cola Report for GDS4145

Date: 2019-12-25 21:11:22 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 21168 rows and 125 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4, anno = anno)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 21168   125

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_list), 
    col = get_anno_col(res_list)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
ATC:NMF 2 1.000 0.991 0.996 **
MAD:skmeans 2 0.984 0.946 0.978 **
ATC:skmeans 4 0.966 0.953 0.980 ** 2
MAD:kmeans 2 0.950 0.938 0.975 *
ATC:pam 6 0.917 0.909 0.951 * 2
SD:kmeans 2 0.915 0.909 0.964 *
ATC:kmeans 4 0.914 0.907 0.938 * 2
MAD:NMF 2 0.901 0.931 0.970 *
SD:skmeans 2 0.900 0.927 0.970 *
CV:kmeans 2 0.885 0.914 0.963
CV:NMF 2 0.881 0.911 0.961
CV:skmeans 2 0.867 0.929 0.969
SD:NMF 2 0.853 0.911 0.964
ATC:mclust 3 0.632 0.817 0.879
ATC:hclust 4 0.623 0.640 0.838
MAD:mclust 3 0.513 0.769 0.867
SD:mclust 3 0.464 0.733 0.828
MAD:pam 2 0.402 0.823 0.894
CV:mclust 3 0.363 0.794 0.842
SD:pam 2 0.329 0.728 0.867
SD:hclust 4 0.314 0.613 0.755
CV:hclust 2 0.268 0.808 0.869
CV:pam 2 0.211 0.633 0.824
MAD:hclust 2 0.169 0.662 0.807

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.853           0.911       0.964          0.503 0.496   0.496
#> CV:NMF      2 0.881           0.911       0.961          0.502 0.496   0.496
#> MAD:NMF     2 0.901           0.931       0.970          0.503 0.496   0.496
#> ATC:NMF     2 1.000           0.991       0.996          0.502 0.499   0.499
#> SD:skmeans  2 0.900           0.927       0.970          0.504 0.496   0.496
#> CV:skmeans  2 0.867           0.929       0.969          0.504 0.496   0.496
#> MAD:skmeans 2 0.984           0.946       0.978          0.504 0.496   0.496
#> ATC:skmeans 2 1.000           1.000       1.000          0.503 0.498   0.498
#> SD:mclust   2 0.226           0.621       0.774          0.424 0.545   0.545
#> CV:mclust   2 0.232           0.700       0.804          0.429 0.608   0.608
#> MAD:mclust  2 0.468           0.786       0.848          0.433 0.573   0.573
#> ATC:mclust  2 0.440           0.777       0.822          0.438 0.580   0.580
#> SD:kmeans   2 0.915           0.909       0.964          0.501 0.499   0.499
#> CV:kmeans   2 0.885           0.914       0.963          0.502 0.497   0.497
#> MAD:kmeans  2 0.950           0.938       0.975          0.502 0.499   0.499
#> ATC:kmeans  2 1.000           0.972       0.971          0.496 0.498   0.498
#> SD:pam      2 0.329           0.728       0.867          0.499 0.496   0.496
#> CV:pam      2 0.211           0.633       0.824          0.485 0.505   0.505
#> MAD:pam     2 0.402           0.823       0.894          0.496 0.499   0.499
#> ATC:pam     2 1.000           0.965       0.981          0.502 0.498   0.498
#> SD:hclust   2 0.154           0.550       0.708          0.388 0.513   0.513
#> CV:hclust   2 0.268           0.808       0.869          0.386 0.624   0.624
#> MAD:hclust  2 0.169           0.662       0.807          0.432 0.510   0.510
#> ATC:hclust  2 0.431           0.793       0.885          0.304 0.659   0.659
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.473           0.632       0.759          0.304 0.797   0.613
#> CV:NMF      3 0.455           0.624       0.753          0.304 0.796   0.611
#> MAD:NMF     3 0.502           0.622       0.813          0.303 0.820   0.650
#> ATC:NMF     3 0.695           0.807       0.903          0.264 0.751   0.556
#> SD:skmeans  3 0.591           0.754       0.861          0.305 0.781   0.586
#> CV:skmeans  3 0.632           0.782       0.877          0.310 0.773   0.572
#> MAD:skmeans 3 0.701           0.797       0.895          0.305 0.800   0.616
#> ATC:skmeans 3 0.765           0.880       0.911          0.285 0.829   0.665
#> SD:mclust   3 0.464           0.733       0.828          0.516 0.697   0.486
#> CV:mclust   3 0.363           0.794       0.842          0.494 0.645   0.450
#> MAD:mclust  3 0.513           0.769       0.867          0.501 0.746   0.560
#> ATC:mclust  3 0.632           0.817       0.879          0.452 0.722   0.534
#> SD:kmeans   3 0.525           0.589       0.754          0.279 0.819   0.659
#> CV:kmeans   3 0.561           0.645       0.831          0.282 0.784   0.596
#> MAD:kmeans  3 0.533           0.634       0.812          0.276 0.814   0.649
#> ATC:kmeans  3 0.821           0.746       0.839          0.245 0.871   0.747
#> SD:pam      3 0.415           0.677       0.794          0.315 0.750   0.539
#> CV:pam      3 0.226           0.466       0.719          0.300 0.671   0.448
#> MAD:pam     3 0.451           0.712       0.824          0.297 0.701   0.476
#> ATC:pam     3 0.724           0.843       0.899          0.220 0.898   0.797
#> SD:hclust   3 0.135           0.531       0.725          0.319 0.620   0.460
#> CV:hclust   3 0.249           0.746       0.845          0.153 0.980   0.968
#> MAD:hclust  3 0.244           0.614       0.782          0.252 0.920   0.854
#> ATC:hclust  3 0.356           0.638       0.759          0.408 0.949   0.923
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.442           0.498       0.710         0.1258 0.786   0.473
#> CV:NMF      4 0.412           0.505       0.700         0.1310 0.818   0.534
#> MAD:NMF     4 0.450           0.502       0.723         0.1353 0.783   0.470
#> ATC:NMF     4 0.606           0.715       0.838         0.1610 0.819   0.554
#> SD:skmeans  4 0.525           0.616       0.780         0.1274 0.855   0.609
#> CV:skmeans  4 0.467           0.554       0.714         0.1261 0.857   0.611
#> MAD:skmeans 4 0.547           0.665       0.808         0.1303 0.827   0.551
#> ATC:skmeans 4 0.966           0.953       0.980         0.1549 0.870   0.648
#> SD:mclust   4 0.484           0.592       0.765         0.0800 0.863   0.648
#> CV:mclust   4 0.455           0.565       0.741         0.1116 0.925   0.786
#> MAD:mclust  4 0.530           0.558       0.790         0.1107 0.860   0.626
#> ATC:mclust  4 0.543           0.365       0.659         0.1340 0.727   0.420
#> SD:kmeans   4 0.584           0.441       0.670         0.1209 0.791   0.510
#> CV:kmeans   4 0.594           0.397       0.640         0.1171 0.858   0.626
#> MAD:kmeans  4 0.608           0.433       0.707         0.1266 0.947   0.866
#> ATC:kmeans  4 0.914           0.907       0.938         0.1284 0.867   0.679
#> SD:pam      4 0.497           0.639       0.787         0.1016 0.898   0.716
#> CV:pam      4 0.354           0.456       0.690         0.1251 0.843   0.606
#> MAD:pam     4 0.492           0.595       0.766         0.1096 0.802   0.525
#> ATC:pam     4 0.630           0.524       0.768         0.1629 0.795   0.539
#> SD:hclust   4 0.314           0.613       0.755         0.1908 0.821   0.679
#> CV:hclust   4 0.293           0.719       0.830         0.0876 0.996   0.994
#> MAD:hclust  4 0.272           0.472       0.704         0.1494 0.851   0.724
#> ATC:hclust  4 0.623           0.640       0.838         0.4679 0.592   0.418
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.500           0.397       0.594         0.0703 0.891   0.612
#> CV:NMF      5 0.486           0.415       0.593         0.0706 0.911   0.684
#> MAD:NMF     5 0.489           0.438       0.635         0.0649 0.876   0.567
#> ATC:NMF     5 0.610           0.550       0.736         0.0667 0.881   0.596
#> SD:skmeans  5 0.564           0.510       0.704         0.0645 0.948   0.806
#> CV:skmeans  5 0.476           0.430       0.640         0.0667 0.950   0.816
#> MAD:skmeans 5 0.542           0.480       0.663         0.0625 0.964   0.863
#> ATC:skmeans 5 0.846           0.834       0.882         0.0509 0.955   0.829
#> SD:mclust   5 0.616           0.591       0.744         0.1111 0.827   0.504
#> CV:mclust   5 0.594           0.595       0.725         0.0855 0.873   0.604
#> MAD:mclust  5 0.689           0.709       0.817         0.0797 0.833   0.488
#> ATC:mclust  5 0.662           0.756       0.799         0.0667 0.826   0.520
#> SD:kmeans   5 0.640           0.685       0.759         0.0715 0.790   0.400
#> CV:kmeans   5 0.644           0.714       0.767         0.0704 0.810   0.436
#> MAD:kmeans  5 0.605           0.586       0.728         0.0729 0.804   0.480
#> ATC:kmeans  5 0.764           0.767       0.841         0.0879 0.941   0.810
#> SD:pam      5 0.510           0.587       0.727         0.0453 0.967   0.887
#> CV:pam      5 0.409           0.446       0.693         0.0424 0.924   0.748
#> MAD:pam     5 0.555           0.589       0.741         0.0721 0.893   0.661
#> ATC:pam     5 0.786           0.836       0.845         0.0958 0.850   0.541
#> SD:hclust   5 0.351           0.568       0.754         0.0591 0.956   0.898
#> CV:hclust   5 0.278           0.728       0.805         0.0639 1.000   0.999
#> MAD:hclust  5 0.330           0.463       0.679         0.0686 0.888   0.750
#> ATC:hclust  5 0.631           0.720       0.834         0.0741 0.867   0.669
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.529           0.366       0.588         0.0450 0.854   0.439
#> CV:NMF      6 0.522           0.330       0.526         0.0452 0.858   0.466
#> MAD:NMF     6 0.537           0.340       0.575         0.0408 0.919   0.651
#> ATC:NMF     6 0.653           0.481       0.708         0.0346 0.873   0.543
#> SD:skmeans  6 0.588           0.437       0.637         0.0410 0.926   0.710
#> CV:skmeans  6 0.499           0.298       0.568         0.0406 0.910   0.652
#> MAD:skmeans 6 0.570           0.356       0.609         0.0416 0.938   0.758
#> ATC:skmeans 6 0.846           0.831       0.880         0.0452 0.932   0.711
#> SD:mclust   6 0.693           0.608       0.792         0.0429 0.937   0.732
#> CV:mclust   6 0.719           0.656       0.798         0.0510 0.903   0.616
#> MAD:mclust  6 0.767           0.761       0.862         0.0440 0.899   0.585
#> ATC:mclust  6 0.865           0.763       0.871         0.0636 0.929   0.696
#> SD:kmeans   6 0.691           0.729       0.761         0.0408 0.933   0.714
#> CV:kmeans   6 0.674           0.617       0.742         0.0379 0.982   0.922
#> MAD:kmeans  6 0.682           0.756       0.766         0.0431 0.925   0.665
#> ATC:kmeans  6 0.748           0.682       0.779         0.0525 0.910   0.657
#> SD:pam      6 0.543           0.584       0.729         0.0339 0.956   0.834
#> CV:pam      6 0.430           0.410       0.689         0.0164 0.961   0.851
#> MAD:pam     6 0.602           0.603       0.753         0.0567 0.899   0.608
#> ATC:pam     6 0.917           0.909       0.951         0.0660 0.897   0.585
#> SD:hclust   6 0.384           0.536       0.735         0.0459 0.976   0.942
#> CV:hclust   6 0.244           0.583       0.730         0.1516 0.984   0.974
#> MAD:hclust  6 0.340           0.373       0.652         0.0437 0.933   0.826
#> ATC:hclust  6 0.736           0.700       0.851         0.0796 0.974   0.911

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Test to known annotations

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res_list, k = 2)
#>               n time(p) gender(p) k
#> SD:NMF      121   0.546    0.1026 2
#> CV:NMF      120   0.448    0.1971 2
#> MAD:NMF     120   0.499    0.1533 2
#> ATC:NMF     125   0.492    0.3276 2
#> SD:skmeans  120   0.638    0.0970 2
#> CV:skmeans  122   0.721    0.2038 2
#> MAD:skmeans 121   0.673    0.1794 2
#> ATC:skmeans 125   0.293    0.3989 2
#> SD:mclust   110   0.906    0.0302 2
#> CV:mclust   111   0.752    0.0301 2
#> MAD:mclust  123   0.763    0.2784 2
#> ATC:mclust  115   0.930    0.2946 2
#> SD:kmeans   118   0.689    0.1305 2
#> CV:kmeans   120   0.576    0.2411 2
#> MAD:kmeans  121   0.547    0.2171 2
#> ATC:kmeans  125   0.293    0.3989 2
#> SD:pam      105   0.644    0.0879 2
#> CV:pam      104   0.686    0.0719 2
#> MAD:pam     119   0.556    0.3469 2
#> ATC:pam     124   0.453    0.3588 2
#> SD:hclust    94   0.700    0.0792 2
#> CV:hclust   119   0.137    0.5027 2
#> MAD:hclust  101   0.677    0.2496 2
#> ATC:hclust  111   0.674    0.5267 2
test_to_known_factors(res_list, k = 3)
#>               n time(p) gender(p) k
#> SD:NMF      104  0.0518    0.1992 3
#> CV:NMF      102  0.1567    0.1823 3
#> MAD:NMF      98  0.2045    0.2603 3
#> ATC:NMF     120  0.2448    0.2936 3
#> SD:skmeans  112  0.1510    0.1909 3
#> CV:skmeans  112  0.1764    0.1834 3
#> MAD:skmeans 113  0.1404    0.2092 3
#> ATC:skmeans 123  0.5633    0.5130 3
#> SD:mclust   113  0.9083    0.2790 3
#> CV:mclust   121  0.6023    0.3802 3
#> MAD:mclust  114  0.4906    0.4258 3
#> ATC:mclust  120  0.8083    0.3113 3
#> SD:kmeans    89  0.2448    0.5242 3
#> CV:kmeans    96  0.3814    0.2801 3
#> MAD:kmeans   97  0.2623    0.3932 3
#> ATC:kmeans  105  0.3997    0.4716 3
#> SD:pam      107  0.1294    0.0942 3
#> CV:pam       77  0.4096    0.0646 3
#> MAD:pam     110  0.1807    0.2567 3
#> ATC:pam     124  0.2331    0.4462 3
#> SD:hclust    80  0.2040    0.5221 3
#> CV:hclust   117  0.1782    0.8475 3
#> MAD:hclust  103  0.4078    0.2960 3
#> ATC:hclust  118  0.9519    0.7696 3
test_to_known_factors(res_list, k = 4)
#>               n time(p) gender(p) k
#> SD:NMF       79   0.241   0.01190 4
#> CV:NMF       76   0.239   0.00206 4
#> MAD:NMF      77   0.466   0.07586 4
#> ATC:NMF     109   0.876   0.52516 4
#> SD:skmeans   95   0.169   0.04630 4
#> CV:skmeans   91   0.507   0.09200 4
#> MAD:skmeans  99   0.134   0.05379 4
#> ATC:skmeans 124   0.294   0.64495 4
#> SD:mclust   102   0.376   0.05727 4
#> CV:mclust    93   0.498   0.00556 4
#> MAD:mclust   89   0.652   0.08974 4
#> ATC:mclust   34   0.338   1.00000 4
#> SD:kmeans    80   0.667   0.18374 4
#> CV:kmeans    78   0.187   0.78325 4
#> MAD:kmeans   72   0.256   0.15128 4
#> ATC:kmeans  121   0.642   0.74359 4
#> SD:pam       98   0.687   0.05038 4
#> CV:pam       73   0.625   0.07936 4
#> MAD:pam      92   0.859   0.34036 4
#> ATC:pam      75   0.469   0.74253 4
#> SD:hclust    93   0.114   0.48734 4
#> CV:hclust   108   0.380   0.50655 4
#> MAD:hclust   61   0.266   0.71634 4
#> ATC:hclust  102   0.611   0.32001 4
test_to_known_factors(res_list, k = 5)
#>               n time(p) gender(p) k
#> SD:NMF       43  0.0668   0.01866 5
#> CV:NMF       58  0.0477   0.02672 5
#> MAD:NMF      64  0.2377   0.01374 5
#> ATC:NMF      84  0.9260   0.21578 5
#> SD:skmeans   83  0.1991   0.09821 5
#> CV:skmeans   71  0.1694   0.00467 5
#> MAD:skmeans  78  0.0944   0.00765 5
#> ATC:skmeans 121  0.8769   0.60552 5
#> SD:mclust    93  0.5043   0.00652 5
#> CV:mclust    99  0.5968   0.00150 5
#> MAD:mclust  108  0.4432   0.01020 5
#> ATC:mclust  118  0.9065   0.45013 5
#> SD:kmeans   114  0.2322   0.42993 5
#> CV:kmeans   116  0.2570   0.42183 5
#> MAD:kmeans   95  0.1024   0.05309 5
#> ATC:kmeans  118  0.7387   0.75550 5
#> SD:pam       87  0.7191   0.00707 5
#> CV:pam       65  0.5524   0.00445 5
#> MAD:pam      88  0.9433   0.41714 5
#> ATC:pam     121  0.7745   0.17372 5
#> SD:hclust    90  0.1284   0.63151 5
#> CV:hclust   114  0.1640   0.48751 5
#> MAD:hclust   59  0.3599   0.38870 5
#> ATC:hclust  111  0.7935   0.76683 5
test_to_known_factors(res_list, k = 6)
#>               n time(p) gender(p) k
#> SD:NMF       30   0.437  0.050486 6
#> CV:NMF       26   0.629  0.000995 6
#> MAD:NMF      25   0.148  0.587937 6
#> ATC:NMF      76   0.656  0.892431 6
#> SD:skmeans   60   0.242  0.003523 6
#> CV:skmeans   33   0.928  0.042775 6
#> MAD:skmeans  45   0.759  0.011744 6
#> ATC:skmeans 121   0.892  0.497505 6
#> SD:mclust    94   0.452  0.032776 6
#> CV:mclust   100   0.865  0.056156 6
#> MAD:mclust  116   0.591  0.062501 6
#> ATC:mclust  116   0.948  0.419156 6
#> SD:kmeans   111   0.771  0.191327 6
#> CV:kmeans    97   0.441  0.770123 6
#> MAD:kmeans  117   0.464  0.142030 6
#> ATC:kmeans  108   0.907  0.452331 6
#> SD:pam       82   0.569  0.011335 6
#> CV:pam       50   0.664  0.014028 6
#> MAD:pam      92   0.923  0.234720 6
#> ATC:pam     122   0.793  0.035909 6
#> SD:hclust    89   0.232  0.677866 6
#> CV:hclust    99   0.239  0.271173 6
#> MAD:hclust   38   0.215  0.349859 6
#> ATC:hclust   98   0.805  0.683388 6

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 125 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.154           0.550       0.708         0.3881 0.513   0.513
#> 3 3 0.135           0.531       0.725         0.3193 0.620   0.460
#> 4 4 0.314           0.613       0.755         0.1908 0.821   0.679
#> 5 5 0.351           0.568       0.754         0.0591 0.956   0.898
#> 6 6 0.384           0.536       0.735         0.0459 0.976   0.942

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM601752     2  0.8813    0.69077 0.300 0.700
#> GSM601782     1  0.0672    0.66860 0.992 0.008
#> GSM601792     1  0.9661    0.35746 0.608 0.392
#> GSM601797     1  0.9909    0.16298 0.556 0.444
#> GSM601827     1  0.0000    0.66850 1.000 0.000
#> GSM601837     2  0.0000    0.58684 0.000 1.000
#> GSM601842     2  0.9522    0.60259 0.372 0.628
#> GSM601857     1  0.7950    0.58306 0.760 0.240
#> GSM601867     2  1.0000    0.14447 0.500 0.500
#> GSM601747     1  0.8713    0.53643 0.708 0.292
#> GSM601757     1  0.6247    0.64018 0.844 0.156
#> GSM601762     2  0.9087    0.67297 0.324 0.676
#> GSM601767     2  0.9044    0.67655 0.320 0.680
#> GSM601772     2  0.7883    0.69574 0.236 0.764
#> GSM601777     1  0.9866    0.21492 0.568 0.432
#> GSM601787     2  0.9866    0.39324 0.432 0.568
#> GSM601802     2  0.8763    0.69241 0.296 0.704
#> GSM601807     1  0.6438    0.62162 0.836 0.164
#> GSM601812     1  0.0000    0.66850 1.000 0.000
#> GSM601817     1  0.0376    0.66961 0.996 0.004
#> GSM601822     1  0.9710    0.33340 0.600 0.400
#> GSM601832     2  0.9635    0.57063 0.388 0.612
#> GSM601847     1  0.9732    0.31236 0.596 0.404
#> GSM601852     1  0.0376    0.66956 0.996 0.004
#> GSM601862     1  0.0000    0.66850 1.000 0.000
#> GSM601753     2  0.8813    0.69077 0.300 0.700
#> GSM601783     1  0.0376    0.66956 0.996 0.004
#> GSM601793     1  0.9661    0.35746 0.608 0.392
#> GSM601798     2  0.9427    0.61459 0.360 0.640
#> GSM601828     1  0.0000    0.66850 1.000 0.000
#> GSM601838     2  0.0000    0.58684 0.000 1.000
#> GSM601843     2  0.9552    0.59420 0.376 0.624
#> GSM601858     1  0.9491    0.31958 0.632 0.368
#> GSM601868     1  0.0672    0.66810 0.992 0.008
#> GSM601748     1  0.0000    0.66850 1.000 0.000
#> GSM601758     1  0.0000    0.66850 1.000 0.000
#> GSM601763     1  0.9909    0.08921 0.556 0.444
#> GSM601768     2  0.9087    0.67266 0.324 0.676
#> GSM601773     2  0.7815    0.69514 0.232 0.768
#> GSM601778     1  0.9850    0.23235 0.572 0.428
#> GSM601788     2  0.9710    0.49074 0.400 0.600
#> GSM601803     2  0.8661    0.69583 0.288 0.712
#> GSM601808     1  0.0000    0.66850 1.000 0.000
#> GSM601813     1  0.0000    0.66850 1.000 0.000
#> GSM601818     1  0.0376    0.66961 0.996 0.004
#> GSM601823     1  0.9209    0.48201 0.664 0.336
#> GSM601833     2  0.9635    0.57063 0.388 0.612
#> GSM601848     1  0.8861    0.53414 0.696 0.304
#> GSM601853     1  0.0376    0.66723 0.996 0.004
#> GSM601863     1  0.0000    0.66850 1.000 0.000
#> GSM601754     2  0.9087    0.67369 0.324 0.676
#> GSM601784     2  0.8016    0.70075 0.244 0.756
#> GSM601794     1  0.9661    0.35609 0.608 0.392
#> GSM601799     2  0.9580    0.59439 0.380 0.620
#> GSM601829     1  0.3431    0.66518 0.936 0.064
#> GSM601839     2  0.0000    0.58684 0.000 1.000
#> GSM601844     1  0.8608    0.54996 0.716 0.284
#> GSM601859     2  0.9044    0.65258 0.320 0.680
#> GSM601869     1  0.0672    0.66810 0.992 0.008
#> GSM601749     1  0.0000    0.66850 1.000 0.000
#> GSM601759     1  0.0000    0.66850 1.000 0.000
#> GSM601764     1  0.9209    0.46806 0.664 0.336
#> GSM601769     2  0.0000    0.58684 0.000 1.000
#> GSM601774     2  0.4690    0.63938 0.100 0.900
#> GSM601779     1  0.8713    0.54783 0.708 0.292
#> GSM601789     2  0.8661    0.63865 0.288 0.712
#> GSM601804     2  0.9209    0.65046 0.336 0.664
#> GSM601809     1  0.6801    0.63413 0.820 0.180
#> GSM601814     2  0.0000    0.58684 0.000 1.000
#> GSM601819     1  0.0000    0.66850 1.000 0.000
#> GSM601824     1  0.9209    0.48201 0.664 0.336
#> GSM601834     2  0.9608    0.57831 0.384 0.616
#> GSM601849     1  0.8955    0.52183 0.688 0.312
#> GSM601854     1  0.0000    0.66850 1.000 0.000
#> GSM601864     2  0.7376    0.55748 0.208 0.792
#> GSM601755     2  0.8813    0.69077 0.300 0.700
#> GSM601785     2  0.8386    0.70110 0.268 0.732
#> GSM601795     1  0.9661    0.35609 0.608 0.392
#> GSM601800     2  0.9044    0.67477 0.320 0.680
#> GSM601830     1  0.4161    0.65538 0.916 0.084
#> GSM601840     1  0.9580    0.33836 0.620 0.380
#> GSM601845     2  1.0000    0.18539 0.496 0.504
#> GSM601860     2  0.9044    0.65258 0.320 0.680
#> GSM601870     1  0.6973    0.57796 0.812 0.188
#> GSM601750     1  0.0000    0.66850 1.000 0.000
#> GSM601760     1  0.0000    0.66850 1.000 0.000
#> GSM601765     2  0.9850    0.46452 0.428 0.572
#> GSM601770     2  0.9044    0.67655 0.320 0.680
#> GSM601775     1  0.9909    0.08688 0.556 0.444
#> GSM601780     1  0.8713    0.54783 0.708 0.292
#> GSM601790     2  0.1184    0.59661 0.016 0.984
#> GSM601805     2  0.8713    0.69395 0.292 0.708
#> GSM601810     1  0.6712    0.63580 0.824 0.176
#> GSM601815     2  0.0000    0.58684 0.000 1.000
#> GSM601820     1  0.0000    0.66850 1.000 0.000
#> GSM601825     2  0.8443    0.70315 0.272 0.728
#> GSM601835     2  0.9815    0.48204 0.420 0.580
#> GSM601850     1  0.9635    0.36064 0.612 0.388
#> GSM601855     1  0.4022    0.65716 0.920 0.080
#> GSM601865     2  0.7219    0.56281 0.200 0.800
#> GSM601756     2  0.8813    0.69077 0.300 0.700
#> GSM601786     2  0.2043    0.59354 0.032 0.968
#> GSM601796     1  0.9661    0.35609 0.608 0.392
#> GSM601801     2  0.9460    0.60636 0.364 0.636
#> GSM601831     1  0.0000    0.66850 1.000 0.000
#> GSM601841     1  0.6801    0.63620 0.820 0.180
#> GSM601846     1  0.9552    0.39752 0.624 0.376
#> GSM601861     2  0.0000    0.58684 0.000 1.000
#> GSM601871     2  0.9983    0.26731 0.476 0.524
#> GSM601751     1  0.9815    0.17945 0.580 0.420
#> GSM601761     1  0.6048    0.64842 0.852 0.148
#> GSM601766     1  1.0000   -0.18661 0.504 0.496
#> GSM601771     1  0.9944   -0.00484 0.544 0.456
#> GSM601776     1  0.9000    0.51647 0.684 0.316
#> GSM601781     1  0.9866    0.21492 0.568 0.432
#> GSM601791     1  0.8386    0.57254 0.732 0.268
#> GSM601806     2  0.8661    0.69583 0.288 0.712
#> GSM601811     1  0.6801    0.63413 0.820 0.180
#> GSM601816     1  0.9000    0.51677 0.684 0.316
#> GSM601821     2  0.0000    0.58684 0.000 1.000
#> GSM601826     1  0.8861    0.53306 0.696 0.304
#> GSM601836     1  0.9248    0.46379 0.660 0.340
#> GSM601851     1  0.8763    0.54331 0.704 0.296
#> GSM601856     1  0.0376    0.66723 0.996 0.004
#> GSM601866     1  0.0000    0.66850 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM601752     2   0.326     0.6221 0.048 0.912 0.040
#> GSM601782     3   0.304     0.7993 0.000 0.104 0.896
#> GSM601792     2   0.701     0.4412 0.036 0.640 0.324
#> GSM601797     2   0.670     0.5532 0.052 0.712 0.236
#> GSM601827     3   0.393     0.7874 0.028 0.092 0.880
#> GSM601837     2   0.606     0.2610 0.384 0.616 0.000
#> GSM601842     2   0.507     0.6476 0.052 0.832 0.116
#> GSM601857     3   0.795     0.3147 0.064 0.388 0.548
#> GSM601867     2   0.856     0.5176 0.156 0.600 0.244
#> GSM601747     3   0.704     0.1401 0.020 0.448 0.532
#> GSM601757     3   0.670     0.6267 0.044 0.256 0.700
#> GSM601762     2   0.481     0.6428 0.060 0.848 0.092
#> GSM601767     2   0.492     0.6351 0.072 0.844 0.084
#> GSM601772     2   0.504     0.5887 0.120 0.832 0.048
#> GSM601777     2   0.689     0.5295 0.052 0.692 0.256
#> GSM601787     2   0.872     0.4469 0.252 0.584 0.164
#> GSM601802     2   0.315     0.6195 0.048 0.916 0.036
#> GSM601807     1   0.751     0.8799 0.636 0.300 0.064
#> GSM601812     3   0.311     0.7991 0.004 0.096 0.900
#> GSM601817     3   0.263     0.8004 0.000 0.084 0.916
#> GSM601822     2   0.700     0.4784 0.044 0.664 0.292
#> GSM601832     2   0.496     0.6482 0.040 0.832 0.128
#> GSM601847     2   0.700     0.5006 0.048 0.672 0.280
#> GSM601852     3   0.344     0.7988 0.016 0.088 0.896
#> GSM601862     3   0.364     0.7962 0.024 0.084 0.892
#> GSM601753     2   0.326     0.6221 0.048 0.912 0.040
#> GSM601783     3   0.295     0.8000 0.004 0.088 0.908
#> GSM601793     2   0.701     0.4412 0.036 0.640 0.324
#> GSM601798     2   0.438     0.6347 0.064 0.868 0.068
#> GSM601828     3   0.359     0.7853 0.028 0.076 0.896
#> GSM601838     2   0.606     0.2643 0.384 0.616 0.000
#> GSM601843     2   0.524     0.6461 0.056 0.824 0.120
#> GSM601858     2   0.817     0.3085 0.080 0.552 0.368
#> GSM601868     3   0.466     0.7770 0.032 0.124 0.844
#> GSM601748     3   0.254     0.7983 0.000 0.080 0.920
#> GSM601758     3   0.245     0.7972 0.000 0.076 0.924
#> GSM601763     2   0.662     0.5048 0.024 0.660 0.316
#> GSM601768     2   0.500     0.6369 0.072 0.840 0.088
#> GSM601773     2   0.493     0.5853 0.120 0.836 0.044
#> GSM601778     2   0.689     0.5274 0.052 0.692 0.256
#> GSM601788     2   0.798     0.5608 0.176 0.660 0.164
#> GSM601803     2   0.336     0.6178 0.056 0.908 0.036
#> GSM601808     3   0.624     0.6839 0.100 0.124 0.776
#> GSM601813     3   0.319     0.7989 0.004 0.100 0.896
#> GSM601818     3   0.263     0.8010 0.000 0.084 0.916
#> GSM601823     2   0.756     0.2758 0.044 0.556 0.400
#> GSM601833     2   0.496     0.6482 0.040 0.832 0.128
#> GSM601848     2   0.765     0.1216 0.044 0.516 0.440
#> GSM601853     3   0.425     0.7703 0.048 0.080 0.872
#> GSM601863     3   0.364     0.7962 0.024 0.084 0.892
#> GSM601754     2   0.365     0.6393 0.036 0.896 0.068
#> GSM601784     2   0.482     0.6010 0.108 0.844 0.048
#> GSM601794     2   0.691     0.4437 0.032 0.644 0.324
#> GSM601799     2   0.486     0.6483 0.044 0.840 0.116
#> GSM601829     3   0.536     0.7323 0.020 0.196 0.784
#> GSM601839     2   0.608     0.2561 0.388 0.612 0.000
#> GSM601844     3   0.700     0.1823 0.020 0.428 0.552
#> GSM601859     2   0.685     0.6242 0.120 0.740 0.140
#> GSM601869     3   0.466     0.7770 0.032 0.124 0.844
#> GSM601749     3   0.254     0.7982 0.000 0.080 0.920
#> GSM601759     3   0.245     0.7972 0.000 0.076 0.924
#> GSM601764     2   0.707     0.0718 0.020 0.500 0.480
#> GSM601769     2   0.601     0.2805 0.372 0.628 0.000
#> GSM601774     2   0.581     0.4236 0.264 0.724 0.012
#> GSM601779     3   0.747     0.1030 0.036 0.448 0.516
#> GSM601789     2   0.784     0.5407 0.220 0.660 0.120
#> GSM601804     2   0.425     0.6355 0.048 0.872 0.080
#> GSM601809     3   0.782     0.4710 0.072 0.324 0.604
#> GSM601814     2   0.601     0.2805 0.372 0.628 0.000
#> GSM601819     3   0.245     0.7972 0.000 0.076 0.924
#> GSM601824     2   0.756     0.2758 0.044 0.556 0.400
#> GSM601834     2   0.507     0.6486 0.044 0.828 0.128
#> GSM601849     2   0.753     0.1824 0.040 0.532 0.428
#> GSM601854     3   0.318     0.7898 0.016 0.076 0.908
#> GSM601864     2   0.676    -0.0202 0.436 0.552 0.012
#> GSM601755     2   0.326     0.6221 0.048 0.912 0.040
#> GSM601785     2   0.463     0.6156 0.088 0.856 0.056
#> GSM601795     2   0.691     0.4437 0.032 0.644 0.324
#> GSM601800     2   0.399     0.6348 0.052 0.884 0.064
#> GSM601830     1   0.864     0.9092 0.596 0.236 0.168
#> GSM601840     2   0.694     0.2955 0.020 0.576 0.404
#> GSM601845     2   0.646     0.6017 0.044 0.724 0.232
#> GSM601860     2   0.685     0.6242 0.120 0.740 0.140
#> GSM601870     1   0.839     0.8861 0.584 0.304 0.112
#> GSM601750     3   0.245     0.7972 0.000 0.076 0.924
#> GSM601760     3   0.254     0.7988 0.000 0.080 0.920
#> GSM601765     2   0.547     0.6462 0.040 0.800 0.160
#> GSM601770     2   0.492     0.6351 0.072 0.844 0.084
#> GSM601775     2   0.623     0.5105 0.012 0.672 0.316
#> GSM601780     3   0.747     0.1030 0.036 0.448 0.516
#> GSM601790     2   0.597     0.2902 0.364 0.636 0.000
#> GSM601805     2   0.325     0.6183 0.052 0.912 0.036
#> GSM601810     3   0.766     0.4793 0.064 0.324 0.612
#> GSM601815     2   0.601     0.2805 0.372 0.628 0.000
#> GSM601820     3   0.245     0.7972 0.000 0.076 0.924
#> GSM601825     2   0.432     0.6141 0.088 0.868 0.044
#> GSM601835     2   0.539     0.6466 0.044 0.808 0.148
#> GSM601850     2   0.715     0.4735 0.048 0.652 0.300
#> GSM601855     1   0.856     0.9079 0.604 0.232 0.164
#> GSM601865     2   0.679    -0.0114 0.448 0.540 0.012
#> GSM601756     2   0.326     0.6221 0.048 0.912 0.040
#> GSM601786     2   0.703     0.2983 0.368 0.604 0.028
#> GSM601796     2   0.691     0.4437 0.032 0.644 0.324
#> GSM601801     2   0.448     0.6353 0.064 0.864 0.072
#> GSM601831     3   0.385     0.7943 0.028 0.088 0.884
#> GSM601841     3   0.634     0.5539 0.016 0.312 0.672
#> GSM601846     2   0.879     0.1219 0.268 0.572 0.160
#> GSM601861     2   0.601     0.2805 0.372 0.628 0.000
#> GSM601871     2   0.834     0.0131 0.376 0.536 0.088
#> GSM601751     2   0.631     0.4714 0.012 0.660 0.328
#> GSM601761     3   0.639     0.5883 0.024 0.284 0.692
#> GSM601766     2   0.622     0.5925 0.032 0.728 0.240
#> GSM601771     2   0.674     0.5193 0.032 0.668 0.300
#> GSM601776     3   0.730    -0.0312 0.028 0.484 0.488
#> GSM601781     2   0.689     0.5295 0.052 0.692 0.256
#> GSM601791     3   0.743     0.1952 0.036 0.424 0.540
#> GSM601806     2   0.336     0.6178 0.056 0.908 0.036
#> GSM601811     3   0.782     0.4710 0.072 0.324 0.604
#> GSM601816     2   0.755     0.1586 0.040 0.524 0.436
#> GSM601821     2   0.601     0.2805 0.372 0.628 0.000
#> GSM601826     2   0.762     0.1798 0.044 0.532 0.424
#> GSM601836     2   0.705     0.1415 0.020 0.524 0.456
#> GSM601851     2   0.749     0.0425 0.036 0.496 0.468
#> GSM601856     3   0.442     0.7674 0.048 0.088 0.864
#> GSM601866     3   0.254     0.7983 0.000 0.080 0.920

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM601752     4  0.2921     0.5526 0.000 0.140 0.000 0.860
#> GSM601782     1  0.2231     0.8354 0.932 0.012 0.012 0.044
#> GSM601792     4  0.5120     0.6428 0.196 0.044 0.008 0.752
#> GSM601797     4  0.4272     0.6680 0.108 0.048 0.012 0.832
#> GSM601827     1  0.3840     0.7974 0.860 0.012 0.076 0.052
#> GSM601837     2  0.3982     0.8968 0.000 0.776 0.004 0.220
#> GSM601842     4  0.4565     0.6165 0.064 0.140 0.000 0.796
#> GSM601857     1  0.7156     0.0539 0.512 0.052 0.040 0.396
#> GSM601867     4  0.8723     0.4838 0.196 0.192 0.100 0.512
#> GSM601747     1  0.5859    -0.1439 0.504 0.024 0.004 0.468
#> GSM601757     1  0.5851     0.5835 0.704 0.044 0.024 0.228
#> GSM601762     4  0.4761     0.5625 0.044 0.192 0.000 0.764
#> GSM601767     4  0.5041     0.4950 0.040 0.232 0.000 0.728
#> GSM601772     4  0.5386     0.2379 0.024 0.344 0.000 0.632
#> GSM601777     4  0.4305     0.6703 0.136 0.044 0.004 0.816
#> GSM601787     4  0.8705     0.2908 0.112 0.292 0.116 0.480
#> GSM601802     4  0.2921     0.5526 0.000 0.140 0.000 0.860
#> GSM601807     3  0.6381     0.7873 0.012 0.164 0.684 0.140
#> GSM601812     1  0.1917     0.8398 0.944 0.008 0.012 0.036
#> GSM601817     1  0.1339     0.8408 0.964 0.008 0.004 0.024
#> GSM601822     4  0.4604     0.6583 0.176 0.036 0.004 0.784
#> GSM601832     4  0.4775     0.6253 0.076 0.140 0.000 0.784
#> GSM601847     4  0.4604     0.6703 0.168 0.040 0.004 0.788
#> GSM601852     1  0.1767     0.8383 0.944 0.000 0.012 0.044
#> GSM601862     1  0.2007     0.8363 0.940 0.004 0.020 0.036
#> GSM601753     4  0.2921     0.5524 0.000 0.140 0.000 0.860
#> GSM601783     1  0.1584     0.8402 0.952 0.012 0.000 0.036
#> GSM601793     4  0.5120     0.6428 0.196 0.044 0.008 0.752
#> GSM601798     4  0.2983     0.6011 0.008 0.108 0.004 0.880
#> GSM601828     1  0.2632     0.8219 0.916 0.008 0.048 0.028
#> GSM601838     2  0.3764     0.8947 0.000 0.784 0.000 0.216
#> GSM601843     4  0.4696     0.6177 0.064 0.136 0.004 0.796
#> GSM601858     4  0.7550     0.4713 0.328 0.092 0.040 0.540
#> GSM601868     1  0.3164     0.8133 0.884 0.000 0.052 0.064
#> GSM601748     1  0.1114     0.8380 0.972 0.008 0.004 0.016
#> GSM601758     1  0.0927     0.8381 0.976 0.008 0.000 0.016
#> GSM601763     4  0.5478     0.6560 0.248 0.056 0.000 0.696
#> GSM601768     4  0.5123     0.5014 0.044 0.232 0.000 0.724
#> GSM601773     4  0.5289     0.2271 0.020 0.344 0.000 0.636
#> GSM601778     4  0.4305     0.6696 0.136 0.044 0.004 0.816
#> GSM601788     4  0.7874     0.4430 0.112 0.268 0.060 0.560
#> GSM601803     4  0.3074     0.5422 0.000 0.152 0.000 0.848
#> GSM601808     1  0.5539     0.6887 0.764 0.048 0.144 0.044
#> GSM601813     1  0.2010     0.8394 0.940 0.008 0.012 0.040
#> GSM601818     1  0.1388     0.8421 0.960 0.012 0.000 0.028
#> GSM601823     4  0.5498     0.5556 0.312 0.028 0.004 0.656
#> GSM601833     4  0.4775     0.6253 0.076 0.140 0.000 0.784
#> GSM601848     4  0.5443     0.4575 0.364 0.016 0.004 0.616
#> GSM601853     1  0.2966     0.8138 0.896 0.008 0.076 0.020
#> GSM601863     1  0.2007     0.8363 0.940 0.004 0.020 0.036
#> GSM601754     4  0.3659     0.5870 0.024 0.136 0.000 0.840
#> GSM601784     4  0.5252     0.2665 0.020 0.336 0.000 0.644
#> GSM601794     4  0.5075     0.6431 0.200 0.040 0.008 0.752
#> GSM601799     4  0.4094     0.6216 0.056 0.116 0.000 0.828
#> GSM601829     1  0.5465     0.6986 0.744 0.012 0.064 0.180
#> GSM601839     2  0.3945     0.8945 0.000 0.780 0.004 0.216
#> GSM601844     4  0.5816     0.1987 0.480 0.012 0.012 0.496
#> GSM601859     4  0.5998     0.5191 0.092 0.240 0.000 0.668
#> GSM601869     1  0.3164     0.8133 0.884 0.000 0.052 0.064
#> GSM601749     1  0.1174     0.8389 0.968 0.012 0.000 0.020
#> GSM601759     1  0.0927     0.8381 0.976 0.008 0.000 0.016
#> GSM601764     4  0.5775     0.4243 0.408 0.032 0.000 0.560
#> GSM601769     2  0.3873     0.9026 0.000 0.772 0.000 0.228
#> GSM601774     2  0.4898     0.6045 0.000 0.584 0.000 0.416
#> GSM601779     4  0.5366     0.3111 0.440 0.012 0.000 0.548
#> GSM601789     4  0.7338     0.2513 0.088 0.352 0.028 0.532
#> GSM601804     4  0.3749     0.5885 0.032 0.128 0.000 0.840
#> GSM601809     1  0.7691     0.3864 0.552 0.044 0.108 0.296
#> GSM601814     2  0.3873     0.9026 0.000 0.772 0.000 0.228
#> GSM601819     1  0.1059     0.8376 0.972 0.012 0.000 0.016
#> GSM601824     4  0.5498     0.5556 0.312 0.028 0.004 0.656
#> GSM601834     4  0.4824     0.6243 0.076 0.144 0.000 0.780
#> GSM601849     4  0.5395     0.4899 0.352 0.016 0.004 0.628
#> GSM601854     1  0.1811     0.8321 0.948 0.004 0.028 0.020
#> GSM601864     2  0.6991     0.5676 0.000 0.580 0.188 0.232
#> GSM601755     4  0.2921     0.5526 0.000 0.140 0.000 0.860
#> GSM601785     4  0.5184     0.3471 0.024 0.304 0.000 0.672
#> GSM601795     4  0.5075     0.6431 0.200 0.040 0.008 0.752
#> GSM601800     4  0.3443     0.5780 0.016 0.136 0.000 0.848
#> GSM601830     3  0.1543     0.8476 0.008 0.004 0.956 0.032
#> GSM601840     4  0.6203     0.5010 0.356 0.040 0.012 0.592
#> GSM601845     4  0.5124     0.6677 0.160 0.072 0.004 0.764
#> GSM601860     4  0.5998     0.5191 0.092 0.240 0.000 0.668
#> GSM601870     3  0.4898     0.8068 0.000 0.104 0.780 0.116
#> GSM601750     1  0.1059     0.8376 0.972 0.012 0.000 0.016
#> GSM601760     1  0.1151     0.8406 0.968 0.008 0.000 0.024
#> GSM601765     4  0.4727     0.6484 0.100 0.108 0.000 0.792
#> GSM601770     4  0.5041     0.4950 0.040 0.232 0.000 0.728
#> GSM601775     4  0.5249     0.6554 0.248 0.044 0.000 0.708
#> GSM601780     4  0.5366     0.3111 0.440 0.012 0.000 0.548
#> GSM601790     2  0.4155     0.8893 0.000 0.756 0.004 0.240
#> GSM601805     4  0.3208     0.5473 0.004 0.148 0.000 0.848
#> GSM601810     1  0.7575     0.4076 0.564 0.044 0.100 0.292
#> GSM601815     2  0.3873     0.9026 0.000 0.772 0.000 0.228
#> GSM601820     1  0.1059     0.8376 0.972 0.012 0.000 0.016
#> GSM601825     4  0.4155     0.4494 0.004 0.240 0.000 0.756
#> GSM601835     4  0.4352     0.6449 0.080 0.104 0.000 0.816
#> GSM601850     4  0.4798     0.6537 0.204 0.032 0.004 0.760
#> GSM601855     3  0.1509     0.8385 0.012 0.008 0.960 0.020
#> GSM601865     2  0.6753     0.6370 0.000 0.608 0.164 0.228
#> GSM601756     4  0.2921     0.5526 0.000 0.140 0.000 0.860
#> GSM601786     2  0.4567     0.8702 0.016 0.740 0.000 0.244
#> GSM601796     4  0.5075     0.6431 0.200 0.040 0.008 0.752
#> GSM601801     4  0.2922     0.6024 0.008 0.104 0.004 0.884
#> GSM601831     1  0.2499     0.8295 0.920 0.004 0.044 0.032
#> GSM601841     1  0.5485     0.4401 0.652 0.008 0.020 0.320
#> GSM601846     4  0.6322     0.1892 0.004 0.060 0.360 0.576
#> GSM601861     2  0.3873     0.9026 0.000 0.772 0.000 0.228
#> GSM601871     4  0.8922    -0.1996 0.052 0.300 0.272 0.376
#> GSM601751     4  0.5785     0.6249 0.268 0.048 0.008 0.676
#> GSM601761     1  0.4914     0.4585 0.676 0.012 0.000 0.312
#> GSM601766     4  0.4964     0.6679 0.168 0.068 0.000 0.764
#> GSM601771     4  0.6095     0.6396 0.252 0.072 0.008 0.668
#> GSM601776     4  0.5564     0.3362 0.436 0.020 0.000 0.544
#> GSM601781     4  0.4305     0.6703 0.136 0.044 0.004 0.816
#> GSM601791     4  0.5510     0.2015 0.480 0.016 0.000 0.504
#> GSM601806     4  0.3074     0.5422 0.000 0.152 0.000 0.848
#> GSM601811     1  0.7691     0.3864 0.552 0.044 0.108 0.296
#> GSM601816     4  0.5460     0.4990 0.340 0.028 0.000 0.632
#> GSM601821     2  0.3873     0.9026 0.000 0.772 0.000 0.228
#> GSM601826     4  0.5487     0.5100 0.328 0.024 0.004 0.644
#> GSM601836     4  0.5545     0.4879 0.364 0.020 0.004 0.612
#> GSM601851     4  0.5256     0.4173 0.392 0.012 0.000 0.596
#> GSM601856     1  0.3330     0.8117 0.884 0.012 0.072 0.032
#> GSM601866     1  0.1004     0.8400 0.972 0.000 0.004 0.024

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM601752     2  0.3790    0.54960 0.000 0.724 0.000 0.004 0.272
#> GSM601782     1  0.3282    0.80989 0.860 0.044 0.012 0.084 0.000
#> GSM601792     2  0.3427    0.63358 0.128 0.836 0.008 0.028 0.000
#> GSM601797     2  0.2738    0.64624 0.056 0.900 0.012 0.020 0.012
#> GSM601827     1  0.3727    0.78926 0.848 0.036 0.072 0.040 0.004
#> GSM601837     5  0.1364    0.74107 0.000 0.036 0.000 0.012 0.952
#> GSM601842     2  0.4820    0.59993 0.044 0.708 0.000 0.012 0.236
#> GSM601857     1  0.7304   -0.00835 0.448 0.388 0.024 0.100 0.040
#> GSM601867     2  0.8471    0.31257 0.112 0.468 0.044 0.164 0.212
#> GSM601747     2  0.5403    0.20169 0.476 0.480 0.004 0.004 0.036
#> GSM601757     1  0.5785    0.57954 0.680 0.216 0.016 0.056 0.032
#> GSM601762     2  0.4984    0.54047 0.036 0.648 0.000 0.008 0.308
#> GSM601767     2  0.4986    0.47342 0.032 0.608 0.000 0.004 0.356
#> GSM601772     5  0.4830   -0.23520 0.020 0.488 0.000 0.000 0.492
#> GSM601777     2  0.2740    0.63920 0.064 0.888 0.000 0.044 0.004
#> GSM601787     2  0.8226    0.08715 0.056 0.416 0.036 0.192 0.300
#> GSM601802     2  0.3790    0.54971 0.000 0.724 0.000 0.004 0.272
#> GSM601807     4  0.3154   -0.48614 0.000 0.004 0.148 0.836 0.012
#> GSM601812     1  0.1612    0.83524 0.948 0.024 0.016 0.012 0.000
#> GSM601817     1  0.0854    0.83722 0.976 0.012 0.004 0.008 0.000
#> GSM601822     2  0.2900    0.64118 0.108 0.864 0.000 0.028 0.000
#> GSM601832     2  0.4918    0.60771 0.060 0.704 0.000 0.008 0.228
#> GSM601847     2  0.3101    0.64906 0.100 0.864 0.000 0.024 0.012
#> GSM601852     1  0.1989    0.83402 0.932 0.032 0.016 0.020 0.000
#> GSM601862     1  0.2333    0.82772 0.916 0.028 0.016 0.040 0.000
#> GSM601753     2  0.3790    0.54934 0.000 0.724 0.000 0.004 0.272
#> GSM601783     1  0.1372    0.83610 0.956 0.024 0.004 0.016 0.000
#> GSM601793     2  0.3427    0.63358 0.128 0.836 0.008 0.028 0.000
#> GSM601798     2  0.3456    0.59522 0.000 0.788 0.004 0.004 0.204
#> GSM601828     1  0.2290    0.82163 0.920 0.016 0.044 0.016 0.004
#> GSM601838     5  0.1168    0.73979 0.000 0.032 0.000 0.008 0.960
#> GSM601843     2  0.4946    0.60125 0.044 0.708 0.004 0.012 0.232
#> GSM601858     2  0.7792    0.44444 0.272 0.496 0.020 0.092 0.120
#> GSM601868     1  0.3912    0.79130 0.828 0.036 0.040 0.096 0.000
#> GSM601748     1  0.0740    0.83307 0.980 0.008 0.004 0.008 0.000
#> GSM601758     1  0.0579    0.83431 0.984 0.008 0.000 0.008 0.000
#> GSM601763     2  0.5322    0.64783 0.208 0.688 0.000 0.012 0.092
#> GSM601768     2  0.5057    0.47980 0.036 0.604 0.000 0.004 0.356
#> GSM601773     2  0.4748    0.15937 0.016 0.492 0.000 0.000 0.492
#> GSM601778     2  0.2740    0.63877 0.064 0.888 0.000 0.044 0.004
#> GSM601788     2  0.7384    0.36252 0.068 0.508 0.024 0.084 0.316
#> GSM601803     2  0.3861    0.53901 0.000 0.712 0.000 0.004 0.284
#> GSM601808     1  0.5240    0.66223 0.724 0.028 0.092 0.156 0.000
#> GSM601813     1  0.1673    0.83472 0.944 0.032 0.016 0.008 0.000
#> GSM601818     1  0.0912    0.83780 0.972 0.012 0.000 0.016 0.000
#> GSM601823     2  0.4523    0.59067 0.252 0.712 0.000 0.028 0.008
#> GSM601833     2  0.4918    0.60771 0.060 0.704 0.000 0.008 0.228
#> GSM601848     2  0.4546    0.50601 0.304 0.668 0.000 0.028 0.000
#> GSM601853     1  0.3096    0.80381 0.868 0.008 0.040 0.084 0.000
#> GSM601863     1  0.2333    0.82772 0.916 0.028 0.016 0.040 0.000
#> GSM601754     2  0.4216    0.57599 0.012 0.720 0.000 0.008 0.260
#> GSM601784     2  0.4913    0.17705 0.012 0.496 0.000 0.008 0.484
#> GSM601794     2  0.3474    0.63517 0.132 0.832 0.008 0.028 0.000
#> GSM601799     2  0.4424    0.61263 0.048 0.728 0.000 0.000 0.224
#> GSM601829     1  0.5249    0.67241 0.720 0.176 0.068 0.036 0.000
#> GSM601839     5  0.1281    0.73915 0.000 0.032 0.000 0.012 0.956
#> GSM601844     2  0.5637    0.30765 0.408 0.540 0.012 0.024 0.016
#> GSM601859     2  0.5496    0.49660 0.060 0.592 0.000 0.008 0.340
#> GSM601869     1  0.3912    0.79130 0.828 0.036 0.040 0.096 0.000
#> GSM601749     1  0.0579    0.83582 0.984 0.008 0.000 0.008 0.000
#> GSM601759     1  0.0579    0.83431 0.984 0.008 0.000 0.008 0.000
#> GSM601764     2  0.5396    0.49156 0.344 0.600 0.000 0.016 0.040
#> GSM601769     5  0.0963    0.74598 0.000 0.036 0.000 0.000 0.964
#> GSM601774     5  0.3395    0.51104 0.000 0.236 0.000 0.000 0.764
#> GSM601779     2  0.4403    0.39294 0.384 0.608 0.000 0.008 0.000
#> GSM601789     5  0.6399   -0.22610 0.052 0.448 0.008 0.036 0.456
#> GSM601804     2  0.4197    0.58489 0.028 0.728 0.000 0.000 0.244
#> GSM601809     1  0.7276    0.35312 0.504 0.296 0.064 0.132 0.004
#> GSM601814     5  0.0963    0.74598 0.000 0.036 0.000 0.000 0.964
#> GSM601819     1  0.0566    0.83325 0.984 0.004 0.000 0.012 0.000
#> GSM601824     2  0.4523    0.59067 0.252 0.712 0.000 0.028 0.008
#> GSM601834     2  0.4946    0.60652 0.060 0.700 0.000 0.008 0.232
#> GSM601849     2  0.4360    0.53363 0.300 0.680 0.000 0.020 0.000
#> GSM601854     1  0.1686    0.82890 0.944 0.008 0.028 0.020 0.000
#> GSM601864     5  0.5368    0.28406 0.000 0.048 0.016 0.304 0.632
#> GSM601755     2  0.3790    0.54960 0.000 0.724 0.000 0.004 0.272
#> GSM601785     2  0.4977    0.28426 0.016 0.532 0.000 0.008 0.444
#> GSM601795     2  0.3474    0.63517 0.132 0.832 0.008 0.028 0.000
#> GSM601800     2  0.3844    0.56700 0.004 0.736 0.000 0.004 0.256
#> GSM601830     3  0.0000    0.74623 0.000 0.000 1.000 0.000 0.000
#> GSM601840     2  0.6398    0.53715 0.296 0.584 0.012 0.028 0.080
#> GSM601845     2  0.4999    0.65971 0.104 0.752 0.004 0.020 0.120
#> GSM601860     2  0.5496    0.49660 0.060 0.592 0.000 0.008 0.340
#> GSM601870     3  0.5540    0.40476 0.000 0.012 0.604 0.324 0.060
#> GSM601750     1  0.0671    0.83361 0.980 0.004 0.000 0.016 0.000
#> GSM601760     1  0.0898    0.83570 0.972 0.020 0.000 0.008 0.000
#> GSM601765     2  0.4968    0.63402 0.068 0.724 0.000 0.016 0.192
#> GSM601770     2  0.4986    0.47342 0.032 0.608 0.000 0.004 0.356
#> GSM601775     2  0.4930    0.64256 0.220 0.696 0.000 0.000 0.084
#> GSM601780     2  0.4403    0.39294 0.384 0.608 0.000 0.008 0.000
#> GSM601790     5  0.1740    0.73228 0.000 0.056 0.000 0.012 0.932
#> GSM601805     2  0.3992    0.54483 0.004 0.712 0.000 0.004 0.280
#> GSM601810     1  0.7155    0.36649 0.516 0.296 0.060 0.124 0.004
#> GSM601815     5  0.0963    0.74598 0.000 0.036 0.000 0.000 0.964
#> GSM601820     1  0.0566    0.83325 0.984 0.004 0.000 0.012 0.000
#> GSM601825     2  0.4251    0.41718 0.000 0.624 0.000 0.004 0.372
#> GSM601835     2  0.4587    0.63107 0.052 0.748 0.000 0.012 0.188
#> GSM601850     2  0.3717    0.64451 0.144 0.816 0.000 0.028 0.012
#> GSM601855     3  0.1502    0.74082 0.004 0.000 0.940 0.056 0.000
#> GSM601865     5  0.4930    0.38545 0.000 0.052 0.004 0.268 0.676
#> GSM601756     2  0.3790    0.54960 0.000 0.724 0.000 0.004 0.272
#> GSM601786     5  0.1956    0.70746 0.008 0.076 0.000 0.000 0.916
#> GSM601796     2  0.3474    0.63517 0.132 0.832 0.008 0.028 0.000
#> GSM601801     2  0.3422    0.59669 0.000 0.792 0.004 0.004 0.200
#> GSM601831     1  0.2784    0.81961 0.896 0.012 0.048 0.040 0.004
#> GSM601841     1  0.5835    0.38742 0.592 0.332 0.020 0.048 0.008
#> GSM601846     2  0.6547    0.02466 0.004 0.548 0.324 0.084 0.040
#> GSM601861     5  0.0880    0.74536 0.000 0.032 0.000 0.000 0.968
#> GSM601871     4  0.7872   -0.03541 0.016 0.232 0.044 0.416 0.292
#> GSM601751     2  0.5615    0.61918 0.228 0.664 0.004 0.012 0.092
#> GSM601761     1  0.4497    0.37843 0.632 0.352 0.000 0.016 0.000
#> GSM601766     2  0.4892    0.65766 0.112 0.748 0.000 0.016 0.124
#> GSM601771     2  0.5933    0.62656 0.208 0.648 0.004 0.016 0.124
#> GSM601776     2  0.4994    0.39008 0.396 0.576 0.000 0.016 0.012
#> GSM601781     2  0.2740    0.63920 0.064 0.888 0.000 0.044 0.004
#> GSM601791     2  0.4689    0.28794 0.424 0.560 0.000 0.016 0.000
#> GSM601806     2  0.3861    0.53901 0.000 0.712 0.000 0.004 0.284
#> GSM601811     1  0.7276    0.35312 0.504 0.296 0.064 0.132 0.004
#> GSM601816     2  0.4475    0.54478 0.276 0.692 0.000 0.032 0.000
#> GSM601821     5  0.0880    0.74536 0.000 0.032 0.000 0.000 0.968
#> GSM601826     2  0.4404    0.55459 0.264 0.704 0.000 0.032 0.000
#> GSM601836     2  0.5513    0.54171 0.308 0.628 0.004 0.032 0.028
#> GSM601851     2  0.4339    0.47820 0.336 0.652 0.000 0.012 0.000
#> GSM601856     1  0.3251    0.80555 0.864 0.016 0.040 0.080 0.000
#> GSM601866     1  0.0960    0.83573 0.972 0.016 0.008 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3 p4    p5    p6
#> GSM601752     2  0.3812     0.5373 0.000 0.712 0.000 NA 0.268 0.004
#> GSM601782     1  0.5410     0.5342 0.596 0.064 0.004 NA 0.000 0.028
#> GSM601792     2  0.3103     0.6239 0.064 0.836 0.000 NA 0.000 0.000
#> GSM601797     2  0.2499     0.6377 0.004 0.884 0.004 NA 0.012 0.004
#> GSM601827     1  0.4079     0.7246 0.752 0.024 0.032 NA 0.000 0.000
#> GSM601837     5  0.0820     0.6754 0.000 0.012 0.000 NA 0.972 0.016
#> GSM601842     2  0.4150     0.5781 0.000 0.724 0.000 NA 0.228 0.012
#> GSM601857     2  0.7427     0.0657 0.368 0.396 0.008 NA 0.040 0.056
#> GSM601867     2  0.7969     0.2592 0.036 0.464 0.020 NA 0.196 0.144
#> GSM601747     2  0.5622     0.2952 0.400 0.512 0.004 NA 0.028 0.004
#> GSM601757     1  0.5970     0.4935 0.624 0.236 0.008 NA 0.028 0.028
#> GSM601762     2  0.4347     0.5160 0.000 0.660 0.000 NA 0.304 0.012
#> GSM601767     2  0.4700     0.4376 0.008 0.604 0.000 NA 0.356 0.012
#> GSM601772     5  0.4493    -0.1837 0.000 0.488 0.000 NA 0.488 0.008
#> GSM601777     2  0.2244     0.6285 0.004 0.888 0.000 NA 0.004 0.004
#> GSM601787     2  0.7910     0.0107 0.020 0.404 0.028 NA 0.280 0.188
#> GSM601802     2  0.3919     0.5360 0.000 0.708 0.000 NA 0.268 0.008
#> GSM601807     6  0.1844    -0.3997 0.000 0.000 0.048 NA 0.004 0.924
#> GSM601812     1  0.1829     0.7946 0.928 0.028 0.008 NA 0.000 0.000
#> GSM601817     1  0.1788     0.7958 0.928 0.028 0.004 NA 0.000 0.000
#> GSM601822     2  0.2507     0.6323 0.040 0.884 0.000 NA 0.000 0.004
#> GSM601832     2  0.4229     0.5840 0.004 0.732 0.000 NA 0.216 0.016
#> GSM601847     2  0.2719     0.6399 0.032 0.880 0.000 NA 0.012 0.004
#> GSM601852     1  0.2201     0.7944 0.904 0.036 0.004 NA 0.000 0.000
#> GSM601862     1  0.2859     0.7806 0.868 0.020 0.012 NA 0.000 0.008
#> GSM601753     2  0.3724     0.5403 0.000 0.716 0.000 NA 0.268 0.004
#> GSM601783     1  0.1492     0.7940 0.940 0.036 0.000 NA 0.000 0.000
#> GSM601793     2  0.3103     0.6239 0.064 0.836 0.000 NA 0.000 0.000
#> GSM601798     2  0.3770     0.5851 0.000 0.752 0.004 NA 0.212 0.000
#> GSM601828     1  0.3062     0.7712 0.844 0.016 0.024 NA 0.000 0.000
#> GSM601838     5  0.0622     0.6732 0.000 0.008 0.000 NA 0.980 0.012
#> GSM601843     2  0.4263     0.5798 0.000 0.724 0.004 NA 0.224 0.012
#> GSM601858     2  0.7510     0.4100 0.188 0.524 0.008 NA 0.104 0.060
#> GSM601868     1  0.4439     0.7303 0.760 0.036 0.008 NA 0.000 0.048
#> GSM601748     1  0.1605     0.7932 0.936 0.016 0.004 NA 0.000 0.000
#> GSM601758     1  0.0914     0.7905 0.968 0.016 0.000 NA 0.000 0.000
#> GSM601763     2  0.4904     0.6431 0.144 0.732 0.000 NA 0.072 0.012
#> GSM601768     2  0.4688     0.4434 0.008 0.608 0.000 NA 0.352 0.012
#> GSM601773     5  0.4493    -0.1753 0.000 0.484 0.000 NA 0.492 0.008
#> GSM601778     2  0.2306     0.6294 0.008 0.888 0.000 NA 0.004 0.004
#> GSM601788     2  0.7161     0.3155 0.024 0.488 0.016 NA 0.304 0.092
#> GSM601803     2  0.3982     0.5255 0.000 0.696 0.000 NA 0.280 0.008
#> GSM601808     1  0.5524     0.4896 0.568 0.012 0.016 NA 0.000 0.068
#> GSM601813     1  0.1906     0.7946 0.924 0.036 0.008 NA 0.000 0.000
#> GSM601818     1  0.1780     0.7962 0.924 0.028 0.000 NA 0.000 0.000
#> GSM601823     2  0.4429     0.5883 0.180 0.732 0.000 NA 0.008 0.004
#> GSM601833     2  0.4229     0.5840 0.004 0.732 0.000 NA 0.216 0.016
#> GSM601848     2  0.4565     0.5285 0.244 0.680 0.000 NA 0.000 0.004
#> GSM601853     1  0.4213     0.7376 0.772 0.012 0.020 NA 0.000 0.044
#> GSM601863     1  0.2859     0.7806 0.868 0.020 0.012 NA 0.000 0.008
#> GSM601754     2  0.3967     0.5652 0.004 0.720 0.000 NA 0.252 0.008
#> GSM601784     2  0.4659     0.1359 0.000 0.488 0.000 NA 0.480 0.016
#> GSM601794     2  0.3150     0.6255 0.064 0.832 0.000 NA 0.000 0.000
#> GSM601799     2  0.4390     0.5999 0.024 0.724 0.000 NA 0.216 0.004
#> GSM601829     1  0.5510     0.6166 0.636 0.172 0.028 NA 0.000 0.000
#> GSM601839     5  0.0717     0.6726 0.000 0.008 0.000 NA 0.976 0.016
#> GSM601844     2  0.5490     0.4001 0.316 0.572 0.004 NA 0.012 0.000
#> GSM601859     2  0.5107     0.4704 0.028 0.604 0.000 NA 0.332 0.016
#> GSM601869     1  0.4439     0.7303 0.760 0.036 0.008 NA 0.000 0.048
#> GSM601749     1  0.1088     0.7948 0.960 0.016 0.000 NA 0.000 0.000
#> GSM601759     1  0.0820     0.7904 0.972 0.012 0.000 NA 0.000 0.000
#> GSM601764     2  0.5237     0.5405 0.264 0.640 0.000 NA 0.032 0.004
#> GSM601769     5  0.0547     0.6854 0.000 0.020 0.000 NA 0.980 0.000
#> GSM601774     5  0.3221     0.4943 0.000 0.220 0.000 NA 0.772 0.004
#> GSM601779     2  0.4363     0.4436 0.324 0.636 0.000 NA 0.000 0.000
#> GSM601789     5  0.6145    -0.1688 0.016 0.436 0.004 NA 0.448 0.052
#> GSM601804     2  0.4548     0.5723 0.020 0.704 0.000 NA 0.236 0.008
#> GSM601809     1  0.7320     0.1421 0.356 0.308 0.008 NA 0.004 0.060
#> GSM601814     5  0.0547     0.6854 0.000 0.020 0.000 NA 0.980 0.000
#> GSM601819     1  0.1584     0.7875 0.928 0.008 0.000 NA 0.000 0.000
#> GSM601824     2  0.4429     0.5883 0.180 0.732 0.000 NA 0.008 0.004
#> GSM601834     2  0.4256     0.5827 0.004 0.728 0.000 NA 0.220 0.016
#> GSM601849     2  0.4296     0.5488 0.244 0.700 0.000 NA 0.000 0.004
#> GSM601854     1  0.2520     0.7801 0.872 0.012 0.008 NA 0.000 0.000
#> GSM601864     5  0.4518     0.1804 0.000 0.036 0.000 NA 0.612 0.348
#> GSM601755     2  0.3812     0.5373 0.000 0.712 0.000 NA 0.268 0.004
#> GSM601785     2  0.4632     0.2462 0.000 0.532 0.000 NA 0.436 0.016
#> GSM601795     2  0.3150     0.6255 0.064 0.832 0.000 NA 0.000 0.000
#> GSM601800     2  0.3883     0.5568 0.004 0.720 0.000 NA 0.256 0.004
#> GSM601830     3  0.0146     0.7406 0.000 0.000 0.996 NA 0.000 0.000
#> GSM601840     2  0.5861     0.5402 0.220 0.628 0.000 NA 0.064 0.012
#> GSM601845     2  0.4532     0.6425 0.040 0.776 0.004 NA 0.104 0.012
#> GSM601860     2  0.5107     0.4704 0.028 0.604 0.000 NA 0.332 0.016
#> GSM601870     3  0.4990     0.4047 0.000 0.008 0.588 NA 0.052 0.348
#> GSM601750     1  0.1701     0.7857 0.920 0.008 0.000 NA 0.000 0.000
#> GSM601760     1  0.1245     0.7914 0.952 0.032 0.000 NA 0.000 0.000
#> GSM601765     2  0.4041     0.6110 0.004 0.764 0.000 NA 0.176 0.012
#> GSM601770     2  0.4700     0.4376 0.008 0.604 0.000 NA 0.356 0.012
#> GSM601775     2  0.4657     0.6388 0.168 0.732 0.000 NA 0.072 0.008
#> GSM601780     2  0.4363     0.4436 0.324 0.636 0.000 NA 0.000 0.000
#> GSM601790     5  0.1225     0.6755 0.000 0.036 0.000 NA 0.952 0.012
#> GSM601805     2  0.4099     0.5316 0.004 0.696 0.000 NA 0.276 0.008
#> GSM601810     1  0.7247     0.1792 0.376 0.308 0.008 NA 0.004 0.056
#> GSM601815     5  0.0547     0.6854 0.000 0.020 0.000 NA 0.980 0.000
#> GSM601820     1  0.1584     0.7875 0.928 0.008 0.000 NA 0.000 0.000
#> GSM601825     2  0.4234     0.4033 0.000 0.608 0.000 NA 0.372 0.004
#> GSM601835     2  0.3802     0.6106 0.000 0.772 0.000 NA 0.180 0.012
#> GSM601850     2  0.3512     0.6366 0.080 0.828 0.000 NA 0.012 0.004
#> GSM601855     3  0.1616     0.7337 0.000 0.000 0.932 NA 0.000 0.048
#> GSM601865     5  0.4302     0.3003 0.000 0.036 0.000 NA 0.668 0.292
#> GSM601756     2  0.3812     0.5373 0.000 0.712 0.000 NA 0.268 0.004
#> GSM601786     5  0.1952     0.6425 0.000 0.052 0.000 NA 0.920 0.016
#> GSM601796     2  0.3150     0.6255 0.064 0.832 0.000 NA 0.000 0.000
#> GSM601801     2  0.3741     0.5868 0.000 0.756 0.004 NA 0.208 0.000
#> GSM601831     1  0.3424     0.7717 0.832 0.016 0.020 NA 0.000 0.016
#> GSM601841     1  0.5729     0.2888 0.520 0.368 0.000 NA 0.008 0.016
#> GSM601846     2  0.6835    -0.1302 0.000 0.452 0.176 NA 0.004 0.064
#> GSM601861     5  0.0508     0.6823 0.000 0.012 0.000 NA 0.984 0.004
#> GSM601871     6  0.7372     0.0471 0.008 0.216 0.008 NA 0.268 0.424
#> GSM601751     2  0.5095     0.6161 0.164 0.708 0.000 NA 0.076 0.008
#> GSM601761     1  0.4524     0.3057 0.584 0.376 0.000 NA 0.000 0.000
#> GSM601766     2  0.4329     0.6388 0.048 0.784 0.000 NA 0.108 0.012
#> GSM601771     2  0.5402     0.6209 0.148 0.692 0.000 NA 0.104 0.016
#> GSM601776     2  0.4856     0.4595 0.324 0.616 0.000 NA 0.004 0.008
#> GSM601781     2  0.2244     0.6285 0.004 0.888 0.000 NA 0.004 0.004
#> GSM601791     2  0.4563     0.3523 0.368 0.588 0.000 NA 0.000 0.000
#> GSM601806     2  0.3982     0.5255 0.000 0.696 0.000 NA 0.280 0.008
#> GSM601811     1  0.7320     0.1421 0.356 0.308 0.008 NA 0.004 0.060
#> GSM601816     2  0.4228     0.5567 0.212 0.716 0.000 NA 0.000 0.000
#> GSM601821     5  0.0363     0.6835 0.000 0.012 0.000 NA 0.988 0.000
#> GSM601826     2  0.4282     0.5596 0.200 0.724 0.000 NA 0.000 0.004
#> GSM601836     2  0.5145     0.5671 0.228 0.664 0.000 NA 0.016 0.008
#> GSM601851     2  0.4234     0.5091 0.280 0.676 0.000 NA 0.000 0.000
#> GSM601856     1  0.4201     0.7429 0.776 0.016 0.020 NA 0.000 0.040
#> GSM601866     1  0.1592     0.7938 0.940 0.020 0.008 NA 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n time(p) gender(p) k
#> SD:hclust 94   0.700    0.0792 2
#> SD:hclust 80   0.204    0.5221 3
#> SD:hclust 93   0.114    0.4873 4
#> SD:hclust 90   0.128    0.6315 5
#> SD:hclust 89   0.232    0.6779 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 125 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.915           0.909       0.964         0.5013 0.499   0.499
#> 3 3 0.525           0.589       0.754         0.2786 0.819   0.659
#> 4 4 0.584           0.441       0.670         0.1209 0.791   0.510
#> 5 5 0.640           0.685       0.759         0.0715 0.790   0.400
#> 6 6 0.691           0.729       0.761         0.0408 0.933   0.714

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM601752     2  0.0000      0.958 0.000 1.000
#> GSM601782     1  0.0000      0.964 1.000 0.000
#> GSM601792     1  0.0000      0.964 1.000 0.000
#> GSM601797     1  0.8443      0.618 0.728 0.272
#> GSM601827     1  0.0000      0.964 1.000 0.000
#> GSM601837     2  0.0000      0.958 0.000 1.000
#> GSM601842     2  0.0000      0.958 0.000 1.000
#> GSM601857     1  0.0000      0.964 1.000 0.000
#> GSM601867     2  0.9896      0.208 0.440 0.560
#> GSM601747     1  0.0000      0.964 1.000 0.000
#> GSM601757     1  0.0000      0.964 1.000 0.000
#> GSM601762     2  0.0000      0.958 0.000 1.000
#> GSM601767     2  0.0000      0.958 0.000 1.000
#> GSM601772     2  0.0000      0.958 0.000 1.000
#> GSM601777     1  0.2778      0.921 0.952 0.048
#> GSM601787     2  0.4298      0.880 0.088 0.912
#> GSM601802     2  0.0000      0.958 0.000 1.000
#> GSM601807     1  0.9491      0.411 0.632 0.368
#> GSM601812     1  0.0000      0.964 1.000 0.000
#> GSM601817     1  0.0000      0.964 1.000 0.000
#> GSM601822     1  0.1414      0.947 0.980 0.020
#> GSM601832     2  0.0000      0.958 0.000 1.000
#> GSM601847     2  0.8909      0.556 0.308 0.692
#> GSM601852     1  0.0000      0.964 1.000 0.000
#> GSM601862     1  0.0000      0.964 1.000 0.000
#> GSM601753     2  0.0000      0.958 0.000 1.000
#> GSM601783     1  0.0000      0.964 1.000 0.000
#> GSM601793     1  0.0000      0.964 1.000 0.000
#> GSM601798     2  0.0000      0.958 0.000 1.000
#> GSM601828     1  0.0000      0.964 1.000 0.000
#> GSM601838     2  0.0000      0.958 0.000 1.000
#> GSM601843     2  0.0000      0.958 0.000 1.000
#> GSM601858     2  0.0000      0.958 0.000 1.000
#> GSM601868     1  0.0000      0.964 1.000 0.000
#> GSM601748     1  0.0000      0.964 1.000 0.000
#> GSM601758     1  0.0000      0.964 1.000 0.000
#> GSM601763     1  0.5408      0.836 0.876 0.124
#> GSM601768     2  0.0000      0.958 0.000 1.000
#> GSM601773     2  0.0000      0.958 0.000 1.000
#> GSM601778     1  0.0000      0.964 1.000 0.000
#> GSM601788     2  0.0000      0.958 0.000 1.000
#> GSM601803     2  0.0000      0.958 0.000 1.000
#> GSM601808     1  0.0000      0.964 1.000 0.000
#> GSM601813     1  0.0000      0.964 1.000 0.000
#> GSM601818     1  0.0000      0.964 1.000 0.000
#> GSM601823     1  0.0000      0.964 1.000 0.000
#> GSM601833     2  0.0000      0.958 0.000 1.000
#> GSM601848     1  0.0000      0.964 1.000 0.000
#> GSM601853     1  0.0000      0.964 1.000 0.000
#> GSM601863     1  0.0000      0.964 1.000 0.000
#> GSM601754     2  0.0000      0.958 0.000 1.000
#> GSM601784     2  0.0000      0.958 0.000 1.000
#> GSM601794     1  0.0000      0.964 1.000 0.000
#> GSM601799     2  0.0000      0.958 0.000 1.000
#> GSM601829     1  0.0000      0.964 1.000 0.000
#> GSM601839     2  0.0000      0.958 0.000 1.000
#> GSM601844     1  0.0000      0.964 1.000 0.000
#> GSM601859     2  0.0000      0.958 0.000 1.000
#> GSM601869     1  0.0000      0.964 1.000 0.000
#> GSM601749     1  0.0000      0.964 1.000 0.000
#> GSM601759     1  0.0000      0.964 1.000 0.000
#> GSM601764     1  0.0000      0.964 1.000 0.000
#> GSM601769     2  0.0000      0.958 0.000 1.000
#> GSM601774     2  0.0000      0.958 0.000 1.000
#> GSM601779     1  0.0000      0.964 1.000 0.000
#> GSM601789     2  0.0000      0.958 0.000 1.000
#> GSM601804     2  0.4431      0.876 0.092 0.908
#> GSM601809     1  0.0000      0.964 1.000 0.000
#> GSM601814     2  0.0000      0.958 0.000 1.000
#> GSM601819     1  0.0000      0.964 1.000 0.000
#> GSM601824     2  0.9896      0.223 0.440 0.560
#> GSM601834     2  0.0000      0.958 0.000 1.000
#> GSM601849     1  0.0000      0.964 1.000 0.000
#> GSM601854     1  0.0000      0.964 1.000 0.000
#> GSM601864     2  0.0000      0.958 0.000 1.000
#> GSM601755     2  0.0000      0.958 0.000 1.000
#> GSM601785     2  0.0000      0.958 0.000 1.000
#> GSM601795     1  0.0000      0.964 1.000 0.000
#> GSM601800     2  0.0000      0.958 0.000 1.000
#> GSM601830     1  0.3733      0.897 0.928 0.072
#> GSM601840     2  0.0376      0.955 0.004 0.996
#> GSM601845     1  0.9954      0.142 0.540 0.460
#> GSM601860     2  0.0000      0.958 0.000 1.000
#> GSM601870     1  0.9608      0.370 0.616 0.384
#> GSM601750     1  0.0000      0.964 1.000 0.000
#> GSM601760     1  0.0000      0.964 1.000 0.000
#> GSM601765     2  0.0000      0.958 0.000 1.000
#> GSM601770     2  0.0000      0.958 0.000 1.000
#> GSM601775     2  0.9552      0.402 0.376 0.624
#> GSM601780     1  0.0000      0.964 1.000 0.000
#> GSM601790     2  0.0000      0.958 0.000 1.000
#> GSM601805     2  0.0000      0.958 0.000 1.000
#> GSM601810     1  0.0000      0.964 1.000 0.000
#> GSM601815     2  0.0000      0.958 0.000 1.000
#> GSM601820     1  0.0000      0.964 1.000 0.000
#> GSM601825     2  0.0000      0.958 0.000 1.000
#> GSM601835     2  0.0000      0.958 0.000 1.000
#> GSM601850     1  0.0000      0.964 1.000 0.000
#> GSM601855     1  0.0376      0.961 0.996 0.004
#> GSM601865     2  0.0000      0.958 0.000 1.000
#> GSM601756     2  0.0000      0.958 0.000 1.000
#> GSM601786     2  0.0000      0.958 0.000 1.000
#> GSM601796     1  0.0000      0.964 1.000 0.000
#> GSM601801     2  0.0000      0.958 0.000 1.000
#> GSM601831     1  0.0000      0.964 1.000 0.000
#> GSM601841     1  0.0000      0.964 1.000 0.000
#> GSM601846     2  0.8081      0.664 0.248 0.752
#> GSM601861     2  0.0000      0.958 0.000 1.000
#> GSM601871     2  0.6438      0.790 0.164 0.836
#> GSM601751     2  0.4562      0.871 0.096 0.904
#> GSM601761     1  0.0000      0.964 1.000 0.000
#> GSM601766     1  0.9944      0.137 0.544 0.456
#> GSM601771     2  0.0000      0.958 0.000 1.000
#> GSM601776     1  0.0000      0.964 1.000 0.000
#> GSM601781     1  0.0672      0.958 0.992 0.008
#> GSM601791     1  0.0000      0.964 1.000 0.000
#> GSM601806     2  0.0000      0.958 0.000 1.000
#> GSM601811     1  0.0000      0.964 1.000 0.000
#> GSM601816     1  0.0000      0.964 1.000 0.000
#> GSM601821     2  0.0000      0.958 0.000 1.000
#> GSM601826     1  0.0000      0.964 1.000 0.000
#> GSM601836     1  0.0000      0.964 1.000 0.000
#> GSM601851     1  0.0000      0.964 1.000 0.000
#> GSM601856     1  0.0000      0.964 1.000 0.000
#> GSM601866     1  0.0000      0.964 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM601752     2  0.7796     0.6137 0.228 0.660 0.112
#> GSM601782     1  0.6045     0.1443 0.620 0.000 0.380
#> GSM601792     1  0.2682     0.5928 0.920 0.004 0.076
#> GSM601797     1  0.9153     0.2525 0.520 0.308 0.172
#> GSM601827     1  0.6062     0.1303 0.616 0.000 0.384
#> GSM601837     2  0.5098     0.7405 0.000 0.752 0.248
#> GSM601842     2  0.0747     0.8428 0.000 0.984 0.016
#> GSM601857     3  0.6062     0.7046 0.384 0.000 0.616
#> GSM601867     3  0.3987     0.5240 0.020 0.108 0.872
#> GSM601747     1  0.5406     0.4502 0.764 0.012 0.224
#> GSM601757     1  0.5650     0.2952 0.688 0.000 0.312
#> GSM601762     2  0.0592     0.8416 0.000 0.988 0.012
#> GSM601767     2  0.0424     0.8421 0.000 0.992 0.008
#> GSM601772     2  0.0424     0.8421 0.000 0.992 0.008
#> GSM601777     1  0.8355     0.3794 0.616 0.140 0.244
#> GSM601787     3  0.4409     0.4786 0.004 0.172 0.824
#> GSM601802     2  0.5393     0.7915 0.072 0.820 0.108
#> GSM601807     3  0.3472     0.5389 0.056 0.040 0.904
#> GSM601812     1  0.5948     0.1715 0.640 0.000 0.360
#> GSM601817     1  0.6062     0.0852 0.616 0.000 0.384
#> GSM601822     1  0.8094     0.3903 0.636 0.240 0.124
#> GSM601832     2  0.0829     0.8416 0.004 0.984 0.012
#> GSM601847     1  0.8628     0.2066 0.544 0.340 0.116
#> GSM601852     1  0.5785     0.2505 0.668 0.000 0.332
#> GSM601862     3  0.6095     0.6939 0.392 0.000 0.608
#> GSM601753     2  0.5393     0.7915 0.072 0.820 0.108
#> GSM601783     1  0.5291     0.3741 0.732 0.000 0.268
#> GSM601793     1  0.2261     0.5966 0.932 0.000 0.068
#> GSM601798     2  0.4892     0.8042 0.048 0.840 0.112
#> GSM601828     1  0.5905     0.1884 0.648 0.000 0.352
#> GSM601838     2  0.5098     0.7405 0.000 0.752 0.248
#> GSM601843     2  0.0592     0.8416 0.000 0.988 0.012
#> GSM601858     2  0.5016     0.7459 0.000 0.760 0.240
#> GSM601868     3  0.5968     0.7255 0.364 0.000 0.636
#> GSM601748     1  0.5882     0.2035 0.652 0.000 0.348
#> GSM601758     1  0.5291     0.3741 0.732 0.000 0.268
#> GSM601763     1  0.5305     0.4876 0.788 0.192 0.020
#> GSM601768     2  0.0661     0.8422 0.008 0.988 0.004
#> GSM601773     2  0.0592     0.8416 0.000 0.988 0.012
#> GSM601778     1  0.5191     0.5436 0.828 0.060 0.112
#> GSM601788     2  0.3129     0.8315 0.008 0.904 0.088
#> GSM601803     2  0.3695     0.8205 0.012 0.880 0.108
#> GSM601808     3  0.5968     0.7255 0.364 0.000 0.636
#> GSM601813     1  0.5529     0.3266 0.704 0.000 0.296
#> GSM601818     1  0.6095     0.0520 0.608 0.000 0.392
#> GSM601823     1  0.0424     0.6119 0.992 0.008 0.000
#> GSM601833     2  0.0424     0.8421 0.000 0.992 0.008
#> GSM601848     1  0.0000     0.6114 1.000 0.000 0.000
#> GSM601853     3  0.5968     0.7255 0.364 0.000 0.636
#> GSM601863     3  0.6111     0.6868 0.396 0.000 0.604
#> GSM601754     2  0.7267     0.6797 0.180 0.708 0.112
#> GSM601784     2  0.3192     0.8078 0.000 0.888 0.112
#> GSM601794     1  0.2878     0.5842 0.904 0.000 0.096
#> GSM601799     2  0.7979     0.5834 0.248 0.640 0.112
#> GSM601829     1  0.1753     0.6016 0.952 0.000 0.048
#> GSM601839     2  0.5098     0.7405 0.000 0.752 0.248
#> GSM601844     1  0.1411     0.6043 0.964 0.000 0.036
#> GSM601859     2  0.0829     0.8419 0.004 0.984 0.012
#> GSM601869     3  0.6026     0.7112 0.376 0.000 0.624
#> GSM601749     1  0.5291     0.3741 0.732 0.000 0.268
#> GSM601759     1  0.5431     0.3461 0.716 0.000 0.284
#> GSM601764     1  0.1015     0.6111 0.980 0.008 0.012
#> GSM601769     2  0.4931     0.7502 0.000 0.768 0.232
#> GSM601774     2  0.0592     0.8416 0.000 0.988 0.012
#> GSM601779     1  0.0661     0.6115 0.988 0.008 0.004
#> GSM601789     2  0.5098     0.7405 0.000 0.752 0.248
#> GSM601804     1  0.8436     0.2475 0.568 0.324 0.108
#> GSM601809     1  0.6280    -0.2118 0.540 0.000 0.460
#> GSM601814     2  0.4974     0.7480 0.000 0.764 0.236
#> GSM601819     1  0.4555     0.4661 0.800 0.000 0.200
#> GSM601824     1  0.7817     0.3921 0.648 0.252 0.100
#> GSM601834     2  0.0592     0.8416 0.000 0.988 0.012
#> GSM601849     1  0.0424     0.6101 0.992 0.000 0.008
#> GSM601854     1  0.5591     0.3073 0.696 0.000 0.304
#> GSM601864     2  0.5098     0.7405 0.000 0.752 0.248
#> GSM601755     2  0.3987     0.8179 0.020 0.872 0.108
#> GSM601785     2  0.3276     0.8269 0.068 0.908 0.024
#> GSM601795     1  0.5760     0.5203 0.796 0.064 0.140
#> GSM601800     2  0.5722     0.7802 0.084 0.804 0.112
#> GSM601830     3  0.5722     0.6943 0.292 0.004 0.704
#> GSM601840     2  0.6546     0.7308 0.148 0.756 0.096
#> GSM601845     1  0.7652     0.0753 0.512 0.444 0.044
#> GSM601860     2  0.3445     0.8182 0.088 0.896 0.016
#> GSM601870     3  0.4665     0.5396 0.048 0.100 0.852
#> GSM601750     1  0.5760     0.2577 0.672 0.000 0.328
#> GSM601760     1  0.4555     0.4628 0.800 0.000 0.200
#> GSM601765     2  0.0237     0.8424 0.000 0.996 0.004
#> GSM601770     2  0.0424     0.8421 0.000 0.992 0.008
#> GSM601775     1  0.8686    -0.0967 0.464 0.432 0.104
#> GSM601780     1  0.0424     0.6119 0.992 0.008 0.000
#> GSM601790     2  0.5098     0.7405 0.000 0.752 0.248
#> GSM601805     2  0.5481     0.7885 0.076 0.816 0.108
#> GSM601810     3  0.5968     0.7255 0.364 0.000 0.636
#> GSM601815     2  0.5098     0.7405 0.000 0.752 0.248
#> GSM601820     1  0.5529     0.3237 0.704 0.000 0.296
#> GSM601825     2  0.3695     0.8205 0.012 0.880 0.108
#> GSM601835     2  0.0592     0.8424 0.000 0.988 0.012
#> GSM601850     1  0.4379     0.5619 0.868 0.060 0.072
#> GSM601855     3  0.5760     0.7152 0.328 0.000 0.672
#> GSM601865     2  0.5098     0.7405 0.000 0.752 0.248
#> GSM601756     2  0.3987     0.8179 0.020 0.872 0.108
#> GSM601786     2  0.5098     0.7405 0.000 0.752 0.248
#> GSM601796     1  0.2356     0.5951 0.928 0.000 0.072
#> GSM601801     2  0.3695     0.8205 0.012 0.880 0.108
#> GSM601831     3  0.6045     0.7002 0.380 0.000 0.620
#> GSM601841     1  0.4796     0.4634 0.780 0.000 0.220
#> GSM601846     2  0.9152     0.0705 0.428 0.428 0.144
#> GSM601861     2  0.5058     0.7431 0.000 0.756 0.244
#> GSM601871     3  0.4521     0.4603 0.004 0.180 0.816
#> GSM601751     2  0.6271     0.7491 0.140 0.772 0.088
#> GSM601761     1  0.0747     0.6075 0.984 0.000 0.016
#> GSM601766     1  0.6422     0.3889 0.660 0.324 0.016
#> GSM601771     2  0.3572     0.8263 0.060 0.900 0.040
#> GSM601776     1  0.0592     0.6091 0.988 0.000 0.012
#> GSM601781     1  0.4652     0.5561 0.856 0.064 0.080
#> GSM601791     1  0.0592     0.6091 0.988 0.000 0.012
#> GSM601806     2  0.3038     0.8297 0.000 0.896 0.104
#> GSM601811     3  0.5968     0.7255 0.364 0.000 0.636
#> GSM601816     1  0.1163     0.6086 0.972 0.000 0.028
#> GSM601821     2  0.5058     0.7431 0.000 0.756 0.244
#> GSM601826     1  0.0237     0.6109 0.996 0.000 0.004
#> GSM601836     1  0.2187     0.6104 0.948 0.024 0.028
#> GSM601851     1  0.0592     0.6091 0.988 0.000 0.012
#> GSM601856     3  0.5948     0.7244 0.360 0.000 0.640
#> GSM601866     1  0.6045     0.1024 0.620 0.000 0.380

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM601752     4  0.4883    0.26911 0.000 0.288 0.016 0.696
#> GSM601782     1  0.2831    0.52465 0.876 0.000 0.120 0.004
#> GSM601792     4  0.5285   -0.38645 0.468 0.000 0.008 0.524
#> GSM601797     4  0.2945    0.42252 0.012 0.052 0.032 0.904
#> GSM601827     1  0.2676    0.57855 0.896 0.000 0.092 0.012
#> GSM601837     2  0.4155    0.55541 0.000 0.756 0.240 0.004
#> GSM601842     2  0.4313    0.62713 0.000 0.736 0.004 0.260
#> GSM601857     3  0.5097    0.71419 0.428 0.000 0.568 0.004
#> GSM601867     3  0.2707    0.73975 0.068 0.008 0.908 0.016
#> GSM601747     1  0.3498    0.59196 0.880 0.024 0.068 0.028
#> GSM601757     1  0.1557    0.60557 0.944 0.000 0.056 0.000
#> GSM601762     2  0.4072    0.63786 0.000 0.748 0.000 0.252
#> GSM601767     2  0.4072    0.63786 0.000 0.748 0.000 0.252
#> GSM601772     2  0.4072    0.63786 0.000 0.748 0.000 0.252
#> GSM601777     4  0.5739    0.23054 0.076 0.008 0.200 0.716
#> GSM601787     3  0.1917    0.68170 0.012 0.036 0.944 0.008
#> GSM601802     4  0.5408    0.08089 0.000 0.408 0.016 0.576
#> GSM601807     3  0.2197    0.72826 0.048 0.000 0.928 0.024
#> GSM601812     1  0.2345    0.55626 0.900 0.000 0.100 0.000
#> GSM601817     1  0.2530    0.53909 0.888 0.000 0.112 0.000
#> GSM601822     4  0.2831    0.36011 0.120 0.000 0.004 0.876
#> GSM601832     2  0.4331    0.59433 0.000 0.712 0.000 0.288
#> GSM601847     4  0.1489    0.44313 0.044 0.004 0.000 0.952
#> GSM601852     1  0.2011    0.58374 0.920 0.000 0.080 0.000
#> GSM601862     3  0.5016    0.74574 0.396 0.000 0.600 0.004
#> GSM601753     4  0.5427    0.06954 0.000 0.416 0.016 0.568
#> GSM601783     1  0.0188    0.63760 0.996 0.000 0.004 0.000
#> GSM601793     4  0.5288   -0.39425 0.472 0.000 0.008 0.520
#> GSM601798     4  0.5435    0.05028 0.000 0.420 0.016 0.564
#> GSM601828     1  0.1940    0.58699 0.924 0.000 0.076 0.000
#> GSM601838     2  0.4122    0.55764 0.000 0.760 0.236 0.004
#> GSM601843     2  0.4252    0.63504 0.000 0.744 0.004 0.252
#> GSM601858     2  0.6515    0.61929 0.000 0.624 0.128 0.248
#> GSM601868     3  0.4699    0.79606 0.320 0.000 0.676 0.004
#> GSM601748     1  0.1792    0.59439 0.932 0.000 0.068 0.000
#> GSM601758     1  0.0469    0.64101 0.988 0.000 0.000 0.012
#> GSM601763     4  0.6478    0.09396 0.336 0.088 0.000 0.576
#> GSM601768     2  0.4401    0.61211 0.000 0.724 0.004 0.272
#> GSM601773     2  0.4072    0.63786 0.000 0.748 0.000 0.252
#> GSM601778     4  0.5085   -0.06380 0.304 0.000 0.020 0.676
#> GSM601788     2  0.6487    0.23163 0.000 0.500 0.072 0.428
#> GSM601803     4  0.5472   -0.01171 0.000 0.440 0.016 0.544
#> GSM601808     3  0.4608    0.79932 0.304 0.000 0.692 0.004
#> GSM601813     1  0.1118    0.62143 0.964 0.000 0.036 0.000
#> GSM601818     1  0.2888    0.51232 0.872 0.000 0.124 0.004
#> GSM601823     1  0.4948    0.50592 0.560 0.000 0.000 0.440
#> GSM601833     2  0.4072    0.63786 0.000 0.748 0.000 0.252
#> GSM601848     1  0.4948    0.50592 0.560 0.000 0.000 0.440
#> GSM601853     3  0.4543    0.79526 0.324 0.000 0.676 0.000
#> GSM601863     3  0.5229    0.70612 0.428 0.000 0.564 0.008
#> GSM601754     4  0.5167    0.19857 0.000 0.340 0.016 0.644
#> GSM601784     2  0.4508    0.63355 0.000 0.780 0.036 0.184
#> GSM601794     4  0.5273   -0.36849 0.456 0.000 0.008 0.536
#> GSM601799     4  0.4933    0.26586 0.000 0.296 0.016 0.688
#> GSM601829     1  0.5581    0.48778 0.532 0.000 0.020 0.448
#> GSM601839     2  0.4155    0.55541 0.000 0.756 0.240 0.004
#> GSM601844     1  0.5244    0.50790 0.556 0.000 0.008 0.436
#> GSM601859     2  0.4428    0.60702 0.000 0.720 0.004 0.276
#> GSM601869     3  0.5132    0.68687 0.448 0.000 0.548 0.004
#> GSM601749     1  0.0188    0.63985 0.996 0.000 0.000 0.004
#> GSM601759     1  0.0657    0.64002 0.984 0.000 0.004 0.012
#> GSM601764     1  0.5337    0.51034 0.564 0.012 0.000 0.424
#> GSM601769     2  0.2593    0.59567 0.000 0.892 0.104 0.004
#> GSM601774     2  0.3873    0.64050 0.000 0.772 0.000 0.228
#> GSM601779     1  0.4961    0.49305 0.552 0.000 0.000 0.448
#> GSM601789     2  0.4365    0.58559 0.000 0.784 0.188 0.028
#> GSM601804     4  0.1917    0.44042 0.036 0.012 0.008 0.944
#> GSM601809     1  0.5526   -0.35732 0.564 0.000 0.416 0.020
#> GSM601814     2  0.2944    0.59231 0.000 0.868 0.128 0.004
#> GSM601819     1  0.1022    0.64415 0.968 0.000 0.000 0.032
#> GSM601824     4  0.3991    0.33820 0.172 0.020 0.000 0.808
#> GSM601834     2  0.4040    0.63884 0.000 0.752 0.000 0.248
#> GSM601849     1  0.4933    0.51607 0.568 0.000 0.000 0.432
#> GSM601854     1  0.1209    0.62437 0.964 0.000 0.032 0.004
#> GSM601864     2  0.4220    0.54866 0.000 0.748 0.248 0.004
#> GSM601755     4  0.5459    0.01420 0.000 0.432 0.016 0.552
#> GSM601785     2  0.5085    0.42414 0.000 0.616 0.008 0.376
#> GSM601795     4  0.4877   -0.09486 0.328 0.000 0.008 0.664
#> GSM601800     4  0.5398    0.08881 0.000 0.404 0.016 0.580
#> GSM601830     3  0.4054    0.78844 0.188 0.000 0.796 0.016
#> GSM601840     4  0.5888    0.02286 0.016 0.440 0.012 0.532
#> GSM601845     4  0.6571    0.27304 0.092 0.280 0.008 0.620
#> GSM601860     2  0.5285    0.45975 0.012 0.632 0.004 0.352
#> GSM601870     3  0.2040    0.72772 0.048 0.004 0.936 0.012
#> GSM601750     1  0.1211    0.61809 0.960 0.000 0.040 0.000
#> GSM601760     1  0.1637    0.64365 0.940 0.000 0.000 0.060
#> GSM601765     2  0.4072    0.63786 0.000 0.748 0.000 0.252
#> GSM601770     2  0.4072    0.63786 0.000 0.748 0.000 0.252
#> GSM601775     4  0.6100    0.27580 0.048 0.300 0.012 0.640
#> GSM601780     1  0.4933    0.51607 0.568 0.000 0.000 0.432
#> GSM601790     2  0.3726    0.56998 0.000 0.788 0.212 0.000
#> GSM601805     4  0.5408    0.08089 0.000 0.408 0.016 0.576
#> GSM601810     3  0.5070    0.76577 0.372 0.000 0.620 0.008
#> GSM601815     2  0.3831    0.57286 0.000 0.792 0.204 0.004
#> GSM601820     1  0.0469    0.63347 0.988 0.000 0.012 0.000
#> GSM601825     4  0.5497   -0.06834 0.000 0.460 0.016 0.524
#> GSM601835     2  0.4546    0.63604 0.000 0.732 0.012 0.256
#> GSM601850     4  0.4830   -0.23304 0.392 0.000 0.000 0.608
#> GSM601855     3  0.4095    0.78949 0.192 0.000 0.792 0.016
#> GSM601865     2  0.4220    0.54866 0.000 0.748 0.248 0.004
#> GSM601756     4  0.5466    0.00169 0.000 0.436 0.016 0.548
#> GSM601786     2  0.4018    0.56333 0.000 0.772 0.224 0.004
#> GSM601796     4  0.5285   -0.39156 0.468 0.000 0.008 0.524
#> GSM601801     4  0.5478   -0.02591 0.000 0.444 0.016 0.540
#> GSM601831     1  0.4483    0.07687 0.712 0.000 0.284 0.004
#> GSM601841     1  0.5159    0.59538 0.756 0.000 0.088 0.156
#> GSM601846     4  0.3144    0.41125 0.000 0.072 0.044 0.884
#> GSM601861     2  0.3626    0.58041 0.000 0.812 0.184 0.004
#> GSM601871     3  0.2310    0.64193 0.004 0.068 0.920 0.008
#> GSM601751     4  0.5974    0.04013 0.020 0.432 0.012 0.536
#> GSM601761     1  0.4679    0.56743 0.648 0.000 0.000 0.352
#> GSM601766     4  0.7143    0.33789 0.208 0.232 0.000 0.560
#> GSM601771     2  0.5355    0.33896 0.004 0.580 0.008 0.408
#> GSM601776     1  0.4907    0.52760 0.580 0.000 0.000 0.420
#> GSM601781     4  0.5252   -0.29386 0.420 0.004 0.004 0.572
#> GSM601791     1  0.4907    0.52760 0.580 0.000 0.000 0.420
#> GSM601806     4  0.5776   -0.10793 0.000 0.468 0.028 0.504
#> GSM601811     3  0.5007    0.77841 0.356 0.000 0.636 0.008
#> GSM601816     1  0.5151    0.46760 0.532 0.000 0.004 0.464
#> GSM601821     2  0.3626    0.58041 0.000 0.812 0.184 0.004
#> GSM601826     1  0.4933    0.51768 0.568 0.000 0.000 0.432
#> GSM601836     1  0.5738    0.46220 0.540 0.028 0.000 0.432
#> GSM601851     1  0.4888    0.53337 0.588 0.000 0.000 0.412
#> GSM601856     3  0.4567    0.79944 0.276 0.000 0.716 0.008
#> GSM601866     1  0.2408    0.55046 0.896 0.000 0.104 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM601752     2  0.7207      0.554 0.000 0.448 0.028 0.240 0.284
#> GSM601782     1  0.3361      0.779 0.856 0.000 0.092 0.032 0.020
#> GSM601792     4  0.4738      0.775 0.176 0.000 0.020 0.748 0.056
#> GSM601797     4  0.6887      0.144 0.000 0.140 0.044 0.528 0.288
#> GSM601827     1  0.3134      0.821 0.876 0.000 0.056 0.044 0.024
#> GSM601837     5  0.5159      0.967 0.000 0.400 0.044 0.000 0.556
#> GSM601842     2  0.0290      0.585 0.000 0.992 0.000 0.008 0.000
#> GSM601857     3  0.4604      0.554 0.428 0.000 0.560 0.000 0.012
#> GSM601867     3  0.2722      0.753 0.060 0.000 0.892 0.008 0.040
#> GSM601747     1  0.4821      0.664 0.780 0.120 0.028 0.056 0.016
#> GSM601757     1  0.1168      0.878 0.960 0.000 0.008 0.032 0.000
#> GSM601762     2  0.0324      0.586 0.000 0.992 0.000 0.004 0.004
#> GSM601767     2  0.0000      0.584 0.000 1.000 0.000 0.000 0.000
#> GSM601772     2  0.0162      0.583 0.000 0.996 0.000 0.004 0.000
#> GSM601777     4  0.4800      0.600 0.012 0.020 0.156 0.764 0.048
#> GSM601787     3  0.3023      0.712 0.012 0.004 0.868 0.012 0.104
#> GSM601802     2  0.6842      0.601 0.000 0.520 0.028 0.176 0.276
#> GSM601807     3  0.3673      0.712 0.028 0.000 0.844 0.048 0.080
#> GSM601812     1  0.1168      0.867 0.960 0.000 0.032 0.008 0.000
#> GSM601817     1  0.1591      0.842 0.940 0.000 0.052 0.004 0.004
#> GSM601822     4  0.3396      0.712 0.032 0.032 0.028 0.876 0.032
#> GSM601832     2  0.0807      0.595 0.000 0.976 0.000 0.012 0.012
#> GSM601847     4  0.4254      0.606 0.000 0.060 0.028 0.804 0.108
#> GSM601852     1  0.0992      0.870 0.968 0.000 0.024 0.008 0.000
#> GSM601862     3  0.4341      0.650 0.364 0.000 0.628 0.000 0.008
#> GSM601753     2  0.6803      0.603 0.000 0.524 0.028 0.168 0.280
#> GSM601783     1  0.1205      0.873 0.956 0.000 0.004 0.040 0.000
#> GSM601793     4  0.4738      0.775 0.176 0.000 0.020 0.748 0.056
#> GSM601798     2  0.6846      0.599 0.000 0.516 0.028 0.172 0.284
#> GSM601828     1  0.1386      0.858 0.952 0.000 0.032 0.000 0.016
#> GSM601838     5  0.5159      0.967 0.000 0.400 0.044 0.000 0.556
#> GSM601843     2  0.0162      0.583 0.000 0.996 0.000 0.004 0.000
#> GSM601858     2  0.1365      0.533 0.000 0.952 0.004 0.004 0.040
#> GSM601868     3  0.3690      0.755 0.224 0.000 0.764 0.000 0.012
#> GSM601748     1  0.0798      0.872 0.976 0.000 0.016 0.008 0.000
#> GSM601758     1  0.1608      0.859 0.928 0.000 0.000 0.072 0.000
#> GSM601763     4  0.6378      0.263 0.100 0.396 0.000 0.484 0.020
#> GSM601768     2  0.0703      0.599 0.000 0.976 0.000 0.000 0.024
#> GSM601773     2  0.0000      0.584 0.000 1.000 0.000 0.000 0.000
#> GSM601778     4  0.3250      0.724 0.044 0.004 0.044 0.876 0.032
#> GSM601788     2  0.5338      0.613 0.000 0.732 0.080 0.056 0.132
#> GSM601803     2  0.6758      0.601 0.000 0.532 0.028 0.164 0.276
#> GSM601808     3  0.3333      0.761 0.208 0.000 0.788 0.004 0.000
#> GSM601813     1  0.0865      0.877 0.972 0.000 0.004 0.024 0.000
#> GSM601818     1  0.2166      0.820 0.912 0.000 0.072 0.004 0.012
#> GSM601823     4  0.3534      0.768 0.256 0.000 0.000 0.744 0.000
#> GSM601833     2  0.0162      0.583 0.000 0.996 0.000 0.004 0.000
#> GSM601848     4  0.3480      0.771 0.248 0.000 0.000 0.752 0.000
#> GSM601853     3  0.3910      0.750 0.248 0.000 0.740 0.008 0.004
#> GSM601863     3  0.4403      0.536 0.436 0.000 0.560 0.000 0.004
#> GSM601754     2  0.7019      0.584 0.000 0.488 0.028 0.200 0.284
#> GSM601784     2  0.2971      0.258 0.000 0.836 0.008 0.000 0.156
#> GSM601794     4  0.4802      0.774 0.176 0.000 0.020 0.744 0.060
#> GSM601799     2  0.7121      0.571 0.000 0.468 0.028 0.220 0.284
#> GSM601829     4  0.4821      0.762 0.228 0.000 0.024 0.716 0.032
#> GSM601839     5  0.5159      0.967 0.000 0.400 0.044 0.000 0.556
#> GSM601844     4  0.4577      0.769 0.244 0.000 0.012 0.716 0.028
#> GSM601859     2  0.1205      0.604 0.000 0.956 0.000 0.004 0.040
#> GSM601869     3  0.4813      0.425 0.476 0.000 0.508 0.008 0.008
#> GSM601749     1  0.1544      0.861 0.932 0.000 0.000 0.068 0.000
#> GSM601759     1  0.1671      0.856 0.924 0.000 0.000 0.076 0.000
#> GSM601764     4  0.4411      0.768 0.232 0.024 0.000 0.732 0.012
#> GSM601769     5  0.4522      0.955 0.000 0.440 0.008 0.000 0.552
#> GSM601774     2  0.0566      0.568 0.000 0.984 0.000 0.004 0.012
#> GSM601779     4  0.3809      0.768 0.256 0.000 0.000 0.736 0.008
#> GSM601789     2  0.4738     -0.733 0.000 0.564 0.012 0.004 0.420
#> GSM601804     4  0.6175      0.322 0.000 0.120 0.028 0.616 0.236
#> GSM601809     3  0.6026      0.492 0.416 0.004 0.508 0.040 0.032
#> GSM601814     5  0.4702      0.965 0.000 0.432 0.016 0.000 0.552
#> GSM601819     1  0.2470      0.826 0.884 0.000 0.000 0.104 0.012
#> GSM601824     4  0.4255      0.730 0.068 0.112 0.000 0.800 0.020
#> GSM601834     2  0.0566      0.569 0.000 0.984 0.000 0.004 0.012
#> GSM601849     4  0.3480      0.771 0.248 0.000 0.000 0.752 0.000
#> GSM601854     1  0.1844      0.873 0.936 0.000 0.012 0.040 0.012
#> GSM601864     5  0.5439      0.938 0.000 0.372 0.068 0.000 0.560
#> GSM601755     2  0.6790      0.601 0.000 0.524 0.028 0.164 0.284
#> GSM601785     2  0.2193      0.618 0.000 0.912 0.000 0.028 0.060
#> GSM601795     4  0.4076      0.750 0.096 0.000 0.016 0.812 0.076
#> GSM601800     2  0.6873      0.598 0.000 0.512 0.028 0.176 0.284
#> GSM601830     3  0.4421      0.727 0.072 0.000 0.796 0.032 0.100
#> GSM601840     2  0.5898      0.614 0.008 0.652 0.012 0.116 0.212
#> GSM601845     2  0.5634      0.225 0.016 0.572 0.012 0.372 0.028
#> GSM601860     2  0.2446      0.607 0.000 0.900 0.000 0.044 0.056
#> GSM601870     3  0.3682      0.703 0.024 0.000 0.832 0.028 0.116
#> GSM601750     1  0.0451      0.877 0.988 0.000 0.000 0.008 0.004
#> GSM601760     1  0.2843      0.776 0.848 0.000 0.000 0.144 0.008
#> GSM601765     2  0.0404      0.586 0.000 0.988 0.000 0.012 0.000
#> GSM601770     2  0.0000      0.584 0.000 1.000 0.000 0.000 0.000
#> GSM601775     2  0.6008      0.591 0.012 0.624 0.000 0.172 0.192
#> GSM601780     4  0.3835      0.766 0.260 0.000 0.000 0.732 0.008
#> GSM601790     5  0.4689      0.973 0.000 0.424 0.016 0.000 0.560
#> GSM601805     2  0.6869      0.600 0.000 0.516 0.028 0.180 0.276
#> GSM601810     3  0.4924      0.689 0.320 0.000 0.644 0.016 0.020
#> GSM601815     5  0.4689      0.973 0.000 0.424 0.016 0.000 0.560
#> GSM601820     1  0.1410      0.866 0.940 0.000 0.000 0.060 0.000
#> GSM601825     2  0.6645      0.606 0.000 0.552 0.028 0.156 0.264
#> GSM601835     2  0.0912      0.584 0.000 0.972 0.000 0.016 0.012
#> GSM601850     4  0.3546      0.776 0.128 0.016 0.008 0.836 0.012
#> GSM601855     3  0.4066      0.733 0.072 0.000 0.820 0.028 0.080
#> GSM601865     5  0.5304      0.953 0.000 0.384 0.056 0.000 0.560
#> GSM601756     2  0.6790      0.601 0.000 0.524 0.028 0.164 0.284
#> GSM601786     5  0.4767      0.973 0.000 0.420 0.020 0.000 0.560
#> GSM601796     4  0.4866      0.775 0.180 0.000 0.016 0.736 0.068
#> GSM601801     2  0.6760      0.601 0.000 0.528 0.028 0.160 0.284
#> GSM601831     1  0.3541      0.697 0.824 0.000 0.144 0.012 0.020
#> GSM601841     1  0.6211      0.310 0.552 0.000 0.120 0.316 0.012
#> GSM601846     4  0.7088      0.412 0.004 0.152 0.100 0.588 0.156
#> GSM601861     5  0.4689      0.973 0.000 0.424 0.016 0.000 0.560
#> GSM601871     3  0.2977      0.704 0.008 0.008 0.868 0.008 0.108
#> GSM601751     2  0.5464      0.622 0.004 0.664 0.000 0.124 0.208
#> GSM601761     4  0.4268      0.666 0.344 0.000 0.000 0.648 0.008
#> GSM601766     2  0.5623      0.334 0.048 0.604 0.000 0.324 0.024
#> GSM601771     2  0.3400      0.632 0.000 0.828 0.000 0.036 0.136
#> GSM601776     4  0.3835      0.766 0.260 0.000 0.000 0.732 0.008
#> GSM601781     4  0.3723      0.772 0.120 0.008 0.012 0.832 0.028
#> GSM601791     4  0.3861      0.763 0.264 0.000 0.000 0.728 0.008
#> GSM601806     2  0.6651      0.597 0.000 0.544 0.028 0.148 0.280
#> GSM601811     3  0.4869      0.700 0.308 0.000 0.656 0.016 0.020
#> GSM601816     4  0.3797      0.776 0.232 0.000 0.008 0.756 0.004
#> GSM601821     5  0.4689      0.973 0.000 0.424 0.016 0.000 0.560
#> GSM601826     4  0.3534      0.768 0.256 0.000 0.000 0.744 0.000
#> GSM601836     4  0.5882      0.683 0.160 0.156 0.012 0.664 0.008
#> GSM601851     4  0.3586      0.765 0.264 0.000 0.000 0.736 0.000
#> GSM601856     3  0.3289      0.765 0.172 0.000 0.816 0.008 0.004
#> GSM601866     1  0.1043      0.859 0.960 0.000 0.040 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM601752     4  0.4610     0.8391 0.000 0.388 0.000 0.568 0.000 0.044
#> GSM601782     1  0.4510     0.6713 0.776 0.000 0.112 0.048 0.032 0.032
#> GSM601792     6  0.4648     0.7824 0.056 0.000 0.012 0.140 0.040 0.752
#> GSM601797     4  0.5198     0.2389 0.004 0.056 0.004 0.644 0.024 0.268
#> GSM601827     1  0.5466     0.6430 0.716 0.000 0.040 0.088 0.072 0.084
#> GSM601837     5  0.3154     0.9601 0.000 0.184 0.012 0.004 0.800 0.000
#> GSM601842     2  0.0520     0.8170 0.000 0.984 0.008 0.000 0.008 0.000
#> GSM601857     3  0.4453     0.4515 0.444 0.000 0.528 0.000 0.028 0.000
#> GSM601867     3  0.2886     0.6891 0.048 0.000 0.880 0.032 0.032 0.008
#> GSM601747     1  0.6307     0.3674 0.596 0.260 0.036 0.036 0.020 0.052
#> GSM601757     1  0.1296     0.8262 0.952 0.000 0.012 0.000 0.004 0.032
#> GSM601762     2  0.0551     0.8170 0.000 0.984 0.004 0.000 0.008 0.004
#> GSM601767     2  0.0405     0.8164 0.000 0.988 0.000 0.000 0.004 0.008
#> GSM601772     2  0.0405     0.8167 0.000 0.988 0.000 0.000 0.008 0.004
#> GSM601777     6  0.5614     0.6250 0.004 0.004 0.132 0.236 0.012 0.612
#> GSM601787     3  0.3524     0.6414 0.004 0.000 0.824 0.056 0.104 0.012
#> GSM601802     4  0.4481     0.8626 0.000 0.416 0.004 0.556 0.000 0.024
#> GSM601807     3  0.4936     0.6096 0.004 0.000 0.712 0.164 0.088 0.032
#> GSM601812     1  0.1862     0.8130 0.932 0.000 0.032 0.008 0.012 0.016
#> GSM601817     1  0.1647     0.8039 0.940 0.000 0.032 0.016 0.008 0.004
#> GSM601822     6  0.3371     0.7633 0.004 0.000 0.008 0.192 0.008 0.788
#> GSM601832     2  0.0291     0.8165 0.000 0.992 0.004 0.004 0.000 0.000
#> GSM601847     6  0.4216     0.6570 0.000 0.012 0.008 0.296 0.008 0.676
#> GSM601852     1  0.1807     0.8198 0.936 0.000 0.024 0.012 0.012 0.016
#> GSM601862     3  0.4301     0.5404 0.392 0.000 0.584 0.000 0.024 0.000
#> GSM601753     4  0.4123     0.8623 0.000 0.420 0.000 0.568 0.000 0.012
#> GSM601783     1  0.2541     0.8218 0.892 0.000 0.008 0.008 0.028 0.064
#> GSM601793     6  0.4722     0.7794 0.056 0.000 0.012 0.148 0.040 0.744
#> GSM601798     4  0.4032     0.8620 0.000 0.420 0.000 0.572 0.000 0.008
#> GSM601828     1  0.2979     0.7899 0.876 0.000 0.016 0.052 0.036 0.020
#> GSM601838     5  0.3154     0.9601 0.000 0.184 0.012 0.004 0.800 0.000
#> GSM601843     2  0.0665     0.8168 0.000 0.980 0.008 0.004 0.008 0.000
#> GSM601858     2  0.2006     0.7823 0.004 0.928 0.016 0.012 0.032 0.008
#> GSM601868     3  0.4086     0.6695 0.256 0.000 0.708 0.008 0.028 0.000
#> GSM601748     1  0.1414     0.8218 0.952 0.000 0.012 0.012 0.004 0.020
#> GSM601758     1  0.2313     0.8078 0.884 0.000 0.000 0.004 0.012 0.100
#> GSM601763     2  0.5249     0.2221 0.076 0.540 0.004 0.004 0.000 0.376
#> GSM601768     2  0.0291     0.8134 0.000 0.992 0.000 0.004 0.000 0.004
#> GSM601773     2  0.0520     0.8160 0.000 0.984 0.000 0.000 0.008 0.008
#> GSM601778     6  0.4123     0.7530 0.004 0.004 0.028 0.192 0.016 0.756
#> GSM601788     2  0.4640     0.5221 0.000 0.744 0.100 0.124 0.004 0.028
#> GSM601803     4  0.4415     0.8610 0.000 0.420 0.004 0.556 0.000 0.020
#> GSM601808     3  0.3720     0.6940 0.208 0.000 0.760 0.012 0.020 0.000
#> GSM601813     1  0.1338     0.8281 0.952 0.000 0.004 0.004 0.008 0.032
#> GSM601818     1  0.2613     0.7671 0.892 0.000 0.060 0.016 0.012 0.020
#> GSM601823     6  0.2362     0.8029 0.136 0.000 0.000 0.000 0.004 0.860
#> GSM601833     2  0.0436     0.8168 0.000 0.988 0.004 0.000 0.004 0.004
#> GSM601848     6  0.2544     0.8026 0.140 0.000 0.000 0.004 0.004 0.852
#> GSM601853     3  0.5560     0.6586 0.256 0.000 0.632 0.052 0.044 0.016
#> GSM601863     3  0.4633     0.3818 0.468 0.000 0.500 0.008 0.024 0.000
#> GSM601754     4  0.4633     0.8466 0.000 0.392 0.004 0.568 0.000 0.036
#> GSM601784     2  0.2933     0.6036 0.000 0.796 0.000 0.000 0.200 0.004
#> GSM601794     6  0.4774     0.7791 0.056 0.000 0.016 0.144 0.040 0.744
#> GSM601799     4  0.4666     0.8373 0.000 0.388 0.000 0.564 0.000 0.048
#> GSM601829     6  0.5218     0.7594 0.092 0.000 0.012 0.120 0.060 0.716
#> GSM601839     5  0.3154     0.9601 0.000 0.184 0.012 0.004 0.800 0.000
#> GSM601844     6  0.4288     0.7912 0.116 0.000 0.012 0.040 0.048 0.784
#> GSM601859     2  0.0436     0.8131 0.004 0.988 0.000 0.004 0.000 0.004
#> GSM601869     3  0.5043     0.3596 0.464 0.000 0.480 0.016 0.040 0.000
#> GSM601749     1  0.2737     0.8059 0.868 0.000 0.000 0.012 0.024 0.096
#> GSM601759     1  0.2405     0.8075 0.880 0.000 0.000 0.004 0.016 0.100
#> GSM601764     6  0.4469     0.7288 0.132 0.116 0.000 0.004 0.008 0.740
#> GSM601769     5  0.3659     0.9605 0.000 0.224 0.000 0.012 0.752 0.012
#> GSM601774     2  0.1332     0.7978 0.000 0.952 0.000 0.008 0.028 0.012
#> GSM601779     6  0.2442     0.8000 0.144 0.000 0.000 0.000 0.004 0.852
#> GSM601789     2  0.4591    -0.2494 0.000 0.552 0.012 0.008 0.420 0.008
#> GSM601804     4  0.5646     0.3015 0.000 0.140 0.004 0.500 0.000 0.356
#> GSM601809     3  0.6360     0.5686 0.308 0.012 0.552 0.060 0.024 0.044
#> GSM601814     5  0.3535     0.9652 0.000 0.220 0.000 0.012 0.760 0.008
#> GSM601819     1  0.3258     0.7889 0.832 0.000 0.000 0.016 0.032 0.120
#> GSM601824     6  0.3492     0.7890 0.048 0.084 0.000 0.028 0.004 0.836
#> GSM601834     2  0.0748     0.8139 0.000 0.976 0.004 0.000 0.016 0.004
#> GSM601849     6  0.2615     0.8044 0.136 0.000 0.000 0.008 0.004 0.852
#> GSM601854     1  0.3155     0.8068 0.864 0.000 0.008 0.032 0.040 0.056
#> GSM601864     5  0.3559     0.9519 0.000 0.180 0.016 0.012 0.788 0.004
#> GSM601755     4  0.4039     0.8606 0.000 0.424 0.000 0.568 0.000 0.008
#> GSM601785     2  0.1159     0.7997 0.004 0.964 0.004 0.012 0.004 0.012
#> GSM601795     6  0.4636     0.7634 0.032 0.000 0.016 0.172 0.040 0.740
#> GSM601800     4  0.4199     0.8633 0.000 0.416 0.000 0.568 0.000 0.016
#> GSM601830     3  0.6211     0.5714 0.024 0.000 0.600 0.232 0.080 0.064
#> GSM601840     2  0.4044     0.5579 0.008 0.796 0.012 0.124 0.008 0.052
#> GSM601845     2  0.5067     0.4605 0.004 0.696 0.012 0.052 0.028 0.208
#> GSM601860     2  0.1476     0.7864 0.004 0.948 0.012 0.008 0.000 0.028
#> GSM601870     3  0.5346     0.5909 0.004 0.000 0.676 0.180 0.096 0.044
#> GSM601750     1  0.1802     0.8279 0.932 0.000 0.000 0.020 0.024 0.024
#> GSM601760     1  0.2925     0.7686 0.832 0.000 0.000 0.004 0.016 0.148
#> GSM601765     2  0.0551     0.8167 0.000 0.984 0.004 0.004 0.008 0.000
#> GSM601770     2  0.0405     0.8164 0.000 0.988 0.000 0.000 0.004 0.008
#> GSM601775     2  0.4372     0.4635 0.008 0.748 0.004 0.140 0.000 0.100
#> GSM601780     6  0.2482     0.7988 0.148 0.000 0.000 0.000 0.004 0.848
#> GSM601790     5  0.3081     0.9658 0.000 0.220 0.000 0.004 0.776 0.000
#> GSM601805     4  0.4481     0.8626 0.000 0.416 0.004 0.556 0.000 0.024
#> GSM601810     3  0.5190     0.6215 0.308 0.000 0.616 0.044 0.020 0.012
#> GSM601815     5  0.3426     0.9666 0.000 0.220 0.000 0.012 0.764 0.004
#> GSM601820     1  0.2515     0.8179 0.888 0.000 0.000 0.016 0.024 0.072
#> GSM601825     4  0.3986     0.8022 0.000 0.464 0.000 0.532 0.000 0.004
#> GSM601835     2  0.0881     0.8139 0.000 0.972 0.008 0.012 0.008 0.000
#> GSM601850     6  0.3663     0.8045 0.052 0.016 0.004 0.092 0.008 0.828
#> GSM601855     3  0.5323     0.6187 0.024 0.000 0.696 0.176 0.060 0.044
#> GSM601865     5  0.3592     0.9552 0.000 0.184 0.016 0.012 0.784 0.004
#> GSM601756     4  0.4039     0.8606 0.000 0.424 0.000 0.568 0.000 0.008
#> GSM601786     5  0.3776     0.9650 0.000 0.208 0.004 0.016 0.760 0.012
#> GSM601796     6  0.4831     0.7784 0.060 0.000 0.016 0.144 0.040 0.740
#> GSM601801     4  0.3810     0.8515 0.000 0.428 0.000 0.572 0.000 0.000
#> GSM601831     1  0.4893     0.6353 0.756 0.000 0.096 0.056 0.060 0.032
#> GSM601841     1  0.6459     0.0419 0.432 0.000 0.148 0.020 0.016 0.384
#> GSM601846     6  0.8348     0.1884 0.008 0.168 0.108 0.296 0.072 0.348
#> GSM601861     5  0.3426     0.9666 0.000 0.220 0.000 0.012 0.764 0.004
#> GSM601871     3  0.3116     0.6529 0.008 0.000 0.852 0.036 0.096 0.008
#> GSM601751     2  0.4240     0.4564 0.008 0.756 0.012 0.172 0.000 0.052
#> GSM601761     6  0.3608     0.6926 0.248 0.000 0.000 0.004 0.012 0.736
#> GSM601766     2  0.3555     0.5817 0.024 0.796 0.004 0.004 0.004 0.168
#> GSM601771     2  0.2180     0.7406 0.004 0.912 0.008 0.048 0.000 0.028
#> GSM601776     6  0.2845     0.7826 0.172 0.000 0.000 0.004 0.004 0.820
#> GSM601781     6  0.4186     0.7781 0.020 0.012 0.012 0.168 0.016 0.772
#> GSM601791     6  0.3030     0.7827 0.168 0.000 0.000 0.008 0.008 0.816
#> GSM601806     4  0.4794     0.8175 0.000 0.424 0.004 0.536 0.028 0.008
#> GSM601811     3  0.5089     0.6422 0.284 0.000 0.640 0.044 0.020 0.012
#> GSM601816     6  0.2858     0.8119 0.096 0.000 0.004 0.028 0.008 0.864
#> GSM601821     5  0.3426     0.9666 0.000 0.220 0.000 0.012 0.764 0.004
#> GSM601826     6  0.2402     0.8013 0.140 0.000 0.000 0.000 0.004 0.856
#> GSM601836     6  0.6238     0.4568 0.108 0.296 0.008 0.032 0.008 0.548
#> GSM601851     6  0.2662     0.7945 0.152 0.000 0.000 0.004 0.004 0.840
#> GSM601856     3  0.4614     0.6951 0.180 0.000 0.736 0.036 0.036 0.012
#> GSM601866     1  0.1483     0.8043 0.944 0.000 0.036 0.000 0.012 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n time(p) gender(p) k
#> SD:kmeans 118   0.689     0.130 2
#> SD:kmeans  89   0.245     0.524 3
#> SD:kmeans  80   0.667     0.184 4
#> SD:kmeans 114   0.232     0.430 5
#> SD:kmeans 111   0.771     0.191 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 125 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.900           0.927       0.970         0.5039 0.496   0.496
#> 3 3 0.591           0.754       0.861         0.3054 0.781   0.586
#> 4 4 0.525           0.616       0.780         0.1274 0.855   0.609
#> 5 5 0.564           0.510       0.704         0.0645 0.948   0.806
#> 6 6 0.588           0.437       0.637         0.0410 0.926   0.710

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM601752     2  0.0000      0.963 0.000 1.000
#> GSM601782     1  0.0000      0.972 1.000 0.000
#> GSM601792     1  0.0000      0.972 1.000 0.000
#> GSM601797     2  0.9460      0.436 0.364 0.636
#> GSM601827     1  0.0000      0.972 1.000 0.000
#> GSM601837     2  0.0000      0.963 0.000 1.000
#> GSM601842     2  0.0000      0.963 0.000 1.000
#> GSM601857     1  0.0000      0.972 1.000 0.000
#> GSM601867     2  0.8443      0.629 0.272 0.728
#> GSM601747     1  0.0000      0.972 1.000 0.000
#> GSM601757     1  0.0000      0.972 1.000 0.000
#> GSM601762     2  0.0000      0.963 0.000 1.000
#> GSM601767     2  0.0000      0.963 0.000 1.000
#> GSM601772     2  0.0000      0.963 0.000 1.000
#> GSM601777     1  0.5178      0.854 0.884 0.116
#> GSM601787     2  0.1184      0.952 0.016 0.984
#> GSM601802     2  0.0000      0.963 0.000 1.000
#> GSM601807     1  0.9635      0.357 0.612 0.388
#> GSM601812     1  0.0000      0.972 1.000 0.000
#> GSM601817     1  0.0000      0.972 1.000 0.000
#> GSM601822     1  0.5946      0.816 0.856 0.144
#> GSM601832     2  0.0000      0.963 0.000 1.000
#> GSM601847     2  0.3431      0.910 0.064 0.936
#> GSM601852     1  0.0000      0.972 1.000 0.000
#> GSM601862     1  0.0000      0.972 1.000 0.000
#> GSM601753     2  0.0000      0.963 0.000 1.000
#> GSM601783     1  0.0000      0.972 1.000 0.000
#> GSM601793     1  0.0000      0.972 1.000 0.000
#> GSM601798     2  0.0000      0.963 0.000 1.000
#> GSM601828     1  0.0000      0.972 1.000 0.000
#> GSM601838     2  0.0000      0.963 0.000 1.000
#> GSM601843     2  0.0000      0.963 0.000 1.000
#> GSM601858     2  0.0000      0.963 0.000 1.000
#> GSM601868     1  0.0000      0.972 1.000 0.000
#> GSM601748     1  0.0000      0.972 1.000 0.000
#> GSM601758     1  0.0000      0.972 1.000 0.000
#> GSM601763     1  0.9933      0.137 0.548 0.452
#> GSM601768     2  0.0000      0.963 0.000 1.000
#> GSM601773     2  0.0000      0.963 0.000 1.000
#> GSM601778     1  0.0000      0.972 1.000 0.000
#> GSM601788     2  0.0376      0.960 0.004 0.996
#> GSM601803     2  0.0000      0.963 0.000 1.000
#> GSM601808     1  0.0000      0.972 1.000 0.000
#> GSM601813     1  0.0000      0.972 1.000 0.000
#> GSM601818     1  0.0000      0.972 1.000 0.000
#> GSM601823     1  0.0000      0.972 1.000 0.000
#> GSM601833     2  0.0000      0.963 0.000 1.000
#> GSM601848     1  0.0000      0.972 1.000 0.000
#> GSM601853     1  0.0000      0.972 1.000 0.000
#> GSM601863     1  0.0000      0.972 1.000 0.000
#> GSM601754     2  0.0000      0.963 0.000 1.000
#> GSM601784     2  0.0000      0.963 0.000 1.000
#> GSM601794     1  0.0000      0.972 1.000 0.000
#> GSM601799     2  0.0000      0.963 0.000 1.000
#> GSM601829     1  0.0000      0.972 1.000 0.000
#> GSM601839     2  0.0000      0.963 0.000 1.000
#> GSM601844     1  0.0000      0.972 1.000 0.000
#> GSM601859     2  0.0000      0.963 0.000 1.000
#> GSM601869     1  0.0000      0.972 1.000 0.000
#> GSM601749     1  0.0000      0.972 1.000 0.000
#> GSM601759     1  0.0000      0.972 1.000 0.000
#> GSM601764     1  0.0000      0.972 1.000 0.000
#> GSM601769     2  0.0000      0.963 0.000 1.000
#> GSM601774     2  0.0000      0.963 0.000 1.000
#> GSM601779     1  0.0000      0.972 1.000 0.000
#> GSM601789     2  0.0000      0.963 0.000 1.000
#> GSM601804     2  0.1843      0.942 0.028 0.972
#> GSM601809     1  0.0938      0.962 0.988 0.012
#> GSM601814     2  0.0000      0.963 0.000 1.000
#> GSM601819     1  0.0000      0.972 1.000 0.000
#> GSM601824     2  0.9661      0.372 0.392 0.608
#> GSM601834     2  0.0000      0.963 0.000 1.000
#> GSM601849     1  0.0000      0.972 1.000 0.000
#> GSM601854     1  0.0000      0.972 1.000 0.000
#> GSM601864     2  0.0000      0.963 0.000 1.000
#> GSM601755     2  0.0000      0.963 0.000 1.000
#> GSM601785     2  0.0000      0.963 0.000 1.000
#> GSM601795     1  0.0000      0.972 1.000 0.000
#> GSM601800     2  0.0000      0.963 0.000 1.000
#> GSM601830     1  0.5294      0.847 0.880 0.120
#> GSM601840     2  0.0000      0.963 0.000 1.000
#> GSM601845     2  0.7453      0.733 0.212 0.788
#> GSM601860     2  0.0000      0.963 0.000 1.000
#> GSM601870     1  0.9710      0.324 0.600 0.400
#> GSM601750     1  0.0000      0.972 1.000 0.000
#> GSM601760     1  0.0000      0.972 1.000 0.000
#> GSM601765     2  0.0000      0.963 0.000 1.000
#> GSM601770     2  0.0000      0.963 0.000 1.000
#> GSM601775     2  0.8144      0.669 0.252 0.748
#> GSM601780     1  0.0000      0.972 1.000 0.000
#> GSM601790     2  0.0000      0.963 0.000 1.000
#> GSM601805     2  0.0000      0.963 0.000 1.000
#> GSM601810     1  0.0000      0.972 1.000 0.000
#> GSM601815     2  0.0000      0.963 0.000 1.000
#> GSM601820     1  0.0000      0.972 1.000 0.000
#> GSM601825     2  0.0000      0.963 0.000 1.000
#> GSM601835     2  0.0000      0.963 0.000 1.000
#> GSM601850     1  0.0376      0.969 0.996 0.004
#> GSM601855     1  0.0000      0.972 1.000 0.000
#> GSM601865     2  0.0000      0.963 0.000 1.000
#> GSM601756     2  0.0000      0.963 0.000 1.000
#> GSM601786     2  0.0000      0.963 0.000 1.000
#> GSM601796     1  0.0000      0.972 1.000 0.000
#> GSM601801     2  0.0000      0.963 0.000 1.000
#> GSM601831     1  0.0000      0.972 1.000 0.000
#> GSM601841     1  0.0000      0.972 1.000 0.000
#> GSM601846     2  0.1184      0.952 0.016 0.984
#> GSM601861     2  0.0000      0.963 0.000 1.000
#> GSM601871     2  0.4815      0.868 0.104 0.896
#> GSM601751     2  0.4161      0.890 0.084 0.916
#> GSM601761     1  0.0000      0.972 1.000 0.000
#> GSM601766     2  0.8763      0.590 0.296 0.704
#> GSM601771     2  0.0000      0.963 0.000 1.000
#> GSM601776     1  0.0000      0.972 1.000 0.000
#> GSM601781     1  0.0376      0.969 0.996 0.004
#> GSM601791     1  0.0000      0.972 1.000 0.000
#> GSM601806     2  0.0000      0.963 0.000 1.000
#> GSM601811     1  0.0000      0.972 1.000 0.000
#> GSM601816     1  0.0000      0.972 1.000 0.000
#> GSM601821     2  0.0000      0.963 0.000 1.000
#> GSM601826     1  0.0000      0.972 1.000 0.000
#> GSM601836     1  0.0000      0.972 1.000 0.000
#> GSM601851     1  0.0000      0.972 1.000 0.000
#> GSM601856     1  0.0000      0.972 1.000 0.000
#> GSM601866     1  0.0000      0.972 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM601752     2  0.5291    0.74446 0.268 0.732 0.000
#> GSM601782     3  0.2711    0.80606 0.088 0.000 0.912
#> GSM601792     1  0.1860    0.78391 0.948 0.000 0.052
#> GSM601797     1  0.8821    0.38155 0.580 0.188 0.232
#> GSM601827     3  0.4002    0.75907 0.160 0.000 0.840
#> GSM601837     2  0.0237    0.91416 0.004 0.996 0.000
#> GSM601842     2  0.0237    0.91416 0.004 0.996 0.000
#> GSM601857     3  0.0424    0.81737 0.008 0.000 0.992
#> GSM601867     3  0.4465    0.66230 0.004 0.176 0.820
#> GSM601747     3  0.5318    0.71409 0.204 0.016 0.780
#> GSM601757     3  0.3619    0.78195 0.136 0.000 0.864
#> GSM601762     2  0.0237    0.91416 0.004 0.996 0.000
#> GSM601767     2  0.0000    0.91466 0.000 1.000 0.000
#> GSM601772     2  0.0000    0.91466 0.000 1.000 0.000
#> GSM601777     1  0.7487    0.22462 0.552 0.040 0.408
#> GSM601787     3  0.5378    0.59308 0.008 0.236 0.756
#> GSM601802     2  0.3941    0.85118 0.156 0.844 0.000
#> GSM601807     3  0.4914    0.69942 0.088 0.068 0.844
#> GSM601812     3  0.2537    0.80972 0.080 0.000 0.920
#> GSM601817     3  0.1643    0.81828 0.044 0.000 0.956
#> GSM601822     1  0.1585    0.76096 0.964 0.008 0.028
#> GSM601832     2  0.0237    0.91411 0.004 0.996 0.000
#> GSM601847     1  0.4345    0.64371 0.848 0.136 0.016
#> GSM601852     3  0.4346    0.74091 0.184 0.000 0.816
#> GSM601862     3  0.0237    0.81616 0.004 0.000 0.996
#> GSM601753     2  0.4002    0.84871 0.160 0.840 0.000
#> GSM601783     3  0.6045    0.40077 0.380 0.000 0.620
#> GSM601793     1  0.2959    0.78893 0.900 0.000 0.100
#> GSM601798     2  0.3941    0.85118 0.156 0.844 0.000
#> GSM601828     3  0.3412    0.78773 0.124 0.000 0.876
#> GSM601838     2  0.0237    0.91416 0.004 0.996 0.000
#> GSM601843     2  0.0237    0.91416 0.004 0.996 0.000
#> GSM601858     2  0.1129    0.90382 0.004 0.976 0.020
#> GSM601868     3  0.0000    0.81559 0.000 0.000 1.000
#> GSM601748     3  0.3116    0.79734 0.108 0.000 0.892
#> GSM601758     3  0.6235    0.23143 0.436 0.000 0.564
#> GSM601763     1  0.4164    0.79431 0.848 0.008 0.144
#> GSM601768     2  0.0000    0.91466 0.000 1.000 0.000
#> GSM601773     2  0.0000    0.91466 0.000 1.000 0.000
#> GSM601778     1  0.3941    0.72617 0.844 0.000 0.156
#> GSM601788     2  0.4194    0.86510 0.060 0.876 0.064
#> GSM601803     2  0.3879    0.85373 0.152 0.848 0.000
#> GSM601808     3  0.0000    0.81559 0.000 0.000 1.000
#> GSM601813     3  0.5363    0.62179 0.276 0.000 0.724
#> GSM601818     3  0.1031    0.81920 0.024 0.000 0.976
#> GSM601823     1  0.3752    0.79469 0.856 0.000 0.144
#> GSM601833     2  0.0000    0.91466 0.000 1.000 0.000
#> GSM601848     1  0.3816    0.79376 0.852 0.000 0.148
#> GSM601853     3  0.0000    0.81559 0.000 0.000 1.000
#> GSM601863     3  0.0747    0.81902 0.016 0.000 0.984
#> GSM601754     2  0.4887    0.78965 0.228 0.772 0.000
#> GSM601784     2  0.0000    0.91466 0.000 1.000 0.000
#> GSM601794     1  0.2261    0.78094 0.932 0.000 0.068
#> GSM601799     2  0.5706    0.67023 0.320 0.680 0.000
#> GSM601829     1  0.6140    0.44113 0.596 0.000 0.404
#> GSM601839     2  0.0237    0.91416 0.004 0.996 0.000
#> GSM601844     1  0.4750    0.73682 0.784 0.000 0.216
#> GSM601859     2  0.0000    0.91466 0.000 1.000 0.000
#> GSM601869     3  0.0892    0.81965 0.020 0.000 0.980
#> GSM601749     3  0.6215    0.25560 0.428 0.000 0.572
#> GSM601759     3  0.5785    0.51896 0.332 0.000 0.668
#> GSM601764     1  0.4110    0.79148 0.844 0.004 0.152
#> GSM601769     2  0.0000    0.91466 0.000 1.000 0.000
#> GSM601774     2  0.0000    0.91466 0.000 1.000 0.000
#> GSM601779     1  0.3619    0.79602 0.864 0.000 0.136
#> GSM601789     2  0.0237    0.91416 0.004 0.996 0.000
#> GSM601804     1  0.3340    0.66545 0.880 0.120 0.000
#> GSM601809     3  0.1751    0.81649 0.028 0.012 0.960
#> GSM601814     2  0.0000    0.91466 0.000 1.000 0.000
#> GSM601819     1  0.6308    0.03057 0.508 0.000 0.492
#> GSM601824     1  0.1774    0.76670 0.960 0.016 0.024
#> GSM601834     2  0.0000    0.91466 0.000 1.000 0.000
#> GSM601849     1  0.4002    0.78703 0.840 0.000 0.160
#> GSM601854     3  0.4974    0.67982 0.236 0.000 0.764
#> GSM601864     2  0.0237    0.91416 0.004 0.996 0.000
#> GSM601755     2  0.3879    0.85373 0.152 0.848 0.000
#> GSM601785     2  0.0592    0.91235 0.012 0.988 0.000
#> GSM601795     1  0.0592    0.75687 0.988 0.000 0.012
#> GSM601800     2  0.3941    0.85118 0.156 0.844 0.000
#> GSM601830     3  0.3234    0.75458 0.020 0.072 0.908
#> GSM601840     2  0.6231    0.74237 0.080 0.772 0.148
#> GSM601845     2  0.9030    0.00375 0.388 0.476 0.136
#> GSM601860     2  0.0424    0.91211 0.008 0.992 0.000
#> GSM601870     3  0.4110    0.68478 0.004 0.152 0.844
#> GSM601750     3  0.4346    0.74243 0.184 0.000 0.816
#> GSM601760     1  0.6274    0.18103 0.544 0.000 0.456
#> GSM601765     2  0.0000    0.91466 0.000 1.000 0.000
#> GSM601770     2  0.0000    0.91466 0.000 1.000 0.000
#> GSM601775     2  0.6935    0.52019 0.372 0.604 0.024
#> GSM601780     1  0.3816    0.79361 0.852 0.000 0.148
#> GSM601790     2  0.0237    0.91416 0.004 0.996 0.000
#> GSM601805     2  0.3879    0.85373 0.152 0.848 0.000
#> GSM601810     3  0.0000    0.81559 0.000 0.000 1.000
#> GSM601815     2  0.0237    0.91416 0.004 0.996 0.000
#> GSM601820     3  0.5621    0.56412 0.308 0.000 0.692
#> GSM601825     2  0.3551    0.86410 0.132 0.868 0.000
#> GSM601835     2  0.0424    0.91418 0.008 0.992 0.000
#> GSM601850     1  0.2066    0.78585 0.940 0.000 0.060
#> GSM601855     3  0.1620    0.79862 0.024 0.012 0.964
#> GSM601865     2  0.0237    0.91416 0.004 0.996 0.000
#> GSM601756     2  0.3879    0.85373 0.152 0.848 0.000
#> GSM601786     2  0.0237    0.91416 0.004 0.996 0.000
#> GSM601796     1  0.2711    0.78751 0.912 0.000 0.088
#> GSM601801     2  0.3879    0.85373 0.152 0.848 0.000
#> GSM601831     3  0.1289    0.81912 0.032 0.000 0.968
#> GSM601841     3  0.5733    0.49719 0.324 0.000 0.676
#> GSM601846     1  0.8499    0.05747 0.516 0.388 0.096
#> GSM601861     2  0.0000    0.91466 0.000 1.000 0.000
#> GSM601871     3  0.5517    0.55145 0.004 0.268 0.728
#> GSM601751     2  0.5020    0.80978 0.192 0.796 0.012
#> GSM601761     1  0.4178    0.77885 0.828 0.000 0.172
#> GSM601766     2  0.8310    0.00315 0.420 0.500 0.080
#> GSM601771     2  0.0592    0.91229 0.012 0.988 0.000
#> GSM601776     1  0.3941    0.79026 0.844 0.000 0.156
#> GSM601781     1  0.2772    0.77264 0.916 0.004 0.080
#> GSM601791     1  0.4121    0.78205 0.832 0.000 0.168
#> GSM601806     2  0.3619    0.86237 0.136 0.864 0.000
#> GSM601811     3  0.0000    0.81559 0.000 0.000 1.000
#> GSM601816     1  0.3551    0.79710 0.868 0.000 0.132
#> GSM601821     2  0.0000    0.91466 0.000 1.000 0.000
#> GSM601826     1  0.3941    0.78967 0.844 0.000 0.156
#> GSM601836     1  0.6345    0.43145 0.596 0.004 0.400
#> GSM601851     1  0.3941    0.78996 0.844 0.000 0.156
#> GSM601856     3  0.0000    0.81559 0.000 0.000 1.000
#> GSM601866     3  0.2066    0.81534 0.060 0.000 0.940

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM601752     4   0.322    0.79618 0.044 0.076 0.000 0.880
#> GSM601782     3   0.499    0.58404 0.288 0.000 0.692 0.020
#> GSM601792     1   0.466    0.63921 0.760 0.000 0.032 0.208
#> GSM601797     4   0.448    0.68238 0.124 0.024 0.032 0.820
#> GSM601827     3   0.509    0.50584 0.348 0.000 0.640 0.012
#> GSM601837     2   0.220    0.82340 0.000 0.928 0.024 0.048
#> GSM601842     2   0.384    0.82095 0.020 0.832 0.004 0.144
#> GSM601857     3   0.234    0.69513 0.080 0.000 0.912 0.008
#> GSM601867     3   0.537    0.52669 0.000 0.188 0.732 0.080
#> GSM601747     3   0.787    0.36565 0.328 0.144 0.500 0.028
#> GSM601757     3   0.472    0.55119 0.324 0.000 0.672 0.004
#> GSM601762     2   0.299    0.84638 0.016 0.880 0.000 0.104
#> GSM601767     2   0.361    0.81972 0.020 0.840 0.000 0.140
#> GSM601772     2   0.292    0.83827 0.016 0.884 0.000 0.100
#> GSM601777     4   0.825    0.21487 0.212 0.024 0.320 0.444
#> GSM601787     3   0.644    0.29107 0.000 0.340 0.576 0.084
#> GSM601802     4   0.310    0.80372 0.012 0.120 0.000 0.868
#> GSM601807     3   0.508    0.56289 0.004 0.100 0.776 0.120
#> GSM601812     3   0.481    0.55957 0.316 0.000 0.676 0.008
#> GSM601817     3   0.402    0.64659 0.224 0.000 0.772 0.004
#> GSM601822     1   0.553    0.19396 0.560 0.000 0.020 0.420
#> GSM601832     2   0.371    0.82050 0.024 0.836 0.000 0.140
#> GSM601847     4   0.492    0.49314 0.284 0.012 0.004 0.700
#> GSM601852     3   0.496    0.45374 0.380 0.000 0.616 0.004
#> GSM601862     3   0.182    0.69539 0.060 0.000 0.936 0.004
#> GSM601753     4   0.305    0.79251 0.004 0.136 0.000 0.860
#> GSM601783     1   0.524   -0.00794 0.556 0.000 0.436 0.008
#> GSM601793     1   0.544    0.64720 0.732 0.000 0.092 0.176
#> GSM601798     4   0.294    0.79930 0.004 0.128 0.000 0.868
#> GSM601828     3   0.466    0.52124 0.348 0.000 0.652 0.000
#> GSM601838     2   0.202    0.82686 0.000 0.936 0.024 0.040
#> GSM601843     2   0.316    0.83777 0.020 0.872 0.000 0.108
#> GSM601858     2   0.319    0.80373 0.004 0.888 0.052 0.056
#> GSM601868     3   0.183    0.69206 0.032 0.000 0.944 0.024
#> GSM601748     3   0.510    0.46768 0.380 0.000 0.612 0.008
#> GSM601758     1   0.502    0.24168 0.632 0.000 0.360 0.008
#> GSM601763     1   0.547    0.61312 0.748 0.052 0.020 0.180
#> GSM601768     2   0.355    0.82540 0.020 0.844 0.000 0.136
#> GSM601773     2   0.339    0.83354 0.016 0.852 0.000 0.132
#> GSM601778     1   0.719    0.34932 0.540 0.004 0.144 0.312
#> GSM601788     2   0.671    0.45500 0.008 0.620 0.112 0.260
#> GSM601803     4   0.307    0.78954 0.000 0.152 0.000 0.848
#> GSM601808     3   0.194    0.68875 0.032 0.000 0.940 0.028
#> GSM601813     3   0.517    0.19093 0.492 0.000 0.504 0.004
#> GSM601818     3   0.349    0.67536 0.172 0.000 0.824 0.004
#> GSM601823     1   0.202    0.70591 0.936 0.000 0.024 0.040
#> GSM601833     2   0.305    0.83821 0.016 0.876 0.000 0.108
#> GSM601848     1   0.182    0.70516 0.944 0.000 0.020 0.036
#> GSM601853     3   0.189    0.69315 0.044 0.000 0.940 0.016
#> GSM601863     3   0.289    0.69026 0.124 0.000 0.872 0.004
#> GSM601754     4   0.329    0.79694 0.044 0.080 0.000 0.876
#> GSM601784     2   0.227    0.84546 0.004 0.912 0.000 0.084
#> GSM601794     1   0.592    0.53803 0.656 0.000 0.072 0.272
#> GSM601799     4   0.331    0.79375 0.036 0.092 0.000 0.872
#> GSM601829     1   0.573    0.36864 0.616 0.000 0.344 0.040
#> GSM601839     2   0.220    0.82326 0.000 0.928 0.024 0.048
#> GSM601844     1   0.373    0.67617 0.848 0.000 0.108 0.044
#> GSM601859     2   0.345    0.81842 0.008 0.836 0.000 0.156
#> GSM601869     3   0.345    0.68355 0.156 0.000 0.836 0.008
#> GSM601749     1   0.492    0.31236 0.656 0.000 0.336 0.008
#> GSM601759     1   0.520    0.06669 0.576 0.000 0.416 0.008
#> GSM601764     1   0.305    0.69050 0.900 0.016 0.056 0.028
#> GSM601769     2   0.205    0.84695 0.008 0.928 0.000 0.064
#> GSM601774     2   0.292    0.83991 0.016 0.884 0.000 0.100
#> GSM601779     1   0.191    0.70591 0.940 0.000 0.020 0.040
#> GSM601789     2   0.163    0.83013 0.000 0.952 0.024 0.024
#> GSM601804     4   0.453    0.59750 0.240 0.016 0.000 0.744
#> GSM601809     3   0.585    0.61028 0.088 0.108 0.756 0.048
#> GSM601814     2   0.247    0.84031 0.000 0.908 0.012 0.080
#> GSM601819     1   0.462    0.42197 0.708 0.000 0.284 0.008
#> GSM601824     1   0.487    0.46561 0.684 0.012 0.000 0.304
#> GSM601834     2   0.287    0.84428 0.012 0.884 0.000 0.104
#> GSM601849     1   0.213    0.70607 0.932 0.000 0.036 0.032
#> GSM601854     3   0.517    0.20449 0.488 0.000 0.508 0.004
#> GSM601864     2   0.244    0.81858 0.000 0.916 0.024 0.060
#> GSM601755     4   0.276    0.79914 0.000 0.128 0.000 0.872
#> GSM601785     2   0.471    0.68841 0.020 0.732 0.000 0.248
#> GSM601795     1   0.560    0.07233 0.504 0.000 0.020 0.476
#> GSM601800     4   0.289    0.80087 0.004 0.124 0.000 0.872
#> GSM601830     3   0.325    0.65388 0.016 0.040 0.892 0.052
#> GSM601840     4   0.839    0.11900 0.044 0.388 0.160 0.408
#> GSM601845     2   0.877    0.23688 0.240 0.484 0.080 0.196
#> GSM601860     2   0.340    0.82591 0.004 0.856 0.012 0.128
#> GSM601870     3   0.476    0.56580 0.000 0.144 0.784 0.072
#> GSM601750     3   0.513    0.32331 0.448 0.000 0.548 0.004
#> GSM601760     1   0.459    0.42796 0.712 0.000 0.280 0.008
#> GSM601765     2   0.327    0.83329 0.024 0.868 0.000 0.108
#> GSM601770     2   0.339    0.83075 0.020 0.856 0.000 0.124
#> GSM601775     4   0.764    0.49920 0.212 0.224 0.016 0.548
#> GSM601780     1   0.183    0.70520 0.944 0.000 0.024 0.032
#> GSM601790     2   0.183    0.82978 0.000 0.944 0.024 0.032
#> GSM601805     4   0.320    0.80012 0.008 0.136 0.000 0.856
#> GSM601810     3   0.191    0.69007 0.040 0.000 0.940 0.020
#> GSM601815     2   0.189    0.83346 0.000 0.940 0.016 0.044
#> GSM601820     1   0.529   -0.13662 0.520 0.000 0.472 0.008
#> GSM601825     4   0.475    0.42346 0.000 0.368 0.000 0.632
#> GSM601835     2   0.439    0.81269 0.020 0.828 0.040 0.112
#> GSM601850     1   0.501    0.62100 0.748 0.004 0.040 0.208
#> GSM601855     3   0.294    0.64324 0.004 0.040 0.900 0.056
#> GSM601865     2   0.260    0.81172 0.000 0.908 0.024 0.068
#> GSM601756     4   0.276    0.79833 0.000 0.128 0.000 0.872
#> GSM601786     2   0.200    0.82698 0.000 0.936 0.020 0.044
#> GSM601796     1   0.603    0.60251 0.668 0.000 0.096 0.236
#> GSM601801     4   0.312    0.78852 0.000 0.156 0.000 0.844
#> GSM601831     3   0.340    0.67708 0.164 0.000 0.832 0.004
#> GSM601841     3   0.551    0.13852 0.484 0.000 0.500 0.016
#> GSM601846     4   0.824    0.51712 0.160 0.152 0.112 0.576
#> GSM601861     2   0.185    0.83681 0.000 0.940 0.012 0.048
#> GSM601871     3   0.646    0.29127 0.000 0.332 0.580 0.088
#> GSM601751     2   0.784   -0.08829 0.096 0.456 0.044 0.404
#> GSM601761     1   0.261    0.66835 0.896 0.000 0.096 0.008
#> GSM601766     2   0.811    0.30127 0.308 0.500 0.040 0.152
#> GSM601771     2   0.472    0.72752 0.008 0.752 0.016 0.224
#> GSM601776     1   0.259    0.68638 0.904 0.000 0.080 0.016
#> GSM601781     1   0.606    0.57952 0.696 0.012 0.084 0.208
#> GSM601791     1   0.214    0.69712 0.928 0.000 0.056 0.016
#> GSM601806     4   0.357    0.75009 0.000 0.196 0.000 0.804
#> GSM601811     3   0.192    0.68714 0.024 0.004 0.944 0.028
#> GSM601816     1   0.240    0.70359 0.920 0.000 0.032 0.048
#> GSM601821     2   0.225    0.83779 0.000 0.920 0.012 0.068
#> GSM601826     1   0.194    0.70547 0.940 0.000 0.028 0.032
#> GSM601836     1   0.654    0.52447 0.672 0.028 0.216 0.084
#> GSM601851     1   0.203    0.70531 0.936 0.000 0.036 0.028
#> GSM601856     3   0.162    0.68964 0.028 0.000 0.952 0.020
#> GSM601866     3   0.469    0.60756 0.276 0.000 0.712 0.012

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM601752     4  0.0968    0.76850 0.012 0.012 0.000 0.972 0.004
#> GSM601782     3  0.5149    0.54016 0.216 0.000 0.680 0.000 0.104
#> GSM601792     1  0.5769    0.60182 0.692 0.000 0.048 0.112 0.148
#> GSM601797     4  0.4325    0.65395 0.076 0.000 0.020 0.796 0.108
#> GSM601827     3  0.6291    0.40402 0.280 0.000 0.544 0.004 0.172
#> GSM601837     2  0.2408    0.70289 0.000 0.892 0.000 0.016 0.092
#> GSM601842     2  0.4986    0.63219 0.000 0.688 0.000 0.084 0.228
#> GSM601857     3  0.3687    0.57689 0.028 0.000 0.792 0.000 0.180
#> GSM601867     3  0.6569   -0.10677 0.000 0.156 0.432 0.008 0.404
#> GSM601747     3  0.8012    0.25838 0.216 0.076 0.484 0.024 0.200
#> GSM601757     3  0.5192    0.47639 0.280 0.000 0.644 0.000 0.076
#> GSM601762     2  0.3888    0.71339 0.000 0.800 0.000 0.064 0.136
#> GSM601767     2  0.4237    0.69762 0.000 0.772 0.000 0.076 0.152
#> GSM601772     2  0.4555    0.67317 0.000 0.732 0.000 0.068 0.200
#> GSM601777     4  0.9105   -0.16980 0.188 0.032 0.204 0.296 0.280
#> GSM601787     5  0.7193    0.31964 0.000 0.324 0.288 0.016 0.372
#> GSM601802     4  0.1282    0.77433 0.000 0.044 0.000 0.952 0.004
#> GSM601807     3  0.6131    0.14766 0.000 0.052 0.492 0.036 0.420
#> GSM601812     3  0.4707    0.56508 0.212 0.000 0.716 0.000 0.072
#> GSM601817     3  0.4078    0.59898 0.148 0.000 0.784 0.000 0.068
#> GSM601822     1  0.6504    0.39344 0.584 0.004 0.024 0.248 0.140
#> GSM601832     2  0.5805    0.52407 0.004 0.596 0.000 0.112 0.288
#> GSM601847     4  0.5705    0.42362 0.300 0.008 0.000 0.604 0.088
#> GSM601852     3  0.4836    0.44386 0.304 0.000 0.652 0.000 0.044
#> GSM601862     3  0.3513    0.55863 0.020 0.000 0.800 0.000 0.180
#> GSM601753     4  0.2234    0.75900 0.004 0.044 0.000 0.916 0.036
#> GSM601783     3  0.5405    0.04991 0.460 0.000 0.484 0.000 0.056
#> GSM601793     1  0.6014    0.61290 0.684 0.000 0.088 0.104 0.124
#> GSM601798     4  0.1725    0.77387 0.000 0.044 0.000 0.936 0.020
#> GSM601828     3  0.4795    0.52930 0.224 0.000 0.704 0.000 0.072
#> GSM601838     2  0.2390    0.70541 0.000 0.896 0.000 0.020 0.084
#> GSM601843     2  0.4031    0.69062 0.000 0.772 0.000 0.044 0.184
#> GSM601858     2  0.4477    0.62718 0.000 0.764 0.036 0.024 0.176
#> GSM601868     3  0.3835    0.52417 0.008 0.000 0.732 0.000 0.260
#> GSM601748     3  0.4451    0.50482 0.248 0.000 0.712 0.000 0.040
#> GSM601758     1  0.4878    0.06740 0.536 0.000 0.440 0.000 0.024
#> GSM601763     1  0.8261    0.31189 0.480 0.064 0.100 0.092 0.264
#> GSM601768     2  0.5342    0.61709 0.004 0.664 0.000 0.096 0.236
#> GSM601773     2  0.4123    0.70930 0.000 0.788 0.000 0.108 0.104
#> GSM601778     1  0.7351    0.38269 0.540 0.000 0.108 0.192 0.160
#> GSM601788     2  0.7232    0.16994 0.012 0.528 0.036 0.240 0.184
#> GSM601803     4  0.1768    0.76438 0.000 0.072 0.000 0.924 0.004
#> GSM601808     3  0.3487    0.53520 0.008 0.000 0.780 0.000 0.212
#> GSM601813     3  0.5182    0.24833 0.412 0.000 0.544 0.000 0.044
#> GSM601818     3  0.3758    0.61915 0.096 0.000 0.816 0.000 0.088
#> GSM601823     1  0.1843    0.67033 0.932 0.000 0.008 0.008 0.052
#> GSM601833     2  0.4555    0.67001 0.000 0.732 0.000 0.068 0.200
#> GSM601848     1  0.1267    0.67144 0.960 0.000 0.004 0.012 0.024
#> GSM601853     3  0.3318    0.55732 0.008 0.000 0.800 0.000 0.192
#> GSM601863     3  0.4266    0.61259 0.104 0.000 0.776 0.000 0.120
#> GSM601754     4  0.1721    0.76849 0.016 0.020 0.000 0.944 0.020
#> GSM601784     2  0.2654    0.73519 0.000 0.888 0.000 0.064 0.048
#> GSM601794     1  0.6779    0.52236 0.588 0.000 0.060 0.192 0.160
#> GSM601799     4  0.2747    0.73860 0.036 0.020 0.000 0.896 0.048
#> GSM601829     1  0.6434    0.31352 0.524 0.000 0.276 0.004 0.196
#> GSM601839     2  0.2351    0.70447 0.000 0.896 0.000 0.016 0.088
#> GSM601844     1  0.5708    0.54561 0.660 0.000 0.180 0.012 0.148
#> GSM601859     2  0.4686    0.65783 0.000 0.736 0.000 0.160 0.104
#> GSM601869     3  0.4845    0.60987 0.128 0.000 0.724 0.000 0.148
#> GSM601749     1  0.5088    0.05904 0.528 0.000 0.436 0.000 0.036
#> GSM601759     3  0.4826    0.08070 0.472 0.000 0.508 0.000 0.020
#> GSM601764     1  0.4874    0.62013 0.744 0.008 0.088 0.004 0.156
#> GSM601769     2  0.2067    0.73241 0.000 0.920 0.000 0.032 0.048
#> GSM601774     2  0.3669    0.72018 0.000 0.816 0.000 0.056 0.128
#> GSM601779     1  0.1651    0.67049 0.944 0.000 0.012 0.008 0.036
#> GSM601789     2  0.2338    0.70634 0.000 0.884 0.000 0.004 0.112
#> GSM601804     4  0.3953    0.63054 0.188 0.008 0.000 0.780 0.024
#> GSM601809     3  0.7277    0.37308 0.108 0.100 0.540 0.004 0.248
#> GSM601814     2  0.1942    0.72627 0.000 0.920 0.000 0.068 0.012
#> GSM601819     1  0.5401    0.13341 0.536 0.000 0.404 0.000 0.060
#> GSM601824     1  0.5042    0.54551 0.724 0.012 0.000 0.168 0.096
#> GSM601834     2  0.3437    0.72361 0.000 0.832 0.000 0.048 0.120
#> GSM601849     1  0.2930    0.66663 0.880 0.000 0.076 0.012 0.032
#> GSM601854     3  0.5142    0.28060 0.392 0.000 0.564 0.000 0.044
#> GSM601864     2  0.3209    0.66630 0.000 0.848 0.004 0.028 0.120
#> GSM601755     4  0.1043    0.77427 0.000 0.040 0.000 0.960 0.000
#> GSM601785     2  0.6018    0.52030 0.008 0.612 0.000 0.172 0.208
#> GSM601795     1  0.6776    0.13817 0.424 0.000 0.020 0.408 0.148
#> GSM601800     4  0.1780    0.77216 0.008 0.028 0.000 0.940 0.024
#> GSM601830     3  0.4564    0.39752 0.000 0.016 0.612 0.000 0.372
#> GSM601840     4  0.8935   -0.20518 0.040 0.256 0.112 0.336 0.256
#> GSM601845     5  0.8958    0.30854 0.132 0.256 0.096 0.104 0.412
#> GSM601860     2  0.4825    0.64129 0.020 0.756 0.000 0.092 0.132
#> GSM601870     3  0.5821    0.12210 0.000 0.080 0.492 0.004 0.424
#> GSM601750     3  0.4805    0.43282 0.312 0.000 0.648 0.000 0.040
#> GSM601760     1  0.4865    0.30084 0.616 0.000 0.356 0.008 0.020
#> GSM601765     2  0.4821    0.61109 0.004 0.680 0.000 0.044 0.272
#> GSM601770     2  0.4612    0.68347 0.000 0.736 0.000 0.084 0.180
#> GSM601775     4  0.8737    0.08053 0.140 0.148 0.052 0.440 0.220
#> GSM601780     1  0.1653    0.66989 0.944 0.000 0.024 0.004 0.028
#> GSM601790     2  0.1764    0.71250 0.000 0.928 0.000 0.008 0.064
#> GSM601805     4  0.1809    0.77146 0.000 0.060 0.000 0.928 0.012
#> GSM601810     3  0.3845    0.54314 0.024 0.000 0.768 0.000 0.208
#> GSM601815     2  0.2325    0.70932 0.000 0.904 0.000 0.028 0.068
#> GSM601820     3  0.5159    0.25586 0.400 0.000 0.556 0.000 0.044
#> GSM601825     4  0.5014    0.25833 0.000 0.368 0.000 0.592 0.040
#> GSM601835     2  0.5753    0.46378 0.000 0.584 0.008 0.084 0.324
#> GSM601850     1  0.5661    0.61390 0.720 0.008 0.048 0.108 0.116
#> GSM601855     3  0.4470    0.36812 0.000 0.012 0.616 0.000 0.372
#> GSM601865     2  0.2624    0.68315 0.000 0.872 0.000 0.012 0.116
#> GSM601756     4  0.1043    0.77435 0.000 0.040 0.000 0.960 0.000
#> GSM601786     2  0.2464    0.69648 0.000 0.888 0.000 0.016 0.096
#> GSM601796     1  0.7483    0.51925 0.528 0.000 0.128 0.188 0.156
#> GSM601801     4  0.1942    0.76569 0.000 0.068 0.000 0.920 0.012
#> GSM601831     3  0.4720    0.60501 0.124 0.000 0.736 0.000 0.140
#> GSM601841     1  0.6713    0.00757 0.448 0.000 0.404 0.028 0.120
#> GSM601846     5  0.8655    0.08059 0.104 0.124 0.060 0.312 0.400
#> GSM601861     2  0.1830    0.72027 0.000 0.932 0.000 0.028 0.040
#> GSM601871     5  0.7087    0.30708 0.000 0.296 0.296 0.012 0.396
#> GSM601751     2  0.8386   -0.10192 0.080 0.380 0.036 0.344 0.160
#> GSM601761     1  0.3283    0.63261 0.848 0.000 0.116 0.008 0.028
#> GSM601766     5  0.8619    0.13305 0.192 0.332 0.068 0.052 0.356
#> GSM601771     2  0.6123    0.41598 0.012 0.588 0.000 0.268 0.132
#> GSM601776     1  0.2838    0.66364 0.884 0.000 0.072 0.008 0.036
#> GSM601781     1  0.6960    0.49337 0.584 0.000 0.088 0.176 0.152
#> GSM601791     1  0.3065    0.65916 0.872 0.000 0.072 0.008 0.048
#> GSM601806     4  0.2280    0.73211 0.000 0.120 0.000 0.880 0.000
#> GSM601811     3  0.3855    0.52424 0.008 0.000 0.748 0.004 0.240
#> GSM601816     1  0.2291    0.66927 0.908 0.000 0.012 0.008 0.072
#> GSM601821     2  0.2300    0.71702 0.000 0.908 0.000 0.040 0.052
#> GSM601826     1  0.1329    0.67095 0.956 0.000 0.008 0.004 0.032
#> GSM601836     1  0.8510    0.23618 0.360 0.036 0.256 0.064 0.284
#> GSM601851     1  0.2067    0.66838 0.924 0.000 0.044 0.004 0.028
#> GSM601856     3  0.3534    0.50859 0.000 0.000 0.744 0.000 0.256
#> GSM601866     3  0.4468    0.53261 0.240 0.000 0.716 0.000 0.044

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM601752     4  0.1269     0.8113 0.000 0.020 0.012 0.956 0.012 0.000
#> GSM601782     1  0.5740     0.5085 0.648 0.088 0.144 0.000 0.000 0.120
#> GSM601792     6  0.6633     0.6034 0.084 0.108 0.124 0.068 0.000 0.616
#> GSM601797     4  0.4943     0.6863 0.004 0.096 0.112 0.736 0.004 0.048
#> GSM601827     1  0.6278     0.4740 0.580 0.052 0.192 0.008 0.000 0.168
#> GSM601837     5  0.2452     0.5731 0.000 0.028 0.084 0.004 0.884 0.000
#> GSM601842     5  0.5799     0.0872 0.000 0.436 0.040 0.072 0.452 0.000
#> GSM601857     1  0.4267     0.4045 0.692 0.044 0.260 0.000 0.000 0.004
#> GSM601867     3  0.6405     0.5138 0.200 0.036 0.536 0.008 0.220 0.000
#> GSM601747     1  0.8282     0.1840 0.428 0.236 0.144 0.024 0.064 0.104
#> GSM601757     1  0.4879     0.5842 0.692 0.024 0.084 0.000 0.000 0.200
#> GSM601762     5  0.5505     0.3614 0.000 0.320 0.028 0.080 0.572 0.000
#> GSM601767     5  0.5717     0.3238 0.000 0.336 0.028 0.096 0.540 0.000
#> GSM601772     5  0.5558     0.2473 0.000 0.392 0.032 0.064 0.512 0.000
#> GSM601777     3  0.9075     0.0595 0.088 0.124 0.320 0.216 0.040 0.212
#> GSM601787     3  0.6030     0.4156 0.112 0.032 0.452 0.000 0.404 0.000
#> GSM601802     4  0.1924     0.8141 0.000 0.028 0.012 0.928 0.028 0.004
#> GSM601807     3  0.6232     0.4832 0.212 0.036 0.612 0.032 0.104 0.004
#> GSM601812     1  0.5078     0.5845 0.696 0.036 0.144 0.000 0.000 0.124
#> GSM601817     1  0.4832     0.5508 0.724 0.064 0.164 0.004 0.000 0.044
#> GSM601822     6  0.6845     0.4901 0.012 0.140 0.160 0.140 0.000 0.548
#> GSM601832     2  0.5736     0.1810 0.000 0.552 0.032 0.096 0.320 0.000
#> GSM601847     4  0.6893     0.2186 0.000 0.112 0.088 0.460 0.012 0.328
#> GSM601852     1  0.4841     0.6028 0.716 0.048 0.068 0.000 0.000 0.168
#> GSM601862     1  0.3757     0.4116 0.712 0.008 0.272 0.000 0.000 0.008
#> GSM601753     4  0.2556     0.7869 0.000 0.076 0.012 0.884 0.028 0.000
#> GSM601783     1  0.5117     0.4227 0.608 0.024 0.056 0.000 0.000 0.312
#> GSM601793     6  0.7264     0.5543 0.148 0.088 0.132 0.084 0.000 0.548
#> GSM601798     4  0.1622     0.8113 0.000 0.028 0.016 0.940 0.016 0.000
#> GSM601828     1  0.4292     0.6061 0.764 0.024 0.092 0.000 0.000 0.120
#> GSM601838     5  0.1781     0.5823 0.000 0.008 0.060 0.008 0.924 0.000
#> GSM601843     5  0.5185     0.2867 0.000 0.392 0.016 0.056 0.536 0.000
#> GSM601858     5  0.4594     0.5043 0.012 0.152 0.092 0.008 0.736 0.000
#> GSM601868     1  0.4365     0.3314 0.636 0.024 0.332 0.000 0.000 0.008
#> GSM601748     1  0.4176     0.6109 0.772 0.024 0.076 0.000 0.000 0.128
#> GSM601758     1  0.4907     0.2457 0.532 0.024 0.024 0.000 0.000 0.420
#> GSM601763     6  0.7202     0.1772 0.084 0.384 0.056 0.028 0.024 0.424
#> GSM601768     5  0.6126     0.1458 0.000 0.412 0.044 0.088 0.452 0.004
#> GSM601773     5  0.5577     0.4080 0.000 0.256 0.024 0.120 0.600 0.000
#> GSM601778     6  0.7554     0.4340 0.060 0.100 0.156 0.168 0.004 0.512
#> GSM601788     5  0.7879     0.0754 0.024 0.132 0.192 0.160 0.468 0.024
#> GSM601803     4  0.2089     0.8078 0.000 0.020 0.020 0.916 0.044 0.000
#> GSM601808     1  0.4141     0.2714 0.596 0.016 0.388 0.000 0.000 0.000
#> GSM601813     1  0.5650     0.4546 0.580 0.048 0.072 0.000 0.000 0.300
#> GSM601818     1  0.4536     0.5717 0.748 0.044 0.140 0.000 0.000 0.068
#> GSM601823     6  0.3088     0.6617 0.044 0.064 0.032 0.000 0.000 0.860
#> GSM601833     5  0.5272     0.1937 0.000 0.420 0.016 0.060 0.504 0.000
#> GSM601848     6  0.2594     0.6602 0.056 0.036 0.020 0.000 0.000 0.888
#> GSM601853     1  0.4114     0.3055 0.628 0.008 0.356 0.000 0.000 0.008
#> GSM601863     1  0.4913     0.5038 0.680 0.028 0.224 0.000 0.000 0.068
#> GSM601754     4  0.2925     0.7988 0.000 0.048 0.032 0.880 0.024 0.016
#> GSM601784     5  0.4205     0.5458 0.000 0.144 0.032 0.056 0.768 0.000
#> GSM601794     6  0.8008     0.4362 0.072 0.116 0.208 0.176 0.000 0.428
#> GSM601799     4  0.3646     0.7534 0.000 0.092 0.032 0.828 0.008 0.040
#> GSM601829     6  0.7328     0.1680 0.260 0.072 0.268 0.012 0.000 0.388
#> GSM601839     5  0.2320     0.5791 0.000 0.024 0.080 0.004 0.892 0.000
#> GSM601844     6  0.7090     0.3487 0.276 0.112 0.108 0.020 0.000 0.484
#> GSM601859     5  0.5709     0.4526 0.000 0.208 0.060 0.104 0.628 0.000
#> GSM601869     1  0.4769     0.4920 0.696 0.020 0.220 0.004 0.000 0.060
#> GSM601749     1  0.4688     0.3016 0.572 0.028 0.012 0.000 0.000 0.388
#> GSM601759     1  0.4613     0.3870 0.608 0.020 0.020 0.000 0.000 0.352
#> GSM601764     6  0.6347     0.4844 0.172 0.228 0.048 0.004 0.000 0.548
#> GSM601769     5  0.3491     0.5564 0.000 0.148 0.008 0.040 0.804 0.000
#> GSM601774     5  0.5115     0.4623 0.000 0.260 0.028 0.068 0.644 0.000
#> GSM601779     6  0.2016     0.6594 0.040 0.024 0.016 0.000 0.000 0.920
#> GSM601789     5  0.3347     0.5661 0.000 0.104 0.068 0.004 0.824 0.000
#> GSM601804     4  0.5159     0.5211 0.000 0.048 0.040 0.652 0.004 0.256
#> GSM601809     1  0.8385    -0.1847 0.336 0.112 0.312 0.016 0.168 0.056
#> GSM601814     5  0.2322     0.5871 0.000 0.036 0.004 0.064 0.896 0.000
#> GSM601819     1  0.5785     0.1764 0.496 0.048 0.064 0.000 0.000 0.392
#> GSM601824     6  0.5580     0.5521 0.008 0.128 0.048 0.148 0.000 0.668
#> GSM601834     5  0.4694     0.4472 0.000 0.284 0.020 0.040 0.656 0.000
#> GSM601849     6  0.4034     0.6332 0.124 0.044 0.036 0.004 0.000 0.792
#> GSM601854     1  0.4761     0.5310 0.684 0.024 0.044 0.004 0.000 0.244
#> GSM601864     5  0.2834     0.5522 0.000 0.020 0.096 0.020 0.864 0.000
#> GSM601755     4  0.1426     0.8140 0.000 0.008 0.016 0.948 0.028 0.000
#> GSM601785     5  0.7261     0.0129 0.004 0.328 0.092 0.156 0.412 0.008
#> GSM601795     6  0.7651     0.2629 0.048 0.100 0.128 0.324 0.000 0.400
#> GSM601800     4  0.2345     0.8130 0.000 0.036 0.024 0.904 0.036 0.000
#> GSM601830     3  0.5824     0.2046 0.344 0.064 0.548 0.008 0.032 0.004
#> GSM601840     4  0.9354    -0.1385 0.100 0.200 0.152 0.304 0.188 0.056
#> GSM601845     2  0.7751     0.3993 0.056 0.528 0.144 0.048 0.164 0.060
#> GSM601860     5  0.6982     0.2964 0.028 0.224 0.088 0.072 0.564 0.024
#> GSM601870     3  0.5728     0.5018 0.220 0.020 0.588 0.000 0.172 0.000
#> GSM601750     1  0.4295     0.5682 0.740 0.032 0.036 0.000 0.000 0.192
#> GSM601760     6  0.5194    -0.0613 0.456 0.032 0.032 0.000 0.000 0.480
#> GSM601765     2  0.5314    -0.1187 0.000 0.492 0.028 0.036 0.440 0.004
#> GSM601770     5  0.5291     0.3305 0.000 0.364 0.028 0.052 0.556 0.000
#> GSM601775     2  0.8695     0.2321 0.052 0.376 0.104 0.276 0.076 0.116
#> GSM601780     6  0.2321     0.6546 0.052 0.040 0.008 0.000 0.000 0.900
#> GSM601790     5  0.1528     0.5871 0.000 0.016 0.048 0.000 0.936 0.000
#> GSM601805     4  0.2095     0.8119 0.000 0.028 0.016 0.916 0.040 0.000
#> GSM601810     1  0.4721     0.2957 0.592 0.020 0.364 0.000 0.000 0.024
#> GSM601815     5  0.1405     0.5930 0.000 0.004 0.024 0.024 0.948 0.000
#> GSM601820     1  0.4976     0.4670 0.640 0.036 0.040 0.000 0.000 0.284
#> GSM601825     4  0.5622     0.2995 0.000 0.096 0.024 0.588 0.288 0.004
#> GSM601835     2  0.6554     0.0167 0.000 0.412 0.112 0.064 0.408 0.004
#> GSM601850     6  0.7377     0.5297 0.092 0.124 0.104 0.140 0.000 0.540
#> GSM601855     3  0.4630     0.1300 0.404 0.028 0.560 0.000 0.008 0.000
#> GSM601865     5  0.2604     0.5562 0.000 0.028 0.096 0.004 0.872 0.000
#> GSM601756     4  0.1149     0.8131 0.000 0.008 0.008 0.960 0.024 0.000
#> GSM601786     5  0.2164     0.5779 0.000 0.028 0.056 0.008 0.908 0.000
#> GSM601796     6  0.7955     0.4861 0.144 0.096 0.156 0.140 0.000 0.464
#> GSM601801     4  0.1850     0.8088 0.000 0.016 0.008 0.924 0.052 0.000
#> GSM601831     1  0.4729     0.4950 0.716 0.032 0.200 0.008 0.000 0.044
#> GSM601841     1  0.7223     0.2906 0.456 0.056 0.164 0.036 0.000 0.288
#> GSM601846     3  0.8324    -0.0849 0.028 0.292 0.324 0.244 0.052 0.060
#> GSM601861     5  0.0862     0.5930 0.000 0.008 0.004 0.016 0.972 0.000
#> GSM601871     3  0.6232     0.3665 0.100 0.044 0.436 0.004 0.416 0.000
#> GSM601751     5  0.9061    -0.1269 0.036 0.192 0.144 0.200 0.336 0.092
#> GSM601761     6  0.3398     0.5415 0.216 0.004 0.012 0.000 0.000 0.768
#> GSM601766     2  0.7346     0.4300 0.048 0.580 0.076 0.044 0.136 0.116
#> GSM601771     5  0.7447     0.1655 0.008 0.240 0.096 0.176 0.464 0.016
#> GSM601776     6  0.3683     0.6190 0.124 0.040 0.028 0.000 0.000 0.808
#> GSM601781     6  0.7318     0.5529 0.092 0.108 0.160 0.084 0.004 0.552
#> GSM601791     6  0.3771     0.5946 0.164 0.032 0.020 0.000 0.000 0.784
#> GSM601806     4  0.2505     0.7836 0.000 0.008 0.020 0.880 0.092 0.000
#> GSM601811     1  0.5080     0.1920 0.544 0.048 0.392 0.000 0.000 0.016
#> GSM601816     6  0.3710     0.6586 0.044 0.060 0.076 0.000 0.000 0.820
#> GSM601821     5  0.1624     0.5922 0.000 0.012 0.008 0.044 0.936 0.000
#> GSM601826     6  0.3133     0.6586 0.072 0.040 0.032 0.000 0.000 0.856
#> GSM601836     2  0.8402    -0.2327 0.216 0.324 0.096 0.048 0.020 0.296
#> GSM601851     6  0.3054     0.6478 0.088 0.028 0.028 0.000 0.000 0.856
#> GSM601856     1  0.4380     0.1986 0.544 0.012 0.436 0.000 0.000 0.008
#> GSM601866     1  0.4312     0.6081 0.764 0.036 0.064 0.000 0.000 0.136

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n time(p) gender(p) k
#> SD:skmeans 120   0.638   0.09698 2
#> SD:skmeans 112   0.151   0.19094 3
#> SD:skmeans  95   0.169   0.04630 4
#> SD:skmeans  83   0.199   0.09821 5
#> SD:skmeans  60   0.242   0.00352 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 125 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.329           0.728       0.867         0.4986 0.496   0.496
#> 3 3 0.415           0.677       0.794         0.3153 0.750   0.539
#> 4 4 0.497           0.639       0.787         0.1016 0.898   0.716
#> 5 5 0.510           0.587       0.727         0.0453 0.967   0.887
#> 6 6 0.543           0.584       0.729         0.0339 0.956   0.834

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM601752     2  0.9996     0.0948 0.488 0.512
#> GSM601782     1  0.5519     0.8129 0.872 0.128
#> GSM601792     1  0.2236     0.8353 0.964 0.036
#> GSM601797     1  0.5178     0.8113 0.884 0.116
#> GSM601827     1  0.6048     0.7927 0.852 0.148
#> GSM601837     2  0.0000     0.8443 0.000 1.000
#> GSM601842     2  0.2948     0.8482 0.052 0.948
#> GSM601857     2  0.8386     0.6040 0.268 0.732
#> GSM601867     2  0.0000     0.8443 0.000 1.000
#> GSM601747     1  0.9815     0.2628 0.580 0.420
#> GSM601757     1  0.1843     0.8390 0.972 0.028
#> GSM601762     2  0.1633     0.8493 0.024 0.976
#> GSM601767     2  0.5059     0.8207 0.112 0.888
#> GSM601772     2  0.6887     0.7788 0.184 0.816
#> GSM601777     1  0.9983     0.0856 0.524 0.476
#> GSM601787     2  0.4298     0.8155 0.088 0.912
#> GSM601802     2  0.8443     0.6665 0.272 0.728
#> GSM601807     1  0.9970     0.3045 0.532 0.468
#> GSM601812     1  0.4562     0.8168 0.904 0.096
#> GSM601817     1  0.2043     0.8400 0.968 0.032
#> GSM601822     1  0.0000     0.8382 1.000 0.000
#> GSM601832     2  0.6973     0.7852 0.188 0.812
#> GSM601847     1  0.8267     0.6229 0.740 0.260
#> GSM601852     1  0.3431     0.8349 0.936 0.064
#> GSM601862     2  0.9358     0.4406 0.352 0.648
#> GSM601753     2  0.9552     0.4417 0.376 0.624
#> GSM601783     1  0.0000     0.8382 1.000 0.000
#> GSM601793     1  0.3114     0.8310 0.944 0.056
#> GSM601798     2  0.4022     0.8422 0.080 0.920
#> GSM601828     1  0.2603     0.8336 0.956 0.044
#> GSM601838     2  0.0000     0.8443 0.000 1.000
#> GSM601843     2  0.1633     0.8490 0.024 0.976
#> GSM601858     2  0.0000     0.8443 0.000 1.000
#> GSM601868     2  0.9998    -0.1633 0.492 0.508
#> GSM601748     1  0.0376     0.8388 0.996 0.004
#> GSM601758     1  0.0000     0.8382 1.000 0.000
#> GSM601763     1  0.2603     0.8310 0.956 0.044
#> GSM601768     2  0.6623     0.7953 0.172 0.828
#> GSM601773     2  0.5842     0.8112 0.140 0.860
#> GSM601778     1  0.3584     0.8219 0.932 0.068
#> GSM601788     1  0.9460     0.3978 0.636 0.364
#> GSM601803     2  0.9044     0.5614 0.320 0.680
#> GSM601808     1  0.9993     0.2078 0.516 0.484
#> GSM601813     1  0.1414     0.8386 0.980 0.020
#> GSM601818     1  0.7056     0.7653 0.808 0.192
#> GSM601823     1  0.0000     0.8382 1.000 0.000
#> GSM601833     2  0.0672     0.8472 0.008 0.992
#> GSM601848     1  0.0376     0.8386 0.996 0.004
#> GSM601853     1  0.5408     0.7986 0.876 0.124
#> GSM601863     1  0.8443     0.6450 0.728 0.272
#> GSM601754     2  0.9491     0.4595 0.368 0.632
#> GSM601784     2  0.4562     0.8398 0.096 0.904
#> GSM601794     1  0.6531     0.7338 0.832 0.168
#> GSM601799     1  0.9087     0.4616 0.676 0.324
#> GSM601829     1  0.0000     0.8382 1.000 0.000
#> GSM601839     2  0.0000     0.8443 0.000 1.000
#> GSM601844     1  0.0938     0.8381 0.988 0.012
#> GSM601859     2  0.2778     0.8497 0.048 0.952
#> GSM601869     1  0.9552     0.4577 0.624 0.376
#> GSM601749     1  0.0000     0.8382 1.000 0.000
#> GSM601759     1  0.0000     0.8382 1.000 0.000
#> GSM601764     1  0.0376     0.8391 0.996 0.004
#> GSM601769     2  0.1414     0.8496 0.020 0.980
#> GSM601774     2  0.4690     0.8306 0.100 0.900
#> GSM601779     1  0.0000     0.8382 1.000 0.000
#> GSM601789     2  0.1843     0.8460 0.028 0.972
#> GSM601804     1  0.7453     0.6701 0.788 0.212
#> GSM601809     2  0.5629     0.8186 0.132 0.868
#> GSM601814     2  0.0376     0.8456 0.004 0.996
#> GSM601819     1  0.5408     0.7822 0.876 0.124
#> GSM601824     1  0.0938     0.8381 0.988 0.012
#> GSM601834     2  0.2603     0.8495 0.044 0.956
#> GSM601849     1  0.0672     0.8384 0.992 0.008
#> GSM601854     1  0.0672     0.8390 0.992 0.008
#> GSM601864     2  0.0000     0.8443 0.000 1.000
#> GSM601755     2  0.4939     0.8277 0.108 0.892
#> GSM601785     2  0.4939     0.8250 0.108 0.892
#> GSM601795     2  0.8661     0.6779 0.288 0.712
#> GSM601800     2  0.3431     0.8429 0.064 0.936
#> GSM601830     1  0.6531     0.7752 0.832 0.168
#> GSM601840     2  0.1633     0.8479 0.024 0.976
#> GSM601845     1  0.6343     0.7620 0.840 0.160
#> GSM601860     2  0.2778     0.8461 0.048 0.952
#> GSM601870     2  0.6343     0.7392 0.160 0.840
#> GSM601750     1  0.4690     0.8105 0.900 0.100
#> GSM601760     1  0.8144     0.6225 0.748 0.252
#> GSM601765     2  0.9754     0.4114 0.408 0.592
#> GSM601770     2  0.0938     0.8483 0.012 0.988
#> GSM601775     1  0.9248     0.3926 0.660 0.340
#> GSM601780     1  0.0000     0.8382 1.000 0.000
#> GSM601790     2  0.0000     0.8443 0.000 1.000
#> GSM601805     2  0.1843     0.8507 0.028 0.972
#> GSM601810     1  0.4431     0.8127 0.908 0.092
#> GSM601815     2  0.0000     0.8443 0.000 1.000
#> GSM601820     1  0.4939     0.8017 0.892 0.108
#> GSM601825     2  0.6712     0.7911 0.176 0.824
#> GSM601835     2  0.1184     0.8459 0.016 0.984
#> GSM601850     1  0.5519     0.7816 0.872 0.128
#> GSM601855     1  0.8608     0.6673 0.716 0.284
#> GSM601865     2  0.2778     0.8426 0.048 0.952
#> GSM601756     2  0.5408     0.8173 0.124 0.876
#> GSM601786     2  0.0000     0.8443 0.000 1.000
#> GSM601796     2  0.9922     0.0988 0.448 0.552
#> GSM601801     2  0.1414     0.8493 0.020 0.980
#> GSM601831     1  0.2423     0.8372 0.960 0.040
#> GSM601841     1  0.9552     0.4611 0.624 0.376
#> GSM601846     1  0.3431     0.8282 0.936 0.064
#> GSM601861     2  0.0376     0.8455 0.004 0.996
#> GSM601871     2  0.2043     0.8464 0.032 0.968
#> GSM601751     2  0.6712     0.7770 0.176 0.824
#> GSM601761     1  0.0376     0.8391 0.996 0.004
#> GSM601766     2  0.9866     0.3398 0.432 0.568
#> GSM601771     2  0.4298     0.8424 0.088 0.912
#> GSM601776     1  0.0000     0.8382 1.000 0.000
#> GSM601781     1  0.8081     0.6460 0.752 0.248
#> GSM601791     1  0.8327     0.6114 0.736 0.264
#> GSM601806     2  0.4939     0.8216 0.108 0.892
#> GSM601811     2  0.7674     0.6687 0.224 0.776
#> GSM601816     1  0.0000     0.8382 1.000 0.000
#> GSM601821     2  0.0672     0.8465 0.008 0.992
#> GSM601826     1  0.0000     0.8382 1.000 0.000
#> GSM601836     1  0.9608     0.4512 0.616 0.384
#> GSM601851     1  0.0000     0.8382 1.000 0.000
#> GSM601856     2  0.9427     0.3533 0.360 0.640
#> GSM601866     1  0.9552     0.4729 0.624 0.376

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM601752     2  0.6375    0.57929 0.244 0.720 0.036
#> GSM601782     1  0.5305    0.81651 0.788 0.020 0.192
#> GSM601792     1  0.0747    0.85561 0.984 0.016 0.000
#> GSM601797     1  0.6337    0.64602 0.708 0.264 0.028
#> GSM601827     1  0.4802    0.83073 0.824 0.020 0.156
#> GSM601837     3  0.5859    0.54623 0.000 0.344 0.656
#> GSM601842     2  0.1337    0.74320 0.012 0.972 0.016
#> GSM601857     3  0.0475    0.72817 0.004 0.004 0.992
#> GSM601867     3  0.5948    0.51252 0.000 0.360 0.640
#> GSM601747     1  0.9083    0.48695 0.540 0.180 0.280
#> GSM601757     1  0.2165    0.84984 0.936 0.000 0.064
#> GSM601762     2  0.0592    0.73721 0.000 0.988 0.012
#> GSM601767     2  0.1337    0.74187 0.012 0.972 0.016
#> GSM601772     2  0.3590    0.73164 0.076 0.896 0.028
#> GSM601777     2  0.7433    0.57971 0.168 0.700 0.132
#> GSM601787     3  0.4663    0.71846 0.016 0.156 0.828
#> GSM601802     2  0.7474    0.56917 0.176 0.696 0.128
#> GSM601807     1  0.8786    0.25768 0.464 0.112 0.424
#> GSM601812     1  0.4346    0.82620 0.816 0.000 0.184
#> GSM601817     1  0.4291    0.82817 0.820 0.000 0.180
#> GSM601822     1  0.0000    0.85686 1.000 0.000 0.000
#> GSM601832     2  0.4615    0.68139 0.144 0.836 0.020
#> GSM601847     2  0.5835    0.45554 0.340 0.660 0.000
#> GSM601852     1  0.4861    0.82392 0.808 0.012 0.180
#> GSM601862     3  0.0237    0.72709 0.004 0.000 0.996
#> GSM601753     2  0.1643    0.74229 0.044 0.956 0.000
#> GSM601783     1  0.3879    0.83718 0.848 0.000 0.152
#> GSM601793     1  0.2959    0.82346 0.900 0.100 0.000
#> GSM601798     2  0.1905    0.74468 0.028 0.956 0.016
#> GSM601828     1  0.4291    0.82390 0.820 0.000 0.180
#> GSM601838     2  0.0747    0.73731 0.000 0.984 0.016
#> GSM601843     2  0.5760    0.40629 0.000 0.672 0.328
#> GSM601858     3  0.3752    0.71626 0.000 0.144 0.856
#> GSM601868     3  0.0747    0.72665 0.016 0.000 0.984
#> GSM601748     1  0.4291    0.82390 0.820 0.000 0.180
#> GSM601758     1  0.2261    0.85702 0.932 0.000 0.068
#> GSM601763     1  0.0000    0.85686 1.000 0.000 0.000
#> GSM601768     2  0.9392   -0.00729 0.172 0.436 0.392
#> GSM601773     2  0.2550    0.74331 0.056 0.932 0.012
#> GSM601778     1  0.3039    0.85123 0.920 0.044 0.036
#> GSM601788     1  0.5295    0.75442 0.808 0.156 0.036
#> GSM601803     2  0.2066    0.73990 0.060 0.940 0.000
#> GSM601808     3  0.2682    0.70943 0.076 0.004 0.920
#> GSM601813     1  0.4235    0.82639 0.824 0.000 0.176
#> GSM601818     1  0.4755    0.82385 0.808 0.008 0.184
#> GSM601823     1  0.0000    0.85686 1.000 0.000 0.000
#> GSM601833     2  0.4784    0.61715 0.004 0.796 0.200
#> GSM601848     1  0.0000    0.85686 1.000 0.000 0.000
#> GSM601853     1  0.4399    0.82212 0.812 0.000 0.188
#> GSM601863     3  0.5926    0.45096 0.356 0.000 0.644
#> GSM601754     2  0.6905    0.47800 0.044 0.676 0.280
#> GSM601784     3  0.6621    0.71982 0.148 0.100 0.752
#> GSM601794     1  0.4834    0.67035 0.792 0.204 0.004
#> GSM601799     2  0.6489    0.25988 0.456 0.540 0.004
#> GSM601829     1  0.0000    0.85686 1.000 0.000 0.000
#> GSM601839     2  0.3816    0.66905 0.000 0.852 0.148
#> GSM601844     1  0.1860    0.83569 0.948 0.000 0.052
#> GSM601859     3  0.6902    0.69981 0.100 0.168 0.732
#> GSM601869     3  0.1129    0.73017 0.020 0.004 0.976
#> GSM601749     1  0.1411    0.86011 0.964 0.000 0.036
#> GSM601759     1  0.1753    0.85727 0.952 0.000 0.048
#> GSM601764     1  0.0747    0.85374 0.984 0.000 0.016
#> GSM601769     2  0.7517    0.08273 0.040 0.540 0.420
#> GSM601774     2  0.2443    0.74129 0.028 0.940 0.032
#> GSM601779     1  0.0000    0.85686 1.000 0.000 0.000
#> GSM601789     3  0.7163    0.52984 0.040 0.332 0.628
#> GSM601804     1  0.6308   -0.14472 0.508 0.492 0.000
#> GSM601809     3  0.5719    0.73283 0.156 0.052 0.792
#> GSM601814     2  0.2945    0.71784 0.004 0.908 0.088
#> GSM601819     1  0.2400    0.82764 0.932 0.004 0.064
#> GSM601824     1  0.0000    0.85686 1.000 0.000 0.000
#> GSM601834     2  0.7741    0.35763 0.068 0.608 0.324
#> GSM601849     1  0.0000    0.85686 1.000 0.000 0.000
#> GSM601854     1  0.4002    0.83348 0.840 0.000 0.160
#> GSM601864     3  0.5254    0.64561 0.000 0.264 0.736
#> GSM601755     2  0.1647    0.74376 0.036 0.960 0.004
#> GSM601785     3  0.4805    0.72535 0.176 0.012 0.812
#> GSM601795     3  0.8868    0.51044 0.196 0.228 0.576
#> GSM601800     2  0.5269    0.60907 0.016 0.784 0.200
#> GSM601830     1  0.4589    0.82610 0.820 0.008 0.172
#> GSM601840     3  0.6744    0.57431 0.032 0.300 0.668
#> GSM601845     1  0.4235    0.75930 0.824 0.176 0.000
#> GSM601860     3  0.5307    0.74004 0.136 0.048 0.816
#> GSM601870     3  0.2261    0.71991 0.000 0.068 0.932
#> GSM601750     1  0.4555    0.81696 0.800 0.000 0.200
#> GSM601760     3  0.4887    0.70886 0.228 0.000 0.772
#> GSM601765     2  0.6322    0.58048 0.276 0.700 0.024
#> GSM601770     2  0.3989    0.68974 0.012 0.864 0.124
#> GSM601775     1  0.5179    0.73864 0.832 0.088 0.080
#> GSM601780     1  0.0000    0.85686 1.000 0.000 0.000
#> GSM601790     3  0.5650    0.58352 0.000 0.312 0.688
#> GSM601805     2  0.7299    0.19870 0.032 0.556 0.412
#> GSM601810     1  0.4291    0.82390 0.820 0.000 0.180
#> GSM601815     2  0.6252    0.04180 0.000 0.556 0.444
#> GSM601820     1  0.4399    0.69815 0.812 0.000 0.188
#> GSM601825     2  0.4351    0.67660 0.168 0.828 0.004
#> GSM601835     2  0.6252    0.00355 0.000 0.556 0.444
#> GSM601850     1  0.2261    0.83221 0.932 0.068 0.000
#> GSM601855     1  0.6225    0.47282 0.568 0.000 0.432
#> GSM601865     3  0.5407    0.74015 0.104 0.076 0.820
#> GSM601756     2  0.1529    0.74280 0.040 0.960 0.000
#> GSM601786     3  0.4291    0.69695 0.000 0.180 0.820
#> GSM601796     3  0.6372    0.73540 0.152 0.084 0.764
#> GSM601801     2  0.0000    0.73699 0.000 1.000 0.000
#> GSM601831     1  0.4291    0.82390 0.820 0.000 0.180
#> GSM601841     3  0.2774    0.73848 0.072 0.008 0.920
#> GSM601846     1  0.3686    0.79304 0.860 0.140 0.000
#> GSM601861     3  0.5502    0.65976 0.008 0.248 0.744
#> GSM601871     3  0.3669    0.75203 0.064 0.040 0.896
#> GSM601751     3  0.4840    0.73032 0.168 0.016 0.816
#> GSM601761     1  0.0237    0.85630 0.996 0.000 0.004
#> GSM601766     3  0.6726    0.57509 0.332 0.024 0.644
#> GSM601771     3  0.8316    0.23384 0.080 0.424 0.496
#> GSM601776     1  0.0000    0.85686 1.000 0.000 0.000
#> GSM601781     3  0.6899    0.57744 0.364 0.024 0.612
#> GSM601791     3  0.5285    0.70089 0.244 0.004 0.752
#> GSM601806     2  0.0237    0.73802 0.004 0.996 0.000
#> GSM601811     3  0.4479    0.69736 0.044 0.096 0.860
#> GSM601816     1  0.0000    0.85686 1.000 0.000 0.000
#> GSM601821     3  0.6786    0.25684 0.012 0.448 0.540
#> GSM601826     1  0.0000    0.85686 1.000 0.000 0.000
#> GSM601836     3  0.8995    0.37228 0.372 0.136 0.492
#> GSM601851     1  0.0424    0.85819 0.992 0.000 0.008
#> GSM601856     3  0.2590    0.71012 0.072 0.004 0.924
#> GSM601866     3  0.1411    0.72484 0.036 0.000 0.964

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM601752     4  0.0000      0.808 0.000 0.000 0.000 1.000
#> GSM601782     1  0.4879      0.782 0.744 0.016 0.228 0.012
#> GSM601792     1  0.0592      0.843 0.984 0.000 0.000 0.016
#> GSM601797     1  0.4999      0.155 0.508 0.000 0.000 0.492
#> GSM601827     1  0.4389      0.813 0.820 0.028 0.132 0.020
#> GSM601837     3  0.7507      0.264 0.000 0.316 0.480 0.204
#> GSM601842     2  0.5299      0.439 0.004 0.600 0.008 0.388
#> GSM601857     3  0.1474      0.656 0.000 0.052 0.948 0.000
#> GSM601867     3  0.5284      0.451 0.000 0.016 0.616 0.368
#> GSM601747     1  0.9041      0.276 0.428 0.224 0.268 0.080
#> GSM601757     1  0.3505      0.812 0.864 0.012 0.108 0.016
#> GSM601762     4  0.4977     -0.112 0.000 0.460 0.000 0.540
#> GSM601767     2  0.4872      0.489 0.004 0.640 0.000 0.356
#> GSM601772     2  0.5627      0.596 0.068 0.692 0.000 0.240
#> GSM601777     4  0.3460      0.750 0.036 0.024 0.056 0.884
#> GSM601787     3  0.5008      0.632 0.004 0.092 0.780 0.124
#> GSM601802     4  0.0376      0.807 0.004 0.004 0.000 0.992
#> GSM601807     3  0.8163      0.162 0.264 0.016 0.448 0.272
#> GSM601812     1  0.4535      0.771 0.744 0.016 0.240 0.000
#> GSM601817     1  0.4687      0.788 0.752 0.020 0.224 0.004
#> GSM601822     1  0.0000      0.842 1.000 0.000 0.000 0.000
#> GSM601832     2  0.4187      0.656 0.092 0.840 0.012 0.056
#> GSM601847     4  0.1637      0.780 0.060 0.000 0.000 0.940
#> GSM601852     1  0.3945      0.790 0.780 0.004 0.216 0.000
#> GSM601862     3  0.1474      0.655 0.000 0.052 0.948 0.000
#> GSM601753     4  0.0188      0.808 0.004 0.000 0.000 0.996
#> GSM601783     1  0.2973      0.822 0.856 0.000 0.144 0.000
#> GSM601793     1  0.2704      0.807 0.876 0.000 0.000 0.124
#> GSM601798     4  0.0188      0.808 0.000 0.004 0.000 0.996
#> GSM601828     1  0.4019      0.803 0.792 0.012 0.196 0.000
#> GSM601838     2  0.4040      0.615 0.000 0.752 0.000 0.248
#> GSM601843     2  0.6139      0.606 0.000 0.656 0.100 0.244
#> GSM601858     3  0.4955      0.631 0.000 0.144 0.772 0.084
#> GSM601868     3  0.0469      0.649 0.000 0.012 0.988 0.000
#> GSM601748     1  0.3852      0.801 0.800 0.008 0.192 0.000
#> GSM601758     1  0.1792      0.843 0.932 0.000 0.068 0.000
#> GSM601763     1  0.2074      0.832 0.940 0.016 0.012 0.032
#> GSM601768     2  0.7357      0.557 0.168 0.648 0.092 0.092
#> GSM601773     2  0.5543      0.465 0.028 0.612 0.000 0.360
#> GSM601778     1  0.3453      0.840 0.884 0.020 0.048 0.048
#> GSM601788     1  0.6217      0.704 0.724 0.112 0.036 0.128
#> GSM601803     4  0.0000      0.808 0.000 0.000 0.000 1.000
#> GSM601808     3  0.1510      0.642 0.028 0.016 0.956 0.000
#> GSM601813     1  0.4059      0.803 0.788 0.012 0.200 0.000
#> GSM601818     1  0.5022      0.778 0.736 0.044 0.220 0.000
#> GSM601823     1  0.0000      0.842 1.000 0.000 0.000 0.000
#> GSM601833     2  0.3157      0.677 0.000 0.852 0.004 0.144
#> GSM601848     1  0.0000      0.842 1.000 0.000 0.000 0.000
#> GSM601853     1  0.4500      0.709 0.684 0.000 0.316 0.000
#> GSM601863     3  0.5231      0.523 0.296 0.028 0.676 0.000
#> GSM601754     4  0.0336      0.807 0.008 0.000 0.000 0.992
#> GSM601784     3  0.8323      0.495 0.116 0.240 0.544 0.100
#> GSM601794     1  0.4697      0.434 0.644 0.000 0.000 0.356
#> GSM601799     4  0.4814      0.500 0.316 0.008 0.000 0.676
#> GSM601829     1  0.0000      0.842 1.000 0.000 0.000 0.000
#> GSM601839     2  0.3402      0.670 0.000 0.832 0.004 0.164
#> GSM601844     1  0.1975      0.832 0.944 0.016 0.012 0.028
#> GSM601859     3  0.7593      0.571 0.048 0.132 0.600 0.220
#> GSM601869     3  0.2675      0.655 0.008 0.100 0.892 0.000
#> GSM601749     1  0.1211      0.846 0.960 0.000 0.040 0.000
#> GSM601759     1  0.1902      0.843 0.932 0.000 0.064 0.004
#> GSM601764     1  0.2324      0.830 0.932 0.020 0.020 0.028
#> GSM601769     2  0.1377      0.684 0.008 0.964 0.008 0.020
#> GSM601774     2  0.3271      0.678 0.012 0.856 0.000 0.132
#> GSM601779     1  0.1674      0.834 0.952 0.012 0.004 0.032
#> GSM601789     2  0.5790      0.169 0.000 0.616 0.340 0.044
#> GSM601804     4  0.4677      0.506 0.316 0.004 0.000 0.680
#> GSM601809     3  0.6831      0.599 0.168 0.140 0.664 0.028
#> GSM601814     2  0.2060      0.679 0.000 0.932 0.016 0.052
#> GSM601819     1  0.3316      0.810 0.892 0.044 0.032 0.032
#> GSM601824     1  0.1022      0.835 0.968 0.000 0.000 0.032
#> GSM601834     2  0.1853      0.682 0.012 0.948 0.028 0.012
#> GSM601849     1  0.0524      0.841 0.988 0.004 0.000 0.008
#> GSM601854     1  0.4054      0.808 0.796 0.016 0.188 0.000
#> GSM601864     3  0.5980      0.417 0.000 0.396 0.560 0.044
#> GSM601755     4  0.0188      0.808 0.000 0.004 0.000 0.996
#> GSM601785     3  0.7557      0.608 0.104 0.172 0.632 0.092
#> GSM601795     3  0.8613      0.429 0.200 0.056 0.468 0.276
#> GSM601800     4  0.1302      0.790 0.000 0.044 0.000 0.956
#> GSM601830     1  0.3764      0.808 0.816 0.012 0.172 0.000
#> GSM601840     3  0.6329      0.456 0.004 0.064 0.588 0.344
#> GSM601845     1  0.3961      0.771 0.812 0.008 0.008 0.172
#> GSM601860     3  0.7075      0.624 0.072 0.144 0.672 0.112
#> GSM601870     3  0.0921      0.648 0.000 0.000 0.972 0.028
#> GSM601750     1  0.4454      0.718 0.692 0.000 0.308 0.000
#> GSM601760     3  0.5706      0.603 0.268 0.028 0.684 0.020
#> GSM601765     2  0.5229      0.608 0.152 0.768 0.012 0.068
#> GSM601770     2  0.4850      0.571 0.004 0.696 0.008 0.292
#> GSM601775     1  0.6168      0.607 0.716 0.180 0.048 0.056
#> GSM601780     1  0.0844      0.842 0.980 0.012 0.004 0.004
#> GSM601790     2  0.5487     -0.019 0.000 0.580 0.400 0.020
#> GSM601805     4  0.5947      0.468 0.008 0.076 0.224 0.692
#> GSM601810     1  0.3444      0.804 0.816 0.000 0.184 0.000
#> GSM601815     2  0.1520      0.685 0.000 0.956 0.024 0.020
#> GSM601820     1  0.4504      0.660 0.772 0.020 0.204 0.004
#> GSM601825     4  0.6473      0.487 0.168 0.188 0.000 0.644
#> GSM601835     2  0.6966      0.437 0.000 0.572 0.268 0.160
#> GSM601850     1  0.2125      0.827 0.920 0.004 0.000 0.076
#> GSM601855     3  0.5112     -0.163 0.436 0.000 0.560 0.004
#> GSM601865     3  0.4746      0.502 0.000 0.368 0.632 0.000
#> GSM601756     4  0.0188      0.808 0.000 0.004 0.000 0.996
#> GSM601786     3  0.4761      0.498 0.000 0.372 0.628 0.000
#> GSM601796     3  0.7473      0.623 0.108 0.080 0.636 0.176
#> GSM601801     4  0.3873      0.553 0.000 0.228 0.000 0.772
#> GSM601831     1  0.3528      0.801 0.808 0.000 0.192 0.000
#> GSM601841     3  0.4112      0.654 0.112 0.020 0.840 0.028
#> GSM601846     1  0.3610      0.748 0.800 0.000 0.000 0.200
#> GSM601861     2  0.5508     -0.244 0.000 0.508 0.476 0.016
#> GSM601871     3  0.3751      0.625 0.004 0.196 0.800 0.000
#> GSM601751     3  0.7053      0.624 0.156 0.076 0.672 0.096
#> GSM601761     1  0.1396      0.835 0.960 0.004 0.004 0.032
#> GSM601766     3  0.8434      0.437 0.228 0.276 0.460 0.036
#> GSM601771     2  0.8964      0.270 0.056 0.380 0.292 0.272
#> GSM601776     1  0.0000      0.842 1.000 0.000 0.000 0.000
#> GSM601781     3  0.7094      0.480 0.388 0.028 0.520 0.064
#> GSM601791     3  0.6478      0.574 0.308 0.040 0.620 0.032
#> GSM601806     4  0.2149      0.751 0.000 0.088 0.000 0.912
#> GSM601811     3  0.2558      0.642 0.008 0.036 0.920 0.036
#> GSM601816     1  0.0000      0.842 1.000 0.000 0.000 0.000
#> GSM601821     2  0.2334      0.643 0.000 0.908 0.088 0.004
#> GSM601826     1  0.0000      0.842 1.000 0.000 0.000 0.000
#> GSM601836     3  0.9296      0.263 0.268 0.272 0.372 0.088
#> GSM601851     1  0.0992      0.844 0.976 0.004 0.008 0.012
#> GSM601856     3  0.1584      0.644 0.036 0.012 0.952 0.000
#> GSM601866     3  0.1297      0.649 0.020 0.016 0.964 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM601752     4  0.0000     0.8171 0.000 0.000 0.000 1.000 0.000
#> GSM601782     1  0.5394     0.7476 0.720 0.020 0.096 0.008 0.156
#> GSM601792     1  0.1772     0.8039 0.944 0.016 0.004 0.012 0.024
#> GSM601797     1  0.5470     0.2245 0.516 0.016 0.004 0.440 0.024
#> GSM601827     1  0.3975     0.7795 0.828 0.008 0.076 0.012 0.076
#> GSM601837     5  0.7653     0.5071 0.000 0.160 0.212 0.128 0.500
#> GSM601842     2  0.4920     0.4887 0.000 0.572 0.012 0.404 0.012
#> GSM601857     3  0.3511     0.5206 0.004 0.012 0.800 0.000 0.184
#> GSM601867     3  0.4608     0.3695 0.000 0.012 0.644 0.336 0.008
#> GSM601747     1  0.9027     0.2072 0.392 0.256 0.136 0.068 0.148
#> GSM601757     1  0.5732     0.6553 0.696 0.024 0.096 0.012 0.172
#> GSM601762     2  0.4448     0.3245 0.000 0.516 0.004 0.480 0.000
#> GSM601767     2  0.3990     0.5712 0.000 0.688 0.004 0.308 0.000
#> GSM601772     2  0.5340     0.5987 0.064 0.696 0.004 0.216 0.020
#> GSM601777     4  0.4294     0.7206 0.032 0.048 0.032 0.828 0.060
#> GSM601787     3  0.2928     0.5304 0.000 0.032 0.872 0.092 0.004
#> GSM601802     4  0.0566     0.8152 0.000 0.012 0.000 0.984 0.004
#> GSM601807     5  0.8974    -0.1242 0.156 0.028 0.288 0.220 0.308
#> GSM601812     1  0.5492     0.7210 0.684 0.012 0.136 0.000 0.168
#> GSM601817     1  0.5290     0.7472 0.720 0.028 0.096 0.000 0.156
#> GSM601822     1  0.0000     0.8030 1.000 0.000 0.000 0.000 0.000
#> GSM601832     2  0.4045     0.5609 0.076 0.824 0.000 0.036 0.064
#> GSM601847     4  0.2376     0.7722 0.044 0.000 0.000 0.904 0.052
#> GSM601852     1  0.4801     0.7413 0.732 0.004 0.092 0.000 0.172
#> GSM601862     3  0.3643     0.5092 0.004 0.008 0.776 0.000 0.212
#> GSM601753     4  0.0451     0.8175 0.004 0.000 0.000 0.988 0.008
#> GSM601783     1  0.3051     0.7871 0.864 0.000 0.060 0.000 0.076
#> GSM601793     1  0.3308     0.7740 0.860 0.016 0.004 0.096 0.024
#> GSM601798     4  0.0290     0.8169 0.000 0.008 0.000 0.992 0.000
#> GSM601828     1  0.4601     0.7673 0.772 0.024 0.064 0.000 0.140
#> GSM601838     5  0.5996     0.4085 0.000 0.368 0.000 0.120 0.512
#> GSM601843     2  0.5731     0.5457 0.000 0.644 0.100 0.240 0.016
#> GSM601858     3  0.3476     0.5267 0.000 0.088 0.836 0.076 0.000
#> GSM601868     3  0.3421     0.5048 0.000 0.008 0.788 0.000 0.204
#> GSM601748     1  0.4250     0.7626 0.784 0.004 0.084 0.000 0.128
#> GSM601758     1  0.2390     0.8098 0.896 0.000 0.020 0.000 0.084
#> GSM601763     1  0.3941     0.7631 0.824 0.036 0.000 0.036 0.104
#> GSM601768     2  0.6511     0.5076 0.132 0.680 0.076 0.052 0.060
#> GSM601773     2  0.5146     0.5604 0.020 0.640 0.004 0.316 0.020
#> GSM601778     1  0.4750     0.7880 0.792 0.040 0.020 0.044 0.104
#> GSM601788     1  0.6687     0.5728 0.628 0.200 0.020 0.100 0.052
#> GSM601803     4  0.0451     0.8154 0.000 0.008 0.000 0.988 0.004
#> GSM601808     3  0.4363     0.4769 0.016 0.008 0.708 0.000 0.268
#> GSM601813     1  0.5005     0.7653 0.740 0.028 0.072 0.000 0.160
#> GSM601818     1  0.5709     0.7260 0.700 0.056 0.096 0.000 0.148
#> GSM601823     1  0.0000     0.8030 1.000 0.000 0.000 0.000 0.000
#> GSM601833     2  0.3222     0.6078 0.000 0.852 0.004 0.108 0.036
#> GSM601848     1  0.0000     0.8030 1.000 0.000 0.000 0.000 0.000
#> GSM601853     1  0.6486     0.4307 0.492 0.000 0.236 0.000 0.272
#> GSM601863     3  0.6441     0.3399 0.252 0.008 0.544 0.000 0.196
#> GSM601754     4  0.0566     0.8166 0.004 0.000 0.000 0.984 0.012
#> GSM601784     3  0.8086     0.3541 0.112 0.260 0.492 0.092 0.044
#> GSM601794     1  0.6382     0.4202 0.556 0.016 0.004 0.308 0.116
#> GSM601799     4  0.5456     0.4624 0.284 0.016 0.000 0.640 0.060
#> GSM601829     1  0.0000     0.8030 1.000 0.000 0.000 0.000 0.000
#> GSM601839     5  0.5837     0.4242 0.000 0.400 0.004 0.084 0.512
#> GSM601844     1  0.3434     0.7686 0.860 0.008 0.016 0.032 0.084
#> GSM601859     3  0.5868     0.4478 0.036 0.056 0.652 0.248 0.008
#> GSM601869     3  0.2919     0.5266 0.004 0.024 0.868 0.000 0.104
#> GSM601749     1  0.1557     0.8091 0.940 0.000 0.008 0.000 0.052
#> GSM601759     1  0.2754     0.8009 0.884 0.004 0.032 0.000 0.080
#> GSM601764     1  0.4090     0.7655 0.824 0.028 0.012 0.032 0.104
#> GSM601769     2  0.1970     0.5722 0.004 0.924 0.060 0.012 0.000
#> GSM601774     2  0.2796     0.6147 0.008 0.868 0.000 0.116 0.008
#> GSM601779     1  0.3243     0.7676 0.860 0.012 0.000 0.036 0.092
#> GSM601789     2  0.5703     0.1086 0.000 0.540 0.396 0.040 0.024
#> GSM601804     4  0.5473     0.4285 0.296 0.004 0.000 0.620 0.080
#> GSM601809     3  0.6901     0.5148 0.164 0.112 0.632 0.032 0.060
#> GSM601814     2  0.3467     0.5321 0.000 0.860 0.052 0.048 0.040
#> GSM601819     1  0.5305     0.7080 0.756 0.096 0.020 0.036 0.092
#> GSM601824     1  0.2359     0.7780 0.904 0.000 0.000 0.036 0.060
#> GSM601834     2  0.3069     0.5501 0.008 0.876 0.084 0.012 0.020
#> GSM601849     1  0.1798     0.7897 0.928 0.004 0.000 0.004 0.064
#> GSM601854     1  0.4552     0.7685 0.756 0.008 0.068 0.000 0.168
#> GSM601864     5  0.7070     0.5307 0.000 0.224 0.232 0.036 0.508
#> GSM601755     4  0.0162     0.8165 0.000 0.004 0.000 0.996 0.000
#> GSM601785     3  0.6643     0.4910 0.088 0.156 0.660 0.052 0.044
#> GSM601795     3  0.9081     0.3439 0.148 0.108 0.420 0.212 0.112
#> GSM601800     4  0.0955     0.8091 0.000 0.028 0.000 0.968 0.004
#> GSM601830     1  0.4034     0.7748 0.812 0.016 0.060 0.000 0.112
#> GSM601840     3  0.5652     0.3396 0.000 0.092 0.564 0.344 0.000
#> GSM601845     1  0.4837     0.7345 0.752 0.008 0.012 0.164 0.064
#> GSM601860     3  0.5893     0.5276 0.052 0.100 0.728 0.076 0.044
#> GSM601870     3  0.3957     0.4626 0.000 0.000 0.712 0.008 0.280
#> GSM601750     1  0.6351     0.5066 0.516 0.000 0.204 0.000 0.280
#> GSM601760     3  0.6714     0.4694 0.256 0.020 0.584 0.024 0.116
#> GSM601765     2  0.4913     0.5470 0.108 0.772 0.004 0.048 0.068
#> GSM601770     2  0.3988     0.6041 0.000 0.732 0.016 0.252 0.000
#> GSM601775     1  0.7023     0.4531 0.580 0.252 0.032 0.044 0.092
#> GSM601780     1  0.2074     0.7953 0.920 0.016 0.000 0.004 0.060
#> GSM601790     5  0.6699     0.5181 0.000 0.324 0.180 0.012 0.484
#> GSM601805     4  0.4669     0.4786 0.004 0.024 0.264 0.700 0.008
#> GSM601810     1  0.4103     0.7709 0.796 0.008 0.060 0.000 0.136
#> GSM601815     2  0.2844     0.5459 0.000 0.880 0.088 0.012 0.020
#> GSM601820     1  0.5805     0.5947 0.672 0.028 0.168 0.000 0.132
#> GSM601825     4  0.6509     0.4747 0.164 0.160 0.000 0.620 0.056
#> GSM601835     2  0.6191     0.4241 0.000 0.616 0.220 0.140 0.024
#> GSM601850     1  0.3316     0.7812 0.860 0.012 0.000 0.072 0.056
#> GSM601855     3  0.6790     0.0944 0.292 0.000 0.380 0.000 0.328
#> GSM601865     3  0.4547     0.4170 0.000 0.252 0.704 0.000 0.044
#> GSM601756     4  0.0162     0.8169 0.000 0.004 0.000 0.996 0.000
#> GSM601786     3  0.4550     0.4017 0.000 0.276 0.688 0.000 0.036
#> GSM601796     3  0.6928     0.5112 0.096 0.028 0.640 0.120 0.116
#> GSM601801     4  0.3300     0.5948 0.000 0.204 0.000 0.792 0.004
#> GSM601831     1  0.3898     0.7643 0.804 0.000 0.080 0.000 0.116
#> GSM601841     3  0.5430     0.5284 0.124 0.008 0.728 0.028 0.112
#> GSM601846     1  0.3250     0.7372 0.820 0.004 0.000 0.168 0.008
#> GSM601861     3  0.5535     0.2060 0.000 0.372 0.564 0.008 0.056
#> GSM601871     3  0.2136     0.5272 0.000 0.088 0.904 0.000 0.008
#> GSM601751     3  0.6343     0.5308 0.128 0.068 0.692 0.068 0.044
#> GSM601761     1  0.3053     0.7723 0.872 0.004 0.004 0.036 0.084
#> GSM601766     3  0.8559     0.2809 0.192 0.276 0.404 0.036 0.092
#> GSM601771     2  0.7949     0.3186 0.032 0.448 0.272 0.208 0.040
#> GSM601776     1  0.0162     0.8031 0.996 0.000 0.000 0.000 0.004
#> GSM601781     3  0.7815     0.3503 0.336 0.032 0.456 0.068 0.108
#> GSM601791     3  0.6547     0.4511 0.268 0.008 0.588 0.036 0.100
#> GSM601806     4  0.2193     0.7573 0.000 0.092 0.000 0.900 0.008
#> GSM601811     3  0.5192     0.4751 0.008 0.020 0.684 0.032 0.256
#> GSM601816     1  0.0000     0.8030 1.000 0.000 0.000 0.000 0.000
#> GSM601821     2  0.4547     0.3273 0.000 0.736 0.192 0.000 0.072
#> GSM601826     1  0.0000     0.8030 1.000 0.000 0.000 0.000 0.000
#> GSM601836     3  0.9156     0.1172 0.252 0.264 0.320 0.080 0.084
#> GSM601851     1  0.1622     0.8041 0.948 0.004 0.004 0.016 0.028
#> GSM601856     3  0.4311     0.4755 0.020 0.004 0.712 0.000 0.264
#> GSM601866     3  0.4543     0.5135 0.020 0.024 0.732 0.000 0.224

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM601752     4  0.0000      0.805 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM601782     1  0.5038      0.675 0.692 0.028 0.220 0.008 0.008 0.044
#> GSM601792     1  0.2529      0.762 0.900 0.024 0.000 0.012 0.044 0.020
#> GSM601797     1  0.5629      0.213 0.496 0.024 0.000 0.420 0.040 0.020
#> GSM601827     1  0.3669      0.742 0.840 0.016 0.076 0.008 0.028 0.032
#> GSM601837     5  0.3230      0.894 0.000 0.052 0.000 0.060 0.852 0.036
#> GSM601842     2  0.4408      0.457 0.000 0.560 0.004 0.416 0.000 0.020
#> GSM601857     3  0.3991      0.368 0.000 0.004 0.524 0.000 0.000 0.472
#> GSM601867     6  0.5351      0.372 0.000 0.012 0.076 0.308 0.008 0.596
#> GSM601747     1  0.8014      0.149 0.392 0.276 0.180 0.060 0.004 0.088
#> GSM601757     1  0.5358      0.446 0.612 0.024 0.288 0.004 0.000 0.072
#> GSM601762     2  0.4057      0.426 0.000 0.556 0.000 0.436 0.000 0.008
#> GSM601767     2  0.3489      0.638 0.000 0.708 0.000 0.288 0.000 0.004
#> GSM601772     2  0.4716      0.679 0.060 0.704 0.004 0.212 0.000 0.020
#> GSM601777     4  0.5325      0.682 0.024 0.068 0.068 0.744 0.024 0.072
#> GSM601787     6  0.4218      0.453 0.000 0.036 0.108 0.068 0.004 0.784
#> GSM601802     4  0.0806      0.802 0.000 0.008 0.000 0.972 0.020 0.000
#> GSM601807     3  0.6405      0.184 0.020 0.024 0.612 0.196 0.116 0.032
#> GSM601812     1  0.5471      0.617 0.636 0.024 0.256 0.000 0.020 0.064
#> GSM601817     1  0.4695      0.675 0.692 0.044 0.232 0.000 0.000 0.032
#> GSM601822     1  0.0000      0.770 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601832     2  0.3837      0.656 0.060 0.832 0.020 0.036 0.004 0.048
#> GSM601847     4  0.3157      0.758 0.036 0.000 0.036 0.864 0.008 0.056
#> GSM601852     1  0.3982      0.653 0.696 0.008 0.280 0.000 0.000 0.016
#> GSM601862     3  0.3955      0.422 0.000 0.004 0.560 0.000 0.000 0.436
#> GSM601753     4  0.1138      0.804 0.004 0.000 0.024 0.960 0.000 0.012
#> GSM601783     1  0.2389      0.743 0.864 0.000 0.128 0.000 0.000 0.008
#> GSM601793     1  0.3285      0.747 0.860 0.024 0.000 0.052 0.044 0.020
#> GSM601798     4  0.0508      0.805 0.000 0.004 0.000 0.984 0.012 0.000
#> GSM601828     1  0.4048      0.721 0.772 0.040 0.164 0.000 0.004 0.020
#> GSM601838     5  0.2384      0.911 0.000 0.084 0.000 0.032 0.884 0.000
#> GSM601843     2  0.4794      0.657 0.000 0.668 0.004 0.228 0.000 0.100
#> GSM601858     6  0.4167      0.495 0.000 0.072 0.084 0.056 0.000 0.788
#> GSM601868     3  0.4400      0.405 0.000 0.012 0.524 0.000 0.008 0.456
#> GSM601748     1  0.3281      0.708 0.784 0.004 0.200 0.000 0.000 0.012
#> GSM601758     1  0.2739      0.774 0.872 0.000 0.084 0.000 0.012 0.032
#> GSM601763     1  0.5281      0.703 0.736 0.080 0.048 0.024 0.012 0.100
#> GSM601768     2  0.5499      0.612 0.112 0.692 0.008 0.056 0.004 0.128
#> GSM601773     2  0.4607      0.580 0.020 0.628 0.000 0.328 0.000 0.024
#> GSM601778     1  0.6182      0.715 0.684 0.056 0.064 0.036 0.048 0.112
#> GSM601788     1  0.6152      0.529 0.600 0.248 0.020 0.076 0.004 0.052
#> GSM601803     4  0.0909      0.806 0.000 0.000 0.012 0.968 0.020 0.000
#> GSM601808     3  0.5078      0.492 0.012 0.024 0.568 0.000 0.020 0.376
#> GSM601813     1  0.5109      0.699 0.692 0.044 0.204 0.000 0.012 0.048
#> GSM601818     1  0.4664      0.634 0.668 0.056 0.264 0.000 0.000 0.012
#> GSM601823     1  0.0000      0.770 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601833     2  0.2679      0.691 0.000 0.876 0.004 0.088 0.008 0.024
#> GSM601848     1  0.0000      0.770 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601853     3  0.3883      0.246 0.332 0.000 0.656 0.000 0.000 0.012
#> GSM601863     3  0.6657      0.282 0.208 0.016 0.404 0.000 0.016 0.356
#> GSM601754     4  0.1401      0.800 0.004 0.000 0.028 0.948 0.000 0.020
#> GSM601784     6  0.6427      0.412 0.112 0.272 0.004 0.076 0.000 0.536
#> GSM601794     1  0.7658      0.386 0.476 0.024 0.048 0.264 0.060 0.128
#> GSM601799     4  0.5748      0.497 0.260 0.012 0.032 0.616 0.004 0.076
#> GSM601829     1  0.0000      0.770 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601839     5  0.2728      0.912 0.000 0.100 0.000 0.032 0.864 0.004
#> GSM601844     1  0.4466      0.713 0.784 0.016 0.052 0.020 0.016 0.112
#> GSM601859     6  0.4559      0.513 0.036 0.036 0.000 0.220 0.000 0.708
#> GSM601869     6  0.3911     -0.112 0.000 0.000 0.368 0.000 0.008 0.624
#> GSM601749     1  0.1820      0.776 0.924 0.000 0.056 0.000 0.012 0.008
#> GSM601759     1  0.2800      0.760 0.860 0.004 0.100 0.000 0.000 0.036
#> GSM601764     1  0.5218      0.711 0.740 0.060 0.052 0.020 0.016 0.112
#> GSM601769     2  0.2187      0.669 0.004 0.908 0.000 0.012 0.012 0.064
#> GSM601774     2  0.2368      0.695 0.008 0.888 0.000 0.092 0.004 0.008
#> GSM601779     1  0.4943      0.700 0.760 0.028 0.060 0.024 0.020 0.108
#> GSM601789     2  0.4625      0.059 0.000 0.544 0.004 0.024 0.004 0.424
#> GSM601804     4  0.6714      0.395 0.276 0.012 0.052 0.536 0.016 0.108
#> GSM601809     6  0.5569      0.552 0.136 0.116 0.016 0.024 0.016 0.692
#> GSM601814     2  0.3947      0.628 0.000 0.804 0.000 0.064 0.052 0.080
#> GSM601819     1  0.6047      0.633 0.672 0.108 0.056 0.024 0.016 0.124
#> GSM601824     1  0.3089      0.736 0.860 0.000 0.032 0.024 0.004 0.080
#> GSM601834     2  0.2742      0.648 0.000 0.852 0.000 0.008 0.012 0.128
#> GSM601849     1  0.2538      0.751 0.888 0.012 0.020 0.000 0.004 0.076
#> GSM601854     1  0.4643      0.696 0.704 0.024 0.228 0.000 0.008 0.036
#> GSM601864     5  0.2594      0.890 0.000 0.056 0.000 0.004 0.880 0.060
#> GSM601755     4  0.0000      0.805 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM601785     6  0.4744      0.544 0.084 0.164 0.000 0.024 0.004 0.724
#> GSM601795     6  0.7854      0.395 0.096 0.084 0.048 0.204 0.056 0.512
#> GSM601800     4  0.1116      0.795 0.000 0.028 0.000 0.960 0.004 0.008
#> GSM601830     1  0.3688      0.731 0.804 0.020 0.144 0.000 0.024 0.008
#> GSM601840     6  0.5144      0.415 0.000 0.100 0.000 0.340 0.000 0.560
#> GSM601845     1  0.4840      0.706 0.732 0.016 0.020 0.164 0.004 0.064
#> GSM601860     6  0.3303      0.568 0.044 0.060 0.000 0.048 0.000 0.848
#> GSM601870     3  0.4405      0.480 0.000 0.000 0.688 0.000 0.072 0.240
#> GSM601750     3  0.4922     -0.108 0.400 0.000 0.548 0.000 0.016 0.036
#> GSM601760     6  0.5894      0.421 0.180 0.032 0.116 0.012 0.012 0.648
#> GSM601765     2  0.4248      0.646 0.076 0.800 0.012 0.040 0.004 0.068
#> GSM601770     2  0.3445      0.678 0.000 0.744 0.000 0.244 0.000 0.012
#> GSM601775     1  0.6875      0.366 0.512 0.288 0.044 0.028 0.008 0.120
#> GSM601780     1  0.3257      0.755 0.864 0.028 0.028 0.004 0.016 0.060
#> GSM601790     5  0.3672      0.840 0.000 0.168 0.000 0.000 0.776 0.056
#> GSM601805     4  0.4215      0.488 0.004 0.000 0.008 0.672 0.016 0.300
#> GSM601810     1  0.3744      0.727 0.800 0.020 0.148 0.000 0.012 0.020
#> GSM601815     2  0.3147      0.658 0.000 0.844 0.000 0.012 0.044 0.100
#> GSM601820     1  0.6224      0.506 0.580 0.052 0.116 0.000 0.012 0.240
#> GSM601825     4  0.6719      0.475 0.152 0.144 0.032 0.592 0.004 0.076
#> GSM601835     2  0.4998      0.532 0.000 0.656 0.000 0.112 0.008 0.224
#> GSM601850     1  0.4113      0.739 0.812 0.012 0.024 0.072 0.012 0.068
#> GSM601855     3  0.3611      0.492 0.072 0.004 0.832 0.000 0.040 0.052
#> GSM601865     6  0.3830      0.495 0.000 0.212 0.000 0.000 0.044 0.744
#> GSM601756     4  0.0146      0.804 0.000 0.004 0.000 0.996 0.000 0.000
#> GSM601786     6  0.3834      0.491 0.000 0.232 0.000 0.000 0.036 0.732
#> GSM601796     6  0.5056      0.518 0.032 0.024 0.040 0.076 0.064 0.764
#> GSM601801     4  0.2814      0.625 0.000 0.172 0.000 0.820 0.008 0.000
#> GSM601831     1  0.2823      0.711 0.796 0.000 0.204 0.000 0.000 0.000
#> GSM601841     6  0.5094      0.383 0.108 0.008 0.140 0.016 0.012 0.716
#> GSM601846     1  0.3118      0.722 0.832 0.008 0.000 0.140 0.012 0.008
#> GSM601861     6  0.4808      0.351 0.000 0.332 0.000 0.004 0.060 0.604
#> GSM601871     6  0.3514      0.397 0.000 0.028 0.144 0.000 0.020 0.808
#> GSM601751     6  0.3949      0.557 0.116 0.036 0.000 0.044 0.004 0.800
#> GSM601761     1  0.4242      0.724 0.800 0.012 0.044 0.024 0.016 0.104
#> GSM601766     6  0.7146      0.324 0.164 0.300 0.044 0.024 0.008 0.460
#> GSM601771     2  0.6410      0.330 0.032 0.464 0.000 0.196 0.000 0.308
#> GSM601776     1  0.0458      0.771 0.984 0.016 0.000 0.000 0.000 0.000
#> GSM601781     6  0.7019      0.340 0.264 0.064 0.044 0.056 0.028 0.544
#> GSM601791     6  0.5055      0.453 0.200 0.000 0.064 0.024 0.016 0.696
#> GSM601806     4  0.2126      0.760 0.000 0.072 0.000 0.904 0.020 0.004
#> GSM601811     3  0.5504      0.479 0.012 0.036 0.556 0.012 0.016 0.368
#> GSM601816     1  0.0000      0.770 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601821     2  0.4570      0.462 0.000 0.668 0.000 0.000 0.080 0.252
#> GSM601826     1  0.0000      0.770 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601836     6  0.8067      0.187 0.236 0.292 0.048 0.052 0.020 0.352
#> GSM601851     1  0.2484      0.766 0.908 0.016 0.024 0.008 0.012 0.032
#> GSM601856     3  0.4170      0.511 0.020 0.004 0.648 0.000 0.000 0.328
#> GSM601866     6  0.5170     -0.197 0.008 0.040 0.428 0.000 0.012 0.512

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n time(p) gender(p) k
#> SD:pam 105   0.644   0.08794 2
#> SD:pam 107   0.129   0.09417 3
#> SD:pam  98   0.687   0.05038 4
#> SD:pam  87   0.719   0.00707 5
#> SD:pam  82   0.569   0.01133 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 125 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.226           0.621       0.774         0.4240 0.545   0.545
#> 3 3 0.464           0.733       0.828         0.5158 0.697   0.486
#> 4 4 0.484           0.592       0.765         0.0800 0.863   0.648
#> 5 5 0.616           0.591       0.744         0.1111 0.827   0.504
#> 6 6 0.693           0.608       0.792         0.0429 0.937   0.732

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM601752     1  0.9209      0.667 0.664 0.336
#> GSM601782     2  0.8499      0.743 0.276 0.724
#> GSM601792     1  0.5519      0.687 0.872 0.128
#> GSM601797     1  0.5946      0.692 0.856 0.144
#> GSM601827     1  0.9970     -0.164 0.532 0.468
#> GSM601837     2  0.3879      0.669 0.076 0.924
#> GSM601842     2  0.0000      0.704 0.000 1.000
#> GSM601857     2  0.9358      0.703 0.352 0.648
#> GSM601867     2  0.9129      0.712 0.328 0.672
#> GSM601747     2  0.8016      0.738 0.244 0.756
#> GSM601757     2  0.8499      0.743 0.276 0.724
#> GSM601762     2  0.3431      0.627 0.064 0.936
#> GSM601767     2  0.0938      0.699 0.012 0.988
#> GSM601772     2  0.0376      0.703 0.004 0.996
#> GSM601777     1  0.8081      0.622 0.752 0.248
#> GSM601787     2  0.7883      0.713 0.236 0.764
#> GSM601802     1  0.9393      0.661 0.644 0.356
#> GSM601807     1  0.9881     -0.127 0.564 0.436
#> GSM601812     2  0.8499      0.743 0.276 0.724
#> GSM601817     2  0.8555      0.742 0.280 0.720
#> GSM601822     1  0.5946      0.691 0.856 0.144
#> GSM601832     2  0.0000      0.704 0.000 1.000
#> GSM601847     1  0.7883      0.692 0.764 0.236
#> GSM601852     2  0.8499      0.743 0.276 0.724
#> GSM601862     2  0.9358      0.703 0.352 0.648
#> GSM601753     1  0.9460      0.660 0.636 0.364
#> GSM601783     2  0.8499      0.743 0.276 0.724
#> GSM601793     1  0.5519      0.687 0.872 0.128
#> GSM601798     1  0.9358      0.660 0.648 0.352
#> GSM601828     2  0.8499      0.743 0.276 0.724
#> GSM601838     2  0.3879      0.669 0.076 0.924
#> GSM601843     2  0.0000      0.704 0.000 1.000
#> GSM601858     2  0.3114      0.683 0.056 0.944
#> GSM601868     2  0.9358      0.703 0.352 0.648
#> GSM601748     2  0.8499      0.743 0.276 0.724
#> GSM601758     2  0.8499      0.743 0.276 0.724
#> GSM601763     2  0.8016      0.738 0.244 0.756
#> GSM601768     2  0.0938      0.699 0.012 0.988
#> GSM601773     2  0.0672      0.698 0.008 0.992
#> GSM601778     1  0.7056      0.653 0.808 0.192
#> GSM601788     2  0.3114      0.719 0.056 0.944
#> GSM601803     1  0.9393      0.661 0.644 0.356
#> GSM601808     2  0.9635      0.673 0.388 0.612
#> GSM601813     2  0.8608      0.737 0.284 0.716
#> GSM601818     2  0.8661      0.740 0.288 0.712
#> GSM601823     1  0.5737      0.686 0.864 0.136
#> GSM601833     2  0.0376      0.703 0.004 0.996
#> GSM601848     1  0.6148      0.680 0.848 0.152
#> GSM601853     2  0.9881      0.603 0.436 0.564
#> GSM601863     2  0.9358      0.703 0.352 0.648
#> GSM601754     1  0.9393      0.661 0.644 0.356
#> GSM601784     2  0.0000      0.704 0.000 1.000
#> GSM601794     1  0.5629      0.689 0.868 0.132
#> GSM601799     1  0.9393      0.664 0.644 0.356
#> GSM601829     1  0.7815      0.586 0.768 0.232
#> GSM601839     2  0.3879      0.669 0.076 0.924
#> GSM601844     2  0.8861      0.686 0.304 0.696
#> GSM601859     2  0.0938      0.699 0.012 0.988
#> GSM601869     2  0.9044      0.725 0.320 0.680
#> GSM601749     2  0.8499      0.743 0.276 0.724
#> GSM601759     2  0.8499      0.743 0.276 0.724
#> GSM601764     2  0.7950      0.740 0.240 0.760
#> GSM601769     2  0.0000      0.704 0.000 1.000
#> GSM601774     2  0.0938      0.699 0.012 0.988
#> GSM601779     1  0.9580      0.324 0.620 0.380
#> GSM601789     2  0.0672      0.704 0.008 0.992
#> GSM601804     1  0.7674      0.695 0.776 0.224
#> GSM601809     2  0.8443      0.745 0.272 0.728
#> GSM601814     2  0.0000      0.704 0.000 1.000
#> GSM601819     2  0.8499      0.743 0.276 0.724
#> GSM601824     1  0.9954      0.221 0.540 0.460
#> GSM601834     2  0.0938      0.699 0.012 0.988
#> GSM601849     2  0.9000      0.654 0.316 0.684
#> GSM601854     2  0.8499      0.743 0.276 0.724
#> GSM601864     2  0.3879      0.669 0.076 0.924
#> GSM601755     1  0.9358      0.660 0.648 0.352
#> GSM601785     2  0.0938      0.705 0.012 0.988
#> GSM601795     1  0.5737      0.690 0.864 0.136
#> GSM601800     1  0.9358      0.660 0.648 0.352
#> GSM601830     1  0.9815     -0.167 0.580 0.420
#> GSM601840     2  0.7602      0.741 0.220 0.780
#> GSM601845     2  0.8327      0.706 0.264 0.736
#> GSM601860     2  0.0938      0.708 0.012 0.988
#> GSM601870     1  0.9998     -0.206 0.508 0.492
#> GSM601750     2  0.8499      0.743 0.276 0.724
#> GSM601760     2  0.8499      0.743 0.276 0.724
#> GSM601765     2  0.0938      0.699 0.012 0.988
#> GSM601770     2  0.0938      0.699 0.012 0.988
#> GSM601775     2  0.8909      0.642 0.308 0.692
#> GSM601780     2  0.9850      0.373 0.428 0.572
#> GSM601790     2  0.3879      0.669 0.076 0.924
#> GSM601805     1  0.9460      0.660 0.636 0.364
#> GSM601810     2  0.9522      0.682 0.372 0.628
#> GSM601815     2  0.2236      0.694 0.036 0.964
#> GSM601820     2  0.8499      0.743 0.276 0.724
#> GSM601825     1  0.9491      0.659 0.632 0.368
#> GSM601835     2  0.7883      0.227 0.236 0.764
#> GSM601850     1  0.9881      0.168 0.564 0.436
#> GSM601855     1  0.9815     -0.167 0.580 0.420
#> GSM601865     2  0.3879      0.669 0.076 0.924
#> GSM601756     1  0.9358      0.660 0.648 0.352
#> GSM601786     2  0.3431      0.678 0.064 0.936
#> GSM601796     1  0.5629      0.689 0.868 0.132
#> GSM601801     1  0.9358      0.660 0.648 0.352
#> GSM601831     1  0.9954     -0.162 0.540 0.460
#> GSM601841     2  0.8763      0.726 0.296 0.704
#> GSM601846     1  0.7745      0.691 0.772 0.228
#> GSM601861     2  0.0376      0.704 0.004 0.996
#> GSM601871     2  0.7602      0.711 0.220 0.780
#> GSM601751     2  0.5629      0.702 0.132 0.868
#> GSM601761     2  0.8499      0.743 0.276 0.724
#> GSM601766     2  0.7674      0.745 0.224 0.776
#> GSM601771     2  0.0000      0.704 0.000 1.000
#> GSM601776     1  0.9998     -0.126 0.508 0.492
#> GSM601781     1  0.9000      0.490 0.684 0.316
#> GSM601791     2  0.8499      0.726 0.276 0.724
#> GSM601806     1  0.9427      0.661 0.640 0.360
#> GSM601811     2  0.9460      0.697 0.364 0.636
#> GSM601816     1  0.5629      0.687 0.868 0.132
#> GSM601821     2  0.0672      0.704 0.008 0.992
#> GSM601826     1  0.5737      0.686 0.864 0.136
#> GSM601836     2  0.8016      0.738 0.244 0.756
#> GSM601851     2  0.9866      0.387 0.432 0.568
#> GSM601856     1  0.9795     -0.204 0.584 0.416
#> GSM601866     2  0.8555      0.742 0.280 0.720

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM601752     1  0.0747    0.85400 0.984 0.016 0.000
#> GSM601782     3  0.4887    0.76707 0.000 0.228 0.772
#> GSM601792     1  0.1529    0.85082 0.960 0.000 0.040
#> GSM601797     1  0.1585    0.85404 0.964 0.008 0.028
#> GSM601827     3  0.3276    0.85414 0.024 0.068 0.908
#> GSM601837     2  0.2066    0.75318 0.000 0.940 0.060
#> GSM601842     2  0.5404    0.73878 0.256 0.740 0.004
#> GSM601857     3  0.2625    0.86624 0.000 0.084 0.916
#> GSM601867     2  0.6442    0.16642 0.004 0.564 0.432
#> GSM601747     2  0.9021    0.57502 0.184 0.552 0.264
#> GSM601757     3  0.4575    0.82699 0.004 0.184 0.812
#> GSM601762     2  0.5098    0.74066 0.248 0.752 0.000
#> GSM601767     2  0.3551    0.78647 0.132 0.868 0.000
#> GSM601772     2  0.4002    0.78452 0.160 0.840 0.000
#> GSM601777     1  0.6402    0.65465 0.724 0.040 0.236
#> GSM601787     2  0.6154    0.23867 0.000 0.592 0.408
#> GSM601802     1  0.0747    0.85400 0.984 0.016 0.000
#> GSM601807     3  0.2229    0.82300 0.044 0.012 0.944
#> GSM601812     3  0.3192    0.87212 0.000 0.112 0.888
#> GSM601817     3  0.2711    0.87228 0.000 0.088 0.912
#> GSM601822     1  0.1163    0.85302 0.972 0.000 0.028
#> GSM601832     2  0.5797    0.71479 0.280 0.712 0.008
#> GSM601847     1  0.1182    0.85493 0.976 0.012 0.012
#> GSM601852     3  0.3272    0.87271 0.004 0.104 0.892
#> GSM601862     3  0.2165    0.86871 0.000 0.064 0.936
#> GSM601753     1  0.0747    0.85400 0.984 0.016 0.000
#> GSM601783     3  0.4609    0.85999 0.028 0.128 0.844
#> GSM601793     1  0.3116    0.80873 0.892 0.000 0.108
#> GSM601798     1  0.0747    0.85400 0.984 0.016 0.000
#> GSM601828     3  0.3193    0.87376 0.004 0.100 0.896
#> GSM601838     2  0.2066    0.75318 0.000 0.940 0.060
#> GSM601843     2  0.4931    0.75664 0.232 0.768 0.000
#> GSM601858     2  0.2066    0.75537 0.000 0.940 0.060
#> GSM601868     3  0.2165    0.86871 0.000 0.064 0.936
#> GSM601748     3  0.2711    0.87463 0.000 0.088 0.912
#> GSM601758     3  0.3500    0.86934 0.004 0.116 0.880
#> GSM601763     2  0.8752    0.60405 0.284 0.568 0.148
#> GSM601768     2  0.4702    0.76997 0.212 0.788 0.000
#> GSM601773     2  0.4887    0.76332 0.228 0.772 0.000
#> GSM601778     1  0.3141    0.82814 0.912 0.020 0.068
#> GSM601788     2  0.6526    0.74278 0.128 0.760 0.112
#> GSM601803     1  0.0747    0.85400 0.984 0.016 0.000
#> GSM601808     3  0.1289    0.86225 0.000 0.032 0.968
#> GSM601813     3  0.3886    0.86692 0.024 0.096 0.880
#> GSM601818     3  0.3482    0.83929 0.000 0.128 0.872
#> GSM601823     1  0.5325    0.63426 0.748 0.004 0.248
#> GSM601833     2  0.4504    0.77639 0.196 0.804 0.000
#> GSM601848     1  0.5138    0.62993 0.748 0.000 0.252
#> GSM601853     3  0.0424    0.85268 0.000 0.008 0.992
#> GSM601863     3  0.2066    0.86834 0.000 0.060 0.940
#> GSM601754     1  0.0747    0.85400 0.984 0.016 0.000
#> GSM601784     2  0.3116    0.78655 0.108 0.892 0.000
#> GSM601794     1  0.1411    0.85165 0.964 0.000 0.036
#> GSM601799     1  0.0747    0.85400 0.984 0.016 0.000
#> GSM601829     3  0.6849    0.34772 0.380 0.020 0.600
#> GSM601839     2  0.2066    0.75318 0.000 0.940 0.060
#> GSM601844     3  0.8691    0.30031 0.356 0.116 0.528
#> GSM601859     2  0.4887    0.75941 0.228 0.772 0.000
#> GSM601869     3  0.2165    0.86953 0.000 0.064 0.936
#> GSM601749     3  0.3918    0.86198 0.004 0.140 0.856
#> GSM601759     3  0.2945    0.87510 0.004 0.088 0.908
#> GSM601764     2  0.8576    0.63521 0.252 0.596 0.152
#> GSM601769     2  0.1585    0.77494 0.028 0.964 0.008
#> GSM601774     2  0.2959    0.78591 0.100 0.900 0.000
#> GSM601779     1  0.7002    0.55545 0.672 0.048 0.280
#> GSM601789     2  0.1964    0.75486 0.000 0.944 0.056
#> GSM601804     1  0.1491    0.85467 0.968 0.016 0.016
#> GSM601809     2  0.6209    0.35529 0.004 0.628 0.368
#> GSM601814     2  0.1163    0.77539 0.028 0.972 0.000
#> GSM601819     3  0.6936    0.70831 0.064 0.232 0.704
#> GSM601824     1  0.6875    0.57669 0.700 0.244 0.056
#> GSM601834     2  0.4605    0.77327 0.204 0.796 0.000
#> GSM601849     1  0.8891   -0.00795 0.448 0.120 0.432
#> GSM601854     3  0.3983    0.85757 0.004 0.144 0.852
#> GSM601864     2  0.2066    0.75318 0.000 0.940 0.060
#> GSM601755     1  0.0747    0.85400 0.984 0.016 0.000
#> GSM601785     2  0.6522    0.71820 0.272 0.696 0.032
#> GSM601795     1  0.1289    0.85239 0.968 0.000 0.032
#> GSM601800     1  0.0747    0.85400 0.984 0.016 0.000
#> GSM601830     3  0.1999    0.82716 0.036 0.012 0.952
#> GSM601840     2  0.8138    0.67724 0.232 0.636 0.132
#> GSM601845     2  0.8971    0.52041 0.336 0.520 0.144
#> GSM601860     2  0.5219    0.77470 0.196 0.788 0.016
#> GSM601870     3  0.2313    0.83015 0.024 0.032 0.944
#> GSM601750     3  0.3349    0.87205 0.004 0.108 0.888
#> GSM601760     3  0.4845    0.84937 0.052 0.104 0.844
#> GSM601765     2  0.5058    0.74678 0.244 0.756 0.000
#> GSM601770     2  0.4452    0.77764 0.192 0.808 0.000
#> GSM601775     1  0.7838   -0.29133 0.488 0.460 0.052
#> GSM601780     3  0.9191    0.03903 0.424 0.148 0.428
#> GSM601790     2  0.1964    0.75486 0.000 0.944 0.056
#> GSM601805     1  0.0747    0.85400 0.984 0.016 0.000
#> GSM601810     3  0.2772    0.87523 0.004 0.080 0.916
#> GSM601815     2  0.1964    0.75486 0.000 0.944 0.056
#> GSM601820     3  0.3425    0.87118 0.004 0.112 0.884
#> GSM601825     1  0.0747    0.85400 0.984 0.016 0.000
#> GSM601835     2  0.6322    0.71200 0.276 0.700 0.024
#> GSM601850     1  0.5174    0.75382 0.832 0.092 0.076
#> GSM601855     3  0.1832    0.82935 0.036 0.008 0.956
#> GSM601865     2  0.2066    0.75318 0.000 0.940 0.060
#> GSM601756     1  0.0747    0.85400 0.984 0.016 0.000
#> GSM601786     2  0.1964    0.75486 0.000 0.944 0.056
#> GSM601796     1  0.2200    0.84505 0.940 0.004 0.056
#> GSM601801     1  0.0747    0.85400 0.984 0.016 0.000
#> GSM601831     3  0.2703    0.85791 0.016 0.056 0.928
#> GSM601841     3  0.6059    0.80111 0.048 0.188 0.764
#> GSM601846     1  0.2187    0.85288 0.948 0.024 0.028
#> GSM601861     2  0.1585    0.76600 0.008 0.964 0.028
#> GSM601871     2  0.5948    0.35315 0.000 0.640 0.360
#> GSM601751     2  0.7150    0.60354 0.348 0.616 0.036
#> GSM601761     3  0.7666    0.71021 0.128 0.192 0.680
#> GSM601766     2  0.6523    0.74416 0.228 0.724 0.048
#> GSM601771     2  0.4634    0.78374 0.164 0.824 0.012
#> GSM601776     1  0.7990    0.05851 0.488 0.060 0.452
#> GSM601781     1  0.6882    0.66188 0.732 0.096 0.172
#> GSM601791     3  0.9243    0.45298 0.232 0.236 0.532
#> GSM601806     1  0.1031    0.85013 0.976 0.024 0.000
#> GSM601811     3  0.2796    0.86445 0.000 0.092 0.908
#> GSM601816     1  0.2959    0.81831 0.900 0.000 0.100
#> GSM601821     2  0.1399    0.76421 0.004 0.968 0.028
#> GSM601826     1  0.5365    0.62708 0.744 0.004 0.252
#> GSM601836     2  0.9050    0.55447 0.304 0.532 0.164
#> GSM601851     3  0.8546    0.34278 0.348 0.108 0.544
#> GSM601856     3  0.0661    0.85170 0.004 0.008 0.988
#> GSM601866     3  0.2261    0.87123 0.000 0.068 0.932

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM601752     4  0.0188     0.7242 0.000 0.000 0.004 0.996
#> GSM601782     1  0.3554     0.6966 0.844 0.136 0.020 0.000
#> GSM601792     4  0.5489     0.5988 0.240 0.000 0.060 0.700
#> GSM601797     4  0.1716     0.7182 0.000 0.000 0.064 0.936
#> GSM601827     1  0.3400     0.6494 0.876 0.004 0.044 0.076
#> GSM601837     2  0.3450     0.5807 0.008 0.836 0.156 0.000
#> GSM601842     2  0.5324     0.6299 0.004 0.644 0.016 0.336
#> GSM601857     1  0.0657     0.7064 0.984 0.004 0.012 0.000
#> GSM601867     1  0.7634    -0.3547 0.424 0.208 0.368 0.000
#> GSM601747     1  0.7003     0.4716 0.624 0.256 0.036 0.084
#> GSM601757     1  0.3697     0.7123 0.852 0.100 0.048 0.000
#> GSM601762     2  0.4431     0.6709 0.000 0.696 0.000 0.304
#> GSM601767     2  0.4053     0.7188 0.004 0.768 0.000 0.228
#> GSM601772     2  0.4018     0.7196 0.004 0.772 0.000 0.224
#> GSM601777     4  0.4739     0.6751 0.044 0.008 0.160 0.788
#> GSM601787     2  0.7688    -0.1737 0.220 0.416 0.364 0.000
#> GSM601802     4  0.0000     0.7237 0.000 0.000 0.000 1.000
#> GSM601807     3  0.5038     0.9312 0.336 0.000 0.652 0.012
#> GSM601812     1  0.0188     0.7131 0.996 0.000 0.004 0.000
#> GSM601817     1  0.0188     0.7112 0.996 0.000 0.004 0.000
#> GSM601822     4  0.1557     0.7171 0.000 0.000 0.056 0.944
#> GSM601832     2  0.5513     0.6125 0.008 0.628 0.016 0.348
#> GSM601847     4  0.0592     0.7241 0.000 0.000 0.016 0.984
#> GSM601852     1  0.1854     0.7227 0.940 0.048 0.012 0.000
#> GSM601862     1  0.1978     0.6691 0.928 0.004 0.068 0.000
#> GSM601753     4  0.0376     0.7221 0.000 0.004 0.004 0.992
#> GSM601783     1  0.4167     0.7068 0.824 0.040 0.132 0.004
#> GSM601793     4  0.5361     0.6148 0.224 0.000 0.060 0.716
#> GSM601798     4  0.0000     0.7237 0.000 0.000 0.000 1.000
#> GSM601828     1  0.0188     0.7112 0.996 0.000 0.004 0.000
#> GSM601838     2  0.3450     0.5807 0.008 0.836 0.156 0.000
#> GSM601843     2  0.4483     0.6909 0.004 0.712 0.000 0.284
#> GSM601858     2  0.6518     0.6541 0.020 0.684 0.148 0.148
#> GSM601868     1  0.2266     0.6502 0.912 0.004 0.084 0.000
#> GSM601748     1  0.0188     0.7112 0.996 0.000 0.004 0.000
#> GSM601758     1  0.2480     0.7173 0.904 0.008 0.088 0.000
#> GSM601763     1  0.9834    -0.0391 0.304 0.224 0.176 0.296
#> GSM601768     2  0.4560     0.6826 0.004 0.700 0.000 0.296
#> GSM601773     2  0.4551     0.7064 0.004 0.724 0.004 0.268
#> GSM601778     4  0.6129     0.6317 0.184 0.004 0.124 0.688
#> GSM601788     2  0.8129     0.5389 0.068 0.560 0.152 0.220
#> GSM601803     4  0.0188     0.7213 0.000 0.004 0.000 0.996
#> GSM601808     1  0.3208     0.5302 0.848 0.004 0.148 0.000
#> GSM601813     1  0.3533     0.7190 0.864 0.080 0.056 0.000
#> GSM601818     1  0.0927     0.7137 0.976 0.008 0.016 0.000
#> GSM601823     4  0.6537     0.2137 0.424 0.000 0.076 0.500
#> GSM601833     2  0.4252     0.7106 0.004 0.744 0.000 0.252
#> GSM601848     4  0.6451     0.1272 0.456 0.000 0.068 0.476
#> GSM601853     1  0.3208     0.5295 0.848 0.004 0.148 0.000
#> GSM601863     1  0.1004     0.7040 0.972 0.004 0.024 0.000
#> GSM601754     4  0.0000     0.7237 0.000 0.000 0.000 1.000
#> GSM601784     2  0.3751     0.7226 0.004 0.800 0.000 0.196
#> GSM601794     4  0.5288     0.6165 0.224 0.000 0.056 0.720
#> GSM601799     4  0.0524     0.7213 0.000 0.004 0.008 0.988
#> GSM601829     4  0.7491     0.2849 0.352 0.004 0.164 0.480
#> GSM601839     2  0.3450     0.5807 0.008 0.836 0.156 0.000
#> GSM601844     1  0.7241     0.6011 0.632 0.128 0.200 0.040
#> GSM601859     2  0.4560     0.6827 0.004 0.700 0.000 0.296
#> GSM601869     1  0.0657     0.7094 0.984 0.004 0.012 0.000
#> GSM601749     1  0.4236     0.7072 0.824 0.088 0.088 0.000
#> GSM601759     1  0.0895     0.7187 0.976 0.004 0.020 0.000
#> GSM601764     1  0.8511     0.4935 0.544 0.180 0.168 0.108
#> GSM601769     2  0.0779     0.6576 0.004 0.980 0.000 0.016
#> GSM601774     2  0.3870     0.7220 0.004 0.788 0.000 0.208
#> GSM601779     1  0.6667     0.2267 0.556 0.004 0.084 0.356
#> GSM601789     2  0.5154     0.6369 0.012 0.776 0.140 0.072
#> GSM601804     4  0.0657     0.7230 0.000 0.004 0.012 0.984
#> GSM601809     1  0.6373     0.3479 0.636 0.248 0.116 0.000
#> GSM601814     2  0.0524     0.6533 0.004 0.988 0.000 0.008
#> GSM601819     1  0.4829     0.6837 0.776 0.068 0.156 0.000
#> GSM601824     4  0.6625     0.4911 0.176 0.132 0.020 0.672
#> GSM601834     2  0.4188     0.7141 0.004 0.752 0.000 0.244
#> GSM601849     1  0.8241     0.5367 0.568 0.108 0.200 0.124
#> GSM601854     1  0.2216     0.7142 0.908 0.092 0.000 0.000
#> GSM601864     2  0.3450     0.5807 0.008 0.836 0.156 0.000
#> GSM601755     4  0.0000     0.7237 0.000 0.000 0.000 1.000
#> GSM601785     2  0.7087     0.5097 0.020 0.536 0.080 0.364
#> GSM601795     4  0.4562     0.6713 0.152 0.000 0.056 0.792
#> GSM601800     4  0.0000     0.7237 0.000 0.000 0.000 1.000
#> GSM601830     3  0.4661     0.9387 0.348 0.000 0.652 0.000
#> GSM601840     4  0.9740    -0.0567 0.228 0.268 0.160 0.344
#> GSM601845     4  0.9615     0.0713 0.216 0.224 0.168 0.392
#> GSM601860     2  0.4908     0.6824 0.016 0.692 0.000 0.292
#> GSM601870     3  0.4040     0.8580 0.248 0.000 0.752 0.000
#> GSM601750     1  0.0188     0.7138 0.996 0.004 0.000 0.000
#> GSM601760     1  0.3523     0.7127 0.856 0.032 0.112 0.000
#> GSM601765     2  0.4677     0.6625 0.004 0.680 0.000 0.316
#> GSM601770     2  0.4053     0.7188 0.004 0.768 0.000 0.228
#> GSM601775     4  0.9204     0.1494 0.224 0.208 0.120 0.448
#> GSM601780     1  0.7636     0.5757 0.616 0.068 0.188 0.128
#> GSM601790     2  0.3351     0.5868 0.008 0.844 0.148 0.000
#> GSM601805     4  0.0000     0.7237 0.000 0.000 0.000 1.000
#> GSM601810     1  0.1639     0.6941 0.952 0.004 0.036 0.008
#> GSM601815     2  0.3249     0.5919 0.008 0.852 0.140 0.000
#> GSM601820     1  0.1576     0.7206 0.948 0.004 0.048 0.000
#> GSM601825     4  0.0188     0.7213 0.000 0.004 0.000 0.996
#> GSM601835     2  0.6540     0.3320 0.036 0.476 0.020 0.468
#> GSM601850     4  0.8624     0.3677 0.284 0.100 0.124 0.492
#> GSM601855     3  0.4661     0.9387 0.348 0.000 0.652 0.000
#> GSM601865     2  0.3450     0.5807 0.008 0.836 0.156 0.000
#> GSM601756     4  0.0000     0.7237 0.000 0.000 0.000 1.000
#> GSM601786     2  0.3351     0.5868 0.008 0.844 0.148 0.000
#> GSM601796     4  0.5394     0.6112 0.228 0.000 0.060 0.712
#> GSM601801     4  0.0188     0.7213 0.000 0.004 0.000 0.996
#> GSM601831     1  0.1545     0.6984 0.952 0.000 0.040 0.008
#> GSM601841     1  0.5925     0.6631 0.724 0.136 0.128 0.012
#> GSM601846     4  0.2334     0.7125 0.000 0.004 0.088 0.908
#> GSM601861     2  0.2714     0.6135 0.004 0.884 0.112 0.000
#> GSM601871     2  0.7535    -0.0647 0.200 0.464 0.336 0.000
#> GSM601751     2  0.8820     0.2944 0.100 0.408 0.124 0.368
#> GSM601761     1  0.5889     0.6441 0.696 0.116 0.188 0.000
#> GSM601766     2  0.8580     0.2778 0.212 0.412 0.040 0.336
#> GSM601771     2  0.4631     0.7061 0.004 0.728 0.008 0.260
#> GSM601776     1  0.7701     0.5679 0.620 0.080 0.148 0.152
#> GSM601781     4  0.8101     0.3921 0.296 0.040 0.156 0.508
#> GSM601791     1  0.6382     0.6219 0.664 0.136 0.196 0.004
#> GSM601806     4  0.1022     0.7026 0.000 0.032 0.000 0.968
#> GSM601811     1  0.1489     0.6837 0.952 0.004 0.044 0.000
#> GSM601816     4  0.5657     0.5897 0.244 0.000 0.068 0.688
#> GSM601821     2  0.2831     0.6096 0.004 0.876 0.120 0.000
#> GSM601826     4  0.6661     0.1032 0.456 0.000 0.084 0.460
#> GSM601836     1  0.8959     0.4272 0.496 0.180 0.188 0.136
#> GSM601851     1  0.7403     0.5970 0.632 0.072 0.200 0.096
#> GSM601856     1  0.4395     0.3711 0.776 0.004 0.204 0.016
#> GSM601866     1  0.0336     0.7102 0.992 0.000 0.008 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM601752     4  0.0000     0.7930 0.000 0.000 0.000 1.000 0.000
#> GSM601782     3  0.4996     0.3529 0.420 0.032 0.548 0.000 0.000
#> GSM601792     1  0.4437     0.2126 0.532 0.000 0.004 0.464 0.000
#> GSM601797     4  0.3010     0.6515 0.172 0.000 0.004 0.824 0.000
#> GSM601827     3  0.4982     0.7421 0.176 0.000 0.732 0.020 0.072
#> GSM601837     5  0.4268     0.7080 0.000 0.444 0.000 0.000 0.556
#> GSM601842     2  0.4169     0.7795 0.016 0.724 0.004 0.256 0.000
#> GSM601857     3  0.0794     0.7977 0.028 0.000 0.972 0.000 0.000
#> GSM601867     5  0.5146     0.1756 0.016 0.016 0.428 0.000 0.540
#> GSM601747     3  0.6950    -0.0343 0.320 0.316 0.360 0.004 0.000
#> GSM601757     3  0.4768     0.4587 0.384 0.024 0.592 0.000 0.000
#> GSM601762     2  0.4083     0.7782 0.008 0.728 0.000 0.256 0.008
#> GSM601767     2  0.3452     0.7841 0.000 0.756 0.000 0.244 0.000
#> GSM601772     2  0.3607     0.7849 0.000 0.752 0.004 0.244 0.000
#> GSM601777     4  0.4610     0.2352 0.432 0.000 0.012 0.556 0.000
#> GSM601787     5  0.6118     0.4959 0.016 0.116 0.280 0.000 0.588
#> GSM601802     4  0.0000     0.7930 0.000 0.000 0.000 1.000 0.000
#> GSM601807     3  0.5504     0.2480 0.064 0.000 0.488 0.000 0.448
#> GSM601812     3  0.1197     0.8039 0.048 0.000 0.952 0.000 0.000
#> GSM601817     3  0.0865     0.8002 0.024 0.000 0.972 0.000 0.004
#> GSM601822     4  0.3579     0.5363 0.240 0.000 0.004 0.756 0.000
#> GSM601832     2  0.4508     0.7731 0.032 0.708 0.004 0.256 0.000
#> GSM601847     4  0.0963     0.7784 0.036 0.000 0.000 0.964 0.000
#> GSM601852     3  0.1792     0.8067 0.084 0.000 0.916 0.000 0.000
#> GSM601862     3  0.0771     0.7919 0.020 0.000 0.976 0.000 0.004
#> GSM601753     4  0.0000     0.7930 0.000 0.000 0.000 1.000 0.000
#> GSM601783     3  0.3661     0.6986 0.276 0.000 0.724 0.000 0.000
#> GSM601793     4  0.4443    -0.0475 0.472 0.000 0.004 0.524 0.000
#> GSM601798     4  0.0000     0.7930 0.000 0.000 0.000 1.000 0.000
#> GSM601828     3  0.1410     0.8054 0.060 0.000 0.940 0.000 0.000
#> GSM601838     5  0.4268     0.7080 0.000 0.444 0.000 0.000 0.556
#> GSM601843     2  0.3883     0.7841 0.008 0.744 0.000 0.244 0.004
#> GSM601858     5  0.6529     0.3936 0.000 0.332 0.012 0.152 0.504
#> GSM601868     3  0.0671     0.7885 0.016 0.000 0.980 0.000 0.004
#> GSM601748     3  0.1410     0.8065 0.060 0.000 0.940 0.000 0.000
#> GSM601758     3  0.3123     0.7740 0.184 0.004 0.812 0.000 0.000
#> GSM601763     1  0.3135     0.7025 0.868 0.088 0.024 0.020 0.000
#> GSM601768     2  0.3607     0.7851 0.004 0.752 0.000 0.244 0.000
#> GSM601773     2  0.3861     0.7797 0.008 0.728 0.000 0.264 0.000
#> GSM601778     4  0.4443     0.0415 0.472 0.000 0.004 0.524 0.000
#> GSM601788     2  0.6287     0.6567 0.184 0.552 0.004 0.260 0.000
#> GSM601803     4  0.0000     0.7930 0.000 0.000 0.000 1.000 0.000
#> GSM601808     3  0.1012     0.7879 0.020 0.000 0.968 0.000 0.012
#> GSM601813     3  0.2966     0.7754 0.184 0.000 0.816 0.000 0.000
#> GSM601818     3  0.2389     0.7662 0.116 0.000 0.880 0.000 0.004
#> GSM601823     1  0.4014     0.6332 0.728 0.000 0.016 0.256 0.000
#> GSM601833     2  0.3607     0.7851 0.004 0.752 0.000 0.244 0.000
#> GSM601848     1  0.4040     0.6269 0.724 0.000 0.016 0.260 0.000
#> GSM601853     3  0.0671     0.7879 0.016 0.000 0.980 0.000 0.004
#> GSM601863     3  0.0955     0.7956 0.028 0.000 0.968 0.000 0.004
#> GSM601754     4  0.0000     0.7930 0.000 0.000 0.000 1.000 0.000
#> GSM601784     2  0.3579     0.7809 0.000 0.756 0.000 0.240 0.004
#> GSM601794     4  0.4397     0.1019 0.432 0.000 0.004 0.564 0.000
#> GSM601799     4  0.0000     0.7930 0.000 0.000 0.000 1.000 0.000
#> GSM601829     1  0.5002     0.4037 0.612 0.000 0.044 0.344 0.000
#> GSM601839     5  0.4273     0.7063 0.000 0.448 0.000 0.000 0.552
#> GSM601844     1  0.1913     0.7338 0.932 0.008 0.044 0.016 0.000
#> GSM601859     2  0.3607     0.7851 0.004 0.752 0.000 0.244 0.000
#> GSM601869     3  0.0963     0.8032 0.036 0.000 0.964 0.000 0.000
#> GSM601749     3  0.3171     0.7789 0.176 0.008 0.816 0.000 0.000
#> GSM601759     3  0.2329     0.8013 0.124 0.000 0.876 0.000 0.000
#> GSM601764     1  0.2694     0.7061 0.884 0.076 0.040 0.000 0.000
#> GSM601769     2  0.3555     0.3419 0.000 0.824 0.000 0.052 0.124
#> GSM601774     2  0.3607     0.7851 0.004 0.752 0.000 0.244 0.000
#> GSM601779     1  0.4096     0.6828 0.760 0.000 0.040 0.200 0.000
#> GSM601789     2  0.5799    -0.3872 0.000 0.492 0.000 0.092 0.416
#> GSM601804     4  0.1928     0.7541 0.072 0.004 0.004 0.920 0.000
#> GSM601809     3  0.6605     0.4035 0.120 0.264 0.572 0.000 0.044
#> GSM601814     2  0.1300     0.4879 0.000 0.956 0.000 0.028 0.016
#> GSM601819     1  0.4481    -0.0235 0.576 0.008 0.416 0.000 0.000
#> GSM601824     4  0.5256    -0.0301 0.472 0.024 0.012 0.492 0.000
#> GSM601834     2  0.3607     0.7851 0.004 0.752 0.000 0.244 0.000
#> GSM601849     1  0.2251     0.7344 0.916 0.008 0.052 0.024 0.000
#> GSM601854     3  0.2516     0.7941 0.140 0.000 0.860 0.000 0.000
#> GSM601864     5  0.4268     0.7080 0.000 0.444 0.000 0.000 0.556
#> GSM601755     4  0.0000     0.7930 0.000 0.000 0.000 1.000 0.000
#> GSM601785     2  0.5508     0.7284 0.096 0.636 0.004 0.264 0.000
#> GSM601795     4  0.4151     0.3391 0.344 0.000 0.004 0.652 0.000
#> GSM601800     4  0.0000     0.7930 0.000 0.000 0.000 1.000 0.000
#> GSM601830     3  0.5447     0.2621 0.060 0.000 0.500 0.000 0.440
#> GSM601840     2  0.6996     0.5541 0.244 0.476 0.020 0.260 0.000
#> GSM601845     2  0.6349     0.2239 0.424 0.444 0.008 0.124 0.000
#> GSM601860     2  0.3607     0.7851 0.004 0.752 0.000 0.244 0.000
#> GSM601870     5  0.5285     0.0484 0.060 0.000 0.356 0.000 0.584
#> GSM601750     3  0.2471     0.7960 0.136 0.000 0.864 0.000 0.000
#> GSM601760     3  0.4403     0.3999 0.436 0.004 0.560 0.000 0.000
#> GSM601765     2  0.3961     0.7836 0.016 0.736 0.000 0.248 0.000
#> GSM601770     2  0.3607     0.7851 0.004 0.752 0.000 0.244 0.000
#> GSM601775     4  0.6876    -0.1103 0.368 0.256 0.004 0.372 0.000
#> GSM601780     1  0.3210     0.7334 0.860 0.008 0.040 0.092 0.000
#> GSM601790     5  0.4297     0.6870 0.000 0.472 0.000 0.000 0.528
#> GSM601805     4  0.0000     0.7930 0.000 0.000 0.000 1.000 0.000
#> GSM601810     3  0.3875     0.7818 0.124 0.000 0.804 0.000 0.072
#> GSM601815     2  0.4300    -0.6684 0.000 0.524 0.000 0.000 0.476
#> GSM601820     3  0.2773     0.7841 0.164 0.000 0.836 0.000 0.000
#> GSM601825     4  0.0609     0.7791 0.000 0.020 0.000 0.980 0.000
#> GSM601835     2  0.5704     0.7394 0.064 0.636 0.000 0.272 0.028
#> GSM601850     1  0.3312     0.7209 0.840 0.016 0.012 0.132 0.000
#> GSM601855     3  0.5452     0.2513 0.060 0.000 0.492 0.000 0.448
#> GSM601865     5  0.4278     0.7043 0.000 0.452 0.000 0.000 0.548
#> GSM601756     4  0.0000     0.7930 0.000 0.000 0.000 1.000 0.000
#> GSM601786     5  0.4307     0.6632 0.000 0.496 0.000 0.000 0.504
#> GSM601796     1  0.4390     0.3059 0.568 0.000 0.004 0.428 0.000
#> GSM601801     4  0.0000     0.7930 0.000 0.000 0.000 1.000 0.000
#> GSM601831     3  0.4238     0.7705 0.136 0.000 0.776 0.000 0.088
#> GSM601841     1  0.4859     0.1081 0.608 0.024 0.364 0.004 0.000
#> GSM601846     4  0.2488     0.7243 0.124 0.000 0.004 0.872 0.000
#> GSM601861     2  0.4088    -0.4980 0.000 0.632 0.000 0.000 0.368
#> GSM601871     5  0.6154     0.5503 0.016 0.144 0.236 0.000 0.604
#> GSM601751     2  0.6472     0.5807 0.184 0.504 0.004 0.308 0.000
#> GSM601761     1  0.2833     0.6512 0.852 0.004 0.140 0.004 0.000
#> GSM601766     2  0.5545     0.6956 0.128 0.676 0.012 0.184 0.000
#> GSM601771     2  0.3607     0.7849 0.000 0.752 0.004 0.244 0.000
#> GSM601776     1  0.3757     0.7149 0.816 0.008 0.040 0.136 0.000
#> GSM601781     1  0.3399     0.6887 0.812 0.012 0.004 0.172 0.000
#> GSM601791     1  0.1913     0.7330 0.932 0.008 0.044 0.016 0.000
#> GSM601806     4  0.0609     0.7789 0.000 0.020 0.000 0.980 0.000
#> GSM601811     3  0.1800     0.7942 0.048 0.000 0.932 0.000 0.020
#> GSM601816     1  0.4390     0.3078 0.568 0.000 0.004 0.428 0.000
#> GSM601821     2  0.4015    -0.4625 0.000 0.652 0.000 0.000 0.348
#> GSM601826     1  0.3988     0.6363 0.732 0.000 0.016 0.252 0.000
#> GSM601836     1  0.2504     0.7123 0.900 0.064 0.032 0.004 0.000
#> GSM601851     1  0.2438     0.7378 0.908 0.008 0.040 0.044 0.000
#> GSM601856     3  0.2464     0.7445 0.012 0.000 0.892 0.004 0.092
#> GSM601866     3  0.0865     0.8007 0.024 0.000 0.972 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM601752     4  0.0865    0.80436 0.000 0.036 0.000 0.964 0.000 0.000
#> GSM601782     1  0.3023    0.70205 0.808 0.004 0.008 0.000 0.000 0.180
#> GSM601792     4  0.4839   -0.00208 0.000 0.000 0.012 0.508 0.032 0.448
#> GSM601797     4  0.2544    0.73784 0.000 0.004 0.008 0.888 0.028 0.072
#> GSM601827     1  0.4937    0.57052 0.684 0.000 0.028 0.076 0.000 0.212
#> GSM601837     5  0.0865    0.74887 0.000 0.036 0.000 0.000 0.964 0.000
#> GSM601842     2  0.0993    0.83644 0.000 0.964 0.000 0.024 0.000 0.012
#> GSM601857     1  0.3245    0.57280 0.796 0.000 0.184 0.016 0.004 0.000
#> GSM601867     3  0.6516    0.48080 0.288 0.012 0.476 0.020 0.204 0.000
#> GSM601747     1  0.5283    0.35185 0.528 0.092 0.004 0.000 0.000 0.376
#> GSM601757     1  0.2859    0.70856 0.828 0.000 0.016 0.000 0.000 0.156
#> GSM601762     2  0.2264    0.77876 0.000 0.888 0.000 0.096 0.012 0.004
#> GSM601767     2  0.0146    0.84171 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM601772     2  0.0260    0.84155 0.000 0.992 0.000 0.008 0.000 0.000
#> GSM601777     4  0.5669    0.23291 0.048 0.004 0.008 0.544 0.032 0.364
#> GSM601787     3  0.5796    0.30129 0.080 0.008 0.464 0.020 0.428 0.000
#> GSM601802     4  0.0865    0.80436 0.000 0.036 0.000 0.964 0.000 0.000
#> GSM601807     3  0.1007    0.77346 0.044 0.000 0.956 0.000 0.000 0.000
#> GSM601812     1  0.1719    0.71419 0.924 0.000 0.016 0.000 0.000 0.060
#> GSM601817     1  0.1707    0.68108 0.928 0.000 0.056 0.012 0.004 0.000
#> GSM601822     4  0.3514    0.67383 0.000 0.004 0.012 0.812 0.032 0.140
#> GSM601832     2  0.1686    0.81326 0.000 0.924 0.000 0.064 0.000 0.012
#> GSM601847     4  0.3657    0.64363 0.000 0.028 0.004 0.776 0.004 0.188
#> GSM601852     1  0.2848    0.70787 0.816 0.000 0.008 0.000 0.000 0.176
#> GSM601862     1  0.3678    0.52531 0.748 0.000 0.228 0.016 0.008 0.000
#> GSM601753     4  0.0865    0.80436 0.000 0.036 0.000 0.964 0.000 0.000
#> GSM601783     1  0.4256    0.47730 0.520 0.000 0.016 0.000 0.000 0.464
#> GSM601793     4  0.4846   -0.02897 0.000 0.000 0.012 0.496 0.032 0.460
#> GSM601798     4  0.0865    0.80436 0.000 0.036 0.000 0.964 0.000 0.000
#> GSM601828     1  0.1498    0.70582 0.940 0.000 0.028 0.000 0.000 0.032
#> GSM601838     5  0.0865    0.74887 0.000 0.036 0.000 0.000 0.964 0.000
#> GSM601843     2  0.0603    0.84027 0.000 0.980 0.000 0.016 0.000 0.004
#> GSM601858     5  0.4033    0.40273 0.000 0.404 0.004 0.004 0.588 0.000
#> GSM601868     1  0.3828    0.49955 0.724 0.000 0.252 0.016 0.008 0.000
#> GSM601748     1  0.1867    0.71535 0.916 0.000 0.020 0.000 0.000 0.064
#> GSM601758     1  0.4116    0.53250 0.572 0.000 0.012 0.000 0.000 0.416
#> GSM601763     6  0.1570    0.67201 0.004 0.028 0.016 0.008 0.000 0.944
#> GSM601768     2  0.0146    0.84171 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM601773     2  0.0777    0.83765 0.000 0.972 0.000 0.024 0.004 0.000
#> GSM601778     6  0.4942    0.19726 0.008 0.000 0.008 0.412 0.032 0.540
#> GSM601788     2  0.3594    0.73453 0.048 0.820 0.000 0.028 0.000 0.104
#> GSM601803     4  0.0865    0.80436 0.000 0.036 0.000 0.964 0.000 0.000
#> GSM601808     1  0.3744    0.49771 0.724 0.000 0.256 0.016 0.004 0.000
#> GSM601813     1  0.3528    0.65475 0.700 0.000 0.004 0.000 0.000 0.296
#> GSM601818     1  0.2350    0.67225 0.896 0.000 0.076 0.016 0.004 0.008
#> GSM601823     6  0.4594    0.37350 0.000 0.000 0.008 0.360 0.032 0.600
#> GSM601833     2  0.0146    0.84171 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM601848     6  0.4444    0.46517 0.000 0.000 0.008 0.316 0.032 0.644
#> GSM601853     1  0.3812    0.48468 0.712 0.000 0.268 0.016 0.004 0.000
#> GSM601863     1  0.3459    0.55244 0.768 0.000 0.212 0.016 0.004 0.000
#> GSM601754     4  0.1010    0.80360 0.000 0.036 0.004 0.960 0.000 0.000
#> GSM601784     2  0.0291    0.84114 0.000 0.992 0.000 0.004 0.004 0.000
#> GSM601794     4  0.4844   -0.02006 0.000 0.000 0.012 0.500 0.032 0.456
#> GSM601799     4  0.0865    0.80436 0.000 0.036 0.000 0.964 0.000 0.000
#> GSM601829     6  0.5850    0.44380 0.108 0.000 0.012 0.268 0.024 0.588
#> GSM601839     5  0.0865    0.74887 0.000 0.036 0.000 0.000 0.964 0.000
#> GSM601844     6  0.1325    0.67886 0.016 0.000 0.012 0.012 0.004 0.956
#> GSM601859     2  0.0146    0.84171 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM601869     1  0.1285    0.68408 0.944 0.000 0.052 0.000 0.004 0.000
#> GSM601749     1  0.4062    0.51402 0.552 0.000 0.008 0.000 0.000 0.440
#> GSM601759     1  0.3101    0.67085 0.756 0.000 0.000 0.000 0.000 0.244
#> GSM601764     6  0.3964    0.56680 0.068 0.120 0.016 0.004 0.000 0.792
#> GSM601769     2  0.1910    0.76154 0.000 0.892 0.000 0.000 0.108 0.000
#> GSM601774     2  0.0291    0.84062 0.000 0.992 0.000 0.004 0.004 0.000
#> GSM601779     6  0.3698    0.61818 0.008 0.000 0.008 0.196 0.016 0.772
#> GSM601789     2  0.3907    0.13934 0.000 0.588 0.000 0.004 0.408 0.000
#> GSM601804     4  0.3904    0.54368 0.000 0.032 0.000 0.732 0.004 0.232
#> GSM601809     1  0.3988    0.68615 0.816 0.080 0.024 0.016 0.004 0.060
#> GSM601814     2  0.2562    0.69351 0.000 0.828 0.000 0.000 0.172 0.000
#> GSM601819     1  0.4467    0.38761 0.496 0.004 0.020 0.000 0.000 0.480
#> GSM601824     6  0.4387    0.35560 0.000 0.020 0.000 0.404 0.004 0.572
#> GSM601834     2  0.0146    0.84171 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM601849     6  0.0837    0.67289 0.020 0.000 0.004 0.004 0.000 0.972
#> GSM601854     1  0.2212    0.71896 0.880 0.000 0.008 0.000 0.000 0.112
#> GSM601864     5  0.0865    0.74887 0.000 0.036 0.000 0.000 0.964 0.000
#> GSM601755     4  0.0865    0.80436 0.000 0.036 0.000 0.964 0.000 0.000
#> GSM601785     2  0.1719    0.81523 0.000 0.924 0.000 0.016 0.000 0.060
#> GSM601795     4  0.4844   -0.01468 0.000 0.000 0.012 0.500 0.032 0.456
#> GSM601800     4  0.0865    0.80436 0.000 0.036 0.000 0.964 0.000 0.000
#> GSM601830     3  0.1007    0.77689 0.044 0.000 0.956 0.000 0.000 0.000
#> GSM601840     2  0.4963    0.56112 0.032 0.672 0.000 0.048 0.004 0.244
#> GSM601845     6  0.6128    0.28113 0.020 0.348 0.000 0.144 0.004 0.484
#> GSM601860     2  0.0146    0.84171 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM601870     3  0.1563    0.75100 0.012 0.000 0.932 0.000 0.056 0.000
#> GSM601750     1  0.2092    0.71528 0.876 0.000 0.000 0.000 0.000 0.124
#> GSM601760     1  0.4237    0.53739 0.584 0.000 0.020 0.000 0.000 0.396
#> GSM601765     2  0.0547    0.83925 0.000 0.980 0.000 0.020 0.000 0.000
#> GSM601770     2  0.0146    0.84171 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM601775     6  0.4334    0.63414 0.000 0.108 0.020 0.092 0.008 0.772
#> GSM601780     6  0.1728    0.68646 0.008 0.000 0.004 0.064 0.000 0.924
#> GSM601790     5  0.1610    0.73980 0.000 0.084 0.000 0.000 0.916 0.000
#> GSM601805     4  0.1010    0.80360 0.000 0.036 0.004 0.960 0.000 0.000
#> GSM601810     1  0.2084    0.69923 0.916 0.000 0.024 0.016 0.000 0.044
#> GSM601815     5  0.3390    0.60971 0.000 0.296 0.000 0.000 0.704 0.000
#> GSM601820     1  0.3360    0.66807 0.732 0.000 0.004 0.000 0.000 0.264
#> GSM601825     4  0.1010    0.80360 0.000 0.036 0.004 0.960 0.000 0.000
#> GSM601835     2  0.5957    0.38167 0.024 0.560 0.000 0.320 0.060 0.036
#> GSM601850     6  0.2757    0.66590 0.000 0.008 0.004 0.136 0.004 0.848
#> GSM601855     3  0.0790    0.77537 0.032 0.000 0.968 0.000 0.000 0.000
#> GSM601865     5  0.1007    0.74963 0.000 0.044 0.000 0.000 0.956 0.000
#> GSM601756     4  0.0865    0.80436 0.000 0.036 0.000 0.964 0.000 0.000
#> GSM601786     5  0.3489    0.61930 0.000 0.288 0.000 0.004 0.708 0.000
#> GSM601796     6  0.4849    0.01599 0.000 0.000 0.012 0.476 0.032 0.480
#> GSM601801     4  0.0865    0.80436 0.000 0.036 0.000 0.964 0.000 0.000
#> GSM601831     1  0.2833    0.69230 0.860 0.000 0.024 0.012 0.000 0.104
#> GSM601841     1  0.4169    0.48092 0.532 0.000 0.012 0.000 0.000 0.456
#> GSM601846     4  0.3430    0.69070 0.004 0.008 0.008 0.828 0.028 0.124
#> GSM601861     2  0.3706    0.28110 0.000 0.620 0.000 0.000 0.380 0.000
#> GSM601871     5  0.5718   -0.40870 0.072 0.008 0.436 0.020 0.464 0.000
#> GSM601751     2  0.3923    0.68464 0.000 0.772 0.000 0.080 0.004 0.144
#> GSM601761     6  0.3261    0.39513 0.204 0.000 0.016 0.000 0.000 0.780
#> GSM601766     2  0.3862    0.35980 0.000 0.608 0.000 0.004 0.000 0.388
#> GSM601771     2  0.0603    0.83856 0.000 0.980 0.000 0.004 0.000 0.016
#> GSM601776     6  0.2317    0.67603 0.008 0.000 0.008 0.088 0.004 0.892
#> GSM601781     6  0.3949    0.56430 0.004 0.012 0.008 0.224 0.008 0.744
#> GSM601791     6  0.1074    0.66345 0.028 0.000 0.012 0.000 0.000 0.960
#> GSM601806     4  0.1320    0.79326 0.000 0.036 0.000 0.948 0.016 0.000
#> GSM601811     1  0.2865    0.63029 0.848 0.000 0.128 0.016 0.004 0.004
#> GSM601816     6  0.4847    0.06496 0.000 0.000 0.012 0.464 0.032 0.492
#> GSM601821     2  0.3810    0.12902 0.000 0.572 0.000 0.000 0.428 0.000
#> GSM601826     6  0.4518    0.42742 0.000 0.000 0.008 0.336 0.032 0.624
#> GSM601836     6  0.3636    0.59703 0.080 0.068 0.016 0.004 0.004 0.828
#> GSM601851     6  0.0820    0.68422 0.012 0.000 0.000 0.016 0.000 0.972
#> GSM601856     1  0.3756    0.52051 0.736 0.000 0.240 0.016 0.000 0.008
#> GSM601866     1  0.2928    0.70218 0.856 0.000 0.084 0.000 0.004 0.056

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n time(p) gender(p) k
#> SD:mclust 110   0.906   0.03019 2
#> SD:mclust 113   0.908   0.27900 3
#> SD:mclust 102   0.376   0.05727 4
#> SD:mclust  93   0.504   0.00652 5
#> SD:mclust  94   0.452   0.03278 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 125 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.853           0.911       0.964         0.5027 0.496   0.496
#> 3 3 0.473           0.632       0.759         0.3045 0.797   0.613
#> 4 4 0.442           0.498       0.710         0.1258 0.786   0.473
#> 5 5 0.500           0.397       0.594         0.0703 0.891   0.612
#> 6 6 0.529           0.366       0.588         0.0450 0.854   0.439

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM601752     2  0.0000     0.9613 0.000 1.000
#> GSM601782     1  0.0000     0.9614 1.000 0.000
#> GSM601792     1  0.0000     0.9614 1.000 0.000
#> GSM601797     2  0.6438     0.7947 0.164 0.836
#> GSM601827     1  0.0000     0.9614 1.000 0.000
#> GSM601837     2  0.0000     0.9613 0.000 1.000
#> GSM601842     2  0.0000     0.9613 0.000 1.000
#> GSM601857     1  0.0000     0.9614 1.000 0.000
#> GSM601867     2  0.2236     0.9333 0.036 0.964
#> GSM601747     1  0.5294     0.8529 0.880 0.120
#> GSM601757     1  0.0000     0.9614 1.000 0.000
#> GSM601762     2  0.0000     0.9613 0.000 1.000
#> GSM601767     2  0.0000     0.9613 0.000 1.000
#> GSM601772     2  0.0000     0.9613 0.000 1.000
#> GSM601777     2  0.9866     0.2352 0.432 0.568
#> GSM601787     2  0.0000     0.9613 0.000 1.000
#> GSM601802     2  0.0000     0.9613 0.000 1.000
#> GSM601807     1  0.9944     0.1693 0.544 0.456
#> GSM601812     1  0.0000     0.9614 1.000 0.000
#> GSM601817     1  0.0000     0.9614 1.000 0.000
#> GSM601822     1  0.9983     0.0730 0.524 0.476
#> GSM601832     2  0.0000     0.9613 0.000 1.000
#> GSM601847     2  0.0672     0.9560 0.008 0.992
#> GSM601852     1  0.0000     0.9614 1.000 0.000
#> GSM601862     1  0.0000     0.9614 1.000 0.000
#> GSM601753     2  0.0000     0.9613 0.000 1.000
#> GSM601783     1  0.0000     0.9614 1.000 0.000
#> GSM601793     1  0.0000     0.9614 1.000 0.000
#> GSM601798     2  0.0000     0.9613 0.000 1.000
#> GSM601828     1  0.0000     0.9614 1.000 0.000
#> GSM601838     2  0.0000     0.9613 0.000 1.000
#> GSM601843     2  0.0000     0.9613 0.000 1.000
#> GSM601858     2  0.0000     0.9613 0.000 1.000
#> GSM601868     1  0.0000     0.9614 1.000 0.000
#> GSM601748     1  0.0000     0.9614 1.000 0.000
#> GSM601758     1  0.0000     0.9614 1.000 0.000
#> GSM601763     1  0.7528     0.7218 0.784 0.216
#> GSM601768     2  0.0000     0.9613 0.000 1.000
#> GSM601773     2  0.0000     0.9613 0.000 1.000
#> GSM601778     1  0.2423     0.9306 0.960 0.040
#> GSM601788     2  0.0376     0.9587 0.004 0.996
#> GSM601803     2  0.0000     0.9613 0.000 1.000
#> GSM601808     1  0.0000     0.9614 1.000 0.000
#> GSM601813     1  0.0000     0.9614 1.000 0.000
#> GSM601818     1  0.0000     0.9614 1.000 0.000
#> GSM601823     1  0.0000     0.9614 1.000 0.000
#> GSM601833     2  0.0000     0.9613 0.000 1.000
#> GSM601848     1  0.0000     0.9614 1.000 0.000
#> GSM601853     1  0.0000     0.9614 1.000 0.000
#> GSM601863     1  0.0000     0.9614 1.000 0.000
#> GSM601754     2  0.0000     0.9613 0.000 1.000
#> GSM601784     2  0.0000     0.9613 0.000 1.000
#> GSM601794     1  0.0376     0.9587 0.996 0.004
#> GSM601799     2  0.0000     0.9613 0.000 1.000
#> GSM601829     1  0.0000     0.9614 1.000 0.000
#> GSM601839     2  0.0000     0.9613 0.000 1.000
#> GSM601844     1  0.0000     0.9614 1.000 0.000
#> GSM601859     2  0.0000     0.9613 0.000 1.000
#> GSM601869     1  0.0000     0.9614 1.000 0.000
#> GSM601749     1  0.0000     0.9614 1.000 0.000
#> GSM601759     1  0.0000     0.9614 1.000 0.000
#> GSM601764     1  0.0376     0.9587 0.996 0.004
#> GSM601769     2  0.0000     0.9613 0.000 1.000
#> GSM601774     2  0.0000     0.9613 0.000 1.000
#> GSM601779     1  0.0000     0.9614 1.000 0.000
#> GSM601789     2  0.0000     0.9613 0.000 1.000
#> GSM601804     2  0.2236     0.9333 0.036 0.964
#> GSM601809     1  0.8813     0.5791 0.700 0.300
#> GSM601814     2  0.0000     0.9613 0.000 1.000
#> GSM601819     1  0.0000     0.9614 1.000 0.000
#> GSM601824     2  0.9087     0.5265 0.324 0.676
#> GSM601834     2  0.0000     0.9613 0.000 1.000
#> GSM601849     1  0.0000     0.9614 1.000 0.000
#> GSM601854     1  0.0000     0.9614 1.000 0.000
#> GSM601864     2  0.0000     0.9613 0.000 1.000
#> GSM601755     2  0.0000     0.9613 0.000 1.000
#> GSM601785     2  0.0000     0.9613 0.000 1.000
#> GSM601795     1  0.5294     0.8552 0.880 0.120
#> GSM601800     2  0.0000     0.9613 0.000 1.000
#> GSM601830     1  0.7139     0.7540 0.804 0.196
#> GSM601840     2  0.1633     0.9440 0.024 0.976
#> GSM601845     2  0.7950     0.6783 0.240 0.760
#> GSM601860     2  0.0000     0.9613 0.000 1.000
#> GSM601870     2  1.0000    -0.0237 0.496 0.504
#> GSM601750     1  0.0000     0.9614 1.000 0.000
#> GSM601760     1  0.0000     0.9614 1.000 0.000
#> GSM601765     2  0.0000     0.9613 0.000 1.000
#> GSM601770     2  0.0000     0.9613 0.000 1.000
#> GSM601775     2  0.7883     0.6912 0.236 0.764
#> GSM601780     1  0.0000     0.9614 1.000 0.000
#> GSM601790     2  0.0000     0.9613 0.000 1.000
#> GSM601805     2  0.0000     0.9613 0.000 1.000
#> GSM601810     1  0.0000     0.9614 1.000 0.000
#> GSM601815     2  0.0000     0.9613 0.000 1.000
#> GSM601820     1  0.0000     0.9614 1.000 0.000
#> GSM601825     2  0.0000     0.9613 0.000 1.000
#> GSM601835     2  0.0000     0.9613 0.000 1.000
#> GSM601850     1  0.5294     0.8550 0.880 0.120
#> GSM601855     1  0.0672     0.9559 0.992 0.008
#> GSM601865     2  0.0000     0.9613 0.000 1.000
#> GSM601756     2  0.0000     0.9613 0.000 1.000
#> GSM601786     2  0.0000     0.9613 0.000 1.000
#> GSM601796     1  0.0000     0.9614 1.000 0.000
#> GSM601801     2  0.0000     0.9613 0.000 1.000
#> GSM601831     1  0.0000     0.9614 1.000 0.000
#> GSM601841     1  0.0000     0.9614 1.000 0.000
#> GSM601846     2  0.1414     0.9471 0.020 0.980
#> GSM601861     2  0.0000     0.9613 0.000 1.000
#> GSM601871     2  0.0000     0.9613 0.000 1.000
#> GSM601751     2  0.0938     0.9532 0.012 0.988
#> GSM601761     1  0.0000     0.9614 1.000 0.000
#> GSM601766     2  0.7950     0.6860 0.240 0.760
#> GSM601771     2  0.0376     0.9587 0.004 0.996
#> GSM601776     1  0.0000     0.9614 1.000 0.000
#> GSM601781     1  0.6148     0.8171 0.848 0.152
#> GSM601791     1  0.0000     0.9614 1.000 0.000
#> GSM601806     2  0.0000     0.9613 0.000 1.000
#> GSM601811     1  0.0000     0.9614 1.000 0.000
#> GSM601816     1  0.0000     0.9614 1.000 0.000
#> GSM601821     2  0.0000     0.9613 0.000 1.000
#> GSM601826     1  0.0000     0.9614 1.000 0.000
#> GSM601836     1  0.1843     0.9403 0.972 0.028
#> GSM601851     1  0.0000     0.9614 1.000 0.000
#> GSM601856     1  0.0000     0.9614 1.000 0.000
#> GSM601866     1  0.0000     0.9614 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM601752     2  0.6252     0.5806 0.344 0.648 0.008
#> GSM601782     3  0.5529     0.6534 0.296 0.000 0.704
#> GSM601792     1  0.2998     0.7261 0.916 0.016 0.068
#> GSM601797     2  0.6756     0.7017 0.232 0.712 0.056
#> GSM601827     3  0.5397     0.6724 0.280 0.000 0.720
#> GSM601837     2  0.5497     0.6026 0.000 0.708 0.292
#> GSM601842     2  0.2031     0.8066 0.032 0.952 0.016
#> GSM601857     3  0.3267     0.7382 0.116 0.000 0.884
#> GSM601867     3  0.4842     0.5434 0.000 0.224 0.776
#> GSM601747     1  0.7610     0.0369 0.536 0.044 0.420
#> GSM601757     3  0.6244     0.4224 0.440 0.000 0.560
#> GSM601762     2  0.3116     0.7648 0.000 0.892 0.108
#> GSM601767     2  0.3192     0.8010 0.112 0.888 0.000
#> GSM601772     2  0.2527     0.8087 0.044 0.936 0.020
#> GSM601777     3  0.7465     0.5082 0.072 0.272 0.656
#> GSM601787     3  0.5497     0.4230 0.000 0.292 0.708
#> GSM601802     2  0.4796     0.7368 0.220 0.780 0.000
#> GSM601807     3  0.4346     0.5783 0.000 0.184 0.816
#> GSM601812     3  0.5397     0.6737 0.280 0.000 0.720
#> GSM601817     3  0.4346     0.7281 0.184 0.000 0.816
#> GSM601822     1  0.6448     0.2582 0.636 0.352 0.012
#> GSM601832     2  0.3207     0.8096 0.084 0.904 0.012
#> GSM601847     2  0.6192     0.4303 0.420 0.580 0.000
#> GSM601852     3  0.6045     0.5441 0.380 0.000 0.620
#> GSM601862     3  0.2959     0.7356 0.100 0.000 0.900
#> GSM601753     2  0.5327     0.6825 0.272 0.728 0.000
#> GSM601783     1  0.5327     0.4253 0.728 0.000 0.272
#> GSM601793     1  0.2860     0.7006 0.912 0.004 0.084
#> GSM601798     2  0.3091     0.8103 0.072 0.912 0.016
#> GSM601828     3  0.5733     0.6263 0.324 0.000 0.676
#> GSM601838     2  0.4750     0.6876 0.000 0.784 0.216
#> GSM601843     2  0.2537     0.7778 0.000 0.920 0.080
#> GSM601858     2  0.6192     0.3696 0.000 0.580 0.420
#> GSM601868     3  0.2680     0.7244 0.068 0.008 0.924
#> GSM601748     3  0.5621     0.6450 0.308 0.000 0.692
#> GSM601758     1  0.5560     0.3590 0.700 0.000 0.300
#> GSM601763     1  0.5517     0.4669 0.728 0.268 0.004
#> GSM601768     2  0.4399     0.7627 0.188 0.812 0.000
#> GSM601773     2  0.2356     0.8080 0.072 0.928 0.000
#> GSM601778     1  0.4270     0.6940 0.860 0.024 0.116
#> GSM601788     2  0.3482     0.7557 0.000 0.872 0.128
#> GSM601803     2  0.3482     0.7952 0.128 0.872 0.000
#> GSM601808     3  0.2959     0.7360 0.100 0.000 0.900
#> GSM601813     1  0.6286    -0.1774 0.536 0.000 0.464
#> GSM601818     3  0.3816     0.7364 0.148 0.000 0.852
#> GSM601823     1  0.2200     0.7230 0.940 0.056 0.004
#> GSM601833     2  0.2063     0.8088 0.044 0.948 0.008
#> GSM601848     1  0.1482     0.7343 0.968 0.020 0.012
#> GSM601853     3  0.3192     0.7374 0.112 0.000 0.888
#> GSM601863     3  0.4346     0.7275 0.184 0.000 0.816
#> GSM601754     2  0.5497     0.6572 0.292 0.708 0.000
#> GSM601784     2  0.0592     0.7986 0.000 0.988 0.012
#> GSM601794     1  0.2486     0.7244 0.932 0.008 0.060
#> GSM601799     2  0.5905     0.5671 0.352 0.648 0.000
#> GSM601829     3  0.6260     0.4052 0.448 0.000 0.552
#> GSM601839     2  0.5291     0.6305 0.000 0.732 0.268
#> GSM601844     1  0.2496     0.7139 0.928 0.004 0.068
#> GSM601859     2  0.4399     0.7627 0.188 0.812 0.000
#> GSM601869     3  0.4842     0.7112 0.224 0.000 0.776
#> GSM601749     1  0.5810     0.2650 0.664 0.000 0.336
#> GSM601759     3  0.6307     0.2967 0.488 0.000 0.512
#> GSM601764     1  0.2866     0.7159 0.916 0.076 0.008
#> GSM601769     2  0.1337     0.8009 0.012 0.972 0.016
#> GSM601774     2  0.1989     0.8089 0.048 0.948 0.004
#> GSM601779     1  0.3192     0.6911 0.888 0.112 0.000
#> GSM601789     2  0.4178     0.7251 0.000 0.828 0.172
#> GSM601804     2  0.6309     0.2134 0.500 0.500 0.000
#> GSM601809     3  0.3875     0.6876 0.044 0.068 0.888
#> GSM601814     2  0.1877     0.8064 0.032 0.956 0.012
#> GSM601819     1  0.3682     0.6720 0.876 0.008 0.116
#> GSM601824     1  0.5948     0.2413 0.640 0.360 0.000
#> GSM601834     2  0.2711     0.8062 0.088 0.912 0.000
#> GSM601849     1  0.1860     0.7233 0.948 0.000 0.052
#> GSM601854     3  0.6215     0.4518 0.428 0.000 0.572
#> GSM601864     2  0.5591     0.5828 0.000 0.696 0.304
#> GSM601755     2  0.3896     0.7971 0.128 0.864 0.008
#> GSM601785     2  0.4178     0.7728 0.172 0.828 0.000
#> GSM601795     1  0.4887     0.5493 0.772 0.228 0.000
#> GSM601800     2  0.4842     0.7336 0.224 0.776 0.000
#> GSM601830     3  0.2625     0.6490 0.000 0.084 0.916
#> GSM601840     2  0.5191     0.7928 0.112 0.828 0.060
#> GSM601845     2  0.6908     0.5889 0.308 0.656 0.036
#> GSM601860     2  0.4291     0.7697 0.180 0.820 0.000
#> GSM601870     3  0.4555     0.5653 0.000 0.200 0.800
#> GSM601750     3  0.5988     0.5644 0.368 0.000 0.632
#> GSM601760     1  0.3851     0.6460 0.860 0.004 0.136
#> GSM601765     2  0.2878     0.8048 0.096 0.904 0.000
#> GSM601770     2  0.2356     0.8086 0.072 0.928 0.000
#> GSM601775     1  0.6299    -0.1748 0.524 0.476 0.000
#> GSM601780     1  0.2066     0.7201 0.940 0.060 0.000
#> GSM601790     2  0.4002     0.7343 0.000 0.840 0.160
#> GSM601805     2  0.4605     0.7505 0.204 0.796 0.000
#> GSM601810     3  0.3816     0.7361 0.148 0.000 0.852
#> GSM601815     2  0.3619     0.7510 0.000 0.864 0.136
#> GSM601820     1  0.6295    -0.2118 0.528 0.000 0.472
#> GSM601825     2  0.3551     0.7939 0.132 0.868 0.000
#> GSM601835     2  0.5810     0.5342 0.000 0.664 0.336
#> GSM601850     1  0.4605     0.5877 0.796 0.204 0.000
#> GSM601855     3  0.2165     0.6610 0.000 0.064 0.936
#> GSM601865     2  0.5760     0.5471 0.000 0.672 0.328
#> GSM601756     2  0.3682     0.8011 0.116 0.876 0.008
#> GSM601786     2  0.4796     0.6824 0.000 0.780 0.220
#> GSM601796     1  0.1620     0.7343 0.964 0.024 0.012
#> GSM601801     2  0.2229     0.8094 0.044 0.944 0.012
#> GSM601831     3  0.4931     0.7066 0.232 0.000 0.768
#> GSM601841     1  0.6302    -0.2177 0.520 0.000 0.480
#> GSM601846     2  0.5244     0.6618 0.004 0.756 0.240
#> GSM601861     2  0.1860     0.7866 0.000 0.948 0.052
#> GSM601871     3  0.5529     0.4146 0.000 0.296 0.704
#> GSM601751     2  0.5098     0.7134 0.248 0.752 0.000
#> GSM601761     1  0.2400     0.7172 0.932 0.004 0.064
#> GSM601766     2  0.6669     0.2818 0.468 0.524 0.008
#> GSM601771     2  0.3619     0.7928 0.136 0.864 0.000
#> GSM601776     1  0.1315     0.7346 0.972 0.008 0.020
#> GSM601781     1  0.3551     0.6806 0.868 0.132 0.000
#> GSM601791     1  0.1525     0.7314 0.964 0.032 0.004
#> GSM601806     2  0.1529     0.8096 0.040 0.960 0.000
#> GSM601811     3  0.2625     0.7323 0.084 0.000 0.916
#> GSM601816     1  0.1411     0.7282 0.964 0.000 0.036
#> GSM601821     2  0.1860     0.7868 0.000 0.948 0.052
#> GSM601826     1  0.1129     0.7340 0.976 0.004 0.020
#> GSM601836     1  0.5094     0.6818 0.824 0.040 0.136
#> GSM601851     1  0.1919     0.7355 0.956 0.020 0.024
#> GSM601856     3  0.2165     0.7253 0.064 0.000 0.936
#> GSM601866     3  0.5178     0.6922 0.256 0.000 0.744

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM601752     4   0.423     0.6393 0.024 0.168 0.004 0.804
#> GSM601782     1   0.594    -0.1366 0.500 0.004 0.468 0.028
#> GSM601792     4   0.447     0.5189 0.172 0.000 0.040 0.788
#> GSM601797     4   0.477     0.6078 0.004 0.084 0.116 0.796
#> GSM601827     3   0.659     0.5010 0.216 0.000 0.628 0.156
#> GSM601837     2   0.588     0.6346 0.000 0.680 0.232 0.088
#> GSM601842     2   0.440     0.7560 0.012 0.816 0.036 0.136
#> GSM601857     3   0.499     0.5726 0.288 0.020 0.692 0.000
#> GSM601867     3   0.402     0.5587 0.008 0.156 0.820 0.016
#> GSM601747     1   0.814     0.2025 0.528 0.248 0.180 0.044
#> GSM601757     1   0.513     0.3538 0.700 0.012 0.276 0.012
#> GSM601762     2   0.435     0.7581 0.004 0.824 0.080 0.092
#> GSM601767     2   0.292     0.7726 0.044 0.896 0.000 0.060
#> GSM601772     2   0.318     0.7819 0.068 0.892 0.016 0.024
#> GSM601777     4   0.725     0.2393 0.016 0.096 0.388 0.500
#> GSM601787     3   0.478     0.4747 0.004 0.248 0.732 0.016
#> GSM601802     4   0.496     0.5741 0.020 0.284 0.000 0.696
#> GSM601807     3   0.487     0.5050 0.008 0.044 0.776 0.172
#> GSM601812     3   0.586     0.2825 0.432 0.008 0.540 0.020
#> GSM601817     3   0.579     0.4673 0.360 0.016 0.608 0.016
#> GSM601822     4   0.449     0.6341 0.076 0.096 0.008 0.820
#> GSM601832     2   0.464     0.7398 0.032 0.804 0.020 0.144
#> GSM601847     4   0.545     0.6367 0.080 0.196 0.000 0.724
#> GSM601852     1   0.662    -0.0810 0.484 0.008 0.448 0.060
#> GSM601862     3   0.483     0.5944 0.264 0.020 0.716 0.000
#> GSM601753     4   0.579     0.5226 0.048 0.324 0.000 0.628
#> GSM601783     1   0.430     0.5596 0.820 0.000 0.088 0.092
#> GSM601793     4   0.466     0.4997 0.208 0.000 0.032 0.760
#> GSM601798     4   0.542     0.5569 0.000 0.240 0.056 0.704
#> GSM601828     3   0.631     0.1864 0.460 0.004 0.488 0.048
#> GSM601838     2   0.543     0.6852 0.000 0.736 0.164 0.100
#> GSM601843     2   0.400     0.7685 0.004 0.844 0.064 0.088
#> GSM601858     2   0.518     0.6727 0.032 0.748 0.204 0.016
#> GSM601868     3   0.446     0.6265 0.208 0.024 0.768 0.000
#> GSM601748     1   0.576    -0.1365 0.516 0.004 0.460 0.020
#> GSM601758     1   0.299     0.5415 0.876 0.000 0.112 0.012
#> GSM601763     1   0.712     0.1808 0.564 0.220 0.000 0.216
#> GSM601768     2   0.361     0.7457 0.132 0.844 0.000 0.024
#> GSM601773     2   0.372     0.7454 0.016 0.844 0.008 0.132
#> GSM601778     4   0.527     0.5216 0.140 0.016 0.072 0.772
#> GSM601788     2   0.365     0.7652 0.000 0.856 0.092 0.052
#> GSM601803     4   0.522     0.4051 0.000 0.380 0.012 0.608
#> GSM601808     3   0.353     0.6403 0.152 0.000 0.836 0.012
#> GSM601813     1   0.620     0.3210 0.612 0.000 0.312 0.076
#> GSM601818     3   0.634     0.3932 0.404 0.040 0.544 0.012
#> GSM601823     4   0.568     0.1471 0.456 0.024 0.000 0.520
#> GSM601833     2   0.182     0.7849 0.020 0.944 0.000 0.036
#> GSM601848     4   0.529     0.1232 0.480 0.000 0.008 0.512
#> GSM601853     3   0.371     0.6390 0.140 0.000 0.836 0.024
#> GSM601863     3   0.492     0.5131 0.328 0.004 0.664 0.004
#> GSM601754     4   0.526     0.5840 0.036 0.272 0.000 0.692
#> GSM601784     2   0.193     0.7822 0.004 0.936 0.004 0.056
#> GSM601794     4   0.444     0.5333 0.148 0.000 0.052 0.800
#> GSM601799     4   0.631     0.5683 0.092 0.288 0.000 0.620
#> GSM601829     3   0.778     0.0665 0.264 0.000 0.424 0.312
#> GSM601839     2   0.500     0.6859 0.000 0.748 0.200 0.052
#> GSM601844     1   0.555     0.4589 0.672 0.012 0.024 0.292
#> GSM601859     2   0.383     0.7647 0.080 0.848 0.000 0.072
#> GSM601869     3   0.552     0.3575 0.412 0.000 0.568 0.020
#> GSM601749     1   0.454     0.5342 0.796 0.000 0.144 0.060
#> GSM601759     1   0.465     0.4518 0.776 0.012 0.192 0.020
#> GSM601764     1   0.480     0.5127 0.780 0.148 0.000 0.072
#> GSM601769     2   0.163     0.7860 0.024 0.952 0.000 0.024
#> GSM601774     2   0.258     0.7787 0.036 0.912 0.000 0.052
#> GSM601779     1   0.606     0.0263 0.552 0.048 0.000 0.400
#> GSM601789     2   0.278     0.7726 0.016 0.904 0.072 0.008
#> GSM601804     4   0.693     0.5751 0.172 0.244 0.000 0.584
#> GSM601809     3   0.854     0.1721 0.312 0.316 0.348 0.024
#> GSM601814     2   0.265     0.7693 0.004 0.888 0.000 0.108
#> GSM601819     1   0.364     0.5482 0.872 0.076 0.028 0.024
#> GSM601824     1   0.776    -0.3425 0.388 0.236 0.000 0.376
#> GSM601834     2   0.252     0.7766 0.024 0.912 0.000 0.064
#> GSM601849     1   0.454     0.5450 0.768 0.004 0.020 0.208
#> GSM601854     1   0.552     0.1723 0.596 0.000 0.380 0.024
#> GSM601864     2   0.640     0.5912 0.004 0.640 0.256 0.100
#> GSM601755     4   0.511     0.5595 0.000 0.264 0.032 0.704
#> GSM601785     2   0.410     0.7348 0.048 0.824 0.000 0.128
#> GSM601795     4   0.468     0.5867 0.176 0.048 0.000 0.776
#> GSM601800     4   0.486     0.5704 0.016 0.284 0.000 0.700
#> GSM601830     3   0.383     0.5847 0.012 0.036 0.856 0.096
#> GSM601840     2   0.730     0.5486 0.096 0.628 0.056 0.220
#> GSM601845     2   0.862     0.2266 0.172 0.480 0.068 0.280
#> GSM601860     2   0.466     0.7174 0.160 0.784 0.000 0.056
#> GSM601870     3   0.346     0.5725 0.000 0.076 0.868 0.056
#> GSM601750     1   0.514     0.1015 0.600 0.000 0.392 0.008
#> GSM601760     1   0.399     0.5464 0.860 0.056 0.056 0.028
#> GSM601765     2   0.363     0.7735 0.048 0.868 0.008 0.076
#> GSM601770     2   0.280     0.7752 0.068 0.900 0.000 0.032
#> GSM601775     2   0.790    -0.2954 0.308 0.368 0.000 0.324
#> GSM601780     1   0.534     0.4262 0.708 0.052 0.000 0.240
#> GSM601790     2   0.277     0.7707 0.000 0.900 0.072 0.028
#> GSM601805     4   0.549     0.3760 0.020 0.400 0.000 0.580
#> GSM601810     3   0.414     0.6412 0.160 0.004 0.812 0.024
#> GSM601815     2   0.274     0.7730 0.000 0.904 0.060 0.036
#> GSM601820     1   0.446     0.4515 0.772 0.008 0.208 0.012
#> GSM601825     2   0.551     0.1231 0.012 0.560 0.004 0.424
#> GSM601835     2   0.732     0.4585 0.008 0.532 0.320 0.140
#> GSM601850     4   0.717     0.3003 0.400 0.136 0.000 0.464
#> GSM601855     3   0.352     0.5786 0.004 0.040 0.868 0.088
#> GSM601865     2   0.490     0.6850 0.008 0.760 0.200 0.032
#> GSM601756     4   0.511     0.5271 0.000 0.292 0.024 0.684
#> GSM601786     2   0.497     0.7441 0.048 0.808 0.096 0.048
#> GSM601796     4   0.484     0.4840 0.240 0.000 0.028 0.732
#> GSM601801     4   0.611     0.4303 0.000 0.332 0.064 0.604
#> GSM601831     3   0.553     0.5897 0.192 0.000 0.720 0.088
#> GSM601841     1   0.734     0.2934 0.528 0.000 0.256 0.216
#> GSM601846     4   0.668     0.4379 0.004 0.116 0.268 0.612
#> GSM601861     2   0.210     0.7856 0.012 0.936 0.008 0.044
#> GSM601871     3   0.566     0.4641 0.016 0.240 0.704 0.040
#> GSM601751     2   0.576     0.6404 0.128 0.712 0.000 0.160
#> GSM601761     1   0.247     0.5788 0.924 0.012 0.020 0.044
#> GSM601766     2   0.601     0.4932 0.312 0.624 0.000 0.064
#> GSM601771     2   0.362     0.7740 0.076 0.860 0.000 0.064
#> GSM601776     1   0.464     0.4922 0.740 0.000 0.020 0.240
#> GSM601781     4   0.730     0.3084 0.368 0.124 0.008 0.500
#> GSM601791     1   0.404     0.5696 0.828 0.032 0.004 0.136
#> GSM601806     4   0.586     0.1035 0.000 0.468 0.032 0.500
#> GSM601811     3   0.491     0.6328 0.188 0.032 0.768 0.012
#> GSM601816     4   0.525     0.4086 0.300 0.000 0.028 0.672
#> GSM601821     2   0.214     0.7850 0.008 0.932 0.008 0.052
#> GSM601826     4   0.589     0.0949 0.464 0.008 0.020 0.508
#> GSM601836     1   0.599     0.5597 0.736 0.060 0.048 0.156
#> GSM601851     1   0.457     0.5138 0.760 0.008 0.012 0.220
#> GSM601856     3   0.333     0.6313 0.088 0.000 0.872 0.040
#> GSM601866     1   0.558    -0.1727 0.516 0.008 0.468 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM601752     4   0.245     0.7051 0.004 0.012 0.008 0.904 0.072
#> GSM601782     1   0.672     0.1624 0.500 0.104 0.364 0.016 0.016
#> GSM601792     4   0.534     0.6497 0.092 0.016 0.084 0.756 0.052
#> GSM601797     4   0.353     0.6745 0.000 0.000 0.116 0.828 0.056
#> GSM601827     3   0.798     0.3843 0.116 0.172 0.548 0.108 0.056
#> GSM601837     5   0.749     0.2045 0.000 0.392 0.128 0.084 0.396
#> GSM601842     2   0.300     0.4508 0.004 0.888 0.028 0.032 0.048
#> GSM601857     3   0.595     0.3631 0.352 0.024 0.560 0.000 0.064
#> GSM601867     3   0.565     0.4844 0.028 0.036 0.672 0.020 0.244
#> GSM601747     2   0.602     0.3170 0.272 0.616 0.076 0.000 0.036
#> GSM601757     1   0.540     0.4977 0.712 0.140 0.128 0.004 0.016
#> GSM601762     2   0.525     0.3548 0.000 0.724 0.040 0.068 0.168
#> GSM601767     2   0.481     0.3551 0.012 0.696 0.000 0.036 0.256
#> GSM601772     2   0.317     0.4674 0.024 0.848 0.000 0.004 0.124
#> GSM601777     4   0.696     0.4914 0.016 0.036 0.248 0.568 0.132
#> GSM601787     3   0.591     0.3522 0.044 0.040 0.576 0.000 0.340
#> GSM601802     4   0.400     0.6719 0.004 0.056 0.000 0.796 0.144
#> GSM601807     3   0.548     0.4849 0.004 0.032 0.720 0.132 0.112
#> GSM601812     3   0.552     0.0087 0.460 0.040 0.488 0.000 0.012
#> GSM601817     3   0.715     0.2659 0.232 0.276 0.464 0.000 0.028
#> GSM601822     4   0.354     0.7047 0.036 0.036 0.020 0.868 0.040
#> GSM601832     2   0.219     0.4672 0.020 0.928 0.016 0.028 0.008
#> GSM601847     4   0.436     0.6993 0.044 0.040 0.000 0.796 0.120
#> GSM601852     1   0.735     0.0282 0.404 0.208 0.356 0.004 0.028
#> GSM601862     3   0.581     0.3416 0.356 0.000 0.540 0.000 0.104
#> GSM601753     4   0.514     0.6461 0.020 0.104 0.000 0.728 0.148
#> GSM601783     1   0.365     0.5712 0.852 0.028 0.080 0.032 0.008
#> GSM601793     4   0.494     0.6521 0.108 0.000 0.076 0.764 0.052
#> GSM601798     4   0.422     0.6796 0.000 0.028 0.052 0.804 0.116
#> GSM601828     3   0.746     0.1406 0.308 0.236 0.420 0.004 0.032
#> GSM601838     5   0.696     0.2394 0.000 0.416 0.056 0.100 0.428
#> GSM601843     2   0.404     0.4203 0.000 0.820 0.040 0.040 0.100
#> GSM601858     2   0.611     0.0536 0.020 0.532 0.080 0.000 0.368
#> GSM601868     3   0.578     0.3926 0.308 0.000 0.576 0.000 0.116
#> GSM601748     1   0.627     0.2558 0.536 0.136 0.320 0.000 0.008
#> GSM601758     1   0.355     0.5598 0.848 0.064 0.072 0.000 0.016
#> GSM601763     2   0.722     0.1374 0.324 0.508 0.016 0.096 0.056
#> GSM601768     2   0.485     0.4138 0.056 0.720 0.000 0.012 0.212
#> GSM601773     2   0.592     0.1732 0.000 0.596 0.008 0.116 0.280
#> GSM601778     4   0.495     0.6829 0.088 0.048 0.072 0.780 0.012
#> GSM601788     5   0.665     0.3379 0.000 0.380 0.032 0.108 0.480
#> GSM601803     4   0.509     0.5929 0.000 0.068 0.012 0.700 0.220
#> GSM601808     3   0.452     0.5256 0.200 0.004 0.740 0.000 0.056
#> GSM601813     1   0.462     0.4612 0.712 0.000 0.244 0.036 0.008
#> GSM601818     1   0.733    -0.0777 0.420 0.152 0.372 0.000 0.056
#> GSM601823     4   0.718     0.3461 0.312 0.104 0.008 0.512 0.064
#> GSM601833     2   0.384     0.4363 0.012 0.788 0.000 0.016 0.184
#> GSM601848     4   0.525     0.4705 0.336 0.008 0.004 0.616 0.036
#> GSM601853     3   0.434     0.5473 0.136 0.052 0.792 0.004 0.016
#> GSM601863     3   0.548     0.2997 0.388 0.000 0.544 0.000 0.068
#> GSM601754     4   0.423     0.6841 0.012 0.016 0.008 0.768 0.196
#> GSM601784     2   0.573     0.0546 0.000 0.528 0.004 0.076 0.392
#> GSM601794     4   0.570     0.6660 0.080 0.008 0.104 0.724 0.084
#> GSM601799     4   0.536     0.6862 0.056 0.080 0.004 0.740 0.120
#> GSM601829     3   0.875     0.2255 0.128 0.116 0.440 0.244 0.072
#> GSM601839     2   0.664    -0.1116 0.000 0.496 0.084 0.048 0.372
#> GSM601844     1   0.872     0.3298 0.468 0.100 0.088 0.160 0.184
#> GSM601859     5   0.557     0.4324 0.028 0.308 0.000 0.044 0.620
#> GSM601869     1   0.612     0.0637 0.512 0.000 0.376 0.008 0.104
#> GSM601749     1   0.393     0.5569 0.820 0.008 0.128 0.020 0.024
#> GSM601759     1   0.430     0.5323 0.796 0.056 0.124 0.000 0.024
#> GSM601764     2   0.644    -0.0254 0.412 0.488 0.020 0.016 0.064
#> GSM601769     2   0.512     0.1034 0.004 0.560 0.004 0.024 0.408
#> GSM601774     2   0.485     0.3184 0.008 0.664 0.000 0.032 0.296
#> GSM601779     1   0.616    -0.1651 0.476 0.020 0.000 0.428 0.076
#> GSM601789     2   0.469     0.2270 0.000 0.636 0.020 0.004 0.340
#> GSM601804     4   0.556     0.6837 0.108 0.056 0.000 0.716 0.120
#> GSM601809     5   0.722    -0.2216 0.340 0.028 0.216 0.000 0.416
#> GSM601814     5   0.578     0.4213 0.004 0.324 0.000 0.096 0.576
#> GSM601819     1   0.429     0.5345 0.792 0.084 0.012 0.000 0.112
#> GSM601824     4   0.791     0.3695 0.288 0.164 0.000 0.428 0.120
#> GSM601834     2   0.536     0.1391 0.012 0.564 0.000 0.036 0.388
#> GSM601849     1   0.561     0.5055 0.720 0.048 0.032 0.168 0.032
#> GSM601854     1   0.465     0.3932 0.664 0.008 0.312 0.004 0.012
#> GSM601864     5   0.683     0.4509 0.000 0.164 0.132 0.100 0.604
#> GSM601755     4   0.427     0.6643 0.000 0.044 0.028 0.796 0.132
#> GSM601785     2   0.593     0.2174 0.028 0.572 0.004 0.048 0.348
#> GSM601795     4   0.514     0.6791 0.112 0.004 0.020 0.740 0.124
#> GSM601800     4   0.345     0.6899 0.000 0.024 0.012 0.836 0.128
#> GSM601830     3   0.555     0.4890 0.004 0.176 0.708 0.048 0.064
#> GSM601840     5   0.800     0.4090 0.080 0.212 0.040 0.152 0.516
#> GSM601845     2   0.575     0.3574 0.040 0.732 0.120 0.044 0.064
#> GSM601860     5   0.547     0.4242 0.104 0.224 0.000 0.008 0.664
#> GSM601870     3   0.467     0.5281 0.000 0.088 0.776 0.028 0.108
#> GSM601750     1   0.481     0.3676 0.652 0.020 0.316 0.000 0.012
#> GSM601760     1   0.400     0.5261 0.788 0.028 0.012 0.000 0.172
#> GSM601765     2   0.177     0.4751 0.012 0.944 0.008 0.008 0.028
#> GSM601770     2   0.411     0.4182 0.016 0.756 0.000 0.012 0.216
#> GSM601775     2   0.779     0.1604 0.204 0.444 0.000 0.260 0.092
#> GSM601780     1   0.575     0.3839 0.664 0.040 0.000 0.224 0.072
#> GSM601790     2   0.565    -0.0575 0.000 0.528 0.020 0.040 0.412
#> GSM601805     4   0.480     0.6214 0.004 0.064 0.000 0.712 0.220
#> GSM601810     3   0.500     0.5305 0.196 0.004 0.724 0.012 0.064
#> GSM601815     5   0.549     0.4436 0.000 0.344 0.012 0.052 0.592
#> GSM601820     1   0.416     0.5053 0.768 0.000 0.176 0.000 0.056
#> GSM601825     4   0.648     0.2840 0.004 0.200 0.004 0.544 0.248
#> GSM601835     2   0.557     0.2847 0.000 0.664 0.244 0.036 0.056
#> GSM601850     4   0.668     0.4963 0.288 0.080 0.000 0.560 0.072
#> GSM601855     3   0.437     0.5398 0.008 0.104 0.808 0.036 0.044
#> GSM601865     5   0.566     0.4750 0.004 0.264 0.096 0.004 0.632
#> GSM601756     4   0.429     0.6566 0.000 0.032 0.024 0.780 0.164
#> GSM601786     5   0.422     0.5090 0.028 0.168 0.016 0.004 0.784
#> GSM601796     4   0.651     0.5882 0.176 0.000 0.052 0.616 0.156
#> GSM601801     4   0.522     0.5989 0.000 0.056 0.032 0.708 0.204
#> GSM601831     3   0.523     0.5152 0.124 0.032 0.760 0.052 0.032
#> GSM601841     1   0.777     0.2526 0.480 0.000 0.228 0.144 0.148
#> GSM601846     4   0.800     0.0330 0.000 0.260 0.308 0.348 0.084
#> GSM601861     5   0.522     0.5100 0.008 0.272 0.004 0.052 0.664
#> GSM601871     5   0.659    -0.1381 0.048 0.040 0.448 0.016 0.448
#> GSM601751     5   0.590     0.4564 0.068 0.100 0.000 0.144 0.688
#> GSM601761     1   0.321     0.5647 0.872 0.008 0.012 0.032 0.076
#> GSM601766     2   0.442     0.4167 0.140 0.788 0.024 0.004 0.044
#> GSM601771     5   0.604     0.4576 0.052 0.280 0.000 0.056 0.612
#> GSM601776     1   0.521     0.3739 0.672 0.028 0.000 0.264 0.036
#> GSM601781     4   0.789     0.4920 0.204 0.056 0.020 0.464 0.256
#> GSM601791     1   0.519     0.5056 0.708 0.004 0.008 0.088 0.192
#> GSM601806     4   0.649     0.3091 0.000 0.100 0.032 0.528 0.340
#> GSM601811     3   0.568     0.4396 0.288 0.004 0.608 0.000 0.100
#> GSM601816     4   0.490     0.6041 0.208 0.000 0.028 0.724 0.040
#> GSM601821     5   0.527     0.5167 0.012 0.252 0.004 0.056 0.676
#> GSM601826     4   0.669     0.3153 0.376 0.052 0.016 0.508 0.048
#> GSM601836     2   0.719     0.0453 0.332 0.516 0.064 0.036 0.052
#> GSM601851     1   0.454     0.4710 0.740 0.028 0.000 0.212 0.020
#> GSM601856     3   0.340     0.5651 0.100 0.012 0.856 0.012 0.020
#> GSM601866     1   0.557     0.2314 0.592 0.016 0.340 0.000 0.052

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM601752     4   0.411     0.6177 0.000 0.028 0.084 0.796 0.008 0.084
#> GSM601782     1   0.633     0.4941 0.640 0.144 0.096 0.012 0.020 0.088
#> GSM601792     4   0.633     0.1491 0.000 0.016 0.228 0.416 0.000 0.340
#> GSM601797     4   0.498     0.5161 0.000 0.000 0.228 0.656 0.008 0.108
#> GSM601827     3   0.610     0.5368 0.076 0.168 0.620 0.008 0.000 0.128
#> GSM601837     5   0.764     0.3801 0.016 0.212 0.200 0.108 0.452 0.012
#> GSM601842     2   0.483     0.4786 0.000 0.724 0.172 0.040 0.056 0.008
#> GSM601857     1   0.476     0.4920 0.748 0.068 0.128 0.000 0.044 0.012
#> GSM601867     1   0.753    -0.1395 0.392 0.044 0.316 0.028 0.208 0.012
#> GSM601747     2   0.587     0.3355 0.228 0.628 0.008 0.008 0.044 0.084
#> GSM601757     1   0.603     0.4553 0.580 0.216 0.012 0.004 0.012 0.176
#> GSM601762     2   0.564     0.4046 0.000 0.656 0.088 0.100 0.156 0.000
#> GSM601767     2   0.584     0.3595 0.012 0.616 0.000 0.152 0.196 0.024
#> GSM601772     2   0.379     0.5014 0.012 0.800 0.000 0.056 0.128 0.004
#> GSM601777     4   0.681     0.4401 0.052 0.012 0.116 0.616 0.100 0.104
#> GSM601787     5   0.750    -0.0862 0.332 0.024 0.224 0.036 0.368 0.016
#> GSM601802     4   0.194     0.6379 0.000 0.016 0.004 0.928 0.024 0.028
#> GSM601807     3   0.742     0.3692 0.192 0.008 0.504 0.160 0.112 0.024
#> GSM601812     1   0.592     0.4691 0.632 0.104 0.176 0.000 0.004 0.084
#> GSM601817     2   0.705    -0.2401 0.260 0.404 0.280 0.000 0.012 0.044
#> GSM601822     4   0.528     0.4157 0.000 0.052 0.044 0.644 0.004 0.256
#> GSM601832     2   0.407     0.5393 0.004 0.812 0.028 0.092 0.040 0.024
#> GSM601847     4   0.446     0.5616 0.012 0.016 0.016 0.776 0.052 0.128
#> GSM601852     1   0.678     0.3381 0.496 0.252 0.144 0.000 0.000 0.108
#> GSM601862     1   0.405     0.4572 0.792 0.008 0.124 0.004 0.060 0.012
#> GSM601753     4   0.477     0.6150 0.000 0.064 0.048 0.768 0.040 0.080
#> GSM601783     1   0.603     0.3817 0.568 0.104 0.048 0.004 0.000 0.276
#> GSM601793     4   0.612     0.2600 0.008 0.004 0.208 0.488 0.000 0.292
#> GSM601798     4   0.456     0.6082 0.000 0.012 0.152 0.752 0.032 0.052
#> GSM601828     3   0.709     0.2468 0.208 0.344 0.364 0.000 0.000 0.084
#> GSM601838     5   0.719     0.4287 0.004 0.220 0.132 0.144 0.492 0.008
#> GSM601843     2   0.518     0.4131 0.000 0.664 0.208 0.028 0.100 0.000
#> GSM601858     2   0.748    -0.1397 0.076 0.420 0.100 0.040 0.352 0.012
#> GSM601868     1   0.512     0.3394 0.676 0.004 0.216 0.000 0.072 0.032
#> GSM601748     1   0.535     0.5144 0.644 0.224 0.032 0.000 0.000 0.100
#> GSM601758     1   0.554     0.4272 0.584 0.160 0.000 0.000 0.008 0.248
#> GSM601763     2   0.545     0.4196 0.048 0.676 0.004 0.060 0.012 0.200
#> GSM601768     2   0.543     0.4484 0.036 0.684 0.000 0.060 0.188 0.032
#> GSM601773     2   0.661     0.1035 0.004 0.476 0.016 0.248 0.244 0.012
#> GSM601778     4   0.584     0.4581 0.032 0.008 0.092 0.664 0.028 0.176
#> GSM601788     4   0.808    -0.3091 0.056 0.188 0.032 0.360 0.324 0.040
#> GSM601803     4   0.277     0.6350 0.004 0.024 0.004 0.884 0.064 0.020
#> GSM601808     1   0.506     0.1784 0.612 0.004 0.328 0.008 0.024 0.024
#> GSM601813     1   0.396     0.5457 0.748 0.000 0.028 0.016 0.000 0.208
#> GSM601818     1   0.549     0.4954 0.672 0.212 0.040 0.004 0.028 0.044
#> GSM601823     6   0.720     0.3066 0.036 0.200 0.040 0.288 0.000 0.436
#> GSM601833     2   0.484     0.4382 0.000 0.704 0.024 0.096 0.176 0.000
#> GSM601848     6   0.576     0.2405 0.084 0.012 0.012 0.408 0.000 0.484
#> GSM601853     3   0.535     0.3301 0.392 0.036 0.540 0.004 0.008 0.020
#> GSM601863     1   0.427     0.4624 0.752 0.000 0.172 0.000 0.032 0.044
#> GSM601754     4   0.604     0.4907 0.000 0.004 0.088 0.620 0.108 0.180
#> GSM601784     5   0.751     0.2837 0.004 0.340 0.120 0.060 0.416 0.060
#> GSM601794     6   0.662    -0.1292 0.008 0.000 0.248 0.360 0.016 0.368
#> GSM601799     4   0.628     0.4949 0.000 0.044 0.100 0.608 0.040 0.208
#> GSM601829     3   0.638     0.3300 0.036 0.084 0.564 0.044 0.000 0.272
#> GSM601839     5   0.707     0.4012 0.016 0.240 0.192 0.052 0.492 0.008
#> GSM601844     6   0.749     0.1588 0.052 0.088 0.204 0.020 0.104 0.532
#> GSM601859     5   0.567     0.4987 0.004 0.160 0.004 0.048 0.660 0.124
#> GSM601869     1   0.583     0.4837 0.632 0.004 0.116 0.000 0.060 0.188
#> GSM601749     1   0.513     0.4012 0.572 0.036 0.024 0.000 0.004 0.364
#> GSM601759     1   0.534     0.4592 0.604 0.156 0.004 0.000 0.000 0.236
#> GSM601764     2   0.583     0.3325 0.060 0.596 0.028 0.000 0.032 0.284
#> GSM601769     5   0.585     0.3799 0.004 0.332 0.008 0.036 0.556 0.064
#> GSM601774     2   0.585     0.1970 0.016 0.568 0.000 0.132 0.276 0.008
#> GSM601779     6   0.556     0.4647 0.088 0.024 0.000 0.220 0.020 0.648
#> GSM601789     5   0.615     0.2639 0.008 0.404 0.048 0.048 0.480 0.012
#> GSM601804     4   0.483     0.4890 0.000 0.012 0.008 0.680 0.060 0.240
#> GSM601809     1   0.645     0.2790 0.528 0.016 0.024 0.020 0.320 0.092
#> GSM601814     5   0.561     0.5025 0.000 0.164 0.000 0.120 0.652 0.064
#> GSM601819     1   0.753     0.2271 0.400 0.124 0.020 0.000 0.148 0.308
#> GSM601824     6   0.708     0.2950 0.032 0.128 0.004 0.296 0.056 0.484
#> GSM601834     5   0.601     0.3184 0.000 0.344 0.004 0.028 0.512 0.112
#> GSM601849     6   0.620     0.3271 0.244 0.076 0.000 0.100 0.004 0.576
#> GSM601854     1   0.659     0.3073 0.468 0.036 0.204 0.000 0.004 0.288
#> GSM601864     5   0.700     0.4486 0.052 0.044 0.116 0.192 0.576 0.020
#> GSM601755     4   0.299     0.6450 0.000 0.020 0.040 0.876 0.048 0.016
#> GSM601785     5   0.776     0.1289 0.000 0.344 0.100 0.040 0.352 0.164
#> GSM601795     6   0.691    -0.0742 0.000 0.000 0.136 0.344 0.104 0.416
#> GSM601800     4   0.622     0.5055 0.000 0.008 0.124 0.616 0.108 0.144
#> GSM601830     3   0.458     0.5534 0.056 0.168 0.744 0.004 0.008 0.020
#> GSM601840     5   0.959     0.1264 0.164 0.136 0.156 0.232 0.248 0.064
#> GSM601845     2   0.521     0.2610 0.000 0.580 0.348 0.016 0.008 0.048
#> GSM601860     5   0.541     0.4702 0.048 0.052 0.012 0.020 0.708 0.160
#> GSM601870     3   0.600     0.4861 0.176 0.056 0.644 0.016 0.104 0.004
#> GSM601750     1   0.379     0.5619 0.816 0.020 0.064 0.000 0.008 0.092
#> GSM601760     1   0.636     0.2843 0.484 0.040 0.004 0.000 0.136 0.336
#> GSM601765     2   0.367     0.5269 0.000 0.832 0.056 0.012 0.072 0.028
#> GSM601770     2   0.488     0.4422 0.024 0.712 0.000 0.096 0.164 0.004
#> GSM601775     2   0.749     0.1901 0.084 0.400 0.004 0.348 0.032 0.132
#> GSM601780     6   0.604     0.3543 0.192 0.080 0.000 0.064 0.028 0.636
#> GSM601790     5   0.614     0.4086 0.004 0.312 0.048 0.064 0.556 0.016
#> GSM601805     4   0.260     0.6355 0.000 0.020 0.000 0.884 0.072 0.024
#> GSM601810     1   0.583     0.3456 0.660 0.012 0.204 0.052 0.032 0.040
#> GSM601815     5   0.642     0.4724 0.008 0.172 0.032 0.180 0.588 0.020
#> GSM601820     1   0.561     0.4395 0.556 0.012 0.024 0.000 0.060 0.348
#> GSM601825     4   0.457     0.5625 0.000 0.084 0.004 0.748 0.136 0.028
#> GSM601835     2   0.598     0.2763 0.008 0.548 0.340 0.044 0.048 0.012
#> GSM601850     4   0.700     0.1315 0.080 0.052 0.004 0.512 0.064 0.288
#> GSM601855     3   0.467     0.5612 0.168 0.048 0.744 0.016 0.016 0.008
#> GSM601865     5   0.583     0.5149 0.036 0.124 0.096 0.036 0.692 0.016
#> GSM601756     4   0.301     0.6444 0.000 0.024 0.032 0.876 0.048 0.020
#> GSM601786     5   0.453     0.4954 0.008 0.056 0.020 0.012 0.764 0.140
#> GSM601796     6   0.721     0.1443 0.012 0.000 0.108 0.244 0.168 0.468
#> GSM601801     4   0.416     0.6341 0.000 0.016 0.092 0.796 0.072 0.024
#> GSM601831     3   0.494     0.5239 0.184 0.036 0.716 0.008 0.004 0.052
#> GSM601841     1   0.685     0.3993 0.588 0.004 0.108 0.100 0.040 0.160
#> GSM601846     3   0.644     0.3272 0.004 0.236 0.572 0.096 0.008 0.084
#> GSM601861     5   0.429     0.5298 0.004 0.104 0.000 0.040 0.780 0.072
#> GSM601871     5   0.731     0.1155 0.276 0.024 0.196 0.036 0.452 0.016
#> GSM601751     5   0.707     0.4210 0.084 0.036 0.016 0.204 0.564 0.096
#> GSM601761     6   0.556    -0.1829 0.440 0.060 0.000 0.000 0.032 0.468
#> GSM601766     2   0.379     0.5219 0.012 0.828 0.056 0.004 0.024 0.076
#> GSM601771     5   0.804     0.2770 0.088 0.228 0.012 0.196 0.424 0.052
#> GSM601776     6   0.696     0.2640 0.304 0.080 0.000 0.196 0.000 0.420
#> GSM601781     6   0.746     0.2083 0.048 0.012 0.032 0.260 0.196 0.452
#> GSM601791     6   0.563     0.2110 0.180 0.004 0.008 0.004 0.192 0.612
#> GSM601806     4   0.409     0.5814 0.000 0.012 0.024 0.776 0.160 0.028
#> GSM601811     1   0.574     0.4067 0.696 0.012 0.140 0.048 0.068 0.036
#> GSM601816     6   0.573     0.0428 0.052 0.000 0.052 0.440 0.000 0.456
#> GSM601821     5   0.453     0.5166 0.004 0.080 0.004 0.032 0.764 0.116
#> GSM601826     6   0.686     0.3601 0.068 0.128 0.016 0.312 0.000 0.476
#> GSM601836     2   0.572     0.4453 0.100 0.692 0.060 0.020 0.008 0.120
#> GSM601851     6   0.638     0.1978 0.300 0.100 0.000 0.064 0.008 0.528
#> GSM601856     3   0.518     0.2921 0.392 0.008 0.552 0.008 0.024 0.016
#> GSM601866     1   0.322     0.5776 0.848 0.040 0.028 0.000 0.000 0.084

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n time(p) gender(p) k
#> SD:NMF 121  0.5456    0.1026 2
#> SD:NMF 104  0.0518    0.1992 3
#> SD:NMF  79  0.2407    0.0119 4
#> SD:NMF  43  0.0668    0.0187 5
#> SD:NMF  30  0.4371    0.0505 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 125 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.268           0.808       0.869         0.3857 0.624   0.624
#> 3 3 0.249           0.746       0.845         0.1531 0.980   0.968
#> 4 4 0.293           0.719       0.830         0.0876 0.996   0.994
#> 5 5 0.278           0.728       0.805         0.0639 1.000   0.999
#> 6 6 0.244           0.583       0.730         0.1516 0.984   0.974

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM601752     2  0.0672      0.874 0.008 0.992
#> GSM601782     1  0.8386      0.757 0.732 0.268
#> GSM601792     2  0.4939      0.868 0.108 0.892
#> GSM601797     2  0.4298      0.879 0.088 0.912
#> GSM601827     1  0.5946      0.876 0.856 0.144
#> GSM601837     2  0.1633      0.868 0.024 0.976
#> GSM601842     2  0.3431      0.879 0.064 0.936
#> GSM601857     2  0.9522      0.454 0.372 0.628
#> GSM601867     2  0.5737      0.847 0.136 0.864
#> GSM601747     2  0.8713      0.655 0.292 0.708
#> GSM601757     1  0.9427      0.570 0.640 0.360
#> GSM601762     2  0.3431      0.878 0.064 0.936
#> GSM601767     2  0.2236      0.877 0.036 0.964
#> GSM601772     2  0.1843      0.877 0.028 0.972
#> GSM601777     2  0.3114      0.878 0.056 0.944
#> GSM601787     2  0.8327      0.675 0.264 0.736
#> GSM601802     2  0.0672      0.874 0.008 0.992
#> GSM601807     2  0.9922      0.030 0.448 0.552
#> GSM601812     1  0.5519      0.873 0.872 0.128
#> GSM601817     1  0.4022      0.868 0.920 0.080
#> GSM601822     2  0.4431      0.876 0.092 0.908
#> GSM601832     2  0.3733      0.876 0.072 0.928
#> GSM601847     2  0.4431      0.877 0.092 0.908
#> GSM601852     1  0.5294      0.881 0.880 0.120
#> GSM601862     1  0.7528      0.829 0.784 0.216
#> GSM601753     2  0.0938      0.875 0.012 0.988
#> GSM601783     1  0.4815      0.879 0.896 0.104
#> GSM601793     2  0.4939      0.868 0.108 0.892
#> GSM601798     2  0.0672      0.872 0.008 0.992
#> GSM601828     1  0.5178      0.881 0.884 0.116
#> GSM601838     2  0.1184      0.867 0.016 0.984
#> GSM601843     2  0.3733      0.879 0.072 0.928
#> GSM601858     2  0.9209      0.543 0.336 0.664
#> GSM601868     1  0.8267      0.783 0.740 0.260
#> GSM601748     1  0.3431      0.857 0.936 0.064
#> GSM601758     1  0.4562      0.875 0.904 0.096
#> GSM601763     2  0.6973      0.817 0.188 0.812
#> GSM601768     2  0.2778      0.880 0.048 0.952
#> GSM601773     2  0.1843      0.877 0.028 0.972
#> GSM601778     2  0.3584      0.880 0.068 0.932
#> GSM601788     2  0.1633      0.877 0.024 0.976
#> GSM601803     2  0.0672      0.874 0.008 0.992
#> GSM601808     1  0.7453      0.825 0.788 0.212
#> GSM601813     1  0.6048      0.874 0.852 0.148
#> GSM601818     1  0.5842      0.880 0.860 0.140
#> GSM601823     2  0.7528      0.792 0.216 0.784
#> GSM601833     2  0.3584      0.877 0.068 0.932
#> GSM601848     2  0.6712      0.823 0.176 0.824
#> GSM601853     1  0.6438      0.865 0.836 0.164
#> GSM601863     1  0.7139      0.845 0.804 0.196
#> GSM601754     2  0.0672      0.873 0.008 0.992
#> GSM601784     2  0.2236      0.878 0.036 0.964
#> GSM601794     2  0.4431      0.874 0.092 0.908
#> GSM601799     2  0.3274      0.881 0.060 0.940
#> GSM601829     1  0.8763      0.709 0.704 0.296
#> GSM601839     2  0.1184      0.867 0.016 0.984
#> GSM601844     2  0.8443      0.711 0.272 0.728
#> GSM601859     2  0.4161      0.874 0.084 0.916
#> GSM601869     1  0.7950      0.801 0.760 0.240
#> GSM601749     1  0.4815      0.879 0.896 0.104
#> GSM601759     1  0.4562      0.875 0.904 0.096
#> GSM601764     2  0.7674      0.787 0.224 0.776
#> GSM601769     2  0.0938      0.867 0.012 0.988
#> GSM601774     2  0.1184      0.870 0.016 0.984
#> GSM601779     2  0.7883      0.759 0.236 0.764
#> GSM601789     2  0.1414      0.875 0.020 0.980
#> GSM601804     2  0.0672      0.874 0.008 0.992
#> GSM601809     2  0.8144      0.730 0.252 0.748
#> GSM601814     2  0.0938      0.867 0.012 0.988
#> GSM601819     1  0.5059      0.877 0.888 0.112
#> GSM601824     2  0.7528      0.792 0.216 0.784
#> GSM601834     2  0.3584      0.877 0.068 0.932
#> GSM601849     2  0.7453      0.796 0.212 0.788
#> GSM601854     1  0.3584      0.860 0.932 0.068
#> GSM601864     2  0.5294      0.835 0.120 0.880
#> GSM601755     2  0.0672      0.874 0.008 0.992
#> GSM601785     2  0.3114      0.881 0.056 0.944
#> GSM601795     2  0.4431      0.873 0.092 0.908
#> GSM601800     2  0.1633      0.878 0.024 0.976
#> GSM601830     1  0.9998      0.173 0.508 0.492
#> GSM601840     2  0.5629      0.850 0.132 0.868
#> GSM601845     2  0.4298      0.874 0.088 0.912
#> GSM601860     2  0.4298      0.872 0.088 0.912
#> GSM601870     2  0.9608      0.317 0.384 0.616
#> GSM601750     1  0.2236      0.829 0.964 0.036
#> GSM601760     1  0.5842      0.879 0.860 0.140
#> GSM601765     2  0.4022      0.874 0.080 0.920
#> GSM601770     2  0.2043      0.877 0.032 0.968
#> GSM601775     2  0.7453      0.779 0.212 0.788
#> GSM601780     2  0.7883      0.759 0.236 0.764
#> GSM601790     2  0.1184      0.867 0.016 0.984
#> GSM601805     2  0.0672      0.874 0.008 0.992
#> GSM601810     2  0.8207      0.723 0.256 0.744
#> GSM601815     2  0.0938      0.867 0.012 0.988
#> GSM601820     1  0.4022      0.867 0.920 0.080
#> GSM601825     2  0.0376      0.873 0.004 0.996
#> GSM601835     2  0.3733      0.876 0.072 0.928
#> GSM601850     2  0.4298      0.877 0.088 0.912
#> GSM601855     1  1.0000      0.140 0.504 0.496
#> GSM601865     2  0.5408      0.834 0.124 0.876
#> GSM601756     2  0.0672      0.874 0.008 0.992
#> GSM601786     2  0.2043      0.877 0.032 0.968
#> GSM601796     2  0.4431      0.873 0.092 0.908
#> GSM601801     2  0.0376      0.873 0.004 0.996
#> GSM601831     1  0.5842      0.880 0.860 0.140
#> GSM601841     2  0.9795      0.312 0.416 0.584
#> GSM601846     2  0.5737      0.825 0.136 0.864
#> GSM601861     2  0.0938      0.867 0.012 0.988
#> GSM601871     2  0.8661      0.609 0.288 0.712
#> GSM601751     2  0.7056      0.804 0.192 0.808
#> GSM601761     2  0.8909      0.630 0.308 0.692
#> GSM601766     2  0.4815      0.868 0.104 0.896
#> GSM601771     2  0.6148      0.836 0.152 0.848
#> GSM601776     2  0.8327      0.723 0.264 0.736
#> GSM601781     2  0.3274      0.879 0.060 0.940
#> GSM601791     2  0.8443      0.702 0.272 0.728
#> GSM601806     2  0.0376      0.873 0.004 0.996
#> GSM601811     2  0.8016      0.739 0.244 0.756
#> GSM601816     2  0.7139      0.799 0.196 0.804
#> GSM601821     2  0.1184      0.869 0.016 0.984
#> GSM601826     2  0.7299      0.794 0.204 0.796
#> GSM601836     2  0.6623      0.834 0.172 0.828
#> GSM601851     2  0.7674      0.773 0.224 0.776
#> GSM601856     1  0.6973      0.854 0.812 0.188
#> GSM601866     1  0.3733      0.864 0.928 0.072

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM601752     2  0.1170      0.835 0.016 0.976 0.008
#> GSM601782     3  0.8265      0.522 0.180 0.184 0.636
#> GSM601792     2  0.4136      0.822 0.020 0.864 0.116
#> GSM601797     2  0.4165      0.834 0.048 0.876 0.076
#> GSM601827     3  0.5538      0.773 0.116 0.072 0.812
#> GSM601837     2  0.2492      0.815 0.048 0.936 0.016
#> GSM601842     2  0.2749      0.842 0.012 0.924 0.064
#> GSM601857     2  0.8291      0.312 0.100 0.580 0.320
#> GSM601867     2  0.5010      0.795 0.076 0.840 0.084
#> GSM601747     2  0.6357      0.582 0.020 0.684 0.296
#> GSM601757     3  0.7491      0.317 0.056 0.324 0.620
#> GSM601762     2  0.2400      0.842 0.004 0.932 0.064
#> GSM601767     2  0.1950      0.842 0.008 0.952 0.040
#> GSM601772     2  0.1585      0.841 0.008 0.964 0.028
#> GSM601777     2  0.2879      0.844 0.024 0.924 0.052
#> GSM601787     2  0.7884      0.403 0.252 0.644 0.104
#> GSM601802     2  0.1015      0.834 0.012 0.980 0.008
#> GSM601807     1  0.6161      0.802 0.696 0.288 0.016
#> GSM601812     3  0.4172      0.793 0.028 0.104 0.868
#> GSM601817     3  0.3263      0.796 0.040 0.048 0.912
#> GSM601822     2  0.3528      0.837 0.016 0.892 0.092
#> GSM601832     2  0.2774      0.839 0.008 0.920 0.072
#> GSM601847     2  0.3445      0.839 0.016 0.896 0.088
#> GSM601852     3  0.3213      0.809 0.008 0.092 0.900
#> GSM601862     3  0.7777      0.637 0.160 0.164 0.676
#> GSM601753     2  0.1337      0.837 0.016 0.972 0.012
#> GSM601783     3  0.2772      0.811 0.004 0.080 0.916
#> GSM601793     2  0.4136      0.822 0.020 0.864 0.116
#> GSM601798     2  0.1182      0.833 0.012 0.976 0.012
#> GSM601828     3  0.4370      0.806 0.056 0.076 0.868
#> GSM601838     2  0.1636      0.826 0.020 0.964 0.016
#> GSM601843     2  0.2939      0.842 0.012 0.916 0.072
#> GSM601858     2  0.8067      0.401 0.100 0.616 0.284
#> GSM601868     3  0.8436      0.518 0.160 0.224 0.616
#> GSM601748     3  0.2443      0.773 0.028 0.032 0.940
#> GSM601758     3  0.2261      0.807 0.000 0.068 0.932
#> GSM601763     2  0.4912      0.774 0.008 0.796 0.196
#> GSM601768     2  0.2486      0.845 0.008 0.932 0.060
#> GSM601773     2  0.1585      0.841 0.008 0.964 0.028
#> GSM601778     2  0.3181      0.846 0.024 0.912 0.064
#> GSM601788     2  0.2176      0.836 0.032 0.948 0.020
#> GSM601803     2  0.0848      0.835 0.008 0.984 0.008
#> GSM601808     3  0.8543      0.232 0.408 0.096 0.496
#> GSM601813     3  0.4068      0.791 0.016 0.120 0.864
#> GSM601818     3  0.4256      0.808 0.036 0.096 0.868
#> GSM601823     2  0.5450      0.739 0.012 0.760 0.228
#> GSM601833     2  0.2486      0.842 0.008 0.932 0.060
#> GSM601848     2  0.5008      0.776 0.016 0.804 0.180
#> GSM601853     3  0.6719      0.723 0.160 0.096 0.744
#> GSM601863     3  0.7393      0.685 0.156 0.140 0.704
#> GSM601754     2  0.1482      0.837 0.012 0.968 0.020
#> GSM601784     2  0.1950      0.842 0.008 0.952 0.040
#> GSM601794     2  0.4015      0.829 0.028 0.876 0.096
#> GSM601799     2  0.2584      0.845 0.008 0.928 0.064
#> GSM601829     3  0.6761      0.529 0.048 0.252 0.700
#> GSM601839     2  0.2269      0.819 0.040 0.944 0.016
#> GSM601844     2  0.6027      0.665 0.016 0.712 0.272
#> GSM601859     2  0.3293      0.836 0.012 0.900 0.088
#> GSM601869     3  0.8249      0.561 0.164 0.200 0.636
#> GSM601749     3  0.2682      0.811 0.004 0.076 0.920
#> GSM601759     3  0.2496      0.808 0.004 0.068 0.928
#> GSM601764     2  0.5595      0.741 0.016 0.756 0.228
#> GSM601769     2  0.1170      0.826 0.016 0.976 0.008
#> GSM601774     2  0.1337      0.830 0.012 0.972 0.016
#> GSM601779     2  0.5698      0.698 0.012 0.736 0.252
#> GSM601789     2  0.1774      0.834 0.024 0.960 0.016
#> GSM601804     2  0.1015      0.836 0.008 0.980 0.012
#> GSM601809     2  0.7157      0.642 0.100 0.712 0.188
#> GSM601814     2  0.1170      0.826 0.016 0.976 0.008
#> GSM601819     3  0.4609      0.800 0.052 0.092 0.856
#> GSM601824     2  0.5450      0.739 0.012 0.760 0.228
#> GSM601834     2  0.2584      0.841 0.008 0.928 0.064
#> GSM601849     2  0.5506      0.739 0.016 0.764 0.220
#> GSM601854     3  0.3337      0.775 0.060 0.032 0.908
#> GSM601864     2  0.4921      0.687 0.164 0.816 0.020
#> GSM601755     2  0.1170      0.835 0.016 0.976 0.008
#> GSM601785     2  0.2804      0.847 0.016 0.924 0.060
#> GSM601795     2  0.4015      0.828 0.028 0.876 0.096
#> GSM601800     2  0.1453      0.842 0.008 0.968 0.024
#> GSM601830     1  0.8120      0.827 0.640 0.224 0.136
#> GSM601840     2  0.4469      0.809 0.028 0.852 0.120
#> GSM601845     2  0.3293      0.838 0.012 0.900 0.088
#> GSM601860     2  0.3445      0.835 0.016 0.896 0.088
#> GSM601870     2  0.8440     -0.348 0.420 0.492 0.088
#> GSM601750     3  0.4228      0.666 0.148 0.008 0.844
#> GSM601760     3  0.3192      0.803 0.000 0.112 0.888
#> GSM601765     2  0.2955      0.838 0.008 0.912 0.080
#> GSM601770     2  0.1832      0.842 0.008 0.956 0.036
#> GSM601775     2  0.5506      0.729 0.016 0.764 0.220
#> GSM601780     2  0.5698      0.697 0.012 0.736 0.252
#> GSM601790     2  0.1337      0.827 0.012 0.972 0.016
#> GSM601805     2  0.0848      0.835 0.008 0.984 0.008
#> GSM601810     2  0.7213      0.619 0.088 0.700 0.212
#> GSM601815     2  0.1315      0.826 0.020 0.972 0.008
#> GSM601820     3  0.3683      0.799 0.044 0.060 0.896
#> GSM601825     2  0.1170      0.836 0.016 0.976 0.008
#> GSM601835     2  0.2774      0.839 0.008 0.920 0.072
#> GSM601850     2  0.3459      0.839 0.012 0.892 0.096
#> GSM601855     1  0.7935      0.859 0.648 0.236 0.116
#> GSM601865     2  0.4994      0.690 0.160 0.816 0.024
#> GSM601756     2  0.1170      0.835 0.016 0.976 0.008
#> GSM601786     2  0.2050      0.841 0.020 0.952 0.028
#> GSM601796     2  0.4015      0.828 0.028 0.876 0.096
#> GSM601801     2  0.0829      0.833 0.012 0.984 0.004
#> GSM601831     3  0.4324      0.804 0.028 0.112 0.860
#> GSM601841     2  0.7712      0.278 0.052 0.556 0.392
#> GSM601846     2  0.7064      0.503 0.220 0.704 0.076
#> GSM601861     2  0.1337      0.827 0.016 0.972 0.012
#> GSM601871     2  0.7872      0.302 0.296 0.620 0.084
#> GSM601751     2  0.5678      0.750 0.032 0.776 0.192
#> GSM601761     2  0.6369      0.569 0.016 0.668 0.316
#> GSM601766     2  0.3454      0.832 0.008 0.888 0.104
#> GSM601771     2  0.4999      0.787 0.028 0.820 0.152
#> GSM601776     2  0.6161      0.661 0.020 0.708 0.272
#> GSM601781     2  0.2982      0.845 0.024 0.920 0.056
#> GSM601791     2  0.6096      0.642 0.016 0.704 0.280
#> GSM601806     2  0.0829      0.833 0.012 0.984 0.004
#> GSM601811     2  0.7133      0.640 0.096 0.712 0.192
#> GSM601816     2  0.5356      0.749 0.020 0.784 0.196
#> GSM601821     2  0.1491      0.828 0.016 0.968 0.016
#> GSM601826     2  0.5318      0.747 0.016 0.780 0.204
#> GSM601836     2  0.4979      0.795 0.020 0.812 0.168
#> GSM601851     2  0.5578      0.713 0.012 0.748 0.240
#> GSM601856     3  0.6621      0.736 0.100 0.148 0.752
#> GSM601866     3  0.3155      0.795 0.040 0.044 0.916

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM601752     2   0.210     0.8542 0.012 0.936 0.008 0.044
#> GSM601782     4   0.769     0.0000 0.372 0.068 0.060 0.500
#> GSM601792     2   0.383     0.8345 0.100 0.856 0.020 0.024
#> GSM601797     2   0.384     0.8431 0.048 0.868 0.052 0.032
#> GSM601827     1   0.529     0.5577 0.784 0.032 0.116 0.068
#> GSM601837     2   0.294     0.8392 0.004 0.900 0.040 0.056
#> GSM601842     2   0.207     0.8577 0.032 0.940 0.012 0.016
#> GSM601857     2   0.765     0.4210 0.272 0.576 0.060 0.092
#> GSM601867     2   0.447     0.7992 0.040 0.836 0.076 0.048
#> GSM601747     2   0.569     0.6704 0.244 0.700 0.016 0.040
#> GSM601757     1   0.644     0.1676 0.612 0.316 0.016 0.056
#> GSM601762     2   0.189     0.8579 0.036 0.944 0.004 0.016
#> GSM601767     2   0.207     0.8585 0.024 0.940 0.008 0.028
#> GSM601772     2   0.206     0.8574 0.020 0.940 0.008 0.032
#> GSM601777     2   0.241     0.8585 0.036 0.928 0.016 0.020
#> GSM601787     2   0.754     0.4984 0.068 0.628 0.172 0.132
#> GSM601802     2   0.201     0.8530 0.012 0.940 0.008 0.040
#> GSM601807     3   0.748     0.5523 0.016 0.164 0.560 0.260
#> GSM601812     1   0.445     0.6403 0.832 0.096 0.032 0.040
#> GSM601817     1   0.365     0.6511 0.876 0.028 0.040 0.056
#> GSM601822     2   0.264     0.8524 0.064 0.912 0.012 0.012
#> GSM601832     2   0.179     0.8558 0.036 0.948 0.008 0.008
#> GSM601847     2   0.256     0.8547 0.060 0.916 0.012 0.012
#> GSM601852     1   0.218     0.6775 0.924 0.064 0.000 0.012
#> GSM601862     1   0.762     0.4536 0.632 0.124 0.096 0.148
#> GSM601753     2   0.222     0.8558 0.016 0.932 0.008 0.044
#> GSM601783     1   0.181     0.6806 0.940 0.052 0.000 0.008
#> GSM601793     2   0.383     0.8345 0.100 0.856 0.020 0.024
#> GSM601798     2   0.201     0.8559 0.012 0.940 0.008 0.040
#> GSM601828     1   0.466     0.6577 0.828 0.064 0.064 0.044
#> GSM601838     2   0.225     0.8469 0.004 0.928 0.016 0.052
#> GSM601843     2   0.215     0.8579 0.036 0.936 0.008 0.020
#> GSM601858     2   0.748     0.4908 0.236 0.608 0.060 0.096
#> GSM601868     1   0.813     0.3599 0.580 0.184 0.096 0.140
#> GSM601748     1   0.321     0.6058 0.892 0.012 0.040 0.056
#> GSM601758     1   0.200     0.6744 0.936 0.044 0.000 0.020
#> GSM601763     2   0.425     0.8049 0.176 0.800 0.008 0.016
#> GSM601768     2   0.253     0.8620 0.048 0.920 0.008 0.024
#> GSM601773     2   0.206     0.8574 0.020 0.940 0.008 0.032
#> GSM601778     2   0.276     0.8599 0.048 0.912 0.028 0.012
#> GSM601788     2   0.278     0.8537 0.016 0.912 0.024 0.048
#> GSM601803     2   0.186     0.8535 0.012 0.944 0.004 0.040
#> GSM601808     1   0.858    -0.2419 0.424 0.044 0.200 0.332
#> GSM601813     1   0.354     0.6499 0.868 0.096 0.012 0.024
#> GSM601818     1   0.428     0.6613 0.844 0.080 0.040 0.036
#> GSM601823     2   0.478     0.7722 0.208 0.760 0.008 0.024
#> GSM601833     2   0.167     0.8575 0.032 0.952 0.004 0.012
#> GSM601848     2   0.408     0.8035 0.160 0.816 0.012 0.012
#> GSM601853     1   0.649     0.4737 0.700 0.064 0.176 0.060
#> GSM601863     1   0.726     0.4951 0.660 0.104 0.088 0.148
#> GSM601754     2   0.204     0.8556 0.016 0.940 0.008 0.036
#> GSM601784     2   0.222     0.8588 0.032 0.932 0.004 0.032
#> GSM601794     2   0.375     0.8379 0.088 0.864 0.024 0.024
#> GSM601799     2   0.192     0.8614 0.036 0.944 0.008 0.012
#> GSM601829     1   0.595     0.3558 0.700 0.228 0.044 0.028
#> GSM601839     2   0.275     0.8426 0.004 0.908 0.032 0.056
#> GSM601844     2   0.537     0.7062 0.264 0.700 0.012 0.024
#> GSM601859     2   0.306     0.8555 0.072 0.892 0.004 0.032
#> GSM601869     1   0.798     0.4000 0.600 0.156 0.100 0.144
#> GSM601749     1   0.172     0.6790 0.944 0.048 0.000 0.008
#> GSM601759     1   0.177     0.6752 0.944 0.044 0.000 0.012
#> GSM601764     2   0.464     0.7801 0.208 0.764 0.004 0.024
#> GSM601769     2   0.214     0.8498 0.008 0.932 0.008 0.052
#> GSM601774     2   0.212     0.8502 0.012 0.932 0.004 0.052
#> GSM601779     2   0.489     0.7377 0.244 0.732 0.008 0.016
#> GSM601789     2   0.211     0.8511 0.000 0.932 0.024 0.044
#> GSM601804     2   0.198     0.8547 0.016 0.940 0.004 0.040
#> GSM601809     2   0.671     0.6557 0.136 0.700 0.092 0.072
#> GSM601814     2   0.199     0.8472 0.004 0.936 0.008 0.052
#> GSM601819     1   0.393     0.6350 0.860 0.064 0.020 0.056
#> GSM601824     2   0.478     0.7722 0.208 0.760 0.008 0.024
#> GSM601834     2   0.177     0.8574 0.036 0.948 0.004 0.012
#> GSM601849     2   0.454     0.7730 0.204 0.772 0.008 0.016
#> GSM601854     1   0.386     0.6202 0.864 0.020 0.056 0.060
#> GSM601864     2   0.481     0.7445 0.008 0.796 0.128 0.068
#> GSM601755     2   0.210     0.8542 0.012 0.936 0.008 0.044
#> GSM601785     2   0.266     0.8628 0.048 0.916 0.012 0.024
#> GSM601795     2   0.368     0.8382 0.084 0.868 0.024 0.024
#> GSM601800     2   0.207     0.8598 0.024 0.940 0.008 0.028
#> GSM601830     3   0.442     0.6427 0.084 0.076 0.828 0.012
#> GSM601840     2   0.395     0.8326 0.108 0.848 0.020 0.024
#> GSM601845     2   0.231     0.8559 0.048 0.928 0.008 0.016
#> GSM601860     2   0.315     0.8543 0.072 0.888 0.004 0.036
#> GSM601870     2   0.857    -0.0926 0.060 0.456 0.320 0.164
#> GSM601750     1   0.505     0.3202 0.776 0.004 0.088 0.132
#> GSM601760     1   0.227     0.6701 0.912 0.084 0.000 0.004
#> GSM601765     2   0.206     0.8558 0.048 0.936 0.008 0.008
#> GSM601770     2   0.227     0.8595 0.028 0.932 0.008 0.032
#> GSM601775     2   0.485     0.7687 0.200 0.764 0.016 0.020
#> GSM601780     2   0.489     0.7377 0.244 0.732 0.008 0.016
#> GSM601790     2   0.212     0.8477 0.012 0.932 0.004 0.052
#> GSM601805     2   0.186     0.8535 0.012 0.944 0.004 0.040
#> GSM601810     2   0.694     0.6336 0.168 0.676 0.080 0.076
#> GSM601815     2   0.212     0.8470 0.004 0.932 0.012 0.052
#> GSM601820     1   0.340     0.6506 0.880 0.044 0.008 0.068
#> GSM601825     2   0.210     0.8564 0.012 0.936 0.008 0.044
#> GSM601835     2   0.177     0.8566 0.036 0.948 0.012 0.004
#> GSM601850     2   0.291     0.8541 0.072 0.900 0.012 0.016
#> GSM601855     3   0.400     0.6728 0.068 0.068 0.852 0.012
#> GSM601865     2   0.481     0.7454 0.008 0.796 0.128 0.068
#> GSM601756     2   0.210     0.8542 0.012 0.936 0.008 0.044
#> GSM601786     2   0.172     0.8573 0.008 0.952 0.012 0.028
#> GSM601796     2   0.368     0.8382 0.084 0.868 0.024 0.024
#> GSM601801     2   0.192     0.8551 0.012 0.944 0.008 0.036
#> GSM601831     1   0.390     0.6805 0.860 0.080 0.024 0.036
#> GSM601841     2   0.698     0.3281 0.376 0.536 0.024 0.064
#> GSM601846     2   0.757     0.3615 0.056 0.552 0.316 0.076
#> GSM601861     2   0.214     0.8472 0.008 0.932 0.008 0.052
#> GSM601871     2   0.784     0.3998 0.056 0.588 0.192 0.164
#> GSM601751     2   0.537     0.7787 0.192 0.748 0.028 0.032
#> GSM601761     2   0.544     0.6332 0.308 0.664 0.012 0.016
#> GSM601766     2   0.280     0.8512 0.080 0.900 0.008 0.012
#> GSM601771     2   0.459     0.8142 0.148 0.804 0.020 0.028
#> GSM601776     2   0.538     0.7058 0.264 0.700 0.016 0.020
#> GSM601781     2   0.250     0.8592 0.040 0.924 0.016 0.020
#> GSM601791     2   0.513     0.6920 0.276 0.700 0.012 0.012
#> GSM601806     2   0.188     0.8524 0.008 0.944 0.008 0.040
#> GSM601811     2   0.682     0.6454 0.140 0.692 0.092 0.076
#> GSM601816     2   0.449     0.7873 0.176 0.792 0.016 0.016
#> GSM601821     2   0.227     0.8485 0.012 0.928 0.008 0.052
#> GSM601826     2   0.454     0.7788 0.192 0.780 0.012 0.016
#> GSM601836     2   0.400     0.8215 0.144 0.828 0.012 0.016
#> GSM601851     2   0.479     0.7507 0.232 0.744 0.008 0.016
#> GSM601856     1   0.629     0.5868 0.728 0.124 0.088 0.060
#> GSM601866     1   0.400     0.6592 0.860 0.036 0.040 0.064

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3 p4    p5
#> GSM601752     2   0.225     0.8370 0.012 0.900 0.000 NA 0.000
#> GSM601782     5   0.806    -0.0279 0.248 0.040 0.024 NA 0.364
#> GSM601792     2   0.345     0.8203 0.096 0.848 0.012 NA 0.000
#> GSM601797     2   0.381     0.8249 0.048 0.844 0.068 NA 0.004
#> GSM601827     1   0.502     0.6750 0.760 0.012 0.132 NA 0.024
#> GSM601837     2   0.322     0.8046 0.000 0.824 0.016 NA 0.000
#> GSM601842     2   0.190     0.8431 0.024 0.936 0.004 NA 0.004
#> GSM601857     2   0.683     0.4501 0.264 0.568 0.044 NA 0.008
#> GSM601867     2   0.447     0.7840 0.028 0.792 0.052 NA 0.004
#> GSM601747     2   0.558     0.6715 0.216 0.692 0.028 NA 0.016
#> GSM601757     1   0.562     0.3248 0.620 0.304 0.008 NA 0.008
#> GSM601762     2   0.184     0.8436 0.032 0.932 0.000 NA 0.000
#> GSM601767     2   0.204     0.8429 0.024 0.920 0.000 NA 0.000
#> GSM601772     2   0.201     0.8413 0.012 0.916 0.000 NA 0.000
#> GSM601777     2   0.254     0.8427 0.032 0.904 0.012 NA 0.000
#> GSM601787     2   0.693     0.4995 0.064 0.592 0.076 NA 0.024
#> GSM601802     2   0.219     0.8357 0.012 0.904 0.000 NA 0.000
#> GSM601807     5   0.784    -0.2518 0.012 0.088 0.184 NA 0.492
#> GSM601812     1   0.428     0.7410 0.820 0.076 0.048 NA 0.008
#> GSM601817     1   0.351     0.7492 0.860 0.012 0.048 NA 0.012
#> GSM601822     2   0.241     0.8353 0.068 0.900 0.000 NA 0.000
#> GSM601832     2   0.156     0.8402 0.028 0.948 0.000 NA 0.004
#> GSM601847     2   0.248     0.8404 0.060 0.904 0.008 NA 0.000
#> GSM601852     1   0.172     0.7615 0.936 0.052 0.004 NA 0.000
#> GSM601862     1   0.702     0.5752 0.620 0.100 0.088 NA 0.024
#> GSM601753     2   0.235     0.8384 0.016 0.896 0.000 NA 0.000
#> GSM601783     1   0.149     0.7643 0.948 0.040 0.004 NA 0.000
#> GSM601793     2   0.345     0.8203 0.096 0.848 0.012 NA 0.000
#> GSM601798     2   0.229     0.8380 0.016 0.900 0.000 NA 0.000
#> GSM601828     1   0.414     0.7519 0.836 0.032 0.060 NA 0.028
#> GSM601838     2   0.276     0.8152 0.000 0.848 0.004 NA 0.000
#> GSM601843     2   0.183     0.8425 0.028 0.936 0.000 NA 0.004
#> GSM601858     2   0.663     0.5235 0.228 0.604 0.044 NA 0.008
#> GSM601868     1   0.741     0.4849 0.572 0.164 0.080 NA 0.020
#> GSM601748     1   0.343     0.7268 0.864 0.004 0.044 NA 0.024
#> GSM601758     1   0.177     0.7614 0.940 0.032 0.000 NA 0.008
#> GSM601763     2   0.375     0.7950 0.176 0.796 0.000 NA 0.008
#> GSM601768     2   0.252     0.8476 0.048 0.896 0.000 NA 0.000
#> GSM601773     2   0.207     0.8412 0.012 0.912 0.000 NA 0.000
#> GSM601778     2   0.275     0.8446 0.036 0.896 0.020 NA 0.000
#> GSM601788     2   0.300     0.8385 0.020 0.864 0.008 NA 0.000
#> GSM601803     2   0.213     0.8363 0.012 0.908 0.000 NA 0.000
#> GSM601808     1   0.863    -0.1074 0.372 0.012 0.188 NA 0.176
#> GSM601813     1   0.294     0.7426 0.880 0.084 0.012 NA 0.004
#> GSM601818     1   0.418     0.7496 0.824 0.060 0.048 NA 0.004
#> GSM601823     2   0.429     0.7625 0.208 0.752 0.000 NA 0.008
#> GSM601833     2   0.156     0.8422 0.024 0.948 0.000 NA 0.004
#> GSM601848     2   0.358     0.7920 0.160 0.808 0.000 NA 0.000
#> GSM601853     1   0.618     0.5974 0.668 0.032 0.192 NA 0.024
#> GSM601863     1   0.675     0.6142 0.648 0.088 0.092 NA 0.024
#> GSM601754     2   0.229     0.8381 0.012 0.904 0.004 NA 0.000
#> GSM601784     2   0.243     0.8427 0.020 0.900 0.004 NA 0.000
#> GSM601794     2   0.342     0.8242 0.080 0.856 0.020 NA 0.000
#> GSM601799     2   0.215     0.8478 0.032 0.920 0.004 NA 0.000
#> GSM601829     1   0.561     0.5202 0.696 0.208 0.044 NA 0.016
#> GSM601839     2   0.309     0.8049 0.000 0.824 0.008 NA 0.000
#> GSM601844     2   0.483     0.7032 0.264 0.692 0.008 NA 0.004
#> GSM601859     2   0.306     0.8431 0.068 0.864 0.000 NA 0.000
#> GSM601869     1   0.722     0.5299 0.596 0.136 0.084 NA 0.020
#> GSM601749     1   0.141     0.7640 0.952 0.036 0.004 NA 0.000
#> GSM601759     1   0.169     0.7597 0.944 0.024 0.000 NA 0.008
#> GSM601764     2   0.421     0.7734 0.204 0.760 0.004 NA 0.004
#> GSM601769     2   0.267     0.8208 0.004 0.856 0.000 NA 0.000
#> GSM601774     2   0.252     0.8206 0.000 0.860 0.000 NA 0.000
#> GSM601779     2   0.434     0.7314 0.244 0.728 0.004 NA 0.004
#> GSM601789     2   0.252     0.8302 0.000 0.880 0.012 NA 0.000
#> GSM601804     2   0.223     0.8374 0.016 0.904 0.000 NA 0.000
#> GSM601809     2   0.651     0.6391 0.112 0.664 0.080 NA 0.016
#> GSM601814     2   0.252     0.8176 0.000 0.860 0.000 NA 0.000
#> GSM601819     1   0.373     0.7477 0.856 0.052 0.020 NA 0.024
#> GSM601824     2   0.429     0.7625 0.208 0.752 0.000 NA 0.008
#> GSM601834     2   0.165     0.8421 0.024 0.944 0.000 NA 0.004
#> GSM601849     2   0.406     0.7681 0.200 0.768 0.008 NA 0.000
#> GSM601854     1   0.402     0.7347 0.832 0.008 0.068 NA 0.024
#> GSM601864     2   0.481     0.7107 0.008 0.732 0.028 NA 0.020
#> GSM601755     2   0.225     0.8370 0.012 0.900 0.000 NA 0.000
#> GSM601785     2   0.260     0.8481 0.040 0.896 0.004 NA 0.000
#> GSM601795     2   0.335     0.8242 0.080 0.860 0.020 NA 0.000
#> GSM601800     2   0.221     0.8439 0.020 0.908 0.000 NA 0.000
#> GSM601830     3   0.373     0.7730 0.072 0.040 0.848 NA 0.004
#> GSM601840     2   0.362     0.8247 0.112 0.832 0.008 NA 0.000
#> GSM601845     2   0.199     0.8406 0.040 0.928 0.000 NA 0.004
#> GSM601860     2   0.306     0.8427 0.068 0.864 0.000 NA 0.000
#> GSM601870     2   0.812    -0.0208 0.052 0.424 0.196 NA 0.032
#> GSM601750     1   0.539     0.5429 0.728 0.000 0.052 NA 0.092
#> GSM601760     1   0.199     0.7571 0.920 0.068 0.000 NA 0.004
#> GSM601765     2   0.181     0.8402 0.040 0.936 0.000 NA 0.004
#> GSM601770     2   0.224     0.8437 0.024 0.908 0.000 NA 0.000
#> GSM601775     2   0.425     0.7639 0.200 0.756 0.004 NA 0.000
#> GSM601780     2   0.445     0.7236 0.248 0.720 0.004 NA 0.004
#> GSM601790     2   0.263     0.8201 0.004 0.860 0.000 NA 0.000
#> GSM601805     2   0.213     0.8363 0.012 0.908 0.000 NA 0.000
#> GSM601810     2   0.677     0.5988 0.144 0.640 0.084 NA 0.016
#> GSM601815     2   0.267     0.8168 0.000 0.856 0.004 NA 0.000
#> GSM601820     1   0.337     0.7555 0.872 0.032 0.016 NA 0.020
#> GSM601825     2   0.201     0.8400 0.000 0.908 0.004 NA 0.000
#> GSM601835     2   0.199     0.8422 0.028 0.928 0.000 NA 0.004
#> GSM601850     2   0.291     0.8384 0.064 0.888 0.008 NA 0.008
#> GSM601855     3   0.309     0.7720 0.048 0.036 0.884 NA 0.004
#> GSM601865     2   0.478     0.7136 0.008 0.736 0.028 NA 0.020
#> GSM601756     2   0.225     0.8370 0.012 0.900 0.000 NA 0.000
#> GSM601786     2   0.260     0.8320 0.004 0.872 0.000 NA 0.004
#> GSM601796     2   0.335     0.8242 0.080 0.860 0.020 NA 0.000
#> GSM601801     2   0.223     0.8374 0.016 0.904 0.000 NA 0.000
#> GSM601831     1   0.330     0.7664 0.876 0.060 0.020 NA 0.024
#> GSM601841     2   0.623     0.3458 0.376 0.524 0.020 NA 0.004
#> GSM601846     2   0.705     0.2903 0.040 0.504 0.336 NA 0.012
#> GSM601861     2   0.260     0.8157 0.000 0.852 0.000 NA 0.000
#> GSM601871     2   0.703     0.4067 0.044 0.552 0.076 NA 0.032
#> GSM601751     2   0.495     0.7678 0.188 0.724 0.012 NA 0.000
#> GSM601761     2   0.472     0.6254 0.308 0.656 0.000 NA 0.000
#> GSM601766     2   0.243     0.8371 0.076 0.900 0.000 NA 0.004
#> GSM601771     2   0.407     0.8070 0.152 0.792 0.008 NA 0.000
#> GSM601776     2   0.473     0.6973 0.256 0.696 0.004 NA 0.000
#> GSM601781     2   0.262     0.8432 0.036 0.900 0.012 NA 0.000
#> GSM601791     2   0.440     0.6869 0.276 0.696 0.000 NA 0.000
#> GSM601806     2   0.208     0.8350 0.008 0.908 0.000 NA 0.000
#> GSM601811     2   0.671     0.6086 0.116 0.648 0.092 NA 0.016
#> GSM601816     2   0.408     0.7780 0.172 0.780 0.004 NA 0.000
#> GSM601821     2   0.272     0.8185 0.004 0.852 0.000 NA 0.000
#> GSM601826     2   0.395     0.7681 0.192 0.772 0.000 NA 0.000
#> GSM601836     2   0.374     0.8118 0.140 0.820 0.012 NA 0.004
#> GSM601851     2   0.427     0.7416 0.232 0.736 0.004 NA 0.000
#> GSM601856     1   0.584     0.6934 0.720 0.100 0.096 NA 0.016
#> GSM601866     1   0.395     0.7534 0.840 0.024 0.044 NA 0.016

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5 p6
#> GSM601752     2  0.3290    0.67696 0.004 0.744 0.000 0.000 0.000 NA
#> GSM601782     5  0.4745    0.00000 0.200 0.024 0.028 0.016 0.724 NA
#> GSM601792     2  0.3921    0.65970 0.096 0.820 0.020 0.020 0.008 NA
#> GSM601797     2  0.4176    0.65932 0.020 0.804 0.016 0.088 0.008 NA
#> GSM601827     1  0.4889    0.60179 0.712 0.012 0.064 0.192 0.004 NA
#> GSM601837     2  0.4394    0.47412 0.000 0.496 0.016 0.004 0.000 NA
#> GSM601842     2  0.2627    0.71158 0.024 0.880 0.000 0.008 0.004 NA
#> GSM601857     2  0.6564    0.32177 0.256 0.544 0.144 0.020 0.008 NA
#> GSM601867     2  0.5590    0.58986 0.020 0.652 0.116 0.012 0.004 NA
#> GSM601747     2  0.5923    0.51956 0.200 0.656 0.048 0.024 0.016 NA
#> GSM601757     1  0.4958    0.32736 0.640 0.288 0.056 0.004 0.008 NA
#> GSM601762     2  0.2679    0.71256 0.032 0.868 0.000 0.000 0.004 NA
#> GSM601767     2  0.3134    0.70476 0.024 0.808 0.000 0.000 0.000 NA
#> GSM601772     2  0.3110    0.69914 0.012 0.792 0.000 0.000 0.000 NA
#> GSM601777     2  0.3022    0.69089 0.016 0.872 0.020 0.016 0.004 NA
#> GSM601787     2  0.6852    0.33093 0.044 0.516 0.268 0.020 0.008 NA
#> GSM601802     2  0.3337    0.66959 0.004 0.736 0.000 0.000 0.000 NA
#> GSM601807     3  0.7202   -0.12878 0.000 0.048 0.484 0.056 0.144 NA
#> GSM601812     1  0.4320    0.71713 0.804 0.056 0.072 0.036 0.008 NA
#> GSM601817     1  0.3708    0.72539 0.836 0.008 0.084 0.024 0.028 NA
#> GSM601822     2  0.2904    0.68311 0.056 0.876 0.012 0.004 0.004 NA
#> GSM601832     2  0.1864    0.70528 0.032 0.924 0.000 0.000 0.004 NA
#> GSM601847     2  0.2988    0.68804 0.064 0.868 0.004 0.008 0.004 NA
#> GSM601852     1  0.1608    0.74093 0.940 0.036 0.016 0.004 0.004 NA
#> GSM601862     1  0.5682    0.48366 0.572 0.096 0.304 0.024 0.000 NA
#> GSM601753     2  0.3373    0.68046 0.008 0.744 0.000 0.000 0.000 NA
#> GSM601783     1  0.0837    0.74079 0.972 0.020 0.004 0.004 0.000 NA
#> GSM601793     2  0.3921    0.65970 0.096 0.820 0.020 0.020 0.008 NA
#> GSM601798     2  0.3691    0.67633 0.008 0.724 0.000 0.008 0.000 NA
#> GSM601828     1  0.3889    0.72683 0.824 0.028 0.044 0.084 0.008 NA
#> GSM601838     2  0.3866    0.49876 0.000 0.516 0.000 0.000 0.000 NA
#> GSM601843     2  0.2706    0.71146 0.028 0.876 0.000 0.008 0.004 NA
#> GSM601858     2  0.6571    0.39436 0.224 0.568 0.140 0.020 0.008 NA
#> GSM601868     1  0.6421    0.39531 0.540 0.140 0.268 0.028 0.000 NA
#> GSM601748     1  0.3610    0.70431 0.836 0.000 0.080 0.028 0.040 NA
#> GSM601758     1  0.1495    0.73896 0.948 0.020 0.020 0.000 0.008 NA
#> GSM601763     2  0.3538    0.66193 0.176 0.792 0.008 0.000 0.008 NA
#> GSM601768     2  0.3453    0.70980 0.044 0.792 0.000 0.000 0.000 NA
#> GSM601773     2  0.3171    0.69682 0.012 0.784 0.000 0.000 0.000 NA
#> GSM601778     2  0.3513    0.68908 0.028 0.852 0.028 0.020 0.008 NA
#> GSM601788     2  0.4569    0.64718 0.024 0.652 0.016 0.004 0.000 NA
#> GSM601803     2  0.3398    0.67160 0.008 0.740 0.000 0.000 0.000 NA
#> GSM601808     3  0.6476   -0.13634 0.268 0.008 0.564 0.088 0.052 NA
#> GSM601813     1  0.2651    0.72419 0.888 0.068 0.024 0.012 0.004 NA
#> GSM601818     1  0.4165    0.72477 0.812 0.048 0.080 0.032 0.012 NA
#> GSM601823     2  0.4135    0.61332 0.200 0.748 0.012 0.000 0.008 NA
#> GSM601833     2  0.2152    0.70989 0.024 0.904 0.000 0.000 0.004 NA
#> GSM601848     2  0.3999    0.64070 0.148 0.784 0.012 0.004 0.004 NA
#> GSM601853     1  0.5810    0.52367 0.624 0.020 0.176 0.164 0.000 NA
#> GSM601863     1  0.5568    0.54521 0.616 0.080 0.268 0.028 0.004 NA
#> GSM601754     2  0.3302    0.68635 0.004 0.760 0.000 0.004 0.000 NA
#> GSM601784     2  0.3341    0.69798 0.012 0.776 0.000 0.004 0.000 NA
#> GSM601794     2  0.4088    0.65892 0.076 0.816 0.028 0.020 0.008 NA
#> GSM601799     2  0.3086    0.71534 0.020 0.820 0.000 0.004 0.000 NA
#> GSM601829     1  0.5328    0.48907 0.680 0.208 0.024 0.064 0.004 NA
#> GSM601839     2  0.4227    0.47403 0.000 0.496 0.008 0.004 0.000 NA
#> GSM601844     2  0.4635    0.57363 0.252 0.688 0.012 0.012 0.000 NA
#> GSM601859     2  0.3637    0.71132 0.056 0.780 0.000 0.000 0.000 NA
#> GSM601869     1  0.6178    0.44178 0.560 0.128 0.268 0.028 0.000 NA
#> GSM601749     1  0.0982    0.73967 0.968 0.020 0.004 0.004 0.004 NA
#> GSM601759     1  0.1476    0.73760 0.948 0.012 0.028 0.000 0.004 NA
#> GSM601764     2  0.4096    0.63062 0.192 0.760 0.012 0.008 0.008 NA
#> GSM601769     2  0.4220    0.51347 0.004 0.520 0.008 0.000 0.000 NA
#> GSM601774     2  0.4098    0.53611 0.004 0.548 0.004 0.000 0.000 NA
#> GSM601779     2  0.4559    0.57673 0.232 0.708 0.008 0.004 0.012 NA
#> GSM601789     2  0.3941    0.63526 0.004 0.660 0.004 0.004 0.000 NA
#> GSM601804     2  0.3494    0.67539 0.012 0.736 0.000 0.000 0.000 NA
#> GSM601809     2  0.6328    0.46368 0.068 0.616 0.200 0.020 0.008 NA
#> GSM601814     2  0.3982    0.51800 0.000 0.536 0.004 0.000 0.000 NA
#> GSM601819     1  0.3476    0.71559 0.860 0.032 0.036 0.012 0.028 NA
#> GSM601824     2  0.4135    0.61332 0.200 0.748 0.012 0.000 0.008 NA
#> GSM601834     2  0.2265    0.71041 0.024 0.896 0.000 0.000 0.004 NA
#> GSM601849     2  0.4380    0.60352 0.196 0.740 0.012 0.008 0.004 NA
#> GSM601854     1  0.4012    0.70753 0.804 0.000 0.100 0.060 0.020 NA
#> GSM601864     2  0.5846    0.46995 0.000 0.536 0.140 0.004 0.012 NA
#> GSM601755     2  0.3314    0.67566 0.004 0.740 0.000 0.000 0.000 NA
#> GSM601785     2  0.3517    0.70805 0.028 0.780 0.000 0.004 0.000 NA
#> GSM601795     2  0.4011    0.66008 0.076 0.820 0.024 0.020 0.008 NA
#> GSM601800     2  0.3192    0.69732 0.004 0.776 0.004 0.000 0.000 NA
#> GSM601830     4  0.3227    0.07586 0.036 0.040 0.056 0.860 0.000 NA
#> GSM601840     2  0.3832    0.70184 0.108 0.800 0.020 0.000 0.000 NA
#> GSM601845     2  0.2121    0.70439 0.040 0.916 0.000 0.008 0.004 NA
#> GSM601860     2  0.3707    0.71186 0.056 0.784 0.004 0.000 0.000 NA
#> GSM601870     2  0.7996   -0.11642 0.036 0.380 0.312 0.144 0.012 NA
#> GSM601750     1  0.6205    0.40204 0.644 0.000 0.088 0.036 0.092 NA
#> GSM601760     1  0.1799    0.73596 0.928 0.052 0.008 0.000 0.008 NA
#> GSM601765     2  0.2008    0.70301 0.040 0.920 0.004 0.000 0.004 NA
#> GSM601770     2  0.3309    0.70575 0.024 0.800 0.000 0.004 0.000 NA
#> GSM601775     2  0.4067    0.63760 0.192 0.760 0.012 0.008 0.004 NA
#> GSM601780     2  0.4635    0.56794 0.240 0.700 0.012 0.004 0.012 NA
#> GSM601790     2  0.3986    0.51634 0.000 0.532 0.004 0.000 0.000 NA
#> GSM601805     2  0.3314    0.67041 0.004 0.740 0.000 0.000 0.000 NA
#> GSM601810     2  0.6645    0.41824 0.100 0.592 0.200 0.028 0.008 NA
#> GSM601815     2  0.3989    0.50741 0.000 0.528 0.004 0.000 0.000 NA
#> GSM601820     1  0.2988    0.72350 0.876 0.008 0.064 0.008 0.028 NA
#> GSM601825     2  0.3586    0.67015 0.004 0.712 0.000 0.004 0.000 NA
#> GSM601835     2  0.2307    0.70831 0.032 0.896 0.000 0.000 0.004 NA
#> GSM601850     2  0.3337    0.69101 0.060 0.856 0.024 0.008 0.004 NA
#> GSM601855     4  0.3720    0.00503 0.008 0.020 0.132 0.808 0.000 NA
#> GSM601865     2  0.5853    0.47752 0.000 0.544 0.128 0.008 0.012 NA
#> GSM601756     2  0.3360    0.67132 0.004 0.732 0.000 0.000 0.000 NA
#> GSM601786     2  0.4377    0.59993 0.008 0.608 0.012 0.000 0.004 NA
#> GSM601796     2  0.4011    0.66008 0.076 0.820 0.024 0.020 0.008 NA
#> GSM601801     2  0.3583    0.67340 0.008 0.728 0.000 0.004 0.000 NA
#> GSM601831     1  0.3169    0.74230 0.864 0.048 0.060 0.016 0.004 NA
#> GSM601841     2  0.6093    0.27631 0.364 0.512 0.076 0.012 0.004 NA
#> GSM601846     4  0.6695    0.06318 0.004 0.372 0.016 0.372 0.008 NA
#> GSM601861     2  0.3857    0.51676 0.000 0.532 0.000 0.000 0.000 NA
#> GSM601871     2  0.6708    0.24840 0.036 0.484 0.332 0.012 0.012 NA
#> GSM601751     2  0.5002    0.64498 0.172 0.708 0.044 0.004 0.000 NA
#> GSM601761     2  0.4924    0.50940 0.296 0.636 0.016 0.000 0.004 NA
#> GSM601766     2  0.2465    0.70142 0.072 0.892 0.008 0.000 0.004 NA
#> GSM601771     2  0.3977    0.68703 0.144 0.780 0.020 0.000 0.000 NA
#> GSM601776     2  0.4638    0.55980 0.248 0.696 0.016 0.008 0.008 NA
#> GSM601781     2  0.3109    0.69058 0.020 0.868 0.020 0.016 0.004 NA
#> GSM601791     2  0.4571    0.55758 0.260 0.680 0.008 0.000 0.004 NA
#> GSM601806     2  0.3360    0.66684 0.000 0.732 0.004 0.000 0.000 NA
#> GSM601811     2  0.6458    0.42277 0.072 0.600 0.216 0.024 0.008 NA
#> GSM601816     2  0.4502    0.62748 0.156 0.752 0.024 0.004 0.004 NA
#> GSM601821     2  0.3857    0.51903 0.000 0.532 0.000 0.000 0.000 NA
#> GSM601826     2  0.4194    0.61409 0.184 0.752 0.016 0.000 0.004 NA
#> GSM601836     2  0.3870    0.66657 0.148 0.792 0.004 0.012 0.004 NA
#> GSM601851     2  0.4636    0.58370 0.220 0.712 0.016 0.004 0.008 NA
#> GSM601856     1  0.5357    0.64197 0.692 0.096 0.140 0.068 0.000 NA
#> GSM601866     1  0.3555    0.72118 0.832 0.008 0.108 0.028 0.016 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n time(p) gender(p) k
#> CV:hclust 119   0.137     0.503 2
#> CV:hclust 117   0.178     0.847 3
#> CV:hclust 108   0.380     0.507 4
#> CV:hclust 114   0.164     0.488 5
#> CV:hclust  99   0.239     0.271 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 125 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.885           0.914       0.963         0.5021 0.497   0.497
#> 3 3 0.561           0.645       0.831         0.2823 0.784   0.596
#> 4 4 0.594           0.397       0.640         0.1171 0.858   0.626
#> 5 5 0.644           0.714       0.767         0.0704 0.810   0.436
#> 6 6 0.674           0.617       0.742         0.0379 0.982   0.922

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM601752     2  0.0672     0.9575 0.008 0.992
#> GSM601782     1  0.0000     0.9671 1.000 0.000
#> GSM601792     1  0.0000     0.9671 1.000 0.000
#> GSM601797     1  0.9998    -0.0106 0.508 0.492
#> GSM601827     1  0.0000     0.9671 1.000 0.000
#> GSM601837     2  0.0000     0.9542 0.000 1.000
#> GSM601842     2  0.0672     0.9575 0.008 0.992
#> GSM601857     1  0.0376     0.9652 0.996 0.004
#> GSM601867     1  0.8608     0.6069 0.716 0.284
#> GSM601747     1  0.0000     0.9671 1.000 0.000
#> GSM601757     1  0.0000     0.9671 1.000 0.000
#> GSM601762     2  0.0672     0.9575 0.008 0.992
#> GSM601767     2  0.0672     0.9575 0.008 0.992
#> GSM601772     2  0.0672     0.9575 0.008 0.992
#> GSM601777     1  0.7674     0.7091 0.776 0.224
#> GSM601787     2  0.7299     0.7344 0.204 0.796
#> GSM601802     2  0.0672     0.9575 0.008 0.992
#> GSM601807     1  0.4022     0.9025 0.920 0.080
#> GSM601812     1  0.0000     0.9671 1.000 0.000
#> GSM601817     1  0.0000     0.9671 1.000 0.000
#> GSM601822     2  0.9881     0.2652 0.436 0.564
#> GSM601832     2  0.0672     0.9575 0.008 0.992
#> GSM601847     2  0.1414     0.9494 0.020 0.980
#> GSM601852     1  0.0000     0.9671 1.000 0.000
#> GSM601862     1  0.0672     0.9632 0.992 0.008
#> GSM601753     2  0.0672     0.9575 0.008 0.992
#> GSM601783     1  0.0000     0.9671 1.000 0.000
#> GSM601793     1  0.0000     0.9671 1.000 0.000
#> GSM601798     2  0.0376     0.9560 0.004 0.996
#> GSM601828     1  0.0000     0.9671 1.000 0.000
#> GSM601838     2  0.0000     0.9542 0.000 1.000
#> GSM601843     2  0.0672     0.9575 0.008 0.992
#> GSM601858     2  0.0376     0.9559 0.004 0.996
#> GSM601868     1  0.0672     0.9632 0.992 0.008
#> GSM601748     1  0.0000     0.9671 1.000 0.000
#> GSM601758     1  0.0000     0.9671 1.000 0.000
#> GSM601763     1  0.9963     0.0690 0.536 0.464
#> GSM601768     2  0.0672     0.9575 0.008 0.992
#> GSM601773     2  0.0672     0.9575 0.008 0.992
#> GSM601778     1  0.0000     0.9671 1.000 0.000
#> GSM601788     2  0.1414     0.9428 0.020 0.980
#> GSM601803     2  0.0672     0.9575 0.008 0.992
#> GSM601808     1  0.0672     0.9632 0.992 0.008
#> GSM601813     1  0.0000     0.9671 1.000 0.000
#> GSM601818     1  0.0672     0.9632 0.992 0.008
#> GSM601823     1  0.0000     0.9671 1.000 0.000
#> GSM601833     2  0.0672     0.9575 0.008 0.992
#> GSM601848     1  0.0000     0.9671 1.000 0.000
#> GSM601853     1  0.0672     0.9632 0.992 0.008
#> GSM601863     1  0.0376     0.9652 0.996 0.004
#> GSM601754     2  0.0672     0.9575 0.008 0.992
#> GSM601784     2  0.0672     0.9575 0.008 0.992
#> GSM601794     1  0.0000     0.9671 1.000 0.000
#> GSM601799     2  0.0672     0.9575 0.008 0.992
#> GSM601829     1  0.0000     0.9671 1.000 0.000
#> GSM601839     2  0.0000     0.9542 0.000 1.000
#> GSM601844     1  0.0000     0.9671 1.000 0.000
#> GSM601859     2  0.0672     0.9575 0.008 0.992
#> GSM601869     1  0.0672     0.9632 0.992 0.008
#> GSM601749     1  0.0000     0.9671 1.000 0.000
#> GSM601759     1  0.0000     0.9671 1.000 0.000
#> GSM601764     1  0.0000     0.9671 1.000 0.000
#> GSM601769     2  0.0672     0.9575 0.008 0.992
#> GSM601774     2  0.0672     0.9575 0.008 0.992
#> GSM601779     1  0.0000     0.9671 1.000 0.000
#> GSM601789     2  0.0000     0.9542 0.000 1.000
#> GSM601804     2  0.0672     0.9575 0.008 0.992
#> GSM601809     1  0.2043     0.9472 0.968 0.032
#> GSM601814     2  0.0376     0.9560 0.004 0.996
#> GSM601819     1  0.0000     0.9671 1.000 0.000
#> GSM601824     2  0.0938     0.9551 0.012 0.988
#> GSM601834     2  0.0672     0.9575 0.008 0.992
#> GSM601849     1  0.0000     0.9671 1.000 0.000
#> GSM601854     1  0.0000     0.9671 1.000 0.000
#> GSM601864     2  0.0000     0.9542 0.000 1.000
#> GSM601755     2  0.0672     0.9575 0.008 0.992
#> GSM601785     2  0.0672     0.9575 0.008 0.992
#> GSM601795     1  0.2778     0.9271 0.952 0.048
#> GSM601800     2  0.0672     0.9575 0.008 0.992
#> GSM601830     1  0.0672     0.9632 0.992 0.008
#> GSM601840     2  0.0672     0.9575 0.008 0.992
#> GSM601845     2  0.8555     0.6286 0.280 0.720
#> GSM601860     2  0.0672     0.9575 0.008 0.992
#> GSM601870     1  0.0672     0.9632 0.992 0.008
#> GSM601750     1  0.0000     0.9671 1.000 0.000
#> GSM601760     1  0.0000     0.9671 1.000 0.000
#> GSM601765     2  0.0672     0.9575 0.008 0.992
#> GSM601770     2  0.0672     0.9575 0.008 0.992
#> GSM601775     2  0.7376     0.7475 0.208 0.792
#> GSM601780     1  0.0000     0.9671 1.000 0.000
#> GSM601790     2  0.0000     0.9542 0.000 1.000
#> GSM601805     2  0.0672     0.9575 0.008 0.992
#> GSM601810     1  0.0376     0.9652 0.996 0.004
#> GSM601815     2  0.0000     0.9542 0.000 1.000
#> GSM601820     1  0.0000     0.9671 1.000 0.000
#> GSM601825     2  0.0672     0.9575 0.008 0.992
#> GSM601835     2  0.0376     0.9560 0.004 0.996
#> GSM601850     1  0.5519     0.8406 0.872 0.128
#> GSM601855     1  0.0672     0.9632 0.992 0.008
#> GSM601865     2  0.0000     0.9542 0.000 1.000
#> GSM601756     2  0.0672     0.9575 0.008 0.992
#> GSM601786     2  0.0000     0.9542 0.000 1.000
#> GSM601796     1  0.0000     0.9671 1.000 0.000
#> GSM601801     2  0.0376     0.9560 0.004 0.996
#> GSM601831     1  0.0000     0.9671 1.000 0.000
#> GSM601841     1  0.0000     0.9671 1.000 0.000
#> GSM601846     2  0.7602     0.7217 0.220 0.780
#> GSM601861     2  0.0000     0.9542 0.000 1.000
#> GSM601871     2  0.9896     0.1929 0.440 0.560
#> GSM601751     2  0.5294     0.8556 0.120 0.880
#> GSM601761     1  0.0000     0.9671 1.000 0.000
#> GSM601766     2  0.9552     0.4250 0.376 0.624
#> GSM601771     2  0.0672     0.9575 0.008 0.992
#> GSM601776     1  0.0000     0.9671 1.000 0.000
#> GSM601781     1  0.6343     0.8046 0.840 0.160
#> GSM601791     1  0.0000     0.9671 1.000 0.000
#> GSM601806     2  0.0672     0.9575 0.008 0.992
#> GSM601811     1  0.0672     0.9632 0.992 0.008
#> GSM601816     1  0.0000     0.9671 1.000 0.000
#> GSM601821     2  0.0000     0.9542 0.000 1.000
#> GSM601826     1  0.0000     0.9671 1.000 0.000
#> GSM601836     1  0.0000     0.9671 1.000 0.000
#> GSM601851     1  0.0000     0.9671 1.000 0.000
#> GSM601856     1  0.0672     0.9632 0.992 0.008
#> GSM601866     1  0.0000     0.9671 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM601752     2  0.3091     0.8871 0.072 0.912 0.016
#> GSM601782     3  0.6302     0.2529 0.480 0.000 0.520
#> GSM601792     1  0.1711     0.6664 0.960 0.008 0.032
#> GSM601797     1  0.7858     0.2842 0.572 0.364 0.064
#> GSM601827     3  0.6180     0.4337 0.416 0.000 0.584
#> GSM601837     2  0.4346     0.8261 0.000 0.816 0.184
#> GSM601842     2  0.0237     0.9111 0.004 0.996 0.000
#> GSM601857     3  0.4654     0.7760 0.208 0.000 0.792
#> GSM601867     3  0.2945     0.6043 0.004 0.088 0.908
#> GSM601747     1  0.5681     0.4787 0.748 0.016 0.236
#> GSM601757     1  0.6026     0.1535 0.624 0.000 0.376
#> GSM601762     2  0.0424     0.9113 0.008 0.992 0.000
#> GSM601767     2  0.0237     0.9107 0.004 0.996 0.000
#> GSM601772     2  0.0475     0.9101 0.004 0.992 0.004
#> GSM601777     1  0.7266     0.4418 0.688 0.080 0.232
#> GSM601787     3  0.4399     0.4993 0.000 0.188 0.812
#> GSM601802     2  0.2902     0.8936 0.064 0.920 0.016
#> GSM601807     3  0.1999     0.6463 0.012 0.036 0.952
#> GSM601812     1  0.6308    -0.2332 0.508 0.000 0.492
#> GSM601817     3  0.6295     0.3101 0.472 0.000 0.528
#> GSM601822     1  0.5092     0.5556 0.804 0.176 0.020
#> GSM601832     2  0.1647     0.9080 0.036 0.960 0.004
#> GSM601847     1  0.6836     0.1820 0.572 0.412 0.016
#> GSM601852     1  0.6192     0.0238 0.580 0.000 0.420
#> GSM601862     3  0.4504     0.7817 0.196 0.000 0.804
#> GSM601753     2  0.2902     0.8920 0.064 0.920 0.016
#> GSM601783     1  0.5810     0.2533 0.664 0.000 0.336
#> GSM601793     1  0.1832     0.6659 0.956 0.008 0.036
#> GSM601798     2  0.2031     0.9060 0.032 0.952 0.016
#> GSM601828     1  0.6305    -0.2078 0.516 0.000 0.484
#> GSM601838     2  0.4346     0.8261 0.000 0.816 0.184
#> GSM601843     2  0.0000     0.9104 0.000 1.000 0.000
#> GSM601858     2  0.3752     0.8523 0.000 0.856 0.144
#> GSM601868     3  0.4178     0.7824 0.172 0.000 0.828
#> GSM601748     1  0.6291    -0.1555 0.532 0.000 0.468
#> GSM601758     1  0.6079     0.1239 0.612 0.000 0.388
#> GSM601763     1  0.4110     0.5806 0.844 0.152 0.004
#> GSM601768     2  0.1647     0.9079 0.036 0.960 0.004
#> GSM601773     2  0.0237     0.9107 0.004 0.996 0.000
#> GSM601778     1  0.3369     0.6448 0.908 0.040 0.052
#> GSM601788     2  0.4045     0.8798 0.024 0.872 0.104
#> GSM601803     2  0.2703     0.8980 0.056 0.928 0.016
#> GSM601808     3  0.4235     0.7832 0.176 0.000 0.824
#> GSM601813     1  0.6140     0.0718 0.596 0.000 0.404
#> GSM601818     3  0.5560     0.6679 0.300 0.000 0.700
#> GSM601823     1  0.1015     0.6712 0.980 0.008 0.012
#> GSM601833     2  0.0424     0.9113 0.008 0.992 0.000
#> GSM601848     1  0.1015     0.6712 0.980 0.008 0.012
#> GSM601853     3  0.4291     0.7834 0.180 0.000 0.820
#> GSM601863     3  0.5098     0.7468 0.248 0.000 0.752
#> GSM601754     2  0.3183     0.8848 0.076 0.908 0.016
#> GSM601784     2  0.0237     0.9103 0.000 0.996 0.004
#> GSM601794     1  0.2339     0.6602 0.940 0.012 0.048
#> GSM601799     2  0.4139     0.8401 0.124 0.860 0.016
#> GSM601829     1  0.2066     0.6536 0.940 0.000 0.060
#> GSM601839     2  0.4346     0.8261 0.000 0.816 0.184
#> GSM601844     1  0.1999     0.6669 0.952 0.012 0.036
#> GSM601859     2  0.0424     0.9116 0.008 0.992 0.000
#> GSM601869     3  0.4555     0.7798 0.200 0.000 0.800
#> GSM601749     1  0.6045     0.1438 0.620 0.000 0.380
#> GSM601759     1  0.6180     0.0348 0.584 0.000 0.416
#> GSM601764     1  0.0983     0.6685 0.980 0.004 0.016
#> GSM601769     2  0.2772     0.8853 0.004 0.916 0.080
#> GSM601774     2  0.0237     0.9107 0.004 0.996 0.000
#> GSM601779     1  0.0661     0.6686 0.988 0.008 0.004
#> GSM601789     2  0.4465     0.8330 0.004 0.820 0.176
#> GSM601804     2  0.6941     0.1959 0.464 0.520 0.016
#> GSM601809     3  0.6677     0.5822 0.324 0.024 0.652
#> GSM601814     2  0.3112     0.8780 0.004 0.900 0.096
#> GSM601819     1  0.5291     0.3986 0.732 0.000 0.268
#> GSM601824     1  0.5318     0.5330 0.780 0.204 0.016
#> GSM601834     2  0.0237     0.9107 0.004 0.996 0.000
#> GSM601849     1  0.0892     0.6646 0.980 0.000 0.020
#> GSM601854     1  0.6295    -0.1696 0.528 0.000 0.472
#> GSM601864     2  0.4346     0.8261 0.000 0.816 0.184
#> GSM601755     2  0.2804     0.8943 0.060 0.924 0.016
#> GSM601785     2  0.1399     0.9093 0.028 0.968 0.004
#> GSM601795     1  0.4709     0.6160 0.852 0.092 0.056
#> GSM601800     2  0.2804     0.8943 0.060 0.924 0.016
#> GSM601830     3  0.3879     0.7741 0.152 0.000 0.848
#> GSM601840     2  0.2955     0.8853 0.080 0.912 0.008
#> GSM601845     1  0.6527     0.2669 0.588 0.404 0.008
#> GSM601860     2  0.0592     0.9116 0.012 0.988 0.000
#> GSM601870     3  0.1267     0.6774 0.024 0.004 0.972
#> GSM601750     1  0.6299    -0.1815 0.524 0.000 0.476
#> GSM601760     1  0.5058     0.4358 0.756 0.000 0.244
#> GSM601765     2  0.1289     0.9093 0.032 0.968 0.000
#> GSM601770     2  0.0424     0.9113 0.008 0.992 0.000
#> GSM601775     2  0.6513     0.3740 0.400 0.592 0.008
#> GSM601780     1  0.1015     0.6712 0.980 0.008 0.012
#> GSM601790     2  0.3941     0.8439 0.000 0.844 0.156
#> GSM601805     2  0.2703     0.8980 0.056 0.928 0.016
#> GSM601810     3  0.4555     0.7810 0.200 0.000 0.800
#> GSM601815     2  0.4110     0.8474 0.004 0.844 0.152
#> GSM601820     1  0.6286    -0.1415 0.536 0.000 0.464
#> GSM601825     2  0.2339     0.9029 0.048 0.940 0.012
#> GSM601835     2  0.1267     0.9067 0.004 0.972 0.024
#> GSM601850     1  0.3910     0.6191 0.876 0.104 0.020
#> GSM601855     3  0.3752     0.7694 0.144 0.000 0.856
#> GSM601865     2  0.4346     0.8261 0.000 0.816 0.184
#> GSM601756     2  0.2599     0.8984 0.052 0.932 0.016
#> GSM601786     2  0.4555     0.8134 0.000 0.800 0.200
#> GSM601796     1  0.2173     0.6594 0.944 0.008 0.048
#> GSM601801     2  0.1774     0.9080 0.024 0.960 0.016
#> GSM601831     3  0.4842     0.7635 0.224 0.000 0.776
#> GSM601841     1  0.5325     0.4691 0.748 0.004 0.248
#> GSM601846     1  0.8812     0.2370 0.516 0.360 0.124
#> GSM601861     2  0.3551     0.8588 0.000 0.868 0.132
#> GSM601871     3  0.4346     0.5022 0.000 0.184 0.816
#> GSM601751     2  0.4526     0.8489 0.104 0.856 0.040
#> GSM601761     1  0.1015     0.6712 0.980 0.008 0.012
#> GSM601766     1  0.5365     0.5128 0.744 0.252 0.004
#> GSM601771     2  0.1267     0.9103 0.024 0.972 0.004
#> GSM601776     1  0.1015     0.6712 0.980 0.008 0.012
#> GSM601781     1  0.3805     0.6290 0.884 0.092 0.024
#> GSM601791     1  0.1015     0.6712 0.980 0.008 0.012
#> GSM601806     2  0.1491     0.9097 0.016 0.968 0.016
#> GSM601811     3  0.4178     0.7824 0.172 0.000 0.828
#> GSM601816     1  0.1711     0.6686 0.960 0.008 0.032
#> GSM601821     2  0.3686     0.8542 0.000 0.860 0.140
#> GSM601826     1  0.1015     0.6712 0.980 0.008 0.012
#> GSM601836     1  0.1832     0.6637 0.956 0.036 0.008
#> GSM601851     1  0.0592     0.6681 0.988 0.000 0.012
#> GSM601856     3  0.4504     0.7816 0.196 0.000 0.804
#> GSM601866     3  0.6280     0.3502 0.460 0.000 0.540

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM601752     4  0.5933    -0.2619 0.040 0.408 0.000 0.552
#> GSM601782     3  0.7895     0.1434 0.308 0.000 0.376 0.316
#> GSM601792     1  0.2198     0.6804 0.920 0.000 0.008 0.072
#> GSM601797     1  0.6550     0.3027 0.484 0.024 0.032 0.460
#> GSM601827     3  0.7910     0.1187 0.304 0.000 0.352 0.344
#> GSM601837     2  0.0895     0.5977 0.000 0.976 0.020 0.004
#> GSM601842     2  0.5085     0.6668 0.008 0.616 0.000 0.376
#> GSM601857     3  0.2919     0.7799 0.060 0.000 0.896 0.044
#> GSM601867     3  0.4317     0.6751 0.004 0.196 0.784 0.016
#> GSM601747     4  0.7746    -0.3321 0.416 0.016 0.144 0.424
#> GSM601757     1  0.7485     0.1578 0.472 0.000 0.192 0.336
#> GSM601762     2  0.5298     0.6679 0.016 0.612 0.000 0.372
#> GSM601767     2  0.5298     0.6679 0.016 0.612 0.000 0.372
#> GSM601772     2  0.5284     0.6713 0.016 0.616 0.000 0.368
#> GSM601777     1  0.7601     0.4059 0.564 0.020 0.220 0.196
#> GSM601787     3  0.4516     0.6357 0.000 0.252 0.736 0.012
#> GSM601802     4  0.5888    -0.2887 0.036 0.424 0.000 0.540
#> GSM601807     3  0.3658     0.7122 0.000 0.144 0.836 0.020
#> GSM601812     4  0.7863    -0.2555 0.344 0.000 0.276 0.380
#> GSM601817     4  0.7886    -0.3067 0.296 0.000 0.324 0.380
#> GSM601822     1  0.4699     0.4939 0.676 0.004 0.000 0.320
#> GSM601832     2  0.5894     0.6243 0.040 0.568 0.000 0.392
#> GSM601847     1  0.5883     0.3526 0.572 0.040 0.000 0.388
#> GSM601852     1  0.7799     0.0248 0.384 0.000 0.248 0.368
#> GSM601862     3  0.1724     0.7906 0.020 0.000 0.948 0.032
#> GSM601753     4  0.5543    -0.2867 0.020 0.424 0.000 0.556
#> GSM601783     1  0.7537     0.1379 0.456 0.000 0.196 0.348
#> GSM601793     1  0.2402     0.6783 0.912 0.000 0.012 0.076
#> GSM601798     4  0.5570    -0.3050 0.020 0.440 0.000 0.540
#> GSM601828     4  0.7879    -0.2714 0.332 0.000 0.288 0.380
#> GSM601838     2  0.0707     0.5984 0.000 0.980 0.020 0.000
#> GSM601843     2  0.5070     0.6676 0.008 0.620 0.000 0.372
#> GSM601858     2  0.4318     0.6498 0.004 0.776 0.012 0.208
#> GSM601868     3  0.1707     0.7901 0.024 0.004 0.952 0.020
#> GSM601748     4  0.7863    -0.2515 0.344 0.000 0.276 0.380
#> GSM601758     1  0.7634     0.1005 0.424 0.000 0.208 0.368
#> GSM601763     1  0.4690     0.5096 0.724 0.016 0.000 0.260
#> GSM601768     2  0.5613     0.6512 0.028 0.592 0.000 0.380
#> GSM601773     2  0.5284     0.6699 0.016 0.616 0.000 0.368
#> GSM601778     1  0.4500     0.6170 0.776 0.000 0.032 0.192
#> GSM601788     2  0.6832     0.5690 0.040 0.624 0.060 0.276
#> GSM601803     4  0.5888    -0.2887 0.036 0.424 0.000 0.540
#> GSM601808     3  0.1297     0.7918 0.016 0.000 0.964 0.020
#> GSM601813     1  0.7706     0.0763 0.412 0.000 0.224 0.364
#> GSM601818     3  0.7537     0.3287 0.196 0.000 0.456 0.348
#> GSM601823     1  0.0336     0.6870 0.992 0.000 0.000 0.008
#> GSM601833     2  0.5313     0.6668 0.016 0.608 0.000 0.376
#> GSM601848     1  0.0707     0.6884 0.980 0.000 0.000 0.020
#> GSM601853     3  0.1297     0.7916 0.016 0.000 0.964 0.020
#> GSM601863     3  0.3400     0.7675 0.064 0.000 0.872 0.064
#> GSM601754     4  0.5784    -0.2681 0.032 0.412 0.000 0.556
#> GSM601784     2  0.4661     0.6737 0.000 0.652 0.000 0.348
#> GSM601794     1  0.3052     0.6731 0.880 0.004 0.012 0.104
#> GSM601799     4  0.6276    -0.2437 0.064 0.380 0.000 0.556
#> GSM601829     1  0.2385     0.6769 0.920 0.000 0.028 0.052
#> GSM601839     2  0.0707     0.5984 0.000 0.980 0.020 0.000
#> GSM601844     1  0.1909     0.6834 0.940 0.004 0.008 0.048
#> GSM601859     2  0.5231     0.6561 0.012 0.604 0.000 0.384
#> GSM601869     3  0.2892     0.7853 0.036 0.000 0.896 0.068
#> GSM601749     1  0.7634     0.1005 0.424 0.000 0.208 0.368
#> GSM601759     1  0.7673     0.0888 0.416 0.000 0.216 0.368
#> GSM601764     1  0.1284     0.6848 0.964 0.012 0.000 0.024
#> GSM601769     2  0.2944     0.6377 0.004 0.868 0.000 0.128
#> GSM601774     2  0.5149     0.6763 0.016 0.648 0.000 0.336
#> GSM601779     1  0.0336     0.6870 0.992 0.000 0.000 0.008
#> GSM601789     2  0.0779     0.6004 0.000 0.980 0.016 0.004
#> GSM601804     4  0.6442    -0.1311 0.440 0.068 0.000 0.492
#> GSM601809     3  0.7468     0.5681 0.208 0.072 0.624 0.096
#> GSM601814     2  0.2593     0.6258 0.000 0.904 0.016 0.080
#> GSM601819     1  0.7475     0.1427 0.448 0.000 0.180 0.372
#> GSM601824     1  0.5666     0.3765 0.616 0.036 0.000 0.348
#> GSM601834     2  0.5298     0.6694 0.016 0.612 0.000 0.372
#> GSM601849     1  0.0804     0.6842 0.980 0.000 0.008 0.012
#> GSM601854     4  0.7874    -0.2528 0.348 0.000 0.280 0.372
#> GSM601864     2  0.0817     0.5949 0.000 0.976 0.024 0.000
#> GSM601755     4  0.5636    -0.2801 0.024 0.424 0.000 0.552
#> GSM601785     2  0.5229     0.5996 0.008 0.564 0.000 0.428
#> GSM601795     1  0.4922     0.5664 0.700 0.004 0.012 0.284
#> GSM601800     4  0.5636    -0.2801 0.024 0.424 0.000 0.552
#> GSM601830     3  0.2089     0.7887 0.020 0.012 0.940 0.028
#> GSM601840     4  0.6081    -0.4358 0.044 0.472 0.000 0.484
#> GSM601845     1  0.7461     0.2210 0.492 0.144 0.008 0.356
#> GSM601860     2  0.5256     0.6469 0.012 0.596 0.000 0.392
#> GSM601870     3  0.3160     0.7381 0.000 0.108 0.872 0.020
#> GSM601750     4  0.7859    -0.2483 0.352 0.000 0.272 0.376
#> GSM601760     1  0.6968     0.2627 0.552 0.000 0.140 0.308
#> GSM601765     2  0.5600     0.6558 0.028 0.596 0.000 0.376
#> GSM601770     2  0.5298     0.6679 0.016 0.612 0.000 0.372
#> GSM601775     4  0.7540    -0.2056 0.216 0.304 0.000 0.480
#> GSM601780     1  0.0336     0.6870 0.992 0.000 0.000 0.008
#> GSM601790     2  0.0592     0.6008 0.000 0.984 0.016 0.000
#> GSM601805     4  0.5888    -0.2887 0.036 0.424 0.000 0.540
#> GSM601810     3  0.3198     0.7721 0.040 0.000 0.880 0.080
#> GSM601815     2  0.1059     0.6062 0.000 0.972 0.016 0.012
#> GSM601820     4  0.7853    -0.2452 0.364 0.000 0.268 0.368
#> GSM601825     4  0.5827    -0.3470 0.032 0.436 0.000 0.532
#> GSM601835     2  0.5268     0.6740 0.012 0.636 0.004 0.348
#> GSM601850     1  0.3161     0.6670 0.864 0.012 0.000 0.124
#> GSM601855     3  0.1631     0.7911 0.016 0.008 0.956 0.020
#> GSM601865     2  0.0921     0.5909 0.000 0.972 0.028 0.000
#> GSM601756     4  0.5636    -0.2801 0.024 0.424 0.000 0.552
#> GSM601786     2  0.1854     0.5608 0.000 0.940 0.048 0.012
#> GSM601796     1  0.2847     0.6757 0.896 0.004 0.016 0.084
#> GSM601801     4  0.5564    -0.2980 0.020 0.436 0.000 0.544
#> GSM601831     3  0.6634     0.5071 0.108 0.000 0.580 0.312
#> GSM601841     1  0.4780     0.5908 0.788 0.000 0.116 0.096
#> GSM601846     1  0.7341     0.2915 0.464 0.048 0.052 0.436
#> GSM601861     2  0.1510     0.6128 0.000 0.956 0.016 0.028
#> GSM601871     3  0.4661     0.6312 0.000 0.256 0.728 0.016
#> GSM601751     2  0.7039     0.4892 0.076 0.492 0.016 0.416
#> GSM601761     1  0.0804     0.6836 0.980 0.000 0.008 0.012
#> GSM601766     1  0.6575     0.2452 0.560 0.092 0.000 0.348
#> GSM601771     2  0.5582     0.6229 0.024 0.576 0.000 0.400
#> GSM601776     1  0.0524     0.6862 0.988 0.000 0.004 0.008
#> GSM601781     1  0.3606     0.6637 0.856 0.020 0.008 0.116
#> GSM601791     1  0.0592     0.6881 0.984 0.000 0.000 0.016
#> GSM601806     4  0.5402    -0.3721 0.012 0.472 0.000 0.516
#> GSM601811     3  0.2587     0.7888 0.020 0.008 0.916 0.056
#> GSM601816     1  0.1635     0.6860 0.948 0.000 0.008 0.044
#> GSM601821     2  0.1510     0.6124 0.000 0.956 0.016 0.028
#> GSM601826     1  0.0817     0.6888 0.976 0.000 0.000 0.024
#> GSM601836     1  0.2987     0.6625 0.880 0.016 0.000 0.104
#> GSM601851     1  0.0672     0.6834 0.984 0.000 0.008 0.008
#> GSM601856     3  0.1174     0.7915 0.020 0.000 0.968 0.012
#> GSM601866     4  0.7869    -0.2556 0.340 0.000 0.280 0.380

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM601752     2  0.3222     0.5902 0.000 0.864 0.028 0.088 0.020
#> GSM601782     1  0.5285     0.6847 0.724 0.000 0.164 0.044 0.068
#> GSM601792     4  0.5110     0.7965 0.104 0.076 0.020 0.768 0.032
#> GSM601797     4  0.6614     0.3229 0.000 0.380 0.048 0.492 0.080
#> GSM601827     1  0.5549     0.7030 0.716 0.000 0.140 0.076 0.068
#> GSM601837     5  0.3727     0.9496 0.000 0.216 0.016 0.000 0.768
#> GSM601842     2  0.3963     0.5823 0.000 0.732 0.008 0.004 0.256
#> GSM601857     3  0.4184     0.7663 0.232 0.000 0.740 0.024 0.004
#> GSM601867     3  0.2674     0.7972 0.004 0.000 0.856 0.000 0.140
#> GSM601747     1  0.5003     0.6744 0.752 0.148 0.004 0.064 0.032
#> GSM601757     1  0.1928     0.8656 0.920 0.000 0.004 0.072 0.004
#> GSM601762     2  0.4111     0.5656 0.000 0.708 0.004 0.008 0.280
#> GSM601767     2  0.4275     0.5597 0.000 0.696 0.008 0.008 0.288
#> GSM601772     2  0.4217     0.5640 0.000 0.704 0.004 0.012 0.280
#> GSM601777     4  0.5625     0.6395 0.000 0.044 0.160 0.700 0.096
#> GSM601787     3  0.2891     0.7743 0.000 0.000 0.824 0.000 0.176
#> GSM601802     2  0.3860     0.5907 0.000 0.820 0.024 0.124 0.032
#> GSM601807     3  0.2935     0.8183 0.024 0.000 0.876 0.012 0.088
#> GSM601812     1  0.1041     0.8861 0.964 0.000 0.032 0.004 0.000
#> GSM601817     1  0.1569     0.8756 0.944 0.000 0.044 0.004 0.008
#> GSM601822     4  0.2697     0.7933 0.016 0.056 0.004 0.900 0.024
#> GSM601832     2  0.4891     0.5966 0.000 0.716 0.008 0.068 0.208
#> GSM601847     4  0.3875     0.7442 0.000 0.124 0.012 0.816 0.048
#> GSM601852     1  0.1498     0.8930 0.952 0.000 0.008 0.016 0.024
#> GSM601862     3  0.3282     0.8085 0.188 0.000 0.804 0.000 0.008
#> GSM601753     2  0.2965     0.5953 0.000 0.876 0.028 0.084 0.012
#> GSM601783     1  0.2819     0.8647 0.884 0.000 0.008 0.076 0.032
#> GSM601793     4  0.5236     0.7951 0.108 0.076 0.020 0.760 0.036
#> GSM601798     2  0.3677     0.5767 0.000 0.840 0.032 0.096 0.032
#> GSM601828     1  0.2142     0.8746 0.920 0.000 0.048 0.004 0.028
#> GSM601838     5  0.3628     0.9506 0.000 0.216 0.012 0.000 0.772
#> GSM601843     2  0.4444     0.5684 0.000 0.708 0.012 0.016 0.264
#> GSM601858     2  0.4699     0.2556 0.008 0.588 0.008 0.000 0.396
#> GSM601868     3  0.3354     0.8230 0.140 0.000 0.832 0.004 0.024
#> GSM601748     1  0.0798     0.8896 0.976 0.000 0.016 0.008 0.000
#> GSM601758     1  0.0880     0.8874 0.968 0.000 0.000 0.032 0.000
#> GSM601763     4  0.5627     0.4092 0.056 0.352 0.008 0.580 0.004
#> GSM601768     2  0.4378     0.6079 0.000 0.740 0.004 0.040 0.216
#> GSM601773     2  0.4296     0.5528 0.000 0.692 0.008 0.008 0.292
#> GSM601778     4  0.3687     0.7828 0.016 0.024 0.040 0.856 0.064
#> GSM601788     2  0.6864     0.3902 0.004 0.568 0.088 0.076 0.264
#> GSM601803     2  0.3860     0.5907 0.000 0.820 0.024 0.124 0.032
#> GSM601808     3  0.2589     0.8343 0.092 0.000 0.888 0.008 0.012
#> GSM601813     1  0.0992     0.8908 0.968 0.000 0.008 0.024 0.000
#> GSM601818     1  0.3264     0.7723 0.836 0.000 0.140 0.004 0.020
#> GSM601823     4  0.3132     0.8079 0.172 0.008 0.000 0.820 0.000
#> GSM601833     2  0.4194     0.5681 0.000 0.708 0.004 0.012 0.276
#> GSM601848     4  0.3421     0.8137 0.164 0.016 0.000 0.816 0.004
#> GSM601853     3  0.3947     0.8241 0.108 0.000 0.816 0.012 0.064
#> GSM601863     3  0.4366     0.6546 0.320 0.000 0.664 0.016 0.000
#> GSM601754     2  0.3237     0.5912 0.000 0.860 0.028 0.096 0.016
#> GSM601784     2  0.4147     0.5079 0.000 0.676 0.008 0.000 0.316
#> GSM601794     4  0.5112     0.7919 0.088 0.080 0.020 0.772 0.040
#> GSM601799     2  0.2951     0.5847 0.000 0.860 0.028 0.112 0.000
#> GSM601829     4  0.4912     0.7871 0.128 0.008 0.032 0.768 0.064
#> GSM601839     5  0.3789     0.9475 0.000 0.212 0.020 0.000 0.768
#> GSM601844     4  0.5345     0.7967 0.140 0.076 0.016 0.740 0.028
#> GSM601859     2  0.3756     0.5919 0.000 0.744 0.008 0.000 0.248
#> GSM601869     3  0.4103     0.7736 0.228 0.000 0.748 0.012 0.012
#> GSM601749     1  0.1442     0.8870 0.952 0.000 0.004 0.032 0.012
#> GSM601759     1  0.0703     0.8894 0.976 0.000 0.000 0.024 0.000
#> GSM601764     4  0.4229     0.7967 0.152 0.048 0.004 0.788 0.008
#> GSM601769     5  0.3969     0.8271 0.000 0.304 0.004 0.000 0.692
#> GSM601774     2  0.4487     0.4850 0.000 0.652 0.008 0.008 0.332
#> GSM601779     4  0.3132     0.8084 0.172 0.008 0.000 0.820 0.000
#> GSM601789     5  0.3835     0.9238 0.000 0.244 0.012 0.000 0.744
#> GSM601804     2  0.4995     0.1580 0.000 0.552 0.024 0.420 0.004
#> GSM601809     3  0.6148     0.5701 0.308 0.000 0.576 0.024 0.092
#> GSM601814     5  0.3662     0.9210 0.000 0.252 0.004 0.000 0.744
#> GSM601819     1  0.2650     0.8623 0.892 0.000 0.004 0.068 0.036
#> GSM601824     4  0.4141     0.6562 0.024 0.248 0.000 0.728 0.000
#> GSM601834     2  0.4296     0.5499 0.000 0.692 0.008 0.008 0.292
#> GSM601849     4  0.3177     0.7886 0.208 0.000 0.000 0.792 0.000
#> GSM601854     1  0.2104     0.8818 0.924 0.000 0.044 0.008 0.024
#> GSM601864     5  0.3845     0.9407 0.000 0.208 0.024 0.000 0.768
#> GSM601755     2  0.3164     0.5913 0.000 0.868 0.028 0.084 0.020
#> GSM601785     2  0.3280     0.6207 0.000 0.808 0.004 0.004 0.184
#> GSM601795     4  0.4138     0.7653 0.020 0.100 0.020 0.824 0.036
#> GSM601800     2  0.3164     0.5913 0.000 0.868 0.028 0.084 0.020
#> GSM601830     3  0.4283     0.8094 0.060 0.000 0.808 0.040 0.092
#> GSM601840     2  0.3427     0.6253 0.000 0.844 0.004 0.056 0.096
#> GSM601845     2  0.6678    -0.0118 0.004 0.464 0.024 0.400 0.108
#> GSM601860     2  0.3676     0.6033 0.000 0.760 0.004 0.004 0.232
#> GSM601870     3  0.3267     0.8216 0.044 0.000 0.864 0.016 0.076
#> GSM601750     1  0.1673     0.8883 0.944 0.000 0.016 0.008 0.032
#> GSM601760     1  0.2605     0.7947 0.852 0.000 0.000 0.148 0.000
#> GSM601765     2  0.4792     0.5929 0.000 0.712 0.008 0.052 0.228
#> GSM601770     2  0.4230     0.5622 0.000 0.704 0.008 0.008 0.280
#> GSM601775     2  0.4963     0.4862 0.020 0.688 0.004 0.264 0.024
#> GSM601780     4  0.3132     0.8084 0.172 0.008 0.000 0.820 0.000
#> GSM601790     5  0.3305     0.9490 0.000 0.224 0.000 0.000 0.776
#> GSM601805     2  0.3945     0.5944 0.000 0.820 0.024 0.112 0.044
#> GSM601810     3  0.5068     0.6559 0.320 0.000 0.636 0.012 0.032
#> GSM601815     5  0.3336     0.9485 0.000 0.228 0.000 0.000 0.772
#> GSM601820     1  0.1314     0.8928 0.960 0.000 0.016 0.012 0.012
#> GSM601825     2  0.4333     0.6144 0.000 0.788 0.012 0.120 0.080
#> GSM601835     2  0.4546     0.5564 0.000 0.688 0.020 0.008 0.284
#> GSM601850     4  0.4642     0.8073 0.068 0.092 0.012 0.796 0.032
#> GSM601855     3  0.3709     0.8222 0.068 0.000 0.840 0.020 0.072
#> GSM601865     5  0.3897     0.9378 0.000 0.204 0.028 0.000 0.768
#> GSM601756     2  0.3164     0.5913 0.000 0.868 0.028 0.084 0.020
#> GSM601786     5  0.4052     0.9215 0.000 0.204 0.028 0.004 0.764
#> GSM601796     4  0.5236     0.7951 0.108 0.076 0.020 0.760 0.036
#> GSM601801     2  0.3800     0.5778 0.000 0.836 0.028 0.084 0.052
#> GSM601831     1  0.5302     0.5933 0.688 0.000 0.232 0.036 0.044
#> GSM601841     4  0.7490     0.5452 0.272 0.060 0.112 0.528 0.028
#> GSM601846     4  0.6693     0.5766 0.004 0.184 0.080 0.620 0.112
#> GSM601861     5  0.3491     0.9476 0.000 0.228 0.004 0.000 0.768
#> GSM601871     3  0.2690     0.7859 0.000 0.000 0.844 0.000 0.156
#> GSM601751     2  0.4982     0.6131 0.004 0.756 0.032 0.068 0.140
#> GSM601761     4  0.3282     0.8004 0.188 0.008 0.000 0.804 0.000
#> GSM601766     2  0.6318     0.1743 0.024 0.500 0.008 0.404 0.064
#> GSM601771     2  0.3883     0.6177 0.000 0.764 0.004 0.016 0.216
#> GSM601776     4  0.3171     0.8069 0.176 0.008 0.000 0.816 0.000
#> GSM601781     4  0.4435     0.7993 0.044 0.056 0.016 0.816 0.068
#> GSM601791     4  0.3319     0.8131 0.160 0.020 0.000 0.820 0.000
#> GSM601806     2  0.4319     0.5820 0.000 0.800 0.024 0.080 0.096
#> GSM601811     3  0.4701     0.7404 0.252 0.000 0.700 0.004 0.044
#> GSM601816     4  0.3621     0.8204 0.124 0.032 0.008 0.832 0.004
#> GSM601821     5  0.3521     0.9447 0.000 0.232 0.004 0.000 0.764
#> GSM601826     4  0.3224     0.8123 0.160 0.016 0.000 0.824 0.000
#> GSM601836     4  0.4653     0.7708 0.064 0.136 0.008 0.776 0.016
#> GSM601851     4  0.3074     0.7958 0.196 0.000 0.000 0.804 0.000
#> GSM601856     3  0.3038     0.8330 0.080 0.000 0.872 0.008 0.040
#> GSM601866     1  0.0898     0.8895 0.972 0.000 0.020 0.008 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM601752     2  0.0798     0.4713 0.000 0.976 0.004 0.004 0.004 0.012
#> GSM601782     1  0.6657     0.5385 0.580 0.004 0.124 0.204 0.056 0.032
#> GSM601792     6  0.4325     0.6486 0.040 0.056 0.012 0.096 0.004 0.792
#> GSM601797     2  0.6110    -0.3786 0.000 0.528 0.012 0.188 0.008 0.264
#> GSM601827     1  0.6594     0.5042 0.556 0.000 0.108 0.248 0.028 0.060
#> GSM601837     5  0.2544     0.9448 0.000 0.140 0.004 0.004 0.852 0.000
#> GSM601842     2  0.5931     0.5876 0.000 0.492 0.004 0.280 0.224 0.000
#> GSM601857     3  0.4380     0.6988 0.232 0.000 0.712 0.040 0.012 0.004
#> GSM601867     3  0.3895     0.7357 0.012 0.000 0.796 0.076 0.112 0.004
#> GSM601747     1  0.6073     0.3990 0.580 0.020 0.024 0.300 0.024 0.052
#> GSM601757     1  0.2737     0.8200 0.868 0.000 0.024 0.012 0.000 0.096
#> GSM601762     2  0.6029     0.5830 0.000 0.488 0.000 0.280 0.224 0.008
#> GSM601767     2  0.6021     0.5810 0.000 0.492 0.000 0.272 0.228 0.008
#> GSM601772     2  0.6034     0.5805 0.000 0.488 0.000 0.276 0.228 0.008
#> GSM601777     6  0.6483     0.1634 0.000 0.052 0.124 0.264 0.016 0.544
#> GSM601787     3  0.4037     0.6924 0.000 0.000 0.736 0.064 0.200 0.000
#> GSM601802     2  0.0891     0.4770 0.000 0.968 0.000 0.008 0.000 0.024
#> GSM601807     3  0.4300     0.7384 0.012 0.000 0.764 0.148 0.064 0.012
#> GSM601812     1  0.2258     0.8303 0.912 0.000 0.040 0.028 0.008 0.012
#> GSM601817     1  0.3242     0.8060 0.856 0.000 0.048 0.068 0.016 0.012
#> GSM601822     6  0.2973     0.6681 0.004 0.068 0.004 0.064 0.000 0.860
#> GSM601832     2  0.6425     0.5860 0.000 0.492 0.004 0.288 0.184 0.032
#> GSM601847     6  0.3997     0.5727 0.000 0.148 0.004 0.072 0.004 0.772
#> GSM601852     1  0.2232     0.8366 0.916 0.000 0.016 0.028 0.012 0.028
#> GSM601862     3  0.3144     0.7459 0.172 0.000 0.808 0.016 0.000 0.004
#> GSM601753     2  0.0653     0.4734 0.000 0.980 0.000 0.004 0.004 0.012
#> GSM601783     1  0.3349     0.8033 0.844 0.004 0.012 0.048 0.004 0.088
#> GSM601793     6  0.4384     0.6451 0.040 0.060 0.012 0.096 0.004 0.788
#> GSM601798     2  0.1623     0.4463 0.000 0.940 0.004 0.004 0.032 0.020
#> GSM601828     1  0.4700     0.7089 0.736 0.000 0.080 0.152 0.024 0.008
#> GSM601838     5  0.2442     0.9464 0.000 0.144 0.004 0.000 0.852 0.000
#> GSM601843     2  0.6252     0.5592 0.000 0.460 0.004 0.280 0.248 0.008
#> GSM601858     2  0.6367     0.4082 0.000 0.388 0.012 0.276 0.324 0.000
#> GSM601868     3  0.3454     0.7613 0.124 0.000 0.824 0.028 0.020 0.004
#> GSM601748     1  0.1377     0.8323 0.952 0.000 0.016 0.024 0.004 0.004
#> GSM601758     1  0.1267     0.8304 0.940 0.000 0.000 0.000 0.000 0.060
#> GSM601763     6  0.6906    -0.2836 0.064 0.200 0.004 0.244 0.004 0.484
#> GSM601768     2  0.6218     0.5946 0.000 0.496 0.000 0.284 0.196 0.024
#> GSM601773     2  0.5912     0.5767 0.000 0.500 0.000 0.264 0.232 0.004
#> GSM601778     6  0.4513     0.5463 0.004 0.032 0.020 0.196 0.012 0.736
#> GSM601788     2  0.8048     0.2522 0.004 0.364 0.108 0.212 0.272 0.040
#> GSM601803     2  0.1036     0.4804 0.000 0.964 0.000 0.008 0.004 0.024
#> GSM601808     3  0.2602     0.7789 0.052 0.000 0.888 0.040 0.020 0.000
#> GSM601813     1  0.2089     0.8299 0.908 0.000 0.012 0.004 0.004 0.072
#> GSM601818     1  0.3237     0.7666 0.836 0.000 0.108 0.048 0.004 0.004
#> GSM601823     6  0.2101     0.7296 0.100 0.004 0.000 0.004 0.000 0.892
#> GSM601833     2  0.6159     0.5831 0.000 0.484 0.004 0.280 0.224 0.008
#> GSM601848     6  0.2095     0.7329 0.076 0.016 0.000 0.004 0.000 0.904
#> GSM601853     3  0.5245     0.7320 0.064 0.000 0.700 0.168 0.056 0.012
#> GSM601863     3  0.4234     0.6445 0.284 0.000 0.684 0.016 0.004 0.012
#> GSM601754     2  0.0862     0.4724 0.000 0.972 0.000 0.008 0.004 0.016
#> GSM601784     2  0.5974     0.4800 0.000 0.440 0.000 0.248 0.312 0.000
#> GSM601794     6  0.4453     0.6334 0.036 0.060 0.012 0.108 0.004 0.780
#> GSM601799     2  0.0972     0.4564 0.000 0.964 0.000 0.008 0.000 0.028
#> GSM601829     6  0.5327     0.4329 0.064 0.004 0.012 0.264 0.016 0.640
#> GSM601839     5  0.2442     0.9464 0.000 0.144 0.004 0.000 0.852 0.000
#> GSM601844     6  0.4724     0.6355 0.068 0.044 0.012 0.124 0.000 0.752
#> GSM601859     2  0.5624     0.5996 0.000 0.536 0.000 0.264 0.200 0.000
#> GSM601869     3  0.4405     0.7106 0.204 0.000 0.732 0.036 0.008 0.020
#> GSM601749     1  0.1719     0.8325 0.928 0.000 0.000 0.008 0.008 0.056
#> GSM601759     1  0.1333     0.8338 0.944 0.000 0.000 0.008 0.000 0.048
#> GSM601764     6  0.3514     0.6404 0.088 0.000 0.000 0.108 0.000 0.804
#> GSM601769     5  0.4328     0.7812 0.000 0.192 0.000 0.092 0.716 0.000
#> GSM601774     2  0.6186     0.5116 0.000 0.444 0.000 0.268 0.280 0.008
#> GSM601779     6  0.2213     0.7290 0.100 0.004 0.000 0.008 0.000 0.888
#> GSM601789     5  0.3994     0.8746 0.000 0.140 0.008 0.080 0.772 0.000
#> GSM601804     2  0.3426    -0.0242 0.000 0.720 0.000 0.004 0.000 0.276
#> GSM601809     3  0.6560     0.5880 0.220 0.000 0.572 0.096 0.092 0.020
#> GSM601814     5  0.3053     0.9321 0.000 0.168 0.000 0.020 0.812 0.000
#> GSM601819     1  0.2770     0.8206 0.884 0.000 0.008 0.052 0.016 0.040
#> GSM601824     6  0.3553     0.5350 0.004 0.128 0.000 0.064 0.000 0.804
#> GSM601834     2  0.5956     0.5759 0.000 0.488 0.004 0.272 0.236 0.000
#> GSM601849     6  0.1814     0.7307 0.100 0.000 0.000 0.000 0.000 0.900
#> GSM601854     1  0.4119     0.7662 0.800 0.000 0.076 0.084 0.024 0.016
#> GSM601864     5  0.3101     0.9255 0.000 0.136 0.012 0.020 0.832 0.000
#> GSM601755     2  0.0551     0.4762 0.000 0.984 0.004 0.000 0.004 0.008
#> GSM601785     2  0.5539     0.5949 0.000 0.564 0.000 0.272 0.160 0.004
#> GSM601795     6  0.4459     0.6004 0.004 0.108 0.012 0.116 0.004 0.756
#> GSM601800     2  0.0603     0.4717 0.000 0.980 0.004 0.000 0.000 0.016
#> GSM601830     3  0.6021     0.6287 0.032 0.000 0.564 0.308 0.068 0.028
#> GSM601840     2  0.5819     0.5323 0.000 0.596 0.008 0.268 0.088 0.040
#> GSM601845     4  0.7316     0.0408 0.004 0.248 0.008 0.420 0.076 0.244
#> GSM601860     2  0.5850     0.5990 0.000 0.532 0.004 0.272 0.188 0.004
#> GSM601870     3  0.4753     0.7388 0.032 0.000 0.740 0.148 0.068 0.012
#> GSM601750     1  0.2572     0.8240 0.896 0.000 0.016 0.052 0.024 0.012
#> GSM601760     1  0.2402     0.7850 0.856 0.000 0.000 0.004 0.000 0.140
#> GSM601765     2  0.6467     0.5861 0.000 0.484 0.004 0.288 0.192 0.032
#> GSM601770     2  0.6038     0.5810 0.000 0.488 0.000 0.272 0.232 0.008
#> GSM601775     2  0.6501     0.1864 0.020 0.464 0.000 0.288 0.008 0.220
#> GSM601780     6  0.2213     0.7290 0.100 0.004 0.000 0.008 0.000 0.888
#> GSM601790     5  0.2886     0.9444 0.000 0.144 0.004 0.016 0.836 0.000
#> GSM601805     2  0.1167     0.4814 0.000 0.960 0.000 0.008 0.012 0.020
#> GSM601810     3  0.5484     0.6281 0.248 0.000 0.636 0.076 0.028 0.012
#> GSM601815     5  0.3000     0.9453 0.000 0.156 0.004 0.016 0.824 0.000
#> GSM601820     1  0.1223     0.8333 0.960 0.000 0.016 0.008 0.004 0.012
#> GSM601825     2  0.3423     0.5189 0.000 0.836 0.000 0.080 0.056 0.028
#> GSM601835     2  0.6408     0.5316 0.000 0.424 0.012 0.312 0.248 0.004
#> GSM601850     6  0.3150     0.6584 0.008 0.088 0.000 0.060 0.000 0.844
#> GSM601855     3  0.4827     0.7303 0.032 0.000 0.720 0.184 0.052 0.012
#> GSM601865     5  0.2917     0.9357 0.000 0.136 0.008 0.016 0.840 0.000
#> GSM601756     2  0.0551     0.4762 0.000 0.984 0.004 0.000 0.004 0.008
#> GSM601786     5  0.2581     0.9359 0.000 0.128 0.000 0.016 0.856 0.000
#> GSM601796     6  0.4723     0.6394 0.048 0.056 0.016 0.112 0.004 0.764
#> GSM601801     2  0.1194     0.4634 0.000 0.956 0.004 0.000 0.032 0.008
#> GSM601831     1  0.6489     0.5078 0.568 0.000 0.168 0.200 0.028 0.036
#> GSM601841     6  0.7267     0.3363 0.144 0.048 0.156 0.084 0.012 0.556
#> GSM601846     4  0.6856    -0.1204 0.004 0.092 0.072 0.420 0.016 0.396
#> GSM601861     5  0.2945     0.9439 0.000 0.156 0.000 0.020 0.824 0.000
#> GSM601871     3  0.3894     0.7106 0.000 0.000 0.760 0.072 0.168 0.000
#> GSM601751     2  0.6447     0.5625 0.000 0.544 0.032 0.248 0.156 0.020
#> GSM601761     6  0.2355     0.7249 0.112 0.004 0.000 0.008 0.000 0.876
#> GSM601766     2  0.7510    -0.0373 0.024 0.348 0.004 0.316 0.052 0.256
#> GSM601771     2  0.6248     0.5989 0.000 0.512 0.004 0.280 0.180 0.024
#> GSM601776     6  0.2308     0.7265 0.108 0.004 0.000 0.008 0.000 0.880
#> GSM601781     6  0.4317     0.5558 0.000 0.048 0.004 0.204 0.012 0.732
#> GSM601791     6  0.2255     0.7314 0.088 0.004 0.000 0.016 0.000 0.892
#> GSM601806     2  0.1410     0.4900 0.000 0.944 0.000 0.008 0.044 0.004
#> GSM601811     3  0.5123     0.6825 0.192 0.000 0.688 0.080 0.036 0.004
#> GSM601816     6  0.2422     0.7270 0.056 0.016 0.004 0.024 0.000 0.900
#> GSM601821     5  0.2945     0.9439 0.000 0.156 0.000 0.020 0.824 0.000
#> GSM601826     6  0.2002     0.7330 0.076 0.012 0.000 0.004 0.000 0.908
#> GSM601836     6  0.5027     0.2450 0.020 0.052 0.004 0.260 0.004 0.660
#> GSM601851     6  0.1957     0.7273 0.112 0.000 0.000 0.000 0.000 0.888
#> GSM601856     3  0.4476     0.7552 0.040 0.000 0.760 0.148 0.040 0.012
#> GSM601866     1  0.1793     0.8271 0.932 0.000 0.040 0.016 0.004 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n time(p) gender(p) k
#> CV:kmeans 120   0.576     0.241 2
#> CV:kmeans  96   0.381     0.280 3
#> CV:kmeans  78   0.187     0.783 4
#> CV:kmeans 116   0.257     0.422 5
#> CV:kmeans  97   0.441     0.770 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 125 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.867           0.929       0.969         0.5040 0.496   0.496
#> 3 3 0.632           0.782       0.877         0.3096 0.773   0.572
#> 4 4 0.467           0.554       0.714         0.1261 0.857   0.611
#> 5 5 0.476           0.430       0.640         0.0667 0.950   0.816
#> 6 6 0.499           0.298       0.568         0.0406 0.910   0.652

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM601752     2  0.0000      0.958 0.000 1.000
#> GSM601782     1  0.0000      0.977 1.000 0.000
#> GSM601792     1  0.0000      0.977 1.000 0.000
#> GSM601797     2  0.9427      0.471 0.360 0.640
#> GSM601827     1  0.0000      0.977 1.000 0.000
#> GSM601837     2  0.0000      0.958 0.000 1.000
#> GSM601842     2  0.0000      0.958 0.000 1.000
#> GSM601857     1  0.0000      0.977 1.000 0.000
#> GSM601867     1  0.9732      0.301 0.596 0.404
#> GSM601747     1  0.2043      0.953 0.968 0.032
#> GSM601757     1  0.0000      0.977 1.000 0.000
#> GSM601762     2  0.0000      0.958 0.000 1.000
#> GSM601767     2  0.0000      0.958 0.000 1.000
#> GSM601772     2  0.0000      0.958 0.000 1.000
#> GSM601777     1  0.8207      0.659 0.744 0.256
#> GSM601787     2  0.4939      0.861 0.108 0.892
#> GSM601802     2  0.0000      0.958 0.000 1.000
#> GSM601807     1  0.4690      0.887 0.900 0.100
#> GSM601812     1  0.0000      0.977 1.000 0.000
#> GSM601817     1  0.0000      0.977 1.000 0.000
#> GSM601822     2  0.9248      0.519 0.340 0.660
#> GSM601832     2  0.0000      0.958 0.000 1.000
#> GSM601847     2  0.0376      0.955 0.004 0.996
#> GSM601852     1  0.0000      0.977 1.000 0.000
#> GSM601862     1  0.0000      0.977 1.000 0.000
#> GSM601753     2  0.0000      0.958 0.000 1.000
#> GSM601783     1  0.0000      0.977 1.000 0.000
#> GSM601793     1  0.0000      0.977 1.000 0.000
#> GSM601798     2  0.0000      0.958 0.000 1.000
#> GSM601828     1  0.0000      0.977 1.000 0.000
#> GSM601838     2  0.0000      0.958 0.000 1.000
#> GSM601843     2  0.0000      0.958 0.000 1.000
#> GSM601858     2  0.0000      0.958 0.000 1.000
#> GSM601868     1  0.0000      0.977 1.000 0.000
#> GSM601748     1  0.0000      0.977 1.000 0.000
#> GSM601758     1  0.0000      0.977 1.000 0.000
#> GSM601763     2  0.9993      0.116 0.484 0.516
#> GSM601768     2  0.0000      0.958 0.000 1.000
#> GSM601773     2  0.0000      0.958 0.000 1.000
#> GSM601778     1  0.1843      0.956 0.972 0.028
#> GSM601788     2  0.1633      0.940 0.024 0.976
#> GSM601803     2  0.0000      0.958 0.000 1.000
#> GSM601808     1  0.0000      0.977 1.000 0.000
#> GSM601813     1  0.0000      0.977 1.000 0.000
#> GSM601818     1  0.0000      0.977 1.000 0.000
#> GSM601823     1  0.0000      0.977 1.000 0.000
#> GSM601833     2  0.0000      0.958 0.000 1.000
#> GSM601848     1  0.0000      0.977 1.000 0.000
#> GSM601853     1  0.0000      0.977 1.000 0.000
#> GSM601863     1  0.0000      0.977 1.000 0.000
#> GSM601754     2  0.0000      0.958 0.000 1.000
#> GSM601784     2  0.0000      0.958 0.000 1.000
#> GSM601794     1  0.0376      0.974 0.996 0.004
#> GSM601799     2  0.0000      0.958 0.000 1.000
#> GSM601829     1  0.0000      0.977 1.000 0.000
#> GSM601839     2  0.0000      0.958 0.000 1.000
#> GSM601844     1  0.0376      0.974 0.996 0.004
#> GSM601859     2  0.0000      0.958 0.000 1.000
#> GSM601869     1  0.0000      0.977 1.000 0.000
#> GSM601749     1  0.0000      0.977 1.000 0.000
#> GSM601759     1  0.0000      0.977 1.000 0.000
#> GSM601764     1  0.0000      0.977 1.000 0.000
#> GSM601769     2  0.0000      0.958 0.000 1.000
#> GSM601774     2  0.0000      0.958 0.000 1.000
#> GSM601779     1  0.0000      0.977 1.000 0.000
#> GSM601789     2  0.0000      0.958 0.000 1.000
#> GSM601804     2  0.0000      0.958 0.000 1.000
#> GSM601809     1  0.4298      0.899 0.912 0.088
#> GSM601814     2  0.0000      0.958 0.000 1.000
#> GSM601819     1  0.0000      0.977 1.000 0.000
#> GSM601824     2  0.0000      0.958 0.000 1.000
#> GSM601834     2  0.0000      0.958 0.000 1.000
#> GSM601849     1  0.0000      0.977 1.000 0.000
#> GSM601854     1  0.0000      0.977 1.000 0.000
#> GSM601864     2  0.0000      0.958 0.000 1.000
#> GSM601755     2  0.0000      0.958 0.000 1.000
#> GSM601785     2  0.0000      0.958 0.000 1.000
#> GSM601795     1  0.4939      0.878 0.892 0.108
#> GSM601800     2  0.0000      0.958 0.000 1.000
#> GSM601830     1  0.0000      0.977 1.000 0.000
#> GSM601840     2  0.0376      0.955 0.004 0.996
#> GSM601845     2  0.7674      0.722 0.224 0.776
#> GSM601860     2  0.0000      0.958 0.000 1.000
#> GSM601870     1  0.0000      0.977 1.000 0.000
#> GSM601750     1  0.0000      0.977 1.000 0.000
#> GSM601760     1  0.0000      0.977 1.000 0.000
#> GSM601765     2  0.0000      0.958 0.000 1.000
#> GSM601770     2  0.0000      0.958 0.000 1.000
#> GSM601775     2  0.5519      0.846 0.128 0.872
#> GSM601780     1  0.0000      0.977 1.000 0.000
#> GSM601790     2  0.0000      0.958 0.000 1.000
#> GSM601805     2  0.0000      0.958 0.000 1.000
#> GSM601810     1  0.0000      0.977 1.000 0.000
#> GSM601815     2  0.0000      0.958 0.000 1.000
#> GSM601820     1  0.0000      0.977 1.000 0.000
#> GSM601825     2  0.0000      0.958 0.000 1.000
#> GSM601835     2  0.0000      0.958 0.000 1.000
#> GSM601850     1  0.6048      0.830 0.852 0.148
#> GSM601855     1  0.0000      0.977 1.000 0.000
#> GSM601865     2  0.0000      0.958 0.000 1.000
#> GSM601756     2  0.0000      0.958 0.000 1.000
#> GSM601786     2  0.0000      0.958 0.000 1.000
#> GSM601796     1  0.0000      0.977 1.000 0.000
#> GSM601801     2  0.0000      0.958 0.000 1.000
#> GSM601831     1  0.0000      0.977 1.000 0.000
#> GSM601841     1  0.0000      0.977 1.000 0.000
#> GSM601846     2  0.6247      0.813 0.156 0.844
#> GSM601861     2  0.0000      0.958 0.000 1.000
#> GSM601871     2  0.9044      0.534 0.320 0.680
#> GSM601751     2  0.4022      0.894 0.080 0.920
#> GSM601761     1  0.0000      0.977 1.000 0.000
#> GSM601766     2  0.8608      0.620 0.284 0.716
#> GSM601771     2  0.0000      0.958 0.000 1.000
#> GSM601776     1  0.0000      0.977 1.000 0.000
#> GSM601781     1  0.5842      0.839 0.860 0.140
#> GSM601791     1  0.2043      0.953 0.968 0.032
#> GSM601806     2  0.0000      0.958 0.000 1.000
#> GSM601811     1  0.0672      0.971 0.992 0.008
#> GSM601816     1  0.0376      0.974 0.996 0.004
#> GSM601821     2  0.0000      0.958 0.000 1.000
#> GSM601826     1  0.0000      0.977 1.000 0.000
#> GSM601836     1  0.1633      0.960 0.976 0.024
#> GSM601851     1  0.0000      0.977 1.000 0.000
#> GSM601856     1  0.0000      0.977 1.000 0.000
#> GSM601866     1  0.0000      0.977 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM601752     2  0.4521      0.822 0.180 0.816 0.004
#> GSM601782     3  0.3619      0.813 0.136 0.000 0.864
#> GSM601792     1  0.2537      0.803 0.920 0.000 0.080
#> GSM601797     1  0.9738      0.355 0.444 0.304 0.252
#> GSM601827     3  0.3038      0.821 0.104 0.000 0.896
#> GSM601837     2  0.1015      0.925 0.008 0.980 0.012
#> GSM601842     2  0.0661      0.928 0.004 0.988 0.008
#> GSM601857     3  0.1289      0.850 0.032 0.000 0.968
#> GSM601867     3  0.2866      0.794 0.008 0.076 0.916
#> GSM601747     3  0.8067      0.515 0.284 0.100 0.616
#> GSM601757     3  0.4654      0.768 0.208 0.000 0.792
#> GSM601762     2  0.0237      0.927 0.000 0.996 0.004
#> GSM601767     2  0.0237      0.927 0.004 0.996 0.000
#> GSM601772     2  0.0000      0.926 0.000 1.000 0.000
#> GSM601777     1  0.8951      0.280 0.476 0.128 0.396
#> GSM601787     3  0.5156      0.629 0.008 0.216 0.776
#> GSM601802     2  0.3192      0.891 0.112 0.888 0.000
#> GSM601807     3  0.2173      0.817 0.008 0.048 0.944
#> GSM601812     3  0.2356      0.846 0.072 0.000 0.928
#> GSM601817     3  0.1643      0.850 0.044 0.000 0.956
#> GSM601822     1  0.2297      0.792 0.944 0.036 0.020
#> GSM601832     2  0.2945      0.895 0.088 0.908 0.004
#> GSM601847     1  0.4968      0.688 0.800 0.188 0.012
#> GSM601852     3  0.4399      0.783 0.188 0.000 0.812
#> GSM601862     3  0.0424      0.846 0.008 0.000 0.992
#> GSM601753     2  0.3038      0.896 0.104 0.896 0.000
#> GSM601783     3  0.6045      0.491 0.380 0.000 0.620
#> GSM601793     1  0.4399      0.732 0.812 0.000 0.188
#> GSM601798     2  0.2400      0.914 0.064 0.932 0.004
#> GSM601828     3  0.2448      0.845 0.076 0.000 0.924
#> GSM601838     2  0.0661      0.926 0.008 0.988 0.004
#> GSM601843     2  0.0424      0.927 0.000 0.992 0.008
#> GSM601858     2  0.3587      0.869 0.020 0.892 0.088
#> GSM601868     3  0.0000      0.844 0.000 0.000 1.000
#> GSM601748     3  0.3267      0.831 0.116 0.000 0.884
#> GSM601758     3  0.6140      0.447 0.404 0.000 0.596
#> GSM601763     1  0.2031      0.807 0.952 0.016 0.032
#> GSM601768     2  0.2711      0.902 0.088 0.912 0.000
#> GSM601773     2  0.0424      0.927 0.008 0.992 0.000
#> GSM601778     1  0.4840      0.754 0.816 0.016 0.168
#> GSM601788     2  0.5939      0.771 0.072 0.788 0.140
#> GSM601803     2  0.2878      0.900 0.096 0.904 0.000
#> GSM601808     3  0.0237      0.845 0.004 0.000 0.996
#> GSM601813     3  0.5497      0.660 0.292 0.000 0.708
#> GSM601818     3  0.1289      0.850 0.032 0.000 0.968
#> GSM601823     1  0.0747      0.801 0.984 0.000 0.016
#> GSM601833     2  0.0592      0.928 0.012 0.988 0.000
#> GSM601848     1  0.0747      0.801 0.984 0.000 0.016
#> GSM601853     3  0.0237      0.845 0.004 0.000 0.996
#> GSM601863     3  0.1860      0.850 0.052 0.000 0.948
#> GSM601754     2  0.4110      0.852 0.152 0.844 0.004
#> GSM601784     2  0.0237      0.927 0.000 0.996 0.004
#> GSM601794     1  0.4110      0.773 0.844 0.004 0.152
#> GSM601799     2  0.4887      0.760 0.228 0.772 0.000
#> GSM601829     1  0.6302      0.134 0.520 0.000 0.480
#> GSM601839     2  0.1170      0.923 0.008 0.976 0.016
#> GSM601844     1  0.4589      0.742 0.820 0.008 0.172
#> GSM601859     2  0.0747      0.927 0.016 0.984 0.000
#> GSM601869     3  0.0892      0.849 0.020 0.000 0.980
#> GSM601749     3  0.6079      0.482 0.388 0.000 0.612
#> GSM601759     3  0.5254      0.705 0.264 0.000 0.736
#> GSM601764     1  0.2772      0.795 0.916 0.004 0.080
#> GSM601769     2  0.0237      0.926 0.004 0.996 0.000
#> GSM601774     2  0.0424      0.927 0.008 0.992 0.000
#> GSM601779     1  0.0892      0.803 0.980 0.000 0.020
#> GSM601789     2  0.1315      0.922 0.008 0.972 0.020
#> GSM601804     1  0.5650      0.484 0.688 0.312 0.000
#> GSM601809     3  0.3589      0.820 0.052 0.048 0.900
#> GSM601814     2  0.0424      0.927 0.008 0.992 0.000
#> GSM601819     3  0.6280      0.262 0.460 0.000 0.540
#> GSM601824     1  0.1529      0.789 0.960 0.040 0.000
#> GSM601834     2  0.0000      0.926 0.000 1.000 0.000
#> GSM601849     1  0.2537      0.797 0.920 0.000 0.080
#> GSM601854     3  0.4121      0.801 0.168 0.000 0.832
#> GSM601864     2  0.0848      0.925 0.008 0.984 0.008
#> GSM601755     2  0.2537      0.907 0.080 0.920 0.000
#> GSM601785     2  0.1753      0.922 0.048 0.952 0.000
#> GSM601795     1  0.3045      0.800 0.916 0.020 0.064
#> GSM601800     2  0.3116      0.892 0.108 0.892 0.000
#> GSM601830     3  0.0747      0.839 0.000 0.016 0.984
#> GSM601840     2  0.6000      0.750 0.200 0.760 0.040
#> GSM601845     2  0.9693     -0.234 0.380 0.404 0.216
#> GSM601860     2  0.0983      0.927 0.016 0.980 0.004
#> GSM601870     3  0.0848      0.839 0.008 0.008 0.984
#> GSM601750     3  0.3482      0.825 0.128 0.000 0.872
#> GSM601760     1  0.6307     -0.132 0.512 0.000 0.488
#> GSM601765     2  0.2537      0.903 0.080 0.920 0.000
#> GSM601770     2  0.0892      0.927 0.020 0.980 0.000
#> GSM601775     2  0.7607      0.383 0.364 0.584 0.052
#> GSM601780     1  0.1529      0.806 0.960 0.000 0.040
#> GSM601790     2  0.0424      0.926 0.008 0.992 0.000
#> GSM601805     2  0.2066      0.918 0.060 0.940 0.000
#> GSM601810     3  0.1031      0.849 0.024 0.000 0.976
#> GSM601815     2  0.0661      0.926 0.008 0.988 0.004
#> GSM601820     3  0.4002      0.807 0.160 0.000 0.840
#> GSM601825     2  0.2356      0.915 0.072 0.928 0.000
#> GSM601835     2  0.1129      0.924 0.004 0.976 0.020
#> GSM601850     1  0.4075      0.793 0.880 0.048 0.072
#> GSM601855     3  0.0000      0.844 0.000 0.000 1.000
#> GSM601865     2  0.1170      0.923 0.008 0.976 0.016
#> GSM601756     2  0.2496      0.913 0.068 0.928 0.004
#> GSM601786     2  0.1950      0.913 0.008 0.952 0.040
#> GSM601796     1  0.4931      0.695 0.768 0.000 0.232
#> GSM601801     2  0.1753      0.920 0.048 0.952 0.000
#> GSM601831     3  0.1163      0.850 0.028 0.000 0.972
#> GSM601841     3  0.5650      0.578 0.312 0.000 0.688
#> GSM601846     1  0.9601      0.372 0.456 0.328 0.216
#> GSM601861     2  0.0424      0.926 0.008 0.992 0.000
#> GSM601871     3  0.5461      0.587 0.008 0.244 0.748
#> GSM601751     2  0.5243      0.829 0.100 0.828 0.072
#> GSM601761     1  0.2448      0.797 0.924 0.000 0.076
#> GSM601766     1  0.9501      0.378 0.472 0.324 0.204
#> GSM601771     2  0.1860      0.925 0.052 0.948 0.000
#> GSM601776     1  0.1964      0.805 0.944 0.000 0.056
#> GSM601781     1  0.5519      0.769 0.812 0.068 0.120
#> GSM601791     1  0.2261      0.802 0.932 0.000 0.068
#> GSM601806     2  0.1753      0.922 0.048 0.952 0.000
#> GSM601811     3  0.0829      0.843 0.004 0.012 0.984
#> GSM601816     1  0.3030      0.805 0.904 0.004 0.092
#> GSM601821     2  0.0424      0.926 0.008 0.992 0.000
#> GSM601826     1  0.1163      0.804 0.972 0.000 0.028
#> GSM601836     1  0.6255      0.689 0.748 0.048 0.204
#> GSM601851     1  0.2165      0.801 0.936 0.000 0.064
#> GSM601856     3  0.0424      0.846 0.008 0.000 0.992
#> GSM601866     3  0.2959      0.838 0.100 0.000 0.900

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM601752     4  0.3972     0.6867 0.016 0.164 0.004 0.816
#> GSM601782     3  0.5745     0.5862 0.296 0.004 0.656 0.044
#> GSM601792     1  0.5118     0.6456 0.752 0.000 0.072 0.176
#> GSM601797     4  0.7067     0.4833 0.148 0.072 0.108 0.672
#> GSM601827     3  0.5393     0.5911 0.268 0.000 0.688 0.044
#> GSM601837     2  0.2483     0.7332 0.000 0.916 0.032 0.052
#> GSM601842     2  0.5188     0.6980 0.012 0.704 0.016 0.268
#> GSM601857     3  0.2773     0.7121 0.072 0.000 0.900 0.028
#> GSM601867     3  0.5901     0.4987 0.004 0.220 0.692 0.084
#> GSM601747     3  0.8944     0.1576 0.340 0.116 0.420 0.124
#> GSM601757     3  0.5565     0.5306 0.344 0.000 0.624 0.032
#> GSM601762     2  0.4406     0.7454 0.024 0.788 0.004 0.184
#> GSM601767     2  0.4502     0.7042 0.016 0.748 0.000 0.236
#> GSM601772     2  0.3672     0.7493 0.012 0.824 0.000 0.164
#> GSM601777     3  0.9742    -0.1154 0.264 0.144 0.312 0.280
#> GSM601787     3  0.6041     0.4007 0.000 0.332 0.608 0.060
#> GSM601802     4  0.4507     0.6755 0.020 0.224 0.000 0.756
#> GSM601807     3  0.4285     0.6265 0.008 0.092 0.832 0.068
#> GSM601812     3  0.4715     0.6525 0.240 0.004 0.740 0.016
#> GSM601817     3  0.4267     0.6822 0.188 0.000 0.788 0.024
#> GSM601822     1  0.6315     0.3213 0.596 0.032 0.024 0.348
#> GSM601832     2  0.6240     0.6272 0.080 0.640 0.004 0.276
#> GSM601847     4  0.7031     0.2999 0.360 0.092 0.012 0.536
#> GSM601852     3  0.5414     0.4961 0.376 0.000 0.604 0.020
#> GSM601862     3  0.2485     0.7101 0.064 0.004 0.916 0.016
#> GSM601753     4  0.3870     0.6767 0.004 0.208 0.000 0.788
#> GSM601783     1  0.5905     0.0335 0.564 0.000 0.396 0.040
#> GSM601793     1  0.6119     0.5999 0.680 0.000 0.152 0.168
#> GSM601798     4  0.4594     0.6597 0.008 0.280 0.000 0.712
#> GSM601828     3  0.5062     0.6164 0.284 0.000 0.692 0.024
#> GSM601838     2  0.1888     0.7389 0.000 0.940 0.016 0.044
#> GSM601843     2  0.4248     0.7354 0.012 0.768 0.000 0.220
#> GSM601858     2  0.4967     0.6440 0.004 0.784 0.108 0.104
#> GSM601868     3  0.2115     0.7012 0.024 0.004 0.936 0.036
#> GSM601748     3  0.5013     0.6045 0.292 0.000 0.688 0.020
#> GSM601758     1  0.5526    -0.0214 0.564 0.000 0.416 0.020
#> GSM601763     1  0.5610     0.5235 0.712 0.068 0.004 0.216
#> GSM601768     2  0.5623     0.6605 0.048 0.660 0.000 0.292
#> GSM601773     2  0.4098     0.7233 0.012 0.784 0.000 0.204
#> GSM601778     1  0.8394     0.2975 0.464 0.048 0.164 0.324
#> GSM601788     2  0.8015     0.3202 0.096 0.588 0.120 0.196
#> GSM601803     4  0.5026     0.6226 0.016 0.312 0.000 0.672
#> GSM601808     3  0.0895     0.7021 0.020 0.000 0.976 0.004
#> GSM601813     3  0.5760     0.3305 0.448 0.000 0.524 0.028
#> GSM601818     3  0.3232     0.7077 0.108 0.004 0.872 0.016
#> GSM601823     1  0.1042     0.6781 0.972 0.000 0.008 0.020
#> GSM601833     2  0.4485     0.7281 0.028 0.772 0.000 0.200
#> GSM601848     1  0.2287     0.6827 0.924 0.004 0.012 0.060
#> GSM601853     3  0.1796     0.7056 0.032 0.004 0.948 0.016
#> GSM601863     3  0.3099     0.7110 0.104 0.000 0.876 0.020
#> GSM601754     4  0.4139     0.6845 0.040 0.144 0.000 0.816
#> GSM601784     2  0.3668     0.7516 0.004 0.808 0.000 0.188
#> GSM601794     1  0.7670     0.4160 0.496 0.008 0.188 0.308
#> GSM601799     4  0.4452     0.6770 0.048 0.156 0.000 0.796
#> GSM601829     1  0.6568     0.1031 0.512 0.000 0.408 0.080
#> GSM601839     2  0.2399     0.7286 0.000 0.920 0.032 0.048
#> GSM601844     1  0.5800     0.6014 0.708 0.000 0.164 0.128
#> GSM601859     2  0.4594     0.6504 0.008 0.712 0.000 0.280
#> GSM601869     3  0.2730     0.7091 0.088 0.000 0.896 0.016
#> GSM601749     1  0.5620    -0.0219 0.560 0.000 0.416 0.024
#> GSM601759     3  0.5564     0.3691 0.436 0.000 0.544 0.020
#> GSM601764     1  0.4008     0.6563 0.852 0.024 0.032 0.092
#> GSM601769     2  0.3161     0.7602 0.012 0.864 0.000 0.124
#> GSM601774     2  0.3450     0.7565 0.008 0.836 0.000 0.156
#> GSM601779     1  0.1762     0.6812 0.944 0.004 0.004 0.048
#> GSM601789     2  0.2484     0.7373 0.012 0.924 0.024 0.040
#> GSM601804     4  0.6323     0.5601 0.248 0.112 0.000 0.640
#> GSM601809     3  0.7294     0.5248 0.100 0.136 0.660 0.104
#> GSM601814     2  0.2831     0.7470 0.000 0.876 0.004 0.120
#> GSM601819     1  0.5793     0.1156 0.580 0.000 0.384 0.036
#> GSM601824     1  0.5613     0.2727 0.592 0.028 0.000 0.380
#> GSM601834     2  0.3836     0.7430 0.016 0.816 0.000 0.168
#> GSM601849     1  0.2101     0.6695 0.928 0.000 0.060 0.012
#> GSM601854     3  0.5213     0.5592 0.328 0.000 0.652 0.020
#> GSM601864     2  0.3182     0.7174 0.000 0.876 0.028 0.096
#> GSM601755     4  0.4123     0.6779 0.008 0.220 0.000 0.772
#> GSM601785     2  0.6123     0.4720 0.056 0.572 0.000 0.372
#> GSM601795     4  0.6293    -0.1260 0.448 0.008 0.040 0.504
#> GSM601800     4  0.3933     0.6857 0.008 0.200 0.000 0.792
#> GSM601830     3  0.2797     0.6860 0.016 0.028 0.912 0.044
#> GSM601840     4  0.8116     0.2251 0.112 0.348 0.056 0.484
#> GSM601845     2  0.9701    -0.0511 0.216 0.356 0.160 0.268
#> GSM601860     2  0.4535     0.7103 0.016 0.744 0.000 0.240
#> GSM601870     3  0.3341     0.6540 0.004 0.068 0.880 0.048
#> GSM601750     3  0.5271     0.5534 0.340 0.000 0.640 0.020
#> GSM601760     1  0.5311     0.2665 0.648 0.000 0.328 0.024
#> GSM601765     2  0.5590     0.6679 0.064 0.692 0.000 0.244
#> GSM601770     2  0.4644     0.7235 0.024 0.748 0.000 0.228
#> GSM601775     4  0.8657     0.2983 0.256 0.248 0.048 0.448
#> GSM601780     1  0.1452     0.6811 0.956 0.000 0.008 0.036
#> GSM601790     2  0.1406     0.7413 0.000 0.960 0.016 0.024
#> GSM601805     4  0.5349     0.5971 0.012 0.336 0.008 0.644
#> GSM601810     3  0.2998     0.7099 0.080 0.004 0.892 0.024
#> GSM601815     2  0.2522     0.7375 0.000 0.908 0.016 0.076
#> GSM601820     3  0.5414     0.4885 0.376 0.000 0.604 0.020
#> GSM601825     4  0.6080     0.0613 0.044 0.468 0.000 0.488
#> GSM601835     2  0.5360     0.7014 0.016 0.744 0.044 0.196
#> GSM601850     1  0.6889     0.5379 0.644 0.040 0.080 0.236
#> GSM601855     3  0.2231     0.6867 0.012 0.012 0.932 0.044
#> GSM601865     2  0.2313     0.7259 0.000 0.924 0.032 0.044
#> GSM601756     4  0.4283     0.6677 0.004 0.256 0.000 0.740
#> GSM601786     2  0.3533     0.7102 0.000 0.864 0.056 0.080
#> GSM601796     1  0.6941     0.5339 0.588 0.000 0.192 0.220
#> GSM601801     4  0.4655     0.6300 0.004 0.312 0.000 0.684
#> GSM601831     3  0.4237     0.6909 0.152 0.000 0.808 0.040
#> GSM601841     3  0.7097     0.1731 0.372 0.004 0.508 0.116
#> GSM601846     4  0.9491     0.2466 0.212 0.212 0.160 0.416
#> GSM601861     2  0.2053     0.7442 0.000 0.924 0.004 0.072
#> GSM601871     3  0.6222     0.4042 0.000 0.304 0.616 0.080
#> GSM601751     2  0.7774     0.2687 0.072 0.536 0.072 0.320
#> GSM601761     1  0.2282     0.6611 0.924 0.000 0.052 0.024
#> GSM601766     1  0.8966    -0.1185 0.356 0.352 0.060 0.232
#> GSM601771     2  0.5560     0.5333 0.028 0.644 0.004 0.324
#> GSM601776     1  0.1520     0.6782 0.956 0.000 0.020 0.024
#> GSM601781     1  0.7655     0.4882 0.608 0.072 0.108 0.212
#> GSM601791     1  0.2870     0.6808 0.908 0.012 0.044 0.036
#> GSM601806     4  0.5004     0.5112 0.000 0.392 0.004 0.604
#> GSM601811     3  0.2936     0.6967 0.032 0.024 0.908 0.036
#> GSM601816     1  0.3424     0.6811 0.876 0.004 0.052 0.068
#> GSM601821     2  0.2741     0.7435 0.000 0.892 0.012 0.096
#> GSM601826     1  0.1584     0.6808 0.952 0.000 0.012 0.036
#> GSM601836     1  0.9015     0.3893 0.468 0.104 0.200 0.228
#> GSM601851     1  0.2032     0.6742 0.936 0.000 0.036 0.028
#> GSM601856     3  0.1833     0.7017 0.024 0.000 0.944 0.032
#> GSM601866     3  0.4661     0.6387 0.256 0.000 0.728 0.016

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM601752     4   0.252    0.65321 0.008 0.044 0.004 0.908 0.036
#> GSM601782     3   0.628    0.51394 0.236 0.008 0.588 0.004 0.164
#> GSM601792     1   0.684    0.41128 0.600 0.004 0.068 0.188 0.140
#> GSM601797     4   0.694    0.29699 0.092 0.032 0.072 0.628 0.176
#> GSM601827     3   0.615    0.55642 0.188 0.004 0.612 0.008 0.188
#> GSM601837     2   0.234    0.55724 0.000 0.916 0.016 0.036 0.032
#> GSM601842     2   0.717    0.38034 0.004 0.468 0.024 0.208 0.296
#> GSM601857     3   0.418    0.65222 0.064 0.008 0.812 0.012 0.104
#> GSM601867     3   0.730    0.01115 0.008 0.304 0.444 0.020 0.224
#> GSM601747     3   0.896   -0.00597 0.196 0.124 0.372 0.048 0.260
#> GSM601757     3   0.658    0.49962 0.252 0.004 0.552 0.012 0.180
#> GSM601762     2   0.602    0.54940 0.000 0.600 0.004 0.188 0.208
#> GSM601767     2   0.651    0.50938 0.004 0.512 0.000 0.212 0.272
#> GSM601772     2   0.585    0.54680 0.000 0.592 0.000 0.144 0.264
#> GSM601777     5   0.983    0.30064 0.240 0.152 0.168 0.168 0.272
#> GSM601787     2   0.709   -0.09253 0.004 0.500 0.292 0.032 0.172
#> GSM601802     4   0.309    0.66798 0.000 0.088 0.000 0.860 0.052
#> GSM601807     3   0.646    0.33335 0.004 0.152 0.588 0.020 0.236
#> GSM601812     3   0.554    0.60663 0.188 0.004 0.680 0.008 0.120
#> GSM601817     3   0.483    0.64003 0.116 0.004 0.736 0.000 0.144
#> GSM601822     1   0.701    0.25856 0.596 0.036 0.028 0.188 0.152
#> GSM601832     2   0.760    0.26397 0.032 0.384 0.008 0.236 0.340
#> GSM601847     4   0.734   -0.03738 0.392 0.060 0.012 0.436 0.100
#> GSM601852     3   0.568    0.55035 0.228 0.000 0.636 0.004 0.132
#> GSM601862     3   0.327    0.63562 0.036 0.004 0.848 0.000 0.112
#> GSM601753     4   0.309    0.65595 0.016 0.052 0.000 0.876 0.056
#> GSM601783     3   0.668    0.25019 0.388 0.000 0.456 0.020 0.136
#> GSM601793     1   0.746    0.43501 0.548 0.004 0.152 0.128 0.168
#> GSM601798     4   0.421    0.63816 0.008 0.172 0.004 0.780 0.036
#> GSM601828     3   0.502    0.62077 0.204 0.004 0.704 0.000 0.088
#> GSM601838     2   0.172    0.57588 0.000 0.936 0.000 0.044 0.020
#> GSM601843     2   0.575    0.52698 0.004 0.640 0.004 0.124 0.228
#> GSM601858     2   0.567    0.44246 0.012 0.720 0.056 0.068 0.144
#> GSM601868     3   0.407    0.61264 0.020 0.028 0.804 0.004 0.144
#> GSM601748     3   0.553    0.58271 0.224 0.000 0.652 0.004 0.120
#> GSM601758     1   0.610   -0.17015 0.452 0.000 0.424 0.000 0.124
#> GSM601763     1   0.764   -0.01943 0.472 0.036 0.032 0.148 0.312
#> GSM601768     2   0.712    0.39846 0.016 0.412 0.000 0.260 0.312
#> GSM601773     2   0.610    0.55076 0.000 0.568 0.000 0.232 0.200
#> GSM601778     1   0.887    0.02833 0.420 0.052 0.140 0.172 0.216
#> GSM601788     2   0.719    0.36744 0.048 0.596 0.036 0.180 0.140
#> GSM601803     4   0.385    0.65073 0.004 0.164 0.000 0.796 0.036
#> GSM601808     3   0.312    0.61791 0.012 0.016 0.856 0.000 0.116
#> GSM601813     3   0.602    0.40830 0.348 0.000 0.536 0.004 0.112
#> GSM601818     3   0.425    0.65562 0.084 0.004 0.784 0.000 0.128
#> GSM601823     1   0.205    0.55498 0.920 0.000 0.000 0.028 0.052
#> GSM601833     2   0.643    0.47975 0.004 0.520 0.000 0.188 0.288
#> GSM601848     1   0.290    0.56278 0.884 0.000 0.020 0.024 0.072
#> GSM601853     3   0.298    0.63722 0.032 0.004 0.868 0.000 0.096
#> GSM601863     3   0.378    0.66113 0.064 0.016 0.832 0.000 0.088
#> GSM601754     4   0.361    0.66185 0.028 0.076 0.000 0.848 0.048
#> GSM601784     2   0.516    0.59976 0.000 0.692 0.000 0.160 0.148
#> GSM601794     1   0.851    0.21118 0.416 0.016 0.156 0.228 0.184
#> GSM601799     4   0.419    0.62664 0.044 0.064 0.000 0.816 0.076
#> GSM601829     1   0.772   -0.00191 0.372 0.004 0.356 0.052 0.216
#> GSM601839     2   0.189    0.56304 0.000 0.936 0.012 0.024 0.028
#> GSM601844     1   0.740    0.38989 0.516 0.008 0.212 0.052 0.212
#> GSM601859     2   0.663    0.44813 0.008 0.492 0.000 0.308 0.192
#> GSM601869     3   0.509    0.64375 0.108 0.008 0.728 0.004 0.152
#> GSM601749     3   0.610    0.23191 0.424 0.000 0.452 0.000 0.124
#> GSM601759     3   0.589    0.44183 0.316 0.000 0.560 0.000 0.124
#> GSM601764     1   0.575    0.43882 0.652 0.008 0.100 0.008 0.232
#> GSM601769     2   0.500    0.59597 0.000 0.708 0.000 0.128 0.164
#> GSM601774     2   0.594    0.56919 0.004 0.608 0.000 0.164 0.224
#> GSM601779     1   0.292    0.55678 0.884 0.000 0.016 0.036 0.064
#> GSM601789     2   0.347    0.57502 0.000 0.844 0.008 0.048 0.100
#> GSM601804     4   0.567    0.43817 0.200 0.036 0.000 0.680 0.084
#> GSM601809     3   0.870    0.10505 0.120 0.208 0.424 0.040 0.208
#> GSM601814     2   0.437    0.59105 0.000 0.748 0.000 0.192 0.060
#> GSM601819     1   0.644   -0.17471 0.440 0.000 0.416 0.008 0.136
#> GSM601824     1   0.586    0.15337 0.592 0.000 0.000 0.260 0.148
#> GSM601834     2   0.594    0.55792 0.000 0.592 0.000 0.180 0.228
#> GSM601849     1   0.439    0.55988 0.788 0.000 0.112 0.016 0.084
#> GSM601854     3   0.549    0.56338 0.252 0.000 0.644 0.004 0.100
#> GSM601864     2   0.305    0.55459 0.000 0.864 0.000 0.076 0.060
#> GSM601755     4   0.257    0.67466 0.004 0.092 0.000 0.888 0.016
#> GSM601785     2   0.733    0.22659 0.028 0.408 0.000 0.276 0.288
#> GSM601795     4   0.730   -0.07037 0.328 0.008 0.032 0.460 0.172
#> GSM601800     4   0.255    0.67104 0.000 0.072 0.000 0.892 0.036
#> GSM601830     3   0.502    0.55996 0.020 0.052 0.736 0.008 0.184
#> GSM601840     4   0.893   -0.13263 0.064 0.308 0.096 0.356 0.176
#> GSM601845     5   0.931    0.49613 0.168 0.244 0.084 0.144 0.360
#> GSM601860     2   0.632    0.46377 0.016 0.584 0.000 0.236 0.164
#> GSM601870     3   0.557    0.41373 0.004 0.144 0.656 0.000 0.196
#> GSM601750     3   0.574    0.56033 0.244 0.000 0.624 0.004 0.128
#> GSM601760     1   0.621   -0.09503 0.484 0.004 0.388 0.000 0.124
#> GSM601765     2   0.758    0.29530 0.076 0.432 0.000 0.164 0.328
#> GSM601770     2   0.673    0.50044 0.012 0.504 0.000 0.220 0.264
#> GSM601775     4   0.889   -0.21159 0.148 0.116 0.060 0.376 0.300
#> GSM601780     1   0.307    0.56603 0.884 0.004 0.036 0.024 0.052
#> GSM601790     2   0.147    0.57894 0.000 0.948 0.000 0.016 0.036
#> GSM601805     4   0.384    0.65696 0.000 0.164 0.000 0.792 0.044
#> GSM601810     3   0.471    0.63337 0.076 0.008 0.744 0.000 0.172
#> GSM601815     2   0.302    0.58548 0.000 0.864 0.000 0.088 0.048
#> GSM601820     3   0.556    0.52316 0.268 0.000 0.620 0.000 0.112
#> GSM601825     4   0.634    0.15880 0.024 0.356 0.000 0.524 0.096
#> GSM601835     2   0.689    0.33886 0.008 0.528 0.036 0.116 0.312
#> GSM601850     1   0.723    0.29290 0.548 0.016 0.040 0.176 0.220
#> GSM601855     3   0.386    0.55908 0.000 0.028 0.772 0.000 0.200
#> GSM601865     2   0.236    0.55117 0.000 0.912 0.012 0.024 0.052
#> GSM601756     4   0.272    0.67386 0.000 0.124 0.000 0.864 0.012
#> GSM601786     2   0.334    0.54519 0.000 0.856 0.012 0.044 0.088
#> GSM601796     1   0.813    0.30767 0.452 0.004 0.196 0.188 0.160
#> GSM601801     4   0.337    0.63848 0.000 0.212 0.000 0.784 0.004
#> GSM601831     3   0.468    0.64620 0.128 0.000 0.756 0.008 0.108
#> GSM601841     3   0.795    0.21161 0.308 0.012 0.436 0.084 0.160
#> GSM601846     5   0.966    0.44396 0.148 0.200 0.116 0.232 0.304
#> GSM601861     2   0.285    0.60190 0.000 0.868 0.000 0.104 0.028
#> GSM601871     2   0.727   -0.18091 0.000 0.420 0.336 0.032 0.212
#> GSM601751     2   0.819    0.13422 0.056 0.376 0.028 0.340 0.200
#> GSM601761     1   0.368    0.55113 0.832 0.000 0.096 0.008 0.064
#> GSM601766     5   0.854    0.38287 0.232 0.164 0.040 0.116 0.448
#> GSM601771     2   0.722    0.36035 0.040 0.488 0.004 0.300 0.168
#> GSM601776     1   0.362    0.57360 0.848 0.000 0.044 0.032 0.076
#> GSM601781     1   0.822    0.21818 0.516 0.056 0.104 0.136 0.188
#> GSM601791     1   0.479    0.55984 0.780 0.008 0.088 0.028 0.096
#> GSM601806     4   0.416    0.57258 0.000 0.264 0.000 0.716 0.020
#> GSM601811     3   0.520    0.58537 0.040 0.024 0.724 0.016 0.196
#> GSM601816     1   0.470    0.53276 0.788 0.004 0.044 0.076 0.088
#> GSM601821     2   0.340    0.59839 0.000 0.828 0.000 0.136 0.036
#> GSM601826     1   0.215    0.56033 0.924 0.000 0.012 0.032 0.032
#> GSM601836     1   0.860   -0.19978 0.372 0.052 0.140 0.092 0.344
#> GSM601851     1   0.345    0.57007 0.852 0.000 0.068 0.012 0.068
#> GSM601856     3   0.364    0.60204 0.024 0.004 0.816 0.004 0.152
#> GSM601866     3   0.494    0.60900 0.172 0.000 0.712 0.000 0.116

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM601752     4   0.123    0.70093 0.000 0.024 0.000 0.956 0.004 0.016
#> GSM601782     1   0.716    0.13112 0.396 0.076 0.372 0.008 0.008 0.140
#> GSM601792     6   0.653    0.50873 0.164 0.080 0.040 0.108 0.000 0.608
#> GSM601797     4   0.722    0.45461 0.100 0.112 0.084 0.596 0.028 0.080
#> GSM601827     3   0.680    0.01356 0.300 0.052 0.480 0.008 0.004 0.156
#> GSM601837     5   0.262    0.51207 0.016 0.044 0.024 0.020 0.896 0.000
#> GSM601842     5   0.735   -0.19693 0.072 0.376 0.012 0.152 0.376 0.012
#> GSM601857     3   0.487    0.31309 0.276 0.032 0.660 0.000 0.016 0.016
#> GSM601867     3   0.770    0.21893 0.148 0.084 0.452 0.032 0.268 0.016
#> GSM601747     1   0.935    0.09312 0.308 0.192 0.188 0.060 0.092 0.160
#> GSM601757     3   0.731   -0.23467 0.364 0.088 0.384 0.008 0.008 0.148
#> GSM601762     5   0.597    0.24280 0.020 0.236 0.004 0.176 0.564 0.000
#> GSM601767     2   0.651    0.13053 0.016 0.392 0.000 0.244 0.344 0.004
#> GSM601772     5   0.625    0.05094 0.036 0.352 0.000 0.124 0.484 0.004
#> GSM601777     3   0.978   -0.09284 0.164 0.140 0.264 0.152 0.108 0.172
#> GSM601787     5   0.687    0.06089 0.092 0.072 0.380 0.008 0.436 0.012
#> GSM601802     4   0.251    0.70267 0.000 0.060 0.000 0.892 0.024 0.024
#> GSM601807     3   0.605    0.33250 0.136 0.064 0.660 0.020 0.112 0.008
#> GSM601812     3   0.676   -0.17260 0.356 0.064 0.440 0.008 0.000 0.132
#> GSM601817     3   0.557    0.06193 0.352 0.036 0.552 0.004 0.000 0.056
#> GSM601822     6   0.713    0.44957 0.048 0.140 0.024 0.188 0.040 0.560
#> GSM601832     2   0.779    0.33415 0.056 0.424 0.008 0.196 0.260 0.056
#> GSM601847     4   0.658    0.04636 0.028 0.108 0.000 0.432 0.032 0.400
#> GSM601852     1   0.634    0.26173 0.404 0.020 0.400 0.004 0.000 0.172
#> GSM601862     3   0.357    0.36147 0.188 0.016 0.780 0.000 0.000 0.016
#> GSM601753     4   0.320    0.67833 0.008 0.092 0.000 0.852 0.024 0.024
#> GSM601783     1   0.684    0.49833 0.468 0.052 0.204 0.008 0.000 0.268
#> GSM601793     6   0.729    0.36548 0.244 0.080 0.080 0.088 0.000 0.508
#> GSM601798     4   0.344    0.68435 0.012 0.044 0.008 0.840 0.092 0.004
#> GSM601828     3   0.637   -0.16031 0.360 0.052 0.460 0.000 0.000 0.128
#> GSM601838     5   0.130    0.52392 0.004 0.012 0.000 0.032 0.952 0.000
#> GSM601843     5   0.609    0.13618 0.048 0.304 0.000 0.100 0.544 0.004
#> GSM601858     5   0.581    0.38284 0.060 0.120 0.104 0.028 0.684 0.004
#> GSM601868     3   0.432    0.37292 0.200 0.016 0.744 0.008 0.024 0.008
#> GSM601748     3   0.563   -0.19696 0.404 0.008 0.472 0.000 0.000 0.116
#> GSM601758     1   0.611    0.49216 0.420 0.004 0.240 0.000 0.000 0.336
#> GSM601763     6   0.763    0.09110 0.124 0.372 0.016 0.076 0.032 0.380
#> GSM601768     2   0.713    0.25089 0.028 0.448 0.000 0.160 0.308 0.056
#> GSM601773     5   0.610    0.17728 0.016 0.240 0.000 0.236 0.508 0.000
#> GSM601778     6   0.896    0.33716 0.116 0.124 0.152 0.188 0.040 0.380
#> GSM601788     5   0.807    0.18706 0.120 0.128 0.080 0.136 0.504 0.032
#> GSM601803     4   0.350    0.68895 0.004 0.052 0.000 0.832 0.092 0.020
#> GSM601808     3   0.274    0.38333 0.128 0.012 0.852 0.000 0.000 0.008
#> GSM601813     3   0.682   -0.43624 0.340 0.032 0.348 0.004 0.000 0.276
#> GSM601818     3   0.573    0.06622 0.348 0.048 0.548 0.008 0.000 0.048
#> GSM601823     6   0.300    0.56488 0.060 0.048 0.020 0.004 0.000 0.868
#> GSM601833     5   0.638   -0.08538 0.028 0.396 0.000 0.116 0.444 0.016
#> GSM601848     6   0.332    0.57232 0.076 0.052 0.008 0.016 0.000 0.848
#> GSM601853     3   0.334    0.36633 0.156 0.020 0.812 0.000 0.004 0.008
#> GSM601863     3   0.492    0.31345 0.184 0.016 0.716 0.004 0.016 0.064
#> GSM601754     4   0.343    0.69843 0.020 0.080 0.000 0.844 0.044 0.012
#> GSM601784     5   0.529    0.38276 0.012 0.188 0.000 0.144 0.652 0.004
#> GSM601794     6   0.888    0.25480 0.204 0.156 0.124 0.188 0.008 0.320
#> GSM601799     4   0.394    0.63384 0.008 0.152 0.000 0.784 0.012 0.044
#> GSM601829     3   0.786   -0.15337 0.276 0.100 0.304 0.020 0.004 0.296
#> GSM601839     5   0.141    0.51816 0.008 0.024 0.008 0.008 0.952 0.000
#> GSM601844     6   0.798    0.12558 0.264 0.164 0.148 0.032 0.004 0.388
#> GSM601859     5   0.675    0.00361 0.036 0.228 0.000 0.320 0.412 0.004
#> GSM601869     3   0.589    0.24678 0.284 0.032 0.600 0.012 0.016 0.056
#> GSM601749     1   0.639    0.50254 0.408 0.016 0.256 0.000 0.000 0.320
#> GSM601759     1   0.639    0.37689 0.412 0.028 0.376 0.000 0.000 0.184
#> GSM601764     6   0.623    0.46209 0.140 0.220 0.052 0.000 0.008 0.580
#> GSM601769     5   0.543    0.38400 0.028 0.200 0.000 0.116 0.652 0.004
#> GSM601774     5   0.609    0.27874 0.020 0.268 0.004 0.140 0.560 0.008
#> GSM601779     6   0.241    0.56475 0.056 0.028 0.004 0.012 0.000 0.900
#> GSM601789     5   0.442    0.49223 0.040 0.120 0.024 0.024 0.784 0.008
#> GSM601804     4   0.591    0.48216 0.040 0.108 0.000 0.612 0.012 0.228
#> GSM601809     3   0.897    0.09713 0.196 0.116 0.348 0.036 0.208 0.096
#> GSM601814     5   0.499    0.42683 0.012 0.104 0.000 0.200 0.680 0.004
#> GSM601819     1   0.697    0.47215 0.428 0.060 0.240 0.004 0.000 0.268
#> GSM601824     6   0.626    0.32126 0.028 0.232 0.000 0.232 0.000 0.508
#> GSM601834     5   0.631    0.16578 0.032 0.284 0.000 0.152 0.524 0.008
#> GSM601849     6   0.501    0.53003 0.140 0.060 0.060 0.012 0.000 0.728
#> GSM601854     3   0.640   -0.11652 0.340 0.040 0.476 0.004 0.000 0.140
#> GSM601864     5   0.355    0.51031 0.024 0.044 0.024 0.064 0.844 0.000
#> GSM601755     4   0.195    0.70614 0.016 0.028 0.000 0.924 0.032 0.000
#> GSM601785     2   0.762    0.20555 0.032 0.360 0.012 0.216 0.336 0.044
#> GSM601795     4   0.795   -0.08617 0.168 0.132 0.032 0.380 0.004 0.284
#> GSM601800     4   0.261    0.70752 0.012 0.048 0.000 0.892 0.040 0.008
#> GSM601830     3   0.605    0.34178 0.172 0.096 0.648 0.012 0.060 0.012
#> GSM601840     4   0.949   -0.18012 0.144 0.188 0.080 0.288 0.208 0.092
#> GSM601845     2   0.905    0.29665 0.164 0.372 0.088 0.068 0.204 0.104
#> GSM601860     5   0.802    0.09875 0.084 0.228 0.024 0.184 0.440 0.040
#> GSM601870     3   0.488    0.35440 0.080 0.052 0.732 0.004 0.132 0.000
#> GSM601750     3   0.608   -0.26044 0.388 0.020 0.444 0.000 0.000 0.148
#> GSM601760     1   0.662    0.46096 0.388 0.028 0.212 0.004 0.000 0.368
#> GSM601765     2   0.654    0.19348 0.032 0.464 0.000 0.084 0.380 0.040
#> GSM601770     2   0.671    0.11293 0.032 0.424 0.000 0.148 0.376 0.020
#> GSM601775     2   0.867    0.20213 0.116 0.364 0.036 0.272 0.068 0.144
#> GSM601780     6   0.306    0.56162 0.064 0.052 0.024 0.000 0.000 0.860
#> GSM601790     5   0.172    0.52045 0.008 0.056 0.000 0.008 0.928 0.000
#> GSM601805     4   0.402    0.67911 0.012 0.096 0.000 0.792 0.092 0.008
#> GSM601810     3   0.575    0.27281 0.176 0.064 0.652 0.000 0.008 0.100
#> GSM601815     5   0.280    0.52590 0.000 0.048 0.004 0.084 0.864 0.000
#> GSM601820     1   0.623    0.33028 0.416 0.020 0.388 0.000 0.000 0.176
#> GSM601825     4   0.657    0.11127 0.016 0.132 0.000 0.520 0.284 0.048
#> GSM601835     5   0.726   -0.04724 0.060 0.328 0.036 0.116 0.452 0.008
#> GSM601850     6   0.823    0.40210 0.188 0.112 0.084 0.160 0.012 0.444
#> GSM601855     3   0.356    0.39026 0.120 0.040 0.816 0.000 0.024 0.000
#> GSM601865     5   0.294    0.50388 0.040 0.036 0.028 0.016 0.880 0.000
#> GSM601756     4   0.194    0.70522 0.008 0.020 0.000 0.920 0.052 0.000
#> GSM601786     5   0.382    0.51270 0.028 0.072 0.028 0.036 0.832 0.004
#> GSM601796     6   0.854    0.14931 0.256 0.088 0.144 0.168 0.004 0.340
#> GSM601801     4   0.301    0.67973 0.012 0.024 0.000 0.844 0.120 0.000
#> GSM601831     3   0.588    0.12834 0.304 0.032 0.572 0.008 0.004 0.080
#> GSM601841     1   0.819    0.10621 0.336 0.060 0.312 0.072 0.012 0.208
#> GSM601846     2   0.971    0.11271 0.132 0.288 0.132 0.164 0.164 0.120
#> GSM601861     5   0.321    0.52263 0.012 0.068 0.000 0.076 0.844 0.000
#> GSM601871     3   0.689    0.08384 0.080 0.088 0.440 0.024 0.368 0.000
#> GSM601751     5   0.905   -0.11004 0.104 0.216 0.048 0.228 0.320 0.084
#> GSM601761     6   0.455    0.42138 0.192 0.036 0.048 0.000 0.000 0.724
#> GSM601766     2   0.829    0.25835 0.124 0.472 0.056 0.060 0.096 0.192
#> GSM601771     5   0.811    0.06884 0.084 0.188 0.028 0.232 0.428 0.040
#> GSM601776     6   0.440    0.47789 0.180 0.044 0.036 0.000 0.000 0.740
#> GSM601781     6   0.838    0.43290 0.120 0.188 0.080 0.088 0.056 0.468
#> GSM601791     6   0.550    0.47480 0.188 0.072 0.040 0.008 0.012 0.680
#> GSM601806     4   0.384    0.61974 0.012 0.032 0.000 0.776 0.176 0.004
#> GSM601811     3   0.612    0.28055 0.252 0.124 0.576 0.000 0.012 0.036
#> GSM601816     6   0.568    0.56095 0.096 0.076 0.032 0.060 0.020 0.716
#> GSM601821     5   0.325    0.52082 0.004 0.068 0.004 0.084 0.840 0.000
#> GSM601826     6   0.270    0.56900 0.056 0.044 0.004 0.012 0.000 0.884
#> GSM601836     6   0.916    0.18511 0.196 0.248 0.144 0.100 0.032 0.280
#> GSM601851     6   0.376    0.54578 0.116 0.044 0.020 0.008 0.000 0.812
#> GSM601856     3   0.380    0.38485 0.116 0.052 0.808 0.008 0.000 0.016
#> GSM601866     3   0.587   -0.05049 0.340 0.036 0.536 0.004 0.000 0.084

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n time(p) gender(p) k
#> CV:skmeans 122   0.721   0.20379 2
#> CV:skmeans 112   0.176   0.18337 3
#> CV:skmeans  91   0.507   0.09200 4
#> CV:skmeans  71   0.169   0.00467 5
#> CV:skmeans  33   0.928   0.04277 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 125 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.211           0.633       0.824         0.4848 0.505   0.505
#> 3 3 0.226           0.466       0.719         0.3003 0.671   0.448
#> 4 4 0.354           0.456       0.690         0.1251 0.843   0.606
#> 5 5 0.409           0.446       0.693         0.0424 0.924   0.748
#> 6 6 0.430           0.410       0.689         0.0164 0.961   0.851

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM601752     1  0.7745    0.69560 0.772 0.228
#> GSM601782     1  0.7815    0.58447 0.768 0.232
#> GSM601792     1  0.0000    0.77968 1.000 0.000
#> GSM601797     1  0.9710    0.17429 0.600 0.400
#> GSM601827     2  0.8016    0.62099 0.244 0.756
#> GSM601837     2  0.0000    0.72908 0.000 1.000
#> GSM601842     2  0.9661    0.29914 0.392 0.608
#> GSM601857     2  0.7376    0.66905 0.208 0.792
#> GSM601867     2  0.0000    0.72908 0.000 1.000
#> GSM601747     2  0.9998   -0.14756 0.492 0.508
#> GSM601757     1  0.5946    0.72647 0.856 0.144
#> GSM601762     2  0.8861    0.52764 0.304 0.696
#> GSM601767     1  0.8016    0.67952 0.756 0.244
#> GSM601772     1  0.7745    0.69690 0.772 0.228
#> GSM601777     1  0.9686    0.44007 0.604 0.396
#> GSM601787     2  0.1184    0.73071 0.016 0.984
#> GSM601802     1  0.8081    0.68852 0.752 0.248
#> GSM601807     2  0.3879    0.72419 0.076 0.924
#> GSM601812     2  0.9754    0.41889 0.408 0.592
#> GSM601817     1  0.9608    0.31095 0.616 0.384
#> GSM601822     1  0.0000    0.77968 1.000 0.000
#> GSM601832     1  0.8016    0.68153 0.756 0.244
#> GSM601847     1  0.1184    0.77894 0.984 0.016
#> GSM601852     1  0.8813    0.43618 0.700 0.300
#> GSM601862     2  0.1184    0.73071 0.016 0.984
#> GSM601753     1  0.6623    0.72887 0.828 0.172
#> GSM601783     1  0.3114    0.76286 0.944 0.056
#> GSM601793     1  0.4690    0.73164 0.900 0.100
#> GSM601798     2  0.8763    0.41296 0.296 0.704
#> GSM601828     2  0.9044    0.58314 0.320 0.680
#> GSM601838     2  0.0000    0.72908 0.000 1.000
#> GSM601843     2  0.7376    0.65460 0.208 0.792
#> GSM601858     2  0.5294    0.71185 0.120 0.880
#> GSM601868     2  0.6531    0.68272 0.168 0.832
#> GSM601748     1  0.8144    0.50877 0.748 0.252
#> GSM601758     1  0.0000    0.77968 1.000 0.000
#> GSM601763     1  0.1843    0.78003 0.972 0.028
#> GSM601768     1  0.8386    0.66131 0.732 0.268
#> GSM601773     1  0.8016    0.67952 0.756 0.244
#> GSM601778     1  0.1414    0.77332 0.980 0.020
#> GSM601788     1  0.9998   -0.01080 0.508 0.492
#> GSM601803     1  0.7602    0.70056 0.780 0.220
#> GSM601808     2  0.6343    0.68911 0.160 0.840
#> GSM601813     1  0.5519    0.70022 0.872 0.128
#> GSM601818     2  0.7056    0.66884 0.192 0.808
#> GSM601823     1  0.0000    0.77968 1.000 0.000
#> GSM601833     2  0.9881    0.16127 0.436 0.564
#> GSM601848     1  0.0000    0.77968 1.000 0.000
#> GSM601853     2  0.8016    0.62099 0.244 0.756
#> GSM601863     2  0.6973    0.67997 0.188 0.812
#> GSM601754     1  0.5629    0.75410 0.868 0.132
#> GSM601784     1  0.8327    0.66282 0.736 0.264
#> GSM601794     1  0.0000    0.77968 1.000 0.000
#> GSM601799     1  0.5842    0.74656 0.860 0.140
#> GSM601829     1  0.0376    0.77895 0.996 0.004
#> GSM601839     2  0.0000    0.72908 0.000 1.000
#> GSM601844     1  0.0000    0.77968 1.000 0.000
#> GSM601859     2  0.8081    0.60968 0.248 0.752
#> GSM601869     2  0.6623    0.67994 0.172 0.828
#> GSM601749     1  0.0000    0.77968 1.000 0.000
#> GSM601759     1  0.0000    0.77968 1.000 0.000
#> GSM601764     1  0.0000    0.77968 1.000 0.000
#> GSM601769     2  0.8713    0.54474 0.292 0.708
#> GSM601774     1  0.9922    0.30193 0.552 0.448
#> GSM601779     1  0.0000    0.77968 1.000 0.000
#> GSM601789     2  0.4562    0.72486 0.096 0.904
#> GSM601804     1  0.3584    0.77348 0.932 0.068
#> GSM601809     2  0.9993   -0.00254 0.484 0.516
#> GSM601814     2  0.7299    0.65532 0.204 0.796
#> GSM601819     1  0.3733    0.76169 0.928 0.072
#> GSM601824     1  0.0000    0.77968 1.000 0.000
#> GSM601834     1  0.9286    0.55150 0.656 0.344
#> GSM601849     1  0.0000    0.77968 1.000 0.000
#> GSM601854     1  0.2043    0.77082 0.968 0.032
#> GSM601864     2  0.0000    0.72908 0.000 1.000
#> GSM601755     1  0.8207    0.67121 0.744 0.256
#> GSM601785     2  0.7745    0.63428 0.228 0.772
#> GSM601795     1  0.7139    0.72012 0.804 0.196
#> GSM601800     1  0.9044    0.59832 0.680 0.320
#> GSM601830     2  0.8016    0.62099 0.244 0.756
#> GSM601840     2  0.7602    0.64274 0.220 0.780
#> GSM601845     1  0.3274    0.74490 0.940 0.060
#> GSM601860     2  0.7219    0.65817 0.200 0.800
#> GSM601870     2  0.2423    0.73076 0.040 0.960
#> GSM601750     2  0.9815    0.42744 0.420 0.580
#> GSM601760     1  0.9881   -0.07544 0.564 0.436
#> GSM601765     1  0.6623    0.72855 0.828 0.172
#> GSM601770     2  0.9522    0.35876 0.372 0.628
#> GSM601775     1  0.6531    0.73118 0.832 0.168
#> GSM601780     1  0.0000    0.77968 1.000 0.000
#> GSM601790     2  0.3431    0.72902 0.064 0.936
#> GSM601805     2  0.9460    0.38046 0.364 0.636
#> GSM601810     2  0.8207    0.61939 0.256 0.744
#> GSM601815     2  0.6438    0.68797 0.164 0.836
#> GSM601820     1  0.6438    0.66926 0.836 0.164
#> GSM601825     1  0.8016    0.67952 0.756 0.244
#> GSM601835     2  0.6623    0.68276 0.172 0.828
#> GSM601850     1  0.0000    0.77968 1.000 0.000
#> GSM601855     2  0.6801    0.67623 0.180 0.820
#> GSM601865     2  0.0000    0.72908 0.000 1.000
#> GSM601756     1  0.8016    0.67952 0.756 0.244
#> GSM601786     2  0.0000    0.72908 0.000 1.000
#> GSM601796     1  0.6887    0.65094 0.816 0.184
#> GSM601801     1  0.9881    0.41549 0.564 0.436
#> GSM601831     2  0.9661    0.45062 0.392 0.608
#> GSM601841     2  0.8661    0.65399 0.288 0.712
#> GSM601846     1  0.8267    0.49903 0.740 0.260
#> GSM601861     2  0.7056    0.66612 0.192 0.808
#> GSM601871     2  0.0000    0.72908 0.000 1.000
#> GSM601751     2  0.9248    0.46759 0.340 0.660
#> GSM601761     1  0.0000    0.77968 1.000 0.000
#> GSM601766     1  0.8327    0.66581 0.736 0.264
#> GSM601771     1  0.9954    0.24891 0.540 0.460
#> GSM601776     1  0.0000    0.77968 1.000 0.000
#> GSM601781     1  0.8386    0.51403 0.732 0.268
#> GSM601791     1  0.3584    0.76871 0.932 0.068
#> GSM601806     1  0.8016    0.67952 0.756 0.244
#> GSM601811     2  0.3879    0.73629 0.076 0.924
#> GSM601816     1  0.0000    0.77968 1.000 0.000
#> GSM601821     2  0.7219    0.65817 0.200 0.800
#> GSM601826     1  0.0000    0.77968 1.000 0.000
#> GSM601836     1  0.9129    0.54997 0.672 0.328
#> GSM601851     1  0.0000    0.77968 1.000 0.000
#> GSM601856     2  0.3274    0.72804 0.060 0.940
#> GSM601866     2  0.6712    0.68103 0.176 0.824

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM601752     2  0.8410     0.4643 0.360 0.544 0.096
#> GSM601782     1  0.5791     0.5919 0.792 0.060 0.148
#> GSM601792     1  0.0592     0.6616 0.988 0.012 0.000
#> GSM601797     1  0.8399     0.4330 0.608 0.136 0.256
#> GSM601827     1  0.6793     0.2440 0.536 0.012 0.452
#> GSM601837     3  0.2711     0.6899 0.000 0.088 0.912
#> GSM601842     2  0.7260     0.3347 0.048 0.636 0.316
#> GSM601857     3  0.5348     0.6595 0.028 0.176 0.796
#> GSM601867     3  0.3752     0.6739 0.000 0.144 0.856
#> GSM601747     1  0.9434     0.1076 0.416 0.176 0.408
#> GSM601757     1  0.6324     0.5475 0.764 0.076 0.160
#> GSM601762     2  0.8779     0.5176 0.172 0.580 0.248
#> GSM601767     2  0.7124     0.6096 0.272 0.672 0.056
#> GSM601772     2  0.8091     0.5642 0.348 0.572 0.080
#> GSM601777     2  0.9323     0.3804 0.188 0.500 0.312
#> GSM601787     3  0.1399     0.6801 0.004 0.028 0.968
#> GSM601802     2  0.8890     0.4689 0.328 0.532 0.140
#> GSM601807     3  0.5689     0.5786 0.036 0.184 0.780
#> GSM601812     1  0.6468     0.3100 0.552 0.004 0.444
#> GSM601817     1  0.6475     0.5272 0.692 0.028 0.280
#> GSM601822     1  0.0424     0.6605 0.992 0.008 0.000
#> GSM601832     2  0.8454     0.4642 0.432 0.480 0.088
#> GSM601847     1  0.6309    -0.2139 0.504 0.496 0.000
#> GSM601852     1  0.6264     0.5336 0.716 0.028 0.256
#> GSM601862     3  0.1399     0.6834 0.004 0.028 0.968
#> GSM601753     2  0.5905     0.5206 0.352 0.648 0.000
#> GSM601783     1  0.4339     0.6250 0.868 0.084 0.048
#> GSM601793     1  0.6808     0.5184 0.732 0.184 0.084
#> GSM601798     2  0.6482     0.4444 0.040 0.716 0.244
#> GSM601828     1  0.6984     0.2927 0.560 0.020 0.420
#> GSM601838     2  0.6252     0.0786 0.000 0.556 0.444
#> GSM601843     3  0.7578     0.1260 0.040 0.460 0.500
#> GSM601858     3  0.5219     0.6535 0.016 0.196 0.788
#> GSM601868     3  0.2096     0.6722 0.052 0.004 0.944
#> GSM601748     1  0.5115     0.5575 0.768 0.004 0.228
#> GSM601758     1  0.0237     0.6610 0.996 0.004 0.000
#> GSM601763     1  0.3500     0.6022 0.880 0.116 0.004
#> GSM601768     2  0.9897     0.4327 0.364 0.372 0.264
#> GSM601773     2  0.7770     0.5231 0.384 0.560 0.056
#> GSM601778     1  0.4121     0.6170 0.868 0.108 0.024
#> GSM601788     1  0.8153     0.3898 0.640 0.144 0.216
#> GSM601803     2  0.6275     0.5296 0.348 0.644 0.008
#> GSM601808     3  0.6829     0.5554 0.096 0.168 0.736
#> GSM601813     1  0.1753     0.6570 0.952 0.000 0.048
#> GSM601818     3  0.7395    -0.1817 0.476 0.032 0.492
#> GSM601823     1  0.0000     0.6610 1.000 0.000 0.000
#> GSM601833     2  0.9648     0.5243 0.292 0.464 0.244
#> GSM601848     1  0.0000     0.6610 1.000 0.000 0.000
#> GSM601853     1  0.9269     0.2715 0.508 0.184 0.308
#> GSM601863     3  0.4291     0.6117 0.152 0.008 0.840
#> GSM601754     2  0.8663     0.4715 0.364 0.524 0.112
#> GSM601784     1  0.9487    -0.2054 0.476 0.204 0.320
#> GSM601794     1  0.4399     0.5537 0.812 0.188 0.000
#> GSM601799     1  0.6617    -0.1007 0.556 0.436 0.008
#> GSM601829     1  0.0983     0.6629 0.980 0.016 0.004
#> GSM601839     2  0.6111     0.0436 0.000 0.604 0.396
#> GSM601844     1  0.3116     0.6155 0.892 0.108 0.000
#> GSM601859     3  0.7496     0.5883 0.088 0.240 0.672
#> GSM601869     3  0.3583     0.6814 0.056 0.044 0.900
#> GSM601749     1  0.0424     0.6608 0.992 0.008 0.000
#> GSM601759     1  0.0237     0.6612 0.996 0.000 0.004
#> GSM601764     1  0.3038     0.6142 0.896 0.104 0.000
#> GSM601769     2  0.9587     0.3398 0.204 0.440 0.356
#> GSM601774     2  0.7572     0.5589 0.128 0.688 0.184
#> GSM601779     1  0.3116     0.6106 0.892 0.108 0.000
#> GSM601789     3  0.7454     0.4737 0.080 0.252 0.668
#> GSM601804     1  0.5882     0.1443 0.652 0.348 0.000
#> GSM601809     3  0.7570     0.0988 0.404 0.044 0.552
#> GSM601814     2  0.7987     0.3550 0.092 0.616 0.292
#> GSM601819     1  0.3112     0.6518 0.916 0.028 0.056
#> GSM601824     1  0.3116     0.6106 0.892 0.108 0.000
#> GSM601834     2  0.7801     0.6166 0.276 0.636 0.088
#> GSM601849     1  0.1964     0.6453 0.944 0.056 0.000
#> GSM601854     1  0.1289     0.6616 0.968 0.000 0.032
#> GSM601864     3  0.2711     0.6907 0.000 0.088 0.912
#> GSM601755     2  0.6621     0.5752 0.284 0.684 0.032
#> GSM601785     3  0.7026     0.5917 0.152 0.120 0.728
#> GSM601795     1  0.9380    -0.1478 0.512 0.256 0.232
#> GSM601800     2  0.7153     0.6098 0.200 0.708 0.092
#> GSM601830     1  0.9250     0.2766 0.512 0.184 0.304
#> GSM601840     3  0.6752     0.6275 0.104 0.152 0.744
#> GSM601845     1  0.5072     0.5777 0.792 0.196 0.012
#> GSM601860     3  0.6500     0.6427 0.100 0.140 0.760
#> GSM601870     3  0.4291     0.5909 0.000 0.180 0.820
#> GSM601750     1  0.6264     0.4211 0.616 0.004 0.380
#> GSM601760     3  0.7656     0.2681 0.376 0.052 0.572
#> GSM601765     1  0.7995    -0.3620 0.480 0.460 0.060
#> GSM601770     2  0.7956     0.0474 0.060 0.516 0.424
#> GSM601775     1  0.6119     0.4773 0.772 0.164 0.064
#> GSM601780     1  0.0424     0.6621 0.992 0.008 0.000
#> GSM601790     3  0.5455     0.6467 0.020 0.204 0.776
#> GSM601805     2  0.7915    -0.0937 0.056 0.488 0.456
#> GSM601810     1  0.7619     0.2288 0.532 0.044 0.424
#> GSM601815     3  0.8175     0.4495 0.132 0.236 0.632
#> GSM601820     1  0.2947     0.6557 0.920 0.020 0.060
#> GSM601825     2  0.6516     0.3735 0.480 0.516 0.004
#> GSM601835     3  0.6579     0.5242 0.020 0.328 0.652
#> GSM601850     1  0.2448     0.6341 0.924 0.076 0.000
#> GSM601855     3  0.7759     0.5003 0.144 0.180 0.676
#> GSM601865     3  0.2448     0.6879 0.000 0.076 0.924
#> GSM601756     2  0.5722     0.5821 0.292 0.704 0.004
#> GSM601786     3  0.3619     0.6831 0.000 0.136 0.864
#> GSM601796     1  0.9646     0.1457 0.468 0.272 0.260
#> GSM601801     2  0.5804     0.5828 0.112 0.800 0.088
#> GSM601831     1  0.6045     0.4173 0.620 0.000 0.380
#> GSM601841     3  0.6775     0.6445 0.096 0.164 0.740
#> GSM601846     1  0.7106     0.5354 0.696 0.072 0.232
#> GSM601861     3  0.6855     0.5522 0.032 0.316 0.652
#> GSM601871     3  0.0237     0.6804 0.000 0.004 0.996
#> GSM601751     3  0.7327     0.3405 0.312 0.052 0.636
#> GSM601761     1  0.1860     0.6474 0.948 0.052 0.000
#> GSM601766     1  0.8334     0.2862 0.616 0.136 0.248
#> GSM601771     3  0.9702    -0.2022 0.364 0.220 0.416
#> GSM601776     1  0.0000     0.6610 1.000 0.000 0.000
#> GSM601781     1  0.8622     0.2823 0.572 0.132 0.296
#> GSM601791     1  0.7741     0.3368 0.668 0.116 0.216
#> GSM601806     2  0.6180     0.4772 0.416 0.584 0.000
#> GSM601811     3  0.5581     0.6619 0.036 0.176 0.788
#> GSM601816     1  0.1031     0.6609 0.976 0.024 0.000
#> GSM601821     3  0.8677     0.3358 0.144 0.280 0.576
#> GSM601826     1  0.0000     0.6610 1.000 0.000 0.000
#> GSM601836     1  0.9088    -0.0502 0.464 0.140 0.396
#> GSM601851     1  0.2165     0.6461 0.936 0.064 0.000
#> GSM601856     3  0.4139     0.6338 0.016 0.124 0.860
#> GSM601866     3  0.3850     0.6568 0.088 0.028 0.884

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM601752     4  0.3257     0.6712 0.152 0.004 0.000 0.844
#> GSM601782     1  0.5714     0.5835 0.764 0.052 0.116 0.068
#> GSM601792     1  0.1302     0.6240 0.956 0.000 0.000 0.044
#> GSM601797     1  0.7511     0.4640 0.632 0.068 0.140 0.160
#> GSM601827     1  0.5409     0.4517 0.644 0.004 0.332 0.020
#> GSM601837     3  0.4327     0.6264 0.000 0.216 0.768 0.016
#> GSM601842     2  0.7185     0.5811 0.020 0.612 0.152 0.216
#> GSM601857     3  0.4752     0.6548 0.012 0.120 0.804 0.064
#> GSM601867     3  0.3401     0.6490 0.000 0.008 0.840 0.152
#> GSM601747     3  0.9910    -0.1394 0.232 0.224 0.320 0.224
#> GSM601757     1  0.7031     0.3164 0.620 0.016 0.144 0.220
#> GSM601762     2  0.7216     0.5809 0.092 0.648 0.068 0.192
#> GSM601767     2  0.5883     0.5554 0.108 0.708 0.004 0.180
#> GSM601772     2  0.6935     0.4645 0.240 0.616 0.012 0.132
#> GSM601777     4  0.6622     0.4581 0.064 0.044 0.224 0.668
#> GSM601787     3  0.1488     0.6753 0.000 0.032 0.956 0.012
#> GSM601802     4  0.4321     0.6514 0.128 0.016 0.032 0.824
#> GSM601807     3  0.5735     0.5612 0.020 0.112 0.748 0.120
#> GSM601812     1  0.6081     0.4058 0.564 0.012 0.396 0.028
#> GSM601817     1  0.6622     0.5381 0.664 0.048 0.232 0.056
#> GSM601822     1  0.0921     0.6278 0.972 0.000 0.000 0.028
#> GSM601832     2  0.8178    -0.2376 0.332 0.360 0.008 0.300
#> GSM601847     4  0.3837     0.6667 0.224 0.000 0.000 0.776
#> GSM601852     1  0.4524     0.5672 0.768 0.000 0.204 0.028
#> GSM601862     3  0.1182     0.6790 0.000 0.016 0.968 0.016
#> GSM601753     4  0.3266     0.6762 0.168 0.000 0.000 0.832
#> GSM601783     1  0.3607     0.6011 0.864 0.008 0.032 0.096
#> GSM601793     1  0.5757     0.5180 0.732 0.020 0.068 0.180
#> GSM601798     4  0.7668    -0.1543 0.020 0.300 0.152 0.528
#> GSM601828     1  0.5290     0.5036 0.680 0.004 0.292 0.024
#> GSM601838     2  0.4907     0.5486 0.000 0.764 0.176 0.060
#> GSM601843     2  0.7643     0.4405 0.028 0.548 0.288 0.136
#> GSM601858     3  0.5325     0.6274 0.012 0.196 0.744 0.048
#> GSM601868     3  0.0844     0.6792 0.004 0.012 0.980 0.004
#> GSM601748     1  0.4098     0.5679 0.784 0.012 0.204 0.000
#> GSM601758     1  0.1022     0.6273 0.968 0.000 0.000 0.032
#> GSM601763     1  0.5400     0.1496 0.608 0.020 0.000 0.372
#> GSM601768     2  0.7425     0.4342 0.276 0.588 0.052 0.084
#> GSM601773     2  0.5989     0.4387 0.300 0.640 0.004 0.056
#> GSM601778     1  0.5735     0.2312 0.620 0.012 0.020 0.348
#> GSM601788     1  0.7688     0.4151 0.624 0.152 0.136 0.088
#> GSM601803     4  0.4018     0.6747 0.168 0.016 0.004 0.812
#> GSM601808     3  0.5875     0.5515 0.052 0.088 0.756 0.104
#> GSM601813     1  0.1118     0.6329 0.964 0.000 0.036 0.000
#> GSM601818     1  0.6306     0.3971 0.584 0.052 0.356 0.008
#> GSM601823     1  0.0000     0.6325 1.000 0.000 0.000 0.000
#> GSM601833     2  0.5854     0.5890 0.172 0.736 0.048 0.044
#> GSM601848     1  0.0000     0.6325 1.000 0.000 0.000 0.000
#> GSM601853     1  0.8542     0.3082 0.484 0.096 0.308 0.112
#> GSM601863     3  0.2796     0.6448 0.096 0.008 0.892 0.004
#> GSM601754     4  0.3486     0.6791 0.188 0.000 0.000 0.812
#> GSM601784     4  0.8956     0.3987 0.356 0.108 0.132 0.404
#> GSM601794     1  0.4985    -0.0725 0.532 0.000 0.000 0.468
#> GSM601799     4  0.4647     0.6190 0.288 0.008 0.000 0.704
#> GSM601829     1  0.1398     0.6305 0.956 0.000 0.004 0.040
#> GSM601839     2  0.6194     0.3978 0.000 0.668 0.200 0.132
#> GSM601844     1  0.4973     0.2409 0.644 0.008 0.000 0.348
#> GSM601859     3  0.7088     0.5618 0.028 0.140 0.636 0.196
#> GSM601869     3  0.2189     0.6831 0.004 0.044 0.932 0.020
#> GSM601749     1  0.1004     0.6315 0.972 0.004 0.000 0.024
#> GSM601759     1  0.0592     0.6316 0.984 0.000 0.000 0.016
#> GSM601764     1  0.4643     0.2541 0.656 0.000 0.000 0.344
#> GSM601769     2  0.5770     0.6138 0.156 0.728 0.108 0.008
#> GSM601774     2  0.5243     0.6233 0.052 0.796 0.072 0.080
#> GSM601779     1  0.4761     0.1874 0.628 0.000 0.000 0.372
#> GSM601789     2  0.6842     0.1715 0.044 0.492 0.436 0.028
#> GSM601804     4  0.4730     0.5312 0.364 0.000 0.000 0.636
#> GSM601809     3  0.8263    -0.0597 0.320 0.028 0.452 0.200
#> GSM601814     2  0.6575     0.6078 0.052 0.704 0.104 0.140
#> GSM601819     1  0.4378     0.6023 0.836 0.024 0.052 0.088
#> GSM601824     1  0.4761     0.1874 0.628 0.000 0.000 0.372
#> GSM601834     2  0.6419     0.5855 0.136 0.708 0.036 0.120
#> GSM601849     1  0.4040     0.4338 0.752 0.000 0.000 0.248
#> GSM601854     1  0.1004     0.6352 0.972 0.004 0.024 0.000
#> GSM601864     3  0.4332     0.6365 0.000 0.176 0.792 0.032
#> GSM601755     4  0.4033     0.6482 0.132 0.028 0.008 0.832
#> GSM601785     3  0.7682     0.5172 0.064 0.176 0.612 0.148
#> GSM601795     4  0.7439     0.4381 0.380 0.032 0.084 0.504
#> GSM601800     4  0.5700     0.5659 0.076 0.100 0.056 0.768
#> GSM601830     1  0.8153     0.4091 0.564 0.096 0.228 0.112
#> GSM601840     3  0.6785     0.5792 0.060 0.068 0.672 0.200
#> GSM601845     1  0.4813     0.4931 0.716 0.012 0.004 0.268
#> GSM601860     3  0.6438     0.6149 0.028 0.136 0.700 0.136
#> GSM601870     3  0.4724     0.5660 0.000 0.096 0.792 0.112
#> GSM601750     1  0.6196     0.4770 0.608 0.028 0.340 0.024
#> GSM601760     3  0.7156     0.1734 0.328 0.000 0.520 0.152
#> GSM601765     2  0.6240     0.4439 0.276 0.640 0.004 0.080
#> GSM601770     2  0.6750     0.5921 0.016 0.656 0.164 0.164
#> GSM601775     1  0.7361    -0.1014 0.508 0.100 0.020 0.372
#> GSM601780     1  0.0657     0.6334 0.984 0.004 0.000 0.012
#> GSM601790     3  0.4978     0.4340 0.000 0.384 0.612 0.004
#> GSM601805     4  0.7457    -0.0675 0.016 0.120 0.360 0.504
#> GSM601810     1  0.6542     0.4489 0.648 0.088 0.248 0.016
#> GSM601815     2  0.6651     0.3251 0.060 0.572 0.352 0.016
#> GSM601820     1  0.3166     0.6184 0.888 0.012 0.080 0.020
#> GSM601825     4  0.5110     0.5441 0.352 0.012 0.000 0.636
#> GSM601835     2  0.6755    -0.0180 0.000 0.456 0.452 0.092
#> GSM601850     1  0.3688     0.4834 0.792 0.000 0.000 0.208
#> GSM601855     3  0.6776     0.5001 0.092 0.096 0.700 0.112
#> GSM601865     3  0.4436     0.6267 0.000 0.216 0.764 0.020
#> GSM601756     4  0.5770     0.5191 0.140 0.148 0.000 0.712
#> GSM601786     3  0.4797     0.6022 0.000 0.260 0.720 0.020
#> GSM601796     4  0.7861     0.2852 0.268 0.016 0.208 0.508
#> GSM601801     2  0.6786     0.2949 0.032 0.484 0.036 0.448
#> GSM601831     1  0.4535     0.5278 0.704 0.004 0.292 0.000
#> GSM601841     3  0.6375     0.6321 0.052 0.084 0.716 0.148
#> GSM601846     1  0.7559     0.4945 0.596 0.036 0.208 0.160
#> GSM601861     2  0.6144    -0.0740 0.008 0.508 0.452 0.032
#> GSM601871     3  0.0657     0.6744 0.000 0.012 0.984 0.004
#> GSM601751     3  0.7515     0.3137 0.248 0.020 0.568 0.164
#> GSM601761     1  0.4277     0.3768 0.720 0.000 0.000 0.280
#> GSM601766     1  0.9210    -0.2631 0.388 0.136 0.136 0.340
#> GSM601771     2  0.9811     0.0720 0.284 0.284 0.276 0.156
#> GSM601776     1  0.0000     0.6325 1.000 0.000 0.000 0.000
#> GSM601781     1  0.8561    -0.0796 0.412 0.032 0.268 0.288
#> GSM601791     1  0.7994    -0.2361 0.440 0.024 0.156 0.380
#> GSM601806     4  0.7031     0.5176 0.296 0.152 0.000 0.552
#> GSM601811     3  0.5493     0.6137 0.016 0.092 0.760 0.132
#> GSM601816     1  0.1022     0.6332 0.968 0.000 0.000 0.032
#> GSM601821     2  0.7071     0.4483 0.100 0.588 0.292 0.020
#> GSM601826     1  0.0000     0.6325 1.000 0.000 0.000 0.000
#> GSM601836     4  0.9769     0.2040 0.216 0.168 0.284 0.332
#> GSM601851     1  0.3311     0.5305 0.828 0.000 0.000 0.172
#> GSM601856     3  0.3945     0.6175 0.008 0.064 0.852 0.076
#> GSM601866     3  0.3634     0.6648 0.072 0.040 0.872 0.016

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM601752     4  0.1638    0.61628 0.064 0.004 0.000 0.932 0.000
#> GSM601782     1  0.5989    0.56766 0.720 0.072 0.104 0.068 0.036
#> GSM601792     1  0.1952    0.64522 0.912 0.004 0.000 0.084 0.000
#> GSM601797     1  0.5862    0.46354 0.684 0.016 0.064 0.200 0.036
#> GSM601827     1  0.5349    0.42617 0.704 0.000 0.160 0.016 0.120
#> GSM601837     5  0.3656    0.55439 0.000 0.056 0.104 0.008 0.832
#> GSM601842     2  0.5891    0.54217 0.016 0.624 0.000 0.252 0.108
#> GSM601857     5  0.3769    0.58426 0.000 0.004 0.172 0.028 0.796
#> GSM601867     5  0.5611    0.58591 0.000 0.020 0.140 0.156 0.684
#> GSM601747     2  0.9827    0.07121 0.224 0.264 0.124 0.200 0.188
#> GSM601757     1  0.7223    0.24615 0.544 0.020 0.052 0.272 0.112
#> GSM601762     2  0.4816    0.58449 0.060 0.748 0.000 0.168 0.024
#> GSM601767     2  0.4210    0.59919 0.072 0.784 0.000 0.140 0.004
#> GSM601772     2  0.5477    0.53083 0.216 0.672 0.000 0.100 0.012
#> GSM601777     4  0.6077    0.42261 0.040 0.020 0.244 0.648 0.048
#> GSM601787     5  0.4937    0.52946 0.000 0.064 0.264 0.000 0.672
#> GSM601802     4  0.3229    0.58714 0.056 0.040 0.000 0.872 0.032
#> GSM601807     3  0.2813    0.67352 0.004 0.032 0.880 0.000 0.084
#> GSM601812     1  0.6792    0.33406 0.576 0.004 0.192 0.036 0.192
#> GSM601817     1  0.7006    0.48299 0.608 0.060 0.208 0.092 0.032
#> GSM601822     1  0.1410    0.65507 0.940 0.000 0.000 0.060 0.000
#> GSM601832     2  0.6985   -0.12735 0.284 0.404 0.000 0.304 0.008
#> GSM601847     4  0.2763    0.63418 0.148 0.004 0.000 0.848 0.000
#> GSM601852     1  0.4478    0.52915 0.776 0.000 0.152 0.028 0.044
#> GSM601862     5  0.4045    0.44638 0.000 0.000 0.356 0.000 0.644
#> GSM601753     4  0.2124    0.63042 0.096 0.004 0.000 0.900 0.000
#> GSM601783     1  0.2899    0.63071 0.872 0.004 0.000 0.096 0.028
#> GSM601793     1  0.4277    0.56008 0.768 0.000 0.000 0.156 0.076
#> GSM601798     4  0.6256   -0.04146 0.008 0.300 0.016 0.580 0.096
#> GSM601828     1  0.5057    0.48748 0.740 0.000 0.136 0.024 0.100
#> GSM601838     2  0.5752    0.43408 0.000 0.600 0.092 0.008 0.300
#> GSM601843     2  0.6437    0.33138 0.020 0.536 0.000 0.124 0.320
#> GSM601858     5  0.3451    0.63032 0.012 0.120 0.016 0.008 0.844
#> GSM601868     5  0.3966    0.47250 0.000 0.000 0.336 0.000 0.664
#> GSM601748     1  0.3670    0.53325 0.796 0.000 0.180 0.004 0.020
#> GSM601758     1  0.1502    0.65599 0.940 0.004 0.000 0.056 0.000
#> GSM601763     1  0.4966    0.15763 0.564 0.032 0.000 0.404 0.000
#> GSM601768     2  0.6168    0.46426 0.256 0.616 0.000 0.084 0.044
#> GSM601773     2  0.5082    0.47271 0.260 0.664 0.000 0.076 0.000
#> GSM601778     1  0.5185    0.25564 0.588 0.016 0.016 0.376 0.004
#> GSM601788     1  0.6993    0.35913 0.580 0.156 0.000 0.088 0.176
#> GSM601803     4  0.2664    0.62764 0.092 0.020 0.000 0.884 0.004
#> GSM601808     3  0.3236    0.65401 0.020 0.000 0.828 0.000 0.152
#> GSM601813     1  0.0703    0.66360 0.976 0.000 0.000 0.000 0.024
#> GSM601818     1  0.6447    0.31661 0.616 0.052 0.208 0.000 0.124
#> GSM601823     1  0.0000    0.66345 1.000 0.000 0.000 0.000 0.000
#> GSM601833     2  0.3496    0.62241 0.116 0.840 0.000 0.016 0.028
#> GSM601848     1  0.0000    0.66345 1.000 0.000 0.000 0.000 0.000
#> GSM601853     3  0.3819    0.58558 0.228 0.000 0.756 0.000 0.016
#> GSM601863     5  0.5440    0.42052 0.088 0.000 0.300 0.000 0.612
#> GSM601754     4  0.2389    0.63474 0.116 0.004 0.000 0.880 0.000
#> GSM601784     4  0.7842    0.38855 0.292 0.152 0.000 0.436 0.120
#> GSM601794     4  0.4450    0.00845 0.488 0.004 0.000 0.508 0.000
#> GSM601799     4  0.3647    0.60487 0.228 0.004 0.000 0.764 0.004
#> GSM601829     1  0.1357    0.66341 0.948 0.000 0.000 0.048 0.004
#> GSM601839     2  0.6910    0.10596 0.000 0.436 0.388 0.028 0.148
#> GSM601844     1  0.4564    0.24830 0.600 0.004 0.000 0.388 0.008
#> GSM601859     5  0.4289    0.58624 0.020 0.024 0.000 0.192 0.764
#> GSM601869     5  0.3586    0.54229 0.000 0.000 0.264 0.000 0.736
#> GSM601749     1  0.0880    0.66513 0.968 0.000 0.000 0.032 0.000
#> GSM601759     1  0.1121    0.66017 0.956 0.000 0.000 0.044 0.000
#> GSM601764     1  0.4288    0.26141 0.612 0.004 0.000 0.384 0.000
#> GSM601769     2  0.4062    0.62545 0.132 0.796 0.000 0.004 0.068
#> GSM601774     2  0.3738    0.61552 0.040 0.844 0.000 0.052 0.064
#> GSM601779     1  0.4341    0.21389 0.592 0.004 0.000 0.404 0.000
#> GSM601789     2  0.6448    0.13056 0.024 0.528 0.052 0.024 0.372
#> GSM601804     4  0.3969    0.52970 0.304 0.004 0.000 0.692 0.000
#> GSM601809     5  0.8185    0.03096 0.260 0.112 0.008 0.196 0.424
#> GSM601814     2  0.5679    0.58383 0.036 0.704 0.004 0.140 0.116
#> GSM601819     1  0.3375    0.63835 0.852 0.012 0.000 0.096 0.040
#> GSM601824     1  0.4341    0.21389 0.592 0.004 0.000 0.404 0.000
#> GSM601834     2  0.4543    0.59498 0.088 0.780 0.000 0.112 0.020
#> GSM601849     1  0.3969    0.41711 0.692 0.004 0.000 0.304 0.000
#> GSM601854     1  0.0981    0.66557 0.972 0.000 0.008 0.008 0.012
#> GSM601864     5  0.4953    0.51865 0.000 0.056 0.172 0.032 0.740
#> GSM601755     4  0.2618    0.59169 0.052 0.036 0.000 0.900 0.012
#> GSM601785     5  0.5101    0.58133 0.052 0.132 0.000 0.068 0.748
#> GSM601795     4  0.6455    0.45735 0.312 0.056 0.000 0.560 0.072
#> GSM601800     4  0.4414    0.53995 0.036 0.108 0.000 0.796 0.060
#> GSM601830     3  0.4402    0.31173 0.352 0.000 0.636 0.000 0.012
#> GSM601840     5  0.5372    0.60280 0.056 0.096 0.000 0.116 0.732
#> GSM601845     1  0.4385    0.50053 0.672 0.004 0.000 0.312 0.012
#> GSM601860     5  0.3692    0.63490 0.020 0.084 0.000 0.056 0.840
#> GSM601870     3  0.1851    0.69344 0.000 0.000 0.912 0.000 0.088
#> GSM601750     1  0.7647    0.35856 0.588 0.088 0.152 0.068 0.104
#> GSM601760     5  0.6442    0.14518 0.364 0.000 0.008 0.144 0.484
#> GSM601765     2  0.4808    0.51153 0.248 0.696 0.000 0.052 0.004
#> GSM601770     2  0.5081    0.56486 0.008 0.720 0.000 0.136 0.136
#> GSM601775     1  0.6656   -0.12849 0.452 0.132 0.000 0.396 0.020
#> GSM601780     1  0.0771    0.66555 0.976 0.000 0.000 0.020 0.004
#> GSM601790     5  0.5139    0.41147 0.000 0.236 0.064 0.012 0.688
#> GSM601805     5  0.4905    0.17107 0.012 0.008 0.000 0.464 0.516
#> GSM601810     1  0.5120    0.45213 0.712 0.012 0.068 0.004 0.204
#> GSM601815     2  0.5369    0.19658 0.044 0.508 0.000 0.004 0.444
#> GSM601820     1  0.3241    0.64534 0.876 0.004 0.052 0.032 0.036
#> GSM601825     4  0.4227    0.54433 0.292 0.016 0.000 0.692 0.000
#> GSM601835     5  0.5353    0.06065 0.000 0.472 0.000 0.052 0.476
#> GSM601850     1  0.3689    0.48331 0.740 0.004 0.000 0.256 0.000
#> GSM601855     3  0.1892    0.69648 0.004 0.000 0.916 0.000 0.080
#> GSM601865     5  0.1915    0.61351 0.000 0.040 0.032 0.000 0.928
#> GSM601756     4  0.3846    0.47656 0.056 0.144 0.000 0.800 0.000
#> GSM601786     5  0.3612    0.62052 0.000 0.172 0.028 0.000 0.800
#> GSM601796     4  0.6482    0.23523 0.276 0.000 0.000 0.492 0.232
#> GSM601801     4  0.6158   -0.24032 0.020 0.432 0.000 0.472 0.076
#> GSM601831     1  0.4480    0.48558 0.752 0.000 0.180 0.004 0.064
#> GSM601841     5  0.4344    0.60372 0.100 0.004 0.016 0.080 0.800
#> GSM601846     1  0.7322    0.47380 0.572 0.024 0.184 0.164 0.056
#> GSM601861     5  0.4142    0.24117 0.004 0.308 0.000 0.004 0.684
#> GSM601871     5  0.4127    0.49347 0.000 0.008 0.312 0.000 0.680
#> GSM601751     5  0.7198    0.32617 0.204 0.084 0.000 0.164 0.548
#> GSM601761     1  0.4047    0.38271 0.676 0.004 0.000 0.320 0.000
#> GSM601766     4  0.8275    0.27243 0.308 0.216 0.000 0.340 0.136
#> GSM601771     2  0.8528    0.09070 0.240 0.292 0.000 0.188 0.280
#> GSM601776     1  0.0000    0.66345 1.000 0.000 0.000 0.000 0.000
#> GSM601781     1  0.7848   -0.06280 0.388 0.072 0.000 0.284 0.256
#> GSM601791     1  0.6511   -0.14748 0.428 0.004 0.000 0.404 0.164
#> GSM601806     4  0.5798    0.48778 0.236 0.156 0.000 0.608 0.000
#> GSM601811     5  0.7137    0.54368 0.016 0.100 0.160 0.120 0.604
#> GSM601816     1  0.1043    0.66605 0.960 0.000 0.000 0.040 0.000
#> GSM601821     2  0.7043    0.39320 0.092 0.484 0.040 0.016 0.368
#> GSM601826     1  0.0000    0.66345 1.000 0.000 0.000 0.000 0.000
#> GSM601836     4  0.8514    0.06334 0.180 0.280 0.000 0.292 0.248
#> GSM601851     1  0.3143    0.55256 0.796 0.000 0.000 0.204 0.000
#> GSM601856     3  0.4630    0.03797 0.004 0.008 0.572 0.000 0.416
#> GSM601866     5  0.5305    0.48172 0.112 0.004 0.204 0.000 0.680

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM601752     4  0.2180    0.56854 0.048 0.004 0.000 0.912 0.028 0.008
#> GSM601782     1  0.6045    0.48467 0.664 0.156 0.024 0.072 0.012 0.072
#> GSM601792     1  0.1806    0.64027 0.908 0.004 0.000 0.088 0.000 0.000
#> GSM601797     1  0.5633    0.40573 0.648 0.000 0.032 0.224 0.028 0.068
#> GSM601827     1  0.4771    0.41252 0.708 0.000 0.120 0.016 0.000 0.156
#> GSM601837     5  0.5365    0.51422 0.000 0.036 0.444 0.000 0.480 0.040
#> GSM601842     2  0.5421    0.44642 0.016 0.612 0.124 0.248 0.000 0.000
#> GSM601857     3  0.2069    0.48379 0.000 0.004 0.908 0.020 0.000 0.068
#> GSM601867     3  0.3873    0.49731 0.000 0.020 0.780 0.160 0.000 0.040
#> GSM601747     2  0.8729    0.14196 0.208 0.308 0.164 0.196 0.000 0.124
#> GSM601757     1  0.6326    0.22433 0.536 0.020 0.156 0.268 0.000 0.020
#> GSM601762     2  0.3940    0.55766 0.056 0.788 0.024 0.132 0.000 0.000
#> GSM601767     2  0.3593    0.57090 0.064 0.800 0.004 0.132 0.000 0.000
#> GSM601772     2  0.4832    0.54958 0.216 0.680 0.012 0.092 0.000 0.000
#> GSM601777     4  0.5518    0.39987 0.036 0.020 0.060 0.648 0.000 0.236
#> GSM601787     3  0.3709    0.48476 0.000 0.040 0.756 0.000 0.000 0.204
#> GSM601802     4  0.3518    0.53088 0.036 0.040 0.032 0.856 0.028 0.008
#> GSM601807     6  0.2669    0.50946 0.000 0.016 0.032 0.000 0.072 0.880
#> GSM601812     1  0.6330    0.31194 0.568 0.012 0.192 0.040 0.000 0.188
#> GSM601817     1  0.6584    0.44074 0.588 0.072 0.040 0.096 0.000 0.204
#> GSM601822     1  0.1267    0.65246 0.940 0.000 0.000 0.060 0.000 0.000
#> GSM601832     2  0.6252   -0.06316 0.280 0.416 0.008 0.296 0.000 0.000
#> GSM601847     4  0.2520    0.60092 0.152 0.004 0.000 0.844 0.000 0.000
#> GSM601852     1  0.4022    0.50829 0.776 0.000 0.044 0.028 0.000 0.152
#> GSM601862     3  0.3101    0.44764 0.000 0.000 0.756 0.000 0.000 0.244
#> GSM601753     4  0.1858    0.59675 0.092 0.004 0.000 0.904 0.000 0.000
#> GSM601783     1  0.2604    0.62790 0.872 0.004 0.028 0.096 0.000 0.000
#> GSM601793     1  0.3877    0.53803 0.764 0.000 0.076 0.160 0.000 0.000
#> GSM601798     4  0.6056    0.02912 0.008 0.264 0.084 0.596 0.028 0.020
#> GSM601828     1  0.4543    0.46771 0.740 0.000 0.100 0.024 0.000 0.136
#> GSM601838     5  0.6324    0.47916 0.000 0.320 0.164 0.000 0.480 0.036
#> GSM601843     2  0.6556    0.29471 0.024 0.544 0.276 0.116 0.032 0.008
#> GSM601858     3  0.2376    0.49787 0.008 0.096 0.884 0.012 0.000 0.000
#> GSM601868     3  0.2941    0.46660 0.000 0.000 0.780 0.000 0.000 0.220
#> GSM601748     1  0.3343    0.51248 0.796 0.000 0.024 0.000 0.004 0.176
#> GSM601758     1  0.1411    0.65157 0.936 0.004 0.000 0.060 0.000 0.000
#> GSM601763     1  0.4591    0.11969 0.552 0.040 0.000 0.408 0.000 0.000
#> GSM601768     2  0.5481    0.47944 0.256 0.620 0.040 0.084 0.000 0.000
#> GSM601773     2  0.4639    0.48595 0.256 0.660 0.000 0.084 0.000 0.000
#> GSM601778     1  0.4717    0.23704 0.584 0.016 0.004 0.380 0.004 0.012
#> GSM601788     1  0.6785    0.20051 0.520 0.212 0.168 0.096 0.004 0.000
#> GSM601803     4  0.3078    0.58639 0.084 0.020 0.004 0.864 0.020 0.008
#> GSM601808     6  0.4892    0.56695 0.016 0.000 0.236 0.008 0.060 0.680
#> GSM601813     1  0.0632    0.66089 0.976 0.000 0.024 0.000 0.000 0.000
#> GSM601818     1  0.5960    0.29387 0.608 0.068 0.128 0.000 0.000 0.196
#> GSM601823     1  0.0000    0.66089 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601833     2  0.3075    0.56603 0.092 0.856 0.032 0.016 0.004 0.000
#> GSM601848     1  0.0000    0.66089 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601853     6  0.5025    0.54066 0.232 0.000 0.136 0.000 0.000 0.632
#> GSM601863     3  0.4431    0.42264 0.080 0.000 0.692 0.000 0.000 0.228
#> GSM601754     4  0.2100    0.60077 0.112 0.004 0.000 0.884 0.000 0.000
#> GSM601784     4  0.7073    0.32662 0.288 0.196 0.096 0.420 0.000 0.000
#> GSM601794     4  0.3996    0.02671 0.484 0.004 0.000 0.512 0.000 0.000
#> GSM601799     4  0.3357    0.58146 0.224 0.008 0.004 0.764 0.000 0.000
#> GSM601829     1  0.1285    0.65987 0.944 0.000 0.004 0.052 0.000 0.000
#> GSM601839     5  0.6268    0.27751 0.000 0.176 0.020 0.004 0.480 0.320
#> GSM601844     1  0.4200    0.22984 0.592 0.004 0.012 0.392 0.000 0.000
#> GSM601859     3  0.3757    0.44969 0.020 0.024 0.776 0.180 0.000 0.000
#> GSM601869     3  0.2219    0.50355 0.000 0.000 0.864 0.000 0.000 0.136
#> GSM601749     1  0.0935    0.66183 0.964 0.000 0.000 0.032 0.004 0.000
#> GSM601759     1  0.1075    0.65618 0.952 0.000 0.000 0.048 0.000 0.000
#> GSM601764     1  0.3862    0.24408 0.608 0.004 0.000 0.388 0.000 0.000
#> GSM601769     2  0.3511    0.56852 0.124 0.808 0.064 0.004 0.000 0.000
#> GSM601774     2  0.3094    0.52874 0.032 0.860 0.060 0.048 0.000 0.000
#> GSM601779     1  0.3907    0.19616 0.588 0.004 0.000 0.408 0.000 0.000
#> GSM601789     2  0.6170    0.17968 0.020 0.548 0.332 0.016 0.036 0.048
#> GSM601804     4  0.3547    0.52011 0.300 0.004 0.000 0.696 0.000 0.000
#> GSM601809     3  0.7291   -0.03748 0.256 0.092 0.420 0.224 0.000 0.008
#> GSM601814     2  0.5675    0.41148 0.036 0.676 0.092 0.160 0.036 0.000
#> GSM601819     1  0.3191    0.63132 0.844 0.016 0.044 0.096 0.000 0.000
#> GSM601824     1  0.3907    0.19616 0.588 0.004 0.000 0.408 0.000 0.000
#> GSM601834     2  0.4310    0.51470 0.064 0.764 0.024 0.144 0.004 0.000
#> GSM601849     1  0.3584    0.40533 0.688 0.004 0.000 0.308 0.000 0.000
#> GSM601854     1  0.0912    0.66286 0.972 0.000 0.008 0.004 0.004 0.012
#> GSM601864     5  0.6283    0.51916 0.000 0.028 0.364 0.016 0.484 0.108
#> GSM601755     4  0.2861    0.53561 0.032 0.036 0.008 0.888 0.028 0.008
#> GSM601785     3  0.5114    0.41236 0.052 0.176 0.692 0.080 0.000 0.000
#> GSM601795     4  0.5917    0.45724 0.304 0.064 0.076 0.556 0.000 0.000
#> GSM601800     4  0.4321    0.49482 0.024 0.104 0.056 0.788 0.028 0.000
#> GSM601830     6  0.4026    0.38735 0.348 0.000 0.016 0.000 0.000 0.636
#> GSM601840     3  0.4798    0.49520 0.052 0.076 0.728 0.144 0.000 0.000
#> GSM601845     1  0.4042    0.49328 0.664 0.004 0.016 0.316 0.000 0.000
#> GSM601860     3  0.3106    0.50861 0.016 0.048 0.852 0.084 0.000 0.000
#> GSM601870     6  0.2491    0.62829 0.000 0.000 0.164 0.000 0.000 0.836
#> GSM601750     1  0.6832    0.02404 0.452 0.024 0.108 0.008 0.368 0.040
#> GSM601760     3  0.5894    0.14013 0.328 0.000 0.492 0.172 0.000 0.008
#> GSM601765     2  0.4329    0.53147 0.240 0.700 0.004 0.056 0.000 0.000
#> GSM601770     2  0.4450    0.49855 0.008 0.732 0.128 0.132 0.000 0.000
#> GSM601775     1  0.6197   -0.21228 0.412 0.184 0.016 0.388 0.000 0.000
#> GSM601780     1  0.0692    0.66279 0.976 0.000 0.004 0.020 0.000 0.000
#> GSM601790     5  0.6016    0.59186 0.000 0.164 0.348 0.004 0.476 0.008
#> GSM601805     3  0.4536    0.11321 0.012 0.008 0.512 0.464 0.004 0.000
#> GSM601810     1  0.4702    0.43420 0.712 0.012 0.196 0.008 0.000 0.072
#> GSM601815     3  0.5127   -0.10093 0.036 0.460 0.480 0.000 0.024 0.000
#> GSM601820     1  0.3145    0.63885 0.864 0.016 0.076 0.028 0.004 0.012
#> GSM601825     4  0.3859    0.53315 0.288 0.020 0.000 0.692 0.000 0.000
#> GSM601835     2  0.4982    0.12937 0.000 0.528 0.416 0.044 0.012 0.000
#> GSM601850     1  0.3337    0.47211 0.736 0.004 0.000 0.260 0.000 0.000
#> GSM601855     6  0.2219    0.63090 0.000 0.000 0.136 0.000 0.000 0.864
#> GSM601865     3  0.3537    0.36031 0.000 0.016 0.796 0.000 0.164 0.024
#> GSM601756     4  0.3781    0.45009 0.036 0.116 0.000 0.812 0.028 0.008
#> GSM601786     3  0.3457    0.45655 0.000 0.164 0.800 0.000 0.016 0.020
#> GSM601796     4  0.5818    0.26892 0.256 0.000 0.248 0.496 0.000 0.000
#> GSM601801     4  0.6471   -0.15314 0.020 0.368 0.076 0.488 0.040 0.008
#> GSM601831     1  0.4046    0.46435 0.752 0.000 0.068 0.000 0.004 0.176
#> GSM601841     3  0.3655    0.50737 0.072 0.000 0.812 0.100 0.000 0.016
#> GSM601846     1  0.6837    0.44150 0.564 0.016 0.056 0.168 0.016 0.180
#> GSM601861     3  0.4653    0.13533 0.000 0.260 0.664 0.004 0.072 0.000
#> GSM601871     3  0.2902    0.47808 0.000 0.004 0.800 0.000 0.000 0.196
#> GSM601751     3  0.6237    0.31191 0.200 0.048 0.552 0.200 0.000 0.000
#> GSM601761     1  0.3636    0.37726 0.676 0.004 0.000 0.320 0.000 0.000
#> GSM601766     4  0.7471    0.20646 0.256 0.280 0.132 0.332 0.000 0.000
#> GSM601771     2  0.7609    0.16069 0.236 0.340 0.232 0.192 0.000 0.000
#> GSM601776     1  0.0000    0.66089 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601781     1  0.7164   -0.08870 0.372 0.084 0.260 0.284 0.000 0.000
#> GSM601791     4  0.5980    0.18610 0.396 0.004 0.192 0.408 0.000 0.000
#> GSM601806     4  0.5858    0.47232 0.224 0.128 0.000 0.608 0.032 0.008
#> GSM601811     3  0.5654    0.41126 0.012 0.132 0.676 0.112 0.000 0.068
#> GSM601816     1  0.0937    0.66335 0.960 0.000 0.000 0.040 0.000 0.000
#> GSM601821     2  0.7416   -0.20549 0.080 0.372 0.268 0.012 0.268 0.000
#> GSM601826     1  0.0000    0.66089 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601836     4  0.7705    0.03567 0.156 0.284 0.264 0.292 0.004 0.000
#> GSM601851     1  0.2854    0.54364 0.792 0.000 0.000 0.208 0.000 0.000
#> GSM601856     3  0.4381    0.00436 0.004 0.016 0.524 0.000 0.000 0.456
#> GSM601866     3  0.4286    0.46102 0.092 0.008 0.744 0.000 0.000 0.156

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n time(p) gender(p) k
#> CV:pam 104   0.686   0.07195 2
#> CV:pam  77   0.410   0.06455 3
#> CV:pam  73   0.625   0.07936 4
#> CV:pam  65   0.552   0.00445 5
#> CV:pam  50   0.664   0.01403 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 125 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.232           0.700       0.804         0.4288 0.608   0.608
#> 3 3 0.363           0.794       0.842         0.4942 0.645   0.450
#> 4 4 0.455           0.565       0.741         0.1116 0.925   0.786
#> 5 5 0.594           0.595       0.725         0.0855 0.873   0.604
#> 6 6 0.719           0.656       0.798         0.0510 0.903   0.616

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM601752     2  0.5059      0.845 0.112 0.888
#> GSM601782     1  0.2603      0.765 0.956 0.044
#> GSM601792     2  0.8386      0.819 0.268 0.732
#> GSM601797     2  0.8081      0.833 0.248 0.752
#> GSM601827     1  0.8813      0.377 0.700 0.300
#> GSM601837     1  0.8443      0.733 0.728 0.272
#> GSM601842     1  0.8267      0.740 0.740 0.260
#> GSM601857     1  0.1843      0.769 0.972 0.028
#> GSM601867     1  0.3114      0.766 0.944 0.056
#> GSM601747     1  0.2948      0.777 0.948 0.052
#> GSM601757     1  0.0672      0.769 0.992 0.008
#> GSM601762     1  0.8144      0.741 0.748 0.252
#> GSM601767     1  0.7883      0.747 0.764 0.236
#> GSM601772     1  0.7883      0.747 0.764 0.236
#> GSM601777     2  0.8499      0.838 0.276 0.724
#> GSM601787     1  0.5294      0.775 0.880 0.120
#> GSM601802     2  0.6801      0.844 0.180 0.820
#> GSM601807     1  0.8813      0.421 0.700 0.300
#> GSM601812     1  0.1843      0.770 0.972 0.028
#> GSM601817     1  0.2236      0.768 0.964 0.036
#> GSM601822     2  0.8861      0.829 0.304 0.696
#> GSM601832     1  0.7883      0.747 0.764 0.236
#> GSM601847     2  0.6973      0.841 0.188 0.812
#> GSM601852     1  0.2423      0.766 0.960 0.040
#> GSM601862     1  0.1184      0.770 0.984 0.016
#> GSM601753     2  0.6148      0.842 0.152 0.848
#> GSM601783     1  0.3431      0.755 0.936 0.064
#> GSM601793     2  0.8386      0.819 0.268 0.732
#> GSM601798     2  0.5178      0.847 0.116 0.884
#> GSM601828     1  0.3114      0.765 0.944 0.056
#> GSM601838     1  0.8081      0.745 0.752 0.248
#> GSM601843     1  0.8327      0.738 0.736 0.264
#> GSM601858     1  0.8016      0.748 0.756 0.244
#> GSM601868     1  0.2948      0.761 0.948 0.052
#> GSM601748     1  0.2423      0.766 0.960 0.040
#> GSM601758     1  0.2423      0.766 0.960 0.040
#> GSM601763     1  0.1184      0.776 0.984 0.016
#> GSM601768     1  0.7815      0.748 0.768 0.232
#> GSM601773     1  0.7815      0.748 0.768 0.232
#> GSM601778     2  0.9248      0.803 0.340 0.660
#> GSM601788     1  0.5737      0.768 0.864 0.136
#> GSM601803     2  0.6801      0.844 0.180 0.820
#> GSM601808     1  0.2423      0.759 0.960 0.040
#> GSM601813     1  0.3584      0.753 0.932 0.068
#> GSM601818     1  0.0672      0.769 0.992 0.008
#> GSM601823     2  0.9795      0.708 0.416 0.584
#> GSM601833     1  0.7883      0.747 0.764 0.236
#> GSM601848     2  0.9044      0.812 0.320 0.680
#> GSM601853     1  0.6623      0.603 0.828 0.172
#> GSM601863     1  0.1414      0.770 0.980 0.020
#> GSM601754     2  0.5059      0.845 0.112 0.888
#> GSM601784     1  0.8443      0.733 0.728 0.272
#> GSM601794     2  0.8386      0.819 0.268 0.732
#> GSM601799     2  0.5629      0.849 0.132 0.868
#> GSM601829     2  0.9044      0.800 0.320 0.680
#> GSM601839     1  0.8081      0.745 0.752 0.248
#> GSM601844     1  0.9993     -0.374 0.516 0.484
#> GSM601859     1  0.8327      0.738 0.736 0.264
#> GSM601869     1  0.3879      0.748 0.924 0.076
#> GSM601749     1  0.2423      0.766 0.960 0.040
#> GSM601759     1  0.2423      0.766 0.960 0.040
#> GSM601764     1  0.1184      0.774 0.984 0.016
#> GSM601769     1  0.7883      0.747 0.764 0.236
#> GSM601774     1  0.7883      0.747 0.764 0.236
#> GSM601779     1  0.9970     -0.446 0.532 0.468
#> GSM601789     1  0.7815      0.748 0.768 0.232
#> GSM601804     2  0.6887      0.843 0.184 0.816
#> GSM601809     1  0.1184      0.772 0.984 0.016
#> GSM601814     1  0.7815      0.748 0.768 0.232
#> GSM601819     1  0.1843      0.770 0.972 0.028
#> GSM601824     2  0.9710      0.467 0.400 0.600
#> GSM601834     1  0.7883      0.747 0.764 0.236
#> GSM601849     1  0.4562      0.707 0.904 0.096
#> GSM601854     1  0.2948      0.762 0.948 0.052
#> GSM601864     1  0.7056      0.759 0.808 0.192
#> GSM601755     2  0.5059      0.845 0.112 0.888
#> GSM601785     1  0.7453      0.747 0.788 0.212
#> GSM601795     2  0.8144      0.831 0.252 0.748
#> GSM601800     2  0.5059      0.845 0.112 0.888
#> GSM601830     1  0.8555      0.418 0.720 0.280
#> GSM601840     1  0.7139      0.754 0.804 0.196
#> GSM601845     1  0.7219      0.740 0.800 0.200
#> GSM601860     1  0.8144      0.745 0.748 0.252
#> GSM601870     1  0.7674      0.523 0.776 0.224
#> GSM601750     1  0.2423      0.766 0.960 0.040
#> GSM601760     1  0.1414      0.770 0.980 0.020
#> GSM601765     1  0.7883      0.747 0.764 0.236
#> GSM601770     1  0.7883      0.747 0.764 0.236
#> GSM601775     1  0.3733      0.780 0.928 0.072
#> GSM601780     1  0.9922     -0.386 0.552 0.448
#> GSM601790     1  0.7815      0.748 0.768 0.232
#> GSM601805     2  0.6801      0.844 0.180 0.820
#> GSM601810     1  0.0938      0.769 0.988 0.012
#> GSM601815     1  0.7815      0.748 0.768 0.232
#> GSM601820     1  0.2423      0.766 0.960 0.040
#> GSM601825     2  0.7376      0.824 0.208 0.792
#> GSM601835     1  0.9635      0.572 0.612 0.388
#> GSM601850     1  0.9881     -0.196 0.564 0.436
#> GSM601855     1  0.8207      0.448 0.744 0.256
#> GSM601865     1  0.7815      0.748 0.768 0.232
#> GSM601756     2  0.5059      0.845 0.112 0.888
#> GSM601786     1  0.8386      0.736 0.732 0.268
#> GSM601796     2  0.8386      0.819 0.268 0.732
#> GSM601801     2  0.5178      0.847 0.116 0.884
#> GSM601831     1  0.8955      0.350 0.688 0.312
#> GSM601841     1  0.8207      0.477 0.744 0.256
#> GSM601846     2  0.7299      0.850 0.204 0.796
#> GSM601861     1  0.8081      0.745 0.752 0.248
#> GSM601871     1  0.5842      0.772 0.860 0.140
#> GSM601751     1  0.4562      0.777 0.904 0.096
#> GSM601761     1  0.2423      0.757 0.960 0.040
#> GSM601766     1  0.4431      0.777 0.908 0.092
#> GSM601771     1  0.6801      0.759 0.820 0.180
#> GSM601776     1  0.9044      0.157 0.680 0.320
#> GSM601781     2  0.8861      0.810 0.304 0.696
#> GSM601791     1  0.6887      0.566 0.816 0.184
#> GSM601806     2  0.6887      0.843 0.184 0.816
#> GSM601811     1  0.0672      0.769 0.992 0.008
#> GSM601816     2  0.9170      0.808 0.332 0.668
#> GSM601821     1  0.7815      0.748 0.768 0.232
#> GSM601826     2  0.9209      0.806 0.336 0.664
#> GSM601836     1  0.0938      0.775 0.988 0.012
#> GSM601851     1  0.9661     -0.180 0.608 0.392
#> GSM601856     1  0.8016      0.457 0.756 0.244
#> GSM601866     1  0.2423      0.766 0.960 0.040

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM601752     1  0.0424     0.8358 0.992 0.008 0.000
#> GSM601782     3  0.6098     0.8433 0.056 0.176 0.768
#> GSM601792     1  0.0829     0.8393 0.984 0.004 0.012
#> GSM601797     1  0.1015     0.8391 0.980 0.008 0.012
#> GSM601827     3  0.6148     0.8192 0.148 0.076 0.776
#> GSM601837     2  0.5883     0.7746 0.092 0.796 0.112
#> GSM601842     2  0.4390     0.8418 0.148 0.840 0.012
#> GSM601857     3  0.4591     0.8811 0.032 0.120 0.848
#> GSM601867     3  0.7515     0.6204 0.100 0.220 0.680
#> GSM601747     2  0.6407     0.7478 0.080 0.760 0.160
#> GSM601757     3  0.5798     0.8479 0.040 0.184 0.776
#> GSM601762     2  0.2959     0.8498 0.100 0.900 0.000
#> GSM601767     2  0.0424     0.8555 0.008 0.992 0.000
#> GSM601772     2  0.0592     0.8569 0.012 0.988 0.000
#> GSM601777     1  0.5710     0.8230 0.804 0.116 0.080
#> GSM601787     3  0.6773     0.5049 0.024 0.340 0.636
#> GSM601802     1  0.3686     0.8184 0.860 0.140 0.000
#> GSM601807     3  0.3590     0.8083 0.076 0.028 0.896
#> GSM601812     3  0.4351     0.8765 0.004 0.168 0.828
#> GSM601817     3  0.4099     0.8842 0.008 0.140 0.852
#> GSM601822     1  0.4658     0.8283 0.856 0.076 0.068
#> GSM601832     2  0.3619     0.8321 0.136 0.864 0.000
#> GSM601847     1  0.3896     0.8250 0.864 0.128 0.008
#> GSM601852     3  0.4172     0.8799 0.004 0.156 0.840
#> GSM601862     3  0.3043     0.8749 0.008 0.084 0.908
#> GSM601753     1  0.1163     0.8398 0.972 0.028 0.000
#> GSM601783     3  0.6882     0.8131 0.172 0.096 0.732
#> GSM601793     1  0.0829     0.8393 0.984 0.004 0.012
#> GSM601798     1  0.0747     0.8344 0.984 0.016 0.000
#> GSM601828     3  0.3918     0.8824 0.004 0.140 0.856
#> GSM601838     2  0.3995     0.8035 0.016 0.868 0.116
#> GSM601843     2  0.4139     0.8529 0.124 0.860 0.016
#> GSM601858     2  0.2846     0.8498 0.020 0.924 0.056
#> GSM601868     3  0.4256     0.8242 0.096 0.036 0.868
#> GSM601748     3  0.3918     0.8837 0.004 0.140 0.856
#> GSM601758     3  0.4172     0.8799 0.004 0.156 0.840
#> GSM601763     2  0.6332     0.7920 0.144 0.768 0.088
#> GSM601768     2  0.3193     0.8530 0.100 0.896 0.004
#> GSM601773     2  0.1753     0.8640 0.048 0.952 0.000
#> GSM601778     1  0.4982     0.8252 0.840 0.064 0.096
#> GSM601788     2  0.3267     0.8495 0.044 0.912 0.044
#> GSM601803     1  0.3879     0.8136 0.848 0.152 0.000
#> GSM601808     3  0.2527     0.8580 0.020 0.044 0.936
#> GSM601813     3  0.4802     0.8759 0.020 0.156 0.824
#> GSM601818     3  0.4326     0.8793 0.012 0.144 0.844
#> GSM601823     1  0.6886     0.7515 0.728 0.088 0.184
#> GSM601833     2  0.2165     0.8597 0.064 0.936 0.000
#> GSM601848     1  0.5343     0.7934 0.816 0.052 0.132
#> GSM601853     3  0.2050     0.8531 0.020 0.028 0.952
#> GSM601863     3  0.3454     0.8807 0.008 0.104 0.888
#> GSM601754     1  0.0424     0.8358 0.992 0.008 0.000
#> GSM601784     2  0.2448     0.8569 0.076 0.924 0.000
#> GSM601794     1  0.0829     0.8393 0.984 0.004 0.012
#> GSM601799     1  0.0892     0.8387 0.980 0.020 0.000
#> GSM601829     1  0.4755     0.7438 0.808 0.008 0.184
#> GSM601839     2  0.3995     0.8035 0.016 0.868 0.116
#> GSM601844     1  0.5105     0.7809 0.828 0.048 0.124
#> GSM601859     2  0.4293     0.8372 0.164 0.832 0.004
#> GSM601869     3  0.6208     0.8237 0.152 0.076 0.772
#> GSM601749     3  0.4413     0.8794 0.008 0.160 0.832
#> GSM601759     3  0.3983     0.8832 0.004 0.144 0.852
#> GSM601764     2  0.6653     0.7788 0.136 0.752 0.112
#> GSM601769     2  0.0237     0.8548 0.004 0.996 0.000
#> GSM601774     2  0.0424     0.8555 0.008 0.992 0.000
#> GSM601779     1  0.6911     0.7453 0.728 0.092 0.180
#> GSM601789     2  0.1585     0.8512 0.008 0.964 0.028
#> GSM601804     1  0.4261     0.8168 0.848 0.140 0.012
#> GSM601809     2  0.7396    -0.1970 0.032 0.488 0.480
#> GSM601814     2  0.0747     0.8581 0.016 0.984 0.000
#> GSM601819     3  0.5109     0.8389 0.008 0.212 0.780
#> GSM601824     1  0.7328     0.5815 0.612 0.344 0.044
#> GSM601834     2  0.2165     0.8593 0.064 0.936 0.000
#> GSM601849     1  0.8522     0.6226 0.612 0.204 0.184
#> GSM601854     3  0.4351     0.8766 0.004 0.168 0.828
#> GSM601864     2  0.3995     0.8052 0.016 0.868 0.116
#> GSM601755     1  0.0424     0.8358 0.992 0.008 0.000
#> GSM601785     2  0.5254     0.7576 0.264 0.736 0.000
#> GSM601795     1  0.0661     0.8386 0.988 0.004 0.008
#> GSM601800     1  0.0424     0.8358 0.992 0.008 0.000
#> GSM601830     3  0.3532     0.7978 0.108 0.008 0.884
#> GSM601840     2  0.5420     0.7749 0.240 0.752 0.008
#> GSM601845     2  0.6404     0.6200 0.344 0.644 0.012
#> GSM601860     2  0.4349     0.8510 0.128 0.852 0.020
#> GSM601870     3  0.2384     0.8251 0.056 0.008 0.936
#> GSM601750     3  0.4172     0.8799 0.004 0.156 0.840
#> GSM601760     3  0.4663     0.8778 0.016 0.156 0.828
#> GSM601765     2  0.2959     0.8494 0.100 0.900 0.000
#> GSM601770     2  0.1163     0.8614 0.028 0.972 0.000
#> GSM601775     2  0.6372     0.7813 0.152 0.764 0.084
#> GSM601780     1  0.7963     0.6965 0.660 0.152 0.188
#> GSM601790     2  0.2749     0.8369 0.012 0.924 0.064
#> GSM601805     1  0.3941     0.8095 0.844 0.156 0.000
#> GSM601810     3  0.4618     0.8815 0.024 0.136 0.840
#> GSM601815     2  0.1399     0.8497 0.004 0.968 0.028
#> GSM601820     3  0.4172     0.8799 0.004 0.156 0.840
#> GSM601825     1  0.4047     0.8155 0.848 0.148 0.004
#> GSM601835     2  0.4277     0.8384 0.132 0.852 0.016
#> GSM601850     1  0.6349     0.7754 0.764 0.156 0.080
#> GSM601855     3  0.2063     0.8310 0.044 0.008 0.948
#> GSM601865     2  0.3359     0.8249 0.016 0.900 0.084
#> GSM601756     1  0.0424     0.8358 0.992 0.008 0.000
#> GSM601786     2  0.5650     0.7933 0.084 0.808 0.108
#> GSM601796     1  0.0983     0.8394 0.980 0.004 0.016
#> GSM601801     1  0.1289     0.8287 0.968 0.032 0.000
#> GSM601831     3  0.6062     0.8094 0.160 0.064 0.776
#> GSM601841     1  0.9387     0.3347 0.508 0.272 0.220
#> GSM601846     1  0.1751     0.8383 0.960 0.012 0.028
#> GSM601861     2  0.1636     0.8564 0.016 0.964 0.020
#> GSM601871     3  0.7479     0.5675 0.076 0.264 0.660
#> GSM601751     2  0.6804     0.7339 0.204 0.724 0.072
#> GSM601761     2  0.9937    -0.0203 0.296 0.388 0.316
#> GSM601766     2  0.5136     0.8247 0.132 0.824 0.044
#> GSM601771     2  0.2173     0.8616 0.048 0.944 0.008
#> GSM601776     1  0.8868     0.5859 0.576 0.196 0.228
#> GSM601781     1  0.5408     0.8182 0.812 0.136 0.052
#> GSM601791     1  0.9531     0.3685 0.468 0.324 0.208
#> GSM601806     1  0.4235     0.7990 0.824 0.176 0.000
#> GSM601811     3  0.4591     0.8789 0.032 0.120 0.848
#> GSM601816     1  0.4379     0.8365 0.868 0.060 0.072
#> GSM601821     2  0.1905     0.8540 0.016 0.956 0.028
#> GSM601826     1  0.6705     0.7593 0.740 0.084 0.176
#> GSM601836     2  0.6955     0.7477 0.172 0.728 0.100
#> GSM601851     1  0.8408     0.6339 0.612 0.144 0.244
#> GSM601856     3  0.2810     0.8525 0.036 0.036 0.928
#> GSM601866     3  0.3918     0.8837 0.004 0.140 0.856

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM601752     4  0.2611     0.7690 0.000 0.008 0.096 0.896
#> GSM601782     1  0.6566     0.4992 0.684 0.192 0.088 0.036
#> GSM601792     4  0.2275     0.7635 0.048 0.004 0.020 0.928
#> GSM601797     4  0.1256     0.7739 0.000 0.008 0.028 0.964
#> GSM601827     1  0.5540     0.3321 0.728 0.000 0.108 0.164
#> GSM601837     2  0.5421     0.4977 0.008 0.648 0.328 0.016
#> GSM601842     2  0.4093     0.7396 0.032 0.836 0.012 0.120
#> GSM601857     1  0.2207     0.5849 0.932 0.004 0.040 0.024
#> GSM601867     3  0.7684     0.5342 0.304 0.152 0.524 0.020
#> GSM601747     2  0.5941     0.3292 0.376 0.584 0.004 0.036
#> GSM601757     1  0.5546     0.5235 0.736 0.188 0.064 0.012
#> GSM601762     2  0.3264     0.7430 0.024 0.876 0.004 0.096
#> GSM601767     2  0.2075     0.7454 0.016 0.936 0.004 0.044
#> GSM601772     2  0.1635     0.7422 0.008 0.948 0.000 0.044
#> GSM601777     4  0.4416     0.7549 0.040 0.100 0.028 0.832
#> GSM601787     3  0.7889     0.4798 0.224 0.276 0.488 0.012
#> GSM601802     4  0.5389     0.7576 0.040 0.084 0.092 0.784
#> GSM601807     3  0.5919     0.6033 0.404 0.012 0.564 0.020
#> GSM601812     1  0.1182     0.6114 0.968 0.016 0.016 0.000
#> GSM601817     1  0.1706     0.5787 0.948 0.016 0.036 0.000
#> GSM601822     4  0.3575     0.7671 0.092 0.028 0.012 0.868
#> GSM601832     2  0.3205     0.7417 0.024 0.872 0.000 0.104
#> GSM601847     4  0.5151     0.7661 0.048 0.064 0.088 0.800
#> GSM601852     1  0.4149     0.5601 0.804 0.168 0.028 0.000
#> GSM601862     1  0.4567     0.3540 0.748 0.012 0.236 0.004
#> GSM601753     4  0.2610     0.7709 0.000 0.012 0.088 0.900
#> GSM601783     1  0.6903     0.4940 0.684 0.136 0.064 0.116
#> GSM601793     4  0.2002     0.7619 0.044 0.000 0.020 0.936
#> GSM601798     4  0.2480     0.7707 0.000 0.008 0.088 0.904
#> GSM601828     1  0.1516     0.6094 0.960 0.016 0.016 0.008
#> GSM601838     2  0.5060     0.5241 0.008 0.680 0.304 0.008
#> GSM601843     2  0.4093     0.7399 0.032 0.836 0.012 0.120
#> GSM601858     2  0.6397     0.6182 0.044 0.676 0.232 0.048
#> GSM601868     1  0.5228     0.1624 0.700 0.004 0.268 0.028
#> GSM601748     1  0.0779     0.6013 0.980 0.016 0.004 0.000
#> GSM601758     1  0.1356     0.6127 0.960 0.032 0.008 0.000
#> GSM601763     2  0.8209     0.3909 0.276 0.524 0.060 0.140
#> GSM601768     2  0.3349     0.7454 0.052 0.880 0.004 0.064
#> GSM601773     2  0.2297     0.7457 0.024 0.928 0.004 0.044
#> GSM601778     4  0.4587     0.7454 0.140 0.020 0.032 0.808
#> GSM601788     2  0.3974     0.7319 0.040 0.844 0.008 0.108
#> GSM601803     4  0.5694     0.7484 0.040 0.104 0.092 0.764
#> GSM601808     1  0.5272    -0.2340 0.608 0.008 0.380 0.004
#> GSM601813     1  0.5021     0.5357 0.756 0.180 0.064 0.000
#> GSM601818     1  0.2928     0.5448 0.896 0.024 0.076 0.004
#> GSM601823     4  0.6906     0.4849 0.312 0.012 0.096 0.580
#> GSM601833     2  0.2413     0.7475 0.020 0.916 0.000 0.064
#> GSM601848     4  0.5739     0.6427 0.200 0.008 0.076 0.716
#> GSM601853     1  0.5299    -0.2928 0.600 0.004 0.388 0.008
#> GSM601863     1  0.1610     0.5882 0.952 0.016 0.032 0.000
#> GSM601754     4  0.2546     0.7700 0.000 0.008 0.092 0.900
#> GSM601784     2  0.3593     0.7433 0.024 0.868 0.016 0.092
#> GSM601794     4  0.2002     0.7619 0.044 0.000 0.020 0.936
#> GSM601799     4  0.2861     0.7705 0.000 0.016 0.096 0.888
#> GSM601829     4  0.5051     0.7030 0.132 0.000 0.100 0.768
#> GSM601839     2  0.5060     0.5228 0.008 0.680 0.304 0.008
#> GSM601844     4  0.8335     0.3599 0.212 0.144 0.092 0.552
#> GSM601859     2  0.4331     0.7334 0.028 0.820 0.016 0.136
#> GSM601869     1  0.5665     0.3113 0.716 0.000 0.176 0.108
#> GSM601749     1  0.4079     0.5531 0.800 0.180 0.020 0.000
#> GSM601759     1  0.0804     0.6063 0.980 0.012 0.008 0.000
#> GSM601764     2  0.8100     0.0527 0.404 0.440 0.064 0.092
#> GSM601769     2  0.1114     0.7324 0.004 0.972 0.008 0.016
#> GSM601774     2  0.1767     0.7431 0.012 0.944 0.000 0.044
#> GSM601779     4  0.7102     0.3551 0.368 0.012 0.096 0.524
#> GSM601789     2  0.4853     0.6211 0.012 0.768 0.192 0.028
#> GSM601804     4  0.5415     0.7660 0.064 0.052 0.100 0.784
#> GSM601809     1  0.7655     0.1991 0.556 0.256 0.164 0.024
#> GSM601814     2  0.0376     0.7273 0.004 0.992 0.004 0.000
#> GSM601819     1  0.4756     0.5563 0.784 0.144 0.072 0.000
#> GSM601824     4  0.8450     0.5804 0.220 0.100 0.140 0.540
#> GSM601834     2  0.2310     0.7471 0.008 0.920 0.004 0.068
#> GSM601849     1  0.9393     0.1650 0.404 0.204 0.124 0.268
#> GSM601854     1  0.3626     0.5530 0.812 0.184 0.004 0.000
#> GSM601864     2  0.5271     0.5136 0.016 0.676 0.300 0.008
#> GSM601755     4  0.2546     0.7700 0.000 0.008 0.092 0.900
#> GSM601785     2  0.5499     0.6426 0.012 0.680 0.024 0.284
#> GSM601795     4  0.1114     0.7729 0.004 0.008 0.016 0.972
#> GSM601800     4  0.2546     0.7700 0.000 0.008 0.092 0.900
#> GSM601830     3  0.5764     0.5519 0.452 0.000 0.520 0.028
#> GSM601840     2  0.7373     0.5243 0.124 0.560 0.020 0.296
#> GSM601845     2  0.7674     0.3982 0.092 0.496 0.040 0.372
#> GSM601860     2  0.4360     0.7325 0.032 0.816 0.012 0.140
#> GSM601870     3  0.5473     0.6076 0.408 0.004 0.576 0.012
#> GSM601750     1  0.0937     0.6099 0.976 0.012 0.012 0.000
#> GSM601760     1  0.2413     0.6057 0.924 0.036 0.036 0.004
#> GSM601765     2  0.2662     0.7455 0.016 0.900 0.000 0.084
#> GSM601770     2  0.1767     0.7442 0.012 0.944 0.000 0.044
#> GSM601775     2  0.8463     0.3957 0.248 0.500 0.056 0.196
#> GSM601780     4  0.7388     0.3036 0.376 0.012 0.120 0.492
#> GSM601790     2  0.4533     0.5681 0.012 0.752 0.232 0.004
#> GSM601805     4  0.5914     0.7371 0.040 0.120 0.092 0.748
#> GSM601810     1  0.2234     0.5750 0.924 0.008 0.064 0.004
#> GSM601815     2  0.4098     0.5928 0.012 0.784 0.204 0.000
#> GSM601820     1  0.0524     0.6099 0.988 0.008 0.004 0.000
#> GSM601825     4  0.5970     0.7449 0.048 0.112 0.092 0.748
#> GSM601835     2  0.4767     0.6825 0.028 0.768 0.008 0.196
#> GSM601850     4  0.8099     0.4196 0.220 0.196 0.044 0.540
#> GSM601855     3  0.5388     0.5543 0.456 0.000 0.532 0.012
#> GSM601865     2  0.5024     0.5584 0.020 0.724 0.248 0.008
#> GSM601756     4  0.2546     0.7700 0.000 0.008 0.092 0.900
#> GSM601786     2  0.5664     0.4874 0.012 0.636 0.332 0.020
#> GSM601796     4  0.2089     0.7621 0.048 0.000 0.020 0.932
#> GSM601801     4  0.2676     0.7706 0.000 0.012 0.092 0.896
#> GSM601831     1  0.5326     0.3684 0.748 0.000 0.136 0.116
#> GSM601841     4  0.8848     0.1067 0.264 0.200 0.076 0.460
#> GSM601846     4  0.2307     0.7720 0.016 0.008 0.048 0.928
#> GSM601861     2  0.3533     0.6979 0.024 0.864 0.104 0.008
#> GSM601871     3  0.7414     0.5676 0.212 0.192 0.580 0.016
#> GSM601751     2  0.6662     0.6192 0.080 0.660 0.032 0.228
#> GSM601761     1  0.9003     0.3462 0.484 0.216 0.128 0.172
#> GSM601766     2  0.6573     0.5609 0.208 0.644 0.004 0.144
#> GSM601771     2  0.4060     0.7328 0.048 0.836 0.004 0.112
#> GSM601776     1  0.9413     0.0428 0.372 0.188 0.124 0.316
#> GSM601781     4  0.5579     0.7385 0.072 0.140 0.028 0.760
#> GSM601791     1  0.9374     0.1184 0.384 0.220 0.108 0.288
#> GSM601806     4  0.6175     0.7114 0.032 0.156 0.092 0.720
#> GSM601811     1  0.3997     0.4355 0.816 0.012 0.164 0.008
#> GSM601816     4  0.4414     0.7571 0.120 0.020 0.036 0.824
#> GSM601821     2  0.4345     0.6240 0.020 0.788 0.188 0.004
#> GSM601826     4  0.6399     0.5580 0.280 0.008 0.080 0.632
#> GSM601836     2  0.8435     0.0191 0.392 0.408 0.052 0.148
#> GSM601851     4  0.8300     0.1713 0.392 0.056 0.124 0.428
#> GSM601856     1  0.5443    -0.4603 0.532 0.004 0.456 0.008
#> GSM601866     1  0.1174     0.5958 0.968 0.020 0.012 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM601752     4  0.1952      0.684 0.000 0.084 0.000 0.912 0.004
#> GSM601782     3  0.6515      0.573 0.108 0.140 0.664 0.020 0.068
#> GSM601792     4  0.4095      0.494 0.228 0.000 0.008 0.748 0.016
#> GSM601797     4  0.3381      0.617 0.116 0.016 0.004 0.848 0.016
#> GSM601827     3  0.5076      0.703 0.036 0.000 0.748 0.116 0.100
#> GSM601837     5  0.4037      0.667 0.004 0.244 0.004 0.008 0.740
#> GSM601842     2  0.2637      0.791 0.060 0.900 0.004 0.028 0.008
#> GSM601857     3  0.3443      0.763 0.100 0.008 0.852 0.008 0.032
#> GSM601867     5  0.6603      0.308 0.228 0.020 0.176 0.004 0.572
#> GSM601747     2  0.6666      0.318 0.064 0.544 0.328 0.056 0.008
#> GSM601757     3  0.5260      0.567 0.204 0.108 0.684 0.000 0.004
#> GSM601762     2  0.0771      0.801 0.020 0.976 0.000 0.004 0.000
#> GSM601767     2  0.0579      0.795 0.008 0.984 0.000 0.000 0.008
#> GSM601772     2  0.0324      0.795 0.004 0.992 0.000 0.000 0.004
#> GSM601777     4  0.6907      0.432 0.244 0.092 0.044 0.592 0.028
#> GSM601787     5  0.6755      0.419 0.240 0.052 0.136 0.000 0.572
#> GSM601802     4  0.4611      0.644 0.096 0.132 0.004 0.764 0.004
#> GSM601807     3  0.7160      0.290 0.280 0.004 0.356 0.008 0.352
#> GSM601812     3  0.0451      0.778 0.008 0.004 0.988 0.000 0.000
#> GSM601817     3  0.0963      0.777 0.036 0.000 0.964 0.000 0.000
#> GSM601822     4  0.5193      0.511 0.260 0.048 0.012 0.676 0.004
#> GSM601832     2  0.1082      0.801 0.028 0.964 0.000 0.000 0.008
#> GSM601847     4  0.5017      0.644 0.136 0.116 0.008 0.736 0.004
#> GSM601852     3  0.0794      0.776 0.028 0.000 0.972 0.000 0.000
#> GSM601862     3  0.4836      0.678 0.188 0.000 0.716 0.000 0.096
#> GSM601753     4  0.2678      0.684 0.016 0.100 0.004 0.880 0.000
#> GSM601783     3  0.4303      0.715 0.064 0.004 0.800 0.116 0.016
#> GSM601793     4  0.3819      0.525 0.208 0.000 0.004 0.772 0.016
#> GSM601798     4  0.1952      0.685 0.000 0.084 0.004 0.912 0.000
#> GSM601828     3  0.0613      0.779 0.008 0.000 0.984 0.004 0.004
#> GSM601838     5  0.3920      0.665 0.004 0.268 0.004 0.000 0.724
#> GSM601843     2  0.2654      0.792 0.044 0.904 0.004 0.032 0.016
#> GSM601858     5  0.5616      0.519 0.040 0.360 0.024 0.000 0.576
#> GSM601868     3  0.6381      0.561 0.196 0.000 0.556 0.008 0.240
#> GSM601748     3  0.0510      0.779 0.016 0.000 0.984 0.000 0.000
#> GSM601758     3  0.0880      0.777 0.032 0.000 0.968 0.000 0.000
#> GSM601763     1  0.6657      0.248 0.504 0.368 0.028 0.092 0.008
#> GSM601768     2  0.2497      0.773 0.112 0.880 0.004 0.004 0.000
#> GSM601773     2  0.0833      0.799 0.016 0.976 0.004 0.000 0.004
#> GSM601778     4  0.6201      0.358 0.292 0.024 0.072 0.600 0.012
#> GSM601788     2  0.2474      0.783 0.040 0.908 0.040 0.000 0.012
#> GSM601803     4  0.4703      0.635 0.076 0.168 0.004 0.748 0.004
#> GSM601808     3  0.6075      0.585 0.216 0.004 0.592 0.000 0.188
#> GSM601813     3  0.1626      0.779 0.044 0.000 0.940 0.000 0.016
#> GSM601818     3  0.3064      0.758 0.108 0.000 0.856 0.000 0.036
#> GSM601823     1  0.4944      0.690 0.668 0.008 0.024 0.292 0.008
#> GSM601833     2  0.0671      0.799 0.016 0.980 0.000 0.000 0.004
#> GSM601848     1  0.5023      0.571 0.592 0.008 0.012 0.380 0.008
#> GSM601853     3  0.5993      0.579 0.232 0.000 0.584 0.000 0.184
#> GSM601863     3  0.3055      0.744 0.144 0.000 0.840 0.000 0.016
#> GSM601754     4  0.1952      0.684 0.000 0.084 0.000 0.912 0.004
#> GSM601784     2  0.2820      0.789 0.052 0.892 0.004 0.044 0.008
#> GSM601794     4  0.3786      0.530 0.204 0.000 0.004 0.776 0.016
#> GSM601799     4  0.3423      0.680 0.040 0.108 0.008 0.844 0.000
#> GSM601829     4  0.5503      0.406 0.264 0.012 0.052 0.660 0.012
#> GSM601839     5  0.3920      0.666 0.004 0.268 0.004 0.000 0.724
#> GSM601844     1  0.5202      0.431 0.540 0.004 0.016 0.428 0.012
#> GSM601859     2  0.2910      0.785 0.052 0.884 0.004 0.056 0.004
#> GSM601869     3  0.5655      0.700 0.068 0.000 0.712 0.108 0.112
#> GSM601749     3  0.0963      0.775 0.036 0.000 0.964 0.000 0.000
#> GSM601759     3  0.0510      0.779 0.016 0.000 0.984 0.000 0.000
#> GSM601764     1  0.7224      0.302 0.496 0.332 0.084 0.080 0.008
#> GSM601769     2  0.1430      0.763 0.004 0.944 0.000 0.000 0.052
#> GSM601774     2  0.0451      0.797 0.008 0.988 0.000 0.000 0.004
#> GSM601779     1  0.4964      0.698 0.668 0.008 0.032 0.288 0.004
#> GSM601789     2  0.4440     -0.302 0.004 0.528 0.000 0.000 0.468
#> GSM601804     4  0.5252      0.616 0.160 0.120 0.012 0.708 0.000
#> GSM601809     3  0.7121      0.310 0.064 0.260 0.528 0.000 0.148
#> GSM601814     2  0.1831      0.738 0.004 0.920 0.000 0.000 0.076
#> GSM601819     3  0.4674      0.462 0.316 0.024 0.656 0.000 0.004
#> GSM601824     4  0.6160     -0.185 0.432 0.092 0.012 0.464 0.000
#> GSM601834     2  0.0693      0.793 0.008 0.980 0.000 0.000 0.012
#> GSM601849     1  0.4962      0.698 0.704 0.012 0.056 0.228 0.000
#> GSM601854     3  0.0898      0.779 0.020 0.000 0.972 0.000 0.008
#> GSM601864     5  0.4275      0.656 0.008 0.288 0.008 0.000 0.696
#> GSM601755     4  0.1952      0.684 0.000 0.084 0.000 0.912 0.004
#> GSM601785     2  0.4360      0.693 0.044 0.780 0.008 0.160 0.008
#> GSM601795     4  0.3421      0.571 0.164 0.000 0.004 0.816 0.016
#> GSM601800     4  0.1952      0.684 0.000 0.084 0.000 0.912 0.004
#> GSM601830     3  0.7157      0.313 0.280 0.004 0.368 0.008 0.340
#> GSM601840     2  0.4553      0.714 0.076 0.784 0.012 0.120 0.008
#> GSM601845     2  0.6309      0.515 0.140 0.624 0.016 0.208 0.012
#> GSM601860     2  0.3045      0.787 0.068 0.880 0.004 0.036 0.012
#> GSM601870     5  0.7144     -0.294 0.280 0.004 0.324 0.008 0.384
#> GSM601750     3  0.0290      0.778 0.008 0.000 0.992 0.000 0.000
#> GSM601760     3  0.3328      0.698 0.176 0.008 0.812 0.000 0.004
#> GSM601765     2  0.0771      0.799 0.020 0.976 0.000 0.000 0.004
#> GSM601770     2  0.0566      0.798 0.012 0.984 0.000 0.000 0.004
#> GSM601775     2  0.5270      0.394 0.368 0.592 0.020 0.012 0.008
#> GSM601780     1  0.4829      0.710 0.684 0.012 0.032 0.272 0.000
#> GSM601790     5  0.4389      0.588 0.004 0.368 0.004 0.000 0.624
#> GSM601805     4  0.4735      0.625 0.072 0.196 0.004 0.728 0.000
#> GSM601810     3  0.2102      0.776 0.012 0.004 0.916 0.000 0.068
#> GSM601815     5  0.4367      0.518 0.004 0.416 0.000 0.000 0.580
#> GSM601820     3  0.0510      0.778 0.016 0.000 0.984 0.000 0.000
#> GSM601825     4  0.5200      0.597 0.088 0.208 0.004 0.696 0.004
#> GSM601835     2  0.3176      0.781 0.040 0.884 0.012 0.032 0.032
#> GSM601850     1  0.5184      0.666 0.656 0.032 0.016 0.292 0.004
#> GSM601855     3  0.7159      0.297 0.280 0.004 0.360 0.008 0.348
#> GSM601865     5  0.4362      0.598 0.004 0.360 0.004 0.000 0.632
#> GSM601756     4  0.1952      0.684 0.000 0.084 0.000 0.912 0.004
#> GSM601786     5  0.4145      0.667 0.012 0.244 0.004 0.004 0.736
#> GSM601796     4  0.3819      0.525 0.208 0.000 0.004 0.772 0.016
#> GSM601801     4  0.1952      0.685 0.000 0.084 0.004 0.912 0.000
#> GSM601831     3  0.4754      0.712 0.016 0.000 0.760 0.112 0.112
#> GSM601841     4  0.8857     -0.182 0.296 0.160 0.216 0.308 0.020
#> GSM601846     4  0.4894      0.630 0.112 0.040 0.016 0.780 0.052
#> GSM601861     2  0.4759      0.230 0.024 0.636 0.004 0.000 0.336
#> GSM601871     5  0.6355      0.376 0.248 0.024 0.124 0.004 0.600
#> GSM601751     2  0.4941      0.686 0.140 0.752 0.008 0.088 0.012
#> GSM601761     1  0.5969      0.509 0.608 0.008 0.244 0.140 0.000
#> GSM601766     2  0.4533      0.667 0.140 0.780 0.008 0.060 0.012
#> GSM601771     2  0.2366      0.792 0.068 0.908 0.004 0.004 0.016
#> GSM601776     1  0.4857      0.711 0.692 0.012 0.028 0.264 0.004
#> GSM601781     4  0.6388      0.285 0.312 0.136 0.008 0.540 0.004
#> GSM601791     1  0.4905      0.711 0.692 0.016 0.036 0.256 0.000
#> GSM601806     4  0.4743      0.612 0.056 0.208 0.004 0.728 0.004
#> GSM601811     3  0.4374      0.726 0.072 0.008 0.776 0.000 0.144
#> GSM601816     4  0.5348      0.105 0.396 0.016 0.016 0.564 0.008
#> GSM601821     2  0.4538     -0.157 0.004 0.564 0.004 0.000 0.428
#> GSM601826     1  0.5156      0.656 0.644 0.016 0.020 0.312 0.008
#> GSM601836     1  0.7362      0.134 0.428 0.396 0.084 0.084 0.008
#> GSM601851     1  0.4758      0.711 0.696 0.012 0.032 0.260 0.000
#> GSM601856     3  0.6500      0.510 0.216 0.004 0.516 0.000 0.264
#> GSM601866     3  0.0963      0.780 0.036 0.000 0.964 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM601752     4  0.0260    0.83447 0.000 0.008 0.000 0.992 0.000 0.000
#> GSM601782     1  0.2145    0.80466 0.912 0.000 0.056 0.004 0.020 0.008
#> GSM601792     6  0.5778    0.28290 0.000 0.000 0.020 0.412 0.104 0.464
#> GSM601797     4  0.5051    0.45741 0.000 0.000 0.020 0.672 0.104 0.204
#> GSM601827     1  0.5446    0.64851 0.720 0.000 0.072 0.080 0.080 0.048
#> GSM601837     5  0.3065    0.81977 0.000 0.052 0.100 0.004 0.844 0.000
#> GSM601842     2  0.2164    0.82975 0.000 0.916 0.008 0.044 0.020 0.012
#> GSM601857     1  0.2948    0.73752 0.836 0.008 0.144 0.000 0.004 0.008
#> GSM601867     3  0.3790    0.60585 0.016 0.000 0.716 0.004 0.264 0.000
#> GSM601747     1  0.5125    0.27073 0.568 0.368 0.008 0.000 0.012 0.044
#> GSM601757     1  0.2805    0.71265 0.812 0.000 0.004 0.000 0.000 0.184
#> GSM601762     2  0.0891    0.83591 0.000 0.968 0.000 0.024 0.008 0.000
#> GSM601767     2  0.0547    0.83559 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM601772     2  0.0547    0.83559 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM601777     4  0.6742    0.07814 0.000 0.112 0.048 0.448 0.024 0.368
#> GSM601787     3  0.4627    0.54192 0.012 0.016 0.660 0.004 0.296 0.012
#> GSM601802     4  0.2723    0.80869 0.000 0.096 0.008 0.872 0.016 0.008
#> GSM601807     3  0.1036    0.73152 0.008 0.000 0.964 0.000 0.024 0.004
#> GSM601812     1  0.0146    0.82002 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM601817     1  0.0632    0.81494 0.976 0.000 0.024 0.000 0.000 0.000
#> GSM601822     6  0.5456    0.14695 0.000 0.052 0.004 0.428 0.024 0.492
#> GSM601832     2  0.1710    0.83717 0.000 0.936 0.000 0.020 0.028 0.016
#> GSM601847     4  0.4611    0.70198 0.000 0.092 0.008 0.740 0.016 0.144
#> GSM601852     1  0.0405    0.82123 0.988 0.000 0.008 0.000 0.000 0.004
#> GSM601862     1  0.3868   -0.19883 0.504 0.000 0.496 0.000 0.000 0.000
#> GSM601753     4  0.0924    0.83375 0.000 0.008 0.008 0.972 0.008 0.004
#> GSM601783     1  0.4266    0.72942 0.792 0.000 0.016 0.032 0.088 0.072
#> GSM601793     6  0.5768    0.30746 0.000 0.000 0.020 0.400 0.104 0.476
#> GSM601798     4  0.0405    0.83497 0.000 0.008 0.004 0.988 0.000 0.000
#> GSM601828     1  0.0458    0.82082 0.984 0.000 0.016 0.000 0.000 0.000
#> GSM601838     5  0.2997    0.86284 0.000 0.096 0.060 0.000 0.844 0.000
#> GSM601843     2  0.2195    0.82946 0.000 0.912 0.008 0.052 0.020 0.008
#> GSM601858     5  0.4260    0.63232 0.000 0.332 0.012 0.004 0.644 0.008
#> GSM601868     3  0.3894    0.50365 0.324 0.000 0.664 0.000 0.008 0.004
#> GSM601748     1  0.0000    0.81997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601758     1  0.0632    0.81739 0.976 0.000 0.000 0.000 0.000 0.024
#> GSM601763     6  0.4139    0.35466 0.008 0.280 0.008 0.000 0.012 0.692
#> GSM601768     2  0.1788    0.82123 0.000 0.916 0.004 0.000 0.004 0.076
#> GSM601773     2  0.0603    0.83872 0.000 0.980 0.000 0.004 0.016 0.000
#> GSM601778     6  0.6406    0.34295 0.072 0.028 0.012 0.336 0.028 0.524
#> GSM601788     2  0.1515    0.83831 0.000 0.944 0.008 0.000 0.028 0.020
#> GSM601803     4  0.2846    0.80113 0.000 0.116 0.008 0.856 0.016 0.004
#> GSM601808     3  0.3198    0.65988 0.260 0.000 0.740 0.000 0.000 0.000
#> GSM601813     1  0.0717    0.82156 0.976 0.000 0.008 0.000 0.000 0.016
#> GSM601818     1  0.1663    0.78353 0.912 0.000 0.088 0.000 0.000 0.000
#> GSM601823     6  0.0912    0.66534 0.008 0.000 0.004 0.004 0.012 0.972
#> GSM601833     2  0.0603    0.83732 0.000 0.980 0.000 0.000 0.016 0.004
#> GSM601848     6  0.2146    0.66064 0.008 0.000 0.008 0.044 0.024 0.916
#> GSM601853     3  0.3706    0.46987 0.380 0.000 0.620 0.000 0.000 0.000
#> GSM601863     1  0.3050    0.58091 0.764 0.000 0.236 0.000 0.000 0.000
#> GSM601754     4  0.0405    0.83400 0.000 0.008 0.000 0.988 0.000 0.004
#> GSM601784     2  0.2319    0.82398 0.000 0.904 0.008 0.060 0.020 0.008
#> GSM601794     6  0.5775    0.29231 0.000 0.000 0.020 0.408 0.104 0.468
#> GSM601799     4  0.1514    0.82897 0.000 0.016 0.004 0.948 0.016 0.016
#> GSM601829     6  0.6335    0.43863 0.040 0.000 0.028 0.300 0.088 0.544
#> GSM601839     5  0.3006    0.86047 0.000 0.092 0.064 0.000 0.844 0.000
#> GSM601844     6  0.3852    0.61238 0.000 0.000 0.020 0.088 0.092 0.800
#> GSM601859     2  0.2698    0.80669 0.000 0.872 0.008 0.096 0.020 0.004
#> GSM601869     1  0.4975    0.63845 0.700 0.000 0.184 0.028 0.084 0.004
#> GSM601749     1  0.1049    0.81631 0.960 0.000 0.008 0.000 0.000 0.032
#> GSM601759     1  0.0000    0.81997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601764     6  0.5098   -0.00348 0.036 0.416 0.008 0.000 0.012 0.528
#> GSM601769     2  0.0790    0.83178 0.000 0.968 0.000 0.000 0.032 0.000
#> GSM601774     2  0.0547    0.83559 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM601779     6  0.0551    0.66503 0.008 0.000 0.004 0.004 0.000 0.984
#> GSM601789     2  0.3843   -0.10751 0.000 0.548 0.000 0.000 0.452 0.000
#> GSM601804     4  0.4018    0.69220 0.000 0.056 0.004 0.760 0.004 0.176
#> GSM601809     1  0.4655    0.65283 0.736 0.056 0.176 0.004 0.012 0.016
#> GSM601814     2  0.2178    0.75566 0.000 0.868 0.000 0.000 0.132 0.000
#> GSM601819     1  0.2048    0.77241 0.880 0.000 0.000 0.000 0.000 0.120
#> GSM601824     6  0.3935    0.36921 0.000 0.016 0.004 0.292 0.000 0.688
#> GSM601834     2  0.0547    0.83559 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM601849     6  0.0508    0.66379 0.012 0.000 0.004 0.000 0.000 0.984
#> GSM601854     1  0.0291    0.82077 0.992 0.000 0.004 0.000 0.000 0.004
#> GSM601864     5  0.2934    0.86560 0.000 0.112 0.044 0.000 0.844 0.000
#> GSM601755     4  0.0260    0.83447 0.000 0.008 0.000 0.992 0.000 0.000
#> GSM601785     2  0.3625    0.75852 0.000 0.800 0.012 0.156 0.024 0.008
#> GSM601795     6  0.5448    0.26671 0.000 0.000 0.008 0.432 0.092 0.468
#> GSM601800     4  0.0260    0.83447 0.000 0.008 0.000 0.992 0.000 0.000
#> GSM601830     3  0.0603    0.73545 0.016 0.000 0.980 0.000 0.004 0.000
#> GSM601840     2  0.3662    0.77498 0.000 0.816 0.012 0.124 0.028 0.020
#> GSM601845     2  0.6650    0.42241 0.000 0.548 0.028 0.180 0.040 0.204
#> GSM601860     2  0.2908    0.80367 0.000 0.864 0.012 0.092 0.028 0.004
#> GSM601870     3  0.0806    0.73352 0.008 0.000 0.972 0.000 0.020 0.000
#> GSM601750     1  0.0000    0.81997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601760     1  0.2454    0.73866 0.840 0.000 0.000 0.000 0.000 0.160
#> GSM601765     2  0.1053    0.83863 0.000 0.964 0.000 0.004 0.020 0.012
#> GSM601770     2  0.0692    0.83650 0.000 0.976 0.000 0.000 0.020 0.004
#> GSM601775     2  0.4536    0.23054 0.004 0.512 0.008 0.000 0.012 0.464
#> GSM601780     6  0.0405    0.66398 0.008 0.000 0.004 0.000 0.000 0.988
#> GSM601790     5  0.2597    0.84639 0.000 0.176 0.000 0.000 0.824 0.000
#> GSM601805     4  0.3308    0.78506 0.000 0.140 0.008 0.824 0.016 0.012
#> GSM601810     1  0.1663    0.79013 0.912 0.000 0.088 0.000 0.000 0.000
#> GSM601815     5  0.3126    0.78903 0.000 0.248 0.000 0.000 0.752 0.000
#> GSM601820     1  0.0000    0.81997 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601825     4  0.3399    0.78293 0.000 0.140 0.008 0.820 0.016 0.016
#> GSM601835     2  0.3291    0.73748 0.000 0.832 0.016 0.124 0.024 0.004
#> GSM601850     6  0.3348    0.63501 0.004 0.052 0.008 0.068 0.016 0.852
#> GSM601855     3  0.1168    0.74057 0.028 0.000 0.956 0.000 0.016 0.000
#> GSM601865     5  0.2595    0.85272 0.000 0.160 0.004 0.000 0.836 0.000
#> GSM601756     4  0.0260    0.83447 0.000 0.008 0.000 0.992 0.000 0.000
#> GSM601786     5  0.3549    0.82227 0.000 0.060 0.100 0.008 0.824 0.008
#> GSM601796     6  0.5759    0.31894 0.000 0.000 0.020 0.392 0.104 0.484
#> GSM601801     4  0.0405    0.83497 0.000 0.008 0.004 0.988 0.000 0.000
#> GSM601831     1  0.4065    0.73576 0.804 0.000 0.064 0.032 0.088 0.012
#> GSM601841     1  0.7292   -0.06699 0.396 0.004 0.024 0.104 0.096 0.376
#> GSM601846     4  0.5771    0.43385 0.000 0.020 0.072 0.632 0.044 0.232
#> GSM601861     2  0.3273    0.64354 0.000 0.776 0.008 0.004 0.212 0.000
#> GSM601871     3  0.3969    0.60349 0.012 0.000 0.708 0.004 0.268 0.008
#> GSM601751     2  0.4057    0.77140 0.000 0.804 0.012 0.092 0.032 0.060
#> GSM601761     6  0.3163    0.47595 0.232 0.000 0.004 0.000 0.000 0.764
#> GSM601766     2  0.3529    0.72474 0.000 0.788 0.008 0.000 0.028 0.176
#> GSM601771     2  0.1036    0.83672 0.000 0.964 0.008 0.000 0.024 0.004
#> GSM601776     6  0.0665    0.66388 0.008 0.000 0.004 0.000 0.008 0.980
#> GSM601781     6  0.5967    0.35100 0.004 0.144 0.000 0.288 0.020 0.544
#> GSM601791     6  0.0767    0.66434 0.008 0.000 0.004 0.000 0.012 0.976
#> GSM601806     4  0.3073    0.77935 0.000 0.152 0.008 0.824 0.016 0.000
#> GSM601811     1  0.3314    0.62329 0.740 0.004 0.256 0.000 0.000 0.000
#> GSM601816     6  0.5095    0.54066 0.008 0.012 0.012 0.228 0.060 0.680
#> GSM601821     2  0.3961    0.00758 0.000 0.556 0.004 0.000 0.440 0.000
#> GSM601826     6  0.1223    0.66539 0.008 0.000 0.004 0.012 0.016 0.960
#> GSM601836     6  0.4855    0.00316 0.008 0.428 0.016 0.000 0.016 0.532
#> GSM601851     6  0.0551    0.66340 0.008 0.000 0.004 0.000 0.004 0.984
#> GSM601856     3  0.3221    0.64253 0.264 0.000 0.736 0.000 0.000 0.000
#> GSM601866     1  0.0146    0.82025 0.996 0.000 0.004 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n time(p) gender(p) k
#> CV:mclust 111   0.752   0.03012 2
#> CV:mclust 121   0.602   0.38016 3
#> CV:mclust  93   0.498   0.00556 4
#> CV:mclust  99   0.597   0.00150 5
#> CV:mclust 100   0.865   0.05616 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 125 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.881           0.911       0.961         0.5017 0.496   0.496
#> 3 3 0.455           0.624       0.753         0.3042 0.796   0.611
#> 4 4 0.412           0.505       0.700         0.1310 0.818   0.534
#> 5 5 0.486           0.415       0.593         0.0706 0.911   0.684
#> 6 6 0.522           0.330       0.526         0.0452 0.858   0.466

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM601752     2  0.0000      0.979 0.000 1.000
#> GSM601782     1  0.0000      0.939 1.000 0.000
#> GSM601792     1  0.0000      0.939 1.000 0.000
#> GSM601797     2  0.2043      0.954 0.032 0.968
#> GSM601827     1  0.0000      0.939 1.000 0.000
#> GSM601837     2  0.0000      0.979 0.000 1.000
#> GSM601842     2  0.0000      0.979 0.000 1.000
#> GSM601857     1  0.0000      0.939 1.000 0.000
#> GSM601867     2  0.4298      0.897 0.088 0.912
#> GSM601747     1  0.8144      0.672 0.748 0.252
#> GSM601757     1  0.0000      0.939 1.000 0.000
#> GSM601762     2  0.0000      0.979 0.000 1.000
#> GSM601767     2  0.0000      0.979 0.000 1.000
#> GSM601772     2  0.0000      0.979 0.000 1.000
#> GSM601777     2  0.5178      0.864 0.116 0.884
#> GSM601787     2  0.0672      0.973 0.008 0.992
#> GSM601802     2  0.0000      0.979 0.000 1.000
#> GSM601807     1  0.9686      0.411 0.604 0.396
#> GSM601812     1  0.0000      0.939 1.000 0.000
#> GSM601817     1  0.0000      0.939 1.000 0.000
#> GSM601822     2  0.7056      0.764 0.192 0.808
#> GSM601832     2  0.0376      0.976 0.004 0.996
#> GSM601847     2  0.0000      0.979 0.000 1.000
#> GSM601852     1  0.0000      0.939 1.000 0.000
#> GSM601862     1  0.0000      0.939 1.000 0.000
#> GSM601753     2  0.0000      0.979 0.000 1.000
#> GSM601783     1  0.0000      0.939 1.000 0.000
#> GSM601793     1  0.0000      0.939 1.000 0.000
#> GSM601798     2  0.0000      0.979 0.000 1.000
#> GSM601828     1  0.0000      0.939 1.000 0.000
#> GSM601838     2  0.0000      0.979 0.000 1.000
#> GSM601843     2  0.0000      0.979 0.000 1.000
#> GSM601858     2  0.0000      0.979 0.000 1.000
#> GSM601868     1  0.0376      0.937 0.996 0.004
#> GSM601748     1  0.0000      0.939 1.000 0.000
#> GSM601758     1  0.0000      0.939 1.000 0.000
#> GSM601763     1  0.9866      0.267 0.568 0.432
#> GSM601768     2  0.0000      0.979 0.000 1.000
#> GSM601773     2  0.0000      0.979 0.000 1.000
#> GSM601778     1  0.9209      0.526 0.664 0.336
#> GSM601788     2  0.1184      0.967 0.016 0.984
#> GSM601803     2  0.0000      0.979 0.000 1.000
#> GSM601808     1  0.0000      0.939 1.000 0.000
#> GSM601813     1  0.0000      0.939 1.000 0.000
#> GSM601818     1  0.0000      0.939 1.000 0.000
#> GSM601823     1  0.0000      0.939 1.000 0.000
#> GSM601833     2  0.0000      0.979 0.000 1.000
#> GSM601848     1  0.0000      0.939 1.000 0.000
#> GSM601853     1  0.0000      0.939 1.000 0.000
#> GSM601863     1  0.0000      0.939 1.000 0.000
#> GSM601754     2  0.0000      0.979 0.000 1.000
#> GSM601784     2  0.0000      0.979 0.000 1.000
#> GSM601794     1  0.3274      0.895 0.940 0.060
#> GSM601799     2  0.0000      0.979 0.000 1.000
#> GSM601829     1  0.0000      0.939 1.000 0.000
#> GSM601839     2  0.0000      0.979 0.000 1.000
#> GSM601844     1  0.1414      0.927 0.980 0.020
#> GSM601859     2  0.0000      0.979 0.000 1.000
#> GSM601869     1  0.0000      0.939 1.000 0.000
#> GSM601749     1  0.0000      0.939 1.000 0.000
#> GSM601759     1  0.0000      0.939 1.000 0.000
#> GSM601764     1  0.0000      0.939 1.000 0.000
#> GSM601769     2  0.0000      0.979 0.000 1.000
#> GSM601774     2  0.0000      0.979 0.000 1.000
#> GSM601779     1  0.0000      0.939 1.000 0.000
#> GSM601789     2  0.0000      0.979 0.000 1.000
#> GSM601804     2  0.0938      0.970 0.012 0.988
#> GSM601809     1  0.9933      0.242 0.548 0.452
#> GSM601814     2  0.0000      0.979 0.000 1.000
#> GSM601819     1  0.0000      0.939 1.000 0.000
#> GSM601824     2  0.4562      0.890 0.096 0.904
#> GSM601834     2  0.0000      0.979 0.000 1.000
#> GSM601849     1  0.0000      0.939 1.000 0.000
#> GSM601854     1  0.0000      0.939 1.000 0.000
#> GSM601864     2  0.0000      0.979 0.000 1.000
#> GSM601755     2  0.0000      0.979 0.000 1.000
#> GSM601785     2  0.0000      0.979 0.000 1.000
#> GSM601795     1  0.9922      0.259 0.552 0.448
#> GSM601800     2  0.0000      0.979 0.000 1.000
#> GSM601830     1  0.4298      0.871 0.912 0.088
#> GSM601840     2  0.0376      0.976 0.004 0.996
#> GSM601845     2  0.5294      0.858 0.120 0.880
#> GSM601860     2  0.0000      0.979 0.000 1.000
#> GSM601870     1  0.8813      0.604 0.700 0.300
#> GSM601750     1  0.0000      0.939 1.000 0.000
#> GSM601760     1  0.0000      0.939 1.000 0.000
#> GSM601765     2  0.0000      0.979 0.000 1.000
#> GSM601770     2  0.0000      0.979 0.000 1.000
#> GSM601775     2  0.7745      0.705 0.228 0.772
#> GSM601780     1  0.0000      0.939 1.000 0.000
#> GSM601790     2  0.0000      0.979 0.000 1.000
#> GSM601805     2  0.0000      0.979 0.000 1.000
#> GSM601810     1  0.0000      0.939 1.000 0.000
#> GSM601815     2  0.0000      0.979 0.000 1.000
#> GSM601820     1  0.0000      0.939 1.000 0.000
#> GSM601825     2  0.0000      0.979 0.000 1.000
#> GSM601835     2  0.0000      0.979 0.000 1.000
#> GSM601850     1  0.9580      0.444 0.620 0.380
#> GSM601855     1  0.0000      0.939 1.000 0.000
#> GSM601865     2  0.0000      0.979 0.000 1.000
#> GSM601756     2  0.0000      0.979 0.000 1.000
#> GSM601786     2  0.0000      0.979 0.000 1.000
#> GSM601796     1  0.0000      0.939 1.000 0.000
#> GSM601801     2  0.0000      0.979 0.000 1.000
#> GSM601831     1  0.0000      0.939 1.000 0.000
#> GSM601841     1  0.0376      0.937 0.996 0.004
#> GSM601846     2  0.0000      0.979 0.000 1.000
#> GSM601861     2  0.0000      0.979 0.000 1.000
#> GSM601871     2  0.0672      0.973 0.008 0.992
#> GSM601751     2  0.4022      0.908 0.080 0.920
#> GSM601761     1  0.0000      0.939 1.000 0.000
#> GSM601766     2  0.7745      0.704 0.228 0.772
#> GSM601771     2  0.0000      0.979 0.000 1.000
#> GSM601776     1  0.0000      0.939 1.000 0.000
#> GSM601781     1  0.9358      0.510 0.648 0.352
#> GSM601791     1  0.0672      0.934 0.992 0.008
#> GSM601806     2  0.0000      0.979 0.000 1.000
#> GSM601811     1  0.1184      0.929 0.984 0.016
#> GSM601816     1  0.0672      0.934 0.992 0.008
#> GSM601821     2  0.0000      0.979 0.000 1.000
#> GSM601826     1  0.0000      0.939 1.000 0.000
#> GSM601836     1  0.3431      0.891 0.936 0.064
#> GSM601851     1  0.0000      0.939 1.000 0.000
#> GSM601856     1  0.0000      0.939 1.000 0.000
#> GSM601866     1  0.0000      0.939 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM601752     2  0.5722     0.6518 0.292 0.704 0.004
#> GSM601782     3  0.5016     0.6895 0.240 0.000 0.760
#> GSM601792     1  0.2599     0.7050 0.932 0.016 0.052
#> GSM601797     2  0.5119     0.7788 0.152 0.816 0.032
#> GSM601827     3  0.4842     0.6999 0.224 0.000 0.776
#> GSM601837     2  0.5327     0.6049 0.000 0.728 0.272
#> GSM601842     2  0.2636     0.7934 0.048 0.932 0.020
#> GSM601857     3  0.2537     0.7362 0.080 0.000 0.920
#> GSM601867     3  0.5291     0.5061 0.000 0.268 0.732
#> GSM601747     1  0.8936     0.1915 0.500 0.132 0.368
#> GSM601757     3  0.6260     0.4276 0.448 0.000 0.552
#> GSM601762     2  0.2356     0.7609 0.000 0.928 0.072
#> GSM601767     2  0.4452     0.7596 0.192 0.808 0.000
#> GSM601772     2  0.3030     0.7960 0.092 0.904 0.004
#> GSM601777     2  0.6521     0.0918 0.004 0.500 0.496
#> GSM601787     3  0.5650     0.4257 0.000 0.312 0.688
#> GSM601802     2  0.5138     0.7065 0.252 0.748 0.000
#> GSM601807     3  0.4842     0.5619 0.000 0.224 0.776
#> GSM601812     3  0.5016     0.6915 0.240 0.000 0.760
#> GSM601817     3  0.4121     0.7257 0.168 0.000 0.832
#> GSM601822     1  0.6260    -0.0166 0.552 0.448 0.000
#> GSM601832     2  0.4931     0.7480 0.212 0.784 0.004
#> GSM601847     2  0.6045     0.4968 0.380 0.620 0.000
#> GSM601852     3  0.6225     0.4529 0.432 0.000 0.568
#> GSM601862     3  0.2165     0.7336 0.064 0.000 0.936
#> GSM601753     2  0.5517     0.6862 0.268 0.728 0.004
#> GSM601783     1  0.5216     0.4169 0.740 0.000 0.260
#> GSM601793     1  0.4172     0.5984 0.840 0.004 0.156
#> GSM601798     2  0.3499     0.7952 0.072 0.900 0.028
#> GSM601828     3  0.5560     0.6393 0.300 0.000 0.700
#> GSM601838     2  0.4002     0.7099 0.000 0.840 0.160
#> GSM601843     2  0.2356     0.7634 0.000 0.928 0.072
#> GSM601858     2  0.6008     0.4330 0.000 0.628 0.372
#> GSM601868     3  0.2318     0.7084 0.028 0.028 0.944
#> GSM601748     3  0.5591     0.6364 0.304 0.000 0.696
#> GSM601758     1  0.5678     0.2815 0.684 0.000 0.316
#> GSM601763     1  0.4887     0.5603 0.772 0.228 0.000
#> GSM601768     2  0.5291     0.6907 0.268 0.732 0.000
#> GSM601773     2  0.3192     0.7916 0.112 0.888 0.000
#> GSM601778     1  0.8309     0.5389 0.632 0.188 0.180
#> GSM601788     2  0.3845     0.7442 0.012 0.872 0.116
#> GSM601803     2  0.4178     0.7720 0.172 0.828 0.000
#> GSM601808     3  0.2066     0.7324 0.060 0.000 0.940
#> GSM601813     1  0.6286    -0.2168 0.536 0.000 0.464
#> GSM601818     3  0.2625     0.7364 0.084 0.000 0.916
#> GSM601823     1  0.1878     0.7139 0.952 0.044 0.004
#> GSM601833     2  0.2860     0.7954 0.084 0.912 0.004
#> GSM601848     1  0.1182     0.7139 0.976 0.012 0.012
#> GSM601853     3  0.2590     0.7348 0.072 0.004 0.924
#> GSM601863     3  0.3551     0.7348 0.132 0.000 0.868
#> GSM601754     2  0.5553     0.6812 0.272 0.724 0.004
#> GSM601784     2  0.1129     0.7803 0.004 0.976 0.020
#> GSM601794     1  0.5497     0.6503 0.812 0.064 0.124
#> GSM601799     2  0.5982     0.5966 0.328 0.668 0.004
#> GSM601829     3  0.6244     0.4328 0.440 0.000 0.560
#> GSM601839     2  0.5098     0.6321 0.000 0.752 0.248
#> GSM601844     1  0.4371     0.6667 0.860 0.032 0.108
#> GSM601859     2  0.4291     0.7674 0.180 0.820 0.000
#> GSM601869     3  0.3551     0.7344 0.132 0.000 0.868
#> GSM601749     1  0.5968     0.1385 0.636 0.000 0.364
#> GSM601759     3  0.6252     0.4298 0.444 0.000 0.556
#> GSM601764     1  0.2229     0.7160 0.944 0.044 0.012
#> GSM601769     2  0.1267     0.7882 0.024 0.972 0.004
#> GSM601774     2  0.2496     0.7951 0.068 0.928 0.004
#> GSM601779     1  0.2959     0.6944 0.900 0.100 0.000
#> GSM601789     2  0.3340     0.7362 0.000 0.880 0.120
#> GSM601804     2  0.6305     0.2225 0.484 0.516 0.000
#> GSM601809     3  0.4504     0.5860 0.000 0.196 0.804
#> GSM601814     2  0.0747     0.7870 0.016 0.984 0.000
#> GSM601819     1  0.4702     0.5020 0.788 0.000 0.212
#> GSM601824     1  0.6008     0.2525 0.628 0.372 0.000
#> GSM601834     2  0.3116     0.7924 0.108 0.892 0.000
#> GSM601849     1  0.1950     0.7013 0.952 0.008 0.040
#> GSM601854     3  0.6126     0.5109 0.400 0.000 0.600
#> GSM601864     2  0.5497     0.5713 0.000 0.708 0.292
#> GSM601755     2  0.4521     0.7668 0.180 0.816 0.004
#> GSM601785     2  0.4033     0.7856 0.136 0.856 0.008
#> GSM601795     1  0.5763     0.5285 0.716 0.276 0.008
#> GSM601800     2  0.5158     0.7236 0.232 0.764 0.004
#> GSM601830     3  0.3192     0.6445 0.000 0.112 0.888
#> GSM601840     2  0.4682     0.7566 0.192 0.804 0.004
#> GSM601845     2  0.7728     0.6008 0.276 0.640 0.084
#> GSM601860     2  0.3375     0.7945 0.100 0.892 0.008
#> GSM601870     3  0.4796     0.5651 0.000 0.220 0.780
#> GSM601750     3  0.5785     0.6055 0.332 0.000 0.668
#> GSM601760     1  0.4974     0.4578 0.764 0.000 0.236
#> GSM601765     2  0.4784     0.7572 0.200 0.796 0.004
#> GSM601770     2  0.4465     0.7720 0.176 0.820 0.004
#> GSM601775     1  0.6280    -0.0714 0.540 0.460 0.000
#> GSM601780     1  0.2625     0.7013 0.916 0.084 0.000
#> GSM601790     2  0.3340     0.7354 0.000 0.880 0.120
#> GSM601805     2  0.4178     0.7713 0.172 0.828 0.000
#> GSM601810     3  0.3551     0.7347 0.132 0.000 0.868
#> GSM601815     2  0.2959     0.7459 0.000 0.900 0.100
#> GSM601820     3  0.6235     0.4484 0.436 0.000 0.564
#> GSM601825     2  0.3816     0.7824 0.148 0.852 0.000
#> GSM601835     2  0.5327     0.6004 0.000 0.728 0.272
#> GSM601850     1  0.5138     0.5372 0.748 0.252 0.000
#> GSM601855     3  0.2711     0.6602 0.000 0.088 0.912
#> GSM601865     2  0.5905     0.4705 0.000 0.648 0.352
#> GSM601756     2  0.3715     0.7883 0.128 0.868 0.004
#> GSM601786     2  0.5431     0.5881 0.000 0.716 0.284
#> GSM601796     1  0.4047     0.6132 0.848 0.004 0.148
#> GSM601801     2  0.2173     0.7940 0.048 0.944 0.008
#> GSM601831     3  0.4346     0.7193 0.184 0.000 0.816
#> GSM601841     3  0.6771     0.3746 0.440 0.012 0.548
#> GSM601846     2  0.4963     0.6860 0.008 0.792 0.200
#> GSM601861     2  0.2066     0.7642 0.000 0.940 0.060
#> GSM601871     3  0.5706     0.4088 0.000 0.320 0.680
#> GSM601751     2  0.5443     0.7077 0.260 0.736 0.004
#> GSM601761     1  0.2301     0.6850 0.936 0.004 0.060
#> GSM601766     1  0.6625     0.0182 0.552 0.440 0.008
#> GSM601771     2  0.2796     0.7945 0.092 0.908 0.000
#> GSM601776     1  0.1315     0.7107 0.972 0.008 0.020
#> GSM601781     1  0.5551     0.5952 0.760 0.224 0.016
#> GSM601791     1  0.2229     0.7163 0.944 0.044 0.012
#> GSM601806     2  0.1753     0.7933 0.048 0.952 0.000
#> GSM601811     3  0.2947     0.7267 0.060 0.020 0.920
#> GSM601816     1  0.3028     0.7100 0.920 0.032 0.048
#> GSM601821     2  0.2448     0.7576 0.000 0.924 0.076
#> GSM601826     1  0.1399     0.7155 0.968 0.028 0.004
#> GSM601836     1  0.4658     0.7074 0.856 0.076 0.068
#> GSM601851     1  0.1620     0.7113 0.964 0.012 0.024
#> GSM601856     3  0.2066     0.7328 0.060 0.000 0.940
#> GSM601866     3  0.4796     0.7039 0.220 0.000 0.780

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM601752     4   0.440     0.6498 0.076 0.112 0.000 0.812
#> GSM601782     3   0.667     0.5128 0.332 0.032 0.592 0.044
#> GSM601792     4   0.560     0.1821 0.408 0.000 0.024 0.568
#> GSM601797     4   0.259     0.6139 0.012 0.028 0.040 0.920
#> GSM601827     3   0.722     0.5811 0.172 0.020 0.612 0.196
#> GSM601837     2   0.717     0.5366 0.012 0.572 0.128 0.288
#> GSM601842     2   0.381     0.6781 0.008 0.804 0.000 0.188
#> GSM601857     3   0.440     0.6830 0.120 0.008 0.820 0.052
#> GSM601867     3   0.697     0.4672 0.012 0.168 0.624 0.196
#> GSM601747     2   0.761     0.2516 0.268 0.556 0.152 0.024
#> GSM601757     1   0.657    -0.1124 0.520 0.068 0.408 0.004
#> GSM601762     2   0.332     0.7194 0.008 0.872 0.016 0.104
#> GSM601767     2   0.428     0.6909 0.076 0.820 0.000 0.104
#> GSM601772     2   0.275     0.6972 0.072 0.904 0.004 0.020
#> GSM601777     4   0.692     0.4055 0.016 0.152 0.196 0.636
#> GSM601787     3   0.673     0.3697 0.012 0.288 0.608 0.092
#> GSM601802     4   0.605     0.5863 0.100 0.232 0.000 0.668
#> GSM601807     3   0.650     0.4941 0.012 0.108 0.660 0.220
#> GSM601812     3   0.574     0.5839 0.280 0.036 0.672 0.012
#> GSM601817     3   0.584     0.6445 0.196 0.064 0.720 0.020
#> GSM601822     4   0.716     0.4495 0.284 0.140 0.008 0.568
#> GSM601832     2   0.413     0.6721 0.108 0.828 0.000 0.064
#> GSM601847     4   0.646     0.6004 0.156 0.200 0.000 0.644
#> GSM601852     3   0.601     0.3095 0.456 0.016 0.512 0.016
#> GSM601862     3   0.318     0.6849 0.068 0.024 0.892 0.016
#> GSM601753     4   0.610     0.5751 0.108 0.224 0.000 0.668
#> GSM601783     1   0.486     0.4286 0.768 0.004 0.184 0.044
#> GSM601793     4   0.621     0.1166 0.404 0.000 0.056 0.540
#> GSM601798     4   0.322     0.5985 0.000 0.164 0.000 0.836
#> GSM601828     3   0.629     0.5068 0.352 0.008 0.588 0.052
#> GSM601838     2   0.628     0.5861 0.008 0.624 0.064 0.304
#> GSM601843     2   0.405     0.6846 0.000 0.796 0.016 0.188
#> GSM601858     2   0.609     0.6274 0.016 0.716 0.136 0.132
#> GSM601868     3   0.330     0.6762 0.032 0.016 0.888 0.064
#> GSM601748     3   0.542     0.5614 0.304 0.016 0.668 0.012
#> GSM601758     1   0.507     0.2256 0.664 0.016 0.320 0.000
#> GSM601763     1   0.628     0.3827 0.616 0.316 0.008 0.060
#> GSM601768     2   0.391     0.6531 0.148 0.824 0.000 0.028
#> GSM601773     2   0.391     0.6923 0.024 0.820 0.000 0.156
#> GSM601778     4   0.677     0.4978 0.132 0.056 0.120 0.692
#> GSM601788     2   0.584     0.6639 0.016 0.716 0.068 0.200
#> GSM601803     4   0.593     0.4969 0.064 0.296 0.000 0.640
#> GSM601808     3   0.263     0.6828 0.032 0.020 0.920 0.028
#> GSM601813     1   0.591    -0.1065 0.536 0.004 0.432 0.028
#> GSM601818     3   0.667     0.6064 0.180 0.152 0.656 0.012
#> GSM601823     1   0.454     0.4936 0.760 0.024 0.000 0.216
#> GSM601833     2   0.258     0.7152 0.036 0.912 0.000 0.052
#> GSM601848     1   0.475     0.3744 0.688 0.000 0.008 0.304
#> GSM601853     3   0.316     0.6846 0.052 0.016 0.896 0.036
#> GSM601863     3   0.414     0.6734 0.140 0.028 0.824 0.008
#> GSM601754     4   0.461     0.6393 0.064 0.144 0.000 0.792
#> GSM601784     2   0.407     0.6617 0.000 0.748 0.000 0.252
#> GSM601794     4   0.507     0.4566 0.200 0.000 0.056 0.744
#> GSM601799     4   0.650     0.6101 0.160 0.200 0.000 0.640
#> GSM601829     3   0.809     0.1460 0.252 0.008 0.388 0.352
#> GSM601839     2   0.628     0.6207 0.008 0.676 0.108 0.208
#> GSM601844     1   0.616     0.3707 0.616 0.012 0.044 0.328
#> GSM601859     2   0.549     0.6519 0.052 0.688 0.000 0.260
#> GSM601869     3   0.519     0.6665 0.160 0.004 0.760 0.076
#> GSM601749     1   0.475     0.2490 0.688 0.000 0.304 0.008
#> GSM601759     1   0.641    -0.1344 0.516 0.048 0.428 0.008
#> GSM601764     1   0.594     0.4347 0.624 0.332 0.032 0.012
#> GSM601769     2   0.222     0.7199 0.016 0.924 0.000 0.060
#> GSM601774     2   0.259     0.7137 0.044 0.912 0.000 0.044
#> GSM601779     1   0.509     0.4355 0.728 0.044 0.000 0.228
#> GSM601789     2   0.300     0.7150 0.008 0.900 0.052 0.040
#> GSM601804     4   0.722     0.4429 0.316 0.164 0.000 0.520
#> GSM601809     3   0.749     0.3340 0.064 0.344 0.536 0.056
#> GSM601814     2   0.448     0.6129 0.008 0.728 0.000 0.264
#> GSM601819     1   0.581     0.4631 0.724 0.108 0.160 0.008
#> GSM601824     1   0.738     0.0748 0.520 0.216 0.000 0.264
#> GSM601834     2   0.306     0.7123 0.040 0.888 0.000 0.072
#> GSM601849     1   0.434     0.6064 0.836 0.076 0.016 0.072
#> GSM601854     3   0.552     0.4792 0.380 0.000 0.596 0.024
#> GSM601864     2   0.790     0.3054 0.012 0.432 0.184 0.372
#> GSM601755     4   0.415     0.6227 0.036 0.152 0.000 0.812
#> GSM601785     2   0.552     0.6277 0.048 0.676 0.000 0.276
#> GSM601795     4   0.482     0.4991 0.240 0.020 0.004 0.736
#> GSM601800     4   0.444     0.6361 0.052 0.148 0.000 0.800
#> GSM601830     3   0.517     0.6011 0.004 0.072 0.760 0.164
#> GSM601840     2   0.667     0.4611 0.080 0.540 0.004 0.376
#> GSM601845     2   0.794     0.2761 0.164 0.488 0.024 0.324
#> GSM601860     2   0.568     0.6770 0.072 0.708 0.004 0.216
#> GSM601870     3   0.537     0.5885 0.012 0.088 0.764 0.136
#> GSM601750     3   0.535     0.5489 0.320 0.020 0.656 0.004
#> GSM601760     1   0.586     0.4375 0.708 0.084 0.200 0.008
#> GSM601765     2   0.350     0.6821 0.104 0.860 0.000 0.036
#> GSM601770     2   0.284     0.6937 0.088 0.892 0.000 0.020
#> GSM601775     2   0.697     0.0426 0.436 0.452 0.000 0.112
#> GSM601780     1   0.496     0.5589 0.788 0.080 0.008 0.124
#> GSM601790     2   0.365     0.7122 0.008 0.868 0.060 0.064
#> GSM601805     4   0.572     0.4768 0.044 0.324 0.000 0.632
#> GSM601810     3   0.353     0.6855 0.088 0.024 0.872 0.016
#> GSM601815     2   0.542     0.6743 0.012 0.748 0.064 0.176
#> GSM601820     3   0.514     0.3264 0.456 0.000 0.540 0.004
#> GSM601825     4   0.620     0.1345 0.052 0.440 0.000 0.508
#> GSM601835     2   0.554     0.6214 0.008 0.744 0.156 0.092
#> GSM601850     1   0.699     0.0586 0.524 0.128 0.000 0.348
#> GSM601855     3   0.417     0.6322 0.012 0.052 0.840 0.096
#> GSM601865     2   0.621     0.6195 0.008 0.692 0.168 0.132
#> GSM601756     4   0.408     0.5969 0.020 0.180 0.000 0.800
#> GSM601786     2   0.666     0.6055 0.008 0.624 0.108 0.260
#> GSM601796     4   0.609     0.2797 0.328 0.000 0.064 0.608
#> GSM601801     4   0.405     0.5409 0.008 0.212 0.000 0.780
#> GSM601831     3   0.575     0.6452 0.140 0.008 0.732 0.120
#> GSM601841     4   0.778    -0.1412 0.268 0.000 0.304 0.428
#> GSM601846     4   0.550     0.5085 0.012 0.132 0.100 0.756
#> GSM601861     2   0.521     0.6120 0.004 0.680 0.020 0.296
#> GSM601871     3   0.752     0.3275 0.012 0.192 0.552 0.244
#> GSM601751     2   0.648     0.5637 0.096 0.640 0.008 0.256
#> GSM601761     1   0.434     0.5905 0.836 0.076 0.072 0.016
#> GSM601766     2   0.583     0.4586 0.272 0.676 0.024 0.028
#> GSM601771     2   0.502     0.6899 0.056 0.772 0.008 0.164
#> GSM601776     1   0.280     0.6103 0.908 0.028 0.008 0.056
#> GSM601781     4   0.795     0.2166 0.356 0.180 0.016 0.448
#> GSM601791     1   0.380     0.6146 0.868 0.060 0.024 0.048
#> GSM601806     4   0.597     0.3320 0.032 0.368 0.008 0.592
#> GSM601811     3   0.441     0.6771 0.068 0.072 0.836 0.024
#> GSM601816     1   0.709     0.0999 0.500 0.056 0.032 0.412
#> GSM601821     2   0.529     0.6370 0.004 0.708 0.036 0.252
#> GSM601826     1   0.530     0.4629 0.720 0.044 0.004 0.232
#> GSM601836     1   0.714     0.4271 0.572 0.320 0.076 0.032
#> GSM601851     1   0.432     0.6083 0.840 0.056 0.024 0.080
#> GSM601856     3   0.295     0.6718 0.024 0.016 0.904 0.056
#> GSM601866     3   0.541     0.5727 0.296 0.028 0.672 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM601752     4   0.441     0.6707 0.016 0.040 0.000 0.764 0.180
#> GSM601782     3   0.701     0.2051 0.384 0.020 0.428 0.004 0.164
#> GSM601792     4   0.656     0.5447 0.148 0.000 0.024 0.552 0.276
#> GSM601797     4   0.521     0.5603 0.004 0.004 0.056 0.656 0.280
#> GSM601827     5   0.544     0.2786 0.048 0.000 0.320 0.016 0.616
#> GSM601837     2   0.675     0.5019 0.000 0.576 0.140 0.052 0.232
#> GSM601842     2   0.629     0.2086 0.020 0.488 0.016 0.052 0.424
#> GSM601857     3   0.531     0.4695 0.284 0.040 0.652 0.000 0.024
#> GSM601867     3   0.590     0.3392 0.008 0.140 0.660 0.012 0.180
#> GSM601747     2   0.815     0.1511 0.212 0.468 0.140 0.012 0.168
#> GSM601757     1   0.462     0.3143 0.712 0.024 0.248 0.000 0.016
#> GSM601762     2   0.576     0.5384 0.008 0.680 0.040 0.060 0.212
#> GSM601767     2   0.437     0.6378 0.040 0.800 0.004 0.120 0.036
#> GSM601772     2   0.456     0.5756 0.060 0.788 0.012 0.016 0.124
#> GSM601777     4   0.730     0.3595 0.000 0.092 0.228 0.532 0.148
#> GSM601787     3   0.638     0.2902 0.016 0.300 0.584 0.024 0.076
#> GSM601802     4   0.273     0.6693 0.004 0.092 0.004 0.884 0.016
#> GSM601807     3   0.578     0.2826 0.000 0.036 0.684 0.148 0.132
#> GSM601812     3   0.692     0.2468 0.376 0.028 0.460 0.004 0.132
#> GSM601817     3   0.730     0.1556 0.168 0.044 0.476 0.004 0.308
#> GSM601822     4   0.513     0.6420 0.088 0.052 0.008 0.764 0.088
#> GSM601832     2   0.677     0.2520 0.056 0.520 0.008 0.068 0.348
#> GSM601847     4   0.341     0.6677 0.032 0.084 0.004 0.860 0.020
#> GSM601852     1   0.722    -0.0182 0.440 0.020 0.304 0.004 0.232
#> GSM601862     3   0.467     0.5214 0.188 0.032 0.748 0.000 0.032
#> GSM601753     4   0.528     0.6558 0.020 0.116 0.000 0.716 0.148
#> GSM601783     1   0.365     0.4866 0.848 0.000 0.064 0.032 0.056
#> GSM601793     4   0.670     0.5421 0.152 0.000 0.036 0.560 0.252
#> GSM601798     4   0.529     0.6218 0.000 0.056 0.028 0.692 0.224
#> GSM601828     5   0.762     0.1198 0.256 0.056 0.264 0.000 0.424
#> GSM601838     2   0.577     0.6064 0.000 0.696 0.064 0.088 0.152
#> GSM601843     2   0.613     0.2096 0.008 0.488 0.024 0.048 0.432
#> GSM601858     2   0.558     0.5833 0.024 0.720 0.140 0.016 0.100
#> GSM601868     3   0.600     0.5067 0.204 0.036 0.660 0.004 0.096
#> GSM601748     3   0.590     0.1401 0.452 0.008 0.464 0.000 0.076
#> GSM601758     1   0.377     0.4077 0.788 0.008 0.188 0.000 0.016
#> GSM601763     1   0.777    -0.0600 0.456 0.248 0.000 0.096 0.200
#> GSM601768     2   0.567     0.5691 0.132 0.720 0.008 0.056 0.084
#> GSM601773     2   0.427     0.6321 0.012 0.772 0.000 0.176 0.040
#> GSM601778     4   0.579     0.5991 0.032 0.032 0.084 0.720 0.132
#> GSM601788     2   0.643     0.5523 0.000 0.624 0.096 0.208 0.072
#> GSM601803     4   0.376     0.6332 0.004 0.144 0.008 0.816 0.028
#> GSM601808     3   0.372     0.5423 0.088 0.008 0.840 0.008 0.056
#> GSM601813     1   0.524     0.2106 0.616 0.000 0.336 0.028 0.020
#> GSM601818     3   0.622     0.4346 0.284 0.088 0.592 0.000 0.036
#> GSM601823     1   0.610     0.1919 0.568 0.012 0.000 0.308 0.112
#> GSM601833     2   0.464     0.5611 0.028 0.764 0.008 0.028 0.172
#> GSM601848     4   0.550     0.1438 0.444 0.000 0.000 0.492 0.064
#> GSM601853     3   0.523     0.3050 0.044 0.016 0.652 0.000 0.288
#> GSM601863     3   0.523     0.4541 0.288 0.044 0.652 0.000 0.016
#> GSM601754     4   0.470     0.6653 0.016 0.044 0.004 0.748 0.188
#> GSM601784     2   0.521     0.5876 0.004 0.692 0.004 0.084 0.216
#> GSM601794     4   0.602     0.5689 0.052 0.000 0.052 0.608 0.288
#> GSM601799     4   0.631     0.6430 0.100 0.088 0.000 0.652 0.160
#> GSM601829     5   0.617     0.4066 0.060 0.000 0.208 0.088 0.644
#> GSM601839     2   0.573     0.5840 0.000 0.688 0.128 0.036 0.148
#> GSM601844     5   0.720     0.0786 0.260 0.020 0.012 0.212 0.496
#> GSM601859     2   0.569     0.6124 0.036 0.692 0.000 0.148 0.124
#> GSM601869     3   0.623     0.3932 0.312 0.004 0.564 0.012 0.108
#> GSM601749     1   0.381     0.4148 0.784 0.000 0.192 0.008 0.016
#> GSM601759     1   0.453     0.3083 0.704 0.004 0.260 0.000 0.032
#> GSM601764     1   0.724    -0.0756 0.484 0.256 0.008 0.024 0.228
#> GSM601769     2   0.298     0.6499 0.008 0.880 0.004 0.076 0.032
#> GSM601774     2   0.349     0.6464 0.032 0.860 0.004 0.072 0.032
#> GSM601779     1   0.543     0.0876 0.560 0.012 0.000 0.388 0.040
#> GSM601789     2   0.306     0.6498 0.008 0.884 0.052 0.044 0.012
#> GSM601804     4   0.411     0.6597 0.092 0.064 0.000 0.816 0.028
#> GSM601809     3   0.854     0.3173 0.176 0.256 0.436 0.068 0.064
#> GSM601814     2   0.427     0.6215 0.000 0.744 0.016 0.224 0.016
#> GSM601819     1   0.409     0.4459 0.812 0.036 0.116 0.000 0.036
#> GSM601824     4   0.688     0.2754 0.384 0.084 0.000 0.468 0.064
#> GSM601834     2   0.429     0.6180 0.016 0.796 0.000 0.080 0.108
#> GSM601849     1   0.575     0.4773 0.684 0.024 0.016 0.208 0.068
#> GSM601854     1   0.625    -0.1959 0.444 0.004 0.440 0.004 0.108
#> GSM601864     2   0.779     0.3843 0.000 0.480 0.188 0.204 0.128
#> GSM601755     4   0.431     0.6704 0.000 0.072 0.012 0.788 0.128
#> GSM601785     2   0.634     0.4317 0.016 0.528 0.000 0.116 0.340
#> GSM601795     4   0.509     0.6274 0.064 0.000 0.004 0.668 0.264
#> GSM601800     4   0.485     0.6552 0.012 0.056 0.000 0.720 0.212
#> GSM601830     5   0.558     0.2647 0.004 0.048 0.380 0.008 0.560
#> GSM601840     2   0.797     0.4353 0.084 0.500 0.024 0.208 0.184
#> GSM601845     5   0.579     0.3420 0.016 0.240 0.024 0.056 0.664
#> GSM601860     2   0.660     0.6032 0.064 0.672 0.044 0.088 0.132
#> GSM601870     3   0.523     0.1995 0.000 0.040 0.656 0.020 0.284
#> GSM601750     1   0.544    -0.1598 0.480 0.004 0.468 0.000 0.048
#> GSM601760     1   0.492     0.4134 0.756 0.056 0.152 0.004 0.032
#> GSM601765     2   0.619     0.3514 0.068 0.592 0.004 0.036 0.300
#> GSM601770     2   0.453     0.6162 0.064 0.804 0.008 0.044 0.080
#> GSM601775     2   0.822     0.1653 0.276 0.376 0.004 0.240 0.104
#> GSM601780     1   0.540     0.4141 0.680 0.036 0.000 0.236 0.048
#> GSM601790     2   0.293     0.6449 0.000 0.888 0.048 0.028 0.036
#> GSM601805     4   0.405     0.6222 0.004 0.160 0.016 0.796 0.024
#> GSM601810     3   0.534     0.5225 0.184 0.016 0.724 0.040 0.036
#> GSM601815     2   0.537     0.6078 0.000 0.720 0.072 0.160 0.048
#> GSM601820     1   0.486     0.1425 0.604 0.004 0.372 0.004 0.016
#> GSM601825     4   0.499     0.3469 0.004 0.320 0.000 0.636 0.040
#> GSM601835     5   0.686     0.1672 0.004 0.364 0.104 0.040 0.488
#> GSM601850     4   0.654     0.4205 0.272 0.076 0.004 0.588 0.060
#> GSM601855     3   0.472     0.0964 0.000 0.008 0.612 0.012 0.368
#> GSM601865     2   0.580     0.5599 0.000 0.680 0.180 0.044 0.096
#> GSM601756     4   0.488     0.6524 0.000 0.092 0.012 0.740 0.156
#> GSM601786     2   0.695     0.5310 0.012 0.596 0.144 0.056 0.192
#> GSM601796     4   0.670     0.5777 0.132 0.004 0.052 0.600 0.212
#> GSM601801     4   0.552     0.6171 0.000 0.116 0.024 0.696 0.164
#> GSM601831     3   0.632    -0.0144 0.084 0.000 0.464 0.024 0.428
#> GSM601841     1   0.882    -0.0742 0.308 0.012 0.264 0.192 0.224
#> GSM601846     5   0.582     0.4649 0.000 0.048 0.120 0.144 0.688
#> GSM601861     2   0.550     0.6138 0.000 0.712 0.040 0.144 0.104
#> GSM601871     3   0.777     0.2217 0.012 0.204 0.512 0.096 0.176
#> GSM601751     2   0.774     0.4623 0.068 0.532 0.064 0.256 0.080
#> GSM601761     1   0.406     0.5022 0.824 0.016 0.064 0.088 0.008
#> GSM601766     2   0.701     0.0748 0.156 0.472 0.008 0.020 0.344
#> GSM601771     2   0.648     0.5863 0.024 0.668 0.072 0.152 0.084
#> GSM601776     1   0.384     0.5111 0.788 0.000 0.016 0.184 0.012
#> GSM601781     4   0.680     0.5703 0.176 0.088 0.036 0.640 0.060
#> GSM601791     1   0.394     0.5100 0.784 0.012 0.000 0.184 0.020
#> GSM601806     4   0.553     0.4932 0.000 0.216 0.052 0.684 0.048
#> GSM601811     3   0.629     0.4949 0.192 0.056 0.668 0.052 0.032
#> GSM601816     4   0.572     0.4970 0.248 0.012 0.020 0.660 0.060
#> GSM601821     2   0.529     0.6157 0.000 0.728 0.056 0.156 0.060
#> GSM601826     1   0.625    -0.0574 0.452 0.008 0.000 0.428 0.112
#> GSM601836     5   0.809     0.2252 0.260 0.280 0.028 0.040 0.392
#> GSM601851     1   0.457     0.5048 0.752 0.012 0.008 0.196 0.032
#> GSM601856     3   0.444     0.3956 0.024 0.000 0.752 0.024 0.200
#> GSM601866     3   0.535     0.1535 0.460 0.020 0.500 0.000 0.020

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM601752     4   0.336     0.6390 0.004 0.032 0.000 0.848 0.060 0.056
#> GSM601782     3   0.805    -0.0745 0.328 0.104 0.368 0.012 0.048 0.140
#> GSM601792     4   0.610     0.1576 0.016 0.080 0.036 0.524 0.000 0.344
#> GSM601797     4   0.405     0.5332 0.000 0.016 0.092 0.788 0.004 0.100
#> GSM601827     3   0.744     0.1168 0.016 0.348 0.372 0.152 0.000 0.112
#> GSM601837     5   0.663     0.4330 0.000 0.096 0.100 0.136 0.612 0.056
#> GSM601842     2   0.547     0.3818 0.004 0.672 0.044 0.092 0.184 0.004
#> GSM601857     1   0.643     0.0215 0.456 0.036 0.416 0.024 0.016 0.052
#> GSM601867     3   0.749     0.3248 0.100 0.012 0.512 0.084 0.232 0.060
#> GSM601747     2   0.839     0.2241 0.236 0.396 0.076 0.016 0.180 0.096
#> GSM601757     1   0.523     0.4678 0.696 0.116 0.124 0.000 0.000 0.064
#> GSM601762     2   0.647     0.0768 0.024 0.516 0.028 0.056 0.348 0.028
#> GSM601767     5   0.620     0.3099 0.032 0.324 0.000 0.080 0.536 0.028
#> GSM601772     2   0.649    -0.0438 0.072 0.452 0.008 0.028 0.408 0.032
#> GSM601777     6   0.864     0.1668 0.012 0.072 0.200 0.200 0.160 0.356
#> GSM601787     3   0.737     0.2643 0.112 0.020 0.432 0.016 0.340 0.080
#> GSM601802     4   0.489     0.5163 0.000 0.012 0.000 0.684 0.116 0.188
#> GSM601807     3   0.694     0.3543 0.028 0.016 0.592 0.124 0.112 0.128
#> GSM601812     1   0.666     0.1045 0.404 0.144 0.400 0.000 0.012 0.040
#> GSM601817     3   0.659     0.2454 0.164 0.312 0.476 0.000 0.008 0.040
#> GSM601822     6   0.659     0.3665 0.012 0.064 0.024 0.300 0.060 0.540
#> GSM601832     2   0.546     0.3829 0.032 0.684 0.008 0.032 0.200 0.044
#> GSM601847     6   0.650     0.1556 0.020 0.024 0.004 0.376 0.116 0.460
#> GSM601852     1   0.652     0.1716 0.424 0.236 0.316 0.004 0.000 0.020
#> GSM601862     3   0.598     0.0938 0.352 0.008 0.532 0.004 0.048 0.056
#> GSM601753     4   0.534     0.5943 0.004 0.060 0.000 0.692 0.136 0.108
#> GSM601783     1   0.527     0.4690 0.708 0.044 0.028 0.060 0.000 0.160
#> GSM601793     4   0.586     0.2621 0.036 0.040 0.040 0.588 0.000 0.296
#> GSM601798     4   0.331     0.6281 0.000 0.028 0.024 0.860 0.040 0.048
#> GSM601828     2   0.693    -0.1536 0.160 0.436 0.340 0.028 0.000 0.036
#> GSM601838     5   0.496     0.5250 0.000 0.084 0.032 0.080 0.752 0.052
#> GSM601843     2   0.614     0.3513 0.000 0.600 0.072 0.104 0.216 0.008
#> GSM601858     5   0.811     0.2840 0.072 0.272 0.104 0.044 0.444 0.064
#> GSM601868     3   0.679     0.0573 0.356 0.004 0.472 0.028 0.064 0.076
#> GSM601748     1   0.589     0.3583 0.572 0.076 0.284 0.000 0.000 0.068
#> GSM601758     1   0.320     0.5386 0.852 0.032 0.044 0.000 0.000 0.072
#> GSM601763     2   0.679     0.3343 0.240 0.540 0.000 0.052 0.036 0.132
#> GSM601768     5   0.709     0.0976 0.108 0.384 0.000 0.060 0.408 0.040
#> GSM601773     5   0.617     0.3830 0.016 0.252 0.000 0.096 0.584 0.052
#> GSM601778     6   0.776     0.3100 0.016 0.072 0.140 0.272 0.048 0.452
#> GSM601788     5   0.690     0.3973 0.024 0.064 0.052 0.080 0.600 0.180
#> GSM601803     4   0.556     0.4790 0.000 0.016 0.004 0.624 0.176 0.180
#> GSM601808     3   0.539     0.2192 0.260 0.008 0.640 0.004 0.028 0.060
#> GSM601813     1   0.537     0.5146 0.688 0.016 0.144 0.012 0.008 0.132
#> GSM601818     1   0.711     0.0464 0.404 0.068 0.396 0.000 0.072 0.060
#> GSM601823     6   0.689     0.4872 0.284 0.112 0.000 0.140 0.000 0.464
#> GSM601833     2   0.540    -0.0426 0.012 0.516 0.000 0.040 0.412 0.020
#> GSM601848     6   0.587     0.5449 0.204 0.016 0.000 0.200 0.004 0.576
#> GSM601853     3   0.466     0.3887 0.092 0.140 0.740 0.008 0.000 0.020
#> GSM601863     3   0.580     0.0181 0.384 0.016 0.516 0.000 0.032 0.052
#> GSM601754     4   0.456     0.6189 0.012 0.028 0.008 0.772 0.116 0.064
#> GSM601784     5   0.642     0.2877 0.004 0.236 0.004 0.236 0.500 0.020
#> GSM601794     4   0.557     0.4410 0.016 0.032 0.052 0.676 0.020 0.204
#> GSM601799     4   0.588     0.5536 0.016 0.100 0.000 0.660 0.084 0.140
#> GSM601829     3   0.822     0.0641 0.036 0.296 0.316 0.192 0.004 0.156
#> GSM601839     5   0.571     0.4690 0.000 0.168 0.064 0.052 0.676 0.040
#> GSM601844     2   0.853    -0.1052 0.084 0.272 0.108 0.260 0.004 0.272
#> GSM601859     5   0.597     0.4837 0.032 0.104 0.004 0.164 0.656 0.040
#> GSM601869     1   0.640     0.1355 0.456 0.004 0.384 0.020 0.016 0.120
#> GSM601749     1   0.397     0.5281 0.772 0.004 0.104 0.000 0.000 0.120
#> GSM601759     1   0.322     0.5269 0.848 0.048 0.080 0.000 0.000 0.024
#> GSM601764     2   0.662     0.2106 0.252 0.488 0.004 0.000 0.044 0.212
#> GSM601769     5   0.549     0.4180 0.020 0.252 0.008 0.040 0.648 0.032
#> GSM601774     5   0.621     0.3810 0.028 0.260 0.008 0.056 0.596 0.052
#> GSM601779     6   0.623     0.5430 0.248 0.032 0.004 0.176 0.000 0.540
#> GSM601789     5   0.572     0.4318 0.004 0.216 0.040 0.016 0.648 0.076
#> GSM601804     4   0.583     0.3830 0.012 0.020 0.000 0.568 0.100 0.300
#> GSM601809     5   0.856    -0.2923 0.252 0.024 0.272 0.048 0.300 0.104
#> GSM601814     5   0.501     0.5054 0.000 0.084 0.004 0.108 0.728 0.076
#> GSM601819     1   0.548     0.4941 0.724 0.060 0.056 0.012 0.036 0.112
#> GSM601824     6   0.823     0.3055 0.216 0.156 0.000 0.264 0.044 0.320
#> GSM601834     5   0.559     0.2844 0.008 0.360 0.004 0.048 0.552 0.028
#> GSM601849     6   0.680     0.3701 0.360 0.060 0.012 0.076 0.020 0.472
#> GSM601854     1   0.670     0.2024 0.412 0.076 0.376 0.000 0.000 0.136
#> GSM601864     5   0.619     0.4428 0.000 0.020 0.112 0.128 0.636 0.104
#> GSM601755     4   0.362     0.6339 0.004 0.012 0.000 0.820 0.084 0.080
#> GSM601785     2   0.707     0.0314 0.008 0.404 0.016 0.244 0.304 0.024
#> GSM601795     4   0.493     0.5354 0.016 0.056 0.020 0.748 0.024 0.136
#> GSM601800     4   0.410     0.6219 0.004 0.064 0.004 0.804 0.080 0.044
#> GSM601830     3   0.701     0.1652 0.008 0.328 0.452 0.144 0.012 0.056
#> GSM601840     5   0.811     0.2336 0.144 0.064 0.016 0.308 0.388 0.080
#> GSM601845     2   0.553     0.3904 0.000 0.688 0.100 0.148 0.036 0.028
#> GSM601860     5   0.733     0.4354 0.104 0.084 0.020 0.136 0.576 0.080
#> GSM601870     3   0.608     0.4266 0.016 0.096 0.688 0.072 0.068 0.060
#> GSM601750     1   0.542     0.2580 0.540 0.016 0.372 0.000 0.004 0.068
#> GSM601760     1   0.363     0.5142 0.824 0.040 0.020 0.004 0.004 0.108
#> GSM601765     2   0.520     0.3458 0.036 0.672 0.004 0.012 0.236 0.040
#> GSM601770     5   0.666     0.1572 0.080 0.372 0.000 0.064 0.460 0.024
#> GSM601775     2   0.883     0.1152 0.224 0.280 0.000 0.168 0.180 0.148
#> GSM601780     6   0.656     0.3829 0.372 0.068 0.000 0.088 0.012 0.460
#> GSM601790     5   0.435     0.4776 0.000 0.200 0.028 0.000 0.732 0.040
#> GSM601805     4   0.561     0.4934 0.004 0.020 0.000 0.624 0.180 0.172
#> GSM601810     3   0.743     0.1440 0.268 0.024 0.484 0.028 0.056 0.140
#> GSM601815     5   0.354     0.5385 0.000 0.012 0.016 0.064 0.836 0.072
#> GSM601820     1   0.411     0.4562 0.712 0.000 0.236 0.000 0.000 0.052
#> GSM601825     4   0.640     0.3200 0.000 0.040 0.004 0.460 0.360 0.136
#> GSM601835     2   0.609     0.3972 0.008 0.624 0.200 0.016 0.116 0.036
#> GSM601850     6   0.802     0.3561 0.088 0.056 0.040 0.232 0.108 0.476
#> GSM601855     3   0.535     0.4185 0.028 0.124 0.728 0.048 0.012 0.060
#> GSM601865     5   0.542     0.4814 0.008 0.084 0.104 0.008 0.712 0.084
#> GSM601756     4   0.316     0.6425 0.000 0.012 0.004 0.852 0.084 0.048
#> GSM601786     5   0.535     0.5146 0.016 0.024 0.064 0.112 0.732 0.052
#> GSM601796     4   0.659     0.3673 0.060 0.036 0.068 0.596 0.016 0.224
#> GSM601801     4   0.431     0.6205 0.000 0.012 0.012 0.772 0.104 0.100
#> GSM601831     3   0.729     0.3615 0.060 0.200 0.520 0.144 0.000 0.076
#> GSM601841     1   0.854     0.1125 0.380 0.012 0.112 0.240 0.104 0.152
#> GSM601846     2   0.762     0.0350 0.000 0.384 0.240 0.268 0.028 0.080
#> GSM601861     5   0.344     0.5542 0.000 0.040 0.012 0.080 0.844 0.024
#> GSM601871     3   0.811     0.1758 0.076 0.016 0.376 0.116 0.332 0.084
#> GSM601751     5   0.777     0.3767 0.132 0.040 0.028 0.172 0.512 0.116
#> GSM601761     1   0.482     0.1691 0.616 0.028 0.008 0.004 0.008 0.336
#> GSM601766     2   0.489     0.4311 0.084 0.736 0.008 0.004 0.136 0.032
#> GSM601771     5   0.730     0.4709 0.096 0.076 0.028 0.116 0.588 0.096
#> GSM601776     1   0.580    -0.0905 0.536 0.012 0.004 0.076 0.016 0.356
#> GSM601781     6   0.747     0.4026 0.048 0.048 0.048 0.216 0.104 0.536
#> GSM601791     1   0.565    -0.1199 0.496 0.040 0.004 0.032 0.008 0.420
#> GSM601806     4   0.592     0.4552 0.000 0.016 0.004 0.560 0.252 0.168
#> GSM601811     3   0.759     0.1434 0.264 0.028 0.476 0.020 0.108 0.104
#> GSM601816     6   0.646     0.4464 0.076 0.016 0.032 0.292 0.028 0.556
#> GSM601821     5   0.384     0.5498 0.004 0.036 0.012 0.100 0.820 0.028
#> GSM601826     6   0.612     0.5507 0.148 0.076 0.000 0.180 0.000 0.596
#> GSM601836     2   0.661     0.4432 0.088 0.648 0.056 0.028 0.068 0.112
#> GSM601851     6   0.595     0.3967 0.364 0.020 0.008 0.072 0.012 0.524
#> GSM601856     3   0.486     0.3897 0.088 0.080 0.756 0.024 0.000 0.052
#> GSM601866     1   0.555     0.3658 0.604 0.032 0.296 0.000 0.016 0.052

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n time(p) gender(p) k
#> CV:NMF 120  0.4482  0.197133 2
#> CV:NMF 102  0.1567  0.182267 3
#> CV:NMF  76  0.2388  0.002061 4
#> CV:NMF  58  0.0477  0.026722 5
#> CV:NMF  26  0.6290  0.000995 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 125 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.169           0.662       0.807         0.4320 0.510   0.510
#> 3 3 0.244           0.614       0.782         0.2524 0.920   0.854
#> 4 4 0.272           0.472       0.704         0.1494 0.851   0.724
#> 5 5 0.330           0.463       0.679         0.0686 0.888   0.750
#> 6 6 0.340           0.373       0.652         0.0437 0.933   0.826

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM601752     2  0.6247     0.7930 0.156 0.844
#> GSM601782     1  0.2603     0.7818 0.956 0.044
#> GSM601792     2  0.9775     0.4701 0.412 0.588
#> GSM601797     2  0.8608     0.7054 0.284 0.716
#> GSM601827     1  0.1843     0.7836 0.972 0.028
#> GSM601837     2  0.1414     0.7250 0.020 0.980
#> GSM601842     2  0.6712     0.7914 0.176 0.824
#> GSM601857     1  0.9000     0.4859 0.684 0.316
#> GSM601867     2  0.9815     0.4709 0.420 0.580
#> GSM601747     1  0.9491     0.3610 0.632 0.368
#> GSM601757     1  0.8386     0.5725 0.732 0.268
#> GSM601762     2  0.5294     0.7896 0.120 0.880
#> GSM601767     2  0.3879     0.7716 0.076 0.924
#> GSM601772     2  0.3584     0.7715 0.068 0.932
#> GSM601777     2  0.8713     0.6918 0.292 0.708
#> GSM601787     2  0.8763     0.6778 0.296 0.704
#> GSM601802     2  0.5629     0.7937 0.132 0.868
#> GSM601807     1  0.5294     0.7269 0.880 0.120
#> GSM601812     1  0.2948     0.7816 0.948 0.052
#> GSM601817     1  0.1184     0.7791 0.984 0.016
#> GSM601822     2  0.9393     0.5942 0.356 0.644
#> GSM601832     2  0.6801     0.7911 0.180 0.820
#> GSM601847     2  0.9209     0.6349 0.336 0.664
#> GSM601852     1  0.2236     0.7850 0.964 0.036
#> GSM601862     1  0.1843     0.7836 0.972 0.028
#> GSM601753     2  0.5946     0.7946 0.144 0.856
#> GSM601783     1  0.1843     0.7840 0.972 0.028
#> GSM601793     2  0.9815     0.4335 0.420 0.580
#> GSM601798     2  0.6623     0.7911 0.172 0.828
#> GSM601828     1  0.1414     0.7811 0.980 0.020
#> GSM601838     2  0.1184     0.7208 0.016 0.984
#> GSM601843     2  0.6712     0.7914 0.176 0.824
#> GSM601858     1  0.9922     0.0365 0.552 0.448
#> GSM601868     1  0.2603     0.7845 0.956 0.044
#> GSM601748     1  0.1414     0.7813 0.980 0.020
#> GSM601758     1  0.1414     0.7813 0.980 0.020
#> GSM601763     2  0.9608     0.5777 0.384 0.616
#> GSM601768     2  0.4022     0.7735 0.080 0.920
#> GSM601773     2  0.3584     0.7715 0.068 0.932
#> GSM601778     2  0.8713     0.6918 0.292 0.708
#> GSM601788     2  0.6438     0.7960 0.164 0.836
#> GSM601803     2  0.5629     0.7937 0.132 0.868
#> GSM601808     1  0.2423     0.7821 0.960 0.040
#> GSM601813     1  0.2948     0.7816 0.948 0.052
#> GSM601818     1  0.1184     0.7791 0.984 0.016
#> GSM601823     1  0.9963     0.0190 0.536 0.464
#> GSM601833     2  0.6801     0.7911 0.180 0.820
#> GSM601848     1  0.9833     0.2463 0.576 0.424
#> GSM601853     1  0.2603     0.7818 0.956 0.044
#> GSM601863     1  0.1843     0.7836 0.972 0.028
#> GSM601754     2  0.6343     0.7965 0.160 0.840
#> GSM601784     2  0.2948     0.7645 0.052 0.948
#> GSM601794     2  0.9661     0.5289 0.392 0.608
#> GSM601799     2  0.8016     0.7633 0.244 0.756
#> GSM601829     1  0.3114     0.7796 0.944 0.056
#> GSM601839     2  0.1184     0.7208 0.016 0.984
#> GSM601844     1  0.9000     0.4862 0.684 0.316
#> GSM601859     2  0.7376     0.7807 0.208 0.792
#> GSM601869     1  0.2603     0.7845 0.956 0.044
#> GSM601749     1  0.1633     0.7830 0.976 0.024
#> GSM601759     1  0.1414     0.7813 0.980 0.020
#> GSM601764     2  0.9491     0.6076 0.368 0.632
#> GSM601769     2  0.0376     0.7369 0.004 0.996
#> GSM601774     2  0.0672     0.7386 0.008 0.992
#> GSM601779     1  0.9323     0.4555 0.652 0.348
#> GSM601789     2  0.6048     0.7949 0.148 0.852
#> GSM601804     2  0.7219     0.7791 0.200 0.800
#> GSM601809     1  0.9427     0.3939 0.640 0.360
#> GSM601814     2  0.0376     0.7369 0.004 0.996
#> GSM601819     1  0.1184     0.7791 0.984 0.016
#> GSM601824     1  0.9963     0.0190 0.536 0.464
#> GSM601834     2  0.6712     0.7919 0.176 0.824
#> GSM601849     1  0.9815     0.2620 0.580 0.420
#> GSM601854     1  0.1184     0.7791 0.984 0.016
#> GSM601864     2  0.8207     0.7200 0.256 0.744
#> GSM601755     2  0.6247     0.7930 0.156 0.844
#> GSM601785     2  0.4161     0.7808 0.084 0.916
#> GSM601795     2  0.9661     0.5299 0.392 0.608
#> GSM601800     2  0.6973     0.7882 0.188 0.812
#> GSM601830     1  0.5294     0.7258 0.880 0.120
#> GSM601840     2  0.9775     0.4972 0.412 0.588
#> GSM601845     2  0.8016     0.7633 0.244 0.756
#> GSM601860     2  0.7815     0.7656 0.232 0.768
#> GSM601870     2  0.9993     0.2541 0.484 0.516
#> GSM601750     1  0.1184     0.7791 0.984 0.016
#> GSM601760     1  0.2603     0.7831 0.956 0.044
#> GSM601765     2  0.7299     0.7824 0.204 0.796
#> GSM601770     2  0.3733     0.7690 0.072 0.928
#> GSM601775     2  0.9129     0.6701 0.328 0.672
#> GSM601780     1  0.9323     0.4555 0.652 0.348
#> GSM601790     2  0.2236     0.7468 0.036 0.964
#> GSM601805     2  0.5629     0.7937 0.132 0.868
#> GSM601810     1  0.8386     0.5827 0.732 0.268
#> GSM601815     2  0.0376     0.7369 0.004 0.996
#> GSM601820     1  0.1184     0.7791 0.984 0.016
#> GSM601825     2  0.5294     0.7941 0.120 0.880
#> GSM601835     2  0.7299     0.7826 0.204 0.796
#> GSM601850     2  0.9427     0.6066 0.360 0.640
#> GSM601855     1  0.4939     0.7344 0.892 0.108
#> GSM601865     2  0.8207     0.7200 0.256 0.744
#> GSM601756     2  0.6247     0.7930 0.156 0.844
#> GSM601786     2  0.2043     0.7434 0.032 0.968
#> GSM601796     2  0.9661     0.5299 0.392 0.608
#> GSM601801     2  0.6801     0.7872 0.180 0.820
#> GSM601831     1  0.1633     0.7830 0.976 0.024
#> GSM601841     1  0.9209     0.4671 0.664 0.336
#> GSM601846     2  0.9977     0.2422 0.472 0.528
#> GSM601861     2  0.0376     0.7369 0.004 0.996
#> GSM601871     2  0.9833     0.4539 0.424 0.576
#> GSM601751     2  0.9635     0.5621 0.388 0.612
#> GSM601761     1  0.4431     0.7610 0.908 0.092
#> GSM601766     2  0.8081     0.7620 0.248 0.752
#> GSM601771     2  0.9460     0.6115 0.364 0.636
#> GSM601776     1  0.9732     0.2619 0.596 0.404
#> GSM601781     2  0.8763     0.6868 0.296 0.704
#> GSM601791     1  0.9044     0.5054 0.680 0.320
#> GSM601806     2  0.5629     0.7937 0.132 0.868
#> GSM601811     1  0.8386     0.5827 0.732 0.268
#> GSM601816     1  0.9795     0.2676 0.584 0.416
#> GSM601821     2  0.0376     0.7369 0.004 0.996
#> GSM601826     1  0.9922     0.1442 0.552 0.448
#> GSM601836     2  0.9909     0.4181 0.444 0.556
#> GSM601851     1  0.9635     0.3577 0.612 0.388
#> GSM601856     1  0.2778     0.7818 0.952 0.048
#> GSM601866     1  0.1633     0.7830 0.976 0.024

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM601752     2  0.2590     0.7390 0.004 0.924 0.072
#> GSM601782     1  0.2743     0.6849 0.928 0.020 0.052
#> GSM601792     2  0.7739     0.5930 0.188 0.676 0.136
#> GSM601797     2  0.5467     0.6826 0.032 0.792 0.176
#> GSM601827     1  0.2939     0.6756 0.916 0.012 0.072
#> GSM601837     2  0.4605     0.6936 0.000 0.796 0.204
#> GSM601842     2  0.4602     0.7543 0.108 0.852 0.040
#> GSM601857     1  0.9004     0.2849 0.488 0.376 0.136
#> GSM601867     2  0.8492     0.5097 0.276 0.592 0.132
#> GSM601747     1  0.7736     0.2606 0.548 0.400 0.052
#> GSM601757     1  0.8646     0.3807 0.556 0.320 0.124
#> GSM601762     2  0.3694     0.7577 0.052 0.896 0.052
#> GSM601767     2  0.4892     0.7418 0.048 0.840 0.112
#> GSM601772     2  0.5028     0.7346 0.040 0.828 0.132
#> GSM601777     2  0.5974     0.6893 0.068 0.784 0.148
#> GSM601787     2  0.6313     0.5268 0.016 0.676 0.308
#> GSM601802     2  0.1860     0.7405 0.000 0.948 0.052
#> GSM601807     3  0.6208     0.9625 0.068 0.164 0.768
#> GSM601812     1  0.2152     0.7022 0.948 0.036 0.016
#> GSM601817     1  0.0592     0.6919 0.988 0.000 0.012
#> GSM601822     2  0.7153     0.6417 0.200 0.708 0.092
#> GSM601832     2  0.3966     0.7546 0.100 0.876 0.024
#> GSM601847     2  0.6728     0.6738 0.184 0.736 0.080
#> GSM601852     1  0.2313     0.6998 0.944 0.024 0.032
#> GSM601862     1  0.3499     0.6746 0.900 0.028 0.072
#> GSM601753     2  0.2280     0.7434 0.008 0.940 0.052
#> GSM601783     1  0.1491     0.7000 0.968 0.016 0.016
#> GSM601793     2  0.7885     0.5678 0.212 0.660 0.128
#> GSM601798     2  0.2537     0.7349 0.000 0.920 0.080
#> GSM601828     1  0.2384     0.6824 0.936 0.008 0.056
#> GSM601838     2  0.4750     0.6808 0.000 0.784 0.216
#> GSM601843     2  0.4712     0.7543 0.108 0.848 0.044
#> GSM601858     2  0.8961     0.1787 0.360 0.504 0.136
#> GSM601868     1  0.4602     0.6504 0.852 0.040 0.108
#> GSM601748     1  0.0983     0.6934 0.980 0.004 0.016
#> GSM601758     1  0.0848     0.6961 0.984 0.008 0.008
#> GSM601763     2  0.6935     0.5569 0.312 0.652 0.036
#> GSM601768     2  0.4964     0.7371 0.048 0.836 0.116
#> GSM601773     2  0.5094     0.7330 0.040 0.824 0.136
#> GSM601778     2  0.6001     0.6900 0.072 0.784 0.144
#> GSM601788     2  0.5710     0.7538 0.116 0.804 0.080
#> GSM601803     2  0.1753     0.7400 0.000 0.952 0.048
#> GSM601808     1  0.5524     0.5835 0.796 0.040 0.164
#> GSM601813     1  0.2152     0.7022 0.948 0.036 0.016
#> GSM601818     1  0.0747     0.6918 0.984 0.000 0.016
#> GSM601823     2  0.8059     0.0869 0.444 0.492 0.064
#> GSM601833     2  0.3832     0.7549 0.100 0.880 0.020
#> GSM601848     1  0.8065     0.1242 0.484 0.452 0.064
#> GSM601853     1  0.6154     0.5444 0.752 0.044 0.204
#> GSM601863     1  0.3499     0.6746 0.900 0.028 0.072
#> GSM601754     2  0.3356     0.7524 0.036 0.908 0.056
#> GSM601784     2  0.4342     0.7363 0.024 0.856 0.120
#> GSM601794     2  0.7595     0.6066 0.176 0.688 0.136
#> GSM601799     2  0.4994     0.7479 0.112 0.836 0.052
#> GSM601829     1  0.3692     0.6859 0.896 0.048 0.056
#> GSM601839     2  0.4842     0.6806 0.000 0.776 0.224
#> GSM601844     1  0.7044     0.4155 0.620 0.348 0.032
#> GSM601859     2  0.5852     0.7428 0.152 0.788 0.060
#> GSM601869     1  0.4602     0.6504 0.852 0.040 0.108
#> GSM601749     1  0.1015     0.6981 0.980 0.012 0.008
#> GSM601759     1  0.1182     0.6979 0.976 0.012 0.012
#> GSM601764     2  0.6835     0.6074 0.284 0.676 0.040
#> GSM601769     2  0.4452     0.6936 0.000 0.808 0.192
#> GSM601774     2  0.4629     0.6983 0.004 0.808 0.188
#> GSM601779     1  0.7123     0.4074 0.604 0.364 0.032
#> GSM601789     2  0.5815     0.7483 0.104 0.800 0.096
#> GSM601804     2  0.3973     0.7410 0.032 0.880 0.088
#> GSM601809     1  0.7636     0.3082 0.556 0.396 0.048
#> GSM601814     2  0.4452     0.6936 0.000 0.808 0.192
#> GSM601819     1  0.0592     0.6913 0.988 0.000 0.012
#> GSM601824     2  0.8059     0.0869 0.444 0.492 0.064
#> GSM601834     2  0.4217     0.7568 0.100 0.868 0.032
#> GSM601849     1  0.7993     0.1117 0.484 0.456 0.060
#> GSM601854     1  0.1711     0.6942 0.960 0.008 0.032
#> GSM601864     2  0.5431     0.5816 0.000 0.716 0.284
#> GSM601755     2  0.2590     0.7390 0.004 0.924 0.072
#> GSM601785     2  0.4092     0.7526 0.036 0.876 0.088
#> GSM601795     2  0.7595     0.6087 0.176 0.688 0.136
#> GSM601800     2  0.3670     0.7447 0.020 0.888 0.092
#> GSM601830     3  0.6119     0.9634 0.064 0.164 0.772
#> GSM601840     2  0.7618     0.5262 0.304 0.628 0.068
#> GSM601845     2  0.5407     0.7385 0.156 0.804 0.040
#> GSM601860     2  0.6208     0.7340 0.164 0.768 0.068
#> GSM601870     2  0.7940     0.0733 0.060 0.524 0.416
#> GSM601750     1  0.0747     0.6910 0.984 0.000 0.016
#> GSM601760     1  0.1999     0.7009 0.952 0.036 0.012
#> GSM601765     2  0.4540     0.7483 0.124 0.848 0.028
#> GSM601770     2  0.5174     0.7330 0.048 0.824 0.128
#> GSM601775     2  0.6781     0.6520 0.244 0.704 0.052
#> GSM601780     1  0.7123     0.4074 0.604 0.364 0.032
#> GSM601790     2  0.4861     0.7097 0.012 0.808 0.180
#> GSM601805     2  0.1753     0.7400 0.000 0.952 0.048
#> GSM601810     1  0.7181     0.5057 0.648 0.304 0.048
#> GSM601815     2  0.4399     0.6938 0.000 0.812 0.188
#> GSM601820     1  0.0592     0.6913 0.988 0.000 0.012
#> GSM601825     2  0.2947     0.7519 0.020 0.920 0.060
#> GSM601835     2  0.4413     0.7480 0.124 0.852 0.024
#> GSM601850     2  0.6982     0.6447 0.220 0.708 0.072
#> GSM601855     3  0.6332     0.9566 0.088 0.144 0.768
#> GSM601865     2  0.5431     0.5816 0.000 0.716 0.284
#> GSM601756     2  0.2590     0.7390 0.004 0.924 0.072
#> GSM601786     2  0.5406     0.6961 0.020 0.780 0.200
#> GSM601796     2  0.7595     0.6087 0.176 0.688 0.136
#> GSM601801     2  0.2959     0.7294 0.000 0.900 0.100
#> GSM601831     1  0.2486     0.6848 0.932 0.008 0.060
#> GSM601841     1  0.7982     0.3440 0.556 0.376 0.068
#> GSM601846     2  0.6661     0.2264 0.012 0.588 0.400
#> GSM601861     2  0.4452     0.6936 0.000 0.808 0.192
#> GSM601871     2  0.7295     0.3031 0.036 0.584 0.380
#> GSM601751     2  0.7528     0.5788 0.280 0.648 0.072
#> GSM601761     1  0.3528     0.6779 0.892 0.092 0.016
#> GSM601766     2  0.5298     0.7355 0.164 0.804 0.032
#> GSM601771     2  0.7032     0.6104 0.272 0.676 0.052
#> GSM601776     1  0.7979     0.1206 0.500 0.440 0.060
#> GSM601781     2  0.6087     0.6878 0.076 0.780 0.144
#> GSM601791     1  0.6773     0.4573 0.636 0.340 0.024
#> GSM601806     2  0.1860     0.7398 0.000 0.948 0.052
#> GSM601811     1  0.7181     0.5057 0.648 0.304 0.048
#> GSM601816     1  0.8203     0.1314 0.484 0.444 0.072
#> GSM601821     2  0.4452     0.6936 0.000 0.808 0.192
#> GSM601826     2  0.8264     0.0120 0.436 0.488 0.076
#> GSM601836     2  0.7368     0.4475 0.352 0.604 0.044
#> GSM601851     1  0.7619     0.2451 0.532 0.424 0.044
#> GSM601856     1  0.6208     0.5537 0.752 0.048 0.200
#> GSM601866     1  0.2414     0.6878 0.940 0.020 0.040

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM601752     2  0.3455    0.44817 0.004 0.852 0.012 0.132
#> GSM601782     1  0.4444    0.69611 0.832 0.020 0.080 0.068
#> GSM601792     2  0.6758    0.50624 0.160 0.688 0.056 0.096
#> GSM601797     2  0.5080    0.50159 0.016 0.788 0.076 0.120
#> GSM601827     1  0.2744    0.72840 0.908 0.008 0.064 0.020
#> GSM601837     4  0.5560    0.91352 0.000 0.392 0.024 0.584
#> GSM601842     2  0.4919    0.45081 0.076 0.772 0.000 0.152
#> GSM601857     1  0.8161    0.15733 0.436 0.404 0.088 0.072
#> GSM601867     2  0.8430    0.38509 0.220 0.544 0.116 0.120
#> GSM601747     1  0.7047    0.11808 0.500 0.416 0.036 0.048
#> GSM601757     1  0.7869    0.31841 0.504 0.352 0.080 0.064
#> GSM601762     2  0.4888    0.29679 0.036 0.740 0.000 0.224
#> GSM601767     2  0.5582   -0.13561 0.032 0.620 0.000 0.348
#> GSM601772     2  0.5523   -0.24355 0.024 0.596 0.000 0.380
#> GSM601777     2  0.5271    0.51520 0.036 0.784 0.056 0.124
#> GSM601787     2  0.7312    0.02403 0.016 0.580 0.148 0.256
#> GSM601802     2  0.3105    0.43096 0.000 0.868 0.012 0.120
#> GSM601807     3  0.6032    0.86902 0.016 0.092 0.712 0.180
#> GSM601812     1  0.2513    0.75230 0.924 0.036 0.024 0.016
#> GSM601817     1  0.0524    0.74823 0.988 0.000 0.008 0.004
#> GSM601822     2  0.6097    0.53276 0.152 0.724 0.028 0.096
#> GSM601832     2  0.4274    0.47858 0.072 0.820 0.000 0.108
#> GSM601847     2  0.5603    0.54341 0.136 0.752 0.016 0.096
#> GSM601852     1  0.2089    0.75382 0.940 0.028 0.012 0.020
#> GSM601862     1  0.3672    0.72451 0.872 0.028 0.072 0.028
#> GSM601753     2  0.3375    0.44158 0.008 0.864 0.012 0.116
#> GSM601783     1  0.1362    0.75464 0.964 0.020 0.004 0.012
#> GSM601793     2  0.7009    0.49367 0.184 0.664 0.060 0.092
#> GSM601798     2  0.3694    0.45868 0.000 0.844 0.032 0.124
#> GSM601828     1  0.2307    0.73451 0.928 0.008 0.048 0.016
#> GSM601838     4  0.5371    0.93332 0.000 0.364 0.020 0.616
#> GSM601843     2  0.4966    0.44564 0.076 0.768 0.000 0.156
#> GSM601858     2  0.8260    0.26580 0.308 0.508 0.084 0.100
#> GSM601868     1  0.4741    0.69111 0.816 0.032 0.104 0.048
#> GSM601748     1  0.0779    0.74911 0.980 0.004 0.016 0.000
#> GSM601758     1  0.1007    0.75173 0.976 0.008 0.008 0.008
#> GSM601763     2  0.6418    0.50046 0.264 0.640 0.008 0.088
#> GSM601768     2  0.5615   -0.15832 0.032 0.612 0.000 0.356
#> GSM601773     2  0.5536   -0.25865 0.024 0.592 0.000 0.384
#> GSM601778     2  0.5358    0.51733 0.040 0.780 0.056 0.124
#> GSM601788     2  0.6144    0.26315 0.084 0.660 0.004 0.252
#> GSM601803     2  0.3161    0.42653 0.000 0.864 0.012 0.124
#> GSM601808     1  0.5135    0.57089 0.728 0.004 0.232 0.036
#> GSM601813     1  0.2405    0.75237 0.928 0.036 0.020 0.016
#> GSM601818     1  0.0657    0.74824 0.984 0.000 0.012 0.004
#> GSM601823     2  0.7057    0.17231 0.400 0.508 0.020 0.072
#> GSM601833     2  0.4444    0.47056 0.072 0.808 0.000 0.120
#> GSM601848     2  0.7375    0.00589 0.444 0.448 0.028 0.080
#> GSM601853     1  0.5034    0.53062 0.700 0.008 0.280 0.012
#> GSM601863     1  0.3672    0.72451 0.872 0.028 0.072 0.028
#> GSM601754     2  0.3754    0.45966 0.028 0.852 0.008 0.112
#> GSM601784     2  0.5429   -0.29043 0.012 0.592 0.004 0.392
#> GSM601794     2  0.6538    0.51163 0.156 0.704 0.056 0.084
#> GSM601799     2  0.4870    0.53166 0.092 0.796 0.008 0.104
#> GSM601829     1  0.3467    0.73612 0.884 0.032 0.056 0.028
#> GSM601839     4  0.5467    0.92940 0.000 0.364 0.024 0.612
#> GSM601844     1  0.6667    0.33036 0.576 0.352 0.032 0.040
#> GSM601859     2  0.6392    0.39449 0.128 0.660 0.004 0.208
#> GSM601869     1  0.4741    0.69111 0.816 0.032 0.104 0.048
#> GSM601749     1  0.0992    0.75227 0.976 0.012 0.004 0.008
#> GSM601759     1  0.1271    0.75225 0.968 0.012 0.008 0.012
#> GSM601764     2  0.6286    0.50543 0.240 0.656 0.004 0.100
#> GSM601769     4  0.4730    0.95068 0.000 0.364 0.000 0.636
#> GSM601774     4  0.4817    0.93152 0.000 0.388 0.000 0.612
#> GSM601779     1  0.6764    0.28656 0.564 0.356 0.020 0.060
#> GSM601789     2  0.6215    0.00328 0.072 0.600 0.000 0.328
#> GSM601804     2  0.4169    0.48968 0.020 0.836 0.028 0.116
#> GSM601809     1  0.7758    0.19251 0.492 0.376 0.068 0.064
#> GSM601814     4  0.4730    0.95068 0.000 0.364 0.000 0.636
#> GSM601819     1  0.0469    0.74773 0.988 0.000 0.012 0.000
#> GSM601824     2  0.7057    0.17231 0.400 0.508 0.020 0.072
#> GSM601834     2  0.4656    0.46409 0.072 0.792 0.000 0.136
#> GSM601849     2  0.7272    0.02957 0.444 0.456 0.028 0.072
#> GSM601854     1  0.1771    0.74486 0.948 0.004 0.036 0.012
#> GSM601864     2  0.6706   -0.07422 0.000 0.588 0.124 0.288
#> GSM601755     2  0.3455    0.44817 0.004 0.852 0.012 0.132
#> GSM601785     2  0.5409   -0.02449 0.020 0.644 0.004 0.332
#> GSM601795     2  0.6494    0.51068 0.152 0.708 0.056 0.084
#> GSM601800     2  0.3869    0.47269 0.008 0.844 0.028 0.120
#> GSM601830     3  0.3752    0.90810 0.016 0.084 0.864 0.036
#> GSM601840     2  0.6877    0.49515 0.252 0.636 0.040 0.072
#> GSM601845     2  0.5134    0.50869 0.120 0.772 0.004 0.104
#> GSM601860     2  0.6455    0.42873 0.140 0.668 0.008 0.184
#> GSM601870     2  0.8253   -0.00504 0.028 0.456 0.316 0.200
#> GSM601750     1  0.0779    0.74777 0.980 0.000 0.016 0.004
#> GSM601760     1  0.2049    0.74998 0.940 0.036 0.012 0.012
#> GSM601765     2  0.4655    0.49364 0.088 0.796 0.000 0.116
#> GSM601770     2  0.5659   -0.20993 0.032 0.600 0.000 0.368
#> GSM601775     2  0.6348    0.51139 0.208 0.680 0.016 0.096
#> GSM601780     1  0.6764    0.28656 0.564 0.356 0.020 0.060
#> GSM601790     4  0.5060    0.87717 0.000 0.412 0.004 0.584
#> GSM601805     2  0.3280    0.42770 0.000 0.860 0.016 0.124
#> GSM601810     1  0.7266    0.41951 0.576 0.308 0.072 0.044
#> GSM601815     4  0.4746    0.94939 0.000 0.368 0.000 0.632
#> GSM601820     1  0.0469    0.74773 0.988 0.000 0.012 0.000
#> GSM601825     2  0.4392    0.29647 0.012 0.768 0.004 0.216
#> GSM601835     2  0.4424    0.49049 0.088 0.812 0.000 0.100
#> GSM601850     2  0.5630    0.54263 0.164 0.740 0.012 0.084
#> GSM601855     3  0.2307    0.90748 0.016 0.048 0.928 0.008
#> GSM601865     2  0.6706   -0.07422 0.000 0.588 0.124 0.288
#> GSM601756     2  0.3455    0.44817 0.004 0.852 0.012 0.132
#> GSM601786     4  0.5256    0.89730 0.012 0.392 0.000 0.596
#> GSM601796     2  0.6494    0.51068 0.152 0.708 0.056 0.084
#> GSM601801     2  0.4100    0.44842 0.000 0.816 0.036 0.148
#> GSM601831     1  0.2392    0.73680 0.924 0.008 0.052 0.016
#> GSM601841     1  0.7011    0.23261 0.524 0.392 0.040 0.044
#> GSM601846     2  0.7148    0.10315 0.000 0.496 0.364 0.140
#> GSM601861     4  0.4730    0.95068 0.000 0.364 0.000 0.636
#> GSM601871     2  0.7888    0.13687 0.024 0.532 0.220 0.224
#> GSM601751     2  0.6780    0.49839 0.240 0.644 0.028 0.088
#> GSM601761     1  0.3319    0.72093 0.876 0.096 0.012 0.016
#> GSM601766     2  0.5174    0.51100 0.116 0.760 0.000 0.124
#> GSM601771     2  0.6502    0.50464 0.236 0.660 0.020 0.084
#> GSM601776     2  0.7163   -0.01202 0.452 0.456 0.028 0.064
#> GSM601781     2  0.5254    0.51735 0.040 0.784 0.048 0.128
#> GSM601791     1  0.6253    0.37187 0.608 0.336 0.020 0.036
#> GSM601806     2  0.3217    0.42099 0.000 0.860 0.012 0.128
#> GSM601811     1  0.7266    0.41951 0.576 0.308 0.072 0.044
#> GSM601816     2  0.7190    0.00157 0.448 0.456 0.024 0.072
#> GSM601821     4  0.4730    0.95068 0.000 0.364 0.000 0.636
#> GSM601826     2  0.7511    0.13334 0.392 0.488 0.032 0.088
#> GSM601836     2  0.6445    0.47115 0.300 0.620 0.012 0.068
#> GSM601851     1  0.7060    0.08877 0.492 0.420 0.024 0.064
#> GSM601856     1  0.5034    0.53627 0.700 0.008 0.280 0.012
#> GSM601866     1  0.2418    0.74493 0.928 0.024 0.032 0.016

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4 p5
#> GSM601752     4  0.4727     0.4336 0.004 0.260 0.008 0.700 NA
#> GSM601782     1  0.5830     0.4090 0.572 0.020 0.012 0.036 NA
#> GSM601792     4  0.4643     0.5332 0.132 0.004 0.020 0.776 NA
#> GSM601797     4  0.3365     0.5149 0.004 0.024 0.048 0.868 NA
#> GSM601827     1  0.3176     0.7211 0.868 0.000 0.048 0.012 NA
#> GSM601837     2  0.2721     0.6542 0.000 0.896 0.016 0.052 NA
#> GSM601842     4  0.5831     0.3678 0.068 0.324 0.000 0.588 NA
#> GSM601857     1  0.7261     0.1095 0.420 0.012 0.056 0.416 NA
#> GSM601867     4  0.8834     0.3528 0.176 0.180 0.108 0.452 NA
#> GSM601747     1  0.7179     0.0297 0.452 0.056 0.016 0.396 NA
#> GSM601757     1  0.7018     0.2724 0.492 0.012 0.048 0.360 NA
#> GSM601762     4  0.5317     0.0585 0.028 0.448 0.000 0.512 NA
#> GSM601767     2  0.5064     0.3762 0.028 0.596 0.000 0.368 NA
#> GSM601772     2  0.4669     0.4958 0.020 0.664 0.000 0.308 NA
#> GSM601777     4  0.2302     0.5248 0.008 0.000 0.008 0.904 NA
#> GSM601787     4  0.7763    -0.1633 0.008 0.368 0.068 0.396 NA
#> GSM601802     4  0.4616     0.4095 0.000 0.288 0.004 0.680 NA
#> GSM601807     3  0.5649     0.7631 0.000 0.004 0.480 0.064 NA
#> GSM601812     1  0.2701     0.7434 0.896 0.000 0.012 0.044 NA
#> GSM601817     1  0.1357     0.7409 0.948 0.000 0.000 0.004 NA
#> GSM601822     4  0.4251     0.5544 0.132 0.024 0.000 0.796 NA
#> GSM601832     4  0.5667     0.4047 0.060 0.292 0.000 0.624 NA
#> GSM601847     4  0.4286     0.5589 0.104 0.032 0.000 0.804 NA
#> GSM601852     1  0.1588     0.7468 0.948 0.000 0.008 0.028 NA
#> GSM601862     1  0.3624     0.7128 0.852 0.004 0.048 0.024 NA
#> GSM601753     4  0.4803     0.4203 0.004 0.280 0.004 0.680 NA
#> GSM601783     1  0.1153     0.7467 0.964 0.000 0.004 0.024 NA
#> GSM601793     4  0.4858     0.5240 0.156 0.004 0.016 0.752 NA
#> GSM601798     4  0.4838     0.4471 0.000 0.232 0.020 0.712 NA
#> GSM601828     1  0.2775     0.7257 0.888 0.000 0.036 0.008 NA
#> GSM601838     2  0.2067     0.6438 0.000 0.928 0.012 0.028 NA
#> GSM601843     4  0.5845     0.3603 0.068 0.328 0.000 0.584 NA
#> GSM601858     4  0.8284     0.2625 0.292 0.108 0.056 0.456 NA
#> GSM601868     1  0.4744     0.6783 0.784 0.004 0.084 0.040 NA
#> GSM601748     1  0.1357     0.7416 0.948 0.000 0.000 0.004 NA
#> GSM601758     1  0.1281     0.7435 0.956 0.000 0.000 0.012 NA
#> GSM601763     4  0.6433     0.5061 0.248 0.140 0.000 0.584 NA
#> GSM601768     2  0.5039     0.3865 0.028 0.604 0.000 0.360 NA
#> GSM601773     2  0.4650     0.5013 0.020 0.668 0.000 0.304 NA
#> GSM601778     4  0.2354     0.5275 0.012 0.000 0.008 0.904 NA
#> GSM601788     2  0.6450    -0.1373 0.076 0.456 0.004 0.436 NA
#> GSM601803     4  0.4637     0.4045 0.000 0.292 0.004 0.676 NA
#> GSM601808     1  0.5452     0.5590 0.692 0.000 0.188 0.020 NA
#> GSM601813     1  0.2551     0.7436 0.904 0.000 0.012 0.044 NA
#> GSM601818     1  0.1430     0.7407 0.944 0.000 0.000 0.004 NA
#> GSM601823     4  0.5813     0.2318 0.372 0.020 0.000 0.552 NA
#> GSM601833     4  0.5721     0.3913 0.060 0.304 0.000 0.612 NA
#> GSM601848     4  0.5414     0.0760 0.412 0.000 0.000 0.528 NA
#> GSM601853     1  0.5264     0.5210 0.660 0.000 0.256 0.004 NA
#> GSM601863     1  0.3624     0.7128 0.852 0.004 0.048 0.024 NA
#> GSM601754     4  0.5139     0.4355 0.024 0.280 0.004 0.668 NA
#> GSM601784     2  0.4624     0.4936 0.012 0.676 0.000 0.296 NA
#> GSM601794     4  0.4498     0.5354 0.128 0.004 0.024 0.788 NA
#> GSM601799     4  0.5809     0.5101 0.088 0.224 0.004 0.660 NA
#> GSM601829     1  0.3463     0.7277 0.860 0.000 0.044 0.040 NA
#> GSM601839     2  0.2165     0.6366 0.000 0.924 0.016 0.024 NA
#> GSM601844     1  0.6714     0.2913 0.540 0.052 0.016 0.336 NA
#> GSM601859     4  0.6563     0.3063 0.116 0.368 0.000 0.492 NA
#> GSM601869     1  0.4744     0.6783 0.784 0.004 0.084 0.040 NA
#> GSM601749     1  0.0693     0.7428 0.980 0.000 0.000 0.012 NA
#> GSM601759     1  0.1300     0.7427 0.956 0.000 0.000 0.016 NA
#> GSM601764     4  0.6531     0.4918 0.228 0.156 0.000 0.584 NA
#> GSM601769     2  0.0898     0.6513 0.000 0.972 0.000 0.020 NA
#> GSM601774     2  0.1197     0.6702 0.000 0.952 0.000 0.048 NA
#> GSM601779     1  0.5250     0.2143 0.536 0.000 0.000 0.416 NA
#> GSM601789     2  0.5934     0.1922 0.068 0.556 0.000 0.356 NA
#> GSM601804     4  0.4770     0.4795 0.020 0.212 0.004 0.732 NA
#> GSM601809     1  0.8075     0.1117 0.436 0.080 0.040 0.336 NA
#> GSM601814     2  0.0898     0.6513 0.000 0.972 0.000 0.020 NA
#> GSM601819     1  0.1484     0.7389 0.944 0.000 0.000 0.008 NA
#> GSM601824     4  0.5813     0.2318 0.372 0.020 0.000 0.552 NA
#> GSM601834     4  0.5802     0.3762 0.060 0.324 0.000 0.592 NA
#> GSM601849     4  0.5560     0.0989 0.412 0.004 0.000 0.524 NA
#> GSM601854     1  0.1907     0.7348 0.928 0.000 0.028 0.000 NA
#> GSM601864     2  0.7199     0.2663 0.000 0.444 0.044 0.352 NA
#> GSM601755     4  0.4727     0.4336 0.004 0.260 0.008 0.700 NA
#> GSM601785     2  0.5181     0.3650 0.024 0.592 0.000 0.368 NA
#> GSM601795     4  0.4452     0.5345 0.124 0.004 0.024 0.792 NA
#> GSM601800     4  0.4681     0.4528 0.008 0.244 0.012 0.716 NA
#> GSM601830     3  0.2390     0.8574 0.012 0.000 0.912 0.044 NA
#> GSM601840     4  0.7230     0.5029 0.220 0.124 0.028 0.576 NA
#> GSM601845     4  0.5910     0.4643 0.108 0.240 0.000 0.632 NA
#> GSM601860     4  0.6782     0.3479 0.124 0.336 0.004 0.508 NA
#> GSM601870     4  0.8937    -0.0338 0.024 0.196 0.216 0.348 NA
#> GSM601750     1  0.1764     0.7378 0.928 0.000 0.000 0.008 NA
#> GSM601760     1  0.1818     0.7411 0.932 0.000 0.000 0.044 NA
#> GSM601765     4  0.5715     0.4406 0.080 0.264 0.000 0.636 NA
#> GSM601770     2  0.4999     0.4143 0.028 0.616 0.000 0.348 NA
#> GSM601775     4  0.6776     0.5016 0.192 0.200 0.004 0.572 NA
#> GSM601780     1  0.5250     0.2143 0.536 0.000 0.000 0.416 NA
#> GSM601790     2  0.2608     0.6724 0.000 0.888 0.004 0.088 NA
#> GSM601805     4  0.4715     0.4061 0.000 0.292 0.004 0.672 NA
#> GSM601810     1  0.6950     0.3435 0.516 0.008 0.044 0.328 NA
#> GSM601815     2  0.0992     0.6539 0.000 0.968 0.000 0.024 NA
#> GSM601820     1  0.1484     0.7389 0.944 0.000 0.000 0.008 NA
#> GSM601825     4  0.5122     0.1511 0.012 0.436 0.004 0.536 NA
#> GSM601835     4  0.5768     0.4367 0.076 0.268 0.000 0.632 NA
#> GSM601850     4  0.4981     0.5570 0.132 0.056 0.000 0.756 NA
#> GSM601855     3  0.0981     0.8627 0.012 0.000 0.972 0.008 NA
#> GSM601865     2  0.7199     0.2663 0.000 0.444 0.044 0.352 NA
#> GSM601756     4  0.4727     0.4336 0.004 0.260 0.008 0.700 NA
#> GSM601786     2  0.2502     0.6650 0.012 0.904 0.000 0.060 NA
#> GSM601796     4  0.4452     0.5345 0.124 0.004 0.024 0.792 NA
#> GSM601801     4  0.4970     0.4378 0.000 0.228 0.024 0.708 NA
#> GSM601831     1  0.2362     0.7305 0.912 0.000 0.040 0.008 NA
#> GSM601841     1  0.6313     0.1427 0.488 0.004 0.032 0.416 NA
#> GSM601846     4  0.7167    -0.0708 0.000 0.048 0.332 0.468 NA
#> GSM601861     2  0.0898     0.6513 0.000 0.972 0.000 0.020 NA
#> GSM601871     4  0.8433     0.0457 0.020 0.216 0.124 0.432 NA
#> GSM601751     4  0.7193     0.4994 0.204 0.152 0.016 0.572 NA
#> GSM601761     1  0.2864     0.7118 0.864 0.000 0.000 0.112 NA
#> GSM601766     4  0.5988     0.4669 0.112 0.232 0.000 0.632 NA
#> GSM601771     4  0.7142     0.4967 0.200 0.172 0.016 0.568 NA
#> GSM601776     4  0.5860     0.0720 0.432 0.016 0.004 0.500 NA
#> GSM601781     4  0.2395     0.5276 0.016 0.000 0.008 0.904 NA
#> GSM601791     1  0.5154     0.3052 0.580 0.000 0.000 0.372 NA
#> GSM601806     4  0.4658     0.3982 0.000 0.296 0.004 0.672 NA
#> GSM601811     1  0.6950     0.3435 0.516 0.008 0.044 0.328 NA
#> GSM601816     4  0.5560     0.0693 0.412 0.000 0.004 0.524 NA
#> GSM601821     2  0.0898     0.6513 0.000 0.972 0.000 0.020 NA
#> GSM601826     4  0.5204     0.1859 0.368 0.000 0.000 0.580 NA
#> GSM601836     4  0.6202     0.4953 0.272 0.080 0.000 0.604 NA
#> GSM601851     4  0.5237    -0.0380 0.468 0.000 0.000 0.488 NA
#> GSM601856     1  0.5240     0.5260 0.664 0.000 0.252 0.004 NA
#> GSM601866     1  0.2255     0.7378 0.924 0.004 0.020 0.024 NA

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM601752     2   0.515    0.43096 0.004 0.660 0.044 0.004 0.252 0.036
#> GSM601782     6   0.554    0.00000 0.308 0.064 0.016 0.000 0.020 0.592
#> GSM601792     2   0.462    0.44324 0.120 0.752 0.092 0.008 0.000 0.028
#> GSM601797     2   0.407    0.43592 0.000 0.792 0.128 0.016 0.020 0.044
#> GSM601827     1   0.370    0.55946 0.828 0.004 0.052 0.060 0.000 0.056
#> GSM601837     5   0.288    0.55135 0.000 0.036 0.072 0.004 0.872 0.016
#> GSM601842     2   0.542    0.33812 0.020 0.596 0.016 0.000 0.316 0.052
#> GSM601857     1   0.731   -0.07213 0.380 0.352 0.200 0.016 0.016 0.036
#> GSM601867     2   0.866    0.10182 0.096 0.436 0.164 0.064 0.164 0.076
#> GSM601747     2   0.736    0.09440 0.368 0.412 0.064 0.004 0.060 0.092
#> GSM601757     1   0.699   -0.01530 0.448 0.308 0.188 0.008 0.016 0.032
#> GSM601762     2   0.502    0.04139 0.008 0.500 0.016 0.000 0.452 0.024
#> GSM601767     5   0.462    0.36306 0.004 0.364 0.012 0.000 0.600 0.020
#> GSM601772     5   0.420    0.48239 0.004 0.296 0.012 0.000 0.676 0.012
#> GSM601777     2   0.279    0.42389 0.000 0.840 0.144 0.004 0.000 0.012
#> GSM601787     5   0.670   -0.25634 0.008 0.316 0.328 0.016 0.332 0.000
#> GSM601802     2   0.483    0.41028 0.000 0.652 0.032 0.000 0.280 0.036
#> GSM601807     3   0.566   -0.56164 0.000 0.020 0.592 0.268 0.004 0.116
#> GSM601812     1   0.312    0.58544 0.868 0.052 0.036 0.012 0.000 0.032
#> GSM601817     1   0.177    0.59691 0.924 0.000 0.024 0.000 0.000 0.052
#> GSM601822     2   0.420    0.49663 0.080 0.800 0.068 0.000 0.020 0.032
#> GSM601832     2   0.500    0.37523 0.016 0.636 0.012 0.000 0.296 0.040
#> GSM601847     2   0.393    0.50967 0.056 0.824 0.052 0.000 0.028 0.040
#> GSM601852     1   0.217    0.60819 0.920 0.024 0.016 0.016 0.000 0.024
#> GSM601862     1   0.384    0.53179 0.808 0.020 0.124 0.020 0.000 0.028
#> GSM601753     2   0.506    0.42067 0.004 0.648 0.040 0.000 0.272 0.036
#> GSM601783     1   0.163    0.60804 0.940 0.024 0.016 0.000 0.000 0.020
#> GSM601793     2   0.482    0.42539 0.144 0.728 0.096 0.008 0.000 0.024
#> GSM601798     2   0.529    0.43902 0.000 0.664 0.064 0.012 0.228 0.032
#> GSM601828     1   0.331    0.56961 0.848 0.000 0.048 0.048 0.000 0.056
#> GSM601838     5   0.221    0.54994 0.000 0.016 0.048 0.004 0.912 0.020
#> GSM601843     2   0.543    0.33045 0.020 0.592 0.016 0.000 0.320 0.052
#> GSM601858     2   0.807    0.00205 0.260 0.388 0.200 0.016 0.108 0.028
#> GSM601868     1   0.500    0.43982 0.732 0.032 0.148 0.044 0.000 0.044
#> GSM601748     1   0.193    0.59489 0.912 0.000 0.020 0.000 0.000 0.068
#> GSM601758     1   0.162    0.60159 0.940 0.020 0.012 0.000 0.000 0.028
#> GSM601763     2   0.597    0.48577 0.176 0.632 0.020 0.000 0.132 0.040
#> GSM601768     5   0.460    0.37175 0.004 0.356 0.012 0.000 0.608 0.020
#> GSM601773     5   0.419    0.48792 0.004 0.292 0.012 0.000 0.680 0.012
#> GSM601778     2   0.271    0.43260 0.000 0.848 0.136 0.004 0.000 0.012
#> GSM601788     5   0.621   -0.06153 0.032 0.432 0.072 0.000 0.440 0.024
#> GSM601803     2   0.485    0.40716 0.000 0.648 0.032 0.000 0.284 0.036
#> GSM601808     1   0.567    0.18318 0.624 0.004 0.224 0.112 0.000 0.036
#> GSM601813     1   0.297    0.58695 0.876 0.052 0.036 0.012 0.000 0.024
#> GSM601818     1   0.189    0.59336 0.916 0.000 0.024 0.000 0.000 0.060
#> GSM601823     2   0.551    0.34108 0.308 0.600 0.036 0.000 0.020 0.036
#> GSM601833     2   0.505    0.36090 0.016 0.624 0.012 0.000 0.308 0.040
#> GSM601848     2   0.522    0.17695 0.376 0.552 0.040 0.000 0.000 0.032
#> GSM601853     1   0.583    0.20185 0.612 0.004 0.172 0.180 0.000 0.032
#> GSM601863     1   0.384    0.53179 0.808 0.020 0.124 0.020 0.000 0.028
#> GSM601754     2   0.521    0.43331 0.016 0.644 0.036 0.000 0.272 0.032
#> GSM601784     5   0.404    0.47038 0.000 0.292 0.008 0.000 0.684 0.016
#> GSM601794     2   0.462    0.44325 0.112 0.752 0.100 0.008 0.000 0.028
#> GSM601799     2   0.542    0.49509 0.048 0.664 0.024 0.000 0.224 0.040
#> GSM601829     1   0.394    0.56219 0.824 0.032 0.044 0.056 0.000 0.044
#> GSM601839     5   0.231    0.53984 0.000 0.012 0.060 0.004 0.904 0.020
#> GSM601844     1   0.718    0.01407 0.468 0.336 0.044 0.016 0.052 0.084
#> GSM601859     2   0.587    0.29784 0.068 0.524 0.012 0.000 0.364 0.032
#> GSM601869     1   0.500    0.43982 0.732 0.032 0.148 0.044 0.000 0.044
#> GSM601749     1   0.106    0.60613 0.964 0.016 0.004 0.000 0.000 0.016
#> GSM601759     1   0.162    0.60105 0.940 0.024 0.012 0.000 0.000 0.024
#> GSM601764     2   0.631    0.47518 0.172 0.604 0.020 0.000 0.148 0.056
#> GSM601769     5   0.108    0.56423 0.000 0.004 0.004 0.000 0.960 0.032
#> GSM601774     5   0.156    0.57843 0.000 0.032 0.004 0.000 0.940 0.024
#> GSM601779     1   0.506    0.10384 0.504 0.440 0.032 0.000 0.000 0.024
#> GSM601789     5   0.598    0.23431 0.028 0.352 0.060 0.000 0.532 0.028
#> GSM601804     2   0.496    0.47583 0.020 0.704 0.040 0.000 0.204 0.032
#> GSM601809     2   0.835   -0.06833 0.316 0.344 0.156 0.012 0.080 0.092
#> GSM601814     5   0.108    0.56423 0.000 0.004 0.004 0.000 0.960 0.032
#> GSM601819     1   0.219    0.58744 0.904 0.004 0.032 0.000 0.000 0.060
#> GSM601824     2   0.551    0.34108 0.308 0.600 0.036 0.000 0.020 0.036
#> GSM601834     2   0.512    0.34533 0.016 0.604 0.012 0.000 0.328 0.040
#> GSM601849     2   0.527    0.19164 0.376 0.548 0.044 0.000 0.000 0.032
#> GSM601854     1   0.257    0.59005 0.892 0.000 0.032 0.036 0.000 0.040
#> GSM601864     5   0.637   -0.07597 0.000 0.272 0.300 0.004 0.416 0.008
#> GSM601755     2   0.515    0.43096 0.004 0.660 0.044 0.004 0.252 0.036
#> GSM601785     5   0.466    0.34491 0.008 0.368 0.012 0.000 0.596 0.016
#> GSM601795     2   0.458    0.44338 0.108 0.756 0.100 0.008 0.000 0.028
#> GSM601800     2   0.494    0.44563 0.000 0.676 0.044 0.008 0.244 0.028
#> GSM601830     4   0.113    0.88854 0.004 0.012 0.008 0.964 0.000 0.012
#> GSM601840     2   0.681    0.45865 0.148 0.600 0.064 0.008 0.128 0.052
#> GSM601845     2   0.568    0.43708 0.052 0.640 0.020 0.000 0.232 0.056
#> GSM601860     2   0.599    0.33614 0.076 0.540 0.020 0.000 0.336 0.028
#> GSM601870     3   0.752    0.44329 0.020 0.272 0.424 0.120 0.164 0.000
#> GSM601750     1   0.259    0.57265 0.872 0.000 0.044 0.000 0.000 0.084
#> GSM601760     1   0.210    0.58366 0.912 0.056 0.012 0.000 0.000 0.020
#> GSM601765     2   0.530    0.41239 0.028 0.648 0.016 0.000 0.256 0.052
#> GSM601770     5   0.456    0.39913 0.004 0.344 0.012 0.000 0.620 0.020
#> GSM601775     2   0.627    0.49365 0.120 0.612 0.024 0.004 0.196 0.044
#> GSM601780     1   0.506    0.10384 0.504 0.440 0.032 0.000 0.000 0.024
#> GSM601790     5   0.299    0.56395 0.000 0.068 0.044 0.000 0.864 0.024
#> GSM601805     2   0.491    0.40878 0.000 0.644 0.036 0.000 0.284 0.036
#> GSM601810     1   0.746   -0.05590 0.400 0.344 0.132 0.012 0.012 0.100
#> GSM601815     5   0.105    0.56698 0.000 0.008 0.000 0.000 0.960 0.032
#> GSM601820     1   0.211    0.58839 0.908 0.004 0.028 0.000 0.000 0.060
#> GSM601825     2   0.505    0.16098 0.000 0.516 0.024 0.000 0.428 0.032
#> GSM601835     2   0.519    0.40995 0.024 0.652 0.016 0.000 0.260 0.048
#> GSM601850     2   0.433    0.51487 0.076 0.796 0.028 0.000 0.056 0.044
#> GSM601855     4   0.195    0.88819 0.004 0.000 0.088 0.904 0.000 0.004
#> GSM601865     5   0.637   -0.07597 0.000 0.272 0.300 0.004 0.416 0.008
#> GSM601756     2   0.515    0.43096 0.004 0.660 0.044 0.004 0.252 0.036
#> GSM601786     5   0.233    0.56194 0.000 0.040 0.036 0.000 0.904 0.020
#> GSM601796     2   0.458    0.44338 0.108 0.756 0.100 0.008 0.000 0.028
#> GSM601801     2   0.543    0.43265 0.000 0.660 0.060 0.016 0.224 0.040
#> GSM601831     1   0.283    0.58311 0.880 0.004 0.024 0.044 0.000 0.048
#> GSM601841     2   0.633    0.02434 0.420 0.440 0.080 0.004 0.008 0.048
#> GSM601846     2   0.806   -0.34727 0.000 0.340 0.148 0.236 0.032 0.244
#> GSM601861     5   0.108    0.56423 0.000 0.004 0.004 0.000 0.960 0.032
#> GSM601871     3   0.690    0.36292 0.016 0.348 0.416 0.040 0.180 0.000
#> GSM601751     2   0.667    0.46908 0.132 0.604 0.056 0.004 0.152 0.052
#> GSM601761     1   0.283    0.50841 0.848 0.128 0.008 0.000 0.000 0.016
#> GSM601766     2   0.563    0.43955 0.060 0.648 0.020 0.000 0.224 0.048
#> GSM601771     2   0.662    0.48022 0.128 0.600 0.048 0.004 0.172 0.048
#> GSM601776     2   0.602    0.24774 0.360 0.528 0.036 0.004 0.020 0.052
#> GSM601781     2   0.290    0.42470 0.004 0.840 0.140 0.004 0.000 0.012
#> GSM601791     1   0.494    0.15796 0.548 0.400 0.032 0.000 0.000 0.020
#> GSM601806     2   0.491    0.40303 0.000 0.644 0.036 0.000 0.284 0.036
#> GSM601811     1   0.746   -0.05590 0.400 0.344 0.132 0.012 0.012 0.100
#> GSM601816     2   0.535    0.16393 0.380 0.544 0.044 0.004 0.000 0.028
#> GSM601821     5   0.108    0.56423 0.000 0.004 0.004 0.000 0.960 0.032
#> GSM601826     2   0.523    0.26858 0.328 0.588 0.060 0.000 0.000 0.024
#> GSM601836     2   0.634    0.44638 0.208 0.608 0.040 0.000 0.080 0.064
#> GSM601851     2   0.511    0.07872 0.432 0.508 0.036 0.000 0.000 0.024
#> GSM601856     1   0.586    0.20188 0.612 0.004 0.172 0.176 0.000 0.036
#> GSM601866     1   0.266    0.58872 0.892 0.020 0.052 0.012 0.000 0.024

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n time(p) gender(p) k
#> MAD:hclust 101   0.677     0.250 2
#> MAD:hclust 103   0.408     0.296 3
#> MAD:hclust  61   0.266     0.716 4
#> MAD:hclust  59   0.360     0.389 5
#> MAD:hclust  38   0.215     0.350 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 125 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.950           0.938       0.975         0.5023 0.499   0.499
#> 3 3 0.533           0.634       0.812         0.2756 0.814   0.649
#> 4 4 0.608           0.433       0.707         0.1266 0.947   0.866
#> 5 5 0.605           0.586       0.728         0.0729 0.804   0.480
#> 6 6 0.682           0.756       0.766         0.0431 0.925   0.665

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM601752     2  0.0000      0.979 0.000 1.000
#> GSM601782     1  0.0000      0.969 1.000 0.000
#> GSM601792     1  0.0000      0.969 1.000 0.000
#> GSM601797     1  0.9954      0.168 0.540 0.460
#> GSM601827     1  0.0000      0.969 1.000 0.000
#> GSM601837     2  0.0000      0.979 0.000 1.000
#> GSM601842     2  0.0000      0.979 0.000 1.000
#> GSM601857     1  0.0000      0.969 1.000 0.000
#> GSM601867     1  0.8955      0.556 0.688 0.312
#> GSM601747     1  0.0000      0.969 1.000 0.000
#> GSM601757     1  0.0000      0.969 1.000 0.000
#> GSM601762     2  0.0000      0.979 0.000 1.000
#> GSM601767     2  0.0000      0.979 0.000 1.000
#> GSM601772     2  0.0000      0.979 0.000 1.000
#> GSM601777     1  0.0938      0.960 0.988 0.012
#> GSM601787     1  0.9954      0.176 0.540 0.460
#> GSM601802     2  0.0000      0.979 0.000 1.000
#> GSM601807     1  0.1843      0.946 0.972 0.028
#> GSM601812     1  0.0000      0.969 1.000 0.000
#> GSM601817     1  0.0000      0.969 1.000 0.000
#> GSM601822     1  0.7815      0.696 0.768 0.232
#> GSM601832     2  0.0000      0.979 0.000 1.000
#> GSM601847     2  0.3584      0.916 0.068 0.932
#> GSM601852     1  0.0000      0.969 1.000 0.000
#> GSM601862     1  0.0000      0.969 1.000 0.000
#> GSM601753     2  0.0000      0.979 0.000 1.000
#> GSM601783     1  0.0000      0.969 1.000 0.000
#> GSM601793     1  0.0000      0.969 1.000 0.000
#> GSM601798     2  0.0000      0.979 0.000 1.000
#> GSM601828     1  0.0000      0.969 1.000 0.000
#> GSM601838     2  0.0000      0.979 0.000 1.000
#> GSM601843     2  0.0000      0.979 0.000 1.000
#> GSM601858     2  0.0000      0.979 0.000 1.000
#> GSM601868     1  0.0000      0.969 1.000 0.000
#> GSM601748     1  0.0000      0.969 1.000 0.000
#> GSM601758     1  0.0000      0.969 1.000 0.000
#> GSM601763     2  0.9795      0.286 0.416 0.584
#> GSM601768     2  0.0000      0.979 0.000 1.000
#> GSM601773     2  0.0000      0.979 0.000 1.000
#> GSM601778     1  0.0000      0.969 1.000 0.000
#> GSM601788     2  0.0000      0.979 0.000 1.000
#> GSM601803     2  0.0000      0.979 0.000 1.000
#> GSM601808     1  0.0000      0.969 1.000 0.000
#> GSM601813     1  0.0000      0.969 1.000 0.000
#> GSM601818     1  0.0000      0.969 1.000 0.000
#> GSM601823     1  0.0000      0.969 1.000 0.000
#> GSM601833     2  0.0000      0.979 0.000 1.000
#> GSM601848     1  0.0000      0.969 1.000 0.000
#> GSM601853     1  0.0000      0.969 1.000 0.000
#> GSM601863     1  0.0000      0.969 1.000 0.000
#> GSM601754     2  0.0000      0.979 0.000 1.000
#> GSM601784     2  0.0000      0.979 0.000 1.000
#> GSM601794     1  0.0000      0.969 1.000 0.000
#> GSM601799     2  0.0000      0.979 0.000 1.000
#> GSM601829     1  0.0000      0.969 1.000 0.000
#> GSM601839     2  0.0000      0.979 0.000 1.000
#> GSM601844     1  0.0000      0.969 1.000 0.000
#> GSM601859     2  0.0000      0.979 0.000 1.000
#> GSM601869     1  0.0000      0.969 1.000 0.000
#> GSM601749     1  0.0000      0.969 1.000 0.000
#> GSM601759     1  0.0000      0.969 1.000 0.000
#> GSM601764     1  0.0000      0.969 1.000 0.000
#> GSM601769     2  0.0000      0.979 0.000 1.000
#> GSM601774     2  0.0000      0.979 0.000 1.000
#> GSM601779     1  0.0000      0.969 1.000 0.000
#> GSM601789     2  0.0000      0.979 0.000 1.000
#> GSM601804     2  0.2423      0.945 0.040 0.960
#> GSM601809     1  0.0376      0.966 0.996 0.004
#> GSM601814     2  0.0000      0.979 0.000 1.000
#> GSM601819     1  0.0000      0.969 1.000 0.000
#> GSM601824     2  0.5519      0.850 0.128 0.872
#> GSM601834     2  0.0000      0.979 0.000 1.000
#> GSM601849     1  0.0000      0.969 1.000 0.000
#> GSM601854     1  0.0000      0.969 1.000 0.000
#> GSM601864     2  0.0000      0.979 0.000 1.000
#> GSM601755     2  0.0000      0.979 0.000 1.000
#> GSM601785     2  0.0000      0.979 0.000 1.000
#> GSM601795     1  0.0376      0.966 0.996 0.004
#> GSM601800     2  0.0000      0.979 0.000 1.000
#> GSM601830     1  0.1414      0.953 0.980 0.020
#> GSM601840     2  0.0376      0.976 0.004 0.996
#> GSM601845     2  0.7602      0.715 0.220 0.780
#> GSM601860     2  0.0000      0.979 0.000 1.000
#> GSM601870     1  0.4298      0.886 0.912 0.088
#> GSM601750     1  0.0000      0.969 1.000 0.000
#> GSM601760     1  0.0000      0.969 1.000 0.000
#> GSM601765     2  0.0000      0.979 0.000 1.000
#> GSM601770     2  0.0000      0.979 0.000 1.000
#> GSM601775     2  0.1414      0.963 0.020 0.980
#> GSM601780     1  0.0000      0.969 1.000 0.000
#> GSM601790     2  0.0000      0.979 0.000 1.000
#> GSM601805     2  0.0000      0.979 0.000 1.000
#> GSM601810     1  0.0000      0.969 1.000 0.000
#> GSM601815     2  0.0000      0.979 0.000 1.000
#> GSM601820     1  0.0000      0.969 1.000 0.000
#> GSM601825     2  0.0000      0.979 0.000 1.000
#> GSM601835     2  0.0000      0.979 0.000 1.000
#> GSM601850     1  0.0938      0.960 0.988 0.012
#> GSM601855     1  0.0000      0.969 1.000 0.000
#> GSM601865     2  0.0000      0.979 0.000 1.000
#> GSM601756     2  0.0000      0.979 0.000 1.000
#> GSM601786     2  0.0000      0.979 0.000 1.000
#> GSM601796     1  0.0000      0.969 1.000 0.000
#> GSM601801     2  0.0000      0.979 0.000 1.000
#> GSM601831     1  0.0000      0.969 1.000 0.000
#> GSM601841     1  0.0000      0.969 1.000 0.000
#> GSM601846     2  0.6148      0.816 0.152 0.848
#> GSM601861     2  0.0000      0.979 0.000 1.000
#> GSM601871     1  0.9580      0.406 0.620 0.380
#> GSM601751     2  0.0000      0.979 0.000 1.000
#> GSM601761     1  0.0000      0.969 1.000 0.000
#> GSM601766     2  0.5178      0.867 0.116 0.884
#> GSM601771     2  0.0000      0.979 0.000 1.000
#> GSM601776     1  0.0000      0.969 1.000 0.000
#> GSM601781     1  0.0376      0.966 0.996 0.004
#> GSM601791     1  0.0000      0.969 1.000 0.000
#> GSM601806     2  0.0000      0.979 0.000 1.000
#> GSM601811     1  0.0000      0.969 1.000 0.000
#> GSM601816     1  0.0000      0.969 1.000 0.000
#> GSM601821     2  0.0000      0.979 0.000 1.000
#> GSM601826     1  0.0000      0.969 1.000 0.000
#> GSM601836     1  0.0000      0.969 1.000 0.000
#> GSM601851     1  0.0000      0.969 1.000 0.000
#> GSM601856     1  0.0000      0.969 1.000 0.000
#> GSM601866     1  0.0000      0.969 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM601752     2  0.6529     0.7654 0.152 0.756 0.092
#> GSM601782     1  0.6235    -0.0142 0.564 0.000 0.436
#> GSM601792     1  0.1753     0.6460 0.952 0.000 0.048
#> GSM601797     1  0.8825     0.1845 0.532 0.336 0.132
#> GSM601827     3  0.6286     0.3549 0.464 0.000 0.536
#> GSM601837     2  0.4291     0.8162 0.000 0.820 0.180
#> GSM601842     2  0.0747     0.8856 0.000 0.984 0.016
#> GSM601857     3  0.5363     0.8130 0.276 0.000 0.724
#> GSM601867     3  0.4095     0.6431 0.056 0.064 0.880
#> GSM601747     1  0.5902     0.3468 0.680 0.004 0.316
#> GSM601757     1  0.6095     0.1332 0.608 0.000 0.392
#> GSM601762     2  0.0592     0.8851 0.000 0.988 0.012
#> GSM601767     2  0.0237     0.8853 0.000 0.996 0.004
#> GSM601772     2  0.0424     0.8851 0.000 0.992 0.008
#> GSM601777     1  0.5763     0.5121 0.740 0.016 0.244
#> GSM601787     3  0.4802     0.5401 0.020 0.156 0.824
#> GSM601802     2  0.4586     0.8520 0.048 0.856 0.096
#> GSM601807     3  0.3619     0.7307 0.136 0.000 0.864
#> GSM601812     1  0.6180     0.0504 0.584 0.000 0.416
#> GSM601817     1  0.6309    -0.2569 0.504 0.000 0.496
#> GSM601822     1  0.7058     0.4616 0.720 0.180 0.100
#> GSM601832     2  0.1289     0.8843 0.000 0.968 0.032
#> GSM601847     1  0.8442     0.1648 0.548 0.352 0.100
#> GSM601852     1  0.6280    -0.1266 0.540 0.000 0.460
#> GSM601862     3  0.5397     0.8100 0.280 0.000 0.720
#> GSM601753     2  0.4505     0.8514 0.048 0.860 0.092
#> GSM601783     1  0.5529     0.3712 0.704 0.000 0.296
#> GSM601793     1  0.1411     0.6599 0.964 0.000 0.036
#> GSM601798     2  0.4586     0.8520 0.048 0.856 0.096
#> GSM601828     3  0.6309     0.2501 0.496 0.000 0.504
#> GSM601838     2  0.4291     0.8162 0.000 0.820 0.180
#> GSM601843     2  0.0424     0.8856 0.000 0.992 0.008
#> GSM601858     2  0.4002     0.8269 0.000 0.840 0.160
#> GSM601868     3  0.5363     0.8130 0.276 0.000 0.724
#> GSM601748     1  0.6295    -0.1781 0.528 0.000 0.472
#> GSM601758     1  0.5397     0.3953 0.720 0.000 0.280
#> GSM601763     1  0.5412     0.5113 0.796 0.172 0.032
#> GSM601768     2  0.0237     0.8851 0.000 0.996 0.004
#> GSM601773     2  0.0237     0.8853 0.000 0.996 0.004
#> GSM601778     1  0.2711     0.6247 0.912 0.000 0.088
#> GSM601788     2  0.2165     0.8799 0.000 0.936 0.064
#> GSM601803     2  0.3445     0.8672 0.016 0.896 0.088
#> GSM601808     3  0.5363     0.8130 0.276 0.000 0.724
#> GSM601813     1  0.5465     0.3814 0.712 0.000 0.288
#> GSM601818     1  0.6309    -0.2569 0.504 0.000 0.496
#> GSM601823     1  0.0424     0.6624 0.992 0.000 0.008
#> GSM601833     2  0.0424     0.8851 0.000 0.992 0.008
#> GSM601848     1  0.0592     0.6626 0.988 0.000 0.012
#> GSM601853     3  0.5363     0.8130 0.276 0.000 0.724
#> GSM601863     3  0.5465     0.8000 0.288 0.000 0.712
#> GSM601754     2  0.6807     0.7449 0.172 0.736 0.092
#> GSM601784     2  0.0892     0.8839 0.000 0.980 0.020
#> GSM601794     1  0.1860     0.6440 0.948 0.000 0.052
#> GSM601799     2  0.6911     0.7349 0.180 0.728 0.092
#> GSM601829     1  0.2959     0.6270 0.900 0.000 0.100
#> GSM601839     2  0.4291     0.8162 0.000 0.820 0.180
#> GSM601844     1  0.0747     0.6621 0.984 0.000 0.016
#> GSM601859     2  0.0237     0.8853 0.000 0.996 0.004
#> GSM601869     3  0.5397     0.8100 0.280 0.000 0.720
#> GSM601749     1  0.5560     0.3592 0.700 0.000 0.300
#> GSM601759     1  0.5650     0.3341 0.688 0.000 0.312
#> GSM601764     1  0.0829     0.6624 0.984 0.004 0.012
#> GSM601769     2  0.2448     0.8679 0.000 0.924 0.076
#> GSM601774     2  0.0424     0.8853 0.000 0.992 0.008
#> GSM601779     1  0.0237     0.6602 0.996 0.000 0.004
#> GSM601789     2  0.4235     0.8171 0.000 0.824 0.176
#> GSM601804     1  0.8113     0.2543 0.596 0.312 0.092
#> GSM601809     1  0.6228     0.2003 0.624 0.004 0.372
#> GSM601814     2  0.2711     0.8631 0.000 0.912 0.088
#> GSM601819     1  0.4291     0.5394 0.820 0.000 0.180
#> GSM601824     1  0.6696     0.4675 0.736 0.188 0.076
#> GSM601834     2  0.0237     0.8853 0.000 0.996 0.004
#> GSM601849     1  0.0747     0.6621 0.984 0.000 0.016
#> GSM601854     1  0.6062     0.1348 0.616 0.000 0.384
#> GSM601864     2  0.4291     0.8162 0.000 0.820 0.180
#> GSM601755     2  0.4586     0.8520 0.048 0.856 0.096
#> GSM601785     2  0.2926     0.8756 0.040 0.924 0.036
#> GSM601795     1  0.3375     0.6082 0.892 0.008 0.100
#> GSM601800     2  0.4586     0.8520 0.048 0.856 0.096
#> GSM601830     3  0.4605     0.7790 0.204 0.000 0.796
#> GSM601840     2  0.6266     0.7752 0.156 0.768 0.076
#> GSM601845     2  0.7974     0.1875 0.436 0.504 0.060
#> GSM601860     2  0.1525     0.8823 0.032 0.964 0.004
#> GSM601870     3  0.3802     0.6807 0.080 0.032 0.888
#> GSM601750     1  0.6260    -0.0796 0.552 0.000 0.448
#> GSM601760     1  0.3038     0.6118 0.896 0.000 0.104
#> GSM601765     2  0.0424     0.8857 0.000 0.992 0.008
#> GSM601770     2  0.0237     0.8853 0.000 0.996 0.004
#> GSM601775     2  0.6886     0.7329 0.184 0.728 0.088
#> GSM601780     1  0.0000     0.6610 1.000 0.000 0.000
#> GSM601790     2  0.4291     0.8162 0.000 0.820 0.180
#> GSM601805     2  0.4505     0.8538 0.048 0.860 0.092
#> GSM601810     3  0.5363     0.8130 0.276 0.000 0.724
#> GSM601815     2  0.4121     0.8239 0.000 0.832 0.168
#> GSM601820     1  0.5785     0.2860 0.668 0.000 0.332
#> GSM601825     2  0.3445     0.8672 0.016 0.896 0.088
#> GSM601835     2  0.1643     0.8852 0.000 0.956 0.044
#> GSM601850     1  0.4423     0.5867 0.864 0.048 0.088
#> GSM601855     3  0.4555     0.7785 0.200 0.000 0.800
#> GSM601865     2  0.4291     0.8162 0.000 0.820 0.180
#> GSM601756     2  0.4479     0.8540 0.044 0.860 0.096
#> GSM601786     2  0.4235     0.8177 0.000 0.824 0.176
#> GSM601796     1  0.1529     0.6495 0.960 0.000 0.040
#> GSM601801     2  0.3610     0.8645 0.016 0.888 0.096
#> GSM601831     3  0.5363     0.8130 0.276 0.000 0.724
#> GSM601841     1  0.2625     0.6356 0.916 0.000 0.084
#> GSM601846     2  0.9151     0.1575 0.420 0.436 0.144
#> GSM601861     2  0.3412     0.8467 0.000 0.876 0.124
#> GSM601871     3  0.4979     0.5254 0.020 0.168 0.812
#> GSM601751     2  0.2339     0.8774 0.048 0.940 0.012
#> GSM601761     1  0.0747     0.6621 0.984 0.000 0.016
#> GSM601766     1  0.7181     0.1798 0.564 0.408 0.028
#> GSM601771     2  0.1999     0.8818 0.036 0.952 0.012
#> GSM601776     1  0.0747     0.6621 0.984 0.000 0.016
#> GSM601781     1  0.1643     0.6463 0.956 0.000 0.044
#> GSM601791     1  0.0747     0.6621 0.984 0.000 0.016
#> GSM601806     2  0.3207     0.8698 0.012 0.904 0.084
#> GSM601811     3  0.5363     0.8130 0.276 0.000 0.724
#> GSM601816     1  0.0592     0.6626 0.988 0.000 0.012
#> GSM601821     2  0.3412     0.8467 0.000 0.876 0.124
#> GSM601826     1  0.0592     0.6626 0.988 0.000 0.012
#> GSM601836     1  0.3771     0.6194 0.876 0.012 0.112
#> GSM601851     1  0.0747     0.6621 0.984 0.000 0.016
#> GSM601856     3  0.5327     0.8113 0.272 0.000 0.728
#> GSM601866     1  0.6299    -0.1921 0.524 0.000 0.476

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM601752     2  0.6262     0.1830 0.052 0.560 0.004 0.384
#> GSM601782     1  0.7798     0.0810 0.388 0.000 0.364 0.248
#> GSM601792     1  0.3224     0.4173 0.864 0.000 0.016 0.120
#> GSM601797     4  0.8504     0.9056 0.332 0.212 0.036 0.420
#> GSM601827     3  0.7764    -0.0240 0.356 0.000 0.404 0.240
#> GSM601837     2  0.5636     0.5567 0.000 0.648 0.044 0.308
#> GSM601842     2  0.0469     0.6712 0.000 0.988 0.000 0.012
#> GSM601857     3  0.2816     0.7692 0.064 0.000 0.900 0.036
#> GSM601867     3  0.3128     0.6946 0.004 0.004 0.864 0.128
#> GSM601747     1  0.8903     0.1866 0.404 0.056 0.280 0.260
#> GSM601757     1  0.7416     0.3333 0.516 0.000 0.240 0.244
#> GSM601762     2  0.0000     0.6722 0.000 1.000 0.000 0.000
#> GSM601767     2  0.0592     0.6738 0.000 0.984 0.000 0.016
#> GSM601772     2  0.0188     0.6716 0.000 0.996 0.000 0.004
#> GSM601777     1  0.7938    -0.3497 0.496 0.024 0.168 0.312
#> GSM601787     3  0.4418     0.6064 0.000 0.032 0.784 0.184
#> GSM601802     2  0.5204     0.3269 0.012 0.612 0.000 0.376
#> GSM601807     3  0.2867     0.7249 0.012 0.000 0.884 0.104
#> GSM601812     1  0.7740     0.1863 0.432 0.000 0.320 0.248
#> GSM601817     3  0.7782    -0.0572 0.360 0.000 0.396 0.244
#> GSM601822     1  0.6802    -0.5027 0.556 0.076 0.012 0.356
#> GSM601832     2  0.1661     0.6548 0.000 0.944 0.004 0.052
#> GSM601847     1  0.7573    -0.7504 0.460 0.152 0.008 0.380
#> GSM601852     1  0.7776     0.1407 0.412 0.000 0.340 0.248
#> GSM601862     3  0.2983     0.7666 0.068 0.000 0.892 0.040
#> GSM601753     2  0.5189     0.3284 0.012 0.616 0.000 0.372
#> GSM601783     1  0.7153     0.3932 0.556 0.000 0.196 0.248
#> GSM601793     1  0.1854     0.5188 0.940 0.000 0.012 0.048
#> GSM601798     2  0.5404     0.3098 0.012 0.600 0.004 0.384
#> GSM601828     1  0.7799     0.0628 0.384 0.000 0.368 0.248
#> GSM601838     2  0.5614     0.5598 0.000 0.652 0.044 0.304
#> GSM601843     2  0.0336     0.6731 0.000 0.992 0.000 0.008
#> GSM601858     2  0.4123     0.6300 0.000 0.820 0.044 0.136
#> GSM601868     3  0.1970     0.7756 0.060 0.000 0.932 0.008
#> GSM601748     1  0.7740     0.1706 0.428 0.000 0.328 0.244
#> GSM601758     1  0.6860     0.4261 0.592 0.000 0.164 0.244
#> GSM601763     1  0.4720     0.0405 0.720 0.264 0.000 0.016
#> GSM601768     2  0.0336     0.6707 0.000 0.992 0.000 0.008
#> GSM601773     2  0.0707     0.6744 0.000 0.980 0.000 0.020
#> GSM601778     1  0.5571    -0.1331 0.656 0.016 0.016 0.312
#> GSM601788     2  0.3552     0.6500 0.000 0.848 0.024 0.128
#> GSM601803     2  0.5070     0.3425 0.008 0.620 0.000 0.372
#> GSM601808     3  0.1474     0.7753 0.052 0.000 0.948 0.000
#> GSM601813     1  0.7059     0.4047 0.568 0.000 0.184 0.248
#> GSM601818     3  0.7843    -0.0852 0.364 0.000 0.372 0.264
#> GSM601823     1  0.0000     0.5509 1.000 0.000 0.000 0.000
#> GSM601833     2  0.0188     0.6728 0.000 0.996 0.000 0.004
#> GSM601848     1  0.0336     0.5492 0.992 0.000 0.000 0.008
#> GSM601853     3  0.1970     0.7757 0.060 0.000 0.932 0.008
#> GSM601863     3  0.3439     0.7556 0.084 0.000 0.868 0.048
#> GSM601754     2  0.6625     0.1124 0.076 0.540 0.004 0.380
#> GSM601784     2  0.1792     0.6683 0.000 0.932 0.000 0.068
#> GSM601794     1  0.3695     0.3482 0.828 0.000 0.016 0.156
#> GSM601799     2  0.6495     0.0736 0.084 0.560 0.000 0.356
#> GSM601829     1  0.2751     0.5591 0.904 0.000 0.056 0.040
#> GSM601839     2  0.5614     0.5598 0.000 0.652 0.044 0.304
#> GSM601844     1  0.0927     0.5589 0.976 0.000 0.008 0.016
#> GSM601859     2  0.1022     0.6733 0.000 0.968 0.000 0.032
#> GSM601869     3  0.3611     0.7514 0.080 0.000 0.860 0.060
#> GSM601749     1  0.7001     0.4103 0.576 0.000 0.180 0.244
#> GSM601759     1  0.7035     0.4058 0.572 0.000 0.184 0.244
#> GSM601764     1  0.2142     0.5141 0.928 0.056 0.000 0.016
#> GSM601769     2  0.4295     0.6016 0.000 0.752 0.008 0.240
#> GSM601774     2  0.2266     0.6657 0.000 0.912 0.004 0.084
#> GSM601779     1  0.0000     0.5509 1.000 0.000 0.000 0.000
#> GSM601789     2  0.5312     0.5719 0.000 0.692 0.040 0.268
#> GSM601804     1  0.7720    -0.8503 0.412 0.228 0.000 0.360
#> GSM601809     1  0.7902     0.1691 0.440 0.008 0.340 0.212
#> GSM601814     2  0.5143     0.5926 0.000 0.708 0.036 0.256
#> GSM601819     1  0.6469     0.4656 0.628 0.000 0.124 0.248
#> GSM601824     1  0.6511    -0.3836 0.640 0.188 0.000 0.172
#> GSM601834     2  0.1211     0.6719 0.000 0.960 0.000 0.040
#> GSM601849     1  0.0336     0.5492 0.992 0.000 0.000 0.008
#> GSM601854     1  0.7322     0.3548 0.532 0.000 0.224 0.244
#> GSM601864     2  0.5736     0.5400 0.000 0.628 0.044 0.328
#> GSM601755     2  0.5391     0.3184 0.012 0.604 0.004 0.380
#> GSM601785     2  0.1661     0.6523 0.004 0.944 0.000 0.052
#> GSM601795     1  0.4917     0.0696 0.728 0.008 0.016 0.248
#> GSM601800     2  0.5217     0.3192 0.012 0.608 0.000 0.380
#> GSM601830     3  0.2983     0.7598 0.040 0.000 0.892 0.068
#> GSM601840     2  0.6078     0.3530 0.064 0.684 0.016 0.236
#> GSM601845     2  0.6943    -0.3773 0.388 0.520 0.012 0.080
#> GSM601860     2  0.1118     0.6736 0.000 0.964 0.000 0.036
#> GSM601870     3  0.2731     0.7235 0.008 0.004 0.896 0.092
#> GSM601750     1  0.7763     0.1596 0.420 0.000 0.332 0.248
#> GSM601760     1  0.5694     0.5076 0.696 0.000 0.080 0.224
#> GSM601765     2  0.0000     0.6722 0.000 1.000 0.000 0.000
#> GSM601770     2  0.0336     0.6727 0.000 0.992 0.000 0.008
#> GSM601775     2  0.6084     0.2718 0.096 0.660 0.000 0.244
#> GSM601780     1  0.0000     0.5509 1.000 0.000 0.000 0.000
#> GSM601790     2  0.5569     0.5655 0.000 0.660 0.044 0.296
#> GSM601805     2  0.5204     0.3269 0.012 0.612 0.000 0.376
#> GSM601810     3  0.4624     0.7099 0.052 0.000 0.784 0.164
#> GSM601815     2  0.5546     0.5680 0.000 0.664 0.044 0.292
#> GSM601820     1  0.7239     0.3766 0.544 0.000 0.208 0.248
#> GSM601825     2  0.4605     0.4004 0.000 0.664 0.000 0.336
#> GSM601835     2  0.2522     0.6436 0.000 0.908 0.016 0.076
#> GSM601850     1  0.4747     0.2139 0.764 0.024 0.008 0.204
#> GSM601855     3  0.3056     0.7575 0.040 0.000 0.888 0.072
#> GSM601865     2  0.5736     0.5400 0.000 0.628 0.044 0.328
#> GSM601756     2  0.5377     0.3248 0.012 0.608 0.004 0.376
#> GSM601786     2  0.5569     0.5655 0.000 0.660 0.044 0.296
#> GSM601796     1  0.3108     0.4311 0.872 0.000 0.016 0.112
#> GSM601801     2  0.5259     0.3341 0.008 0.612 0.004 0.376
#> GSM601831     3  0.5839     0.6042 0.104 0.000 0.696 0.200
#> GSM601841     1  0.2943     0.5674 0.892 0.000 0.076 0.032
#> GSM601846     4  0.8820     0.9017 0.292 0.244 0.052 0.412
#> GSM601861     2  0.5339     0.5805 0.000 0.688 0.040 0.272
#> GSM601871     3  0.5132     0.5581 0.000 0.068 0.748 0.184
#> GSM601751     2  0.1716     0.6592 0.000 0.936 0.000 0.064
#> GSM601761     1  0.1356     0.5640 0.960 0.000 0.008 0.032
#> GSM601766     2  0.6165    -0.3971 0.448 0.508 0.004 0.040
#> GSM601771     2  0.1867     0.6475 0.000 0.928 0.000 0.072
#> GSM601776     1  0.0779     0.5597 0.980 0.000 0.004 0.016
#> GSM601781     1  0.3703     0.3709 0.840 0.008 0.012 0.140
#> GSM601791     1  0.0657     0.5576 0.984 0.000 0.004 0.012
#> GSM601806     2  0.4964     0.3494 0.004 0.616 0.000 0.380
#> GSM601811     3  0.4532     0.7173 0.052 0.000 0.792 0.156
#> GSM601816     1  0.1042     0.5368 0.972 0.000 0.008 0.020
#> GSM601821     2  0.5339     0.5805 0.000 0.688 0.040 0.272
#> GSM601826     1  0.0188     0.5505 0.996 0.000 0.000 0.004
#> GSM601836     1  0.5443     0.4883 0.784 0.068 0.092 0.056
#> GSM601851     1  0.0336     0.5527 0.992 0.000 0.000 0.008
#> GSM601856     3  0.1975     0.7728 0.048 0.000 0.936 0.016
#> GSM601866     1  0.7761     0.1409 0.416 0.000 0.340 0.244

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM601752     4  0.5721     0.6031 0.000 0.104 0.044 0.692 0.160
#> GSM601782     1  0.4112     0.7540 0.812 0.000 0.112 0.032 0.044
#> GSM601792     5  0.4499     0.7883 0.172 0.000 0.020 0.044 0.764
#> GSM601797     4  0.5555     0.1062 0.000 0.000 0.068 0.480 0.452
#> GSM601827     1  0.4054     0.7057 0.800 0.000 0.144 0.040 0.016
#> GSM601837     2  0.0880     0.5822 0.000 0.968 0.032 0.000 0.000
#> GSM601842     2  0.4830     0.4067 0.000 0.492 0.000 0.488 0.020
#> GSM601857     3  0.3579     0.7931 0.240 0.000 0.756 0.004 0.000
#> GSM601867     3  0.2972     0.8065 0.044 0.036 0.892 0.016 0.012
#> GSM601747     1  0.5758     0.6310 0.700 0.000 0.080 0.144 0.076
#> GSM601757     1  0.2228     0.8381 0.912 0.000 0.008 0.012 0.068
#> GSM601762     2  0.4559     0.4325 0.000 0.512 0.000 0.480 0.008
#> GSM601767     2  0.4300     0.4523 0.000 0.524 0.000 0.476 0.000
#> GSM601772     2  0.4659     0.4232 0.000 0.500 0.000 0.488 0.012
#> GSM601777     5  0.4639     0.6144 0.040 0.000 0.132 0.052 0.776
#> GSM601787     3  0.3063     0.7702 0.012 0.104 0.864 0.020 0.000
#> GSM601802     4  0.5759     0.6124 0.000 0.132 0.044 0.692 0.132
#> GSM601807     3  0.3473     0.8172 0.064 0.012 0.864 0.044 0.016
#> GSM601812     1  0.1982     0.8381 0.932 0.000 0.028 0.012 0.028
#> GSM601817     1  0.2079     0.8025 0.916 0.000 0.064 0.020 0.000
#> GSM601822     5  0.3059     0.6634 0.016 0.000 0.020 0.096 0.868
#> GSM601832     4  0.5254    -0.3936 0.004 0.460 0.000 0.500 0.036
#> GSM601847     5  0.3769     0.5550 0.004 0.000 0.028 0.172 0.796
#> GSM601852     1  0.1996     0.8285 0.928 0.000 0.048 0.012 0.012
#> GSM601862     3  0.3635     0.7881 0.248 0.000 0.748 0.004 0.000
#> GSM601753     4  0.5647     0.6129 0.000 0.128 0.040 0.700 0.132
#> GSM601783     1  0.1942     0.8380 0.920 0.000 0.012 0.000 0.068
#> GSM601793     5  0.4604     0.7905 0.192 0.000 0.020 0.040 0.748
#> GSM601798     4  0.5759     0.6124 0.000 0.132 0.044 0.692 0.132
#> GSM601828     1  0.2793     0.7781 0.876 0.000 0.088 0.036 0.000
#> GSM601838     2  0.0609     0.5888 0.000 0.980 0.020 0.000 0.000
#> GSM601843     2  0.4656     0.4311 0.000 0.508 0.000 0.480 0.012
#> GSM601858     2  0.5645     0.4949 0.004 0.556 0.052 0.380 0.008
#> GSM601868     3  0.2813     0.8269 0.168 0.000 0.832 0.000 0.000
#> GSM601748     1  0.1731     0.8283 0.940 0.000 0.040 0.012 0.008
#> GSM601758     1  0.2127     0.8152 0.892 0.000 0.000 0.000 0.108
#> GSM601763     5  0.5930     0.2271 0.092 0.000 0.004 0.404 0.500
#> GSM601768     2  0.4659     0.4128 0.000 0.496 0.000 0.492 0.012
#> GSM601773     2  0.4294     0.4515 0.000 0.532 0.000 0.468 0.000
#> GSM601778     5  0.3115     0.7145 0.048 0.000 0.020 0.056 0.876
#> GSM601788     2  0.5842     0.4131 0.004 0.496 0.036 0.440 0.024
#> GSM601803     4  0.5871     0.6030 0.000 0.152 0.044 0.680 0.124
#> GSM601808     3  0.3087     0.8326 0.152 0.000 0.836 0.008 0.004
#> GSM601813     1  0.2284     0.8304 0.896 0.000 0.004 0.004 0.096
#> GSM601818     1  0.2580     0.8007 0.900 0.000 0.064 0.016 0.020
#> GSM601823     5  0.3452     0.7872 0.244 0.000 0.000 0.000 0.756
#> GSM601833     2  0.4557     0.4474 0.000 0.516 0.000 0.476 0.008
#> GSM601848     5  0.3366     0.7904 0.232 0.000 0.000 0.000 0.768
#> GSM601853     3  0.3689     0.8311 0.144 0.000 0.816 0.032 0.008
#> GSM601863     3  0.4046     0.7385 0.296 0.000 0.696 0.008 0.000
#> GSM601754     4  0.6145     0.5877 0.000 0.112 0.048 0.648 0.192
#> GSM601784     2  0.4030     0.5313 0.000 0.648 0.000 0.352 0.000
#> GSM601794     5  0.4305     0.7846 0.152 0.000 0.020 0.044 0.784
#> GSM601799     4  0.5416     0.6037 0.000 0.088 0.040 0.716 0.156
#> GSM601829     5  0.6241     0.6504 0.264 0.000 0.092 0.040 0.604
#> GSM601839     2  0.0609     0.5888 0.000 0.980 0.020 0.000 0.000
#> GSM601844     5  0.4597     0.7675 0.260 0.000 0.012 0.024 0.704
#> GSM601859     2  0.4383     0.5000 0.000 0.572 0.000 0.424 0.004
#> GSM601869     3  0.3766     0.7661 0.268 0.000 0.728 0.004 0.000
#> GSM601749     1  0.2233     0.8200 0.892 0.000 0.000 0.004 0.104
#> GSM601759     1  0.2179     0.8247 0.896 0.000 0.000 0.004 0.100
#> GSM601764     5  0.5289     0.7119 0.196 0.000 0.004 0.116 0.684
#> GSM601769     2  0.0794     0.5974 0.000 0.972 0.000 0.028 0.000
#> GSM601774     2  0.4015     0.5415 0.000 0.652 0.000 0.348 0.000
#> GSM601779     5  0.3728     0.7857 0.244 0.000 0.000 0.008 0.748
#> GSM601789     2  0.1697     0.5977 0.000 0.932 0.008 0.060 0.000
#> GSM601804     4  0.5465     0.1036 0.004 0.004 0.040 0.484 0.468
#> GSM601809     1  0.6464     0.5459 0.628 0.004 0.204 0.056 0.108
#> GSM601814     2  0.0609     0.5972 0.000 0.980 0.000 0.020 0.000
#> GSM601819     1  0.2284     0.8205 0.896 0.000 0.004 0.004 0.096
#> GSM601824     5  0.4035     0.7331 0.060 0.000 0.000 0.156 0.784
#> GSM601834     2  0.4350     0.5110 0.000 0.588 0.000 0.408 0.004
#> GSM601849     5  0.3395     0.7894 0.236 0.000 0.000 0.000 0.764
#> GSM601854     1  0.3086     0.8316 0.876 0.000 0.036 0.020 0.068
#> GSM601864     2  0.1626     0.5610 0.000 0.940 0.044 0.016 0.000
#> GSM601755     4  0.5758     0.6117 0.000 0.136 0.044 0.692 0.128
#> GSM601785     4  0.5570    -0.3462 0.000 0.436 0.012 0.508 0.044
#> GSM601795     5  0.3988     0.7584 0.096 0.000 0.020 0.064 0.820
#> GSM601800     4  0.5689     0.6128 0.000 0.132 0.040 0.696 0.132
#> GSM601830     3  0.4439     0.8183 0.112 0.008 0.796 0.068 0.016
#> GSM601840     4  0.6255     0.2282 0.008 0.196 0.024 0.636 0.136
#> GSM601845     4  0.7291     0.1712 0.048 0.124 0.012 0.488 0.328
#> GSM601860     2  0.5144     0.4529 0.000 0.520 0.008 0.448 0.024
#> GSM601870     3  0.3603     0.8204 0.076 0.020 0.856 0.036 0.012
#> GSM601750     1  0.1757     0.8325 0.936 0.000 0.048 0.004 0.012
#> GSM601760     1  0.3519     0.6404 0.776 0.000 0.000 0.008 0.216
#> GSM601765     4  0.5049    -0.4319 0.000 0.480 0.000 0.488 0.032
#> GSM601770     2  0.4302     0.4507 0.000 0.520 0.000 0.480 0.000
#> GSM601775     4  0.5868     0.2981 0.012 0.152 0.000 0.640 0.196
#> GSM601780     5  0.3728     0.7857 0.244 0.000 0.000 0.008 0.748
#> GSM601790     2  0.0290     0.5944 0.000 0.992 0.008 0.000 0.000
#> GSM601805     4  0.5840     0.6121 0.000 0.136 0.044 0.684 0.136
#> GSM601810     3  0.5426     0.2662 0.468 0.000 0.488 0.024 0.020
#> GSM601815     2  0.0404     0.5929 0.000 0.988 0.012 0.000 0.000
#> GSM601820     1  0.1892     0.8359 0.916 0.000 0.000 0.004 0.080
#> GSM601825     4  0.5818     0.5318 0.000 0.204 0.040 0.668 0.088
#> GSM601835     4  0.5781    -0.3975 0.004 0.448 0.024 0.492 0.032
#> GSM601850     5  0.4080     0.7714 0.136 0.000 0.012 0.052 0.800
#> GSM601855     3  0.3867     0.8262 0.112 0.000 0.820 0.056 0.012
#> GSM601865     2  0.1444     0.5683 0.000 0.948 0.040 0.012 0.000
#> GSM601756     4  0.5758     0.6117 0.000 0.136 0.044 0.692 0.128
#> GSM601786     2  0.0324     0.5941 0.000 0.992 0.004 0.004 0.000
#> GSM601796     5  0.4462     0.7884 0.168 0.000 0.020 0.044 0.768
#> GSM601801     4  0.5752     0.6063 0.000 0.144 0.044 0.692 0.120
#> GSM601831     1  0.4934     0.1665 0.600 0.000 0.364 0.036 0.000
#> GSM601841     5  0.5386     0.6653 0.336 0.000 0.036 0.020 0.608
#> GSM601846     5  0.6196     0.0717 0.000 0.016 0.092 0.384 0.508
#> GSM601861     2  0.0404     0.5973 0.000 0.988 0.000 0.012 0.000
#> GSM601871     3  0.3361     0.7468 0.012 0.128 0.840 0.020 0.000
#> GSM601751     4  0.5368    -0.4029 0.000 0.472 0.008 0.484 0.036
#> GSM601761     5  0.4088     0.7391 0.304 0.000 0.000 0.008 0.688
#> GSM601766     4  0.7234     0.1611 0.044 0.140 0.008 0.492 0.316
#> GSM601771     4  0.5451    -0.3553 0.000 0.444 0.012 0.508 0.036
#> GSM601776     5  0.3934     0.7653 0.276 0.000 0.000 0.008 0.716
#> GSM601781     5  0.3218     0.7776 0.108 0.000 0.016 0.020 0.856
#> GSM601791     5  0.4016     0.7670 0.272 0.000 0.000 0.012 0.716
#> GSM601806     4  0.5865     0.5990 0.000 0.156 0.044 0.680 0.120
#> GSM601811     3  0.5415     0.3211 0.448 0.000 0.508 0.024 0.020
#> GSM601816     5  0.3333     0.7930 0.208 0.000 0.000 0.004 0.788
#> GSM601821     2  0.0404     0.5973 0.000 0.988 0.000 0.012 0.000
#> GSM601826     5  0.3424     0.7881 0.240 0.000 0.000 0.000 0.760
#> GSM601836     5  0.6663     0.5751 0.176 0.000 0.044 0.192 0.588
#> GSM601851     5  0.3452     0.7869 0.244 0.000 0.000 0.000 0.756
#> GSM601856     3  0.3474     0.8331 0.148 0.000 0.824 0.020 0.008
#> GSM601866     1  0.1569     0.8311 0.944 0.000 0.044 0.004 0.008

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM601752     4  0.3972      0.905 0.000 0.300 0.000 0.680 0.004 0.016
#> GSM601782     1  0.5591      0.662 0.708 0.000 0.068 0.096 0.076 0.052
#> GSM601792     6  0.4077      0.773 0.040 0.000 0.004 0.128 0.040 0.788
#> GSM601797     4  0.4117      0.559 0.000 0.064 0.000 0.764 0.016 0.156
#> GSM601827     1  0.5331      0.627 0.712 0.004 0.132 0.060 0.080 0.012
#> GSM601837     5  0.3828      0.959 0.000 0.288 0.004 0.012 0.696 0.000
#> GSM601842     2  0.0508      0.841 0.000 0.984 0.000 0.000 0.012 0.004
#> GSM601857     3  0.3620      0.737 0.200 0.004 0.772 0.016 0.008 0.000
#> GSM601867     3  0.3792      0.763 0.020 0.000 0.824 0.056 0.080 0.020
#> GSM601747     1  0.7350      0.474 0.572 0.164 0.036 0.092 0.052 0.084
#> GSM601757     1  0.2711      0.814 0.872 0.004 0.016 0.012 0.000 0.096
#> GSM601762     2  0.0653      0.841 0.000 0.980 0.000 0.004 0.012 0.004
#> GSM601767     2  0.0858      0.835 0.000 0.968 0.000 0.004 0.028 0.000
#> GSM601772     2  0.0458      0.840 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM601777     6  0.6518      0.574 0.012 0.012 0.112 0.188 0.076 0.600
#> GSM601787     3  0.3452      0.762 0.012 0.004 0.836 0.036 0.104 0.008
#> GSM601802     4  0.4015      0.912 0.004 0.320 0.000 0.664 0.008 0.004
#> GSM601807     3  0.3086      0.769 0.008 0.000 0.856 0.040 0.088 0.008
#> GSM601812     1  0.2158      0.819 0.912 0.000 0.012 0.016 0.004 0.056
#> GSM601817     1  0.2943      0.763 0.876 0.000 0.048 0.024 0.044 0.008
#> GSM601822     6  0.3656      0.726 0.000 0.004 0.000 0.164 0.048 0.784
#> GSM601832     2  0.0964      0.837 0.000 0.968 0.000 0.012 0.016 0.004
#> GSM601847     6  0.4844      0.641 0.000 0.020 0.004 0.232 0.060 0.684
#> GSM601852     1  0.3242      0.798 0.864 0.000 0.040 0.032 0.020 0.044
#> GSM601862     3  0.3466      0.713 0.224 0.000 0.760 0.008 0.008 0.000
#> GSM601753     4  0.3789      0.909 0.000 0.324 0.000 0.668 0.004 0.004
#> GSM601783     1  0.2550      0.819 0.888 0.000 0.008 0.020 0.008 0.076
#> GSM601793     6  0.4260      0.775 0.068 0.000 0.004 0.100 0.044 0.784
#> GSM601798     4  0.3933      0.911 0.000 0.308 0.000 0.676 0.008 0.008
#> GSM601828     1  0.4310      0.710 0.796 0.004 0.080 0.044 0.064 0.012
#> GSM601838     5  0.3634      0.964 0.000 0.296 0.000 0.008 0.696 0.000
#> GSM601843     2  0.0653      0.842 0.000 0.980 0.000 0.004 0.012 0.004
#> GSM601858     2  0.3242      0.761 0.008 0.856 0.024 0.024 0.084 0.004
#> GSM601868     3  0.2488      0.774 0.124 0.000 0.864 0.004 0.008 0.000
#> GSM601748     1  0.2014      0.812 0.924 0.000 0.004 0.024 0.016 0.032
#> GSM601758     1  0.2402      0.807 0.868 0.000 0.000 0.012 0.000 0.120
#> GSM601763     2  0.4570      0.320 0.020 0.588 0.000 0.004 0.008 0.380
#> GSM601768     2  0.0603      0.841 0.000 0.980 0.000 0.004 0.016 0.000
#> GSM601773     2  0.1082      0.829 0.000 0.956 0.000 0.004 0.040 0.000
#> GSM601778     6  0.4917      0.691 0.008 0.012 0.008 0.192 0.072 0.708
#> GSM601788     2  0.4107      0.725 0.004 0.808 0.016 0.048 0.092 0.032
#> GSM601803     4  0.4194      0.907 0.004 0.320 0.000 0.656 0.016 0.004
#> GSM601808     3  0.2315      0.788 0.084 0.000 0.892 0.008 0.016 0.000
#> GSM601813     1  0.2726      0.800 0.848 0.000 0.008 0.008 0.000 0.136
#> GSM601818     1  0.3664      0.744 0.840 0.000 0.028 0.056 0.040 0.036
#> GSM601823     6  0.1910      0.785 0.108 0.000 0.000 0.000 0.000 0.892
#> GSM601833     2  0.0603      0.841 0.000 0.980 0.000 0.000 0.016 0.004
#> GSM601848     6  0.2361      0.787 0.104 0.000 0.000 0.004 0.012 0.880
#> GSM601853     3  0.3722      0.774 0.080 0.000 0.824 0.044 0.048 0.004
#> GSM601863     3  0.4067      0.618 0.296 0.000 0.680 0.012 0.012 0.000
#> GSM601754     4  0.4531      0.867 0.000 0.272 0.000 0.672 0.012 0.044
#> GSM601784     2  0.2632      0.677 0.000 0.832 0.000 0.004 0.164 0.000
#> GSM601794     6  0.4154      0.770 0.036 0.000 0.004 0.136 0.044 0.780
#> GSM601799     4  0.3952      0.894 0.000 0.308 0.000 0.672 0.000 0.020
#> GSM601829     6  0.7309      0.550 0.196 0.004 0.080 0.092 0.088 0.540
#> GSM601839     5  0.3634      0.964 0.000 0.296 0.000 0.008 0.696 0.000
#> GSM601844     6  0.4877      0.737 0.148 0.004 0.008 0.064 0.040 0.736
#> GSM601859     2  0.1588      0.805 0.000 0.924 0.000 0.004 0.072 0.000
#> GSM601869     3  0.4154      0.670 0.248 0.000 0.716 0.012 0.012 0.012
#> GSM601749     1  0.2882      0.806 0.848 0.000 0.000 0.028 0.004 0.120
#> GSM601759     1  0.2494      0.807 0.864 0.000 0.000 0.016 0.000 0.120
#> GSM601764     6  0.5346      0.561 0.080 0.256 0.000 0.012 0.016 0.636
#> GSM601769     5  0.3894      0.941 0.000 0.324 0.000 0.008 0.664 0.004
#> GSM601774     2  0.3011      0.599 0.000 0.800 0.000 0.004 0.192 0.004
#> GSM601779     6  0.1910      0.785 0.108 0.000 0.000 0.000 0.000 0.892
#> GSM601789     5  0.3944      0.745 0.000 0.428 0.000 0.004 0.568 0.000
#> GSM601804     4  0.5061      0.594 0.004 0.120 0.000 0.636 0.000 0.240
#> GSM601809     1  0.8351      0.143 0.436 0.056 0.252 0.092 0.064 0.100
#> GSM601814     5  0.3867      0.963 0.000 0.296 0.000 0.012 0.688 0.004
#> GSM601819     1  0.3293      0.809 0.840 0.000 0.000 0.048 0.020 0.092
#> GSM601824     6  0.3148      0.751 0.020 0.116 0.000 0.024 0.000 0.840
#> GSM601834     2  0.2243      0.758 0.000 0.880 0.000 0.004 0.112 0.004
#> GSM601849     6  0.2218      0.787 0.104 0.000 0.000 0.000 0.012 0.884
#> GSM601854     1  0.4991      0.746 0.752 0.000 0.064 0.056 0.040 0.088
#> GSM601864     5  0.4102      0.943 0.000 0.268 0.016 0.016 0.700 0.000
#> GSM601755     4  0.3861      0.913 0.000 0.316 0.000 0.672 0.008 0.004
#> GSM601785     2  0.0984      0.839 0.000 0.968 0.000 0.012 0.008 0.012
#> GSM601795     6  0.4222      0.757 0.020 0.004 0.004 0.168 0.040 0.764
#> GSM601800     4  0.3933      0.911 0.000 0.308 0.000 0.676 0.008 0.008
#> GSM601830     3  0.4780      0.732 0.056 0.000 0.740 0.068 0.132 0.004
#> GSM601840     2  0.5396      0.543 0.004 0.712 0.024 0.120 0.040 0.100
#> GSM601845     2  0.4789      0.583 0.016 0.732 0.000 0.032 0.052 0.168
#> GSM601860     2  0.2489      0.825 0.000 0.900 0.012 0.016 0.052 0.020
#> GSM601870     3  0.3005      0.771 0.012 0.000 0.860 0.036 0.088 0.004
#> GSM601750     1  0.2287      0.815 0.904 0.000 0.000 0.048 0.012 0.036
#> GSM601760     1  0.3534      0.686 0.740 0.000 0.000 0.016 0.000 0.244
#> GSM601765     2  0.0603      0.841 0.000 0.980 0.000 0.000 0.016 0.004
#> GSM601770     2  0.0632      0.838 0.000 0.976 0.000 0.000 0.024 0.000
#> GSM601775     2  0.4364      0.553 0.008 0.744 0.000 0.084 0.004 0.160
#> GSM601780     6  0.1910      0.785 0.108 0.000 0.000 0.000 0.000 0.892
#> GSM601790     5  0.3653      0.963 0.000 0.300 0.000 0.008 0.692 0.000
#> GSM601805     4  0.4015      0.912 0.004 0.320 0.000 0.664 0.008 0.004
#> GSM601810     3  0.6878      0.199 0.412 0.004 0.412 0.084 0.056 0.032
#> GSM601815     5  0.3733      0.965 0.000 0.288 0.000 0.008 0.700 0.004
#> GSM601820     1  0.2452      0.816 0.884 0.000 0.000 0.028 0.004 0.084
#> GSM601825     4  0.4084      0.789 0.000 0.400 0.000 0.588 0.012 0.000
#> GSM601835     2  0.1792      0.826 0.004 0.936 0.008 0.016 0.032 0.004
#> GSM601850     6  0.4066      0.749 0.028 0.012 0.004 0.108 0.044 0.804
#> GSM601855     3  0.3840      0.760 0.024 0.000 0.808 0.060 0.104 0.004
#> GSM601865     5  0.3758      0.958 0.000 0.284 0.000 0.016 0.700 0.000
#> GSM601756     4  0.3861      0.913 0.000 0.316 0.000 0.672 0.008 0.004
#> GSM601786     5  0.3733      0.961 0.000 0.288 0.000 0.008 0.700 0.004
#> GSM601796     6  0.4350      0.768 0.048 0.000 0.004 0.136 0.044 0.768
#> GSM601801     4  0.3844      0.913 0.000 0.312 0.000 0.676 0.008 0.004
#> GSM601831     1  0.5791      0.386 0.596 0.000 0.276 0.048 0.072 0.008
#> GSM601841     6  0.5599      0.580 0.256 0.000 0.044 0.044 0.024 0.632
#> GSM601846     6  0.8754      0.185 0.008 0.208 0.092 0.252 0.140 0.300
#> GSM601861     5  0.3867      0.963 0.000 0.296 0.000 0.012 0.688 0.004
#> GSM601871     3  0.3571      0.755 0.012 0.004 0.820 0.028 0.128 0.008
#> GSM601751     2  0.2732      0.821 0.000 0.888 0.008 0.024 0.048 0.032
#> GSM601761     6  0.2932      0.748 0.164 0.000 0.000 0.016 0.000 0.820
#> GSM601766     2  0.4156      0.555 0.012 0.732 0.000 0.008 0.024 0.224
#> GSM601771     2  0.2316      0.827 0.000 0.912 0.012 0.020 0.032 0.024
#> GSM601776     6  0.2558      0.762 0.156 0.000 0.000 0.004 0.000 0.840
#> GSM601781     6  0.4085      0.747 0.020 0.012 0.000 0.120 0.056 0.792
#> GSM601791     6  0.2613      0.766 0.140 0.000 0.000 0.012 0.000 0.848
#> GSM601806     4  0.4194      0.907 0.004 0.320 0.000 0.656 0.016 0.004
#> GSM601811     3  0.6943      0.283 0.376 0.004 0.440 0.088 0.060 0.032
#> GSM601816     6  0.2323      0.790 0.084 0.000 0.000 0.012 0.012 0.892
#> GSM601821     5  0.3867      0.963 0.000 0.296 0.000 0.012 0.688 0.004
#> GSM601826     6  0.2053      0.785 0.108 0.000 0.000 0.000 0.004 0.888
#> GSM601836     6  0.7411      0.207 0.100 0.364 0.032 0.048 0.032 0.424
#> GSM601851     6  0.2165      0.786 0.108 0.000 0.000 0.000 0.008 0.884
#> GSM601856     3  0.3080      0.782 0.068 0.000 0.860 0.036 0.036 0.000
#> GSM601866     1  0.2212      0.815 0.912 0.000 0.020 0.016 0.004 0.048

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n time(p) gender(p) k
#> MAD:kmeans 121   0.547    0.2171 2
#> MAD:kmeans  97   0.262    0.3932 3
#> MAD:kmeans  72   0.256    0.1513 4
#> MAD:kmeans  95   0.102    0.0531 5
#> MAD:kmeans 117   0.464    0.1420 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 125 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.984           0.946       0.978         0.5039 0.496   0.496
#> 3 3 0.701           0.797       0.895         0.3050 0.800   0.616
#> 4 4 0.547           0.665       0.808         0.1303 0.827   0.551
#> 5 5 0.542           0.480       0.663         0.0625 0.964   0.863
#> 6 6 0.570           0.356       0.609         0.0416 0.938   0.758

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM601752     2  0.0000     0.9734 0.000 1.000
#> GSM601782     1  0.0000     0.9815 1.000 0.000
#> GSM601792     1  0.0000     0.9815 1.000 0.000
#> GSM601797     2  0.7745     0.7045 0.228 0.772
#> GSM601827     1  0.0000     0.9815 1.000 0.000
#> GSM601837     2  0.0000     0.9734 0.000 1.000
#> GSM601842     2  0.0000     0.9734 0.000 1.000
#> GSM601857     1  0.0000     0.9815 1.000 0.000
#> GSM601867     1  0.9686     0.3419 0.604 0.396
#> GSM601747     1  0.0000     0.9815 1.000 0.000
#> GSM601757     1  0.0000     0.9815 1.000 0.000
#> GSM601762     2  0.0000     0.9734 0.000 1.000
#> GSM601767     2  0.0000     0.9734 0.000 1.000
#> GSM601772     2  0.0000     0.9734 0.000 1.000
#> GSM601777     1  0.3114     0.9307 0.944 0.056
#> GSM601787     2  0.7883     0.6869 0.236 0.764
#> GSM601802     2  0.0000     0.9734 0.000 1.000
#> GSM601807     1  0.2423     0.9469 0.960 0.040
#> GSM601812     1  0.0000     0.9815 1.000 0.000
#> GSM601817     1  0.0000     0.9815 1.000 0.000
#> GSM601822     2  1.0000     0.0277 0.496 0.504
#> GSM601832     2  0.0000     0.9734 0.000 1.000
#> GSM601847     2  0.1633     0.9541 0.024 0.976
#> GSM601852     1  0.0000     0.9815 1.000 0.000
#> GSM601862     1  0.0000     0.9815 1.000 0.000
#> GSM601753     2  0.0000     0.9734 0.000 1.000
#> GSM601783     1  0.0000     0.9815 1.000 0.000
#> GSM601793     1  0.0000     0.9815 1.000 0.000
#> GSM601798     2  0.0000     0.9734 0.000 1.000
#> GSM601828     1  0.0000     0.9815 1.000 0.000
#> GSM601838     2  0.0000     0.9734 0.000 1.000
#> GSM601843     2  0.0000     0.9734 0.000 1.000
#> GSM601858     2  0.0000     0.9734 0.000 1.000
#> GSM601868     1  0.0000     0.9815 1.000 0.000
#> GSM601748     1  0.0000     0.9815 1.000 0.000
#> GSM601758     1  0.0000     0.9815 1.000 0.000
#> GSM601763     2  0.9491     0.4320 0.368 0.632
#> GSM601768     2  0.0000     0.9734 0.000 1.000
#> GSM601773     2  0.0000     0.9734 0.000 1.000
#> GSM601778     1  0.0000     0.9815 1.000 0.000
#> GSM601788     2  0.0000     0.9734 0.000 1.000
#> GSM601803     2  0.0000     0.9734 0.000 1.000
#> GSM601808     1  0.0000     0.9815 1.000 0.000
#> GSM601813     1  0.0000     0.9815 1.000 0.000
#> GSM601818     1  0.0000     0.9815 1.000 0.000
#> GSM601823     1  0.0000     0.9815 1.000 0.000
#> GSM601833     2  0.0000     0.9734 0.000 1.000
#> GSM601848     1  0.0000     0.9815 1.000 0.000
#> GSM601853     1  0.0000     0.9815 1.000 0.000
#> GSM601863     1  0.0000     0.9815 1.000 0.000
#> GSM601754     2  0.0000     0.9734 0.000 1.000
#> GSM601784     2  0.0000     0.9734 0.000 1.000
#> GSM601794     1  0.0000     0.9815 1.000 0.000
#> GSM601799     2  0.0000     0.9734 0.000 1.000
#> GSM601829     1  0.0000     0.9815 1.000 0.000
#> GSM601839     2  0.0000     0.9734 0.000 1.000
#> GSM601844     1  0.0000     0.9815 1.000 0.000
#> GSM601859     2  0.0000     0.9734 0.000 1.000
#> GSM601869     1  0.0000     0.9815 1.000 0.000
#> GSM601749     1  0.0000     0.9815 1.000 0.000
#> GSM601759     1  0.0000     0.9815 1.000 0.000
#> GSM601764     1  0.0000     0.9815 1.000 0.000
#> GSM601769     2  0.0000     0.9734 0.000 1.000
#> GSM601774     2  0.0000     0.9734 0.000 1.000
#> GSM601779     1  0.0000     0.9815 1.000 0.000
#> GSM601789     2  0.0000     0.9734 0.000 1.000
#> GSM601804     2  0.0938     0.9644 0.012 0.988
#> GSM601809     1  0.1184     0.9684 0.984 0.016
#> GSM601814     2  0.0000     0.9734 0.000 1.000
#> GSM601819     1  0.0000     0.9815 1.000 0.000
#> GSM601824     2  0.5294     0.8550 0.120 0.880
#> GSM601834     2  0.0000     0.9734 0.000 1.000
#> GSM601849     1  0.0000     0.9815 1.000 0.000
#> GSM601854     1  0.0000     0.9815 1.000 0.000
#> GSM601864     2  0.0000     0.9734 0.000 1.000
#> GSM601755     2  0.0000     0.9734 0.000 1.000
#> GSM601785     2  0.0000     0.9734 0.000 1.000
#> GSM601795     1  0.0376     0.9785 0.996 0.004
#> GSM601800     2  0.0000     0.9734 0.000 1.000
#> GSM601830     1  0.2043     0.9544 0.968 0.032
#> GSM601840     2  0.0000     0.9734 0.000 1.000
#> GSM601845     2  0.1843     0.9509 0.028 0.972
#> GSM601860     2  0.0000     0.9734 0.000 1.000
#> GSM601870     1  0.4690     0.8808 0.900 0.100
#> GSM601750     1  0.0000     0.9815 1.000 0.000
#> GSM601760     1  0.0000     0.9815 1.000 0.000
#> GSM601765     2  0.0000     0.9734 0.000 1.000
#> GSM601770     2  0.0000     0.9734 0.000 1.000
#> GSM601775     2  0.0938     0.9643 0.012 0.988
#> GSM601780     1  0.0000     0.9815 1.000 0.000
#> GSM601790     2  0.0000     0.9734 0.000 1.000
#> GSM601805     2  0.0000     0.9734 0.000 1.000
#> GSM601810     1  0.0000     0.9815 1.000 0.000
#> GSM601815     2  0.0000     0.9734 0.000 1.000
#> GSM601820     1  0.0000     0.9815 1.000 0.000
#> GSM601825     2  0.0000     0.9734 0.000 1.000
#> GSM601835     2  0.0000     0.9734 0.000 1.000
#> GSM601850     1  0.2236     0.9506 0.964 0.036
#> GSM601855     1  0.0376     0.9785 0.996 0.004
#> GSM601865     2  0.0000     0.9734 0.000 1.000
#> GSM601756     2  0.0000     0.9734 0.000 1.000
#> GSM601786     2  0.0000     0.9734 0.000 1.000
#> GSM601796     1  0.0000     0.9815 1.000 0.000
#> GSM601801     2  0.0000     0.9734 0.000 1.000
#> GSM601831     1  0.0000     0.9815 1.000 0.000
#> GSM601841     1  0.0000     0.9815 1.000 0.000
#> GSM601846     2  0.0000     0.9734 0.000 1.000
#> GSM601861     2  0.0000     0.9734 0.000 1.000
#> GSM601871     1  0.9896     0.2105 0.560 0.440
#> GSM601751     2  0.0000     0.9734 0.000 1.000
#> GSM601761     1  0.0000     0.9815 1.000 0.000
#> GSM601766     2  0.2236     0.9438 0.036 0.964
#> GSM601771     2  0.0000     0.9734 0.000 1.000
#> GSM601776     1  0.0000     0.9815 1.000 0.000
#> GSM601781     1  0.0000     0.9815 1.000 0.000
#> GSM601791     1  0.0000     0.9815 1.000 0.000
#> GSM601806     2  0.0000     0.9734 0.000 1.000
#> GSM601811     1  0.0000     0.9815 1.000 0.000
#> GSM601816     1  0.0000     0.9815 1.000 0.000
#> GSM601821     2  0.0000     0.9734 0.000 1.000
#> GSM601826     1  0.0000     0.9815 1.000 0.000
#> GSM601836     1  0.0376     0.9785 0.996 0.004
#> GSM601851     1  0.0000     0.9815 1.000 0.000
#> GSM601856     1  0.0000     0.9815 1.000 0.000
#> GSM601866     1  0.0000     0.9815 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM601752     2  0.3816     0.8537 0.148 0.852 0.000
#> GSM601782     3  0.3192     0.8269 0.112 0.000 0.888
#> GSM601792     1  0.0892     0.8444 0.980 0.000 0.020
#> GSM601797     1  0.8722     0.4638 0.592 0.216 0.192
#> GSM601827     3  0.2711     0.8401 0.088 0.000 0.912
#> GSM601837     2  0.0237     0.9322 0.004 0.996 0.000
#> GSM601842     2  0.0000     0.9325 0.000 1.000 0.000
#> GSM601857     3  0.0237     0.8482 0.004 0.000 0.996
#> GSM601867     3  0.2400     0.8017 0.004 0.064 0.932
#> GSM601747     3  0.4663     0.7845 0.156 0.016 0.828
#> GSM601757     3  0.3686     0.8090 0.140 0.000 0.860
#> GSM601762     2  0.0000     0.9325 0.000 1.000 0.000
#> GSM601767     2  0.0237     0.9323 0.004 0.996 0.000
#> GSM601772     2  0.0000     0.9325 0.000 1.000 0.000
#> GSM601777     1  0.7366     0.1868 0.524 0.032 0.444
#> GSM601787     3  0.4110     0.7158 0.004 0.152 0.844
#> GSM601802     2  0.2711     0.9003 0.088 0.912 0.000
#> GSM601807     3  0.0829     0.8416 0.012 0.004 0.984
#> GSM601812     3  0.2448     0.8444 0.076 0.000 0.924
#> GSM601817     3  0.1031     0.8506 0.024 0.000 0.976
#> GSM601822     1  0.1453     0.8252 0.968 0.024 0.008
#> GSM601832     2  0.0829     0.9298 0.004 0.984 0.012
#> GSM601847     1  0.5450     0.6104 0.760 0.228 0.012
#> GSM601852     3  0.3482     0.8184 0.128 0.000 0.872
#> GSM601862     3  0.0000     0.8477 0.000 0.000 1.000
#> GSM601753     2  0.2878     0.8953 0.096 0.904 0.000
#> GSM601783     3  0.5785     0.5819 0.332 0.000 0.668
#> GSM601793     1  0.3551     0.8196 0.868 0.000 0.132
#> GSM601798     2  0.2711     0.9003 0.088 0.912 0.000
#> GSM601828     3  0.2711     0.8396 0.088 0.000 0.912
#> GSM601838     2  0.0237     0.9322 0.004 0.996 0.000
#> GSM601843     2  0.0000     0.9325 0.000 1.000 0.000
#> GSM601858     2  0.3030     0.8680 0.004 0.904 0.092
#> GSM601868     3  0.0000     0.8477 0.000 0.000 1.000
#> GSM601748     3  0.3192     0.8305 0.112 0.000 0.888
#> GSM601758     3  0.6299     0.2092 0.476 0.000 0.524
#> GSM601763     1  0.2793     0.8392 0.928 0.044 0.028
#> GSM601768     2  0.0000     0.9325 0.000 1.000 0.000
#> GSM601773     2  0.0237     0.9323 0.004 0.996 0.000
#> GSM601778     1  0.3038     0.8085 0.896 0.000 0.104
#> GSM601788     2  0.0983     0.9265 0.004 0.980 0.016
#> GSM601803     2  0.2448     0.9067 0.076 0.924 0.000
#> GSM601808     3  0.0000     0.8477 0.000 0.000 1.000
#> GSM601813     3  0.5835     0.5633 0.340 0.000 0.660
#> GSM601818     3  0.1529     0.8505 0.040 0.000 0.960
#> GSM601823     1  0.1964     0.8510 0.944 0.000 0.056
#> GSM601833     2  0.0000     0.9325 0.000 1.000 0.000
#> GSM601848     1  0.1964     0.8510 0.944 0.000 0.056
#> GSM601853     3  0.0000     0.8477 0.000 0.000 1.000
#> GSM601863     3  0.0592     0.8496 0.012 0.000 0.988
#> GSM601754     2  0.4842     0.7698 0.224 0.776 0.000
#> GSM601784     2  0.0000     0.9325 0.000 1.000 0.000
#> GSM601794     1  0.1411     0.8445 0.964 0.000 0.036
#> GSM601799     2  0.5016     0.7473 0.240 0.760 0.000
#> GSM601829     1  0.6299     0.0603 0.524 0.000 0.476
#> GSM601839     2  0.0237     0.9322 0.004 0.996 0.000
#> GSM601844     1  0.4002     0.7804 0.840 0.000 0.160
#> GSM601859     2  0.0237     0.9323 0.004 0.996 0.000
#> GSM601869     3  0.1529     0.8504 0.040 0.000 0.960
#> GSM601749     3  0.6225     0.3553 0.432 0.000 0.568
#> GSM601759     3  0.5905     0.5476 0.352 0.000 0.648
#> GSM601764     1  0.3459     0.8319 0.892 0.012 0.096
#> GSM601769     2  0.0000     0.9325 0.000 1.000 0.000
#> GSM601774     2  0.0237     0.9323 0.004 0.996 0.000
#> GSM601779     1  0.1753     0.8509 0.952 0.000 0.048
#> GSM601789     2  0.0237     0.9322 0.004 0.996 0.000
#> GSM601804     1  0.4121     0.6945 0.832 0.168 0.000
#> GSM601809     3  0.4821     0.8015 0.088 0.064 0.848
#> GSM601814     2  0.0000     0.9325 0.000 1.000 0.000
#> GSM601819     3  0.6299     0.1790 0.476 0.000 0.524
#> GSM601824     1  0.0237     0.8343 0.996 0.004 0.000
#> GSM601834     2  0.0000     0.9325 0.000 1.000 0.000
#> GSM601849     1  0.2448     0.8468 0.924 0.000 0.076
#> GSM601854     3  0.5254     0.6841 0.264 0.000 0.736
#> GSM601864     2  0.0237     0.9322 0.004 0.996 0.000
#> GSM601755     2  0.2711     0.9003 0.088 0.912 0.000
#> GSM601785     2  0.1529     0.9156 0.040 0.960 0.000
#> GSM601795     1  0.0592     0.8395 0.988 0.000 0.012
#> GSM601800     2  0.2796     0.8980 0.092 0.908 0.000
#> GSM601830     3  0.0237     0.8461 0.000 0.004 0.996
#> GSM601840     2  0.6764     0.7254 0.108 0.744 0.148
#> GSM601845     2  0.8939     0.1710 0.340 0.520 0.140
#> GSM601860     2  0.0592     0.9299 0.012 0.988 0.000
#> GSM601870     3  0.0983     0.8381 0.004 0.016 0.980
#> GSM601750     3  0.3482     0.8177 0.128 0.000 0.872
#> GSM601760     1  0.6062     0.3051 0.616 0.000 0.384
#> GSM601765     2  0.0000     0.9325 0.000 1.000 0.000
#> GSM601770     2  0.0237     0.9323 0.004 0.996 0.000
#> GSM601775     2  0.4465     0.8083 0.176 0.820 0.004
#> GSM601780     1  0.1860     0.8514 0.948 0.000 0.052
#> GSM601790     2  0.0237     0.9322 0.004 0.996 0.000
#> GSM601805     2  0.2711     0.9008 0.088 0.912 0.000
#> GSM601810     3  0.0000     0.8477 0.000 0.000 1.000
#> GSM601815     2  0.0237     0.9322 0.004 0.996 0.000
#> GSM601820     3  0.5397     0.6630 0.280 0.000 0.720
#> GSM601825     2  0.1964     0.9158 0.056 0.944 0.000
#> GSM601835     2  0.1411     0.9165 0.000 0.964 0.036
#> GSM601850     1  0.1905     0.8345 0.956 0.016 0.028
#> GSM601855     3  0.0000     0.8477 0.000 0.000 1.000
#> GSM601865     2  0.0475     0.9312 0.004 0.992 0.004
#> GSM601756     2  0.2625     0.9025 0.084 0.916 0.000
#> GSM601786     2  0.0237     0.9322 0.004 0.996 0.000
#> GSM601796     1  0.3038     0.8329 0.896 0.000 0.104
#> GSM601801     2  0.2261     0.9106 0.068 0.932 0.000
#> GSM601831     3  0.1031     0.8502 0.024 0.000 0.976
#> GSM601841     3  0.5968     0.4703 0.364 0.000 0.636
#> GSM601846     2  0.8524     0.0778 0.448 0.460 0.092
#> GSM601861     2  0.0237     0.9322 0.004 0.996 0.000
#> GSM601871     3  0.4351     0.6988 0.004 0.168 0.828
#> GSM601751     2  0.1129     0.9284 0.020 0.976 0.004
#> GSM601761     1  0.3116     0.8252 0.892 0.000 0.108
#> GSM601766     2  0.7768     0.3508 0.344 0.592 0.064
#> GSM601771     2  0.0829     0.9314 0.012 0.984 0.004
#> GSM601776     1  0.3482     0.8098 0.872 0.000 0.128
#> GSM601781     1  0.1753     0.8454 0.952 0.000 0.048
#> GSM601791     1  0.2796     0.8351 0.908 0.000 0.092
#> GSM601806     2  0.2261     0.9106 0.068 0.932 0.000
#> GSM601811     3  0.0000     0.8477 0.000 0.000 1.000
#> GSM601816     1  0.1964     0.8511 0.944 0.000 0.056
#> GSM601821     2  0.0237     0.9322 0.004 0.996 0.000
#> GSM601826     1  0.2066     0.8500 0.940 0.000 0.060
#> GSM601836     1  0.6527     0.2989 0.588 0.008 0.404
#> GSM601851     1  0.2066     0.8500 0.940 0.000 0.060
#> GSM601856     3  0.0000     0.8477 0.000 0.000 1.000
#> GSM601866     3  0.2448     0.8444 0.076 0.000 0.924

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM601752     4  0.2376      0.788 0.016 0.068 0.000 0.916
#> GSM601782     3  0.4891      0.587 0.308 0.000 0.680 0.012
#> GSM601792     1  0.4775      0.583 0.740 0.000 0.028 0.232
#> GSM601797     4  0.3076      0.736 0.048 0.016 0.036 0.900
#> GSM601827     3  0.4323      0.694 0.204 0.000 0.776 0.020
#> GSM601837     2  0.1545      0.881 0.000 0.952 0.008 0.040
#> GSM601842     2  0.3142      0.851 0.008 0.860 0.000 0.132
#> GSM601857     3  0.0895      0.767 0.020 0.000 0.976 0.004
#> GSM601867     3  0.3486      0.689 0.000 0.092 0.864 0.044
#> GSM601747     3  0.7911      0.371 0.296 0.128 0.532 0.044
#> GSM601757     3  0.4564      0.547 0.328 0.000 0.672 0.000
#> GSM601762     2  0.2976      0.874 0.008 0.872 0.000 0.120
#> GSM601767     2  0.2610      0.878 0.012 0.900 0.000 0.088
#> GSM601772     2  0.1854      0.883 0.012 0.940 0.000 0.048
#> GSM601777     4  0.8416      0.223 0.228 0.028 0.324 0.420
#> GSM601787     3  0.5416      0.508 0.000 0.260 0.692 0.048
#> GSM601802     4  0.2469      0.794 0.000 0.108 0.000 0.892
#> GSM601807     3  0.2115      0.737 0.004 0.024 0.936 0.036
#> GSM601812     3  0.4990      0.503 0.352 0.000 0.640 0.008
#> GSM601817     3  0.3597      0.738 0.148 0.000 0.836 0.016
#> GSM601822     4  0.5543      0.197 0.444 0.012 0.004 0.540
#> GSM601832     2  0.4507      0.772 0.012 0.776 0.012 0.200
#> GSM601847     4  0.5087      0.606 0.228 0.024 0.012 0.736
#> GSM601852     3  0.4897      0.551 0.332 0.000 0.660 0.008
#> GSM601862     3  0.0707      0.768 0.020 0.000 0.980 0.000
#> GSM601753     4  0.2530      0.793 0.000 0.112 0.000 0.888
#> GSM601783     1  0.5161      0.231 0.592 0.000 0.400 0.008
#> GSM601793     1  0.5637      0.654 0.720 0.000 0.168 0.112
#> GSM601798     4  0.2589      0.793 0.000 0.116 0.000 0.884
#> GSM601828     3  0.4313      0.649 0.260 0.000 0.736 0.004
#> GSM601838     2  0.1356      0.884 0.000 0.960 0.008 0.032
#> GSM601843     2  0.2480      0.876 0.008 0.904 0.000 0.088
#> GSM601858     2  0.3550      0.818 0.000 0.860 0.096 0.044
#> GSM601868     3  0.0779      0.767 0.016 0.000 0.980 0.004
#> GSM601748     3  0.4746      0.595 0.304 0.000 0.688 0.008
#> GSM601758     1  0.4647      0.481 0.704 0.000 0.288 0.008
#> GSM601763     1  0.5003      0.589 0.768 0.084 0.000 0.148
#> GSM601768     2  0.2402      0.882 0.012 0.912 0.000 0.076
#> GSM601773     2  0.2805      0.870 0.012 0.888 0.000 0.100
#> GSM601778     1  0.7324      0.210 0.500 0.004 0.144 0.352
#> GSM601788     2  0.5118      0.695 0.004 0.736 0.040 0.220
#> GSM601803     4  0.3266      0.761 0.000 0.168 0.000 0.832
#> GSM601808     3  0.0336      0.765 0.008 0.000 0.992 0.000
#> GSM601813     1  0.5070      0.323 0.620 0.000 0.372 0.008
#> GSM601818     3  0.4095      0.714 0.192 0.000 0.792 0.016
#> GSM601823     1  0.1677      0.717 0.948 0.000 0.012 0.040
#> GSM601833     2  0.2473      0.878 0.012 0.908 0.000 0.080
#> GSM601848     1  0.1488      0.718 0.956 0.000 0.012 0.032
#> GSM601853     3  0.1059      0.767 0.016 0.000 0.972 0.012
#> GSM601863     3  0.2530      0.752 0.112 0.000 0.888 0.000
#> GSM601754     4  0.3149      0.790 0.032 0.088 0.000 0.880
#> GSM601784     2  0.1452      0.890 0.008 0.956 0.000 0.036
#> GSM601794     1  0.6538      0.444 0.600 0.000 0.108 0.292
#> GSM601799     4  0.2662      0.781 0.016 0.084 0.000 0.900
#> GSM601829     1  0.5842      0.144 0.520 0.000 0.448 0.032
#> GSM601839     2  0.1356      0.884 0.000 0.960 0.008 0.032
#> GSM601844     1  0.3999      0.674 0.824 0.000 0.140 0.036
#> GSM601859     2  0.2528      0.884 0.008 0.908 0.004 0.080
#> GSM601869     3  0.2868      0.743 0.136 0.000 0.864 0.000
#> GSM601749     1  0.4819      0.381 0.652 0.000 0.344 0.004
#> GSM601759     1  0.4920      0.322 0.628 0.000 0.368 0.004
#> GSM601764     1  0.2405      0.704 0.928 0.020 0.016 0.036
#> GSM601769     2  0.1305      0.890 0.000 0.960 0.004 0.036
#> GSM601774     2  0.1970      0.886 0.008 0.932 0.000 0.060
#> GSM601779     1  0.1584      0.717 0.952 0.000 0.012 0.036
#> GSM601789     2  0.1118      0.886 0.000 0.964 0.000 0.036
#> GSM601804     4  0.4105      0.677 0.156 0.032 0.000 0.812
#> GSM601809     3  0.8218      0.389 0.236 0.172 0.536 0.056
#> GSM601814     2  0.1890      0.886 0.000 0.936 0.008 0.056
#> GSM601819     1  0.4673      0.487 0.700 0.000 0.292 0.008
#> GSM601824     1  0.5024      0.304 0.632 0.008 0.000 0.360
#> GSM601834     2  0.2179      0.884 0.012 0.924 0.000 0.064
#> GSM601849     1  0.1837      0.720 0.944 0.000 0.028 0.028
#> GSM601854     3  0.5147      0.181 0.460 0.000 0.536 0.004
#> GSM601864     2  0.2706      0.866 0.000 0.900 0.020 0.080
#> GSM601755     4  0.2647      0.792 0.000 0.120 0.000 0.880
#> GSM601785     2  0.4107      0.799 0.016 0.804 0.004 0.176
#> GSM601795     4  0.5808      0.116 0.424 0.000 0.032 0.544
#> GSM601800     4  0.2345      0.794 0.000 0.100 0.000 0.900
#> GSM601830     3  0.1771      0.760 0.012 0.004 0.948 0.036
#> GSM601840     4  0.8859      0.342 0.092 0.320 0.148 0.440
#> GSM601845     2  0.8438      0.360 0.168 0.544 0.092 0.196
#> GSM601860     2  0.2456      0.882 0.008 0.916 0.008 0.068
#> GSM601870     3  0.1936      0.738 0.000 0.032 0.940 0.028
#> GSM601750     3  0.5099      0.444 0.380 0.000 0.612 0.008
#> GSM601760     1  0.3668      0.617 0.808 0.000 0.188 0.004
#> GSM601765     2  0.2473      0.878 0.012 0.908 0.000 0.080
#> GSM601770     2  0.2473      0.879 0.012 0.908 0.000 0.080
#> GSM601775     4  0.7396      0.368 0.156 0.340 0.004 0.500
#> GSM601780     1  0.1388      0.718 0.960 0.000 0.012 0.028
#> GSM601790     2  0.1151      0.886 0.000 0.968 0.008 0.024
#> GSM601805     4  0.2921      0.783 0.000 0.140 0.000 0.860
#> GSM601810     3  0.1545      0.769 0.040 0.000 0.952 0.008
#> GSM601815     2  0.1545      0.885 0.000 0.952 0.008 0.040
#> GSM601820     1  0.5112      0.124 0.560 0.000 0.436 0.004
#> GSM601825     4  0.5126      0.223 0.004 0.444 0.000 0.552
#> GSM601835     2  0.4179      0.823 0.004 0.832 0.060 0.104
#> GSM601850     1  0.5713      0.403 0.640 0.004 0.036 0.320
#> GSM601855     3  0.1443      0.756 0.008 0.004 0.960 0.028
#> GSM601865     2  0.1635      0.881 0.000 0.948 0.008 0.044
#> GSM601756     4  0.2647      0.791 0.000 0.120 0.000 0.880
#> GSM601786     2  0.1722      0.881 0.000 0.944 0.008 0.048
#> GSM601796     1  0.6724      0.587 0.612 0.000 0.164 0.224
#> GSM601801     4  0.2868      0.785 0.000 0.136 0.000 0.864
#> GSM601831     3  0.2376      0.765 0.068 0.000 0.916 0.016
#> GSM601841     1  0.6419      0.186 0.512 0.000 0.420 0.068
#> GSM601846     4  0.6322      0.653 0.056 0.188 0.052 0.704
#> GSM601861     2  0.1635      0.884 0.000 0.948 0.008 0.044
#> GSM601871     3  0.5312      0.532 0.000 0.236 0.712 0.052
#> GSM601751     2  0.4124      0.787 0.012 0.812 0.012 0.164
#> GSM601761     1  0.1356      0.716 0.960 0.000 0.032 0.008
#> GSM601766     2  0.7507      0.463 0.224 0.588 0.028 0.160
#> GSM601771     2  0.5308      0.664 0.012 0.708 0.024 0.256
#> GSM601776     1  0.2413      0.711 0.916 0.000 0.064 0.020
#> GSM601781     1  0.5569      0.622 0.736 0.008 0.080 0.176
#> GSM601791     1  0.1610      0.717 0.952 0.000 0.032 0.016
#> GSM601806     4  0.3688      0.724 0.000 0.208 0.000 0.792
#> GSM601811     3  0.1584      0.769 0.036 0.000 0.952 0.012
#> GSM601816     1  0.2111      0.716 0.932 0.000 0.024 0.044
#> GSM601821     2  0.1635      0.884 0.000 0.948 0.008 0.044
#> GSM601826     1  0.1488      0.718 0.956 0.000 0.012 0.032
#> GSM601836     1  0.7955      0.346 0.540 0.076 0.296 0.088
#> GSM601851     1  0.1174      0.718 0.968 0.000 0.012 0.020
#> GSM601856     3  0.0804      0.764 0.008 0.000 0.980 0.012
#> GSM601866     3  0.4781      0.540 0.336 0.000 0.660 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM601752     4   0.140     0.7032 0.008 0.020 0.000 0.956 0.016
#> GSM601782     3   0.614     0.5125 0.204 0.000 0.596 0.008 0.192
#> GSM601792     1   0.635     0.4401 0.608 0.000 0.028 0.168 0.196
#> GSM601797     4   0.443     0.6183 0.052 0.004 0.020 0.788 0.136
#> GSM601827     3   0.522     0.5853 0.180 0.000 0.684 0.000 0.136
#> GSM601837     2   0.227     0.6978 0.000 0.908 0.004 0.016 0.072
#> GSM601842     2   0.572     0.5378 0.000 0.616 0.000 0.144 0.240
#> GSM601857     3   0.290     0.6548 0.036 0.000 0.868 0.000 0.096
#> GSM601867     3   0.644     0.3044 0.000 0.176 0.568 0.016 0.240
#> GSM601747     3   0.822     0.2472 0.176 0.064 0.432 0.036 0.292
#> GSM601757     3   0.593     0.3936 0.320 0.000 0.564 0.004 0.112
#> GSM601762     2   0.508     0.6437 0.000 0.700 0.000 0.160 0.140
#> GSM601767     2   0.495     0.6705 0.000 0.712 0.000 0.124 0.164
#> GSM601772     2   0.482     0.6695 0.000 0.704 0.000 0.076 0.220
#> GSM601777     4   0.910    -0.0381 0.184 0.032 0.268 0.304 0.212
#> GSM601787     3   0.718     0.0121 0.004 0.332 0.420 0.016 0.228
#> GSM601802     4   0.246     0.7086 0.004 0.052 0.000 0.904 0.040
#> GSM601807     3   0.431     0.5311 0.008 0.024 0.752 0.004 0.212
#> GSM601812     3   0.554     0.5248 0.236 0.000 0.636 0.000 0.128
#> GSM601817     3   0.487     0.6120 0.120 0.000 0.720 0.000 0.160
#> GSM601822     1   0.646     0.1236 0.480 0.000 0.012 0.376 0.132
#> GSM601832     2   0.657     0.3319 0.000 0.508 0.012 0.164 0.316
#> GSM601847     4   0.636     0.4031 0.288 0.028 0.008 0.588 0.088
#> GSM601852     3   0.549     0.5019 0.256 0.000 0.632 0.000 0.112
#> GSM601862     3   0.274     0.6558 0.036 0.000 0.880 0.000 0.084
#> GSM601753     4   0.224     0.7013 0.000 0.068 0.000 0.908 0.024
#> GSM601783     1   0.627    -0.0885 0.440 0.000 0.428 0.004 0.128
#> GSM601793     1   0.714     0.4576 0.552 0.000 0.188 0.076 0.184
#> GSM601798     4   0.207     0.7089 0.000 0.048 0.000 0.920 0.032
#> GSM601828     3   0.545     0.5334 0.216 0.000 0.652 0.000 0.132
#> GSM601838     2   0.186     0.7086 0.000 0.932 0.004 0.016 0.048
#> GSM601843     2   0.459     0.6694 0.000 0.728 0.000 0.068 0.204
#> GSM601858     2   0.542     0.4922 0.000 0.704 0.092 0.028 0.176
#> GSM601868     3   0.227     0.6465 0.020 0.000 0.904 0.000 0.076
#> GSM601748     3   0.577     0.4646 0.272 0.000 0.608 0.004 0.116
#> GSM601758     1   0.570     0.2480 0.576 0.000 0.320 0.000 0.104
#> GSM601763     1   0.740    -0.1875 0.472 0.088 0.012 0.080 0.348
#> GSM601768     2   0.502     0.6579 0.000 0.692 0.000 0.096 0.212
#> GSM601773     2   0.493     0.6820 0.000 0.716 0.000 0.148 0.136
#> GSM601778     1   0.778     0.2046 0.452 0.000 0.100 0.264 0.184
#> GSM601788     2   0.606     0.4938 0.004 0.680 0.056 0.120 0.140
#> GSM601803     4   0.313     0.6848 0.000 0.120 0.000 0.848 0.032
#> GSM601808     3   0.239     0.6507 0.020 0.000 0.896 0.000 0.084
#> GSM601813     1   0.597     0.1083 0.512 0.000 0.372 0.000 0.116
#> GSM601818     3   0.551     0.5872 0.176 0.000 0.652 0.000 0.172
#> GSM601823     1   0.288     0.5742 0.876 0.000 0.008 0.024 0.092
#> GSM601833     2   0.514     0.6323 0.000 0.676 0.000 0.096 0.228
#> GSM601848     1   0.259     0.5801 0.900 0.000 0.012 0.028 0.060
#> GSM601853     3   0.202     0.6436 0.008 0.000 0.912 0.000 0.080
#> GSM601863     3   0.356     0.6516 0.108 0.000 0.828 0.000 0.064
#> GSM601754     4   0.274     0.6976 0.020 0.032 0.000 0.896 0.052
#> GSM601784     2   0.388     0.7198 0.000 0.804 0.000 0.072 0.124
#> GSM601794     1   0.774     0.3182 0.460 0.000 0.092 0.244 0.204
#> GSM601799     4   0.255     0.6873 0.008 0.020 0.000 0.896 0.076
#> GSM601829     1   0.665     0.0312 0.424 0.000 0.380 0.004 0.192
#> GSM601839     2   0.168     0.7109 0.000 0.940 0.004 0.012 0.044
#> GSM601844     1   0.627     0.4690 0.600 0.000 0.156 0.020 0.224
#> GSM601859     2   0.397     0.7180 0.000 0.800 0.000 0.100 0.100
#> GSM601869     3   0.427     0.6251 0.144 0.000 0.772 0.000 0.084
#> GSM601749     1   0.581     0.1505 0.540 0.000 0.356 0.000 0.104
#> GSM601759     1   0.579     0.1132 0.524 0.000 0.380 0.000 0.096
#> GSM601764     1   0.528     0.3840 0.688 0.016 0.040 0.012 0.244
#> GSM601769     2   0.317     0.7270 0.000 0.856 0.000 0.060 0.084
#> GSM601774     2   0.374     0.7183 0.000 0.816 0.000 0.076 0.108
#> GSM601779     1   0.186     0.5729 0.932 0.000 0.004 0.016 0.048
#> GSM601789     2   0.240     0.7109 0.000 0.904 0.004 0.024 0.068
#> GSM601804     4   0.464     0.5695 0.172 0.004 0.000 0.744 0.080
#> GSM601809     3   0.891     0.0255 0.124 0.236 0.384 0.044 0.212
#> GSM601814     2   0.239     0.7288 0.000 0.900 0.000 0.072 0.028
#> GSM601819     1   0.632     0.2030 0.520 0.000 0.320 0.004 0.156
#> GSM601824     1   0.583     0.3149 0.624 0.004 0.000 0.212 0.160
#> GSM601834     2   0.454     0.6885 0.000 0.744 0.000 0.084 0.172
#> GSM601849     1   0.289     0.5863 0.888 0.000 0.036 0.020 0.056
#> GSM601854     3   0.589     0.2628 0.372 0.000 0.520 0.000 0.108
#> GSM601864     2   0.411     0.6193 0.000 0.804 0.024 0.040 0.132
#> GSM601755     4   0.219     0.7090 0.000 0.060 0.000 0.912 0.028
#> GSM601785     2   0.619     0.5474 0.020 0.616 0.000 0.168 0.196
#> GSM601795     4   0.735    -0.0489 0.368 0.000 0.044 0.404 0.184
#> GSM601800     4   0.208     0.7064 0.004 0.040 0.000 0.924 0.032
#> GSM601830     3   0.329     0.6061 0.004 0.008 0.816 0.000 0.172
#> GSM601840     4   0.886    -0.0309 0.052 0.260 0.104 0.388 0.196
#> GSM601845     5   0.880     0.4400 0.132 0.252 0.084 0.100 0.432
#> GSM601860     2   0.514     0.6351 0.036 0.716 0.000 0.048 0.200
#> GSM601870     3   0.459     0.5017 0.004 0.052 0.728 0.000 0.216
#> GSM601750     3   0.590     0.4175 0.300 0.000 0.580 0.004 0.116
#> GSM601760     1   0.490     0.4738 0.708 0.000 0.196 0.000 0.096
#> GSM601765     2   0.528     0.5706 0.004 0.640 0.000 0.068 0.288
#> GSM601770     2   0.472     0.6823 0.000 0.732 0.000 0.104 0.164
#> GSM601775     4   0.866    -0.3084 0.112 0.248 0.020 0.328 0.292
#> GSM601780     1   0.163     0.5788 0.944 0.000 0.004 0.016 0.036
#> GSM601790     2   0.153     0.7173 0.000 0.948 0.004 0.012 0.036
#> GSM601805     4   0.345     0.6858 0.008 0.116 0.000 0.840 0.036
#> GSM601810     3   0.383     0.6523 0.048 0.000 0.796 0.000 0.156
#> GSM601815     2   0.203     0.7130 0.000 0.924 0.004 0.020 0.052
#> GSM601820     3   0.603     0.1389 0.416 0.000 0.468 0.000 0.116
#> GSM601825     4   0.537     0.0915 0.000 0.416 0.000 0.528 0.056
#> GSM601835     2   0.669     0.3271 0.000 0.540 0.048 0.104 0.308
#> GSM601850     1   0.785     0.1747 0.480 0.024 0.052 0.224 0.220
#> GSM601855     3   0.285     0.5961 0.004 0.000 0.840 0.000 0.156
#> GSM601865     2   0.259     0.6808 0.000 0.888 0.012 0.008 0.092
#> GSM601756     4   0.194     0.7083 0.000 0.056 0.000 0.924 0.020
#> GSM601786     2   0.240     0.7056 0.000 0.904 0.004 0.024 0.068
#> GSM601796     1   0.815     0.3020 0.424 0.000 0.164 0.208 0.204
#> GSM601801     4   0.248     0.7051 0.000 0.084 0.000 0.892 0.024
#> GSM601831     3   0.334     0.6571 0.060 0.000 0.844 0.000 0.096
#> GSM601841     3   0.743    -0.0339 0.376 0.000 0.388 0.048 0.188
#> GSM601846     4   0.867    -0.0524 0.076 0.096 0.108 0.376 0.344
#> GSM601861     2   0.192     0.7196 0.000 0.928 0.000 0.040 0.032
#> GSM601871     3   0.680     0.1023 0.000 0.276 0.468 0.008 0.248
#> GSM601751     2   0.642     0.4651 0.032 0.620 0.004 0.168 0.176
#> GSM601761     1   0.252     0.5766 0.896 0.000 0.052 0.000 0.052
#> GSM601766     5   0.819     0.2261 0.116 0.328 0.036 0.092 0.428
#> GSM601771     2   0.693     0.3556 0.028 0.572 0.016 0.220 0.164
#> GSM601776     1   0.340     0.5776 0.852 0.000 0.072 0.008 0.068
#> GSM601781     1   0.656     0.4162 0.640 0.012 0.060 0.108 0.180
#> GSM601791     1   0.326     0.5814 0.856 0.000 0.040 0.008 0.096
#> GSM601806     4   0.324     0.6566 0.000 0.152 0.000 0.828 0.020
#> GSM601811     3   0.336     0.6484 0.036 0.000 0.832 0.000 0.132
#> GSM601816     1   0.327     0.5637 0.852 0.000 0.008 0.032 0.108
#> GSM601821     2   0.192     0.7204 0.000 0.928 0.000 0.036 0.036
#> GSM601826     1   0.237     0.5826 0.912 0.000 0.016 0.020 0.052
#> GSM601836     5   0.872    -0.0323 0.296 0.056 0.248 0.060 0.340
#> GSM601851     1   0.188     0.5832 0.936 0.000 0.012 0.020 0.032
#> GSM601856     3   0.225     0.6352 0.012 0.000 0.900 0.000 0.088
#> GSM601866     3   0.516     0.5199 0.256 0.000 0.660 0.000 0.084

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM601752     4  0.1799     0.7591 0.008 0.016 0.000 0.936 0.024 0.016
#> GSM601782     3  0.6601    -0.0311 0.340 0.000 0.460 0.004 0.056 0.140
#> GSM601792     6  0.7128     0.4168 0.204 0.000 0.032 0.144 0.096 0.524
#> GSM601797     4  0.4273     0.6730 0.072 0.000 0.028 0.800 0.060 0.040
#> GSM601827     3  0.6553     0.1536 0.276 0.000 0.520 0.008 0.060 0.136
#> GSM601837     2  0.2995     0.6474 0.048 0.864 0.004 0.012 0.072 0.000
#> GSM601842     2  0.6087     0.1910 0.016 0.432 0.008 0.124 0.420 0.000
#> GSM601857     3  0.3001     0.4318 0.128 0.000 0.840 0.000 0.008 0.024
#> GSM601867     3  0.6017     0.2769 0.172 0.128 0.628 0.004 0.064 0.004
#> GSM601747     1  0.8572     0.0764 0.336 0.056 0.296 0.036 0.188 0.088
#> GSM601757     3  0.6227    -0.0694 0.256 0.000 0.476 0.000 0.016 0.252
#> GSM601762     2  0.5128     0.5544 0.008 0.636 0.000 0.116 0.240 0.000
#> GSM601767     2  0.4765     0.5882 0.008 0.664 0.000 0.076 0.252 0.000
#> GSM601772     2  0.4877     0.5285 0.008 0.596 0.000 0.044 0.348 0.004
#> GSM601777     3  0.9259    -0.1232 0.176 0.016 0.232 0.208 0.168 0.200
#> GSM601787     3  0.6962     0.1430 0.160 0.272 0.476 0.008 0.084 0.000
#> GSM601802     4  0.1498     0.7618 0.012 0.024 0.000 0.948 0.012 0.004
#> GSM601807     3  0.4741     0.3681 0.200 0.020 0.708 0.004 0.068 0.000
#> GSM601812     3  0.6445    -0.0919 0.292 0.000 0.464 0.000 0.032 0.212
#> GSM601817     3  0.5754     0.1866 0.336 0.000 0.544 0.000 0.044 0.076
#> GSM601822     6  0.7365     0.1787 0.112 0.000 0.012 0.232 0.200 0.444
#> GSM601832     5  0.6144     0.0640 0.028 0.320 0.000 0.136 0.512 0.004
#> GSM601847     4  0.7478     0.1501 0.084 0.024 0.008 0.424 0.140 0.320
#> GSM601852     3  0.6439    -0.0334 0.260 0.000 0.500 0.000 0.044 0.196
#> GSM601862     3  0.2993     0.4328 0.120 0.000 0.844 0.000 0.008 0.028
#> GSM601753     4  0.2740     0.7493 0.012 0.040 0.000 0.884 0.056 0.008
#> GSM601783     1  0.6601     0.3252 0.360 0.000 0.312 0.000 0.024 0.304
#> GSM601793     6  0.7187     0.3774 0.244 0.000 0.088 0.060 0.092 0.516
#> GSM601798     4  0.1982     0.7622 0.012 0.040 0.000 0.924 0.020 0.004
#> GSM601828     3  0.5980     0.1130 0.280 0.000 0.552 0.000 0.036 0.132
#> GSM601838     2  0.1844     0.6680 0.024 0.924 0.000 0.004 0.048 0.000
#> GSM601843     2  0.5274     0.4533 0.008 0.568 0.004 0.076 0.344 0.000
#> GSM601858     2  0.6172     0.4298 0.136 0.632 0.092 0.016 0.124 0.000
#> GSM601868     3  0.2122     0.4403 0.084 0.000 0.900 0.000 0.008 0.008
#> GSM601748     3  0.5796    -0.0725 0.352 0.000 0.480 0.000 0.004 0.164
#> GSM601758     6  0.5839    -0.1513 0.284 0.000 0.184 0.000 0.008 0.524
#> GSM601763     5  0.6575     0.1483 0.072 0.036 0.008 0.032 0.480 0.372
#> GSM601768     2  0.5449     0.4793 0.032 0.564 0.000 0.052 0.348 0.004
#> GSM601773     2  0.4938     0.6036 0.012 0.676 0.000 0.112 0.200 0.000
#> GSM601778     6  0.8596     0.1616 0.184 0.004 0.096 0.168 0.188 0.360
#> GSM601788     2  0.7097     0.3662 0.084 0.572 0.040 0.108 0.180 0.016
#> GSM601803     4  0.2597     0.7466 0.008 0.088 0.000 0.880 0.020 0.004
#> GSM601808     3  0.2622     0.4428 0.104 0.000 0.868 0.000 0.024 0.004
#> GSM601813     6  0.6486    -0.3405 0.268 0.000 0.280 0.000 0.024 0.428
#> GSM601818     3  0.6026     0.0192 0.352 0.000 0.492 0.000 0.028 0.128
#> GSM601823     6  0.3697     0.5113 0.104 0.000 0.004 0.012 0.068 0.812
#> GSM601833     2  0.4518     0.5146 0.004 0.612 0.000 0.036 0.348 0.000
#> GSM601848     6  0.2750     0.5128 0.080 0.000 0.004 0.000 0.048 0.868
#> GSM601853     3  0.2851     0.4381 0.132 0.000 0.844 0.000 0.020 0.004
#> GSM601863     3  0.4241     0.3826 0.136 0.000 0.760 0.000 0.016 0.088
#> GSM601754     4  0.3232     0.7403 0.040 0.028 0.000 0.864 0.048 0.020
#> GSM601784     2  0.3803     0.6685 0.012 0.776 0.000 0.040 0.172 0.000
#> GSM601794     6  0.8003     0.3232 0.232 0.000 0.056 0.216 0.104 0.392
#> GSM601799     4  0.3704     0.7133 0.016 0.028 0.000 0.820 0.112 0.024
#> GSM601829     3  0.7773    -0.1136 0.276 0.000 0.324 0.016 0.120 0.264
#> GSM601839     2  0.1564     0.6708 0.024 0.936 0.000 0.000 0.040 0.000
#> GSM601844     6  0.7438     0.1912 0.340 0.000 0.108 0.028 0.124 0.400
#> GSM601859     2  0.4915     0.6188 0.024 0.708 0.000 0.096 0.168 0.004
#> GSM601869     3  0.4584     0.3096 0.196 0.000 0.700 0.000 0.004 0.100
#> GSM601749     6  0.6342    -0.3834 0.324 0.000 0.264 0.000 0.012 0.400
#> GSM601759     6  0.6169    -0.3856 0.320 0.000 0.268 0.000 0.004 0.408
#> GSM601764     6  0.6522     0.1979 0.172 0.004 0.036 0.000 0.332 0.456
#> GSM601769     2  0.2362     0.6754 0.000 0.860 0.000 0.004 0.136 0.000
#> GSM601774     2  0.3761     0.6463 0.008 0.764 0.000 0.032 0.196 0.000
#> GSM601779     6  0.3085     0.5123 0.064 0.000 0.008 0.016 0.048 0.864
#> GSM601789     2  0.3337     0.6680 0.036 0.820 0.004 0.004 0.136 0.000
#> GSM601804     4  0.4473     0.6367 0.036 0.012 0.000 0.760 0.044 0.148
#> GSM601809     1  0.8945     0.0422 0.296 0.220 0.256 0.028 0.096 0.104
#> GSM601814     2  0.1863     0.6824 0.000 0.920 0.000 0.036 0.044 0.000
#> GSM601819     1  0.6780     0.2991 0.416 0.000 0.204 0.004 0.044 0.332
#> GSM601824     6  0.6301     0.3394 0.092 0.004 0.000 0.136 0.176 0.592
#> GSM601834     2  0.4003     0.6119 0.004 0.716 0.000 0.032 0.248 0.000
#> GSM601849     6  0.4736     0.4785 0.128 0.000 0.052 0.008 0.064 0.748
#> GSM601854     3  0.6493    -0.2552 0.264 0.000 0.424 0.000 0.024 0.288
#> GSM601864     2  0.4951     0.5664 0.092 0.752 0.032 0.052 0.072 0.000
#> GSM601755     4  0.1787     0.7623 0.016 0.032 0.000 0.932 0.020 0.000
#> GSM601785     2  0.7160     0.1474 0.084 0.416 0.004 0.132 0.352 0.012
#> GSM601795     4  0.7656    -0.1567 0.212 0.000 0.016 0.336 0.112 0.324
#> GSM601800     4  0.1911     0.7632 0.012 0.036 0.000 0.928 0.020 0.004
#> GSM601830     3  0.4655     0.4038 0.204 0.000 0.704 0.008 0.080 0.004
#> GSM601840     4  0.9171    -0.1575 0.112 0.212 0.108 0.336 0.180 0.052
#> GSM601845     5  0.8003     0.4451 0.200 0.184 0.028 0.068 0.464 0.056
#> GSM601860     2  0.5890     0.5417 0.072 0.680 0.016 0.044 0.156 0.032
#> GSM601870     3  0.5006     0.3601 0.176 0.048 0.700 0.000 0.076 0.000
#> GSM601750     3  0.6322    -0.2093 0.324 0.000 0.444 0.000 0.020 0.212
#> GSM601760     6  0.5860     0.0910 0.244 0.000 0.136 0.004 0.028 0.588
#> GSM601765     2  0.5193     0.3032 0.020 0.492 0.004 0.028 0.452 0.004
#> GSM601770     2  0.4469     0.5957 0.012 0.676 0.000 0.040 0.272 0.000
#> GSM601775     5  0.8293     0.3086 0.104 0.128 0.008 0.264 0.396 0.100
#> GSM601780     6  0.3277     0.5028 0.124 0.000 0.004 0.012 0.028 0.832
#> GSM601790     2  0.1807     0.6763 0.020 0.920 0.000 0.000 0.060 0.000
#> GSM601805     4  0.3879     0.7292 0.040 0.084 0.000 0.816 0.052 0.008
#> GSM601810     3  0.4827     0.3681 0.232 0.000 0.684 0.000 0.044 0.040
#> GSM601815     2  0.1464     0.6744 0.016 0.944 0.000 0.004 0.036 0.000
#> GSM601820     1  0.6310     0.2888 0.376 0.000 0.328 0.000 0.008 0.288
#> GSM601825     4  0.5591     0.1079 0.008 0.372 0.000 0.504 0.116 0.000
#> GSM601835     5  0.6634     0.0620 0.036 0.348 0.060 0.068 0.488 0.000
#> GSM601850     6  0.7983     0.2807 0.184 0.008 0.048 0.144 0.164 0.452
#> GSM601855     3  0.3610     0.4214 0.152 0.004 0.792 0.000 0.052 0.000
#> GSM601865     2  0.2706     0.6474 0.056 0.876 0.008 0.000 0.060 0.000
#> GSM601756     4  0.1692     0.7623 0.000 0.048 0.000 0.932 0.012 0.008
#> GSM601786     2  0.1934     0.6709 0.040 0.916 0.000 0.000 0.044 0.000
#> GSM601796     6  0.8144     0.2839 0.284 0.000 0.092 0.144 0.104 0.376
#> GSM601801     4  0.2145     0.7536 0.004 0.076 0.000 0.904 0.012 0.004
#> GSM601831     3  0.4689     0.3679 0.232 0.000 0.696 0.004 0.024 0.044
#> GSM601841     6  0.7568    -0.1610 0.216 0.000 0.328 0.048 0.048 0.360
#> GSM601846     5  0.8853     0.2313 0.136 0.080 0.068 0.272 0.360 0.084
#> GSM601861     2  0.0717     0.6798 0.000 0.976 0.000 0.008 0.016 0.000
#> GSM601871     3  0.6704     0.1100 0.152 0.292 0.476 0.000 0.080 0.000
#> GSM601751     2  0.7187     0.3510 0.068 0.568 0.012 0.144 0.148 0.060
#> GSM601761     6  0.3966     0.4200 0.156 0.000 0.048 0.000 0.020 0.776
#> GSM601766     5  0.6787     0.4365 0.084 0.176 0.016 0.032 0.600 0.092
#> GSM601771     2  0.8023     0.1880 0.080 0.464 0.056 0.192 0.184 0.024
#> GSM601776     6  0.4394     0.4329 0.136 0.000 0.052 0.000 0.052 0.760
#> GSM601781     6  0.7453     0.3816 0.160 0.012 0.060 0.100 0.124 0.544
#> GSM601791     6  0.4306     0.4674 0.160 0.000 0.032 0.004 0.044 0.760
#> GSM601806     4  0.2715     0.7244 0.004 0.112 0.000 0.860 0.024 0.000
#> GSM601811     3  0.4428     0.3762 0.228 0.000 0.708 0.000 0.048 0.016
#> GSM601816     6  0.3713     0.5120 0.100 0.000 0.008 0.004 0.080 0.808
#> GSM601821     2  0.0717     0.6803 0.000 0.976 0.000 0.008 0.016 0.000
#> GSM601826     6  0.2344     0.5129 0.076 0.000 0.004 0.000 0.028 0.892
#> GSM601836     5  0.8460    -0.1092 0.228 0.008 0.156 0.044 0.300 0.264
#> GSM601851     6  0.2938     0.4761 0.100 0.000 0.020 0.004 0.016 0.860
#> GSM601856     3  0.2771     0.4426 0.116 0.000 0.852 0.000 0.032 0.000
#> GSM601866     3  0.6419    -0.1617 0.252 0.000 0.468 0.000 0.028 0.252

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>               n time(p) gender(p) k
#> MAD:skmeans 121  0.6728   0.17942 2
#> MAD:skmeans 113  0.1404   0.20920 3
#> MAD:skmeans  99  0.1336   0.05379 4
#> MAD:skmeans  78  0.0944   0.00765 5
#> MAD:skmeans  45  0.7587   0.01174 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 125 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.402           0.823       0.894         0.4964 0.499   0.499
#> 3 3 0.451           0.712       0.824         0.2967 0.701   0.476
#> 4 4 0.492           0.595       0.766         0.1096 0.802   0.525
#> 5 5 0.555           0.589       0.741         0.0721 0.893   0.661
#> 6 6 0.602           0.603       0.753         0.0567 0.899   0.608

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM601752     1  0.8144     0.6678 0.748 0.252
#> GSM601782     1  0.2948     0.8963 0.948 0.052
#> GSM601792     1  0.0938     0.8958 0.988 0.012
#> GSM601797     1  0.4161     0.8855 0.916 0.084
#> GSM601827     1  0.4161     0.8769 0.916 0.084
#> GSM601837     2  0.0938     0.8756 0.012 0.988
#> GSM601842     2  0.6531     0.8261 0.168 0.832
#> GSM601857     2  0.7745     0.7345 0.228 0.772
#> GSM601867     2  0.1633     0.8782 0.024 0.976
#> GSM601747     1  0.8661     0.6141 0.712 0.288
#> GSM601757     1  0.0376     0.8947 0.996 0.004
#> GSM601762     2  0.3274     0.8789 0.060 0.940
#> GSM601767     2  0.3879     0.8736 0.076 0.924
#> GSM601772     2  0.3431     0.8845 0.064 0.936
#> GSM601777     1  0.9286     0.5486 0.656 0.344
#> GSM601787     2  0.6887     0.7848 0.184 0.816
#> GSM601802     2  0.8144     0.7109 0.252 0.748
#> GSM601807     1  0.5629     0.8611 0.868 0.132
#> GSM601812     1  0.2603     0.8948 0.956 0.044
#> GSM601817     1  0.4431     0.8886 0.908 0.092
#> GSM601822     1  0.0938     0.8958 0.988 0.012
#> GSM601832     2  0.6148     0.8482 0.152 0.848
#> GSM601847     1  0.6247     0.8086 0.844 0.156
#> GSM601852     1  0.3114     0.8893 0.944 0.056
#> GSM601862     2  0.8386     0.6616 0.268 0.732
#> GSM601753     1  0.9815     0.1980 0.580 0.420
#> GSM601783     1  0.0376     0.8943 0.996 0.004
#> GSM601793     1  0.3431     0.8917 0.936 0.064
#> GSM601798     2  0.7674     0.7781 0.224 0.776
#> GSM601828     1  0.0672     0.8947 0.992 0.008
#> GSM601838     2  0.0000     0.8807 0.000 1.000
#> GSM601843     2  0.0938     0.8840 0.012 0.988
#> GSM601858     2  0.1633     0.8801 0.024 0.976
#> GSM601868     1  0.7528     0.7885 0.784 0.216
#> GSM601748     1  0.1633     0.8947 0.976 0.024
#> GSM601758     1  0.0938     0.8958 0.988 0.012
#> GSM601763     1  0.5519     0.8307 0.872 0.128
#> GSM601768     2  0.3879     0.8794 0.076 0.924
#> GSM601773     2  0.4815     0.8667 0.104 0.896
#> GSM601778     1  0.3431     0.8852 0.936 0.064
#> GSM601788     2  0.9129     0.6228 0.328 0.672
#> GSM601803     2  0.6247     0.8349 0.156 0.844
#> GSM601808     1  0.6343     0.8445 0.840 0.160
#> GSM601813     1  0.1414     0.8966 0.980 0.020
#> GSM601818     1  0.2423     0.8949 0.960 0.040
#> GSM601823     1  0.0938     0.8958 0.988 0.012
#> GSM601833     2  0.0376     0.8819 0.004 0.996
#> GSM601848     1  0.0938     0.8958 0.988 0.012
#> GSM601853     1  0.4298     0.8764 0.912 0.088
#> GSM601863     1  0.7376     0.7969 0.792 0.208
#> GSM601754     1  0.9129     0.5431 0.672 0.328
#> GSM601784     2  0.3114     0.8828 0.056 0.944
#> GSM601794     1  0.2423     0.8951 0.960 0.040
#> GSM601799     1  0.9522     0.3730 0.628 0.372
#> GSM601829     1  0.0938     0.8958 0.988 0.012
#> GSM601839     2  0.0000     0.8807 0.000 1.000
#> GSM601844     1  0.1184     0.8961 0.984 0.016
#> GSM601859     2  0.2948     0.8839 0.052 0.948
#> GSM601869     1  0.7299     0.8002 0.796 0.204
#> GSM601749     1  0.0938     0.8958 0.988 0.012
#> GSM601759     1  0.0938     0.8958 0.988 0.012
#> GSM601764     1  0.1184     0.8959 0.984 0.016
#> GSM601769     2  0.3733     0.8753 0.072 0.928
#> GSM601774     2  0.0938     0.8833 0.012 0.988
#> GSM601779     1  0.0938     0.8958 0.988 0.012
#> GSM601789     2  0.1843     0.8850 0.028 0.972
#> GSM601804     1  0.4815     0.8611 0.896 0.104
#> GSM601809     2  0.5294     0.8613 0.120 0.880
#> GSM601814     2  0.0672     0.8831 0.008 0.992
#> GSM601819     1  0.8267     0.7051 0.740 0.260
#> GSM601824     1  0.0938     0.8958 0.988 0.012
#> GSM601834     2  0.1184     0.8839 0.016 0.984
#> GSM601849     1  0.0938     0.8958 0.988 0.012
#> GSM601854     1  0.0672     0.8952 0.992 0.008
#> GSM601864     2  0.0938     0.8756 0.012 0.988
#> GSM601755     2  0.5519     0.8598 0.128 0.872
#> GSM601785     2  0.4690     0.8678 0.100 0.900
#> GSM601795     2  0.8763     0.6954 0.296 0.704
#> GSM601800     2  0.2423     0.8863 0.040 0.960
#> GSM601830     1  0.4690     0.8704 0.900 0.100
#> GSM601840     2  0.4690     0.8553 0.100 0.900
#> GSM601845     1  0.4939     0.8818 0.892 0.108
#> GSM601860     2  0.1184     0.8843 0.016 0.984
#> GSM601870     2  0.9323     0.4635 0.348 0.652
#> GSM601750     1  0.3274     0.8929 0.940 0.060
#> GSM601760     1  0.5629     0.8543 0.868 0.132
#> GSM601765     2  0.5737     0.8499 0.136 0.864
#> GSM601770     2  0.2778     0.8842 0.048 0.952
#> GSM601775     2  0.9795     0.4794 0.416 0.584
#> GSM601780     1  0.1843     0.8951 0.972 0.028
#> GSM601790     2  0.0376     0.8819 0.004 0.996
#> GSM601805     2  0.4815     0.8547 0.104 0.896
#> GSM601810     1  0.4431     0.8743 0.908 0.092
#> GSM601815     2  0.0000     0.8807 0.000 1.000
#> GSM601820     1  0.2423     0.8947 0.960 0.040
#> GSM601825     2  0.4939     0.8645 0.108 0.892
#> GSM601835     2  0.2948     0.8735 0.052 0.948
#> GSM601850     1  0.6438     0.7990 0.836 0.164
#> GSM601855     1  0.4815     0.8696 0.896 0.104
#> GSM601865     2  0.0000     0.8807 0.000 1.000
#> GSM601756     2  0.6887     0.8218 0.184 0.816
#> GSM601786     2  0.0376     0.8819 0.004 0.996
#> GSM601796     1  0.7139     0.8136 0.804 0.196
#> GSM601801     2  0.1843     0.8849 0.028 0.972
#> GSM601831     1  0.3431     0.8842 0.936 0.064
#> GSM601841     1  0.6712     0.8307 0.824 0.176
#> GSM601846     1  0.4939     0.8822 0.892 0.108
#> GSM601861     2  0.0672     0.8828 0.008 0.992
#> GSM601871     2  0.1414     0.8779 0.020 0.980
#> GSM601751     2  0.8661     0.6384 0.288 0.712
#> GSM601761     1  0.0938     0.8958 0.988 0.012
#> GSM601766     2  0.6531     0.8271 0.168 0.832
#> GSM601771     2  0.4298     0.8783 0.088 0.912
#> GSM601776     1  0.0938     0.8958 0.988 0.012
#> GSM601781     1  0.7376     0.7954 0.792 0.208
#> GSM601791     1  0.6343     0.8395 0.840 0.160
#> GSM601806     2  0.4562     0.8667 0.096 0.904
#> GSM601811     2  0.9933     0.1964 0.452 0.548
#> GSM601816     1  0.0938     0.8958 0.988 0.012
#> GSM601821     2  0.0376     0.8819 0.004 0.996
#> GSM601826     1  0.0938     0.8958 0.988 0.012
#> GSM601836     1  0.7674     0.7882 0.776 0.224
#> GSM601851     1  0.0938     0.8958 0.988 0.012
#> GSM601856     2  0.9988     0.0168 0.480 0.520
#> GSM601866     1  0.6887     0.8203 0.816 0.184

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM601752     2  0.5167     0.6754 0.172 0.804 0.024
#> GSM601782     1  0.1765     0.9033 0.956 0.004 0.040
#> GSM601792     1  0.0747     0.9074 0.984 0.016 0.000
#> GSM601797     1  0.4539     0.8243 0.836 0.148 0.016
#> GSM601827     1  0.2550     0.8906 0.932 0.012 0.056
#> GSM601837     3  0.4346     0.6896 0.000 0.184 0.816
#> GSM601842     2  0.4859     0.7463 0.044 0.840 0.116
#> GSM601857     3  0.1525     0.7011 0.032 0.004 0.964
#> GSM601867     3  0.5588     0.4849 0.004 0.276 0.720
#> GSM601747     1  0.5153     0.8111 0.832 0.100 0.068
#> GSM601757     1  0.2947     0.8970 0.920 0.020 0.060
#> GSM601762     2  0.4700     0.7063 0.008 0.812 0.180
#> GSM601767     2  0.4453     0.7256 0.012 0.836 0.152
#> GSM601772     2  0.6770     0.6466 0.044 0.692 0.264
#> GSM601777     2  0.7562     0.6194 0.160 0.692 0.148
#> GSM601787     3  0.2492     0.7026 0.016 0.048 0.936
#> GSM601802     2  0.4526     0.7311 0.104 0.856 0.040
#> GSM601807     1  0.6705     0.7472 0.740 0.084 0.176
#> GSM601812     1  0.3112     0.8784 0.900 0.004 0.096
#> GSM601817     1  0.2846     0.9029 0.924 0.020 0.056
#> GSM601822     1  0.0747     0.9066 0.984 0.016 0.000
#> GSM601832     2  0.6678     0.6920 0.060 0.724 0.216
#> GSM601847     2  0.5335     0.6368 0.232 0.760 0.008
#> GSM601852     1  0.2446     0.8908 0.936 0.012 0.052
#> GSM601862     3  0.2297     0.6997 0.036 0.020 0.944
#> GSM601753     2  0.3192     0.7263 0.112 0.888 0.000
#> GSM601783     1  0.1647     0.8995 0.960 0.004 0.036
#> GSM601793     1  0.1129     0.9059 0.976 0.004 0.020
#> GSM601798     2  0.2269     0.7520 0.040 0.944 0.016
#> GSM601828     1  0.1585     0.9048 0.964 0.008 0.028
#> GSM601838     2  0.3482     0.7337 0.000 0.872 0.128
#> GSM601843     2  0.6286     0.2773 0.000 0.536 0.464
#> GSM601858     3  0.2400     0.7083 0.004 0.064 0.932
#> GSM601868     3  0.4912     0.6231 0.196 0.008 0.796
#> GSM601748     1  0.1878     0.9003 0.952 0.004 0.044
#> GSM601758     1  0.0592     0.9067 0.988 0.012 0.000
#> GSM601763     1  0.2550     0.8931 0.936 0.040 0.024
#> GSM601768     3  0.6798     0.5605 0.048 0.256 0.696
#> GSM601773     2  0.4094     0.7482 0.028 0.872 0.100
#> GSM601778     1  0.3532     0.8513 0.884 0.108 0.008
#> GSM601788     1  0.7610     0.5605 0.676 0.108 0.216
#> GSM601803     2  0.2663     0.7551 0.044 0.932 0.024
#> GSM601808     1  0.6937     0.3504 0.576 0.020 0.404
#> GSM601813     1  0.0983     0.9077 0.980 0.004 0.016
#> GSM601818     1  0.1989     0.8986 0.948 0.004 0.048
#> GSM601823     1  0.0747     0.9066 0.984 0.016 0.000
#> GSM601833     2  0.5982     0.5516 0.004 0.668 0.328
#> GSM601848     1  0.0747     0.9066 0.984 0.016 0.000
#> GSM601853     1  0.4228     0.8304 0.844 0.008 0.148
#> GSM601863     3  0.6113     0.5444 0.300 0.012 0.688
#> GSM601754     2  0.5631     0.6935 0.132 0.804 0.064
#> GSM601784     3  0.5581     0.6812 0.040 0.168 0.792
#> GSM601794     1  0.4056     0.8596 0.876 0.092 0.032
#> GSM601799     2  0.5816     0.6530 0.224 0.752 0.024
#> GSM601829     1  0.0983     0.9073 0.980 0.016 0.004
#> GSM601839     2  0.6204     0.3428 0.000 0.576 0.424
#> GSM601844     1  0.2773     0.8915 0.928 0.024 0.048
#> GSM601859     3  0.7328     0.4775 0.044 0.344 0.612
#> GSM601869     3  0.4555     0.6247 0.200 0.000 0.800
#> GSM601749     1  0.0237     0.9068 0.996 0.004 0.000
#> GSM601759     1  0.1129     0.9073 0.976 0.020 0.004
#> GSM601764     1  0.1585     0.9035 0.964 0.028 0.008
#> GSM601769     3  0.6422     0.4697 0.016 0.324 0.660
#> GSM601774     2  0.5706     0.5853 0.000 0.680 0.320
#> GSM601779     1  0.1163     0.9038 0.972 0.028 0.000
#> GSM601789     3  0.5639     0.6080 0.016 0.232 0.752
#> GSM601804     2  0.6387     0.5512 0.300 0.680 0.020
#> GSM601809     3  0.4665     0.7044 0.048 0.100 0.852
#> GSM601814     2  0.5948     0.5065 0.000 0.640 0.360
#> GSM601819     1  0.5774     0.6696 0.748 0.020 0.232
#> GSM601824     1  0.1163     0.9038 0.972 0.028 0.000
#> GSM601834     3  0.6295    -0.0159 0.000 0.472 0.528
#> GSM601849     1  0.0892     0.9060 0.980 0.020 0.000
#> GSM601854     1  0.0661     0.9075 0.988 0.008 0.004
#> GSM601864     3  0.3619     0.6952 0.000 0.136 0.864
#> GSM601755     2  0.1765     0.7508 0.040 0.956 0.004
#> GSM601785     3  0.4830     0.7067 0.068 0.084 0.848
#> GSM601795     3  0.8810     0.4506 0.172 0.252 0.576
#> GSM601800     2  0.5115     0.7100 0.016 0.796 0.188
#> GSM601830     1  0.2703     0.8911 0.928 0.016 0.056
#> GSM601840     3  0.6079     0.6480 0.036 0.216 0.748
#> GSM601845     1  0.4269     0.8663 0.872 0.052 0.076
#> GSM601860     3  0.4270     0.7019 0.024 0.116 0.860
#> GSM601870     3  0.2689     0.6998 0.036 0.032 0.932
#> GSM601750     1  0.2945     0.8858 0.908 0.004 0.088
#> GSM601760     3  0.7029     0.3703 0.440 0.020 0.540
#> GSM601765     2  0.9613     0.3166 0.308 0.464 0.228
#> GSM601770     2  0.7174     0.2188 0.024 0.516 0.460
#> GSM601775     1  0.6714     0.6619 0.748 0.112 0.140
#> GSM601780     1  0.3499     0.8709 0.900 0.028 0.072
#> GSM601790     3  0.3816     0.6808 0.000 0.148 0.852
#> GSM601805     2  0.6247     0.6707 0.044 0.744 0.212
#> GSM601810     1  0.2383     0.8935 0.940 0.016 0.044
#> GSM601815     3  0.4399     0.6511 0.000 0.188 0.812
#> GSM601820     1  0.2866     0.8791 0.916 0.008 0.076
#> GSM601825     2  0.4194     0.7549 0.064 0.876 0.060
#> GSM601835     3  0.4233     0.6900 0.004 0.160 0.836
#> GSM601850     1  0.4253     0.8515 0.872 0.048 0.080
#> GSM601855     1  0.4551     0.8297 0.844 0.024 0.132
#> GSM601865     3  0.3412     0.6953 0.000 0.124 0.876
#> GSM601756     2  0.1411     0.7508 0.036 0.964 0.000
#> GSM601786     3  0.3482     0.6936 0.000 0.128 0.872
#> GSM601796     3  0.8179     0.4938 0.352 0.084 0.564
#> GSM601801     2  0.1482     0.7432 0.012 0.968 0.020
#> GSM601831     1  0.2486     0.8889 0.932 0.008 0.060
#> GSM601841     3  0.7141     0.5273 0.368 0.032 0.600
#> GSM601846     1  0.4748     0.8297 0.832 0.144 0.024
#> GSM601861     3  0.4575     0.6756 0.004 0.184 0.812
#> GSM601871     3  0.1529     0.7017 0.000 0.040 0.960
#> GSM601751     3  0.6012     0.6987 0.124 0.088 0.788
#> GSM601761     1  0.1129     0.9067 0.976 0.020 0.004
#> GSM601766     3  0.7741     0.5687 0.236 0.104 0.660
#> GSM601771     3  0.5497     0.6970 0.048 0.148 0.804
#> GSM601776     1  0.0747     0.9066 0.984 0.016 0.000
#> GSM601781     3  0.8458     0.2975 0.436 0.088 0.476
#> GSM601791     3  0.6814     0.5071 0.372 0.020 0.608
#> GSM601806     2  0.1337     0.7478 0.012 0.972 0.016
#> GSM601811     3  0.5845     0.5457 0.308 0.004 0.688
#> GSM601816     1  0.0592     0.9069 0.988 0.012 0.000
#> GSM601821     3  0.4750     0.6495 0.000 0.216 0.784
#> GSM601826     1  0.0747     0.9066 0.984 0.016 0.000
#> GSM601836     1  0.7208     0.3966 0.620 0.040 0.340
#> GSM601851     1  0.0892     0.9060 0.980 0.020 0.000
#> GSM601856     3  0.5659     0.5846 0.248 0.012 0.740
#> GSM601866     3  0.6598     0.2552 0.428 0.008 0.564

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM601752     4  0.0524     0.7694 0.008 0.004 0.000 0.988
#> GSM601782     1  0.2010     0.8139 0.932 0.004 0.060 0.004
#> GSM601792     1  0.0524     0.8291 0.988 0.000 0.008 0.004
#> GSM601797     1  0.4655     0.5987 0.684 0.000 0.004 0.312
#> GSM601827     1  0.2221     0.8153 0.932 0.008 0.044 0.016
#> GSM601837     3  0.7828    -0.2649 0.000 0.340 0.396 0.264
#> GSM601842     2  0.4914     0.4534 0.012 0.676 0.000 0.312
#> GSM601857     3  0.2528     0.6055 0.008 0.080 0.908 0.004
#> GSM601867     3  0.4711     0.4795 0.000 0.024 0.740 0.236
#> GSM601747     1  0.5200     0.6815 0.752 0.188 0.008 0.052
#> GSM601757     1  0.5226     0.5493 0.696 0.020 0.276 0.008
#> GSM601762     2  0.4454     0.4830 0.000 0.692 0.000 0.308
#> GSM601767     2  0.5168     0.0266 0.004 0.504 0.000 0.492
#> GSM601772     2  0.5627     0.5255 0.024 0.696 0.024 0.256
#> GSM601777     4  0.5838     0.6844 0.088 0.028 0.140 0.744
#> GSM601787     3  0.2714     0.5780 0.004 0.112 0.884 0.000
#> GSM601802     4  0.0859     0.7693 0.008 0.008 0.004 0.980
#> GSM601807     3  0.7329     0.4487 0.240 0.016 0.584 0.160
#> GSM601812     1  0.3142     0.7994 0.860 0.008 0.132 0.000
#> GSM601817     1  0.2983     0.8168 0.892 0.068 0.040 0.000
#> GSM601822     1  0.0188     0.8274 0.996 0.000 0.000 0.004
#> GSM601832     2  0.2744     0.6623 0.052 0.912 0.012 0.024
#> GSM601847     4  0.3726     0.7206 0.132 0.012 0.012 0.844
#> GSM601852     1  0.1902     0.8092 0.932 0.004 0.064 0.000
#> GSM601862     3  0.2999     0.5894 0.000 0.132 0.864 0.004
#> GSM601753     4  0.2186     0.7635 0.048 0.008 0.012 0.932
#> GSM601783     1  0.1661     0.8136 0.944 0.004 0.052 0.000
#> GSM601793     1  0.0967     0.8272 0.976 0.004 0.004 0.016
#> GSM601798     4  0.0927     0.7667 0.008 0.016 0.000 0.976
#> GSM601828     1  0.1635     0.8187 0.948 0.008 0.044 0.000
#> GSM601838     2  0.5668     0.0882 0.000 0.532 0.024 0.444
#> GSM601843     2  0.1854     0.6806 0.000 0.940 0.048 0.012
#> GSM601858     3  0.4509     0.3132 0.000 0.288 0.708 0.004
#> GSM601868     3  0.1706     0.6189 0.036 0.016 0.948 0.000
#> GSM601748     1  0.1902     0.8108 0.932 0.004 0.064 0.000
#> GSM601758     1  0.1811     0.8291 0.948 0.020 0.028 0.004
#> GSM601763     1  0.4977     0.7617 0.804 0.096 0.028 0.072
#> GSM601768     2  0.8123     0.4123 0.040 0.528 0.196 0.236
#> GSM601773     4  0.5852     0.3843 0.020 0.380 0.012 0.588
#> GSM601778     1  0.4245     0.7908 0.832 0.008 0.056 0.104
#> GSM601788     1  0.6519     0.2894 0.548 0.392 0.040 0.020
#> GSM601803     4  0.1576     0.7627 0.004 0.048 0.000 0.948
#> GSM601808     3  0.5300     0.5517 0.240 0.024 0.720 0.016
#> GSM601813     1  0.1635     0.8296 0.948 0.008 0.044 0.000
#> GSM601818     1  0.1929     0.8186 0.940 0.024 0.036 0.000
#> GSM601823     1  0.0188     0.8274 0.996 0.000 0.000 0.004
#> GSM601833     2  0.1677     0.6760 0.000 0.948 0.012 0.040
#> GSM601848     1  0.0188     0.8274 0.996 0.000 0.000 0.004
#> GSM601853     3  0.4855     0.2737 0.400 0.000 0.600 0.000
#> GSM601863     3  0.3501     0.6193 0.132 0.020 0.848 0.000
#> GSM601754     4  0.2433     0.7596 0.060 0.008 0.012 0.920
#> GSM601784     2  0.8257     0.3766 0.036 0.480 0.300 0.184
#> GSM601794     1  0.5612     0.6723 0.716 0.016 0.044 0.224
#> GSM601799     4  0.4730     0.6634 0.180 0.028 0.012 0.780
#> GSM601829     1  0.0376     0.8273 0.992 0.000 0.004 0.004
#> GSM601839     2  0.4469     0.6390 0.000 0.808 0.080 0.112
#> GSM601844     1  0.3869     0.7991 0.856 0.008 0.076 0.060
#> GSM601859     4  0.7371     0.3796 0.036 0.096 0.292 0.576
#> GSM601869     3  0.2383     0.6200 0.048 0.024 0.924 0.004
#> GSM601749     1  0.0707     0.8286 0.980 0.000 0.020 0.000
#> GSM601759     1  0.2066     0.8266 0.940 0.008 0.024 0.028
#> GSM601764     1  0.5193     0.7600 0.796 0.096 0.044 0.064
#> GSM601769     2  0.0967     0.6715 0.016 0.976 0.004 0.004
#> GSM601774     2  0.2124     0.6821 0.000 0.932 0.028 0.040
#> GSM601779     1  0.3385     0.8020 0.880 0.008 0.040 0.072
#> GSM601789     2  0.2515     0.6740 0.004 0.912 0.072 0.012
#> GSM601804     4  0.5031     0.6555 0.172 0.016 0.040 0.772
#> GSM601809     2  0.6954     0.3731 0.040 0.520 0.400 0.040
#> GSM601814     2  0.4656     0.5883 0.000 0.784 0.056 0.160
#> GSM601819     1  0.7205     0.5897 0.652 0.180 0.104 0.064
#> GSM601824     1  0.2660     0.8088 0.908 0.008 0.012 0.072
#> GSM601834     2  0.2483     0.6769 0.000 0.916 0.052 0.032
#> GSM601849     1  0.1943     0.8239 0.944 0.008 0.032 0.016
#> GSM601854     1  0.1492     0.8292 0.956 0.004 0.036 0.004
#> GSM601864     2  0.5901     0.4893 0.000 0.652 0.280 0.068
#> GSM601755     4  0.0524     0.7684 0.004 0.008 0.000 0.988
#> GSM601785     3  0.9202    -0.2055 0.104 0.340 0.380 0.176
#> GSM601795     2  0.9761     0.0890 0.188 0.316 0.184 0.312
#> GSM601800     4  0.5655     0.3919 0.008 0.316 0.028 0.648
#> GSM601830     1  0.2891     0.8052 0.896 0.020 0.080 0.004
#> GSM601840     4  0.7799    -0.2346 0.000 0.348 0.252 0.400
#> GSM601845     1  0.3759     0.8137 0.872 0.048 0.032 0.048
#> GSM601860     3  0.8305    -0.2936 0.028 0.384 0.396 0.192
#> GSM601870     3  0.2530     0.5936 0.000 0.112 0.888 0.000
#> GSM601750     1  0.4018     0.7074 0.772 0.004 0.224 0.000
#> GSM601760     1  0.6210     0.5031 0.636 0.016 0.300 0.048
#> GSM601765     2  0.2816     0.6607 0.036 0.900 0.000 0.064
#> GSM601770     2  0.7170     0.4109 0.020 0.580 0.108 0.292
#> GSM601775     1  0.6743     0.3693 0.568 0.340 0.008 0.084
#> GSM601780     1  0.3670     0.8022 0.860 0.008 0.100 0.032
#> GSM601790     2  0.3032     0.6598 0.000 0.868 0.124 0.008
#> GSM601805     4  0.4342     0.6935 0.008 0.044 0.128 0.820
#> GSM601810     1  0.2010     0.8111 0.932 0.004 0.060 0.004
#> GSM601815     2  0.1902     0.6769 0.000 0.932 0.064 0.004
#> GSM601820     1  0.3642     0.8149 0.872 0.024 0.076 0.028
#> GSM601825     4  0.5664     0.6592 0.064 0.168 0.024 0.744
#> GSM601835     2  0.2670     0.6726 0.000 0.904 0.072 0.024
#> GSM601850     1  0.4829     0.7601 0.804 0.120 0.020 0.056
#> GSM601855     3  0.5070     0.2422 0.416 0.004 0.580 0.000
#> GSM601865     2  0.5161     0.4144 0.000 0.592 0.400 0.008
#> GSM601756     4  0.0524     0.7690 0.004 0.008 0.000 0.988
#> GSM601786     2  0.4661     0.5752 0.000 0.728 0.256 0.016
#> GSM601796     1  0.7892     0.0938 0.456 0.020 0.368 0.156
#> GSM601801     4  0.3024     0.6860 0.000 0.148 0.000 0.852
#> GSM601831     1  0.2334     0.8014 0.908 0.004 0.088 0.000
#> GSM601841     1  0.7103     0.2975 0.564 0.012 0.312 0.112
#> GSM601846     1  0.4328     0.7524 0.804 0.008 0.024 0.164
#> GSM601861     2  0.5021     0.5977 0.000 0.724 0.240 0.036
#> GSM601871     3  0.2412     0.5917 0.000 0.084 0.908 0.008
#> GSM601751     3  0.9131    -0.0171 0.264 0.264 0.396 0.076
#> GSM601761     1  0.2313     0.8218 0.924 0.000 0.032 0.044
#> GSM601766     2  0.8410     0.2447 0.208 0.512 0.224 0.056
#> GSM601771     2  0.8734     0.2577 0.040 0.368 0.340 0.252
#> GSM601776     1  0.0779     0.8280 0.980 0.000 0.016 0.004
#> GSM601781     1  0.7816     0.3720 0.536 0.044 0.304 0.116
#> GSM601791     1  0.6908     0.3069 0.536 0.016 0.376 0.072
#> GSM601806     4  0.3016     0.7044 0.004 0.120 0.004 0.872
#> GSM601811     3  0.4589     0.6055 0.168 0.048 0.784 0.000
#> GSM601816     1  0.0188     0.8274 0.996 0.000 0.000 0.004
#> GSM601821     2  0.5121     0.6188 0.000 0.764 0.116 0.120
#> GSM601826     1  0.0188     0.8274 0.996 0.000 0.000 0.004
#> GSM601836     1  0.6315     0.1504 0.480 0.468 0.048 0.004
#> GSM601851     1  0.2039     0.8238 0.940 0.008 0.036 0.016
#> GSM601856     3  0.3009     0.6263 0.052 0.056 0.892 0.000
#> GSM601866     3  0.4360     0.5686 0.248 0.008 0.744 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM601752     4  0.0324     0.7505 0.000 0.004 0.000 0.992 0.004
#> GSM601782     1  0.1331     0.8151 0.952 0.008 0.040 0.000 0.000
#> GSM601792     1  0.1082     0.8242 0.964 0.028 0.000 0.008 0.000
#> GSM601797     1  0.4696     0.4982 0.616 0.024 0.000 0.360 0.000
#> GSM601827     1  0.1299     0.8159 0.960 0.008 0.012 0.020 0.000
#> GSM601837     2  0.7290     0.2407 0.000 0.536 0.084 0.196 0.184
#> GSM601842     5  0.4775     0.5462 0.008 0.040 0.000 0.256 0.696
#> GSM601857     3  0.3710     0.7261 0.000 0.192 0.784 0.000 0.024
#> GSM601867     3  0.5422     0.6815 0.000 0.108 0.684 0.196 0.012
#> GSM601747     1  0.5779     0.5687 0.700 0.168 0.012 0.036 0.084
#> GSM601757     1  0.5289     0.4365 0.620 0.060 0.316 0.000 0.004
#> GSM601762     5  0.7059     0.1205 0.000 0.364 0.012 0.252 0.372
#> GSM601767     4  0.7016    -0.0477 0.000 0.348 0.008 0.368 0.276
#> GSM601772     2  0.7254    -0.0727 0.016 0.440 0.024 0.148 0.372
#> GSM601777     4  0.6274     0.5460 0.060 0.240 0.080 0.620 0.000
#> GSM601787     3  0.4813     0.4339 0.000 0.376 0.600 0.004 0.020
#> GSM601802     4  0.0775     0.7502 0.004 0.008 0.004 0.980 0.004
#> GSM601807     3  0.4458     0.7387 0.072 0.012 0.800 0.100 0.016
#> GSM601812     1  0.3953     0.7798 0.792 0.148 0.060 0.000 0.000
#> GSM601817     1  0.2917     0.8120 0.888 0.040 0.048 0.000 0.024
#> GSM601822     1  0.0290     0.8204 0.992 0.008 0.000 0.000 0.000
#> GSM601832     5  0.3651     0.6300 0.028 0.160 0.004 0.000 0.808
#> GSM601847     4  0.4328     0.6667 0.108 0.108 0.000 0.780 0.004
#> GSM601852     1  0.1357     0.8143 0.948 0.004 0.048 0.000 0.000
#> GSM601862     3  0.4100     0.7387 0.000 0.160 0.784 0.004 0.052
#> GSM601753     4  0.2067     0.7422 0.028 0.044 0.000 0.924 0.004
#> GSM601783     1  0.1124     0.8146 0.960 0.004 0.036 0.000 0.000
#> GSM601793     1  0.0932     0.8169 0.972 0.004 0.004 0.020 0.000
#> GSM601798     4  0.0290     0.7494 0.000 0.000 0.000 0.992 0.008
#> GSM601828     1  0.1216     0.8204 0.960 0.020 0.020 0.000 0.000
#> GSM601838     5  0.4771     0.4668 0.000 0.020 0.020 0.272 0.688
#> GSM601843     5  0.3707     0.6666 0.000 0.116 0.044 0.012 0.828
#> GSM601858     2  0.6053     0.1119 0.004 0.528 0.368 0.004 0.096
#> GSM601868     3  0.3160     0.7742 0.028 0.116 0.852 0.000 0.004
#> GSM601748     1  0.1282     0.8134 0.952 0.004 0.044 0.000 0.000
#> GSM601758     1  0.3169     0.8017 0.840 0.140 0.016 0.004 0.000
#> GSM601763     1  0.4832     0.7046 0.724 0.224 0.012 0.016 0.024
#> GSM601768     2  0.6412     0.3362 0.020 0.636 0.040 0.080 0.224
#> GSM601773     4  0.6490     0.3410 0.008 0.168 0.000 0.512 0.312
#> GSM601778     1  0.5240     0.6986 0.676 0.256 0.032 0.036 0.000
#> GSM601788     2  0.7272     0.2616 0.404 0.408 0.024 0.016 0.148
#> GSM601803     4  0.1018     0.7505 0.000 0.016 0.000 0.968 0.016
#> GSM601808     3  0.2353     0.7801 0.060 0.028 0.908 0.004 0.000
#> GSM601813     1  0.3078     0.8099 0.848 0.132 0.016 0.004 0.000
#> GSM601818     1  0.1485     0.8141 0.948 0.020 0.032 0.000 0.000
#> GSM601823     1  0.0290     0.8204 0.992 0.008 0.000 0.000 0.000
#> GSM601833     5  0.3009     0.6721 0.000 0.080 0.016 0.028 0.876
#> GSM601848     1  0.0290     0.8204 0.992 0.008 0.000 0.000 0.000
#> GSM601853     3  0.2377     0.7470 0.128 0.000 0.872 0.000 0.000
#> GSM601863     3  0.4558     0.7307 0.088 0.168 0.744 0.000 0.000
#> GSM601754     4  0.2735     0.7241 0.036 0.084 0.000 0.880 0.000
#> GSM601784     2  0.5640     0.4194 0.016 0.716 0.072 0.036 0.160
#> GSM601794     1  0.5955     0.5702 0.608 0.216 0.004 0.172 0.000
#> GSM601799     4  0.5274     0.5806 0.160 0.132 0.000 0.700 0.008
#> GSM601829     1  0.0510     0.8214 0.984 0.016 0.000 0.000 0.000
#> GSM601839     5  0.2940     0.6677 0.000 0.040 0.040 0.032 0.888
#> GSM601844     1  0.4618     0.7218 0.712 0.248 0.024 0.016 0.000
#> GSM601859     4  0.6641     0.1635 0.016 0.428 0.048 0.464 0.044
#> GSM601869     3  0.4184     0.7505 0.048 0.176 0.772 0.000 0.004
#> GSM601749     1  0.1522     0.8259 0.944 0.044 0.012 0.000 0.000
#> GSM601759     1  0.2692     0.8101 0.884 0.092 0.016 0.008 0.000
#> GSM601764     1  0.6183     0.6545 0.656 0.192 0.020 0.020 0.112
#> GSM601769     5  0.4686     0.4416 0.000 0.332 0.016 0.008 0.644
#> GSM601774     5  0.4181     0.6312 0.000 0.172 0.032 0.016 0.780
#> GSM601779     1  0.4857     0.6929 0.684 0.272 0.024 0.020 0.000
#> GSM601789     5  0.4927     0.3749 0.000 0.388 0.024 0.004 0.584
#> GSM601804     4  0.6420     0.4275 0.136 0.268 0.024 0.572 0.000
#> GSM601809     2  0.4967     0.3860 0.020 0.764 0.084 0.012 0.120
#> GSM601814     5  0.2581     0.6650 0.000 0.020 0.028 0.048 0.904
#> GSM601819     1  0.6078     0.5410 0.636 0.248 0.032 0.008 0.076
#> GSM601824     1  0.2722     0.7929 0.872 0.108 0.000 0.020 0.000
#> GSM601834     5  0.2243     0.6830 0.000 0.056 0.012 0.016 0.916
#> GSM601849     1  0.3107     0.8009 0.852 0.124 0.016 0.008 0.000
#> GSM601854     1  0.3835     0.7847 0.796 0.156 0.048 0.000 0.000
#> GSM601864     2  0.6480     0.2595 0.000 0.576 0.052 0.088 0.284
#> GSM601755     4  0.0162     0.7493 0.000 0.000 0.000 0.996 0.004
#> GSM601785     2  0.5316     0.4474 0.024 0.756 0.096 0.032 0.092
#> GSM601795     2  0.6655     0.3320 0.092 0.632 0.016 0.196 0.064
#> GSM601800     4  0.6334     0.4476 0.004 0.124 0.036 0.628 0.208
#> GSM601830     1  0.3474     0.7080 0.796 0.004 0.192 0.008 0.000
#> GSM601840     2  0.6476     0.3502 0.000 0.600 0.056 0.244 0.100
#> GSM601845     1  0.3689     0.8035 0.856 0.068 0.020 0.032 0.024
#> GSM601860     2  0.4877     0.4335 0.008 0.768 0.108 0.020 0.096
#> GSM601870     3  0.1978     0.7686 0.004 0.044 0.928 0.000 0.024
#> GSM601750     1  0.5962     0.5659 0.584 0.168 0.248 0.000 0.000
#> GSM601760     2  0.5626    -0.2228 0.456 0.492 0.032 0.016 0.004
#> GSM601765     5  0.5432     0.2309 0.012 0.444 0.016 0.012 0.516
#> GSM601770     2  0.6984     0.2223 0.008 0.544 0.040 0.136 0.272
#> GSM601775     2  0.6920     0.2206 0.400 0.444 0.004 0.032 0.120
#> GSM601780     1  0.4777     0.7058 0.696 0.260 0.028 0.016 0.000
#> GSM601790     5  0.3291     0.6592 0.000 0.088 0.064 0.000 0.848
#> GSM601805     4  0.4365     0.6917 0.012 0.084 0.068 0.812 0.024
#> GSM601810     1  0.1538     0.8173 0.948 0.008 0.036 0.008 0.000
#> GSM601815     5  0.2864     0.6733 0.000 0.112 0.024 0.000 0.864
#> GSM601820     1  0.4809     0.7156 0.688 0.268 0.036 0.004 0.004
#> GSM601825     4  0.5995     0.6085 0.036 0.168 0.000 0.660 0.136
#> GSM601835     5  0.3883     0.6613 0.000 0.160 0.028 0.012 0.800
#> GSM601850     1  0.4705     0.7260 0.764 0.156 0.004 0.020 0.056
#> GSM601855     3  0.2966     0.7112 0.184 0.000 0.816 0.000 0.000
#> GSM601865     5  0.6016     0.1522 0.000 0.408 0.100 0.004 0.488
#> GSM601756     4  0.0000     0.7496 0.000 0.000 0.000 1.000 0.000
#> GSM601786     5  0.5105     0.5165 0.000 0.240 0.060 0.012 0.688
#> GSM601796     2  0.7424     0.1963 0.328 0.480 0.084 0.100 0.008
#> GSM601801     4  0.2068     0.7215 0.000 0.004 0.000 0.904 0.092
#> GSM601831     1  0.2020     0.8004 0.900 0.000 0.100 0.000 0.000
#> GSM601841     1  0.6662     0.0921 0.532 0.328 0.060 0.080 0.000
#> GSM601846     1  0.3934     0.7461 0.796 0.008 0.036 0.160 0.000
#> GSM601861     5  0.4642     0.5515 0.000 0.192 0.060 0.008 0.740
#> GSM601871     3  0.4000     0.7144 0.000 0.164 0.788 0.004 0.044
#> GSM601751     2  0.6452     0.4573 0.116 0.680 0.100 0.028 0.076
#> GSM601761     1  0.3846     0.7613 0.776 0.200 0.020 0.004 0.000
#> GSM601766     2  0.6158     0.3670 0.080 0.660 0.044 0.012 0.204
#> GSM601771     2  0.5962     0.4348 0.020 0.708 0.084 0.056 0.132
#> GSM601776     1  0.1410     0.8248 0.940 0.060 0.000 0.000 0.000
#> GSM601781     2  0.6609    -0.2709 0.440 0.456 0.040 0.044 0.020
#> GSM601791     2  0.6168    -0.0207 0.396 0.512 0.068 0.020 0.004
#> GSM601806     4  0.2020     0.7199 0.000 0.000 0.000 0.900 0.100
#> GSM601811     3  0.5623     0.7269 0.136 0.172 0.676 0.000 0.016
#> GSM601816     1  0.0162     0.8203 0.996 0.004 0.000 0.000 0.000
#> GSM601821     5  0.3250     0.6581 0.000 0.044 0.044 0.040 0.872
#> GSM601826     1  0.0290     0.8204 0.992 0.008 0.000 0.000 0.000
#> GSM601836     5  0.6534     0.2444 0.280 0.112 0.040 0.000 0.568
#> GSM601851     1  0.3632     0.7823 0.800 0.176 0.020 0.004 0.000
#> GSM601856     3  0.1686     0.7809 0.028 0.020 0.944 0.000 0.008
#> GSM601866     3  0.6038     0.5437 0.184 0.240 0.576 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM601752     4  0.0458     0.7962 0.000 0.000 0.000 0.984 0.000 0.016
#> GSM601782     1  0.1390     0.7930 0.948 0.000 0.032 0.000 0.004 0.016
#> GSM601792     1  0.1010     0.7929 0.960 0.000 0.000 0.004 0.000 0.036
#> GSM601797     1  0.4553     0.3897 0.580 0.000 0.004 0.384 0.000 0.032
#> GSM601827     1  0.1007     0.7926 0.968 0.000 0.004 0.016 0.008 0.004
#> GSM601837     2  0.6705     0.2289 0.000 0.520 0.000 0.132 0.224 0.124
#> GSM601842     5  0.5393     0.5303 0.016 0.076 0.004 0.248 0.644 0.012
#> GSM601857     3  0.4886     0.6984 0.004 0.252 0.672 0.000 0.032 0.040
#> GSM601867     3  0.5177     0.7017 0.000 0.088 0.696 0.176 0.016 0.024
#> GSM601747     1  0.4638     0.5245 0.676 0.264 0.000 0.044 0.008 0.008
#> GSM601757     1  0.4787     0.4133 0.624 0.008 0.312 0.000 0.000 0.056
#> GSM601762     2  0.5629     0.4254 0.004 0.580 0.004 0.184 0.228 0.000
#> GSM601767     2  0.6016     0.4358 0.000 0.540 0.000 0.276 0.156 0.028
#> GSM601772     2  0.5617     0.5356 0.004 0.664 0.000 0.088 0.164 0.080
#> GSM601777     6  0.5468     0.5095 0.020 0.016 0.084 0.216 0.004 0.660
#> GSM601787     3  0.5536     0.5735 0.000 0.308 0.584 0.000 0.052 0.056
#> GSM601802     4  0.0551     0.7954 0.000 0.008 0.004 0.984 0.000 0.004
#> GSM601807     3  0.2119     0.7734 0.004 0.016 0.912 0.060 0.000 0.008
#> GSM601812     1  0.4946     0.2880 0.596 0.020 0.032 0.000 0.004 0.348
#> GSM601817     1  0.2904     0.7785 0.876 0.052 0.048 0.000 0.008 0.016
#> GSM601822     1  0.0458     0.7935 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM601832     5  0.4716     0.5887 0.020 0.204 0.004 0.000 0.708 0.064
#> GSM601847     4  0.4266     0.6800 0.060 0.012 0.000 0.736 0.000 0.192
#> GSM601852     1  0.1340     0.7911 0.948 0.004 0.040 0.000 0.000 0.008
#> GSM601862     3  0.4139     0.7154 0.000 0.260 0.700 0.000 0.004 0.036
#> GSM601753     4  0.2620     0.7766 0.024 0.012 0.000 0.884 0.004 0.076
#> GSM601783     1  0.0777     0.7920 0.972 0.000 0.024 0.000 0.000 0.004
#> GSM601793     1  0.0964     0.7925 0.968 0.004 0.000 0.012 0.000 0.016
#> GSM601798     4  0.0291     0.7939 0.000 0.004 0.004 0.992 0.000 0.000
#> GSM601828     1  0.1129     0.7947 0.964 0.008 0.012 0.000 0.004 0.012
#> GSM601838     5  0.5959     0.4915 0.000 0.104 0.000 0.176 0.620 0.100
#> GSM601843     5  0.4497     0.5879 0.004 0.312 0.004 0.012 0.652 0.016
#> GSM601858     2  0.5743     0.0577 0.000 0.568 0.316 0.004 0.064 0.048
#> GSM601868     3  0.3596     0.7792 0.004 0.132 0.812 0.000 0.036 0.016
#> GSM601748     1  0.0865     0.7916 0.964 0.000 0.036 0.000 0.000 0.000
#> GSM601758     1  0.3659     0.3164 0.636 0.000 0.000 0.000 0.000 0.364
#> GSM601763     1  0.4870     0.5300 0.668 0.120 0.000 0.000 0.004 0.208
#> GSM601768     2  0.4209     0.6021 0.012 0.780 0.000 0.012 0.088 0.108
#> GSM601773     4  0.6756     0.3208 0.004 0.196 0.000 0.492 0.244 0.064
#> GSM601778     6  0.3538     0.7028 0.216 0.004 0.004 0.012 0.000 0.764
#> GSM601788     2  0.5028     0.3968 0.308 0.628 0.000 0.024 0.020 0.020
#> GSM601803     4  0.0837     0.7952 0.000 0.020 0.004 0.972 0.000 0.004
#> GSM601808     3  0.0665     0.7897 0.008 0.008 0.980 0.000 0.000 0.004
#> GSM601813     1  0.4087     0.3917 0.668 0.008 0.008 0.000 0.004 0.312
#> GSM601818     1  0.1313     0.7933 0.952 0.028 0.016 0.000 0.000 0.004
#> GSM601823     1  0.0458     0.7935 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM601833     5  0.3640     0.6311 0.004 0.204 0.000 0.028 0.764 0.000
#> GSM601848     1  0.0458     0.7935 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM601853     3  0.1225     0.7869 0.036 0.000 0.952 0.000 0.000 0.012
#> GSM601863     3  0.5476     0.3670 0.060 0.028 0.564 0.000 0.004 0.344
#> GSM601754     4  0.3166     0.7545 0.032 0.008 0.000 0.840 0.004 0.116
#> GSM601784     2  0.4216     0.6124 0.012 0.784 0.000 0.036 0.040 0.128
#> GSM601794     6  0.5714     0.4409 0.372 0.016 0.000 0.096 0.004 0.512
#> GSM601799     4  0.5604     0.5959 0.136 0.052 0.000 0.660 0.004 0.148
#> GSM601829     1  0.0547     0.7936 0.980 0.000 0.000 0.000 0.000 0.020
#> GSM601839     5  0.3612     0.6334 0.000 0.092 0.004 0.000 0.804 0.100
#> GSM601844     6  0.3992     0.4823 0.364 0.012 0.000 0.000 0.000 0.624
#> GSM601859     4  0.6862     0.3103 0.012 0.276 0.000 0.492 0.072 0.148
#> GSM601869     3  0.5729     0.7387 0.028 0.128 0.672 0.000 0.040 0.132
#> GSM601749     1  0.1765     0.7711 0.904 0.000 0.000 0.000 0.000 0.096
#> GSM601759     1  0.2500     0.7582 0.868 0.004 0.012 0.000 0.000 0.116
#> GSM601764     6  0.5215     0.1319 0.456 0.012 0.000 0.000 0.060 0.472
#> GSM601769     2  0.4172     0.1556 0.000 0.564 0.000 0.004 0.424 0.008
#> GSM601774     5  0.4110     0.4059 0.000 0.376 0.000 0.016 0.608 0.000
#> GSM601779     6  0.2743     0.7114 0.164 0.008 0.000 0.000 0.000 0.828
#> GSM601789     2  0.4591     0.2602 0.004 0.604 0.000 0.008 0.360 0.024
#> GSM601804     6  0.3653     0.6115 0.040 0.012 0.004 0.140 0.000 0.804
#> GSM601809     6  0.5564     0.2726 0.000 0.312 0.028 0.000 0.088 0.572
#> GSM601814     5  0.1261     0.6894 0.000 0.024 0.000 0.024 0.952 0.000
#> GSM601819     1  0.5680     0.4030 0.580 0.248 0.000 0.000 0.016 0.156
#> GSM601824     1  0.2768     0.7030 0.832 0.012 0.000 0.000 0.000 0.156
#> GSM601834     5  0.2118     0.6847 0.000 0.104 0.000 0.008 0.888 0.000
#> GSM601849     1  0.2597     0.7217 0.824 0.000 0.000 0.000 0.000 0.176
#> GSM601854     6  0.4116     0.4690 0.416 0.000 0.012 0.000 0.000 0.572
#> GSM601864     2  0.6036     0.3344 0.000 0.620 0.020 0.044 0.204 0.112
#> GSM601755     4  0.0000     0.7939 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM601785     2  0.3909     0.5858 0.012 0.776 0.000 0.004 0.040 0.168
#> GSM601795     6  0.4905     0.4988 0.028 0.200 0.000 0.080 0.000 0.692
#> GSM601800     4  0.5748     0.4384 0.004 0.180 0.004 0.604 0.196 0.012
#> GSM601830     1  0.3991     0.5803 0.704 0.012 0.272 0.000 0.004 0.008
#> GSM601840     2  0.3974     0.5516 0.000 0.740 0.000 0.216 0.008 0.036
#> GSM601845     1  0.3426     0.7586 0.852 0.048 0.000 0.036 0.016 0.048
#> GSM601860     2  0.4033     0.5719 0.004 0.760 0.000 0.000 0.080 0.156
#> GSM601870     3  0.1957     0.7819 0.000 0.072 0.912 0.000 0.008 0.008
#> GSM601750     6  0.5276     0.6197 0.192 0.004 0.164 0.000 0.004 0.636
#> GSM601760     6  0.3972     0.7118 0.144 0.068 0.000 0.000 0.012 0.776
#> GSM601765     2  0.4985     0.4310 0.012 0.640 0.000 0.004 0.280 0.064
#> GSM601770     2  0.4824     0.5813 0.004 0.740 0.000 0.084 0.116 0.056
#> GSM601775     2  0.5732     0.4253 0.276 0.568 0.000 0.012 0.004 0.140
#> GSM601780     6  0.2883     0.6988 0.212 0.000 0.000 0.000 0.000 0.788
#> GSM601790     5  0.2821     0.6748 0.000 0.096 0.000 0.004 0.860 0.040
#> GSM601805     4  0.4042     0.7309 0.008 0.068 0.004 0.812 0.068 0.040
#> GSM601810     1  0.1668     0.7888 0.928 0.008 0.060 0.000 0.000 0.004
#> GSM601815     5  0.3259     0.6472 0.000 0.216 0.000 0.000 0.772 0.012
#> GSM601820     6  0.4258     0.6287 0.308 0.012 0.012 0.000 0.004 0.664
#> GSM601825     4  0.6380     0.5840 0.024 0.096 0.000 0.616 0.108 0.156
#> GSM601835     5  0.4519     0.6078 0.004 0.280 0.004 0.016 0.676 0.020
#> GSM601850     1  0.4456     0.6258 0.724 0.132 0.000 0.004 0.000 0.140
#> GSM601855     3  0.1578     0.7771 0.048 0.012 0.936 0.000 0.000 0.004
#> GSM601865     5  0.5230     0.2339 0.000 0.412 0.012 0.000 0.512 0.064
#> GSM601756     4  0.0146     0.7945 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM601786     5  0.3618     0.5974 0.000 0.192 0.000 0.000 0.768 0.040
#> GSM601796     6  0.5545     0.6191 0.116 0.128 0.004 0.016 0.044 0.692
#> GSM601801     4  0.1888     0.7736 0.000 0.012 0.004 0.916 0.068 0.000
#> GSM601831     1  0.2196     0.7647 0.884 0.004 0.108 0.000 0.000 0.004
#> GSM601841     1  0.6087     0.3461 0.596 0.240 0.004 0.064 0.004 0.092
#> GSM601846     1  0.4074     0.7067 0.788 0.016 0.036 0.144 0.008 0.008
#> GSM601861     5  0.3172     0.6228 0.000 0.148 0.000 0.000 0.816 0.036
#> GSM601871     3  0.4492     0.7263 0.000 0.196 0.720 0.000 0.068 0.016
#> GSM601751     2  0.5828     0.5138 0.104 0.648 0.000 0.008 0.072 0.168
#> GSM601761     6  0.3409     0.6447 0.300 0.000 0.000 0.000 0.000 0.700
#> GSM601766     2  0.3940     0.6055 0.048 0.796 0.000 0.000 0.040 0.116
#> GSM601771     2  0.4851     0.6025 0.012 0.728 0.000 0.020 0.104 0.136
#> GSM601776     1  0.1958     0.7703 0.896 0.004 0.000 0.000 0.000 0.100
#> GSM601781     6  0.3890     0.7143 0.124 0.044 0.000 0.004 0.028 0.800
#> GSM601791     6  0.3779     0.6620 0.080 0.076 0.000 0.000 0.032 0.812
#> GSM601806     4  0.1644     0.7689 0.000 0.000 0.004 0.920 0.076 0.000
#> GSM601811     3  0.5492     0.6966 0.096 0.076 0.688 0.000 0.008 0.132
#> GSM601816     1  0.0363     0.7936 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM601821     5  0.0837     0.6860 0.000 0.020 0.000 0.004 0.972 0.004
#> GSM601826     1  0.0458     0.7935 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM601836     5  0.6428     0.3327 0.280 0.104 0.004 0.000 0.532 0.080
#> GSM601851     1  0.3838     0.0646 0.552 0.000 0.000 0.000 0.000 0.448
#> GSM601856     3  0.1396     0.7902 0.012 0.024 0.952 0.000 0.004 0.008
#> GSM601866     6  0.6934     0.1966 0.124 0.092 0.328 0.000 0.008 0.448

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n time(p) gender(p) k
#> MAD:pam 119   0.556     0.347 2
#> MAD:pam 110   0.181     0.257 3
#> MAD:pam  92   0.859     0.340 4
#> MAD:pam  88   0.943     0.417 5
#> MAD:pam  92   0.923     0.235 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 125 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.468           0.786       0.848         0.4333 0.573   0.573
#> 3 3 0.513           0.769       0.867         0.5013 0.746   0.560
#> 4 4 0.530           0.558       0.790         0.1107 0.860   0.626
#> 5 5 0.689           0.709       0.817         0.0797 0.833   0.488
#> 6 6 0.767           0.761       0.862         0.0440 0.899   0.585

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM601752     2  0.8555      0.775 0.280 0.720
#> GSM601782     1  0.8327      0.829 0.736 0.264
#> GSM601792     2  0.1843      0.800 0.028 0.972
#> GSM601797     2  0.3584      0.805 0.068 0.932
#> GSM601827     1  0.8443      0.825 0.728 0.272
#> GSM601837     1  0.0000      0.788 1.000 0.000
#> GSM601842     1  0.0000      0.788 1.000 0.000
#> GSM601857     1  0.8327      0.829 0.736 0.264
#> GSM601867     1  0.6973      0.825 0.812 0.188
#> GSM601747     1  0.8327      0.829 0.736 0.264
#> GSM601757     1  0.8327      0.829 0.736 0.264
#> GSM601762     1  0.0000      0.788 1.000 0.000
#> GSM601767     1  0.0000      0.788 1.000 0.000
#> GSM601772     1  0.0000      0.788 1.000 0.000
#> GSM601777     2  0.4690      0.748 0.100 0.900
#> GSM601787     1  0.3274      0.802 0.940 0.060
#> GSM601802     2  0.8555      0.771 0.280 0.720
#> GSM601807     1  0.8861      0.794 0.696 0.304
#> GSM601812     1  0.8327      0.829 0.736 0.264
#> GSM601817     1  0.8327      0.829 0.736 0.264
#> GSM601822     2  0.2236      0.801 0.036 0.964
#> GSM601832     1  0.0000      0.788 1.000 0.000
#> GSM601847     2  0.8267      0.784 0.260 0.740
#> GSM601852     1  0.8386      0.827 0.732 0.268
#> GSM601862     1  0.8327      0.829 0.736 0.264
#> GSM601753     2  0.8661      0.772 0.288 0.712
#> GSM601783     1  0.8499      0.822 0.724 0.276
#> GSM601793     2  0.1633      0.798 0.024 0.976
#> GSM601798     2  0.8327      0.767 0.264 0.736
#> GSM601828     1  0.8327      0.829 0.736 0.264
#> GSM601838     1  0.0000      0.788 1.000 0.000
#> GSM601843     1  0.0000      0.788 1.000 0.000
#> GSM601858     1  0.0000      0.788 1.000 0.000
#> GSM601868     1  0.8327      0.829 0.736 0.264
#> GSM601748     1  0.8327      0.829 0.736 0.264
#> GSM601758     1  0.8386      0.827 0.732 0.268
#> GSM601763     1  0.8386      0.827 0.732 0.268
#> GSM601768     1  0.0000      0.788 1.000 0.000
#> GSM601773     1  0.0000      0.788 1.000 0.000
#> GSM601778     2  0.1633      0.798 0.024 0.976
#> GSM601788     1  0.0000      0.788 1.000 0.000
#> GSM601803     2  0.8327      0.767 0.264 0.736
#> GSM601808     1  0.8327      0.829 0.736 0.264
#> GSM601813     1  0.8555      0.819 0.720 0.280
#> GSM601818     1  0.8327      0.829 0.736 0.264
#> GSM601823     2  0.1633      0.798 0.024 0.976
#> GSM601833     1  0.0000      0.788 1.000 0.000
#> GSM601848     2  0.1633      0.798 0.024 0.976
#> GSM601853     1  0.8327      0.829 0.736 0.264
#> GSM601863     1  0.8327      0.829 0.736 0.264
#> GSM601754     2  0.8267      0.784 0.260 0.740
#> GSM601784     1  0.0000      0.788 1.000 0.000
#> GSM601794     2  0.1633      0.798 0.024 0.976
#> GSM601799     2  0.8608      0.775 0.284 0.716
#> GSM601829     2  0.8081      0.460 0.248 0.752
#> GSM601839     1  0.0000      0.788 1.000 0.000
#> GSM601844     1  0.9170      0.765 0.668 0.332
#> GSM601859     1  0.0000      0.788 1.000 0.000
#> GSM601869     1  0.8327      0.829 0.736 0.264
#> GSM601749     1  0.8443      0.825 0.728 0.272
#> GSM601759     1  0.8386      0.827 0.732 0.268
#> GSM601764     1  0.8386      0.827 0.732 0.268
#> GSM601769     1  0.0000      0.788 1.000 0.000
#> GSM601774     1  0.0000      0.788 1.000 0.000
#> GSM601779     2  0.1633      0.798 0.024 0.976
#> GSM601789     1  0.0000      0.788 1.000 0.000
#> GSM601804     2  0.6048      0.801 0.148 0.852
#> GSM601809     1  0.8267      0.829 0.740 0.260
#> GSM601814     1  0.0000      0.788 1.000 0.000
#> GSM601819     1  0.8327      0.829 0.736 0.264
#> GSM601824     2  0.3274      0.804 0.060 0.940
#> GSM601834     1  0.0000      0.788 1.000 0.000
#> GSM601849     1  0.9248      0.755 0.660 0.340
#> GSM601854     1  0.8443      0.825 0.728 0.272
#> GSM601864     1  0.0000      0.788 1.000 0.000
#> GSM601755     2  0.8327      0.767 0.264 0.736
#> GSM601785     1  0.0938      0.791 0.988 0.012
#> GSM601795     2  0.1843      0.800 0.028 0.972
#> GSM601800     2  0.8661      0.772 0.288 0.712
#> GSM601830     1  0.8386      0.827 0.732 0.268
#> GSM601840     1  0.6623      0.823 0.828 0.172
#> GSM601845     1  0.7219      0.827 0.800 0.200
#> GSM601860     1  0.0000      0.788 1.000 0.000
#> GSM601870     1  0.8081      0.830 0.752 0.248
#> GSM601750     1  0.8327      0.829 0.736 0.264
#> GSM601760     1  0.8386      0.827 0.732 0.268
#> GSM601765     1  0.0000      0.788 1.000 0.000
#> GSM601770     1  0.0000      0.788 1.000 0.000
#> GSM601775     1  0.6801      0.795 0.820 0.180
#> GSM601780     2  0.5059      0.723 0.112 0.888
#> GSM601790     1  0.0000      0.788 1.000 0.000
#> GSM601805     2  0.8661      0.772 0.288 0.712
#> GSM601810     1  0.8327      0.829 0.736 0.264
#> GSM601815     1  0.0000      0.788 1.000 0.000
#> GSM601820     1  0.8386      0.827 0.732 0.268
#> GSM601825     2  0.8713      0.771 0.292 0.708
#> GSM601835     1  0.0000      0.788 1.000 0.000
#> GSM601850     2  0.9933     -0.304 0.452 0.548
#> GSM601855     1  0.8386      0.827 0.732 0.268
#> GSM601865     1  0.0000      0.788 1.000 0.000
#> GSM601756     2  0.8327      0.767 0.264 0.736
#> GSM601786     1  0.0000      0.788 1.000 0.000
#> GSM601796     2  0.1633      0.798 0.024 0.976
#> GSM601801     2  0.8327      0.767 0.264 0.736
#> GSM601831     1  0.8386      0.827 0.732 0.268
#> GSM601841     1  0.9491      0.715 0.632 0.368
#> GSM601846     2  0.8081      0.787 0.248 0.752
#> GSM601861     1  0.0000      0.788 1.000 0.000
#> GSM601871     1  0.2948      0.800 0.948 0.052
#> GSM601751     1  0.0000      0.788 1.000 0.000
#> GSM601761     1  0.8608      0.815 0.716 0.284
#> GSM601766     1  0.8016      0.830 0.756 0.244
#> GSM601771     1  0.0000      0.788 1.000 0.000
#> GSM601776     2  0.5178      0.717 0.116 0.884
#> GSM601781     2  0.4562      0.743 0.096 0.904
#> GSM601791     1  0.9686      0.668 0.604 0.396
#> GSM601806     2  0.8661      0.772 0.288 0.712
#> GSM601811     1  0.8327      0.829 0.736 0.264
#> GSM601816     2  0.1633      0.798 0.024 0.976
#> GSM601821     1  0.0000      0.788 1.000 0.000
#> GSM601826     2  0.1633      0.798 0.024 0.976
#> GSM601836     1  0.8327      0.829 0.736 0.264
#> GSM601851     2  0.4161      0.755 0.084 0.916
#> GSM601856     1  0.8443      0.825 0.728 0.272
#> GSM601866     1  0.8327      0.829 0.736 0.264

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM601752     1  0.1163     0.8503 0.972 0.028 0.000
#> GSM601782     3  0.5244     0.7434 0.004 0.240 0.756
#> GSM601792     1  0.2537     0.8560 0.920 0.000 0.080
#> GSM601797     1  0.2743     0.8591 0.928 0.020 0.052
#> GSM601827     3  0.4063     0.8439 0.020 0.112 0.868
#> GSM601837     2  0.3192     0.8271 0.000 0.888 0.112
#> GSM601842     2  0.1399     0.8736 0.028 0.968 0.004
#> GSM601857     3  0.0237     0.8226 0.000 0.004 0.996
#> GSM601867     3  0.5849     0.6198 0.028 0.216 0.756
#> GSM601747     2  0.6075     0.4881 0.008 0.676 0.316
#> GSM601757     3  0.4209     0.8435 0.020 0.120 0.860
#> GSM601762     2  0.0424     0.8787 0.008 0.992 0.000
#> GSM601767     2  0.0000     0.8797 0.000 1.000 0.000
#> GSM601772     2  0.0000     0.8797 0.000 1.000 0.000
#> GSM601777     1  0.6684     0.6782 0.676 0.032 0.292
#> GSM601787     3  0.5902     0.4589 0.004 0.316 0.680
#> GSM601802     1  0.1163     0.8503 0.972 0.028 0.000
#> GSM601807     3  0.3129     0.7665 0.088 0.008 0.904
#> GSM601812     3  0.3965     0.8427 0.008 0.132 0.860
#> GSM601817     3  0.2959     0.8483 0.000 0.100 0.900
#> GSM601822     1  0.2492     0.8593 0.936 0.016 0.048
#> GSM601832     2  0.4095     0.8306 0.056 0.880 0.064
#> GSM601847     1  0.2569     0.8573 0.936 0.032 0.032
#> GSM601852     3  0.3425     0.8455 0.004 0.112 0.884
#> GSM601862     3  0.0237     0.8208 0.004 0.000 0.996
#> GSM601753     1  0.1163     0.8503 0.972 0.028 0.000
#> GSM601783     3  0.4786     0.8330 0.044 0.112 0.844
#> GSM601793     1  0.3192     0.8483 0.888 0.000 0.112
#> GSM601798     1  0.1163     0.8503 0.972 0.028 0.000
#> GSM601828     3  0.3607     0.8454 0.008 0.112 0.880
#> GSM601838     2  0.3192     0.8271 0.000 0.888 0.112
#> GSM601843     2  0.0424     0.8788 0.008 0.992 0.000
#> GSM601858     2  0.3340     0.8275 0.000 0.880 0.120
#> GSM601868     3  0.0237     0.8192 0.004 0.000 0.996
#> GSM601748     3  0.3425     0.8455 0.004 0.112 0.884
#> GSM601758     3  0.4196     0.8425 0.024 0.112 0.864
#> GSM601763     2  0.7059     0.6450 0.092 0.716 0.192
#> GSM601768     2  0.0000     0.8797 0.000 1.000 0.000
#> GSM601773     2  0.0747     0.8774 0.016 0.984 0.000
#> GSM601778     1  0.4164     0.8383 0.848 0.008 0.144
#> GSM601788     2  0.1289     0.8706 0.000 0.968 0.032
#> GSM601803     1  0.1964     0.8439 0.944 0.056 0.000
#> GSM601808     3  0.0237     0.8192 0.004 0.000 0.996
#> GSM601813     3  0.4196     0.8425 0.024 0.112 0.864
#> GSM601818     3  0.3983     0.7706 0.004 0.144 0.852
#> GSM601823     1  0.3879     0.8295 0.848 0.000 0.152
#> GSM601833     2  0.0000     0.8797 0.000 1.000 0.000
#> GSM601848     1  0.3752     0.8336 0.856 0.000 0.144
#> GSM601853     3  0.0237     0.8192 0.004 0.000 0.996
#> GSM601863     3  0.0475     0.8230 0.004 0.004 0.992
#> GSM601754     1  0.1399     0.8518 0.968 0.028 0.004
#> GSM601784     2  0.0000     0.8797 0.000 1.000 0.000
#> GSM601794     1  0.3038     0.8507 0.896 0.000 0.104
#> GSM601799     1  0.1267     0.8524 0.972 0.024 0.004
#> GSM601829     1  0.7366     0.4122 0.564 0.036 0.400
#> GSM601839     2  0.3192     0.8271 0.000 0.888 0.112
#> GSM601844     1  0.9118     0.1899 0.468 0.144 0.388
#> GSM601859     2  0.0000     0.8797 0.000 1.000 0.000
#> GSM601869     3  0.1315     0.8301 0.008 0.020 0.972
#> GSM601749     3  0.4413     0.8423 0.024 0.124 0.852
#> GSM601759     3  0.4196     0.8425 0.024 0.112 0.864
#> GSM601764     2  0.6148     0.6023 0.028 0.728 0.244
#> GSM601769     2  0.0000     0.8797 0.000 1.000 0.000
#> GSM601774     2  0.0000     0.8797 0.000 1.000 0.000
#> GSM601779     1  0.3941     0.8269 0.844 0.000 0.156
#> GSM601789     2  0.2625     0.8445 0.000 0.916 0.084
#> GSM601804     1  0.3183     0.8584 0.908 0.016 0.076
#> GSM601809     3  0.6825     0.0571 0.012 0.492 0.496
#> GSM601814     2  0.0000     0.8797 0.000 1.000 0.000
#> GSM601819     3  0.5726     0.7695 0.024 0.216 0.760
#> GSM601824     1  0.4551     0.8396 0.844 0.024 0.132
#> GSM601834     2  0.0000     0.8797 0.000 1.000 0.000
#> GSM601849     3  0.9695    -0.0304 0.384 0.216 0.400
#> GSM601854     3  0.4618     0.8379 0.024 0.136 0.840
#> GSM601864     2  0.3192     0.8271 0.000 0.888 0.112
#> GSM601755     1  0.1163     0.8503 0.972 0.028 0.000
#> GSM601785     2  0.3966     0.8151 0.024 0.876 0.100
#> GSM601795     1  0.2711     0.8548 0.912 0.000 0.088
#> GSM601800     1  0.1163     0.8503 0.972 0.028 0.000
#> GSM601830     3  0.2486     0.7890 0.060 0.008 0.932
#> GSM601840     2  0.6208     0.7225 0.076 0.772 0.152
#> GSM601845     2  0.5746     0.7080 0.040 0.780 0.180
#> GSM601860     2  0.1529     0.8661 0.000 0.960 0.040
#> GSM601870     3  0.1919     0.8103 0.024 0.020 0.956
#> GSM601750     3  0.3607     0.8453 0.008 0.112 0.880
#> GSM601760     3  0.4873     0.8285 0.024 0.152 0.824
#> GSM601765     2  0.0237     0.8793 0.004 0.996 0.000
#> GSM601770     2  0.0000     0.8797 0.000 1.000 0.000
#> GSM601775     2  0.7717     0.6056 0.172 0.680 0.148
#> GSM601780     1  0.6601     0.6553 0.676 0.028 0.296
#> GSM601790     2  0.3116     0.8299 0.000 0.892 0.108
#> GSM601805     1  0.1643     0.8480 0.956 0.044 0.000
#> GSM601810     3  0.1964     0.8414 0.000 0.056 0.944
#> GSM601815     2  0.2625     0.8443 0.000 0.916 0.084
#> GSM601820     3  0.4196     0.8425 0.024 0.112 0.864
#> GSM601825     1  0.1643     0.8477 0.956 0.044 0.000
#> GSM601835     2  0.4709     0.8165 0.056 0.852 0.092
#> GSM601850     1  0.9001     0.3855 0.520 0.332 0.148
#> GSM601855     3  0.1950     0.8031 0.040 0.008 0.952
#> GSM601865     2  0.3192     0.8271 0.000 0.888 0.112
#> GSM601756     1  0.1163     0.8503 0.972 0.028 0.000
#> GSM601786     2  0.3116     0.8299 0.000 0.892 0.108
#> GSM601796     1  0.3412     0.8445 0.876 0.000 0.124
#> GSM601801     1  0.1163     0.8503 0.972 0.028 0.000
#> GSM601831     3  0.3695     0.8464 0.012 0.108 0.880
#> GSM601841     3  0.9370    -0.0882 0.416 0.168 0.416
#> GSM601846     1  0.3112     0.8591 0.916 0.028 0.056
#> GSM601861     2  0.0237     0.8792 0.000 0.996 0.004
#> GSM601871     3  0.5882     0.3933 0.000 0.348 0.652
#> GSM601751     2  0.2096     0.8592 0.004 0.944 0.052
#> GSM601761     3  0.9676     0.3019 0.252 0.288 0.460
#> GSM601766     2  0.4195     0.7783 0.012 0.852 0.136
#> GSM601771     2  0.1753     0.8631 0.000 0.952 0.048
#> GSM601776     1  0.6880     0.6212 0.660 0.036 0.304
#> GSM601781     1  0.6950     0.6883 0.692 0.056 0.252
#> GSM601791     2  0.9853    -0.1476 0.252 0.388 0.360
#> GSM601806     1  0.3038     0.8238 0.896 0.104 0.000
#> GSM601811     3  0.2625     0.8179 0.000 0.084 0.916
#> GSM601816     1  0.3752     0.8338 0.856 0.000 0.144
#> GSM601821     2  0.0424     0.8784 0.000 0.992 0.008
#> GSM601826     1  0.3879     0.8295 0.848 0.000 0.152
#> GSM601836     2  0.5939     0.6411 0.028 0.748 0.224
#> GSM601851     1  0.6008     0.6197 0.664 0.004 0.332
#> GSM601856     3  0.0475     0.8219 0.004 0.004 0.992
#> GSM601866     3  0.3272     0.8470 0.004 0.104 0.892

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM601752     4  0.0000     0.8167 0.000 0.000 0.000 1.000
#> GSM601782     1  0.6976     0.4462 0.580 0.240 0.180 0.000
#> GSM601792     4  0.4040     0.6954 0.248 0.000 0.000 0.752
#> GSM601797     4  0.0188     0.8170 0.004 0.000 0.000 0.996
#> GSM601827     1  0.3402     0.5116 0.832 0.004 0.164 0.000
#> GSM601837     2  0.5057     0.5362 0.012 0.648 0.340 0.000
#> GSM601842     2  0.1576     0.7988 0.004 0.948 0.000 0.048
#> GSM601857     1  0.4996    -0.3183 0.516 0.000 0.484 0.000
#> GSM601867     3  0.4756     0.5248 0.072 0.144 0.784 0.000
#> GSM601747     2  0.7421    -0.1701 0.372 0.456 0.172 0.000
#> GSM601757     1  0.1743     0.5866 0.940 0.004 0.056 0.000
#> GSM601762     2  0.0927     0.8127 0.000 0.976 0.008 0.016
#> GSM601767     2  0.0000     0.8165 0.000 1.000 0.000 0.000
#> GSM601772     2  0.0000     0.8165 0.000 1.000 0.000 0.000
#> GSM601777     4  0.4484     0.7334 0.064 0.004 0.120 0.812
#> GSM601787     3  0.2965     0.5456 0.036 0.072 0.892 0.000
#> GSM601802     4  0.0000     0.8167 0.000 0.000 0.000 1.000
#> GSM601807     3  0.3355     0.5784 0.160 0.000 0.836 0.004
#> GSM601812     1  0.3355     0.5219 0.836 0.004 0.160 0.000
#> GSM601817     1  0.3801     0.4402 0.780 0.000 0.220 0.000
#> GSM601822     4  0.0376     0.8169 0.004 0.000 0.004 0.992
#> GSM601832     2  0.3335     0.7387 0.016 0.856 0.000 0.128
#> GSM601847     4  0.0188     0.8170 0.004 0.000 0.000 0.996
#> GSM601852     1  0.4949     0.5369 0.760 0.060 0.180 0.000
#> GSM601862     1  0.5000    -0.3511 0.504 0.000 0.496 0.000
#> GSM601753     4  0.0000     0.8167 0.000 0.000 0.000 1.000
#> GSM601783     1  0.2399     0.6025 0.920 0.048 0.032 0.000
#> GSM601793     4  0.4585     0.6213 0.332 0.000 0.000 0.668
#> GSM601798     4  0.0000     0.8167 0.000 0.000 0.000 1.000
#> GSM601828     1  0.3208     0.5361 0.848 0.004 0.148 0.000
#> GSM601838     2  0.5057     0.5362 0.012 0.648 0.340 0.000
#> GSM601843     2  0.0336     0.8153 0.000 0.992 0.000 0.008
#> GSM601858     2  0.4387     0.6601 0.012 0.752 0.236 0.000
#> GSM601868     3  0.4994     0.3610 0.480 0.000 0.520 0.000
#> GSM601748     1  0.2921     0.5391 0.860 0.000 0.140 0.000
#> GSM601758     1  0.2101     0.5883 0.928 0.012 0.060 0.000
#> GSM601763     1  0.5643     0.1854 0.540 0.440 0.016 0.004
#> GSM601768     2  0.0000     0.8165 0.000 1.000 0.000 0.000
#> GSM601773     2  0.0817     0.8117 0.000 0.976 0.000 0.024
#> GSM601778     4  0.3982     0.7277 0.220 0.000 0.004 0.776
#> GSM601788     2  0.0927     0.8137 0.008 0.976 0.000 0.016
#> GSM601803     4  0.1557     0.7899 0.000 0.056 0.000 0.944
#> GSM601808     3  0.4967     0.4233 0.452 0.000 0.548 0.000
#> GSM601813     1  0.3758     0.6006 0.848 0.104 0.048 0.000
#> GSM601818     1  0.5998     0.4493 0.684 0.116 0.200 0.000
#> GSM601823     4  0.5508     0.3538 0.476 0.000 0.016 0.508
#> GSM601833     2  0.0000     0.8165 0.000 1.000 0.000 0.000
#> GSM601848     4  0.5506     0.3632 0.472 0.000 0.016 0.512
#> GSM601853     3  0.4972     0.4148 0.456 0.000 0.544 0.000
#> GSM601863     1  0.4916    -0.1089 0.576 0.000 0.424 0.000
#> GSM601754     4  0.0000     0.8167 0.000 0.000 0.000 1.000
#> GSM601784     2  0.0000     0.8165 0.000 1.000 0.000 0.000
#> GSM601794     4  0.4304     0.6688 0.284 0.000 0.000 0.716
#> GSM601799     4  0.0000     0.8167 0.000 0.000 0.000 1.000
#> GSM601829     1  0.6338     0.1920 0.620 0.024 0.040 0.316
#> GSM601839     2  0.5057     0.5362 0.012 0.648 0.340 0.000
#> GSM601844     1  0.5037     0.5504 0.764 0.188 0.028 0.020
#> GSM601859     2  0.0000     0.8165 0.000 1.000 0.000 0.000
#> GSM601869     1  0.3837     0.4445 0.776 0.000 0.224 0.000
#> GSM601749     1  0.3697     0.6030 0.852 0.100 0.048 0.000
#> GSM601759     1  0.1637     0.5822 0.940 0.000 0.060 0.000
#> GSM601764     1  0.5535     0.2635 0.560 0.420 0.020 0.000
#> GSM601769     2  0.0657     0.8126 0.004 0.984 0.012 0.000
#> GSM601774     2  0.0000     0.8165 0.000 1.000 0.000 0.000
#> GSM601779     4  0.5511     0.3324 0.484 0.000 0.016 0.500
#> GSM601789     2  0.3672     0.7190 0.012 0.824 0.164 0.000
#> GSM601804     4  0.1211     0.8134 0.040 0.000 0.000 0.960
#> GSM601809     1  0.7379     0.2416 0.468 0.364 0.168 0.000
#> GSM601814     2  0.0000     0.8165 0.000 1.000 0.000 0.000
#> GSM601819     1  0.3706     0.5889 0.848 0.112 0.040 0.000
#> GSM601824     4  0.6684     0.5725 0.272 0.104 0.008 0.616
#> GSM601834     2  0.0000     0.8165 0.000 1.000 0.000 0.000
#> GSM601849     1  0.5139     0.5494 0.760 0.188 0.028 0.024
#> GSM601854     1  0.3873     0.6033 0.844 0.096 0.060 0.000
#> GSM601864     3  0.5404    -0.2982 0.012 0.476 0.512 0.000
#> GSM601755     4  0.0000     0.8167 0.000 0.000 0.000 1.000
#> GSM601785     2  0.4444     0.7070 0.072 0.808 0.000 0.120
#> GSM601795     4  0.2704     0.7825 0.124 0.000 0.000 0.876
#> GSM601800     4  0.0000     0.8167 0.000 0.000 0.000 1.000
#> GSM601830     3  0.4955     0.4375 0.444 0.000 0.556 0.000
#> GSM601840     2  0.8143     0.1792 0.292 0.476 0.024 0.208
#> GSM601845     2  0.7965     0.2354 0.288 0.512 0.028 0.172
#> GSM601860     2  0.0188     0.8157 0.004 0.996 0.000 0.000
#> GSM601870     3  0.2345     0.5777 0.100 0.000 0.900 0.000
#> GSM601750     1  0.3402     0.5196 0.832 0.004 0.164 0.000
#> GSM601760     1  0.2124     0.5969 0.932 0.028 0.040 0.000
#> GSM601765     2  0.0000     0.8165 0.000 1.000 0.000 0.000
#> GSM601770     2  0.0000     0.8165 0.000 1.000 0.000 0.000
#> GSM601775     2  0.8130     0.1052 0.336 0.444 0.020 0.200
#> GSM601780     1  0.5855     0.4411 0.716 0.048 0.028 0.208
#> GSM601790     2  0.4635     0.6243 0.012 0.720 0.268 0.000
#> GSM601805     4  0.0469     0.8130 0.000 0.012 0.000 0.988
#> GSM601810     1  0.4843    -0.0604 0.604 0.000 0.396 0.000
#> GSM601815     2  0.3196     0.7424 0.008 0.856 0.136 0.000
#> GSM601820     1  0.1557     0.5835 0.944 0.000 0.056 0.000
#> GSM601825     4  0.0921     0.8059 0.000 0.028 0.000 0.972
#> GSM601835     2  0.3424     0.7748 0.028 0.880 0.016 0.076
#> GSM601850     1  0.8376     0.1623 0.404 0.296 0.020 0.280
#> GSM601855     3  0.4008     0.5637 0.244 0.000 0.756 0.000
#> GSM601865     2  0.5057     0.5362 0.012 0.648 0.340 0.000
#> GSM601756     4  0.0000     0.8167 0.000 0.000 0.000 1.000
#> GSM601786     2  0.4690     0.6153 0.012 0.712 0.276 0.000
#> GSM601796     4  0.4800     0.6151 0.340 0.004 0.000 0.656
#> GSM601801     4  0.0000     0.8167 0.000 0.000 0.000 1.000
#> GSM601831     1  0.4994    -0.3350 0.520 0.000 0.480 0.000
#> GSM601841     1  0.6821     0.5290 0.676 0.184 0.056 0.084
#> GSM601846     4  0.0804     0.8157 0.012 0.000 0.008 0.980
#> GSM601861     2  0.1302     0.8027 0.000 0.956 0.044 0.000
#> GSM601871     3  0.4423     0.4551 0.040 0.168 0.792 0.000
#> GSM601751     2  0.3526     0.7456 0.100 0.864 0.004 0.032
#> GSM601761     1  0.4418     0.5551 0.784 0.192 0.016 0.008
#> GSM601766     2  0.5138     0.1978 0.392 0.600 0.000 0.008
#> GSM601771     2  0.3408     0.7360 0.120 0.860 0.004 0.016
#> GSM601776     1  0.7052     0.4061 0.636 0.128 0.028 0.208
#> GSM601781     4  0.6217     0.4822 0.400 0.040 0.008 0.552
#> GSM601791     1  0.5230     0.5345 0.736 0.220 0.028 0.016
#> GSM601806     4  0.2408     0.7558 0.000 0.104 0.000 0.896
#> GSM601811     1  0.5792    -0.0834 0.552 0.032 0.416 0.000
#> GSM601816     4  0.5220     0.5910 0.352 0.000 0.016 0.632
#> GSM601821     2  0.1474     0.7987 0.000 0.948 0.052 0.000
#> GSM601826     4  0.5508     0.3551 0.476 0.000 0.016 0.508
#> GSM601836     1  0.5650     0.2323 0.544 0.432 0.024 0.000
#> GSM601851     1  0.6104     0.3348 0.672 0.040 0.028 0.260
#> GSM601856     3  0.4961     0.4294 0.448 0.000 0.552 0.000
#> GSM601866     1  0.2469     0.5612 0.892 0.000 0.108 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM601752     4  0.0162     0.8371 0.004 0.000 0.000 0.996 0.000
#> GSM601782     3  0.6780     0.2704 0.284 0.236 0.472 0.000 0.008
#> GSM601792     4  0.4015     0.5220 0.348 0.000 0.000 0.652 0.000
#> GSM601797     4  0.0609     0.8380 0.020 0.000 0.000 0.980 0.000
#> GSM601827     3  0.2953     0.8227 0.144 0.000 0.844 0.000 0.012
#> GSM601837     5  0.3857     0.7551 0.000 0.312 0.000 0.000 0.688
#> GSM601842     2  0.0865     0.8462 0.000 0.972 0.000 0.024 0.004
#> GSM601857     3  0.1668     0.7913 0.028 0.000 0.940 0.000 0.032
#> GSM601867     5  0.4197     0.4344 0.028 0.000 0.244 0.000 0.728
#> GSM601747     2  0.6177     0.2056 0.128 0.516 0.352 0.000 0.004
#> GSM601757     3  0.3828     0.7714 0.220 0.008 0.764 0.000 0.008
#> GSM601762     2  0.0162     0.8590 0.000 0.996 0.000 0.000 0.004
#> GSM601767     2  0.0162     0.8590 0.000 0.996 0.000 0.000 0.004
#> GSM601772     2  0.0000     0.8590 0.000 1.000 0.000 0.000 0.000
#> GSM601777     4  0.6311     0.3642 0.348 0.008 0.104 0.532 0.008
#> GSM601787     5  0.5229     0.5598 0.028 0.068 0.192 0.000 0.712
#> GSM601802     4  0.0162     0.8371 0.004 0.000 0.000 0.996 0.000
#> GSM601807     3  0.4638     0.5460 0.028 0.000 0.648 0.000 0.324
#> GSM601812     3  0.2439     0.8233 0.120 0.004 0.876 0.000 0.000
#> GSM601817     3  0.1981     0.8264 0.064 0.000 0.920 0.000 0.016
#> GSM601822     4  0.2074     0.8033 0.104 0.000 0.000 0.896 0.000
#> GSM601832     2  0.2238     0.7968 0.020 0.912 0.000 0.064 0.004
#> GSM601847     4  0.1831     0.8182 0.076 0.004 0.000 0.920 0.000
#> GSM601852     3  0.2488     0.8242 0.124 0.000 0.872 0.000 0.004
#> GSM601862     3  0.2278     0.7820 0.032 0.000 0.908 0.000 0.060
#> GSM601753     4  0.0510     0.8382 0.016 0.000 0.000 0.984 0.000
#> GSM601783     3  0.3861     0.7401 0.264 0.000 0.728 0.000 0.008
#> GSM601793     4  0.4341     0.4032 0.404 0.000 0.004 0.592 0.000
#> GSM601798     4  0.0000     0.8356 0.000 0.000 0.000 1.000 0.000
#> GSM601828     3  0.2536     0.8219 0.128 0.000 0.868 0.000 0.004
#> GSM601838     5  0.3857     0.7551 0.000 0.312 0.000 0.000 0.688
#> GSM601843     2  0.0451     0.8565 0.000 0.988 0.000 0.008 0.004
#> GSM601858     5  0.4225     0.7384 0.000 0.364 0.004 0.000 0.632
#> GSM601868     3  0.2193     0.7784 0.028 0.000 0.912 0.000 0.060
#> GSM601748     3  0.2873     0.8224 0.128 0.000 0.856 0.000 0.016
#> GSM601758     3  0.3596     0.7844 0.212 0.000 0.776 0.000 0.012
#> GSM601763     1  0.3357     0.7375 0.852 0.092 0.008 0.048 0.000
#> GSM601768     2  0.0000     0.8590 0.000 1.000 0.000 0.000 0.000
#> GSM601773     2  0.0771     0.8512 0.000 0.976 0.000 0.020 0.004
#> GSM601778     4  0.4897     0.2160 0.460 0.000 0.024 0.516 0.000
#> GSM601788     2  0.0162     0.8588 0.000 0.996 0.000 0.004 0.000
#> GSM601803     4  0.1341     0.8044 0.000 0.056 0.000 0.944 0.000
#> GSM601808     3  0.2388     0.7721 0.028 0.000 0.900 0.000 0.072
#> GSM601813     3  0.3815     0.7805 0.220 0.004 0.764 0.000 0.012
#> GSM601818     3  0.3891     0.7913 0.128 0.004 0.808 0.000 0.060
#> GSM601823     1  0.2516     0.7549 0.860 0.000 0.000 0.140 0.000
#> GSM601833     2  0.0000     0.8590 0.000 1.000 0.000 0.000 0.000
#> GSM601848     1  0.2561     0.7529 0.856 0.000 0.000 0.144 0.000
#> GSM601853     3  0.2450     0.7702 0.028 0.000 0.896 0.000 0.076
#> GSM601863     3  0.1836     0.7986 0.036 0.000 0.932 0.000 0.032
#> GSM601754     4  0.0510     0.8382 0.016 0.000 0.000 0.984 0.000
#> GSM601784     2  0.0162     0.8590 0.000 0.996 0.000 0.000 0.004
#> GSM601794     4  0.4045     0.5111 0.356 0.000 0.000 0.644 0.000
#> GSM601799     4  0.0510     0.8382 0.016 0.000 0.000 0.984 0.000
#> GSM601829     1  0.4657     0.6763 0.752 0.004 0.128 0.116 0.000
#> GSM601839     5  0.3876     0.7551 0.000 0.316 0.000 0.000 0.684
#> GSM601844     1  0.1329     0.7462 0.956 0.004 0.032 0.008 0.000
#> GSM601859     2  0.0162     0.8590 0.000 0.996 0.000 0.000 0.004
#> GSM601869     3  0.2124     0.8278 0.056 0.000 0.916 0.000 0.028
#> GSM601749     3  0.3596     0.7847 0.212 0.000 0.776 0.000 0.012
#> GSM601759     3  0.3355     0.8009 0.184 0.000 0.804 0.000 0.012
#> GSM601764     1  0.6015     0.4322 0.592 0.248 0.156 0.000 0.004
#> GSM601769     2  0.1197     0.8184 0.000 0.952 0.000 0.000 0.048
#> GSM601774     2  0.0162     0.8590 0.000 0.996 0.000 0.000 0.004
#> GSM601779     1  0.2516     0.7549 0.860 0.000 0.000 0.140 0.000
#> GSM601789     5  0.4210     0.6780 0.000 0.412 0.000 0.000 0.588
#> GSM601804     4  0.2852     0.7498 0.172 0.000 0.000 0.828 0.000
#> GSM601809     2  0.8192    -0.0733 0.136 0.348 0.328 0.000 0.188
#> GSM601814     2  0.0162     0.8590 0.000 0.996 0.000 0.000 0.004
#> GSM601819     1  0.5008    -0.2561 0.500 0.012 0.476 0.000 0.012
#> GSM601824     1  0.3949     0.4794 0.668 0.000 0.000 0.332 0.000
#> GSM601834     2  0.0162     0.8590 0.000 0.996 0.000 0.000 0.004
#> GSM601849     1  0.1646     0.7564 0.944 0.004 0.020 0.032 0.000
#> GSM601854     3  0.3123     0.8090 0.160 0.000 0.828 0.000 0.012
#> GSM601864     5  0.4309     0.7528 0.016 0.308 0.000 0.000 0.676
#> GSM601755     4  0.0000     0.8356 0.000 0.000 0.000 1.000 0.000
#> GSM601785     2  0.2061     0.8159 0.040 0.928 0.004 0.024 0.004
#> GSM601795     4  0.3684     0.6263 0.280 0.000 0.000 0.720 0.000
#> GSM601800     4  0.0162     0.8371 0.004 0.000 0.000 0.996 0.000
#> GSM601830     3  0.4526     0.5755 0.028 0.000 0.672 0.000 0.300
#> GSM601840     2  0.6217     0.4437 0.212 0.624 0.032 0.132 0.000
#> GSM601845     2  0.5809     0.4910 0.224 0.660 0.024 0.088 0.004
#> GSM601860     2  0.0324     0.8579 0.004 0.992 0.000 0.000 0.004
#> GSM601870     5  0.4812     0.0811 0.028 0.000 0.372 0.000 0.600
#> GSM601750     3  0.2439     0.8230 0.120 0.000 0.876 0.000 0.004
#> GSM601760     3  0.4597     0.4549 0.424 0.000 0.564 0.000 0.012
#> GSM601765     2  0.0000     0.8590 0.000 1.000 0.000 0.000 0.000
#> GSM601770     2  0.0162     0.8590 0.000 0.996 0.000 0.000 0.004
#> GSM601775     1  0.6076     0.4890 0.584 0.280 0.004 0.128 0.004
#> GSM601780     1  0.2329     0.7596 0.876 0.000 0.000 0.124 0.000
#> GSM601790     5  0.4030     0.7437 0.000 0.352 0.000 0.000 0.648
#> GSM601805     4  0.1018     0.8350 0.016 0.016 0.000 0.968 0.000
#> GSM601810     3  0.2230     0.8195 0.044 0.000 0.912 0.000 0.044
#> GSM601815     5  0.4302     0.5242 0.000 0.480 0.000 0.000 0.520
#> GSM601820     3  0.3563     0.7867 0.208 0.000 0.780 0.000 0.012
#> GSM601825     4  0.1364     0.8249 0.012 0.036 0.000 0.952 0.000
#> GSM601835     2  0.3513     0.7649 0.016 0.868 0.040 0.044 0.032
#> GSM601850     1  0.3319     0.7389 0.820 0.020 0.000 0.160 0.000
#> GSM601855     3  0.4733     0.5067 0.028 0.000 0.624 0.000 0.348
#> GSM601865     5  0.3983     0.7493 0.000 0.340 0.000 0.000 0.660
#> GSM601756     4  0.0000     0.8356 0.000 0.000 0.000 1.000 0.000
#> GSM601786     5  0.4074     0.7354 0.000 0.364 0.000 0.000 0.636
#> GSM601796     4  0.4434     0.2608 0.460 0.000 0.004 0.536 0.000
#> GSM601801     4  0.0000     0.8356 0.000 0.000 0.000 1.000 0.000
#> GSM601831     3  0.3586     0.8194 0.096 0.000 0.828 0.000 0.076
#> GSM601841     1  0.4012     0.7020 0.816 0.032 0.116 0.036 0.000
#> GSM601846     4  0.1768     0.8217 0.072 0.000 0.000 0.924 0.004
#> GSM601861     2  0.2605     0.6682 0.000 0.852 0.000 0.000 0.148
#> GSM601871     5  0.5884     0.6308 0.028 0.140 0.168 0.000 0.664
#> GSM601751     2  0.0486     0.8571 0.004 0.988 0.004 0.000 0.004
#> GSM601761     1  0.2833     0.6734 0.864 0.000 0.120 0.012 0.004
#> GSM601766     2  0.2439     0.7363 0.120 0.876 0.004 0.000 0.000
#> GSM601771     2  0.0579     0.8535 0.008 0.984 0.008 0.000 0.000
#> GSM601776     1  0.2377     0.7586 0.872 0.000 0.000 0.128 0.000
#> GSM601781     1  0.3421     0.6793 0.788 0.008 0.000 0.204 0.000
#> GSM601791     1  0.2227     0.7556 0.920 0.004 0.028 0.044 0.004
#> GSM601806     4  0.1851     0.7774 0.000 0.088 0.000 0.912 0.000
#> GSM601811     3  0.2610     0.7906 0.028 0.004 0.892 0.000 0.076
#> GSM601816     1  0.3003     0.7130 0.812 0.000 0.000 0.188 0.000
#> GSM601821     2  0.2929     0.6030 0.000 0.820 0.000 0.000 0.180
#> GSM601826     1  0.2561     0.7529 0.856 0.000 0.000 0.144 0.000
#> GSM601836     1  0.6187     0.3766 0.552 0.248 0.200 0.000 0.000
#> GSM601851     1  0.2329     0.7596 0.876 0.000 0.000 0.124 0.000
#> GSM601856     3  0.3724     0.6878 0.028 0.000 0.788 0.000 0.184
#> GSM601866     3  0.2798     0.8172 0.140 0.000 0.852 0.000 0.008

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM601752     4  0.0260     0.8758 0.000 0.000 0.000 0.992 0.000 0.008
#> GSM601782     1  0.0993     0.8473 0.964 0.000 0.024 0.000 0.000 0.012
#> GSM601792     4  0.4413    -0.1317 0.000 0.000 0.008 0.492 0.012 0.488
#> GSM601797     4  0.0603     0.8739 0.000 0.000 0.000 0.980 0.004 0.016
#> GSM601827     1  0.1865     0.8431 0.920 0.000 0.040 0.000 0.000 0.040
#> GSM601837     5  0.1588     0.8464 0.000 0.072 0.004 0.000 0.924 0.000
#> GSM601842     2  0.0767     0.8914 0.000 0.976 0.004 0.012 0.000 0.008
#> GSM601857     3  0.3221     0.7703 0.264 0.000 0.736 0.000 0.000 0.000
#> GSM601867     3  0.2452     0.7875 0.028 0.004 0.884 0.000 0.084 0.000
#> GSM601747     1  0.2642     0.8272 0.892 0.024 0.024 0.000 0.008 0.052
#> GSM601757     1  0.0937     0.8506 0.960 0.000 0.000 0.000 0.000 0.040
#> GSM601762     2  0.1349     0.8764 0.000 0.940 0.000 0.000 0.056 0.004
#> GSM601767     2  0.0547     0.8912 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM601772     2  0.0146     0.8928 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM601777     6  0.5864     0.5571 0.088 0.028 0.024 0.224 0.004 0.632
#> GSM601787     3  0.3816     0.7401 0.016 0.056 0.808 0.000 0.112 0.008
#> GSM601802     4  0.0146     0.8758 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM601807     3  0.2151     0.7809 0.016 0.000 0.904 0.000 0.072 0.008
#> GSM601812     1  0.0692     0.8454 0.976 0.000 0.020 0.000 0.000 0.004
#> GSM601817     1  0.1556     0.8214 0.920 0.000 0.080 0.000 0.000 0.000
#> GSM601822     4  0.4009     0.3652 0.000 0.000 0.008 0.632 0.004 0.356
#> GSM601832     2  0.1881     0.8649 0.000 0.928 0.004 0.040 0.008 0.020
#> GSM601847     4  0.3851     0.5348 0.000 0.004 0.008 0.700 0.004 0.284
#> GSM601852     1  0.0891     0.8466 0.968 0.000 0.024 0.000 0.000 0.008
#> GSM601862     3  0.3126     0.7886 0.248 0.000 0.752 0.000 0.000 0.000
#> GSM601753     4  0.0363     0.8751 0.000 0.000 0.000 0.988 0.000 0.012
#> GSM601783     1  0.2877     0.7855 0.820 0.000 0.000 0.000 0.012 0.168
#> GSM601793     6  0.3867     0.5795 0.000 0.000 0.004 0.296 0.012 0.688
#> GSM601798     4  0.0000     0.8747 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM601828     1  0.0260     0.8459 0.992 0.000 0.008 0.000 0.000 0.000
#> GSM601838     5  0.1588     0.8464 0.000 0.072 0.004 0.000 0.924 0.000
#> GSM601843     2  0.0551     0.8931 0.000 0.984 0.000 0.008 0.004 0.004
#> GSM601858     5  0.3670     0.8389 0.000 0.240 0.024 0.000 0.736 0.000
#> GSM601868     3  0.3076     0.7925 0.240 0.000 0.760 0.000 0.000 0.000
#> GSM601748     1  0.0692     0.8472 0.976 0.000 0.020 0.000 0.000 0.004
#> GSM601758     1  0.2383     0.8218 0.880 0.000 0.000 0.000 0.024 0.096
#> GSM601763     6  0.2757     0.7337 0.016 0.104 0.000 0.000 0.016 0.864
#> GSM601768     2  0.0291     0.8932 0.000 0.992 0.000 0.000 0.004 0.004
#> GSM601773     2  0.1642     0.8783 0.000 0.936 0.000 0.032 0.028 0.004
#> GSM601778     6  0.4223     0.6411 0.020 0.004 0.008 0.240 0.008 0.720
#> GSM601788     2  0.0665     0.8911 0.008 0.980 0.000 0.000 0.008 0.004
#> GSM601803     4  0.0865     0.8555 0.000 0.036 0.000 0.964 0.000 0.000
#> GSM601808     3  0.3052     0.8085 0.216 0.000 0.780 0.000 0.004 0.000
#> GSM601813     1  0.2766     0.8177 0.852 0.000 0.004 0.000 0.020 0.124
#> GSM601818     1  0.2092     0.7842 0.876 0.000 0.124 0.000 0.000 0.000
#> GSM601823     6  0.2068     0.7846 0.008 0.000 0.000 0.080 0.008 0.904
#> GSM601833     2  0.0146     0.8928 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM601848     6  0.1956     0.7849 0.008 0.000 0.000 0.080 0.004 0.908
#> GSM601853     3  0.3052     0.8086 0.216 0.000 0.780 0.000 0.004 0.000
#> GSM601863     3  0.3288     0.7641 0.276 0.000 0.724 0.000 0.000 0.000
#> GSM601754     4  0.0405     0.8755 0.000 0.000 0.004 0.988 0.000 0.008
#> GSM601784     2  0.0713     0.8874 0.000 0.972 0.000 0.000 0.028 0.000
#> GSM601794     6  0.4076     0.4862 0.000 0.000 0.004 0.348 0.012 0.636
#> GSM601799     4  0.0603     0.8732 0.000 0.000 0.004 0.980 0.000 0.016
#> GSM601829     6  0.3736     0.6575 0.216 0.000 0.008 0.016 0.004 0.756
#> GSM601839     5  0.1444     0.8477 0.000 0.072 0.000 0.000 0.928 0.000
#> GSM601844     6  0.1297     0.7834 0.040 0.000 0.000 0.000 0.012 0.948
#> GSM601859     2  0.0547     0.8911 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM601869     1  0.2912     0.6521 0.784 0.000 0.216 0.000 0.000 0.000
#> GSM601749     1  0.2760     0.8154 0.856 0.000 0.004 0.000 0.024 0.116
#> GSM601759     1  0.2009     0.8340 0.908 0.000 0.000 0.000 0.024 0.068
#> GSM601764     2  0.6547     0.1141 0.252 0.420 0.000 0.000 0.028 0.300
#> GSM601769     2  0.1714     0.8478 0.000 0.908 0.000 0.000 0.092 0.000
#> GSM601774     2  0.0865     0.8850 0.000 0.964 0.000 0.000 0.036 0.000
#> GSM601779     6  0.1956     0.7849 0.008 0.000 0.000 0.080 0.004 0.908
#> GSM601789     5  0.3601     0.7823 0.000 0.312 0.004 0.000 0.684 0.000
#> GSM601804     4  0.3463     0.6197 0.000 0.000 0.004 0.748 0.008 0.240
#> GSM601809     1  0.4138     0.7481 0.796 0.104 0.060 0.000 0.024 0.016
#> GSM601814     2  0.1556     0.8608 0.000 0.920 0.000 0.000 0.080 0.000
#> GSM601819     1  0.2926     0.7980 0.844 0.004 0.000 0.000 0.028 0.124
#> GSM601824     6  0.4455     0.0473 0.008 0.000 0.004 0.480 0.008 0.500
#> GSM601834     2  0.0865     0.8850 0.000 0.964 0.000 0.000 0.036 0.000
#> GSM601849     6  0.0993     0.7864 0.024 0.000 0.000 0.000 0.012 0.964
#> GSM601854     1  0.1232     0.8474 0.956 0.000 0.004 0.000 0.024 0.016
#> GSM601864     5  0.2400     0.8666 0.000 0.116 0.004 0.000 0.872 0.008
#> GSM601755     4  0.0000     0.8747 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM601785     2  0.1698     0.8724 0.008 0.940 0.004 0.004 0.012 0.032
#> GSM601795     6  0.4393     0.2250 0.000 0.000 0.008 0.448 0.012 0.532
#> GSM601800     4  0.0146     0.8758 0.000 0.000 0.000 0.996 0.000 0.004
#> GSM601830     3  0.1003     0.7968 0.016 0.000 0.964 0.000 0.020 0.000
#> GSM601840     2  0.4433     0.6964 0.008 0.768 0.004 0.072 0.020 0.128
#> GSM601845     2  0.4749     0.6647 0.024 0.748 0.012 0.036 0.020 0.160
#> GSM601860     2  0.0767     0.8908 0.008 0.976 0.000 0.000 0.012 0.004
#> GSM601870     3  0.2114     0.7799 0.012 0.000 0.904 0.000 0.076 0.008
#> GSM601750     1  0.0551     0.8474 0.984 0.000 0.008 0.000 0.004 0.004
#> GSM601760     1  0.3027     0.7783 0.824 0.000 0.000 0.000 0.028 0.148
#> GSM601765     2  0.0291     0.8932 0.000 0.992 0.000 0.000 0.004 0.004
#> GSM601770     2  0.0146     0.8926 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM601775     6  0.4499     0.5501 0.008 0.256 0.004 0.016 0.020 0.696
#> GSM601780     6  0.1167     0.7906 0.008 0.000 0.000 0.012 0.020 0.960
#> GSM601790     5  0.2491     0.8790 0.000 0.164 0.000 0.000 0.836 0.000
#> GSM601805     4  0.1036     0.8656 0.000 0.024 0.004 0.964 0.000 0.008
#> GSM601810     1  0.2805     0.7283 0.812 0.000 0.184 0.000 0.000 0.004
#> GSM601815     5  0.3563     0.7043 0.000 0.336 0.000 0.000 0.664 0.000
#> GSM601820     1  0.2373     0.8279 0.888 0.000 0.004 0.000 0.024 0.084
#> GSM601825     4  0.1232     0.8647 0.000 0.024 0.004 0.956 0.000 0.016
#> GSM601835     2  0.4421     0.7274 0.020 0.784 0.048 0.032 0.112 0.004
#> GSM601850     6  0.1862     0.7914 0.008 0.000 0.004 0.044 0.016 0.928
#> GSM601855     3  0.2058     0.7804 0.012 0.000 0.908 0.000 0.072 0.008
#> GSM601865     5  0.2340     0.8789 0.000 0.148 0.000 0.000 0.852 0.000
#> GSM601756     4  0.0000     0.8747 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM601786     5  0.3109     0.8571 0.000 0.224 0.004 0.000 0.772 0.000
#> GSM601796     6  0.3602     0.6536 0.004 0.000 0.004 0.240 0.008 0.744
#> GSM601801     4  0.0000     0.8747 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM601831     1  0.2311     0.8190 0.880 0.000 0.104 0.000 0.000 0.016
#> GSM601841     6  0.4639     0.4820 0.312 0.000 0.012 0.012 0.020 0.644
#> GSM601846     4  0.3512     0.5758 0.000 0.000 0.008 0.720 0.000 0.272
#> GSM601861     2  0.2597     0.7451 0.000 0.824 0.000 0.000 0.176 0.000
#> GSM601871     3  0.4830     0.6362 0.012 0.128 0.716 0.000 0.136 0.008
#> GSM601751     2  0.0881     0.8894 0.008 0.972 0.000 0.000 0.012 0.008
#> GSM601761     6  0.3245     0.6758 0.172 0.000 0.000 0.000 0.028 0.800
#> GSM601766     2  0.2558     0.8161 0.012 0.884 0.004 0.000 0.016 0.084
#> GSM601771     2  0.0767     0.8908 0.008 0.976 0.000 0.000 0.012 0.004
#> GSM601776     6  0.1078     0.7912 0.008 0.000 0.000 0.016 0.012 0.964
#> GSM601781     6  0.1707     0.7888 0.000 0.012 0.004 0.056 0.000 0.928
#> GSM601791     6  0.1245     0.7839 0.032 0.000 0.000 0.000 0.016 0.952
#> GSM601806     4  0.1584     0.8243 0.000 0.064 0.000 0.928 0.008 0.000
#> GSM601811     1  0.3810     0.0757 0.572 0.000 0.428 0.000 0.000 0.000
#> GSM601816     6  0.2355     0.7684 0.000 0.000 0.004 0.112 0.008 0.876
#> GSM601821     2  0.2762     0.7146 0.000 0.804 0.000 0.000 0.196 0.000
#> GSM601826     6  0.1901     0.7860 0.008 0.000 0.000 0.076 0.004 0.912
#> GSM601836     1  0.6521     0.1223 0.396 0.332 0.004 0.000 0.016 0.252
#> GSM601851     6  0.0622     0.7874 0.008 0.000 0.000 0.000 0.012 0.980
#> GSM601856     3  0.3156     0.8191 0.180 0.000 0.800 0.000 0.020 0.000
#> GSM601866     1  0.0972     0.8457 0.964 0.000 0.028 0.000 0.000 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n time(p) gender(p) k
#> MAD:mclust 123   0.763    0.2784 2
#> MAD:mclust 114   0.491    0.4258 3
#> MAD:mclust  89   0.652    0.0897 4
#> MAD:mclust 108   0.443    0.0102 5
#> MAD:mclust 116   0.591    0.0625 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 125 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.901           0.931       0.970         0.5028 0.496   0.496
#> 3 3 0.502           0.622       0.813         0.3032 0.820   0.650
#> 4 4 0.450           0.502       0.723         0.1353 0.783   0.470
#> 5 5 0.489           0.438       0.635         0.0649 0.876   0.567
#> 6 6 0.537           0.340       0.575         0.0408 0.919   0.651

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM601752     2  0.0000      0.978 0.000 1.000
#> GSM601782     1  0.0000      0.960 1.000 0.000
#> GSM601792     1  0.0000      0.960 1.000 0.000
#> GSM601797     2  0.4690      0.885 0.100 0.900
#> GSM601827     1  0.0000      0.960 1.000 0.000
#> GSM601837     2  0.0000      0.978 0.000 1.000
#> GSM601842     2  0.0000      0.978 0.000 1.000
#> GSM601857     1  0.0000      0.960 1.000 0.000
#> GSM601867     2  0.7883      0.690 0.236 0.764
#> GSM601747     1  0.3733      0.900 0.928 0.072
#> GSM601757     1  0.0000      0.960 1.000 0.000
#> GSM601762     2  0.0000      0.978 0.000 1.000
#> GSM601767     2  0.0000      0.978 0.000 1.000
#> GSM601772     2  0.0000      0.978 0.000 1.000
#> GSM601777     1  0.9866      0.262 0.568 0.432
#> GSM601787     2  0.2043      0.953 0.032 0.968
#> GSM601802     2  0.0000      0.978 0.000 1.000
#> GSM601807     1  0.4690      0.873 0.900 0.100
#> GSM601812     1  0.0000      0.960 1.000 0.000
#> GSM601817     1  0.0000      0.960 1.000 0.000
#> GSM601822     2  0.9087      0.519 0.324 0.676
#> GSM601832     2  0.0000      0.978 0.000 1.000
#> GSM601847     2  0.0376      0.975 0.004 0.996
#> GSM601852     1  0.0000      0.960 1.000 0.000
#> GSM601862     1  0.0000      0.960 1.000 0.000
#> GSM601753     2  0.0000      0.978 0.000 1.000
#> GSM601783     1  0.0000      0.960 1.000 0.000
#> GSM601793     1  0.0000      0.960 1.000 0.000
#> GSM601798     2  0.0000      0.978 0.000 1.000
#> GSM601828     1  0.0000      0.960 1.000 0.000
#> GSM601838     2  0.0000      0.978 0.000 1.000
#> GSM601843     2  0.0000      0.978 0.000 1.000
#> GSM601858     2  0.0000      0.978 0.000 1.000
#> GSM601868     1  0.0000      0.960 1.000 0.000
#> GSM601748     1  0.0000      0.960 1.000 0.000
#> GSM601758     1  0.0000      0.960 1.000 0.000
#> GSM601763     1  0.9732      0.337 0.596 0.404
#> GSM601768     2  0.0000      0.978 0.000 1.000
#> GSM601773     2  0.0000      0.978 0.000 1.000
#> GSM601778     1  0.1184      0.948 0.984 0.016
#> GSM601788     2  0.0000      0.978 0.000 1.000
#> GSM601803     2  0.0000      0.978 0.000 1.000
#> GSM601808     1  0.0000      0.960 1.000 0.000
#> GSM601813     1  0.0000      0.960 1.000 0.000
#> GSM601818     1  0.0000      0.960 1.000 0.000
#> GSM601823     1  0.0000      0.960 1.000 0.000
#> GSM601833     2  0.0000      0.978 0.000 1.000
#> GSM601848     1  0.0000      0.960 1.000 0.000
#> GSM601853     1  0.0000      0.960 1.000 0.000
#> GSM601863     1  0.0000      0.960 1.000 0.000
#> GSM601754     2  0.0000      0.978 0.000 1.000
#> GSM601784     2  0.0000      0.978 0.000 1.000
#> GSM601794     1  0.0000      0.960 1.000 0.000
#> GSM601799     2  0.0000      0.978 0.000 1.000
#> GSM601829     1  0.0000      0.960 1.000 0.000
#> GSM601839     2  0.0000      0.978 0.000 1.000
#> GSM601844     1  0.0000      0.960 1.000 0.000
#> GSM601859     2  0.0000      0.978 0.000 1.000
#> GSM601869     1  0.0000      0.960 1.000 0.000
#> GSM601749     1  0.0000      0.960 1.000 0.000
#> GSM601759     1  0.0000      0.960 1.000 0.000
#> GSM601764     1  0.0000      0.960 1.000 0.000
#> GSM601769     2  0.0000      0.978 0.000 1.000
#> GSM601774     2  0.0000      0.978 0.000 1.000
#> GSM601779     1  0.0000      0.960 1.000 0.000
#> GSM601789     2  0.0000      0.978 0.000 1.000
#> GSM601804     2  0.0938      0.969 0.012 0.988
#> GSM601809     1  0.9608      0.401 0.616 0.384
#> GSM601814     2  0.0000      0.978 0.000 1.000
#> GSM601819     1  0.0000      0.960 1.000 0.000
#> GSM601824     2  0.6048      0.824 0.148 0.852
#> GSM601834     2  0.0000      0.978 0.000 1.000
#> GSM601849     1  0.0000      0.960 1.000 0.000
#> GSM601854     1  0.0000      0.960 1.000 0.000
#> GSM601864     2  0.0000      0.978 0.000 1.000
#> GSM601755     2  0.0000      0.978 0.000 1.000
#> GSM601785     2  0.0000      0.978 0.000 1.000
#> GSM601795     1  0.5294      0.850 0.880 0.120
#> GSM601800     2  0.0000      0.978 0.000 1.000
#> GSM601830     1  0.4161      0.889 0.916 0.084
#> GSM601840     2  0.2043      0.953 0.032 0.968
#> GSM601845     2  0.7139      0.757 0.196 0.804
#> GSM601860     2  0.0000      0.978 0.000 1.000
#> GSM601870     1  0.9323      0.489 0.652 0.348
#> GSM601750     1  0.0000      0.960 1.000 0.000
#> GSM601760     1  0.0000      0.960 1.000 0.000
#> GSM601765     2  0.0000      0.978 0.000 1.000
#> GSM601770     2  0.0000      0.978 0.000 1.000
#> GSM601775     2  0.0938      0.969 0.012 0.988
#> GSM601780     1  0.0000      0.960 1.000 0.000
#> GSM601790     2  0.0000      0.978 0.000 1.000
#> GSM601805     2  0.0000      0.978 0.000 1.000
#> GSM601810     1  0.0000      0.960 1.000 0.000
#> GSM601815     2  0.0000      0.978 0.000 1.000
#> GSM601820     1  0.0000      0.960 1.000 0.000
#> GSM601825     2  0.0000      0.978 0.000 1.000
#> GSM601835     2  0.0000      0.978 0.000 1.000
#> GSM601850     1  0.9608      0.400 0.616 0.384
#> GSM601855     1  0.0000      0.960 1.000 0.000
#> GSM601865     2  0.0000      0.978 0.000 1.000
#> GSM601756     2  0.0000      0.978 0.000 1.000
#> GSM601786     2  0.0000      0.978 0.000 1.000
#> GSM601796     1  0.0000      0.960 1.000 0.000
#> GSM601801     2  0.0000      0.978 0.000 1.000
#> GSM601831     1  0.0000      0.960 1.000 0.000
#> GSM601841     1  0.0000      0.960 1.000 0.000
#> GSM601846     2  0.1414      0.963 0.020 0.980
#> GSM601861     2  0.0000      0.978 0.000 1.000
#> GSM601871     2  0.3431      0.923 0.064 0.936
#> GSM601751     2  0.0000      0.978 0.000 1.000
#> GSM601761     1  0.0000      0.960 1.000 0.000
#> GSM601766     2  0.4690      0.886 0.100 0.900
#> GSM601771     2  0.0000      0.978 0.000 1.000
#> GSM601776     1  0.0000      0.960 1.000 0.000
#> GSM601781     1  0.3274      0.912 0.940 0.060
#> GSM601791     1  0.0000      0.960 1.000 0.000
#> GSM601806     2  0.0000      0.978 0.000 1.000
#> GSM601811     1  0.0000      0.960 1.000 0.000
#> GSM601816     1  0.0000      0.960 1.000 0.000
#> GSM601821     2  0.0000      0.978 0.000 1.000
#> GSM601826     1  0.0000      0.960 1.000 0.000
#> GSM601836     1  0.0376      0.957 0.996 0.004
#> GSM601851     1  0.0000      0.960 1.000 0.000
#> GSM601856     1  0.0000      0.960 1.000 0.000
#> GSM601866     1  0.0000      0.960 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM601752     2  0.4351     0.7558 0.168 0.828 0.004
#> GSM601782     3  0.6062     0.4383 0.384 0.000 0.616
#> GSM601792     1  0.1015     0.7374 0.980 0.012 0.008
#> GSM601797     2  0.5662     0.7994 0.092 0.808 0.100
#> GSM601827     3  0.5948     0.4915 0.360 0.000 0.640
#> GSM601837     2  0.6274     0.3639 0.000 0.544 0.456
#> GSM601842     2  0.2939     0.8247 0.012 0.916 0.072
#> GSM601857     3  0.3686     0.6885 0.140 0.000 0.860
#> GSM601867     3  0.3816     0.5823 0.000 0.148 0.852
#> GSM601747     1  0.7796     0.2023 0.552 0.056 0.392
#> GSM601757     3  0.6307     0.1820 0.488 0.000 0.512
#> GSM601762     2  0.4235     0.7616 0.000 0.824 0.176
#> GSM601767     2  0.1860     0.8297 0.052 0.948 0.000
#> GSM601772     2  0.1129     0.8343 0.004 0.976 0.020
#> GSM601777     3  0.4591     0.6213 0.032 0.120 0.848
#> GSM601787     3  0.4605     0.5194 0.000 0.204 0.796
#> GSM601802     2  0.2878     0.8089 0.096 0.904 0.000
#> GSM601807     3  0.2261     0.6332 0.000 0.068 0.932
#> GSM601812     3  0.6140     0.4117 0.404 0.000 0.596
#> GSM601817     3  0.4750     0.6562 0.216 0.000 0.784
#> GSM601822     2  0.6302     0.1910 0.480 0.520 0.000
#> GSM601832     2  0.3415     0.8252 0.020 0.900 0.080
#> GSM601847     2  0.5397     0.6218 0.280 0.720 0.000
#> GSM601852     3  0.6307     0.1731 0.488 0.000 0.512
#> GSM601862     3  0.3267     0.6885 0.116 0.000 0.884
#> GSM601753     2  0.4002     0.7609 0.160 0.840 0.000
#> GSM601783     1  0.4555     0.5933 0.800 0.000 0.200
#> GSM601793     1  0.3116     0.6841 0.892 0.000 0.108
#> GSM601798     2  0.1919     0.8373 0.024 0.956 0.020
#> GSM601828     3  0.6215     0.3562 0.428 0.000 0.572
#> GSM601838     2  0.5591     0.6331 0.000 0.696 0.304
#> GSM601843     2  0.3267     0.7998 0.000 0.884 0.116
#> GSM601858     3  0.6225    -0.0831 0.000 0.432 0.568
#> GSM601868     3  0.3340     0.6889 0.120 0.000 0.880
#> GSM601748     3  0.6225     0.3465 0.432 0.000 0.568
#> GSM601758     1  0.4235     0.6199 0.824 0.000 0.176
#> GSM601763     1  0.6204     0.1050 0.576 0.424 0.000
#> GSM601768     2  0.2711     0.8138 0.088 0.912 0.000
#> GSM601773     2  0.0829     0.8360 0.012 0.984 0.004
#> GSM601778     1  0.5180     0.6633 0.812 0.032 0.156
#> GSM601788     2  0.4842     0.7232 0.000 0.776 0.224
#> GSM601803     2  0.0747     0.8363 0.016 0.984 0.000
#> GSM601808     3  0.4062     0.6836 0.164 0.000 0.836
#> GSM601813     1  0.5733     0.3837 0.676 0.000 0.324
#> GSM601818     3  0.4931     0.6453 0.232 0.000 0.768
#> GSM601823     1  0.3116     0.6918 0.892 0.108 0.000
#> GSM601833     2  0.2200     0.8270 0.004 0.940 0.056
#> GSM601848     1  0.1643     0.7280 0.956 0.044 0.000
#> GSM601853     3  0.4002     0.6850 0.160 0.000 0.840
#> GSM601863     3  0.4842     0.6506 0.224 0.000 0.776
#> GSM601754     2  0.4062     0.7580 0.164 0.836 0.000
#> GSM601784     2  0.2066     0.8241 0.000 0.940 0.060
#> GSM601794     1  0.2176     0.7341 0.948 0.020 0.032
#> GSM601799     2  0.5138     0.6606 0.252 0.748 0.000
#> GSM601829     1  0.6260     0.0103 0.552 0.000 0.448
#> GSM601839     2  0.5785     0.5943 0.000 0.668 0.332
#> GSM601844     1  0.1525     0.7309 0.964 0.004 0.032
#> GSM601859     2  0.2625     0.8153 0.084 0.916 0.000
#> GSM601869     3  0.5560     0.5769 0.300 0.000 0.700
#> GSM601749     1  0.4887     0.5546 0.772 0.000 0.228
#> GSM601759     1  0.5859     0.3337 0.656 0.000 0.344
#> GSM601764     1  0.2959     0.6979 0.900 0.100 0.000
#> GSM601769     2  0.1525     0.8332 0.004 0.964 0.032
#> GSM601774     2  0.0829     0.8360 0.012 0.984 0.004
#> GSM601779     1  0.4062     0.6468 0.836 0.164 0.000
#> GSM601789     2  0.4974     0.7110 0.000 0.764 0.236
#> GSM601804     2  0.6140     0.3923 0.404 0.596 0.000
#> GSM601809     3  0.5677     0.6281 0.072 0.124 0.804
#> GSM601814     2  0.1529     0.8297 0.000 0.960 0.040
#> GSM601819     1  0.1878     0.7252 0.952 0.004 0.044
#> GSM601824     2  0.6309     0.1391 0.496 0.504 0.000
#> GSM601834     2  0.0892     0.8356 0.020 0.980 0.000
#> GSM601849     1  0.1170     0.7371 0.976 0.016 0.008
#> GSM601854     1  0.6215     0.0841 0.572 0.000 0.428
#> GSM601864     2  0.6260     0.3797 0.000 0.552 0.448
#> GSM601755     2  0.1620     0.8368 0.024 0.964 0.012
#> GSM601785     2  0.2448     0.8192 0.076 0.924 0.000
#> GSM601795     1  0.5363     0.5028 0.724 0.276 0.000
#> GSM601800     2  0.3116     0.8008 0.108 0.892 0.000
#> GSM601830     3  0.1620     0.6560 0.012 0.024 0.964
#> GSM601840     2  0.4540     0.7979 0.028 0.848 0.124
#> GSM601845     2  0.6625     0.7283 0.196 0.736 0.068
#> GSM601860     2  0.1411     0.8339 0.036 0.964 0.000
#> GSM601870     3  0.3038     0.6133 0.000 0.104 0.896
#> GSM601750     1  0.6305    -0.1279 0.516 0.000 0.484
#> GSM601760     1  0.2636     0.7297 0.932 0.020 0.048
#> GSM601765     2  0.1411     0.8346 0.036 0.964 0.000
#> GSM601770     2  0.1289     0.8346 0.032 0.968 0.000
#> GSM601775     2  0.6045     0.4449 0.380 0.620 0.000
#> GSM601780     1  0.3619     0.6707 0.864 0.136 0.000
#> GSM601790     2  0.4931     0.7146 0.000 0.768 0.232
#> GSM601805     2  0.1860     0.8290 0.052 0.948 0.000
#> GSM601810     3  0.4062     0.6836 0.164 0.000 0.836
#> GSM601815     2  0.4178     0.7630 0.000 0.828 0.172
#> GSM601820     1  0.5560     0.4299 0.700 0.000 0.300
#> GSM601825     2  0.1643     0.8315 0.044 0.956 0.000
#> GSM601835     3  0.6280    -0.1661 0.000 0.460 0.540
#> GSM601850     1  0.6140     0.1856 0.596 0.404 0.000
#> GSM601855     3  0.1163     0.6496 0.000 0.028 0.972
#> GSM601865     2  0.6260     0.3819 0.000 0.552 0.448
#> GSM601756     2  0.1482     0.8371 0.020 0.968 0.012
#> GSM601786     2  0.5254     0.6795 0.000 0.736 0.264
#> GSM601796     1  0.1919     0.7378 0.956 0.020 0.024
#> GSM601801     2  0.1289     0.8321 0.000 0.968 0.032
#> GSM601831     3  0.5363     0.6034 0.276 0.000 0.724
#> GSM601841     1  0.6111     0.1966 0.604 0.000 0.396
#> GSM601846     2  0.6294     0.6440 0.020 0.692 0.288
#> GSM601861     2  0.2537     0.8154 0.000 0.920 0.080
#> GSM601871     3  0.4555     0.5270 0.000 0.200 0.800
#> GSM601751     2  0.1643     0.8316 0.044 0.956 0.000
#> GSM601761     1  0.1585     0.7355 0.964 0.028 0.008
#> GSM601766     2  0.5706     0.5567 0.320 0.680 0.000
#> GSM601771     2  0.2383     0.8333 0.016 0.940 0.044
#> GSM601776     1  0.1015     0.7361 0.980 0.008 0.012
#> GSM601781     1  0.4531     0.6515 0.824 0.168 0.008
#> GSM601791     1  0.2261     0.7176 0.932 0.068 0.000
#> GSM601806     2  0.1765     0.8309 0.004 0.956 0.040
#> GSM601811     3  0.3551     0.6893 0.132 0.000 0.868
#> GSM601816     1  0.1585     0.7359 0.964 0.028 0.008
#> GSM601821     2  0.2878     0.8082 0.000 0.904 0.096
#> GSM601826     1  0.1015     0.7371 0.980 0.012 0.008
#> GSM601836     1  0.5285     0.6746 0.812 0.040 0.148
#> GSM601851     1  0.1989     0.7283 0.948 0.048 0.004
#> GSM601856     3  0.3340     0.6896 0.120 0.000 0.880
#> GSM601866     3  0.6079     0.4424 0.388 0.000 0.612

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM601752     4   0.244    0.72360 0.024 0.060 0.000 0.916
#> GSM601782     1   0.740   -0.16798 0.448 0.076 0.444 0.032
#> GSM601792     4   0.504    0.41785 0.336 0.000 0.012 0.652
#> GSM601797     4   0.259    0.67811 0.004 0.012 0.076 0.908
#> GSM601827     3   0.697    0.42091 0.332 0.008 0.556 0.104
#> GSM601837     2   0.761    0.41644 0.000 0.456 0.328 0.216
#> GSM601842     2   0.505    0.67423 0.004 0.744 0.040 0.212
#> GSM601857     3   0.292    0.68193 0.140 0.000 0.860 0.000
#> GSM601867     3   0.407    0.56202 0.000 0.120 0.828 0.052
#> GSM601747     2   0.819   -0.00581 0.308 0.432 0.244 0.016
#> GSM601757     1   0.516   -0.15411 0.524 0.000 0.472 0.004
#> GSM601762     2   0.650    0.55452 0.000 0.612 0.112 0.276
#> GSM601767     2   0.334    0.73419 0.032 0.868 0.000 0.100
#> GSM601772     2   0.247    0.75115 0.016 0.924 0.016 0.044
#> GSM601777     4   0.583    0.49779 0.012 0.040 0.280 0.668
#> GSM601787     3   0.419    0.53599 0.000 0.148 0.812 0.040
#> GSM601802     4   0.354    0.71486 0.028 0.120 0.000 0.852
#> GSM601807     3   0.483    0.50501 0.000 0.040 0.752 0.208
#> GSM601812     3   0.524    0.34393 0.432 0.000 0.560 0.008
#> GSM601817     3   0.537    0.59300 0.252 0.028 0.708 0.012
#> GSM601822     4   0.437    0.66510 0.156 0.044 0.000 0.800
#> GSM601832     2   0.494    0.70785 0.016 0.772 0.032 0.180
#> GSM601847     4   0.455    0.71649 0.092 0.104 0.000 0.804
#> GSM601852     1   0.537   -0.06225 0.544 0.000 0.444 0.012
#> GSM601862     3   0.303    0.68202 0.124 0.008 0.868 0.000
#> GSM601753     4   0.510    0.66769 0.064 0.188 0.000 0.748
#> GSM601783     1   0.392    0.49111 0.816 0.008 0.168 0.008
#> GSM601793     4   0.595    0.25369 0.384 0.000 0.044 0.572
#> GSM601798     4   0.310    0.70506 0.000 0.104 0.020 0.876
#> GSM601828     3   0.588    0.26361 0.452 0.008 0.520 0.020
#> GSM601838     2   0.721    0.48335 0.000 0.540 0.184 0.276
#> GSM601843     2   0.492    0.69246 0.000 0.760 0.056 0.184
#> GSM601858     2   0.632    0.38332 0.000 0.504 0.436 0.060
#> GSM601868     3   0.294    0.68238 0.128 0.000 0.868 0.004
#> GSM601748     3   0.581    0.21674 0.472 0.012 0.504 0.012
#> GSM601758     1   0.433    0.48194 0.800 0.028 0.168 0.004
#> GSM601763     1   0.665    0.26638 0.536 0.372 0.000 0.092
#> GSM601768     2   0.238    0.72271 0.068 0.916 0.000 0.016
#> GSM601773     2   0.402    0.66712 0.004 0.772 0.000 0.224
#> GSM601778     4   0.509    0.55911 0.180 0.000 0.068 0.752
#> GSM601788     2   0.590    0.68274 0.000 0.700 0.160 0.140
#> GSM601803     4   0.454    0.63578 0.004 0.208 0.020 0.768
#> GSM601808     3   0.320    0.68158 0.136 0.000 0.856 0.008
#> GSM601813     1   0.514    0.33466 0.680 0.000 0.296 0.024
#> GSM601818     3   0.718    0.41968 0.316 0.108 0.560 0.016
#> GSM601823     1   0.498    0.29966 0.664 0.012 0.000 0.324
#> GSM601833     2   0.211    0.75433 0.000 0.932 0.024 0.044
#> GSM601848     1   0.494    0.31949 0.672 0.000 0.012 0.316
#> GSM601853     3   0.343    0.68069 0.144 0.000 0.844 0.012
#> GSM601863     3   0.391    0.64500 0.212 0.004 0.784 0.000
#> GSM601754     4   0.407    0.71896 0.052 0.120 0.000 0.828
#> GSM601784     2   0.355    0.74392 0.004 0.860 0.028 0.108
#> GSM601794     4   0.518    0.44803 0.288 0.000 0.028 0.684
#> GSM601799     4   0.598    0.67563 0.136 0.172 0.000 0.692
#> GSM601829     1   0.743    0.14319 0.480 0.000 0.336 0.184
#> GSM601839     2   0.627    0.63742 0.000 0.656 0.220 0.124
#> GSM601844     1   0.332    0.57750 0.888 0.020 0.028 0.064
#> GSM601859     2   0.324    0.72693 0.064 0.880 0.000 0.056
#> GSM601869     3   0.465    0.54943 0.312 0.000 0.684 0.004
#> GSM601749     1   0.389    0.45996 0.796 0.000 0.196 0.008
#> GSM601759     1   0.611    0.31923 0.656 0.056 0.276 0.012
#> GSM601764     1   0.578    0.37737 0.608 0.360 0.020 0.012
#> GSM601769     2   0.185    0.74577 0.024 0.948 0.008 0.020
#> GSM601774     2   0.206    0.74691 0.016 0.932 0.000 0.052
#> GSM601779     1   0.539    0.37764 0.696 0.048 0.000 0.256
#> GSM601789     2   0.322    0.73245 0.000 0.864 0.120 0.016
#> GSM601804     4   0.654    0.62644 0.200 0.164 0.000 0.636
#> GSM601809     2   0.744    0.24321 0.124 0.520 0.340 0.016
#> GSM601814     2   0.430    0.70244 0.012 0.796 0.012 0.180
#> GSM601819     1   0.619    0.44760 0.640 0.288 0.064 0.008
#> GSM601824     1   0.778   -0.09286 0.428 0.288 0.000 0.284
#> GSM601834     2   0.247    0.74165 0.028 0.916 0.000 0.056
#> GSM601849     1   0.314    0.57038 0.896 0.012 0.048 0.044
#> GSM601854     1   0.493   -0.01105 0.568 0.000 0.432 0.000
#> GSM601864     3   0.784   -0.38365 0.000 0.360 0.376 0.264
#> GSM601755     4   0.328    0.70247 0.000 0.116 0.020 0.864
#> GSM601785     2   0.339    0.72633 0.056 0.872 0.000 0.072
#> GSM601795     4   0.480    0.51512 0.276 0.016 0.000 0.708
#> GSM601800     4   0.386    0.71083 0.032 0.136 0.000 0.832
#> GSM601830     3   0.356    0.62403 0.016 0.040 0.876 0.068
#> GSM601840     4   0.674   -0.13841 0.012 0.456 0.060 0.472
#> GSM601845     2   0.829    0.41800 0.212 0.536 0.060 0.192
#> GSM601860     2   0.310    0.72611 0.072 0.892 0.008 0.028
#> GSM601870     3   0.345    0.58752 0.000 0.052 0.868 0.080
#> GSM601750     1   0.541   -0.03514 0.552 0.004 0.436 0.008
#> GSM601760     1   0.568    0.49464 0.708 0.224 0.060 0.008
#> GSM601765     2   0.173    0.74141 0.028 0.948 0.000 0.024
#> GSM601770     2   0.202    0.74399 0.028 0.940 0.004 0.028
#> GSM601775     2   0.748    0.20686 0.248 0.504 0.000 0.248
#> GSM601780     1   0.521    0.51688 0.756 0.140 0.000 0.104
#> GSM601790     2   0.467    0.72156 0.000 0.792 0.132 0.076
#> GSM601805     4   0.485    0.64237 0.028 0.220 0.004 0.748
#> GSM601810     3   0.359    0.67473 0.168 0.000 0.824 0.008
#> GSM601815     2   0.516    0.71283 0.000 0.760 0.104 0.136
#> GSM601820     1   0.530    0.34968 0.696 0.024 0.272 0.008
#> GSM601825     4   0.552    0.22943 0.020 0.412 0.000 0.568
#> GSM601835     2   0.731    0.34330 0.000 0.428 0.420 0.152
#> GSM601850     1   0.699    0.01724 0.532 0.132 0.000 0.336
#> GSM601855     3   0.304    0.61987 0.008 0.020 0.892 0.080
#> GSM601865     2   0.630    0.58950 0.000 0.608 0.308 0.084
#> GSM601756     4   0.352    0.70125 0.004 0.120 0.020 0.856
#> GSM601786     2   0.438    0.71796 0.016 0.816 0.140 0.028
#> GSM601796     4   0.637    0.23067 0.396 0.020 0.032 0.552
#> GSM601801     4   0.415    0.66652 0.000 0.160 0.032 0.808
#> GSM601831     3   0.616    0.54200 0.272 0.000 0.640 0.088
#> GSM601841     1   0.782    0.20211 0.460 0.004 0.256 0.280
#> GSM601846     4   0.429    0.63779 0.000 0.052 0.136 0.812
#> GSM601861     2   0.343    0.73793 0.000 0.860 0.028 0.112
#> GSM601871     3   0.453    0.53176 0.000 0.132 0.800 0.068
#> GSM601751     2   0.352    0.72655 0.052 0.864 0.000 0.084
#> GSM601761     1   0.390    0.56809 0.848 0.112 0.024 0.016
#> GSM601766     2   0.466    0.58216 0.208 0.760 0.000 0.032
#> GSM601771     2   0.459    0.71941 0.024 0.800 0.020 0.156
#> GSM601776     1   0.317    0.57327 0.868 0.000 0.016 0.116
#> GSM601781     4   0.757    0.15417 0.400 0.136 0.012 0.452
#> GSM601791     1   0.391    0.57541 0.848 0.104 0.008 0.040
#> GSM601806     4   0.565    0.52741 0.004 0.268 0.048 0.680
#> GSM601811     3   0.371    0.67351 0.152 0.012 0.832 0.004
#> GSM601816     1   0.552    0.04816 0.556 0.004 0.012 0.428
#> GSM601821     2   0.412    0.72449 0.000 0.820 0.044 0.136
#> GSM601826     1   0.480    0.38783 0.704 0.004 0.008 0.284
#> GSM601836     1   0.712    0.48007 0.656 0.152 0.144 0.048
#> GSM601851     1   0.355    0.57937 0.868 0.016 0.020 0.096
#> GSM601856     3   0.344    0.67063 0.100 0.000 0.864 0.036
#> GSM601866     3   0.548    0.38971 0.404 0.008 0.580 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM601752     4   0.270    0.74526 0.012 0.028 0.012 0.904 0.044
#> GSM601782     2   0.726   -0.15862 0.340 0.356 0.288 0.004 0.012
#> GSM601792     4   0.538    0.61477 0.144 0.052 0.068 0.732 0.004
#> GSM601797     4   0.394    0.68164 0.004 0.052 0.120 0.816 0.008
#> GSM601827     3   0.743    0.22725 0.124 0.388 0.416 0.068 0.004
#> GSM601837     5   0.771    0.38681 0.000 0.148 0.220 0.140 0.492
#> GSM601842     2   0.588    0.34515 0.000 0.652 0.048 0.068 0.232
#> GSM601857     3   0.508    0.56934 0.172 0.032 0.732 0.000 0.064
#> GSM601867     3   0.565    0.53672 0.016 0.064 0.676 0.016 0.228
#> GSM601747     2   0.701    0.44166 0.188 0.580 0.128 0.000 0.104
#> GSM601757     1   0.578    0.40284 0.620 0.064 0.288 0.000 0.028
#> GSM601762     2   0.692   -0.06165 0.000 0.472 0.048 0.112 0.368
#> GSM601767     5   0.633    0.37159 0.024 0.336 0.000 0.100 0.540
#> GSM601772     2   0.555   -0.09418 0.008 0.524 0.012 0.028 0.428
#> GSM601777     4   0.712    0.53757 0.028 0.072 0.204 0.600 0.096
#> GSM601787     3   0.613    0.41276 0.016 0.048 0.592 0.028 0.316
#> GSM601802     4   0.329    0.74095 0.012 0.028 0.000 0.852 0.108
#> GSM601807     3   0.504    0.53506 0.000 0.036 0.740 0.160 0.064
#> GSM601812     1   0.612    0.09248 0.472 0.084 0.432 0.004 0.008
#> GSM601817     3   0.631    0.31088 0.124 0.384 0.484 0.000 0.008
#> GSM601822     4   0.467    0.71387 0.088 0.096 0.004 0.784 0.028
#> GSM601832     2   0.566    0.40217 0.008 0.696 0.028 0.084 0.184
#> GSM601847     4   0.440    0.73504 0.052 0.032 0.000 0.792 0.124
#> GSM601852     1   0.719   -0.05881 0.340 0.316 0.332 0.008 0.004
#> GSM601862     3   0.594    0.53588 0.196 0.036 0.668 0.004 0.096
#> GSM601753     4   0.495    0.70597 0.036 0.068 0.000 0.752 0.144
#> GSM601783     1   0.283    0.61584 0.892 0.032 0.060 0.012 0.004
#> GSM601793     4   0.631    0.51858 0.212 0.048 0.100 0.636 0.004
#> GSM601798     4   0.400    0.73283 0.000 0.052 0.044 0.828 0.076
#> GSM601828     2   0.700   -0.22934 0.260 0.400 0.332 0.004 0.004
#> GSM601838     5   0.672    0.51980 0.000 0.136 0.088 0.164 0.612
#> GSM601843     2   0.623    0.30679 0.000 0.616 0.056 0.076 0.252
#> GSM601858     5   0.649    0.35048 0.000 0.172 0.276 0.012 0.540
#> GSM601868     3   0.583    0.54072 0.184 0.028 0.676 0.004 0.108
#> GSM601748     1   0.672    0.12131 0.440 0.216 0.340 0.000 0.004
#> GSM601758     1   0.351    0.59750 0.848 0.048 0.088 0.000 0.016
#> GSM601763     2   0.709    0.35042 0.312 0.508 0.000 0.084 0.096
#> GSM601768     5   0.574    0.32482 0.032 0.408 0.000 0.032 0.528
#> GSM601773     5   0.658    0.30734 0.004 0.340 0.000 0.188 0.468
#> GSM601778     4   0.515    0.66381 0.108 0.048 0.076 0.760 0.008
#> GSM601788     5   0.604    0.54667 0.004 0.204 0.036 0.100 0.656
#> GSM601803     4   0.436    0.68117 0.000 0.032 0.016 0.760 0.192
#> GSM601808     3   0.335    0.59620 0.116 0.024 0.848 0.008 0.004
#> GSM601813     1   0.373    0.57123 0.800 0.016 0.172 0.012 0.000
#> GSM601818     3   0.779    0.12380 0.316 0.272 0.352 0.000 0.060
#> GSM601823     1   0.644   -0.05590 0.440 0.152 0.000 0.404 0.004
#> GSM601833     2   0.549   -0.09761 0.000 0.528 0.012 0.040 0.420
#> GSM601848     1   0.504    0.22303 0.604 0.028 0.008 0.360 0.000
#> GSM601853     3   0.394    0.59928 0.064 0.116 0.812 0.008 0.000
#> GSM601863     3   0.600    0.42707 0.280 0.036 0.612 0.000 0.072
#> GSM601754     4   0.423    0.74142 0.024 0.036 0.012 0.812 0.116
#> GSM601784     5   0.563    0.46065 0.000 0.336 0.004 0.080 0.580
#> GSM601794     4   0.596    0.60872 0.128 0.064 0.092 0.704 0.012
#> GSM601799     4   0.521    0.71190 0.040 0.108 0.004 0.748 0.100
#> GSM601829     3   0.830    0.20940 0.176 0.300 0.376 0.144 0.004
#> GSM601839     5   0.624    0.51816 0.000 0.208 0.116 0.044 0.632
#> GSM601844     1   0.809    0.36566 0.484 0.276 0.080 0.108 0.052
#> GSM601859     5   0.454    0.55455 0.036 0.136 0.000 0.048 0.780
#> GSM601869     3   0.640    0.14797 0.404 0.032 0.484 0.000 0.080
#> GSM601749     1   0.308    0.59821 0.852 0.032 0.116 0.000 0.000
#> GSM601759     1   0.452    0.55809 0.776 0.044 0.148 0.000 0.032
#> GSM601764     2   0.615    0.35504 0.332 0.556 0.020 0.000 0.092
#> GSM601769     5   0.440    0.51661 0.000 0.276 0.000 0.028 0.696
#> GSM601774     5   0.555    0.42942 0.004 0.328 0.000 0.076 0.592
#> GSM601779     1   0.478    0.41165 0.700 0.052 0.000 0.244 0.004
#> GSM601789     5   0.552    0.42893 0.000 0.320 0.076 0.004 0.600
#> GSM601804     4   0.520    0.72352 0.100 0.040 0.000 0.740 0.120
#> GSM601809     5   0.686    0.00686 0.196 0.032 0.236 0.000 0.536
#> GSM601814     5   0.472    0.56147 0.000 0.132 0.000 0.132 0.736
#> GSM601819     1   0.536    0.55968 0.736 0.104 0.064 0.000 0.096
#> GSM601824     4   0.787    0.18327 0.368 0.128 0.000 0.372 0.132
#> GSM601834     5   0.539    0.39438 0.000 0.372 0.000 0.064 0.564
#> GSM601849     1   0.276    0.61914 0.896 0.024 0.032 0.048 0.000
#> GSM601854     1   0.544    0.36258 0.604 0.084 0.312 0.000 0.000
#> GSM601864     5   0.672    0.39266 0.000 0.040 0.220 0.168 0.572
#> GSM601755     4   0.365    0.73533 0.004 0.036 0.020 0.844 0.096
#> GSM601785     5   0.643    0.32082 0.048 0.388 0.000 0.064 0.500
#> GSM601795     4   0.500    0.67315 0.120 0.056 0.020 0.772 0.032
#> GSM601800     4   0.433    0.73750 0.004 0.072 0.012 0.796 0.116
#> GSM601830     3   0.540    0.39960 0.000 0.316 0.612 0.068 0.004
#> GSM601840     5   0.749    0.22543 0.036 0.096 0.044 0.360 0.464
#> GSM601845     2   0.497    0.45578 0.004 0.772 0.092 0.068 0.064
#> GSM601860     5   0.425    0.49993 0.076 0.104 0.008 0.008 0.804
#> GSM601870     3   0.421    0.58155 0.000 0.076 0.808 0.024 0.092
#> GSM601750     1   0.589    0.35981 0.588 0.120 0.288 0.000 0.004
#> GSM601760     1   0.550    0.51806 0.708 0.076 0.048 0.000 0.168
#> GSM601765     2   0.487    0.24033 0.016 0.640 0.000 0.016 0.328
#> GSM601770     5   0.571    0.34319 0.016 0.388 0.000 0.052 0.544
#> GSM601775     2   0.835    0.17012 0.176 0.372 0.000 0.248 0.204
#> GSM601780     1   0.357    0.60050 0.848 0.056 0.000 0.076 0.020
#> GSM601790     5   0.528    0.52490 0.000 0.248 0.056 0.020 0.676
#> GSM601805     4   0.435    0.69235 0.016 0.028 0.000 0.756 0.200
#> GSM601810     3   0.486    0.58145 0.152 0.028 0.764 0.012 0.044
#> GSM601815     5   0.363    0.59509 0.000 0.064 0.028 0.060 0.848
#> GSM601820     1   0.448    0.56681 0.780 0.040 0.144 0.000 0.036
#> GSM601825     4   0.610    0.34914 0.008 0.100 0.004 0.560 0.328
#> GSM601835     2   0.613    0.37228 0.000 0.620 0.244 0.032 0.104
#> GSM601850     1   0.692    0.02088 0.492 0.076 0.000 0.352 0.080
#> GSM601855     3   0.397    0.55320 0.000 0.156 0.796 0.040 0.008
#> GSM601865     5   0.484    0.50270 0.000 0.056 0.168 0.028 0.748
#> GSM601756     4   0.350    0.72682 0.000 0.024 0.020 0.840 0.116
#> GSM601786     5   0.348    0.54522 0.012 0.064 0.064 0.004 0.856
#> GSM601796     4   0.723    0.45617 0.244 0.088 0.064 0.572 0.032
#> GSM601801     4   0.427    0.71328 0.000 0.044 0.028 0.796 0.132
#> GSM601831     3   0.658    0.50413 0.104 0.152 0.640 0.100 0.004
#> GSM601841     1   0.814    0.29581 0.480 0.036 0.188 0.224 0.072
#> GSM601846     2   0.711    0.04412 0.004 0.408 0.224 0.352 0.012
#> GSM601861     5   0.280    0.59581 0.000 0.068 0.004 0.044 0.884
#> GSM601871     3   0.652    0.39883 0.016 0.060 0.568 0.040 0.316
#> GSM601751     5   0.424    0.53955 0.036 0.072 0.012 0.056 0.824
#> GSM601761     1   0.321    0.61152 0.880 0.036 0.028 0.008 0.048
#> GSM601766     2   0.497    0.42205 0.076 0.712 0.008 0.000 0.204
#> GSM601771     5   0.427    0.55375 0.020 0.044 0.032 0.080 0.824
#> GSM601776     1   0.332    0.60735 0.848 0.020 0.016 0.116 0.000
#> GSM601781     4   0.813    0.20020 0.344 0.080 0.016 0.384 0.176
#> GSM601791     1   0.447    0.58959 0.804 0.084 0.004 0.044 0.064
#> GSM601806     4   0.529    0.59350 0.000 0.040 0.032 0.676 0.252
#> GSM601811     3   0.588    0.57081 0.156 0.044 0.688 0.004 0.108
#> GSM601816     4   0.596    0.15499 0.436 0.044 0.032 0.488 0.000
#> GSM601821     5   0.272    0.59546 0.000 0.040 0.008 0.060 0.892
#> GSM601826     1   0.587    0.14898 0.532 0.080 0.008 0.380 0.000
#> GSM601836     2   0.561    0.40784 0.196 0.688 0.088 0.004 0.024
#> GSM601851     1   0.281    0.61004 0.876 0.024 0.004 0.096 0.000
#> GSM601856     3   0.352    0.61027 0.036 0.064 0.860 0.036 0.004
#> GSM601866     1   0.602    0.25033 0.552 0.052 0.360 0.000 0.036

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM601752     4   0.234    0.60192 0.004 0.020 0.000 0.888 0.000 0.088
#> GSM601782     1   0.760    0.17211 0.448 0.264 0.180 0.012 0.036 0.060
#> GSM601792     4   0.639    0.05757 0.072 0.024 0.048 0.480 0.000 0.376
#> GSM601797     4   0.463    0.45010 0.000 0.020 0.056 0.696 0.000 0.228
#> GSM601827     2   0.701   -0.09727 0.044 0.372 0.248 0.008 0.000 0.328
#> GSM601837     5   0.778    0.46641 0.000 0.116 0.256 0.124 0.440 0.064
#> GSM601842     2   0.372    0.47458 0.000 0.812 0.044 0.008 0.120 0.016
#> GSM601857     3   0.515    0.35223 0.376 0.012 0.564 0.000 0.020 0.028
#> GSM601867     3   0.614    0.37983 0.076 0.036 0.652 0.020 0.180 0.036
#> GSM601747     2   0.785    0.23620 0.312 0.436 0.076 0.032 0.088 0.056
#> GSM601757     1   0.459    0.39572 0.716 0.032 0.216 0.000 0.012 0.024
#> GSM601762     2   0.646    0.24654 0.000 0.568 0.052 0.132 0.228 0.020
#> GSM601767     2   0.674   -0.02948 0.024 0.412 0.000 0.196 0.352 0.016
#> GSM601772     2   0.651    0.29645 0.056 0.592 0.020 0.056 0.244 0.032
#> GSM601777     4   0.692    0.35424 0.008 0.028 0.176 0.572 0.084 0.132
#> GSM601787     3   0.500    0.26477 0.028 0.008 0.660 0.024 0.272 0.008
#> GSM601802     4   0.155    0.61522 0.004 0.000 0.008 0.944 0.012 0.032
#> GSM601807     3   0.505    0.42447 0.008 0.012 0.732 0.084 0.032 0.132
#> GSM601812     1   0.558    0.19514 0.584 0.076 0.300 0.000 0.000 0.040
#> GSM601817     2   0.741   -0.09025 0.172 0.412 0.304 0.000 0.020 0.092
#> GSM601822     4   0.509    0.51912 0.068 0.044 0.000 0.724 0.020 0.144
#> GSM601832     2   0.407    0.48776 0.020 0.812 0.008 0.060 0.084 0.016
#> GSM601847     4   0.464    0.56424 0.044 0.016 0.012 0.780 0.056 0.092
#> GSM601852     1   0.662    0.19872 0.500 0.252 0.180 0.000 0.000 0.068
#> GSM601862     3   0.453    0.42530 0.316 0.000 0.636 0.000 0.044 0.004
#> GSM601753     4   0.331    0.59969 0.012 0.060 0.000 0.856 0.032 0.040
#> GSM601783     1   0.187    0.53993 0.928 0.032 0.024 0.000 0.000 0.016
#> GSM601793     4   0.672   -0.05251 0.088 0.016 0.076 0.444 0.000 0.376
#> GSM601798     4   0.275    0.59164 0.000 0.016 0.016 0.872 0.004 0.092
#> GSM601828     2   0.725   -0.02640 0.156 0.436 0.224 0.000 0.000 0.184
#> GSM601838     5   0.721    0.49034 0.000 0.132 0.140 0.180 0.520 0.028
#> GSM601843     2   0.420    0.46778 0.000 0.788 0.044 0.012 0.120 0.036
#> GSM601858     5   0.749    0.36399 0.036 0.108 0.368 0.036 0.412 0.040
#> GSM601868     3   0.479    0.46542 0.260 0.000 0.668 0.000 0.040 0.032
#> GSM601748     1   0.527    0.35131 0.664 0.112 0.192 0.000 0.000 0.032
#> GSM601758     1   0.193    0.53503 0.928 0.024 0.032 0.000 0.008 0.008
#> GSM601763     2   0.685    0.35635 0.204 0.568 0.000 0.096 0.056 0.076
#> GSM601768     2   0.634    0.05521 0.048 0.488 0.000 0.056 0.376 0.032
#> GSM601773     2   0.687   -0.08055 0.008 0.380 0.008 0.280 0.308 0.016
#> GSM601778     4   0.643    0.39376 0.060 0.024 0.060 0.600 0.020 0.236
#> GSM601788     5   0.875    0.35304 0.048 0.120 0.148 0.276 0.352 0.056
#> GSM601803     4   0.162    0.61507 0.000 0.000 0.012 0.940 0.028 0.020
#> GSM601808     3   0.535    0.49832 0.212 0.016 0.652 0.000 0.008 0.112
#> GSM601813     1   0.369    0.50285 0.792 0.004 0.136 0.000 0.000 0.068
#> GSM601818     1   0.702    0.23665 0.540 0.196 0.156 0.000 0.056 0.052
#> GSM601823     1   0.723   -0.04211 0.376 0.092 0.000 0.352 0.008 0.172
#> GSM601833     2   0.469    0.30378 0.004 0.660 0.012 0.032 0.288 0.004
#> GSM601848     1   0.687    0.00342 0.392 0.020 0.016 0.356 0.004 0.212
#> GSM601853     3   0.657    0.44198 0.100 0.144 0.556 0.000 0.004 0.196
#> GSM601863     3   0.476    0.32122 0.384 0.000 0.572 0.000 0.016 0.028
#> GSM601754     4   0.517    0.45551 0.000 0.028 0.016 0.696 0.076 0.184
#> GSM601784     5   0.648    0.30735 0.000 0.324 0.012 0.056 0.504 0.104
#> GSM601794     6   0.650    0.12584 0.028 0.016 0.064 0.392 0.028 0.472
#> GSM601799     4   0.532    0.49546 0.016 0.088 0.000 0.688 0.032 0.176
#> GSM601829     6   0.702    0.06912 0.040 0.268 0.212 0.024 0.000 0.456
#> GSM601839     5   0.681    0.45183 0.000 0.232 0.176 0.048 0.520 0.024
#> GSM601844     6   0.745    0.36384 0.140 0.152 0.040 0.016 0.112 0.540
#> GSM601859     5   0.467    0.51411 0.000 0.108 0.000 0.072 0.748 0.072
#> GSM601869     3   0.584    0.17969 0.400 0.000 0.480 0.000 0.036 0.084
#> GSM601749     1   0.349    0.54580 0.828 0.008 0.056 0.000 0.008 0.100
#> GSM601759     1   0.326    0.49443 0.844 0.036 0.100 0.000 0.012 0.008
#> GSM601764     2   0.607    0.35842 0.212 0.604 0.004 0.000 0.096 0.084
#> GSM601769     5   0.530    0.36877 0.004 0.280 0.000 0.020 0.620 0.076
#> GSM601774     5   0.683    0.05806 0.020 0.404 0.012 0.136 0.404 0.024
#> GSM601779     1   0.689    0.11116 0.444 0.016 0.004 0.240 0.024 0.272
#> GSM601789     5   0.654    0.22976 0.000 0.384 0.092 0.044 0.456 0.024
#> GSM601804     4   0.463    0.52954 0.048 0.012 0.000 0.752 0.044 0.144
#> GSM601809     5   0.673    0.21156 0.168 0.016 0.228 0.004 0.536 0.048
#> GSM601814     5   0.557    0.51852 0.000 0.096 0.016 0.172 0.672 0.044
#> GSM601819     1   0.596    0.45763 0.652 0.056 0.032 0.000 0.172 0.088
#> GSM601824     4   0.822   -0.01608 0.284 0.104 0.000 0.344 0.076 0.192
#> GSM601834     5   0.570    0.20795 0.000 0.372 0.000 0.020 0.508 0.100
#> GSM601849     1   0.599    0.48033 0.640 0.012 0.044 0.072 0.020 0.212
#> GSM601854     1   0.712    0.18610 0.408 0.072 0.244 0.000 0.004 0.272
#> GSM601864     5   0.629    0.34276 0.000 0.004 0.376 0.164 0.436 0.020
#> GSM601755     4   0.173    0.61560 0.000 0.012 0.004 0.936 0.012 0.036
#> GSM601785     5   0.689    0.22436 0.008 0.276 0.008 0.048 0.484 0.176
#> GSM601795     6   0.635    0.26142 0.020 0.020 0.008 0.348 0.100 0.504
#> GSM601800     4   0.575    0.38010 0.000 0.052 0.016 0.652 0.088 0.192
#> GSM601830     3   0.632    0.07413 0.004 0.292 0.396 0.004 0.000 0.304
#> GSM601840     4   0.820   -0.11959 0.032 0.096 0.072 0.412 0.296 0.092
#> GSM601845     2   0.434    0.47396 0.000 0.776 0.052 0.008 0.040 0.124
#> GSM601860     5   0.540    0.40650 0.032 0.032 0.024 0.036 0.712 0.164
#> GSM601870     3   0.462    0.47443 0.004 0.076 0.764 0.008 0.036 0.112
#> GSM601750     1   0.550    0.34409 0.648 0.068 0.228 0.000 0.008 0.048
#> GSM601760     1   0.540    0.49272 0.688 0.008 0.048 0.000 0.120 0.136
#> GSM601765     2   0.334    0.44465 0.008 0.800 0.000 0.020 0.172 0.000
#> GSM601770     2   0.668    0.04787 0.032 0.476 0.004 0.120 0.344 0.024
#> GSM601775     4   0.765    0.03485 0.168 0.300 0.000 0.408 0.068 0.056
#> GSM601780     1   0.539    0.40964 0.648 0.016 0.000 0.052 0.036 0.248
#> GSM601790     5   0.666    0.43082 0.000 0.260 0.136 0.060 0.528 0.016
#> GSM601805     4   0.219    0.61535 0.004 0.004 0.008 0.916 0.032 0.036
#> GSM601810     3   0.606    0.32481 0.368 0.016 0.516 0.004 0.036 0.060
#> GSM601815     5   0.622    0.53794 0.000 0.092 0.132 0.144 0.620 0.012
#> GSM601820     1   0.616    0.44424 0.596 0.004 0.080 0.000 0.112 0.208
#> GSM601825     4   0.481    0.46410 0.000 0.108 0.000 0.712 0.156 0.024
#> GSM601835     2   0.503    0.44329 0.000 0.704 0.148 0.004 0.028 0.116
#> GSM601850     4   0.746    0.18357 0.292 0.060 0.000 0.440 0.056 0.152
#> GSM601855     3   0.586    0.31276 0.000 0.168 0.576 0.012 0.008 0.236
#> GSM601865     5   0.533    0.47563 0.000 0.036 0.336 0.020 0.588 0.020
#> GSM601756     4   0.153    0.61508 0.000 0.016 0.008 0.948 0.016 0.012
#> GSM601786     5   0.400    0.50480 0.000 0.032 0.056 0.008 0.804 0.100
#> GSM601796     6   0.708    0.46227 0.064 0.012 0.020 0.192 0.180 0.532
#> GSM601801     4   0.274    0.60982 0.000 0.044 0.008 0.888 0.028 0.032
#> GSM601831     3   0.682    0.17269 0.060 0.148 0.424 0.008 0.000 0.360
#> GSM601841     1   0.804    0.19802 0.460 0.016 0.204 0.160 0.060 0.100
#> GSM601846     2   0.709   -0.12732 0.000 0.396 0.168 0.088 0.004 0.344
#> GSM601861     5   0.457    0.55305 0.000 0.072 0.032 0.076 0.780 0.040
#> GSM601871     3   0.495    0.25528 0.016 0.000 0.656 0.032 0.276 0.020
#> GSM601751     5   0.659    0.51727 0.072 0.008 0.096 0.160 0.620 0.044
#> GSM601761     1   0.390    0.51587 0.768 0.008 0.016 0.004 0.012 0.192
#> GSM601766     2   0.378    0.48011 0.012 0.808 0.008 0.004 0.128 0.040
#> GSM601771     5   0.787    0.48552 0.056 0.060 0.168 0.196 0.488 0.032
#> GSM601776     1   0.400    0.49958 0.772 0.000 0.004 0.148 0.004 0.072
#> GSM601781     6   0.775    0.32050 0.128 0.016 0.012 0.140 0.316 0.388
#> GSM601791     1   0.662    0.12678 0.428 0.016 0.008 0.004 0.216 0.328
#> GSM601806     4   0.356    0.57182 0.000 0.012 0.040 0.832 0.096 0.020
#> GSM601811     3   0.629    0.31595 0.364 0.012 0.500 0.004 0.060 0.060
#> GSM601816     4   0.690    0.04212 0.268 0.012 0.024 0.420 0.004 0.272
#> GSM601821     5   0.461    0.54782 0.000 0.044 0.032 0.092 0.776 0.056
#> GSM601826     1   0.688    0.10202 0.420 0.056 0.000 0.324 0.004 0.196
#> GSM601836     2   0.400    0.48567 0.108 0.800 0.024 0.000 0.008 0.060
#> GSM601851     1   0.560    0.44369 0.660 0.024 0.004 0.124 0.012 0.176
#> GSM601856     3   0.522    0.45292 0.052 0.068 0.668 0.000 0.000 0.212
#> GSM601866     1   0.429    0.28580 0.672 0.004 0.296 0.000 0.016 0.012

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n time(p) gender(p) k
#> MAD:NMF 120   0.499    0.1533 2
#> MAD:NMF  98   0.204    0.2603 3
#> MAD:NMF  77   0.466    0.0759 4
#> MAD:NMF  64   0.238    0.0137 5
#> MAD:NMF  25   0.148    0.5879 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 125 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.431           0.793       0.885         0.3043 0.659   0.659
#> 3 3 0.356           0.638       0.759         0.4083 0.949   0.923
#> 4 4 0.623           0.640       0.838         0.4679 0.592   0.418
#> 5 5 0.631           0.720       0.834         0.0741 0.867   0.669
#> 6 6 0.736           0.700       0.851         0.0796 0.974   0.911

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM601752     1  0.2948     0.8765 0.948 0.052
#> GSM601782     1  0.4431     0.8803 0.908 0.092
#> GSM601792     1  0.4431     0.8803 0.908 0.092
#> GSM601797     1  0.4815     0.8707 0.896 0.104
#> GSM601827     1  0.4431     0.8803 0.908 0.092
#> GSM601837     2  0.5408     0.6864 0.124 0.876
#> GSM601842     1  0.1843     0.8843 0.972 0.028
#> GSM601857     1  0.8016     0.6325 0.756 0.244
#> GSM601867     2  0.9896     0.4894 0.440 0.560
#> GSM601747     1  0.4431     0.8803 0.908 0.092
#> GSM601757     1  0.4431     0.8803 0.908 0.092
#> GSM601762     1  0.3431     0.8725 0.936 0.064
#> GSM601767     1  0.3274     0.8710 0.940 0.060
#> GSM601772     1  0.2423     0.8822 0.960 0.040
#> GSM601777     1  0.5842     0.8341 0.860 0.140
#> GSM601787     2  0.0672     0.6711 0.008 0.992
#> GSM601802     1  0.3274     0.8710 0.940 0.060
#> GSM601807     2  0.9754     0.5214 0.408 0.592
#> GSM601812     1  0.4815     0.8712 0.896 0.104
#> GSM601817     1  0.4431     0.8803 0.908 0.092
#> GSM601822     1  0.4161     0.8834 0.916 0.084
#> GSM601832     1  0.1843     0.8843 0.972 0.028
#> GSM601847     1  0.4298     0.8824 0.912 0.088
#> GSM601852     1  0.0938     0.8877 0.988 0.012
#> GSM601862     2  0.9922     0.4789 0.448 0.552
#> GSM601753     1  0.0672     0.8861 0.992 0.008
#> GSM601783     1  0.4298     0.8820 0.912 0.088
#> GSM601793     1  0.4431     0.8803 0.908 0.092
#> GSM601798     1  0.3274     0.8710 0.940 0.060
#> GSM601828     1  0.4431     0.8803 0.908 0.092
#> GSM601838     2  0.5408     0.6864 0.124 0.876
#> GSM601843     1  0.1843     0.8843 0.972 0.028
#> GSM601858     1  0.3274     0.8715 0.940 0.060
#> GSM601868     2  0.9922     0.4789 0.448 0.552
#> GSM601748     1  0.4431     0.8803 0.908 0.092
#> GSM601758     1  0.4562     0.8779 0.904 0.096
#> GSM601763     1  0.0376     0.8856 0.996 0.004
#> GSM601768     1  0.3274     0.8710 0.940 0.060
#> GSM601773     1  0.3274     0.8710 0.940 0.060
#> GSM601778     1  0.5737     0.8393 0.864 0.136
#> GSM601788     1  0.2948     0.8757 0.948 0.052
#> GSM601803     1  0.3879     0.8631 0.924 0.076
#> GSM601808     2  0.9922     0.4789 0.448 0.552
#> GSM601813     1  0.4815     0.8712 0.896 0.104
#> GSM601818     1  0.4431     0.8803 0.908 0.092
#> GSM601823     1  0.0376     0.8856 0.996 0.004
#> GSM601833     1  0.1843     0.8843 0.972 0.028
#> GSM601848     1  0.4161     0.8834 0.916 0.084
#> GSM601853     1  0.6712     0.7740 0.824 0.176
#> GSM601863     2  0.9922     0.4789 0.448 0.552
#> GSM601754     1  0.2948     0.8765 0.948 0.052
#> GSM601784     1  0.3274     0.8710 0.940 0.060
#> GSM601794     1  0.4431     0.8803 0.908 0.092
#> GSM601799     1  0.0672     0.8861 0.992 0.008
#> GSM601829     1  0.0672     0.8868 0.992 0.008
#> GSM601839     2  0.5408     0.6864 0.124 0.876
#> GSM601844     1  0.0672     0.8868 0.992 0.008
#> GSM601859     1  0.1414     0.8873 0.980 0.020
#> GSM601869     2  0.9922     0.4789 0.448 0.552
#> GSM601749     1  0.4298     0.8820 0.912 0.088
#> GSM601759     1  0.4562     0.8779 0.904 0.096
#> GSM601764     1  0.0376     0.8856 0.996 0.004
#> GSM601769     1  0.9661     0.0659 0.608 0.392
#> GSM601774     1  0.3274     0.8710 0.940 0.060
#> GSM601779     1  0.4298     0.8820 0.912 0.088
#> GSM601789     1  0.2948     0.8757 0.948 0.052
#> GSM601804     1  0.2948     0.8765 0.948 0.052
#> GSM601809     2  0.9922     0.4789 0.448 0.552
#> GSM601814     2  0.6247     0.6792 0.156 0.844
#> GSM601819     1  0.4298     0.8820 0.912 0.088
#> GSM601824     1  0.0376     0.8856 0.996 0.004
#> GSM601834     1  0.1843     0.8843 0.972 0.028
#> GSM601849     1  0.4161     0.8834 0.916 0.084
#> GSM601854     1  0.4431     0.8803 0.908 0.092
#> GSM601864     2  0.0938     0.6725 0.012 0.988
#> GSM601755     1  0.3274     0.8710 0.940 0.060
#> GSM601785     1  0.1414     0.8857 0.980 0.020
#> GSM601795     1  0.4431     0.8803 0.908 0.092
#> GSM601800     1  0.3274     0.8710 0.940 0.060
#> GSM601830     1  1.0000    -0.3285 0.504 0.496
#> GSM601840     1  0.2948     0.8757 0.948 0.052
#> GSM601845     1  0.0376     0.8856 0.996 0.004
#> GSM601860     1  0.2948     0.8757 0.948 0.052
#> GSM601870     2  0.0376     0.6686 0.004 0.996
#> GSM601750     1  0.4431     0.8803 0.908 0.092
#> GSM601760     1  0.4562     0.8779 0.904 0.096
#> GSM601765     1  0.1633     0.8847 0.976 0.024
#> GSM601770     1  0.3274     0.8710 0.940 0.060
#> GSM601775     1  0.0672     0.8850 0.992 0.008
#> GSM601780     1  0.4298     0.8820 0.912 0.088
#> GSM601790     2  0.6048     0.6833 0.148 0.852
#> GSM601805     1  0.3274     0.8710 0.940 0.060
#> GSM601810     2  0.9922     0.4789 0.448 0.552
#> GSM601815     2  0.6247     0.6792 0.156 0.844
#> GSM601820     1  0.4815     0.8712 0.896 0.104
#> GSM601825     1  0.1843     0.8843 0.972 0.028
#> GSM601835     1  0.1843     0.8843 0.972 0.028
#> GSM601850     1  0.4298     0.8824 0.912 0.088
#> GSM601855     2  0.9954     0.4448 0.460 0.540
#> GSM601865     2  0.1184     0.6742 0.016 0.984
#> GSM601756     1  0.3274     0.8710 0.940 0.060
#> GSM601786     2  0.2043     0.6790 0.032 0.968
#> GSM601796     1  0.4431     0.8803 0.908 0.092
#> GSM601801     1  0.3274     0.8710 0.940 0.060
#> GSM601831     1  0.4815     0.8712 0.896 0.104
#> GSM601841     2  0.9977     0.4098 0.472 0.528
#> GSM601846     1  0.0376     0.8856 0.996 0.004
#> GSM601861     2  0.6247     0.6792 0.156 0.844
#> GSM601871     2  0.0672     0.6711 0.008 0.992
#> GSM601751     1  0.2948     0.8757 0.948 0.052
#> GSM601761     1  0.4562     0.8779 0.904 0.096
#> GSM601766     1  0.0376     0.8856 0.996 0.004
#> GSM601771     1  0.2948     0.8757 0.948 0.052
#> GSM601776     1  0.4298     0.8820 0.912 0.088
#> GSM601781     1  0.5842     0.8341 0.860 0.140
#> GSM601791     1  0.4431     0.8803 0.908 0.092
#> GSM601806     1  0.4022     0.8593 0.920 0.080
#> GSM601811     2  0.9922     0.4789 0.448 0.552
#> GSM601816     1  0.4431     0.8803 0.908 0.092
#> GSM601821     2  0.6247     0.6792 0.156 0.844
#> GSM601826     1  0.0376     0.8856 0.996 0.004
#> GSM601836     1  0.0376     0.8856 0.996 0.004
#> GSM601851     1  0.4298     0.8820 0.912 0.088
#> GSM601856     1  0.6712     0.7740 0.824 0.176
#> GSM601866     2  0.9977     0.4098 0.472 0.528

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM601752     1   0.355     0.6651 0.868 0.132 0.000
#> GSM601782     1   0.510     0.6398 0.752 0.000 0.248
#> GSM601792     1   0.510     0.6398 0.752 0.000 0.248
#> GSM601797     1   0.522     0.6237 0.740 0.000 0.260
#> GSM601827     1   0.510     0.6398 0.752 0.000 0.248
#> GSM601837     2   0.000     0.8081 0.000 1.000 0.000
#> GSM601842     1   0.334     0.6697 0.880 0.120 0.000
#> GSM601857     1   0.613     0.3444 0.600 0.000 0.400
#> GSM601867     3   0.651     0.7731 0.284 0.028 0.688
#> GSM601747     1   0.510     0.6398 0.752 0.000 0.248
#> GSM601757     1   0.510     0.6398 0.752 0.000 0.248
#> GSM601762     1   0.440     0.6315 0.812 0.188 0.000
#> GSM601767     1   0.435     0.6326 0.816 0.184 0.000
#> GSM601772     1   0.341     0.6685 0.876 0.124 0.000
#> GSM601777     1   0.553     0.5732 0.704 0.000 0.296
#> GSM601787     3   0.484    -0.2308 0.000 0.224 0.776
#> GSM601802     1   0.435     0.6326 0.816 0.184 0.000
#> GSM601807     3   0.820     0.6995 0.284 0.108 0.608
#> GSM601812     1   0.525     0.6181 0.736 0.000 0.264
#> GSM601817     1   0.510     0.6398 0.752 0.000 0.248
#> GSM601822     1   0.493     0.6456 0.768 0.000 0.232
#> GSM601832     1   0.334     0.6697 0.880 0.120 0.000
#> GSM601847     1   0.506     0.6425 0.756 0.000 0.244
#> GSM601852     1   0.355     0.6703 0.868 0.000 0.132
#> GSM601862     3   0.546     0.7910 0.288 0.000 0.712
#> GSM601753     1   0.263     0.6804 0.916 0.084 0.000
#> GSM601783     1   0.506     0.6409 0.756 0.000 0.244
#> GSM601793     1   0.510     0.6398 0.752 0.000 0.248
#> GSM601798     1   0.435     0.6326 0.816 0.184 0.000
#> GSM601828     1   0.510     0.6398 0.752 0.000 0.248
#> GSM601838     2   0.000     0.8081 0.000 1.000 0.000
#> GSM601843     1   0.334     0.6697 0.880 0.120 0.000
#> GSM601858     1   0.628     0.6464 0.760 0.176 0.064
#> GSM601868     3   0.546     0.7910 0.288 0.000 0.712
#> GSM601748     1   0.510     0.6398 0.752 0.000 0.248
#> GSM601758     1   0.514     0.6353 0.748 0.000 0.252
#> GSM601763     1   0.000     0.6863 1.000 0.000 0.000
#> GSM601768     1   0.435     0.6326 0.816 0.184 0.000
#> GSM601773     1   0.435     0.6326 0.816 0.184 0.000
#> GSM601778     1   0.550     0.5809 0.708 0.000 0.292
#> GSM601788     1   0.558     0.6510 0.788 0.176 0.036
#> GSM601803     1   0.455     0.6183 0.800 0.200 0.000
#> GSM601808     3   0.546     0.7910 0.288 0.000 0.712
#> GSM601813     1   0.525     0.6181 0.736 0.000 0.264
#> GSM601818     1   0.510     0.6398 0.752 0.000 0.248
#> GSM601823     1   0.000     0.6863 1.000 0.000 0.000
#> GSM601833     1   0.334     0.6697 0.880 0.120 0.000
#> GSM601848     1   0.502     0.6431 0.760 0.000 0.240
#> GSM601853     1   0.581     0.4643 0.664 0.000 0.336
#> GSM601863     3   0.546     0.7910 0.288 0.000 0.712
#> GSM601754     1   0.355     0.6651 0.868 0.132 0.000
#> GSM601784     1   0.435     0.6326 0.816 0.184 0.000
#> GSM601794     1   0.510     0.6398 0.752 0.000 0.248
#> GSM601799     1   0.263     0.6804 0.916 0.084 0.000
#> GSM601829     1   0.334     0.6726 0.880 0.000 0.120
#> GSM601839     2   0.000     0.8081 0.000 1.000 0.000
#> GSM601844     1   0.348     0.6712 0.872 0.000 0.128
#> GSM601859     1   0.288     0.6783 0.904 0.096 0.000
#> GSM601869     3   0.546     0.7910 0.288 0.000 0.712
#> GSM601749     1   0.506     0.6409 0.756 0.000 0.244
#> GSM601759     1   0.514     0.6353 0.748 0.000 0.252
#> GSM601764     1   0.000     0.6863 1.000 0.000 0.000
#> GSM601769     2   0.630     0.0999 0.484 0.516 0.000
#> GSM601774     1   0.435     0.6326 0.816 0.184 0.000
#> GSM601779     1   0.506     0.6409 0.756 0.000 0.244
#> GSM601789     1   0.558     0.6510 0.788 0.176 0.036
#> GSM601804     1   0.355     0.6651 0.868 0.132 0.000
#> GSM601809     3   0.546     0.7910 0.288 0.000 0.712
#> GSM601814     2   0.129     0.8106 0.032 0.968 0.000
#> GSM601819     1   0.506     0.6409 0.756 0.000 0.244
#> GSM601824     1   0.000     0.6863 1.000 0.000 0.000
#> GSM601834     1   0.334     0.6697 0.880 0.120 0.000
#> GSM601849     1   0.502     0.6431 0.760 0.000 0.240
#> GSM601854     1   0.510     0.6398 0.752 0.000 0.248
#> GSM601864     2   0.629     0.5733 0.000 0.536 0.464
#> GSM601755     1   0.435     0.6326 0.816 0.184 0.000
#> GSM601785     1   0.296     0.6765 0.900 0.100 0.000
#> GSM601795     1   0.510     0.6398 0.752 0.000 0.248
#> GSM601800     1   0.435     0.6326 0.816 0.184 0.000
#> GSM601830     3   0.586     0.6916 0.344 0.000 0.656
#> GSM601840     1   0.558     0.6510 0.788 0.176 0.036
#> GSM601845     1   0.000     0.6863 1.000 0.000 0.000
#> GSM601860     1   0.558     0.6510 0.788 0.176 0.036
#> GSM601870     3   0.497    -0.2473 0.000 0.236 0.764
#> GSM601750     1   0.510     0.6398 0.752 0.000 0.248
#> GSM601760     1   0.514     0.6353 0.748 0.000 0.252
#> GSM601765     1   0.319     0.6729 0.888 0.112 0.000
#> GSM601770     1   0.435     0.6326 0.816 0.184 0.000
#> GSM601775     1   0.216     0.6837 0.936 0.064 0.000
#> GSM601780     1   0.506     0.6409 0.756 0.000 0.244
#> GSM601790     2   0.103     0.8119 0.024 0.976 0.000
#> GSM601805     1   0.435     0.6326 0.816 0.184 0.000
#> GSM601810     3   0.546     0.7910 0.288 0.000 0.712
#> GSM601815     2   0.129     0.8106 0.032 0.968 0.000
#> GSM601820     1   0.525     0.6181 0.736 0.000 0.264
#> GSM601825     1   0.334     0.6697 0.880 0.120 0.000
#> GSM601835     1   0.312     0.6733 0.892 0.108 0.000
#> GSM601850     1   0.506     0.6425 0.756 0.000 0.244
#> GSM601855     3   0.556     0.7733 0.300 0.000 0.700
#> GSM601865     2   0.630     0.5592 0.000 0.520 0.480
#> GSM601756     1   0.435     0.6326 0.816 0.184 0.000
#> GSM601786     2   0.679     0.5601 0.012 0.536 0.452
#> GSM601796     1   0.510     0.6398 0.752 0.000 0.248
#> GSM601801     1   0.435     0.6326 0.816 0.184 0.000
#> GSM601831     1   0.525     0.6181 0.736 0.000 0.264
#> GSM601841     3   0.565     0.7549 0.312 0.000 0.688
#> GSM601846     1   0.000     0.6863 1.000 0.000 0.000
#> GSM601861     2   0.129     0.8106 0.032 0.968 0.000
#> GSM601871     3   0.484    -0.2308 0.000 0.224 0.776
#> GSM601751     1   0.558     0.6510 0.788 0.176 0.036
#> GSM601761     1   0.514     0.6353 0.748 0.000 0.252
#> GSM601766     1   0.153     0.6858 0.960 0.040 0.000
#> GSM601771     1   0.558     0.6510 0.788 0.176 0.036
#> GSM601776     1   0.506     0.6409 0.756 0.000 0.244
#> GSM601781     1   0.553     0.5732 0.704 0.000 0.296
#> GSM601791     1   0.510     0.6398 0.752 0.000 0.248
#> GSM601806     1   0.460     0.6136 0.796 0.204 0.000
#> GSM601811     3   0.546     0.7910 0.288 0.000 0.712
#> GSM601816     1   0.510     0.6398 0.752 0.000 0.248
#> GSM601821     2   0.129     0.8106 0.032 0.968 0.000
#> GSM601826     1   0.000     0.6863 1.000 0.000 0.000
#> GSM601836     1   0.000     0.6863 1.000 0.000 0.000
#> GSM601851     1   0.506     0.6409 0.756 0.000 0.244
#> GSM601856     1   0.581     0.4643 0.664 0.000 0.336
#> GSM601866     3   0.565     0.7549 0.312 0.000 0.688

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM601752     2  0.2813     0.8089 0.000 0.896 0.080 0.024
#> GSM601782     1  0.5678     0.7586 0.524 0.024 0.452 0.000
#> GSM601792     1  0.5843     0.7574 0.524 0.024 0.448 0.004
#> GSM601797     1  0.5827     0.7539 0.536 0.024 0.436 0.004
#> GSM601827     1  0.5678     0.7586 0.524 0.024 0.452 0.000
#> GSM601837     4  0.1389     0.8642 0.000 0.048 0.000 0.952
#> GSM601842     2  0.1557     0.8199 0.000 0.944 0.056 0.000
#> GSM601857     1  0.5284     0.6064 0.668 0.020 0.308 0.004
#> GSM601867     1  0.1510     0.2083 0.956 0.000 0.016 0.028
#> GSM601747     1  0.5843     0.7574 0.524 0.024 0.448 0.004
#> GSM601757     1  0.5678     0.7586 0.524 0.024 0.452 0.000
#> GSM601762     2  0.0817     0.8087 0.000 0.976 0.000 0.024
#> GSM601767     2  0.0707     0.8102 0.000 0.980 0.000 0.020
#> GSM601772     2  0.1545     0.8182 0.000 0.952 0.040 0.008
#> GSM601777     1  0.5592     0.7274 0.572 0.024 0.404 0.000
#> GSM601787     3  0.5917    -0.1450 0.444 0.000 0.520 0.036
#> GSM601802     2  0.0707     0.8102 0.000 0.980 0.000 0.020
#> GSM601807     1  0.3160     0.0443 0.872 0.000 0.108 0.020
#> GSM601812     1  0.5378     0.7513 0.540 0.012 0.448 0.000
#> GSM601817     1  0.5678     0.7586 0.524 0.024 0.452 0.000
#> GSM601822     1  0.6306     0.7151 0.500 0.048 0.448 0.004
#> GSM601832     2  0.1474     0.8201 0.000 0.948 0.052 0.000
#> GSM601847     1  0.5925     0.7534 0.524 0.028 0.444 0.004
#> GSM601852     3  0.7777    -0.4972 0.416 0.148 0.420 0.016
#> GSM601862     1  0.0188     0.2688 0.996 0.000 0.000 0.004
#> GSM601753     2  0.3479     0.7795 0.000 0.840 0.148 0.012
#> GSM601783     1  0.5682     0.7576 0.520 0.024 0.456 0.000
#> GSM601793     1  0.5843     0.7574 0.524 0.024 0.448 0.004
#> GSM601798     2  0.0707     0.8102 0.000 0.980 0.000 0.020
#> GSM601828     1  0.5678     0.7586 0.524 0.024 0.452 0.000
#> GSM601838     4  0.1389     0.8642 0.000 0.048 0.000 0.952
#> GSM601843     2  0.1557     0.8199 0.000 0.944 0.056 0.000
#> GSM601858     2  0.5306     0.5819 0.240 0.720 0.020 0.020
#> GSM601868     1  0.0188     0.2688 0.996 0.000 0.000 0.004
#> GSM601748     1  0.5678     0.7586 0.524 0.024 0.452 0.000
#> GSM601758     1  0.5673     0.7586 0.528 0.024 0.448 0.000
#> GSM601763     2  0.5026     0.6066 0.000 0.672 0.312 0.016
#> GSM601768     2  0.0707     0.8102 0.000 0.980 0.000 0.020
#> GSM601773     2  0.0707     0.8102 0.000 0.980 0.000 0.020
#> GSM601778     1  0.5602     0.7309 0.568 0.024 0.408 0.000
#> GSM601788     2  0.4513     0.6991 0.168 0.796 0.016 0.020
#> GSM601803     2  0.1118     0.8039 0.000 0.964 0.000 0.036
#> GSM601808     1  0.0188     0.2688 0.996 0.000 0.000 0.004
#> GSM601813     1  0.5378     0.7513 0.540 0.012 0.448 0.000
#> GSM601818     1  0.5678     0.7586 0.524 0.024 0.452 0.000
#> GSM601823     2  0.5417     0.4380 0.000 0.572 0.412 0.016
#> GSM601833     2  0.1474     0.8201 0.000 0.948 0.052 0.000
#> GSM601848     1  0.5768     0.7493 0.516 0.028 0.456 0.000
#> GSM601853     1  0.5204     0.6893 0.612 0.012 0.376 0.000
#> GSM601863     1  0.0188     0.2688 0.996 0.000 0.000 0.004
#> GSM601754     2  0.2813     0.8089 0.000 0.896 0.080 0.024
#> GSM601784     2  0.0707     0.8102 0.000 0.980 0.000 0.020
#> GSM601794     1  0.5843     0.7574 0.524 0.024 0.448 0.004
#> GSM601799     2  0.3479     0.7795 0.000 0.840 0.148 0.012
#> GSM601829     3  0.7963    -0.4395 0.392 0.176 0.416 0.016
#> GSM601839     4  0.1389     0.8642 0.000 0.048 0.000 0.952
#> GSM601844     3  0.7835    -0.4780 0.412 0.156 0.416 0.016
#> GSM601859     2  0.2988     0.7980 0.000 0.876 0.112 0.012
#> GSM601869     1  0.0188     0.2688 0.996 0.000 0.000 0.004
#> GSM601749     1  0.5682     0.7576 0.520 0.024 0.456 0.000
#> GSM601759     1  0.5673     0.7586 0.528 0.024 0.448 0.000
#> GSM601764     2  0.5026     0.6066 0.000 0.672 0.312 0.016
#> GSM601769     2  0.4679     0.3632 0.000 0.648 0.000 0.352
#> GSM601774     2  0.0707     0.8102 0.000 0.980 0.000 0.020
#> GSM601779     1  0.5682     0.7576 0.520 0.024 0.456 0.000
#> GSM601789     2  0.4513     0.6991 0.168 0.796 0.016 0.020
#> GSM601804     2  0.2813     0.8089 0.000 0.896 0.080 0.024
#> GSM601809     1  0.0188     0.2688 0.996 0.000 0.000 0.004
#> GSM601814     4  0.2081     0.8661 0.000 0.084 0.000 0.916
#> GSM601819     1  0.5682     0.7576 0.520 0.024 0.456 0.000
#> GSM601824     2  0.5284     0.5214 0.000 0.616 0.368 0.016
#> GSM601834     2  0.1474     0.8201 0.000 0.948 0.052 0.000
#> GSM601849     1  0.5768     0.7493 0.516 0.028 0.456 0.000
#> GSM601854     1  0.5678     0.7586 0.524 0.024 0.452 0.000
#> GSM601864     4  0.7149     0.5550 0.132 0.000 0.416 0.452
#> GSM601755     2  0.0707     0.8102 0.000 0.980 0.000 0.020
#> GSM601785     2  0.2255     0.8149 0.000 0.920 0.068 0.012
#> GSM601795     1  0.5843     0.7574 0.524 0.024 0.448 0.004
#> GSM601800     2  0.0707     0.8102 0.000 0.980 0.000 0.020
#> GSM601830     1  0.1716     0.3347 0.936 0.000 0.064 0.000
#> GSM601840     2  0.4513     0.6991 0.168 0.796 0.016 0.020
#> GSM601845     2  0.5269     0.5284 0.000 0.620 0.364 0.016
#> GSM601860     2  0.4513     0.6991 0.168 0.796 0.016 0.020
#> GSM601870     3  0.6114    -0.1626 0.428 0.000 0.524 0.048
#> GSM601750     1  0.5678     0.7586 0.524 0.024 0.452 0.000
#> GSM601760     1  0.5673     0.7586 0.528 0.024 0.448 0.000
#> GSM601765     2  0.1792     0.8178 0.000 0.932 0.068 0.000
#> GSM601770     2  0.0707     0.8102 0.000 0.980 0.000 0.020
#> GSM601775     2  0.3479     0.7807 0.000 0.840 0.148 0.012
#> GSM601780     1  0.5682     0.7576 0.520 0.024 0.456 0.000
#> GSM601790     4  0.1940     0.8669 0.000 0.076 0.000 0.924
#> GSM601805     2  0.0707     0.8102 0.000 0.980 0.000 0.020
#> GSM601810     1  0.0188     0.2688 0.996 0.000 0.000 0.004
#> GSM601815     4  0.2081     0.8661 0.000 0.084 0.000 0.916
#> GSM601820     1  0.5378     0.7513 0.540 0.012 0.448 0.000
#> GSM601825     2  0.1474     0.8201 0.000 0.948 0.052 0.000
#> GSM601835     2  0.1890     0.8188 0.000 0.936 0.056 0.008
#> GSM601850     1  0.5925     0.7534 0.524 0.028 0.444 0.004
#> GSM601855     1  0.0469     0.2855 0.988 0.000 0.012 0.000
#> GSM601865     4  0.7338     0.6040 0.152 0.004 0.332 0.512
#> GSM601756     2  0.0707     0.8102 0.000 0.980 0.000 0.020
#> GSM601786     4  0.7385     0.6192 0.164 0.008 0.284 0.544
#> GSM601796     1  0.5843     0.7574 0.524 0.024 0.448 0.004
#> GSM601801     2  0.0707     0.8102 0.000 0.980 0.000 0.020
#> GSM601831     1  0.5378     0.7513 0.540 0.012 0.448 0.000
#> GSM601841     1  0.1109     0.2991 0.968 0.000 0.028 0.004
#> GSM601846     2  0.5284     0.5214 0.000 0.616 0.368 0.016
#> GSM601861     4  0.2081     0.8661 0.000 0.084 0.000 0.916
#> GSM601871     3  0.5917    -0.1450 0.444 0.000 0.520 0.036
#> GSM601751     2  0.4513     0.6991 0.168 0.796 0.016 0.020
#> GSM601761     1  0.5673     0.7586 0.528 0.024 0.448 0.000
#> GSM601766     2  0.4535     0.6945 0.000 0.744 0.240 0.016
#> GSM601771     2  0.4513     0.6991 0.168 0.796 0.016 0.020
#> GSM601776     1  0.5682     0.7576 0.520 0.024 0.456 0.000
#> GSM601781     1  0.5592     0.7274 0.572 0.024 0.404 0.000
#> GSM601791     1  0.5678     0.7586 0.524 0.024 0.452 0.000
#> GSM601806     2  0.1211     0.8028 0.000 0.960 0.000 0.040
#> GSM601811     1  0.0188     0.2688 0.996 0.000 0.000 0.004
#> GSM601816     1  0.5678     0.7586 0.524 0.024 0.452 0.000
#> GSM601821     4  0.2081     0.8661 0.000 0.084 0.000 0.916
#> GSM601826     2  0.5417     0.4380 0.000 0.572 0.412 0.016
#> GSM601836     2  0.5269     0.5284 0.000 0.620 0.364 0.016
#> GSM601851     1  0.5682     0.7576 0.520 0.024 0.456 0.000
#> GSM601856     1  0.5204     0.6893 0.612 0.012 0.376 0.000
#> GSM601866     1  0.1109     0.2991 0.968 0.000 0.028 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM601752     2  0.2491     0.7157 0.068 0.896 0.000 0.036 0.000
#> GSM601782     1  0.0000     0.9101 1.000 0.000 0.000 0.000 0.000
#> GSM601792     1  0.0162     0.9106 0.996 0.000 0.000 0.004 0.000
#> GSM601797     1  0.0566     0.9053 0.984 0.000 0.012 0.004 0.000
#> GSM601827     1  0.0290     0.9097 0.992 0.000 0.000 0.008 0.000
#> GSM601837     5  0.0510     0.8603 0.000 0.016 0.000 0.000 0.984
#> GSM601842     2  0.2286     0.7364 0.004 0.888 0.000 0.108 0.000
#> GSM601857     1  0.3010     0.6292 0.824 0.000 0.172 0.004 0.000
#> GSM601867     3  0.5315     0.7203 0.428 0.000 0.532 0.020 0.020
#> GSM601747     1  0.0162     0.9106 0.996 0.000 0.000 0.004 0.000
#> GSM601757     1  0.0290     0.9097 0.992 0.000 0.000 0.008 0.000
#> GSM601762     2  0.0162     0.7751 0.000 0.996 0.000 0.000 0.004
#> GSM601767     2  0.0000     0.7768 0.000 1.000 0.000 0.000 0.000
#> GSM601772     2  0.2077     0.7506 0.008 0.908 0.000 0.084 0.000
#> GSM601777     1  0.1410     0.8494 0.940 0.000 0.060 0.000 0.000
#> GSM601787     3  0.2280    -0.0716 0.000 0.000 0.880 0.120 0.000
#> GSM601802     2  0.0000     0.7768 0.000 1.000 0.000 0.000 0.000
#> GSM601807     3  0.4540     0.6742 0.340 0.000 0.640 0.020 0.000
#> GSM601812     1  0.0510     0.9014 0.984 0.000 0.016 0.000 0.000
#> GSM601817     1  0.0290     0.9097 0.992 0.000 0.000 0.008 0.000
#> GSM601822     1  0.1914     0.8480 0.924 0.016 0.000 0.060 0.000
#> GSM601832     2  0.2233     0.7390 0.004 0.892 0.000 0.104 0.000
#> GSM601847     1  0.0290     0.9095 0.992 0.000 0.000 0.008 0.000
#> GSM601852     1  0.4029     0.4134 0.680 0.004 0.000 0.316 0.000
#> GSM601862     3  0.4430     0.7509 0.456 0.000 0.540 0.004 0.000
#> GSM601753     2  0.4547     0.4913 0.072 0.736 0.000 0.192 0.000
#> GSM601783     1  0.0609     0.9048 0.980 0.000 0.000 0.020 0.000
#> GSM601793     1  0.0162     0.9106 0.996 0.000 0.000 0.004 0.000
#> GSM601798     2  0.0000     0.7768 0.000 1.000 0.000 0.000 0.000
#> GSM601828     1  0.0290     0.9097 0.992 0.000 0.000 0.008 0.000
#> GSM601838     5  0.0510     0.8603 0.000 0.016 0.000 0.000 0.984
#> GSM601843     2  0.2286     0.7364 0.004 0.888 0.000 0.108 0.000
#> GSM601858     2  0.3992     0.3501 0.268 0.720 0.012 0.000 0.000
#> GSM601868     3  0.4430     0.7509 0.456 0.000 0.540 0.004 0.000
#> GSM601748     1  0.0290     0.9097 0.992 0.000 0.000 0.008 0.000
#> GSM601758     1  0.0162     0.9102 0.996 0.000 0.000 0.004 0.000
#> GSM601763     2  0.6004    -0.4565 0.120 0.508 0.000 0.372 0.000
#> GSM601768     2  0.0000     0.7768 0.000 1.000 0.000 0.000 0.000
#> GSM601773     2  0.0000     0.7768 0.000 1.000 0.000 0.000 0.000
#> GSM601778     1  0.1341     0.8552 0.944 0.000 0.056 0.000 0.000
#> GSM601788     2  0.3196     0.5416 0.192 0.804 0.004 0.000 0.000
#> GSM601803     2  0.0510     0.7695 0.000 0.984 0.000 0.000 0.016
#> GSM601808     3  0.4430     0.7509 0.456 0.000 0.540 0.004 0.000
#> GSM601813     1  0.0510     0.9014 0.984 0.000 0.016 0.000 0.000
#> GSM601818     1  0.0000     0.9101 1.000 0.000 0.000 0.000 0.000
#> GSM601823     4  0.6387     0.9151 0.216 0.272 0.000 0.512 0.000
#> GSM601833     2  0.2233     0.7390 0.004 0.892 0.000 0.104 0.000
#> GSM601848     1  0.1197     0.8818 0.952 0.000 0.000 0.048 0.000
#> GSM601853     1  0.2488     0.7288 0.872 0.000 0.124 0.004 0.000
#> GSM601863     3  0.4430     0.7509 0.456 0.000 0.540 0.004 0.000
#> GSM601754     2  0.2491     0.7157 0.068 0.896 0.000 0.036 0.000
#> GSM601784     2  0.0162     0.7764 0.000 0.996 0.000 0.004 0.000
#> GSM601794     1  0.0162     0.9106 0.996 0.000 0.000 0.004 0.000
#> GSM601799     2  0.4547     0.4913 0.072 0.736 0.000 0.192 0.000
#> GSM601829     1  0.4639     0.3204 0.632 0.024 0.000 0.344 0.000
#> GSM601839     5  0.0510     0.8603 0.000 0.016 0.000 0.000 0.984
#> GSM601844     1  0.4235     0.3660 0.656 0.008 0.000 0.336 0.000
#> GSM601859     2  0.3921     0.5949 0.044 0.784 0.000 0.172 0.000
#> GSM601869     3  0.4430     0.7509 0.456 0.000 0.540 0.004 0.000
#> GSM601749     1  0.0609     0.9048 0.980 0.000 0.000 0.020 0.000
#> GSM601759     1  0.0162     0.9102 0.996 0.000 0.000 0.004 0.000
#> GSM601764     2  0.6004    -0.4565 0.120 0.508 0.000 0.372 0.000
#> GSM601769     2  0.3983     0.3557 0.000 0.660 0.000 0.000 0.340
#> GSM601774     2  0.0000     0.7768 0.000 1.000 0.000 0.000 0.000
#> GSM601779     1  0.0880     0.8967 0.968 0.000 0.000 0.032 0.000
#> GSM601789     2  0.3196     0.5416 0.192 0.804 0.004 0.000 0.000
#> GSM601804     2  0.2491     0.7157 0.068 0.896 0.000 0.036 0.000
#> GSM601809     3  0.4283     0.7507 0.456 0.000 0.544 0.000 0.000
#> GSM601814     5  0.1270     0.8613 0.000 0.052 0.000 0.000 0.948
#> GSM601819     1  0.0609     0.9048 0.980 0.000 0.000 0.020 0.000
#> GSM601824     4  0.6351     0.9491 0.184 0.316 0.000 0.500 0.000
#> GSM601834     2  0.2233     0.7390 0.004 0.892 0.000 0.104 0.000
#> GSM601849     1  0.1197     0.8818 0.952 0.000 0.000 0.048 0.000
#> GSM601854     1  0.0000     0.9101 1.000 0.000 0.000 0.000 0.000
#> GSM601864     5  0.6162     0.5954 0.000 0.000 0.432 0.132 0.436
#> GSM601755     2  0.0000     0.7768 0.000 1.000 0.000 0.000 0.000
#> GSM601785     2  0.2753     0.7070 0.008 0.856 0.000 0.136 0.000
#> GSM601795     1  0.0162     0.9106 0.996 0.000 0.000 0.004 0.000
#> GSM601800     2  0.0000     0.7768 0.000 1.000 0.000 0.000 0.000
#> GSM601830     1  0.4297    -0.6277 0.528 0.000 0.472 0.000 0.000
#> GSM601840     2  0.3196     0.5416 0.192 0.804 0.004 0.000 0.000
#> GSM601845     4  0.6358     0.9396 0.180 0.328 0.000 0.492 0.000
#> GSM601860     2  0.3196     0.5416 0.192 0.804 0.004 0.000 0.000
#> GSM601870     3  0.4907    -0.2533 0.000 0.000 0.492 0.484 0.024
#> GSM601750     1  0.0000     0.9101 1.000 0.000 0.000 0.000 0.000
#> GSM601760     1  0.0162     0.9102 0.996 0.000 0.000 0.004 0.000
#> GSM601765     2  0.2439     0.7263 0.004 0.876 0.000 0.120 0.000
#> GSM601770     2  0.0000     0.7768 0.000 1.000 0.000 0.000 0.000
#> GSM601775     2  0.4429     0.5284 0.064 0.744 0.000 0.192 0.000
#> GSM601780     1  0.0880     0.8967 0.968 0.000 0.000 0.032 0.000
#> GSM601790     5  0.1121     0.8626 0.000 0.044 0.000 0.000 0.956
#> GSM601805     2  0.0000     0.7768 0.000 1.000 0.000 0.000 0.000
#> GSM601810     3  0.4283     0.7507 0.456 0.000 0.544 0.000 0.000
#> GSM601815     5  0.1270     0.8613 0.000 0.052 0.000 0.000 0.948
#> GSM601820     1  0.0510     0.9014 0.984 0.000 0.016 0.000 0.000
#> GSM601825     2  0.2286     0.7369 0.004 0.888 0.000 0.108 0.000
#> GSM601835     2  0.2389     0.7316 0.004 0.880 0.000 0.116 0.000
#> GSM601850     1  0.0290     0.9095 0.992 0.000 0.000 0.008 0.000
#> GSM601855     3  0.4300     0.7259 0.476 0.000 0.524 0.000 0.000
#> GSM601865     5  0.5953     0.6362 0.000 0.000 0.384 0.112 0.504
#> GSM601756     2  0.0000     0.7768 0.000 1.000 0.000 0.000 0.000
#> GSM601786     5  0.6122     0.6520 0.012 0.004 0.364 0.084 0.536
#> GSM601796     1  0.0162     0.9106 0.996 0.000 0.000 0.004 0.000
#> GSM601801     2  0.0000     0.7768 0.000 1.000 0.000 0.000 0.000
#> GSM601831     1  0.0671     0.9023 0.980 0.000 0.016 0.004 0.000
#> GSM601841     3  0.4449     0.7065 0.484 0.000 0.512 0.004 0.000
#> GSM601846     4  0.6351     0.9491 0.184 0.316 0.000 0.500 0.000
#> GSM601861     5  0.1270     0.8613 0.000 0.052 0.000 0.000 0.948
#> GSM601871     3  0.2280    -0.0716 0.000 0.000 0.880 0.120 0.000
#> GSM601751     2  0.3196     0.5416 0.192 0.804 0.004 0.000 0.000
#> GSM601761     1  0.0162     0.9102 0.996 0.000 0.000 0.004 0.000
#> GSM601766     2  0.5606    -0.0428 0.104 0.600 0.000 0.296 0.000
#> GSM601771     2  0.3196     0.5416 0.192 0.804 0.004 0.000 0.000
#> GSM601776     1  0.0703     0.9037 0.976 0.000 0.000 0.024 0.000
#> GSM601781     1  0.1410     0.8494 0.940 0.000 0.060 0.000 0.000
#> GSM601791     1  0.0000     0.9101 1.000 0.000 0.000 0.000 0.000
#> GSM601806     2  0.0609     0.7679 0.000 0.980 0.000 0.000 0.020
#> GSM601811     3  0.4283     0.7507 0.456 0.000 0.544 0.000 0.000
#> GSM601816     1  0.0000     0.9101 1.000 0.000 0.000 0.000 0.000
#> GSM601821     5  0.1270     0.8613 0.000 0.052 0.000 0.000 0.948
#> GSM601826     4  0.6387     0.9151 0.216 0.272 0.000 0.512 0.000
#> GSM601836     4  0.6358     0.9396 0.180 0.328 0.000 0.492 0.000
#> GSM601851     1  0.0880     0.8967 0.968 0.000 0.000 0.032 0.000
#> GSM601856     1  0.2488     0.7288 0.872 0.000 0.124 0.004 0.000
#> GSM601866     3  0.4449     0.7065 0.484 0.000 0.512 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM601752     2  0.2263      0.737 0.048 0.896 0.000 0.000 0.000 0.056
#> GSM601782     1  0.0260      0.927 0.992 0.000 0.008 0.000 0.000 0.000
#> GSM601792     1  0.0146      0.928 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM601797     1  0.0508      0.925 0.984 0.000 0.012 0.000 0.000 0.004
#> GSM601827     1  0.0260      0.927 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM601837     5  0.3864     -0.142 0.000 0.000 0.000 0.480 0.520 0.000
#> GSM601842     2  0.2219      0.725 0.000 0.864 0.000 0.000 0.000 0.136
#> GSM601857     1  0.3769      0.456 0.640 0.000 0.356 0.000 0.004 0.000
#> GSM601867     3  0.3353      0.839 0.068 0.000 0.836 0.016 0.080 0.000
#> GSM601747     1  0.0146      0.928 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM601757     1  0.0260      0.927 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM601762     2  0.0405      0.784 0.000 0.988 0.000 0.004 0.000 0.008
#> GSM601767     2  0.0260      0.786 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM601772     2  0.1957      0.745 0.000 0.888 0.000 0.000 0.000 0.112
#> GSM601777     1  0.1663      0.870 0.912 0.000 0.088 0.000 0.000 0.000
#> GSM601787     3  0.6068      0.265 0.000 0.000 0.420 0.220 0.356 0.004
#> GSM601802     2  0.0000      0.787 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601807     3  0.3167      0.780 0.020 0.000 0.840 0.120 0.016 0.004
#> GSM601812     1  0.0790      0.914 0.968 0.000 0.032 0.000 0.000 0.000
#> GSM601817     1  0.0260      0.927 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM601822     1  0.1745      0.889 0.920 0.012 0.000 0.000 0.000 0.068
#> GSM601832     2  0.2178      0.729 0.000 0.868 0.000 0.000 0.000 0.132
#> GSM601847     1  0.0260      0.927 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM601852     1  0.3742      0.515 0.648 0.004 0.000 0.000 0.000 0.348
#> GSM601862     3  0.1204      0.892 0.056 0.000 0.944 0.000 0.000 0.000
#> GSM601753     2  0.3650      0.447 0.012 0.708 0.000 0.000 0.000 0.280
#> GSM601783     1  0.0547      0.924 0.980 0.000 0.000 0.000 0.000 0.020
#> GSM601793     1  0.0146      0.928 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM601798     2  0.0000      0.787 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601828     1  0.0260      0.927 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM601838     5  0.3864     -0.142 0.000 0.000 0.000 0.480 0.520 0.000
#> GSM601843     2  0.2219      0.725 0.000 0.864 0.000 0.000 0.000 0.136
#> GSM601858     2  0.3628      0.421 0.268 0.720 0.008 0.000 0.004 0.000
#> GSM601868     3  0.1204      0.892 0.056 0.000 0.944 0.000 0.000 0.000
#> GSM601748     1  0.0260      0.927 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM601758     1  0.0146      0.927 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM601763     6  0.4333      0.489 0.020 0.468 0.000 0.000 0.000 0.512
#> GSM601768     2  0.0260      0.786 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM601773     2  0.0260      0.786 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM601778     1  0.1610      0.873 0.916 0.000 0.084 0.000 0.000 0.000
#> GSM601788     2  0.2871      0.578 0.192 0.804 0.004 0.000 0.000 0.000
#> GSM601803     2  0.0717      0.778 0.000 0.976 0.000 0.016 0.000 0.008
#> GSM601808     3  0.1204      0.892 0.056 0.000 0.944 0.000 0.000 0.000
#> GSM601813     1  0.0790      0.914 0.968 0.000 0.032 0.000 0.000 0.000
#> GSM601818     1  0.0146      0.927 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM601823     6  0.4011      0.825 0.060 0.204 0.000 0.000 0.000 0.736
#> GSM601833     2  0.2178      0.729 0.000 0.868 0.000 0.000 0.000 0.132
#> GSM601848     1  0.1075      0.911 0.952 0.000 0.000 0.000 0.000 0.048
#> GSM601853     1  0.3782      0.290 0.588 0.000 0.412 0.000 0.000 0.000
#> GSM601863     3  0.1204      0.892 0.056 0.000 0.944 0.000 0.000 0.000
#> GSM601754     2  0.2263      0.737 0.048 0.896 0.000 0.000 0.000 0.056
#> GSM601784     2  0.0363      0.786 0.000 0.988 0.000 0.000 0.000 0.012
#> GSM601794     1  0.0146      0.928 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM601799     2  0.3650      0.447 0.012 0.708 0.000 0.000 0.000 0.280
#> GSM601829     1  0.4209      0.401 0.596 0.020 0.000 0.000 0.000 0.384
#> GSM601839     5  0.3864     -0.142 0.000 0.000 0.000 0.480 0.520 0.000
#> GSM601844     1  0.3923      0.457 0.620 0.008 0.000 0.000 0.000 0.372
#> GSM601859     2  0.3189      0.564 0.004 0.760 0.000 0.000 0.000 0.236
#> GSM601869     3  0.1204      0.892 0.056 0.000 0.944 0.000 0.000 0.000
#> GSM601749     1  0.0547      0.924 0.980 0.000 0.000 0.000 0.000 0.020
#> GSM601759     1  0.0146      0.927 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM601764     6  0.4333      0.489 0.020 0.468 0.000 0.000 0.000 0.512
#> GSM601769     2  0.4179      0.338 0.000 0.652 0.000 0.324 0.016 0.008
#> GSM601774     2  0.0260      0.786 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM601779     1  0.0790      0.920 0.968 0.000 0.000 0.000 0.000 0.032
#> GSM601789     2  0.2871      0.578 0.192 0.804 0.004 0.000 0.000 0.000
#> GSM601804     2  0.2263      0.737 0.048 0.896 0.000 0.000 0.000 0.056
#> GSM601809     3  0.1349      0.891 0.056 0.000 0.940 0.004 0.000 0.000
#> GSM601814     4  0.4593      0.174 0.000 0.036 0.000 0.492 0.472 0.000
#> GSM601819     1  0.0547      0.924 0.980 0.000 0.000 0.000 0.000 0.020
#> GSM601824     6  0.3641      0.859 0.028 0.224 0.000 0.000 0.000 0.748
#> GSM601834     2  0.2178      0.729 0.000 0.868 0.000 0.000 0.000 0.132
#> GSM601849     1  0.1075      0.911 0.952 0.000 0.000 0.000 0.000 0.048
#> GSM601854     1  0.0000      0.927 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601864     5  0.1814      0.259 0.000 0.000 0.000 0.100 0.900 0.000
#> GSM601755     2  0.0000      0.787 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601785     2  0.2527      0.690 0.000 0.832 0.000 0.000 0.000 0.168
#> GSM601795     1  0.0146      0.928 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM601800     2  0.0000      0.787 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601830     3  0.1765      0.834 0.096 0.000 0.904 0.000 0.000 0.000
#> GSM601840     2  0.2871      0.578 0.192 0.804 0.004 0.000 0.000 0.000
#> GSM601845     6  0.3720      0.858 0.028 0.236 0.000 0.000 0.000 0.736
#> GSM601860     2  0.2871      0.578 0.192 0.804 0.004 0.000 0.000 0.000
#> GSM601870     4  0.6160     -0.166 0.000 0.000 0.020 0.508 0.240 0.232
#> GSM601750     1  0.0000      0.927 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601760     1  0.0146      0.927 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM601765     2  0.2340      0.713 0.000 0.852 0.000 0.000 0.000 0.148
#> GSM601770     2  0.0260      0.786 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM601775     2  0.3799      0.451 0.020 0.704 0.000 0.000 0.000 0.276
#> GSM601780     1  0.0790      0.920 0.968 0.000 0.000 0.000 0.000 0.032
#> GSM601790     5  0.4473     -0.339 0.000 0.028 0.000 0.484 0.488 0.000
#> GSM601805     2  0.0000      0.787 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601810     3  0.1349      0.891 0.056 0.000 0.940 0.004 0.000 0.000
#> GSM601815     4  0.4593      0.174 0.000 0.036 0.000 0.492 0.472 0.000
#> GSM601820     1  0.0790      0.914 0.968 0.000 0.032 0.000 0.000 0.000
#> GSM601825     2  0.2219      0.726 0.000 0.864 0.000 0.000 0.000 0.136
#> GSM601835     2  0.2300      0.720 0.000 0.856 0.000 0.000 0.000 0.144
#> GSM601850     1  0.0260      0.927 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM601855     3  0.1082      0.863 0.040 0.000 0.956 0.004 0.000 0.000
#> GSM601865     5  0.0790      0.314 0.000 0.000 0.032 0.000 0.968 0.000
#> GSM601756     2  0.0000      0.787 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601786     5  0.2077      0.315 0.012 0.004 0.032 0.032 0.920 0.000
#> GSM601796     1  0.0146      0.928 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM601801     2  0.0000      0.787 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601831     1  0.1152      0.906 0.952 0.000 0.044 0.000 0.000 0.004
#> GSM601841     3  0.1610      0.872 0.084 0.000 0.916 0.000 0.000 0.000
#> GSM601846     6  0.3641      0.859 0.028 0.224 0.000 0.000 0.000 0.748
#> GSM601861     4  0.4593      0.174 0.000 0.036 0.000 0.492 0.472 0.000
#> GSM601871     3  0.6068      0.265 0.000 0.000 0.420 0.220 0.356 0.004
#> GSM601751     2  0.2871      0.578 0.192 0.804 0.004 0.000 0.000 0.000
#> GSM601761     1  0.0146      0.927 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM601766     2  0.4282     -0.196 0.020 0.560 0.000 0.000 0.000 0.420
#> GSM601771     2  0.2871      0.578 0.192 0.804 0.004 0.000 0.000 0.000
#> GSM601776     1  0.0713      0.922 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM601781     1  0.1663      0.870 0.912 0.000 0.088 0.000 0.000 0.000
#> GSM601791     1  0.0000      0.927 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601806     2  0.0862      0.777 0.000 0.972 0.000 0.016 0.004 0.008
#> GSM601811     3  0.1349      0.891 0.056 0.000 0.940 0.004 0.000 0.000
#> GSM601816     1  0.0000      0.927 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601821     4  0.4593      0.174 0.000 0.036 0.000 0.492 0.472 0.000
#> GSM601826     6  0.4011      0.825 0.060 0.204 0.000 0.000 0.000 0.736
#> GSM601836     6  0.3720      0.858 0.028 0.236 0.000 0.000 0.000 0.736
#> GSM601851     1  0.0790      0.920 0.968 0.000 0.000 0.000 0.000 0.032
#> GSM601856     1  0.3782      0.290 0.588 0.000 0.412 0.000 0.000 0.000
#> GSM601866     3  0.1610      0.872 0.084 0.000 0.916 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n time(p) gender(p) k
#> ATC:hclust 111   0.674     0.527 2
#> ATC:hclust 118   0.952     0.770 3
#> ATC:hclust 102   0.611     0.320 4
#> ATC:hclust 111   0.794     0.767 5
#> ATC:hclust  98   0.805     0.683 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 125 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.972       0.971         0.4964 0.498   0.498
#> 3 3 0.821           0.746       0.839         0.2455 0.871   0.747
#> 4 4 0.914           0.907       0.938         0.1284 0.867   0.679
#> 5 5 0.764           0.767       0.841         0.0879 0.941   0.810
#> 6 6 0.748           0.682       0.779         0.0525 0.910   0.657

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM601752     2  0.0000      0.986 0.000 1.000
#> GSM601782     1  0.3274      0.973 0.940 0.060
#> GSM601792     1  0.3584      0.974 0.932 0.068
#> GSM601797     1  0.3584      0.974 0.932 0.068
#> GSM601827     1  0.3584      0.974 0.932 0.068
#> GSM601837     2  0.3584      0.941 0.068 0.932
#> GSM601842     2  0.0000      0.986 0.000 1.000
#> GSM601857     1  0.0000      0.954 1.000 0.000
#> GSM601867     1  0.0000      0.954 1.000 0.000
#> GSM601747     1  0.3584      0.974 0.932 0.068
#> GSM601757     1  0.3584      0.974 0.932 0.068
#> GSM601762     2  0.0000      0.986 0.000 1.000
#> GSM601767     2  0.0000      0.986 0.000 1.000
#> GSM601772     2  0.0000      0.986 0.000 1.000
#> GSM601777     1  0.0000      0.954 1.000 0.000
#> GSM601787     1  0.0000      0.954 1.000 0.000
#> GSM601802     2  0.0000      0.986 0.000 1.000
#> GSM601807     1  0.0000      0.954 1.000 0.000
#> GSM601812     1  0.3274      0.973 0.940 0.060
#> GSM601817     1  0.3584      0.974 0.932 0.068
#> GSM601822     1  0.3584      0.974 0.932 0.068
#> GSM601832     2  0.0000      0.986 0.000 1.000
#> GSM601847     1  0.3584      0.974 0.932 0.068
#> GSM601852     1  0.3584      0.974 0.932 0.068
#> GSM601862     1  0.0000      0.954 1.000 0.000
#> GSM601753     2  0.0000      0.986 0.000 1.000
#> GSM601783     1  0.3584      0.974 0.932 0.068
#> GSM601793     1  0.3584      0.974 0.932 0.068
#> GSM601798     2  0.0000      0.986 0.000 1.000
#> GSM601828     1  0.3584      0.974 0.932 0.068
#> GSM601838     2  0.3584      0.941 0.068 0.932
#> GSM601843     2  0.0000      0.986 0.000 1.000
#> GSM601858     2  0.1633      0.972 0.024 0.976
#> GSM601868     1  0.0000      0.954 1.000 0.000
#> GSM601748     1  0.3584      0.974 0.932 0.068
#> GSM601758     1  0.3584      0.974 0.932 0.068
#> GSM601763     2  0.0000      0.986 0.000 1.000
#> GSM601768     2  0.0000      0.986 0.000 1.000
#> GSM601773     2  0.0000      0.986 0.000 1.000
#> GSM601778     1  0.3584      0.974 0.932 0.068
#> GSM601788     2  0.0000      0.986 0.000 1.000
#> GSM601803     2  0.0000      0.986 0.000 1.000
#> GSM601808     1  0.0000      0.954 1.000 0.000
#> GSM601813     1  0.2778      0.970 0.952 0.048
#> GSM601818     1  0.0376      0.956 0.996 0.004
#> GSM601823     1  0.3584      0.974 0.932 0.068
#> GSM601833     2  0.0000      0.986 0.000 1.000
#> GSM601848     1  0.3584      0.974 0.932 0.068
#> GSM601853     1  0.0376      0.956 0.996 0.004
#> GSM601863     1  0.0000      0.954 1.000 0.000
#> GSM601754     2  0.0000      0.986 0.000 1.000
#> GSM601784     2  0.0000      0.986 0.000 1.000
#> GSM601794     1  0.3584      0.974 0.932 0.068
#> GSM601799     2  0.0000      0.986 0.000 1.000
#> GSM601829     1  0.3584      0.974 0.932 0.068
#> GSM601839     2  0.3584      0.941 0.068 0.932
#> GSM601844     1  0.3584      0.974 0.932 0.068
#> GSM601859     2  0.0000      0.986 0.000 1.000
#> GSM601869     1  0.0000      0.954 1.000 0.000
#> GSM601749     1  0.3584      0.974 0.932 0.068
#> GSM601759     1  0.3584      0.974 0.932 0.068
#> GSM601764     2  0.0000      0.986 0.000 1.000
#> GSM601769     2  0.0000      0.986 0.000 1.000
#> GSM601774     2  0.0000      0.986 0.000 1.000
#> GSM601779     1  0.3584      0.974 0.932 0.068
#> GSM601789     2  0.0376      0.984 0.004 0.996
#> GSM601804     2  0.0000      0.986 0.000 1.000
#> GSM601809     1  0.0000      0.954 1.000 0.000
#> GSM601814     2  0.1184      0.977 0.016 0.984
#> GSM601819     1  0.3584      0.974 0.932 0.068
#> GSM601824     2  0.0000      0.986 0.000 1.000
#> GSM601834     2  0.0000      0.986 0.000 1.000
#> GSM601849     1  0.3584      0.974 0.932 0.068
#> GSM601854     1  0.3584      0.974 0.932 0.068
#> GSM601864     2  0.3733      0.940 0.072 0.928
#> GSM601755     2  0.0000      0.986 0.000 1.000
#> GSM601785     2  0.0000      0.986 0.000 1.000
#> GSM601795     1  0.3584      0.974 0.932 0.068
#> GSM601800     2  0.0000      0.986 0.000 1.000
#> GSM601830     1  0.1633      0.963 0.976 0.024
#> GSM601840     2  0.0000      0.986 0.000 1.000
#> GSM601845     2  0.0000      0.986 0.000 1.000
#> GSM601860     2  0.0000      0.986 0.000 1.000
#> GSM601870     1  0.0000      0.954 1.000 0.000
#> GSM601750     1  0.3584      0.974 0.932 0.068
#> GSM601760     1  0.3584      0.974 0.932 0.068
#> GSM601765     2  0.0000      0.986 0.000 1.000
#> GSM601770     2  0.0000      0.986 0.000 1.000
#> GSM601775     2  0.0000      0.986 0.000 1.000
#> GSM601780     1  0.3584      0.974 0.932 0.068
#> GSM601790     2  0.3584      0.941 0.068 0.932
#> GSM601805     2  0.0000      0.986 0.000 1.000
#> GSM601810     1  0.0000      0.954 1.000 0.000
#> GSM601815     2  0.3584      0.941 0.068 0.932
#> GSM601820     1  0.2778      0.970 0.952 0.048
#> GSM601825     2  0.0000      0.986 0.000 1.000
#> GSM601835     2  0.0000      0.986 0.000 1.000
#> GSM601850     1  0.3584      0.974 0.932 0.068
#> GSM601855     1  0.0000      0.954 1.000 0.000
#> GSM601865     2  0.3733      0.940 0.072 0.928
#> GSM601756     2  0.0000      0.986 0.000 1.000
#> GSM601786     2  0.3584      0.941 0.068 0.932
#> GSM601796     1  0.3584      0.974 0.932 0.068
#> GSM601801     2  0.0000      0.986 0.000 1.000
#> GSM601831     1  0.2778      0.970 0.952 0.048
#> GSM601841     1  0.0000      0.954 1.000 0.000
#> GSM601846     2  0.0000      0.986 0.000 1.000
#> GSM601861     2  0.2778      0.955 0.048 0.952
#> GSM601871     1  0.0000      0.954 1.000 0.000
#> GSM601751     2  0.0000      0.986 0.000 1.000
#> GSM601761     1  0.3584      0.974 0.932 0.068
#> GSM601766     2  0.0000      0.986 0.000 1.000
#> GSM601771     2  0.3274      0.949 0.060 0.940
#> GSM601776     1  0.3584      0.974 0.932 0.068
#> GSM601781     1  0.0000      0.954 1.000 0.000
#> GSM601791     1  0.3584      0.974 0.932 0.068
#> GSM601806     2  0.0376      0.984 0.004 0.996
#> GSM601811     1  0.0000      0.954 1.000 0.000
#> GSM601816     1  0.3584      0.974 0.932 0.068
#> GSM601821     2  0.3584      0.941 0.068 0.932
#> GSM601826     1  0.3584      0.974 0.932 0.068
#> GSM601836     2  0.0000      0.986 0.000 1.000
#> GSM601851     1  0.3584      0.974 0.932 0.068
#> GSM601856     1  0.0376      0.956 0.996 0.004
#> GSM601866     1  0.0000      0.954 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM601752     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601782     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601792     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601797     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601827     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601837     3  0.0237     0.5782 0.004 0.000 0.996
#> GSM601842     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601857     1  0.0237     0.5213 0.996 0.004 0.000
#> GSM601867     1  0.6302    -0.4562 0.520 0.000 0.480
#> GSM601747     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601757     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601762     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601767     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601772     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601777     1  0.2625     0.5934 0.916 0.084 0.000
#> GSM601787     3  0.6299     0.4757 0.476 0.000 0.524
#> GSM601802     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601807     1  0.5016     0.0444 0.760 0.000 0.240
#> GSM601812     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601817     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601822     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601832     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601847     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601852     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601862     1  0.0747     0.4995 0.984 0.000 0.016
#> GSM601753     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601783     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601793     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601798     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601828     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601838     3  0.0237     0.5782 0.004 0.000 0.996
#> GSM601843     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601858     3  0.5621    -0.4126 0.000 0.308 0.692
#> GSM601868     1  0.0747     0.4995 0.984 0.000 0.016
#> GSM601748     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601758     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601763     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601768     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601773     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601778     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601788     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601803     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601808     1  0.0747     0.4995 0.984 0.000 0.016
#> GSM601813     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601818     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601823     2  0.5785    -0.6823 0.332 0.668 0.000
#> GSM601833     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601848     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601853     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601863     1  0.0747     0.4995 0.984 0.000 0.016
#> GSM601754     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601784     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601794     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601799     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601829     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601839     3  0.0237     0.5782 0.004 0.000 0.996
#> GSM601844     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601859     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601869     1  0.0000     0.5172 1.000 0.000 0.000
#> GSM601749     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601759     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601764     2  0.6260     0.8949 0.000 0.552 0.448
#> GSM601769     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601774     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601779     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601789     3  0.5859    -0.5283 0.000 0.344 0.656
#> GSM601804     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601809     1  0.0747     0.4995 0.984 0.000 0.016
#> GSM601814     3  0.0892     0.5540 0.000 0.020 0.980
#> GSM601819     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601824     2  0.6291     0.9319 0.000 0.532 0.468
#> GSM601834     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601849     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601854     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601864     3  0.6295     0.4797 0.472 0.000 0.528
#> GSM601755     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601785     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601795     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601800     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601830     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601840     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601845     2  0.6252     0.8870 0.000 0.556 0.444
#> GSM601860     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601870     3  0.6295     0.4797 0.472 0.000 0.528
#> GSM601750     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601760     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601765     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601770     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601775     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601780     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601790     3  0.0747     0.5596 0.000 0.016 0.984
#> GSM601805     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601810     1  0.0747     0.4995 0.984 0.000 0.016
#> GSM601815     3  0.0592     0.5646 0.000 0.012 0.988
#> GSM601820     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601825     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601835     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601850     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601855     1  0.0747     0.4995 0.984 0.000 0.016
#> GSM601865     3  0.6295     0.4797 0.472 0.000 0.528
#> GSM601756     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601786     3  0.3192     0.5728 0.112 0.000 0.888
#> GSM601796     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601801     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601831     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601841     1  0.0237     0.5213 0.996 0.004 0.000
#> GSM601846     2  0.6252     0.8870 0.000 0.556 0.444
#> GSM601861     3  0.0892     0.5540 0.000 0.020 0.980
#> GSM601871     3  0.6299     0.4757 0.476 0.000 0.524
#> GSM601751     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601761     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601766     2  0.6295     0.9388 0.000 0.528 0.472
#> GSM601771     3  0.0747     0.5596 0.000 0.016 0.984
#> GSM601776     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601781     1  0.2796     0.6002 0.908 0.092 0.000
#> GSM601791     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601806     3  0.5678    -0.4399 0.000 0.316 0.684
#> GSM601811     1  0.0747     0.4995 0.984 0.000 0.016
#> GSM601816     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601821     3  0.0000     0.5756 0.000 0.000 1.000
#> GSM601826     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601836     2  0.3412     0.2202 0.000 0.876 0.124
#> GSM601851     1  0.6295     0.8697 0.528 0.472 0.000
#> GSM601856     1  0.6291     0.8674 0.532 0.468 0.000
#> GSM601866     1  0.0000     0.5172 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM601752     2  0.3453     0.8897 0.000 0.868 0.080 0.052
#> GSM601782     1  0.0336     0.9667 0.992 0.000 0.000 0.008
#> GSM601792     1  0.1211     0.9638 0.960 0.000 0.000 0.040
#> GSM601797     1  0.1722     0.9561 0.944 0.000 0.008 0.048
#> GSM601827     1  0.0000     0.9684 1.000 0.000 0.000 0.000
#> GSM601837     4  0.1854     0.9088 0.000 0.048 0.012 0.940
#> GSM601842     2  0.0188     0.9320 0.000 0.996 0.004 0.000
#> GSM601857     3  0.2944     0.9272 0.128 0.000 0.868 0.004
#> GSM601867     3  0.2329     0.8816 0.012 0.000 0.916 0.072
#> GSM601747     1  0.0188     0.9674 0.996 0.000 0.000 0.004
#> GSM601757     1  0.0188     0.9674 0.996 0.000 0.000 0.004
#> GSM601762     2  0.0188     0.9320 0.000 0.996 0.004 0.000
#> GSM601767     2  0.0188     0.9320 0.000 0.996 0.004 0.000
#> GSM601772     2  0.0188     0.9320 0.000 0.996 0.004 0.000
#> GSM601777     3  0.3161     0.9224 0.124 0.000 0.864 0.012
#> GSM601787     3  0.2081     0.8664 0.000 0.000 0.916 0.084
#> GSM601802     2  0.2593     0.9025 0.000 0.904 0.080 0.016
#> GSM601807     3  0.2494     0.9074 0.036 0.000 0.916 0.048
#> GSM601812     1  0.0188     0.9679 0.996 0.000 0.000 0.004
#> GSM601817     1  0.0000     0.9684 1.000 0.000 0.000 0.000
#> GSM601822     1  0.1118     0.9641 0.964 0.000 0.000 0.036
#> GSM601832     2  0.0188     0.9320 0.000 0.996 0.004 0.000
#> GSM601847     1  0.1302     0.9632 0.956 0.000 0.000 0.044
#> GSM601852     1  0.0000     0.9684 1.000 0.000 0.000 0.000
#> GSM601862     3  0.2281     0.9525 0.096 0.000 0.904 0.000
#> GSM601753     2  0.0188     0.9313 0.000 0.996 0.000 0.004
#> GSM601783     1  0.0000     0.9684 1.000 0.000 0.000 0.000
#> GSM601793     1  0.1118     0.9654 0.964 0.000 0.000 0.036
#> GSM601798     2  0.3761     0.8680 0.000 0.852 0.080 0.068
#> GSM601828     1  0.0000     0.9684 1.000 0.000 0.000 0.000
#> GSM601838     4  0.1854     0.9088 0.000 0.048 0.012 0.940
#> GSM601843     2  0.0188     0.9320 0.000 0.996 0.004 0.000
#> GSM601858     2  0.6242     0.4678 0.000 0.612 0.080 0.308
#> GSM601868     3  0.2281     0.9525 0.096 0.000 0.904 0.000
#> GSM601748     1  0.0000     0.9684 1.000 0.000 0.000 0.000
#> GSM601758     1  0.0000     0.9684 1.000 0.000 0.000 0.000
#> GSM601763     2  0.0469     0.9270 0.000 0.988 0.000 0.012
#> GSM601768     2  0.0188     0.9320 0.000 0.996 0.004 0.000
#> GSM601773     2  0.0188     0.9320 0.000 0.996 0.004 0.000
#> GSM601778     1  0.1302     0.9632 0.956 0.000 0.000 0.044
#> GSM601788     2  0.3533     0.8777 0.000 0.864 0.080 0.056
#> GSM601803     2  0.4106     0.8530 0.000 0.832 0.084 0.084
#> GSM601808     3  0.2281     0.9525 0.096 0.000 0.904 0.000
#> GSM601813     1  0.0188     0.9679 0.996 0.000 0.000 0.004
#> GSM601818     1  0.0336     0.9667 0.992 0.000 0.000 0.008
#> GSM601823     1  0.2313     0.9231 0.924 0.044 0.000 0.032
#> GSM601833     2  0.0188     0.9320 0.000 0.996 0.004 0.000
#> GSM601848     1  0.1022     0.9649 0.968 0.000 0.000 0.032
#> GSM601853     1  0.2480     0.8772 0.904 0.000 0.088 0.008
#> GSM601863     3  0.2281     0.9525 0.096 0.000 0.904 0.000
#> GSM601754     2  0.3453     0.8897 0.000 0.868 0.080 0.052
#> GSM601784     2  0.0188     0.9320 0.000 0.996 0.004 0.000
#> GSM601794     1  0.1211     0.9638 0.960 0.000 0.000 0.040
#> GSM601799     2  0.0188     0.9313 0.000 0.996 0.000 0.004
#> GSM601829     1  0.1022     0.9649 0.968 0.000 0.000 0.032
#> GSM601839     4  0.1854     0.9088 0.000 0.048 0.012 0.940
#> GSM601844     1  0.1209     0.9633 0.964 0.004 0.000 0.032
#> GSM601859     2  0.0000     0.9315 0.000 1.000 0.000 0.000
#> GSM601869     3  0.2281     0.9525 0.096 0.000 0.904 0.000
#> GSM601749     1  0.0000     0.9684 1.000 0.000 0.000 0.000
#> GSM601759     1  0.0000     0.9684 1.000 0.000 0.000 0.000
#> GSM601764     2  0.1488     0.9083 0.012 0.956 0.000 0.032
#> GSM601769     2  0.1489     0.9074 0.000 0.952 0.004 0.044
#> GSM601774     2  0.0188     0.9320 0.000 0.996 0.004 0.000
#> GSM601779     1  0.1022     0.9649 0.968 0.000 0.000 0.032
#> GSM601789     2  0.6440     0.3251 0.000 0.564 0.080 0.356
#> GSM601804     2  0.3453     0.8897 0.000 0.868 0.080 0.052
#> GSM601809     3  0.2281     0.9525 0.096 0.000 0.904 0.000
#> GSM601814     4  0.2089     0.9024 0.000 0.048 0.020 0.932
#> GSM601819     1  0.0000     0.9684 1.000 0.000 0.000 0.000
#> GSM601824     2  0.1488     0.9083 0.012 0.956 0.000 0.032
#> GSM601834     2  0.0188     0.9320 0.000 0.996 0.004 0.000
#> GSM601849     1  0.1022     0.9649 0.968 0.000 0.000 0.032
#> GSM601854     1  0.0000     0.9684 1.000 0.000 0.000 0.000
#> GSM601864     4  0.1637     0.8583 0.000 0.000 0.060 0.940
#> GSM601755     2  0.2593     0.9025 0.000 0.904 0.080 0.016
#> GSM601785     2  0.0000     0.9315 0.000 1.000 0.000 0.000
#> GSM601795     1  0.1545     0.9597 0.952 0.000 0.008 0.040
#> GSM601800     2  0.2593     0.9025 0.000 0.904 0.080 0.016
#> GSM601830     1  0.0469     0.9660 0.988 0.000 0.000 0.012
#> GSM601840     2  0.2593     0.9025 0.000 0.904 0.080 0.016
#> GSM601845     2  0.1488     0.9083 0.012 0.956 0.000 0.032
#> GSM601860     2  0.2593     0.9025 0.000 0.904 0.080 0.016
#> GSM601870     3  0.2081     0.8664 0.000 0.000 0.916 0.084
#> GSM601750     1  0.0000     0.9684 1.000 0.000 0.000 0.000
#> GSM601760     1  0.0000     0.9684 1.000 0.000 0.000 0.000
#> GSM601765     2  0.0188     0.9320 0.000 0.996 0.004 0.000
#> GSM601770     2  0.0188     0.9320 0.000 0.996 0.004 0.000
#> GSM601775     2  0.0000     0.9315 0.000 1.000 0.000 0.000
#> GSM601780     1  0.1118     0.9649 0.964 0.000 0.000 0.036
#> GSM601790     4  0.1576     0.9085 0.000 0.048 0.004 0.948
#> GSM601805     2  0.3761     0.8680 0.000 0.852 0.080 0.068
#> GSM601810     3  0.2281     0.9525 0.096 0.000 0.904 0.000
#> GSM601815     4  0.1389     0.9092 0.000 0.048 0.000 0.952
#> GSM601820     1  0.0188     0.9679 0.996 0.000 0.000 0.004
#> GSM601825     2  0.0188     0.9320 0.000 0.996 0.004 0.000
#> GSM601835     2  0.0188     0.9320 0.000 0.996 0.004 0.000
#> GSM601850     1  0.1302     0.9632 0.956 0.000 0.000 0.044
#> GSM601855     3  0.2342     0.9436 0.080 0.000 0.912 0.008
#> GSM601865     4  0.1637     0.8583 0.000 0.000 0.060 0.940
#> GSM601756     2  0.3828     0.8682 0.000 0.848 0.084 0.068
#> GSM601786     4  0.1545     0.9073 0.000 0.040 0.008 0.952
#> GSM601796     1  0.1118     0.9654 0.964 0.000 0.000 0.036
#> GSM601801     2  0.3828     0.8682 0.000 0.848 0.084 0.068
#> GSM601831     1  0.0188     0.9679 0.996 0.000 0.000 0.004
#> GSM601841     3  0.2654     0.9438 0.108 0.000 0.888 0.004
#> GSM601846     2  0.1452     0.9085 0.008 0.956 0.000 0.036
#> GSM601861     4  0.2089     0.9024 0.000 0.048 0.020 0.932
#> GSM601871     3  0.2081     0.8664 0.000 0.000 0.916 0.084
#> GSM601751     2  0.2593     0.9025 0.000 0.904 0.080 0.016
#> GSM601761     1  0.0000     0.9684 1.000 0.000 0.000 0.000
#> GSM601766     2  0.0000     0.9315 0.000 1.000 0.000 0.000
#> GSM601771     4  0.6611    -0.0377 0.000 0.456 0.080 0.464
#> GSM601776     1  0.1022     0.9649 0.968 0.000 0.000 0.032
#> GSM601781     3  0.3161     0.9224 0.124 0.000 0.864 0.012
#> GSM601791     1  0.0188     0.9679 0.996 0.000 0.000 0.004
#> GSM601806     4  0.4591     0.7866 0.000 0.116 0.084 0.800
#> GSM601811     3  0.2281     0.9525 0.096 0.000 0.904 0.000
#> GSM601816     1  0.1211     0.9638 0.960 0.000 0.000 0.040
#> GSM601821     4  0.1722     0.9095 0.000 0.048 0.008 0.944
#> GSM601826     1  0.1209     0.9633 0.964 0.004 0.000 0.032
#> GSM601836     2  0.1610     0.9051 0.016 0.952 0.000 0.032
#> GSM601851     1  0.1022     0.9649 0.968 0.000 0.000 0.032
#> GSM601856     1  0.5288    -0.0950 0.520 0.000 0.472 0.008
#> GSM601866     3  0.2281     0.9525 0.096 0.000 0.904 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM601752     4  0.4455      0.688 0.000 0.404 0.000 0.588 0.008
#> GSM601782     1  0.1956      0.850 0.928 0.000 0.012 0.052 0.008
#> GSM601792     1  0.3990      0.822 0.688 0.000 0.000 0.308 0.004
#> GSM601797     1  0.4238      0.758 0.628 0.000 0.000 0.368 0.004
#> GSM601827     1  0.1484      0.866 0.944 0.000 0.000 0.048 0.008
#> GSM601837     5  0.0609      0.983 0.000 0.020 0.000 0.000 0.980
#> GSM601842     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000
#> GSM601857     3  0.4726      0.668 0.228 0.000 0.716 0.048 0.008
#> GSM601867     3  0.0404      0.922 0.000 0.000 0.988 0.012 0.000
#> GSM601747     1  0.1924      0.862 0.924 0.000 0.008 0.064 0.004
#> GSM601757     1  0.1365      0.860 0.952 0.000 0.004 0.040 0.004
#> GSM601762     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000
#> GSM601767     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000
#> GSM601772     2  0.0290      0.822 0.000 0.992 0.000 0.008 0.000
#> GSM601777     3  0.5273      0.660 0.140 0.000 0.692 0.164 0.004
#> GSM601787     3  0.1768      0.896 0.000 0.000 0.924 0.072 0.004
#> GSM601802     2  0.4974     -0.639 0.000 0.508 0.000 0.464 0.028
#> GSM601807     3  0.1502      0.909 0.004 0.000 0.940 0.056 0.000
#> GSM601812     1  0.1412      0.858 0.952 0.000 0.004 0.036 0.008
#> GSM601817     1  0.1331      0.865 0.952 0.000 0.000 0.040 0.008
#> GSM601822     1  0.3684      0.824 0.720 0.000 0.000 0.280 0.000
#> GSM601832     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000
#> GSM601847     1  0.3796      0.820 0.700 0.000 0.000 0.300 0.000
#> GSM601852     1  0.2773      0.810 0.836 0.000 0.000 0.164 0.000
#> GSM601862     3  0.0162      0.926 0.004 0.000 0.996 0.000 0.000
#> GSM601753     2  0.0798      0.809 0.000 0.976 0.000 0.016 0.008
#> GSM601783     1  0.0865      0.861 0.972 0.000 0.004 0.024 0.000
#> GSM601793     1  0.3766      0.830 0.728 0.000 0.000 0.268 0.004
#> GSM601798     4  0.6092      0.790 0.000 0.412 0.000 0.464 0.124
#> GSM601828     1  0.0865      0.862 0.972 0.000 0.000 0.024 0.004
#> GSM601838     5  0.0609      0.983 0.000 0.020 0.000 0.000 0.980
#> GSM601843     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000
#> GSM601858     4  0.6736      0.737 0.000 0.284 0.004 0.460 0.252
#> GSM601868     3  0.0162      0.926 0.004 0.000 0.996 0.000 0.000
#> GSM601748     1  0.0451      0.860 0.988 0.000 0.004 0.008 0.000
#> GSM601758     1  0.0162      0.861 0.996 0.000 0.004 0.000 0.000
#> GSM601763     2  0.2338      0.734 0.004 0.884 0.000 0.112 0.000
#> GSM601768     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000
#> GSM601773     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000
#> GSM601778     1  0.3884      0.820 0.708 0.000 0.000 0.288 0.004
#> GSM601788     4  0.5918      0.755 0.000 0.440 0.004 0.468 0.088
#> GSM601803     4  0.6304      0.790 0.000 0.384 0.000 0.460 0.156
#> GSM601808     3  0.0162      0.926 0.004 0.000 0.996 0.000 0.000
#> GSM601813     1  0.1673      0.854 0.944 0.000 0.016 0.032 0.008
#> GSM601818     1  0.2688      0.835 0.896 0.000 0.036 0.056 0.012
#> GSM601823     1  0.3966      0.776 0.664 0.000 0.000 0.336 0.000
#> GSM601833     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000
#> GSM601848     1  0.3305      0.840 0.776 0.000 0.000 0.224 0.000
#> GSM601853     1  0.4140      0.746 0.800 0.000 0.124 0.064 0.012
#> GSM601863     3  0.0162      0.926 0.004 0.000 0.996 0.000 0.000
#> GSM601754     4  0.4455      0.688 0.000 0.404 0.000 0.588 0.008
#> GSM601784     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000
#> GSM601794     1  0.3928      0.825 0.700 0.000 0.000 0.296 0.004
#> GSM601799     2  0.0693      0.813 0.000 0.980 0.000 0.012 0.008
#> GSM601829     1  0.3949      0.779 0.668 0.000 0.000 0.332 0.000
#> GSM601839     5  0.0609      0.983 0.000 0.020 0.000 0.000 0.980
#> GSM601844     1  0.3636      0.799 0.728 0.000 0.000 0.272 0.000
#> GSM601859     2  0.0290      0.822 0.000 0.992 0.000 0.008 0.000
#> GSM601869     3  0.0162      0.926 0.004 0.000 0.996 0.000 0.000
#> GSM601749     1  0.1197      0.860 0.952 0.000 0.000 0.048 0.000
#> GSM601759     1  0.0324      0.860 0.992 0.000 0.004 0.004 0.000
#> GSM601764     2  0.2583      0.716 0.004 0.864 0.000 0.132 0.000
#> GSM601769     2  0.1608      0.740 0.000 0.928 0.000 0.000 0.072
#> GSM601774     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000
#> GSM601779     1  0.3395      0.837 0.764 0.000 0.000 0.236 0.000
#> GSM601789     4  0.6762      0.728 0.000 0.288 0.004 0.452 0.256
#> GSM601804     4  0.4497      0.681 0.000 0.424 0.000 0.568 0.008
#> GSM601809     3  0.0162      0.926 0.004 0.000 0.996 0.000 0.000
#> GSM601814     5  0.0609      0.983 0.000 0.020 0.000 0.000 0.980
#> GSM601819     1  0.1410      0.860 0.940 0.000 0.000 0.060 0.000
#> GSM601824     2  0.2536      0.719 0.004 0.868 0.000 0.128 0.000
#> GSM601834     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000
#> GSM601849     1  0.3336      0.839 0.772 0.000 0.000 0.228 0.000
#> GSM601854     1  0.1026      0.861 0.968 0.000 0.004 0.024 0.004
#> GSM601864     5  0.1943      0.932 0.000 0.000 0.020 0.056 0.924
#> GSM601755     2  0.5458     -0.712 0.000 0.476 0.000 0.464 0.060
#> GSM601785     2  0.0290      0.822 0.000 0.992 0.000 0.008 0.000
#> GSM601795     1  0.4047      0.818 0.676 0.000 0.000 0.320 0.004
#> GSM601800     2  0.4552     -0.593 0.000 0.524 0.000 0.468 0.008
#> GSM601830     1  0.3757      0.823 0.808 0.000 0.024 0.156 0.012
#> GSM601840     2  0.4892     -0.642 0.000 0.496 0.004 0.484 0.016
#> GSM601845     2  0.2674      0.706 0.004 0.856 0.000 0.140 0.000
#> GSM601860     2  0.4593     -0.609 0.000 0.512 0.004 0.480 0.004
#> GSM601870     3  0.2011      0.889 0.000 0.000 0.908 0.088 0.004
#> GSM601750     1  0.0833      0.860 0.976 0.000 0.004 0.016 0.004
#> GSM601760     1  0.0324      0.861 0.992 0.000 0.004 0.004 0.000
#> GSM601765     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000
#> GSM601770     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000
#> GSM601775     2  0.0290      0.822 0.000 0.992 0.000 0.008 0.000
#> GSM601780     1  0.3274      0.841 0.780 0.000 0.000 0.220 0.000
#> GSM601790     5  0.0609      0.983 0.000 0.020 0.000 0.000 0.980
#> GSM601805     4  0.6121      0.793 0.000 0.408 0.000 0.464 0.128
#> GSM601810     3  0.0162      0.926 0.004 0.000 0.996 0.000 0.000
#> GSM601815     5  0.0609      0.983 0.000 0.020 0.000 0.000 0.980
#> GSM601820     1  0.1822      0.850 0.936 0.000 0.024 0.036 0.004
#> GSM601825     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000
#> GSM601835     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000
#> GSM601850     1  0.3774      0.822 0.704 0.000 0.000 0.296 0.000
#> GSM601855     3  0.1041      0.918 0.004 0.000 0.964 0.032 0.000
#> GSM601865     5  0.1943      0.932 0.000 0.000 0.020 0.056 0.924
#> GSM601756     4  0.6150      0.794 0.000 0.404 0.000 0.464 0.132
#> GSM601786     5  0.0579      0.972 0.000 0.008 0.000 0.008 0.984
#> GSM601796     1  0.3715      0.828 0.736 0.000 0.000 0.260 0.004
#> GSM601801     4  0.6121      0.793 0.000 0.408 0.000 0.464 0.128
#> GSM601831     1  0.1836      0.852 0.936 0.000 0.016 0.040 0.008
#> GSM601841     3  0.1041      0.909 0.032 0.000 0.964 0.004 0.000
#> GSM601846     2  0.3318      0.627 0.008 0.800 0.000 0.192 0.000
#> GSM601861     5  0.0609      0.983 0.000 0.020 0.000 0.000 0.980
#> GSM601871     3  0.1768      0.896 0.000 0.000 0.924 0.072 0.004
#> GSM601751     4  0.5915      0.762 0.000 0.432 0.004 0.476 0.088
#> GSM601761     1  0.0955      0.864 0.968 0.000 0.004 0.028 0.000
#> GSM601766     2  0.0162      0.824 0.000 0.996 0.000 0.004 0.000
#> GSM601771     4  0.6722      0.583 0.012 0.172 0.004 0.512 0.300
#> GSM601776     1  0.3274      0.841 0.780 0.000 0.000 0.220 0.000
#> GSM601781     3  0.5312      0.654 0.144 0.000 0.688 0.164 0.004
#> GSM601791     1  0.1285      0.861 0.956 0.000 0.004 0.036 0.004
#> GSM601806     4  0.5967      0.337 0.000 0.108 0.000 0.456 0.436
#> GSM601811     3  0.0162      0.926 0.004 0.000 0.996 0.000 0.000
#> GSM601816     1  0.3607      0.840 0.752 0.000 0.000 0.244 0.004
#> GSM601821     5  0.0609      0.983 0.000 0.020 0.000 0.000 0.980
#> GSM601826     1  0.3949      0.779 0.668 0.000 0.000 0.332 0.000
#> GSM601836     2  0.2886      0.692 0.008 0.844 0.000 0.148 0.000
#> GSM601851     1  0.3274      0.841 0.780 0.000 0.000 0.220 0.000
#> GSM601856     1  0.5704      0.248 0.568 0.000 0.356 0.064 0.012
#> GSM601866     3  0.0162      0.926 0.004 0.000 0.996 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM601752     4  0.4312      0.894 0.000 0.272 0.000 0.676 0.000 0.052
#> GSM601782     1  0.2288      0.633 0.896 0.000 0.004 0.028 0.000 0.072
#> GSM601792     6  0.4739      0.612 0.436 0.000 0.000 0.048 0.000 0.516
#> GSM601797     6  0.5339      0.506 0.404 0.000 0.000 0.108 0.000 0.488
#> GSM601827     1  0.1745      0.645 0.924 0.000 0.000 0.020 0.000 0.056
#> GSM601837     5  0.0622      0.972 0.000 0.000 0.000 0.008 0.980 0.012
#> GSM601842     2  0.0000      0.878 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601857     3  0.5230      0.191 0.440 0.000 0.492 0.024 0.000 0.044
#> GSM601867     3  0.0806      0.853 0.000 0.000 0.972 0.008 0.000 0.020
#> GSM601747     1  0.2651      0.616 0.860 0.000 0.000 0.028 0.000 0.112
#> GSM601757     1  0.1829      0.656 0.920 0.000 0.000 0.024 0.000 0.056
#> GSM601762     2  0.0777      0.874 0.000 0.972 0.000 0.004 0.000 0.024
#> GSM601767     2  0.0777      0.874 0.000 0.972 0.000 0.004 0.000 0.024
#> GSM601772     2  0.1418      0.866 0.000 0.944 0.000 0.032 0.000 0.024
#> GSM601777     3  0.6643      0.257 0.152 0.000 0.476 0.072 0.000 0.300
#> GSM601787     3  0.3227      0.790 0.000 0.000 0.824 0.060 0.000 0.116
#> GSM601802     4  0.3668      0.886 0.000 0.328 0.000 0.668 0.004 0.000
#> GSM601807     3  0.3123      0.801 0.000 0.000 0.832 0.056 0.000 0.112
#> GSM601812     1  0.1219      0.656 0.948 0.000 0.000 0.004 0.000 0.048
#> GSM601817     1  0.1462      0.652 0.936 0.000 0.000 0.008 0.000 0.056
#> GSM601822     6  0.3789      0.615 0.416 0.000 0.000 0.000 0.000 0.584
#> GSM601832     2  0.0000      0.878 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601847     6  0.4929      0.575 0.428 0.000 0.000 0.064 0.000 0.508
#> GSM601852     1  0.4291      0.201 0.664 0.000 0.000 0.044 0.000 0.292
#> GSM601862     3  0.0146      0.857 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM601753     2  0.2058      0.834 0.000 0.908 0.000 0.056 0.000 0.036
#> GSM601783     1  0.1007      0.654 0.956 0.000 0.000 0.000 0.000 0.044
#> GSM601793     1  0.4746     -0.557 0.508 0.000 0.000 0.048 0.000 0.444
#> GSM601798     4  0.4487      0.922 0.000 0.264 0.000 0.668 0.068 0.000
#> GSM601828     1  0.1320      0.654 0.948 0.000 0.000 0.016 0.000 0.036
#> GSM601838     5  0.0622      0.972 0.000 0.000 0.000 0.008 0.980 0.012
#> GSM601843     2  0.0146      0.878 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM601858     4  0.4992      0.885 0.000 0.208 0.000 0.676 0.096 0.020
#> GSM601868     3  0.0146      0.857 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM601748     1  0.0146      0.669 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM601758     1  0.0622      0.668 0.980 0.000 0.000 0.008 0.000 0.012
#> GSM601763     2  0.4204      0.714 0.000 0.740 0.000 0.132 0.000 0.128
#> GSM601768     2  0.0777      0.874 0.000 0.972 0.000 0.004 0.000 0.024
#> GSM601773     2  0.0777      0.874 0.000 0.972 0.000 0.004 0.000 0.024
#> GSM601778     6  0.4990      0.529 0.452 0.000 0.000 0.068 0.000 0.480
#> GSM601788     4  0.4630      0.919 0.000 0.280 0.000 0.660 0.048 0.012
#> GSM601803     4  0.4570      0.918 0.000 0.252 0.000 0.668 0.080 0.000
#> GSM601808     3  0.0000      0.857 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM601813     1  0.1777      0.650 0.928 0.000 0.024 0.004 0.000 0.044
#> GSM601818     1  0.3430      0.580 0.836 0.000 0.060 0.028 0.000 0.076
#> GSM601823     6  0.5412      0.452 0.324 0.004 0.000 0.120 0.000 0.552
#> GSM601833     2  0.0146      0.878 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM601848     1  0.3868     -0.569 0.504 0.000 0.000 0.000 0.000 0.496
#> GSM601853     1  0.4359      0.457 0.748 0.000 0.156 0.020 0.000 0.076
#> GSM601863     3  0.0146      0.857 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM601754     4  0.4348      0.893 0.000 0.268 0.000 0.676 0.000 0.056
#> GSM601784     2  0.0777      0.874 0.000 0.972 0.000 0.004 0.000 0.024
#> GSM601794     6  0.4756      0.584 0.464 0.000 0.000 0.048 0.000 0.488
#> GSM601799     2  0.1644      0.855 0.000 0.932 0.000 0.028 0.000 0.040
#> GSM601829     6  0.5472      0.462 0.364 0.000 0.000 0.132 0.000 0.504
#> GSM601839     5  0.0622      0.972 0.000 0.000 0.000 0.008 0.980 0.012
#> GSM601844     6  0.5527      0.393 0.408 0.000 0.000 0.132 0.000 0.460
#> GSM601859     2  0.1633      0.862 0.000 0.932 0.000 0.024 0.000 0.044
#> GSM601869     3  0.0000      0.857 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM601749     1  0.2191      0.571 0.876 0.000 0.000 0.004 0.000 0.120
#> GSM601759     1  0.0622      0.668 0.980 0.000 0.000 0.008 0.000 0.012
#> GSM601764     2  0.4898      0.640 0.000 0.656 0.000 0.144 0.000 0.200
#> GSM601769     2  0.2848      0.756 0.000 0.848 0.000 0.004 0.124 0.024
#> GSM601774     2  0.0777      0.874 0.000 0.972 0.000 0.004 0.000 0.024
#> GSM601779     6  0.3864      0.555 0.480 0.000 0.000 0.000 0.000 0.520
#> GSM601789     4  0.5017      0.903 0.000 0.232 0.000 0.656 0.100 0.012
#> GSM601804     4  0.4423      0.890 0.000 0.272 0.000 0.668 0.000 0.060
#> GSM601809     3  0.0146      0.857 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM601814     5  0.0000      0.975 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601819     1  0.2300      0.534 0.856 0.000 0.000 0.000 0.000 0.144
#> GSM601824     2  0.4898      0.640 0.000 0.656 0.000 0.144 0.000 0.200
#> GSM601834     2  0.0146      0.878 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM601849     6  0.3864      0.555 0.480 0.000 0.000 0.000 0.000 0.520
#> GSM601854     1  0.0820      0.666 0.972 0.000 0.000 0.016 0.000 0.012
#> GSM601864     5  0.2724      0.905 0.000 0.000 0.000 0.052 0.864 0.084
#> GSM601755     4  0.4135      0.911 0.000 0.300 0.000 0.668 0.032 0.000
#> GSM601785     2  0.1492      0.858 0.000 0.940 0.000 0.024 0.000 0.036
#> GSM601795     6  0.4774      0.619 0.420 0.000 0.000 0.052 0.000 0.528
#> GSM601800     4  0.3531      0.885 0.000 0.328 0.000 0.672 0.000 0.000
#> GSM601830     1  0.5058      0.402 0.688 0.000 0.032 0.100 0.000 0.180
#> GSM601840     4  0.4061      0.894 0.000 0.316 0.000 0.664 0.008 0.012
#> GSM601845     2  0.5069      0.611 0.000 0.628 0.000 0.144 0.000 0.228
#> GSM601860     4  0.3852      0.885 0.000 0.324 0.000 0.664 0.000 0.012
#> GSM601870     3  0.4131      0.742 0.000 0.000 0.744 0.100 0.000 0.156
#> GSM601750     1  0.0291      0.668 0.992 0.000 0.000 0.004 0.000 0.004
#> GSM601760     1  0.0972      0.664 0.964 0.000 0.000 0.008 0.000 0.028
#> GSM601765     2  0.0000      0.878 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601770     2  0.0777      0.874 0.000 0.972 0.000 0.004 0.000 0.024
#> GSM601775     2  0.1492      0.858 0.000 0.940 0.000 0.024 0.000 0.036
#> GSM601780     1  0.4262     -0.571 0.508 0.000 0.000 0.016 0.000 0.476
#> GSM601790     5  0.0000      0.975 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601805     4  0.4516      0.922 0.000 0.260 0.000 0.668 0.072 0.000
#> GSM601810     3  0.0146      0.857 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM601815     5  0.0000      0.975 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601820     1  0.1649      0.648 0.932 0.000 0.032 0.000 0.000 0.036
#> GSM601825     2  0.0291      0.878 0.000 0.992 0.000 0.004 0.000 0.004
#> GSM601835     2  0.0146      0.878 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM601850     6  0.4933      0.575 0.432 0.000 0.000 0.064 0.000 0.504
#> GSM601855     3  0.2488      0.825 0.000 0.000 0.880 0.044 0.000 0.076
#> GSM601865     5  0.2724      0.905 0.000 0.000 0.000 0.052 0.864 0.084
#> GSM601756     4  0.4516      0.922 0.000 0.260 0.000 0.668 0.072 0.000
#> GSM601786     5  0.0000      0.975 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601796     1  0.4800     -0.567 0.500 0.000 0.000 0.052 0.000 0.448
#> GSM601801     4  0.4516      0.922 0.000 0.260 0.000 0.668 0.072 0.000
#> GSM601831     1  0.2303      0.639 0.904 0.000 0.024 0.020 0.000 0.052
#> GSM601841     3  0.1820      0.816 0.056 0.000 0.924 0.008 0.000 0.012
#> GSM601846     2  0.5396      0.532 0.000 0.564 0.000 0.152 0.000 0.284
#> GSM601861     5  0.0000      0.975 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601871     3  0.3227      0.790 0.000 0.000 0.824 0.060 0.000 0.116
#> GSM601751     4  0.4738      0.922 0.000 0.268 0.000 0.660 0.060 0.012
#> GSM601761     1  0.1812      0.623 0.912 0.000 0.000 0.008 0.000 0.080
#> GSM601766     2  0.0865      0.870 0.000 0.964 0.000 0.000 0.000 0.036
#> GSM601771     4  0.5087      0.830 0.008 0.160 0.000 0.700 0.108 0.024
#> GSM601776     1  0.3862     -0.558 0.524 0.000 0.000 0.000 0.000 0.476
#> GSM601781     3  0.6668      0.245 0.156 0.000 0.472 0.072 0.000 0.300
#> GSM601791     1  0.1908      0.629 0.900 0.000 0.000 0.004 0.000 0.096
#> GSM601806     4  0.4892      0.685 0.000 0.112 0.000 0.640 0.248 0.000
#> GSM601811     3  0.0146      0.857 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM601816     6  0.3867      0.565 0.488 0.000 0.000 0.000 0.000 0.512
#> GSM601821     5  0.0000      0.975 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601826     6  0.5371      0.475 0.360 0.000 0.000 0.120 0.000 0.520
#> GSM601836     2  0.5135      0.597 0.000 0.616 0.000 0.144 0.000 0.240
#> GSM601851     1  0.3868     -0.569 0.504 0.000 0.000 0.000 0.000 0.496
#> GSM601856     1  0.4839      0.370 0.684 0.000 0.220 0.020 0.000 0.076
#> GSM601866     3  0.0146      0.856 0.000 0.000 0.996 0.004 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n time(p) gender(p) k
#> ATC:kmeans 125   0.293     0.399 2
#> ATC:kmeans 105   0.400     0.472 3
#> ATC:kmeans 121   0.642     0.744 4
#> ATC:kmeans 118   0.739     0.756 5
#> ATC:kmeans 108   0.907     0.452 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 125 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.5029 0.498   0.498
#> 3 3 0.765           0.880       0.911         0.2847 0.829   0.665
#> 4 4 0.966           0.953       0.980         0.1549 0.870   0.648
#> 5 5 0.846           0.834       0.882         0.0509 0.955   0.829
#> 6 6 0.846           0.831       0.880         0.0452 0.932   0.711

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> GSM601752     2       0          1  0  1
#> GSM601782     1       0          1  1  0
#> GSM601792     1       0          1  1  0
#> GSM601797     1       0          1  1  0
#> GSM601827     1       0          1  1  0
#> GSM601837     2       0          1  0  1
#> GSM601842     2       0          1  0  1
#> GSM601857     1       0          1  1  0
#> GSM601867     1       0          1  1  0
#> GSM601747     1       0          1  1  0
#> GSM601757     1       0          1  1  0
#> GSM601762     2       0          1  0  1
#> GSM601767     2       0          1  0  1
#> GSM601772     2       0          1  0  1
#> GSM601777     1       0          1  1  0
#> GSM601787     1       0          1  1  0
#> GSM601802     2       0          1  0  1
#> GSM601807     1       0          1  1  0
#> GSM601812     1       0          1  1  0
#> GSM601817     1       0          1  1  0
#> GSM601822     1       0          1  1  0
#> GSM601832     2       0          1  0  1
#> GSM601847     1       0          1  1  0
#> GSM601852     1       0          1  1  0
#> GSM601862     1       0          1  1  0
#> GSM601753     2       0          1  0  1
#> GSM601783     1       0          1  1  0
#> GSM601793     1       0          1  1  0
#> GSM601798     2       0          1  0  1
#> GSM601828     1       0          1  1  0
#> GSM601838     2       0          1  0  1
#> GSM601843     2       0          1  0  1
#> GSM601858     2       0          1  0  1
#> GSM601868     1       0          1  1  0
#> GSM601748     1       0          1  1  0
#> GSM601758     1       0          1  1  0
#> GSM601763     2       0          1  0  1
#> GSM601768     2       0          1  0  1
#> GSM601773     2       0          1  0  1
#> GSM601778     1       0          1  1  0
#> GSM601788     2       0          1  0  1
#> GSM601803     2       0          1  0  1
#> GSM601808     1       0          1  1  0
#> GSM601813     1       0          1  1  0
#> GSM601818     1       0          1  1  0
#> GSM601823     1       0          1  1  0
#> GSM601833     2       0          1  0  1
#> GSM601848     1       0          1  1  0
#> GSM601853     1       0          1  1  0
#> GSM601863     1       0          1  1  0
#> GSM601754     2       0          1  0  1
#> GSM601784     2       0          1  0  1
#> GSM601794     1       0          1  1  0
#> GSM601799     2       0          1  0  1
#> GSM601829     1       0          1  1  0
#> GSM601839     2       0          1  0  1
#> GSM601844     1       0          1  1  0
#> GSM601859     2       0          1  0  1
#> GSM601869     1       0          1  1  0
#> GSM601749     1       0          1  1  0
#> GSM601759     1       0          1  1  0
#> GSM601764     2       0          1  0  1
#> GSM601769     2       0          1  0  1
#> GSM601774     2       0          1  0  1
#> GSM601779     1       0          1  1  0
#> GSM601789     2       0          1  0  1
#> GSM601804     2       0          1  0  1
#> GSM601809     1       0          1  1  0
#> GSM601814     2       0          1  0  1
#> GSM601819     1       0          1  1  0
#> GSM601824     2       0          1  0  1
#> GSM601834     2       0          1  0  1
#> GSM601849     1       0          1  1  0
#> GSM601854     1       0          1  1  0
#> GSM601864     2       0          1  0  1
#> GSM601755     2       0          1  0  1
#> GSM601785     2       0          1  0  1
#> GSM601795     1       0          1  1  0
#> GSM601800     2       0          1  0  1
#> GSM601830     1       0          1  1  0
#> GSM601840     2       0          1  0  1
#> GSM601845     2       0          1  0  1
#> GSM601860     2       0          1  0  1
#> GSM601870     1       0          1  1  0
#> GSM601750     1       0          1  1  0
#> GSM601760     1       0          1  1  0
#> GSM601765     2       0          1  0  1
#> GSM601770     2       0          1  0  1
#> GSM601775     2       0          1  0  1
#> GSM601780     1       0          1  1  0
#> GSM601790     2       0          1  0  1
#> GSM601805     2       0          1  0  1
#> GSM601810     1       0          1  1  0
#> GSM601815     2       0          1  0  1
#> GSM601820     1       0          1  1  0
#> GSM601825     2       0          1  0  1
#> GSM601835     2       0          1  0  1
#> GSM601850     1       0          1  1  0
#> GSM601855     1       0          1  1  0
#> GSM601865     2       0          1  0  1
#> GSM601756     2       0          1  0  1
#> GSM601786     2       0          1  0  1
#> GSM601796     1       0          1  1  0
#> GSM601801     2       0          1  0  1
#> GSM601831     1       0          1  1  0
#> GSM601841     1       0          1  1  0
#> GSM601846     2       0          1  0  1
#> GSM601861     2       0          1  0  1
#> GSM601871     1       0          1  1  0
#> GSM601751     2       0          1  0  1
#> GSM601761     1       0          1  1  0
#> GSM601766     2       0          1  0  1
#> GSM601771     2       0          1  0  1
#> GSM601776     1       0          1  1  0
#> GSM601781     1       0          1  1  0
#> GSM601791     1       0          1  1  0
#> GSM601806     2       0          1  0  1
#> GSM601811     1       0          1  1  0
#> GSM601816     1       0          1  1  0
#> GSM601821     2       0          1  0  1
#> GSM601826     1       0          1  1  0
#> GSM601836     2       0          1  0  1
#> GSM601851     1       0          1  1  0
#> GSM601856     1       0          1  1  0
#> GSM601866     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM601752     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601782     1  0.2625      0.862 0.916 0.000 0.084
#> GSM601792     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601797     3  0.5327      0.864 0.272 0.000 0.728
#> GSM601827     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601837     2  0.6302      0.479 0.000 0.520 0.480
#> GSM601842     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601857     3  0.5291      0.869 0.268 0.000 0.732
#> GSM601867     3  0.0000      0.751 0.000 0.000 1.000
#> GSM601747     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601757     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601762     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601767     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601772     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601777     3  0.5291      0.869 0.268 0.000 0.732
#> GSM601787     3  0.0000      0.751 0.000 0.000 1.000
#> GSM601802     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601807     3  0.5016      0.864 0.240 0.000 0.760
#> GSM601812     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601817     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601822     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601832     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601847     1  0.4002      0.734 0.840 0.000 0.160
#> GSM601852     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601862     3  0.5291      0.869 0.268 0.000 0.732
#> GSM601753     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601783     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601793     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601798     2  0.4887      0.823 0.000 0.772 0.228
#> GSM601828     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601838     2  0.5327      0.797 0.000 0.728 0.272
#> GSM601843     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601858     2  0.5327      0.797 0.000 0.728 0.272
#> GSM601868     3  0.5291      0.869 0.268 0.000 0.732
#> GSM601748     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601758     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601763     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601768     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601773     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601778     3  0.5431      0.849 0.284 0.000 0.716
#> GSM601788     2  0.5016      0.817 0.000 0.760 0.240
#> GSM601803     2  0.4931      0.821 0.000 0.768 0.232
#> GSM601808     3  0.5291      0.869 0.268 0.000 0.732
#> GSM601813     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601818     3  0.5291      0.869 0.268 0.000 0.732
#> GSM601823     1  0.5016      0.607 0.760 0.240 0.000
#> GSM601833     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601848     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601853     1  0.6305     -0.359 0.516 0.000 0.484
#> GSM601863     3  0.5291      0.869 0.268 0.000 0.732
#> GSM601754     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601784     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601794     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601799     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601829     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601839     2  0.5327      0.797 0.000 0.728 0.272
#> GSM601844     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601859     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601869     3  0.5291      0.869 0.268 0.000 0.732
#> GSM601749     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601759     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601764     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601769     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601774     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601779     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601789     2  0.5291      0.800 0.000 0.732 0.268
#> GSM601804     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601809     3  0.5016      0.864 0.240 0.000 0.760
#> GSM601814     2  0.5291      0.800 0.000 0.732 0.268
#> GSM601819     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601824     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601834     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601849     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601854     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601864     3  0.0000      0.751 0.000 0.000 1.000
#> GSM601755     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601785     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601795     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601800     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601830     3  0.5291      0.869 0.268 0.000 0.732
#> GSM601840     2  0.1031      0.908 0.000 0.976 0.024
#> GSM601845     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601860     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601870     3  0.0000      0.751 0.000 0.000 1.000
#> GSM601750     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601760     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601765     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601770     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601775     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601780     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601790     2  0.5291      0.800 0.000 0.732 0.268
#> GSM601805     2  0.4931      0.821 0.000 0.768 0.232
#> GSM601810     3  0.5291      0.869 0.268 0.000 0.732
#> GSM601815     2  0.5327      0.797 0.000 0.728 0.272
#> GSM601820     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601825     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601835     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601850     1  0.0237      0.963 0.996 0.000 0.004
#> GSM601855     3  0.5016      0.864 0.240 0.000 0.760
#> GSM601865     3  0.0000      0.751 0.000 0.000 1.000
#> GSM601756     2  0.4931      0.821 0.000 0.768 0.232
#> GSM601786     3  0.0000      0.751 0.000 0.000 1.000
#> GSM601796     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601801     2  0.4887      0.823 0.000 0.772 0.228
#> GSM601831     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601841     3  0.5291      0.869 0.268 0.000 0.732
#> GSM601846     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601861     2  0.5291      0.800 0.000 0.732 0.268
#> GSM601871     3  0.0000      0.751 0.000 0.000 1.000
#> GSM601751     2  0.5216      0.805 0.000 0.740 0.260
#> GSM601761     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601766     2  0.0000      0.916 0.000 1.000 0.000
#> GSM601771     3  0.0000      0.751 0.000 0.000 1.000
#> GSM601776     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601781     3  0.5291      0.869 0.268 0.000 0.732
#> GSM601791     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601806     2  0.5291      0.800 0.000 0.732 0.268
#> GSM601811     3  0.5016      0.864 0.240 0.000 0.760
#> GSM601816     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601821     2  0.5327      0.797 0.000 0.728 0.272
#> GSM601826     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601836     2  0.0237      0.914 0.004 0.996 0.000
#> GSM601851     1  0.0000      0.968 1.000 0.000 0.000
#> GSM601856     3  0.5327      0.864 0.272 0.000 0.728
#> GSM601866     3  0.5291      0.869 0.268 0.000 0.732

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM601752     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601782     3  0.3907      0.677 0.232 0.000 0.768 0.000
#> GSM601792     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601797     3  0.0336      0.981 0.008 0.000 0.992 0.000
#> GSM601827     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601837     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> GSM601842     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601857     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM601867     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM601747     1  0.1389      0.930 0.952 0.000 0.048 0.000
#> GSM601757     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601762     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601767     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601772     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601777     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM601787     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM601802     2  0.3444      0.768 0.000 0.816 0.000 0.184
#> GSM601807     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM601812     1  0.2647      0.865 0.880 0.000 0.120 0.000
#> GSM601817     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601822     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601832     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601847     1  0.4989      0.094 0.528 0.000 0.472 0.000
#> GSM601852     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601862     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM601753     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601783     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601793     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601798     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> GSM601828     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601838     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> GSM601843     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601858     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> GSM601868     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM601748     1  0.0188      0.963 0.996 0.000 0.004 0.000
#> GSM601758     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601763     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601768     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601773     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601778     3  0.0336      0.981 0.008 0.000 0.992 0.000
#> GSM601788     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> GSM601803     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> GSM601808     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM601813     1  0.3123      0.826 0.844 0.000 0.156 0.000
#> GSM601818     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM601823     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601833     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601848     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601853     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM601863     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM601754     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601784     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601794     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601799     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601829     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601839     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> GSM601844     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601859     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601869     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM601749     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601759     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601764     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601769     4  0.4250      0.627 0.000 0.276 0.000 0.724
#> GSM601774     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601779     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601789     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> GSM601804     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601809     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM601814     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> GSM601819     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601824     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601834     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601849     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601854     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601864     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> GSM601755     4  0.3907      0.703 0.000 0.232 0.000 0.768
#> GSM601785     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601795     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601800     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601830     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM601840     2  0.4250      0.610 0.000 0.724 0.000 0.276
#> GSM601845     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601860     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601870     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM601750     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601760     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601765     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601770     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601775     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601780     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601790     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> GSM601805     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> GSM601810     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM601815     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> GSM601820     1  0.3074      0.831 0.848 0.000 0.152 0.000
#> GSM601825     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601835     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601850     1  0.1022      0.943 0.968 0.000 0.032 0.000
#> GSM601855     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM601865     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> GSM601756     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> GSM601786     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> GSM601796     1  0.2921      0.843 0.860 0.000 0.140 0.000
#> GSM601801     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> GSM601831     1  0.3074      0.831 0.848 0.000 0.152 0.000
#> GSM601841     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM601846     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601861     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> GSM601871     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM601751     4  0.1302      0.935 0.000 0.044 0.000 0.956
#> GSM601761     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601766     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601771     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> GSM601776     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601781     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM601791     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601806     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> GSM601811     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM601816     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601821     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> GSM601826     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601836     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM601851     1  0.0000      0.966 1.000 0.000 0.000 0.000
#> GSM601856     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM601866     3  0.0000      0.989 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM601752     4  0.5997      0.594 0.072 0.312 0.000 0.588 0.028
#> GSM601782     3  0.6296      0.220 0.200 0.000 0.528 0.000 0.272
#> GSM601792     1  0.1341      0.775 0.944 0.000 0.000 0.000 0.056
#> GSM601797     3  0.7014      0.396 0.216 0.000 0.540 0.196 0.048
#> GSM601827     1  0.3636      0.824 0.728 0.000 0.000 0.000 0.272
#> GSM601837     5  0.4150      0.984 0.000 0.000 0.000 0.388 0.612
#> GSM601842     2  0.0000      0.957 0.000 1.000 0.000 0.000 0.000
#> GSM601857     3  0.0000      0.930 0.000 0.000 1.000 0.000 0.000
#> GSM601867     3  0.0000      0.930 0.000 0.000 1.000 0.000 0.000
#> GSM601747     1  0.4268      0.816 0.708 0.000 0.024 0.000 0.268
#> GSM601757     1  0.3612      0.824 0.732 0.000 0.000 0.000 0.268
#> GSM601762     2  0.0000      0.957 0.000 1.000 0.000 0.000 0.000
#> GSM601767     2  0.0000      0.957 0.000 1.000 0.000 0.000 0.000
#> GSM601772     2  0.0000      0.957 0.000 1.000 0.000 0.000 0.000
#> GSM601777     3  0.1205      0.905 0.004 0.000 0.956 0.000 0.040
#> GSM601787     3  0.0000      0.930 0.000 0.000 1.000 0.000 0.000
#> GSM601802     4  0.3895      0.637 0.000 0.320 0.000 0.680 0.000
#> GSM601807     3  0.0000      0.930 0.000 0.000 1.000 0.000 0.000
#> GSM601812     1  0.5778      0.741 0.596 0.000 0.132 0.000 0.272
#> GSM601817     1  0.3661      0.824 0.724 0.000 0.000 0.000 0.276
#> GSM601822     1  0.1043      0.779 0.960 0.000 0.000 0.000 0.040
#> GSM601832     2  0.0000      0.957 0.000 1.000 0.000 0.000 0.000
#> GSM601847     1  0.5179      0.430 0.680 0.000 0.252 0.020 0.048
#> GSM601852     1  0.4620      0.792 0.652 0.000 0.000 0.028 0.320
#> GSM601862     3  0.0000      0.930 0.000 0.000 1.000 0.000 0.000
#> GSM601753     2  0.0162      0.954 0.000 0.996 0.000 0.004 0.000
#> GSM601783     1  0.3612      0.824 0.732 0.000 0.000 0.000 0.268
#> GSM601793     1  0.1341      0.775 0.944 0.000 0.000 0.000 0.056
#> GSM601798     4  0.0880      0.606 0.000 0.032 0.000 0.968 0.000
#> GSM601828     1  0.3636      0.824 0.728 0.000 0.000 0.000 0.272
#> GSM601838     5  0.4150      0.984 0.000 0.000 0.000 0.388 0.612
#> GSM601843     2  0.0000      0.957 0.000 1.000 0.000 0.000 0.000
#> GSM601858     5  0.4150      0.984 0.000 0.000 0.000 0.388 0.612
#> GSM601868     3  0.0000      0.930 0.000 0.000 1.000 0.000 0.000
#> GSM601748     1  0.3612      0.824 0.732 0.000 0.000 0.000 0.268
#> GSM601758     1  0.3612      0.824 0.732 0.000 0.000 0.000 0.268
#> GSM601763     2  0.2054      0.901 0.000 0.920 0.000 0.028 0.052
#> GSM601768     2  0.0000      0.957 0.000 1.000 0.000 0.000 0.000
#> GSM601773     2  0.0000      0.957 0.000 1.000 0.000 0.000 0.000
#> GSM601778     3  0.4333      0.688 0.212 0.000 0.740 0.000 0.048
#> GSM601788     5  0.4547      0.957 0.000 0.012 0.000 0.400 0.588
#> GSM601803     4  0.0794      0.602 0.000 0.028 0.000 0.972 0.000
#> GSM601808     3  0.0000      0.930 0.000 0.000 1.000 0.000 0.000
#> GSM601813     1  0.6220      0.682 0.540 0.000 0.188 0.000 0.272
#> GSM601818     3  0.1478      0.881 0.000 0.000 0.936 0.000 0.064
#> GSM601823     1  0.2325      0.753 0.904 0.000 0.000 0.028 0.068
#> GSM601833     2  0.0000      0.957 0.000 1.000 0.000 0.000 0.000
#> GSM601848     1  0.0290      0.791 0.992 0.000 0.000 0.000 0.008
#> GSM601853     3  0.3756      0.675 0.008 0.000 0.744 0.000 0.248
#> GSM601863     3  0.0000      0.930 0.000 0.000 1.000 0.000 0.000
#> GSM601754     4  0.5960      0.593 0.068 0.316 0.000 0.588 0.028
#> GSM601784     2  0.0000      0.957 0.000 1.000 0.000 0.000 0.000
#> GSM601794     1  0.1341      0.775 0.944 0.000 0.000 0.000 0.056
#> GSM601799     2  0.0000      0.957 0.000 1.000 0.000 0.000 0.000
#> GSM601829     1  0.2450      0.759 0.896 0.000 0.000 0.028 0.076
#> GSM601839     5  0.4150      0.984 0.000 0.000 0.000 0.388 0.612
#> GSM601844     1  0.4397      0.794 0.696 0.000 0.000 0.028 0.276
#> GSM601859     2  0.0000      0.957 0.000 1.000 0.000 0.000 0.000
#> GSM601869     3  0.0000      0.930 0.000 0.000 1.000 0.000 0.000
#> GSM601749     1  0.3636      0.824 0.728 0.000 0.000 0.000 0.272
#> GSM601759     1  0.3612      0.824 0.732 0.000 0.000 0.000 0.268
#> GSM601764     2  0.2124      0.897 0.000 0.916 0.000 0.028 0.056
#> GSM601769     2  0.3659      0.586 0.000 0.768 0.000 0.220 0.012
#> GSM601774     2  0.0000      0.957 0.000 1.000 0.000 0.000 0.000
#> GSM601779     1  0.0290      0.791 0.992 0.000 0.000 0.000 0.008
#> GSM601789     5  0.4150      0.984 0.000 0.000 0.000 0.388 0.612
#> GSM601804     4  0.5627      0.532 0.040 0.364 0.000 0.572 0.024
#> GSM601809     3  0.0000      0.930 0.000 0.000 1.000 0.000 0.000
#> GSM601814     5  0.4150      0.984 0.000 0.000 0.000 0.388 0.612
#> GSM601819     1  0.3636      0.824 0.728 0.000 0.000 0.000 0.272
#> GSM601824     2  0.2124      0.897 0.000 0.916 0.000 0.028 0.056
#> GSM601834     2  0.0000      0.957 0.000 1.000 0.000 0.000 0.000
#> GSM601849     1  0.0290      0.791 0.992 0.000 0.000 0.000 0.008
#> GSM601854     1  0.3636      0.824 0.728 0.000 0.000 0.000 0.272
#> GSM601864     5  0.4150      0.984 0.000 0.000 0.000 0.388 0.612
#> GSM601755     4  0.2516      0.646 0.000 0.140 0.000 0.860 0.000
#> GSM601785     2  0.0000      0.957 0.000 1.000 0.000 0.000 0.000
#> GSM601795     1  0.4707      0.506 0.708 0.000 0.000 0.228 0.064
#> GSM601800     4  0.4219      0.479 0.000 0.416 0.000 0.584 0.000
#> GSM601830     3  0.0290      0.926 0.000 0.000 0.992 0.000 0.008
#> GSM601840     2  0.4406      0.613 0.000 0.764 0.000 0.108 0.128
#> GSM601845     2  0.2124      0.897 0.000 0.916 0.000 0.028 0.056
#> GSM601860     2  0.0404      0.948 0.000 0.988 0.000 0.000 0.012
#> GSM601870     3  0.0880      0.906 0.000 0.000 0.968 0.000 0.032
#> GSM601750     1  0.3636      0.824 0.728 0.000 0.000 0.000 0.272
#> GSM601760     1  0.3612      0.824 0.732 0.000 0.000 0.000 0.268
#> GSM601765     2  0.0000      0.957 0.000 1.000 0.000 0.000 0.000
#> GSM601770     2  0.0000      0.957 0.000 1.000 0.000 0.000 0.000
#> GSM601775     2  0.0000      0.957 0.000 1.000 0.000 0.000 0.000
#> GSM601780     1  0.0162      0.791 0.996 0.000 0.000 0.000 0.004
#> GSM601790     5  0.4150      0.984 0.000 0.000 0.000 0.388 0.612
#> GSM601805     4  0.0794      0.602 0.000 0.028 0.000 0.972 0.000
#> GSM601810     3  0.0000      0.930 0.000 0.000 1.000 0.000 0.000
#> GSM601815     5  0.4150      0.984 0.000 0.000 0.000 0.388 0.612
#> GSM601820     1  0.6138      0.695 0.552 0.000 0.176 0.000 0.272
#> GSM601825     2  0.0000      0.957 0.000 1.000 0.000 0.000 0.000
#> GSM601835     2  0.0000      0.957 0.000 1.000 0.000 0.000 0.000
#> GSM601850     1  0.1701      0.766 0.936 0.000 0.016 0.000 0.048
#> GSM601855     3  0.0000      0.930 0.000 0.000 1.000 0.000 0.000
#> GSM601865     5  0.4150      0.984 0.000 0.000 0.000 0.388 0.612
#> GSM601756     4  0.0794      0.602 0.000 0.028 0.000 0.972 0.000
#> GSM601786     5  0.4150      0.984 0.000 0.000 0.000 0.388 0.612
#> GSM601796     1  0.4010      0.655 0.784 0.000 0.160 0.000 0.056
#> GSM601801     4  0.1043      0.611 0.000 0.040 0.000 0.960 0.000
#> GSM601831     1  0.6127      0.699 0.552 0.000 0.172 0.000 0.276
#> GSM601841     3  0.0000      0.930 0.000 0.000 1.000 0.000 0.000
#> GSM601846     2  0.2409      0.890 0.008 0.908 0.000 0.028 0.056
#> GSM601861     5  0.4150      0.984 0.000 0.000 0.000 0.388 0.612
#> GSM601871     3  0.0000      0.930 0.000 0.000 1.000 0.000 0.000
#> GSM601751     5  0.5953      0.756 0.000 0.112 0.000 0.384 0.504
#> GSM601761     1  0.3586      0.824 0.736 0.000 0.000 0.000 0.264
#> GSM601766     2  0.0000      0.957 0.000 1.000 0.000 0.000 0.000
#> GSM601771     5  0.4150      0.984 0.000 0.000 0.000 0.388 0.612
#> GSM601776     1  0.0000      0.792 1.000 0.000 0.000 0.000 0.000
#> GSM601781     3  0.1124      0.908 0.004 0.000 0.960 0.000 0.036
#> GSM601791     1  0.3636      0.824 0.728 0.000 0.000 0.000 0.272
#> GSM601806     4  0.1121      0.510 0.000 0.000 0.000 0.956 0.044
#> GSM601811     3  0.0000      0.930 0.000 0.000 1.000 0.000 0.000
#> GSM601816     1  0.0609      0.788 0.980 0.000 0.000 0.000 0.020
#> GSM601821     5  0.4150      0.984 0.000 0.000 0.000 0.388 0.612
#> GSM601826     1  0.2388      0.755 0.900 0.000 0.000 0.028 0.072
#> GSM601836     2  0.2124      0.897 0.000 0.916 0.000 0.028 0.056
#> GSM601851     1  0.0290      0.791 0.992 0.000 0.000 0.000 0.008
#> GSM601856     3  0.0290      0.926 0.000 0.000 0.992 0.000 0.008
#> GSM601866     3  0.0000      0.930 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM601752     4  0.1610      0.899 0.000 0.084 0.000 0.916 0.000 0.000
#> GSM601782     1  0.3778      0.524 0.708 0.000 0.272 0.000 0.000 0.020
#> GSM601792     6  0.3711      0.709 0.260 0.000 0.000 0.020 0.000 0.720
#> GSM601797     6  0.4683      0.338 0.004 0.000 0.312 0.056 0.000 0.628
#> GSM601827     1  0.0547      0.877 0.980 0.000 0.000 0.000 0.000 0.020
#> GSM601837     5  0.0000      0.972 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601842     2  0.0508      0.913 0.000 0.984 0.000 0.004 0.000 0.012
#> GSM601857     3  0.0000      0.946 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM601867     3  0.0622      0.938 0.000 0.000 0.980 0.008 0.012 0.000
#> GSM601747     1  0.2113      0.847 0.908 0.000 0.028 0.004 0.000 0.060
#> GSM601757     1  0.0909      0.881 0.968 0.000 0.012 0.000 0.000 0.020
#> GSM601762     2  0.0405      0.912 0.000 0.988 0.000 0.008 0.004 0.000
#> GSM601767     2  0.0146      0.915 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM601772     2  0.0146      0.915 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM601777     3  0.2389      0.838 0.000 0.000 0.864 0.008 0.000 0.128
#> GSM601787     3  0.0622      0.938 0.000 0.000 0.980 0.008 0.012 0.000
#> GSM601802     4  0.2346      0.898 0.000 0.124 0.000 0.868 0.008 0.000
#> GSM601807     3  0.0146      0.945 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM601812     1  0.2145      0.827 0.900 0.000 0.072 0.000 0.000 0.028
#> GSM601817     1  0.0603      0.881 0.980 0.000 0.004 0.000 0.000 0.016
#> GSM601822     6  0.3290      0.700 0.252 0.000 0.000 0.004 0.000 0.744
#> GSM601832     2  0.0260      0.915 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM601847     6  0.4276      0.680 0.176 0.000 0.052 0.024 0.000 0.748
#> GSM601852     1  0.3874      0.561 0.732 0.000 0.000 0.040 0.000 0.228
#> GSM601862     3  0.0000      0.946 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM601753     2  0.2946      0.744 0.000 0.812 0.000 0.176 0.000 0.012
#> GSM601783     1  0.0363      0.883 0.988 0.000 0.012 0.000 0.000 0.000
#> GSM601793     6  0.3840      0.701 0.284 0.000 0.000 0.020 0.000 0.696
#> GSM601798     4  0.2629      0.916 0.000 0.040 0.000 0.868 0.092 0.000
#> GSM601828     1  0.0260      0.880 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM601838     5  0.0000      0.972 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601843     2  0.0291      0.915 0.000 0.992 0.000 0.004 0.000 0.004
#> GSM601858     5  0.0146      0.970 0.000 0.000 0.000 0.000 0.996 0.004
#> GSM601868     3  0.0000      0.946 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM601748     1  0.0508      0.884 0.984 0.000 0.012 0.000 0.000 0.004
#> GSM601758     1  0.0820      0.882 0.972 0.000 0.012 0.000 0.000 0.016
#> GSM601763     2  0.3413      0.804 0.000 0.812 0.000 0.080 0.000 0.108
#> GSM601768     2  0.0146      0.915 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM601773     2  0.0146      0.915 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM601778     6  0.4456      0.259 0.008 0.000 0.360 0.024 0.000 0.608
#> GSM601788     5  0.2883      0.834 0.000 0.092 0.000 0.040 0.860 0.008
#> GSM601803     4  0.2558      0.911 0.000 0.028 0.000 0.868 0.104 0.000
#> GSM601808     3  0.0000      0.946 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM601813     1  0.2462      0.798 0.876 0.000 0.096 0.000 0.000 0.028
#> GSM601818     3  0.2491      0.776 0.164 0.000 0.836 0.000 0.000 0.000
#> GSM601823     6  0.4907      0.529 0.248 0.004 0.000 0.100 0.000 0.648
#> GSM601833     2  0.0146      0.915 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM601848     6  0.3847      0.623 0.456 0.000 0.000 0.000 0.000 0.544
#> GSM601853     3  0.3854      0.127 0.464 0.000 0.536 0.000 0.000 0.000
#> GSM601863     3  0.0000      0.946 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM601754     4  0.1556      0.901 0.000 0.080 0.000 0.920 0.000 0.000
#> GSM601784     2  0.0146      0.915 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM601794     6  0.3734      0.708 0.264 0.000 0.000 0.020 0.000 0.716
#> GSM601799     2  0.0993      0.905 0.000 0.964 0.000 0.024 0.000 0.012
#> GSM601829     6  0.4682      0.526 0.284 0.000 0.000 0.076 0.000 0.640
#> GSM601839     5  0.0000      0.972 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601844     1  0.4931      0.294 0.592 0.000 0.000 0.084 0.000 0.324
#> GSM601859     2  0.0146      0.915 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM601869     3  0.0000      0.946 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM601749     1  0.0937      0.856 0.960 0.000 0.000 0.000 0.000 0.040
#> GSM601759     1  0.0909      0.881 0.968 0.000 0.012 0.000 0.000 0.020
#> GSM601764     2  0.4757      0.707 0.012 0.696 0.000 0.100 0.000 0.192
#> GSM601769     2  0.1643      0.864 0.000 0.924 0.000 0.008 0.068 0.000
#> GSM601774     2  0.0146      0.915 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM601779     6  0.3950      0.636 0.432 0.000 0.000 0.004 0.000 0.564
#> GSM601789     5  0.0000      0.972 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601804     4  0.2121      0.882 0.000 0.096 0.000 0.892 0.000 0.012
#> GSM601809     3  0.0000      0.946 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM601814     5  0.0146      0.969 0.000 0.000 0.000 0.004 0.996 0.000
#> GSM601819     1  0.0937      0.856 0.960 0.000 0.000 0.000 0.000 0.040
#> GSM601824     2  0.4757      0.707 0.012 0.696 0.000 0.100 0.000 0.192
#> GSM601834     2  0.0146      0.915 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM601849     6  0.3944      0.637 0.428 0.000 0.000 0.004 0.000 0.568
#> GSM601854     1  0.0508      0.882 0.984 0.000 0.012 0.000 0.000 0.004
#> GSM601864     5  0.0260      0.968 0.000 0.000 0.000 0.008 0.992 0.000
#> GSM601755     4  0.2558      0.909 0.000 0.104 0.000 0.868 0.028 0.000
#> GSM601785     2  0.0146      0.915 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM601795     6  0.4025      0.704 0.232 0.000 0.000 0.048 0.000 0.720
#> GSM601800     4  0.2178      0.893 0.000 0.132 0.000 0.868 0.000 0.000
#> GSM601830     3  0.1036      0.929 0.008 0.000 0.964 0.004 0.000 0.024
#> GSM601840     2  0.3693      0.665 0.000 0.756 0.000 0.016 0.216 0.012
#> GSM601845     2  0.4786      0.703 0.012 0.692 0.000 0.100 0.000 0.196
#> GSM601860     2  0.1053      0.899 0.000 0.964 0.000 0.004 0.020 0.012
#> GSM601870     3  0.0891      0.929 0.000 0.000 0.968 0.008 0.024 0.000
#> GSM601750     1  0.0363      0.883 0.988 0.000 0.012 0.000 0.000 0.000
#> GSM601760     1  0.0909      0.881 0.968 0.000 0.012 0.000 0.000 0.020
#> GSM601765     2  0.0508      0.913 0.000 0.984 0.000 0.004 0.000 0.012
#> GSM601770     2  0.0146      0.915 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM601775     2  0.0717      0.909 0.000 0.976 0.000 0.016 0.000 0.008
#> GSM601780     6  0.3833      0.639 0.444 0.000 0.000 0.000 0.000 0.556
#> GSM601790     5  0.0000      0.972 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601805     4  0.2558      0.911 0.000 0.028 0.000 0.868 0.104 0.000
#> GSM601810     3  0.0000      0.946 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM601815     5  0.0000      0.972 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601820     1  0.1983      0.831 0.908 0.000 0.072 0.000 0.000 0.020
#> GSM601825     2  0.0146      0.915 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM601835     2  0.0405      0.915 0.000 0.988 0.000 0.004 0.000 0.008
#> GSM601850     6  0.3761      0.704 0.228 0.000 0.008 0.020 0.000 0.744
#> GSM601855     3  0.0146      0.945 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM601865     5  0.0260      0.968 0.000 0.000 0.000 0.008 0.992 0.000
#> GSM601756     4  0.2558      0.911 0.000 0.028 0.000 0.868 0.104 0.000
#> GSM601786     5  0.0146      0.970 0.000 0.000 0.000 0.004 0.996 0.000
#> GSM601796     6  0.4096      0.697 0.268 0.000 0.012 0.020 0.000 0.700
#> GSM601801     4  0.2609      0.915 0.000 0.036 0.000 0.868 0.096 0.000
#> GSM601831     1  0.2176      0.818 0.896 0.000 0.080 0.000 0.000 0.024
#> GSM601841     3  0.0000      0.946 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM601846     2  0.4945      0.678 0.012 0.668 0.000 0.100 0.000 0.220
#> GSM601861     5  0.0000      0.972 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601871     3  0.0622      0.938 0.000 0.000 0.980 0.008 0.012 0.000
#> GSM601751     5  0.3705      0.739 0.000 0.144 0.000 0.056 0.792 0.008
#> GSM601761     1  0.0937      0.869 0.960 0.000 0.000 0.000 0.000 0.040
#> GSM601766     2  0.0725      0.910 0.000 0.976 0.000 0.012 0.000 0.012
#> GSM601771     5  0.0291      0.969 0.000 0.000 0.000 0.004 0.992 0.004
#> GSM601776     6  0.3862      0.601 0.476 0.000 0.000 0.000 0.000 0.524
#> GSM601781     3  0.2320      0.837 0.000 0.000 0.864 0.004 0.000 0.132
#> GSM601791     1  0.1124      0.869 0.956 0.000 0.008 0.000 0.000 0.036
#> GSM601806     4  0.2595      0.855 0.000 0.004 0.000 0.836 0.160 0.000
#> GSM601811     3  0.0000      0.946 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM601816     6  0.3804      0.649 0.424 0.000 0.000 0.000 0.000 0.576
#> GSM601821     5  0.0000      0.972 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601826     6  0.4757      0.527 0.280 0.000 0.000 0.084 0.000 0.636
#> GSM601836     2  0.4786      0.703 0.012 0.692 0.000 0.100 0.000 0.196
#> GSM601851     6  0.3847      0.620 0.456 0.000 0.000 0.000 0.000 0.544
#> GSM601856     3  0.0937      0.919 0.040 0.000 0.960 0.000 0.000 0.000
#> GSM601866     3  0.0000      0.946 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>               n time(p) gender(p) k
#> ATC:skmeans 125   0.293     0.399 2
#> ATC:skmeans 123   0.563     0.513 3
#> ATC:skmeans 124   0.294     0.645 4
#> ATC:skmeans 121   0.877     0.606 5
#> ATC:skmeans 121   0.892     0.498 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 125 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.965       0.981         0.5021 0.498   0.498
#> 3 3 0.724           0.843       0.899         0.2198 0.898   0.797
#> 4 4 0.630           0.524       0.768         0.1629 0.795   0.539
#> 5 5 0.786           0.836       0.845         0.0958 0.850   0.541
#> 6 6 0.917           0.909       0.951         0.0660 0.897   0.585

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM601752     2  0.2423      0.955 0.040 0.960
#> GSM601782     1  0.2423      0.967 0.960 0.040
#> GSM601792     1  0.0000      0.979 1.000 0.000
#> GSM601797     1  0.0000      0.979 1.000 0.000
#> GSM601827     1  0.0000      0.979 1.000 0.000
#> GSM601837     2  0.0000      0.982 0.000 1.000
#> GSM601842     2  0.0000      0.982 0.000 1.000
#> GSM601857     1  0.2423      0.967 0.960 0.040
#> GSM601867     1  0.2423      0.967 0.960 0.040
#> GSM601747     1  0.4815      0.906 0.896 0.104
#> GSM601757     1  0.0000      0.979 1.000 0.000
#> GSM601762     2  0.0000      0.982 0.000 1.000
#> GSM601767     2  0.0000      0.982 0.000 1.000
#> GSM601772     2  0.0000      0.982 0.000 1.000
#> GSM601777     1  0.0000      0.979 1.000 0.000
#> GSM601787     1  0.2423      0.967 0.960 0.040
#> GSM601802     2  0.0000      0.982 0.000 1.000
#> GSM601807     1  0.2423      0.967 0.960 0.040
#> GSM601812     1  0.2236      0.968 0.964 0.036
#> GSM601817     1  0.2423      0.967 0.960 0.040
#> GSM601822     1  0.0000      0.979 1.000 0.000
#> GSM601832     2  0.0000      0.982 0.000 1.000
#> GSM601847     1  0.0000      0.979 1.000 0.000
#> GSM601852     1  0.0000      0.979 1.000 0.000
#> GSM601862     1  0.2423      0.967 0.960 0.040
#> GSM601753     2  0.0000      0.982 0.000 1.000
#> GSM601783     1  0.0000      0.979 1.000 0.000
#> GSM601793     1  0.0000      0.979 1.000 0.000
#> GSM601798     2  0.0000      0.982 0.000 1.000
#> GSM601828     1  0.0000      0.979 1.000 0.000
#> GSM601838     2  0.0000      0.982 0.000 1.000
#> GSM601843     2  0.0000      0.982 0.000 1.000
#> GSM601858     2  0.0000      0.982 0.000 1.000
#> GSM601868     1  0.2423      0.967 0.960 0.040
#> GSM601748     1  0.0000      0.979 1.000 0.000
#> GSM601758     1  0.0000      0.979 1.000 0.000
#> GSM601763     2  0.2423      0.955 0.040 0.960
#> GSM601768     2  0.0000      0.982 0.000 1.000
#> GSM601773     2  0.0000      0.982 0.000 1.000
#> GSM601778     1  0.0000      0.979 1.000 0.000
#> GSM601788     2  0.0000      0.982 0.000 1.000
#> GSM601803     2  0.0000      0.982 0.000 1.000
#> GSM601808     1  0.2423      0.967 0.960 0.040
#> GSM601813     1  0.0000      0.979 1.000 0.000
#> GSM601818     1  0.2423      0.967 0.960 0.040
#> GSM601823     2  0.2423      0.955 0.040 0.960
#> GSM601833     2  0.0000      0.982 0.000 1.000
#> GSM601848     1  0.0000      0.979 1.000 0.000
#> GSM601853     1  0.0000      0.979 1.000 0.000
#> GSM601863     1  0.0000      0.979 1.000 0.000
#> GSM601754     2  0.0000      0.982 0.000 1.000
#> GSM601784     2  0.0000      0.982 0.000 1.000
#> GSM601794     1  0.0000      0.979 1.000 0.000
#> GSM601799     2  0.2423      0.955 0.040 0.960
#> GSM601829     1  0.0000      0.979 1.000 0.000
#> GSM601839     2  0.0000      0.982 0.000 1.000
#> GSM601844     1  0.8555      0.600 0.720 0.280
#> GSM601859     2  0.0000      0.982 0.000 1.000
#> GSM601869     1  0.0000      0.979 1.000 0.000
#> GSM601749     1  0.0000      0.979 1.000 0.000
#> GSM601759     1  0.0000      0.979 1.000 0.000
#> GSM601764     2  0.2423      0.955 0.040 0.960
#> GSM601769     2  0.0000      0.982 0.000 1.000
#> GSM601774     2  0.0000      0.982 0.000 1.000
#> GSM601779     1  0.0000      0.979 1.000 0.000
#> GSM601789     2  0.0000      0.982 0.000 1.000
#> GSM601804     2  0.2423      0.955 0.040 0.960
#> GSM601809     1  0.2423      0.967 0.960 0.040
#> GSM601814     2  0.0000      0.982 0.000 1.000
#> GSM601819     1  0.0000      0.979 1.000 0.000
#> GSM601824     2  0.2423      0.955 0.040 0.960
#> GSM601834     2  0.0000      0.982 0.000 1.000
#> GSM601849     1  0.0000      0.979 1.000 0.000
#> GSM601854     1  0.0000      0.979 1.000 0.000
#> GSM601864     2  0.9393      0.427 0.356 0.644
#> GSM601755     2  0.0000      0.982 0.000 1.000
#> GSM601785     2  0.0000      0.982 0.000 1.000
#> GSM601795     1  0.0938      0.973 0.988 0.012
#> GSM601800     2  0.0000      0.982 0.000 1.000
#> GSM601830     1  0.3114      0.955 0.944 0.056
#> GSM601840     2  0.0000      0.982 0.000 1.000
#> GSM601845     2  0.2423      0.955 0.040 0.960
#> GSM601860     2  0.0000      0.982 0.000 1.000
#> GSM601870     1  0.3114      0.955 0.944 0.056
#> GSM601750     1  0.0000      0.979 1.000 0.000
#> GSM601760     1  0.0000      0.979 1.000 0.000
#> GSM601765     2  0.0000      0.982 0.000 1.000
#> GSM601770     2  0.0000      0.982 0.000 1.000
#> GSM601775     2  0.0000      0.982 0.000 1.000
#> GSM601780     1  0.0000      0.979 1.000 0.000
#> GSM601790     2  0.0000      0.982 0.000 1.000
#> GSM601805     2  0.0000      0.982 0.000 1.000
#> GSM601810     1  0.2423      0.967 0.960 0.040
#> GSM601815     2  0.0000      0.982 0.000 1.000
#> GSM601820     1  0.1184      0.975 0.984 0.016
#> GSM601825     2  0.0000      0.982 0.000 1.000
#> GSM601835     2  0.0000      0.982 0.000 1.000
#> GSM601850     1  0.0000      0.979 1.000 0.000
#> GSM601855     1  0.2423      0.967 0.960 0.040
#> GSM601865     1  0.3274      0.952 0.940 0.060
#> GSM601756     2  0.0000      0.982 0.000 1.000
#> GSM601786     2  0.0000      0.982 0.000 1.000
#> GSM601796     1  0.0000      0.979 1.000 0.000
#> GSM601801     2  0.0000      0.982 0.000 1.000
#> GSM601831     1  0.0000      0.979 1.000 0.000
#> GSM601841     1  0.2423      0.967 0.960 0.040
#> GSM601846     2  0.2423      0.955 0.040 0.960
#> GSM601861     2  0.0000      0.982 0.000 1.000
#> GSM601871     1  0.2423      0.967 0.960 0.040
#> GSM601751     2  0.0000      0.982 0.000 1.000
#> GSM601761     1  0.0000      0.979 1.000 0.000
#> GSM601766     2  0.0000      0.982 0.000 1.000
#> GSM601771     2  0.8207      0.644 0.256 0.744
#> GSM601776     1  0.0000      0.979 1.000 0.000
#> GSM601781     1  0.0000      0.979 1.000 0.000
#> GSM601791     1  0.0000      0.979 1.000 0.000
#> GSM601806     2  0.0000      0.982 0.000 1.000
#> GSM601811     1  0.2423      0.967 0.960 0.040
#> GSM601816     1  0.0000      0.979 1.000 0.000
#> GSM601821     2  0.0000      0.982 0.000 1.000
#> GSM601826     1  0.0000      0.979 1.000 0.000
#> GSM601836     2  0.1843      0.963 0.028 0.972
#> GSM601851     1  0.0000      0.979 1.000 0.000
#> GSM601856     1  0.2423      0.967 0.960 0.040
#> GSM601866     1  0.2423      0.967 0.960 0.040

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM601752     2  0.6336      0.672 0.180 0.756 0.064
#> GSM601782     1  0.0000      0.888 1.000 0.000 0.000
#> GSM601792     1  0.0000      0.888 1.000 0.000 0.000
#> GSM601797     1  0.1399      0.873 0.968 0.004 0.028
#> GSM601827     1  0.0000      0.888 1.000 0.000 0.000
#> GSM601837     3  0.5138      0.822 0.000 0.252 0.748
#> GSM601842     2  0.0237      0.931 0.000 0.996 0.004
#> GSM601857     1  0.4346      0.834 0.816 0.000 0.184
#> GSM601867     1  0.6140      0.607 0.596 0.000 0.404
#> GSM601747     1  0.0237      0.887 0.996 0.004 0.000
#> GSM601757     1  0.0000      0.888 1.000 0.000 0.000
#> GSM601762     2  0.0237      0.931 0.000 0.996 0.004
#> GSM601767     2  0.0237      0.931 0.000 0.996 0.004
#> GSM601772     2  0.0237      0.931 0.000 0.996 0.004
#> GSM601777     1  0.4605      0.825 0.796 0.000 0.204
#> GSM601787     1  0.6252      0.535 0.556 0.000 0.444
#> GSM601802     2  0.2165      0.916 0.000 0.936 0.064
#> GSM601807     1  0.6140      0.607 0.596 0.000 0.404
#> GSM601812     1  0.4002      0.844 0.840 0.000 0.160
#> GSM601817     1  0.4654      0.693 0.792 0.208 0.000
#> GSM601822     1  0.1399      0.873 0.968 0.004 0.028
#> GSM601832     2  0.0237      0.931 0.000 0.996 0.004
#> GSM601847     1  0.1399      0.873 0.968 0.004 0.028
#> GSM601852     1  0.0000      0.888 1.000 0.000 0.000
#> GSM601862     1  0.4842      0.812 0.776 0.000 0.224
#> GSM601753     2  0.1163      0.925 0.000 0.972 0.028
#> GSM601783     1  0.0000      0.888 1.000 0.000 0.000
#> GSM601793     1  0.0000      0.888 1.000 0.000 0.000
#> GSM601798     2  0.2584      0.913 0.008 0.928 0.064
#> GSM601828     1  0.0000      0.888 1.000 0.000 0.000
#> GSM601838     3  0.5138      0.822 0.000 0.252 0.748
#> GSM601843     2  0.0237      0.931 0.000 0.996 0.004
#> GSM601858     2  0.2165      0.916 0.000 0.936 0.064
#> GSM601868     1  0.4842      0.812 0.776 0.000 0.224
#> GSM601748     1  0.0000      0.888 1.000 0.000 0.000
#> GSM601758     1  0.0000      0.888 1.000 0.000 0.000
#> GSM601763     2  0.0237      0.931 0.000 0.996 0.004
#> GSM601768     2  0.0237      0.931 0.000 0.996 0.004
#> GSM601773     2  0.0237      0.931 0.000 0.996 0.004
#> GSM601778     1  0.1399      0.873 0.968 0.004 0.028
#> GSM601788     2  0.2165      0.916 0.000 0.936 0.064
#> GSM601803     2  0.4887      0.689 0.000 0.772 0.228
#> GSM601808     1  0.4842      0.812 0.776 0.000 0.224
#> GSM601813     1  0.4002      0.844 0.840 0.000 0.160
#> GSM601818     1  0.4002      0.844 0.840 0.000 0.160
#> GSM601823     2  0.6301      0.549 0.260 0.712 0.028
#> GSM601833     2  0.0237      0.931 0.000 0.996 0.004
#> GSM601848     1  0.0592      0.883 0.988 0.000 0.012
#> GSM601853     1  0.4291      0.835 0.820 0.000 0.180
#> GSM601863     1  0.4842      0.812 0.776 0.000 0.224
#> GSM601754     2  0.2902      0.908 0.016 0.920 0.064
#> GSM601784     2  0.0237      0.931 0.000 0.996 0.004
#> GSM601794     1  0.0424      0.885 0.992 0.000 0.008
#> GSM601799     2  0.1399      0.924 0.004 0.968 0.028
#> GSM601829     1  0.0000      0.888 1.000 0.000 0.000
#> GSM601839     3  0.5138      0.822 0.000 0.252 0.748
#> GSM601844     1  0.2187      0.859 0.948 0.024 0.028
#> GSM601859     2  0.0237      0.931 0.000 0.996 0.004
#> GSM601869     1  0.4842      0.812 0.776 0.000 0.224
#> GSM601749     1  0.0000      0.888 1.000 0.000 0.000
#> GSM601759     1  0.0000      0.888 1.000 0.000 0.000
#> GSM601764     2  0.0983      0.924 0.016 0.980 0.004
#> GSM601769     2  0.0424      0.929 0.000 0.992 0.008
#> GSM601774     2  0.0237      0.931 0.000 0.996 0.004
#> GSM601779     1  0.1399      0.873 0.968 0.004 0.028
#> GSM601789     2  0.4887      0.647 0.000 0.772 0.228
#> GSM601804     2  0.6119      0.700 0.164 0.772 0.064
#> GSM601809     1  0.5465      0.758 0.712 0.000 0.288
#> GSM601814     3  0.5497      0.779 0.000 0.292 0.708
#> GSM601819     1  0.0000      0.888 1.000 0.000 0.000
#> GSM601824     2  0.4249      0.800 0.108 0.864 0.028
#> GSM601834     2  0.0237      0.931 0.000 0.996 0.004
#> GSM601849     1  0.0000      0.888 1.000 0.000 0.000
#> GSM601854     1  0.0000      0.888 1.000 0.000 0.000
#> GSM601864     3  0.0237      0.711 0.000 0.004 0.996
#> GSM601755     2  0.2165      0.916 0.000 0.936 0.064
#> GSM601785     2  0.0237      0.931 0.000 0.996 0.004
#> GSM601795     1  0.5292      0.683 0.800 0.172 0.028
#> GSM601800     2  0.2584      0.913 0.008 0.928 0.064
#> GSM601830     1  0.8543      0.546 0.604 0.236 0.160
#> GSM601840     2  0.2165      0.916 0.000 0.936 0.064
#> GSM601845     2  0.1905      0.918 0.016 0.956 0.028
#> GSM601860     2  0.2165      0.916 0.000 0.936 0.064
#> GSM601870     3  0.2261      0.655 0.068 0.000 0.932
#> GSM601750     1  0.0000      0.888 1.000 0.000 0.000
#> GSM601760     1  0.0000      0.888 1.000 0.000 0.000
#> GSM601765     2  0.0237      0.931 0.000 0.996 0.004
#> GSM601770     2  0.0237      0.931 0.000 0.996 0.004
#> GSM601775     2  0.0237      0.931 0.000 0.996 0.004
#> GSM601780     1  0.0000      0.888 1.000 0.000 0.000
#> GSM601790     3  0.5138      0.822 0.000 0.252 0.748
#> GSM601805     2  0.2400      0.915 0.004 0.932 0.064
#> GSM601810     1  0.4842      0.812 0.776 0.000 0.224
#> GSM601815     3  0.5138      0.822 0.000 0.252 0.748
#> GSM601820     1  0.4062      0.842 0.836 0.000 0.164
#> GSM601825     2  0.0237      0.931 0.000 0.996 0.004
#> GSM601835     2  0.0237      0.931 0.000 0.996 0.004
#> GSM601850     1  0.1399      0.873 0.968 0.004 0.028
#> GSM601855     1  0.6126      0.613 0.600 0.000 0.400
#> GSM601865     3  0.1289      0.695 0.032 0.000 0.968
#> GSM601756     2  0.2711      0.900 0.000 0.912 0.088
#> GSM601786     3  0.4702      0.805 0.000 0.212 0.788
#> GSM601796     1  0.0000      0.888 1.000 0.000 0.000
#> GSM601801     2  0.2448      0.909 0.000 0.924 0.076
#> GSM601831     1  0.4002      0.844 0.840 0.000 0.160
#> GSM601841     1  0.4842      0.812 0.776 0.000 0.224
#> GSM601846     2  0.1905      0.918 0.016 0.956 0.028
#> GSM601861     3  0.5138      0.822 0.000 0.252 0.748
#> GSM601871     3  0.5327      0.270 0.272 0.000 0.728
#> GSM601751     2  0.2165      0.916 0.000 0.936 0.064
#> GSM601761     1  0.0000      0.888 1.000 0.000 0.000
#> GSM601766     2  0.0237      0.931 0.000 0.996 0.004
#> GSM601771     3  0.7208      0.684 0.048 0.308 0.644
#> GSM601776     1  0.0000      0.888 1.000 0.000 0.000
#> GSM601781     1  0.3116      0.864 0.892 0.000 0.108
#> GSM601791     1  0.0000      0.888 1.000 0.000 0.000
#> GSM601806     3  0.6154      0.501 0.000 0.408 0.592
#> GSM601811     1  0.5254      0.781 0.736 0.000 0.264
#> GSM601816     1  0.0000      0.888 1.000 0.000 0.000
#> GSM601821     3  0.5138      0.822 0.000 0.252 0.748
#> GSM601826     1  0.1399      0.873 0.968 0.004 0.028
#> GSM601836     2  0.1905      0.918 0.016 0.956 0.028
#> GSM601851     1  0.1399      0.873 0.968 0.004 0.028
#> GSM601856     1  0.4291      0.835 0.820 0.000 0.180
#> GSM601866     1  0.4842      0.812 0.776 0.000 0.224

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM601752     4  0.6886     0.2723 0.200 0.204 0.000 0.596
#> GSM601782     1  0.0336     0.7298 0.992 0.000 0.008 0.000
#> GSM601792     1  0.2216     0.6938 0.908 0.000 0.000 0.092
#> GSM601797     1  0.4543     0.5113 0.676 0.000 0.000 0.324
#> GSM601827     1  0.0000     0.7357 1.000 0.000 0.000 0.000
#> GSM601837     4  0.5592     0.4956 0.000 0.044 0.300 0.656
#> GSM601842     2  0.0000     0.7891 0.000 1.000 0.000 0.000
#> GSM601857     1  0.4998    -0.4313 0.512 0.000 0.488 0.000
#> GSM601867     3  0.4040     0.8338 0.248 0.000 0.752 0.000
#> GSM601747     1  0.0469     0.7322 0.988 0.000 0.000 0.012
#> GSM601757     1  0.1637     0.7120 0.940 0.000 0.000 0.060
#> GSM601762     2  0.0000     0.7891 0.000 1.000 0.000 0.000
#> GSM601767     2  0.0000     0.7891 0.000 1.000 0.000 0.000
#> GSM601772     2  0.0336     0.7808 0.000 0.992 0.000 0.008
#> GSM601777     3  0.5856     0.5933 0.408 0.000 0.556 0.036
#> GSM601787     3  0.4008     0.8308 0.244 0.000 0.756 0.000
#> GSM601802     4  0.4866     0.3042 0.000 0.404 0.000 0.596
#> GSM601807     3  0.4040     0.8338 0.248 0.000 0.752 0.000
#> GSM601812     1  0.4855    -0.1432 0.600 0.000 0.400 0.000
#> GSM601817     1  0.3266     0.5686 0.832 0.168 0.000 0.000
#> GSM601822     1  0.3528     0.6260 0.808 0.000 0.000 0.192
#> GSM601832     2  0.0000     0.7891 0.000 1.000 0.000 0.000
#> GSM601847     1  0.4643     0.4769 0.656 0.000 0.000 0.344
#> GSM601852     1  0.0000     0.7357 1.000 0.000 0.000 0.000
#> GSM601862     3  0.4406     0.8479 0.300 0.000 0.700 0.000
#> GSM601753     4  0.5000     0.0623 0.000 0.496 0.000 0.504
#> GSM601783     1  0.0000     0.7357 1.000 0.000 0.000 0.000
#> GSM601793     1  0.0188     0.7347 0.996 0.000 0.000 0.004
#> GSM601798     4  0.4866     0.3042 0.000 0.404 0.000 0.596
#> GSM601828     1  0.0000     0.7357 1.000 0.000 0.000 0.000
#> GSM601838     4  0.5592     0.4956 0.000 0.044 0.300 0.656
#> GSM601843     2  0.0000     0.7891 0.000 1.000 0.000 0.000
#> GSM601858     4  0.4866     0.3042 0.000 0.404 0.000 0.596
#> GSM601868     3  0.4406     0.8479 0.300 0.000 0.700 0.000
#> GSM601748     1  0.0000     0.7357 1.000 0.000 0.000 0.000
#> GSM601758     1  0.0000     0.7357 1.000 0.000 0.000 0.000
#> GSM601763     2  0.0000     0.7891 0.000 1.000 0.000 0.000
#> GSM601768     2  0.0000     0.7891 0.000 1.000 0.000 0.000
#> GSM601773     2  0.0000     0.7891 0.000 1.000 0.000 0.000
#> GSM601778     1  0.2593     0.6852 0.892 0.000 0.004 0.104
#> GSM601788     4  0.4866     0.3042 0.000 0.404 0.000 0.596
#> GSM601803     4  0.4990     0.3378 0.000 0.352 0.008 0.640
#> GSM601808     3  0.4406     0.8479 0.300 0.000 0.700 0.000
#> GSM601813     1  0.4866    -0.1564 0.596 0.000 0.404 0.000
#> GSM601818     1  0.4866    -0.1564 0.596 0.000 0.404 0.000
#> GSM601823     1  0.7239     0.1581 0.500 0.156 0.000 0.344
#> GSM601833     2  0.0000     0.7891 0.000 1.000 0.000 0.000
#> GSM601848     1  0.0000     0.7357 1.000 0.000 0.000 0.000
#> GSM601853     1  0.4933    -0.2528 0.568 0.000 0.432 0.000
#> GSM601863     3  0.4406     0.8479 0.300 0.000 0.700 0.000
#> GSM601754     4  0.4866     0.3042 0.000 0.404 0.000 0.596
#> GSM601784     2  0.0000     0.7891 0.000 1.000 0.000 0.000
#> GSM601794     1  0.2216     0.6938 0.908 0.000 0.000 0.092
#> GSM601799     2  0.4431     0.4037 0.000 0.696 0.000 0.304
#> GSM601829     1  0.1557     0.7148 0.944 0.000 0.000 0.056
#> GSM601839     4  0.5592     0.4956 0.000 0.044 0.300 0.656
#> GSM601844     1  0.4040     0.5696 0.752 0.000 0.000 0.248
#> GSM601859     2  0.0000     0.7891 0.000 1.000 0.000 0.000
#> GSM601869     3  0.4406     0.8479 0.300 0.000 0.700 0.000
#> GSM601749     1  0.0000     0.7357 1.000 0.000 0.000 0.000
#> GSM601759     1  0.0000     0.7357 1.000 0.000 0.000 0.000
#> GSM601764     2  0.7474     0.1737 0.212 0.496 0.000 0.292
#> GSM601769     2  0.0188     0.7846 0.000 0.996 0.000 0.004
#> GSM601774     2  0.0000     0.7891 0.000 1.000 0.000 0.000
#> GSM601779     1  0.4356     0.5437 0.708 0.000 0.000 0.292
#> GSM601789     2  0.7700    -0.1458 0.000 0.448 0.248 0.304
#> GSM601804     1  0.7646    -0.0918 0.408 0.208 0.000 0.384
#> GSM601809     3  0.4382     0.8475 0.296 0.000 0.704 0.000
#> GSM601814     4  0.6112     0.4863 0.000 0.096 0.248 0.656
#> GSM601819     1  0.0000     0.7357 1.000 0.000 0.000 0.000
#> GSM601824     2  0.7792     0.0762 0.256 0.412 0.000 0.332
#> GSM601834     2  0.0000     0.7891 0.000 1.000 0.000 0.000
#> GSM601849     1  0.0592     0.7308 0.984 0.000 0.000 0.016
#> GSM601854     1  0.0000     0.7357 1.000 0.000 0.000 0.000
#> GSM601864     4  0.4697     0.4472 0.000 0.000 0.356 0.644
#> GSM601755     4  0.4866     0.3042 0.000 0.404 0.000 0.596
#> GSM601785     2  0.0000     0.7891 0.000 1.000 0.000 0.000
#> GSM601795     1  0.5130     0.4741 0.652 0.016 0.000 0.332
#> GSM601800     4  0.4866     0.3042 0.000 0.404 0.000 0.596
#> GSM601830     1  0.6568    -0.3380 0.512 0.080 0.408 0.000
#> GSM601840     2  0.4981     0.0289 0.000 0.536 0.000 0.464
#> GSM601845     2  0.7621     0.1028 0.212 0.444 0.000 0.344
#> GSM601860     2  0.4830     0.2368 0.000 0.608 0.000 0.392
#> GSM601870     3  0.0000     0.5436 0.000 0.000 1.000 0.000
#> GSM601750     1  0.0000     0.7357 1.000 0.000 0.000 0.000
#> GSM601760     1  0.0000     0.7357 1.000 0.000 0.000 0.000
#> GSM601765     2  0.0000     0.7891 0.000 1.000 0.000 0.000
#> GSM601770     2  0.0000     0.7891 0.000 1.000 0.000 0.000
#> GSM601775     2  0.0000     0.7891 0.000 1.000 0.000 0.000
#> GSM601780     1  0.0000     0.7357 1.000 0.000 0.000 0.000
#> GSM601790     4  0.5592     0.4956 0.000 0.044 0.300 0.656
#> GSM601805     4  0.4866     0.3042 0.000 0.404 0.000 0.596
#> GSM601810     3  0.4406     0.8479 0.300 0.000 0.700 0.000
#> GSM601815     4  0.5592     0.4956 0.000 0.044 0.300 0.656
#> GSM601820     1  0.4866    -0.1565 0.596 0.000 0.404 0.000
#> GSM601825     2  0.0000     0.7891 0.000 1.000 0.000 0.000
#> GSM601835     2  0.0000     0.7891 0.000 1.000 0.000 0.000
#> GSM601850     1  0.4605     0.4899 0.664 0.000 0.000 0.336
#> GSM601855     3  0.4040     0.8338 0.248 0.000 0.752 0.000
#> GSM601865     3  0.4961    -0.1538 0.000 0.000 0.552 0.448
#> GSM601756     4  0.4730     0.3338 0.000 0.364 0.000 0.636
#> GSM601786     4  0.4406     0.4953 0.000 0.000 0.300 0.700
#> GSM601796     1  0.0000     0.7357 1.000 0.000 0.000 0.000
#> GSM601801     4  0.6130     0.3008 0.000 0.400 0.052 0.548
#> GSM601831     1  0.4866    -0.1564 0.596 0.000 0.404 0.000
#> GSM601841     3  0.4746     0.7439 0.368 0.000 0.632 0.000
#> GSM601846     2  0.7621     0.1028 0.212 0.444 0.000 0.344
#> GSM601861     4  0.5745     0.4966 0.000 0.056 0.288 0.656
#> GSM601871     3  0.1940     0.6681 0.076 0.000 0.924 0.000
#> GSM601751     4  0.4866     0.3042 0.000 0.404 0.000 0.596
#> GSM601761     1  0.0000     0.7357 1.000 0.000 0.000 0.000
#> GSM601766     2  0.0000     0.7891 0.000 1.000 0.000 0.000
#> GSM601771     4  0.0524     0.4721 0.008 0.004 0.000 0.988
#> GSM601776     1  0.0000     0.7357 1.000 0.000 0.000 0.000
#> GSM601781     1  0.4916    -0.2058 0.576 0.000 0.424 0.000
#> GSM601791     1  0.0000     0.7357 1.000 0.000 0.000 0.000
#> GSM601806     4  0.4040     0.5085 0.000 0.000 0.248 0.752
#> GSM601811     3  0.4406     0.8479 0.300 0.000 0.700 0.000
#> GSM601816     1  0.0000     0.7357 1.000 0.000 0.000 0.000
#> GSM601821     4  0.5592     0.4956 0.000 0.044 0.300 0.656
#> GSM601826     1  0.4008     0.5730 0.756 0.000 0.000 0.244
#> GSM601836     2  0.7621     0.1028 0.212 0.444 0.000 0.344
#> GSM601851     1  0.0000     0.7357 1.000 0.000 0.000 0.000
#> GSM601856     1  0.4948    -0.2794 0.560 0.000 0.440 0.000
#> GSM601866     3  0.4406     0.8479 0.300 0.000 0.700 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM601752     4  0.2516      0.772 0.000 0.000 0.000 0.860 0.140
#> GSM601782     1  0.0162      0.850 0.996 0.000 0.004 0.000 0.000
#> GSM601792     1  0.4306      0.301 0.508 0.000 0.000 0.492 0.000
#> GSM601797     4  0.0162      0.767 0.004 0.000 0.000 0.996 0.000
#> GSM601827     1  0.0000      0.851 1.000 0.000 0.000 0.000 0.000
#> GSM601837     5  0.0000      0.968 0.000 0.000 0.000 0.000 1.000
#> GSM601842     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM601857     1  0.4030      0.444 0.648 0.000 0.352 0.000 0.000
#> GSM601867     3  0.0000      0.960 0.000 0.000 1.000 0.000 0.000
#> GSM601747     1  0.3074      0.699 0.804 0.000 0.000 0.196 0.000
#> GSM601757     4  0.4262     -0.122 0.440 0.000 0.000 0.560 0.000
#> GSM601762     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM601767     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM601772     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM601777     3  0.4555      0.679 0.068 0.000 0.732 0.200 0.000
#> GSM601787     3  0.0000      0.960 0.000 0.000 1.000 0.000 0.000
#> GSM601802     4  0.3994      0.790 0.000 0.068 0.000 0.792 0.140
#> GSM601807     3  0.0000      0.960 0.000 0.000 1.000 0.000 0.000
#> GSM601812     1  0.1965      0.799 0.904 0.000 0.096 0.000 0.000
#> GSM601817     1  0.0000      0.851 1.000 0.000 0.000 0.000 0.000
#> GSM601822     4  0.2605      0.677 0.148 0.000 0.000 0.852 0.000
#> GSM601832     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM601847     4  0.0290      0.766 0.008 0.000 0.000 0.992 0.000
#> GSM601852     1  0.0794      0.849 0.972 0.000 0.000 0.028 0.000
#> GSM601862     3  0.0000      0.960 0.000 0.000 1.000 0.000 0.000
#> GSM601753     4  0.5211      0.715 0.000 0.212 0.000 0.676 0.112
#> GSM601783     1  0.0000      0.851 1.000 0.000 0.000 0.000 0.000
#> GSM601793     1  0.3336      0.779 0.772 0.000 0.000 0.228 0.000
#> GSM601798     4  0.3994      0.790 0.000 0.068 0.000 0.792 0.140
#> GSM601828     1  0.0000      0.851 1.000 0.000 0.000 0.000 0.000
#> GSM601838     5  0.0000      0.968 0.000 0.000 0.000 0.000 1.000
#> GSM601843     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM601858     4  0.3994      0.790 0.000 0.068 0.000 0.792 0.140
#> GSM601868     3  0.0000      0.960 0.000 0.000 1.000 0.000 0.000
#> GSM601748     1  0.0000      0.851 1.000 0.000 0.000 0.000 0.000
#> GSM601758     1  0.0000      0.851 1.000 0.000 0.000 0.000 0.000
#> GSM601763     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM601768     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM601773     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM601778     4  0.2848      0.665 0.156 0.000 0.004 0.840 0.000
#> GSM601788     4  0.3994      0.790 0.000 0.068 0.000 0.792 0.140
#> GSM601803     4  0.5372      0.719 0.000 0.180 0.000 0.668 0.152
#> GSM601808     3  0.0000      0.960 0.000 0.000 1.000 0.000 0.000
#> GSM601813     1  0.1965      0.799 0.904 0.000 0.096 0.000 0.000
#> GSM601818     1  0.2020      0.797 0.900 0.000 0.100 0.000 0.000
#> GSM601823     4  0.1965      0.721 0.096 0.000 0.000 0.904 0.000
#> GSM601833     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM601848     1  0.3177      0.793 0.792 0.000 0.000 0.208 0.000
#> GSM601853     1  0.1965      0.799 0.904 0.000 0.096 0.000 0.000
#> GSM601863     3  0.0000      0.960 0.000 0.000 1.000 0.000 0.000
#> GSM601754     4  0.3994      0.790 0.000 0.068 0.000 0.792 0.140
#> GSM601784     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM601794     1  0.4307      0.289 0.504 0.000 0.000 0.496 0.000
#> GSM601799     4  0.4114      0.526 0.000 0.376 0.000 0.624 0.000
#> GSM601829     1  0.4074      0.615 0.636 0.000 0.000 0.364 0.000
#> GSM601839     5  0.0000      0.968 0.000 0.000 0.000 0.000 1.000
#> GSM601844     1  0.3336      0.784 0.772 0.000 0.000 0.228 0.000
#> GSM601859     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM601869     3  0.0000      0.960 0.000 0.000 1.000 0.000 0.000
#> GSM601749     1  0.0000      0.851 1.000 0.000 0.000 0.000 0.000
#> GSM601759     1  0.0000      0.851 1.000 0.000 0.000 0.000 0.000
#> GSM601764     4  0.5164      0.637 0.096 0.232 0.000 0.672 0.000
#> GSM601769     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM601774     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM601779     1  0.4060      0.609 0.640 0.000 0.000 0.360 0.000
#> GSM601789     5  0.2798      0.821 0.000 0.140 0.000 0.008 0.852
#> GSM601804     4  0.0000      0.768 0.000 0.000 0.000 1.000 0.000
#> GSM601809     3  0.0000      0.960 0.000 0.000 1.000 0.000 0.000
#> GSM601814     5  0.0000      0.968 0.000 0.000 0.000 0.000 1.000
#> GSM601819     1  0.0000      0.851 1.000 0.000 0.000 0.000 0.000
#> GSM601824     4  0.4624      0.716 0.096 0.164 0.000 0.740 0.000
#> GSM601834     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM601849     1  0.3452      0.765 0.756 0.000 0.000 0.244 0.000
#> GSM601854     1  0.0000      0.851 1.000 0.000 0.000 0.000 0.000
#> GSM601864     5  0.0963      0.938 0.000 0.000 0.036 0.000 0.964
#> GSM601755     4  0.3994      0.790 0.000 0.068 0.000 0.792 0.140
#> GSM601785     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM601795     4  0.2020      0.719 0.100 0.000 0.000 0.900 0.000
#> GSM601800     4  0.3994      0.790 0.000 0.068 0.000 0.792 0.140
#> GSM601830     1  0.4489      0.743 0.792 0.068 0.104 0.036 0.000
#> GSM601840     4  0.3975      0.776 0.000 0.144 0.000 0.792 0.064
#> GSM601845     4  0.2325      0.785 0.028 0.068 0.000 0.904 0.000
#> GSM601860     4  0.3388      0.749 0.000 0.200 0.000 0.792 0.008
#> GSM601870     3  0.0000      0.960 0.000 0.000 1.000 0.000 0.000
#> GSM601750     1  0.0000      0.851 1.000 0.000 0.000 0.000 0.000
#> GSM601760     1  0.0162      0.851 0.996 0.000 0.000 0.004 0.000
#> GSM601765     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM601770     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM601775     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM601780     1  0.3177      0.793 0.792 0.000 0.000 0.208 0.000
#> GSM601790     5  0.0000      0.968 0.000 0.000 0.000 0.000 1.000
#> GSM601805     4  0.3994      0.790 0.000 0.068 0.000 0.792 0.140
#> GSM601810     3  0.0000      0.960 0.000 0.000 1.000 0.000 0.000
#> GSM601815     5  0.0000      0.968 0.000 0.000 0.000 0.000 1.000
#> GSM601820     1  0.1965      0.799 0.904 0.000 0.096 0.000 0.000
#> GSM601825     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM601835     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM601850     4  0.2605      0.677 0.148 0.000 0.000 0.852 0.000
#> GSM601855     3  0.0000      0.960 0.000 0.000 1.000 0.000 0.000
#> GSM601865     5  0.2377      0.825 0.000 0.000 0.128 0.000 0.872
#> GSM601756     4  0.3953      0.786 0.000 0.060 0.000 0.792 0.148
#> GSM601786     5  0.0000      0.968 0.000 0.000 0.000 0.000 1.000
#> GSM601796     1  0.2648      0.815 0.848 0.000 0.000 0.152 0.000
#> GSM601801     4  0.5405      0.590 0.000 0.076 0.000 0.596 0.328
#> GSM601831     1  0.1965      0.799 0.904 0.000 0.096 0.000 0.000
#> GSM601841     3  0.1270      0.904 0.052 0.000 0.948 0.000 0.000
#> GSM601846     4  0.1544      0.789 0.000 0.068 0.000 0.932 0.000
#> GSM601861     5  0.0000      0.968 0.000 0.000 0.000 0.000 1.000
#> GSM601871     3  0.0000      0.960 0.000 0.000 1.000 0.000 0.000
#> GSM601751     4  0.3994      0.790 0.000 0.068 0.000 0.792 0.140
#> GSM601761     1  0.3039      0.801 0.808 0.000 0.000 0.192 0.000
#> GSM601766     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> GSM601771     4  0.3300      0.745 0.000 0.004 0.000 0.792 0.204
#> GSM601776     1  0.3177      0.793 0.792 0.000 0.000 0.208 0.000
#> GSM601781     3  0.4457      0.694 0.092 0.000 0.756 0.152 0.000
#> GSM601791     1  0.0000      0.851 1.000 0.000 0.000 0.000 0.000
#> GSM601806     5  0.0510      0.954 0.000 0.000 0.000 0.016 0.984
#> GSM601811     3  0.0000      0.960 0.000 0.000 1.000 0.000 0.000
#> GSM601816     1  0.3177      0.793 0.792 0.000 0.000 0.208 0.000
#> GSM601821     5  0.0000      0.968 0.000 0.000 0.000 0.000 1.000
#> GSM601826     1  0.3210      0.792 0.788 0.000 0.000 0.212 0.000
#> GSM601836     4  0.3464      0.756 0.096 0.068 0.000 0.836 0.000
#> GSM601851     1  0.3177      0.793 0.792 0.000 0.000 0.208 0.000
#> GSM601856     1  0.2074      0.794 0.896 0.000 0.104 0.000 0.000
#> GSM601866     3  0.0000      0.960 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM601752     4  0.0000      0.958 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM601782     1  0.0260      0.919 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM601792     6  0.1327      0.854 0.064 0.000 0.000 0.000 0.000 0.936
#> GSM601797     4  0.1806      0.881 0.088 0.000 0.000 0.908 0.000 0.004
#> GSM601827     1  0.0713      0.916 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM601837     5  0.0000      0.994 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601842     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601857     1  0.2300      0.797 0.856 0.000 0.144 0.000 0.000 0.000
#> GSM601867     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM601747     1  0.4227      0.617 0.692 0.000 0.000 0.052 0.000 0.256
#> GSM601757     6  0.2178      0.815 0.132 0.000 0.000 0.000 0.000 0.868
#> GSM601762     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601767     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601772     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601777     6  0.5984      0.268 0.236 0.000 0.344 0.000 0.000 0.420
#> GSM601787     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM601802     4  0.0000      0.958 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM601807     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM601812     1  0.0000      0.920 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601817     1  0.0146      0.920 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM601822     6  0.0713      0.863 0.028 0.000 0.000 0.000 0.000 0.972
#> GSM601832     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601847     4  0.0820      0.943 0.012 0.000 0.000 0.972 0.000 0.016
#> GSM601852     1  0.3515      0.630 0.676 0.000 0.000 0.000 0.000 0.324
#> GSM601862     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM601753     4  0.2048      0.864 0.000 0.120 0.000 0.880 0.000 0.000
#> GSM601783     1  0.2003      0.863 0.884 0.000 0.000 0.000 0.000 0.116
#> GSM601793     6  0.3050      0.719 0.236 0.000 0.000 0.000 0.000 0.764
#> GSM601798     4  0.0000      0.958 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM601828     1  0.0713      0.916 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM601838     5  0.0000      0.994 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601843     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601858     4  0.0000      0.958 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM601868     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM601748     1  0.0713      0.916 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM601758     1  0.0632      0.913 0.976 0.000 0.000 0.000 0.000 0.024
#> GSM601763     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601768     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601773     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601778     6  0.1863      0.833 0.104 0.000 0.000 0.000 0.000 0.896
#> GSM601788     4  0.0000      0.958 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM601803     4  0.2266      0.868 0.000 0.108 0.000 0.880 0.012 0.000
#> GSM601808     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM601813     1  0.0000      0.920 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601818     1  0.0000      0.920 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601823     6  0.0000      0.865 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM601833     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601848     6  0.0000      0.865 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM601853     1  0.0000      0.920 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601863     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM601754     4  0.0000      0.958 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM601784     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601794     6  0.0713      0.863 0.028 0.000 0.000 0.000 0.000 0.972
#> GSM601799     4  0.2527      0.812 0.000 0.168 0.000 0.832 0.000 0.000
#> GSM601829     6  0.0146      0.865 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM601839     5  0.0000      0.994 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601844     6  0.0000      0.865 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM601859     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601869     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM601749     1  0.3076      0.749 0.760 0.000 0.000 0.000 0.000 0.240
#> GSM601759     1  0.0937      0.913 0.960 0.000 0.000 0.000 0.000 0.040
#> GSM601764     6  0.3315      0.731 0.000 0.020 0.000 0.200 0.000 0.780
#> GSM601769     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601774     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601779     6  0.0000      0.865 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM601789     5  0.0458      0.982 0.000 0.000 0.000 0.016 0.984 0.000
#> GSM601804     4  0.0000      0.958 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM601809     3  0.0260      0.991 0.008 0.000 0.992 0.000 0.000 0.000
#> GSM601814     5  0.0000      0.994 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601819     1  0.3076      0.749 0.760 0.000 0.000 0.000 0.000 0.240
#> GSM601824     6  0.4911      0.535 0.000 0.100 0.000 0.276 0.000 0.624
#> GSM601834     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601849     6  0.0000      0.865 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM601854     1  0.0713      0.916 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM601864     5  0.0000      0.994 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601755     4  0.0000      0.958 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM601785     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601795     6  0.0713      0.859 0.000 0.000 0.000 0.028 0.000 0.972
#> GSM601800     4  0.0000      0.958 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM601830     1  0.0000      0.920 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601840     4  0.0000      0.958 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM601845     4  0.2100      0.846 0.000 0.004 0.000 0.884 0.000 0.112
#> GSM601860     4  0.0000      0.958 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM601870     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM601750     1  0.0713      0.916 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM601760     1  0.3221      0.722 0.736 0.000 0.000 0.000 0.000 0.264
#> GSM601765     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601770     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601775     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601780     6  0.0000      0.865 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM601790     5  0.0000      0.994 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601805     4  0.0000      0.958 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM601810     3  0.0260      0.991 0.008 0.000 0.992 0.000 0.000 0.000
#> GSM601815     5  0.0000      0.994 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601820     1  0.0146      0.920 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM601825     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601835     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601850     6  0.0777      0.861 0.004 0.000 0.000 0.024 0.000 0.972
#> GSM601855     3  0.0458      0.983 0.016 0.000 0.984 0.000 0.000 0.000
#> GSM601865     5  0.0000      0.994 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601756     4  0.0000      0.958 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM601786     5  0.0000      0.994 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601796     6  0.3695      0.474 0.376 0.000 0.000 0.000 0.000 0.624
#> GSM601801     4  0.2915      0.773 0.000 0.008 0.000 0.808 0.184 0.000
#> GSM601831     1  0.0000      0.920 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601841     3  0.0146      0.994 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM601846     4  0.0260      0.953 0.000 0.008 0.000 0.992 0.000 0.000
#> GSM601861     5  0.0000      0.994 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601871     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM601751     4  0.0000      0.958 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM601761     6  0.2854      0.673 0.208 0.000 0.000 0.000 0.000 0.792
#> GSM601766     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601771     4  0.0000      0.958 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM601776     6  0.0713      0.863 0.028 0.000 0.000 0.000 0.000 0.972
#> GSM601781     6  0.5868      0.306 0.204 0.000 0.348 0.000 0.000 0.448
#> GSM601791     1  0.0000      0.920 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601806     5  0.1075      0.949 0.000 0.000 0.000 0.048 0.952 0.000
#> GSM601811     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM601816     6  0.2135      0.817 0.128 0.000 0.000 0.000 0.000 0.872
#> GSM601821     5  0.0000      0.994 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601826     6  0.0000      0.865 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM601836     6  0.3265      0.684 0.000 0.004 0.000 0.248 0.000 0.748
#> GSM601851     6  0.0000      0.865 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM601856     1  0.0000      0.920 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601866     3  0.0000      0.997 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n time(p) gender(p) k
#> ATC:pam 124   0.453    0.3588 2
#> ATC:pam 124   0.233    0.4462 3
#> ATC:pam  75   0.469    0.7425 4
#> ATC:pam 121   0.775    0.1737 5
#> ATC:pam 122   0.793    0.0359 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 125 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.440           0.777       0.822         0.4375 0.580   0.580
#> 3 3 0.632           0.817       0.879         0.4519 0.722   0.534
#> 4 4 0.543           0.365       0.659         0.1340 0.727   0.420
#> 5 5 0.662           0.756       0.799         0.0667 0.826   0.520
#> 6 6 0.865           0.763       0.871         0.0636 0.929   0.696

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM601752     2  0.0376    0.81199 0.004 0.996
#> GSM601782     1  0.0000    0.84327 1.000 0.000
#> GSM601792     2  0.6887    0.83064 0.184 0.816
#> GSM601797     2  0.6887    0.83064 0.184 0.816
#> GSM601827     1  0.3879    0.77850 0.924 0.076
#> GSM601837     1  0.6801    0.84331 0.820 0.180
#> GSM601842     1  0.6887    0.84209 0.816 0.184
#> GSM601857     1  0.0000    0.84327 1.000 0.000
#> GSM601867     1  0.0000    0.84327 1.000 0.000
#> GSM601747     1  0.0000    0.84327 1.000 0.000
#> GSM601757     1  0.0000    0.84327 1.000 0.000
#> GSM601762     1  0.6887    0.84209 0.816 0.184
#> GSM601767     1  0.6887    0.84209 0.816 0.184
#> GSM601772     1  0.6887    0.84209 0.816 0.184
#> GSM601777     2  0.7376    0.82155 0.208 0.792
#> GSM601787     1  0.0000    0.84327 1.000 0.000
#> GSM601802     2  0.0376    0.81199 0.004 0.996
#> GSM601807     1  0.9686    0.01540 0.604 0.396
#> GSM601812     1  0.0000    0.84327 1.000 0.000
#> GSM601817     1  0.0000    0.84327 1.000 0.000
#> GSM601822     2  0.7883    0.80067 0.236 0.764
#> GSM601832     1  0.6887    0.84209 0.816 0.184
#> GSM601847     2  0.6887    0.83064 0.184 0.816
#> GSM601852     1  0.0000    0.84327 1.000 0.000
#> GSM601862     1  0.0000    0.84327 1.000 0.000
#> GSM601753     2  0.1633    0.80247 0.024 0.976
#> GSM601783     1  0.0000    0.84327 1.000 0.000
#> GSM601793     2  0.6887    0.83064 0.184 0.816
#> GSM601798     2  0.0376    0.81199 0.004 0.996
#> GSM601828     1  0.0000    0.84327 1.000 0.000
#> GSM601838     1  0.6801    0.84331 0.820 0.180
#> GSM601843     1  0.6887    0.84209 0.816 0.184
#> GSM601858     1  0.6801    0.84331 0.820 0.180
#> GSM601868     1  0.0000    0.84327 1.000 0.000
#> GSM601748     1  0.0000    0.84327 1.000 0.000
#> GSM601758     1  0.0000    0.84327 1.000 0.000
#> GSM601763     1  0.6801    0.84331 0.820 0.180
#> GSM601768     1  0.6887    0.84209 0.816 0.184
#> GSM601773     1  0.6887    0.84209 0.816 0.184
#> GSM601778     2  0.6887    0.83064 0.184 0.816
#> GSM601788     1  0.6801    0.84331 0.820 0.180
#> GSM601803     2  0.0376    0.81199 0.004 0.996
#> GSM601808     1  0.0000    0.84327 1.000 0.000
#> GSM601813     1  0.9209    0.24251 0.664 0.336
#> GSM601818     1  0.0000    0.84327 1.000 0.000
#> GSM601823     1  0.8267    0.46586 0.740 0.260
#> GSM601833     1  0.6887    0.84209 0.816 0.184
#> GSM601848     2  0.7056    0.82919 0.192 0.808
#> GSM601853     1  0.0000    0.84327 1.000 0.000
#> GSM601863     1  0.0000    0.84327 1.000 0.000
#> GSM601754     2  0.0376    0.81199 0.004 0.996
#> GSM601784     1  0.6887    0.84209 0.816 0.184
#> GSM601794     2  0.6887    0.83064 0.184 0.816
#> GSM601799     2  0.0376    0.81199 0.004 0.996
#> GSM601829     1  0.8207    0.47414 0.744 0.256
#> GSM601839     1  0.6801    0.84331 0.820 0.180
#> GSM601844     1  0.0000    0.84327 1.000 0.000
#> GSM601859     1  0.6887    0.84209 0.816 0.184
#> GSM601869     1  0.0000    0.84327 1.000 0.000
#> GSM601749     1  0.0000    0.84327 1.000 0.000
#> GSM601759     1  0.0000    0.84327 1.000 0.000
#> GSM601764     1  0.6801    0.84331 0.820 0.180
#> GSM601769     1  0.6801    0.84331 0.820 0.180
#> GSM601774     1  0.6887    0.84209 0.816 0.184
#> GSM601779     2  0.7219    0.82643 0.200 0.800
#> GSM601789     1  0.6801    0.84331 0.820 0.180
#> GSM601804     2  0.0376    0.81199 0.004 0.996
#> GSM601809     1  0.0000    0.84327 1.000 0.000
#> GSM601814     2  0.9795    0.00236 0.416 0.584
#> GSM601819     1  0.0000    0.84327 1.000 0.000
#> GSM601824     1  0.6801    0.84331 0.820 0.180
#> GSM601834     1  0.6887    0.84209 0.816 0.184
#> GSM601849     2  0.9686    0.58271 0.396 0.604
#> GSM601854     1  0.0000    0.84327 1.000 0.000
#> GSM601864     1  0.6801    0.84331 0.820 0.180
#> GSM601755     2  0.0376    0.81199 0.004 0.996
#> GSM601785     1  0.6887    0.84209 0.816 0.184
#> GSM601795     2  0.6887    0.83064 0.184 0.816
#> GSM601800     2  0.0376    0.81199 0.004 0.996
#> GSM601830     1  0.8207    0.47422 0.744 0.256
#> GSM601840     1  0.6801    0.84331 0.820 0.180
#> GSM601845     1  0.6801    0.84331 0.820 0.180
#> GSM601860     1  0.6801    0.84331 0.820 0.180
#> GSM601870     1  0.4022    0.77411 0.920 0.080
#> GSM601750     1  0.0000    0.84327 1.000 0.000
#> GSM601760     1  0.0376    0.84084 0.996 0.004
#> GSM601765     1  0.6887    0.84209 0.816 0.184
#> GSM601770     1  0.6887    0.84209 0.816 0.184
#> GSM601775     1  0.6801    0.84331 0.820 0.180
#> GSM601780     2  0.6973    0.83012 0.188 0.812
#> GSM601790     1  0.6801    0.84331 0.820 0.180
#> GSM601805     2  0.0376    0.81199 0.004 0.996
#> GSM601810     1  0.0000    0.84327 1.000 0.000
#> GSM601815     1  0.7883    0.79840 0.764 0.236
#> GSM601820     1  0.0000    0.84327 1.000 0.000
#> GSM601825     2  0.9710    0.05490 0.400 0.600
#> GSM601835     1  0.6801    0.84331 0.820 0.180
#> GSM601850     2  0.7219    0.82643 0.200 0.800
#> GSM601855     1  0.6712    0.63680 0.824 0.176
#> GSM601865     1  0.6438    0.84471 0.836 0.164
#> GSM601756     2  0.0376    0.81199 0.004 0.996
#> GSM601786     1  0.6801    0.84331 0.820 0.180
#> GSM601796     2  0.6887    0.83064 0.184 0.816
#> GSM601801     2  0.0376    0.81199 0.004 0.996
#> GSM601831     1  0.0000    0.84327 1.000 0.000
#> GSM601841     1  0.6531    0.65234 0.832 0.168
#> GSM601846     2  0.9393    0.22390 0.356 0.644
#> GSM601861     1  0.6801    0.84331 0.820 0.180
#> GSM601871     1  0.0000    0.84327 1.000 0.000
#> GSM601751     1  0.6973    0.83898 0.812 0.188
#> GSM601761     1  0.7139    0.59928 0.804 0.196
#> GSM601766     1  0.6887    0.84209 0.816 0.184
#> GSM601771     2  0.9815   -0.01553 0.420 0.580
#> GSM601776     2  0.7299    0.82442 0.204 0.796
#> GSM601781     2  0.6887    0.83064 0.184 0.816
#> GSM601791     1  0.9608    0.05402 0.616 0.384
#> GSM601806     2  0.0376    0.81199 0.004 0.996
#> GSM601811     1  0.0000    0.84327 1.000 0.000
#> GSM601816     2  0.6973    0.83013 0.188 0.812
#> GSM601821     1  0.6973    0.83897 0.812 0.188
#> GSM601826     1  0.1414    0.83041 0.980 0.020
#> GSM601836     1  0.6801    0.84331 0.820 0.180
#> GSM601851     2  0.7299    0.82442 0.204 0.796
#> GSM601856     1  0.0000    0.84327 1.000 0.000
#> GSM601866     1  0.0000    0.84327 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM601752     1  0.0424     0.9278 0.992 0.000 0.008
#> GSM601782     3  0.1765     0.9105 0.004 0.040 0.956
#> GSM601792     1  0.0237     0.9257 0.996 0.000 0.004
#> GSM601797     1  0.0237     0.9257 0.996 0.000 0.004
#> GSM601827     3  0.2793     0.8984 0.028 0.044 0.928
#> GSM601837     2  0.5882     0.7511 0.000 0.652 0.348
#> GSM601842     2  0.0661     0.7737 0.004 0.988 0.008
#> GSM601857     3  0.0237     0.9033 0.004 0.000 0.996
#> GSM601867     3  0.0592     0.8973 0.000 0.012 0.988
#> GSM601747     3  0.1878     0.9097 0.004 0.044 0.952
#> GSM601757     3  0.1765     0.9105 0.004 0.040 0.956
#> GSM601762     2  0.1919     0.7763 0.020 0.956 0.024
#> GSM601767     2  0.0237     0.7688 0.004 0.996 0.000
#> GSM601772     2  0.1289     0.7822 0.000 0.968 0.032
#> GSM601777     1  0.3686     0.8415 0.860 0.000 0.140
#> GSM601787     3  0.0892     0.8923 0.000 0.020 0.980
#> GSM601802     1  0.0424     0.9278 0.992 0.000 0.008
#> GSM601807     3  0.4887     0.6810 0.228 0.000 0.772
#> GSM601812     3  0.1765     0.9105 0.004 0.040 0.956
#> GSM601817     3  0.1643     0.9097 0.000 0.044 0.956
#> GSM601822     1  0.2066     0.8989 0.940 0.000 0.060
#> GSM601832     2  0.0237     0.7688 0.004 0.996 0.000
#> GSM601847     1  0.0237     0.9257 0.996 0.000 0.004
#> GSM601852     3  0.1643     0.9097 0.000 0.044 0.956
#> GSM601862     3  0.0000     0.9021 0.000 0.000 1.000
#> GSM601753     1  0.5348     0.7151 0.796 0.176 0.028
#> GSM601783     3  0.1765     0.9105 0.004 0.040 0.956
#> GSM601793     1  0.0237     0.9257 0.996 0.000 0.004
#> GSM601798     1  0.0424     0.9278 0.992 0.000 0.008
#> GSM601828     3  0.1643     0.9097 0.000 0.044 0.956
#> GSM601838     2  0.5882     0.7511 0.000 0.652 0.348
#> GSM601843     2  0.2301     0.7891 0.004 0.936 0.060
#> GSM601858     2  0.5845     0.7579 0.004 0.688 0.308
#> GSM601868     3  0.0000     0.9021 0.000 0.000 1.000
#> GSM601748     3  0.1643     0.9097 0.000 0.044 0.956
#> GSM601758     3  0.1950     0.9002 0.040 0.008 0.952
#> GSM601763     2  0.5754     0.7640 0.004 0.700 0.296
#> GSM601768     2  0.0237     0.7688 0.004 0.996 0.000
#> GSM601773     2  0.0237     0.7688 0.004 0.996 0.000
#> GSM601778     1  0.0237     0.9257 0.996 0.000 0.004
#> GSM601788     2  0.5815     0.7577 0.004 0.692 0.304
#> GSM601803     1  0.0592     0.9267 0.988 0.000 0.012
#> GSM601808     3  0.0000     0.9021 0.000 0.000 1.000
#> GSM601813     3  0.1643     0.8965 0.044 0.000 0.956
#> GSM601818     3  0.1765     0.9105 0.004 0.040 0.956
#> GSM601823     3  0.7759     0.0712 0.476 0.048 0.476
#> GSM601833     2  0.0237     0.7688 0.004 0.996 0.000
#> GSM601848     1  0.2537     0.8908 0.920 0.000 0.080
#> GSM601853     3  0.1643     0.9097 0.000 0.044 0.956
#> GSM601863     3  0.0000     0.9021 0.000 0.000 1.000
#> GSM601754     1  0.0424     0.9278 0.992 0.000 0.008
#> GSM601784     2  0.0237     0.7688 0.004 0.996 0.000
#> GSM601794     1  0.0237     0.9257 0.996 0.000 0.004
#> GSM601799     1  0.1163     0.9197 0.972 0.000 0.028
#> GSM601829     3  0.7581     0.3049 0.408 0.044 0.548
#> GSM601839     2  0.5882     0.7511 0.000 0.652 0.348
#> GSM601844     3  0.1643     0.9097 0.000 0.044 0.956
#> GSM601859     2  0.3715     0.7963 0.004 0.868 0.128
#> GSM601869     3  0.0237     0.9033 0.004 0.000 0.996
#> GSM601749     3  0.1643     0.9097 0.000 0.044 0.956
#> GSM601759     3  0.1765     0.9105 0.004 0.040 0.956
#> GSM601764     2  0.5115     0.7859 0.004 0.768 0.228
#> GSM601769     2  0.3784     0.7966 0.004 0.864 0.132
#> GSM601774     2  0.0237     0.7688 0.004 0.996 0.000
#> GSM601779     1  0.3340     0.8559 0.880 0.000 0.120
#> GSM601789     2  0.5591     0.7577 0.000 0.696 0.304
#> GSM601804     1  0.0424     0.9278 0.992 0.000 0.008
#> GSM601809     3  0.0237     0.9004 0.000 0.004 0.996
#> GSM601814     2  0.9402     0.5742 0.184 0.472 0.344
#> GSM601819     3  0.1643     0.9097 0.000 0.044 0.956
#> GSM601824     2  0.5815     0.7584 0.004 0.692 0.304
#> GSM601834     2  0.0848     0.7726 0.008 0.984 0.008
#> GSM601849     1  0.4702     0.7466 0.788 0.000 0.212
#> GSM601854     3  0.1643     0.9097 0.000 0.044 0.956
#> GSM601864     2  0.6126     0.6814 0.000 0.600 0.400
#> GSM601755     1  0.0424     0.9278 0.992 0.000 0.008
#> GSM601785     2  0.1399     0.7807 0.004 0.968 0.028
#> GSM601795     1  0.0237     0.9257 0.996 0.000 0.004
#> GSM601800     1  0.0424     0.9278 0.992 0.000 0.008
#> GSM601830     3  0.7284     0.5123 0.336 0.044 0.620
#> GSM601840     2  0.5815     0.7577 0.004 0.692 0.304
#> GSM601845     2  0.5656     0.7696 0.004 0.712 0.284
#> GSM601860     2  0.5815     0.7577 0.004 0.692 0.304
#> GSM601870     3  0.5094     0.7571 0.136 0.040 0.824
#> GSM601750     3  0.1643     0.9097 0.000 0.044 0.956
#> GSM601760     3  0.1989     0.8960 0.048 0.004 0.948
#> GSM601765     2  0.0237     0.7688 0.004 0.996 0.000
#> GSM601770     2  0.0237     0.7688 0.004 0.996 0.000
#> GSM601775     2  0.2860     0.7933 0.004 0.912 0.084
#> GSM601780     1  0.2959     0.8741 0.900 0.000 0.100
#> GSM601790     2  0.5882     0.7511 0.000 0.652 0.348
#> GSM601805     1  0.0424     0.9278 0.992 0.000 0.008
#> GSM601810     3  0.0000     0.9021 0.000 0.000 1.000
#> GSM601815     2  0.5882     0.7511 0.000 0.652 0.348
#> GSM601820     3  0.1765     0.9105 0.004 0.040 0.956
#> GSM601825     2  0.9638     0.2672 0.372 0.420 0.208
#> GSM601835     2  0.4514     0.7952 0.012 0.832 0.156
#> GSM601850     1  0.1753     0.9101 0.952 0.000 0.048
#> GSM601855     3  0.3879     0.7750 0.152 0.000 0.848
#> GSM601865     2  0.6204     0.6388 0.000 0.576 0.424
#> GSM601756     1  0.0424     0.9278 0.992 0.000 0.008
#> GSM601786     2  0.5882     0.7511 0.000 0.652 0.348
#> GSM601796     1  0.0237     0.9257 0.996 0.000 0.004
#> GSM601801     1  0.0424     0.9278 0.992 0.000 0.008
#> GSM601831     3  0.1643     0.9097 0.000 0.044 0.956
#> GSM601841     3  0.2537     0.8651 0.080 0.000 0.920
#> GSM601846     1  0.7949     0.4562 0.640 0.108 0.252
#> GSM601861     2  0.5882     0.7511 0.000 0.652 0.348
#> GSM601871     3  0.0424     0.8992 0.000 0.008 0.992
#> GSM601751     2  0.6143     0.7581 0.012 0.684 0.304
#> GSM601761     3  0.4702     0.7021 0.212 0.000 0.788
#> GSM601766     2  0.2945     0.7933 0.004 0.908 0.088
#> GSM601771     2  0.8478     0.6702 0.204 0.616 0.180
#> GSM601776     1  0.5926     0.4902 0.644 0.000 0.356
#> GSM601781     1  0.2625     0.8932 0.916 0.000 0.084
#> GSM601791     3  0.4654     0.7290 0.208 0.000 0.792
#> GSM601806     1  0.0424     0.9278 0.992 0.000 0.008
#> GSM601811     3  0.0000     0.9021 0.000 0.000 1.000
#> GSM601816     1  0.1289     0.9171 0.968 0.000 0.032
#> GSM601821     2  0.5882     0.7511 0.000 0.652 0.348
#> GSM601826     3  0.3875     0.8642 0.068 0.044 0.888
#> GSM601836     2  0.5588     0.7729 0.004 0.720 0.276
#> GSM601851     1  0.5497     0.6198 0.708 0.000 0.292
#> GSM601856     3  0.1643     0.9097 0.000 0.044 0.956
#> GSM601866     3  0.0237     0.9033 0.004 0.000 0.996

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM601752     1  0.6500    -0.2384 0.484 0.072 0.000 0.444
#> GSM601782     1  0.8558     0.4251 0.464 0.052 0.292 0.192
#> GSM601792     1  0.4121     0.2811 0.796 0.000 0.020 0.184
#> GSM601797     1  0.4086     0.2295 0.776 0.000 0.008 0.216
#> GSM601827     1  0.7278     0.4435 0.528 0.000 0.284 0.188
#> GSM601837     3  0.7720    -0.0380 0.000 0.228 0.412 0.360
#> GSM601842     2  0.0000     0.8072 0.000 1.000 0.000 0.000
#> GSM601857     3  0.8403    -0.2543 0.340 0.052 0.456 0.152
#> GSM601867     3  0.3569     0.3462 0.000 0.000 0.804 0.196
#> GSM601747     1  0.8719     0.1287 0.376 0.052 0.196 0.376
#> GSM601757     1  0.8531     0.4224 0.464 0.052 0.300 0.184
#> GSM601762     2  0.4008     0.6793 0.000 0.820 0.148 0.032
#> GSM601767     2  0.0000     0.8072 0.000 1.000 0.000 0.000
#> GSM601772     2  0.0921     0.7959 0.000 0.972 0.000 0.028
#> GSM601777     1  0.3400     0.4633 0.820 0.000 0.180 0.000
#> GSM601787     3  0.4277     0.2797 0.000 0.000 0.720 0.280
#> GSM601802     1  0.6500    -0.2384 0.484 0.072 0.000 0.444
#> GSM601807     3  0.6571     0.4196 0.264 0.000 0.612 0.124
#> GSM601812     1  0.7013     0.4028 0.516 0.000 0.356 0.128
#> GSM601817     1  0.8558     0.4251 0.464 0.052 0.292 0.192
#> GSM601822     1  0.4375     0.4609 0.788 0.000 0.180 0.032
#> GSM601832     2  0.0000     0.8072 0.000 1.000 0.000 0.000
#> GSM601847     1  0.3172     0.2790 0.840 0.000 0.000 0.160
#> GSM601852     1  0.8558     0.4251 0.464 0.052 0.292 0.192
#> GSM601862     3  0.2197     0.5248 0.080 0.000 0.916 0.004
#> GSM601753     4  0.7296     0.3827 0.316 0.128 0.012 0.544
#> GSM601783     1  0.7341     0.4387 0.516 0.000 0.292 0.192
#> GSM601793     1  0.5272     0.3490 0.744 0.000 0.084 0.172
#> GSM601798     1  0.6500    -0.2384 0.484 0.072 0.000 0.444
#> GSM601828     1  0.7341     0.4387 0.516 0.000 0.292 0.192
#> GSM601838     3  0.7720    -0.0380 0.000 0.228 0.412 0.360
#> GSM601843     2  0.0000     0.8072 0.000 1.000 0.000 0.000
#> GSM601858     2  0.7289     0.2759 0.000 0.528 0.280 0.192
#> GSM601868     3  0.2342     0.5239 0.080 0.000 0.912 0.008
#> GSM601748     1  0.8558     0.4251 0.464 0.052 0.292 0.192
#> GSM601758     1  0.7268     0.4307 0.516 0.000 0.312 0.172
#> GSM601763     2  0.5148     0.6461 0.000 0.736 0.056 0.208
#> GSM601768     2  0.0000     0.8072 0.000 1.000 0.000 0.000
#> GSM601773     2  0.0000     0.8072 0.000 1.000 0.000 0.000
#> GSM601778     1  0.2868     0.3059 0.864 0.000 0.000 0.136
#> GSM601788     2  0.6436     0.4970 0.000 0.608 0.100 0.292
#> GSM601803     1  0.6504    -0.2484 0.476 0.072 0.000 0.452
#> GSM601808     3  0.3266     0.4759 0.168 0.000 0.832 0.000
#> GSM601813     1  0.7013     0.4028 0.516 0.000 0.356 0.128
#> GSM601818     1  0.8545     0.4239 0.464 0.052 0.296 0.188
#> GSM601823     1  0.7543     0.4020 0.568 0.028 0.268 0.136
#> GSM601833     2  0.0000     0.8072 0.000 1.000 0.000 0.000
#> GSM601848     1  0.3074     0.4643 0.848 0.000 0.152 0.000
#> GSM601853     1  0.7545     0.3178 0.416 0.000 0.396 0.188
#> GSM601863     3  0.2197     0.5248 0.080 0.000 0.916 0.004
#> GSM601754     1  0.6500    -0.2384 0.484 0.072 0.000 0.444
#> GSM601784     2  0.0000     0.8072 0.000 1.000 0.000 0.000
#> GSM601794     1  0.3768     0.2693 0.808 0.000 0.008 0.184
#> GSM601799     4  0.6648     0.3046 0.372 0.092 0.000 0.536
#> GSM601829     1  0.6854     0.4328 0.600 0.004 0.260 0.136
#> GSM601839     3  0.7720    -0.0380 0.000 0.228 0.412 0.360
#> GSM601844     1  0.8066     0.4251 0.484 0.028 0.316 0.172
#> GSM601859     2  0.0469     0.8055 0.000 0.988 0.000 0.012
#> GSM601869     3  0.2197     0.5248 0.080 0.000 0.916 0.004
#> GSM601749     1  0.7341     0.4387 0.516 0.000 0.292 0.192
#> GSM601759     1  0.7341     0.4387 0.516 0.000 0.292 0.192
#> GSM601764     2  0.4259     0.6965 0.000 0.816 0.056 0.128
#> GSM601769     2  0.5267     0.5996 0.000 0.740 0.184 0.076
#> GSM601774     2  0.0188     0.8067 0.000 0.996 0.000 0.004
#> GSM601779     1  0.1284     0.4121 0.964 0.000 0.012 0.024
#> GSM601789     2  0.6790     0.4138 0.000 0.608 0.192 0.200
#> GSM601804     1  0.6500    -0.2384 0.484 0.072 0.000 0.444
#> GSM601809     3  0.2988     0.5186 0.112 0.000 0.876 0.012
#> GSM601814     4  0.4627     0.3218 0.004 0.028 0.196 0.772
#> GSM601819     1  0.8558     0.4251 0.464 0.052 0.292 0.192
#> GSM601824     2  0.6160     0.5112 0.000 0.612 0.072 0.316
#> GSM601834     2  0.0524     0.8020 0.000 0.988 0.004 0.008
#> GSM601849     1  0.4072     0.4326 0.748 0.000 0.252 0.000
#> GSM601854     1  0.7341     0.4387 0.516 0.000 0.292 0.192
#> GSM601864     3  0.6952     0.0831 0.000 0.120 0.516 0.364
#> GSM601755     1  0.6500    -0.2384 0.484 0.072 0.000 0.444
#> GSM601785     2  0.0000     0.8072 0.000 1.000 0.000 0.000
#> GSM601795     1  0.3764     0.2203 0.784 0.000 0.000 0.216
#> GSM601800     1  0.6504    -0.2487 0.476 0.072 0.000 0.452
#> GSM601830     1  0.7042     0.4334 0.572 0.000 0.240 0.188
#> GSM601840     2  0.6221     0.5053 0.000 0.608 0.076 0.316
#> GSM601845     2  0.4257     0.6928 0.000 0.812 0.048 0.140
#> GSM601860     2  0.6179     0.5057 0.000 0.608 0.072 0.320
#> GSM601870     3  0.4567     0.2719 0.008 0.000 0.716 0.276
#> GSM601750     1  0.7341     0.4387 0.516 0.000 0.292 0.192
#> GSM601760     1  0.8467     0.4148 0.464 0.052 0.316 0.168
#> GSM601765     2  0.0000     0.8072 0.000 1.000 0.000 0.000
#> GSM601770     2  0.0000     0.8072 0.000 1.000 0.000 0.000
#> GSM601775     2  0.0336     0.8054 0.000 0.992 0.000 0.008
#> GSM601780     1  0.0779     0.4148 0.980 0.000 0.004 0.016
#> GSM601790     3  0.7832    -0.0813 0.000 0.260 0.380 0.360
#> GSM601805     1  0.6500    -0.2384 0.484 0.072 0.000 0.444
#> GSM601810     3  0.3791     0.4386 0.200 0.000 0.796 0.004
#> GSM601815     4  0.6994     0.1990 0.000 0.152 0.288 0.560
#> GSM601820     1  0.7155     0.4048 0.504 0.000 0.352 0.144
#> GSM601825     4  0.8646     0.2851 0.056 0.372 0.172 0.400
#> GSM601835     2  0.0895     0.7954 0.000 0.976 0.004 0.020
#> GSM601850     1  0.1716     0.3727 0.936 0.000 0.000 0.064
#> GSM601855     3  0.4509     0.4040 0.288 0.000 0.708 0.004
#> GSM601865     3  0.7463     0.0245 0.000 0.180 0.456 0.364
#> GSM601756     1  0.6500    -0.2384 0.484 0.072 0.000 0.444
#> GSM601786     3  0.7723    -0.0393 0.000 0.228 0.408 0.364
#> GSM601796     1  0.4677     0.2911 0.768 0.000 0.040 0.192
#> GSM601801     1  0.6500    -0.2384 0.484 0.072 0.000 0.444
#> GSM601831     1  0.7329     0.4375 0.516 0.000 0.296 0.188
#> GSM601841     3  0.3837     0.4058 0.224 0.000 0.776 0.000
#> GSM601846     4  0.8007     0.3095 0.100 0.300 0.068 0.532
#> GSM601861     4  0.7855     0.0481 0.000 0.320 0.284 0.396
#> GSM601871     3  0.4277     0.2797 0.000 0.000 0.720 0.280
#> GSM601751     2  0.7098     0.3481 0.000 0.564 0.192 0.244
#> GSM601761     1  0.6868     0.4129 0.544 0.000 0.336 0.120
#> GSM601766     2  0.0188     0.8068 0.000 0.996 0.000 0.004
#> GSM601771     3  0.9188    -0.2126 0.152 0.284 0.432 0.132
#> GSM601776     1  0.2976     0.4320 0.872 0.000 0.120 0.008
#> GSM601781     1  0.3539     0.4636 0.820 0.000 0.176 0.004
#> GSM601791     1  0.6627     0.4150 0.556 0.000 0.348 0.096
#> GSM601806     1  0.6500    -0.2384 0.484 0.072 0.000 0.444
#> GSM601811     3  0.2760     0.5104 0.128 0.000 0.872 0.000
#> GSM601816     1  0.3219     0.4648 0.836 0.000 0.164 0.000
#> GSM601821     4  0.7330     0.1396 0.000 0.180 0.312 0.508
#> GSM601826     1  0.7182     0.3984 0.512 0.004 0.356 0.128
#> GSM601836     2  0.4491     0.6850 0.000 0.800 0.060 0.140
#> GSM601851     1  0.1635     0.4373 0.948 0.000 0.044 0.008
#> GSM601856     3  0.7543    -0.3151 0.392 0.000 0.420 0.188
#> GSM601866     3  0.3052     0.5066 0.136 0.000 0.860 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM601752     4  0.1153     0.7573 0.000 0.008 0.024 0.964 0.004
#> GSM601782     1  0.0771     0.8395 0.976 0.000 0.000 0.004 0.020
#> GSM601792     4  0.4473     0.7828 0.020 0.000 0.324 0.656 0.000
#> GSM601797     4  0.4366     0.7838 0.016 0.000 0.320 0.664 0.000
#> GSM601827     1  0.2900     0.7807 0.876 0.000 0.092 0.020 0.012
#> GSM601837     5  0.0000     0.9337 0.000 0.000 0.000 0.000 1.000
#> GSM601842     2  0.1121     0.8240 0.000 0.956 0.000 0.000 0.044
#> GSM601857     1  0.2170     0.8036 0.904 0.000 0.004 0.004 0.088
#> GSM601867     3  0.6202     0.8173 0.228 0.000 0.552 0.000 0.220
#> GSM601747     1  0.1952     0.8107 0.912 0.000 0.000 0.004 0.084
#> GSM601757     1  0.1205     0.8350 0.956 0.000 0.000 0.004 0.040
#> GSM601762     2  0.1768     0.8058 0.000 0.924 0.000 0.004 0.072
#> GSM601767     2  0.0000     0.8160 0.000 1.000 0.000 0.000 0.000
#> GSM601772     2  0.2280     0.8217 0.000 0.880 0.000 0.000 0.120
#> GSM601777     4  0.5951     0.7348 0.060 0.000 0.232 0.648 0.060
#> GSM601787     3  0.6155     0.7929 0.192 0.000 0.556 0.000 0.252
#> GSM601802     4  0.0451     0.7526 0.000 0.008 0.000 0.988 0.004
#> GSM601807     3  0.6858     0.7004 0.132 0.000 0.580 0.072 0.216
#> GSM601812     1  0.3205     0.8069 0.864 0.000 0.056 0.008 0.072
#> GSM601817     1  0.0162     0.8378 0.996 0.000 0.004 0.000 0.000
#> GSM601822     4  0.4859     0.7774 0.024 0.000 0.332 0.636 0.008
#> GSM601832     2  0.0000     0.8160 0.000 1.000 0.000 0.000 0.000
#> GSM601847     4  0.4384     0.7839 0.016 0.000 0.324 0.660 0.000
#> GSM601852     1  0.0162     0.8378 0.996 0.000 0.004 0.000 0.000
#> GSM601862     3  0.5680     0.8464 0.228 0.000 0.624 0.000 0.148
#> GSM601753     4  0.6157     0.2512 0.000 0.312 0.040 0.580 0.068
#> GSM601783     1  0.0162     0.8376 0.996 0.000 0.000 0.004 0.000
#> GSM601793     4  0.4473     0.7828 0.020 0.000 0.324 0.656 0.000
#> GSM601798     4  0.0451     0.7526 0.000 0.008 0.000 0.988 0.004
#> GSM601828     1  0.0162     0.8378 0.996 0.000 0.004 0.000 0.000
#> GSM601838     5  0.0000     0.9337 0.000 0.000 0.000 0.000 1.000
#> GSM601843     2  0.1197     0.8243 0.000 0.952 0.000 0.000 0.048
#> GSM601858     2  0.5476     0.6031 0.044 0.592 0.000 0.016 0.348
#> GSM601868     3  0.5680     0.8464 0.228 0.000 0.624 0.000 0.148
#> GSM601748     1  0.0000     0.8372 1.000 0.000 0.000 0.000 0.000
#> GSM601758     1  0.2445     0.7816 0.884 0.000 0.004 0.004 0.108
#> GSM601763     2  0.4693     0.7612 0.080 0.724 0.000 0.000 0.196
#> GSM601768     2  0.0000     0.8160 0.000 1.000 0.000 0.000 0.000
#> GSM601773     2  0.0000     0.8160 0.000 1.000 0.000 0.000 0.000
#> GSM601778     4  0.4384     0.7834 0.016 0.000 0.324 0.660 0.000
#> GSM601788     2  0.5590     0.6762 0.068 0.628 0.000 0.016 0.288
#> GSM601803     4  0.0579     0.7518 0.000 0.008 0.000 0.984 0.008
#> GSM601808     3  0.5680     0.8464 0.228 0.000 0.624 0.000 0.148
#> GSM601813     1  0.4718     0.7237 0.764 0.000 0.084 0.020 0.132
#> GSM601818     1  0.1357     0.8318 0.948 0.000 0.000 0.004 0.048
#> GSM601823     1  0.7137     0.4758 0.564 0.008 0.096 0.092 0.240
#> GSM601833     2  0.0000     0.8160 0.000 1.000 0.000 0.000 0.000
#> GSM601848     4  0.5102     0.7534 0.044 0.000 0.376 0.580 0.000
#> GSM601853     1  0.1792     0.8076 0.916 0.000 0.000 0.000 0.084
#> GSM601863     3  0.5680     0.8464 0.228 0.000 0.624 0.000 0.148
#> GSM601754     4  0.1059     0.7570 0.000 0.008 0.020 0.968 0.004
#> GSM601784     2  0.0000     0.8160 0.000 1.000 0.000 0.000 0.000
#> GSM601794     4  0.4473     0.7828 0.020 0.000 0.324 0.656 0.000
#> GSM601799     4  0.3089     0.7203 0.000 0.048 0.040 0.880 0.032
#> GSM601829     1  0.4398     0.6882 0.780 0.000 0.112 0.100 0.008
#> GSM601839     5  0.0000     0.9337 0.000 0.000 0.000 0.000 1.000
#> GSM601844     1  0.1670     0.8197 0.936 0.000 0.052 0.000 0.012
#> GSM601859     2  0.2389     0.8230 0.004 0.880 0.000 0.000 0.116
#> GSM601869     3  0.5680     0.8464 0.228 0.000 0.624 0.000 0.148
#> GSM601749     1  0.0000     0.8372 1.000 0.000 0.000 0.000 0.000
#> GSM601759     1  0.0324     0.8390 0.992 0.000 0.000 0.004 0.004
#> GSM601764     2  0.4757     0.7541 0.080 0.716 0.000 0.000 0.204
#> GSM601769     2  0.3109     0.7904 0.000 0.800 0.000 0.000 0.200
#> GSM601774     2  0.0162     0.8158 0.000 0.996 0.000 0.000 0.004
#> GSM601779     4  0.6347     0.6335 0.164 0.000 0.376 0.460 0.000
#> GSM601789     2  0.4688     0.6184 0.004 0.616 0.000 0.016 0.364
#> GSM601804     4  0.1830     0.7512 0.000 0.012 0.052 0.932 0.004
#> GSM601809     3  0.6026     0.8326 0.228 0.000 0.580 0.000 0.192
#> GSM601814     5  0.1608     0.8619 0.000 0.000 0.000 0.072 0.928
#> GSM601819     1  0.0404     0.8394 0.988 0.000 0.000 0.000 0.012
#> GSM601824     2  0.4905     0.7388 0.080 0.696 0.000 0.000 0.224
#> GSM601834     2  0.0000     0.8160 0.000 1.000 0.000 0.000 0.000
#> GSM601849     4  0.7558     0.5173 0.208 0.000 0.316 0.420 0.056
#> GSM601854     1  0.0000     0.8372 1.000 0.000 0.000 0.000 0.000
#> GSM601864     5  0.0162     0.9297 0.000 0.000 0.004 0.000 0.996
#> GSM601755     4  0.0451     0.7526 0.000 0.008 0.000 0.988 0.004
#> GSM601785     2  0.2179     0.8224 0.000 0.888 0.000 0.000 0.112
#> GSM601795     4  0.4290     0.7846 0.016 0.000 0.304 0.680 0.000
#> GSM601800     4  0.0451     0.7526 0.000 0.008 0.000 0.988 0.004
#> GSM601830     1  0.6962     0.3006 0.512 0.000 0.068 0.320 0.100
#> GSM601840     2  0.5809     0.6590 0.088 0.616 0.000 0.016 0.280
#> GSM601845     2  0.4960     0.7302 0.080 0.688 0.000 0.000 0.232
#> GSM601860     2  0.5655     0.6897 0.084 0.640 0.000 0.016 0.260
#> GSM601870     3  0.6548     0.6979 0.132 0.000 0.536 0.024 0.308
#> GSM601750     1  0.0000     0.8372 1.000 0.000 0.000 0.000 0.000
#> GSM601760     1  0.3063     0.7867 0.864 0.000 0.036 0.004 0.096
#> GSM601765     2  0.0000     0.8160 0.000 1.000 0.000 0.000 0.000
#> GSM601770     2  0.0000     0.8160 0.000 1.000 0.000 0.000 0.000
#> GSM601775     2  0.2574     0.8232 0.012 0.876 0.000 0.000 0.112
#> GSM601780     4  0.6081     0.6817 0.128 0.000 0.376 0.496 0.000
#> GSM601790     5  0.0000     0.9337 0.000 0.000 0.000 0.000 1.000
#> GSM601805     4  0.0451     0.7526 0.000 0.008 0.000 0.988 0.004
#> GSM601810     3  0.5654     0.8450 0.224 0.000 0.628 0.000 0.148
#> GSM601815     5  0.0000     0.9337 0.000 0.000 0.000 0.000 1.000
#> GSM601820     1  0.1502     0.8301 0.940 0.000 0.000 0.004 0.056
#> GSM601825     2  0.5879     0.7277 0.044 0.724 0.036 0.096 0.100
#> GSM601835     2  0.3109     0.7910 0.000 0.800 0.000 0.000 0.200
#> GSM601850     4  0.4981     0.7670 0.020 0.000 0.360 0.608 0.012
#> GSM601855     3  0.6455     0.7417 0.144 0.000 0.612 0.044 0.200
#> GSM601865     5  0.0162     0.9297 0.000 0.000 0.004 0.000 0.996
#> GSM601756     4  0.0451     0.7526 0.000 0.008 0.000 0.988 0.004
#> GSM601786     5  0.0000     0.9337 0.000 0.000 0.000 0.000 1.000
#> GSM601796     4  0.4384     0.7834 0.016 0.000 0.324 0.660 0.000
#> GSM601801     4  0.0451     0.7526 0.000 0.008 0.000 0.988 0.004
#> GSM601831     1  0.0693     0.8386 0.980 0.000 0.008 0.000 0.012
#> GSM601841     3  0.6339     0.6903 0.352 0.000 0.496 0.004 0.148
#> GSM601846     4  0.7043     0.3288 0.056 0.172 0.004 0.564 0.204
#> GSM601861     5  0.0000     0.9337 0.000 0.000 0.000 0.000 1.000
#> GSM601871     3  0.6155     0.7929 0.192 0.000 0.556 0.000 0.252
#> GSM601751     2  0.5716     0.6597 0.076 0.616 0.000 0.016 0.292
#> GSM601761     1  0.4326     0.6850 0.764 0.000 0.188 0.016 0.032
#> GSM601766     2  0.2338     0.8233 0.004 0.884 0.000 0.000 0.112
#> GSM601771     5  0.8150     0.2912 0.068 0.176 0.032 0.272 0.452
#> GSM601776     1  0.6972    -0.0686 0.404 0.000 0.360 0.224 0.012
#> GSM601781     4  0.4558     0.7831 0.024 0.000 0.324 0.652 0.000
#> GSM601791     1  0.5217     0.6319 0.692 0.000 0.232 0.028 0.048
#> GSM601806     4  0.0451     0.7526 0.000 0.008 0.000 0.988 0.004
#> GSM601811     3  0.5680     0.8464 0.228 0.000 0.624 0.000 0.148
#> GSM601816     4  0.4624     0.7779 0.024 0.000 0.340 0.636 0.000
#> GSM601821     5  0.0000     0.9337 0.000 0.000 0.000 0.000 1.000
#> GSM601826     1  0.4588     0.7285 0.768 0.000 0.092 0.012 0.128
#> GSM601836     2  0.5185     0.7161 0.100 0.672 0.000 0.000 0.228
#> GSM601851     3  0.6800    -0.4757 0.304 0.000 0.376 0.320 0.000
#> GSM601856     1  0.2046     0.8194 0.916 0.000 0.016 0.000 0.068
#> GSM601866     3  0.5752     0.8392 0.240 0.000 0.612 0.000 0.148

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM601752     4  0.3866      0.640 0.000 0.000 0.000 0.516 0.000 0.484
#> GSM601782     1  0.0146      0.915 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM601792     6  0.0000      0.601 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM601797     6  0.0000      0.601 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM601827     1  0.3956      0.667 0.716 0.000 0.004 0.252 0.000 0.028
#> GSM601837     5  0.0000      0.935 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601842     2  0.0260      0.922 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM601857     1  0.0865      0.901 0.964 0.000 0.036 0.000 0.000 0.000
#> GSM601867     3  0.1124      0.916 0.008 0.000 0.956 0.000 0.036 0.000
#> GSM601747     1  0.0717      0.908 0.976 0.000 0.000 0.000 0.008 0.016
#> GSM601757     1  0.0146      0.915 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM601762     2  0.1204      0.918 0.000 0.944 0.000 0.000 0.056 0.000
#> GSM601767     2  0.0000      0.921 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601772     2  0.0790      0.924 0.000 0.968 0.000 0.000 0.032 0.000
#> GSM601777     6  0.0146      0.597 0.000 0.000 0.004 0.000 0.000 0.996
#> GSM601787     3  0.1010      0.917 0.004 0.000 0.960 0.000 0.036 0.000
#> GSM601802     4  0.3857      0.669 0.000 0.000 0.000 0.532 0.000 0.468
#> GSM601807     3  0.3520      0.734 0.000 0.000 0.776 0.000 0.036 0.188
#> GSM601812     1  0.1555      0.885 0.932 0.000 0.004 0.060 0.000 0.004
#> GSM601817     1  0.0260      0.915 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM601822     6  0.3265      0.632 0.000 0.000 0.004 0.248 0.000 0.748
#> GSM601832     2  0.0000      0.921 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601847     6  0.1588      0.611 0.000 0.000 0.004 0.072 0.000 0.924
#> GSM601852     1  0.0000      0.915 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601862     3  0.0146      0.927 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM601753     4  0.5425      0.182 0.000 0.300 0.000 0.596 0.068 0.036
#> GSM601783     1  0.0146      0.915 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM601793     6  0.0000      0.601 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM601798     4  0.3857      0.669 0.000 0.000 0.000 0.532 0.000 0.468
#> GSM601828     1  0.0260      0.915 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM601838     5  0.0000      0.935 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601843     2  0.0458      0.923 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM601858     2  0.2588      0.885 0.004 0.860 0.000 0.012 0.124 0.000
#> GSM601868     3  0.0146      0.927 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM601748     1  0.0000      0.915 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601758     1  0.2362      0.802 0.860 0.000 0.004 0.000 0.000 0.136
#> GSM601763     2  0.2320      0.907 0.004 0.892 0.000 0.024 0.080 0.000
#> GSM601768     2  0.0000      0.921 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601773     2  0.0000      0.921 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601778     6  0.0000      0.601 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM601788     2  0.2741      0.896 0.008 0.868 0.000 0.032 0.092 0.000
#> GSM601803     4  0.3857      0.669 0.000 0.000 0.000 0.532 0.000 0.468
#> GSM601808     3  0.0146      0.927 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM601813     4  0.7046     -0.298 0.260 0.000 0.068 0.448 0.008 0.216
#> GSM601818     1  0.0000      0.915 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601823     4  0.6975     -0.244 0.264 0.000 0.004 0.460 0.080 0.192
#> GSM601833     2  0.0000      0.921 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601848     6  0.3955      0.620 0.000 0.000 0.004 0.436 0.000 0.560
#> GSM601853     1  0.0458      0.912 0.984 0.000 0.016 0.000 0.000 0.000
#> GSM601863     3  0.0146      0.927 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM601754     4  0.3868      0.644 0.000 0.000 0.000 0.504 0.000 0.496
#> GSM601784     2  0.0000      0.921 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601794     6  0.0000      0.601 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM601799     4  0.4422      0.430 0.000 0.000 0.000 0.680 0.068 0.252
#> GSM601829     4  0.5664     -0.293 0.444 0.000 0.004 0.448 0.012 0.092
#> GSM601839     5  0.0000      0.935 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601844     1  0.0935      0.904 0.964 0.000 0.004 0.032 0.000 0.000
#> GSM601859     2  0.0547      0.924 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM601869     3  0.0146      0.927 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM601749     1  0.0000      0.915 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601759     1  0.0260      0.914 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM601764     2  0.2320      0.907 0.004 0.892 0.000 0.024 0.080 0.000
#> GSM601769     2  0.1910      0.901 0.000 0.892 0.000 0.000 0.108 0.000
#> GSM601774     2  0.0000      0.921 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601779     6  0.4093      0.618 0.004 0.000 0.004 0.440 0.000 0.552
#> GSM601789     2  0.2243      0.897 0.004 0.880 0.000 0.004 0.112 0.000
#> GSM601804     4  0.3619      0.501 0.000 0.000 0.000 0.680 0.004 0.316
#> GSM601809     3  0.0692      0.923 0.004 0.000 0.976 0.000 0.020 0.000
#> GSM601814     5  0.1779      0.862 0.000 0.000 0.000 0.064 0.920 0.016
#> GSM601819     1  0.0458      0.911 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM601824     2  0.2320      0.907 0.004 0.892 0.000 0.024 0.080 0.000
#> GSM601834     2  0.0000      0.921 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601849     6  0.3966      0.617 0.000 0.000 0.004 0.444 0.000 0.552
#> GSM601854     1  0.0260      0.915 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM601864     5  0.0146      0.933 0.000 0.000 0.004 0.000 0.996 0.000
#> GSM601755     4  0.3857      0.669 0.000 0.000 0.000 0.532 0.000 0.468
#> GSM601785     2  0.1075      0.922 0.000 0.952 0.000 0.000 0.048 0.000
#> GSM601795     6  0.0000      0.601 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM601800     4  0.3857      0.669 0.000 0.000 0.000 0.532 0.000 0.468
#> GSM601830     1  0.6636      0.109 0.468 0.000 0.068 0.100 0.012 0.352
#> GSM601840     2  0.2666      0.898 0.008 0.872 0.000 0.028 0.092 0.000
#> GSM601845     2  0.2320      0.907 0.004 0.892 0.000 0.024 0.080 0.000
#> GSM601860     2  0.2666      0.898 0.008 0.872 0.000 0.028 0.092 0.000
#> GSM601870     3  0.2917      0.847 0.004 0.000 0.852 0.000 0.104 0.040
#> GSM601750     1  0.0000      0.915 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM601760     1  0.2703      0.757 0.824 0.000 0.000 0.000 0.004 0.172
#> GSM601765     2  0.0000      0.921 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601770     2  0.0000      0.921 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM601775     2  0.0790      0.924 0.000 0.968 0.000 0.000 0.032 0.000
#> GSM601780     6  0.3961      0.619 0.000 0.000 0.004 0.440 0.000 0.556
#> GSM601790     5  0.0000      0.935 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601805     4  0.3857      0.669 0.000 0.000 0.000 0.532 0.000 0.468
#> GSM601810     3  0.0146      0.927 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM601815     5  0.0000      0.935 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601820     1  0.0260      0.914 0.992 0.000 0.008 0.000 0.000 0.000
#> GSM601825     2  0.3490      0.859 0.000 0.832 0.000 0.068 0.072 0.028
#> GSM601835     2  0.0858      0.924 0.000 0.968 0.000 0.000 0.028 0.004
#> GSM601850     6  0.3961      0.619 0.000 0.000 0.004 0.440 0.000 0.556
#> GSM601855     3  0.2342      0.864 0.004 0.000 0.888 0.000 0.020 0.088
#> GSM601865     5  0.0146      0.933 0.000 0.000 0.004 0.000 0.996 0.000
#> GSM601756     4  0.3857      0.669 0.000 0.000 0.000 0.532 0.000 0.468
#> GSM601786     5  0.0000      0.935 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601796     6  0.0000      0.601 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM601801     4  0.3857      0.669 0.000 0.000 0.000 0.532 0.000 0.468
#> GSM601831     1  0.0520      0.913 0.984 0.000 0.008 0.008 0.000 0.000
#> GSM601841     3  0.4248      0.655 0.040 0.000 0.732 0.004 0.012 0.212
#> GSM601846     2  0.7191     -0.235 0.000 0.324 0.000 0.308 0.080 0.288
#> GSM601861     5  0.0000      0.935 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601871     3  0.1010      0.917 0.004 0.000 0.960 0.000 0.036 0.000
#> GSM601751     2  0.4224      0.766 0.004 0.744 0.000 0.156 0.096 0.000
#> GSM601761     1  0.3853      0.583 0.708 0.000 0.000 0.012 0.008 0.272
#> GSM601766     2  0.0458      0.923 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM601771     5  0.8772      0.119 0.004 0.220 0.148 0.232 0.292 0.104
#> GSM601776     6  0.4644      0.597 0.032 0.000 0.004 0.440 0.000 0.524
#> GSM601781     6  0.0000      0.601 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM601791     6  0.6338      0.374 0.272 0.000 0.000 0.308 0.012 0.408
#> GSM601806     4  0.3857      0.669 0.000 0.000 0.000 0.532 0.000 0.468
#> GSM601811     3  0.0146      0.927 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM601816     6  0.3428      0.636 0.000 0.000 0.000 0.304 0.000 0.696
#> GSM601821     5  0.0000      0.935 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM601826     1  0.4876      0.539 0.608 0.000 0.004 0.328 0.056 0.004
#> GSM601836     2  0.2320      0.907 0.004 0.892 0.000 0.024 0.080 0.000
#> GSM601851     6  0.4284      0.613 0.012 0.000 0.004 0.440 0.000 0.544
#> GSM601856     1  0.0622      0.912 0.980 0.000 0.012 0.008 0.000 0.000
#> GSM601866     3  0.2003      0.829 0.116 0.000 0.884 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n time(p) gender(p) k
#> ATC:mclust 115   0.930     0.295 2
#> ATC:mclust 120   0.808     0.311 3
#> ATC:mclust  34   0.338     1.000 4
#> ATC:mclust 118   0.907     0.450 5
#> ATC:mclust 116   0.948     0.419 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 125 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.991       0.996         0.5022 0.499   0.499
#> 3 3 0.695           0.807       0.903         0.2643 0.751   0.556
#> 4 4 0.606           0.715       0.838         0.1610 0.819   0.554
#> 5 5 0.610           0.550       0.736         0.0667 0.881   0.596
#> 6 6 0.653           0.481       0.708         0.0346 0.873   0.543

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM601752     2  0.0000      0.999 0.000 1.000
#> GSM601782     1  0.0000      0.993 1.000 0.000
#> GSM601792     1  0.0000      0.993 1.000 0.000
#> GSM601797     1  0.0000      0.993 1.000 0.000
#> GSM601827     1  0.0000      0.993 1.000 0.000
#> GSM601837     2  0.0000      0.999 0.000 1.000
#> GSM601842     2  0.0000      0.999 0.000 1.000
#> GSM601857     1  0.0000      0.993 1.000 0.000
#> GSM601867     1  0.0000      0.993 1.000 0.000
#> GSM601747     1  0.0376      0.989 0.996 0.004
#> GSM601757     1  0.0000      0.993 1.000 0.000
#> GSM601762     2  0.0000      0.999 0.000 1.000
#> GSM601767     2  0.0000      0.999 0.000 1.000
#> GSM601772     2  0.0000      0.999 0.000 1.000
#> GSM601777     1  0.0000      0.993 1.000 0.000
#> GSM601787     1  0.0000      0.993 1.000 0.000
#> GSM601802     2  0.0000      0.999 0.000 1.000
#> GSM601807     1  0.0000      0.993 1.000 0.000
#> GSM601812     1  0.0000      0.993 1.000 0.000
#> GSM601817     1  0.0000      0.993 1.000 0.000
#> GSM601822     1  0.0000      0.993 1.000 0.000
#> GSM601832     2  0.0000      0.999 0.000 1.000
#> GSM601847     1  0.0000      0.993 1.000 0.000
#> GSM601852     1  0.0000      0.993 1.000 0.000
#> GSM601862     1  0.0000      0.993 1.000 0.000
#> GSM601753     2  0.0000      0.999 0.000 1.000
#> GSM601783     1  0.0000      0.993 1.000 0.000
#> GSM601793     1  0.0000      0.993 1.000 0.000
#> GSM601798     2  0.0000      0.999 0.000 1.000
#> GSM601828     1  0.0000      0.993 1.000 0.000
#> GSM601838     2  0.0000      0.999 0.000 1.000
#> GSM601843     2  0.0000      0.999 0.000 1.000
#> GSM601858     2  0.0000      0.999 0.000 1.000
#> GSM601868     1  0.0000      0.993 1.000 0.000
#> GSM601748     1  0.0000      0.993 1.000 0.000
#> GSM601758     1  0.0000      0.993 1.000 0.000
#> GSM601763     2  0.0000      0.999 0.000 1.000
#> GSM601768     2  0.0000      0.999 0.000 1.000
#> GSM601773     2  0.0000      0.999 0.000 1.000
#> GSM601778     1  0.0000      0.993 1.000 0.000
#> GSM601788     2  0.0000      0.999 0.000 1.000
#> GSM601803     2  0.0000      0.999 0.000 1.000
#> GSM601808     1  0.0000      0.993 1.000 0.000
#> GSM601813     1  0.0000      0.993 1.000 0.000
#> GSM601818     1  0.0000      0.993 1.000 0.000
#> GSM601823     2  0.1184      0.983 0.016 0.984
#> GSM601833     2  0.0000      0.999 0.000 1.000
#> GSM601848     1  0.0000      0.993 1.000 0.000
#> GSM601853     1  0.0000      0.993 1.000 0.000
#> GSM601863     1  0.0000      0.993 1.000 0.000
#> GSM601754     2  0.0000      0.999 0.000 1.000
#> GSM601784     2  0.0000      0.999 0.000 1.000
#> GSM601794     1  0.0000      0.993 1.000 0.000
#> GSM601799     2  0.0000      0.999 0.000 1.000
#> GSM601829     1  0.0000      0.993 1.000 0.000
#> GSM601839     2  0.0000      0.999 0.000 1.000
#> GSM601844     1  0.1184      0.979 0.984 0.016
#> GSM601859     2  0.0000      0.999 0.000 1.000
#> GSM601869     1  0.0000      0.993 1.000 0.000
#> GSM601749     1  0.0000      0.993 1.000 0.000
#> GSM601759     1  0.0000      0.993 1.000 0.000
#> GSM601764     2  0.0000      0.999 0.000 1.000
#> GSM601769     2  0.0000      0.999 0.000 1.000
#> GSM601774     2  0.0000      0.999 0.000 1.000
#> GSM601779     1  0.0000      0.993 1.000 0.000
#> GSM601789     2  0.0000      0.999 0.000 1.000
#> GSM601804     2  0.0000      0.999 0.000 1.000
#> GSM601809     1  0.0000      0.993 1.000 0.000
#> GSM601814     2  0.0000      0.999 0.000 1.000
#> GSM601819     1  0.0000      0.993 1.000 0.000
#> GSM601824     2  0.0000      0.999 0.000 1.000
#> GSM601834     2  0.0000      0.999 0.000 1.000
#> GSM601849     1  0.0000      0.993 1.000 0.000
#> GSM601854     1  0.0000      0.993 1.000 0.000
#> GSM601864     1  0.4298      0.903 0.912 0.088
#> GSM601755     2  0.0000      0.999 0.000 1.000
#> GSM601785     2  0.0000      0.999 0.000 1.000
#> GSM601795     1  0.3584      0.927 0.932 0.068
#> GSM601800     2  0.0000      0.999 0.000 1.000
#> GSM601830     1  0.0000      0.993 1.000 0.000
#> GSM601840     2  0.0000      0.999 0.000 1.000
#> GSM601845     2  0.0000      0.999 0.000 1.000
#> GSM601860     2  0.0000      0.999 0.000 1.000
#> GSM601870     1  0.0000      0.993 1.000 0.000
#> GSM601750     1  0.0000      0.993 1.000 0.000
#> GSM601760     1  0.0000      0.993 1.000 0.000
#> GSM601765     2  0.0000      0.999 0.000 1.000
#> GSM601770     2  0.0000      0.999 0.000 1.000
#> GSM601775     2  0.0000      0.999 0.000 1.000
#> GSM601780     1  0.0000      0.993 1.000 0.000
#> GSM601790     2  0.0000      0.999 0.000 1.000
#> GSM601805     2  0.0000      0.999 0.000 1.000
#> GSM601810     1  0.0000      0.993 1.000 0.000
#> GSM601815     2  0.0000      0.999 0.000 1.000
#> GSM601820     1  0.0000      0.993 1.000 0.000
#> GSM601825     2  0.0000      0.999 0.000 1.000
#> GSM601835     2  0.0000      0.999 0.000 1.000
#> GSM601850     1  0.0000      0.993 1.000 0.000
#> GSM601855     1  0.0000      0.993 1.000 0.000
#> GSM601865     1  0.8443      0.632 0.728 0.272
#> GSM601756     2  0.0000      0.999 0.000 1.000
#> GSM601786     2  0.0000      0.999 0.000 1.000
#> GSM601796     1  0.0000      0.993 1.000 0.000
#> GSM601801     2  0.0000      0.999 0.000 1.000
#> GSM601831     1  0.0000      0.993 1.000 0.000
#> GSM601841     1  0.0000      0.993 1.000 0.000
#> GSM601846     2  0.0000      0.999 0.000 1.000
#> GSM601861     2  0.0000      0.999 0.000 1.000
#> GSM601871     1  0.0000      0.993 1.000 0.000
#> GSM601751     2  0.0000      0.999 0.000 1.000
#> GSM601761     1  0.0000      0.993 1.000 0.000
#> GSM601766     2  0.0000      0.999 0.000 1.000
#> GSM601771     2  0.2948      0.945 0.052 0.948
#> GSM601776     1  0.0000      0.993 1.000 0.000
#> GSM601781     1  0.0000      0.993 1.000 0.000
#> GSM601791     1  0.0000      0.993 1.000 0.000
#> GSM601806     2  0.0000      0.999 0.000 1.000
#> GSM601811     1  0.0000      0.993 1.000 0.000
#> GSM601816     1  0.0000      0.993 1.000 0.000
#> GSM601821     2  0.0000      0.999 0.000 1.000
#> GSM601826     1  0.1633      0.971 0.976 0.024
#> GSM601836     2  0.0000      0.999 0.000 1.000
#> GSM601851     1  0.0000      0.993 1.000 0.000
#> GSM601856     1  0.0000      0.993 1.000 0.000
#> GSM601866     1  0.0000      0.993 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM601752     2  0.0237     0.8368 0.004 0.996 0.000
#> GSM601782     1  0.0000     0.9264 1.000 0.000 0.000
#> GSM601792     1  0.3116     0.8725 0.892 0.108 0.000
#> GSM601797     1  0.0000     0.9264 1.000 0.000 0.000
#> GSM601827     1  0.2537     0.8917 0.920 0.080 0.000
#> GSM601837     3  0.0000     0.8778 0.000 0.000 1.000
#> GSM601842     2  0.0747     0.8388 0.000 0.984 0.016
#> GSM601857     1  0.0237     0.9253 0.996 0.000 0.004
#> GSM601867     3  0.6095     0.4218 0.392 0.000 0.608
#> GSM601747     1  0.5497     0.6721 0.708 0.292 0.000
#> GSM601757     1  0.0424     0.9253 0.992 0.008 0.000
#> GSM601762     2  0.5678     0.6577 0.000 0.684 0.316
#> GSM601767     2  0.4887     0.7566 0.000 0.772 0.228
#> GSM601772     2  0.4452     0.7832 0.000 0.808 0.192
#> GSM601777     1  0.0237     0.9253 0.996 0.000 0.004
#> GSM601787     3  0.5760     0.5517 0.328 0.000 0.672
#> GSM601802     2  0.4605     0.7749 0.000 0.796 0.204
#> GSM601807     1  0.3116     0.8303 0.892 0.000 0.108
#> GSM601812     1  0.0000     0.9264 1.000 0.000 0.000
#> GSM601817     1  0.5785     0.6169 0.668 0.332 0.000
#> GSM601822     1  0.5016     0.7512 0.760 0.240 0.000
#> GSM601832     2  0.1031     0.8381 0.000 0.976 0.024
#> GSM601847     1  0.0424     0.9255 0.992 0.008 0.000
#> GSM601852     2  0.2711     0.7725 0.088 0.912 0.000
#> GSM601862     1  0.0237     0.9253 0.996 0.000 0.004
#> GSM601753     2  0.0237     0.8381 0.000 0.996 0.004
#> GSM601783     1  0.4291     0.8114 0.820 0.180 0.000
#> GSM601793     1  0.1031     0.9204 0.976 0.024 0.000
#> GSM601798     2  0.5216     0.7266 0.000 0.740 0.260
#> GSM601828     1  0.4974     0.7546 0.764 0.236 0.000
#> GSM601838     3  0.0237     0.8779 0.000 0.004 0.996
#> GSM601843     2  0.4002     0.8018 0.000 0.840 0.160
#> GSM601858     3  0.0237     0.8779 0.000 0.004 0.996
#> GSM601868     1  0.0424     0.9232 0.992 0.000 0.008
#> GSM601748     1  0.1753     0.9100 0.952 0.048 0.000
#> GSM601758     1  0.0237     0.9261 0.996 0.004 0.000
#> GSM601763     2  0.0237     0.8368 0.004 0.996 0.000
#> GSM601768     2  0.4002     0.8012 0.000 0.840 0.160
#> GSM601773     2  0.4750     0.7662 0.000 0.784 0.216
#> GSM601778     1  0.0000     0.9264 1.000 0.000 0.000
#> GSM601788     2  0.5138     0.7350 0.000 0.748 0.252
#> GSM601803     3  0.6225    -0.0910 0.000 0.432 0.568
#> GSM601808     1  0.0237     0.9253 0.996 0.000 0.004
#> GSM601813     1  0.0000     0.9264 1.000 0.000 0.000
#> GSM601818     1  0.0000     0.9264 1.000 0.000 0.000
#> GSM601823     2  0.0592     0.8330 0.012 0.988 0.000
#> GSM601833     2  0.3619     0.8113 0.000 0.864 0.136
#> GSM601848     2  0.6274    -0.0324 0.456 0.544 0.000
#> GSM601853     1  0.0000     0.9264 1.000 0.000 0.000
#> GSM601863     1  0.0237     0.9253 0.996 0.000 0.004
#> GSM601754     2  0.0237     0.8368 0.004 0.996 0.000
#> GSM601784     2  0.4796     0.7630 0.000 0.780 0.220
#> GSM601794     1  0.0424     0.9253 0.992 0.008 0.000
#> GSM601799     2  0.0000     0.8375 0.000 1.000 0.000
#> GSM601829     2  0.5098     0.5725 0.248 0.752 0.000
#> GSM601839     3  0.0000     0.8778 0.000 0.000 1.000
#> GSM601844     2  0.1289     0.8211 0.032 0.968 0.000
#> GSM601859     2  0.0237     0.8381 0.000 0.996 0.004
#> GSM601869     1  0.0237     0.9253 0.996 0.000 0.004
#> GSM601749     1  0.5363     0.7080 0.724 0.276 0.000
#> GSM601759     1  0.0000     0.9264 1.000 0.000 0.000
#> GSM601764     2  0.0237     0.8368 0.004 0.996 0.000
#> GSM601769     2  0.6095     0.5358 0.000 0.608 0.392
#> GSM601774     2  0.5363     0.7086 0.000 0.724 0.276
#> GSM601779     2  0.1964     0.8029 0.056 0.944 0.000
#> GSM601789     3  0.1411     0.8496 0.000 0.036 0.964
#> GSM601804     2  0.0237     0.8368 0.004 0.996 0.000
#> GSM601809     1  0.0892     0.9149 0.980 0.000 0.020
#> GSM601814     3  0.0424     0.8754 0.000 0.008 0.992
#> GSM601819     2  0.6140     0.1710 0.404 0.596 0.000
#> GSM601824     2  0.0237     0.8368 0.004 0.996 0.000
#> GSM601834     2  0.3879     0.8052 0.000 0.848 0.152
#> GSM601849     2  0.5529     0.4780 0.296 0.704 0.000
#> GSM601854     1  0.2356     0.8968 0.928 0.072 0.000
#> GSM601864     3  0.0892     0.8689 0.020 0.000 0.980
#> GSM601755     2  0.4887     0.7570 0.000 0.772 0.228
#> GSM601785     2  0.0237     0.8381 0.000 0.996 0.004
#> GSM601795     2  0.1753     0.8100 0.048 0.952 0.000
#> GSM601800     2  0.1753     0.8352 0.000 0.952 0.048
#> GSM601830     1  0.0000     0.9264 1.000 0.000 0.000
#> GSM601840     2  0.2165     0.8323 0.000 0.936 0.064
#> GSM601845     2  0.0237     0.8368 0.004 0.996 0.000
#> GSM601860     2  0.1289     0.8377 0.000 0.968 0.032
#> GSM601870     3  0.5098     0.6651 0.248 0.000 0.752
#> GSM601750     1  0.1411     0.9155 0.964 0.036 0.000
#> GSM601760     1  0.1411     0.9156 0.964 0.036 0.000
#> GSM601765     2  0.0424     0.8383 0.000 0.992 0.008
#> GSM601770     2  0.4346     0.7878 0.000 0.816 0.184
#> GSM601775     2  0.0000     0.8375 0.000 1.000 0.000
#> GSM601780     1  0.5327     0.7129 0.728 0.272 0.000
#> GSM601790     3  0.0237     0.8779 0.000 0.004 0.996
#> GSM601805     2  0.5431     0.6992 0.000 0.716 0.284
#> GSM601810     1  0.0237     0.9253 0.996 0.000 0.004
#> GSM601815     3  0.0237     0.8779 0.000 0.004 0.996
#> GSM601820     1  0.0000     0.9264 1.000 0.000 0.000
#> GSM601825     2  0.3482     0.8139 0.000 0.872 0.128
#> GSM601835     2  0.3752     0.8084 0.000 0.856 0.144
#> GSM601850     1  0.3267     0.8664 0.884 0.116 0.000
#> GSM601855     1  0.1289     0.9051 0.968 0.000 0.032
#> GSM601865     3  0.0747     0.8714 0.016 0.000 0.984
#> GSM601756     2  0.6026     0.5666 0.000 0.624 0.376
#> GSM601786     3  0.0000     0.8778 0.000 0.000 1.000
#> GSM601796     1  0.0000     0.9264 1.000 0.000 0.000
#> GSM601801     2  0.6111     0.5290 0.000 0.604 0.396
#> GSM601831     1  0.0000     0.9264 1.000 0.000 0.000
#> GSM601841     1  0.0237     0.9253 0.996 0.000 0.004
#> GSM601846     2  0.0237     0.8368 0.004 0.996 0.000
#> GSM601861     3  0.0237     0.8779 0.000 0.004 0.996
#> GSM601871     3  0.5810     0.5380 0.336 0.000 0.664
#> GSM601751     2  0.4796     0.7660 0.000 0.780 0.220
#> GSM601761     1  0.2261     0.8990 0.932 0.068 0.000
#> GSM601766     2  0.0000     0.8375 0.000 1.000 0.000
#> GSM601771     3  0.0237     0.8768 0.004 0.000 0.996
#> GSM601776     1  0.4452     0.7998 0.808 0.192 0.000
#> GSM601781     1  0.0237     0.9253 0.996 0.000 0.004
#> GSM601791     1  0.0237     0.9261 0.996 0.004 0.000
#> GSM601806     3  0.0592     0.8724 0.000 0.012 0.988
#> GSM601811     1  0.0592     0.9206 0.988 0.000 0.012
#> GSM601816     1  0.3038     0.8755 0.896 0.104 0.000
#> GSM601821     3  0.0237     0.8779 0.000 0.004 0.996
#> GSM601826     2  0.1411     0.8183 0.036 0.964 0.000
#> GSM601836     2  0.0237     0.8368 0.004 0.996 0.000
#> GSM601851     1  0.5363     0.7078 0.724 0.276 0.000
#> GSM601856     1  0.0000     0.9264 1.000 0.000 0.000
#> GSM601866     1  0.0237     0.9253 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM601752     4  0.1833     0.7561 0.000 0.024 0.032 0.944
#> GSM601782     1  0.2222     0.8497 0.932 0.032 0.004 0.032
#> GSM601792     4  0.2773     0.8230 0.116 0.000 0.004 0.880
#> GSM601797     4  0.2882     0.8156 0.084 0.000 0.024 0.892
#> GSM601827     1  0.2943     0.8422 0.892 0.032 0.000 0.076
#> GSM601837     3  0.1929     0.7609 0.036 0.024 0.940 0.000
#> GSM601842     2  0.0336     0.8289 0.000 0.992 0.000 0.008
#> GSM601857     1  0.2412     0.8051 0.908 0.000 0.084 0.008
#> GSM601867     1  0.4134     0.5998 0.740 0.000 0.260 0.000
#> GSM601747     1  0.5466     0.3206 0.548 0.436 0.000 0.016
#> GSM601757     1  0.3658     0.7806 0.836 0.144 0.000 0.020
#> GSM601762     2  0.6278     0.5251 0.000 0.652 0.228 0.120
#> GSM601767     2  0.4297     0.7437 0.000 0.820 0.084 0.096
#> GSM601772     2  0.0657     0.8254 0.000 0.984 0.012 0.004
#> GSM601777     4  0.5109     0.7461 0.196 0.000 0.060 0.744
#> GSM601787     3  0.5229     0.1994 0.428 0.000 0.564 0.008
#> GSM601802     4  0.3895     0.6671 0.000 0.036 0.132 0.832
#> GSM601807     1  0.4098     0.6882 0.784 0.000 0.204 0.012
#> GSM601812     1  0.2345     0.8396 0.900 0.000 0.000 0.100
#> GSM601817     1  0.4817     0.4596 0.612 0.388 0.000 0.000
#> GSM601822     4  0.3306     0.8116 0.156 0.004 0.000 0.840
#> GSM601832     2  0.1022     0.8312 0.000 0.968 0.000 0.032
#> GSM601847     4  0.2988     0.8231 0.112 0.000 0.012 0.876
#> GSM601852     2  0.3542     0.7384 0.120 0.852 0.000 0.028
#> GSM601862     1  0.1174     0.8461 0.968 0.000 0.020 0.012
#> GSM601753     2  0.6305     0.3503 0.000 0.516 0.060 0.424
#> GSM601783     1  0.4667     0.8023 0.796 0.108 0.000 0.096
#> GSM601793     4  0.2704     0.8224 0.124 0.000 0.000 0.876
#> GSM601798     4  0.3048     0.7037 0.000 0.016 0.108 0.876
#> GSM601828     1  0.4673     0.6356 0.700 0.292 0.000 0.008
#> GSM601838     3  0.1733     0.7702 0.000 0.028 0.948 0.024
#> GSM601843     2  0.0188     0.8266 0.000 0.996 0.004 0.000
#> GSM601858     3  0.5883     0.5020 0.060 0.300 0.640 0.000
#> GSM601868     1  0.1584     0.8391 0.952 0.000 0.036 0.012
#> GSM601748     1  0.3636     0.7554 0.820 0.172 0.000 0.008
#> GSM601758     1  0.2799     0.8362 0.884 0.008 0.000 0.108
#> GSM601763     2  0.1557     0.8164 0.000 0.944 0.000 0.056
#> GSM601768     2  0.0336     0.8273 0.000 0.992 0.008 0.000
#> GSM601773     2  0.3439     0.7814 0.000 0.868 0.048 0.084
#> GSM601778     4  0.3224     0.8199 0.120 0.000 0.016 0.864
#> GSM601788     2  0.2845     0.7952 0.000 0.896 0.076 0.028
#> GSM601803     3  0.5996     0.2144 0.000 0.040 0.512 0.448
#> GSM601808     1  0.0779     0.8457 0.980 0.000 0.016 0.004
#> GSM601813     1  0.2921     0.8148 0.860 0.000 0.000 0.140
#> GSM601818     1  0.2310     0.8163 0.920 0.004 0.068 0.008
#> GSM601823     2  0.4624     0.4820 0.000 0.660 0.000 0.340
#> GSM601833     2  0.1820     0.8249 0.000 0.944 0.020 0.036
#> GSM601848     4  0.3428     0.8174 0.144 0.012 0.000 0.844
#> GSM601853     1  0.0188     0.8474 0.996 0.000 0.004 0.000
#> GSM601863     1  0.0895     0.8495 0.976 0.000 0.004 0.020
#> GSM601754     4  0.1820     0.7539 0.000 0.020 0.036 0.944
#> GSM601784     2  0.3464     0.7825 0.000 0.868 0.056 0.076
#> GSM601794     4  0.3047     0.8219 0.116 0.000 0.012 0.872
#> GSM601799     4  0.4888     0.1002 0.000 0.412 0.000 0.588
#> GSM601829     2  0.7614     0.2028 0.300 0.468 0.000 0.232
#> GSM601839     3  0.1936     0.7652 0.028 0.032 0.940 0.000
#> GSM601844     2  0.2530     0.7903 0.004 0.896 0.000 0.100
#> GSM601859     2  0.0524     0.8277 0.000 0.988 0.008 0.004
#> GSM601869     1  0.1302     0.8504 0.956 0.000 0.000 0.044
#> GSM601749     1  0.7050     0.5360 0.552 0.292 0.000 0.156
#> GSM601759     1  0.2610     0.8435 0.900 0.012 0.000 0.088
#> GSM601764     2  0.0817     0.8281 0.000 0.976 0.000 0.024
#> GSM601769     2  0.6634     0.4052 0.000 0.592 0.292 0.116
#> GSM601774     2  0.4706     0.7076 0.000 0.788 0.140 0.072
#> GSM601779     4  0.3554     0.8201 0.136 0.020 0.000 0.844
#> GSM601789     3  0.5259     0.3290 0.008 0.376 0.612 0.004
#> GSM601804     4  0.2565     0.7387 0.000 0.056 0.032 0.912
#> GSM601809     1  0.1820     0.8518 0.944 0.000 0.020 0.036
#> GSM601814     3  0.4982     0.7115 0.000 0.092 0.772 0.136
#> GSM601819     2  0.5619     0.3789 0.320 0.640 0.000 0.040
#> GSM601824     2  0.2589     0.7812 0.000 0.884 0.000 0.116
#> GSM601834     2  0.3399     0.7878 0.000 0.868 0.040 0.092
#> GSM601849     4  0.3852     0.7946 0.180 0.012 0.000 0.808
#> GSM601854     1  0.2987     0.8339 0.880 0.016 0.000 0.104
#> GSM601864     3  0.2197     0.7325 0.080 0.000 0.916 0.004
#> GSM601755     4  0.3392     0.6861 0.000 0.020 0.124 0.856
#> GSM601785     2  0.0188     0.8284 0.000 0.996 0.000 0.004
#> GSM601795     4  0.2101     0.8062 0.060 0.012 0.000 0.928
#> GSM601800     4  0.3182     0.7053 0.000 0.028 0.096 0.876
#> GSM601830     1  0.4855     0.7438 0.788 0.004 0.076 0.132
#> GSM601840     2  0.1677     0.8200 0.000 0.948 0.040 0.012
#> GSM601845     2  0.0817     0.8281 0.000 0.976 0.000 0.024
#> GSM601860     2  0.1059     0.8267 0.000 0.972 0.012 0.016
#> GSM601870     3  0.4453     0.5758 0.244 0.000 0.744 0.012
#> GSM601750     1  0.2867     0.8341 0.884 0.012 0.000 0.104
#> GSM601760     1  0.4462     0.7868 0.792 0.044 0.000 0.164
#> GSM601765     2  0.0592     0.8291 0.000 0.984 0.000 0.016
#> GSM601770     2  0.1913     0.8205 0.000 0.940 0.020 0.040
#> GSM601775     2  0.0592     0.8291 0.000 0.984 0.000 0.016
#> GSM601780     4  0.3479     0.8167 0.148 0.012 0.000 0.840
#> GSM601790     3  0.2943     0.7639 0.000 0.076 0.892 0.032
#> GSM601805     4  0.3166     0.6979 0.000 0.016 0.116 0.868
#> GSM601810     1  0.1406     0.8447 0.960 0.000 0.024 0.016
#> GSM601815     3  0.3279     0.7523 0.000 0.032 0.872 0.096
#> GSM601820     1  0.2149     0.8430 0.912 0.000 0.000 0.088
#> GSM601825     2  0.5118     0.7062 0.000 0.752 0.072 0.176
#> GSM601835     2  0.1356     0.8317 0.000 0.960 0.008 0.032
#> GSM601850     4  0.3032     0.8238 0.124 0.008 0.000 0.868
#> GSM601855     1  0.3443     0.7638 0.848 0.000 0.136 0.016
#> GSM601865     3  0.1743     0.7438 0.056 0.000 0.940 0.004
#> GSM601756     4  0.5113     0.4674 0.000 0.032 0.264 0.704
#> GSM601786     3  0.2019     0.7712 0.004 0.032 0.940 0.024
#> GSM601796     4  0.3048     0.8212 0.108 0.000 0.016 0.876
#> GSM601801     4  0.5277     0.4059 0.000 0.028 0.304 0.668
#> GSM601831     1  0.1356     0.8526 0.960 0.008 0.000 0.032
#> GSM601841     1  0.2216     0.8412 0.908 0.000 0.000 0.092
#> GSM601846     2  0.4679     0.5156 0.000 0.648 0.000 0.352
#> GSM601861     3  0.4168     0.7424 0.000 0.080 0.828 0.092
#> GSM601871     3  0.5288     0.0524 0.472 0.000 0.520 0.008
#> GSM601751     2  0.6835     0.3891 0.000 0.576 0.288 0.136
#> GSM601761     1  0.4599     0.6749 0.736 0.016 0.000 0.248
#> GSM601766     2  0.0592     0.8291 0.000 0.984 0.000 0.016
#> GSM601771     3  0.3082     0.7577 0.000 0.032 0.884 0.084
#> GSM601776     4  0.4837     0.5165 0.348 0.004 0.000 0.648
#> GSM601781     4  0.5144     0.7302 0.216 0.000 0.052 0.732
#> GSM601791     1  0.4103     0.6688 0.744 0.000 0.000 0.256
#> GSM601806     3  0.5657     0.2639 0.000 0.024 0.540 0.436
#> GSM601811     1  0.1398     0.8367 0.956 0.000 0.040 0.004
#> GSM601816     4  0.3306     0.8114 0.156 0.004 0.000 0.840
#> GSM601821     3  0.2466     0.7660 0.000 0.028 0.916 0.056
#> GSM601826     2  0.4277     0.5985 0.000 0.720 0.000 0.280
#> GSM601836     2  0.0817     0.8281 0.000 0.976 0.000 0.024
#> GSM601851     4  0.4137     0.7668 0.208 0.012 0.000 0.780
#> GSM601856     1  0.0779     0.8439 0.980 0.000 0.016 0.004
#> GSM601866     1  0.1305     0.8515 0.960 0.000 0.004 0.036

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM601752     4  0.4846    0.73092 0.244 0.000 0.004 0.696 0.056
#> GSM601782     1  0.4906    0.29990 0.592 0.024 0.380 0.000 0.004
#> GSM601792     4  0.2171    0.77033 0.064 0.000 0.024 0.912 0.000
#> GSM601797     4  0.1877    0.77207 0.064 0.000 0.012 0.924 0.000
#> GSM601827     3  0.5940    0.40939 0.172 0.108 0.672 0.048 0.000
#> GSM601837     5  0.3123    0.72489 0.000 0.000 0.184 0.004 0.812
#> GSM601842     2  0.0451    0.76302 0.008 0.988 0.000 0.000 0.004
#> GSM601857     3  0.4735    0.16744 0.460 0.000 0.524 0.000 0.016
#> GSM601867     3  0.4718    0.55490 0.180 0.000 0.728 0.000 0.092
#> GSM601747     1  0.4506    0.43621 0.716 0.244 0.036 0.000 0.004
#> GSM601757     1  0.4565    0.50529 0.764 0.148 0.080 0.004 0.004
#> GSM601762     2  0.6344    0.34280 0.060 0.524 0.000 0.048 0.368
#> GSM601767     2  0.4645    0.57283 0.012 0.672 0.000 0.016 0.300
#> GSM601772     2  0.2361    0.74947 0.012 0.892 0.000 0.000 0.096
#> GSM601777     4  0.4772    0.68231 0.108 0.000 0.148 0.740 0.004
#> GSM601787     3  0.3934    0.44090 0.016 0.000 0.740 0.000 0.244
#> GSM601802     4  0.3086    0.70965 0.040 0.004 0.000 0.864 0.092
#> GSM601807     3  0.1267    0.54912 0.012 0.000 0.960 0.004 0.024
#> GSM601812     3  0.4505    0.29214 0.384 0.000 0.604 0.012 0.000
#> GSM601817     2  0.4925    0.34871 0.044 0.632 0.324 0.000 0.000
#> GSM601822     4  0.5262    0.60013 0.408 0.012 0.028 0.552 0.000
#> GSM601832     2  0.2047    0.75623 0.040 0.928 0.000 0.020 0.012
#> GSM601847     4  0.4375    0.60743 0.420 0.000 0.004 0.576 0.000
#> GSM601852     2  0.2828    0.73070 0.104 0.872 0.020 0.004 0.000
#> GSM601862     3  0.4655    0.14337 0.476 0.000 0.512 0.000 0.012
#> GSM601753     2  0.7471    0.43522 0.096 0.504 0.000 0.248 0.152
#> GSM601783     1  0.4528    0.51418 0.728 0.060 0.212 0.000 0.000
#> GSM601793     4  0.2208    0.77190 0.072 0.000 0.020 0.908 0.000
#> GSM601798     4  0.2141    0.74147 0.016 0.000 0.004 0.916 0.064
#> GSM601828     2  0.6281   -0.14345 0.152 0.460 0.388 0.000 0.000
#> GSM601838     5  0.0794    0.81191 0.000 0.000 0.028 0.000 0.972
#> GSM601843     2  0.0794    0.76342 0.000 0.972 0.000 0.000 0.028
#> GSM601858     5  0.3383    0.78879 0.012 0.072 0.060 0.000 0.856
#> GSM601868     3  0.4354    0.39646 0.368 0.000 0.624 0.000 0.008
#> GSM601748     1  0.5996    0.20595 0.512 0.120 0.368 0.000 0.000
#> GSM601758     1  0.2919    0.55085 0.868 0.024 0.104 0.004 0.000
#> GSM601763     2  0.0798    0.76071 0.016 0.976 0.008 0.000 0.000
#> GSM601768     2  0.2179    0.74742 0.004 0.896 0.000 0.000 0.100
#> GSM601773     2  0.3365    0.70353 0.004 0.808 0.000 0.008 0.180
#> GSM601778     4  0.2929    0.76564 0.152 0.000 0.008 0.840 0.000
#> GSM601788     2  0.5153    0.28899 0.040 0.524 0.000 0.000 0.436
#> GSM601803     5  0.5559    0.00287 0.016 0.028 0.004 0.464 0.488
#> GSM601808     3  0.3456    0.56060 0.204 0.000 0.788 0.004 0.004
#> GSM601813     1  0.4942    0.19690 0.540 0.000 0.432 0.028 0.000
#> GSM601818     3  0.5084    0.06670 0.484 0.008 0.488 0.000 0.020
#> GSM601823     2  0.5700    0.57491 0.216 0.664 0.024 0.096 0.000
#> GSM601833     2  0.3696    0.73738 0.048 0.844 0.000 0.032 0.076
#> GSM601848     4  0.4481    0.60669 0.416 0.000 0.008 0.576 0.000
#> GSM601853     3  0.2763    0.57691 0.148 0.004 0.848 0.000 0.000
#> GSM601863     3  0.4549    0.16492 0.464 0.000 0.528 0.000 0.008
#> GSM601754     4  0.2012    0.76868 0.060 0.000 0.000 0.920 0.020
#> GSM601784     2  0.4062    0.70306 0.028 0.788 0.000 0.016 0.168
#> GSM601794     4  0.2248    0.77362 0.088 0.000 0.012 0.900 0.000
#> GSM601799     2  0.5423    0.29517 0.028 0.552 0.000 0.400 0.020
#> GSM601829     2  0.5944    0.59498 0.064 0.672 0.184 0.080 0.000
#> GSM601839     5  0.2424    0.76362 0.000 0.000 0.132 0.000 0.868
#> GSM601844     2  0.2720    0.73311 0.096 0.880 0.020 0.004 0.000
#> GSM601859     2  0.4365    0.71364 0.116 0.768 0.000 0.000 0.116
#> GSM601869     1  0.4420    0.10951 0.548 0.000 0.448 0.004 0.000
#> GSM601749     1  0.4235    0.49481 0.772 0.176 0.044 0.008 0.000
#> GSM601759     1  0.3368    0.54599 0.820 0.024 0.156 0.000 0.000
#> GSM601764     2  0.0880    0.75997 0.032 0.968 0.000 0.000 0.000
#> GSM601769     5  0.5732    0.30013 0.040 0.328 0.000 0.036 0.596
#> GSM601774     2  0.4327    0.47770 0.000 0.632 0.000 0.008 0.360
#> GSM601779     4  0.4803    0.49521 0.488 0.012 0.004 0.496 0.000
#> GSM601789     5  0.3409    0.70433 0.000 0.160 0.024 0.000 0.816
#> GSM601804     4  0.4160    0.75713 0.184 0.008 0.000 0.772 0.036
#> GSM601809     3  0.4954    0.19743 0.448 0.000 0.528 0.004 0.020
#> GSM601814     5  0.4461    0.72778 0.064 0.056 0.000 0.080 0.800
#> GSM601819     1  0.4428    0.40086 0.692 0.284 0.020 0.004 0.000
#> GSM601824     2  0.3059    0.72219 0.120 0.856 0.008 0.016 0.000
#> GSM601834     2  0.5024    0.69232 0.076 0.760 0.000 0.060 0.104
#> GSM601849     4  0.5266    0.50624 0.468 0.020 0.016 0.496 0.000
#> GSM601854     1  0.4860    0.20444 0.540 0.016 0.440 0.004 0.000
#> GSM601864     5  0.3774    0.59757 0.000 0.000 0.296 0.000 0.704
#> GSM601755     4  0.3651    0.70007 0.032 0.000 0.004 0.812 0.152
#> GSM601785     2  0.1012    0.76363 0.012 0.968 0.000 0.000 0.020
#> GSM601795     4  0.2110    0.73652 0.072 0.000 0.016 0.912 0.000
#> GSM601800     4  0.2139    0.72246 0.056 0.000 0.012 0.920 0.012
#> GSM601830     3  0.5089    0.37876 0.104 0.016 0.728 0.152 0.000
#> GSM601840     2  0.4846    0.48246 0.024 0.612 0.000 0.004 0.360
#> GSM601845     2  0.0807    0.76062 0.012 0.976 0.012 0.000 0.000
#> GSM601860     2  0.4512    0.58108 0.020 0.676 0.000 0.004 0.300
#> GSM601870     3  0.4225    0.03906 0.000 0.000 0.632 0.004 0.364
#> GSM601750     1  0.4599    0.31287 0.600 0.016 0.384 0.000 0.000
#> GSM601760     1  0.2778    0.54264 0.892 0.032 0.060 0.016 0.000
#> GSM601765     2  0.0579    0.76393 0.000 0.984 0.000 0.008 0.008
#> GSM601770     2  0.3234    0.72674 0.012 0.836 0.000 0.008 0.144
#> GSM601775     2  0.0693    0.76284 0.012 0.980 0.000 0.000 0.008
#> GSM601780     4  0.4297    0.51713 0.472 0.000 0.000 0.528 0.000
#> GSM601790     5  0.1216    0.81441 0.000 0.020 0.020 0.000 0.960
#> GSM601805     4  0.3142    0.72838 0.032 0.000 0.004 0.856 0.108
#> GSM601810     3  0.2660    0.58284 0.128 0.000 0.864 0.000 0.008
#> GSM601815     5  0.1116    0.81310 0.004 0.000 0.004 0.028 0.964
#> GSM601820     1  0.4590    0.22046 0.568 0.000 0.420 0.012 0.000
#> GSM601825     2  0.6447    0.57406 0.076 0.628 0.000 0.100 0.196
#> GSM601835     2  0.4117    0.71751 0.080 0.824 0.032 0.060 0.004
#> GSM601850     4  0.4305    0.50523 0.488 0.000 0.000 0.512 0.000
#> GSM601855     3  0.1518    0.54085 0.016 0.000 0.952 0.020 0.012
#> GSM601865     5  0.3521    0.67082 0.000 0.000 0.232 0.004 0.764
#> GSM601756     4  0.4208    0.57857 0.020 0.000 0.004 0.728 0.248
#> GSM601786     5  0.0290    0.81534 0.000 0.000 0.008 0.000 0.992
#> GSM601796     4  0.2628    0.75386 0.088 0.000 0.028 0.884 0.000
#> GSM601801     4  0.4296    0.64110 0.056 0.008 0.016 0.804 0.116
#> GSM601831     3  0.4240    0.47457 0.284 0.004 0.700 0.012 0.000
#> GSM601841     1  0.4090    0.46256 0.716 0.000 0.268 0.016 0.000
#> GSM601846     2  0.6056    0.61949 0.088 0.680 0.104 0.128 0.000
#> GSM601861     5  0.1216    0.80826 0.000 0.020 0.000 0.020 0.960
#> GSM601871     3  0.4350    0.39262 0.028 0.000 0.704 0.000 0.268
#> GSM601751     5  0.5566    0.42304 0.036 0.276 0.000 0.044 0.644
#> GSM601761     1  0.3107    0.50282 0.868 0.012 0.032 0.088 0.000
#> GSM601766     2  0.0000    0.76215 0.000 1.000 0.000 0.000 0.000
#> GSM601771     5  0.1488    0.81518 0.008 0.008 0.012 0.016 0.956
#> GSM601776     1  0.3796    0.07658 0.700 0.000 0.000 0.300 0.000
#> GSM601781     4  0.4403    0.72252 0.132 0.000 0.092 0.772 0.004
#> GSM601791     1  0.4269    0.51556 0.756 0.000 0.188 0.056 0.000
#> GSM601806     4  0.5550    0.28275 0.036 0.012 0.008 0.584 0.360
#> GSM601811     3  0.4335    0.51845 0.268 0.000 0.708 0.004 0.020
#> GSM601816     4  0.4836    0.65765 0.336 0.000 0.036 0.628 0.000
#> GSM601821     5  0.1153    0.81396 0.008 0.000 0.004 0.024 0.964
#> GSM601826     2  0.5580    0.48116 0.304 0.620 0.020 0.056 0.000
#> GSM601836     2  0.0798    0.76148 0.008 0.976 0.016 0.000 0.000
#> GSM601851     1  0.4088   -0.18184 0.632 0.000 0.000 0.368 0.000
#> GSM601856     3  0.2127    0.57958 0.108 0.000 0.892 0.000 0.000
#> GSM601866     1  0.4455    0.23832 0.588 0.000 0.404 0.000 0.008

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM601752     6  0.3534     0.6564 0.000 0.012 0.004 0.188 0.012 0.784
#> GSM601782     1  0.1226     0.6822 0.952 0.000 0.004 0.040 0.000 0.004
#> GSM601792     6  0.2445     0.7009 0.008 0.004 0.032 0.060 0.000 0.896
#> GSM601797     6  0.1003     0.7034 0.000 0.000 0.016 0.020 0.000 0.964
#> GSM601827     1  0.7648     0.1095 0.344 0.100 0.276 0.264 0.000 0.016
#> GSM601837     3  0.4076     0.4972 0.000 0.000 0.592 0.012 0.396 0.000
#> GSM601842     2  0.1556     0.6649 0.000 0.920 0.000 0.000 0.080 0.000
#> GSM601857     1  0.3834     0.5785 0.732 0.000 0.232 0.036 0.000 0.000
#> GSM601867     1  0.4208     0.6148 0.740 0.000 0.200 0.036 0.024 0.000
#> GSM601747     1  0.6521    -0.5016 0.456 0.228 0.008 0.292 0.012 0.004
#> GSM601757     4  0.7747     0.0000 0.288 0.240 0.028 0.352 0.000 0.092
#> GSM601762     5  0.4360     0.2894 0.000 0.404 0.012 0.004 0.576 0.004
#> GSM601767     5  0.3993     0.2753 0.000 0.400 0.000 0.008 0.592 0.000
#> GSM601772     2  0.3460     0.5771 0.000 0.760 0.000 0.020 0.220 0.000
#> GSM601777     6  0.3205     0.6907 0.036 0.000 0.072 0.040 0.000 0.852
#> GSM601787     3  0.3927     0.6140 0.120 0.000 0.776 0.000 0.100 0.004
#> GSM601802     6  0.3755     0.6748 0.000 0.008 0.016 0.052 0.112 0.812
#> GSM601807     3  0.4692     0.4691 0.152 0.000 0.716 0.120 0.004 0.008
#> GSM601812     1  0.3706     0.6586 0.780 0.000 0.040 0.172 0.000 0.008
#> GSM601817     2  0.3799     0.4953 0.124 0.800 0.052 0.024 0.000 0.000
#> GSM601822     6  0.5131     0.5130 0.020 0.064 0.004 0.276 0.000 0.636
#> GSM601832     2  0.3073     0.6168 0.000 0.816 0.004 0.016 0.164 0.000
#> GSM601847     6  0.4109     0.6213 0.020 0.004 0.012 0.224 0.004 0.736
#> GSM601852     2  0.2265     0.5932 0.008 0.896 0.008 0.084 0.004 0.000
#> GSM601862     1  0.2146     0.6821 0.880 0.000 0.116 0.004 0.000 0.000
#> GSM601753     6  0.7394     0.1167 0.000 0.284 0.004 0.144 0.168 0.400
#> GSM601783     1  0.2857     0.6211 0.856 0.024 0.000 0.112 0.004 0.004
#> GSM601793     6  0.2691     0.6906 0.008 0.000 0.032 0.088 0.000 0.872
#> GSM601798     6  0.2038     0.7018 0.000 0.000 0.020 0.028 0.032 0.920
#> GSM601828     2  0.6279    -0.1020 0.312 0.524 0.064 0.096 0.000 0.004
#> GSM601838     5  0.3853     0.1563 0.000 0.000 0.304 0.016 0.680 0.000
#> GSM601843     2  0.1806     0.6638 0.000 0.908 0.004 0.000 0.088 0.000
#> GSM601858     3  0.5882     0.4156 0.008 0.048 0.508 0.036 0.392 0.008
#> GSM601868     1  0.2536     0.6835 0.864 0.000 0.116 0.020 0.000 0.000
#> GSM601748     1  0.3450     0.6304 0.836 0.072 0.032 0.060 0.000 0.000
#> GSM601758     1  0.4032     0.4690 0.748 0.020 0.004 0.208 0.000 0.020
#> GSM601763     2  0.1168     0.6544 0.000 0.956 0.000 0.028 0.016 0.000
#> GSM601768     2  0.3634     0.4761 0.000 0.696 0.000 0.008 0.296 0.000
#> GSM601773     2  0.3992     0.3181 0.000 0.624 0.000 0.012 0.364 0.000
#> GSM601778     6  0.1370     0.7029 0.004 0.000 0.012 0.036 0.000 0.948
#> GSM601788     2  0.5869     0.2102 0.000 0.536 0.056 0.072 0.336 0.000
#> GSM601803     6  0.5277     0.2645 0.000 0.008 0.036 0.020 0.440 0.496
#> GSM601808     1  0.4281     0.6182 0.732 0.000 0.136 0.132 0.000 0.000
#> GSM601813     1  0.3318     0.6777 0.824 0.000 0.020 0.132 0.000 0.024
#> GSM601818     1  0.0935     0.6913 0.964 0.000 0.032 0.004 0.000 0.000
#> GSM601823     2  0.5767    -0.2579 0.000 0.516 0.004 0.300 0.000 0.180
#> GSM601833     2  0.4273     0.2781 0.000 0.596 0.000 0.024 0.380 0.000
#> GSM601848     6  0.4474     0.5901 0.044 0.020 0.000 0.232 0.000 0.704
#> GSM601853     1  0.5650     0.3602 0.508 0.000 0.344 0.144 0.000 0.004
#> GSM601863     1  0.2402     0.6823 0.868 0.000 0.120 0.012 0.000 0.000
#> GSM601754     6  0.1849     0.7047 0.000 0.008 0.008 0.032 0.020 0.932
#> GSM601784     2  0.3998    -0.0423 0.000 0.504 0.000 0.004 0.492 0.000
#> GSM601794     6  0.1722     0.7019 0.008 0.004 0.016 0.036 0.000 0.936
#> GSM601799     6  0.6070     0.3213 0.000 0.324 0.000 0.072 0.076 0.528
#> GSM601829     2  0.5831     0.3198 0.000 0.616 0.092 0.216 0.000 0.076
#> GSM601839     3  0.4136     0.4532 0.000 0.000 0.560 0.012 0.428 0.000
#> GSM601844     2  0.2515     0.5719 0.000 0.876 0.008 0.104 0.004 0.008
#> GSM601859     2  0.4595     0.5670 0.000 0.696 0.000 0.136 0.168 0.000
#> GSM601869     1  0.0653     0.6911 0.980 0.000 0.012 0.004 0.000 0.004
#> GSM601749     1  0.4972     0.2675 0.660 0.104 0.000 0.228 0.004 0.004
#> GSM601759     1  0.5100     0.0720 0.616 0.036 0.004 0.312 0.000 0.032
#> GSM601764     2  0.1391     0.6516 0.000 0.944 0.000 0.040 0.016 0.000
#> GSM601769     5  0.3046     0.6025 0.000 0.188 0.000 0.012 0.800 0.000
#> GSM601774     5  0.4234     0.1951 0.000 0.440 0.000 0.016 0.544 0.000
#> GSM601779     6  0.4965     0.5033 0.036 0.036 0.000 0.296 0.000 0.632
#> GSM601789     5  0.5008     0.3786 0.000 0.100 0.268 0.004 0.628 0.000
#> GSM601804     6  0.3356     0.6830 0.000 0.032 0.004 0.116 0.016 0.832
#> GSM601809     1  0.3209     0.6866 0.848 0.000 0.028 0.100 0.016 0.008
#> GSM601814     5  0.3717     0.6012 0.000 0.060 0.036 0.076 0.824 0.004
#> GSM601819     1  0.4234     0.5247 0.768 0.064 0.004 0.148 0.012 0.004
#> GSM601824     2  0.3341     0.4645 0.000 0.776 0.000 0.208 0.004 0.012
#> GSM601834     2  0.5346    -0.0514 0.000 0.460 0.012 0.072 0.456 0.000
#> GSM601849     6  0.5136     0.5278 0.036 0.048 0.004 0.264 0.000 0.648
#> GSM601854     1  0.2833     0.6928 0.868 0.008 0.032 0.088 0.000 0.004
#> GSM601864     3  0.4397     0.5452 0.000 0.000 0.632 0.012 0.336 0.020
#> GSM601755     6  0.3441     0.6873 0.000 0.004 0.020 0.032 0.116 0.828
#> GSM601785     2  0.3634     0.4688 0.000 0.696 0.000 0.008 0.296 0.000
#> GSM601795     6  0.4248     0.6045 0.000 0.004 0.032 0.248 0.008 0.708
#> GSM601800     6  0.5121     0.5987 0.000 0.012 0.028 0.204 0.068 0.688
#> GSM601830     3  0.6573     0.3005 0.076 0.060 0.500 0.336 0.000 0.028
#> GSM601840     5  0.5249     0.4765 0.100 0.244 0.000 0.020 0.636 0.000
#> GSM601845     2  0.1924     0.6211 0.000 0.920 0.028 0.048 0.000 0.004
#> GSM601860     5  0.4942     0.4475 0.040 0.292 0.004 0.024 0.640 0.000
#> GSM601870     3  0.3444     0.6049 0.032 0.000 0.836 0.056 0.076 0.000
#> GSM601750     1  0.1429     0.6901 0.940 0.004 0.000 0.052 0.000 0.004
#> GSM601760     1  0.4472     0.4033 0.712 0.028 0.004 0.228 0.000 0.028
#> GSM601765     2  0.1285     0.6720 0.000 0.944 0.004 0.000 0.052 0.000
#> GSM601770     2  0.4039     0.1937 0.000 0.568 0.000 0.008 0.424 0.000
#> GSM601775     2  0.2070     0.6611 0.000 0.892 0.000 0.008 0.100 0.000
#> GSM601780     6  0.4781     0.5771 0.120 0.004 0.004 0.176 0.000 0.696
#> GSM601790     5  0.3087     0.4726 0.000 0.012 0.176 0.004 0.808 0.000
#> GSM601805     6  0.2495     0.7012 0.000 0.000 0.016 0.032 0.060 0.892
#> GSM601810     1  0.4545     0.5784 0.684 0.000 0.224 0.092 0.000 0.000
#> GSM601815     5  0.1732     0.5552 0.000 0.004 0.072 0.004 0.920 0.000
#> GSM601820     1  0.2656     0.6827 0.860 0.000 0.012 0.120 0.000 0.008
#> GSM601825     5  0.5220     0.1675 0.000 0.408 0.008 0.060 0.520 0.004
#> GSM601835     2  0.5192     0.5578 0.000 0.684 0.044 0.172 0.100 0.000
#> GSM601850     6  0.4571     0.5675 0.048 0.004 0.008 0.260 0.000 0.680
#> GSM601855     3  0.5333     0.3907 0.152 0.000 0.604 0.240 0.000 0.004
#> GSM601865     3  0.4111     0.4397 0.000 0.000 0.536 0.004 0.456 0.004
#> GSM601756     6  0.4315     0.6257 0.000 0.000 0.016 0.044 0.220 0.720
#> GSM601786     5  0.2100     0.5157 0.004 0.000 0.112 0.000 0.884 0.000
#> GSM601796     6  0.5484     0.4685 0.032 0.000 0.036 0.344 0.016 0.572
#> GSM601801     6  0.5970     0.4745 0.000 0.004 0.036 0.136 0.240 0.584
#> GSM601831     1  0.5015     0.5422 0.640 0.000 0.152 0.208 0.000 0.000
#> GSM601841     1  0.2425     0.6447 0.884 0.000 0.004 0.088 0.000 0.024
#> GSM601846     2  0.4818     0.5109 0.000 0.736 0.092 0.104 0.000 0.068
#> GSM601861     5  0.2094     0.5698 0.000 0.020 0.080 0.000 0.900 0.000
#> GSM601871     3  0.4216     0.6094 0.124 0.000 0.764 0.004 0.100 0.008
#> GSM601751     5  0.4330     0.6173 0.012 0.120 0.008 0.068 0.780 0.012
#> GSM601761     1  0.5687    -0.2093 0.540 0.024 0.000 0.336 0.000 0.100
#> GSM601766     2  0.1398     0.6721 0.000 0.940 0.000 0.008 0.052 0.000
#> GSM601771     5  0.5048     0.2196 0.012 0.000 0.236 0.028 0.676 0.048
#> GSM601776     6  0.6244     0.0605 0.164 0.028 0.000 0.340 0.000 0.468
#> GSM601781     6  0.3410     0.6705 0.076 0.000 0.024 0.064 0.000 0.836
#> GSM601791     1  0.3033     0.6513 0.848 0.000 0.012 0.108 0.000 0.032
#> GSM601806     6  0.5626     0.3147 0.000 0.000 0.024 0.084 0.380 0.512
#> GSM601811     1  0.3835     0.6594 0.784 0.000 0.048 0.156 0.008 0.004
#> GSM601816     6  0.5331     0.5512 0.128 0.008 0.020 0.176 0.000 0.668
#> GSM601821     5  0.2474     0.5503 0.000 0.004 0.080 0.032 0.884 0.000
#> GSM601826     2  0.5541    -0.1404 0.012 0.572 0.004 0.308 0.000 0.104
#> GSM601836     2  0.1418     0.6722 0.000 0.944 0.000 0.032 0.024 0.000
#> GSM601851     6  0.5537     0.3954 0.076 0.024 0.004 0.324 0.000 0.572
#> GSM601856     1  0.5904     0.2791 0.456 0.000 0.320 0.224 0.000 0.000
#> GSM601866     1  0.1036     0.6851 0.964 0.000 0.008 0.024 0.000 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n time(p) gender(p) k
#> ATC:NMF 125   0.492     0.328 2
#> ATC:NMF 120   0.245     0.294 3
#> ATC:NMF 109   0.876     0.525 4
#> ATC:NMF  84   0.926     0.216 5
#> ATC:NMF  76   0.656     0.892 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0