list)
The best k | 1-PAC | Mean silhouette | Concordance | Optional k | ||
---|---|---|---|---|---|---|
SD:skmeans | 3 | 1.000 | 0.993 | 0.997 | ** | 2 |
CV:skmeans | 3 | 1.000 | 0.995 | 0.998 | ** | 2 |
CV:mclust | 3 | 1.000 | 0.979 | 0.991 | ** | 2 |
CV:NMF | 3 | 1.000 | 0.990 | 0.996 | ** | 2 |
MAD:skmeans | 3 | 1.000 | 0.995 | 0.998 | ** | 2 |
ATC:hclust | 2 | 1.000 | 1.000 | 1.000 | ** | |
ATC:kmeans | 2 | 1.000 | 1.000 | 1.000 | ** | |
ATC:mclust | 5 | 1.000 | 0.986 | 0.986 | ** | 3,4 |
ATC:pam | 5 | 0.968 | 0.928 | 0.971 | ** | 2,3,4 |
SD:hclust | 4 | 0.962 | 0.945 | 0.971 | ** | 2,3 |
MAD:hclust | 5 | 0.961 | 0.823 | 0.921 | ** | 2,3,4 |
CV:pam | 6 | 0.958 | 0.941 | 0.964 | ** | 2,3,4,5 |
ATC:NMF | 4 | 0.940 | 0.890 | 0.947 | * | 2,3 |
SD:pam | 5 | 0.931 | 0.951 | 0.954 | * | 2,3 |
MAD:mclust | 4 | 0.920 | 0.955 | 0.949 | * | 2,3 |
CV:hclust | 4 | 0.919 | 0.885 | 0.954 | * | 2,3 |
MAD:NMF | 5 | 0.919 | 0.859 | 0.931 | * | 3,4 |
MAD:pam | 6 | 0.917 | 0.932 | 0.962 | * | 3,4,5 |
SD:mclust | 4 | 0.908 | 0.939 | 0.952 | * | 2,3 |
ATC:skmeans | 5 | 0.907 | 0.947 | 0.898 | * | 2,3,4 |
SD:NMF | 6 | 0.906 | 0.798 | 0.914 | * | 2,3 |
MAD:kmeans | 3 | 0.646 | 0.932 | 0.878 | ||
SD:kmeans | 2 | 0.552 | 0.830 | 0.878 | ||
CV:kmeans | 2 | 0.323 | 0.874 | 0.896 |
**: 1-PAC > 0.95, *: 1-PAC > 0.9
Cumulative distribution function curves of consensus matrix for all methods.
collect_plots(res_list, fun = plot_ecdf)
Consensus heatmaps for all methods. (What is a consensus heatmap?)
collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)
Membership heatmaps for all methods. (What is a membership heatmap?)
collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)
Signature heatmaps for all methods. (What is a signature heatmap?)
Note in following heatmaps, rows are scaled.
collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)
The statistics used for measuring the stability of consensus partitioning. (How are they defined?)
get_stats(res_list, k = 2)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 2 1.000 1.000 1.000 0.426 0.575 0.575
#> CV:NMF 2 1.000 1.000 1.000 0.426 0.575 0.575
#> MAD:NMF 2 0.561 0.746 0.879 0.468 0.506 0.506
#> ATC:NMF 2 1.000 1.000 1.000 0.426 0.575 0.575
#> SD:skmeans 2 1.000 0.977 0.980 0.429 0.575 0.575
#> CV:skmeans 2 1.000 1.000 1.000 0.426 0.575 0.575
#> MAD:skmeans 2 1.000 0.988 0.988 0.474 0.525 0.525
#> ATC:skmeans 2 1.000 1.000 1.000 0.426 0.575 0.575
#> SD:mclust 2 1.000 0.997 0.997 0.426 0.575 0.575
#> CV:mclust 2 1.000 1.000 1.000 0.426 0.575 0.575
#> MAD:mclust 2 1.000 0.997 0.997 0.426 0.575 0.575
#> ATC:mclust 2 0.775 0.952 0.954 0.440 0.563 0.563
#> SD:kmeans 2 0.552 0.830 0.878 0.444 0.575 0.575
#> CV:kmeans 2 0.323 0.874 0.896 0.440 0.575 0.575
#> MAD:kmeans 2 0.552 0.784 0.858 0.447 0.575 0.575
#> ATC:kmeans 2 1.000 1.000 1.000 0.426 0.575 0.575
#> SD:pam 2 1.000 1.000 1.000 0.426 0.575 0.575
#> CV:pam 2 1.000 1.000 1.000 0.426 0.575 0.575
#> MAD:pam 2 0.569 0.902 0.936 0.447 0.563 0.563
#> ATC:pam 2 1.000 1.000 1.000 0.426 0.575 0.575
#> SD:hclust 2 1.000 1.000 1.000 0.426 0.575 0.575
#> CV:hclust 2 1.000 1.000 1.000 0.426 0.575 0.575
#> MAD:hclust 2 1.000 0.982 0.984 0.428 0.575 0.575
#> ATC:hclust 2 1.000 1.000 1.000 0.426 0.575 0.575
get_stats(res_list, k = 3)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 3 1.000 0.983 0.994 0.586 0.750 0.566
#> CV:NMF 3 1.000 0.990 0.996 0.586 0.750 0.566
#> MAD:NMF 3 1.000 0.979 0.993 0.442 0.750 0.538
#> ATC:NMF 3 0.941 0.978 0.976 0.563 0.751 0.567
#> SD:skmeans 3 1.000 0.993 0.997 0.575 0.750 0.566
#> CV:skmeans 3 1.000 0.995 0.998 0.586 0.750 0.566
#> MAD:skmeans 3 1.000 0.995 0.998 0.425 0.780 0.589
#> ATC:skmeans 3 1.000 1.000 1.000 0.584 0.751 0.567
#> SD:mclust 3 1.000 0.972 0.989 0.584 0.750 0.566
#> CV:mclust 3 1.000 0.979 0.991 0.585 0.750 0.566
#> MAD:mclust 3 1.000 0.990 0.995 0.585 0.750 0.566
#> ATC:mclust 3 1.000 1.000 1.000 0.534 0.744 0.553
#> SD:kmeans 3 0.709 0.932 0.857 0.401 0.750 0.566
#> CV:kmeans 3 0.651 0.941 0.850 0.409 0.750 0.566
#> MAD:kmeans 3 0.646 0.932 0.878 0.428 0.750 0.566
#> ATC:kmeans 3 0.688 0.938 0.869 0.470 0.751 0.567
#> SD:pam 3 1.000 0.975 0.990 0.585 0.751 0.567
#> CV:pam 3 1.000 0.987 0.994 0.584 0.751 0.567
#> MAD:pam 3 1.000 0.996 0.998 0.508 0.744 0.553
#> ATC:pam 3 1.000 0.998 0.999 0.584 0.751 0.567
#> SD:hclust 3 1.000 0.970 0.988 0.585 0.750 0.566
#> CV:hclust 3 1.000 0.986 0.994 0.586 0.750 0.566
#> MAD:hclust 3 1.000 0.962 0.986 0.576 0.750 0.566
#> ATC:hclust 3 0.623 0.864 0.865 0.432 0.791 0.637
get_stats(res_list, k = 4)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 4 0.936 0.883 0.954 0.0383 0.990 0.968
#> CV:NMF 4 0.909 0.911 0.934 0.0532 1.000 1.000
#> MAD:NMF 4 0.912 0.825 0.933 0.0505 0.970 0.910
#> ATC:NMF 4 0.940 0.890 0.947 0.0549 0.982 0.945
#> SD:skmeans 4 0.880 0.948 0.921 0.0803 0.940 0.816
#> CV:skmeans 4 0.881 0.954 0.934 0.0954 0.935 0.800
#> MAD:skmeans 4 0.881 0.952 0.931 0.0887 0.940 0.816
#> ATC:skmeans 4 1.000 0.989 0.990 0.0829 0.945 0.832
#> SD:mclust 4 0.908 0.939 0.952 0.0505 0.980 0.939
#> CV:mclust 4 0.877 0.854 0.881 0.0682 0.980 0.939
#> MAD:mclust 4 0.920 0.955 0.949 0.0443 0.980 0.939
#> ATC:mclust 4 1.000 0.994 0.997 0.0670 0.955 0.861
#> SD:kmeans 4 0.820 0.837 0.830 0.1522 0.979 0.938
#> CV:kmeans 4 0.829 0.852 0.822 0.1652 1.000 1.000
#> MAD:kmeans 4 0.817 0.746 0.821 0.1332 0.979 0.936
#> ATC:kmeans 4 0.790 0.841 0.819 0.1376 1.000 1.000
#> SD:pam 4 0.882 0.942 0.918 0.0903 0.930 0.789
#> CV:pam 4 1.000 0.976 0.977 0.0922 0.930 0.789
#> MAD:pam 4 1.000 0.980 0.988 0.0899 0.932 0.795
#> ATC:pam 4 0.900 0.880 0.844 0.0684 0.955 0.861
#> SD:hclust 4 0.962 0.945 0.971 0.0632 0.951 0.850
#> CV:hclust 4 0.919 0.885 0.954 0.0437 0.980 0.939
#> MAD:hclust 4 0.943 0.924 0.962 0.0611 0.951 0.850
#> ATC:hclust 4 0.580 0.858 0.845 0.0759 0.955 0.876
get_stats(res_list, k = 5)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 5 0.931 0.884 0.945 0.0178 0.990 0.967
#> CV:NMF 5 0.883 0.835 0.912 0.0342 0.945 0.830
#> MAD:NMF 5 0.919 0.859 0.931 0.0175 0.980 0.937
#> ATC:NMF 5 0.897 0.837 0.907 0.0387 0.982 0.942
#> SD:skmeans 5 0.885 0.933 0.888 0.0687 0.937 0.761
#> CV:skmeans 5 0.881 0.946 0.905 0.0641 0.941 0.774
#> MAD:skmeans 5 0.887 0.947 0.903 0.0678 0.937 0.761
#> ATC:skmeans 5 0.907 0.947 0.898 0.0600 0.932 0.750
#> SD:mclust 5 0.860 0.756 0.814 0.0674 0.962 0.877
#> CV:mclust 5 0.874 0.864 0.864 0.0828 0.877 0.608
#> MAD:mclust 5 0.886 0.939 0.937 0.0826 0.931 0.774
#> ATC:mclust 5 1.000 0.986 0.986 0.0330 0.979 0.926
#> SD:kmeans 5 0.758 0.632 0.706 0.0566 0.936 0.807
#> CV:kmeans 5 0.804 0.903 0.769 0.0599 0.876 0.619
#> MAD:kmeans 5 0.805 0.858 0.706 0.0666 0.878 0.612
#> ATC:kmeans 5 0.802 0.885 0.774 0.0753 0.877 0.624
#> SD:pam 5 0.931 0.951 0.954 0.0791 0.935 0.755
#> CV:pam 5 0.994 0.966 0.979 0.0843 0.926 0.726
#> MAD:pam 5 0.969 0.957 0.980 0.0872 0.935 0.756
#> ATC:pam 5 0.968 0.928 0.971 0.0715 0.937 0.778
#> SD:hclust 5 0.875 0.873 0.908 0.0378 0.986 0.948
#> CV:hclust 5 0.886 0.767 0.895 0.0419 0.972 0.910
#> MAD:hclust 5 0.961 0.823 0.921 0.0413 0.980 0.926
#> ATC:hclust 5 0.765 0.753 0.844 0.1051 0.972 0.915
get_stats(res_list, k = 6)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 6 0.906 0.798 0.914 0.0283 0.980 0.934
#> CV:NMF 6 0.840 0.855 0.901 0.0284 0.980 0.927
#> MAD:NMF 6 0.883 0.804 0.909 0.0265 0.970 0.903
#> ATC:NMF 6 0.866 0.820 0.905 0.0251 0.960 0.865
#> SD:skmeans 6 0.813 0.884 0.889 0.0359 0.989 0.946
#> CV:skmeans 6 0.845 0.870 0.897 0.0340 0.995 0.975
#> MAD:skmeans 6 0.861 0.856 0.879 0.0401 0.994 0.971
#> ATC:skmeans 6 0.860 0.902 0.877 0.0477 0.989 0.947
#> SD:mclust 6 0.758 0.568 0.736 0.0637 0.894 0.626
#> CV:mclust 6 0.823 0.857 0.854 0.0553 0.944 0.732
#> MAD:mclust 6 0.858 0.942 0.910 0.0832 0.890 0.565
#> ATC:mclust 6 0.893 0.888 0.899 0.1090 0.875 0.541
#> SD:kmeans 6 0.758 0.826 0.765 0.0543 0.892 0.632
#> CV:kmeans 6 0.763 0.671 0.714 0.0469 0.941 0.739
#> MAD:kmeans 6 0.768 0.720 0.772 0.0349 0.961 0.810
#> ATC:kmeans 6 0.810 0.910 0.796 0.0442 0.955 0.778
#> SD:pam 6 0.893 0.807 0.902 0.0467 0.966 0.831
#> CV:pam 6 0.958 0.941 0.964 0.0548 0.955 0.778
#> MAD:pam 6 0.917 0.932 0.962 0.0539 0.955 0.775
#> ATC:pam 6 0.896 0.910 0.926 0.0749 0.924 0.670
#> SD:hclust 6 0.856 0.751 0.851 0.0449 0.925 0.720
#> CV:hclust 6 0.872 0.750 0.849 0.0518 0.929 0.750
#> MAD:hclust 6 0.888 0.909 0.910 0.0551 0.929 0.730
#> ATC:hclust 6 0.843 0.879 0.883 0.1025 0.864 0.575
Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.
collect_stats(res_list, k = 2)
collect_stats(res_list, k = 3)
collect_stats(res_list, k = 4)
collect_stats(res_list, k = 5)
collect_stats(res_list, k = 6)
Collect partitions from all methods:
collect_classes(res_list, k = 2)
collect_classes(res_list, k = 3)
collect_classes(res_list, k = 4)
collect_classes(res_list, k = 5)
collect_classes(res_list, k = 6)
Overlap of top rows from different top-row methods:
top_rows_overlap(res_list, top_n = 1000, method = "euler")
top_rows_overlap(res_list, top_n = 2000, method = "euler")
top_rows_overlap(res_list, top_n = 3000, method = "euler")
top_rows_overlap(res_list, top_n = 4000, method = "euler")
top_rows_overlap(res_list, top_n = 5000, method = "euler")
Also visualize the correspondance of rankings between different top-row methods:
top_rows_overlap(res_list, top_n = 1000, method = "correspondance")
top_rows_overlap(res_list, top_n = 2000, method = "correspondance")
top_rows_overlap(res_list, top_n = 3000, method = "correspondance")
top_rows_overlap(res_list, top_n = 4000, method = "correspondance")
top_rows_overlap(res_list, top_n = 5000, method = "correspondance")
Heatmaps of the top rows:
top_rows_heatmap(res_list, top_n = 1000)
top_rows_heatmap(res_list, top_n = 2000)
top_rows_heatmap(res_list, top_n = 3000)
top_rows_heatmap(res_list, top_n = 4000)
top_rows_heatmap(res_list, top_n = 5000)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res_list, k = 2)
#> n disease.state(p) cell.type(p) k
#> SD:NMF 67 0.939 2.75e-14 2
#> CV:NMF 67 0.939 2.75e-14 2
#> MAD:NMF 62 1.000 1.38e-12 2
#> ATC:NMF 67 0.939 2.75e-14 2
#> SD:skmeans 67 0.939 2.75e-14 2
#> CV:skmeans 67 0.939 2.75e-14 2
#> MAD:skmeans 67 1.000 1.40e-13 2
#> ATC:skmeans 67 0.939 2.75e-14 2
#> SD:mclust 67 0.939 2.75e-14 2
#> CV:mclust 67 0.939 2.75e-14 2
#> MAD:mclust 67 0.939 2.75e-14 2
#> ATC:mclust 67 1.000 2.38e-13 2
#> SD:kmeans 67 0.939 2.75e-14 2
#> CV:kmeans 67 0.939 2.75e-14 2
#> MAD:kmeans 67 0.939 2.75e-14 2
#> ATC:kmeans 67 0.939 2.75e-14 2
#> SD:pam 67 0.939 2.75e-14 2
#> CV:pam 67 0.939 2.75e-14 2
#> MAD:pam 66 1.000 3.78e-13 2
#> ATC:pam 67 0.939 2.75e-14 2
#> SD:hclust 67 0.939 2.75e-14 2
#> CV:hclust 67 0.939 2.75e-14 2
#> MAD:hclust 67 0.939 2.75e-14 2
#> ATC:hclust 67 0.939 2.75e-14 2
test_to_known_factors(res_list, k = 3)
#> n disease.state(p) cell.type(p) k
#> SD:NMF 66 0.920 2.62e-26 3
#> CV:NMF 67 0.927 9.68e-27 3
#> MAD:NMF 66 0.920 2.62e-26 3
#> ATC:NMF 67 0.940 1.87e-24 3
#> SD:skmeans 67 0.864 1.50e-25 3
#> CV:skmeans 67 0.927 9.68e-27 3
#> MAD:skmeans 67 0.864 1.50e-25 3
#> ATC:skmeans 67 0.940 1.87e-24 3
#> SD:mclust 65 0.924 7.14e-26 3
#> CV:mclust 67 0.927 9.68e-27 3
#> MAD:mclust 67 0.927 9.68e-27 3
#> ATC:mclust 67 0.940 1.87e-24 3
#> SD:kmeans 66 0.920 2.62e-26 3
#> CV:kmeans 67 0.927 9.68e-27 3
#> MAD:kmeans 66 0.920 2.62e-26 3
#> ATC:kmeans 67 0.940 1.87e-24 3
#> SD:pam 66 0.881 4.15e-25 3
#> CV:pam 67 0.940 1.87e-24 3
#> MAD:pam 67 0.940 1.87e-24 3
#> ATC:pam 67 0.940 1.87e-24 3
#> SD:hclust 65 0.924 7.14e-26 3
#> CV:hclust 67 0.927 9.68e-27 3
#> MAD:hclust 65 0.924 7.14e-26 3
#> ATC:hclust 67 0.860 4.00e-18 3
test_to_known_factors(res_list, k = 4)
#> n disease.state(p) cell.type(p) k
#> SD:NMF 64 0.925 1.95e-25 4
#> CV:NMF 67 0.927 9.68e-27 4
#> MAD:NMF 62 0.927 1.47e-24 4
#> ATC:NMF 66 0.672 1.52e-22 4
#> SD:skmeans 67 0.716 4.07e-24 4
#> CV:skmeans 67 0.841 2.78e-25 4
#> MAD:skmeans 67 0.716 4.07e-24 4
#> ATC:skmeans 67 0.958 4.88e-23 4
#> SD:mclust 67 0.975 3.11e-25 4
#> CV:mclust 66 0.977 8.31e-25 4
#> MAD:mclust 67 0.975 3.11e-25 4
#> ATC:mclust 67 0.954 5.58e-23 4
#> SD:kmeans 66 0.920 2.62e-26 4
#> CV:kmeans 67 0.927 9.68e-27 4
#> MAD:kmeans 66 0.835 8.36e-25 4
#> ATC:kmeans 67 0.940 1.87e-24 4
#> SD:pam 67 0.716 4.07e-24 4
#> CV:pam 67 0.716 4.07e-24 4
#> MAD:pam 67 0.517 3.96e-24 4
#> ATC:pam 65 0.921 3.53e-22 4
#> SD:hclust 65 0.120 2.14e-24 4
#> CV:hclust 62 0.584 4.37e-23 4
#> MAD:hclust 65 0.120 2.14e-24 4
#> ATC:hclust 66 0.952 2.70e-16 4
test_to_known_factors(res_list, k = 5)
#> n disease.state(p) cell.type(p) k
#> SD:NMF 64 0.498 5.95e-24 5
#> CV:NMF 65 0.222 4.59e-23 5
#> MAD:NMF 64 0.312 5.90e-24 5
#> ATC:NMF 62 0.320 7.14e-22 5
#> SD:skmeans 66 0.873 1.56e-23 5
#> CV:skmeans 67 0.933 6.06e-24 5
#> MAD:skmeans 67 0.844 7.80e-23 5
#> ATC:skmeans 67 0.989 7.25e-22 5
#> SD:mclust 65 0.980 4.41e-23 5
#> CV:mclust 64 0.994 1.10e-22 5
#> MAD:mclust 67 0.993 6.72e-24 5
#> ATC:mclust 67 0.981 6.76e-24 5
#> SD:kmeans 59 0.199 8.03e-22 5
#> CV:kmeans 67 0.933 6.06e-24 5
#> MAD:kmeans 64 0.967 1.07e-22 5
#> ATC:kmeans 67 0.989 7.25e-22 5
#> SD:pam 66 0.902 1.97e-22 5
#> CV:pam 67 0.933 6.06e-24 5
#> MAD:pam 67 0.654 7.35e-23 5
#> ATC:pam 64 0.973 1.48e-20 5
#> SD:hclust 62 0.155 4.94e-23 5
#> CV:hclust 54 0.906 6.80e-21 5
#> MAD:hclust 62 0.349 7.86e-22 5
#> ATC:hclust 56 0.949 1.02e-17 5
test_to_known_factors(res_list, k = 6)
#> n disease.state(p) cell.type(p) k
#> SD:NMF 62 0.5478 3.77e-23 6
#> CV:NMF 66 0.0983 1.72e-23 6
#> MAD:NMF 63 0.4010 1.40e-23 6
#> ATC:NMF 63 0.2492 4.57e-21 6
#> SD:skmeans 65 0.9402 4.03e-23 6
#> CV:skmeans 65 0.9402 4.03e-23 6
#> MAD:skmeans 65 0.9402 4.03e-23 6
#> ATC:skmeans 67 0.7684 1.09e-20 6
#> SD:mclust 49 0.9098 1.37e-16 6
#> CV:mclust 64 0.9944 1.71e-21 6
#> MAD:mclust 67 0.9958 1.02e-22 6
#> ATC:mclust 65 0.9960 6.69e-22 6
#> SD:kmeans 66 0.8732 1.56e-23 6
#> CV:kmeans 61 0.9709 2.17e-21 6
#> MAD:kmeans 58 0.9756 5.56e-19 6
#> ATC:kmeans 67 0.9915 1.09e-20 6
#> SD:pam 59 0.8787 2.16e-18 6
#> CV:pam 67 0.9022 9.88e-23 6
#> MAD:pam 67 0.7529 1.15e-21 6
#> ATC:pam 64 0.9921 1.60e-19 6
#> SD:hclust 49 0.2267 6.56e-19 6
#> CV:hclust 57 0.6357 1.22e-19 6
#> MAD:hclust 65 0.1713 6.54e-22 6
#> ATC:hclust 66 0.7353 4.86e-15 6
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 67 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 4.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4257 0.575 0.575
#> 3 3 1.000 0.970 0.988 0.5851 0.750 0.566
#> 4 4 0.962 0.945 0.971 0.0632 0.951 0.850
#> 5 5 0.875 0.873 0.908 0.0378 0.986 0.948
#> 6 6 0.856 0.751 0.851 0.0449 0.925 0.720
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3
There is also optional best \(k\) = 2 3 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM260888 2 0 1 0 1
#> GSM260893 2 0 1 0 1
#> GSM260896 2 0 1 0 1
#> GSM260899 2 0 1 0 1
#> GSM260902 2 0 1 0 1
#> GSM260905 2 0 1 0 1
#> GSM260908 2 0 1 0 1
#> GSM260911 2 0 1 0 1
#> GSM260912 2 0 1 0 1
#> GSM260913 1 0 1 1 0
#> GSM260886 1 0 1 1 0
#> GSM260889 1 0 1 1 0
#> GSM260891 1 0 1 1 0
#> GSM260894 1 0 1 1 0
#> GSM260897 1 0 1 1 0
#> GSM260900 1 0 1 1 0
#> GSM260903 1 0 1 1 0
#> GSM260906 1 0 1 1 0
#> GSM260909 1 0 1 1 0
#> GSM260887 1 0 1 1 0
#> GSM260890 1 0 1 1 0
#> GSM260892 1 0 1 1 0
#> GSM260895 1 0 1 1 0
#> GSM260898 1 0 1 1 0
#> GSM260901 1 0 1 1 0
#> GSM260904 1 0 1 1 0
#> GSM260907 1 0 1 1 0
#> GSM260910 1 0 1 1 0
#> GSM260918 2 0 1 0 1
#> GSM260921 2 0 1 0 1
#> GSM260924 2 0 1 0 1
#> GSM260929 2 0 1 0 1
#> GSM260932 2 0 1 0 1
#> GSM260935 2 0 1 0 1
#> GSM260938 2 0 1 0 1
#> GSM260941 2 0 1 0 1
#> GSM260944 2 0 1 0 1
#> GSM260947 2 0 1 0 1
#> GSM260952 2 0 1 0 1
#> GSM260914 1 0 1 1 0
#> GSM260916 1 0 1 1 0
#> GSM260919 1 0 1 1 0
#> GSM260922 1 0 1 1 0
#> GSM260925 1 0 1 1 0
#> GSM260927 1 0 1 1 0
#> GSM260930 1 0 1 1 0
#> GSM260933 1 0 1 1 0
#> GSM260936 1 0 1 1 0
#> GSM260939 1 0 1 1 0
#> GSM260942 1 0 1 1 0
#> GSM260945 1 0 1 1 0
#> GSM260948 1 0 1 1 0
#> GSM260950 1 0 1 1 0
#> GSM260915 1 0 1 1 0
#> GSM260917 1 0 1 1 0
#> GSM260920 1 0 1 1 0
#> GSM260923 1 0 1 1 0
#> GSM260926 1 0 1 1 0
#> GSM260928 1 0 1 1 0
#> GSM260931 1 0 1 1 0
#> GSM260934 1 0 1 1 0
#> GSM260937 1 0 1 1 0
#> GSM260940 1 0 1 1 0
#> GSM260943 1 0 1 1 0
#> GSM260946 1 0 1 1 0
#> GSM260949 1 0 1 1 0
#> GSM260951 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM260888 2 0.000 1.000 0.000 1 0.000
#> GSM260893 2 0.000 1.000 0.000 1 0.000
#> GSM260896 2 0.000 1.000 0.000 1 0.000
#> GSM260899 2 0.000 1.000 0.000 1 0.000
#> GSM260902 2 0.000 1.000 0.000 1 0.000
#> GSM260905 2 0.000 1.000 0.000 1 0.000
#> GSM260908 2 0.000 1.000 0.000 1 0.000
#> GSM260911 2 0.000 1.000 0.000 1 0.000
#> GSM260912 2 0.000 1.000 0.000 1 0.000
#> GSM260913 3 0.000 0.965 0.000 0 1.000
#> GSM260886 1 0.000 1.000 1.000 0 0.000
#> GSM260889 1 0.000 1.000 1.000 0 0.000
#> GSM260891 1 0.000 1.000 1.000 0 0.000
#> GSM260894 1 0.000 1.000 1.000 0 0.000
#> GSM260897 1 0.000 1.000 1.000 0 0.000
#> GSM260900 1 0.000 1.000 1.000 0 0.000
#> GSM260903 1 0.000 1.000 1.000 0 0.000
#> GSM260906 1 0.000 1.000 1.000 0 0.000
#> GSM260909 1 0.000 1.000 1.000 0 0.000
#> GSM260887 3 0.000 0.965 0.000 0 1.000
#> GSM260890 3 0.000 0.965 0.000 0 1.000
#> GSM260892 3 0.000 0.965 0.000 0 1.000
#> GSM260895 3 0.597 0.447 0.364 0 0.636
#> GSM260898 3 0.000 0.965 0.000 0 1.000
#> GSM260901 3 0.000 0.965 0.000 0 1.000
#> GSM260904 3 0.000 0.965 0.000 0 1.000
#> GSM260907 3 0.000 0.965 0.000 0 1.000
#> GSM260910 3 0.000 0.965 0.000 0 1.000
#> GSM260918 2 0.000 1.000 0.000 1 0.000
#> GSM260921 2 0.000 1.000 0.000 1 0.000
#> GSM260924 2 0.000 1.000 0.000 1 0.000
#> GSM260929 2 0.000 1.000 0.000 1 0.000
#> GSM260932 2 0.000 1.000 0.000 1 0.000
#> GSM260935 2 0.000 1.000 0.000 1 0.000
#> GSM260938 2 0.000 1.000 0.000 1 0.000
#> GSM260941 2 0.000 1.000 0.000 1 0.000
#> GSM260944 2 0.000 1.000 0.000 1 0.000
#> GSM260947 2 0.000 1.000 0.000 1 0.000
#> GSM260952 2 0.000 1.000 0.000 1 0.000
#> GSM260914 1 0.000 1.000 1.000 0 0.000
#> GSM260916 1 0.000 1.000 1.000 0 0.000
#> GSM260919 1 0.000 1.000 1.000 0 0.000
#> GSM260922 1 0.000 1.000 1.000 0 0.000
#> GSM260925 1 0.000 1.000 1.000 0 0.000
#> GSM260927 1 0.000 1.000 1.000 0 0.000
#> GSM260930 1 0.000 1.000 1.000 0 0.000
#> GSM260933 1 0.000 1.000 1.000 0 0.000
#> GSM260936 1 0.000 1.000 1.000 0 0.000
#> GSM260939 1 0.000 1.000 1.000 0 0.000
#> GSM260942 1 0.000 1.000 1.000 0 0.000
#> GSM260945 1 0.000 1.000 1.000 0 0.000
#> GSM260948 1 0.000 1.000 1.000 0 0.000
#> GSM260950 1 0.000 1.000 1.000 0 0.000
#> GSM260915 3 0.000 0.965 0.000 0 1.000
#> GSM260917 3 0.000 0.965 0.000 0 1.000
#> GSM260920 3 0.000 0.965 0.000 0 1.000
#> GSM260923 3 0.000 0.965 0.000 0 1.000
#> GSM260926 3 0.000 0.965 0.000 0 1.000
#> GSM260928 3 0.618 0.318 0.416 0 0.584
#> GSM260931 3 0.000 0.965 0.000 0 1.000
#> GSM260934 3 0.000 0.965 0.000 0 1.000
#> GSM260937 3 0.000 0.965 0.000 0 1.000
#> GSM260940 3 0.000 0.965 0.000 0 1.000
#> GSM260943 3 0.000 0.965 0.000 0 1.000
#> GSM260946 3 0.000 0.965 0.000 0 1.000
#> GSM260949 3 0.000 0.965 0.000 0 1.000
#> GSM260951 3 0.000 0.965 0.000 0 1.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM260888 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260893 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260896 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260899 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260902 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260905 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260908 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260911 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260912 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260913 3 0.0000 0.901 0.000 0 1.000 0.000
#> GSM260886 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260889 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260891 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260894 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260897 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260900 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260903 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260906 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260909 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260887 3 0.0000 0.901 0.000 0 1.000 0.000
#> GSM260890 3 0.0000 0.901 0.000 0 1.000 0.000
#> GSM260892 3 0.0000 0.901 0.000 0 1.000 0.000
#> GSM260895 3 0.4730 0.399 0.364 0 0.636 0.000
#> GSM260898 3 0.1211 0.880 0.000 0 0.960 0.040
#> GSM260901 3 0.1211 0.880 0.000 0 0.960 0.040
#> GSM260904 3 0.0336 0.900 0.000 0 0.992 0.008
#> GSM260907 3 0.0336 0.900 0.000 0 0.992 0.008
#> GSM260910 3 0.0000 0.901 0.000 0 1.000 0.000
#> GSM260918 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260921 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260924 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260929 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260932 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260935 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260938 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260941 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260944 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260947 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260952 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260914 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260916 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260919 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260922 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260925 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260927 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260930 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260933 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260936 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260939 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260942 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260945 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260948 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260950 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260915 3 0.0000 0.901 0.000 0 1.000 0.000
#> GSM260917 3 0.3873 0.615 0.000 0 0.772 0.228
#> GSM260920 3 0.0336 0.900 0.000 0 0.992 0.008
#> GSM260923 3 0.0000 0.901 0.000 0 1.000 0.000
#> GSM260926 3 0.0000 0.901 0.000 0 1.000 0.000
#> GSM260928 3 0.4898 0.324 0.416 0 0.584 0.000
#> GSM260931 4 0.2921 0.947 0.000 0 0.140 0.860
#> GSM260934 3 0.1211 0.880 0.000 0 0.960 0.040
#> GSM260937 4 0.0000 0.831 0.000 0 0.000 1.000
#> GSM260940 4 0.3444 0.916 0.000 0 0.184 0.816
#> GSM260943 4 0.2921 0.947 0.000 0 0.140 0.860
#> GSM260946 4 0.3311 0.926 0.000 0 0.172 0.828
#> GSM260949 3 0.0336 0.900 0.000 0 0.992 0.008
#> GSM260951 4 0.2921 0.947 0.000 0 0.140 0.860
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM260888 2 0.0510 0.931 0.000 0.984 0.000 0.016 0.000
#> GSM260893 2 0.0510 0.931 0.000 0.984 0.000 0.016 0.000
#> GSM260896 2 0.0510 0.931 0.000 0.984 0.000 0.016 0.000
#> GSM260899 2 0.2329 0.935 0.000 0.876 0.000 0.124 0.000
#> GSM260902 2 0.2329 0.935 0.000 0.876 0.000 0.124 0.000
#> GSM260905 2 0.2329 0.935 0.000 0.876 0.000 0.124 0.000
#> GSM260908 2 0.2329 0.935 0.000 0.876 0.000 0.124 0.000
#> GSM260911 2 0.0510 0.931 0.000 0.984 0.000 0.016 0.000
#> GSM260912 2 0.0000 0.935 0.000 1.000 0.000 0.000 0.000
#> GSM260913 3 0.4126 0.465 0.000 0.000 0.620 0.380 0.000
#> GSM260886 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM260889 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM260891 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM260894 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM260897 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM260900 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM260903 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM260906 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM260909 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM260887 3 0.0000 0.721 0.000 0.000 1.000 0.000 0.000
#> GSM260890 3 0.0000 0.721 0.000 0.000 1.000 0.000 0.000
#> GSM260892 3 0.4126 0.465 0.000 0.000 0.620 0.380 0.000
#> GSM260895 4 0.5500 0.778 0.072 0.000 0.376 0.552 0.000
#> GSM260898 3 0.2871 0.651 0.000 0.000 0.872 0.088 0.040
#> GSM260901 3 0.2871 0.651 0.000 0.000 0.872 0.088 0.040
#> GSM260904 3 0.2136 0.672 0.000 0.000 0.904 0.088 0.008
#> GSM260907 3 0.2136 0.672 0.000 0.000 0.904 0.088 0.008
#> GSM260910 3 0.0404 0.718 0.000 0.000 0.988 0.012 0.000
#> GSM260918 2 0.0000 0.935 0.000 1.000 0.000 0.000 0.000
#> GSM260921 2 0.0290 0.933 0.000 0.992 0.000 0.008 0.000
#> GSM260924 2 0.0510 0.931 0.000 0.984 0.000 0.016 0.000
#> GSM260929 2 0.0000 0.935 0.000 1.000 0.000 0.000 0.000
#> GSM260932 2 0.2329 0.935 0.000 0.876 0.000 0.124 0.000
#> GSM260935 2 0.2329 0.935 0.000 0.876 0.000 0.124 0.000
#> GSM260938 2 0.2329 0.935 0.000 0.876 0.000 0.124 0.000
#> GSM260941 2 0.2329 0.935 0.000 0.876 0.000 0.124 0.000
#> GSM260944 2 0.2329 0.935 0.000 0.876 0.000 0.124 0.000
#> GSM260947 2 0.2329 0.935 0.000 0.876 0.000 0.124 0.000
#> GSM260952 2 0.0162 0.935 0.000 0.996 0.000 0.004 0.000
#> GSM260914 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM260916 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM260919 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM260922 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM260925 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM260927 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM260930 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM260933 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM260936 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM260939 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM260942 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM260945 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM260948 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM260950 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> GSM260915 3 0.0000 0.721 0.000 0.000 1.000 0.000 0.000
#> GSM260917 3 0.3336 0.450 0.000 0.000 0.772 0.000 0.228
#> GSM260920 3 0.4392 0.464 0.000 0.000 0.612 0.380 0.008
#> GSM260923 3 0.1792 0.679 0.000 0.000 0.916 0.084 0.000
#> GSM260926 3 0.0000 0.721 0.000 0.000 1.000 0.000 0.000
#> GSM260928 4 0.6077 0.794 0.124 0.000 0.396 0.480 0.000
#> GSM260931 5 0.2516 0.933 0.000 0.000 0.140 0.000 0.860
#> GSM260934 3 0.2871 0.651 0.000 0.000 0.872 0.088 0.040
#> GSM260937 5 0.0000 0.761 0.000 0.000 0.000 0.000 1.000
#> GSM260940 5 0.2966 0.887 0.000 0.000 0.184 0.000 0.816
#> GSM260943 5 0.2516 0.933 0.000 0.000 0.140 0.000 0.860
#> GSM260946 5 0.3327 0.914 0.000 0.000 0.144 0.028 0.828
#> GSM260949 3 0.4354 0.475 0.000 0.000 0.624 0.368 0.008
#> GSM260951 5 0.2516 0.933 0.000 0.000 0.140 0.000 0.860
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM260888 2 0.2823 0.8452 0.000 0.796 0.000 0.000 0.000 0.204
#> GSM260893 2 0.2883 0.8480 0.000 0.788 0.000 0.000 0.000 0.212
#> GSM260896 2 0.2883 0.8480 0.000 0.788 0.000 0.000 0.000 0.212
#> GSM260899 6 0.0000 0.9652 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM260902 6 0.0000 0.9652 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM260905 6 0.2048 0.8454 0.000 0.120 0.000 0.000 0.000 0.880
#> GSM260908 6 0.2048 0.8454 0.000 0.120 0.000 0.000 0.000 0.880
#> GSM260911 2 0.2823 0.8452 0.000 0.796 0.000 0.000 0.000 0.204
#> GSM260912 2 0.3717 0.7951 0.000 0.616 0.000 0.000 0.000 0.384
#> GSM260913 4 0.1141 0.4012 0.000 0.000 0.000 0.948 0.052 0.000
#> GSM260886 1 0.0000 1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260889 1 0.0000 1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260891 1 0.0000 1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260894 1 0.0000 1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260897 1 0.0000 1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260900 1 0.0000 1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260903 1 0.0000 1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260906 1 0.0000 1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260909 1 0.0000 1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260887 4 0.3756 0.1736 0.000 0.000 0.000 0.600 0.400 0.000
#> GSM260890 4 0.3747 0.1861 0.000 0.000 0.000 0.604 0.396 0.000
#> GSM260892 4 0.1141 0.4012 0.000 0.000 0.000 0.948 0.052 0.000
#> GSM260895 5 0.2404 0.1454 0.016 0.000 0.000 0.112 0.872 0.000
#> GSM260898 5 0.4532 0.2786 0.000 0.000 0.032 0.468 0.500 0.000
#> GSM260901 5 0.4532 0.2786 0.000 0.000 0.032 0.468 0.500 0.000
#> GSM260904 5 0.3869 0.2024 0.000 0.000 0.000 0.500 0.500 0.000
#> GSM260907 5 0.3869 0.2024 0.000 0.000 0.000 0.500 0.500 0.000
#> GSM260910 4 0.3747 0.2031 0.000 0.000 0.000 0.604 0.396 0.000
#> GSM260918 2 0.3717 0.7951 0.000 0.616 0.000 0.000 0.000 0.384
#> GSM260921 2 0.3309 0.8395 0.000 0.720 0.000 0.000 0.000 0.280
#> GSM260924 2 0.0000 0.6493 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260929 2 0.3717 0.7951 0.000 0.616 0.000 0.000 0.000 0.384
#> GSM260932 6 0.0000 0.9652 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM260935 6 0.0000 0.9652 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM260938 6 0.0000 0.9652 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM260941 6 0.0000 0.9652 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM260944 6 0.0000 0.9652 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM260947 6 0.0000 0.9652 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM260952 2 0.3756 0.7749 0.000 0.600 0.000 0.000 0.000 0.400
#> GSM260914 1 0.0000 1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260916 1 0.0000 1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260919 1 0.0000 1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260922 1 0.0000 1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260925 1 0.0000 1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260927 1 0.0000 1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260930 1 0.0000 1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260933 1 0.0000 1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260936 1 0.0000 1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260939 1 0.0000 1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260942 1 0.0000 1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260945 1 0.0000 1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260948 1 0.0000 1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260950 1 0.0000 1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260915 4 0.3747 0.1861 0.000 0.000 0.000 0.604 0.396 0.000
#> GSM260917 4 0.5934 0.0272 0.000 0.000 0.228 0.444 0.328 0.000
#> GSM260920 4 0.0363 0.4185 0.000 0.000 0.000 0.988 0.012 0.000
#> GSM260923 4 0.3592 0.2757 0.000 0.000 0.000 0.656 0.344 0.000
#> GSM260926 4 0.3747 0.1861 0.000 0.000 0.000 0.604 0.396 0.000
#> GSM260928 5 0.1387 0.2023 0.068 0.000 0.000 0.000 0.932 0.000
#> GSM260931 3 0.2260 0.9374 0.000 0.000 0.860 0.140 0.000 0.000
#> GSM260934 5 0.4532 0.2786 0.000 0.000 0.032 0.468 0.500 0.000
#> GSM260937 3 0.0000 0.7987 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM260940 3 0.2664 0.8958 0.000 0.000 0.816 0.184 0.000 0.000
#> GSM260943 3 0.2260 0.9374 0.000 0.000 0.860 0.140 0.000 0.000
#> GSM260946 3 0.3134 0.9163 0.000 0.000 0.820 0.144 0.036 0.000
#> GSM260949 4 0.0547 0.4219 0.000 0.000 0.000 0.980 0.020 0.000
#> GSM260951 3 0.2260 0.9374 0.000 0.000 0.860 0.140 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) cell.type(p) k
#> SD:hclust 67 0.939 2.75e-14 2
#> SD:hclust 65 0.924 7.14e-26 3
#> SD:hclust 65 0.120 2.14e-24 4
#> SD:hclust 62 0.155 4.94e-23 5
#> SD:hclust 49 0.227 6.56e-19 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 67 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.552 0.830 0.878 0.4438 0.575 0.575
#> 3 3 0.709 0.932 0.857 0.4013 0.750 0.566
#> 4 4 0.820 0.837 0.830 0.1522 0.979 0.938
#> 5 5 0.758 0.632 0.706 0.0566 0.936 0.807
#> 6 6 0.758 0.826 0.765 0.0543 0.892 0.632
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM260888 2 0.000 1.000 0.000 1.000
#> GSM260893 2 0.000 1.000 0.000 1.000
#> GSM260896 2 0.000 1.000 0.000 1.000
#> GSM260899 2 0.000 1.000 0.000 1.000
#> GSM260902 2 0.000 1.000 0.000 1.000
#> GSM260905 2 0.000 1.000 0.000 1.000
#> GSM260908 2 0.000 1.000 0.000 1.000
#> GSM260911 2 0.000 1.000 0.000 1.000
#> GSM260912 2 0.000 1.000 0.000 1.000
#> GSM260913 1 0.904 0.717 0.680 0.320
#> GSM260886 1 0.278 0.795 0.952 0.048
#> GSM260889 1 0.278 0.795 0.952 0.048
#> GSM260891 1 0.278 0.795 0.952 0.048
#> GSM260894 1 0.278 0.795 0.952 0.048
#> GSM260897 1 0.278 0.795 0.952 0.048
#> GSM260900 1 0.278 0.795 0.952 0.048
#> GSM260903 1 0.278 0.795 0.952 0.048
#> GSM260906 1 0.278 0.795 0.952 0.048
#> GSM260909 1 0.278 0.795 0.952 0.048
#> GSM260887 1 0.904 0.717 0.680 0.320
#> GSM260890 1 0.904 0.717 0.680 0.320
#> GSM260892 1 0.904 0.717 0.680 0.320
#> GSM260895 1 0.000 0.781 1.000 0.000
#> GSM260898 1 0.904 0.717 0.680 0.320
#> GSM260901 1 0.904 0.717 0.680 0.320
#> GSM260904 1 0.904 0.717 0.680 0.320
#> GSM260907 1 0.904 0.717 0.680 0.320
#> GSM260910 1 0.904 0.717 0.680 0.320
#> GSM260918 2 0.000 1.000 0.000 1.000
#> GSM260921 2 0.000 1.000 0.000 1.000
#> GSM260924 2 0.000 1.000 0.000 1.000
#> GSM260929 2 0.000 1.000 0.000 1.000
#> GSM260932 2 0.000 1.000 0.000 1.000
#> GSM260935 2 0.000 1.000 0.000 1.000
#> GSM260938 2 0.000 1.000 0.000 1.000
#> GSM260941 2 0.000 1.000 0.000 1.000
#> GSM260944 2 0.000 1.000 0.000 1.000
#> GSM260947 2 0.000 1.000 0.000 1.000
#> GSM260952 2 0.000 1.000 0.000 1.000
#> GSM260914 1 0.278 0.795 0.952 0.048
#> GSM260916 1 0.278 0.795 0.952 0.048
#> GSM260919 1 0.278 0.795 0.952 0.048
#> GSM260922 1 0.278 0.795 0.952 0.048
#> GSM260925 1 0.278 0.795 0.952 0.048
#> GSM260927 1 0.278 0.795 0.952 0.048
#> GSM260930 1 0.278 0.795 0.952 0.048
#> GSM260933 1 0.278 0.795 0.952 0.048
#> GSM260936 1 0.278 0.795 0.952 0.048
#> GSM260939 1 0.278 0.795 0.952 0.048
#> GSM260942 1 0.278 0.795 0.952 0.048
#> GSM260945 1 0.278 0.795 0.952 0.048
#> GSM260948 1 0.278 0.795 0.952 0.048
#> GSM260950 1 0.278 0.795 0.952 0.048
#> GSM260915 1 0.904 0.717 0.680 0.320
#> GSM260917 1 0.904 0.717 0.680 0.320
#> GSM260920 1 0.904 0.717 0.680 0.320
#> GSM260923 1 0.904 0.717 0.680 0.320
#> GSM260926 1 0.904 0.717 0.680 0.320
#> GSM260928 1 0.000 0.781 1.000 0.000
#> GSM260931 1 0.904 0.717 0.680 0.320
#> GSM260934 1 0.904 0.717 0.680 0.320
#> GSM260937 1 0.904 0.717 0.680 0.320
#> GSM260940 1 0.904 0.717 0.680 0.320
#> GSM260943 1 0.904 0.717 0.680 0.320
#> GSM260946 1 0.904 0.717 0.680 0.320
#> GSM260949 1 0.904 0.717 0.680 0.320
#> GSM260951 1 0.904 0.717 0.680 0.320
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM260888 2 0.0424 0.947 0.008 0.992 0.000
#> GSM260893 2 0.0424 0.947 0.008 0.992 0.000
#> GSM260896 2 0.0424 0.947 0.008 0.992 0.000
#> GSM260899 2 0.4178 0.926 0.172 0.828 0.000
#> GSM260902 2 0.4178 0.926 0.172 0.828 0.000
#> GSM260905 2 0.3192 0.945 0.112 0.888 0.000
#> GSM260908 2 0.3192 0.945 0.112 0.888 0.000
#> GSM260911 2 0.0424 0.947 0.008 0.992 0.000
#> GSM260912 2 0.0747 0.948 0.016 0.984 0.000
#> GSM260913 3 0.2774 0.955 0.008 0.072 0.920
#> GSM260886 1 0.5327 0.962 0.728 0.000 0.272
#> GSM260889 1 0.5327 0.962 0.728 0.000 0.272
#> GSM260891 1 0.5465 0.960 0.712 0.000 0.288
#> GSM260894 1 0.5327 0.962 0.728 0.000 0.272
#> GSM260897 1 0.4887 0.955 0.772 0.000 0.228
#> GSM260900 1 0.4750 0.955 0.784 0.000 0.216
#> GSM260903 1 0.4750 0.955 0.784 0.000 0.216
#> GSM260906 1 0.4750 0.955 0.784 0.000 0.216
#> GSM260909 1 0.5327 0.962 0.728 0.000 0.272
#> GSM260887 3 0.2774 0.955 0.008 0.072 0.920
#> GSM260890 3 0.2774 0.955 0.008 0.072 0.920
#> GSM260892 3 0.2774 0.955 0.008 0.072 0.920
#> GSM260895 3 0.0661 0.871 0.008 0.004 0.988
#> GSM260898 3 0.2845 0.955 0.012 0.068 0.920
#> GSM260901 3 0.2845 0.955 0.012 0.068 0.920
#> GSM260904 3 0.2845 0.955 0.012 0.068 0.920
#> GSM260907 3 0.2845 0.955 0.012 0.068 0.920
#> GSM260910 3 0.2774 0.955 0.008 0.072 0.920
#> GSM260918 2 0.1163 0.946 0.028 0.972 0.000
#> GSM260921 2 0.0892 0.946 0.020 0.980 0.000
#> GSM260924 2 0.1163 0.944 0.028 0.972 0.000
#> GSM260929 2 0.0237 0.948 0.004 0.996 0.000
#> GSM260932 2 0.4178 0.926 0.172 0.828 0.000
#> GSM260935 2 0.4178 0.926 0.172 0.828 0.000
#> GSM260938 2 0.3619 0.943 0.136 0.864 0.000
#> GSM260941 2 0.3619 0.943 0.136 0.864 0.000
#> GSM260944 2 0.3619 0.943 0.136 0.864 0.000
#> GSM260947 2 0.3619 0.943 0.136 0.864 0.000
#> GSM260952 2 0.1163 0.946 0.028 0.972 0.000
#> GSM260914 1 0.5327 0.962 0.728 0.000 0.272
#> GSM260916 1 0.5327 0.962 0.728 0.000 0.272
#> GSM260919 1 0.5397 0.962 0.720 0.000 0.280
#> GSM260922 1 0.5327 0.962 0.728 0.000 0.272
#> GSM260925 1 0.5327 0.962 0.728 0.000 0.272
#> GSM260927 1 0.5291 0.963 0.732 0.000 0.268
#> GSM260930 1 0.4887 0.955 0.772 0.000 0.228
#> GSM260933 1 0.4887 0.955 0.772 0.000 0.228
#> GSM260936 1 0.4931 0.954 0.768 0.000 0.232
#> GSM260939 1 0.4931 0.954 0.768 0.000 0.232
#> GSM260942 1 0.4931 0.954 0.768 0.000 0.232
#> GSM260945 1 0.4931 0.954 0.768 0.000 0.232
#> GSM260948 1 0.5363 0.962 0.724 0.000 0.276
#> GSM260950 1 0.5363 0.962 0.724 0.000 0.276
#> GSM260915 3 0.2774 0.955 0.008 0.072 0.920
#> GSM260917 3 0.2261 0.956 0.000 0.068 0.932
#> GSM260920 3 0.2774 0.955 0.008 0.072 0.920
#> GSM260923 3 0.2774 0.955 0.008 0.072 0.920
#> GSM260926 3 0.2774 0.955 0.008 0.072 0.920
#> GSM260928 3 0.6386 -0.336 0.412 0.004 0.584
#> GSM260931 3 0.2845 0.955 0.012 0.068 0.920
#> GSM260934 3 0.2845 0.955 0.012 0.068 0.920
#> GSM260937 3 0.2845 0.955 0.012 0.068 0.920
#> GSM260940 3 0.2845 0.955 0.012 0.068 0.920
#> GSM260943 3 0.2845 0.955 0.012 0.068 0.920
#> GSM260946 3 0.2845 0.955 0.012 0.068 0.920
#> GSM260949 3 0.2774 0.955 0.008 0.072 0.920
#> GSM260951 3 0.2261 0.956 0.000 0.068 0.932
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM260888 2 0.3351 0.9134 0.000 0.844 0.008 NA
#> GSM260893 2 0.3351 0.9134 0.000 0.844 0.008 NA
#> GSM260896 2 0.3351 0.9134 0.000 0.844 0.008 NA
#> GSM260899 2 0.3324 0.8617 0.000 0.852 0.012 NA
#> GSM260902 2 0.3324 0.8617 0.000 0.852 0.012 NA
#> GSM260905 2 0.1510 0.9089 0.000 0.956 0.028 NA
#> GSM260908 2 0.1488 0.9078 0.000 0.956 0.032 NA
#> GSM260911 2 0.3351 0.9134 0.000 0.844 0.008 NA
#> GSM260912 2 0.3351 0.9142 0.000 0.844 0.008 NA
#> GSM260913 3 0.5716 0.8415 0.068 0.000 0.680 NA
#> GSM260886 1 0.0000 0.8317 1.000 0.000 0.000 NA
#> GSM260889 1 0.0000 0.8317 1.000 0.000 0.000 NA
#> GSM260891 1 0.0188 0.8323 0.996 0.000 0.000 NA
#> GSM260894 1 0.0000 0.8317 1.000 0.000 0.000 NA
#> GSM260897 1 0.5252 0.8011 0.644 0.000 0.020 NA
#> GSM260900 1 0.5252 0.8011 0.644 0.000 0.020 NA
#> GSM260903 1 0.5252 0.8011 0.644 0.000 0.020 NA
#> GSM260906 1 0.5252 0.8011 0.644 0.000 0.020 NA
#> GSM260909 1 0.0000 0.8317 1.000 0.000 0.000 NA
#> GSM260887 3 0.5716 0.8415 0.068 0.000 0.680 NA
#> GSM260890 3 0.5716 0.8415 0.068 0.000 0.680 NA
#> GSM260892 3 0.5716 0.8415 0.068 0.000 0.680 NA
#> GSM260895 3 0.7760 0.5634 0.288 0.000 0.436 NA
#> GSM260898 3 0.1762 0.8548 0.048 0.004 0.944 NA
#> GSM260901 3 0.1762 0.8548 0.048 0.004 0.944 NA
#> GSM260904 3 0.1762 0.8548 0.048 0.004 0.944 NA
#> GSM260907 3 0.1909 0.8524 0.048 0.004 0.940 NA
#> GSM260910 3 0.5716 0.8415 0.068 0.000 0.680 NA
#> GSM260918 2 0.3545 0.9126 0.000 0.828 0.008 NA
#> GSM260921 2 0.3625 0.9131 0.000 0.828 0.012 NA
#> GSM260924 2 0.3910 0.9083 0.000 0.820 0.024 NA
#> GSM260929 2 0.3249 0.9142 0.000 0.852 0.008 NA
#> GSM260932 2 0.3324 0.8617 0.000 0.852 0.012 NA
#> GSM260935 2 0.3324 0.8617 0.000 0.852 0.012 NA
#> GSM260938 2 0.1837 0.9049 0.000 0.944 0.028 NA
#> GSM260941 2 0.1837 0.9049 0.000 0.944 0.028 NA
#> GSM260944 2 0.1837 0.9049 0.000 0.944 0.028 NA
#> GSM260947 2 0.1837 0.9049 0.000 0.944 0.028 NA
#> GSM260952 2 0.3853 0.9126 0.000 0.820 0.020 NA
#> GSM260914 1 0.0000 0.8317 1.000 0.000 0.000 NA
#> GSM260916 1 0.0188 0.8316 0.996 0.004 0.000 NA
#> GSM260919 1 0.1940 0.8341 0.924 0.000 0.000 NA
#> GSM260922 1 0.0188 0.8316 0.996 0.004 0.000 NA
#> GSM260925 1 0.0000 0.8317 1.000 0.000 0.000 NA
#> GSM260927 1 0.0707 0.8339 0.980 0.000 0.000 NA
#> GSM260930 1 0.5252 0.8011 0.644 0.000 0.020 NA
#> GSM260933 1 0.5252 0.8011 0.644 0.000 0.020 NA
#> GSM260936 1 0.5306 0.7980 0.632 0.000 0.020 NA
#> GSM260939 1 0.5306 0.7980 0.632 0.000 0.020 NA
#> GSM260942 1 0.5306 0.7980 0.632 0.000 0.020 NA
#> GSM260945 1 0.5306 0.7980 0.632 0.000 0.020 NA
#> GSM260948 1 0.2081 0.8341 0.916 0.000 0.000 NA
#> GSM260950 1 0.2081 0.8341 0.916 0.000 0.000 NA
#> GSM260915 3 0.5716 0.8415 0.068 0.000 0.680 NA
#> GSM260917 3 0.1807 0.8542 0.052 0.000 0.940 NA
#> GSM260920 3 0.5716 0.8415 0.068 0.000 0.680 NA
#> GSM260923 3 0.5716 0.8415 0.068 0.000 0.680 NA
#> GSM260926 3 0.5716 0.8415 0.068 0.000 0.680 NA
#> GSM260928 1 0.7256 0.0761 0.540 0.000 0.256 NA
#> GSM260931 3 0.2946 0.8411 0.048 0.004 0.900 NA
#> GSM260934 3 0.1576 0.8542 0.048 0.004 0.948 NA
#> GSM260937 3 0.2946 0.8411 0.048 0.004 0.900 NA
#> GSM260940 3 0.2946 0.8411 0.048 0.004 0.900 NA
#> GSM260943 3 0.2946 0.8411 0.048 0.004 0.900 NA
#> GSM260946 3 0.2946 0.8411 0.048 0.004 0.900 NA
#> GSM260949 3 0.5716 0.8415 0.068 0.000 0.680 NA
#> GSM260951 3 0.2844 0.8433 0.052 0.000 0.900 NA
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM260888 2 0.4029 0.838 0.000 0.680 0.004 0.000 NA
#> GSM260893 2 0.3895 0.838 0.000 0.680 0.000 0.000 NA
#> GSM260896 2 0.3895 0.838 0.000 0.680 0.000 0.000 NA
#> GSM260899 2 0.4612 0.765 0.000 0.756 0.004 0.116 NA
#> GSM260902 2 0.4612 0.765 0.000 0.756 0.004 0.116 NA
#> GSM260905 2 0.1764 0.837 0.000 0.928 0.000 0.008 NA
#> GSM260908 2 0.1331 0.832 0.000 0.952 0.000 0.008 NA
#> GSM260911 2 0.3895 0.838 0.000 0.680 0.000 0.000 NA
#> GSM260912 2 0.3861 0.843 0.000 0.728 0.008 0.000 NA
#> GSM260913 3 0.1978 0.584 0.044 0.000 0.928 0.004 NA
#> GSM260886 1 0.0000 0.768 1.000 0.000 0.000 0.000 NA
#> GSM260889 1 0.0000 0.768 1.000 0.000 0.000 0.000 NA
#> GSM260891 1 0.1205 0.766 0.956 0.000 0.000 0.004 NA
#> GSM260894 1 0.1043 0.765 0.960 0.000 0.000 0.000 NA
#> GSM260897 1 0.6410 0.736 0.496 0.000 0.000 0.304 NA
#> GSM260900 1 0.6420 0.736 0.496 0.000 0.000 0.300 NA
#> GSM260903 1 0.6420 0.736 0.496 0.000 0.000 0.300 NA
#> GSM260906 1 0.6420 0.736 0.496 0.000 0.000 0.300 NA
#> GSM260909 1 0.1043 0.765 0.960 0.000 0.000 0.000 NA
#> GSM260887 3 0.1408 0.589 0.044 0.000 0.948 0.000 NA
#> GSM260890 3 0.1408 0.589 0.044 0.000 0.948 0.000 NA
#> GSM260892 3 0.1978 0.584 0.044 0.000 0.928 0.004 NA
#> GSM260895 3 0.5347 0.337 0.168 0.000 0.684 0.004 NA
#> GSM260898 3 0.5608 -0.565 0.028 0.000 0.560 0.380 NA
#> GSM260901 3 0.5608 -0.565 0.028 0.000 0.560 0.380 NA
#> GSM260904 3 0.5725 -0.553 0.028 0.000 0.560 0.372 NA
#> GSM260907 3 0.5627 -0.594 0.028 0.000 0.552 0.388 NA
#> GSM260910 3 0.1282 0.589 0.044 0.000 0.952 0.000 NA
#> GSM260918 2 0.4025 0.840 0.000 0.700 0.008 0.000 NA
#> GSM260921 2 0.3949 0.840 0.000 0.668 0.000 0.000 NA
#> GSM260924 2 0.5367 0.836 0.000 0.672 0.024 0.056 NA
#> GSM260929 2 0.3885 0.843 0.000 0.724 0.008 0.000 NA
#> GSM260932 2 0.4745 0.765 0.000 0.756 0.012 0.108 NA
#> GSM260935 2 0.4612 0.765 0.000 0.756 0.004 0.116 NA
#> GSM260938 2 0.1608 0.820 0.000 0.928 0.000 0.000 NA
#> GSM260941 2 0.1608 0.820 0.000 0.928 0.000 0.000 NA
#> GSM260944 2 0.1608 0.820 0.000 0.928 0.000 0.000 NA
#> GSM260947 2 0.1608 0.820 0.000 0.928 0.000 0.000 NA
#> GSM260952 2 0.4046 0.838 0.000 0.696 0.008 0.000 NA
#> GSM260914 1 0.0000 0.768 1.000 0.000 0.000 0.000 NA
#> GSM260916 1 0.0955 0.765 0.968 0.000 0.000 0.004 NA
#> GSM260919 1 0.2592 0.777 0.892 0.000 0.000 0.052 NA
#> GSM260922 1 0.0955 0.765 0.968 0.000 0.000 0.004 NA
#> GSM260925 1 0.0162 0.768 0.996 0.000 0.000 0.000 NA
#> GSM260927 1 0.1981 0.770 0.924 0.000 0.000 0.028 NA
#> GSM260930 1 0.6410 0.736 0.496 0.000 0.000 0.304 NA
#> GSM260933 1 0.6410 0.736 0.496 0.000 0.000 0.304 NA
#> GSM260936 1 0.6477 0.734 0.492 0.000 0.000 0.280 NA
#> GSM260939 1 0.6477 0.734 0.492 0.000 0.000 0.280 NA
#> GSM260942 1 0.6477 0.734 0.492 0.000 0.000 0.280 NA
#> GSM260945 1 0.6477 0.734 0.492 0.000 0.000 0.280 NA
#> GSM260948 1 0.3056 0.777 0.864 0.000 0.000 0.068 NA
#> GSM260950 1 0.2790 0.778 0.880 0.000 0.000 0.068 NA
#> GSM260915 3 0.1282 0.589 0.044 0.000 0.952 0.000 NA
#> GSM260917 3 0.5065 -0.665 0.036 0.000 0.544 0.420 NA
#> GSM260920 3 0.1978 0.584 0.044 0.000 0.928 0.004 NA
#> GSM260923 3 0.1408 0.589 0.044 0.000 0.948 0.000 NA
#> GSM260926 3 0.1282 0.589 0.044 0.000 0.952 0.000 NA
#> GSM260928 3 0.6806 0.164 0.360 0.000 0.468 0.024 NA
#> GSM260931 4 0.4961 0.954 0.028 0.000 0.448 0.524 NA
#> GSM260934 3 0.5608 -0.565 0.028 0.000 0.560 0.380 NA
#> GSM260937 4 0.5707 0.950 0.028 0.000 0.444 0.496 NA
#> GSM260940 4 0.4961 0.954 0.028 0.000 0.448 0.524 NA
#> GSM260943 4 0.5707 0.950 0.028 0.000 0.444 0.496 NA
#> GSM260946 4 0.4961 0.954 0.028 0.000 0.448 0.524 NA
#> GSM260949 3 0.1682 0.587 0.044 0.000 0.940 0.004 NA
#> GSM260951 4 0.5843 0.935 0.036 0.000 0.444 0.488 NA
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM260888 2 0.0603 0.787 0.004 0.980 0.016 0.000 0.000 NA
#> GSM260893 2 0.0508 0.787 0.004 0.984 0.012 0.000 0.000 NA
#> GSM260896 2 0.0508 0.787 0.004 0.984 0.012 0.000 0.000 NA
#> GSM260899 2 0.6531 0.682 0.084 0.452 0.104 0.000 0.000 NA
#> GSM260902 2 0.6531 0.682 0.084 0.452 0.104 0.000 0.000 NA
#> GSM260905 2 0.3844 0.784 0.008 0.676 0.000 0.004 0.000 NA
#> GSM260908 2 0.3996 0.777 0.008 0.636 0.000 0.004 0.000 NA
#> GSM260911 2 0.0653 0.787 0.004 0.980 0.012 0.000 0.000 NA
#> GSM260912 2 0.1204 0.793 0.000 0.944 0.000 0.000 0.000 NA
#> GSM260913 4 0.2009 0.859 0.040 0.000 0.000 0.916 0.004 NA
#> GSM260886 1 0.3795 0.889 0.632 0.000 0.000 0.004 0.364 NA
#> GSM260889 1 0.3795 0.889 0.632 0.000 0.000 0.004 0.364 NA
#> GSM260891 1 0.5551 0.856 0.532 0.000 0.028 0.004 0.376 NA
#> GSM260894 1 0.5574 0.858 0.540 0.000 0.028 0.004 0.364 NA
#> GSM260897 5 0.0000 0.940 0.000 0.000 0.000 0.000 1.000 NA
#> GSM260900 5 0.0291 0.938 0.004 0.000 0.000 0.000 0.992 NA
#> GSM260903 5 0.0146 0.940 0.000 0.000 0.004 0.000 0.996 NA
#> GSM260906 5 0.0146 0.940 0.000 0.000 0.004 0.000 0.996 NA
#> GSM260909 1 0.5476 0.859 0.548 0.000 0.028 0.004 0.364 NA
#> GSM260887 4 0.0862 0.874 0.016 0.000 0.000 0.972 0.004 NA
#> GSM260890 4 0.0551 0.876 0.004 0.000 0.000 0.984 0.004 NA
#> GSM260892 4 0.2009 0.859 0.040 0.000 0.000 0.916 0.004 NA
#> GSM260895 4 0.5284 0.599 0.088 0.000 0.032 0.664 0.004 NA
#> GSM260898 3 0.5150 0.846 0.036 0.000 0.596 0.336 0.008 NA
#> GSM260901 3 0.5174 0.840 0.036 0.000 0.588 0.344 0.008 NA
#> GSM260904 3 0.5298 0.837 0.036 0.000 0.584 0.340 0.008 NA
#> GSM260907 3 0.5180 0.852 0.036 0.000 0.604 0.324 0.008 NA
#> GSM260910 4 0.0291 0.877 0.004 0.000 0.000 0.992 0.004 NA
#> GSM260918 2 0.1444 0.792 0.000 0.928 0.000 0.000 0.000 NA
#> GSM260921 2 0.1812 0.790 0.000 0.912 0.008 0.000 0.000 NA
#> GSM260924 2 0.2568 0.777 0.096 0.876 0.016 0.000 0.000 NA
#> GSM260929 2 0.0790 0.793 0.000 0.968 0.000 0.000 0.000 NA
#> GSM260932 2 0.6531 0.682 0.084 0.452 0.104 0.000 0.000 NA
#> GSM260935 2 0.6531 0.682 0.084 0.452 0.104 0.000 0.000 NA
#> GSM260938 2 0.3982 0.759 0.004 0.536 0.000 0.000 0.000 NA
#> GSM260941 2 0.3854 0.759 0.000 0.536 0.000 0.000 0.000 NA
#> GSM260944 2 0.3854 0.759 0.000 0.536 0.000 0.000 0.000 NA
#> GSM260947 2 0.3854 0.759 0.000 0.536 0.000 0.000 0.000 NA
#> GSM260952 2 0.2562 0.789 0.000 0.828 0.000 0.000 0.000 NA
#> GSM260914 1 0.3930 0.889 0.628 0.000 0.000 0.004 0.364 NA
#> GSM260916 1 0.4421 0.883 0.620 0.000 0.012 0.004 0.352 NA
#> GSM260919 1 0.5238 0.763 0.508 0.000 0.024 0.004 0.428 NA
#> GSM260922 1 0.4421 0.883 0.620 0.000 0.012 0.004 0.352 NA
#> GSM260925 1 0.3795 0.889 0.632 0.000 0.000 0.004 0.364 NA
#> GSM260927 1 0.5702 0.816 0.480 0.000 0.028 0.004 0.420 NA
#> GSM260930 5 0.0291 0.938 0.004 0.000 0.000 0.000 0.992 NA
#> GSM260933 5 0.0291 0.938 0.004 0.000 0.000 0.000 0.992 NA
#> GSM260936 5 0.2403 0.910 0.020 0.000 0.040 0.000 0.900 NA
#> GSM260939 5 0.2403 0.910 0.020 0.000 0.040 0.000 0.900 NA
#> GSM260942 5 0.2403 0.910 0.020 0.000 0.040 0.000 0.900 NA
#> GSM260945 5 0.2103 0.917 0.020 0.000 0.040 0.000 0.916 NA
#> GSM260948 1 0.5260 0.721 0.484 0.000 0.028 0.004 0.452 NA
#> GSM260950 1 0.4988 0.753 0.512 0.000 0.020 0.004 0.440 NA
#> GSM260915 4 0.0405 0.875 0.008 0.000 0.000 0.988 0.004 NA
#> GSM260917 3 0.4413 0.839 0.016 0.000 0.620 0.352 0.004 NA
#> GSM260920 4 0.1708 0.862 0.024 0.000 0.000 0.932 0.004 NA
#> GSM260923 4 0.0767 0.875 0.012 0.000 0.000 0.976 0.004 NA
#> GSM260926 4 0.0405 0.875 0.008 0.000 0.000 0.988 0.004 NA
#> GSM260928 4 0.7306 0.406 0.156 0.000 0.032 0.492 0.096 NA
#> GSM260931 3 0.3217 0.865 0.000 0.000 0.768 0.224 0.008 NA
#> GSM260934 3 0.5137 0.849 0.036 0.000 0.600 0.332 0.008 NA
#> GSM260937 3 0.4957 0.840 0.044 0.000 0.688 0.224 0.008 NA
#> GSM260940 3 0.3357 0.865 0.004 0.000 0.764 0.224 0.008 NA
#> GSM260943 3 0.4830 0.843 0.036 0.000 0.696 0.224 0.008 NA
#> GSM260946 3 0.3357 0.865 0.004 0.000 0.764 0.224 0.008 NA
#> GSM260949 4 0.1194 0.871 0.008 0.000 0.000 0.956 0.004 NA
#> GSM260951 3 0.4813 0.841 0.036 0.000 0.692 0.228 0.004 NA
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) cell.type(p) k
#> SD:kmeans 67 0.939 2.75e-14 2
#> SD:kmeans 66 0.920 2.62e-26 3
#> SD:kmeans 66 0.920 2.62e-26 4
#> SD:kmeans 59 0.199 8.03e-22 5
#> SD:kmeans 66 0.873 1.56e-23 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 67 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.977 0.980 0.4287 0.575 0.575
#> 3 3 1.000 0.993 0.997 0.5750 0.750 0.566
#> 4 4 0.880 0.948 0.921 0.0803 0.940 0.816
#> 5 5 0.885 0.933 0.888 0.0687 0.937 0.761
#> 6 6 0.813 0.884 0.889 0.0359 0.989 0.946
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2
There is also optional best \(k\) = 2 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM260888 2 0.000 1.000 0.00 1.00
#> GSM260893 2 0.000 1.000 0.00 1.00
#> GSM260896 2 0.000 1.000 0.00 1.00
#> GSM260899 2 0.000 1.000 0.00 1.00
#> GSM260902 2 0.000 1.000 0.00 1.00
#> GSM260905 2 0.000 1.000 0.00 1.00
#> GSM260908 2 0.000 1.000 0.00 1.00
#> GSM260911 2 0.000 1.000 0.00 1.00
#> GSM260912 2 0.000 1.000 0.00 1.00
#> GSM260913 1 0.327 0.965 0.94 0.06
#> GSM260886 1 0.000 0.970 1.00 0.00
#> GSM260889 1 0.000 0.970 1.00 0.00
#> GSM260891 1 0.000 0.970 1.00 0.00
#> GSM260894 1 0.000 0.970 1.00 0.00
#> GSM260897 1 0.000 0.970 1.00 0.00
#> GSM260900 1 0.000 0.970 1.00 0.00
#> GSM260903 1 0.000 0.970 1.00 0.00
#> GSM260906 1 0.000 0.970 1.00 0.00
#> GSM260909 1 0.000 0.970 1.00 0.00
#> GSM260887 1 0.327 0.965 0.94 0.06
#> GSM260890 1 0.327 0.965 0.94 0.06
#> GSM260892 1 0.327 0.965 0.94 0.06
#> GSM260895 1 0.000 0.970 1.00 0.00
#> GSM260898 1 0.327 0.965 0.94 0.06
#> GSM260901 1 0.327 0.965 0.94 0.06
#> GSM260904 1 0.327 0.965 0.94 0.06
#> GSM260907 1 0.327 0.965 0.94 0.06
#> GSM260910 1 0.327 0.965 0.94 0.06
#> GSM260918 2 0.000 1.000 0.00 1.00
#> GSM260921 2 0.000 1.000 0.00 1.00
#> GSM260924 2 0.000 1.000 0.00 1.00
#> GSM260929 2 0.000 1.000 0.00 1.00
#> GSM260932 2 0.000 1.000 0.00 1.00
#> GSM260935 2 0.000 1.000 0.00 1.00
#> GSM260938 2 0.000 1.000 0.00 1.00
#> GSM260941 2 0.000 1.000 0.00 1.00
#> GSM260944 2 0.000 1.000 0.00 1.00
#> GSM260947 2 0.000 1.000 0.00 1.00
#> GSM260952 2 0.000 1.000 0.00 1.00
#> GSM260914 1 0.000 0.970 1.00 0.00
#> GSM260916 1 0.000 0.970 1.00 0.00
#> GSM260919 1 0.000 0.970 1.00 0.00
#> GSM260922 1 0.000 0.970 1.00 0.00
#> GSM260925 1 0.000 0.970 1.00 0.00
#> GSM260927 1 0.000 0.970 1.00 0.00
#> GSM260930 1 0.000 0.970 1.00 0.00
#> GSM260933 1 0.000 0.970 1.00 0.00
#> GSM260936 1 0.000 0.970 1.00 0.00
#> GSM260939 1 0.000 0.970 1.00 0.00
#> GSM260942 1 0.000 0.970 1.00 0.00
#> GSM260945 1 0.000 0.970 1.00 0.00
#> GSM260948 1 0.000 0.970 1.00 0.00
#> GSM260950 1 0.000 0.970 1.00 0.00
#> GSM260915 1 0.327 0.965 0.94 0.06
#> GSM260917 1 0.327 0.965 0.94 0.06
#> GSM260920 1 0.327 0.965 0.94 0.06
#> GSM260923 1 0.327 0.965 0.94 0.06
#> GSM260926 1 0.327 0.965 0.94 0.06
#> GSM260928 1 0.000 0.970 1.00 0.00
#> GSM260931 1 0.327 0.965 0.94 0.06
#> GSM260934 1 0.327 0.965 0.94 0.06
#> GSM260937 1 0.327 0.965 0.94 0.06
#> GSM260940 1 0.327 0.965 0.94 0.06
#> GSM260943 1 0.327 0.965 0.94 0.06
#> GSM260946 1 0.327 0.965 0.94 0.06
#> GSM260949 1 0.327 0.965 0.94 0.06
#> GSM260951 1 0.327 0.965 0.94 0.06
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM260888 2 0.000 1.000 0.0 1 0.0
#> GSM260893 2 0.000 1.000 0.0 1 0.0
#> GSM260896 2 0.000 1.000 0.0 1 0.0
#> GSM260899 2 0.000 1.000 0.0 1 0.0
#> GSM260902 2 0.000 1.000 0.0 1 0.0
#> GSM260905 2 0.000 1.000 0.0 1 0.0
#> GSM260908 2 0.000 1.000 0.0 1 0.0
#> GSM260911 2 0.000 1.000 0.0 1 0.0
#> GSM260912 2 0.000 1.000 0.0 1 0.0
#> GSM260913 3 0.000 1.000 0.0 0 1.0
#> GSM260886 1 0.000 0.991 1.0 0 0.0
#> GSM260889 1 0.000 0.991 1.0 0 0.0
#> GSM260891 1 0.000 0.991 1.0 0 0.0
#> GSM260894 1 0.000 0.991 1.0 0 0.0
#> GSM260897 1 0.000 0.991 1.0 0 0.0
#> GSM260900 1 0.000 0.991 1.0 0 0.0
#> GSM260903 1 0.000 0.991 1.0 0 0.0
#> GSM260906 1 0.000 0.991 1.0 0 0.0
#> GSM260909 1 0.000 0.991 1.0 0 0.0
#> GSM260887 3 0.000 1.000 0.0 0 1.0
#> GSM260890 3 0.000 1.000 0.0 0 1.0
#> GSM260892 3 0.000 1.000 0.0 0 1.0
#> GSM260895 3 0.000 1.000 0.0 0 1.0
#> GSM260898 3 0.000 1.000 0.0 0 1.0
#> GSM260901 3 0.000 1.000 0.0 0 1.0
#> GSM260904 3 0.000 1.000 0.0 0 1.0
#> GSM260907 3 0.000 1.000 0.0 0 1.0
#> GSM260910 3 0.000 1.000 0.0 0 1.0
#> GSM260918 2 0.000 1.000 0.0 1 0.0
#> GSM260921 2 0.000 1.000 0.0 1 0.0
#> GSM260924 2 0.000 1.000 0.0 1 0.0
#> GSM260929 2 0.000 1.000 0.0 1 0.0
#> GSM260932 2 0.000 1.000 0.0 1 0.0
#> GSM260935 2 0.000 1.000 0.0 1 0.0
#> GSM260938 2 0.000 1.000 0.0 1 0.0
#> GSM260941 2 0.000 1.000 0.0 1 0.0
#> GSM260944 2 0.000 1.000 0.0 1 0.0
#> GSM260947 2 0.000 1.000 0.0 1 0.0
#> GSM260952 2 0.000 1.000 0.0 1 0.0
#> GSM260914 1 0.000 0.991 1.0 0 0.0
#> GSM260916 1 0.000 0.991 1.0 0 0.0
#> GSM260919 1 0.000 0.991 1.0 0 0.0
#> GSM260922 1 0.000 0.991 1.0 0 0.0
#> GSM260925 1 0.000 0.991 1.0 0 0.0
#> GSM260927 1 0.000 0.991 1.0 0 0.0
#> GSM260930 1 0.000 0.991 1.0 0 0.0
#> GSM260933 1 0.000 0.991 1.0 0 0.0
#> GSM260936 1 0.000 0.991 1.0 0 0.0
#> GSM260939 1 0.000 0.991 1.0 0 0.0
#> GSM260942 1 0.000 0.991 1.0 0 0.0
#> GSM260945 1 0.000 0.991 1.0 0 0.0
#> GSM260948 1 0.000 0.991 1.0 0 0.0
#> GSM260950 1 0.000 0.991 1.0 0 0.0
#> GSM260915 3 0.000 1.000 0.0 0 1.0
#> GSM260917 3 0.000 1.000 0.0 0 1.0
#> GSM260920 3 0.000 1.000 0.0 0 1.0
#> GSM260923 3 0.000 1.000 0.0 0 1.0
#> GSM260926 3 0.000 1.000 0.0 0 1.0
#> GSM260928 1 0.455 0.750 0.8 0 0.2
#> GSM260931 3 0.000 1.000 0.0 0 1.0
#> GSM260934 3 0.000 1.000 0.0 0 1.0
#> GSM260937 3 0.000 1.000 0.0 0 1.0
#> GSM260940 3 0.000 1.000 0.0 0 1.0
#> GSM260943 3 0.000 1.000 0.0 0 1.0
#> GSM260946 3 0.000 1.000 0.0 0 1.0
#> GSM260949 3 0.000 1.000 0.0 0 1.0
#> GSM260951 3 0.000 1.000 0.0 0 1.0
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM260888 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260893 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260896 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260899 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260902 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260905 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260908 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260911 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260912 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260913 4 0.4564 0.942 0.000 0 0.328 0.672
#> GSM260886 1 0.2973 0.929 0.856 0 0.000 0.144
#> GSM260889 1 0.2973 0.929 0.856 0 0.000 0.144
#> GSM260891 1 0.2973 0.929 0.856 0 0.000 0.144
#> GSM260894 1 0.2973 0.929 0.856 0 0.000 0.144
#> GSM260897 1 0.0000 0.914 1.000 0 0.000 0.000
#> GSM260900 1 0.0000 0.914 1.000 0 0.000 0.000
#> GSM260903 1 0.0000 0.914 1.000 0 0.000 0.000
#> GSM260906 1 0.0000 0.914 1.000 0 0.000 0.000
#> GSM260909 1 0.2973 0.929 0.856 0 0.000 0.144
#> GSM260887 4 0.4543 0.943 0.000 0 0.324 0.676
#> GSM260890 4 0.4543 0.943 0.000 0 0.324 0.676
#> GSM260892 4 0.4543 0.943 0.000 0 0.324 0.676
#> GSM260895 4 0.0188 0.561 0.000 0 0.004 0.996
#> GSM260898 3 0.0707 0.982 0.000 0 0.980 0.020
#> GSM260901 3 0.0707 0.982 0.000 0 0.980 0.020
#> GSM260904 3 0.0707 0.982 0.000 0 0.980 0.020
#> GSM260907 3 0.0707 0.982 0.000 0 0.980 0.020
#> GSM260910 4 0.4522 0.941 0.000 0 0.320 0.680
#> GSM260918 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260921 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260924 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260929 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260932 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260935 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260938 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260941 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260944 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260947 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260952 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260914 1 0.2973 0.929 0.856 0 0.000 0.144
#> GSM260916 1 0.2973 0.929 0.856 0 0.000 0.144
#> GSM260919 1 0.2760 0.930 0.872 0 0.000 0.128
#> GSM260922 1 0.2973 0.929 0.856 0 0.000 0.144
#> GSM260925 1 0.2973 0.929 0.856 0 0.000 0.144
#> GSM260927 1 0.2973 0.929 0.856 0 0.000 0.144
#> GSM260930 1 0.0000 0.914 1.000 0 0.000 0.000
#> GSM260933 1 0.0000 0.914 1.000 0 0.000 0.000
#> GSM260936 1 0.0000 0.914 1.000 0 0.000 0.000
#> GSM260939 1 0.0000 0.914 1.000 0 0.000 0.000
#> GSM260942 1 0.0000 0.914 1.000 0 0.000 0.000
#> GSM260945 1 0.0000 0.914 1.000 0 0.000 0.000
#> GSM260948 1 0.2760 0.930 0.872 0 0.000 0.128
#> GSM260950 1 0.2760 0.930 0.872 0 0.000 0.128
#> GSM260915 4 0.4543 0.943 0.000 0 0.324 0.676
#> GSM260917 3 0.0707 0.978 0.000 0 0.980 0.020
#> GSM260920 4 0.4605 0.931 0.000 0 0.336 0.664
#> GSM260923 4 0.4522 0.941 0.000 0 0.320 0.680
#> GSM260926 4 0.4564 0.942 0.000 0 0.328 0.672
#> GSM260928 1 0.4999 0.534 0.508 0 0.000 0.492
#> GSM260931 3 0.0000 0.985 0.000 0 1.000 0.000
#> GSM260934 3 0.0592 0.984 0.000 0 0.984 0.016
#> GSM260937 3 0.0000 0.985 0.000 0 1.000 0.000
#> GSM260940 3 0.0000 0.985 0.000 0 1.000 0.000
#> GSM260943 3 0.0000 0.985 0.000 0 1.000 0.000
#> GSM260946 3 0.0000 0.985 0.000 0 1.000 0.000
#> GSM260949 4 0.4564 0.942 0.000 0 0.328 0.672
#> GSM260951 3 0.0188 0.984 0.000 0 0.996 0.004
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM260888 2 0.0000 0.965 0.000 1.000 0.000 0.000 0.000
#> GSM260893 2 0.0000 0.965 0.000 1.000 0.000 0.000 0.000
#> GSM260896 2 0.0000 0.965 0.000 1.000 0.000 0.000 0.000
#> GSM260899 2 0.2761 0.934 0.000 0.872 0.000 0.024 0.104
#> GSM260902 2 0.2761 0.934 0.000 0.872 0.000 0.024 0.104
#> GSM260905 2 0.1626 0.961 0.000 0.940 0.000 0.016 0.044
#> GSM260908 2 0.1626 0.961 0.000 0.940 0.000 0.016 0.044
#> GSM260911 2 0.0000 0.965 0.000 1.000 0.000 0.000 0.000
#> GSM260912 2 0.0000 0.965 0.000 1.000 0.000 0.000 0.000
#> GSM260913 4 0.1408 0.967 0.000 0.000 0.044 0.948 0.008
#> GSM260886 1 0.0000 0.903 1.000 0.000 0.000 0.000 0.000
#> GSM260889 1 0.0162 0.903 0.996 0.000 0.000 0.000 0.004
#> GSM260891 1 0.0290 0.898 0.992 0.000 0.000 0.000 0.008
#> GSM260894 1 0.0162 0.902 0.996 0.000 0.000 0.000 0.004
#> GSM260897 5 0.4182 0.997 0.400 0.000 0.000 0.000 0.600
#> GSM260900 5 0.4182 0.997 0.400 0.000 0.000 0.000 0.600
#> GSM260903 5 0.4182 0.997 0.400 0.000 0.000 0.000 0.600
#> GSM260906 5 0.4182 0.997 0.400 0.000 0.000 0.000 0.600
#> GSM260909 1 0.0162 0.902 0.996 0.000 0.000 0.000 0.004
#> GSM260887 4 0.1121 0.969 0.000 0.000 0.044 0.956 0.000
#> GSM260890 4 0.1121 0.969 0.000 0.000 0.044 0.956 0.000
#> GSM260892 4 0.1331 0.967 0.000 0.000 0.040 0.952 0.008
#> GSM260895 4 0.4527 0.709 0.040 0.000 0.000 0.700 0.260
#> GSM260898 3 0.2068 0.935 0.000 0.000 0.904 0.092 0.004
#> GSM260901 3 0.2068 0.935 0.000 0.000 0.904 0.092 0.004
#> GSM260904 3 0.2124 0.932 0.000 0.000 0.900 0.096 0.004
#> GSM260907 3 0.1892 0.940 0.000 0.000 0.916 0.080 0.004
#> GSM260910 4 0.1043 0.968 0.000 0.000 0.040 0.960 0.000
#> GSM260918 2 0.0000 0.965 0.000 1.000 0.000 0.000 0.000
#> GSM260921 2 0.0000 0.965 0.000 1.000 0.000 0.000 0.000
#> GSM260924 2 0.0000 0.965 0.000 1.000 0.000 0.000 0.000
#> GSM260929 2 0.0000 0.965 0.000 1.000 0.000 0.000 0.000
#> GSM260932 2 0.2761 0.934 0.000 0.872 0.000 0.024 0.104
#> GSM260935 2 0.2761 0.934 0.000 0.872 0.000 0.024 0.104
#> GSM260938 2 0.1701 0.960 0.000 0.936 0.000 0.016 0.048
#> GSM260941 2 0.1701 0.960 0.000 0.936 0.000 0.016 0.048
#> GSM260944 2 0.1701 0.960 0.000 0.936 0.000 0.016 0.048
#> GSM260947 2 0.1701 0.960 0.000 0.936 0.000 0.016 0.048
#> GSM260952 2 0.0000 0.965 0.000 1.000 0.000 0.000 0.000
#> GSM260914 1 0.0162 0.903 0.996 0.000 0.000 0.000 0.004
#> GSM260916 1 0.0000 0.903 1.000 0.000 0.000 0.000 0.000
#> GSM260919 1 0.1544 0.843 0.932 0.000 0.000 0.000 0.068
#> GSM260922 1 0.0000 0.903 1.000 0.000 0.000 0.000 0.000
#> GSM260925 1 0.0162 0.903 0.996 0.000 0.000 0.000 0.004
#> GSM260927 1 0.1732 0.816 0.920 0.000 0.000 0.000 0.080
#> GSM260930 5 0.4182 0.997 0.400 0.000 0.000 0.000 0.600
#> GSM260933 5 0.4182 0.997 0.400 0.000 0.000 0.000 0.600
#> GSM260936 5 0.4171 0.995 0.396 0.000 0.000 0.000 0.604
#> GSM260939 5 0.4171 0.995 0.396 0.000 0.000 0.000 0.604
#> GSM260942 5 0.4171 0.995 0.396 0.000 0.000 0.000 0.604
#> GSM260945 5 0.4171 0.995 0.396 0.000 0.000 0.000 0.604
#> GSM260948 1 0.2127 0.776 0.892 0.000 0.000 0.000 0.108
#> GSM260950 1 0.1544 0.843 0.932 0.000 0.000 0.000 0.068
#> GSM260915 4 0.1043 0.968 0.000 0.000 0.040 0.960 0.000
#> GSM260917 3 0.1851 0.926 0.000 0.000 0.912 0.088 0.000
#> GSM260920 4 0.1557 0.961 0.000 0.000 0.052 0.940 0.008
#> GSM260923 4 0.1043 0.968 0.000 0.000 0.040 0.960 0.000
#> GSM260926 4 0.1121 0.969 0.000 0.000 0.044 0.956 0.000
#> GSM260928 1 0.5949 0.332 0.532 0.000 0.000 0.120 0.348
#> GSM260931 3 0.0000 0.946 0.000 0.000 1.000 0.000 0.000
#> GSM260934 3 0.2011 0.937 0.000 0.000 0.908 0.088 0.004
#> GSM260937 3 0.0290 0.945 0.000 0.000 0.992 0.000 0.008
#> GSM260940 3 0.0000 0.946 0.000 0.000 1.000 0.000 0.000
#> GSM260943 3 0.0290 0.945 0.000 0.000 0.992 0.000 0.008
#> GSM260946 3 0.0000 0.946 0.000 0.000 1.000 0.000 0.000
#> GSM260949 4 0.1282 0.968 0.000 0.000 0.044 0.952 0.004
#> GSM260951 3 0.0290 0.945 0.000 0.000 0.992 0.000 0.008
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM260888 2 0.2070 0.9083 0.000 0.892 0.000 0.000 0.008 0.100
#> GSM260893 2 0.2070 0.9083 0.000 0.892 0.000 0.000 0.008 0.100
#> GSM260896 2 0.2070 0.9083 0.000 0.892 0.000 0.000 0.008 0.100
#> GSM260899 2 0.3275 0.7991 0.000 0.816 0.000 0.004 0.036 0.144
#> GSM260902 2 0.3275 0.7991 0.000 0.816 0.000 0.004 0.036 0.144
#> GSM260905 2 0.0146 0.9022 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM260908 2 0.0260 0.9014 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM260911 2 0.2070 0.9083 0.000 0.892 0.000 0.000 0.008 0.100
#> GSM260912 2 0.1908 0.9098 0.000 0.900 0.000 0.000 0.004 0.096
#> GSM260913 4 0.1369 0.9650 0.000 0.000 0.016 0.952 0.016 0.016
#> GSM260886 1 0.0146 0.9177 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM260889 1 0.0146 0.9177 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM260891 1 0.1364 0.8996 0.944 0.000 0.000 0.004 0.004 0.048
#> GSM260894 1 0.1155 0.9060 0.956 0.000 0.000 0.004 0.004 0.036
#> GSM260897 5 0.2631 0.9751 0.180 0.000 0.000 0.000 0.820 0.000
#> GSM260900 5 0.2823 0.9635 0.204 0.000 0.000 0.000 0.796 0.000
#> GSM260903 5 0.2730 0.9746 0.192 0.000 0.000 0.000 0.808 0.000
#> GSM260906 5 0.2730 0.9746 0.192 0.000 0.000 0.000 0.808 0.000
#> GSM260909 1 0.1082 0.9044 0.956 0.000 0.000 0.004 0.000 0.040
#> GSM260887 4 0.1086 0.9676 0.000 0.000 0.012 0.964 0.012 0.012
#> GSM260890 4 0.0363 0.9708 0.000 0.000 0.012 0.988 0.000 0.000
#> GSM260892 4 0.1269 0.9648 0.000 0.000 0.012 0.956 0.012 0.020
#> GSM260895 6 0.4179 0.0764 0.012 0.000 0.000 0.472 0.000 0.516
#> GSM260898 3 0.3485 0.8663 0.000 0.000 0.828 0.096 0.024 0.052
#> GSM260901 3 0.3580 0.8620 0.000 0.000 0.820 0.104 0.024 0.052
#> GSM260904 3 0.3533 0.8644 0.000 0.000 0.824 0.100 0.024 0.052
#> GSM260907 3 0.3470 0.8659 0.000 0.000 0.828 0.100 0.024 0.048
#> GSM260910 4 0.0806 0.9645 0.000 0.000 0.008 0.972 0.000 0.020
#> GSM260918 2 0.1908 0.9098 0.000 0.900 0.000 0.000 0.004 0.096
#> GSM260921 2 0.2118 0.9077 0.000 0.888 0.000 0.000 0.008 0.104
#> GSM260924 2 0.2118 0.9077 0.000 0.888 0.000 0.000 0.008 0.104
#> GSM260929 2 0.1908 0.9098 0.000 0.900 0.000 0.000 0.004 0.096
#> GSM260932 2 0.3275 0.7991 0.000 0.816 0.000 0.004 0.036 0.144
#> GSM260935 2 0.3275 0.7991 0.000 0.816 0.000 0.004 0.036 0.144
#> GSM260938 2 0.0858 0.8952 0.000 0.968 0.000 0.000 0.004 0.028
#> GSM260941 2 0.0603 0.8993 0.000 0.980 0.000 0.000 0.004 0.016
#> GSM260944 2 0.0603 0.8993 0.000 0.980 0.000 0.000 0.004 0.016
#> GSM260947 2 0.0603 0.8993 0.000 0.980 0.000 0.000 0.004 0.016
#> GSM260952 2 0.2006 0.9089 0.000 0.892 0.000 0.000 0.004 0.104
#> GSM260914 1 0.0291 0.9177 0.992 0.000 0.000 0.000 0.004 0.004
#> GSM260916 1 0.0260 0.9161 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM260919 1 0.2212 0.8448 0.880 0.000 0.000 0.000 0.112 0.008
#> GSM260922 1 0.0363 0.9157 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM260925 1 0.0405 0.9172 0.988 0.000 0.000 0.000 0.004 0.008
#> GSM260927 1 0.3186 0.8052 0.836 0.000 0.000 0.004 0.100 0.060
#> GSM260930 5 0.2730 0.9748 0.192 0.000 0.000 0.000 0.808 0.000
#> GSM260933 5 0.2730 0.9748 0.192 0.000 0.000 0.000 0.808 0.000
#> GSM260936 5 0.2841 0.9685 0.164 0.000 0.000 0.000 0.824 0.012
#> GSM260939 5 0.2841 0.9685 0.164 0.000 0.000 0.000 0.824 0.012
#> GSM260942 5 0.2841 0.9685 0.164 0.000 0.000 0.000 0.824 0.012
#> GSM260945 5 0.2743 0.9694 0.164 0.000 0.000 0.000 0.828 0.008
#> GSM260948 1 0.3168 0.7447 0.792 0.000 0.000 0.000 0.192 0.016
#> GSM260950 1 0.2631 0.8136 0.840 0.000 0.000 0.000 0.152 0.008
#> GSM260915 4 0.0820 0.9675 0.000 0.000 0.012 0.972 0.000 0.016
#> GSM260917 3 0.2651 0.8514 0.000 0.000 0.860 0.112 0.000 0.028
#> GSM260920 4 0.1148 0.9660 0.000 0.000 0.016 0.960 0.004 0.020
#> GSM260923 4 0.1364 0.9617 0.000 0.000 0.012 0.952 0.016 0.020
#> GSM260926 4 0.0964 0.9696 0.000 0.000 0.016 0.968 0.004 0.012
#> GSM260928 6 0.5787 0.3797 0.224 0.000 0.000 0.072 0.088 0.616
#> GSM260931 3 0.0260 0.8744 0.000 0.000 0.992 0.000 0.000 0.008
#> GSM260934 3 0.3470 0.8659 0.000 0.000 0.828 0.100 0.024 0.048
#> GSM260937 3 0.2897 0.8093 0.000 0.000 0.852 0.000 0.088 0.060
#> GSM260940 3 0.0291 0.8750 0.000 0.000 0.992 0.000 0.004 0.004
#> GSM260943 3 0.1745 0.8530 0.000 0.000 0.924 0.000 0.020 0.056
#> GSM260946 3 0.0405 0.8737 0.000 0.000 0.988 0.000 0.004 0.008
#> GSM260949 4 0.1059 0.9681 0.000 0.000 0.016 0.964 0.004 0.016
#> GSM260951 3 0.1951 0.8513 0.000 0.000 0.916 0.004 0.020 0.060
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) cell.type(p) k
#> SD:skmeans 67 0.939 2.75e-14 2
#> SD:skmeans 67 0.864 1.50e-25 3
#> SD:skmeans 67 0.716 4.07e-24 4
#> SD:skmeans 66 0.873 1.56e-23 5
#> SD:skmeans 65 0.940 4.03e-23 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 67 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 5.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4257 0.575 0.575
#> 3 3 1.000 0.975 0.990 0.5846 0.751 0.567
#> 4 4 0.882 0.942 0.918 0.0903 0.930 0.789
#> 5 5 0.931 0.951 0.954 0.0791 0.935 0.755
#> 6 6 0.893 0.807 0.902 0.0467 0.966 0.831
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 3
There is also optional best \(k\) = 2 3 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM260888 2 0 1 0 1
#> GSM260893 2 0 1 0 1
#> GSM260896 2 0 1 0 1
#> GSM260899 2 0 1 0 1
#> GSM260902 2 0 1 0 1
#> GSM260905 2 0 1 0 1
#> GSM260908 2 0 1 0 1
#> GSM260911 2 0 1 0 1
#> GSM260912 2 0 1 0 1
#> GSM260913 1 0 1 1 0
#> GSM260886 1 0 1 1 0
#> GSM260889 1 0 1 1 0
#> GSM260891 1 0 1 1 0
#> GSM260894 1 0 1 1 0
#> GSM260897 1 0 1 1 0
#> GSM260900 1 0 1 1 0
#> GSM260903 1 0 1 1 0
#> GSM260906 1 0 1 1 0
#> GSM260909 1 0 1 1 0
#> GSM260887 1 0 1 1 0
#> GSM260890 1 0 1 1 0
#> GSM260892 1 0 1 1 0
#> GSM260895 1 0 1 1 0
#> GSM260898 1 0 1 1 0
#> GSM260901 1 0 1 1 0
#> GSM260904 1 0 1 1 0
#> GSM260907 1 0 1 1 0
#> GSM260910 1 0 1 1 0
#> GSM260918 2 0 1 0 1
#> GSM260921 2 0 1 0 1
#> GSM260924 2 0 1 0 1
#> GSM260929 2 0 1 0 1
#> GSM260932 2 0 1 0 1
#> GSM260935 2 0 1 0 1
#> GSM260938 2 0 1 0 1
#> GSM260941 2 0 1 0 1
#> GSM260944 2 0 1 0 1
#> GSM260947 2 0 1 0 1
#> GSM260952 2 0 1 0 1
#> GSM260914 1 0 1 1 0
#> GSM260916 1 0 1 1 0
#> GSM260919 1 0 1 1 0
#> GSM260922 1 0 1 1 0
#> GSM260925 1 0 1 1 0
#> GSM260927 1 0 1 1 0
#> GSM260930 1 0 1 1 0
#> GSM260933 1 0 1 1 0
#> GSM260936 1 0 1 1 0
#> GSM260939 1 0 1 1 0
#> GSM260942 1 0 1 1 0
#> GSM260945 1 0 1 1 0
#> GSM260948 1 0 1 1 0
#> GSM260950 1 0 1 1 0
#> GSM260915 1 0 1 1 0
#> GSM260917 1 0 1 1 0
#> GSM260920 1 0 1 1 0
#> GSM260923 1 0 1 1 0
#> GSM260926 1 0 1 1 0
#> GSM260928 1 0 1 1 0
#> GSM260931 1 0 1 1 0
#> GSM260934 1 0 1 1 0
#> GSM260937 1 0 1 1 0
#> GSM260940 1 0 1 1 0
#> GSM260943 1 0 1 1 0
#> GSM260946 1 0 1 1 0
#> GSM260949 1 0 1 1 0
#> GSM260951 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM260888 2 0.000 1.000 0.000 1 0.000
#> GSM260893 2 0.000 1.000 0.000 1 0.000
#> GSM260896 2 0.000 1.000 0.000 1 0.000
#> GSM260899 2 0.000 1.000 0.000 1 0.000
#> GSM260902 2 0.000 1.000 0.000 1 0.000
#> GSM260905 2 0.000 1.000 0.000 1 0.000
#> GSM260908 2 0.000 1.000 0.000 1 0.000
#> GSM260911 2 0.000 1.000 0.000 1 0.000
#> GSM260912 2 0.000 1.000 0.000 1 0.000
#> GSM260913 3 0.000 1.000 0.000 0 1.000
#> GSM260886 1 0.000 0.972 1.000 0 0.000
#> GSM260889 1 0.000 0.972 1.000 0 0.000
#> GSM260891 1 0.000 0.972 1.000 0 0.000
#> GSM260894 1 0.000 0.972 1.000 0 0.000
#> GSM260897 1 0.000 0.972 1.000 0 0.000
#> GSM260900 1 0.000 0.972 1.000 0 0.000
#> GSM260903 1 0.000 0.972 1.000 0 0.000
#> GSM260906 1 0.000 0.972 1.000 0 0.000
#> GSM260909 1 0.000 0.972 1.000 0 0.000
#> GSM260887 3 0.000 1.000 0.000 0 1.000
#> GSM260890 3 0.000 1.000 0.000 0 1.000
#> GSM260892 3 0.000 1.000 0.000 0 1.000
#> GSM260895 1 0.611 0.369 0.604 0 0.396
#> GSM260898 3 0.000 1.000 0.000 0 1.000
#> GSM260901 3 0.000 1.000 0.000 0 1.000
#> GSM260904 3 0.000 1.000 0.000 0 1.000
#> GSM260907 3 0.000 1.000 0.000 0 1.000
#> GSM260910 3 0.000 1.000 0.000 0 1.000
#> GSM260918 2 0.000 1.000 0.000 1 0.000
#> GSM260921 2 0.000 1.000 0.000 1 0.000
#> GSM260924 2 0.000 1.000 0.000 1 0.000
#> GSM260929 2 0.000 1.000 0.000 1 0.000
#> GSM260932 2 0.000 1.000 0.000 1 0.000
#> GSM260935 2 0.000 1.000 0.000 1 0.000
#> GSM260938 2 0.000 1.000 0.000 1 0.000
#> GSM260941 2 0.000 1.000 0.000 1 0.000
#> GSM260944 2 0.000 1.000 0.000 1 0.000
#> GSM260947 2 0.000 1.000 0.000 1 0.000
#> GSM260952 2 0.000 1.000 0.000 1 0.000
#> GSM260914 1 0.000 0.972 1.000 0 0.000
#> GSM260916 1 0.000 0.972 1.000 0 0.000
#> GSM260919 1 0.000 0.972 1.000 0 0.000
#> GSM260922 1 0.000 0.972 1.000 0 0.000
#> GSM260925 1 0.000 0.972 1.000 0 0.000
#> GSM260927 1 0.000 0.972 1.000 0 0.000
#> GSM260930 1 0.000 0.972 1.000 0 0.000
#> GSM260933 1 0.000 0.972 1.000 0 0.000
#> GSM260936 1 0.000 0.972 1.000 0 0.000
#> GSM260939 1 0.000 0.972 1.000 0 0.000
#> GSM260942 1 0.000 0.972 1.000 0 0.000
#> GSM260945 1 0.000 0.972 1.000 0 0.000
#> GSM260948 1 0.000 0.972 1.000 0 0.000
#> GSM260950 1 0.000 0.972 1.000 0 0.000
#> GSM260915 3 0.000 1.000 0.000 0 1.000
#> GSM260917 3 0.000 1.000 0.000 0 1.000
#> GSM260920 3 0.000 1.000 0.000 0 1.000
#> GSM260923 3 0.000 1.000 0.000 0 1.000
#> GSM260926 3 0.000 1.000 0.000 0 1.000
#> GSM260928 1 0.529 0.640 0.732 0 0.268
#> GSM260931 3 0.000 1.000 0.000 0 1.000
#> GSM260934 3 0.000 1.000 0.000 0 1.000
#> GSM260937 3 0.000 1.000 0.000 0 1.000
#> GSM260940 3 0.000 1.000 0.000 0 1.000
#> GSM260943 3 0.000 1.000 0.000 0 1.000
#> GSM260946 3 0.000 1.000 0.000 0 1.000
#> GSM260949 3 0.000 1.000 0.000 0 1.000
#> GSM260951 3 0.000 1.000 0.000 0 1.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM260888 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260893 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260896 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260899 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260902 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260905 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260908 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260911 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260912 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260913 4 0.3569 0.950 0.000 0 0.196 0.804
#> GSM260886 1 0.0188 0.907 0.996 0 0.000 0.004
#> GSM260889 1 0.0188 0.907 0.996 0 0.000 0.004
#> GSM260891 1 0.1474 0.911 0.948 0 0.000 0.052
#> GSM260894 1 0.0188 0.907 0.996 0 0.000 0.004
#> GSM260897 1 0.3528 0.911 0.808 0 0.000 0.192
#> GSM260900 1 0.3528 0.911 0.808 0 0.000 0.192
#> GSM260903 1 0.3528 0.911 0.808 0 0.000 0.192
#> GSM260906 1 0.3528 0.911 0.808 0 0.000 0.192
#> GSM260909 1 0.0188 0.907 0.996 0 0.000 0.004
#> GSM260887 4 0.3569 0.950 0.000 0 0.196 0.804
#> GSM260890 4 0.3569 0.950 0.000 0 0.196 0.804
#> GSM260892 4 0.3569 0.950 0.000 0 0.196 0.804
#> GSM260895 4 0.5383 0.753 0.160 0 0.100 0.740
#> GSM260898 3 0.0000 0.975 0.000 0 1.000 0.000
#> GSM260901 3 0.1302 0.931 0.000 0 0.956 0.044
#> GSM260904 3 0.3123 0.755 0.000 0 0.844 0.156
#> GSM260907 3 0.0000 0.975 0.000 0 1.000 0.000
#> GSM260910 4 0.3569 0.950 0.000 0 0.196 0.804
#> GSM260918 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260921 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260924 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260929 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260932 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260935 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260938 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260941 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260944 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260947 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260952 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260914 1 0.0188 0.907 0.996 0 0.000 0.004
#> GSM260916 1 0.0188 0.907 0.996 0 0.000 0.004
#> GSM260919 1 0.0188 0.907 0.996 0 0.000 0.004
#> GSM260922 1 0.0188 0.907 0.996 0 0.000 0.004
#> GSM260925 1 0.0188 0.907 0.996 0 0.000 0.004
#> GSM260927 1 0.3486 0.911 0.812 0 0.000 0.188
#> GSM260930 1 0.3528 0.911 0.808 0 0.000 0.192
#> GSM260933 1 0.3528 0.911 0.808 0 0.000 0.192
#> GSM260936 1 0.3528 0.911 0.808 0 0.000 0.192
#> GSM260939 1 0.3528 0.911 0.808 0 0.000 0.192
#> GSM260942 1 0.3528 0.911 0.808 0 0.000 0.192
#> GSM260945 1 0.3528 0.911 0.808 0 0.000 0.192
#> GSM260948 1 0.1389 0.911 0.952 0 0.000 0.048
#> GSM260950 1 0.0000 0.907 1.000 0 0.000 0.000
#> GSM260915 4 0.3569 0.950 0.000 0 0.196 0.804
#> GSM260917 3 0.0336 0.969 0.000 0 0.992 0.008
#> GSM260920 4 0.4843 0.638 0.000 0 0.396 0.604
#> GSM260923 4 0.3569 0.950 0.000 0 0.196 0.804
#> GSM260926 4 0.3569 0.950 0.000 0 0.196 0.804
#> GSM260928 1 0.4907 0.848 0.764 0 0.060 0.176
#> GSM260931 3 0.0000 0.975 0.000 0 1.000 0.000
#> GSM260934 3 0.0000 0.975 0.000 0 1.000 0.000
#> GSM260937 3 0.0000 0.975 0.000 0 1.000 0.000
#> GSM260940 3 0.0000 0.975 0.000 0 1.000 0.000
#> GSM260943 3 0.0000 0.975 0.000 0 1.000 0.000
#> GSM260946 3 0.0000 0.975 0.000 0 1.000 0.000
#> GSM260949 4 0.3569 0.950 0.000 0 0.196 0.804
#> GSM260951 3 0.0000 0.975 0.000 0 1.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM260888 2 0.0162 0.995 0.000 0.996 0.000 0.000 0.004
#> GSM260893 2 0.0162 0.995 0.000 0.996 0.000 0.000 0.004
#> GSM260896 2 0.0162 0.995 0.000 0.996 0.000 0.000 0.004
#> GSM260899 2 0.0671 0.986 0.000 0.980 0.000 0.004 0.016
#> GSM260902 2 0.0671 0.986 0.000 0.980 0.000 0.004 0.016
#> GSM260905 2 0.0000 0.994 0.000 1.000 0.000 0.000 0.000
#> GSM260908 2 0.0000 0.994 0.000 1.000 0.000 0.000 0.000
#> GSM260911 2 0.0162 0.995 0.000 0.996 0.000 0.000 0.004
#> GSM260912 2 0.0162 0.995 0.000 0.996 0.000 0.000 0.004
#> GSM260913 4 0.0162 0.935 0.000 0.000 0.004 0.996 0.000
#> GSM260886 1 0.0000 0.971 1.000 0.000 0.000 0.000 0.000
#> GSM260889 1 0.0000 0.971 1.000 0.000 0.000 0.000 0.000
#> GSM260891 1 0.1851 0.902 0.912 0.000 0.000 0.000 0.088
#> GSM260894 1 0.1908 0.888 0.908 0.000 0.000 0.000 0.092
#> GSM260897 5 0.2230 0.987 0.116 0.000 0.000 0.000 0.884
#> GSM260900 5 0.2230 0.987 0.116 0.000 0.000 0.000 0.884
#> GSM260903 5 0.2230 0.987 0.116 0.000 0.000 0.000 0.884
#> GSM260906 5 0.2230 0.987 0.116 0.000 0.000 0.000 0.884
#> GSM260909 1 0.0000 0.971 1.000 0.000 0.000 0.000 0.000
#> GSM260887 4 0.0162 0.935 0.000 0.000 0.004 0.996 0.000
#> GSM260890 4 0.0162 0.935 0.000 0.000 0.004 0.996 0.000
#> GSM260892 4 0.0162 0.935 0.000 0.000 0.004 0.996 0.000
#> GSM260895 4 0.5749 0.422 0.316 0.000 0.004 0.584 0.096
#> GSM260898 3 0.0000 0.966 0.000 0.000 1.000 0.000 0.000
#> GSM260901 3 0.1732 0.897 0.000 0.000 0.920 0.080 0.000
#> GSM260904 3 0.3452 0.669 0.000 0.000 0.756 0.244 0.000
#> GSM260907 3 0.0000 0.966 0.000 0.000 1.000 0.000 0.000
#> GSM260910 4 0.0162 0.935 0.000 0.000 0.004 0.996 0.000
#> GSM260918 2 0.0162 0.995 0.000 0.996 0.000 0.000 0.004
#> GSM260921 2 0.0000 0.994 0.000 1.000 0.000 0.000 0.000
#> GSM260924 2 0.0162 0.995 0.000 0.996 0.000 0.000 0.004
#> GSM260929 2 0.0162 0.995 0.000 0.996 0.000 0.000 0.004
#> GSM260932 2 0.0671 0.986 0.000 0.980 0.000 0.004 0.016
#> GSM260935 2 0.0671 0.986 0.000 0.980 0.000 0.004 0.016
#> GSM260938 2 0.0451 0.990 0.000 0.988 0.000 0.004 0.008
#> GSM260941 2 0.0000 0.994 0.000 1.000 0.000 0.000 0.000
#> GSM260944 2 0.0000 0.994 0.000 1.000 0.000 0.000 0.000
#> GSM260947 2 0.0000 0.994 0.000 1.000 0.000 0.000 0.000
#> GSM260952 2 0.0162 0.995 0.000 0.996 0.000 0.000 0.004
#> GSM260914 1 0.0000 0.971 1.000 0.000 0.000 0.000 0.000
#> GSM260916 1 0.0000 0.971 1.000 0.000 0.000 0.000 0.000
#> GSM260919 1 0.0000 0.971 1.000 0.000 0.000 0.000 0.000
#> GSM260922 1 0.0000 0.971 1.000 0.000 0.000 0.000 0.000
#> GSM260925 1 0.0000 0.971 1.000 0.000 0.000 0.000 0.000
#> GSM260927 5 0.2471 0.967 0.136 0.000 0.000 0.000 0.864
#> GSM260930 5 0.2230 0.987 0.116 0.000 0.000 0.000 0.884
#> GSM260933 5 0.2230 0.987 0.116 0.000 0.000 0.000 0.884
#> GSM260936 5 0.2230 0.987 0.116 0.000 0.000 0.000 0.884
#> GSM260939 5 0.2230 0.987 0.116 0.000 0.000 0.000 0.884
#> GSM260942 5 0.2230 0.987 0.116 0.000 0.000 0.000 0.884
#> GSM260945 5 0.2230 0.987 0.116 0.000 0.000 0.000 0.884
#> GSM260948 1 0.1908 0.900 0.908 0.000 0.000 0.000 0.092
#> GSM260950 1 0.0162 0.969 0.996 0.000 0.000 0.000 0.004
#> GSM260915 4 0.0162 0.935 0.000 0.000 0.004 0.996 0.000
#> GSM260917 3 0.0703 0.950 0.000 0.000 0.976 0.024 0.000
#> GSM260920 4 0.3395 0.653 0.000 0.000 0.236 0.764 0.000
#> GSM260923 4 0.0162 0.935 0.000 0.000 0.004 0.996 0.000
#> GSM260926 4 0.0162 0.935 0.000 0.000 0.004 0.996 0.000
#> GSM260928 5 0.0992 0.879 0.024 0.000 0.000 0.008 0.968
#> GSM260931 3 0.0000 0.966 0.000 0.000 1.000 0.000 0.000
#> GSM260934 3 0.0000 0.966 0.000 0.000 1.000 0.000 0.000
#> GSM260937 3 0.0000 0.966 0.000 0.000 1.000 0.000 0.000
#> GSM260940 3 0.0000 0.966 0.000 0.000 1.000 0.000 0.000
#> GSM260943 3 0.0000 0.966 0.000 0.000 1.000 0.000 0.000
#> GSM260946 3 0.0000 0.966 0.000 0.000 1.000 0.000 0.000
#> GSM260949 4 0.0162 0.935 0.000 0.000 0.004 0.996 0.000
#> GSM260951 3 0.0000 0.966 0.000 0.000 1.000 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM260888 2 0.0000 0.7084 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260893 2 0.0000 0.7084 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260896 2 0.0000 0.7084 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260899 6 0.2664 0.8176 0.000 0.184 0.000 0.000 0.000 0.816
#> GSM260902 6 0.2823 0.8142 0.000 0.204 0.000 0.000 0.000 0.796
#> GSM260905 2 0.3862 0.1007 0.000 0.524 0.000 0.000 0.000 0.476
#> GSM260908 2 0.3864 0.0991 0.000 0.520 0.000 0.000 0.000 0.480
#> GSM260911 2 0.0260 0.7042 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM260912 2 0.0000 0.7084 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260913 4 0.0000 0.9234 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260886 1 0.0000 0.9637 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260889 1 0.0000 0.9637 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260891 1 0.2092 0.8679 0.876 0.000 0.000 0.000 0.124 0.000
#> GSM260894 1 0.1714 0.8886 0.908 0.000 0.000 0.000 0.092 0.000
#> GSM260897 5 0.1327 0.9810 0.064 0.000 0.000 0.000 0.936 0.000
#> GSM260900 5 0.1327 0.9810 0.064 0.000 0.000 0.000 0.936 0.000
#> GSM260903 5 0.1327 0.9810 0.064 0.000 0.000 0.000 0.936 0.000
#> GSM260906 5 0.1327 0.9810 0.064 0.000 0.000 0.000 0.936 0.000
#> GSM260909 1 0.0000 0.9637 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260887 4 0.0000 0.9234 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260890 4 0.0000 0.9234 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260892 4 0.0000 0.9234 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260895 4 0.6430 0.2827 0.316 0.000 0.000 0.492 0.064 0.128
#> GSM260898 3 0.0000 0.9644 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM260901 3 0.1663 0.8884 0.000 0.000 0.912 0.088 0.000 0.000
#> GSM260904 3 0.3101 0.6740 0.000 0.000 0.756 0.244 0.000 0.000
#> GSM260907 3 0.0000 0.9644 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM260910 4 0.0000 0.9234 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260918 2 0.0000 0.7084 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260921 2 0.3221 0.4681 0.000 0.736 0.000 0.000 0.000 0.264
#> GSM260924 2 0.0363 0.7042 0.000 0.988 0.000 0.000 0.000 0.012
#> GSM260929 2 0.0260 0.7042 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM260932 6 0.2178 0.7850 0.000 0.132 0.000 0.000 0.000 0.868
#> GSM260935 6 0.3151 0.7641 0.000 0.252 0.000 0.000 0.000 0.748
#> GSM260938 6 0.3737 0.2703 0.000 0.392 0.000 0.000 0.000 0.608
#> GSM260941 2 0.3864 0.0991 0.000 0.520 0.000 0.000 0.000 0.480
#> GSM260944 2 0.3864 0.0991 0.000 0.520 0.000 0.000 0.000 0.480
#> GSM260947 2 0.3864 0.0991 0.000 0.520 0.000 0.000 0.000 0.480
#> GSM260952 2 0.0790 0.6936 0.000 0.968 0.000 0.000 0.000 0.032
#> GSM260914 1 0.0000 0.9637 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260916 1 0.0000 0.9637 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260919 1 0.0000 0.9637 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260922 1 0.0000 0.9637 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260925 1 0.0000 0.9637 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260927 5 0.1610 0.9631 0.084 0.000 0.000 0.000 0.916 0.000
#> GSM260930 5 0.1327 0.9810 0.064 0.000 0.000 0.000 0.936 0.000
#> GSM260933 5 0.1327 0.9810 0.064 0.000 0.000 0.000 0.936 0.000
#> GSM260936 5 0.1327 0.9810 0.064 0.000 0.000 0.000 0.936 0.000
#> GSM260939 5 0.1327 0.9810 0.064 0.000 0.000 0.000 0.936 0.000
#> GSM260942 5 0.1327 0.9810 0.064 0.000 0.000 0.000 0.936 0.000
#> GSM260945 5 0.1327 0.9810 0.064 0.000 0.000 0.000 0.936 0.000
#> GSM260948 1 0.2178 0.8601 0.868 0.000 0.000 0.000 0.132 0.000
#> GSM260950 1 0.0260 0.9599 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM260915 4 0.0000 0.9234 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260917 3 0.0632 0.9481 0.000 0.000 0.976 0.024 0.000 0.000
#> GSM260920 4 0.2996 0.6541 0.000 0.000 0.228 0.772 0.000 0.000
#> GSM260923 4 0.0000 0.9234 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260926 4 0.0000 0.9234 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260928 5 0.2531 0.7917 0.004 0.000 0.000 0.008 0.860 0.128
#> GSM260931 3 0.0000 0.9644 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM260934 3 0.0000 0.9644 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM260937 3 0.0000 0.9644 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM260940 3 0.0000 0.9644 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM260943 3 0.0000 0.9644 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM260946 3 0.0000 0.9644 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM260949 4 0.0000 0.9234 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260951 3 0.0000 0.9644 0.000 0.000 1.000 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) cell.type(p) k
#> SD:pam 67 0.939 2.75e-14 2
#> SD:pam 66 0.881 4.15e-25 3
#> SD:pam 67 0.716 4.07e-24 4
#> SD:pam 66 0.902 1.97e-22 5
#> SD:pam 59 0.879 2.16e-18 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 67 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 4.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.997 0.997 0.4260 0.575 0.575
#> 3 3 1.000 0.972 0.989 0.5840 0.750 0.566
#> 4 4 0.908 0.939 0.952 0.0505 0.980 0.939
#> 5 5 0.860 0.756 0.814 0.0674 0.962 0.877
#> 6 6 0.758 0.568 0.736 0.0637 0.894 0.626
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3
There is also optional best \(k\) = 2 3 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM260888 2 0.0000 1.000 0.000 1.000
#> GSM260893 2 0.0000 1.000 0.000 1.000
#> GSM260896 2 0.0000 1.000 0.000 1.000
#> GSM260899 2 0.0000 1.000 0.000 1.000
#> GSM260902 2 0.0000 1.000 0.000 1.000
#> GSM260905 2 0.0000 1.000 0.000 1.000
#> GSM260908 2 0.0000 1.000 0.000 1.000
#> GSM260911 2 0.0000 1.000 0.000 1.000
#> GSM260912 2 0.0000 1.000 0.000 1.000
#> GSM260913 1 0.0672 0.996 0.992 0.008
#> GSM260886 1 0.0000 0.996 1.000 0.000
#> GSM260889 1 0.0000 0.996 1.000 0.000
#> GSM260891 1 0.0000 0.996 1.000 0.000
#> GSM260894 1 0.0000 0.996 1.000 0.000
#> GSM260897 1 0.0000 0.996 1.000 0.000
#> GSM260900 1 0.0000 0.996 1.000 0.000
#> GSM260903 1 0.0000 0.996 1.000 0.000
#> GSM260906 1 0.0000 0.996 1.000 0.000
#> GSM260909 1 0.0000 0.996 1.000 0.000
#> GSM260887 1 0.0672 0.996 0.992 0.008
#> GSM260890 1 0.0672 0.996 0.992 0.008
#> GSM260892 1 0.0672 0.996 0.992 0.008
#> GSM260895 1 0.0376 0.996 0.996 0.004
#> GSM260898 1 0.0672 0.996 0.992 0.008
#> GSM260901 1 0.0672 0.996 0.992 0.008
#> GSM260904 1 0.0672 0.996 0.992 0.008
#> GSM260907 1 0.0672 0.996 0.992 0.008
#> GSM260910 1 0.0672 0.996 0.992 0.008
#> GSM260918 2 0.0000 1.000 0.000 1.000
#> GSM260921 2 0.0000 1.000 0.000 1.000
#> GSM260924 2 0.0000 1.000 0.000 1.000
#> GSM260929 2 0.0000 1.000 0.000 1.000
#> GSM260932 2 0.0000 1.000 0.000 1.000
#> GSM260935 2 0.0000 1.000 0.000 1.000
#> GSM260938 2 0.0000 1.000 0.000 1.000
#> GSM260941 2 0.0000 1.000 0.000 1.000
#> GSM260944 2 0.0000 1.000 0.000 1.000
#> GSM260947 2 0.0000 1.000 0.000 1.000
#> GSM260952 2 0.0000 1.000 0.000 1.000
#> GSM260914 1 0.0000 0.996 1.000 0.000
#> GSM260916 1 0.0000 0.996 1.000 0.000
#> GSM260919 1 0.0000 0.996 1.000 0.000
#> GSM260922 1 0.0000 0.996 1.000 0.000
#> GSM260925 1 0.0000 0.996 1.000 0.000
#> GSM260927 1 0.0000 0.996 1.000 0.000
#> GSM260930 1 0.0000 0.996 1.000 0.000
#> GSM260933 1 0.0000 0.996 1.000 0.000
#> GSM260936 1 0.0000 0.996 1.000 0.000
#> GSM260939 1 0.0000 0.996 1.000 0.000
#> GSM260942 1 0.0000 0.996 1.000 0.000
#> GSM260945 1 0.0000 0.996 1.000 0.000
#> GSM260948 1 0.0000 0.996 1.000 0.000
#> GSM260950 1 0.0000 0.996 1.000 0.000
#> GSM260915 1 0.0672 0.996 0.992 0.008
#> GSM260917 1 0.0672 0.996 0.992 0.008
#> GSM260920 1 0.0672 0.996 0.992 0.008
#> GSM260923 1 0.0672 0.996 0.992 0.008
#> GSM260926 1 0.0672 0.996 0.992 0.008
#> GSM260928 1 0.0376 0.996 0.996 0.004
#> GSM260931 1 0.0672 0.996 0.992 0.008
#> GSM260934 1 0.0672 0.996 0.992 0.008
#> GSM260937 1 0.0672 0.996 0.992 0.008
#> GSM260940 1 0.0672 0.996 0.992 0.008
#> GSM260943 1 0.0672 0.996 0.992 0.008
#> GSM260946 1 0.0672 0.996 0.992 0.008
#> GSM260949 1 0.0672 0.996 0.992 0.008
#> GSM260951 1 0.0672 0.996 0.992 0.008
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM260888 2 0.000 1.000 0.000 1 0.000
#> GSM260893 2 0.000 1.000 0.000 1 0.000
#> GSM260896 2 0.000 1.000 0.000 1 0.000
#> GSM260899 2 0.000 1.000 0.000 1 0.000
#> GSM260902 2 0.000 1.000 0.000 1 0.000
#> GSM260905 2 0.000 1.000 0.000 1 0.000
#> GSM260908 2 0.000 1.000 0.000 1 0.000
#> GSM260911 2 0.000 1.000 0.000 1 0.000
#> GSM260912 2 0.000 1.000 0.000 1 0.000
#> GSM260913 3 0.000 0.966 0.000 0 1.000
#> GSM260886 1 0.000 1.000 1.000 0 0.000
#> GSM260889 1 0.000 1.000 1.000 0 0.000
#> GSM260891 1 0.000 1.000 1.000 0 0.000
#> GSM260894 1 0.000 1.000 1.000 0 0.000
#> GSM260897 1 0.000 1.000 1.000 0 0.000
#> GSM260900 1 0.000 1.000 1.000 0 0.000
#> GSM260903 1 0.000 1.000 1.000 0 0.000
#> GSM260906 1 0.000 1.000 1.000 0 0.000
#> GSM260909 1 0.000 1.000 1.000 0 0.000
#> GSM260887 3 0.000 0.966 0.000 0 1.000
#> GSM260890 3 0.000 0.966 0.000 0 1.000
#> GSM260892 3 0.000 0.966 0.000 0 1.000
#> GSM260895 3 0.599 0.443 0.368 0 0.632
#> GSM260898 3 0.000 0.966 0.000 0 1.000
#> GSM260901 3 0.000 0.966 0.000 0 1.000
#> GSM260904 3 0.000 0.966 0.000 0 1.000
#> GSM260907 3 0.000 0.966 0.000 0 1.000
#> GSM260910 3 0.000 0.966 0.000 0 1.000
#> GSM260918 2 0.000 1.000 0.000 1 0.000
#> GSM260921 2 0.000 1.000 0.000 1 0.000
#> GSM260924 2 0.000 1.000 0.000 1 0.000
#> GSM260929 2 0.000 1.000 0.000 1 0.000
#> GSM260932 2 0.000 1.000 0.000 1 0.000
#> GSM260935 2 0.000 1.000 0.000 1 0.000
#> GSM260938 2 0.000 1.000 0.000 1 0.000
#> GSM260941 2 0.000 1.000 0.000 1 0.000
#> GSM260944 2 0.000 1.000 0.000 1 0.000
#> GSM260947 2 0.000 1.000 0.000 1 0.000
#> GSM260952 2 0.000 1.000 0.000 1 0.000
#> GSM260914 1 0.000 1.000 1.000 0 0.000
#> GSM260916 1 0.000 1.000 1.000 0 0.000
#> GSM260919 1 0.000 1.000 1.000 0 0.000
#> GSM260922 1 0.000 1.000 1.000 0 0.000
#> GSM260925 1 0.000 1.000 1.000 0 0.000
#> GSM260927 1 0.000 1.000 1.000 0 0.000
#> GSM260930 1 0.000 1.000 1.000 0 0.000
#> GSM260933 1 0.000 1.000 1.000 0 0.000
#> GSM260936 1 0.000 1.000 1.000 0 0.000
#> GSM260939 1 0.000 1.000 1.000 0 0.000
#> GSM260942 1 0.000 1.000 1.000 0 0.000
#> GSM260945 1 0.000 1.000 1.000 0 0.000
#> GSM260948 1 0.000 1.000 1.000 0 0.000
#> GSM260950 1 0.000 1.000 1.000 0 0.000
#> GSM260915 3 0.000 0.966 0.000 0 1.000
#> GSM260917 3 0.000 0.966 0.000 0 1.000
#> GSM260920 3 0.000 0.966 0.000 0 1.000
#> GSM260923 3 0.000 0.966 0.000 0 1.000
#> GSM260926 3 0.000 0.966 0.000 0 1.000
#> GSM260928 3 0.601 0.433 0.372 0 0.628
#> GSM260931 3 0.000 0.966 0.000 0 1.000
#> GSM260934 3 0.000 0.966 0.000 0 1.000
#> GSM260937 3 0.000 0.966 0.000 0 1.000
#> GSM260940 3 0.000 0.966 0.000 0 1.000
#> GSM260943 3 0.000 0.966 0.000 0 1.000
#> GSM260946 3 0.000 0.966 0.000 0 1.000
#> GSM260949 3 0.000 0.966 0.000 0 1.000
#> GSM260951 3 0.000 0.966 0.000 0 1.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM260888 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260893 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260896 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260899 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260902 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260905 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260908 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260911 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260912 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260913 3 0.1474 0.938 0.000 0 0.948 0.052
#> GSM260886 1 0.2760 0.914 0.872 0 0.000 0.128
#> GSM260889 1 0.2760 0.914 0.872 0 0.000 0.128
#> GSM260891 1 0.4277 0.794 0.720 0 0.000 0.280
#> GSM260894 1 0.2921 0.910 0.860 0 0.000 0.140
#> GSM260897 1 0.0000 0.904 1.000 0 0.000 0.000
#> GSM260900 1 0.0000 0.904 1.000 0 0.000 0.000
#> GSM260903 1 0.0000 0.904 1.000 0 0.000 0.000
#> GSM260906 1 0.0000 0.904 1.000 0 0.000 0.000
#> GSM260909 1 0.3123 0.902 0.844 0 0.000 0.156
#> GSM260887 3 0.1474 0.938 0.000 0 0.948 0.052
#> GSM260890 3 0.1474 0.938 0.000 0 0.948 0.052
#> GSM260892 3 0.1637 0.935 0.000 0 0.940 0.060
#> GSM260895 4 0.4541 1.000 0.060 0 0.144 0.796
#> GSM260898 3 0.0336 0.944 0.000 0 0.992 0.008
#> GSM260901 3 0.0336 0.944 0.000 0 0.992 0.008
#> GSM260904 3 0.0336 0.944 0.000 0 0.992 0.008
#> GSM260907 3 0.0336 0.944 0.000 0 0.992 0.008
#> GSM260910 3 0.2281 0.911 0.000 0 0.904 0.096
#> GSM260918 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260921 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260924 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260929 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260932 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260935 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260938 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260941 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260944 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260947 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260952 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260914 1 0.2760 0.914 0.872 0 0.000 0.128
#> GSM260916 1 0.3907 0.846 0.768 0 0.000 0.232
#> GSM260919 1 0.2760 0.914 0.872 0 0.000 0.128
#> GSM260922 1 0.4103 0.823 0.744 0 0.000 0.256
#> GSM260925 1 0.2868 0.912 0.864 0 0.000 0.136
#> GSM260927 1 0.2760 0.914 0.872 0 0.000 0.128
#> GSM260930 1 0.0000 0.904 1.000 0 0.000 0.000
#> GSM260933 1 0.0000 0.904 1.000 0 0.000 0.000
#> GSM260936 1 0.0000 0.904 1.000 0 0.000 0.000
#> GSM260939 1 0.0592 0.896 0.984 0 0.000 0.016
#> GSM260942 1 0.0000 0.904 1.000 0 0.000 0.000
#> GSM260945 1 0.0000 0.904 1.000 0 0.000 0.000
#> GSM260948 1 0.2760 0.914 0.872 0 0.000 0.128
#> GSM260950 1 0.2760 0.914 0.872 0 0.000 0.128
#> GSM260915 3 0.1474 0.938 0.000 0 0.948 0.052
#> GSM260917 3 0.0592 0.944 0.000 0 0.984 0.016
#> GSM260920 3 0.1474 0.938 0.000 0 0.948 0.052
#> GSM260923 3 0.3444 0.810 0.000 0 0.816 0.184
#> GSM260926 3 0.2814 0.874 0.000 0 0.868 0.132
#> GSM260928 4 0.4541 1.000 0.060 0 0.144 0.796
#> GSM260931 3 0.0336 0.944 0.000 0 0.992 0.008
#> GSM260934 3 0.0336 0.944 0.000 0 0.992 0.008
#> GSM260937 3 0.3444 0.726 0.000 0 0.816 0.184
#> GSM260940 3 0.0336 0.944 0.000 0 0.992 0.008
#> GSM260943 3 0.0336 0.944 0.000 0 0.992 0.008
#> GSM260946 3 0.0336 0.944 0.000 0 0.992 0.008
#> GSM260949 3 0.1716 0.933 0.000 0 0.936 0.064
#> GSM260951 3 0.0000 0.945 0.000 0 1.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM260888 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260893 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260896 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260899 2 0.0162 0.998 0.000 0.996 0.000 0.004 0.000
#> GSM260902 2 0.0162 0.998 0.000 0.996 0.000 0.004 0.000
#> GSM260905 2 0.0162 0.998 0.000 0.996 0.000 0.004 0.000
#> GSM260908 2 0.0162 0.998 0.000 0.996 0.000 0.004 0.000
#> GSM260911 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260912 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260913 3 0.0510 0.754 0.000 0.000 0.984 0.000 0.016
#> GSM260886 1 0.4470 0.491 0.616 0.000 0.000 0.012 0.372
#> GSM260889 1 0.4101 0.510 0.628 0.000 0.000 0.000 0.372
#> GSM260891 5 0.5940 0.772 0.140 0.000 0.000 0.292 0.568
#> GSM260894 1 0.4088 0.516 0.632 0.000 0.000 0.000 0.368
#> GSM260897 1 0.0162 0.672 0.996 0.000 0.000 0.000 0.004
#> GSM260900 1 0.0000 0.673 1.000 0.000 0.000 0.000 0.000
#> GSM260903 1 0.0000 0.673 1.000 0.000 0.000 0.000 0.000
#> GSM260906 1 0.0162 0.674 0.996 0.000 0.000 0.000 0.004
#> GSM260909 1 0.4101 0.510 0.628 0.000 0.000 0.000 0.372
#> GSM260887 3 0.0510 0.754 0.000 0.000 0.984 0.000 0.016
#> GSM260890 3 0.0510 0.748 0.000 0.000 0.984 0.000 0.016
#> GSM260892 3 0.0510 0.754 0.000 0.000 0.984 0.000 0.016
#> GSM260895 4 0.0290 0.633 0.000 0.000 0.008 0.992 0.000
#> GSM260898 3 0.4225 0.694 0.000 0.000 0.632 0.004 0.364
#> GSM260901 3 0.4225 0.690 0.000 0.000 0.632 0.004 0.364
#> GSM260904 3 0.4238 0.693 0.000 0.000 0.628 0.004 0.368
#> GSM260907 3 0.4238 0.693 0.000 0.000 0.628 0.004 0.368
#> GSM260910 3 0.1197 0.736 0.000 0.000 0.952 0.000 0.048
#> GSM260918 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260921 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260924 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260929 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260932 2 0.0162 0.998 0.000 0.996 0.000 0.004 0.000
#> GSM260935 2 0.0162 0.998 0.000 0.996 0.000 0.004 0.000
#> GSM260938 2 0.0162 0.998 0.000 0.996 0.000 0.004 0.000
#> GSM260941 2 0.0162 0.998 0.000 0.996 0.000 0.004 0.000
#> GSM260944 2 0.0162 0.998 0.000 0.996 0.000 0.004 0.000
#> GSM260947 2 0.0162 0.998 0.000 0.996 0.000 0.004 0.000
#> GSM260952 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260914 1 0.4101 0.510 0.628 0.000 0.000 0.000 0.372
#> GSM260916 5 0.6333 0.764 0.288 0.000 0.000 0.196 0.516
#> GSM260919 1 0.4030 0.537 0.648 0.000 0.000 0.000 0.352
#> GSM260922 5 0.6106 0.843 0.228 0.000 0.000 0.204 0.568
#> GSM260925 1 0.4101 0.510 0.628 0.000 0.000 0.000 0.372
#> GSM260927 1 0.4015 0.537 0.652 0.000 0.000 0.000 0.348
#> GSM260930 1 0.0290 0.673 0.992 0.000 0.000 0.000 0.008
#> GSM260933 1 0.0000 0.673 1.000 0.000 0.000 0.000 0.000
#> GSM260936 1 0.0609 0.662 0.980 0.000 0.000 0.000 0.020
#> GSM260939 1 0.0771 0.658 0.976 0.000 0.000 0.004 0.020
#> GSM260942 1 0.0609 0.662 0.980 0.000 0.000 0.000 0.020
#> GSM260945 1 0.0290 0.670 0.992 0.000 0.000 0.000 0.008
#> GSM260948 1 0.4511 0.507 0.628 0.000 0.000 0.016 0.356
#> GSM260950 1 0.3932 0.552 0.672 0.000 0.000 0.000 0.328
#> GSM260915 3 0.1041 0.743 0.000 0.000 0.964 0.004 0.032
#> GSM260917 3 0.0510 0.753 0.000 0.000 0.984 0.000 0.016
#> GSM260920 3 0.1197 0.736 0.000 0.000 0.952 0.000 0.048
#> GSM260923 3 0.3639 0.589 0.000 0.000 0.812 0.144 0.044
#> GSM260926 3 0.3216 0.635 0.000 0.000 0.848 0.108 0.044
#> GSM260928 4 0.0290 0.633 0.000 0.000 0.008 0.992 0.000
#> GSM260931 3 0.4238 0.693 0.000 0.000 0.628 0.004 0.368
#> GSM260934 3 0.4225 0.694 0.000 0.000 0.632 0.004 0.364
#> GSM260937 4 0.6304 0.265 0.000 0.000 0.156 0.460 0.384
#> GSM260940 3 0.4225 0.690 0.000 0.000 0.632 0.004 0.364
#> GSM260943 3 0.4238 0.693 0.000 0.000 0.628 0.004 0.368
#> GSM260946 3 0.4238 0.693 0.000 0.000 0.628 0.004 0.368
#> GSM260949 3 0.1357 0.734 0.000 0.000 0.948 0.004 0.048
#> GSM260951 3 0.2471 0.745 0.000 0.000 0.864 0.000 0.136
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM260888 2 0.2003 0.6945 0.000 0.884 0.000 0.000 0.000 0.116
#> GSM260893 2 0.0000 0.7275 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260896 2 0.2003 0.6948 0.000 0.884 0.000 0.000 0.000 0.116
#> GSM260899 6 0.3428 0.8887 0.000 0.304 0.000 0.000 0.000 0.696
#> GSM260902 6 0.3737 0.8285 0.000 0.392 0.000 0.000 0.000 0.608
#> GSM260905 6 0.3607 0.8716 0.000 0.348 0.000 0.000 0.000 0.652
#> GSM260908 2 0.3515 -0.1138 0.000 0.676 0.000 0.000 0.000 0.324
#> GSM260911 2 0.2491 0.6179 0.000 0.836 0.000 0.000 0.000 0.164
#> GSM260912 2 0.0000 0.7275 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260913 4 0.3868 0.4724 0.000 0.000 0.496 0.504 0.000 0.000
#> GSM260886 5 0.3747 0.4772 0.396 0.000 0.000 0.000 0.604 0.000
#> GSM260889 5 0.3747 0.4772 0.396 0.000 0.000 0.000 0.604 0.000
#> GSM260891 1 0.2260 0.8468 0.860 0.000 0.000 0.000 0.140 0.000
#> GSM260894 5 0.3747 0.4772 0.396 0.000 0.000 0.000 0.604 0.000
#> GSM260897 5 0.0547 0.6422 0.000 0.000 0.000 0.020 0.980 0.000
#> GSM260900 5 0.0632 0.6397 0.000 0.000 0.000 0.024 0.976 0.000
#> GSM260903 5 0.0777 0.6418 0.004 0.000 0.000 0.024 0.972 0.000
#> GSM260906 5 0.0777 0.6418 0.004 0.000 0.000 0.024 0.972 0.000
#> GSM260909 5 0.3765 0.4626 0.404 0.000 0.000 0.000 0.596 0.000
#> GSM260887 4 0.3868 0.4724 0.000 0.000 0.496 0.504 0.000 0.000
#> GSM260890 4 0.3175 0.6295 0.000 0.000 0.256 0.744 0.000 0.000
#> GSM260892 4 0.3867 0.4818 0.000 0.000 0.488 0.512 0.000 0.000
#> GSM260895 4 0.5803 0.0591 0.408 0.000 0.000 0.412 0.000 0.180
#> GSM260898 3 0.2703 0.7340 0.000 0.000 0.824 0.172 0.000 0.004
#> GSM260901 3 0.3215 0.6755 0.000 0.000 0.756 0.240 0.000 0.004
#> GSM260904 3 0.1285 0.6633 0.000 0.000 0.944 0.052 0.000 0.004
#> GSM260907 3 0.0547 0.6802 0.000 0.000 0.980 0.020 0.000 0.000
#> GSM260910 4 0.2941 0.6498 0.000 0.000 0.220 0.780 0.000 0.000
#> GSM260918 2 0.0000 0.7275 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260921 2 0.1204 0.7108 0.000 0.944 0.000 0.000 0.000 0.056
#> GSM260924 2 0.3126 0.5610 0.000 0.752 0.000 0.000 0.000 0.248
#> GSM260929 2 0.0146 0.7275 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM260932 6 0.3446 0.8906 0.000 0.308 0.000 0.000 0.000 0.692
#> GSM260935 6 0.3515 0.8910 0.000 0.324 0.000 0.000 0.000 0.676
#> GSM260938 6 0.3314 0.8317 0.004 0.256 0.000 0.000 0.000 0.740
#> GSM260941 6 0.3828 0.7287 0.000 0.440 0.000 0.000 0.000 0.560
#> GSM260944 2 0.3843 -0.5653 0.000 0.548 0.000 0.000 0.000 0.452
#> GSM260947 2 0.3868 -0.6584 0.000 0.508 0.000 0.000 0.000 0.492
#> GSM260952 2 0.0000 0.7275 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260914 5 0.3737 0.4822 0.392 0.000 0.000 0.000 0.608 0.000
#> GSM260916 1 0.3198 0.7804 0.740 0.000 0.000 0.000 0.260 0.000
#> GSM260919 5 0.3737 0.4803 0.392 0.000 0.000 0.000 0.608 0.000
#> GSM260922 1 0.2664 0.8788 0.816 0.000 0.000 0.000 0.184 0.000
#> GSM260925 5 0.3747 0.4772 0.396 0.000 0.000 0.000 0.604 0.000
#> GSM260927 5 0.3647 0.5034 0.360 0.000 0.000 0.000 0.640 0.000
#> GSM260930 5 0.0777 0.6418 0.004 0.000 0.000 0.024 0.972 0.000
#> GSM260933 5 0.0458 0.6490 0.016 0.000 0.000 0.000 0.984 0.000
#> GSM260936 5 0.1257 0.6394 0.028 0.000 0.000 0.000 0.952 0.020
#> GSM260939 5 0.1616 0.6253 0.048 0.000 0.000 0.000 0.932 0.020
#> GSM260942 5 0.1257 0.6394 0.028 0.000 0.000 0.000 0.952 0.020
#> GSM260945 5 0.0717 0.6446 0.008 0.000 0.000 0.000 0.976 0.016
#> GSM260948 5 0.3804 0.3857 0.424 0.000 0.000 0.000 0.576 0.000
#> GSM260950 5 0.3547 0.5172 0.332 0.000 0.000 0.000 0.668 0.000
#> GSM260915 4 0.3023 0.6458 0.000 0.000 0.232 0.768 0.000 0.000
#> GSM260917 4 0.3620 0.5322 0.000 0.000 0.352 0.648 0.000 0.000
#> GSM260920 4 0.2969 0.6488 0.000 0.000 0.224 0.776 0.000 0.000
#> GSM260923 4 0.2048 0.5913 0.000 0.000 0.120 0.880 0.000 0.000
#> GSM260926 4 0.2697 0.6395 0.000 0.000 0.188 0.812 0.000 0.000
#> GSM260928 4 0.5803 0.0591 0.408 0.000 0.000 0.412 0.000 0.180
#> GSM260931 3 0.0363 0.6832 0.000 0.000 0.988 0.012 0.000 0.000
#> GSM260934 3 0.2562 0.7356 0.000 0.000 0.828 0.172 0.000 0.000
#> GSM260937 3 0.6617 0.3609 0.120 0.000 0.540 0.144 0.000 0.196
#> GSM260940 3 0.3629 0.6668 0.000 0.000 0.724 0.260 0.000 0.016
#> GSM260943 3 0.2595 0.7408 0.000 0.000 0.836 0.160 0.000 0.004
#> GSM260946 3 0.2416 0.7407 0.000 0.000 0.844 0.156 0.000 0.000
#> GSM260949 4 0.2941 0.6491 0.000 0.000 0.220 0.780 0.000 0.000
#> GSM260951 3 0.3810 -0.3445 0.000 0.000 0.572 0.428 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) cell.type(p) k
#> SD:mclust 67 0.939 2.75e-14 2
#> SD:mclust 65 0.924 7.14e-26 3
#> SD:mclust 67 0.975 3.11e-25 4
#> SD:mclust 65 0.980 4.41e-23 5
#> SD:mclust 49 0.910 1.37e-16 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 67 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4257 0.575 0.575
#> 3 3 1.000 0.983 0.994 0.5858 0.750 0.566
#> 4 4 0.936 0.883 0.954 0.0383 0.990 0.968
#> 5 5 0.931 0.884 0.945 0.0178 0.990 0.967
#> 6 6 0.906 0.798 0.914 0.0283 0.980 0.934
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3
There is also optional best \(k\) = 2 3 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM260888 2 0 1 0 1
#> GSM260893 2 0 1 0 1
#> GSM260896 2 0 1 0 1
#> GSM260899 2 0 1 0 1
#> GSM260902 2 0 1 0 1
#> GSM260905 2 0 1 0 1
#> GSM260908 2 0 1 0 1
#> GSM260911 2 0 1 0 1
#> GSM260912 2 0 1 0 1
#> GSM260913 1 0 1 1 0
#> GSM260886 1 0 1 1 0
#> GSM260889 1 0 1 1 0
#> GSM260891 1 0 1 1 0
#> GSM260894 1 0 1 1 0
#> GSM260897 1 0 1 1 0
#> GSM260900 1 0 1 1 0
#> GSM260903 1 0 1 1 0
#> GSM260906 1 0 1 1 0
#> GSM260909 1 0 1 1 0
#> GSM260887 1 0 1 1 0
#> GSM260890 1 0 1 1 0
#> GSM260892 1 0 1 1 0
#> GSM260895 1 0 1 1 0
#> GSM260898 1 0 1 1 0
#> GSM260901 1 0 1 1 0
#> GSM260904 1 0 1 1 0
#> GSM260907 1 0 1 1 0
#> GSM260910 1 0 1 1 0
#> GSM260918 2 0 1 0 1
#> GSM260921 2 0 1 0 1
#> GSM260924 2 0 1 0 1
#> GSM260929 2 0 1 0 1
#> GSM260932 2 0 1 0 1
#> GSM260935 2 0 1 0 1
#> GSM260938 2 0 1 0 1
#> GSM260941 2 0 1 0 1
#> GSM260944 2 0 1 0 1
#> GSM260947 2 0 1 0 1
#> GSM260952 2 0 1 0 1
#> GSM260914 1 0 1 1 0
#> GSM260916 1 0 1 1 0
#> GSM260919 1 0 1 1 0
#> GSM260922 1 0 1 1 0
#> GSM260925 1 0 1 1 0
#> GSM260927 1 0 1 1 0
#> GSM260930 1 0 1 1 0
#> GSM260933 1 0 1 1 0
#> GSM260936 1 0 1 1 0
#> GSM260939 1 0 1 1 0
#> GSM260942 1 0 1 1 0
#> GSM260945 1 0 1 1 0
#> GSM260948 1 0 1 1 0
#> GSM260950 1 0 1 1 0
#> GSM260915 1 0 1 1 0
#> GSM260917 1 0 1 1 0
#> GSM260920 1 0 1 1 0
#> GSM260923 1 0 1 1 0
#> GSM260926 1 0 1 1 0
#> GSM260928 1 0 1 1 0
#> GSM260931 1 0 1 1 0
#> GSM260934 1 0 1 1 0
#> GSM260937 1 0 1 1 0
#> GSM260940 1 0 1 1 0
#> GSM260943 1 0 1 1 0
#> GSM260946 1 0 1 1 0
#> GSM260949 1 0 1 1 0
#> GSM260951 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM260888 2 0.0000 1.000 0.000 1 0.000
#> GSM260893 2 0.0000 1.000 0.000 1 0.000
#> GSM260896 2 0.0000 1.000 0.000 1 0.000
#> GSM260899 2 0.0000 1.000 0.000 1 0.000
#> GSM260902 2 0.0000 1.000 0.000 1 0.000
#> GSM260905 2 0.0000 1.000 0.000 1 0.000
#> GSM260908 2 0.0000 1.000 0.000 1 0.000
#> GSM260911 2 0.0000 1.000 0.000 1 0.000
#> GSM260912 2 0.0000 1.000 0.000 1 0.000
#> GSM260913 3 0.0000 0.981 0.000 0 1.000
#> GSM260886 1 0.0000 1.000 1.000 0 0.000
#> GSM260889 1 0.0000 1.000 1.000 0 0.000
#> GSM260891 1 0.0000 1.000 1.000 0 0.000
#> GSM260894 1 0.0000 1.000 1.000 0 0.000
#> GSM260897 1 0.0000 1.000 1.000 0 0.000
#> GSM260900 1 0.0000 1.000 1.000 0 0.000
#> GSM260903 1 0.0000 1.000 1.000 0 0.000
#> GSM260906 1 0.0000 1.000 1.000 0 0.000
#> GSM260909 1 0.0000 1.000 1.000 0 0.000
#> GSM260887 3 0.0000 0.981 0.000 0 1.000
#> GSM260890 3 0.0000 0.981 0.000 0 1.000
#> GSM260892 3 0.0000 0.981 0.000 0 1.000
#> GSM260895 3 0.0592 0.970 0.012 0 0.988
#> GSM260898 3 0.0000 0.981 0.000 0 1.000
#> GSM260901 3 0.0000 0.981 0.000 0 1.000
#> GSM260904 3 0.0000 0.981 0.000 0 1.000
#> GSM260907 3 0.0000 0.981 0.000 0 1.000
#> GSM260910 3 0.0000 0.981 0.000 0 1.000
#> GSM260918 2 0.0000 1.000 0.000 1 0.000
#> GSM260921 2 0.0000 1.000 0.000 1 0.000
#> GSM260924 2 0.0000 1.000 0.000 1 0.000
#> GSM260929 2 0.0000 1.000 0.000 1 0.000
#> GSM260932 2 0.0000 1.000 0.000 1 0.000
#> GSM260935 2 0.0000 1.000 0.000 1 0.000
#> GSM260938 2 0.0000 1.000 0.000 1 0.000
#> GSM260941 2 0.0000 1.000 0.000 1 0.000
#> GSM260944 2 0.0000 1.000 0.000 1 0.000
#> GSM260947 2 0.0000 1.000 0.000 1 0.000
#> GSM260952 2 0.0000 1.000 0.000 1 0.000
#> GSM260914 1 0.0000 1.000 1.000 0 0.000
#> GSM260916 1 0.0000 1.000 1.000 0 0.000
#> GSM260919 1 0.0000 1.000 1.000 0 0.000
#> GSM260922 1 0.0000 1.000 1.000 0 0.000
#> GSM260925 1 0.0000 1.000 1.000 0 0.000
#> GSM260927 1 0.0000 1.000 1.000 0 0.000
#> GSM260930 1 0.0000 1.000 1.000 0 0.000
#> GSM260933 1 0.0000 1.000 1.000 0 0.000
#> GSM260936 1 0.0000 1.000 1.000 0 0.000
#> GSM260939 1 0.0000 1.000 1.000 0 0.000
#> GSM260942 1 0.0000 1.000 1.000 0 0.000
#> GSM260945 1 0.0000 1.000 1.000 0 0.000
#> GSM260948 1 0.0000 1.000 1.000 0 0.000
#> GSM260950 1 0.0000 1.000 1.000 0 0.000
#> GSM260915 3 0.0000 0.981 0.000 0 1.000
#> GSM260917 3 0.0000 0.981 0.000 0 1.000
#> GSM260920 3 0.0000 0.981 0.000 0 1.000
#> GSM260923 3 0.0000 0.981 0.000 0 1.000
#> GSM260926 3 0.0000 0.981 0.000 0 1.000
#> GSM260928 3 0.6168 0.301 0.412 0 0.588
#> GSM260931 3 0.0000 0.981 0.000 0 1.000
#> GSM260934 3 0.0000 0.981 0.000 0 1.000
#> GSM260937 3 0.0000 0.981 0.000 0 1.000
#> GSM260940 3 0.0000 0.981 0.000 0 1.000
#> GSM260943 3 0.0000 0.981 0.000 0 1.000
#> GSM260946 3 0.0000 0.981 0.000 0 1.000
#> GSM260949 3 0.0000 0.981 0.000 0 1.000
#> GSM260951 3 0.0000 0.981 0.000 0 1.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM260888 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260893 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260896 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260899 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260902 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260905 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260908 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260911 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260912 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260913 3 0.0188 0.885 0.000 0 0.996 0.004
#> GSM260886 1 0.0817 0.942 0.976 0 0.000 0.024
#> GSM260889 1 0.0188 0.948 0.996 0 0.000 0.004
#> GSM260891 1 0.2216 0.898 0.908 0 0.000 0.092
#> GSM260894 1 0.0188 0.948 0.996 0 0.000 0.004
#> GSM260897 1 0.0817 0.945 0.976 0 0.000 0.024
#> GSM260900 1 0.0592 0.948 0.984 0 0.000 0.016
#> GSM260903 1 0.0592 0.948 0.984 0 0.000 0.016
#> GSM260906 1 0.0592 0.948 0.984 0 0.000 0.016
#> GSM260909 1 0.1022 0.938 0.968 0 0.000 0.032
#> GSM260887 3 0.0000 0.887 0.000 0 1.000 0.000
#> GSM260890 3 0.0000 0.887 0.000 0 1.000 0.000
#> GSM260892 3 0.2868 0.731 0.000 0 0.864 0.136
#> GSM260895 3 0.5137 0.331 0.024 0 0.680 0.296
#> GSM260898 3 0.0707 0.884 0.000 0 0.980 0.020
#> GSM260901 3 0.0817 0.882 0.000 0 0.976 0.024
#> GSM260904 3 0.0592 0.885 0.000 0 0.984 0.016
#> GSM260907 3 0.0592 0.885 0.000 0 0.984 0.016
#> GSM260910 3 0.2345 0.785 0.000 0 0.900 0.100
#> GSM260918 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260921 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260924 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260929 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260932 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260935 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260938 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260941 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260944 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260947 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260952 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260914 1 0.0469 0.947 0.988 0 0.000 0.012
#> GSM260916 1 0.3837 0.769 0.776 0 0.000 0.224
#> GSM260919 1 0.0000 0.949 1.000 0 0.000 0.000
#> GSM260922 1 0.3975 0.750 0.760 0 0.000 0.240
#> GSM260925 1 0.0469 0.947 0.988 0 0.000 0.012
#> GSM260927 1 0.0000 0.949 1.000 0 0.000 0.000
#> GSM260930 1 0.0592 0.948 0.984 0 0.000 0.016
#> GSM260933 1 0.0707 0.947 0.980 0 0.000 0.020
#> GSM260936 1 0.1792 0.921 0.932 0 0.000 0.068
#> GSM260939 1 0.4103 0.719 0.744 0 0.000 0.256
#> GSM260942 1 0.2345 0.897 0.900 0 0.000 0.100
#> GSM260945 1 0.0921 0.944 0.972 0 0.000 0.028
#> GSM260948 1 0.0000 0.949 1.000 0 0.000 0.000
#> GSM260950 1 0.0000 0.949 1.000 0 0.000 0.000
#> GSM260915 3 0.0000 0.887 0.000 0 1.000 0.000
#> GSM260917 3 0.0469 0.886 0.000 0 0.988 0.012
#> GSM260920 3 0.0000 0.887 0.000 0 1.000 0.000
#> GSM260923 3 0.0188 0.885 0.000 0 0.996 0.004
#> GSM260926 3 0.0000 0.887 0.000 0 1.000 0.000
#> GSM260928 3 0.4898 -0.030 0.416 0 0.584 0.000
#> GSM260931 3 0.1118 0.874 0.000 0 0.964 0.036
#> GSM260934 3 0.0707 0.884 0.000 0 0.980 0.020
#> GSM260937 4 0.4543 0.000 0.000 0 0.324 0.676
#> GSM260940 3 0.3907 0.524 0.000 0 0.768 0.232
#> GSM260943 3 0.2530 0.783 0.000 0 0.888 0.112
#> GSM260946 3 0.1211 0.871 0.000 0 0.960 0.040
#> GSM260949 3 0.0000 0.887 0.000 0 1.000 0.000
#> GSM260951 3 0.0707 0.883 0.000 0 0.980 0.020
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM260888 2 0.0000 0.9904 0.000 1.000 0.000 0.000 NA
#> GSM260893 2 0.0000 0.9904 0.000 1.000 0.000 0.000 NA
#> GSM260896 2 0.0000 0.9904 0.000 1.000 0.000 0.000 NA
#> GSM260899 2 0.1836 0.9444 0.000 0.932 0.000 0.032 NA
#> GSM260902 2 0.1117 0.9684 0.000 0.964 0.000 0.016 NA
#> GSM260905 2 0.0000 0.9904 0.000 1.000 0.000 0.000 NA
#> GSM260908 2 0.0000 0.9904 0.000 1.000 0.000 0.000 NA
#> GSM260911 2 0.0000 0.9904 0.000 1.000 0.000 0.000 NA
#> GSM260912 2 0.0000 0.9904 0.000 1.000 0.000 0.000 NA
#> GSM260913 3 0.0162 0.8570 0.000 0.000 0.996 0.004 NA
#> GSM260886 1 0.0609 0.9661 0.980 0.000 0.000 0.000 NA
#> GSM260889 1 0.0609 0.9661 0.980 0.000 0.000 0.000 NA
#> GSM260891 1 0.0880 0.9604 0.968 0.000 0.000 0.000 NA
#> GSM260894 1 0.0510 0.9690 0.984 0.000 0.000 0.000 NA
#> GSM260897 1 0.0290 0.9690 0.992 0.000 0.000 0.000 NA
#> GSM260900 1 0.0162 0.9698 0.996 0.000 0.000 0.000 NA
#> GSM260903 1 0.0162 0.9698 0.996 0.000 0.000 0.000 NA
#> GSM260906 1 0.0162 0.9698 0.996 0.000 0.000 0.000 NA
#> GSM260909 1 0.0609 0.9661 0.980 0.000 0.000 0.000 NA
#> GSM260887 3 0.0000 0.8569 0.000 0.000 1.000 0.000 NA
#> GSM260890 3 0.0880 0.8444 0.000 0.000 0.968 0.000 NA
#> GSM260892 3 0.3300 0.7024 0.000 0.000 0.792 0.004 NA
#> GSM260895 3 0.2605 0.7523 0.000 0.000 0.852 0.000 NA
#> GSM260898 3 0.0912 0.8543 0.000 0.000 0.972 0.016 NA
#> GSM260901 3 0.1310 0.8498 0.000 0.000 0.956 0.024 NA
#> GSM260904 3 0.0609 0.8560 0.000 0.000 0.980 0.020 NA
#> GSM260907 3 0.0703 0.8548 0.000 0.000 0.976 0.024 NA
#> GSM260910 3 0.2329 0.7737 0.000 0.000 0.876 0.000 NA
#> GSM260918 2 0.0000 0.9904 0.000 1.000 0.000 0.000 NA
#> GSM260921 2 0.0000 0.9904 0.000 1.000 0.000 0.000 NA
#> GSM260924 2 0.0000 0.9904 0.000 1.000 0.000 0.000 NA
#> GSM260929 2 0.0000 0.9904 0.000 1.000 0.000 0.000 NA
#> GSM260932 2 0.1753 0.9476 0.000 0.936 0.000 0.032 NA
#> GSM260935 2 0.1117 0.9684 0.000 0.964 0.000 0.016 NA
#> GSM260938 2 0.0000 0.9904 0.000 1.000 0.000 0.000 NA
#> GSM260941 2 0.0000 0.9904 0.000 1.000 0.000 0.000 NA
#> GSM260944 2 0.0000 0.9904 0.000 1.000 0.000 0.000 NA
#> GSM260947 2 0.0000 0.9904 0.000 1.000 0.000 0.000 NA
#> GSM260952 2 0.0000 0.9904 0.000 1.000 0.000 0.000 NA
#> GSM260914 1 0.0404 0.9682 0.988 0.000 0.000 0.000 NA
#> GSM260916 1 0.3395 0.7647 0.764 0.000 0.000 0.000 NA
#> GSM260919 1 0.0609 0.9666 0.980 0.000 0.000 0.000 NA
#> GSM260922 1 0.3480 0.7486 0.752 0.000 0.000 0.000 NA
#> GSM260925 1 0.0609 0.9661 0.980 0.000 0.000 0.000 NA
#> GSM260927 1 0.0162 0.9698 0.996 0.000 0.000 0.000 NA
#> GSM260930 1 0.0162 0.9698 0.996 0.000 0.000 0.000 NA
#> GSM260933 1 0.0290 0.9690 0.992 0.000 0.000 0.000 NA
#> GSM260936 1 0.0451 0.9670 0.988 0.000 0.000 0.008 NA
#> GSM260939 1 0.1205 0.9442 0.956 0.000 0.000 0.040 NA
#> GSM260942 1 0.0451 0.9670 0.988 0.000 0.000 0.008 NA
#> GSM260945 1 0.0162 0.9698 0.996 0.000 0.000 0.000 NA
#> GSM260948 1 0.0162 0.9698 0.996 0.000 0.000 0.000 NA
#> GSM260950 1 0.0000 0.9698 1.000 0.000 0.000 0.000 NA
#> GSM260915 3 0.0000 0.8569 0.000 0.000 1.000 0.000 NA
#> GSM260917 3 0.0609 0.8560 0.000 0.000 0.980 0.020 NA
#> GSM260920 3 0.0510 0.8560 0.000 0.000 0.984 0.016 NA
#> GSM260923 3 0.1197 0.8360 0.000 0.000 0.952 0.000 NA
#> GSM260926 3 0.0000 0.8569 0.000 0.000 1.000 0.000 NA
#> GSM260928 3 0.4903 0.4476 0.228 0.000 0.712 0.032 NA
#> GSM260931 3 0.3242 0.6447 0.000 0.000 0.784 0.216 NA
#> GSM260934 3 0.0609 0.8554 0.000 0.000 0.980 0.020 NA
#> GSM260937 4 0.2674 0.7753 0.000 0.000 0.140 0.856 NA
#> GSM260940 3 0.4219 0.0615 0.000 0.000 0.584 0.416 NA
#> GSM260943 4 0.3774 0.7215 0.000 0.000 0.296 0.704 NA
#> GSM260946 3 0.3452 0.5953 0.000 0.000 0.756 0.244 NA
#> GSM260949 3 0.0000 0.8569 0.000 0.000 1.000 0.000 NA
#> GSM260951 3 0.4045 0.3070 0.000 0.000 0.644 0.356 NA
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM260888 2 0.0547 0.9195 0.000 0.980 0.000 0.000 0.000 NA
#> GSM260893 2 0.0000 0.9227 0.000 1.000 0.000 0.000 0.000 NA
#> GSM260896 2 0.0146 0.9225 0.000 0.996 0.000 0.000 0.000 NA
#> GSM260899 2 0.3804 0.5740 0.000 0.576 0.000 0.000 0.000 NA
#> GSM260902 2 0.3499 0.6918 0.000 0.680 0.000 0.000 0.000 NA
#> GSM260905 2 0.0146 0.9223 0.004 0.996 0.000 0.000 0.000 NA
#> GSM260908 2 0.0260 0.9222 0.000 0.992 0.000 0.000 0.000 NA
#> GSM260911 2 0.0717 0.9178 0.008 0.976 0.000 0.000 0.000 NA
#> GSM260912 2 0.0000 0.9227 0.000 1.000 0.000 0.000 0.000 NA
#> GSM260913 4 0.0692 0.8765 0.004 0.000 0.020 0.976 0.000 NA
#> GSM260886 5 0.1007 0.8964 0.044 0.000 0.000 0.000 0.956 NA
#> GSM260889 5 0.0363 0.9114 0.012 0.000 0.000 0.000 0.988 NA
#> GSM260891 5 0.1857 0.8629 0.032 0.000 0.012 0.000 0.928 NA
#> GSM260894 5 0.0508 0.9118 0.012 0.000 0.004 0.000 0.984 NA
#> GSM260897 5 0.1523 0.8680 0.044 0.000 0.008 0.000 0.940 NA
#> GSM260900 5 0.0000 0.9124 0.000 0.000 0.000 0.000 1.000 NA
#> GSM260903 5 0.0363 0.9120 0.012 0.000 0.000 0.000 0.988 NA
#> GSM260906 5 0.0146 0.9126 0.004 0.000 0.000 0.000 0.996 NA
#> GSM260909 5 0.0922 0.9084 0.024 0.000 0.004 0.000 0.968 NA
#> GSM260887 4 0.0146 0.8758 0.000 0.000 0.004 0.996 0.000 NA
#> GSM260890 4 0.0291 0.8754 0.000 0.000 0.004 0.992 0.000 NA
#> GSM260892 4 0.2544 0.7619 0.140 0.000 0.004 0.852 0.000 NA
#> GSM260895 4 0.1621 0.8433 0.048 0.000 0.004 0.936 0.008 NA
#> GSM260898 4 0.0717 0.8771 0.000 0.000 0.008 0.976 0.000 NA
#> GSM260901 4 0.0632 0.8753 0.000 0.000 0.000 0.976 0.000 NA
#> GSM260904 4 0.0937 0.8676 0.000 0.000 0.040 0.960 0.000 NA
#> GSM260907 4 0.1141 0.8607 0.000 0.000 0.052 0.948 0.000 NA
#> GSM260910 4 0.0725 0.8692 0.012 0.000 0.012 0.976 0.000 NA
#> GSM260918 2 0.0000 0.9227 0.000 1.000 0.000 0.000 0.000 NA
#> GSM260921 2 0.0777 0.9182 0.004 0.972 0.000 0.000 0.000 NA
#> GSM260924 2 0.1124 0.9046 0.036 0.956 0.000 0.000 0.000 NA
#> GSM260929 2 0.0000 0.9227 0.000 1.000 0.000 0.000 0.000 NA
#> GSM260932 2 0.3774 0.5983 0.000 0.592 0.000 0.000 0.000 NA
#> GSM260935 2 0.3351 0.7218 0.000 0.712 0.000 0.000 0.000 NA
#> GSM260938 2 0.0692 0.9182 0.000 0.976 0.004 0.000 0.000 NA
#> GSM260941 2 0.0260 0.9225 0.000 0.992 0.000 0.000 0.000 NA
#> GSM260944 2 0.0363 0.9218 0.000 0.988 0.000 0.000 0.000 NA
#> GSM260947 2 0.0146 0.9225 0.000 0.996 0.000 0.000 0.000 NA
#> GSM260952 2 0.0146 0.9225 0.000 0.996 0.000 0.000 0.000 NA
#> GSM260914 5 0.1007 0.8959 0.044 0.000 0.000 0.000 0.956 NA
#> GSM260916 5 0.3592 -0.3859 0.344 0.000 0.000 0.000 0.656 NA
#> GSM260919 5 0.1267 0.8820 0.060 0.000 0.000 0.000 0.940 NA
#> GSM260922 1 0.3860 0.0000 0.528 0.000 0.000 0.000 0.472 NA
#> GSM260925 5 0.1075 0.8922 0.048 0.000 0.000 0.000 0.952 NA
#> GSM260927 5 0.0520 0.9121 0.008 0.000 0.008 0.000 0.984 NA
#> GSM260930 5 0.0260 0.9121 0.000 0.000 0.008 0.000 0.992 NA
#> GSM260933 5 0.0717 0.9065 0.016 0.000 0.008 0.000 0.976 NA
#> GSM260936 5 0.0914 0.9035 0.016 0.000 0.016 0.000 0.968 NA
#> GSM260939 5 0.1780 0.8438 0.048 0.000 0.028 0.000 0.924 NA
#> GSM260942 5 0.0972 0.8961 0.028 0.000 0.008 0.000 0.964 NA
#> GSM260945 5 0.0603 0.9081 0.016 0.000 0.004 0.000 0.980 NA
#> GSM260948 5 0.1644 0.8507 0.076 0.000 0.000 0.000 0.920 NA
#> GSM260950 5 0.0632 0.9080 0.024 0.000 0.000 0.000 0.976 NA
#> GSM260915 4 0.0000 0.8755 0.000 0.000 0.000 1.000 0.000 NA
#> GSM260917 4 0.1204 0.8583 0.000 0.000 0.056 0.944 0.000 NA
#> GSM260920 4 0.0725 0.8761 0.012 0.000 0.012 0.976 0.000 NA
#> GSM260923 4 0.0632 0.8708 0.024 0.000 0.000 0.976 0.000 NA
#> GSM260926 4 0.0146 0.8759 0.000 0.000 0.000 0.996 0.000 NA
#> GSM260928 4 0.5491 0.2761 0.084 0.000 0.020 0.624 0.260 NA
#> GSM260931 4 0.3288 0.5393 0.000 0.000 0.276 0.724 0.000 NA
#> GSM260934 4 0.0935 0.8705 0.000 0.000 0.032 0.964 0.000 NA
#> GSM260937 3 0.0972 0.5584 0.000 0.000 0.964 0.028 0.000 NA
#> GSM260940 4 0.3937 0.0231 0.000 0.000 0.424 0.572 0.000 NA
#> GSM260943 3 0.2805 0.6994 0.004 0.000 0.812 0.184 0.000 NA
#> GSM260946 4 0.3126 0.5973 0.000 0.000 0.248 0.752 0.000 NA
#> GSM260949 4 0.0405 0.8776 0.000 0.000 0.004 0.988 0.000 NA
#> GSM260951 3 0.3797 0.3285 0.000 0.000 0.580 0.420 0.000 NA
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) cell.type(p) k
#> SD:NMF 67 0.939 2.75e-14 2
#> SD:NMF 66 0.920 2.62e-26 3
#> SD:NMF 64 0.925 1.95e-25 4
#> SD:NMF 64 0.498 5.95e-24 5
#> SD:NMF 62 0.548 3.77e-23 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 67 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 4.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4257 0.575 0.575
#> 3 3 1.000 0.986 0.994 0.5856 0.750 0.566
#> 4 4 0.919 0.885 0.954 0.0437 0.980 0.939
#> 5 5 0.886 0.767 0.895 0.0419 0.972 0.910
#> 6 6 0.872 0.750 0.849 0.0518 0.929 0.750
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3
There is also optional best \(k\) = 2 3 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM260888 2 0 1 0 1
#> GSM260893 2 0 1 0 1
#> GSM260896 2 0 1 0 1
#> GSM260899 2 0 1 0 1
#> GSM260902 2 0 1 0 1
#> GSM260905 2 0 1 0 1
#> GSM260908 2 0 1 0 1
#> GSM260911 2 0 1 0 1
#> GSM260912 2 0 1 0 1
#> GSM260913 1 0 1 1 0
#> GSM260886 1 0 1 1 0
#> GSM260889 1 0 1 1 0
#> GSM260891 1 0 1 1 0
#> GSM260894 1 0 1 1 0
#> GSM260897 1 0 1 1 0
#> GSM260900 1 0 1 1 0
#> GSM260903 1 0 1 1 0
#> GSM260906 1 0 1 1 0
#> GSM260909 1 0 1 1 0
#> GSM260887 1 0 1 1 0
#> GSM260890 1 0 1 1 0
#> GSM260892 1 0 1 1 0
#> GSM260895 1 0 1 1 0
#> GSM260898 1 0 1 1 0
#> GSM260901 1 0 1 1 0
#> GSM260904 1 0 1 1 0
#> GSM260907 1 0 1 1 0
#> GSM260910 1 0 1 1 0
#> GSM260918 2 0 1 0 1
#> GSM260921 2 0 1 0 1
#> GSM260924 2 0 1 0 1
#> GSM260929 2 0 1 0 1
#> GSM260932 2 0 1 0 1
#> GSM260935 2 0 1 0 1
#> GSM260938 2 0 1 0 1
#> GSM260941 2 0 1 0 1
#> GSM260944 2 0 1 0 1
#> GSM260947 2 0 1 0 1
#> GSM260952 2 0 1 0 1
#> GSM260914 1 0 1 1 0
#> GSM260916 1 0 1 1 0
#> GSM260919 1 0 1 1 0
#> GSM260922 1 0 1 1 0
#> GSM260925 1 0 1 1 0
#> GSM260927 1 0 1 1 0
#> GSM260930 1 0 1 1 0
#> GSM260933 1 0 1 1 0
#> GSM260936 1 0 1 1 0
#> GSM260939 1 0 1 1 0
#> GSM260942 1 0 1 1 0
#> GSM260945 1 0 1 1 0
#> GSM260948 1 0 1 1 0
#> GSM260950 1 0 1 1 0
#> GSM260915 1 0 1 1 0
#> GSM260917 1 0 1 1 0
#> GSM260920 1 0 1 1 0
#> GSM260923 1 0 1 1 0
#> GSM260926 1 0 1 1 0
#> GSM260928 1 0 1 1 0
#> GSM260931 1 0 1 1 0
#> GSM260934 1 0 1 1 0
#> GSM260937 1 0 1 1 0
#> GSM260940 1 0 1 1 0
#> GSM260943 1 0 1 1 0
#> GSM260946 1 0 1 1 0
#> GSM260949 1 0 1 1 0
#> GSM260951 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM260888 2 0.000 1.000 0.000 1 0.000
#> GSM260893 2 0.000 1.000 0.000 1 0.000
#> GSM260896 2 0.000 1.000 0.000 1 0.000
#> GSM260899 2 0.000 1.000 0.000 1 0.000
#> GSM260902 2 0.000 1.000 0.000 1 0.000
#> GSM260905 2 0.000 1.000 0.000 1 0.000
#> GSM260908 2 0.000 1.000 0.000 1 0.000
#> GSM260911 2 0.000 1.000 0.000 1 0.000
#> GSM260912 2 0.000 1.000 0.000 1 0.000
#> GSM260913 3 0.000 0.982 0.000 0 1.000
#> GSM260886 1 0.000 1.000 1.000 0 0.000
#> GSM260889 1 0.000 1.000 1.000 0 0.000
#> GSM260891 1 0.000 1.000 1.000 0 0.000
#> GSM260894 1 0.000 1.000 1.000 0 0.000
#> GSM260897 1 0.000 1.000 1.000 0 0.000
#> GSM260900 1 0.000 1.000 1.000 0 0.000
#> GSM260903 1 0.000 1.000 1.000 0 0.000
#> GSM260906 1 0.000 1.000 1.000 0 0.000
#> GSM260909 1 0.000 1.000 1.000 0 0.000
#> GSM260887 3 0.000 0.982 0.000 0 1.000
#> GSM260890 3 0.000 0.982 0.000 0 1.000
#> GSM260892 3 0.000 0.982 0.000 0 1.000
#> GSM260895 3 0.312 0.875 0.108 0 0.892
#> GSM260898 3 0.000 0.982 0.000 0 1.000
#> GSM260901 3 0.000 0.982 0.000 0 1.000
#> GSM260904 3 0.000 0.982 0.000 0 1.000
#> GSM260907 3 0.000 0.982 0.000 0 1.000
#> GSM260910 3 0.000 0.982 0.000 0 1.000
#> GSM260918 2 0.000 1.000 0.000 1 0.000
#> GSM260921 2 0.000 1.000 0.000 1 0.000
#> GSM260924 2 0.000 1.000 0.000 1 0.000
#> GSM260929 2 0.000 1.000 0.000 1 0.000
#> GSM260932 2 0.000 1.000 0.000 1 0.000
#> GSM260935 2 0.000 1.000 0.000 1 0.000
#> GSM260938 2 0.000 1.000 0.000 1 0.000
#> GSM260941 2 0.000 1.000 0.000 1 0.000
#> GSM260944 2 0.000 1.000 0.000 1 0.000
#> GSM260947 2 0.000 1.000 0.000 1 0.000
#> GSM260952 2 0.000 1.000 0.000 1 0.000
#> GSM260914 1 0.000 1.000 1.000 0 0.000
#> GSM260916 1 0.000 1.000 1.000 0 0.000
#> GSM260919 1 0.000 1.000 1.000 0 0.000
#> GSM260922 1 0.000 1.000 1.000 0 0.000
#> GSM260925 1 0.000 1.000 1.000 0 0.000
#> GSM260927 1 0.000 1.000 1.000 0 0.000
#> GSM260930 1 0.000 1.000 1.000 0 0.000
#> GSM260933 1 0.000 1.000 1.000 0 0.000
#> GSM260936 1 0.000 1.000 1.000 0 0.000
#> GSM260939 1 0.000 1.000 1.000 0 0.000
#> GSM260942 1 0.000 1.000 1.000 0 0.000
#> GSM260945 1 0.000 1.000 1.000 0 0.000
#> GSM260948 1 0.000 1.000 1.000 0 0.000
#> GSM260950 1 0.000 1.000 1.000 0 0.000
#> GSM260915 3 0.000 0.982 0.000 0 1.000
#> GSM260917 3 0.000 0.982 0.000 0 1.000
#> GSM260920 3 0.000 0.982 0.000 0 1.000
#> GSM260923 3 0.000 0.982 0.000 0 1.000
#> GSM260926 3 0.000 0.982 0.000 0 1.000
#> GSM260928 3 0.546 0.606 0.288 0 0.712
#> GSM260931 3 0.000 0.982 0.000 0 1.000
#> GSM260934 3 0.000 0.982 0.000 0 1.000
#> GSM260937 3 0.000 0.982 0.000 0 1.000
#> GSM260940 3 0.000 0.982 0.000 0 1.000
#> GSM260943 3 0.000 0.982 0.000 0 1.000
#> GSM260946 3 0.000 0.982 0.000 0 1.000
#> GSM260949 3 0.000 0.982 0.000 0 1.000
#> GSM260951 3 0.000 0.982 0.000 0 1.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM260888 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260893 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260896 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260899 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260902 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260905 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260908 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260911 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260912 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260913 3 0.0000 0.816 0.000 0 1.000 0.000
#> GSM260886 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260889 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260891 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260894 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260897 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260900 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260903 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260906 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260909 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260887 3 0.0000 0.816 0.000 0 1.000 0.000
#> GSM260890 3 0.0000 0.816 0.000 0 1.000 0.000
#> GSM260892 3 0.0000 0.816 0.000 0 1.000 0.000
#> GSM260895 3 0.2469 0.685 0.108 0 0.892 0.000
#> GSM260898 3 0.3356 0.741 0.000 0 0.824 0.176
#> GSM260901 3 0.3356 0.741 0.000 0 0.824 0.176
#> GSM260904 3 0.2921 0.762 0.000 0 0.860 0.140
#> GSM260907 3 0.3356 0.741 0.000 0 0.824 0.176
#> GSM260910 3 0.0000 0.816 0.000 0 1.000 0.000
#> GSM260918 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260921 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260924 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260929 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260932 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260935 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260938 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260941 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260944 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260947 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260952 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260914 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260916 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260919 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260922 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260925 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260927 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260930 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260933 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260936 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260939 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260942 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260945 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260948 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260950 1 0.0000 1.000 1.000 0 0.000 0.000
#> GSM260915 3 0.0000 0.816 0.000 0 1.000 0.000
#> GSM260917 3 0.0469 0.810 0.000 0 0.988 0.012
#> GSM260920 3 0.0000 0.816 0.000 0 1.000 0.000
#> GSM260923 3 0.0000 0.816 0.000 0 1.000 0.000
#> GSM260926 3 0.0000 0.816 0.000 0 1.000 0.000
#> GSM260928 3 0.4331 0.396 0.288 0 0.712 0.000
#> GSM260931 3 0.4817 0.395 0.000 0 0.612 0.388
#> GSM260934 3 0.3356 0.741 0.000 0 0.824 0.176
#> GSM260937 4 0.0000 0.560 0.000 0 0.000 1.000
#> GSM260940 3 0.4817 0.395 0.000 0 0.612 0.388
#> GSM260943 3 0.4916 0.285 0.000 0 0.576 0.424
#> GSM260946 3 0.4431 0.574 0.000 0 0.696 0.304
#> GSM260949 3 0.0000 0.816 0.000 0 1.000 0.000
#> GSM260951 4 0.4624 0.284 0.000 0 0.340 0.660
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM260888 2 0.2020 0.9467 0.000 0.900 0.000 0.100 0.000
#> GSM260893 2 0.2020 0.9467 0.000 0.900 0.000 0.100 0.000
#> GSM260896 2 0.2020 0.9467 0.000 0.900 0.000 0.100 0.000
#> GSM260899 2 0.0162 0.9454 0.000 0.996 0.000 0.004 0.000
#> GSM260902 2 0.0162 0.9454 0.000 0.996 0.000 0.004 0.000
#> GSM260905 2 0.0000 0.9464 0.000 1.000 0.000 0.000 0.000
#> GSM260908 2 0.0000 0.9464 0.000 1.000 0.000 0.000 0.000
#> GSM260911 2 0.2020 0.9467 0.000 0.900 0.000 0.100 0.000
#> GSM260912 2 0.2074 0.9464 0.000 0.896 0.000 0.104 0.000
#> GSM260913 3 0.0162 0.6666 0.000 0.000 0.996 0.004 0.000
#> GSM260886 1 0.0000 0.9928 1.000 0.000 0.000 0.000 0.000
#> GSM260889 1 0.0000 0.9928 1.000 0.000 0.000 0.000 0.000
#> GSM260891 1 0.0000 0.9928 1.000 0.000 0.000 0.000 0.000
#> GSM260894 1 0.0000 0.9928 1.000 0.000 0.000 0.000 0.000
#> GSM260897 1 0.0404 0.9919 0.988 0.000 0.000 0.012 0.000
#> GSM260900 1 0.0404 0.9919 0.988 0.000 0.000 0.012 0.000
#> GSM260903 1 0.0404 0.9919 0.988 0.000 0.000 0.012 0.000
#> GSM260906 1 0.0404 0.9919 0.988 0.000 0.000 0.012 0.000
#> GSM260909 1 0.0000 0.9928 1.000 0.000 0.000 0.000 0.000
#> GSM260887 3 0.1410 0.6601 0.000 0.000 0.940 0.060 0.000
#> GSM260890 3 0.1270 0.6626 0.000 0.000 0.948 0.052 0.000
#> GSM260892 3 0.0290 0.6659 0.000 0.000 0.992 0.008 0.000
#> GSM260895 4 0.4150 0.3905 0.000 0.000 0.388 0.612 0.000
#> GSM260898 3 0.6054 0.3152 0.000 0.000 0.568 0.260 0.172
#> GSM260901 3 0.6054 0.3152 0.000 0.000 0.568 0.260 0.172
#> GSM260904 3 0.5815 0.3507 0.000 0.000 0.592 0.272 0.136
#> GSM260907 3 0.6034 0.3198 0.000 0.000 0.572 0.256 0.172
#> GSM260910 3 0.0703 0.6643 0.000 0.000 0.976 0.024 0.000
#> GSM260918 2 0.2074 0.9464 0.000 0.896 0.000 0.104 0.000
#> GSM260921 2 0.2020 0.9467 0.000 0.900 0.000 0.100 0.000
#> GSM260924 2 0.2074 0.9452 0.000 0.896 0.000 0.104 0.000
#> GSM260929 2 0.2074 0.9464 0.000 0.896 0.000 0.104 0.000
#> GSM260932 2 0.0162 0.9454 0.000 0.996 0.000 0.004 0.000
#> GSM260935 2 0.0162 0.9454 0.000 0.996 0.000 0.004 0.000
#> GSM260938 2 0.0404 0.9432 0.000 0.988 0.000 0.012 0.000
#> GSM260941 2 0.0162 0.9462 0.000 0.996 0.000 0.004 0.000
#> GSM260944 2 0.0162 0.9462 0.000 0.996 0.000 0.004 0.000
#> GSM260947 2 0.0162 0.9462 0.000 0.996 0.000 0.004 0.000
#> GSM260952 2 0.2074 0.9464 0.000 0.896 0.000 0.104 0.000
#> GSM260914 1 0.0000 0.9928 1.000 0.000 0.000 0.000 0.000
#> GSM260916 1 0.0290 0.9890 0.992 0.000 0.000 0.008 0.000
#> GSM260919 1 0.0290 0.9890 0.992 0.000 0.000 0.008 0.000
#> GSM260922 1 0.0290 0.9890 0.992 0.000 0.000 0.008 0.000
#> GSM260925 1 0.0000 0.9928 1.000 0.000 0.000 0.000 0.000
#> GSM260927 1 0.0000 0.9928 1.000 0.000 0.000 0.000 0.000
#> GSM260930 1 0.0404 0.9919 0.988 0.000 0.000 0.012 0.000
#> GSM260933 1 0.0404 0.9919 0.988 0.000 0.000 0.012 0.000
#> GSM260936 1 0.0404 0.9919 0.988 0.000 0.000 0.012 0.000
#> GSM260939 1 0.0404 0.9919 0.988 0.000 0.000 0.012 0.000
#> GSM260942 1 0.0404 0.9919 0.988 0.000 0.000 0.012 0.000
#> GSM260945 1 0.0404 0.9919 0.988 0.000 0.000 0.012 0.000
#> GSM260948 1 0.0290 0.9890 0.992 0.000 0.000 0.008 0.000
#> GSM260950 1 0.0000 0.9928 1.000 0.000 0.000 0.000 0.000
#> GSM260915 3 0.0794 0.6640 0.000 0.000 0.972 0.028 0.000
#> GSM260917 3 0.1597 0.6523 0.000 0.000 0.940 0.048 0.012
#> GSM260920 3 0.0510 0.6651 0.000 0.000 0.984 0.016 0.000
#> GSM260923 3 0.0880 0.6624 0.000 0.000 0.968 0.032 0.000
#> GSM260926 3 0.0290 0.6664 0.000 0.000 0.992 0.008 0.000
#> GSM260928 4 0.3214 0.3640 0.120 0.000 0.036 0.844 0.000
#> GSM260931 3 0.6330 -0.2056 0.000 0.000 0.456 0.160 0.384
#> GSM260934 3 0.6054 0.3152 0.000 0.000 0.568 0.260 0.172
#> GSM260937 5 0.0000 0.0737 0.000 0.000 0.000 0.000 1.000
#> GSM260940 3 0.6356 -0.2155 0.000 0.000 0.452 0.164 0.384
#> GSM260943 5 0.6350 -0.0348 0.000 0.000 0.420 0.160 0.420
#> GSM260946 3 0.6575 -0.0452 0.000 0.000 0.464 0.236 0.300
#> GSM260949 3 0.0162 0.6672 0.000 0.000 0.996 0.004 0.000
#> GSM260951 5 0.4306 0.3940 0.000 0.000 0.328 0.012 0.660
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM260888 2 0.2597 0.8616 0.000 0.824 0.000 0.000 0.000 0.176
#> GSM260893 2 0.2730 0.8644 0.000 0.808 0.000 0.000 0.000 0.192
#> GSM260896 2 0.2631 0.8630 0.000 0.820 0.000 0.000 0.000 0.180
#> GSM260899 6 0.0632 0.9448 0.000 0.024 0.000 0.000 0.000 0.976
#> GSM260902 6 0.0632 0.9448 0.000 0.024 0.000 0.000 0.000 0.976
#> GSM260905 6 0.2340 0.8372 0.000 0.148 0.000 0.000 0.000 0.852
#> GSM260908 6 0.2048 0.8662 0.000 0.120 0.000 0.000 0.000 0.880
#> GSM260911 2 0.2597 0.8616 0.000 0.824 0.000 0.000 0.000 0.176
#> GSM260912 2 0.3747 0.7904 0.000 0.604 0.000 0.000 0.000 0.396
#> GSM260913 4 0.0622 0.7008 0.000 0.000 0.008 0.980 0.012 0.000
#> GSM260886 1 0.0146 0.9835 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM260889 1 0.0146 0.9835 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM260891 1 0.0146 0.9837 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM260894 1 0.0146 0.9837 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM260897 1 0.0458 0.9840 0.984 0.000 0.000 0.000 0.016 0.000
#> GSM260900 1 0.0458 0.9840 0.984 0.000 0.000 0.000 0.016 0.000
#> GSM260903 1 0.0458 0.9840 0.984 0.000 0.000 0.000 0.016 0.000
#> GSM260906 1 0.0458 0.9840 0.984 0.000 0.000 0.000 0.016 0.000
#> GSM260909 1 0.0146 0.9837 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM260887 4 0.1124 0.6908 0.000 0.000 0.008 0.956 0.036 0.000
#> GSM260890 4 0.0972 0.6951 0.000 0.000 0.008 0.964 0.028 0.000
#> GSM260892 4 0.0717 0.7000 0.000 0.000 0.008 0.976 0.016 0.000
#> GSM260895 5 0.3727 0.4652 0.000 0.000 0.000 0.388 0.612 0.000
#> GSM260898 4 0.5437 -0.2096 0.000 0.008 0.416 0.484 0.092 0.000
#> GSM260901 4 0.5437 -0.2096 0.000 0.008 0.416 0.484 0.092 0.000
#> GSM260904 4 0.5502 -0.1383 0.000 0.008 0.380 0.508 0.104 0.000
#> GSM260907 4 0.5400 -0.2026 0.000 0.008 0.416 0.488 0.088 0.000
#> GSM260910 4 0.0260 0.6987 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM260918 2 0.3747 0.7904 0.000 0.604 0.000 0.000 0.000 0.396
#> GSM260921 2 0.3221 0.8554 0.000 0.736 0.000 0.000 0.000 0.264
#> GSM260924 2 0.2416 0.8414 0.000 0.844 0.000 0.000 0.000 0.156
#> GSM260929 2 0.3747 0.7904 0.000 0.604 0.000 0.000 0.000 0.396
#> GSM260932 6 0.0632 0.9448 0.000 0.024 0.000 0.000 0.000 0.976
#> GSM260935 6 0.0632 0.9448 0.000 0.024 0.000 0.000 0.000 0.976
#> GSM260938 6 0.0363 0.9285 0.000 0.012 0.000 0.000 0.000 0.988
#> GSM260941 6 0.0632 0.9364 0.000 0.024 0.000 0.000 0.000 0.976
#> GSM260944 6 0.0632 0.9364 0.000 0.024 0.000 0.000 0.000 0.976
#> GSM260947 6 0.0632 0.9364 0.000 0.024 0.000 0.000 0.000 0.976
#> GSM260952 2 0.3659 0.8160 0.000 0.636 0.000 0.000 0.000 0.364
#> GSM260914 1 0.0146 0.9835 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM260916 1 0.0937 0.9628 0.960 0.000 0.000 0.000 0.040 0.000
#> GSM260919 1 0.0937 0.9628 0.960 0.000 0.000 0.000 0.040 0.000
#> GSM260922 1 0.0937 0.9628 0.960 0.000 0.000 0.000 0.040 0.000
#> GSM260925 1 0.0146 0.9835 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM260927 1 0.0146 0.9837 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM260930 1 0.0458 0.9840 0.984 0.000 0.000 0.000 0.016 0.000
#> GSM260933 1 0.0458 0.9840 0.984 0.000 0.000 0.000 0.016 0.000
#> GSM260936 1 0.0458 0.9840 0.984 0.000 0.000 0.000 0.016 0.000
#> GSM260939 1 0.0458 0.9840 0.984 0.000 0.000 0.000 0.016 0.000
#> GSM260942 1 0.0458 0.9840 0.984 0.000 0.000 0.000 0.016 0.000
#> GSM260945 1 0.0458 0.9840 0.984 0.000 0.000 0.000 0.016 0.000
#> GSM260948 1 0.0937 0.9628 0.960 0.000 0.000 0.000 0.040 0.000
#> GSM260950 1 0.0146 0.9835 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM260915 4 0.0363 0.6985 0.000 0.000 0.000 0.988 0.012 0.000
#> GSM260917 4 0.2813 0.6226 0.000 0.008 0.092 0.864 0.036 0.000
#> GSM260920 4 0.1232 0.6948 0.000 0.004 0.024 0.956 0.016 0.000
#> GSM260923 4 0.0458 0.6968 0.000 0.000 0.000 0.984 0.016 0.000
#> GSM260926 4 0.0551 0.7018 0.000 0.004 0.004 0.984 0.008 0.000
#> GSM260928 5 0.3880 0.4519 0.056 0.000 0.112 0.032 0.800 0.000
#> GSM260931 3 0.3684 0.5754 0.000 0.000 0.628 0.372 0.000 0.000
#> GSM260934 4 0.5437 -0.2096 0.000 0.008 0.416 0.484 0.092 0.000
#> GSM260937 3 0.4354 -0.0894 0.000 0.132 0.724 0.000 0.144 0.000
#> GSM260940 3 0.3807 0.5798 0.000 0.000 0.628 0.368 0.004 0.000
#> GSM260943 3 0.3563 0.5962 0.000 0.000 0.664 0.336 0.000 0.000
#> GSM260946 3 0.4957 0.4630 0.000 0.000 0.544 0.384 0.072 0.000
#> GSM260949 4 0.0767 0.7007 0.000 0.004 0.012 0.976 0.008 0.000
#> GSM260951 3 0.6454 0.4589 0.000 0.080 0.532 0.252 0.136 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) cell.type(p) k
#> CV:hclust 67 0.939 2.75e-14 2
#> CV:hclust 67 0.927 9.68e-27 3
#> CV:hclust 62 0.584 4.37e-23 4
#> CV:hclust 54 0.906 6.80e-21 5
#> CV:hclust 57 0.636 1.22e-19 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 67 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.323 0.874 0.896 0.4405 0.575 0.575
#> 3 3 0.651 0.941 0.850 0.4088 0.750 0.566
#> 4 4 0.829 0.852 0.822 0.1652 1.000 1.000
#> 5 5 0.804 0.903 0.769 0.0599 0.876 0.619
#> 6 6 0.763 0.671 0.714 0.0469 0.941 0.739
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM260888 2 0.0000 1.000 0.000 1.000
#> GSM260893 2 0.0000 1.000 0.000 1.000
#> GSM260896 2 0.0000 1.000 0.000 1.000
#> GSM260899 2 0.0000 1.000 0.000 1.000
#> GSM260902 2 0.0000 1.000 0.000 1.000
#> GSM260905 2 0.0000 1.000 0.000 1.000
#> GSM260908 2 0.0000 1.000 0.000 1.000
#> GSM260911 2 0.0000 1.000 0.000 1.000
#> GSM260912 2 0.0000 1.000 0.000 1.000
#> GSM260913 1 0.7376 0.807 0.792 0.208
#> GSM260886 1 0.4815 0.834 0.896 0.104
#> GSM260889 1 0.4815 0.834 0.896 0.104
#> GSM260891 1 0.4815 0.834 0.896 0.104
#> GSM260894 1 0.4815 0.834 0.896 0.104
#> GSM260897 1 0.4815 0.834 0.896 0.104
#> GSM260900 1 0.4815 0.834 0.896 0.104
#> GSM260903 1 0.4815 0.834 0.896 0.104
#> GSM260906 1 0.4815 0.834 0.896 0.104
#> GSM260909 1 0.4815 0.834 0.896 0.104
#> GSM260887 1 0.7376 0.807 0.792 0.208
#> GSM260890 1 0.7376 0.807 0.792 0.208
#> GSM260892 1 0.7376 0.807 0.792 0.208
#> GSM260895 1 0.0672 0.815 0.992 0.008
#> GSM260898 1 0.7376 0.807 0.792 0.208
#> GSM260901 1 0.7376 0.807 0.792 0.208
#> GSM260904 1 0.7376 0.807 0.792 0.208
#> GSM260907 1 0.7376 0.807 0.792 0.208
#> GSM260910 1 0.7376 0.807 0.792 0.208
#> GSM260918 2 0.0000 1.000 0.000 1.000
#> GSM260921 2 0.0000 1.000 0.000 1.000
#> GSM260924 2 0.0000 1.000 0.000 1.000
#> GSM260929 2 0.0000 1.000 0.000 1.000
#> GSM260932 2 0.0000 1.000 0.000 1.000
#> GSM260935 2 0.0000 1.000 0.000 1.000
#> GSM260938 2 0.0000 1.000 0.000 1.000
#> GSM260941 2 0.0000 1.000 0.000 1.000
#> GSM260944 2 0.0000 1.000 0.000 1.000
#> GSM260947 2 0.0000 1.000 0.000 1.000
#> GSM260952 2 0.0000 1.000 0.000 1.000
#> GSM260914 1 0.4815 0.834 0.896 0.104
#> GSM260916 1 0.4815 0.834 0.896 0.104
#> GSM260919 1 0.4815 0.834 0.896 0.104
#> GSM260922 1 0.4815 0.834 0.896 0.104
#> GSM260925 1 0.4815 0.834 0.896 0.104
#> GSM260927 1 0.4815 0.834 0.896 0.104
#> GSM260930 1 0.4815 0.834 0.896 0.104
#> GSM260933 1 0.4815 0.834 0.896 0.104
#> GSM260936 1 0.4815 0.834 0.896 0.104
#> GSM260939 1 0.4815 0.834 0.896 0.104
#> GSM260942 1 0.4815 0.834 0.896 0.104
#> GSM260945 1 0.4815 0.834 0.896 0.104
#> GSM260948 1 0.4815 0.834 0.896 0.104
#> GSM260950 1 0.4815 0.834 0.896 0.104
#> GSM260915 1 0.7376 0.807 0.792 0.208
#> GSM260917 1 0.7376 0.807 0.792 0.208
#> GSM260920 1 0.7376 0.807 0.792 0.208
#> GSM260923 1 0.7376 0.807 0.792 0.208
#> GSM260926 1 0.7376 0.807 0.792 0.208
#> GSM260928 1 0.0000 0.813 1.000 0.000
#> GSM260931 1 0.7376 0.807 0.792 0.208
#> GSM260934 1 0.7376 0.807 0.792 0.208
#> GSM260937 1 0.7376 0.807 0.792 0.208
#> GSM260940 1 0.7376 0.807 0.792 0.208
#> GSM260943 1 0.7376 0.807 0.792 0.208
#> GSM260946 1 0.7376 0.807 0.792 0.208
#> GSM260949 1 0.7376 0.807 0.792 0.208
#> GSM260951 1 0.7376 0.807 0.792 0.208
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM260888 2 0.382 0.940 0.148 0.852 0.000
#> GSM260893 2 0.382 0.940 0.148 0.852 0.000
#> GSM260896 2 0.382 0.940 0.148 0.852 0.000
#> GSM260899 2 0.226 0.921 0.068 0.932 0.000
#> GSM260902 2 0.226 0.921 0.068 0.932 0.000
#> GSM260905 2 0.153 0.937 0.040 0.960 0.000
#> GSM260908 2 0.116 0.934 0.028 0.972 0.000
#> GSM260911 2 0.382 0.940 0.148 0.852 0.000
#> GSM260912 2 0.382 0.940 0.148 0.852 0.000
#> GSM260913 3 0.186 0.954 0.000 0.052 0.948
#> GSM260886 1 0.573 0.946 0.676 0.000 0.324
#> GSM260889 1 0.573 0.946 0.676 0.000 0.324
#> GSM260891 1 0.573 0.946 0.676 0.000 0.324
#> GSM260894 1 0.573 0.946 0.676 0.000 0.324
#> GSM260897 1 0.480 0.932 0.780 0.000 0.220
#> GSM260900 1 0.480 0.932 0.780 0.000 0.220
#> GSM260903 1 0.480 0.932 0.780 0.000 0.220
#> GSM260906 1 0.480 0.932 0.780 0.000 0.220
#> GSM260909 1 0.573 0.946 0.676 0.000 0.324
#> GSM260887 3 0.186 0.954 0.000 0.052 0.948
#> GSM260890 3 0.186 0.954 0.000 0.052 0.948
#> GSM260892 3 0.186 0.954 0.000 0.052 0.948
#> GSM260895 3 0.000 0.895 0.000 0.000 1.000
#> GSM260898 3 0.399 0.951 0.052 0.064 0.884
#> GSM260901 3 0.399 0.951 0.052 0.064 0.884
#> GSM260904 3 0.399 0.951 0.052 0.064 0.884
#> GSM260907 3 0.399 0.951 0.052 0.064 0.884
#> GSM260910 3 0.186 0.954 0.000 0.052 0.948
#> GSM260918 2 0.394 0.940 0.156 0.844 0.000
#> GSM260921 2 0.382 0.940 0.148 0.852 0.000
#> GSM260924 2 0.388 0.939 0.152 0.848 0.000
#> GSM260929 2 0.375 0.940 0.144 0.856 0.000
#> GSM260932 2 0.226 0.921 0.068 0.932 0.000
#> GSM260935 2 0.226 0.921 0.068 0.932 0.000
#> GSM260938 2 0.141 0.934 0.036 0.964 0.000
#> GSM260941 2 0.141 0.934 0.036 0.964 0.000
#> GSM260944 2 0.141 0.934 0.036 0.964 0.000
#> GSM260947 2 0.141 0.934 0.036 0.964 0.000
#> GSM260952 2 0.406 0.938 0.164 0.836 0.000
#> GSM260914 1 0.573 0.946 0.676 0.000 0.324
#> GSM260916 1 0.573 0.946 0.676 0.000 0.324
#> GSM260919 1 0.573 0.946 0.676 0.000 0.324
#> GSM260922 1 0.573 0.946 0.676 0.000 0.324
#> GSM260925 1 0.573 0.946 0.676 0.000 0.324
#> GSM260927 1 0.573 0.946 0.676 0.000 0.324
#> GSM260930 1 0.480 0.932 0.780 0.000 0.220
#> GSM260933 1 0.480 0.932 0.780 0.000 0.220
#> GSM260936 1 0.480 0.932 0.780 0.000 0.220
#> GSM260939 1 0.480 0.932 0.780 0.000 0.220
#> GSM260942 1 0.480 0.932 0.780 0.000 0.220
#> GSM260945 1 0.480 0.932 0.780 0.000 0.220
#> GSM260948 1 0.562 0.944 0.692 0.000 0.308
#> GSM260950 1 0.573 0.946 0.676 0.000 0.324
#> GSM260915 3 0.186 0.954 0.000 0.052 0.948
#> GSM260917 3 0.318 0.955 0.024 0.064 0.912
#> GSM260920 3 0.186 0.954 0.000 0.052 0.948
#> GSM260923 3 0.186 0.954 0.000 0.052 0.948
#> GSM260926 3 0.186 0.954 0.000 0.052 0.948
#> GSM260928 3 0.000 0.895 0.000 0.000 1.000
#> GSM260931 3 0.399 0.951 0.052 0.064 0.884
#> GSM260934 3 0.399 0.951 0.052 0.064 0.884
#> GSM260937 3 0.399 0.951 0.052 0.064 0.884
#> GSM260940 3 0.399 0.951 0.052 0.064 0.884
#> GSM260943 3 0.399 0.951 0.052 0.064 0.884
#> GSM260946 3 0.399 0.951 0.052 0.064 0.884
#> GSM260949 3 0.186 0.954 0.000 0.052 0.948
#> GSM260951 3 0.318 0.955 0.024 0.064 0.912
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM260888 2 0.358 0.911 0.004 0.816 0.000 NA
#> GSM260893 2 0.344 0.911 0.000 0.816 0.000 NA
#> GSM260896 2 0.344 0.911 0.000 0.816 0.000 NA
#> GSM260899 2 0.211 0.893 0.024 0.932 0.000 NA
#> GSM260902 2 0.211 0.893 0.024 0.932 0.000 NA
#> GSM260905 2 0.190 0.910 0.004 0.932 0.000 NA
#> GSM260908 2 0.131 0.906 0.004 0.960 0.000 NA
#> GSM260911 2 0.358 0.911 0.004 0.816 0.000 NA
#> GSM260912 2 0.336 0.914 0.000 0.824 0.000 NA
#> GSM260913 3 0.000 0.813 0.000 0.000 1.000 NA
#> GSM260886 1 0.572 0.867 0.632 0.000 0.044 NA
#> GSM260889 1 0.572 0.867 0.632 0.000 0.044 NA
#> GSM260891 1 0.574 0.866 0.628 0.000 0.044 NA
#> GSM260894 1 0.574 0.866 0.628 0.000 0.044 NA
#> GSM260897 1 0.112 0.825 0.964 0.000 0.036 NA
#> GSM260900 1 0.112 0.825 0.964 0.000 0.036 NA
#> GSM260903 1 0.112 0.825 0.964 0.000 0.036 NA
#> GSM260906 1 0.112 0.825 0.964 0.000 0.036 NA
#> GSM260909 1 0.574 0.866 0.628 0.000 0.044 NA
#> GSM260887 3 0.000 0.813 0.000 0.000 1.000 NA
#> GSM260890 3 0.000 0.813 0.000 0.000 1.000 NA
#> GSM260892 3 0.000 0.813 0.000 0.000 1.000 NA
#> GSM260895 3 0.156 0.774 0.000 0.000 0.944 NA
#> GSM260898 3 0.514 0.811 0.008 0.000 0.600 NA
#> GSM260901 3 0.514 0.811 0.008 0.000 0.600 NA
#> GSM260904 3 0.514 0.811 0.008 0.000 0.600 NA
#> GSM260907 3 0.514 0.811 0.008 0.000 0.600 NA
#> GSM260910 3 0.000 0.813 0.000 0.000 1.000 NA
#> GSM260918 2 0.336 0.914 0.000 0.824 0.000 NA
#> GSM260921 2 0.340 0.912 0.000 0.820 0.000 NA
#> GSM260924 2 0.389 0.908 0.012 0.804 0.000 NA
#> GSM260929 2 0.327 0.914 0.000 0.832 0.000 NA
#> GSM260932 2 0.211 0.893 0.024 0.932 0.000 NA
#> GSM260935 2 0.211 0.893 0.024 0.932 0.000 NA
#> GSM260938 2 0.121 0.906 0.000 0.960 0.000 NA
#> GSM260941 2 0.121 0.906 0.000 0.960 0.000 NA
#> GSM260944 2 0.121 0.906 0.000 0.960 0.000 NA
#> GSM260947 2 0.121 0.906 0.000 0.960 0.000 NA
#> GSM260952 2 0.349 0.913 0.000 0.812 0.000 NA
#> GSM260914 1 0.572 0.867 0.632 0.000 0.044 NA
#> GSM260916 1 0.572 0.867 0.632 0.000 0.044 NA
#> GSM260919 1 0.572 0.867 0.632 0.000 0.044 NA
#> GSM260922 1 0.572 0.867 0.632 0.000 0.044 NA
#> GSM260925 1 0.572 0.867 0.632 0.000 0.044 NA
#> GSM260927 1 0.574 0.866 0.628 0.000 0.044 NA
#> GSM260930 1 0.112 0.825 0.964 0.000 0.036 NA
#> GSM260933 1 0.112 0.825 0.964 0.000 0.036 NA
#> GSM260936 1 0.112 0.825 0.964 0.000 0.036 NA
#> GSM260939 1 0.112 0.825 0.964 0.000 0.036 NA
#> GSM260942 1 0.112 0.825 0.964 0.000 0.036 NA
#> GSM260945 1 0.112 0.825 0.964 0.000 0.036 NA
#> GSM260948 1 0.564 0.866 0.648 0.000 0.044 NA
#> GSM260950 1 0.572 0.867 0.632 0.000 0.044 NA
#> GSM260915 3 0.000 0.813 0.000 0.000 1.000 NA
#> GSM260917 3 0.456 0.813 0.000 0.000 0.672 NA
#> GSM260920 3 0.000 0.813 0.000 0.000 1.000 NA
#> GSM260923 3 0.000 0.813 0.000 0.000 1.000 NA
#> GSM260926 3 0.000 0.813 0.000 0.000 1.000 NA
#> GSM260928 3 0.156 0.774 0.000 0.000 0.944 NA
#> GSM260931 3 0.514 0.811 0.008 0.000 0.600 NA
#> GSM260934 3 0.514 0.811 0.008 0.000 0.600 NA
#> GSM260937 3 0.514 0.811 0.008 0.000 0.600 NA
#> GSM260940 3 0.514 0.811 0.008 0.000 0.600 NA
#> GSM260943 3 0.514 0.811 0.008 0.000 0.600 NA
#> GSM260946 3 0.514 0.811 0.008 0.000 0.600 NA
#> GSM260949 3 0.000 0.813 0.000 0.000 1.000 NA
#> GSM260951 3 0.483 0.810 0.000 0.000 0.608 NA
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM260888 2 0.1179 0.842 0.000 0.964 0.004 0.016 0.016
#> GSM260893 2 0.0968 0.843 0.000 0.972 0.004 0.012 0.012
#> GSM260896 2 0.0968 0.843 0.000 0.972 0.004 0.012 0.012
#> GSM260899 2 0.5949 0.795 0.000 0.588 0.000 0.172 0.240
#> GSM260902 2 0.5949 0.795 0.000 0.588 0.000 0.172 0.240
#> GSM260905 2 0.4985 0.835 0.000 0.708 0.004 0.200 0.088
#> GSM260908 2 0.5127 0.832 0.000 0.692 0.004 0.212 0.092
#> GSM260911 2 0.0968 0.843 0.000 0.972 0.004 0.012 0.012
#> GSM260912 2 0.0404 0.845 0.000 0.988 0.000 0.012 0.000
#> GSM260913 4 0.5470 0.945 0.036 0.004 0.372 0.576 0.012
#> GSM260886 1 0.0000 0.954 1.000 0.000 0.000 0.000 0.000
#> GSM260889 1 0.0162 0.953 0.996 0.000 0.000 0.004 0.000
#> GSM260891 1 0.1764 0.916 0.928 0.000 0.000 0.064 0.008
#> GSM260894 1 0.1764 0.916 0.928 0.000 0.000 0.064 0.008
#> GSM260897 5 0.5024 0.983 0.440 0.000 0.024 0.004 0.532
#> GSM260900 5 0.5099 0.983 0.440 0.000 0.028 0.004 0.528
#> GSM260903 5 0.5211 0.981 0.440 0.000 0.028 0.008 0.524
#> GSM260906 5 0.5211 0.981 0.440 0.000 0.028 0.008 0.524
#> GSM260909 1 0.1764 0.916 0.928 0.000 0.000 0.064 0.008
#> GSM260887 4 0.5255 0.947 0.036 0.004 0.372 0.584 0.004
#> GSM260890 4 0.5255 0.947 0.036 0.004 0.372 0.584 0.004
#> GSM260892 4 0.5730 0.943 0.036 0.004 0.372 0.564 0.024
#> GSM260895 4 0.6254 0.799 0.060 0.000 0.288 0.592 0.060
#> GSM260898 3 0.1580 0.937 0.012 0.004 0.952 0.016 0.016
#> GSM260901 3 0.1580 0.937 0.012 0.004 0.952 0.016 0.016
#> GSM260904 3 0.1580 0.937 0.012 0.004 0.952 0.016 0.016
#> GSM260907 3 0.1580 0.937 0.012 0.004 0.952 0.016 0.016
#> GSM260910 4 0.5470 0.945 0.036 0.004 0.372 0.576 0.012
#> GSM260918 2 0.1041 0.845 0.000 0.964 0.000 0.032 0.004
#> GSM260921 2 0.0833 0.843 0.000 0.976 0.004 0.016 0.004
#> GSM260924 2 0.1569 0.840 0.000 0.948 0.008 0.012 0.032
#> GSM260929 2 0.0162 0.845 0.000 0.996 0.000 0.004 0.000
#> GSM260932 2 0.5949 0.795 0.000 0.588 0.000 0.172 0.240
#> GSM260935 2 0.5949 0.795 0.000 0.588 0.000 0.172 0.240
#> GSM260938 2 0.5335 0.824 0.000 0.644 0.000 0.260 0.096
#> GSM260941 2 0.5312 0.825 0.000 0.648 0.000 0.256 0.096
#> GSM260944 2 0.5312 0.825 0.000 0.648 0.000 0.256 0.096
#> GSM260947 2 0.5312 0.825 0.000 0.648 0.000 0.256 0.096
#> GSM260952 2 0.1408 0.843 0.000 0.948 0.000 0.044 0.008
#> GSM260914 1 0.0000 0.954 1.000 0.000 0.000 0.000 0.000
#> GSM260916 1 0.0290 0.952 0.992 0.000 0.000 0.008 0.000
#> GSM260919 1 0.0404 0.950 0.988 0.000 0.000 0.012 0.000
#> GSM260922 1 0.0290 0.952 0.992 0.000 0.000 0.008 0.000
#> GSM260925 1 0.0000 0.954 1.000 0.000 0.000 0.000 0.000
#> GSM260927 1 0.1830 0.912 0.924 0.000 0.000 0.068 0.008
#> GSM260930 5 0.5136 0.982 0.440 0.000 0.024 0.008 0.528
#> GSM260933 5 0.5024 0.983 0.440 0.000 0.024 0.004 0.532
#> GSM260936 5 0.5560 0.970 0.440 0.000 0.024 0.028 0.508
#> GSM260939 5 0.5560 0.970 0.440 0.000 0.024 0.028 0.508
#> GSM260942 5 0.5235 0.980 0.440 0.000 0.024 0.012 0.524
#> GSM260945 5 0.5399 0.980 0.440 0.000 0.028 0.016 0.516
#> GSM260948 1 0.1493 0.902 0.948 0.000 0.000 0.028 0.024
#> GSM260950 1 0.0162 0.953 0.996 0.000 0.000 0.004 0.000
#> GSM260915 4 0.5369 0.947 0.036 0.004 0.372 0.580 0.008
#> GSM260917 3 0.3502 0.754 0.028 0.004 0.844 0.112 0.012
#> GSM260920 4 0.5563 0.944 0.036 0.004 0.372 0.572 0.016
#> GSM260923 4 0.5470 0.945 0.036 0.004 0.372 0.576 0.012
#> GSM260926 4 0.5255 0.947 0.036 0.004 0.372 0.584 0.004
#> GSM260928 4 0.6399 0.784 0.060 0.000 0.284 0.584 0.072
#> GSM260931 3 0.1074 0.932 0.012 0.004 0.968 0.000 0.016
#> GSM260934 3 0.1580 0.937 0.012 0.004 0.952 0.016 0.016
#> GSM260937 3 0.2166 0.905 0.012 0.004 0.912 0.000 0.072
#> GSM260940 3 0.0566 0.935 0.012 0.004 0.984 0.000 0.000
#> GSM260943 3 0.2166 0.905 0.012 0.004 0.912 0.000 0.072
#> GSM260946 3 0.0727 0.935 0.012 0.004 0.980 0.000 0.004
#> GSM260949 4 0.5369 0.947 0.036 0.004 0.372 0.580 0.008
#> GSM260951 3 0.2610 0.888 0.028 0.004 0.892 0.000 0.076
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM260888 2 0.4724 0.598 0.004 0.480 0.480 0.000 0.000 NA
#> GSM260893 3 0.4184 -0.641 0.000 0.484 0.504 0.000 0.000 NA
#> GSM260896 3 0.4263 -0.641 0.000 0.480 0.504 0.000 0.000 NA
#> GSM260899 2 0.3975 0.686 0.000 0.716 0.040 0.000 0.000 NA
#> GSM260902 2 0.3975 0.686 0.000 0.716 0.040 0.000 0.000 NA
#> GSM260905 2 0.1845 0.736 0.008 0.916 0.072 0.000 0.000 NA
#> GSM260908 2 0.1340 0.737 0.008 0.948 0.040 0.000 0.000 NA
#> GSM260911 3 0.4183 -0.641 0.000 0.480 0.508 0.000 0.000 NA
#> GSM260912 2 0.4403 0.610 0.008 0.520 0.460 0.000 0.000 NA
#> GSM260913 4 0.1391 0.862 0.016 0.000 0.000 0.944 0.000 NA
#> GSM260886 1 0.3887 0.918 0.632 0.000 0.000 0.008 0.360 NA
#> GSM260889 1 0.4231 0.916 0.616 0.000 0.000 0.008 0.364 NA
#> GSM260891 1 0.5473 0.864 0.536 0.000 0.000 0.008 0.348 NA
#> GSM260894 1 0.5568 0.864 0.536 0.000 0.004 0.008 0.348 NA
#> GSM260897 5 0.0291 0.967 0.000 0.000 0.004 0.000 0.992 NA
#> GSM260900 5 0.0405 0.966 0.000 0.000 0.008 0.000 0.988 NA
#> GSM260903 5 0.0520 0.965 0.000 0.000 0.008 0.000 0.984 NA
#> GSM260906 5 0.0520 0.965 0.000 0.000 0.008 0.000 0.984 NA
#> GSM260909 1 0.5473 0.864 0.536 0.000 0.000 0.008 0.348 NA
#> GSM260887 4 0.0508 0.872 0.004 0.000 0.000 0.984 0.000 NA
#> GSM260890 4 0.0405 0.873 0.008 0.000 0.000 0.988 0.000 NA
#> GSM260892 4 0.1779 0.859 0.016 0.000 0.000 0.920 0.000 NA
#> GSM260895 4 0.3782 0.727 0.036 0.000 0.000 0.740 0.000 NA
#> GSM260898 3 0.7508 0.541 0.196 0.000 0.420 0.220 0.008 NA
#> GSM260901 3 0.7508 0.541 0.196 0.000 0.420 0.220 0.008 NA
#> GSM260904 3 0.7508 0.541 0.196 0.000 0.420 0.220 0.008 NA
#> GSM260907 3 0.7508 0.541 0.196 0.000 0.420 0.220 0.008 NA
#> GSM260910 4 0.0858 0.870 0.004 0.000 0.000 0.968 0.000 NA
#> GSM260918 2 0.4459 0.619 0.012 0.548 0.428 0.000 0.000 NA
#> GSM260921 3 0.4227 -0.647 0.004 0.492 0.496 0.000 0.000 NA
#> GSM260924 2 0.5804 0.604 0.044 0.468 0.420 0.000 0.000 NA
#> GSM260929 2 0.4565 0.602 0.008 0.496 0.476 0.000 0.000 NA
#> GSM260932 2 0.3975 0.686 0.000 0.716 0.040 0.000 0.000 NA
#> GSM260935 2 0.3975 0.686 0.000 0.716 0.040 0.000 0.000 NA
#> GSM260938 2 0.0146 0.735 0.004 0.996 0.000 0.000 0.000 NA
#> GSM260941 2 0.0146 0.735 0.004 0.996 0.000 0.000 0.000 NA
#> GSM260944 2 0.0146 0.735 0.004 0.996 0.000 0.000 0.000 NA
#> GSM260947 2 0.0146 0.735 0.004 0.996 0.000 0.000 0.000 NA
#> GSM260952 2 0.4447 0.621 0.012 0.556 0.420 0.000 0.000 NA
#> GSM260914 1 0.3887 0.918 0.632 0.000 0.000 0.008 0.360 NA
#> GSM260916 1 0.4767 0.905 0.592 0.000 0.000 0.008 0.356 NA
#> GSM260919 1 0.4957 0.900 0.584 0.000 0.004 0.008 0.356 NA
#> GSM260922 1 0.4824 0.900 0.588 0.000 0.000 0.008 0.356 NA
#> GSM260925 1 0.3887 0.918 0.632 0.000 0.000 0.008 0.360 NA
#> GSM260927 1 0.5578 0.861 0.532 0.000 0.004 0.008 0.352 NA
#> GSM260930 5 0.0363 0.965 0.000 0.000 0.012 0.000 0.988 NA
#> GSM260933 5 0.0260 0.966 0.000 0.000 0.008 0.000 0.992 NA
#> GSM260936 5 0.1765 0.939 0.000 0.000 0.024 0.000 0.924 NA
#> GSM260939 5 0.1700 0.939 0.000 0.000 0.024 0.000 0.928 NA
#> GSM260942 5 0.1225 0.953 0.000 0.000 0.012 0.000 0.952 NA
#> GSM260945 5 0.1049 0.962 0.000 0.000 0.008 0.000 0.960 NA
#> GSM260948 1 0.5322 0.859 0.540 0.000 0.008 0.008 0.380 NA
#> GSM260950 1 0.4022 0.918 0.628 0.000 0.004 0.008 0.360 NA
#> GSM260915 4 0.0891 0.871 0.008 0.000 0.000 0.968 0.000 NA
#> GSM260917 4 0.7369 -0.377 0.132 0.000 0.352 0.364 0.008 NA
#> GSM260920 4 0.1398 0.862 0.008 0.000 0.000 0.940 0.000 NA
#> GSM260923 4 0.0993 0.869 0.012 0.000 0.000 0.964 0.000 NA
#> GSM260926 4 0.0603 0.872 0.004 0.000 0.000 0.980 0.000 NA
#> GSM260928 4 0.4382 0.680 0.060 0.000 0.000 0.676 0.000 NA
#> GSM260931 3 0.7505 0.536 0.208 0.000 0.420 0.212 0.008 NA
#> GSM260934 3 0.7508 0.541 0.196 0.000 0.420 0.220 0.008 NA
#> GSM260937 3 0.7795 0.501 0.220 0.000 0.348 0.212 0.008 NA
#> GSM260940 3 0.7390 0.542 0.224 0.000 0.432 0.212 0.008 NA
#> GSM260943 3 0.7795 0.501 0.220 0.000 0.348 0.212 0.008 NA
#> GSM260946 3 0.7390 0.542 0.224 0.000 0.432 0.212 0.008 NA
#> GSM260949 4 0.0692 0.872 0.004 0.000 0.000 0.976 0.000 NA
#> GSM260951 3 0.7823 0.487 0.212 0.000 0.336 0.212 0.008 NA
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) cell.type(p) k
#> CV:kmeans 67 0.939 2.75e-14 2
#> CV:kmeans 67 0.927 9.68e-27 3
#> CV:kmeans 67 0.927 9.68e-27 4
#> CV:kmeans 67 0.933 6.06e-24 5
#> CV:kmeans 61 0.971 2.17e-21 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 67 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4257 0.575 0.575
#> 3 3 1.000 0.995 0.998 0.5859 0.750 0.566
#> 4 4 0.881 0.954 0.934 0.0954 0.935 0.800
#> 5 5 0.881 0.946 0.905 0.0641 0.941 0.774
#> 6 6 0.845 0.870 0.897 0.0340 0.995 0.975
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2
There is also optional best \(k\) = 2 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM260888 2 0 1 0 1
#> GSM260893 2 0 1 0 1
#> GSM260896 2 0 1 0 1
#> GSM260899 2 0 1 0 1
#> GSM260902 2 0 1 0 1
#> GSM260905 2 0 1 0 1
#> GSM260908 2 0 1 0 1
#> GSM260911 2 0 1 0 1
#> GSM260912 2 0 1 0 1
#> GSM260913 1 0 1 1 0
#> GSM260886 1 0 1 1 0
#> GSM260889 1 0 1 1 0
#> GSM260891 1 0 1 1 0
#> GSM260894 1 0 1 1 0
#> GSM260897 1 0 1 1 0
#> GSM260900 1 0 1 1 0
#> GSM260903 1 0 1 1 0
#> GSM260906 1 0 1 1 0
#> GSM260909 1 0 1 1 0
#> GSM260887 1 0 1 1 0
#> GSM260890 1 0 1 1 0
#> GSM260892 1 0 1 1 0
#> GSM260895 1 0 1 1 0
#> GSM260898 1 0 1 1 0
#> GSM260901 1 0 1 1 0
#> GSM260904 1 0 1 1 0
#> GSM260907 1 0 1 1 0
#> GSM260910 1 0 1 1 0
#> GSM260918 2 0 1 0 1
#> GSM260921 2 0 1 0 1
#> GSM260924 2 0 1 0 1
#> GSM260929 2 0 1 0 1
#> GSM260932 2 0 1 0 1
#> GSM260935 2 0 1 0 1
#> GSM260938 2 0 1 0 1
#> GSM260941 2 0 1 0 1
#> GSM260944 2 0 1 0 1
#> GSM260947 2 0 1 0 1
#> GSM260952 2 0 1 0 1
#> GSM260914 1 0 1 1 0
#> GSM260916 1 0 1 1 0
#> GSM260919 1 0 1 1 0
#> GSM260922 1 0 1 1 0
#> GSM260925 1 0 1 1 0
#> GSM260927 1 0 1 1 0
#> GSM260930 1 0 1 1 0
#> GSM260933 1 0 1 1 0
#> GSM260936 1 0 1 1 0
#> GSM260939 1 0 1 1 0
#> GSM260942 1 0 1 1 0
#> GSM260945 1 0 1 1 0
#> GSM260948 1 0 1 1 0
#> GSM260950 1 0 1 1 0
#> GSM260915 1 0 1 1 0
#> GSM260917 1 0 1 1 0
#> GSM260920 1 0 1 1 0
#> GSM260923 1 0 1 1 0
#> GSM260926 1 0 1 1 0
#> GSM260928 1 0 1 1 0
#> GSM260931 1 0 1 1 0
#> GSM260934 1 0 1 1 0
#> GSM260937 1 0 1 1 0
#> GSM260940 1 0 1 1 0
#> GSM260943 1 0 1 1 0
#> GSM260946 1 0 1 1 0
#> GSM260949 1 0 1 1 0
#> GSM260951 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM260888 2 0.000 1.000 0.000 1 0.000
#> GSM260893 2 0.000 1.000 0.000 1 0.000
#> GSM260896 2 0.000 1.000 0.000 1 0.000
#> GSM260899 2 0.000 1.000 0.000 1 0.000
#> GSM260902 2 0.000 1.000 0.000 1 0.000
#> GSM260905 2 0.000 1.000 0.000 1 0.000
#> GSM260908 2 0.000 1.000 0.000 1 0.000
#> GSM260911 2 0.000 1.000 0.000 1 0.000
#> GSM260912 2 0.000 1.000 0.000 1 0.000
#> GSM260913 3 0.000 0.993 0.000 0 1.000
#> GSM260886 1 0.000 1.000 1.000 0 0.000
#> GSM260889 1 0.000 1.000 1.000 0 0.000
#> GSM260891 1 0.000 1.000 1.000 0 0.000
#> GSM260894 1 0.000 1.000 1.000 0 0.000
#> GSM260897 1 0.000 1.000 1.000 0 0.000
#> GSM260900 1 0.000 1.000 1.000 0 0.000
#> GSM260903 1 0.000 1.000 1.000 0 0.000
#> GSM260906 1 0.000 1.000 1.000 0 0.000
#> GSM260909 1 0.000 1.000 1.000 0 0.000
#> GSM260887 3 0.000 0.993 0.000 0 1.000
#> GSM260890 3 0.000 0.993 0.000 0 1.000
#> GSM260892 3 0.000 0.993 0.000 0 1.000
#> GSM260895 3 0.000 0.993 0.000 0 1.000
#> GSM260898 3 0.000 0.993 0.000 0 1.000
#> GSM260901 3 0.000 0.993 0.000 0 1.000
#> GSM260904 3 0.000 0.993 0.000 0 1.000
#> GSM260907 3 0.000 0.993 0.000 0 1.000
#> GSM260910 3 0.000 0.993 0.000 0 1.000
#> GSM260918 2 0.000 1.000 0.000 1 0.000
#> GSM260921 2 0.000 1.000 0.000 1 0.000
#> GSM260924 2 0.000 1.000 0.000 1 0.000
#> GSM260929 2 0.000 1.000 0.000 1 0.000
#> GSM260932 2 0.000 1.000 0.000 1 0.000
#> GSM260935 2 0.000 1.000 0.000 1 0.000
#> GSM260938 2 0.000 1.000 0.000 1 0.000
#> GSM260941 2 0.000 1.000 0.000 1 0.000
#> GSM260944 2 0.000 1.000 0.000 1 0.000
#> GSM260947 2 0.000 1.000 0.000 1 0.000
#> GSM260952 2 0.000 1.000 0.000 1 0.000
#> GSM260914 1 0.000 1.000 1.000 0 0.000
#> GSM260916 1 0.000 1.000 1.000 0 0.000
#> GSM260919 1 0.000 1.000 1.000 0 0.000
#> GSM260922 1 0.000 1.000 1.000 0 0.000
#> GSM260925 1 0.000 1.000 1.000 0 0.000
#> GSM260927 1 0.000 1.000 1.000 0 0.000
#> GSM260930 1 0.000 1.000 1.000 0 0.000
#> GSM260933 1 0.000 1.000 1.000 0 0.000
#> GSM260936 1 0.000 1.000 1.000 0 0.000
#> GSM260939 1 0.000 1.000 1.000 0 0.000
#> GSM260942 1 0.000 1.000 1.000 0 0.000
#> GSM260945 1 0.000 1.000 1.000 0 0.000
#> GSM260948 1 0.000 1.000 1.000 0 0.000
#> GSM260950 1 0.000 1.000 1.000 0 0.000
#> GSM260915 3 0.000 0.993 0.000 0 1.000
#> GSM260917 3 0.000 0.993 0.000 0 1.000
#> GSM260920 3 0.000 0.993 0.000 0 1.000
#> GSM260923 3 0.000 0.993 0.000 0 1.000
#> GSM260926 3 0.000 0.993 0.000 0 1.000
#> GSM260928 3 0.382 0.826 0.148 0 0.852
#> GSM260931 3 0.000 0.993 0.000 0 1.000
#> GSM260934 3 0.000 0.993 0.000 0 1.000
#> GSM260937 3 0.000 0.993 0.000 0 1.000
#> GSM260940 3 0.000 0.993 0.000 0 1.000
#> GSM260943 3 0.000 0.993 0.000 0 1.000
#> GSM260946 3 0.000 0.993 0.000 0 1.000
#> GSM260949 3 0.000 0.993 0.000 0 1.000
#> GSM260951 3 0.000 0.993 0.000 0 1.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM260888 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260893 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260896 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260899 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260902 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260905 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260908 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260911 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260912 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260913 4 0.3569 0.960 0.000 0.000 0.196 0.804
#> GSM260886 1 0.2589 0.924 0.884 0.000 0.000 0.116
#> GSM260889 1 0.2589 0.924 0.884 0.000 0.000 0.116
#> GSM260891 1 0.2589 0.924 0.884 0.000 0.000 0.116
#> GSM260894 1 0.2589 0.924 0.884 0.000 0.000 0.116
#> GSM260897 1 0.1867 0.903 0.928 0.000 0.000 0.072
#> GSM260900 1 0.1867 0.903 0.928 0.000 0.000 0.072
#> GSM260903 1 0.1867 0.903 0.928 0.000 0.000 0.072
#> GSM260906 1 0.1867 0.903 0.928 0.000 0.000 0.072
#> GSM260909 1 0.2589 0.924 0.884 0.000 0.000 0.116
#> GSM260887 4 0.3528 0.962 0.000 0.000 0.192 0.808
#> GSM260890 4 0.3528 0.962 0.000 0.000 0.192 0.808
#> GSM260892 4 0.3528 0.962 0.000 0.000 0.192 0.808
#> GSM260895 4 0.2334 0.848 0.004 0.000 0.088 0.908
#> GSM260898 3 0.0188 0.983 0.000 0.000 0.996 0.004
#> GSM260901 3 0.0188 0.983 0.000 0.000 0.996 0.004
#> GSM260904 3 0.0336 0.981 0.000 0.000 0.992 0.008
#> GSM260907 3 0.0188 0.983 0.000 0.000 0.996 0.004
#> GSM260910 4 0.3528 0.962 0.000 0.000 0.192 0.808
#> GSM260918 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260921 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260924 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260929 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260932 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260935 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260938 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260941 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260944 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260947 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260952 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260914 1 0.2589 0.924 0.884 0.000 0.000 0.116
#> GSM260916 1 0.2589 0.924 0.884 0.000 0.000 0.116
#> GSM260919 1 0.2589 0.924 0.884 0.000 0.000 0.116
#> GSM260922 1 0.2589 0.924 0.884 0.000 0.000 0.116
#> GSM260925 1 0.2589 0.924 0.884 0.000 0.000 0.116
#> GSM260927 1 0.2530 0.924 0.888 0.000 0.000 0.112
#> GSM260930 1 0.1867 0.903 0.928 0.000 0.000 0.072
#> GSM260933 1 0.1867 0.903 0.928 0.000 0.000 0.072
#> GSM260936 1 0.1867 0.903 0.928 0.000 0.000 0.072
#> GSM260939 1 0.1867 0.903 0.928 0.000 0.000 0.072
#> GSM260942 1 0.1867 0.903 0.928 0.000 0.000 0.072
#> GSM260945 1 0.1867 0.903 0.928 0.000 0.000 0.072
#> GSM260948 1 0.2345 0.924 0.900 0.000 0.000 0.100
#> GSM260950 1 0.2589 0.924 0.884 0.000 0.000 0.116
#> GSM260915 4 0.3528 0.962 0.000 0.000 0.192 0.808
#> GSM260917 3 0.2589 0.839 0.000 0.000 0.884 0.116
#> GSM260920 4 0.3610 0.956 0.000 0.000 0.200 0.800
#> GSM260923 4 0.3528 0.962 0.000 0.000 0.192 0.808
#> GSM260926 4 0.3528 0.962 0.000 0.000 0.192 0.808
#> GSM260928 4 0.3229 0.787 0.048 0.000 0.072 0.880
#> GSM260931 3 0.0000 0.984 0.000 0.000 1.000 0.000
#> GSM260934 3 0.0000 0.984 0.000 0.000 1.000 0.000
#> GSM260937 3 0.0000 0.984 0.000 0.000 1.000 0.000
#> GSM260940 3 0.0000 0.984 0.000 0.000 1.000 0.000
#> GSM260943 3 0.0000 0.984 0.000 0.000 1.000 0.000
#> GSM260946 3 0.0000 0.984 0.000 0.000 1.000 0.000
#> GSM260949 4 0.3569 0.960 0.000 0.000 0.196 0.804
#> GSM260951 3 0.0336 0.979 0.000 0.000 0.992 0.008
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM260888 2 0.0000 0.945 0.000 1.000 0.000 0.000 0.000
#> GSM260893 2 0.0000 0.945 0.000 1.000 0.000 0.000 0.000
#> GSM260896 2 0.0000 0.945 0.000 1.000 0.000 0.000 0.000
#> GSM260899 2 0.3291 0.924 0.000 0.840 0.000 0.040 0.120
#> GSM260902 2 0.3291 0.924 0.000 0.840 0.000 0.040 0.120
#> GSM260905 2 0.2570 0.941 0.000 0.888 0.000 0.028 0.084
#> GSM260908 2 0.2511 0.941 0.000 0.892 0.000 0.028 0.080
#> GSM260911 2 0.0000 0.945 0.000 1.000 0.000 0.000 0.000
#> GSM260912 2 0.0000 0.945 0.000 1.000 0.000 0.000 0.000
#> GSM260913 4 0.1544 0.942 0.000 0.000 0.068 0.932 0.000
#> GSM260886 1 0.0290 0.968 0.992 0.000 0.000 0.000 0.008
#> GSM260889 1 0.0162 0.968 0.996 0.000 0.000 0.000 0.004
#> GSM260891 1 0.0798 0.950 0.976 0.000 0.000 0.008 0.016
#> GSM260894 1 0.0579 0.962 0.984 0.000 0.000 0.008 0.008
#> GSM260897 5 0.3684 0.993 0.280 0.000 0.000 0.000 0.720
#> GSM260900 5 0.3752 0.987 0.292 0.000 0.000 0.000 0.708
#> GSM260903 5 0.3730 0.991 0.288 0.000 0.000 0.000 0.712
#> GSM260906 5 0.3730 0.991 0.288 0.000 0.000 0.000 0.712
#> GSM260909 1 0.0579 0.961 0.984 0.000 0.000 0.008 0.008
#> GSM260887 4 0.1809 0.944 0.000 0.000 0.060 0.928 0.012
#> GSM260890 4 0.1410 0.944 0.000 0.000 0.060 0.940 0.000
#> GSM260892 4 0.1697 0.943 0.000 0.000 0.060 0.932 0.008
#> GSM260895 4 0.3712 0.826 0.052 0.000 0.004 0.820 0.124
#> GSM260898 3 0.0510 0.973 0.000 0.000 0.984 0.016 0.000
#> GSM260901 3 0.0794 0.969 0.000 0.000 0.972 0.028 0.000
#> GSM260904 3 0.0880 0.967 0.000 0.000 0.968 0.032 0.000
#> GSM260907 3 0.0609 0.972 0.000 0.000 0.980 0.020 0.000
#> GSM260910 4 0.1628 0.943 0.000 0.000 0.056 0.936 0.008
#> GSM260918 2 0.0000 0.945 0.000 1.000 0.000 0.000 0.000
#> GSM260921 2 0.0000 0.945 0.000 1.000 0.000 0.000 0.000
#> GSM260924 2 0.0000 0.945 0.000 1.000 0.000 0.000 0.000
#> GSM260929 2 0.0000 0.945 0.000 1.000 0.000 0.000 0.000
#> GSM260932 2 0.3291 0.924 0.000 0.840 0.000 0.040 0.120
#> GSM260935 2 0.3291 0.924 0.000 0.840 0.000 0.040 0.120
#> GSM260938 2 0.2628 0.940 0.000 0.884 0.000 0.028 0.088
#> GSM260941 2 0.2628 0.940 0.000 0.884 0.000 0.028 0.088
#> GSM260944 2 0.2628 0.940 0.000 0.884 0.000 0.028 0.088
#> GSM260947 2 0.2628 0.940 0.000 0.884 0.000 0.028 0.088
#> GSM260952 2 0.0000 0.945 0.000 1.000 0.000 0.000 0.000
#> GSM260914 1 0.0162 0.968 0.996 0.000 0.000 0.000 0.004
#> GSM260916 1 0.0162 0.968 0.996 0.000 0.000 0.000 0.004
#> GSM260919 1 0.0609 0.962 0.980 0.000 0.000 0.000 0.020
#> GSM260922 1 0.0404 0.967 0.988 0.000 0.000 0.000 0.012
#> GSM260925 1 0.0290 0.968 0.992 0.000 0.000 0.000 0.008
#> GSM260927 1 0.2249 0.857 0.896 0.000 0.000 0.008 0.096
#> GSM260930 5 0.3752 0.988 0.292 0.000 0.000 0.000 0.708
#> GSM260933 5 0.3707 0.992 0.284 0.000 0.000 0.000 0.716
#> GSM260936 5 0.3684 0.993 0.280 0.000 0.000 0.000 0.720
#> GSM260939 5 0.3684 0.993 0.280 0.000 0.000 0.000 0.720
#> GSM260942 5 0.3684 0.993 0.280 0.000 0.000 0.000 0.720
#> GSM260945 5 0.3684 0.993 0.280 0.000 0.000 0.000 0.720
#> GSM260948 1 0.1732 0.897 0.920 0.000 0.000 0.000 0.080
#> GSM260950 1 0.0703 0.960 0.976 0.000 0.000 0.000 0.024
#> GSM260915 4 0.1943 0.943 0.000 0.000 0.056 0.924 0.020
#> GSM260917 3 0.2848 0.819 0.000 0.000 0.840 0.156 0.004
#> GSM260920 4 0.2130 0.932 0.000 0.000 0.080 0.908 0.012
#> GSM260923 4 0.1502 0.943 0.000 0.000 0.056 0.940 0.004
#> GSM260926 4 0.1877 0.942 0.000 0.000 0.064 0.924 0.012
#> GSM260928 4 0.6136 0.612 0.180 0.000 0.016 0.616 0.188
#> GSM260931 3 0.0162 0.972 0.000 0.000 0.996 0.004 0.000
#> GSM260934 3 0.0609 0.972 0.000 0.000 0.980 0.020 0.000
#> GSM260937 3 0.0000 0.970 0.000 0.000 1.000 0.000 0.000
#> GSM260940 3 0.0162 0.972 0.000 0.000 0.996 0.004 0.000
#> GSM260943 3 0.0162 0.972 0.000 0.000 0.996 0.004 0.000
#> GSM260946 3 0.0162 0.972 0.000 0.000 0.996 0.004 0.000
#> GSM260949 4 0.1809 0.943 0.000 0.000 0.060 0.928 0.012
#> GSM260951 3 0.1205 0.951 0.000 0.000 0.956 0.040 0.004
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM260888 2 0.0725 0.876 0.000 0.976 0.000 0.000 0.012 0.012
#> GSM260893 2 0.0725 0.876 0.000 0.976 0.000 0.000 0.012 0.012
#> GSM260896 2 0.0725 0.876 0.000 0.976 0.000 0.000 0.012 0.012
#> GSM260899 2 0.3464 0.793 0.000 0.688 0.000 0.000 0.000 0.312
#> GSM260902 2 0.3464 0.793 0.000 0.688 0.000 0.000 0.000 0.312
#> GSM260905 2 0.2520 0.872 0.000 0.844 0.000 0.000 0.004 0.152
#> GSM260908 2 0.2482 0.873 0.000 0.848 0.000 0.000 0.004 0.148
#> GSM260911 2 0.0820 0.874 0.000 0.972 0.000 0.000 0.012 0.016
#> GSM260912 2 0.0000 0.880 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260913 4 0.0984 0.922 0.000 0.000 0.012 0.968 0.012 0.008
#> GSM260886 1 0.0405 0.912 0.988 0.000 0.000 0.000 0.008 0.004
#> GSM260889 1 0.0993 0.911 0.964 0.000 0.000 0.000 0.024 0.012
#> GSM260891 1 0.2214 0.865 0.888 0.000 0.000 0.000 0.016 0.096
#> GSM260894 1 0.2258 0.871 0.896 0.000 0.000 0.000 0.044 0.060
#> GSM260897 5 0.1910 0.971 0.108 0.000 0.000 0.000 0.892 0.000
#> GSM260900 5 0.2783 0.943 0.148 0.000 0.000 0.000 0.836 0.016
#> GSM260903 5 0.2389 0.966 0.128 0.000 0.000 0.000 0.864 0.008
#> GSM260906 5 0.2302 0.969 0.120 0.000 0.000 0.000 0.872 0.008
#> GSM260909 1 0.1686 0.889 0.924 0.000 0.000 0.000 0.012 0.064
#> GSM260887 4 0.1232 0.918 0.000 0.000 0.016 0.956 0.004 0.024
#> GSM260890 4 0.0858 0.919 0.000 0.000 0.004 0.968 0.000 0.028
#> GSM260892 4 0.1065 0.921 0.000 0.000 0.008 0.964 0.008 0.020
#> GSM260895 4 0.4111 0.468 0.012 0.000 0.000 0.716 0.028 0.244
#> GSM260898 3 0.2480 0.901 0.000 0.000 0.896 0.028 0.028 0.048
#> GSM260901 3 0.2556 0.900 0.000 0.000 0.892 0.028 0.032 0.048
#> GSM260904 3 0.2886 0.889 0.000 0.000 0.872 0.040 0.028 0.060
#> GSM260907 3 0.2172 0.907 0.000 0.000 0.912 0.020 0.024 0.044
#> GSM260910 4 0.0508 0.920 0.000 0.000 0.004 0.984 0.000 0.012
#> GSM260918 2 0.0363 0.881 0.000 0.988 0.000 0.000 0.000 0.012
#> GSM260921 2 0.0363 0.878 0.000 0.988 0.000 0.000 0.000 0.012
#> GSM260924 2 0.0622 0.877 0.000 0.980 0.000 0.000 0.008 0.012
#> GSM260929 2 0.0291 0.881 0.000 0.992 0.000 0.000 0.004 0.004
#> GSM260932 2 0.3464 0.793 0.000 0.688 0.000 0.000 0.000 0.312
#> GSM260935 2 0.3464 0.793 0.000 0.688 0.000 0.000 0.000 0.312
#> GSM260938 2 0.2902 0.859 0.000 0.800 0.000 0.000 0.004 0.196
#> GSM260941 2 0.2703 0.868 0.000 0.824 0.000 0.000 0.004 0.172
#> GSM260944 2 0.2668 0.869 0.000 0.828 0.000 0.000 0.004 0.168
#> GSM260947 2 0.2738 0.867 0.000 0.820 0.000 0.000 0.004 0.176
#> GSM260952 2 0.0363 0.879 0.000 0.988 0.000 0.000 0.000 0.012
#> GSM260914 1 0.0260 0.912 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM260916 1 0.0405 0.910 0.988 0.000 0.000 0.000 0.004 0.008
#> GSM260919 1 0.1498 0.897 0.940 0.000 0.000 0.000 0.032 0.028
#> GSM260922 1 0.0458 0.908 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM260925 1 0.0405 0.911 0.988 0.000 0.000 0.000 0.008 0.004
#> GSM260927 1 0.4203 0.616 0.716 0.000 0.000 0.000 0.216 0.068
#> GSM260930 5 0.2907 0.938 0.152 0.000 0.000 0.000 0.828 0.020
#> GSM260933 5 0.2581 0.964 0.120 0.000 0.000 0.000 0.860 0.020
#> GSM260936 5 0.2006 0.969 0.104 0.000 0.000 0.000 0.892 0.004
#> GSM260939 5 0.2118 0.969 0.104 0.000 0.000 0.000 0.888 0.008
#> GSM260942 5 0.2006 0.969 0.104 0.000 0.000 0.000 0.892 0.004
#> GSM260945 5 0.2118 0.969 0.104 0.000 0.000 0.000 0.888 0.008
#> GSM260948 1 0.3139 0.769 0.816 0.000 0.000 0.000 0.152 0.032
#> GSM260950 1 0.1225 0.906 0.952 0.000 0.000 0.000 0.036 0.012
#> GSM260915 4 0.1511 0.918 0.000 0.000 0.012 0.940 0.004 0.044
#> GSM260917 3 0.3991 0.650 0.000 0.000 0.748 0.200 0.008 0.044
#> GSM260920 4 0.2341 0.878 0.000 0.000 0.032 0.900 0.012 0.056
#> GSM260923 4 0.1307 0.918 0.000 0.000 0.008 0.952 0.008 0.032
#> GSM260926 4 0.1555 0.916 0.000 0.000 0.008 0.940 0.012 0.040
#> GSM260928 6 0.7192 0.000 0.124 0.000 0.036 0.228 0.100 0.512
#> GSM260931 3 0.0260 0.912 0.000 0.000 0.992 0.000 0.000 0.008
#> GSM260934 3 0.2252 0.906 0.000 0.000 0.908 0.020 0.028 0.044
#> GSM260937 3 0.1141 0.899 0.000 0.000 0.948 0.000 0.000 0.052
#> GSM260940 3 0.0363 0.912 0.000 0.000 0.988 0.000 0.000 0.012
#> GSM260943 3 0.1007 0.902 0.000 0.000 0.956 0.000 0.000 0.044
#> GSM260946 3 0.0146 0.912 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM260949 4 0.1453 0.917 0.000 0.000 0.008 0.944 0.008 0.040
#> GSM260951 3 0.1909 0.890 0.000 0.000 0.920 0.024 0.004 0.052
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) cell.type(p) k
#> CV:skmeans 67 0.939 2.75e-14 2
#> CV:skmeans 67 0.927 9.68e-27 3
#> CV:skmeans 67 0.841 2.78e-25 4
#> CV:skmeans 67 0.933 6.06e-24 5
#> CV:skmeans 65 0.940 4.03e-23 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 67 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4257 0.575 0.575
#> 3 3 1.000 0.987 0.994 0.5842 0.751 0.567
#> 4 4 1.000 0.976 0.977 0.0922 0.930 0.789
#> 5 5 0.994 0.966 0.979 0.0843 0.926 0.726
#> 6 6 0.958 0.941 0.964 0.0548 0.955 0.778
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4 5
There is also optional best \(k\) = 2 3 4 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM260888 2 0 1 0 1
#> GSM260893 2 0 1 0 1
#> GSM260896 2 0 1 0 1
#> GSM260899 2 0 1 0 1
#> GSM260902 2 0 1 0 1
#> GSM260905 2 0 1 0 1
#> GSM260908 2 0 1 0 1
#> GSM260911 2 0 1 0 1
#> GSM260912 2 0 1 0 1
#> GSM260913 1 0 1 1 0
#> GSM260886 1 0 1 1 0
#> GSM260889 1 0 1 1 0
#> GSM260891 1 0 1 1 0
#> GSM260894 1 0 1 1 0
#> GSM260897 1 0 1 1 0
#> GSM260900 1 0 1 1 0
#> GSM260903 1 0 1 1 0
#> GSM260906 1 0 1 1 0
#> GSM260909 1 0 1 1 0
#> GSM260887 1 0 1 1 0
#> GSM260890 1 0 1 1 0
#> GSM260892 1 0 1 1 0
#> GSM260895 1 0 1 1 0
#> GSM260898 1 0 1 1 0
#> GSM260901 1 0 1 1 0
#> GSM260904 1 0 1 1 0
#> GSM260907 1 0 1 1 0
#> GSM260910 1 0 1 1 0
#> GSM260918 2 0 1 0 1
#> GSM260921 2 0 1 0 1
#> GSM260924 2 0 1 0 1
#> GSM260929 2 0 1 0 1
#> GSM260932 2 0 1 0 1
#> GSM260935 2 0 1 0 1
#> GSM260938 2 0 1 0 1
#> GSM260941 2 0 1 0 1
#> GSM260944 2 0 1 0 1
#> GSM260947 2 0 1 0 1
#> GSM260952 2 0 1 0 1
#> GSM260914 1 0 1 1 0
#> GSM260916 1 0 1 1 0
#> GSM260919 1 0 1 1 0
#> GSM260922 1 0 1 1 0
#> GSM260925 1 0 1 1 0
#> GSM260927 1 0 1 1 0
#> GSM260930 1 0 1 1 0
#> GSM260933 1 0 1 1 0
#> GSM260936 1 0 1 1 0
#> GSM260939 1 0 1 1 0
#> GSM260942 1 0 1 1 0
#> GSM260945 1 0 1 1 0
#> GSM260948 1 0 1 1 0
#> GSM260950 1 0 1 1 0
#> GSM260915 1 0 1 1 0
#> GSM260917 1 0 1 1 0
#> GSM260920 1 0 1 1 0
#> GSM260923 1 0 1 1 0
#> GSM260926 1 0 1 1 0
#> GSM260928 1 0 1 1 0
#> GSM260931 1 0 1 1 0
#> GSM260934 1 0 1 1 0
#> GSM260937 1 0 1 1 0
#> GSM260940 1 0 1 1 0
#> GSM260943 1 0 1 1 0
#> GSM260946 1 0 1 1 0
#> GSM260949 1 0 1 1 0
#> GSM260951 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM260888 2 0.00 1.000 0.000 1 0.000
#> GSM260893 2 0.00 1.000 0.000 1 0.000
#> GSM260896 2 0.00 1.000 0.000 1 0.000
#> GSM260899 2 0.00 1.000 0.000 1 0.000
#> GSM260902 2 0.00 1.000 0.000 1 0.000
#> GSM260905 2 0.00 1.000 0.000 1 0.000
#> GSM260908 2 0.00 1.000 0.000 1 0.000
#> GSM260911 2 0.00 1.000 0.000 1 0.000
#> GSM260912 2 0.00 1.000 0.000 1 0.000
#> GSM260913 3 0.00 1.000 0.000 0 1.000
#> GSM260886 1 0.00 0.983 1.000 0 0.000
#> GSM260889 1 0.00 0.983 1.000 0 0.000
#> GSM260891 1 0.00 0.983 1.000 0 0.000
#> GSM260894 1 0.00 0.983 1.000 0 0.000
#> GSM260897 1 0.00 0.983 1.000 0 0.000
#> GSM260900 1 0.00 0.983 1.000 0 0.000
#> GSM260903 1 0.00 0.983 1.000 0 0.000
#> GSM260906 1 0.00 0.983 1.000 0 0.000
#> GSM260909 1 0.00 0.983 1.000 0 0.000
#> GSM260887 3 0.00 1.000 0.000 0 1.000
#> GSM260890 3 0.00 1.000 0.000 0 1.000
#> GSM260892 3 0.00 1.000 0.000 0 1.000
#> GSM260895 1 0.45 0.766 0.804 0 0.196
#> GSM260898 3 0.00 1.000 0.000 0 1.000
#> GSM260901 3 0.00 1.000 0.000 0 1.000
#> GSM260904 3 0.00 1.000 0.000 0 1.000
#> GSM260907 3 0.00 1.000 0.000 0 1.000
#> GSM260910 3 0.00 1.000 0.000 0 1.000
#> GSM260918 2 0.00 1.000 0.000 1 0.000
#> GSM260921 2 0.00 1.000 0.000 1 0.000
#> GSM260924 2 0.00 1.000 0.000 1 0.000
#> GSM260929 2 0.00 1.000 0.000 1 0.000
#> GSM260932 2 0.00 1.000 0.000 1 0.000
#> GSM260935 2 0.00 1.000 0.000 1 0.000
#> GSM260938 2 0.00 1.000 0.000 1 0.000
#> GSM260941 2 0.00 1.000 0.000 1 0.000
#> GSM260944 2 0.00 1.000 0.000 1 0.000
#> GSM260947 2 0.00 1.000 0.000 1 0.000
#> GSM260952 2 0.00 1.000 0.000 1 0.000
#> GSM260914 1 0.00 0.983 1.000 0 0.000
#> GSM260916 1 0.00 0.983 1.000 0 0.000
#> GSM260919 1 0.00 0.983 1.000 0 0.000
#> GSM260922 1 0.00 0.983 1.000 0 0.000
#> GSM260925 1 0.00 0.983 1.000 0 0.000
#> GSM260927 1 0.00 0.983 1.000 0 0.000
#> GSM260930 1 0.00 0.983 1.000 0 0.000
#> GSM260933 1 0.00 0.983 1.000 0 0.000
#> GSM260936 1 0.00 0.983 1.000 0 0.000
#> GSM260939 1 0.00 0.983 1.000 0 0.000
#> GSM260942 1 0.00 0.983 1.000 0 0.000
#> GSM260945 1 0.00 0.983 1.000 0 0.000
#> GSM260948 1 0.00 0.983 1.000 0 0.000
#> GSM260950 1 0.00 0.983 1.000 0 0.000
#> GSM260915 3 0.00 1.000 0.000 0 1.000
#> GSM260917 3 0.00 1.000 0.000 0 1.000
#> GSM260920 3 0.00 1.000 0.000 0 1.000
#> GSM260923 3 0.00 1.000 0.000 0 1.000
#> GSM260926 3 0.00 1.000 0.000 0 1.000
#> GSM260928 1 0.46 0.754 0.796 0 0.204
#> GSM260931 3 0.00 1.000 0.000 0 1.000
#> GSM260934 3 0.00 1.000 0.000 0 1.000
#> GSM260937 3 0.00 1.000 0.000 0 1.000
#> GSM260940 3 0.00 1.000 0.000 0 1.000
#> GSM260943 3 0.00 1.000 0.000 0 1.000
#> GSM260946 3 0.00 1.000 0.000 0 1.000
#> GSM260949 3 0.00 1.000 0.000 0 1.000
#> GSM260951 3 0.00 1.000 0.000 0 1.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM260888 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260893 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260896 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260899 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260902 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260905 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260908 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260911 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260912 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260913 4 0.1867 0.965 0.000 0 0.072 0.928
#> GSM260886 1 0.0000 0.967 1.000 0 0.000 0.000
#> GSM260889 1 0.0000 0.967 1.000 0 0.000 0.000
#> GSM260891 1 0.0000 0.967 1.000 0 0.000 0.000
#> GSM260894 1 0.0000 0.967 1.000 0 0.000 0.000
#> GSM260897 1 0.1474 0.964 0.948 0 0.000 0.052
#> GSM260900 1 0.1474 0.964 0.948 0 0.000 0.052
#> GSM260903 1 0.1474 0.964 0.948 0 0.000 0.052
#> GSM260906 1 0.1474 0.964 0.948 0 0.000 0.052
#> GSM260909 1 0.0000 0.967 1.000 0 0.000 0.000
#> GSM260887 4 0.1474 0.980 0.000 0 0.052 0.948
#> GSM260890 4 0.1474 0.980 0.000 0 0.052 0.948
#> GSM260892 4 0.1474 0.980 0.000 0 0.052 0.948
#> GSM260895 4 0.1635 0.933 0.044 0 0.008 0.948
#> GSM260898 3 0.0000 1.000 0.000 0 1.000 0.000
#> GSM260901 3 0.0000 1.000 0.000 0 1.000 0.000
#> GSM260904 3 0.0000 1.000 0.000 0 1.000 0.000
#> GSM260907 3 0.0000 1.000 0.000 0 1.000 0.000
#> GSM260910 4 0.1474 0.980 0.000 0 0.052 0.948
#> GSM260918 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260921 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260924 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260929 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260932 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260935 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260938 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260941 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260944 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260947 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260952 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260914 1 0.0000 0.967 1.000 0 0.000 0.000
#> GSM260916 1 0.0000 0.967 1.000 0 0.000 0.000
#> GSM260919 1 0.0000 0.967 1.000 0 0.000 0.000
#> GSM260922 1 0.0000 0.967 1.000 0 0.000 0.000
#> GSM260925 1 0.0000 0.967 1.000 0 0.000 0.000
#> GSM260927 1 0.0817 0.966 0.976 0 0.000 0.024
#> GSM260930 1 0.1474 0.964 0.948 0 0.000 0.052
#> GSM260933 1 0.1474 0.964 0.948 0 0.000 0.052
#> GSM260936 1 0.1474 0.964 0.948 0 0.000 0.052
#> GSM260939 1 0.1474 0.964 0.948 0 0.000 0.052
#> GSM260942 1 0.1474 0.964 0.948 0 0.000 0.052
#> GSM260945 1 0.1474 0.964 0.948 0 0.000 0.052
#> GSM260948 1 0.0469 0.966 0.988 0 0.000 0.012
#> GSM260950 1 0.0000 0.967 1.000 0 0.000 0.000
#> GSM260915 4 0.1474 0.980 0.000 0 0.052 0.948
#> GSM260917 3 0.0000 1.000 0.000 0 1.000 0.000
#> GSM260920 4 0.3266 0.860 0.000 0 0.168 0.832
#> GSM260923 4 0.1474 0.980 0.000 0 0.052 0.948
#> GSM260926 4 0.1474 0.980 0.000 0 0.052 0.948
#> GSM260928 1 0.4957 0.579 0.668 0 0.012 0.320
#> GSM260931 3 0.0000 1.000 0.000 0 1.000 0.000
#> GSM260934 3 0.0000 1.000 0.000 0 1.000 0.000
#> GSM260937 3 0.0000 1.000 0.000 0 1.000 0.000
#> GSM260940 3 0.0000 1.000 0.000 0 1.000 0.000
#> GSM260943 3 0.0000 1.000 0.000 0 1.000 0.000
#> GSM260946 3 0.0000 1.000 0.000 0 1.000 0.000
#> GSM260949 4 0.1474 0.980 0.000 0 0.052 0.948
#> GSM260951 3 0.0000 1.000 0.000 0 1.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM260888 2 0.0609 0.991 0.000 0.980 0.000 0.000 0.020
#> GSM260893 2 0.0609 0.991 0.000 0.980 0.000 0.000 0.020
#> GSM260896 2 0.0609 0.991 0.000 0.980 0.000 0.000 0.020
#> GSM260899 2 0.0000 0.992 0.000 1.000 0.000 0.000 0.000
#> GSM260902 2 0.0000 0.992 0.000 1.000 0.000 0.000 0.000
#> GSM260905 2 0.0290 0.992 0.000 0.992 0.000 0.000 0.008
#> GSM260908 2 0.0000 0.992 0.000 1.000 0.000 0.000 0.000
#> GSM260911 2 0.0609 0.991 0.000 0.980 0.000 0.000 0.020
#> GSM260912 2 0.0609 0.991 0.000 0.980 0.000 0.000 0.020
#> GSM260913 4 0.0703 0.937 0.000 0.000 0.024 0.976 0.000
#> GSM260886 1 0.0000 0.968 1.000 0.000 0.000 0.000 0.000
#> GSM260889 1 0.0000 0.968 1.000 0.000 0.000 0.000 0.000
#> GSM260891 1 0.0000 0.968 1.000 0.000 0.000 0.000 0.000
#> GSM260894 1 0.0162 0.965 0.996 0.000 0.000 0.000 0.004
#> GSM260897 5 0.0609 0.985 0.020 0.000 0.000 0.000 0.980
#> GSM260900 5 0.2074 0.909 0.104 0.000 0.000 0.000 0.896
#> GSM260903 5 0.0609 0.985 0.020 0.000 0.000 0.000 0.980
#> GSM260906 5 0.0609 0.985 0.020 0.000 0.000 0.000 0.980
#> GSM260909 1 0.0000 0.968 1.000 0.000 0.000 0.000 0.000
#> GSM260887 4 0.0000 0.951 0.000 0.000 0.000 1.000 0.000
#> GSM260890 4 0.0000 0.951 0.000 0.000 0.000 1.000 0.000
#> GSM260892 4 0.0000 0.951 0.000 0.000 0.000 1.000 0.000
#> GSM260895 4 0.1965 0.874 0.096 0.000 0.000 0.904 0.000
#> GSM260898 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> GSM260901 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> GSM260904 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> GSM260907 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> GSM260910 4 0.0000 0.951 0.000 0.000 0.000 1.000 0.000
#> GSM260918 2 0.0609 0.991 0.000 0.980 0.000 0.000 0.020
#> GSM260921 2 0.0000 0.992 0.000 1.000 0.000 0.000 0.000
#> GSM260924 2 0.0609 0.991 0.000 0.980 0.000 0.000 0.020
#> GSM260929 2 0.0609 0.991 0.000 0.980 0.000 0.000 0.020
#> GSM260932 2 0.0000 0.992 0.000 1.000 0.000 0.000 0.000
#> GSM260935 2 0.0290 0.992 0.000 0.992 0.000 0.000 0.008
#> GSM260938 2 0.0000 0.992 0.000 1.000 0.000 0.000 0.000
#> GSM260941 2 0.0000 0.992 0.000 1.000 0.000 0.000 0.000
#> GSM260944 2 0.0000 0.992 0.000 1.000 0.000 0.000 0.000
#> GSM260947 2 0.0000 0.992 0.000 1.000 0.000 0.000 0.000
#> GSM260952 2 0.0404 0.992 0.000 0.988 0.000 0.000 0.012
#> GSM260914 1 0.0000 0.968 1.000 0.000 0.000 0.000 0.000
#> GSM260916 1 0.0000 0.968 1.000 0.000 0.000 0.000 0.000
#> GSM260919 1 0.0000 0.968 1.000 0.000 0.000 0.000 0.000
#> GSM260922 1 0.0000 0.968 1.000 0.000 0.000 0.000 0.000
#> GSM260925 1 0.0000 0.968 1.000 0.000 0.000 0.000 0.000
#> GSM260927 1 0.2852 0.785 0.828 0.000 0.000 0.000 0.172
#> GSM260930 5 0.1197 0.967 0.048 0.000 0.000 0.000 0.952
#> GSM260933 5 0.0963 0.976 0.036 0.000 0.000 0.000 0.964
#> GSM260936 5 0.0609 0.985 0.020 0.000 0.000 0.000 0.980
#> GSM260939 5 0.0609 0.985 0.020 0.000 0.000 0.000 0.980
#> GSM260942 5 0.0609 0.985 0.020 0.000 0.000 0.000 0.980
#> GSM260945 5 0.0609 0.985 0.020 0.000 0.000 0.000 0.980
#> GSM260948 1 0.3003 0.776 0.812 0.000 0.000 0.000 0.188
#> GSM260950 1 0.0000 0.968 1.000 0.000 0.000 0.000 0.000
#> GSM260915 4 0.0000 0.951 0.000 0.000 0.000 1.000 0.000
#> GSM260917 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> GSM260920 4 0.2230 0.855 0.000 0.000 0.116 0.884 0.000
#> GSM260923 4 0.0000 0.951 0.000 0.000 0.000 1.000 0.000
#> GSM260926 4 0.0000 0.951 0.000 0.000 0.000 1.000 0.000
#> GSM260928 4 0.4040 0.624 0.016 0.000 0.000 0.724 0.260
#> GSM260931 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> GSM260934 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> GSM260937 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> GSM260940 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> GSM260943 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> GSM260946 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> GSM260949 4 0.0000 0.951 0.000 0.000 0.000 1.000 0.000
#> GSM260951 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM260888 2 0.0713 0.965 0.000 0.972 0.000 0.000 0.000 0.028
#> GSM260893 2 0.0713 0.965 0.000 0.972 0.000 0.000 0.000 0.028
#> GSM260896 2 0.0713 0.965 0.000 0.972 0.000 0.000 0.000 0.028
#> GSM260899 6 0.1387 0.906 0.000 0.068 0.000 0.000 0.000 0.932
#> GSM260902 6 0.0260 0.929 0.000 0.008 0.000 0.000 0.000 0.992
#> GSM260905 6 0.2664 0.829 0.000 0.184 0.000 0.000 0.000 0.816
#> GSM260908 6 0.0790 0.940 0.000 0.032 0.000 0.000 0.000 0.968
#> GSM260911 2 0.0713 0.965 0.000 0.972 0.000 0.000 0.000 0.028
#> GSM260912 2 0.0713 0.965 0.000 0.972 0.000 0.000 0.000 0.028
#> GSM260913 4 0.1007 0.922 0.000 0.000 0.044 0.956 0.000 0.000
#> GSM260886 1 0.0000 0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260889 1 0.0000 0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260891 1 0.0000 0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260894 1 0.0146 0.965 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM260897 5 0.0000 0.984 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM260900 5 0.1663 0.906 0.088 0.000 0.000 0.000 0.912 0.000
#> GSM260903 5 0.0000 0.984 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM260906 5 0.0000 0.984 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM260909 1 0.0000 0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260887 4 0.0000 0.947 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260890 4 0.0000 0.947 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260892 4 0.0000 0.947 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260895 4 0.1765 0.869 0.096 0.000 0.000 0.904 0.000 0.000
#> GSM260898 3 0.0260 0.989 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM260901 3 0.0260 0.989 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM260904 3 0.0260 0.989 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM260907 3 0.0260 0.989 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM260910 4 0.0000 0.947 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260918 2 0.0790 0.963 0.000 0.968 0.000 0.000 0.000 0.032
#> GSM260921 6 0.1556 0.915 0.000 0.080 0.000 0.000 0.000 0.920
#> GSM260924 2 0.1957 0.896 0.000 0.888 0.000 0.000 0.000 0.112
#> GSM260929 2 0.0790 0.963 0.000 0.968 0.000 0.000 0.000 0.032
#> GSM260932 6 0.0000 0.927 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM260935 6 0.2823 0.773 0.000 0.204 0.000 0.000 0.000 0.796
#> GSM260938 6 0.0713 0.940 0.000 0.028 0.000 0.000 0.000 0.972
#> GSM260941 6 0.0790 0.940 0.000 0.032 0.000 0.000 0.000 0.968
#> GSM260944 6 0.0790 0.940 0.000 0.032 0.000 0.000 0.000 0.968
#> GSM260947 6 0.0790 0.940 0.000 0.032 0.000 0.000 0.000 0.968
#> GSM260952 2 0.2762 0.798 0.000 0.804 0.000 0.000 0.000 0.196
#> GSM260914 1 0.0000 0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260916 1 0.0000 0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260919 1 0.0000 0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260922 1 0.0000 0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260925 1 0.0000 0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260927 1 0.2631 0.780 0.820 0.000 0.000 0.000 0.180 0.000
#> GSM260930 5 0.0713 0.966 0.028 0.000 0.000 0.000 0.972 0.000
#> GSM260933 5 0.0547 0.972 0.020 0.000 0.000 0.000 0.980 0.000
#> GSM260936 5 0.0000 0.984 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM260939 5 0.0000 0.984 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM260942 5 0.0000 0.984 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM260945 5 0.0000 0.984 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM260948 1 0.2762 0.770 0.804 0.000 0.000 0.000 0.196 0.000
#> GSM260950 1 0.0000 0.968 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260915 4 0.0000 0.947 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260917 3 0.0603 0.988 0.000 0.016 0.980 0.004 0.000 0.000
#> GSM260920 4 0.2320 0.838 0.000 0.004 0.132 0.864 0.000 0.000
#> GSM260923 4 0.0000 0.947 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260926 4 0.0000 0.947 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260928 4 0.3714 0.624 0.008 0.008 0.000 0.720 0.264 0.000
#> GSM260931 3 0.0000 0.990 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM260934 3 0.0260 0.989 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM260937 3 0.0547 0.988 0.000 0.020 0.980 0.000 0.000 0.000
#> GSM260940 3 0.0547 0.988 0.000 0.020 0.980 0.000 0.000 0.000
#> GSM260943 3 0.0547 0.988 0.000 0.020 0.980 0.000 0.000 0.000
#> GSM260946 3 0.0260 0.990 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM260949 4 0.0000 0.947 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260951 3 0.0547 0.988 0.000 0.020 0.980 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) cell.type(p) k
#> CV:pam 67 0.939 2.75e-14 2
#> CV:pam 67 0.940 1.87e-24 3
#> CV:pam 67 0.716 4.07e-24 4
#> CV:pam 67 0.933 6.06e-24 5
#> CV:pam 67 0.902 9.88e-23 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 67 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4257 0.575 0.575
#> 3 3 1.000 0.979 0.991 0.5852 0.750 0.566
#> 4 4 0.877 0.854 0.881 0.0682 0.980 0.939
#> 5 5 0.874 0.864 0.864 0.0828 0.877 0.608
#> 6 6 0.823 0.857 0.854 0.0553 0.944 0.732
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2
There is also optional best \(k\) = 2 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM260888 2 0 1 0 1
#> GSM260893 2 0 1 0 1
#> GSM260896 2 0 1 0 1
#> GSM260899 2 0 1 0 1
#> GSM260902 2 0 1 0 1
#> GSM260905 2 0 1 0 1
#> GSM260908 2 0 1 0 1
#> GSM260911 2 0 1 0 1
#> GSM260912 2 0 1 0 1
#> GSM260913 1 0 1 1 0
#> GSM260886 1 0 1 1 0
#> GSM260889 1 0 1 1 0
#> GSM260891 1 0 1 1 0
#> GSM260894 1 0 1 1 0
#> GSM260897 1 0 1 1 0
#> GSM260900 1 0 1 1 0
#> GSM260903 1 0 1 1 0
#> GSM260906 1 0 1 1 0
#> GSM260909 1 0 1 1 0
#> GSM260887 1 0 1 1 0
#> GSM260890 1 0 1 1 0
#> GSM260892 1 0 1 1 0
#> GSM260895 1 0 1 1 0
#> GSM260898 1 0 1 1 0
#> GSM260901 1 0 1 1 0
#> GSM260904 1 0 1 1 0
#> GSM260907 1 0 1 1 0
#> GSM260910 1 0 1 1 0
#> GSM260918 2 0 1 0 1
#> GSM260921 2 0 1 0 1
#> GSM260924 2 0 1 0 1
#> GSM260929 2 0 1 0 1
#> GSM260932 2 0 1 0 1
#> GSM260935 2 0 1 0 1
#> GSM260938 2 0 1 0 1
#> GSM260941 2 0 1 0 1
#> GSM260944 2 0 1 0 1
#> GSM260947 2 0 1 0 1
#> GSM260952 2 0 1 0 1
#> GSM260914 1 0 1 1 0
#> GSM260916 1 0 1 1 0
#> GSM260919 1 0 1 1 0
#> GSM260922 1 0 1 1 0
#> GSM260925 1 0 1 1 0
#> GSM260927 1 0 1 1 0
#> GSM260930 1 0 1 1 0
#> GSM260933 1 0 1 1 0
#> GSM260936 1 0 1 1 0
#> GSM260939 1 0 1 1 0
#> GSM260942 1 0 1 1 0
#> GSM260945 1 0 1 1 0
#> GSM260948 1 0 1 1 0
#> GSM260950 1 0 1 1 0
#> GSM260915 1 0 1 1 0
#> GSM260917 1 0 1 1 0
#> GSM260920 1 0 1 1 0
#> GSM260923 1 0 1 1 0
#> GSM260926 1 0 1 1 0
#> GSM260928 1 0 1 1 0
#> GSM260931 1 0 1 1 0
#> GSM260934 1 0 1 1 0
#> GSM260937 1 0 1 1 0
#> GSM260940 1 0 1 1 0
#> GSM260943 1 0 1 1 0
#> GSM260946 1 0 1 1 0
#> GSM260949 1 0 1 1 0
#> GSM260951 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM260888 2 0.0000 1.000 0.0 1.000 0.000
#> GSM260893 2 0.0000 1.000 0.0 1.000 0.000
#> GSM260896 2 0.0000 1.000 0.0 1.000 0.000
#> GSM260899 2 0.0000 1.000 0.0 1.000 0.000
#> GSM260902 2 0.0000 1.000 0.0 1.000 0.000
#> GSM260905 2 0.0000 1.000 0.0 1.000 0.000
#> GSM260908 2 0.0000 1.000 0.0 1.000 0.000
#> GSM260911 2 0.0000 1.000 0.0 1.000 0.000
#> GSM260912 2 0.0000 1.000 0.0 1.000 0.000
#> GSM260913 3 0.0000 0.973 0.0 0.000 1.000
#> GSM260886 1 0.0000 1.000 1.0 0.000 0.000
#> GSM260889 1 0.0000 1.000 1.0 0.000 0.000
#> GSM260891 1 0.0000 1.000 1.0 0.000 0.000
#> GSM260894 1 0.0000 1.000 1.0 0.000 0.000
#> GSM260897 1 0.0000 1.000 1.0 0.000 0.000
#> GSM260900 1 0.0000 1.000 1.0 0.000 0.000
#> GSM260903 1 0.0000 1.000 1.0 0.000 0.000
#> GSM260906 1 0.0000 1.000 1.0 0.000 0.000
#> GSM260909 1 0.0000 1.000 1.0 0.000 0.000
#> GSM260887 3 0.0000 0.973 0.0 0.000 1.000
#> GSM260890 3 0.0000 0.973 0.0 0.000 1.000
#> GSM260892 3 0.0000 0.973 0.0 0.000 1.000
#> GSM260895 3 0.5560 0.590 0.3 0.000 0.700
#> GSM260898 3 0.0000 0.973 0.0 0.000 1.000
#> GSM260901 3 0.0000 0.973 0.0 0.000 1.000
#> GSM260904 3 0.0000 0.973 0.0 0.000 1.000
#> GSM260907 3 0.0000 0.973 0.0 0.000 1.000
#> GSM260910 3 0.0000 0.973 0.0 0.000 1.000
#> GSM260918 2 0.0000 1.000 0.0 1.000 0.000
#> GSM260921 2 0.0000 1.000 0.0 1.000 0.000
#> GSM260924 2 0.0000 1.000 0.0 1.000 0.000
#> GSM260929 2 0.0000 1.000 0.0 1.000 0.000
#> GSM260932 2 0.0000 1.000 0.0 1.000 0.000
#> GSM260935 2 0.0000 1.000 0.0 1.000 0.000
#> GSM260938 2 0.0000 1.000 0.0 1.000 0.000
#> GSM260941 2 0.0000 1.000 0.0 1.000 0.000
#> GSM260944 2 0.0000 1.000 0.0 1.000 0.000
#> GSM260947 2 0.0000 1.000 0.0 1.000 0.000
#> GSM260952 2 0.0000 1.000 0.0 1.000 0.000
#> GSM260914 1 0.0000 1.000 1.0 0.000 0.000
#> GSM260916 1 0.0000 1.000 1.0 0.000 0.000
#> GSM260919 1 0.0000 1.000 1.0 0.000 0.000
#> GSM260922 1 0.0000 1.000 1.0 0.000 0.000
#> GSM260925 1 0.0000 1.000 1.0 0.000 0.000
#> GSM260927 1 0.0000 1.000 1.0 0.000 0.000
#> GSM260930 1 0.0000 1.000 1.0 0.000 0.000
#> GSM260933 1 0.0000 1.000 1.0 0.000 0.000
#> GSM260936 1 0.0000 1.000 1.0 0.000 0.000
#> GSM260939 1 0.0000 1.000 1.0 0.000 0.000
#> GSM260942 1 0.0000 1.000 1.0 0.000 0.000
#> GSM260945 1 0.0000 1.000 1.0 0.000 0.000
#> GSM260948 1 0.0000 1.000 1.0 0.000 0.000
#> GSM260950 1 0.0000 1.000 1.0 0.000 0.000
#> GSM260915 3 0.0000 0.973 0.0 0.000 1.000
#> GSM260917 3 0.0000 0.973 0.0 0.000 1.000
#> GSM260920 3 0.0000 0.973 0.0 0.000 1.000
#> GSM260923 3 0.0000 0.973 0.0 0.000 1.000
#> GSM260926 3 0.0000 0.973 0.0 0.000 1.000
#> GSM260928 3 0.5560 0.590 0.3 0.000 0.700
#> GSM260931 3 0.0000 0.973 0.0 0.000 1.000
#> GSM260934 3 0.0000 0.973 0.0 0.000 1.000
#> GSM260937 3 0.0237 0.969 0.0 0.004 0.996
#> GSM260940 3 0.0000 0.973 0.0 0.000 1.000
#> GSM260943 3 0.0000 0.973 0.0 0.000 1.000
#> GSM260946 3 0.0000 0.973 0.0 0.000 1.000
#> GSM260949 3 0.0000 0.973 0.0 0.000 1.000
#> GSM260951 3 0.0000 0.973 0.0 0.000 1.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM260888 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260893 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260896 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260899 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260902 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260905 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260908 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260911 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260912 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260913 3 0.0921 0.817 0.000 0 0.972 0.028
#> GSM260886 1 0.4855 0.801 0.600 0 0.000 0.400
#> GSM260889 1 0.4855 0.801 0.600 0 0.000 0.400
#> GSM260891 1 0.4967 0.770 0.548 0 0.000 0.452
#> GSM260894 1 0.4855 0.801 0.600 0 0.000 0.400
#> GSM260897 1 0.0000 0.739 1.000 0 0.000 0.000
#> GSM260900 1 0.0000 0.739 1.000 0 0.000 0.000
#> GSM260903 1 0.0000 0.739 1.000 0 0.000 0.000
#> GSM260906 1 0.0000 0.739 1.000 0 0.000 0.000
#> GSM260909 1 0.4855 0.801 0.600 0 0.000 0.400
#> GSM260887 3 0.0000 0.832 0.000 0 1.000 0.000
#> GSM260890 3 0.1022 0.815 0.000 0 0.968 0.032
#> GSM260892 3 0.0921 0.817 0.000 0 0.972 0.028
#> GSM260895 4 0.6213 1.000 0.052 0 0.464 0.484
#> GSM260898 3 0.2589 0.837 0.000 0 0.884 0.116
#> GSM260901 3 0.2589 0.837 0.000 0 0.884 0.116
#> GSM260904 3 0.2589 0.837 0.000 0 0.884 0.116
#> GSM260907 3 0.2589 0.837 0.000 0 0.884 0.116
#> GSM260910 3 0.0921 0.818 0.000 0 0.972 0.028
#> GSM260918 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260921 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260924 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260929 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260932 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260935 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260938 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260941 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260944 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260947 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260952 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260914 1 0.4855 0.801 0.600 0 0.000 0.400
#> GSM260916 1 0.4961 0.773 0.552 0 0.000 0.448
#> GSM260919 1 0.4866 0.799 0.596 0 0.000 0.404
#> GSM260922 1 0.4948 0.778 0.560 0 0.000 0.440
#> GSM260925 1 0.4855 0.801 0.600 0 0.000 0.400
#> GSM260927 1 0.4855 0.801 0.600 0 0.000 0.400
#> GSM260930 1 0.0000 0.739 1.000 0 0.000 0.000
#> GSM260933 1 0.0000 0.739 1.000 0 0.000 0.000
#> GSM260936 1 0.0000 0.739 1.000 0 0.000 0.000
#> GSM260939 1 0.0188 0.736 0.996 0 0.000 0.004
#> GSM260942 1 0.0000 0.739 1.000 0 0.000 0.000
#> GSM260945 1 0.0000 0.739 1.000 0 0.000 0.000
#> GSM260948 1 0.4866 0.799 0.596 0 0.000 0.404
#> GSM260950 1 0.4855 0.801 0.600 0 0.000 0.400
#> GSM260915 3 0.0921 0.818 0.000 0 0.972 0.028
#> GSM260917 3 0.1940 0.839 0.000 0 0.924 0.076
#> GSM260920 3 0.0921 0.818 0.000 0 0.972 0.028
#> GSM260923 3 0.2469 0.698 0.000 0 0.892 0.108
#> GSM260926 3 0.2011 0.750 0.000 0 0.920 0.080
#> GSM260928 4 0.6213 1.000 0.052 0 0.464 0.484
#> GSM260931 3 0.2589 0.837 0.000 0 0.884 0.116
#> GSM260934 3 0.2589 0.837 0.000 0 0.884 0.116
#> GSM260937 3 0.4500 0.324 0.000 0 0.684 0.316
#> GSM260940 3 0.2589 0.837 0.000 0 0.884 0.116
#> GSM260943 3 0.2589 0.837 0.000 0 0.884 0.116
#> GSM260946 3 0.2589 0.837 0.000 0 0.884 0.116
#> GSM260949 3 0.1716 0.775 0.000 0 0.936 0.064
#> GSM260951 3 0.1637 0.841 0.000 0 0.940 0.060
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM260888 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260893 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260896 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260899 2 0.0162 0.998 0.000 0.996 0.000 0.004 0.000
#> GSM260902 2 0.0162 0.998 0.000 0.996 0.000 0.004 0.000
#> GSM260905 2 0.0162 0.998 0.000 0.996 0.000 0.004 0.000
#> GSM260908 2 0.0162 0.998 0.000 0.996 0.000 0.004 0.000
#> GSM260911 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260912 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260913 4 0.2690 0.860 0.000 0.000 0.156 0.844 0.000
#> GSM260886 1 0.4291 0.780 0.536 0.000 0.000 0.000 0.464
#> GSM260889 1 0.4287 0.781 0.540 0.000 0.000 0.000 0.460
#> GSM260891 1 0.1121 0.521 0.956 0.000 0.000 0.000 0.044
#> GSM260894 1 0.4294 0.776 0.532 0.000 0.000 0.000 0.468
#> GSM260897 5 0.0162 0.996 0.004 0.000 0.000 0.000 0.996
#> GSM260900 5 0.0162 0.996 0.004 0.000 0.000 0.000 0.996
#> GSM260903 5 0.0162 0.996 0.004 0.000 0.000 0.000 0.996
#> GSM260906 5 0.0290 0.991 0.008 0.000 0.000 0.000 0.992
#> GSM260909 1 0.4249 0.776 0.568 0.000 0.000 0.000 0.432
#> GSM260887 4 0.2852 0.855 0.000 0.000 0.172 0.828 0.000
#> GSM260890 4 0.2773 0.860 0.000 0.000 0.164 0.836 0.000
#> GSM260892 4 0.2690 0.860 0.000 0.000 0.156 0.844 0.000
#> GSM260895 4 0.5185 0.399 0.384 0.000 0.048 0.568 0.000
#> GSM260898 3 0.0510 0.907 0.000 0.000 0.984 0.016 0.000
#> GSM260901 3 0.0510 0.907 0.000 0.000 0.984 0.016 0.000
#> GSM260904 3 0.0162 0.912 0.000 0.000 0.996 0.004 0.000
#> GSM260907 3 0.0162 0.912 0.000 0.000 0.996 0.004 0.000
#> GSM260910 4 0.2773 0.860 0.000 0.000 0.164 0.836 0.000
#> GSM260918 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260921 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260924 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260929 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260932 2 0.0162 0.998 0.000 0.996 0.000 0.004 0.000
#> GSM260935 2 0.0162 0.998 0.000 0.996 0.000 0.004 0.000
#> GSM260938 2 0.0671 0.986 0.016 0.980 0.000 0.004 0.000
#> GSM260941 2 0.0162 0.998 0.000 0.996 0.000 0.004 0.000
#> GSM260944 2 0.0162 0.998 0.000 0.996 0.000 0.004 0.000
#> GSM260947 2 0.0162 0.998 0.000 0.996 0.000 0.004 0.000
#> GSM260952 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260914 1 0.4273 0.782 0.552 0.000 0.000 0.000 0.448
#> GSM260916 1 0.1341 0.531 0.944 0.000 0.000 0.000 0.056
#> GSM260919 1 0.4262 0.777 0.560 0.000 0.000 0.000 0.440
#> GSM260922 1 0.1341 0.531 0.944 0.000 0.000 0.000 0.056
#> GSM260925 1 0.4291 0.780 0.536 0.000 0.000 0.000 0.464
#> GSM260927 1 0.4300 0.768 0.524 0.000 0.000 0.000 0.476
#> GSM260930 5 0.0162 0.996 0.004 0.000 0.000 0.000 0.996
#> GSM260933 5 0.0162 0.996 0.004 0.000 0.000 0.000 0.996
#> GSM260936 5 0.0000 0.995 0.000 0.000 0.000 0.000 1.000
#> GSM260939 5 0.0000 0.995 0.000 0.000 0.000 0.000 1.000
#> GSM260942 5 0.0000 0.995 0.000 0.000 0.000 0.000 1.000
#> GSM260945 5 0.0000 0.995 0.000 0.000 0.000 0.000 1.000
#> GSM260948 1 0.4287 0.747 0.540 0.000 0.000 0.000 0.460
#> GSM260950 1 0.4300 0.768 0.524 0.000 0.000 0.000 0.476
#> GSM260915 4 0.2773 0.860 0.000 0.000 0.164 0.836 0.000
#> GSM260917 4 0.3932 0.647 0.000 0.000 0.328 0.672 0.000
#> GSM260920 4 0.2773 0.860 0.000 0.000 0.164 0.836 0.000
#> GSM260923 4 0.2488 0.817 0.004 0.000 0.124 0.872 0.000
#> GSM260926 4 0.2329 0.846 0.000 0.000 0.124 0.876 0.000
#> GSM260928 4 0.5185 0.399 0.384 0.000 0.048 0.568 0.000
#> GSM260931 3 0.0000 0.912 0.000 0.000 1.000 0.000 0.000
#> GSM260934 3 0.0162 0.912 0.000 0.000 0.996 0.004 0.000
#> GSM260937 3 0.3485 0.772 0.048 0.000 0.828 0.124 0.000
#> GSM260940 3 0.1211 0.900 0.016 0.000 0.960 0.024 0.000
#> GSM260943 3 0.0000 0.912 0.000 0.000 1.000 0.000 0.000
#> GSM260946 3 0.0000 0.912 0.000 0.000 1.000 0.000 0.000
#> GSM260949 4 0.2561 0.856 0.000 0.000 0.144 0.856 0.000
#> GSM260951 3 0.4300 -0.261 0.000 0.000 0.524 0.476 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM260888 2 0.0713 0.921 0.000 0.972 0.000 0.000 0.000 0.028
#> GSM260893 2 0.1663 0.929 0.000 0.912 0.000 0.000 0.000 0.088
#> GSM260896 2 0.0547 0.929 0.000 0.980 0.000 0.000 0.000 0.020
#> GSM260899 6 0.3175 0.894 0.000 0.256 0.000 0.000 0.000 0.744
#> GSM260902 6 0.2969 0.910 0.000 0.224 0.000 0.000 0.000 0.776
#> GSM260905 6 0.3409 0.886 0.000 0.300 0.000 0.000 0.000 0.700
#> GSM260908 6 0.3659 0.741 0.000 0.364 0.000 0.000 0.000 0.636
#> GSM260911 2 0.0632 0.921 0.000 0.976 0.000 0.000 0.000 0.024
#> GSM260912 2 0.1714 0.928 0.000 0.908 0.000 0.000 0.000 0.092
#> GSM260913 4 0.1075 0.852 0.000 0.000 0.048 0.952 0.000 0.000
#> GSM260886 1 0.3717 0.812 0.616 0.000 0.000 0.000 0.384 0.000
#> GSM260889 1 0.3717 0.812 0.616 0.000 0.000 0.000 0.384 0.000
#> GSM260891 1 0.0777 0.563 0.972 0.000 0.000 0.000 0.004 0.024
#> GSM260894 1 0.3737 0.807 0.608 0.000 0.000 0.000 0.392 0.000
#> GSM260897 5 0.0000 0.997 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM260900 5 0.0000 0.997 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM260903 5 0.0000 0.997 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM260906 5 0.0000 0.997 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM260909 1 0.3695 0.811 0.624 0.000 0.000 0.000 0.376 0.000
#> GSM260887 4 0.1075 0.852 0.000 0.000 0.048 0.952 0.000 0.000
#> GSM260890 4 0.0865 0.855 0.000 0.000 0.036 0.964 0.000 0.000
#> GSM260892 4 0.1007 0.853 0.000 0.000 0.044 0.956 0.000 0.000
#> GSM260895 4 0.6391 0.446 0.352 0.000 0.108 0.472 0.000 0.068
#> GSM260898 3 0.1267 0.974 0.000 0.000 0.940 0.060 0.000 0.000
#> GSM260901 3 0.1444 0.968 0.000 0.000 0.928 0.072 0.000 0.000
#> GSM260904 3 0.1327 0.974 0.000 0.000 0.936 0.064 0.000 0.000
#> GSM260907 3 0.1327 0.974 0.000 0.000 0.936 0.064 0.000 0.000
#> GSM260910 4 0.0790 0.854 0.000 0.000 0.032 0.968 0.000 0.000
#> GSM260918 2 0.1663 0.929 0.000 0.912 0.000 0.000 0.000 0.088
#> GSM260921 2 0.0547 0.927 0.000 0.980 0.000 0.000 0.000 0.020
#> GSM260924 2 0.0790 0.918 0.000 0.968 0.000 0.000 0.000 0.032
#> GSM260929 2 0.1663 0.929 0.000 0.912 0.000 0.000 0.000 0.088
#> GSM260932 6 0.3151 0.888 0.000 0.252 0.000 0.000 0.000 0.748
#> GSM260935 6 0.3101 0.911 0.000 0.244 0.000 0.000 0.000 0.756
#> GSM260938 6 0.1753 0.807 0.000 0.084 0.004 0.000 0.000 0.912
#> GSM260941 6 0.2664 0.901 0.000 0.184 0.000 0.000 0.000 0.816
#> GSM260944 6 0.3023 0.909 0.000 0.232 0.000 0.000 0.000 0.768
#> GSM260947 6 0.2854 0.909 0.000 0.208 0.000 0.000 0.000 0.792
#> GSM260952 2 0.1610 0.928 0.000 0.916 0.000 0.000 0.000 0.084
#> GSM260914 1 0.3695 0.812 0.624 0.000 0.000 0.000 0.376 0.000
#> GSM260916 1 0.0363 0.582 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM260919 1 0.3706 0.810 0.620 0.000 0.000 0.000 0.380 0.000
#> GSM260922 1 0.0260 0.580 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM260925 1 0.3717 0.812 0.616 0.000 0.000 0.000 0.384 0.000
#> GSM260927 1 0.3774 0.792 0.592 0.000 0.000 0.000 0.408 0.000
#> GSM260930 5 0.0146 0.993 0.004 0.000 0.000 0.000 0.996 0.000
#> GSM260933 5 0.0000 0.997 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM260936 5 0.0146 0.996 0.000 0.000 0.000 0.000 0.996 0.004
#> GSM260939 5 0.0146 0.996 0.000 0.000 0.000 0.000 0.996 0.004
#> GSM260942 5 0.0146 0.996 0.000 0.000 0.000 0.000 0.996 0.004
#> GSM260945 5 0.0146 0.996 0.000 0.000 0.000 0.000 0.996 0.004
#> GSM260948 1 0.3782 0.731 0.588 0.000 0.000 0.000 0.412 0.000
#> GSM260950 1 0.3833 0.744 0.556 0.000 0.000 0.000 0.444 0.000
#> GSM260915 4 0.0865 0.855 0.000 0.000 0.036 0.964 0.000 0.000
#> GSM260917 4 0.2941 0.678 0.000 0.000 0.220 0.780 0.000 0.000
#> GSM260920 4 0.0865 0.855 0.000 0.000 0.036 0.964 0.000 0.000
#> GSM260923 4 0.0632 0.844 0.000 0.000 0.024 0.976 0.000 0.000
#> GSM260926 4 0.0363 0.848 0.000 0.000 0.012 0.988 0.000 0.000
#> GSM260928 4 0.6423 0.441 0.352 0.000 0.112 0.468 0.000 0.068
#> GSM260931 3 0.1267 0.974 0.000 0.000 0.940 0.060 0.000 0.000
#> GSM260934 3 0.1327 0.974 0.000 0.000 0.936 0.064 0.000 0.000
#> GSM260937 3 0.2688 0.807 0.000 0.000 0.868 0.064 0.000 0.068
#> GSM260940 3 0.1700 0.962 0.000 0.000 0.916 0.080 0.000 0.004
#> GSM260943 3 0.1267 0.974 0.000 0.000 0.940 0.060 0.000 0.000
#> GSM260946 3 0.1267 0.974 0.000 0.000 0.940 0.060 0.000 0.000
#> GSM260949 4 0.0458 0.850 0.000 0.000 0.016 0.984 0.000 0.000
#> GSM260951 4 0.3854 0.150 0.000 0.000 0.464 0.536 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) cell.type(p) k
#> CV:mclust 67 0.939 2.75e-14 2
#> CV:mclust 67 0.927 9.68e-27 3
#> CV:mclust 66 0.977 8.31e-25 4
#> CV:mclust 64 0.994 1.10e-22 5
#> CV:mclust 64 0.994 1.71e-21 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 67 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4257 0.575 0.575
#> 3 3 1.000 0.990 0.996 0.5859 0.750 0.566
#> 4 4 0.909 0.911 0.934 0.0532 1.000 1.000
#> 5 5 0.883 0.835 0.912 0.0342 0.945 0.830
#> 6 6 0.840 0.855 0.901 0.0284 0.980 0.927
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2
There is also optional best \(k\) = 2 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM260888 2 0 1 0 1
#> GSM260893 2 0 1 0 1
#> GSM260896 2 0 1 0 1
#> GSM260899 2 0 1 0 1
#> GSM260902 2 0 1 0 1
#> GSM260905 2 0 1 0 1
#> GSM260908 2 0 1 0 1
#> GSM260911 2 0 1 0 1
#> GSM260912 2 0 1 0 1
#> GSM260913 1 0 1 1 0
#> GSM260886 1 0 1 1 0
#> GSM260889 1 0 1 1 0
#> GSM260891 1 0 1 1 0
#> GSM260894 1 0 1 1 0
#> GSM260897 1 0 1 1 0
#> GSM260900 1 0 1 1 0
#> GSM260903 1 0 1 1 0
#> GSM260906 1 0 1 1 0
#> GSM260909 1 0 1 1 0
#> GSM260887 1 0 1 1 0
#> GSM260890 1 0 1 1 0
#> GSM260892 1 0 1 1 0
#> GSM260895 1 0 1 1 0
#> GSM260898 1 0 1 1 0
#> GSM260901 1 0 1 1 0
#> GSM260904 1 0 1 1 0
#> GSM260907 1 0 1 1 0
#> GSM260910 1 0 1 1 0
#> GSM260918 2 0 1 0 1
#> GSM260921 2 0 1 0 1
#> GSM260924 2 0 1 0 1
#> GSM260929 2 0 1 0 1
#> GSM260932 2 0 1 0 1
#> GSM260935 2 0 1 0 1
#> GSM260938 2 0 1 0 1
#> GSM260941 2 0 1 0 1
#> GSM260944 2 0 1 0 1
#> GSM260947 2 0 1 0 1
#> GSM260952 2 0 1 0 1
#> GSM260914 1 0 1 1 0
#> GSM260916 1 0 1 1 0
#> GSM260919 1 0 1 1 0
#> GSM260922 1 0 1 1 0
#> GSM260925 1 0 1 1 0
#> GSM260927 1 0 1 1 0
#> GSM260930 1 0 1 1 0
#> GSM260933 1 0 1 1 0
#> GSM260936 1 0 1 1 0
#> GSM260939 1 0 1 1 0
#> GSM260942 1 0 1 1 0
#> GSM260945 1 0 1 1 0
#> GSM260948 1 0 1 1 0
#> GSM260950 1 0 1 1 0
#> GSM260915 1 0 1 1 0
#> GSM260917 1 0 1 1 0
#> GSM260920 1 0 1 1 0
#> GSM260923 1 0 1 1 0
#> GSM260926 1 0 1 1 0
#> GSM260928 1 0 1 1 0
#> GSM260931 1 0 1 1 0
#> GSM260934 1 0 1 1 0
#> GSM260937 1 0 1 1 0
#> GSM260940 1 0 1 1 0
#> GSM260943 1 0 1 1 0
#> GSM260946 1 0 1 1 0
#> GSM260949 1 0 1 1 0
#> GSM260951 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM260888 2 0.000 1.000 0.000 1 0.000
#> GSM260893 2 0.000 1.000 0.000 1 0.000
#> GSM260896 2 0.000 1.000 0.000 1 0.000
#> GSM260899 2 0.000 1.000 0.000 1 0.000
#> GSM260902 2 0.000 1.000 0.000 1 0.000
#> GSM260905 2 0.000 1.000 0.000 1 0.000
#> GSM260908 2 0.000 1.000 0.000 1 0.000
#> GSM260911 2 0.000 1.000 0.000 1 0.000
#> GSM260912 2 0.000 1.000 0.000 1 0.000
#> GSM260913 3 0.000 0.988 0.000 0 1.000
#> GSM260886 1 0.000 1.000 1.000 0 0.000
#> GSM260889 1 0.000 1.000 1.000 0 0.000
#> GSM260891 1 0.000 1.000 1.000 0 0.000
#> GSM260894 1 0.000 1.000 1.000 0 0.000
#> GSM260897 1 0.000 1.000 1.000 0 0.000
#> GSM260900 1 0.000 1.000 1.000 0 0.000
#> GSM260903 1 0.000 1.000 1.000 0 0.000
#> GSM260906 1 0.000 1.000 1.000 0 0.000
#> GSM260909 1 0.000 1.000 1.000 0 0.000
#> GSM260887 3 0.000 0.988 0.000 0 1.000
#> GSM260890 3 0.000 0.988 0.000 0 1.000
#> GSM260892 3 0.000 0.988 0.000 0 1.000
#> GSM260895 3 0.000 0.988 0.000 0 1.000
#> GSM260898 3 0.000 0.988 0.000 0 1.000
#> GSM260901 3 0.000 0.988 0.000 0 1.000
#> GSM260904 3 0.000 0.988 0.000 0 1.000
#> GSM260907 3 0.000 0.988 0.000 0 1.000
#> GSM260910 3 0.000 0.988 0.000 0 1.000
#> GSM260918 2 0.000 1.000 0.000 1 0.000
#> GSM260921 2 0.000 1.000 0.000 1 0.000
#> GSM260924 2 0.000 1.000 0.000 1 0.000
#> GSM260929 2 0.000 1.000 0.000 1 0.000
#> GSM260932 2 0.000 1.000 0.000 1 0.000
#> GSM260935 2 0.000 1.000 0.000 1 0.000
#> GSM260938 2 0.000 1.000 0.000 1 0.000
#> GSM260941 2 0.000 1.000 0.000 1 0.000
#> GSM260944 2 0.000 1.000 0.000 1 0.000
#> GSM260947 2 0.000 1.000 0.000 1 0.000
#> GSM260952 2 0.000 1.000 0.000 1 0.000
#> GSM260914 1 0.000 1.000 1.000 0 0.000
#> GSM260916 1 0.000 1.000 1.000 0 0.000
#> GSM260919 1 0.000 1.000 1.000 0 0.000
#> GSM260922 1 0.000 1.000 1.000 0 0.000
#> GSM260925 1 0.000 1.000 1.000 0 0.000
#> GSM260927 1 0.000 1.000 1.000 0 0.000
#> GSM260930 1 0.000 1.000 1.000 0 0.000
#> GSM260933 1 0.000 1.000 1.000 0 0.000
#> GSM260936 1 0.000 1.000 1.000 0 0.000
#> GSM260939 1 0.000 1.000 1.000 0 0.000
#> GSM260942 1 0.000 1.000 1.000 0 0.000
#> GSM260945 1 0.000 1.000 1.000 0 0.000
#> GSM260948 1 0.000 1.000 1.000 0 0.000
#> GSM260950 1 0.000 1.000 1.000 0 0.000
#> GSM260915 3 0.000 0.988 0.000 0 1.000
#> GSM260917 3 0.000 0.988 0.000 0 1.000
#> GSM260920 3 0.000 0.988 0.000 0 1.000
#> GSM260923 3 0.000 0.988 0.000 0 1.000
#> GSM260926 3 0.000 0.988 0.000 0 1.000
#> GSM260928 3 0.536 0.619 0.276 0 0.724
#> GSM260931 3 0.000 0.988 0.000 0 1.000
#> GSM260934 3 0.000 0.988 0.000 0 1.000
#> GSM260937 3 0.000 0.988 0.000 0 1.000
#> GSM260940 3 0.000 0.988 0.000 0 1.000
#> GSM260943 3 0.000 0.988 0.000 0 1.000
#> GSM260946 3 0.000 0.988 0.000 0 1.000
#> GSM260949 3 0.000 0.988 0.000 0 1.000
#> GSM260951 3 0.000 0.988 0.000 0 1.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM260888 2 0.0000 1.000 0.000 1 0.000 NA
#> GSM260893 2 0.0000 1.000 0.000 1 0.000 NA
#> GSM260896 2 0.0000 1.000 0.000 1 0.000 NA
#> GSM260899 2 0.0000 1.000 0.000 1 0.000 NA
#> GSM260902 2 0.0000 1.000 0.000 1 0.000 NA
#> GSM260905 2 0.0000 1.000 0.000 1 0.000 NA
#> GSM260908 2 0.0000 1.000 0.000 1 0.000 NA
#> GSM260911 2 0.0000 1.000 0.000 1 0.000 NA
#> GSM260912 2 0.0000 1.000 0.000 1 0.000 NA
#> GSM260913 3 0.0188 0.936 0.000 0 0.996 NA
#> GSM260886 1 0.1022 0.910 0.968 0 0.000 NA
#> GSM260889 1 0.0188 0.915 0.996 0 0.000 NA
#> GSM260891 1 0.3486 0.828 0.812 0 0.000 NA
#> GSM260894 1 0.0336 0.914 0.992 0 0.000 NA
#> GSM260897 1 0.2281 0.895 0.904 0 0.000 NA
#> GSM260900 1 0.1118 0.913 0.964 0 0.000 NA
#> GSM260903 1 0.1118 0.913 0.964 0 0.000 NA
#> GSM260906 1 0.1211 0.912 0.960 0 0.000 NA
#> GSM260909 1 0.1118 0.908 0.964 0 0.000 NA
#> GSM260887 3 0.0188 0.936 0.000 0 0.996 NA
#> GSM260890 3 0.0188 0.936 0.000 0 0.996 NA
#> GSM260892 3 0.2973 0.859 0.000 0 0.856 NA
#> GSM260895 3 0.5402 0.513 0.012 0 0.516 NA
#> GSM260898 3 0.0707 0.933 0.000 0 0.980 NA
#> GSM260901 3 0.0817 0.932 0.000 0 0.976 NA
#> GSM260904 3 0.0188 0.935 0.000 0 0.996 NA
#> GSM260907 3 0.0469 0.935 0.000 0 0.988 NA
#> GSM260910 3 0.2011 0.902 0.000 0 0.920 NA
#> GSM260918 2 0.0000 1.000 0.000 1 0.000 NA
#> GSM260921 2 0.0000 1.000 0.000 1 0.000 NA
#> GSM260924 2 0.0000 1.000 0.000 1 0.000 NA
#> GSM260929 2 0.0000 1.000 0.000 1 0.000 NA
#> GSM260932 2 0.0000 1.000 0.000 1 0.000 NA
#> GSM260935 2 0.0000 1.000 0.000 1 0.000 NA
#> GSM260938 2 0.0000 1.000 0.000 1 0.000 NA
#> GSM260941 2 0.0000 1.000 0.000 1 0.000 NA
#> GSM260944 2 0.0000 1.000 0.000 1 0.000 NA
#> GSM260947 2 0.0000 1.000 0.000 1 0.000 NA
#> GSM260952 2 0.0000 1.000 0.000 1 0.000 NA
#> GSM260914 1 0.0707 0.912 0.980 0 0.000 NA
#> GSM260916 1 0.4907 0.644 0.580 0 0.000 NA
#> GSM260919 1 0.0188 0.915 0.996 0 0.000 NA
#> GSM260922 1 0.4925 0.636 0.572 0 0.000 NA
#> GSM260925 1 0.0817 0.911 0.976 0 0.000 NA
#> GSM260927 1 0.0188 0.915 0.996 0 0.000 NA
#> GSM260930 1 0.1118 0.913 0.964 0 0.000 NA
#> GSM260933 1 0.1557 0.908 0.944 0 0.000 NA
#> GSM260936 1 0.3123 0.868 0.844 0 0.000 NA
#> GSM260939 1 0.4925 0.664 0.572 0 0.000 NA
#> GSM260942 1 0.4522 0.758 0.680 0 0.000 NA
#> GSM260945 1 0.2921 0.876 0.860 0 0.000 NA
#> GSM260948 1 0.0000 0.915 1.000 0 0.000 NA
#> GSM260950 1 0.0000 0.915 1.000 0 0.000 NA
#> GSM260915 3 0.0188 0.936 0.000 0 0.996 NA
#> GSM260917 3 0.0000 0.936 0.000 0 1.000 NA
#> GSM260920 3 0.0188 0.936 0.000 0 0.996 NA
#> GSM260923 3 0.0336 0.935 0.000 0 0.992 NA
#> GSM260926 3 0.0188 0.936 0.000 0 0.996 NA
#> GSM260928 3 0.2760 0.829 0.128 0 0.872 NA
#> GSM260931 3 0.0592 0.934 0.000 0 0.984 NA
#> GSM260934 3 0.0592 0.934 0.000 0 0.984 NA
#> GSM260937 3 0.4999 0.533 0.000 0 0.508 NA
#> GSM260940 3 0.4382 0.743 0.000 0 0.704 NA
#> GSM260943 3 0.1867 0.911 0.000 0 0.928 NA
#> GSM260946 3 0.0707 0.933 0.000 0 0.980 NA
#> GSM260949 3 0.0188 0.936 0.000 0 0.996 NA
#> GSM260951 3 0.0336 0.935 0.000 0 0.992 NA
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM260888 2 0.0290 0.981 0.000 0.992 0.000 0.008 0.000
#> GSM260893 2 0.0162 0.982 0.000 0.996 0.000 0.004 0.000
#> GSM260896 2 0.0162 0.982 0.000 0.996 0.000 0.004 0.000
#> GSM260899 2 0.2067 0.939 0.000 0.920 0.000 0.032 0.048
#> GSM260902 2 0.2067 0.939 0.000 0.920 0.000 0.032 0.048
#> GSM260905 2 0.0000 0.982 0.000 1.000 0.000 0.000 0.000
#> GSM260908 2 0.0162 0.982 0.000 0.996 0.000 0.004 0.000
#> GSM260911 2 0.0162 0.982 0.000 0.996 0.000 0.004 0.000
#> GSM260912 2 0.0000 0.982 0.000 1.000 0.000 0.000 0.000
#> GSM260913 3 0.0566 0.847 0.000 0.000 0.984 0.004 0.012
#> GSM260886 1 0.1197 0.872 0.952 0.000 0.000 0.048 0.000
#> GSM260889 1 0.0703 0.887 0.976 0.000 0.000 0.024 0.000
#> GSM260891 1 0.2795 0.754 0.872 0.000 0.000 0.100 0.028
#> GSM260894 1 0.0771 0.888 0.976 0.000 0.000 0.020 0.004
#> GSM260897 1 0.2777 0.790 0.864 0.000 0.000 0.120 0.016
#> GSM260900 1 0.1041 0.889 0.964 0.000 0.000 0.032 0.004
#> GSM260903 1 0.1124 0.887 0.960 0.000 0.000 0.036 0.004
#> GSM260906 1 0.1251 0.886 0.956 0.000 0.000 0.036 0.008
#> GSM260909 1 0.1597 0.865 0.940 0.000 0.000 0.048 0.012
#> GSM260887 3 0.0566 0.845 0.000 0.000 0.984 0.004 0.012
#> GSM260890 3 0.1216 0.836 0.000 0.000 0.960 0.020 0.020
#> GSM260892 3 0.3391 0.680 0.000 0.000 0.800 0.188 0.012
#> GSM260895 3 0.3883 0.645 0.000 0.000 0.780 0.184 0.036
#> GSM260898 3 0.0798 0.845 0.000 0.000 0.976 0.008 0.016
#> GSM260901 3 0.1117 0.841 0.000 0.000 0.964 0.016 0.020
#> GSM260904 3 0.0703 0.842 0.000 0.000 0.976 0.000 0.024
#> GSM260907 3 0.0880 0.837 0.000 0.000 0.968 0.000 0.032
#> GSM260910 3 0.2511 0.780 0.000 0.000 0.892 0.080 0.028
#> GSM260918 2 0.0000 0.982 0.000 1.000 0.000 0.000 0.000
#> GSM260921 2 0.0162 0.982 0.000 0.996 0.000 0.004 0.000
#> GSM260924 2 0.0324 0.981 0.000 0.992 0.000 0.004 0.004
#> GSM260929 2 0.0000 0.982 0.000 1.000 0.000 0.000 0.000
#> GSM260932 2 0.2359 0.928 0.000 0.904 0.000 0.036 0.060
#> GSM260935 2 0.2067 0.939 0.000 0.920 0.000 0.032 0.048
#> GSM260938 2 0.0162 0.982 0.000 0.996 0.000 0.004 0.000
#> GSM260941 2 0.0162 0.982 0.000 0.996 0.000 0.004 0.000
#> GSM260944 2 0.0162 0.982 0.000 0.996 0.000 0.004 0.000
#> GSM260947 2 0.0162 0.982 0.000 0.996 0.000 0.004 0.000
#> GSM260952 2 0.0162 0.982 0.000 0.996 0.000 0.004 0.000
#> GSM260914 1 0.1410 0.861 0.940 0.000 0.000 0.060 0.000
#> GSM260916 4 0.4273 0.980 0.448 0.000 0.000 0.552 0.000
#> GSM260919 1 0.0880 0.884 0.968 0.000 0.000 0.032 0.000
#> GSM260922 4 0.4278 0.980 0.452 0.000 0.000 0.548 0.000
#> GSM260925 1 0.1478 0.858 0.936 0.000 0.000 0.064 0.000
#> GSM260927 1 0.0162 0.893 0.996 0.000 0.000 0.000 0.004
#> GSM260930 1 0.0771 0.891 0.976 0.000 0.000 0.020 0.004
#> GSM260933 1 0.1697 0.871 0.932 0.000 0.000 0.060 0.008
#> GSM260936 1 0.1701 0.875 0.936 0.000 0.000 0.048 0.016
#> GSM260939 1 0.3812 0.688 0.812 0.000 0.000 0.092 0.096
#> GSM260942 1 0.2984 0.786 0.860 0.000 0.000 0.108 0.032
#> GSM260945 1 0.1740 0.871 0.932 0.000 0.000 0.056 0.012
#> GSM260948 1 0.1043 0.885 0.960 0.000 0.000 0.040 0.000
#> GSM260950 1 0.0609 0.891 0.980 0.000 0.000 0.020 0.000
#> GSM260915 3 0.0566 0.845 0.000 0.000 0.984 0.004 0.012
#> GSM260917 3 0.0510 0.846 0.000 0.000 0.984 0.000 0.016
#> GSM260920 3 0.0404 0.847 0.000 0.000 0.988 0.000 0.012
#> GSM260923 3 0.1444 0.827 0.000 0.000 0.948 0.040 0.012
#> GSM260926 3 0.0162 0.847 0.000 0.000 0.996 0.000 0.004
#> GSM260928 3 0.4428 0.650 0.088 0.000 0.800 0.044 0.068
#> GSM260931 3 0.4291 -0.491 0.000 0.000 0.536 0.000 0.464
#> GSM260934 3 0.0609 0.845 0.000 0.000 0.980 0.000 0.020
#> GSM260937 5 0.3242 0.808 0.000 0.000 0.216 0.000 0.784
#> GSM260940 5 0.3949 0.816 0.000 0.000 0.332 0.000 0.668
#> GSM260943 5 0.3534 0.838 0.000 0.000 0.256 0.000 0.744
#> GSM260946 3 0.4304 -0.546 0.000 0.000 0.516 0.000 0.484
#> GSM260949 3 0.0000 0.848 0.000 0.000 1.000 0.000 0.000
#> GSM260951 5 0.4278 0.613 0.000 0.000 0.452 0.000 0.548
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM260888 2 0.1267 0.917 0.000 0.940 0.000 0.000 0.000 NA
#> GSM260893 2 0.0937 0.920 0.000 0.960 0.000 0.000 0.000 NA
#> GSM260896 2 0.1007 0.921 0.000 0.956 0.000 0.000 0.000 NA
#> GSM260899 2 0.3563 0.692 0.000 0.664 0.000 0.000 0.000 NA
#> GSM260902 2 0.3050 0.794 0.000 0.764 0.000 0.000 0.000 NA
#> GSM260905 2 0.0458 0.925 0.000 0.984 0.000 0.000 0.000 NA
#> GSM260908 2 0.1204 0.913 0.000 0.944 0.000 0.000 0.000 NA
#> GSM260911 2 0.0937 0.922 0.000 0.960 0.000 0.000 0.000 NA
#> GSM260912 2 0.0363 0.924 0.000 0.988 0.000 0.000 0.000 NA
#> GSM260913 4 0.0622 0.915 0.012 0.000 0.008 0.980 0.000 NA
#> GSM260886 5 0.1610 0.887 0.084 0.000 0.000 0.000 0.916 NA
#> GSM260889 5 0.1387 0.893 0.068 0.000 0.000 0.000 0.932 NA
#> GSM260891 5 0.3568 0.751 0.032 0.000 0.008 0.000 0.788 NA
#> GSM260894 5 0.1405 0.900 0.024 0.000 0.004 0.000 0.948 NA
#> GSM260897 5 0.1858 0.873 0.092 0.000 0.000 0.000 0.904 NA
#> GSM260900 5 0.0508 0.905 0.012 0.000 0.000 0.000 0.984 NA
#> GSM260903 5 0.1321 0.907 0.020 0.000 0.004 0.000 0.952 NA
#> GSM260906 5 0.1562 0.905 0.024 0.000 0.004 0.000 0.940 NA
#> GSM260909 5 0.2231 0.880 0.028 0.000 0.004 0.000 0.900 NA
#> GSM260887 4 0.0146 0.914 0.000 0.000 0.000 0.996 0.000 NA
#> GSM260890 4 0.0767 0.910 0.004 0.000 0.008 0.976 0.000 NA
#> GSM260892 4 0.2883 0.818 0.036 0.000 0.020 0.868 0.000 NA
#> GSM260895 4 0.3844 0.734 0.028 0.000 0.028 0.800 0.008 NA
#> GSM260898 4 0.1088 0.912 0.000 0.000 0.024 0.960 0.000 NA
#> GSM260901 4 0.1492 0.900 0.000 0.000 0.024 0.940 0.000 NA
#> GSM260904 4 0.0632 0.913 0.000 0.000 0.024 0.976 0.000 NA
#> GSM260907 4 0.0937 0.902 0.000 0.000 0.040 0.960 0.000 NA
#> GSM260910 4 0.1562 0.884 0.004 0.000 0.024 0.940 0.000 NA
#> GSM260918 2 0.0363 0.924 0.000 0.988 0.000 0.000 0.000 NA
#> GSM260921 2 0.0713 0.924 0.000 0.972 0.000 0.000 0.000 NA
#> GSM260924 2 0.1789 0.908 0.032 0.924 0.000 0.000 0.000 NA
#> GSM260929 2 0.0363 0.925 0.000 0.988 0.000 0.000 0.000 NA
#> GSM260932 2 0.3890 0.604 0.000 0.596 0.004 0.000 0.000 NA
#> GSM260935 2 0.2996 0.801 0.000 0.772 0.000 0.000 0.000 NA
#> GSM260938 2 0.0777 0.923 0.000 0.972 0.004 0.000 0.000 NA
#> GSM260941 2 0.0405 0.924 0.000 0.988 0.004 0.000 0.000 NA
#> GSM260944 2 0.0790 0.921 0.000 0.968 0.000 0.000 0.000 NA
#> GSM260947 2 0.0508 0.924 0.000 0.984 0.004 0.000 0.000 NA
#> GSM260952 2 0.0603 0.923 0.000 0.980 0.004 0.000 0.000 NA
#> GSM260914 5 0.2053 0.868 0.108 0.000 0.000 0.000 0.888 NA
#> GSM260916 1 0.3050 0.936 0.764 0.000 0.000 0.000 0.236 NA
#> GSM260919 5 0.1858 0.881 0.092 0.000 0.000 0.000 0.904 NA
#> GSM260922 1 0.2762 0.935 0.804 0.000 0.000 0.000 0.196 NA
#> GSM260925 5 0.1910 0.871 0.108 0.000 0.000 0.000 0.892 NA
#> GSM260927 5 0.2074 0.881 0.048 0.000 0.004 0.000 0.912 NA
#> GSM260930 5 0.0260 0.906 0.008 0.000 0.000 0.000 0.992 NA
#> GSM260933 5 0.0865 0.904 0.036 0.000 0.000 0.000 0.964 NA
#> GSM260936 5 0.1269 0.905 0.012 0.000 0.012 0.000 0.956 NA
#> GSM260939 5 0.2341 0.875 0.056 0.000 0.032 0.000 0.900 NA
#> GSM260942 5 0.2002 0.889 0.040 0.000 0.012 0.000 0.920 NA
#> GSM260945 5 0.1434 0.900 0.028 0.000 0.012 0.000 0.948 NA
#> GSM260948 5 0.3134 0.730 0.208 0.000 0.004 0.000 0.784 NA
#> GSM260950 5 0.0937 0.902 0.040 0.000 0.000 0.000 0.960 NA
#> GSM260915 4 0.0260 0.915 0.000 0.000 0.000 0.992 0.000 NA
#> GSM260917 4 0.0777 0.912 0.000 0.000 0.024 0.972 0.000 NA
#> GSM260920 4 0.1313 0.906 0.028 0.000 0.016 0.952 0.000 NA
#> GSM260923 4 0.0520 0.912 0.000 0.000 0.008 0.984 0.000 NA
#> GSM260926 4 0.0405 0.916 0.000 0.000 0.004 0.988 0.000 NA
#> GSM260928 4 0.6027 0.343 0.056 0.000 0.012 0.616 0.208 NA
#> GSM260931 3 0.3828 0.583 0.000 0.000 0.560 0.440 0.000 NA
#> GSM260934 4 0.1196 0.901 0.000 0.000 0.040 0.952 0.000 NA
#> GSM260937 3 0.1501 0.610 0.000 0.000 0.924 0.076 0.000 NA
#> GSM260940 3 0.3151 0.744 0.000 0.000 0.748 0.252 0.000 NA
#> GSM260943 3 0.1863 0.646 0.000 0.000 0.896 0.104 0.000 NA
#> GSM260946 3 0.3862 0.500 0.000 0.000 0.524 0.476 0.000 NA
#> GSM260949 4 0.0436 0.916 0.004 0.000 0.004 0.988 0.000 NA
#> GSM260951 3 0.3426 0.744 0.004 0.000 0.720 0.276 0.000 NA
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) cell.type(p) k
#> CV:NMF 67 0.9388 2.75e-14 2
#> CV:NMF 67 0.9269 9.68e-27 3
#> CV:NMF 67 0.9269 9.68e-27 4
#> CV:NMF 65 0.2215 4.59e-23 5
#> CV:NMF 66 0.0983 1.72e-23 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 67 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 5.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.982 0.984 0.4281 0.575 0.575
#> 3 3 1.000 0.962 0.986 0.5762 0.750 0.566
#> 4 4 0.943 0.924 0.962 0.0611 0.951 0.850
#> 5 5 0.961 0.823 0.921 0.0413 0.980 0.926
#> 6 6 0.888 0.909 0.910 0.0551 0.929 0.730
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 3 4
There is also optional best \(k\) = 2 3 4 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM260888 2 0.000 1.000 0.000 1.000
#> GSM260893 2 0.000 1.000 0.000 1.000
#> GSM260896 2 0.000 1.000 0.000 1.000
#> GSM260899 2 0.000 1.000 0.000 1.000
#> GSM260902 2 0.000 1.000 0.000 1.000
#> GSM260905 2 0.000 1.000 0.000 1.000
#> GSM260908 2 0.000 1.000 0.000 1.000
#> GSM260911 2 0.000 1.000 0.000 1.000
#> GSM260912 2 0.000 1.000 0.000 1.000
#> GSM260913 1 0.278 0.973 0.952 0.048
#> GSM260886 1 0.000 0.976 1.000 0.000
#> GSM260889 1 0.000 0.976 1.000 0.000
#> GSM260891 1 0.000 0.976 1.000 0.000
#> GSM260894 1 0.000 0.976 1.000 0.000
#> GSM260897 1 0.000 0.976 1.000 0.000
#> GSM260900 1 0.000 0.976 1.000 0.000
#> GSM260903 1 0.000 0.976 1.000 0.000
#> GSM260906 1 0.000 0.976 1.000 0.000
#> GSM260909 1 0.000 0.976 1.000 0.000
#> GSM260887 1 0.278 0.973 0.952 0.048
#> GSM260890 1 0.278 0.973 0.952 0.048
#> GSM260892 1 0.278 0.973 0.952 0.048
#> GSM260895 1 0.000 0.976 1.000 0.000
#> GSM260898 1 0.278 0.973 0.952 0.048
#> GSM260901 1 0.278 0.973 0.952 0.048
#> GSM260904 1 0.278 0.973 0.952 0.048
#> GSM260907 1 0.278 0.973 0.952 0.048
#> GSM260910 1 0.278 0.973 0.952 0.048
#> GSM260918 2 0.000 1.000 0.000 1.000
#> GSM260921 2 0.000 1.000 0.000 1.000
#> GSM260924 2 0.000 1.000 0.000 1.000
#> GSM260929 2 0.000 1.000 0.000 1.000
#> GSM260932 2 0.000 1.000 0.000 1.000
#> GSM260935 2 0.000 1.000 0.000 1.000
#> GSM260938 2 0.000 1.000 0.000 1.000
#> GSM260941 2 0.000 1.000 0.000 1.000
#> GSM260944 2 0.000 1.000 0.000 1.000
#> GSM260947 2 0.000 1.000 0.000 1.000
#> GSM260952 2 0.000 1.000 0.000 1.000
#> GSM260914 1 0.000 0.976 1.000 0.000
#> GSM260916 1 0.000 0.976 1.000 0.000
#> GSM260919 1 0.000 0.976 1.000 0.000
#> GSM260922 1 0.000 0.976 1.000 0.000
#> GSM260925 1 0.000 0.976 1.000 0.000
#> GSM260927 1 0.000 0.976 1.000 0.000
#> GSM260930 1 0.000 0.976 1.000 0.000
#> GSM260933 1 0.000 0.976 1.000 0.000
#> GSM260936 1 0.000 0.976 1.000 0.000
#> GSM260939 1 0.000 0.976 1.000 0.000
#> GSM260942 1 0.000 0.976 1.000 0.000
#> GSM260945 1 0.000 0.976 1.000 0.000
#> GSM260948 1 0.000 0.976 1.000 0.000
#> GSM260950 1 0.000 0.976 1.000 0.000
#> GSM260915 1 0.278 0.973 0.952 0.048
#> GSM260917 1 0.278 0.973 0.952 0.048
#> GSM260920 1 0.278 0.973 0.952 0.048
#> GSM260923 1 0.278 0.973 0.952 0.048
#> GSM260926 1 0.278 0.973 0.952 0.048
#> GSM260928 1 0.000 0.976 1.000 0.000
#> GSM260931 1 0.278 0.973 0.952 0.048
#> GSM260934 1 0.278 0.973 0.952 0.048
#> GSM260937 1 0.278 0.973 0.952 0.048
#> GSM260940 1 0.278 0.973 0.952 0.048
#> GSM260943 1 0.278 0.973 0.952 0.048
#> GSM260946 1 0.278 0.973 0.952 0.048
#> GSM260949 1 0.278 0.973 0.952 0.048
#> GSM260951 1 0.278 0.973 0.952 0.048
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM260888 2 0.000 1.000 0.000 1 0.000
#> GSM260893 2 0.000 1.000 0.000 1 0.000
#> GSM260896 2 0.000 1.000 0.000 1 0.000
#> GSM260899 2 0.000 1.000 0.000 1 0.000
#> GSM260902 2 0.000 1.000 0.000 1 0.000
#> GSM260905 2 0.000 1.000 0.000 1 0.000
#> GSM260908 2 0.000 1.000 0.000 1 0.000
#> GSM260911 2 0.000 1.000 0.000 1 0.000
#> GSM260912 2 0.000 1.000 0.000 1 0.000
#> GSM260913 3 0.000 0.958 0.000 0 1.000
#> GSM260886 1 0.000 1.000 1.000 0 0.000
#> GSM260889 1 0.000 1.000 1.000 0 0.000
#> GSM260891 1 0.000 1.000 1.000 0 0.000
#> GSM260894 1 0.000 1.000 1.000 0 0.000
#> GSM260897 1 0.000 1.000 1.000 0 0.000
#> GSM260900 1 0.000 1.000 1.000 0 0.000
#> GSM260903 1 0.000 1.000 1.000 0 0.000
#> GSM260906 1 0.000 1.000 1.000 0 0.000
#> GSM260909 1 0.000 1.000 1.000 0 0.000
#> GSM260887 3 0.000 0.958 0.000 0 1.000
#> GSM260890 3 0.000 0.958 0.000 0 1.000
#> GSM260892 3 0.000 0.958 0.000 0 1.000
#> GSM260895 3 0.627 0.209 0.452 0 0.548
#> GSM260898 3 0.000 0.958 0.000 0 1.000
#> GSM260901 3 0.000 0.958 0.000 0 1.000
#> GSM260904 3 0.000 0.958 0.000 0 1.000
#> GSM260907 3 0.000 0.958 0.000 0 1.000
#> GSM260910 3 0.000 0.958 0.000 0 1.000
#> GSM260918 2 0.000 1.000 0.000 1 0.000
#> GSM260921 2 0.000 1.000 0.000 1 0.000
#> GSM260924 2 0.000 1.000 0.000 1 0.000
#> GSM260929 2 0.000 1.000 0.000 1 0.000
#> GSM260932 2 0.000 1.000 0.000 1 0.000
#> GSM260935 2 0.000 1.000 0.000 1 0.000
#> GSM260938 2 0.000 1.000 0.000 1 0.000
#> GSM260941 2 0.000 1.000 0.000 1 0.000
#> GSM260944 2 0.000 1.000 0.000 1 0.000
#> GSM260947 2 0.000 1.000 0.000 1 0.000
#> GSM260952 2 0.000 1.000 0.000 1 0.000
#> GSM260914 1 0.000 1.000 1.000 0 0.000
#> GSM260916 1 0.000 1.000 1.000 0 0.000
#> GSM260919 1 0.000 1.000 1.000 0 0.000
#> GSM260922 1 0.000 1.000 1.000 0 0.000
#> GSM260925 1 0.000 1.000 1.000 0 0.000
#> GSM260927 1 0.000 1.000 1.000 0 0.000
#> GSM260930 1 0.000 1.000 1.000 0 0.000
#> GSM260933 1 0.000 1.000 1.000 0 0.000
#> GSM260936 1 0.000 1.000 1.000 0 0.000
#> GSM260939 1 0.000 1.000 1.000 0 0.000
#> GSM260942 1 0.000 1.000 1.000 0 0.000
#> GSM260945 1 0.000 1.000 1.000 0 0.000
#> GSM260948 1 0.000 1.000 1.000 0 0.000
#> GSM260950 1 0.000 1.000 1.000 0 0.000
#> GSM260915 3 0.000 0.958 0.000 0 1.000
#> GSM260917 3 0.000 0.958 0.000 0 1.000
#> GSM260920 3 0.000 0.958 0.000 0 1.000
#> GSM260923 3 0.000 0.958 0.000 0 1.000
#> GSM260926 3 0.000 0.958 0.000 0 1.000
#> GSM260928 3 0.629 0.158 0.468 0 0.532
#> GSM260931 3 0.000 0.958 0.000 0 1.000
#> GSM260934 3 0.000 0.958 0.000 0 1.000
#> GSM260937 3 0.000 0.958 0.000 0 1.000
#> GSM260940 3 0.000 0.958 0.000 0 1.000
#> GSM260943 3 0.000 0.958 0.000 0 1.000
#> GSM260946 3 0.000 0.958 0.000 0 1.000
#> GSM260949 3 0.000 0.958 0.000 0 1.000
#> GSM260951 3 0.000 0.958 0.000 0 1.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM260888 2 0.000 1.000 0.000 1 0.000 0.000
#> GSM260893 2 0.000 1.000 0.000 1 0.000 0.000
#> GSM260896 2 0.000 1.000 0.000 1 0.000 0.000
#> GSM260899 2 0.000 1.000 0.000 1 0.000 0.000
#> GSM260902 2 0.000 1.000 0.000 1 0.000 0.000
#> GSM260905 2 0.000 1.000 0.000 1 0.000 0.000
#> GSM260908 2 0.000 1.000 0.000 1 0.000 0.000
#> GSM260911 2 0.000 1.000 0.000 1 0.000 0.000
#> GSM260912 2 0.000 1.000 0.000 1 0.000 0.000
#> GSM260913 3 0.000 0.860 0.000 0 1.000 0.000
#> GSM260886 1 0.000 1.000 1.000 0 0.000 0.000
#> GSM260889 1 0.000 1.000 1.000 0 0.000 0.000
#> GSM260891 1 0.000 1.000 1.000 0 0.000 0.000
#> GSM260894 1 0.000 1.000 1.000 0 0.000 0.000
#> GSM260897 1 0.000 1.000 1.000 0 0.000 0.000
#> GSM260900 1 0.000 1.000 1.000 0 0.000 0.000
#> GSM260903 1 0.000 1.000 1.000 0 0.000 0.000
#> GSM260906 1 0.000 1.000 1.000 0 0.000 0.000
#> GSM260909 1 0.000 1.000 1.000 0 0.000 0.000
#> GSM260887 3 0.000 0.860 0.000 0 1.000 0.000
#> GSM260890 3 0.000 0.860 0.000 0 1.000 0.000
#> GSM260892 3 0.000 0.860 0.000 0 1.000 0.000
#> GSM260895 3 0.497 0.237 0.452 0 0.548 0.000
#> GSM260898 3 0.253 0.799 0.000 0 0.888 0.112
#> GSM260901 3 0.253 0.799 0.000 0 0.888 0.112
#> GSM260904 3 0.253 0.799 0.000 0 0.888 0.112
#> GSM260907 3 0.253 0.799 0.000 0 0.888 0.112
#> GSM260910 3 0.000 0.860 0.000 0 1.000 0.000
#> GSM260918 2 0.000 1.000 0.000 1 0.000 0.000
#> GSM260921 2 0.000 1.000 0.000 1 0.000 0.000
#> GSM260924 2 0.000 1.000 0.000 1 0.000 0.000
#> GSM260929 2 0.000 1.000 0.000 1 0.000 0.000
#> GSM260932 2 0.000 1.000 0.000 1 0.000 0.000
#> GSM260935 2 0.000 1.000 0.000 1 0.000 0.000
#> GSM260938 2 0.000 1.000 0.000 1 0.000 0.000
#> GSM260941 2 0.000 1.000 0.000 1 0.000 0.000
#> GSM260944 2 0.000 1.000 0.000 1 0.000 0.000
#> GSM260947 2 0.000 1.000 0.000 1 0.000 0.000
#> GSM260952 2 0.000 1.000 0.000 1 0.000 0.000
#> GSM260914 1 0.000 1.000 1.000 0 0.000 0.000
#> GSM260916 1 0.000 1.000 1.000 0 0.000 0.000
#> GSM260919 1 0.000 1.000 1.000 0 0.000 0.000
#> GSM260922 1 0.000 1.000 1.000 0 0.000 0.000
#> GSM260925 1 0.000 1.000 1.000 0 0.000 0.000
#> GSM260927 1 0.000 1.000 1.000 0 0.000 0.000
#> GSM260930 1 0.000 1.000 1.000 0 0.000 0.000
#> GSM260933 1 0.000 1.000 1.000 0 0.000 0.000
#> GSM260936 1 0.000 1.000 1.000 0 0.000 0.000
#> GSM260939 1 0.000 1.000 1.000 0 0.000 0.000
#> GSM260942 1 0.000 1.000 1.000 0 0.000 0.000
#> GSM260945 1 0.000 1.000 1.000 0 0.000 0.000
#> GSM260948 1 0.000 1.000 1.000 0 0.000 0.000
#> GSM260950 1 0.000 1.000 1.000 0 0.000 0.000
#> GSM260915 3 0.000 0.860 0.000 0 1.000 0.000
#> GSM260917 3 0.139 0.827 0.000 0 0.952 0.048
#> GSM260920 3 0.000 0.860 0.000 0 1.000 0.000
#> GSM260923 3 0.000 0.860 0.000 0 1.000 0.000
#> GSM260926 3 0.000 0.860 0.000 0 1.000 0.000
#> GSM260928 3 0.499 0.193 0.468 0 0.532 0.000
#> GSM260931 4 0.361 0.880 0.000 0 0.200 0.800
#> GSM260934 3 0.253 0.799 0.000 0 0.888 0.112
#> GSM260937 4 0.000 0.777 0.000 0 0.000 1.000
#> GSM260940 4 0.401 0.851 0.000 0 0.244 0.756
#> GSM260943 4 0.344 0.882 0.000 0 0.184 0.816
#> GSM260946 4 0.430 0.798 0.000 0 0.284 0.716
#> GSM260949 3 0.000 0.860 0.000 0 1.000 0.000
#> GSM260951 4 0.228 0.849 0.000 0 0.096 0.904
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM260888 2 0.0000 0.961 0.000 1.00 0.000 0.000 0.000
#> GSM260893 2 0.0000 0.961 0.000 1.00 0.000 0.000 0.000
#> GSM260896 2 0.0000 0.961 0.000 1.00 0.000 0.000 0.000
#> GSM260899 2 0.1732 0.961 0.000 0.92 0.000 0.080 0.000
#> GSM260902 2 0.1732 0.961 0.000 0.92 0.000 0.080 0.000
#> GSM260905 2 0.1732 0.961 0.000 0.92 0.000 0.080 0.000
#> GSM260908 2 0.1732 0.961 0.000 0.92 0.000 0.080 0.000
#> GSM260911 2 0.0000 0.961 0.000 1.00 0.000 0.000 0.000
#> GSM260912 2 0.0000 0.961 0.000 1.00 0.000 0.000 0.000
#> GSM260913 3 0.1478 0.725 0.000 0.00 0.936 0.064 0.000
#> GSM260886 1 0.0000 1.000 1.000 0.00 0.000 0.000 0.000
#> GSM260889 1 0.0000 1.000 1.000 0.00 0.000 0.000 0.000
#> GSM260891 1 0.0000 1.000 1.000 0.00 0.000 0.000 0.000
#> GSM260894 1 0.0000 1.000 1.000 0.00 0.000 0.000 0.000
#> GSM260897 1 0.0000 1.000 1.000 0.00 0.000 0.000 0.000
#> GSM260900 1 0.0000 1.000 1.000 0.00 0.000 0.000 0.000
#> GSM260903 1 0.0000 1.000 1.000 0.00 0.000 0.000 0.000
#> GSM260906 1 0.0000 1.000 1.000 0.00 0.000 0.000 0.000
#> GSM260909 1 0.0000 1.000 1.000 0.00 0.000 0.000 0.000
#> GSM260887 3 0.0794 0.736 0.000 0.00 0.972 0.028 0.000
#> GSM260890 3 0.0404 0.744 0.000 0.00 0.988 0.012 0.000
#> GSM260892 3 0.1478 0.725 0.000 0.00 0.936 0.064 0.000
#> GSM260895 4 0.3362 0.608 0.076 0.00 0.080 0.844 0.000
#> GSM260898 3 0.5933 -0.261 0.000 0.00 0.448 0.448 0.104
#> GSM260901 3 0.5933 -0.261 0.000 0.00 0.448 0.448 0.104
#> GSM260904 3 0.5933 -0.261 0.000 0.00 0.448 0.448 0.104
#> GSM260907 3 0.5933 -0.261 0.000 0.00 0.448 0.448 0.104
#> GSM260910 3 0.0162 0.744 0.000 0.00 0.996 0.004 0.000
#> GSM260918 2 0.0000 0.961 0.000 1.00 0.000 0.000 0.000
#> GSM260921 2 0.0000 0.961 0.000 1.00 0.000 0.000 0.000
#> GSM260924 2 0.0000 0.961 0.000 1.00 0.000 0.000 0.000
#> GSM260929 2 0.0000 0.961 0.000 1.00 0.000 0.000 0.000
#> GSM260932 2 0.1732 0.961 0.000 0.92 0.000 0.080 0.000
#> GSM260935 2 0.1732 0.961 0.000 0.92 0.000 0.080 0.000
#> GSM260938 2 0.1732 0.961 0.000 0.92 0.000 0.080 0.000
#> GSM260941 2 0.1732 0.961 0.000 0.92 0.000 0.080 0.000
#> GSM260944 2 0.1732 0.961 0.000 0.92 0.000 0.080 0.000
#> GSM260947 2 0.1732 0.961 0.000 0.92 0.000 0.080 0.000
#> GSM260952 2 0.0000 0.961 0.000 1.00 0.000 0.000 0.000
#> GSM260914 1 0.0000 1.000 1.000 0.00 0.000 0.000 0.000
#> GSM260916 1 0.0000 1.000 1.000 0.00 0.000 0.000 0.000
#> GSM260919 1 0.0000 1.000 1.000 0.00 0.000 0.000 0.000
#> GSM260922 1 0.0000 1.000 1.000 0.00 0.000 0.000 0.000
#> GSM260925 1 0.0000 1.000 1.000 0.00 0.000 0.000 0.000
#> GSM260927 1 0.0000 1.000 1.000 0.00 0.000 0.000 0.000
#> GSM260930 1 0.0000 1.000 1.000 0.00 0.000 0.000 0.000
#> GSM260933 1 0.0000 1.000 1.000 0.00 0.000 0.000 0.000
#> GSM260936 1 0.0000 1.000 1.000 0.00 0.000 0.000 0.000
#> GSM260939 1 0.0000 1.000 1.000 0.00 0.000 0.000 0.000
#> GSM260942 1 0.0000 1.000 1.000 0.00 0.000 0.000 0.000
#> GSM260945 1 0.0000 1.000 1.000 0.00 0.000 0.000 0.000
#> GSM260948 1 0.0000 1.000 1.000 0.00 0.000 0.000 0.000
#> GSM260950 1 0.0000 1.000 1.000 0.00 0.000 0.000 0.000
#> GSM260915 3 0.0510 0.742 0.000 0.00 0.984 0.016 0.000
#> GSM260917 3 0.1893 0.711 0.000 0.00 0.928 0.024 0.048
#> GSM260920 3 0.1478 0.725 0.000 0.00 0.936 0.064 0.000
#> GSM260923 3 0.0404 0.743 0.000 0.00 0.988 0.012 0.000
#> GSM260926 3 0.0404 0.744 0.000 0.00 0.988 0.012 0.000
#> GSM260928 4 0.3346 0.605 0.092 0.00 0.064 0.844 0.000
#> GSM260931 5 0.3462 0.852 0.000 0.00 0.196 0.012 0.792
#> GSM260934 4 0.5933 -0.157 0.000 0.00 0.448 0.448 0.104
#> GSM260937 5 0.0000 0.687 0.000 0.00 0.000 0.000 1.000
#> GSM260940 5 0.4270 0.832 0.000 0.00 0.204 0.048 0.748
#> GSM260943 5 0.3318 0.855 0.000 0.00 0.180 0.012 0.808
#> GSM260946 5 0.4883 0.791 0.000 0.00 0.200 0.092 0.708
#> GSM260949 3 0.1410 0.727 0.000 0.00 0.940 0.060 0.000
#> GSM260951 5 0.1965 0.801 0.000 0.00 0.096 0.000 0.904
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM260888 2 0.0000 0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260893 2 0.0000 0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260896 2 0.0000 0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260899 6 0.2260 0.932 0.000 0.140 0.000 0.000 0.000 0.860
#> GSM260902 6 0.2260 0.932 0.000 0.140 0.000 0.000 0.000 0.860
#> GSM260905 6 0.3727 0.634 0.000 0.388 0.000 0.000 0.000 0.612
#> GSM260908 6 0.3727 0.634 0.000 0.388 0.000 0.000 0.000 0.612
#> GSM260911 2 0.0000 0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260912 2 0.0458 0.986 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM260913 4 0.0146 0.914 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM260886 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260889 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260891 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260894 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260897 1 0.0260 0.996 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM260900 1 0.0260 0.996 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM260903 1 0.0260 0.996 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM260906 1 0.0260 0.996 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM260909 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260887 4 0.1765 0.915 0.000 0.000 0.000 0.904 0.096 0.000
#> GSM260890 4 0.1501 0.931 0.000 0.000 0.000 0.924 0.076 0.000
#> GSM260892 4 0.0146 0.914 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM260895 5 0.2245 0.418 0.040 0.000 0.000 0.036 0.908 0.016
#> GSM260898 5 0.5689 0.765 0.000 0.000 0.196 0.288 0.516 0.000
#> GSM260901 5 0.5689 0.765 0.000 0.000 0.196 0.288 0.516 0.000
#> GSM260904 5 0.5689 0.765 0.000 0.000 0.196 0.288 0.516 0.000
#> GSM260907 5 0.5689 0.765 0.000 0.000 0.196 0.288 0.516 0.000
#> GSM260910 4 0.1327 0.933 0.000 0.000 0.000 0.936 0.064 0.000
#> GSM260918 2 0.0458 0.986 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM260921 2 0.0000 0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260924 2 0.0000 0.991 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260929 2 0.0458 0.986 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM260932 6 0.2260 0.932 0.000 0.140 0.000 0.000 0.000 0.860
#> GSM260935 6 0.2260 0.932 0.000 0.140 0.000 0.000 0.000 0.860
#> GSM260938 6 0.2260 0.932 0.000 0.140 0.000 0.000 0.000 0.860
#> GSM260941 6 0.2260 0.932 0.000 0.140 0.000 0.000 0.000 0.860
#> GSM260944 6 0.2260 0.932 0.000 0.140 0.000 0.000 0.000 0.860
#> GSM260947 6 0.2260 0.932 0.000 0.140 0.000 0.000 0.000 0.860
#> GSM260952 2 0.0458 0.986 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM260914 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260916 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260919 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260922 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260925 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260927 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260930 1 0.0260 0.996 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM260933 1 0.0260 0.996 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM260936 1 0.0260 0.996 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM260939 1 0.0260 0.996 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM260942 1 0.0260 0.996 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM260945 1 0.0260 0.996 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM260948 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260950 1 0.0000 0.997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260915 4 0.1556 0.928 0.000 0.000 0.000 0.920 0.080 0.000
#> GSM260917 4 0.3472 0.801 0.000 0.000 0.100 0.808 0.092 0.000
#> GSM260920 4 0.0260 0.913 0.000 0.000 0.000 0.992 0.008 0.000
#> GSM260923 4 0.1204 0.932 0.000 0.000 0.000 0.944 0.056 0.000
#> GSM260926 4 0.1501 0.931 0.000 0.000 0.000 0.924 0.076 0.000
#> GSM260928 5 0.1801 0.418 0.056 0.000 0.000 0.004 0.924 0.016
#> GSM260931 3 0.1910 0.835 0.000 0.000 0.892 0.108 0.000 0.000
#> GSM260934 5 0.5689 0.765 0.000 0.000 0.196 0.288 0.516 0.000
#> GSM260937 3 0.2979 0.698 0.000 0.000 0.840 0.000 0.044 0.116
#> GSM260940 3 0.2843 0.810 0.000 0.000 0.848 0.116 0.036 0.000
#> GSM260943 3 0.1714 0.838 0.000 0.000 0.908 0.092 0.000 0.000
#> GSM260946 3 0.3558 0.754 0.000 0.000 0.800 0.112 0.088 0.000
#> GSM260949 4 0.0146 0.916 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM260951 3 0.3424 0.775 0.000 0.000 0.840 0.052 0.044 0.064
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) cell.type(p) k
#> MAD:hclust 67 0.939 2.75e-14 2
#> MAD:hclust 65 0.924 7.14e-26 3
#> MAD:hclust 65 0.120 2.14e-24 4
#> MAD:hclust 62 0.349 7.86e-22 5
#> MAD:hclust 65 0.171 6.54e-22 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 67 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.552 0.784 0.858 0.4468 0.575 0.575
#> 3 3 0.646 0.932 0.878 0.4280 0.750 0.566
#> 4 4 0.817 0.746 0.821 0.1332 0.979 0.936
#> 5 5 0.805 0.858 0.706 0.0666 0.878 0.612
#> 6 6 0.768 0.720 0.772 0.0349 0.961 0.810
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM260888 2 0.9732 0.991 0.404 0.596
#> GSM260893 2 0.9732 0.991 0.404 0.596
#> GSM260896 2 0.9732 0.991 0.404 0.596
#> GSM260899 2 0.9661 0.991 0.392 0.608
#> GSM260902 2 0.9661 0.991 0.392 0.608
#> GSM260905 2 0.9661 0.991 0.392 0.608
#> GSM260908 2 0.9661 0.991 0.392 0.608
#> GSM260911 2 0.9732 0.991 0.404 0.596
#> GSM260912 2 0.9732 0.991 0.404 0.596
#> GSM260913 1 0.0000 0.627 1.000 0.000
#> GSM260886 1 0.9754 0.759 0.592 0.408
#> GSM260889 1 0.9754 0.759 0.592 0.408
#> GSM260891 1 0.9754 0.759 0.592 0.408
#> GSM260894 1 0.9754 0.759 0.592 0.408
#> GSM260897 1 0.9815 0.758 0.580 0.420
#> GSM260900 1 0.9815 0.758 0.580 0.420
#> GSM260903 1 0.9815 0.758 0.580 0.420
#> GSM260906 1 0.9815 0.758 0.580 0.420
#> GSM260909 1 0.9754 0.759 0.592 0.408
#> GSM260887 1 0.0000 0.627 1.000 0.000
#> GSM260890 1 0.0000 0.627 1.000 0.000
#> GSM260892 1 0.0000 0.627 1.000 0.000
#> GSM260895 1 0.9661 0.756 0.608 0.392
#> GSM260898 1 0.0938 0.625 0.988 0.012
#> GSM260901 1 0.0938 0.625 0.988 0.012
#> GSM260904 1 0.0938 0.625 0.988 0.012
#> GSM260907 1 0.0938 0.625 0.988 0.012
#> GSM260910 1 0.0000 0.627 1.000 0.000
#> GSM260918 2 0.9732 0.991 0.404 0.596
#> GSM260921 2 0.9732 0.991 0.404 0.596
#> GSM260924 2 0.9732 0.991 0.404 0.596
#> GSM260929 2 0.9732 0.991 0.404 0.596
#> GSM260932 2 0.9661 0.991 0.392 0.608
#> GSM260935 2 0.9661 0.991 0.392 0.608
#> GSM260938 2 0.9661 0.991 0.392 0.608
#> GSM260941 2 0.9661 0.991 0.392 0.608
#> GSM260944 2 0.9661 0.991 0.392 0.608
#> GSM260947 2 0.9661 0.991 0.392 0.608
#> GSM260952 2 0.9732 0.991 0.404 0.596
#> GSM260914 1 0.9754 0.759 0.592 0.408
#> GSM260916 1 0.9754 0.759 0.592 0.408
#> GSM260919 1 0.9754 0.759 0.592 0.408
#> GSM260922 1 0.9754 0.759 0.592 0.408
#> GSM260925 1 0.9754 0.759 0.592 0.408
#> GSM260927 1 0.9754 0.759 0.592 0.408
#> GSM260930 1 0.9815 0.758 0.580 0.420
#> GSM260933 1 0.9815 0.758 0.580 0.420
#> GSM260936 1 0.9815 0.758 0.580 0.420
#> GSM260939 1 0.9815 0.758 0.580 0.420
#> GSM260942 1 0.9815 0.758 0.580 0.420
#> GSM260945 1 0.9815 0.758 0.580 0.420
#> GSM260948 1 0.9754 0.759 0.592 0.408
#> GSM260950 1 0.9754 0.759 0.592 0.408
#> GSM260915 1 0.0000 0.627 1.000 0.000
#> GSM260917 1 0.0000 0.627 1.000 0.000
#> GSM260920 1 0.0000 0.627 1.000 0.000
#> GSM260923 1 0.0000 0.627 1.000 0.000
#> GSM260926 1 0.0000 0.627 1.000 0.000
#> GSM260928 1 0.9661 0.756 0.608 0.392
#> GSM260931 1 0.0938 0.625 0.988 0.012
#> GSM260934 1 0.0938 0.625 0.988 0.012
#> GSM260937 1 0.0938 0.625 0.988 0.012
#> GSM260940 1 0.0938 0.625 0.988 0.012
#> GSM260943 1 0.0938 0.625 0.988 0.012
#> GSM260946 1 0.0938 0.625 0.988 0.012
#> GSM260949 1 0.0000 0.627 1.000 0.000
#> GSM260951 1 0.0000 0.627 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM260888 2 0.0237 0.953 0.004 0.996 0.000
#> GSM260893 2 0.0237 0.953 0.004 0.996 0.000
#> GSM260896 2 0.0237 0.953 0.004 0.996 0.000
#> GSM260899 2 0.3784 0.945 0.004 0.864 0.132
#> GSM260902 2 0.3784 0.945 0.004 0.864 0.132
#> GSM260905 2 0.3349 0.951 0.004 0.888 0.108
#> GSM260908 2 0.3425 0.951 0.004 0.884 0.112
#> GSM260911 2 0.0237 0.953 0.004 0.996 0.000
#> GSM260912 2 0.0237 0.953 0.004 0.996 0.000
#> GSM260913 3 0.6775 0.966 0.164 0.096 0.740
#> GSM260886 1 0.0000 0.928 1.000 0.000 0.000
#> GSM260889 1 0.0000 0.928 1.000 0.000 0.000
#> GSM260891 1 0.0000 0.928 1.000 0.000 0.000
#> GSM260894 1 0.0000 0.928 1.000 0.000 0.000
#> GSM260897 1 0.3412 0.913 0.876 0.000 0.124
#> GSM260900 1 0.3412 0.913 0.876 0.000 0.124
#> GSM260903 1 0.3412 0.913 0.876 0.000 0.124
#> GSM260906 1 0.3412 0.913 0.876 0.000 0.124
#> GSM260909 1 0.0000 0.928 1.000 0.000 0.000
#> GSM260887 3 0.6775 0.966 0.164 0.096 0.740
#> GSM260890 3 0.6775 0.966 0.164 0.096 0.740
#> GSM260892 3 0.6775 0.966 0.164 0.096 0.740
#> GSM260895 3 0.5404 0.851 0.256 0.004 0.740
#> GSM260898 3 0.5931 0.964 0.124 0.084 0.792
#> GSM260901 3 0.5931 0.964 0.124 0.084 0.792
#> GSM260904 3 0.5931 0.964 0.124 0.084 0.792
#> GSM260907 3 0.5931 0.964 0.124 0.084 0.792
#> GSM260910 3 0.6775 0.966 0.164 0.096 0.740
#> GSM260918 2 0.0237 0.953 0.004 0.996 0.000
#> GSM260921 2 0.0237 0.953 0.004 0.996 0.000
#> GSM260924 2 0.0237 0.953 0.004 0.996 0.000
#> GSM260929 2 0.0237 0.953 0.004 0.996 0.000
#> GSM260932 2 0.3784 0.945 0.004 0.864 0.132
#> GSM260935 2 0.3784 0.945 0.004 0.864 0.132
#> GSM260938 2 0.3425 0.951 0.004 0.884 0.112
#> GSM260941 2 0.3425 0.951 0.004 0.884 0.112
#> GSM260944 2 0.3425 0.951 0.004 0.884 0.112
#> GSM260947 2 0.3425 0.951 0.004 0.884 0.112
#> GSM260952 2 0.0237 0.953 0.004 0.996 0.000
#> GSM260914 1 0.0000 0.928 1.000 0.000 0.000
#> GSM260916 1 0.0000 0.928 1.000 0.000 0.000
#> GSM260919 1 0.0000 0.928 1.000 0.000 0.000
#> GSM260922 1 0.0000 0.928 1.000 0.000 0.000
#> GSM260925 1 0.0000 0.928 1.000 0.000 0.000
#> GSM260927 1 0.0000 0.928 1.000 0.000 0.000
#> GSM260930 1 0.3412 0.913 0.876 0.000 0.124
#> GSM260933 1 0.3412 0.913 0.876 0.000 0.124
#> GSM260936 1 0.3412 0.913 0.876 0.000 0.124
#> GSM260939 1 0.3412 0.913 0.876 0.000 0.124
#> GSM260942 1 0.3412 0.913 0.876 0.000 0.124
#> GSM260945 1 0.3412 0.913 0.876 0.000 0.124
#> GSM260948 1 0.0424 0.928 0.992 0.000 0.008
#> GSM260950 1 0.0424 0.928 0.992 0.000 0.008
#> GSM260915 3 0.6775 0.966 0.164 0.096 0.740
#> GSM260917 3 0.6470 0.967 0.148 0.092 0.760
#> GSM260920 3 0.6775 0.966 0.164 0.096 0.740
#> GSM260923 3 0.6775 0.966 0.164 0.096 0.740
#> GSM260926 3 0.6775 0.966 0.164 0.096 0.740
#> GSM260928 1 0.6247 0.124 0.620 0.004 0.376
#> GSM260931 3 0.5931 0.964 0.124 0.084 0.792
#> GSM260934 3 0.5931 0.964 0.124 0.084 0.792
#> GSM260937 3 0.5931 0.964 0.124 0.084 0.792
#> GSM260940 3 0.5931 0.964 0.124 0.084 0.792
#> GSM260943 3 0.5931 0.964 0.124 0.084 0.792
#> GSM260946 3 0.5931 0.964 0.124 0.084 0.792
#> GSM260949 3 0.6775 0.966 0.164 0.096 0.740
#> GSM260951 3 0.6470 0.967 0.148 0.092 0.760
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM260888 2 0.0188 0.873 0.000 0.996 0.004 0.000
#> GSM260893 2 0.0188 0.873 0.000 0.996 0.004 0.000
#> GSM260896 2 0.0188 0.873 0.000 0.996 0.004 0.000
#> GSM260899 2 0.5203 0.814 0.000 0.636 0.016 0.348
#> GSM260902 2 0.5203 0.814 0.000 0.636 0.016 0.348
#> GSM260905 2 0.4088 0.863 0.000 0.764 0.004 0.232
#> GSM260908 2 0.4328 0.861 0.000 0.748 0.008 0.244
#> GSM260911 2 0.0188 0.873 0.000 0.996 0.004 0.000
#> GSM260912 2 0.0188 0.873 0.000 0.996 0.004 0.000
#> GSM260913 3 0.5228 0.573 0.036 0.000 0.696 0.268
#> GSM260886 1 0.4914 0.803 0.676 0.000 0.012 0.312
#> GSM260889 1 0.4914 0.803 0.676 0.000 0.012 0.312
#> GSM260891 1 0.4914 0.803 0.676 0.000 0.012 0.312
#> GSM260894 1 0.4914 0.803 0.676 0.000 0.012 0.312
#> GSM260897 1 0.0469 0.762 0.988 0.000 0.012 0.000
#> GSM260900 1 0.0469 0.762 0.988 0.000 0.012 0.000
#> GSM260903 1 0.0469 0.762 0.988 0.000 0.012 0.000
#> GSM260906 1 0.0469 0.762 0.988 0.000 0.012 0.000
#> GSM260909 1 0.4914 0.803 0.676 0.000 0.012 0.312
#> GSM260887 3 0.5228 0.573 0.036 0.000 0.696 0.268
#> GSM260890 3 0.5228 0.573 0.036 0.000 0.696 0.268
#> GSM260892 3 0.5228 0.573 0.036 0.000 0.696 0.268
#> GSM260895 4 0.5938 0.229 0.036 0.000 0.476 0.488
#> GSM260898 3 0.1118 0.703 0.036 0.000 0.964 0.000
#> GSM260901 3 0.1118 0.703 0.036 0.000 0.964 0.000
#> GSM260904 3 0.1118 0.703 0.036 0.000 0.964 0.000
#> GSM260907 3 0.1118 0.703 0.036 0.000 0.964 0.000
#> GSM260910 3 0.5228 0.573 0.036 0.000 0.696 0.268
#> GSM260918 2 0.0188 0.873 0.000 0.996 0.004 0.000
#> GSM260921 2 0.0188 0.873 0.000 0.996 0.004 0.000
#> GSM260924 2 0.0469 0.872 0.000 0.988 0.012 0.000
#> GSM260929 2 0.0188 0.873 0.000 0.996 0.004 0.000
#> GSM260932 2 0.5203 0.814 0.000 0.636 0.016 0.348
#> GSM260935 2 0.5203 0.814 0.000 0.636 0.016 0.348
#> GSM260938 2 0.4391 0.860 0.000 0.740 0.008 0.252
#> GSM260941 2 0.4391 0.860 0.000 0.740 0.008 0.252
#> GSM260944 2 0.4391 0.860 0.000 0.740 0.008 0.252
#> GSM260947 2 0.4391 0.860 0.000 0.740 0.008 0.252
#> GSM260952 2 0.0336 0.873 0.000 0.992 0.008 0.000
#> GSM260914 1 0.4914 0.803 0.676 0.000 0.012 0.312
#> GSM260916 1 0.4936 0.801 0.672 0.000 0.012 0.316
#> GSM260919 1 0.5068 0.803 0.676 0.004 0.012 0.308
#> GSM260922 1 0.4936 0.801 0.672 0.000 0.012 0.316
#> GSM260925 1 0.4914 0.803 0.676 0.000 0.012 0.312
#> GSM260927 1 0.4891 0.804 0.680 0.000 0.012 0.308
#> GSM260930 1 0.0469 0.762 0.988 0.000 0.012 0.000
#> GSM260933 1 0.0469 0.762 0.988 0.000 0.012 0.000
#> GSM260936 1 0.0657 0.762 0.984 0.004 0.012 0.000
#> GSM260939 1 0.0657 0.762 0.984 0.004 0.012 0.000
#> GSM260942 1 0.0657 0.762 0.984 0.004 0.012 0.000
#> GSM260945 1 0.0469 0.762 0.988 0.000 0.012 0.000
#> GSM260948 1 0.4948 0.804 0.696 0.004 0.012 0.288
#> GSM260950 1 0.4948 0.804 0.696 0.004 0.012 0.288
#> GSM260915 3 0.5228 0.573 0.036 0.000 0.696 0.268
#> GSM260917 3 0.2813 0.676 0.024 0.000 0.896 0.080
#> GSM260920 3 0.5228 0.573 0.036 0.000 0.696 0.268
#> GSM260923 3 0.5228 0.573 0.036 0.000 0.696 0.268
#> GSM260926 3 0.5228 0.573 0.036 0.000 0.696 0.268
#> GSM260928 4 0.7609 0.520 0.224 0.000 0.312 0.464
#> GSM260931 3 0.2319 0.684 0.036 0.000 0.924 0.040
#> GSM260934 3 0.1118 0.703 0.036 0.000 0.964 0.000
#> GSM260937 3 0.2319 0.684 0.036 0.000 0.924 0.040
#> GSM260940 3 0.2319 0.684 0.036 0.000 0.924 0.040
#> GSM260943 3 0.2319 0.684 0.036 0.000 0.924 0.040
#> GSM260946 3 0.2319 0.684 0.036 0.000 0.924 0.040
#> GSM260949 3 0.5228 0.573 0.036 0.000 0.696 0.268
#> GSM260951 3 0.2021 0.684 0.024 0.000 0.936 0.040
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM260888 2 0.0290 0.821 0.000 0.992 0.000 0.000 0.008
#> GSM260893 2 0.0162 0.821 0.000 0.996 0.000 0.000 0.004
#> GSM260896 2 0.0162 0.821 0.000 0.996 0.000 0.000 0.004
#> GSM260899 2 0.6155 0.779 0.000 0.556 0.004 0.292 0.148
#> GSM260902 2 0.6155 0.779 0.000 0.556 0.004 0.292 0.148
#> GSM260905 2 0.5728 0.808 0.000 0.640 0.004 0.172 0.184
#> GSM260908 2 0.5940 0.803 0.000 0.612 0.004 0.184 0.200
#> GSM260911 2 0.0000 0.821 0.000 1.000 0.000 0.000 0.000
#> GSM260912 2 0.0451 0.821 0.000 0.988 0.000 0.004 0.008
#> GSM260913 4 0.4792 0.848 0.004 0.004 0.424 0.560 0.008
#> GSM260886 1 0.0000 0.963 1.000 0.000 0.000 0.000 0.000
#> GSM260889 1 0.0000 0.963 1.000 0.000 0.000 0.000 0.000
#> GSM260891 1 0.1478 0.928 0.936 0.000 0.000 0.064 0.000
#> GSM260894 1 0.1478 0.928 0.936 0.000 0.000 0.064 0.000
#> GSM260897 5 0.4383 0.990 0.424 0.000 0.000 0.004 0.572
#> GSM260900 5 0.4383 0.990 0.424 0.000 0.000 0.004 0.572
#> GSM260903 5 0.4497 0.988 0.424 0.000 0.000 0.008 0.568
#> GSM260906 5 0.4497 0.988 0.424 0.000 0.000 0.008 0.568
#> GSM260909 1 0.1478 0.928 0.936 0.000 0.000 0.064 0.000
#> GSM260887 4 0.4531 0.852 0.004 0.004 0.424 0.568 0.000
#> GSM260890 4 0.4531 0.852 0.004 0.004 0.424 0.568 0.000
#> GSM260892 4 0.4792 0.848 0.004 0.004 0.424 0.560 0.008
#> GSM260895 4 0.6635 0.485 0.160 0.000 0.180 0.604 0.056
#> GSM260898 3 0.2504 0.863 0.004 0.000 0.900 0.064 0.032
#> GSM260901 3 0.2504 0.863 0.004 0.000 0.900 0.064 0.032
#> GSM260904 3 0.2504 0.863 0.004 0.000 0.900 0.064 0.032
#> GSM260907 3 0.2504 0.863 0.004 0.000 0.900 0.064 0.032
#> GSM260910 4 0.4524 0.851 0.004 0.004 0.420 0.572 0.000
#> GSM260918 2 0.0451 0.821 0.000 0.988 0.000 0.004 0.008
#> GSM260921 2 0.0000 0.821 0.000 1.000 0.000 0.000 0.000
#> GSM260924 2 0.1202 0.818 0.000 0.960 0.004 0.004 0.032
#> GSM260929 2 0.0162 0.820 0.000 0.996 0.000 0.000 0.004
#> GSM260932 2 0.6155 0.779 0.000 0.556 0.004 0.292 0.148
#> GSM260935 2 0.6155 0.779 0.000 0.556 0.004 0.292 0.148
#> GSM260938 2 0.6132 0.797 0.000 0.584 0.004 0.200 0.212
#> GSM260941 2 0.6079 0.799 0.000 0.592 0.004 0.196 0.208
#> GSM260944 2 0.6079 0.799 0.000 0.592 0.004 0.196 0.208
#> GSM260947 2 0.6079 0.799 0.000 0.592 0.004 0.196 0.208
#> GSM260952 2 0.0807 0.820 0.000 0.976 0.000 0.012 0.012
#> GSM260914 1 0.0000 0.963 1.000 0.000 0.000 0.000 0.000
#> GSM260916 1 0.0290 0.960 0.992 0.000 0.000 0.008 0.000
#> GSM260919 1 0.0162 0.962 0.996 0.000 0.000 0.004 0.000
#> GSM260922 1 0.0290 0.960 0.992 0.000 0.000 0.008 0.000
#> GSM260925 1 0.0000 0.963 1.000 0.000 0.000 0.000 0.000
#> GSM260927 1 0.1544 0.925 0.932 0.000 0.000 0.068 0.000
#> GSM260930 5 0.4383 0.990 0.424 0.000 0.000 0.004 0.572
#> GSM260933 5 0.4383 0.990 0.424 0.000 0.000 0.004 0.572
#> GSM260936 5 0.4597 0.987 0.424 0.000 0.000 0.012 0.564
#> GSM260939 5 0.4597 0.987 0.424 0.000 0.000 0.012 0.564
#> GSM260942 5 0.4597 0.987 0.424 0.000 0.000 0.012 0.564
#> GSM260945 5 0.4597 0.987 0.424 0.000 0.000 0.012 0.564
#> GSM260948 1 0.0579 0.953 0.984 0.000 0.000 0.008 0.008
#> GSM260950 1 0.0404 0.955 0.988 0.000 0.000 0.000 0.012
#> GSM260915 4 0.4672 0.851 0.004 0.004 0.420 0.568 0.004
#> GSM260917 3 0.3844 0.360 0.004 0.004 0.736 0.256 0.000
#> GSM260920 4 0.4892 0.847 0.004 0.004 0.424 0.556 0.012
#> GSM260923 4 0.4531 0.852 0.004 0.004 0.424 0.568 0.000
#> GSM260926 4 0.4679 0.851 0.004 0.004 0.424 0.564 0.004
#> GSM260928 4 0.6772 0.343 0.288 0.000 0.108 0.548 0.056
#> GSM260931 3 0.0324 0.870 0.004 0.000 0.992 0.000 0.004
#> GSM260934 3 0.2504 0.863 0.004 0.000 0.900 0.064 0.032
#> GSM260937 3 0.1571 0.850 0.004 0.000 0.936 0.000 0.060
#> GSM260940 3 0.0324 0.870 0.004 0.000 0.992 0.000 0.004
#> GSM260943 3 0.1571 0.850 0.004 0.000 0.936 0.000 0.060
#> GSM260946 3 0.0324 0.870 0.004 0.000 0.992 0.000 0.004
#> GSM260949 4 0.4672 0.851 0.004 0.004 0.420 0.568 0.004
#> GSM260951 3 0.1864 0.843 0.004 0.004 0.924 0.000 0.068
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM260888 2 0.0520 0.639 0.000 0.984 0.008 0.000 0.008 0.000
#> GSM260893 2 0.0405 0.640 0.000 0.988 0.008 0.000 0.004 0.000
#> GSM260896 2 0.0405 0.640 0.000 0.988 0.008 0.000 0.004 0.000
#> GSM260899 6 0.6167 1.000 0.000 0.424 0.076 0.000 0.068 0.432
#> GSM260902 6 0.6167 1.000 0.000 0.424 0.076 0.000 0.068 0.432
#> GSM260905 2 0.4010 -0.110 0.000 0.584 0.000 0.000 0.008 0.408
#> GSM260908 2 0.4039 -0.152 0.000 0.568 0.000 0.000 0.008 0.424
#> GSM260911 2 0.0520 0.640 0.000 0.984 0.008 0.000 0.008 0.000
#> GSM260912 2 0.0260 0.640 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM260913 4 0.1405 0.822 0.004 0.000 0.000 0.948 0.024 0.024
#> GSM260886 1 0.0000 0.909 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260889 1 0.0000 0.909 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260891 1 0.3042 0.809 0.836 0.000 0.032 0.000 0.004 0.128
#> GSM260894 1 0.3042 0.809 0.836 0.000 0.032 0.000 0.004 0.128
#> GSM260897 5 0.4209 0.956 0.396 0.000 0.012 0.000 0.588 0.004
#> GSM260900 5 0.4209 0.956 0.396 0.000 0.012 0.000 0.588 0.004
#> GSM260903 5 0.4293 0.953 0.396 0.000 0.016 0.000 0.584 0.004
#> GSM260906 5 0.4293 0.953 0.396 0.000 0.016 0.000 0.584 0.004
#> GSM260909 1 0.3042 0.809 0.836 0.000 0.032 0.000 0.004 0.128
#> GSM260887 4 0.0146 0.832 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM260890 4 0.0291 0.832 0.004 0.000 0.000 0.992 0.004 0.000
#> GSM260892 4 0.1405 0.822 0.004 0.000 0.000 0.948 0.024 0.024
#> GSM260895 4 0.6710 0.467 0.064 0.000 0.052 0.552 0.076 0.256
#> GSM260898 3 0.4677 0.861 0.000 0.000 0.640 0.308 0.028 0.024
#> GSM260901 3 0.4677 0.861 0.000 0.000 0.640 0.308 0.028 0.024
#> GSM260904 3 0.4407 0.860 0.000 0.000 0.648 0.316 0.020 0.016
#> GSM260907 3 0.4407 0.860 0.000 0.000 0.648 0.316 0.020 0.016
#> GSM260910 4 0.0146 0.832 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM260918 2 0.0260 0.640 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM260921 2 0.0260 0.640 0.000 0.992 0.008 0.000 0.000 0.000
#> GSM260924 2 0.2346 0.564 0.000 0.892 0.016 0.004 0.084 0.004
#> GSM260929 2 0.0260 0.640 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM260932 6 0.6167 1.000 0.000 0.424 0.076 0.000 0.068 0.432
#> GSM260935 6 0.6167 1.000 0.000 0.424 0.076 0.000 0.068 0.432
#> GSM260938 2 0.3866 -0.287 0.000 0.516 0.000 0.000 0.000 0.484
#> GSM260941 2 0.3857 -0.222 0.000 0.532 0.000 0.000 0.000 0.468
#> GSM260944 2 0.3857 -0.222 0.000 0.532 0.000 0.000 0.000 0.468
#> GSM260947 2 0.3857 -0.222 0.000 0.532 0.000 0.000 0.000 0.468
#> GSM260952 2 0.0603 0.633 0.000 0.980 0.000 0.000 0.004 0.016
#> GSM260914 1 0.0000 0.909 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260916 1 0.0146 0.908 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM260919 1 0.0777 0.897 0.972 0.000 0.024 0.000 0.000 0.004
#> GSM260922 1 0.0146 0.908 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM260925 1 0.0000 0.909 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260927 1 0.3550 0.783 0.812 0.000 0.032 0.000 0.024 0.132
#> GSM260930 5 0.4209 0.956 0.396 0.000 0.012 0.000 0.588 0.004
#> GSM260933 5 0.4209 0.956 0.396 0.000 0.012 0.000 0.588 0.004
#> GSM260936 5 0.5234 0.937 0.396 0.000 0.048 0.000 0.532 0.024
#> GSM260939 5 0.5234 0.937 0.396 0.000 0.048 0.000 0.532 0.024
#> GSM260942 5 0.5234 0.937 0.396 0.000 0.048 0.000 0.532 0.024
#> GSM260945 5 0.5123 0.944 0.396 0.000 0.040 0.000 0.540 0.024
#> GSM260948 1 0.1124 0.883 0.956 0.000 0.036 0.000 0.000 0.008
#> GSM260950 1 0.0603 0.900 0.980 0.000 0.016 0.000 0.004 0.000
#> GSM260915 4 0.0508 0.831 0.004 0.000 0.000 0.984 0.012 0.000
#> GSM260917 4 0.3807 -0.141 0.004 0.000 0.368 0.628 0.000 0.000
#> GSM260920 4 0.1562 0.821 0.004 0.000 0.000 0.940 0.032 0.024
#> GSM260923 4 0.0291 0.832 0.004 0.000 0.000 0.992 0.004 0.000
#> GSM260926 4 0.0508 0.832 0.004 0.000 0.000 0.984 0.012 0.000
#> GSM260928 4 0.7572 0.366 0.140 0.000 0.052 0.448 0.088 0.272
#> GSM260931 3 0.3023 0.871 0.000 0.000 0.768 0.232 0.000 0.000
#> GSM260934 3 0.4677 0.861 0.000 0.000 0.640 0.308 0.028 0.024
#> GSM260937 3 0.5762 0.806 0.000 0.000 0.608 0.232 0.112 0.048
#> GSM260940 3 0.3163 0.871 0.000 0.000 0.764 0.232 0.000 0.004
#> GSM260943 3 0.5762 0.806 0.000 0.000 0.608 0.232 0.112 0.048
#> GSM260946 3 0.3023 0.871 0.000 0.000 0.768 0.232 0.000 0.000
#> GSM260949 4 0.1218 0.827 0.004 0.000 0.000 0.956 0.028 0.012
#> GSM260951 3 0.6025 0.794 0.004 0.000 0.592 0.232 0.120 0.052
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) cell.type(p) k
#> MAD:kmeans 67 0.939 2.75e-14 2
#> MAD:kmeans 66 0.920 2.62e-26 3
#> MAD:kmeans 66 0.835 8.36e-25 4
#> MAD:kmeans 64 0.967 1.07e-22 5
#> MAD:kmeans 58 0.976 5.56e-19 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 67 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.988 0.988 0.4737 0.525 0.525
#> 3 3 1.000 0.995 0.998 0.4250 0.780 0.589
#> 4 4 0.881 0.952 0.931 0.0887 0.940 0.816
#> 5 5 0.887 0.947 0.903 0.0678 0.937 0.761
#> 6 6 0.861 0.856 0.879 0.0401 0.994 0.971
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2
There is also optional best \(k\) = 2 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM260888 2 0.000 0.980 0.000 1.000
#> GSM260893 2 0.000 0.980 0.000 1.000
#> GSM260896 2 0.000 0.980 0.000 1.000
#> GSM260899 2 0.000 0.980 0.000 1.000
#> GSM260902 2 0.000 0.980 0.000 1.000
#> GSM260905 2 0.000 0.980 0.000 1.000
#> GSM260908 2 0.000 0.980 0.000 1.000
#> GSM260911 2 0.000 0.980 0.000 1.000
#> GSM260912 2 0.000 0.980 0.000 1.000
#> GSM260913 2 0.224 0.982 0.036 0.964
#> GSM260886 1 0.000 1.000 1.000 0.000
#> GSM260889 1 0.000 1.000 1.000 0.000
#> GSM260891 1 0.000 1.000 1.000 0.000
#> GSM260894 1 0.000 1.000 1.000 0.000
#> GSM260897 1 0.000 1.000 1.000 0.000
#> GSM260900 1 0.000 1.000 1.000 0.000
#> GSM260903 1 0.000 1.000 1.000 0.000
#> GSM260906 1 0.000 1.000 1.000 0.000
#> GSM260909 1 0.000 1.000 1.000 0.000
#> GSM260887 2 0.224 0.982 0.036 0.964
#> GSM260890 2 0.224 0.982 0.036 0.964
#> GSM260892 2 0.224 0.982 0.036 0.964
#> GSM260895 1 0.000 1.000 1.000 0.000
#> GSM260898 2 0.224 0.982 0.036 0.964
#> GSM260901 2 0.224 0.982 0.036 0.964
#> GSM260904 2 0.224 0.982 0.036 0.964
#> GSM260907 2 0.224 0.982 0.036 0.964
#> GSM260910 2 0.224 0.982 0.036 0.964
#> GSM260918 2 0.000 0.980 0.000 1.000
#> GSM260921 2 0.000 0.980 0.000 1.000
#> GSM260924 2 0.000 0.980 0.000 1.000
#> GSM260929 2 0.000 0.980 0.000 1.000
#> GSM260932 2 0.000 0.980 0.000 1.000
#> GSM260935 2 0.000 0.980 0.000 1.000
#> GSM260938 2 0.000 0.980 0.000 1.000
#> GSM260941 2 0.000 0.980 0.000 1.000
#> GSM260944 2 0.000 0.980 0.000 1.000
#> GSM260947 2 0.000 0.980 0.000 1.000
#> GSM260952 2 0.000 0.980 0.000 1.000
#> GSM260914 1 0.000 1.000 1.000 0.000
#> GSM260916 1 0.000 1.000 1.000 0.000
#> GSM260919 1 0.000 1.000 1.000 0.000
#> GSM260922 1 0.000 1.000 1.000 0.000
#> GSM260925 1 0.000 1.000 1.000 0.000
#> GSM260927 1 0.000 1.000 1.000 0.000
#> GSM260930 1 0.000 1.000 1.000 0.000
#> GSM260933 1 0.000 1.000 1.000 0.000
#> GSM260936 1 0.000 1.000 1.000 0.000
#> GSM260939 1 0.000 1.000 1.000 0.000
#> GSM260942 1 0.000 1.000 1.000 0.000
#> GSM260945 1 0.000 1.000 1.000 0.000
#> GSM260948 1 0.000 1.000 1.000 0.000
#> GSM260950 1 0.000 1.000 1.000 0.000
#> GSM260915 2 0.224 0.982 0.036 0.964
#> GSM260917 2 0.224 0.982 0.036 0.964
#> GSM260920 2 0.224 0.982 0.036 0.964
#> GSM260923 2 0.224 0.982 0.036 0.964
#> GSM260926 2 0.224 0.982 0.036 0.964
#> GSM260928 1 0.000 1.000 1.000 0.000
#> GSM260931 2 0.224 0.982 0.036 0.964
#> GSM260934 2 0.224 0.982 0.036 0.964
#> GSM260937 2 0.224 0.982 0.036 0.964
#> GSM260940 2 0.224 0.982 0.036 0.964
#> GSM260943 2 0.224 0.982 0.036 0.964
#> GSM260946 2 0.224 0.982 0.036 0.964
#> GSM260949 2 0.224 0.982 0.036 0.964
#> GSM260951 2 0.224 0.982 0.036 0.964
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM260888 2 0.000 1.000 0.00 1 0.00
#> GSM260893 2 0.000 1.000 0.00 1 0.00
#> GSM260896 2 0.000 1.000 0.00 1 0.00
#> GSM260899 2 0.000 1.000 0.00 1 0.00
#> GSM260902 2 0.000 1.000 0.00 1 0.00
#> GSM260905 2 0.000 1.000 0.00 1 0.00
#> GSM260908 2 0.000 1.000 0.00 1 0.00
#> GSM260911 2 0.000 1.000 0.00 1 0.00
#> GSM260912 2 0.000 1.000 0.00 1 0.00
#> GSM260913 3 0.000 0.993 0.00 0 1.00
#> GSM260886 1 0.000 1.000 1.00 0 0.00
#> GSM260889 1 0.000 1.000 1.00 0 0.00
#> GSM260891 1 0.000 1.000 1.00 0 0.00
#> GSM260894 1 0.000 1.000 1.00 0 0.00
#> GSM260897 1 0.000 1.000 1.00 0 0.00
#> GSM260900 1 0.000 1.000 1.00 0 0.00
#> GSM260903 1 0.000 1.000 1.00 0 0.00
#> GSM260906 1 0.000 1.000 1.00 0 0.00
#> GSM260909 1 0.000 1.000 1.00 0 0.00
#> GSM260887 3 0.000 0.993 0.00 0 1.00
#> GSM260890 3 0.000 0.993 0.00 0 1.00
#> GSM260892 3 0.000 0.993 0.00 0 1.00
#> GSM260895 3 0.369 0.837 0.14 0 0.86
#> GSM260898 3 0.000 0.993 0.00 0 1.00
#> GSM260901 3 0.000 0.993 0.00 0 1.00
#> GSM260904 3 0.000 0.993 0.00 0 1.00
#> GSM260907 3 0.000 0.993 0.00 0 1.00
#> GSM260910 3 0.000 0.993 0.00 0 1.00
#> GSM260918 2 0.000 1.000 0.00 1 0.00
#> GSM260921 2 0.000 1.000 0.00 1 0.00
#> GSM260924 2 0.000 1.000 0.00 1 0.00
#> GSM260929 2 0.000 1.000 0.00 1 0.00
#> GSM260932 2 0.000 1.000 0.00 1 0.00
#> GSM260935 2 0.000 1.000 0.00 1 0.00
#> GSM260938 2 0.000 1.000 0.00 1 0.00
#> GSM260941 2 0.000 1.000 0.00 1 0.00
#> GSM260944 2 0.000 1.000 0.00 1 0.00
#> GSM260947 2 0.000 1.000 0.00 1 0.00
#> GSM260952 2 0.000 1.000 0.00 1 0.00
#> GSM260914 1 0.000 1.000 1.00 0 0.00
#> GSM260916 1 0.000 1.000 1.00 0 0.00
#> GSM260919 1 0.000 1.000 1.00 0 0.00
#> GSM260922 1 0.000 1.000 1.00 0 0.00
#> GSM260925 1 0.000 1.000 1.00 0 0.00
#> GSM260927 1 0.000 1.000 1.00 0 0.00
#> GSM260930 1 0.000 1.000 1.00 0 0.00
#> GSM260933 1 0.000 1.000 1.00 0 0.00
#> GSM260936 1 0.000 1.000 1.00 0 0.00
#> GSM260939 1 0.000 1.000 1.00 0 0.00
#> GSM260942 1 0.000 1.000 1.00 0 0.00
#> GSM260945 1 0.000 1.000 1.00 0 0.00
#> GSM260948 1 0.000 1.000 1.00 0 0.00
#> GSM260950 1 0.000 1.000 1.00 0 0.00
#> GSM260915 3 0.000 0.993 0.00 0 1.00
#> GSM260917 3 0.000 0.993 0.00 0 1.00
#> GSM260920 3 0.000 0.993 0.00 0 1.00
#> GSM260923 3 0.000 0.993 0.00 0 1.00
#> GSM260926 3 0.000 0.993 0.00 0 1.00
#> GSM260928 1 0.000 1.000 1.00 0 0.00
#> GSM260931 3 0.000 0.993 0.00 0 1.00
#> GSM260934 3 0.000 0.993 0.00 0 1.00
#> GSM260937 3 0.000 0.993 0.00 0 1.00
#> GSM260940 3 0.000 0.993 0.00 0 1.00
#> GSM260943 3 0.000 0.993 0.00 0 1.00
#> GSM260946 3 0.000 0.993 0.00 0 1.00
#> GSM260949 3 0.000 0.993 0.00 0 1.00
#> GSM260951 3 0.000 0.993 0.00 0 1.00
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM260888 2 0.0000 0.997 0.000 1.000 0.000 0.000
#> GSM260893 2 0.0000 0.997 0.000 1.000 0.000 0.000
#> GSM260896 2 0.0000 0.997 0.000 1.000 0.000 0.000
#> GSM260899 2 0.0336 0.997 0.000 0.992 0.008 0.000
#> GSM260902 2 0.0336 0.997 0.000 0.992 0.008 0.000
#> GSM260905 2 0.0336 0.997 0.000 0.992 0.008 0.000
#> GSM260908 2 0.0336 0.997 0.000 0.992 0.008 0.000
#> GSM260911 2 0.0000 0.997 0.000 1.000 0.000 0.000
#> GSM260912 2 0.0000 0.997 0.000 1.000 0.000 0.000
#> GSM260913 4 0.0000 0.965 0.000 0.000 0.000 1.000
#> GSM260886 1 0.0188 0.922 0.996 0.000 0.004 0.000
#> GSM260889 1 0.0188 0.922 0.996 0.000 0.004 0.000
#> GSM260891 1 0.0188 0.922 0.996 0.000 0.004 0.000
#> GSM260894 1 0.0000 0.923 1.000 0.000 0.000 0.000
#> GSM260897 1 0.3356 0.899 0.824 0.000 0.176 0.000
#> GSM260900 1 0.3356 0.899 0.824 0.000 0.176 0.000
#> GSM260903 1 0.3356 0.899 0.824 0.000 0.176 0.000
#> GSM260906 1 0.3356 0.899 0.824 0.000 0.176 0.000
#> GSM260909 1 0.0188 0.922 0.996 0.000 0.004 0.000
#> GSM260887 4 0.0000 0.965 0.000 0.000 0.000 1.000
#> GSM260890 4 0.0000 0.965 0.000 0.000 0.000 1.000
#> GSM260892 4 0.0000 0.965 0.000 0.000 0.000 1.000
#> GSM260895 4 0.4595 0.684 0.176 0.000 0.044 0.780
#> GSM260898 3 0.3907 0.989 0.000 0.000 0.768 0.232
#> GSM260901 3 0.3907 0.989 0.000 0.000 0.768 0.232
#> GSM260904 3 0.3907 0.989 0.000 0.000 0.768 0.232
#> GSM260907 3 0.3907 0.989 0.000 0.000 0.768 0.232
#> GSM260910 4 0.0000 0.965 0.000 0.000 0.000 1.000
#> GSM260918 2 0.0000 0.997 0.000 1.000 0.000 0.000
#> GSM260921 2 0.0000 0.997 0.000 1.000 0.000 0.000
#> GSM260924 2 0.0000 0.997 0.000 1.000 0.000 0.000
#> GSM260929 2 0.0000 0.997 0.000 1.000 0.000 0.000
#> GSM260932 2 0.0336 0.997 0.000 0.992 0.008 0.000
#> GSM260935 2 0.0336 0.997 0.000 0.992 0.008 0.000
#> GSM260938 2 0.0336 0.997 0.000 0.992 0.008 0.000
#> GSM260941 2 0.0336 0.997 0.000 0.992 0.008 0.000
#> GSM260944 2 0.0336 0.997 0.000 0.992 0.008 0.000
#> GSM260947 2 0.0336 0.997 0.000 0.992 0.008 0.000
#> GSM260952 2 0.0000 0.997 0.000 1.000 0.000 0.000
#> GSM260914 1 0.0188 0.922 0.996 0.000 0.004 0.000
#> GSM260916 1 0.0188 0.922 0.996 0.000 0.004 0.000
#> GSM260919 1 0.0188 0.922 0.996 0.000 0.004 0.000
#> GSM260922 1 0.0188 0.922 0.996 0.000 0.004 0.000
#> GSM260925 1 0.0188 0.922 0.996 0.000 0.004 0.000
#> GSM260927 1 0.0000 0.923 1.000 0.000 0.000 0.000
#> GSM260930 1 0.3356 0.899 0.824 0.000 0.176 0.000
#> GSM260933 1 0.3356 0.899 0.824 0.000 0.176 0.000
#> GSM260936 1 0.3356 0.899 0.824 0.000 0.176 0.000
#> GSM260939 1 0.3356 0.899 0.824 0.000 0.176 0.000
#> GSM260942 1 0.3356 0.899 0.824 0.000 0.176 0.000
#> GSM260945 1 0.3356 0.899 0.824 0.000 0.176 0.000
#> GSM260948 1 0.0336 0.922 0.992 0.000 0.008 0.000
#> GSM260950 1 0.0336 0.923 0.992 0.000 0.008 0.000
#> GSM260915 4 0.0000 0.965 0.000 0.000 0.000 1.000
#> GSM260917 3 0.4431 0.896 0.000 0.000 0.696 0.304
#> GSM260920 4 0.0188 0.960 0.000 0.000 0.004 0.996
#> GSM260923 4 0.0000 0.965 0.000 0.000 0.000 1.000
#> GSM260926 4 0.0000 0.965 0.000 0.000 0.000 1.000
#> GSM260928 1 0.3793 0.792 0.844 0.000 0.044 0.112
#> GSM260931 3 0.3873 0.989 0.000 0.000 0.772 0.228
#> GSM260934 3 0.3907 0.989 0.000 0.000 0.768 0.232
#> GSM260937 3 0.3873 0.989 0.000 0.000 0.772 0.228
#> GSM260940 3 0.3873 0.989 0.000 0.000 0.772 0.228
#> GSM260943 3 0.3873 0.989 0.000 0.000 0.772 0.228
#> GSM260946 3 0.3873 0.989 0.000 0.000 0.772 0.228
#> GSM260949 4 0.0000 0.965 0.000 0.000 0.000 1.000
#> GSM260951 3 0.3873 0.989 0.000 0.000 0.772 0.228
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM260888 2 0.0000 0.942 0.000 1.000 0.000 0.000 0.000
#> GSM260893 2 0.0000 0.942 0.000 1.000 0.000 0.000 0.000
#> GSM260896 2 0.0000 0.942 0.000 1.000 0.000 0.000 0.000
#> GSM260899 2 0.3146 0.928 0.000 0.844 0.000 0.028 0.128
#> GSM260902 2 0.3146 0.928 0.000 0.844 0.000 0.028 0.128
#> GSM260905 2 0.2628 0.940 0.000 0.884 0.000 0.028 0.088
#> GSM260908 2 0.2685 0.939 0.000 0.880 0.000 0.028 0.092
#> GSM260911 2 0.0000 0.942 0.000 1.000 0.000 0.000 0.000
#> GSM260912 2 0.0000 0.942 0.000 1.000 0.000 0.000 0.000
#> GSM260913 4 0.1205 0.974 0.000 0.000 0.040 0.956 0.004
#> GSM260886 1 0.0000 0.956 1.000 0.000 0.000 0.000 0.000
#> GSM260889 1 0.0000 0.956 1.000 0.000 0.000 0.000 0.000
#> GSM260891 1 0.0162 0.954 0.996 0.000 0.000 0.004 0.000
#> GSM260894 1 0.0162 0.954 0.996 0.000 0.000 0.004 0.000
#> GSM260897 5 0.3949 1.000 0.332 0.000 0.000 0.000 0.668
#> GSM260900 5 0.3949 1.000 0.332 0.000 0.000 0.000 0.668
#> GSM260903 5 0.3949 1.000 0.332 0.000 0.000 0.000 0.668
#> GSM260906 5 0.3949 1.000 0.332 0.000 0.000 0.000 0.668
#> GSM260909 1 0.0162 0.954 0.996 0.000 0.000 0.004 0.000
#> GSM260887 4 0.1331 0.973 0.000 0.000 0.040 0.952 0.008
#> GSM260890 4 0.1205 0.974 0.000 0.000 0.040 0.956 0.004
#> GSM260892 4 0.1205 0.974 0.000 0.000 0.040 0.956 0.004
#> GSM260895 4 0.4075 0.797 0.060 0.000 0.000 0.780 0.160
#> GSM260898 3 0.1168 0.959 0.000 0.000 0.960 0.032 0.008
#> GSM260901 3 0.1082 0.961 0.000 0.000 0.964 0.028 0.008
#> GSM260904 3 0.1251 0.957 0.000 0.000 0.956 0.036 0.008
#> GSM260907 3 0.1082 0.961 0.000 0.000 0.964 0.028 0.008
#> GSM260910 4 0.0963 0.973 0.000 0.000 0.036 0.964 0.000
#> GSM260918 2 0.0000 0.942 0.000 1.000 0.000 0.000 0.000
#> GSM260921 2 0.0000 0.942 0.000 1.000 0.000 0.000 0.000
#> GSM260924 2 0.0000 0.942 0.000 1.000 0.000 0.000 0.000
#> GSM260929 2 0.0000 0.942 0.000 1.000 0.000 0.000 0.000
#> GSM260932 2 0.3146 0.928 0.000 0.844 0.000 0.028 0.128
#> GSM260935 2 0.3146 0.928 0.000 0.844 0.000 0.028 0.128
#> GSM260938 2 0.2795 0.937 0.000 0.872 0.000 0.028 0.100
#> GSM260941 2 0.2740 0.938 0.000 0.876 0.000 0.028 0.096
#> GSM260944 2 0.2740 0.938 0.000 0.876 0.000 0.028 0.096
#> GSM260947 2 0.2740 0.938 0.000 0.876 0.000 0.028 0.096
#> GSM260952 2 0.0000 0.942 0.000 1.000 0.000 0.000 0.000
#> GSM260914 1 0.0000 0.956 1.000 0.000 0.000 0.000 0.000
#> GSM260916 1 0.0000 0.956 1.000 0.000 0.000 0.000 0.000
#> GSM260919 1 0.0000 0.956 1.000 0.000 0.000 0.000 0.000
#> GSM260922 1 0.0000 0.956 1.000 0.000 0.000 0.000 0.000
#> GSM260925 1 0.0000 0.956 1.000 0.000 0.000 0.000 0.000
#> GSM260927 1 0.1430 0.894 0.944 0.000 0.000 0.004 0.052
#> GSM260930 5 0.3949 1.000 0.332 0.000 0.000 0.000 0.668
#> GSM260933 5 0.3949 1.000 0.332 0.000 0.000 0.000 0.668
#> GSM260936 5 0.3949 1.000 0.332 0.000 0.000 0.000 0.668
#> GSM260939 5 0.3949 1.000 0.332 0.000 0.000 0.000 0.668
#> GSM260942 5 0.3949 1.000 0.332 0.000 0.000 0.000 0.668
#> GSM260945 5 0.3949 1.000 0.332 0.000 0.000 0.000 0.668
#> GSM260948 1 0.0963 0.918 0.964 0.000 0.000 0.000 0.036
#> GSM260950 1 0.0510 0.942 0.984 0.000 0.000 0.000 0.016
#> GSM260915 4 0.1251 0.973 0.000 0.000 0.036 0.956 0.008
#> GSM260917 3 0.3391 0.770 0.000 0.000 0.800 0.188 0.012
#> GSM260920 4 0.1484 0.970 0.000 0.000 0.048 0.944 0.008
#> GSM260923 4 0.1168 0.971 0.000 0.000 0.032 0.960 0.008
#> GSM260926 4 0.1408 0.973 0.000 0.000 0.044 0.948 0.008
#> GSM260928 1 0.5035 0.556 0.672 0.000 0.000 0.076 0.252
#> GSM260931 3 0.0000 0.962 0.000 0.000 1.000 0.000 0.000
#> GSM260934 3 0.0992 0.962 0.000 0.000 0.968 0.024 0.008
#> GSM260937 3 0.0510 0.959 0.000 0.000 0.984 0.000 0.016
#> GSM260940 3 0.0000 0.962 0.000 0.000 1.000 0.000 0.000
#> GSM260943 3 0.0510 0.959 0.000 0.000 0.984 0.000 0.016
#> GSM260946 3 0.0000 0.962 0.000 0.000 1.000 0.000 0.000
#> GSM260949 4 0.1408 0.973 0.000 0.000 0.044 0.948 0.008
#> GSM260951 3 0.0992 0.955 0.000 0.000 0.968 0.008 0.024
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM260888 2 0.0291 0.8075 0.000 0.992 0.000 0.000 0.004 0.004
#> GSM260893 2 0.0291 0.8075 0.000 0.992 0.000 0.000 0.004 0.004
#> GSM260896 2 0.0291 0.8075 0.000 0.992 0.000 0.000 0.004 0.004
#> GSM260899 2 0.3810 0.7307 0.000 0.572 0.000 0.000 0.000 0.428
#> GSM260902 2 0.3810 0.7307 0.000 0.572 0.000 0.000 0.000 0.428
#> GSM260905 2 0.3371 0.7987 0.000 0.708 0.000 0.000 0.000 0.292
#> GSM260908 2 0.3390 0.7981 0.000 0.704 0.000 0.000 0.000 0.296
#> GSM260911 2 0.0291 0.8075 0.000 0.992 0.000 0.000 0.004 0.004
#> GSM260912 2 0.0146 0.8106 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM260913 4 0.0405 0.9339 0.000 0.000 0.004 0.988 0.000 0.008
#> GSM260886 1 0.0291 0.9352 0.992 0.000 0.000 0.000 0.004 0.004
#> GSM260889 1 0.0146 0.9356 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM260891 1 0.0937 0.9106 0.960 0.000 0.000 0.000 0.000 0.040
#> GSM260894 1 0.1010 0.9152 0.960 0.000 0.000 0.000 0.004 0.036
#> GSM260897 5 0.2048 0.9939 0.120 0.000 0.000 0.000 0.880 0.000
#> GSM260900 5 0.2234 0.9937 0.124 0.000 0.000 0.000 0.872 0.004
#> GSM260903 5 0.2092 0.9939 0.124 0.000 0.000 0.000 0.876 0.000
#> GSM260906 5 0.2234 0.9937 0.124 0.000 0.000 0.000 0.872 0.004
#> GSM260909 1 0.0790 0.9180 0.968 0.000 0.000 0.000 0.000 0.032
#> GSM260887 4 0.0291 0.9348 0.000 0.000 0.004 0.992 0.000 0.004
#> GSM260890 4 0.0508 0.9342 0.000 0.000 0.004 0.984 0.000 0.012
#> GSM260892 4 0.0291 0.9345 0.000 0.000 0.004 0.992 0.000 0.004
#> GSM260895 4 0.5973 0.0695 0.068 0.000 0.000 0.484 0.060 0.388
#> GSM260898 3 0.1370 0.9123 0.000 0.000 0.948 0.036 0.004 0.012
#> GSM260901 3 0.1370 0.9123 0.000 0.000 0.948 0.036 0.004 0.012
#> GSM260904 3 0.1225 0.9131 0.000 0.000 0.952 0.036 0.000 0.012
#> GSM260907 3 0.1151 0.9141 0.000 0.000 0.956 0.032 0.000 0.012
#> GSM260910 4 0.0508 0.9341 0.000 0.000 0.004 0.984 0.000 0.012
#> GSM260918 2 0.0146 0.8106 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM260921 2 0.0291 0.8075 0.000 0.992 0.000 0.000 0.004 0.004
#> GSM260924 2 0.0146 0.8088 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM260929 2 0.0146 0.8106 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM260932 2 0.3810 0.7307 0.000 0.572 0.000 0.000 0.000 0.428
#> GSM260935 2 0.3810 0.7307 0.000 0.572 0.000 0.000 0.000 0.428
#> GSM260938 2 0.3482 0.7928 0.000 0.684 0.000 0.000 0.000 0.316
#> GSM260941 2 0.3464 0.7943 0.000 0.688 0.000 0.000 0.000 0.312
#> GSM260944 2 0.3464 0.7943 0.000 0.688 0.000 0.000 0.000 0.312
#> GSM260947 2 0.3464 0.7943 0.000 0.688 0.000 0.000 0.000 0.312
#> GSM260952 2 0.0000 0.8098 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260914 1 0.0146 0.9356 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM260916 1 0.0260 0.9337 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM260919 1 0.0790 0.9185 0.968 0.000 0.000 0.000 0.032 0.000
#> GSM260922 1 0.0260 0.9337 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM260925 1 0.0146 0.9356 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM260927 1 0.2971 0.7163 0.844 0.000 0.000 0.000 0.104 0.052
#> GSM260930 5 0.2234 0.9937 0.124 0.000 0.000 0.000 0.872 0.004
#> GSM260933 5 0.2234 0.9937 0.124 0.000 0.000 0.000 0.872 0.004
#> GSM260936 5 0.2191 0.9930 0.120 0.000 0.000 0.000 0.876 0.004
#> GSM260939 5 0.2191 0.9930 0.120 0.000 0.000 0.000 0.876 0.004
#> GSM260942 5 0.2191 0.9930 0.120 0.000 0.000 0.000 0.876 0.004
#> GSM260945 5 0.2048 0.9939 0.120 0.000 0.000 0.000 0.880 0.000
#> GSM260948 1 0.1908 0.8105 0.900 0.000 0.000 0.000 0.096 0.004
#> GSM260950 1 0.1010 0.9143 0.960 0.000 0.000 0.000 0.036 0.004
#> GSM260915 4 0.0767 0.9331 0.000 0.000 0.012 0.976 0.004 0.008
#> GSM260917 3 0.4200 0.6361 0.000 0.000 0.696 0.264 0.008 0.032
#> GSM260920 4 0.1059 0.9229 0.000 0.000 0.016 0.964 0.004 0.016
#> GSM260923 4 0.1003 0.9243 0.000 0.000 0.004 0.964 0.004 0.028
#> GSM260926 4 0.0508 0.9336 0.000 0.000 0.012 0.984 0.000 0.004
#> GSM260928 6 0.6392 0.0000 0.360 0.000 0.000 0.056 0.124 0.460
#> GSM260931 3 0.0858 0.9082 0.000 0.000 0.968 0.000 0.004 0.028
#> GSM260934 3 0.1218 0.9141 0.000 0.000 0.956 0.028 0.004 0.012
#> GSM260937 3 0.2542 0.8746 0.000 0.000 0.876 0.000 0.044 0.080
#> GSM260940 3 0.0458 0.9106 0.000 0.000 0.984 0.000 0.000 0.016
#> GSM260943 3 0.2404 0.8785 0.000 0.000 0.884 0.000 0.036 0.080
#> GSM260946 3 0.0260 0.9114 0.000 0.000 0.992 0.000 0.000 0.008
#> GSM260949 4 0.0717 0.9307 0.000 0.000 0.008 0.976 0.000 0.016
#> GSM260951 3 0.3637 0.8436 0.000 0.000 0.824 0.056 0.040 0.080
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) cell.type(p) k
#> MAD:skmeans 67 1.000 1.40e-13 2
#> MAD:skmeans 67 0.864 1.50e-25 3
#> MAD:skmeans 67 0.716 4.07e-24 4
#> MAD:skmeans 67 0.844 7.80e-23 5
#> MAD:skmeans 65 0.940 4.03e-23 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 67 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.569 0.902 0.936 0.4471 0.563 0.563
#> 3 3 1.000 0.996 0.998 0.5082 0.744 0.553
#> 4 4 1.000 0.980 0.988 0.0899 0.932 0.795
#> 5 5 0.969 0.957 0.980 0.0872 0.935 0.756
#> 6 6 0.917 0.932 0.962 0.0539 0.955 0.775
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 3 4 5
There is also optional best \(k\) = 3 4 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM260888 2 0.000 0.984 0.000 1.000
#> GSM260893 2 0.000 0.984 0.000 1.000
#> GSM260896 2 0.000 0.984 0.000 1.000
#> GSM260899 2 0.000 0.984 0.000 1.000
#> GSM260902 2 0.000 0.984 0.000 1.000
#> GSM260905 2 0.000 0.984 0.000 1.000
#> GSM260908 2 0.000 0.984 0.000 1.000
#> GSM260911 2 0.000 0.984 0.000 1.000
#> GSM260912 2 0.000 0.984 0.000 1.000
#> GSM260913 1 0.595 0.884 0.856 0.144
#> GSM260886 1 0.000 0.906 1.000 0.000
#> GSM260889 1 0.000 0.906 1.000 0.000
#> GSM260891 1 0.000 0.906 1.000 0.000
#> GSM260894 1 0.000 0.906 1.000 0.000
#> GSM260897 1 0.000 0.906 1.000 0.000
#> GSM260900 1 0.000 0.906 1.000 0.000
#> GSM260903 1 0.000 0.906 1.000 0.000
#> GSM260906 1 0.000 0.906 1.000 0.000
#> GSM260909 1 0.000 0.906 1.000 0.000
#> GSM260887 1 0.644 0.872 0.836 0.164
#> GSM260890 1 0.760 0.820 0.780 0.220
#> GSM260892 1 0.595 0.884 0.856 0.144
#> GSM260895 1 0.552 0.888 0.872 0.128
#> GSM260898 1 0.595 0.884 0.856 0.144
#> GSM260901 1 0.595 0.884 0.856 0.144
#> GSM260904 1 0.595 0.884 0.856 0.144
#> GSM260907 1 0.767 0.813 0.776 0.224
#> GSM260910 1 0.689 0.856 0.816 0.184
#> GSM260918 2 0.000 0.984 0.000 1.000
#> GSM260921 2 0.000 0.984 0.000 1.000
#> GSM260924 2 0.000 0.984 0.000 1.000
#> GSM260929 2 0.000 0.984 0.000 1.000
#> GSM260932 2 0.000 0.984 0.000 1.000
#> GSM260935 2 0.000 0.984 0.000 1.000
#> GSM260938 2 0.000 0.984 0.000 1.000
#> GSM260941 2 0.000 0.984 0.000 1.000
#> GSM260944 2 0.000 0.984 0.000 1.000
#> GSM260947 2 0.000 0.984 0.000 1.000
#> GSM260952 2 0.000 0.984 0.000 1.000
#> GSM260914 1 0.000 0.906 1.000 0.000
#> GSM260916 1 0.000 0.906 1.000 0.000
#> GSM260919 1 0.000 0.906 1.000 0.000
#> GSM260922 1 0.000 0.906 1.000 0.000
#> GSM260925 1 0.000 0.906 1.000 0.000
#> GSM260927 1 0.000 0.906 1.000 0.000
#> GSM260930 1 0.000 0.906 1.000 0.000
#> GSM260933 1 0.000 0.906 1.000 0.000
#> GSM260936 1 0.000 0.906 1.000 0.000
#> GSM260939 1 0.000 0.906 1.000 0.000
#> GSM260942 1 0.000 0.906 1.000 0.000
#> GSM260945 1 0.000 0.906 1.000 0.000
#> GSM260948 1 0.000 0.906 1.000 0.000
#> GSM260950 1 0.000 0.906 1.000 0.000
#> GSM260915 1 0.595 0.884 0.856 0.144
#> GSM260917 1 0.689 0.856 0.816 0.184
#> GSM260920 1 0.595 0.884 0.856 0.144
#> GSM260923 1 0.595 0.884 0.856 0.144
#> GSM260926 1 0.983 0.458 0.576 0.424
#> GSM260928 1 0.141 0.904 0.980 0.020
#> GSM260931 1 0.936 0.611 0.648 0.352
#> GSM260934 1 0.788 0.799 0.764 0.236
#> GSM260937 1 0.653 0.869 0.832 0.168
#> GSM260940 1 0.595 0.884 0.856 0.144
#> GSM260943 2 0.850 0.539 0.276 0.724
#> GSM260946 1 0.595 0.884 0.856 0.144
#> GSM260949 1 0.595 0.884 0.856 0.144
#> GSM260951 1 0.595 0.884 0.856 0.144
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM260888 2 0.000 1.000 0.000 1 0.000
#> GSM260893 2 0.000 1.000 0.000 1 0.000
#> GSM260896 2 0.000 1.000 0.000 1 0.000
#> GSM260899 2 0.000 1.000 0.000 1 0.000
#> GSM260902 2 0.000 1.000 0.000 1 0.000
#> GSM260905 2 0.000 1.000 0.000 1 0.000
#> GSM260908 2 0.000 1.000 0.000 1 0.000
#> GSM260911 2 0.000 1.000 0.000 1 0.000
#> GSM260912 2 0.000 1.000 0.000 1 0.000
#> GSM260913 3 0.000 1.000 0.000 0 1.000
#> GSM260886 1 0.000 0.995 1.000 0 0.000
#> GSM260889 1 0.000 0.995 1.000 0 0.000
#> GSM260891 1 0.000 0.995 1.000 0 0.000
#> GSM260894 1 0.000 0.995 1.000 0 0.000
#> GSM260897 1 0.000 0.995 1.000 0 0.000
#> GSM260900 1 0.000 0.995 1.000 0 0.000
#> GSM260903 1 0.000 0.995 1.000 0 0.000
#> GSM260906 1 0.000 0.995 1.000 0 0.000
#> GSM260909 1 0.000 0.995 1.000 0 0.000
#> GSM260887 3 0.000 1.000 0.000 0 1.000
#> GSM260890 3 0.000 1.000 0.000 0 1.000
#> GSM260892 3 0.000 1.000 0.000 0 1.000
#> GSM260895 1 0.271 0.906 0.912 0 0.088
#> GSM260898 3 0.000 1.000 0.000 0 1.000
#> GSM260901 3 0.000 1.000 0.000 0 1.000
#> GSM260904 3 0.000 1.000 0.000 0 1.000
#> GSM260907 3 0.000 1.000 0.000 0 1.000
#> GSM260910 3 0.000 1.000 0.000 0 1.000
#> GSM260918 2 0.000 1.000 0.000 1 0.000
#> GSM260921 2 0.000 1.000 0.000 1 0.000
#> GSM260924 2 0.000 1.000 0.000 1 0.000
#> GSM260929 2 0.000 1.000 0.000 1 0.000
#> GSM260932 2 0.000 1.000 0.000 1 0.000
#> GSM260935 2 0.000 1.000 0.000 1 0.000
#> GSM260938 2 0.000 1.000 0.000 1 0.000
#> GSM260941 2 0.000 1.000 0.000 1 0.000
#> GSM260944 2 0.000 1.000 0.000 1 0.000
#> GSM260947 2 0.000 1.000 0.000 1 0.000
#> GSM260952 2 0.000 1.000 0.000 1 0.000
#> GSM260914 1 0.000 0.995 1.000 0 0.000
#> GSM260916 1 0.000 0.995 1.000 0 0.000
#> GSM260919 1 0.000 0.995 1.000 0 0.000
#> GSM260922 1 0.000 0.995 1.000 0 0.000
#> GSM260925 1 0.000 0.995 1.000 0 0.000
#> GSM260927 1 0.000 0.995 1.000 0 0.000
#> GSM260930 1 0.000 0.995 1.000 0 0.000
#> GSM260933 1 0.000 0.995 1.000 0 0.000
#> GSM260936 1 0.000 0.995 1.000 0 0.000
#> GSM260939 1 0.000 0.995 1.000 0 0.000
#> GSM260942 1 0.000 0.995 1.000 0 0.000
#> GSM260945 1 0.000 0.995 1.000 0 0.000
#> GSM260948 1 0.000 0.995 1.000 0 0.000
#> GSM260950 1 0.000 0.995 1.000 0 0.000
#> GSM260915 3 0.000 1.000 0.000 0 1.000
#> GSM260917 3 0.000 1.000 0.000 0 1.000
#> GSM260920 3 0.000 1.000 0.000 0 1.000
#> GSM260923 3 0.000 1.000 0.000 0 1.000
#> GSM260926 3 0.000 1.000 0.000 0 1.000
#> GSM260928 1 0.153 0.958 0.960 0 0.040
#> GSM260931 3 0.000 1.000 0.000 0 1.000
#> GSM260934 3 0.000 1.000 0.000 0 1.000
#> GSM260937 3 0.000 1.000 0.000 0 1.000
#> GSM260940 3 0.000 1.000 0.000 0 1.000
#> GSM260943 3 0.000 1.000 0.000 0 1.000
#> GSM260946 3 0.000 1.000 0.000 0 1.000
#> GSM260949 3 0.000 1.000 0.000 0 1.000
#> GSM260951 3 0.000 1.000 0.000 0 1.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM260888 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260893 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260896 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260899 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260902 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260905 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260908 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260911 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260912 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260913 4 0.0336 0.999 0.000 0 0.008 0.992
#> GSM260886 1 0.0188 0.990 0.996 0 0.000 0.004
#> GSM260889 1 0.0188 0.990 0.996 0 0.000 0.004
#> GSM260891 1 0.0188 0.990 0.996 0 0.000 0.004
#> GSM260894 1 0.0188 0.990 0.996 0 0.000 0.004
#> GSM260897 1 0.0188 0.990 0.996 0 0.000 0.004
#> GSM260900 1 0.0188 0.990 0.996 0 0.000 0.004
#> GSM260903 1 0.0188 0.990 0.996 0 0.000 0.004
#> GSM260906 1 0.0188 0.990 0.996 0 0.000 0.004
#> GSM260909 1 0.0188 0.990 0.996 0 0.000 0.004
#> GSM260887 4 0.0336 0.999 0.000 0 0.008 0.992
#> GSM260890 4 0.0336 0.999 0.000 0 0.008 0.992
#> GSM260892 4 0.0336 0.999 0.000 0 0.008 0.992
#> GSM260895 4 0.0188 0.995 0.000 0 0.004 0.996
#> GSM260898 3 0.0000 0.961 0.000 0 1.000 0.000
#> GSM260901 3 0.0000 0.961 0.000 0 1.000 0.000
#> GSM260904 3 0.2589 0.874 0.000 0 0.884 0.116
#> GSM260907 3 0.0000 0.961 0.000 0 1.000 0.000
#> GSM260910 4 0.0336 0.999 0.000 0 0.008 0.992
#> GSM260918 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260921 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260924 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260929 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260932 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260935 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260938 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260941 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260944 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260947 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260952 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260914 1 0.0188 0.990 0.996 0 0.000 0.004
#> GSM260916 1 0.0188 0.990 0.996 0 0.000 0.004
#> GSM260919 1 0.0188 0.990 0.996 0 0.000 0.004
#> GSM260922 1 0.0188 0.990 0.996 0 0.000 0.004
#> GSM260925 1 0.0188 0.990 0.996 0 0.000 0.004
#> GSM260927 1 0.0188 0.990 0.996 0 0.000 0.004
#> GSM260930 1 0.0188 0.990 0.996 0 0.000 0.004
#> GSM260933 1 0.0188 0.990 0.996 0 0.000 0.004
#> GSM260936 1 0.0188 0.990 0.996 0 0.000 0.004
#> GSM260939 1 0.0188 0.990 0.996 0 0.000 0.004
#> GSM260942 1 0.0188 0.990 0.996 0 0.000 0.004
#> GSM260945 1 0.0188 0.990 0.996 0 0.000 0.004
#> GSM260948 1 0.0188 0.990 0.996 0 0.000 0.004
#> GSM260950 1 0.0188 0.990 0.996 0 0.000 0.004
#> GSM260915 4 0.0336 0.999 0.000 0 0.008 0.992
#> GSM260917 3 0.2149 0.899 0.000 0 0.912 0.088
#> GSM260920 3 0.4103 0.688 0.000 0 0.744 0.256
#> GSM260923 4 0.0336 0.999 0.000 0 0.008 0.992
#> GSM260926 4 0.0336 0.999 0.000 0 0.008 0.992
#> GSM260928 1 0.3074 0.826 0.848 0 0.000 0.152
#> GSM260931 3 0.0000 0.961 0.000 0 1.000 0.000
#> GSM260934 3 0.0000 0.961 0.000 0 1.000 0.000
#> GSM260937 3 0.0000 0.961 0.000 0 1.000 0.000
#> GSM260940 3 0.0000 0.961 0.000 0 1.000 0.000
#> GSM260943 3 0.0000 0.961 0.000 0 1.000 0.000
#> GSM260946 3 0.0000 0.961 0.000 0 1.000 0.000
#> GSM260949 4 0.0336 0.999 0.000 0 0.008 0.992
#> GSM260951 3 0.0000 0.961 0.000 0 1.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM260888 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260893 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260896 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260899 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260902 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260905 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260908 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260911 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260912 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260913 4 0.0000 0.996 0.000 0 0.000 1.000 0.000
#> GSM260886 1 0.0000 0.967 1.000 0 0.000 0.000 0.000
#> GSM260889 1 0.0000 0.967 1.000 0 0.000 0.000 0.000
#> GSM260891 1 0.0000 0.967 1.000 0 0.000 0.000 0.000
#> GSM260894 1 0.2732 0.802 0.840 0 0.000 0.000 0.160
#> GSM260897 5 0.0000 0.963 0.000 0 0.000 0.000 1.000
#> GSM260900 5 0.0000 0.963 0.000 0 0.000 0.000 1.000
#> GSM260903 5 0.0000 0.963 0.000 0 0.000 0.000 1.000
#> GSM260906 5 0.0000 0.963 0.000 0 0.000 0.000 1.000
#> GSM260909 1 0.0000 0.967 1.000 0 0.000 0.000 0.000
#> GSM260887 4 0.0000 0.996 0.000 0 0.000 1.000 0.000
#> GSM260890 4 0.0000 0.996 0.000 0 0.000 1.000 0.000
#> GSM260892 4 0.0000 0.996 0.000 0 0.000 1.000 0.000
#> GSM260895 4 0.0963 0.961 0.036 0 0.000 0.964 0.000
#> GSM260898 3 0.0000 0.952 0.000 0 1.000 0.000 0.000
#> GSM260901 3 0.0000 0.952 0.000 0 1.000 0.000 0.000
#> GSM260904 3 0.2648 0.831 0.000 0 0.848 0.152 0.000
#> GSM260907 3 0.0000 0.952 0.000 0 1.000 0.000 0.000
#> GSM260910 4 0.0000 0.996 0.000 0 0.000 1.000 0.000
#> GSM260918 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260921 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260924 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260929 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260932 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260935 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260938 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260941 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260944 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260947 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260952 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260914 1 0.0000 0.967 1.000 0 0.000 0.000 0.000
#> GSM260916 1 0.0000 0.967 1.000 0 0.000 0.000 0.000
#> GSM260919 1 0.0000 0.967 1.000 0 0.000 0.000 0.000
#> GSM260922 1 0.0000 0.967 1.000 0 0.000 0.000 0.000
#> GSM260925 1 0.0000 0.967 1.000 0 0.000 0.000 0.000
#> GSM260927 5 0.3143 0.742 0.204 0 0.000 0.000 0.796
#> GSM260930 5 0.0000 0.963 0.000 0 0.000 0.000 1.000
#> GSM260933 5 0.0000 0.963 0.000 0 0.000 0.000 1.000
#> GSM260936 5 0.0000 0.963 0.000 0 0.000 0.000 1.000
#> GSM260939 5 0.0000 0.963 0.000 0 0.000 0.000 1.000
#> GSM260942 5 0.0000 0.963 0.000 0 0.000 0.000 1.000
#> GSM260945 5 0.0000 0.963 0.000 0 0.000 0.000 1.000
#> GSM260948 1 0.2966 0.779 0.816 0 0.000 0.000 0.184
#> GSM260950 1 0.0000 0.967 1.000 0 0.000 0.000 0.000
#> GSM260915 4 0.0000 0.996 0.000 0 0.000 1.000 0.000
#> GSM260917 3 0.2127 0.874 0.000 0 0.892 0.108 0.000
#> GSM260920 3 0.3837 0.604 0.000 0 0.692 0.308 0.000
#> GSM260923 4 0.0000 0.996 0.000 0 0.000 1.000 0.000
#> GSM260926 4 0.0000 0.996 0.000 0 0.000 1.000 0.000
#> GSM260928 5 0.3246 0.770 0.008 0 0.000 0.184 0.808
#> GSM260931 3 0.0000 0.952 0.000 0 1.000 0.000 0.000
#> GSM260934 3 0.0000 0.952 0.000 0 1.000 0.000 0.000
#> GSM260937 3 0.0000 0.952 0.000 0 1.000 0.000 0.000
#> GSM260940 3 0.0000 0.952 0.000 0 1.000 0.000 0.000
#> GSM260943 3 0.0000 0.952 0.000 0 1.000 0.000 0.000
#> GSM260946 3 0.0000 0.952 0.000 0 1.000 0.000 0.000
#> GSM260949 4 0.0000 0.996 0.000 0 0.000 1.000 0.000
#> GSM260951 3 0.0000 0.952 0.000 0 1.000 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM260888 2 0.0000 0.980 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260893 2 0.0000 0.980 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260896 2 0.0000 0.980 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260899 6 0.0632 0.878 0.000 0.024 0.000 0.000 0.000 0.976
#> GSM260902 6 0.0146 0.876 0.000 0.004 0.000 0.000 0.000 0.996
#> GSM260905 6 0.2631 0.876 0.000 0.180 0.000 0.000 0.000 0.820
#> GSM260908 6 0.2597 0.878 0.000 0.176 0.000 0.000 0.000 0.824
#> GSM260911 2 0.0000 0.980 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260912 2 0.0000 0.980 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260913 4 0.0000 0.995 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260886 1 0.0000 0.966 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260889 1 0.0000 0.966 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260891 1 0.0000 0.966 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260894 1 0.2454 0.802 0.840 0.000 0.000 0.000 0.160 0.000
#> GSM260897 5 0.0000 0.962 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM260900 5 0.0000 0.962 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM260903 5 0.0000 0.962 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM260906 5 0.0000 0.962 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM260909 1 0.0000 0.966 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260887 4 0.0000 0.995 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260890 4 0.0000 0.995 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260892 4 0.0000 0.995 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260895 4 0.1010 0.957 0.036 0.000 0.000 0.960 0.000 0.004
#> GSM260898 3 0.0000 0.950 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM260901 3 0.0000 0.950 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM260904 3 0.2416 0.827 0.000 0.000 0.844 0.156 0.000 0.000
#> GSM260907 3 0.0000 0.950 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM260910 4 0.0000 0.995 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260918 2 0.0000 0.980 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260921 2 0.2378 0.787 0.000 0.848 0.000 0.000 0.000 0.152
#> GSM260924 2 0.0000 0.980 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260929 2 0.0000 0.980 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260932 6 0.0547 0.878 0.000 0.020 0.000 0.000 0.000 0.980
#> GSM260935 6 0.2003 0.829 0.000 0.116 0.000 0.000 0.000 0.884
#> GSM260938 6 0.0146 0.876 0.000 0.004 0.000 0.000 0.000 0.996
#> GSM260941 6 0.2597 0.878 0.000 0.176 0.000 0.000 0.000 0.824
#> GSM260944 6 0.2454 0.883 0.000 0.160 0.000 0.000 0.000 0.840
#> GSM260947 6 0.2597 0.878 0.000 0.176 0.000 0.000 0.000 0.824
#> GSM260952 2 0.0146 0.976 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM260914 1 0.0000 0.966 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260916 1 0.0000 0.966 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260919 1 0.0000 0.966 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260922 1 0.0000 0.966 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260925 1 0.0000 0.966 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260927 5 0.2823 0.742 0.204 0.000 0.000 0.000 0.796 0.000
#> GSM260930 5 0.0000 0.962 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM260933 5 0.0000 0.962 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM260936 5 0.0000 0.962 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM260939 5 0.0000 0.962 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM260942 5 0.0000 0.962 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM260945 5 0.0000 0.962 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM260948 1 0.2664 0.779 0.816 0.000 0.000 0.000 0.184 0.000
#> GSM260950 1 0.0000 0.966 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260915 4 0.0000 0.995 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260917 3 0.1910 0.873 0.000 0.000 0.892 0.108 0.000 0.000
#> GSM260920 3 0.3464 0.597 0.000 0.000 0.688 0.312 0.000 0.000
#> GSM260923 4 0.0000 0.995 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260926 4 0.0000 0.995 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260928 5 0.3056 0.767 0.008 0.000 0.000 0.184 0.804 0.004
#> GSM260931 3 0.0000 0.950 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM260934 3 0.0000 0.950 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM260937 3 0.0000 0.950 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM260940 3 0.0000 0.950 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM260943 3 0.0000 0.950 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM260946 3 0.0000 0.950 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM260949 4 0.0000 0.995 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260951 3 0.0000 0.950 0.000 0.000 1.000 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) cell.type(p) k
#> MAD:pam 66 1.000 3.78e-13 2
#> MAD:pam 67 0.940 1.87e-24 3
#> MAD:pam 67 0.517 3.96e-24 4
#> MAD:pam 67 0.654 7.35e-23 5
#> MAD:pam 67 0.753 1.15e-21 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 67 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 4.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.997 0.997 0.4260 0.575 0.575
#> 3 3 1.000 0.990 0.995 0.5847 0.750 0.566
#> 4 4 0.920 0.955 0.949 0.0443 0.980 0.939
#> 5 5 0.886 0.939 0.937 0.0826 0.931 0.774
#> 6 6 0.858 0.942 0.910 0.0832 0.890 0.565
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3
There is also optional best \(k\) = 2 3 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM260888 2 0.0000 1.000 0.000 1.000
#> GSM260893 2 0.0000 1.000 0.000 1.000
#> GSM260896 2 0.0000 1.000 0.000 1.000
#> GSM260899 2 0.0000 1.000 0.000 1.000
#> GSM260902 2 0.0000 1.000 0.000 1.000
#> GSM260905 2 0.0000 1.000 0.000 1.000
#> GSM260908 2 0.0000 1.000 0.000 1.000
#> GSM260911 2 0.0000 1.000 0.000 1.000
#> GSM260912 2 0.0000 1.000 0.000 1.000
#> GSM260913 1 0.0672 0.996 0.992 0.008
#> GSM260886 1 0.0000 0.996 1.000 0.000
#> GSM260889 1 0.0000 0.996 1.000 0.000
#> GSM260891 1 0.0000 0.996 1.000 0.000
#> GSM260894 1 0.0000 0.996 1.000 0.000
#> GSM260897 1 0.0000 0.996 1.000 0.000
#> GSM260900 1 0.0000 0.996 1.000 0.000
#> GSM260903 1 0.0000 0.996 1.000 0.000
#> GSM260906 1 0.0000 0.996 1.000 0.000
#> GSM260909 1 0.0000 0.996 1.000 0.000
#> GSM260887 1 0.0672 0.996 0.992 0.008
#> GSM260890 1 0.0672 0.996 0.992 0.008
#> GSM260892 1 0.0672 0.996 0.992 0.008
#> GSM260895 1 0.0672 0.996 0.992 0.008
#> GSM260898 1 0.0672 0.996 0.992 0.008
#> GSM260901 1 0.0672 0.996 0.992 0.008
#> GSM260904 1 0.0672 0.996 0.992 0.008
#> GSM260907 1 0.0672 0.996 0.992 0.008
#> GSM260910 1 0.0672 0.996 0.992 0.008
#> GSM260918 2 0.0000 1.000 0.000 1.000
#> GSM260921 2 0.0000 1.000 0.000 1.000
#> GSM260924 2 0.0000 1.000 0.000 1.000
#> GSM260929 2 0.0000 1.000 0.000 1.000
#> GSM260932 2 0.0000 1.000 0.000 1.000
#> GSM260935 2 0.0000 1.000 0.000 1.000
#> GSM260938 2 0.0000 1.000 0.000 1.000
#> GSM260941 2 0.0000 1.000 0.000 1.000
#> GSM260944 2 0.0000 1.000 0.000 1.000
#> GSM260947 2 0.0000 1.000 0.000 1.000
#> GSM260952 2 0.0000 1.000 0.000 1.000
#> GSM260914 1 0.0000 0.996 1.000 0.000
#> GSM260916 1 0.0000 0.996 1.000 0.000
#> GSM260919 1 0.0000 0.996 1.000 0.000
#> GSM260922 1 0.0000 0.996 1.000 0.000
#> GSM260925 1 0.0000 0.996 1.000 0.000
#> GSM260927 1 0.0000 0.996 1.000 0.000
#> GSM260930 1 0.0000 0.996 1.000 0.000
#> GSM260933 1 0.0000 0.996 1.000 0.000
#> GSM260936 1 0.0000 0.996 1.000 0.000
#> GSM260939 1 0.0000 0.996 1.000 0.000
#> GSM260942 1 0.0000 0.996 1.000 0.000
#> GSM260945 1 0.0000 0.996 1.000 0.000
#> GSM260948 1 0.0000 0.996 1.000 0.000
#> GSM260950 1 0.0000 0.996 1.000 0.000
#> GSM260915 1 0.0672 0.996 0.992 0.008
#> GSM260917 1 0.0672 0.996 0.992 0.008
#> GSM260920 1 0.0672 0.996 0.992 0.008
#> GSM260923 1 0.0672 0.996 0.992 0.008
#> GSM260926 1 0.0672 0.996 0.992 0.008
#> GSM260928 1 0.0672 0.996 0.992 0.008
#> GSM260931 1 0.0672 0.996 0.992 0.008
#> GSM260934 1 0.0672 0.996 0.992 0.008
#> GSM260937 1 0.0672 0.996 0.992 0.008
#> GSM260940 1 0.0672 0.996 0.992 0.008
#> GSM260943 1 0.0672 0.996 0.992 0.008
#> GSM260946 1 0.0672 0.996 0.992 0.008
#> GSM260949 1 0.0672 0.996 0.992 0.008
#> GSM260951 1 0.0672 0.996 0.992 0.008
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM260888 2 0.000 1.000 0.000 1 0.000
#> GSM260893 2 0.000 1.000 0.000 1 0.000
#> GSM260896 2 0.000 1.000 0.000 1 0.000
#> GSM260899 2 0.000 1.000 0.000 1 0.000
#> GSM260902 2 0.000 1.000 0.000 1 0.000
#> GSM260905 2 0.000 1.000 0.000 1 0.000
#> GSM260908 2 0.000 1.000 0.000 1 0.000
#> GSM260911 2 0.000 1.000 0.000 1 0.000
#> GSM260912 2 0.000 1.000 0.000 1 0.000
#> GSM260913 3 0.000 0.986 0.000 0 1.000
#> GSM260886 1 0.000 1.000 1.000 0 0.000
#> GSM260889 1 0.000 1.000 1.000 0 0.000
#> GSM260891 1 0.000 1.000 1.000 0 0.000
#> GSM260894 1 0.000 1.000 1.000 0 0.000
#> GSM260897 1 0.000 1.000 1.000 0 0.000
#> GSM260900 1 0.000 1.000 1.000 0 0.000
#> GSM260903 1 0.000 1.000 1.000 0 0.000
#> GSM260906 1 0.000 1.000 1.000 0 0.000
#> GSM260909 1 0.000 1.000 1.000 0 0.000
#> GSM260887 3 0.000 0.986 0.000 0 1.000
#> GSM260890 3 0.000 0.986 0.000 0 1.000
#> GSM260892 3 0.000 0.986 0.000 0 1.000
#> GSM260895 3 0.388 0.829 0.152 0 0.848
#> GSM260898 3 0.000 0.986 0.000 0 1.000
#> GSM260901 3 0.000 0.986 0.000 0 1.000
#> GSM260904 3 0.000 0.986 0.000 0 1.000
#> GSM260907 3 0.000 0.986 0.000 0 1.000
#> GSM260910 3 0.000 0.986 0.000 0 1.000
#> GSM260918 2 0.000 1.000 0.000 1 0.000
#> GSM260921 2 0.000 1.000 0.000 1 0.000
#> GSM260924 2 0.000 1.000 0.000 1 0.000
#> GSM260929 2 0.000 1.000 0.000 1 0.000
#> GSM260932 2 0.000 1.000 0.000 1 0.000
#> GSM260935 2 0.000 1.000 0.000 1 0.000
#> GSM260938 2 0.000 1.000 0.000 1 0.000
#> GSM260941 2 0.000 1.000 0.000 1 0.000
#> GSM260944 2 0.000 1.000 0.000 1 0.000
#> GSM260947 2 0.000 1.000 0.000 1 0.000
#> GSM260952 2 0.000 1.000 0.000 1 0.000
#> GSM260914 1 0.000 1.000 1.000 0 0.000
#> GSM260916 1 0.000 1.000 1.000 0 0.000
#> GSM260919 1 0.000 1.000 1.000 0 0.000
#> GSM260922 1 0.000 1.000 1.000 0 0.000
#> GSM260925 1 0.000 1.000 1.000 0 0.000
#> GSM260927 1 0.000 1.000 1.000 0 0.000
#> GSM260930 1 0.000 1.000 1.000 0 0.000
#> GSM260933 1 0.000 1.000 1.000 0 0.000
#> GSM260936 1 0.000 1.000 1.000 0 0.000
#> GSM260939 1 0.000 1.000 1.000 0 0.000
#> GSM260942 1 0.000 1.000 1.000 0 0.000
#> GSM260945 1 0.000 1.000 1.000 0 0.000
#> GSM260948 1 0.000 1.000 1.000 0 0.000
#> GSM260950 1 0.000 1.000 1.000 0 0.000
#> GSM260915 3 0.000 0.986 0.000 0 1.000
#> GSM260917 3 0.000 0.986 0.000 0 1.000
#> GSM260920 3 0.000 0.986 0.000 0 1.000
#> GSM260923 3 0.000 0.986 0.000 0 1.000
#> GSM260926 3 0.000 0.986 0.000 0 1.000
#> GSM260928 3 0.388 0.829 0.152 0 0.848
#> GSM260931 3 0.000 0.986 0.000 0 1.000
#> GSM260934 3 0.000 0.986 0.000 0 1.000
#> GSM260937 3 0.000 0.986 0.000 0 1.000
#> GSM260940 3 0.000 0.986 0.000 0 1.000
#> GSM260943 3 0.000 0.986 0.000 0 1.000
#> GSM260946 3 0.000 0.986 0.000 0 1.000
#> GSM260949 3 0.000 0.986 0.000 0 1.000
#> GSM260951 3 0.000 0.986 0.000 0 1.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM260888 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260893 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260896 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260899 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260902 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260905 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260908 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260911 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260912 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260913 3 0.0000 0.996 0.000 0 1.000 0.000
#> GSM260886 1 0.0469 0.882 0.988 0 0.000 0.012
#> GSM260889 1 0.0000 0.884 1.000 0 0.000 0.000
#> GSM260891 1 0.1118 0.869 0.964 0 0.000 0.036
#> GSM260894 1 0.0188 0.884 0.996 0 0.000 0.004
#> GSM260897 1 0.3873 0.866 0.772 0 0.000 0.228
#> GSM260900 1 0.3873 0.866 0.772 0 0.000 0.228
#> GSM260903 1 0.3873 0.866 0.772 0 0.000 0.228
#> GSM260906 1 0.3873 0.866 0.772 0 0.000 0.228
#> GSM260909 1 0.0188 0.884 0.996 0 0.000 0.004
#> GSM260887 3 0.0000 0.996 0.000 0 1.000 0.000
#> GSM260890 3 0.0000 0.996 0.000 0 1.000 0.000
#> GSM260892 3 0.0000 0.996 0.000 0 1.000 0.000
#> GSM260895 4 0.4453 1.000 0.012 0 0.244 0.744
#> GSM260898 3 0.0188 0.996 0.000 0 0.996 0.004
#> GSM260901 3 0.0188 0.996 0.000 0 0.996 0.004
#> GSM260904 3 0.0188 0.996 0.000 0 0.996 0.004
#> GSM260907 3 0.0188 0.996 0.000 0 0.996 0.004
#> GSM260910 3 0.0000 0.996 0.000 0 1.000 0.000
#> GSM260918 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260921 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260924 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260929 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260932 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260935 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260938 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260941 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260944 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260947 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260952 2 0.0000 1.000 0.000 1 0.000 0.000
#> GSM260914 1 0.0336 0.882 0.992 0 0.000 0.008
#> GSM260916 1 0.0817 0.876 0.976 0 0.000 0.024
#> GSM260919 1 0.0592 0.880 0.984 0 0.000 0.016
#> GSM260922 1 0.0921 0.874 0.972 0 0.000 0.028
#> GSM260925 1 0.0336 0.882 0.992 0 0.000 0.008
#> GSM260927 1 0.0188 0.885 0.996 0 0.000 0.004
#> GSM260930 1 0.3873 0.866 0.772 0 0.000 0.228
#> GSM260933 1 0.3873 0.866 0.772 0 0.000 0.228
#> GSM260936 1 0.3873 0.866 0.772 0 0.000 0.228
#> GSM260939 1 0.3873 0.866 0.772 0 0.000 0.228
#> GSM260942 1 0.3873 0.866 0.772 0 0.000 0.228
#> GSM260945 1 0.3873 0.866 0.772 0 0.000 0.228
#> GSM260948 1 0.1474 0.886 0.948 0 0.000 0.052
#> GSM260950 1 0.1940 0.885 0.924 0 0.000 0.076
#> GSM260915 3 0.0000 0.996 0.000 0 1.000 0.000
#> GSM260917 3 0.0000 0.996 0.000 0 1.000 0.000
#> GSM260920 3 0.0000 0.996 0.000 0 1.000 0.000
#> GSM260923 3 0.0000 0.996 0.000 0 1.000 0.000
#> GSM260926 3 0.0000 0.996 0.000 0 1.000 0.000
#> GSM260928 4 0.4453 1.000 0.012 0 0.244 0.744
#> GSM260931 3 0.0188 0.996 0.000 0 0.996 0.004
#> GSM260934 3 0.0188 0.996 0.000 0 0.996 0.004
#> GSM260937 3 0.0817 0.972 0.000 0 0.976 0.024
#> GSM260940 3 0.0188 0.996 0.000 0 0.996 0.004
#> GSM260943 3 0.0188 0.996 0.000 0 0.996 0.004
#> GSM260946 3 0.0188 0.996 0.000 0 0.996 0.004
#> GSM260949 3 0.0000 0.996 0.000 0 1.000 0.000
#> GSM260951 3 0.0000 0.996 0.000 0 1.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM260888 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260893 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260896 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260899 2 0.0162 0.998 0.000 0.996 0.000 0.000 0.004
#> GSM260902 2 0.0162 0.998 0.000 0.996 0.000 0.000 0.004
#> GSM260905 2 0.0162 0.998 0.000 0.996 0.000 0.000 0.004
#> GSM260908 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260911 2 0.0162 0.998 0.000 0.996 0.000 0.000 0.004
#> GSM260912 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260913 3 0.0000 0.885 0.000 0.000 1.000 0.000 0.000
#> GSM260886 1 0.0865 0.949 0.972 0.000 0.000 0.024 0.004
#> GSM260889 1 0.0162 0.969 0.996 0.000 0.000 0.000 0.004
#> GSM260891 1 0.0290 0.963 0.992 0.000 0.000 0.008 0.000
#> GSM260894 1 0.0162 0.969 0.996 0.000 0.000 0.000 0.004
#> GSM260897 5 0.2648 0.998 0.152 0.000 0.000 0.000 0.848
#> GSM260900 5 0.2690 0.996 0.156 0.000 0.000 0.000 0.844
#> GSM260903 5 0.2690 0.996 0.156 0.000 0.000 0.000 0.844
#> GSM260906 5 0.2690 0.996 0.156 0.000 0.000 0.000 0.844
#> GSM260909 1 0.0162 0.969 0.996 0.000 0.000 0.000 0.004
#> GSM260887 3 0.0000 0.885 0.000 0.000 1.000 0.000 0.000
#> GSM260890 3 0.0000 0.885 0.000 0.000 1.000 0.000 0.000
#> GSM260892 3 0.0000 0.885 0.000 0.000 1.000 0.000 0.000
#> GSM260895 4 0.1768 0.876 0.004 0.000 0.072 0.924 0.000
#> GSM260898 3 0.4197 0.841 0.000 0.000 0.776 0.076 0.148
#> GSM260901 3 0.4197 0.841 0.000 0.000 0.776 0.076 0.148
#> GSM260904 3 0.4017 0.844 0.000 0.000 0.788 0.064 0.148
#> GSM260907 3 0.4197 0.841 0.000 0.000 0.776 0.076 0.148
#> GSM260910 3 0.0000 0.885 0.000 0.000 1.000 0.000 0.000
#> GSM260918 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260921 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260924 2 0.0162 0.998 0.000 0.996 0.000 0.000 0.004
#> GSM260929 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260932 2 0.0162 0.998 0.000 0.996 0.000 0.000 0.004
#> GSM260935 2 0.0162 0.998 0.000 0.996 0.000 0.000 0.004
#> GSM260938 2 0.0162 0.998 0.000 0.996 0.000 0.000 0.004
#> GSM260941 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260944 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260947 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260952 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> GSM260914 1 0.0162 0.969 0.996 0.000 0.000 0.000 0.004
#> GSM260916 1 0.0162 0.966 0.996 0.000 0.000 0.004 0.000
#> GSM260919 1 0.0162 0.969 0.996 0.000 0.000 0.000 0.004
#> GSM260922 1 0.0162 0.966 0.996 0.000 0.000 0.004 0.000
#> GSM260925 1 0.0324 0.967 0.992 0.000 0.000 0.004 0.004
#> GSM260927 1 0.0290 0.967 0.992 0.000 0.000 0.000 0.008
#> GSM260930 5 0.2690 0.996 0.156 0.000 0.000 0.000 0.844
#> GSM260933 5 0.2648 0.998 0.152 0.000 0.000 0.000 0.848
#> GSM260936 5 0.2648 0.998 0.152 0.000 0.000 0.000 0.848
#> GSM260939 5 0.2648 0.998 0.152 0.000 0.000 0.000 0.848
#> GSM260942 5 0.2648 0.998 0.152 0.000 0.000 0.000 0.848
#> GSM260945 5 0.2648 0.998 0.152 0.000 0.000 0.000 0.848
#> GSM260948 1 0.1965 0.875 0.904 0.000 0.000 0.000 0.096
#> GSM260950 1 0.2690 0.794 0.844 0.000 0.000 0.000 0.156
#> GSM260915 3 0.0000 0.885 0.000 0.000 1.000 0.000 0.000
#> GSM260917 3 0.0000 0.885 0.000 0.000 1.000 0.000 0.000
#> GSM260920 3 0.0162 0.884 0.000 0.000 0.996 0.004 0.000
#> GSM260923 3 0.0162 0.884 0.000 0.000 0.996 0.004 0.000
#> GSM260926 3 0.0162 0.884 0.000 0.000 0.996 0.004 0.000
#> GSM260928 4 0.1768 0.876 0.004 0.000 0.072 0.924 0.000
#> GSM260931 3 0.4197 0.841 0.000 0.000 0.776 0.076 0.148
#> GSM260934 3 0.4197 0.841 0.000 0.000 0.776 0.076 0.148
#> GSM260937 4 0.3452 0.753 0.000 0.000 0.032 0.820 0.148
#> GSM260940 3 0.4197 0.841 0.000 0.000 0.776 0.076 0.148
#> GSM260943 3 0.4197 0.841 0.000 0.000 0.776 0.076 0.148
#> GSM260946 3 0.4197 0.841 0.000 0.000 0.776 0.076 0.148
#> GSM260949 3 0.0162 0.884 0.000 0.000 0.996 0.004 0.000
#> GSM260951 3 0.0162 0.885 0.000 0.000 0.996 0.004 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM260888 2 0.0547 0.973 0.000 0.980 0.000 0.000 0.000 0.020
#> GSM260893 2 0.0790 0.975 0.000 0.968 0.000 0.000 0.000 0.032
#> GSM260896 2 0.0547 0.973 0.000 0.980 0.000 0.000 0.000 0.020
#> GSM260899 6 0.0632 0.957 0.000 0.024 0.000 0.000 0.000 0.976
#> GSM260902 6 0.1007 0.958 0.000 0.044 0.000 0.000 0.000 0.956
#> GSM260905 6 0.2340 0.871 0.000 0.148 0.000 0.000 0.000 0.852
#> GSM260908 6 0.2340 0.884 0.000 0.148 0.000 0.000 0.000 0.852
#> GSM260911 2 0.0713 0.965 0.000 0.972 0.000 0.000 0.000 0.028
#> GSM260912 2 0.0790 0.975 0.000 0.968 0.000 0.000 0.000 0.032
#> GSM260913 4 0.0146 0.928 0.000 0.000 0.004 0.996 0.000 0.000
#> GSM260886 1 0.0260 0.976 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM260889 1 0.0260 0.976 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM260891 1 0.0260 0.971 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM260894 1 0.0260 0.976 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM260897 5 0.2631 0.995 0.180 0.000 0.000 0.000 0.820 0.000
#> GSM260900 5 0.2631 0.995 0.180 0.000 0.000 0.000 0.820 0.000
#> GSM260903 5 0.2631 0.995 0.180 0.000 0.000 0.000 0.820 0.000
#> GSM260906 5 0.2631 0.995 0.180 0.000 0.000 0.000 0.820 0.000
#> GSM260909 1 0.0146 0.974 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM260887 4 0.0000 0.931 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260890 4 0.0000 0.931 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260892 4 0.0000 0.931 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260895 4 0.5010 0.661 0.004 0.000 0.160 0.672 0.160 0.004
#> GSM260898 3 0.2454 0.952 0.000 0.000 0.840 0.160 0.000 0.000
#> GSM260901 3 0.2527 0.950 0.000 0.000 0.832 0.168 0.000 0.000
#> GSM260904 3 0.3076 0.880 0.000 0.000 0.760 0.240 0.000 0.000
#> GSM260907 3 0.2491 0.954 0.000 0.000 0.836 0.164 0.000 0.000
#> GSM260910 4 0.0000 0.931 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260918 2 0.0790 0.975 0.000 0.968 0.000 0.000 0.000 0.032
#> GSM260921 2 0.0632 0.974 0.000 0.976 0.000 0.000 0.000 0.024
#> GSM260924 2 0.0713 0.965 0.000 0.972 0.000 0.000 0.000 0.028
#> GSM260929 2 0.0790 0.975 0.000 0.968 0.000 0.000 0.000 0.032
#> GSM260932 6 0.0547 0.956 0.000 0.020 0.000 0.000 0.000 0.980
#> GSM260935 6 0.0937 0.959 0.000 0.040 0.000 0.000 0.000 0.960
#> GSM260938 6 0.1053 0.945 0.000 0.012 0.004 0.000 0.020 0.964
#> GSM260941 6 0.0713 0.960 0.000 0.028 0.000 0.000 0.000 0.972
#> GSM260944 6 0.0937 0.958 0.000 0.040 0.000 0.000 0.000 0.960
#> GSM260947 6 0.0937 0.958 0.000 0.040 0.000 0.000 0.000 0.960
#> GSM260952 2 0.0790 0.975 0.000 0.968 0.000 0.000 0.000 0.032
#> GSM260914 1 0.0260 0.976 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM260916 1 0.0146 0.973 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM260919 1 0.0458 0.973 0.984 0.000 0.000 0.000 0.016 0.000
#> GSM260922 1 0.0260 0.971 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM260925 1 0.0260 0.976 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM260927 1 0.0363 0.974 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM260930 5 0.2631 0.995 0.180 0.000 0.000 0.000 0.820 0.000
#> GSM260933 5 0.2631 0.995 0.180 0.000 0.000 0.000 0.820 0.000
#> GSM260936 5 0.2527 0.989 0.168 0.000 0.000 0.000 0.832 0.000
#> GSM260939 5 0.2527 0.989 0.168 0.000 0.000 0.000 0.832 0.000
#> GSM260942 5 0.2527 0.989 0.168 0.000 0.000 0.000 0.832 0.000
#> GSM260945 5 0.2631 0.995 0.180 0.000 0.000 0.000 0.820 0.000
#> GSM260948 1 0.1501 0.910 0.924 0.000 0.000 0.000 0.076 0.000
#> GSM260950 1 0.2135 0.842 0.872 0.000 0.000 0.000 0.128 0.000
#> GSM260915 4 0.0000 0.931 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260917 4 0.1075 0.891 0.000 0.000 0.048 0.952 0.000 0.000
#> GSM260920 4 0.0146 0.930 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM260923 4 0.0146 0.930 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM260926 4 0.0146 0.930 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM260928 4 0.5010 0.661 0.004 0.000 0.160 0.672 0.160 0.004
#> GSM260931 3 0.2491 0.954 0.000 0.000 0.836 0.164 0.000 0.000
#> GSM260934 3 0.2491 0.954 0.000 0.000 0.836 0.164 0.000 0.000
#> GSM260937 3 0.2398 0.773 0.000 0.000 0.876 0.104 0.020 0.000
#> GSM260940 3 0.3161 0.904 0.000 0.000 0.776 0.216 0.008 0.000
#> GSM260943 3 0.2491 0.954 0.000 0.000 0.836 0.164 0.000 0.000
#> GSM260946 3 0.2491 0.954 0.000 0.000 0.836 0.164 0.000 0.000
#> GSM260949 4 0.0000 0.931 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM260951 4 0.1957 0.819 0.000 0.000 0.112 0.888 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) cell.type(p) k
#> MAD:mclust 67 0.939 2.75e-14 2
#> MAD:mclust 67 0.927 9.68e-27 3
#> MAD:mclust 67 0.975 3.11e-25 4
#> MAD:mclust 67 0.993 6.72e-24 5
#> MAD:mclust 67 0.996 1.02e-22 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 67 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 5.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.561 0.746 0.879 0.4681 0.506 0.506
#> 3 3 1.000 0.979 0.993 0.4423 0.750 0.538
#> 4 4 0.912 0.825 0.933 0.0505 0.970 0.910
#> 5 5 0.919 0.859 0.931 0.0175 0.980 0.937
#> 6 6 0.883 0.804 0.909 0.0265 0.970 0.903
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 3 4
There is also optional best \(k\) = 3 4 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM260888 2 0.000 0.7865 0.000 1.000
#> GSM260893 2 0.000 0.7865 0.000 1.000
#> GSM260896 2 0.000 0.7865 0.000 1.000
#> GSM260899 2 0.000 0.7865 0.000 1.000
#> GSM260902 2 0.000 0.7865 0.000 1.000
#> GSM260905 2 0.000 0.7865 0.000 1.000
#> GSM260908 2 0.000 0.7865 0.000 1.000
#> GSM260911 2 0.000 0.7865 0.000 1.000
#> GSM260912 2 0.000 0.7865 0.000 1.000
#> GSM260913 2 0.966 0.5867 0.392 0.608
#> GSM260886 1 0.000 0.9318 1.000 0.000
#> GSM260889 1 0.000 0.9318 1.000 0.000
#> GSM260891 1 0.000 0.9318 1.000 0.000
#> GSM260894 1 0.000 0.9318 1.000 0.000
#> GSM260897 1 0.000 0.9318 1.000 0.000
#> GSM260900 1 0.000 0.9318 1.000 0.000
#> GSM260903 1 0.000 0.9318 1.000 0.000
#> GSM260906 1 0.000 0.9318 1.000 0.000
#> GSM260909 1 0.000 0.9318 1.000 0.000
#> GSM260887 2 0.939 0.6334 0.356 0.644
#> GSM260890 2 0.900 0.6698 0.316 0.684
#> GSM260892 2 0.932 0.6418 0.348 0.652
#> GSM260895 1 0.000 0.9318 1.000 0.000
#> GSM260898 1 1.000 -0.3586 0.504 0.496
#> GSM260901 2 0.998 0.4144 0.472 0.528
#> GSM260904 2 0.996 0.4358 0.464 0.536
#> GSM260907 2 0.973 0.5667 0.404 0.596
#> GSM260910 2 0.917 0.6571 0.332 0.668
#> GSM260918 2 0.000 0.7865 0.000 1.000
#> GSM260921 2 0.000 0.7865 0.000 1.000
#> GSM260924 2 0.000 0.7865 0.000 1.000
#> GSM260929 2 0.000 0.7865 0.000 1.000
#> GSM260932 2 0.000 0.7865 0.000 1.000
#> GSM260935 2 0.000 0.7865 0.000 1.000
#> GSM260938 2 0.000 0.7865 0.000 1.000
#> GSM260941 2 0.000 0.7865 0.000 1.000
#> GSM260944 2 0.000 0.7865 0.000 1.000
#> GSM260947 2 0.000 0.7865 0.000 1.000
#> GSM260952 2 0.000 0.7865 0.000 1.000
#> GSM260914 1 0.000 0.9318 1.000 0.000
#> GSM260916 1 0.000 0.9318 1.000 0.000
#> GSM260919 1 0.000 0.9318 1.000 0.000
#> GSM260922 1 0.000 0.9318 1.000 0.000
#> GSM260925 1 0.000 0.9318 1.000 0.000
#> GSM260927 1 0.000 0.9318 1.000 0.000
#> GSM260930 1 0.000 0.9318 1.000 0.000
#> GSM260933 1 0.000 0.9318 1.000 0.000
#> GSM260936 1 0.000 0.9318 1.000 0.000
#> GSM260939 1 0.000 0.9318 1.000 0.000
#> GSM260942 1 0.000 0.9318 1.000 0.000
#> GSM260945 1 0.000 0.9318 1.000 0.000
#> GSM260948 1 0.000 0.9318 1.000 0.000
#> GSM260950 1 0.000 0.9318 1.000 0.000
#> GSM260915 2 0.981 0.5364 0.420 0.580
#> GSM260917 2 0.891 0.6754 0.308 0.692
#> GSM260920 2 0.855 0.6923 0.280 0.720
#> GSM260923 1 0.994 -0.2288 0.544 0.456
#> GSM260926 2 0.653 0.7405 0.168 0.832
#> GSM260928 1 0.000 0.9318 1.000 0.000
#> GSM260931 2 0.963 0.5927 0.388 0.612
#> GSM260934 2 0.961 0.5984 0.384 0.616
#> GSM260937 2 0.969 0.5806 0.396 0.604
#> GSM260940 1 0.966 0.0258 0.608 0.392
#> GSM260943 2 0.917 0.6572 0.332 0.668
#> GSM260946 2 0.987 0.5116 0.432 0.568
#> GSM260949 2 0.788 0.7141 0.236 0.764
#> GSM260951 2 0.949 0.6193 0.368 0.632
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM260888 2 0.000 1.000 0.000 1 0.000
#> GSM260893 2 0.000 1.000 0.000 1 0.000
#> GSM260896 2 0.000 1.000 0.000 1 0.000
#> GSM260899 2 0.000 1.000 0.000 1 0.000
#> GSM260902 2 0.000 1.000 0.000 1 0.000
#> GSM260905 2 0.000 1.000 0.000 1 0.000
#> GSM260908 2 0.000 1.000 0.000 1 0.000
#> GSM260911 2 0.000 1.000 0.000 1 0.000
#> GSM260912 2 0.000 1.000 0.000 1 0.000
#> GSM260913 3 0.000 0.999 0.000 0 1.000
#> GSM260886 1 0.000 0.979 1.000 0 0.000
#> GSM260889 1 0.000 0.979 1.000 0 0.000
#> GSM260891 1 0.000 0.979 1.000 0 0.000
#> GSM260894 1 0.000 0.979 1.000 0 0.000
#> GSM260897 1 0.000 0.979 1.000 0 0.000
#> GSM260900 1 0.000 0.979 1.000 0 0.000
#> GSM260903 1 0.000 0.979 1.000 0 0.000
#> GSM260906 1 0.000 0.979 1.000 0 0.000
#> GSM260909 1 0.000 0.979 1.000 0 0.000
#> GSM260887 3 0.000 0.999 0.000 0 1.000
#> GSM260890 3 0.000 0.999 0.000 0 1.000
#> GSM260892 3 0.000 0.999 0.000 0 1.000
#> GSM260895 3 0.103 0.975 0.024 0 0.976
#> GSM260898 3 0.000 0.999 0.000 0 1.000
#> GSM260901 3 0.000 0.999 0.000 0 1.000
#> GSM260904 3 0.000 0.999 0.000 0 1.000
#> GSM260907 3 0.000 0.999 0.000 0 1.000
#> GSM260910 3 0.000 0.999 0.000 0 1.000
#> GSM260918 2 0.000 1.000 0.000 1 0.000
#> GSM260921 2 0.000 1.000 0.000 1 0.000
#> GSM260924 2 0.000 1.000 0.000 1 0.000
#> GSM260929 2 0.000 1.000 0.000 1 0.000
#> GSM260932 2 0.000 1.000 0.000 1 0.000
#> GSM260935 2 0.000 1.000 0.000 1 0.000
#> GSM260938 2 0.000 1.000 0.000 1 0.000
#> GSM260941 2 0.000 1.000 0.000 1 0.000
#> GSM260944 2 0.000 1.000 0.000 1 0.000
#> GSM260947 2 0.000 1.000 0.000 1 0.000
#> GSM260952 2 0.000 1.000 0.000 1 0.000
#> GSM260914 1 0.000 0.979 1.000 0 0.000
#> GSM260916 1 0.000 0.979 1.000 0 0.000
#> GSM260919 1 0.000 0.979 1.000 0 0.000
#> GSM260922 1 0.000 0.979 1.000 0 0.000
#> GSM260925 1 0.000 0.979 1.000 0 0.000
#> GSM260927 1 0.000 0.979 1.000 0 0.000
#> GSM260930 1 0.000 0.979 1.000 0 0.000
#> GSM260933 1 0.000 0.979 1.000 0 0.000
#> GSM260936 1 0.000 0.979 1.000 0 0.000
#> GSM260939 1 0.000 0.979 1.000 0 0.000
#> GSM260942 1 0.000 0.979 1.000 0 0.000
#> GSM260945 1 0.000 0.979 1.000 0 0.000
#> GSM260948 1 0.000 0.979 1.000 0 0.000
#> GSM260950 1 0.000 0.979 1.000 0 0.000
#> GSM260915 3 0.000 0.999 0.000 0 1.000
#> GSM260917 3 0.000 0.999 0.000 0 1.000
#> GSM260920 3 0.000 0.999 0.000 0 1.000
#> GSM260923 3 0.000 0.999 0.000 0 1.000
#> GSM260926 3 0.000 0.999 0.000 0 1.000
#> GSM260928 1 0.630 0.103 0.528 0 0.472
#> GSM260931 3 0.000 0.999 0.000 0 1.000
#> GSM260934 3 0.000 0.999 0.000 0 1.000
#> GSM260937 3 0.000 0.999 0.000 0 1.000
#> GSM260940 3 0.000 0.999 0.000 0 1.000
#> GSM260943 3 0.000 0.999 0.000 0 1.000
#> GSM260946 3 0.000 0.999 0.000 0 1.000
#> GSM260949 3 0.000 0.999 0.000 0 1.000
#> GSM260951 3 0.000 0.999 0.000 0 1.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM260888 2 0.0188 0.996 0.000 0.996 0.000 0.004
#> GSM260893 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM260896 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM260899 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM260902 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM260905 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM260908 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM260911 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM260912 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM260913 3 0.0592 0.829 0.000 0.000 0.984 0.016
#> GSM260886 1 0.2011 0.886 0.920 0.000 0.000 0.080
#> GSM260889 1 0.0707 0.905 0.980 0.000 0.000 0.020
#> GSM260891 1 0.3356 0.823 0.824 0.000 0.000 0.176
#> GSM260894 1 0.0817 0.905 0.976 0.000 0.000 0.024
#> GSM260897 1 0.1792 0.893 0.932 0.000 0.000 0.068
#> GSM260900 1 0.1118 0.903 0.964 0.000 0.000 0.036
#> GSM260903 1 0.1211 0.902 0.960 0.000 0.000 0.040
#> GSM260906 1 0.1118 0.903 0.964 0.000 0.000 0.036
#> GSM260909 1 0.2011 0.886 0.920 0.000 0.000 0.080
#> GSM260887 3 0.0188 0.836 0.000 0.000 0.996 0.004
#> GSM260890 3 0.0336 0.835 0.000 0.000 0.992 0.008
#> GSM260892 3 0.3688 0.491 0.000 0.000 0.792 0.208
#> GSM260895 3 0.6055 -0.178 0.044 0.000 0.520 0.436
#> GSM260898 3 0.0469 0.831 0.000 0.000 0.988 0.012
#> GSM260901 3 0.0817 0.821 0.000 0.000 0.976 0.024
#> GSM260904 3 0.0000 0.836 0.000 0.000 1.000 0.000
#> GSM260907 3 0.0188 0.835 0.000 0.000 0.996 0.004
#> GSM260910 3 0.2921 0.637 0.000 0.000 0.860 0.140
#> GSM260918 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM260921 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM260924 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM260929 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM260932 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM260935 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM260938 2 0.0188 0.996 0.000 0.996 0.000 0.004
#> GSM260941 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM260944 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM260947 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM260952 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> GSM260914 1 0.1389 0.899 0.952 0.000 0.000 0.048
#> GSM260916 1 0.4477 0.690 0.688 0.000 0.000 0.312
#> GSM260919 1 0.0707 0.905 0.980 0.000 0.000 0.020
#> GSM260922 1 0.4454 0.695 0.692 0.000 0.000 0.308
#> GSM260925 1 0.1389 0.899 0.952 0.000 0.000 0.048
#> GSM260927 1 0.0188 0.907 0.996 0.000 0.000 0.004
#> GSM260930 1 0.1118 0.903 0.964 0.000 0.000 0.036
#> GSM260933 1 0.1302 0.901 0.956 0.000 0.000 0.044
#> GSM260936 1 0.3528 0.808 0.808 0.000 0.000 0.192
#> GSM260939 1 0.4661 0.629 0.652 0.000 0.000 0.348
#> GSM260942 1 0.4103 0.744 0.744 0.000 0.000 0.256
#> GSM260945 1 0.2011 0.887 0.920 0.000 0.000 0.080
#> GSM260948 1 0.0000 0.907 1.000 0.000 0.000 0.000
#> GSM260950 1 0.0000 0.907 1.000 0.000 0.000 0.000
#> GSM260915 3 0.0188 0.836 0.000 0.000 0.996 0.004
#> GSM260917 3 0.0000 0.836 0.000 0.000 1.000 0.000
#> GSM260920 3 0.0188 0.836 0.000 0.000 0.996 0.004
#> GSM260923 3 0.0707 0.825 0.000 0.000 0.980 0.020
#> GSM260926 3 0.0188 0.836 0.000 0.000 0.996 0.004
#> GSM260928 3 0.5220 -0.164 0.424 0.000 0.568 0.008
#> GSM260931 3 0.0592 0.828 0.000 0.000 0.984 0.016
#> GSM260934 3 0.0469 0.831 0.000 0.000 0.988 0.012
#> GSM260937 4 0.4992 0.000 0.000 0.000 0.476 0.524
#> GSM260940 3 0.4304 -0.129 0.000 0.000 0.716 0.284
#> GSM260943 3 0.1211 0.798 0.000 0.000 0.960 0.040
#> GSM260946 3 0.0707 0.825 0.000 0.000 0.980 0.020
#> GSM260949 3 0.0188 0.836 0.000 0.000 0.996 0.004
#> GSM260951 3 0.0188 0.835 0.000 0.000 0.996 0.004
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM260888 2 0.0162 0.991 0.000 0.996 0.000 0.004 NA
#> GSM260893 2 0.0162 0.991 0.000 0.996 0.000 0.004 NA
#> GSM260896 2 0.0162 0.991 0.000 0.996 0.000 0.004 NA
#> GSM260899 2 0.1410 0.951 0.000 0.940 0.000 0.000 NA
#> GSM260902 2 0.0609 0.980 0.000 0.980 0.000 0.000 NA
#> GSM260905 2 0.0000 0.991 0.000 1.000 0.000 0.000 NA
#> GSM260908 2 0.0000 0.991 0.000 1.000 0.000 0.000 NA
#> GSM260911 2 0.0162 0.991 0.000 0.996 0.000 0.004 NA
#> GSM260912 2 0.0162 0.991 0.000 0.996 0.000 0.004 NA
#> GSM260913 3 0.0162 0.820 0.000 0.000 0.996 0.000 NA
#> GSM260886 1 0.0703 0.953 0.976 0.000 0.000 0.000 NA
#> GSM260889 1 0.0162 0.958 0.996 0.000 0.000 0.000 NA
#> GSM260891 1 0.1251 0.943 0.956 0.000 0.000 0.008 NA
#> GSM260894 1 0.0290 0.958 0.992 0.000 0.000 0.000 NA
#> GSM260897 1 0.1270 0.946 0.948 0.000 0.000 0.000 NA
#> GSM260900 1 0.0510 0.957 0.984 0.000 0.000 0.000 NA
#> GSM260903 1 0.0609 0.957 0.980 0.000 0.000 0.000 NA
#> GSM260906 1 0.0510 0.957 0.984 0.000 0.000 0.000 NA
#> GSM260909 1 0.0451 0.957 0.988 0.000 0.000 0.004 NA
#> GSM260887 3 0.0290 0.819 0.000 0.000 0.992 0.008 NA
#> GSM260890 3 0.1478 0.791 0.000 0.000 0.936 0.064 NA
#> GSM260892 3 0.5048 0.562 0.000 0.000 0.704 0.144 NA
#> GSM260895 3 0.4674 0.565 0.000 0.000 0.708 0.232 NA
#> GSM260898 3 0.0798 0.812 0.000 0.000 0.976 0.008 NA
#> GSM260901 3 0.1764 0.785 0.000 0.000 0.928 0.008 NA
#> GSM260904 3 0.0162 0.818 0.000 0.000 0.996 0.004 NA
#> GSM260907 3 0.0404 0.815 0.000 0.000 0.988 0.012 NA
#> GSM260910 3 0.3487 0.650 0.000 0.000 0.780 0.212 NA
#> GSM260918 2 0.0162 0.991 0.000 0.996 0.000 0.004 NA
#> GSM260921 2 0.0162 0.991 0.000 0.996 0.000 0.004 NA
#> GSM260924 2 0.0000 0.991 0.000 1.000 0.000 0.000 NA
#> GSM260929 2 0.0162 0.991 0.000 0.996 0.000 0.004 NA
#> GSM260932 2 0.1478 0.948 0.000 0.936 0.000 0.000 NA
#> GSM260935 2 0.0609 0.980 0.000 0.980 0.000 0.000 NA
#> GSM260938 2 0.0000 0.991 0.000 1.000 0.000 0.000 NA
#> GSM260941 2 0.0000 0.991 0.000 1.000 0.000 0.000 NA
#> GSM260944 2 0.0000 0.991 0.000 1.000 0.000 0.000 NA
#> GSM260947 2 0.0000 0.991 0.000 1.000 0.000 0.000 NA
#> GSM260952 2 0.0000 0.991 0.000 1.000 0.000 0.000 NA
#> GSM260914 1 0.0510 0.956 0.984 0.000 0.000 0.000 NA
#> GSM260916 1 0.3561 0.740 0.740 0.000 0.000 0.000 NA
#> GSM260919 1 0.0404 0.957 0.988 0.000 0.000 0.000 NA
#> GSM260922 1 0.4026 0.735 0.736 0.000 0.000 0.020 NA
#> GSM260925 1 0.0609 0.955 0.980 0.000 0.000 0.000 NA
#> GSM260927 1 0.0290 0.958 0.992 0.000 0.000 0.000 NA
#> GSM260930 1 0.0609 0.957 0.980 0.000 0.000 0.000 NA
#> GSM260933 1 0.0703 0.956 0.976 0.000 0.000 0.000 NA
#> GSM260936 1 0.1281 0.950 0.956 0.000 0.000 0.012 NA
#> GSM260939 1 0.2592 0.906 0.892 0.000 0.000 0.056 NA
#> GSM260942 1 0.1774 0.936 0.932 0.000 0.000 0.016 NA
#> GSM260945 1 0.0955 0.954 0.968 0.000 0.000 0.004 NA
#> GSM260948 1 0.0290 0.957 0.992 0.000 0.000 0.000 NA
#> GSM260950 1 0.0162 0.958 0.996 0.000 0.000 0.000 NA
#> GSM260915 3 0.0404 0.818 0.000 0.000 0.988 0.012 NA
#> GSM260917 3 0.0162 0.819 0.000 0.000 0.996 0.004 NA
#> GSM260920 3 0.0000 0.819 0.000 0.000 1.000 0.000 NA
#> GSM260923 3 0.2020 0.767 0.000 0.000 0.900 0.100 NA
#> GSM260926 3 0.0162 0.819 0.000 0.000 0.996 0.004 NA
#> GSM260928 3 0.5787 0.336 0.248 0.000 0.644 0.080 NA
#> GSM260931 3 0.3210 0.519 0.000 0.000 0.788 0.212 NA
#> GSM260934 3 0.0290 0.817 0.000 0.000 0.992 0.008 NA
#> GSM260937 4 0.3480 0.843 0.000 0.000 0.248 0.752 NA
#> GSM260940 4 0.4464 0.724 0.000 0.000 0.408 0.584 NA
#> GSM260943 4 0.3752 0.865 0.000 0.000 0.292 0.708 NA
#> GSM260946 3 0.3752 0.288 0.000 0.000 0.708 0.292 NA
#> GSM260949 3 0.0000 0.819 0.000 0.000 1.000 0.000 NA
#> GSM260951 3 0.4249 -0.329 0.000 0.000 0.568 0.432 NA
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM260888 2 0.0405 0.9366 0.000 0.988 0.004 0.000 0.000 NA
#> GSM260893 2 0.0405 0.9366 0.000 0.988 0.004 0.000 0.000 NA
#> GSM260896 2 0.0405 0.9366 0.000 0.988 0.004 0.000 0.000 NA
#> GSM260899 2 0.3747 0.5909 0.000 0.604 0.000 0.000 0.000 NA
#> GSM260902 2 0.2527 0.8435 0.000 0.832 0.000 0.000 0.000 NA
#> GSM260905 2 0.0146 0.9373 0.000 0.996 0.000 0.000 0.000 NA
#> GSM260908 2 0.0865 0.9297 0.000 0.964 0.000 0.000 0.000 NA
#> GSM260911 2 0.0405 0.9366 0.000 0.988 0.004 0.000 0.000 NA
#> GSM260912 2 0.0260 0.9373 0.000 0.992 0.000 0.000 0.000 NA
#> GSM260913 4 0.0993 0.8728 0.024 0.000 0.012 0.964 0.000 NA
#> GSM260886 5 0.1444 0.8739 0.072 0.000 0.000 0.000 0.928 NA
#> GSM260889 5 0.1141 0.8855 0.052 0.000 0.000 0.000 0.948 NA
#> GSM260891 5 0.2875 0.7817 0.052 0.000 0.000 0.000 0.852 NA
#> GSM260894 5 0.0937 0.8879 0.040 0.000 0.000 0.000 0.960 NA
#> GSM260897 5 0.1391 0.8688 0.040 0.000 0.000 0.000 0.944 NA
#> GSM260900 5 0.0260 0.8896 0.008 0.000 0.000 0.000 0.992 NA
#> GSM260903 5 0.0405 0.8893 0.008 0.000 0.000 0.000 0.988 NA
#> GSM260906 5 0.0508 0.8903 0.012 0.000 0.000 0.000 0.984 NA
#> GSM260909 5 0.1367 0.8869 0.044 0.000 0.000 0.000 0.944 NA
#> GSM260887 4 0.0146 0.8720 0.000 0.000 0.000 0.996 0.000 NA
#> GSM260890 4 0.0779 0.8686 0.008 0.000 0.008 0.976 0.000 NA
#> GSM260892 4 0.3487 0.6840 0.224 0.000 0.000 0.756 0.000 NA
#> GSM260895 4 0.3475 0.7688 0.104 0.000 0.008 0.828 0.008 NA
#> GSM260898 4 0.1003 0.8711 0.000 0.000 0.016 0.964 0.000 NA
#> GSM260901 4 0.1398 0.8583 0.000 0.000 0.008 0.940 0.000 NA
#> GSM260904 4 0.0692 0.8706 0.004 0.000 0.020 0.976 0.000 NA
#> GSM260907 4 0.0935 0.8670 0.004 0.000 0.032 0.964 0.000 NA
#> GSM260910 4 0.1149 0.8634 0.024 0.000 0.008 0.960 0.000 NA
#> GSM260918 2 0.0260 0.9373 0.000 0.992 0.000 0.000 0.000 NA
#> GSM260921 2 0.0146 0.9375 0.000 0.996 0.000 0.000 0.000 NA
#> GSM260924 2 0.0291 0.9371 0.000 0.992 0.004 0.000 0.000 NA
#> GSM260929 2 0.0146 0.9375 0.000 0.996 0.000 0.000 0.000 NA
#> GSM260932 2 0.3706 0.6135 0.000 0.620 0.000 0.000 0.000 NA
#> GSM260935 2 0.2482 0.8608 0.000 0.848 0.004 0.000 0.000 NA
#> GSM260938 2 0.1801 0.9133 0.004 0.924 0.016 0.000 0.000 NA
#> GSM260941 2 0.0692 0.9341 0.000 0.976 0.004 0.000 0.000 NA
#> GSM260944 2 0.1152 0.9257 0.000 0.952 0.004 0.000 0.000 NA
#> GSM260947 2 0.0405 0.9365 0.000 0.988 0.004 0.000 0.000 NA
#> GSM260952 2 0.0146 0.9373 0.000 0.996 0.000 0.000 0.000 NA
#> GSM260914 5 0.1556 0.8680 0.080 0.000 0.000 0.000 0.920 NA
#> GSM260916 5 0.3868 -0.6764 0.496 0.000 0.000 0.000 0.504 NA
#> GSM260919 5 0.1501 0.8781 0.076 0.000 0.000 0.000 0.924 NA
#> GSM260922 1 0.3684 0.0000 0.628 0.000 0.000 0.000 0.372 NA
#> GSM260925 5 0.1556 0.8684 0.080 0.000 0.000 0.000 0.920 NA
#> GSM260927 5 0.1333 0.8866 0.048 0.000 0.000 0.000 0.944 NA
#> GSM260930 5 0.0363 0.8894 0.012 0.000 0.000 0.000 0.988 NA
#> GSM260933 5 0.0858 0.8814 0.028 0.000 0.000 0.000 0.968 NA
#> GSM260936 5 0.1536 0.8613 0.020 0.000 0.024 0.000 0.944 NA
#> GSM260939 5 0.1693 0.8579 0.032 0.000 0.020 0.000 0.936 NA
#> GSM260942 5 0.1053 0.8791 0.020 0.000 0.004 0.000 0.964 NA
#> GSM260945 5 0.0622 0.8857 0.012 0.000 0.000 0.000 0.980 NA
#> GSM260948 5 0.1714 0.8604 0.092 0.000 0.000 0.000 0.908 NA
#> GSM260950 5 0.1141 0.8837 0.052 0.000 0.000 0.000 0.948 NA
#> GSM260915 4 0.0291 0.8715 0.004 0.000 0.000 0.992 0.000 NA
#> GSM260917 4 0.0547 0.8716 0.000 0.000 0.020 0.980 0.000 NA
#> GSM260920 4 0.1261 0.8686 0.024 0.000 0.024 0.952 0.000 NA
#> GSM260923 4 0.1010 0.8656 0.036 0.000 0.000 0.960 0.000 NA
#> GSM260926 4 0.0000 0.8720 0.000 0.000 0.000 1.000 0.000 NA
#> GSM260928 4 0.6042 0.2950 0.072 0.000 0.012 0.580 0.276 NA
#> GSM260931 4 0.3371 0.5557 0.000 0.000 0.292 0.708 0.000 NA
#> GSM260934 4 0.0806 0.8705 0.000 0.000 0.020 0.972 0.000 NA
#> GSM260937 3 0.1124 0.7628 0.000 0.000 0.956 0.036 0.000 NA
#> GSM260940 4 0.3971 0.0972 0.004 0.000 0.448 0.548 0.000 NA
#> GSM260943 3 0.2006 0.8181 0.004 0.000 0.892 0.104 0.000 NA
#> GSM260946 4 0.3221 0.6039 0.000 0.000 0.264 0.736 0.000 NA
#> GSM260949 4 0.0508 0.8720 0.012 0.000 0.004 0.984 0.000 NA
#> GSM260951 3 0.3314 0.7058 0.000 0.000 0.740 0.256 0.000 NA
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) cell.type(p) k
#> MAD:NMF 62 1.000 1.38e-12 2
#> MAD:NMF 66 0.920 2.62e-26 3
#> MAD:NMF 62 0.927 1.47e-24 4
#> MAD:NMF 64 0.312 5.90e-24 5
#> MAD:NMF 63 0.401 1.40e-23 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 67 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4257 0.575 0.575
#> 3 3 0.623 0.864 0.865 0.4317 0.791 0.637
#> 4 4 0.580 0.858 0.845 0.0759 0.955 0.876
#> 5 5 0.765 0.753 0.844 0.1051 0.972 0.915
#> 6 6 0.843 0.879 0.883 0.1025 0.864 0.575
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM260888 2 0 1 0 1
#> GSM260893 2 0 1 0 1
#> GSM260896 2 0 1 0 1
#> GSM260899 2 0 1 0 1
#> GSM260902 2 0 1 0 1
#> GSM260905 2 0 1 0 1
#> GSM260908 2 0 1 0 1
#> GSM260911 2 0 1 0 1
#> GSM260912 2 0 1 0 1
#> GSM260913 1 0 1 1 0
#> GSM260886 1 0 1 1 0
#> GSM260889 1 0 1 1 0
#> GSM260891 1 0 1 1 0
#> GSM260894 1 0 1 1 0
#> GSM260897 1 0 1 1 0
#> GSM260900 1 0 1 1 0
#> GSM260903 1 0 1 1 0
#> GSM260906 1 0 1 1 0
#> GSM260909 1 0 1 1 0
#> GSM260887 1 0 1 1 0
#> GSM260890 1 0 1 1 0
#> GSM260892 1 0 1 1 0
#> GSM260895 1 0 1 1 0
#> GSM260898 1 0 1 1 0
#> GSM260901 1 0 1 1 0
#> GSM260904 1 0 1 1 0
#> GSM260907 1 0 1 1 0
#> GSM260910 1 0 1 1 0
#> GSM260918 2 0 1 0 1
#> GSM260921 2 0 1 0 1
#> GSM260924 2 0 1 0 1
#> GSM260929 2 0 1 0 1
#> GSM260932 2 0 1 0 1
#> GSM260935 2 0 1 0 1
#> GSM260938 2 0 1 0 1
#> GSM260941 2 0 1 0 1
#> GSM260944 2 0 1 0 1
#> GSM260947 2 0 1 0 1
#> GSM260952 2 0 1 0 1
#> GSM260914 1 0 1 1 0
#> GSM260916 1 0 1 1 0
#> GSM260919 1 0 1 1 0
#> GSM260922 1 0 1 1 0
#> GSM260925 1 0 1 1 0
#> GSM260927 1 0 1 1 0
#> GSM260930 1 0 1 1 0
#> GSM260933 1 0 1 1 0
#> GSM260936 1 0 1 1 0
#> GSM260939 1 0 1 1 0
#> GSM260942 1 0 1 1 0
#> GSM260945 1 0 1 1 0
#> GSM260948 1 0 1 1 0
#> GSM260950 1 0 1 1 0
#> GSM260915 1 0 1 1 0
#> GSM260917 1 0 1 1 0
#> GSM260920 1 0 1 1 0
#> GSM260923 1 0 1 1 0
#> GSM260926 1 0 1 1 0
#> GSM260928 1 0 1 1 0
#> GSM260931 1 0 1 1 0
#> GSM260934 1 0 1 1 0
#> GSM260937 1 0 1 1 0
#> GSM260940 1 0 1 1 0
#> GSM260943 1 0 1 1 0
#> GSM260946 1 0 1 1 0
#> GSM260949 1 0 1 1 0
#> GSM260951 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM260888 2 0.000 1.000 0.000 1 0.000
#> GSM260893 2 0.000 1.000 0.000 1 0.000
#> GSM260896 2 0.000 1.000 0.000 1 0.000
#> GSM260899 2 0.000 1.000 0.000 1 0.000
#> GSM260902 2 0.000 1.000 0.000 1 0.000
#> GSM260905 2 0.000 1.000 0.000 1 0.000
#> GSM260908 2 0.000 1.000 0.000 1 0.000
#> GSM260911 2 0.000 1.000 0.000 1 0.000
#> GSM260912 2 0.000 1.000 0.000 1 0.000
#> GSM260913 3 0.429 0.897 0.180 0 0.820
#> GSM260886 1 0.319 0.846 0.888 0 0.112
#> GSM260889 1 0.319 0.846 0.888 0 0.112
#> GSM260891 1 0.319 0.846 0.888 0 0.112
#> GSM260894 1 0.319 0.846 0.888 0 0.112
#> GSM260897 1 0.000 0.839 1.000 0 0.000
#> GSM260900 1 0.000 0.839 1.000 0 0.000
#> GSM260903 1 0.000 0.839 1.000 0 0.000
#> GSM260906 1 0.000 0.839 1.000 0 0.000
#> GSM260909 1 0.319 0.846 0.888 0 0.112
#> GSM260887 3 0.435 0.896 0.184 0 0.816
#> GSM260890 3 0.429 0.897 0.180 0 0.820
#> GSM260892 3 0.000 0.708 0.000 0 1.000
#> GSM260895 1 0.319 0.846 0.888 0 0.112
#> GSM260898 1 0.465 0.637 0.792 0 0.208
#> GSM260901 1 0.465 0.637 0.792 0 0.208
#> GSM260904 1 0.465 0.637 0.792 0 0.208
#> GSM260907 1 0.465 0.637 0.792 0 0.208
#> GSM260910 3 0.429 0.897 0.180 0 0.820
#> GSM260918 2 0.000 1.000 0.000 1 0.000
#> GSM260921 2 0.000 1.000 0.000 1 0.000
#> GSM260924 2 0.000 1.000 0.000 1 0.000
#> GSM260929 2 0.000 1.000 0.000 1 0.000
#> GSM260932 2 0.000 1.000 0.000 1 0.000
#> GSM260935 2 0.000 1.000 0.000 1 0.000
#> GSM260938 2 0.000 1.000 0.000 1 0.000
#> GSM260941 2 0.000 1.000 0.000 1 0.000
#> GSM260944 2 0.000 1.000 0.000 1 0.000
#> GSM260947 2 0.000 1.000 0.000 1 0.000
#> GSM260952 2 0.000 1.000 0.000 1 0.000
#> GSM260914 1 0.319 0.846 0.888 0 0.112
#> GSM260916 1 0.319 0.846 0.888 0 0.112
#> GSM260919 1 0.319 0.846 0.888 0 0.112
#> GSM260922 1 0.319 0.846 0.888 0 0.112
#> GSM260925 1 0.319 0.846 0.888 0 0.112
#> GSM260927 1 0.319 0.846 0.888 0 0.112
#> GSM260930 1 0.000 0.839 1.000 0 0.000
#> GSM260933 1 0.000 0.839 1.000 0 0.000
#> GSM260936 1 0.000 0.839 1.000 0 0.000
#> GSM260939 1 0.000 0.839 1.000 0 0.000
#> GSM260942 1 0.000 0.839 1.000 0 0.000
#> GSM260945 1 0.000 0.839 1.000 0 0.000
#> GSM260948 1 0.319 0.846 0.888 0 0.112
#> GSM260950 1 0.319 0.846 0.888 0 0.112
#> GSM260915 3 0.470 0.879 0.212 0 0.788
#> GSM260917 3 0.435 0.896 0.184 0 0.816
#> GSM260920 3 0.621 0.552 0.428 0 0.572
#> GSM260923 3 0.429 0.897 0.180 0 0.820
#> GSM260926 3 0.470 0.879 0.212 0 0.788
#> GSM260928 1 0.319 0.846 0.888 0 0.112
#> GSM260931 1 0.465 0.637 0.792 0 0.208
#> GSM260934 1 0.465 0.637 0.792 0 0.208
#> GSM260937 3 0.576 0.801 0.328 0 0.672
#> GSM260940 1 0.465 0.637 0.792 0 0.208
#> GSM260943 3 0.576 0.801 0.328 0 0.672
#> GSM260946 1 0.465 0.637 0.792 0 0.208
#> GSM260949 3 0.429 0.897 0.180 0 0.820
#> GSM260951 3 0.576 0.801 0.328 0 0.672
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM260888 4 0.000 1.000 0.000 0.000 0.000 1.000
#> GSM260893 4 0.000 1.000 0.000 0.000 0.000 1.000
#> GSM260896 4 0.000 1.000 0.000 0.000 0.000 1.000
#> GSM260899 2 0.253 1.000 0.000 0.888 0.000 0.112
#> GSM260902 2 0.253 1.000 0.000 0.888 0.000 0.112
#> GSM260905 2 0.253 1.000 0.000 0.888 0.000 0.112
#> GSM260908 2 0.253 1.000 0.000 0.888 0.000 0.112
#> GSM260911 4 0.000 1.000 0.000 0.000 0.000 1.000
#> GSM260912 4 0.000 1.000 0.000 0.000 0.000 1.000
#> GSM260913 3 0.340 0.871 0.180 0.000 0.820 0.000
#> GSM260886 1 0.253 0.845 0.888 0.000 0.112 0.000
#> GSM260889 1 0.253 0.845 0.888 0.000 0.112 0.000
#> GSM260891 1 0.253 0.845 0.888 0.000 0.112 0.000
#> GSM260894 1 0.253 0.845 0.888 0.000 0.112 0.000
#> GSM260897 1 0.000 0.843 1.000 0.000 0.000 0.000
#> GSM260900 1 0.000 0.843 1.000 0.000 0.000 0.000
#> GSM260903 1 0.000 0.843 1.000 0.000 0.000 0.000
#> GSM260906 1 0.000 0.843 1.000 0.000 0.000 0.000
#> GSM260909 1 0.253 0.845 0.888 0.000 0.112 0.000
#> GSM260887 3 0.344 0.870 0.184 0.000 0.816 0.000
#> GSM260890 3 0.340 0.871 0.180 0.000 0.820 0.000
#> GSM260892 3 0.000 0.649 0.000 0.000 1.000 0.000
#> GSM260895 1 0.253 0.845 0.888 0.000 0.112 0.000
#> GSM260898 1 0.479 0.665 0.788 0.104 0.108 0.000
#> GSM260901 1 0.479 0.665 0.788 0.104 0.108 0.000
#> GSM260904 1 0.479 0.665 0.788 0.104 0.108 0.000
#> GSM260907 1 0.479 0.665 0.788 0.104 0.108 0.000
#> GSM260910 3 0.340 0.871 0.180 0.000 0.820 0.000
#> GSM260918 4 0.000 1.000 0.000 0.000 0.000 1.000
#> GSM260921 4 0.000 1.000 0.000 0.000 0.000 1.000
#> GSM260924 4 0.000 1.000 0.000 0.000 0.000 1.000
#> GSM260929 4 0.000 1.000 0.000 0.000 0.000 1.000
#> GSM260932 2 0.253 1.000 0.000 0.888 0.000 0.112
#> GSM260935 2 0.253 1.000 0.000 0.888 0.000 0.112
#> GSM260938 2 0.253 1.000 0.000 0.888 0.000 0.112
#> GSM260941 2 0.253 1.000 0.000 0.888 0.000 0.112
#> GSM260944 2 0.253 1.000 0.000 0.888 0.000 0.112
#> GSM260947 2 0.253 1.000 0.000 0.888 0.000 0.112
#> GSM260952 4 0.000 1.000 0.000 0.000 0.000 1.000
#> GSM260914 1 0.253 0.845 0.888 0.000 0.112 0.000
#> GSM260916 1 0.253 0.845 0.888 0.000 0.112 0.000
#> GSM260919 1 0.253 0.845 0.888 0.000 0.112 0.000
#> GSM260922 1 0.253 0.845 0.888 0.000 0.112 0.000
#> GSM260925 1 0.253 0.845 0.888 0.000 0.112 0.000
#> GSM260927 1 0.253 0.845 0.888 0.000 0.112 0.000
#> GSM260930 1 0.000 0.843 1.000 0.000 0.000 0.000
#> GSM260933 1 0.000 0.843 1.000 0.000 0.000 0.000
#> GSM260936 1 0.000 0.843 1.000 0.000 0.000 0.000
#> GSM260939 1 0.000 0.843 1.000 0.000 0.000 0.000
#> GSM260942 1 0.000 0.843 1.000 0.000 0.000 0.000
#> GSM260945 1 0.000 0.843 1.000 0.000 0.000 0.000
#> GSM260948 1 0.253 0.845 0.888 0.000 0.112 0.000
#> GSM260950 1 0.253 0.845 0.888 0.000 0.112 0.000
#> GSM260915 3 0.373 0.853 0.212 0.000 0.788 0.000
#> GSM260917 3 0.344 0.870 0.184 0.000 0.816 0.000
#> GSM260920 3 0.688 0.452 0.424 0.104 0.472 0.000
#> GSM260923 3 0.340 0.871 0.180 0.000 0.820 0.000
#> GSM260926 3 0.373 0.853 0.212 0.000 0.788 0.000
#> GSM260928 1 0.253 0.845 0.888 0.000 0.112 0.000
#> GSM260931 1 0.479 0.665 0.788 0.104 0.108 0.000
#> GSM260934 1 0.479 0.665 0.788 0.104 0.108 0.000
#> GSM260937 3 0.673 0.718 0.324 0.112 0.564 0.000
#> GSM260940 1 0.479 0.665 0.788 0.104 0.108 0.000
#> GSM260943 3 0.673 0.718 0.324 0.112 0.564 0.000
#> GSM260946 1 0.479 0.665 0.788 0.104 0.108 0.000
#> GSM260949 3 0.340 0.871 0.180 0.000 0.820 0.000
#> GSM260951 3 0.673 0.718 0.324 0.112 0.564 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM260888 4 0.4294 0.774 0.000 0 0.000 0.532 0.468
#> GSM260893 4 0.4294 0.774 0.000 0 0.000 0.532 0.468
#> GSM260896 4 0.4294 0.774 0.000 0 0.000 0.532 0.468
#> GSM260899 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260902 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260905 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260908 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260911 4 0.4294 0.774 0.000 0 0.000 0.532 0.468
#> GSM260912 4 0.4294 0.774 0.000 0 0.000 0.532 0.468
#> GSM260913 3 0.0000 0.916 0.000 0 1.000 0.000 0.000
#> GSM260886 1 0.2179 0.827 0.888 0 0.000 0.000 0.112
#> GSM260889 1 0.2179 0.827 0.888 0 0.000 0.000 0.112
#> GSM260891 1 0.2179 0.827 0.888 0 0.000 0.000 0.112
#> GSM260894 1 0.2179 0.827 0.888 0 0.000 0.000 0.112
#> GSM260897 1 0.0000 0.822 1.000 0 0.000 0.000 0.000
#> GSM260900 1 0.0000 0.822 1.000 0 0.000 0.000 0.000
#> GSM260903 1 0.0000 0.822 1.000 0 0.000 0.000 0.000
#> GSM260906 1 0.0000 0.822 1.000 0 0.000 0.000 0.000
#> GSM260909 1 0.2179 0.827 0.888 0 0.000 0.000 0.112
#> GSM260887 3 0.0162 0.915 0.000 0 0.996 0.000 0.004
#> GSM260890 3 0.0000 0.916 0.000 0 1.000 0.000 0.000
#> GSM260892 3 0.3586 0.634 0.000 0 0.736 0.000 0.264
#> GSM260895 1 0.2286 0.826 0.888 0 0.004 0.000 0.108
#> GSM260898 1 0.5948 0.420 0.580 0 0.264 0.000 0.156
#> GSM260901 1 0.5948 0.420 0.580 0 0.264 0.000 0.156
#> GSM260904 1 0.5948 0.420 0.580 0 0.264 0.000 0.156
#> GSM260907 1 0.5948 0.420 0.580 0 0.264 0.000 0.156
#> GSM260910 3 0.0000 0.916 0.000 0 1.000 0.000 0.000
#> GSM260918 4 0.4294 0.774 0.000 0 0.000 0.532 0.468
#> GSM260921 4 0.4294 0.774 0.000 0 0.000 0.532 0.468
#> GSM260924 4 0.4294 0.774 0.000 0 0.000 0.532 0.468
#> GSM260929 4 0.4294 0.774 0.000 0 0.000 0.532 0.468
#> GSM260932 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260935 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260938 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260941 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260944 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260947 2 0.0000 1.000 0.000 1 0.000 0.000 0.000
#> GSM260952 4 0.4294 0.774 0.000 0 0.000 0.532 0.468
#> GSM260914 1 0.2179 0.827 0.888 0 0.000 0.000 0.112
#> GSM260916 1 0.2179 0.827 0.888 0 0.000 0.000 0.112
#> GSM260919 1 0.2179 0.827 0.888 0 0.000 0.000 0.112
#> GSM260922 1 0.2179 0.827 0.888 0 0.000 0.000 0.112
#> GSM260925 1 0.2179 0.827 0.888 0 0.000 0.000 0.112
#> GSM260927 1 0.2179 0.827 0.888 0 0.000 0.000 0.112
#> GSM260930 1 0.0000 0.822 1.000 0 0.000 0.000 0.000
#> GSM260933 1 0.0000 0.822 1.000 0 0.000 0.000 0.000
#> GSM260936 1 0.0000 0.822 1.000 0 0.000 0.000 0.000
#> GSM260939 1 0.0000 0.822 1.000 0 0.000 0.000 0.000
#> GSM260942 1 0.0000 0.822 1.000 0 0.000 0.000 0.000
#> GSM260945 1 0.0000 0.822 1.000 0 0.000 0.000 0.000
#> GSM260948 1 0.2179 0.827 0.888 0 0.000 0.000 0.112
#> GSM260950 1 0.2179 0.827 0.888 0 0.000 0.000 0.112
#> GSM260915 3 0.0992 0.901 0.008 0 0.968 0.000 0.024
#> GSM260917 3 0.0324 0.914 0.004 0 0.992 0.004 0.000
#> GSM260920 3 0.5673 0.502 0.216 0 0.628 0.000 0.156
#> GSM260923 3 0.0000 0.916 0.000 0 1.000 0.000 0.000
#> GSM260926 3 0.0992 0.901 0.008 0 0.968 0.000 0.024
#> GSM260928 1 0.2179 0.827 0.888 0 0.000 0.000 0.112
#> GSM260931 1 0.5948 0.420 0.580 0 0.264 0.000 0.156
#> GSM260934 1 0.5948 0.420 0.580 0 0.264 0.000 0.156
#> GSM260937 4 0.7717 -0.212 0.112 0 0.264 0.468 0.156
#> GSM260940 1 0.5948 0.420 0.580 0 0.264 0.000 0.156
#> GSM260943 4 0.7717 -0.212 0.112 0 0.264 0.468 0.156
#> GSM260946 1 0.5948 0.420 0.580 0 0.264 0.000 0.156
#> GSM260949 3 0.0000 0.916 0.000 0 1.000 0.000 0.000
#> GSM260951 4 0.7717 -0.212 0.112 0 0.264 0.468 0.156
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM260888 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0
#> GSM260893 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0
#> GSM260896 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0
#> GSM260899 6 0.0000 1.000 0.000 0 0.000 0.000 0.000 1
#> GSM260902 6 0.0000 1.000 0.000 0 0.000 0.000 0.000 1
#> GSM260905 6 0.0000 1.000 0.000 0 0.000 0.000 0.000 1
#> GSM260908 6 0.0000 1.000 0.000 0 0.000 0.000 0.000 1
#> GSM260911 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0
#> GSM260912 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0
#> GSM260913 4 0.0000 0.908 0.000 0 0.000 1.000 0.000 0
#> GSM260886 1 0.3351 0.995 0.712 0 0.000 0.000 0.288 0
#> GSM260889 1 0.3351 0.995 0.712 0 0.000 0.000 0.288 0
#> GSM260891 1 0.3309 0.993 0.720 0 0.000 0.000 0.280 0
#> GSM260894 1 0.3330 0.995 0.716 0 0.000 0.000 0.284 0
#> GSM260897 5 0.0790 0.710 0.032 0 0.000 0.000 0.968 0
#> GSM260900 5 0.0790 0.710 0.032 0 0.000 0.000 0.968 0
#> GSM260903 5 0.0790 0.710 0.032 0 0.000 0.000 0.968 0
#> GSM260906 5 0.0790 0.710 0.032 0 0.000 0.000 0.968 0
#> GSM260909 1 0.3330 0.995 0.716 0 0.000 0.000 0.284 0
#> GSM260887 4 0.0146 0.907 0.000 0 0.000 0.996 0.004 0
#> GSM260890 4 0.0000 0.908 0.000 0 0.000 1.000 0.000 0
#> GSM260892 4 0.3309 0.562 0.280 0 0.000 0.720 0.000 0
#> GSM260895 1 0.3448 0.991 0.716 0 0.000 0.004 0.280 0
#> GSM260898 5 0.5084 0.604 0.000 0 0.124 0.264 0.612 0
#> GSM260901 5 0.5084 0.604 0.000 0 0.124 0.264 0.612 0
#> GSM260904 5 0.5084 0.604 0.000 0 0.124 0.264 0.612 0
#> GSM260907 5 0.5084 0.604 0.000 0 0.124 0.264 0.612 0
#> GSM260910 4 0.0000 0.908 0.000 0 0.000 1.000 0.000 0
#> GSM260918 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0
#> GSM260921 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0
#> GSM260924 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0
#> GSM260929 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0
#> GSM260932 6 0.0000 1.000 0.000 0 0.000 0.000 0.000 1
#> GSM260935 6 0.0000 1.000 0.000 0 0.000 0.000 0.000 1
#> GSM260938 6 0.0000 1.000 0.000 0 0.000 0.000 0.000 1
#> GSM260941 6 0.0000 1.000 0.000 0 0.000 0.000 0.000 1
#> GSM260944 6 0.0000 1.000 0.000 0 0.000 0.000 0.000 1
#> GSM260947 6 0.0000 1.000 0.000 0 0.000 0.000 0.000 1
#> GSM260952 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0
#> GSM260914 1 0.3351 0.995 0.712 0 0.000 0.000 0.288 0
#> GSM260916 1 0.3309 0.993 0.720 0 0.000 0.000 0.280 0
#> GSM260919 1 0.3351 0.995 0.712 0 0.000 0.000 0.288 0
#> GSM260922 1 0.3309 0.993 0.720 0 0.000 0.000 0.280 0
#> GSM260925 1 0.3351 0.995 0.712 0 0.000 0.000 0.288 0
#> GSM260927 1 0.3330 0.995 0.716 0 0.000 0.000 0.284 0
#> GSM260930 5 0.0790 0.710 0.032 0 0.000 0.000 0.968 0
#> GSM260933 5 0.0790 0.710 0.032 0 0.000 0.000 0.968 0
#> GSM260936 5 0.0790 0.710 0.032 0 0.000 0.000 0.968 0
#> GSM260939 5 0.0790 0.710 0.032 0 0.000 0.000 0.968 0
#> GSM260942 5 0.0790 0.710 0.032 0 0.000 0.000 0.968 0
#> GSM260945 5 0.0790 0.710 0.032 0 0.000 0.000 0.968 0
#> GSM260948 1 0.3351 0.995 0.712 0 0.000 0.000 0.288 0
#> GSM260950 1 0.3351 0.995 0.712 0 0.000 0.000 0.288 0
#> GSM260915 4 0.0790 0.891 0.000 0 0.000 0.968 0.032 0
#> GSM260917 4 0.0458 0.899 0.000 0 0.016 0.984 0.000 0
#> GSM260920 4 0.5005 0.371 0.000 0 0.124 0.628 0.248 0
#> GSM260923 4 0.0000 0.908 0.000 0 0.000 1.000 0.000 0
#> GSM260926 4 0.0790 0.891 0.000 0 0.000 0.968 0.032 0
#> GSM260928 1 0.3309 0.993 0.720 0 0.000 0.000 0.280 0
#> GSM260931 5 0.5084 0.604 0.000 0 0.124 0.264 0.612 0
#> GSM260934 5 0.5084 0.604 0.000 0 0.124 0.264 0.612 0
#> GSM260937 3 0.0000 1.000 0.000 0 1.000 0.000 0.000 0
#> GSM260940 5 0.5084 0.604 0.000 0 0.124 0.264 0.612 0
#> GSM260943 3 0.0000 1.000 0.000 0 1.000 0.000 0.000 0
#> GSM260946 5 0.5084 0.604 0.000 0 0.124 0.264 0.612 0
#> GSM260949 4 0.0000 0.908 0.000 0 0.000 1.000 0.000 0
#> GSM260951 3 0.0000 1.000 0.000 0 1.000 0.000 0.000 0
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) cell.type(p) k
#> ATC:hclust 67 0.939 2.75e-14 2
#> ATC:hclust 67 0.860 4.00e-18 3
#> ATC:hclust 66 0.952 2.70e-16 4
#> ATC:hclust 56 0.949 1.02e-17 5
#> ATC:hclust 66 0.735 4.86e-15 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 67 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4257 0.575 0.575
#> 3 3 0.688 0.938 0.869 0.4699 0.751 0.567
#> 4 4 0.790 0.841 0.819 0.1376 1.000 1.000
#> 5 5 0.802 0.885 0.774 0.0753 0.877 0.624
#> 6 6 0.810 0.910 0.796 0.0442 0.955 0.778
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM260888 2 0 1 0 1
#> GSM260893 2 0 1 0 1
#> GSM260896 2 0 1 0 1
#> GSM260899 2 0 1 0 1
#> GSM260902 2 0 1 0 1
#> GSM260905 2 0 1 0 1
#> GSM260908 2 0 1 0 1
#> GSM260911 2 0 1 0 1
#> GSM260912 2 0 1 0 1
#> GSM260913 1 0 1 1 0
#> GSM260886 1 0 1 1 0
#> GSM260889 1 0 1 1 0
#> GSM260891 1 0 1 1 0
#> GSM260894 1 0 1 1 0
#> GSM260897 1 0 1 1 0
#> GSM260900 1 0 1 1 0
#> GSM260903 1 0 1 1 0
#> GSM260906 1 0 1 1 0
#> GSM260909 1 0 1 1 0
#> GSM260887 1 0 1 1 0
#> GSM260890 1 0 1 1 0
#> GSM260892 1 0 1 1 0
#> GSM260895 1 0 1 1 0
#> GSM260898 1 0 1 1 0
#> GSM260901 1 0 1 1 0
#> GSM260904 1 0 1 1 0
#> GSM260907 1 0 1 1 0
#> GSM260910 1 0 1 1 0
#> GSM260918 2 0 1 0 1
#> GSM260921 2 0 1 0 1
#> GSM260924 2 0 1 0 1
#> GSM260929 2 0 1 0 1
#> GSM260932 2 0 1 0 1
#> GSM260935 2 0 1 0 1
#> GSM260938 2 0 1 0 1
#> GSM260941 2 0 1 0 1
#> GSM260944 2 0 1 0 1
#> GSM260947 2 0 1 0 1
#> GSM260952 2 0 1 0 1
#> GSM260914 1 0 1 1 0
#> GSM260916 1 0 1 1 0
#> GSM260919 1 0 1 1 0
#> GSM260922 1 0 1 1 0
#> GSM260925 1 0 1 1 0
#> GSM260927 1 0 1 1 0
#> GSM260930 1 0 1 1 0
#> GSM260933 1 0 1 1 0
#> GSM260936 1 0 1 1 0
#> GSM260939 1 0 1 1 0
#> GSM260942 1 0 1 1 0
#> GSM260945 1 0 1 1 0
#> GSM260948 1 0 1 1 0
#> GSM260950 1 0 1 1 0
#> GSM260915 1 0 1 1 0
#> GSM260917 1 0 1 1 0
#> GSM260920 1 0 1 1 0
#> GSM260923 1 0 1 1 0
#> GSM260926 1 0 1 1 0
#> GSM260928 1 0 1 1 0
#> GSM260931 1 0 1 1 0
#> GSM260934 1 0 1 1 0
#> GSM260937 1 0 1 1 0
#> GSM260940 1 0 1 1 0
#> GSM260943 1 0 1 1 0
#> GSM260946 1 0 1 1 0
#> GSM260949 1 0 1 1 0
#> GSM260951 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM260888 2 0.4178 0.930 0.000 0.828 0.172
#> GSM260893 2 0.4178 0.930 0.000 0.828 0.172
#> GSM260896 2 0.4178 0.930 0.000 0.828 0.172
#> GSM260899 2 0.2066 0.908 0.000 0.940 0.060
#> GSM260902 2 0.2066 0.908 0.000 0.940 0.060
#> GSM260905 2 0.0000 0.925 0.000 1.000 0.000
#> GSM260908 2 0.0000 0.925 0.000 1.000 0.000
#> GSM260911 2 0.4178 0.930 0.000 0.828 0.172
#> GSM260912 2 0.4178 0.930 0.000 0.828 0.172
#> GSM260913 3 0.5621 0.942 0.308 0.000 0.692
#> GSM260886 1 0.0237 0.953 0.996 0.000 0.004
#> GSM260889 1 0.0000 0.953 1.000 0.000 0.000
#> GSM260891 1 0.0237 0.953 0.996 0.000 0.004
#> GSM260894 1 0.0237 0.953 0.996 0.000 0.004
#> GSM260897 1 0.2448 0.931 0.924 0.000 0.076
#> GSM260900 1 0.2448 0.931 0.924 0.000 0.076
#> GSM260903 1 0.2448 0.931 0.924 0.000 0.076
#> GSM260906 1 0.2448 0.931 0.924 0.000 0.076
#> GSM260909 1 0.0237 0.953 0.996 0.000 0.004
#> GSM260887 3 0.5591 0.944 0.304 0.000 0.696
#> GSM260890 3 0.5621 0.942 0.308 0.000 0.692
#> GSM260892 3 0.5621 0.942 0.308 0.000 0.692
#> GSM260895 1 0.0237 0.953 0.996 0.000 0.004
#> GSM260898 3 0.4974 0.940 0.236 0.000 0.764
#> GSM260901 3 0.4974 0.940 0.236 0.000 0.764
#> GSM260904 3 0.4974 0.940 0.236 0.000 0.764
#> GSM260907 3 0.4974 0.940 0.236 0.000 0.764
#> GSM260910 3 0.5621 0.942 0.308 0.000 0.692
#> GSM260918 2 0.4178 0.930 0.000 0.828 0.172
#> GSM260921 2 0.4178 0.930 0.000 0.828 0.172
#> GSM260924 2 0.4178 0.930 0.000 0.828 0.172
#> GSM260929 2 0.4178 0.930 0.000 0.828 0.172
#> GSM260932 2 0.2066 0.908 0.000 0.940 0.060
#> GSM260935 2 0.2066 0.908 0.000 0.940 0.060
#> GSM260938 2 0.0592 0.923 0.000 0.988 0.012
#> GSM260941 2 0.0000 0.925 0.000 1.000 0.000
#> GSM260944 2 0.0000 0.925 0.000 1.000 0.000
#> GSM260947 2 0.0000 0.925 0.000 1.000 0.000
#> GSM260952 2 0.4178 0.930 0.000 0.828 0.172
#> GSM260914 1 0.0000 0.953 1.000 0.000 0.000
#> GSM260916 1 0.0237 0.953 0.996 0.000 0.004
#> GSM260919 1 0.0237 0.953 0.996 0.000 0.004
#> GSM260922 1 0.0237 0.953 0.996 0.000 0.004
#> GSM260925 1 0.0000 0.953 1.000 0.000 0.000
#> GSM260927 1 0.0237 0.953 0.996 0.000 0.004
#> GSM260930 1 0.2448 0.931 0.924 0.000 0.076
#> GSM260933 1 0.2448 0.931 0.924 0.000 0.076
#> GSM260936 1 0.2448 0.931 0.924 0.000 0.076
#> GSM260939 1 0.2448 0.931 0.924 0.000 0.076
#> GSM260942 1 0.2448 0.931 0.924 0.000 0.076
#> GSM260945 1 0.2448 0.931 0.924 0.000 0.076
#> GSM260948 1 0.0237 0.953 0.996 0.000 0.004
#> GSM260950 1 0.0000 0.953 1.000 0.000 0.000
#> GSM260915 3 0.5529 0.948 0.296 0.000 0.704
#> GSM260917 3 0.5529 0.948 0.296 0.000 0.704
#> GSM260920 3 0.5529 0.948 0.296 0.000 0.704
#> GSM260923 3 0.5621 0.942 0.308 0.000 0.692
#> GSM260926 3 0.5529 0.948 0.296 0.000 0.704
#> GSM260928 1 0.0237 0.953 0.996 0.000 0.004
#> GSM260931 3 0.4974 0.940 0.236 0.000 0.764
#> GSM260934 3 0.4974 0.940 0.236 0.000 0.764
#> GSM260937 3 0.4974 0.940 0.236 0.000 0.764
#> GSM260940 3 0.4974 0.940 0.236 0.000 0.764
#> GSM260943 3 0.4974 0.940 0.236 0.000 0.764
#> GSM260946 3 0.4974 0.940 0.236 0.000 0.764
#> GSM260949 3 0.5621 0.942 0.308 0.000 0.692
#> GSM260951 3 0.5529 0.948 0.296 0.000 0.704
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM260888 2 0.4500 0.866 0.000 0.684 0.000 NA
#> GSM260893 2 0.4500 0.866 0.000 0.684 0.000 NA
#> GSM260896 2 0.4500 0.866 0.000 0.684 0.000 NA
#> GSM260899 2 0.1975 0.852 0.000 0.936 0.048 NA
#> GSM260902 2 0.1975 0.852 0.000 0.936 0.048 NA
#> GSM260905 2 0.0000 0.859 0.000 1.000 0.000 NA
#> GSM260908 2 0.0000 0.859 0.000 1.000 0.000 NA
#> GSM260911 2 0.4500 0.866 0.000 0.684 0.000 NA
#> GSM260912 2 0.4500 0.866 0.000 0.684 0.000 NA
#> GSM260913 3 0.6500 0.832 0.092 0.000 0.580 NA
#> GSM260886 1 0.4456 0.872 0.716 0.000 0.004 NA
#> GSM260889 1 0.4277 0.872 0.720 0.000 0.000 NA
#> GSM260891 1 0.4456 0.872 0.716 0.000 0.004 NA
#> GSM260894 1 0.4456 0.872 0.716 0.000 0.004 NA
#> GSM260897 1 0.0707 0.812 0.980 0.000 0.020 NA
#> GSM260900 1 0.0707 0.812 0.980 0.000 0.020 NA
#> GSM260903 1 0.0707 0.812 0.980 0.000 0.020 NA
#> GSM260906 1 0.0707 0.812 0.980 0.000 0.020 NA
#> GSM260909 1 0.4456 0.872 0.716 0.000 0.004 NA
#> GSM260887 3 0.6446 0.833 0.088 0.000 0.584 NA
#> GSM260890 3 0.6500 0.832 0.092 0.000 0.580 NA
#> GSM260892 3 0.6547 0.829 0.092 0.000 0.568 NA
#> GSM260895 1 0.5628 0.715 0.556 0.000 0.024 NA
#> GSM260898 3 0.2011 0.818 0.080 0.000 0.920 NA
#> GSM260901 3 0.2011 0.818 0.080 0.000 0.920 NA
#> GSM260904 3 0.1940 0.819 0.076 0.000 0.924 NA
#> GSM260907 3 0.2011 0.818 0.080 0.000 0.920 NA
#> GSM260910 3 0.6500 0.832 0.092 0.000 0.580 NA
#> GSM260918 2 0.4500 0.866 0.000 0.684 0.000 NA
#> GSM260921 2 0.4500 0.866 0.000 0.684 0.000 NA
#> GSM260924 2 0.5113 0.864 0.000 0.684 0.024 NA
#> GSM260929 2 0.4500 0.866 0.000 0.684 0.000 NA
#> GSM260932 2 0.1975 0.852 0.000 0.936 0.048 NA
#> GSM260935 2 0.1975 0.852 0.000 0.936 0.048 NA
#> GSM260938 2 0.0000 0.859 0.000 1.000 0.000 NA
#> GSM260941 2 0.0000 0.859 0.000 1.000 0.000 NA
#> GSM260944 2 0.0000 0.859 0.000 1.000 0.000 NA
#> GSM260947 2 0.0000 0.859 0.000 1.000 0.000 NA
#> GSM260952 2 0.4500 0.866 0.000 0.684 0.000 NA
#> GSM260914 1 0.4277 0.872 0.720 0.000 0.000 NA
#> GSM260916 1 0.4456 0.872 0.716 0.000 0.004 NA
#> GSM260919 1 0.4456 0.872 0.716 0.000 0.004 NA
#> GSM260922 1 0.4456 0.872 0.716 0.000 0.004 NA
#> GSM260925 1 0.4277 0.872 0.720 0.000 0.000 NA
#> GSM260927 1 0.4456 0.872 0.716 0.000 0.004 NA
#> GSM260930 1 0.0707 0.812 0.980 0.000 0.020 NA
#> GSM260933 1 0.0707 0.812 0.980 0.000 0.020 NA
#> GSM260936 1 0.0707 0.812 0.980 0.000 0.020 NA
#> GSM260939 1 0.0707 0.812 0.980 0.000 0.020 NA
#> GSM260942 1 0.0707 0.812 0.980 0.000 0.020 NA
#> GSM260945 1 0.0707 0.812 0.980 0.000 0.020 NA
#> GSM260948 1 0.4456 0.872 0.716 0.000 0.004 NA
#> GSM260950 1 0.4277 0.872 0.720 0.000 0.000 NA
#> GSM260915 3 0.6446 0.833 0.088 0.000 0.584 NA
#> GSM260917 3 0.6446 0.833 0.088 0.000 0.584 NA
#> GSM260920 3 0.6446 0.833 0.088 0.000 0.584 NA
#> GSM260923 3 0.6500 0.832 0.092 0.000 0.580 NA
#> GSM260926 3 0.6446 0.833 0.088 0.000 0.584 NA
#> GSM260928 1 0.4594 0.869 0.712 0.000 0.008 NA
#> GSM260931 3 0.3286 0.804 0.080 0.000 0.876 NA
#> GSM260934 3 0.2011 0.818 0.080 0.000 0.920 NA
#> GSM260937 3 0.3611 0.798 0.080 0.000 0.860 NA
#> GSM260940 3 0.3286 0.804 0.080 0.000 0.876 NA
#> GSM260943 3 0.3611 0.798 0.080 0.000 0.860 NA
#> GSM260946 3 0.3286 0.804 0.080 0.000 0.876 NA
#> GSM260949 3 0.6500 0.832 0.092 0.000 0.580 NA
#> GSM260951 3 0.5417 0.821 0.088 0.000 0.732 NA
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM260888 2 0.0671 0.783 0.000 0.980 0.000 0.004 0.016
#> GSM260893 2 0.0671 0.783 0.000 0.980 0.000 0.004 0.016
#> GSM260896 2 0.0671 0.783 0.000 0.980 0.000 0.004 0.016
#> GSM260899 2 0.6339 0.748 0.000 0.504 0.312 0.000 0.184
#> GSM260902 2 0.6339 0.748 0.000 0.504 0.312 0.000 0.184
#> GSM260905 2 0.6211 0.769 0.000 0.544 0.192 0.000 0.264
#> GSM260908 2 0.6211 0.769 0.000 0.544 0.192 0.000 0.264
#> GSM260911 2 0.0671 0.783 0.000 0.980 0.000 0.004 0.016
#> GSM260912 2 0.0579 0.783 0.000 0.984 0.000 0.008 0.008
#> GSM260913 3 0.5483 0.967 0.048 0.000 0.604 0.332 0.016
#> GSM260886 1 0.0794 0.958 0.972 0.000 0.028 0.000 0.000
#> GSM260889 1 0.0955 0.956 0.968 0.000 0.028 0.004 0.000
#> GSM260891 1 0.0290 0.958 0.992 0.000 0.008 0.000 0.000
#> GSM260894 1 0.0000 0.961 1.000 0.000 0.000 0.000 0.000
#> GSM260897 5 0.4855 0.994 0.424 0.000 0.000 0.024 0.552
#> GSM260900 5 0.4855 0.994 0.424 0.000 0.000 0.024 0.552
#> GSM260903 5 0.4855 0.994 0.424 0.000 0.000 0.024 0.552
#> GSM260906 5 0.4855 0.994 0.424 0.000 0.000 0.024 0.552
#> GSM260909 1 0.0162 0.960 0.996 0.000 0.004 0.000 0.000
#> GSM260887 3 0.5002 0.971 0.044 0.000 0.612 0.344 0.000
#> GSM260890 3 0.5037 0.972 0.048 0.000 0.616 0.336 0.000
#> GSM260892 3 0.5453 0.958 0.048 0.000 0.612 0.324 0.016
#> GSM260895 1 0.2179 0.775 0.888 0.000 0.112 0.000 0.000
#> GSM260898 4 0.2300 0.873 0.024 0.000 0.072 0.904 0.000
#> GSM260901 4 0.2300 0.873 0.024 0.000 0.072 0.904 0.000
#> GSM260904 4 0.2300 0.873 0.024 0.000 0.072 0.904 0.000
#> GSM260907 4 0.2300 0.873 0.024 0.000 0.072 0.904 0.000
#> GSM260910 3 0.5287 0.971 0.048 0.000 0.612 0.332 0.008
#> GSM260918 2 0.0579 0.783 0.000 0.984 0.000 0.008 0.008
#> GSM260921 2 0.0000 0.783 0.000 1.000 0.000 0.000 0.000
#> GSM260924 2 0.1168 0.781 0.000 0.960 0.000 0.008 0.032
#> GSM260929 2 0.0579 0.783 0.000 0.984 0.000 0.008 0.008
#> GSM260932 2 0.6339 0.748 0.000 0.504 0.312 0.000 0.184
#> GSM260935 2 0.6339 0.748 0.000 0.504 0.312 0.000 0.184
#> GSM260938 2 0.6375 0.766 0.000 0.536 0.192 0.004 0.268
#> GSM260941 2 0.6340 0.769 0.000 0.544 0.192 0.004 0.260
#> GSM260944 2 0.6340 0.769 0.000 0.544 0.192 0.004 0.260
#> GSM260947 2 0.6211 0.769 0.000 0.544 0.192 0.000 0.264
#> GSM260952 2 0.0579 0.783 0.000 0.984 0.000 0.008 0.008
#> GSM260914 1 0.0955 0.956 0.968 0.000 0.028 0.004 0.000
#> GSM260916 1 0.0290 0.958 0.992 0.000 0.008 0.000 0.000
#> GSM260919 1 0.0703 0.960 0.976 0.000 0.024 0.000 0.000
#> GSM260922 1 0.0290 0.958 0.992 0.000 0.008 0.000 0.000
#> GSM260925 1 0.1116 0.953 0.964 0.000 0.028 0.004 0.004
#> GSM260927 1 0.0000 0.961 1.000 0.000 0.000 0.000 0.000
#> GSM260930 5 0.4855 0.994 0.424 0.000 0.000 0.024 0.552
#> GSM260933 5 0.4855 0.994 0.424 0.000 0.000 0.024 0.552
#> GSM260936 5 0.5305 0.986 0.424 0.000 0.016 0.024 0.536
#> GSM260939 5 0.5305 0.986 0.424 0.000 0.016 0.024 0.536
#> GSM260942 5 0.5305 0.986 0.424 0.000 0.016 0.024 0.536
#> GSM260945 5 0.4855 0.994 0.424 0.000 0.000 0.024 0.552
#> GSM260948 1 0.0703 0.960 0.976 0.000 0.024 0.000 0.000
#> GSM260950 1 0.0955 0.956 0.968 0.000 0.028 0.004 0.000
#> GSM260915 3 0.5002 0.957 0.040 0.000 0.596 0.364 0.000
#> GSM260917 3 0.4935 0.969 0.040 0.000 0.616 0.344 0.000
#> GSM260920 3 0.5002 0.957 0.040 0.000 0.596 0.364 0.000
#> GSM260923 3 0.5022 0.972 0.048 0.000 0.620 0.332 0.000
#> GSM260926 3 0.5002 0.957 0.040 0.000 0.596 0.364 0.000
#> GSM260928 1 0.0404 0.955 0.988 0.000 0.012 0.000 0.000
#> GSM260931 4 0.0703 0.874 0.024 0.000 0.000 0.976 0.000
#> GSM260934 4 0.2300 0.873 0.024 0.000 0.072 0.904 0.000
#> GSM260937 4 0.3077 0.817 0.024 0.000 0.020 0.872 0.084
#> GSM260940 4 0.0703 0.874 0.024 0.000 0.000 0.976 0.000
#> GSM260943 4 0.3077 0.817 0.024 0.000 0.020 0.872 0.084
#> GSM260946 4 0.0703 0.874 0.024 0.000 0.000 0.976 0.000
#> GSM260949 3 0.5287 0.971 0.048 0.000 0.612 0.332 0.008
#> GSM260951 4 0.5612 0.506 0.040 0.000 0.172 0.696 0.092
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM260888 2 0.4316 0.971 0.004 0.552 0.004 0.008 0.000 0.432
#> GSM260893 2 0.4215 0.972 0.004 0.556 0.004 0.004 0.000 0.432
#> GSM260896 2 0.4215 0.972 0.004 0.556 0.004 0.004 0.000 0.432
#> GSM260899 6 0.4252 0.777 0.164 0.028 0.052 0.000 0.000 0.756
#> GSM260902 6 0.4252 0.777 0.164 0.028 0.052 0.000 0.000 0.756
#> GSM260905 6 0.0665 0.839 0.000 0.008 0.008 0.004 0.000 0.980
#> GSM260908 6 0.0665 0.839 0.000 0.008 0.008 0.004 0.000 0.980
#> GSM260911 2 0.4215 0.972 0.004 0.556 0.004 0.004 0.000 0.432
#> GSM260912 2 0.4285 0.972 0.008 0.552 0.008 0.000 0.000 0.432
#> GSM260913 4 0.2084 0.942 0.044 0.024 0.000 0.916 0.016 0.000
#> GSM260886 1 0.5011 0.933 0.616 0.064 0.004 0.008 0.308 0.000
#> GSM260889 1 0.5011 0.933 0.616 0.064 0.004 0.008 0.308 0.000
#> GSM260891 1 0.3827 0.927 0.680 0.000 0.004 0.008 0.308 0.000
#> GSM260894 1 0.3690 0.928 0.684 0.000 0.000 0.008 0.308 0.000
#> GSM260897 5 0.0405 0.985 0.000 0.004 0.008 0.000 0.988 0.000
#> GSM260900 5 0.0405 0.985 0.000 0.004 0.008 0.000 0.988 0.000
#> GSM260903 5 0.0717 0.983 0.000 0.016 0.008 0.000 0.976 0.000
#> GSM260906 5 0.0717 0.983 0.000 0.016 0.008 0.000 0.976 0.000
#> GSM260909 1 0.3690 0.928 0.684 0.000 0.000 0.008 0.308 0.000
#> GSM260887 4 0.0748 0.966 0.000 0.004 0.004 0.976 0.016 0.000
#> GSM260890 4 0.0458 0.966 0.000 0.000 0.000 0.984 0.016 0.000
#> GSM260892 4 0.2501 0.928 0.056 0.028 0.004 0.896 0.016 0.000
#> GSM260895 1 0.5154 0.765 0.668 0.012 0.004 0.132 0.184 0.000
#> GSM260898 3 0.3518 0.887 0.008 0.000 0.784 0.184 0.024 0.000
#> GSM260901 3 0.3518 0.887 0.008 0.000 0.784 0.184 0.024 0.000
#> GSM260904 3 0.3269 0.887 0.000 0.000 0.792 0.184 0.024 0.000
#> GSM260907 3 0.3269 0.887 0.000 0.000 0.792 0.184 0.024 0.000
#> GSM260910 4 0.1369 0.960 0.016 0.016 0.000 0.952 0.016 0.000
#> GSM260918 2 0.4285 0.972 0.008 0.552 0.008 0.000 0.000 0.432
#> GSM260921 2 0.3950 0.974 0.000 0.564 0.000 0.004 0.000 0.432
#> GSM260924 2 0.5205 0.905 0.020 0.504 0.048 0.000 0.000 0.428
#> GSM260929 2 0.4285 0.972 0.008 0.552 0.008 0.000 0.000 0.432
#> GSM260932 6 0.4319 0.776 0.152 0.028 0.064 0.000 0.000 0.756
#> GSM260935 6 0.4252 0.777 0.164 0.028 0.052 0.000 0.000 0.756
#> GSM260938 6 0.0291 0.840 0.004 0.000 0.004 0.000 0.000 0.992
#> GSM260941 6 0.0260 0.840 0.000 0.008 0.000 0.000 0.000 0.992
#> GSM260944 6 0.0260 0.840 0.000 0.008 0.000 0.000 0.000 0.992
#> GSM260947 6 0.0260 0.840 0.000 0.008 0.000 0.000 0.000 0.992
#> GSM260952 2 0.4316 0.972 0.004 0.552 0.008 0.004 0.000 0.432
#> GSM260914 1 0.5011 0.933 0.616 0.064 0.004 0.008 0.308 0.000
#> GSM260916 1 0.5156 0.881 0.604 0.076 0.004 0.008 0.308 0.000
#> GSM260919 1 0.5011 0.933 0.616 0.064 0.004 0.008 0.308 0.000
#> GSM260922 1 0.5141 0.878 0.608 0.076 0.004 0.008 0.304 0.000
#> GSM260925 1 0.5011 0.933 0.616 0.064 0.004 0.008 0.308 0.000
#> GSM260927 1 0.3690 0.928 0.684 0.000 0.000 0.008 0.308 0.000
#> GSM260930 5 0.0146 0.984 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM260933 5 0.0146 0.984 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM260936 5 0.0622 0.979 0.000 0.008 0.012 0.000 0.980 0.000
#> GSM260939 5 0.0622 0.979 0.000 0.008 0.012 0.000 0.980 0.000
#> GSM260942 5 0.0622 0.979 0.000 0.008 0.012 0.000 0.980 0.000
#> GSM260945 5 0.0717 0.983 0.000 0.016 0.008 0.000 0.976 0.000
#> GSM260948 1 0.5011 0.933 0.616 0.064 0.004 0.008 0.308 0.000
#> GSM260950 1 0.5011 0.933 0.616 0.064 0.004 0.008 0.308 0.000
#> GSM260915 4 0.1390 0.954 0.000 0.004 0.032 0.948 0.016 0.000
#> GSM260917 4 0.0748 0.966 0.000 0.004 0.004 0.976 0.016 0.000
#> GSM260920 4 0.1390 0.954 0.000 0.004 0.032 0.948 0.016 0.000
#> GSM260923 4 0.0603 0.966 0.004 0.000 0.000 0.980 0.016 0.000
#> GSM260926 4 0.1390 0.954 0.000 0.004 0.032 0.948 0.016 0.000
#> GSM260928 1 0.4240 0.921 0.668 0.012 0.004 0.012 0.304 0.000
#> GSM260931 3 0.2950 0.886 0.000 0.000 0.828 0.148 0.024 0.000
#> GSM260934 3 0.3269 0.887 0.000 0.000 0.792 0.184 0.024 0.000
#> GSM260937 3 0.6464 0.752 0.056 0.200 0.584 0.136 0.024 0.000
#> GSM260940 3 0.2950 0.886 0.000 0.000 0.828 0.148 0.024 0.000
#> GSM260943 3 0.6464 0.752 0.056 0.200 0.584 0.136 0.024 0.000
#> GSM260946 3 0.2950 0.886 0.000 0.000 0.828 0.148 0.024 0.000
#> GSM260949 4 0.1369 0.960 0.016 0.016 0.000 0.952 0.016 0.000
#> GSM260951 3 0.7126 0.526 0.056 0.208 0.428 0.292 0.016 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) cell.type(p) k
#> ATC:kmeans 67 0.939 2.75e-14 2
#> ATC:kmeans 67 0.940 1.87e-24 3
#> ATC:kmeans 67 0.940 1.87e-24 4
#> ATC:kmeans 67 0.989 7.25e-22 5
#> ATC:kmeans 67 0.991 1.09e-20 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 67 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 5.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4257 0.575 0.575
#> 3 3 1.000 1.000 1.000 0.5837 0.751 0.567
#> 4 4 1.000 0.989 0.990 0.0829 0.945 0.832
#> 5 5 0.907 0.947 0.898 0.0600 0.932 0.750
#> 6 6 0.860 0.902 0.877 0.0477 0.989 0.947
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 3 4
There is also optional best \(k\) = 2 3 4 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM260888 2 0 1 0 1
#> GSM260893 2 0 1 0 1
#> GSM260896 2 0 1 0 1
#> GSM260899 2 0 1 0 1
#> GSM260902 2 0 1 0 1
#> GSM260905 2 0 1 0 1
#> GSM260908 2 0 1 0 1
#> GSM260911 2 0 1 0 1
#> GSM260912 2 0 1 0 1
#> GSM260913 1 0 1 1 0
#> GSM260886 1 0 1 1 0
#> GSM260889 1 0 1 1 0
#> GSM260891 1 0 1 1 0
#> GSM260894 1 0 1 1 0
#> GSM260897 1 0 1 1 0
#> GSM260900 1 0 1 1 0
#> GSM260903 1 0 1 1 0
#> GSM260906 1 0 1 1 0
#> GSM260909 1 0 1 1 0
#> GSM260887 1 0 1 1 0
#> GSM260890 1 0 1 1 0
#> GSM260892 1 0 1 1 0
#> GSM260895 1 0 1 1 0
#> GSM260898 1 0 1 1 0
#> GSM260901 1 0 1 1 0
#> GSM260904 1 0 1 1 0
#> GSM260907 1 0 1 1 0
#> GSM260910 1 0 1 1 0
#> GSM260918 2 0 1 0 1
#> GSM260921 2 0 1 0 1
#> GSM260924 2 0 1 0 1
#> GSM260929 2 0 1 0 1
#> GSM260932 2 0 1 0 1
#> GSM260935 2 0 1 0 1
#> GSM260938 2 0 1 0 1
#> GSM260941 2 0 1 0 1
#> GSM260944 2 0 1 0 1
#> GSM260947 2 0 1 0 1
#> GSM260952 2 0 1 0 1
#> GSM260914 1 0 1 1 0
#> GSM260916 1 0 1 1 0
#> GSM260919 1 0 1 1 0
#> GSM260922 1 0 1 1 0
#> GSM260925 1 0 1 1 0
#> GSM260927 1 0 1 1 0
#> GSM260930 1 0 1 1 0
#> GSM260933 1 0 1 1 0
#> GSM260936 1 0 1 1 0
#> GSM260939 1 0 1 1 0
#> GSM260942 1 0 1 1 0
#> GSM260945 1 0 1 1 0
#> GSM260948 1 0 1 1 0
#> GSM260950 1 0 1 1 0
#> GSM260915 1 0 1 1 0
#> GSM260917 1 0 1 1 0
#> GSM260920 1 0 1 1 0
#> GSM260923 1 0 1 1 0
#> GSM260926 1 0 1 1 0
#> GSM260928 1 0 1 1 0
#> GSM260931 1 0 1 1 0
#> GSM260934 1 0 1 1 0
#> GSM260937 1 0 1 1 0
#> GSM260940 1 0 1 1 0
#> GSM260943 1 0 1 1 0
#> GSM260946 1 0 1 1 0
#> GSM260949 1 0 1 1 0
#> GSM260951 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM260888 2 0 1 0 1 0
#> GSM260893 2 0 1 0 1 0
#> GSM260896 2 0 1 0 1 0
#> GSM260899 2 0 1 0 1 0
#> GSM260902 2 0 1 0 1 0
#> GSM260905 2 0 1 0 1 0
#> GSM260908 2 0 1 0 1 0
#> GSM260911 2 0 1 0 1 0
#> GSM260912 2 0 1 0 1 0
#> GSM260913 3 0 1 0 0 1
#> GSM260886 1 0 1 1 0 0
#> GSM260889 1 0 1 1 0 0
#> GSM260891 1 0 1 1 0 0
#> GSM260894 1 0 1 1 0 0
#> GSM260897 1 0 1 1 0 0
#> GSM260900 1 0 1 1 0 0
#> GSM260903 1 0 1 1 0 0
#> GSM260906 1 0 1 1 0 0
#> GSM260909 1 0 1 1 0 0
#> GSM260887 3 0 1 0 0 1
#> GSM260890 3 0 1 0 0 1
#> GSM260892 3 0 1 0 0 1
#> GSM260895 1 0 1 1 0 0
#> GSM260898 3 0 1 0 0 1
#> GSM260901 3 0 1 0 0 1
#> GSM260904 3 0 1 0 0 1
#> GSM260907 3 0 1 0 0 1
#> GSM260910 3 0 1 0 0 1
#> GSM260918 2 0 1 0 1 0
#> GSM260921 2 0 1 0 1 0
#> GSM260924 2 0 1 0 1 0
#> GSM260929 2 0 1 0 1 0
#> GSM260932 2 0 1 0 1 0
#> GSM260935 2 0 1 0 1 0
#> GSM260938 2 0 1 0 1 0
#> GSM260941 2 0 1 0 1 0
#> GSM260944 2 0 1 0 1 0
#> GSM260947 2 0 1 0 1 0
#> GSM260952 2 0 1 0 1 0
#> GSM260914 1 0 1 1 0 0
#> GSM260916 1 0 1 1 0 0
#> GSM260919 1 0 1 1 0 0
#> GSM260922 1 0 1 1 0 0
#> GSM260925 1 0 1 1 0 0
#> GSM260927 1 0 1 1 0 0
#> GSM260930 1 0 1 1 0 0
#> GSM260933 1 0 1 1 0 0
#> GSM260936 1 0 1 1 0 0
#> GSM260939 1 0 1 1 0 0
#> GSM260942 1 0 1 1 0 0
#> GSM260945 1 0 1 1 0 0
#> GSM260948 1 0 1 1 0 0
#> GSM260950 1 0 1 1 0 0
#> GSM260915 3 0 1 0 0 1
#> GSM260917 3 0 1 0 0 1
#> GSM260920 3 0 1 0 0 1
#> GSM260923 3 0 1 0 0 1
#> GSM260926 3 0 1 0 0 1
#> GSM260928 1 0 1 1 0 0
#> GSM260931 3 0 1 0 0 1
#> GSM260934 3 0 1 0 0 1
#> GSM260937 3 0 1 0 0 1
#> GSM260940 3 0 1 0 0 1
#> GSM260943 3 0 1 0 0 1
#> GSM260946 3 0 1 0 0 1
#> GSM260949 3 0 1 0 0 1
#> GSM260951 3 0 1 0 0 1
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM260888 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260893 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260896 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260899 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260902 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260905 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260908 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260911 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260912 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260913 4 0.0707 0.996 0.000 0.000 0.020 0.980
#> GSM260886 1 0.0000 0.986 1.000 0.000 0.000 0.000
#> GSM260889 1 0.0000 0.986 1.000 0.000 0.000 0.000
#> GSM260891 1 0.0000 0.986 1.000 0.000 0.000 0.000
#> GSM260894 1 0.0000 0.986 1.000 0.000 0.000 0.000
#> GSM260897 1 0.0592 0.984 0.984 0.000 0.000 0.016
#> GSM260900 1 0.0592 0.984 0.984 0.000 0.000 0.016
#> GSM260903 1 0.0592 0.984 0.984 0.000 0.000 0.016
#> GSM260906 1 0.0592 0.984 0.984 0.000 0.000 0.016
#> GSM260909 1 0.0000 0.986 1.000 0.000 0.000 0.000
#> GSM260887 4 0.0707 0.996 0.000 0.000 0.020 0.980
#> GSM260890 4 0.0707 0.996 0.000 0.000 0.020 0.980
#> GSM260892 4 0.0707 0.996 0.000 0.000 0.020 0.980
#> GSM260895 1 0.3528 0.761 0.808 0.000 0.000 0.192
#> GSM260898 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM260901 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM260904 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM260907 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM260910 4 0.0707 0.996 0.000 0.000 0.020 0.980
#> GSM260918 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260921 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260924 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260929 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260932 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260935 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260938 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260941 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260944 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260947 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260952 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260914 1 0.0000 0.986 1.000 0.000 0.000 0.000
#> GSM260916 1 0.0000 0.986 1.000 0.000 0.000 0.000
#> GSM260919 1 0.0000 0.986 1.000 0.000 0.000 0.000
#> GSM260922 1 0.0000 0.986 1.000 0.000 0.000 0.000
#> GSM260925 1 0.0000 0.986 1.000 0.000 0.000 0.000
#> GSM260927 1 0.0000 0.986 1.000 0.000 0.000 0.000
#> GSM260930 1 0.0592 0.984 0.984 0.000 0.000 0.016
#> GSM260933 1 0.0592 0.984 0.984 0.000 0.000 0.016
#> GSM260936 1 0.0592 0.984 0.984 0.000 0.000 0.016
#> GSM260939 1 0.0592 0.984 0.984 0.000 0.000 0.016
#> GSM260942 1 0.0592 0.984 0.984 0.000 0.000 0.016
#> GSM260945 1 0.0592 0.984 0.984 0.000 0.000 0.016
#> GSM260948 1 0.0000 0.986 1.000 0.000 0.000 0.000
#> GSM260950 1 0.0000 0.986 1.000 0.000 0.000 0.000
#> GSM260915 4 0.0817 0.994 0.000 0.000 0.024 0.976
#> GSM260917 4 0.0707 0.996 0.000 0.000 0.020 0.980
#> GSM260920 4 0.1302 0.977 0.000 0.000 0.044 0.956
#> GSM260923 4 0.0707 0.996 0.000 0.000 0.020 0.980
#> GSM260926 4 0.0921 0.992 0.000 0.000 0.028 0.972
#> GSM260928 1 0.0000 0.986 1.000 0.000 0.000 0.000
#> GSM260931 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM260934 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM260937 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM260940 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM260943 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM260946 3 0.0000 0.998 0.000 0.000 1.000 0.000
#> GSM260949 4 0.0707 0.996 0.000 0.000 0.020 0.980
#> GSM260951 3 0.0592 0.984 0.000 0.000 0.984 0.016
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM260888 2 0.0880 0.985 0.000 0.968 0.000 0.032 0.000
#> GSM260893 2 0.0880 0.985 0.000 0.968 0.000 0.032 0.000
#> GSM260896 2 0.0880 0.985 0.000 0.968 0.000 0.032 0.000
#> GSM260899 2 0.0290 0.982 0.000 0.992 0.000 0.008 0.000
#> GSM260902 2 0.0290 0.982 0.000 0.992 0.000 0.008 0.000
#> GSM260905 2 0.0000 0.984 0.000 1.000 0.000 0.000 0.000
#> GSM260908 2 0.0000 0.984 0.000 1.000 0.000 0.000 0.000
#> GSM260911 2 0.0880 0.985 0.000 0.968 0.000 0.032 0.000
#> GSM260912 2 0.0880 0.985 0.000 0.968 0.000 0.032 0.000
#> GSM260913 3 0.0609 0.913 0.000 0.000 0.980 0.020 0.000
#> GSM260886 1 0.0000 0.992 1.000 0.000 0.000 0.000 0.000
#> GSM260889 1 0.0162 0.988 0.996 0.000 0.000 0.004 0.000
#> GSM260891 1 0.0000 0.992 1.000 0.000 0.000 0.000 0.000
#> GSM260894 1 0.0000 0.992 1.000 0.000 0.000 0.000 0.000
#> GSM260897 4 0.4375 1.000 0.420 0.000 0.000 0.576 0.004
#> GSM260900 4 0.4375 1.000 0.420 0.000 0.000 0.576 0.004
#> GSM260903 4 0.4375 1.000 0.420 0.000 0.000 0.576 0.004
#> GSM260906 4 0.4375 1.000 0.420 0.000 0.000 0.576 0.004
#> GSM260909 1 0.0000 0.992 1.000 0.000 0.000 0.000 0.000
#> GSM260887 3 0.1043 0.909 0.000 0.000 0.960 0.000 0.040
#> GSM260890 3 0.0162 0.915 0.000 0.000 0.996 0.000 0.004
#> GSM260892 3 0.0703 0.912 0.000 0.000 0.976 0.024 0.000
#> GSM260895 1 0.0794 0.940 0.972 0.000 0.028 0.000 0.000
#> GSM260898 5 0.0000 0.902 0.000 0.000 0.000 0.000 1.000
#> GSM260901 5 0.0000 0.902 0.000 0.000 0.000 0.000 1.000
#> GSM260904 5 0.0000 0.902 0.000 0.000 0.000 0.000 1.000
#> GSM260907 5 0.0000 0.902 0.000 0.000 0.000 0.000 1.000
#> GSM260910 3 0.0404 0.914 0.000 0.000 0.988 0.012 0.000
#> GSM260918 2 0.0880 0.985 0.000 0.968 0.000 0.032 0.000
#> GSM260921 2 0.0880 0.985 0.000 0.968 0.000 0.032 0.000
#> GSM260924 2 0.0880 0.985 0.000 0.968 0.000 0.032 0.000
#> GSM260929 2 0.0880 0.985 0.000 0.968 0.000 0.032 0.000
#> GSM260932 2 0.0290 0.982 0.000 0.992 0.000 0.008 0.000
#> GSM260935 2 0.0290 0.982 0.000 0.992 0.000 0.008 0.000
#> GSM260938 2 0.0000 0.984 0.000 1.000 0.000 0.000 0.000
#> GSM260941 2 0.0000 0.984 0.000 1.000 0.000 0.000 0.000
#> GSM260944 2 0.0000 0.984 0.000 1.000 0.000 0.000 0.000
#> GSM260947 2 0.0000 0.984 0.000 1.000 0.000 0.000 0.000
#> GSM260952 2 0.0880 0.985 0.000 0.968 0.000 0.032 0.000
#> GSM260914 1 0.0290 0.984 0.992 0.000 0.000 0.008 0.000
#> GSM260916 1 0.0000 0.992 1.000 0.000 0.000 0.000 0.000
#> GSM260919 1 0.0000 0.992 1.000 0.000 0.000 0.000 0.000
#> GSM260922 1 0.0000 0.992 1.000 0.000 0.000 0.000 0.000
#> GSM260925 1 0.0404 0.979 0.988 0.000 0.000 0.012 0.000
#> GSM260927 1 0.0000 0.992 1.000 0.000 0.000 0.000 0.000
#> GSM260930 4 0.4375 1.000 0.420 0.000 0.000 0.576 0.004
#> GSM260933 4 0.4375 1.000 0.420 0.000 0.000 0.576 0.004
#> GSM260936 4 0.4375 1.000 0.420 0.000 0.000 0.576 0.004
#> GSM260939 4 0.4375 1.000 0.420 0.000 0.000 0.576 0.004
#> GSM260942 4 0.4375 1.000 0.420 0.000 0.000 0.576 0.004
#> GSM260945 4 0.4375 1.000 0.420 0.000 0.000 0.576 0.004
#> GSM260948 1 0.0000 0.992 1.000 0.000 0.000 0.000 0.000
#> GSM260950 1 0.0404 0.979 0.988 0.000 0.000 0.012 0.000
#> GSM260915 3 0.3143 0.807 0.000 0.000 0.796 0.000 0.204
#> GSM260917 3 0.1341 0.904 0.000 0.000 0.944 0.000 0.056
#> GSM260920 3 0.3534 0.751 0.000 0.000 0.744 0.000 0.256
#> GSM260923 3 0.0451 0.915 0.000 0.000 0.988 0.008 0.004
#> GSM260926 3 0.3336 0.784 0.000 0.000 0.772 0.000 0.228
#> GSM260928 1 0.0000 0.992 1.000 0.000 0.000 0.000 0.000
#> GSM260931 5 0.0162 0.901 0.000 0.000 0.000 0.004 0.996
#> GSM260934 5 0.0000 0.902 0.000 0.000 0.000 0.000 1.000
#> GSM260937 5 0.4074 0.728 0.000 0.000 0.000 0.364 0.636
#> GSM260940 5 0.0000 0.902 0.000 0.000 0.000 0.000 1.000
#> GSM260943 5 0.4074 0.728 0.000 0.000 0.000 0.364 0.636
#> GSM260946 5 0.0000 0.902 0.000 0.000 0.000 0.000 1.000
#> GSM260949 3 0.0609 0.913 0.000 0.000 0.980 0.020 0.000
#> GSM260951 5 0.4812 0.700 0.000 0.000 0.028 0.372 0.600
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM260888 2 0.0000 0.810 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260893 2 0.0000 0.810 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260896 2 0.0000 0.810 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260899 2 0.4775 0.791 0.000 0.632 0.000 0.000 0.084 0.284
#> GSM260902 2 0.4775 0.791 0.000 0.632 0.000 0.000 0.084 0.284
#> GSM260905 2 0.4537 0.806 0.000 0.664 0.000 0.000 0.072 0.264
#> GSM260908 2 0.4537 0.806 0.000 0.664 0.000 0.000 0.072 0.264
#> GSM260911 2 0.0000 0.810 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260912 2 0.0000 0.810 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260913 4 0.1267 0.850 0.000 0.000 0.000 0.940 0.060 0.000
#> GSM260886 1 0.0146 0.983 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM260889 1 0.0777 0.971 0.972 0.000 0.000 0.000 0.024 0.004
#> GSM260891 1 0.0146 0.983 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM260894 1 0.0000 0.983 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260897 5 0.2416 1.000 0.156 0.000 0.000 0.000 0.844 0.000
#> GSM260900 5 0.2416 1.000 0.156 0.000 0.000 0.000 0.844 0.000
#> GSM260903 5 0.2416 1.000 0.156 0.000 0.000 0.000 0.844 0.000
#> GSM260906 5 0.2416 1.000 0.156 0.000 0.000 0.000 0.844 0.000
#> GSM260909 1 0.0146 0.983 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM260887 4 0.1349 0.847 0.000 0.000 0.056 0.940 0.000 0.004
#> GSM260890 4 0.0146 0.854 0.000 0.000 0.004 0.996 0.000 0.000
#> GSM260892 4 0.1387 0.847 0.000 0.000 0.000 0.932 0.068 0.000
#> GSM260895 1 0.0291 0.980 0.992 0.000 0.000 0.004 0.000 0.004
#> GSM260898 3 0.0000 0.996 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM260901 3 0.0000 0.996 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM260904 3 0.0000 0.996 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM260907 3 0.0000 0.996 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM260910 4 0.0937 0.854 0.000 0.000 0.000 0.960 0.040 0.000
#> GSM260918 2 0.0000 0.810 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260921 2 0.0000 0.810 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260924 2 0.0000 0.810 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260929 2 0.0000 0.810 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260932 2 0.4775 0.791 0.000 0.632 0.000 0.000 0.084 0.284
#> GSM260935 2 0.4775 0.791 0.000 0.632 0.000 0.000 0.084 0.284
#> GSM260938 2 0.4537 0.806 0.000 0.664 0.000 0.000 0.072 0.264
#> GSM260941 2 0.4537 0.806 0.000 0.664 0.000 0.000 0.072 0.264
#> GSM260944 2 0.4537 0.806 0.000 0.664 0.000 0.000 0.072 0.264
#> GSM260947 2 0.4537 0.806 0.000 0.664 0.000 0.000 0.072 0.264
#> GSM260952 2 0.0000 0.810 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260914 1 0.0935 0.965 0.964 0.000 0.000 0.000 0.032 0.004
#> GSM260916 1 0.0146 0.983 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM260919 1 0.0146 0.983 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM260922 1 0.0146 0.983 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM260925 1 0.1285 0.946 0.944 0.000 0.000 0.000 0.052 0.004
#> GSM260927 1 0.0146 0.983 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM260930 5 0.2416 1.000 0.156 0.000 0.000 0.000 0.844 0.000
#> GSM260933 5 0.2416 1.000 0.156 0.000 0.000 0.000 0.844 0.000
#> GSM260936 5 0.2416 1.000 0.156 0.000 0.000 0.000 0.844 0.000
#> GSM260939 5 0.2416 1.000 0.156 0.000 0.000 0.000 0.844 0.000
#> GSM260942 5 0.2416 1.000 0.156 0.000 0.000 0.000 0.844 0.000
#> GSM260945 5 0.2416 1.000 0.156 0.000 0.000 0.000 0.844 0.000
#> GSM260948 1 0.0405 0.980 0.988 0.000 0.000 0.000 0.008 0.004
#> GSM260950 1 0.1152 0.954 0.952 0.000 0.000 0.000 0.044 0.004
#> GSM260915 4 0.3405 0.699 0.000 0.000 0.272 0.724 0.000 0.004
#> GSM260917 4 0.1588 0.842 0.000 0.000 0.072 0.924 0.000 0.004
#> GSM260920 4 0.3887 0.563 0.000 0.000 0.360 0.632 0.000 0.008
#> GSM260923 4 0.1151 0.857 0.000 0.000 0.012 0.956 0.032 0.000
#> GSM260926 4 0.3626 0.678 0.000 0.000 0.288 0.704 0.004 0.004
#> GSM260928 1 0.0291 0.982 0.992 0.000 0.000 0.000 0.004 0.004
#> GSM260931 3 0.0363 0.983 0.000 0.000 0.988 0.000 0.000 0.012
#> GSM260934 3 0.0000 0.996 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM260937 6 0.3409 0.994 0.000 0.000 0.300 0.000 0.000 0.700
#> GSM260940 3 0.0146 0.994 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM260943 6 0.3409 0.994 0.000 0.000 0.300 0.000 0.000 0.700
#> GSM260946 3 0.0146 0.994 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM260949 4 0.1327 0.850 0.000 0.000 0.000 0.936 0.064 0.000
#> GSM260951 6 0.3371 0.988 0.000 0.000 0.292 0.000 0.000 0.708
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) cell.type(p) k
#> ATC:skmeans 67 0.939 2.75e-14 2
#> ATC:skmeans 67 0.940 1.87e-24 3
#> ATC:skmeans 67 0.958 4.88e-23 4
#> ATC:skmeans 67 0.989 7.25e-22 5
#> ATC:skmeans 67 0.768 1.09e-20 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 67 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 5.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4257 0.575 0.575
#> 3 3 1.000 0.998 0.999 0.5836 0.751 0.567
#> 4 4 0.900 0.880 0.844 0.0684 0.955 0.861
#> 5 5 0.968 0.928 0.971 0.0715 0.937 0.778
#> 6 6 0.896 0.910 0.926 0.0749 0.924 0.670
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 3 4
There is also optional best \(k\) = 2 3 4 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM260888 2 0 1 0 1
#> GSM260893 2 0 1 0 1
#> GSM260896 2 0 1 0 1
#> GSM260899 2 0 1 0 1
#> GSM260902 2 0 1 0 1
#> GSM260905 2 0 1 0 1
#> GSM260908 2 0 1 0 1
#> GSM260911 2 0 1 0 1
#> GSM260912 2 0 1 0 1
#> GSM260913 1 0 1 1 0
#> GSM260886 1 0 1 1 0
#> GSM260889 1 0 1 1 0
#> GSM260891 1 0 1 1 0
#> GSM260894 1 0 1 1 0
#> GSM260897 1 0 1 1 0
#> GSM260900 1 0 1 1 0
#> GSM260903 1 0 1 1 0
#> GSM260906 1 0 1 1 0
#> GSM260909 1 0 1 1 0
#> GSM260887 1 0 1 1 0
#> GSM260890 1 0 1 1 0
#> GSM260892 1 0 1 1 0
#> GSM260895 1 0 1 1 0
#> GSM260898 1 0 1 1 0
#> GSM260901 1 0 1 1 0
#> GSM260904 1 0 1 1 0
#> GSM260907 1 0 1 1 0
#> GSM260910 1 0 1 1 0
#> GSM260918 2 0 1 0 1
#> GSM260921 2 0 1 0 1
#> GSM260924 2 0 1 0 1
#> GSM260929 2 0 1 0 1
#> GSM260932 2 0 1 0 1
#> GSM260935 2 0 1 0 1
#> GSM260938 2 0 1 0 1
#> GSM260941 2 0 1 0 1
#> GSM260944 2 0 1 0 1
#> GSM260947 2 0 1 0 1
#> GSM260952 2 0 1 0 1
#> GSM260914 1 0 1 1 0
#> GSM260916 1 0 1 1 0
#> GSM260919 1 0 1 1 0
#> GSM260922 1 0 1 1 0
#> GSM260925 1 0 1 1 0
#> GSM260927 1 0 1 1 0
#> GSM260930 1 0 1 1 0
#> GSM260933 1 0 1 1 0
#> GSM260936 1 0 1 1 0
#> GSM260939 1 0 1 1 0
#> GSM260942 1 0 1 1 0
#> GSM260945 1 0 1 1 0
#> GSM260948 1 0 1 1 0
#> GSM260950 1 0 1 1 0
#> GSM260915 1 0 1 1 0
#> GSM260917 1 0 1 1 0
#> GSM260920 1 0 1 1 0
#> GSM260923 1 0 1 1 0
#> GSM260926 1 0 1 1 0
#> GSM260928 1 0 1 1 0
#> GSM260931 1 0 1 1 0
#> GSM260934 1 0 1 1 0
#> GSM260937 1 0 1 1 0
#> GSM260940 1 0 1 1 0
#> GSM260943 1 0 1 1 0
#> GSM260946 1 0 1 1 0
#> GSM260949 1 0 1 1 0
#> GSM260951 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM260888 2 0.000 1.000 0.000 1 0.000
#> GSM260893 2 0.000 1.000 0.000 1 0.000
#> GSM260896 2 0.000 1.000 0.000 1 0.000
#> GSM260899 2 0.000 1.000 0.000 1 0.000
#> GSM260902 2 0.000 1.000 0.000 1 0.000
#> GSM260905 2 0.000 1.000 0.000 1 0.000
#> GSM260908 2 0.000 1.000 0.000 1 0.000
#> GSM260911 2 0.000 1.000 0.000 1 0.000
#> GSM260912 2 0.000 1.000 0.000 1 0.000
#> GSM260913 3 0.000 0.998 0.000 0 1.000
#> GSM260886 1 0.000 0.999 1.000 0 0.000
#> GSM260889 1 0.000 0.999 1.000 0 0.000
#> GSM260891 1 0.000 0.999 1.000 0 0.000
#> GSM260894 1 0.000 0.999 1.000 0 0.000
#> GSM260897 1 0.000 0.999 1.000 0 0.000
#> GSM260900 1 0.000 0.999 1.000 0 0.000
#> GSM260903 1 0.000 0.999 1.000 0 0.000
#> GSM260906 1 0.000 0.999 1.000 0 0.000
#> GSM260909 1 0.000 0.999 1.000 0 0.000
#> GSM260887 3 0.000 0.998 0.000 0 1.000
#> GSM260890 3 0.000 0.998 0.000 0 1.000
#> GSM260892 3 0.000 0.998 0.000 0 1.000
#> GSM260895 1 0.103 0.975 0.976 0 0.024
#> GSM260898 3 0.000 0.998 0.000 0 1.000
#> GSM260901 3 0.000 0.998 0.000 0 1.000
#> GSM260904 3 0.000 0.998 0.000 0 1.000
#> GSM260907 3 0.000 0.998 0.000 0 1.000
#> GSM260910 3 0.000 0.998 0.000 0 1.000
#> GSM260918 2 0.000 1.000 0.000 1 0.000
#> GSM260921 2 0.000 1.000 0.000 1 0.000
#> GSM260924 2 0.000 1.000 0.000 1 0.000
#> GSM260929 2 0.000 1.000 0.000 1 0.000
#> GSM260932 2 0.000 1.000 0.000 1 0.000
#> GSM260935 2 0.000 1.000 0.000 1 0.000
#> GSM260938 2 0.000 1.000 0.000 1 0.000
#> GSM260941 2 0.000 1.000 0.000 1 0.000
#> GSM260944 2 0.000 1.000 0.000 1 0.000
#> GSM260947 2 0.000 1.000 0.000 1 0.000
#> GSM260952 2 0.000 1.000 0.000 1 0.000
#> GSM260914 1 0.000 0.999 1.000 0 0.000
#> GSM260916 1 0.000 0.999 1.000 0 0.000
#> GSM260919 1 0.000 0.999 1.000 0 0.000
#> GSM260922 1 0.000 0.999 1.000 0 0.000
#> GSM260925 1 0.000 0.999 1.000 0 0.000
#> GSM260927 1 0.000 0.999 1.000 0 0.000
#> GSM260930 1 0.000 0.999 1.000 0 0.000
#> GSM260933 1 0.000 0.999 1.000 0 0.000
#> GSM260936 1 0.000 0.999 1.000 0 0.000
#> GSM260939 1 0.000 0.999 1.000 0 0.000
#> GSM260942 1 0.000 0.999 1.000 0 0.000
#> GSM260945 1 0.000 0.999 1.000 0 0.000
#> GSM260948 1 0.000 0.999 1.000 0 0.000
#> GSM260950 1 0.000 0.999 1.000 0 0.000
#> GSM260915 3 0.000 0.998 0.000 0 1.000
#> GSM260917 3 0.000 0.998 0.000 0 1.000
#> GSM260920 3 0.000 0.998 0.000 0 1.000
#> GSM260923 3 0.000 0.998 0.000 0 1.000
#> GSM260926 3 0.000 0.998 0.000 0 1.000
#> GSM260928 1 0.000 0.999 1.000 0 0.000
#> GSM260931 3 0.000 0.998 0.000 0 1.000
#> GSM260934 3 0.000 0.998 0.000 0 1.000
#> GSM260937 3 0.164 0.952 0.044 0 0.956
#> GSM260940 3 0.000 0.998 0.000 0 1.000
#> GSM260943 3 0.000 0.998 0.000 0 1.000
#> GSM260946 3 0.000 0.998 0.000 0 1.000
#> GSM260949 3 0.000 0.998 0.000 0 1.000
#> GSM260951 3 0.000 0.998 0.000 0 1.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM260888 4 0.470 1.0000 0.000 0.356 0.000 0.644
#> GSM260893 4 0.470 1.0000 0.000 0.356 0.000 0.644
#> GSM260896 4 0.470 1.0000 0.000 0.356 0.000 0.644
#> GSM260899 2 0.000 0.7412 0.000 1.000 0.000 0.000
#> GSM260902 2 0.000 0.7412 0.000 1.000 0.000 0.000
#> GSM260905 2 0.401 0.5795 0.000 0.756 0.000 0.244
#> GSM260908 2 0.376 0.6272 0.000 0.784 0.000 0.216
#> GSM260911 4 0.470 1.0000 0.000 0.356 0.000 0.644
#> GSM260912 4 0.470 1.0000 0.000 0.356 0.000 0.644
#> GSM260913 3 0.470 0.8268 0.000 0.000 0.644 0.356
#> GSM260886 1 0.000 0.9979 1.000 0.000 0.000 0.000
#> GSM260889 1 0.000 0.9979 1.000 0.000 0.000 0.000
#> GSM260891 1 0.000 0.9979 1.000 0.000 0.000 0.000
#> GSM260894 1 0.000 0.9979 1.000 0.000 0.000 0.000
#> GSM260897 1 0.000 0.9979 1.000 0.000 0.000 0.000
#> GSM260900 1 0.000 0.9979 1.000 0.000 0.000 0.000
#> GSM260903 1 0.000 0.9979 1.000 0.000 0.000 0.000
#> GSM260906 1 0.000 0.9979 1.000 0.000 0.000 0.000
#> GSM260909 1 0.000 0.9979 1.000 0.000 0.000 0.000
#> GSM260887 3 0.470 0.8268 0.000 0.000 0.644 0.356
#> GSM260890 3 0.470 0.8268 0.000 0.000 0.644 0.356
#> GSM260892 3 0.470 0.8268 0.000 0.000 0.644 0.356
#> GSM260895 1 0.162 0.9483 0.952 0.000 0.020 0.028
#> GSM260898 3 0.000 0.8268 0.000 0.000 1.000 0.000
#> GSM260901 3 0.000 0.8268 0.000 0.000 1.000 0.000
#> GSM260904 3 0.000 0.8268 0.000 0.000 1.000 0.000
#> GSM260907 3 0.000 0.8268 0.000 0.000 1.000 0.000
#> GSM260910 3 0.470 0.8268 0.000 0.000 0.644 0.356
#> GSM260918 4 0.470 1.0000 0.000 0.356 0.000 0.644
#> GSM260921 4 0.470 1.0000 0.000 0.356 0.000 0.644
#> GSM260924 4 0.470 1.0000 0.000 0.356 0.000 0.644
#> GSM260929 4 0.470 1.0000 0.000 0.356 0.000 0.644
#> GSM260932 2 0.000 0.7412 0.000 1.000 0.000 0.000
#> GSM260935 2 0.000 0.7412 0.000 1.000 0.000 0.000
#> GSM260938 2 0.000 0.7412 0.000 1.000 0.000 0.000
#> GSM260941 2 0.443 0.4130 0.000 0.696 0.000 0.304
#> GSM260944 2 0.376 0.6272 0.000 0.784 0.000 0.216
#> GSM260947 2 0.484 -0.0605 0.000 0.604 0.000 0.396
#> GSM260952 4 0.470 1.0000 0.000 0.356 0.000 0.644
#> GSM260914 1 0.000 0.9979 1.000 0.000 0.000 0.000
#> GSM260916 1 0.000 0.9979 1.000 0.000 0.000 0.000
#> GSM260919 1 0.000 0.9979 1.000 0.000 0.000 0.000
#> GSM260922 1 0.000 0.9979 1.000 0.000 0.000 0.000
#> GSM260925 1 0.000 0.9979 1.000 0.000 0.000 0.000
#> GSM260927 1 0.000 0.9979 1.000 0.000 0.000 0.000
#> GSM260930 1 0.000 0.9979 1.000 0.000 0.000 0.000
#> GSM260933 1 0.000 0.9979 1.000 0.000 0.000 0.000
#> GSM260936 1 0.000 0.9979 1.000 0.000 0.000 0.000
#> GSM260939 1 0.000 0.9979 1.000 0.000 0.000 0.000
#> GSM260942 1 0.000 0.9979 1.000 0.000 0.000 0.000
#> GSM260945 1 0.000 0.9979 1.000 0.000 0.000 0.000
#> GSM260948 1 0.000 0.9979 1.000 0.000 0.000 0.000
#> GSM260950 1 0.000 0.9979 1.000 0.000 0.000 0.000
#> GSM260915 3 0.470 0.8268 0.000 0.000 0.644 0.356
#> GSM260917 3 0.470 0.8268 0.000 0.000 0.644 0.356
#> GSM260920 3 0.470 0.8268 0.000 0.000 0.644 0.356
#> GSM260923 3 0.470 0.8268 0.000 0.000 0.644 0.356
#> GSM260926 3 0.470 0.8268 0.000 0.000 0.644 0.356
#> GSM260928 1 0.000 0.9979 1.000 0.000 0.000 0.000
#> GSM260931 3 0.000 0.8268 0.000 0.000 1.000 0.000
#> GSM260934 3 0.000 0.8268 0.000 0.000 1.000 0.000
#> GSM260937 3 0.000 0.8268 0.000 0.000 1.000 0.000
#> GSM260940 3 0.000 0.8268 0.000 0.000 1.000 0.000
#> GSM260943 3 0.000 0.8268 0.000 0.000 1.000 0.000
#> GSM260946 3 0.000 0.8268 0.000 0.000 1.000 0.000
#> GSM260949 3 0.470 0.8268 0.000 0.000 0.644 0.356
#> GSM260951 3 0.000 0.8268 0.000 0.000 1.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM260888 2 0.000 0.947 0.000 1.000 0.000 0.000 0
#> GSM260893 2 0.000 0.947 0.000 1.000 0.000 0.000 0
#> GSM260896 2 0.000 0.947 0.000 1.000 0.000 0.000 0
#> GSM260899 4 0.000 0.810 0.000 0.000 0.000 1.000 0
#> GSM260902 4 0.000 0.810 0.000 0.000 0.000 1.000 0
#> GSM260905 4 0.416 0.489 0.000 0.392 0.000 0.608 0
#> GSM260908 4 0.342 0.707 0.000 0.240 0.000 0.760 0
#> GSM260911 2 0.000 0.947 0.000 1.000 0.000 0.000 0
#> GSM260912 2 0.000 0.947 0.000 1.000 0.000 0.000 0
#> GSM260913 3 0.000 1.000 0.000 0.000 1.000 0.000 0
#> GSM260886 1 0.000 0.991 1.000 0.000 0.000 0.000 0
#> GSM260889 1 0.000 0.991 1.000 0.000 0.000 0.000 0
#> GSM260891 1 0.000 0.991 1.000 0.000 0.000 0.000 0
#> GSM260894 1 0.000 0.991 1.000 0.000 0.000 0.000 0
#> GSM260897 1 0.000 0.991 1.000 0.000 0.000 0.000 0
#> GSM260900 1 0.000 0.991 1.000 0.000 0.000 0.000 0
#> GSM260903 1 0.000 0.991 1.000 0.000 0.000 0.000 0
#> GSM260906 1 0.000 0.991 1.000 0.000 0.000 0.000 0
#> GSM260909 1 0.000 0.991 1.000 0.000 0.000 0.000 0
#> GSM260887 3 0.000 1.000 0.000 0.000 1.000 0.000 0
#> GSM260890 3 0.000 1.000 0.000 0.000 1.000 0.000 0
#> GSM260892 3 0.000 1.000 0.000 0.000 1.000 0.000 0
#> GSM260895 1 0.318 0.737 0.792 0.000 0.208 0.000 0
#> GSM260898 5 0.000 1.000 0.000 0.000 0.000 0.000 1
#> GSM260901 5 0.000 1.000 0.000 0.000 0.000 0.000 1
#> GSM260904 5 0.000 1.000 0.000 0.000 0.000 0.000 1
#> GSM260907 5 0.000 1.000 0.000 0.000 0.000 0.000 1
#> GSM260910 3 0.000 1.000 0.000 0.000 1.000 0.000 0
#> GSM260918 2 0.000 0.947 0.000 1.000 0.000 0.000 0
#> GSM260921 2 0.000 0.947 0.000 1.000 0.000 0.000 0
#> GSM260924 2 0.000 0.947 0.000 1.000 0.000 0.000 0
#> GSM260929 2 0.000 0.947 0.000 1.000 0.000 0.000 0
#> GSM260932 4 0.000 0.810 0.000 0.000 0.000 1.000 0
#> GSM260935 4 0.000 0.810 0.000 0.000 0.000 1.000 0
#> GSM260938 4 0.000 0.810 0.000 0.000 0.000 1.000 0
#> GSM260941 4 0.430 0.262 0.000 0.480 0.000 0.520 0
#> GSM260944 4 0.342 0.707 0.000 0.240 0.000 0.760 0
#> GSM260947 2 0.421 -0.019 0.000 0.588 0.000 0.412 0
#> GSM260952 2 0.000 0.947 0.000 1.000 0.000 0.000 0
#> GSM260914 1 0.000 0.991 1.000 0.000 0.000 0.000 0
#> GSM260916 1 0.000 0.991 1.000 0.000 0.000 0.000 0
#> GSM260919 1 0.000 0.991 1.000 0.000 0.000 0.000 0
#> GSM260922 1 0.000 0.991 1.000 0.000 0.000 0.000 0
#> GSM260925 1 0.000 0.991 1.000 0.000 0.000 0.000 0
#> GSM260927 1 0.000 0.991 1.000 0.000 0.000 0.000 0
#> GSM260930 1 0.000 0.991 1.000 0.000 0.000 0.000 0
#> GSM260933 1 0.000 0.991 1.000 0.000 0.000 0.000 0
#> GSM260936 1 0.000 0.991 1.000 0.000 0.000 0.000 0
#> GSM260939 1 0.000 0.991 1.000 0.000 0.000 0.000 0
#> GSM260942 1 0.000 0.991 1.000 0.000 0.000 0.000 0
#> GSM260945 1 0.000 0.991 1.000 0.000 0.000 0.000 0
#> GSM260948 1 0.000 0.991 1.000 0.000 0.000 0.000 0
#> GSM260950 1 0.000 0.991 1.000 0.000 0.000 0.000 0
#> GSM260915 3 0.000 1.000 0.000 0.000 1.000 0.000 0
#> GSM260917 3 0.000 1.000 0.000 0.000 1.000 0.000 0
#> GSM260920 3 0.000 1.000 0.000 0.000 1.000 0.000 0
#> GSM260923 3 0.000 1.000 0.000 0.000 1.000 0.000 0
#> GSM260926 3 0.000 1.000 0.000 0.000 1.000 0.000 0
#> GSM260928 1 0.000 0.991 1.000 0.000 0.000 0.000 0
#> GSM260931 5 0.000 1.000 0.000 0.000 0.000 0.000 1
#> GSM260934 5 0.000 1.000 0.000 0.000 0.000 0.000 1
#> GSM260937 5 0.000 1.000 0.000 0.000 0.000 0.000 1
#> GSM260940 5 0.000 1.000 0.000 0.000 0.000 0.000 1
#> GSM260943 5 0.000 1.000 0.000 0.000 0.000 0.000 1
#> GSM260946 5 0.000 1.000 0.000 0.000 0.000 0.000 1
#> GSM260949 3 0.000 1.000 0.000 0.000 1.000 0.000 0
#> GSM260951 5 0.000 1.000 0.000 0.000 0.000 0.000 1
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM260888 2 0.000 0.8916 0.000 1.000 0 0.0 0.000 0.000
#> GSM260893 2 0.000 0.8916 0.000 1.000 0 0.0 0.000 0.000
#> GSM260896 2 0.000 0.8916 0.000 1.000 0 0.0 0.000 0.000
#> GSM260899 6 0.000 0.8099 0.000 0.000 0 0.0 0.000 1.000
#> GSM260902 6 0.000 0.8099 0.000 0.000 0 0.0 0.000 1.000
#> GSM260905 6 0.568 0.3927 0.000 0.348 0 0.0 0.168 0.484
#> GSM260908 6 0.506 0.6759 0.000 0.196 0 0.0 0.168 0.636
#> GSM260911 2 0.000 0.8916 0.000 1.000 0 0.0 0.000 0.000
#> GSM260912 2 0.000 0.8916 0.000 1.000 0 0.0 0.000 0.000
#> GSM260913 4 0.000 1.0000 0.000 0.000 0 1.0 0.000 0.000
#> GSM260886 1 0.000 0.9823 1.000 0.000 0 0.0 0.000 0.000
#> GSM260889 1 0.000 0.9823 1.000 0.000 0 0.0 0.000 0.000
#> GSM260891 1 0.000 0.9823 1.000 0.000 0 0.0 0.000 0.000
#> GSM260894 1 0.000 0.9823 1.000 0.000 0 0.0 0.000 0.000
#> GSM260897 5 0.253 1.0000 0.168 0.000 0 0.0 0.832 0.000
#> GSM260900 5 0.253 1.0000 0.168 0.000 0 0.0 0.832 0.000
#> GSM260903 5 0.253 1.0000 0.168 0.000 0 0.0 0.832 0.000
#> GSM260906 5 0.253 1.0000 0.168 0.000 0 0.0 0.832 0.000
#> GSM260909 1 0.000 0.9823 1.000 0.000 0 0.0 0.000 0.000
#> GSM260887 4 0.000 1.0000 0.000 0.000 0 1.0 0.000 0.000
#> GSM260890 4 0.000 1.0000 0.000 0.000 0 1.0 0.000 0.000
#> GSM260892 4 0.000 1.0000 0.000 0.000 0 1.0 0.000 0.000
#> GSM260895 1 0.000 0.9823 1.000 0.000 0 0.0 0.000 0.000
#> GSM260898 3 0.000 1.0000 0.000 0.000 1 0.0 0.000 0.000
#> GSM260901 3 0.000 1.0000 0.000 0.000 1 0.0 0.000 0.000
#> GSM260904 3 0.000 1.0000 0.000 0.000 1 0.0 0.000 0.000
#> GSM260907 3 0.000 1.0000 0.000 0.000 1 0.0 0.000 0.000
#> GSM260910 4 0.000 1.0000 0.000 0.000 0 1.0 0.000 0.000
#> GSM260918 2 0.000 0.8916 0.000 1.000 0 0.0 0.000 0.000
#> GSM260921 2 0.000 0.8916 0.000 1.000 0 0.0 0.000 0.000
#> GSM260924 2 0.000 0.8916 0.000 1.000 0 0.0 0.000 0.000
#> GSM260929 2 0.000 0.8916 0.000 1.000 0 0.0 0.000 0.000
#> GSM260932 6 0.000 0.8099 0.000 0.000 0 0.0 0.000 1.000
#> GSM260935 6 0.000 0.8099 0.000 0.000 0 0.0 0.000 1.000
#> GSM260938 6 0.253 0.7832 0.000 0.000 0 0.0 0.168 0.832
#> GSM260941 2 0.574 -0.2712 0.000 0.436 0 0.0 0.168 0.396
#> GSM260944 6 0.506 0.6759 0.000 0.196 0 0.0 0.168 0.636
#> GSM260947 2 0.552 0.0989 0.000 0.544 0 0.0 0.168 0.288
#> GSM260952 2 0.000 0.8916 0.000 1.000 0 0.0 0.000 0.000
#> GSM260914 1 0.000 0.9823 1.000 0.000 0 0.0 0.000 0.000
#> GSM260916 1 0.000 0.9823 1.000 0.000 0 0.0 0.000 0.000
#> GSM260919 1 0.000 0.9823 1.000 0.000 0 0.0 0.000 0.000
#> GSM260922 1 0.000 0.9823 1.000 0.000 0 0.0 0.000 0.000
#> GSM260925 1 0.000 0.9823 1.000 0.000 0 0.0 0.000 0.000
#> GSM260927 1 0.000 0.9823 1.000 0.000 0 0.0 0.000 0.000
#> GSM260930 5 0.253 1.0000 0.168 0.000 0 0.0 0.832 0.000
#> GSM260933 5 0.253 1.0000 0.168 0.000 0 0.0 0.832 0.000
#> GSM260936 5 0.253 1.0000 0.168 0.000 0 0.0 0.832 0.000
#> GSM260939 5 0.253 1.0000 0.168 0.000 0 0.0 0.832 0.000
#> GSM260942 5 0.253 1.0000 0.168 0.000 0 0.0 0.832 0.000
#> GSM260945 5 0.253 1.0000 0.168 0.000 0 0.0 0.832 0.000
#> GSM260948 1 0.000 0.9823 1.000 0.000 0 0.0 0.000 0.000
#> GSM260950 1 0.000 0.9823 1.000 0.000 0 0.0 0.000 0.000
#> GSM260915 4 0.000 1.0000 0.000 0.000 0 1.0 0.000 0.000
#> GSM260917 4 0.000 1.0000 0.000 0.000 0 1.0 0.000 0.000
#> GSM260920 4 0.000 1.0000 0.000 0.000 0 1.0 0.000 0.000
#> GSM260923 4 0.000 1.0000 0.000 0.000 0 1.0 0.000 0.000
#> GSM260926 4 0.000 1.0000 0.000 0.000 0 1.0 0.000 0.000
#> GSM260928 1 0.279 0.7239 0.800 0.000 0 0.2 0.000 0.000
#> GSM260931 3 0.000 1.0000 0.000 0.000 1 0.0 0.000 0.000
#> GSM260934 3 0.000 1.0000 0.000 0.000 1 0.0 0.000 0.000
#> GSM260937 3 0.000 1.0000 0.000 0.000 1 0.0 0.000 0.000
#> GSM260940 3 0.000 1.0000 0.000 0.000 1 0.0 0.000 0.000
#> GSM260943 3 0.000 1.0000 0.000 0.000 1 0.0 0.000 0.000
#> GSM260946 3 0.000 1.0000 0.000 0.000 1 0.0 0.000 0.000
#> GSM260949 4 0.000 1.0000 0.000 0.000 0 1.0 0.000 0.000
#> GSM260951 3 0.000 1.0000 0.000 0.000 1 0.0 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) cell.type(p) k
#> ATC:pam 67 0.939 2.75e-14 2
#> ATC:pam 67 0.940 1.87e-24 3
#> ATC:pam 65 0.921 3.53e-22 4
#> ATC:pam 64 0.973 1.48e-20 5
#> ATC:pam 64 0.992 1.60e-19 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 67 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 5.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.775 0.952 0.954 0.440 0.563 0.563
#> 3 3 1.000 1.000 1.000 0.534 0.744 0.553
#> 4 4 1.000 0.994 0.997 0.067 0.955 0.861
#> 5 5 1.000 0.986 0.986 0.033 0.979 0.926
#> 6 6 0.893 0.888 0.899 0.109 0.875 0.541
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 3 4
There is also optional best \(k\) = 3 4 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM260888 2 0.000 0.988 0.000 1.000
#> GSM260893 2 0.000 0.988 0.000 1.000
#> GSM260896 2 0.000 0.988 0.000 1.000
#> GSM260899 2 0.000 0.988 0.000 1.000
#> GSM260902 2 0.000 0.988 0.000 1.000
#> GSM260905 2 0.000 0.988 0.000 1.000
#> GSM260908 2 0.000 0.988 0.000 1.000
#> GSM260911 2 0.000 0.988 0.000 1.000
#> GSM260912 2 0.000 0.988 0.000 1.000
#> GSM260913 1 0.443 0.936 0.908 0.092
#> GSM260886 1 0.163 0.946 0.976 0.024
#> GSM260889 1 0.163 0.946 0.976 0.024
#> GSM260891 1 0.163 0.946 0.976 0.024
#> GSM260894 1 0.163 0.946 0.976 0.024
#> GSM260897 1 0.163 0.946 0.976 0.024
#> GSM260900 1 0.163 0.946 0.976 0.024
#> GSM260903 1 0.163 0.946 0.976 0.024
#> GSM260906 1 0.163 0.946 0.976 0.024
#> GSM260909 1 0.163 0.946 0.976 0.024
#> GSM260887 1 0.443 0.936 0.908 0.092
#> GSM260890 1 0.443 0.936 0.908 0.092
#> GSM260892 1 0.443 0.936 0.908 0.092
#> GSM260895 1 0.000 0.940 1.000 0.000
#> GSM260898 1 0.443 0.936 0.908 0.092
#> GSM260901 1 0.443 0.936 0.908 0.092
#> GSM260904 1 0.443 0.936 0.908 0.092
#> GSM260907 1 0.443 0.936 0.908 0.092
#> GSM260910 1 0.443 0.936 0.908 0.092
#> GSM260918 2 0.000 0.988 0.000 1.000
#> GSM260921 2 0.000 0.988 0.000 1.000
#> GSM260924 2 0.000 0.988 0.000 1.000
#> GSM260929 2 0.000 0.988 0.000 1.000
#> GSM260932 2 0.000 0.988 0.000 1.000
#> GSM260935 2 0.000 0.988 0.000 1.000
#> GSM260938 2 0.000 0.988 0.000 1.000
#> GSM260941 2 0.000 0.988 0.000 1.000
#> GSM260944 2 0.000 0.988 0.000 1.000
#> GSM260947 2 0.000 0.988 0.000 1.000
#> GSM260952 2 0.000 0.988 0.000 1.000
#> GSM260914 1 0.163 0.946 0.976 0.024
#> GSM260916 1 0.163 0.946 0.976 0.024
#> GSM260919 1 0.163 0.946 0.976 0.024
#> GSM260922 1 0.163 0.946 0.976 0.024
#> GSM260925 1 0.163 0.946 0.976 0.024
#> GSM260927 1 0.163 0.946 0.976 0.024
#> GSM260930 1 0.163 0.946 0.976 0.024
#> GSM260933 1 0.163 0.946 0.976 0.024
#> GSM260936 1 0.163 0.946 0.976 0.024
#> GSM260939 1 0.141 0.945 0.980 0.020
#> GSM260942 1 0.163 0.946 0.976 0.024
#> GSM260945 1 0.163 0.946 0.976 0.024
#> GSM260948 1 0.163 0.946 0.976 0.024
#> GSM260950 1 0.163 0.946 0.976 0.024
#> GSM260915 1 0.443 0.936 0.908 0.092
#> GSM260917 1 0.443 0.936 0.908 0.092
#> GSM260920 1 0.443 0.936 0.908 0.092
#> GSM260923 1 0.443 0.936 0.908 0.092
#> GSM260926 1 0.443 0.936 0.908 0.092
#> GSM260928 1 0.000 0.940 1.000 0.000
#> GSM260931 1 0.443 0.936 0.908 0.092
#> GSM260934 1 0.443 0.936 0.908 0.092
#> GSM260937 2 0.767 0.703 0.224 0.776
#> GSM260940 1 0.443 0.936 0.908 0.092
#> GSM260943 1 0.443 0.936 0.908 0.092
#> GSM260946 1 0.443 0.936 0.908 0.092
#> GSM260949 1 0.443 0.936 0.908 0.092
#> GSM260951 1 0.443 0.936 0.908 0.092
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM260888 2 0.0000 1.000 0.000 1 0.000
#> GSM260893 2 0.0000 1.000 0.000 1 0.000
#> GSM260896 2 0.0000 1.000 0.000 1 0.000
#> GSM260899 2 0.0000 1.000 0.000 1 0.000
#> GSM260902 2 0.0000 1.000 0.000 1 0.000
#> GSM260905 2 0.0000 1.000 0.000 1 0.000
#> GSM260908 2 0.0000 1.000 0.000 1 0.000
#> GSM260911 2 0.0000 1.000 0.000 1 0.000
#> GSM260912 2 0.0000 1.000 0.000 1 0.000
#> GSM260913 3 0.0000 1.000 0.000 0 1.000
#> GSM260886 1 0.0000 1.000 1.000 0 0.000
#> GSM260889 1 0.0000 1.000 1.000 0 0.000
#> GSM260891 1 0.0000 1.000 1.000 0 0.000
#> GSM260894 1 0.0000 1.000 1.000 0 0.000
#> GSM260897 1 0.0000 1.000 1.000 0 0.000
#> GSM260900 1 0.0000 1.000 1.000 0 0.000
#> GSM260903 1 0.0000 1.000 1.000 0 0.000
#> GSM260906 1 0.0000 1.000 1.000 0 0.000
#> GSM260909 1 0.0000 1.000 1.000 0 0.000
#> GSM260887 3 0.0000 1.000 0.000 0 1.000
#> GSM260890 3 0.0000 1.000 0.000 0 1.000
#> GSM260892 3 0.0000 1.000 0.000 0 1.000
#> GSM260895 1 0.0237 0.996 0.996 0 0.004
#> GSM260898 3 0.0000 1.000 0.000 0 1.000
#> GSM260901 3 0.0000 1.000 0.000 0 1.000
#> GSM260904 3 0.0000 1.000 0.000 0 1.000
#> GSM260907 3 0.0000 1.000 0.000 0 1.000
#> GSM260910 3 0.0000 1.000 0.000 0 1.000
#> GSM260918 2 0.0000 1.000 0.000 1 0.000
#> GSM260921 2 0.0000 1.000 0.000 1 0.000
#> GSM260924 2 0.0000 1.000 0.000 1 0.000
#> GSM260929 2 0.0000 1.000 0.000 1 0.000
#> GSM260932 2 0.0000 1.000 0.000 1 0.000
#> GSM260935 2 0.0000 1.000 0.000 1 0.000
#> GSM260938 2 0.0000 1.000 0.000 1 0.000
#> GSM260941 2 0.0000 1.000 0.000 1 0.000
#> GSM260944 2 0.0000 1.000 0.000 1 0.000
#> GSM260947 2 0.0000 1.000 0.000 1 0.000
#> GSM260952 2 0.0000 1.000 0.000 1 0.000
#> GSM260914 1 0.0000 1.000 1.000 0 0.000
#> GSM260916 1 0.0000 1.000 1.000 0 0.000
#> GSM260919 1 0.0000 1.000 1.000 0 0.000
#> GSM260922 1 0.0000 1.000 1.000 0 0.000
#> GSM260925 1 0.0000 1.000 1.000 0 0.000
#> GSM260927 1 0.0000 1.000 1.000 0 0.000
#> GSM260930 1 0.0000 1.000 1.000 0 0.000
#> GSM260933 1 0.0000 1.000 1.000 0 0.000
#> GSM260936 1 0.0000 1.000 1.000 0 0.000
#> GSM260939 1 0.0000 1.000 1.000 0 0.000
#> GSM260942 1 0.0000 1.000 1.000 0 0.000
#> GSM260945 1 0.0000 1.000 1.000 0 0.000
#> GSM260948 1 0.0000 1.000 1.000 0 0.000
#> GSM260950 1 0.0000 1.000 1.000 0 0.000
#> GSM260915 3 0.0000 1.000 0.000 0 1.000
#> GSM260917 3 0.0000 1.000 0.000 0 1.000
#> GSM260920 3 0.0000 1.000 0.000 0 1.000
#> GSM260923 3 0.0000 1.000 0.000 0 1.000
#> GSM260926 3 0.0000 1.000 0.000 0 1.000
#> GSM260928 1 0.0237 0.996 0.996 0 0.004
#> GSM260931 3 0.0000 1.000 0.000 0 1.000
#> GSM260934 3 0.0000 1.000 0.000 0 1.000
#> GSM260937 3 0.0000 1.000 0.000 0 1.000
#> GSM260940 3 0.0000 1.000 0.000 0 1.000
#> GSM260943 3 0.0000 1.000 0.000 0 1.000
#> GSM260946 3 0.0000 1.000 0.000 0 1.000
#> GSM260949 3 0.0000 1.000 0.000 0 1.000
#> GSM260951 3 0.0000 1.000 0.000 0 1.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM260888 2 0.0000 1.000 0.000 1.000 0.00 0.000
#> GSM260893 2 0.0000 1.000 0.000 1.000 0.00 0.000
#> GSM260896 2 0.0000 1.000 0.000 1.000 0.00 0.000
#> GSM260899 4 0.0188 1.000 0.000 0.004 0.00 0.996
#> GSM260902 4 0.0188 1.000 0.000 0.004 0.00 0.996
#> GSM260905 4 0.0188 1.000 0.000 0.004 0.00 0.996
#> GSM260908 4 0.0188 1.000 0.000 0.004 0.00 0.996
#> GSM260911 2 0.0000 1.000 0.000 1.000 0.00 0.000
#> GSM260912 2 0.0000 1.000 0.000 1.000 0.00 0.000
#> GSM260913 3 0.0000 1.000 0.000 0.000 1.00 0.000
#> GSM260886 1 0.0000 0.992 1.000 0.000 0.00 0.000
#> GSM260889 1 0.0000 0.992 1.000 0.000 0.00 0.000
#> GSM260891 1 0.0000 0.992 1.000 0.000 0.00 0.000
#> GSM260894 1 0.0000 0.992 1.000 0.000 0.00 0.000
#> GSM260897 1 0.0000 0.992 1.000 0.000 0.00 0.000
#> GSM260900 1 0.0000 0.992 1.000 0.000 0.00 0.000
#> GSM260903 1 0.0000 0.992 1.000 0.000 0.00 0.000
#> GSM260906 1 0.0000 0.992 1.000 0.000 0.00 0.000
#> GSM260909 1 0.0000 0.992 1.000 0.000 0.00 0.000
#> GSM260887 3 0.0000 1.000 0.000 0.000 1.00 0.000
#> GSM260890 3 0.0000 1.000 0.000 0.000 1.00 0.000
#> GSM260892 3 0.0000 1.000 0.000 0.000 1.00 0.000
#> GSM260895 1 0.2197 0.904 0.916 0.000 0.08 0.004
#> GSM260898 3 0.0000 1.000 0.000 0.000 1.00 0.000
#> GSM260901 3 0.0000 1.000 0.000 0.000 1.00 0.000
#> GSM260904 3 0.0000 1.000 0.000 0.000 1.00 0.000
#> GSM260907 3 0.0000 1.000 0.000 0.000 1.00 0.000
#> GSM260910 3 0.0000 1.000 0.000 0.000 1.00 0.000
#> GSM260918 2 0.0000 1.000 0.000 1.000 0.00 0.000
#> GSM260921 2 0.0000 1.000 0.000 1.000 0.00 0.000
#> GSM260924 2 0.0000 1.000 0.000 1.000 0.00 0.000
#> GSM260929 2 0.0000 1.000 0.000 1.000 0.00 0.000
#> GSM260932 4 0.0188 1.000 0.000 0.004 0.00 0.996
#> GSM260935 4 0.0188 1.000 0.000 0.004 0.00 0.996
#> GSM260938 4 0.0188 1.000 0.000 0.004 0.00 0.996
#> GSM260941 4 0.0188 1.000 0.000 0.004 0.00 0.996
#> GSM260944 4 0.0188 1.000 0.000 0.004 0.00 0.996
#> GSM260947 4 0.0188 1.000 0.000 0.004 0.00 0.996
#> GSM260952 2 0.0000 1.000 0.000 1.000 0.00 0.000
#> GSM260914 1 0.0000 0.992 1.000 0.000 0.00 0.000
#> GSM260916 1 0.0000 0.992 1.000 0.000 0.00 0.000
#> GSM260919 1 0.0000 0.992 1.000 0.000 0.00 0.000
#> GSM260922 1 0.0000 0.992 1.000 0.000 0.00 0.000
#> GSM260925 1 0.0000 0.992 1.000 0.000 0.00 0.000
#> GSM260927 1 0.0000 0.992 1.000 0.000 0.00 0.000
#> GSM260930 1 0.0000 0.992 1.000 0.000 0.00 0.000
#> GSM260933 1 0.0000 0.992 1.000 0.000 0.00 0.000
#> GSM260936 1 0.0000 0.992 1.000 0.000 0.00 0.000
#> GSM260939 1 0.0000 0.992 1.000 0.000 0.00 0.000
#> GSM260942 1 0.0000 0.992 1.000 0.000 0.00 0.000
#> GSM260945 1 0.0000 0.992 1.000 0.000 0.00 0.000
#> GSM260948 1 0.0000 0.992 1.000 0.000 0.00 0.000
#> GSM260950 1 0.0000 0.992 1.000 0.000 0.00 0.000
#> GSM260915 3 0.0000 1.000 0.000 0.000 1.00 0.000
#> GSM260917 3 0.0000 1.000 0.000 0.000 1.00 0.000
#> GSM260920 3 0.0000 1.000 0.000 0.000 1.00 0.000
#> GSM260923 3 0.0000 1.000 0.000 0.000 1.00 0.000
#> GSM260926 3 0.0000 1.000 0.000 0.000 1.00 0.000
#> GSM260928 1 0.2197 0.904 0.916 0.000 0.08 0.004
#> GSM260931 3 0.0000 1.000 0.000 0.000 1.00 0.000
#> GSM260934 3 0.0000 1.000 0.000 0.000 1.00 0.000
#> GSM260937 3 0.0000 1.000 0.000 0.000 1.00 0.000
#> GSM260940 3 0.0000 1.000 0.000 0.000 1.00 0.000
#> GSM260943 3 0.0000 1.000 0.000 0.000 1.00 0.000
#> GSM260946 3 0.0000 1.000 0.000 0.000 1.00 0.000
#> GSM260949 3 0.0000 1.000 0.000 0.000 1.00 0.000
#> GSM260951 3 0.0000 1.000 0.000 0.000 1.00 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM260888 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM260893 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM260896 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM260899 5 0.0000 0.997 0.000 0.000 0.000 0.000 1.000
#> GSM260902 5 0.0000 0.997 0.000 0.000 0.000 0.000 1.000
#> GSM260905 5 0.0000 0.997 0.000 0.000 0.000 0.000 1.000
#> GSM260908 5 0.0000 0.997 0.000 0.000 0.000 0.000 1.000
#> GSM260911 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM260912 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM260913 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM260886 1 0.0000 0.967 1.000 0.000 0.000 0.000 0.000
#> GSM260889 1 0.0000 0.967 1.000 0.000 0.000 0.000 0.000
#> GSM260891 1 0.0000 0.967 1.000 0.000 0.000 0.000 0.000
#> GSM260894 1 0.0000 0.967 1.000 0.000 0.000 0.000 0.000
#> GSM260897 1 0.1608 0.958 0.928 0.000 0.000 0.072 0.000
#> GSM260900 1 0.1608 0.958 0.928 0.000 0.000 0.072 0.000
#> GSM260903 1 0.1608 0.958 0.928 0.000 0.000 0.072 0.000
#> GSM260906 1 0.1608 0.958 0.928 0.000 0.000 0.072 0.000
#> GSM260909 1 0.0000 0.967 1.000 0.000 0.000 0.000 0.000
#> GSM260887 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM260890 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM260892 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM260895 4 0.1671 1.000 0.000 0.000 0.076 0.924 0.000
#> GSM260898 3 0.0162 0.998 0.000 0.000 0.996 0.004 0.000
#> GSM260901 3 0.0162 0.998 0.000 0.000 0.996 0.004 0.000
#> GSM260904 3 0.0162 0.998 0.000 0.000 0.996 0.004 0.000
#> GSM260907 3 0.0162 0.998 0.000 0.000 0.996 0.004 0.000
#> GSM260910 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM260918 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM260921 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM260924 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM260929 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM260932 5 0.0000 0.997 0.000 0.000 0.000 0.000 1.000
#> GSM260935 5 0.0000 0.997 0.000 0.000 0.000 0.000 1.000
#> GSM260938 5 0.0000 0.997 0.000 0.000 0.000 0.000 1.000
#> GSM260941 5 0.0000 0.997 0.000 0.000 0.000 0.000 1.000
#> GSM260944 5 0.0000 0.997 0.000 0.000 0.000 0.000 1.000
#> GSM260947 5 0.0703 0.969 0.000 0.024 0.000 0.000 0.976
#> GSM260952 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> GSM260914 1 0.0000 0.967 1.000 0.000 0.000 0.000 0.000
#> GSM260916 1 0.0162 0.965 0.996 0.000 0.000 0.004 0.000
#> GSM260919 1 0.0000 0.967 1.000 0.000 0.000 0.000 0.000
#> GSM260922 1 0.0290 0.963 0.992 0.000 0.000 0.008 0.000
#> GSM260925 1 0.0000 0.967 1.000 0.000 0.000 0.000 0.000
#> GSM260927 1 0.0000 0.967 1.000 0.000 0.000 0.000 0.000
#> GSM260930 1 0.1608 0.958 0.928 0.000 0.000 0.072 0.000
#> GSM260933 1 0.1608 0.958 0.928 0.000 0.000 0.072 0.000
#> GSM260936 1 0.1608 0.958 0.928 0.000 0.000 0.072 0.000
#> GSM260939 1 0.1608 0.958 0.928 0.000 0.000 0.072 0.000
#> GSM260942 1 0.1608 0.958 0.928 0.000 0.000 0.072 0.000
#> GSM260945 1 0.1608 0.958 0.928 0.000 0.000 0.072 0.000
#> GSM260948 1 0.0000 0.967 1.000 0.000 0.000 0.000 0.000
#> GSM260950 1 0.0000 0.967 1.000 0.000 0.000 0.000 0.000
#> GSM260915 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM260917 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM260920 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM260923 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM260926 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM260928 4 0.1671 1.000 0.000 0.000 0.076 0.924 0.000
#> GSM260931 3 0.0162 0.998 0.000 0.000 0.996 0.004 0.000
#> GSM260934 3 0.0162 0.998 0.000 0.000 0.996 0.004 0.000
#> GSM260937 3 0.0162 0.998 0.000 0.000 0.996 0.004 0.000
#> GSM260940 3 0.0162 0.998 0.000 0.000 0.996 0.004 0.000
#> GSM260943 3 0.0162 0.998 0.000 0.000 0.996 0.004 0.000
#> GSM260946 3 0.0162 0.998 0.000 0.000 0.996 0.004 0.000
#> GSM260949 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> GSM260951 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM260888 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0
#> GSM260893 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0
#> GSM260896 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0
#> GSM260899 6 0.0000 1.000 0.000 0 0.000 0.000 0.000 1
#> GSM260902 6 0.0000 1.000 0.000 0 0.000 0.000 0.000 1
#> GSM260905 6 0.0000 1.000 0.000 0 0.000 0.000 0.000 1
#> GSM260908 6 0.0000 1.000 0.000 0 0.000 0.000 0.000 1
#> GSM260911 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0
#> GSM260912 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0
#> GSM260913 4 0.0000 0.996 0.000 0 0.000 1.000 0.000 0
#> GSM260886 1 0.3684 0.784 0.628 0 0.000 0.000 0.372 0
#> GSM260889 1 0.3684 0.784 0.628 0 0.000 0.000 0.372 0
#> GSM260891 1 0.4249 0.741 0.640 0 0.000 0.032 0.328 0
#> GSM260894 1 0.3684 0.784 0.628 0 0.000 0.000 0.372 0
#> GSM260897 5 0.0000 0.998 0.000 0 0.000 0.000 1.000 0
#> GSM260900 5 0.0000 0.998 0.000 0 0.000 0.000 1.000 0
#> GSM260903 5 0.0000 0.998 0.000 0 0.000 0.000 1.000 0
#> GSM260906 5 0.0000 0.998 0.000 0 0.000 0.000 1.000 0
#> GSM260909 1 0.3684 0.784 0.628 0 0.000 0.000 0.372 0
#> GSM260887 4 0.0000 0.996 0.000 0 0.000 1.000 0.000 0
#> GSM260890 4 0.0000 0.996 0.000 0 0.000 1.000 0.000 0
#> GSM260892 4 0.0000 0.996 0.000 0 0.000 1.000 0.000 0
#> GSM260895 1 0.3110 0.365 0.792 0 0.012 0.196 0.000 0
#> GSM260898 3 0.3288 0.723 0.000 0 0.724 0.276 0.000 0
#> GSM260901 3 0.3774 0.589 0.000 0 0.592 0.408 0.000 0
#> GSM260904 3 0.3843 0.508 0.000 0 0.548 0.452 0.000 0
#> GSM260907 3 0.1610 0.791 0.000 0 0.916 0.084 0.000 0
#> GSM260910 4 0.0000 0.996 0.000 0 0.000 1.000 0.000 0
#> GSM260918 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0
#> GSM260921 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0
#> GSM260924 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0
#> GSM260929 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0
#> GSM260932 6 0.0000 1.000 0.000 0 0.000 0.000 0.000 1
#> GSM260935 6 0.0000 1.000 0.000 0 0.000 0.000 0.000 1
#> GSM260938 6 0.0000 1.000 0.000 0 0.000 0.000 0.000 1
#> GSM260941 6 0.0000 1.000 0.000 0 0.000 0.000 0.000 1
#> GSM260944 6 0.0000 1.000 0.000 0 0.000 0.000 0.000 1
#> GSM260947 6 0.0000 1.000 0.000 0 0.000 0.000 0.000 1
#> GSM260952 2 0.0000 1.000 0.000 1 0.000 0.000 0.000 0
#> GSM260914 1 0.3684 0.784 0.628 0 0.000 0.000 0.372 0
#> GSM260916 1 0.1194 0.564 0.956 0 0.004 0.032 0.008 0
#> GSM260919 1 0.3684 0.784 0.628 0 0.000 0.000 0.372 0
#> GSM260922 1 0.1307 0.562 0.952 0 0.008 0.032 0.008 0
#> GSM260925 1 0.3695 0.779 0.624 0 0.000 0.000 0.376 0
#> GSM260927 1 0.3684 0.784 0.628 0 0.000 0.000 0.372 0
#> GSM260930 5 0.0000 0.998 0.000 0 0.000 0.000 1.000 0
#> GSM260933 5 0.0000 0.998 0.000 0 0.000 0.000 1.000 0
#> GSM260936 5 0.0000 0.998 0.000 0 0.000 0.000 1.000 0
#> GSM260939 5 0.0405 0.984 0.008 0 0.004 0.000 0.988 0
#> GSM260942 5 0.0000 0.998 0.000 0 0.000 0.000 1.000 0
#> GSM260945 5 0.0000 0.998 0.000 0 0.000 0.000 1.000 0
#> GSM260948 1 0.3684 0.784 0.628 0 0.000 0.000 0.372 0
#> GSM260950 1 0.3684 0.784 0.628 0 0.000 0.000 0.372 0
#> GSM260915 4 0.0260 0.991 0.000 0 0.008 0.992 0.000 0
#> GSM260917 4 0.0146 0.994 0.004 0 0.000 0.996 0.000 0
#> GSM260920 4 0.0260 0.991 0.000 0 0.008 0.992 0.000 0
#> GSM260923 4 0.0146 0.994 0.004 0 0.000 0.996 0.000 0
#> GSM260926 4 0.0260 0.991 0.000 0 0.008 0.992 0.000 0
#> GSM260928 1 0.3110 0.365 0.792 0 0.012 0.196 0.000 0
#> GSM260931 3 0.0363 0.774 0.000 0 0.988 0.012 0.000 0
#> GSM260934 3 0.1141 0.788 0.000 0 0.948 0.052 0.000 0
#> GSM260937 3 0.2854 0.738 0.000 0 0.792 0.208 0.000 0
#> GSM260940 3 0.3288 0.723 0.000 0 0.724 0.276 0.000 0
#> GSM260943 3 0.2762 0.747 0.000 0 0.804 0.196 0.000 0
#> GSM260946 3 0.0363 0.774 0.000 0 0.988 0.012 0.000 0
#> GSM260949 4 0.0000 0.996 0.000 0 0.000 1.000 0.000 0
#> GSM260951 4 0.0146 0.994 0.004 0 0.000 0.996 0.000 0
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) cell.type(p) k
#> ATC:mclust 67 1.000 2.38e-13 2
#> ATC:mclust 67 0.940 1.87e-24 3
#> ATC:mclust 67 0.954 5.58e-23 4
#> ATC:mclust 67 0.981 6.76e-24 5
#> ATC:mclust 65 0.996 6.69e-22 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 21168 rows and 67 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 4.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4257 0.575 0.575
#> 3 3 0.941 0.978 0.976 0.5628 0.751 0.567
#> 4 4 0.940 0.890 0.947 0.0549 0.982 0.945
#> 5 5 0.897 0.837 0.907 0.0387 0.982 0.942
#> 6 6 0.866 0.820 0.905 0.0251 0.960 0.865
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3
There is also optional best \(k\) = 2 3 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> GSM260888 2 0 1 0 1
#> GSM260893 2 0 1 0 1
#> GSM260896 2 0 1 0 1
#> GSM260899 2 0 1 0 1
#> GSM260902 2 0 1 0 1
#> GSM260905 2 0 1 0 1
#> GSM260908 2 0 1 0 1
#> GSM260911 2 0 1 0 1
#> GSM260912 2 0 1 0 1
#> GSM260913 1 0 1 1 0
#> GSM260886 1 0 1 1 0
#> GSM260889 1 0 1 1 0
#> GSM260891 1 0 1 1 0
#> GSM260894 1 0 1 1 0
#> GSM260897 1 0 1 1 0
#> GSM260900 1 0 1 1 0
#> GSM260903 1 0 1 1 0
#> GSM260906 1 0 1 1 0
#> GSM260909 1 0 1 1 0
#> GSM260887 1 0 1 1 0
#> GSM260890 1 0 1 1 0
#> GSM260892 1 0 1 1 0
#> GSM260895 1 0 1 1 0
#> GSM260898 1 0 1 1 0
#> GSM260901 1 0 1 1 0
#> GSM260904 1 0 1 1 0
#> GSM260907 1 0 1 1 0
#> GSM260910 1 0 1 1 0
#> GSM260918 2 0 1 0 1
#> GSM260921 2 0 1 0 1
#> GSM260924 2 0 1 0 1
#> GSM260929 2 0 1 0 1
#> GSM260932 2 0 1 0 1
#> GSM260935 2 0 1 0 1
#> GSM260938 2 0 1 0 1
#> GSM260941 2 0 1 0 1
#> GSM260944 2 0 1 0 1
#> GSM260947 2 0 1 0 1
#> GSM260952 2 0 1 0 1
#> GSM260914 1 0 1 1 0
#> GSM260916 1 0 1 1 0
#> GSM260919 1 0 1 1 0
#> GSM260922 1 0 1 1 0
#> GSM260925 1 0 1 1 0
#> GSM260927 1 0 1 1 0
#> GSM260930 1 0 1 1 0
#> GSM260933 1 0 1 1 0
#> GSM260936 1 0 1 1 0
#> GSM260939 1 0 1 1 0
#> GSM260942 1 0 1 1 0
#> GSM260945 1 0 1 1 0
#> GSM260948 1 0 1 1 0
#> GSM260950 1 0 1 1 0
#> GSM260915 1 0 1 1 0
#> GSM260917 1 0 1 1 0
#> GSM260920 1 0 1 1 0
#> GSM260923 1 0 1 1 0
#> GSM260926 1 0 1 1 0
#> GSM260928 1 0 1 1 0
#> GSM260931 1 0 1 1 0
#> GSM260934 1 0 1 1 0
#> GSM260937 1 0 1 1 0
#> GSM260940 1 0 1 1 0
#> GSM260943 1 0 1 1 0
#> GSM260946 1 0 1 1 0
#> GSM260949 1 0 1 1 0
#> GSM260951 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> GSM260888 2 0.0000 1.000 0.000 1.000 0.000
#> GSM260893 2 0.0000 1.000 0.000 1.000 0.000
#> GSM260896 2 0.0000 1.000 0.000 1.000 0.000
#> GSM260899 2 0.0237 0.997 0.000 0.996 0.004
#> GSM260902 2 0.0000 1.000 0.000 1.000 0.000
#> GSM260905 2 0.0000 1.000 0.000 1.000 0.000
#> GSM260908 2 0.0000 1.000 0.000 1.000 0.000
#> GSM260911 2 0.0000 1.000 0.000 1.000 0.000
#> GSM260912 2 0.0000 1.000 0.000 1.000 0.000
#> GSM260913 3 0.2878 0.947 0.096 0.000 0.904
#> GSM260886 1 0.0237 0.987 0.996 0.000 0.004
#> GSM260889 1 0.0237 0.987 0.996 0.000 0.004
#> GSM260891 1 0.0424 0.986 0.992 0.000 0.008
#> GSM260894 1 0.0237 0.987 0.996 0.000 0.004
#> GSM260897 1 0.0237 0.988 0.996 0.000 0.004
#> GSM260900 1 0.0237 0.988 0.996 0.000 0.004
#> GSM260903 1 0.0237 0.988 0.996 0.000 0.004
#> GSM260906 1 0.0237 0.988 0.996 0.000 0.004
#> GSM260909 1 0.0237 0.987 0.996 0.000 0.004
#> GSM260887 3 0.2448 0.957 0.076 0.000 0.924
#> GSM260890 3 0.2711 0.952 0.088 0.000 0.912
#> GSM260892 3 0.2959 0.946 0.100 0.000 0.900
#> GSM260895 1 0.3879 0.814 0.848 0.000 0.152
#> GSM260898 3 0.1163 0.959 0.028 0.000 0.972
#> GSM260901 3 0.1753 0.955 0.048 0.000 0.952
#> GSM260904 3 0.1964 0.963 0.056 0.000 0.944
#> GSM260907 3 0.1163 0.959 0.028 0.000 0.972
#> GSM260910 3 0.2878 0.947 0.096 0.000 0.904
#> GSM260918 2 0.0000 1.000 0.000 1.000 0.000
#> GSM260921 2 0.0000 1.000 0.000 1.000 0.000
#> GSM260924 2 0.0000 1.000 0.000 1.000 0.000
#> GSM260929 2 0.0000 1.000 0.000 1.000 0.000
#> GSM260932 2 0.0000 1.000 0.000 1.000 0.000
#> GSM260935 2 0.0000 1.000 0.000 1.000 0.000
#> GSM260938 2 0.0000 1.000 0.000 1.000 0.000
#> GSM260941 2 0.0000 1.000 0.000 1.000 0.000
#> GSM260944 2 0.0000 1.000 0.000 1.000 0.000
#> GSM260947 2 0.0000 1.000 0.000 1.000 0.000
#> GSM260952 2 0.0000 1.000 0.000 1.000 0.000
#> GSM260914 1 0.0000 0.987 1.000 0.000 0.000
#> GSM260916 1 0.0424 0.986 0.992 0.000 0.008
#> GSM260919 1 0.0237 0.987 0.996 0.000 0.004
#> GSM260922 1 0.0424 0.986 0.992 0.000 0.008
#> GSM260925 1 0.0237 0.988 0.996 0.000 0.004
#> GSM260927 1 0.0424 0.987 0.992 0.000 0.008
#> GSM260930 1 0.0237 0.988 0.996 0.000 0.004
#> GSM260933 1 0.0237 0.988 0.996 0.000 0.004
#> GSM260936 1 0.0237 0.988 0.996 0.000 0.004
#> GSM260939 1 0.0424 0.986 0.992 0.000 0.008
#> GSM260942 1 0.0424 0.986 0.992 0.000 0.008
#> GSM260945 1 0.0237 0.988 0.996 0.000 0.004
#> GSM260948 1 0.0000 0.987 1.000 0.000 0.000
#> GSM260950 1 0.0237 0.988 0.996 0.000 0.004
#> GSM260915 3 0.2261 0.960 0.068 0.000 0.932
#> GSM260917 3 0.1643 0.962 0.044 0.000 0.956
#> GSM260920 3 0.2356 0.960 0.072 0.000 0.928
#> GSM260923 3 0.2878 0.947 0.096 0.000 0.904
#> GSM260926 3 0.1860 0.964 0.052 0.000 0.948
#> GSM260928 1 0.1643 0.954 0.956 0.000 0.044
#> GSM260931 3 0.1163 0.959 0.028 0.000 0.972
#> GSM260934 3 0.1163 0.959 0.028 0.000 0.972
#> GSM260937 3 0.1860 0.954 0.052 0.000 0.948
#> GSM260940 3 0.1753 0.955 0.048 0.000 0.952
#> GSM260943 3 0.1163 0.959 0.028 0.000 0.972
#> GSM260946 3 0.1031 0.957 0.024 0.000 0.976
#> GSM260949 3 0.2878 0.947 0.096 0.000 0.904
#> GSM260951 3 0.1289 0.961 0.032 0.000 0.968
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> GSM260888 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260893 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260896 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260899 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260902 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260905 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260908 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260911 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260912 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260913 3 0.1489 0.828 0.004 0.000 0.952 0.044
#> GSM260886 1 0.0000 0.959 1.000 0.000 0.000 0.000
#> GSM260889 1 0.0000 0.959 1.000 0.000 0.000 0.000
#> GSM260891 1 0.1022 0.945 0.968 0.000 0.000 0.032
#> GSM260894 1 0.0000 0.959 1.000 0.000 0.000 0.000
#> GSM260897 1 0.1211 0.955 0.960 0.000 0.000 0.040
#> GSM260900 1 0.1211 0.955 0.960 0.000 0.000 0.040
#> GSM260903 1 0.1211 0.955 0.960 0.000 0.000 0.040
#> GSM260906 1 0.1211 0.955 0.960 0.000 0.000 0.040
#> GSM260909 1 0.0188 0.958 0.996 0.000 0.000 0.004
#> GSM260887 3 0.0524 0.854 0.004 0.000 0.988 0.008
#> GSM260890 3 0.0779 0.851 0.004 0.000 0.980 0.016
#> GSM260892 3 0.3142 0.663 0.008 0.000 0.860 0.132
#> GSM260895 1 0.5977 0.577 0.688 0.000 0.192 0.120
#> GSM260898 3 0.2714 0.786 0.004 0.000 0.884 0.112
#> GSM260901 3 0.5039 -0.380 0.004 0.000 0.592 0.404
#> GSM260904 3 0.1576 0.844 0.004 0.000 0.948 0.048
#> GSM260907 3 0.2053 0.827 0.004 0.000 0.924 0.072
#> GSM260910 3 0.1824 0.809 0.004 0.000 0.936 0.060
#> GSM260918 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260921 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260924 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260929 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260932 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260935 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260938 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260941 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260944 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260947 2 0.0188 0.998 0.000 0.996 0.000 0.004
#> GSM260952 2 0.0000 0.998 0.000 1.000 0.000 0.000
#> GSM260914 1 0.0000 0.959 1.000 0.000 0.000 0.000
#> GSM260916 1 0.1824 0.925 0.936 0.000 0.004 0.060
#> GSM260919 1 0.0000 0.959 1.000 0.000 0.000 0.000
#> GSM260922 1 0.2334 0.903 0.908 0.000 0.004 0.088
#> GSM260925 1 0.0336 0.959 0.992 0.000 0.000 0.008
#> GSM260927 1 0.0000 0.959 1.000 0.000 0.000 0.000
#> GSM260930 1 0.1211 0.955 0.960 0.000 0.000 0.040
#> GSM260933 1 0.1211 0.955 0.960 0.000 0.000 0.040
#> GSM260936 1 0.1302 0.954 0.956 0.000 0.000 0.044
#> GSM260939 1 0.2469 0.915 0.892 0.000 0.000 0.108
#> GSM260942 1 0.2469 0.915 0.892 0.000 0.000 0.108
#> GSM260945 1 0.1557 0.949 0.944 0.000 0.000 0.056
#> GSM260948 1 0.0000 0.959 1.000 0.000 0.000 0.000
#> GSM260950 1 0.0336 0.959 0.992 0.000 0.000 0.008
#> GSM260915 3 0.0376 0.858 0.004 0.000 0.992 0.004
#> GSM260917 3 0.0188 0.857 0.004 0.000 0.996 0.000
#> GSM260920 3 0.1004 0.855 0.004 0.000 0.972 0.024
#> GSM260923 3 0.0779 0.851 0.004 0.000 0.980 0.016
#> GSM260926 3 0.0895 0.856 0.004 0.000 0.976 0.020
#> GSM260928 1 0.0188 0.958 0.996 0.000 0.000 0.004
#> GSM260931 3 0.3583 0.666 0.004 0.000 0.816 0.180
#> GSM260934 3 0.2466 0.806 0.004 0.000 0.900 0.096
#> GSM260937 4 0.4677 0.708 0.004 0.000 0.316 0.680
#> GSM260940 4 0.5158 0.612 0.004 0.000 0.472 0.524
#> GSM260943 3 0.3494 0.684 0.004 0.000 0.824 0.172
#> GSM260946 3 0.2773 0.781 0.004 0.000 0.880 0.116
#> GSM260949 3 0.1109 0.843 0.004 0.000 0.968 0.028
#> GSM260951 3 0.0376 0.858 0.004 0.000 0.992 0.004
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> GSM260888 2 0.0000 0.938 0.000 1.000 0.000 0.000 NA
#> GSM260893 2 0.0000 0.938 0.000 1.000 0.000 0.000 NA
#> GSM260896 2 0.0000 0.938 0.000 1.000 0.000 0.000 NA
#> GSM260899 2 0.4434 0.532 0.000 0.536 0.000 0.004 NA
#> GSM260902 2 0.3480 0.801 0.000 0.752 0.000 0.000 NA
#> GSM260905 2 0.0510 0.936 0.000 0.984 0.000 0.000 NA
#> GSM260908 2 0.1608 0.920 0.000 0.928 0.000 0.000 NA
#> GSM260911 2 0.0000 0.938 0.000 1.000 0.000 0.000 NA
#> GSM260912 2 0.0000 0.938 0.000 1.000 0.000 0.000 NA
#> GSM260913 3 0.2793 0.752 0.000 0.000 0.876 0.088 NA
#> GSM260886 1 0.0000 0.968 1.000 0.000 0.000 0.000 NA
#> GSM260889 1 0.0000 0.968 1.000 0.000 0.000 0.000 NA
#> GSM260891 1 0.0000 0.968 1.000 0.000 0.000 0.000 NA
#> GSM260894 1 0.0000 0.968 1.000 0.000 0.000 0.000 NA
#> GSM260897 1 0.0162 0.968 0.996 0.000 0.000 0.004 NA
#> GSM260900 1 0.0162 0.968 0.996 0.000 0.000 0.004 NA
#> GSM260903 1 0.0162 0.968 0.996 0.000 0.000 0.004 NA
#> GSM260906 1 0.0162 0.968 0.996 0.000 0.000 0.004 NA
#> GSM260909 1 0.0000 0.968 1.000 0.000 0.000 0.000 NA
#> GSM260887 3 0.0000 0.779 0.000 0.000 1.000 0.000 NA
#> GSM260890 3 0.2136 0.758 0.000 0.000 0.904 0.088 NA
#> GSM260892 3 0.5578 0.489 0.000 0.000 0.644 0.176 NA
#> GSM260895 1 0.6531 0.322 0.564 0.000 0.256 0.156 NA
#> GSM260898 3 0.4360 0.611 0.000 0.000 0.752 0.064 NA
#> GSM260901 3 0.5308 0.161 0.000 0.000 0.532 0.052 NA
#> GSM260904 3 0.2005 0.759 0.004 0.000 0.924 0.056 NA
#> GSM260907 3 0.2775 0.739 0.004 0.000 0.884 0.076 NA
#> GSM260910 3 0.2966 0.717 0.000 0.000 0.848 0.136 NA
#> GSM260918 2 0.0000 0.938 0.000 1.000 0.000 0.000 NA
#> GSM260921 2 0.0000 0.938 0.000 1.000 0.000 0.000 NA
#> GSM260924 2 0.0000 0.938 0.000 1.000 0.000 0.000 NA
#> GSM260929 2 0.0000 0.938 0.000 1.000 0.000 0.000 NA
#> GSM260932 2 0.3550 0.809 0.000 0.760 0.000 0.004 NA
#> GSM260935 2 0.2561 0.882 0.000 0.856 0.000 0.000 NA
#> GSM260938 2 0.1792 0.915 0.000 0.916 0.000 0.000 NA
#> GSM260941 2 0.1270 0.926 0.000 0.948 0.000 0.000 NA
#> GSM260944 2 0.1792 0.915 0.000 0.916 0.000 0.000 NA
#> GSM260947 2 0.0510 0.936 0.000 0.984 0.000 0.000 NA
#> GSM260952 2 0.0000 0.938 0.000 1.000 0.000 0.000 NA
#> GSM260914 1 0.0000 0.968 1.000 0.000 0.000 0.000 NA
#> GSM260916 1 0.0898 0.953 0.972 0.000 0.000 0.020 NA
#> GSM260919 1 0.0000 0.968 1.000 0.000 0.000 0.000 NA
#> GSM260922 1 0.1557 0.929 0.940 0.000 0.000 0.052 NA
#> GSM260925 1 0.0000 0.968 1.000 0.000 0.000 0.000 NA
#> GSM260927 1 0.0000 0.968 1.000 0.000 0.000 0.000 NA
#> GSM260930 1 0.0290 0.966 0.992 0.000 0.000 0.008 NA
#> GSM260933 1 0.0162 0.968 0.996 0.000 0.000 0.004 NA
#> GSM260936 1 0.0566 0.963 0.984 0.000 0.000 0.012 NA
#> GSM260939 1 0.2011 0.902 0.908 0.000 0.000 0.088 NA
#> GSM260942 1 0.1557 0.932 0.940 0.000 0.000 0.052 NA
#> GSM260945 1 0.0566 0.963 0.984 0.000 0.000 0.012 NA
#> GSM260948 1 0.0000 0.968 1.000 0.000 0.000 0.000 NA
#> GSM260950 1 0.0162 0.968 0.996 0.000 0.000 0.004 NA
#> GSM260915 3 0.0451 0.779 0.004 0.000 0.988 0.000 NA
#> GSM260917 3 0.1568 0.774 0.000 0.000 0.944 0.036 NA
#> GSM260920 3 0.1251 0.772 0.000 0.000 0.956 0.036 NA
#> GSM260923 3 0.2351 0.754 0.000 0.000 0.896 0.088 NA
#> GSM260926 3 0.1644 0.772 0.004 0.000 0.940 0.008 NA
#> GSM260928 1 0.1267 0.941 0.960 0.000 0.024 0.004 NA
#> GSM260931 4 0.4504 0.568 0.000 0.000 0.428 0.564 NA
#> GSM260934 3 0.3569 0.700 0.000 0.000 0.828 0.068 NA
#> GSM260937 4 0.3086 0.787 0.000 0.000 0.180 0.816 NA
#> GSM260940 4 0.4380 0.786 0.000 0.000 0.304 0.676 NA
#> GSM260943 4 0.3274 0.812 0.000 0.000 0.220 0.780 NA
#> GSM260946 3 0.3980 0.414 0.000 0.000 0.708 0.284 NA
#> GSM260949 3 0.2448 0.753 0.000 0.000 0.892 0.088 NA
#> GSM260951 3 0.4972 0.341 0.000 0.000 0.672 0.260 NA
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> GSM260888 2 0.0692 0.889 0.000 0.976 0.000 0.000 0.020 0.004
#> GSM260893 2 0.0508 0.895 0.000 0.984 0.000 0.000 0.012 0.004
#> GSM260896 2 0.0405 0.896 0.000 0.988 0.000 0.000 0.008 0.004
#> GSM260899 6 0.3354 0.795 0.000 0.240 0.000 0.004 0.004 0.752
#> GSM260902 6 0.3659 0.863 0.000 0.364 0.000 0.000 0.000 0.636
#> GSM260905 2 0.1219 0.882 0.000 0.948 0.004 0.000 0.000 0.048
#> GSM260908 2 0.1858 0.848 0.000 0.904 0.004 0.000 0.000 0.092
#> GSM260911 2 0.0508 0.895 0.000 0.984 0.000 0.000 0.012 0.004
#> GSM260912 2 0.0000 0.898 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM260913 4 0.1802 0.843 0.000 0.000 0.012 0.916 0.072 0.000
#> GSM260886 1 0.0260 0.950 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM260889 1 0.0363 0.951 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM260891 1 0.0363 0.949 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM260894 1 0.0260 0.950 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM260897 1 0.0547 0.947 0.980 0.000 0.000 0.000 0.020 0.000
#> GSM260900 1 0.0458 0.948 0.984 0.000 0.000 0.000 0.016 0.000
#> GSM260903 1 0.0632 0.946 0.976 0.000 0.000 0.000 0.024 0.000
#> GSM260906 1 0.0260 0.950 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM260909 1 0.0603 0.947 0.980 0.000 0.004 0.000 0.016 0.000
#> GSM260887 4 0.0436 0.868 0.000 0.000 0.004 0.988 0.004 0.004
#> GSM260890 4 0.0603 0.864 0.000 0.000 0.000 0.980 0.004 0.016
#> GSM260892 5 0.3725 0.000 0.000 0.000 0.008 0.316 0.676 0.000
#> GSM260895 1 0.5522 -0.056 0.492 0.000 0.004 0.408 0.088 0.008
#> GSM260898 4 0.3199 0.811 0.004 0.000 0.024 0.856 0.048 0.068
#> GSM260901 4 0.4831 0.633 0.008 0.000 0.032 0.728 0.076 0.156
#> GSM260904 4 0.2357 0.858 0.008 0.000 0.036 0.908 0.032 0.016
#> GSM260907 4 0.2910 0.845 0.004 0.000 0.048 0.876 0.044 0.028
#> GSM260910 4 0.1584 0.837 0.000 0.000 0.000 0.928 0.064 0.008
#> GSM260918 2 0.0146 0.897 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM260921 2 0.0405 0.896 0.000 0.988 0.000 0.000 0.008 0.004
#> GSM260924 2 0.0725 0.893 0.000 0.976 0.000 0.000 0.012 0.012
#> GSM260929 2 0.0146 0.897 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM260932 6 0.3620 0.879 0.000 0.352 0.000 0.000 0.000 0.648
#> GSM260935 2 0.3828 -0.362 0.000 0.560 0.000 0.000 0.000 0.440
#> GSM260938 2 0.2520 0.763 0.000 0.844 0.004 0.000 0.000 0.152
#> GSM260941 2 0.1700 0.859 0.000 0.916 0.004 0.000 0.000 0.080
#> GSM260944 2 0.2278 0.802 0.000 0.868 0.004 0.000 0.000 0.128
#> GSM260947 2 0.1285 0.880 0.000 0.944 0.004 0.000 0.000 0.052
#> GSM260952 2 0.0632 0.893 0.000 0.976 0.000 0.000 0.000 0.024
#> GSM260914 1 0.0000 0.951 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM260916 1 0.1082 0.934 0.956 0.000 0.000 0.004 0.040 0.000
#> GSM260919 1 0.0260 0.950 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM260922 1 0.2402 0.843 0.856 0.000 0.000 0.004 0.140 0.000
#> GSM260925 1 0.0146 0.950 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM260927 1 0.0146 0.951 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM260930 1 0.0146 0.950 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM260933 1 0.0146 0.950 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM260936 1 0.0405 0.949 0.988 0.000 0.004 0.000 0.008 0.000
#> GSM260939 1 0.1924 0.906 0.920 0.000 0.048 0.000 0.028 0.004
#> GSM260942 1 0.1777 0.914 0.928 0.000 0.024 0.000 0.044 0.004
#> GSM260945 1 0.0692 0.946 0.976 0.000 0.004 0.000 0.020 0.000
#> GSM260948 1 0.0603 0.947 0.980 0.000 0.000 0.000 0.016 0.004
#> GSM260950 1 0.0146 0.950 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM260915 4 0.0520 0.868 0.000 0.000 0.000 0.984 0.008 0.008
#> GSM260917 4 0.1728 0.856 0.000 0.000 0.064 0.924 0.004 0.008
#> GSM260920 4 0.1367 0.865 0.000 0.000 0.044 0.944 0.000 0.012
#> GSM260923 4 0.1844 0.842 0.000 0.000 0.004 0.924 0.048 0.024
#> GSM260926 4 0.1511 0.865 0.004 0.000 0.000 0.940 0.012 0.044
#> GSM260928 1 0.2704 0.852 0.880 0.000 0.008 0.080 0.020 0.012
#> GSM260931 3 0.3789 0.615 0.000 0.000 0.668 0.324 0.004 0.004
#> GSM260934 4 0.2924 0.839 0.004 0.000 0.036 0.876 0.044 0.040
#> GSM260937 3 0.1615 0.672 0.000 0.000 0.928 0.064 0.004 0.004
#> GSM260940 3 0.4405 0.692 0.000 0.000 0.696 0.252 0.024 0.028
#> GSM260943 3 0.1908 0.710 0.000 0.000 0.900 0.096 0.004 0.000
#> GSM260946 4 0.4147 0.425 0.000 0.000 0.316 0.660 0.008 0.016
#> GSM260949 4 0.1265 0.851 0.000 0.000 0.000 0.948 0.044 0.008
#> GSM260951 3 0.4431 0.669 0.000 0.000 0.692 0.228 0.080 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.
test_to_known_factors(res)
#> n disease.state(p) cell.type(p) k
#> ATC:NMF 67 0.939 2.75e-14 2
#> ATC:NMF 67 0.940 1.87e-24 3
#> ATC:NMF 66 0.672 1.52e-22 4
#> ATC:NMF 62 0.320 7.14e-22 5
#> ATC:NMF 63 0.249 4.57e-21 6
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#>
#> Matrix products: default
#> BLAS: /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#>
#> locale:
#> [1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C LC_TIME=en_GB.UTF-8
#> [4] LC_COLLATE=en_GB.UTF-8 LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_GB.UTF-8
#> [7] LC_PAPER=en_GB.UTF-8 LC_NAME=C LC_ADDRESS=C
#> [10] LC_TELEPHONE=C LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] grid stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] genefilter_1.66.0 ComplexHeatmap_2.3.1 markdown_1.1 knitr_1.26
#> [5] GetoptLong_0.1.7 cola_1.3.2
#>
#> loaded via a namespace (and not attached):
#> [1] circlize_0.4.8 shape_1.4.4 xfun_0.11 slam_0.1-46
#> [5] lattice_0.20-38 splines_3.6.0 colorspace_1.4-1 vctrs_0.2.0
#> [9] stats4_3.6.0 blob_1.2.0 XML_3.98-1.20 survival_2.44-1.1
#> [13] rlang_0.4.2 pillar_1.4.2 DBI_1.0.0 BiocGenerics_0.30.0
#> [17] bit64_0.9-7 RColorBrewer_1.1-2 matrixStats_0.55.0 stringr_1.4.0
#> [21] GlobalOptions_0.1.1 evaluate_0.14 memoise_1.1.0 Biobase_2.44.0
#> [25] IRanges_2.18.3 parallel_3.6.0 AnnotationDbi_1.46.1 highr_0.8
#> [29] Rcpp_1.0.3 xtable_1.8-4 backports_1.1.5 S4Vectors_0.22.1
#> [33] annotate_1.62.0 skmeans_0.2-11 bit_1.1-14 microbenchmark_1.4-7
#> [37] brew_1.0-6 impute_1.58.0 rjson_0.2.20 png_0.1-7
#> [41] digest_0.6.23 stringi_1.4.3 polyclip_1.10-0 clue_0.3-57
#> [45] tools_3.6.0 bitops_1.0-6 magrittr_1.5 eulerr_6.0.0
#> [49] RCurl_1.95-4.12 RSQLite_2.1.4 tibble_2.1.3 cluster_2.1.0
#> [53] crayon_1.3.4 pkgconfig_2.0.3 zeallot_0.1.0 Matrix_1.2-17
#> [57] xml2_1.2.2 httr_1.4.1 R6_2.4.1 mclust_5.4.5
#> [61] compiler_3.6.0